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Preface

This book is the culmination of several years’ research on nonlinear systems.
In contrast to the case of linear systems, where a coherent and well-defined
theory has existed for many years (indeed, in many respects, we may regard
linear systems theory as ‘complete’), nonlinear systems theory has tended to
be a set of disparate results on fairly specific kinds of systems. Of course, there
are coherent theories of nonlinear systems using differential and/or algebraic
geometric methods, but, in many cases, these have very strong conditions
attached which are not satisfied in general. In an attempt to build a theory
which has great generality we have been led to consider systems with the
structure

ẋ = A(x;u)x+B(x;u)u

(possibly also with a measurement equation).
This appears to be quite restrictive, but, as we shall see, almost every sys-

tem can be put in this form, so that the theory is, in fact, almost completely
general. We shall show that systems of this form can be approximated arbi-
trarily closely (on any finite time interval - no matter how large) by a sequence
of linear, time-varying systems. This opens up the prospect of using existing
linear theory in the (global) solution of nonlinear problems and it is this with
which the book is concerned. It is a research monograph, but it could be used
as a graduate-level text; we have tried to keep the notation standard, so that,
for the most part, the mathematical language is well-known. In some parts
of the book, some previous knowledge of Lie algebras, differential geometry
and functional analysis is necessary. Since there are, of course, many excel-
lent (classical) texts on these subjects, we have merely given references to the
requisite mathematical ideas.

Now we outline the detailed contents of the book. In Chapter 1 we intro-
duce the systems with which we shall be interested and show how they are
related to the most general nonlinear systems. Chapter 2 begins the detailed
analysis of these systems, and in particular, we discuss the ‘iteration scheme’
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which is the main technical tool of the approach. Since the method gives rise
to sequences of linear, time-varying systems, Chapter 3 is a detailed analy-
sis of such systems; in particular, we determine some explicit solutions and
study the stability and spectral theory of these systems. In Chapter 4 we
show that much of the linear spectral theory of systems can be generalised to
nonlinear systems and in Chapter 5 we give a main application of the ideas
to the spectral assignment problem in nonlinear systems. Optimal control of
linear systems is a major part of ‘classical’ control theory and in Chapter
6 we show how to use the iteration method to extend the theory to nonlin-
ear systems. We also discuss the optimality via the Hamilton-Jacobi-Bellman
equation. The need for more robust controllers led to the discovery of sliding
controllers, which again are generalised to nonlinear systems (and nonlinear
sliding surfaces) in Chapter 7. In Chapter 8 we show how the method relates
to fixed-point theory and how it can be used inductively to derive certain
conditions on nonlinear systems. The generalisation of the technique to par-
tial differential equations and systems is given in Chapter 9, together with
examples from moving boundary problems and solitons (nonlinear waves).
Lie algebraic methods have significant impact on linear systems theory and
in Chapter 10 we see that it can also give a powerful structure theory for
nonlinear systems. The global theory of nonlinear systems on manifolds is
outlined in Chapter 11 where we show how to piece together a number of
local systems into a global one by use of the theory of connections. Low-
dimensional systems on manifolds are considered in the cases of 2, 3 and 4
dimensions. Finally, in Chapter 12, we speculate on the future possibilities
of the iteration method and show that it is likely to be applicable in many
other circumstances in nonlinear systems theory. The appendices give some
background on linear algebra, Lie algebras, manifold theory and functional
analysis.

Finally, we should acknowledge the influence of many of our students and
colleagues who have been associated with this work over the years and, in
particular, Metin Salamci, Tayfun Cimen, David McCaffrey, Claudia Navarro-
Hernandez, Oscar Hugues-Salas, Zahra Sangelaji, Sherif Fahmy, Yi Song,
Evren Gurkan Covasoglu, Xianhua Zheng, Chunyan Du, Wei Chen, Xu Xu,
Salman Khalid, Serdar Tombul and Mehmet Itik. They have all contributed
in various ways to the evolution of this technique.

Sheffield, London,
January 2010

Maŕıa Tomás-Rodŕıguez
Stephen P. Banks
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Chapter 1
Introduction to Nonlinear Systems

1.1 Overview

In this book we shall present a new way of approaching nonlinear systems by
regarding them as limits of linear, time-varying ones. In order to explain the
method, consider an unforced nonlinear dynamical system defined by the differ-
ential equation

ẋ = f (x, t),x(0) = x0. (1.1)

Suppose that f is differentiable at x = 0, for all t, and

f (0, t) = 0, for all t.

Then we can write (1.1) in the form

ẋ = A(x, t)x,x(0) = x0 (1.2)

for some differentiable, matrix-valued function A(x, t). Note that this representation
is not unique; however, if

ẋ = A1(x, t)x
ẋ = A2(x, t)x

represent the same system, then

(A1(x, t)−A2(x,t))x = 0

so that A1 and A2 differ by a matrix whose kernel contains x for any x ∈ R. Thus,
for example, for the Van der Pol oscillator given by the equations

ẋ1 = x2 − x3
1 + x1

ẋ2 = −x1

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 1–10.
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2 1 Introduction to Nonlinear Systems

we have

ẋ =
(

1− x2
1 1

−1 0

)
x

and, for example,

ẋ =
(

1− x2
1 + x2 1− x1

−1 0

)
x.

The matrices of these systems differ by the matrix

B(x) .=
(

1− x2
1 1

−1 0

)
−
(

1− x2
1 + x2 1− x1

−1 0

)

=
(−x2 x1

0 0

)

so that

B(x)x =
(−x2 x1

0 0

)(
x1

x2

)
=
(

0
0

)
.

We shall assume that Equation 1.1 has global solutions, bounded on all compact time
intervals (although much of what is done here is valid for systems with finite blow-
up times, such as ẋ = x2, provided we restrict attention to a compact subinterval of
the interval on which solutions are defined). The basic idea is then to replace the
system (1.2) by a sequence of linear, time-varying equations of the form

ẋ[i](t) = A(x[i−1](t),t)x[i], i ≥ 1, x[i](0) = x0 (1.3)

where x[1](t) can be any suitable starting function. In many cases we shall take

x[1](t) = x0,

i.e. a constant function with value equal to the initial point. However, the closer
x[1](t) is to the true solution, the quicker the convergence will be. Of course, if we
write ξ (t,x0) for the solution of (1.2) through x0 (at time t = 0), then the linear,
time-varying equation

ẋ = A(ξ (t,x0),t)x, x(0) = x0

has precisely the same solution x(t) = ξ (t,x0).

1.2 Existence and Uniqueness

In this section we shall state, without proof, standard results on the existence and
uniqueness of nonlinear differential equations. These can be found, for example, in
[1] or [2].
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Theorem 1.1. The system of equations

ẋ = f (x, t), x(τ) = x0

has a unique solution for

(x0,τ) ∈ {(x,t) : |t − τ| ≤ a,‖x− x0‖ ≤ b,a,b > 0} .= R

if f is Lipschitz continuous in x and measurable in t. Moreover, if

M = max| f (t,x)|, (t,x) ∈ R

then the solution exists for times t such that

|t − τ| ≤ α,

where

α = min

(
a,

b
M

)
.

For the system (1.2) we have

‖A(t,x)x‖ ≤ ‖A(x, t)‖ · ‖x‖
≤ ‖A(x, t)‖(‖x0‖+ b)
≤ K (‖x0‖+ b)

if A(x,t) is bounded by K on R. Hence, in this case the solutions exist at least for
times satisfying |t − τ| ≤ α , where

α = min

(
a,

b
K(‖x0‖+ b)

)
.

1.3 Logistic Systems

Before getting into the details of general nonlinear systems to be discussed in the
remainder of the book, we shall illustrate the method with a particularly nice class
of systems called logistic systems. These are used to model many types of biolog-
ical problems from predator-prey systems to the growth of cancer cells. The basic
structure of a logistic system is one of the form
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ẋ1 = f1(x1, · · · ,xn) · x1

ẋ2 = f2(x1, · · · ,xn) · x2 (1.4)

· · ·
ẋn = fn(x1, · · · ,xn) · xn

i.e. one in which xi is a factor of the corresponding component of the vector field,
for each 1 ≤ i ≤ n. The reason these are so well adapted to our method is that, when
we write the equations in the form (1.2), we obtain a diagonal matrix A:

⎛
⎜⎝

ẋ1
...

ẋn

⎞
⎟⎠=

⎛
⎜⎝

f1(x1, · · · ,xn) 0
. . .

0 fn(x1, · · · ,xn)

⎞
⎟⎠
⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ (1.5)

so that, when we iterate, we obtain a separable linear system of time-varying equa-
tions:⎛

⎜⎜⎝
ẋ[i]

1
...

ẋ[i]
n

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

f1(x
[i−1]
1 , · · · ,x[i−1]

n ) 0
. . .

0 fn(x
[i−1]
1 , · · · ,x[i−1]

n )

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x[i]
1
...

x[i]
n

⎞
⎟⎟⎠ . (1.6)

The solutions of these approximating sequences are given by

x[i]
1 (t) = e

∫ t
0 f1(x[i−1]

1 (s),··· ,x[i−1]
n (s))dsx10

· · ·
x[i]

n (t) = e
∫ t

0 fn(x[i−1]
1 (s),··· ,x[i−1]

n (s))dsxn0,

where x[i](0) = x0 for all i. This representation can be used to prove stability and
periodicity results for logistic systems.

1.4 Control of Nonlinear Systems

Consider a general nonlinear system

ẋ = f (x,u) (1.7)

y = h(x,u).

There are many techniques for controlling such a system, but they are mainly lo-
cal, such as differential geometric (Lie type) methods (see [3]), local linearisations,
Lyapunov-like methods ([4]), etc. To introduce a truly global method, we assume
without loss of generality, that f and h have zeros at (x,u) = (0,0). Then we can
write the system in the form
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ẋ = A(x,u)x + B(x,u)u, x(0) = x0 (1.8)

y = C(x,u)x + D(x,u)u

(assuming that limx→0
f (x,u)

x exists for all u, limu→0
f (x,u)

u exists for all x and similar
conditions for h).

Remark 1.1. Given a dynamical system

ẋ = f (x,u)

we can always make it linear in the control at the expense of increasing the dimen-
sion of the state-space by the dimension of the control u. Thus, if we put

u̇ = v

then we have the system

d
dt

(
x
u

)
=
(

f (x,u)
0

)
+
(

0
I

)
v,

which is linear in the new control v. This assumes, of course, that u is differentiable.
However, the method will still be valid if u is not differentiable and we are prepared
to consider distributional systems.

Thus, returning to the system (1.2), we shall introduce a sequence of controls u[i](t)
and states x[i](t), where we can take u[1](t) = 0, x[1](t) = x0, such that

ẋ[i](t) = A(x[i−1](t),u[i−1](t))x[i](t)+ B(x[i−1](t),u[i−1](t))u[i](t)

y[i](t) = C(x[i−1](t),u[i−1](t))x[i](t)+ D(x[i−1](t),u[i−1](t))u[i](t).

Since each of these systems is linear and time-varying, we can apply linear control
techniques to control these systems, and ultimately derive a controller for the non-
linear system. A number of such approaches to nonlinear control will be given later
in the book.

1.5 Vector Fields on Manifolds

We next consider the case of global systems defined on compact differentiable man-
ifolds. Thus, let M denote an n-dimensional compact differentiable (C∞) manifold
with tangent bundle TM and let X be a C∞ section of TM, i.e. a smooth vector field.
Cover M with a set {ϕi,Ui}1≤i≤K of local coordinate systems and suppose that X
takes the form

ẋ = fi(x), x ∈ ϕi(Ui), 1 ≤ i ≤ K. (1.9)

(For simplicity, we shall assume that each Ui is equal to R
n, as we may do.) Fix in

M a set of K points ξ1, · · · ,ξK so that ξi ∈Ui = R
n. Then the systems (1.9) may be

written in the form
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ẋ = f̃i(x)+ ηi (1.10)

where
f̃i(x) = fi(x)− fi(ξi)

and
ηi = fi(ξi).

Now each system (1.10) can be written as

ẋ = Ai(x)x + ηi (1.11)

where
f̃i(x) = Ai(x)x.

Therefore we may regard a vector field X as equivalent to a section of a bundle M
of n× n matrices on M together with a specification of K vectors {η1, · · · ,ηK} at
the fixed points {ξ1, · · · ,ξK}. We can then obtain a sequence of linear, time-varying
systems

ẋ[k](t) = Ai(x[k−1](t))x[k](t)+ ηi (1.12)

in each region Ui = R
n. These systems can be ‘pieced together’ by the transition

functions connecting different overlapping regions Ui,Uj in an obvious way. On
a compact manifold this will give rise to global solutions given by the limits of
compatible local systems of the form (1.11).

1.6 Nonlinear Partial Differential Equations

We can also apply the method to nonlinear partial differential (evolution) equations
of certain types. In particular, we shall see that we can effectively reduce systems of
the form

∂u
∂ t

= A(t,x,u)u

(where A(t,x,u) is a linear elliptic operator for each t,x,u) to a sequence of linear,
time-varying parabolic systems of the form

∂ui

∂ t
= A(t,x,ui−1)ui.

Much of the apparatus for studying these equations in a variety of Sobolev and
similar type spaces exists (see, for example [5,6]) and so rather than repeat these
theories, which would take us too far from the main ideas of the book, we shall ap-
proach these problems by discretization, thus reducing them to finite-dimensional
problems. Since these approximations are known to converge to the true solution
(under fairly mild conditions) this will not cause any loss of generality. We shall
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illustrate the ideas using two problems which have considerable difficulties from the
classical viewpoint. These are the Stefan problem and the control of solitons. The
Stefan problem is concerned with heat flow in a material which is partially solid and
partially liquid and so there is an unknown moving boundary. The classical (see [7])
can be written in the form

∂T
∂ t

= αL∇2T, (x, t) ∈ Γ1
.= Ω1 × (0,τ)

∂T
∂ t

= αS∇2T, (x, t) ∈ Γ2
.= Ω2 × (0,τ)

where
Ω = Ω1 ∪Ω2

is some open region in R
n, αL,αS are the thermal conductivities in the liquid and

solid regions of the material and the phase change takes place at the boundary of Ω1

(and Ω2):
∂Ω1 = ∂Ω2.

The problem can be solved by replacing the two coupled linear equations by a single
nonlinear equation

∂T
∂ t

= α(T )∇2T, (x, t) ∈ Γ .= Ω × (0,τ).

Because of the unknown boundary this problem is difficult to solve classically. We
shall show that the iteration scheme provides an effective method of solution since
the coupled diffusion equations describing the liquid and solid regions have been
combined into a single nonlinear diffusion equation, which can be easily solved by
our method.

Similarly the nonlinear wave equation for soliton dynamics can be reduced to a
sequence of linear, time-varying wave equations, again leading to a fairly simple
solution to the problem of boundary control of the system. The original approach to
solitary waves derived by an analytical method (see [8]) can be derived in a more
abstract setting in the following way. For a linear wave equation

ϕtt − c2ϕxx = 0

we have a set of solutions of the form

ϕ = ei(ωt−kx),

where the wave number k and frequency ω are related by

ω2 = c2k2.

In the case of general linear wave equations with higher order derivatives, we may
have a dispersion relation of the form
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ω2 = f (k2)

where f may not be linear. For example, the linear wave equation

ϕt + cϕx − ε
2c

ϕxxx = 0

has the dispersion relation

ω = ck +
1
2

εk3

c
.

If the wave speed depends on the amplitude ϕ then the wave equation becomes
nonlinear. If the dependence is linear then we obtain an equation of the form

ϕt +(c−aϕ)ϕx = 0

and if we include the above dispersion term we get

ϕt + cϕx −aϕϕx− (ε/2c)ϕxxx = 0.

If we now choose coordinates moving to the right with speed c we get the Korteweg-
de Vries equation

ϕt = 6ϕϕx −ϕxxx = 0

up to scaling constants, since the ϕx term drops out. Later in the book we shall
consider the more general soliton equation

ϕt + ϕx + k(ϕ)ϕx + ϕxxx = 0

together with boundary control to stabilise the nonlinear waves.
Of course, it is possible to use the technique on many other nonlinear partial

differential equations, such as nonlinear Schrodinger models:

i
∂ψ
∂ t

= − 1
2m

∆ψ −g|ψ |2ψ

or the Hamilton-Jacobi equation

∂S
∂ t

+ H

(
x,

∂S
∂x

)
= 0.

1.7 Conclusions and Outline of the Book

We have described above the main ideas associated with the ‘iteration technique’
with which this book is concerned. It will be seen to be a powerful method for
studying general nonlinear systems and, in particular, for obtaining global solutions
to nonlinear control problems.
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The contents of the book will now be outlined for the convenience of the reader.
In Chapter 2 we discuss the general method and prove the basic convergence theo-
rem which underlies the theory of the iteration scheme. As we shall see, it is a very
general method and requires the mildest of conditions on the vector field of the sys-
tem. In fact, we require nothing more than local Lipschitz continuity. (A function
f : R

n → R
n is Lipschitz if

‖ f (x− y)‖ ≤ K ‖x− y‖

for all x,y ∈ R
n, for some constant K. If K depends on x and y then we say that f

is locally Lipschitz.) Note that Lipschitz continuity is the minimum condition for
uniqueness of solutions of a differential equation, so our condition is indeed very
mild (unlike many differential geometric conditions). In Chapter 3, we shall outline
the theory of linear, time-varying systems, since the whole basis of the method con-
sists of reducing nonlinear systems to linear, time-varying ones and hence their the-
ory is extremely important for us. Thus, we shall determine some explicit solutions,
and consider their spectral theory, including a discussion of Oseledec’s theorem,
the Sacker-Sell spectrum and exponential dichotomies. In the following chapter,
we shall show how to generalize these theorems to nonlinear systems. The systems
theoretical concept of spectral assignability will be discussed in detail in Chapter
5, including a general theory of pole assignment for nonlinear systems. Chapter 6
shows that the method can be used very powerfully to determine (sub-) optimal con-
trollers for general nonlinear systems and forms one of the main applications of the
method. The ideas can, however, be applied to many problems in nonlinear control
theory, including nonlinear sliding mode theory. This is done in Chapter 7 where we
demonstrate that the method gives rise to a convergent sequence of moving, linear
sliding surfaces for the linear, time-varying approximations which converge to an
effective nonlinear sliding surface for the nonlinear system. In Chapter 8 we shall
show how the method is related to fixed-point theories and use it to derive existence
results for periodic solutions of nonlinear systems. The method easily generalizes
to partial differential (and functional differential) equations and in Chapter 9 we
show, largely by the use of two examples, how this is achieved. Finally in Chapter
10 we consider the future prospects for the method and discuss its possible future
applications.

References

1. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-
Hill, New York (1955)

2. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurca-
tions of Vector Fields. Springer, New York (1983)

3. Banks, S.P.: Mathematical Theories of Nonlinear Systems. Prentice-Hall, London (1988)
4. Banks, S.P.: Control Systems Engineering. Prentice-Hall, London (1986)
5. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19.

AMS (1991)



10 References

6. Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. 1-4. Springer,
New York (1983-1985)

7. Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Pro-
cesses. Hemisphere Pub. Co., New York (1993)

8. Korteweg, D.J., de Vries, G.: On the Change of Form of Long Waves Advancing in a
Rectangular Canal, and on a New Type of Long Stationary Waves. Philos. Mag. 39, 422–
443 (1895)



Chapter 2
Linear Approximations to Nonlinear Dynamical
Systems

2.1 Introduction

In this chapter the iteration approach to nonlinear systems under study is explained
in detail. This technique is based on the replacement of the original nonlinear system
by a sequence of linear time-varying systems, whose solutions will converge to the
solution of the nonlinear problem. The only condition required for its application is
a mild Lipschitz condition which must be satisfied by a matrix associated with the
nonlinear system.

This approach will allow many of the classical results in linear systems theory
to be applied to nonlinear systems. There are many approaches to the study of non-
linear dynamical systems, including local linearisations in phase space [14], global
linear representations involving the Lie series solution [3,4,5], Lie algebraic meth-
ods [11] and global results based on topological indices [2,14]. Linear systems, on
the other hand, are very well understood and there is, of course, a vast literature on
the subject (see, for example, [7]). The simplicity of linear mathematics relative to
nonlinear theory is evident and forms the basis of much of classical mathematics
and physics. It is therefore attractive to try to attack nonlinear problems by linear
methods, which are not local in their applicability. We shall study a recently intro-
duced approach to nonlinear dynamical systems based on a representation of the
system as the limit of a sequence of linear, time-varying approximations which con-
verge in the space of continuous functions to the solution of the nonlinear system,
under a very mild local Lipschitz condition. This approach will be seen later to be
useful in optimal control theory [8], in the theory of nonlinear delay systems [9] and
can also be applied in the theory of chaos [10]. In this chapter we shall prove basic
convergence results and give a number of examples.

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 11–28.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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2.2 Linear, Time-varying Approximations

The iteration scheme we introduce here is based on the replacement of the original
nonlinear equation by a sequence of linear, time-varying equations whose solutions
converge in the space of continuous functions to the solution of the nonlinear system
under a mild Lipschitz condition [16]. This technique, in a sense, is an adaptation of
Picard iteration which is used in the theory of general nonlinear differential equa-
tions.

Given a nonlinear system of the form:

ẋ = A(x)x, x(0) = x0 ∈ R
n. (2.1)

if it can be written in the SDC (state dependent coefficient) form:

ẋ = A(x)x, x(0) = x0 ∈ R
n (2.2)

in which the origin x = 0 is an equilibrium point and assuming that A(x) is locally
Lipschitz – it is the usual minimum assumption for the existence and uniqueness of
solutions – then the nonlinear system (2.2) can be approximated by the following
sequence of linear, time-varying approximations:

ẋ[1](t) = A(x0)x[1](t), x[1](0) = x0 (2.3)

...

ẋ[i−1](t) = A(x[i−2](t))x[i−1](t), x[i−1](0) = x0 (2.4)

ẋ[i](t) = A(x[i−1](t))x[i](t), x[i](0) = x0 (2.5)

for i ≥ 1, where the initial function x[0](t) is usually taken to be the initial conditions
x0, being possible to generalize and use other functions.

The solutions of this sequence, {x[i](t)}i≥1, each of which satisfies a linear, time-
varying system, can be found numerically (or exceptionally explicitly) and converge
to the solution of the nonlinear system given in (2.2), in the sense that

limi→∞{x[i](t)}→ x(t)

uniformly for t in any compact interval, [0,τ].
Note that the first approximation, ẋ[1](t) = A(x0)x[1](t), x[1](0) = x0, is a linear

time-invariant system because the replacement of x(t) by the initial condition x0,
produces a constant matrix for this first equation. The remainder of the equations in
the sequence (2.3) to (2.5) are linear time-varying systems.

Remark 2.1. The SDC form is an instantaneous parametrisation of the original
nonlinear system, ẋ = f (x) with state dependent coefficients A(x). Infinite numbers
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of such realisations clearly exist. However only those parametrisations for which
A(x) satisfies the above mentioned Lipschitz condition will be considered here.

Remark 2.2. In the case when the origin is not an equilibrium point, this can be
achieved by a suitable change of coordinates.

Remark 2.3. Unless otherwise stated, the initial conditions for each iterated differ-
ential equation, x[i](0), are the same as the initial conditions given for the original
nonlinear problem, x(0).

In the following section, we shall first prove a local convergence result for this sys-
tem. This proof appears in a slightly different form in [16]; It has been included here
for the convenience of the reader and to set the notation for the global result.

Lemma 2.1. Suppose that A : R
n → R

n2
is locally Lipschitz. Then the sequence of

functions x[i](t) defined by (2.3–2.5) converges uniformly on [0,T ], for some T > 0
in the space C([0,T ];Rn).

Proof. Let Φ [i−1](t,t0) denote the transition matrix of A(x[i−1](t)) so that we have
([16]): ∥∥∥Φ [i−1](t,t0)

∥∥∥≤ e

(∫ t
t0

µ(A(x[i−1](τ)))dτ
)
,

where µ(A) is the logarithmic norm of A. By the local Lipschitz condition on A(x),
we have

‖A(x)−A(y)‖ ≤ α(K)‖x− y‖ ,

for x,y ∈ B(K,x0) (the ball, centre x0, radius K) for some K > 0 and some α(K).
We have

x[i](t)− x0 = eA(x0)tx0

−x0 +
∫ t

0
eA(x0)(t−s)[A(x[i−1](s))−A(x0)]ds

and so, for any T > 0,
∥∥∥x[i](t)− x0

∥∥∥ ≤ sup
t∈[0,T ]

∥∥∥e[A(x0)t] − I
∥∥∥ · ‖x0‖

+ sup
t∈[0,T ]

{
e[‖A(x0)t‖]α(K)

}
×T sup

t∈[0,T ]

∥∥∥x[i−1](t)− x0

∥∥∥ .

Hence, if x[i−1](t) ∈ B(K,x0), then x[i](t) ∈ B(K,x0) (for t ∈ [0,T ]) if T is small
enough and by the continuity of eA(x0)t in t.

Since x[0](t) ∈ B(K,x0) for small enough T , all the solutions x[i](t) are bounded
for i ≥ 0 and t ∈ [0,T ]. Also,
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∥∥∥A(x[i−1](t))
∥∥∥≤ α(K)

∥∥∥x[i−1](t)− x0

∥∥∥+‖A(x0)‖

and since

µ(A) =
1
2

max[σ(A + AT )]

in the standard matrix norm, we have that µ(A(x[i−1](t))) is bounded for all i, say
µ(A(x[i−1](t))) ≤ µ , for all t ∈ [0,T ] and all i. Hence, by (2.3),

ẋ[i](t)− ẋ[i−1](t) = A(x[i−1](t))x[i](t)−A(x[i−2](t))x[i−1](t)

= A(x[i−1](t))(x[i](t)− x[i−1](t))+

(A(x[i−1](t))−A(x[i−2](t)))x[i−1](t)

and so if we put

ξ [i](t) = sup
s∈[0,T ]

∥∥∥x[i](s)− x[i−1](s)
∥∥∥ ,

then

ξ [i](t) ≤
∫ t

0

∥∥∥Φ [i−1](t,s)
∥∥∥ ·
∥∥∥A(x[i−1](s))−A(x[i−2](s))

∥∥∥ ·
∥∥∥x[i−1](s)

∥∥∥ds.

Hence,

ξ [i](t) ≤
∫ t

0
e[µ(t−s)]α(K)ξ [i−1](s)Kds

so

ξ [i](T ) ≤ sup
s∈[0,T ]

{e[µ(T−s)]}α(K)T Kξ [i−1](T )

≤ λ ξ [i−1](T ),

where λ = sups∈[0,T ]{e[µ(T−s)]}α(K)T K. If T is small enough, then λ < 1. In this
case we have, for any i ≥ j,

∥∥∥x[i](s)− x[ j](s)
∥∥∥ ≤

∥∥∥x[i](s)− x[i−1](s)
∥∥∥+

∥∥∥x[i−1](s)− x[i−2](s)
∥∥∥

+ · · ·+
∥∥∥x[ j+1](s)− x[ j](s)

∥∥∥
so

sup
s∈[0,T ]

∥∥∥x[i](s)− x[ j](s)
∥∥∥ ≤ λ i− jξ [ j](T )+ λ i− j−1ξ [ j](T )+ · · ·+ λ ξ [ j](T )

= λ
(

1−λ i− j

1−λ

)
ξ [ j](T ).

Hence, if N is a fixed positive integer and i ≥ j > N, then
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sup
s∈[0,T ]

∥∥∥x[i](s)− x[ j](s)
∥∥∥≤ λ j−N+1

(
1−λ i− j

1−λ

)
ξ [N](T ).

Since ξ [N](T ) is bounded, the right hand side is arbitrarily small if j is large and so
{x[i](t)} is a Cauchy sequence in C([0,T ];Rn). �

Having shown the local convergence of the sequence {x[i](t)} in C([0,T ];Rn) we
now proceed to prove the global convergence in the sense that if the solution of the
nonlinear equation exists and is bounded in the interval [0,τ]⊆R,then the sequence
of approximations converges uniformly on [0,τ] to the solution of the nonlinear
equation.

Theorem 2.1. Suppose that the nonlinear Equation (2.1) has a unique solution on
the interval [0,τ] and assume that A : R

n → R
n2

is locally Lipschitz. Then the se-
quence of functions {x[i](t)} defined in (2.3) to (2.5) converges uniformly on [0,τ].

Proof. We know from the previous lemma that, given any initial state x0, the se-
quence (2.3) to (2.5) converges uniformly on some interval [0,T ], where T may
depend on x0. However, it is clear from the proof of the lemma that T can be chosen
to be locally constant; i.e. for any x̄ there exists a neighbourhood Bx̄ of x̄ such that
the sequence in (2.3) to (2.5) with initial state x0 ∈ Bx̄ converges uniformly on some
interval [0,Tx̄], where Tx̄ is independent of x0.

Now suppose that the result is false, so that there is a maximal time interval [0, T̄ )
such that, for any T < T̄ , the sequence (2.3) to (2.5) converges uniformly on [0,T ].
Now consider the solution trajectory x(t;x0) of the original nonlinear system (2.1)
on the interval [0,τ]; define the set

S = {x(t;x0) : t ∈ [0,τ]}.

For each x̄∈ S, choose a neighbourhood Bx̄ as above; i.e. the sequence of approxima-
tions converges uniformly on the interval [0,Tx̄] for any x0 ∈ Bx̄ for Tx̄ independent
of x0. Since S is compact and ∪x̄∈SBx̄ is an open cover of S, there exists a finite
subcover {Bx̄1 , · · · ,Bx̄p} with corresponding times {Tx̄1 , · · · ,Tx̄p}. Let

Tm = min{Tx̄1 , · · · ,Tx̄p}.

Now the sequence (2.3) to (2.5) converges uniformly on [0, T̄ −Tm/2], by assump-
tion. Let

x0,i = x[i](T̄ −Tm/2).

Since these converge to x(T̄ −Tm/2) we can assume that they belong to Bx̄p , so that
we get a sequence of solutions given by the Equations (2.3) to (2.5) from the ini-
tial states x0,i and converging uniformly on the interval [0,Tm] to the corresponding
solutions of the nonlinear equation given by (2.1). (See Figure 2.1.)

These solutions will be denoted by x[i, j](t). Now, using a Cantor-like diagonal
argument, consider the functions
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Fig. 2.1 Approximations to the nonlinear solution

y[i](t) =
{

x[i](t) , 0 ≤ t ≤ T̄ −Tm/2
x[i,i](t) , T̄ −Tm/2 ≤ t ≤ T̄ + Tm/2.

Then y[i](t) converges uniformly to x(t) on [0, T̄ + Tm/2] and is arbitrarily close
to x[i](t) on [0, T̄ ] which contradicts the assumption that {x[i](t)} is not uniformly
convergent on [0, T̄ ]. �

2.3 The Lorenz Attractor

In this section the dynamical equations of the Lorenz Attractor are considered and
it will be shown how its nonlinear solution vector x(t) = [x1,x2,x3] can be approxi-
mated by using the iteration technique previously introduced:

⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠=

⎛
⎝10 10 0

25 −1 −x1

0 x1 −2

⎞
⎠ ·
⎛
⎝ x1

x2

x3

⎞
⎠

with initial condition: [x01,x02,x03]T = [1,1,1]T .
Applying the iteration technique just by replacing the previous solution x[i−1](t)

into the actual matrix A(x[i−1](t)) a sequence of linear, time-varying approximations
is obtained:
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⎛
⎜⎝

ẋ[1]
1

ẋ[1]
2

ẋ[1]
3

⎞
⎟⎠=

⎛
⎝ 10 10 0

25 −1 −x01

0 x01 −2

⎞
⎠ ·

⎛
⎜⎝

x[1]
1

x[1]
2

x[1]
3

⎞
⎟⎠ ,

⎛
⎜⎝

x[1]
1 (0)

x[1]
2 (0)

x[1]
3 (0)

⎞
⎟⎠=

⎛
⎝1

1
1

⎞
⎠

...⎛
⎜⎝

ẋ[i]
1

ẋ[i]
2

ẋ[i]
3

⎞
⎟⎠=

⎛
⎜⎝

10 10 0

25 −1 −x[i−1]
1

0 x[i−1]
1 −2

⎞
⎟⎠ ·

⎛
⎜⎝

x[i]
1

x[i]
2

x[i]
3

⎞
⎟⎠ ,

⎛
⎜⎝

x[i]
1 (0)

x[i]
2 (0)

x[i]
3 (0)

⎞
⎟⎠=

⎛
⎝1

1
1

⎞
⎠ .

Each of these linear time-varying equations can be solved successively by just re-
placing the previous solution x[i−1](t) into the system matrix A(x[i−1](t)). This will
generate a sequence of linear solutions, x[i](t), for each equation in the sequence.
In Figure 2.2, the true solution of the nonlinear system is represented and some of
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12th Approximation

x

x
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20

30

40

Fig. 2.2 Approximations to the nonlinear solution. Lorenz Attractor

these iterations have also been plotted. It is easy to see that in this case too, the con-
vergence of these linear solutions towards the nonlinear solution is clear, since after
12 iterations they converge to the true solution of the nonlinear system. The norm
of the error, maxt∈[0,T ]||x(t)− x[i](t)||, is shown in Figure 2.3. Clearly the technique
works effectively for the Lorenz Attractor.

2.4 Convergence Rate

During the study of the application of this iteration technique, some questions re-
lated to the rate of convergence and the different representation of a nonlinear



18 2 Linear Approximations to Nonlinear Dynamical Systems

12000

10000

8000

6000

4000

2000

0

1 2 3 4 5 6 7 8 9 10 11 12

Error
Norm

Number of Iterations

Fig. 2.3 Convergence error for the Lorenz Attractor

system of the form ẋ = A(x)x arose in a natural way. In this section, these two issues
are briefly addressed. These two subjects are important since they lead to a better
understanding of the technique and closely related to its optimal use.

Having discussed both local and global convergence of the iteration technique
above, the next logical step is to study the rate of convergence in terms of the system
dynamics, and a maximum desired error between the actual solution and the iterated
solutions. In other words, given a nonlinear system,

ẋ = f (x), x(0) = x0

and writing it in the SDC form

ẋ = A(x)x, x(0) = x0,

the following question arises: Is it possible to estimate the number of iterations x[i](t)
needed to be computed in order to achieve certain maximum degree of error ε such
that maxt∈[0,T ]||x(t)− x[i](t)|| ≤ ε?

Here, an initial approach to this question is presented assuming the following
conditions are satisfied (where R, λ and T are any fixed positive numbers):

• The initial condition is inside a ball of radius R/2 centered at 0:

x0 ∈ B(0,R/2).

• The solution of the nonlinear system is bounded in B(0,R) for a finite time inter-
val [0,T ]:

x(t,x0) ∈ B(0,R),∀t ∈ [0,T ].

• µ(A(x)) ≤ µ ,∀x ∈ B(0,R), so that if x[i](t) ∈ B(0,R),∀i then
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||Φ [i](t,t0)|| ≤ e
∫ t

t0
µ(A(x[i](τ)))dτ ≤ eµ(t−t0),

where Φ [i](t,t0) is the transition matrix of A(x[i](t)), see [17].

The error between the true solution and the ith iteration is x(t)−x[i](t), so from (2.5):

ẋ(t)− ẋ(i)(t) = A(x(t))x(t)−A(x(i−1)(t))x(i)(t)

= A(x(t))
[
x(t)− x(i−1)(t)

]
+
[
A(x(t))−A(x(i−1)(t))

]
x(i)(t)

Since
x[i](t) = Φ [i−1](t,0)x0,

it follows that ||x[i](t)|| ≤ eµt · ||x0|| if x[i](t) ∈ B(0,R)∀i.
Setting ξ i(t) = sup

s∈[0,T ′ ] ||x(s)− x[i](s)||, the estimate

ξ [i](t) ≤
∫ T ′

0
Φ(t,s) · ||A(x(s))−A(x[i](s))|| · ||x[i](s)||ds

follows, for any T ′ > 0. Hence,

ξ [i](t) ≤
∫ T ′

0
e(t−s)µ ·M(α) · ||x(s)− x[i−1](s)|| · eµt · ||x0|| ·ds

and so,

ξ [i](T ′) ≤ sup
s∈[0,T ′]

[
e(T ′−s)µ

]
·M(α) ·ξ [i−1](T ′) · eµT ′ · ||x0|| ·T ′.

Choosing T so that,

λ := sup
s∈[0,T ′ ]e

µ(T ′−s) ·M(α) ·T ′ · eµT ′ · ||x0|| < 1

then, ξ [i](T ′) ≤ λ i ·ξ [0](T ′) ≤ λ i · sup
s∈[0,T ′ ] ||eA(x0)s − I|| · ||x0|| = λ i ·ρ(x0), where

ρ(x0) = sup
s∈[0,T ′ ] ||eA(x0)s − I|| · ||x0||.

Let ε > 0 be given, and let N =
[

T
T ′
]
+1, where [v] is the integer part of v. Choose i

so that

λ i ·ρ(x0) ≤ ε
N

−→ i ≥
log
(

ε
N·ρ(x0)

)
logλ

.

Then, an estimate for the approximation x[i](t) to be within an error of ε of the
nonlinear solution x(t) on the interval (0,T ) can be obtained in terms of the initial
conditions:
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i ≥ N ×
⎡
⎣ log

(
ε

Nρ(x0)

)
logλ

⎤
⎦+ 1. (2.6)

It is necessary at this point to say that this is a very conservative approach because
of the use of norm bounds, and the assumption that convergence rates are similar at
each small interval.

2.5 Influence of the Initial Conditions on the Convergence

In this section the choice of initial conditions will be discussed and studied. It is
important to note the difference between

(a) the initial conditions x(0), that are used as the initial value of the solution
when solving a linear differential equation and

(b) the initial chosen solution x[0](t) included directly in the system’s matrix on
the first iteration ẋ[1](t) = A(x[0](t))x[1](t). The speed of convergence will depend on
this latter choice which until now had been chosen for simplicity to be equal to the
initial condition x0 of the differential equation:

ẋ[1](t) = A (x0)︸︷︷︸
(b)

x[1](t), x[1]
0 = x(0)︸ ︷︷ ︸

(a)

.

In this section the dependence of the convergence rate on the initial chosen solution
will be introduced and in the following section a formal approach to this conver-
gence rate will be given.
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Fig. 2.4 Comparison of the norm of the error for different initial conditions
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Figure 2.4 shows that in the Lorenz Attractor example, depending on the choice
of the initial chosen solution, the error between the real nonlinear solution x(t) and
the approximated solutions x[i](t), converges to zero at a different rate: the number
of iterations needed in order to achieve a satisfactory approximation to the nonlinear
solution of the original system changes.

The main motivation for choosing time-varying initial functions x[0](t) is based
on the idea of the iteration technique itself: after i iterations, the iterated solutions are
close to each other and the x[i](t) solution from ẋ[i](t) = A(x[i−1])x[i](t) tends to the
true nonlinear solution x(t) so this means that the closer the initial chosen solution
is to the true nonlinear solution, the sooner this convergence will be achieved, (see
Figure 2.5). Therefore the closer one iteration is to the true nonlinear solution, the

1
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Fig. 2.5 General schema for the iteration technique

better the next iteration...and so on. Keeping this idea in mind, the next logical step is
to suggest that the most accurate choice of initial conditions could be the linearised
solution around the equilibrium point.

In Figure 2.4 the dynamical equations of the Lorenz Attractor were simulated
for different choices of initial conditions, it could be seen that the overall error de-
creases considerably in the case where the linearised solution has been used as initial
function. These experimental results confirm the statement above: there exist a dif-
ference in the convergence rate of the iteration technique depending on the choice
of the initial conditions substituted in the original matrix for the first iteration and
this choice could be optimised by choosing as initial function a function similar to
the linearised solution of the nonlinear system.
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2.6 Notes on Different Configurations

The different ways a nonlinear system of the form ẋ = A(x)x can be represented has
been the object of interest before by different authors and depending on the area of
research, it could be of great importance to understand the effects of using different
representations. In this section, attention is focussed on the different rates of con-
vergence achievable using one configuration or another. Here, it will be assumed
that A(x) is controllable and/or stabilisable (since this will be required later in its
application to control) and it will be shown how this occurs in the particular case
of the Lorenz Attractor by writing its dynamics in two different ways, and after this
applying the iteration technique in order to compare the convergence rate for each
configuration.

The dynamical equations of the Lorenz Attractor are given by:

ẋ1 = −10x1 + 10x2

ẋ2 = 25x1 − x3x1 − x2

ẋ3 = x1x2 −2x3.

They can be written on the form ẋ = A(x)x in different various ways, i.e.:

First configuration:

ẋ =

⎛
⎝ −10 10 0

25− x3 −1 0
x2 0 −2

⎞
⎠ ·
⎛
⎝ x1

x2

x3

⎞
⎠ .

Second configuration:

ẋ =

⎛
⎝−10 10 0

25 −1 −x1

0 x1 −2

⎞
⎠ ·
⎛
⎝ x1

x2

x3

⎞
⎠ .

Comparison:

If now both first and second configurations are iterated with the technique presented
in this chapter, for initial conditions [x01,x02,x03] = [1,1,1]T and plotting the error
between the iterated solutions x[i](t) and the real solution x(t) it can be seen in figure
2.6 that there is a difference in the convergence rate according to the representation
of the system.
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Fig. 2.6 Convergence for the different configurations

The ‘shape’ of this graph shows a great difference especially in the initial iter-
ations where the error is much greater in the case of the first representation. This
leads to some interesting questions:

• Could it be possible that in the limit the integral of this error is the same in both
cases?
It seems that in the example of the Lorenz Attractor this is not the case as the first
iteration for the first representation produces a quantitative bigger error compared
with the second representation.

• Does this behaviour happen for all the systems with more than one representa-
tion?
This divergence of behaviour between the different representations, is caused to
some extent by the different eigenvalues the first iterated matrices A(x0) have,
so if different representations happen to have the same eigenvalues at the first
iteration, it is expected that this difference will diminish.

The question of non-uniqueness of the representation will not be discussed further
in this book, but it is an important topic for further research.

2.7 Comparison with the Classical Linearisation Method

Different methods of linearisation and approximation have been presented in the
past by many authors: all of them have in common the intention to provide a model
which is locally equivalent to the nonlinear system. In fact, it turns out in many
situations that nonlinear systems can be approximated in some regions of operation
by linear systems.
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The most classical linearisation method is based on the Taylors expansion. Of
course, the classical linearisation near an equilibrium point xe has many drawbacks
already enumerated in the introduction and so all the efforts made in approaching a
nonlinear system by other methods are of significant importance.

Next, a comparison between the linearised solution obtained when a classical
linearisation is applied to the nonlinear system and the solution obtained when ap-
plying this iteration technique is presented. The relationship of this iteration method
with the classical linearisation shows the effectiveness of this method.

Example 2.1. Consider a nonlinear system modelling an over-damped bead on ro-
tating hoop. The system is modelled by the following equation:

mr
d2φ
dt2 + b

dφ
dt

= −mgsin(φ)+ mrw2sin(φ)cos(φ), x0 = x(0), (2.7)

where φ is the angle, b is the damping constant, w is a constant angular velocity and

r is a radius. If ε = m2gr
b2 , γ = rw2

g and τ = mg
b , (2.7) can be written as a dimensionless

system:
d2φ
dt2 +

1
ε

dφ
dt

=
1
ε

[
sin(φ)+ γsin(φ)cos(φ)

]
, x0 = x(0). (2.8)

By making the change of variables φ = x1, φ̇ = x2, the state-space representation of
(2.8) is:

ẋ1 = x2

ẋ2 = sin(x1)
ε + γ

ε sin(x1)cos(x1)− x2
ε , x0 = x(0).

(2.9)

with ε = 0.2, γ = −0.1, and [x01,x02]T = [1.5,1.5]T . The aim of this section is to
compare the linearisation and the iterative technique. In the following, both methods
are applied and results are compared.

Linearisation:

This is a method by which a nonlinear system is replaced by a linear approximation
about its equilibrium point/s or a given trajectory. It is required that the nonlinear
system should have a convergent Taylor’s series expansion about the equilibrium
point:

f (a + h) = f (a)+
∂ f
∂x

∣∣∣
x=a

h + hT ∂ 2 f
∂x2

∣∣∣
x=a

h + · · ·
A good approximation to the nonlinear system can be obtained when the variation
‘h’ from the equilibrium point ‘a’ is small enough so that the higher order terms and
above can be neglected, that is, if h → 0, then:

f → f (a)+
∂ f
∂x

∣∣∣
x=a

h.
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The nonlinear system can be then approximated by its Taylor series expansion
neglecting the high order terms. In this case, the system (2.7) is replaced by the
matrix of its first derivatives (Jacobian) evaluated at the origin and substituting
ε = 0.2 and γ = −0.1 the following linear system is obtained:

(
ẋ1

ẋ2

)
=
(

0 1
−4.5 −5

)
·
(

x1

x2

)
,

(
x1(0)
x2(0)

)
=
(

1.5
1.5

)
. (2.10)

The solutions x1(t) and x2(t) can now be calculated from (2.10). These solutions
have been plotted respectively in Figures 2.7 and 2.8.
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Fig. 2.7 x1(t) of the nonlinear, 16th iteration and linearised solution

Iteration Technique:

On the other hand, by applying the iteration technique, and simulating up to 50 iter-
ations in Figure 2.9 it can be seen that the norm of the error between the nonlinear
solution and the iterated one converges almost to zero. It is clear that the 16th iter-
ation is a good approximation and converges to the nonlinear solution (Figures 2.7
and 2.8), confirming in this way that in this case, the iteration technique is better in
approximating the nonlinear solution.

In this section a comparison between the classical method of linearisation and the
iteration technique has been presented for a standard physical example. The results
of the simulations prove the ability of the iteration technique to approach the non-
linear solution more accurately than classical linearisation methods.
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2.8 Conclusions

In this chapter, a technique to approach the solution of a broad class of nonlinear
systems has been introduced.

This technique replaces a nonlinear system by a sequence of linear time-varying
systems whose solutions converge to the solution of the nonlinear system. Unlike
many other approaches to nonlinear systems, this is a global technique since under
the assumption of existence and uniqueness of the solution, the only prerequisite
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needed to be satisfied is that the system’s matrix should be locally Lipschitz. Both
local and global convergence theorems have been included in this chapter.

Based on the convergence of the sequence, linear control ideas can be now ap-
plied to nonlinear control systems by studying each of these linear time-varying
systems with linear tools.

In this chapter, an estimation of this convergence rate has been studied; that is,
would it be possible to know how many iterations need to be computed in order
to achieve certain degree of convergence? This question has been studied and a
mathematical expression for this convergence rate has been developed in function
of the nonlinear system itself and the initial conditions. However, it is important at
this point to recognise that this approach is a very conservative one as it relies on
the maximum value the norm of the matrix can have in the given time interval, so
the exact estimation provided here is expected to be higher than the actual number
of iterations needed to achieve a given accuracy for any given system.

In the last part of the chapter, the optimal choice of initial conditions has been
discussed. Clearly the best choice is the actual solution through the initial point. Of
course, the solution of the system is not known a priori, so the use of any method to
find a first approximation which is close to the true solution is clearly desirable.

However, the question of the best choice of initial conditions and the different
ways to represent a nonlinear system in order to minimise the error are topics still
open to discussion and probably further research in this area could be done in the
future.

The infinity of different ways of representing the nonlinear system in the form
ẋ = A(x)x has been object of discussion too, it being clear from examples that this
initial representation has an important effect on the speed of convergence.

In the last example it has been shown how this technique works in a better way
than the widely applied linearisation method as for an adequate number of iterations
it converges to the true nonlinear solution of the system under study.

References

1. Banks, S.P.: Mathematical Theories of Nonlinear Systems. Prentice-Hall, London (1988)
2. McCaffrey, D., Banks, S.P.: Lagrangian Manifolds, Viscosity Solutions and Maslov In-

dex. J. Convex Analysis 9, 185–224 (2002)
3. Banks, S.P., Iddir, N.: Nonlinear Systems, the Lie Series and the Left Shift Operator:

Application to Nonlinear Optimal Control. IMA J. Math.Contr. Inf. 9, 23–34 (1992)
4. Banks, S.P.: Infinite-Dimensional Carleman Linearisation, the Lie Series and Optimal

Control of Nonlinear PDEs. Int. J. Sys. Sci. 23, 663–675 (1992)
5. Banks, S.P., Moser, A., McCaffrey, D.: Lie Series and the Realization Problem. Comp.

and App. Maths 15, 37–54 (1996)
6. Banks, S.P., Riddalls, C., McCaffrey, D.: The Schwartz’ Kernel Theorem and the

Frequency-Domain Theory of Nonlinear Systems. Arch. Cont. Sci. 6, 57–73 (1997)
7. Banks, S.P.: Control Systems Engineering: Modelling and Simulation, Control Theory

and Microprocessor Implementation. Prentice-Hall, Englewood Cliffs (1986)
8. Banks, S.P., Dinesh, K.: Approximate Optimal Control and Stability of Nonlinear Finite

and Infinite-Dimensional Systems. Ann. Op. Res. 98, 19–44 (2000)



28 References

9. Banks, S.P.: Nonlinear delay systems, Lie algebras and Lyapunov transformations. IMA
J. Math. Cont. & Inf. 19, 59–72 (2002)

10. Banks, S.P., McCaffrey, D.: Lie Algebras, Structure of Nonlinear Systems and Chaotic
Motion. Int. J. Bifurcation & Chaos 8(7), 1437–1462 (1998)

11. Banks, S.P.: The Lie Algebra of a Dynamical System and its Application to Control. Int.
J. Sys. Sci. 32, 220–238 (2001)

12. Bredon, G.: Sheaf Theory. Springer, New York (1998)
13. Kalman, R.E., Bertram, C.: Control System Analysis and Design via the Second Method

of Lyapunov. ASME J. Basic Eng. 82, 371–393 (1960)
14. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)
15. Sacker, R.J., Sell, G.: A Spectral Theory for Linear differential Systems. J. Diff. Eqn. 27,

320–358 (1978)
16. Tomás-Rodrı́guez, M., Banks, S.P.: Linear Approximations to Nonlinear Dynamical Sys-

tems with Applications to Stability and Spectral Theory. IMA Journal of Math. Control
and Inf. 20, 89–103 (2003)

17. Brauer, F.: Perturbations of nonlinear systems of differential equations II. J. Math. Anal-
ysis App. 17, 418–434 (1967)



Chapter 3
The Structure and Stability of Linear,
Time-varying Systems

3.1 Introduction

In view of the basic approximation theory in Chapter 2, nonlinear dynamical sys-
tems can be approximated uniformly on compact intervals by linear, time-varying
systems. It is therefore important to study the general questions of existence, unique-
ness, etc. for dynamical systems of this type. In this chapter we shall consider the
general theory of linear time-varying dynamical systems first from the point of view
of existence and uniqueness, and then we shall determine a number of explicit solu-
tions, based on the theory of Lie algebras.

The remainder of the chapter is concerned, essentially with stability theory. After
considering the classical theory, we shall introduce the ideas of Lyapunov numbers
and describe Oseledec’s theorem on decomposition of the state-space into invariant
subbundles, which generalises the hyperbolic splitting of the state-space for time-
invariant systems. Finally we shall consider the theory of exponential dichotomies
and its generalisation to invariant subbundles.

3.2 Existence and Uniqueness

Consider the linear, time-varying system of equations

ẋ = A(t)x,x(0) = x0 ∈ R
n, (3.1)

where A : [0,∞) → R
n is assumed to be continuous. The first simple result shows

that such a system of equations has a unique solution on the whole of the interval
[0,∞).

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 29–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Lemma 3.1. The system of equations (3.1) has a unique solution on [0,∞), provided
that the matrix function A : [0,∞) → R

n is continuous.

Proof. First we prove local existence. Let Lt1 : C[0, t1] → C[0, t1] denote the linear
operator

Lt1(x) =
∫ t1

0
A(s)x(s)ds

where C[0,t1] is given the usual sup norm. Thus

Lt1(x)−Lt1(y) =
∫ t1

0
A(s)(x(s)− y(s))ds

so that

||Lt1(x)−Lt1(y)|| ≤
∫ t1

0
A(s)ds · ||(x− y|| ≤ t1 ·K · ||x− y||

for some constant K, by continuity of A. Hence,

||Lt1(x)−Lt1(y)|| ≤ λ · ||x− y||

where λ < 1, if t1 is small enough. The usual fixed point theorem for continuous
mappings on the Banach space C[0,t1] (see [5]) now proves local existence on [0, t1],
for some t1 > 0. Hence, either the solution exists for all t ∈ [0,∞) or on a maximal
time interval [0,T ), say, where T < ∞. By continuity of A, the function A : [0,T ] →
R

n is uniformly continuous and hence is bounded on [0,T ), say

||A(t)|| ≤ M, t ∈ [0,T ].

Now from (3.1), we have

x(t) = x0 +
∫ t

0
A(s)x(s)ds

so that

||x(t)|| ≤ ||x0||+ M
∫ t

0
||x(s)||ds,

for t ∈ [0,T ). By Gronwall’s inequality (see [3]) we have

||x(t)|| ≤ eMt ||x0||,t ∈ [0,T )

so that the solution exists on t ∈ [0,T ] and is bounded and continuous, so that
limt→T x(t) exists, giving a contradiction. Uniqueness follows easily from the fact
that the solution is linear in x0. �

Remark 3.1. Clearly from the above proof, continuity is not necessary; bounded-
ness of ||A(·)|| on any compact interval is sufficient.
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We can find approximate solutions to (3.1) by using the so-called Duhamel
principle:

Lemma 3.2. If A : [0,∞) → R
n is continuous, then the solution of (3.1) is given by

x(t) = lim�→∞eA((�−1)h))h · · ·eA(2h)heA(h)heA(0)hx0

where h = t/�. (The limit is taken in the standard Euclidean norm on R
n.)

Proof. From (3.1) we have

x(t) = x0 +
∫ t

0
A(s)x(s)ds.

By continuity, the integral on the right is a standard Riemann integral and so it can
be approximated arbitrarily closely by rectangles:

x(t) = x0 +
�−1

∑
i=0

A(ih)
∫ (i+1)h

ih
x(s)ds+ ε (3.2)

for any ε > 0, where � depends on ε . Consider the � systems

ξ̇1(t) = A(0)ξ1, ξ1(0) = x0 + ε
ξ̇2(t) = A(h)ξ2, ξ2(0) = ξ1(h)

...

ξ̇�(t) = A((�−1)h)ξ�(t), ξ�(0) = ξ�−1(h).

Then

ξ1(t) = eA(0)tξ1(0),

ξ2(t) = eA(h)tξ1(h),

ξ3(t) = eA(2h)tξ2(h),
...

and so
ξ�(h) = eA((�−1)h))heA((�−2)h))h · · ·eA(2h)heA(h)heA(0)hξ0. (3.3)
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But we also have

ξ1(t) = ξ1(0)+ A(0)
∫ t

0
ξ1(s)ds

ξ2(t) = ξ2(0)+ A(h)
∫ t

0
ξ2(s)ds

= ξ1(0)+ A(0)
∫ t

0
ξ1(s)ds+ A(h)

∫ t

0
ξ2(s)ds

· · · (3.4)

ξ�(t) = ξ1(0)+ A(0)
∫ t

0
ξ1(s)ds+ A(h)

∫ t

0
ξ2(s)ds+ · · ·+ A((�−1)h)

∫ t

0
ξ�(s)ds

The result now follows from (3.2), (3.3) and (3.4). �

3.3 Explicit Solutions

In this section we shall give a number of explicit solutions for linear, time-varying
systems of equations of the form

ẋ = A(t)x, x(t) = x0. (3.5)

By integrating (3.5) we have

x(t) = x0 +
∫ t

0
A(s)x(s)ds.

This is an integral equation which can be iterated, i.e.

x(t) = x0 +
∫ t

0
A(τ1)

(
x0 +

∫ τ1

0
A(τ2)x(τ2)dτ2

)
dτ1

= x0 +
∫ t

0
A(τ1)dτ1x0 +

∫ t

0

∫ τ1

0
A(τ1)A(τ2)x(τ2)dτ2dτ1.

Proceeding in this way, this suggests that the (formal) solution of (3.5) is given by

x(t) =
∞

∑
n=0

(∫
t≥τ1≥···≥τn≥0

A(τ1) · · ·A(τn)dτn · · ·dτ1

)
x0.

To show that it is the actual solution, it is sufficient to show that the sum converges.
Clearly, the nth term is bounded in norm by tnKn||x0||/n!, where

K = supτ∈[0,t]||A(τ)||,

and so the result follows.
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Remark 3.2. Physicists write

∫
t≥τ1≥···≥τn≥0

A(τ1) · · ·A(τn)dτn · · ·dτ1 =
1
n!

∫
τ1∈[0,t]

P[A(τ1) · · ·A(τn)]dτn · · ·dτ1

where
P[A(τ1) · · ·A(τn)]

is the ‘time-ordered’ product of the factors; i.e. with the factors permuted in the
form A(τσ(1)) · · ·A(τσ(n)) so that the larger values of τi appear first:

tσ(1) ≥ tσ(2) ≥ ·· · ≥ tσ(n).

Hence we can write the path-ordered exponential as

P
[
e−

∫ t
0 A(s)ds

]
=

∞

∑
n=0

(−1)n

n!
P

(∫ t

0
A(s)ds

)n

and so the solution appears in the form

x(t) = P
[
e−

∫ t
0 A(s)ds

]
= x0.

However, care must be taken in interpreting this result since the solution of the
Equation 3.1 is given by

x(t) = e−
∫ t

0 A(s)dsx0

only if the matrices A(t) commute for all t. (A general solution for non-commuting
A’s will be given later.)

Next we discuss the general solution given by Wei and Norman [12], which gener-
alises a result of Magnus [7]. Thus, consider again Equation 3.5 and write A(t) in
the form

A(t) =
�

∑
i=1

ai(t)Xi (3.6)

where {X1, · · · ,X�} ⊆ g�(n) is a basis of the Lie algebra LA generated by the set
{A(t), t ≥ 0}. (We shall use the elementary theory of Lie algebras – for general re-
sults, see, e.g. .) We shall need the Campbell-Baker-Hausdorff formula which states
that, for any Lie algebra L, if X ,Y ∈ L then exp(X)Yexp(−X) ∈ L is given by

exp(X)Yexp(−X) = Y +[X ,Y ]+ [X , [X ,Y ]]/2! +[X , [X , [X ,Y]]]/3! + · · ·

i.e.
exp(X)Yexp(−X) = (eadX)Y,

where
(adX)Y = [X ,Y ].
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For the basis {Xi} in (3.6), let γk
i j be the structure constants of the Lie algebra, i.e.

[Xi,Xj] =
�

∑
k=1

γk
i jXk, 1 ≤ i, j ≤ �.

It follows that (
r

∏
j=1

exp(g jXj)

)
Xi

(
1

∏
j=r

exp(−g jXj)

)

belongs to LA for any r ∈ {1, · · · , �} and any variables gi. Hence we can write it in
terms of the basis {Xi}:

(
r

∏
j=1

exp(g jXj)

)
Xi

(
1

∏
j=r

exp(−g jXj)

)
=

�

∑
k=1

ξkiXk (3.7)

and it is easy to see that each ξki is an analytic function of the g j’s. We shall show
that the solution of (3.5) can be written in the form

x(t) = exp(g1(t)X1)exp(g2(t)X2) · · ·exp(g�(t)X�)x0, (3.8)

in a neighbourhood of t = 0. In fact, we shall show that (3.7) satisfies (3.5) for
certain gi’s and so by uniqueness of the solution, it must be given by (3.8). To do
this note that if we write

Φ(t) = exp(g1(t)X1)exp(g2(t)X2) · · ·exp(g�(t)X�)

then
dΦ
dt

(t) =
�

∑
i=1

dgi(t)
dt

(
i−1

∏
j=1

exp(g jXj)Xi

�

∏
j=i

exp(g jxJ)

)

and the right hand side equals A(t)Φ(t) = ∑�
i=1 ai(t)Xi ·Φ(t) if (and only if)

�

∑
i=1

ai(t)Xi =
�

∑
i=1

dgi(t)
dt

(
i−1

∏
j=1

exp(g jXj)Xi

1

∏
j=i−1

exp(−g jxJ)

)

=
�

∑
i=1

dgi(t)
dt

(
i−1

∏
j=1

exp(g jadXj)Xi

)

=
�

∑
i=1

�

∑
k=1

dgi(t)
dt

ξkiXk

by (3.7). Since {Xi} is a basis we have

ξ g′ = a

where
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ξ = (ξki), g′ = (g′i), a = (ai).

Since ξ (0) = I, ξ is invertible in a neighbourhood of t = 0, so that

g′ = ξ−1a

and the result follows by analyticity of ξ and ξ−1 near t = 0.
This result is local, but it can be shown (see [12]) that it is global if LA is a

solvable Lie algebra. However, there is a simpler and more useful way to see this.
Thus, suppose that LA is solvable. Then by Lie’s theorem (see Appendix B), the
matrices in LA are simultaneously triangularizable, so that we may assume (after a
change of coordinates) that Equation 3.5 may be written in the form

ẋi =
n

∑
j=i

ãi j(t)x j, 1 ≤ i ≤ n, x(0) = x0

and so the solution is given inductively by

xn(t) = e
∫ t

0 ãnn(s)dsx0n

xi(t) = e
∫ t

0 ãii(s)dsx0i +
n

∑
j=i+1

∫ t

0
e
∫ t

s ãi j(τ)dτ x j(s)ds, 1 ≤ i < n. (3.9)

Finally, in this section, we present briefly another explicit expression for the solution
of (3.5) (for a full discussion, see [1]). We shall need the following results (see, e.g.
[8]):

Theorem 3.1. If A,B are sufficiently close to 0, then C = ln(eaeB) is given by

C = B +
∫ 1

0
g[exp(tAd A)exp(Ad B)](A)dt

where

g(z) =
lnz

z−1
= 1 +

1
2
(1− z)+

1
3
(1− z)2 + · · · =

∞

∑
�=0

1
�+ 1

(−1)�(z−1)�.
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Corollary 3.1. If A,B are as in Theorem 3.1, then

C = B +
∞

∑
�=0

(−1)�

�+ 1

∞

∑
i1 = 0, j1 = 0

(i1, j1) �= (0,0)

∞

∑
i2 = 0, j2 = 0

(i2, j2) �= (0,0)

· · ·

∞

∑
i� = 0, j� = 0

(i�, j�) �= (0,0)

1
i1!i2! · · · i�! j1! j2! · · · j�!(|i|+ 1)

×(AdA)i1(AdB) j1(AdA)i2(AdB) j2 · · ·(AdA)i�(AdB) j� ·A, (3.10)

where |i| = i1 + · · ·+ i�.

Theorem 3.2. Given k matrices A1, · · · ,Ak, in a sufficiently small neighbourhood of
0, then Ck = ln(eAkeAk−1 · · ·eA1) is given by

Ck =
∫ 1

0
g[exp(tAdAk)exp(tAdAk−1)exp(tAdAk−2) · · ·exp(tAdA1)](Ak)dt +Ck−1

where
Ck−1 = ln(eAk−1eAk−2 · · ·eA1).

Proof. Let
Γ (t) = ln(etAk eAk−1 · · ·eA1)

so that
eΓ (t) = etAk eAk−1 · · ·eA1 .

Then,

(exp[AdΓ (t)])H = eΓ (t)He−Γ (t)

= etAk eAk−1 · · ·eA1He−A1 · · ·e−Ak−1e−tAk

for any matrix H, and so

exp[AdΓ (t)] = exp(tAdAk)exp(AdAk−1) · · ·exp(AdA1).

Also,

eΓ (t) d
dt

e−Γ (t) = etAk eAk−1 · · ·eA1
d
dt

(e−A1 · · ·e−Ak−1e−tAk)

= −Ak

and so
f (AdΓ (t))Γ̇ (t) = Ak.
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However,
f (lnz)g(z) = 1, for |1− z|< 1

and so
f (lnF)g(F) = I, or g(F) = ( f (lnF))−1

for any matrix F with ||I −F|| < 1. Setting F = exp(AdtAk)exp(AdAk−1) · · ·
exp(AdA1) gives

Γ (t) =
∫ t

0
g[exp(AdtAk)exp(AdAk−1) · · ·exp(AdA1)](Ak)dt + constant.

The constant is given by Γ (0) = ln(eAk−1 · · ·eA1) = Ck−1. �

Corollary 3.2. If A1, · · · ,Ak are as in the theorem, then

Ck =
∞

∑
�=0

(−1)�

�+ 1
·

∞

∑
i(1) = 0
|i(1)| �= 0

· · ·
∞

∑
i(�) = 0
|i(�)| �= 0

1
i(1)! · · · i(�)!(i1(1)+ · · ·+ i1(�)+ 1)

·

(AdAk)i1(1)(AdAk−1)i2(1) · · · (AdA1)ik(1)

(AdAk)i1(2)(AdAk−1)i2(2) · · · (AdA1)ik(2) ·
(AdAk)i1(�)(AdAk−1)i2(�) · · ·(AdA1)ik(�) ·Ak

where
i(p) = (i1(p), · · · , ik(p)), i(p)! = i1(p)!(i2(p)! · · · ik(p)!.

(If � = 0 then we interpret the value as Ak.)
Now by lemma 3.2, we have:

Lemma 3.3. The system
ẋ = A(t)x, x(0) = x0 (3.11)

has solution given by

x(t) = limh→0eA((m−1)h)heA((m−2)h)h · · ·eA(2h)heA(h)heA(0)hx0 (3.12)

for any t > 0, where mh = t.

From Corollary 3.3 and Lemma 3.1, we have:

Lemma 3.4. The solution of the system

ẋ = A(t)x, x(0) = x0

is given by
x(t) = limh→0eCmx0

where mh = t and
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Cm =
m

∑
p=2

∞

∑
�=0

(−1)�

�+ 1
·

∞

∑
i(1) = 0
|i(1)| �= 0
i(1) ∈ N

p

· · ·
∞

∑
i(�) = 0
|i(�)| �= 0
i(�) ∈ N

p

1
i(1)! · · · i(�)!(i1(1)+ · · ·+ i1(�)+ 1)

×

(AdAp)i1(1)(AdAp−1)i2(1) · · · (AdA1)ip(1)×
(AdAp)i1(2)(AdAp−1)i2(2) · · · (AdA1)ik(2)×
(AdAp)i1(�)(AdAp−1)i2(�) · · · (AdA1)ip(�)×Ap + A1 (3.13)

where
Aq = A((q−1)h)h. (3.14)

Combining Lemmas 3.1 and 3.2, we have

Theorem 3.3. The solution of the non-autonomous differential equation in (3.5) is
given by

x(t;x0) = exp

⎛
⎝∫ t

0
A(τ)dτ +

∞

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

[A(τσ k−1(1)), [A(τσ k−1(2)), [· · · , [A(τσ k−1(k−1)),A(τk)] · · · ]]]dτ1 · · ·dτk

)
x0,

(3.15)

where Sk−1 is the set of all permutations of 1, · · · ,k− 1 and µ(σ k−1) is a number,
depending on k and the permutation, to be determined below.

Proof. This follows from (3.12) and (3.13) since each multiple integral in (3.15) is
the limit of typical terms in (3.13) where each i j(k) = 1. The latter condition follows
from the fact that, for a sequence

(AdAp)i1(1)(AdAp−1)i2(1) · · ·(AdA1)ip(1)(AdAp)i1(2) · · ·Ap

of a given total degree k = ∑�
j=1(i1( j) + · · · + ip( j)), any repeated factors will

converge to a zero integral since they are multiplied by hk and there are at most
O(1/(hk−1)) of such terms. �

The only remaining thing, therefore, is to find the multipliers µ(σ k−1). This will
be done in three steps. Consider first the case of k = 2. Clearly for terms with brack-
ets of the form [Ai,A j] we must have � = 1 in the expression (3.13); thus we must
choose these terms from the expression
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−1
2

m

∑
p=2

∑
|i(1)| �= 0
i(1) ∈ N

p

1
i(1)!(i1(1)+ 1)

(AdAp)i1(1)(AdAp−1)i2(1) · · · (AdA1)ip(1)Ap.

Since we do not have to consider terms of the form [Ai,Ai] = 0, we must have
i1(1) = 0 and some i1( j) �= 0, j �= 1. In this case, all the factors 1

i(1)!(i1(1)+1) equal 1,
so we have

Lemma 3.5. µ(σ1) = − 1
2 , i.e. the second order term in (3.15) is

−1
2

∫ t

0

∫ τ

0
[A(ρ),A(τ)]dρdτ.

Next, terms of order 3 come from (3.13) with � ≤ 2, i.e. from the expressions

−1
2

m

∑
p=2

∑
|i(1)| ≤ 2
i(1) ∈ N

p

1
i(1)!(i1(1)+ 1)

(AdAp)i1(1)(AdAp−1)i2(1) · · · (AdA1)ip(1)Ap

+
1
3

m

∑
p=2

∑
|i(1)| = 1, |i(2)| = 1

i(1), i(2) ∈ N
p

1
i(1)!i(2)!(i1(1)+ i1(2)+ 1)

(AdAp)i1(1)

(AdAp−1)i2(1) · · ·(AdA1)ip(1) ·
(AdAp)i1(2)(AdAp−1)i2(2) · · ·(AdA1)ip(2)Ap.

We will obtain brackets of the form [Ai, [A j,Ak]] where (i) k > i > j or (ii) k > j > i.
Terms of type (i) (i.e. for k > i > j) can come from both the series above for any
given fixed i, j,k we get a factor of − 1

2 from the first and a factor of 1
3 from the

second, i.e. a factor of − 1
6 . Terms of type (ii) (i.e. for k > j > i), however, can only

come from the second series because the terms

(AdAp)i1(1)(AdAp−1)i2(1) · · ·(AdA1)ip(1)Ap

in the first series are ordered so we must have k > i > j. Hence for any term of the
second type we have a factor of 1

3 , and so we have:

Lemma 3.6. The third order term in (3.15) is

−1
6

∫ t

0

∫ τ3

0

∫ τ2

0
[A(τ2), [A(τ1),A(τ3)]]dτ1dτ2dτ3 +

1
3

∫ t

0

∫ τ3

0

∫ τ2

0
[A(τ1), [A(τ2),A(τ3)]]dτ1dτ2dτ3.
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Consider next the case of the kth order terms. As before, each factor

1
i(1)! · · · i(�)!(i1(1)+ · · ·+ i1(�)+ 1)

will reduce to 1 and we will get only kth order terms for � ≤ k−1. Hence we must
choose kth order terms from

−1
2

m

∑
p=k−1

(AdAp)(AdAp−1) · · · (AdA1)Ap

+
1
3

m

∑
p=k−1

(AdAp) · · · (adA1)(AdAp) · · · (AdA1)Ap

−·· · (3.16)

+
(−1)k−1

k

m

∑
p=k−1

((AdAp) · · · (AdA1)k−1Ap.

Consider first the term Bi1 · · ·Bik−1Aik where ik > i1 > i2 > · · ·> ik−1 and Bij = AdAv

for some v depending on i j. This can be chosen in only one way from the first term
in (3.16) and in k−2 ways from the second term in (3.16). (We must choose at least
one Bv from each group of terms (AdAp) · · · (AdA1), so we could choose the first
one, Bi1 from the first group and the remaining k− 2 from the second, or the first
two, Bi1 ,Bi2 from the first group and the remaining k− 3 from the second, etc.) In
the rth term in (3.16) we will have r groups (AdAp) · · · (AdA1), i.e.

(AdAp) · · · (AdA1) · · · (AdAp) · · · (AdA1) · · · (AdAp) · · · (AdA1)︸ ︷︷ ︸Ap

r
. (3.17)

Suppose there are ρ(s,t) ways of selecting terms of the form (AdAv) from t groups.
Then the number of ways of selecting k−1 from r, i.e. ρ(k−1,r) is

ρ(k−1,r) =
k−2

∑
i=r−1

ρ(i,r−1)

since we can choose 1 from the first group and k−2 from the remaining, i.e. ρ(k−
2,r−1) or 2 from the first group and k−3 from the remaining, i.e. ρ(k−3,r−1),
etc.

Lemma 3.7. We have

ρ(k−1,r) =
1

(r−1)!
(k− r)(k− r + 1) · · ·(k−2), r ≥ 2.

Proof. Note that ρ(ν,1) = 1 for all ν and ρ(ν,2) = ν − 1 for all ν . Hence the
formula is correct for r = 2. Suppose it is true for r−1, i.e.
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ρ(k−1,r−1) =
1

(r−2)!
(k− r + 1)(k− r + 2) · · ·(k−2), r ≥ 2.

Then,

ρ(k−1,r) = =
k−2

∑
i=r−1

ρ(i,r−1)

= 1 + ρ(r,r−1)+ ρ(r + 1,r−1)+ · · ·+ ρ(k−2,r−1)

= 1 +
1

(r−2)!
(r + 1− r + 1)(r + 1− r + 2) · · ·(r + 1−2)+

1
(r−2)!

(r + 2− r + 1)(r + 2− r + 2) · · ·(r + 2−2)+ · · ·

+
1

(r−2)!
(k− r) · · · (k−3)

=
1

(r−2)!
(1.2 · · ·(r−2)+ 2 · · ·(r−1)+ 3 · · ·r + · · ·+
(k− r) · · ·(k−3))

=
1

(r−2)!

k−r

∑
i=1

i(i+ 1) · · ·(i+(r−2)−1)

=
1

(r−2)!
(k− r)(k− r + 1) · · ·(k− r + r−1)

(r−2)+ 1
.

�

Corollary 3.3. The total number of terms of the form [Bii , [Bi2 , [· · · , [Bik−1 ,Aik ] · · · ]]]
which can be chosen, where the indices i1, i2, · · · , ik−1 are increasing, is given by
− 1

k(k−1) .

Proof. The required number is given by

k

∑
�=2

(−1)�−1

�
ρ(k−1, �−1) =

k

∑
�=2

(−1)�−1

�

1
(�−2)!

(k− �+ 1)(k− �+ 2) · · ·(k−2)

=
k

∑
�=2

(−1)�−1

�

1
(�−2)!

Γ (k−1)
Γ (k− �+ 1)

= − 1
k(k−1)

.

�

For the general case, let σ k−1 be a permutation of the set {1, · · · ,k− 1} and write
it as σ k−1 = (i1 · · · ik−1). We can partition the permutation in the form (i1, i2, · · · , iγ )
where

i1 = (i1, · · · , iv1), i
2 = (iv1+1, · · · , iv1+v2), · · ·
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such that

iα is a decreasing sequence for α ∈ A ⊆ {1, · · · ,γ}
iβ is a decreasing sequence for β ∈ {1, · · · ,γ}\A = B

i.e. if iα = (i�1 , · · · , i�2), then i�1 > i�1+1 · · · > i�2 . Moreover, we choose the partition
so that the sets iα for α ∈ A are maximal. Let

ε = ∑
β∈B

|iβ |+ ℵ(A )

where ℵ(A ) denotes the cardinality of A and if iβ = (ik1 , · · · , ik j ), then |iβ | =

∑ j
v=1 ikv . If we are selecting from a term of the form (3.17) with � repeated strings

(AdAp) · · · (AdA1), then we require ε ≤ �. Put ζ = �− ε . If ζ > 0 let P� be the set of
distinct partitions of ζ into ℵ(A ) pieces, i.e.

ζ = ∑
α∈A

ζα

where ζα ≥ 0. Then the number of possible selections in the �th term is

∑
ζ∈P�

∏
α∈A

ρ(|iα |,ζα + 1)

where we take ρ(k,r) = 0 if r > k. Hence we have proved:

Theorem 3.4. The number µ(σ k−1) is given by

µ(σ k−1) =
k−1

∑
�=ε

(−1)�

�+ 1 ∑
ζ∈P�

∏
α∈A

ρ(|iα |,ζα + 1)

=
k−1

∑
�=ε

(−1)�

�+ 1 ∑
ζ∈P�

∏
α∈A

1
ζα !

(|iα |− ζα)(|iα |− ζα + 1) · · ·(|iα |−1).

Example 3.1. Consider, for example, the permutation of {1,2,3,4,5} given by σ5 =
(5 2 3 4 1). Here we have

(5 2 3 4 1) = (i1, i2, i3)

where
i1 = (5,2), i2 = (3), i3 = (4,1)

so A = {1,2,3},B = /0 and ε = 3. For � = 3 there is only one choice, so the con-
tribution to µ(σ5) is − 1

4 in this case. For � = 4 we have ζ = 1 and the partitions are
(0,1) and (1,0), so the contribution from this term is

1
5
(ρ(2,1) ·ρ(2,2)+ ρ(2,2) ·ρ(2,1))= 2/5.
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Finally, for � = 5 we have ζ = 2 and the partitions are (2,0,)(0,2) and (1,1). Hence
the contribution here is

−1
6
(ρ(2,3) ·ρ(2,1)+ ρ(2,1) ·ρ(2,3)+ρ(2,2) ·ρ(2,2))= −1/6

since ρ(2,3) = 0. Hence we have µ(σ5) = − 1
4 + 2

5 − 1
6 = − 1

60 .

Remark 3.3. We obtain the same answer if we regard the singleton i2 = (3) as in-
creasing or decreasing. We have regarded it as increasing in this example.

The explicit formula (3.15) in Theorem 3.3 for the solution of a general non-
autonomous differential equation of the form (3.5) will now be applied to obtain
some general results about such systems. Of course, the closer the matrices A(t) are
to commuting, the simpler will be the expressions for the solution. We shall see that
in the nilpotent case, we can obtain finite, closed-form solutions. It can be shown
[2] that, if A(t) is analytic, so that we can write A(t) = ∑∞

i=0 tiAi for some matrices
Ai, then LA is equal to the Lie algebra generated by the matrices {Ai : 0 ≤ i < ∞}.
Suppose that {Ek : 1 ≤ k ≤ r} is a basis of LA, so that

A(t) =
r

∑
k=1

gk(t)Ek (3.18)

for some functions gk,1 ≤ k ≤ r. Let ck
i j be the structure constants of LA, so that

[Ei,E j] =
r

∑
k=1

ck
i jEk

and so
[A(t),A(τ)] = ∑

i
∑

j
∑
k

ck
i jgi(t)g j(τ)Ek.

Then from Theorem 3.3 we have the following result which gives a simpler form
for the general structure of the explicit solution:
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Theorem 3.5. If A(t) is given by (3.18) then the solution of Equation 3.5 is given by

x(t;x0) = exp

⎧⎨
⎩

r

∑
k=1

∫ t

0
gk(τ)dτEk +

∞

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

∑
i1

· · ·∑
ik

∑
w

∑
vk−2

· · ·∑
v1

cw
i1vk−2

cvk−2
i2vk−3

· · ·cv3
ik−3v2

cv2
ik−2v1

cv1
ik−1ik

gi1(τσ k−1(1))gi2(τσ k−1(2)) · · ·gik−1(τσ k−1(k−1))gik(τk)Ewdτ1 · · ·dτk

}
x0

= exp

⎧⎨
⎩

r

∑
k=1

∫ t

0
gk(τ)dτEk +

∞

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

∑
i1

· · ·∑
ik

∑
w

C(w, i1, · · · , ik)

gi1(τσ k−1(1))gi2(τσ k−1(2)) · · ·gik−1(τσ k−1(k−1))gik(τk)Ewdτ1 · · ·dτk

}
x0

(3.19)

where

C(w, i1, · · · , ik) = ∑
vk−2

· · ·∑
v1

cw
i1vk−2

c
vk−2
i2vk−3

· · ·cv3
ik−3v2

cv2
ik−2v1

cv1
ik−1ik

.

As a specific example, consider the system with so(3) as its Lie algebra:

d
dt

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 0 −g3(t) −g2(t)

g3(t) 0 −g1(t)
g2(t) g1(t) 0

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠

= (g1(t)M1 + g2(t)M2 + g3(t)M3)

⎛
⎝ x1

x2

x3

⎞
⎠

where

M1 =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , M2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , M3 =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Here,
[M1,M2] = M3, [M2,M3] = M1, [M3,M1] = M2

and we have the structure constants

c3
12 = c1

23 = c2
31 = −c3

21 = −c1
32 = −c2

13 = −1

ck
i j = 0 if {i, j,k} is not a permutation of 1,2,3.
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Hence,
ci

jk = εi jk

where

εi jk =

⎧⎨
⎩

1 if i, j,k is an even permutation of 1,2,3
−1 if i, j,k is an odd permutation of 1,2,3
0 otherwise

(the standard tensorial ε-function), and so from the theorem, we have

x(t;x0) = exp

⎧⎨
⎩

r

∑
k=1

∫ t

0
gk(τ)dτEk +

∞

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

∑
w

3

∑
i1=1

· · ·
3

∑
ik=1

3

∑
vk−2=1

· · ·
3

∑
v1=1

εwi1vk−2 εvk−2i2vk−3 · · ·εv3ik−3v2εv2ik−2v1εv1ik−1ik

gi1(τσ k−1(1))gi2(τσ k−1(2)) · · ·gik−1(τσ k−1(k−1))gik(τk)Ewdτ1 · · ·dτk

}
x0

= exp

⎧⎨
⎩

r

∑
k=1

∫ t

0
gk(τ)dτEk +

∞

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

∑
i1

· · ·∑
ik

∑
w

Ξ w(i,v)

gi1(τσ k−1(1))gi2(τσ k−1(2)) · · ·gik−1(τσ k−1(k−1))gik(τk)dτ1 · · ·dτk

}
Ewx0

where

Ξ w(i,v) = εwi1vk−2εvk−2i2vk−3 · · ·εv3ik−3v2 εv2ik−2v1 εv1ik−1ik

= ±1.

In the case of systems with nilpotent Lie algebra, we get an explicit closed form

x(t;x0) = exp

⎧⎨
⎩

r

∑
k=1

∫ t

0
gk(τ)dτEk +

K

∑
k=2

∑
σ k−1∈Sk−1

µ(σ k−1)
∫ t

0

∫ τk

0
· · ·
∫ τ3

0

∫ τ2

0

∑
i1

· · ·∑
ik

∑
w

∑
vk−2

· · ·∑
v1

cw
i1vk−2

c
vk−2
i2vk−3

· · ·cv3
ik−3v2

cv2
ik−2v1

cv1
ik−1ik

gi1(τσ k−1(1))gi2(τσ k−1(2)) · · ·gik−1(τσ k−1(k−1))gik(τk)Ewdτ1 · · ·dτk

}
x0

where K is the degree of nilpotency.
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Example 3.2. Consider the system
⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎡
⎣
⎛
⎝−4 −3 2

12 8 0
0 0 2

⎞
⎠cos t +

⎛
⎝−2 −1 0

4 2 0
0 0 0

⎞
⎠sin t

+

⎛
⎝ 0 0 −1

0 0 2
0 0 0

⎞
⎠ t2

⎤
⎦
⎛
⎝ x1

x2

x3

⎞
⎠ , x(0) = x0.

Put

F1 =

⎛
⎝−4 −3 2

12 8 0
0 0 2

⎞
⎠ , F2 =

⎛
⎝−2 −1 0

4 2 0
0 0 0

⎞
⎠ , F3 =

⎛
⎝0 0 −1

0 0 2
0 0 0

⎞
⎠ .

Then F1,F2,F3 form a basis of a nilpotent Lie algebra with

[F1,F2] = −2F3

and all the other commutators zero. Hence

c3
12 = c3

21 = −2

are the only non-zero structure constants. It follows that the solution of the system
is

x(t;x0) = exp

(∫ t

0
{F1cos τ + F2sin τ + F3τ2}dτ

−1
2

∫ t

0

∫ τ

0
(−2cos ρsin τ−2sin ρcos τ)F3dρdτ

)

= exp

(
sin tF1 +(1− cos t)F2 +

t3

3
F3 + sin t(1− cos t)F3

)
x0.

3.4 Stability Theory

In this section we shall discuss the stability of equations of the form (3.5). The most
important point here is that, unlike the time-invariant case, the eigenvalues of A(t)
do not determine the stability of the system. Later we shall see to what extent one
can use the eigenvalues and eigenvectors of A(t) to prove stability. First, we begin
with Lyapunov theory – we have the following simple generalisation of the time-
invariant Lyapunov theorem:

Theorem 3.6. The linear, time-varying system of Equations 3.5 is Lyapunov stable
if for any positive definite, symmetric matrix Q, there is a positive definite matrix
function P(t) which satisfies the equation

Ṗ(t) = −AT (t)P(t)−P(t)A(t)−Q (3.20)
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(for some positive definite initial matrix P(0)). Moreover, conversely, if A(t) is con-
tinuous and the system is L2-stable in the sense that x(·;x0) ∈ L2[0,∞), then the
Equation 3.20 has a positive definite solution P(t), for some initial matrix P(0).

Proof. The first part follows directly from Lyapunov’s main stability theorem (see,
e.g., [3]), since

V (t) = xT P(t)x

is clearly a Lyapunov function (for

V̇ = ẋT Px + xT Pẋ + xT Ṗx = xT (AT P + PA + Ṗ)x
= −xT Qx).

For the converse, note that by lemma 3.2, Equation 3.20 has a unique symmetric
solution and so it remains to show that P(t) is positive definite. Let x(t;x0)∈L2[0,∞)
be a solution and take the inner product of (3.20) on the left and right with x:

xT (t)Ṗ(t)x(t) = −xT (t)AT (t)P(t)x(t)− xT (t)P(t)A(t)x(t)− xT (t)Qx(t).

Then
d
dt
〈x(t),P(t)x(t)〉 = −〈x(t),Qx(t)〉,

whence

〈x(t),P(t)x(t)〉 = 〈x(0),P(0)x(0)〉−
∫ t

0
〈x(s),Qx(s)〉ds

≥ 〈x(0),P(0)x(0)〉− ||Q||
∫ t

0
||x(s)||2ds

≥ 〈x(0),P(0)x(0)〉− ||Q|| · ||x||L2[0,∞)

so the result follows if P(0) is large enough. (A similar inequality using the positiv-
ity of Q shows that P(t) is bounded. �

Unlike the time-invariant case, however, this result is not easy to apply in general,
so we consider other approaches to stability. We can give a very simple sufficient
condition in the case where A(t) is continuous and A(∞) .= limt→∞A(t) exists.

Lemma 3.8. The system (3.5) is asymptotically stable if the eigenvalues of A(∞)
have negative real parts.

Proof. Write the equation in the form

ẋ = A(∞)x +(A(t)−A(∞))x.
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By continuity of A(∞), there exists T > 0 such that for t ≥ T , we have

||A(t)−A(∞)||< δ
2

where
||eA(∞)t|| ≤ Me−δ t

for some M > 0 (by the eigenvalue condition).Hence we have

||x(t)|| ≤ Me−δ (t−T )||x(T )||+
∫ t

T
e−δ (t−s) δ

2
||x(s)||ds, t ≥ T,

and by Gronwall’s inequality,

||x(t)|| ≤ Me−δ (t−T )||x(T )|| → 0

as t → ∞. The result now follows since ||A(t)|| is bounded on [0,T ], by continuity.
�

The converse to Lemma 3.8 is, of course, false, as shown by the example

ẋ = − 1
1 + t

x, x(0) = x0

which has the solution

x(t) =
1

1 + t
x0.

Clearly, therefore, if some of the eigenvalues of A(∞) are zero, we may still have
asymptotic stability. A partial converse can be given in the case of exponential sta-
bility, the proof of which is elementary:

Lemma 3.9. If the system (3.5) is exponentially asymptotically stable, then the
eigenvalues of A(∞) have negative real parts.

Now assume that at least one eigenvalue of A(∞) is zero or, indeed, that A(∞) does
not exist at all, and let, as before, LA be the Lie algebra generated by the set

{A(t) : t ∈ R}.

Let C be a Cartan subalgebra of LA (which always exists; see [2]). Thus we can
write

A(t) = A1(t)+ A2(t), t ∈ R

where
A1(t) ∈ C and A2(t) ∈ LA �C , t ∈ R.
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In particular, if A(∞) exists, then we have

A(∞) = A1(∞)+ A2(∞),

where
A1(∞) ∈ C and A2(∞) ∈ LA �C .

Since C is a maximal abelian subalgebra of LA we can simultaneously diagonalise
the elements of C . (Since all Cartan subalgebras are related by a similarity transfor-
mation, the choice of C does not affect the study of stability of (3.5).) Let P be a
diagonalising matrix for C , i.e.

P−1CP = ΛC, for all C ∈ C

where ΛC is the diagonal matrix of eigenvalues of C. Of course, P is independent of
C.Thus we may write the Equation 3.5 in the form

ẏ = ΛA1(t)y + B2(t)y (3.21)

where
B2(t) = P−1A2(t)P.

Write

ΛA1(t) =

⎛
⎜⎝

λ1(t)
. . .

λn(t)

⎞
⎟⎠ .

Of course, if Reλi(∞) < 0 for i ∈ {1, · · · ,n} and B2(t) is ‘small’ enough then the
Equation 3.21 is clearly stable. However, if λi(∞) = 0 for some i, then stability is
more difficult. The transition matrix of (3.21) is given by

Φ(t,s) = Φ(t,0)(Φ(s,0))−1

where

Φ(t,0) =

⎛
⎜⎝

e
∫ t

0 λ1(s)ds

. . .

e
∫ t

0 λn(s)ds

⎞
⎟⎠ .

The solution of (3.21) is

y(t) = Φ(t,0)y0 +
∫ t

0
Φ(t,s)B2(s)y(s)ds

and so

||y(t)|| ≤ ||Φ(t,0)|| · ||y0||+
∫ t

0
||Φ(t,s)|| · ||B2(s)|| · ||y(s)||ds.

Now
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||Φ(t,s)|| =

∥∥∥∥∥∥∥

⎛
⎜⎝

e
∫ t

s Reλ1(s)ds

. . .

e
∫ t

s Reλn(s)ds

⎞
⎟⎠
∥∥∥∥∥∥∥

= max1≤i≤n

(
e
∫ t

s Reλi(s)ds
)

≤ e
∫ t

s max1≤i≤n(Reλi(s))ds.

Let
µ(s) = max1≤i≤n(Reλi(s)).

Then

||y(t)|| ≤ e
∫ t

0 µ(s)ds||y0||+
∫ t

0
e
∫ t

s µ(τ)dτ ||B2(s)|| · ||y(s)||ds.

Using a standard argument now shows that

||y(t)|| ≤ e
∫ t

0(µ(s)+||B2(s)||)ds||y0||,

and we get stability if

e
∫ t

0(µ(s)+||B2(s)||)ds →−∞ as t → ∞.

Hence we have proved:

Theorem 3.7. Let LA denote the Lie algebra generated by the matrices {A(t)}t≥0

and let C be a Cartan subalgebra of LA. Let µ(t) = max1≤i≤n(Reλi(t)) where
λi(t),1 ≤ i ≤ n are the eigenvalues of the matrices of C and suppose that

∫ t

0
(µ(s)+ ||B(s)||)ds →−∞ as t → ∞

where B(s) = P−1A2(t)P. Then the system is asymptotically stable. Here, P diago-
nalizes C and A(t) = A1(t)+ A2(t), where A1 ∈ C.

Another approach to stability is via the logarithmic norm. If || · || denotes any
induced norm on n×n matrices, we define the measure of A by

µ(A) = limh→0+(||I + hA||−1)/h.

To show that µ(A) exists, for any matrix A, note that if we write

f (h) = (||I + hA||−1)/h,

then f (kh) ≤ f (h), for any k ∈ (0,1), so that f is decreasing with h. Also, f (h) ≥
(|1−h||A|| |−1)/h ≥−||A||, so f is bounded below. The measure µ(A) of a matrix
A has a number of useful and elementary properties, listed below:
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(a) µ(I) = 1, µ(−I) = −1,µ(0) = 0.
(b) −||A|| ≤ −µ(−A)≤ µ(A) ≤ ||A||.
(c) µ(αA) = αµ(A), for all α ≥ 0.
(d) µ(A + αI) = µ(A)+ α, for all α ∈ R.
(e) µ : C

n×n → R is a convex function :
µ(λ A +(1−λ )B)≤ λ µ(A)+ (1−λ )µ(B), 0 ≤ λ ≤ 1.

(f) |µ(A−B)| ≤ ||A−B||.
(g) −µ(−A)≤ Reλ (A) ≤ µ(A), for any eigenvalue λ (A) of A.
(h) −µ(−A)||x|| ≤ ||Ax||, −µ(A)||x|| ≤ ||Ax||, x ∈ C

n.
(i) If detA �= 0,

−µ(−A)≤ (||A||−1)−1 ≤ ||A||.
The importance of the measure of A is that, unlike a norm, it can be negative, so its
main application is the following:

Theorem 3.8. If t → A(t) : R → C
n×n is continuous, then the solution of Equation

3.5 satisfies the inequalities

||x0||exp

{
−
∫ t

t0
µ(−A(t ′))dt ′

}
≤ ||x(t)|| ≤ ||x0||exp

{∫ t

t0
µ(A(t ′))dt ′

}
.

Proof. Let D+||x(t)|| denote the right-hand derivative. Then

D+||x(t)|| = limh→0+[||x(t + h)||− ||x(t)||]/h

= limh→0+[||x(t)+ hA(t)x(t)||− ||x(t)||]/h

= limh→0+[||I + hA(t)|| · ||x(t)||− ||x(t)||]/h

→ µ(A(t)) · ||x(t)||,

and the second inequality follows by integration. The first is similar. �

Corollary 3.4. If ∫ t

t0
µ(A(t ′))dt ′ → −∞

as t → ∞, then the system is asymptotically stable.

3.5 Lyapunov Exponents and Oseledec’s Theorem

Lyapunov’s characteristic numbers and exponents are important generalisations of
the real parts of eigenvalues for linear, time-invariant systems. Here we give a brief
summary of the ideas which lead to Oseledec’s theorem on the general invariant
decomposition of the state-space in terms of the ‘eigenspaces’ associated with the
Lyapunov exponents. More details can be found in [9].
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Let f (t) be a continuous function defined on [t0,∞). We define the characteristic
number of f to be

λ = λ ( f ) = −limt→∞
ln | f (t)|

t
. (3.22)

It follows easily from the definition that

limt→∞| f (t)|e(λ+ε)t = +∞
limt→∞| f (t)|e(λ−ε)t = 0

for any ε > 0. Note that, for any real number c,

λ (c f ) =
{

λ ( f ) if c �= 0
+∞ if c = 0.

(3.23)

We also need the following simple result; if the numbers λ ( fi), 1≤ i≤ n are distinct,
then

λ (
n

∑
i=1

fi) = mini(λ ( fi)). (3.24)

We now consider the Lyapunov numbers associated with a linear, time-varying sys-
tem of the form (3.5). For any vector x(t) of continuous functions, we define

λ (x) = min1≤i≤nλ (xi).

The most important result is due to Perron:

Theorem 3.9. The set of all possible Lyapunov numbers {λ (x)} of all solutions of
(3.5) contains at most n distinct values.

Proof. We first show that, for any vector functions y(i), 1 ≤ i ≤ k, if λi
.= λ (y(i))

are distinct, then the vector functions y(i) are linearly independent. Suppose they are
not, so that

k

∑
i=1

αiy
(i)(t) = 0

for some scalars αi, not all zero. Let λq=miniλ (αiy(i)). If we write y(i)=(yi1, · · · ,yin),
in terms of the components, we may assume that

= λ (yq1)

and since the λi’s are distinct we have

λq < λ (αiyi1), i �= q.
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Now, ∑k
i=1 αiyi1(t) = 0, and so

λq = λ (αqyq1) = λ

(
k

∑
i=1

αiyi1(t)

)
= λ (0) = ∞

by (3.24) and (3.24), which contradicts the fact that λq is finite. The theorem now
follows from the fact that there are at most n linearly independent solutions to a
linear, time-varying system of equations. �

Corollary 3.5. For the system (3.5), if Φ(t) denotes the transition function, then the
numbers

λ (x0) = limt→∞
1
t

ln||Φ(t)x0||
for all x0 ∈ R

n take only k distinct values λ1, · · · ,λk, where 1 ≤ k ≤ n.

We can order the values in Corollary 3.5 as follows:

−∞ < λ1 < λ2 < · · · < λk < ∞,

and we define the linear subspaces

Vi = {x ∈ R
n : x = 0 or λ (x0) ≤ λi}

of R
n. Then we clearly have

{0} ⊆V1 ⊆ ·· · ⊆Vk = R
n

is a filtration of R
n. A system for which

limt→∞
1
t

lndetΦ(t) =
k

∑
i=1

diλi

where di = dim Vi−dim Vi−1 is called Lyapunov regular. This allows us to associate
a decomposition of R

n with a system which generalises the eigendecomposition for
a time-invariant system. To state the full version of Oseledec’s theorem, we need
first to introduce the ideas of integral invariants and ergodic measures. Let

ẋ = f (x, t) (3.25)

be a differential equation defined in some region Ω ⊆ R
n which has unique solu-

tions, depending continuously on the initial conditions. A function M : R
n+1 → R is

called an integral invariant for (3.25) if
∫

∆t

M(x,t)dx

is constant, where ∆0 is any domain in Ω and ∆t = φ(t;∆0,0) where φ(t;x0, t0) is the
solution of (3.25) through (x0,t0). It is easy to check that a necessary and sufficient
condition for this is that
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∂M
∂ t

+ div (M f ) = 0. (3.26)

Of course, if (3.25) is autonomous, then M = M(x) is independent of t and then
(3.26) becomes

div(M f ) = 0.

To extend this to invariant measures we shall assume a knowledge of standard
measure theory (see, e.g. [6]). Let µ be a measure defined on Ω and assume that
µ(Ω) = 1. We say that the measure µ is invariant for (3.25) if, for any µ-measurable
set S ⊆ Ω , we have

µφ(t;S, t0) = µ(S), for all t,t0.

We then have Poincaré’s invariance theorem:

Theorem 3.10. Under the assumptions above, if S ⊆ Ω is measurable, with µ(S) >
0, then for any T > 0, there exists τ > T such that

µ(S∩φ(t;S, t0)) > 0.

The theorem of Khintchine also gives a lower limit to the inequality in theorem 3.10:

Theorem 3.11. Continuing with the above assumptions, for any measurable set S ⊆
Ω with µ(S) = σ > 0, we have

µ(S∩φ(t;S, t0)) > λ σ2

for a dense set of points t ∈ R and for any λ > 1.

(For a proof, see [9]).
Birkhoff’s ergodic theorem shows that the time-average of a summable function

evaluated on the trajectories of a system exist for all initial states (apart possibly
from a set of measure zero).

Theorem 3.12. If µ is an invariant measure on Ω with µ(Ω) = 1, then for any
absolutely summable function g on Ω , the limit

limT→∞
1
T

∫ T

0
g(φ(t;x0, t0))dt

exists for almost all x0.

(For a proof, see [9]).

The results above assume the existence of a normalised invariant measure. The next
theorem of Kryloff and Bogoliuboff shows that this always holds for any compact
metric space.
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Theorem 3.13. In a compact metric phase space Ω , there exists an invariant (nor-
malised) measure for any continuous dynamical system φ(t;x0, t0).

Proof. Let µ̃ be any normalised measure on Ω (we can assume that µ̃(Ω) = 1 by
compactness). Consider the linear functional

Lτ g =
1
τ

∫ τ

0
dt
∫

Ω
g(φ(t;x0, t0))µ̃(dx0)

defined on C(Ω). By the Radon-Nikodym theorem, any positive linear functional
can be represented by a measure:

Lτ g =
∫

Ω
g(x)µτ(dx)

=
1
τ

∫ τ

0
dt
∫

Ω
g(φ(t;x0, t0))µ̃(dx).

The set of measures is compact and so there is a convergent subsequence of mea-
sures {µτi} where τi → ∞. Let

µ = limi→∞µτi .

The measure µ can be seen to be invariant as follows. We must show that

limi→∞
1
τi

∫ τi

0
dt
∫

Ω
g(φ(t;x0,t0))µ̃(dx0) =

limi→∞
1
τi

∫ τi

0
dt
∫

Ω
g(φ(t + t ′;x0, t0))µ̃(dx0)

for any g ∈C(Ω) and all t,t ′. This follows by Fubini’s theorem and a simple norm
estimate. �

Now let G�(n) denote the set of all n× n (real) matrices with the usual operator
norm and let L∞(R;G�(n)) denote the set of bounded, measurable functions defined
on R with values in G�(n), with the weak∗ topology. If A(·) ∈ L∞(R;G�(n)), let As

be the ‘translate’ by s:

As(t) = A(t + s), for all t,s ∈ R.

Clearly, this is a linear operator on L∞(R;G�(n)) which we denote by Ts :

Ts(A)(t) = A(t + s). (3.27)

Let A(·) ∈ L∞(R;G�(n)). Then we define the set

ΨA = {As(·) : s ∈ R}∗
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where the closure is in the weak∗-topology. By Alaoglu’s theorem, the set ΨA is
compact and it is clearly an invariant set, so {Ts : s ∈ R} defines a flow on ΨA given
by (3.27). For each A(·) ∈ΨA we let ΦA(t) denote the fundamental solution of the
equation

ẋ = A(t)x.

Then we obtain a flow Ts on ΨA ×R
n by setting

Ts(A(·),x) = (Ts(A),ΦA(s)x)

called the linear, skew-product flow (see [11]).
Now let A ⊆ L∞(R;G�(n)) be a shift-invariant weak∗-compact set, let G(n,m)

denote the Grassmann manifold of m-dimensional subspaces of R
n and let µ be an

invariant normalised measure on A (i.e. µ(A) = 1). Then we say that a non-empty
subset X ⊆ A×R

n is a measurable subbundle of A×R
n if:

(a) there exists A1 ⊆ A such that µ(A1) = 1.
(b) each fibre BA = A1

⋂
({A}×R

n) is a subspace of R
n, for all A ∈ A1 of con-

stant dimension m.
(c) the map A → A1

⋂
({A}×R

n) = BA from A1 to G(n,m) is µ-measurable.
If ΦA(t)BA ⊆ BTt (A) for all A ∈ A1 and all t ∈ R, then A is said to be invariant.
We can now state Oseledec’s theorem, which follows from the above considerations
(see [10]):

Theorem 3.14. Consider the family of linear, time-varying differential equations

ẋ = A(t)x, A ∈ A ⊆ L∞(R;G�(n)), (3.28)

and suppose that µ is a normalised invariant measure on A. Then there exist real
numbers β1 < β2 < · · · < βk, 1 ≤ k ≤ n, such that:

(a) there exists a basis {ei} of R
n such that the numbers

limt→∞
1
t

ln||ΦA(t)er||, limt→−∞
1
t

ln||ΦA(t)er||

exist for all A in some shift-invariant set A1 ⊆ A with µ(A) = 1 and belong to the
set {βi}.

(b) Let Br denote the set

Br = {(A,x) ∈ A1 ×R
n : x = 0 or limt→∞

1
t

ln||ΦA(t)x|| = βr}, 1 ≤ r ≤ k.

Then each Br is a measurable invariant subbundle of A×R
n, and

A1 ×R
n = B1 ⊕B2 ⊕·· ·⊕Bk.

Also, the limits are uniform in x.
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(c) For each A ∈ A1, the Equation 3.5 is regular in the sense of Lyapunov, i.e.

limt→±∞ln detΦA(t) =
k

∑
r=1

βr for all A ∈ A1.

(d) For each A ∈ A1, the maximal Lyapunov exponent is βk.

3.6 Exponential Dichotomy and the Sacker-Sell Spectrum

Consider again the linear, time-varying differential equation, with a locally inte-
grable function A(·):

ẋ = A(t)x. (3.29)

We say that the Equation 3.29 has an exponential dichotomy on an interval I ⊆ R if
there exists a projection P : R

n → R
n and positive constants C and ε such that

||Φ(t)PΦ(s)−1|| ≤ Cexp(−ε(t − s)), (t ≥ s)
||Φ(t)(I −P)Φ(s)−1|| ≤ Cexp(ε(t − s)), (t ≤ s) (3.30)

for all s, t ∈ I. We shall state a number of results, the proofs of which can be found,
for example, in [4]. First note that if A(·) = A is constant then (3.29) has an expo-
nential dichotomy if and only if σ(A) (the spectrum of A) has no elements with zero
real part. Also, Equation 3.29 for time-varying A(·) has an exponential dichotomy
with P = I (=identity) if and only if it is uniformly asymptotically stable. (If ε = 0 in
(3.30) we speak of an ordinary exponential dichotomy.) An important aspect of the
spectral theory of systems is reducibility, such as the existence of invariant subbun-
dles studied above. In the present case, we say that the system (3.29) is reducible if
it is similar to a system of the form

ẏ =
(

B1(t) 0
0 B2(t)

)
y = B(t)y (3.31)

where B1,B2 are of lower order than B. By ‘similar’ here we mean that there exists
an invertible continuously differentiable and bounded matrix function S(t) such that
the change of variable x = S(t)y maps (3.29) into (3.30). It is easy to see that S(t)
must satisfy the differential equation

Ṡ(t) = A(t)S(t)−S(t)B(t).

The main criterion for exponential dichotomy is given by:

Theorem 3.15. ([4]) Suppose that A(t) is a bounded continuous matrix function
defined on the interval I ⊆ R such that it has k eigenvalues with negative real part
α < 0 and n− k eigenvalues with positive real part β > 0 for all t ∈ I. Then for any
positive constant ε < min(−α,β ), there exists δ > 0 (depending on M,α,β and ε ,
where M = supt∈I ||A(t)||) such that if
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||A(t2)−A(t1)|| ≤ δ for |t1 − t2| ≤ length(I)

the fundamental matrix X(t) of (3.29) satisfies

||X(t)PX−1(s)|| ≤ Ke−(−α−ε(t − s), t ≥ s

||X(t)(I−P)X−1(s)|| ≤ Le−(β−ε(t − s), s ≥ t

where K,L are constants and P is the projection

P =
(

Ik 0
0 0

)
.

Exponential dichotomy of (3.29) is related to the existence of bounded solutions of
the inhomogeneous equation

ẏ = A(t)y + f (t). (3.32)

Let

M = { f : f is locally integrable and
∫ t+1

t
| f (s)|ds is bounded in t}

with norm

|| f ||M = supt≥0

∫ t+1

t
| f (s)|ds.

Then M is a Banach space and we have:

Theorem 3.16. ([4]) The inhomogeneous equation in (3.6) has at least one bounded
solution for every f ∈ M if and only if the homogeneous equation (3.29) has an ex-
ponential dichotomy.

Note also that exponential dichotomy is stable in the sense that small perturbations
of the coefficient matrix do not change the exponential dichotomy.

The concept of dichotomy can be extended to sets of differential equations. Thus
if the system ẋ = A(t)x has an exponential dichotomy on all of R, then so does the
equation ẏ = B(t)y for all B ∈ΨA = {As(·) : s ∈ R}∗. Thus we say, more generally,
that if Ψ ∈ L∞(R;G�(n)) is a weak∗ compact, translation invariant set, then the
family of equations ẏ = B(t)y for B ∈Ψ has an exponential dichotomy if there exist
constants K,ε and a continuous projection-valued function B → PB such that

||ΦB(t) ·PB ·ΦB(s)−1|| ≤ Kexp(−ε(t − s)), t ≥ s

||ΦB(t) · (I−PB) ·ΦB(s)−1|| ≤ Kexp(ε(t − s)), t ≤ s

for all t,s ∈ R, B ∈Ψ . From the definition we have

ΨA ×R
n = W s ⊕Wu
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where the invariant subbundles W s and W u are given by

W s(u) = {(A,x) ∈ΨA ×R
n : x ∈ ImPA (x ∈ Ker PA)}.

We now introduce the Sacker-Sell spectrum of the system of equations

ẋ = A(t)x (3.33)

for A(·) ∈Ψ ⊆ L∞(R;G�(n)) (a weak∗-compact translation invariant set). Then we
say that a point λ ∈ R is in the Sacker-Sell spectrum of the equations (3.33) for
A ∈Ψ if the associated equations

ẋ = (λ I + A(t))x

do not admit an exponential dichotomy over Ψ .

Theorem 3.17. (See [11].) The Sacker-Sell spectrum of equations (3.33) is a finite
union of compact intervals (some of which may be single points).

Let ∪L
i=1[ai,bi] be the Sacker-Sell spectrum of (3.33). Define the sets

Wi = {(A,x) ∈ΨA ×R
n : x = 0 or limt→±∞

sup
inf

(
1
t

ln||ΦA(t)x||
)
∈ [ai,bi]}.

Then it can be shown (see [11]) that

Ψ ×R
n ∼= ⊕L

i=1Wi

in the sense that Wi is a continuous invariant subbundle of Ψ ×R
n. It will be seen

later that we can use the iteration theory of Chapter 1 to generalise these results to
nonlinear systems.

3.7 Conclusions

In this chapter we have considered the general theory of linear, time-varying sys-
tems, including existence and uniqueness of solutions, explicit expressions for the
solutions and stability theory. The general theory of eigendecomposition leading to
Oseldelec’s theorem and exponential dichotomy has also been covered. In the fol-
lowing chapters we will extend the ideas of this chapter to nonlinear systems using
the iteration scheme developed in Chapter 2.
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Chapter 4
General Spectral Theory of Nonlinear Systems

4.1 Introduction

The spectral theory of linear (time-invariant) systems is, of course, the most im-
portant aspect of control theory in classical feedback design, and historically this
was the approach taken by control engineers until the introduction of state-space
theory. The techniques developed in the past include Nyquist and Bode diagrams,
pole assignment and root locus methods. Frequency domain methods are therefore
extremely important, especially for the suppression of resonant vibrations in me-
chanical systems.

In this chapter we shall outline a general spectral theory for nonlinear systems.
First, a generalised transform theory is developed which can generate Volterra series
kernels directly using Schwartz’ kernel theorem, without the need of a (somewhat
arbitrary) definition of multi-dimensional Laplace transforms. This theory can then
be directly applied, by using the iteration scheme developed in this book to derive
a general spectral theory for nonlinear systems. We shall then briefly show how
to apply the same ideas to generalise exponential dichotomies and the Sacker-Sell
spectrum to nonlinear systems. We shall assume a basic knowledge of functional
analysis and distribution theory.

4.2 A Frequency-domain Theory of Nonlinear Systems

In this section we outline the methods of [1] and the resulting frequency-domain
theory of nonlinear systems. The systems which we consider initially are the bi-
linear ones of the form

ẋ = Ax + uDx + bu, x(0) = x0.

These systems are usually studied by means for the Volterra series (see, e.g. [2]), a
typical term of which is of the form

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 61–74.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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∫ 1

0

∫ τ1

0
· · ·

∫ τk

0
Kk(t,τ1, · · · ,τk)u(τ1) · · ·u(τk)dτ1 · · ·dτk,

where the kernel Kk has a number of different representations. In order to make this
look like a k-dimensional convolution, a number of subtle transformations are made
and then k-dimensional Laplace transforms are taken (see [2]). In this section we
shall use a direct way of obtaining these results which are valid for a much more
general class of inputs.

We begin by defining a very general frequency domain theory for nonlinear sys-
tems as given in [3]. Let L2

T [0,∞) be the Hilbert space of all measurable, square-
integrable, real-valued functions defined on [0,∞) and which are zero for t > T .
This is clearly a direct subspace of L2[0,∞). Let S be a nonlinear causal system, i.e.
S maps L2

T [0,∞) to itself for all T > 0. (For input-output stable systems, we can take
T = ∞, i.e. [0,∞).) Let F denote the Fourier transform, so that F is an isomorphism

F : L2(−∞,∞) −→ L2(−∞,∞)

and F maps L2
T [0,∞) one-to-one and isometrically onto a subspace L̃2

T [0,∞) of
L2(−∞,∞). We define the transformed system S̃ by

S̃(v) = FSF−1(v).

Thus, S̃ makes the diagram

L2
T [0,∞) S ��

F

��

L2
T [0,∞)

F

��
L̃2

T [0,∞)
S̃ �� L̃2

T [0,∞)

commute. Note that if S is an analytic function on L̃2
T [0,∞) (i.e. has a conver-

gent Taylor series consisting of S and its Fréchet derivatives), then S̃ is analytic on
L̃2

T [0,∞), since F is linear and invertible. Thus we can expand S̃ in a Taylor series:

S̃ =
∞

∑
i=0

Mi(v)

where Mi is an i form defined on L̃2
T [0,∞), i.e. Mi = Li(v, · · · ,v) for some multi-

linear form Li :
⊕i

j=1 L̃2
T [0,∞).

Example 4.1. Consider the linear system given by

S : y(t) =
∫ t

0
g(t − τ)u(τ)dτ.
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Then,
S̃ : Y (iω) = G(iω)U(iω)

so that S̃ is simply multiplication by G(iω) or in integral form

Y (iω) =
∫ ∞

∞
δ (ω −ω ′)G(iω ′)U(iω ′)dω ′

with kernel distribution δ (ω −ω ′)G(iω ′).

Example 4.2. Consider the causal scalar distributed bi-linear system

ẋ = Ax + uDx + bu, x(0) = x0, x ∈ L2(Ω). (4.1)

The solution is given by the Volterra series

x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds+

∞

∑
i=1

∫ t

0

∫ τ1

0
· · ·

∫ τi−1

0
eA(t−τ1)DeA(τ1−τ2)D · · ·

· · ·DeA(τi−1−τi−2)DeAτi x0u(τ1)u(τ2) · · ·u(τi)dτ1 · · ·dτi

+
∞

∑
i=1

∫ t

0

∫ τ1

0
· · ·

∫ τi−1

0

∫ τi

0
eA(t−τ1)DeA(τ1−τ2)D · · ·

· · ·DeA(τi−1−τi−2)DeA(τi−τi+1)bu(τ1)u(τ2) · · ·u(τi+1)dτ1 · · ·dτi+1

where eAt is the semigroup generated by A. The usual procedure for generating the
frequency-domain kernels is then quite subtle and requires consideration of different
types of kernel (e.g. triangular ones) – see [2]. Here we show that the theory can be
derived in a more general way and such that the resulting expression is true for
any input. Thus, consider the system (4.1) again and take the one-sided Fourier
transform (assuming the system is causal):

iωX(iω) = AX(iω)+
1

2π
(U ∗DX)(iω)+ bU(iω)+ x(0),

where ∗ denotes convolution. Hence, if iω does not belong to σ(A), we have

(
I− 1

2π
(iω −A)−1U ∗D

)
X(iω) = (iω −A)−1(bU(iω)+ x(0)).

We shall suppose that A is a closed sectorial operator (see [4]), with dense domain,
so that

||(iω −A)−1|| ≤ M
|iω −a|

for some real a and for all iω in the sector

Sa,φ = λ : φ ≤ |arg(λ −a)| ≤ π ,λ �= a
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of the complex plane, where φ ∈ (0,π/2). Thus, if U ∈ L1(0,∞), then the operator
V defined by

VX =
1

2π
(iω −A)−1 ◦ (U ∗ (DX))

satisfies

||VX ||L2(0,∞,L2(Ω)) ≤
1

2π

∥∥∥||(iω −A)−1||W ||U ∗ (DX)||L2(Ω)

∥∥∥
L2(0,∞)

≤ 1
2π

∥∥∥||(iω −A)−1||W |U | ∗ ||D||W ||X ||L2(Ω)

∥∥∥
L2(0,∞)

≤ 1
2π

∥∥∥∥ M
|iω −A|

(
|U | ∗ ‖D‖W ‖X‖L2(0,∞)

)∥∥∥∥
≤ M

2π

∥∥∥∥ 1
|iω −A|

∥∥∥∥
L2(0,∞)

‖U‖L1(0,∞) ‖D‖W ‖X‖L2(0,∞,L2(Ω))

≤ M
4|a|‖U‖L1(0,∞) ‖D‖W ‖X‖L2(0,∞,L2(Ω))

by Young’s inequality 1 (where W = L (L2(Ω)) ), so that we obtain the following
norm estimate for V :

‖V‖ ≤ M
4|a|‖U‖L1(0,∞) ‖D‖L (L2(Ω)) .

Hence, if we assume that the input is bounded in the L1 norm in by a constant
depending on the operator D and the number a,

‖U‖L1(0,∞) ≤
4|a|

M‖D‖ (4.2)

then
‖V‖ ≤ 1.

Hence, by the Neumann series (see [4]), we have

X = (I +V +V 2 +V 3 + · · ·)(i(·)−A)−1(bU(·)+ x(0)).

Now we have the following equations which are to be interpreted in the sense of
distributions

1 Young’s inequality is ‖ f ∗g‖Lr ≤ | f ‖Lp‖g‖Lq where 1/r = 1/p+1/q−1.
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V p(iω −A)−1bU =
1

2π
V p−1(iω −A)−1

∫ ∞

−∞
U(ω −ω1)D(iω1 −A)−1bU(ω1)dω1

=
1

(2π)2 V p−2(iω −A)−1
∫ ∞

−∞

∫ ∞

−∞
U(ω −ω2)U(ω2 −ω1)U(ω1)

×(iω2 −A)−1D(iω1 −A)−1bdω1dω2

· · ·
=

1
(2π)p (iω −A)−1

∫ ∞

−∞
· · ·

∫ ∞

−∞
U(ω −ωp)U(ωp −ωp−1) · · ·

U(ω2 −ω1)U(ω1)×D(iωp −A)−1D · · ·
D(iω1 −A)−1bdω1 · · ·dωp

=
1

(2π)p

∫ ∞

−∞
· · ·

∫ ∞

−∞
δ (ω −ωp)U(ωp −ωp−1)U(ωp−1 −ωp−2)

· · ·U(ω2 −ω1)U(ω1)(iωp −A)−1D

×(iωp−1 −A)−1D · · · (iω1 −A)−1bdω1 · · ·dωp+1.

This gives the pth kernel

Kp(ω1, · · · ,ωp+1) =
1

(2π)p δ (ωp+1 −ωp)(iωp −A)−1D(iωp−1 −A)−1

×D · · ·D(iω1 −A)−1b. (4.3)

Of course, this approach required the condition (4.2); however, the solution may
be extended by infinite-dimensional analytic continuation. It does not require any
specific structure on the inputs (such as step functions, sinusoids, etc.).

In fact, the above result is a special case of a general theorem on the kernel represen-
tations of distributions which follows from the classical Schwartz’ kernel theorem:

Theorem 4.1. (See [5]) The space of distributions D ′(X ×Y ) on the product space
X ×Y ⊆R

m×R
n is isomorphic to the set of continuous linear maps {K : C∞

c (Y )−→
D ′(X)}.

The distribution K(x,y) ∈ D ′(X ×Y ) corresponds to K : C∞
c (Y ) −→ D ′(X) under

this isomorphism, where Kv is the distribution on X given by

C∞
c (X) 
 u −→ 〈K(x,y),u(x)v(y)〉,

which is usually written

(Kv)(x) =
∫

K(x,y)v(y)dy.
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(For example, δ (x− y) ∈ D ′(X ×Y) and
∫

δ (x− y)v(y)dy = v(x)

and so δ (x− y) is associated with the natural injection C∞
c (Y ) ↪→ D ′(X).)

Now consider the analytic input-output map

S : L2
T [0,∞) −→ L2

T [0,∞)

and its (analytic) Fourier transform

S̃ : L̃2
T [0,∞) −→ L̃2

T [0,∞).

Writing S̃ in a Taylor series gives

S̃(v) =
∞

∑
0

Mi(v)

where

Mi(v) =
FiS̃(0)

i!
v(i)

and F is the Fréchet derivative. Here, v(i) = (v, · · · ,v) (i components). Thus, Mi

determines a symmetric multi-linear form

M̃i(v1, · · · ,vi) ∈ L (Λ ,L (Λ , · · · ,L (Λ ,Λ) · · · ))

where Λ = L̃2
T [0,∞).

By induction from Theorem 4.1, we have:

Theorem 4.2. M̃i can be represented by a kernel distribution

Ki ∈ D ′([0,∞)× [0,∞)×·· ·× [0,∞)).

For example, M2 is given by

M̃2(v1,v2)(ω) =
∫

K2(ω ,ω1,ω2)v1(ω1)v2(ω2)dω1dω2,

for some K2 ∈ D ′([0,∞)× [0,∞)× [0,∞)), since K(ω1,ω2;v) induces a map K′ :
C∞

c ([0,∞)) −→ D ′([0,∞)× [0,∞)) given by

K′(v)(ω1,ω2) = K(ω1,ω2;v).

In the linear case, we have

K1(ω1,ω2) = δ (ω1 −ω2)G(iω1)

and in the bi-linear one, (2.3) gives the kernel
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Kp(ω1, · · · ,ωp+1)= δ (ωp+1−ωp)(iωp−A)−1D(iωp−1−A)−1D · · ·D(iω1−A)−1b.

(This differs by the factor 1
(2π)p which can be absorbed into the input terms u.)

We can now see how this works in the case of time-varying bi-linear systems of
the form

ẋ = A(t)x + uD(t)x + b(t)u, x(0) = x0 ∈ L2(Ω),

where A(t) is a sectorial operator for each t ≥ 0 and D(t) and b(t) are bounded oper-
ators. Since the convolution algebra is associative we can take the Fourier transform
of the equation and write it in the form

iωX(iω) = (Ã∗X)(iω)+
1

(2π)2 (U ∗ D̃∗X)(iω)+
1

2π
(b̃∗U)(iω)+ x(0) (4.4)

where
Ã = F(A(t)), D̃ = F(D(t)) and b̃ = F(b(t)).

We assume that Ã exists in the strong sense, i.e. that
∫ ∞

0
A(t)ve−iωt dt ∈ L2(Ω)

for all v ∈ ⋂
t≥0 D(A(t)). Consider first the equation

iωX(iω)− (Ã∗X)(iω) = S(iω)

for some given S(iω). Define the operator Γ by

(Γ X)(iω) = iωX(iω)− (Ã∗X)(iω).

Of course, in the time-domain we have

ẋ = A(t)x + S(t), x(0) = 0,

so that

x(t) =
∫ t

0
Φ(t,τ)s(τ)dτ

where Φ is the convolution operator generated by A(t). Thus,

‖x(t)‖L2(Ω) ≤
∫ t

0
‖Φ(t,τ)‖L (L2(Ω))‖s(τ)‖dτ.

We assume that Φ is exponentially bounded, i.e.

‖Φ(t,τ)‖L (L2(Ω)) ≤Ceθ(t−τ),

for some C > 0 and some real θ . If ε > θ , we have
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e−εt‖x(t)‖L2(Ω)) ≤C
∫ t

0
e(−ε+θ)(t−τ)e−ετ‖s(τ)‖dτ.

Let w(t) = e−εt and let Hw = L2
w([0,∞);L2(Ω)), the weighted L2 space of all mea-

surable functions x(t) such that

‖x‖Hw = ‖x(t)‖L2
w([0,∞);L2(Ω)) =

(∫ ∞

0
e−2εt‖x(t)‖2

L2(Ω)dt

)1/2

< ∞.

Then F is an isomorphism from Hw to H̃w and by Parseval’s theorem,

‖x‖Hw =
(∫ ∞

−∞
X2

ε (ω)dω
)1/2

= ‖Xε‖H̃w

where
Xε(iω) =

∫ ∞

0
e−εt‖x(t)‖L2(Ω)e

−iωt dω .

Hence we have ∥∥Γ −1
∥∥

L (H̃w) ≤C
∫ ∞

0
e(−ε+θ)tdt.

Returning to (4.1), we have
(

I− 1
(2π)2 Γ −1U ∗ D̃∗

)
X =

1
2π

Γ −1b̃∗U +Γ−1x(0).

If X ∈ H̃w then we have

‖KX‖H̃w
≤ 1

(2π)2

∥∥Γ −1
∥∥

L (H̃w) ‖U‖L1(−∞,∞)

∥∥∥D̃
∥∥∥

L1(−∞,∞;L (L2(Ω)))
‖X‖H̃w

where

K =
1

(2π)2 Γ −1U ∗ D̃∗,

and so if
1

(2π)2

C
ε −θ

‖U‖L1(−∞,∞)

∥∥∥D̃
∥∥∥

L1(−∞,∞;L (L2(Ω)))
< 1

we have
‖KX‖H̃w

< 1.

Hence, as before, we have the Neumann series

X = (I + K + K2 + · · ·)
(

1
2π

Γ −1b̃∗U +Γ −1x(0)
)

.

Consider the general term

ξp =
1

2π
K p

(
Γ −1b̃∗U

)
.
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Note that we have the maps

C∞
c ([0,∞)⊗L2(Ω)) ↪→ L2

w([0,∞);L2(Ω)) Γ−1−→ L2
w([0,∞);L2(Ω)) ↪→

D ′([0,∞)⊗L2(Ω)).

Each map is continuous and so, by the kernel theorem, their composition is given by
a kernel. Since the first and last maps are injections, this gives a kernel representation
of Γ −1. We write this as

(Γ −1X)(ω) =
∫ ∞

−∞
γ(ω ,ω1)X(iω1)dω1,

where γ ∈ D ′(([0,∞)× [0,∞))⊗L2(Ω)). We have

ξp =
1

(2π)3 K p−1Γ −1(U ∗ D̃∗)Γ −1b̃∗U

=
1

(2π)3 K p−1
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
γ(ω ,ω5)D̃(ω5 −ω4 −ω3)γ(ω3,ω2)

×b̃(ω2 −ω1)U(ω1)U(ω4)dω1dω2 · · ·dω5

= · · ·
=

1
(2π)3p

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
3p+2

γ(ω ,ω3p+2)D̃(ω3p+2 −ω3p+1−ω3p)γ(ω3p,ω3p−1)

D̃(ω3p−1 −ω3p−2−ω3p−3) · · ·γ(ω6,ω5)D̃(ω5 −ω4 −ω3)γ(ω3,ω2)

×b̃(ω2 −ω1)U(ω3p+1)U(ω3p−2) · · ·U(ω4)U(ω1)dω1 · · ·dω3p+2.

The case of general nonlinear systems can be approached by Lie theory (see
[3]), or by using the sequential approach developed in this book. We shall use the
latter course and just present the formal manipulations (for more details see [1]). For
simplicity we consider the unforced finite-dimensional case - the general distributed
input-output theory is similar. Thus, consider a nonlinear dynamical system of the
form

ẋ = (A0 + A′(x))x, x(0) = x0

for some time-invariant matrix A0. Introduce the sequence of systems

ẋ[i](t) = (A0 + A′(x[i−1](t)))x[i](t), x[i](0) = x0, i ≥ 2

and
ẋ[1](t) = (A0 + A′(x0))x[1](t), x[1](0) = x0.

Taking the Fourier of the ith equation gives

iωX [i](iω)− x0 =
(

A0 +
1

2π
Ã′[i−1](iω)∗

)
X [i](iω)
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where ·̃ denotes the Fourier transform and ∗ is the convolution operation. Hence, as
before, we can write

X [i](iω) =
(

(iωI −A0)−1 +
1

2π
(iωI−A0)−1

∫ ∞

−∞
Ã′i−1](iω ′)

(
i(ω −ω ′)I−A0

)−1

dω ′ +
(

1
2π

)2

(iωI −A0)−1
∫ ∞

−∞
Ã′i−1](iω ′′)

(
i(ω −ω ′′)I −A0

)−1 ·
∫ ∞

−∞
Ã′i−1](iω ′)

(
i(ω −ω ′′ −ω ′)I −A0

)−1
dω ′dω ′′ + · · ·

)
x(0)

provided the operator L given by

(LX [i])(iω) =
1

2π
(iωI −A0)−1

[
Ã′i−1](iω)∗X(iω)

]

is bounded by 1. Thus we have, for the spectrum X(iω) of the nonlinear system,

X(iω) = limk→∞X [k](iω),

where

X [k](iω) =
∞

∑
0

1
(2π)k

(
(iωI −A0)−1Ã′k−1](iω)∗

)k
(iωI −A0)−1x(0)

and
Ã′k−1](iω) = F

(
Ã(x[k−1](t))

)
.

For the convergence proof of this sequence, see [1].

4.3 Exponential Dichotomies

In this section we shall generalise some results on exponential dichotomies to non-
linear systems. Recall that an exponential dichotomy for a linear, time-varying sys-
tem

ẋ = A(t)x

on an interval J ⊆ R is given by a projection P and constants K and α,β such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s

‖X(t)(I−P)X−1(s)‖ ≤ Ke−β (s−t),s ≥ t.

We shall state some results from Coppel [6] which we shall generalise here. From
these ideas it is clear that many other results can be generalised in a similar way.
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Lemma 4.1. Consider the inhomogeneous equation

ẋ = A(t)x + f (t).

This equation has at least one bounded solution, for each locally integrable function
f for which

∫ t+1
t | f (s)|ds is bounded for all t ≥ 0, if and only if the homogeneous

equation
ẋ = A(t)x

has an exponential dichotomy.

The property of exponential dichotomy being preserved under ‘small’ perturbations
is called roughness. Then we have

Lemma 4.2. Suppose that the system

ẋ = A(t)x

has an exponential dichotomy with constants K and α , then the system

ẋ = A(t)x + B(t)x

also has an exponential dichotomy provided

δ ∆= sup
t≥0

‖B(t)‖

satisfies
δ < α/4K2.

Lemma 4.3. Let A(t) be continuous and bounded (i.e. ‖A(t)‖ ≤ M) and suppose
that A(t) has k eigenvalues with real part ≤ −α < 0 and n− k eigenvalues with
real part ≥ −β > 0 for all t in some interval J. Assume also that for all ε > 0
(ε < min(α,β )), there exists δ such that

‖A(t2)−A(t1)‖ ≤ δ for |t2 − t1| ≤ h, t1,t2 ∈ J

where h is a fixed number ≤ length J. Then the linear system

ẋ = A(t)x

has an exponential dichotomy on J with constants α − ε,β − ε .

Thus, if A(t) is continuous, bounded and of bounded variation and has the spec-
tral properties in the statement of the lemma, then the system has an exponential
dichotomy.

Now consider the nonlinear equation

ẋ = A(x)x (4.5)
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(which we assume has a unique solution defined for all t). We denote, as usual, the
solution of this equation through (x0, t0) by x(t;x0, t0). We say that the system (4.1)
has an exponential dichotomy on an open set O ⊆ R

n if there exists a projection P
and constants K,α,β > 0 such that

∥∥∥X(x0,t0)(t)PX−1
(x0,t0)(s)

∥∥∥ ≤ Ke−α(t−s), t ≥ s, s, t ∈ T(x0,t0)(O)

∥∥∥X(x0,t0)(t)(I−P)X−1
(x0,t0)(s)

∥∥∥ ≤ Ke−β (s−t), s ≥ t, s,t ∈ T(x0,t0)(O)

where X(x0,t0) is the fundamental solution of the linear, time-varying system

ẋ = A(x(t;x0, t0))x, x(t0) = x0 (4.6)

and T(x0,t0)(O) is the set of times for which the solution through (x0,t0) lies in O.
We shall say that the system (4.1) has an exponential dichotomy in some region
R⊆R

n if there exists an open cover of R such that it has an exponential dichotomy
on each open set of the cover. Many results of the types of Lemmas 4.1–4.3 can be
generalised to nonlinear systems – since the ideas are the same we shall just give a
generalisation of lemma 4.3.

Theorem 4.3. Consider the system

ẋ = A(x)x, (4.7)

and assume that A(x) has eigenvalues off the imaginary axis for all x in the open
set O. Suppose that A(x) is Lipschitz continuous and that the solutions of () are
bounded for initial states in the subset O1 ⊆ O. Then the system (4.7) has an expo-
nential dichotomy on any compact subset of O1.

Proof. This follows directly from the iteration theory together with an application of
Lemma 3.3 coupled with the roughness property of dichotomy. �

Finally we also note the following result on the Sacker-Sell spectrum (see Chapter
3 for a discussion of the Sacker-Sell spectrum): suppose that Ω ⊆ R

n is a compact
invariant set for the flow of this dynamical system and consider the set of approxi-
mations

ẋ[i](t) = A(x[i−1](t),x0)x[i](t), x[i](0) = x0

and
ẋ[0](t) = A(x0)x[0](t), x[0](0) = x0

where x0 ∈ Ω . (Here we have shown the explicit dependence of the systems on x0.)
We have
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Theorem 4.4. Let A ⊆ L∞(R;G�(n)) be the set

A = {A(x) : x ∈ Ω}

and let µ be a normalised invariant measure on A. Then there exist real numbers
β1 < β2 < · · · < βk, 1 ≤ k ≤ n, such that:

(a) There exists a basis {ei} of R
n such that the numbers

limi→∞limt→∞
1
t

ln||ΦA(x[i](·))(t)er||,

limi→∞limt→−∞
1
t

ln||ΦA(x[i](·))(t)er||

exist for all A in some shift-invariant set A1 ⊆ A with µ(A) = 1 and belong to the
set {βi}.

(b) Let Br denote the set

Br = {(A,x) ∈ A1 ×R
n : x = 0 or

limi→∞limt→∞
1
t

ln||ΦAx[i](·)(t)x|| = βr},
1 ≤ r ≤ k.

Then each Br is a measurable invariant subbundle of A×R
n, and

A1 ×R
n = B1 ⊕B2 ⊕·· ·⊕Bk.

Also, the limits are uniform in x.
(c) For each A(·) ∈ A1, the equation

ẋ = A(t)x

is regular in the sense of Lyapunov, i.e.

limt→±∞ln detΦA(·)(t) =
k

∑
r=1

βr for all A(·) ∈ A1.

(d) For each A(·) ∈ A1, the maximal Lyapunov exponent is βk.

4.4 Conclusions

In this chapter we have outlined a general spectral theory for nonlinear systems,
based on the iteration scheme. We have seen that many results for linear spectral
theory can be generalised to nonlinear systems. In particular, the theory of Volterra
kernels has been shown to be derivable easily from a function expansion and then
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generalised to nonlinear systems. Moreover, the theory of exponential dichotomy
and the Sacker-Sell spectrum have also been generalised to nonlinear systems.

The Volterra kernels can be used, along with some elementary algebraic geometry
to define the poles and zeros of a nonlinear system (see [7,8]), but they are algebraic
manifolds in an arbitrarily high dimensional complex manifold and so are difficult
to apply practically. They do have some theoretical importance and,as shown in [7]
we can define a nonlinear root locus technique. The present methods described in
this chapter, however, are much more easily applied and so are likely to be more
useful in general systems theory.
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Chapter 5
Spectral Assignment in Linear, Time-varying
Systems

5.1 Introduction

Pole placement is a well-known tool in designing control for linear systems. It be-
longs to the class of so-called feedback stabilisation methods. Basically, the aim of
this approach is to design a controller so that the closed-loop poles of the plant are
assigned to some desired locations chosen according to some specific stability and
performance criteria.

Several authors have approached the pole placement idea for general nonlinear
systems in the past. Most of these techniques have in common the idea of linearising
the nonlinear system about a countable set of equilibrium points and finding a sin-
gle controller that will stabilise each member of the finite countable set (see [2] for
an example). Of course, these approaches present some difficulties as for example
the impossibility of deciding a priori whether or not a set of three or more sys-
tems is simultaneously stabilisable [3]. On the other hand, in the area of nonlinear
systems too, and having its origins in the geometric control theory, exact feedback
linerisation with pole placement is achieved by following a two-step design method
[37, 38]: first, a simultaneous implementation of a nonlinear coordinate transforma-
tion and a state feedback law is obtained in order to transform the original nonlinear
system into a linear one in Brunowsky canonical form. The second step is the appli-
cation of the already established pole placement methods for linear time-invariant
(LTI) systems. However, the first step is very restrictive as involutivity conditions
arise and these are hardly met by any physical system of order higher than two.
There have been later attempts to obtain both feedback linearisation and pole place-
ment objectives in just one step [40].

In this chapter, the classical idea of pole placement for LTI systems is extended
to a general pole placement technique applicable to time-varying systems and hence
with the aid of the iteration technique presented in here, ultimately to nonlinear
systems in a general form.

Most systems arising in practice have time-varying parameters which will affect
the performance of a system which has been designed for some nominal parameter

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 75–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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set; this happens for example, in the aerodynamic coefficients of high-speed air-
crafts, circuit parameters in electronic circuits or diffusion coefficients in chemi-
cal processes. Time variation may arise too as the result of linearising a nonlinear
system about a family of operating points and/or about a time-varying operating
point [12].

In our case, the time-varying characteristics arise once the iteration technique
is used: the application of this technique to a nonlinear system of the form ẋ =
A(x)x + B(x)u,x0 = x(0), leads to a sequence of time-varying systems that will be
individually treated with linear techniques of pole placement. Pole placement for
LTI systems has been for a long time the object of diverse studies: some of them
were based on the well-known Ackerman’s formula [13], some others approached
the pole assignment problem by using a periodic output feedback ([14, 15]) for
second order systems or even arbitrary order as in [16].

The original pole placement method for LTI single-input, single-output (SISO)
systems was first extended to time-varying systems by [18] using a canonical repre-
sentation of the original system. Since then, it had been several contributions by dif-
ferent authors to develop pole placement techniques for linear time-varying (LTV)
systems: some of them are complex in their formulation or rely on transformations
of the original system into controllable canonical forms (i.e. Frobenius and Hessen-
berg forms) with an external input and subsequently the employment of linear pole
placement techniques ([18, 19, 20, 21, 22, 23, 24, 25], to embed the pole place-
ment problem within the more general problem of eigenstructure assignment as in
[34, 35, 36] or derived pole placement algorithms via Sylvester’s equation [29].

Also, many pole placement techniques for LTV systems require the computation
of the characteristic polynomial coefficients for either the original or the new state
matrices or the eigenvalues of the original system matrix: in [26] Blanchini intro-
duced a method that removes this requirement for SISO systems by using an inter-
mediate transformation to a bi-diagonal Frobenius form. This was then extended to
LTV systems in [27]. Nguyen in [28] introduced the Frobenius transformation for
time-varying systems; however, this treatment requires that the characteristic poly-
nomial coefficients of the desired behaviour be computed as well as the complete
Frobenius transformation of the system. Most recently, Valasek et al. ([30, 31, 32])
initiated a series of publications related to the eigenvalue placement problem based
on the extension of Ackerman’s formula to time-varying SISO and later to time-
invariant and time-varying multi-input, multi-output (MIMO) systems in which the
eigenvalue placement was based on the equivalence of the closed-loop original sys-
tem via a Lyapunov transformation to a LTI system with poles at prescribed loca-
tions.

It should be pointed out that an important limitation of the pole placement algo-
rithm is the lack of guaranteed tracking performance. This topic is treated in more
general output feedback approaches. A typical remedy for this involves the incor-
poration of the internal model principle into the control law design ([41] and [43])
or the inclusion of integrators into the loop. This issue will not be addressed in this
chapter, since pole placement design is the main interest here.
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The contents of this chapter are based on a combination of the classical pole
placement approach for LTI systems, extended to LTV system such that certain sta-
bility conditions are satisfied and the iteration technique. The objective is to develop
a methodology such that the stability of a nonlinear system of the form (5.1), can be
achieved by using pole placement tools on a sequence of LTV systems that represent
the original nonlinear system:

ẋ = A(x)x(t)+ B(x)u(t), x(0) = x0

y = C(x)x(t)+ D(x)u(t). (5.1)

Replacing the nonlinear system (5.1) by a sequence of LTV systems, a sequence of
feedback laws of the form u[i](t) = K[i](t)x[i](t) can be generated and for each of
them the closed-loop poles for the ith LTV system at each time of the time interval
are allocated to some desired location σ = (λ1d , · · ·λnd) where each λi can be time-
varying or constant.

It is well-known that LTV systems can be unstable despite having left-half plane
poles; that is, for time-varying systems, poles do not have the same stability meaning
as in the time-invariant case, so the allocation of the pole in the left-hand side plane
does not guarantee the stability of the closed-loop plant. In order to overcome this
problem an approach to stability using Duhamel’s principle is presented in Section
5.3 and some conditions based on differentiability of the eigenvector matrix are
derived.

From the convergence of the sequence of LTV solutions, by choosing the K[i](t)
feedback gain corresponding to the ith iteration and applying the limiting value to
the closed-loop nonlinear system, the pole placement and stability objectives are
achieved for a wide variety of nonlinear cases. This generalisation to nonlinear sys-
tems is given in Section 5.4, followed by a numerical example. Section 5.5 contains
a practical application of this theory.

5.2 Pole Placement for Linear, Time-invariant Systems

Consider an open-loop LTI system of the form:

ẋ = Ax(t)+ Bu(t), x(0) = x0 (5.2)

y = Cx + Du

where x(t) ∈ R
n is the vector of the measurable states, u(t) ∈ R

m is the control
signal and A, B, C are constant matrices of appropriate dimensions. If the pair (A,B)
is controllable, then the LTI system (5.2) can be stabilised by designing a linear state
feedback control law:

u(t) = r(t)−Kx(t), (5.3)
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where r(t) is a vector of desired states and the matrix K ∈ R
nxm is chosen so that the

spectrum of the closed-loop system matrix is allocated arbitrarily on the left-hand
side of the complex plane.

The closed-loop representation of the system (5.2) is of the form:

ẋ = Ax(t)−BKx(t)+ Br(t) = (A−BK)x + Br(t). (5.4)

The eigenvalues of a system determine the decay/growth rate of the response in LTI
cases, i.e.:

x(t) =
N

∑
i=1

eλit xi(0) (5.5)

so by ensuring they are placed in the left-hand side (or inside the unit circle in
discrete cases, |z| < 1), the response x(t) is guaranteed to decay to zero (only in
time-invariant cases). The pole placement control problem is to determine the value
of K such that the desired set of closed-loop poles is achieved. In the regulator
problem the reference signal is set to be zero, r(t) = 0 and therefore the feedback
control (5.3) is now u(t) = −Kx(t). The aim is to allocate the poles of the closed-
loop matrix

(
A−BK

)
on the left-hand side such that the state x(t) is now driven to

zero:
i f Re{eig

(
A−BK

)} < 0 → limt→∞{x(t)} = 0.

We next consider the algebraic solution of the pole placement problem. For ex-
ample, if the system is two-dimensional (n = 2) with r(t) = 0, the feedback gain
K = [k1,k2] can be designed conveniently in order to place the closed-loop poles
anywhere in the left-half plane (or inside the unit circle |z| < 1; in the discrete-time
case) by using the eigenvalue placement theorem (known as well as Ackerman’s
formula). Thus the control u(t) designed in this way will drive the system response
from a set of initial conditions x(0) to zero as t → ∞.

D

A

+

-

.

u(t)=K(x(t)-r(t))

K
xx

Reference
Signal r(t)

CB

Feedback

+
+

+ + Output
Signal y(t)

Fig. 5.1 Diagram of the pole placement design

Theorem 5.1. For a state controllable system (A,B,C,D), given any nth order poly-
nomial,
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Pd(λ ) = (λ −λ d
1 )(λ −λ d

2 ) · · · (λ −λ d
n ) = λ n + ad

n−1λ n−1 + · · ·+ ad
1λ + ad

0

with real coefficients ad
i , there exists a real matrix K such that the closed-loop ma-

trix (A−BK) has Pd(λ ) as its characteristic polynomial. Hence, the feedback gain
matrix K is determined by the condition:

|λ · I−A + BK|= Pd(λ ) = 0

where λ d
i are the desired eigenvalues for a ith-dimensional system.

Proof. Let γ(s) = sn + an−1sn−1 + · · ·+ a1s+ a0 be the characteristic polynomial of
(5.2). As (A,B) is controllable, there exist a non-singular transform matrix Tc so that

Ã = T−1
c ATc =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎠

, B̃ = T−1
c BTc =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

,

Then K =
[
a0 − ad

0,a1 − ad
1, · · · ,an−1 − ad

n−1

]
Tc ensures the characteristic polyno-

mial of (A−BK) is λ n + ad
n−1λ n−1 + · · ·+ ad

1λ + ad
0. �

For an adequate selection of the desired eigenvalues λ d
i , it is convenient to keep

in mind the fact that controllability slips away as the poles are moved closer to
the zeros producing zero-pole cancellations inside the transfer function. The design
strategy should be done in a way that improves only the undesirable aspects of the
open-loop response and avoids large increases in bandwidth produced by too large
negative eigenvalues (or too far inside the unit circle). This approach will be used in
the following section to determine a control law u[i](t) for each linear time-varying
system of the sequence of linear time-varying equations, so that each of their solu-
tions x[i](t) will converge to zero.

This pole placement method for LTI systems is a well-known technique in control
due to its simplicity and versatility of applications: it has been used in areas such as
control and stability of aircrafts ([44, 45]), helicopters [49], missile autopilots [47]
and more recently some of these ideas have been applied to the correct and precise
positioning of storing devices as CDs or DVDs [50] where linearised models of the
plant were used.

5.3 Pole Placement for Linear, Time-varying Systems

In this section the LTI pole placement method will be extended to LTV systems of
the form:

ẋ(t) = A(t)x(t)+ B(t)u(t), x(0) = x0 (5.6)

y(t) = C(t)x(t)+ D(t)u(t).
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where x(t)∈R
n is the vector of the measurable states, u(t)∈R

m is the control signal
and A(t), B(t), C(t) are time-varying matrices of appropriate dimensions.

As summarised in the introduction, there have been several attempts from differ-
ent authors to design pole placement techniques for LTV systems, see as an example
([18], [15], [16]) and references within. In our case, the pole placement method for
LTV systems has been kept as similar as possible to the standard LTI case; that is,
given a set of desired stable eigenvalues, σ =

(
λ1d · · ·λnd

)
and a time interval [0,t],

the aim is to place the closed-loop eigenvalues of (5.6) at those desired points at each
time of the interval by using a convenient state feedback control u(t) = −K(t)x(t)
where the feedback gain K(t) is a time-dependent function.

Remark 5.1. For simplicity, it is assumed that C(t) = I and D(t) = 0; it is possible
to generalize to other cases.

Given that the pair
[
A(t),B(t)

]
is controllable for all t ∈ [0,T ], the eigenvalue place-

ment theorem is applied to (5.6) as in Section 5.2.

det
∣∣λ · I− [A(t)−B(t)K(t)]

∣∣= (λ −λ1d) · · · (λ −λnd) (5.7)

and by solving this algebraic expression (5.7), the time-varying feedback gain K(t)
can be determined so that the closed-loop form of the system (5.6) will now be of
the form

ẋ(t) = [A(t)−B(t)K(t)]x(t) = Ã(t)x(t) (5.8)

with stable eigenvalues on the left-half plane at
(
λ1 · · ·λn

)
=
(
λ1d · · ·λnd

)
. In order

to guarantee stability of the system (5.6), further issues should be taken into account.
It is well-known that for linear time-varying systems, the fact of having the closed-
loop poles on the left-half side of the plane is not a sufficient condition for stability.

We next consider necessary and sufficient conditions for exponential stability of
LTV systems with negative eigenvalues will be derived and these results will be
extended for the nonlinear case. In most LTV cases, stability is not achieved only
by allocating the closed-loop poles at the desired values σ = (λ1d , · · · ,λnd) on the
time interval [0, t] but also by satisfying some additional conditions.

The need of additional conditions for stability of LTV systems is a topic fre-
quently covered in the literature; some of the approaches rely on the slow variation
of time parameters [17], some other in the existence of a triangular transformation
of the system’s matrix, just to mention a few.

In our case, having in mind that the matrix Ã(t) already has negative eigenval-
ues due to the solution of the algebraic equation in (5.7), some other conditions for
stability of the closed-loop system (5.8) should be satisfied, these conditions can be
summarised in the following theorem:
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Theorem 5.2. Given the open-loop LTV system ẋ = A(t)x(t)+ B(t)u(t), x0 = x(0),
whose closed-loop matrix Ã(t) = A(t) − B(t)K(t) has designed left-hand plane
eigenvalues σ = (λ1d , . . . ,λnd) via the feedback signal u(t) = −K(t)x(t) and as-
suming the following conditions to be satisfied:

(a) λ1d is the real part of the greatest of the eigenvalues of Ã(t)
(b) The matrix of eigenvectors, P(t), is differentiable
(c) ||P−1(t)Ṗ(t)|| < β

for β < Re(λ1d) the closed-loop system ẋ = [A(t)−B(t)K(t)]x(t) = Ã(t)x(t) is ex-
ponentially stable.

Proof. The system (5.8) can be solved over any given time interval [0,t] using
Duhamel’s principle: the time interval can be divided into N subintervals of length
h, such that h = t/N → 0 when N → ∞, such that:

x(t) = Limh→0

(
eÃ[Nh]h · eÃ[(N−1)h]h . . .eÃ[h]h · I · x0

)
(5.9)

Now, the similarity transform M(t) = P(t)Λ(t)P−1(t) can be applied to the closed-
loop matrix Ã(t):

x(t) =
(

PNeΛ [Nh]hP−1
N

)
·
(

PN−1eΛ [(N−1)h]hP−1
N−1

)
. . .
(

P1eΛ [h]hP−1
1

)
· I · x0 (5.10)

where Λ(t) ∈ C
nxn is a diagonal matrix of desired eigenvalues and P(t) ∈ C

nxn is
the time-varying matrix of correspondent eigenvectors. �

Remark 5.2. PN is P(t) at time t = Nh .

Remark 5.3. Λ(t) is considered to be time-varying to generalise the results of The-
orem 5.2. In here, it is considered to be constant as the desired eigenvalues were
taken to be constant.

The second assumption was that P(t) was differentiable, therefore its Taylor expan-
sion will be of the form:

P(t + h) = P(t)+ h
dP(t)

dt
+

h2

2!
d2P(t)

dt
+ · · · (5.11)

Neglecting high order terms and noting that dP(t)
dt = Ṗ(t):

P(t + h) = P(t)+ hṖ(t) (5.12)

Then, multiplying (5.12) by P(t + h)−1:
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P(t + h)−1P(t + h) = I = P(t + h)−1P(t)+ hP(t + h)−1Ṗ(t)I
= P(t + h)−1 [P(t)+ hṖ(t)

]

we have that
P(t + h)−1 =

[
P(t)+ hṖ(t)

]−1
.

Therefore,

P(t + h)−1P(t) =
[
P(t)+ hṖ(t)

]−1
P(t) =

[
P(t)−1 (P(t)+ hṖ(t)

)]−1

and so,
P(t + h)−1P(t) =

[
I + P(t)−1hṖ(t)

]−1

and as (1 + a)−1 = 1−a + · · ·, this can be written as:

P(t + h)−1P(t) =
[
I−P(t)−1hṖ(t)

]
(5.13)

and, [
P(t + h)−1 ·P(t)

]
= I + ε(h) (5.14)

where ε = o(h), so that ε → 0 as h → 0.

Thus (5.10) becomes:

x(t) = PN · eΛ [Nh]h · (I + ε) · eΛ [(N−1)h]h · (I + ε) · · ·eΛ [h]hP1 · I · x0 (5.15)

Taking norms of the above a bound on the norm of x(t) can be estimated by,

||x(t)|| ≤ ||PN || · ||(1 + ε)||N · ||P1|| · ||e(Λt)|| · ||x0|| (5.16)

and taking into account that

||eΛt || ≤ eRe(−λmax)t

where λmax is the eigenvalue of the matrix Λ with largest real part, then for λmax =
λ1d

||x(t)|| ≤ ||PN || · ||(I + ε)||N · ||P1|| · e−λ1dt · ||x0||. (5.17)

Now, it was shown in (5.14) that ε(h) = −hP−1(t)Ṗ(t), so

||I + ε||= ||I −hP−1Ṗ(t)|| ≤ 1 + h||P−1(t)Ṗ(t)||.

By assumption 3 in Theorem 5.2, the expression ||P−1(t)Ṗ(t)|| is bounded by β ,
and so

||I + ε(h)|| ≤ 1 + hβ .

Thus,
||x(t)|| ≤ ||PN || · (1 + hβ )N · ||P1|| · e−λ1dt · ||x0||
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and

(1 + hβ )N =
(

1 +
β t
N

)N

→ eβ t

so
||x(t)|| ≤ ||PN || · e(β−λ1d)t · ||P1|| · ||x0||.

Analysing this for exponential stability, PN , P1, and x0 are constant values, so
et(β−λ1d) → 0 is required:

e(β−λ1d)t → 0, (β −λ1d) < 0 → β < |λ1d|. (5.18)

That is, for exponential stability, the closed-loop eigenvalues λd should be chosen so
that the greatest of them λ1d satisfies (5.18) which represents a compromise between
the upper bound of the rate of change of P(t) and λ1d .

Example 5.1. Consider the dynamical equation of the single-input LTV system:

ẋ(t) =

⎛
⎝ e−t 2 0

0 2 e−t

1 0 1

⎞
⎠x(t)+

⎛
⎝0

1
0

⎞
⎠u(t). (5.19)

This example was first introduced in [30], [31] and [42] where a different method
of pole placement by state feedback and derivative state feedback respectively was
applied. In this example the time interval will be divided in N steps of size h (h →
0), and Duhanmel’s principle applied. The set of desired eigenvalues is σ =

(−
8,−5,−7

)
and the initial conditions for the states vector is x(0) = [0.3,−0.2,0.1]T .

The transient components of the response are shown in Figure 5.2. These transient
responses show the same characteristics as the results obtained in [31] where state
feedback was used and the gain of the feedback K(t) was designed via Lyapunov
transformation of the original LTV system. The control law u(t) = −K(t)x(t) that
sets the poles at the indicated location is shown in Figure 5.3. In addition to these
results, the matrix of eigenvectors P(t) was calculated at each step of the simulation,
and an estimation of ε(h) =

[
P(t + h)−1 ·P(t)

]−I was obtained as in (5.14) as a way
of testing differentiability of P(t): Figure 5.4 shows the performance of ε at each
step of the time interval and it is shown how it goes to zero as expected according
with the theory stated in this section.

In this example it has been shown that once the pole placement algorithm has been
applied, exponential stability is attained as the conditions in Theorem 5.2 are satis-
fied. In fact, in order to strengthen this idea, the differentiability of P(t) condition 2

in Theorem 5.2 can be estimated by the quantity P(t+h)−P(t)
h , and Figure 5.5 shows

how this condition is satisfied, confirming in this way the exponential stability of
the system. Now consider a necessary condition for the differentiability of P(t). It
was shown above how the exponential stability properties of the closed-loop system
relied upon the satisfaction of conditions 1-3 of in Theorem 5.2. These conditions
were sufficient conditions for stability. In this section, a necessary condition for
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Fig. 5.3 Control u(t) = −K(t)x(t)

stability will be derived. This condition is given in terms of a differential equation
which places restrictions on Λ(t), K(t) and P(t). A necessary condition for stability
is stated in the following lemma:
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Lemma 5.1. The differentiability of the matrix of eigenvectors P(t) (and A(t), B(t),
K(t) and Λ(t)) imply that the following equation is satisfied:

[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
= P(t)

[
Λ̇ (t)−Λ(t)P−1(t)Ṗ(t)+ P−1(t)Ṗ(t)Λ(t)

]
P−1(t), (5.20)

where Λ(t) is the diagonal matrix of eigenvalues of A(t) and K(t) is the feedback
gain designed for stable closed-loop poles.

Proof. Consider two nearby time points, t and t + h, and evaluate the similarity
transforms at those points keeping in mind that the matrix Λ(t) is a diagonal matrix
containing the eigenvalues of the matrix

[
A(t)−B(t)K(t)

]
= Ã(t):



86 5 Spectral Assignment in Linear, Time-varying Systems

P−1(t) [A(t)−B(t)K(t)]P(t) = Λ(t) (5.21)

P−1(t + h) [A(t + h)−B(t + h)K(t + h)]P(t + h) = Λ(t + h) (5.22)

as in (5.11) and assuming the differentiability of A(t),B(t) and K(t). Then,

A(t + h) = A(t)+ hȦ(t)+ . . .
B(t + h) = B(t)+ hḂ(t)+ . . .
K(t + h) = K(t)+ hK̇(t)+ . . .

and by the differentiability of P(t) and (5.13);

P−1(t + h) = P−1(t)−hP−1(t)Ṗ(t)P−1(t)

it follows that (5.22) can be written as

Λ(t + h) =
[
P−1(t)−hP−1(t)Ṗ(t)P−1(t)

] · [A(t)+ hȦ(t)
−(B(t)+ hḂ(t)

) · (K(t)+ hK̇(t)
)] · [P(t)+ hṖ(t)

]
= Λ(t)+ hΛ̇(t).

Expanding and rejecting high order terms yields:

Λ(t)+ hΛ̇(t) =
[
P−1(t)−hP−1(t)Ṗ(t)P−1(t)

] · [A(t)+ hȦ(t)−B(t)K(t)
−hḂ(t)K(t)−hBK̇(t)

] · [P(t)+ hṖ(t)
]

i.e.,

Λ(t)+ hΛ̇(t) = P−1(t)
[
A(t)−B(t)K(t)

]
P(t)+ P−1(t)h

[
A(t)−B(t)K(t)

]
Ṗ(t)

P−1(t)h
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
P(t)

−hP−1(t)Ṗ(t)P−1(t)
[
A(t)−B(t)K(t)

]
P(t). (5.23)

Taking into account that

P−1(t)
[
A(t)−B(t)K(t)

]
P(t) = Λ(t)

and
P−1(t)h

[
A(t)−B(t)K(t)

]
Ṗ(t) = hΛ(t)P−1(t)Ṗ(t),

(5.23) can be written as:

Λ(t)+ hΛ̇(t) = Λ(t)+ hΛ(t)P−1(t)Ṗ(t)−hP−1(t)Ṗ(t)Λ(t)
+hP−1(t)

[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
P(t). (5.24)

Dividing by h on both sides a differential equation in Λ(t) is obtained:

Λ̇(t)= P−1(t)
[
Ȧ(t)−Ḃ(t)K(t)−B(t)K̇(t)

]
P(t)+Λ(t)P−1(t)Ṗ(t)−P−1(t)Ṗ(t)Λ(t)

or
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P−1(t)
[
Ȧ(t)−Ḃ(t)K(t)−B(t)K̇(t)

]
P(t)=Λ̇(t)−Λ(t)P−1(t)Ṗ(t)+P−1(t)Ṗ(t)Λ(t).

Multiplying on the left by P−1(t) and on the right by P(t), then:
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
= P(t)Λ̇(t)P−1(t)−P(t)Λ(t)P−1(t)Ṗ(t)P−1(t)

+P(t)P−1(t)Ṗ(t)Λ(t)P−1(t) (5.25)

so,
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
= P(t)

[
Λ̇(t)−Λ(t)P−1(t)Ṗ(t)

+P−1(t)Ṗ(t)Λ(t)
]
P−1(t). (5.26)

�

To summarise: if P(t), A(t), B(t), K(t) and Λ(t) are differentiable (which is re-
quired in order to prove Theorem 5.2, then (5.25) must be satisfied. If it is not, then
Theorem 5.2 does not strictly apply. However, as shown in the following example,
P(t) may not be differentiable at a discrete set of points of the time interval t ∈ [0, t]
and the result will still hold.

Example 5.2. Given the following LTV open-loop system:

ẋ(t) =

(
ecos(t) log

[
1

1+t2

]
t2 t

)
x(t)+

(
1
1

)
u(t), x(0) =

(
0.5
0.5

)

The aim is to set the closed-loop poles at σ = (−8,−6). When the pole placement
method is applied as in the previous example, it can be seen in Figure 5.6 that
despite the poles being placed at the designed location, the shape of the response
shows a discontinuity along the time interval and so does the designed control u(t)=
−K(t)x(t), Figure 5.7.

Plotting the profile of ε(h) as in the previous example, it can be seen it reflects
the two discontinuities at times t = 1.1s and t = 2.68s, where the condition for
differentiability of P(t) fails. In Figure 5.9 an estimate of the differentiability of

P(t) is shown, it is represented by the quantity P(t+h)−P(t)
h calculated at each step

h of the time interval. As expected it shows two discontinuities along the interval
[0,t f ], the first one happening at t = 1.1s and the second one at t = 2.68s, it does not
show a smooth decreasing profile. On the other hand, if now the location of the poles
is changed to be i.e. σ = (−12,−10), Figures 5.10 and 5.11 show the components
of the response and the control law for this choice of left-hand side poles.

This time it can be seen how the discontinuities in the stable responses and the
control after the pole placement are smoother than in the previous case. The plots
of epsilon ε(h) in Figure 5.12 and differentiability of P(t), P(t+h)−P(t)

h in Figure
5.13 clearly show smaller discontinuities too, verifying the existence of the relation
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between P(t), Λ(t), A(t), B(t) and K(t) as indicated in (5.25). As the desired poles
have change, so did Λ(t) and consequently K(t) and P(t) and its differentiability.
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5.4 Generalisation to Nonlinear Systems

In this section an approach to the problem of pole placement when the system under
consideration is nonlinear is presented. A nonlinear system of the form:

ẋ = A(x)x(t)+ B(x)u(t), x(0) = x0 (5.27)

where A(x) ∈ R
nxn,B(x) ∈ R

nxn, u(t) is the control signal and x(0) = x0 are some
given initial conditions. (5.27) can be written as a sequence of LTV systems:

ẋ[1] = A(x0)x[1](t)+ B(x0)u[1](t), x[1](0) = x0
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... (5.28)

ẋ[i] = A(x[i−1](t))x[i](t)+ B(x[i−1](t))u[i](t), x[i](0) = x0.
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Applying the ideas introduced previously in Section 5.3, for some given choice of
closed-loop poles, i.e. σ = (λ1d , · · ·λnd), a sequence of feedback control laws of the
form u[i](t) = −K[i](t)x[i](t) can be generated at each iteration i, each of these K[i]

is the feedback gain obtained to ensure stability on each of the iterates closed-loop
forms:

ẋ[1] = [A(x0)−B(x0)K[1](t)]x[1](t), x[1](0) = x0.

... (5.29)

ẋ[i] = [A(x[i−1](t))−B(x[i−1](t))K[i](t)]x[i](t), x[i](0) = x0.
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As before, the eigenvalue placement theorem can be applied to each of these systems
(5.29) being the set of desired poles σ = (λ1d, · · ·λnd) the same for each iteration:

det[λ · I−A(x0)+ B(x0)K[1](t)] = (λ −λ1d) · · · (λ −λnd)

... (5.30)

det[λ · I−A(x[i−1](t))+ B(x[i−1](t))K[i](t)] = (λ −λ1d) · · · (λ −λnd).

Therefore each iterated equation of the sequence of LTV closed-loop systems (5.29)
will be exponentially stable provided the conditions from Section 5.3, are satisfied.
After a finite number of iterations, the solution x[i](t) converges to the nonlinear
solution x(t). Then, the correspondent feedback K[i](t) that stabilises the ‘ith’ sys-
tem, can be applied to the original nonlinear system in order to satisfy the stability
requirements for this nonlinear closed-loop:

ẋ = [A(x(t))−B(x(t))K[i](t)]x(t), x(0) = x0

provided that the desired eigenvalues σ = (λ1, · · ·λn) are chosen to be far on the
left-half plane as stated in Section 5.3.

The exponential stability of the nonlinear system achieved as indicated here can
summarised as follows:

Theorem 5.3. Given a nonlinear system of the form (5.27) where the matrices A(x)
and B(x) are Lipschitz and the pair (A,B) is controllable ∀x(t), ∀t ∈ [0,T ], there
exists a feedback control u(t) given by:

limi→∞u[i](t) = limi→∞K[i](t)x(t) → u(t)

where K[i](t) is Lipschitz, such that the solution x(t) of the nonlinear system is ex-
ponentially stable in [0,T ].

Proof. If K[i](t) is Lipschitz for each iteration, (in fact differentiability is a necessary
condition for exponential stability of the LTV systems on the sequence) and assum-
ing A(x) and B(x) are Lipschitz, the iteration technique can be applied. K[i](t) can
be written in canonical form:⎛

⎜⎜⎜⎝
0 0 0 0
0 0 0 0
...

...
...

...
k1(t) k2(t) . . . kn(t)

⎞
⎟⎟⎟⎠

from the pole placement algorithm an algebraic equation needs to be solved in order
to obtain the elements of the feedback gain matrix K[i](t);
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λ n +Γ [i]
n−1λ n−1 +Γ [i]

n−2λ n−2 + . . .+Γ [i]
1 λ 1 + λ0 = (λ −λ1)(λ −λ2) . . . (λ −λn).

(5.31)
The coefficients Γ [i]

j contain a linear combination of the linear elements of K[i](t) =

(k[i]
1 (t), . . . ,k[i]

n (t)) so the identification of parameters can be done by equating the
coefficients of both sides of Equation 5.31:

Γ [i]
n−1 = α [i]

n−1 + β [i]
n−1 · k[i]

n−1(t) = φn−1(λ1, . . . ,λn)
Γ [i]

n−2 = α [i]
n−2 + β [i]

n−2 · k[i]
n−2(t) = φn−2(λ1, . . . ,λn)
...

Γ [i]
1 = α [i]

1 + β [i]
1 · k[i]

1 (t) = φ1(λ1, . . . ,λn).

(5.32)

Therefore, the elements of K[i](t) of the feedback gain can be obtained by solving
(5.32):

k[i]
n−1(t) =

φ [i]
n−1(λ1,...,λn)−α [i]

n−1

β [i]
n−1

, . . . , k[i]
1 (t) = φ [i]

1 (λ1,...,λn)−α [i]
1

β [i]
1

. (5.33)

The functions α [i] and β [i] at each iteration depend on those elements of A(x[i−1](t))
and B(x[i−1](t)) which are non-zero due to the pole placement so K[i](t) is a Lips-
chitz function. Therefore, provided K[i](t), A(x) and B(x) are Lipschitz then it fol-
lows from Theorem 5.2 that the sequence of exponentially stable solutions of (5.29)
converges to the exponentially stable solution of the original nonlinear problem. �

Example 5.3. Given the following nonlinear system:
(

ẋ1

ẋ2

)
=
(

cos(x1) −1
1 −cos(x1)

)
·
(

x1

x2

)
+
(

0
1

)
·u(t) (5.34)

with initial conditions x(0) = [0.1,0.1]T , the task is to obtain a state feedback control
law u(t) = −K(x(t))x(t) that places the closed-loop poles at λ = (−10,−8) so that
the transient response converges to zero. For this particular example, a time interval
of T = t f = 3s was used and the step length was h = 0.01.

The iteration technique as explained in Section 5.4 is applied following the next
steps:

• Take as starting point the nonlinear system (5.34) and generate a sequence of
open-loop LTV systems:

(
ẋ[1]

1

ẋ[1]
2

)
=
(

cos(x01) −1
1 cos(x01)

)
·
(

x[1]
1

x[1]
2

)
+
(

0
1

)
·u[1](t). (5.35)

...(
ẋ[i]

1

ẋ[i]
2

)
=

(
cos(x[i−1]

1 ) −1

1 cos(x[i−1]
1 )

)
·
(

x[i]
1

x[i]
2

)
+
(

0
1

)
·u[i](t)
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In this particular example, only 4 iterations were needed in order to have good
approach to the nonlinear system.

• Applying the pole placement method for LTV systems as shown in Section 5.3
for each of the iterated open-loop systems, the corresponding feedback gains
Kith(t) are generated according to the choice of left-half plane poles, in this case,
σ = (−10,−8).

• By selecting the last K(t) of all the iterations generated (in this example, K4th
)

and applying this feedback gain to the closed-loop form of the system (5.34),
the output (or solution) of the system is stabilised. The components of the output
x1(t) and x2(t) have been plotted in Figure 5.14 proving to be stable after the
state feedback procedure has been applied. The profile of the designed feedback
control law can be observed in Figure 5.15.

Nonlinear
Response
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Fig. 5.14 Controlled components x1(t) and x2(t)

5.5 Application to F-8 Crusader Aircraft

In this section the pole placement technique will be applied to the nonlinear equa-
tions of the F-8 aircraft in a level trim, unaccelerated flight at Mach=0.85 and
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altitude of 30,000 ft (9000m), for which the nonlinear equations of motion rep-
resenting the dynamics of the aircraft are [51]:

⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠=

⎛
⎝−0.877 0 1

0 0 1
−4.208 0 −0.396

⎞
⎠ ·
⎛
⎝ x1

x2

x3

⎞
⎠ (5.36)

+

⎛
⎝−x2

1x3 −0.088x1x3 −0.019x2
2 + 0.47x2

1 + 3.846x3
1

0
−0.47x2

1−3.564x3
1

⎞
⎠+

⎛
⎝ −0.215

0
−20.967

⎞
⎠u(t)

where x1(t) is the angle of attack (rad), x2(t) the pitch angle (rad), x3(t) the pitch
rate (rad s−1) and u(t) the control input.

The control objective is to place the desired poles of the nonlinear system on
the left-hand side of the complex plane by applying simultaneously the iteration
technique and the placement algorithm introduced in Section 5.3 for LTV plants.

The set of desired poles is σ =
(−10,−1.7108,−0.5129

)
. This choice of poles

corresponds to the closed-loop poles of the linearised and stabilised system when
the control µ = −0.053x1 + 0.5x2 + 0.521x3 is applied [51].

The first step was to write Equation 5.36 on the form

ẋ(t) = A(x)x(t)+ B(x)u(t)

and generate a sequence of LTV systems

ẋ[1](t) =

⎛
⎜⎝

α [1]
11 α [1]

12 α [1]
13

0 0 1

α [1]
31 0 −0.396

⎞
⎟⎠x[1](t)+

⎛
⎝ −0.215

0
−20.967

⎞
⎠u[1](t)
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...

ẋ[i](t) =

⎛
⎜⎝

α [i]
11 α [i]

12 α [i]
13

0 0 1

α [i]
31 0 −0.396

⎞
⎟⎠x[i](t)+

⎛
⎝ −0.215

0
−20.967

⎞
⎠u[i](t)

with
α [1]

11 = −0.877 + 0.47x[i−1]
1 + 3.846(x[i−1]

1 )2

α [1]
12 = −0.019x2

α [1]
13 = −x2

1(0)−0.088x1(0)
α [1]

31 = −4.208−0.47x1(0)−3.564x2
1(0)

α [i]
11 = −0.877 + 0.47x[i−1]

1 + 3.846(x[i−1]
1 )2

α [i]
12 = −0.019x[i−1]

2

α [i]
13 = −(x[i−1]

1 )2 −0.088x[i−1]
1

α [i]
31 = −4.208−0.47x[i−1]

1 −3.564(x[i−1]
1 )2

where the initial condition vector is x(0) = [0.5253,0,0]T .
At each iteration, a feedback law u[i](t) = −K[i](t)x[i](t) is designed following

the specifications: the closed-loop poles at each iteration should be allocated at λd =(−10,−1.7108,−0.5129
)
,

ẋ[i](t) =
[
A(x[i−1](t))−B(x[i−1](t))K[i](t)

]
x[i](t) = Ã(x[i−1](t))x[i](t)

where Ã(x[i−1](t)) is the closed-loop matrix for the ith-iteration. Now, using Acker-
man’s formula:

det
[
λ · I− Ã(x[i−1](t))

]
=
(
λ −λ1

)(
λ −λ2

)(
λ −λ3

)
, (5.37)

the feedback matrix K[i−1](t) at each iteration is obtained. The simulations were
done for t f = 15 sec. After 30 iterations, the sequence of LTV systems converge
to the nonlinear system; taking the 30th feedback control and applying this to the
nonlinear system,

ẋ(t) = A(x)x(t)−B(x)K(30)(t)x(t)

it can be seen in figure 5.16, how the states of the nonlinear system converge to zero.
The control law applied to the nonlinear system is shown in figure 5.17, where it can
be seen how it presents an isolated discontinuity in the differentiability of the matrix
of eigenvalues P(t); this does not affect the states as seen in Figure 5.16.
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Fig. 5.16 Closed-loop response and the states x1(t), x2(t) and x3(t)

5.6 Conclusions

In this chapter a pole placement algorithm for nonlinear systems has been presented.
The method is based on the application of an iteration technique that replaces the
nonlinear system by a sequence of LTV systems.

Once this sequence of linear time varying systems has been obtained, a standard
pole-placement procedure is applied for each of the LTV systems by dividing the
interval in N steps of length h and applying Duhamel’s principle. It has been shown
how this method alone does not guarantee stability for linear, time-varying systems
and therefore additional requirements for stability were developed in Section 5.4:

If the matrices A(t), B(t), P(t) and K(t) are differentiable, then writing Equation
5.25 in the form:

Λ̇ = P−1(t)
(
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

)
P(t)+Λ(t)P−1(t)Ṗ(t)−P−1(t)Ṗ(t)Λ(t)

gives a coupled equation relating P(t), K(t) and Λ(t) which states that these are not
independent. Hence, in general, it may not be possible (in some cases) to choose Λ
constant. Thus, Equation 5.6 is an important condition for the exponential stability
of the already pole placed LTV system.

The restriction it places on P(t), K(t) and Λ(t) could be the object of further
research.
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These results were extended to nonlinear systems by the convergence of the it-
eration technique, thus the feedback gain designed for the last of the LTV iterated
systems is applied to the nonlinear system and achieving in this way exponential
stability. Due to the accurate approach of the iteration technique to the original non-
linear plant, this pole placement method results in a more robust method than those
relying on the linearisation of the original system, at least the uncertainties of the
unmodelled original dynamics do not exist in this case.

Some numerical examples were presented showing how the technique works and
showing that, even in the case where differentiability of P(t) is not satisfied at every
point of the time interval [0,t], the nonlinear system can be stabilised using this
technique.
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Chapter 6
Optimal Control

6.1 Introduction

Optimal control is one of the main techniques of modern control design, as it has
been for many years. The linear-quadratic theory of optimal control design is well
established and has various forms including the receding horizon approach for a
robust, easily implementable variation of the theory. It is also useful in H∞ con-
trol in the well-known state-space game theoretic formulation. Obtaining the ‘best’
controller in any given circumstance is clearly important, but for general nonlinear
systems, one is led to the solution of an extremely difficult (in general, non-smooth)
partial differential equation. This makes the existing general nonlinear theory very
difficult to apply.

In this chapter we shall show how to use the iteration technique developed above
to solve nonlinear optimal control problems. In the next section we shall outline the
classical linear quadratic regulator theory and derive the optimal feedback control in
terms of the solution of a Riccati equation. We shall also indicate the modifications
necessary to solve the linear tracking problem. The generalisation to nonlinear sys-
tems will be given in Section 6.3 and some examples will be presented in Section
6.4. Some comments on viscosity solutions of the Hamilton-Jacobi-Bellman (HJB)
equation and the optimality of the solution will be given in Section 6.5.

6.2 Calculus of Variations and Classical Linear Quadratic
Control

We shall first derive Lagrange’s variational equations in the simpler case of the
Lagrange problem, i.e. minimise the cost functional

J(x) =
∫ t f

t0
φ(x(t), ẋ(t), t)dt (6.1)

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 101–121.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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for some function φ : R
2n+1 → R

+, over all twice continuously differentiable (C2)
functions x : [t0,t f ] → R

n. The classical necessary condition for an optimum (maxi-
mum or minimum) of a function f : R

n → R is, of course, that

∂ f
∂xi

= 0, 1 ≤ i ≤ n.

In order to extend this to functionals, note that

∂ f
∂xi

(x) =
d

dε
f (x + εei)

∣∣∣∣
ε=0

where ei is the standard ith unit basis vector. Thus, the classical necessary condition
becomes

d
dε

f (x + εei)
∣∣∣∣
ε=0

= 0 at x.

We define the directional derivative δ f (x;y) of f at x in the direction y (∈ R
n) as

δ f (x;y) =
d

dε
f (x + εei)

∣∣∣∣
ε=0

and so we have the necessary condition

δ f (x;y) = 0, for all y ∈ R
n.

Hence, we can immediately generalise this to functionals J as in (6.1) and obtain
the necessary condition

δJ(x;y) =
d

dε
J(x + εy)

∣∣∣∣
ε=0

= 0

where we now have x,y ∈C2[t0, t f ]. We have, by (6.1),

J(x + εy) =
∫ t f

t0
ϕ(x + εy, ẋ+ ε ẏ,t)dt

and so the necessary condition becomes

0 = δJ(x;y) =
∫ t f

t0

d
dε

ϕ(x + εy, ẋ + ε ẏ, t)
∣∣∣∣
ε=0

dt

=
∫ t f

t0
(ϕxy + ϕẋẏ)dt

=
∫ t f

t0

(
ϕx − d

dt
ϕẋ

)
ydt + [ϕẋy]|t f

t0 .

Since y ∈C2[t0,t f ] is arbitrary we must then have
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φx − d
dt

φẋ = 0 Euler-Lagrange equation

and
[φẋy]|t f

t0 transversality.

If we also have a vector constraint

G(x, ẋ, t) = 0,

then, again as in the finite-dimensional case, we form the augmented cost

Jλ =
∫ t f

t0

{
ϕ(x, ẋ,t)+ λ T G(x, ẋ, t)

}
dt

and again obtain the Euler-Lagrange equation

(ϕ + λ T G)x − d
dt

(ϕ + λ T G)ẋ = 0.

In order to solve the linear-quadratic regulator problem, it is easiest to consider it as
a general Bolza problem of the form

minJ = [θ (x(t), t)]
t f
t0 +

∫ t f

t0
ϕ(x(t),u(t),t)dt

subject to the dynamic constraint

ẋ = f (x,u,t).

Thus, as above, we consider the augmented cost functional

Jλ = [θ (x(t),t)]
t f
t0 +

∫ t f

t0

{
ϕ(x(t),u(t), t)+ λ T [ f (x,u, t)− ẋ]

}
dt

Next, we introduce the Hamiltonian function

H(x,u,λ , t) = ϕ(x,u, t)+ λ T f (x,u, t).

Then Jλ becomes

Jλ = [θ (x(t),t)]
t f
t0 +

∫ t f

t0
{H(x,u,λ , t)−λ T ẋ}dt

=
[
θ (x(t),t)−λ T (t)x(t)

]t f

t0
+
∫ t f

t0
{H(x,u,λ , t)+ λ̇ T x}dt.

Proceeding as in the Lagrange problem, we take the directional derivative of Jλ at
an assumed minimum point (x,u) in the direction (y,v), giving
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δJλ (x,u;y,v) =
{

yT
(

∂θ
∂x

−λ
)}∣∣∣∣

t f

t0

+
∫ t f

t0

{
yT
(

∂H
∂x

+ λ̇
)

+ vT ∂H
∂u

}
dt.

By the arbitrariness of (y,v), we therefore obtain

ẋ = ∂H
∂λ = f (x,u,t)

λ̇ = − ∂H
∂x

⎫⎬
⎭ Hamilton’s equations

∂H
∂u

= 0 control equation

yT
(

∂θ
∂x

−λ
)

= 0 at t0 and t f (transversality).

We can now apply these equations to the special case of the linear, quadratic regu-
lator problem:

minJ =
1
2

xT (t f )Fx(t f )+
1
2

∫ t f

t0

(
xT (t)Q(t)x(t)+ uT (t)R(t)u(t)

)
dt

subject to the dynamic constraint

ẋ = Ax + Bu, x(t0) = x0.

The Hamiltonian for this problem is given by

H =
1
2

xT (t)Q(t)x(t)+
1
2

uT (t)R(t)u(t)+ λ T (t)A(t)x(t)+ λ T (t)B(t)u(t),

and so we obtain the necessary conditions

λ̇ = −∂H
∂x

= −Q(t)x(t)−AT (t)λ (t)

(6.2)

ẋ(t) = A(t)x(t)−B(t)R−1(t)BT (t)λ (t), x(t0) = x0

since the control is given by
∂H
∂u

= 0

i.e.
u = −R−1(t)BT (t)λ (t).
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The transversality condition gives the final value for λ :

λ (t f ) =
∂θ
∂x

(t f ) = Fx(t f ).

The equations (6.2) represent a two-point boundary value problem, which can be
solved by assuming that λ (t) is of the form

λ (t) = P(t)x(t).

Thus,

λ̇ (t) = Ṗ(t)x(t)+ P(t)ẋ(t)
= Ṗ(t)x(t)+ P(t)

(
A(t)x(t)−B(t)R−1(t)BT (t)λ (t)

)

and so

−Q(t)x(t)−AT (t)P(t)x(t) = Ṗ(t)x(t)+ P(t)(A(t)x(t)−B(t)R−1(t)BT (t)P(t)x(t))

i.e.

(Ṗ(t)+ P(t)A(t)+ AT(t)P(t)+ Q(t)−P(t)B(t)R−1(t)BT (t)P(t))x(t) = 0.

Since the solution is unique, it is clearly given by solving the differential Riccati
equation

Ṗ(t) = −(P(t)A(t)+ AT (t)P(t)+ Q(t)−P(t)B(t)R−1(t)BT (t)P(t)), P(t f ) = F.

Then we have the optimal control

u(t) = −R−1(t)BT (t)P(t)x(t),

and the controlled dynamics become

ẋ(t) = A(t)x(t)−B(t)R−1(t)BT (t)P(t)x(t).

If we now consider the tracking problem

min J =
1
2

(
xT (t f )− xT

d (t f )
)

F
(
x(t f )− xd(t f )

)

+
1
2

∫ t f

t0

((
xT (t)− xT

d (t)
)

Q(t)(x(t)− xd(t))+ uT (t)R(t)u(t)
)

dt,

where xd(t) is some desired trajectory (rather than the regulator problem), then we
can modify the above solution as follows. First note that the Hamiltonian in this case is

H(x,u,λ ,t) =
1
2

(
xT (t)− xT

d (t)
)

Q(t)(x(t)− xd(t))+

uT (t)R(t)u(t)+ λ T (A(t)x(t)+ B(t)u(t))
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and so we have
u(t) = −R−1BT (t)λ (t),

λ̇ = −Q(t)(x(t)− xd(t))−AT (t)λ (t)

and
ẋ(t) = A(t)x(t)−B(t)R−1(t)BT (t)λ (t), x(t0) = x0.

The transversality condition gives

λ (t f ) = F
(
x(t f )− xd(t f )

)

and so this time the clue is to take

λ (t) = P(t)x(t)+ s(t)

for some s(t) with s(t f ) = −Fxd(t f ). As before, we see that

λ̇(t) = Ṗ(t)x(t)+ P(t)ẋ(t)+ ṡ(t)

i.e.

−Q(t)(x(t)− xd(t))−AT (t)λ (t) = Ṗ(t)x(t)+ P(t)(A(t)x(t)−
B(t)R−1(t)BT (t)λ (t))+ ṡ(t)

or

−Q(t)(x(t)− xd(t))−AT (t)(P(t)x(t)+ s(t)) = Ṗ(t)x(t)+
P(t)

(
A(t)x(t)−B(t)R−1(t)BT (t)(P(t)x(t)+ s(t))

)
+ ṡ(t)

and taking P to satisfy the same Riccati equation as above, we obtain for s(t):

Q(t)xd(t)−AT (t)s(t) = −P(t)B(t)R−1(t)BT (t)s(t)+ ṡ(t)

i.e.

ṡ(t) =
(
P(t)B(t)R−1(t)BT (t)−AT (t)

)
s(t)+ Q(t)xd(t), s(t f ) = −Fxd(t f ).

This is a time-varying differential equation for s(t) with forcing term Q(t)xd(t) (the
feedforward term).

6.3 Nonlinear Control Problems

We now come to the case of nonlinear control problems with possibly non-quadratic
cost functionals. Consider a nonlinear system of the form
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ẋ(t) = A(x(t),u(t))x(t)+ B(x(t),u(t))u(t), x(t0) = x0. (6.3)

(We could also consider an output equation

y(t) = C(x(t),u(t))x(t)+ D(x(t),u(t))u(t)

in a similar way, but for simplicity, we shall just develop the case of full observation
– for the application to nonlinear observers, see [1].)

Together with the dynamical constraint (6.3), we consider the non-quadratic cost
functional

J =
1
2

xT (t f )Fx(t f )+
1
2

∫ t f

t0

(
xT (t)Q(x(t),u(t))x(t)+

uT (t)R(x(t),u(t))u(t)
)

dt (6.4)

where Q(·, ·) (R(·, ·)) is a positive semi-definite (definite) matrix-valued function.
We rewrite Equations (6.3) and (6.4) as a sequence of linear, quadratic (time-
varying) problems:

ẋ[i](t) = A(x[i−1](t),u[i−1](t))x[i](t)+ B(x[i−1](t),u[i−1](t))u[i](t), x[i](t0) = x0

(6.5)
and

J[i] =
1
2

x[i]T (t f )Fx[i](t f )+
1
2

∫ t f

t0

(
x[i]t(t)Q(x[i−1](t),u[i−1](t))x[i](t)+

u[i]T (t)R(x[i−1](t),u[i−1](t))u[i](t)
)

dt. (6.6)

To start the process we can choose a zero control and put

x[1](t) = x0,

so that we get the first approximation as a solution to

ẋ[1](t) = A(x[1],0)x[1](t)+ B(x[1],0)u[1](t), x[1](t0) = x0

and

J[1] =
1
2

x[1]T (t f )Fx[1](t f )+
1
2

∫ t f

t0

(
x[1]T (t)Q(x[1],0)x[1](t)+

u[1]T (t)R(x0,0)u[1](t)
)

dt.

However, it may be better numerically to take

x[1](t) = e−tx0

since we are trying to stabilise the system. The solution of the problem (6.5), (6.6)
is given by
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u[i](t) = −R−1(x[i−1](t),u[i−1](t))BT (x[i−1](t),u[i−1](t))P[i](t)x[i](t)

where P[i](t) satisfies the Riccati equation

Ṗ[i](t) = −AT (x[i−1](t),u[i−1](t))P[i](t)−P[i](t)A(x[i−1](t),u[i−1](t))−
Q(x[i−1](t),u[i−1](t))+

P[i](t)B(x[i−1](t),u[i−1](t))R−1(x[i−1](t),u[i−1](t))×
BT (x[i−1](t),u[i−1](t))P[i](t), P[i](t f ) = F.

If these Riccati equations have solutions on [0,t f ], then the convergence theory of
Chapter 2 shows that these equations converge to a solution

u∗(t) = −R−1(x∗(t),u∗(t))BT (x∗(t),u∗(t))P∗(t)x∗(t)

which will control the nonlinear system, giving the controlled dynamics

ẋ∗(t) = A(x∗(t),u∗(t))x∗(t)−
B(x∗(t),u∗(t))R−1(x∗(t),u∗(t))BT (x∗(t),u∗(t))P∗(t)x∗(t), x∗(t0) = x0.

Now consider the case of a tracking problem of the form

ẋ(t) = A(x(t),u(t))x(t)+ B(x(t),u(t))u(t), x(t0) = x0

together with the cost functional

J =
1
2

(
xT (t f )− xT

d (t f )
)

F
(
x(t f )− xd(t f )

)
+

1
2

∫ t f

t0

((
xT (t)− xT

d (t)
)

Q(x(t),u(t))(x(t)− xd(t))+

uT (t)R(x(t),u(t))u(t)
)

dt.

As before, we introduce the sequence of approximations

ẋ[i](t) = A(x[i−1](t),u[i−1](t))x[i](t)+ B(x[i−1](t),u[i−1](t))u[i](t), x[i](t0) = x0

and

J[i] =
1
2

(
x[i]T (t f )− xT

d (t f )
)

F
(

x[i](t f )− xd(t f )
)

+

1
2

∫ t f

t0

((
x[i]T (t)− xT

d (t)
)

Q(x[i−1](t),u[i−1](t))
(

x[i](t)− xd(t)
)

+

u[i]T (t)R(x[i−1](t),u[i−1](t))u[i](t)
)

dt

with the first approximation
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ẋ[0](t) = A(x0,0)x[0](t)+ B(x0,0)u[0](t), x[0](t0) = x0

and

J[0] =
1
2

(
x[0]T (t f )− xT

d (t f )
)

F
(

x[0](t f )− xd(t f )
)

+

1
2

∫ t f

t0

((
x[0]T (t)− xT

d (t)
)

Q(x0,0)
(

x[0](t)− xd(t)
)

+

u[0]T (t)R(x0,0)u[0](t)
)

dt.

The solution is

u[i](t) = −R−1(x[i−1](t),u[i−1](t))BT (x[i−1](t),u[i−1](t))
(

P[i](t)x[i](t)+ s[i](t)
)

where

Ṗ[i](t) = −AT (x[i−1](t),u[i−1](t))P[i](t)−P[i](t)A(x[i−1](t),u[i−1](t))−
Q(x[i−1](t),u[i−1](t))+

P[i](t)B(x[i−1](t),u[i−1](t))R−1(x[i−1](t),u[i−1](t))×
BT (x[i−1](t),u[i−1](t))P[i](t), P[i](t f ) = F.

and

ṡ[i](t) =
(

P[i](t)B(x[i−1](t),u[i−1](t)))R−1(x[i−1](t),u[i−1](t))BT (x[i−1](t),u[i−1](t))−

AT (x[i−1](t),u[i−1](t))s[i](t)+ Q(x[i−1](t),u[i−1](t))xd(t)
)

s[i](t f ) = −Fxd(t f ).

In the next section we shall illustrate the above theory with two examples which will
show the effectiveness of the method.

6.4 Examples

We now present two examples of very different types which show that the method
has very diverse applications. First we consider a spacecraft with a large flexible
structure such as a solar array (to provide sustainable energy during space flight).
When we require to maneuver the attitude of the flexible spacecraft, the dynamic
coupling between the solar panel vibration and the spacecraft attitude varies with
the angle of attitude maneuver. The attitude maneuver of the spacecraft will induce
vibration in the flexible solar array, which must be suppressed. Quick and precise
response to the attitude command, while at the same time maintaining certain lev-
els of suppression of the vibration modes is a major objective of the attitude control
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system. However, these are conflicting factors and a trade-off between them is nec-
essary. Here we give a brief outline of the results of applying our technique; for
more details, see [2].

The equations of motion of the system are given by

Ixϕ̈ +[(Iy − Iz− Ix)ω0 −hy]ψ̇ +[(Iz− Iy)ω0ϕ + hz]θ̇ + (Iz − Iy)ψ̇θ̇

+[(Iy − Iz)ω2
0 −hyω0]ϕ −hzω0 + ḣx +

n

∑
i=1

Fsxiη̈pi = Me
x

Iyθ̈ +[(Ix − Iz)ϕ̇ +(Iz − Ix)ω0ψ + hx]ψ̇
+[(Ix − Iz)ω0ϕ̇ +(Iz − Ix)ω2

0 ψ + hxω0]ϕ

−hzϕ̇ + hzω0ψ + 3ω2
0(Ix − Iz)θ + ḣy +

n

∑
i=1

Fsyiη̈pi = Me
y

Izψ̈ +[(Ix + Iz− Iy)ω0 + hy]ϕ̇ +[(Ix − Iy)ω0ψ −hx]θ̇ + (Iy − Ix)ϕ̇θ̇

+[(Iy − Ix)ω2
0 −hyω0]ψ + hxω0 + ḣz +

n

∑
i=1

Fsziη̈pi = Me
z

and

η̈pi + 2ξpiωpiη̇pi + ω2
piηpi + FT

sxi(ϕ̈ −ω0ψ̇)+ FT
syiθ̈

+FT
szi(ψ̈ + ω0ϕ̇) = 0, (i = 1, · · · ,m),

where the I’s are principal moments of inertia, ϕ ,θ ,ψ are the roll, pitch and yaw,
Me

x ,M
e
y ,M

e
z are the external active and environment control torques and the F’s are

the coupling matrices between the attitude and vibration modes. (For the other vari-
ables, see [2].) If uc = [u1,u2,u3] is the inner control torque generated by the control
motors, then these equations can be written in the form

ẋ = A(x)x + Buc + Bue

ẋw = Aw(x)xw + Bwuc,

where

x = [ϕ , ϕ̇ ,θ , θ̇ ,ψ , ψ̇ ,ηpi, η̇pi]T

xw = [hx,hy,hz]T

uc = [u1,u2,u3]T

ue = [Me
x ,M

e
y ,M

e
z ]

T

and A,Aw,B,Bw are appropriate matrices. Typical responses for the body mo-
tion and the vibrational modes (using the iteration control theory) are shown in
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Fig. 6.1 Responses for attitude angle and angle rate

Figures 6.1, 6.2 and 6.3. The second example is the positioning of a large oil tanker
(Figure 6.4) with the model given by the equations (for more details see [3]):

surge, sway and yaw dynamics

u̇ =
1

L(1−X ′′̇
u −X ′′

u̇ζ ζ )
{

X ′′
uuu2 + L(1 + X ′′

vr)vr + X ′′
vvv2

+X ′′
c|c|δδ |c|cδ 2 + X ′′

c|c|β δ |c|cβ δ + LgT ′′(1− td)

+X ′′
uuζ u2ζ + LX ′′

vrζ vrζ + X ′′
vvζζ v2ζ 2

}

v̇ =
1

L(1−Y ′′
v̇ −Y ′′

v̇ζ ζ )

{
Y ′′

uvuv + L(1 +Y ′′
v|v|)v|v|+Y ′′

c|c|δ c|c|δ

+L(Y ′′
ur −1)ur +Y ′′

c|c|β |β ||δ ||c|cβ |β ||δ |+ LY ′′
T gT ′′

+LY ′′
urζ urζ +Y ′′

uvζ uvζ +Y ′′
v|v|ζ |v|vζ

+Y ′′
c|c|β |β ||δ |ζ c|c|β |β ||δ |ζ

}
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Fig. 6.2 Coordinate and rate responses of 1st – 3rd vibration modes

ṙ =
1

L2(k′′zz
2 −N′′

ṙ −N′′
ṙζ ζ )

{
N′′

uvuv + LN′′
|v|r|v|r

+N′′
c|c|δ c|c|δ + L(N′′

ur − x′′G)ur + N′′
c|c|β |β ||δ |c|c|β |β ||δ |

+LN′′
T gT ′′ + LN′′

urζ urζ + N′′
uvζ uvζ + LN′′|v|rζ |v|rζ

+N′′
c|c|β |β ||δ |ζ c|c|β |β ||δ |ζ

}
.

kinematic equations

ẋp = ucosψ − vsinψ ,

ẏp = usinψ + vcosψ ,

ψ̇ = r
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Fig. 6.3 Coordinate and rate responses of 4th –6th vibration modes
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Fig. 6.4 Ship configuration and coordinates

rudder model
δ̇ = δc − δ ,

propeller model

ṅ =
1

Tm
(nc −n).
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Here the state vector is
x = (u,v,r,ψ ,xp,yp,δ ,n)T

and the control is
u = (δc,nc)T .

As before we can put the equations in the form

ẋ(t) = A(x)x + B(x)u

and using a quadratic cost functional, a typical response of the controlled system is
shown in Figure 6.5. These examples demonstrate that the method is very effective
even for highly nonlinear and highly coupled systems. In the next section we study
the optimality of the method.
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Fig. 6.5 Typical ship response for a heading of 90 degrees

6.5 The Hamilton-Jacobi-Bellman Equation, Viscosity
Solutions and Optimality

In this section we study the HJB equation derived from Bellman’s dynamic pro-
gramming principle and its relation to optimal control. Consider the general nonlin-
ear control problem

ẋ(s) = f (x(s),u(s)), x(s) = x, (6.7)

where we allow any bounded measurable control (the admissible controls). The cost
functional will be taken to be
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Jx,t(u(·)) = g(x(t f )+
∫ t f

t
h(x(s),u(s))ds, (6.8)

where g and h are Lipschitz and bounded. We define the value function

v(x, t) = inf
u

Jx,t [u(·)]

(where the inf is over all bounded measurable controls).
The next result determines a variational equation satisfied by the value function.

Theorem 6.1. If δ satisfies t + δ ≤ t f , then the value function v(x, t) satisfies the
equation

v(x,t) = inf
u

{∫ t+δ

t
h(x(s),u(s))ds+ v(x(t + δ ), t + δ )

}
,

where x(·) is the solution of (6.7) with initial condition x at time t and with the con-
trol u(t).

Proof. First choose any admissible control ũ and let x̃ be the solution of

˙̃x(s) = f (x̃(s), ũ(s)), t ≤ s ≤ t + δ
x̃(t) = x.

Since v is the infimum of J, we can find a control u′ such that

u′(x̃(t + δ ),t + δ )+ ε ≥
∫ t f

t+δ
h(x′(s),u′(s))ds+ g(x′(t f ))

where x′ satisfies

ẋ′(s) = f (x′(s),u′(s)), t + δ ≤ s ≤ t + t f

x′(t + δ ) = x̃(t + δ ).

Splicing the controls ũ and u′, i.e. setting

u′′(s) =
{

ũ(s), t ≤ s ≤ t + δ
u′(s) t + δ ≤ s ≤ t f

and substituting it into (6.7) gives the solution x′′(s), which is given by

x′′(s) =
{

x̃(s), t ≤ s ≤ t + δ
x′(s) t + δ ≤ s ≤ t f

and since ũ is arbitrary, we must have
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v(x,t) ≤ inf
u

{∫ t+δ

t
h(x(s),u(s))ds+ v(x(t + δ ),t + δ )

}
+ ε.

A similar argument gives the inverse inequality

v(x,t)+ ε ≥ inf
u

{∫ t+δ

t
h(x(s),u(s))ds+ v(x(t + δ ), t + δ )

}

and the result follows. �

From the above Lipschitz and boundedness assumptions, we see that v(x,t) is also
Lipschitz and bounded. We now consider the HJB equation of the form

{
vt + H(vx,x) = 0, (x, t) ∈ R

n × (0,t f )
v(x,t f ) = g(x) (6.9)

where vx = ∂v/∂x. If H is smooth we can define classical solutions in the usual
way. However, if H is not smooth, which is often the case in control problems, we
need to find more general solutions. Distributional solutions do not work here, but
we can find another type of solution called a viscosity solution (for more details see
[4], [5]). A bounded, uniformly continuous function v(x, t) is a viscosity solution
of (6.9) if it satisfies the terminal condition v(x, t f ) = g(x) and the following two
properties:

(a) for each ṽ ∈C∞(Rn × (0,t f )), if v− ṽ has a local maximum at (x0,t0), then

ṽt(x0,t0)+ H(ṽx(x0, t0),x0) ≥ 0

(b) for each ṽ ∈C∞(Rn × (0,t f )), if v− ṽ has a local minimum at (x0, t0), then

ṽt(x0,t0)+ H(ṽx(x0, t0),x0) ≤ 0.

The main result is then:

Theorem 6.2. The value function v for the problem (6.7),(6.8) is the unique viscosity
solution of the HJB equation

vt + min
u

{ f (x,u)vx + h(x,u)} = 0, v(x,t f ) = g(x).

(The proof of this theorem can be found in [5].) To find the optimal trajectory from
an initial state x0, we solve the optimal dynamical equation

ẋ∗(t) = f (x∗(t),u∗(t)), t0 ≤ t ≤ t f

x∗(t0) = x0,

where u∗ is chosen so that
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f (x∗(t),u∗(t)) · vx(x∗(t),t) + h(x∗(t),u∗(t))
= H(vx(x∗(t),t),x∗(t)),

i.e. so that H is minimised. This will give the optimal trajectory if v and u∗ are
smooth. (Here, of course, the Hamiltonian is given by

H(vx,x) = min
u
{ f (x,u) · vx + h(x,u)}.)

If we write the system in the form

ẋ = A(x,u)x + B(x,u)u

together with the cost functional

J =
1
2

xT (t f )Fx(t f )+
1
2

∫ t f

t0

(
xT Q(x,u)x + uT R(x,u)u

)
dt,

and take a sequence of approximations, then at each step we are taking the minimum
of the Hamiltonian, which must satisfy a Riccati equation. If these systems converge,
and the Riccati equations all have solutions on the horizon interval, then the limiting
system must also minimise the Hamiltonian along the trajectory and so if the dual
variable λ (the value function above) and u are smooth then we will have optimality.

6.6 Characteristics of the Hamilton-Jacobi Equation

In the case when the Hamiltonian is smooth, we can find the solutions to the optimal
control problem by the method of characteristics and when these are unique we have
a global optimal control. Thus we consider a nonlinear first order partial differential
equation

G(Du,u,x) = 0

where x ∈U and U is an open set in R
n, Du is the gradient of u:

Du =
(

∂u
∂x1

, · · · , ∂u
∂xn

)

and
G : R

n ×R×U → R

is sufficiently smooth. The boundary condition is given by

u = h on Γ ⊆ ∂U,

where h is given on Γ .
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To find the characteristics, suppose they are parameterised curves given by x(s).
Let

z(s) = u(x(s))

and set
p(s) = Du(x(s)).

Then
d pi

ds
(s) =

n

∑
j=1

uxix j (x(s))
dx j

ds
(s).

From the differential equation, we have

n

∑
j=1

∂G
∂ p j (p(s),z(s),x(s))uxj xi +

∂G
∂ z

(p(s),z(s),x(s))pi(s)+
∂G
∂xi

(p(s),z(s),x(s)) = 0.

If we assume that x j satisfies

dx j

ds
=

∂G
∂ p j (p(s),z(s),x(s)),

then we have

d pi

ds
= −∂G

∂xi
(p(s),z(s),x(s))− ∂G

∂ z
(p(s),z(s),x(s))pi(s), 1 ≤ i ≤ n

and also

dz
ds

=
n

∑
j=1

∂u
∂x j

(x(s))
∂x j

ds
=

n

∑
j=1

p j(s)
∂G
∂ p j (p(s),z(s),x(s)).

Hence the characteristic curves are given by the first order ordinary differential
equation

ṗ(s) = −DxG(p(s),z(s),x(s))−DzG(p(s),z(s),x(s))p(s)
ż(s) = DpG(p(s),z(s),x(s))p(s)
ẋ(s) = DpG(p(s),z(s),x(s))

i.e.
ẏ(s) = F(y(s))

where
y(s) = (p(s),z(s),x(s))

and

F(y(s)) =

⎛
⎝−DxG(p(s),z(s),x(s))−DzG(p(s),z(s),x(s))p(s)

DpG(p(s),z(s),x(s))p(s)
DpG(p(s),z(s),x(s))

⎞
⎠ .
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To obtain the initial conditions for this equation note that, since u = h on Γ , we have

uxi(x
0) = hxi(x

0)

for any point x0 ∈ Γ and so

pi(0) = hxi(x
0)

z(0) = h(x0)
x(0) = x0.

Since these must satisfy the original partial differential equation we must have the
compatibility condition

G(p(0),z(0),x(0)) = 0

and in order for this to be satisfied near x0, the implicit function theorem says that
this is possible if

Gp(p(0),z(0),x(0)) ·ν(x(0)) �= 0

where ν(x(0)) is the outward unit normal to Γ at x(0). In this case we say that the
point (p(0),z(0),x(0)) is non-characteristic. In order to solve the ordinary differen-
tial equation, we assume that f may be written in the form

F(y) = F(y)y

where F(y) is a matrix-valued function of y. (We have seen that this is not a strong
condition.) Hence we have the equation

ẏ = F(y)y, y(0) = y0 = (p(0),z(0),x(0)).

Introducing, as before, the system of linear, time-varying approximations

ẏ[i](t) = F(y[i−1](t))y[i](t), y[i](t)(0) = y0

we know from Chapter 2 that the states y[i](t) defined by this system converge uni-
formly on compact sets if F is locally Lipschitz.

Example 6.1. Consider the linear partial differential equation given by

G(Du,u,x) = a(x) ·Du(x)+ b(x)u(x)

where a is a vector-valued function. Then

DpG = a(x)

and so
ẋ(s) = a(x(s)) · p(s) = −b(x(s))z(s)
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from the equation, and we do not require the ‘p’ equation. Suppose that a can be
written in the form

a(x) =
(

0 C(x)
−C(x) 0

)
x

where C(x) and C(y) commute for any x,y. Then the sequence of approximations
becomes

ẋ[i](s) =
(

0 C(x[i−1](s))
−C(x[i−1](s))) 0

)
x[i](s).

Since the C’s commute, we have

x[i](s) = exp

(
0

∫ s
0 C(x[i−1](τ))dτ

−∫ s
0 C(x[i−1](τ))dτ 0

)
x0

=

⎛
⎝ cos

(∫ s
0 C(x[i−1](τ))dτ

)
sin
(∫ s

0 C(x[i−1](τ))dτ
)

−sin
(∫ s

0 C(x[i−1](τ))dτ
)

cos
(∫ s

0 C(x[i−1](τ))dτ
)
⎞
⎠x0.

Now consider the Hamilton-Jacobi equation in the form

ut + H(Du,x) = 0 in R
n × [0,∞)

with initial condition
u = g on R

n ×{t = 0}.
The characteristics are given by the nonlinear equations

ẋ(s) = DpH(p(s),x(s))
ṗ(s) = −DxH(p(s),x(s))
ż(s) = Dp(p(s),x(s))p(s)−H(p(s),x(s)).

The first two are, of course, Hamilton’s equations. If we can write
(

DpH(p,x)
−DxH(p,x)

)
= A(p,x)

(
x
p

)

then we can introduce the approximating sequence

(
ẋ[i](s)
ṗ[i](s)

)
= A(p[i−1](s),x[i−1](s))

(
x[i](s)
p[i](s)

)

for the first pair of equations.

6.7 Conclusions

In this chapter we have shown that the iteration technique can be applied effec-
tively to solve nonlinear, non-quadratic optimal control problems. By replacing the
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problem by a sequence of linear, time-varying dynamical constraints together with
a quadratic cost, we can solve the nonlinear problem as the limit of this sequence of
linear, quadratic ones. This means that we can solve the nonlinear problem by clas-
sical means and we obtain an easily computable solution, which in many cases is
optimal. We have given two examples, but the method can be applied to many more
situations, e.g. for the control of chaos and in laser communications [6], nonlinear,
high-speed aircraft design [7], and many other types of problems.
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Chapter 7
Sliding Mode Control for Nonlinear Systems

7.1 Introduction

In this chapter a method of sliding mode control for nonlinear systems will be pre-
sented. Sliding mode techniques are a different approach to solve control problems
and are an area of increasing interest. It is well-known that in most of the cases, in
the formulation of any control problem, there will appear some differences between
the actual plant and the mathematical model developed for the control design. These
discrepancies may be due to any number of factors such as unmodelled dynamics,
variation in system parameters or the approximation of complex plant behaviour by
a simpler model. It is the engineer’s responsibility to guarantee some level of per-
formance in spite of the existence of plant/model mismatches. This has led to the
development of the so-called robust methods.

One way to approach robust control design is the sliding mode control method-
ology which can be considered to be a particular type of variable structure control
system (VSCS). VSCSs are characterised by a suite of feedback control laws and
a decision rule (called the switching function); it has as its input some measure of
the current system behaviour and produces as an output the particular feedback con-
troller which should be used at that instant of time. A VSCS can be regarded as a
combination of subsystems where each subsystem has a fixed control structure and
is valid for specified regions of system behaviour. The advantage is its ability to
combine useful properties of each of the composite structures of the system. Fur-
thermore, the system may be designed to possess new properties not present in any
of the composite structures alone. The use of these ideas began in the Soviet Union
in the late 1950s and continues up to the present day, see i.e. [1], [2] or [3] for more
recent examples of work in this field.

In sliding mode control, the controller is designed to drive and then constrain the
system state to lie within a neighbourhood of the switching surface. It presents some
advantages:

• The dynamic behaviour of the system may be tailored by the choice of switching
functions.

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 123–139.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• The closed-loop response becomes totally insensitive to a particular class of un-
certainty.

• Ability to specify performance directly makes sliding mode control attractive
from the design perspective.

The chapter reviews briefly, in Section 7.2, the basics of sliding mode control for
linear time-invariant (LTI) systems. In Section 7.3 this approach is extended to linear
time-varying (LTV) systems by defining a sliding surface that is a function of time.
A numerical example is given in this section in order to illustrate the theory. In
Section 7.4 the method is generalised to nonlinear systems by using the iteration
technique being studied in this book. An example of the sliding mode control for
a robotic arm is provided at the end of this section. Finally, Section 7.5 contains
conclusions of this chapter.

7.2 Sliding Mode Control for Linear Time-invariant Systems

In this section the basic approach of sliding mode control for a LTI system will be
summarised. The concepts are presented for systems with a single control input,
which allows to develop intuition about the basic aspects of nonlinear controller
design.

Consider a single-input dynamical system of the form:

xn = f (x)+ b(x)u, (7.1)

where the scalar x is the output of interest (i.e., the position of a mechanical system),
the scalar u is the control input (i.e., a motor torque), and X = [x, ẋ, . . . ,x(n−1)]T is
the state vector. In (7.1), the function f (x) which in general will be nonlinear is not
exactly known, but the degree of imprecision on f (x) is upper bounded by a known
continuous function of x, similarly, the control gain b(x) is not exactly known, but
is of known sign and is bounded by known, continuous functions of X [9].

The approach is to define a new so-called sliding variable σ(t) as an (n−1)th or-
der stable linear system (reduced model) so that the closed-loop system is controlled
and ultimately follows a trajectory such that σ(t) = 0 [13]. The relation σ(t) = 0
defines a surface in state-space and the form of σ is carefully chosen to ensure that
the goal of tracking is achieved when the state trajectory remains on this sliding
surface.

The state trajectories do not always lie on the sliding surface so an additional
design need therefore is to ensure that the state vectors move to the sliding surface.
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7.3 Sliding Mode Control for Linear Time-varying Systems

In this section the problem of designing a sliding mode controller for a generic LTV
system will be presented. In this case, the sliding surface will be defined such that it
is a function of time and satisfies the following conditions:

• σ(t) = c1(t)x1(t)+ c2(t)x2(t)+ c3(t)x3(t)+ . . .+ cn(t)xn(t) = 0
• σ̇(t) = −sign(σ(t))

which are required for a successful design of the sliding control of the plant.
Given a generic LTV system of the form:

ẋ(t) = A(t)x(t)+ B(t)u(t), x(0) = x0

y(t) = C(t)x(t)+ D(t)u(t) (7.2)

where A(t) ∈ R
mxn is differentiable which is of course a stronger requirement than

the usual Lipschitz continuity, B(t) ∈ R
mx p are of adequate dimensions and C(t) =

Inxm and D(t) = 0 for simplicity. The control design strategy here will consist of two
steps: first, the stabilisation of the LTV system such that the dynamics of the system
on the sliding surface are stable, and secondly the design of the controller such that
u(t) forces the dynamics of (7.2) onto the sliding surface σ(t). Equation 7.2 can be
written on the form:

ẋ(t) = A(t)x(t)+ Bu(t) =
(

A11(t) A12(t)
A21(t) A22(t)

)
x(t)+

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠u(t). (7.3)

Now under a change of variables,

x(t) =
(

ξ (t)
ν(t)

)
=
(

x1(t) . . . ,xn−1(t) ,xn(t)
)T

where ξ (t) = (x1(t), . . . ,xn−1(t)) and ν(t) = xn(t), then this is

ξ̇ (t) = A11(t)ξ (t)+ A12(t)ν(t)
ν̇(t) = A21(t)ξ (t)+ A22(t)ν(t)+ u(t).

(7.4)

Then, the control strategy begins by defining σ(t) = 0 so

−c1(t)x1(t)− c2(t)x2(t)− c3(t)x3(t)− . . .− cn−1(t)xn−1(t) = xn(t) = ν(t)

with cn(t) = 1, i.e., on the sliding surface. Thus the reduced order model becomes:

ξ̇ (t) = A11(t)ξ (t)+A12(t) [−c1(t)x1(t)− c2(t)x2(t)− . . .− cn−1(t)xn−1(t)] . (7.5)

This gives
ξ̇ (t) =

[
A11(t)−A12(t)Ĉ(t)

]
ξ (t) = R̂(t)ξ (t) (7.6)
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where Ĉ(t) = [c1(t), . . . ,cn−1(t)] is a time-varying vector containing the parameters
that will stabilise the states ξ (t). This will be done by applying the same ideas as in
Chapter 5; by dividing the time interval [0,t f ] in N subintervals of length h and using
Ackerman’s formula to fix the poles of the reduced order model at some prescribed
left hand-side locations (λ1, . . . ,λn−1):∣∣λ · I− R̂(t)

∣∣= (λ −λ1) · · · (λ −λn−1) (7.7)

then the vector Ĉ(t) will be obtained in terms of the time-varying coefficients of
the reduced order system’s matrix A11(t), A12(t) and Ĉ(t) so that the reduced order
system will have left-hand side poles. The application of pole placement method
within sliding mode context has been used before by some authors as Zak and Hui
[10] where they designed the output feedback sliding mode control based on eigen-
vector methods or Woodham and Zinober who proposed to position the closed-loop
system eigenvalues in a specified sector in the left-hand half plane, involving the so-
lution of a complex continuous Riccati equation [11]. In fact, an explicit form using
Ackermans formula for the sliding surface is derived in [12].

It has been shown in Chapter 5 that due to the time dependency of (7.6), expo-
nential stability will be guaranteed if the conditions of Theorem 5.2 are satisfied.
Once these conditions are satisfied and the reduced order model has been stabilised
by using pole placement techniques, the second sliding mode control condition is
taken into account. For this, σ is chosen to satisfy the discontinuous differential
equation:

σ̇(t) = −sign(σ(t)).

To do this, note that σ̇(t) = ˙̂C(t)ξ (t)+ Ĉ(t)ξ̇ (t)+ ν̇(t) and substituting (7.4) into
this equation gives:

σ̇(t) = ˙̂C(t)ξ (t)+ Ĉ(t) [A11(t)ξ (t)+ A12(t)ν(t)]+ A21(t)ξ (t)+ A22(t)ν(t)+ u(t)
∆= −sign(σ(t)).

Therefore the following sliding control u(t) is obtained:

u(t) = − ˙̂C(t)ξ (t)− Ĉ(t) [A11(t)ξ (t)+ A12(t)ν(t)]
−A21(t)ξ (t)−A22(t)ν(t)− sign(σ(t))

(7.8)

and (7.4) is now:

ξ̇ (t) = A11(t)ξ (t)+ A12(t)ν(t)
ν̇(t) = − ˙̂C(t)ξ (t)− Ĉ(t) [A11(t)ξ (t)+ A12(t)ν(t)]− sign(σ(t)).

(7.9)

Then, the states ξ (t) = (x1(t), . . . ,xn−1(t)) and ν(t) = xn(t) of the closed-loop
system:
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(
ξ̇ (t)
ν̇(t)

)
=
(

A11(t) A12(t)
− ˙̂C(t)− Ĉ(t)A11(t) −Ĉ(t)A12(t)

)
·
(

ξ (t)
ν(t)

)
−
(

0
1

)
sign(σ(t))

(7.10)
will be exponentially stable.

The main results of this section could be summarised as follows:

Lemma 7.1. Given a LTV system of the form (7.3), for a time-varying sliding sur-
face σ = Ĉ(t)ξ (t)+ν(t) such that σ = 0 and σ̇(t) =−sign(σ), it is possible to find
a sliding control u(t) so the closed-loop system (7.10) is exponentially stable if:

• The eigenvectors Pi(t) of the matrix R̂(t) of the reduced model (7.26) are differ-
entiable and,

• ||P−1(t) · Ṗ(t)|| < β , P(t) matrix of eigenvectors Pi(t)

where β < Re(λg) and λg is the greatest of the eigenvalues of R̂(t).

In the following example, this theory will be applied to a LTV system in order to
illustrate the above stated.

Example 7.1. Consider the following LTV system:

ẋ(t) =

⎛
⎝ t 0 1

3 t 2
1 0 1

⎞
⎠x(t)+

⎛
⎝0

0
1

⎞
⎠u(t) (7.11)

for initial conditions x(0) = [0.2,0.3,0.4]T . In this case we assume the matrix B to
be constant.

For the first part of the controller design, a pole-placement algorithm as in section
5.3, will be applied in order to stabilise the reduced system on the sliding surface
σ(t) = c1(t)x1(t)+c2(t)x2(t)+c3(t)x3(t) where in this case we have chosen c3 = 1
for convenience. Thus, under the condition σ = 0:

x3(t) = −c1(t)x1(t)− c2(t)x2(t). (7.12)

Then, the original plant (7.11) can be reduced to:

ẋ1 = tx1 + x3

ẋ2 = 3x1 + tx2 + 2x3
(7.13)

and substituting (7.12) above gives:

ẋ1 = tx1 − c1x1 − c2x2

ẋ2 = 3x1 + tx2 + 2[−c1x1 − c2x2].
(7.14)

This reduced representation will be stabilised by pole placement methods for time-
varying systems, the choice of closed-loop poles is λ = (−1,−2). Therefore:
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∣∣∣∣
(

λ 0
0 λ

)
−
(

t − c1 −c2

3−2c1 t −2c2

)∣∣∣∣= (λ −λ1) · (λ −λ2). (7.15)

Thus,

λ 2 +λ [c1 − t − t +2c2]+ t2 − c1t −2tc2 +3c2 = λ 2 +λ [−λ1 −λ2]+λ1λ2 (7.16)

and equation coefficients this gives the values of the parameters of the sliding sur-
face:

c1 = −p1 − p2 + 2t −2c2

c2 = 1
3 [p1 p2 − t2 − t p1 − t p2 + 2t2].

(7.17)

Now, if σ(t) = c1(t)x1(t)+ c2(t)x2(t)+ c3(t)x3(t), then:

σ̇(t) = ċ1(t)x1(t)+ c1(t)ẋ1(t)+ ċ2(t)x2(t)+ c2(t)ẋ2(t)+ ċ3(t)x3(t)+ c3(t)ẋ3(t).

Substituting the original plant’s dynamics:

σ̇(t) = c1(tx1 + x3)+ ċ1x1 + c2(3x1 + tx2 + 2x3)+ ċ2x2 + x1 + x3 + u(t).

Therefore the control will be designed as the composition of two parts: The first one
will be the equivalent control ueq which is continuous and it is based on the obtained
parameters Ĉ(t):

u(t) = − [c1(tx1 + x3)+ ċ1x1 + c2(3x1 + tx2 + 2x3)+ ċ2x2 + x1 + x3] (7.18)

and a second part, consisting of the signum function, it is the discontinuous part of
the control law, that requires infinite switching on the part of the control signal and
actuator at the intersection of the error state trajectory and sliding surface. In this
way the trajectory is forced to move always towards the sliding surface:

sign(s) =

⎡
⎣−1 i f s < 0

0 i f s = 0
1 i f s > 1

. (7.19)

So the final control applied will be

u(t) = −sign(σ)− [c1(tx1 + x3)+ ċ1x1 + c2(3x1 + tx2 + 2x3)+ ċ2x2 + x1 + x3] .
(7.20)

Then, the dynamics of the closed-loop form of the original plant (7.11) once the
sliding mode control is applied will have a stable behaviour as shown in figure 7.1.
It can be seen how the sliding control shows the expected chattering around the
sliding surface.

This simulation was carried out for a final time t f = 30s using a step size of
h = 0.01. It can be seen how the states are successfully stabilised and converge to
zero.
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Fig. 7.1 Controlled states and equivalent control law u(t)

7.4 Generalisation to Nonlinear Systems

In this section, the sliding control method presented in the previous section will
be generalised to the nonlinear case, provided the original nonlinear system can be
approximated by a sequence of LTV systems.

Consider now a general n-dimensional nonlinear control problem of the form:

ẋ = A(x)x(t)+ B(x)u(t), x(0) = x0

y(x) = C(x)x(t)+ D(x)u(t) (7.21)

where A(x) ∈ R
nxm, B(x) ∈ R

nxp are of appropriate dimensions and satisfy Lips-
chitz continuity requirement, B(x) is a constant matrix (for simplicity, but could be
generalized to the no constant case), C(x) = I and D = 0.

Applying the iteration technique, the following sequence of LTV systems is ob-
tained:

ẋ[1] = A(x0)x[1](t)+ Bu[1](t), x[1](0) = x0 (7.22)

...
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ẋ[i] = A(x[i−1])x[i](t)+ Bu[i](t), x[i](0) = x0. (7.23)

For each of these LTV equations a sliding mode surface can be designed such
that σ [i](t) = 0 and σ̇ [i](t) = −sign(σ [i])(t) where

σ [i](t) = Ĉ[i](t)ξ [i](t)+ ν [i](t) (7.24)

where ξ [i](t) = (x[i]
1 (t), . . . ,x[i]

n−1(t)) and ν [i](t) = x[i]
n (t), then under this change of

variables, equations (7.22) – (7.23) become:

ξ̇ [1](t) = A11(ξ0)ξ [1](t)+ A12(ν0)ν [1](t)
ν̇ [1](t) = A21(ξ0)ξ [1](t)+ A22(ν0)ν(t)[1] + u[1](t),

(
ξ [1](0)
ν [1](0)

)
=
(

ξ0

ν0

)
(7.25)

...

ξ̇ [i](t) = A11(ξ [i−1](t))ξ [i](t)+ A12(ν [i−1](t))ν [i](t)
ν̇ [i](t) = A21(ξ [i−1](t))ξ [i](t)+ A22(ν [i−1](t))ν(t)[i] + u[i](t),

(
ξ [i](0)
ν [i](0)

)
=
(

ξ0

ν0

)
.

Now, the control strategy begins by defining σ [i](t) = 0 such that

−c[1]
1 (t)x[1]

1 (t)− c[1]
2 (t)x[1]

2 (t)− . . .− c[1]
n−1(t)x

[1]
n−1(t) = x[1]

n (t) = ν [1](t)
...

−c[i]
1 (t)x[i]

1 (t)− c[i]
2 (t)x[i]

2 (t)− . . .− c[i]
n−1(t)x

[i]
n−1(t) = x[i]

n (t) = ν [i](t)

with c[i]
n (t) = . . . = c[1]

n (t) = 1, so a sequence of reduced order models can be found
by substituting the above expressions into the iterated systems (7.25):

ξ̇ [i](t) =
[
A11(ξ [i−1](t))−A12(ξ [i−1](t))Ĉ[i](t)

]
ξ (t) = R̂(ξ [i−1](t))ξ [i](t)

...

ξ̇ [1](t) =
[
A11(x0)−A12(x0)Ĉ[1](t)

]
ξ [1](t) = R̂(x0)ξ [1](t).

(7.26)

Then a pole placement method like in Section 7.3 can be carried out for an ap-
propiate choice of left-hand side poles (λ1, · · · ,λn−1), in order to obtain a vector of
stabilising parameters Ĉ[i](t) for each of the reduced models.

Remark 7.1. In here it is assumed that λ1, · · · ,λn−1 to be constant and the same for
each iteration being straightforward to generalise this and choose a different set of
left-hand side eigenvalues at each iteration.
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Remark 7.2. Ĉ[1](t) is written as a time-varying vector because it depends on
A11(x0), A12(x0) which are constant for the first iteration but also depends on the
choice of eigenvalues that could be time-dependent.

Now, conditions from Lemma 7.1 (or from Theorem 5.2) are assumed to be satisfied
for each iterated reduced model in (7.26) in order to guarantee exponential stability
of each of them. The second sliding mode condition shall be studied now for each
iteration:

σ̇ [i](t) = −sign(σ [i](t)), . . . , σ̇ [1](t) = −sign(σ [1](t)).

So
σ̇ [1](t) = ˙̂C[1](t)ξ [1](t)+ Ĉ[1](t)ξ̇ [1](t)+ ν̇ [1](t)

...

σ̇ [i](t) = ˙̂C[i](t)ξ [i](t)+ Ĉ[i](t)ξ̇ [i](t)+ ν̇ [i](t)

and substituting (7.26) on the above expressions:

σ̇ [1](t) = ˙̂C[1](t)ξ [1](t)+ Ĉ[1](t)
[
A11(ξ0)ξ [1](t)+ A12(ν0)ν [1](t)

]
+A21(ξ0)ξ [1](t)+ A22(ν0)ν [1](t)+ u[1](t) .= −sign(σ [1](t))

...

σ̇ [i](t) = ˙̂C[i](t)ξ [i](t)+ Ĉ[i](t)
[
A11(ξ [i−1](t))ξ [i](t)+ A12(ν [i](t))ν [i](t)

]
+A21(ξ [i−1](t))ξ [i](t)+ A22(ν [i−1](t))ν [i](t)+ u[i](t) .= −sign(σ [i](t)).

Therefore a sequence of sliding controls u[i](t) is obtained:

u[1](t) = − ˙̂C[1](t)ξ [1](t)− Ĉ[1](t)
[
A11(ξ0)ξ [1](t)+ A12(ν0)ν [1](t)

]
−A21(ξ0)ξ [1](t)−A22(ν0)ν [1](t)− sign(σ [1](t))

...

u[i](t) = − ˙̂C[i](t)ξ [i](t)− Ĉ[i](t)
[
A11(ξ [i](t))ξ [i](t)+ A12(ν [i](t))ν [i](t)

]
−A21(ξ [i](t))ξ [i](t)−A22(ν [i](t))ν [i](t)− sign(σ [i](t))

(7.27)

and the sequence of systems (7.25) is now:
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ξ̇ [1](t) = A11(ξ0)ξ [1](t)+ A12(ν0)ν [1](t)
ν̇ [1](t) = − ˙̂C[i](t)ξ [1](t)− Ĉ[1](t)

[
A11(ξ0)ξ [1](t)+ A12(ν0)ν [1](t)

]
−sign(σ [1](t))

...
ξ̇ [i](t) = A11(ξ [i−1](t))ξ [i](t)+ A12(ν [i−1](t))ν [i](t)

ν̇ [i](t) = − ˙̂C[i](t)ξ [i](t)− Ĉ[i](t)
[
A11(ξ [i−1](t))ξ [i](t)+ A12(ν [i−1](t))ν [i](t)

]
−sign(σ [i](t)).

(7.28)
Thus, the sequence of states ξ [i](t) = (x[i]

1 (t), . . . ,x[i]
n−1(t)) and ν [i](t) = x[i]

n (t) of the
closed-loop systems:

(
ξ̇ [1](t)
ν̇ [1](t)

)
=
(

A11(ξ0) A12(ν0)
− ˙̂C[1](t)− Ĉ[1](t)A11(ξ0) −Ĉ[1](t)A12(ν0)

)
·
(

ξ [1](t)
ν [1](t)

)

−
(

0
1

)
sign(σ [1](t))

...(
ξ̇ [i](t)
ν̇ [i](t)

)
=

(
A11(ξ [i−1](t)) A12(ν [i−1](t))

− ˙̂C[i](t)− Ĉ[i](t)A11(ξ [i−1](t)) −Ĉ[i](t)A12(ν [i−1](t))

)
·
(

ξ [i](t)
ν [i](t)

)

−
(

0
1

)
sign(σ [i](t))

(7.29)
will be exponentially stable by convergence assumption of the iteration technique.

This can be summarised in the following theorem:

Theorem 7.1. Given a nonlinear system of the form ẋ = A(x)x(t)+ B(x)u(t),x0 =
x(0), where A(x) and B(x) are Lipschitz, it is possible to find a sequence of slid-
ing mode controls u[i](t) such that the nonlinear system will be exponentially
stabilised by limi→∞u[i](t) if the coefficients A12(x[i−1](t)) from the reduced order
models (7.26) are non-zero and lower bounded 0 < Γi < ||A12(x[i−1](t))||.

Proof. In order to prove the theorem, convergence of the solutions of (7.29) should
be shown. By taking into account the convergence of the iterated solutions to the
solution of the nonlinear systems, convergence in this case is guaranteed if the ma-
trices (

A11(ξ [i−1](t)) A12(ν [i−1](t))
− ˙̂C[i](t)− Ĉ[i](t)A11(ξ [i−1](t)) −Ĉ[i](t)A12(ν [i−1](t))

)
,

(
0

sign(σ [i](t))

)

are Lipschitz. The first part of this proof deals with the requirements and proof
for the first matrix to be Lipschitz: in fact A11(ξ [i](t)),A12(ν [i](t)) are Lipschitz by
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assumption for the iteration technique. The elements that depend on Ĉ[i](t) and
˙̂C[i](t) can be analysed now. In fact, for each iteration, from (7.7):

|λ · I−A[i]
11(t)−A[i]

12Ĉ
[i](t)| = (λ −λ1)(λ −λ2) . . . (λ −λn−1)

From here, it is easy to see that Ĉ[i](t) will be a vector depending on the elements of(
A[i]

12

)−1
. Since these elements are Lipschitz, for the Lipschitz continuity property

to be satisfy for these functions, then, det
∣∣∣A[i]

12(t)
∣∣∣ should have a non-zero lower

bound ∀t ∈ [0,T ].
On the other hand, ˙̂C(t) will be a rational function of the elements of A(x) and

its derivatives and since they are differentiable , ˙̂C(t) is differentiable, therefore is
Lipschitz.

The second part of this proof deals with the properties of
(

0
sign(σ [i](t))

)
.

In fact, sign(σ [i](t)) is not Lipschitz, and so we consider a sequence of smooth
sigmoid functions which approximate sign(x) := sgm(x), i.e., tanh(νx),ν → ∞. We
apply the iteration technique to each system obtained on replacing sign(νx) and
using the above sliding surface design: this leads to a collection of systems of the
form:

˙̂x[i] = K
[
x̂[i](t),c[i−1](t))x̂[i] + tanh(νkx̂[i−1]

]
(7.30)

for a sequence of numbers νk → ∞, and the original sequence containing σ(x):

ẋ[i] = K
[
x[i](t),c[i−1](t))x[i] + sgmσ(x[i−1])

]
. (7.31)

Each system of the form (7.30) converges by the proof given in Theorem 2.1. To
prove the sequence (7.31) converges, write it in the form:

ẋ[i] = K
[
x[i](t),c[i−1](t))x[i](t)+ tanh(νkx̂[i−1]

]
+
[
sgmσ(x[i−1])− tanh(νkx̂[i−1]

]
.

(7.32)
The proof again proceeds as in the case of Theorem 2.1, noting that the integrated
form:

x[i](t) = Φ [i](t,0)x0 +
∫ t

0 Φ [i](t,s)tanh(νkx[i−1](s))ds
+
∫ t

0 Φ [i](t,s)(sgmσ(x[i−1]))− tanh(νkx[i−1](s))ds.
(7.33)

where Φ [i] is the transition matrix of K(x[i−1](t),c[i−1](t)), converges since the last
term clearly converges to zero as νk → ∞. �

Example 7.2. Consider the example of a robotic arm consisting of two joints. The
dynamic equations of motion for such a system are:
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Iq̈1 + MgLsinq1 + k(q1 −q2) = 0
Jq̈2 − k(q1 −q2) = u

(7.34)

for some given initial conditions x(0) and where the parameters of the system are:

M = 5kg g = 9.81m · s−1 L = 0.5m
I = 2.5kg ·m−2 J = 1.5kg ·m−2 k = 100N ·m−1.

By adopting a change of variables q1 = x1, q2 = x2, q̇1 = x3 and q̇2 = x4, the second
order equations (7.34) can be written in the form of a first order system:

ẋ1 = x3

ẋ2 = x4

ẋ3 = − k
I (x1 − x2)− Mgl

I sin(x1)
ẋ4 = − u

J + k
J (x1 − x2)

(7.35)

and this can be transformed in the SCD form:
⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

− k
I − Mgl

I
sin(x1)

x1

k
I 0 0

k
J − k

J 0 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1
J

⎞
⎟⎟⎠ ·u(t). (7.36)

Now the iteration technique can be applied and a sequence of LTV system will be
generated:

⎛
⎜⎜⎜⎝

ẋ[1]
1

ẋ[1]
2

ẋ[1]
3

ẋ[1]
4

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

− k
I − Mgl

I
sin(x01)

x01

k
I 0 0

k
J − k

J 0 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

x[1]
1

x[1]
2

x[1]
3

x[1]
4

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1
J

⎞
⎟⎟⎠ ·u[1](t) (7.37)

...

⎛
⎜⎜⎜⎝

ẋ[i]
1

ẋ[i]
2

ẋ[i]
3

ẋ[i]
4

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

− k
I − Mgl

I
sin(x[i−1]

1 )

x
[i−1]
1

k
I 0 0

k
J − k

J 0 0

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

x[i]
1

x[i]
2

x[i]
3

x[i]
4

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1
J

⎞
⎟⎟⎠ ·u[i](t). (7.38)

The sliding mode control strategy explained before can be applied now to each of
these LTV systems. In fact in order to create a control u[i](t) at each iteration a
sequence of LTV sliding surfaces (σ [1], . . . ,σ [i]) can be designed such that each of
the systems from (7.37) – (7.38) will converge to the corresponding iterated surface
after the hitting time and remain on it. Therefore for each of the surfaces:

σ [i](t) = c[i]
1 (t)x[i]

1 (t)+ c[i]
2 (t)x[i]

2 (t)+ c[i]
3 (t)x[i]

3 (t)+ c[i]
4 (t)x[i]

4 (t) (7.39)
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and taking the case when c[i]
4 (t) = 1 (constant),

x[i]
4 (t) = −c[i]

1 (t)x[i]
1 (t)− c[i]

2 (t)x[i]
2 (t)− c[i]

3 (t)x[i]
3 (t) (7.40)

Equations 7.37 – 7.38 can be written as:

⎛
⎜⎝

ẋ[1]
1

ẋ[1]
2

ẋ[1]
3

⎞
⎟⎠=

⎛
⎜⎝

0 0 1

−c[1]
1 (t) −c[1]

2 (t) −c[1]
3 (t)

−40−9.81
(sin(x01)

x01

)
40 0

⎞
⎟⎠ ·

⎛
⎜⎝

x[1]
1

x[1]
2

x[1]
3

⎞
⎟⎠ (7.41)

...

⎛
⎜⎝

ẋ[i]
1

ẋ[i]
2

ẋ[i]
3

⎞
⎟⎠=

⎛
⎜⎜⎝

0 0 1

−c[i]
1 (t) −c[i]

2 (t) −c[i]
3 (t)

−40−9.81
(sin(x[i−1]

1 )

x
[i−1]
1

)
40 0

⎞
⎟⎟⎠ ·

⎛
⎜⎝

x[i]
1

x[i]
2

x[i]
3

⎞
⎟⎠ . (7.42)

The idea is to stabilise each of the LTV systems with the same spirit as in the pole
placement method in Chapter 5. Choosing a set of desired stable eigenvalues, i.e.:
(λ1,λ2,λ3) = (−2,−3,−5):
∣∣∣∣∣∣
⎛
⎝λ 0 0

0 λ 0
0 0 λ

⎞
⎠−

⎛
⎝ 0 0 1

−c[i]
1 (t) −c[i]

2 (t) −c[i]
3 (t)

a[i](t) b[i](t) 0

⎞
⎠
∣∣∣∣∣∣= (λ −λ1)(λ −λ2)(λ −λ3) (7.43)

where a[i](t) = −40−9.81
(sin(x[i−1]

1 )

x[i−1]
1

)
and b[i](t) = 40 = b.

Remark 7.3. Note that in this example the left-hand side poles (λ1,λ2,λ3) have
been selected to be the same for each iteration and during all the time interval
(0, t f ), being possible to generalise the method by choosing different values at each
iteration and at different times.

∣∣∣∣∣∣
⎛
⎝ λ 0 −1

c[i]
1 (t) λ + c[i]

2 (t) c[i]
3 (t)

−a[i](t) −b λ

⎞
⎠
∣∣∣∣∣∣= λ 3 + λ 2c[i]

2 (t)−λ a[i](t)

+bλ c[i]
3 (t)−bc[i]

1 (t)−a[i](t)c[i]
2 (t).

(7.44)

Simple identification of coefficients of same order yields the values for the param-

eters c[i]
1 (t), c[i]

2 (t) and c[i]
3 (t) of the sliding surface σ [i](t) that stabilise each of the

iterated systems (7.41):
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c[i]
2 (t) = −λ1 −λ2 −λ3

c[i]
3 (t) = λ1λ2+λ1λ3+λ3λ2+a[i](t)

b

c[i]
1 (t) = −λ1λ2λ3+a[i](t)(−λ1−λ2−λ3)

b .

(7.45)

So now,

σ̇ [i] = ċ[i]
1 x[i]

1 + c[i]
1 ẋ[i]

1 + ċ[i]
2 x[i]

2 + c[i]
2 ẋ[i]

2 + ċ[i]
3 x[i]

3 + c[i]
3 ẋ[i]

3 + ẋ[i]
4 .

For sliding mode control, it is required that σ [i](t) = 0 and σ̇ [i] = −sign(σ [i]). Ap-
plying these conditions to the systems (7.37) – (7.38) gives the controls u[i](t):

u[i] = −1.5sign(σ [i])−1.5
[
ċ[i]

1 x[i]
1 + c[i]

1 x[i]
3 + ċ[i]

2 x[i]
2 + c[i]

2 x[i]
4

+ċ[i]
3 x[i]

3 + a[i]c[i]
3 x[i]

1 + bc[i]
3 x[i]

2 + k
J x[i]

1 − k
J x[i]

2

]
.

(7.46)

By iterating the original nonlinear problem, only after three iterations the sequence
of LTV problems converges to the nonlinear system. In fact, by taking as control law
the third iterated control u(3)(t) and applying it to the nonlinear system, it is shown
how the states are stabilised. Figures 7.2 – 7.5 show the stable behaviour of the four
output components after applying the sliding control to each of the iterations and
original nonlinear problem too. In Figure 7.6 the final iterated control law is shown.

x (t)
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Non-linear State
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2nd Iteration

3rd Iteration

0 1 2 3 4 5 6 7 8

t (s)

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

Fig. 7.2 Iterated and nonlinear controlled x1(t) state
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Fig. 7.3 Iterated and nonlinear controlled x2(t) state
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Fig. 7.4 Iterated and nonlinear controlled x3(t) state

7.5 Conclusions

In this chapter, the problem of designing a sliding mode control for nonlinear sys-
tems has been addressed. It is based on the approximation of the nonlinear system
by a sequence of LTV ones whose solution converge to the solution of the original
nonlinear problem.
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Fig. 7.5 Iterated and nonlinear controlled x4(t) state
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Fig. 7.6 Iterated control

After this, a sequence of time-varying sliding surfaces is designed for each of
the LTV problems. This is done by using a LTV pole placement approach com-
bined with additional conditions for stability of the time-varying case. This theory
is generalized to general nonlinear systems by the convergence of the LTV sequence.
Simulation results on how this is done have also been presented.



References 139

References

1. Yan, X.G., Edwards, C., Spurgeon, S.K.: Decentralised robust sliding mode control for a
class nonlinear interconnected systems by static output feedback. Automatica 40, 613–
620 (2004)

2. Lu, X.Y., Spurgeon, S.K.: Output feedback stabilisation of SISO nonlinear systems via
dynamic sliding modes. Int. J. Control 70, 735–759 (1998)

3. Frasca, R., Iannelli, L., Vasca, F.: Boundary Layer Using Dithering in Sliding Mode
Control. In: 16th IFAC World Congress, Prague, Czech Republic (July 2005)

4. Tomás-Rodrı́guez, M., Banks, S.P.: Linear Approximations to Nonlinear Dynamical Sys-
tems with Applications to Stability and Spectral Theory. IMA J. Math. Cont. and Inf. 20,
89–104 (2003)

5. Tomás-Rodrı́guez, M., Navarro-Hernandez, C., Banks, S.P.: Parametric Approach to
Optimal Nonlinear Control Problem using Orthogonal Expansions. In: IFAC World
Congress, Prague, Czech Republic (July 2005)

6. Navarro-Hernández, C., Banks, S.P., Aldeen, M.: Observer Design for Nonlinear Sys-
tems using Linear Approximations. IMA J. Math. Cont. and Inf. 20, 359–370 (2003)

7. Tomás-Rodrı́guez, M., Banks, S.P.: Pole placement for nonlinear systems. In: NOLCOS
2004, Stuttgart, Germany (2004)

8. Cimen, T., Banks, S.P.: Nonlinear optimal tracking control with application to super-
tankers for autopilot design. Automatica 40, 1845–1863 (2004)

9. Slotine, E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)
10. Zak, S.H., Hui, S.: Output feedback in variable structure controllers and state estimators

for uncertain nonlinear dynamical systems. Proceedings IEE- Control Theory App. 140,
41–50 (1993)

11. Woodham, C.A., Zinober, S.I.: Eigenvalue placement in a specified sector for variable
structure control systems. Int. Journal of Control 5, 1021–1037 (1993)

12. Ackermann, J., Utkin, V.I.: Sliding mode control designed based on Ackermanns for-
mula. IEE Trans. Automatic Control 43, 234–237 (1998)

13. Ha, Q.P., Trinh, H., Nguyen, H.T., Tuan, H.D.: Dynamic output feedback sliding mode
control using pole placement and linear functional observers. IEEE Transactions on In-
dustrial Electronics 50(5), 1030 (2003)



Chapter 8
Fixed Point Theory and Induction

8.1 Introduction

In this chapter we shall show that we can obtain results on various aspects of systems
of the form

ẋ = A(x)x, x(0) = x0 (8.1)

by using a sequence of approximations

ẋ[i](t) = A(x[i−1](t))x[i](t), x[0](0) = x0 (8.2)

as before and a combination of fixed point theorems and induction. The induction
will proceed in the following way: suppose we want to prove some property P of
Equation 8.1, and assume we can find a function x[0](t) which has this property.
Suppose also that if x[i−1](t) has the property, then the solution x[i](t) of Equation
8.2 also has the property. Then if the sequence {x[i](t)} converges on some inter-
val [0,T ], it follows by induction that the nonlinear system (8.1) (or the solutions
thereof) also have the property P.

We shall see that this can be applied to stability of nonlinear systems and the
existence of periodic solutions. The same idea can, however, be applied to many
other situations.

8.2 Fixed Point Theory

The most basic fixed point theorem is the Banach contraction principle. Suppose
that (M,δ ) is a complete metric space. A function f : M → M is a contraction (or is
Lipschitz) with contraction constant γ < 1 if

δ ( f (x), f (y)) ≤ γδ (x,y)

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 141–150.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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for all x,y ∈ M. Then the Banach contraction principle states the following:

Theorem 8.1. If f is a contraction on a metric space (M,δ ), with contraction con-
stant γ , then f has a unique fixed point given by

lim
n→∞

f n(y)

for any y ∈ M.

The most useful form of this principle for differential or integral equations is the
following (see [1]):

Corollary 8.1. If k : [0,T ]× [0,T ]×R → R is a continuous kernel which satisfies
the Lipschitz condition

|k(t,s,x)− k(t,s,y)| ≤ L|x− y|,

for all (s,t) ∈ [0,T ]× [0,T ] and x,y ∈ R, then for all y ∈C[0,T ], the integral equa-
tion

x(t) = y(t)+
∫ t

0
k(t,s,x(s))ds

for 0 ≤ t ≤ T, has a unique solution x ∈C[0,T ].

We can obtain the solution stated in the corollary by choosing any xn(·) ∈ C[0,T ]
and defining inductively

xn+1(t) = y(t)+
∫ t

0
k(t,s,xn(s))ds.

Then {xn} converges uniformly on [0,T ].
Of course, to apply the corollary to a (scalar) differential equation

dx
dt

= f (x, t), x(0) = x0,

where f is Lipschitz:
| f (x, t)− f (y,t)| ≤ γ|x− y|

for all t ∈ [0,T ] and any x,y ∈ R, we simply write the equation in integral form

x(t) = x0 +
∫ t

0
f (x(s),s)ds.

The generalisation of these results to vector-valued functions x(t) is clear.
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We now show that theorem 2.1 (the original convergence theorem for the iteration
process) can be proved by fixed point theory, if A(x) is Lipschitz. Thus we have

Theorem 8.2. If in the nonlinear system

ẋ = A(x)x, x(0) = x0,

the matrix-valued function x → A(x) is Lipschitz, then the sequence of functions
x[i](·) given by

ẋ[i](t) = A(x[i−1](t))x[i](t), x[i](0) = x0, (8.3)

converges uniformly on any compact interval [0,T ].

Proof. Consider the two iteration schemes

xn+1(t) = x0 +
∫ t

0
A(xn(s))xn(s)ds. (8.4)

and

x̃n+1(t) = x0 +
∫ t

0
A(x̃n(s))x̃n+1(s)ds. (8.5)

The first is identical to Picard iteration used in the Banach contraction theorem,
while the second is our iteration scheme. Note the subtle difference in the right
hand sides. We can easily see that x̃n(t) and xn(t) are bounded (say by M) on [0,T ]
for all n and so, by Lipschitz continuity of A(·) we have

‖A(x̃n(t))‖ ≤ L1, for all n, and t ∈ [0,T ]

for some constant L1. Let L2 be the Lipschitz constant of A(·) and let K be a positive
number to be specified later. Let X be the Banach space of continuous functions on
[0,T ] with the norm

||| f ||| = max0≤t≤T e−Kt‖ f (t)‖.
Then by (8.4) and (8.5), we have

xn+1(t)− x̃n+1(t) =
∫ t

0
(A(xn(s))xn(s)−A(x̃n(s))x̃n(s))

=
∫ t

0
{(A(xn(s))xn(s)−A(x̃n(s))xn(s))

+(A(x̃n(s))xn(s)−A(x̃n(s))xn+1(s))
+ (A(x̃n(s))xn+1(s)−A(x̃n(s))x̃n+1(s))}ds

and so
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|||xn+1(·)− x̃n+1(·)||| ≤ sup0≤t≤T e−Kt
∫ t

0
{‖A(xn(s))−A(x̃n(s))‖ · ‖xn(s)‖

+‖A(x̃n(s))‖ · ‖xn(s)− xn+1(s)‖
+‖A(x̃n(s))‖ · ‖xn+1(s)− x̃n+1(s)‖}ds.

Hence,

|||xn+1(·)− x̃n+1(·)||| = ML2sup0≤t≤T e−Kt
∫ t

0
eKse−Ks‖xn(s)− x̃n(s)‖ds

+L1sup0≤t≤T e−Kt
∫ t

0
eKse−Ks‖xn(s)− xn+1(s)‖

+L1sup0≤t≤T e−Kt
∫ t

0
eKse−Ks‖xn+1(s)− x̃n+1(s)‖

≤ ML2|||xn(·)− x̃n(·)|||sup0≤t≤T e−Kt
∫ t

0
eKsds

+L1|||xn(·)− xn+1(·)|||e−Kt
∫ t

0
eKsds

+L1|||xn+1(·)− x̃n+1(·)|||e−Kt
∫ t

0
eKsds

= ML2|||xn(·)− x̃n(·)|||1− e−KT

K

+L1|||xn(·)− xn+1(·)|||1− e−KT

K

+L1|||xn+1(·)− x̃n+1(·)|||1− e−KT

K

and so

α|||xn+1(·)− x̃n+1(·)||| ≤ max(ML2,L1)
1− e−KT

K
(|||xn(·)− x̃n(·)|||

+ |||xn(·)− xn+1(·)|||) ,

where

α = 1−L1

(
1− e−KT

K

)
.

Hence, if K is large enough, we have

|||xn+1(·)− x̃n+1(·)||| ≤ β (|||xn(·)− x̃n(·)|||+ |||xn(·)− xn+1(·)|||)

where β < 1. Thus, since xn(·) converges in X by the fixed point theorem, it follows
easily that {x̃n+1} is a Cauchy sequence in X and so converges uniformly, for any
T > 0. �
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Returning to Equation 8.3 let
Φx[i−1] (t)

denote the transition matrix generated by the time-varying matrix function
A(x[i−1](t)). Then the solution of (8.3) is

x[i](t) = Φx[i−1] (t)x0 (8.6)

and theorem 8.2 essentially says that the map x(·) → Φx(·) is Lipschitz and so
has a fixed point and that the solution is given by the iteration scheme given by
Equation 8.6.

8.3 Stability of Systems

In this section we show how to use the induction argument discussed in the introduc-
tion to prove stability of a nonlinear system. To do this we first recall the notion of
logarithmic norm of a matrix. Thus, for a square matrix A, we define the logarithmic
norm (or measure) of A by

µ(A) = limh→0+(‖I + hA‖−1)/h,

where ‖ · ‖ is any induced norm on matrices (see [2]). The main advantage over the
usual norm is that µ(A) can be negative, and as noted in Chapter 3, it can therefore
be used to study the stability of systems. The most important property for a linear,
time-varying system

ẋ = A(t)x, x(t0) = x0

is that

‖x(t)‖ ≤ ‖x0‖exp
∫ t

t0
µ(A(s))ds, (8.7)

so that if ∫ t

t0
µ(A(s))ds →−∞

as t → ∞, then the system is stable. It can be shown that if we use the norm

‖x‖1 =
n

∑
i=1

|xi|

on R
n, then

µ(A) = max j[Re(a j j)+ ∑
i�= j

|ai j|]

while if we use the usual Euclidean norm
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‖x‖2 =

(
n

∑
i=1

x2
i

)1/2

then we have
µ(A) = maxi(λi(A + A∗)/2)

where λi(·) is the ith eigenvalues and A∗ is the conjugate transpose of A.
Although we only have the result above for linear, time-varying systems, we can

use the iteration theory and induction to prove stability for certain nonlinear systems.
Thus, suppose that the nonlinear system

ẋ = A(x)x

satisfies
µ(A(x)) < −ε < 0

(ε > 0) for all x in a ball B (where A(·) is Lipschitz). Then, as usual, we consider
the sequence of approximations

ẋ[i](t) = A(x[i−1](t))x[i](t), x[i](0) = x0 ∈ B.

This sequence converges uniformly on any compact interval. For the first approxi-
mation we take

x[1](t) = e−tx0.

This clearly belongs to B. Now assume that x[k](t) ∈ B for all t ≥ 0. Then

µ(A(x[k](t))) < −ε < 0

so it follows that A(x[k](t) ∈ B, for all t > 0. Note, however, that this does not im-
mediately imply stability of the nonlinear system since it might be possible for the
stable systems, with solutions x[i](t) to take ‘longer and longer’ times to stabilise.
However, because ε > 0, it is easy to prove that this does not happen. Thus the in-
duction principle and the iteration convergence theorem give:

Theorem 8.3. If the nonlinear system

ẋ = A(x)x

satisfies
µ(A(x)) < −ε < 0

for all x ∈ B, where B = {x : ‖x‖ ≤ K} for some K > 0, and A(·) is Lipschitz, then it
is asymptotically stable in B.
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It is also easy to obtain a result which is similar to LaSalle’s invariance principle.
Thus we have:

Theorem 8.4. If the nonlinear system

ẋ = A(x)x, x ∈ R
n

satisfies
µ(A(x)) < −ε < 0

for all x ∈ B \ M where B = {x : ‖x‖ ≤ K} and M is a (not necessarily con-
nected) submanifold of B of dimension ≤ n− 1 such that the nonlinear dynamics
are transversal to M, then the conclusion of theorem 8.3 follows also in this case.

8.4 Periodic Solutions

In order to apply induction and iteration arguments to the problem of periodic solu-
tions of nonlinear systems, we first recall the basic Floquet theory for linear, time-
varying systems (see, for example [3] or [4])

ẋ = A(t)x, x ∈ R
n

where A(·) is periodic with period ω :

A(t + ω) = A(t), for all t.

It is well-known that this system always has a fundamental set of linearly inde-
pendent solutions u1, · · · ,un, so that any solution x(t) may be written as a linear
combination of the ui’s:

x(t) =
n

∑
i=1

αiui(t)

for some constants αi. However, since A(·) is periodic, ui(t +ω), 1 ≤ i ≤ n, are also
solutions of the equation and so they may also be written as linear combinations of
the ui(t)’s :

ui(t + ω) =
n

∑
j=1

βi ju j(t), 1 ≤ i ≤ n,

for some other constants βi j. Hence the general solution x(t + ω) becomes

x(t + ω) =
n

∑
i=1

n

∑
j=1

αiβi ju j(t)

and so if we assume that
x(t + ω) = λ x(t) (8.8)
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for some λ , then
n

∑
i=1

n

∑
j=1

αiβi ju j(t) = λ

(
n

∑
i=1

αiui

)
.

Since the ui’s are linearly independent, we have

det(βi j −λ δi j) = 0

i.e. λ is an eigenvalue of the matrix B = (βi j). Moreover, if λ is chosen as an eigen-
value of B, then the general solution will satisfy (8.8). If we put λ = eµω , then the
function e−µt x(t) is periodic:

e−µ(t+ω)x(t + ω) = e−µt e−µωx(t + ω)
= e−µtλ−1x(t + ω)
= e−µt x(t).

Hence the equation has a solution of the form eµtx(t), where x(t) is periodic. If
µ = 0, then the solution of the system is periodic.

Now consider the nonlinear system

ẋ = A(x)x, x(0) = x0

and introduce the usual iteration sequence x[i](t) by

ẋ[i](t) = A(x[i−1](t))x[i](t), x[i](0) = x0. (8.9)

Suppose we choose x[0](t) to be periodic with period T . Then x[1](t) is given by

ẋ[1](t) = A(x[0](t))x[1](t)

which is of the form
ẋ[1](t) = Ã(t)x[1](t),

where Ã(t) is periodic with period T . Hence by the Floquet theory above, x[1](t) is
of the form exp(µ [i]t)ξ [1](t) where ξ [1](t) is periodic with period T . Now consider
the equation

ẋ[2](t) = A(ξ [1](t))x[2](t)

instead of (8.9) above. Again this is periodic with period T , and so has a solution of
the form

x[2](t) = exp(µ [2]t)ξ [2](t)

where ξ [2](t) is periodic with period T . Continuing in this way, we obtain a sequence
of functions ξ [i](t) which are periodic with period T and a sequence of numbers µ [i],
such that x[i](t) = exp(µ [i]t)ξ [i](t) satisfies the equation

ẋ[i](t) = A(ξ [i−1](t))x[i](t).
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Hence, if µ [i] → 1 as i →∞, then the sequence ξ [i](t) converges to the solution x[i](t)
of (8.9) as i → ∞ and the nonlinear system has a periodic solution.

Now consider the logistic system

ẋ1 = f1(x)x1

ẋ2 = f2(x)x2

...

ẋn = fn(x)xn

and introduce the sequence of approximations

ẋ[i]
1 = f1(x[i−1](t))x[i]

1

ẋ[i]
2 = f2(x[i−1](t))x[i]

2

...

ẋ[i]
n = fn(x[i−1](t))x[i]

n .

Hence, if x[i](0) = x0, we have the solution

x[i]
k (t) = e

∫ t
0 fk(x[i−1](s))dsx[i]

k (0)

= e
∫ t

0 fk(x[i−1](s))dsx0k, 1 ≤ k ≤ n.

The system has a periodic solution of period T if and only if

∫ T

0
fk(x[i−1](s))ds = 0.

Let

µ [i]
k (T ) =

∫ T

0
fk(x[i−1](s))ds.

If the sequences {µ [i]
k (T )}1≤k≤n are bounded and bounded away from 0, then they

must have a convergent subsequence, which must tend to zero or else the solutions
would diverge or tend to zero. The nonlinear system will then have a periodic solu-
tion. The conditions clearly hold for Volterra-Lotka type systems.

8.5 Conclusions

In this brief chapter we have shown that the original iteration technique can be re-
garded as a kind of fixed point theory, although to obtain global convergence from
this point of view, we must assume that our systems are globally Lipschitz and so
the original theory is more general. However, as we have seen, fixed point theory
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does provide some useful insights into the method and leads to the idea of using
induction arguments, coupled with the iteration technique to prove that nonlinear
systems possess certain properties, such as stability or the existence of periodic
solutions.

We have shown therefore that the iteration technique is not just a numerical pro-
cedure, but coupled with the induction argument, it can be used to prove the exis-
tence of certain properties of nonlinear systems. Such properties will carry over from
similar properties of linear, time-varying systems in the limit. This demonstrates the
usefulness of the method for general nonlinear systems theory and it appears that it
will be useful in many other areas (see chapter 12).
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Chapter 9
Nonlinear Partial Differential Equations

9.1 Introduction

In this chapter we shall show how to generalise the results of the previous chapters
on finite-dimensional nonlinear systems to partial differential equations. Rather than
try to cover any significant part of this vast field, we shall concentrate on two prob-
lems, since the ideas then apply to many other nonlinear distributed systems. These
two problems are concerned with moving boundaries in heat flow and the motion
of solitary nonlinear waves (solitons). The basic idea is as before, i.e. to write an
evolution equation of the form

∂ϕ
∂ t

= N(ϕ)

where ϕ(t,x) ∈ L2(0,∞,L2(Ω)) for some open set Ω ⊆ R
n and N is a nonlinear

differential operator, as a pseudo-linear one:

∂ϕ
∂ t

= A(ϕ)ϕ (9.1)

for some nonlinear differential operator A(ϕ). Then we introduce a sequence of
approximations ϕ [i](t) given by

∂ϕ [i]

∂ t
(t,x) = A(ϕ [i−1](t,x))ϕ [i](t,x). (9.2)

The main difference between this and the finite-dimensional problem is the
greater technical difficulty in proving convergence of the solutions of (9.2) to those
of (9.1). A simpler approach, which we shall take here, is to apply the technique to
partial differential equations which have ‘regular discretisations’ in the sense that
a sequence of finite-dimensional discretisations exists which converge pointwise
almost everywhere (a.e.) to the solutions of the partial differential equations (so
long as they are sufficiently smooth). We then apply the iteration technique to each

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 151–167.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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finite-dimensional system in the discretisation sequence and use a diagonal argu-
ment to get the desired convergence of the linear, time-varying approximations to
the solutions of the partial differential equation.

9.2 A Moving Boundary Problem

We shall illustrate the general ideas about using linear, time-varying approximations
to nonlinear partial differential equations by considering the well-known two-phase
Stefan problem. The basic theory of the Stefan problem is given in [1]. Consider a
region Ω ⊆ R

n which is divided into two (unknown) regions Ω1,Ω2 (which may
not be connected) in which a material exists in the liquid state (in Ω1) and the solid
state (in Ω2) such that

Ω = Ω1 ∪Ω2.

The phase change, of course, takes place at the boundary of Ω1 (and that of Ω2):

∂Ω1 = ∂Ω2.

In each of the regions Ω1 and Ω2 we assume that the process is simply one of heat
conduction. Thus we have the equations

∂T
∂ t

= αL∇2T, (x,t) ∈ Γ1
.= Ω1 × (0,τ) (9.3)

∂T
∂ t

= αS∇2T, (x, t) ∈ Γ2
.= Ω2 × (0,τ)

for some time τ > 0, where αL and αS are the thermal conductivities associated,
respectively, with the liquid and solid phases. In this form, the problem consists of
a pair of linear equations defined in some regions in Ω with unknown boundary
between them. The moving boundary problem causes considerable difficulty in the
theory of partial differential equations and so we reformulate the problem as a single
nonlinear partial differential equation which can be tackled easily by our approach,
as we shall see. Thus, first note that the classical Stefan boundary condition states
that the amount of latent heat at the boundary is given by the difference in thermal
gradient there:

ρLVn =
[
−κ

∂T
∂n

]+

−
on ∂Γ1,

where Vn is the velocity of the moving boundary, ρ is the density, L is the latent
heat, κ is the thermal conductivity and n is the normal to the phase boundary. The
energy content in the liquid region is given by

eL(T ) = L+
∫ T

TM

CL(T )dT , T > TM
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and by

eS(T ) = L+
∫ TM

T
CS(T )dT , T < TM

where CL and CS are the respective specific heats. The corresponding conductiv-
ity coefficients (assuming the densities of each phase are equal and constant) are
given by

αL(T ) =
κL

ρCL(T )
, αS(T ) =

κS

ρCS(T )

and the energy expressions can be unified by defining the specific heat

C(T ) =
{

Lδ (T −TM)+CL(T ), T ≥ TM

CS(T ), T < TM,

and so the conductivity coefficient becomes

α(T ) =
{

αL(T ) = κL/ρCL(T ), T ≥ TM

αS(T ) = κS/ρCL(T ), T < TM.

For simplicity we shall assume the conductivity coefficient is constant in each
phase, i.e.

α(T ) =
{

αL, T ≥ TM

αS, T < TM.
(9.4)

This gives a reasonable approximation in most cases. We can also use a smooth
function α by defining a C∞ function which is equal to αS for T ≤ TM −ε and equal
to αL for T ≥ TM + ε (see Figure 9.1). This will avoid any technical difficulties in
the existence and uniqueness theory of the partial differential equation. Thus, the
equations (9.3) can be unified into the equation:

∂T
∂ t

= α(T )∇2T, (x, t) ∈ Ω × (0,τ), (9.5)

where α(T ) is given by (9.4).

9.3 Solution of the Unforced System

To solve the uncontrolled system (9.5), we introduce a sequence of linear, time-
varying problems:

∂T [i]

∂ t
(x,t) = α(T [i−1](x,t))∇2T [i](x, t), (9.6)

with some initial conditions
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Fig. 9.1 Smooth temperature coefficient

T [i](x,0) = f (x), x ∈ Ω
T [0](x,t) = f (x), t ∈ (0,τ)

and a Dirichlet boundary condition

T [i](∂Ω ,t) = 0, say.

Note that we are taking the whole of the zeroth approximation equal to the initial
function f (x), for all t. We could take any other (reasonable) function here. This
effectively means that we are taking, for the first approximation T [1], the solution of
the system

∂T [1]

∂ t
(x,t) = α(T [0](x, t))∇2T [1](x, t), (9.7)

i.e.
∂T [1]

∂ t
(x, t) = α( f (x))∇2T [1](x,t).

It is well-known that each of the equations (9.7) has a unique solution. To prove
the convergence of the sequence of solutions, we approximate each system (9.7) by
a finite-dimensional approximation. For simplicity, we shall consider only the one
spatial dimension case; the general case follows similarly. Thus, consider a one-
dimensional bar with temperature T (x, t), 0 ≤ x ≤ �. Write

T [i]
j (t) = T [i](t, j�/N), j = 1,2, · · · ,N.

Then we have the system
d
dt

T = AT

where
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T =

⎛
⎜⎜⎝

T [i]
1
...

T [i]
N

⎞
⎟⎟⎠ ,

A =
1

(∆x)2

⎛
⎜⎜⎜⎝

−2α(T [i−1]
1 ) α(T [i−1]

1 ) 0 · · · · · · 0

α(T [i−1]
2 ) −2α(T [i−1]

2 ) α(T [i−1]
2 ) 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 α(T [i−1]

N ) −2α(T [i−1]
N )

⎞
⎟⎟⎟⎠ ,

T [i](0) = T0, T [i] = (T [i]
1 , · · · ,T [i]

N )T ,

and
T0 = ( f (�/N), f (2�/N), · · · , f ((N −1)�/N), f (�)) .

( f is the initial condition, as above.) Hence we can write the system in the form

∂T [i]

∂ t
(t) = A(T [i−1])T [i], T (0) = T0. (9.8)

Since A is locally Lipschitz, we have the following theorem ([2], see Chapter 2):

Theorem 9.1. The sequence of temperatures T [i](t) defined by (9.8) is uniformly
convergent on any compact time interval.

Combining this with the well-known convergence theory for finite-dimensional ap-
proximations to diffusion systems, we have

Theorem 9.2. The sequence of temperatures T [i](t) defined by (9.8) converges uni-
formly almost everywhere on compact time intervals, as t → ∞ and N → ∞, to the
solution of (9.6).

To illustrate the technique in a simple case of heat flow in a two-phase system,
the unforced diffusion system has been solved with f (x) = e(4(x−1)2), so that some
regions are liquid and some solid at t = 0. Here we have taken � = 2,N = 30 and τ =
0.75; 300 time steps were used. Two vales of the thermal conductivity coefficients
were used and it can be seen that the method correctly predicts the phase boundary
and converges in 4–5 iterations (see Figure 9.2).

9.4 The Control Problem

We now consider the problem of controlling the temperature profile in a one-
dimensional bar with a pointwise laser heating control. The physical setup is shown
in Figure 9.3. The equation of the system is given by
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Fig. 9.2 Plots of the solution of the unforced system with f (x) = e4(x−1)2
and various values

of αL,αS

Fig. 9.3 The basic laser heating system
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∂T
∂ t

= α(T )∇2T + δ (x− x)u, T (0) = T0. (9.9)

where u is proportional to the heat input power from the laser and x is the point of
injection of the heat. We shall apply the iteration method as before to the problem,
so that we consider the finite-dimensional approximation

∂T [i]

∂ t
(t) = A(T [i−1](t))T [i](t)+ Bu, (9.10)

where A is the matrix defined above and

B = (0,0, · · · ,1,0, · · · ,0)T (9.11)

and the ‘1’ is in the mth place corresponding to the point

x = m�/N. (9.12)

If Td(t) is the desired temperature profile, we shall solve the optimal tracking prob-
lem of minimising the cost functional

J =
1
2
(T [i](t f )−Td(t f ))T F(T [i](t f )−Td(t f ))

+
1
2

∫ t f

0

{
(T [i](t)−Td(t))T Q(T [i](t)−Td(t))+ uT Ru

}
dt

where F and Q are positive semi-definite matrices and R is positive-definite.
In order to consider the ‘trackability’ of a given desired temperature profile, we

shall first look at the general problem in terms of the nonlinear (finite-dimensional)
control system

ẋ = f (x,u).

Suppose that we desire to track the function xd(t); then there must exist a control
ud(t) such that

ẋd(t) = f (xd(t),ud(t)) (9.13)

for all t ≥ t > 0 for some finite t. Let

y(t) = x(t)− xd(t).

Then

ẏ(t) = ẋ(t)− ẋd(t)
= f (x(t),u(t))− f (xd(t),ud(t))
= g(y(t),v(t), t)

where
v(t) = u(t) = ud(t)
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and
g(0,0, t) = 0,

by Taylor’s theorem. We can write this equation in the form

ẏ(t) = A(y(t),v(t), t)y(t)+ B(y(t),v(t), t)v(t)

for some matrix-valued functions A and B. Hence, we can always rewrite a tracking
problem as a regulator one provided the system can track the desired function xd(t),
i.e. there is an open-loop control ud(t) such that (9.13) holds. If xd is constant then
(9.13) becomes

f (xd(t),ud(t)) = 0 (9.14)

and so, for trackability, there must exist a (constant) control ud such that (9.14)
holds.

Specialising to the heat control problem, if we want to track a given temperature
profile T d , then we must have

1
(∆x)2

⎛
⎜⎜⎝

−2α(T d
1 ) α(T d

1 ) 0 · · · · · · 0
α(T d

2 ) −2α(T d
2 ) α(T d

2 ) 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 α(T d

N ) −2α(T d
N )

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

T d
1

T d
2
...

T d
N

⎞
⎟⎟⎟⎠=−

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

ud.

Hence, if the input is in the mth place, we require

α(T d
1 )

(∆x)2 (−2T d
1 + T d

2 ) = 0

α(T d
2 )

(∆x)2 (T d
1 −2Td

2 + T d
3 ) = 0

· · ·
α(T d

m−1)
(∆x)2 (T d

m−2 −2Td
m−1 + T d

m) = 0

α(T d
m )

(∆x)2 (T d
m−1 −2Td

m + T d
m+1) = −ud

· · ·
α(T d

N−1)
(∆x)2 (T d

N−2 −2Td
N−1 + T d

N ) = 0

α(T d
N )

(∆x)2 (T d
N−1 −2T d

N ) = 0.

An elementary calculation shows that

Tm = mT1, ,Tm = (N −m+ 1)TN
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so that

TN =
mT1

N −m+ 1

and

ud =
α(Tm)
(∆x)2

N + 1
N −m+ 1

T1.

Hence, the only constant (in time) temperature profiles which are trackable are
piecewise linear about the control point.

In the case where we allow time-varying desired temperature profiles, T d
i (t), we

must satisfy the following equations:

T d
2 (t) =

Ṫ d
1 (t)

β T d
1 (t)

+ 2Td
1 (t) (9.15)

T d
3 (t) =

Ṫ d
2 (t)

β T d
2 (t)

+ 2Td
2 (t)−Td

1 (t)

· · ·
T d

m (t) =
Ṫ d

m−1(t)
β T d

m−1(t)
+ 2T d

m−1(t)−Td
m−2(t)

and

T d
N−1(t) =

Ṫ d
N (t)

β T d
N (t)

+ 2T d
N (t) (9.16)

T d
N−2(t) =

Ṫ d
N−1(t)

β T d
N−1(t)

+ 2Td
N−1(t)−Td

N (t)

· · ·
T d

m(t) =
Ṫ d

m+1(t)
β T d

m+1(t)
+ 2Td

m+1(t)−Td
m+2(t)

where β = (1/(∆x)2)α(T ). To solve these equations we write

Γk =
(

T d
k−1
T d

k

)
.

Then the equations become

Γk =
(

0 1
−1 N

)
Γk−1

where N is the operator defined by

N(T ) =
1

β (T )
dT
dt

.
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Hence
Γk = KΓk−1

where

K =
(

0 1
−1 N

)

and so
Γk = Kk−2Γ2

so that

T d
m =

(
Km−2

(
T d

1
Ṫ d

1 (t)
β Td

1 (t)
+ 2Td

1 (t)

))

2

where (·)2 means the second component. Similarly, starting with (9.14) we have

T d
m =

(
KN−m−1

(
T d

N
Ṫ d

N (t)
β Td

N (t)
+ 2Td

N (t)

))

1

and so we have proved:

Theorem 9.3. A necessary and sufficient condition for the system (9.9) to be able
to track a desired temperature profile is that (9.15) and (9.16) are satisfied and that
T d

1 and T d
N are related by

(
Km−2

(
T d

1
Ṫ d

1 (t)
β Td

1 (t)
+ 2T d

1 (t)

))

2

=

(
KN−m−1

(
T d

N
Ṫ d

N (t)
β Td

N (t)
+ 2Td

N (t)

))

1

.

Moreover, the (open-loop) control is given by

ud = Ṫ d
m −β (Td

m)(T d
m−1 −2T d

m + T d
m+1).

Of course, for the case of laser heating, we also have the condition that

ud(t) ≥ 0 for all t ≥ 0.

These conditions are highly nonlinear and can be used as a test for any given
desired tracking function. In general we will expect perfect tracking only for a very
restricted class of functions.

Finally we apply the above results to a real problem. Consider the case of holding
a one-dimensional bar such as the one in the above figure at the melt temperature,
i.e. T d(x,t) = TM for all x and t. The parameters used were N = 30, � = 2, αL =
0.8, αS = 0.02, TM = 0.25 and R = 0.5. The heating point was taken to be in the
middle of the bar, i.e. m = 15 and the time step was δ = 0.001s. The initial condi-
tion was T [0](x,0) = 0. Figure 9.4 shows results obtained with around 5–7 iterations
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when the approximations have converged. Better tracking can be obtained by reduc-
ing αL/αS.

Fig. 9.4 Plots of the controlled laser heating problem

9.5 Solitons and Boundary Control

In the second half of this chapter we shall illustrate the iteration technique for par-
tial differential equations by considering the generalised Korteweg-de Vries (KdV)
equation

ϕt + ϕx + k(ϕ)ϕx + ϕxxx = 0 (9.17)

defined on the spatial interval (α,β ), mentioned in Chapter 1. We shall assume that
the system is controlled by the boundary values

ϕ(α,t) = u1(t), ϕ(β , t) = u2(t), ϕx(β , t) = u3(t).
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The exact boundary control problem for this system can be stated as follows:
Let T > 0 and s ≥ 0. For any f ,g ∈ Hs(α,β ), find boundary controls u j, j =

1,2,3 such that the solution ϕ ∈C([0,T ];Hs(α,β )) satisfies

ϕ(x,0) = f (x), ϕ(x,T ) = g(x)

(in the distributional sense) on the interval (α,β ).
We write the system in the form of an abstract equation on some Hilbert space X :

dy
dt

= Ay + F(y)+ Bu (9.18)

where A generates a C0-semigroup W (t) in X and u is the control.
First we study the linearised equation:

Definition 9.1 We say that the linear evolution

dy
dt

= Ay + Bu

is exactly controllable on X if there exists a bounded linear operator G : X ×X →
L2(0,T ;X) such that, for all f ,g ∈ X , the unique solution of

dy
dt

= Ay + BG( f ,g), y(0) = f

satisfies y(T ) = g.

This simply expresses the control u, if it exists, as a linear function G of the de-
sired starting and ending values f and g. If the linearised system is exactly control-
lable, then we can prove that the nonlinear system is also exactly controllable in the
following way. Write the nonlinear system in integral form:

y(t) = W (t)y(0)+
∫ t

0
W (t − τ)F(y(τ))dτ +

∫ t

0
W (t − τ)B(u(τ))dτ.

Then we define

�(T,y) =
∫ t

0
W (t − τ)F(y(τ))dτ

and the operator Γ by

Γ (y) = W (t) f +
∫ t

0
W (t − τ)F(y(τ))dτ +

∫ t

0
W (t − τ)BG( f ,g− �(T,y))(τ)dτ.

If we can prove that Γ has a fixed point, then this point is a solution of the nonlinear
system with the feedback control

u = G( f ,g− �(T,y))(τ)
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such that
Γ (y)(0) = f

and
Γ (y)(T ) = �(T,y)+ g− �(T,y)= g,

proving exact controllability. The exact controllability of the linear system is fairly
standard and can be found in [3]. In order the use the above approach to prove the
exact controllability of the nonlinear system, we consider an equivalent problem on
the whole of R rather than the boundary control problem on (α,β ). We then ask if,
for any given functions f ,g ∈ Hs(R), we can find a solution ϕ of the equation

ϕt + ϕx + k(ϕ)ϕx + ϕxxx = 0 (9.19)

which satisfies
ϕ(x,0) = f (x), ϕ(x,T ) = g(x)

on the interval (α,β ). We then get a solution to the original control problem by
choosing

u1(t) = ϕ(α,t), ϕu2(t) = ϕ(β , t), u3(t) = ϕx(β ,t)

and take the restriction of ϕ to [α,β ]× [0,T ]. To prove that the above operator Γ
has a fixed point we need a number of smoothing properties of the linear system.
Let W (t) be the unitary group generated by the operator

A f = − f ′ − f ′′′

from L2(R) to itself, with domain D(A) = H3(R). Then the solution of the linear
KdV equation

ϕt + ϕx + ϕxxx = 0

ϕ(x,0) = f (x)

is given by
ϕ(t) = W (t) f .

If L2
b denotes the weighted Hilbert space L2(e2bxdx) for ant b > 0, then ([4]) A

generates a semigroup Wb(t) in this space, given by

Wb(t) = exp(−t(D−b)3− t(D−b))

where D is a differential operator. Moreover, we have the estimate

‖Wb(t)‖L(Hs(R),Hs′ (R)) ≤ ct−(s′−s)/2exp(b3t)

for s ≤ s′ and if
ϕt + ϕx + ϕxxx = p, 0 < t < T

and
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ebxϕ ∈ L∞([0,T ];Hs(R)), ebx p ∈ L∞([0,T ];Hs−1(R))

then
ebxϕ ∈C([0,T ];H0)∩C([0,T ];Hs) for s′ < s+ 1.

Moreover, we have

ebxϕ(t) = Wb(t)ϕ(0)+
∫ t

0
Wb(t − τ)ebx p(τ)dτ.

To determine a better smoothing property we define the space Ys,b (a,b ∈ R) to be
the completion of the space S(R2) of tempered distributions with respect to the norm

‖ f‖2
Ys,b

=
∫ ∞

−∞

∫ ∞

−∞
(1 + |τ − ξ − ξ 3|)2b(1 + |ξ |)2s| f̂ (ξ ,τ)|2dξ dτ,

where f̂ is the Fourier transform of f . Then, if s > −1 and b > 1/2,

f ∈ Ys,b ⇒ f ∈C[1+s],α
loc (R;L2(R))

for any 0 ≤ α ≤ 1 + s− [1 + s], and so

f ∈ Lp
s,loc(R;L2(R)), 1 ≤ p ≤ ∞.

The smoothing property we need is (see [5])

Lemma 9.1. Let s > −3/4, σ ∈C∞
0 (R). Then there exists β ∈ (1/2,1) such that for

all b ∈ (1/2,β ), there exists c > 0 such that

‖σ(t)∂x(ϕψ)‖Ys,b−1 ≤ c‖ϕ‖Ys,b‖ψ‖Ys,b

for all ϕ ,ψ ∈Ys,b.

Since Ys,b ⊆C(R;Hs(R)) for b > 1/2, it follows that

∥∥∥∥σ1(t)
∫ t

0
W (t − τ)σ2(τ)(∂x(ϕψ))(·,τ)dτ

∥∥∥∥
Ys,b

≤ c‖ϕ‖Ys,b‖ψ‖Ys,b

for some functions σ1(t),σ2(t) ∈C∞
0 (R).

We can now state a result from which the boundary controllability of the system
will follow:

Lemma 9.2. Consider the nonlinear KdV equation

ϕt + ϕx + k(ϕ)ϕx +(a(x, t)ϕ)x + ϕxxx = 0, x, t ∈ H

ϕ(x,0) = h(x),



9.5 Solitons and Boundary Control 165

where a(x,t) ∈ Ys,b and k is of the form

k(ϕ) = p′(ϕ)ϕ + p(ϕ)

where p is differentiable and

‖p(ϕ)‖Ys,b ≤ c‖ϕ‖Ys,b

for some constant c.Let s≥ 0,T > 0 and b > 0 be as in Lemma 9.1. Then there exists
δ > 0 such that if f ,g ∈ Hs(α,β ) with

‖ f‖Hs(α ,β ) ≤ δ ,‖g‖Hs(α ,β ) ≤ δ

there exists h ∈ Hs(R) such that the solution of the equation satisfies

ϕ(x,0) = f (x), ϕ(x,T ) = g(x), x ∈ (α,β ).

Proof. We have

ϕ(t) = Wa(t)h−
∫ t

0
Wa(t − τ)(k(ϕ)ϕx)(τ)dτ (9.20)

where Wa is the C0-semigroup introduced above. Let

�(T,ϕ) =
∫ t

0
Wa(t − τ)(k(ϕ)ϕx)(τ)dτ.

Then we can choose
h = G( f ,g + �(T,ϕ))

in ([5], Proposition 4.1) to give

ϕ(t) = Wa(t)G( f ,g + �(T,ϕ))−
∫ t

0
Wa(t − τ)(k(ϕ)ϕx)(τ)dτ

and then
ϕ(x,0) = f (x), ϕ(x,T ) = g(x).

All that remains is to show that the map

Γ (ϕ) = Wa(t)G( f ,g + �(T,ϕ))−
∫ t

0
Wa(t − τ)(k(ϕ)ϕx)(τ)dτ

has a fixed point in Ys,b by demonstrating that it is a contraction. This follows from
the inequality
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∥∥∥∥
∫ t

0
Wa(t − τ)(k(ϕ)ϕx)(τ)dτ

∥∥∥∥
Hs(R)

≤ supt∈R

∥∥∥∥σ1(t)
∫ T

0
Wa(t − τ)σ2(t)(k(ϕ)ϕx)(τ)dτ

∥∥∥∥
Hs(R)

= supt∈R

∥∥∥∥σ1(t)
∫ T

0
Wa(t − τ)σ2(t)(∂x(p(ϕ)ϕ)ϕx)(τ)dτ

∥∥∥∥
Hs(R)

≤ c‖ϕ‖2
Ys,b

.

�

We can now state the main result:

Theorem 9.4. Suppose that k(ϕ) is of the form

k(ϕ) = p′(ϕ)ϕ + p(ϕ)

where p is as above and let T > 0 and s ≥ 0 be given. If [α,β ] ⊆ (α1,β1), suppose
that

w(x,t) ∈C∞[(α1,β1)× (−ε,T + ε)]

for some ε > 0 satisfies

wt + wx + k(w)wx + wxxx = 0, (x,t) ∈ (α1,β1)× (−ε,T + ε).

Then there exists a δ > 0 such that for any f ,g ∈ Hs(α,β ) satisfying

‖ f (·)−w(·,0)‖Hs(α ,β ) ≤ and‖g(·)−w(·,0)‖Hs(α ,β ) ≤ δ

one can find controls u1,u2,u3 in L2(0,T ) (u j ∈ C[0,T ], j = 1,2,3 if s > 3/2) such
that the system has the solution

ϕ ∈C([0,T ];Hs(α,β ))∩L2(0,T ;Hs(α,β ))

satisfying
ϕ(x,0) = f (x), ϕ(x,T ) = g(x)

on the interval (α,β ).

Now that we have controllability we can apply the iteration method for optimal
control in a fairly standard way. For the details, see [6].
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9.6 Conclusions

In this chapter we have outlined the application of the iteration scheme to nonlin-
ear partial differential equations. We have shown that moving boundary problems
and boundary control systems can be effectively treated by our methods. In order
to avoid technical difficulties with nonlinear partial differential equations, we have
solved moving boundary problems by using a discretization of the system and con-
sider it as a finite-dimensional problem. Boundary controllability has been shown
using standard techniques from Sobolev theory. Clearly the method can be applied
to a wide variety of such problems.
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Chapter 10
Lie Algebraic Methods

10.1 Introduction

In this chapter we shall consider systems of the form

ẋ = A(x)x (10.1)

where A : R
n → g and g is the Lie algebra of a Lie group G. The classical structure

theory of Lie groups and Lie algebras (see Appendix B and [1,2]) will be used to
decompose the system (10.1) into simpler subsystems in a way which generalises
the classical Jordan decomposition of single matrices. In the latter case, of course,
if we have a linear system

ẋ = Ax,

then we may use the generalised eigenspaces of A to write the system in the form

ẏ = Jy

where J is a Jordan matrix of the block-diagonal form

J =

⎛
⎜⎝

J1
. . .

Jr

⎞
⎟⎠

and each Ji is of the form

Ji =

⎛
⎜⎜⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .
λ 1

λ

⎞
⎟⎟⎟⎟⎟⎠

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 169–194.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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where λ is some eigenvalue of A. Here,

y = P−1x

where
P−1AP = J

and P is the matrix of generalised eigenvectors of A. (One drawback here is that P
is a complex matrix if the eigenvalues are complex, but one can always use the real
normal form, if necessary.)

In the case of the nonlinear system (10.1), we first decompose g into the Levi
form

g = s+g1 (10.2)

where s is a solvable Lie algebra and g1 is semi-simple. Note that the sum in (10.2)
is not direct. Since g1 is semi-simple it has a direct sum decomposition

g1 = h⊕ ∑
α∈∆

gα

where h is a Cartan subalgebra and gα is a one-dimensional root space. It follows
that any system of the form (10.1) may be written as

ẋ = S(x)x + H(x)x + ∑
α∈∆

eα(x)Eα x

where S(x) ∈ s, H(x) ∈ h and Eα ∈ gα for each x ∈ R
n and α ∈ ∆ . Note that all the

matrices in h are simultaneously diagonalisable.

10.2 The Lie Algebra of a Differential Equation

In this section we consider the basic properties of a Lie algebra associated with a
nonlinear system. Thus, consider the nonlinear system

ẋ = A(x)x (10.3)

where A is continuous and let

L{A(x)} = Lie subalgebra of g�(n,C) generated by A(x), x ∈ R
n.

If A is also (real) analytic, we may expand it in a Taylor series:

A(x) = ∑
|i|≥0

Aix
i

where i = (i1, · · · , in), xi = xi1
1 xi2

2 · · ·xin
n and Ai is a constant matrix. Then we also

consider the Lie algebra LAi defined by
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LAi = Lie subalgebra of g�(n,C) generated by Ai, |i| ≥ 0.

Lemma 10.1. If A(·) : R
n → R

n×n is analytic, then L{A(x)} = LAi .

Proof. If {Bi}1≤i≤K is a basis of LAi , then

A(x) =
K

∑
i=1

pi(x)Bi,

where pi(x) exists for all x ∈ R
n by the analyticity of A(·). Hence we have A(x) ∈

L{Ai} and so L{A(x)} ⊆ L{Ai}.
For the converse, we show that Ai ∈ L{A(x)} for each i. Clearly, A0 = A(0) so it

is true for i = 0. We prove that A1,0,··· ,0 ∈ L{A(x)}, the others being similar. Now,

A1,0,··· ,0 =
∂

∂x1
A(x)

∣∣∣∣
x=0

= lim
h→0

A(hei)−A(0)
h

.

If {B′
i}1≤i≤M is a basis of L{A(x)}, then

A1,0,··· ,0 = lim
h→0

M

∑
i=1

qi(h)B′
i

for some functions qi(h). Since the B′
i’s are linearly independent, each limit

limh→0 qi(h) must exist, so that A1,0,··· ,0 ∈ L{A(x)}. �

Remark 10.1. (a) The Lie algebra L{A(x)} is defined even if A(·) is not analytic, so
this is the more general case.

(b) L{A(x)} depends on the representation (10.3); however, different representa-
tions are equivalent in the sense that they operate on R

n to give the same solutions.
Hence we denote the Lie algebra of (10.1) by LA.

Theorem 10.1. Any nonlinear system of the form (10.1) can be written (in a suitable
basis) as

ẋ = S(x)x +

⎛
⎜⎜⎜⎝

Γ1(x)
Γ2(x)

. . .
Γr(x)

⎞
⎟⎟⎟⎠x

where (S̃(x), S̃(x)) = 0, S̃(x) = [S(x),S(x)] and Γi belongs to one of the simple Lie
algebras An,Bn,Cn,Dn,G2,F4,E6,E7 or E8 where (·, ·) denotes the Killing form
of LA.
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Proof. Let r be the radical of LA and let

LA = r+m

be a Levi decomposition of LA, where m is a semi-simple subalgebra. (Note that
the sum is not direct, so the decomposition is not unique.) The semi-simple part m
may be written

m = m1 ⊕·· ·⊕mr

as a direct sum of simple Lie algebras mi (which are ideals in LA). The condition
(S̃(x), S̃(x)) = 0 follows from Cartan’s criterion for semi-simplicity. �

Theorem 10.2. Any system
ẋ = A(x)x

where LA is generates a simple Lie algebra can be written in one of the following
forms:
Type A:

ẋ = A(x)x, tr (A(x)) = 0.

Type B:

ẋ =

⎛
⎝ 0 u(x) v(x)

−vT (x) A11(x) A12(x)
−uT (x) A21(x) −AT

11(x)

⎞
⎠x,

AT
12(x) = −A12(x), AT

21(x) = −A21(x).

Type C:

ẋ =
(

A11(x) A12(x)
A21(x) −AT

11(x)

)
x,

AT
12(x) = A12(x), AT

21(x) = A21(x).

Type D:

ẋ =
(

A11(x) A12(x)
A21(x) −AT

11(x)

)
x,

AT
12(x) = −A12(x), AT

21(x) = −A21(x).

Type G2, where µ = λ1(x)+ λ2(x),r =
√

2:
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ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −rb1(x) −rb2(x) −rb3(x) ra1(x) ra2(x) ra3(x)
−ra1(x) λ1(x) c1(x) c3(x) 0 b3(x) −b2(x)
−ra2(x) c2(x) λ2(x) c5(x) −b3(x) 0 b1(x)
−ra3(x) c4(x) c6(x) −µ b2(x) −b1(x) 0
rb1(x) 0 −a3(x) a2(x) −λ1(x) −c2(x) −c4(x)
rb2(x) a3(x) 0 −a1(x) −c1(x) −λ2(x) −c6(x)
rb3(x) −a2(x) a1(x) 0 −c3(x) −c5(x) µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x.

Types F4,E6,E7,E8:

ẋ =

(
r

∑
i=1

ai(x)Xi +
s

∑
i=1

bi(x)Yi

)
x

where Xi,Yj satisfy

[Xi,Yj] =
s

∑
p=1

xi
p jYp, 1 ≤ i ≤ r, 1 ≤ j ≤ s

[Yα ,Yβ ] =
r

∑
i=1

xi
αβ Xi, 1 ≤ α,β ≤ s

where Xi = (xi
αβ ) and Xi,Yj can be realised on a 16-dimensional space for type F4

(with r = 36,s = 16) or a 27-dimensional space for types E6,E7,E8. For E8,r =
120,s = 128 and E6,E7 are subalgebras of dimensions 78 and 133, respectively.

(See Appendix B.)

Example 10.1. The system

ẋ1 = 4x1 − x2x3 + x4
2x3

ẋ2 = −x1 + x1x3 − x2
1x3

ẋ3 = x1 + 4x3 − x1x4
2 + x2

1x2

can be written⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠=

⎛
⎝ 4 0 0

−1 0 0
1 0 4

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠+

⎛
⎝ 0 −x3 x4

2
x3 0 −x2

1
−x4

2 x2
1 0

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠ .

The matrix

⎛
⎝ 4 0 0

−1 0 0
1 0 4

⎞
⎠ belongs to a trivial solvable Lie algebra and

⎛
⎝ 0 −x3 x4

2
x3 0 −x2

1
−x4

2 x2
1 0

⎞
⎠ belongs to the simple Lie algebra g3 generated by the matrices
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M1 =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , M2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , M3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Note that
[Mi,Mj] = Mk

where (i, j,k) is an even permutation of 1,2,3.

10.3 Lie Groups and the Solution of the System

In this section we consider solution of the equation

ẋ = A(x)x, x(0) = x0

and show that it is given by

x(t;x0) = exp[A(t;x0)]x0,

where A(t;x0) ∈ LA for each t,x0; i.e. the solution can be regarded as an operation
of the Lie group of the Lie algebra LA as a transformation group on R

n, since we
have

exp[A(t;x0)]x0 = exp{A(t2;exp[A(t1;x0)]}exp[A(t1;x0)]x0, for t = t1 + t2.

Theorem 10.3. Consider the nonlinear system

ẋ = A(x)x, x(0) = x0 ∈ R
n

where A : R
n → R

n2
is locally Lipschitz. Then the solution for each t (for which the

solution exists) can be written in the form

x(t;x0) = exp[A(t;x0)]x0

where A(t;x0) ∈ LA for each t,x0. Moreover we have

exp[A(t;x0)]x0 = exp{A(t2;exp[A(t1;x0)]}exp[A(t1;x0)]x0, for t = t1 + t2.

Proof. Since the last equation is obvious from the group property of the solutions of
differential equations, we need only prove the first part. As we know from Chapter
2, we can replace the system (on any compact time interval on which the solutions
exist) by a sequence of linear, time-varying approximations

ẋ[1](t) = A(x0)x[1](t)

ẋ[i](t) = A(x[i−1](t))x[i](t), x[i](0) = x0, i ≥ 2
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the solutions of which converge uniformly on compact time intervals on which the
nonlinear system has a solution. Now recall that for any time-varying system

ẋ = B(t)x, x(0) = x0,

where B(·) : R → R
n2

is continuous, we have

x(t) = lim
n→∞

{
exp
[ t

n
B
(
(n−1)

t
n

)]
exp
[ t

n
B
(
(n−2)

t
n

)]
· · ·

exp
[ t

n
B
( t

n

)]
exp(B(0))x0

}

(see Chapter 3). Applying this to each term in the sequence x[i] above and
taking a diagonal subsequence, the result follows from the Campbell-Hausdorff
formula, which we recall says that if A and B are sufficiently close to 0, then
C = ln(expAexpB) is given by

C = B +
∫ 0

1
g[exp(tA dA)exp(A dB)](A)dt

where

g(z) =
lnz

z−1

= 1 +
1
2
(1− z)+

1
3
(1− z)2 + · · ·

=
∞

∑
�=0

1
�+ 1

(−1)�(z−1)�.

�

Of course, this result states that the solution of an equation of the form (10.3) is
given by

x(t;x0) = γ(t;x0)x0

where γ(t;x0) = exp[A(t;x0)] is a smooth curve in the Lie group GA of LA.

Example 10.2. Any system of the form

ẋ =

⎛
⎜⎝

a11(x) · · · a1n(x)
...

. . .
...

an1(x) · · · ann(x)

⎞
⎟⎠x, x(0) = x0

where ai j(x) = −a ji(x). that is A is skew-symmetric, has a solution of the form

x(t;x0) = O(t;x0)x0
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where O(t;x0) is an orthogonal matrix for each t. Thus, all systems of this form
generate rotations of x0 for each t. Of course, in this case, this result follows also
from the elementary fact that the norm ‖x(t;x0)‖ is invariant; for

d
dt
‖x(t;x0)‖2 =

n

∑
i=1

xiẋi =
n

∑
i=1

n

∑
j=1

xiai j(x)x j = 0.

Example 10.3. For any system which satisfies ∑n
i=1 aii = 0, i.e. A has trace 0, the

solution is of the form
x(t;x0) = D(t;x0)x0

where det[D(t;x0)] = 1 for each t, since in this case the Lie algebra LA is s�(n) and
GA is SL(n). For example, the equation

(
ẋ1

ẋ2

)
=
(

1 x1

0 −1

)(
x1

x2

)
, x(0) =

(
x10

x20

)

has solution

x1(t) = exp(t)exp{[1− exp(−t)]x20x10}
x2(t) = exp(−t)x20

so that

x(t) =
(

exp(t) exp(t)(exp{[1− exp(−t)]x20x10}) x10
x20

0 exp(−t)

)(
x10

x20

)
.

Note that we have

exp{[1− exp(−t)]x20}−1)/x20 → 1− exp(−t)

as x20 → 0, and so this function is well-defined. Note however that, just as with A(x),
this representation of the solution is not unique.

Example 10.4. Let J denote the 2n×2n matrix

J =
(

0 I
−I 0

)
.

A symplectic matrix A is one which satisfies the relation

AT JA = J.

Differentiating this gives the Lie algebra sp(n) of infinitesimal symplectic matrices
B which satisfy the equation

JB + BTJ = 0.
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Thus any differential equation of the form

ẋ =
(

A11(x) A12(x)
A21(x) −AT

11(x)

)
, x(0) = x0, x0 ∈ R

2n,

where A12(x),A21(x) ∈ R
n2

are symmetric, has solutions of the form

x(t;x0) =
(

B11(t;x0) B12(t;x0)
B21(t;x0) B22(t;x0)

)
x0,

where

BT
11B21 −BT

21B11 = 0,

BT
11B22 −BT

21B12 = I

−BT
22B21 + BT

12B22 = 0.

10.4 Solvable Systems

In this section we shall generalise some results of Chapter 3 on solvable systems.
Thus, consider again a system of the form (10.3) where the Lie algebra LA of the
system is solvable. Then all the matrices A(x) can be put simultaneously in triangu-
lar form. Therefore we can write the system as

ẋ =

⎛
⎜⎜⎜⎝

a11(x) a12(x) · · · a1n(x)
a21(x) · · · a2n(x)

. . .
...

ann(x)

⎞
⎟⎟⎟⎠x.

From the results of Chapter 2 we know that the solution of this system through the
initial point x0 is given by the limit of the sequence of systems

ẋ[i](t) =

⎛
⎜⎜⎜⎝

a11(x[i−1](t)) a12(x[i−1](t)) · · · a1n(x[i−1](t))
a21(x[i−1](t)) · · · a2n(x[i−1](t))

. . .
...

ann(x[i−1](t))

⎞
⎟⎟⎟⎠x[i](t), x[i](0) = x0.

We can solve each of these upper triangular time-varying systems explicitly to
obtain

x[i](t) = S(x[i−1](·))(t), x[0](t) = x0,

where

S(ξ (t)) =

⎛
⎜⎜⎜⎝

σ1(ξ (t))
σ2(ξ (t))

...
σn(ξ (t))

⎞
⎟⎟⎟⎠
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and

σn(ξ (t)) = exp

(∫ t

0
ann(ξ (s))ds

)
x0n

σk(ξ (t)) = exp

(∫ t

0
akk(ξ (s))ds

)
x0k +

∫ t

0

n

∑
�=k+1

ak�(ξ (s))σ�(ξ (s))

×exp

(
exp

(∫ t

s
akk(ξ (τ))dτ

))
ds,

n−1 ≥ k ≥ 1.

Hence, iterating this sequence gives the solution

x[i](t) = Si(x[0])(t).

We can obtain an explicit expression for A(t;x0) in this case:

σn(ξ (t)) = exp

(∫ t

0
ann(ξ (s))ds

)
x0 = αnn(ξ ;0,t)x0n, say,

σn−1(ξ (t)) = αn−1,n−1(ξ ;0,t)x0,n−1 +∫ t

0
an−1,n(ξ (s))αn−1,n−1(ξ ;s, t)x0nds

= αn−1,n−1(ξ ;0,t)x0,n−1 + αn−1,n(ξ ;0,t)x0,n, say,

...

and so we can write
S(ξ (·))(t) = A(ξ ;t)x0,

where

A(ξ ;t) =

⎛
⎜⎜⎜⎝

α1,1(ξ ;0,t) α1,2(ξ ;0,t) · · · α1,n(ξ ;0,t)
. . .

...
...

αn−1,n−1(ξ ;0, t) αn−1,n(ξ ;0,t)
αn,n(ξ ;0,t)

⎞
⎟⎟⎟⎠

and therefore
A(t;x0) = lim

i→∞
[Si(x[1](·))A(x[0]; t)x0].

This gives the following stability result, for example.

Theorem 10.4. Let K > 0,M > 0 and suppose that

aii(x) ≤−εi < 0, 1 ≤ i ≤ n
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and put δ = mini(εi/2), α = mini(εi − δ ). Moreover, suppose that

|ak�| ≤ L, k 
= �, ‖x‖ ≤ K.

Then if
(a) nL/α < 1
(b) |x0k| ≤ (1−nL/α)M, 1 ≤ k ≤ n
(c) M ≤ K/n1/2

the system is asymptotically stable in the ball {x : ‖x‖ ≤ K}.

Proof. We assume that |σ�(t)| ≤ N exp(−δ t), k + 1 ≤ � ≤ n. This is certainly true
for � = n by the above assumptions. Also we have

|σk(t)| ≤ exp(−εkt)|x0k|+
∫ t

0

n

∑
�=k+1

|ak�(ξ )||σ�(s)|exp[−(t − s)εk]ds

≤ exp(−εkt)|x0k|+ LM(n− k)exp(−εkt)
∫ t

0
exp(−δ s)exp(sεk)ds

≤ LMnexp(−δ t)exp[−t(εk − δ )]
∫ t

0
exp[(−δ + εk)s]ds

≤ exp(−εkt)|x0k|+ LMn
exp(−δ t)

α
≤ M exp(−δ t)

by the assumptions of the theorem. It follows that if we have

‖x[i−1](t)‖ ≤ K

then we have
‖x[i](t)‖ ≤ K

and in fact
‖x[i](t)‖ ≤ K exp(−δ t).

However, the same argument shows that ‖x[0](t)‖ ≤ K and so the result follows by
induction and the convergence of the sequence x[i](t). �

10.5 The Killing Form and Invariant Spaces

The Killing form of a Lie algebra is given by (see Appendix B) the symmetric bi-
linear form

(X ,Y ) = Tr(ad X ,ad Y ).

Since the Killing form is important in determining the structure of semi-simple Lie
algebras we consider next the determination of the Killing form of the Lie algebra
La generated by the differential equation
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ẋ =

(
∞

∑
|i|=0

Aix
i

)
x.

Recall that this is the same as the Lie algebra LAi . We suppose that, as a vector
space, dim LA = M. Since the dimension of the vector space spanned by {Ai} is no
larger than M we suppose that its dimension is K ≤ M. Thus, there are K linearly
independent matrices in the set {Ai} - denote them by C1, · · · ,CK . If K = M then
we have a basis of LA; if not, we can extend them to a basis of LA by adding the
matrices CK+1, · · · ,CM , where

Cj = [Cj1 ,Cj2 ], K + 1 ≤ j ≤ M,

for some j1, j2 < j. Let
[Cα ,Cβ ] = ∑

γ
dγ

αβCγ ;

i.e. dγ
αβ are the structure constants of LA with respect to the basis C1, · · · ,CM .

Then we have:

Lemma 10.2. The Killing form of LA is given by

(X ,Y ) = ∑
i

∑
�

∑
k

∑
γ

y�xkdγ
�id

i
kγ ,

where X = ∑xkCk, Y = ∑y�C�.

Proof. Suppose that
[
∑xkCk,

(
∑y�C�,Ci

)]
= ∑

j
ai jCj.

Then the left hand side equals

∑
�

∑
k

y�xk[Ck, [C�,Ci]] = ∑
�

∑
k

y�xk ∑
γ

dγ
�i[Ck,Cγ ]

= ∑
�

∑
k

∑
γ

y�xkdγ
�i ∑

j
d j

kγCj

so that
a ji = ∑

�
∑
k

∑
γ

y�xkdγ
�id

j
kγ

and the result follows. �

Corollary 10.1. LA is semi-simple if and only if the form
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((x1, · · · ,xM),(y1, · · · ,yM) = ∑
i

∑
�

∑
k

∑
γ

y�xkdγ
�id

j
kγ

is non-degenerate.

Proof. This follow from the lemma and Cartan’s criterion for semi-simplicity (see
Appendix B). �

Example 10.5. Define the matrices

M1 =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠

M2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠

M3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

The matrices are linearly independent and involutive in the sense that

[Mi,Mj] = Mk,

where {i, j,k} is an even permutation of {1,2,3}. Hence we have dim L{M1,M2,M3} =
3 and the structure constants are non-zero only if i, j,k are distinct and hence a per-
mutation of {1,2,3}. Clearly,

(X ,Y ) = −2(x1y1 + x2y2 + x3y3)

where
X = x1M1 + x2M2 + x3M3, Y = y1M1 + y2M2 + y3M3

and so L{M1,M2,M3} is semisimple (in fact, it is simple). Consider the system

ẋ = [ f1M1 + f2M2 + f3M3]x.

By Theorem 10.3, this has a solution of the form

x(t) = exp[A(t;x0)]x0,

where

A(t;x0) =
3

∑
i=1

αi(t,x0)Mi ∈ L{M1,M2,M3}

for some functions α1, α2, ,α3. In fact, the system generates rotations as can be
seen directly:
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d
dt
‖x(t)‖2 = 2

3

∑
i=1

xiẋi

= 2x1( f2x3 − f3x2)+ 2x2(− f1x3 + f3x1)+ 2x3( f1x2 − f2x1)
= 0.

Hence, spheres are invariant for this dynamical system. Now suppose that f =
( f1, f2, f3) is of the form

f =
(

∂V
∂x1

,
∂V
∂x2

,
∂V
∂x3

)
= gradV

for some function V . Then the equation becomes

ẋ =
3

∑
i=1

∂V
∂xi

Mix

and the level curves of V are also invariant, i.e. dV/dt = 0, as can easily be checked.
Hence for this system, the trajectory starting at x0 remains in the set

{x : ‖x‖ = ‖x0‖,V (x) = V (x0)}.

Consider now the more general system of the form

ẏ =
3

∑
i=1

hi(y)Eiy,

where [Ei,E j] = Ek for an even permutation {i, j,k} of {1,2,3}. Then

L{E1,E2,E3} ≈ L{M1,M2,M3}

and so there exists P such that

Ei = P−1MiP, 1 ≤ i ≤ 3.

Hence if we define the new coordinates x = Py, then we have

ẋ =
3

∑
i=1

hi(P−1x)Mix

and if there exists a function V (x) such that

(h1(P−1x),h2(P−1x),h3(P−1x)) =
(

∂V
∂x1

,
∂V
∂x2

,
∂V
∂x3

)
,

then the system will be invariant on the level curves V (x) = V (x0). For this we must
have
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∂hi(P−1x)
∂x j

=
∂h j(P−1x)

∂xi
, i 
= j,

i.e.
∂hi(y)

∂y
P

′
j =

∂h j(y)
∂y

P
′
i , i 
= j,

where P
′
i is the ith column of P−1. Hence we have proved:

Theorem 10.5. Given a system of the above form where [Ei,E j] = Ek for an even
permutation {i, j,k} of {1,2,3}, if the functions hi satisfy the condition

∂hi(y)
∂y

P
′
j =

∂h j(y)
∂y

P
′
i , i 
= j, (10.4)

where P is given by the condition

Ei = P−1MiP, 1 ≤ i ≤ 3,

then there exists a function W(y) such that the trajectories of the system with initial
state y0 lie in the set

{y : ‖Py‖ = ‖Py0‖, W (y) = W (y0)}.

Example 10.6. Consider the system

ẏ =

⎡
⎣h1(y)

⎛
⎝ 0 −2/3 1/3

0 −1 1
0 −2 1

⎞
⎠+ h2(y)

⎛
⎝ −1 0 2/3

−3/2 0 1/2
−3 0 1

⎞
⎠+

h3(y)

⎛
⎝ 0 2/3 −1/3

−3/2 0 1/2
0 0 0

⎞
⎠
⎤
⎦y

.= (h1(y)E1 + h2(y)E2 + h3(y)E3]y.

The matrix P given by

P =

⎛
⎝3 0 −1

0 −2 1
0 0 1

⎞
⎠

satisfies the condition
PEiP

−1 = Mi, 1 ≤ i ≤ 3

and the conditions in (10.4) become
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−1
2

∂h1

∂y2
=

1
3

∂h2

∂y1

1
3

∂h1

∂y1
+

1
2

∂h1

∂y2
+

∂h1

∂y3
=

1
3

∂h3

∂y1

1
3

∂h2

∂y1
+

1
2

∂h2

∂y2
+

∂h2

∂y3
= −1

2
∂h3

∂y2
.

These equations are satisfied by the functions

h1(y) = 6y1 −2y3,

h2(y) = −12y2 + 6y3,

h3(y) = 6y2
3,

as can be easily checked. Substituting x = Py, we obtain

∂V
∂x1

= 2x1

∂V
∂x2

= 6x2

∂V
∂x3

= 6x2
3,

from which we see that V is given by

V (x) = x2
1 + 3x2

2 + 2x3
3,

i.e.

W (y) = V (x)
= V (Py)
= (3y1 − y3)2 + 2y3

3 + 3(−2y2 + y3)2,

and so for the system

ẏ =

⎡
⎣(6y1 −2y3)

⎛
⎝ 0 −2/3 1/3

0 −1 1
0 −2 1

⎞
⎠+(−12y2 + 6y3)

⎛
⎝ −1 0 2/3

−3/2 0 1/2
−3 0 1

⎞
⎠+

6y2
3

⎛
⎝ 0 2/3 −1/3

−3/2 0 1/2
0 0 0

⎞
⎠
⎤
⎦y

i.e.
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ẏ1 = 8y1y2 −4y1y3 −
(

20
3

)
y2y3 + 4y2y2

3 +
(

10
3

)
y2

3 −2y3
3

ẏ2 = 12y1y2 −3y1y3 −9y1y2
3 −4y2y3 + y2

3 + 3y3
3

ẏ3 = 24y1y2 −12y1y3 −8y2y3 + 4y2
3,

the sets
{y : (3y1 − y3)2 + y2

3 +(−4 + y3)2 = constant }
and

{y : (3y1 − y3)2 + 2y2
3 + 3(−2y2 + y3)2 = constant }

are invariant.

10.6 Compact Lie Algebras

We next consider systems which generate compact Lie algebras. For the general
theory of compact Lie algebras, see Appendix B. As one would expect, compactness
of a Lie algebra has consequences for stability and invariance. First we have

Lemma 10.3. If the system
ẋ = A(x)x (10.5)

generates a compact Lie algebra LA then it is stable. Moreover, the system

ẏ = −αy + A(y)y (10.6)

is asymptotically stable.

Proof. The Lie group GA generated by LA is compact and the solution of (10.5) is
of the form

x(t) = exp[A(t;x0)]x0

by Theorem 10.3, where exp[A(t;x0)] ∈ GA (and A(t;x0) ∈ LA). Since GA is com-
pact,

‖x(t)‖ ≤ K‖x0‖
for some K independent of x0 and hence we have stability.

In (10.6), put
z = exp(αt)y.

Then
ż = A(exp(−αt)z)z

and A generates a compact Lie algebra, so the system is stable. Hence, y =
exp(−αt)z is asymptotically stable. �
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Lemma 10.4. Let A and B be two square matrices and let K = ker B. Suppose that
K1 ⊆ K is the largest invariant subspace of K under A, i.e. AK1 ⊆ K1. Then

exp(A + B)x = (expA)x,

for al x ∈ K1.

Proof. Use the power series expansion of exp(A + B) and note that, for any term
in the expansion which contains at least one B, it must be zero when operating on
x ∈ K1 since K1 is invariant under A. �

Theorem 10.6. Consider the nonlinear differential equation

ẋ = A(x)x (10.7)

and suppose that {A(x)} generates a semi-simple Lie algebra LA which has a Car-
tan decomposition

LA = t0 +p0.

Let ker p0 denote the set

ker p0 = ∩{ker B : B ∈ p0}

and let K be the largest invariant subspace of ker p0 under t0, i.e.

AK ⊆ K

for all A ∈ t0. Then the solutions of (10.7) are stable in K and we can choose appro-
priate coordinates so that the equation has the form

(
ẏ1

ẏ2

)
=
(

A1(y) A2(y)
A3(y)

)(
y1

y2

)

where {A1(y)} generates a compact Lie algebra and

(
y1

0

)

parameterises K.

Proof. By Theorem 10.3 and the decomposition of LA, we may write the solution
in the form

x(t) = exp[A1(t;x0)+ A2(t;x0)]x0

where A1 ∈ t0 and A2 ∈ p0. If x0 ∈ K then, by Lemma 10.6, we have

x(t) = exp[A1(t;x0)]x0
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and so stability follows from lemma 10.6, and the decomposition of the system fol-
lows by standard linear algebra. �

Note that we can obtain a similar result in the general case where LA is not neces-
sarily semi-simple. We simply write it in the form

LA = g+ s

where g is semisimple and s is solvable. Then if g = t0 +p0 is a Cartan decomposi-
tion of g we may replace p0 by p0 + s in the theorem.

Example 10.7. Consider the system

ẋ = [x1A1 + x2
1x4A2 + x3

2A3 + x2x3A4 + x1x3x4A5]x

where

A1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 −1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

A3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ , A4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
1 −1 0 0 1
0 0 0 −1 0
1 −1 0 0 1

⎞
⎟⎟⎟⎟⎠

and

A5 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Then,
LA = L {A1,A2,A3,A4,A5}

which has basis⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 −1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,
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⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
1 −1 0 0 1
0 0 0 −1 0
1 −1 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0
2 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 −1 0 0 1
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 −1
−1 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
−2 2 0 0 −2
0 0 0 2 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
−1 1 0 0 −1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The Killing form is

K(ξ ,η) = −6ξ1η1 −6ξ2η2 −6ξ6η6 −56ξ10η10 + 14ξ4η4 + 14ξ5η5,

as can be easily checked by using a computer algebra package. Since this is degener-
ate, the Lie algebra LA of the system is not semi-simple so we cannot use Theorem
10.6 directly - we must use the remark following that theorem; i.e. we find a semi-
simple subalgebra. By examining the structure constants we see that the subalgebra
generated by the basis elements

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 −1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0
2 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

is compact and is isomorphic to the Lie algebra {M1,M2,M3} above. By a change
of coordinates, therefore, we can write these matrices in the form

⎛
⎜⎜⎝

0 1 0
−1 0 0 ∗
0 0 0

∗ ∗

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 1
0 0 0 ∗
−1 0 0

∗ ∗

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0
0 0 1 ∗
0 −1 0

∗ ∗

⎞
⎟⎟⎠ .

Such a map is given by y = P−1x, where



10.6 Compact Lie Algebras 189

P =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

The system then becomes

ẏ = [x1B1 + x2
1x4B2 + x3

2B3 + x2x3B4 + x1x3x4B5]y

where

B1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

B3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , B4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

and

B5 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

i.e.

ẏ =

⎛
⎜⎜⎜⎜⎝

0 y3 0 (y1 + y3)3 0
−y3 0 y2

3y4 0 (y1 + y3)(y1 + y5)
0 −y2

3y4 0 0 0
0 0 0 −(y1 + y3)(y1 + y5) y2y3y4

0 0 0 y2y3y4 (y1 + y3)(y1 + y5)

⎞
⎟⎟⎟⎟⎠y.

It follows that the sphere y2
1 + y2

2 + y2
3 =const., y4 = y5 = 0 is invariant under the

dynamics of this equation and so the sets

{(x1,x2,x3,x4,x5) : 2x2
1 −2x1x2 + x2

2 + x2
3 = constant,

x4 = 0, x1 − x2 + x5 = 0}

are invariant for the original system, i.e. the system
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ẋ1 = −x2
1x3x4

ẋ2 = x1x3 − x2
1x3x4 + x3

2x4

ẋ3 = x2
1 − x1x2 + x3

1x4 +−x2
2x5 + x2x2

5

ẋ4 = −x2x4x5 + x2
1x3x4 − x1x2x3x4 + x1x3x4x5

ẋ5 = x1x3 + x3
2x4 + x1x2x5 − x2

2x5 + x1x3x2
4.

We see, therefore, that a careful study of the Lie algebra generated by a differential
equation, involving a Cartan decomposition of the algebra can give some insight
into the invariant sets of the system.

10.7 Modal Control

In the classical theory of control and servomechanisms, an effective technique for
linear systems

ẋ = Ax + bu

is to diagonalise A (or reduce it to Jordan form) by changing the state variables to

y = P−1x

so that, in the y-coordinates, we have

ẏ = Λy +(P−1b)u,

where
Λ = P−1AP.

We can then choose the control u (if possible) in a simple way to stabilise the system.
In this section, we generalise this approach to nonlinear systems of the form

ẋ = A(x)x + b(x)u

by using the above Lie algebraic methods. Thus, let LA denote the Lie algebra
generated by the system and let

LA = s+g

be a Levi decomposition of LA. Here, s is the solvable part and g is the semi-simple
part of LA. (This is not unique, of course.) Now choose a Cartan decomposition

g = h+ ∑
α∈Σ

gα

of LA, where h is a Cartan subalgebra and the root spaces gα are one-dimensional,
where Σ is the set of non-zero roots. Thus, we can write the system in the form
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ẋ = S(x)x + H(x)x + ∑
α∈Σ

eα(x)Eα x + b(x)u

where S(x) is upper triangularisable and H(x) is diagonalisable (simultaneously,
independent of x). Let P be an invertible matrix which diagonalises H(x), i.e. if
y = P−1x, then

P−1H(x)P = Λ(x) = diag (λ1(x), · · · ,λn(x))

and the system becomes

ẏ = Λ(Py)y + R(y)y + P−1b(Py)u, (10.8)

where

R(y) = P−1

(
S(Py)+ ∑

α∈Σ
eα(y)Eα

)
P.

Suppose that there exists a control u = u(y) such that

n

∑
i=1

λi(Py)y2
i + yT P−1b(Py)u(y)≤−µ‖y‖2

for some µ > 0. Then we clearly have

1
2

d
dt
‖y‖2 = yT ẏ

= −µ‖y‖2 + yT R(y)y,

and so

‖y‖2 = exp(−2µt)‖y0‖2 +
∫ t

0
2exp[−2µ(t − s)]yT R(y)yds

≤ exp(−2µt)‖y0‖2 +
∫ t

0
2exp[−2µ(t − s)]‖y(s)‖2‖R(y(s))‖ds.

If we assume that
‖R(y)‖ ≤ λ

for y ∈ B0,∆ = {x : ‖x‖ ≤ ∆} then, by Gronwall’s inequality, we have

‖y‖2 ≤ exp[−2(µ −λ )t]‖y0‖2

and so we have stability if λ < µ . The original system will therefore be stable in the
set

{x : xT (PT )−1P−1x ≤ ∆}.
and we have proved:
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Theorem 10.7. Consider the control system

ẋ = A(x)x + b(x)u

and suppose that LA = s+g = s+h+∑α∈Σ gα . Then we can write the equation in
the form

ẋ = H(x)x + R(x)x + b(x)u

where H(x)∈ h, R(x)∈ s+∑α∈Σ gα . Suppose that P is a non-singular matrix which
diagonalises H(x) (independently of x) and that the pair (P−1H(x)P,P−1b(x)) is
exponentially stabilisable in the sense that we can choose a control u = u(y) so that
(10.8) holds for some µ > 0. Moreover, if

‖P−1R(Py)P‖ ≤ λ

for y ∈ B0,∆ and λ < µ , then the system is exponentially stabilisable in {x :
xT (PT )−1P−1x ≤ ∆} and

‖x‖2 ≤ exp[−2(µ −λ )t]‖P‖2‖x0‖2,

where ‖Px‖2 ≥ ρ2‖x‖2.

Example 10.8. Consider the system
⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎛
⎝ 3− x2

1 −4 + x2
2 x2

2
x2

2 −1− x2
1 x2

2
−5− x2

2 4− x2
2 −2− x2

1− x2
2

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠

+(1 + x2
1 sin2 x3)

⎛
⎝ 1/3

−1/6
−2/3

⎞
⎠u

=

⎛
⎝ 3− x2

1 −4 0
0 −1− x2

1 0
−5 4 −2− x2

1

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠

+x3
2

⎛
⎝ 1 1 1

1 0 1
−1 −1 −1

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠

+(1 + x2
1 sin2 x3)

⎛
⎝ 1/3

−1/6
−2/3

⎞
⎠u.

The matrix

P =

⎛
⎝ 1 0 1

1 0 0
−1 1 −1

⎞
⎠
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diagonalises the first matrix on the right hand side of the equation, so that if y = P−1x
then we have

ẏ =

⎛
⎝−1− x2

1 0 0
0 −2− x2

1 0
0 0 3− x2

1

⎞
⎠y + x2

2

⎛
⎝0 1 0

0 0 0
1 0 0

⎞
⎠y

+(1 + x2
1 sin2 x3)P−1

⎛
⎝ 1/3

−1/6
−2/3

⎞
⎠u.

The Lie algebra of this system is LA = s+g where g = A2 and s is generated by
⎛
⎝ 0 0 0

0 0 0
0 0 3

⎞
⎠x2

1.

However, it is better to combine this part into the Cartan subalgebra generated by
⎛
⎝−1− x2

1 0 0
0 −2− x2

1 0
0 0 3 + 2x2

1

⎞
⎠

since the combined system is stable everywhere. If we choose the control

u =
1

1 + x2
1 sin2 x3

(−12 12 0
)

x

=
12

1 + x2
1 sin2 x3

(−1 1 0
)

Py,

then we obtain the equation

ẏ =

⎛
⎝−1− x2

1 0 0
0 −2− x2

1 0
0 0 −3− x2

1

⎞
⎠y + y.

In this case we have µ = 1 and
∥∥∥∥∥∥x2

2

⎛
⎝ 0 1 0

0 0 0
1 0 0

⎞
⎠
∥∥∥∥∥∥= x2

2

and the system is stable in the region ‖x‖2 ≤ δ < 1 for some δ . By choosing the
control to move the poles of the Cartan subalgebra further into the left-half plane,
we can obtain a larger region.
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10.8 Conclusions

In this chapter we have studied systems by using the theory of Lie algebras and their
decompositions. We have seen that the Lie algebra of a system generates a Lie group
which operates as a transformation group on the state-space, so that the solutions are
represented by continuous curves in the Lie group operating on the initial condition.
Thus the system solutions have the properties of the Lie group so that studying the
Lie algebra of the system can give some insight into the invariant sets of solutions.
Compactness of the Lie algebra (or group) is strongly connected with the stability
of the system and we can use Cartan decompositions of the system Lie algebra to
obtain a generalization of modal control to nonlinear systems. We can also use the
theory to study chaos in high-dimensional systems (see [3]).
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Chapter 11
Global Analysis on Manifolds

11.1 Introduction

In this chapter we shall consider the non-local theory of systems – i.e. the theory of
sections of the tangent bundle of a differentiable manifold which are called vector
fields. Most control systems are described in terms of local operating points, i.e.
they are linearised about some equilibrium point and then local feedback control is
applied to hold this system ‘near’ this point. (Such is the case, for example, with air-
craft systems, where the operating point is called a ‘trim condition’.) Thus, suppose
that

ẋ = f (x,u) (11.1)

is some local representation of some system on a manifold and suppose that (xd ,ud)
is an equilibrium point, i.e.

f (xd ,ud) = 0.

Then the control ud keeps the system at the point xd . Let

y = x− xd, v = u−ud.

Then, by Taylor’s theorem, we have

ẋ ∼= f (xd ,ud)+
∂
∂x

f (xd ,ud)(x− xd)+
∂

∂u
f (xd ,ud)(u−ud)+ · · · ,

i.e.
ẏ = Ay + Bv (11.2)

where

A =
∂
∂x

f (xd ,ud),
∂

∂u
f (xd ,ud).

This is a local linear approximation to (11.2) ‘near’ the operating point (xd ,ud). The
system (11.2) is then controlled by standard linear techniques.

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 195–217.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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There are various questions which naturally arise from the above considerations.
Firstly, given a number of local versions of the system (i.e. operating points), how do
we switch smoothly between these operating values? Secondly, given a number of
local representations of a system on a manifold, how do we reconstruct the manifold
and the global vector field from the local models? We shall tackle these problems
in this chapter and show how to obtain information about the underlying state-space
(e.g. its topology and differentiable structure) from the local models.

11.2 Dynamical Systems on Manifolds

Let X be an n-dimensional differentiable manifold and let U be an m-dimensional
vector space, regarded as a differentiable manifold in the obvious way. Then we
form the product manifold X ⊕U and let T (X ⊕U ∼= T (X)⊕T(U) ∼= T (X)⊕U be
its tangent bundle. Let

P : T (X)⊕U → T (X)

be the projection. Then a control system (with controls U) on X is a section of the
bundle T (X ⊕U) followed by P. (See Figure 11.1.)

X

T X

U
q

p

x=f(x,u)

y=g(y,u)

.

.
y

y

u

1

2

T Xq

U

U

p

u

x
2

x
1

Fig. 11.1 Global control systems

Thus, in local coordinates x, a control system has the form

ẋ = f (x,u). (11.3)

We shall assume that the system has a local operating point (xd ,ud) at xd ∈ X , i.e.
for certain xd ∈ X , there exists a control ud such that

f (xd ,ud) = 0.
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Then, as seen above, at xd ∈ X , we have a local linear approximation

ẋ = A(xd ,ud)x + B(xd,ud)u (11.4)

in terms of the local coordinate.

11.3 Local Reconstruction of Systems

In this section we shall consider the problem of the local reconstruction of a system
of the form (11.3) from a number of local systems (11.4). Suppose we have some
open subset O of R

n+m together with a finite open covering {Oi} of O such that
a linear system of the form (11.4) is defined on each Oi. We write the ith linear
system as

ẋ(i) = A(xdi
,udi

)x(i) + B(xdi
,udi

)u(i), (11.5)

where (xdi ,udi) ∈ Oi, 1 ≤ i ≤ K. We shall assume that the function f (x,u) has a
polynomial approximation:

f (x,u) =
K

∑
|i|=0,|j|=0

αijx
iuj

for some K, where
xi = xi1

1 · · ·xin
n , uj = u j1

1 · · ·u jm
m

and αij is an n-vector for each index i, j. From the ‘trim’ conditions for each point
(xd�

,ud�
), we have

0 = f (xd�
,ud�

) =
K

∑
|i|=0,|j|=0

αijx
i
d�

uj
d�

, 1 ≤ � ≤ K. (11.6)

Also, we know that

A(xd�
,ud�

) =
∂ f
∂x

(xd�
,ud�

)

B(xd�
,ud�

) =
∂ f
∂u

(xd�
,ud�

)

and so if we write

A(xd�
,ud�

) = (a�
µν), B(xd�

,ud�
) = (b�

µ ′ν ′)

(1 ≤ µ ,ν ≤ n, 1 ≤ µ ′ ≤ n, 1 ≤ ν ′ ≤ m)

then we have

a�
µν =

∂ fµ

∂xν
(xd�

,ud�
) =

n

∑
k=1

K

∑
|i|=0,|j|=0

ikαµ
ij xi−1k

�
uj

d�
(11.7)
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b�
µ ′ν ′ =

∂ fµ ′

∂xν ′
(xd�

,ud�
) =

n

∑
k=1

K

∑
|i|=0,|j|=0

jkαµ ′
ij xi

�
uj−1k

d�
(11.8)

where

i−1k = (i1, · · · , ik −1, · · · , in), j−1k = ( j1, · · · , jk −1, · · · , jm).

Writing the unknowns αµ
ij (1≤ µ ≤ n,0≤ |i|)≤K, 0≤ |j|)≤K as a column vector

Ξ , the Equations 11.6 – 11.8 give a linear equation of the form

MΞ = N.

If M is invertible then the solution is

Ξ = M−1N.

If M is not square then we can use the generalized inverse (MT M)−1MT if MT M
is invertible. In general, it will be necessary to have the information contained in
the local linear systems at an appropriate set of points, so that the above system is
soluble.

Example 11.1. As a trivial example, suppose that we have just one linear approxi-
mation to a two-dimensional nonlinear system at the point (x1d ,x2d,ud) = (2,6,2),
where the linear approximation is

ẋ =
(−11 1

−1 0

)
x +
(

0
1

)
u

and suppose we assume that the nonlinear system is of the form

ẋ1 = f1(x1,x2) = a1x1 + a2x2 + a3x2
1 + a4x3

1 + a5u

ẋ2 = f2(x1,x2) = a6x1 + a7u.

Then

A(xd ,ud
=
(

a1 + 2a3x1 + 3a4x2
1 a2

a6 a7

)∣∣∣∣
(x1,x2)=(2,6)

=
(−11 1

1 0

)

B(xd ,ud
=
(

a5

a7

)∣∣∣∣
(x1,x2)=(2,6)

=
(

0
1

)

and

0 = a1x1d + a2x2d + a3x2
1d + a4x3

1d + a5ud = 2a1 + 6a2 + 36a3 + 8a4 + 2a5

0 = a6x1d + a7ud = 2a6 + 2a7.
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We see that

a1 = 1, a2 = 1, a3 = 0, a4 = −1, a5 = 0, a6 = −1, a7 = 1

so that the system is

ẋ1 = x2 − x3
1 + x1

ẋ2 = −x1 + u

i.e. a controlled Van der Pol oscillator.

11.4 Smooth Transition Between Operating Conditions

Now that we have a method of joining together distinct operating conditions to
obtain a nonlinear system

ẋ = f (x,u)

we can consider the question of smooth transition between such operating points.
Thus, suppose (x(1),u(1)) and (x(2),u(2)) are operating points and let
t → (xd(t),ud(t)) be a differentiable function such that

(xd(ti),ud(ti)) = (x(i),u(i)), i = 1,2

and which satisfies the equation

ẋd(t) = f (xd(t),ud(t)), xd(0) = x(1), xd(T ) = x(2), (11.9)

i.e. there exists a control ud(·) such that we can track the desired trajectory xd(·).
Hence ud is an open-loop control and so we will require to control the system around
xd(·) to ensure good tracking. First consider the existence problem for ud(·). The
system (11.9) can be written in the integral form

xd(t) = x(1)+
∫ t

0
f (xd(s),ud(s))ds.

For a fixed desired trajectory t → xd(t), we consider the map u ∈ C0[0,T ;Rm] →
F(u) ∈C1[0,T ;Rn] given by

F(u)(t) = xd(t)− x(1)−
∫ t

0
f (xd(s),u(s))ds.

where we assume that xd , f (xd(·),u(·)) ∈ C1[0,T ;Rn] for all u ∈ C0[0,T ;Rm]. The
Fréchet derivative of F is given by

F ′(0)(t) = −
∫ t

0

∂ f
∂u

(xd(s),0)ds

and it is a linear operator acting as
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F ′(0)(u)(t) = −
∫ t

0

∂ f
∂u

(xd(s),0)u(s)ds.

If ∂ f
∂u (xd(s),0) is non-singular along the trajectory xd , then the operator F ′(0) is

bounded and invertible, with inverse

[
∂ f
∂u

(xd(s),0)
]−1 d

dt
.

Note that the above reasoning is a special case of the implicit function theorem in a
Hilbert (or Banach) space (see Appendix D). If the condition for the existence of a
local trim controller is satisfied along the desired trajectory joining operating points,
then we expand the system around this trajectory (xd(t),ud(t)). Thus we put

y(t) = x(t)− xd(t), v(t) = u(t)−ud(t).

Then,

ẏ(t) = ẋ(t)− ẋd(t)
= f (x(t),u(t))− f (xd(t),ud(t))
= g(y(t),v(t)),

say, where
g(0,0) = 0.

Writing g in the form

g(y(t),v(t)) = A(y(t),v(t))y(t)+ B(y(t),v(t))v(t)

we have the system

ẏ(t) = A(y(t),v(t))y(t)+ B(y(t),v(t))v(t)

and so we can introduce the iteration scheme

ẏ[i](t) = A(y[i−1](t),v[i−1](t))y[i](t)+ B(y[i−1](t),v[i−1](t))v[i](t).

These systems can be controlled by any of the methods studied earlier in the book
an we will have smooth transfer from one operating condition to another.

The above theory has been presented for ‘local systems’ – i.e. ones of the form

ẋ = f (x,u),

written in terms of a local coordinate. Now suppose that we have a global system of
the form defined in Section 11.2. If we two operating points as in Figure 11.2, then
(assuming the manifold is totally geodesic for simplicity), we can choose a geodesic
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connecting P1 to P2 and cover it with a finite set of local coordinates. (See Figure
11.2.) In each local coordinate system, the system may be written in the form

ẋ = f (x,u)

and we may apply the above theory, provided the control keeps the trajectory in the
same coordinate neighbourhood (See Figure 11.3.)
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Fig. 11.2 Controlling along a geodesic
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Fig. 11.3 Controlling to a desired trajectory

11.5 From Local to Global

We now ask the converse question to the ones above; namely, if we are given a
number of local systems

ẋ(k) = f(k)x(k),u(k)), 1 ≤ k ≤ K (11.10)
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defined in local coordinate systems (on R
n ×R

m), how do we piece them together
to form a (parameterised) vector field on a (compact) manifold M, and how do we
get topological (and possibly differential) information about M? For this we shall
need some algebraic topology and differential geometry, the background for which
is given in Appendix C.

We shall assume that the local systems (11.10) are complete in the sense that
there exists some differentiable (C∞) compact manifold M covered by K coordinate
patches (Uk,ϕk) with Uk open in M and ϕk : Uk → R

n together with a parameterised
vector field Xu, such that in Uk, Xu defines the local system in (11.10). To simplify
matters we shall assume that the topology and differentiable structure of M can be
determined entirely from the unforced systems. Hence we shall consider the local
systems

ẋ(k) = f(k)x(k),0), 1 ≤ k ≤ K. (11.11)

In many cases, the topology of M will be reflected in these unforced systems. How-
ever, if the control spaces are very ‘twisted’ then characteristic classes of the more
general bundle T (X ⊕U) may have to be considered.

In the first instance, let us consider the case of two-dimensional local systems.
The two invariants of a compact surface are its genus and its orientability. In the
case of orientable 2-manifolds S we have the Poincaré index theorem:

IX = χS (11.12)

where X is a vector field on S, IX is its index and χS is the Euler characteristic of the
surface. Suppose each of the local systems (11.11) has only one fixed point of index
Ik, 1 ≤ k ≤ K. (Of course, some local systems may have no equilibria, in which case
we take Ik = 0.) If we know that the local systems are such that their equilibria (if
they exist) are not shared by any other local system, then from the index theorem
(11.12) we can immediately say that the global system must be defined on a surface,
which if it is orientable, has genus g given by

2(1−g) = χS = IX = ∑{indices of local systems},

i.e.

g = 1− 1
2 ∑{indices of local systems}.

Since g is an integer, for orientable surfaces, we see immediately that

∑{indices of local systems}

is an even integer. Hence if the sum of all the indices of our local systems is odd, we
know that it cannot fit onto an orientable surface.

If the manifold is non-orientable, then (11.10 ) is still valid, but the Euler char-
acteristic χS may not be even. For example, for the projective plane S = P

1(R) we
have χS = 1 and g = 1/2. (For example the system shown in Figure 11.4 on the
unit disc has one saddle and two nodes, one stable and one unstable. By identifying
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antipodal points on the unit circle, we obtain a system on the projective plane with
total index 1.)

Fig. 11.4 A system on the projective plane

Of course, several local coordinate neighbourhoods may share some equilibria
and so the best we can say is

2(1−g) = χS = IX = ∑{indices of non-equivalent local systems},

where we define local systems to be equivalent if they share an equilibrium point and
can be pieced together with a local change of coordinates. In the next few sections
we shall make some remarks about the possible structures of 2, 3 and 4-dimensional
systems on compact manifolds which in many ways generalise the notion of index.
We first need to recall some basic facts about Smale systems.

11.6 Smale Theory

In this section we outline Smale’s theory of dynamical systems (see [35]) on man-
ifolds and the notion of basic set. A continuous dynamical system is defined by an
R-action, on a compact manifold, called a flow, i.e., a map Φ : R×M → M such
that:

(a) Φ(t, ·) : M → M is a homeomorphism of M for all t
(b) Φ(0, ·) : M → M is the identity on M
(c) Φ

(
t,Φ(s,x)

)
= Φ(t + s,x) for all s, t ∈ R, x ∈ M.

We usually write φt(·) = Φ(t, ·).
A subset M1 ⊆ M is said to be invariant for the flow Φ if

φt (M1) ⊆ M1 for all t.

An invariant set M1 is hyperbolic if there is a continuous φt invariant splitting of
T M1(= T M|M1 , the tangent bundle of M restricted to M1) given by
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T M1 = Es
M1

⊕Eu
M1

⊕Ec
M1

where

‖Dφt(v)‖ ≤Ce−tλ‖v‖ ∀ v ∈ Es
M1

, t > 0
‖Dφ−t(v)‖ ≤Ce−tλ‖v‖ ∀ v ∈ Eu

M1
, t > 0

dφ (x)
t

dt |t=0 spans Ec
z for all x ∈ M1.

Ec
M1

is just the space of all the orbits in the invariant set. Let M̃ ⊆ M1 be a subset of
a hyperbolic invariant set of a flow Φ on M. The local stable and unstable manifold
of M̃ are defined by

W s
loc(M̃) = {y ∈ M : lim

t→∞
‖φt(M̃)−φt(y)‖ = 0,

and ∃ ε > 0 such that ‖φt(M̃)−φt(y)‖ < ε, ∀ t ≥ 0},
W u

loc(M̃) = {y ∈ M : lim
t→−∞

‖φt(M̃)−φt(y)‖ = 0,

and ∃ ε > 0 such that ‖φt(M̃)−φt(y)‖ < ε, ∀ t ≤ 0}.

The classical stable (unstable) manifold theorem (see [1]) then says that these local
manifolds have global extensions. Given a flow φt on M we define a kind of recur-
rence in terms of the chain-recurrent set. Thus x ∈ M is a chain-recurrent if for any
ε > 0 ∃ points {x1,x2, · · · ,xn−1,xn} where x1 = xn = x and positive real numbers
t1, · · · , tn−1 such that ‖φti(xi)− xi+1‖ < ε , for 1 ≤ i ≤ n−1. Then we have

Theorem 11.1. If M is a compact orientable manifold and φt is a dynamical sys-
tems defined on M. Then if the chain recurrent set is hyperbolic, then it is the union
of a finite number of disjoint basic sets, each of which is closed, invariant and con-
tains a dense orbit. Moreover, the periodic points in the basic sets are dense in each
such set.

Similar results hold for discrete dynamical systems (i.e., homeomorphisms of M). A
variety of dynamical behaviours have been defined, largely with a view to studying
structural stability (i.e., the rigidity of the topology of the dynamics under ‘small’
perturbations in the vector field (or homeomorphism). Thus we define:

(a) An Anosov system on M is one which is hyperbolic everywhere on M.
(b) A flow φt is Morse-Smale if:

(i) the chain recurrent set is hyperbolic,
(ii) the stable and unstable manifolds of basic sets meet transversely,
(iii) each basic set is a single closed orbit or a field.

(c) a Smale flow φt on M is one for which:

(i) the chain recurrent set R is hyperbolic,
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(ii) the basic subsets of the chain recurrent set are zero or one-dimensional,
(iii) the stable manifold of any orbit in R and the unstable manifold of any other

orbit in R have transverse intersection.

The importance of Smale flows on compact manifolds is that they are structurally
stable under C1 perturbations. They are not dense, however, in the space of C1 flows.
The suspension of s Smale horseshoe at a saddle point is a Smale flow.

11.7 Two-dimensional Manifolds

We can find dynamical systems on surfaces of genus p by using the hyperbolic plane
to ‘unfold’ the surface. Thus we have the following results (see [2]).

Theorem 11.2. Suppose that we choose distinct points {p1, · · · , pk} on a torus such
that there exists a set of points {q1, · · · ,qk} in a fundamental parallelogram in C for
which (

k1

∑
i=1

qi +
k2

∑
i=k1+1

(
ei

2
+ 1

)
qi −

k

∑
i=k2+1

(
hi

2

)
qi

)
mod Ω

where

k +
1
2

k2

∑
i=k1+1

ei − 1
2

k

∑
i=k2+1

hi = 0

and Ω is the lattice
Ω = {k + li : k, l ∈ Z},

then there exists a dynamical system on the torus such that p1, · · · , pk are stable or
unstable points, pi has ei elliptic sectors, k1 + 1 ≤ i ≤ k2 and pi has hi hyperbolic
sectors for k2 + 1 ≤ i ≤ k. Then the equation is given by

ż = E(z),

where E is an elliptic function.

To generalise this result to higher genus surfaces, we must use automorphic func-
tions. let Γ be a Fuchsian group, i.e., a discrete subgroup of PSL(2,R) given by

Γ = {T0 = I,T1,T2, · · · },

and let

θ1(z) =
∞

∑
i=0

(ciz+ di)−2mHi
(
Ti(z)

)

be a ‘generalised’ θ -series. Then we have
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Theorem 11.3. The function

F(z) =
θ̃2(z)
θ1(z)

satisfies

F(Tiz) =
aidi −bici

(ciz+ di)2 F(z)

for each i and defines a Γ -invariant vector field if m ≥ 3. Functions of this type give
rise to dynamical systems on the Riemann surface of the Fuchsian group Γ in the
form

ż = F(z).

The existence of periodic cycles in a dynamical systems cannot be obtained from the
Poincaré-Hop f theorem, but there are more general approaches using Morse theory
and Floer homology which give a more general index theorem (see [3]). Moreover,
any surface of genus p > 0 can carry an infinite number of knotted trajectories.
However, we have the following result (see [4]).

Theorem 11.4. A dynamical system on a orientable surface of genus p can carry at
most p topologically distinct knot types as periodic solutions.

Another simple way of generating systems on 2-manifolds is by the operation of
connected sum. Given any two 2-manifolds S1 and S2, we define their connected
sum S1#S2 as the 2-manifold obtained by cutting out disks from S1 and S2 and
sewing together their boundaries (see Figure 11.5). Recall (see [1]) that for any

Fig. 11.5 Connected sum of S1 and S2

two-dimensional polynomial vector field the equilibria have the general local form
consisting of e elliptic sectors, h hyperbolic sectors and p parabolic sectors and the
index of such a point is given by

I = 1 +
(e−h

2

)
.

Suppose we have two 2-manifolds S1 and S2 on which there are defined dynam-
ical systems and suppose one has an equilibrium point with the local structure
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consisting of e elliptic sectors, h hyperbolic sectors and p parabolic sectors and the
other has n equilibrium point with the ‘dual’ structure. By this we mean that the
point has h elliptic sectors, e hyperbolic sectors and p parabolic sectors arranged
with the opposite orientation of the first point. Thus if the sectors of the first point
are σ1,σ2, · · · ,σk arranged anti-clockwise, then the sectors of the second point are
σ̄1, σ̄2, · · · , σ̄k arranged clockwise, where

σ̄i =

⎧⎨
⎩

dual hyperbolic sector if σi is elliptic
dual elliptic sector if σi is hyperbolic
dual parabolic sector if σi is parabolic

.

The dual sectors are shown in Figure 11.6 Then we have

Fig. 11.6 Dual sectors: elliptic-hyperbolic and parabolic-parabolic

Theorem 1. With the above notation we can form a dynamical system on S1#S2 by
introducing e+h equilibrium points at the sew boundaries of the excised disks each
of the form shown in Figure 11.7.

Fig. 11.7 Matching of the system dynamics after performing connected sum

Note that we could also match elliptic sectors to elliptic sectors and hyperbolic
sectors to hyperbolic sectors by introducing saddle points for the hyperbolic points
and the centres for the elliptic points. The topology of invariant sets on general
manifolds is clearly important and the nature of nonlinear oscillations provides an
insight into the global structure of invariant basic sets. In fact, in [5] the system

ẍ + h(x)ẋ+ g(t,x) = 0

is considered and it is shown that there exists an invariant set A which is not home-
omorphic to a circle if the system contains an inversely unstable periodic solution.
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(This means that the linearised Poincaré map near the solution has one unstable
eigenvalue.) In [6] the following generalised version of this result is proved.

Theorem 11.5. Given a system defined on a genus-p surface which is dissipative
with respect to a knot K on this surface and suppose that there exists an inversely
unstable solution within a knotted attractor AI, then AI is not homeomorphic to the
circle.

11.8 Three-dimensional Manifolds

The theory of dynamical systems on 3-manifolds is much more complicated than
that for 2-manifolds, since there is no complete set of topological invariants for 3-
manifolds (see [7]): although a great deal of invariants have been found, the most
interesting being related to quantum groups and braided tensor categories (see [8,9]).
Moreover, the Euler characteristic of a 3-manifold is 0 so the index theorem does
not give too much information in this case. However, there are useful results in
three-manifold theory which can be used to obtain a kind of decomposition of 3-
dimensional dynamical systems in terms of simpler ones. These results are related to
Dehn surgery, Heegaard splittings and branched covering manifolds, each of which
we shall discuss below. We begin with the important result of [10] and [11].

Theorem 11.6. Every closed, orientable, connected 3-manifold can be obtained by
surgery on a link in S3 (the 3-sphere).

By a surgery on a knot K in S3 we mean the following – cut out a tubular neigh-
bourhood of K in S3 (which is topologically a torus) and then glue it back in by
some homeomorphism from the boundary of the excised torus to the boundary of
the toroidal ‘hole’ in S3. This leads to the possibility of defining dynamical systems
on three-manifolds by first choosing one on S3 which has periodic solutions defining
some link in S3. We then perform Dehn surgery on the link to obtain a dynamical
system on the 3-manifold.

Example 11.2. From [12], we know that 3/4-surgery on a trivial knot in S3 yields
the lens space L(3,4) (= L(3,1)). Consider the non-singular Morse-Smale flow on
S3 with a Hopf link as periodic solutions shown in Figure 11.8.

Now do 3/4-surgery on the trivial knot K1 and we obtain a system on L(3,4) with
two periodic solutions such that the stable periodic solution is surrounded by stable
solutions which wind around it three times, as shown in the right half of Figure 11.8.
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K1

K2

K1

K2

Fig. 11.8 3/4-surgery on a Morse-Smale flow

We therefore have:

Theorem 11.7. There is a non-singular Morse-Smale system on any lens space.

Morse-Smale diffeomorphisms of certain types on 3-manifolds are classified in [13]
and Franks [14] shows how to generate non-singular Smale flows on S3.

Next we consider the concept of Heegaard splittings (see [15]). An genus-p sur-
face bounds a 3-manifold which is a ball with handles attached. A Heegaard split-
ting of a genus-p 3-manifold M is a pair (H1,H2) of such ‘handle-bodies’ of the
same genus (and orientation) such that M = H1 ∪H2 and H1 ∩H2 = ∂H1 = ∂H2.
It can be shown that every closed, connected 3-manifold has a Heegaard splitting.
The Heegaard diagram of a Heegaard splitting M = H1 ∪H2 of genus-p is the sur-
face ∂H1 on which p distinct closed curves are drawn to which the fundamental
meridians of ∂H2 are attached. For example, the trefoil knot on the torus is a Hee-
gaard diagram for the lens space L(2,3), as in Figure 11.9 Clearly any dynamical

Fig. 11.9 Heegaard diagram for L(2,3)

system on a closed, compact 3-manifold M which has an invariant genus p-surface
S that gives rise to a Heegaard splitting M = H1 ∪H2 where H1 ∩H2 = S and to
dynamical systems on H1 and H2. Conversely any two dynamical systems on solid
genus-p handlebodies H1, H2 such that the induced dynamics on ∂H1 = ∂H2 are
related by φH1

t = ψ
(
φH2

t

)
for some diffoemorphism ψ define a dynamical system

on M = H1 ∪H2. (see [16,17].) Handlebody decompositions are also important for
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systems containing basic sets which are solenoids. To define a solenoid, let M be a
3-manifold and let T ⊆ M be a solid torus and let K be a knot (non-toroidal) in T
which has a tubular neighbourhood Kε (topologically a torus) also contained in T .
Suppose that f : M → M is a diffeomorphism which maps T into Kε , then the set

S =
∞⋂

k=1

f k(T )

is called a contracting (Smale) solenoid. Similarly, if f−1 maps T onto Kε then we
get an expanding solenoid

S =
∞⋂

k=1

f−k(T ).

It can then be shown (see [18]) that the following statement are equivalent for a
closed orientable 3-manifold:

(a) There exists a diffeomorphism f : M → M such that the non-wandering set
Ω( f ) contains a Smale solenoid.

(b) M has a lens space L(p,q), (p �= 0,±1) as a prime factor.
Moreover, the following two statements are also equivalent.

(a) There exists a diffeomorphism f : M → M whose non-wandering set is the
union of finitely many solenoids (in fact, the only 2 solenoids ).

(b) M is a lens space L(p,q), (p �= 0).
By using higher genus Heegaard splittings and branched covering manifolds, the

following generalisation of these statements can be proved (see [19]):

Theorem 2. Any 3-manifold can carry a pair of generalized Smale solenoids of ar-
bitrary genus.

The above result is based on the covering theorem of Alexander and Montesinos
[20]:

Theorem 3. Any three manifold is a branched covering of S3 branched over a ‘uni-
versal knot’.

Applying this result to the theory of surface homeomorphisms of Thurston ([21])
gives the following result:

Theorem 11.8. Every close, orientable 3-manifold M has a singular Anosov flow.

Moreover, the singularities can be made to occur on the inverse of a figure-8 knot in
the covering projection of M over S3.

Another important aspect of global dynamical systems theory is that of branch
manifolds and templates (Figure 11.10) on which knots ‘live’ (see [22]). A branched
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(a) Joining Chart (b) Splitting Chart

Fig. 11.10 Two types of chart

manifold in n-dimensions is a topological space for which every point has a neigh-
bourhood which is homeomorphic to R

n or to a branched chart. A three-dimensional
template is a compact branched 3-manifold with boundary and a smooth foliation
made up of two types of charts: joining and splitting, as shown in the figure. A
similar definition can be given for a two-dimensional template, this time the charts
are oriented by the dynamics. An important type of template is the Lorenz template
which ‘sits’ in the Lorenz system (Figure 11.11). It is well-known that this template

Fig. 11.11 The Lorenz template

carries any torus knot and that any link is a positive fibred braid (see [23]). More-
over, there are ‘universal templates’ which contain any knot or link. This follows
from a study of the symbolic dynamics of the strips making up the template. A cru-
cial part of this requires a proof of the fact that any non-trivial template contains a
non-trivial knot. The proof in [22] requires inequality and this is difficult to gener-
alise to higher-dimensional templates. However, in [24] a simple proof of this result
given by showing that a very simple template consisting of just two neighbourhoods
of the form in Figure 11.11 (plus ‘twists’) is a subtemplate of every template and
these simple templates carry non-trivial knots. In [24] the theory is generalised to
spun knots in R

4.
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11.9 Four-dimensional Manifolds

The topology and differentiable structure of 4-manifolds is probably the most dif-
ficult of any dimension and they occupy a unique position in that the topology
of two-dimensional manifolds is well understood, that of three-dimensional man-
ifolds is now well developed and high-dimensional manifolds can be effectively
studied by the h-cobordism theorem (see [25]). 4-manifolds, on the other hand, ex-
hibit somewhat more strange behaviour. In fact, R

4 is the only Euclidean space to
carry different differentiable structures ([26]). The existence of Smale, More-Smale
and (pseudo) Anosov diffeomorphisms in the case of 4-manifolds then becomes
more difficult because of the complex interaction of the topology and differentiable
structures. The differentiable structure can be, to some extent, measured by some
recent invariants discovered by Donaldson [27,28] and simplified in terms of
Seiberg-Witten invariants. We first give an outline of this theory and then apply
it to questions about dynamical systems on 4-manifolds (see [29]). Thus let M be a
smooth 4-manifold and consider a real vector bundle E on M given by the transition
function

gαβ : Uα ∩Uβ → GL(m,R),

where {Uα : α ∈ A} is an open covering of M. These functions satisfy the condition

gαβ ·gβ γ = gαγ on Uα ∩Uβ ∩Uγ ,

Let π : E → M be the projection map. (If we take GL(m,C) or GL(m,H) instead,
we get complex or quaternionic vector bundles, if we take a Lie subgroup G of
GL(m, ·) we get a G-vector bundle, if G = O(m) we can define a fibre metric <,>p:
Ep ×Ep → R( or C) where Ep = π−1(p), p ∈ M.) A section of a bundle (E,π) is
a smooth map σ : M → E such that π ◦σ = id. The transition expressions for local
sections is

σα = gαβ σβ on Uα ∩Uβ .

The topology of 4-manifolds is strongly connected with the space of connections in
the tangent bundle. A connection on the vector bundles E is an map

dA : Γ (E) → Γ (T ∗M⊗E),

which satisfies

dA( f σ + τ) = (d f )⊗σ + f dAσ + dAτ,

where σ , τ are sections of E and f is a function on M. Any connection dA on a
trivial bundle is of the form

dAσ = dσ + ωσ = (d + ω)σ , (11.13)
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where d is the exterior derivative and ω is a matrix of one-forms. Thus we can think
of a connection as a collection of differential operator d +ωα which ωα transforms
according to

ωα = gαβ dg−1
αβ + gαβ ωβ g−1

αβ on Uα ∩Uβ .

Moreover, a connection on E is a linear map from the space of E-valued zero-
forms to one-forms:

dA : Ω 0(E) → Ω 1(E)

and can be extended to Ω p(M) by

dA(ω ⊗σ) = dω ⊗σ +(−1)pω ∧dAσ , for ω ∈ Ω p(M), σ ∈ Γ (E).

Then (dA)2 is a tensor field and is called the curvature of dA. In the case of a trivial
bundle we have

d2
A(σ) = Ωσ

where Ω is a matrix of 2-forms. Now

d2
A(σ) = (d + ωα)(dσ + ωσ)

= (dω + ω ∧ω)σ

by (11.13), in any local coordinate system, so Ω = dω + ω ∧ω , which gives the
Bianchi identity dΩ = [Ω ,ω ]. If {Uα : α ∈ A} is an open covering of M, then the
local Ω ′s transform as

Ωα = gαβ Ωβ g−1
αβ .

The local diffeomorphism forms Tr
[
( i

2π Ωα)k
]
, which gives rise to a global

closed form and defines an element of H2k(M;R) which is independent of the (uni-
tary) connection and Hermitian metric on E . It is called the characteristic class of E
and is denoted by τk(E).

The Chern classes c1, c2 of E are defined by

c1(E) = τ1(E) and c2(E) =
1
2
[τ1(E)2 − τ2(E)].

By the Gauss-Bonnet theorem:

< c1(T M), [M] >= χ(M).

The Seiberg-Witten invariants are based on the Dirac operators given by

DA(ψ) =
∞

∑
i=1

ei ·dAψ(ei)
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where the ei’s are the standard Dirac matrices forming a basis of a Clifford algebra.
The Weitzenbock formula

Dα
A (ψ) = ∆ψ +

s
4

ψ −∑
i< j

FA(ei,e j)(iei · e j ·ψ)

where s is the scalar curvature of M and FA is the curvature of the connection of a
line bundle L. The important point is that DA splits into two parts

D±
A : Γ (W±⊗L) → Γ (W∓⊗L)

where W± are U(2) bundles. Then the Seiberg-Witten equations are

D+
A ψ = 0, F+

A = σ(ψ)+ φ = − i
2

< ψ ,ei · e j ·ψ > +φ

where F+
A is the self-dual part of FA, σ is a quadratic form, and φ is a given self-dual

2-form. The solutions of these equations are pairs (dA,ψ) consisting of a connection
dA on a line bundle L and a section ψ of W+⊗L.

We form the moduli space Uφ of all gauge-equivalent solutions of these equations
– it turns out to have a compact closure which is a manifold. Then the Seiberg-Witten
invariants of a line bundle L over a manifold M are defined by

SW(L) =< cd
1 ,Uφ >, d =

1
2

dimUφ

and c1 is the first Chern class of a line bundle over the space of all gauge equivalent
pairs (dA,ψ).

Using these invariants, it can be shown that the compact manifold

P2
C#qP2C

has infinitely many distinct smooth structures. Dynamical systems on 4-manifolds
can be approached in similar ways to those for two- and three dimensions. Thus we
can start with simple systems on S4 and use connected sums, covering manifolds or
blowing up techniques to generate more complex systems. For example, we have
the following result.

Theorem 11.9. Given a Morse-Smale system on a smooth simply connected 4-
manifold X with b+ > 1, SW invariant SWX and an embedded periodic solution
K with A-polynomial P(t), then we can obtain a dynamical system on a 4-manifold
XP with SW-invariant SWXP where

SWXP = SWX ·P(t).

Proof. This follows from Fintushel and Stern [30] and Etgu [31], by doing Dehn
surgery on the knot K. �
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Note that in Gompf [32], the following definition of a generalised connected sum is
given:

Let M and N be smooth, closed, oriented manifolds of dimension n and n−2, re-
spectively and let j1,2 : N → M be disjoint embeddings with normal bundle νi over
N and normal Euler classes e(νi) ∈ H2(N;Z) which are opposite: e(ν2) = −e(ν1).
Then there is an orientation preserving diffeomorphism φ : V1− j1(N)→V2− j2(N)
for tubular neighbourhoods Vi of ji(N). Then we denote by #φ M to denote the
manifold obtained by taking M − ( j1(N)∪ j2(N)

)
and identifying V1 − j1(N) with

V2 − j2(N) by φ . If M = M1 ∪M2, then Mφ is the connected sum of M1, M2 along N
via φ and is denoted by M1#φ M2.

Thus if M = M1 ∪M2 is a 4-manifold and M1, M2 carry dynamical systems with
an invariant surface N such that the dynamics on j1(N) and j2(N) ‘match up’ by
φ∗ : T

(
j1(N)

)→ T
(

j2(N)
)
, then we obtain a well-defined system on M1#φ M2.

Finally, we can use the theory of covering surfaces to obtain dynamical systems
on any 4-manifold. The theory of branched coverings of S4 can be found in [33].
In particular, Piergallini [34] shows that every closed oriented PL 4-manifold is a
single 4-fold covering of S4 branched over a transversally immersed PL surface. The
question of whether there exist ‘universal surfaces’ over which all coverings of S4

branch seems to be open. We have:

Theorem 11.10. A 4-manifold which is a simple 4-fold covering of S4 over an im-
mersed surface S carries a dynamical system which is the lift of a system of S4,
which has S as an invariant surface – so that the immersed double and treble points
of S in S4 are invariant sets of the flow.

11.10 Conclusions

In this chapter we have discussed the nature of systems defined globally on mani-
folds and their relationship to local representations in terms of nonlinear differential
equations. The main difficulty is in reconstructing a system from its local repre-
sentatives and determining the topology and differentiable structure of the result-
ing manifold. In the case of surfaces, orientable or not, we can say a considerable
amount from the indices of the local systems. However, when we come to higher-
dimensional manifolds, we are faced with much greater difficulties. To emphasise
the problems we have given an overview of the theory of dynamical systems on 2,
3 and 4-manifolds. The two- and three-dimensional cases are fundamentally differ-
ent from the four-dimensional case since in the former two cases, the topological
and differentiable structures are the same. However in the four-dimensional case,
the fact that many different differentiable structures exists on the same topological
manifold, leads to many different dynamical systems of various kinds. The classi-
fication of the structure of all four-dimensional dynamical systems appears to be
very challenging. Putting together local systems in higher dimensions can only be
approached at present by a consideration of the characteristic classes of the tangent
bundle or some related bundle.



216 References

References

1. Perko, L.: Differential equations and dynamical systems. Springer, New York (1991)
2. Banks, S.P., Song, Y.: Elliptic and automorphic dynamical systems on surfaces. Int. J. of

Bifurcation and Chaos 16(4), 911–923 (2006)
3. Banks, S.P.: Three-dimensional stratifications, knots and bifurcations of two-dimensional

dynamical systems. Int. J. of Bifurcation and Chaos 12(1), 1–21 (2002)
4. Jost, J.: Dynamical systems - examples of conplex behavior. Springer, Berlin (2005)
5. Martins, R.: The effect of inversely unstable solutions on the attractor of the forced pen-

dulum equation with friction. J. of Differential Equations 212(2), 351–365 (2005)
6. Song, Y., Banks, S.P.: Inversely Unstable Solutions of Two-Dimensional Systems on

Genus-p Surfaces and the Topology of Knotted Attractors. Int. J. of Bifurcation and
Chaos (in print)

7. Markov, A.A.: Insolubility of the problem of homeomorphy. Proc. Inc. Cong. Math., pp.
300–306. Cambridge University Press, Cambridge (1958)

8. Chari, V., Pressley, A.: A guide to quantum groups. CUP, Cambridge (1994)
9. Kassel, C.: Quantum groups. Springer, Heidelberg (1995)

10. Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. of
Math. 76, 531–540 (1962)

11. Wallace, A.D.: Modifications and cobounding manifolds. Can. J. Math. 12, 503–528
(1960)

12. Rolfsen, D.: Knots and links. Publish or Perish, Berkeley (1976)
13. Wade, M.: Closed orbits of non-singular Morse-Smale flows on S3’. J. Math. Soc.

Jap. 41(3), 405–413 (1989)
14. Franks, J.: Non-singular Smale flows on S3. Topology 24, 265–282 (1985)
15. Hempel, J.: 3-manifolds. Ann. of Math. Studies, vol. 86. Princeton University Press,

Princeton (1976)
16. Song, Y., Banks, S.P., Diaz, D.: Dynamical Systems on Three Manifolds–Part I: Knots,

Links and Chaos. Int. J. of Bifurcation and Chaos 17(6), 2073–2084 (2007)
17. Song, Y., Banks, S.P.: Dynamical Systems On Three Manifolds–Part II: 3-Manifolds,

Heegaard Splittings and Three-Dimensional Systems. Int. J. of Bifurcation and
Chaos 17(6), 2085–2095 (2007)

18. Jiang, B., Ni, Y., Wang, S.: 3-manifolds that admit knotted solenoids as attractors. Trans.
AMS 356(11), 4371–4382 (2004)

19. Song, Y., Banks, S.P.: Generalized Smale solenoids on 3-manifolds (2009) (preprint)
20. Montesinos, J.: A representation of closed, orientable 3-manifolds as 3-fold branched

coverings of S3. Bull. Amer. Math. Soc. 80, 845–846 (1974)
21. Thurston, W.: On the geometry and dynamics of diffeomrphisms of surfaces. Bull.

AMS 19, 417–431 (1988)
22. Ghrist, R.W., Holmes, P.J., Sullivan, M.C.: Knots and links in three-dimensional flows.

LNM, vol. 1654. Springer, Heidelberg (1997)
23. Birman, J., Williams, R.: Knotted periodic orbits in dynamical systems - I: Lorenz’s

equations. Topology 22(1), 47–82 (1983)
24. Chen, W., Banks, S.P.: Branched manifolds, knotted surfaces and dynamical systems.

Int. J. Bir. and Chaos (2008) (to appear)
25. Milnor, J.: Lectures on the h-cobordism theorem. Princeton Univ. Press, Princeton (1965)
26. Gompf, R.: Three exotic R

4’s and other anomalies. J. Diff. Geom. 18, 317–328 (1983)
27. Donaldson, S.: An application of gauge theory to four-dimensional topology. J. Diff.

Geom. 18, 279–315 (1988)



References 217

28. Donaldson, S.: Polynomial invariants for smooth 4-manifolds. Topology 29, 257–315
(1990)

29. Moore, J.D.: Lectures on Seiberg-Witten invariants. Springer, New York (1996)
30. Fintushel, R., Stern, R.J.: Knots, links and 4-manifolds. Invent. Math. 134, 363–400

(1998)
31. Etgu, T., Doug Park, B.: Non-isotopic symplectic tori in the same homology class. Trans.

AMS 359(9), 3739–3750 (2003)
32. Gompf, R.: A new construction of symplectic manifolds. Ann. Math. 142(3), 527–595

(1995)
33. Montesinos, J.: A note on moves and irregular coverings of S4. Contemp. Math. 44,

345–349 (1985)
34. Piergallini, R.: Four-manifolds as 4-fold branched covers of S4. Topology 34(3), 497–

508 (1995)
35. Smale, S.: Differentiable dynamical systems. Bull. AMS 73, 747–817 (1967)



Chapter 12
Summary, Conclusions and Prospects for
Development

12.1 Introduction

In this book we have presented a theory which provides a general approach to non-
linear problems in systems theory. The method consists of writing a nonlinear sys-
tem as the limit of a sequence of an approximating sequence of linear, time-varying
ones and applying linear theory to each of the approximating systems. We have
proved general convergence theorems and given applications to frequency-domain
theory of nonlinear systems, optimal control, nonlinear sliding control and to non-
linear partial differential equations.

In this final chapter we shall show that there are many more potential applica-
tions of the method by using two illustrative examples which are now in the process
of development. One is the application of the method to the problem of travelling
waves in nonlinear partial differential equations and the other is to the separation
theorem for nonlinear stochastic systems.

12.2 Travelling Wave Solutions in Nonlinear Lattice
Differential Equations

We consider the existence of travelling wave solutions in lattice differential equa-
tions of the form

u̇i j = −�ui j + f (ui j)

where � is a two-dimensional difference operator. These solutions correspond to
waves moving through the material to yield different structures on each side of the
wave. These ideas can be applied to discrete Cahn-Hilliard and Cahn-Allen equa-
tions for the dynamical behaviour of binary alloys (see [1], [2]). A two-dimensional
lattice differential equation on the lattice Z

2 ⊆ R
2 is an equation of the form

u̇i j = F(ui+k, j+k,0 ≤ |K| ≤ �)

M. Tomas-Rodriguez and S.P. Banks: Linear, Time-varying Approximations, LNCIS 400, pp. 219–228.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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for some finite natural number �. We shall be interested in equations of the form

u̇i j = λ�ui j − f (ui j), (i, j) ∈ Z
2

where
�ui j = ui+1, j + ui−1, j + ui, j+1 + ui, j−1−4ui, j

and λ is a real parameter.

12.3 Travelling Waves

A travelling wave is a solution of the form

ui j(t) = τ(iv1 + jv2 − ct),

where ‖(v1,v2)‖= 1 (i.e. (v1,v2)∈ S is a unit vector). Thus τ satisfies the functional
differential equation

−c
dτ
dx

= λ (τ(x + v1)+ τ(x− v1)+

τ(x + v2)+ τ(x− v2)−4τ(x)− f (τ(x)),

where x is the wave parameter. This is a nonlinear functional differential equation
of mixed type and as such is extremely difficult to solve. To simplify matters, we
shall assume that v1 and v2 are commensurate, so that

v1 = mh, v2 = nh

for some integers m,n (where m ≥ n) and real number h. We shall also assume that
m,n are large, so that h is small relative to v1 and v2. Thus, we can approximate
dτ/dx by (τ(x + h)− τ(x))/h. Thus, if x = k−mh, we have

− c
h
(τ(k− (m−1)h)− τ(k−mh))= λ (τ(k)+ τ(k−2mh)+

τ(k− (m−n)h)+ τ(k− (m+ n)h)−4τ(k−mh)− f (τ(k−mh)),

i.e.

τ(k) = − c
hλ

τ(k− (m−1)h)+
c

hλ
τ(k−mh)

−τ(k−2mh)− τ(k− (m−n)h)− τ(k− (m+n)h)+4τ(k−mh)

+
1
λ

f (τ(k−mh))

and so, if we define the state

Γ (k) = (τ(k− (2m−1)h),τ(k− (2m−2)h), · · · ,τ(k))T

we obtain the nonlinear difference equation
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Γ (k) = AΓ (k−1)+ F(Γ (k−1))

where

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · · · · · · · · · · · 0
0 0 1 0 · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · ·
0 0 · · · · · · · · · · · · · · 1
−1 0 · · · 0 −1 0 · · · 0 c

hλ − c
hλ 0 · · · 0 −1 0 · · · 0

⎞
⎟⎟⎟⎟⎠

↑ ↑ ↑ ↑ ↑
1 1 + m−n 1 + m 2 + m m+ n−1

and

F(Γ (k−1)) =
1
λ

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0

f (Γm+1(k−1))

⎞
⎟⎟⎟⎟⎟⎠

.

12.4 An Approach to the Solution

Consider the linear system

Γ̃ (k) = AΓ̃ (k−1), Γ̃ (0) = Γ0.

The solution is
Γ̃ (k) = AkΓ0.

For the nonlinear problem we shall assume that F can be written in the form

F(Γ ) = G(Γ )Γ .

Then we have

Γ (k) = A(Γ (k−1))+ G(Γ (k−1))Γ (k−1)
= (A + GΓ (k−1))Γ (k−1).

In order to solve this equation we introduce the system of approximations Γ [i](k)
given by

Γ [i](k) = (A + GΓ [i−1](k−1))Γ [i](k−1)

with initial guess
Γ [0](k) = Γ0.
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These are linear, non-shift invariant systems which can be shown to converge to
a solution of the nonlinear problem in the same way as in Chapter 2, provided that
G is (locally) Lipschitz. This clearly gives a simple way to solve difficult mixed-type
functional differential equations and other kinds of complex nonlinear problems.

12.5 A Separation Theorem for Nonlinear Systems

The theory of nonlinear optimal control was presented in Chapter 6. In this last
section we shall show how to apply similar methods to the nonlinear separation
problem. First recall that the linear separation theorem says that if we control a
system with additive noise of the form

dXt = (AtXt + Btut)dt + σtdBt , t ≥ s ; Xs = x

together with a cost functional

Ju(s,x) = Es,x
[∫ t1

s

{
XT

t QtXt + uT
t Rtut

}
dt + XT

t1 FXt1

]
, s ≤ t1,

where the matrices At ∈ Rn×n, Bt ∈ Rn×m, σt ∈ Rn×k, Qt ∈ Rn×n, Rt ∈ Rm×m, F ∈
Rn×n are continuous, and Bt is a standard Brownian motion, then (see [3]) we find
that the optimal control is given by

u∗(t,Xt) = −R−1
t BT

t PtXt ,

where Pt satisfies the Riccati equation

dPt

dt
= −AT

t Pt −PtAt −Qt + PtBtR
−1
t BT

t Pt ,

Pt1 = F.

If we do not have complete knowledge of Xt , but only a noisy observation

dZt = CtXtdt + γtdB̃t

then the optimal control is given by

u∗(t,Xt) = −R−1
t BT

t PtX̂t(ω)

where X̂t is the filtered estimate of Xt given by the Kalman-Bucy filter

dX̂t =
(
At − P̃tC

T
t (γtγT

t )−1Ct
)
X̂tdt + Btutdt

+P̃tC
T
t (γtγT

t )−1dZt ; X̂0 = E[X0]

where P̃t = E
[
(Xt − X̂t)(Xt − X̂t)T

]
satisfies the Riccati equation
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dP̃t

dt
= AtP̃t + P̃tA

T
t − P̃tC

T
t (γtγT

t )−1CtP̃t + σtσT
t ;

P̃0 = E
[(

X0 −E[X0]
)(

X0 −E[X0]
)T
]
.

This is the content of the (linear) separation theorem, i.e. if we have a noisy system
and noisy measurements, then we may separate out the filtering and the control, so
that we may filter the output to obtain an estimate X̂t of the state and use that, instead
of the unknown state x(t) to obtain an optimal control.

There have been many attempts to solve the nonlinear separation problem (see,
for example, [4,5,6,7,8]) using a variety of methods. Here we shall show that we
can use our methods to give an effective solution to the problem (see [9] for more
details). The problem we consider is given by the nonlinear stochastic equation

dXt =
(
At(Xt)Xt + Bt(Xt ,ut)ut

)
dt + σtdBt

together with the nonlinear measurement equation

dZt = Ct(Xt)Xtdt + γtdB̃t

and the non-quadratic cost functional

Ju(s,x) = Es,x
[∫ t1

s

{
XT

t Qt(Xt)Xt + uT
t Rt(Xt)ut

}
dt + XT

t1 FXt1

]
.

First we shall give the formal solution and then discuss the convergence of the ap-
proximations. The optimality of the solution is discussed in [9]. As in the case of
linear, quadratic problems, we are lead to a system of approximations of the follow-
ing form:

dX̂ [i]
t =

(
At
(
X̂ [i−1]

t

)
X̂ [i]

t + Bt
(
X̂ [i−1]

t ,u[i−1]
t

)
u[i]

t

)
dt

+P̃[i]
t CT

t

(
X̂ [i−1]

t

)
R̃−1

t

[
dZt −Ct

(
X̂ [i−1]

t

)
X̂ [i]

t

]
,

x[i](0) = x0

together with the Riccati filtering equation

˙̃P
[i]
t = At

(
X̂ [i−1]

t

)
P̃[i]

t + P̃[i]
t AT

t

(
X̂ [i−1]

t

)
+ Q̃t − P̃[i]

t CT
t ×(

X̂ [i−1]
t

)
R̃−1

t Ct
(
X̂ [i−1]

t

)
P̃[i]

t ,

P̃[i](t0) = P̃0,

the control sequence

u[i]
t = −R−1

t

(
X̂ [i−1]

t

)
BT

t

(
X̂ [i−1]

t ,u[i−1]
t

)
P[i]

t X̂ [i]
t ,
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and the control Riccati equation

Ṗ[i]
t = −AT

t

(
X̂ [i−1]

t

)
P[i]

t −P[i]
t At

(
X̂ [i−1]

t

)
−Qt

(
X̂ [i−1]

t

)
+ P[i]

t Bt
(
X̂ [i−1]

t ,u[i−1]
t

)
×R−1

t

(
X̂ [i−1]

t

)
BT

t

(
X̂ [i−1]

t ,u[i−1]
t

)
P[i]

t ,P[i](t f ) = F

where
R̃t = γtγT

t , Q̃t = σtσT
t .

If the sequence of functions
{

X̂ [i]
t , P̃[i]

t ,u[i]
t ,P[i]

t

}
i≥1

converges in some sense, we

denote the limit functions by
{

X̂ [∞]
t , P̃[∞]

t ,u[∞]
t ,P[∞]

t

}
i≥1

. The controlled dynamics

then becomes

dXt =
(

At(Xt)Xt + Bt
(
Xt ,u

[∞]
t

)
u[∞]

t

)
dt + σtdBt

and so we must decide in what sense does the sequence of systems

dX [1]
t =

(
At(x0)X

[1]
t + Bt(x0,0)u[1]

t

)
dt + σtdB

[1]
t

dX [i]
t =

(
At
(
X [i−1]

t

)
X [i]

t + Bt
(
X [i−1]

t ,u[i−1]
t

)
u[i]

t

)
dt + σtdB

[i]
t , i ≥ 2

converge to the solution of the nonlinear problem. (Here u[i]
t can be chosen to be

the optimal control of a standard linear regulator, and we assume that B
[i]
t , i ≥ 1

are independent Ito processes.) The sequence of functions The sequence of func-

tions
{

X̂ [i]
t , P̃[i]

t ,u[i]
t , P[i]

t

}
i≥1

converges uniformly on [0,t f ] by the standard theory of

Chapter 2 and so we need only to consider the last two equations above, which we
can write in the form

dX [1]
t =

(
At(x0)X

[1]
t +V [1]

t (x0)
)

dt + σtdB
[1]
t

and

dX [i]
t =

(
At
(
X [i−1]

t

)
X [i]

t +V [i]
t

(
X [i−1]

t

))
dt + σtdB

[i]
t , i ≥ 2, X [i]

0 = X0

where each V [i]
t (·) is a (local) Lipschitz continuous function. From the standard the-

ory of Ito stochastic differential equations we see that each of these equations has
a unique solution ([10]). The (unique) solutions of these equations can be shown to
be given by

X [1]
t = Φ

(
At(x0),t

)[
X0 + Φ

(−At(x0), t
)
σtB

[1]
t

]
+
∫ t

0
Φ
(
At(x0),t − s

)

×
{

V [1]
s (x0)+ As(x0)σsB

[1]
s

}
ds
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and

X [i]
t = Φ

(
At
(
X [i−1]

t

)
,t
)[

X0 + Φ
(
−At

(
X [i−1]

t

)
, t
)

σtB
[i]
t

]

+
∫ t

0
Φ
(

At
(
X [i−1]

t

)
, t − s

){
V [i]

s
(
X [i−1]

s
)
+ As

(
X [i−1]

s
)
σsB

[i]
s

}
ds,

(for i≥ 2), where Φ(At ,t) is the fundamental matrix of At . To prove the convergence
of the method we note that we have

Φ
(
−At

(
X [i−1]

t

)
,t
)

X [i]
t =

[
X0 + Φ

(
−At

(
X [i−1]

t

)
, t
)

σtB
[i]
t

]

+
∫ t

0
Φ
(
−At

(
X [i−1]

t

)
,s
)

×
{

V [i]
s
(
X [i−1]

s
)
+ As

(
X [i−1]

s
)
σsB

[i]
s

}
ds

and

Φ
(
−At

(
X [i−2]

t

)
,t
)

X [i−1]
t =

[
X0 + Φ

(
−At

(
X [i−2]

t

)
,t
)

σtB
[i−1]
t

]

+
∫ t

0
Φ
(
−At

(
X [i−2]

t

)
,s
)

×
{

V [i−1]
s

(
X [i−2]

s
)
+ As

(
X [i−2]

s
)
σsB

[i−1]
s

}
ds

and so

Φ
(
−At

(
X [i−1]

t

)
,t
)

X [i]
t −Φ

(
−At

(
X [i−2]

t

)
, t
)

X [i−1]
t

= Φ
(
−At

(
X [i−1]

t

)
, t
)

σtB
[i]
t

−Φ
(
−At

(
X [i−2]

t

)
, t
)

σtB
[i−1]
t

+
∫ t

0

{
Φ
(
−At

(
X [i−1]

t

)
,s
)

×
{

V [i]
s
(
X [i−1]

s
)
+ As

(
X [i−1]

s
)
σsB

[i]
s

}

−Φ
(
−At

(
X [i−2]

t

)
,s
)

×
{

V [i−1]
s

(
X [i−2]

s
)
+ As

(
X [i−2]

s
)
σsB

[i−1]
s

}}
ds.

If we denote the right hand side by Ψ , then we have
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Φ
(
−At

(
X [i−1]

t

)
,t
)

X [i]
t − Φ

(
−At

(
X [i−1]

t

)
, t
)

X [i−1]
t

= Φ
(
−At

(
X [i−2]

t

)
, t
)

X [i−1]
t

−Φ
(
−At

(
X [i−1]

t

)
, t
)

X [i−1]
t +Ψ

and so

X [i]
t −X [i−1]

t = Φ
(

At
(
X [i−1]

t

)
, t
)

Φ
(
−At

(
X [i−2]

t

)
, t
)

X [i−1]
t

−X [i−1]
t + Φ

(
At
(
X [i−1]

t

)
, t
)

Ψ .

It follows that

E
(
‖X [i]

t −X [i−1]
t ‖2

)
≤ E

(
2‖Φ

(
At
(
X [i−1]

t

)
, t
)

×Φ
(
−At

(
X [i−2]

t

)
, t
)

X [i−1]
t −X [i−1]

t ‖2
)

+2E

(
‖Φ
(

At
(
X [i−1]

t

)
, t
)

Ψ‖2
)

To estimate the first term on the right note that

Φ
(

At
(
X [i−1]

t

)
, t
)

Φ
(
−At

(
X [i−2]

t

)
, t
)

X [i−1]
t −X [i−1]

t = Φ
(

At
(
X [i−1]

t

)
, t
)

×
[

Φ
(
−At

(
X [i−2]

t

)
, t
)

−Φ
(
−At

(
X [i−1]

t

)
, t
)]

X [i−1]
t

and this can be bounded by ‖X [i−1]
t − X [i−2]

t ‖ as in [11]. The second term in the
inequality is bounded by

E(‖Ψ‖2) ≤ 3E

(
‖Φ
(
−At

(
X [i−1]

t

)
, t
)

σtB
[i]
t −Φ

(
−At

(
X [i−2]

t

)
,t
)

σtB
[i−1]
t ‖2

)

+3
∫ t

0
E

(
‖Φ
(
−At

(
X [i−1]

t

)
,s
)

×
{

V [i]
s
(
X [i−1]

s
)
+ As

(
X [i−1]

s
)
σsB

[i]
s

}
‖2
)

ds

+3
∫ t

0
E

(
‖Φ
(

At
(
X [i−2]

t

)
,s
){

V [i−1]
s

(
X [i−2]

s
)

+As
(
X [i−2]

s
)
σsB

[i−1]
s

}
‖2
)

ds.
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Applying Ito’s isometry (see [10]) to the second two terms and using the indepen-
dence of the B[i]’s and B[i−1]’s, the proof of local and global convergence then
follows as in [11]. For a discussion of the optimality of the process and a numerical
example, see [9].

12.6 Conclusions

The two problems considered in this chapter show that the iteration method does
have a wide variety of applications, particularly because the conditions for the ap-
plicability of the technique are very mild (local Lipschitz continuity of the system
vector field), unlike many other nonlinear methods. The ideas also have applications
to the control of chaos for secure communication (see [12]) and for the stabilisation
of semiconductor lasers ([13]). By choosing the matrices Q and R in a cost func-
tional to be dependent on the state x and the control u, it may also be possible to
study hard constraint problems by this method. (This is the case, for example, when
the control function u satisfies a pointwise bound of the form |u| ≤ umax, rather than
an average energy bound as in the standard quadratic regulator problem.) Of course,
this is the more practically useful form of control, since in most systems the con-
trol action is limited by some maximum value, such as the aileron deflection in an
aircraft. The development of the control in this case is much more difficult than the
linear, quadratic regulator case, since we must use the full Hamilton-Jacobi equa-
tions to solve the problem. If we can solve the problem by a sequence of linear,
quadratic regulators then we could provide an easy classical solution to the hard
constraint problem.

References

1. Allen, S.M., Cahn, J.W.: A Microscopic Theory for Antiphase Boundary Motion and its
Application to Antiphase Domain Coursening. Acta. Met. 27, 1085–1095 (1979)

2. Cahn, J.W., Hilliard, J.E.: Free Energy of a Non-uniform Systems: I: Interfacial Free
Energy. J. Chem. Phys. 28, 258–267 (1958)

3. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer,
New York (1975)

4. Arslan, G., Basar, T.: Decentralized Risk-Sensitive Controller Design for Strict-
Feedback Systems. Systems and Control Letters 50(5), 383–393 (2003)

5. Deng, H., Krstic, M.: Output-Feedback Stochastic Nonlinear Stabilisation. IEEE Trans-
actions on Automatic Control 44(2), 328–333 (1999)

6. Germani, A., Manes, C., Palumbo, P.: Polynomial Extended Kalman Filter. IEEE Trans-
actions on Automatic Control 50(12), 2059–2064 (2005)

7. Germani, A., Manes, C., Palumbo, P.: Filtering of Stochastic Nonlinear Differential Sys-
tems via a Carleman Approximation Approach. IEEE Transactions on Automatic Con-
trol 52(11), 2166–2172 (2007)

8. Kushner, H.J., Budhiraja, A.S.: A Nonlinear Filtering Algorithm Based on an Approxi-
mation of the Conditional Distribution. IEEE Transactions on Automatic Control 45(3),
580–585 (2000)



228 References

9. Kilicaslan, S., Banks, S.P.: A Separation Theorem for Nonlinear Systems. Automatica
(to appear)

10. Oksendal, B.: Stochastic differential equations: An introduction with applications, (6th
edn., Corrected 4th printing). Springer, New York (2007)

11. Tomás-Rodrı́guez, M., Banks, S.P.: Linear Approximations to Nonlinear Dynamical Sys-
tems with Applications to Stability and Spectral Theory. IMA Journal of Math. Control
and Inf. 20, 89–103 (2003)

12. Hugues-Salas, O., Banks, S.P.: Control of Chaos for Secure Communication. Int. J. Bifur.
and Chaos 18(11), 3355–3374 (2008)

13. Hugues-Salas, O., Shore, K.A., Banks, S.P.: Stabilisation of Chaotic Dynamics in Semi-
conductor Lasers with Optical Feedback using Optimal Control. IET Optoelectronics 2,
231–240 (2008)



Appendix A
Linear Algebra

A.1 Vector Spaces

We outline here briefly the basic ideas of linear algebra and spectral theory used in
the book – more details can be found in many standard texts on vector spaces (see,
for example, [1,2]). We begin with the definition of a vector space:

Definition A.1. A vector space (V,+, ·) over a field F (here, as usual, F = R or
C) is a set on which there are defined two operations of addition and scalar multi-
plication by elements of F which satisfy the following axioms:

(a) (v + w)+ x = v +(w+ x), for all v,w,x ∈V .
(b) v + w = w+ v, for all v,w ∈V .
(c) There exists an element 0 such that 0 + w = w+ 0 = w for all w ∈V .
(d) For all v ∈V , there exists an element −v such that

v +(−v) = (−v)+ v = 0.

(e) λ (v + w) = λ v + λ w for all λ ∈ F and v,w ∈V .
(f) (λ + µ)v = λ v + µv for all λ ,µ ∈ F and v ∈V .
(g) (λ µ)v = λ (µv) for all λ ,µ ∈ F and v ∈V .
(h) 1 · v = v for all v ∈V .

Axioms (a)–(d) say that (V,+) is an abelian group, (e) and (f) are distributive laws,
(g) is the commutativity of scalar multiplication and (h) says that 1 ∈ F behaves as
an identity.

Example A.1. R
n and C

n with their usual structures.

Example A.2. C[0,1] = set of functions f : [0,1] → R which are continuous. The
vector space operations are
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( f + g)(t) = f (t)+ g(t), for all f ,g ∈C[0,1]
(λ f )(t) = λ ( f (t)), for all f ∈C[0,1],λ ∈ R

Definition A.2. A metric space (M,δ ) is a set M together with a metric (or distance
function) δ which satisfies the axioms:

(a) δ (x,y) ≥ 0 for all x,y ∈ M.
(b) δ (x,y) = 0 if and only if x = y.
(c) δ (x,y) = δ (y,x) (symmetry).
(d) δ (x,y) ≤ δ (x,z)+ δ (z,y) (the triangle inequality).

Definition A.3. A norm on a vector space V is a function f : ‖ · ‖ : V → R
+ such

that
(N1) ‖v‖ = 0 if and only if v = 0.
(N2) ‖αv‖ = |α| ‖v‖ for all v ∈V and α ∈ F.
(N3) ‖v + w‖ ≤ ‖v‖+‖w‖, for all v,w ∈V .

Example A.3. R
n with the usual Euclidean norm

‖(v1, · · · ,vn)‖ =

(
n

∑
i=1

v2
i

)1/2

,

or the norm
‖(v1, · · · ,vn)‖ = maxi|vi|.

Note that all norms on R
n are equivalent in the sense that they define the same

topology (which has a neighbourhood basis consisting of open balls Bv0(δ ) = {v :
‖v− v0‖ < δ}).

Example A.4. C
n with the norm

‖(z1, · · · ,zn)‖ =

(
n

∑
i=1

|zi|2
)1/2

.

Example A.5. C[0,1] with the sup norm:

‖ f‖ = max
t∈[0,1]

| f (t)|, f ∈C[0,1].

Definition A.4. An inner product space (V,(·, ·)) is a vector space V together with a
map (·, ·) : V ×V → F such that:

(a) (v,v) ≥ 0 for all v ∈V (in particular, (v,v) ∈ R.
(b) (v,v) = 0 if and only if v = 0.
(c) (v,w) = (w,v) for all v,w ∈V .
(d) (λ v + µw,x) = λ (v,x)+ µ(w,x), for all v,w,x ∈V and λ ,µ ∈ F.

An inner product is also called a scalar product. A vector space with an inner product
is a normed space if we define
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‖v‖ =
√

(v,v).

Example A.6. R
n and C

n with their usual structures.

Example A.7. C[0,1] with the inner product

( f ,g) =
∫ 1

0
f (t)g(t)dt

(or ( f ,g) =
∫ 1

0 f (t)g(t)dt if we allow complex-valued functions). Note that this in-
ner product gives a different norm on C[0,1] from the one above.

A.2 Linear Dependence and Bases

If V is a vector space over F, a linear combination of the vectors v1, · · · ,vk ∈ V is
an element of V of the form

w = α1v1 + · · ·+ αkvk, α ∈ F.

We say that the vectors v1, · · · ,vk are linearly dependent if there exist scalars
α1, · · · ,αk ∈ F, not all zero, such that

α1v1 + · · ·+ αkvk = 0. (A.1)

If, on the other hand, expressions of the form (A.1) always imply that α1 = · · · =
αk = 0, we say that v1, · · · ,vk are linearly independent. A maximal linearly inde-
pendent set in V is called a basis of V , and the number of elements in such a set is
called the dimension of V (this is clearly well-defined and can be infinite).

Definition A.5. The standard basis of R
n (or C

n) is the set {e1, · · · ,en}, where ei

is the n-vector with a single ‘1’ as the ith component and zeros otherwise.

Definition A.6. A linear operator (or homomorphism) A from a vector space V
into a vector space W is a function A : V →W such that

A(αv1 + β v2) = αA(v1)+ β A(v2), for all α,β ∈ F,v1,v2 ∈V.

If A maps V onto W , it is called an epimorphism, if it is one-to-one it is a monomor-
phism and if it is both it is an isomorphism . For finite-dimensional vector spaces, A
is an isomorphism if and only if dim V = dim W .

Theorem A.1. Every finite-dimensional vector space over R is isomorphic to R
n

for some n and every finite-dimensional vector space over C is isomorphic to C
n for

some n.
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Because of this theorem, we can think of any finite-dimensional vector space over
R (or C) as a set of n-tuples (x1, · · · ,xn) (or (z1, · · · ,zn)) with their usual operations.
Thus any basis can be thought of as the columns of a matrix E which is invertible.
To find the components (v1, · · · ,vn) of any vector v in terms of the basis determined
by E is equivalent to solving the linear equation

E

⎛
⎜⎝

v1
...

vn

⎞
⎟⎠=

⎛
⎜⎝

v1
...

vn

⎞
⎟⎠

where v1, · · · ,vn are the components of v in the standard basis.
If A : R

m → R
n is a linear operator (similar remarks apply, of course, if A :

C
m → C

n), we define the matrix of A with respect to the bases b1
1, · · · ,bm

1 of R
m

and b1
2, · · · ,bn

2 of R
n by

Abi
1 =

n

∑
j=1

a jib
j
2, 1 ≤ i ≤ m.

If the bases are clear from the context, we usually denote the operator and its matrix
representation by the same letter A. Hence, if we write an equation of the form

Av = w,

we shall mean an operator equation in basis-free form or a given matrix represen-
tation. Since different matrix representations A and B are related by a similarity
transformation of the form

A = P−1BP

for some invertible matrix P, we can define invariant properties of A as in the fol-
lowing definition.

Definition A.7. Let A : R
n → R

n (so that A is represented by a square matrix). The
kernel of A (Ker A) is the set of vectors v ∈ R

n such that Av = 0. The range of A is
called the image of A (Im A) and the determinant of A (det A) is the determinant of
any matrix representation of A.

Note that the equation
Av = w (A.2)

has a unique solution if and only if det A �= 0, i.e. if and only if Ker A = {0}. In this
case, Im A = R

n. If Ker A �= 0, then A is not one-to-one and the Equation A.2 has
a solution v if and only if w ∈ Im A, in which case v + αx is also a solution for any
x ∈ Ker A and all α ∈ R.
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A.3 Subspaces and Quotient Spaces

Definition A.8. If a subset W of a vector space V is closed under the operations of
addition and scalar multiplication, it is called a (linear) subspace of V .

Definition A.9. If W ⊆V is a subspace, we define the quotient space V/W to be the
set of affine subsets of V ‘parallel’ to W , i.e. the sets of the form

v +W = {v + w : w ∈W}.

We can make V/W into a vector space by defining

(v1 +W)+ (v2 +W) = (v1 + v2)+W

λ (v +W) = λ v +W.

This is clearly well-defined. If b1, · · · ,bn is a basis of V such that b1, · · · ,bm is a
basis of W (i.e. dim W = m), then

bm+1 +W, · · · ,bn +W

is a basis of V/W and we have

dimV = dimW + dimV/W.

We usually write v = v +W . Note that v1 = v2 if and only if v1 − v2 ∈ W and if we
write v1 ∼ v2 if and only if v1 − v2 ∈ W , then ∼ is an equivalence relation, so the
sets v, v ∈V partition V .

Now let f : V → X be a linear map between vector spaces V and X and suppose
that f (U)⊆Y where U is a subspace of V and Y is a subspace of X . Then we define
a linear map f : V/U → X/Y by

f (v) = f (v).

In particular, if V = X and U = Y , we say that U is an invariant subspace if f (U) ⊆
U . In this case, f induces a map

f : V/U →V/U.

If V = {0}, then X/Y ∼= X and so if f : V → X has kernel Ker f , then

f : V/Ker f → Im f

is an isomorphism.
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A.4 Eigenspaces and the Jordan Form

Definition A.10. An eigenvector of a linear operator (or matrix) A is a non-zero
vector v which satisfies the equation

Av = λ v

for some (complex) number λ , called an eigenvalue.

Thus an eigenvector spans an invariant subspace of A. The eigenvector equation
can be written

(A−λ I)v = 0.

This equation can have a non-zero solution v if and only if

det (A−λ I) = 0.

This is called the characteristic equation of A and has n solutions (counting multi-
plicity).

Suppose first that A has n linearly independent eigenvectors v1, · · · ,vn with cor-
responding eigenvalues λ1, · · · ,λn. Then

(A−λi)vi = 0, 1 ≤ i ≤ n

and the n×n matrix
P = [v1,v2, · · · ,vn]

is invertible. Hence,

AP = [Av1,Av2, · · · ,Avn]
= [λ1v1,λ2v2, · · · ,λnvn]
= PΛ

where Λ = diag [λ1,λ2, · · · ,λn], and so

P−1AP = Λ

and therefore a similarity transformation diagonalises A.
If A does not have a linearly independent set of n eigenvectors, we consider the

generalised eigenspace of λ , i.e.

VA(λ ) = {v ∈ C
n : (A−λ I)kv = 0 for some integer k}.

(We must consider C
n because the eigenvalues may be complex.) We have:

Theorem A.2. If A : C
n →C

n is any linear operator and VA(λ ) are the correspond-
ing generalised eigenspaces, then:

(a) VA(λ ) is an invariant subspace of A.
(b) VA(λ ) �= {0} if and only if λ is an eigenvalue of A.
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(c) A|VA(λ ) has all eigenvalues equal to λ if VA(λ ) �= {0}.
(d) If VA(λ ) �= {0} and m = dim VA(λ ), then

(A−λ I)mv = 0 for all v ∈VA(λ ).

(e) The multiplicity of the eigenvalue λ of A is m = dim VA(λ ).
(f) C

n =
⊕

λ∈∆ VA(λ ), where ∆ is the set of distinct eigenvalues of A.
(Here

⊕
means the direct sum of subspaces, so that if v ∈ V1

⊕
V2, then v has a

unique representation in the form v = v1 + v2 where v1 ∈V1,v2 ∈V2.)

Proof.
(a) If v ∈VA(λ ), then (A−λ I)kAv = A(A−λ I)kv = 0, so Av ∈VA.
(b) If λ is an eigenvalue, then (A − λ I)v = 0, so v ∈ VA. Conversely, if VA �=

{0}, then (A−λ I)kv = 0, for some minimal k > 0 and v �= 0. Then (A−λ I)(A−
λ I)k−1v = 0, so λ is an eigenvalue with eigenvector (A−λ I)k−1v �= 0, by minimality
of k.

(c) If λ �= µ is an eigenvalue of A|VA(λ ), then Av = µv for some v �= 0 in VA(λ ).
Then (A− λ I)kv = 0 for some k > 0. Substituting Av = µv into this gives (µ −
λ )kv = 0, so v = 0, which is a contradiction, so λ = µ .

(d) If v ∈VA(λ ) and v �= 0, let

v0 = v, v1 = (A−λ I)iv, i ≥ 1.

If vp = (A − λ I)pv �= 0 for p ≥ m and vp+1 = 0, then v0,v1, · · · ,vp are linearly
independent, since if not,

α0v0 + α1v1 + · · ·+ αpvp = 0

for some α’s, not all zero. Applying (A−λ I)p to this equation gives α0 = 0, and then
applying (A−λ I)p−1 gives α1 = 0, etc. Thus,v0, · · · ,vp are linearly independent for
p ≥ m, which contradicts the definition of m.

(e) We must show that A : C
n/VA(λ ) → C

n/VA(λ ) does not have λ as an eigen-
value. If it does, then there exists 0 �= v ∈ C

n/VA(λ ) such that

(A−λ I)v = 0

i.e.
(A−λ I)v ∈VA(λ )

so that
(A−λ I)m+1v = 0

i.e. v ∈VA(λ ), which contradicts v �= 0.
(f) Let λ1, · · · ,λr be the distinct eigenvalues of A. We show that the sum

∑r
i=1 VA(λi) is direct. Suppose that

v1 + · · ·+ vr = 0, vi ∈VA(λi).
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If mi = dim VA(λi), we define the polynomials

fi(λ ) =
r

∏
j=1
j �=i

(λ −λ j)mj , gi(λ ) = (λ −λi)mi .

Then fi and gi are relatively prime (by the distinctness of the λi’s) and so, by classi-
cal number theory, there exists polynomials p,q such that

p(λ ) fi(λ )+ q(λ )gi(λ ) = 1.

Substituting A into this equation gives

p(A) fi(A)+ q(A)gi(A) = I

i.e.

p(A)
r

∏
j=1
j �=i

(A−λ jI)mj + q(A)(A−λiI)mi = I.

Now apply this to vi (=−∑r
j=1
j �=i

v j, by assumption). This gives vi = 0, so the sum is

direct. Since mi is the multiplicity of λi and ∑mi = dim C
n = n, the result follows.

�

This theorem says that we can choose a basis of C
n consisting of generalised eigen-

vectors of A so that A takes the form⎡
⎢⎢⎢⎣

Λ1

Λ2
. . .

Λr

⎤
⎥⎥⎥⎦

where r is the number of distinct eigenvalues of A. To determine the structure of
each Λi, let λi be the corresponding eigenvalue. For each element v of VA(λi), we
have

(A−λiI)pv = 0 and (A−λiI)p−1v �= 0

for some integer p ≥ 1 (depending on v). Let v1 be an element of VA(λi) for which
p is maximal. Then we have the linearly independent vectors

w1 = v1,w2 = (A−λiI)v1, · · · ,wp = (A−λiI)p−1v1

which span a subspace V1 of VA(λi). The matrix of A restricted to this subspace is
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⎡
⎢⎢⎢⎢⎢⎣

λi 1
λi 1

. . .
. . .
λi 1

λi

⎤
⎥⎥⎥⎥⎥⎦

(a p× p matrix). If V1 �= VA(λi), we consider VA(λi)/V1 and repeat the process.
Using the resulting basis for C

n gives the Jordan form of A.
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Appendix B
Lie Algebras

B.1 Elementary Theory

In this appendix we give a brief outline of the theory of Lie algebras. Most of the
proofs are omitted and can be found in a number of excellent monographs on the
subject (for example, [1,2]). Lie algebras abstract the notion of non-commutation
of matrices; they are vector spaces with an additional (non-commutative) product
structure:

Definition B.1. A Lie algebra g is a vector space over F, together with a binary
operation [·, ·] : g×g→ g which satisfies the axioms:

(a) [λ1X1 + λ2X2,Y ] = λ1[X1,Y ]+ λ2[X2,Y ] for all X1,X2,Y ∈ g.
(b) [X ,Y ] = −[Y,X ], for all X ,Y ∈ g.
(c) [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0, for all X ,Y,Z ∈ g.

The dimension of g is its dimension as a vector space. Axiom (c) of Definition
B.1 is called the Jacobi identity. Note that

[X ,X ] = 0 for all X ∈ g.

Example B.1. Any vector space V with bracket [X ,Y ] = 0 for all X ,Y ∈V . These are
the abelian Lie algebras.

Example B.2. R
3 with the usual vector space structure and the bracket

[x,y] = x× y, x,y ∈ R
3,

where × denotes the vector cross product.

Example B.3. The set of all n × n complex matrices g�(n;C) with the obvious
bracket

[X ,Y ] = XY −YX .
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More generally, if V is any given vector space, we write g�(V ) for the set of all
linear operators L : V →V .)

Example B.4. Any associative algebra A (i.e. vector space with an associative prod-
uct), together with the bracket

[a,b] = a ·b−b ·a, for all a,b ∈ A,

where · is the algebra product. (This clearly generalises Example B.3.)

If g is a finite-dimensional Lie algebra, let {bi}1≤i≤n be a basis of g. Then we have

[bi,b j] =
n

∑
k=1

ck
i jbk,

for some n3 constants ck
i j called the structure constants of g. Using the axioms (L1)–

(L3), it is easy to prove the identities

ck
i j = −ck

ji, 1 ≤ i, j,k ≤ n

n

∑
�=1

n

∑
m=1

(
c�

ikcm
i� + c�

kic
m
j� + c�

i jc
m
j�

)
= 0, 1 ≤ i, j,k ≤ n.

The structure constants clearly determine the Lie algebra, for any given fixed basis.
A linear map (operator) A : g1 → g2, from a Lie algebra g1 to another Lie algebra g2

is a homomorphism (of Lie algebras) if it preserves the bracket, i.e.

A[X ,Y ] = [AX ,AY ], for all X ,Y ∈ g1.

Monomorphisms and isomorphisms are defined as in the vector space case.

Definition B.2. Let g be a Lie algebra and h a subspace of g. Then h is a subal-
gebra of g if

[h,h] ⊆ h

and an ideal if
[h,g] ⊆ h.

A Lie algebra g with no non-trivial ideals (i.e. �= g or {0}) is called simple. The
(unique) 1-dimensional Lie algebra is the trivial simple Lie algebra.
Clearly, if h1,h2 are ideals, then so are h1 +h2 and h1 ∩h2. If h ⊆ g is an ideal, then
we can define the quotient space g/h and make it into a Lie algebra by defining

[X ,Y ] = [X ,Y ], for all X ,Y ∈ g.

Induced maps then behave in the same way as induced linear maps of vector spaces.
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Definition B.3. If g is a Lie algebra, then Dg = [g,g] is called the derived alge-
bra of g. The derived series of g is the sequence of ideals

g = D(0)g ⊇ D(1)g ⊇ ·· · ⊇ D(n)g ⊇ ·· · ,

where
D(n)g = D(D(n−1)g).

The sequence of ideals

g = C(0)g ⊇ C(1)g ⊇ ·· · ⊇ C(n)g ⊇ ·· · ,

where C(n)g = [g,C(n−1)g], is the descending central series of g.
If D(n)g = {0} for some finite n, then g is called a solvable Lie algebra. If C(n)g =

{0} for some finite n, then g is called nilpotent. Note that

D(n)g ⊆ C(n)g

so that if g is nilpotent then it is solvable. Subalgebras, homomorphic images and
direct sums of solvable (nilpotent) Lie algebras are solvable (nilpotent). It follows
that any Lie algebra g has a unique maximal solvable ideal r called the radical of g.
If the only solvable ideal in g is {0} then g is called semi-simple. Thus, if g is not
solvable, then g/r is semi-simple. (Any decomposition of the form

g = r+m

is called a Levi decomposition. It is not a direct sum and so the decomposition is not
unique.) Also, g is solvable if and only if Dg is nilpotent. If g is a solvable subal-
gebra of g�(V ), then there exists a basis of V such that the matrix representations of
each operator in g in this basis are all upper triangular.

Definition B.4. If g is a Lie algebra then, for any X ∈ g, we define the map
ad X : g → g by

(ad X)(Y ) = [X ,Y ].

Then g is nilpotent if and only if for any X ∈ g, ad X is nilpotent. Moreover, if g is a
subalgebra of g�(V ), then if every element X of g is nilpotent (i.e. Xk = 0 for some
k), then g is a nilpotent Lie algebra.

B.2 Cartan Decompositions of Semi-simple Lie Algebras

Definition B.5. Let h be a subalgebra of g�(V ). A function λ : h → C is called a
weight of h if there exists 0 �= v ∈V such that
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Hv = λ (H)v, for all H ∈ h.

The vector v is called a weight vector.

Nilpotent Lie subalgebras of g�(V) have a decomposition similar to the Jordan de-
composition of a single n×n matrix. In fact, we have:

Theorem B.1. Let h ⊆ g�(V ) be a nilpotent Lie algebra and let λ : h → C be a
linear function. Define the weight subspace

Vh(λ ) = {v ∈V : (H −λ (H)I)kv = 0 for some k > 0 and all H ∈ h}.

Then:
(a) Vh(λ ) is an invariant subspace and Vh(λ ) =

⋂
H∈hVH(λ ).

(b) Vh(λ ) �= 0 if and only if λ is a weight of h, and λ is the only weight of h in
Vh(λ ).

(c) If Vh(λ ) �= 0, then (H −λ (H)I)dim Vh(λ )v = 0, for all H ∈ h, v ∈Vh(λ ).
(d) V =

⊕
λ∈∆ Vh(λ ), where ∆ is the set of weights of h.

This gives an immediate generalisation of Jordan’s theorem:

Corollary B.1. If h ⊆ g�(V ) is nilpotent, where V ∼= C
n, then h is isomorphic to a

subalgebra of n(n1,C)
⊕ · · ·n(nr,C) where n1 + · · ·+nr = n and r is the number of

weights. Here, n(m,C) is the set of upper triangular matrices with equal diagonal
elements.

We now apply this to a general Lie algebra g with a nilpotent subalgebra h. Then
the set

adgh = {adgH : H ∈ h}
is a nilpotent Lie subalgebra of g�(g)∼= g�(Cn), if dim g = n. By the above theorem
we have the decomposition

g =
⊕
λ∈∆

gad h(λ ), (B.1)

where ∆ is the set of weights of ad h. (Note that ∆ is also referred to as the set of
weights of h.) To study this decomposition in more detail we introduce the Killing
form of g to be the symmetric, bi-linear function (·, ·) : g×g→ C given by

(X ,Y ) = tr [(ad X)(ad Y )], X ,Y ∈ g.

Note that
((ad )X ,Y )+ (X ,(ad)Y ) = 0.

For each X ∈ g, the characteristic polynomial KX (λ ) of ad X is called the Killing
polynomial of X . Since

(ad X)X = [X ,X ] = 0,
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KX (λ ) has at least one zero root (i.e. ad X has a zero eigenvalue), so that KX (λ ) has
the form

KX (λ ) = λ r + α1(X)λ r−1 + · · ·+ αr−k(X)(X)λ k(X)

where k(X) ≥ 1. Set
κ = min

X∈g
k(X).

κ is called the rank of g. If X ∈ g is such that k(X) = κ then X is called regular;
otherwise it is singular.

Returning to the decomposition (B.1), the following properties of the weight
(root) spaces gad h(λ ) are simple consequences of the definitions:

(a) [gad h(α),gad h(β )] ⊆ gad h(α +β ), for all α,β ∈ ∆ , so that gad h(0) is a sub-
algebra of g.

(b) If α + β is not a root, then [gad h(α),gad h(β )] = 0.
(c) (gad h(α),gad h(β )) = 0, if α + β �= 0, where (·, ·) is the Killing form.
(d) h ⊆ gad h(0).

Definition B.6. If h = gad h(0), then h is called a Cartan subalgebra of g and (B.1)
is the Cartan decomposition of g.

Theorem B.2. (a) A Cartan subalgebra of g is a maximal nilpotent subalgebra.
(b) Every Lie algebra has a Cartan subalgebra.
(c) If X0 is a regular element of g, then gad X0(0) is a Cartan subalgebra.
(d) If hi is a Cartan subalgebra of gi, (i = 1,2), then h1

⊕
h2 is a Cartan subal-

gebra of g1
⊕

g2.
(e) If h is a nilpotent subalgebra of g and

n(h) = {X ∈ g : [X ,h] ⊆ h}

is the normaliser of h in g, then h is a Cartan subalgebra if and only if h = nh.
(f) Cartan subalgebras of a given Lie algebra g are conjugate under inner au-

tomorphisms (i.e. automorphisms of the form exp(ad X) where ad X is a nilpotent
linear operator).

The decomposition (B.1) can be written in the form

g = h⊕
⊕
λ∈Σ

g(λ )

where h is a given Cartan subalgebra, g(λ ) = gad h(λ ) and ∑ is the set of non-zero
roots of g. If nλ = dim g(λ ), then the Killing form is

(X ,Y ) = ∑
λ∈Σ

nλ λ (X)λ (Y ).

Theorem B.3. (Cartan)
(a) A Lie algebra g is solvable if and only if (X ,X) = 0 for all X ∈ Dg.
(b) g is semi-simple if and only if the Killing form (·, ·) is non-degenerate.
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It follows that a semisimple Lie algebra is the direct sum of all its minimal ideals,
which are simple Lie algebras which are orthogonal with respect to (·, ·).

B.3 Root Systems and Classification of Simple Lie Algebras

Now consider the Cartan decomposition of a semisimple Lie algebra g with Cartan
subalgebra h. If dim g = n and dim h = m, then the Cartan decomposition of g is

g = h⊕
⊕
λ∈Σ

g(λ )

where h is an abelian subalgebra and (·, ·)|h is non-degenerate. Moreover, there are
m linearly independent root subspaces gλ (λ �= 0) which are one-dimensional and if
λ ∈ Σ then so is −λ and kλ /∈ Σ for k �= ±1. Note that if λ + µ is a root, then

[gλ ,gµ ] = gλ+µ . (B.2)

Since the restriction of the Killing form (·, ·) to h is non-degenerate and any root
λ : h → C is a linear functional on h, i.e. λ ∈ h∗ (the dual space of h), there exists a
unique Hλ ∈ h such that

(H,Hλ ) = λ (H), for all λ ∈ Σ .

Clearly,
λ (Hλ ) �= 0 for all λ ∈ Σ .

Also, for any λ ∈ Σ and any Eλ ∈ gλ , there exists a unique E−λ ∈ g−λ such that

(Eλ ,E−λ ) = 1 and [Eλ ,E−λ ] = Hλ . (B.3)

Now let λ ,µ be roots such that λ �=±µ . Then there exist non-negative integers p,q
such that

−pλ + µ ,−(p−1)λ + µ , · · · ,−λ + µ ,µ ,λ + µ , · · · ,qλ + µ

are roots, but −(p + 1)λ + µ and (q + 1)λ + µ are not. Then we have

2
(Hλ ,Hµ)
(Hλ ,Hλ )

= p−q.

Note that the elements Hλ span h and since dim h = m, there exist Hλ1
,Hλ2

, · · · ,Hλm

which form a basis of h. Moreover it follows that we can write any Hλ in the form

Hλ =
m

∑
i=1

αiHλi
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where αi is a rational number. If hR denotes the real vector space corresponding
to h (i.e. the space generated by the Hλ over R) then the Killing form on hR makes
it into a Euclidean space of dimension m, i.e. the Killing form (·, ·) is a standard
Euclidean inner product. Note that, by duality, this gives a metric on h∗

R
by defining

(λ ,µ) = (Hλ ,Hµ).

We define a total order < on h∗
R

(this is a standard set-theoretic total order which
satisfies λ < µ ⇒ λ + ν < µ + ν , for all λ ,µ ,ν and if λ < µ and 0 < r ∈ R, then
rλ < rµ). Every real vector space has a total order defined lexicographically. For
a given total order on h∗

R
, we call Σ+ the set of positive roots (i.e. λ ∈ Σ such that

λ > 0). A fundamental system of roots Π ⊆ Σ+ is a subset of positive roots λ such
that

λ �= µ + ν

where µ ,ν ∈ Σ+ (µ �= λ , ν �= λ ). We have:

Theorem B.4. (a) Every root in Σ+ is a sum of roots in Π .
(b) If λ ,µ ∈ Π and λ �= µ , then (λ ,µ) ≤ 0.
(c) Any fundamental system of roots Π is a basis of h∗

R
.

If Π = {λ1, · · · ,λm} is a fundamental system of roots of a semisimple Lie algebra
g, then the matrix A = (Ai j) defined by

Ai j = 2
(λi,λ j)
(λi,λi)

, 1 ≤ i, j ≤ m

is called the Cartan matrix of g.
From (B.2) it follows that, if Eλ is chosen as in (B.3), then we have

[Eλ ,Eµ ] = Nλ µEλ+µ

for some constants Nλ µ ∈C. (These numbers are sometimes also called the structure
constants of g.) They satisfy the properties:

(a) Nλ µ = −Nµλ , for all λ ,µ ∈ Σ with λ + µ �= 0.
(b) If λ ,µ ,ν ∈ Σ and λ + µ + ν = 0, then

Nλ µ = Nµν = Nνλ .

(c) If α,β ,γ,δ ∈ Σ and α + β + γ + δ = 0, and the sum of any two of α,β ,γ,δ
is not zero, then

Nαβ Nγδ + NαγNδβ + Nαδ Nβ γ = 0.

(d) If λ ,µ ,ν ∈ Σ and λ + µ �= 0, and µ − pλ ,µ − (p−1)λ , · · · ,µ + qλ is
a maximal chain of roots, then

Nλ µN−λ ,−µ = −q(p + 1)
2

(λ ,λ ).
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It follows that for any semi-simple Lie algebra g, there exist root vectors Eλ (λ ∈ Σ )
such that (Eλ ,E−λ ) = 1 and all the structure constants Nλ µ (λ ,µ ,λ + µ ∈ Σ ) are
non-zero real numbers such that

Nλ µ = −N−λ ,−µ

and
N2

λ µ =
q(p + 1)

2
(λ ,λ ) > 0.

The basis {H1,H2, · · · ,Hm}∪{Eλ : λ ∈ Σ} of g, where the Eλ ’s satisfy the above
conditions and {Hi} is any basis of the Cartan subalgebra h of g, is called a Weyl
basis of g.

Recall now that a fundamental system of roots Π is a linearly independent set of
vectors such that if λ ,µ ∈ Π and λ �= µ , then 2(λ ,µ)/(λ ,λ ) is zero or a negative
integer. Since

4cos2(∠(λ ,µ)) = 4
(λ ,µ)2

(λ ,λ )(µ ,µ)
= 2

(λ ,µ)
(λ ,λ )

·2 (λ ,µ)
(µ ,µ)

,

where ∠(λ ,µ) is the angle between λ and µ , we have

cos(∠(λ ,µ)) = −1
2

√
r

where r = 0,1,2 or 3. If 2(λ ,µ)/(λ ,λ ) �= 0 for λ ,µ ∈ Π , we say that Π is a simple
root system. Then the possible angles between roots in a simple root system are
120◦,135◦ and 150◦. We construct a graph called a Dynkin diagram of Π with
one vertex for each root in Π and 1,2 or 3 lines joining pairs of roots if the angle
between them is respectively 120◦,135◦ or 150◦. Note that if ∠(λ ,µ) = 120◦ then
(µ ,µ) = (λ ,λ ) so the roots have the same length, while if ∠(λ ,µ) = 135◦ then
(µ ,µ) = 2(λ ,λ ) and if ∠(λ ,µ) = 150◦ then (µ ,µ) = 3(λ ,λ ). It can be shown that,
for a simple Π system of roots, the possible Dynkin diagrams are as shown in Figure
B.1. (The shorter roots are denoted by a circle ◦ and the larger ones by •.)

It can be shown that a Lie algebra is simple if and only if it has a simple Π system
of roots, so the above Dynkin diagrams characterise all (finite-dimensional) simple
Lie algebras. The fact that each one of these diagrams represents a valid simple
Lie algebra can be shown by using representation theory. We shall simply give a
realisation of each one – the details can be found in the references.
Type An

Consider the subspace LA of g�(n + 1) consisting of matrices with trace zero.
Then LA is a simple Lie algebra and has the decomposition

LA = H
⊕

∑
i�= j

CEi j

where H is the set of diagonal matrices of trace zero and Ei j is the (n+1)× (n+1)
matrix with zeros everywhere except for a 1 in the i jth place. If diag (λ1, · · · ,λn+1)∈
H, then the roots are the functions
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A

B

n
. . . .�1 �2 �3 �n-1 �n

n 1

n . . . .�1 �2 �3 �n-1 �n
n 2

Cn . . . .�1 �2 �3 �n-1 �n
n 2

Dn
. . . .

�1

�2

�4 �n-1 �n
n 4

�3

E n . . . .�1 �2 �3 �n-1 �n n=6,7,8

F 4
�1 �2 �3 �4

G2
�1 �2

Fig. B.1 Dynkin diagrams of the simple Lie algebras

diag (λ1, · · · ,λn+1) → λi −λ j, i �= j.

A fundamental set of roots is given by

diag (λ1, · · · ,λn+1) → λi −λ j, 1 ≤ i ≤ n.

The dimension of LA is n(n + 2). Note that Lie algebras of type An are also writ-
ten s�(n + 1,C) since they are the Lie algebras of SL(n,C) = {g ∈ GL(n,C) :
detg = 1}.
Type Bn

The Lie algebras are the subspaces LB of g�(2n + 1) consisting of matrices X
which satisfy XT M + MX = 0 where M is the matrix

M =

⎛
⎝ 2 01×n 01×n

0n×1 0n×n In

0n×1 In 0n×n

⎞
⎠
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where the zeros represent zero matrices of appropriate dimensions. We have the
decomposition

LB = H
⊕

∑
λ

CEλ

where
H = {X : X = diag (0,λ1, · · · ,λn,−λ1, · · · ,−λn)}

and the (non-zero) roots are Σ = {±λi±λ j, i �= j;λi}. The matrices Eλ for each root
type are

Eλi−λ j
=

⎛
⎝ 0

Ei j

−E ji

⎞
⎠ ,E−λi+λ j

=

⎛
⎝0

E ji

−Ei j

⎞
⎠ , i < j,

Eλi+λ j
=

⎛
⎝ 0

0 Ei j −E ji

0

⎞
⎠ , E−λi−λ j

=

⎛
⎝0

0
−Ei j + E ji 0

⎞
⎠ , i < j,

Eλi
=

⎛
⎝ 0 0 ei

−eT
i 0 0

0 0 0

⎞
⎠ , E−λi

=

⎛
⎝ 0 −ei 0

0 0 0
eT

i 0 0

⎞
⎠ ,

where ei is the standard ith unit basis vector (of dimension n). The generators of H
are

Hλi−λ j
=

⎛
⎝0

Eii −E j j

−Eii + E j j

⎞
⎠ , i < j

Hλi+λ j
=

⎛
⎝0

Eii + E j j

−Eii −E j j

⎞
⎠ , i < j

Hλi
=

⎛
⎝ 0

Eii

−Eii

⎞
⎠ .

Lie algebras of type Bn are also written so(2n+1,C) since they are the Lie algebras
of the Lie groups SO(2n + 1,C) - the special orthogonal group.
Type Cn

In this case we consider the Lie algebra of matrices X which satisfy XT M+MX =

0 where M =
(

0 In

−In 0

)
. Then

LC = H
⊕

∑
λ

CEλ

where
H = {X : X = diag (λ1, · · · ,λn,−λ1, · · · ,−λn)}
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and the roots are {±λi±λ j, i �= j;±2λi}. The matrices Eλ are

Eλi−λ j
=
(

Ei j 0
0 −E ji

)
, E−λi+λ j

=
(

E ji 0
0 −Ei j

)
, i < j,

Eλi+λ j
=
(

0 Ei j + E ji

0 0

)
, E−λi−λ j

=
(

0 0
Ei j + E ji 0

)
, i < j,

E2λi
=
(

0 Eii

0 0

)
, E−2λi

=
(

0 0
Eii 0

)
,

and the generators of H are

Hλi−λ j
=
(

Eii −E j j 0
0 −Eii + E j j

)
, i < j,

Hλi+λ j
=
(

Eii + E j j 0
0 −Eii −E j j

)
, i < j,

H2λi
=
(

Eii 0
0 −Eii

)
.

Lie algebras of type Cn are also written sp(n,C) since they are the Lie algebras of

the Lie groups Sp(n,C) = {g ∈ SL(2n,C) : gT Jg = J, where J =
(

0 In

−In 0

)
} - the

symplectic groups.
Type Dn

Here we consider the Lie algebra of matrices X which satisfy XT M + MX = 0

where M =
(

0 In

In 0

)
. Then

LD = H
⊕

∑
λ

CEλ

where
H = {X : X = diag (λ1, · · · ,λn,−λ1, · · · ,−λn)}

and the roots are {±λi±λ j, i �= j}. In this case,

Eλi−λ j
=
(

Ei j 0
0 −E ji

)
, E−λi+λ j

=
(

E ji 0
0 −Ei j

)
, i < j,

Eλi+λ j
=
(

0 Ei j −E ji

0 0

)
, E−λi−λ j

=
(

0 0
−Ei j + E ji 0

)
, i < j.

and the generators of H are

Hλi−λ j
=
(

Eii −E j j 0
0 −Eii + E j j

)
, i < j,
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Hλi+λ j
=
(

Eii + E j j 0
0 −Eii −E j j

)
, i < j.

Lie algebras of type Dn are also written so(2n,C).
The Lie algebras An,Bn,Cn and Dn are called the classical Lie algebras. The

remaining simple Lie algebras E6,E7,E8,F4 and G2 are the exceptional (or sporadic)
Lie algebras. We begin by giving a realisation of G2.
Type G2

The Lie algebra G2 has a realisation as a subalgebra of B3. We know that

H = {X : X = diag (0,λ1,λ2,λ3,−λ1,−λ2,−λ3}

is a Cartan subalgebra of B3. Let H̃ be the subalgebra

H̃ = {X ∈ H : λ1 + λ2 + λ3 = 0}.

Then G2 can be seen to be the 14-dimensional Lie algebra generated by the matrices

G(i) =
√

2Eλi
+ E−λ j−λk

G(i+ 3) =
√

2E−λi
+ Eλ j+λk

}
(i, j,k) =

⎧⎨
⎩

(1,2,3)
(2,3,1)
(3,1,2)

G(7) = Eλ1−λ2

G(8) = Eλ2−λ1

G(9) = Eλ1−λ3

G(10) = Eλ3−λ1

G(11) = Eλ2−λ3

G(12) = Eλ3−λ2

and H̃. If λ1,λ2 are fundamental roots of G2, then all the roots of G2 are given by

{λ1,λ2,λ1 + λ2,λ1 + 2λ2,λ1 + 3λ2,2λ1 + 3λ2,

−λ1,−λ2,−λ1 −λ2,−λ1 −2λ2,−λ1 −3λ2,−2λ1 −3λ2}.

In order to find a realisation of the Lie algebra F4, we need the following definition

Definition B.7. A representation of a Lie algebra g on a vector space V is a homo-
morphism ρ : g → g�(V).
Thus, in particular, ρ preserves the barcket:

ρ [X ,Y ] = [ρ(X),ρ(Y )].

Definition B.8. A representation ρ of g is reducible if there exists a proper invariant
subspace of V under ρ , i.e. there exists a subspace V1 of V such that V1 �= {0} and
V1 �= V and
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ρ(X)V1 ⊆V1 for all X ∈ g.

Then, ρ(X)v = ρ(X)v is a representation of g on V/V1.

Definition B.9. A representation ρ of g is irreducible if it is not reducible.

The representation ρ : X → ad X (X ∈ g) of g on itself is called the regular (or
adjoint) representation. The representation ρ : X → 0 is called the trivial represen-
tation. Then we have the following theorem of Witt [3]:

Theorem B.5. Let g be an n-dimensional simple Lie algebra with basis {X1, · · · ,Xn}.
Let V be a vector space of dimension m with basis {e1, · · · ,em} and let ρ be an
irreducible representation of g on V , which is not the trivial or regular representa-
tion. Suppose that Yi = (yi

jk|1≤ j,k≤m is the matrix of ρ(Xi) with respect to the basis
{e1, · · · ,em} of V , for 1 ≤ i ≤ n, and assume that it satisfies the properties

(a) Yi is real and skew-symmetric for 1 ≤ i ≤ n.
(b) Tr (YiYj) = −mδi j .
(c) Tr (Σi, j(YiYj)2) = 1

2 nm2.
Then g′ = g⊕V is a simple Lie algebra with bracket defined by

[Xi,Xj] =
n

∑
k=1

ck
i jXk, i, j = 1, · · · ,n

−[ei,Xj] = [Xj,ei] =
m

∑
k=1

y j
kiek, 1 ≤ i ≤ m,1 ≤ j ≤ n

[ei,e j] =
n

∑
k=1

yk
i jXk, 1 ≤ i, j ≤ m.

Type F4
Define the following 16×16 matrices:

M1 =
(

I8 0
0 −I8

)
, M2 =

(
0 I8

I8 0

)
,

M3 =

⎛
⎜⎜⎝

0 I4

−I4 0
0 −I4

I4 0

⎞
⎟⎟⎠ ,

M4 =
(

0 N2

NT
2 0

)
where N2 =

⎛
⎜⎜⎝

0 I2

−I2 0
0 −I2

I2 0

⎞
⎟⎟⎠ ,
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M5 =

⎛
⎜⎜⎝

N1 0
0 NT

1
NT

1 0
0 N1

⎞
⎟⎟⎠ , where N1 =

⎛
⎜⎜⎝

0 1
−1 0

0 −1
1 0

⎞
⎟⎟⎠ ,

M6 =

⎛
⎜⎜⎝

N
′
1 0

0 N
′T
1

N
′T
1 0
0 N

′
1

⎞
⎟⎟⎠ , where N′

1 =

⎛
⎜⎜⎝

0 1
−1 0

0 1
−1 0

⎞
⎟⎟⎠ ,

M7 =
(

0 N3

NT
3 0

)
where N3 =

(
N4 0
0 NT

4

)
and N4 =

⎛
⎜⎜⎝

1
−1

1
−1

⎞
⎟⎟⎠

M8 =
(

0 N5

NT
5 0

)
where N5 =

(
0 N6

N6 0

)
and N6 =

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠

and
M0 = M1M2 · · ·M8.

If we define
Xi = MjMk, 0 ≤ j < k ≤ 8, 1 ≤ i ≤ 36

where i = 1 corresponds to j = 0,k = 1; i = 2 to j = 0,k = 2, etc., we obtain a
set of matrices which satisfies the conditions of Theorem B.5 with n = 36. Since
Tr (X2

j ) = −16, 1 ≤ i ≤ 36, we must choose m = 16. Hence, F4 has dimension
36+26=52. The roots of F4 are (for basic roots λ1, · · · ,λ4),

Σ = {±λi,±λi ±λ j, i �= j;
1
2
(±λ1 ±λ2 ±λ3 ±λ4)}.

A matrix realization of F4 is easy to produce in R
52×52; namely, we can take the

regular representation using the expressions at the end of Theorem B.5. Thus the
matrices for Xi are (

(ck
i j)1≤ j,k≤36 0

0 0

)
, 1 ≤ i ≤ 36

and for ei they are

(
0 −(yk

i j)1≤ j≤16,1≤k≤36

(yk
i j)1≤ j≤16,1≤k≤36 0

)
, 1 ≤ i ≤ 16.
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Type E8
In this case we choose the 128×128 matrices

K1 =
(

0 I64

−I64 0

)
, K2 =

⎛
⎜⎜⎝

I32

−I32

−I32

I32

⎞
⎟⎟⎠ ,

K3 =
(

L1 0
0 LT

1

)
, where L1 =

⎛
⎜⎜⎝

I16

−I16

−I16

I16

⎞
⎟⎟⎠ ,

K4 =
(

L2 0
0 LT

2

)
, where L2 =

⎛
⎜⎜⎝

I16

−I16

I16

−I16

⎞
⎟⎟⎠ ,

K5 =
(

0 L3

L3 0

)
, where L3 =

⎛
⎜⎜⎝

I16

−I16

−I16

I16

⎞
⎟⎟⎠ ,

K6 =
(

0 L4

L4 0

)
, where L4 =

⎛
⎜⎜⎝

I16

−I16

I16

−I16

⎞
⎟⎟⎠ ,

K7 =
(

0 L5

L5 0

)
, where L5 =

⎛
⎜⎜⎝

M8

−M8

−M8

M8

⎞
⎟⎟⎠ ,

Ki+7 =
(

0 Li+7

Li+7 0

)
, where Li+8 =

⎛
⎜⎜⎝

Mi

−Mi

−Mi

Mi

⎞
⎟⎟⎠ ,

for i = 1, · · · ,7 where Mi is as for type F4 and

K8 = K1K2 · · ·K7K9K10 · · ·K15.

Then we define
Xi = KjKk, 1 ≤ j < k ≤ 15, 1 ≤ i ≤ 120

where i = 1 corresponds to j = 1,k = 2, etc. Since Tr (X2
j ) = −128 for all j, we

have dim E8 = 248. The roots of E8 are
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{±λi±λ j, i �= j, i, j = 1, · · · ,8;
1
2
(±λ1 ±λ2 · · ·±λ8),

with an even number of negative signs}

Type E7
This is a subalgebra of E8 with roots

{±λi ±λ j, i �= j, i, j = 2, · · · ,7;±(λ1 + λ8);
1
2
(ε1λ1 + · · ·+ ε8λ8),

εi = ±1,∏εi = 1,ε1 = ε8}

and dimension 133. Type E6 This is a subalgebra of E8 with roots

{±λi ±λ j, i �= j, i, j = 3, · · · ,7;±(λ1 + λ8);
1
2
(ε1λ1 + · · ·+ ε8λ8),

εi = ±1,∏εi = 1,ε1 = ε2 = ε8}

and dimension 78.

B.4 Compact Lie Algebras

We shall outline the theory of compact Lie algebras – more details can be found
in [4].

Definition B.10. A real Lie algebra g0 is called compact if one can define a sym-
metric, negative-definite bi-linear form B(X ,Y ) on it for which

B((ad A)X ,Y )+ B(X ,(ad A)Y ) = 0, for all X ∈ g0.

The Lie group of a compact Lie algebra is compact in the topological sense.
If g is a complex Lie algebra, we denote by gR the real Lie algebra obtained from

the vector space g by restricting to real scalars with the same bracket (which satisfies
[X , iY ] = i[X ,Y ]. Note that on gR, J = i is a isomorphism for which J2 = i2 = −I.
Such a map is called a complex structure. Then g is said to have a real form g0 if

gR = g0 ⊕ Jg0

(vector space direct sum). Every element Z ∈ g can be written

Z = X + JY = X + iY, X ,Y ∈ g0

and so g is isomorphic to the complexification of g0. The map

σ : X + iY → X − iY, X ,Y ∈ g0

is called the conjugation of g with respect to g0. A direct sum decomposition

g0 = t0 +p0
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where t0 is a subalgebra and p0 is a vector subspace is called a Cartan decomposition
if the complexification g of g0 has a compact real form gk such that

σgk ⊆ gk, t0 = g0 ∩gk, p0 = g0 ∩ (igk).

Lemma B.1. (a) A real Lie algebra is compact if and only if its Killing form is
strictly negative definite (and hence the Lie algebra is necessarily semi-simple).

(b) Every compact Lie algebra g is a direct sum

g = z+[g,g],

where z is the centre of g and the ideal [g,g] is compact (and semi-simple).

Lemma B.2. Let g0 be a real semi-simple Lie algebra which is a direct sum t0 +p0

where t0 is a subalgebra and p0 is a vector subspace. Then the following statements
are equivalent:

(a) g0 = t0 +p0 is a Cartan decomposition of g0.
(b) B(T,T ) < 0 for all T �= 0 in t0, B(X ,X) < 0 for all X �= 0 in p0 and the
mapping s : T + X → T −X, T ∈ t0,Xinp0 is an automorphism.
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Appendix C
Differential Geometry

C.1 Differentiable Manifolds

There are many excellent books on differential geometry and vector bundles and so
we give only a brief outline of the ideas we use in the book (see [1,2,3] for further
details).

Definition C.1. An n-dimensional (topological) manifold M is a Hausdorff space
which is locally homeomorphic to R

n.

This means that, for each x ∈ M, there exists a neighbourhood U of x and a home-
omorphism ϕ : U → R

n called a local coordinate map. If U,V are open sets in M
such that U ∩V �= /0 and (U,ϕ),(V,ψ) are local coordinate maps then ψ ◦ϕ−1 and
ϕ ◦ψ−1 are homeomorphisms of R

n.

Definition C.2. If U = {(Ui,ϕi)}i∈I is an open covering of M by local coordinate
charts such that the maps ϕi ◦ϕ−1

j are Cr on the intersections of their domains, then
M is called a Cr-differentiable manifold and U is called a Cr differentiable structure
for M.

(If r = ∞ we simply call M a differentiable manifold and if r = ω we call M an
analytic manifold. Similar definitions apply if we use C

n instead of R
n, in which

case we obtain complex manifolds.) To emphasise the dimension of a manifold M
we write Mn.

Example C.1. Let

P
n = P(Rn) = {[x] : x ∈ R

n+1, x �= 0 and [x] is the line through x}.

Define the open sets
Ui = {[x1, · · · ,xn+1] : xi �= 0}

and the maps
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ϕi([x]) =
(

x1

xi
,

x2

xi
, · · · , x̂i, · · · , xn+1

xi

)
.

Then, on Ui ∩Uj, we have

ϕi ◦ϕ−1
j (x1, · · · ,xn) = (y1, · · · ,yn)

where

yk =

{
xk
xi

, k �= j
1
xi
, k = j

(provided i �= j). The manifold P
n is called the nth real projective space.

Definition C.3. If f : M → N is a continuous map between smooth manifolds Mm

and Nn such that if (U,ϕ),(V,ψ) are coordinate neighbourhoods of some point p ∈
M and f (p) ∈ N, then f is said to be C∞ at p if

ψ ◦ f−1 ◦ϕ : R
m → R

n

is C∞ at the point ϕ(p). If f is C∞ at all points of M, then we say that f is C∞ or
smooth.

Definition C.4. If f : M → M is smooth and f−1 : M → M exists and is smooth,
then f is called a diffeomorphism.

C.2 Tangent Spaces

Let M be an n-dimensional manifold and let (U,ϕ) be a local coordinate system at
p∈M. If I ⊆R denotes an interval containing 0, then a smooth curve on M (at p) is a
map α : I →M with α(0) = p. Two curves α1 and α2 are equivalent if (ϕ ◦α1)′(0)=
(ϕ ◦α2)′(0). This is clearly an equivalence relation and is independent of the chart
ϕ . The set of all equivalence classes of smooth curves at p is called the tangent space
of M at p and is denoted by TpM. It is clearly isomorphic (as an n-dimensional vector
space) to R

n.
Let f : Mm → Nn be a smooth function. We define the differential d fp of f at

p ∈ M by
d fp([α]) = [ f ◦α]

where [ ] denotes an equivalence class of curves. Clearly, d fp is represented in local
coordinates (ϕ ,ψ) by the Jacobian matrix of ψ ◦ f ◦ ϕ−1. If (U,ϕ) is a chart at

p ∈ M, then we denote by
(

∂
∂xi

)
p

the image of ei = (0,0, · · · ,1,0, · · · ,0) ∈ R
n (i.e.

the standard ith basis vector) under the map

dϕ−1
ϕ(p) : R

n → TpM.
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Then any tangent vector Xp ∈ TpM can be written as

Xp =
n

∑
i=1

ai

(
∂

∂xi

)
p

where a = (a1, · · · ,an) is given by

a = (ϕ ◦α)′(0),

where Xp = [α].
The cotangent space of M at p is the dual space (TpM)∗ of Tp(M). Note that

(TpM)∗ is usually written as (T ∗
p M).

C.3 Vector Bundles

A (smooth) real vector bundle E of rank m on a differentiable manifold Mn is a
differentiable manifold together with a smooth projection π : E → M such that for
each p ∈ M the set π−1(p) has the structure of a (real) m-dimensional vector space
and there exists a neighbourhoodU of p in M and a homeomorphism ϕ : U ×R

m →
π−1(U) such that the map v→ϕ(q,v) is a vector space isomorphism for each q∈U .
(The latter condition says that the bundle is locally trivial.)

Example C.2. The tangent bundle TM of a differentiable manifold M is the (disjoint)
union of all tangent spaces to M:

TM = ∪p∈MTp(M)

with the obvious differentiable structure and projection.

Example C.3. The cotangent bundle is the disjoint union of the dual spaces
∪p∈M(T ∗

p M) again with the obvious differentiable structure and projection.

Example C.4. The normal bundle to M ⊆ R
k, (k ≥ n) is the union of all spaces

NpM = {v ∈ R
k : v ⊥ TpM}

with the structure induced from the tangent bundle.

Definition C.5. A section of a vector bundle π : E → M is a smooth map s : M → E
such that

π ◦ s = idM,

i.e. such that s(p)∈ π−1(p) for each p∈ M. The set of all sections of a vector bundle
π : E → M is usually denoted by Γ (E).
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C.4 Exterior Algebra and de Rham Cohomology

Definition C.6. Let V be an n-dimensional vector space. The vector space
∧r V ,

(0 ≤ r ≤ n) is defined to be the collection of all linear combinations of products of
the form v1 ∧ v2 ∧·· ·∧ vr (vi ∈V ) subject to the relations

v∧w = −w∧ v for any v,w ∈V,

(v∧w)∧ x = v∧ (w∧ x), for any v,w,x ∈V

with the obvious linear structure.

If {ei}1≤i≤n is a basis of V , then any element ξ ∈ ∧r V can be written

ξ = ∑
i1<···<ir

ξ i1···ir ei1 ∧·· ·∧ eir .

Note that dim(
∧r V ) =

(
n
r

)
.

Definition C.7. If M is an n-dimensional smooth manifold, the bundle of exterior
r-forms on M is defined as

r∧
(M) =

⋃
p∈M

r∧
(T ∗

p M).

The space of smooth sections of
∧r(M) is denoted by

Ar(M) = Γ (
r∧
(M))

and is called the space of (exterior) r-forms on M. The space of exterior differential
forms on M is the set

A(M) =
n

∑
r=0

Ar(M).

Clearly, we have a map
∧

: Ar(M)×As(M) → Ar+s(M)

given by ∧
(ω1,ω2)(p) = ω1(p)∧ω2(p).

In local coordinates (U,ϕ), x = ϕ(p), we have

ω = ∑
i

αi1···ir dxi1 ∧·· ·∧dxir

for any r-form ω .
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The most important operation on A(M) is the (unique) differential operator d
called the exterior derivative - it has the properties:

(a) d(ω1 + ω2) = dω1 + dω2, ω1,ω2 ∈ A(M).
(b) If ω1 is an r-form, then

d(ω1 ∧ω2) = dω1 ∧ω2 +(−1)rω1 ∧dω2.

(c) If f is a smooth function on M, then d f is the differential of f .
(d) If f is a smooth function, then d(d f ) = 0.

In fact, these properties uniquely specify d.
Therefore we have the differential complex

· · · d→ Ak−1(m) d→ Ak(m) d→ Ak+1(m) d→ ···

for an n-dimensional manifold M, where Ak(M) = 0 if k > n. Clearly, A0(M) = set
of smooth functions on M.

Definition C.8. The rth de Rham cohomology group of M is defined as

Hr(M) = Ker (d : Ar(M) → Ar+1(M))/Im (d : Ar−1(M) → Ar(M)),

It is a topological invariant and, in fact, also a homotopy invariant.

C.5 Degree and Index

Let f : Mn → Nn be a smooth map between n-manifolds M and N. We define the
degree of f to be the unique number deg( f ) which satisfies the equation

∫
M

f ∗(ω) = deg( f )
∫

N
ω , ω ∈

∧ n
(N),

where f ∗ denotes the pull-back of f (this is essentially the change of coordinates
in an integral). Note that deg( f ) is a homotopy invariant and satisfies the functorial
condition

deg( f g) = deg( f )deg(g).

Now let f : Mn → Nn be a smooth map. We say that p ∈ N is a regular value of f if
dq f : TqM → TpN is surjective for all q ∈ f−1(p). Regular values of f are dense in
N by Sard’s theorem [3].

Now, if f : Mn → Nn is a smooth map and p ∈ N is regular, then if q ∈ f−1(p),
then index of f at q is given by

ind ( f )q =
{

1 if det(dq f ) = +1
−1 if det(dq f ) = −1

.
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Then we have
deg( f ) = ∑

q∈ f−1(p)

ind( f )q.

Next consider a vector field f ∈ C∞(U ;Rn) on an open subset of R
n), such that

0 ∈ U, f (0) = 0 and f (x) �= 0 (i.e. f has an isolated singularity at 0). Then we
define a map fρ : Sn−1 → Sn−1 by

fρ(x) =
f (ρx)

‖ f (ρx)‖
for ρ > 0 sufficiently small. Then the homotopy class of fρ is independent of ρ and
we define

ind( f )0 = deg( fρ ).

Note that deg is functorial in the sense that

ind(ψ∗ f )0 = ind( f )0

for any diffeomorphism ψ . (Here (ψ∗ f )(q) = dpψ( f (p)), ψ(p) = q, where d is the
Jacobian derivative.) Hence, for any vector field X on a manifold M, we can define
the index of a singularity of the vector field at p ∈ M by

ind(X)p = ind(ϕ∗X |U)0

where ϕ is a local coordinate system at p where p ∈U ⊆ M.
The index of a vector field on a compact subset K ⊆ M is just the sum of all the

indices at all the singularities in K (assuming these are finite in number).

Lemma C.1. Let f : Mn+1 → Nn be a smooth map, where M and N are oriented,
compact and connected manifolds, and let K be a compact subset of M with smooth
(n-dimensional) boundary B = ∂K such that

B = B1 ∪B2 ∪·· ·∪Bk

is a disjoint union of submanifolds of M, then

k

∑
i=1

deg( fi) = 0

where fi = f |Bi .

Proof. We have

deg( f |B) =
k

∑
i=1

deg( fi),

and if ω ∈ ∧n(N) with
∫

N ω = 1, then

deg( f |B) =
∫

B
f ∗(ω) =

∫
K

d f ∗(ω) =
∫

K
f ∗(dω) = 0,

by Stoke’s theorem. �
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It follows from the lemma that if Mn is a compact manifold and X is a smooth vector
field on Mn containing a discrete (finite) set of singularities at pi ∈ M, 1 ≤ i ≤ k,
then the index of X is given by

ind X =
k

∑
i=1

ind (X)pi .

(To prove this, just remove ‘small’ balls around each pi and apply the theorem.)
If Mn is a smooth manifold embedded in R

n+k, then we define a tubular neigh-
bourhood Tε of Mn in R

n+k to be an open set containing M in its interior, has a
smooth boundary and such that, for x ∈ Tε , there exists y ∈ M such that ‖x−y‖< ε .

Definition C.9. The Gauss map G : ∂Tε → Sn+k−1 is the map which takes a point
on the boundary of Tε to its outward pointing unit normal.

Then by the above lemma we can see that, for any vector field X on Mn, we have

ind X = deg G,

so that the index is independent of the vector field and is just a property of the
topology of M.

In order to prove the Poincaré-Hopf theorem, therefore, we can consider any
vector field X on a compact manifold M. This theorem states that

ind(X) = χ(M) = Euler characteristic of M.

We shall choose a gradient vector field on M. To illustrate the idea consider the ori-
ented, two-dimensional case. Then M is a surface of some genus, say 2. A gradient
vector field is shown in Figure C.1. Note that it has four saddle points and two nodes,
one stable and one unstable. The gradient field is so-called because it is essentially

1

0

1/2

h
M

1/2

1/2

Fig. C.1 A gradient vector field on a 2-manifold
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the gradient of the height function h as in Figure C.1. At the singular points, h is
locally a quadratic form which is non-degenerate and has signature (i.e. the number
of negative eigenvalues of the Hessian matrix) equal to the index. The theorem then
follows by some elementary algebraic topology. The general case is an extension of
these ideas (called Morse theory). The important point is how the topology of the
level set of h changes as we pass a singular point. In the two-dimensional case, we
see that between level sets which contain a single singularity, we either get a disk or
a ‘pair of pants’.

In the general case, some standard analysis shows that, for a compact manifold
M, we can find a Morse function h which is similar to the two-dimensional case, in
that it is a ‘height function’ and has only a finite number of non-degenerate critical
values (i.e. the Hessian matrix is non-singular). Let

Ma = {x ∈ M : f (x) < a},

i.e. the manifold with boundary consisting of the subset of M which is ‘below’ a.
(For example, M1/2 is shown in Figure C.1.) If there are no critical values of H in the
interval [a1,a2] then clearly Ma1 and Ma2 are diffeomorphic. Suppose that in [a1,a2]
there is a single critical values with one critical point p. Then we can find a small
neighbourhood U of p in M such that U is diffeomorphic to an open contractible set
in R

n and
U ∩Ma1

∼= S�−1 ×V

where V ⊆ R
n−�+1 is open and contractible and

Ma2 is diffeomorphic to U ∪Ma2 .

Then, elementary algebraic topology shows that

χ(Ma2) = χ(Ma1)+ (−1)�,

and the index theorem follows from this.

C.6 Connections and Curvature

Sections of vector bundles on manifolds, such as the tangent bundle, take values
in different spaces (i.e. the fibres of the bundles) and so it is not possible to dif-
ferentiate such a section s directly. This is because a standard difference quotient
(s(t + δ t)− s(t))/δ t is not defined since the values s(t + δ t) and s(t) are in differ-
ent vector spaces. In order to overcome this difficulty we need a connection on the
manifold, which relates different fibres of the bundle.

Definition C.10. A connection D on a vector bundle π : E → M is a map

D : Γ (E) → Γ (T ∗(M)⊗E)
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such that
(1) D(s1 + s2) = D(s1)+ D(s2), for all s1,s2 ∈ Γ (E),
(2) D( f s) = d f ⊗ s+ f Ds, for all s ∈ Γ (E), f ∈C∞(M).

Let e1, · · · ,ek ∈ Γ (E) be sections such that e1(p), · · · ,ek(p) is a basis of E for each
p ∈ U (= a trivialising neighbourhood). Then the elements of T ∗(M)⊗E can be
written as ∑ fi ⊗ ei for some fi ∈ T ∗(U) and so

D(ei) =
k

∑
j=1

ωi j ⊗ e j (C.1)

where ωi j ∈ T ∗(U) is a matrix of one-forms, called the connection form with respect
to {e1, · · · ,ek}. We write ω = (ωi j). If 〈·, ·〉 is the pairing between T (M) and T ∗(M),
then we define DX s for any X ∈ T (M) and any section s ∈ Γ (E) by setting

DX ei = 〈X ,
k

∑
j=1

ωi j ⊗ e j〉 =
k

∑
j=1

〈X ,ωi j〉e j

and extending by linearity. DX s is called the covariant derivative of s along X .
Note that DX satisfies the properties:

(a) D f X s = f DX s, f ∈C∞(M).
(b) DX+Y s = DX s+ DY s.
(c) DX (s1 + s2) = DX s1 + DXs2.
(d) DX( f s) = (X f )s+ f DX s, f ∈C∞(M).

Definition C.11. Let D be a connection on a differentiable bundle π : E → Mn

of rank m and let (U,ϕ) be a local coordinate system on M, with coordinates xi,
1 ≤ i ≤ m. Let s j, 1 ≤ j ≤ m be m smooth sections which are linearly independent
on U . Then T ∗

p ⊗Ep has a basis dxi ⊗ s j at each point p ∈ U . The set of sections
{s j}1≤ j≤m is called a local frame for E on U .

We have
Dsj = ∑

i,k

Γ k
ji dxi ⊗ sk,

since Dsj is a local section of T ∗(M)⊗E , for some constants Γ k
ji . From (C.1) we

have
Dsj = ∑ω ji ⊗ si (C.2)

so that, locally,
ωi j = ∑Γ i

jkdxk.

We can write (C.2) in the matrix form

DS = ω ⊗S;
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then ω is called the connection matrix. Since it depends on the local frame, we can
check what happens if we change the frame: in that case, the new frame is

S′ = PS

for some invertible matrix P, whose elements are smooth functions on U . By the
definition of a connection, we have

DS′ = dP⊗S + P ·DS

= (dP+ P ·ω)⊗S

= (dP ·P−1 + P ·ω ·P−1)⊗S′

and so the connection matrices are related by

ω ′ = dP ·P−1 + PωP−1. (C.3)

From this it can be seen that any vector bundle has a connection. If we (exterior)
differentiate (C.3), we obtain

dω ′ ·P−ω ′ ∧dP = dP∧ω + P ·dω

and since
dP = ω ′ ·P−P ·ω ,

we have
(dω ′ −ω ′ ∧ω ′) ·P = P · (dω −ω ∧ω)

i.e.
Ω ′ = PΩP−1

where
Ω = dω −ω ∧ω

is the connection matrix of D on U . We can show that Ω satisfies the Bianchi identity

dΩ = ω ∧Ω −Ω ∧ω .

If we think of Γ (T ∗(M)⊗E) as the space of sections of vector-valued one-forms,
we will write it as Γ 1(E). Similarly, the space of sections of vector-valued r-forms
will be denoted by Γ r(E). Then it can be shown that we can extend the definition of
a connection to a map

Γ r−1(E) D→ Γ r(E),

and so we get a differential complex

0 → Γ 0(E) D→ Γ 1(E) D→ Γ 2(E) D→ ··· .
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This complex is not exact, in general, so that

D◦D �= 0.

We write
F = D◦D.

Then F is called the (global) curvature form; it is the global form of Ω . The above
sequence is exact precisely when the connection is flat, i.e. F = 0. Not every vector
bundle has a flat connection. Note that, in the case of complex line bundles, the con-
nection matrix is one-dimensional, so the wedge product commutes and the Bianchi
identity becomes

dF = 0.

C.7 Characteristic Classes

In this section we shall outline the theory of characteristic classes which relates the
topology of a bundle to the cohomology groups of the base manifold. If G is a Lie
group with Lie algebra g, let S(g) =⊕r≥0Sr(g) denote its symmetric algebra, where

Sr(g) = T r(g)/I

and
T r(g) = g⊗·· ·⊗g

is the rth tensor algebra of g and I is the ideal generated by elements of the form

A1 ⊗·· ·⊗Ar −Aσ(1)⊗·· ·⊗Aσ(r),

for all permutations σ . An element P ∈ Sr(g) is G-invariant if it is invariant under
the adjoint action of G, i.e.

P(AdgA1, · · · ,AdgAr) = P(A1, · · · ,Ar)

where AdgAi = g−1Aig, for g ∈ G. Let I r(G) denote the G-invariant elements of
Sr(g). We can define a multiplication map

µ : I r1(G)⊗I r2(G) → I r1+r2(G)

by

µ(PQ)(A1, · · · ,Ar1+r2)=
1

(r1+r2)!
∑
σ

P(Aσ(1), · · · ,Aσ(r1))Q(Aσ(r1+1), · · · ,Aσ(r1+r2))

making I (G) = ⊕r≥0I
r(G) an algebra.

Now, if π : E → M is a smooth (complex) vector bundle, we can extend the above
ideas to g-valued p-forms on M as follows. If µi ∈ Api(M) (i.e. µi are pi-forms on
M) and Ai ∈ g, 1 ≤ i ≤ r, then we define



268 C Differential Geometry

P(A1µ1, · · · ,Arµr) = µ1 ∧·· ·∧µrP(A1, · · · ,Ar).

The most useful case is when A1 = · · · = Ar. Then we have invariant polynomials

P(A) = P(A,A, · · · ,A).

If D, D1 and D2 are connections on the bundle E with corresponding curvatures
F, F1 and F2, then it can be shown that

dP(F) = 0

and that
P(F1)−P(F2)

is exact (i.e. it is equal to dψ for some 1-form ψ), for any invariant polynomial
P . Since dP(F) = 0 for any connection D with corresponding curvature F , it
follows that P(F) is closed and so defines a cohomology class in H∗(M;C) (the de
Rham cohomology algebra). Moreover, by the above remarks, it is independent of
the connection.

In particular, if we define

p(F) = det

(
1 +

i
2π

F

)

(where the det is expanded as normal, except that we obtain sums of even forms),
then

p(F) = 1 + p1(F)+ p2(F)+ · · ·
and we write

ci(F) = [pi(F)] ∈ H2i(M;C)

and
c(F) = 1 +[p1(F)]+ [p2(F)]+ · · · = 1 + c1 + c2 + · · · .

Then we call c(F) the total Chern class and ci(F) the ith Chern class of the bundle
E . If E is a rank k vector bundle, then

c0(F) = 1

c1(F) =
i

2π
tr F

c2(F) = − 1
8π2 [tr F ∧ tr F − tr (F ∧F)]

...

ck(F) =
(

i
2π

)k

detF.
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Note that the Chern classes are natural in the sense that

c( f ∗E) = f ∗c(E)

for any smooth map f : N → M and if E ⊕F is a Whitney sum bundle, then

c(E ⊕F) = c(E)∧ c(F).

For a sum of n complex lines bundles

E = L1 ⊕·· ·⊕Ln

we have
c(E) = c(L1) · · ·c(Ln)

so the Chern class cannot distinguish between an n-dimensional vector bundle and
a sum of line bundles (this is the splitting principle).

Many other types of characteristic classes exist such as Pontryagin classes (for
detemining if 2-manifolds bound another), Steifel-Whitney classes which are useful
for determining embeddings of projective and similar spaces, etc. For more details
see [4,5].
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Appendix D
Functional Analysis

D.1 Banach and Hilbert Spaces

In the first four sections we give an introduction to functional analysis. More details
can be found in [1,2,3].

Definition D.1. A real (complex) Banach space X is a complete normed vector
space over the field of scalars R (or C) such that the following axioms for the norm
are satisfied:

(a) ‖x‖ = 0 if and only if x = 0.
(b) ‖αx‖ = |α|‖x‖, for all α ∈ R(C), x ∈ X .
(c) ‖x + y‖ ≤ ‖x‖+‖y‖, for all x,y ∈ X .

If X is a Banach space and M is a closed subspace of X we define the quotient
space

X̃
∆= X/M = {x : x = x + M}.

Thus, X̃ is the set of all affine subspaces parallel to M. It is clearly a linear space,
and is, in fact, a Banach space under the norm

‖x‖ = inf
y∈x

‖y‖ = inf
m∈M

‖x−m‖= dist (x,M).

Definition D.2. A real (complex) Hilbert space H is a Banach space the norm of
which is defined by an inner product 〈·, ·〉 which is linear in the first slot and conju-
gate linear in the second. In order to emphasise the space H we sometimes write the
inner product as 〈·, ·〉H .

The structure theory of Hilbert spaces is based on the parallelogram law and the
projection onto closed convex subspaces which are described by the following two
lemmas.
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Lemma D.1. In any Hilbert space H we have

‖x + y‖2 +‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

for all x,y ∈ H.

Lemma D.2. If A is a closed and convex subset of a Hilbert space H, then there
exists a unique vector x ∈ A such that

‖x−h‖≤ ‖y−h‖, for all y ∈ A.

Definition D.3. Two subsets S1,S2 of H are orthogonal (written S1 ⊥ S2) if

〈h1,h2〉 = 0

for all hi ∈ Si, i = 1,2.

Lemma D.3. If E ⊆ H is closed, then every element h ∈ H has a unique represen-
tation as h = h1 + h2 where h1 ∈ E and h2 ⊥ E.

Definition D.4. A set of vectors {ei}i∈I ⊆ H if orthonormal if

〈ei,e j〉 = δi j,

for all i, j ∈ I. The set {ei}i∈I is a maximal orthonormal family if it is not a proper
subset of another orthonormal set.

Definition D.5. Let S be any subset of a Hilbert space H. We define span(S) to
be the smallest closed subspace of H containing S. It is clearly the closure of the set
of all finite linear combinations of elements of S.

Every Hilbert space contains a maximal orthonormal family {ei}i∈I such that

H = span({ei}i∈I).

Such a family is called an (orthonormal) basis of H and if the index set I is count-
able, we say that H is separable. Most Hilbert spaces which appear in applications
are separable.

Theorem D.1. If H is a separable Hilbert space and {ei}i∈I is a basis,then we have
(a) ∑k

i=1 |〈x,ei〉|2 ≤ ‖x‖2, for all x ∈ H and k = 1, cdots,∞.
(b) x = ∑∞

i=1 |〈x,ei〉|ei and

‖x‖2 =
∞

∑
i=1

|〈x,ei〉|2.

The inequality in (a) is called Bessel’s inequality and the second equality in (b) is
called Parseval’s relation.
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Definition D.6. Let X be a (real or complex) Banach space. The dual space X∗ of X
is the linear space of all continuous linear forms on X , i.e. linear maps x∗ : X → R

(or C). X∗ is a Banach space under the norm

‖x∗‖ = sup
‖x‖=1

|〈x∗,x〉|.

Definition D.7. The Banach space X is reflexive if the map

J : X → X∗∗

defined by
〈J(x),x∗〉 = 〈x∗,x〉

is onto X∗∗, where 〈x∗,x〉 = x∗(x).

Lemma D.4. If H is a Hilbert space and h∗ ∈ H∗, then there exists a unique element
h ∈ H such that

〈h∗,x〉 = 〈x,h〉
for all h ∈ H, and ‖h∗‖ = ‖h‖.
Two of the main classical results of functional analysis are the following.

Theorem D.2. (Hahn-Banach) Let M be a proper closed subspace of a Banach
space X. If m∗ ∈ M is a linear form defined on M then it can be extended to a
linear form x∗ ∈ X∗ such that ‖x∗‖ = ‖m∗‖.

Theorem D.3. (Banach-Steinhaus) Suppose that {x∗i : i ∈ I} is an indexed collec-
tion of linear forms such that the set

{〈x∗i ,x〉 : i ∈ I}

is bounded for each x ∈ X, then the set

{‖x∗i ‖ : i ∈ I}

is bounded.

Another result useful in the theory of partial differential equations is

Lemma D.5. Let B be a continuous function (with values in the field of scalars) on
a Hilbert space H ×H which is linear in the first variable and complex-linear in the
second. Suppose that

|B(x,y) ≥ m‖x‖2, for all x ∈ H

for some m > 0. Then if f ∈ H∗, there exists a unique h ∈ H such that

f (x) = B(x,h), for all x ∈ H.
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D.2 Examples

In this section we present three examples of Banach and Hilbert spaces which occur
frequently in systems theory.

Example D.1. Let Ω ⊆ R
n be an open and bounded set and let Ck(Ω) (k a non-

negative integer) be the set of all real or complex-valued functions on Ω whose
partial derivatives to order k exist and are uniformly continuous on Ω . We define a
norm on Ck(Ω ) by

‖ f‖k
∆= sup

|p|≤k

[
sup
x∈Ω

|(∂/∂x)p f (x)|
]
, f ∈Ck(Ω )

where p ∈ N
n, |p| = p1 + · · ·+ pn and

(∂/∂x)p = (∂/∂x1)p1 · · · (∂/∂xn)pn .

It can be shown that Ck(Ω ) is a Banach space which is not a Hilbert space. We also
write

C(Ω ) = C0(Ω)

and
C∞(Ω) = ∩∞

k=0Ck(Ω ).

Example D.2. Let Ω be an open set in R
n with smooth boundary (i.e. it is a smooth

(n− 1)- dimensional manifold. We define the spaces Lp(Ω) for all real numbers
p ≥ 1 to be the space of all Lebesgue measurable (real or complex valued) functions
defined on Ω such that

‖ f‖Lp(Ω)
∆=

(∫
| f (x)|pdx

)1/p

< ∞

if 0 < p < ∞, and

‖ f‖L∞(Ω)
∆= ess sup x∈Ω | f (x)| < ∞.

It can be shown that each space Lp(Ω) is a Banach space for 1 ≤ p ≤ ∞. Moreover,
L2(Ω) is a Hilbert space for the inner product

〈 f ,g〉L2(Ω) =
∫

Ω
f (x)g(x)dx.

Example D.3.

Let �p, 1 ≤ p ≤ ∞ be the space of all (real or complex) sequences x = (xi)i=1,2,···
such that the following norms are finite:

‖x‖�p
∆=

(
∞

∑
i=1

|xi|p
)1/p
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if p < ∞ and

‖x‖�∞
∆= sup

1≤i<∞
|xi|.

The linear spaces �p are again Banach spaces and �2 is a Hilbert space. In fact, any
separable Hilbert space H is isomorphic to �2, so that in some sense this is a ‘uni-
versal’ separable Hilbert space. This can be seen easily be choosing an orthonormal
basis for H.

We have seen the map J above which is an isometric isomorphism between a
Banach space and its second dual. Lemma D.1.4 also shows that there is a map
jH : H → H∗ which is also an isometric isomorphism between H and H∗. Note,
however, that while J is functorial (i.e. is a natural map, independent of any specific
coordinates), jH is not. To see the effect of this, let H be a (separable) Hilbert space
and let V be a dense subspace of H such that the injection

iV : V ⊆ H

is continuous. This means that there is a constant c such that

‖h‖H ≤ c‖h‖V , for all h ∈V.

Thus we have a sequence of injections

V
iV⊆ H

jH⊆ H∗ iH∗
⊆ V ∗.

The map iH∗ ◦ jH ◦ iV is different from the map jV .

D.3 Theory of Operators

A linear operator A between Banach spaces X and Y with domain D(A) (which
may be different from X) is a function for which

A(αx + β y) = αA(x)+ β A(y)

for all real (or complex) α,β and all x,y ∈ D(A) (the latter being assumed to be a
linear subspace of X). The kernel of A is defined as the linear space

ker A = {x ∈ D(A) : Ax = 0}.

Clearly the operator A is one-to-one if and only if ker A = {0}. The range R(A) of
A is the linear subspace of Y consisting of all images of elements of D(A). If ker
A = {0} then we can define the inverse operator A−1 : R(A)→D(A). If B is another
linear operator with domain D(B) ⊆ D(A) then we say that A is an extension of B
and write B ⊆ A, if

Bx = Ax, for all x ∈ D(B).
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If D(A) = X and the norm

‖A‖ ∆= sup
‖x‖=1

‖A‖x

is finite, then we say that A is a bounded (linear) operator from X to Y . The set of
all bounded linear operators from X to Y is written B(X ,Y ) or B(X) in the case
where X = Y . Note that B(X) is a Banach algebra since

‖A1A2‖ ≤ ‖A1‖‖A2‖

for all bounded operators A1,A2.
An important result for solving many types of equations is the Neumann series:

Theorem D.4. If X is a Banach space and A ∈B(X) satisfies ‖A‖≤ 1, then (I−A)
is invertible, (I−A)−1 ∈ B(X) and it is given by

(I −A)−1 = I + A + A2 + · · ·

where the convergence is in the uniform topology of B(X).

An important class of bounded operators is the class of projections. An operator
P ∈ B(X) is a projection operator with range R(P) if it satisfies P2 = P. In the
Hilbert space case, projections onto a closed subspace are particularly important,
since we have

H = M⊕M⊥

for any Hilbert space H and closed subspace M. Here M⊥ is the orthogonal com-
plement of M given by

M⊥ = {h ∈ H : 〈h,m〉 = 0 for all m ∈ M}.

Of course, the map
PM(h) = m, h = m+ m⊥

where m ∈ M and m⊥ ∈ M⊥ is a projection operator with

‖PM‖ ≤ 1.

The notion of transpose of a matrix can be generalised to operators in the following
way. If A ∈ B(X ,Y ) for two Banach spaces X ,Y , let y∗ ∈ Y ∗. Then we define the
linear form x∗ by

〈x∗,x〉X∗,X = 〈y∗,Ax〉Y ∗,Y

and if we put
x∗ = A∗y∗

then A∗ ∈B(Y ∗,X∗) and ‖A∗‖= ‖A‖. A∗ is called the transpose or dual of A. In the
case where X and Y are Hilbert spaces we can identify X∗ with X and Y ∗ with Y ,
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using the maps jX , jY defined above. Then the dual operator is called the adjoint
and. However, it is usually defined by j−1

X A∗ jY , i.e. by the identity

〈A∗h1,h2〉X = 〈h1,Ah2〉Y , h1 ∈Y, h2 ∈ X .

Bounded operators form the most convenient class of operators and of those, clearly
(finite) matrices are the simplest, for which the Jordan decomposition gives a com-
plete structure theory, as seen in Appendix A. The next most amenable class consists
of compact operators which are bounded operators belonging to B(X ,Y ) which
have the property that any bounded subset of X is mapped to a relatively compact
subset of Y . The class of compact operators is denoted by K (X ,Y ). There is a com-
plete spectral theory for these operators. If an operator is not bounded, such as the
operator

A =
d
dx

defined on a dense subspace of C[0,1] then it may have the following useful prop-
erty.

Definition D.8. A linear operator A : D(A) ⊆ (X) → Y is said to be closed if its
graph is closed, i.e. if xn → x and Axn → y then x ∈ D(A) and y = Ax. It is closable
if xn ∈ D(A) and xn → 0, Axn → y imply that y = 0. We denote the class of closed
operators by C (X ,Y ).

If an operator A : D(A) ⊆ X → Y has dense domain, i.e. D(A) = X then we can
define the dual of A by

〈y,Ax〉 = 〈A∗y,x〉, x ∈ D(A), y ∈ D(A∗),

such that D(A∗) = Y ∗. If A is closable and has dense domain, then A∗∗ = (A∗)∗ is
the closure of A.

D.4 Spectral Theory

Let X be a complex Banach space and suppose that A is an operator with domain
and range in X . For a complex number λ ∈ C, the operator (λ I −A) may or may
not be invertible.

Definition D.9. The resolvent set ρ(A) of the operator A is the set of all λ ∈ C

such that the inverse of (λ I −A) exists and is bounded, i.e. (λ I −A)−1 ∈ B(X).

Definition D.10. The spectrum of A, denoted by σ(A) is the complement of the
resolvent set, i.e. σ(A) = C\ρ(A).
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The spectrum of A consists of three disjoint subsets:

σP(A) = {λ ∈ σ(A) : (λ I−A) is not 1-1 }
σC(A) = {λ ∈ σ(A) : (λ I−A)−1 = X}
σR(A) = {λ ∈ σ(A) : (λ I−A)−1 �= X}

called, respectively, the point spectrum, the continuous spectrum and the residual
spectrum.

For λ ∈ σ(A) we write

R(λ ;A) = (λ I−A)−1

and we call R the resolvent operator of A. It satisfies the resolvent equation

R(λ ;A)−R(µ ;A) = (µ −λ )R(λ ;A)R(µ ;A)

for all λ ,µ ∈ ρ(A). The resolvent operator R(λ ;A) is analytic on ρ(A) and it can be
used with a generalisation of the Cauchy integral to define a functional calculus for
operators and to obtain spectral decompositions. Consider first the case of bounded
operators A ∈ B(X). For such an operator, let f be any function which is analytic
in a neighbourhood U of σ(A) such that U is open and has boundary ∂U consisting
of a finite number of oriented rectifiable Jordan curves. Then we define the operator
f (A) by

f (A) =
1

2π i

∫
∂U

f (λ )R(λ ;A)dλ .

Note that f (A) depends only on f and A and not on the choice of neighbourhood U .
If f and g are analytic on a neighbourhood of σ(A), then so is their product f ·g and
we have

( f ·g)(A) = f (A)g(A).

From this we can obtain the spectral mapping theorem:

f (σ(A)) = σ( f (A)),

for all functions analytic on a neighbourhood of σ(A). We define a spectral subset
of A to be an open and closed subset of σ(A). Then the characteristic function of a
spectral set σ defined by

e(λ ) =
{

1 if λ ∈ σ
0 if λ ∈ σ(A)\σ

can be extended to an analytic function on a neighbourhood of σ(A) since a spectral
set is open and closed in σ(A). Hence we can define the operator

E(σ ;A) = e(A).
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Clearly, E(σ ;A) is a projection operator and if we define

Xσ = E(σ ;A)X
Aσ = A|Xσ

then we have

AXσ ⊆ Xσ

σ(Aσ ) = σ

and, for any function f analytic on a neighbourhood of σ(A),

f (A)σ = f (Aσ ).

Hence, if σ(A) consists of a finite number of spectral subsets σ1, · · · ,σn, then we
have

E(σi;A)2 = E(σi;A), E(σi;A)E(σ j;A) = 0, if i �= j

and we obtain a decomposition of the identity

I =
n

∑
i=1

E(σi;A), X = ⊕n
i=1Xσi .

Theorem D.5. Suppose A ∈ K (X). Then the spectrum of A is countable and has
no accumulation point apart from 0. Every point λ ∈ σ(A) is in the point spectrum
and the eigenspace

E(λ ;A) = {x : (A−λ I)k = 0, for some k ≥ 0}

is finite-dimensional.

To apply the theory in the more general case of closed operators, we take a closed
operator A and consider the homeomorphism ϕ : C∪{∞} → C∪{∞} defined for
any α ∈ ρ(A) by

ϕ(λ ) = (λ −α)−1, λ �= α

and
ϕ(∞) = 0, ϕ(α) = ∞.

Then the operator A′ = −R(α;A) is bounded and

ϕ(σ(A)∪{∞}) = σ(A′)

and ϕ maps functions analytic on the spectrum of A to functions analytic on the
spectrum of A′. Hence, if f is analytic on the spectrum of A, we can define

f (A) = f (ϕ−1(A′)).
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It follows that

f (A) = f (∞)I +
1

2π i

∫
Γ

f (λ )R(λ ;A)dλ

where Γ consists of a finite number of Jordan curves containing σ(A). Moreover,
we have the spectral mapping theorem

σ( f (A)) = f (σ(A)∪{∞}).

From this we can get the spectral theory of closed self-adjoint operators on Hilbert
space with compact resolvent.

Theorem D.6. If A is a closed self-adjoint operator (i.e. A∗ = A) on a Hilbert space
H and R(λ ;A) is compact (for some and hence all λ ∈ ρ(A)), then the spectrum
of A consists of just eigenvalues λi with finite multiplicities such that |λi| → ∞ as
i → ∞. Moreover, there is an orthonormal set of eigenvectors ϕi such that, for any
x ∈ H,

x =
∞

∑
i=1

〈x,ϕi〉ϕi, Ax =
∞

∑
i=1

λi〈x,ϕi〉ϕi

and

R(λ ;A)x =
∞

∑
i=1

1
λ −λi

〈x,ϕi〉ϕi

for λ ∈ ρ(A). (Note that we count the eigenvalues with multiplicity.)

D.5 Distribution Theory

In many types of linear and nonlinear partial differential equations it is necessary to
consider non-classical (i.e. non-differentiable) solutions, which requires the theory
of distributions. Here we shall give a brief outline of the theory; more details can be
found in [4], [5].

Definition D.11. A topological vector space E (over the field F = R or C) is a
vector space over F together with a topology which is compatible with the vector
space structure, i.e. the maps

(a) (x,y) → x + y from E ×E into E
(b) (λ ,x) → λ x from F ×E into E

are continuous.

Definition D.12. A filter F on a set X is a collection of subsets of X such that:
(a) If A ⊆ X and A ⊇ B ∈ F, then A ∈ F.
(b) /0 does not belong to F.
(c) If A,B ∈ F, then A∩B ∈ F.

A basis of a filter F is a non-empty sub-collection B ⊆ F such that if A,B ∈ B
then there exists C ⊆ A∩B with C ∈ B.
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Definition D.13. A subset A of a topological vector space E is called absorbing if
for any x ∈ E there exists an α > 0 such that

x ∈ λ A, for all λ ∈ F such that |λ | ≥ α.

Definition D.14. A subset A of a topological vector space E is called balanced if

λ A ⊆ A, for all λ ∈ F such that |λ | ≤ 1.

Definition D.15. A basis for the filter of neighbourhoods of a point x in a topological
vector space is called a fundamental systems of neighbourhoods of x.

Since the translation map y → y+x is a homeomorphism, the topology of a topo-
logical vector space is determined entirely by a fundamental systems of neighbour-
hoods of 0.

Definition D.16. A locally convex topological vector space is a topological vector
space with a fundamental system of convex neighbourhoods.
The basic result of topological vector spaces is the following:

Theorem D.7. Let E be a vector space and N a collection of absorbing, balanced
and convex subsets of E. If we define

N′ = {∩n
i=1(λiVi) : λi > 0, Vi ∈ N}

then N′ is a fundamental systems of neighbourhoods of zero for a unique locally
convex topology on E. Moreover, an equivalent fundamental system (in the sense
that it generates the same topology) is given by

N′′ = {λV : λ > 0, V = ∩n
i=1Ui for some Ui ∈ N′}.

We can also define locally convex spaces by means of seminorms.

Definition D.17. A seminorm on a vector space E is a map q : E → R
+ such that

(a) q(λ x) = |λ |q(x), for all λ ∈ F and x ∈ E .
(b) q(x + y)≤ q(x)+ q(y), for all x,y ∈ E .

If q is a seminorm, then the set

V = {x : q(x) ≤ 1}

is balanced, absorbing and convex and so, from Theorem D.7, if (qi)i ∈ I is a family
of seminorms, then the sets

Vi1,··· ,in,ε = {x : qik(x) ≤ ε for 1 ≤ k ≤ n}, ik ∈ I
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constitute a fundamental systems of neighbourhoods of 0 for a locally convex space.
Conversely, any locally convex space can be defined by the set of all continuous
seminorms. Hence, if E and F are locally convex spaces defined by families of
seminorms {pi}i∈I and {q j} j∈J, then a linear map f : E → F is continuous if and
only if for any q j, there exists a corresponding pi and some M such that

q j( f (x)) ≤ Mpi(x), for all x ∈ E.

We next present some examples of locally convex spaces which are the most impor-
tant in distribution theory.

Example D.4. Let Ω be an open subset of R
n. If K ⊆Ω is compact, let D(K) denote

the space of functions in (a neighbourhood) of K and whose derivatives of all orders
exists and are continuous and which vanish outside K. We topologise D(K) as the
locally convex space defined by the seminorms

q j,K( f ) = max
x∈K

|(∂/∂x) j f (x)|, for all j ∈ N
n.

Then define
D(Ω) = ∪KD(K)

where the union is over all compact subsets of Ω . We give D(Ω) the finest locally
convex topology for which the inclusion maps

D(K) → D(Ω)

are all continuous. We call D(Ω) the space of all infinitely differentiable functions
with compact support on Ω .

Example D.5. E (Ω) denotes the space of functions which are infinitely differen-
tiable, but with not restriction on their supports, together with the same seminorms
as in Example D.4.

Example D.6. The space of rapidly decreasing functions is useful in defining the
Fourier transforms of distributions. A function f ∈ E (Rn) is rapidly decreasing if,
for any j ∈ N

n, k ∈ Z and ε > 0, there exists ρ > 0 such that

|(1 +‖x‖2)k(∂/∂x) j f (x)| ≤ ε.

Then S denotes the space of all rapidly decreasing functions with the system of
seminorms

qk, j( f ) = max
x∈Rn

|(1 +‖x‖2)k(∂/∂x) j f (x)|.

Then S is a locally convex space and we have the continuous inclusions

D(Ω) ⊆ E (Ω), D(Rn) ⊆ S ⊆ E (Rn)

where each space is dense in the next.
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There are a variety of different topologies possible on a given topological vector
space E . The weak topologies have many useful properties which the stronger ones
do not have. For example, bounded sets are often relatively compact in a weak topol-
ogy. To define these topologies, consider the duality 〈·, ·〉E,E∗ between E and its dual
space E∗ and consider the two systems of seminorms

qy∗ : x → |〈x,y∗〉|

and
qx : y∗ → |〈x,y∗〉|.

Then qy∗ is a seminorm on E for each y∗ ∈ E∗ and qx is a seminorm on E∗ for
each x ∈ E . Then the systems of seminorms {qy∗ : y∗ ∈ E∗} and {qx : x ∈ E} de-
fine locally convex topologies on E and E∗ called the weak and weak∗ topologies,
respectively. They are often denoted by σ(E,E∗) and σ(E∗,E). Note that we can-
not use sequences in these spaces to determine conditions such as compactness -
we require directed sets. However, we can say that a sequence {xn} ⊆ E converges
weakly to x if and only if

lim
n
〈xn,x

∗〉 = 〈x,x∗〉
for all x∗ ∈ E∗ (with a similar condition for weak∗ convergence in E∗). Also, it can
be shown that the unit sphere in a Hilbert space H is compact in the weak topology
(not, of course, in the norm topology, unless H is finite-dimensional).

Definition D.18. The dual space of D(Ω), denoted by D ′(Ω) is called the space
of distributions on Ω . The space E ′(Ω) is the space of distributions with compact
support in Ω and S is the space of tempered distributions.

Using the spaces of distributions, defined as dual spaces of function spaces, we
can use the duality and transposition (essentially generalized integration by parts)
to define operations such as differentiation, Fourier transform, etc. on distributions
in terms of their counterparts on the spaces of well-behaved functions D(Ω), E (Ω)
and S . For example, to define differentiation, let T ∈ D ′(Ω) and let p ∈ N

n with
|p|= p1 + · · ·+ pn. Then we define the derivative (∂/∂x)p of T to be the distribution
given by

〈(∂/∂x)pT,ϕ〉 = (−1)|p|〈T,(∂/∂x)pϕ〉
for all ϕ ∈ D(Ω). (The duality here is, of course, between D ′(Ω) and D(Ω).) In a
similar way, we can define the Fourier transform FT of the distribution T by

〈FT,ϕ〉 = 〈T,Fϕ〉

for all ϕ ∈ S . This time, the duality is between S ′ and S . The function ϕ used in
both these definitions is often called a test function.

Example D.7. The Dirac delta function δ is actually a distribution defined by

〈δ ,ϕ〉 = ϕ(0),
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for any ϕ ∈ D(Rn). Its derivative is given by

〈(∂/∂x)pδ ,ϕ〉 = (−1)|p|((∂/∂x)pϕ)(0),

for all ϕ ∈ D(Rn).

Example D.8. The Heaviside step function

U(x) =
{

1 if x ≥ 0
0 if x < 0

is, of course, not differentiable in the normal sense at 0. However, the associated
distribution (which we also denote U) given by

U(ϕ) =
∫ ∞

−∞
U(x)ϕ(x)dx =

∫ ∞

0
ϕ(x)dx

belongs to D ′(R). Then we have

〈(∂/∂x)U,ϕ〉 = −〈U,∂ϕ/∂x〉 = ϕ(0) = 〈δ ,ϕ〉

and so
(∂/∂x)U = δ .

Example D.9. If f : Ω → R is any locally integrable function, then the associated
linear functional f : D(Ω) → R given by

f (ϕ) = 〈 f ,ϕ〉 =
∫

Ω
f (x)ϕ(x)dx

is a distribution. In particular, if 1(x) = 1, for all x ∈ R
n, then

〈1,ϕ〉 =
∫

Rn
ϕ(x)dx.

Hence we can calculate the Fourier transform of the delta function by

〈Fδ ,ϕ〉 = 〈δ ,Fϕ〉 =
∫

Rn
ϕ(x)exp(−2π i〈x,ξ 〉)dx

∣∣∣∣
ξ=0

=
∫

Rn
ϕ(x)dx = 〈1,ϕ〉

i.e.
Fδ = 1.

The next result is very useful in writing certain linear operators on function
spaces in terms of the kernels of integrals. It is known as Schwartz’ kernel
theorem.

Theorem D.8. Let X ⊆ R
m and Y ⊆ R

n be open sets. Then the product X ×Y ⊆
R

m+n is also open and we have the isomorphism
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D ′(X ×Y ) ∼= L (D(Y );D ′(X))

i.e. the space of distributions on X ×Y is isomorphic (as a topological vector space)
to the space of continuous linear maps from D(Y ) into D ′(X).

Thus if we have a continuous linear map L : D(Y ) → D ′(X), then we can associate
with it a distribution K ∈ D ′(X ×Y ), such that

〈K,ϕψ〉 = 〈Lψ ,ϕ〉

for all test functions ϕ ∈ D(X), ψ ∈ D(Y ), where

ϕψ : (x,y) ∈ R
m+n → ϕ(x)ψ(y).

This is often written in the form

(Lψ)(x) =
∫

K(x,y)ψ(y)dy.

Since we can regard L2(X ×Y ) as a subspace of D ′(X ×Y ), we have

L2(X ×Y) ∼= KN(L2(X),L2(Y ))

where KN(L2(X),L2(Y )) is the space of compact nuclear operators from L2(X) into
L2(Y )), i.e. operators of the form

N f = ∑
k

λk〈 f , fk〉gk

where { fk},({gk}) is a basis of L2(X) (L2(Y )) and ∑ |λk| < ∞. Then we can write

(N f )(y) =
∫

X
N(x,y) f (x)dx

where f ∈ L2(X) and N(x,y) ∈ L2(X ×Y).

D.6 Sobolev Spaces

Sobolev spaces are important in the theory of partial differential equations and we
shall give a brief outline of them here. For more details see [6]. Note that

D(Ω) ⊆ Lp(Ω) ⊆ D ′(Ω)

for 1 ≤ p ≤ ∞ and so we can talk about distributions in Lp(Ω).



286 D Functional Analysis

Definition D.19. Define the space

H p,m(Ω) = { f ∈ D ′(Ω) : (∂/∂x)α f ∈ Lp(Ω), |α| ≤ m}

together with the norm

‖ f‖p,m =

{
∑

|α |≤m

∫
Ω
|(∂/∂x)α f (x)|p

}1/p

.

It can be shown that H p,m(Ω) is a Banach space and that H2,m(Ω) is a Hilbert space
with the inner product

〈 f ,g〉p,m = ∑
|α |≤m

∫
Ω

(∂/∂x)α f (x)(∂/∂x)α g(x)dx.

We denote by H p,m
0 (Ω) (1 ≤ p,≤ ∞,m ≥ 1) the closure of D(Ω) in H p,m(Ω) and

we put
H p′,−m(Ω) = (H p,m

0 (Ω))∗

where p′ = p/(p−1), for 1 ≤ p < ∞. Then it can be shown that

H p′,−m(Ω) = { f ∈ D ′(Ω) : f = ∑
|α |≤m

(∂/∂x)α gα , gα ∈ Lp(Ω)}.

Note that if Ω = R
n then H p,m

0 (Ω) = H p,m(Ω). We can then define Hs for arbitrary
real s.

Definition D.20. For any s ∈ R we define the space

Hs = { f ∈ S ′(Rn) : (1 + |ξ |2)s/2 f̂ ∈ L2(Rn)}

where f̂ denotes the Fourier transform of f .

Example D.10. The Dirac delta function δ is in H−n/2−ε for any ε > 0.

We mention, finally, the Sobolev embedding theorem which is useful for proving
regularity theorems for partial differential equations.

Theorem D.9. Suppose that Ω ⊆R
n is an open bounded set with sufficiently smooth

boundary (although this condition can be relaxed). Then:
(a) if m < k−n/p, we have Hk,p(Ω) ⊆Cm(Ω )
(b) if 1/q > 1/p− k/n, with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, k ≥ 1

then we have the embedding

Hk,p(Ω) ⊆ Lq(Ω)

which is compact if p,q < ∞.
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D.7 Partial Differential Equations

A linear partial differential operator of order m is an expression of the form

L = ∑
|α |≤m

aα(x)Dα =
m

∑
k=0

{
∑

α1+···+αn=k

aα1···αn(x)D
α1
1 · · ·Dαn

n

}

where Di = ∂/∂xi, α ∈ N
n and aα(x) is defined in a bounded open set Ω ∈ R

n. The
highest order term

∑
|α |=m

aα(x)Dα

is called the principal part and in a sense dominates the operator. We associate with
it the polynomial

pm(ξ ,x) = ∑
|α |=m

aα(x)ξ α .

If pm(ξ ,x) �= 0 for all non-zero ξ ∈ R
n and each fixed x, then we say that the dif-

ferential operator L is elliptic (at x). If the coefficients aα are real then m must be
even and so if we put m = 2q we say that the operator is (uniformly) strongly elliptic
in Ω if

(−1)qℜ(p2q(ξ ,x)) ≥ c|ξ |2q, for all x ∈ Ω

for some constant c > 0.
If the coefficients aα are sufficiently differentiable, we can write the operator L

in ‘divergence form’

Lu = ∑
0≤|β |,|γ|≤q

(−1)|β |Dβ (aβ γ(x)Dγ u)

and so, integrating by parts, we define the bi-linear form B by

〈v,Lu〉L2 = B(v,u) = ∑
0≤|β |,|γ|≤q

(−1)|β |〈Dβ v,aβ γ(x)Dγ u〉L2

for all u,v ∈ D(Ω).
In order to prove the existence of solutions to elliptic partial differential equa-

tions, we can use Lemma D.4 in conjunction with Garding’s inequality given in the
next result.

Lemma D.6. If L is a strongly elliptic operator in Ω such that the coefficients aβ γ

are bounded in Ω and satisfy the inequality

|aβ γ(x)−aβ γ(y)| ≤ f (‖x− y‖), for x,y ∈ Ω and |β | = |γ| = q,

where f (t) → 0+ as t → 0+, then we have the inequality

ℜ(B(u,u)) ≥ c1‖u‖2
2,m− c2‖u‖2

2,0, for all u ∈ H2,m
0 (Ω)

for some constants c1 > 0 and c2.
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Now consider the typical Dirichlet problem for an elliptic operator L: this is to solve
the equations {

Lu = f in Ω
∂ ju
∂ν j = g j on ∂Ω , 0 ≤ j ≤ m−1

for some functions f ,g j, where ν is the (outward pointing) normal to ∂Ω . By mod-
ifying u we can show that, if each g j ∈ C2m(∂Ω), then it is equivalent to studying
the problem {

Lu = f f ∈ L2(Ω)
∂ ju
∂ν j = 0 on ∂Ω , 0 ≤ j ≤ m−1

.

By a solution of this system we mean an element u of H2,m
0 (Ω) such that

B(ϕ ,u) = 〈ϕ , f 〉L2

for all ϕ ∈ D(Ω). We have

Theorem D.10. If L satisfies the conditions of Lemma D.6, then there exists a con-
stant c2 such that, for all c ≥ c2, the Dirichlet problem for the operator L+ c has a
unique solution for any f ∈ L2(Ω).

Proof. Consider the bi-linear form

B1(u,v) = B(u,v)+ c〈u,v〉L2(Ω)

for all u,v,∈ H2,m
0 (Ω). Since L is associated with B, we have, by Garding’s inequal-

ity,
ℜB(u,u) ≥ c1‖u‖2

2,m− c2‖u‖2
L2(Ω)

for some constants c1 > 0,c2. Hence,

ℜB1(u,u) ≥ c1‖u‖2
2,m

if c ≥ c2. Of course, B1 is associated with L+ c. Now the linear form

ϕ → 〈ϕ , f 〉L2(Ω), ϕ ∈ H2,m
0 (Ω)

is continuous on H2,m
0 (Ω) and so by Lemma D.4 there exists u ∈ H2,m

0 (Ω) such that

B(ϕ ,u) = 〈ϕ , f 〉L2

holds, for each ϕ ∈ H2,m
0 (Ω). �
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The following abbreviations are usually used for the Sobolev spaces:

Hm
0 (Ω) = H2,m

0 (Ω), Hm(Ω) = H2,m(Ω).

Now define a linear operator A with domain D(A) = H2m(Ω)∩H2,m
0 (Ω) by

(Au)(x) = Lu(x), u ∈ D(A)

where L is the above partial differential operator. Then we have

Theorem D.11. Let Ω be a bounded domain in R
n with sufficiently smooth bound-

ary and let L be strongly elliptic in Ω , with coefficients aα ∈ C j(Ω), where
j = max(0, |α| −m). Then the operator A associated with L as defined above is
a closed operator defined in L2(Ω) with domain D(A) = H2m(Ω)∩H2,m

0 (Ω). Also,
the resolvent (λ I −A)−1 : L2(Ω) → L2(Ω) exists for all λ ∈ C belonging to the
sector

{λ :
1
2

π < arg (λ + k) <
3
2

π , for some k > 0}
and we have

‖(λ I−A)−1‖L (L2(Ω)) ≤
C

|λ |+ 1

for some C > 0.

D.8 Semigroup Theory

When we try to solve parabolic problems such as that defined by the heat conduction
equation

∂ϕ
∂ t

= κ
∂ 2ϕ
∂x2

we can try to write the equation as an ordinary differential equation of the form

ẋ = Ax

where A is an operator defined on some Hilbert space. The main problem is that
A is usually not bounded and so we cannot define the operator exp(At) as in the
finite-dimensional case. However, we can define, in many cases, an operator which
has similar properties to the exponential. It is called a semigroup of operators and
we outline the main ideas next. We shall state the main results without proof since
they can be found in many standard texts (e.g. [7]).

Definition D.21. A (strongly continuous) semigroup of operators on a Banach space
X is an operator-valued function T : R

+ → B(X) such that:
(a) T (0) = I.
(b) T (t1 + t2) = T (t1)+ T(t2).
(c) limt→0+ T (t)x = x, for all x ∈ X , i.e. T is strongly continuous at t = 0.
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Definition D.22. If T (t) is a strongly continuous semigroup of operators on a Ba-
nach space X then the limit

Ax
∆= lim

t→0+

{
T (t)x− x

t

}
, for x ∈ D(A)

is called the infinitesimal generator of T (t).

It can be shown that A is a closed operator with dense domain in X . We have

Theorem D.12. If T (t) is a strongly continuous semigroup of operators on a Banach
space X with generator A, then

(a) T (t) : D(A) → D(A)
(b) dn

dtn (T (t)x) = AnT (t)x = T (t)Anx, for all x ∈ D(An) and t > 0.

Moreover we have similar boundedness properties to the finite-dimensional case.

Theorem D.13. Let T (t) be a strongly continuous semigroup of operators on a Ba-
nach space X. Then:

(a) ‖T (t)‖ is locally bounded on [0,∞).
(b) T (t) is strongly continuous in t.

(c) ω0
∆= inft>0

1
t log‖T (t)‖ = limt→∞

1
t log‖T (t)‖ < ∞.

(d) for all ω > ω0 there exists M(= M(ω)) such that ‖T (t)‖ ≤ Meωt ,t ≥ 0.

The resolvent operator of the generator of a semigroup has a simple representation.
In fact, if ℜ(s) > ω where ‖T (t)‖ ≤ Meωt then s ∈ ρ(A) and

R(s;A)x =
∫ ∞

0
e−stT (t)xdt, for all x ∈ X .

The next result (the Hille-Yosida theorem) characterises the generators of semi-
groups.

Theorem D.14. In order that a closed linear operator A with dense domain in a
Banach space X generates a strongly continuous semigroup, it is necessary and
sufficient that there exist real numbers M,ω such that, for all real σ > ω , σ ∈ ρ(A)
and

‖R(σ ;A)m‖ ≤ M(σ −ω)−m, m ≥ 1.

Then we have
‖T (t)‖ ≤ Meωt .

We have seen above that, for any semigroup T (t), we have T (t) : D(A) → D(A).
This means that we only obtain a solution of the equation

ẋ = Ax, x(0) = x0
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for x0 ∈D(A). There is an important class of semigroups, namely the analytic ones,
for which we have T (t) : X → D(A), i.e. the semigroup has a smoothing property
on the initial data. Many parabolic systems have this property.

Definition D.23. Let A be a closed operator defined on a Banach space with
D(A) = X , such that for some ϕ ∈ (0,π/2) we have:

(a) Sϕ+π/2
∆= {λ ∈ C : | arg λ | < ϕ + π/2} ⊆ ρ(A)

(b) ‖R(λ ;A)‖ < C
|λ | if λ ∈ Sϕ , λ �= 0

where C is a constant independent of λ . Then A is called a sectorial operator.

Theorem D.15. If A is a sectorial operator, then A generates a strongly continuous
semigroup T (t) such that

(a) T (t) can be analytically continued into the sector

Sϕ = {t ∈ C : |arg t| < ϕ , t �= 0}

(b) AT (t) and dT (t)/dt are bounded for each t ∈ Sϕ and

dT (t)
dt

x = AT (t)x, for all x ∈ X

(c) for any ε ∈ (0,ϕ), there exists C′ (=C′(ε)) such that

‖T (t)‖ ≤C′, ‖AT(t)‖ <
C′

|t| , for t ∈ Sϕ−ε .

In many parabolic systems, we require fractional powers of operators. These are de-
fined in the following way:

Definition D.24. If A is a sectorial operator which generates a strongly continuous
semigroup T (t) and ℜσ(A) < 0, then for α > 0 we define

A−α =
1

Γ (α)

∫ ∞

0
tα−1T (t)dt

and if α > 0 we put
Aα = (A−α)−1.

Then Aα has the properties
(a) Aα is closed and densely defined if α > 0.
(b) If α ≥ β , then D(Aα) ⊆ D(Aβ ).
(c) Aα Aβ = Aβ Aα = Aα+β on D(Aγ ) where γ = max(α,β ,α + β ).

The importance of the semigroup approach is that, given an inhomogeneous system

ẋ(t) = Ax(t)+ f (t), x(0) = x0 ∈ X
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then the solution is given by

x(t) = T (t)x0 +
∫ t

0
T (t − s) f (s)ds

for many types of functions such as locally Lipschitz ones.

D.9 The Contraction Mapping and Implicit Function Theorems

We finish this appendix by stating the contraction mapping theorem and using it to
give a simple proof of the implicit function theorem on Banach spaces.

Theorem D.16. (Banach) If (M,d) is a complete metric space and f : M → M is a
contraction mapping, so that there exists µ < 1 such that

d( f (x), f (y)) ≤ µd(x,y), for all x,y ∈ M,

then there exists a unique fixed point a of f in M, i.e.

f (a) = a.

The implicit function theorem for Banach spaces can now be stated in the following
way.

Theorem D.17. Let X ,Y and Z be Banach spaces and let U ⊆ X, V ⊆ Ybe open
subsets. Suppose that F : U ×V → Z is a continuously differentiable (in the sense of
Fréchet) function on U ×V. Let (x0,y0) ∈U ×V and assume that F(x0,y0) = 0 and
that the partial derivative Fx(x0,y0) ∈ B(X ,Z) (it is essential that it is bounded)
and has continuous inverse.

Then there exists a neighbourhood U ′ ×V ′ ⊆ U ×V of (x0,y0) and a function
h : V ′ →U ′ with h(y0) = x0 such that

F(x,y) = 0 if and only if x = h(y), for all (x,y) ∈U ′ ×V ′.

Moreover, h has the same level of differentiability as F.

Proof. Let A = (Fx(x0,y0))−1 ∈ B(Z,X) and define the operator

K(x,y) = x−AF(x,y).

Then K is continuously differentiable (the same number of times as F) with

K(x0,y0) = x0, Kx(x0,y0) = 0

and
‖Kx(x,y)‖ < 1

in a neighbourhood of (x0,y0), by continuity of Kx. Now use the contraction map-
ping theorem. �
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