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Preface

The second edition is an enlarged and updated version of the book I completed in
Canberra in June 1986. There are six new chapters, Uniaxial anisotropy,
Ellipsometry, Periodically stratified media, Neutron and X-ray reflection, Acoustic
waves and Chiral isotropic media. A first edition chapter has been split into two,
dealing with Pulses and Finite beams separately. The chapters on matrix methods
and on numerical methods have been combined into one. The former appendix is
now the chapter Particle waves, preceding that on neutron and X-ray reflection. The
second edition contains 20 chapters, some with their own appendices, compared
with 13 chapters and one appendix in the first edition.

The aim remains the same: to present the theory of reflection and transmission of
waves from and through (mainly) planar stratifications in a simple and physical
way, from first principles. By that I mean from the Maxwell or Schrödinger
equations, for instance. As a theorist, I have naturally favoured exact results and
have emphasized universal conservation and invariance properties. However, many
particular cases are made explicit in graphs and formulae. That’s where the theory
connects with reality (as revealed by experiment), and where one gets a physical
feel for the meaning of the formulae. Applied topics do appear: two examples are
the important phenomenon of attenuated total reflection in Chap. 10, and the
reflectivity of multilayer dielectric mirrors in Chaps. 12 and 13.

I have tried to maintain a logical progression throughout, rather than a historical
one. Nevertheless, due credit is given to the pioneers of the subject of wave
reflection. Rayleigh (John William Strutt, 3rd Baron Rayleigh, 1842–1919) features
prominently, as may be expected given the influence of his work, especially of his
Theory of sound. Even so, some of his reflection papers seem to have been forgotten
and his results keep being rediscovered, often in inferior form. The Rayleigh (or
weak reflection) approximation is an example, and appears frequently throughout
the book.

Rayleigh was of privileged birth and made the most of the consequent oppor-
tunities. Not so privileged was George Green (1793–1841), the baker’s and later
miller’s son. He was almost entirely self-taught, having just one year of formal
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schooling as a child, between the ages of 8 and 9, and becoming a Cambridge
undergraduate when nearly 40. Green’s functions form the basis of the perturbation
theories for long waves in Chap. 3 and for short waves in Chap. 6. No surprise
there. But who talks of the Liouville–Green wavefunctions, or who has heard of
Green’s angle? The former are the high-frequency waveforms dating back to 1837.
Green’s angle, as I have called it in Sect. 1.4, is the acoustic analogue of the
Brewster angle, at which one polarization has zero reflectance from a sharp
interface.

Rayleigh’s use of k for wavenumber has become the standard, and I have built
on that to maintain a consistent notation throughout the book, as far as possible. The
normal and tangential components of the wavevector k are always labelled q and
K; the latter is special in being an invariant for waves in plane-stratified media, with
the laws of reflection and transmission consequent from that invariance. Greek
letters are used (not exclusively, but in preference) for dimensionless quantities.

The book is written for scientists and engineers whose work involves wave
reflection or transmission. Most of the chapters are in the language of electro-
magnetic theory, but many of the electromagnetic results can be applied to particle
waves, specifically to those satisfying the Schrödinger equation. The mathematical
connection between electromagnetic s (or TE) waves and quantum particle waves is
established in Chap. 1. The main results for s waves are translated into quantum
mechanical language in the Chap. 15. There is also a close analogy between
acoustic waves and electromagnetic p (or TM) waves, as shown in Sect. 1.4, and in
detail in Chap. 17. Thus the book, though primarily intended for researchers
working in optics, microwaves or in neutron or X-ray optics, will be of use to
physicists, chemists and electrical engineers studying reflection and transmission of
particles at potential barriers, and also to those working in acoustics, oceanography
and seismology.

Chapter 1 is recommended for all readers: it introduces reflection phenomena,
defines the notation and previews (in Sect. 1.6) the contents of the rest of the book.
The reader can then go to any other chapter in the book, all of which are intended to
be sufficiently self-contained so that only occasional reference to other parts of the
book is needed.

The first edition was written at the Department of Applied Mathematics of the
Australian National University, Canberra. In the Preface I had the pleasure of
thanking two Australians, Barry Ninham and Colin Pask. The second edition was
written in New Zealand, but I again have pleasure of thanking two Australians, this
time Tony Klein and Andrew Wildes, for their suggestions and comments on the
new chapter on X-ray and neutron reflection.

Wellington John Lekner
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Chapter 1
Introducing Reflection

Electromagnetic, acoustic and particle waves all scatter, diffract and interfere.
Reflection is the result of the constructive interference of many scattered or dif-
fracted waves originating from scatterers in a stratified medium. This fundamental
many-body approach is hard to apply (two illustrations are given in Sect. 1.5).
Usually one replaces the collection of scatterers by an effective medium whose
properties are represented, as far as wave propagation is concerned, by a function of
position and frequency (or energy), such as the dielectric function e in the elec-
tromagnetic case, or the effective potential V in the quantum particle case.
Electromagnetic and particle waves then satisfy the same kind of linear partial
differential equation, with e and V playing similar roles.

In a medium with planar stratification the functions e and V depend on only one
spatial variable, and the partial differential equations then separate. Snell’s Law is a
direct consequence of this separability of the spatial dependence, or equivalently, of
the invariance of the reflecting material with respect to translations along the sur-
face. The differential equations, and the elementary reflection properties which
follow from them, are derived for electromagnetic, particle, and acoustic waves in
the first four sections. The many-body, constructive interference, aspect of reflec-
tion is outlined in Sect. 1.5. Finally, Sect. 1.6 previews some of the main results in
Chaps. 2–20.

1.1 The Electromagnetic s Wave

The reflection of a plane electromagnetic wave at a planar interface between two
media is completely characterized when solutions for two mutually perpendicular
polarizations are known. The polarizations conventionally chosen are: one with its
electric vector perpendicular to the plane of incidence (labelled s, from the German
senkrecht, perpendicular), and the other with its electric vector parallel to the plane
of incidence (labelled p).

We consider monochromatic waves, of angular frequency x. The reflection of a
general electromagnetic wave (a pulse, for example) can be analysed as that of a
superposition of monochromatic waves. For a given x the time dependence of all
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fields is carried in the factor e�ixt. (This is the convention in quantum and solid state
physics, and much of optics. In radio and electrical engineering the factor eixt is often
used. With the convention used here the dielectric function has positive imaginary
part in the case of absorption.) We will mostly consider non-magnetic media in this
book. The electrodynamic properties of a medium are then contained in the dielectric
function eðr;xÞ which is the ratio of the permitivity of the medium at position r and
angular frequency x to that of the vacuum. The wave equations follow from
Maxwell’s two curl equations relating the electric field E and the magnetic field B:

r� E ¼ ixB or r� E ¼ i
x
c
B; ð1:1Þ

r � B ¼ �ie x
c2

E or r� B ¼ �ie x
c
E: ð1:2Þ

(The equations on the left are in SI units, those on the right in Gaussian units; the
difference lies in the positioning of the speed of light c. In reflection studies, theory
and experiment deal in dimensionless ratios, which are independent of the choice of
units. Even the formal distinction disappears from (1.5) onward.)

For a planar interface lying in the xy plane, and an electromagnetic wave
propagating in the x and z directions, the s wave has E ¼ ð0;Ey; 0Þ and (1.1) gives

� @Ey

@z
¼ i

x
c
Bx;

@Ey

@x
¼ i

x
c
Bz; ð1:3Þ

and By ¼ 0. The other curl equation gives

@Bx

@z
� @Bz

@x
¼ �ie x

c
Ey: ð1:4Þ

On eliminating Bx and Bz from (1.3) and (1.4), we obtain a second order partial
differential equation for Ey,

@2Ey

@x2
þ @2Ey

@z2
þ e

x2

c2
Ey ¼ 0: ð1:5Þ

For planar stratifications the dielectric function depends on one spatial variable, z.
The partial differential equation is then separable, with

Ey x; z; tð Þ ¼ ei Kx�xtð ÞE zð Þ; ð1:6Þ

where EðzÞ satisfies the ordinary differential equation

d2E
dz2
þ q2E ¼ 0; q2 ¼ e

x2

c2
� K2 ¼ k2 � K2: ð1:7Þ
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The meanings of k, K and q are evident from (1.5), (1.6) and (1.7): k ¼ e1=2x=c is
the local magnitude of the wavevector, K ¼ kx is the component of the wavevector
along the interface, and q ¼ kz is the component of the wavevector normal to the
interface. For a plane wave incident from medium 1 as shown in Fig. 1.1, the
existence of the separation-of-variables constant Kð¼ k1x ¼ k01x ¼ k2xÞ implies

e1=21 sin h1 ¼ e1=21 sin h01 ¼ e1=22 sin h2; ð1:8Þ

where h1, h
0
1, and h2 are the angles of incidence, reflection, and transmission (or

refraction).
Thus the fact that e is a function of one spatial coordinate only, and the con-

sequent separation of variables, implies the laws of reflection and refraction: the
angle of reflection is equal to the angle of incidence, and the angles of incidence and
refraction are related by Snell’s Law. The refractive indices of the two media,
defined as coefficients in Snell’s Law n1 sin h1 ¼ n2 sin h2, are n1 ¼ ffiffiffiffi

e1
p

and
n2 ¼ ffiffiffiffi

e2
p

. Note that the laws of reflection-refraction do not depend on the transition
between the two media being sharp: they are valid for an arbitrary variation of eðzÞ
between the asymptotic values e1 and e2.

As e attains its limiting values e1 ¼ n21 and e2 ¼ n22, q ¼ ðex2=c2 � K2Þ1=2 takes
the limiting values

Fig. 1.1 Reflection of the electromagnetic s wave at a planar interface between media
characterized by dielectric constants e1 ¼ n21 and e2 ¼ n22. The figure is drawn the air|water
interface at optical frequencies, with e1 � 1; e2 � 4=3ð Þ2

1.1 The Electromagnetic s Wave 3



q1 ¼ n1
x
c
cos h1; q2 ¼ n2

x
c
cos h2: ð1:9Þ

(For h1 [ hc ¼ arcsinðn2=n1Þ there is total reflection, q2 is imaginary, and h2 is
complex. This is discussed along with the particle case in Sect. 1.3.) Snell’s Law
and the relationships between the wavevector components are incorporated together
in Fig. 1.2.

We now define the reflection and transmission amplitudes rs and ts in terms of
the limiting forms of the solution of (1.7):

eiq1zþ rs e�iq1z  E zð Þ ! ts eiq2z: ð1:10Þ

The reflection amplitude is thus defined as the ratio of the coefficient of e�iq1z to that
of eiq1z, the transmission amplitude as the coefficient of eiq2z when the incident wave

Fig. 1.2 Graphical representation of k2 ¼ q2þK2 and K ¼ k1 sin h1 ¼ k2 sin h2. The figure is
drawn for the air|water interface, as in Fig. 1.1. For incidence from the optically denser lower
medium, as the angle of incidence h2 increases the magnitude of the tangential component K of the
wavevector will increase beyond the magnitude k1 of the wavevector in the upper medium. No
transmitted wave is then possible, and there will be total internal reflection
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eiq1z has unit amplitude. Theory aims to obtain general properties of the reflection
and transmission amplitudes, and to develop methods for calculating these for a
given dielectric function profile. The calculation is simple for the important step
profile

e0ðzÞ ¼ e1 ðz\0Þ
e2 ðz[ 0Þ

�

ð1:11Þ

For this profile we obtain rs and ts from the continuity of E and dE=dz at z ¼ 0. (If,
for example, dE=dz were discontinuous, d2E=dz2 would have a delta function part,
and (1.7) would not be satisfied.) For the step profile, E is given by the left and right
sides of (1.10) for z\0 and z[ 0, respectively. The continuity of E and dE=dz at
the origin gives

1þ rs0 ¼ ts0; iq1 1� rs0ð Þ ¼ iq2ts0: ð1:12Þ

Thus

rs0 ¼ q1 � q2
q1þ q2

; ts0 ¼ 2q1
q1þ q2

: ð1:13Þ

On using (1.8) and (1.9), the expressions (1.13) may be put into the Fresnel forms
(Fresnel 1823)

rs0 ¼ sin ðh2 � h1Þ
sin ðh2þ h1Þ ; ts0 ¼ 2 sin h2 cos h1

sin ðh2þ h1Þ ð1:14Þ

The phases of the reflected and transmitted waves are specified only when the
phase of the incident wave and the location of the interface are specified. The above
equations are for the discontinuity in eðzÞ located at z ¼ 0. In general, for the step
located at z1,

rs0 ¼ e2iq1z1
q1 � q2
q1þ q2

; ts0 ¼ eiðq1�q2Þz1
2q1

q1þ q2
: ð1:15Þ

A special situation arises at grazing incidence ðh1 ! p=2; q1 ! 0Þ, when the
incident and reflected waves are propagating in the same direction. Then the phase
of the reflected wave is well-defined without specification of the interface location,
and rs0 ! �1 (even in the case of the total internal reflection, when q2 is imagi-
nary). The fact that rs ! �1 at grazing incidence is a general property of reflection
from all interfaces, as will be shown in Sect. 2.3.

The classical electromagnetic fields E and B are real quantities, and the complex
notation is used for mathematical convenience. (Complex fields are intrinsic in the
quantum theory of particles, however.) The physical reflected s wave is, for unit
amplitude of the incident wave,
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Refrs eiðKx�q1z�xtÞg ¼ ReðrsÞ cos ðKx� q1z� xtÞ � ImðrsÞ sin ðKx� q1z� xtÞ

The reflected intensity is proportional to the time average of the square of this,
namely

1
2
½ReðrsÞ�2þ 1

2
½ImðrsÞ�2 ¼ 1

2
jrsj2

The incident intensity is proportional to the time average of cos2ðKxþ q1z� xtÞ,
which is 1=2. Thus, Rs ¼ jrsj2 is the ratio of the reflected intensity to the incident
intensity. This quantity is called the reflectivity, or reflectance. Figure 1.3 shows Rs

for a sharp transition between air and water, with light incident from air, and from
water.

1.2 The Electromagnetic p Wave

We again take the incident and reflected waves propagating in the zx plane, and the
stratifications lying in xy planes. For the p wave, B ¼ ð0;By; 0Þ; the Maxwell
equation (1.1) gives

@Ex

@z
� @Ez

@x
¼ i

x
c
By; ð1:16Þ

while (1.2) implies Ey ¼ 0 and

Fig. 1.3 Step profile reflectivity for the s wave. The parameters are for the air|water interface at
optical frequencies, as in Figs. 1.1 and 1.2. The lower curve is for light incident from air; the upper
curve for light incident from water shows total internal reflection for angle of incidence greater
than hc ¼ arcsin 3

4

� � � 48:6�
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@By

@z
¼ ie

x
c
Ex;

@By

@x
¼ �ie x

c
Ez: ð1:17Þ

Elimination of Ex and Ez gives

@

@x
1
e
@By

@x

� �

þ @

@z
1
e
@By

@z

� �

þ x2

c2
By ¼ 0: ð1:18Þ

When e is a function of one spatial coordinate z, the laws of reflection and refraction
again follow from the separability of (1.18). We set

Byðx; z; tÞ ¼ eiðKx�xtÞBðzÞ ð1:19Þ

where K has the same meaning as for the s wave; then BðzÞ satisfies the ordinary
differential equation

d
dz

1
e
dB
dz

� �

þ x2

c2
� K2

e

� �

B ¼ 0 ð1:20Þ

When e is constant (outside the interfacial region), the p wave equation has the
same form as the s wave equation, with the same wavevector component q per-
pendicular to the interface. But within the interface there is an additional term
proportional to the product of de=dz and dB=dz. This term may be removed (and
(1.20) converted to the form of the s wave (1.7)) in two ways. The first involves
defining a new dependent variable

b ¼ e1
e

� 	12
B ð1:21Þ

(The factor e1=21 makes identical the limiting forms of b and B in medium 1.) The
equation satisfied by b is

d2b
dz2
þ q2bb ¼ 0; q2b ¼ q2 � e1=2

d2e�1=2

dz2
¼ q2þ 1

2e
d2e
dz2
� 3
4

1
e
de
dz

� �2

ð1:22Þ

This form of the p polarization equation is useful for special profiles, in particular
the exponential profile, which has ln e linear in z, and the Rayleigh profile, which
has e�1=2 linear in z. These are discussed in Chap. 2. It is also useful at short
wavelengths, in the derivation of a perturbation theory for the p wave (Chap. 6).

The second transformation which removes the ðde=dzÞðdB=dzÞ term is a dilation
of the z variable in proportion to the local value of eðzÞ: we define a new inde-
pendent variable Z by
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dZ ¼ e dz ð1:23Þ

Then, as may be seen on division of (1.20) by e, the p wave equation reads

d2B
dZ2 þQ2B ¼ 0; Q2 ¼ 1

e
x2

c2
� K2

e2
¼ q

e

� 	2
: ð1:24Þ

This equation, in terms of the dilated z variable, and a reduced normal component
of the wavevector, Q ¼ q=e, will be useful in many applications throughout this
book.

The p wave reflection and transmission amplitudes are defined in terms of the
limiting forms of BðzÞ:

eiq1z � rp e�iq1z  BðzÞ ! n2
n1

tp eiq2z ð1:25Þ

The reason for the factors �1 and n2=n1 ¼ ðe2=e1Þ1=2 multiplying rp and tp is that
we wish rs and rp and tp and ts to refer to the same quantity, here chosen to be the
electric field. (This is not the only convention in use: some authors have the
opposite sign on rp.) The electric field components for the p wave are found from
(1.2), (1.19) and (1.25) to have the limiting forms

e�1=21 cos h1 eiðKx�xtÞð eiq1zþ rp e�iq1zÞÞ  Ex ! e�1=21 cos h2 tp eiðKxþ q2z�xtÞ;

ð1:26Þ

�e�1=21 sin h1 eiðKx�xtÞð eiq1z � rp e�iq1zÞÞ  Ez ! �e�1=21 sin h2 tp eiðKxþ q2z�xtÞ:

ð1:27Þ

The x-component of the electric field (tangential to the interface) thus has the
reflection amplitude rp, while the z-component (normal to the interface) has
reflection amplitude �rp.

At normal incidence there is no physical difference between the s and p polar-
izations: both have electric and magnetic fields tangential to the interface. For our
geometry, Ez is zero at normal incidence, and (1.1) implies @Ex=@z ¼ iðx=cÞBy.
Thus B, the solution of (1.20) and (1.25), must be proportional to dE=dz, where E is
the solution of (1.7) and (1.10). On substituting dE=dz for B in (1.20) (with K set
equal to zero) the left side becomes

d
dz

1
e

d2E
dz2
þ e

x2

c2
E

� �� 


and this is zero, by (1.7). Thus (1.20) is satisfied by dE=dz at normal incidence. The
proportionality of B and dE=dz at normal incidence, when applied to the limiting
forms (1.10) and (1.25), gives the equality of rp with rs and of tp with ts.

8 1 Introducing Reflection



(Proportionality of B and dE=dz could be replaced by equality of B and
ðc=ixÞdE=dz, but then (1.25) would have to be modified by the factor n1.)

At a discontinuity in the dielectric function, B and e�1dB=dz ¼ dB=dZ are
continuous (from (1.20) or (1.24)). For the step profile e0ðzÞ defined by (1.11), B is
equal to

B0ðzÞ ¼ eiq1z � rp0 e�iq1z ðz\ 0Þ
n2
n1
tp0 eiq2z ðz [ 0Þ

�

ð1:28Þ

The continuity of B and e�1dB=dz at the origin gives

1� rp0 ¼ n2
n1

tp0; ð1:29Þ

iQ1 1þ rp0
� � ¼ iQ2

n2
n1

tp0; ð1:30Þ

where Q1 ¼ q1=e1 and Q2 ¼ q2=e2. Thus (compare (1.13))

�rp0 ¼ Q1 � Q2

Q1þQ2
;

n2
n1

tp0 ¼ 2Q1

Q1þQ2
: ð1:31Þ

On using (1.8) and (1.9) we obtain the Fresnel forms

rp0 ¼ tanðh2 � h1Þ
tanðh2þ h1Þ ; tp0 ¼ 2 sin h2 cos h1

sin ðh2þ h1Þ cos ðh2 � h1Þ ð1:32Þ

The reflectivity of the p polarization off a discontinuity in the dielectric function is
shown in Fig. 1.4.

From (1.31) we see that the p wave shows zero reflection when Q1 ¼ Q2, that is
at the Brewster angle

hB ¼ arctan
n2
n1

: ð1:33Þ

It is apparent from (1.24) that this angle has special significance not only for a sharp
transition between two media, but for diffuse profiles as well. This is because the
wave equation in the dilated variable Z links two media with effective wavevector
components Q1, and Q2 which are equal at this angle. The s and p effective
wavevector components q and Q are shown in Fig. 1.5, which also illustrates the
reason for small p reflectivity at the Brewster angle. The Figure shows q2 versus z
and Q2 versus Z for the hyperbolic tangent profile

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þ tanh z
2a

; ð1:34Þ
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for which the dilated z coordinate is

Z ¼ 1
2

e1þ e2ð Þz� e1 � e2ð Þa ln cosh z
2a

� 	

: ð1:35Þ

At the Brewster angle hB,

Q2
1 ¼ Q2

2 ¼
ðx=cÞ2
e1þ e2

¼ Q2
B; ð1:36Þ

K2 ¼ e1e2Q
2
B ¼ K2

B ¼
e1e2

e1þ e2

x
c

� 	2
: ð1:37Þ

From (1.24), a general profile eðzÞ has Q2 at the Brewster angle given by

Q2 hB; zð Þ ¼
x2

c2 e zð Þ � e1e2
e1 þ e2

n o

e2 zð Þ : ð1:38Þ

Thus the bump in Q2 at the Brewster angle (see Fig. 1.5) has the analytic form

Q2 hB; zð Þ � Q2
B ¼

x2

c2
e1 � eð Þ e� e2ð Þ
e2 e1þ e2ð Þ : ð1:39Þ

The p wave equation in the Z, Q notation has reflection at hB due to the small
variation in the effective wavevector component Q as given by (1.39). For the step
profile, e equals either e1 or e2, and there is no variation in Q and thus no reflection.

Fig. 1.4 Step profile reflectivity for the p wave, for the air-water interface. The curve for light
incident from air is zero at the Brewster angle arctanð4=3Þ � 53:1�. For incidence from water the
reflectivity is zero at the Brewster angle arctanð3=4Þ � 36:9�, and unity beyond the critical angle
hc ¼ arcsin 3=4ð Þ � 48:6�
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A common explanation for the small reflection of the p polarization at hB is in
terms of the angular dependence of the dipole radiation from each atom or molecule
which produces the transmitted and reflected waves. The far-field radiation pattern
of a dipole has zero amplitude along the line of oscillation of the dipole (see
Sect. 1.5, (1.78)). We see from (1.32) that rp0 is zero when h1þ h2 ¼ p=2, that is
when the refracted and reflected waves are at a right angle (see Fig. 1.6). The
argument goes that at this angle of incidence there is no radiation from the accel-
erated electrons in the material to produce a p-polarized signal in the direction of
specular reflection (upper part of Fig. 1.6). But zero reflection also exists in the
reverse case of material to vacuum (lower figure). In this case the explanation in
terms of electrons radiating along the transmitted beam to produce (or fail to
produce) the reflected beam does not apply. Further, a similar case of zero reflection
at the interface between two unlike media occurs with acoustic waves (as will be
discussed in Sect. 1.4), and in that case the radiation from each scatterer does not
have a dipole character.

Fig. 1.5 Squares of the
normal wavevector
component q and of the
effective normal component Q
for the s and p waves. The
figure shows q2ðzÞ and Q2ðZÞ
for the hyperbolic tangent
dielectric function profile, at
three angles of incidence. The
upper curve (in each case) is
for normal incidence, the
middle curve is at the
Brewster angle hB ¼
arctanðn2=n1Þ and the lower
curve is at the critical angle
for total internal reflection,
hc ¼ arcsinðn2=n1Þ. The
refractive indices n1 ¼ 4=3
and n2 ¼ 1 approximate the
water|air interface. Water is
on the left in both diagrams

1.2 The Electromagnetic p Wave 11



1.3 Particle Waves

In non-relativistic quantum mechanics, the motion of a particle of mass m and
energy E in a potential V is determined by Schrödinger’s equation for the proba-
bility amplitude W,

� �h2

2m
r2WþVW ¼ EW: ð1:40Þ

(�h is Planck’s constant divided by 2p.) We shall consider reflection at a planar
stratified boundary region between two uniform media characterized by potentials
V1 and V2. Examples of the particles and interfaces to which this description applies

Fig. 1.6 Illustrating complete
transmission of the p wave at
the Brewster angle. In each
case h2 ¼ p=2� hB, so the
transmitted and non-reflected
rays are at right angles
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are: electrons at a junction between two metals (with possibly an oxide layer in
between); neutrons reflecting off a solid or liquid surface; and helium atoms
reflecting at a liquid helium surface. In each of these examples the potential V in the
single-particle equation (1.40) is an effective potential, representing the net effect of
all the interactions between the particle and the scatterers in the medium through
which it moves. An example of how this effective potential is determined is given in
Sect. 1.5.

We again consider plane waves propagating in the zx plane, incident on a planar
interface, with stratification in the z direction. For this geometry, V depends on one
spatial variable z, and W is independent of y. The z, x variable dependence in (1.40)
is then separable, with

Wðz; xÞ ¼ eiKxwðzÞ ð1:41Þ

(it is usual to suppress the time dependence e�iEt=�h). Substitution of (1.41) into
(1.40) gives an ordinary differential equation for w:

d2w
dz2
þ q2w ¼ 0; q2 zð Þ ¼ 2m

�h2
E � V zð Þ½ � � K2: ð1:42Þ

From (1.41), K is the x-component of the wavevector in either medium, and is an
invariant of the motion, because of the absence of transverse components of the
force, @V=@x ¼ 0 ¼ @V=@y. If the angles of incidence, reflection and refraction are
h1, h

0
1, and h2, the laws of reflection and refraction follow from the invariance of

K ¼ k1x ¼ k01x ¼ k2x:

k1 sin h1 ¼ k1 sin h
0
1 ¼ k2 sin h2; ð1:43Þ

where

k2i ¼ K2þ q2i ¼
2m

�h2
E � Vi½ �: ð1:44Þ

As before, q is the component of the wavevector normal to the interface, with
limiting values

k1 cos h1 ¼ q1  q zð Þ ! q2 ¼ k2 cos h2: ð1:45Þ

These relations are summarized in Fig. 1.7.
On comparison of (1.7) and (1.42) we see that there is a one-to-one corre-

spondence between the reflection problems for the electromagnetic s wave and
particle waves obeying Schrödinger’s equation, with the replacement
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e zð Þx
2

c2
$ 2m

�h2
E � V zð Þ½ �: ð1:46Þ

The reflection amplitude r and the transmission amplitude t are defined in terms of
the limiting forms of the solution of (1.42):

eiq1zþ r e�iq1z  w zð Þ ! t eiq2z: ð1:47Þ

For example, for the potential step

V0ðzÞ ¼ V1 ðz\0Þ
V2 ðz[0Þ

�

ð1:48Þ

continuity of w and dw=dz at z ¼ 0 gives the Fresnel-type equations

r0 ¼ q1 � q2
q1þ q2

; t0 ¼ 2q1
q1þ q2

: ð1:49Þ

Note that, as in the case of electromagnetic waves, the boundary conditions follow
from the differential equations; they are not an additional assumption of the theory.

A refractive index can be defined for particles. From (1.43) and (1.44) we see

that the refractive index is proportional to ðE � VÞ1=2, that is to the square root of
the kinetic energy, or to the local value of the wavevector k. The proportionality to

Fig. 1.7 Graphical representation of k2 ¼ q2þK2 and of K ¼ k1 sin h1 ¼ k0 sin h0. (We use zero
as subscript since in this example the upper medium is the vacuum; V0 is the vacuum potential,
usually taken as zero.) The figure is drawn for electrons at 10 eV above the Fermi level in bulk
aluminium, at the aluminium-vacuum interface. EF � V1 � 11:7 eV, so E � V1 � 21:7 eV;
V0 � EF � 4:2 eV, so E � V0 � 5:8 eV; the ratio of the refractive indices is E � V1ð Þ=f
E � V0ð Þg12 � 1:934
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ðE � VÞ1=2 is also a classical result: the equations for the conservation of energy
and transverse momentum for a particle incident at angle h1 onto a planar strati-
fication between media 1 and 2 read

1
2
mv21þV1 ¼ E ¼ 1

2
mv22þV2; ð1:50Þ

mv1 sin h1 ¼ mv2 sin h2 : ð1:51Þ

Equation (1.51) shows that the refractive indices are proportional to vi, which from

(1.50) are equal to ½2ðE � ViÞ=m�1=2. However, partial reflection does not exist for
classical particles: there is either total reflection (when V [ E � 1

2mðv1 sin h1Þ2
anywhere), or no reflection (when V\E � 1

2mðv1 sin h1Þ2 everywhere).
In contrast, total reflection occurs in the wave theory only if V2 [ E � �h2K2=2m;

q2 is then imaginary, leading to exponential decay of the probability amplitude in
medium 2. Regions of imaginary q (negative q2 ¼ ð2m=�h2ÞðE � VÞ � K2) where
V [ E � �h2K2=2m), do not lead to total reflection when q2 is real, because of
tunneling. Electromagnetic waves are likewise totally reflected when q2 is imagi-
nary, that is when e2x2=c2\K2, or sin2h1 [ e2=e1. Thus the critical angle for total
reflection is given by

hc ¼ arcsin
e2
e1

� �1=2

; hc ¼ arcsin
E � V2

E � V1

� �1=2

ð1:52Þ

Fig. 1.8 Probability amplitudes, at two angles of incidence, for particle waves incident from the
left onto a linear ramp potential. The energy and potential values are such that hc ¼ 45�

(V1:V2:E ¼ 1:3:5). The upper two waves are the real and imaginary parts of the probability
amplitude w for incidence at 30�. The lower curve is the imaginary part of the probability
amplitude for a totally reflected wave, incident at 60�. The real part is not shown, since the real and
imaginary parts of w are proportional to each other in total reflection: Imw=Rew ¼ tan d=2 when
r ¼ eid (Sect. 2.2). The classical turning point z0 (where q2 ¼ 0) is halfway up the ramp
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in the electromagnetic and particle wave cases. Partial and total reflection of particle
and electromagnetic s waves is compared in Figs. 1.8 and 1.9. Note that at 30�

incidence the net flux at the right of the barrier, q2 tj j2, is the same as the net flux on
the left, q1ð1� rj j2Þ, despite the visible increase in the real and imaginary parts of
the probability amplitude to the right. At 60� incidence the wave is totally reflected.
The probability amplitudes are drawn about the levels E � �h2K2=2m, the energy
available for motion in the z direction.

1.4 Acoustic Waves

There is an interesting close correspondence between the reflection of sound and the
reflection of the electromagnetic p wave. This will be demonstrated in the simplest
case of fluid, non-viscous media. Dissipation via viscosity and scattering can be
accommodated by the use of a complex sound speed.

Sound waves propagate changes in density and pressure which are usually very
small compared to the mean values. The equations of motion, continuity, and state
can then be linearized by setting

density ¼ .þ .a; pressure ¼ pþ pa; ð1:53Þ

where . and p are the mean local values of the density and pressure, and .a and pa
are the small excess time-dependent values due to the presence of acoustic waves.
On dropping second order terms in .a; pa and in the velocity of a fluid element, and

Fig. 1.9 The electromagnetic s wave at two angles of incidence onto a linear dielectric function
profile. The radiation is incident from the left. The dielectric constants are e1 ¼ 2; e2 ¼ 1, so that
hc ¼ 45�. The lower two waves are the real and imaginary parts of the electric field EðzÞ, at 30�
angle of incidence. The upper curve is the real part of EðzÞ for a totally reflected wave incident at
60�. The curves are drawn at the level of cK=xð Þ2 for each angle of incidence. The wavefunctions
for the electromagnetic s wave and for the particle waves of Fig. 1.8 are the same
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neglecting the force due to gravity apart from its effect on stratification according to
density, one obtains the equation (Bergmann 1946)

r2pa � 1
v2

@2pa
@t2
� 1
.
r. � rpa ¼ 0: ð1:54Þ

Here v2 ¼ ð@p=@.Þs is the adiabatic derivative of the pressure with respect to
density, and gives the square of the local phase velocity in the medium.

Consider now the reflection of sound at an interface characterized by a density
profile .ðzÞ and an adiabatic pressure derivative ð@p=@.Þs ¼ v2ðzÞ. For a plane
monochromatic wave propagating in the zx plane, we have

pa z; x; tð Þ ¼ P zð Þ ei Kx�xtð Þ: ð1:55Þ

K is again the component of the wavevector along the interface, and is a constant of
the motion:

K ¼ x
v1

sin h1 ¼ x
v2

sin h2 ; ð1:56Þ

where v1; v2 are the limiting values of ð@p=@.Þs
� �1=2

in the two media, and h1; h2
are the angles of incidence and refraction. The differential equation for P is obtained
by substitution of (1.55) into (1.54):

.
d
dz

1
.
dP
dz

� �

þ q2P ¼ 0; ð1:57Þ

with

q2ðzÞ ¼ x2

v2ðzÞ � K2; ð1:58Þ

q is again the normal component of the wavevector, with limiting values
q1 ¼ x=v1ð Þ cos h1; q2 ¼ ðx=v2Þ cos h2.

The term ðd.=dzÞðdP=dzÞ in (1.57) may be removed by introducing a new
dependent variable P=

ffiffiffi
.
p

, as Bergmann notes. This is analogous to the transfor-
mation to B=

ffiffi
e
p

discussed in Sect. 1.2. A more fruitful approach is analogous to the
transformation to a dilated z variable in the p wave case: (1.57) has the same form
as the electromagnetic p wave equation

e
d
dz

1
e
dB
dz

� �

þ q2B ¼ 0
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In terms of a new independent variable Z, defined by dZ ¼ .dz, (1.57) becomes

d2P
dZ2 þQ2P ¼ 0; Q ¼ q

.
: ð1:59Þ

(As defined here, Z and Q no longer have the dimensions of length and of
ðlengthÞ�1; this can be remedied by respectively dividing Z and multiplying Q by
some density, for example ð.1þ .2Þ=2:)

It is clear from the form of (1.59), and the discussion of reflection at the Brewster
angle given in Sect. 1.2, that weak reflection of acoustic waves (zero reflection, in
the case of a sharp transition between the two media) is expected whenever
Q1 ¼ Q2. This holds when

cos h1
.1v1

¼ cos h2
.2v2

: ð1:60Þ

This result was first given (for a sharp interface) by George Green (1838). On
eliminating h2 from (1.60) and Snell’s Law (1.56), one finds that weak reflection
occurs at an angle of incidence h1 ¼ hG (which we will call Green’s angle) given by

tan2 hG ¼ ð.2v2Þ
2 � ð.1v1Þ2

.21ðv21 � v22Þ
: ð1:61Þ

In contrast to the electromagnetic p wave case, weak reflection of acoustic waves
does not happen at a certain angle at a boundary between any two media: the
quantities .1v1 � .2v2 and v1 � v2 must have opposite signs.

At Green’s angle hG (where Q1 ¼ Q2), K2 is equal to

K2
G ¼

x2

.21 � .22

.1
v2

� �2

� .2
v1

� �2
( )

; ð1:62Þ

and the common value of Q1 and Q2 is given by

Q2
G ¼

x2

.21 � .22

1
v21
� 1
v22

� 


: ð1:63Þ

According to (1.59), the acoustic wave in the Z variable then reflects from the bump
in Q2, given by

Q2 � Q2
G ¼

x2

.2 .21 � .22
� �

.21 � .22
v2

� .1
v2

� �2

þ .2
v1

� �2

�.2 1
v21
� 1
v22

� �( )

: ð1:64Þ
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One can define an acoustic reflection amplitude r and a transmission amplitude t
in terms of the pressure:

eiq1zþ r eiq1z  P zð Þ ! t eiq2z: ð1:65Þ

For a sharp transition between media 1 and 2, P and dP=.dz ¼ dP=dZ are con-
tinuous at the boundary. (This is evident from (1.57); note that, as in the electro-
magnetic and particle wave cases, the differential equation dictates the boundary
conditions, which are not an additional input to the theory.) Thus, for a sharp
boundary located at the origin,

r ¼ Q1 � Q2

Q1þQ2
; t ¼ 2Q1

Q1þQ2
: ð1:66Þ

These may be rewritten as

r ¼ .2 tan h2 � .1 tan h1
.2 tan h2þ .1 tan h1

; t ¼ 2.2 tan h2
.2 tan h2þ .1 tan h1

: ð1:67Þ

Total reflection occurs for angles of incidence greater than

hc ¼ arcsin
v1
v2

� �

: ð1:68Þ

Fig. 1.10 Reflectivity of acoustic waves at a mercury-water interface, according to (1.66). For
sound incident from the slower medium (mercury) total reflection occurs beyond the critical angle
hc � 78:21�. Very close is the Green’s angle hG � 78:18�, so the reflectivity changes from zero to
unity in 0:03�. For sound incident from water the Green’s angle is very close to glancing
incidence, hG � 89:12�. Thus again the reflectivity changes from zero to unity very rapidly. The
curves are drawn for qHg=qH2O ¼ 13:57; vHg=vH2O ¼ 0:9789
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This result follows on setting h2 ¼ p=2 in (1.56); it holds for any interface, no
matter how diffuse, provided absorption can be neglected. The critical angle hc will
be close to Green’s angle hG, if the latter exists, when v1 ’ v2 The reflectivity of a
step profile then rapidly goes from zero at hG to unity at hc and beyond, as illus-
trated for the mercury-water interface in Fig. 1.10.

When .1v1 ’ .2v2 the reflectivity at normal incidence is small, and hG (if it
exists) will also be small. This is the case for carbon tetrachloride and water,
illustrated in Fig. 1.11.

1.5 Scattering and Reflection

Most of the results in this book come from analysis of the differential equations for
waves in material media, the media being characterized by a dielectric function, or
an effective potential, or the density and speed of sound, in the case of electro-
magnetic, particle or acoustic waves. This approach hides the many-body com-
plexity of the real physics: specular reflection, for example, is the result of the
constructive interference of many scattered or re-radiated waves. A discussion of
reflection from this point of view will be given here; it leads to values for the
functions characterizing the media, such as e and V , in terms of the properties of the
particles comprising the system. Such approaches go back to Lorentz (1909),
Darwin (1924) and Hartree (1928) in the electromagnetic case. We will begin with
an adaptation of Fermi’s (1950) argument for the effective potential of a collection
of neutron scatterers, since this is simpler.

Fig. 1.11 Reflectivity of acoustic waves at a water-carbon tetrachloride interface, obtained from
(1.66). For sound incident from the slower medium (CCl4) the Green’s angle is hG � 1:73�, and
total reflection occurs beyond hc � 38:86�. For sound incident from water the Green’s angle is
hG � 2:76�. The curves are drawn for qCCl4=qH2O ¼ 1:595; vCCl4=vH2O ¼ 0:6274
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Consider the reflection of a beam of neutrons by a thin slab of material. The
neutrons interact with the nuclei in the slab. For slow neutrons this interaction is
characterized by a length b, the scattering length for neutrons off a bound scatterer.
An incident plane wave eikz causes each scatterer to radiate a spherical wave
�beikr=r. The reflected wave is found by summing up the scattered waves from all
parts of the slab. The geometry is illustrated in Fig. 1.12.

If n is the number density of the scatterers, ð2p.d.DzÞn is the number of scat-
terers within an annulus between q and .þ d., where q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ y2
p

is the distance
from the z axis. The reflected wave at P is thus

wr ¼
Z1

0

d.2p.Dz n � b eikr

r

� �

: ð1:69Þ

For fixed z we have .d. ¼ rdr, so that

wr ¼ �2pnbDz
Z1

�z
dr eikr: ð1:70Þ

The integral over r is not defined as it stands, because we have used eikz as the
incident wave, namely a plane wave extending to infinity in the x and y directions.
In practice the incident wave would be a finite beam, with an amplitude decreasing

with . ¼ ðx2þ y2Þ1=2. The resulting integral for wr then is well-defined. When such

Fig. 1.12 Reflection of neutrons by a slab of scatterers. The thickness Dz of the slab is such that
kDz is small, so that the phase of the plane wave eikz, (incident from the left) is nearly constant over
the slab
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decrease is slow on the scale of k�1 (the beam is many wavelengths wide), the
integral is equal to �e�ikz=ik, and

wr ¼
2pnbDz

ik
e�ikz ð1:71Þ

This is a reflected wave, with reflection amplitude equal to the coefficient of e�ikz.
We will now show that the reflection amplitude due to a thin slab of thickness Dz

and effective potential V is (to lowest order in V)

r1 ¼ Dz
2ik

� �
2mV

�h2
: ð1:72Þ

(What follows is heuristic; a rigorous proof is given in Chap. 3; see in particular (3.
14).) Consider the effect of a potential hump, or well, which is small in extent in
comparison with the wavelength. Seen on the scale of the wavelength, the hump
appears as a spike, and its main effect is to create a change of slope in the wave-
function: on integrating (1.42) (at normal incidence) across the hump, we have

w0 z2ð Þ � w0 z1ð Þ ¼ �
Zz2

z1

dz
2m

�h2
E � V zð Þ½ �w zð Þ: ð1:73Þ

For wavelengths long compared to the extent of the hump, w is nearly constant over

its effect, so when z2 � z1 is small compared to k�1 ¼ �hð2mEÞ�1=2, and the hump is
centred on the origin,

w0ðz2Þ � w0ðz1Þ ’ 2m

�h2
wð0Þ

Zz2

z1

dzVðzÞ ð1:74Þ

(The zero of energy has been chosen so that V goes to zero on either side of the
hump.) From (1.47) the left side is equal to ikðt � 1þ rÞþOðk2Þ. The assumption
that w remains nearly constant from z1 to z2 also implies 1þ r ’ wð0Þ ’ t. Thus
(1.74) gives

r ’ 1
2ik

� �
2m

�h2

Zz2

z1

dz V zð Þ: ð1:75Þ

For V constant inside the hump (of extent Dz), and zero outside, this reduces to
(1.72).

We can now give an expression for the effective potential of a collection of
scatterers: (1.71) and (1.72) together imply that this is
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V ¼ 4p
�h2

2m

� �

nb: ð1:76Þ

The scattered waves interfere constructively to give a reflected and a transmitted
wave, as if the medium were completely homogeneous and acted on the particles
with a potential given by (1.76). We have considered normal incidence; at oblique
incidence the constructive interference of the spherically diverging waves from the
scatterers within the slab is in the specular and straight-through directions.

We now turn to the more complex question of electromagnetic radiation
interacting with the atoms or molecules in a thin slab of material. We will calculate
the field at P in front of a slab, as in Fig. 1.12. The incident electric field propagates
in the z direction, and is taken to be polarized along the x direction,

E ¼ eiðkz�xtÞðE0; 0; 0Þ ð1:77Þ

When the wavelength is large compared to atomic size, each atom radiates pre-
dominantly as a dipole. For a given atom with dipole p, oscillating at the impressed
angular frequency x, the electric field at r ¼ rr̂ from the atom is (see for example
Jackson (1975), Sect. 9.2)

E ¼ eikr

r
k2 r̂� pð Þ � r̂þ 3 r̂ � pð Þr̂� p½ � 1

r2
� ik

r

� �� 


; ð1:78Þ

where k ¼ x=c. The far field (given by the first term) is a spherically diverging
wave, with E transverse to r. We do not omit the near field, since we do not wish to
assume that kr � 1. All dipoles are taken to lie along the direction of the incident
electric field, and to have the same strength aE0, where a is the polarizability of an
atom:

p ¼ e�ixtðaE0; 0; 0Þ ð1:79Þ

The point P is at ð0; 0; zÞ, with z\0. The contribution to the electric field at P from
a dipole at ðx; y; 0Þ is then

Ex ¼ aE0 eiðkr�xtÞ

r3
k2ðy2þ z2Þþ ð1� ikrÞ 3x2

r2
� 1

� �� 


ð1:80Þ

with Ey and Ez odd in x and thus integrating to zero when we sum over the dipolar
fields. Thus the net field at P due to all the dipoles (of number density n) in the thin
slab is, on changing to the cylindrical coordinates . and / and integrating over /,
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Edipoles
x ¼ e�ixtaE0npDz

Z1

0

d. .
eikr

r3
k2ð.2þ 2z2Þþ ð1� ikrÞ 3.2

r2
� 2

� �� 


¼ e�ixtaE0npDz
Z1

�z
dr

eikr

r2
k2ðr2þ z2Þþ ð1� ikrÞ 1� 3z2

r2

� �� 


:

ð1:81Þ

The first term is an integral of the form (1.70); the others may be obtained from it by
integration by parts. The result is

Edipoles
x ¼ e�iðkzþxtÞ2pikanDzE0: ð1:82Þ

The reflection amplitude for the slab is the coefficient of E0e�iðkzþxtÞ in (1.82). We
compare this with the result analogous to (1.72) for the reflection amplitude due to a
thin slab of dielectric constant e,

r1 ¼ i
2
kDz e� 1ð Þ: ð1:83Þ

Thus the effective dielectric constant of a slab of atoms of polarizability a and
number density n is

e ’ 1þ 4pan: ð1:84Þ

We have neglected the effects of the dipolar fields on each other. When these are
taken into account, the resulting dielectric constant for a uniform medium becomes.

e ¼ 1þ 8
3 pan

1� 4
3 pan

: ð1:85Þ

This expression is known as the Clausius-Mossotti or Lorentz-Lorenz formula
(Lorentz 1909). The result (1.84) is the first-order term in the an expansion of
(1.85). The form of (1.85), with n ¼ nðzÞ, remains valid with a high degree of
accuracy in a stratified medium of polarizable atoms (Castle and Lekner 1980;
Lekner 1983).

1.6 A Look Ahead

In the preceding sections we have introduced the definitions and basic equations for
the reflection of electromagnetic, particle and acoustic compressional waves by
planar stratified media. The remainder of the book is written predominantly in
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electromagnetic notation; a translation of the main results into particle-wave lan-
guage is made in Chap. 15, and Chap. 16 deals with neutron and X-ray reflection.
The final Chaps. 17–20 are on acoustic waves, chiral media, pulses and
wavepackets, and finite beams. Here we preview the chapters, stating and dis-
cussing some of their results and techniques in order to give the reader a feel for the
structure and content of the book.

Chapter 2 contains both general results, true for reflection and transmission at
any transition between two homogeneous media, and some specific results for
exactly solvable profiles. Among the general results are the conservation law

q1ð1� jr12j2Þ ¼ q2jt12j2; ð1:86Þ

and reciprocity relations such as

r21 ¼ � t12
t	12

r	12 ð1:87Þ

and

q2t12 ¼ q1t21: ð1:88Þ

The conservation law (1.86), which holds for real q1 and q2 and in the absence of
absorption within the interface, represents conservation of energy in the electro-
magnetic case, and conservation of probability density current in the particle case.
The relation (1.87) holds under the same conditions, and implies that the reflectance
R ¼ jrj2 is the same from either side of incidence on a nonabsorbing interface. The
relation (1.88) is more general, being valid also in the presence of absorption within
the interface. It implies the equality of the transmittances T12 ¼ ðq2=q1Þjt12j2; T21 ¼
ðq1=q2Þjt21j2, representing the energy or particle flux through the inhomogeneity,
for incidence from medium 1 or from medium 2. (When the polarization subscripts
s and p are omitted, the relation quoted is understood to be valid for either wave.)

For inhomogeneous interfaces extending from z1 to z2, with e ¼ e1 for z
 z1 and
e ¼ e2, the s wave reflection and transmission amplitudes may be expressed in
terms of the values and derivatives of two linearly independent solutions F and G of
(1.7) within z1
 z
 z2, evaluated at z1 and z2:

rs ¼

e2iq1z1
q1q2ðF1G2 � G1F2Þþ iq1ðF1G02 � G1F02Þþ iq2ðF01G2 � G01F2Þ � ðF01G02 � G01F

0
2Þ

q1q2ðF1G2 � G1F2Þþ iq1ðF1G02 � G1F02Þ � iq2ðF01G2 � G01F2Þþ ðF01G02 � G01F
0
2Þ
;
ð1:89Þ
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ts ¼
eiðq1z1�q2z2Þ2iq1ðF2G02 � G2F02Þ

q1q2ðF1G2 � G1F2Þþ iq1ðF1G02 � G1F02Þ � iq2ðF01G2 � G01F2Þþ ðF01G02 � G01F
0
2Þ
:
ð1:90Þ

Similar expressions can be written down for the p polarization. These results are
useful for specific profiles for which the solutions are known functions, such as the
Airy functions for the linear profile, and the Bessel functions for the exponential
profile. General results may also be deduced from (1.89) and (1.90), for example
that rs ! �1 and ts ! 0 at grazing incidence, and that rs and ts tend to the Fresnel
values (1.15) as Dz ¼ z2 � z1 tends to zero. From the p polarization expressions one
finds that rp ! 1 and tp ! 0 at grazing incidence. Thus rp=rs always moves in the
complex plane from þ 1 at normal incidence to �1 at grazing incidence, and the
number of principal angles (or ellipsometric Brewster angles), defined by
Reðrp=rsÞ ¼ 0, is therefore always odd.

Chapter 2 also lists the exact solutions for three dielectric function profiles which
are solvable for both the s and p polarizations, and another (the important hyper-
bolic tangent profile) which is solvable for the s wave only. Two other cases which
are solvable for the s wave case, the sech2ðz=aÞ and the linear profile, are discussed
in Sects. 4.3 and 5.2 respectively, where their solution is relevant to the problem at
hand.

Chapter 3 treats the reflection of long waves, that is those whose wavelength is
large compared to the thickness of the reflecting inhomogeneity. The long-wave
results are obtained from perturbation theories, which in turn derive from exact
integral and integro-differential equations obeyed by the s and p waves. For
example, from the perturbation theory for the s wave one finds that the reflection
amplitude, to second order in the interface thickness, is given by

rs ¼ rs0þ 2q1x2=c2

ðq1þ q2Þ2
ik1 � 2q2k2 � x2=c2

q1þ q2
k21

� 


þ � � � ; ð1:91Þ

where the kn are integrals of dimension ðlengthÞn,

kn ¼
Z1

�1
dz e zð Þ � e0 zð Þ½ �zn�1: ð1:92Þ

In (1.92), eðzÞ is the dielectric function profile under consideration, and e0ðzÞ is the
step dielectric function defined in (1.11), which has the reflection amplitude rs0
given in (1.13). The integrals kn depend on the relative positioning of the actual
profile e and the step profile e0. A theory which calculates reflection amplitudes as a
perturbation series about a reference profile (here e0) must obtain results for
observables, such as jrsj2, which are invariant to the relative positioning of the
actual and reference profile. If r ¼ r0þ r1þ r2þ � � � ;
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R ¼ jrj2 ¼ jr0j2þ 2Reðr	0r1Þþ fjr1j2þ 2Reðr	0r2Þgþ � � � ; ð1:93Þ

and we see from (1.91) that the first order term r1 is imaginary in the absence of
absorption or total internal reflection for the s wave. (The same is true for the p
wave, as is shown in Sect. 3.4.) Then there is no term in R of first order in the
interface thickness, for either polarization. The second order term is given by the
expression within the braces in (1.93); from (1.91) we have

R1 ¼ q1 � q2
q1þ q2

� �2

� 4q1q2x4=c4

ðq1þ q2Þ4
i2þ � � � ; ð1:94Þ

where the integral invariant i2 is given by

i2 ¼ 2ðe1 � e2Þk2 � k21: ð1:95Þ

(The subscript 2 denotes dimensionality ðlengthÞ2.) The integrals k1 and k2 which
enter into rs and Rs, depend on the relative positioning of the actual and reference
profiles, but the combination of integrals which comprise i2 is invariant with respect
to the choice of positioning. Similar results are obtained for the observables rp=rs,

and Rp ¼ jrpj2:

rs0
rp
rs

� �

¼ rp0 � 2iQ1

ðQ1þQ2Þ2
K2

e1e2
I1þ � � � ; ð1:96Þ

Rp ¼ Q1 � Q2

Q1þQ2

� �2

� 4Q1Q2

e1e2ðQ1þQ2Þ4
x4

c4
i2 � x2

c2
K2 j2þ 1

e1
þ 1

e2

� �

i2


 �

þ K4

e1e2
½ðe1þ e2Þj2 � I21 �

� 


þ � � � ;

ð1:97Þ

In (1.97) j2 is another second order invariant, and the first order invariant I1 is
defined by

I1 ¼
Z1

�1
dz
ðe1 � eÞðe� e2Þ

e
¼

Z1

�1
dz e1þ e2 � e1e2

e
� e

n o

ð1:98Þ

These results show that, in the long wave limit, the observables Rs, Rp, and rp=rs
take universal form. The integral invariants I1, i1, and i2 depend on the profile shape
and extent only. All frequency and angular dependence is contained in the coeffi-
cients of I1, i1, and i2, and is the same for all non-singular profiles. (The degenerate
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case e1 ¼ e2 requires special consideration for the ellipsometric ratio rp=rs
however.)

Equations (1.94), (1.96) and (1.97) illustrate how theory answers the question
“what information can be obtained from a given experiment?” From (1.94) we see
that measurement of the s reflectivity in the long wave case can determine only one
characteristic of the interface, the invariant i2. Experimental data at different angles
of incidence give no new information (we are assuming that the interface has no
roughness, and the absence of absorption in the interface or substrate), merely the
opportunity to reduce the uncertainty in i2. The same is true for ellipsometry to
lowest order in the interface thickness: one parameter (the invariant I1) can be
determined, at any angle of incidence. The p wave reflectance (1.97) carries more
information, because the direction of the electric field relative to the interface
changes with the angle of incidence. In principle, the values of I21 , i2 and i2 may be
determined by intensity measurements at a mimimum of three angles of incidence.

The long wave results described above were obtained from perturbation theory,
the perturbation being the deviation of the actual profile eðzÞ from the step profile
e0ðzÞ. The simplest example of a perturbation theory expression for the reflection
amplitude is that for reflection by a film between like media:

rperts ¼ �x2=c2

2iq0

Z1

�1
dz e� e0ð Þ e2iq0z: ð1:99Þ

Here q0 is the common value of q1 and q2; e0 is likewise the common value of e1
and e2. The normal incidence, thin film version of this result has been used in
Sect. 1.5 ((1.72) and (1.83)). Note that rperts diverges at grazing incidence (as
q0 ! 0). This is unphysical: for passive media the reflection amplitude must stay
within the unit circle, and in fact we saw that the exact rs tends to �1 at grazing
incidence.

This troublesome divergence at grazing incidence remains in higher order per-
turbation expressions, but is removed by the variational theory developed in
Chap. 4. The simplest trial function, w0 ¼ eiq0z, leads to the variational expression

rvars ¼
� x2=c2

2iq0
kð2q0Þ

1þ x2=c2

2iq0
rð2q0Þ
kð2q0Þ

ð1:100Þ

In this expression kð2q0Þ is the Fourier integral in (1.99), and rð2q0Þ is a double
integral defined in Chap. 4. The variational result (1.100) is not divergent at grazing
incidence; in fact it tends to the correct value of �1 as q0 ! 0, since the integrals k
and r have the property that rð0Þ ¼ k2ð0Þ. Further, rvars is correct to second order in
the film thickness, whereas rperts is not. These properties are shared by the varia-
tional expressions, derived in Chap. 4, for s and p wave reflection amplitudes
between unlike media.
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Non-linear, first order differential equations (of the Riccati type) for the reflec-
tion amplitudes are derived in Chap. 5. Two kinds of equations are used: those for a
quantity .ðzÞ which tends to re�2iq1z as z! �1, and those for rðzÞ, tending to r in
the same limit. For the s wave, the respective equations are

.0 þ 2iq. ¼ q0

2q
1� .2
� �

; ð1:101Þ

r0 ¼ q0

2q
e2i/ � r2 e�2i/

� �

; ð1:102Þ

where primes denote differentiation with respect to z, and the phase integral / is
defined by

/ zð Þ ¼
Zz

df q fð Þ: ð1:103Þ

The corresponding equations for the p wave reflection amplitudes have Q0=Q
instead of q0=q on the right-hand side. From (1.101) it is shown in Sect. 5.4 that Rs

has the Fresnel reflectivity as an upper bound for all monotonic profiles:

Rs
Rs0 ¼ q1 � q2
q1þ q2

� �2

ð1:104Þ

A similar bound holds for Rp when QðzÞ ¼ qðzÞ=eðzÞ is monotonic.
Integration of (1.102) from z ¼ �1 to þ1 gives

rs ¼ �
Z1

�1
dz

q0

2q
e2i/ � r2 zð Þ e�2i/� �

: ð1:105Þ

The rðzÞ on the right-hand side is the reflection amplitude of a profile truncated at z.
If the reflection is weak, one can get an approximate expression for rs by omitting
the term proportional to r2 on the right. This is the weak reflection or Rayleigh
approximation,

rRs ¼ �
Z1

�1
dz

q0

2q
e2i/: ð1:106Þ
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The corresponding approximation in the p wave case is

rRp ¼
Z1

�1
dz

Q0

2Q
e2i/: ð1:107Þ

At normal incidence both (1.106) and (1.107) reduce to

rRn ¼ �
1
2

Z1

�1
dz

n0

n
e2i/n ; /n zð Þ ¼ x

c

Zz

df n fð Þ; ð1:108Þ

where n ¼ e1=2 is the refractive index. If one makes the further (and drastic)
approximations of replacing 2n by n1þ n2 and /n by ðx=cÞðn1þ n2Þz ¼ ðk1þ k2Þz,
(1.108) simplifies to

rn ’ � 1
n1þ n2

Z1

�1
dz

dn
dz

ei k1 þ k2ð Þz: ð1:109Þ

Expressions closely related to (1.109) have been used by Buff et al. (1965) and by
Huang and Webb (1969) in the analysis of reflection from the diffuse interface of a
binary mixture.

The Rayleigh approximation works very well when the reflection is weak, but
fails near grazing incidence. The Rayleigh approximation (1.106) and the long
wave limiting form (1.94) are compared in Fig. 1.13 with the exact reflectivity for
the hyperbolic tangent profile

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þ tanh z
2a

: ð1:110Þ

For this profile the phase integral can be evaluated analytically (see Sect. 6.4),
i2 ¼ ðp2=3Þðe1 � e2Þ2a2 from Table 3.1, and the exact reflectivity is (from Sect. 2.5)

Rs ¼ sinh pðq1 � q2Þa
sinh pðq1þ q2Þa

� 
2

: ð1:111Þ

The figure illustrates the strengths and limitations of the long wave and weak
reflection approximations: the long wave expression is good at glancing incidence,
where the effective wavelength 2p=q is large, while the Rayleigh approximation is
good near normal incidence, but fails near glancing incidence, since the reflection is
then strong (as always).

The reflection of short waves, that is those whose wavelength is small compared
to the thickness of the interface, is discussed in Chap. 6. In the short wave limit the
reflection properties usually approach the behaviour of classical particles, which are
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either totally reflected or not reflected. Away from classical turning points, which
located at the zeros of q2ðzÞ, approximate solutions of (1.7) are the Liouville-Green
functions

wþ ¼
q1
q

� �1
2

ei/; w� ¼
q2
q

� �1
2

e�i/ ð1:112Þ

(/ is the phase integral defined in (1.103)). A perturbation theory based on a
Green’s function constructed from w� gives the first order reflection amplitude

rð1Þs ¼ �
1
2

Z1

�1
d/ e2i/ c� c2

4i

� 


; ð1:113Þ

where

c ¼ 1
q2

dq
dz
¼ 1

q
dq
d/

ð1:114Þ

is a dimensionless function which must be small for the short wave approximation
to hold. The perturbation theory result is closely related to the Rayleigh approxi-
mation (which is the first term of another perturbation approach, the Bremmer series
discussed in Sect. 6.5), as can be seen by writing (1.106) in the form

Fig. 1.13 Reflectivity of the s wave by the tanh profile (1.110), for e1 ¼ 1 and e2 ¼ 4=3ð Þ2 and
xa=c ¼ 0:2. For this value of xa=c the distance in which the dielectric function changes over
80% of its range (from ð9e1þ e2Þ=10 to ðe1þ 9e2Þ=10) is about one seventh of the wavelength of
the incident radiation. The curve e is the exact reflectivity (1.111), the dashed curve e=R gives the
ratio of the exact to the Rayleigh reflectivities, and the curve L=e gives the ratio of the long-wave
limiting form (1.94) to the exact value
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rRs ¼ �
1
2

Z1

�1
d/ c e2i/: ð1:115Þ

Unlike the long wave case, the reflection properties of short waves depend on the
detail of the reflecting inhomogeneity, and do not take a universal form. For
example: in the case of the profiles of finite range, which have a discontinuity in

slope at the endpoints z1 and z2, both rð1Þs and rRs give

rs ¼ 1
4i

eið/1 þ/2Þ c1 e
�iD/ � c2 e

iD/
� �þ � � � ; ð1:116Þ

where /1 and /2 are the values of the phase integral at z1 and z2, D/ ¼ /2 � /1,
and . . . denotes that exponentially small terms have been omitted. (The function c
changes in value from 0 to c1 at z1, and from c2 to 0 at z2). A similar result holds for
the p wave:

rp ¼ 1
4i

eið/1 þ/2Þ c1 cos 2h1 e�iD/ � c2 cos 2h2 eiD/
� �þ � � � : ð1:117Þ

Both the s and p reflectivities are thus oscillatory functions of D/, and decay as the
inverse square of the vacuum wavenumber x=c. The dominant part of the s
reflectivity is

Rs ¼ 1
16

c21þ c22 � 2c1c2 cos 2D/
� �þ � � � : ð1:118Þ

(The p reflectivity has the same form, with c cos 2h replacing c.) This oscillatory
behaviour, with amplitude decreasing with frequency, is characteristic of profiles
with discontinuities in slope or higher order derivatives. Profiles with no such
discontinuities, such as the hyperbolic tangent, show exponential decrease with
xa=c in the short wave limit, a being characteristic of the profile thickness.

Approximations such as (1.116) and (1.117), and the Rayleigh approximation,
fail at grazing incidence, and in the presence of turning points. When there is a
single turning point (q2
 0 for z� z0, say) there is total reflection. For the s wave

rs ¼ eids ; ds ’ 2
Zz0

0

dz q zð Þ � p
2
; ð1:119Þ

the phase decrement p=2 being universal for smooth profiles. In the case of two
turning points (q2\0 for z1
 z
 z2), the classically forbidden region q2\0 is
tunneled through by a portion of the wave. The transmission amplitude then varies
approximately as expð�2DUÞ, where DU is the increment in the imaginary part of
the phase integral between the turning points:
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DU ¼
Zz2

z1

dz q zð Þj j: ð1:120Þ

Reflection from anisotropic media is considered in Chaps. 7 and 8. Uniaxial
systems are characterized by two dielectric functions eoðz;xÞ and eeðz;xÞ. The
most general uniaxial reflection problem, with arbitrary orientation of the optic axis
relative to the reflecting surface and the plane of incidence, is discussed in Chap. 8.
In the simplest case where the system retains azimuthal symmetry about the normal
to the interface (Chap. 7), the optic axis is also normal to the interface, and eoðz;xÞ
and eeðz;xÞ give the response of the system to electric field components respec-
tively parallel and perpendicular to the interface. The resolution of electromagnetic
waves into s and p components remains valid in this case, with the equations to be
satisfied modified from (1.7) and (1.20) to

d2E
dz2
þ eo

x2

c2
� K2

� �

E ¼ 0; ð1:121Þ

d
dz

1
eo

dB
dz

� �

þ x2

c2
� K2

ee

� �

¼ 0: ð1:122Þ

Equation (1.121) has the same form as (1.7), with eo replacing e, but (1.122) differs
from the isotropic case, since it contains both eo and ee. There are corresponding
changes in the p wave reflection amplitude, and in rp=rs. The ellipsometric ratio, for
example, still takes the form (1.96) in the long wave case, but the invariant I1 is
now given by

I1 ¼
Z1

�1
dz e1þ e2 � e1e2

ee
� eo

� 


: ð1:123Þ

(this applies to the case of an anisotropic thin film between isotropic media 1 and 2.)
For reflection at a sharp boundary between an isotropic medium 1 and an aniso-
tropic medium characterized by eo and ee, with its optic axis normal to the reflecting
surface, there is zero reflection for the p polarization at

hB ¼ arctan
eoðeo � e1Þ
e1ðee � e1Þ

� 
1=2

: ð1:124Þ

In the case of an anisotropic film, characterized by eoðzÞ and eeðzÞ, on a homoge-
neous anisotropic substrate characterized by e2o and e2e, the form (1.96) is still
valid, with e2e replacing e2 in the factor multiplying I1 and
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I1 ¼
Z1

�1
dz

e21 � e2oe2e
e1 � e2o

� e1 � e2e
e1 � e2o

eo � e1e2e
ee

� 


: ð1:125Þ

Ellipsometry is discussed in Chap. 9. The emphasis is on the analysis of what
various ellipsometric configurations measure. We discuss transmission as well as
reflection ellipsometry.

The effect of absorption (the dissipation of electromagnetic energy within the
medium) is discussed in Chap. 10. Absorption is included phenomenologically in
the Maxwell equations by means of a complex dielectric function, e ¼ er þ iei. This
simple change has far-reaching consequences for reflection properties. In the case
of reflection at the sharp surface of an absorbing medium (a metal, for example), the
Fresnel equations (1.13) and (1.31) retain their form, but now q2 ¼ qr þ iqi and
Q2 ¼ Qr þ iQi ¼ ðqr þ iqiÞ=ðer þ ieiÞ, where

cqr
x

� 	2
¼ 1

2
er � e1 sin2 h1 þ ½ðer � e1 sin2 h1 Þ2þ e2i �

1
2

n o

; ð1:126Þ

cqi
x
¼ ei=2

cqi=x
: ð1:127Þ

The ellipsometric ratio rp=rs no longer has the real axis as its trajectory, but lies
within the upper half of the unit circle:

rp
rs
¼ q21ðq2r þ q2i Þ � K4þ 2iq1qiK2

ðq1qr þK2Þ2þ q21q
2
i

: ð1:128Þ

Some of the general results derived in Chap. 2 still hold, notably the fact that
rs ! �1 and rp ! 1 at grazing incidence, and the implication that there is an odd
number of principal angles of incidence at which Reðrp=rsÞ ¼ 0. The reciprocity
relation (1.88) also holds, and thus the transmittance of an absorbing system is
independent of the direction of propagation of the radiation.

Zero reflection is not possible off an absorbing medium with a sharp boundary,
for either polarization. If however a dielectric layer is deposited on the absorber,
zero reflectance is possible for both polarizations (at different angles of incidence);
this interference-absorption effect thus produces reflection polarizers (Sect. 10.3).

A thin absorbing film on a transparent substrate always decreases the trans-
mittance, but reflectance can be either increased or decreased, depending on the
polarization and whether e1\e2 or e1 [ e2. For example, the s reflectivity to first
order in the film thickness is given by

Rs ¼ q1 � q2
q1þ q2

� �2

� 4q1ðq1 � q2Þ
ðq1þ q2Þ3

x2

c2

Z1

�1
dz eiðzÞþ � � � : ð1:129Þ
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The form (1.96) for the ellipsometric ratio is still valid, with I1 complex:

I1 ¼
Z1

�1
dz e1þ e2 � e1e2er

e2r þ e2i
� er

� �

þ i
Z1

�1
dz

e1e2
e2r þ e2i


 �

ei: ð1:130Þ

An important and dramatic effect due to absorption is that of attenuated total
reflection, discussed in Sect. 10.6. An absorbing layer (typically a metal film)
deposited between two dielectrics can turn a total reflection configuration into one
whose p reflectance is small at resonance, and can be zero for proper choice of
thickness of metal film and angle of incidence. This phenomenon is an
interference-attenuation effect, associated with the resonant excitation of electro-
magnetic surface waves at a metal-dielectric interface.

Chapter 11 deals with the inversion of reflectance and ellipsometric data to
obtain the parameters of the reflector. For example, if the real and imaginary parts
.r and .i of rp=rs are measured at angle of incidence h1 and the interface is known
to be sharply defined on the scale of the wavelength, the real and imaginary parts of
e may be found from

er þ iei
e1

¼ sin2 h1 þ sin2 h1 tan2 h1
ð1� .2r Þ2 � 4.2i þ 4ið1� .2r Þ.i

½ð1� .rÞ2þ .2i �2
: ð1:131Þ

If a model reflection amplitude is constructed as a function of wave vector com-
ponent in medium 1, and analytically continued to negative q1 via rð�q1Þ ¼ r	ðq1Þ,
an explicit inversion is possible (Sect. 11.3) to obtain the dielectric function profile
which would give this reflection amplitude in the Rayleigh approximation. In the s
wave case the result is

eðxÞ
e1
’ sin2 h1 þ cos2 h1 exp �4

Z2x

�1
dy Fs yð Þ

0

@

1

A; ð1:132Þ

where x ¼ q�11

R z dfqðfÞ and Fs is the Fourier transform of rs:

Fs yð Þ ¼ 1
2p

Z1

�1
dq1e�iq1yrs q1ð Þ: ð1:133Þ

Matrix and numerical methods are developed in Chap. 12. Any stratified med-
ium may be approximated by a set of homogeneous layers. The matrix methods
connect, via a two-by-two matrix, the coefficients of either the two independent
solutions, or the field amplitude and its derivative, at the entry and exit points of a
layer. In the latter case these matrix relations for a homogeneous layer between zn
and znþ 1 are as follows: for the s wave, with D ¼ dE=dz,
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Enþ 1

Dnþ 1

� �

¼ cos dn q�1n sin dn
�qn sin dn cos dn

� �

En

Dn

� �

: ð1:134Þ

For the p wave, with C ¼ e�1dB=dz;Qn ¼ qn=en; the matrix relation is

Bnþ 1

Cnþ 1

� �

¼ cos dn Q�1n sin dn
�Qn sin dn cos dn

� �

Bn

Cn

� �

: ð1:135Þ

For a profile approximated by N homogeneous layers, the reflection and trans-
mission properties are determined by the profile matrix, which is a product of N
layer matrices such as those in (1.134) or (1.135). If the elements of the profile
matrix for the s polarization are sij, for example, the reflection and transmission
amplitudes for an interface between media a and b are

rs ¼ e2ia
qaqbs12þ s21þ iqas22 � iqbs11
qaqbs12 � s21þ iqas22þ iqbs11

; ð1:136Þ

ts ¼ eiða�bÞ
2iqa

qaqbs12 � s21þ iqas22þ iqbs11
: ð1:137Þ

(Here a ¼ qaz1 and b ¼ qbzNþ 1, z1 and zNþ 1 being the boundaries of the inho-
mogeneity.) In the absence of absorption the matrix elements are real. The matrix
formulation, and the results (1.136) and (1.137), remain valid in the presence of
absorption also, but the matrix elements are now complex.

The matrices in (1.134) and (1.135) are unimodular (have unit determinant); this
fact simplifies the treatment of periodically stratified media (Sect. 12.3 and Chap.
13), which in turn has important application to the multilayer dielectric mirrors.
Numerical methods based on the matrix formulation are also discussed in Chap. 12.
Reflection of s waves by an arbitrary layer extending from a to b can be repre-
sented, to second order in the layer thickness, by the s matrix

1� Rb

a
dz q2ðzÞðb� zÞ b� a

� Rb

a
dz q2ðzÞ 1� Rb

a
dz q2ðzÞðz� aÞ

0

B
B
B
@

1

C
C
C
A
: ð1:138Þ

(This result, and a similar one for the p matrix, are derived in Sect. 12.4.) In Sect.
12.8, a given interface is approximated by a set of layers within which the dielectric
function eðzÞ, and thus also q2ðzÞ, vary linearly with z. The matrix methods can be
applied without modification to total reflection and tunneling; reflection and
transmission through absorbing layers requires computation with complex matrix
elements, the formalism being otherwise unaltered. Wavefunctions within the
stratification may be obtained as a by-product of the profile matrix calculation.
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Chapter 14 deals with reflection from rough surfaces. A planar stratified surface,
no matter how diffuse, gives specular reflection of an incident plane wave, but
rough surfaces scatter as well as reflect. The Rayleigh criterion for negligible
roughness is (Sect. 14.1)

qh
 1 ð1:139Þ

where q (as always) is the normal component of the wavevector, and h is a measure
of the variation in the height of the surface. When (1.139) is satisfied the surface
will reflect specularly. According to the Rayleigh criterion, for given roughness and
angle of incidence long waves may be reflected specularly and short waves dif-
fusely, or for given roughness and wavelength there may be diffuse scattering near
normal incidence and specular reflection near grazing incidence. Chapter 14 treats
the reflection from corrugated surfaces (diffraction gratings), from liquid metal and
liquid dielectric surfaces (scattering by thermally excited surface waves), in both
cases using the methods of Rayleigh, and gives an outline of the application of the
Helmholtz theorem to the scattering by rough surfaces (the Kirchhoff or surface
integral method).

Chapter 15 adapts the content of the previous chapters to the language of particle
waves obeying the Schrödinger equation. There follow three new chapters on
special topics: 16 Neutron and X-ray reflection, 17 Acoustic waves, and 18 Chiral
isotropic media.

In the last two chapters we finally move away from the assumption that the
incident field consists of unbounded plane waves: the reflection of electromagnetic
pulses and particle wavepackets is considered in Chap. 19, and that of finite beams
in Chap. 20. We find that nearly monochromatic pulses reflect (in the first
approximation) without change of shape, with a time delay Dt determined by the
frequency variation of the phase of the reflection amplitude:

Dt ¼ dd
dx

: ð1:140Þ

(The derivative is to be evaluated at the dominant angular frequency of the pulse.)
For example: total reflection at normal incidence has rn ¼ eidn , and the short wave
limiting form is found from (1.119) to be

dn ¼ 2
x
c

Zz0

0

dz n z;xð Þ � p
2
; ð1:141Þ

where nðz;xÞ is the refractive index, and z0 is the turning point determined by
nðz0;xÞ ¼ 0: (This formula applies to reflection from the ionosphere, for example,
in which case n2 ¼ e ’ 1� x2

p=x
2, where xp is the plasma angular frequency,

proportional to the square root of ionospheric electron density.) From (1.140) and
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(1.141) we find that the time delay is the same as for pulse travel to the turning
point and back at the group velocity uðz;xÞ ¼ dx=dk, where k ¼ nx=c:

Dt ¼ 2
Zz

0

dz
u
¼ 2

c

Zz0

0

dz nþx
@n
@x


 �

: ð1:142Þ

The Appendix of Chap. 19 summarises the universal properties of electromagnetic
pulses. The other parts of Chap. 19 deal with the reflection of particle wavepackets,
illustrated by exact solutions.

Pulses are built up from waves of differing frequencies. Bounded beams
(Chap. 20) can be regarded as superpositions of plane waves of differing directions
of propagation. Just as the reflection of pulses is determined by the frequency
dependence of the reflection amplitude, the reflection of beams depends on the
angular dependence of the reflection amplitude. There is a lateral shift on reflection
of a beam of radiation,

Dx ¼ � dd
dK

; ð1:143Þ

where K is the lateral component of the wavevector ðK ¼ kxÞ, and the derivative is
to be evaluated at the dominant value of K for the incident beam. A particularly
interesting case is total reflection at a sharp boundary. For h1 [ hc the phase of the s
wave reflection amplitude is

ds ¼ �2 arctan
q2j j
q1

; ð1:144Þ

and (1.143) leads to the beam shift

Dxs ¼ 2K
q1jq2j ¼

k1
p

tan h1
ð sin2 h1 � sin2 hc Þ1=2

; ð1:145Þ

where k1 is the wavelength 2p=k1 ¼ 2pc=n1x in the first medium. This beam shift
is divergent at the critical angle (where q2 ¼ 0), and in fact the formula (1.139) fails
there, since (1.143) is derived on the assumption of a slow variation of the phase
shift with angle. In practice (1.145) works well to close proximity of the critical
angle, as discussed in Sect. 20.2. Appendix 1 in Chap. 20 we show that the jq2j
singularity in the phase shift at h1 ¼ hþc is universal for nonabsorbing profiles.
Finally, Appendix 2 in Chap. 20 outlines the somewhat surprising polarization
properties of finite electromagnetic beams.
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Chapter 2
Exact Results

We shall first derive general results, namely those valid for an arbitrary interfacial
profile (Sects. 2.1–2.3); some of these results will be restricted to non-absorbing
interfaces and substrates. The remainder of the chapter is devoted to important
special profiles for which the reflection amplitude may be obtained exactly. Both
the general and the specific exact results are useful in testing approximate theories
and numerical calculations.

The title of this chapter is not intended to imply that all other results in the book are
approximate: for example in Chap. 3 we shall be deriving exact integral equations,
and results which are exact (and general) to second order in the interface thickness.

2.1 Comparison Identities, and Conservation
and Reciprocity Laws

In Sects. 1.1 and 1.2 we saw that, for planar stratified media, the s and p wave
equations may be put in the form

d2w
dz2
þ q2w ¼ 0; ð2:1Þ

with the reflection and transmission amplitudes defined in terms of the asymptotic
forms of w at large negative and positive z:

eiq1zþ re�iq1z  w! teiq2z ð2:2Þ

For the s wave w ¼ E and q2E ¼ ex2=c2 � K2. For the p wave, w ¼ b ¼ e1=eð Þ1=2B,
and q2 is given by (1.22):

q2b ¼ q2E þ
1
2e

d2e
dz2
� 3
4

1
e
de
dz

� �2

ð2:3Þ
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For the s wave, the r and t of (2.2) are rs and ts as defined in (1.10); for the p wave,
from (1.25), r ¼ �rp and t ¼ tp.

Let ~w be the solution for another dielectric function profile ~eðzÞ, which has the
same limiting values e1 and e2 as eðzÞ:

d2~w
dz2
þ ~q2~w ¼ 0; eiq1zþ~re�iq1z  ~w! ~teiq2z: ð2:4Þ

We can obtain comparison identities relating r and ~r, and t and ~t from the differ-
ential equations and their boundary conditions. The relation between r and ~r is
obtained as follows. We multiply the wave equation for ~w by w, the wave equation
for w by ~w, and subtract, to get

d
dz

w
d~w
dz
� ~w

dw
dz

 !
¼ q2 � ~q2
� �

w~w: ð2:5Þ

We now integrate from a point z1 deep inside medium 1, to a point z2 deep inside
medium 2 (that is, z1 and z2 are such that w and ~w have attained their asymptotic
forms (2.2) and (2.4)). The integral of the left-hand side of (2.5) gives 2iq1ð~r � rÞ,
all dependence on z1 and z2 cancelling out. Thus

r ¼ ~r � 1
2iq1

Z1
�1

dz q2 � ~q2
� �

w~w; ð2:6Þ

where we have replaced z1 by �1 and z2 by þ1.
Another comparison identity may be obtained, in the same way, for w and ~w�

(the complex conjugate of ~w):

2iq1 1� r~r�ð Þ � 2iq2t~t� ¼
Z1
�1

dz q2 � ~q2
� �

w~w�: ð2:7Þ

On setting ~e ¼ e (and thus ~q ¼ q), we obtain

q1 1� rj j2
� �

¼ q2 tj j2: ð2:8Þ

The energy density of a plane electromagnetic wave is proportional to e Ej j2, and
the speed to 1=

ffiffi
e
p

; thus the intensity is proportional to
ffiffi
e
p

Ej j2. The amount of energy
in the primary wave which is incident on a unit area of the interface in unit time is
proportional to

ffiffiffiffi
e1
p

cos h1: The energy carried away by the reflected wave is pro-

portional to
ffiffiffiffi
e1
p

cos h1 rj j2, and that carried by the transmitted wave is proportional toffiffiffiffi
e2
p

cos h2 tj j2. Since cq1=x ¼ ffiffiffiffi
e1
p

cos h1 and cq2=x ¼ ffiffiffiffi
e2
p

cos h2, (2.8) expresses
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the law of conservation of energy. The geometry leading to the factors cos h1 and
cos h2 is shown in Fig. 2.1.

In quantum mechanics (2.8) expresses the conservation of the probability density
current. The conservation of energy is guaranteed, since (1.40), which leads to (2.1)
on the substitution W ¼ eiKxwðzÞ, is the Schrӧdinger equation for an energy
eigenstate. The probability density current is

J ¼ �h
2im

W�rW�WrW�ð Þ ¼ �h
m
Im W�rWð Þ; ð2:9Þ

and has (for our geometry) zero y component, and a constant x component

Jx ¼ �hK
m

: ð2:10Þ

As w takes the asymptotic forms specified in (2.2), the z component of J takes the
limiting values

�hq1
m

1� rj j2
� �

 Jz ! �hq2
m

tj j2: ð2:11Þ

Thus the form of the wavefunction guarantees conservation of probability density
current tangential to the (smooth) interface, while (2.8) and (2.11) demonstrate the
conservation of the normal component.

The relation (2.8) is valid only for real q: the reality of ~q was assumed in
obtaining (2.7). The extension of (2.8) to include absorption will be discussed in

Fig. 2.1 A strip of unit width
on the boundary is
illuminated by a beam of
width cos h1; the transmitted
beam has width cos h2 (the
reflected beam is not shown)
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Chap. 10; here we comment only on the case of total internal reflection, when
q2 ¼ i q2j j. Then rj j2¼ 1 (as we shall see in the next section), so that the left-hand
side of (2.8) is zero. But tj j2 is not zero in general: for example tsj j2 takes the value
4q21=ðq21þ q2j j2Þ for the step profile. When total internal reflection occurs, there is
no energy (or particle flux) propagated into the second medium, and t becomes the
coefficient of an exponentially decaying wave: it is no longer a transmission
amplitude of a propagating wave.

Further comparison identities may be obtained by comparing waves incident from
opposite directions. We define w21 as a solution of (2.1) with asymptotic forms

t21e�iq1z  w21 ! e�iq2zþ r21eiq2z: ð2:12Þ

The previously used w and ~w, with asymptotics given by (2.2) and (2.4), will now
be referred to as w12 and ~w12 to emphasize that these represent motions originating
in medium 1, and partially transmitted into medium 2. On comparing ~w12 with w21,
we find

2i q2~t12 � q1t21ð Þ ¼
Z1
�1

dz q2 � ~q2
� �

w21
~w12: ð2:13Þ

When ~q ¼ q, this gives (for real q1, q2, but possibly complex q within the interface)
the reciprocity relation

q2t12 ¼ q1t21; ð2:14Þ

so that (2.13) can be written in a form similar to (2.6):

t12 ¼ ~t12 � 1
2iq2

Z1
�1

dz q2 � ~q2
� �

w21
~w12: ð2:15Þ

Comparing w12 with ~w21 gives a relation like (2.15), with w12
~w21 in the integrand.

Finally, comparing w21 with w�12 gives

�2i q2r21~t�12þ q1t21~r
�
12

� � ¼ Z1
�1

dz q2 � ~q2
� �

w21
~w�12: ð2:16Þ

On setting ~q ¼ q, we find

q2r21t
�
12þ q1r

�
12t21 ¼ 0; ð2:17Þ

which together with (2.14) gives another reciprocity relation,
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r21 ¼ � t12
t�12

r�12: ð2:18Þ

The relations (2.17) and (2.18) are valid only in the absence of absorption or total
internal reflection. In that case the 1! 2 and 1 2 reflection amplitudes have
equal absolute value.

The result r12j j2¼ r21j j2, implied by (2.18), is remarkable in juxtaposition with our
intuitive picture of particles going up or down a potential gradient (as in Fig. 1.8). In
the semiclassical limit, one might expect stronger reflection for particle waves
moving uphill than for those going downhill. In fact the reflectivity is exactly the
same in the two cases, unless there is total internal reflection.

Some of the above relations were given (in a restricted form) by Stokes (1849),
using the idea of reversing the wavemotions, as illustrated in Fig. 2.2. In the blue
lines of Fig. 2.2, an incident wave of unit amplitude is split into a reflected and a
transmitted wave, with amplitudes r12 and t12. Stokes argued that on reversing the
wavemotions, the amplitudes given in the caption result. On comparing the resul-
tant amplitudes, one gets r212þ t12t21 ¼ 1 and r21 ¼ �r12. The first of these, toge-
ther with (2.14), gives q1 1� r212

� � ¼ q2t212, which agrees with (2.8) when r12 and
t12 are real. The second agrees with (2.18), under the same condition. Thus Stokes’
results are valid when the phases associated with r and t are restricted to 0 and p.

A modification of Stokes’ argument produces the general results: we replace his
“reversion” by time reversal plus complex conjugation. The effect, shown below, is

Fig. 2.2 Stokes’ principle of reversion. The solid lines represent an incoming wave of unit
amplitude and reflected and transmitted waves of amplitudes r12; t12. Reversing the wave motions
leads to two incident waves, of amplitudes r12 from the left, and t12 from the right, and a new wave
at lower right (dashed). According to Stokes, the wave at lower left now has amplitude r212þ t12t21,
while the wave at lower right has amplitude t12r21þ r12t12
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to give the correct analytical forms of the reversed beams. The first line gives the
original waveforms, the second the time-reversed and complex-conjugated
waveforms.

eiKxþ iq1z�ixt þ r12eiKx�iq1z�ixt; t12eiKxþ iq2z�ixt

e�iKx�iq1z�ixt þ r�12e
�iKxþ iq1z�ixt; t�12e

�iKx�iq2z�ixt

Note that we have used the full space-time dependence in the waveforms. The
arguments used above now give

r�12r12þ t�12t21 ¼ 1; ð2:19Þ

and

r�12t12þ t�12r21 ¼ 0: ð2:20Þ

We now have agreement with the general results derived earlier in this section:
(2.19) with (2.14) reproduces (2.8), and (2.20) is the same as (2.18).

Other comparison identities can be obtained: for the p wave one analogous to
(2.6) will be used in Sect. 3.4, and another analogous to (2.15) will be derived and
used in Sect. 10.5.

2.2 General Expressions for rs and rp

Consider an interface for which e ¼ e1 for z � z1, and e ¼ e2 for z � z2; the
thickness Dz ¼ z2 � z1 of the inhomogeneous region can be large. By a limiting
process, the results (to be derived below) for such finite-ranged interfaces can be
extended to continuously varying interfaces. For example: for the hyperbolic tan-
gent dielectric function

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þ tanh½ðz� z0Þ=2a�; ð2:21Þ

one can take z1 ¼ z0 � Dz=2; z2 ¼ z0þDz=2, and by making Dz=a large enough,
any desired accuracy can be achieved.

For the s wave, E ¼ ð0;E zð Þei Kx�xtð Þ; 0Þ where EðzÞ satisfies

d2E
dz2
þ q2E ¼ 0: ð2:22Þ
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This second-order linear differential equation has, for arbitrary form of eðzÞ, two
linearly independent solutions. We call these FðzÞ and GðzÞ in the region
z1� z� z2. Then

E zð Þ ¼
eiq1zþ rse�iq1z ðz\z1Þ
aF zð Þþ bG zð Þ ðz1� z� z2Þ
tseiq2z z[ z2ð Þ:

8<
: ð2:23Þ

When eðzÞ has no delta-function singularities (or worse), as we assume here, E and
dE=dz are continuous. Continuity of E and dE=dz at z1 and z2 gives us four linear
equations in the four unknowns rs; ts; a; b; namely

eiq1z1 þ rse�iq1z1 ¼ aF1þ bG1;

iq1 eiq1z1 � rse�iq1z1
� � ¼ aF01þ bG01

aF2þ bG2 ¼ tseiq2z2 ;

aF02þ bG02 ¼ iq2tseiq2z2 :

ð2:24Þ

We have written F1 for F z1ð Þ;F01 for dF=dz evaluated at z1, etc. Solving for rs we
find

rs ¼ e2iq1z1
q1q2 F1G2 � G1F2ð Þþ iq1 F1G02 � G1F02

� �þ iq2 F01G2 � G01F2
� �� ðF01G02 � G01F

0
2Þ

q1q2 F1G2 � G1F2ð Þþ iq1 F1G02 � G1F02
� �� iq2 F01G2 � G01F2

� �þðF01G02 � G01F
0
2Þ
:

ð2:25Þ

The corresponding expression for the transmission amplitude is

ts ¼ ei q1z1�q2z2ð Þ2iq1ðF2G02 � G2F02Þ
q1q2 F1G2 � G1F2ð Þþ iq1 F1G02 � G1F02

� �� iq2 F01G2 � G01F2
� �þðF01G02 � G01F

0
2Þ
:

ð2:26Þ

The bilinear form in the numerator of ts is the Wronskian, W , of the solutions F and
G of (2.22), and is a constant:

W ¼ FG0 � GF0; W 0 ¼ FG00 � GF00; ð2:27Þ

and F00 ¼ �q2F; G00 ¼ �q2G from (2.22); thusW 0 is zero andW is independent of z.
Some general properties of rs and ts follow directly from the forms of (2.25) and

(2.26), for arbitrary nonsingular profiles.
We first note that in the absence of absorption (e real), F and G may be chosen to

be real. This is because they are solutions of a linear differential equation with real
coefficients: if F is a complex solution of (2.22), so is F� and therefore so is F� þF,
which is real. Henceforth, F and G are taken to be real functions, unless otherwise
indicated.
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Total internal reflection occurs when q22� 0 (that is, when sin2 h1� e2=e1, as
discussed in Sect. 1.3); when q2 ¼ i q2j j, the wave in medium 2 decays exponentially
as e� q2j jz: Thus no propagation of the wave into medium 2 takes place, and we
expect the reflection amplitude to lie on the unit circle. This is true, as may be
verified directly from (2.25), which takes the form e2iq1z1ð�f þ igÞ=ðf þ igÞ, with f
and g real, when q2 ¼ i q2j j. From the last two equations of (2.24) we find that
b=a ¼ �ð q2j jF2þF02Þ=ð q2j jG2þG02Þ, which is real if F and G are chosen to be real.
Thus w ¼ aFþ bG has Im w=Re w ¼ Im a=Re a, and it follows from (2.24) that
this ratio is equal to Im rs=ð1þRe rsÞ ¼ tanðds=2Þ when rs ¼ exp ids. The real and
imaginary parts of the wavefunction are proportional to each other in total reflection.
The wave motion normal to the interface is then represented by a standing wave.

The first equality in (2.27) may be regarded as a first order linear differential
equation for G:

G0 � F0

F
G ¼ W

F
: ð2:28Þ

This has the solution

G zð Þ ¼ WFðzÞ
Zz

df=F2 fð Þ: ð2:29Þ

For non-zero W , this is a second solution, linearly independent of F, of the dif-

ferential equation (2.22). Let
R 2
1 denote

R z2
z1
dz=F2ðzÞ, and set W ¼ 1. Then

F1G2 � G1F2 ¼ F1F2

Z2
1

;

F1G
0
2 � G1F

0
2 ¼ F1=F2þF1F

0
2

Z2
1

;

F01G2 � G01F2 ¼ �F2=F1þF01F2

Z2
1

;

F01G
0
2 � G01F

0
2 ¼

F01
F2
� F02
F1
þF01F

0
2

Z2
1

:

ð2:30Þ

As Dz tends to zero, the first and last bilinear forms tend to zero, and the second and
third tend to þ 1 and �1, respectively. Thus the reflection and transmission
amplitudes for an arbitrary non-singular profile of extent Dz approach the step
profile values (1.15) as Dz! 0.
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For passive media we must have r2
		 		� 1. After some algebra, the physical

requirement that rsj j2� 1 reduces to W z1ð ÞWðz2Þ� 0, where W is the Wronskian
FG0 � GF0. We have seen that W z1ð Þ ¼ Wðz2Þ, so this condition is satisfied
identically.

The conservation law q1 1� rj j2
� �

¼ q2 tj j2 proved in the last section may be

verified directly from (2.25) to (2.26). As in the result rsj j2� 1, the proof involves
the identity

F1G2 � G1F2ð Þ F01G02 � G01F
0
2

� �� F1G
0
2 � G1F

0
2

� �
F01G2 � G01F2
� � ¼ W2: ð2:31Þ

We now turn to the reciprocity laws (2.14) and (2.18), which relate t21 to t12 and
r21 to t12 and r12 (the suffix s will be dropped for the moment). The results (2.25)
and (2.26) may be rewritten as

r12 ¼ e2iq1z1
N
D
; ð2:32Þ

t12 ¼ eiðq1z1�q2z2Þ
2iq1W
D

; ð2:33Þ

where N is the numerator of (2.25), and D is the denominator common to (2.25) and
(2.26). The corresponding results for r21 and t21 follow from the continuity of E and
dE=dz at z1 and z2, where E now has the forms outside the interval ½z1; z2� as given
by (2.12). We find

r21 ¼ e�2iq2z2
N�

D
; ð2:34Þ

t21 ¼ eiðq1z1�q2z2Þ
2iq2W
D

: ð2:35Þ

The reciprocity law (2.14) follows on comparison of (2.33) and (2.35); note that the
reality of F and G (and thus the lack of absorption within the interface) is not
needed. Both media 1 and 2 must be nonabsorbing, however, for the asymptotic
forms (2.2) and (2.12) to be valid.

The reciprocity law (2.18) follows from (2.32) to (2.34); in this case the reality
of F and G has been assumed in cancelling W withW� and in writing the numerator
of r21 as N�, the general expression being

N21 ¼ q1q2 F1G2 � G1F2ð Þ � iq1 F1G
0
2 � G1F

0
2

� �� iq2 F01G2 � G02F2
� �

� F01G
0
2 � G01F

0
2

� � ð2:36Þ
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We now turn to the p wave reflection and transmision amplitudes. For the
standard geometry defined in Chap. 1, B ¼ ð0; ei Kx�xtð ÞB zð Þ; 0Þ where BðzÞ satisfies

d
dz

1
e
dB
dz

� �
þ x2

c2
� K2

e

� �
B ¼ 0 ð2:37Þ

We will derive general expressions for rp and tp, analogous to the results for rs and
ts. Let CðzÞ and DðzÞ be two linearly independent solutions of (2.37) within the
interval ½z1; z2�. Then

B zð Þ ¼
eiq1z � rpe�iq1z z\z1
cC zð Þþ dD zð Þ z1� z� z2

e2
e1

� �1=2
tpeiq2z z[ z1:

8><
>: ð2:38Þ

The form of (2.37) shows that e�1dB=dz must be continuous (discontinuity would
give rise to a delta-function term, which we assume to be absent from eðzÞ). From
the continuity of B and e�1dB=dz at z1 and z2 we obtain four equations in the four
unknowns rp; tp; c and d. These are, for e continuous at z1 and z2,

eiq1z1 � rpe�iq1z1 ¼ cC1þ dD1;

iq1 eiq1z1 þ rpe�iq1z1
� � ¼ cC01þ dD01;

cC2þ dD2 ¼ e2
e1

� �1=2

tpeiq2z2 ;

cC02þ dD02 ¼
e2
e1

� �1=2

tpiq2eiq2z2 :

ð2:39Þ

Solving for rp and tp, we find

�rp ¼ e2iq1z1
q1q2 C1D2 � D1C2ð Þþ iq1 C1D02 � D1C02

� �þ iq2 C01D2 � D01C2
� �� ðC01D02 � D01C

0
2Þ

q1q2 C1D2 � D1C2ð Þþ iq1 C1D02 � D1C02
� �� iq2 C02D2 � D01C2

� �þðC01D02 � D01C
0
2Þ

ð2:40Þ

e2
e1

� �1=2

tp ¼ ei q1z1�q2z2ð Þ2iq1ðC2D02 � D2C02Þ
q1q2 C1D2 � D1C2ð Þþ iq1 C1D02 � D1C02

� �� iq2 C01D2 � D01D2
� �þðC01D02 � D01C

0
2Þ
:

ð2:41Þ

All of the general properties derived in Sect. 2.1 may be verified for the p wave. The
proofs are as for the s wave, with a slight difference in the case of the reciprocity
relations (2.14) and (2.18), which we will make explicit. We write (2.40) and (2.41)
as
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�r12 ¼ e�2iq1z1
N12

D
; ð2:42Þ

e2
e1

� �1=2

t12 ¼ eiðq1z1�q2z2Þ
2iq1W2

D
; ð2:43Þ

where N12 is the denominator of (2.40), D is the denominator common to (2.40) and
(2.41), and W2 ¼ C2D02 � D2C02 is the Wronskian at z2 of the pair of solutions of
(2.37). (The Wronskian for (2.37) is not independent of z, as we shall see shortly.)
The corresponding expressions for a wave incident from medium 2 are

�r21 ¼ e�2iq2z2
N21

D
; ð2:44Þ

e1
e2

� �1=2

t21 ¼ eiðq1z1�q2z2Þ
2iq2W1

D
; ð2:45Þ

where

N21 ¼ q1q2 C1D2 � D1C2ð Þ � iq1 C1D
0
2 � D1C

0
2

� �� iq2 C01D2 � D01C2
� �

� C01D
0
2 � D01C

0
2

� � ð2:46Þ

From (2.37), the Wronskian W ¼ CD0 � DC0 has the derivative

W 0 ¼ CD00 � DC00 ¼ e0

e
W ; ð2:47Þ

and so W is proportional e, or W=e is constant. The relation q2t12 ¼ q1t21 follows
from (2.43) and (2.45) on using

W1

e1
¼ W2

e2
; ð2:48Þ

which we have just proved. The relation (2.18) or (2.20) follows from (2.42) to
(2.44) provided N21 ¼ N�12. It thus holds in the absence of absorption within the
interface.

On using the identity

C1D2 � D1C2ð Þ C01D02 � D01C
0
2

� �� C1D
0
2 � D1C

0
2

� �
C01D2 � D01C2
� � ¼ W1W2

ð2:49Þ
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we find that rp
		 		2� 1 provided ðW1=e1ÞðW2=e2Þ� 0, which follows from (2.48).

Finally, the conservation law q1 1� rp
		 		2� �

¼ q2 tp
		 		2 follows from (2.40) and

(2.41) on using (2.48) and (2.49).
Generalization of these results to profiles with discontinuities in the dielectric

function is straightforward: see Lekner (1990b) for the electrodynamic case, and
also Sect. 17.1 for acoustic waves.

The case of symmetric stratifications is interesting: suppose that the inhomo-
geneity extends from �z1 to z1, and that z ¼ 0 is a plane of symmetry. Then the two
linearly independent solutions ½F zð Þ;G zð Þ or C zð Þ;DðzÞ� can be taken as even and
odd, for example F �zð Þ ¼ F zð Þ; G �zð Þ ¼ �GðzÞ. The reflection amplitudes for a
non-absorbing profile then have a real numerator, in contrast to the non-symmetric
case when both numerator and denominator are complex. Thus zero reflection is
much easier to accomplish for symmetric profiles (Lekner 1990a).

2.3 Reflection at Grazing Incidence, and the Existence
of a Principal Angle

We will show that rs ! �1 and rp ! þ 1 at grazing incidence, exactly and without
ambiguity of phase. A direct consequence is that a principal angle (the ellipsometric
Brewster angle, defined by location of the zero of the real part of rp=rs) always exists.
These results hold for interfaces with arbitrary dielectric function profiles, for
internal as well as external reflections, and in the presence of absorption within the
reflecting layer or its substrate. In Chap. 7 we shall see that the results also hold for
those anisotropic media for which the s and p wave characterization is adequate. For
the more general anisotropic or chiral cases, see Sects. 9.6 and 18.4.

At grazing incidence, h1 ! p=2 and q1 ¼ ffiffiffiffi
e1
p

x=cð Þ cos h1 ! 0. The functions F
and G in the general expression (2.25) also depend on angle of incidence, through
q2 zð Þ ¼ e zð Þx2=c2 � K2, where K ¼ ffiffiffiffi

e1
p

x=cð Þ sin h1 ¼ ffiffiffiffi
e2
p

x=cð Þ sin h2. Thus at
grazing incidence q2 z1ð Þ ¼ e1x2=c2 � K2 ! 0, but this does not imply singular
behaviour ofF orG through (2.22). On letting q1 ! 0 in (2.25), wefind that rs ! �1.

Note that there is usually an arbitrariness of the phase of a reflection amplitude,
associated with the arbitrariness of choice of the origin of coordinates. For example,
the reflection amplitude of a step profile located at z1 is given by (1.15):

rs0 ¼ e2iq1z1
q1 � q2
q1þ q2

; ð2:50Þ

and carries the origin-dependent phase 2q1z1. But as q1 ! 0, this phase arbitrari-
ness disappears. We have just shown this to be true for all profiles: at grazing
incidence the reflection amplitude is known in magnitude and in phase. The inci-
dent and reflected waves are then both moving parallel to the interface, and there is
no motion perpendicular to the interface to give rise to a phase shift associated with
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the path difference 2z1 between the incident and reflected waves. The reality of F
and G, or of q2, has not been assumed. Thus there is total reflection at grazing
incidence, with reversal of the electric field, even in the presence of absorption and
irrespective of the sign of e1 � e2.

A similar result holds for the p wave. On letting q1 ! 0 in (2.40), we find
rp ! þ 1. This result, together with (1.27) shows that again the electric field is
reversed on reflection at grazing incidence.

Thus the reflected electric fields of both the s and p waves are exactly out of
phase with the incident electric fields, whether the reflecting surface is metallic or
dielectric, sharp or diffuse, and for internal as well as external reflection. It follows
that Lloyd’s mirror experiment will produce diffraction fringes, with destructive
interference at the mirror’s edge, under these very general conditions. This is in
accord with experiment (Jenkins and White 1950, Sections 13.8 and 28.10).
Section 16.5 deals with neutron Lloyd’s mirror experiments.

The convention in use throughout this book, and established in Chap. 1, has
rp ¼ rs at normal incidence, where the s and p waves are physically indistin-
guishable. Thus the ratio rp=rs ¼ þ 1 at normal incidence, and tends to �1 at
grazing incidence. At general incidence rp=rs is a complex number, with no
ambiguity of phase, since in taking the ratio one cancels out the arbitrary phase
factors associated with the choice of origin. The ratio rp=rs is measured by ellip-
sometry. In polarization modulation ellipsometry (Jasperson and Schnatterly 1969;
Beaglehole 1980), it is experimentally most convenient to measure Imðrp=rsÞ at the
angle where Re rp=rs

� � ¼ 0 (the principal angle). The vanishing of the real part of
rp=rs is one of several possible operational definitions of generalized Brewster

angles; other possibilities are locations of minima of rp
		 		2 or of rp=rs

		 		2. For the step
profile, with rs given by (2.50) and

rp0 ¼ �e2iq1z1 Q1 � Q2

Q1þQ2
; ð2:51Þ

all these definitions reduce to the Brewster angle (1.33), determined by Q1 ¼ Q2,
that is, purely in terms of the dielectric functions of media 1 and 2.

The question arises as to whether the principal angle or ellipsometric Brewster
angle, defined by the location of Re rp=rs

� � ¼ 0, always exists (Lekner 1985). The
answer is yes: we have seen that rp=rs moves in the complex plane from the point
þ 1 at normal incidence to the point �1 at grazing incidence, and it follows that it
must cross the line Re rp=rs

� � ¼ 0 at least once (and in general an odd number of
times). This is a consequence of the continuity of solutions of linear differential
equations as a function of the parameters of the equations. Here the parameter is the
angle of incidence, appearing in the differential equations through K2. See for
example Birkhoff and Rota (1969), Sections 4 and 10 of Chapter 6. Some particular
paths of rp=rs in the complex plane as h1 varies are shown in Fig. 2.3; a further case,
illustrating triple principal angles, appears in Fig. 2.4. Both are based on the
homogeneous layer, discussed in the next section.
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Fig. 2.3 Four paths of rp=rs in the complex plane, for a homogeneous layer of thickness Dz. The
real and imaginary axes are horizontal and vertical. The curves for four values x

c

� �
Dz ¼ 1; 2; 3; 4

(indicated on the paths) are shown. At normal incidence all paths coincide at þ 1, at glancing
incidence they coincide at �1; they cut the vertical axis at the principal angle, where Reðrp=rsÞ ¼
0 (solid circles). The diamonds are located at hB ¼ arctan e2=e1ð Þ1=2, the Brewster angle for a film
of vanishing thickness. In the case x

c

� �
Dz ¼ 3 the Brewster and principal angles are nearly

coincident. The curves are drawn for e1 ¼ 1; e ¼ 4=3ð Þ2 and e2 ¼ 3=2ð Þ2, approximating a layer of
water on glass

Fig. 2.4 Illustration of triple principal angles. The curve is the locus of rp=rs in the complex plane,
as a function of the angle of incidence. The thickness of the homogeneous layer is about four
wavelengths, x=cð ÞDz ¼ 27. The values of e1, e and e2 are as in Fig. 2.3, representing a layer of
water on glass. The diamond is located at the zero-thickness Brewster angle,
hB ¼ arctan e2=e1ð Þ1=2, the solid circles at the three principal angles (the first and third crossings
of Reðrp=rsÞ ¼ 0 are nearly coincident). The tangents of the three principal angles are
1:110; 1:167; 1:497. The last is nearly equal to tan hB ¼ 1:5
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2.4 Reflection by a Homogeneous Layer

After the step dielectric function profile, the simplest and most commonly occurring
is the two-step profile, representing a homogeneous layer between media 1 and 2
(Fig. 2.5).

In the interval z1� z� z2 the s wave equation (2.22) has q2 ¼ ex2=c2 � K2, with
e constant. The solutions are thus e�iqz or cos qz, sin qz. On matching E and dE=dz
at z1 and z2 ¼ z1þDz to eiq1zþ rse�iq1z and tseiq2z respectively, we find

rs ¼ e2iq1z1
q q1 � q2ð Þcþ i q2 � q1q2ð Þs
q q1þ q2ð Þc� i q2þ q1q2ð Þs ; ð2:52Þ

Fig. 2.5 a The dielectric
function profile of a
homogeneous layer.
b Schematics of the multiple
reflection method for
calculation of the reflection
and transmission amplitudes
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ts ¼ eiðq1z1�q2z2Þ
2q1q

q q1þ q2ð Þc� i q2þ q1q2ð Þs ; ð2:53Þ

where c ¼ cos qDz and s ¼ sin qDz. Equivalently, we may substitute F ¼ cos qz,
G ¼ sin qz in (2.25) and (2.26); for these solutions of (2.22) we have
W ¼ q; F1G2 � G1F2 ¼ s; F1G02 � G1F02 ¼ qc; F01G2 � G01F2 ¼ �qc; F01G02 � G01F

0
2 ¼ q2s:

It is instructive to consider another derivation of these results, using the multiple
reflection method shown schematically in Fig. 2.5b. An incident wave of unit
amplitude will produce a reflected wave of amplitude r1L (this being the reflection
amplitude at the step at z1) and a transmitted wave of amplitude t1L within the layer,
this being the transmission amplitude at the step from medium 1 to the layer. This
wave is in turn partly transmitted at z2 (with amplitude t1LtL2), and partly reflected
(amplitude t1LrL2). The reflected wave is then partly transmitted at z1, giving a
reflected wave amplitude t1LrL2tL1, and partly reflected. The continuation of this
process gives

rs ¼ r1Lþ t1LtL1 rL2þ rL2rL1rL2þ . . .ð Þ ¼ r1Lþ t1LtL1rL2
1� rL1rL2

; ð2:54Þ

and

ts ¼ t1LtL2 1þ rL2rL1þ rL2rL1ð Þ2þ . . .
� �

¼ t1LtL2
1� rL1rL2

: ð2:55Þ

The various reflection and transmission amplitudes are for reflection at a single step,
and can be found from (1.15), and the reciprocity relations (2.14) and (2.18):

r1L ¼ e2iq1z1
q1 � q
q1þ q

; rL1 ¼ e�2iqz1
q� q1
qþ q1

; rL2 ¼ e2iqz2
q� q2
qþ q2

; ð2:56Þ

t1L ¼ ei q1�qð Þz1 2q1
q1þ q

; tL1 ¼ ei q1�qð Þz1 2q
q1þ q

; tL2 ¼ ei q�q2ð Þz2 2q
qþ q2

: ð2:57Þ

If we write r ¼ ðq1 � qÞ=ðq1þ qÞ and r0 ¼ ðq� q2Þ=ðqþ q2Þ, rs and ts reduce to

rs ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; ð2:58Þ

ts ¼ eiðq1z1�q2z2Þ
1þ rð Þ 1þ r0ð ÞeiqDz

1þ rr0e2iqDz
; ð2:59Þ

and these are readily shown to be equivalent to (2.52) and (2.53).
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We see from the above equations that rsj j2 and tsj j2 are periodic functions of the
thickness Dz of the film, at given e1; e2; e and angle of incidence. The period in Dz is

p=q, which increases from pc=x
ffiffi
e
p

at normal incidence to pc=xð Þ e� e1ð Þ�1=2 at
grazing incidence. The phase factor Z ¼ e2iqDz moves on the unit circle in the
complex plane as the thickness of the layer or the angle of incidence change, and rs
is a fractional or bilinear transform of Z, so it too moves on a circle in the complex
plane (in the absence of absorption).

Zero reflection is possible if r0 ¼ r and e2iqDz ¼ �1 and also if r0 ¼ �r and
e2iqDz ¼ 1. The first of these pairs of conditions holds if q2 ¼ q1q2 and 2qDz is an
odd multiple of p. At normal incidence, these give the familiar characteristics of an
antireflection coating:

e2 ¼ e1e2 and Dz ¼ k=4; 3k=4; . . . ð2:60Þ

The refractive index of the layer has to be the geometric mean of the refractive
indices of the two outer media, and the thickness has to be equal to an odd multiple
of a quarter wavelength (k is the wavelength within the layer). At oblique incidence
the condition q2 ¼ q1q2 can be satisfied only if e2\e1e2; it then holds at

h1 ¼ arcsin e1e2 � e2
� �

=e1 e1þ e2 � 2eð Þ
 �1=2
:

The second pair of conditions holds if q1 ¼ q2 and 2qDz is an even multiple of p.
These are equivalent to

e1 ¼ e2 and Dz ¼ k=2; k; . . .; ð2:61Þ

where k ¼ 2p=q is the wavelength corresponding to the motion normal to the
interface. At normal incidence this happens when e1=2 x=cð ÞDz ¼ np (n an integer).
At oblique incidence a homogeneous film between like media does not reflect the
s polarization at the angles of incidence

hn ¼ arcsin e� np
x=cð ÞDz

� �2
 !

=e1

( )1=2

An example of reflectivity at normal incidence as a function of layer thickness is
shown in Fig. 2.6. Rs as a function of angle of incidence will be shown together
with Rp in Fig. 2.7.

The reflectivity in Fig. 2.6 displays the periodicity in Dz of p=q, mentioned
above. For the case shown, the maximum of Rn is the Fresnel (zero thickness) value

Rn0 ¼
ffiffiffiffi
e1
p � ffiffiffiffi

e2
pffiffiffiffi

e1
p þ ffiffiffiffi

e2
p

� �2

¼ n1 � n2
n1þ n2

� �2

: ð2:62Þ
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(As usual, n ¼ ffiffi
e
p

denotes the refractive index.) In fact the homogeneous layer
reflectivity is never greater than the Fresnel reflectivity Rs0, at any angle of inci-
dence, provided e lies between e1 and e2. This intuitively plausible result follows
from the equivalence of

Rs� q1 � q2
q1þ q2

� �2

ð2:63Þ

to

q4þ q21q
2
2� q2 q21þ q22

� �
; ð2:64Þ

which in turn is equivalent to

e� e1ð Þ e� e2ð Þ� 0: ð2:65Þ

Note that the corresponding result for the p wave reflectivity is not true at all
angles: the single-step reflectivity is zero at the Brewster angle

h1 ¼ hB ¼ arctan e2=e1ð Þ1=2, at which angle the homogeneous layer or two-step
reflectivity is not zero (in general). The s wave reflectivity may be written in the
form

Rs ¼ rsj j2¼ r2þ 2rr0 cos 2qDzþ r0ð Þ2
1þ 2rr0 cos 2qDzþ rr0ð Þ2 ð2:66Þ

(provided r and r0 are real; this requires the absence of absorption within the film,

and h1\ arcsin e=e1ð Þ1=2; h1\ arcsin e2=e1ð Þ1=2Þ. It thus has extrema when
sin 2qDz ¼ 0 (when cos 2qDz ¼ �1). These extrema take the values

Fig. 2.6 Normal incidence reflectivity of a homogeneous layer as a function of layer thickness. Rn

stands for the common value of Rs and Rp at normal incidence. The refractive index values used
are

ffiffiffiffi
e1
p ¼ 1;

ffiffi
e
p ¼ 4=3 and

ffiffiffiffi
e2
p ¼ 3=2, representing a layer of water on glass
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Rþs ¼
q1 � q2
q1þ q2

� �2

¼ Rs0; R�s ¼
q1q2 � q2

q1q2þ q2

� �2

: ð2:67Þ

Note that R�s is zero when q2 ¼ q1q2, the antireflection coating condition. At
normal incidence this reads n2 ¼ n1n2: the refractive index of the layer equal to the
geometric mean of the bounding indices.

R�s is less than Rþs provided (2.64) holds, that is when e lies between e1 and e2.
When e is outside this range, Rþs becomes the minimum value, and R�s the maximum.
They are equal when e is equal to either e1 or e2, in which case the layer is non-existent
as far as reflection is concerned.

The p wave reflection and transmission amplitudes are obtained by matching B
and dB=edz at z1 and z2; we find

�rp ¼ e2iq1z1
Q Q1 � Q2ð Þcþ i Q2 � Q1Q2ð Þs
Q Q1þQ2ð Þc� i Q2þQ1Q2ð Þs ; ð2:68Þ

e2
e1

� �1=2

tp ¼ eiðq1z1�q2z2Þ
2Q1Q

Q Q1þQ2ð Þc� i Q2þQ1Q2ð Þs ; ð2:69Þ

where Qi ¼ qi=ei and Q ¼ q=e, and c ¼ cos qDz; s ¼ sin qDz as before. The mul-
tiple reflection method gives the alternative forms

�rp ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; ð2:70Þ

e2
e1

� �1=2

tp ¼ eiðq1z1�q2z2Þ
1þ rð Þ 1þ r0ð ÞeiqDz

1þ rr0e2iqDz
; ð2:71Þ

where now r ¼ Q1 � Qð Þ= Q1þQð Þ; r0 ¼ ðQ� Q2Þ=ðQþQ2Þ. At normal inci-
dence, rp ¼ rs and tp ¼ ts.

Zero reflection occurs when r0 ¼ r and e2iqDz ¼ �1, and also when r0 ¼ �r and
e2iqDz ¼ 1. The equality of r and r0 holds if Q2 ¼ Q1Q2, which at normal incidence
is equivalent to e2 ¼ e1e2, as for s wave. The other possibility, r0 ¼ �r and
e2iqDz ¼ 1, holds if Q1 ¼ Q2 and qDz is an integer multiple of p (the same condition
can be read off from (2.68)). The equality of Q1 and Q2 is satisfied at all angles if

e1 ¼ e2, or at the Brewster angle hB ¼ arctan e2=e1ð Þ1=2 for general values of the
dielectric constants e1; e2. Zero reflection by a homogeneous layer between like
media has the same condition (2.61) as for the s wave. Zero reflection by a
homogeneous film between unlike media at the Brewster angle for vanishing

thickness, hB ¼ arctan e2=e1ð Þ1=2, will occur for thicknesses such that qDz is an
integer times p. This gives, on using (1.37)
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x
c
Dz ¼ integer � p

e� erð Þ1=2
; er ¼ e1e2

e1þ e2
: ð2:72Þ

We see that zero reflection at hB is possible for non-zero thickness only if e[ er
(which we can call the reduced dielectric constant of the bounding media, in
analogy to the two-body reduced mass mr ¼ m1m2=ðm1þm2Þ). Since er is always
smaller than either of e1; e2, this is not a strong constraint. The variation of Rp with
angle is compared with that of Rs in Fig. 2.7.

Rp ¼ rp
		 		2 has extrema when 2qDz ¼ �1; these take the same form as the

s wave values (2.67):

Rþp ¼
Q1 � Q2

Q1þQ2

� �2

¼ Rp0; R�p ¼
Q1Q2 � Q2

Q1Q2þQ2

� �2

: ð2:73Þ

The extrema are zero when Q1 ¼ Q2 ½h1 ¼ arctan e2=e1ð Þ1=2¼ hB�, and Q2 ¼ Q1Q2,
respectively. The extrema are equal (to Rp0) when Q ¼ Q1 or Q2, that is when

h1 ¼ arctan e=e1ð Þ1=2 or when h1 ¼ arcsin ee2=e1ðeþ e2Þð Þ1=2. At these two angles,

Fig. 2.7 Angular variation of
the s and p reflectivities, for
e1 ¼ 1; e2 ¼ 3=2ð Þ2; e ¼
4=3ð Þ2 and ðx=cÞDz ¼ 2.
These parameters
approximate a layer of water
on glass, about one third of a
wavelength thick. The
corresponding rp=rs curve is
one of those displayed in
Fig. 2.3. The dashed curves
are for zero thickness of water
(air|glass only)
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the reflectivity of the p wave is independent of the thickness of the layer. The
separation of variables constant K2 at these angles takes the values

K2
1 ¼

x
c

� �2 e1e
e1þ e

; K2
2 ¼

x
c

� �2 ee2
eþ e2

; ð2:74Þ

appropriate to the Brewster angle values at the first or second interface,
respectively.

When incidence is from the medium with higher dielectric constant, total

internal reflection occurs for h1 [ hc ¼ arcsin e2=e1ð Þ1=2. For h1 [ hc both rp and rs
lie on the unit circle, and so does rp=rs. The path of rp=rs starts at þ 1 at normal
incidence, as always. At the critical angle it makes a right-angle turn in the complex
plane, moves out to an extremum on the unit circle, and then retraces its path back
to its limiting value of rp=rs at grazing incidence, always �1. An example is shown
in Fig. 2.8.

The reflection and transmission ellipsometry of a homogenous layer is discussed
in Sect. 9.8. The phases of the reflection amplitudes are considered in detail in
Appendix 20.1 of Chap. 20.

2.5 The Tanh, Exp and Rayleigh Profiles

It is possible to construct an infinite number of dielectric function profiles for which
the reflection amplitude at normal incidence is known analytically. For a given
function F, define eðx2=c2Þ as �F00=F in the interval z1 � z � z2. A dielectric
function so defined has the normal incidence reflection amplitude given by (2.25)
and (2.30). Continuity of e at z1 or z2 is not demanded. For example, F ¼ zp gives

Fig. 2.8 Locus of rp=rs in the complex plane, for light incident from glass onto a layer of water
bounded by air ð ffiffiffiffie1p ¼ 3=2;

ffiffi
e
p ¼ 4=3; e2 ¼ 1Þ. The thickness of the homogeneous water layer is

such that ðx=cÞDz ¼ 1=2. Note the rapid variation with angle near hc ¼ arcsin 2=3 	 41:81
,
where 0:1 degree intervals are indicated (the points neighbouring hc are at 41:71
, 41:91
). The
value of rp=rs at angle of incidence equal to the zero thickness Brewster angle

hB ¼ arctan e2=e1ð Þ1=2¼ arctan 2=3 	 33:69
) is also shown
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the profile e x2=c2ð Þ ¼ p 1� pð Þ=z2; F ¼ eikz gives e x2=c2ð Þ ¼ k2, the homoge-
neous layer dielectric function discussed in the last section.

The latter example can be applied to oblique incidence as well, by setting
�F00=F ¼ e x2=c2ð Þ � K2. How can one construct other solutions which are valid at
oblique incidence? This was answered by Heading (1965) in the electromagnetic
case. The same question has been examined in quantum mechanics, as the problem
of constructing solvable potentials for the Schrӧdinger equation, and in acoustics
(construction of solvable velocity profiles) (Bose 1964; Deavenport 1966;
Vasudevan et al. 1967). The method developed consists in transforming an equation
whose solutions are known into the wave equation, and then stating the solutions of
the wave equation in terms of the original equation. This systematic development
has been extended to the electromagnetic p wave by Westcott (1969) (see also
Heading 1970).

We are most interested in profiles which are solvable for both the s and p waves,
to which we will turn shortly. But first we give one example of a profile solvable for
the s wave, which is included in the systematic development, but predates it by
more than 30 years. This is the useful hyperbolic tangent profile (Eckart 1930;
Epstein 1930; Landau and Lifshitz 1965, Sect. 25),

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þ tanh z
2a

¼ e1þ e2ez=a

1þ ez=a
¼ e1

1þ ez=a
þ e2

1þ e�z=a
:

ð2:75Þ

Figure 2.9 shows this profile, together with the 10–90 thickness Dz ¼ 2 ln 9ð Þa,
which extends from the point z1 where e ¼ e1þ De

10 to the point z2 where

Fig. 2.9 The hyperbolic tangent dielectric function profile (2.75), also known as the Fermi profile.
Here e1 ¼ 1 and e2 ¼ 4=3ð Þ2, representing the air-water interface at optical frequencies. The
vertical lines and the thickness Dz refer to the 10–90 thickness described in the text
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e ¼ e1þ 9De
10 . (A comparison of the various measures of surface thickness may be

found in Lekner and Henderson 1978.)
Figure 2.10 shows the corresponding reflectivity at normal incidence, to be

derived shortly. Also shown are the leading terms in the long-wave expansion:
Rn ¼ Rn0½1� 4p2=3ð Þa2k1k2þ . . .�. This is an example of a general result to be
derived in Chap. 3. The equation (3.51) reduces, at normal incidence, to

Rn ¼ n1�n2
n1 þ n2

� �2
� 4n1n2

n1 þ n2ð Þ4
x
c

� �2
i2þ . . ., where i2 is a profile integral invariant, and

ni ¼ ffiffiffi
ei
p

as usual. The integral invariant i2 ¼ p2
3 e1 � e2ð Þ2a2 for the tanh profile,

from Table 3.1.
The s wave equation for the hyperbolic tangent profile (2.75),

d2E
dz2
þ e

x2

c2
� K2

� �
E ¼ 0; ð2:76Þ

can be transformed to the hypergeometric differential equation by the substitutions

f ¼ �e�z=a; E ¼ f�iq2aw fð Þ; ð2:77Þ

where wðfÞ tends to a constant as f! 0 ðz!1Þ. The function w satisfies

f 1� fð Þ d
2w

df2
þ 1� 2iy2ð Þ 1� fð Þ dw

df
þ y22 � y21
� �

w ¼ 0; ð2:78Þ

Fig. 2.10 The reflectivity at normal incidence, Rn ¼ sinh pa k1 � k2ð Þ=sinh pa k1þ k2ð Þ½ �2, for the
hyperbolic tangent profile, as a function of interface thickness. The dielectric function values are as
in Fig. 2.9. The dashed curve is the long-wave expression given in the text
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where y1 ¼ q1a and y2 ¼ q2a. (The references quoted above give solutions for
normal incidence; the generalization to oblique incidence is given here.) The
hypergeometric function

F a; b; c; fð Þ ¼ 1þ ab
c

f
1!
þ a aþ 1ð Þbðbþ 1Þ

cðcþ 1Þ
f2

2!
þ . . . ð2:79Þ

satisfies the equation

f 1� fð Þ d
2F

df2
þ c� aþ bþ 1ð Þf½ � dF

df
� abF ¼ 0; ð2:80Þ

so that wðfÞ is equal to Fði y1 � y2ð Þ;�i y1þ y2ð Þ; 1� 2iy2; fÞ. To extract the
reflection amplitude we need the limiting form as z! �1, i.e., as f! �1. This
is obtained from the formula (Oberhettinger 1964, 15.3.7)

F a; b; c; fð Þ ¼C cð ÞC b� að Þ
C bð ÞC c� að Þ �fð Þ�aF a; 1þ a� c; 1þ a� b;

1
f

� �

þ C cð ÞC a� bð Þ
C að ÞC c� bð Þ �fð Þ�bF b; 1þ b� c; 1þ b� a;

1
f

� �
;

ð2:81Þ

valid for argð�fÞj j\p. As f! �1, the leading terms in (2.81), on using the
expansion (2.79), give the limiting form

�ð Þ�iq2aC 1� 2iy2ð Þ C �2iy1ð Þeiq1z
C �i y1þ y2ð Þð ÞC 1� i y1þ y2ð Þð Þ þ

C 2iy1ð Þe�iq1z
C i y1 � y2ð Þð ÞC 1þ i y1 � y2ð Þð Þ

� 

 E:

ð2:82Þ

The reflection amplitude is defined as the ratio of the coefficient of e�iq1z to that of
eiq1z. On using the formula

C zð ÞC 1� zð Þ ¼ p= sin pz; ð2:83Þ

we find

rs ¼ �C 2iy1ð ÞCð�i y1þ y2ð ÞÞC �i y1 � y2ð Þð Þ sinh p y1 � y2ð Þ
C �2iy1ð ÞC i y1þ y2ð Þð ÞC i y1 � y2ð Þð Þ sinh p y1þ y2ð Þ : ð2:84Þ

Ratios of the form Cð�iyÞ=CðiyÞ can be evaluated by using the infinite product
representation of the gamma function (Whittaker and Watson (1927), Sect. 12.1)

1
C zð Þ ¼ z ecz

Y1
n¼1

1þ z
n

� �
e�z=n: ð2:85Þ
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Here c is Euler’s constant, c 	 0:5772. We find

Cð�iyÞ
CðiyÞ ¼ � exp 2i cy� /ðyÞf g; ð2:86Þ

where

/ yð Þ ¼
X1
n¼1

y
n
� arctan

y
n

� �
: ð2:87Þ

Thus

rs ¼ exp 2i / 2y1ð Þ � / y1þ y2ð Þ � /ðy1 � y2Þf g sinh pðy1 � y2Þ
sinh pðy1þ y2Þ : ð2:88Þ

The combination of / functions within the braces simplifies to

X1
n¼1

arctan
2y1
n
� y21 � y22
n2þ 3y21þ y22

� 

: ð2:89Þ

In this form it is clear that the phase of rs is third order in the interface thickness
when the profile is centred on the origin, and also that rsj j ¼ 1 when q2 ¼ i q2j j
(total internal reflection).

We have given some detail for this model profile, since it is frequently used and
has the virtue that the reflection amplitude, complete with phase, is expressible in
terms of elementary functions. Another interesting feature is the relationship
between reflection at oblique incidence to that at normal incidence. The solution at
oblique incidence is obtained from that at normal incidence by replacing ki ¼ffiffiffi
ei
p ðx=cÞ by qi ¼ ki cos hi in the formulae above. This is a general property of
dielectric function (or potential energy) profiles of the form

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þf z; að Þ; ð2:90Þ

where the function f depends on parameters (such as the length a characterizing the
interface thickness) which are independent of e1 and e2. When this holds,
q2 ¼ ex2=c2 � K2 may be written as

q2 zð Þ ¼ 1
2

q21þ q22
� �� 1

2
q21 � q22
� �

f z; að Þ; ð2:91Þ

and information concerning the dielectric constants e1 and e2, the vacuum
wavenumber x=c, and the angle of incidence is contained within the normal
components of the wavevector, q1 and q2. From (2.90), the function f is given by
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f ¼ e1þ e2 � 2e
e1 � e2

: ð2:92Þ

Any e will give a function f , but only profiles which can be put in the form (2.90)
will have f independent of e1 and e2. We shall shortly see examples of profiles
which do not have this scaling property, and for which the reflection amplitude at
oblique incidence cannot be obtained from the formula for normal incidence.

We now turn to profiles for which both s and p wave solutions may be obtained
analytically, and concentrate on two continuous dielectric function profiles of finite
range: an exponential variation with z of the refractive index or dielectric function,
and a linear variation with z of the reciprocal of the refractive index. The expo-
nential profile was considered by Galejs (1961), Burman and Gould (1963), and
Abelès (1964). The dielectric function is given by

e zð Þ ¼
e1 z\z1
e1e2ð Þ1=2exp ðz��zÞ

Dz ln e2
e1

n o
z1� z� z2

e2 z[ z2

8<
: ð2:93Þ

where �z ¼ ðz1þ z2Þ=2 and Dz ¼ z2 � z1. A simpler but less symmetric form for e is
e1 exp½ðz� z1Þ=a�, where a ¼ Dz= lnðe2=e1Þ. Figure 2.12 shows an exponential
profile representing the air-water interface at optical frequencies.

A change from z to a dimensionless independent variable proportional to the
refractive index,

u ¼ 2a
x
c

ffiffi
e
p � 2ka; a ¼ Dz= lnðe2=e1Þ ð2:94Þ

transforms the s wave equation into Bessel’s equation

Fig. 2.11 The exponential
function profile, (2.93), withffiffiffiffi
e1
p ¼ 1;

ffiffiffiffi
e2
p ¼ 4=3
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d2E
du2
þ 1

u
dE
du
þ 1� 2Kað Þ2

u2

 !
E ¼ 0: ð2:95Þ

The general solution within ½z1; z2� is aJs uð Þþ bYsðuÞ, with s ¼ 2Ka. The order
s of the Bessel functions depends on the angle of incidence (it is proportional to
sin h1); both s and u are proportional to the interface thickness. The s wave
reflection and transmission amplitudes may be obtained from (2.25) and (2.26),
with F zð Þ ¼ JsðuÞ and G zð Þ ¼ YsðuÞ.

The p wave equation reads, in the u variable,

d2B
du2
� 1
u
dB
du
þ 1� 2Kað Þ2

u2

 !
B ¼ 0; ð2:96Þ

and is satisfied by auJpþ buYpðuÞ, where p2 ¼ 2Kað Þ2þ 1. The reflection ampli-
tude may be found from (2.40), with C zð Þ ¼ uJpðuÞ and D zð Þ ¼ uYpðuÞ. It is useful
to work in terms of the cross products

Av ¼ Jv u1ð ÞYv u2ð Þ � Yv u1ð ÞJv u2ð Þ;
Bv ¼ Jv u1ð ÞY 0v u2ð Þ � Yv u1ð ÞJ 0v u2ð Þ;
Cv ¼ J 0v u1ð ÞYv u2ð Þ � Y 0v u1ð ÞJv u2ð Þ;
Dv ¼ J 0v u1ð ÞY 0v u2ð Þ � Y 0v u1ð ÞJ 0v u2ð Þ;

ð2:97Þ

where the primes denote differentiation with respect to u. The p wave reflection
amplitude then reads

�rp ¼ e2iq1z1
q1q2Apþ iq1k2 Bpþ Ap

u2

� �
þ iq2k1 Cpþ Ap

u1

� �
� k1k2 Dpþ Bp

u1
þ Cp

u2
þ Ap

u1u2

� �
q1q2Apþ iq1k2 Bpþ Ap

u2

� �
� iq2k1 Cpþ Ap

u1

� �
þ k1k2 Dpþ Bp

u1
þ Cp

u2
þ Ap

u1u2

� � :
ð2:98Þ

The s wave result is

rs ¼ e2iq1z1
q1q2Asþ iq1k2Bsþ iq2k1Cs � k1k2Ds

q1q2Asþ iq1k2Bs � iq2k1Csþ k1k2Ds
: ð2:99Þ

At normal incidence s ¼ 0 and p ¼ 1. On using the identities (compare Olver 1964,
9.1.32, 33)

A1 ¼ D0; B1þ A1

u2
¼ �C0; C1þ A1

u1
¼ �B0;
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D1þ B1

u1
þ C1

u2
þ A1

u1u2
¼ A0; ð2:100Þ

we find that both the reflection amplitudes at normal incidence reduce to

rn ¼ e2ik1z1
A0þ iB0þ iC0 � D0

A0þ iB0 � iC0þD0
: ð2:101Þ

The corresponding reflectivity is

Rn ¼ rnj j2¼
A2
0þB2

0þC2
0 þD2

0 � 8
p2u1u2

A2
0þB2

0þC2
0 þD2

0þ 8
p2u1u2

: ð2:102Þ

In obtaining (2.102) we have used the identity (2.49), and the fact that the
Wronskian Jv uð ÞY 0v uð Þ � J 0v uð ÞYvðuÞ is equal to 2=pu. The reflectivity at normal
incidence as a function of interfacial thickness is shown in Fig. 2.12, together with
the long-wave expression as discussed in relation to Fig. 2.10.

The second dielectric function profile for which a solution is known for-both the s
and pwaves was first considered by Rayleigh (1880) (for normal incidence only), and
a solution for general incidence of both polarizations was given by Burman and
Gould (1963). For the Rayleigh profile the reciprocal of the refractive index varies
linearly with distance between the interfacial boundaries z1 and z2; as usual we have
e ¼ e1 for z\z2 and e ¼ e2 for z[ z2. This profile is shown in Fig. 2.13. (The
Rayleigh profile with discontinuities at its boundaries is considered in Lekner 1990c.)

Fig. 2.12 Normal incidence reflectivity for the exponential profile, as a function of the interface
thickness. The values of e1 and e2 are as in Fig. 2.11. The first minimum is at x=cð ÞDz 	 2:71. For
the same e1 and e2 the similar Rayleigh profile (Figs. 2.13 and 2.14) has its first zero at
x=cð ÞDz 	 2:73. The dashed curve gives the long-wave expression to second order in the
interface thickness
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Since e�1=2 varies linearly with z, it will be useful to work in terms of this
function, which we will call g:

e�
1
2 zð Þ ¼ g zð Þ ¼ �gþ z� �zð ÞDg

Dz
; ð2:103Þ

whereDg ¼ g2 � g1 ¼ e
�1

2
2 � e

�1
2

1 ; Dz ¼ z2 � z1; �g ¼ ðg1þ g2Þ=2, and�z ¼ ðz1þ z2Þ=2.
At normal incidence the s wave equation becomes, on changing the independent

variable from z to g,

d2E
dg2
þ 1

4
� v2

� �
E
g2
¼ 0; ð2:104Þ

where

v2 ¼ 1
4
� x

c
Dz
Dg

� �2

: ð2:105Þ

The equation (2.104) has the power-law solutions E� ¼ g
1
2�v, and the reflection

amplitude can be found from (2.25):

rn ¼ e2ik1z1
e1
e2

� �v
�1

2v e1
e2

� �v
þ 1

h i
� 2i xDzcDg

e1
e2

� �v
�1

h i : ð2:106Þ

The reflectivity at normal incidence takes different forms according as x
c
Dz
Dg

� �2
is

smaller or greater than 1
4. When x

c
Dz
Dg

� �2
\ 1

4, v is real and

Fig. 2.13 Dielectric function eðzÞ for the Rayleigh profile. The values e1 ¼ 1 and e2 ¼ 4=3ð Þ2
approximate air on the left and water on the right (at optical frequencies)
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Rn ¼
e1
e2

� �v
�1

h i2
4v2 e1

e2

� �v
þ 1

h i2
þ 4 xDz

cDg

� �2
e1
e2

� �v
�1

h i2 ¼
e1
e2

� �v
�1

h i2
e1
e2

� �v
þ 1

h i2
�16 xDz

cDg

� �2
e1
e2

� �v :
ð2:107Þ

For x
c
Dz
Dg

� �2
[ 1

4 ; v ¼ i vj j; and

Rn ¼
sin2 1

2 vj j ln e1
e2

� �
4 vj j2þ sin2 1

2 vj j ln e1
e2

� � : ð2:108Þ

At v ¼ 0 these two forms take the common value

Rn v ¼ 0ð Þ ¼
ln e1

e2

� �2
16þ ln e1

e2

� �2 : ð2:109Þ

We note from (2.108) that the reflectivity is zero whenever vj jjln e1=e2ð Þj ¼
2np ðn ¼ 1; 2; . . .Þ, that is when

x
c
Dz
Dg
¼ � 1

4
þ 2np

ln e1
e2

� �
0
@

1
A

28<
:

9=
;

1=2

: ð2:110Þ

The reflectivity at normal incidence as a function of interface thickness is shown in
Fig. 2.14.

The exponential profile, which also has discontinuities in slope at its boundaries
and has a similar shape, has minima at points approximated by (2.110) (see the
caption to Fig. 2.12). The reflectivities for both profiles show oscillatory decay with
increasing thickness. The homogeneous layer discussed in the last section, which
has discontinuities in value at the boundaries, has its reflectivity strictly periodic in
the thickness. In contrast, the hyperbolic tangent profile, which is continuous in
value and in all its derivatives, shows a monotonic decrease in reflectivity with
interface thickness.

For oblique incidence, the s wave equation (2.22) for the Rayleigh profile
becomes, in the g variable,

d2E
dg2
þ

1
4� v2

g2
� K

Dz
Dg

� �2
" #

E ¼ 0; ð2:111Þ
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and has solutions proportional to g1=2 times a Bessel function of order v and
imaginary argument �iKðDz=DgÞg. Thus rs may be obtained from the general
formula given in Sect. 2.2.

The p wave is most conveniently discussed in terms of the variable

b ¼ e1=eð Þ1=2B, which satisfies (1.22):

d2b
dz2
þ q2 � e

1
2
d2e�1=2

dz2

� �
b ¼ 0: ð2:112Þ

Since e�1=2 is linear for z for the Rayleigh profile, the E and b equations are the
same, except at the end-points z1 and z2. There, because of the discontinuity in the
slope of e�1=2, the equation for b contains additional delta-function terms:

e1=2
d2e�1=2

dz2
¼ Dg

Dz
1
g1

d z� z1ð Þ � 1
g2

dðz� z2Þ
� 


: ð2:113Þ

As a consequence, db=dz is discontinuous at z1 and z2. Within the interface, b has
the same Bessel function solutions as the s wave. Expressions for rs and rp, graphs
of rs; rp and of rp=rs, and a comparison with theory for the reflection of long waves
(to be discussed in the next chapter), are given in Lekner (1982). A generalization
of the theory of Sect. 2.2 to discontinuous profiles is given in Lekner (1990c).

We have concentrated on general results, and on the reflection by four special
profiles, three of which are solvable for both the s and p waves. Discussion of other
special profiles (which are solvable for the s wave only) may be found in Sects. 4.3
and 5.2, in Heading (1965), and in the texts listed in the references for this section.

Fig. 2.14 Logarithmic plot of normal incidence reflectivity for the Rayleigh profile, as a function
of the interface thickness, together with the long-wave expression (dashed curve). The values
e1 ¼ 1; e2 ¼ 4=3ð Þ2 have been used, representing an air-water interface, in common with
Fig. (2.41). The scale is logarithmic to base 10; for example, �2 corresponds to a reflectivity of
10�2. The logarithmic scale emphasizes the zeros in reflectivity, given by (2.110)
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Other exact and general results appear throughout this book. As regards reflection
by special profiles, we mention in particular the sech2 potential (Sect. 4.3), and the
linear profile (Sect. 5.2).
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Chapter 3
Reflection of Long Waves

We have seen in Sect. 2.2 that the reflection amplitudes of an arbitrary profile tend
to the Fresnel values as the thickness Dz of the profile tends to zero. An equivalent
limit to consider is that of reflection by a profile of fixed extent, as the wavelength
increases. We might expect the reflection amplitudes to be well represented, in the
long wave limit, by the first few terms of a series in the ratio of the interface
thickness to the wavelength. This expectation turns out to be essentially correct,
with the coefficient of a given power of ðx=cÞDz depending on the angle of inci-
dence, as well as on the profile characteristics.

In the long wave limit, a given dielectric function profile reflects as a step profile,
plus a small correction which depends on the deviation of the profile from a single
step. The long wave theory treats the deviation as a perturbation; the perturbation
theory of reflection is developed in Sect. 3.1 (for any type of perturbation), and then
used to obtain the long wave expansion in the following sections.

3.1 Integral Equation and Perturbation Theory
for the s Wave

The results of this section hold for the electromagnetic s wave, and for Schrödinger
particle waves. We wish to express w, the solution of

d2w
dz2
þ q2w ¼ 0; eiq1zþ r e�iq1z  w! t eiq2z ð3:1Þ

in terms of a known function w0, the solution of

d2w0

dz2
þ q20w0 ¼ 0; eiq1zþ r0 e�iq1z  w0 ! t0 eiq2z ð3:2Þ
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Note that q and q0 share the same asymptotic values, q1 and q2: the reference
dielectric function e0ðzÞ, or potential V0ðzÞ, must be chosen to tend to the same
limits e1 and e2 as eðzÞ (or the same V1 and V2 as VðzÞ). Write q2 ¼ q20þDq2, and
w ¼ w0þw1þw2þ � � �, a series in powers of Dq2. From (3.1) and (3.2), the
correction to w0 of nth order in Dq2 satisfies the equation

d2wn

dz2
þ q20wn ¼ �Dq2wn�1 ð3:3Þ

for n ¼ 1; 2; . . . To solve (3.3) we need to construct a Green’s function Gðz; z0Þ
which satisfies

@2G
@z2
þ q20 zð ÞG ¼ dðz� z0Þ ð3:4Þ

and has the appropriate asymptotic behaviour to make each wn take the limiting
forms given by (3.1), with r ¼ rn and t ¼ tn. When such a Green’s function has
been constructed, the corrections w1;w2; . . . are given by

wn zð Þ ¼ �
Z1

�1
dz0Dq2 z0ð ÞG z; z0ð Þwn�1ðz0Þ ð3:5Þ

so that one can solve for w1 in terms of the known w0, for w2 in terms of w1, and so
on. An equivalent formulation is to write (3.1) as an integral equation, using (3.4):

w zð Þ ¼ w0 zð Þ �
Z1

�1
dz0Dq2 z0ð ÞG z; z0ð Þw z0ð Þ ð3:6Þ

The sequence (3.5) is then obtained by iteration of (3.6). (The reader not familiar
with Green’s functions may verify that (3.6) solves (3.1) by operating on both sides
with @2

@z2 þ q20ðzÞ, and using (3.4).)
The above is for any reference q0 and w0. For long waves, the natural choice for

q0 and w0 are the functions corresponding to the step dielectric function profile

e0 zð Þ ¼ e1
e2

� ðz\ 0Þ
ðz [ 0Þ

¼ 1
2
ðe1þ e2Þ � 1

2
e1 � e2ð Þ sgn zð Þ;

ð3:7Þ
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for which q0 takes the values q1 and q2 for z7 0, and

w0 zð Þ ¼ eiq1zþ r0e�iq1z ðz\ 0Þ
t0eiq2z z[ 0ð Þ

�

: ð3:8Þ

From the continuity of w0 and dw0=dz at z ¼ 0,

r0 ¼ q1 � q2
q1þ q2

; t0 ¼ 2q1
q1þ q2

¼ 1þ r0: ð3:9Þ

The appropriate Green’s function Gðz; z0Þ must satisfy (3.4), and be such that w, as
given by (3.6), have the asymptotic forms of (3.1).We see from (3.4) thatG is built up
from the functions e�iq0z, and that @G=@zmust have a unit discontinuity along the line
z ¼ z0. For each of z0[ 0 and z0\0, G has three different analytic forms, the dividing
lines being at z ¼ 0, and z ¼ z0. The continuity of G at both boundaries, and the
respective continuity and discontinuity of @G=@z at z ¼ 0 and z0 impose conditions on
the coefficients. When the coefficients are evaluated, we find the six analytic forms

ð3:10Þ

From (3.10) and (3.6) we find the analytic form of w as z! �1:

w zð Þ ! eiq1zþ r0e�iq1z � e�iq1z
1

2iq1

Z0

�1
dz0Dq2 z0ð Þ eiq1z

0 þ r0e�iq1z
0

� �

w z0ð Þ
8

<

:

þ 1
i q1þ q2ð Þ

Z1

0

dz0Dq2 z0ð Þeiq2z0wðz0Þ
9

=

;
:

ð3:11Þ
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On comparing (3.11) with the asymptotic form in (3.1), we identify the reflection
amplitude as r0 minus the expression within the braces. The nth order term rn is
therefore

rn ¼ i
2q1

Z0

�1
dz0Dq2 z0ð Þ eiq1z

0 þ r0e�iq1z
0

� �

wn�1 z0ð Þ

þ i
q1þ q2

Z1

0

dz0Dq2 z0ð Þeiq2z0wn�1ðz0Þ:
ð3:12Þ

In particular, the first order term r1 is given by

r1 ¼ i
2q1

Z0

�1
dz0Dq2 z0ð Þ eiq1z

0 þ r0e�iq1z
0

� �2

þ i
q1þ q2

1þ r0ð Þ
Z1

0

dz0Dq2ðz0Þe2iq2z0
ð3:13Þ

When e1 ¼ e2 (and q1, q2 take the common value q0) r1 takes the simple form

r1 ¼ i
2q0

Z1

�1
dz0Dq2ðz0Þe2iq0z0 ; ð3:14Þ

from which the reflection formulae used in Sect. 1.5 may be obtained.
The general expression for r implicit in (3.11) may be put into a simpler form by

using (3.8) and (3.9):

r ¼ r0 � 1
2iq1

Z1

�1
dz0Dq2ðz0Þwðz0Þw0ðz0Þ: ð3:15Þ

This formula can be obtained directly from the comparison identity (2.6), but
without the perturbation theory derived above is capable of giving only r1.

We have developed the perturbation series in terms of Dq2. Since q2 zð Þ ¼
e zð Þx2=c2 � K2;

Dq2 ¼ x2

c2
e� e0ð Þ; ð3:16Þ
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and the perturbation is independent of the angle of incidence. This simple result
holds only for the s and particle waves; the more complex p wave perturbation
theory has terms in K2, as we shall see in Sect. 3.4.

3.2 The s Wave to Second Order in the Interface
Thickness

We see from (3.16) that the perturbation Dq2 is small, for arbitrary De, in the long
wavelength limit. In this section we will obtain corrections to r0 in terms of inte-
grals over the difference e� e0 between the actual and the step profile. It will be
convenient to define the integrals kn, of dimension (length)n, as

kn ¼
Z1

�1
dz e zð Þ � e0 zð Þ½ �zn�1: ð3:17Þ

Consider the first order (in Dq2) expression for r1, as given by (3.13). The integrals
in (3.13) contain a factor Dq2 ¼ ðx2=c2Þðe� e0Þ, assumed to be of short range, by
which we mean that the kn converge for all n. (This includes profiles such as the
hyperbolic tangent defined in (2.75), for which e� e0 tends to zero exponentially in
z as z! �1.) Let the range of e� e0 be characterized by a length Dz, an interface
thickness. In the long wave limit, ðx=cÞDz is a small dimensionless parameter, as
are q1Dz and q2Dz. We expand the factors eiq1zþ r0e�iq1z and eiq2z in (3.12) and (3.
13) in powers of q1z, to obtain an expansion in the above small parameters. For r1
we have, to second order in the interface thickness,

r1 ¼ 2iq1x2=c2

q1þ q2ð Þ2 k1þ 2iq2k2þ � � �f g: ð3:18Þ

The corresponding expression for r2 is

r2 ¼ �2q1x
4=c4

q1þ q2ð Þ3 k21þ � � � ; ð3:19Þ

obtained from (3.12) and the result

w1 0ð Þ ¼ 2iq1x2=c2

q1þ q2ð Þ2 k1þ � � � ð3:20Þ
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The leading term in r3 is of third order in Dz:

r3 ¼ � 2iq1x6=c6

q1þ q2ð Þ4 k
3
1þ � � � ; ð3:21Þ

and can thus be omitted from the second order expression, which reads

r ¼ r0þ 2iq1x2=c2

q1þ q2ð Þ2 k1þ 2iq2k2þ i x2=c2ð Þk21
q1þ q2

� �

þ � � � : ð3:22Þ

We now need a notation to distinguish between terms which are nth order in Dq2,
and those which are nth order in Dz. We write the latter as rsn (for s wave reflection
amplitude component which is nth order in Dz); rs0 and r0 are equal, but from n ¼ 1
onwards rn and rsn are different. In the Dz expansion we have

rs1 ¼ 2iq1x2=c2

q1þ q2ð Þ2 k1; ð3:23Þ

rs2 ¼ �2iq1x
2=c2

q1þ q2ð Þ2 2q2k2þ x2=c2

q1þ q2
k21

� �

: ð3:24Þ

The s wave reflection amplitude is thus determined to second order in the interface
thickness in terms of the two integrals k1 and k2 over the difference between the
given profile and the step profile. These integrals depend on the choice of relative
positioning of eðzÞ and e0ðzÞ, as shown in Fig. 3.1.

The result obtained by theory for any observable, such as rsj j2, must be inde-
pendent of an arbitrary choice made in calculating that observable. It follows that

rsj j2¼ jrs0 þ rs1þ rs2 þ � � � j2 ¼ rs0j j2 þ 2 Re r�s0rs1
� �

þ rs1j j2 þ 2 Re r�s0rs2
� �n o

þ � � � ð3:25Þ

must be invariant with respect to the choice of relative positioning of e zð Þ and e0ðzÞ.
Consider for example the case where e is real, and also q2 is real (thus excluding
total internal reflection). Then rs0 and rs2 are both real, while rs1 is purely imagi-
nary. The lowest order correction to r2s0 is then the second order term within the
braces in (3.25). From (3.23) and (3.24), this is equal to

rs1j j2 þ 2rs0rs2
n o

¼ � 4q1q2x4=c4

q1þ q2ð Þ4 2 e1 � e2ð Þk2 � k21
� 	

: ð3:26Þ
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We thus expect the combination 2 e1 � e2ð Þk2 � k21 to be invariant with respect to
the relative positioning of e and e0. This turns out to be true, as we will show in the
next section.

3.3 Integral Invariants

Let eðzÞ be a function with asymptotic values e �1ð Þ ¼ e1 and e þ1ð Þ ¼ e2, and
e0ðzÞ the step function taking values e1 for z\ 0 and e2 for z [ 0. Consider the
dependence of the integral

knþ 1 sð Þ ¼
Z1

�1
dz e z� sð Þ � e0ðzÞ½ �zn ð3:27Þ

on the shift parameter s. (In changing s we change the relative positioning of the
two profiles.) We have

Fig. 3.1 Dependence of the integral k1 ¼
R1
�1 dzðe� e0Þ on relative positioning of eðzÞ and the

step function e0ðzÞ. The sign of the contributions is indicated; the magnitude of the positive and
negative contributions is equal to the area enclosed between the actual dielectric function profile
and the reference step profile. In the upper diagram the areas are equal, and k1 ¼ 0; such
positioning is always possible when eðzÞ is real and e1 6¼ e2. The profile drawn is the double
exponential, defined in Sect. 3.6, equation (3.69)
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knþ 1 sð Þ ¼
Z1

�1
dz e zð Þ � e0 zð Þþ e0 zð Þ � e0ðzþ sÞ½ � zþ sð Þn

¼
Z1

�1
dz e zð Þ � e0 zð Þ½ � zþ sð Þn þ ðe1 � e2Þ

Z0

�s
dz zþ sð Þn

¼
Z1

�1
dz e zð Þ � e0ðzÞ½ � znþ n

1


 �

zn�1sþ � � � þ sn
� 


þ e1 � e2ð Þ s
nþ 1

nþ 1

¼ knþ 1 0ð Þþ n

1


 �

kn 0ð Þsþ � � � þ k1 0ð Þsnþ e1 � e2ð Þ s
nþ 1

nþ 1

ð3:28Þ

The shift-dependence of the first three integrals is thus

k1 sð Þ ¼ k1 0ð Þþ e1 � e2ð Þs;

k2 sð Þ ¼ k2 0ð Þþ k1 0ð Þsþðe1 � e2Þ s
2

2
;

k3 sð Þ ¼ k3 0ð Þþ 2k2 0ð Þsþ k21 0ð Þs2þðe1 � e2Þ s
3

3
:

ð3:29Þ

Note that

2 e1 � e2ð Þk2 sð Þ � k21 sð Þ ¼ 2 e1 � e2ð Þk2 0ð Þ � k21 0ð Þ; ð3:30Þ

so that

i2 ¼ 2 e1 � e2ð Þk2 � k21 ð3:31Þ

is invariant with respect to the relative positioning of e and e0. Similarly

i3 ¼ 3 e1 � e2ð Þ2k3 � 6 e1 � e2ð Þk2k1þ 2k31 ð3:32Þ

is an integral invariant. There is an infinite hierarchy of such invariants (assuming
the existence of kn for all n). The general formula has been given by Lekner (1984).

The invariance of i2 was suggested on physical grounds, and follows in a
straightforward way from the analysis given above. Nevertheless, the form (3.31) is
not obviously invariant, and it is useful to express i2 in a form which is manifestly
invariant:
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i2 ¼ �
Z1

�1
dz1

Z1

�1
dz2 e z1ð Þ � e0ðz1 � z2Þ½ � e z2ð Þ � e0ðz2 � z1Þ½ �: ð3:33Þ

This form immediately suggests how other integral invariants may be generated:
multiplication of the integrand in (3.33) by f ðz1 � z2Þ will produce integral
invariants, for any f (subject only to the convergence of the integral). An example is
f ¼ eikz, which produces another set of invariants via its expansion in powers of k
(Lekner 1984, Appendix A).

Any single-valued function of a step function is also a step function. The
invariants developed above thus have endless generalizations. For the p wave, we
will need invariants arising out of integrals over the difference between the recip-
rocals of e and e0. We define, in parallel with (3.27),

Knþ 1 sð Þ ¼ e1e2

Z1

�1
dz

1
e0ðzÞ �

1
eðz� sÞ

� 


zn:

Their transformation properties are the same as those of the k’s: for example

K1 sð Þ ¼ K1 0ð Þþ e1 � e2ð Þs;

K2 sð Þ ¼ K2 0ð ÞþK1 0ð Þsþðe1 � e2Þ s
2

2
:

ð3:35Þ

Thus the analogue of i2,

J2 ¼ 2 e1 � e2ð ÞK2 � K2
1 ð3:36Þ

is an integral invariant, etc. We note also that, from (3.29) and (3.35), the difference
I1 ¼ K1 � k1 is an invariant. This invariance is made explicit by means of the
identity

I1 ¼ K1 � k1 ¼ e1e2

Z1

�1
dz

1
e0
� 1

e


 �

�
Z 1

�1
dz e� e0ð Þ ¼

Z1

�1
dz

e1 � eð Þ e� e2ð Þ
e

:

ð3:37Þ
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The next mixed invariant is

I2 ¼ e1e2

Z1

�1
dz1

Z1

�1
dz2 e z1ð Þ � e0ðz1 � z2Þ½ � 1

eðz2Þ �
1

e0ðz2 � z1Þ
� 


¼ e1 � e2ð Þ k2þK2ð Þ � k1K1 ¼ 1
2
ði2þ J2þ I21Þ:

ð3:38Þ

Finally, we shall need another invariant, related to I2, which enters in the expres-

sions for rp
�
�

�
�
2
and rp=rs to second order. This is

j2 ¼
Z1

�1
dz1

Z1

�1
dz2e0 z2 � z1ð Þ e z1ð Þ � e0 z1 � z2ð Þ½ � 1

eðz2Þ �
1

e0ðz2 � z1Þ
� 


: ð3:39Þ

3.4 rp
�
�

�
�
2
and rp=rs to Second Order

The last section developed the tools which enable us to complete the characteri-
zation of the reflection of electromagnetic waves to second order in the interface
thickness. For the p wave, B ¼ ð0; ei Kx�xtð ÞB zð Þ; 0Þ, with

d
dz

1
e
dB
dz


 �

þ x2

c2
� K2

e


 �

B ¼ 0; eiq1z � rpe�iq1z  B! e2
e1


 �1=2

tpeiq2z: ð3:40Þ

A perturbation theory for the p wave will be sketched below. For the first order
results, however, the full perturbation theory with its Green’s function is not nee-
ded. We can obtain the first order results directly from a comparison identity based
on (3.40) and its companion for B0:

d
dz

1
e0

dB0

dz


 �

þ x2

c2
� K2

e0


 �

B0 ¼ 0; eiq1z � rp0e�iq1z  B0 ! e2
e1


 �1=2

tp0eiq2z:

ð3:41Þ

This is (Lekner 1982a, equation (46)),

rp ¼ rp0þ 1
2iQ1

Z1

�1
dz

1
e0
� 1

e


 �

K2BB0þ e� e0ð ÞCC0

� �

; ð3:42Þ
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where Q1 ¼ q1=e1;C ¼ dB=edz and C0 ¼ e�10 dB0=dz. (Note that C0 is continuous
at the discontinuity of e0, while dB0=dz is not.) To first order in the interface
thickness, it is suffices to replace BB0 by B2

0 0ð Þ and CC0 by C2
0ð0Þ, where, from (1.

28) and (1.31),

B0 0ð Þ ¼ 2Q1

Q1þQ2
; C0 0ð Þ ¼ 2iQ1Q2

Q1þQ2
: ð3:43Þ

We obtain

rp1 ¼ �2iQ1

Q1þQ2ð Þ2
K2K1

e1e2
� Q2

2k1

� �

: ð3:44Þ

This result and (3.23) are together sufficient to determine rp=rs to first order (in

contrast to the expressions for rsj j2 and rp
�
�

�
�2, which have no first order terms when e

and q2 are real). We have

rp
rs
¼ rp0þ rp1þ rp2þ � � �

rs0þ rs1þ rs2þ � � �
¼ rp0

rs0
1þ rp1

rp0
� rs1
rs0


 �

þ rp2
rp0
� rp1rs1
rp0rs0

þ r2s1
r2s0
� rs2
rs0


 �

þ � � �
� �

: ð3:45Þ

The first order term is given by (for e1 6¼ e2)

rs0
rp
rs


 �

1
¼ rp0

rp1
rp0
� rs1
rs0


 �

¼ � 2iQ1K2

Q1þQ2ð Þ2
I1
e1e2

ð3:46Þ

(on using rs0 ¼ q1 � q2ð Þ= q1þ q2ð Þ, �rp0 ¼ Q1 � Q2ð Þ=ðQ1þQ2Þ). The special
case of reflection by a thin film between like media (when e1 ¼ e2) will be dis-
cussed in the next section.

For the second order term in rp=rs and rp
�
�

�
�2 we need rp2. This requires a pertur-

bation theory for (3.40) based on (3.41), which is more complex than the perturbation
theory for the s wave. We will give an outline here; further details may be found in
Lekner (1982a, b, 1984). One constructs a Green’s function G z; z0ð Þ satisfying

@

@z
1
e0

@G
@z


 �

þ x2

c2
� K2

e0


 �

G ¼ d z� z0ð Þ; ð3:47Þ
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and incorporating the required boundary conditions. This is (compare (3.10))

ð3:48Þ

B zð Þ satisfies an integro-differential equation

B zð Þ ¼ B0 zð Þ �
Z1

�1
dz0

1
e0 z0ð Þ �

1
e z0ð Þ


 �

K2B z0ð ÞG z; z0ð Þþ e z0ð Þ � e0 z0ð Þð ÞCðz0Þ 1
e0ðz0Þ

@G
@z0

� �

;

ð3:49Þ

from which (3.42) may be obtained by taking the limit z! �1. Considerable
work is required to extract the second order term rp2. The result for jrpj2 to second
order in the interface thickness is, for real e and q2,

rp
�
�

�
�
2¼ r2p0 �

4Q1Q2

e1e2 Q1þQ2ð Þ4
x4

c4
i2 � x2

c2
K2 j2þ 1

e1
þ 1

e2


 �

i2

� 


þ K4

e1e2
e1þ e2ð Þj2 � I21

� 	
� �

þ � � � :

ð3:50Þ

This is to be compared with the simpler expression for the s wave:

rsj j2¼ r2s0 �
4q1q2x4=c4

q1þ q2ð Þ4 i2þ � � � : ð3:51Þ

The p wave is more complicated, because the orientation of the electric field
relative to the interface changes with the angle of incidence, while for the s
polarization the electric field is always parallel to the interface. Measurement of
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Rs ¼ rsj j2 for an interface in the long wave limit can give the value of one invariant,
i2, irrespective of the angle of incidence. Measurement of Rp, at a minimum of three
angles, can give the values of i2, j2 and I21 .

As we saw in (3.46), the invariant I1 (complete with sign) can be found from the
ellipsometric determination of rp=rs to first order in the interface thickness. The
expression for rp=rs to second order is, for e1 6¼ e2,

rs0
rp
rs


 �

¼ rp0 � 2iQ1K2=e1e2
Q1þQ2ð Þ2 I1þ 2Q1 K2=e1e2ð Þ2

Q1þQ2ð Þ3 I21 þ
2Q1Q2K2

Q1þQ2ð Þ2
j2 � 1

e1
þ 1

e2

� �

i2

e1 � e2
þ � � � :

ð3:52Þ

Note that the first and second order terms vanish at normal incidence (K ¼ 0), as
they must since there rp=rs ¼ 1, identically.

We saw in Sect. 1.2 that an interface is expected to be nearly non-reflecting to
the p wave at the angle of incidence defined by Q1 ¼ Q2, namely at the Brewster

angle hB ¼ arctan e2=e1ð Þ1=2. In Sect. 2.3 we proved the existence of at least one
ellipsometric Brewster angle, the principal angle hP, defined as the angle at which
the real part of rp=rs is zero. We can obtain an expression for the difference
Dh ¼ hP � hB in the long wave limit. Assume absorption to be absent (real e), in
which case I1, i2 and j2 are real; and take h1\hc, so q2 and Q2 are real. Then from
(3.52) we find that, to second order in the interface thickness, Reðrp=rsÞ is zero
when the expression

rp0þ 2Q1 K2=e1e2ð Þ
Q1þQ2ð Þ3

K2

e1e2
I1þ e1e2Q2ðQ1þQ2Þ

e1 � e2
j2 � 1

e1
þ 1

e2


 �

i2

� 
� �

is zero. Thus Dh is second order in the interface thickness. On using (1.36) and (1.
37) we find

Dh ¼ e1e2ð Þ5=2x2=c2

e1 e21 � e22
� �2 j2 � 1

e1
þ 1

e2


 �

i2 � 1
2

1
e1
� 1
e2


 �

I21

� 


þ � � � ð3:53Þ

The reader may have noted divergences in the above expressions when e1 ! e2.
The reflection from interfaces between like media require special treatment, as
discussed in the next section, and also in the context of variational theory in Chap. 4
.
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3.5 Reflection by a Thin Film Between Like Media

When media 1 and 2 are the same (as for a soap film in air), the formulae given

above for rsj j2 and rp
�
�

�
�
2
take a simpler form, and the formula for rp=rs takes a

different form, since both rs0 and rp0 are now zero. Let e0 now denote the common
value of e1 and e2, q0 the common value of q1 and q2, et cetera. The integrals k1 and
K1 are now separately invariant (translating the constant functions e0 or e�10 makes
no difference), and the second order invariants i2 and j2 take the values

i2 ¼ �k21; j2 ¼ � 2k1K1

e0
: ð3:54Þ

The reflectivities to second order in the interface thickness are now

rsj j2¼ x4=c4

4q20
k21þ � � � ð3:55Þ

rp
�
�

�
�
2¼ x4=c4

4q20
k21 1� 2 cK=xð Þ2

e0

K1

k1
þ 1

� 


þ cK=xð Þ4
e20

4
K1

k1
þ I1

k1


 �2
" #( )

þ � � � :

ð3:56Þ

The ellipsometric ratio rp=rs cannot be found from (3.45), since now rs0 and rp0 are
zero. We have

rp
rs
¼ rp1þ rp2þ � � �

rs1þ rs2þ � � � ¼
rp1
rs1
þ rp2rs1 � rs2rp1

r2s1
þ � � � ; ð3:57Þ

the leading term now being zero order in the interface thickness:

rp1
rs1
¼ cos2 h0 � K1

k1
sin2 h0: ð3:58Þ

This ratio correctly tends to unity as h0, the angle of incidence and refraction, tends
to zero. When k1 and K1 have the same sign, as would normally be the case, there is
an angle at which the film is non-reflecting to the p wave (to lowest order in the film

thickness). This angle is an analogue of the Brewster angle arctan e2=e1ð Þ1=2 for
unlike media. From (3.58), the thin film p wave zero reflection occurs at

h0 ¼ arctan
k1
K1


 �1=2

¼ arctan
R1
�1 dzðe� e0Þ=e0
R1�1 dzðe� e0Þ=e

� �1=2

: ð3:59Þ
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The above results may be compared to the exact formulae for a homogeneous
layer of dielectric constant e, with waves incident from (and transmitted into) a
medium with dielectric constant e0. From (2.52) to (2.68),

rs ¼ e2iq0z1
i q2 � q20
� �

s

2qq0 � i q2þ q20
� �

s
; ð3:60Þ

and

�rp ¼ e2iq0z1
i Q2 � Q2

0

� �

s

2QQ0 � i Q2þQ2
0

� �

s
; ð3:61Þ

where q2 ¼ e x2=c2ð Þ � K2, Q ¼ q=e, and s ¼ tan qDz. For the homogeneous film
of thickness Dz, k1 ¼ e� e0ð ÞDz and K1 ¼ e0=eð Þk1, and (3.55) and (3.56) agree
with the reflectivities obtained from (3.60) and (3.61) to second order in Dz. The
ratio rp=rs may be written as

rp
rs
¼ 1� cK

x


 �2 1
e
þ 1

e0


 �" #
1� i

2
q
q0
þ q0

q

� �

s

1� i
2

Q
Q0
þ Q0

Q

� �

s

8

<

:

9

=

;
: ð3:62Þ

The square bracket in (3.62) is equal to cos2 h0 � e0=eð Þ sin2 h0, and is zero at

h0 ¼ arctan e=e0ð Þ1=2, which is the same as the Brewster angle for a sharp boundary
between e0 and an infinite medium e. It follows that a homogeneous film between
like media is always non-reflecting to the p wave at the same angle, irrespective of
its thickness. An inhomogeneous film, on the other hand, is non-reflecting at h0
given by (3.59) only to the lowest order in the film thickness.

There is a difficulty associated with the reflectivity formulae (3.55) and (3.56)
which is shared by the first order perturbation expressions

rperts ¼ ix2=c2

2q0

Z1

�1
dz e zð Þ � e0½ �e2iq0z; ð3:63Þ

rpertp ¼ 1
2iQ0

Z1

�1
dz

1
e0
� 1

e


 �

K2 � e� e0ð ÞQ2
0

� �

e2iq0z: ð3:64Þ

((3.63) is the same as (3.14), and (3.64) may be obtained from (3.42), as will be
discussed in Chap. 4). The difficulty occurs at grazing incidence, when h0 ! p=2
and q0 ¼ ffiffiffiffi

e0
p

x=cð Þ cos h0 ! 0, and all these expressions are divergent. This
divergence is unphysical (rs and rp must stay within the unit circle), and persists in
higher order perturbation theory. One of the virtues of the variational expressions
for rs and rp to be derived in Chap. 4 is that these are no longer divergent at grazing
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incidence, and in fact take the universal limiting values �1 and þ 1 as h tends to
p=2 (as shown in Sect. 2.3).

The reader may be puzzled as to how an expression like (3.55), which we have
stated to be exact to second order in the interface thickness, could be divergent (and
wrong) at grazing incidence. This paradox is resolved by considering the order of
the two limiting processes (the long wave limit, and the limit of h0 ! p=2). An
illustration of the application of these two limits is provided by the profile

e zð Þ ¼ e0þDe sech2 z=að Þ; ð3:65Þ

which will be discussed in detail in Sect. 4.3. The s wave reflectivity depends on
two dimensionless parameters,

a ¼ De x=cð Þ2a2; b ¼ q0 a: ð3:66Þ

For a[� 1=4 it is given by

Rs ¼
cos2 p

2 1þ 4að Þ1=2
h i

cos2 p
2 1þ 4að Þ1=2
h i

þ sinh2ðpbÞ
: ð3:67Þ

When a and b are both small compared to 1=p, this takes the form a2= a2þ b2
� �

.
For fixed small a, and b! 0 (fixed interface thickness and angle of incidence
tending to p=2), Rs ! a2=a2 ¼ 1. For a=b! 0, which is the long wave limit
x=cð Þa! 0 with h0 fixed, Rs ! a2=b2 ¼ ½De x2=c2ð Þa=q0�2, and is correctly given
by (3.55), since k1 ¼ 2aDe for this profile.

3.6 Six Profiles and Their Integral Invariants

We have seen that, to second order in the interface thickness, the s wave reflectivity
is characterized by one integral invariant i2, while the p wave reflectivity and rp=rs,
are characterized by the invariants I1, i2 and j2. Knowledge of these three invariants
is thus sufficient to determine the reflection properties to this order. Conversely,
reflection and ellipsometric studies with wavelengths that are large compared to the
profile thickness can determine no more than these three integrals over the profile.

We shall list six dielectric function profiles and their invariants. Four of these
have been studied already; the others (the linear and double exponential profiles) are
useful simple models in the statistical mechanics and electrodynamics of interfaces.

In the following definitions z1 is arbitrary, and z2 ¼ z1þDz. For the first four
profiles Dz is the total extent of the interface, while for the double exponential and
hyperbolic tangent profiles Dz is a measure of the interface thickness. In the interval
z1� z� z2, the first four profiles take the form
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homogeneous layer: e zð Þ ¼ e a constant for z1\z\z2ð Þ

linear: e zð Þ ¼ e1þ e2 � e1ð Þ z� z1ð Þ=Dz ð3:68Þ

Rayleigh: e zð Þ ¼ e�1=21 þ e�1=22 � e�1=21

� �

z� z1ð Þ=Dz
h i�2

single exponential: e zð Þ ¼ e1exp ln e2=e1ð Þ z� z1ð Þ=Dz½ �

The double exponential profile (illustrated in Fig. 3.1) has two analytic forms:

e zð Þ ¼ e1þ 1
2 e2 � e1ð Þ exp z� z1ð Þ=Dz ðz\z1Þ

e2þ 1
2 e1 � e2ð Þ exp z1 � zð Þ=Dz ðz[z1Þ

(

ð3:69Þ

The hyperbolic tangent profile is given by

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2

e1 � e2ð Þ tanh z� z1ð Þ=2Dz½ �: ð3:70Þ

The evaluation of invariants is usually made simpler by choosing z1 so as to
make k1 ¼ 0. For the symmetric profiles (linear, double-exponential, and hyper-
bolic tangent) the required positioning is at the origin (z1 ¼ 0). The invariants i2 and
j2 then reduce to

i2 ¼ 2 e1 � e2ð Þ
Z1

�1
dz e zð Þ � e0ðzÞ½ �z k1 ¼ 0ð Þ ð3:71Þ

j2 ¼ 2 e1 � e2ð Þ
Z1

�1
dz e zð Þ � e0ðzÞ½ � z

e zð Þ þ
Zz

0

df
eðfÞ

8

<

:

9

=

;
k1 ¼ 0ð Þ ð3:72Þ

The integrations leading to the invariants are mostly elementary. Further details
may be found in the references to Table 1 of Lekner (1984), and in Appendix C of
that reference. The results are summarized in Table 3.1. The integrals in the j2
expressions for the double exponential and tanh profiles can be evaluated in terms
of the dilog function,

dilog xð Þ ¼
Zx

1

dy
ln y
1� y

:

However, such evaluation does not lead to simplification of the results.
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Note that all the invariants are symmetric with respect to the interchange of e1
and e2, and that they are all non-negative when e is positive and lies between e1 and
e2 for all z. These properties are evident for I1 in the form

I1 ¼
Z1

�1
dz

e1 � eð Þðe� e2Þ
e

: ð3:73Þ

For i2 and j2 they may be deduced from the definitions (3.33) and (3.39). For
example, the integrands in (3.33) and (3.39) always keep the same sign when e is
positive and minðe1; e2Þ� e�maxðe1; e2Þ.

References

Lekner J (1984) Invariant formulation of the reflection of long waves by interfaces. Physica
128A:229–252

Lekner J (1982a) Second-order ellipsometric coefficients. Physica 113A:506–520

Further Readings

The perturbation theory of Sect. 3.1 is based on
Lekner J (1982b) Reflection of long waves by interfaces. Physica 112A:544–556

The s wave Green’s function for reflection at an inhomogeneity between like media (leading to
(3.14)) was given by

Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York, p 1071

Perturbation theory for reflection of the s wave at an interface between unlike media has
previously been developed by

Triezenberg TG (1973) Capillary waves in a diffuse liquid-gas interface. Ph.D thesis, University of
Maryland (unpublished)

There have been several (mainly formal) derivations of expansions for reflection properties in
powers of the interface thickness (Sects. 3.2 and 3.4)

Maclaurin RC (1905) Theory of the reflection of light near the polarising angle. Proc Roy Soc
A76:49–65

Rayleigh JWS (1912) On the propagation of waves through a stratified medium, with special
reference to the question of reflection. Proc Roy Soc A86:207–266

Abelès F (1950) Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les
milieux stratifiés. Application aux couches minces. Ann de Phys 5:596–640

Drazin PG (1963) On one-dimensional propagation of long waves. Proc Roy Soc A273:400–411

The formula (3.46) for the first order contribution to rp=rs is more than a century old. It is often
attributed to Drude, but was, in essence, first obtained by L. Lorenz in 1860. Rayleigh (1912,
quoted above) derives this result, and gives references to earlier work of Lorenz, Van Ryn,
Drude, Schott and Maclaurin

3.6 Six Profiles and Their Integral Invariants 93



Chapter 4
Variational Theory

In the previous chapter we have developed perturbation theories for dealing with
reflection of electromagnetic or particle waves whose wavelength is long compared
to the thickness of the interface. The variational theory of this chapter builds on
these perturbation theories to provide formulae for the reflection amplitudes which
have a greater range of validity, and which do not have the difficulties at grazing
incidence such as the divergence of rpert, as discussed in Sect. 3.5 in relation to
(3.63) and (3.64). The application of variational theory to the short wave case is
also discussed.

4.1 A Variational Expression for the Reflection Amplitude

We shall first give a general formulation of variational theory for reflection of
waves described by the equation

d2w
dz2
þ q2w ¼ 0; eiq1zþ re�iq1z  w! teiq2z; ð4:1Þ

and later specialize to the long wave and short wave s and p cases. Suppose that a
perturbation theory has been constructed, based on the solution w0 of

d2w0

dz2
þ q20w0 ¼ 0; eiq1zþ r0e�iq1z  w0 ! t0eiq2z: ð4:2Þ

In particular, a Green’s function Gðz; fÞ is assumed known, satisfying

@2G
@z2
þ q20G ¼ dðz� fÞ; ð4:3Þ

and giving the correct asymptotic forms in the solution of the integral equation
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w zð Þ ¼ w0 zð Þ �
Z1

�1
dfDq2 fð ÞG z; fð ÞwðfÞ ð4:4Þ

(Dq2 ¼ q2 � q20). Such Green’s functions are given in Sects. 3.1 and 6.6 for the long
and short wave cases. The results of perturbation theory follow by iteration of (4.4).
Here we adapt Schwinger’s variational method for the tangent of the phase shift
produced by scattering off a central potential (Schwinger 1947; Blatt and Jackson
1949) to the reflection problem. We rewrite (4.4) as

w zð Þþ
Z1

�1
dfDq2 fð ÞG z; fð ÞwðfÞ ¼ w0 zð Þ; ð4:5Þ

multiply by Dq2 zð ÞwðzÞ, and integrate over the whole range of z. The result is of the
form

S ¼ F ð4:6Þ

S, of second degree in the unknown w, is given by

S ¼
Z1

�1
dzDq2 zð Þw2 zð Þþ

Z1

�1
dzDq2 zð Þw zð Þ

Z1

�1
dfDq2 fð ÞG z; fð ÞwðfÞ: ð4:7Þ

F, of the first degree in w, is given by

F ¼
Z1

�1
dzDq2 zð Þw zð Þw0ðzÞ: ð4:8Þ

From the comparison identity (2.6), which we can write as

r ¼ r0 � 1
2iq1

Z1

�1
dzDq2 zð Þw zð Þw0ðzÞ; ð4:9Þ

we see that, for the exact w,

F ¼ 2iq1ðr0 � rÞ: ð4:10Þ

For the exact w we also have S ¼ F. Consider now a shift (in the variational sense)
to a neighbouring function wþ dw, where w is the exact solution. The integrals F
and S shift by
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dF ¼
Z1

�1
dz dw zð ÞDq2 zð Þw0ðzÞ; ð4:11Þ

dS ¼ 2
Z1

�1
dz dw zð ÞDq2 zð Þ w zð Þþ

Z1

�1
dfDq2 fð ÞG z; fð ÞwðfÞ

8

<

:

9

=

;
: ð4:12Þ

From (4.5) the quantity in braces is equal to w0ðzÞ, and so dS ¼ 2dF. But S ¼ F, so
dS=S ¼ 2dF=F, or

dðF2=SÞ ¼ 0: ð4:13Þ

This is the variational principle: the correct w will extremize F2=S. For an
approximate w the extremal value of F2=S approximates F ¼ 2iq1ðr0 � rÞ and thus
we have a variational estimate for the reflection amplitude:

rvar ¼ r0 � F2=2iq1S: ð4:14Þ

In general one has a parametrized trial function wvarðzÞ, which when substituted for
w gives the values Fvar and Svar. The parameters which extremize Fvarð Þ2=Svar then
give the best value (in the space spanned by the trial function) of the reflection
amplitude. However, a useful variational estimate can be obtained without any
variational parameters in w, provided w is well chosen.

The simplest choice is wvar ¼ w0. Denote the corresponding values of F and S
by F0 and S0, and the resulting variational estimate for r by r0þ rvar1 . Then

rvar1 ¼ �F2
0=2iq1S0: ð4:15Þ

From (4.7) and (4.8)

S0 ¼ F0þ
Z1

�1
dzDq2 zð Þw0 zð Þ

Z1

�1
dfDq2 fð ÞG z; fð Þw0ðfÞ; ð4:16Þ

while from (4.9) we see that

F0 ¼ �2iq1r1; ð4:17Þ

where r1 is the first order term in the perturbation series

r ¼ r0þ r1þ r2þ � � � : ð4:18Þ
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Thus

rvar1 ¼
r1F0

S0
¼ r1

1þ i
2q1r1

R1
�1 dzDq2 zð Þw0 zð Þ R1�1 dfDq2 fð ÞG z; fð Þw0ðfÞ

: ð4:19Þ

We will apply this general expression to reflection of the electromagnetic s wave in
the next two sections.

4.2 Variational Estimate for rs in the Long Wave Case

The formulae of the previous section apply directly to the electromagnetic s wave,
with w ¼ E; q2 ¼ ex2=c2 � K2. In the long wave case the appropriate starting
point for perturbation theory is the step profile

q20 zð Þ ¼ 1
2

q21þ q22
� �� 1

2
q21 � q22
� �

sgnðzÞ; ð4:20Þ

and the corresponding solution

E0 zð Þ ¼ eiq1zþ r0e�iq1z ðz\0Þ
t0eiq2z ðz[ 0Þ

�

ð4:21Þ

where r0 ¼ ðq1 � q2Þ=ðq1þ q2Þ and t0 ¼ 2q1=ðq1þ q2Þ ¼ 1þ r0. The Green’s
function for this case was given in Sect. 3.1 and (3.10). The first order term of
perturbation theory is given by (3.13):

r1 ¼ i
2q1

Z0

�1
dzDq2 zð Þ eiq1zþ r0e�iq1z

� �2þ i
q1þ q2

1þ r0ð Þ
Z1

0

dzDq2ðzÞe2iq2z:

ð4:22Þ

The variational estimate of rs obtained from (4.19) on substituting (4.21), (4.22) and
the Green’s function of Sect. 3.1, has built into it two important general properties:
it is correct to second order in the interfacial thickness/wavelength expansion, and it
is correct at grazing incidence.

To verify the first statement, we express the expansion of rvars in terms the
integrals

kn ¼
Z1

�1
dz e zð Þ � e0 zð Þ½ �zn�1; ð4:23Þ

defined in Sect. 3.2. We find
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rvars ¼ r0þ 2iq1x2=c2

q1þ q2ð Þ2 k1þ 2iq2k2þ ix2=c2

q1þ q2
k21þ � � �

� �

: ð4:24Þ

This is correct to second order in the interface thickness, for all positioning of the
reference profile e0ðzÞ (see (3.22)). In contrast, the expansion of r1 is correct to this
order only if the relative positioning of e and e0 is such as to make k1 equal to zero.
Such positioning is in general possible only when e1 6¼ e2 and e is real everywhere.

To verify that rvars correctly tends to �1 at grazing incidence (an exact general
result, as shown in Sect. 2.3) we need to consider the e1 6¼ e2 and e1 ¼ e2 cases
separately. When e1 6¼ e2, r1 and rvar1 become proportional to q1 as q1 ! 0, while
r0 ! �1 and so rvars ! �1. When e1 ¼ e2, let q0 be the common value of q1 and

q2. As q0 ! 0; r1 ! i x=cð Þ2k1=2q0 and S0 � F0 ! x=cð Þ4k21=2iq0. From (4.19)
we see that rvar1 correctly tends to �1 as q0 tends to zero. This is in contrast to the
divergence of the perturbation expression r1 at grazing incidence, as can.be seen by
setting q1 ¼ q2 ¼ q0 in (4.22):

r1s ¼ i
2q0

Z1

�1
dzDq2 zð Þe2iq0z: ð4:25Þ

4.3 Exact, Perturbation and Variational Results
for the sech2 Profile

The comparative accuracy of the perturbation and variational expressions for the
reflectivity is conveniently demonstrated by the sech2 profile

eðzÞ ¼ e0þDe sech2 z=a; ð4:26Þ

for which the exact, perturbation and variational results can all be found analytically
for the s wave. The s wave equation reads

d2E
dz2
þ q20þDe

x2

c2
sech2 z=a

� �

E ¼ 0; ð4:27Þ

where

q20 ¼ e0
x2

c2
� K2 ¼ e0

x2

c2
cos2 h ð4:28Þ

gives the common value at z ¼ �1 of the wavenumber component q0 perpen-
dicular to the interface, and h is the common value of the angles of incidence and
transmission.
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A solution of (4.27) in terms of the hypergeometric function (defined and dis-
cussed in Sect. 2.5) can be found by changing to the variable s ¼ tanh z=a (Epstein
1930; Budden 1961, 1985; Landau and Lifshitz 1965). It is an imaginary power of
sech z=a times a hypergeometric function,

E ¼ 1� s2
� ��ib

2Fð�s� ib; 1þ s� ib; 1� ib;
1
2

1� sð ÞÞ: ð4:29Þ

The dimensionless parameters in (4.29) are

a ¼ De
xa
c

� 	2
; b ¼ q0a; s ¼ 1

2
1þ 4að Þ12�1

h i

: ð4:30Þ

As noted in Sect. 3.5, the problem is characterized by the two parameters a (or s)
and b. As z! �1; 1� s! 2e2z=a, and E tends to eiq0z times a constant (2�ib), as
required for the reflection problem. The limiting form of E as z! �1 (and
s! �1; 1þ s! 2e2z=a) is found by using the relation between hypergeometric
functions of f and 1� f,

F a; b; c; fð Þ ¼ C cð ÞC c� a� bð Þ
C c� að ÞC c� bð ÞF a; b; 1þ aþ b� c; 1� fð Þ

þ C cð ÞC aþ b� cð Þ
C að ÞC bð Þ 1� fð Þc�a�bFðc� a; c� b; 1þ c� a� b; 1� fÞ;

ð4:31Þ

which holds for argð1� fÞj j\p (Oberhettinger 1964). With f ¼ ð1� sÞ=2 and
1� f ¼ ð1þ sÞ=2! e2z=a, this gives

2�ibC 1� ibð Þ C �ibð Þ
C �s� ibð ÞC 1þ s� ibð Þ e

iq0zþ C ibð Þ
C 1þ sð ÞC �sð Þ e

�iq0z
� �

 E:

ð4:32Þ

The reflection amplitude rs is the ratio of the coefficient of e�iq0z to that of eiq0z, and
is therefore given by

rs ¼ C ibð ÞC �s� ibð ÞC 1þ s� ibð Þ
C �ibð ÞC 1þ sð ÞC �sð Þ ¼ C ibð ÞC 1þ s� ibð Þ sinps

C �ibð ÞC 1þ sþ ibð Þ sin p sþ ibð Þ : ð4:33Þ

(The second form is obtained by using C zð ÞC 1� zð Þ ¼ p= sinpz.) We see that
rs ! �1 at grazing incidence (Sect. 2.3), since as b ¼ q0a tends to zero,
C ibð Þ=C �ibð Þ ! �1 (see (2.86)).

We note that s is an integer n when a ¼ nðnþ 1Þ. The reflection amplitude
(4.33) is then zero, for any b (for all angles of incidence). This remarkable
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reflection-less property is explored in Lekner (2007), and also in Sect. 19.2 in the
quantum particle wavepacket context.

The transmission amplitude is the ratio of the coefficients of eiq0z in the limiting
forms as z! �1. We find

ts ¼ C �s� ibð ÞC 1þ s� ibð Þ
C �ibð ÞC 1� ibð Þ ¼ � C ibð ÞC 1þ s� ibð Þ sin pib

C �ibð ÞC 1þ sþ ibð Þ sinp sþ ibð Þ : ð4:34Þ

When s is real (a� � 1=4),

rsj j2¼
cos2 p=2 1þ 4að Þ1=2

h i

cos2 p=2 1þ 4að Þ1=2
h i

þ sinh2 pb
; ð4:35Þ

and tsj j2¼ 1� rsj j2, which is a special case of the conservation law q1 1� rj j2
� 	

¼
q2 tj j2 of Sect. 2.1.

When a ¼ De xa=cð Þ2\� 1=4, s is complex:

s ¼ � 1
2
þ ir; r ¼ 1

2
4 aj j � 1ð Þ12: ð4:36Þ

On setting z ¼ 1
2 þ iy in C zð ÞC 1� zð Þ ¼ p= sin pz we obtain

C
1
2
þ iy


 ��
�
�
�

�
�
�
�

2

¼ p
cosh py

: ð4:37Þ

Using this in (4.33) and (4.34) gives

rsj j2¼ cosh2 pr

cosh2 prþ sinh2 pb
; tsj j2¼ sinh2 pr

cosh2 prþ sinh2 pb
: ð4:38Þ

For the comparison with perturbation and variational theories we restrict our-
selves to De[ 0 (and thus a[ 0; s real). The reflectivity is then given by (4.35),
with the corresponding perturbation and variational expressions found from (4.25)
and (4.19):

r1sj j2¼ pa= sinh pbð Þ2; ð4:39Þ

rvar1s

�
�

�
�
2¼ r1sj j2

1þ að Þ2þ a=bð Þ2 : ð4:40Þ

These expressions are compared in Figs. 4.1 and 4.2. We note that both the first
order perturbation theory and the variational theory based on the free-space
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wavefunction are good at small values of xa=c. This is to be expected, since the
reflection is then small. Neither theory gives the reflectivity zeros at a ¼
De xa=cð Þ2¼ nðnþ 1Þ (integer n), but the variational expression is closer to the
exact values at all values of xa=c, and gives the correct unit reflectivity at glancing
incidence.

Fig. 4.1 Normal incidence reflectivity for the sech2 z=a profile, as a function of the profile
thickness. The reflectivities are plotted for e0 ¼ 1;De ¼ 1. For these parameters, the exact
reflectivity is zero at xa=cð Þ2¼ 2; 6; 12; . . .nðnþ 1Þ: The curve labelled e gives the exact
reflectivity, (4.35); the curve v the variational estimate, (4.40); and the curve p the perturbation
expression, (4.39)

Fig. 4.2 Reflectivity as a
function of the angle of
incidence for the sech2 z=a
profile. The exact, variational
and perturbation results are
denoted by e, v and p. The
curves are drawn for
e0 ¼ 1;De ¼ 1;xa=c ¼ 1
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4.4 Variational Theory for the p Wave

As in the s wave case, a variational estimate for the reflection amplitude builds on
the corresponding perturbation theory. The long wave perturbation theory for the
p wave was outlined in Sect. 3.4, and will be summarized here. The p wave has
B ¼ ð0; eiKxB zð Þ; 0Þ, where K has the same meaning as for the s wave, and B
satisfies

d
dz

1
e
dB
dz


 �

þ x2

c2
� K2

e


 �

B ¼ 0; ð4:41Þ

eiq1z � rpe�iq1z  BðzÞ ! e2
e1


 �1
2

tpeiq2z: ð4:42Þ

The required Green’s function satisfies

@

@z
1
e0

@G
@z


 �

þ x2

c2
� K2

e0


 �

G ¼ d z� fð Þ; ð4:43Þ

where e0ðzÞ is the step function profile, and Gðz; fÞ was given in (3.48). B satisfies
the integro-differential equation

B0 zð Þ ¼ B zð Þ �
Z1

�1
dfDv fð Þ K2B fð ÞG z; fð Þþ dB

df
@G
@f

� �

; ð4:44Þ

In (4.44) Dv ¼ 1=e� 1=e0 and

B0 zð Þ ¼
eiq1z � rp0e�iq1z ðz\0Þ

e2
e1

� 	1
2
tp0eiq2z ðz[ 0Þ

8

<

:
ð4:45Þ

In (4.45) the reflection and transmission amplitudes of the step profile e0ðzÞ are

�rp0 ¼ Q1 � Q2

Q1þQ2
;

e2
e1


 �1
2

tp0 ¼ 2Q1

Q1þQ2
: ð4:46Þ

As usual, Q1 ¼ q1=e1 and Q2 ¼ q2=e2.
An exact expression for rp is obtained from (4.44) by extracting the coefficient of

e�iq1z as z! �1. This is
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rp ¼ rp0 � 1
2iQ1

Z1

�1
dfDv fð Þ K2B fð ÞB0 fð Þþ dB

df
dB0

df

� �

¼ rp0 � 1
2iQ1

Z1

�1
df K2DvBB0 � DeCC0

 � ð4:47Þ

where De ¼ e� e0;C ¼ e�1dB=df and C0 ¼ e�10 dB0=df. The first order perturba-
tion theory expression for rp is obtained by replacing B by B0 and C by C0 in (4.47).
(This is equivalent to lowest order in Dv to replacing dB=df by dB0=df but is
preferable since C is continuous at a discontinuity in the dielectric function, as can
be seen from (4.41), while dB=df is not, and since the resulting reflection amplitude
gives the correct first order term in the interface thickness/wavelength expansion, to
all orders in DvÞ. Thus in the expansion rp ¼ rp0þ r1þ r2þ � � � ;

r1 ¼ � 1
2iQ1

Z1

�1
df K2DvB2

0 � DeC2
0


 �

: ð4:48Þ

The variational expression for rp is obtained by operating on (4.44) with

Z1

�1
dz DvK2B� d

dz
Dv

dB
dz


 �� �

: ð4:49Þ

As in the s wave case, the resulting equation can again be put in the form F ¼ S,
where the term of the first degree in B is

F ¼
Z1

�1
dzDv K2B zð ÞB0 zð Þþ dB

dz
dB0

dz

� �

¼ 2iQ1ðrp0 � rpÞ ð4:50Þ

(the second equality follows from (4.47)). The term of second degree in the
unknown B is

S ¼
Z1

�1
dzDvK2B B�

Z1

�1
dfDv K2BGþ dB

df
@G
@f

� �
8

<

:

9

=

;

þ
Z1

�1
dzDv

dB
dz

dB
dz
�

Z1

�1
dfDv K2B

@G
@z
þ dB

df
@2G
@z@f

� �
8

<

:

9

=

;
:

ð4:51Þ
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We again find dS ¼ 2dF and hence the variational principle d F2=Sð Þ ¼ 0. Thus the
device of operating on the integral equation with (4.49) produces a variational
estimate

rvarp ¼ rp0 � F2=S
2iQ1

; ð4:52Þ

in parallel with the corresponding expression for the s wave, (4.14).
The simplest trial function for BðzÞ is B0ðzÞ. This gives the values F0 and S0 for

F and S, where

F0 ¼
Z1

�1
dz DvK2B2

0 � DeC2
0


 � ¼ �2iQ1r1: ð4:53Þ

In the evaluation of S we must take care to include the �e0ðzÞdðz� fÞ singularity in
@2G=@z@f. We find, for general B,

S ¼
Z1

�1
dz DvK2B2 � DeC2
 �� K4

Z1

�1
dzDvB

Z1

�1
dfDvBG

þ 2K2
Z1

�1
dzDvB

Z1

�1
dfDeCe�10 @G=@f

�
Z1

�1
dz

De
e0

C
Z1

�1
df

De
e0

C
@2G
@z@f


 �

r
;

ð4:54Þ

where

@2G
@z@f


 �

r
¼ @2G

@z@f
þ e0ðzÞdðz� fÞ ð4:55Þ

is the regular part of @2G=@z@f. The value of S0 is found by replacing B with B0 in
(4.54), and the resulting variational estimate for the reflection amplitude has the
form

rvarp ¼ rp0þ F0

S0
r1: ð4:56Þ

This expression gives a reflectivity which is correct to second order in the
interface thickness/wavelength expansion, as may be shown by comparing the
expansion of (4.56) with (3.50) (some reduction is required). Also built-in to the
variational estimate (4.56) is the correct limiting value rp ! 1 at grazing incidence
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(Sect. 2.3). The cases of equal and unequal e1 and e2 must be considered separately.
When e1 ¼ e2; rp0 ¼ 0 and F0=S0ð Þr1 ! 1 as Q0 ! 0, Q0 being the common value
of Q1 and Q2. When e1 6¼ e2; F0=S0ð Þr1 ! 0 as Q1 ! 0, and rvarp ! 1 because
rp0 ! 1.

4.5 Reflection by a Layer Between Like Media

The variational formulae of Sects. 4.2 and 4.4 simplify considerably in the
important special case of a reflecting layer between like media. As usual we set e0
equal to the common value of e1 and e2, and likewise for q0; De stands for e� e0,
the deviation of the dielectric function from the ambient value. The variational
theory based on long wave perturbation theory then gives rvars in terms of two
integrals,

k kð Þ ¼
Z1

�1
dz eikzDe; ð4:57Þ

r kð Þ ¼
Z1

�1
dzDe eikz

Zz

�1
dfDeþ

Z1

z

dfeikfDe

8

<

:

9

=

;
: ð4:58Þ

In terms of these integrals,

rvars ¼ �
x2=c2

2iq0
k 2q0ð Þ

1þ x2=c2

2iq0
r 2q0ð Þ
k 2q0ð Þ

: ð4:59Þ

The analogous result for the p wave is

rvarp ¼ �
q20k 2q0ð Þ � K2K 2q0ð Þ� �

=2iq0

1þ q40r 2q0ð Þ�K4R 2q0ð Þ�2q20K2C 2q0ð Þ
2iq0 q20k 2q0ð Þ�K2K 2q0ð Þ½ �

; ð4:60Þ

where

K kð Þ ¼ e0

Z1

�1
dz eikzDe=e; ð4:61Þ

R kð Þ ¼ e20

Z1

�1
dzDe=e eikz

Zz

�1
dfDe=eþ

Z1

z

df eikfDe=e

8

<

:

9

=

;
; ð4:62Þ

106 4 Variational Theory

http://dx.doi.org/10.1007/978-3-319-23627-8_2


C kð Þ ¼ e0

Z1

�1
dzDe=e eikz

Zz

�1
dfDe�

Z1

z

df eikfDe

8

<

:

9

=

;
: ð4:63Þ

(In both the r and R expressions, the first and second terms are equal because of the
z; f symmetry of the integrands.) Of the five integrals, k and K are Fourier trans-
forms of De and e0De=e, respectively, and have the dimension of length. The
integrals r;R and C have dimensions of length squared. At grazing incidence, when
q0 ! 0, the results rvars ! �1 and rvarp ! 1 follow from

r 0ð Þ ¼ k2 0ð Þ; R 0ð Þ ¼ K2ð0Þ: ð4:64Þ

At normal incidence, when K ! 0 and q0 ! ffiffiffiffi
e0
p

x=c ¼ k0, both reflection
amplitudes tend to

rvarn ¼ �
k0
2ie0

k 2k0ð Þ
1þ k0

2ie0
r 2k0ð Þ
k 2k0ð Þ

: ð4:65Þ

From (4.60) we see that a layer between like media does not reflect the p wave
(according to both the first order perturbation and variational theories) at an angle

h ¼ arctan k 2k0ð Þ=K 2k0ð Þf g12: ð4:66Þ

This is an approximate extension of the rigorous result obtained in Sect. 3.5, that, to
lowest order in the interface thickness, there is zero reflection of the p wave at

h0 ¼ arctan k1=K1f g12. Note that the ratio of k 2k0ð Þ to K 2k0ð Þ is not real in general.
Zero reflection at a certain angle is thus characteristic of thin films; as we saw in
Sect. 3.5, it also characterizes homogeneous films of any thickness.

We shall compare the variational and perturbation theories with exact results for
the homogeneous layer with dielectric constant e for z1� z� z2 ¼ z1þDz; exact
expressions for the reflection amplitudes are given in Sect. 2.4. In this case De and
De=e are both constant within the layer, and only the two integrals k and K are
required for the perturbation and variational reflection amplitudes, since

K kð Þ ¼ e0
e
k kð Þ; R kð Þ ¼ e0

e

� 	2
r kð Þ; C kð Þ ¼ 0: ð4:67Þ

The expression (4.60) then reduces to

rvarp ¼ �
x=c

2i
ffiffiffi
e0
p

cos h cos2 h� e0
e sin

2 h

 �

kð2q0Þ
1þ x=c

2i
ffiffiffi
e0
p

cos h cos2 hþ e0
e sin

2 h

 � rð2q0Þ

kð2q0Þ
; ð4:68Þ
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correctly giving zero reflection at h ¼ arctanðe=e0Þ
1
2. For the integrals k and r we

find

k 2q0ð Þ ¼ DeDzeiq0 z1 þ z2ð Þj0ðq0DzÞ; ð4:69Þ

r 2q0ð Þ ¼ DeDzð Þ2eiq0 z1 þ z2ð Þ j0 q0Dzð Þþ ij1ðq0DzÞf g; ð4:70Þ

where j0 xð Þ ¼ x�1 sin x and j1 xð Þ ¼ x�2 sin x� x�1 cos x are spherical Bessel
functions.

In the figures below we compare the exact (e), perturbation (p) and variational
(v) expressions for the reflectivity Rn at normal incidence as a function of the layer
thickness (Fig. 4.3), Rs and Rp as a function of the angle of incidence (Figs. 4.4 and
4.5), and rp=rs in the complex plane as a function of the angle of incidence
(Fig. 4.6). The comparison is made for the values e0 ¼ 1; e ¼ 2ðDe ¼ 1Þ.

In the final figure we show the ellipsometric ratio, rp=rs. In the perturbation

theory based on the free space wavefunction, rp
rs
� 1� cK

x

� �2eþ e0
ee0

, a real quantity
which starts at unity at normal incidence, and tends to �e0=e at glancing incidence.
(The perturbation expressions for rs and rp are given in (4.13) and (4.37) of Lekner
1986, for a general inhomogeneous layer between like media. Equation (4.25) of
this chapter gives r1s.)

Fig. 4.3 Normal incidence
reflectivity for a homogenous
layer, as a function of the
layer thickness Dz. The exact
reflectivity is the labelled e,
the variational result v, and
the perturbation result p. In
this and the following figures,
e0 ¼ 1 and e ¼ 2
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Fig. 4.4 Reflectivity for the s wave from a homogeneous layer, as a function of the angle of
incidence, at x=cð ÞDz ¼ 2. The exact, perturbation, and variational results are denoted by e, v and
p as before. Note that the perturbation theory, based (as is the variational theory) on the free space
wavefunction, is in poor agreement with the exact reflectivity, and fails completely at large angles
of incidence, where the approximate reflectivity exceeds unity

Fig. 4.5 Reflectivity for the p wave as a function of the angle of incidence, at x=cð ÞDz ¼ 2. The
exact, perturbation and variational reflectivities are all zero at h ¼ arctan

ffiffiffi

2
p � 54:7	. Again the

perturbation theory fails completely near glancing incidence
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4.6 The Hulthén-Kohn Variational Method Applied
to Reflection

We have seen that the adaptation of Schwinger’s variational technique in scattering
theory to reflection has led, with the simplest trial function, to s and p reflection
amplitudes which are correct to second order to the interface thickness, and are
correct at grazing incidence. These desirable features have been obtained at the cost
of some complexity, and we shall now show how the simpler method developed by
Hulthén (1948) and Kohn (1948) for scattering problems may be applied to
reflection.

We begin with the s wave, for which the exact field amplitude E satisfies

d2E
dz2
þ q2E ¼ 0; eiq1zþ re�iq1z  E ! teiq2z ð4:71Þ

(we drop the subscript s except where needed to distinguish the s and p results).
Consider the functional

U Et½ � ¼
Z1

�1
dz Et

d2Et

dz2
þ q2Et


 �

ð4:72Þ

Fig. 4.6 The real and imaginary parts of the ratio rp=rs, plotted in in the complex plane, for
x=cð ÞDz ¼ 1, as the incidence varies from normal to glancing. The exact and variational
trajectories are the curves labelled e and v. The perturbation trajectory (p) lies along the real axis
between þ 1 and �e0=e ¼ �1=2. All three trajectories start at þ 1 at normal incidence and pass
through the origin at h ¼ arctan

ffiffiffiffiffiffiffiffiffi

e=e0
p ¼ arctan

ffiffiffi

2
p � 54:7	. Only the perturbation trajectory does

not end at �1 at glancing incidence
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of the trial function Et, which we take to have the limiting forms

eiq1zþ rte�iq1z  Et ! tteiq2z: ð4:73Þ

The trial function differs from the exact E by dE ¼ Et � E, with

eiq1zþ dre�iq1z  dE ! dteiq2z; ð4:74Þ

where dr ¼ rt � r and dt ¼ tt � t. We find

dU ¼ U Eþ dE½ � � U E½ � ¼ E
ddE
dz
� dE

dE
dz

� �1

�1
þ O dEð Þ2: ð4:75Þ

(This result follows on two integrations-by-parts, and the use of the fact that, from
(4.71), U E½ � ¼ 0.) From (4.71) to (4.75) we obtain the result dU ¼ 2iq1dr, which
can be written in the form of a variational principle:

d U� 2iq1rð Þ ¼ 0: ð4:76Þ

In the application of this principle, we use a trial Et and the corresponding rt and tt,
to evaluate U½Et�; then from (4.76)

dU ¼ U Et½ � ¼ 2iq1 rt � rð ÞþO dEð Þ2 ð4:77Þ

The variational estimate for the reflection amplitude is thus

rvar ¼ rt � U½Et�=2iq1: ð4:78Þ

As an example, consider the simplest long-wave trial function Et ¼ E0, the step
profile solution given in (4.21). With q2 ¼ q20þDq2 as before,

U E0½ � ¼
Z1

�1
dzDq2E2

0; ð4:79Þ

which we recognise as the F0 of the previous variational treatment. Thus the trial
function E0 leads to the first order perturbation result (compare (4.17))

rvars ¼ rs0 � F0

2iq1
¼ rs0þ r1: ð4:80Þ

Similarly, in the short wave case the trial function Et ¼ q1=qð Þ1=2ei/ produces the
perturbation result (6.55):

4.6 The Hulthén-Kohn Variational Method Applied to Reflection 111

http://dx.doi.org/10.1007/978-3-319-23627-8_6


rvars ¼
1
4i

Z1

�1
dz

d
dz

dq=dz

q
3
2


 �

q�
1
2e2i/: ð4:81Þ

The corresponding results for the p wave are not as satisfactory: if one defines
the functional

U Bt½ � ¼
Z1

�1
dz Bt

d
dz

1
e
dBt

dz


 �

þ x2

c2
� K2

e


 �

Bt

� �

ð4:82Þ

of the trial function Bt, the variational principle takes the form

d Uþ 2iQ1rp
� � ¼ 0: ð4:83Þ

For the zeroth-order trial function B0 defined in (4.45),

rvarp ¼ rp0þ U B0½ �
2iQ1

¼ rp0 � 1
2iQ1

Z1

�1
dzDv K2B0þ dB0=dzð Þ2

n o

: ð4:84Þ

This agrees with the perturbation result (4.48) only to lowest order in
Dv ¼ 1=e� 1=e0. In consequence, (4.84) does not give the correct result to first
order in the interface thickness (given by (3.44)), and does not agree with rvars at
normal incidence.

The adaptation of the Hulthén-Kohn variational method to reflection problems is
thus seen to give results which are inferior, for the simplest trial functions, to that
obtained from adapting the Schwinger method. However, the greater simplicity of
the Hulthén-Kohn method makes possible the use of more sophisticated trial
functions (Joachain 1975, Chap. 10).

4.7 Variational Estimates in the Short Wave Case

We consider the s wave first. The variational theory is built on the perturbation
theory of Sect. 6.5. The appropriate Green’s function is given by (6.69):

2i q zð Þq fð Þ½ �12G z; fð Þ ¼ exp i / fð Þ � / zð Þ½ �ð Þ z\f
exp i / zð Þ � / fð Þ½ �ð Þ z[f

�

ð4:85Þ

where / is the phase integral
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/ zð Þ ¼
Zz

dfqðfÞ ð4:86Þ

which is discussed in Sect. 6.2. The simplest variational expression uses

wþ1 ¼ q1=q½ �12ei/ ð4:87Þ

as the trial function. Setting w0 ¼ wþ1 in (4.19) we obtain the variational estimate

rvars ¼ r1s = 1þ i
2r1s

Z1

�1
dz q�

1
2Dq2ei/

Z1

�1
df q�

1
2Dq2ei/Gðz; fÞ

8

<

:

9

=

;
; ð4:88Þ

where the numerator is the short wave fist-order perturbation result,

r1s ¼
1
4i

Z1

�1
dz q�

1
2
d
dz

dq=dz

q
3
2


 �

e2i/: ð4:89Þ

On using (4.85) and the expression (6.73), namely

Dq2 ¼ � 1
2
q

1
2
d
dz

dq=dz

q
3
2


 �

;

the double integral in (4.88) reduces to

1
4i

Z1

�1
dz

dc
dz
þ 1

2
qc2


 �

e2i/
Z1

�1
df

dc
df
þ 1

2
qc2


 �

: ð4:90Þ

Here, as in Chap. 6, c is the dimensionless function q�2dq=dz, and we have used the
fact that

q�
1
2
d
dz

dq=dz

q
3
2


 �

¼ dc
dz
þ 1

2
qc2: ð4:91Þ

The evaluation of (4.90) involves a triple integration (unless the phase integral /
can be evaluated analytically), making it more difficult to apply than the long wave
variational expression.
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A variational theory for rp in the short wave case may be derived along the same

lines, since b ¼ e1=eð Þ12B satisfies an equation of the same form as E. The results are
however so complex that they are unlikely to have practical value.
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Chapter 5
Equations for the Reflection Amplitudes

For some purposes, both analytical and numerical, it is useful to transform the linear
second order differential equation for the wave amplitude into a non-linear first
order Riccati type differential equation for a quantity related to the reflection
amplitude. The advantage lies in dealing directly with the quantity one wants to
calculate. A disadvantage is the non-linearity of the resulting equations.

Early applications of this approach to the calculation of reflection amplitudes
were by Walker and Wax (1946), Kofink (1947), Brekhovskikh (1949, 1980) and
Schelkunoff (1951). This was preceded by development of related techniques in
scattering theory, beginning with Morse and Allis (1933), and fully covered in
Calogero’s book (1967). Analogous methods were used by Courant and Hilbert
(1953) to obtain the asymptotic forms of Bessel functions.

5.1 A First Order Non-linear Equation for an s Wave
Reflection Coefficient

We first rewrite the second order differential equation for the electromagnetic s
wave (and, equivalently, for particle waves) as a pair of coupled first order equa-
tions: the equation

E00 þ q2E ¼ 0 ð5:1Þ

is equivalent to the pair

E0 ¼ D; D0 ¼ �q2E ð5:2Þ

(primes denote differentiation with respect to z). In turn, new functions F and G are
introduced, defined by (5.2) and the equations

E ¼ FþG; D ¼ iqðF � GÞ: ð5:3Þ
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We shall see shortly that F and G have the character of incident and reflected
waves, tending to a constant times expð�iq1zÞ as z! �1. The ratio of these
functions thus tends to rs times expð�2iq1zÞ as z! �1, since rs is defined as the
ratio of the coefficient of expð�iq1zÞ to that of expðþ iq1zÞ as z! �1.

On substituting (5.3) into (5.2) we obtain a pair of coupled first order equations
for F and G, which may be solved for F0 and G0 to give

F0 ¼ iqF � q0

2q
ðF � GÞ; ð5:4Þ

G0 ¼ �iqGþ q0

2q
ðF � GÞ: ð5:5Þ

(When q is constant we see that F and G are proportional to expð�iq1zÞ). We now
multiply (5.4) by G, (5.5) by F, subtract, and divide the result by F2, obtaining an
equation for q ¼ G=F:

q0 þ 2iqq� q0

2q
1� q2
� � ¼ 0: ð5:6Þ

The limiting forms of q as z! �1 are

rs exp �2iq1zð Þ  q! 0: ð5:7Þ

The absolute square of q at z! �1 gives the reflectivity:

q �1ð Þj j2¼ rsj j2¼ Rs: ð5:8Þ

When q is real everywhere, the equation for the complex conjugate of q is

q�0 � 2iqq� � q0

2q
1� q�2
� � ¼ 0: ð5:9Þ

From (5.6) and (5.9) we may obtain an equation for the reflectivity function
R ¼ qq�:

R0 ¼ q0

q
Re qð Þ 1� Rð Þ: ð5:10Þ

The boundary conditions on RðzÞ are

R 1ð Þ ¼ 0; R �1ð Þ ¼ Rs: ð5:11Þ

On dividing both sides of (5.10) by 1� R, and integrating from �1 to þ1, we
obtain
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ln 1� Rsð Þ ¼
Z1

�1
dz

q0

q
Re qð Þ: ð5:12Þ

The right-hand side is real, and thus Rs� 1, as we proved first in Sect. 2.2. More
generally, (5.10) divided by 1� R can be integrated from z0 to infinity, giving

ln 1� Rðz0Þð Þ ¼
Z1

z0

dz
q0

q
Re qð Þ; ð5:13Þ

so that RðzÞ is less than unity everywhere. This is in accord with the physical
interpretation of q z0ð Þj j2¼ Rðz0Þ, namely that of the reflectivity of a profile trun-
cated at z0, as shown in Fig. 5.1.

5.2 An Example: Reflection by the Linear Profile

We will illustrate the variation of R with z0 for the linear profile of Fig. 5.1

e zð Þ ¼
e1 z� z1
e1þðDe=DzÞ z� z1ð Þ z1� z� z2
e2 z� z2

8

<

:
ð5:14Þ

Fig. 5.1 The functions qðz0Þ andRðz0Þ correspond to a profile truncated at z0, that is having e ¼ eðzÞ
for z� z0, and e ¼ eðz0Þ for z� z0. As z0 increases from�1 the reflectivity Rðz0Þ changes from the
value Rs for the full profile to zero (the profile variation need not be monotonic; a linear profile is
illustrated.)
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As usual, De ¼ e2 � e1;Dz ¼ z2 � z1. At the same time we will give some of the
properties of the solutions of (5.1) when e is linear in z (the Airy functions), which
will be useful later as solutions in the neighbourhood of classical turning points
(Sects. 6.7 and 6.8). Within the interval ðz1; z2Þ e is linear in z. As an intermediate
step we make e the independent variable. Equation (5.1) transforms to

d2E
de2
þ Dz

De
x
c

� �2

e� cK
x

� �2
" #

E ¼ 0: ð5:15Þ

We now transform to the variable x ¼ se, where

s ¼ Dz
De

�
�
�
�

�
�
�
�

x
c

� �2
3

: ð5:16Þ

Equation (5.15) becomes

d2E
dx2
þ x� s

cK
x

� �2
" #

E ¼ 0: ð5:17Þ

This equation has the general solution

E ¼ aAi s cK=xð Þ2� x
h i

þ bBi s cK=xð Þ2� x
h i

; ð5:18Þ

where Ai and Bi are Airy functions, the solutions of

d2E

df2
� fE ¼ 0: ð5:19Þ

This is known as the Airy differential equation (Heading 1962, Appendix A.3;
Olver 2010). It has two power series solutions which are convergent for all f:

f fð Þ ¼ 1þ f3

3!
þ 1:4f6

6!
þ 1:4:7f9

9!
þ � � � ð5:20Þ

g fð Þ ¼ fþ 2f4

4!
þ 2:5f7

7!
þ 2:5:8f10

10!
þ � � � ð5:21Þ

The standard pair of independent solutions are

Ai fð Þ ¼ c1f fð Þ � c2g fð Þ; Bi fð Þ ¼
ffiffiffi

3
p

c1f fð Þþ c2g fð Þ½ �; ð5:22Þ
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where

c1 ¼ Aið0Þ ¼ Bið0Þ=
ffiffiffi

3
p
¼ 3

2
3C

2
3

� �� 	�1
¼ 0:355028. . .

c2 ¼ �Ai0ð0Þ ¼ Bi0ð0Þ=
ffiffiffi

3
p
¼ 3

1
3C

1
3

� �� 	�1
¼ 0:258819. . .

ð5:23Þ

From the solution (5.18) and the general formula (2.25) we can immediately obtain
the s wave reflection amplitude, care being taken to convert between derivatives
with respect to z and x via

dE
dz
¼ De

Dz
dE
de
¼ De

Dz
s
dE
dx

: ð5:24Þ

The result is

rs ¼ e2iq1z1
q1q2 A1B2 � B1A2ð Þþ iq1 A1B02 � B1A02

� �þ iq2 A01B2 � B01A2
� �� ðA01B02 � B01A

0
2Þ

q1q2 A1B2 � B1A2ð Þþ iq1 A1B02 � B1A02
� �� iq2 A01B2 � B01A2

� �þðA01B02 � B01A
0
2Þ

ð5:25Þ

where

A1 ¼Ai s
cK
x

� �2

�se1
" #

¼ Ai �s cq1
x


 �2
� 	

;

A2 ¼Ai s
cK
x

� �2

�se2
" #

¼ Ai �s cq2
x


 �2
� 	

;

ð5:26Þ

with similar definition of B1 and B2 in terms of Bi; and

A01 ¼ �
De
Dz

sAi0 �s cq1
x


 �2
� 	

; etc: ð5:27Þ

The reflectivity at normal incidence is shown in Fig. 5.2. Here we are interested in
the variation of q zð Þj j2 as z varies between z1 and z2. This may be obtained from the
above by treating e1 as a variable. More instructive in the present context is a
calculation of q ¼ G=F, where the functions F and G are found in terms of the
known E: from (5.3)

F ¼ 1
2

Eþ 1
iq
dE
dz

� 	

; G ¼ 1
2

E � 1
iq
dE
dz

� 	

: ð5:28Þ
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The condition G ¼ 0 at z ¼ z2 (or e ¼ e2) determines the ratio of the coefficients a
and b in (5.18):

a
b
¼ �B2 � B02=iq2

A2 � A02=iq2
: ð5:29Þ

The function q zð Þ and the reflectivity function R ¼ qq� are then obtained from

q zð Þ ¼ G
F
¼ iqE � dE=dz

iqEþ dE=dz
: ð5:30Þ

The results are equivalent to (5.25), with z1; e1 being replaced by z; e. Some
reflectivity function curves are shown in Fig. 5.3.

5.3 Differential Equation for a p Wave Reflection
Coefficient

The second order equation for the p wave,

d
dz

1
e
dB
dz

� �

þ x2

c2
� K2

e

� �

B ¼ 0; ð5:31Þ

Fig. 5.2 Normal incidence reflectivity of the linear profile, as a function of the layer thickness. As

in Fig. 5.1, e1 ¼ 1; e2 ¼ 3
2

� �2, representing an inhomogeneous dielectric layer on glass. The dashed
curve is the long-wave expression to second order in the interface thickness
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may be written as a pair of coupled first order equations

1
e
dB
dz
¼ C;

dC
dz
¼ � q2

e
B: ð5:32Þ

We now write

B ¼ FþG; C ¼ iq
e
ðF � GÞ: ð5:33Þ

On substitution into (5.32), with the usual definition of Q ¼ q=e, we find the
companion relations to (5.4) and (5.5):

F0 ¼ iqF � Q0

2Q
ðF � GÞ; ð5:34Þ

G0 ¼ �iqGþ Q0

2Q
ðF � GÞ: ð5:35Þ

Thus F and G again have the character of incident and reflected waves as z! �1,
being proportional to expð�iq1zÞ. The ratio q ¼ G=F now has the limiting forms

�rpexpð�2iq1zÞ  q! 0; ð5:36Þ

and satisfies the nonlinear first order equation

q0 þ 2iqq� Q0

2Q
1� q2
� � ¼ 0: ð5:37Þ

Fig. 5.3 Reflectivity function R ¼ qq� for the linear profile of extent Dz ¼ z2 � z1, with e1 ¼ 1
and e2 ¼ 3=2ð Þ2. The curves are drawn for x=cð ÞDz ¼ 2; 3 at normal incidence. Also shown as the

dashed curve is
ffiffi
e
p � ffiffiffiffi

e2
p� �

=
ffiffi
e
p þ ffiffiffiffi

e2
p� �� 
2

, the reflectivity of a step from eðzÞ to e2, which all
such curves approach as z! z2. For the linear profile, e zð Þ ¼ e1þðz� z1ÞDe=Dz
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When q is real everywhere, the p reflectivity function R ¼ qq� satisfies

R0 ¼ Q0

Q
ReðqÞð1� RÞ; ð5:38Þ

with the boundary conditions

R 1ð Þ ¼ 0; R �1ð Þ ¼ Rp: ð5:39Þ

The fact that Rp� 1 follows from integrating (5.38) over the whole range of z:

ln 1� Rp
� � ¼

Z1

�1
dz

Q0

Q
Re qð Þ: ð5:40Þ

This physically necessary upper bound of unity can be much improved, as we shall
see in the next section.

5.4 Upper Bounds on Rs and on Rp

It is intuitively plausible that the s wave will reflect less from a monotonically
increasing or decreasing profile than from a step profile with the same values of e1
and e2. This is in accord with the long wave result of Chap. 3,

Rs ¼ Rs0 � 4q1q2 x=cð Þ4
q1þ q2ð Þ4 i2þ � � � ; ð5:41Þ

where the invariant i2 was shown to be non-negative if eðzÞ lies between e1 and e2.
We will show now that a monotonic profile cannot reflect more of the s wave than
the corresponding step profile, at any angle of incidence:

Rs�Rs0 ¼ q1 � q2
q1þ q2

� �2

: ð5:42Þ

To prove this result we write q ¼ qj jeih in (5.6), and obtain a pair of coupled
equations for the modulus qj j and the phase h by separating the real and imaginary
parts:

qj j0� q0

2q
1� qj j2


 �

cos h ¼ 0; ð5:43Þ
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h0 þ 2qþ q0

2q
qj j�1þ qj j


 �

sin h ¼ 0: ð5:44Þ

We can rewrite (5.43) as

qj j0 1
1� qj j þ

1
1þ qj j

� �

¼ q0

q
cos h: ð5:45Þ

Integrating (5.45) from �1 to 1 and using (5.8), we obtain

ln
1þ rsj j
1� rsj j ¼ �

Z1

�1
dz

dq
qdz

cos h ¼ �
Zq2

q1

dq q�1 cos h: ð5:46Þ

This holds for any profile. Suppose now that eðzÞ increases monotonically from e1
to e2; the normal component of the wavevector then increases monotonically from
q1 to q2, and the right-hand side of (5.46) has the upper bound lnðq2=q1Þ. Thus

1þ rsj j
1þ rsj j �

q2
q1

; rsj j � q2 � q1
q2þ q1

; ð5:47Þ

and (5.42) follows. The same bound on Rs holds for monotonic decrease from e1 to
e2.

The corresponding result for the p wave reflectivity cannot be true without
restriction, since we know that the reflectivity due to a sharp interface is zero at the
Brewster angle, whereas an arbitrary interface has a principal angle (or angles)
where ReðrpÞ ¼ 0, with ImðrpÞ nonzero in general (Sect. 2.3). Nevertheless a useful
result can be obtained from the p wave equation corresponding to (5.43), namely

qj j0¼ Q0

2Q
1� qj j2


 �

: ð5:48Þ

On integrating this as before we find

ln
1þ rp

�
�

�
�

1� rp
�
�

�
�
¼ �

Z1

�1
dz

dQ
Qdz

cos h ¼ �
ZQ2

Q1

dQ Q�1 cos h. ð5:49Þ

An upper bound of ln½maxðQ1;Q2Þ=minðQ1;Q2Þ� again follows, provided QðzÞ is
monotonic. Thus

Rp� Q1 � Q2

Q1þQ2

� �2

; Q monotonic ð5:50Þ
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Suppose eðzÞ is monotonic. Under what circumstances is then Q monotonic also?
We have

Q2 ¼ q2

e2
¼ 1

e
x
c


 �2
�K2

e2
; ð5:51Þ

and so

dQ2

dz
¼ � de=dz

e3
e
x
c


 �2
�2K2

� 	

: ð5:52Þ

Thus if de=dz does not change sign, Q2 will increase or decrease monotonically
provided e� 2e1 sin2 h1 does not change sign. This will be true if 2e1 sin2 h1� e1
ðh1� 45	Þ and also if 2e1 sin2 h1� e2 (we have assumed e1� e� e2). Thus Rp�Rp0

is guaranteed for monotonic e at angles of incidence in the ranges

sin2 h1� 1
2
; sin2 h1� e2

2e1
: ð5:53Þ

Note that the Brewster angle given by sin2 hB ¼ e2=ðe1þ e2Þ lies between these two
limits. In the opposite case, when e1� e� e2, Rp�Rp0 is guaranteed in the ranges

sin2 h1� 1
2
; sin2 h1� e2

2e1
: ð5:54Þ

The Brewster angle again lies between these two limits. Figure 5.4 illustrates the
reflectivity ratios Rs=Rs0 and Rp=Rp0 as a function of the angle of incidence, for the
homogeneous layer for which rp=rs was displayed in Fig. 2.4.

Incidentally, the minimum of Rp=Rp0 in Fig. 5.4 close to 48	 is not a true zero,
but results from the near coincidence of Q2 ¼ Q1Q2 (at 47:93	) with the condition
qDz ¼ mþ 1

2

� �

p, satisfied for m ¼ 9 at 48:21	. Likewise, the dip close to 56	

results from the near coincidence of qDz ¼ mp (at 55:62	) with the Brewster angle
condition for the substrate Q1 ¼ Q2(at hB ¼ arctan 3

2 
 56:31	). More details about
extrema of the reflectances may be found in Sect. 2.4.

5.5 Long Wave Expansions

Systematic approximations based on the non-linear equation for q have been
developed by Brekhovskikh (1949, 1980), and will be outlined here. We have seen
that the physical meaning of qðzÞexpð2iqðzÞzÞ is that of the reflection amplitude of a
profile truncated at z (Fig. 5.1). In the long wave limit this would be
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r zð Þ 
 e2iq zð Þz q zð Þ � q2
q zð Þþ q2

; q zð Þ 
 q zð Þ � q2
q zð Þþ q2

: ð5:55Þ

Brekhovskikh writes the exact q zð Þ in terms of two functions uðzÞ; vðzÞ, in analogy
with (5.55):

q ¼ qu� q2v
quþ q2v

: ð5:56Þ

Then from (5.6) and (5.56) it follows that

u0

u
� v0

v
¼ iq

q2v
qu
� qu
q2v

� �

: ð5:57Þ

This equation is satisfied by

u0 ¼ iq2v; v0 ¼ iq2u=q2: ð5:58Þ

As z! z2; qðzÞ ! 0, it being assumed that e ¼ e2 for z� z2. Thus the boundary
conditions on u and v may be taken as

u z2ð Þ ¼ 1 ¼ vðz2Þ ð5:59Þ

Fig. 5.4 The ratios Rs=Rs0 and Rp=Rp0 (continuous and dashed curves, respectively) for a
homogeneous layer, with e1 ¼ 1; e ¼ 4=3ð Þ2; e2 ¼ 3=2ð Þ2; x=cð ÞDz ¼ 27; representing a layer of
water (about four wavelengths thick) on glass. These parameters are the same as in Fig. 2.4. Unity
is the upper bound for Rs=Rs0, at all angles of incidence, and for Rp=Rp0 for h1� 45	. Unity is
attained by both the s and p reflectivity ratios when qDz ¼ mp, (m integer) that is at angles of
incidence given by sin2 h1 ¼ fe� mpc=xDz½ �2g=e1. In this case the values m ¼ 11; 10; 9 and 8
give the angles indicated
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(any nonzero constant other than unity would do as well). The equations (5.58) and
(5.59) are equivalent to

u zð Þ ¼ 1� iq2

Zz2

z

dfv fð Þ; v zð Þ ¼ 1� i
q2

Zz2

z

dfq2 fð Þu fð Þ: ð5:60Þ

These coupled integral equations may be iterated to give u ¼P
un and ¼P

vn,
starting with u0 ¼ 1 ¼ v0. The first iterates are

u1ðzÞ ¼ �iq2
Zz2

z

df ¼ �iq2ðz2 � zÞ; ð5:61Þ

v1 zð Þ ¼ � i
q2

Zz2

z

dfq2 fð Þ: ð5:62Þ

The nth order is, for n� 1,

un zð Þ ¼ �iq2
Zz2

z

dfvn�1 fð Þ; vn zð Þ ¼ � i
q2

Zz2

z

dfq2 fð Þun�1 fð Þ: ð5:63Þ

This iteration gives a series in powers of interface thickness/wavelength, and should
thus duplicate the long wave results of Chap. 3. We will verify this to second order,
for a profile of extent Dz ¼ z2 � z1 (it is assumed that e ¼ e1 for z� z1). For such a
profile, the exact q is given by

q z1ð Þ ¼ q1u z1ð Þ � q2vðz1Þ
q1u z1ð Þþ q2vðz1Þ : ð5:64Þ

To second order we have

u z1ð Þ ¼ 1� iq2Dz�
Zz2

z1

dz z� z1ð Þq2 zð Þþ � � � ; ð5:65Þ

v z1ð Þ ¼ 1� i
q2

Zz2

z1

dz q2 zð Þ �
Zz2

z1

dz z2 � zð Þq2ðzÞþ � � � : ð5:66Þ
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After some simplification, the reflectivity Rs ¼ q z1ð Þj j2 reduces to

Rs ¼ Rs0þ 4q1q2x4=c4

q1þ q2ð Þ4 ðe2 � e1Þ
Zz2

z1

dz 2z� z1 � z2ð Þeþ
Zz2

z1

dzðe� e1Þ
Zz2

z1

dfðe� e2Þ
2

4

3

5þ � � � :

ð5:67Þ

The quantity within the square bracket in (5.67) is independent of the angle of
incidence, as it should be, since we know from Chap. 3 that the universal form for
the s wave reflectivity is

Rs ¼ Rs0 �
4q1q2x4

c4

q1þ q2ð Þ4 i2þ � � � : ð5:68Þ

Here i2 is the second order invariant of Sect. 3.3:

i2 ¼ 2ðe1 � e2Þ
Z1

�1
dz e� e0ð Þz�

Z1

�1
dz e� e0ð Þ

8

<

:

9

=

;

2

; ð5:69Þ

where e0ðzÞ is the step function: e0 ¼ e1 for z\0, e0 ¼ e2 for z[ 0. The integrands
in (5.67) do not go to zero at the end-points z1 and z2, and thus (5.67) appears to
have no meaning as it stands for profiles which attain the limiting values e1 and e2 at
infinity. To convert (5.67) to a universally applicable form we replace e by e�
e0þ e0 in the integrands, and use the identities

e2 � e1ð Þ
Zz2

z1

dz 2z� z1 � z2ð Þe0þ
Zz2

z1

dz e0 � e1ð Þ
Zz2

z1

df e0 � e2ð Þ ¼ 0; ð5:70Þ

Zz2

z1

dz 2e0 � e1 � e2ð Þ ¼ e2 � e1ð Þðz1þ z2Þ: ð5:71Þ

The negative of the quantity within the square brackets of (5.67) then reduces to i2
as given by (5.69), and we have regained the second order s wave result of Chap. 3
in its invariant form.

The p wave results are obtained similarly, but are much more complex. Both
s and p thickness/wavelength expansions will be discussed again briefly in the
chapter on matrix methods.
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5.6 Differential Equations for the Reflection Amplitudes

In the preceding sections we have derived and used generalized Riccati equations
for the quantity q ¼ G=F, which takes the values �r½e zð Þ; e2�e�2iqz at z for the s and
p waves. Thus as z! �1, q tends to �rðe1; e2Þ times an oscillatory function of
unit modulus. As we shall see here, it is sometimes advantageous to work directly
with the reflection amplitude itself. This is particularly so in the short wave limit,
which is discussed briefly here and forms the subject of the next chapter.

A non-linear first order equation for the s wave reflection amplitude may be
obtained as follows: we set

E ¼ f ei/þ ge�i/; D ¼ iqðf ei/ � ge�i/Þ; ð5:72Þ

where f and g are functions determined from (5.2) and (5.72), and / is the phase
integral (discussed in detail in Chap. 6),

/ zð Þ ¼
Zz

dfq fð Þ: ð5:73Þ

In this instance it is convenient to choose the normally unspecified lower limit of
integration in (5.73) so as to make /ðzÞ ! q1z as z! �1. For example, if eðzÞ ¼
e1 for z� z1, one can locate the origin at z1 and set / zð Þ ¼ R z

0 dfq fð Þ. We shall see
shortly that f and g tend to constants as z tends to minus infinity; since rs is defined
as the ratio of the coefficient of e�iq1z to that of eiq1z, for this choice for / the ratio
r ¼ g=f tends to rs as z! �1. On eliminating E and D from (5.2) and (5.72),
using /0 ¼ q, we find

f 0 þ q0

2q
f � ge�2i/
� � ¼ 0; ð5:74Þ

g0 þ q0

2q
g� f e2i/
� � ¼ 0: ð5:75Þ

Thus f and g are changing only where e (and thus q) are changing, verifying that f
and g tend to constants at �1. An equation for r ¼ g=f is obtained by multiplying
(5.74) by g, (5.75) by f , subtracting, and dividing the result by f 2. It is

r0 ¼ q0

2q
ðe2i/ � r2e�2i/Þ; ð5:76Þ
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with limiting values of rðzÞ as z! �1 given by

rs  r ! 0: ð5:77Þ

We note that, in contrast to the equation (5.6) for q, variation of r occurs only where
the dielectric function is varying.

The analogous equation for the p wave reflection amplitude is obtained by
setting

B ¼ f ei/þ ge�i/; C ¼ iQ f ei/ � ge�i/
� �

: ð5:78Þ

The result of eliminating B and C from (5.32) and (5.78) is

f 0 þ Q0

2Q
f � ge�2i/
� � ¼ 0; ð5:79Þ

g0 þ Q0

2Q
g� f e2i/
� � ¼ 0: ð5:80Þ

Thus the p wave reflection amplitude r ¼ �g=f satisfies

r0 ¼ � Q0

2Q
ðe2i/ � r2e�2i/Þ; ð5:81Þ

with limiting values

rp  r ! 0: ð5:82Þ

At normal incidence q0=q ¼ e0=2e ¼ �Q0=Q, and so the equations for the s and
p wave amplitudes are the same, as they must be. On integrating (5.76) and (5.81)
from �1 to þ1 we find

rs ¼ �
Z1

�1
dz

q0

2q
ðe2i/ � r2e�2i/Þ; ð5:83Þ

rp ¼
Z1

�1
dz

Q0

2Q
ðe2i/ � r2e�2i/Þ: ð5:84Þ

These exact relationships lead naturally to the approximations of the next section.
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5.7 Weak Reflection: The Rayleigh Approximation

We have seen in Sect. 5.1 that the meaning of q z0ð Þj j2 is that of the reflectivity of a
profile truncated at z0 (i.e., one which has e ¼ e z0ð Þ for z� z0). The quantity r z0ð Þj j2
has the same meaning, and does not exceed unity (compare (5.13)). When the
reflection is weak, as for a monotonic profile in the long wave limit with
q1 � q2j j � q1þ q2, or for a smooth profile in the short wave limit (the absence of
total internal reflection or regions of negative q2 is assumed in both cases), it is
reasonable to assume that r zð Þj j2� 1 everywhere. Good approximations for rs and
rp are then obtained by neglecting the terms in r2 in (5.83) and (5.84):

rs 
 rRs ¼ �
Z1

�1
dz

q0

2q
e2i/; ð5:85Þ

rp 
 rRp ¼
Z1

�1
dz

Q0

2Q
e2i/: ð5:86Þ

We have called these Rayleigh approximations, since they were first derived by
Rayleigh (1912). They could also be called the weak reflection approximations, or
associated with the names of Brekhovskikh (1949) or Bremmer (1951), who
independently derived closely related approximations.

The physical basis of (for example) (5.85) can be seen by considering the profile
as a series of small steps. As z changes by dz, the dielectric function changes by de
and the normal component of the wavenumber by dq. The contribution to the total
reflection amplitude from this change is dr ¼ �ðdq=2qÞe2i/, assuming that the
reflection at all preceding steps is weak enough to be ignored. The contribution
written down above follows from the single-step formula (1.15), namely

dr ¼ q� ðqþ dqÞ
qþðqþ dqÞ e

2i/;

with / (the accumulated phase at z) replacing qz. Adding up the contributions dr
gives, in the limit of a large number of small steps, the result (5.85).

The weak reflection approximations lead to, in the long wave limit, for a profile
located near the origin,

rs 
 1
2
ln
q1
q2

; rp 
 1
2
ln
Q2

Q1
: ð5:87Þ
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These expressions are good representations of the exact limiting values (see Sect. 2.
2)

rs0 ¼ q1 � q2
q1þ q2

; rp0 ¼ Q2 � Q1

Q2þQ1
; ð5:88Þ

provided these are small compared to unity; that is, provided d ¼ q1=q2 � 1 and
D ¼ Q2=Q1 � 1 are small. More precisely, the s wave reflection amplitudes (5.87)
and (5.88) agree to second order in d, both having the leading terms d� d2=4þ � � �.
The Rayleigh expressions fail completely in the long wave limit when d or D are
not small: for sufficiently large or small values of the ratios q1=q2 and Q2=Q1 the
expressions (5.87) will give reflectivities greater than 1. Since ln xj j=2 is no smaller
than ðx� 1Þ=ðxþ 1Þj j for x[ 0, the expressions (5.87) give reflectivities which are
never less than the Fresnel values.

On comparing the exact expression (5.83) with the Rayleigh approximation
(5.85), we see that

rs ¼ rRs þ
Z1

�1
dz

q0

2q
r2e�2i/ � rRs þDrs: ð5:89Þ

Since rj j � 1 everywhere,

Drsj j �
Z1

�1
dz

q0

2q

�
�
�
�

�
�
�
�
: ð5:90Þ

When eðzÞ is monotonic,

Drsj j � 1
2
ln
q2
q1

�
�
�
�

�
�
�
�
: ð5:91Þ

Similar results follow for the p wave, with Q replacing q in (5.90) and (5.91), the
latter holding only if Q is monotonic. Thus simple bounds may be put on the error
in the Rayleigh approximation. An example of the accuracy of rR is given in the
next section.

5.8 Iteration of the Integral Equation for r

The differential equation (5.76), together with the condition that r ! 0 as z!1,
may be integrated from z to 1 to give
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r zð Þ ¼ �
Z1

z

q0

2q
ðe2i/ � r2e�2i/Þ: ð5:92Þ

Iteration of this non-linear integral equation gives successive approximations for
rðzÞ and thus for rs ¼ rð�1Þ. If we label these functions rðnÞðzÞ, then

rðnþ 1Þ zð Þ ¼ �
Z1

z

df
q0

2q
ðe2i/ � r nð Þ fð Þ

h i2
e�2i/Þ: ð5:93Þ

The natural starting point for this iteration is r 0ð Þ fð Þ ¼ 0, giving

rð1Þ zð Þ ¼ �
Z1

z

df
q0

2q
e2i/: ð5:94Þ

Thus rð1Þs ¼ rRs , the Rayleigh approximation.
As an example, we apply this method to the Rayleigh profile of Sect. 2.5, for

which the reciprocal of the refractive index is linear in z in the interval ðz1; z2Þ:

e�
1
2 zð Þ � g zð Þ ¼ g1þ z� z1ð ÞDg=Dz; ð5:95Þ

where g1 ¼ e
�1

2
1 ; g2 ¼ e

�1
2

2 ;Dg ¼ g2 � g1;Dz ¼ z2 � z1. At normal incidence the
phase integral is given by

/ zð Þ ¼ x
c

Zz

z1

dz g�1 zð Þ ¼ xDz
cDg

ln
g
g1

; ð5:96Þ

and q0=q ¼ e0=2e ¼ �g0=g ¼ �Dg=gDz. Thus

r 1ð Þ zð Þ ¼ 1
2

Zg2

g

dg g�1
g
g1

� �2ia

; ð5:97Þ

where a stands for the dimensionless parameter x=cð Þ Dz=Dgð Þ. The Rayleigh
approximation to the normal incidence reflection amplitude is

rRn ¼ r 1ð Þ z1ð Þ ¼ 1
4ia

g2=g1ð Þ2ia�1
h i

¼ g2
g1

� �iasin½a lnðg2=g1Þ�
2a

; ð5:98Þ
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and gives the reflectivity

RR
n ¼

sin½a lnðg2=g1Þ�
2a

� �2

¼ sin½a=2 lnðe2=e1Þ�
2a

� �2

: ð5:99Þ

The exact reflectivity at normal incidence is given by the two formulae (2.107) and
(2.108) according as a2 is smaller or greater than 1/4. The exact and Rayleigh
approximation normal incidence reflectivities are compared in Fig. 5.5 (Fig. 2.14
showed the reflectivity over a larger range of xDz=c, on a logarithmic scale). The
exact and Rayleigh approximation curves are not distinguishable on this scale for
x=cð ÞDz greater than unity.
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Chapter 6
Reflection of Short Waves

Consider electromagnetic waves of angular frequency ω, incident on a planar
inhomogeneity of thickness (or characterizing length) Δz. When (ω/c)Δz ≫ 1, and
at normal incidence, there are many wavelengths within the inhomogeneity and (for
smooth profiles) the change in the dielectric function within a wavelength is small.
This is known as the short wave limit. We shall see that at general angle of
incidence the short wave limiting forms are attained when qΔz is large. Since
q1 → 0 as θ1 → π/2, the short wave approximations fail at grazing incidence.
Special techniques are also needed when q2(z) passes through zero, and when
ɛ(z) has discontinuities in gradient.

6.1 Short Wave Limiting Forms for Some
Solvable Profiles

It will be useful to look at some profiles for which the reflection amplitude is known
analytically, both to orient ourselves and to have examples for comparison with the
approximate expressions to be derived. We shall see that there is no universal form
for the short wave expressions, in contrast to the long wave case of Chap. 3, where
we showed that (for instance) the s wave reflectivity always takes the form

Rs ¼ Rs0 � 4q1q2x4=c4

q1þ q2ð Þ4 i2 þ � � � ð6:1Þ

There is greater variety and complexity in the short wave case, because short waves
are sensitive to details in the dielectric function profile, while long waves are not.

Hyperbolic tangent profile: from (2.88) and (2.89) we have

rs ¼ exp 2i
X1

n¼1
arctan

2y1
n

y21 � y22
n2þ 3y21þ y22

� �" #

sinh pðy1 � y2Þ
sinh p y1þ y2ð Þ ; ð6:2Þ
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where y1 = q1Δz and y2 = q2Δz. Suppose ɛ1 < ɛ2. Then q1
2 < q2

2, there is no total
internal reflection, and (for large y2 − y1)

Rs ¼ e�4pq1Dz þ � � � ð6:3Þ

This short wave limiting form, the long wave limiting form

Rs ¼ Rs0 1� 4p2

3
q1q2 Dzð Þ2 þ � � �

� �

; ð6:4Þ

(obtained from (6.1) and the value i2 = (π2/3)(ɛ1 − ɛ2)
2(Δz)2 from Table 3.1), and the

exact reflectivity are compared in Fig. 6.1. The much more accurate Rayleigh
approximation is compared, for the same profile, with the exact result in Fig. 6.3.

When ɛ1 > ɛ2, q1
2 > q2

2 and for θ1 > θc = arcsin (ɛ2/ɛ1)
1/2, q2 = i|q2|, with total

internal reflection. The leading terms of (6.2) for large y1 = q1Δz are thus unity for
θ1 > θc and

Rs ¼ e�4pq2Dz þ � � � ðh1\hcÞ ð6:5Þ

Rayleigh profile: from (2.108) the reflectivity at normal incidence is

Rn ¼
sin2 1

2 mj j lnðe1=e2Þ
� �

4 mj j2þ sin2 1
2 mj j lnðe1=e2Þ
� � ; ð6:6Þ

where

mj j ¼ x
c
Dz
Dg

� �1=2

� 1
4

" #1=2

; Dg ¼ e�1=22 � e�1=21 : ð6:7Þ

Fig. 6.1 Normal incidence reflectivity for the hyperbolic tangent profile. The logarithm to base 10
of the reflectivity is plotted. The solid, dashed and dot-dashed curves are respectively the exact,
short wave and long wave forms. The curves are drawn for ɛ1 = 1, ɛ2 = (4/3)2
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(these forms apply for x=cð ÞDzð Þ2 [ Dg=2ð Þ2, which is the appropriate case in the
short wave limit.) For this profile the (ω/c)Δz ≫ 1 limiting form shows oscillatory
decay:

Rn !
sin 1

2
x
c
Dz
Dg ln

e1
e2

� �

2 x
c
Dz
Dg

8

<

:

9

=

;

2

: ð6:8Þ

Note the power law decrease with increasing x=cð ÞDz, in contrast to the expo-
nential decay for the smoother hyperbolic tangent profile.

Exponential profile: the reflectivity at normal incidence is given by (2.102):

Rn ¼
A2
0þB2

0þC2
0 þD2

0 � 8
p2u1u2

A2
0þB2

0þC2
0 þD2

0þ 8
p2u1u2

: ð6:9Þ

When (ω/c)Δz ≫ 1, the variable u = 2√ɛ(ω/c)Δz/ ln (ɛ2/ɛ1) is large, and we can use
Hankel’s asymptotic expansions (Olver and Maximon 2010, Sect. 10.17)

J0 uð Þ ¼ 2
pu

� �1=2

ða cosw� b sinwÞ; J
0
0 uð Þ ¼ 2

pu

� �1=2

ð�c sinw� d coswÞ

Y0 uð Þ ¼ 2
pu

� �1=2

ða sinwþ b coswÞ; Y
0
0 uð Þ ¼ 2

pu

� �1=2

ðc cosw� d sinwÞ;

ð6:10Þ

where w = u − π/4. The functions α, β, γ and δ have asymptotic expansions which
are conveniently expressed in terms of υ = (8u)−1:

a � 1� 9
2
t2 þ � � � ; b � � t þ � � � ; c � 1þ 15

2
t2 þ � � � ; d � 3t þ � � � :

ð6:11Þ
The cross products A0 to D0, defined in (2.97), are given by

A0 ¼ 2

p u1u2ð Þ1=2
a1a2þ b1b2ð Þ sin u2 � u1ð Þþ a1b2 � b1a2ð Þ cosðu2 � u1Þf g;

B0 ¼ 2

p u1u2ð Þ1=2
a1c2þ b1d2ð Þ cos u2 � u1ð Þþ b1c2 � a1d2ð Þ sinðu2 � u1Þf g;

C0 ¼ 2

p u1u2ð Þ1=2
� c1a2þ d1b2ð Þ cos u2 � u1ð Þ � d1a2 � c1b2ð Þ sinðu2 � u1Þf g;

D0 ¼ 2

p u1u2ð Þ1=2
c1c2þ d1d2Þ sin u2 � u1ð Þþ c1d2 � d1c2ð Þ cosðu2 � u1Þf g:

ð6:12Þ

6.1 Short Wave Limiting Forms for Some Solvable Profiles 137

http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2


The leading terms of the asymptotic expansions give

A2
0þB2

0þC2
0 þD2

0 �
8

p2u1u2
1þ 16 t21þ t22 � 2t1t2 cos 2ðu2 � u1Þ

� �� 	

: ð6:13Þ

The short wave limiting form of Rn is thus

Rn � 4 t21þ t22 � 2t1t2 cos 2ðu2 � u1Þ
� �

¼ 1
16

1
u21
þ 1

u22
� 2
u1u2

cos 2ðu2 � u1Þ

 �

:
ð6:14Þ

Like the Rayleigh profile expression (6.8), this decreases as the inverse square of
x=cð ÞDz. The period of the oscillatory term (that is, the change in x=cð ÞDz during
which the oscillatory term goes through one cycle) is, for large x=cð ÞDz,

Pe ¼
p
2 ln

e2
e1

ffiffiffiffi
e2
p � ffiffiffiffi

e1
p ; ð6:15Þ

while the Rayleigh profile reflectivity has the period

PR ¼
2p

ffiffiffiffi
e2
p � ffiffiffiffi

e1
p
 �

e1e2ð Þ1=2lnðe2=e1Þ
: ð6:16Þ

These expressions look dissimilar, but give similar values provided ɛ1 and ɛ2 are not
too different. For example, when e1 ¼ 1 and e2 ¼ 4=3ð Þ2; Pe ’ 2:71 and
PR ≃ 2.73. For small |ɛ1 − ɛ2| the two profiles are both approximately linear in z, and
Pe ≃ PR ≃ π/(ɛ1ɛ2)

1/4.
The short and long wave limiting forms for the exponential profile are compared

with the exact reflectivity in Fig. 6.2.
The three examples discussed in this section are sufficient to show the greater

variety and complexity in the short wave limiting forms compared to the long wave
case, where the reflectivity is always the Fresnel value plus a term proportional to
the square of the interfacial thickness. The long wave limit is simpler because the
difference between the actual profile and a step is sensed only in an averaged or
cumulative way, through integrals over the difference between the two profiles.
When the wavelength is short compared to the profile extent, finer details are
sensed. For example, discontinuities in slope in the Rayleigh and exponential
profiles give a sinusoidal times inverse square dependence of the reflectivity on the
parameter (ω/c)Δz, in contrast to the exponential decrease with (ω/c)Δz for the
smooth tanh profile.
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6.2 Approximate High-Frequency Waveforms

We can consider together the electromagnetic s and p waves and particle waves, as
in Sect. 2.1. The z variation in all three cases is given by solutions of equations of
the form

d2w
dz2
þ q2w ¼ 0: ð6:17Þ

We assume here that q2(z) is everywhere positive; solutions in the neighbourhood
of zeros of q2 will be discussed in Sects. 6.7 and 6.8.

When q is constant the propagating solutions are e±iqz. When q varies we may
expect solutions of the form A(z)e±iϕ(z), where the phase integral ϕ is given by

/ zð Þ ¼
Zz

dfqðfÞ: ð6:18Þ

The phase integral gives the accumulated phase at z, being the sum of phase
differences equal to (2π/λ) × (path difference), where for motion in the z direction
described by (6.17) the effective local wavelength λ is 2π/q. Thus q(ζ)dζ is the
increase in the phase on going from ζ to ζ + dζ, and (6.18) gives the accumulated
phase at z.

Fig. 6.2 Normal incidence reflectivity for the exponential profile. The solid curve is the exact
reflectivity derived in Sect. 2.5, the dashed curve is the short wave approximation (6.3), and the
dot-dash curve is the long wave approximation (6.4). The dielectric function values are ɛ1 = 1 and
ɛ2 = (4/3)2
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The x dependence for planar stratified media is contained in the factor eiKx. Thus
the total spatial phase is

U z; xð Þ ¼ / zð ÞþKx: ð6:19Þ

Wave functions whose dominant z and x dependence is contained in the phase
factor exp iU correspond to geometrical optics rays, or to semiclassical particle
trajectories. For, consider the wavefronts of exp iU. These are surfaces of equal
phase, Φ(z, x) = constant. By definition, the rays are normal to the wavefronts, and
will thus have the direction of

rU ¼ K; 0;
d/
dz

� �

¼ ðK; 0; q zð ÞÞ: ð6:20Þ

Thus the function exp iU can be interpreted as a system of rays propagating in the z,
x plane, with x and z components of the wavevector being K and q(z). This is
precisely the geometrical optics or semiclassical particle picture of propagation in a
medium which is stratified with z.

A sequence of approximations for the solution of (6.17) may be obtained by
setting w ¼ exp

R z dfvðfÞ. Then χ satisfies an equation of the generalized Riccati
type:

dv
dz
þ v2þ q2 ¼ 0 ð6:21Þ

By the short wave limit we mean that for an inhomogeneous region of extent Δz, the
normal component of the wavevector q is large compared to (Δz)−1. The physical
meaning of qΔz ≫ 1 is that the inhomogeneity extends over many wavelengths. In
the zeroth approximation one neglects dχ/dz in (6.21), since (if χ varies smoothly)
this is of order (qΔz)−1 smaller in magnitude than the other two terms. Thus
χ0
± = ±iq, and

w�0 zð Þ ¼ e�i/ðzÞ: ð6:22Þ

In the next approximation we set

v�1 ¼ �q2 � dv�0
dz

� �1=2

¼ �iq 1 � idz=dz
q2

� �1=2

’ �iq 1 � idq=dz
2q2

� �

; ð6:23Þ

on the assumption that the dimensionless quantity c ¼ q�2dq=dz is small. The
corresponding wavefunctions w1 ¼ exp

R z dfv1 are thus
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wþ1 zð Þ ¼ q1
q zð Þ

� �1=2

ei/ðzÞ; w�1 zð Þ ¼ q2
q zð Þ

� �1=2

e�i/ðzÞ ð6:24Þ

(The square roots of q1 and q2 are inserted for later convenience.) It is instructive to
compare the differential equations satisfied by the approximate waveforms ψ0

± and
ψ1
± with the original wave (6.17). These are

d2w�0
dz2

þ q2 � idq
dz

� �

w�0 ¼ 0; ð6:25Þ

and

d2w�1
dz2

þ q2þ d2q=dz2

2q
� 3
4

dq=dz
q

� �2
" #

w�1 ¼ 0: ð6:26Þ

Note that wþ0 and ψ0
− satisfy different equations, while ψ1

± are two solutions of the
same equation.

The approximate solutions ψ1
± go back to Liouville (1837) and Green (1837),

with later contributions by Rayleigh (1912) and Gans (1915). A historical survey
can be found in Heading (1962). The initials WKB or JWKB are often associated
with ψ1

±, the initials standing for Jeffreys (1924), Wentzel (1926), Kramers (1926),
and Brillouin (1926). However, as Olver (1974) remarks, the contribution of these
authors was not the construction of the approximation, which was already known,
but the determination of connection formulae for linking exponential and oscillatory
approximations across a zero of q2 on the real axis. The latter problem is discussed
in Sects. 6.7 and 6.8.

Exact solutions of (6.17) satisfy the flux conservation condition, the physical
basis of which (conservation of energy in the electromagnetic case, and of proba-
bility density current in the particle case) was discussed in Sect. 2.1. The mathe-
matical statement follows directly from (6.17) and its complex conjugate, which for
real q2 is

d2w�

dz2
þ q2w� ¼ 0: ð6:27Þ

We multiply (6.20) by ψ* and (6.28) by ψ, and subtract. The result is

d
dz

w�
dw
dz
� w

dw�

dz

� �

¼ 0; ð6:28Þ

so that w� dwdz � w dw�
dz ¼ 2i Im w� dwdz

� �

is a constant. For reflection problems the

asymptotic forms of ψ are
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eiq1zþ re�iq1z  w! teiq2z; ð6:29Þ

and the fact that Im ðw�dw=dzÞ is independent of z implies the flux conservation
law

q1 1� rj j2
� �

¼ q2 tj j2: ð6:30Þ

Any approximations to ψ which satisfy an equation of the form d2w=dz2

 �þ ~q2w ¼

0 with real ~q2 (as do ψ1
±) will have Im w�dw=dzð Þ ¼ constant, and thus conserve

flux. The zeroth approximations ψ0
± on the other hand have

Im w��0 dw�0 =dz

 � ¼ �q zð Þ; ð6:31Þ

which varies through the interface. This variation is associated with the
absorption-type term idq/dz in (6.25). Nevertheless, we will find it instructive to
examine the zeroth approximations obtained with ψ0

± for the reflectivity in the short
wave limit.

6.3 Profiles of Finite Extent with Discontinuities in Slope
at the Endpoints

Consider profiles for which q varies continuously in the interval ½z1; z2�, and takes
the values q1 for z ≤ z1 and q2 for z ≥ z2; and let F(z) and G(z) be two linearly
independent solutions of (6.17) within ½z1; z2�. We showed in Sect. 2.2 that the exact
reflection amplitude is given by

r ¼ e2iq1z1
q1q2 F1G2 � G1F2ð Þþ iq1 F1G

0
2 � G1F

0
2


 �þ iq2 F
0
1G2 � G

0
1F2


 �� ðF 01G
0
2 � G

0
1F

0
2Þ

q1q2 F1G2 � G1F2ð Þþ iq1 F1G
0
2 � G1F

0
2


 �� iq2 F 01G2 � G01F2

 �þðF 01G02 � G01F

0
2Þ
:

ð6:32Þ

In this section we consider the approximations r(0) and r(1) to r, obtained by setting
F, G equal to ψ0

+, ψ0
− or ψ1

+, ψ1
− respectively. We assume q2(z) to be continuous at z1

and z2; this excludes (for example) the homogeneous layer (or two-step) profile.
Consider r(0) first, obtained by approximating F by ψ0

+ and G by ψ0
−. Then

F ¼ ei/; F
0 ¼ iq ei/; G ¼ e�i/; G

0 ¼ �iq e�i/. On comparing (6.25) with (6.17),
we see that such an approximation can be good in general only if γ = q−2dq/dz is
small within the interface. If q2(z) varies smoothly within ½z1; z1þDz�; c is of order
(qΔz)−1. Thus when qΔz is large, and the profile is smooth, |r − r(0)| is expected to
be small. Let D/ ¼ / z2ð Þ � /ðz1Þ ¼

R z2
z1
dz q zð Þ be the phase difference between z2

and z1. Then
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F1G2 � G1F2 ¼ �2i sinD/; F1G
0
2 � G1F

0
2 ¼ �2iq2 cosD/;

F
0
1G2 � G

0
1F2 ¼ 2iq1 cosD/; F

0
1G

0
2 � G

0
1F

0
2 ¼ �2iq1q2 sinD/:

ð6:33Þ

On substitution of (6.33) into (6.32) to find r(0) we see that the zeroth order
reflectivity is zero. This is the correct short wave limiting value in the absence of
turning points (values of z where q2(z) = 0, at which a classical particle or a ray
described by geometrical optics would turn back).

The next approximation is obtained by substituting F = ψ1
+ and G = ψ1

− into
(6.32). Using F′ = q(i − γ/2)F and G′ = − q(i + γ/2)G, where γ stands for the
dimensionless quantity q−2dq/dz, we find

F1G2 � G1F2 ¼ �2i sinD/
F1G

0
2 � G1F

0
2 ¼ iq2ð�2 cosD/þ c2 sinD/Þ

F
0
1G2 � G

0
1F2 ¼ iq1ð2 cosD/þ c1 sinD/Þ

F
0
1G

0
2 � G

0
1F

0
2 ¼ iq1q2½�2 sinD/þ c1 � c2ð Þ cosD/� 1

2
c1c2 sinD/�:

ð6:34Þ

On keeping first order terms in the small quantities c1; c2, we find

rð1Þ ¼ e2iq1z1 þ iD/

4i
f c1 � c2ð Þ cosD/� i c1þ c2ð Þ sinD/g: ð6:35Þ

The corresponding reflectivity is

Rð1Þ ¼ r 1ð Þ�
�

�
�
2¼ 1

16
c21þ c22 � 2c1c2 cos 2D/

� 	

: ð6:36Þ

We can compare this formula with the short wave limiting forms obtained for the
Rayleigh and exponential profiles in Sect. 6.1. These results were given for normal
incidence, for which q ¼ ffiffi

e
p

x=c, and

c zð Þ ¼ q�2dq=dz ¼ c=xð Þe�1d ffiffi
e
p

=dz: ð6:37Þ

For the Rayleigh profile defined by (2.103), γ is independent of z at normal
incidence:

c ¼ �Dg
x=cð ÞDz ; Dg ¼ e�1=22 � e�1=21 ; ð6:38Þ

and

D/ ¼ 1
2
x
c
Dz
Dg

ln
e1
e2
: ð6:39Þ

Thus (6.36) is in accord with (6.8).
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For the exponential profile given by (2.93),

c ¼ lnðe2=e1Þ
2 x=cð ÞDz ffiffi

e
p 	 1

u
; ð6:40Þ

and

D/ ¼ 2 x=cð ÞDz
lnðe2=e1Þ

ffiffiffiffi
e2
p � ffiffiffiffi

e1
pð Þ 	 u2 � u1: ð6:41Þ

Again the expression (6.36), derived by approximating the solutions by ψ1
±, is in

agreement with the exact limiting form (6.14).
It is interesting that the factor q−1/2, which transforms the approximate wave-

forms ψ0
± into the better approximations ψ1

±, takes us from zero reflectivity to the
useful expression (6.36). This can be better understood by looking at the total
wavefunctions αF + βG within the inhomogeneous region, with F, G respectively
given by ψ0

+, ψ0
− and ψ1

+, ψ1
−. With ψ given by

w zð Þ ¼
eiq1zþ re�iq1z z\z1ð Þ
aF zð Þþ bGðzÞ ðz1
 z
 z2

teiq2z z[ z2ð Þ

8

><

>:

Þ ð6:42Þ

the continuity of ψ and dψ/dz at z1 and z2 gives us four linear equations in the four
unknowns α, β, r, t. In Sect. 2.2 we found r and t (Equations 2.25 and 2.26). The
corresponding formulae for α and β are

a ¼ 2iq1eiq1z1ðG02 � iq2G2Þ=D; b ¼ �2iq1eiq1z1ðF 02 � iqF2Þ=D; ð6:43Þ

where D is the denominator of (6.32). We see at once that β = 0 for F = ψ0
+ = eiϕ,

since F0 ¼ iqF. Thus there is no backward propagating wave, consistent with zero
reflection. The values of α, β when F = ψ0

+ and G = ψ0
− are

a0 ¼ eiðq1z1�/1Þ; b0 ¼ 0: ð6:44Þ

The corresponding expressions obtained with F = ψ1
+, and G = ψ1

−, are, to first order
in the small quantity γ,

a1 ¼ 1� ic1
4

� �

eiðq1z1�/1Þ; b1 ¼
q1
q2

� �1=2ic2
4
eiðq1z1�/1 þ 2/2Þ: ð6:45Þ

The coefficient of the backward propagating wave is now nonzero, and the coef-
ficient of the forward propagating wave has a first order correction term in it.

The transmission amplitude for a profile offinite extent may be found from (2.26)
and (6.34). The result is
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tð1Þ ¼ 4 q1=q2ð Þ1=2eiðq1z1�q2z2Þ
4 cosD/þ c1 � c2ð Þ sinD/� ið4 sinD/� c1 � c2ð Þ cosD/þ 1

2 c1c2 sinD/Þ
:

ð6:46Þ

Thus, to second order in γ1 and γ2,

tð1Þ
�
�

�
�
2¼ q1

q2
½1� 1

16
ðc21þ c22 � 2c1c2 cos 2D/Þ�: ð6:47Þ

On comparing with (6.36), we see that the conservation law q1(1 + |r|2) = q2|t|
2 is

obeyed to this order in γ.
Profiles with discontinuities at its boundaries in value as well as in slope can also

be treated by this method (Lekner 1990).

6.4 Reflection Amplitude Estimates from a Comparison
Identity

Let ψ be the solution of

d2w
dz2
þ q2w ¼ 0; eiq1zþ r e�iq1z  w! t eiq2z; ð6:48Þ

and ~w the solution of

d2~w
dz2
þ ~q2~w ¼ 0; eiq1zþ~r e�iq1z  ~w! ~t eiq2z: ð6:49Þ

The functions q(z) and ~qðzÞ have the same asymptotic values q1 and q2 at þ1. We
showed in Sect. 2.1 that r and ~r are related by

r ¼ ~r � 1
2iq1

Z1

�1
dz q2 � ~q2

 �

w~w: ð6:50Þ

We will use this identity to obtain approximations for r in the short wave limit.
Consider first the result which comes from substituting ~w ¼ wþ0 into (6.50), where
ψ0
+ = eiϕ is the zeroth approximation to ψ in the short wave limit. Since ψ0

+ satisfies
(6.25), ~q2 ¼ q2 � i dq=dz; also ~r ¼ 0 since there is no backward propagating
component in ψ0

+, as can be verified by examining its limiting form as z! �1.
Thus we have the identity
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r ¼ � 1
2q1

Z1

�1
dz

dq
dz

wwþ0 : ð6:51Þ

This is an exact relation, for all q(z) and the corresponding ψ and ψ0
+. Contributions

to r come from regions where q is changing; since q2(z) = ɛ(z)ω2/c2 − K2, these are
the regions where the dielectric function is changing.

We saw in Sect. 6.2 that ψ0
+ is a fair approximation to ψ provided the dimen-

sionless quantity c ¼ q�2dq=dz is small. Assuming this is so, the expression

rð0Þ ¼ � 1
2q1

Z1

�1
dz

dq
dz

wþ0

 �2 ¼ � 1

2q1

Zq2

q1

dq e2i/ ð6:52Þ

should be a fair approximation to r. We will not discuss the properties of r(0), since
there is better theoretical basis for the similar approximation r(1), which is obtained

from substituting ~w ¼ wþ1 ¼ q1=qð Þ1=2ei/ into the comparison identity (6.50). (The
factor

ffiffiffiffiffi
q1
p

in the expression for ψ0
+ gives the correct coefficient of eiq1z in ~w as

z! �1.) Since ψ1
+ satisfies (6.26),

~q2 ¼ q2þ 1
2q

d2q
dz2
� 3
4q2

dq
dz

� �2

¼ q2þ 1
2
q1=2

d
dz

dq=dz
q3=2

� �

; ð6:53Þ

and we obtain the identity

r ¼ 4i
ffiffiffiffiffi
q1
p
 ��1

Z1

�1
dz

d
dz

dq=dz
q3=2

� �

wei/: ð6:54Þ

On approximating ψ by ψ1
+ we have another estimate for r, which can be put into

several equivalent forms by integration by parts and a change of variable from z to ϕ:

rð1Þ ¼ 1
4i

Z1

�1
dz

d
dz

dq=dz
q3=2

� �

q�
1
2e2i/ ¼ � 1

2

Z1

�1
dz

dq
qdz

e2i/þ 1
8i

Z1

�1
dz

dq=dz
q3=2

� �2

e2i/

¼ � 1
2

Z1

�1
d/

dq
qd/

� �

e2i/þ 1
8i

Z1

�1
d/

dq
qd/

� �2

e2i/

ð6:55Þ

We note that the part equal to � 1
2

R
dq q�1e2i/ is the Rayleigh (or weak reflection)

approximation of Sect. 5.7, rR. This is the dominant part of r(1): in the last line of (6.55)
the dimensionless quantity q−1dq/dϕ is precisely the function γ = q−2dq/dz which has
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to be small for ψ0 and ψ1 to approximate ψ well. The last term in (6.55) could thus be
omitted in the calculation of the reflection amplitude to lowest order in this quantity.
However, the expression (6.55) came directly from the identity (6.54), and will be
seen to follow from first order perturbation theory in the next section, so there are
reasons both for retaining and for dropping the last term in (6.55).

In the short wave limit the factor e2iϕ oscillates rapidly with z, and a smooth
variation of q with z will lead to exponentially small values of the integral. If
however q has discontinuities in any of its derivatives, the main contributions to the
integral come from the neighbourhood of the discontinuities. We will give exam-
ples of these possibilities.

Consider the case of a medium which is inhomogeneous only within the interval
½z1; z2�, and which has discontinuities in the slope or higher derivatives of ɛ only at
the end points z1 and z2. The exponential and Rayleigh profiles are in this category.
In the short wave limit the factor e2iϕ oscillates rapidly with z, averaging to an
exponentially small value any slowly varying contribution in the integrals defining
r(1). There will be a contribution in (6.55) arising from discontinuities in slope: we
write (6.55) in the form

rð1Þ ¼ 1
4i

Z1

�1
dz

d2q=dz2

q2
� 3
2

dq=dzð Þ2
q3

( )

e2i/; ð6:56Þ

and note that for a profile in which the dimensionless function γ = q−2dq/dz changes
from 0 to γ1 at z1, and from γ2 to 0 at z2, the second derivative term in (6.56) has the
delta function singularities γ1δ(z − z1) − γ2δ(z − z2). Thus (6.56) takes the value

rð1Þ ¼ 1
4i

c1e
2i/1 � c2e

2i/2
� 	 ¼ eið/1 þ/2Þ

4i
c1e
�iD/ � c2e

iD/
� 	

; ð6:57Þ

plus exponentially small terms from the smooth part of the profile. This expression
gives the same reflectivity as the theory of Sect. 6.3, (Equation 6.36). It is in
agreement with (6.35) in phase as well as in absolute magnitude if ϕ1 = ϕ(z1) = q1z1.
This condition is in fact a requirement arising in the setting up of the comparison
identity (6.54), in which the asymptotic form eiq1z was assumed for ψ1

+ in the limit as
z → −∞. This requirement fixes the phase function to be

/ zð Þ ¼ q1z1þ
Zz

z1

dfq fð Þ: ð6:58Þ

In the case of a smooth profile, with all of its derivatives continuous everywhere,
the approximation r(1) of (6.55), and its dominant part, the Rayleigh approximation
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rR ¼ �
Z1

�1
dz

dq=dz
2q

e2i/; ð6:59Þ

work well down to surprisingly small values of (ω/c)Δz. However, these approxi-
mations give, in general, only the correct exponent in the short wave limiting form,
and not the correct prefactor. We shall illustrate with the hyperbolic tangent profile,
for which the phase integral may be evaluated analytically. We have

q2 zð Þ ¼ 1
2

q21þ q22

 �þ 1

2
q22 � q21

 �

tanh z=2Dz: ð6:60Þ

In the phase integral

/ zð Þ ¼
Zz

0

dfqðfÞ ð6:61Þ

we transform first to the variable τ = tanh (ζ/2Δz), and then to the variable
y = qΔz. We find

/ zð Þ ¼
Ztanh z=2Dz

0

ds
1

1� s
þ 1

1þ s

� �

y sð Þ ¼ 2
ZqDz

�y

dy y2
1

y22 � y2
þ 1

y2 � y21

� �

¼ f yð Þ � f �yð Þ;
ð6:62Þ

where

�y2 ¼ 1
2

y21þ y22

 �

; f yð Þ ¼ y2 ln
y2þ y
y2 � y

� y1 ln
yþ y1
y� y1

ð6:63Þ

(this form applies for y1 < y2, which is the case when ɛ1 < ɛ2). The Rayleigh
approximation for the reflection amplitude thus becomes

rR ¼ � 1
2
e�2if �yð Þ

Zy2

y1

dy
y

y2þ y
y2 � y

� �2iy2 y� y1
yþ y1

� �2iy1

¼ � 1
2
e�2if ð�yÞ

Zy2

y1

dy
y
e2if ðyÞ:

ð6:64Þ
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The long-wave limiting form is (in accord with the results of Sect. 5.7)

rR ! � 1
2
ln
q2
q1

: ð6:65Þ

The Rayleigh approximation is compared with the exact result in Fig. 6.3.
We see that the Rayleigh approximation gives good agreement with the exact

reflectivity over the entire range of wavelengths. One might expect that at short
wavelengths the agreement becomes perfect. This is not so: the asymptotic value
has been given by Berry and Mount (1972), and they find that the reflectivity
resulting from this approximation is not expression (6.3), but π2/9 ≃ 1.0966 times
that value. The exponential is given correctly, but not the prefactor. The theoretical
reason for such discrepancies was shown by Pokrovskii, Savvinykh and Ulinich
(1958) to lie in the nature of the perturbation series of which rR is the first term. This
is called the Bremmer series; a related approach is the Brekhovskikh iteration
method of Sect. 5.8. These will be discussed further in the next section. Here we
note only that the discrepancy is usually of little practical importance. For example,
for the hyperbolic tangent profile the correct asymptotic form exp (−4πq1Δz) is
better than the Rayleigh approximation only beyond (ω/c)Δz ≃ 2, where the
reflectivity is so small (about 10−11) as to be extremely difficult to measure.

Fig. 6.3 Reflectivity at normal incidence for the tanh profile. The solid curve is the exact
reflectivity from (6.2), the dashed curve the Rayleigh approximation reflectivity from (6.64). The
values ɛ1 = 1, ɛ2 = (4/3)2 are used, as in Fig. 6.1 (where the long and short wave limiting forms
were shown)
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6.5 Perturbation Theory for Short Waves

As in Sect. 3.1 we wish to express ψ, the solution of

d2w
dz2
þ q2w ¼ 0; eiq1zþ r eiq1z  w! t eiq2z; ð6:66Þ

in terms of a known function ~w, the solution of

d2~w
dz2
þ ~q2 ¼ 0; eiq1zþ~r eiq1z  ~w! ~t eiq2z: ð6:67Þ

To do this we need a Green’s function Gðz; fÞ satisfying the equation

@2G
@z2
þ ~q2G ¼ d z� fð Þ; ð6:68Þ

and giving the appropriate boundary conditions for ψ.
In Sect. 3.1 we used e�iq0z to construct G, with q0ðzÞ ¼ q1, for z < 0 and q2 for

z > 0. These functions are appropriate for the long wave case. Here we use wþ1 ¼
q1=qð Þ1=2ei/; w�1 ¼ q2=qð Þ1=2e�i/ to construct G, these being wavefunctions which
approximate ψ in the short wave case. The required Green’s function is

G z; fð Þ ¼
1

2i q1q2ð Þ1=2 w
�
1 zð Þwþ1 ðfÞ z\ f

1
2i q1q2ð Þ1=2 w

þ
1 zð Þw�1 ðfÞ z [ f

(

ð6:69Þ

This G satisfies (6.68) when z ≠ ζ, with

~q2 ¼ q2þ d2q=dz2

2q
� 3
4

dq
qdz

� �2

¼ q2þ 1
2
q1=2

d
dz

dq=dz
q3=2

� �

; ð6:70Þ

because of (6.26). The derivative of G is given by (again using c ¼ q�2dq=dz)

@G
@z
¼ �q zð Þ iþ c zð Þ=2ð ÞGðz; fÞ z\f

q zð Þ i� cðzÞ=2ð ÞGðz; fÞ z[ f

�

ð6:71Þ

When z = ζ, G takes the value 1/2iq(z). Thus ∂G/∂z has the required unit discon-
tinuity at z = ζ, leading to the delta function on the right-hand side of (6.68). The
integral equation satisfied by ψ appropriate to the reflection problem is

w zð Þ ¼ wþ1 zð Þ �
Z1

�1
dfG z; fð ÞDq2 fð ÞwðfÞ; ð6:72Þ
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where

Dq2 ¼ q2 � ~q2 ¼ � 1
2
q1=2

d
dz

dq=dz
q3=2

� �

: ð6:73Þ

As z! �1 this gives the asymptotic form (on choosing the lower limit of inte-
gration in ϕ to make ϕ → q1z as z! �1)

w zð Þ ! eiq1z � 1

2i q1q2ð Þ12
Z1

�1
df w�1 zð Þwþ1 fð ÞDq2 fð Þw fð Þ

¼ eiq1zþ e�iq1z
1

4iq
1
2
1

Z1

�1
df

d
df

dq=df
q3=2

� �

ei/ðfÞw fð Þ:
ð6:74Þ

The coefficient of e�iq1z is the exact reflection amplitude r; the expression above is
equivalent to (6.54), obtained from the comparison identity (6.50). The first order
perturbation result is obtained by setting ψ = ψ1

+ on the right hand sides of (6.72)
and (6.74), and reproduces r(1) as given by (6.55). Higher order approximations are
obtained by iteration of the integral equation, as in the long wave case of Chap. 3.

The integral equation (6.72) and the resulting perturbation series are closely
related to the coupled equations derived by Bremmer (1951), and the resulting
Bremmer series. This in turn has an intimate connection with the Brekhovskikh
series of Sect. 5.8, as we shall show by deriving the Bremmer equations from the
results of Sect. 5.6. In (5.74) and (5.75) we put f ¼ q�

1
2F; g ¼ q�

1
2G, to obtain the

coupled, first order, linear differential equations

F
0 ¼ q0

2q
Ge�2i/; G

0 ¼ q0

2q
Fe2i/: ð6:75Þ

These have the same form as the Bremmer equations (Bremmer (1951), (6.15)); the
relation of F and G to the Bremmer functions u↑ and u↓ is

F ¼ q
1
2e�i/u"; G ¼ q

1
2ei/u#: ð6:76Þ

For waves incident from z ¼ �1 we have Gðþ1Þ ¼ 0: If further we set
Fð�1Þ ¼ 1; then Gð�1Þ ¼ rs; and integrating the equation for G0 from �1 to
þ1 gives

rs ¼ �
Z1

�1
dz

q0

2q
Fe2i/: ð6:77Þ
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When we approximate F by unity (weak reflection) we regain the Rayleigh
expression for rs.

The Bremmer series, obtained by iteration of the pair (6.75), has been investi-
gated by Bellman and Kalaba (1959) and Atkinson (1960), the latter showing that
the series converges if

Z1

�1
dz

dq=dz
q

�
�
�
�

�
�
�
�
\p: ð6:78Þ

When ɛ(z) is monotonically increasing, so is q(z), and (6.78) may be written as

Zq2

q1

dq
q
¼ ln

q2
q1

\p: ð6:79Þ

At normal incidence this condition reads ɛ2/ɛ1 < e2π ≈ 535, a rather weak constraint.
The condition for convergence progressively tightens as the angle of incidence is
increased: taking the example of the air-water interface at optical frequencies,

e1 ¼ 1; e2 � 4
3


 �2
, we find that the inequality (6.79) is satisfied by a factor of more

than three hundred at normal incidence, but is violated at h1 � 87:8�, that is at
about 2.2° from grazing incidence. The failure of the short wave approximation
near grazing incidence was implied in Sect. 6.2, where we noted that the function
γ = q−2dq/dz had to remain small. Near grazing incidence, or near the critical angle
(where respectively q1 and q2 tend to zero) γ becomes large within the interface, and
the short wave perturbation theories fail.

6.6 Short Wave Results for rp and rp=rs

We shall first summarize the results obtained for the s wave, rewriting the results in
electromagnetic notation. The electric field is ½0;E zð Þ exp Kx� xtð Þ; 0�, with

d2E
dz2
þ q2E ¼ 0; eiq1zþ rse�iq1z  E ! teiq2z: ð6:80Þ

Approximate solutions of (6.80) are

wþ1 ¼
q1
q

� �1
2

ei/; w�1 ¼
q2
q

� �1
2

e�i/; / zð Þ ¼
Zz

dfqðfÞ; ð6:81Þ
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which in fact satisfy

d2w�1
dz2

þ q2þ 1
2q

d2q
dz2
� 3
4

dq
qdz

� �2
" #

w�1 ¼ 0: ð6:82Þ

The comparison identity (6.54) applied to rs

rs ¼ 4i
ffiffiffiffiffi
q1
p
 ��1

Z1

�1
dz

d
dz

dq=dz
q3=2

� �

E ei/; ð6:83Þ

or the perturbation theory of the previous section, lead to the approximation

rð1Þs ¼
1
4i

Z1

�1
dz

d
dz

dq=dz
q3=2

� �

q�
1
2e2i/: ð6:84Þ

For the interfaces which extend from z1 to z2, and have discontinuities in the slope
of ɛ at the end points but are otherwise smooth, (6.84) gives

rð1Þs ¼
eið/1 þ/2Þ

4i
c1e
�iD/ � c2e

iD/
� 	þ � � � ð6:85Þ

(exponentially small terms from the smooth part of the interface being omitted).
We now wish to derive corresponding results for the p wave, for which

B ¼ 0;BeiðKx�xtÞ; 0
h i

¼ 0;
e
e1

� �1
2

beiðKx�xtÞ; 0

" #

; ð6:86Þ

The function b zð Þ ¼ e1=eð Þ12BðzÞ, introduced in Sect. 1.2, satisfies

d2b
dz2
þ q2bb ¼ 0; eiq1z � rpe�iq1z  b! tpeiq2z; ð6:87Þ

q2b ¼ q2þ e
1
2

2
d
dz

de=dz

e
3
2

� �

¼ q2 � e
1
2
d2e�

1
2

dz2
¼ q2þ 1

2e
d2e
dz2
� 3
4

de
edz

� �2

: ð6:88Þ

(compare (1.22) or (2.3)). For smooth profiles the difference qb
2 − q2 is of order

Dzð Þ�2, and thus smaller by the factor x=cð ÞDz½ ��2 in comparison with q2. It is
therefore negligible in the short wave case, except at grazing incidence or near
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turning points. For profiles which have discontinuities in their first derivative
(typically at the end points z1 and z2), the second derivative has delta functions
contributions at such points.

We first derive a comparison identity linking b and ψ1
+, which satisfies (6.82),

with the lower limit in the integral defining ϕ chosen so that ϕ tends to q1z as
z → −∞:

eiq1z  wþ1 !
q1
q2

� �1
2

eiðq2zþD/Þ ð6:89Þ

The expression in brackets in (6.82) will again be shortened to ~q2. The identity
resulting from multiplying (6.87) by ψ1

+, (6.82) by b, subtracting, and integrating the
result from −∞ to ∞ is

rp ¼ 1
2iq1

Z1

�1
dzðq2b � ~q2Þwþ1 b: ð6:90Þ

At normal incidence q! k ¼ ffiffi
e
p

x=c. Denoting derivatives with respect to z by
primes,

~q2 � q2 ! 1
4
e
00

e
� 5
16

e
0

e

� �2

; ð6:91Þ

q2b � ~q2 ! 1
4
e
00

e
� 7
16

e
0

e

� �2

: ð6:92Þ

Thus the expression (6.90) for rp gives the normal incidence reflection amplitude

rn ¼ 1
2ik1

Z1

�1
dz

1
4
e
00

e
� 7
16

e
0

e

� �2
" #

wþ1 b; ð6:93Þ

which is to be compared with the corresponding expression obtained from (6.84):

rn ¼ 1
2ik1

Z1

�1
dz

1
4
e
00

e
� 5
16

e
0

e

� �2
" #

wþ1 E: ð6:94Þ

These are both identities, but give slightly different values for rn when b and E are
both approximated by ψ1

+.
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At general angle of incidence, (6.90) reads

rp ¼ 1
4iq1

Z1

�1
dz

e
00

e
� 3
2

e
0

e

� �2

� q
00

q
þ 3

2
q
0

q

� �2
" #

wþ1 b; ð6:95Þ

and when b is approximated by ψ1
+, it leads to

rð1Þp ¼
1
4i

Z1

�1
dz

e
00

e
� 3
2

e
0

e

� �2

� q
00

q
þ 3

2
q
0

q

� �2
" #

q�1e2i/: ð6:96Þ

For profiles of finite extent which have discontinuities in the slope of ɛ(z) at the
boundaries z1 and z2, the dominant short wave contribution comes from these
discontinuities. Then, as in the s wave case, the quantity γ = q−2dq/dz changes from
0 to γ1 at z1, and from γ2 to 0 at z2. The resulting contribution to the integrand of
(6.96) is

c1 cos 2h1d z� z1ð Þ � c2 cos 2h2d z� z2ð Þ; ð6:97Þ

(at z1 the q″/q2 term has delta function strength γ1 and the ɛ″/ɛq term has delta
function strength 2γ1 cos

2 θ1.) If the profile is smooth everywhere except at z1 and
z2, the leading term in the short wave limit is

rð1Þp ¼
1
4i

c1 cos 2h1e
2i/1 � c2 cos 2h2e

2i/2
� 	 þ � � � ð6:98Þ

(…denotes exponentially small term terms). This may be rewritten, with
D/ ¼ /2 � /1, as

rð1Þp ¼
eið/1 þ/2Þ

4i
c1 cos 2h1e

�iD/ � c2 cos 2h2e
iD/

� 	 þ � � � : ð6:99Þ

At normal incidence (6.99) is in agreement with rs
(1) as given by (6.85), and the ratio

rp
(1)/rs

(1) correctly takes the value +1. At grazing incidence the approximations rs
(1)

and rp
(1) both fail, since the assumption that γ = q−2dq/dz is small compared to unity

cannot hold as q1 ¼
ffiffi
e
p

x=cð Þ cos h1 tends to zero. Neither does rp
(1) tend to 1 nor

does rs
(1) tend to −1 (the correct limiting values at grazing incidence, as shown in

Sect. 2.3), but rp
(1)/rs

(1) does tend to the correct limiting value of −1, since the γ1 term
dominates and cos 2θ1 tends to −1.

The s and p reflectivities in the short wave limit are

Rð1Þs ¼ r 1ð Þ
s

�
�

�
�
2¼ 1

16
c21þ c22 � 2c1c2 cos 2D/

� 	

; ð6:100Þ
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Rð1Þp ¼ r 1ð Þ
p

�
�
�

�
�
�

2
¼ 1

16
c21 cos

2 2h1þ c22 cos
2 2h2 � 2c1c2 cos

2 2h1 cos2 2h2 cos 2D/
� 	

:

ð6:101Þ

We will compare these formulae with the exact results for the exponential profile
defined in (2.93), in which the dielectric function ɛ changes exponentially with
z (compare Sects. 2.5 and 6.1) and

c ¼ 1
2
q�3

dq2

dz
¼ ex2=c2

2aq3
; a ¼ Dz

ln ðe2=e1Þ ; ð6:102Þ

D/ ¼ 2a q2 � q1 � K arctanðq2=KÞ � arctanðq1=KÞ½ �f g: ð6:103Þ

The reflectivities as a function of angle of incidence are shown in Figs. 6.4 and 6.5.
We see from these figures that the short wave approximations work well at

normal incidence with the rather small value x=cð ÞDz ¼ 2, but at this value their
accuracy is poor near the Brewster angle and beyond. Thus care must be taken in
the ellipsometric application of the formulae (6.85) and (6.99) in the intermediate
region when the interfacial thickness is of the same order of magnitude as the

Fig. 6.4 Angular dependence of the s wave reflectivity for the exponential profile, at x=cð ÞDz ¼
2 and with e1 ¼ 1; e2 ¼ 4=3ð Þ2. The solid curve (marked e) is the exact reflectivity obtained from
(2.99); the dashed curve (a) is the short wave approximation (6.100). The ratio Rs/Rs

(1) is also
shown as the dash-dot curve; Rð1Þs is about 2 % too large at normal incidence, and about a factor of
2 too large at 60°
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wavelength ( x=cð ÞDz ¼ 2 corresponds to a wavelength about three times the
interfacial thickness, giving the normal incidence values γ1 ≈ 1/7 and γ2 ≈ 1/10 for
the profile used in Figs. 6.4 and 6.5).

Fig. 6.5 Angular dependence of the p wave reflectivity for the exponential profile, at x=cð ÞDz ¼
2 and with e1 ¼ 1; e2 ¼ 4=3ð Þ2. The solid curve is the exact reflectivity obtained from (2.98); the
dashed curve is the short wave approximation (6.101). Note the vertical scale is enlarged one
hundred times relative to Fig. 6.4. The minima of Rp and Rp

(1) are near 49.7° and 48.9°; the
zero-thickness Brewster angle is arctanð4=3Þ � 53:1�

Fig. 6.6 Exact (solid curve, e) and approximate (dashed curve, a) trajectories of rp/rs in the
complex plane, as a function of the angle of incidence. The curves are drawn from the exponential
profile, with e1 ¼ 1; e2 ¼ 4=3ð Þ2; x=cð ÞDz ¼ 3. The curves start at 1 at normal incidence, pass
through their principal angles of 41.9° and 39.7° (where the respective real parts of rp/rs are zero,
points shown on the graph), and end at −1 at glancing incidence
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From (6.85) and (6.99) we find that the real and imaginary parts of the ellip-
sometric ratio have the short wave limiting forms

Re
rp
rs

� �ð1Þ
¼ c21 cos 2h1þ c22 cos 2h2 � c1c2ðcos 2h1þ cos 2h2Þ cos 2D/

c21þ c22 � 2c1c2 cos 2D/
; ð6:104Þ

Im
rp
rs

� �ð1Þ
¼ c1c2ðcos 2h1 � cos 2h2Þ sin 2D/

c21þ c22 � 2c1c2 cos 2D/
: ð6:105Þ

The trajectory of rp/rs in the complex plane, as a function of the angle of incidence,
is shown in Fig. 6.6 for the exponential profile. We see that while the short wave
approximations for the reflectivities work well down to x=cð ÞDz ¼ 2 at normal
incidence, the agreement is poor at intermediate angles even at x=cð ÞDz ¼ 3.

So far in this section we have given results based on the approximations rs
(1) and

rp
(1), which may be written in the form

rð1Þs ¼
1
4i

Z1

�1
dz

q
00

q
� 3
2

q
0

q

� �2
" #

q�1e2i/; ð6:106Þ

rð1Þp ¼
1
4i

Z1

�1
dz

e
00

e
� 3
2

e
0

e

� �2

� q
00

q
þ 3

2
q
0

q

� �2
" #

q�1e2i/: ð6:107Þ

We will compare these with the Rayleigh approximations of Sect. 5.7:

rRs ¼ �
Z1

�1
dz

q0

2q
e2i/; ð6:108Þ

rRp ¼
Z1

�1
dz

Q0

2Q
e2i/: ð6:109Þ

By changing the variable of integration temporarily to ϕ, integrating by parts, and
changing back, these may be written in the form

rRs ¼
1
4i

Z1

�1
dz

q
00

q
� 2

q
0

q

� �2
" #

q�1e2i/; ð6:110Þ

rRp ¼
1
4i

Z1

�1
dz

e
00

e
� e

0

e

� �2

� e
0
q
0

eq
� q

00

q
þ 2

q
0

q

� �2
" #

q�1e2i/: ð6:111Þ
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When written in this form the difference between the two approximate sets is seen
to lie in the coefficients of the square of the first derivatives, but not in the second
derivative. Thus for profiles with a discontinuity in the first derivative of ɛ, and
consequently a delta function contribution to ɛ″ or q″, there is no difference between
the short wave limiting forms of the Rayleigh approximation and those based on the
Liouville-Green waveforms.

At normal incidence the two Rayleigh forms agree, giving

rRn ¼
1
8i

Z1

�1
dz

e
00

e
� 3
2

e
0

e

� �2
" #

k�1e2i/; ð6:112Þ

while there is a difference between the expressions (6.106) and (6.107) when
q! ffiffi

e
p

x=c ¼ k, the two averaging to (6.112):

rð1Þs !
1
8i

Z1

�1
dz

e
00

e
� 5
4

e
0

e

� �2
" #

k�1e2i/; ð6:113Þ

rð1Þp !
1
8i

Z1

�1
dz

e
00

e
� 7
4

e
0

e

� �2
" #

k�1e2i/: ð6:114Þ

6.7 A Single Turning Point: Total Reflection

The preceding sections have dealt with the case ɛ1 < ɛ2 (or V1 > V2 in the quantum
particle case), where q2(z) = ɛ(z)ω2/c2 − K2 is positive everywhere. We now
examine the opposite case where ɛ1 > ɛ2 (or V1 < V2), of which examples are: light
incident on an interface from the optically denser medium, radio waves incident on
an ionospheric layer, or particles moving up a potential gradient. This was illus-

trated in Figs. 1.8 and 1.9. For h1 [ hc ¼ arcsin e2=e1ð Þ12 there will be total internal
reflection, since then q2

2 < 0, and the wave deep inside medium 2 decays expo-
nentially as exp (−|q2|z). In geometrical optics and classical particle physics the
reflection occurs at the point z0 defined by q2(z0) = 0. This is called the turning
point: a classical particle turns back at z0, being unable to penetrate into a region
where the kinetic energy of the motion in the z direction would become negative.
Waves do penetrate beyond this point, but decay exponentially for z > z0, and there
is no propagating wave at infinity.

For a given profile, the location of the turning point is a function of the angle of
incidence. The location is given by q2(z0) = ɛ(z0)ω

2/c2 − K2 = 0, and since
K2 = ɛ1(ω

2/c2) sin 2θ1, z0 is determined by
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e z0ð Þ ¼ e1 sin2 h1: ð6:115Þ

For example, for the hyperbolic tangent profile, for which

e zð Þ ¼ e1þ e2ez=Dz

1þ ez=Dz
; ð6:116Þ

z0 h1ð Þ ¼ Dz ln
cos2 h1

sin2 h1 � e2=e1
¼ Dz ln

cos2 h1
sin2 h1 � sin2 hc

: ð6:117Þ

This varies from þ1 at θc to �1 at grazing incidence. Three curves of q2 versus
z for this profile are shown in Fig. 6.7.

A turning point, and the consequent total reflection, may be present even at
normal incidence if the dielectric function passes through zero. An example is
provided by the dielectric function of an electron plasma, approximating the
electron gas in metals or electrons in the ionosphere. If electron collisions and the
consequent damping are neglected, this takes the form (see for example Budden
1985 or Kittel 1976)

Fig. 6.7 Variation of q2(z) with angle of incidence. The curves are drawn for the hyperbolic
tangent profile, with e1 ¼ 4=3ð Þ2; e2 ¼ 1; ðhc ¼ arcsin 3=4 � 48:59�Þ; representing the water-air
interface at optical frequencies. The turning point for h1 ¼ 75� is circled
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e z;xð Þ ¼ 1� x2
pðzÞ
x2 ; ð6:118Þ

where ωp is the plasma angular frequency, and is a function of z through its
proportionality to the square root of the electron density. For this simplified
dielectric function, there is a turning point at normal incidence at z0 given by
ωp(z0) = ω, and at a general angle of incidence at z0(ω, θ1) given by

xp z0ð Þ ¼ x cos h1 ð6:119Þ

(the limiting value ɛ1 = 1 is assumed in (6.118)). This model will be considered
again, with dissipation included, in Chap. 10. An analogous case of total reflection
at normal incidence occurs for particles when their energy is less than V2, the
potential energy in the second medium.

When total reflection occurs we know that |r|2 = 1 (in the absence of dissipation)
so there is little point in calculating the magnitude of r. But there is information in
the phase of r: it gives for example the location of the ellipsometric ratio rp/rs on the
unit circle, and determines the time of arrival and shape of reflected pulses (as we
shall see in Chap. 19). A simple argument shows that the phase of rs is always a bit
less than 2(ϕ0 − ϕ−), where / zð Þ ¼ R z dfqðfÞ is the phase integral, and takes the
limiting form q1z + ϕ− as z! �1, and ϕ0 is the value of ϕ at z0. The argument is
based on the behaviour of the wave function near a turning point, illustrated in
Fig. 6.8 for the linear profile considered in Sect. 5.2.

Fig. 6.8 Wavefunction E(z) for total internal reflection by the linear dielectric function profile.
The parameters used are e1 ¼ 2; e2 ¼ 1; h1 ¼ 60�. The real and imaginary parts of E(z) are
proportional to each other when there is total reflection: Im(E)/Re(E) = tan (δs/2) when rs ¼ eids

(see Sect. 2.2). Only the imaginary part is shown. The turning point z0 is half-way down the ramp
at this angle of incidence
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The fact that the phase of rs is always a bit less than 2(ϕ0 − ϕ−) follows from the
shape of the wavefunction near the turning point, where it changes from oscillatory
behaviour to monotonic decay, with a consequent extremum at z0 − δz. The zeroth
approximation for the wave is, for z < z0,

E � w0 ¼ ei /�/�ð Þ þ rse�ið/�/�Þ: ð6:120Þ

This expression fails near z0, but in the short-wave limit its region of validity
approaches it. Since E has an extremum at z0 − δz, we obtain an estimate of rs by
setting dψ0/dz = 0 at this point, where ϕ takes the value ϕ0 − δϕ. This gives
rs � e2i /0�d/�/�ð Þ. For profiles which can be approximated by a linear variation
near the turning point, it turns out that δϕ takes the universal value π/4 in the short
wave limit:

rs � e2i /0�p=4�/�ð Þ; ds � 2 /0 � /�ð Þ � p
2
: ð6:121Þ

Equation (6.121) is derived by constructing an accurate solution in the neigh-
bourhood of the turning point, on the assumption that q2(z) = ɛ(z)ω2/c2 − K2 is
approximately linear near its zero z0,

q2ðzÞ � z� z0ð Þx
2

c2
de
dz

� �

0
: ð6:122Þ

For waves incident from the left and totally reflected, q2 and ɛ are decreasing
functions of z, and the derivative of ɛ at z0 is negative. We set

f ¼ z� z0ð Þ x2

c2
� de
dz

� �

0


 �1
3

; ð6:123Þ

and the wave equation d2E/dz2 + q2E = 0 transforms, in the neighbourhood of the
turning point, to Airy’s equation

d2E

df2
� fE ¼ 0: ð6:124Þ

The solutions Ai(ζ) and Bi(ζ) of (6.124) were discussed in Sect. 5.2. Here we need
only the asymptotic forms for large |ζ|:
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Ai fð Þ� 1
2p
�1

2f�
1
4 exp � 2

3 f
3
2

h i

ð arg fj j\pÞ
Ai �fð Þ� p�

1
2f�

1
4 sin 2

3 f
3
2þ p

4

h i

ð arg fj j\2p=3Þ
Bi fð Þ� p�

1
2f�

1
4 exp 2

3 f
3
2

h i

ð arg fj j\p=3Þ
Bi �fð Þ� p�

1
2f�

1
4 cos 2

3 f
3
2þ p

4

h i

ð arg fj j\2p=3Þ

ð6:125Þ

The main features of the asymptotics (for real ζ) can be obtained from the
approximate waveforms ψ1

± of Sect. 6.2. For example when ζ > 0 these are pro-

portional to f�
1
4 exp � 2

3 f
3
2

h i

. For more details see Heading (1962, Appendix A3),

Budden (1985, Chap. 8), and Olver (2010).
We are now able to complete the derivation of (6.121) by matching the

approximate solution q�
1
2w0 (ψ0 given by (6.120)), which breaks down in the

neighbourhood of z0, to the asymptotic form of the solution Ai(ζ) which is accurate
near z0. (The coefficient of Bi(ζ) goes to zero in the short wave limit, since Bi(ζ)
diverges for large positive ζ.) For large negative ζ, Ai(ζ) is, from (6.125), propor-

tional to ð�fÞ�1
4 sin 2

3 ð�fÞ
3
2þ p

4

h i

. The quantity 2
3 ð�fÞ

3
2 is, from (6.122), (6.123) and

the definition of the phase integral, equal to ϕ0 − ϕ. Also ð�fÞ�1
4 is proportional to

q�
1
2. Thus sin /0 � /þ p

4


 �

must be proportional to ψ0 as given by (6.120), which
proportionality holds when rs is given by (6.121). The result (6.121) is, in essence,
due to Hartree (1931).

The derivation has assumed an overlap of regions of validity of the Airy function
solution, and of the ψ0 form. The Airy function is the solution of the equation (6.124),
which is itself an approximation, valid when (z − z0)(dɛ/dz)0 is small. On the other
hand, the variable ζ must be large to ensure the accuracy of the asymptotic forms
assumed in the derivation. As for the short wave form q�

1
2w0, we know this to fail

when c ¼ q�2dq=dz ¼ 1
2 q
�3 x2=c2ð Þde=dz is not small. We note from (6.122) that the

quantity cf
3
2

�
�
�

�
�
� is of order unity, and thus overlap of the regions of validity of the two

forms will exist only if x=cð Þ= de=dzj j0
� �2

3 is substantially larger than the value of |ζ|
for which the asymptotic forms become useful. If this is (say) 4, we need (ω/c)/|dɛ/dz|0
substantially larger than 8 as a necessary condition for the validity of (6.121).

In the case of total reflection, with q2 = i|q2|, it is convenient to set the lower limit
in the phase integral equal to the turning point z0:

/ zð Þ ¼
Zz

z0

df qðfÞ; ð6:126Þ
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making ϕ0 = 0. When the inhomogeneity in dielectric function or potential is finite,
and extends from z = 0 to z ¼ Dz;/� ¼ �

R z0
0 dz qðzÞ; we can write the phase of rs

in the form

ds ¼ 2
Zz0

0

dz q zð Þ � p
2
: ð6:127Þ

For the hyperbolic tangent profile

e zð Þ ¼ 1
2

e1þ e2ð Þ � 1
2
ðe1 � e2Þ tanh z=2Dz ð6:128Þ

the phase integral may be evaluated exactly. As in Sect. 6.4 we use the variables
s ¼ tanh z=2Dz and then y ¼ qDz. We need ϕ for z ≤ z0; this is given by

/ yð Þ ¼ 2 y2j j arctan y
y2j j � y1 ln

y1þ y
y1 � y

: ð6:129Þ

To evaluate ϕ−, defined by ϕ! q1z + ϕ− as z! �1, we set y = y1 − δy in (6.129),
using dy! ðy21þ y2j j2Þ=2y1ez=Dz. This gives ϕ−:

/� ¼ 2 y2j j arctan y1
y2j j � y1 ln

4y21
y21þ y2j j2

: ð6:130Þ

The approximate phase of the reflection amplitude is 2ð/0 � p
4 � /�Þ, and we have

chosen to make ϕ0 zero. At grazing incidence q1 ¼
ffiffi
e
p

x=cð Þ cos h1 tends to zero, so
ϕ− tends to zero, and (6.121) gives the incorrect limiting value rs → −i (we saw in
Sect. 2.3 that the exact rs always tends to −1 at grazing incidence). The incorrect
glancing value is due to the breakdown of the short wave approximations at grazing
incidence, where even if x=cð ÞDz is large q1Dz eventually tends to zero. The
approximate phase is compared in Fig. 6.9 with the exact phase, calculated from
(A26) of Chap. 20, or directly from (2.82).

For profiles of finite extent the short-wave expression (6.127) applies, and is
always incorrectly equal to� p

2 at glancing incidence. Lekner (1996) derives an exact
expression from the general result of Sect. 2.2, rewritten in this chapter as (6.32).
(The continuity of the dielectric function at the profile boundaries is assumed.) In
(6.32) we set z1 = 0 and q2 = i|q2|. This gives

rs ¼
q1 F;G

0
 �þ q2j jðF;GÞ
� �þ i F

0
;G

0
 �þ q2j jðF 0 ;GÞ
� �

q1 F;G0ð Þ þ q2j jðF;GÞ½ � � i F 0 ;G0ð Þ þ q2j jðF 0 ;GÞ½ � : ð6:131Þ
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We have used the shorthand notations F;Gð Þ ¼ F1G2 � G1F2; F;G
0
 � ¼

F
0
1G2 � G

0
1F2; et cetera. Since the wave equation is linear, with real coefficients,

F and G may be taken to be real. The modulus of rs is clearly unity, and the phase is

ds ¼ 2arctan
F
0
;G

0
 �þ q2j jðF 0 ;GÞ
q1 F;G0ð Þ þ q2j jðF;GÞ½ �

( )

: ð6:132Þ

As q1 ! 0; ds ! �p and rs correctly tends to −1. Lekner (1996) compares the
approximate formula (6.127) with the exact solutions for the exponential profile, for
both s and p polarizations, in the context of Lloyd’s mirror fringes. More detail may
be found in Sect. 16.5, in the chapter on neutron reflection.

The p wave reflection amplitude in the case of total reflection, again assuming
z1 = 0 and continuity of the dielectric function at the profile boundaries, has similar
form to the s wave amplitude of (6.131):

rp ¼ �
q1 F;G

0
 �þ q2j j F;Gð Þ� �þ i F
0
;G

0
 �þ q2j j F 0 ;G

 �� �

q1 F;G0ð Þ þ q2j j F;Gð Þ½ � � i F 0 ;G0ð Þ þ q2j j F 0 ;Gð Þ½ � : ð6:133Þ

Fig. 6.9 The difference between the approximate and exact phases of the reflection amplitude for
the hyperbolic tangent profile, with e1 ¼ 4=3ð Þ2; e2 ¼ 1; x=cð ÞDz ¼ 2 and 5. The phase difference
is plotted as a function of the angle of incidence for θ1 > θc ≈ 48.6°, in the total reflection region
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The functions F and G in (6.133) are now solutions of the equation (1.20) or (2.37)
for the magnetic field. As q1 ! 0; dp ! 0ðmod 2pÞ and rp correctly tends to 1.

6.8 Two Turning Points, and Tunneling

The penetration of wave motion into a region where q2 < 0 leads to the possibility
of tunneling, where the classically forbidden region is traversed by a small portion
of the wave, which exits into a region where q2 > 0 and propagates on. Such
transmission via tunneling involves an even number of turning points. We will
restrict our consideration to two classical turning points z1 and z2, defined by
q2(z1) = 0 = q2(z2). Our aim is to derive short wave approximations for the reflection
and transmission amplitudes in this case. But first we will show an analytically
solvable example of tunneling, provided by the sech2 profile

e zð Þ ¼ e0þDe sech2z=a; ð6:134Þ

which was discussed in Sect. 4.3, and will again appear as a solvable example in the
reflection and transmission of quantum particle wavepackets (Sect. 19.2). The
s wave equation d2E/dz2 + q2E = 0 has

q2 zð Þ ¼ q20þDe
x2

c2
sech2z=a, ð6:135Þ

where q0 is the common value at �1 of the wavevector component perpendicular
to the interface,

q20 ¼ e0
x2

c2
� K2 ¼ e0

x2

c2
cos2 h; ð6:136Þ

and θ is the common value of the angles of incidence and refraction. Thus q2 is
given by

q2 zð Þ ¼ e0
x2

c2
cos2 hþ De

e0
sech2z=a


 �

: ð6:137Þ

When De is positive there are no turning points (it is assumed ɛ0 > 0), but when De
is negative a pair of symmetrically placed turning points come into existence for

h[ ht ¼ arccos �De=e0ð Þ12: ð6:138Þ
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The zeros of q2(z) are at ± z0, with

z0 ¼ a ln
cos ht þ cos2 ht � cos2 hð Þ12

cos h
: ð6:139Þ

(When De\� e0 the dielectric function becomes negative near the origin, and
there are two turning points at any angle of incidence. Their location is still given
by (6.138) and (6.139), with θt now imaginary). The variation of q2 with z and angle
of incidence is shown in Fig. 6.10.

The reflection properties of the sech2 profile are characterized by two dimen-
sionless parameters α and β, or s and β, where

a ¼ De xa=cð Þ2; b ¼ q0a; s ¼ 1
2
�1þ 1þ 4að Þ12
h i

: ð6:140Þ

For negative α there will be tunneling at a large enough angle of incidence. The
transition from no tunneling to tunneling (in quantum particle language, from over

the potential barrier to through the barrier) takes place when b ¼ �að Þ12 if
�e0 \De\ 0. We saw in Sect. 4.3 that the reflectivity takes different analytic

Fig. 6.10 The variation of q2(z), for the sech2 profile, with the angle of incidence. The curves are
drawn for e0 ¼ 1; De ¼ �3=4, for which ht ¼ 30�. The two turning points for h ¼ 60� are circled.
Negative De corresponds to a positive potential barrier in the quantum particle case
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forms according as a[ � 1
4 (s real), in which case Rs = |rs|

2 is given by (4.35), or
a\� 1

4 in which case s is complex and the reflectivity is given by (4.38):

s ¼ � 1
2
þ ir; r ¼ 1

2
4 aj j � 1ð Þ12; Rs ¼ cosh2 pr

cosh2 prþ sinh2 pb
; ð6:141Þ

When a ¼ � 1
4 the reflectivity is Rs = [1 + sinh 2πβ]−1 = sech2πβ.

Reflectivity contours for the sech2 profile in the a; b plane are shown in
Fig. 6.11. We note the rapid rise in the reflectivity on passage deeper into the

tunneling region (below the b ¼ �að Þ12 dashed curve on the left), and the rapid fall
on passage out of it. The transition in or out of tunneling is interesting. In particle
terms, there is just enough available kinetic energy for the particle to reach the top
of the potential barrier. Classically, it is the transition between total reflection and

zero reflection. Quantum mechanically, the exact reflectivity when b ¼ �að Þ12 is
always less than its large-thickness asymptotic value 1/2. On the right-hand side of
the figure, corresponding to positive De or a potential well in the particle case, the
contour pattern is caused by the interplay of resonance reflectivity zeros with strong
reflectivity at grazing incidence (β → 0).

Fig. 6.11 Contours of constant reflectivity for the sech2 profile. Grazing incidence, corresponding
to β = q0a → 0, generally has high reflectivity. However, for positive α (a positive De or negative
DV in the particle case) there are resonance zeros of reflectivity when
a ¼ n nþ 1ð Þ; n ¼ 0; 1; 2; . . ., as shown in (4.35). The tunneling region is below the dashed

curve on the left, given by b ¼ �að Þ12, which is asymptotic to the Rs ¼ 1
2 contour for large aj j;b.

The q2 curves of Fig. 6.10 at h ¼ 0�; 30� and 60� correspond to b= �að Þ12¼ 2=
ffiffiffi

3
p

; 1; and 1=
ffiffiffi

3
p

.
The vertical line at α = −3 relates to Fig. 6.12
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We shall now derive general but approximate expressions for rs and ts when
there are two turning points, and then apply these to the sech2 profile, comparing
the reflectivity with (6.141). Away from the turning points, now denoted by z1 and

z2, the waveforms will be approximated by q�
1
2e�i/ for real q, and by qj j�1

2e�U for
imaginary q (in between the turning points). The real and imaginary parts of the
phase integral, ϕ and Φ, are defined by

/ zð Þ ¼
Zz

z1

df q fð Þþ/1 ðz 
 z1Þ;

U zð Þ ¼
Zz

z1

df q fð Þj j þU1 z1 
 z 
 z2ð Þ;

/ zð Þ ¼
Zz

z2

df q fð Þþ/1 z 
 z2ð Þ:

ð6:142Þ

Note that the real part of the phase has the same value ϕ1 at z1 and z2, being
continuous across the tunneling interval (only the imaginary part changes). The
limiting forms of the real part of ϕ are given by

q0zþ/�  / zð Þ ! q0zþ/þ ð6:143Þ

as z! �1 (for simplicity we consider the ɛ1 = ɛ2 case).
The method used to obtain the reflection and transmission amplitudes is similar

to that used in Sect. 6.7, namely matching the approximate wave functions across
the turning points. Since the approximate wave functions fail at z1 and z2, the
matching is via the locally accurate Airy function solutions across z1 and z2. Near z1
the dielectric function is decreasing with z; we approximate q2 by its leading term
linear in z − z1, and define a local variable ζ1:

q2ðzÞ � z� z1ð Þx
2

c2
de
dz

� �

1
; f1 ¼ z� z1ð Þ x2

c2
� de
dz

� �

1


 �1
3

: ð6:144Þ

The accurate solutions in the neighbourhood of z1 are then Ai(ζ1) and Bi(ζ1). Near z2
the dielectric function is increasing with z and we set

q2ðzÞ � z� z2ð Þx
2

c2
de
dz

� �

2
; f2 ¼ z� z2ð Þ x2

c2
de
dz

� �

2


 �1
3

: ð6:145Þ
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The accurate solutions in the neighbourhood of z2 are Ai(ζ2) and Bi(ζ2). We again
assume the existence of regions of overlap, where both the approximate solutions
and the asymptotic forms of the Airy functions hold simultaneously. The condition
for the existence of such regions was discussed in the last section. We use the
asymptotic forms (6.125), the relations

2
3
�f1ð Þ23 � /1 � / ðz\z1Þ; 2

3
f1ð Þ

2
3� U� U1 ðz[ z1Þ;

2
3
�f2ð Þ23 � U2 � U ðz\z2Þ; 2

3
f2ð Þ

2
3� /� /1 z[ z2ð Þ;

ð6:146Þ

and match at four places (to the left and to the right of both z1 and z2). After removal
of all common factors, the four matchings give

eið/�/�Þ þ rse�ið/�/�Þ ¼ A1 sinð/1 � /þ p=4ÞþA1 cosð/1 � /þ p=4Þ;
1
2
A1eU1�UþB1eU�U1 ¼ Ae�UþBeU;

Ae�UþBeU ¼ 1
2
A2eU�U2 þB2eU2�U;

A2 sinð/� /1þ p=4ÞþA2 cosð/� /1þ p=4Þ ¼ tse
i /�/þð Þ:

ð6:147Þ

At each point we equate the coefficients of e±iϕ or e±Φ. Thus we have eight con-
ditions to determine the eight coefficients rs;A1;B1;A;B;A2;B2; ts. The result of
solving for rs and ts is

rs ¼ e2ið/1�/��p=4Þ tanhðDUþ ln 2Þ ð6:148Þ

ts ¼ eið/þ�/�Þ sechðDUþ ln 2Þ; ð6:149Þ

where

DU ¼ U2 � U1 ¼
Zz2

z1

dz qðzÞj j: ð6:150Þ

(The ln 2 comes from the factor 1
2 multiplying A1 and A2 in the tunneling region,

which in turn comes from the first equation in (6.125)). Note that
1 − tanh 2x = sech2x, so that the conservation law 1 − |rs|

2 = |ts|
2 of Sect. 2.1 is

satisfied by the short-wave approximation (6.148), (6.149) for the reflection and
transmission amplitudes. When DU is large,
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rsj j2! 1� e�2DU; tsj j2! e�2DU: ð6:151Þ

DU may be evaluated analytically for the sech2 profile. We have, from (6.135) and
(6.140),

DU ¼
Zz2

z1

dz qðzÞj j ¼ 2
Zx0

0

dx aj jsech2x� b2
� �1

2; ð6:152Þ

with x0 being the value of x ¼ z=a for which the integrand is zero; this corresponds
to z0 as given by (6.139). The substitution |α|sech2x = β2y2 reduces (6.152) to
elementary form, leading to

DU ¼ pð aj j12�bÞ: ð6:153Þ

This expression holds for negative α, with, −α > β2. When �a ¼ b2ðh ¼ htÞ (see
(6.138)) DU is zero, the turning points having merged at the origin. This is the
transition between tunneling and no tunneling discussed in relation to Fig. 6.11.
The approximate treatment given above then fails, since it was based on the
assumption of well-separated turning points. Nevertheless, we note that when
DU ¼ 0 the reflection amplitude according to (6.148) has modulus equal to 3/5.

When |α| and β are both large, the exact reflectivity formula (6.141) gives

Rs ! 1
1þ e�2DU

; ð6:154Þ

which is in agreement with (6.151) provided DU is large. When |α| is large but β
small (grazing incidence), (6.141) leads to

Rs ! 1

1þ 2pbð Þ2e�2p aj j12
: ð6:155Þ

This is not in agreement with (6.151), the latter having been based on short wave
approximate waveforms which fail at grazing incidence. Thus a large DU is not a
guarantee of the accuracy of (6.151). The approximate reflectance and transmittance

Ra � tanh2 DUþ ln 2ð Þ; Ta � sech2 DUþ ln 2ð Þ; ð6:156Þ

are compared with the exact Re of (6.141) and Te = 1 − Re in Fig. 6.12.
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Chapter 7
Simple Anisotropy

Up till now we have assumed the electrodynamics of a non-magnetic stratified
system to be characterized by a single dielectric function e(zÞ. This is often a very
good approximation: for example in the case of monatomic fluids, where a
liquid-vapour interface needs two dielectric functions eoðzÞ and eeðzÞ for specifi-
cation of the electrodynamics, the difference between these is small (Lekner 1983).
On the other hand molecular liquids can have strong anisotropy due to orientation
of the molecules, extreme examples being liquid crystals. Historically the first
anisotropy noted was that of Iceland spar (calcite), and Huygens in his Treatise on
Light (1690) gives a remarkably prescient discussion of the possible molecular
(spheroidal corpuscles, as Huygens termed them) arrangements in anisotropic
crystals. Simple examples of reflection in the presence of anisotropy will be dis-
cussed here, with emphasis on the interplay of anisotropy and stratification in their
effect on reflectivities and ellipsometric measurements. The first five sections deal
with a special case of uniaxial anisotropy, where the optic axis is normal to the
reflecting surface (the system has azimuthal symmetry on rotation about the surface
normal). The last Section discusses anisotropy in ionospheric propagation of radio
waves due to the earth’s magnetic field. A full treatment of uniaxial anisotropy will
be given in Chap. 8.

7.1 Anisotropy with Azimuthal Symmetry

When the reflecting system is symmetric with respect to rotation about the normal
to the interface (azimuthal symmetry), the electrodynamics is characterized by
eoðz;xÞ and eeðz;xÞ, corresponding to the electric field vector aligned respectively
along and perpendicular to the interface. The convention used throughout this book
is that the interface lies parallel to the xy plane, and propagation is in the zx plane;
isotropic systems have eo ¼ ee. Examples of the systems discussed in Sects. 7.1–7.5
are: uniaxial crystals with the optic axis along the surface normal, and the surfaces
of atomic fluids or of molecular fluids in which surface molecular orientation is
symmetric about the surface normal.

© Springer International Publishing Switzerland 2016
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Symmetry with respect to rotation about the surface normal conserves the s and
p wave characterizations: these two polarizations, with E ¼ ð0;Ey; 0Þ and B ¼
ð0;By; 0Þ respectively, are together sufficient to represent any plane wave incident
onto such an anisotropic planar stratified medium. To derive equations for the s and
p waves we repeat the analysis of Sects. 1.1 and 1.2, with (1.1) unchanged, and the
dielectric function e in (1.2) now to be interpreted as the diagonal tensor

e ¼
eo 0 0
0 eo 0
0 0 ee

0

@

1

A: ð7:1Þ

For the s wave (1.1) and (1.2) give

i
x
c
Bx ¼ � @Ey

@z
; By ¼ 0; i

x
c
Bz ¼ @Ey

@x
; ð7:2Þ

�ix
c
eoEy ¼ @Bx

@z
� @Bz

@x
: ð7:3Þ

On eliminating Bx and Bz from (7.2) and (7.3) we find

@2Ey

@z2
þ @2Ey

@x2
þ eo

x2

c2
Ey ¼ 0: ð7:4Þ

Since the system retains invariance with respect to translation in the x or y direc-
tions, the x dependence of Ey is contained in the factor eiKx as before,

Ey z; x; tð Þ ¼ ei Kx�xtð ÞEðzÞ: ð7:5Þ

Substitution of (7.5) into (7.4) gives the usual form for the s wave equation,

d2E
dz2
þ q2sE ¼ 0; q2s ¼ eo

x2

c2
� K2: ð7:6Þ

Thus all the results we have derived in the last six chapters for the s wave also
apply to the s wave in the presence of azimuthally symmetric anisotropy, with the
replacement of eðzÞ by eoðzÞ.

The p wave is more complicated, since it samples (at a general angle of inci-
dence) both eo and ee. The Maxwell equation (1.1) gives

i
x
c
By ¼ @Ex

@z
� @Ez

@x
; ð7:7Þ

as before, but (1.2) now implies
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i
x
c
eoEx ¼ @By

@z
; Ey ¼ 0; �ix

c
eeEz ¼ @By

@x
: ð7:8Þ

Elimination of Ex and Ez from (7.7) and (7.8) gives

@

@z
1
eo

@By

@z

� �

þ @

@x
1
ee

@By

@x

� �

þ x2

c2
By ¼ 0: ð7:9Þ

The substitution

By z; x; tð Þ ¼ eiðKx�xtÞBðzÞ ð7:10Þ

gives us a modified p wave equation,

d
dz

1
eo

dB
dz

� �

þ x2

c2
� K2

ee

� �

B ¼ 0: ð7:11Þ

This differs fundamentally from the isotropic case: (7.11) contains both dielectric
functions, and thus results previously obtained for the p wave cannot be used
directly to obtain results even for this restricted anisotropy.

Anisotropy implies birefringence (double refraction): consider the example of an
electromagnetic wave incident onto a homogeneous azimuthally symmetric ani-
sotropic material. The incident and reflected waves have the z dependence e�iq1z as
usual, but the s and p transmitted waves have the z dependence eiqsz and eiqpz; where
qs is given in (7.6) and, from (7.11),

q2p ¼ eo
x2

c2
� eo

ee
K2: ð7:12Þ

Since qp differs from qs, the angles hp and hs giving the wavevector directions of the
s and p waves are different: K ¼ q1 tan h1 ¼ qs tan hs ¼ qp tan hp, and from (7.6)
and (7.12),

e1 sin2 h1 ¼ eo sin2 hs ¼ eoee sin2 hp
eo sin2 hpþ ee cos2 hp

ð7:13Þ

We shall see in Chap. 8 that for the s (or ordinary) wave the wavevector direction is
always the same as the ray direction, given by the energy flux or Poynting vector
E� B. For the p (or extraordinary) wave, the wavevector and E� B directions are
different. The latter, when the optic axis is normal to the reflecting plane, is given
by

7.1 Anisotropy with Azimuthal Symmetry 177

http://dx.doi.org/10.1007/978-3-319-23627-8_8


tan h0p ¼
eoK
eeqp
¼ eo

ee
tan hp ð7:14Þ

We shall see in Sect. 8.2 that the extraordinary ray and wavevector are coplanar
with the optic axis, which here coincides with the normal to the interface. Figure 7.1
shows the wavevector directions; the extraordinary wave ray vector is also shown.
The differences between the three directions is enhanced by index matching: the
Figure is drawn to scale for calcite (no ¼ 1:658; ne ¼ 1:486, at the sodium yellow
line), immersed in an oil of index n1 ¼ 1:48. The angle of incidence is 60°. The
magnitudes of the normal components of the wavevectors are shown on the hori-
zontal axis.

The s and p reflection amplitudes for a sharp interface between an isotropic
medium and an anisotropic medium, characterized by eo and ee as above, are (for an
interface at z ¼ 0)

rs0 ¼ q1 � qs
q1þ qs

; �rp0 ¼ Q1 � Q
Q1þQ

; ð7:15Þ

where qs is given by (7.6), Q1 ¼ q1=e1, and Q ¼ qp=eo. The p wave reflection
amplitude follows from the continuity of B and ð1=eoÞðdB=dzÞ at the boundary, a

Fig. 7.1 Wavevector and ray
directions in an azimuthally
symmetric anisotropic system,
such as a uniaxial crystal with
its optic axis coincident with
the z-axis. The wavevectors
are solid lines, the
extraordinary ray vector is the
dashed line
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consequence of the differential equation (7.11). The Brewster angle hB, at which
rp ¼ 0, is given by Q1 ¼ Q, which leads to

hB ¼ arctan
eeðeo � e1Þ
e1ðee � e1Þ

� �1=2

: ð7:16Þ

7.2 Ellipsometry of a Thin Film on an Isotropic Substrate

Ellipsometry determines the complex number rp=rs. (Chapter 9 gives details of
various ellipsometric confugurations, and what they measure with general aniso-
tropy; for reflection from isotropic media, and for the simple anisotropy considered
in this chapter, these all give rp=rs). In Sect. 3.5, equation (3.52), we saw that, in the
isotropic case, this ratio is given to lowest order in the interface
thickness/wavelength expansion by

rs0
rp
rs

� �

¼ rp0 �
2iQ1K2

e1e2

Q1þQ2ð Þ2 I1þ � � � ; ð7:17Þ

The invariant I1 is given by

I1 ¼
Z1

�1
dz
ðe1 � eÞðe� e2Þ

e
¼

Z1

�1
dz e1þ e2 � e1e2

e
� e

n o

: ð7:18Þ

For the case of an anisotropic film characterized by eo and ee (with cylindrical
symmetry about the surface normal) and resting on an isotropic substrate with
dielectric constant e2, we shall show that the formula (7.17) remains valid, with

I1 ¼
Z1

�1
dz e1þ e2 � e1e2

ee
� eo

� �

: ð7:19Þ

This generalization was given (without proof) by Buff (1966) and independently by
Beaglehole (1980), the latter crediting Abelès (1976). The proof given here follows
Lekner (1983), Appendix A. We begin by deriving an anisotropic generalization of
the comparison identity (3.42). Let e0ðzÞ be the step function e0 ¼ e1 for z\ 0; e0 ¼
e2 for z [ 0, and B0ðzÞ the solution of

d
dz

1
e0

dB0

dz

� �

þ x2

c2
� K2

e0

� �

B0 ¼ 0; ð7:20Þ
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namely

B0 zð Þ ¼
eiq1z � rp0e�iq1zðz\ 0Þ
e2
e1

� �1=2
tp0eiq2z z [ 0ð Þ:

(

ð7:21Þ

BðzÞ is the solution of (7.11), with limiting forms

eiq1z � rpe�iq1z  B zð Þ ! e2
e1

� �1
2

tpeiq2z: ð7:22Þ

We multiply (7.11) by B0ðzÞ, (7.20) by BðzÞ, and subtract. The result is

d
dz

B0C � BC0ð Þ ¼ K2 1
ee
� 1
e0

� �

BB0 � eo � e0ð ÞCC0; ð7:23Þ

where (please note the different subscripts 0 and o)

C0 ¼ 1
e0

dB0

dz
; C ¼ 1

eo

dB
dz

: ð7:24Þ

Integration of (7.23) from z1 (deep in medium 1) to z2 (deep in medium 2) and use
of (7.21) and (7.22) then gives the identity

rp ¼ rp0þ 1
2iQ1

Z1

�1
dz

1
e0
� 1
ee

� �

K2BB0þ eo � e0ð ÞCC0

� �

: ð7:25Þ

To lowest order in the interface thickness we may replace B by B0ð0Þ and C by
C0ð0Þ, as given by (3.43). The result is

rp ¼ rp0 � 2iQ1

Q1þQ2ð Þ2 K2
Z1

�1
dz

1
e0
� 1
ee

� �

� Q2
2

Z1

�1
dz eo � e0ð Þ

8

<

:

9

=

;
þ � � �

ð7:26Þ

The s wave reflection amplitude is given by (3.18) on replacing e by eo:

rs ¼ rs0þ 2iq1x2=c2

ðq1þ q2Þ2
Z1

�1
dz eo � e0ð Þþ � � � ð7:27Þ
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The ellipsometric ratio rp=rs may now be found from (7.26), (7.27), and (3.45):

rs0
rp
rs

� �

¼ rp0 � 2iQ1K2

Q1þQ2ð Þ2
Z1

�1
dz

1
e0
� 1
ee

� �

� 1
e1e2

Z1

�1
dz eo � e0ð Þ

8

<

:

9

=

;
þ � � �

ð7:28Þ

The result (7.17, 7.19) follows from generalization of the identity (3.37):

e1e2

Z1

�1
dz

1
e0
� 1
ee

� �

�
Z1

�1
dz eo � e0ð Þ ¼

Z1

�1
dz e1þ e2 � e1e2

ee
� eo

� �

: ð7:29Þ

Another two equivalent ways of writing I1 (given by (7.29)) are

I1 ¼
Z1

�1
dz
ðe1 � eeÞðee � e2Þ

ee
þ

Z1

�1
dz ee � eoð Þ

¼
Z1

�1
dz
ðe1 � eoÞðeo � e2Þ

eo
þ e1e2

Z1

�1
dz

1
eo
� 1
ee

� �

:

ð7:30Þ

The first form of the isotropic I1 in (7.18) shows that I1 is positive when e lies
between e1 and e2. This is not necessarily so in the presence of anisotropy, even if
both eo and ee lie between e1 and e2. For example, if on average ee is smaller than eo,
the first form of (7.30) shows that I1 may be negative for sufficiently large aniso-
tropy. In general, if ee \ eo on average, the anisotropy will give the appearance of a
thinner film (a smaller I1), or can even make I1 negative. Conversely, if ee [ eo on
average, the anisotropy will increase I1, giving the same signal as a thicker isotropic
film. For a homogeneous anisotropic film we can be more definite: if Dz is the film
thickness, I1=Dz ¼ e1þ e2 � eo � e1e2=ee, and is positive provided the sum of eo
and e1e2=ee is less than the sum of e1 and e2. The contours of constant I1=Dz are
lines of slope �1 in the ðeo; e1e2=eeÞ plane. In the same plane, the contours of fixed
anisotropy ee � eo are also shown in Fig. 7.2.

We see that I1=Dz increases with anisotropy. The ee ¼ eo contour has a maxi-

mum value of I1=Dz equal to
ffiffiffiffi
e2
p � ffiffiffiffi

e1
p	 
2

. (This is reached when the common
value of eo and ee is

ffiffiffiffiffiffiffiffi
e1e2
p

.) Thus if I1 is measured, Dz for the homogeneous film is

known independently, and I1=Dz is found to be bigger than
ffiffiffiffi
e2
p � ffiffiffiffi

e1
p	 
2

, the
anisotropy must be positive (ee [ eo).

For a homogeneous anisotropic film, with its optic axis along the surface normal,
the exact reflection amplitudes may be found by the methods of Sect. 2.4. The
s wave takes the same form as in the isotropic film, with q replaced by qs, defined in
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(7.6). For a homogeneous layer located between z1 and z1þDz, the s wave
reflection amplitude is

rs ¼ e2iq1z1
qs q1 � q2ð Þcþ i q2s � q1q2

	 


s

qs q1þ q2ð Þc� i q2s þ q1q2
	 


s
; ð7:31Þ

where c ¼ cos qsDz and s ¼ sin qsDz. For the p wave, the solutions within the film
are e�iqpz, with qp given by (7.12), and the boundary conditions are the continuity of
B and of C ¼ ð1=eoÞðdB=dzÞ at z1 and z2. We find that rp has the same form as (2.68):

�rp ¼ e2iq1z1
Q Q1 � Q2ð Þcþ i Q2 � Q1Q2ð Þs
Q Q1þ q2ð Þc� i Q2þQ1Q2ð Þs ; ð7:32Þ

where now c ¼ cos qpDz, s ¼ sin qpDz, and Q ¼ qp=eo. From (7.31) and (7.32) we
can verify that rp=rs takes the form (7.17) with I1 given by (7.19).

7.3 Thin Film on an Anisotropic Substrate

We now include the possibility of substrate anisotropy, still keeping azimuthal
symmetry in both stratified surface and in the homogeneous substrate (and thus
retaining the s and p characterization of electromagnetic waves). The electromag-
netic response of the system is determined by the three dielectric constants

Fig. 7.2 Lines of fixed I1=Dz,
ranging from −2 to 2, and
contours of fixed anisotropy
ee � eo, ranging from −1 to 1,
drawn for a homogeneous
anisotropic layer between
media with e1 ¼ 1, e2 ¼ 2, in
the ðeo; e1e2=eeÞ plane. The eo
and ee values lie between e1
and e2 in the shaded box
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e1; e2o; e2e (the latter two for the substrate) and the two dielectric functions
eoðzÞ; eeðzÞ with

e1  eo zð Þ ! e2o; e1  ee zð Þ ! e2e: ð7:33Þ

We now need to define two step functions

e0o zð Þ; e0eðzÞ ¼ e1 z \ 0ð Þ
e2o; e2e z [ 0ð Þ:

�

ð7:34Þ

The results of the previous section for the s wave need only the modification
e0 ! e0o (for example in (7.27)). For the p wave we use B0ðzÞ, the solution of

d
dz

1
e0o

dB0

dz

� �

þ x2

c2
� K2

e0e

� �

B0 ¼ 0: ð7:35Þ

The modified version of (7.23) is

d
dz

B0C � BC0ð Þ ¼ K2 1
ee
� 1
e0e

� �

� eo � e0oð ÞCC0 ; ð7:36Þ

with

C0 ¼ 1
e0o

dB0

dz
; C ¼ 1

eo

dB
dz

; ð7:37Þ

and leads to the comparison identity

rp ¼ rp0þ 1
2iQ1

Z1

�1
dz

1
e0e
� 1
ee

� �

K2BB0þ eo � e0oð ÞCC0

� �

: ð7:38Þ

The appropriate values of B0ð0Þ and C0ð0Þ are now

B0 0ð Þ ¼ 2Q1

Q1þQ2
; C0ð0Þ ¼ 2iQ1Q2

Q1þQ2
; ð7:39Þ

where Q1 ¼ q1=e1, and Q2 ¼ q2p=e2o, with

q22p ¼ e2o
x2

c2
� e2o

e2e
K2: ð7:40Þ
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To lowest order in the interface thickness,

rp ¼ Q2 � Q1

Q2þQ1
� 2iQ1

Q1þQ2ð Þ2 K2
Z1

�1
dz

1
e0e
� 1
ee

� �

� Q2
2

Z1

�1
dz eo � e0oð Þ

8

<

:

9

=

;
:

ð7:41Þ

On combining this with the (7.27) modified by replacing e0 by e0o, we find the
generalization of (7.28):

rs0
rp
rs

� �

¼ rp0

� 2iQ1K2

Q1þQ2ð Þ2
Z1

�1
dz

1
e0e
� 1
ee

� �

� 1
e1
� 1
e2e

� �

e2o � e1ð Þ�1
Z1

�1
dz eo � e0oð Þ

8

<

:

9

=

;
þ � � �

ð7:42Þ

The expression in braces may be written as

1
e1e2e

Z1

�1
dz

e2oe2e � e21
e2o � e1

� e2e � e1
e2o � e1

eo � e2ee1
ee

� �

; ð7:43Þ

and thus the form of (7.17) is retained:

rs0
rp
rs

� �

¼ rp0 �
2iQ1K2

e1e2e

Q1þQ2ð Þ2 I1þ � � � ; ð7:44Þ

with I1 now being given by the integral in (7.43).
For a homogeneous anisotropic film on an anisotropic substrate, the formulae

(7.31) and (7.32) remain valid, with q2 being interpreted as q2s, and Q2 as q2p=e2o.
For a homogeneous film of thickness Dz, I1=Dz is equal to the content of the square
bracket in (7.43).

7.4 General Results for Anisotropic Stratifications
with Azimuthal Symmetry

In the previous two sections we have derived results for the ellipsometric properties
of thin anisotropic films on isotropic and anisotropic substrates, respectively. Here
we examine general properties of reflection by anisotropic stratified media, still
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keeping the constraint of cylindrical symmetry about the normal to the stratification
(the z axis). As in Sect. 2.2 we take the inhomogeneous or interfacial region to be
within the interval ½z1; z2�; the results for such finite-ranged interfaces can be
extended to continuously varying unbounded interfaces by a limiting process.

For the s wave the results of Sect. 2.2 follow directly, since anisotropy modifies
the s wave equations only by the replacement of eðzÞ by eoðzÞ. Thus the general
expressions for the reflection and transmission amplitudes, (2.25) and (2.26),

remain valid, with q1 and q2 being the values of qs ¼ eox2=c2 � K2ð Þ12 for z� z1
and z� z2. In consequence, the result rsj j � 1, the conservation law

q1 1� rsj j2
� �

¼ q2 tsj j2, and the reciprocity laws all follow. The result that rs ! �1
at grazing incidence (Sect. 2.3) also holds, as does the inequality rsj j � rs0j j for
monotonic profiles (Sect. 5.4).

The p wave case involves both dielectric functions eoðzÞ and eeðzÞ, which take
the values e1 for z� z1 and e2o; e2e for z� z2. BðzÞ, the solution of (7.11), now has
the limiting forms

B zð Þ ¼ eiq1z � rpe�iq1z z� z1ð Þ; B zð Þ ¼ e2o
e1

� �1=2

tpeiq2pz z� z2ð Þ ð7:45Þ

The sign of rp and the factor
ffiffiffiffiffiffiffiffiffiffiffiffi

e2o=e1
p

multiplying tp are chosen to make rp and rs,
and tp and ts all apply to electric field components, and to agree at normal incidence.
The electric field components for the p wave are found from (7.8); the effect of
anisotropy of the substrate is the replacement of e2 by e2e in the square root of the
ratio multiplying tp (compare with Sect. 1.2).

For profiles which have eo continuous at z1 and z2, the equations (2.40) and (2.41)
remain valid, with q2 replaced by q2p and

ffiffiffiffiffiffiffiffiffiffi

e2=e1
p

by
ffiffiffiffiffiffiffiffiffiffiffiffi

e2o=e1
p

. The Wronskian of
two solutions of (7.11) is now proportional to eo (compare with (2.47) and (2.48)).

Again rp









2� 1 and the reciprocity relations remain valid, with q2 replaced by q2p.

The conservation law for the p wave now reads

q1 1� rp








2

� �

¼ q2p tp







2: ð7:46Þ

The range of validity of the inequality rp









2� rp0










2
will be examined in the next

section.

7.5 Differential Equations for the Reflection Amplitudes

We shall briefly examine some of the consequences of the non-linear first order
differential equations of Chap. 5. The s wave need not be considered in detail, since
all results remain valid on the replacement of eðzÞ by eoðzÞ. In the p wave case we set
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1
eo

dB
dz
¼ C;

dC
dz
¼ � q2p

eo
B ; ð7:47Þ

in analogy with (5.32). This pair of coupled first order equations is equivalent to
(7.11), with

q2p ¼ eo
x2

c2
� eo

ee
K2: ð7:48Þ

The anisotropic version of (5.33) is

B ¼ FþG; C ¼ i
qp
eo

F � Gð Þ: ð7:49Þ

Elimination of B and C gives equations of the same form as (5.34) and (5.35),

F0 ¼ iqpF � Q0

2Q
F � Gð Þ; ð7:50Þ

G0 ¼ �iqpGþ Q0

2Q
F � Gð Þ; ð7:51Þ

where now Q ¼ qp=eo. The reflection coefficient q ¼ G=F (as distinct from the
reflection amplitude to be discussed shortly) satisfies the equation

q0 þ 2iqpq� Q0

2Q
1� q2
	 
 ¼ 0: ð7:52Þ

We write q ¼ qj jeih; the absolute magnitude qj j satisfies

qj j0¼ Q0

2Q
1� qj j2

� �

cos h: ð7:53Þ

Integration of (7.53) gives the exact result

ln
1þ rp











1� rp









¼ �

Z1

�1
dz

Q0

Q
cos h: ð7:54Þ

For monotonic Q the inequality

Rp� Q1 � Q2

Q1þQ2

� �2

ð7:55Þ
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follows, with Q1 ¼ q1=e1 and Q2 ¼ q2p=e2o. We have

Q2 ¼ q2p
e2o
¼ 1

eo

x2

c2
� K2

eoee
; ð7:56Þ

and whether Q is monotonic or not depends on the variation of both eo and ee with
z, as well as on the angle of incidence.

In Chap. 5 the useful Rayleigh approximations were obtained from differential
equations for the reflection amplitude. We will give their anisotropic generalization
here. There are now two phase integrals:

/s ¼
Zz

df qs fð Þ; /p ¼
Zz

df qp fð Þ: ð7:57Þ

The differential equation for the s wave reflection amplitude is (5.76) with /
replaced by /s and q by qs. The equation for the p wave reflection amplitude is (5.
81) with /p replacing / and Q ¼ qp=eo. These equations lead to the Rayleigh or
weak reflection approximations

rs 	 rRs ¼ �
Z1

�1
dz

q0s
2qs

e2i/s ; ð7:58Þ

rp 	 rRp ¼
Z1

�1
dz

Q0

2Q
e2i/p ; ð7:59Þ

in parallel with (5.85) and (5.86).
This concludes our preliminary discussion of the optical aspects of reflection by

stratified anisotropic media. Only the very simplest form of anisotropy has so far
been treated: for more general cases (but restricted to systems with sharp bound-
aries) the reader is referred to Landau and Lifshitz (1960, Chap. 11), Born and Wolf
(1970, Chap. 14), and Azzam and Bashara (1977). A full treatment of reflection and
transmission by uniaxial media is given in the next chapter. We shall end this
chapter by considering anisotropy in ionospheric radio propagation.

7.6 Reflection from the Ionosphere

In the days before satellite communication systems, radio propagation round the
earth, using the ionosphere as a reflecting layer, was the only form of long distance
“wireless” communication. The simplest model of the ionosphere, that of a plasma
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of free electrons in a neutralizing background of ions, leads to the dielectric function
(Budden 1985)

e z;xð Þ ¼ 1� x2
p zð Þ
x2 : ð7:60Þ

The height dependence of x2
p, the square of the plasma angular frequency, arises

through its proportionality to the electron density. We noted in Sect. 6.7 that for
waves radiated at h1 to the vertical, this model gives a turning point at height z0
given by xp z0ð Þ ¼ x cos h1. For fixed h1 and ionospheric electron density profile,
with maximum xpðzÞ equal to xmax

p ; frequencies below xmax
p = cos h1 will be

strongly reflected, while those above this value will be weakly reflected. When (for
example) the electron density can be approximated by sech2ðz � hÞ=a, the
resulting reflectivity is that given in Sect. 6.7, with reflectivity contours shown in
Fig. 6.11.

The above assumes absence of electron collisions, and neglect of the earth’s
magnetic field. The effect of dissipation resulting from electron collisions will be
discussed in Chap. 10, while the anisotropy resulting from propagation in the
earth’s magnetic field will be briefly treated here. As in the case of anisotropic
dielectrics, there is double refraction. The magneto-ionic case is more complex,
since for neither of the two polarizations which propagate unchanged do the wave
normal and ray diffractions coincide (Ratcliffe 1959; Budden 1964).

The simplest example of anisotropy arises for wave propagation along the
direction of the earth’s magnetic field, B0. This is referred to as the longitudinal
case. Jackson (1962, Sect. 7.9) gives a simple argument which shows that for
transverse electromagnetic waves propagating along B0 the two waves which
propagate unchanged are left or right circularly polarized, with effective dielectric
constants

e� ¼ 1� x2
p

x x� xBð Þ : ð7:61Þ

Here xB is the frequency of electron gyration round the magnetic field (the
gyro-frequency), and is proportional to B0. The gyro and plasma frequencies can
have comparable magnitudes; Fig. 7.3 shows eþ and e� for the case where
xp ¼ xB.

We see from the Figure that there is a dramatic difference between the two
circular polarizations. The þ wave (with positive helicity) is strongly reflected for

x\
1
2

x2
Bþ 4x2

psec
2h1

� �1=2
�xB

� �

; ð7:62Þ
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while the − wave is strongly reflected in the interval

xB \x\
1
2

x2
Bþ 4x2

psec
2h1

� �1=2
þ xB

� �

: ð7:63Þ

(In these formulae xp stands for the maximum value of the plasma frequency, and
xB for the value attained within the region of maximum electron density.) The
physical reason for the difference in the propagation of the two polarizations is that
one reinforces and the other opposes the precessional motion of the electrons in the
earth’s magnetic field. Heading (1975, Sects. 2.5 and 9.8) gives analytic results for
reflection by an exponential ionosphere, in the longitudinal case.

There are also interesting effects in the transverse case, where propagation is
perpendicular to the earth’s magnetic field. Barber and Crombie (1959) have shown
that the reflection from the ionosphere is greater for very low frequency waves
travelling west to east around the magnetic equator, than for those travelling from
east to west. Exact solutions for this case have been given by Westcott (1970).

The general case, with arbitrary angle between the direction of propagation and
the earth’s magnetic field, is discussed by Heading and Whipple (1952), Heading
(1955, 1963), Ratcliffe (1959), Ginzburg (1964), Booker (1984), Budden (1985).
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Chapter 8
Uniaxial Anisotropy

In Chap. 7 we have treated only the simplest case: reflection by a uniaxial system
which has its optic axis coinciding with the normal to the reflecting surface. It is
time to consider the general case, with arbitrary orientation of the optic axis or axes
(Lekner 1991). As usual we shall take the reflecting surface to be the xy plane
ðz ¼ 0Þ, and the plane of incidence to be the zx plane, with the z-axis normal to the
crystal face, and directed into it. After the first section the discussion is restricted to
uniaxial media.

8.1 Propagation Within Homogeneous Anisotropic Media

We first formulate the general problem (uniaxial or biaxial). When a plane wave is
incident from an isotropic medium onto the anisotropic medium, there will be a
reflected wave, and (in general) two transmitted plane waves. All components of the
electric and magnetic field vectors E and B have the x and t dependence in the
factor exp iðKx� xtÞ. Because of the translational symmetry in the y direction,
there is no y dependence. Within the anisotropic medium (assumed non-magnetic)
the two curl Maxwell curl equations read, after time differentiation,

r� E ¼ i
x
c
B; r� B ¼ �i

x
c
D: ð8:1Þ

The electric displacement D is found from E via to the dielectric tensor:

Dx

Dy

Dz

0

@

1

A ¼
exx exy exz
eyx eyy eyz
ezx ezy ezz

0

@

1

A

Ex

Ey

Ez

0

@

1

A: ð8:2Þ

The dielectric tensor is symmetric: Born and Wolf (1970, Sect. 14.1) show that the
symmetry of the dielectric tensor is related to the form taken by conservation of
energy in the electromagnetic field, and that this symmetry implies the existence of
a principal coordinate system in which the dielectric tensor is diagonal.
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The six equations (8.1) give, after differentiation with respect to x is performed,

�@Ey=@z ¼ i xc Bx �@By=@z ¼ �i xc Dx

@Ex=@z� iKEz ¼ i xc By @Bx=@z� iKBz ¼ �i xc Dy

iKEy ¼ i xc Bz iKBy ¼ �i xc Dz

ð8:3Þ

We can eliminate B, to obtain three coupled equations for the components of E:

@2Ex=@z
2 � iK@Ez=@zþ x

c

� �2
Dx ¼ 0 ð8:4Þ

@2Ey=@z
2 � K2Ey þ x

c

� �2
Dy ¼ 0 ð8:5Þ

�iK@Ex=@z� K2Ez þ x
c

� �2
Dz ¼ 0: ð8:6Þ

In the isotropic case (eij diagonal) Ey is decoupled from Ex and Ez.
The differential equations (8.4–8.6) imply boundary conditions to be satisfied at a

discontinuity. The derivative of a discontinuous function would give a delta function,
which cannot be cancelled by any other term in the equation, nor can the derivative of
a delta function be cancelled. Thus from (8.4) it follows that @Ex=@z� iKEz and Ex

are continuous across a boundary (the continuity of Ex is also implied by (8.6)), and
from (8.5) that @Ey=@z and Ey are continuous. Comparison with (8.3) shows these
conditions to be the continuity of the tangential components of E and B, as expected.
As regards D, we note that iK times (8.4) plus the z-derivative of (8.6) implies

@Dz=@zþ iKDx ¼ 0; ð8:7Þ

from which we deduce that the normal component of D is continuous, also a
familiar result.

The above equations are for an arbitrary z-stratified anisotropic material. We
now specialize to homogeneous anisotropic media. We wish to find the normal
modes, namely those fields which propagate as plane waves in the medium. Such
modes have all field components with the z-dependence exp iqz, q being the
component of the wavevector normal to the surface. Substitution of this functional
form into (8.4–8.6) gives

�q2Ex þ qKEz þ x
c

� �2
Dx ¼ 0 ð8:8Þ

�ðq2 þK2ÞEy þ x
c

� �2
Dy ¼ 0 ð8:9Þ

qKEx � K2Ez þ x
c

� �2
Dz ¼ 0: ð8:10Þ
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The components of D are given as linear combinations of the components of E, by
(8.2). Thus we have three linear homogeneous equations in Ex, Ey and Ez; a solution
is possible only if the determinant of the coefficients, as given in (8.11), is zero:

exx x
c

� �2 � q2 exy x
c

� �2
exz x

c

� �2 þ qK

eyx x
c

� �2
eyy x

c

� �2 �K2 � q2 eyz x
c

� �2

ezx x
c

� �2 þ qK ezy x
c

� �2
ezz x

c

� �2 �K2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ 0: ð8:11Þ

Equation (8.11) is a quartic in q. Its four solutions, the normal mode eigenvalues,
correspond to two inward-propagating modes and two backward-propagating
modes. At normal incidence it simplifies into a quadratic for q2. The biaxial case at
normal incidence is discussed in the Appendix of Lekner (1994a). The general
uniaxial case is the subject of the following sections.

8.2 Dielectric Tensor and Normal Modes in Uniaxial
Crystals

In the principal coordinate system the dielectric tensor is diagonal, with diagonal
elements ea, eb and ec (giving the dielectric response along the principal axes a, b
and c). For uniaxial crystals two of these values are equal. Conventionally ea ¼ eb
and their common value is eo, while ec is called ee; the subscripts o and e stand for
ordinary and extraordinary. The direction c is the optic axis. Let a, b and c be
direction cosines of the optic axis c relative to the cartesian ðxyzÞ laboratory frame:

c ¼ ax̂þ bŷþ cẑ ; ð8:12Þ

where x̂, ŷ and ẑ are unit vectors along the x, y and z positive axes. Since c is also a
unit vector,

a2 þ b2 þ c2 ¼ 1: ð8:13Þ

With De ¼ ee � eo, the dielectric tensor in the laboratory frame, shown in (8.2),
reduces to (Lekner 1991, Sect. 3)

eo þ a2De abDe acDe
abDe eo þ b2De bcDe
acDe bcDe eo þ c2De

0

@

1

A: ð8:14Þ
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The determinant (8.11) now factors into two quadratics, one of which is q2 � q2o,
where

q2o ¼ eo
x
c

� �2
�K2: ð8:15Þ

The normal components �qo of the ordinary wavevector ko have the same simple
form as in the isotropic case, and do not depend on how the uniaxial crystal is
oriented: the expression (8.15) is independent of the direction cosines a, b and c of
the optic axis. The normal components of the extraordinary wavevector ke do
depend on the direction cosines. They are the solutions of the remaining quadratic,

ecq
2 þ 2acDeKq þ eaK

2 � eoee
x
c

� �2
¼ 0: ð8:16Þ

Here and in the following we use the shorthand (Lekner 1992b, 1993)

ec ¼ eo þ c2De; ea ¼ eo þ a2De;
eac ¼ eo þ a2 þ c2ð ÞDe ¼ eo þ 1 � b2

� �

De ¼ ee � b2De:
ð8:17Þ

The solutions of (8.16) are

q� ¼ ��q� acKDe=ec; ð8:18Þ

where

�q2 ¼ eo
e2c

eeec
x
c

� �2
�eacK

2
� �

: ð8:19Þ

We note here an important difference between the ordinary and extraordinary
waves: if e1 [ eo then for h1 � hoc , where the ordinary critical angle hoc is given by

sin2 hoc ¼
eo
e1
; ð8:20Þ

the wavevector component qo becomes purely imaginary, and there will be no
propagating ordinary wave. But for h1 � hec where

sin2 hec ¼
eeec
e1eac

ð8:21Þ

only �q becomes imaginary. The other part of qe, namely �acKDe=ec, remains real
in the absence of absorption. Thus, beyond angle of incidence hec, the extraordinary
wave will have a real and an imaginary part of its normal wavevector component, as
if inside an absorber, and an exponentially damped extraordinary wave can prop-
agate into the medium. This holds unless the product acDe is zero, namely for
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vanishing anisotropy ðDe ¼ 0Þ or when one of a or c is zero. The latter occurs when
the optic axis lies in the reflecting plane.

For a given qo or qe, the electric field vectors Eo or Ee satisfy the homogeneous
equations obtained by putting q ¼ qo or q ¼ qe in the matrix of coefficients shown
in (8.11). If this matrix is M, we have ME ¼ 0, from which the field components
can be obtained, up to a common factor. For example, we can set Ex=Ez ¼ X,
Ey=Ez ¼ Y . Then ME ¼ 0 becomes a (redundant) trio of inhomogeneous equations
for X and Y . There are three sets of solutions, given in equation (26) of Lekner
(1991), all equivalent since the determinant of the coefficients is zero. Let No and Ne

be normalization factors, determined by giving the square of the electric field vector
some assigned value. Then the ordinary and extraordinary electric field vectors are
found to be

Eo ¼ Noð�bqo; aqo � cK; bKÞ; ð8:22Þ

Ee ¼ Ne aq2o � cqeK; beo
x
c

� �2
; c eo

x
c

� �2
�q2e

� �

� aqeK

	 


: ð8:23Þ

Note that Eo is always perpendicular to the optic axis c ¼ ða; b; cÞ. The scalar
product of these normal mode field vectors is

Eo � Ee ¼ NoNebKðaKþ cqeÞðqo � qeÞ: ð8:24Þ

Thus the ordinary and extraordinary electric fields are orthogonal when the optic
axis lies in the plane of incidence ðb ¼ 0Þ, at normal incidence ðK ¼ 0Þ, in the
isotropic limit ðqo ¼ qeÞ, and also when aKþ cqe ¼ 0. When the last condition is
satisfied, the extraordinary wavevector ðK; 0; qeÞ and ray direction (given below)
are both that of ðc; 0;�aÞ, and thus perpendicular to the optic axis ða; b; cÞ. Also Ee

is then parallel to the optic axis.
The wavevector gives the direction of the normal to the surfaces of constant

phase, and is ðK; 0; qÞ with q ¼ qo or q ¼ qe. The ray vector gives the energy flow
direction, which is that of E� B. From (8.3) we have

x
c
Bx ¼ �qEy;

x
c
By ¼ qEx � KEz;

x
c
Bz ¼ KEy; ð8:25Þ

so that E� B is proportional to the vector

K½E2
y þE2

z � � qExEz; �KExEy � qEyEz; q½E2
x þE2

y � � KExEz

� �

: ð8:26Þ

For the ordinary mode the ray direction is that of ðK; 0; qoÞ, the same as the
wavevector direction. For the extraordinary wave the ray is parallel to the vector
with components
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ðaqe � cKÞ aqeK � c eo x
c

� �2 � q2e
� �n o

þ b2Keo;

bðaKþ cqeÞðq2e � q2oÞ;
aqe � cKð Þ aq2o � cqeK

� �þ b2qeeo x
c

� �2
:

ð8:27Þ

The plane containing the optic axis and the extraordinary wavevector has its normal
along the cross product of ða; b; cÞ and ðK; 0; qeÞ, namely ðbqe; cK � aqe;�bKÞ.
This normal is perpendicular to the ray vector (8.27), so the extraordinary ray and
wavevector are coplanar with the optic axis.

8.3 Uniaxial Crystal Reflection and Transmission
Amplitudes

As usual we decompose the incoming field into its s and p components, with Es

perpendicular to the plane of incidence (the zx plane) and Ep lying in it. For the
s polarization the z-dependence of the electric field components is

incoming: ð0; 1; 0Þeiq1z
reflected: ðrsp cos h1; rss; rsp sin h1Þe�iq1z

transmitted: tsoðEo
x ;E

o
y ;E

o
z Þeiqoz þ tseðEe

x ;E
e
y ;E

e
z Þeiqez

ð8:28Þ

The reflection and transmission amplitudes for the s polarization are rss, rsp, tso, tse;
h1 is the angle of incidence, and q1 is the z-component of the incoming wavevector,
q1 ¼ n1 x=c cos h1. In Sect. 8.1 we deduced the boundary conditions to be applied
at the crystal face z ¼ 0, namely the continuity of Ex, Ey, @Ex=@z� iKEz and of
@Ey=@z. These four conditions, applied to the waveforms given in (8.28), lead to
four equations linear in the unknowns rss, rsp, tso, tse. The solutions can be put in the
form (Lekner 1992b, 1993)

rss ¼ Aðq1 � qoÞþBðq1 � qeÞ
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:29Þ

rsp ¼ 2bðaqo þ cKÞðqo � qeÞk1k2o
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:30Þ

Notso ¼
2q1 aðk2oqe þ qtq2oÞ � cKðk2o þ qtqeÞ

� �

Aðq1 þ qoÞþBðq1 þ qeÞ ð8:31Þ

Netse ¼ 2bq1ðk2o þ qtqoÞ
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:32Þ
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In order to obtain compact forms for these amplitudes, the following shorthand is
used (with e1 ¼ n21, eo ¼ n2o):

k1 ¼ n1
x
c
; ko ¼ no

x
c
; qt ¼ q1 þK tan h1 ¼ k21=q1: ð8:33Þ

The coefficients A and B are defined by

A ¼ aqo � cKð Þ a k2oqe þ qtq
2
o

� �� cK k2o þ qtqe
� �
 �

; ð8:34Þ

B ¼ b2k2o k2o þ qtqo
� �

: ð8:35Þ

We note that the reflection amplitudes are independent of the normalization factors
No and Ne of the ordinary and extraordinary electric fields, whereas it is the product
of the transmission amplitudes and the respective field magnitudes No and Ne that
features in (8.31) and (8.32). When the incident field has unit modulus (which is the
choice made here), the amplitudes of the fields transmitted into the crystal are Notso
and Netse.

Turning now to the p polarization, the waveforms are

incoming: ðcos h1; 0; � sin h1Þeiq1z ð8:36Þ

reflected: ðrpp cos h1; rps; rpp sin h1Þe�iq1z ð8:37Þ

transmitted: tpoðEo
x ;E

o
y ;E

o
z Þeiqoz þ tpeðEe

x ;E
e
y ;E

e
z Þeiqez ð8:38Þ

The continuity conditions applied at z ¼ 0 give four linear equations in the four
unknowns rpp, rps, tpo, tpe. The solution is

rpp ¼ �A0ðq1 þ qoÞþB0ðq1 þ qeÞ
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:39Þ

rps ¼ 2bðaqo � cKÞðqo � qeÞk1k2o
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:40Þ

Notpo ¼ � 2bðq1 þ qeÞk1k2o
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:41Þ

Netpe ¼ 2ðaqo � cKÞðq1 þ qoÞk1
Aðq1 þ qoÞþBðq1 þ qeÞ ð8:42Þ

The coefficients A0 and B0 are defined by
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A0 ¼ ðaqo � cKÞ aðk2oqe � qtq
2
oÞ � cKðk2o � qtqeÞ

� �

; ð8:43Þ

B0 ¼ b2k2oðk2o � qtqoÞ: ð8:44Þ

The formulae given above give explicit closed-form expressions for the reflection
and transmission amplitudes for an arbitrary face of a uniaxial crystal, at any angle
of incidence.

Special geometries are discussed in Lekner (1991, 1992b); here we give only the
simplest, reflection from a basal plane (one perpendicular to the optic axis). An
elementary treatment of this special case was given in Sect. 7.1. The optic axis
coincides with the normal to the reflecting surface, so c2 ¼ 1 and a and b are zero.
The normal component of the extraordinary wavevector is given by

q2e ¼ eo
x
c

� �2
� eo
ee
K2 ¼ eo

ee
ee

x
c

� �2
�K2

� �

: ð8:45Þ

If we take c ¼ �1, corresponding to the optic coinciding with the outward normal,
the normalized field eigenstates are

Eo ¼ ð0; 1; 0Þ; Ee ¼ qe; 0; � eo
ee
K

	 


q2e þ
eo
ee
K

	 
2
" #�1

2

: ð8:46Þ

The cross-reflection amplitudes rps and rsp are zero, and

rss ¼ q1 � qo
q1 þ qo

; rpp ¼ Q� Q1

QþQ1
: ð8:47Þ

In (8.47) Q ¼ qe=eo evaluated at c2 ¼ 1 and Q1 ¼ q1=e1. In the absence of
absorption rpp is zero at the Brewster angle hpp given by

tan2 hpp ¼ eeðeo � e1Þ
e1ðee � e1Þ ðc2 ¼ 1Þ: ð8:48Þ

A real hpp will not exist when e1 lies between eo and ee (for c2 ¼ 1Þ. As noted in
Sect. 7.1, there is no coupling between the s and p (equivalent in this case to the
o and e), so tse ¼ 0 ¼ tpo. The direct transmission amplitudes are

tso ¼ 2q1
q1 þ qo

; tpe ¼ 2n1Q1

noðQ1 þQÞ 1� K2ðee � eoÞ=e2e
� �

: ð8:49Þ
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At normal incidence the common values of the nonzero reflection and transmission
amplitudes are

n1 � no
n1 þ no

and
2n1

n1 þ no
: ð8:50Þ

8.4 Bounds and Zeros of the Reflection Amplitudes,
the Polarizing Angle

We return to the general case, and summarize first some of the reflection properties
derived in Lekner (1992b). The square of the extraordinary wavevector is bounded
by

q2o ¼ eo
x
c

� �2
�K2 and q2m ¼ ee

x
c

� �2
�K2: ð8:51Þ

The reflection amplitudes rss and rpp are bounded by

rssðb ¼ 0Þ ¼ q1 � qo
q1 þ qo

optic axis in plane of incidenceð Þ ð8:52Þ

rssðb2 ¼ 1Þ ¼ q1 � qm
q1 þ qm

optic axis perpendicular to plane of incidenceð Þ ð8:53Þ

rppðc2 ¼ 1Þ ¼ Qm � Q1

Qm þQ1
optic axis normal to reflecting planeð Þ ð8:54Þ

rppða2 ¼ 1Þ ¼ Q� Q1

QþQ1
optic axis along intersection of planeð
of incidence and the reflecting planeÞ

ð8:55Þ

In (8.54) Qm ¼ qeðc2 ¼ 1Þ=eo ¼ qm=none; in (8.55) Q ¼ qo=none. The bounds
apply only when all the wavenumbers are real ½h1\hoc ; h

e
c�. Figure 8.1 shows these

bounds for reflection from calcite in air. The bounds are much wider for calcite in
oil (Fig. 3 of Lekner 1992b), for which the wavefront and ray directions were
shown in Fig. 7.1.

The other reflection and transmission amplitudes are discussed in Lekner
(1992b). Bounds on the Brewster angle at which rpp ¼ 0 are found from (8.54) and
(8.55). These are hppðc2 ¼ 1Þ given in (8.45) and
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tan2 hppða2 ¼ 1Þ ¼ eoðee � e1Þ
e1ðeo � e1Þ : ð8:56Þ

These bounds are special cases of the more general formula

tan2 hpp b ¼ 0ð Þ ¼ eoee � e1ec
e1 ec � e1
� � ; ð8:57Þ

or its equivalent

sin2hppðb ¼ 0Þ ¼ eoee � e1ec
eoee � e21

: ð8:58Þ

The expressions (8.57, 8.58) in turn follow from the simple expression

rppðb ¼ 0Þ ¼ Qc � Q1

Qc þQ1
ð8:59Þ

where Q1 ¼ q1=e1 as always, and

Qc ¼ qc
none

; q2c ¼ ec
x
c

� �2
�K2: ð8:60Þ

The possible zeros of the reflection amplitudes are discussed in more detail in
Lekner (1993). It is shown there that when the index of the medium of incidence

Fig. 8.1 Bounds on the reflection amplitudes, for sodium yellow light incident from vacuum onto
calcite (n1 ¼ 1; no ¼ 1:658; ne ¼ 1:486Þ. The possible values of the reflection amplitudes lie
within the shaded bands
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lies between the ordinary and extraordinary indices of the crystal, it is possible for
rss to be zero at an angle hss, and that there exist four equivalent orientations of the
crystal optic axis for which rpp, rss and either rps or rsp are simultaneously zero, at
angle of incidence equal to arctanðno=n1Þ.

There is another angle of interest: the polarizing angle hpol, defined as the angle
of incidence at which an incident wave of arbitrary polarization becomes linearly
polarized on reflection. In terms of the reflection amplitudes, hpol is given by
(Sect. 18.4)

rpprss � rpsrsp ¼ 0 ð8:61Þ

This leads to a quartic equation (Lekner 1999), closely related to the quartics
associated with the angles hpp and hss discussed in the previous paragraph.

8.5 External Reflection from an Immersed Crystal

Suppose the crystal is immersed in a liquid of refractive index n1 greater than no.
Then qo becomes imaginary for angle of incidence greater than the ordinary critical
angle hoc ¼ arcsinðno=n1Þ, as we saw in Sect. 8.2. There will then be strong external
reflection of both polarizations for h1 [ hoc . Likewise when n1 is greater than
nenc=nac (where n2c ¼ ec ¼ eo þ c2De, n2ac ¼ eac ¼ eo þða2 þ c2ÞDe) then �q will be
imaginary for h1 [ hec ¼ arcsinðnenc=n1nacÞ, and again there will be strong external
reflection. The general case is complicated, but when the optic axis lies in the plane
of incidence ðb ¼ 0Þ, the reflection amplitudes simplify greatly. When b ¼ 0 the
coefficients B and B0 are both zero, so we have from Sect. 8.3

rss ¼ q1 � qo
q1 þ qo

; rpp ¼ � A
0

A

	 


b¼0
ð8:62Þ

Also both rsp and rps are zero when b ¼ 0. Thus when n1 [ no and

h1 [ arcsinðno=n1Þ, qo is imaginary, which implies rssj j2¼ 1. Also �q is imaginary

for h1 [ arcsinðnc=n1Þ. When this is so, we find after much reduction that rpp
�
�

�
�
2¼ 1

also.
To sum up: when the optic axis lies in the plane of incidence, the s-wave will be

totally reflected for h1 [ arcsinðno=n1Þ, and the p-wave will be totally reflected for
h1 [ arcsinðnc=n1Þ. If both inequalities hold, the crystal will reflect all light inci-
dent upon it. Figure 8.2 shows the s and p reflection amplitudes rss and rpp for
calcite with its optic axis in the plane of incidence and normal to the reflecting
surface (c2 ¼ 1), immersed in liquid carbon disulphide. The refractive indices for
sodium yellow wavelength (589 nm) are n1 ¼ 1:628, no ¼ 1:658, ne ¼ 1:486. The
extraordinary critical angle is hec ¼ arcsinðne=n1Þ � 65:89	 (from (8.21), with
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c2 ¼ 1, a ¼ 0 ¼ b). Beyond this angle of incidence, rpp has an imaginary part. The
real part of rpp passes through zero at the angle at which the imaginary part is unity.
For h1 [ hec the absolute value of rpp is unity, as shown on the lower figure.

8.6 Normal-Incidence Reflection and Transmission

At normal incidence there is no physical difference between the s and p polariza-
tions: for any incident polarization the electric field vector is parallel to the
reflecting surface. Instead of four reflection amplitudes rss, rsp rpp and rps, the
reflection is characterized by two, which (following Lekner 1992a) we shall call r
and r0. Likewise two transmission amplitudes to and te suffice to characterize the
transmission properties. As before the optic axis is defined in terms of its direction
cosines a, b and c with respect to the x, y and z axes. From our previous results of
Sect. 8.2, the normal modes which can propagate as plane waves inside the crystal
are

Fig. 8.2 Reflection
amplitudes rss and rpp for
calcite immersed in liquid
carbon disulphide, in the
upper diagram. The lower
diagram shows the
reflectivities Rss ¼ r2ss and

Rpp ¼ rpp
�
�

�
�
2
. The latter is

unity for h1 � hec, indicated by
the dashed vertical line, for
the particular crystal
orientation chosen (given in
the text)
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Eo ¼ Noð�b; a; 0Þ; Ee ¼ Ne a; b;�cð1� c2ÞDe=ec
� �

: ð8:63Þ

Note that Eo � Ee ¼ 0 (compare the general result (8.24)). The ordinary and
extraordinary wavevectors both lie along the inward normal n ¼ ð0; 0; 1Þ, and have
magnitudes

ko ¼ no
x
c
; ke ¼ none

nc

x
c

ðn2c ¼ ec ¼ eo þ c2DeÞ: ð8:64Þ

The vector n� c ¼ ð0; 0; 1Þ � ða; b; cÞ ¼ ð�b; a; 0Þ lies in the reflecting plane
z ¼ 0, and is parallel to Eo. We shall take the direction of E1 to define the x-axis, so
E1 ¼ ðE1; 0; 0Þ, and let / be the angle between E1 and the n� c or Eo direction.

Thus, with cos/ ¼ �b=ða2 þ b2Þ12, sin/ ¼ a=ða2 þ b2Þ12,

Eo ¼ ðcos/; sin/; 0Þ; Ee ¼ ðsin/ cos d;� cos/ cos d; sin dÞ; ð8:65Þ

where d is the angle between the ray and wavevector directions for the extraordi-
nary wave:

sin d ¼ Ee � n; tan d ¼ �cð1� c2Þ12De=ec: ð8:66Þ

(The extraordinary ray direction for normal incidence is that of ðacDe; bcDe; ecÞ,
from (8.27) or Lekner (1992a).)

The incident, reflected and transmitted waves, for light incident normally onto an
arbitrary crystal face, are

incident: ð1; 0; 0Þeik1z k1 ¼ n1 x
c

� �

reflected: ðr; r0 ; 0Þe�ik1z

transmitted: toEoeikoz þ teEeeikez
ð8:67Þ

We apply the continuity of Ex, Ey, @Ex=@z and @Ey=@z at the interface z ¼ 0. This
gives four equations, which can be put in matrix form: define the column vectors

r ¼ r
r
0

	 


; t ¼ to
te

	 


; u ¼ 1
0

	 


; ð8:68Þ

and the matrices

M ¼ Eo
x Ee

x
Eo
y Ee

y

	 


; K�1
1 ¼ ko=k1 0

0 ke=k1

	 


: ð8:69Þ
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M is the mode matrix, formed from the transverse components of the eigenstates
(modes) Eo and Ee. The four equations arising from the boundary conditions can
now be written as a pair of coupled vector equations in r and t:

uþ r ¼ Mt; u� r ¼ MK�1
1 t: ð8:70Þ

The solution, expressed in terms of a reflection matrix R; is

r ¼ Ru; t ¼ M�1 IþRð Þu; ð8:71Þ

where I is the identity (unit 2� 2 matrix) and R a reflection matrix (more detail is
given in Lekner 1992a)

R ¼ MðK1 þ IÞ�1ðK1 � IÞM�1 ¼ ro cos2 /þ re sin2 / ðro � reÞ cos/ sin/
ðro � reÞ cos/ sin/ ro sin2 /þ re cos2 /

	 


:

ð8:72Þ

Note that R does not contain d, even though M does, through Ee:

M ¼ cos/ sin/ cos d
sin/ � cos/ cos d

	 


: ð8:73Þ

The reflection coefficients ro and re are the same as the normal incidence reflection
amplitudes for isotropic media with refractive indices no and none=nc, respectively:

ro ¼ n1 � no
n1 þ no

; re ¼ n1 � none=nc
n1 þ none=nc

: ð8:74Þ

When c2 ¼ 1 the reflection amplitudes ro and re are equal. Also re ¼ ðn1 �
neÞ=ðn1 þ neÞ when c ¼ 0.

From (8.71) and (8.72) we find

r ¼ ro cos2 /þ re sin2 /; r
0 ¼ ðro � reÞ cos/ sin/: ð8:75Þ

When there is no absorption ro and re are real, and thus when the incident light is
linearly polarized (as we have assumed), the reflected light is also linearly polar-
ized, with electric field direction rotated by arctanðr0=rÞ. Note that r

0
, which gives

the amplitude of the electric field reflected into the y-polarization when the incident
electric field E1 is x-polarized, is zero when E1 is either parallel or perpendicular to
Eo (sin/ ¼ 0 or cos/ ¼ 0Þ. It has maximum amplitude at / equal to odd multiples
of 45	; the maximum value of r0j j at c ¼ 0 (optic axis in the reflecting plane) is
n1 ne � noj j= ðn1 þ noÞðn1 þ neÞ½ �.
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The transmission amplitudes are found from (8.71) and (8.72):

to ¼ 1þ roð Þ cos/ ¼ 2n1
n1 þ no

cos/;

te ¼ ð1þ reÞ sin/= cos d ¼ 2n1nc
n1nc þ none

sin/= cos d:
ð8:76Þ

If the incident wave is polarized with E1 along the Eo (or n� cÞ direction, sin/ ¼
0 and only the ordinary wave will propagate into the crystal. Only the extraordinary
wave will be excited when / ¼ �90	.

We have introduced the 2� 2 matrix method for dealing with normal incidence
partly because it generalizes to the treatment of normal incidence on crystal plates,
as discussed in the next section.

8.7 Normal Incidence on a Uniaxial Plate

We wish to find the reflection and transmission amplitudes for normal incidence on
a crystal plate of thickness Dz. We now have backward as well as forward prop-
agation within the plate, and interference between them. We suppose the medium of
incidence to have refractive index n1 as before, and the substrate to have index n2.
For incident light linearly polarized along the x direction, the electric fields are

incident ð1; 0; 0Þeik1z

reflected ðr; r0 ; 0Þe�ik1z

within crystal ðaoeikoz þ boe�ikozÞEo þðaeeikez þ bee�ikezÞEe

transmitted ðt; t0 ; 0Þeik2ðz�DzÞ ð8:77Þ

(We have simplified the results by absorbing a phase k2Dz into the transmission
coefficients t and t

0
.) The continuity of Ex, Ey, @Ex=@z and @Ey=@z at z ¼ 0 and

z ¼ Dz leads to eight equations in the eight unknowns r, r
0
, ao, bo, ae, be, t, t

0
. In

Lekner (1992a) this 8� 8 problem is reduced to four coupled 2� 2 problems,
which are then solved in terms of 2� 2 matrices (these include the mode matrix M
of the previous section, and also K1 and its analogue K2Þ. The solutions are

r ¼ ro cos2 /þ re sin2 /; r
0 ¼ ðro � reÞ cos/ sin/; ð8:78Þ

(the same forms as (8.75), but with different ro and re, defined below), and

t ¼ to cos2 /þ te sin2 /; t
0 ¼ ðto � teÞ cos/ sin/: ð8:79Þ
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As in the previous section, / is the angle between the incident electric field E1 and
the Eo or n� c direction. The component reflection amplitude ro is found to be

ro ¼ koðk1 � k2Þ cosðkoDzÞ þ iðk2o � k1k2Þ sinðkoDzÞ
koðk1 þ k2Þ cosðkoDzÞ � iðk2o � k1k2Þ sinðkoDzÞ : ð8:80Þ

This is the reflection amplitude for a homogeneous isotropic layer of index no and
thickness Dz (Equation 2.52, with z1 ¼ 0Þ. The amplitude re, obtained by replacing
ko by ke in (8.80), is likewise the reflection amplitude for an isotropic slab of index
none=nc. An alternative form of (8.80) is

ro ¼ ro1 þ ro2e
2ikoDz

1þ ro1r
o
2e2ikoDz

; ro1 ¼
k1 � ko
k1 þ ko

; ro2 ¼
ko � k2
ko þ k2

; ð8:81Þ

(expressed in terms of the Fresnel amplitudes ro1 and ro2 for reflection at the entry
and exit faces of a slab of index noÞ.

The component amplitudes to and te are likewise the transmission amplitudes for
isotropic slabs of thickness Dz and refractive indices no and none=nc (Equations 2.53
and 2.59)

to ¼ 2k1ko
koðk1 þ k2Þ cosðkoDzÞ � iðk2o þ k1k2Þ sinðkoDzÞ ¼

ð1 þ ro1Þð1 þ ro2ÞeikoDz
1 þ ro1r

o
2e2ikoDz

:

ð8:82Þ

The transmission amplitude te is obtained by replacing ko by ke, ro1 and ro2 by re1 and
re2, as for the reflection amplitude re.

The reflection properties of a uniaxial layer are discussed in detail by Lekner
(1992a). Both ro and re have the bilinear (or fractional) complex transformation
form

r1 þ r2Z
1þ r1r2Z

; Z ¼ exp 2ikDzÞ: ð8:83Þ

Thus as kDz increases Z moves on the unit circle in the complex plane (assuming
non-absorbing crystal and substrate) ro and re will also move on circles. The
periods of Dz of ro and re are p=ko and p=ke. The Z ¼ 1 (Dz ¼ 0 or multiples of
p=ko or p=keÞ common value of ro and re is, as expected, the Fresnel amplitude for
a sudden transition from index n1 to index n2:

rþ ¼ r1 þ r2
1þ r1r2

¼ k1 � k2
k1 þ k2

: ð8:84Þ

When Z ¼ 1 there will be no reflection if n1 ¼ n2. At Z ¼ �1 (kDz an odd multiple
of p=2Þ, ro and re take the different values obtained by setting k ¼ ko or ke in
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r� ¼ r1 � r2
1� r1r2

¼ k1k2 � k2

k1k2 þ k2
: ð8:85Þ

Thus r�o is zero when n2o ¼ n1n2, r�e is zero when ðnone=ncÞ2 ¼ n1n2.
The centre of the circles, which in the absence of absorption lie on the real axis,

is at the point ðrþ þ r�Þ=2. Their radius is ðrþ � r�Þ=2. Figure 8.3 shows the ro
and re circles for calcite in air ðn1 ¼ 1 ¼ n2Þ. The ro circle is fixed, while the re
circle depends on c, the direction cosine of the optic axis to the surface normal. All
the circles have the origin (Z ¼ 1) as common point, since this is shared by the
zero-thickness value of the reflection amplitudes (when n1 ¼ n2). The other inter-
sections with the real axis are at Z ¼ �1.

The situation is different for n1 6¼ n2, and for absorbing substrates. The reflection
amplitudes ro and re still move on circles, however; examples of a calcite slab on Al
or Si are shown in Fig. 2 of Lekner (1992a).

We now briefly discuss the transmission amplitudes to and te. These move on a
quartic in the complex plane; their reciprocals move on ellipses (details may be
found in Lekner 1992a). For incident electric field E1 either parallel or perpen-
dicular to n� c (the direction of EoÞ, the exit polarization is the same as that on
entry. These orientations thus give zero transmission between crossed polarizers. In
the general case of a crystal plate between polarizer and analyser, with angle v
between their easy axes, the electric field transmitted through the analyser is, for
incident field of unit amplitude,

ðt cos vþ t
0
sin vÞeiðk2z�xtÞ: ð8:86Þ

Fig. 8.3 The loci of ro and re
in the complex plane, for
calcite (no ¼ 1:658, ne ¼
1:486Þ in air. The re circles
(dashed) are drawn for c ¼ 0
(inner circle) and for c2 ¼ 1

2

8.7 Normal Incidence on a Uniaxial Plate 207



Since E1 defines the x-axis, this is also the polarizer easy axis, and the analyser is at
angle v to the x-axis. The transmitted intensity of a broad beam, measured well
within the beam, is the absolute square of (8.86),

tj j2cos2 vþ t
0�

�
�
�
2
sin2 vþ 2 tt

0�
�

�
� cos v sin v cos phðt0=tÞ

h i

; ð8:87Þ

where we use the modulus-phase notation n ¼ nj j exp i phðnÞ½ �. When the polarizer
and analyser are crossed ðv ¼ 90	Þ, the intensity is

t
0�

�
�
�
2¼ to � tej j2cos2 / sin2 /; ð8:88Þ

which is zero when / is zero or a multiple of 90	. Both to and te depend on the
thickness of the plate, and te also depends on c through nc. The absolute square of
their difference which features in (8.88) is

to � tej j2¼ toj j2 þ tej j2 � 2 totej j cos phðte=toÞ½ �: ð8:89Þ

The phase difference between te and to is often given as ðke � koÞDz (see for
example Born and Wolf (1970), 14.4 (8.15)). From (8.82) we see that, if the entry
and exit planes of the crystal are accurately parallel, it is actually

ph
te
to

	 


¼ ph teð Þ � ph toð Þ

¼ atn
k2o þ k1k2
ko k1 þ k2ð Þ tanðkoDzÞ

� �

� atn
k2o þ k1k2
koðk1 þ k2Þ tanðkoDzÞ

� �

: ð8:90Þ

The difference between (8.90) and the approximate value ðke � koÞDz is due to
multiple reflections within the crystal (which could be eliminated at a given
wavelength by antireflection coatings). The thin film limit of (8.90) is

phðte=toÞ ¼ k2e � k2o
k1 þ k2

DzþOðDzÞ3; ð8:91Þ

which differs from the approximate value ðke � koÞDz by the factor
ðke þ koÞ=ðk1 þ k2Þ.

We note finally that the characterization of the transmitted light in terms of the
transmission amplitudes t and t

0
applies to beams which are wide enough to be

accurately represented by the last line of (8.77). For narrow beams passing through
thick crystals there will be complete separation of the o and e rays within the
crystal, and two parallel beams will exit the crystal, perpendicularly polarized in the
Eo and Ee directions. The transmission amplitudes for these exit beams are to cos/
and te sin/. The identity
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toj j2cos2 / þ tej j2sin2 / ¼ to cos2 / þ te sin2 /
�
�

�
�
2 þ to � tej j2cos2 / sin2 /

ð8:92Þ

shows that for given incident power, the transmitted total power in the two beams is
the same as it would be for a single very broad beam. (The right-hand side of (8.92)

equals tj j2 þ t
0�

�
�
�
2
.)

8.8 Isotropic Layer on a Uniaxial Substrate

The optical properties of a homogeneous isotropic layer on an isotropic substrate
are discussed in Sect. 2.4. They are contained in two reflection amplitudes rs and rp,
and two transmission amplitudes ts and tp. When the isotropic layer rests on an
anisotropic substrate, four reflection amplitudes rss, rsp, rpp and rps, and four
transmission amplitudes tso, tse, tpo, tpe are required.

An example, of considerable geophysical importance, is that of a thin layer of
water on the surface of ice below 0 °C. The compaction of snow, frost heave, rock
fracture, water transport at subzero temperatures, and charge transfer in the elec-
trification of thunder clouds are some of the aspects of premelting of ice discussed
by Dash (1989). Premelting of crystals is widespread, if not universal (Dash 1999).
Reflection anisotropy spectroscopy is covered in the review by McGilp (1995).

The isotropic layer has dielectric constant e ¼ n2 and is bounded by the medium
of incidence ðe1 ¼ n21Þ at z ¼ 0, and by a uniaxial substrate (eo ¼ n2o, eo ¼ n2eÞ at
z ¼ Dz. The plane of incidence is the zx plane; the direction cosines of the optic axis
of the substrate are the components of the unit vector c ¼ ða; b; cÞ. Thus the
ordinary and extraordinary modes have the wave vectors and electric fields derived
in Sect. 8.2. With the common factor exp iðKx� xtÞ suppressed, and an s-polarized
wave of unit amplitude incident at angle h, the electric fields are

incident: ð0; 1; 0Þeiq1z

reflected: rsp cos h1; rss; rsp sin h1
� �

e�iq1z

within layer: cos h aeiqz þ be�iqz
� �

; Aeiqz þBe�iqz; � sin h aeiqz � be�iqz
� �� �

within crystal: tsoEoeiqoðz�DzÞ þ tseEoeiqeðz�DzÞ ð8:93Þ

Within the layer the inward propagating part has Poynting vector (proportional to
E� BÞ along ðK; 0; qÞ, and the outward propagating part has E� B along
ðK; 0;�qÞ, with proportionality constants A2 þ a2 and B2 þ b2, respectively. These
follow from (K ¼ k1 sin h1 ¼ k sin h, q ¼ k cos h)
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q cos hþK sin h ¼ nx=c ¼ k: ð8:94Þ

There are eight unknowns in (8.93) (rss, rsp, a, b, A, B, tso and tse) and eight
equations follow from the continuity of Ex, Ey, @zEx � iKEz and @zEy at z ¼ 0 and at
z ¼ Dz. The resulting s to s reflection amplitude may be written in the form of that
for an isotropic layer on an isotropic substrate:

rss ¼ f1 þ fZ
1þ f1fZ

; f1 ¼ q1 � q
q1 þ q

; Z ¼ e2iqDz: ð8:95Þ

The reflection amplitude f1 is the Fresnel amplitude at the z ¼ 0 interface; f is more
complicated (Lekner 1992c, Sect. 4). However, we can see from (8.95) that as Dz
changes, Z moves on the unit circle, and thus rss will also move around on a circle
in the complex plane (refer to the discussion in Sect. 8.7; absence of absorption is
assumed). The period Dz of this notion is p=q.

For incident p-polarization, the electric fields are

incident: ðcos h1; 0; � sin h1Þeiq1z

reflected: ðrpp cos h1; rps; rpp sin h1Þe�iq1z

within layer: cos h½aeiqz þ be�iqz�; Aeiqz þBe�iqz; � sin h½aeiqz � be�iqz�� �

within crystal: tpoEoeiqoðz�DzÞ þ tpeEeeiqeðz�DzÞ ð8:96Þ

Again rpp may be written in the form of rp for an isotropic layer on an isotropic
substrate (Sect. 2.4)

rpp ¼ F1 þFZ
1þF1FZ

; F1 ¼ Q� Q1

QþQ1
Q1 ¼ q1

e1
; Q ¼ q

e

	 


: ð8:97Þ

(F is made explicit in Sect. 4 of Lekner 1992c). Z ¼ e2iqDz as before; as qDz
changes Z moves on the unit circle, and thus rpp will move on a circle in the
complex plane (in the absence of absorption within the layer). The off-diagonal
reflection amplitudes rsp and rps are given in (86) of Lekner (1992c); they also move
on circles in the complex plane as the thickness of the isotropic layer varies, as is
seen in the example of air|water|calcite at 30	 and 60	 angle of incidence, shown in
Fig. 1 of that paper.
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8.9 Optical Properties of a Uniaxial Layer

In Sect. 8.7 we have discussed the normal incidence case, which was amenable to
2� 2 matrix treatment. The general case requires 4� 4 matrix representation, but
an algebraically explicit solution is again possible (Lekner 1994b). The medium
and the substrate have dielectric constants e1 ¼ n21 and e2 ¼ n22, the crystal has
ordinary and extraordinary indices eo and ee. For s-polarization incident, and with
the common factor exp iðKx� xtÞ suppressed, the electric fields are

incident: ð0; 1; 0Þeiq1z

reflected: ðrsp cos h1; rss; rsp sin h1Þe�iq1z

within layer: aoEþ
o eiqoz þ boE�

o e
�iqoz þ aeEþ

e eiq
þ
e z þ beE�

e e
iq�e z

transmitted: ðtsp cos h2; tss; �tsp sin h2Þeiq2ðz�DzÞ ð8:98Þ

As usual, q2o ¼ k2o � K2, ko ¼ nox=c. The four plane waves that can propagate
within the crystal have the z-dependence

eiqoz; e�iqoz; eiq
þ
e z and eiq

�
e z;

q�e ¼ ��q� acKDe
ec

; �q2 ¼ eo
e2c

eeec x
c

� �2�K2eac
n o

:
ð8:99Þ

There are eight unknowns, rss, rsp, ao, bo, ae, be, tss and tsp, and eight equations
arising from the continuity of Ex, Ey, @zEx � iKEz and @zEy at z ¼ 0 and at z ¼ Dz.
The solution is facilitated by a diagonal phase matrix,

P ¼ diag eiqoDz; e�iqoDz; eiq
þ
e Dz; eiq

�
e Dz

� �

; ð8:100Þ

and by 4� 4 mode matrices M and layer matrix

L ¼ MPM�1: ð8:101Þ

These same matrices also give the solution (in terms of the matrix elements Lij) for
the p-polarization, for which the fields inside the crystal have the form given in
(8.98), the others being

incoming: ðcos h1; 0; � sin h1Þeiq1z
reflected: ðrpp cos h1; rps; rpp sin h1Þe�iq1z

transmitted: ðtpp cos h2; tps; �tpp sin h2Þeiq2z
ð8:102Þ

The reflection and transmission amplitudes at oblique incidence and at arbitrary
orientation of the optic axis with respect to the reflecting surface normal are given
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in Sect. 3 of Lekner (1994b). For non-absorbing media they satisfy the energy
conservation conditions

q1 1� rssj j2� rsp
�
�

�
�
2

� �

¼ q2 tssj j2 þ tsp
�
�

�
�
2

� �

q1 1� rpp
�
�

�
�2� rps

�
�

�
�2

� �

¼ q2 tpp
�
�

�
�2 þ tps

�
�

�
�2

� � ð8:103Þ

There is much simplification when the optic axis lies in the plane of incidence
ðb ¼ 0Þ. Then the ordinary electric field vector is perpendicular to the plane of
incidence (the s direction), and from (8.24), Ee is perpendicular to Eo. Thus the s-
polarization converts fully to the ordinary mode, and rsp and tsp are zero. The
reflection amplitude rss is the same as that of an isotropic layer of index no:

rss ¼ s1 þ s2e2iqoDz

1þ s1s2e2iqoDz
; s1 ¼ q1 � qo

q1 þ qo
; s2 ¼ qo � q2

qo þ q2
: ð8:104Þ

The amplitude rpp also takes the isotropic layer form,

rpp ¼ p1 þ p2e2i�qDz

1þ p1p2e2i�qDz
; p1 ¼ Q� Q1

QþQ1
; p2 ¼ Q2 � Q

Q2 þQ
: ð8:105Þ

with the definitions

Q1 ¼ q1
e1
; Q2 ¼ q2

e2
; Q ¼ qc

none
;

qc ¼ ecðx=cÞ2 � K2; �q ¼ ðnone=ecÞqc:
ð8:106Þ

(The value for �q given is that taken by the general �q defined in (8.19) when b ¼ 0;
qc is given in (8.60).) The transmission amplitudes, when the optic axis lies in the
plane of incidence, are

tss ¼ ð1 þ s1Þð1 þ s2ÞeiqoDz
1 þ s1s2e2iqoDz

;

tpp ¼ e�iacKDzDe=ec n1
n2

ð1� p1Þð1� p2Þei�qDz
1 þ p1p2e2i�qDz

:
ð8:107Þ
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Chapter 9
Ellipsometry

Ellipsometry is a sensitive technique based on bringing s and p reflected or
transmitted polarizations into interference. Its main use is in the characterization of
solid surfaces and liquid-vapour or liquid-liquid interfaces. Azzam (1991) has
compiled a selection of papers on ellipsometry. A survey of the various optical
techniques used to study surfaces was given by McGilp (1995). We shall first
consider five reflection configurations, in the general anisotropic case where all of
rpp, rss, rps and rsp may be active (Lekner 1993); reflection ellipsometry of uniaxial
crystals is applied in Sect. 9.9 to the extraction of the ordinary and extraordinary
indices and of the orientation of the optic axis. Reflection from isotropic media,
with only rp and rs active, will follow as special cases. Transmission ellipsometry
will be considered in Sects. 9.7 and 9.8.

The essence of all reflection ellipsometric methods is as follows. A polarizer
produces a known proportion of in-phase p and s incident waves. The amplitude
and phase of these waves are altered by reflection, as specified by the complex
reflection amplitudes rpp, rps and rss, rsp. The reflected light is passed through an
analyser, which combines the components of the orthogonal p and s polarizations
along the analyser easy direction. The intensity then measured by a detector is the
result of interference of the p and s components and thus contains information about
the relative phases of the reflection amplitudes, as well as about their magnitudes.

9.1 Polarizer–Sample–Analyser

This is the simplest ellipsometer configuration. Let P be the angle between the
polarizer easy axis and the p direction (which is in the plane of incidence, and
perpendicular to the incident ray). The angles P and A are measured from the p and
p0 directions towards the s directions, with the vectors p, s and k (the wave vector)
forming a right-handed triplet. Likewise the p

0
; s and k

0
directions form a

right-handed triplet. Note that the reflected p
0
and k

0
directions are different from

the incident ones, whereas the s vector is fixed. Figure 9.1 gives the schematics of
the polarizer–sample–analyser configuration.
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Then, on removal of common factors which cancel from ratios of detected inten-
sities, the electric field has p and s components cosP and sinP after passing through
the polarizer. After reflection, the p and s components are

rpp cosPþ rsp sinP; rps cosPþ rss sinP: ð9:1Þ

These components are combined by the analyser. If this is set at angle A to the
(reflected) p

0
direction, the field transmitted by the analyser is

ðrpp cosPþ rsp sinPÞ cosAþðrps cosPþ rss sinPÞ sinA
¼ cosP cosA rpp þ rsp tanPþðrps þ rss tanPÞ tanA

� �

¼ cosP cosA rpp þ rps tanAþðrsp þ rss tanAÞ tanP
� �

:

ð9:2Þ

We define two ellipsometric ratios (which will serve in all of the configurations we
discuss)

qP ¼ rpp þ rsp tanP
rps þ rss tanP

; qA ¼ rpp þ rps tanA
rsp þ rss tanA

: ð9:3Þ

Consider two intensity measurements at analyser angles A1 and A2, and fixed
polarizer angle P. Their ratio is

IðA1Þ
IðA2Þ ¼

cosA1

cosA2

� �2 qP þ tanA1

qP þ tanA2

�
�
�
�

�
�
�
�

2

: ð9:4Þ

Similarly, if two intensity measurements are made at fixed analyser angle A, at two
polarizer angles P1 and P2, their ratio will be

Fig. 9.1 The simplest reflection ellipsometry configuration. The polarizer easy axis is at azimuthal
angle P, measured from the p toward the s directions. The analyser easy axis is at azimuthal angle
A, measured from the p0 toward the s directions. The p and p0 directions are antiparallel at normal
incidence, parallel at glancing incidence
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IðP1Þ
IðP2Þ ¼

cosP1

cosP2

� �2 qA þ tanP1

qA þ tanP2

�
�
�
�

�
�
�
�

2

: ð9:5Þ

Measurements of this kind can thus give the absolute squares and the real parts of
qP or of qA, respectively. The signs of the imaginary parts of qP and qA are not
determined. In the isotropic case qP becomes ðrp=rsÞ cotP, and qA becomes
ðrp=rsÞ cotA.

9.2 Polarizer–Compensator–Sample–Analyser

A compensator (or waveplate, or retarder) is a crystal plate, or arrangement of
plates, that produces a known phase difference between two orthogonal compo-
nents. For example, a wave normally incident onto a uniaxial crystal will split into
two orthogonal components that travel in the crystal with phase speeds c=no and
cnc=none, where no and ne are the ordinary and extraordinary refractive indices of
the crystal, and n2c ¼ ec ¼ eo þ c2De, c being the direction cosine of the optic axis
with the inward normal. Section 8.7 gave the transmission amplitudes of the
ordinary and extraordinary modes, and their relative phase allowing for all internal
reflections in (8.90). The phase difference when reflections at the plate surfaces are
removed by antireflection coatings is

de � do ¼ x
c

none
nc

� no

� �

Dz: ð9:6Þ

Consider the polarizer–compensator–sample–analyser configuration, with the
polarizer easy axis at angle P to the p direction, and the compensator with its o
direction at angle C to the p direction. The field components along the o and e
directions are

along o along e
after polarizer cosðC � PÞ � sinðC � PÞ
after compensator to cosðC � PÞ �te sinðC � PÞ

ð9:7Þ

We now resolve along the s and p directions. The respective field components are

Ep ¼ to cosC cosðC � PÞþ te sinC sinðC � PÞ;
Es ¼ to sinC cosðC � PÞ � te cosC sinðC � PÞ: ð9:8Þ
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After reflection these become

Er
p ¼ rppEp þ rspEs; Er

s ¼ rssEs þ rpsEp: ð9:9Þ

These reflected components are combined by the analyser, set at angle A to the p
0

direction. The field transmitted by the analyser is

rppEp þ rspEs
� �

cosAþ rssEs þ rpsEp
� �

sinA: ð9:10Þ

The intensity measured is proportional to the absolute square of the quantity (9.10).
In null ellipsometry this is made zero (in practice minimized) by adjustments of the
angles P, C and A. It is useful to define the complex ratio s and the complex angle D
by

s ¼ te=to; tanD ¼ s tanðC � PÞ: ð9:11Þ

Then from (9.8) the ratio of Es to Ep is given by

Es=Ep ¼ tanðC � DÞ: ð9:12Þ

It follows that the zero of expression (9.10) occurs when

qA ¼ tanðD� CÞ: ð9:13Þ

Thus a null setting of the polarizer–compensator–sample–analyser reflection
ellipsometer determines the real and imaginary parts of
qA ¼ ðrpp þ rps tanAÞ=ðrsp þ rss tanAÞ. In the isotropic case (9.13) reduces to

rp=rs ¼ tanA tanðD� CÞ: ð9:14Þ

(Compare (3.33) of Azzam and Bashara (1987).) In null ellipsometry, such as that
just described, one obtains information purely by angle measurement: one does not
measure light intensity, but rather locates its minimum.

9.3 Polarizer–Sample–Compensator–Analyser

In this configuration the field components along s and along p are cosP and sinP
after the polarizer, and after reflection these become

E
0
p ¼ rpp cosPþ rsp sinP; E

0
s ¼ rss sinPþ rps cosP: ð9:15Þ

With the compensator o direction at angle C to p
0
, the components along the o and e

directions after passing through the compensator are
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to E
0
p cosCþE

0
s sinC

	 


; te E
0
s cosC � E

0
p sinC

	 


: ð9:16Þ

Thus the electric field transmitted by the analyser set at angle A to the p
0
direction is

toðE0
p cosCþE

0
s sinCÞ cosðC � AÞ � teðE0

s cosC � E
0
p sinCÞ sinðC � AÞ: ð9:17Þ

We again define s ¼ te=to, with the understanding that the complex number s can
represent any compensator, and introduce the complex angle D

0
, defined by

tanD
0 ¼ s tanðC � AÞ: ð9:18Þ

The field (9.17) is zero when

qP ¼ tanðD0 � CÞ: ð9:19Þ

A null setting of the ellipsometer thus determines the real and imaginary parts of
qP ¼ ðrpp þ rsp tanPÞ=ðrps þ rss tanPÞ. In this isotropic case, (9.19) reduces to

rp=rs ¼ tanP tanðD0 � CÞ: ð9:20Þ

(Compare (3.55) of Azzam and Bashara (1987).)

9.4 Polarizer–Modulator–Sample–Analyser

We now turn to polarization–modulation ellipsometry (Jasperson and Schnatterly
1969; Beaglehole 1980), in which the polarization state of the light is varied
sinusoidally, with synchronous detection of the intensity by lock-in amplifiers.

When the polarizer pass direction is at angle P to the p direction, the p and s
components are cosP and sinP. The birefringent modulator is oriented so that its o
and e directions lie along p and s respectively. After passing through the modulator
the p and s components are to cosP and te sinP. The modulator is (for example) a
piezo-electric transducer, consisting of a block of fused quartz through which the
light passes, joined onto a block of crystal quartz which oscillates at its fundamental
frequency of say 50 kHz. The resulting sinusoidal uniaxial strain in the fused quartz
modulates the phase difference between the transmitted o and e components,

dðtÞ ¼ M sinðXtÞ: ð9:21Þ
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M is the maximum phase shift induced by the modulator, X=2p the modulation
frequency. In practice the transmission amplitude magnitudes toj j and tej j are almost
identical, so the p and s components after passing through the modulator are, up to a
common factor,

cosP and eid sinP: ð9:22Þ

After reflection, the p
0
and s components are

Ep ¼ rpp cosPþ rspeid sinP
Es ¼ rps cosPþ rsseid sinP

ð9:23Þ

The analyser pass direction is at angle A to the p
0
direction, so the final field

amplitude is

Ep cosAþEs sinA ¼ cosP cosAðrsp þ rss tanAÞðqA þ eid tanPÞ: ð9:24Þ

The last factor contains the modulation. Let qA ¼ qr þ iqi; the detected intensity
is proportional to

q2r þ q2i þ 2 qr cos dþ qi sin dð Þ tanPþ tan2 P: ð9:25Þ

The terms cos d and sin d are sinusoidal functions of sinusoidal argument. Being
periodic they may be expanded in Fourier series, the coefficients of which are
Bessel functions (Olver and Maximon 2010, formulae 10.12.1, 2):

cos½M sinXt� ¼ J0ðMÞþ 2
P1

n¼1
J2nðMÞ cosð2nXtÞ

sin½M sinXt� ¼ 2
P1

n¼0
J2nþ 1ðMÞ sin ð2nþ 1ÞXt½ �

ð9:26Þ

Therefore the DC, X and 2X parts of the intensity are respectively proportional to

q2r þ q2i þ 2qrJ0 Mð Þ tanPþ tan2 P
4qiJ1ðMÞ tanP sinXt
4qrJ2ðMÞ tanP cos 2Xt

ð9:27Þ

Thus polarization modulation ellipsometry, with the modulator placed between the
polarizer and the sample, measures the real and imaginary parts of
qA ¼ ðrpp þ rps tanAÞ=ðrsp þ rss tanAÞ, which reduces to ðrp=rsÞ cotA in the iso-
tropic case.
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9.5 Polarizer–Sample–Modulator–Analyser

This is the final reflection ellipsometer configuration we shall examine. We can
abbreviate the discussion, since it is similar to the preceding configuration. The p

0

and s components after reflection are

E
0
p ¼ rpp cosPþ rsp sinP; E

0
s ¼ rps cosPþ rss sinP: ð9:28Þ

After the modulator, aligned with its o and e directions along p
0
and s, the p

0
and s

components become E
0
p and E

0
se

id, with dðtÞ given by (9.21) as before (we again
neglect the very small difference in the to and te magnitudes). The field amplitude
passing through the analyser is thus

E
0
p cosAþE

0
se

id sinA ¼ cosP cosAðrps þ rss tanPÞðqP þ eid tanAÞ: ð9:29Þ

With qP ¼ qr þ iqi; the detected intensity is proportional to

q2r þ q2i þ 2 qr cos dþ qi sin dð Þ tanAþ tan2 A: ð9:30Þ

Hence the DC, X and 2X signals are respectively proportional to

q2r þ q2i þ 2qrJ0ðMÞ tanAþ tan2 A
4qiJ1ðMÞ tanA sinXt
4qrJ2ðMÞ tanA cos 2Xt

ð9:31Þ

Thus when the modulator is placed between the sample and the analyser, the
polarization modulation ellipsometer measures the real and imaginary parts of
qP ¼ ðrpp þ rsp tanPÞ=ðrps þ rss tanPÞ, which reduces to ðrp=rsÞ cotP in the iso-
tropic case.

9.6 Ellipsometric Measurements: The Principal Angle

We have seen that reflection ellipsometry with either compensator or modulator can
determine the real and imaginary parts of qP or of qA. Thus measurements at least
three polarizer or three analyser settings give three ratios of the reflection ampli-
tudes, for example rpp=rss, rps=rss and rsp=rss. The individual amplitudes all carry
the same arbitrary phase, which depends on conventions such as the choice of
origin. The common phase factor cancels out in the ratios, which depend on the
angle of incidence, the frequency of the light, the variation of the dielectric func-
tions through the interface and (in the anisotropic case) on the orientation of the
optic axis or axes of the reflector.
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In the isotropic case ellipsometry can determine the real and imaginary parts of
rp=rs. Often it is more useful to find the principal angle hP at which the real part of
rp=rs is zero, and then measure the imaginary part of rp=rs. For thin films we saw in
Chap. 3 that Imðrp=rsÞ is proportional (with known proportionality constant, see (3.
46)) to the profile integral invariant

I1 ¼ Z
1

�1
dz

ðe1 � eÞðe� e2Þ
e

ð9:32Þ

(see Sects. 7.2 and 7.3 for anisotropic generalizations). The integration in (9.32) is
through a dielectric profile eðzÞ, for example that of a vapour-liquid interface
between vapour ðe1Þ and liquid ðe2Þ. For interfaces thin compared to the wavelength
of light being used, this integral invariant is all that can be determined. The prin-
cipal angle at which Reðrp=sÞ ¼ 0 is, for thin films, just the Brewster angle
hB ¼ arctanðn2=n1Þ.

We showed in Sect. 2.3 that, for an arbitrary dielectric profile, at least one
principal angle exists. In general there are an odd number of principal angles. For a
homogeneous nonabsorbing isotropic layer of dielectric constant e and of thickness
Dz, Reðrp=rsÞ is a ratio of two quadratics in cos 2qDz with q2 ¼ eðx=cÞ2 � K2, and
equating the numerator to zero gives the principal angles (Lekner 2000). In general
the difference between the principal angle hP and the Brewster angle hB is second
order in the interface thickness, as shown in Sect. 3.5; (3.53) is of the form

hP � hB ¼ a
x
c
Dz

	 
2
þ O

x
c
Dz

	 
4
: ð9:33Þ

The proportionality coefficient a is given in terms of integral invariants in (3.53),
and explicitly for the homogeneous layer in Sect. 3 of Lekner (2000).

9.7 Transmission Ellipsometry

We shall consider the normal-incidence transmission ellipsometry of a uniaxial
layer resting on an isotropic substrate. The reflection and transmission amplitudes
for an unsupported uniaxial layer were given in Sect. 8.7. With an isotropic sub-
strate of index n2, the reflection and transmission amplitudes at normal amplitude
after the analyser, assuming unit amplitude field is incident, incidence may be found
in Lekner (1994b). We shall give the electric field for five ellipsometer configu-
rations. The transmitted amplitude depends on the polarizer and analyser angles P
and A and on the compensator or modulator angle C, all measured in the same sense
from the uniaxial layer Eo direction, which is perpendicular to the inward normal
n to the crystal, being along the n� c direction (c is the optic axis, as in Chap. 8).
Figure 9.2 shows the configuration and the angles P and A.
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9.7.1 Polarizer–Sample–Analyser

After passing through the analyser, the field amplitude is

to cosP cosAþ te sinP sinA: ð9:34Þ

The intensity, given by the absolute square of (9.34), contains the polarizer and
analyser angles, and toj j, tej j and Reðtot�eÞ. The unknowns are the absolute magni-
tudes of to and te, and their phase difference. Three intensity measurements at
different polarizer and analyser settings, plus an intensity measurement with the
sample absent, are the minimum required to determine the unknowns.

9.7.2 Polarizer–Compensator–Sample–Analyser

Figure 9.3 shows the configuration; the compensator ordinary and extraordinary
field directions (in the latter case, actually the projection of Ee onto the crystal
surface, see Sect. 8.6) are at right angles, with the ordinary field at angle C to the Eo

direction of the crystal.
The field amplitude after the analyser is

toEo cosAþ teEe sinA; ð9:35Þ

where, with t
0
o and t

0
e the complex compensator transmission amplitudes,

Eo ¼ t
0
o cosðP� CÞ cosC � t

0
e sinðP� CÞ sinC

Ee ¼ t
0
o cosðP� CÞ sinCþ t

0
e sinðP� CÞ cosC ð9:36Þ

In the null setting of the ellipsometer, the intensity is made zero (in practice min-
imized). The intensity will be zero when the real and imaginary parts of (9.35) are
zero. From (9.36) we see that

Fig. 9.2 The polarizer–sample (on substrate)–analyser transmission ellipsometry schematics. The
angles P and A are measured from the Eo direction, shown as the horizontal line on the sample
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Ee

Eo
¼ t

0
o tanCþ t

0
e tanðP� CÞ

t0o � t0e tanC tanðP� CÞ ¼ tanðCþDÞ; ð9:37Þ

where D is a complex angle defined by

tanD ¼ t
0
e

t0o
tanðP� CÞ: ð9:38Þ

Thus a null setting determines the complex ratio to=te in terms of the compensator
transmission amplitude ratio and the angles P, C and A:

to=te ¼ � Ee

Eo
tanA ¼ � tanðCþDÞ tanA: ð9:39Þ

9.7.3 Polarizer–Sample–Compensator–Analyser

We resolve first along the sample o and e directions. The o and e components of the
field passing through the sample are to cosP and te sinP. We now resolve along the
o

0
and e

0
directions of the compensator. The field components are

E
0
o ¼ to cosP cosCþ te sinP sinC

E
0
e ¼ �to cosP sinCþ te sinP cosC

ð9:40Þ

After passing through the compensator the o
0
and e

0
components are t

0
oE

0
o and t

0
eE

0
e.

After the analyser the field (along the analyser easy direction) is

Fig. 9.3 The polarizer–compensator–sample–analyser ellipsometer arrangement. The angles P, C
and A are measured from the sample Eo direction, shown as the horizontal line on the sample. The
compensator ordinary and extraordinary field directions o

0
and e

0
are shown by solid and dashed

lines on the compensator
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t
0
oE

0
o cosðA� CÞþ t

0
eE

0
e sinðA� CÞ: ð9:41Þ

We again define a complex angle related to the ratio t
0
e=t

0
o:

tanD
0 ¼ t

0
e=t

0
o tanðA� CÞ: ð9:42Þ

A null setting is obtained when the real and imaginary parts of (9.41) are zero, that
is when E

0
o=E

0
e ¼ � tanD

0
. Then the complex ratio to=te is given by

to=te ¼ � tanP tanðCþD
0 Þ: ð9:43Þ

9.7.4 Transmission Ellipsometry with a Polarization
Modulator

The action of a modulator (a compensator with a sinusoidally varying phase) has
been discussed in Sect. 9.4. The ratio of the e and o amplitudes passed through the
modulator is

t
0
e

t0o
� eid; d tð Þ � M sinXt: ð9:44Þ

M is the maximum phase shift, X=2p is the modulation frequency. The equalities in
(9.44) are not exact, since the modulas of the ratio t

0
e=t

0
o is not unity but very close to

it. Also the phase shift is not exactly sinusoidal (Archer et al. 1989). Lekner (1994a)
assumes (9.44) to be true as equalities, for ease of analysis. Then, as in Sects. 9.4
and 9.5, measurement of the DC, X and 2X signals with lock-in amplifiers gives the
real and imaginary parts of the relevant ellipsometric ratio, in this case the trans-
mission amplitude ratio to=te of the sample. Details may be found in Sects. 6 and 7
of Lekner (1994a). Section 8 of that paper discusses the properties of the ratio to=te,
and in particular its orbit in the complex plane as the thickness of the crystal plate
increases.

9.8 Reflection and Transmission Ellipsometry
of a Homogeneous Layer

We consider an isotropic homogeneous layer of thickness Dz and dielectric constant
e, bounded by homogeneous media of dielectric constants e1 ¼ n21 and e2 ¼ n22, and
focus on the ellipsometric quantities q ¼ rp=rs and s ¼ tp=ts. Isotropy in all media
is assumed here; the optical properties of a uniaxial layer were outlined in Sect. 8.9,
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but only the results for the optic axis lying in the plane of incidence were given
explicitly there.

From Sect. 2.4, the ellipsometric ratios are given by

q ¼ rp
rs

¼ p1 þ p2Z
1þ p1p2Z

� 1þ s1s2Z
s1 þ s2Z

; ð9:45Þ

s ¼ tp
ts
¼ n1

n2

ð1� p1Þð1� p2Þð1þ s1s2ZÞ
ð1þ s1Þð1þ s2Þð1þ p1p2ZÞ ; ð9:46Þ

where s1; p1 and s2; p2 are the reflection amplitudes at the layer boundaries with
media 1 and 2:

s1 ¼ q1 � q
q1 þ q

; s2 ¼ q� q2
qþ q2

; p1 ¼ Q� Q1

QþQ1
; p2 ¼ Q2 � Q

Q2 þQ
: ð9:47Þ

As usual, q1, q and q2 are the normal components of the wavevector medium 1, the
layer, and medium 2; Q1 ¼ q1=e1, Q ¼ q=e and Q2 ¼ q2=e2. In (9.45) and (9.46),
Z ¼ e2iqDz and moves periodically on the unit circle in the complex plane when q is
real (no absorption, and sin2 h1\e=e1Þ. The period in Dz is p=q. The transmission
ratio is a bilinear conformal transformation of the variable Z, and thus s also moves
on circles in the complex plane as the layer thickness increases (Fig. 9.4). The
largest circle is at glancing incidence. More detail may be found in Dorf and Lekner
(1987).

When n1 ¼ n2 the reflection ellipsometric ratio simplifies to

q ¼ rp
rs

¼ p1
s1

1� s21Z
1� p21Z

n1 ¼ n2ð Þ; ð9:48Þ

Fig. 9.4 Circular paths of s ¼ tp=ts in the complex plane at angles of incidence 30�; 45� and 60�,
drawn for n1 ¼ 1, n ¼ 4=3 and n ¼ 3=2, approximating air|water|glass. At normal incidence tp ¼
ts and the circle collapses to the point ð1; 0Þ shown in the figure
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and thus also moves on circles in the complex plane as the layer thickness Dz
increases (at fixed angle of incidence).

In the general case n1 6¼ n2, the path of q in the complex plane as Dz increases
becomes a closed quartic curve, obtained by eliminating Z from (9.45) by repeated
use of ZZ� ¼ 1 (Lekner (1994c), Sect. 4). Lack of absorption is assumed, otherwise
Z spirals in towards the origin as Dz increases. The quartic, in x ¼ ReðqÞ and
y ¼ ImðqÞ, is even in y. It passes through y ¼ 0 at points ðq	; 0Þ on the x-axis,
where

qþ ¼ q Z ¼ þ 1ð Þ ¼ q1q2 � K2

q1q2 þK2 ¼ p0
s0

ð9:49Þ

(p0 and s0 are the reflection amplitudes of the bare substrate). The point ðqþ ; 0Þ
does not depend on the layer properties. The other intersection with y ¼ ImðqÞ ¼ 0
is at

q� ¼ q Z ¼ �1ð Þ ¼ q2 þ q1q2ð Þ Q1Q2 � Q2ð Þ
q2 � q1q2ð Þ Q1Q2 þQ2ð Þ : ð9:50Þ

This goes to infinity when q2 ¼ q1q2; together with 2qDz being an odd multiple of
p, q2 ¼ q1q2 leads to rs ¼ 0, as seen in Sect. 2.4. The condition q2 ¼ q1q2 is
satisfied at angle of incidence h0 given by

tan2 h0 ¼ e1e2 � e2

ðe1 � e2Þ2
ð9:51Þ

(a real h0 is possible only if e2\e1e2Þ.
The quartic curve in the real and imaginary parts of q is simultaneously a quintic

equation in e (Lekner 1994c, Sect. 2), reducing to a cubic in e when n1 ¼ n2.
A much simpler inversion of combined reflection and transmission data is

possible (Azzam 1983; Lekner 1994a). Returning to (9.45) and (9.46), we define

P ¼ p1p2; S ¼ s1s2; t ¼ n2s
n1

; f ¼ 1� p1ð Þ 1� p2ð Þ
1þ s1ð Þ 1þ s2ð Þ : ð9:52Þ

Then q ¼ rp=rs and t ¼ n2tp=n1ts may be written as

q ¼ p1 þ p2Z
s1 þ s2Z

1þ SZ
1þPZ

; t ¼ f
1þ SZ
1þPZ

: ð9:53Þ

The inversion problem consists in the extraction of the unknowns e and Dz from
experimental values of q and s (or tÞ. The solution is as follows: the equality for t is
a linear equation for Z ¼ e2iqDz with solution
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Z ¼ f � t
tP� fS

: ð9:54Þ

This value for Z is now substituted into the expression for q, thus eliminating the
unknown thickness Dz. The remaining equation contains the experimental complex
quantities q and t (or sÞ, and the unknown dielectric constant e, which also appears
in q, since q2 ¼ eðx=cÞ2 � K2. Substitution for e ¼ ðc=xÞ2ðq2 þK2Þ gives an
equation with the unknown q, which after removal of common factors leaves an
equation linear in q2 (or equivalently, linear in eÞ. Thus a complete unambiguous
solution for the dielectric constant of the layer is obtained. The details are given in
Lekner (1994a), where extraction of the film thickness from (9.54), and stability of
the solutions with respect to experimental error, are also discussed. In the simplest
case of unsupported films ðn1 ¼ n2Þ the solution is

e ¼ e1sin2h1
cos2 h1 � q=s

: ð9:55Þ

9.9 Reflection Ellipsometry of Uniaxial Crystals

Reflection ellipsometry is capable of determining the ordinary and extraordinary
dielectric constants eo and ee of a uniaxial crystal, and the orientation of the optic
axis, if at least one clean face of the crystal is exposed. The quantities measured are
the ratios of the four reflection amplitudes rss, rsp, rps and rpp, and angles. Figure 9.5
defines the geometry.

If the crystal is nonabsorbing the reflection amplitudes are all real and the four
real numbers eo, ee, v and / (refer to the caption of Fig. 9.5 for the definition of v
and /Þ are found by measuring a minimum of four real quantities (three reflection
amplitude ratios, and one angle). The same method applies to absorbing uniaxial
crystals, but then eo, ee and the reflection amplitudes are all complex.

In Chap. 8 we characterized the optic axis c by its direction cosines a, b and c:

c ¼ ða; b; cÞ; a2 þ b2 þ c2 ¼ 1: ð9:56Þ

The equivalent notation of this section is

c ¼ sin v cos/; sin v sin/; cos vð Þ: ð9:57Þ

One first tests whether the crystal is indeed uniaxial, or whether it is isotropic or
biaxial. For uniaxial crystals the rsp and rps reflection amplitudes are known
(Equations (8.30) and (8.40) of Chap. 8): they have the forms
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rsp ¼ b aqo þ cKð ÞF; rps ¼ b aqo � cKð ÞF: ð9:58Þ

(F is the same for both amplitudes). To be specific, we suppose the ellipsometer is
in one of the polarizer–sample–compensator–analyser or polarizer–sample–modu-
lator–analyser configurations. Then the quantity measured is (see Sects. 9.3 and 9.5)

qp ¼
rpp þ rsp tanP
rps þ rss tanP

; ð9:59Þ

where P is the angle between the polarizer easy and the incident p direction.
Measurement of qp at N different values of the polarizer angle P gives N linear
homogeneous linear equations for the unknowns rss, rsp, rps and rpp. Only the ratios
of the reflection amplitudes can be found from these experimental values. Three
measurements are thus sufficient to determine the three independent ratios. For
example, if we set P ¼ 0, p=4 and p=2 (so tanP takes the values 0, 1 and 1Þ and
measure the corresponding complex numbers q0, q1 and q1,

rsp
rss

¼ q1;
rps
rss

¼ q1 � q1
q0 � q1

;
rpp
rss

¼ q0
q1 � q1
q0 � q1

: ð9:60Þ

Extra measurements provide a check on the accuracy of the data. For example, at
P ¼ � p

4 ðtanP ¼ �1Þ the resulting measurement q�1 will be consistent with the
previous measurements q0, q1 and q1 if

Fig. 9.5 Reflection by a
uniaxial crystal: xy is the
reflecting face, zx is the plane
of incidence. The positive z
axis coincides with the inward
normal of the reflecting face.
The optic axis c is at angle v
to the inward normal, and the
plane containing c and the z
axis cuts the xy plane on the
line c0, at angle / to the x axis
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q�1 ¼
q0q1 � 2q0q1 þ q1q1

2q1 � q0 � q1
: ð9:61Þ

In practice this consistency relation will not be satisfied exactly, because of
experimental error. For N[ 3 measurements there will be N!=ðN � 3Þ!3! solution
sets, which can be averaged to give the reflection amplitude ratios. Alternatively,
one can measure repeatedly at three fixed values of the polarizer angle and average
the qP values obtained at each P, with occasional measurement at a fourth angle to
provide a consistency check.

We return to the determination of the crystal parameters. The crystal is mounted
on a support stage which can be rotated about the normal to the reflecting face (the z
axis in Fig. 9.5). It is important that the stage can be adjusted so that the angle of
incidence does not change on rotation. The ratios rsp=rss and rps=rss are found first.

1. If these are zero at all values of the azimuthal angle /, the crystal is isotropic, in
which case the inversion of rp=rs to obtain the dielectric function e is relatively
straightforward (see Sect. 11.1 of Chap. 11), or the reflection is from a basal
plane (one perpendicular to the optic axis, v ¼ 0, so b ¼ 0 in (9.58)). Lekner
(1997) shows how the remaining unknowns eo and ee may then be found.

2. If the amplitudes rsp and rps are not identically zero, then from (9.58) they will
have two common zeros as the uniaxial crystal is rotated through 360� about the
surface normal. These zeros occur at b ¼ 0 (/ ¼ 0 or pÞ. (If rsp and rps are not
zero together twice in a full rotation, the crystal is not uniaxial.) When the
crystal is aligned so that rps and rsp are both zero, the optic axis lies in the plane
of incidence. The known reflection amplitudes for b ¼ 0 then allow extraction
of the remaining unknowns eo, ee and v (or cÞ (see Lekner 1997), in terms of
reflection amplitude ratios at b ¼ 0 and at a ¼ 0ðcos/ ¼ 0Þ, and of

rsp þ rps
rsp � rps

¼ aq0
cK

¼ tan v cos/
q0
K
: ð9:62Þ

Sensitivity to errors in measurement is explored in Lekner (1997) for reflection by
calcite and selenium, the latter a strongly absorbing crystal. An alternative method
for thin uniaxial samples has been proposed by Yang et al. (1995).
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Chapter 10
Absorption

This chapter deals with the effect of absorption on reflection properties. The
absorption, or dissipation of electromagnetic energy within the medium, can be due
to conductivity (as in metals, and in the ionosphere). However, good insulators can
also be absorbers at high frequencies, where the electromagnetic field energy is
converted to heat via molecular or electronic excitations. The absorption is included
in the Maxwell equation (1.2) by allowing the dielectric function e to take complex
values. In general, the curl of B is the sum of terms proportional to @E=@t and to the
total current density. For non-magnetic media, and fields with the time variation
e�ixt, the form of (1.2) is retained, with the imaginary part of e now proportional to
the conductivity divided by the frequency (Born and Wolf 1970, Sect. 13.1). The
simplest model for conducting media is that of an electron gas, with mean free time
between collisions s. This leads to the dielectric function (see for example Kittel
1966; Booker 1984; Budden 1985)

e x; zð Þ ¼ 1� x2
p

x2 þ ix=s
; ð10:1Þ

where xp is the plasma frequency. In the ionosphere, for example, e is a function of
height z through the proportionality of x2

p to the electron density, as well as through
the dependence of s on the electron, ion, and neutral species densities.

We will represent the real and imaginary parts of physical variables such as e by
the subscripts r and i:

e ¼ er þ iei: ð10:2Þ

The real and imaginary parts of e are directly related to the electronic properties of
the material under study. Either er; ei, or the real and imaginary parts of the square
root of e (the complex refractive index) can be used in writing the reflectivity
formulae. We shall use both, with the refractive index notation being particularly
convenient at normal incidence. The relationship between the two is found from
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er þ iei ¼ nr þ inið Þ2 ð10:3Þ

giving

er ¼ n2r � n2i ; ei ¼ 2nrni: ð10:4Þ

The real and imaginary parts of e are related in their frequency dependence by the
Kramers-Krönig relations: erðxÞ � 1 and eiðxÞ are Hilbert transforms of each other,
because the response of any system to an arbitrary signal must be causal (see, for
example, Landau and Lifshitz 1960, Sect. 62).

10.1 Fresnel Reflection Formulae for an Absorbing
Medium

For the s wave, with E ¼ ð0;Ey; 0Þ for propagation in the zx plane,

Ey z; x; tð Þ ¼ eiðKx�xtÞE zð Þ; ð10:5Þ

with

d2E
dz2
þ q2E ¼ 0; q2ðzÞ ¼ eðzÞx

2

c2
� K2: ð10:6Þ

The separation of variables constant K is the component of the wavevector along
the interface, and its invariance leads to Snell’s Law:

ffiffiffiffi
e1
p x

c
sin h1 ¼ K ¼ ffiffiffiffi

e2
p x

c
sin h2: ð10:7Þ

Here we consider radiation incident from a non-absorbing medium (real e1) onto an
absorbing medium (complex e2). Thus the angle of refraction is complex, and has a
formal meaning only. The behaviour of the refracted wave is found from its
waveform

Ey z; x; tð Þ ¼ ei Kxþ q2z�xtð Þ: ð10:8Þ

We write e2 ¼ er þ iei; the real and imaginary parts of q2 are found from

q22 ¼ e2
x2

c2
� K2 ¼ x2

c2
ðer þ iei � e1sin2h1Þ: ð10:9Þ

Setting q2 ¼ qr þ iqi, so that q22 ¼ q2r � q2i þ 2iqrqi, we have
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q2r � q2i ¼
x2

c2
er � e1sin2h1
� �

; 2qrqi ¼ x2

c2
ei: ð10:10Þ

Thus, for ei 6¼ 0 and er [ 0,

cqr
x

� �2
¼ 1

2
er � e1 sin2 h1 þ er � e1 sin2 h1

� �2 þ e2i

h i1
2

� �
; ð10:11Þ

cqi
x
¼ ei=2

cqr=x
: ð10:12Þ

(When ei ¼ 0 we have either qi or qr ¼ 0, depending on whether h1\hc or
h1 [ hc.) The waveform in the absorbing medium is

Ey z; x; tð Þ ¼ e�qizei Kxþ qrz�xtð Þ: ð10:13Þ

Thus qi must be non-negative, which implies that ei and ni must be non-negative.
Surfaces of constant amplitude are planes parallel to the interface (z ¼ constant),
while surfaces of constant real phase are the planes Kxþ qrz ¼ constant. The normal
to the surfaces of constant phase is at an angle h02 to the normal to the interface, where

tan2 h02 ¼
K2

q2r
¼ 2e1 sin2 h1

er � e1 sin2 h1 þ ½ðer � e1 sin2 h1Þ2 þ e2i �
1
2

: ð10:14Þ

The real angle h02 and the angle h2 (in general complex) coincide only for real e2, or
at normal incidence.

For a sharp boundary between media 1 and 2, represented by a step dielectric
function at z ¼ 0, the continuity of E and dE=dz at the boundary (implied by the
differential equation (10.6)) give the s wave reflection amplitude

rs ¼ q1 � q2
q1 þ q2

¼ q1 � qr � iqi
q1 þ qr þ iqi

: ð10:15Þ

The s reflectivity is thus

Rs ¼ q1 � qrð Þ2 þ q2i
q1 þ qrð Þ2 þ q2i

: ð10:16Þ

At normal incidence this reduces to

Rn ¼ n1 � nrð Þ2 þ n2i
n1 þ nrð Þ2 þ n2i

; ð10:17Þ

since then qr ¼ nrx=c and qi ¼ nix=c.
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The p wave, which has B ¼ ð0;By; 0Þ, has the form

By z; x; tð Þ ¼ ei Kx�xtð ÞB zð Þ; ð10:18Þ

with the same separation of variables constant K as the s wave. The equation
satisfied by B is

d
dz

1
e
dB
dz

	 

þ x2

c2
� K2

e

	 

B ¼ 0: ð10:19Þ

At a sharp boundary between two media B and e�1dB=dz are continuous; the
reflection amplitude is thus

�rp ¼ Q1 � Q2

Q1 þQ2
¼ Q1 � Qr � iQi

Q1 þQr þ iQi
; ð10:20Þ

where Q1 ¼ q1=e1 and Q2 ¼ q2=e2. The latter is the ratio of the two complex
quantities qr þ iqi and er þ iei, and thus has the real and imaginary parts

Qr ¼ erqr þ eiqi
e2r þ e2i

; Qi ¼ erqi � eiqr
e2r þ e2i

: ð10:21Þ

We note that rs ! �1 and rp ! þ 1 at grazing incidence, as in the case of non-
absorbing media. The p reflectivity is

Rp ¼ Q1 � Qrð Þ2 þ Q2
i

Q1 þ Qrð Þ2 þ Q2
i

; ð10:22Þ

and reduces to (10.17) at normal incidence, where the real and imaginary parts of Q
take the values

Qr ¼ nrx=c
n2r þ n2i

; Qi ¼ �nix=cn2r þ n2i
: ð10:23Þ

We shall see later in this section that Rp is never greater than Rs for a step profile.
Both Rs and Rp differ from their zero-absorption Fresnel values by terms second
order in ei.

In the absense of absorption, the p wave reflectivity is zero when Q1 ¼ Q2 (at the
Brewster angle hB ¼ arctanðn2=n1)). The condition Q1 ¼ Q2 cannot be satisfied for
absorbing reflectors, since this would imply both Q1 ¼ Qr and Qi ¼ 0. The latter
condition is satisfied at angle of incidence h1 such that

236 10 Absorption



sin2 h1 ¼ e2r þ e2i
2e1er

; ð10:24Þ

and is thus possible if er [ 0 and e2r þ e2i\2e1er. But when (10.24) holds, the
condition Q1 ¼ Qr could be satisfied only if e1 � erð Þ2 þ e2i ¼ 0. Thus, when there
is absorption, zero reflection at a single sharp boundary is not possible. When a
dielectric layer is placed over an absorbing medium, zero reflectivity is possible, for
both polarizations (at different angles), as we shall see in Sect. 10.3.

The s and p step profile reflectivities are shown in Fig. 10.1, for a metal (Al) and
a semiconductor (Si) at the visible He–Ne laser wavelength, k0 ¼ 0:633 lm. The
minima of Rp are determined by a cubic equation in sin2 h1, given in (11.69) at the
end of the next chapter. For the Al and Si reflectances shown in Fig. 10.1, they
occur at about 83� and 76�.

We note the high metallic reflectivities, which are due to wavenumber mismatch:
q1 is real and q2 ¼ qr þ iqi has a large imaginary part. An example of this real|
imaginary type of mismatch was seen in total internal reflection in dielectric
materials, where for h1 [ hc ¼ arcsinðn2=n1Þ the wavenumber normal component
q2 is pure imaginary, giving total reflection for both polarizations. We see from
(10.11), (10.12) and (10.16) that when ei 6¼ 0 total reflection is not possible for the
s wave (except at grazing incidence, when q1 ! 0). The same result follows for the
p wave from (10.11), (10.12), (10.21) and (10.22).

Fig. 10.1 Reflectivity as a function of the angle of incidence, for the s and p polarizations at
633 nm. The refractive indices are Al: 1:566þ 7:938i, Si: 4:0þ 0:12i. The corresponding dielectric
functions are Al: �60:56þ 24:86i, Si: 16:0þ 0:96i (The Al values are for bulk metal;
vapour-deposited values are different: see Allen 1976)
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The ellipsometric quantity rp=rs is obtained from (10.15) and (10.20). It has the
real and imaginary parts

Re
rp
rs

	 

¼ � Q2

1 � Q2
r � Q2

i

� �
q21 � q2r � q2i
� �þ 4Q1Qiq1qi

� �
Q1 þ Qrð Þ2 þ Q2

i

h i
½ q1 � qrð Þ2 þ q2i �

; ð10:25Þ

Im
rp
rs

	 

¼ 2

Q1Qi q21 � q2r � q2i
� �� q1qiðQ2

1 � Q2
r � Q2

i Þ
Q1 þ Qrð Þ2 þ Q2

i

h i
q1 � qrð Þ2 þ q2i

h i : ð10:26Þ

The computation of these quantities is simplified by the identity

Q2
r þQ2

i ¼
q2r þ q2i
e2r þ e2i

: ð10:27Þ

Equivalent and somewhat simpler formulae (in terms of q1, qr, qi and K) are given
in Sect. 11.1.

The trajectories of rp=rs in the complex plane for variable angle of incidence are
shown in Fig. 10.2 for Al and Si at 633 nm. There is rapid variation in the real and
imaginary parts of rp=rs at large angles of incidence, for Al particularly: the paths
cross the real axis at the principal angles of about 83� Alð Þ and 76�ðSiÞ.

The trajectory of rp=rs always lies within the upper half of the unit circle for an
arbitrary absorbing medium with a sharply defined surface. To see this, it is con-
venient to define a complex angle of refraction, h2 ¼ hr þ ihi, via

q2 ¼ e1=22
x
c

� �
cosh2 ð10:28Þ

Fig. 10.2 The ellipsometric ratio rp=rs, in the complex plane; trajectories for Al and Si are shown.
The refractive indices are for 633 nm, as in Fig. 10.1. For a perfect dielectric (no absorption) the
trajectory is the real axis from 1 (at 0�) to �1 (at 90�)
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(this definition is consistent with (10.6) and (10.7)). Then (10.15) and (10.20) may
be written in the Fresnel forms (1.14) and (1.32),

rs ¼ sinðh2 � h1Þ
sinðh2 þ h1Þ ; rp ¼ tanðh2 � h1Þ

tan ðh2 þ h1Þ ; ð10:29Þ

and the ellipsometric ratio rp=rs as cosðh2 þ h1Þ= cosðh2 � h1Þ; or

rp
rs
¼ cos h1 þ hrð Þ cosh hi � i sin h1 þ hrð Þ sinh hi

cos h1 � hrð Þ cosh hi þ i sin h1 � hrð Þ sinh hi : ð10:30Þ

The fact that Rp�Rs follows from sinh2 hi\ cosh2 hi. The sign of Imðrp=rsÞ is
opposite to that of hi. From (10.28) we have

c
x

� �
qr þ iqið Þ ¼ nr þ inið Þ cos hr cosh hi � i sin hr sinh hið Þ: ð10:31Þ

The real and imaginary parts of (10.31) give

cos hr cosh hi ¼ c
x

nrqr þ niqið Þ
n2r þ n2i

; ð10:32Þ

sin hr sinh hi ¼ c
x

niqr � nrqið Þ
n2r þ n2i

: ð10:33Þ

These relations may in turn be used to find hr and hi as a function of the angle of
incidence, h1. Here we are interested mainly in the sign of hi, which is that of
niqr � nrqi. We noted below (10.13) that qr and qi are non-negative. Thus, from
(10.10), ei is also non-negative, and so is ni (both nr and ni are � 0, since
qr ¼ nrx=c, qi ¼ nix=c at normal incidence). It thus follows from (10.11), (10.12)
and (10.33) that hi is never positive, so that rp=rs always stays in the upper half of
the unit circle.

For non-absorbing dielectrics Rp is zero at the Brewster angle. In the presence of
absorption the reflectivity ratio Rp=Rs has a minimum at what is known as the
pseudo or second Brewster angle. The extraction of the optical constants nr and ni
(or er and ei) from measurements of this angle and of the minimum reflectivity ratio
is discussed by Potter (1969). The equations determining the principal angle of an

absorber, where Re rp
rs

� �
¼ 0; and also the angle where Rp is minimum, are given in

Sect. 11.7.
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10.2 General Results for Reflection by Absorbing Media

In Sect. 2.1 we derived the conservation law

q1 1� rj j2
� �

¼ q2 tj j2; ð10:34Þ

valid for s and p electromagnetic waves and quantum particle waves in the absence
of absorption. This relation represents conservation of energy in the electromagnetic
case, and conservation of the probability density current in the particle case. In the
presence of absorption the conservation law is no longer valid, since energy or
particles are removed by the absorbing medium. This was noted in Sect. 2.1; it is
mathematically more explicit in the approach of Sect. 6.2, where it is clear that the
derivation of (10.34) depends on the reality of q2ðzÞ.

The quantity T12 ¼ ðq2=q1Þ t12j j2 is called the transmittance (see the discussion
following (2.8); equivalently one may take the ratio of Imðw�dw=dzÞ for w2 ¼
t12eiq2z and w1 ¼ eiq1z; as in (2.9)). For an arbitrary inhomogeneous and absorbing
layer between the nonabsorbing media 1 and 2, we showed in Sect. 2.1 that the
reciprocity relation q2t12 ¼ q1t21 holds. Thus the transmittances for propagation in
either direction through an absorbing layer are equal:

T12 ¼ q2
q1

t12j j2¼ q1
q2

t21j j ¼ T21: ð10:35Þ

The corresponding result for reflectivities, R12 ¼ R21, holds only in the absence of
absorption (Sect. 2.1, (10.18)).

The result (10.34) may be written as 1� R ¼ T . For an absorbing layer between
nonabsorbing media, the ratio ð1� RÞ=T is greater than unity, since the conser-
vation law 1 ¼ Rþ T is replaced by 1 ¼ Rþ T þA, where A represents absorption.
Abelès (1950) has shown that if an arbitrary nonabsorbing layer is inserted in the
front of the absorbing layer, causing the reflectance to change to R0 and the
transmittance to T 0, the ratio of 1� R to T is unaltered:

1� R
T
¼ 1� R0

T 0
: ð10:36Þ

This result is proved by matrix methods in Sect. 12.5.
The general formulae for rs; ts; rp and tp given in Sect. 2.2 remain true in the

presence of absorption, with the solutions F;G and C;D now complex. Thus it
remains true that rs ! �1 and rp ! 1 at grazing incidence. Since rp ¼ rs at normal
incidence, it follows that the trajectory of rp=rs still starts at þ 1 and ends at �1 in
the complex plane, and consequently there always exists a principal angle (ellip-
sometric Brewster angle) where Reðrp=rsÞ ¼ 0. In general there can be an odd
number of such angles, as noted in Sect. 2.3.
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10.3 Dielectric Layer on an Absorbing Substrate

The reflection from a homogeneous dielectric layer on a transparent substrate was
discussed in Sect. 2.4. When the substrate is absorbing (typically it is metallic), the
formulae for the reflection amplitudes derived in Sect. 2.4 remain valid, with q2 ¼
qr þ iqi and Q2 ¼ Qr þ iQi: The fact that q2 and Q2 are complex changes the
reflectivity properties markedly. Of particular interest is the design of reflection
polarizers, in which the reflectance of one of the components of polarization is
extinguished by interference effects, while that of the other is not. See, for example,
Ruiz-Urbieta and Sparrow (1972), Bennett and Bennett (1978), and Azzam (1985).

Consider a non-absorbing homogeneous film, of thickness Dz, located between
z1 and z1 þDz. The light is incident at angle h1 from medium l, of dielectric
constant e1. The film has dielectric constant e, and the refracted ray within it makes
an angle h to the normal. Snell’s Law (the invariance of K2) gives
e1 sin2 h1 ¼ e sin2 h. The substrate has dielectric constant e2 ¼ er þ iei. The normal
components of the wavevector in the three media are q1; q, and q2 ¼ qr þ iqi,
where the real and imaginary parts of q2 are given by (10.11) and (10.12). The
s wave reflection amplitude for this system is given by (2.58):

rs ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; ð10:37Þ

where

r ¼ q1 � q
q1 þ q

; r0 ¼ q� q2
qþ q2

; ð10:38Þ

are the reflection amplitudes (without phase factors associated with location) for the
ambient-film and film-substrate interfaces. From (10.37), rs will be zero when
r0 ¼ �re�2iqDz; on equating the real and imaginary part we find

q2r þ q2i � q2

qþ qrð Þ2 þ q2i
¼ r cos 2qDz;

�2qqi
qþ qrð Þ2 þ q2i

¼ r sin 2qDz ð10:39Þ

The angle of incidence at which zero reflection occurs (and the corresponding
wavevector components to be inserted into (10.39) to determine the appropriate
values of Dz) is found from r0j j2¼ r2, which leads to

q2 � q1qr
� �

qr � q1ð Þ ¼ q1q
2
i : ð10:40Þ

This equation reduces to a quadratic in cos2h1 (the coefficients are given in
Sect. 10.9), or may solved numerically. For metallic substrates the solution lies near
grazing incidence; for example, for a layer of Al2O3 of refractive index 1:6 on
aluminium (with the optical parameters used in Figs. 10.1 and 10.2), zero reflection
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for the s wave occurs at 87.95°. Since the reflectivity is always unity at grazing
incidence, its variation with angle of incidence is necessarily rapid between the
polarizing angle and 90°.

Kitajima et al. (1984) give numerical and experimental examples of the reflec-
tivity near the extinction point as a function of film thickness. The dependence is
strong, so observation of the oblique incidence reflectance during film deposition is
a sensitive thickness monitor.

For the p wave the reflection amplitude is given by (2.70):

�rp ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; ð10:41Þ

where now

r ¼ Q1 � Q
Q1 þQ

; r0 ¼ Q� Q2

QþQ2
Q1 ¼ q1

e1
; Q ¼ q

e
; Q2 ¼ q2

e2

	 

: ð10:42Þ

The real and imaginary parts of Q2 are given by (10.21). The condition for zero
p reflectivity is r0 ¼ �re�2iqDz, which is equivalent to the equations derived for the
s wave with Q1;Q;Q2 replacing q1; q; q2 except in the oscillatory functions of
2qDz. The equation analogous to (10.40),

Q2 � Q1Qr
� �

Qr � Q1ð Þ ¼ Q1Q
2
i ; ð10:43Þ

reduces to a sextic in C ¼ cos2h1, and again has a solution close to grazing inci-
dence: for the Al2O3 on Al case, extinction of the p wave occurs at θ1 ≈ 88.68°.
Azzam (1985) has used the fact that zero reflection occurs near 90° to obtain
approximate but explicit solutions of (10.40) and (10.43). If one keeps just the
constant and linear terms in the quadratic and sextic for cos2h1, the accuracy in the
examples just quoted is about 2 % in the glancing angle.

10.4 Absorbing Film on a Non-absorbing Substrate

The derivation of the reflection and transmission amplitudes for a homogeneous
layer between two homogeneous media given in Sect. 2.4 remains valid when the
layer, the substrate, or both, are absorbing. Here we examine the case when the layer
is absorbing, and the substrate is not. An example is a metallic film on glass.
The s wave results may be obtained from (2.52) and (2.53) or from (2.58) and (2.59).
The latter are more convenient when e (the dielectric constant of the layer) is
complex. We set e ¼ er þ iei; q2 ¼ qr þ iqið Þ2¼ ex2=c2 � K2, to obtain
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cqr
x

� �2
¼ 1

2
er � e1 sin2 h1 þ ðer � e1 sin2 h1Þ2 þ e2i

h i1
2

� �
; ð10:44Þ

cqi
x
¼ ei=2

cqr=x
: ð10:45Þ

(These formulae are the same as (10.11) and (10.12), but here er; ei and qr; qi refer
to a film rather than to a bulk medium.) The reflection amplitude is given formally
by (10.37) and (10.38), with q ¼ qr þ iqi now complex. To simplify the analysis
we write

r ¼ qeid; r0e2iqDz ¼ q0eid
0
; ð10:46Þ

with q0 including the exponential decay factor e�2qiDz, and d0 the 2qrDz phase
increment. Then rs takes the simple form

rs ¼ e2iq1z1
qeid þ q0eid

0

1þ qq0eiðdþ d0Þ ; ð10:47Þ

and gives reflectivity

rsj j2¼ q2 þ 2qq0cos d� d0ð Þ þ q0ð Þ2
1þ 2qq0 cos dþ d0ð Þ þ qq0ð Þ2 : ð10:48Þ

The transmission amplitude is found from (2.59):

ts ¼ eiðq1z1 �q2z2Þ
ð1þ qeidÞðeiqDz þ e�iqDzq0eid

0 Þ
1þ qq0eiðdþ d0Þ ð10:49Þ

We set f ¼ e�qiDz;/ ¼ qrDz so

eiqDz ¼ e�qiDzeiqrDz ¼ f ei/; ð10:50Þ

and obtain

tsj j2¼ ð1þ 2q cos dþ q2Þðf 2 þ 2q0cos 2/� dð Þþ q0=fð Þ2Þ
1þ 2qq0 cos dþ d0ð Þ þ qq0ð Þ2 : ð10:51Þ

When the film is “thick”, by which we mean here that the absorption within it is large,
with f ¼ e�qiDz � 1, the reflection properties reduce to those of Sect. 10.1 for waves
incident on a semi-infinite absorbing medium. The transmitted flux is then propor-
tional to e�2qiz. In such a film the effect of interference of multiply reflected light (see
Fig. 2.5) is negligible because of the decrease in the amplitude due to absorption.
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In the absence of absorption the above formulae reduce to those of Sect. 2.4,
with rsj j2 and tsj j2 periodic functions of Δz of period p=q ¼ k=2, k being the
wavelength within the film associated with motion in the z direction (perpendicular
to the surface). An example was shown in Fig. 2.6. Absorption damps the peri-
odicity, and strong absorption removes the oscillations altogether.

The p wave formulae may be obtained from (2.70) and (2.71), with q and Q now
complex and given by (10.44, 10.45) and (10.21). The results are completely
analogous to the s wave case, with the exception of the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðe2=e1Þ
p

factor multiplying
tp in (2.71).

Figure 10.3 shows the normal incidence reflectances and transmittances for films
of Al and Si on glass. For both materials the transmittance tends to zero as the film
thickness increases, and the reflectance tends to q2 ¼ ½ q1 � qrð Þ2 þ q2i �=
½ q1 þ qrð Þ2 þ q2i �, with respective values of about 0:91 Alð Þ and 0:36ðSiÞ. The
approach to the thick film limit is rapid and monotonic for Al, which has a large
imaginary part of the refractive index. With its small imaginary part of refractive
index, the Si reflectance and transmittance oscillate (because of interference of
forward and backward propagating waves within the film) until the exponential
decay factor e�2qiDz dominates. For the examples shown, the limiting absorbance
values A ¼ 1� R� T ! 1� R! 1� q2 are about 0:09ðAlÞ and 0:64ðSiÞ. For
thick films the more weakly absorbing material absorbs more energy, because more
light penetrates into the film, to be absorbed at depth.

Fig. 10.3 Reflectance R ¼ rj j2 and transmittance T ¼ q2=q1ð Þ tj j2 for light of wavelength 633 nm
incident normally on films of Siðn ¼ 4:0þ 0:12iÞ and vapour-deposited Alðn ¼ 1:212þ 6:924iÞ
on glass ðn ¼ 1:5). At normal incidence qi ¼ nix=c; for large qiDz the transmitted intensity varies
as e�2qiDz. When Dz ¼ c=x ¼ k0=2p, this factor is approximately 10�6 for Al; the thickness is
then about 0:1lm
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10.5 Thin Inhomogeneous Absorbing Films

So far we have considered homogeneous media, and homogeneous layers of
arbitrary thickness. We now specialize to thin films or interfaces (“thin” now
meaning that the film thickness times x=c is small), which however may have
arbitrary depth dependence in the real and imaginary parts of the dielectric function,
erðzÞ and eiðzÞ.

The presence of absorption within the interface and/or substrate has major effects
on the reflection and ellipsometric properties. We saw in Chap. 3 that for nonab-
sorbing media the reflectivities are unchanged to first order in the interface
thickness/wavelength expansion: the interfacial profile characteristics appear only
in the second order. For absorbing media, the wavenumber components q and
Q ¼ q=e are complex. The s and p reflection amplitudes to first order in the
interface thickness are given by (3.23) and (3.44):

rs ¼ rs0 þ 2iq1x2=c2

q1 þ q2ð Þ2 k1 þ 	 	 	 ; ð10:52Þ

rp ¼ rp0 � 2iQ1

Q1 þQ2ð Þ2
K2K1

e1e2
� Q2

2k1

� �
þ 	 	 	 : ð10:53Þ

The integrals k1 and K1 are given by

k1 ¼
Z1
�1

dz e� e0ð Þ; K1 ¼ e1e2

Z1
�1

dz
1
e0
� 1

e

	 

; ð10:54Þ

where the step function e0ðzÞ, which takes the values e1 for z\0 and e2 for z[ 0,
may now be complex, since e2 may be complex.

We will consider in detail the non-absorbing substrate case (e2 real). The inte-
grals k1 and K1 are still complex, since the interface is absorbing, with complex
eðzÞ. The s and p reflectivities thus contain first order correction terms proportional
to the imaginary parts of k1 and K1:

Rs ¼ Rs0 � 4q1 q1 � q2ð Þx2=c2

q1 þ q2ð Þ3 Im k1 þ 	 	 	 ; ð10:55Þ

Rp ¼ Rp0 � 4Q1 Q1 � Q2ð Þ
Q1 þQ2ð Þ3

K2

e1e2
ImK1 � Q2

2Im k1

� �
þ 	 	 	 ð10:56Þ

(these formulae and the following discussion apply to the nonabsorbing substrate
case only). The step function e0 is real when e2 is real, so
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Im k1 ¼
Z1
�1

dz ei zð Þ; 1
e1e2

ImK1 ¼
Z1
�1

dz
ei

e2r þ e2i
: ð10:57Þ

The reflectivity corrections are proportional to integrals over the imaginary part of e
through the absorbing region, as may be expected. At normal incidence both
(10.55) and (10.56) reduce to

Rn ¼ Rn0 � 4n1 n1 � n2ð Þ
n1 þ n2ð Þ3

x
c
Im k1 þ 	 	 	 ; ð10:58Þ

where n1 ¼ e1=21 and n2 ¼ e1=22 are the real refractive indices of the media bounding
the inhomogeneous region.

For passive media the absorption term Im k1 is non-negative, and so (to first
order in the film thickness) absorption in the film increases the system reflectivity at
normal incidence if n1\n2, and decreases it if n1 [ n2. This statement remains true
at all angles of incidence for the s wave, but not for the p wave, for which the
correction term in (10.56) changes sign at the Brewster angle hB ¼ arctanðn2=n1Þ
(at which Q1 ¼ Q2), and also when

sin2 h1 ¼ e1
e2
þ ImK1

Im k1


 ��1
:

At these two angles for the p wave there is no contribution to the reflectivity in first
order in the film thickness. The first order term is also absent for absorbing films
between like media (e1 ¼ e2), for both polarizations and at all angles of incidence.

In all cases there is however a first order effect in the transmission: for the s wave
we have from (2.15) that

ts ¼ ts0 þ 2iq1x2=c2k1
q1 þ q2ð Þ2 þ 	 	 	 ; ð10:59Þ

which gives the transmittance

Ts ¼ q2
q1

tsj j2¼ 4q1q2
q1 þ q2ð Þ2 1� 2x2=c2Im k1

q1 þ q2
þ 	 	 	

� �
: ð10:60Þ

The p wave result is a little more complicated. To obtain an identity similar to (2.
15) we start with two p wave equations, with dielectric functions e and ~e, and
incident from media 1 and 2, respectively:

dC12

dz
þ x2

c2
� K2

e

	 

B12 ¼ 0; eiq1z � r12eiq1z  B12 ! s12eiq2z; ð10:61Þ
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d~C21

dz
þ x2

c2
� K2

~e

	 

~B21 ¼ 0; ~s21e

�iq1z  ~B21 ! e�iq2z � ~r21e
iq2z: ð10:62Þ

Here C stands for e�1dB=dz, s12 for ðe2=e1Þ1=2t12. On multiplying (10.61) by ~B21

and (10.62) by B12, subtracting, and integrating from �1 to þ1, we get the
comparison identity

2i Q1~s21 � Q2s12ð Þ ¼
Z1
�1

dz K2 1
~e
� 1

e

	 

B12~B21 þ e� ~eð ÞC12~C21

� �
: ð10:63Þ

This holds for any pair of profiles e and ~e (with the same limiting values e1 and e2),
and thus also for ~e ¼ e, when the right-hand side is zero. Thus Q1s21 ¼ Q2s12
(equivalent to q1t21 ¼ q2t12, (2.14)), and (10.63) may be rewritten as

s12 ¼ ~s12 � 1
2iQ2

Z1
�1

dz K2 1
~e
� 1

e

	 

B12~B21 þ e� ~eð ÞC12 ~C21

� �
: ð10:64Þ

We now set ~e ¼ e0, the step function profile. To lowest order in the film thickness, it
suffices to replace B and C by the values taken by B0 and C0 at the origin:

B12 ! 2Q1

Q1 þQ2
; ~B21 ! 2Q2

Q1 þQ2
; C12 ! 2iQ1Q2

Q1 þQ2
; ~C21 ! � 2iQ1Q2

Q1 þQ2
:

ð10:65Þ

Thus

s ¼ s0 þ 2iQ1

Q1 þQ2ð Þ2
K2

e1e2
K1 þQ1Q2k1


 �
þ 	 	 	 : ð10:66Þ

The corresponding p wave transmittance is, on using s0 ¼ 2Q1=ðQ1 þQ2Þ;

Tp ¼ q2
q1

tp
�� ��2¼ Q2

Q1
sj j2

¼ 4Q1Q2

Q1 þQ2ð Þ2 1� 2
Q1 þQ2

K2

e1e2
ImK1 þQ1Q2Im k1


 �
þ 	 	 	

� �
: ð10:67Þ

The imaginary parts of k1 and K1 are both positive, so (10.60) and (10.67) show
that, to first order in the film thickness, the transmission through a film is always
decreased by absorption within the film (in contrast to the reflection, which we saw
could be either decreased or increased by absorption). At normal incidence both
(10.60) and (10.67) reduce to
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Tn ¼ 4n1n2
n1 þ n2ð Þ2 1� 2

n1 þ n2

x
c
Im k1 þ 	 	 	

� �
: ð10:68Þ

The conservation law Rþ T ¼ 1 for non-dissipative media can be generalized to
Rþ T þA ¼ 1, where A represents absorption within the system, and is nonnega-
tive for passive media. From (10.55), (10.56), (10.60) and (10.67) we find the
absorptance for the two polarizations:

As ¼ 4q1
q1 þ q2ð Þ2

x2

c2
Im k1 þ 	 	 	 ; ð10:69Þ

Ap ¼ 4Q1

Q1 þQ2ð Þ2
K2

e1e2
ImK1 þQ2

2Im k1

� �
þ 	 	 	 : ð10:70Þ

We now turn to the ellipsometric characterization of thin absorbing films. The
derivation given in Sect. 3.4 remains valid for complex e. To first order in the film
thickness we have

rs0
rp
rs

	 

¼ rp0 � 2iQ1K2=e1e2

Q1 þQ2ð Þ2 I1 þ 	 	 	 ; ð10:71Þ

where the integral invariant I1 ¼ K1 � k1 is given by

I1 ¼
Z1
�1

dz
ðe� e1Þðe2 � eÞ

e
¼
Z1
�1

dz e1 þ e2 � e1e2
e
� e

� �
: ð10:72Þ

We again consider the simplest case where only the film is absorbing, with e1 and e2
real. Then, with eðzÞ ¼ erðzÞþ ieiðzÞ,

I1 ¼
Z1
�1

dz e1 þ e2 � e1e2er
e2r þ e2i

� er

	 

þ i

Z1
�1

dz
e1e2

e2r þ e2i
� 1

	 

ei: ð10:73Þ

Since er has the limiting values e1 and e2, and ei is zero outside the absorbing
region, both integrands go to zero at the end-points. For non-absorbing films the
principal angle hP (the ellipsometric Brewster angle) at which Reðrp=rsÞ ¼ 0, dif-
fers in second order in the film thickness from hB ¼ arctan

pðe2=e1Þ (determined by
Q1 ¼ Q2), as we saw in Sects. 3.4 and 9.6. When the film is absorbing there is a
first order correction: from (10.71) we find

Dh ¼ hP � hB ¼ x=cð ÞIm I1

e1 þ e2ð Þ1=2 e1
e2

� �1=2
e1
e2
� e2

e1

� � þ 	 	 	 : ð10:74Þ
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This difference between the principal and the Brewster angles is proportional to
ImK1 – Im k1, and may be large even for thin films if e1 
 e2.

The case e1 ¼ e2 (absorbing film between optically identical media) requires
special consideration, since then both rs0 and rp0 are zero. The leading term in the
ellipsometric ratio now depends on the ratio of K1 to k1: from (10.52) and (10.53),

rp
rs
¼ rp1

rs1
þ 	 	 	 ¼ cos2 h0 � K1

k1
sin2 h0 þ 	 	 	 : ð10:75Þ

where h0 is the common angle of incidence and transmission. The zero-thickness
Brewster angle is hB ¼ p=4, while the principal angle at which Reðrp=rsÞ ¼ 0 is
given by

cot2 hP ¼ Re
K1

k1

	 

þ 	 	 	 ¼ Krkr þKiki

k2r þ k2i
þ 	 	 	 : ð10:76Þ

Here K1 ¼ Kr þ iKi and k1 ¼ kr þ iki, and the real and imaginary parts may be
extracted from (10.54), with e1 ¼ e2 ¼ e0. This differs in second order in ei from the
angle at which a non-absorbing film has zero reflection of the p wave, given by (3.
59).

10.6 Attenuated Total Reflection, Surface Waves

When light is incident from a dielectric of refractive index n1 onto another dielectric
of refractive index n2\n1 (for example from glass to air) there will be total
reflection when h1 [ hc ¼ arcsinðn2=n1Þ. This holds for both polarizations, and
irrespective of whether the transition between the dielectrics is sharp or gradual,
provided there is no absorption within the interface. When an absorbing layer
(typically a metal film) is deposited between the two dielectrics, the transmission is

still zero (since q2 ¼ e2x2=c2 � K2ð Þ1=2 is imaginary for h1 [ hc) but the p wave
reflectance can be very much less than total. A sharp resonance in the absorption
can appear, and this is the basis of an experimental technique for the determination
of the optical constants of metal and semiconductor films. The technique is due to
Otto (1968) and Kretschmann and Raether (1968). Otto originally referred to
“frustrated total reflection”; it is now called attenuated total reflection. Two basic
configurations are illustrated in Fig. 10.4.

We will consider the two configurations of Fig. 10.4 in this chapter. The sym-
metric high|low|complex|low|high configuration will be treated in Sect. 12.6, since
it is more easily treated by matrix methods.

For the dielectric|absorbing layer|dielectric case (upper diagram in Fig. 10.4),
we can use the results of Sect. 10.4, taking account of the fact that q2 and Q2

become imaginary for h1 [ hc ¼ arcsinðn2=n1Þ. The s and p reflectivities have the
form (10.48),
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Rs;Rp ¼ q2 þ 2qq0 cos d� d0ð Þ þ q0ð Þ2
1þ 2qq0 cos dþ d0ð Þ þ qq0ð Þ2 ; ð10:77Þ

where ρ, δ and q0, d0 are defined for the two polarizations by

qse
ids ¼ q1 � q

q1 þ q
; q0se

id0s ¼ q� q2
qþ q2

e2iqDz; ð10:78Þ

Fig. 10.4 Two configurations for attenuated total reflection. Prisms are often used instead of the
half-cylinders illustrated. The shaded material is a conductor, with n ¼ nr þ ini. The medium of
incidence has the higher index: n1 [ n2
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qpe
idp ¼ Q1 � Q

Q1 þQ
; q0pe

id0p ¼ Q� Q2

QþQ2
e2iqDz: ð10:79Þ

The wavenumber normal components q and Q are complex, with real and imagi-
nary parts given as before by (10.44, 10.45) and (10.21). We have

q2s ¼
q1 � qrð Þ2 þ q2i
q1 þ qrð Þ2 þ q2i

; q2p ¼
Q1 � Qrð Þ2 þ Q2

i

Q1 þ Qrð Þ2 þ Q2
i

: ð10:80Þ

We interpret qs and qp as the positive square roots of these expressions, and define
atnðy; xÞ as the arctangent of y=x placed in the correct quadrant according to the
signs of x and y. The corresponding phases are then

ds ¼ atn �2q1qi; q21 � q2r � q2i
� �

;

dp ¼ atn �2Q1Qi; Q
2
1 � Q2

r � Q2
i

� �
: ð10:81Þ

The primed variables take different forms depending on whether h1 is less or greater
than hc. For h1\hc, we find

q0s ¼ e�2qiDz
qr � q2ð Þ2 þ q2i
qr þ q2ð Þ2 þ q2i

( )1=2

; q0p ¼ e�2qiDz
Qr � Q2ð Þ2 þQ2

i

Qr þQ2ð Þ2 þQ2
i

( )1=2

: ð10:82Þ

The positive square roots are again understood. The corresponding phases are

d0s ¼ 2qrDzþ atn 2qiq2; q2r þ q2i � q22
� �

;

d0p ¼ 2qrDzþ atn 2QiQ2; Q
2
r þQ2

i � Q2
2

� �
: ð10:83Þ

For h1 [ hc we set q2 ¼ ijq2j and Q2 ¼ i Q2j j. Then

q0s ¼ e�2qiDz
q2r þ qi � q2j jð Þ2
q2r þ qi þ q2j jð Þ2

( )1=2

; q0p ¼ e�2qiDz
Q2

r þ Qi � Q2j jð Þ2
Q2

r þ Qi þ Q2j jð Þ2
( )1=2

;

ð10:84Þ

d0s ¼ 2qrDzþ atn �2qr q2j j; q2r þ q2i � q2j j2
� �

;

d0p ¼ 2qrDzþ atn �2Qr Q2j j; Q2
r þQ2

i � Q2j j2
� �

: ð10:85Þ

Figure 10.5 shows the s and p reflectivities for a high refractive index glass|silver
film|lithium fluoride system at k0 ¼ 546 nm. The refractive indices are n1 ¼
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1:9018; n ¼ 0:055þ 3:28i; n2 ¼ 1:392 (these correspond to those used in Fig. 13b
of Otto 1976). The values of ðx=cÞDz for the silver film thicknesses of 35 and
55 nm are 0:403 and 0:633.

An estimate of the location of the minimum in the p reflectance can be obtained
from the thin film formula (10.53). For h1 [ hc we have Q2 ¼ i Q2j j, and (10.53)
gives

Rp ¼ 1� 4Q1

Q2
1 þ Q2j j2

K2

e1e2
ImK1 þ Q2j j2Im k1


 �
þ 	 	 	 : ð10:86Þ

For a homogeneous metallic film of thickness Dz this becomes (on using (10.57))

Rp ¼ 1� 4Q1

Q2
1 þ Q2j j2

K2

e2r þ e2i
þ Q2j j2

	 

eiDzþ 	 	 	 : ð10:87Þ

This has a minimum when

cK
x

	 
2

¼ e1 sin2 h1 ¼ 1
2

3m� uþ 3m� uð Þ2�4umþ 8e1 u� mð Þ
h i1=2� �

; ð10:88Þ

where

u ¼ e2r þ e2i
� �

e2
e2r þ e2i þ e22

; m ¼ e1e2
e1 þ e2

: ð10:89Þ

Fig. 10.5 Attenuated total reflection for the upper configuration in Fig. 10.4, for incidence from a
high refractive index glass onto a silver film, with a lithium fluoride substrate. The p reflectivity
shows a sharp minimum in the region where total reflection would occur in the absence of the
metal film of thickness Dz (the critical angle is hc 
 47�, indicated by the vertical line in the
Figure)
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For the parameters of Fig. 10.5 these expressions locate the minimum at about 59°.
The actual minima are at smaller angles: the 55 nm metal film (for which
ðx=cÞDz 
 0:633) has a reflectance minimum at about 54°. One reason for the lack
of precision in this estimate is that the thin film formulae contain no direct infor-
mation about the complex wavenumber component q ¼ qr þ iqi within the
absorber. For metals, er can be large and negative, and qi is then much larger than
qr, making the effect of the expð�2qiDzÞ factor in the reflection formulae very
strong. The same comments apply to (10.74), which is accurate for metallic films
only when these are unrealistically thin.

The ellipsometric quantity rp=rs shows remarkable behaviour in the vicinity of
strong attenuated total reflection. It is given by

rp
rs
¼ � qpe

idp þ q0pe
id0p

1þ qpq0pe
i dp þ d0pð Þ 	

1þ qsq
0
se

iðds þ d0sÞ

qseids þ q0seid
0
s

; ð10:90Þ

where the magnitudes and phases of the component amplitudes are given by
(10.78)–(10.85). For thick metal layers the trajectories rp=rs tend to those of
Fig. 10.2; for very thin metal films the trajectories approach those of Fig. 2.9. The
layers of intermediate thickness which show strongly attenuated total reflection
have a variety of trajectories between these two limiting cases. Two examples,
corresponding to those in Fig. 10.5, are shown in Fig. 10.6: note the very rapid
variation with angle near hc and in the vicinity of the reflection minimum. The
55 nm film gives an rp=rs trajectory which passes close to the origin, corresponding
to the very small Rp value shown in Fig. 10.5.

We mentioned in the discussion following (10.89) the reason why the thin film
formulae (10.85–10.89) for the location of the p reflectivity minimum might give
accurate results only for unrealistically thin metal films. Likewise (10.74) predicts a
small negative shift Dh ¼ hP � hB for the silver film case illustrated in Figs. 10.5
and 10.6. For vanishing thickness of silver hP ¼ hB 
 36°, while for thick silver
layers hP 
 65°, an increase of nearly 30°. This large increase is almost complete
when ðx=cÞDz 
 1, and swamps the small predicted decrease even for monolayers
of silver.

The phenomenon of attenuated total reflection is due to the generation of elec-
tromagnetic surface waves in situations where total reflection would occur in the
absence of the metal layer. Consider the simplest possible case of an idealized
conductor with negative dielectric function, for example, e ¼ 1� x2

p=x
2 with

x\xp, bounded by a dielectric with e2 [ 0. A surface wave solution for the p
polarization is possible: for an interface in the xy plane z ¼ 0, let

By z; x; tð Þ ¼ eiðKx�xtÞe qj jz ðz\ 0Þ
eiðKx�xtÞe� q2j jz z[ 0ð Þ:

�
ð10:91Þ

10.6 Attenuated Total Reflection, Surface Waves 253

http://dx.doi.org/10.1007/978-3-319-23627-8_2


This function satisfies (1.18) and its consequent boundary conditions, namely the
continuity of By and e�1@By=@z at z ¼ 0, provided

K2 � qj j2¼ e
x2

c2
; K2 � q2j j2¼ e2

x2

c2
;

qj j
e
¼ � q2j j

e2
ð10:92Þ

(note that a surface wave solution for s polarization is not possible, since this would
require qj j ¼ � q2j j). The first two equations may be regarded as the usual relation
between the tangential and normal components of the wave-number,
K2 þ q2 ¼ ex2=c2, except that q and q2 are imaginary and give exponential decay
away from the surface rather than propagation in the z direction. The last relation in

(10.92) can be satisfied if ej j[ e2, since qj j ¼ K2 þ ej jx2=c2ð Þ1=2 [
K2 � e2x2=c2ð Þ1=2¼ q2j j. On eliminating qj j and q2j j from (10.92) we find for the
wavevector component K (for propagation along the interface) the dispersion
relation

K2 ¼ ej je2
ej j � e2

x2

c2
: ð10:93Þ

Fig. 10.6 The ellipsometric ratio rp=rs in the complex plane, for the prism|metal layer|dielectric
configuration illustrated in the upper diagram of Fig. 10.4. The parameters used are those of
Fig. 10.5. The 35 nm silver film has a single principal angle hP 
 53:4�, while the 55 nm thick film
shows triple principal angles (hP 
 53.9°, 55.1°, 63.4°). (The possibility of multiple principal
angles was discussed in Sect. 2.3). As the thickness of silver is increased the indentation near 54°
diminishes, and eventually the trajectory becomes a simple arc in the upper half plane, and crosses
the Reðrp=rsÞ ¼ 0 axis at hP 
 65°
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The hypothetical electromagnetic surfacewave described above has no real normal
component of its wavevector and thus cannot be coupled into by an incident plane
wave. When incidence is from an optically denser medium, so as to produce total
reflection in the absence of the metal film, strong coupling is possible with p-polar-
ization for a special combination of angle of incidence and thickness of metal. The
modulus of the magnetic field is shownwithin the silver layer and the lithium fluoride
substrate inFig. 10.7. Inside theAg layer themagneticfield equalsCeiqz þDe�iqz,with
C ¼ 2Q1

QþQ1
1 þ e2iqDzp1p2
� ��1

;D ¼ e2iqDzp2C, where p1 ¼ Q1 �Q
Q1 þQ ; p2 ¼ Q�Q2

QþQ2
. The

waves decay exponentially inside LiF, since the angles of incidence exceed the critical
angle.

We see that near the angle for minimum reflectivity (here about 53.9°) the fields
peak at the interface between the metal and the second dielectric, as in the idealized
metal|dielectric case discussed above. As usual the fields decay exponentially into
the second dielectric, but at resonance increase (approximately exponentially) into
the metal, as opposed to the usual decay away from the illuminated surface.

The conditions for minimum reflection, and thus maximum absorption within the
metal film, can be seen from (10.77). For Rp to be minimum we need qp and q0p
approximately equal, and cosðdp � d0pÞ near �1. Since d0p contains the factor
expð�2qiDzÞ it would normally be much smaller than qp, especially as qi is large
for metals. But by varying the angle it is possible to make Qi þQ2 zero or very
small, Qi being usually negative for metals (note that h1 [ hc is needed here). Since
Qr is small, this makes the factor multiplying expð�2qiDzÞ in q0p large, and
q0p 
 qp. Both angle and metal layer thickness adjustment are involved in attaining

approximate equality of qp and q0p. The other condition, cos dp � d0p
� �


 �1,

Fig. 10.7 The modulus of the magnetic field B as a function of z, for the prism|silver|lithium
fluoride configuration, with the Ag layer being 55 nm thick. Note the sensitivity to angle of
incidence: in this case even a 1° shift is sufficient to decrease the peak amplitude by a factor of 2.
The parameters are as in Figs. 10.5 and 10.6, and the incident field has unit amplitude. The
boundary between silver and lithium fluoride is marked by the vertical line
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depends mainly on angle, since here the metal thickness enters as qrDz, and qr is
small.

These rough arguments can be made more precise. For example, we can ask
whether a certain combination of prism|metal|dielectric can give zero reflection
(total absorption) at some angle and thickness combination. This amounts to sat-

isfying qp ¼ q0p and cos dp � d0p
� �

¼ �1 simultaneously. On eliminating Dz

between these two relations, we find the condition

atnð�2Q1Qi;Q
2
1 � Q2

r � Q2
i Þ � atnð�2Qr Q2j j;Q2

r þQ2
i � Q2

2

�� ��Þ
� 1
2
qr
qi
ln

Q2
r þðQi � Q2j jÞ2

Q2
r þðQi þ Q2j jÞ2

	 ðQ1 � Qrj jÞ2 þQ2
i

ðQ1 � Qrj jÞ2 � Q2
i

( )
¼ 2mþ 1ð Þp ð10:94Þ

where m is a positive or negative integer, or zero. For the case illustrated in
Figs. 10.5, 10.6 and 10.7 we find that (10.94) is satisfied (with m ¼ 0) at
h0 
 53.9°, and gives the optimum thickness Dz ¼ 4qið Þ�1lnfg0 
 55:6 nm, where
fg0 denotes the contents of the braces in (10.94) evaluated at h0. For perfectly
attenuated total reflection the trajectory of rp=rs passes through the origin at h0. The
trajectory for the 55 nm thickness of silver shown in Fig. 10.6 passed close to the
origin, but this thickness does not quite give a perfect absorber at h0.

For vapour-deposited Al at 633 nm (refractive index 1:212þ 6:924i, as in
Fig. 10.3) between the same two dielectrics, (10.94) gives h0 
 49.5° (again with
m ¼ 0), and an optimum thickness of about 13 nm.

10.7 Attenuated Total Reflection: Second Example

We now turn to the lower configuration in Fig. 10.4, in which the prism is followed
by a low-index material (or an air gap) and then by a metallic substrate. In the
absence of the metal we would have exponential decay of the fields into the second
dielectric for h1 [ arcsinðn2=n1Þ, since q2 ¼ i q2j j is then imaginary. When the
metal is present, both exponential increase and decrease are possible, these going as
expð� q2j jzÞ. Attenuated total reflection occurs when the increase dominates, pro-
ducing large fields at the second dielectric|metal boundary, and thus large
absorption. The reflection amplitudes may be obtained as before. We have, for the
n1 n2j jnr þ ini configuration with boundaries at z ¼ z1 and at z1 þDz,

rs ¼ e2iq1z1
rþ r0e2iq2Dz

1þ rr0e2iq2Dz
; r ¼ q1 � q2

q1 þ q2
; r0 ¼ q2 � q

q2 þ q
; ð10:95Þ

where
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q21 ¼ e1x
2=c2 � K2 ¼ e1 x2=c2

� �
cos2 h1; q22 ¼ e2x

2=c2 � K2; q2 ¼ ex2=c2 � K2

ð10:96Þ

The real and imaginary parts of q are given by (10.11) and (10.12) or (10.44) and
(10.45). We again set r ¼ qeid and r0e2iq2Dz ¼ q0eid

0
; when q2 is imaginary q0

includes the exponential factor e�2 q2j jDz. The p wave reflection amplitude is

�rp ¼ e2iq1z1
rþ r0e2iq2Dz

1þ rr0e2iq2Dz
; ð10:97Þ

where now

r ¼ Q1 � Q2

Q1 þQ2
; r0 ¼ Q2 � Q

Q2 þQ
; ð10:98Þ

with Q1 ¼ q1=e1, Q2 ¼ q2=e2 and Q ¼ q=e has real and imaginary parts given by
(10.21). The amplitudes q; q0 and the phases d and d0 are defined as for the s wave.
The reflectivities then take the form (10.77). For h1\hc ¼ arcsinðn2=n1Þ we have

qs ¼
q1 � q2
q1 þ q2

; qp ¼
Q1 � Q2

Q1 þQ2

q0s ¼
q2 � qrð Þ2 þ q2i
q2 þ qrð Þ2 þ q2i

( )1=2

; d0s ¼ atn �2q2qi; q22 � q2r � q2i
� �þ 2q2Dz:

q0p ¼
Q2 � Qrð Þ2 þQ2

i

Q2 þQrð Þ2 þQ2
i

( )1=2

; d0p ¼ atn �2Q2Qi;Q
2
2 � Q2

r � Q2
i

� �þ 2q2Dz:

ð10:99Þ

(In the h1\hc case it is convenient to set dp ¼ 0 and allow qp to carry the change of
sign at the Brewster angle hB ¼ arctanðn2=n1Þ, where Q1 ¼ Q2.) For angle of
incidence greater than the critical angle, q2 ¼ i q2j j;Q2 ¼ i Q2j j; and

qs ¼ 1; ds ¼ atn �2q1 q2j j; q21 � q2j j2
� �

;

qp ¼ 1; dp ¼ atn �2Q1 Q2j j;Q2
1 � Q2j j2

� �
; ð10:100Þ

q0s ¼
q2r þ q2j j � qið Þ2
q2r þ q2j j þ qið Þ2

( )1=2

e�2 q2j jDz; d0s ¼ atn 2 q2j jqr; q2j j2�q2r � q2i
� �

;
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q0p ¼
Q2

r þ Q2j j � Qið Þ2
Q2

r þ Q2j j þQið Þ2
( )1=2

e�2 q2j jDz; d0p ¼ atn 2 Q2j jQr; Q2j j2�Q2
i � Q2

r

� �
:

The p wave reflectivity can be zero if qp ¼ q0p and cos dp � d0p
� �

¼ �1 are

satisfied simultaneously. The angle h0 at which this can happen is (for h1 [ hc)
found from

atn �2Q1 Q2j j;Q2
1 � Q2j j2

� �
� atn 2 Q2j jQr; Q2j j2�Q2

i � Q2
r

� �
¼ 2mþ 1ð Þp:

ð10:101Þ

The thickness of the second dielectric which gives perfectly attenuated total reflection
(that is, total absorption) is given by the following expression evaluated at h0:

Dz ¼ 1
4 q2j j ln

Q2
r þ Q2j j � Qið Þ2

Q2
r þ Q2j j þQið Þ2

( )
: ð10:102Þ

For the high refractive index prism|lithium fluoride|silver system at a wavelength
of 546 nm, with the refractive indices 1:9018; 1:392; 0:055þ 3:28i; (10.101) gives
h0 
 54° (with m ¼ �1) and (10.102) gives Dz 
 307 nm. There is also zero
reflection of the p wave near grazing incidence, with h0 
 89° (again m ¼ �1) and
Dz 
 39:3 nm: compare the discussion of reflection polarizers consisting of a
dielectric layer on a metal substrate in Sect. 10.3. The reflectivities are given by
(10.77) and rp=rs by (10.90). Figure 10.8 shows Rp for the above combination,

Fig. 10.8 The p reflectivity as a function of angle of incidence, for the lower configuration in
Fig. 10.4, shown for the two thicknesses of the second dielectric (LiF) which give total absorption
of the p wave at one angle. The thicknesses and angles are 307 nm; 54° and 39:3 nm; 89°
ðat k0 ¼ 546 nmÞ. The substrate is silver. The critical angle hc 
 47° is marked by the vertical line
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at the two optimum thicknesses of the second dielectric, which correspond to
ðx=cÞDz ¼ 3:53 and 0:452. Figure 10.9 shows the corresponding rp=rs curves.

There is wide variety in both the reflectance and the ellipsometric curves as the
thickness of the second dielectric varies. For thin layers of the dielectric the curves
tend to those of Sect. 10.1.

The phenomenon of attenuated total reflection has been treated here purely by
classical electrodynamics. It was seen to be an interference-attenuation effect,
linked to the excitation of electromagnetic surface waves. These are coupled into by
means of the exponential decay or growth in the metallic layer or the second
dielectric which is possible for h1 [ hc. In radio physics the electromagnetic surface
waves sometimes go by the names of Zenneck or Sommerfeld-Zenneck (Barlow
and Brown 1962), or ground waves (Budden 1985). In solid state physics the terms
surface polariton, surface plasmon, or sometimes surface polariton-plasmon or
phonon-polariton are used. There the phenomenon of attenuated total reflection has
many applications: for example the determination of the optical constants of metals
and semiconductors (Otto 1976), and the study of adsorbates (McIntyre 1976). The
literature on the solid state aspects of surface wave phenomena is very large; see for
example the collections of papers edited by Burstein and DeMartini (1974),
Seraphin (1976), Boardman (1982), and Agranovich and Mills (1982).

10.8 Reflection by a Diffuse Absorbing Interface:
The Tanh Profile

In Sect. 2.5 we considered the reflection properties of the hyperbolic tangent profile

Fig. 10.9 The ratio rp=rs is the complex plane, for the two dielectric thicknesses which give
perfectly attenuated reflection at one angle. The thicknesses are 39:3 and 307 nm; the
corresponding curves pass through the origin at about 89° and 54° respectively. The 307 nm
diagram shows the triple principal angle phenomenon, as in Fig. 10.6
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e zð Þ ¼ 1
2

e1 þ e2ð Þ � 1
2

e1 � e2ð Þ tanh z
2a
¼ e1 þ e2ez=a

1þ ez=a
: ð10:103Þ

The s wave reflectivity was shown to be

Rs ¼ sinh pa q1 � q2ð Þ
sinh pa q1 þ q2ð Þ

� �2

ð10:104Þ

for real q2, and unity for imaginary q2 ½q2 ¼ i q2j j for h1 [ hc ¼ arcsin e2=e1ð Þ1=2�.
Here we shall discuss reflection by the profile (10.103) when e2 is complex,
e2 ¼ er þ iei. The particular example we have in mind is reflection by an iono-
spheric layer in which the electron density at the lower ionospheric boundary
approximately takes the functional form (10.103). The electron gas dielectric
function (10.1) has the real and imaginary parts

er ¼ 1� x2
p

x2 þ 1=s2
; ei ¼

x2
p=xs

x2 þ 1=s2
ð10:105Þ

Since x2
p is proportional to the electron density, both er and ei take the form

(10.103), and so does eðzÞ with e2 ¼ er þ iei, if the variation of s through the
inhomogeneity can be neglected.

The theory leading to rs as given by (2.84) remains valid when e2 is complex,
with q2 being replaced by qr þ iqi. The reflection amplitude in the absorbing case is
thus given by (with y1 ¼ q1a as before and q2a ¼ yr þ iyi)

rs ¼ � C 2iy1ð ÞC yi � iðy1 þ yrÞð ÞC �yi � iðy1 � yrÞð Þ sinh p y1 � yr � iyið Þ
C �2iy1ð ÞC �yi þ iðy1 þ yrÞð ÞC yi þ iðy1 � yrÞð Þ sinh p y1 þ yr þ iyið Þ

ð10:106Þ

From (2.86) the ratio Cð2iy1Þ=Cð�2iy1Þ has modulus unity, and so

Rs ¼ rsj j2 ¼ G
sinh2 p y1 � yrð Þþ sin2 pyi
sinh2 p y1 þ yrð Þþ sin2 pyi

ð10:107Þ

where G is the modulus squared of the gamma function ratios in (10.106):

G ¼ C yi � i y1 þ yrð Þð ÞCð�yi � i y1 � yrð ÞÞ
C �yi þ i y1 þ yrð Þð ÞCðyi þ i y1 � yrð ÞÞ
����

����
2

: ð10:108Þ
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To evaluate G we consider the ratio Cð�zÞ=CðzÞ. From the infinite product rep-
resentation (2.85) we have

Cð�zÞ
CðzÞ ¼ �e

2cz
Y1
n¼1

nþ z
n� z

	 

e�2p=n ð10:109Þ

Thus, with z ¼ xþ iy,

Cð�zÞ
CðzÞ ¼ e4cx

Y1
n¼1

ðnþ xÞ2 þ y2

ðn� xÞ2 þ y2

 !2

e�4x=n ð10:110Þ

Both Cð�zÞ=CðzÞ ratios in G have the same real part of z, so the exponential factors
cancel and

G y1; yr; yið Þ ¼
Y1
n¼1

ðn� yiÞ2 þ y1 þ yrð Þ2
ðnþ yiÞ2 þ y1 þ yrð Þ2 	

ðnþ yiÞ2 þ y1 � yrð Þ2
ðn� yiÞ2 þ y1 � yrð Þ2 ð10:111Þ

Since q1, qr and qi are all non negative, G is always greater than unity in the
presence of absorption. G tends to 1 as ei ! 0, and also at grazing incidence where
q1 and thus y1 tend to zero.

Figure 10.10 shows the s wave reflectivity for a tanh profile with er ¼ 0:25 and
ei ¼ 0:001, corresponding roughly to a frequency a bit above (2=

ffiffiffi
3
p

larger than)
the maximum plasma frequency, with absorption typical of the ionospheric E layer.
In the absence of absorption there would be total reflection for angle of incidence
greater than arcsinð1=2Þ ¼ 30�; for any layer thickness. Electron collisions decrease
the reflectivity, the decrease being greater for greater thickness of the transition,
there being more penetration into the absorbing region.

Fig. 10.10 The s wave reflectivity as a function of the angle of incidence for the tanh profile with
fixed absorption and varying thickness a (e1 ¼ 1; er ¼ 0:25; ei ¼ 0:001; ðx=cÞa ¼ 1; 10 and 100)
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An interesting phenomenon appears in the reflection at a gradual transition to
negative er. In the absence of absorption both s and p waves would be totally
reflected. The turning point where q2 zð Þ ¼ 0 is given by eðzÞ ¼ e1 sin2 h1, and the
s wave shows exponential decay beyond this point. The p wave however has a
singularity at eðzÞ ¼ 0 arising from the e�1dB=dz term in the equation satisfied by
B, and this leads to a logarithmic singularity in B, and infinities in Ex and Ez.
Absorption removes the infinities, but the fields at the point where erðzÞ ¼ 0 can
still be large. This problem is discussed by Landau and Lifshitz (1960, Sect. 68) for
real e; the effect of absorption is considered by Ginzburg (1964, Sect. 20) and
Budden (1985, Sect. 15.6) who also give references to earlier work.

10.9 Zero Reflection from Dielectric Layer
on Absorbing Substrate

In Sect. 10.3 we mentioned that (10.40) can be reduced to a quadratic in the variable
C ¼ cos2h1, which we write as c0 þ c1Cþ c2C2 = 0. The coefficients of the
quadratic are

c0 ¼ �e2i e� e1ð Þ4

c1 ¼ 4e1 e� e1ð Þ2ðe1 � erÞ½ e� erð Þ2 þ e2i � ð10:112Þ

c2 ¼ 4e21 2eðe1 � er½ Þ � e21 þ e2r þ e2i �½ e� erð Þ2 þ e2i �

When C is small, as it is at glancing incidence, the solution is approximately
C ¼ �c0=c1. For the example quoted in the text, this gives the glancing angle at
which the s wave reflection is zero as 2:09�, instead of the exact 2:05�. When we
keep only the constant and linear terms in the p-wave sextic, the glancing angles for
zero reflection are 1:32� (approximate) and 1:34� (exact).
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Chapter 11
Inverse Problems

The direct problem in reflection is the calculation of the reflection amplitudes (and
thence the reflectivities and the ellipsometric ratio), given the characteristics of the
reflecting profile. Inverse or inversion problems consist in the estimation of the
profile characteristics, given some experimental reflection or transmission data (or
both). In general, the wider the range of the experimental data (in polarization,
angle, and frequency), the more can be said about the reflecting profile. But the
information is never complete, and if sparse, can be ambiguous. For example:
suppose we measure the s or p reflectivity from a homogeneous layer between two
other homogeneous media, all three refractive indices being known. What can be
said about the thickness of this layer? Only that it has one of an infinity of possible
values, since the reflectivity is periodic in the thickness (see (2.66) and Fig. 2.6).
One measurement does not guarantee the evaluation of one parameter, even if it is
the only unknown in the model.

There can also be measurements which give no profile information whatever,
serving only to verify experimental accuracy or to calibrate the apparatus. An
example is the reflectivity at grazing incidence, this being unity for either polar-
ization, for arbitrary profiles with or without absorption (Sect. 2.3). More surprising
is the fact that null reflectivity at any given angle of incidence, from an interface
between media of given dielectric constants e1 and e2, can be produced in a
non-denumerable infinity of ways. The prescription is to pick any function eðzÞ
which takes the values e1 at z ¼ �1 and e2 at z ¼ þ1, and form q2ðzÞ ¼
eðzÞx2=c2 � K2 (K has the usual meaning, being given by

ffiffiffiffi
e1
p ðx=cÞ sin h1]. Then

the profile

esðzÞ ¼ eðzÞþ c
x

� �2 q
00

2q
� 3
4

q
0

q

� �2
( )

ð11:1Þ

will give zero reflection for the s wave. This was noted by Kofink (1947); the result
follows from the fact that the Liouville-Green approximations to the s
wave-functions both satisfy (6.26), and that wþ1 tends to eiq1z as z! �1, thus
having zero component of the reflected wave (see Sect. 6.2). The analogous result
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for the p polarization is obtained from the equation satisfied by q�1=2b ei/b , /0b ¼ qb,
where qb is given by (6.88).

After these cautionary notes we will examine some inverse problems relating to
reflection, beginning with restricted and thus simple examples, and progressing to
more general results. References to related inverse problems in other fields are
given at the end of the chapter.

11.1 Reflection at a Sharp Boundary

The case of a sharp boundary between two homogeneous non-absorbing media is
straightforward: we have

Rs ¼ q1 � q2
q1þ q2

� �2

; Rp ¼ Q1 � Q2

Q1þQ2

� �2

; ð11:2Þ

and thus

q2
q1
¼ 1� R1=2

s

1� R1=2
s

;
Q2

Q1
¼ e1

e2

q2
q1
¼ 1� R1=2

p

1� R1=2
p

; ð11:3Þ

with the upper signs to be taken for q2 [ q1 and Q2 [Q1, respectively. From the
wavenumber ratios one can extract the dielectric constant ratio e2=e1 via
q21 ¼ e1ðx2=c2Þ � K2 ¼ ðx2=c2Þe1 cos2 h1, q22 ¼ e2ðx2=c2Þ � K2 ¼ ðx2=c2Þðe2 � e1
sin2 h1Þ. This gives, for example,

e2
e1
¼ sin2 h1þ cos2 h1

1� R1=2
s

1� R1=2
s

 !2

: ð11:4Þ

The ellipsometric ratio rp=rs moves on the real axis from þ 1 at normal incidence to

�1 at grazing incidence, passing through the origin at hB ¼ arctanðe2=e1Þ1=2, from
which the ratio of the refractive indices can be obtained.

When the second medium is absorbing, e2 ¼ er þ iei, the wavevector normal
components q2 and Q2 are also complex, and

Rs ¼ ðq1 � qrÞ2þ q2i
ðq1þ qrÞ2þ q2i

; Rp ¼ ðQ1 � QrÞ2þQ2
i

ðQ1þQrÞ2þQ2
i

; ð11:5Þ

with qr, qi, Qr, Qi being given by (10.11), (10.12) and (10.21). Explicit inversion of
(11.5), with the real and imaginary parts er and ei of the dielectric function
expressed in terms of Rs, Rp and the angle of incidence, is given in Lekner (1997).
As may be expected, no information is gained at normal incidence where Rs ¼ Rp,
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and at glancing incidence when both tend to unity. Mathematically, this manifests
itself as a zero/zero instability. For a sharp interface (with both media isotropic) it is
also true for all er and ei that R2

s ¼ Rp at 45� angle of incidence, as may be verified
from (11.2). This again leads to a zero/zero instability. Detailed error analysis
shows that measurement at quite large angles of incidence (between 60� and 80�Þ
minimises the error multipliers, but that even then the error multipliers are large for
both er and ei when the medium is strongly absorbing, for example for metals.
Potter (1969) has developed an inversion procedure based on the values of Rp=Rs

and h1 at the minimum of Rp=Rs, this angle of incidence being known as the
pseudo-Brewster angle.

A simple explicit inversion is possible for the real and imaginary parts of e2 in
terms of the ellipsometric ratio, variously written as (Vašiček 1960; Aspnes 1976)

rp
rs
¼ q ¼ tanw eiD; ð11:6Þ

(The phase difference D ¼ dp � ds is shown in Fig. 20.5 for a glass-air interface.)
The ellipsometric ratio is given by

q ¼ �Q1 � Q2

Q1þQ2
� q1þ q2
q1 � q2

¼ q1q2 � K2

q1q2þK2 ; ð11:7Þ

where we have used Q1 ¼ q1=e1, Q2 ¼ q2=e2 and

e2q
2
1 � e1q

2
2 ¼ ðe1 � e2ÞK2: ð11:8Þ

Thus

1þ q
1� q

¼ q1q2
K2 ;

1þ q
1� q

� �2

¼ e2=e1 � sin2 h1
sin2 h1 tan2 h1

; ð11:9Þ

and therefore

e2
e1
¼ sin2 h1þ sin2h1 tan2 h1

1þ q
1� q

� �2

: ð11:10Þ

This equation gives the real and imaginary parts of e2 in terms of the real and
imaginary parts of ð1þ qÞ2=ð1� qÞ2. If we write q ¼ qr þ iqi, then

er
e1
¼ sin2 h1þ sin2 h1 tan2 h1

ð1� q2r � q2i Þ2 � 4q2i

ð1� qrÞ2þ q2i
h i2 ; ð11:11Þ
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ei
e1
¼ sin2 h1þ tan2 h1

4ð1� q2r � q2i Þqi
ð1� qrÞ2þ q2i
h i2 : ð11:12Þ

In terms of the ellipsometric angles w and D, these formulae read

er
e1
¼ sin2 h1þ sin2 h1 tan2 h1

cos2 2w� sin2 2w sin2 D

ð1� sin 2w cosDÞ2 ; ð11:13Þ

ei
e1
¼ sin2 h1þ tan2 h1

sin 4w sinD

ð1� sin 2w cosDÞ2 : ð11:14Þ

The w;D angle representation is ambiguous without the specification of the range of
one of them; we take 0�w� p=2, in which case tanw ¼ qj j. From (11.6) and
(11.7) we have

qr ¼ tanw cosD ¼ q21ðq2r þ q2i Þ � K4

ðq1qr þK2Þ2þ q21q
2
i

; ð11:15Þ

qi ¼ tanw sinD ¼ 2q1qiK2

ðq1qr þK2Þ2þ q21q
2
i

: ð11:16Þ

We showed in Sect. 10.1 that rp=rs always lies within the upper semicircle of unit
radius (for a sharp boundary between a dielectric and an absorbing medium). Thus
w� p=4; the value p=4 is attained at normal incidence and at grazing incidence.
The angle D increases from 0 at normal incidence to p at grazing incidence.
According to Aspnes (1976), the attainable precision in w and D is about dw �
dD=2 � 1 millidegree. Figure 11.1 shows an example of the fractional errors Der=er
and Dei=ei in er and ei as a function of the angle at which measurement is carried
out, assuming the larger random scatter of up to 0:01� in w and 0:02� in D, at all
angles of incidence. The errors diverge at normal incidence, and also at glancing
incidence, since there the ratio q ¼ rp=rs always takes the values 1 and �1,
respectively. The accuracy in er and ei is best near the the principal angle hp, at
which qr ¼ 0. The principal angle for an absorber is determined by a cubic
equation, given in the Note at the end of this chapter. Only the region near hp is
shown in Fig. 11.1.

The above ellipsometric extraction of er and ei, carried out over a range of
frequencies, gives erðxÞ, eiðxÞ, or nrðxÞ and niðxÞ. Another method is to measure
the reflectivity at normal incidence (given in terms of nr and ni by (10.17)). This
determines the modulus rðxÞj j of the reflection amplitude r ¼ rj jeid. The phase
dðxÞ is found from a Kramers-Krönig relation between ln rj j and d (extrapolation of
measured reflectivity data is required), and finally nrðxÞ and niðxÞ are found from
r ¼ ðn1 � nr � iniÞ=ðn1þ nr þ iniÞ. Details of this procedure are given by Wooten
(1972, Chap. 6 and Appendix G).
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11.2 Homogeneous Film Between Like Media

An explicit inversion of reflection ellipsometric data for a homogeneous nonab-
sorbing film has been discussed in Sect. 9.8, and also the inversion of combined
reflection and transmission ellipsometric data. Where the media bounding the film
have the same dielectric constant the solution was given by Azzam (1983); the
general case is solved in Lekner (1994a). Both reflection and transmission ellip-
sometric coefficients are used. Here we shall consider a homogeneous film of
thickness Dz and dielectric constant er þ iei, embedded in a medium of dielectric
constant e0. From (2.58), (2.59) and (2.70), (2.71) we have

q ¼ rp
rs
¼ p

s
� 1� s2e2iqDz

1� p2e2iqDz
; ð11:17Þ

s ¼ tp
ts
¼ 1� p2

1� s2
� 1� s2e2iqDz

1� p2e2iqDz
; ð11:18Þ

where

s ¼ q0 � q
q0þ q

; �p ¼ Q0 � Q
Q0þQ

; ð11:19Þ

are the s and p reflection amplitudes at a step between media with dielectric con-
stants e0 and e, q0 and q being the corresponding real and complex normal com-
ponents of the wavevector. From (11.17) and (11.18) we see that the ratio of the

Fig. 11.1 Fractional errors Der=er (dark shading) and Dei=ei (light shading) in er and ei values
deduced from (11.13) and (11.14), on the assumption of uniformly distributed random errors of up
to 0:01� in w and 0:02� in D. The “true” values of w and D are calculated from (11.15) and (11.16),
using the bulk Al parameters at 633 nm, er ¼ �60:56, ei ¼ 24:86 (as in Figs. 10.1 and 10.2), for
which hp � 83�, indicated by the vertical line
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transmission and reflection ellipsometric ratios is independent of the thickness of
the layer:

s
q
¼ s

p
1� p2

1� s2
: ð11:20Þ

This equation is to be solved for e ¼ er þ iei. The identity (Azzam 1979)

p ¼ sðcos 2h� sÞ
1� s cos 2h

; ð11:21Þ

(which may be verified by solving (11.21) for cos 2h and using (11.19) and
q2 ¼ ðx=cÞ2ðe� e0 sin2 hÞ) serves to eliminate p from (11.20), which reduces to a
quadratic for s in terms of the measured h and s=q:

s2 � 2rsþ 1 ¼ 0; r ¼
cos 2h� s

2q

� �
1þ cos2 2hð Þ

1� s
q

� �
cos 2h

: ð11:22Þ

This has the solutions

s� ¼ r� ðr2 � 1Þ1=2; ð11:23Þ

of which one needs to select the root with sj j\1. That one and only one such root
exists can be seen by writing r ¼ cosh f: then s� ¼ e�f. In general, f is complex,
and one takes sþ or s� according as Re f\ 0 or Re f [ 0. (In the special case
where Re f ¼ 0 and r is equal to cosðIm fÞ, both roots would have unit modulus.
But for the absorbing media sj j2 cannot be unity except at grazing incidence, where
q0 ! 0.) Having obtained the complex value of s, the dielectric function may be
found from

e
e0
¼ sin2 hþ cos2 h

1� s
1þ s

� �2

: ð11:24Þ

This relation is obtained by squaring ð1� sÞ=ð1þ sÞ ¼ q=q0; compare (11.4).
((11.24), (11.20) and (11.21) are together equivalent to (9.55) in Sect. 9.8, in which
the inversion of q and s when n1 6¼ n2 is discussed.) It then remains to evaluate the
thickness Dz. Since s and p (from the identity (11.21)) are now known, e2iqDz may
be found from q or s as given by (11.17) or (11.18):

e2iqDz ¼ 1
sp
� p� qs
s� qp

; ð11:25Þ
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e2iqDz ¼ 1� p2 � sð1� s2Þ
s2ð1� p2Þ � sp2ð1� s2Þ : ð11:26Þ

If the right-hand side of either of these is written as e2iðaþ ibÞ, then

qrDz ¼ aþmp; qiDz ¼ b; ð11:27Þ

where m is zero or a positive or negative integer, and qr and qi have been found
from (10.11) and (10.12). Only one of (11.25) and (11.26) and only the second
relation in (11.27) need be used to obtain Dz; the others provide a check on the
accuracy. Azzam (1983) gives an example of the application of this technique to the
determination of the thickness and optical parameters of a thin gold foil.

11.3 Inversion of Transmission Ellipsometric Data
for a Homogeneous Nonabsorbing Layer

We wish to find the (real) dielectric constant e and the thickness Dz of a layer, from
the real and imaginary parts of the transmission ellipsometry ratio tp=ts. The full
solution, complete with analysis of the effect of measurement errors, is given in
Lekner (1994a). We shall just give the essence of the inversion method. From
Sect. 2.4 or directly from (9.46) of Sect. 9.8 we have

tp
ts
¼ n1ð1� p1Þð1� p2Þð1þ s1s2ZÞ

n2ð1þ s1Þð1þ s2Þð1þ p1p2ZÞ ; ð11:28Þ

where p1, p2, s1 and s2 are the Fresnel reflection amplitudes at the n1jn and njn2
interfaces, given in (9.47), and Z ¼ e2iqDz. The experimentally determined ratio
t ¼ ðn2=n1Þðtp=tsÞ ¼ xþ iy can be written as

t ¼ f
1þ SZ
1þPZ

; P ¼ p1p2; S ¼ s1s2; f ¼ ð1� p1Þð1� p2Þ
ð1þ s1Þð1þ s2Þ : ð11:29Þ

For nonabsorbing layers Z ¼ e2iqDz lies on the unit circle (we are excluding the
possibility of total external reflection, with imaginary qÞ. Since t ¼
f ð1þ SZÞ=ð1þPZÞ is linear in Z, we can solve for Z and eliminate it by using
ZZ	 ¼ 1. After some algebraic manipulation this reduces to a quadratic in q2, or
equivalently to a quadratic in e, because eðx=cÞ2 ¼ q2þK2.When this is solved there
are two roots, each of which in turn will give two values of Z and therefore of Dz:

expð2iqDzÞ ¼ Z ¼ f � t
tP� fS

: ð11:30Þ
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To distinguish the physical root from the nonphysical root would require some
knowledge about the likely values of e and Dz. This extra knowledge is not
essential, however: for measurements at two or more angles of incidence, the
physical roots will agree (to within experimental error), the nonphysical roots will
not. Figure 1 of Lekner (1994a) illustrates the behaviour of the physical and
nonphysical e and Dz, and of the effects of experimental errors. In the limit of thin

films, with qDz small compared to unity (qDz ¼ ð2pDz=kÞðn2 � n21 sin
2 h1Þ

1
2, where

k is the vacuum wavelength), transmission ellipsometry does not give e and Dz
separately, but only the integral invariant for the thin film,

I1 ¼ ðe1 � eÞðe� e2Þ
e

Dz: ð11:31Þ

This invariant is the same as enters into the first-order expression for the ellipso-
metric ratio rp=rs.

11.4 Inversion of Reflection Ellipsometric Data
for a Homogeneous Nonabsorbing Layer

Again we wish to find the real dielectric constant e and the layer thickness Dz, this
time from the real part and the absolute square of the ratio of the reflection
amplitudes,

q ¼ rp
rs
¼ p1þ p2Z

1þ p1p2Z
1þ s1s2Z
s1þ s2Z

: ð11:32Þ

It is shown in Lekner (1994b) that both qj j2 and ReðqÞ have the form (quadratic in
cos 2 qDzÞ/(quadratic in cos 2 qDzÞ. Thus when qj j2 and ReðqÞ are determined
experimentally, cos 2 qDz satisfies two quadratic equations. The condition that the
two quadratics share a common root implies a relation between the coefficients of
the two quadratics. After removal of common factors (which reduce the degree in
the unknown q by 21), one is left with a quintic in q2, or equivalently a quintic in e.
This factors to a quadratic and a cubic when e1 ¼ e2, previously discussed in
Lekner (1990). The quintic in e, which is at the same time a quartic plane curve in
x ¼ ReðqÞ and y ¼ ImðqÞ, may be conveniently expressed in terms of dimen-
sionless variables u, v and w, defined by

q2 ¼ q1q2u; K2 ¼ q1q2v; q2 ¼ q1w: ð11:33Þ

The variable u contains the unknown e; v and w depend on the angle of incidence
and on the e1 and e2 values. The equation, with r2 ¼ x2þ y2 ¼ qj j2, reads
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a r2 � ðqþ þ q�Þxþ qþ q�
� �

r2 � 2x2xþ x22
� �

þ 4v2ð1þ vwÞðu� wÞ4 uw� v2ð Þy2 ¼ 0
ð11:34Þ

All parameters in (11.34) are dimensionless; q� ¼ qðZ ¼ �1Þ, a and x2 (which
gives the location of an isolated point of the quartic) may be found in Lekner
(1994b). Once the dielectric constant e has been determined, the thickness of the
layer may also be extracted, except when Z ¼ expð2iqDzÞ is close to unity. Just as
in the previous section, only the invariant I1 of (11.31) may then be extracted.

11.5 Synthesis of a Profile from r as a Function
of Wavenumber

A general solution to the inverse reflection problem (or the inverse scattering
problem in quantum mechanics) has been found by Gelfand and Levitan (1951/
1955) and others. More references are given at the end of this chapter; here we shall
give only a brief description of the theory, discuss some results which follow from
it, and give an approximate but explicit solution which is simple enough to have
practical application.

The inversion procedure assumes the knowledge of the reflection amplitude as a
function of wavenumber (the latter ranging from zero to infinity) and in addition,
coefficients relating to any bound states that may exist. Since experiments generally
give rj j2, not r, and that over a finite range of wavenumbers, we prefer the term
synthesis to inversion in this case: a model reflection amplitude, complete with
phase, can be constructed to have some desired properties, such as high reflectance
in one wavenumber region and low reflectance in another region. The theory then
gives a procedure for synthesising the refractive index profile which will give the
desired reflectance. In the general theory, one constructs an integral equation from
the Fourier transform of the reflection amplitude (analytically continued to negative
wavenumbers). The solution of the integral equation then gives the refractive index
profile. In special cases an explicit solution can be found, for example when the
reflection amplitude is a rational function of the wavenumber (Kay 1960; Jordan
1980). Another special case is the construction of an infinite set of profiles which do
not reflect the s wave, at fixed frequency but for any angle of incidence (Kay and
Moses 1956). The simplest of these is the sech2 profile discussed in Sect. 4.3, for
certain special values of its parameters. We saw there that for profile

e zð Þ ¼ e0þDe sech2ðz=aÞ; ð11:35Þ

the s reflection amplitude was a function of two dimensionless parameters a ¼
Deðxa=cÞ2 and b ¼ q0a ¼ e1=20 ðxa=cÞ cos h, h being the angle of incidence. When
a
 � 1=4,
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Rs ¼
cos2 p

2 ð1þ 4aÞ1=2
h i

cos2 p
2 ð1þ 4aÞ1=2
h i

þ sinh2 pb
: ð11:36Þ

This is zero when a ¼ mðmþ 1Þ, m an integer, for any h, the angle of incidence
appearing only through b.

We now give an approximate solution of a synthesis problem, due to Hirsch
(1979). Only the essence of the method will be given, since we then show how a
more general result can be obtained in a simpler way. The problem is that of
constructing a refractive index profile nðzÞ ¼ ffiffiffiffiffiffiffiffi

eðzÞp
so as to give a desired

reflection amplitude rðk1Þ at normal incidence. Here the wave is incident from a
medium of unit refractive index, and transmitted into a medium of refractive index
n2. The respective wavenumbers are k1 ¼ x=c and k2 ¼ n2ðx=cÞ. The E field
satisfies

d2E
dz2
þ n2k21E ¼ 0; eik1zþ r e�ik1z  E ! t eik2z: ð11:37Þ

The geometric path increment dz is replaced by the optical path increment
dx ¼ ndz. Also E is replaced by the function w ¼ n1=2E. The resulting equation is

w00 þ k21 � UðxÞ� �
w ¼ 0; UðxÞ ¼ 1

2
n00

n
� 1
4

n0

n

� �2

: ð11:38Þ

(Throughout this section primes will denote differentiation with respect to x.) Now
E and w are proportional as z and x tend to �1; if further the refractive index is
taken to be equal to 1 for z � 0 and x is defined by

x ¼
Zz
0

df nðfÞ; ð11:39Þ

then x and z are equal for z� 0 and rðk1Þ is the reflection amplitude for wðxÞ as well
as for EðzÞ. (What we have just done is ensure that the phase of r is the same for
both.) From rðk1Þ and its analytic continuation to negative k1 via rð�k1Þ ¼ r	ðk1Þ,
we form the Fourier transform

FðxÞ ¼ 1
2p

Z1
�1

dk1rðk1Þe�ik1x: ð11:40Þ

The first two terms of UðxÞ in a series expansion formally equivalent to the
Gelfand-Levitan equation are (Moses 1956)
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Ua xð Þ ¼ �2 d
dx

F 2xð Þþ 4F2 2xð Þ: ð11:41Þ

The second relation in (11.38) may be written as

ðn1=2Þ00 ¼ n1=2U: ð11:42Þ

When U is approximated by Ua, this differential equation for n1=2ðxÞ may be
integrated; the solution incorporating the boundary condition n! 1 at �1 and
n! finite constant at þ1 is then

naðxÞ ¼ exp �2
Z2x
�1

dy FðyÞ
8<
:

9=
;: ð11:43Þ

We note that FðxÞ is real, and also that since r is the inverse Fourier transform of F,

rðk1Þ ¼
Z1
�1

dx FðxÞ eik1x; ð11:44Þ

the final value of the refractive index is approximately

nað1Þ ¼ exp �2rð0Þf g: ð11:45Þ

As an example of these relations, consider the application of the inverse of
(11.43),

Fð2xÞ � � 1
4
n0ðxÞ
nðxÞ : ð11:46Þ

We will use (11.46) to obtain the approximate reflection amplitude for the Rayleigh
profile studied in Sect. 2.5, for which n�1 is linear in z:

n�1ðxÞ � gðzÞ ¼ g1þðDg=DzÞz; 0 � z � Dz: ð11:47Þ

For this profile we have, in the interval 0 � z � Dz,

x ¼ Dz
Dg

ln g;
n0ðxÞ
nðxÞ ¼ �

Dg
Dz

; F 2xð Þ ¼ 1
4
Dg
Dz

; ð11:48Þ

and so from (11.44) the approximate reflection amplitude is
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raðk1Þ ¼ 1
2
ln
g2
g1

eik1Dx
sin k1Dx
k1Dx

; Dx ¼ Dz
Dg

ln
g2
g1

� �
: ð11:49Þ

This is precisely the Rayleigh or weak reflection approximation result obtained in
Sect. 5.8 for this profile (see (5.98) and Fig. 5.4).

11.6 Inversion of the Rayleigh Approximation

We will now show that this surprising accord is not accidental: the approximate
solution of the synthesis problem given above is identical to the result obtained by
inverting the Rayleigh approximation for the reflection amplitude. The latter was
given in Sect. 5.7; at normal incidence (5.85) and (5.86) reduce to

r � �
Z1
�1

d/
dn=d/
2n

e2i/; / ¼
Zz

df k fð Þ: ð11:50Þ

Thus the Rayleigh approximation gives the reflection amplitude at normal incidence
as the Fourier transform in the / variable of the logarithmic derivative of n1=2. To
keep common notation with the Hirsch inversion we set d/ ¼ kdz ¼ k1dx. Then
(11.50) reads

rðk1Þ � �
Z1
�1

dx
n
0

2n
e2ik1x; ð11:51Þ

and has the inverse

� n
0

2n
� 1

2p

Z1
�1

d k1 rðk1Þ e�2ik1x � Fð2xÞ; ð11:52Þ

nðxÞ � n1 exp �2
Z2x
�1

dy FðyÞ
8<
:

9=
;: ð11:53Þ

This equation is slightly more general than (11.50), in that n1 ¼ 1 has not been
assumed. Discussion of the validity of the Rayleigh approximation, and error
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bounds on the resulting reflection amplitudes, may be found in Sect. 5.7. In general
it is expected to break down when the reflection is strong.

Inversion of the Rayleigh approximation reflection amplitudes is possible for all
angles of incidence for both polarizations. In the s wave case we have, from (5.85)

d/ ¼ q1 dx or x ¼ q�11

Rz
df kðfÞ,

rsðq1Þ � �
Z1
�1

dx
q
0

2q
e2iq1x; ð11:54Þ

which has the Fourier inverse

� q
0

2q
� 1

2p

Z1
�1

dq1e�2iq1xrsðq1Þ � Fsð2xÞ: ð11:55Þ

Thus

qðxÞ � q1 exp �2
Z2x
�1

dy FsðyÞ
0
@

1
A; ð11:56Þ

or

eðxÞ
e1
� sin2 h1þ cos2 h1 exp �4

Z2x
�1

dy FsðyÞ
0
@

1
A ð11:57Þ

(note the formal similarity with (11.4) and (11.24)). The p wave (5.86) is inverted
using the same variable x:

rpðq1Þ �
Z1
�1

dx
Q
0

2Q
e2iq1x; ð11:58Þ

Q
0

2Q
� 1

2p

Z1
�1

dq1e2iq1x rpðq1Þ � Fpð2xÞ; ð11:59Þ

QðxÞ � Q1 exp 2
Z2x
�1

dy FpðyÞ
0
@

1
A: ð11:60Þ

Since Q ¼ q=e and ðcq=xÞ2 ¼ e� e1 sin2 h1, (11.60) gives a quadratic for eðxÞ. We
take the root which agrees with (11.57) at normal incidence:
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eðxÞ
e1
�
exp �4 R 2x

�1 dy FpðyÞ
� �

2 cos2 h1

� 1þ 1� sin2 2h1 exp 4
Z2x
�1

dy FpðyÞ
0
@

1
A

2
4

3
5
1=2

8><
>:

9>=
>;:

ð11:61Þ

A measure of the accuracy of this inversion may be obtained by calculating e2=e1
from (11.57) and (11.61), letting x tend to þ1, and using

Z1
�1

dx FsðxÞ ¼ rsð0Þ;
Z1
�1

dx FpðxÞ ¼ rpð0Þ: ð11:62Þ

The long wave limits of the Rayleigh approximations for rs and rp are given by (5.
87); when these are substituted in (11.57) and (11.61) the right-hand sides are equal
to e2=e1, at all angles. The true long wave limits, given by (5.88), do not give
agreement between the left and right hand sides. For example, at normal incidence
where rsð0Þ ¼ rpð0Þ ¼ ðn1 � n2Þ=ðn1þ n2Þ, (11.53), (11.57) and (11.61) both give

n2
n1
� exp 2

n2 � n1
n2þ n1

� �
; ð11:63Þ

which has an error of the third order in ðn2 � n1Þ=ðn2þ n1Þ.
The inversion formulae (11.57) and (11.61) give eðxÞ, not the required eðzÞ, and

thus need to be complemented by a functional relation between the physical coor-
dinate z and the “optical” coordinate x. This is obtained from the given reflection
amplitude rs via its Fourier transform Fs by integrating qdz ¼ q1dx using (11.56):

zðxÞ ¼
Zx
0

dx1 exp 2
Z2x1
�1

dx2 Fsðx2Þ
2
4

3
5: ð11:64Þ

11.7 Principal Angle of an Absorber

From (11.7) we find that the zero of qr ¼ Reðrp=rsÞ is given by

q21 q2r þ q2i
	 
 ¼ K4: ð11:65Þ

Since q2 ¼ qr þ iqið Þ2¼ er þ ieið Þ x=cð Þ2�K2, we have

q2r � q2i ¼ er x=cð Þ2�K2; 2qrqi ¼ ei x=cð Þ2: ð11:66Þ
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We square (11.65), and use an identity following from (11.66):

q2r þ q2i
	 
2¼ er x=cð Þ2�K2

h i2
þ e2i x=cð Þ4 ð11:67Þ

The result is a cubic equation for K2, or equivalently, a cubic for S ¼ sin2 hp:

e2r þ e2i � 2 e2r þ e2i þ e1er
	 


Sþ e2r þ e2i þ 4e1er þ e21
	 


S2 � 2e1 er þ e1ð ÞS3 ¼ 0:

ð11:68Þ

Equation (11.68) was obtained by Humphreys-Owen (1961), who also gives a cubic
equation for the angle at which Rp, given by (11.5), is minimum. This is

e2r þ e2i
	 
2�2 e2r þ e2i

	 
2
Sþ e2r þ e2i

	 

e2r þ e2i � 3e21
	 


S2þ 2e21 e2r þ e2i þ e1er
	 


S3 ¼ 0

ð11:69Þ

When ei is set to zero these cubic equations share a common root, which gives the
Brewster angle:

SB ¼ sin2 hB ¼ er
e1þ er

: ð11:70Þ
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Chapter 12
Matrix and Numerical Methods

The idea of representing an arbitrary stratification by a series of homogeneous
layers goes back at least to Rayleigh (1912). The problem of wave propagation
through the transition is solved by matching the wave amplitude and derivative at
the boundaries of the uniform layers, and letting the number of layers increase and
their thickness decrease. (In the case of finite number of homogeneous layers, such
as optical coatings, this limiting process is not required.) Rayleigh carried through
the necessary algebra without reference to matrices; Weinstein (1947), Herpin
(1947) and Abelès (1950, 1967) have shown how matrix algebra simplifies and
systematizes this approach. We will give three versions of the matrix method, of
which the last (given in Sect. 12.2) is the closest to that currently in use, but differs
from it in having all matrix elements real in the absence of absorption. This last
method is the one we use in the remainder of this chapter, and in the next.

12.1 Matrices Relating the Coefficients of Linearly
Independent Solutions

We consider the reflection problem for waves satisfying

d2w
dz2
þ q2w ¼ 0; eiqazþ r e�iqaz  w! t eiqbz: ð12:1Þ

(A change of notation from our usual q1, q2 designation of the limiting values of the
normal components of the wavevector is required here, since the subscripts
1; 2; . . .;N;Nþ 1 will be needed for quantities belonging to the N layers and Nþ 1
boundaries.) The function q2ðzÞ ¼ x2=c2ð Þ eðzÞ � ea sin2 ha

� �
is either given by or

approximated by a series of steps. Figure 12.1 shows the corresponding eðzÞ.
Let qn be the value of q in the interval ðzn; znþ 1Þ. The general solution of

d2w=dz2þ q2w ¼ 0 in this interval may be written as

© Springer International Publishing Switzerland 2016
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wn ¼ an eiqnzþ bn e
�iqnz: ð12:2Þ

In the interval ðzn�1; znÞ the solution is

wn�1 ¼ an�1 eiqn�1zþ bn�1 e
�iqn�1z: ð12:3Þ

At z ¼ zn we have wn�1 ¼ wn and dwn�1=dz ¼ dwn=dz; these continuity conditions
imply

an�1 eiqn�1zn þ bn�1 e
�iqn�1zn ¼ an eiqnzn þ bn e

�iqnzn ; ð12:4Þ

qn�1ðan�1 eiqn�1zn � bn�1 e
�iqn�1znÞ ¼ qn an eiqnzn � bn e

�iqnzn� �
: ð12:5Þ

Solving for an and bn in terms of an�1 and bn�1, we find

an
bn

� �
¼

1
2 1þ qn�1

qn

� 	
eiðqn�1�qnÞzn 1

2 1� qn�1
qn

� 	
e�iðqn�1 þ qnÞzn

1
2 1� qn�1

qn

� 	
eiðqn�1 þ qnÞzn 1

2 1þ qn�1
qn

� 	
e�iðqn�1�qnÞzn

0
B@

1
CA an�1

bn�1

 !

ð12:6Þ

The two-by-two matrix in (12.6) will be written as Mn; it gives us the coefficients of
the nth layer in terms of the coefficients of the ðn� 1Þth layer. Note that the
determinant of Mn is

detMn ¼ qn�1
qn

: ð12:7Þ

Fig. 12.1 A stack of N homogeneous layers, bounded by media with dielectric constants ea and
eb. The nth layer extends from zn to znþ 1 and has dielectric constant en. The layer thicknesses need
not be equal
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As we shall see shortly, this value is relevant to the conservation law of Sect. 2.1,

qa 1� rj j2
� 	

¼ qb tj j2: ð12:8Þ

To find the reflection and transmission amplitudes r and t we note from (12.1) that

a1
b1

� �
¼ M1

1
r

� �
; MNþ 1

aN
bN

� �
¼ aN þ 1

bNþ 1

� �
¼ t

0

� �
: ð12:9Þ

Thus

t
0

� �
¼ M

1
r

� �
¼ m11 m12

m21 m22

� �
1
r

� �
; ð12:10Þ

where the characteristic or profile matrix M is the product of N þ 1 two-by-two
matrices,

M ¼ MNþ 1Mn. . .Mn. . .M2M1: ð12:11Þ

From (12.7) and the fact that the determinant of a product of matrices is the product
of their determinants,

detM ¼ qa=qb; ð12:12Þ

From (12.10) and (12.12) the reflection and transmission amplitudes are given by

r ¼ �m21

m22
; t ¼ m11 � m12m21

m22
¼ det M

m22
¼ qa=qb

m22
: ð12:13Þ

When q is real everywhere the matrix Mn defined by (12.6) has the form

Mn ¼ l11 l12
l�12 l�11

� �
; ð12:14Þ

that is, its elements are related by l22 ¼ l�11, l21 ¼ l�12. The product of two such
matrices will also have this property (as may be verified by direct multiplication),
and thus M has this property. Therefore

m22j j2� m21j j2¼ m11m22 � m12m21 ¼ detM; ð12:15Þ

and the conservation law (12.8) is satisfied by the reflection and transmission
amplitude given by (12.13).
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The above is for waves originating in medium a and transmitted into medium b.
The reflection and transmission amplitudes for this case are

rab ¼ �m21

m22
; tab ¼ qa=qb

m22
: ð12:16Þ

For waves incident from medium b the wavefunction has the limiting forms

tba e�iqaz  w! e�iqbzþ rba eiqbz; ð12:17Þ

and thus, for the same profile matrix M as before,

rba
1

� �
¼ M

0
tba

� �
¼ m11 m12

m21 m22

� �
0
tba

� �
: ð12:18Þ

Thus

rba ¼ m12

m22
; tba ¼ 1=m22: ð12:19Þ

Comparison with (12.16) gives the reciprocity relations

qbtab ¼ qatba; ð12:20Þ

and

rba
r�ab
¼ �m12

m�21

m�22
m22
¼ �m12

m�21

tba
t�ba

: ð12:21Þ

The first of these is the same as (2.14), and the second reduces to (2.18) when q is
real everywhere (see (12.14) and the lines following it).

We now return to the case of waves incident from medium a, and consider a
slightly different formulation which has the advantage of having real matrix ele-
ments when q is real. This is obtained by writing wn in the interval ðzn; znþ 1Þ as

wn ¼ an cos qnzþ bn sin qnz: ð12:22Þ

In the interval ðzn�1; znÞ the solution is

wn�1 ¼ an�1 cos qn�1zþ bn�1 sin qn�1z; ð12:23Þ

and continuity of w and dw=dz at zn now gives

ancnþ bnsn ¼ an�1cn�1þ bn�1sn�1; ð12:24Þ
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qnð�ansnþ bncnÞ ¼ qn�1ð�an�1sn�1þ bn�1cn�1Þ; ð12:25Þ

where cn, sn and cn�1, sn�1 stand for the cosines and sines of qnzn and qn�1zn. On
solving for an and bn in terms of an�1 and bn�1 we now have

an

bn

 !
¼ cncn�1þ qn�1

qn
snsn�1 cnsn�1 � qn�1

qn
sncn�1

sncn�1 � qn�1
qn

cnsn�1 snsn�1þ qn�1
qn

cncn�1

 !
an�1

bn�1

 !
: ð12:26Þ

The determinant of the two-by-two matrix Mn in (12.26) is again qn�1=qn, and so
the determinant of the profile matrix M ¼ MNþ 1Mn. . .Mn. . .M2M1 is qa=qb as
before. The reflection and transmission amplitudes are now given by

t
it

� �
¼ m11 m12

m21 m22

� �
1þ r
i� ir

� �
; ð12:27Þ

and thus

r ¼ �m11 � m22þ im12þ im21

m11þm22 � im12þ im21
: ð12:28Þ

t ¼ 2ðm11m22 � m12m21Þ
m11þm22 � im12þ im21

¼ 2qa=qb
m11þm22 � im12þ im21

: ð12:29Þ

These formulae are not as simple as (12.13), but the advantage of the cosine and
sine representation of w is that the matrix elements mij are real when q is real. This
advantage is shared by the method introduced in the next section.

12.2 Matrices Relating Fields and Their Derivatives

The matrix methods developed above were based on recurrence relations for the
coefficients of two linearly independent solutions within a given layer (chosen to be
e�iqnz, or cos qnz and sin qnzÞ. Here we give the matrices which relate the field and
its derivative, layer to neighbouring layer. This version of the matrix formulation
will be used in the remainder of this chapter, and also in the next chapter (on
periodic stratifications). We will consider the s polarization first. The electric field is
E ¼ ð0; eiKzEðzÞ; 0Þ, with

d2E
dz2
þ q2E ¼ 0; eiqazþ rs e�iqaz  E ! ts eiqbz: ð12:30Þ
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The second order differential equation for E may be written as a pair of coupled first
order differential equations (as in Sect. 5.1):

dE
dz
¼ D;

dD
dz
¼ �q2E: ð12:31Þ

If qðzÞ takes the value qn in ðzn; znþ 1Þ as before, and En and Dn are the values of the
field and of its derivative at zn, the solution of (12.31) in zn � z � znþ 1 is

E ¼ En cos qnðz� znÞþ Dn

qn
sin qnðz� znÞ; ð12:32Þ

D ¼ Dn cos qnðz� znÞ � Enqn sin qnðz� znÞ: ð12:33Þ

Since E and D are continuous at znþ 1 (continuity follows from the differential
equation for E, provided q2 has no delta function singularities), it follows that

Enþ 1 ¼ En cos dnþ Dn

qn
sin dn; ð12:34Þ

Dnþ 1 ¼ Dn cos dn � Enqn sin dn: ð12:35Þ

Here

dn ¼ qnðznþ 1 � znÞ ð12:36Þ

is the phase increment in propagating from zn to znþ 1. The relation between the
coefficients at znþ 1 and those at zn is thus

Enþ 1

Dnþ 1

� �
¼ cos dn q�1n sin dn
�qn sin dn cos dn

� �
En

Dn

� �
¼ Mn

En

Dn

� �
: ð12:37Þ

The matrix in (12.37) is unimodular (has unit determinant). Note that when
dn ¼ mp, m an integer, the matrix equals ð�Þm times the unit matrix. This corre-
sponds to the layer thickness znþ 1 � zn being an integer (for even mÞ or half-integer
(for odd mÞ multiple of the effective wavelength for motion in the z direction,
kz ¼ 2p=qn.

Before deriving expressions for rs and ts in terms of the elements of the profile
matrix M ¼ MN . . .M1 we will give the corresponding matrix formulation for the p
polarization. This has B ¼ ð0; eiKxBðzÞ; 0Þ with BðzÞ satisfying

d
dz

1
e
dB
dz

� �
þ q2

e
B ¼ 0; eiqaz � rp e�iqaz  B! eb

ea

� �1=2

tp eiqbz: ð12:38Þ

We again write the second order differential equation for B as a pair of coupled first
order equations (as in Sect. 5.3):
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1
e
dB
dz
¼ C;

dC
dz
¼ � q2

e
B: ð12:39Þ

If Bn and Cn are the values at zn, within zn � z � znþ 1 we have

B ¼ Bn cos qnðz� znÞþ enCn

qn
sin qnðz� znÞ ð12:40Þ

C ¼ Cn cos qnðz� znÞ � Bnqn
en

sin qnðz� znÞ: ð12:41Þ

B and C are continuous at a discontinuity in e; their continuity at znþ 1 leads to the
matrix relation

Bnþ 1

Cnþ 1

� �
¼ cos dn Q�1n sin dn
�Qn sin dn cos dn

� �
Bn

Cn

� �
ð12:42Þ

where Qn ¼ qn=en. The p wave matrix is also unimodular, and equal to ð�Þm times
a unit matrix when dn ¼ mp with integer m.

Note that the layer matrices in (12.37) and (12.42) depend on the thickness of
the nth layer and on its dielectric properties. This is in contrast to the boundary
matrices of the last section, where Mn was a function of the boundary position zn
and of the wavenumber components qn�1 and qn on either side of the boundary. The
N-layer system of Fig. 12.1 can be characterized by N layer matrices or by Nþ 1
boundary matrices.

The profile matrix in the present case is

M ¼ m11 m12

m21 m22

� �
¼ MNMN�1. . .Mn. . .M2M1: ð12:43Þ

The reflection and transmission amplitudes for the s wave are obtained by matching
the limiting form (12.3) to (12.32) at z1 and zNþ 1. We will use the notation
a ¼ qaz1, b ¼ qbzNþ 1. Then

E1 ¼ eiaþ rs e�ia; D1 ¼ iqaðeia � rs e�iaÞ; ð12:44Þ

ENþ 1 ¼ ts eib; DN þ 1 ¼ iqbtseib: ð12:45Þ

Since

Enþ 1

Dnþ 1

� �
¼ Mn

En

Dn

� �
and

ENþ 1

DN þ 1

� �
¼ M

E1

D1

� �
;

we have
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tseib

iqbtseib

� �
¼ m11 m12

m21 m22

� �
eiaþ rse�ia

iqaðeia � rse�iaÞ
� �

: ð12:46Þ

Thus

rs ¼ e2ia
qaqbm12þm21 � iqbm11þ iqam22

qaqbm12 � m21þ iqbm11þ iqam22
; ð12:47Þ

ts ¼ eiða�bÞ
2iqa

qaqbm12 � m21þ iqbm11þ iqam22
: ð12:48Þ

(In the numerator of (12.48) we have replaced detM ¼ m11m22 � m12m21 by unity,
since the matrix M is a product of unimodular matrices.) These formulae have the
same form as (2.25) and (2.26), if a unit Wronskian is assumed in the latter. The
matrix elements mij are real if e is real, just as in Sect. 2.2 the functions F and G
may be taken to be real in the same circumstances. When qa, qb and the matrix
elements are real, the reflectance and transmittance are given by

Rs ¼ rsj j2¼ ðqaqbm12þm21Þ2þðqbm11 � qam22Þ2
ðqaqbm12 � m21Þ2þðqbm11þ qam22Þ2

; ð12:49Þ

Ts ¼ qb
qa

tsj j2¼ 4qaqb
ðqaqbm12 � m21Þ2þðqbm11þ qam22Þ2

: ð12:50Þ

The corresponding formulae for the p wave may be obtained from (12.38) and
(12.42). We find

�rp ¼ e2ia
QaQbm12þm21 � iQbm11þ iQam22

QaQbm12 � m21þ iQbm11þ iQam22
; ð12:51Þ

eb
ea

� �1=2

tp ¼ eiða�bÞ
2iQa

QaQbm12 � m21þ iQbm11þ iQam22
: ð12:52Þ

The meaning of a and b is qaz1 and qbzNþ 1 as before; Qa ¼ qa=ea and Qb ¼ qb=eb.
The matrix elements here are not the same as in (12.47) and (12.48): they are found
by taking the product of the N matrices given by (12.42) instead of (12.37). The
analogous formulae (2.40) and (2.41) are not of precisely the same form, since they
apply to the case of continuous eðzÞ only. For real e the matrix elements are real,
and in the absence of total reflection the p wave reflectance and transmittance are
given by

Rp ¼ rp


 

2¼ ðQaQbm12þm21Þ2þðQbm11 � Qam22Þ2

ðQaQbm12 � m21Þ2þðQbm11þQam22Þ2
; ð12:53Þ
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Tp ¼ qb
qa

tp


 

2¼ 4QaQb

ðQaQbm12 � m21Þ2þðQbm11þ iQam22Þ2
: ð12:54Þ

An interesting special configuration is a stack of half-wavelength layers. We
noted above that when a layer has phase increment equal to an integer times p, the
layer matrix is equal to plus or minus times the unit matrix, depending on whether
the integer is even or odd. We can define an effective wavelength for propagation in
the z direction as 2p=q; for propagation in the zx plane the two component
wavelengths are kx ¼ 2p=K and kz ¼ 2p=q, with the total wavelength k given by
k�2 ¼ k�2x þ k�2z . The condition qdz ¼ mp is equivalent to

dz ¼ mkz=2; ð12:55Þ

the layer thickness is an integer times one half of the effective z component
wavelength within the layer. When this condition holds all the multiply reflected
waves are in phase (see Sect. 2.4, and especially Fig. 2.5b). For thick layers this
may happen at several angles of incidence: the condition qdz ¼ mp is satisfied for
angles of incidence

haðmÞ ¼ arcsin
e� mp=ðx=cÞdz½ �2

ea

( )1=2

: ð12:56Þ

Possible values of m lie in the range

1
p
x
c
dzðe� eaÞ

1
2 � m � 1

p
x
c
dze1=2: ð12:57Þ

For example, when ea ¼ 1, e ¼ ð4=3Þ2, eb ¼ ð3=2Þ2 and ðx=cÞdz ¼ 27 (as in
Fig. 5.4), the possible values of m are 8–11. At the corresponding angles haðmÞ the
layer is invisible: the reflectivity of the stack is the same as if the layer were absent.

A stack of N homogeneous layers, each with thickness equal to an integer mn

times half of the effective wavelength in the layer, namely with qndzn ¼ mnp, will
have a profile matrix which is equal to ð�ÞS times the unit matrix, where
S ¼PN

1 mn. This stack will be invisible as far as reflectivity measurement is
concerned (at the given angle of incidence and frequency). When S is even, the
reflection amplitudes (given by (12.47) and (12.51)), are also identical to that of a
step in the dielectric function from ea to eb, located at z1. This is remarkable, since
no restriction has been placed on the thickness Dz ¼PN

1 dzn of the stack. However,
actual layer structures will deviate slightly from the assumed conditions.
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12.3 Multilayer Dielectric Mirrors at Normal Incidence

High reflectivity mirrors (used, for example, to form the optical cavity of lasers) are
made by depositing alternating layers of high and low dielectric constant materials
on a substrate, as shown in Fig. 12.2.

These mirrors are wavelength-selective, high reflectivity at a particular fre-
quency being obtained by constructive interference of the waves reflected at each
discontinuity in refractive index. Each layer is made a quarter of a wavelength thick
(at the design frequency) so as to make all the reflected waves in phase. For
example: if in Fig. 12.2 the front of the mirror (on the left) is at z ¼ 0, the reflection
amplitude off the first face is ðqa � qhÞ=ðqaþ qhÞ, which is real and negative. The
reflection amplitude off the second (high|low) interface is, from (1.15), a positive
fraction times e2idhðqh � qlÞ=ðqhþ qlÞ, where dh ¼ qhdzh. When dh ¼ p=2, which
at normal incidence amounts to dzh ¼ kh=4 where kh is the wavelength in the
high-index material, this second reflection amplitude is also real and negative.
Similarly, the contribution from the next (low|high) interface will be in phase with
the preceding if dzl ¼ kl=4. Thus constructive interference is obtained by making
each layer a quarter of a wavelength thick (or in general an odd integer times a
quarter wavelength).

The theory for periodically stratified media will be more fully developed in
Chap. 13. The matrix for a single period is

m11 m12

m21 m22

� �
¼ cl sl=ql
�qlsl cl

� �
ch sh=qh
�qhsh ch

� �

¼ clch � qh
ql
slsh

clsh
qh
þ slch

ql
�qlslch � qhshcl clch � ql

qh
slsh

 !
:

ð12:58Þ

Fig. 12.2 Dielectric function profile of a multilayer dielectric mirror, drawn to scale for an ðHLÞ4
configuration, with the refractive indices for the high and low index materials nh ¼ 2:35,
nl ¼ 1:38. These correspond to ZnS and MgF2, at 633 nm (data from Table l.l of Yariv and Yeh
1984). The substrate is glass, nb ¼ 1:5. For optimum reflectance at a given frequency the layers are
a quarter wavelength thick: dzh ¼ kh

4 ¼ pc=2xð Þn�1h ; dzl ¼ kl
4 ¼ pc=2xð Þn�1l
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Here we consider normal incidence, for which, with subscripts h and l applied to
the values for the high and low refractive index materials,

c ¼ cos d; s ¼ sin d; d ¼ n
x
c

� 	
dz: ð12:59Þ

The matrix elements are the same for the s and the p waves at normal incidence;
Sect. 13.2 deals with the case of general incidence. The reflectivity for an ðHLÞN
mirror, with light incident from a medium of dielectric constant ea, resting on a
substrate of dielectric constant eb, is obtained by substituting the matrix elements
mij of (12.58) and (12.59) into (12.49).

For a perfect k=4 stack at normal incidence and at the design angular frequency
x0, dh ¼ p=2 ¼ dl and from (12.58)

m11 ¼ � nh
nl
; m22 ¼ � nl

nh
; m12 ¼ 0 ¼ m21; ð12:60Þ

where nh ¼ ffiffiffiffi
eh
p

and nl ¼ ffiffiffi
el
p

, are the refractive indices of the alternating layers. In
this case the matrix for one period is diagonal, and the profile matrix is equal to

MN ¼
� nh

nl

� 	N
0

0 � nl
nh

� 	N
0
B@

1
CA: ð12:61Þ

The normal incidence reflectivity at the design frequency is thus

Rðx0Þ ¼
nb
na

nh
nl

� 	2N
�1

nb
na

nh
nl

� 	2N
þ 1

8><
>:

9>=
>;

2

: ð12:62Þ

This tends to unity rapidly with N, the number of high|low strata. For example:
when na ¼ 1, nb ¼ 1:5, nh ¼ 2:35 and nl ¼ 1:38 (as in Figs. 12.2 and 12.3) the
N ¼ 1; 2; 3; 4; 5; and 6 stacks give Rðx0Þ � 0:392, 0:728; 0:896; 0:963; 0:987
and 0:996.

At normal incidence, but away from the design wavelength, the phase changes
dh ¼ nhðx=cÞdzh and dl ¼ nlðx=cÞdzl remain equal (again for the k=4 stack) but are
no longer equal to p=2. Let d ¼ ðp=2Þðx=x0Þ denote the common value of dh and
dl. The matrix of one high|low period is now

cos2 d� nh
nl
sin2 d c

x
1
nh
þ 1

nl

� 	
cos d sin d

� x
c ðnhþ nlÞ cos d sin d cos2 d� nl

nh
sin2 d

 !
: ð12:63Þ

Figure 12.3 shows the frequency dependence of the reflectivity of an ðHLÞ4 stack at
normal incidence.

12.3 Multilayer Dielectric Mirrors … 291

http://dx.doi.org/10.1007/978-3-319-23627-8_13


We shall see in Sect. 13.2 that the reflectivity depends on the trace of the
single-period matrix, specifically on a phase angle / defined by

cos/ ¼ 1
2
ðm11þm22Þ ¼ cos2 d� 1

2
nh
nl
þ nl

nh

� �
sin2 d: ð12:64Þ

The cross-over from high to low normal incidence reflectivity takes place as cos/
increases through �1 from its minimum value of � 1

2 ðnh=nlÞþ ðnl=nhÞ½ �, the latter
being attained at the design frequency. The value cos/ ¼ �1 occurs at the fre-
quencies x ¼ x0 � Dx, where from (12.64) and d ¼ ðp=2Þðx=x0Þ,

Dx
x0
¼ 2

p
arcsin

nh � nl
nhþ nl

� �
: ð12:65Þ

(The high|low stack of Fig. 12.2 has Dx=x0 � 0:16748.) Within the band x ¼
x0 � Dx the value of cos/ is below �1, and the reflectivity has a single maxi-
mum. As the number of high|low periods increases, the reflectivity within the band
tends to unity. From zero frequency to x0 � Dx, and from x0þDx to 2x0 (we
stay within one frequency period in this characterization), cos/j j\ 1 and the
reflectivity oscillates. Full discussion of the underlying band structure and of these
oscillations may be found in Sect. 13.2.

A modification of the (HL)N quarter-wave stack gives a narrow band of trans-
mission in the middle of the high-reflectivity region: such a structure is symbolically
represented by (HL)n H2 (LH)n. As the integer n increases, the pass band in the middle
of the stop band gets narrower. See, for example, Lipson et al. (2010), Sect. 10.3.5.

Fig. 12.3 Normal incidence reflectivity of a ðHLÞ4 stack of dielectric layers, as a function of the
frequency. The reflectivity is maximum at the design frequency x0, where the wavelength in both
the high and low index layers is four times the layer thickness. The reflectivity is periodic in x,
with period 2x0. The refractive indices are as in Fig. 12.2. The vertical lines indicate the
infinite-stack stop band boundaries, as given by (12.65)
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12.4 Reflection of Long Waves

We return now to the problem of reflection by an arbitrary profile, as treated by the
matrix method of Sect. 12.2, and consider the case where the total profile thickness
is small compared to the wavelength of the radiation. The interface is represented
by N homogeneous layers. As N increases to infinity the phase increments dn ¼
qndzn become infinitesimal. At the start we will keep first and second order terms in
dn in the s wave matrix of (12.37),

Mn ¼ 1� d2n=2 q�1n dn
�qndn 1� d2n=2

� �
þ � � � ; ð12:66Þ

but it will turn out that only the first order terms of Mn play a role as N !1. We
write (12.66) as

Mn ¼ 1� 1
2
d2n

� �
Iþ q�1n dnJ � qndn~Jþ � � � ; ð12:67Þ

where I is the identity (or unit) matrix, and

J ¼ 0 1
0 0

� �
; ~J ¼ 0 0

1 0

� �
: ð12:68Þ

The profile matrix

M ¼ MNMN�1. . .Mn. . .M2M1 ð12:69Þ

may be expanded in powers of dn. The fact that

J2 ¼ 0 ¼ ~J2 ð12:70Þ

simplifies the result, which reads

M ¼ 1� 1
2

XN
1

d2n

 !
Iþ

XN
1

dzn

 !
J �

XN
1

q2ndzn

 !
~J

�
XN�1
n¼1

XN
l¼nþ 1

ðq2ndzndzlJ~Jþ dznq
2
l dzl~JJÞþ � � �

ð12:71Þ

In the limit as N !1 and dzn ! 0,
PN

1 d2n ! 0 and
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XN
1

dzn fn !
Z b

a

dz f ðzÞ; ð12:72Þ

XN�1
n¼1

XN
l¼nþ 1

dzn fndzlgl !
Z b

a

dz f ðzÞ
Z b

z

dfgðfÞ; ð12:73Þ

where a ¼ z1 and b ¼ zNþ 1 denote the left and right boundaries of the stack (see
Fig. 12.1). Since

J~J ¼ 1 0
0 0

� �
; ~JJ ¼ 0 0

0 1

� �
; ð12:74Þ

the limit as N !1 of (12.71) becomes

M ¼
1� Rb

a
dz q2ðzÞðb� zÞ b� a

� Rb
a
dz q2ðzÞ 1� Rb

a
dz q2ðzÞðz� aÞ

0
BBB@

1
CCCA ð12:75Þ

The s wave reflectivity is given by (12.49). After some reduction, the result to
second order in the thickness b� a is found to be

Rs ¼ qa � qb
qa þ qb

� 	2
þ 4qaqb
ðqa þ qbÞ4 ðq

2
b � q2aÞ

Rb
a
dzð2z� a� bÞq2

�

þ Rb
a
dzðq2 � q2aÞ

Rb
a
dfðq2 � q2bÞ



þ � � �

ð12:76Þ

The substitution q2 ¼ ex2=c2 � K2 reduces the square bracket in (12.76) to x4=c4

times the angle-independent term

ðeb � eaÞ
Z b

a

dzð2z� a� bÞeþ
Z b

a

dzðe� eaÞ
Z b

a

dfðe� ebÞ: ð12:77Þ

At this stage the s reflectivity has been reduced to the same form as (5.67). The
subsequent analysis of Sect. 5.5 shows that this is equivalent to the second order
result of Chap. 3, (3.51).

For the p wave, the profile matrix is the product of matrices of the form (12.42),
which to second order in the phase increment dn ¼ qndzn is
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Mn ¼ 1� d2n=2 dn=Qn

�Qndn 1� d2n=2

� �
þ � � � ; ð12:78Þ

where Qn ¼ qn=en. We again write Mn in terms of the matrices I; J and ~J, and form
the product (12.69) to obtain the profile matrix M. The resulting elements of M are,
after taking the limit of N !1 as before,

m11 ¼ 1� Rb
a
dz q2ðzÞ=eðzÞ Rb

z
df eðfÞþ � � �

m12 ¼
Rb
a
dz eðzÞþ � � �

m21 ¼ �
Rb
a
dz q2ðzÞ=eðzÞþ � � �

m22 ¼ 1� Rb
a
dz eðzÞ Rb

z
df q2ðfÞ=eðfÞþ � � � :

ð12:79Þ

The p wave reflectivity is given by (12.53); to second order in the total thickness of
the inhomogeneity this takes the form

Rp ¼ Qa�Qb
Qa þQb

� 	2
þ 4QaQb

ðQa þQbÞ4 ðQ
2
b � Q2

aÞðm11 � m22Þ
�

þ Q2
bQ

2
bm

2
12þm12m21ðQ2

aþQ2
bÞþm2

21

�þ � � � : ð12:80Þ

A substantial reduction of (12.80) is required in order to regain the invariant form
(3.50).

12.5 Absorbing Stratified Media: Some General Results

General theorems for arbitrary stratifications have already been given in Sects. 2.1–
2.3; Sect. 10.2 briefly discussed results for absorbing media. Here we give three
theorems which follow from the matrix analysis of wave propagation through
layered media.

(i) The transmittance of a stratified medium is independent of the direction of
propagation. The transmittance T is defined as the ratio of the energy leaving a unit
area of the interface in unit time to the energy incident on a unit area in unit time.
The transmittance for propagation from a non-absorbing medium a, through an
arbitrary stratification (which may be absorbing), to a non-absorbing medium b, is

Tab ¼ qb
qa

tabj j2 ð12:81Þ

12.4 Reflection of Long Waves 295

http://dx.doi.org/10.1007/978-3-319-23627-8_3
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_2
http://dx.doi.org/10.1007/978-3-319-23627-8_10


(see the discussion following (2.8) and Fig. 2.1). The equality of Tab and Tba
follows from (12.16) and (12.19), of which the relevant parts are

tab ¼ qa=qb
m22

; tba ¼ 1=m22: ð12:82Þ

(ii) An arbitrary stratified medium is equivalent to two suitably chosen adjacent
homogeneous layers (Herpin 1947). Equivalence here means that the profile matrix
elements mij of the two systems are the same. A general profile matrix

M ¼ m11 m12

m21 m22

� �
ð12:83Þ

has four elements (in general complex), which are linked by one constraint, namely
the value of the determinant m11m22 � m12m21. The latter is equal to qa=qb for the
boundary matrices defined in Sect. 12.1, and to unity for the layer matrices used
from Sect. 12.2 onward. A single homogeneous layer has the layer matrix

M1 ¼ cos d1 q�11 sin d1
�q1 sin d1 cos d1

� �
:

This cannot represent (12.83) since it has its diagonal elements equal, and has only
two free parameters (d1 and q1Þ. The profile matrix for two homogeneous layers 1
and 2 is

M ¼ M2M1 ¼
c1c2 � q1

q2
s1s2

s1c2
q1
þ c1s2

q2
�c1q2s2 � c2q1s1 c1c2 � q1

q2
s1s2

 !
; ð12:84Þ

where c1 ¼ cos d1; . . .; s2 ¼ sin d2. This has unit determinant and four parameters
(d1, q1 and d2, q2Þ; it is thus sufficiently general to represent (12.83). But note that
the equivalence, established by making the elements of (12.83) and (12.84) equal,
will hold at a given angle of incidence and a given frequency only: as either
changes, so do the parameters of the two-layer system.

(iii) For non-absorbing media the reflectance R and transmittance T are related
by Rþ T ¼ 1. For an absorbing stratification between two non-absorbing media the
conservation law becomes Rþ T þA ¼ 1, where A is the absorptance, a positive
quantity for passive media. Thus the ratio ð1� RÞ=T ¼ 1þA=T is in general
greater than unity. Abelès (1950) has shown that if an arbitrary non-absorbing
layer is inserted in front of the absorbing layer, causing the reflectance to change to
R
0
and the transmittance to T

0
, the ratio of 1� R to T is unaltered:

1� R
T
¼ 1� R0

T 0
: ð12:85Þ
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Since ð1� RÞ=T ¼ 1þA=T , the Abelès result is equivalent to A=T ¼ A
0
=T

0
: the

absorptance to transmittance ratio is unchanged by the insertion of a non-absorbing
layer in front of the absorber. The unprimed and primed configurations are illus-
trated in Fig. 12.4.

Let mij be the complex elements of the matrix representing the left-hand con-
figuration in Fig. 12.4, and m0ij be those representing the right-hand configuration.
Then from (12.47) and (12.48) we have

R ¼ qaqbm12þm21 � iqbm11þ iqam22

qaqbm12 � m21þ iqbm11þ iqam22











2

; ð12:86Þ

T ¼ 4qaqb
qaqbm12 � m21þ iqbm11þ iqam22j j2 ; ð12:87Þ

so that

1� R
T
¼ Reðm�22m11 � m�12m21Þ � Imðqbm�12m11þ q�1b m�22m21Þ: ð12:88Þ

A similar expression holds for ð1� R0Þ=T 0 , with mij replaced by m0ij, the elements
of M

0 ¼ M ~M, where ~M is the layer matrix for the profile with dielectric function
~eðzÞ. The matrix elements of M

0
are

m
0
11 ¼ m11 ~m11þm12 ~m21 m

0
12 ¼ m11 ~m12þm12 ~m22

m
0
21 ¼ m21 ~m11þm22 ~m21 m

0
22 ¼ m21 ~m12þm22 ~m22

ð12:89Þ

Fig. 12.4 Two configurations which have equal value of the ratio of 1� R to T . The dielectric
function eðzÞ may be complex, while ~eðzÞ is real; ea and eb are real constants

12.5 Absorbing Stratified Media … 297



On using the fact that the elements of ~M are real, and that ~M has unit deter-
minant, the expression for ð1� R

0 Þ=T 0 reduces to that for ð1� RÞ=T .

12.6 High Transparency of an Absorbing Film
in a Frustrated Total Reflection Configuration

In Sect. 10.6 we discussed attenuated total reflection, the phenomenon where a
metallic layer or substrate converts a total internal reflection situation into one of
low (or even zero) reflection of the p polarized wave. The physical basis of the
phenomenon is the excitation of surface waves at the metal|dielectric boundaries, as
explained in Sect. 10.6. There we considered the two configurations illustrated in
Fig. 10.4. Here we consider the high|low|complex|low|high dielectric function
configuration of Fig. 12.5. The dielectric function profile corresponding to this
configuration is shown in the lower diagram.

We will calculate Rp and Tp for the symmetric case where the low-index
dielectric layers have the same thickness l. The profile matrix for this case is

M ¼ MlMmMl ð12:90Þ

where, from (12.42),

Ml ¼ cos dl Q�1l sin dl
�Ql sin dl cos dl

� �
; Mm ¼ cos d Q�1 sin d

�Q sin d cos d

� �
: ð12:91Þ

Here Ql ¼ ql=el, dl ¼ qll, Q ¼ q=e and d ¼ qd. (The quantities for the metal film
are complex, with q ¼ qr þ iqi and so on.) Thus the elements of the profile matrix
M are

m11 ¼ ðc2l � s2l Þc� clsl
Ql
Q þ Q

Ql

� 	
s ¼ m22

m12 ¼ c2l Q
�1sþ 2Q�1l clslc� Q�2l s2l Qs

m21 ¼ Q2
l s

2
l Q
�1s� 2Qlclslc� c2l Qs;

ð12:92Þ

where c, s and cl, sl stand for the cosines and sines of d and dl. From (12.51) and
(12.52) the p reflectance and transmittance are given by

Rp ¼ Q2
hm12þm21

Q2
hm12 � m21þ 2iQhm11











2

; ð12:93Þ

Tp ¼ 4Q2
h

Q2
hm12 � m21þ 2iQhm11



 

2 : ð12:94Þ
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We are most interested in the attenuated total reflection case, for which the angle
of incidence exceeds the critical angle at the high|low interface. Then ql, Ql and dl
are positive imaginary, cl ¼ cosh dlj j and sl ¼ i sinh dlj j. The reflectivity can be zero
if the real and imaginary parts of Q2

hm12þm21 can be made zero simultaneously.
For a given set of materials the variables are the angle of incidence, and the
thicknesses of the low refractive index dielectric and of the metal film. Figure 12.6
gives an example of the p wave reflectance and transmittance for the configuration
shown in Fig. 12.5. Further examples can be found in Otto (1976) (see especially

Fig. 12.5 Upper diagram: the high|low|complex|low|high refractive index symmetric configura-
tion. Lower diagram: the corresponding dielectric function profile, for a metal film with complex
dielectric constant e ¼ er þ iei, sandwiched between two layers of low dielectric constant el, which
in turn are bounded by a material of high dielectric constant eh. The profile is drawn to scale for
high refractive index glass ðeh ¼ 3:617Þ, lithium fluoride ðel ¼ 1:938Þ and silver ðe ¼
�10:755þ 0:361iÞ at 546 nm, as in Figs. 10.5, 10.6, 10.7, 10.8 and 10.9
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his Fig. 14b, c), and in Dragila et al. (1985). The physical interpretation of the
reflectance minimum in terms of the excitation of surface waves is discussed in
these references and in Sect. 10.6.

12.7 Comparison of Numerical Approaches

Approximate analytical results for the reflection amplitudes have been given in the
long wave and short wave cases (Chaps. 3 and 6). The long wave region of validity
is extended by the perturbation and variational theories in Chap. 4, and the Rayleigh
approximation of Chap. 5 is good at all wavelengths provided the reflection is
weak. All these analytical methods share the drawback that higher-order approxi-
mations rapidly become cumbersome and thus of little practical value. For accurate
results at intermediate wavelengths, and for a profile which is not among the few
exactly soluble, numerical methods are needed.

The next Section describes numerical methods based on the matrix theory of
Sect. 12.2. We do not give details of the direct solution of the wave equation,
because the complications of that approach are greater, as the following outline
shows. Let wðzÞ satisfy

d2w
dz2
þ q2w ¼ 0; eiqazþ r e�iqaz  w! t eiqbz: ð12:95Þ

Since r and t are unknown, to integrate the differential equation we change the
boundary conditions to

Fig. 12.6 Reflectance and transmittance for the p wave, for the configuration of Fig. 12.5 with
l ¼ 100 nm, d ¼ 30 nm, at 546 nm vacuum wavelength. The reflectance minimum is near 51:8	,
with Rp � 1:3
 10�4. The location of the critical angle hc ¼ arcsin nl=nhð Þ � 47	 for the high|low
interface is indicated by the vertical line
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a eiqazþ b e�iqaz  w! eiqbz; ð12:96Þ

integrate backward from some zb at which qðzÞ is close enough to qb, and extract a
and b in the region where qðzÞ is close enough to qa. Then the reflection and
transmission amplitudes are found from r ¼ b=a, t ¼ 1=a. There are two compli-
cations in this method, both avoided by the matrix methods to be given later. The
first is that r, t and a, b are in general complex, and thus solutions for both Re w and
Im w are required. The second is that the extraction of the real and imaginary parts
of a and b requires matching the real part of w to

ðar þ brÞ cos qaz� ðai � biÞ sin qaz; ð12:97Þ

and the imaginary part of w to

ðaiþ biÞ cos qazþðar � brÞ sin qaz: ð12:98Þ

For example, by matching at points where qaz is an even and an odd multiple of
p=2, one can obtain the four quantities ar þ br, ar � br, aiþ bi and ai � bi, and
hence the real and imaginary parts of a and b.

The complications in the direct solution of the differential equation outweigh (in
our view) the advantage of ready access to a very large literature on the numerical
solution of ordinary differential equations [see, for example, Temme (2010) and the
references listed therein]. The matrix methods we will use, in contrast, evaluate
only real quantities (in the absence of absorption), and the matching is done
automatically: see for example the derivation of the expression for r and t in terms
of the elements of the profile matrix in Sect. 12.2. The calculation of the profile
matrix involves merely the computation of a product of two-by-two matrices, which
is easily programmed.

12.8 Numerical Methods Based on the Layer Matrices

Two kinds of matrices have been introduced: the boundary matrices of Sect. 12.1,
and the layer matrices of Sect. 12.2 onward. The latter are more convenient for
numerical work and will be used here. Figure 12.7 shows the Rayleigh profile

eðzÞ ¼ n�1a þðn�1b � n�1a Þðz� z1Þ=Dz
� ��2 ðz1� z� zN þ 1; Dz ¼ zNþ 1 � z1Þ,

approximated by N homogeneous layers.
The nth layer extends from zn to znþ 1, and in the case illustrated is homoge-

neous, with dielectric constant en. The corresponding layer matrices for the s or p
waves are given by (12.37) and (12.42):
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Mn ¼ cos dn q�1n sin dn
�qn sin dn cos dn

� �
or cos dn Q�1n sin dn

�Qn sin dn cos dn

� �
; ð12:99Þ

where dn ¼ qnðznþ 1 � znÞ � qndzn, q2n ¼ enx2=c2 � K2 ¼ x2=c2ðen � ea sin2 haÞ,
and Qn ¼ qn=en. To first order in the layer thickness dzn these matrices are

1 dzn
�q2ndzn 1

� �
or

1 endzn
�q2ndzn=en 1

� �
: ð12:100Þ

As N gets large, the layer thicknesses dzn become small, and the matrices in (12.99)
are well approximated by (12.100). This approximation for the layer matrices is in
fact equivalent to the first order Euler method of solving the differential equa-
tion (12.95). To see this, let u be the real part of w, and v ¼ du=dz. The second
order equation for u, d2u=dz2þ q2u ¼ 0, can be replaced by the pair of coupled first
order equations, du=dz ¼ v and dv=dz ¼ �q2u. The discretized version of this pair
is

unþ 1 � un
dzn

¼ vn;
vnþ 1 � vn

dzn
¼ �q2nun: ð12:101Þ

In matrix form this reads (compare to the first matrix in (12.100))

unþ 1

vnþ 1

� �
¼ 1 dzn
�q2ndzn 1

� �
un
vn

� �
: ð12:102Þ

The matrix method with the profile replaced by a stack of homogeneous layers, and
with the layer matrices calculated to first order in the layer thickness, is thus
equivalent in accuracy to the Euler method.

We will not use this simplest approach, since it is easy to improve on the
homogeneous layer approximation without much complication in the matrices and

Fig. 12.7 The Rayleigh profile approximated by a set of five homogeneous layers. The figure is
drawn for na ¼ 1, nb ¼ 4=3
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the consequent programming. The improvement consists in approximating the
profile by a set of layers in which the dielectric function varies linearly within each
layer. This is illustrated in Fig. 12.8.

The variation of eðzÞ in ½zn; znþ 1� is approximated by

eðzÞ ¼ enþðz� znÞden=dzn; ð12:103Þ

where dzn ¼ znþ 1 � zn as before, and den ¼ enþ 1 � en. Let Dz ¼ zNþ 1 � z1 be the
total thickness of the profile. (When the values εa and εb are attained at minus and
plus infinity, the profile must be truncated at some points z1 and zNþ 1 as discussed
later.) Then if at a given angular frequency x a large enough number N of the layers
is taken so that ðx=cÞdzn � 1 (or ðx=cÞDz� N assuming the dzn are roughly
equal), each layer matrix will be well approximated by its long-wave form as given
in Sect. 12.4 to second order in the layer thickness. (Lekner and Dorf (1987) go to
third order, and also discuss a cubic fit to the dielectric function profile for each
layer.)

For the s wave we find from (12.103) and (12.75) that the elements sij of the
matrix Mn representing the nth layer are given by

s11 ¼ 1þðdznÞ2 K2=2� x2

c2
ð2enþ enþ 1Þ=6

� 

;

s12 ¼ dzn; s21 ¼ dzn K2 � x2

c2
ðenþ enþ 1Þ=2

� 

; ð12:104Þ

s22 ¼ 1þðdznÞ2 K2=2� x2

c2
ðenþ 2enþ 1Þ=6

� 

:

The p wave matrix elements pij to second order in dzn are found from (12.103)
and (12.79): they are

Fig. 12.8 Approximation of a profile by layers with linear variation in e. The diagram is drawn for
the Rayleigh profile, with parameters as in Fig. 12.7
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p11 ¼ 1þðdznÞ2 K2

4den

2e2nþ 1

den
ln
enþ 1

en
� enþ 1 � en

� �
� x2

c2
ðenþ 2enþ 1Þ=6

� 

;

p12 ¼ dznðenþ enþ 1Þ=2; p21 ¼ dzn
K2

den
ln
enþ 1

en
� x2

c2

� 

; ð12:105Þ

p22 ¼ 1þðdznÞ2 K2

4den
enþ enþ 1 �

2e2nþ 1

den
ln
enþ 1

en

� �
� x2

c2
ð2enþ enþ 1Þ=6

� 

:

In computation it is faster to replace the expressions involving lnðenþ 1=enÞ by the
leading terms in their den=en expansion. The resulting matrix elements are

p11 � 1þðdznÞ2 K2

6en
ð2enþ enþ 1Þ � x2

c2
ðenþ 2enþ 1Þ=6

� 

;

p12 ¼ dzn enþ enþ 1ð Þ
2

; p21 � dzn K2ð1=enþ 1=enþ 1Þ=2� x2

c2

� 

; ð12:106Þ

p22 � 1þðdznÞ2 K2

6enþ 1
enþ 2enþ 1ð Þ � x2

c2
2enþ enþ 1ð Þ=6

� 

:

For comparison with the linear approximations (12.104) and (12.106) we write
down the s and p homogeneous layer matrices (e constant within each layer) to
second order in dzn. These are, from (12.99),

1� ðdznqnÞ2=2 dzn
�dznq2n 1� ðdznqnÞ2=2

� �
;

1� ðdznqnÞ2=2 endzn
�dznq2n=en 1� ðdznqnÞ2=2

� �
ð12:107Þ

and are seen to be the degenerate forms of (12.104) and (12.106), obtained by
setting enþ 1 ¼ en in the linear layer formulae.

The linear layer formulae taken to first order in dzn will be referred to as L1, and
those retaining the terms second order in dzn as L2. It is possible to improve on
these methods, at a given order, by using unimodular matrices (Lekner 1990). We
recall from Sect. 12.2 that the exact layer matrices are unimodular (have unit
determinant); this guarantees energy conservation Rþ T ¼ 1 (for both polariza-
tions, in the absence of absorption), and reciprocity between the transmission
amplitudes, as expressed for example in (2.14). In general, Rþ T differs from unity
by a term with factor detðMÞ � 1. Approximate matrices which are not unimodular
will not give reflection and transmission amplitudes which are energy conserving or
which satisfy the reciprocity relations between the direct and inverse transmission
amplitudes.
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To construct unimodular matrices we can use symmetrisation, as detailed in
Lekner (1990). The s-wave layer matrix given to second order in the layer thickness
by (12.104) may be written in general as

1� I2 I1
�J1 1� J2

� �
ð12:108Þ

I1 ¼ dzn; J1 ¼
Zznþ 1

zn

dz q2 zð Þ;

I2 ¼
Zznþ 1

zn

dz q2 zð Þ znþ 1 � zð Þ;

J2 ¼
Zznþ 1

zn

dz q2ðzÞðz� znÞ:

ð12:109Þ

The following matrix, correct to first-order in the layer thickness, has unit
determinant

1�I1J1=4
1þ I1J1=4

I1
1þ I1J1=4

�J1
1þ I1J1=4

1�I1J1=4
1þ I1J1=4

 !
ð12:110Þ

We note the identity I1J1 ¼ I2þ J2 , which follows from (12.109) and
dzn ¼ znþ 1 � zn. (The same identity holds also for the p-wave layer matrix whose
elements were given in (12.79).) From this identity it follows that the symmetrised
second-order matrix

1�I2=2
1þ I2=2

I1
1þ I2=2

�J1
1þ J2=2

1�J2=2
1þ J2=2

 !
ð12:111Þ

is also unimodular. We shall refer to the numerical methods using linear fit to the
profile and the matrices (12.110) and (12.111) as UL1 and UL2. The results obtained

Table 12.1 Errors in the calculated reflectivities, and values of detðMÞ, for the Rayleigh profile at
normal incidence, with ðx=cÞDz ¼ 1; na ¼ 1; nb ¼ 4=3 (air|water)

Method L1 UL1 L2 UL2 C

Error (ppt) −4 -8 −2 +1 −9

det(M) 1.14 1 1.0005 1 1

The profile was approximated by ten layers in each calculation, and a constant step size was used,
dzn ¼ Dz=10. The error entries are in parts per thousand, calculated as 1000 R=Re � 1ð Þ. The letter
L denotes that a linear variation of dielectric function within each layer is used; 1 or 2 denote that
first or second order terms in dzn are retained in each layer matrix. The exact reflectivity Re is given
in (2.108)
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by the L1, UL1 and L2, UL2 methods, for the Rayleigh profile with parameters as in
Figs. 12.7 and 12.8, are shown in Tables 12.1 and 12.2. For comparison we also give
the results, denoted by C, for the unimodular matrices in (12.37) or (12.99) where
each layer has a constant value of the dielectric function.

From these results and similar ones for other profiles we draw the conclusion
that the second order method is preferable to the first order method, and that the
corresponding symmetrized unitary matrices are generally better in numerical
accuracy, and also guarantee energy conservation and reciprocity. The unimodular
homogeneous layer matrices denoted by C in Tables 12.1 and 12.2 are accurate, but
slower to calculate because of their sines and cosines.

Further improvements are possible, by better than linear approximations to eðzÞ
within each layer, and by going to higher order in dzn. For example, one may
approximate eðzÞ by a cubic in ½zn; znþ 1� by using the derivatives e

0
n and e

0
nþ 1 at the

end-points. The formula resulting from matching to e and e
0
at zn and znþ 1 is

eðzÞ � enþðz� nnÞe0nþ z�zn
dzn

� 	2
3den � dznð2e0nþ e

0
nþ 1Þ

� �
þ z�zn

dzn

� 	3
dznðe0nþ e

0
nþ 1Þ � 2den

� �
:

ð12:112Þ

The method obtained by using (12.112) and calculating the matrix elements to
second order in dzn, was found to be not much better than L2. The cubic third order
formulae are available for extensive numerical work where high accuracy is needed
(Lekner and Dorf 1987).

12.9 Variable Step Size, Profile Truncation, Total
Reflection and Tunneling, Absorption,
and Calculation of Wavefunctions

We now briefly discuss some further aspects of the numerical application of these
matrix methods.

A constant step size dzn ¼ Dz=N was chosen in the calculations discussed above.
This is convenient, but not necessary; the matrix formulae given here are valid for
variable step size. However, a constant step size is normally the simplest to

Table 12.2 Calculated normal incidence reflectivities at the first reflectivity zero for the Rayleigh
profile with parameters as in Fig. 12.7 (na ¼ 1; nb ¼ 4=3, ðx=cÞDz ¼ 2:73295. . ., from (2.110))

Method L1 UL1 L2 UL2 C

Error (ppm) 21 1.6 5.1 1.3 0.2

det(M) 2.6 1 1.026 1 1

The notation is as in Table 12.1, and again N ¼ 10, but now the error is in parts per million (the
table entries are the calculated reflectivity times 106)
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program, and in most cases is just as accurate as (for example) a variable step size
chosen to make den ¼ enþ 1 � en a constant.

The Rayleigh profile shown in Figs. 12.7 and 12.8, for which the results of
Tables 12.1 and 12.2 were calculated, is an example of a profile of strictly finite
range. For dielectric functions in which the inhomogeneity extends to infinity, such
as the hyperbolic tangent profile

eðzÞ ¼ 1
2
ðeaþ ebÞ � 1

2
ðea � ebÞ tanh z

2Dz
¼ eaþ ebez=Dz

1þ ez=Dz
; ð12:113Þ

profile truncation is necessary for the application of numerical methods. By trun-
cation is meant that e is set equal to ea for z\ a and to eb for z [ b, where a and b
are chosen so that eðaÞ � ea and eðbÞ � eb are sufficiently small to cause negligible
error. For example, suppose we take a ¼ �7Dz and b ¼ 7Dz for the hyperbolic
tangent profile. Since e7 � 103, truncation at �7Dz can be expected to introduce an
error of the order of one part per thousand. Larger values of aj j and b will introduce
smaller errors, but correspondingly larger numbers of layer matrices will be
required to attain convergence to the truncated profile matrix elements. This is
illustrated in the following table, calculated using the unimodular homogeneous
matrices in (12.37) and (12.99). Truncation at the larger value of aj j and b ulti-
mately gives a more accurate reflectivity, but in the case illustrated the smaller
cut-off gives a better reflectivity up to about 40 layers. This is because the smaller
effective thickness of the profile is better approximated by a given number of layers
(Table 12.3).

The formulae given in this chapter remain valid when qðzÞ is imaginary and
q2ðzÞ\0, as is the case for a range of z values in total internal reflection, and in
tunneling. No change is required in the calculation of the elements of the profile
matrix, which remain real. The reflection and transmission amplitudes are still given
by (12.47) and (12.48) in the s wave case, and by (12.51) and (12.52) in the p wave
case. In total reflection qb and Qb are positive imaginary, and both Rs and Rp are
unity. The quantity of interest is the phase of the reflected wave, given by

ds ¼ 2qaz1 � 2atn s21þ qbj js11; qaðs12 qbj j þ s22Þ½ �; ð12:114Þ

dp ¼ 2qaz1 � 2atn Qaðp12 Qbj j þ p22Þ; p21þ Qbj j p11½ �; ð12:115Þ

Table 12.3 The ratio of the calculated to the exact reflectivity, for the tanh profile truncated at a
and b, as a function of the number of layer matrices

N 10 20 30 40

�a; b ¼ 7Dz 0.965 0.991 0.995 0.997

�a; b ¼ 9Dz 0.944 0.986 0.993 0.996

The values given are for ðx=cÞDz ¼ 0:2, ea ¼ 1, eb ¼ ð4=3Þ2, at normal incidence

12.9 Variable Step Size, Profile Truncation, Total Reflection … 307



where atnðy; xÞ is the arctangent of y=x placed in the correct quadrant according to
the signs of x and y.

In the presence of absorption the dielectric function becomes complex. If only
the substrate (characterized by eb, qb and QbÞ is absorbing, the matrix elements
remain real, and only the calculation of the reflectivity from the reflection amplitude
is modified. (The expressions (12.49) and (12.53) for the s and p reflectances no
longer apply.) When however the stratification is itself absorbing, the matrix ele-
ments are complex, and four multiplications of real matrices are needed in place of
one performed in the non-absorbing case: if Rþ iS and Uþ iV represent the real
and imaginary parts of two matrices, their product is

ðUþ iVÞðRþ iSÞ ¼ UR� VSþ iðVRþUSÞ: ð12:116Þ

Thus calculations involving absorption within the interface are roughly four times
longer than those which do not.

We turn finally to the problem of the calculation of wavefunctions within the
stratification. These are obtained, if required, as a by-product of the calculation of
the elements of the profile matrix. In the s wave case, for example, we have

Enþ 1

Dnþ 1

� �
¼ Mn

En

Dn

� �
¼ MnMn�1. . .M2M1

E1

D1

� �
: ð12:117Þ

Let vij be the elements of the product of n matrixes in (12.117). Then

Enþ 1 ¼ v11E1þ v12D1 ð12:118Þ

gives the wavefunction at znþ 1 in terms of the wavefunction and its derivative at z1.
The latter are given by

E1 ¼ eiaþ rs e�ia; D1 ¼ iqaðeia � rs e�iaÞ ð12:119Þ

where a ¼ qaz1, and rs ¼ rr þ iri is the reflection amplitude. The latter is found
first, by calculating the product up to n ¼ N. If the elements v11 and v12 are stored
for all intermediate n, the wavefunction may then be plotted at the completion of the
calculation of rs. From (12.118) and (12.119), we have in the absence of absorption
(real vijÞ that

ReðEnþ 1Þ ¼ v11 ð1þ rrÞcþ risf gþ v12qa ric� ð1þ rrÞsf g: ð12:120Þ

ImðEnþ 1Þ ¼ v11 ricþð1� rrÞsf gþ v12qa ð1� rrÞc� risf g; ð12:121Þ

where c ¼ cos a and s ¼ sin a.
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Chapter 13
Periodically Stratified Media

Electron wavefunctions in crystals are modified by interaction of the electrons with
the periodic ionic lattice to such an extent that band gaps appear in the spectrum of
allowed states. This became clear in the early days of quantum mechanics (see for
example Mott and Jones 1936/1958). However, the history of wave propagation in
periodic structures extends back to Newton, who considered elastic waves on a
one-dimensional lattice of masses connected by springs as a model for sound
(Brillouin 1946/1953 gives a brief historical review). Rayleigh (1887, 1917) rec-
ognized the possibility of what are now known as stop bands or band gaps for
waves in periodic structures, particularly in relation to the high reflection (at certain
wavelengths and angles of incidence) by periodically stratified media. The optical
aspects are covered in a monograph on photonic crystals (Joannopoulos et al.
1995). An overview of all kinds of waves in locally periodic media is given by
Griffiths and Steinke (2001); Kinoshita (2008, 2013) surveys the optics of peri-
odically structured biomaterials. This chapter concentrates on electromagnetic
waves. Neutron reflection by period stratifications is discussed in Sect. 16.6.

The modern optics of stratifications was advanced by Abelès (1950); of special
utility is his application of matrices to wave propagation, and use of the theorem
that the Nth power of a unimodular (one with unit determinant) 2� 2 matrix

M ¼ m11 m12

m21 m22

� �
ð13:1Þ

is given by

MN ¼ m11SN � SN�1 m12SN
m21SN m22SN � SN�1

� �
; ð13:2Þ

SN ¼ sinN/
sin/

; cos/ ¼ 1
2
trace M ¼ 1

2
m11þm22ð Þ: ð13:3Þ

This result is easily proved by induction, on using m11m22 � m12m21 ¼ 1 and the
identity (or recurrence relation)
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2SN cos/� SN�1 ¼ SNþ 1: ð13:4Þ

The matrices used by Abelès link electric and magnetic field components at suc-
cessive layers of the stratification. For non-absorbing media these matrices are
complex, with real diagonal elements and imaginary off-diagonal elements.
Matrices which link fields and their derivatives (for example E and dE=dz for the
electromagnetic s or TE wave) are entirely real for non-absorbing media, as we saw
in Sect. 12.2. This is both simpler, and four times faster in numerical work (the
matrix product AB ¼ ðAr þ iAiÞðBr þ iBiÞ requires the evaluation of four products if
A and B are complex). The matrices which link fields and their derivatives are also
unimodular. In this chapter we shall follow Lekner (1994) to both simplify and
generalize the existing theory of light propagation in periodically stratified media.
An expression is given for the matrix of a layer with continuous but otherwise
arbitrary dielectric function variation. The eigenvalue equation for the Bloch factor
in a periodic system is shown to be determined by the trace of the matrix of a unit
cell. When the wavelength is long compared to the period of the stratification, the
periodic structure is equivalent to a uniaxial homogeneous medium with its optic
axis normal to the layers and with the ordinary dielectric constant equal to the
average of the dielectric function, while the extraordinary dielectric constant is
equal to the reciprocal of the average of the reciprocal of the dielectric function.

13.1 Electromagnetic Waves in Stratified Media

We consider plane electromagnetic waves incident from a medium of index n1 onto
a non-magnetic planar stratification, whose optical properties are contained in the
dielectric function eðzÞ ¼ n2ðzÞ (nðzÞ is the local value of the refractive index). For
isotropic media, with scalar rather than tensor dielectric function, any plane wave
can be written as a superposition of an s (or TE) wave and a p (or TM) wave. The s
wave has its electric vector perpendicular to the plane of incidence, the p wave has
its electric vector in the plane of incidence (and its magnetic vector perpendicular to
the plane of incidence: hence its designation as a TM or transverse magnetic). We
have assumed, as usual, that the medium is stratified in the z direction (so that
e ¼ eðzÞ), and have taken the plane of incidence to be the zx plane. Then the s wave
has electric field vector E ¼ ð0; Ey; 0Þ and the p wave has magnetic vector
B ¼ ð0; By; 0Þ. It follows directly from the Maxwell curl equations that, for
monochromatic waves of angular frequency x,

Eyðz; x; tÞ ¼ exp iðKx� xtÞ½ �EðzÞ;
Byðz; x; tÞ ¼ exp iðKx� xtÞ½ �BðzÞ; ð13:5Þ

where K (the x component of the wavevector) is a separation-of-variables constant,
whose existence derives from the planar nature of the stratification, and whose
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constancy implies Snell’s law, as we saw in Chap. 1. The functions EðzÞ and BðzÞ
satisfy the ordinary differential equations (see Sects. 1.1 and 1.2)

d2E
dz2
þ q2E ¼ 0; e

d
dz

1
e
dB
dz

� �
þ q2B ¼ 0; ð13:6Þ

where qðzÞ is the local value of the normal component of the wavevector, given by

q2ðzÞ ¼ eðzÞx2=c2 � K2:

If h1 is the angle of incidence, and h2 is the angle between the wavevector and the
normal in the homogeneous substrate of index n2,

K ¼ n1ðx=cÞ sin h1 ¼ n2ðx=cÞ sin h2; ð13:7Þ

q1 ¼ n1ðx=cÞ cos h1; q2 ¼ n2ðx=cÞ cos h2: ð13:8Þ

It follows from the differential equations (13.6) that dE=dz and e�1dB=dz are con-
tinuous at any discontinuity in eðzÞ (otherwise delta-function terms would arise in the
second derivatives). A fortiori, E and B are continuous at any discontinuity in eðzÞ.

Consider a stratification extending from z ¼ a to z ¼ b, bounded by homoge-
neous media of indices n1 and n2, and suppose at first that eðzÞ is continuous for
a\z\b. For the s wave, let FðzÞ and GðzÞ be two linearly independent solutions of
the second-order differential equation d2E=dz2þ q2E ¼ 0. Then EðzÞ may be
written as a linear superposition of F and G:

EðzÞ ¼ fFðzÞþ gGðzÞ; ð13:9Þ

where f and g are constants. We will use a layer matrix M ¼ fmijg which links
fields and their derivatives; in the s wave case it is defined by

Eb

E
0
b

� �
¼ m11 m12

m21 m22

� �
Ea

E
0
a

� �
; ð13:10Þ

where Ea and E
0
a represent EðaþÞ and the derivative of EðzÞ at z ¼ aþ , and

similarly Eb and E
0
b stand for Eðb�Þ and the derivative of E at z ¼ b�. From (13.9)

and its derivative we see that

Ea

E
0
a

� �
¼ Fa Ga

F
0
a G

0
a

� �
f
g

� �
� A

f
g

� �
; ð13:11Þ

Eb

E
0
b

� �
¼ Fb Gb

F
0
b G

0
b

� �
f
g

� �
� B

f
g

� �
: ð13:12Þ
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Substitution of (13.11) and (13.12) into (13.10) shows that the layer matrix can be
expressed in terms of the fundamental field and derivative values at the boundaries
of the layer:

M ¼ BA�1 ¼ W�1 �ðF
0
;GÞ ðF;GÞ

�ðF 0 ;G0 Þ ðF;G0 Þ
� �

: ð13:13Þ

W is the (constant) Wronksian of the two basic solutions F and G,

W ¼ FG
0 � F

0
G; W

0 ¼ 0; ð13:14Þ

and

ðF;GÞ � FaGb � GaFb; ðF;G0 Þ � FaG
0
b � GaF

0
b;

ðF 0 ;GÞ � F
0
aGb � G

0
aFb; ðF 0 ;G0 Þ � F

0
aG

0
b � G

0
aF

0
b:

ð13:15Þ

The layer matrix M is unimodular: from the identity (2.31) of Chap. 2,

detM ¼ W�2 ðF;GÞðF 0 ;G0 Þ � ðF;G0 ÞðF 0 ;GÞ
h i

¼ 1: ð13:16Þ

An important example is that of a homogeneous layer, for which eðzÞ and qðzÞ
are constant. We can then take F ¼ cos qz, G ¼ sin qz, for which W ¼ q and

ðF;GÞ ¼ sin d; ðF;G0 Þ ¼ q cos d;
ðF 0 ;GÞ ¼ �q cos d; ðF 0 ;G0 Þ ¼ q2 sin d;

ð13:17Þ

where d ¼ qðb� aÞ is the phase increment across the layer. The layer matrix in this
case is

M ¼ cos d q�1 sin d
�q sin d cos d

� �
ð13:18Þ

(The same matrix is obtained by choosing F ¼ expðiqzÞ and G ¼ expð�iqzÞ.)
The matrix elements mij determine the reflection and transmission amplitudes rs

and ts of the n1 nðzÞj jn2 structure: we have, from the definition of M,

ts expðiq2bÞ
iq2ts expðiq2b

� �
¼ m11 m12

m21 m22

� �
expðiq1aÞþ rs expð�iq1aÞ

iq1 expðiq1aÞ � rs expð�iq1aÞ½ �
� �

ð13:19Þ

when expðiq1zÞþ rs expð�iq1zÞ and ts expðiq2zÞ are the forms of EðzÞ in the medium
of incidence and in the substrate. It follows from (13.19) that (see Sect. 12.2)
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rs ¼ expð2iq1aÞ q1q2m12þm21þ iq1m22 � iq2m11

q1q2m12 � m21þ iq1m22þ iq2m11
; ð13:20Þ

ts ¼ exp iðq1a� q2bÞ½ � 2iq1
q1q2m12 � m21þ iq1m22þ iq2m11

: ð13:21Þ

The form of the differential equation for EðzÞ is the same as that of the
Schrödinger equation for a particle of energy E and mass m in a potential VðzÞ, with

eðzÞx2=c2 $ 2m

�h2
E � VðzÞ½ �: ð13:22Þ

Thus the results derived for the electromagnetic s wave apply also to quantum
particle waves in a z-stratified medium, as discussed in Sect. 1.3.

The pwave layer matrix is defined to link the quantities BðzÞ and e�1dB=dzwhich
are continuous at discontinuities of e. Let Ba and Bb stand for BðaþÞ and Bðb�Þ, and
~Ba and ~Bb represent the values of e�1dB=dz at z ¼ aþ and z ¼ b�. Then

Bb
~Bb

� �
¼ m11 m12

m21 m22

� �
Ba
~Ba

� �
: ð13:23Þ

We express BðzÞ as a linear combination of two independent solutions of the second
equation of (13.6), say CðzÞ and DðzÞ. Then, by the arguments used above, with
F;F

0
and G;G

0
replaced by C; ~C and D, ~D;

M ¼ U�1 �ð~C;DÞ ðC;DÞ�ð~C; ~DÞ ðC; ~DÞ
� �

ð13:24Þ

where, for example, ðC; ~DÞ � Ca ~Db � Da ~Cb and

U ¼ C~D� ~CD; U
0 ¼ 0 ð13:25Þ

(the Wronskian W ¼ CD
0 � C

0
D is not constant for the p wave; U ¼ W=e is

constant). This matrix is also unimodular, since

detM ¼ U�2 ðC;DÞð~C; ~DÞ � ðC; ~DÞð~C;DÞ� � ¼ 1 ð13:26Þ

For the homogeneous layer we take C ¼ cos qz and D ¼ sin qz (or expðiqzÞ and
expð�iqzÞ) to find that U ¼ Q ¼ q=e and

M ¼ cos d Q�1 sin d
�Q sin d cos d

� �
ð13:27Þ
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The reflection and transmission amplitudes are defined slightly differently for the p
wave if one wishes to retain rp ¼ rs and tp ¼ ts at normal incidence, where there is
no physical difference between the s and p waves:

expðiq1zÞ � rp expð�iq1zÞ  BðzÞ ! n2
n1

tp expðiq2zÞ: ð13:28Þ

Thus the equation analogous to (13.19) reads, from (13.23),

n2
n1
tp expðiq2bÞ

iQ2
n2
n1
tp expðiq2b

 !

¼ m11 m12

m21 m22

� �
expðiq1aÞ � rp expð�iq1aÞ

iQ1 expðiq1aÞþ rp expð�iq1aÞ
� �� �

;

ð13:29Þ

where Q1 ¼ q1=e1, and Q2 ¼ q2=e2: This gives (Sect. 12.2)

�rp ¼ expð2iq1aÞQ1Q2m12þm21þ iQ1m22 � iQ2m11

Q1Q2m12 � m21þ iQ1m22þ iQ2m11
; ð13:30Þ

n2
n1

tp ¼ exp iðq1a� q2bÞ½ � 2iQ1

Q1Q2m12 � m21þ iQ1m22þ iQ2m11
: ð13:31Þ

It is clear from the definition of the layer matrix that a stratification of any
number N of layers has the matrix

M ¼ MNMN�1. . .M2M1: ð13:32Þ

The results for the reflection and transmission amplitudes given above thus apply to
any isotropic stratification. For nonabsorbing media eðzÞ is real, and the s- and p-
wave basic solutions can be taken to be real (if w is a solution of a linear differential
equation with real coefficients, then w� is also a solution and so is wþw�). Thus the
matrices are real in the absence of absorption. Energy conservation in the absence
of absorption is expressed in the algebraic identities

Rsþ Ts ¼ 1; Rpþ Tp ¼ 1; ð13:33Þ

where Rs ¼ rsj j2, Rp ¼ rp
�� ��2, Ts ¼ ðq2=q1Þ tsj j2; and Tp ¼ ðq2=q1Þ tp

�� ��2. (The reason
for the q2=q1 factor is discussed in Sect. 2.1; see especially Fig. 2.1.)
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13.2 Periodic Structures, Multilayer Dielectric Mirrors

We now consider periodic stratifications, such as the high-low multilayer mirror
configuration shown in Fig. 13.1. The reflection at normal incidence of this mul-
tilayer was considered in Sect. 12.3, in the maximum reflectivity configuration
(quarter wave stack).

We first discuss propagation of waves in an infinite periodic structure. If one
period has matrix M, the fields and their derivatives at a corresponding point one
period along are given by

wnþ 1

w
0
nþ 1

� �
¼ M

wn

w
0
n

� �
; ð13:34Þ

where w represents E or B and w
0
represents E

0
or ~B ¼ e�1dB=dz. In an infinite

structure these positions (one period along from each other) are equivalent, and so
the two vectors in (13.34) are proportional:

wnþ 1

w
0
nþ 1

� �
¼ b

wn

w
0
n

� �
: ð13:35Þ

The Bloch factor b is determined from the condition that (13.35) subtracted from
(13.34), namely,

ðM � bIÞ wn

w
0
n

� �
¼ 0; ð13:36Þ

Fig. 13.1 Dielectric function profile for a ðHLÞ10 dielectric mirror, drawn to scale with n1 ¼ 1,
nh ¼ 2:35 (ZnS), nl ¼ 1:38 ðMgF2Þ, n2 ¼ 1:5 (glass). For maximum reflectivity at normal
incidence and vacuum wavelength k, the layer thicknesses are dh ¼ k=4nh and dl ¼ k=4nl (a
quarter-wave stack)
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has a solution other than zero. (I ¼ diagð1; 1Þ is the 2� 2 identity matrix.) The
condition for nonzero solutions is detðM � bIÞ ¼ 0. When traceM ¼ 2 cos/ and
detM ¼ 1 are used this condition reduces to

b2 � 2b cos/þ 1 ¼ 0: ð13:37Þ

The quadratic (13.37) has solutions

b� ¼ cos/� ðcos2 /� 1Þ1=2 ¼ expð�i/Þ: ð13:38Þ

Note that bþ and b� both have unit modulus if cos2 /\1, but that if cos2 /[ 1
the solutions are real (in the absence of absorption) and not equal to unity. If the
magnitude of the trace of M exceeds 2, the solutions will grow or decay expo-
nentially: no propagating waves are possible. The condition cos2 /[ 1 thus gives
the band gaps or stop bands of the structure. The band edges are given by
cos2 / ¼ 1; they occur when / is a multiple of p. When cos/j j[ 1;/ is complex,
with the real part a multiple of p, and the imaginary part /i ¼ Im/ given by (in the
absence of absorption, traceM ¼ 2 cos/ real)

expð/iÞ ¼ cos/j j þ ðcos2 /� 1Þ1=2: ð13:39Þ

(There is an ambiguity in the sign of /i (which we can ignore here) since when
/r ¼ np; cos /r þ i/ið Þ ¼ cos np cosh/i. See Hardy (1952, pp. 464–465).)

In infinite periodic stratifications the possibility of wave propagation is entirely
determined by the trace of the matrix for a single period. We may expect (and we
shall shortly show this to be true) that finite periodic structures reflect strongly in
the stop bands. The /s and /p values for the high-low stack of Fig. 13.1, repeated to
infinity, are shown in Fig. 13.2. They are calculated from the matrix of the unit cell,
a high-low bilayer, which for the s wave is given by

cl q�1l sl
�qlsl cl

� �
ch q�1h sh
�qhsh ch

� �

¼ clch � q�1l qhslsh q�1h clshþ q�1l slch
�qlslch � qhclsh clch � qlq�1h slsh

� �
;

ð13:40Þ

where cl ¼ cos dl, sl ¼ sin dl, ql ¼ ðelx2=c2 � K2Þ1=2, and the phase increment dl is
qldl where dl is the thickness of the low-index layer; the parameters for the
high-index layer are defined in the same way. One half of the trace of this unit cell
matrix is, for the s wave,

cos/s ¼ clch � 1
2 slshðq�1l qhþ q�1h qlÞ

¼ cosðdlþ dhÞ � 1
2 slsh ðql=qhÞ1=2 � ðqh=qlÞ1=2

h i2
:

ð13:41Þ
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For the p wave the arguments of the trigonometric functions remain unchanged,
but ql is replaced by Ql ¼ ql=el and qh by Qh ¼ qh=eh in the matrix elements. Thus

cos/p ¼ clch � 1
2 slshðQ�1l QhþQ�1h QlÞ

¼ cosðdlþ dhÞ � 1
2 slsh ðQl=QhÞ1=2 � ðQh=QlÞ1=2

h i2
:

ð13:42Þ

Figure 13.2 shows the imaginary parts of /s and /p as a function of the angle of
incidence h1. When these are non-zero, the corresponding polarizations cannot
propagate in the semi-infinite periodic medium. We see from the Figure that at the
design frequency x0 for high reflectivity, the infinite high-low stack does not permit
s wave propagation at any angle of incidence, while the p wave can propagate for
h1� 53:14	. At x ¼ 1:3x0 both polarizations can propagate into the stack near
normal incidence, but at 41:44	 the s polarization begins to reflect totally, as does
the p polarization at 59:72	. The band edges at which this happens are given by the
locations of cos2 / ¼ 1.

The variation of / as a function of frequency is shown in Fig. 13.3, in which we
plot the real and imaginary parts of / versus x at normal incidence. The stop band
(cos2 /[ 1, / complex) is between x0 � Dx and x0þDx, where (Sect. 12.3,
(12.66))

Dx
x0
¼ 2

p
arcsin

nh � nl
nhþ nl

� �
: ð13:43Þ

Fig. 13.2 The imaginary parts of /s and /p for the ZnSjMgF2 high|low structure, as a function of
the angle of incidence. The lower part of the figure is at the design frequency x0 for high
reflectivity at normal incidence, at which dh ¼ kh=4 and dl ¼ kl=4 (the k=4 stack), and thus
dh ¼ p=2 ¼ dl. The upper part is drawn for x ¼ 1:3x0. We have chosen opposite signs for Im/
for the two frequencies for clarity (see the note below (13.39) regarding the sign of Im/)
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(The repeated stack of Fig. 13.1 has Dx=x0 
 0:16748.) At normal incidence the
phase increments dh and dl for the quarter-wave stack are both equal to
ðp=2Þðx=x0Þ. Thus cos/ is periodic in x, with period 2x0. At oblique incidence
the s and p waves have different stop bands, determined by a transcendental
equation to be given in Sect. 13.3, equation (13.67).

We now look at the optical properties of finite periodic structures. The reflection
and transmission amplitudes are given by (13.20) and (13.21) for the s wave, and
(13.30) and (13.31) for the p wave, where in each case mij are the matrix elements
of the whole structure. Thus for N periods (for example, N bilayers of the high-low
stack) the matrix elements are those of the Nth power of the unit cell matrix, and are
given by (13.2). It is convenient to define the quantity

rN ¼ SN�1
SN
¼ sin ðN � 1Þ/½ �

sinðN/Þ ¼ cos/� sin/ cotðN/Þ; ð13:44Þ

where cos/ is half the trace of the unit cell matrix. Then we have, for the s wave,

rs ¼ q1q2m12þm21þ iq1ðm22 � rNÞ � iq2ðm11 � rNÞ
q1q2m12 � m21þ iq1ðm22 � rNÞþ iq2ðm11 � rNÞ ; ð13:45Þ

ts ¼ 2iq1S�1N

q1q2m12 � m21þ iq1ðm22 � rNÞþ iq2ðm11 � rNÞ : ð13:46Þ

We have omitted the phase factors multiplying rs and ts; these are the same for the p
wave reflection and transmission coefficients, and do not feature in any experiment
that does not compare reflection and transmission phases.

Fig. 13.3 The real and imaginary parts of the band structure parameter / ¼ arccos 1
2 traceM
	 


for
a k=4 stack, as a function of the frequency, drawn for normal incidence onto the high-low stack of
Fig. 13.1. The stop band is centred at the design angular frequency x0, with half-width given by
(13.43). It corresponds to the regions where cos2 /[ 1; in this example, cos/\� 1
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For non-absorbing media the reflectance and transmittance are given by

Rs ¼ rsj j2

¼ 1� 4q1q2S�2N

ðq1q2m12Þ2þm2
21þ q21ðm22 � rNÞ2þ q22ðm11 � rNÞ2þ 2q1q2S�2N

;

ð13:47Þ

Ts ¼ q2
q1

tsj j2¼ 1� Rs: ð13:48Þ

The p wave has a different unit cell matrix, and thus different / and rN . The
reflection and transmission amplitudes are, again omitting the phase factors,

�rp ¼ Q1Q2m12þm21þ iQ1 m22 � rNð Þ � iQ2 m11 � rNð Þ
Q1Q2m12 � m21þ iQ1 m22 � rNð Þþ iQ2 m11 � rNð Þ ; ð13:49Þ

n2
n1

tp ¼ 2iQ1S�1N

Q1Q2m12 � m21þ iQ1ðm22 � rNÞþQ2ðm11 � rNÞ : ð13:50Þ

For non-absorbing media the reflectance is Rp ¼ 1� Tp, where

Tp ¼ q2
q1

tp
�� ��2

¼ 4Q1Q2S�2N

ðQ1Q2m12Þ2þm2
21þQ2

1ðm22 � rNÞ2þQ2
2ðm11 � rNÞ2þ 2Q1Q2S�2N

:

ð13:51Þ

The forms for the reflectance and transmittance have been obtained by using
detM ¼ 1, traceM ¼ 2 cos/ (M is the matrix for a unit cell) and the identity

r2N � 2rN cos/þ 1 ¼ sin/
sinN/

� �2
¼ S�2N : ð13:52Þ

When N/ is a multiple of p and ðN � 1Þ/ is not, rN is infinite and

rs ! q1 � q2
q1þ q2

; �rp ! Q1 � Q2

Q1þQ2
: ð13:53Þ

These are the reflection amplitudes of the bare substrate. When ðN � 1Þ/ is a
multiple of p and N/ is not, rN is zero and rs and rp are the same as the reflection
amplitudes of a single period of the structure (supported by the substrate). Thus for
large N there will be many passes of the reflectivity through the bare-substrate and
single-period values as the wavelength or angle of incidence varies.
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At the band edges, where cos/ ¼ �1 and / is a multiple of p, S2N ¼ N2. Thus
the transmittance goes to zero as N�2 at the band edges, and the reflectance is
1� OðN�2Þ. Within the band gaps cos/ ¼ 1

2 traceM has magnitude greater than
unity, and / is a multiple of p plus an imaginary part given by (13.39):

Im/ ¼ ln cos/j j þ ðcos2 /� 1Þ1=2
h i

: ð13:54Þ

Then S2N increases exponentially with N,

S2N ¼
sinhðN Im/Þ
sinhðIm/Þ

� �2
; ð13:55Þ

and thus the s and p transmittances tend to zero exponentially with the number of
periods.

The results (13.45)–(13.55) hold for waves in any finite periodic stratification. In
particular the facts that 1� R ¼ OðN�2Þ at the band edges, and that inside the stop
bands R approaches unity exponentially with N, are universal. The construction of
the matrices does not assume homogeneity within parts of a unit cell (as is assumed
in Yeh, Yariv and Hong (1977) and Yariv and Yeh (1977), for example).

Figure 13.4 shows the normal incidence reflectivity for a 10-bilayer high-low
stack as a function of frequency, and Fig. 13.5 the s and p reflectivities for the same
10-bilayer stack at x ¼ x0 and x ¼ 1:3x0, as a function of the angle of incidence.
The stack parameters are as in Figs. 13.1, 13.2 and 13.3. The normal incidence
reflectivity for a 4-bilayer stack was shown in Fig. 12.3.

Fig. 13.4 Frequency dependence of the normal incidence reflectivity of a dielectric multilayer,
drawn for 10 ZnSjMgF2 bilayers on glass, as depicted in Fig. 13.1. The multilayer is tuned for high
reflectivity at x ¼ x0 (it is a quarter-wave stack at the design frequency). The vertical lines denote
the stop-band limits, given in (13.43)
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13.3 Omnidirectional Reflection by Multilayer Dielectric
Mirrors

We have seen that multilayer dielectric mirrors reflect strongly in stop bands, within
which light propagation is not possible in an infinite periodic structure. We have
also seen that certain aspects of reflection by multilayers are universal: for N
periods the transmittance goes to zero as N�2 at the band edges, where the
reflectance is 1� OðN�2Þ. Within the band gaps the reflectance tends to unity
exponentially with N. Thus not very many periods of the multilayer structure are
needed to give high reflectance. Typical use of dielectric multilayer mirrors has
been at normal incidence; the reflectance for a 10 period stack was shown in
Fig. 13.4, with the (homogeneous) layers a quarter-wavelength thick at the design
frequency:

Fig. 13.5 Reflectivities of a 10-bilayer high-low stack as a function of the angle of incidence, at
x ¼ x0 and x ¼ 1:3x0. The parameters are as in Figs. 13.1, 13.2, 13.3 and 13.4. The stop band
edges are at 53.1° for the p waves when x ¼ x0, and 41.1° for the s wave and 59.7° for the p wave
when x ¼ 1:3x0, from Fig. 13.2
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dh ¼ kh
4
¼ k

4nh
; dl ¼ kl

4
¼ k

4nl
; ð13:56Þ

where k is the vacuum wavelength. Then the optical paths are nhdh ¼ nldl ¼ k=4
and maximum reflection (at normal incidence) occurs at angular frequency

x0 ¼ 2pc
k
¼ p

2
c

nhdh
¼ p

2
c

nldl
: ð13:57Þ

The edges of the stop band are at x0 � Dx, where Dx=x0 was given in (13.43).
The normal incidence results are independent of polarization, but at oblique

incidence the reflectances of the s (TE) and p (TM) polarizations are of course
different. The question arises: is it possible to design a stack to have strong
reflection (perfect reflection, for the infinite stack) for all angles of incidence, and
both polarizations? The answer is yes (Winn et al. 1998; Fink et al. 1998; Chigrin
et al. 1999a, b; Nusinsky and Hardy 2007). Southwell (1999) has given analytical
approximations for an omnidirectional mirror consisting of a quarter-wave dielec-
tric stack. In this section we present improved analytical approximations which give
the band edges of the s and p stop bands at any angle of incidence, on a dielectric
stack which need not be quarter-wave, based on Lekner (2000).

We know from Sect. 13.2 that strong reflection will occur when the trace of the
2� 2 matrix for one period exceeds 2 in magnitude. (These conditions, one for the
s polarization and one for the p polarization, locate the band edges of the s and p
waves.) For homogeneous layers of high and low refractive indices and nl, and
thicknesses dh and dl, these conditions take the form

cos dl cos dh � K sin dl sin dhj j[ 1; ð13:58Þ

where

dl ¼ xdl
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l � n21 sin

2 h
q

; dh ¼ xdh
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21 sin

2 h
q

; ð13:59Þ

are the phase shifts of the waves of angular frequency x in traversing the layers of
low and high index, n1 is the refractive index of the medium of incidence, and h is
the angle of incidence. The function K is frequency-independent, and takes different
forms for the s and p polarizations:

Ks ¼ 1
2

xsþ 1
xs

� �
; xs ¼ qh

ql
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21 sin

2 h

n2l � n21 sin
2 h

s
; ð13:60Þ

Kp ¼ 1
2

xpþ 1
xp

� �
; xp ¼ Ql

Qh
¼ nh

nl

� �2

xs: ð13:61Þ
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We assume that nh [ nl, so xs [ 1. Note that xp can be less than unity for angles of
incidence greater than hp, where sin2 hp ¼ n2l n

2
h=n

2
1ðn2l þ n2hÞ, provided

n2l n
2
h \ n21ðn2l þ n2hÞ.
From (13.56), (13.57) and (13.59), a quarter-wave stack at normal incidence has

dl ¼ p
2

x
x0
¼ dh; ð13:62Þ

and cos dl cos dh � K sin dl sin dh becomes cos2 d� 1
2 ðnhnl þ nl

nh
Þ sin2 d, which takes

the value �1 at x0 � Dx, where Dx is given by (13.43).

13.3.1 Band Edges at Oblique Incidence
for a General Stack

At normal incidence the stop band for a quarter-wave stack lies between x�0 ¼
x0 � Dx and xþ0 ¼ x0þDx, where x0 and Dx are given by (13.57) and (13.43)
respectively. The quantity cos dl cos dh � K sin dl sin dh in (13.58) decreases with
frequency from unity at zero frequency, so the first stop bands lie between fre-
quencies x� and xþ given by solving the transcendental equation

cos dl cos dh � K sin dl sin dh ¼ �1 ð13:63Þ

numerically for K ¼ Ks and Kp as given by (13.60) and (13.61). At normal inci-
dence Kp ¼ Ks and the stop band for both polarizations lies between x�0 and xþ0 .
The s polarization stop band typically increases in width as the angle of incidence
increases, while the p stop band width decreases. At glancing incidence the p stop
band ranges from x�p to xþp , and provided

x�p \xþ0 ð13:64Þ

there will be a frequency region from x�p to xþ0 where both s and p polarizations
are strongly reflected (perfectly reflected, in the case of an infinite stack).

At oblique incidence on a general stack, dl ¼ ðx=cÞDl and dh ¼ ðx=cÞDh,
where

Dl ¼ dl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l � n21 sin

2 h
q

; Dh ¼ dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21 sin

2 h
q

: ð13:65Þ

At normal incidence for a quarter-wave stack, the phase increments dl and dh at the

band edges are both p=2� arcsin x0�1
x0 þ 1

� 

, where x0 ¼ nh=nl is the common value of

xs and xp at h ¼ 0. At all frequencies the phase increments are in the ratio
dh=dl ¼ Dh=Dl. We therefore put the phase shifts at the band edges equal to
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d�l ¼
2Dl

DhþDl

p
2
� /�

� 

; d�h ¼

2Dh

DhþDl

p
2
� /�

� 

ð13:66Þ

where the angles /� are to be found for each polarization. The transcendental
equation (13.63) for the band edges now reduces to an equation for /�:

sin/� ¼ x� 1
xþ 1

� �
cos

Dh � Dl

DhþDl

� �
p
2
� /�

� 
� �
: ð13:67Þ

In deriving (13.67) from (13.63) we have used

K� 1
Kþ 1

¼ x� 1
xþ 1

� �2

ð13:68Þ

(x stands for xp or xs, K stands for Kp or KsÞ and taken a square root on the
assumption that x[ 1. No approximation has yet been made. When Dh ¼ Dl we
obtain a generalization of (13.43):

/� ¼ arcsin
x� 1
xþ 1

� �
: ð13:69Þ

It follows from (13.67) that the stop band width is greatest when Dh ¼ Dl, because
then the cosine term then attains its maximum value of unity.

In many cases of interest ðDh � DlÞ=ðDhþDlÞ is a small quantity. Expansion of
the right-hand side of (13.67) gives

sin/� ¼ x� 1
xþ 1

� �
1� 1

2
Dh � Dl

DhþDl

� �2 p
2
� /�

� 
2
þ O

Dh � Dl

DhþDl

� �4
( )

; ð13:70Þ

so that, on using arcsinðSþ sÞ ¼ arcsinðSÞþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2
p

þOðs2Þ,

/� ¼ arcsin
x� 1
xþ 1

� �
� x� 1

4
ffiffiffi
x
p Dh � Dl

DhþDl

� �2 p
2
� arcsin

x� 1
xþ 1

� �� �2

þO
Dh � Dl

DhþDl

� �4

:

ð13:71Þ

The band-edge frequencies can then be found from (13.66) and (13.59):

x� ¼ 2c
DhþDl

p
2
� /�

� 

: ð13:72Þ

As a numerical example, consider the band edges for a tellurium|polystyrene
stack which is quarter-wave at normal incidence (Fink et al. 1998).
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Equation (13.43) gives the band edges at normal incidence, exactly.
Equations (13.71) and (13.72) give the band edges at all angles of incidence to such
accuracy that exact and approximate results cannot be differentiated in Fig. 13.6.
The errors in x� at glancing incidence range from 12 to 268 parts per million.

13.3.2 Refractive Indices for Which Omnidirectional
Reflection Exists

Omnidirectional reflection requires that the s and p band gaps of the multilayer
persist from normal incidence to glancing incidence. This will happen if the cri-
terion (13.64) is satisfied. The region in the ðnl; nhÞ plane where (13.64) is satisfied
is bounded by the curve where

x�p ¼ xþ0 : ð13:73Þ

In terms of the approximate band edge frequencies given in (13.72), this reads

p
2 � /�p

dhnhrhþ dlnlrl
¼

p
2 þ/þ0

dhnhþ dlnl
; ð13:74Þ

Fig. 13.6 Band edges for a high-low multilayer with n1 ¼ 1, nh ¼ 4:6 and nl ¼ 1:6 (Fink et al.
1998), versus h. At normal incidence the stop band extends from x0 � Dx to x0þDx, with Dx
given by (13.43). The outer band is for s polarization, the darker inner band is for the p
polarization. Omnidirectional reflection occurs in the frequency range between the dashed lines.
The calculations are for a “quarter-wave” stack, with nhdh ¼ nldl ¼ k=4
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where

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21=n

2
h

q
; rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21=n

2
l

q
; ð13:75Þ

and /þ0 is evaluated at normal incidence with x0 ¼ nh=nl, while /
�
p is evaluated at

glancing incidence with xp ¼ ðnh=nlÞðrl=rhÞ, Dh ¼ dhnhrh and Dl ¼ dlnlrl. For
quarter-wave stacks, (13.74) reduces to

p
2 � /�p
rhþ rl

¼
p
2 þ/þ0

2
: ð13:76Þ

Solution of (13.76) gives a curve in the ðnl; nhÞ plane which is shown in Fig. 13.7.
Above this curve is the omnidirectional reflection region. The minimum value of
nhð¼ 2:265 899 n1Þ occurs at nl ¼ 1:517 523 n1. The exact equation (13.73), with
x�p found from (13.63) or (13.67) at glancing incidence, has ðnl; nhÞmin at
(1:517 522 n1, 2:265 899 n1Þ. In contrast, Fig. 13.3 of Southwell (1999) has a
minimum for its onset of omnidirectional reflection curve at nl 
 1:45 n1,
nh 
 2:24 n1. This is due to the fact that his equation for the edges of the bands is
less accurate than the one used here, even for quarter-wave stacks.

It is of interest to widen the search and admit dielectric stacks which are not
quarter-wave at normal incidence. For general stacks we have an extra parameter,
the ratio of the optical thicknesses of the layers at normal incidence: q ¼ nhdh=nldl.
Lekner (2000) finds that the lowest nh is attained at

Fig. 13.7 Region of omnidirectional reflection of a high-low multilayer. The lower curve shows
the limit of omnidirectional reflection for a quarter-wave stack according to (13.76) with x�p
approximated by (13.72, 13.73). The contours labelled 0:1, 0:2 and 0:3 show where the
quarter-wave stack omnidirectional reflection region is 0:1x0, 0:2x0 and 0:3x0 wide
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q ¼ 1:362 086; nl ¼ 1:492 045 n1; nh ¼ 2:246 763 n1: ð13:77Þ

These values are to be compared with the quarter wave stack values found above:

q ¼ 1; nl ¼ 1:517 522 n1; nh ¼ 2:265 899 n1: ð13:78Þ

13.4 Form Birefringence

A pencil of light entering an anisotropic material, such as a crystal of calcite, is in
general split into two beams: calcite is doubly refracting, or birefringent. The
optical properties of anisotropic materials are characterized by a tensor dielectric
function, as we saw in Chap. 8. For a given angle of incidence of a plane elec-
tromagnetic wave onto a given crystal face, two plane wave modes are possible
within the crystal. For a uniaxial crystal, such as calcite, these are called the
ordinary and extraordinary modes. The configuration of interest in relation to planar
stratified media is one where the optic axis of a uniaxial material coincides with the
surface normal. Then the ordinary and extraordinary modes have wavevectors
ðK; 0; qoÞ and ðK; 0; qeÞ where (Sects. 7.1 and 8.2)

q2o ¼ eox
2=c2 � K2; q2e ¼ eox

2=c2 � ðeo=eeÞK2; ð13:79Þ

where eo ¼ n2o and ee ¼ n2e are the ordinary and extraordinary dielectric constants
for the crystal. The electric field vectors of the ordinary and extraordinary modes
are along the directions

Eo�ð0; 1; 0Þ; Ee� qe; 0; �ðeo=eeÞK½ �: ð13:80Þ

From Maxwell’s equation for the curl of E we find Be�ð0; 1; 0Þ. Thus the normal
mode o and e field directions in the crystal correspond to the s and p have char-
acterizations used in isotropic media. (This holds only when the optic axis is normal
to the reflecting surface of the crystal.)

When a narrow beam is incident onto the crystal, it is refracted into two beams,
whose directions are those of E� B, along the Poynting vector for each mode. The
ordinary mode ray direction always coincides with that of the ordinary wavevector
ðK; 0; qoÞ. The extraordinary ray direction does not coincide with ðK; 0; qeÞ in
general. When the optic axis is normal to the reflecting surface, the ray direction of
the extraordinary wave is along ðeo=eeÞK; 0; qe½ �.
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We now consider waves in a periodic stratification made up of isotropic com-
ponent layers. Form birefringence is the name given to the way in which such a
structure behaves like an anisotropic homogeneous medium, in the limit when the
wavelength is large compared to the period (Born and Wolf (1965), Sect. 14.5.2 and
Yariv and Yeh (1984), Sect. 6.8). The equivalent homogeneous medium is uniaxial,
with optic axis normal to the stratifications. To see this, we write the Bloch factor b
(which according to (13.38) has eigenvalues e�i/Þ as e�iqd , where d is the thickness
of one unit cell of the stratification, and q is interpreted as the normal component of
the effective wave vector, which is thus ðK; 0; qsÞ and ðK; 0; qpÞ for the s
(TE) and p (TM) polarisations. Since qs and qp are different (being determined by
the trace of Ms and of MpÞ, we have a one-to-one correspondence with the normal
components qo and qe of the ordinary and extraordinary waves.

For the high-low stack, cos/s and cos/p are given by (13.41) and (13.42). In
the long-wave limit we have qldl\\1 and qhdh\\1; expansion of (13.41) and
(13.42) in powers of qldl and qhdh, with

/s ¼ qsðdhþ dlÞ ¼ qsd; q2s � esx
2=c2 � K2; ð13:81Þ

/p ¼ qp dhþ dlð Þ ¼ qpd; q2p �
esx2

c2
� es

ep

� �
K2; ð13:82Þ

for the TE and TM waves (compare the expressions for q2o and q2e in (13.79)) gives

es ¼ fhehþ flel; ep ¼ ehel
fhelþ fleh

: ð13:83Þ

In (13.83) fh; fl are the fractions of the total volume occupied by the high and low
index materials in the medium:

fh ¼ dh
dhþ dl

; fl ¼ dl
dhþ dl

: ð13:84Þ

The expressions (13.83) have been obtained by electrostatic considerations (Born
and Wolf 1965), and by Bloch-wave dynamical argument (Yariv and Yeh 1984) as
above. Note that the effective anisotropy ee � eo cannot be positive:

ep � es ¼ �ðeh � elÞ2fhfl
fhelþ fleh

: ð13:85Þ

Thus the “ordinary” s or TE wave experiences a larger effective refractive index
than does the “extraordinary” p or TM wave. Experimental demonstration of form
birefringence may be seen in van der Ziel et al. (1976) and Kitagawa and Tateda
(1985), for example.
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The previously known results of the last paragraph apply only to the case where
the unit cell is composed of two homogeneous layers. The long-wave limit can be
generalized to an arbitrary dielectric function profile within the unit cell (Lekner
1994, Sect. 4). To second-order in the cell thickness divided by the wavelength, the
single-period matrix for the s wave is (Chap. 12, (12.76))

Ms ¼
1� Rb

a
dz q2ðzÞðb� zÞ b� a

� Rb
a
dz q2ðzÞ 1� Rb

a
dz q2ðzÞðz� aÞ

2
6664

3
7775 ð13:86Þ

(the unit cell extends from z ¼ a to z ¼ b ¼ aþ dÞ. Thus

cos/s ¼
1
2
traceMs ¼ 1� 1

2
ðb� aÞ

Zb
a

dz q2ðzÞþ � � � ð13:87Þ

We expand cos/s as 1� 1
2 q

2
s ðb� aÞ2þ � � � and put

q2s ¼ esx
2=c2 � K2; q2ðzÞ ¼ eðzÞx2=c2 � K2: ð13:88Þ

Then (13.87) gives

es ¼ eh i � 1
b� a

Zb
a

dz eðzÞ: ð13:89Þ

For the p wave the unit cell matrix is given by (12.80) of Sect. 12.4 to
second-order in the cell thickness:

Mp ¼
1� Rb

a
dz q2ðzÞ=eðzÞ½ � Rb

z
df eðfÞ Rb

a
dz eðzÞ

� Rb
a
dz q2ðzÞ=eðzÞ 1� Rb

a
dz eðzÞ Rb

z
df q2ðfÞ=eðfÞ

2
6664

3
7775: ð13:90Þ

We expand cos/p ¼ 1
2 traceMp as 1� 1

2 q
2
pðb� aÞ2þ � � �, and set

q2p ¼ esx2c2 � ðes=epÞK2, to find the same es ¼ eh i as above, and

es
ep
ðb� aÞ2 ¼

Zb
a

dz=eðzÞ
Zb
z

df eðfÞ þ
Zb
a

dz eðzÞ
Zb
z

df=eðfÞ; ð13:91Þ
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which reduces to

1
ep
¼ 1

e

� �
� 1

b� a

Zb
a

dz
eðzÞ : ð13:92Þ

The expressions (13.89) and (13.92) for the ordinary and extraordinary dielectric
constants of the equivalent homogeneous but anisotropic medium reduce to (13.83)
in the special case of a unit cell made up of two homogeneous layers.

Thus, in the long-wave limit, any periodically stratified isotropic medium can be
replaced by a homogeneous uniaxial medium, with optic axis normal to the strat-
ification, and eo ¼ eh i, e�1e ¼ e�1

� �
. Since the harmonic mean of a set of positive

quantities is never more than their arithmetic mean, it follows that ee will not exceed
eo, provided eðzÞ is positive everywhere.

The reader may have noticed a curious feature of the proofs given above: the
periodicity of the stratification is used to define a Bloch wavevector via / ¼ qd,
where the cosine of / is half of the trace of the matrix for a unit cell, but the
thickness d of the unit cell drops out of the expressions for the equivalent ordinary
and extraordinary indices of the equivalent homogeneous medium, in the

long-wave limit. Could it be that the eo ¼ eh i and ee ¼ e�1
� ��1 results apply also to

disordered finely layered media? The following argument suggests that they do:
consider a stratification which appears disordered on a fine scale (for example the
nanometer scale), but is actually periodic on a larger scale (for example the period is
in the tens of nanometer range). The above proof then applies, provided the
wavelength of the radiation is larger still (for example hundreds of nanometers). It
seem plausible that non-periodic finely layered media can be represented in the
long-wave limit by an effective uniaxial medium with eo and ee given by (13.89)
and (13.92); the only difference is that disordered media will scatter more: they will
show reflection from variations in the dielectric function eðzÞ, even in the long-wave
limit.

13.5 Absorbing Periodically Stratified Media

This section examines the reflection by absorbing periodically stratified media.
Stop bands no longer exist in the strict sense, but their remnants influence reflection,
as we shall see. The rapid variation with angle of incidence or wavelength is
smoothed by absorption. On physical grounds we expect that the strong dependence
on N (the number of unit cells, or repetitions of one period of the stratification) will
also be smoothed by absorption. This is shown to be true, and indeed we prove that
provided N exceeds a number which is inversely proportional to the absorption, the
s and p reflectivities attain a universal form, independent of N and of the properties
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of the substrate. In this sense, at least, reflection from an absorbing periodically
stratified medium is simpler than from its non-absorbing idealization.

The idea that absorption will cause a periodically stratified medium to have the
above properties was seen in early papers (Koppelmann 1960; Flannery et al. 1979)
on multilayer dielectric reflectors, which found asymptotic (large NÞ properties for
the reflectance. Lakhtakia (2011) showed numerically that with absorption the
reflectance of rugate filters approaches a limiting form as N increases, dominated by
the stop band structure. General formulae were derived for the reflection amplitudes
of both polarizations by Lekner (2014), and will be given here.

13.5.1 Reflection of s-Polarized Plane Waves

The results of Sects. 13.1 and 13.2 hold for absorbing media also, since the layer
matrices giving the transmission and reflection properties of the periodic structure
remain unimodular in the presence of absorption. Let the reflecting stratification
contain N periods (of, for example, alternating high-index and low-index identical
bilayers), and let the outer surface of the stratification be the z ¼ 0 plane. Then the
reflection amplitude of the s-wave was given by in Sect. 13.2, (13.45):

rs ¼ q1q2m12þm21þ iq1ðm22 � rNÞ � iq2ðm11 � rNÞ
q1q2m12 � m21þ iq1ðm22 � rNÞþ iq2ðm11 � rNÞ : ð13:93Þ

Here q1 ¼ n1ðx=cÞ cos h1 and q2 ¼ n2ðx=cÞ cos h2 are the normal components of
the incident and transmitted wavevectors (h1 and h2 are the angles of incidence and
transmission) and

rN ¼ sin N � 1ð Þ/
sinN/

¼ cos/� sin/ cotN/ ð13:94Þ

depends on the angle / defined by

cos/ ¼ 1
2
trace M ¼ 1

2
m11þm22ð Þ; ð13:95Þ

where M is the 2� 2 matrix of one period,

M ¼ m11 m12

m21 m22

� �
: ð13:96Þ

For example, in the special case of a high-low multilayer, consisting of N repeti-
tions of constant refractive index nh and thickness h followed by constant index nl
and thickness l, the s-wave matrix was given in (13.40):
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M ¼ cl q�1l sl
�qlsl cl

� �
ch q�1h sh
�qhsh ch

� �

¼ clch � q�1l qhslsh clq�1h shþ q�1l slch
�qlslch � clqhsh clch � qlslq�1h sh

 ! ð13:97Þ

The wave-vector normal components ql and qh are given by

q2l ¼ el x
2=c2 � K2; q2h ¼ eh x

2=c2 � K2; K ¼ ðx=cÞn1 sin h1; ð13:98Þ

and we use the shorthand notation

cl ¼ cos qll; sl ¼ sin qll; ch ¼ cos qhh; sh ¼ sin qhh: ð13:99Þ

In this case, the angle / defined by (13.95) is given by

cos/s ¼ clch � 1
2
slsh q�1l qhþ qlq

�1
h

	 

: ð13:100Þ

For non-absorbing media, the stop bands are the regions where cos2 /[ 1.
For absorbing media, the dielectric functions el and eh are complex, related to the

complex indices of refraction by e ¼ er þ iei ¼ ðnr þ iniÞ2 ¼ n2r � n2i þ 2inrni. Thus
all of the matrix elements become complex, and / (still defined by (13.3)) is always
complex. As noted above, we expect the reflectance to become independent of the
number of periods N, if N is large enough (how large is specified below). Let
/ ¼ /r þ i/i, and assume for the moment that /i [ 0. In the definition (13.94) of
rN we have

cotN/ ¼ cosN/r coshN/i � i sinN/r sinhN/i

sinN/r coshN/i þ i cosN/r sinhN/i

¼ cosN/rð1þ nÞ � i sinN/rð1� nÞ
sinN/rð1þ nÞ þ i cosN/rð1� nÞ

¼ �iþO nð Þ; n ¼ e�2N/i

ð13:101Þ

Thus, for N/i large and positive, (13.94) and (13.101) give us

rN ¼ cos/þ i sin/þO e�2N/i
	 
 ¼ ei/þO e�2N/i

	 

: ð13:102Þ

If /i is negative, on the other hand, we obtain

rN ¼ cos/� i sin/þO e2N/i
	 
 ¼ e�i/þO e2N/i

	 

: ð13:103Þ
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We have thus verified our expectation that the exact number N of the stratifications
becomes unimportant, provided it is large enough to make expð�2N Imð/Þj jÞ
negligible.

Similar physical reasoning also leads us to expect that the substrate properties
should become unimportant for the reflectivity, because when there is absorption and
N is ‘large’, the incident wave does not penetrate to the substrate. Hence we expect
q2 ¼ n2ðx=cÞ cos h2 to drop out of the reflection amplitude (13.1) at the same time as
rN tends to its limit expð�i/Þ, independent of N. What is the condition under which
rs becomes independent of q2? Let us write the s-wave reflection amplitude as

rs ¼ aq2þ b
Aq2þB

¼ aðq2þ b=aÞ
Aðq2þB=AÞ : ð13:104Þ

It will be independent of q2 when b=a ¼ B=A, namely when

m21þ iq1ðm22 � rÞ
q1m12 � iðm11 � rÞ ¼

�m21þ iq1ðm22 � rÞ
q1m12þ iðm11 � rÞ : ð13:105Þ

Because of the unimodularity of the layer matrix ðm11m22 � m21m12 ¼ 1Þ the
condition (13.105) simplifies to

r2 � m11þm22ð Þrþ 1 ¼ 0: ð13:106Þ

Since m11þm22 ¼ 2 cos/ from the definition (13.95) of /, the solutions of
(13.106) are

r� ¼ e�i/; ð13:107Þ

in accord with (13.103, 13.104). The physical root of (13.106) is the one with
modulus less than unity. We have thus obtained the result, valid when N /ij j is large,
that the s-reflection amplitude takes a value independent of N and of q2, namely

rs ¼ a
A
¼ q1m12 � iðm11 � rÞ

q1m12þ iðm11 � rÞ ð13:108Þ

(where r satisfies (13.106)) or equivalently

rs ¼ b
B
¼ m21þ iq1ðm22 � rÞ
�m21þ iq1ðm22 � rÞ : ð13:109Þ

13.5.2 Reflection of p-Polarized Plane Waves

We can abbreviate the discussion here, because the formalism for p(TM)-polarized
incidence is almost the same as for s(TE)-polarized incidence. We shall show only
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the differences. The p-wave reflection amplitude for an N-layer stratification is
given by (13.49):

�rp ¼ Q1Q2m12þm21þ iQ1 m22 � rNð Þ � iQ2 m11 � rNð Þ
Q1Q2m12 � m21þ iQ1 m22 � rNð Þþ iQ2 m11 � rNð Þ ; ð13:110Þ

where

Q1 ¼ q1=e1 ¼ n�11
x
c

� 

cos h1; Q2 ¼ q2=e2 ¼ n�12

x
c

� 

cos h2; ð13:111Þ

and the matrix elements mij are to be calculated as specified above (13.42). In the
special case of the same high-low multilayer given as an example for the s-wave,
the matrix for one period becomes

M ¼ cl Q�1l sl
�Qlsl cl

� �
ch Q�1h sh
�Qhsh ch

� �
; ð13:112Þ

where cl ¼ cos qll, sl ¼ sin qll, ch ¼ cos qhh and sh ¼ sin qhh as before. The
effective wavenumbers Ql and Qh are defined by

Ql ¼ ql
el
; Qh ¼ qh

eh
: ð13:113Þ

The angle / defined in (13.95) is thus given by

cos/p ¼ clch � 1
2
slsh Q�1l QhþQlQ

�1
h

	 

: ð13:114Þ

The function rNð/Þ, which transforms the one-period into the N-period reflection
amplitude, is defined by (13.94) as before, but for the p-wave reflection we use /p,
which is different from /s except at normal incidence. Hence we again have
rN ¼ e�i/þOðe�2N /ij jÞ, and the reflection amplitude becomes independent of N
for N /ij j large. Thus, by the reasoning given in the previous section, the substrate
effective wave-number component Q2 also drops out of the reflection amplitude,
which can be written in the equivalent forms

�rp ¼ Q1m12 � i m11 � rð Þ
Q1m12þ i m11 � rð Þ ¼

m21þ iQ1 m22 � rð Þ
�m21þ iQ1 m22 � rð Þ : ð13:115Þ

The s and p reflectivities are the absolute squares of the reflection amplitudes:

Rs ¼ rsj j2; Rp ¼ rp
�� ��2 ð13:116Þ

336 13 Periodically Stratified Media



13.5.3 Application to an Absorbing Quarter-Wave Stack

Koppelmann (1960) appears to have been the first to show that weakly absorbing
multilayer dielectric reflectors have limiting reflectance properties independent of N
for large N. For a high-low stack, with refractive indices nhþ ikh and n‘þ ik‘, at the
design angular frequency x0 and quarter-wave layer thicknesses, such that

x0

c
¼ p=2

nhh
¼ p=2

nll
: ð13:117Þ

Koppelmann showed that the reflectivity at normal incidence and at x ¼ x0 is

R x0ð Þ ¼ 1� 2pn1 khþ klð Þ
n2h � n2l

þO k2h ; khkl; k
2
l

	 

: ð13:118Þ

In the absence of absorption the (fundamental) stop band extends over the range
x0 � Dx to x0þDx, where

Dx=x0 ¼ ð2=pÞ arcsin½ðnh � nlÞ=ðnhþ nlÞ�: ð13:119Þ

Within this range the reflectivity is unity for a non-absorbing infinite stack, and
approaches unity exponentially with N (Sect. 13.2). The value of cos2 / exceeds
unity: or example at x ¼ x0, cos/ ¼ �ðn2hþ n2l Þ=2nhnl\� 1. Hence / is com-
plex even in the absence of absorption. Figure 13.8 shows the reflectance of an

Fig. 13.8 Normal incidence reflectivity of a quarter-wave high-low stack, with n1 ¼ 1, nh ¼ 2:35
(ZnS), nl ¼ 1:38 (MgF2) and n2 ¼ 1:5 (glass). The absorptive (imaginary) parts of the refractive
indices kh; k‘ have both been set to 0:01, about two orders of magnitude larger than actual values,
so as to demonstrate the asymmetry in frequency dependence. The frequency range extends from
0:5x0 to 1:5x0; the stop band lies between x0 � Dx and x0þDx, with Dx given by (13.119).
The smooth curve is the large N limit; the oscillatory curve is drawn for N ¼ 30. The vertical lines
indicate the limits of the stop band for an infinite non-absorbing stack
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absorbing stack, calculated for 30 high-low layers, and also from any of the for-
mulae (13.109, 13.110) or (13.115) (all equivalent at normal incidence).

The matrix elements used are as defined in (13.97). Over the frequency range
plotted, the appropriate r value to be used is rþ . For example, at x ¼ x0 we find,
to first order in kh; k‘,

rþ ðx0Þ ¼ �nl=nhþ iðkhnl � klnhÞ=n2h; r�ðx0Þ ¼ �nh=nl � iðkhnl � klnhÞ=n2l :
ð13:120Þ

For finite N the reflectivity is oscillatory outside of the stop band region, x0 �
Dx to x0þDx. The oscillations increase in number and decrease in amplitude with
N. Inside the stop band the difference between the finite N reflectivity and its
asymptotic value is exponential in N (Sect. 13.2), and is well below visibility in the
example illustrated in Fig. 13.8.

Flannery et al. (1979) have noted that, with absorption, the maximum reflectivity
is obtained at a frequency xm not equal to x0. By expanding the reflectivity
obtained from (13.116) to first order in the imaginary parts of the refractive indices,
and to second order in x=x0 � 1, and differentiating the result with respect to x,
we obtain

xm

x0
¼ 1þ 4ðkhnl � klnhÞðnh � nlÞ

p2½khðn2hþ 2n2l � n21Þþ klð2n2hþ n2l � n21Þ�
þO kh; klð Þ: ð13:121Þ

To this order, the frequency shift is homogeneous of degree zero in kh; k‘: Thus
even infinitesimal absorption will shift the maximum away from x0 by a finite
amount, which seems paradoxical until one remembers that the whole range x0 �
Dx to x0þDx is a maximum for zero absorption. More details about the reflec-
tivity at x ¼ xm and at the location of the stop band edges can be found in Lekner
(2014).

The theory of this section is not restricted to piecewise constant dielectric
functions: an arbitrary periodic dielectric function profile will have (analytically or
numerically) a matrix for one period, with elements depending on the profile,
frequency, angle of incidence and polarization, and the formulae derived here will
give its asymptotic reflection properties.
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Chapter 14
Rough or Structured Surfaces

We have seen in Chap. 1 that a planar surface, or arbitrary stratification, will give
specular reflection of an incident plane wave. No real surface is perfectly planar,
and thus in practice there is a diffuse or scattered component, as well as a specular
component of the radiation. The rougher the surface, the greater the diffuseness of
the re-radiation from it. A rough surface which is planar on average (for example a
liquid-vapour interface stabilized by a gravitational field) is characterized by at least
two parameters: a length h giving the typical variation in the height of the surface,
and another length l giving the scale of correlations between displacements at
different points of the surface. The incident plane wave is characterized by its
wavelength k and angle of incidence h (measured relative to the mean surface,
assumed planar); the scattered radiation is characterized by two angles h0 and /0.
(We will not consider inelastic scattering by a dynamic surface here, so the
wavelength of the scattered radiation is taken to be that of the incident radiation.)
The characterization of scattered light is thus in terms of at least three lengths k; h; l,
and three angles h; h0;/0. In the geometrical optics limit ðk � h; lÞ the surface may
be taken to be locally plane, and thus the scattered light is obtained from the
statistical geometry of the surface by assuming specular reflection from each tilted
element. This is a good description of the reflection of light from large bodies of
water, provided that foam and spray are absent. Cox and Munk (1954), for example,
measured the roughness of the sea surface from photographs of the sun’s glitter.
Longuet-Higgins (1960) has studied in detail the geometry of reflection and
refraction at a random moving surface, of light originating at a point source. The
reflection of extended objects by gently rippled water is discussed in an illustrated
note by Lynch (1985).

This chapter will concentrate on the wave theory of reflection by rough surfaces,
specifically including diffraction effects which arise when the wavelength is com-
parable to the lengths characterizing the surface roughness.
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14.1 Reflection from Rough Surfaces:
The Rayleigh Criterion

From the wave theory point of view, a variation in height in the reflecting surface
by an amount h will be significant if the resulting path difference is comparable to
the wavelength k. Rayleigh (1879) noted that in the specular case the path differ-
ence is 2h cos h for the simple geometry shown in Fig. 14.1.

Since ð2p=kÞ cos h ¼ q, the normal component of the wavevector of the incident
light, we may write the Rayleigh criterion for the specular reflection off a surface as

2ph cos h � k or qh � 1: ð14:1Þ

The factor p inserted here is arbitrary: a more precise specification comes when
one takes a particular model of surface roughness. For the Gaussian model con-
sidered in Sect. 14.4 the operative roughness parameter is

R ¼ qþ q0ð Þ2 f2
� �

; ð14:2Þ

where q and q0 are the magnitudes of the normal components of the incident and
scattered wavevectors, and f2

� �

is the mean square surface height variation when
fh i ¼ 0. The intensity of specularly reflected radiation is proportional to exp ð�RÞ
in this model; non-specularly scattered light depends both on R and on the product
of the lateral correlation length l with the change in the lateral component of the
wavenumber.

The Rayleigh criterion (14.1) in terms of path or phase differences indicates that
with a given roughness long waves may be reflected specularly and short waves
diffusely, or that for given roughness and wavelength there may be diffuse scat-
tering near normal incidence and specular reflection near grazing incidence. The

Fig. 14.1 Path difference between rays reflecting specularly in the presence and absence of a step
of height h. The path difference between the rays equals ABþBB0ð Þ � AA0 ¼ 2h sec h� 2h tan h
sin h ¼ 2h cos h
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change from diffuse to specular reflection with angle of incidence is apparent with a
plate of ground or smoked glass. Further discussion may be found in Rayleigh’s
lecture on “Polish” (1901) and in Wood (1934), pp. 39–41.

14.2 Corrugated Surfaces, Diffraction Gratings

The simplest roughness to consider is that of a periodic corrugation of a sharply
defined surface at z ¼ fðxÞ:

f xð Þ ¼
X1

1

ðcn cos npxþ sn sin npxÞ ¼ 1
2

X1

1

½ðcn � isnÞeinpx þðcn þ isnÞe�inpx�:

ð14:3Þ

The period of the corrugations is d ¼ 2p=p. The method to be presented here was
developed by Rayleigh (1896, 1907a) and rests on an assumption (“the Rayleigh
hypothesis”) which will be stated below and discussed again at the end of this
section. Consider a plane wave incident (perpendicularly to the corrugations) at an
angle of incidence h relative to the normal to the averaged surface. If k ¼ 2p=k is
the total wavenumber in the medium of incidence, the incoming wave is

wi ¼ eikðx sin hþ z cos hÞ ¼ eiðKxþ qzÞ: ð14:4Þ

The specularly reflected wave is

w0 ¼ A0e
ikðx sin h�z cos hÞ ¼ A0e

iðKx�qzÞ: ð14:5Þ

For reflected spectra of the nth order the wave is represented by terms like (14.5)
with hn;Kn and qn instead of h;K and q, where

k sin hn � Kn ¼ Kþ np; k cos hn � qn: ð14:6Þ

The first part of (14.6) is the grating equation giving the direction of the nth order,
which may be written as the condition that the path difference (to a distant point)
between waves originating a distance d apart on the grating is an integral number of
wavelengths:

dðsin hn � sin hÞ ¼ nk: ð14:7Þ

The zeroth order ðn ¼ 0Þ is the specularly reflected wave w0. Since the surface
shape f xð Þ is expressed as a sum over positive integers n, while the grating
equations (14.6) or (14.7) may have negative n, it is convenient to define the primed
quantities h0n;K

0
n; q

0
n obtained by changing the sign of n in (14.6), and sum over

positive n:
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k sin h0n � K 0
n ¼ K � np; k cos h0n � q0n: ð14:60Þ

The spectra of the nth order are represented by

wn ¼ Ane
ikðx sin hn�z cos hnÞ þA0

ne
ikðx sin h0n�z cos h0nÞ ¼ Ane

iðKnx�qnzÞ þA0
ne

iðK0
nx�q0nzÞ:

ð14:8Þ

Since

K2
n þ q2n ¼ k2 ¼ K 0

n

� �2 þ q0n
� �2

; ð14:9Þ

the wavefunction (time dependence e�ikct is understood)

W ¼ wi þw0 þ
X1

1

wn ð14:10Þ

satisfies the wave equation r2 þ k2ð ÞW ¼ 0 outside the reflecting surface. The
Rayleigh hypothesis is that (14.10), which expresses the total wave as a sum of the
incident wave plus all reflected spectral orders, with arbitrary amplitudes A0;An;A0

n,
is complete. That is, it is assumed that (14.10) has sufficient generality to satisfy the
boundary conditions on an arbitrary periodically corrugated surface. More will be
said about this hypothesis later; here we note that evanescent waves, that is those
with

q2n ¼ k2 � Kþ npð Þ2 \ 0 or q0n
� �2¼ k2 � K � npð Þ2\0 ð14:11Þ

are to be included in (14.10). These correspond to orders that have “passed off over
the grating horizon”, and decay exponentially with zj j. From (14.6), (14.6′) and
(14.9), we see that at normal incidence ðK ¼ 0) the maximum visible order is the
integer part of d=k, so that if d\ k only the zeroth or specular order will be seen.
At oblique incidence, the maximum visible order is the integer part of 2d=k, since
the maximum value of K is k (attained at grazing incidence), and

q0n
� �2¼ k2 � K � npð Þ2 ð14:12Þ

will stay positive when K ¼ k for np\ 2k or n\ 2d=k. Thus if d\ k=2 there will
be only specular reflection, at any angle of incidence, and the corrugated surface no
longer acts as a diffraction grating. (There are near-field effects, but no spectra are
visible in the far-field region.)

The amplitudes of the spectral orders, A0;An and A0
n, are found from the

boundary conditions to be imposed on (14.10) at the surface. The simplest case to
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consider is that of a perfect reflector with the incident wave polarized so that the
electric field lies along the corrugations. The boundary condition for this case is
W ¼ 0 on z ¼ f. All of the incident energy is thrown back, and is distributed
between the specular beam and the reflected spectra. (The spectra represented by
evanescent waves do not radiate energy.) The total wavefunction

W x; zð Þ ¼ eiKx eiqz þA0e
�iqz þ

X1

1

ðAne
inpx�iqnz þA0

ne
�inpx�iq0nzÞ

( )

ð14:13Þ

is to be zero on z ¼ fðxÞ.
Two methods, both due to Rayleigh, exist for extracting the spectral amplitudes.

We shall give an outline of both. In the first method, Rayleigh expands (14.13) in
powers of f and equates coefficients of expð�inpxÞ, fðxÞ being given by (14.3). If
we keep the zeroth and first powers of f in (14.13), W x; f xð Þð Þ ¼ 0 reads

0 ¼ 1þA0 þ
X1

1

Ane
inpx þA0

ne
�inpx

� �þ iqf 1� A0ð ÞþOðf2Þ: ð14:14Þ

To the zeroth power of f

1þA0 ¼ 0; ð14:15Þ

and all the An and A0
n are zero. To the first power of f the value A0 ¼ �1 still holds,

and

An ¼ �iq cn � isnð Þ; A0
n ¼ �iqðcn þ isnÞ ð14:16Þ

To this approximation, the amplitudes of the �n orders are given by the nth Fourier
coefficients of the corrugation. If the corrugation is purely sinusoidal (only c1 and s1
non-zero) only the �1 diffraction orders have amplitudes which are non-zero when
the calculation is taken to the first power of f. Rayleigh (1907a) gives the coeffi-
cients to the second power of f.

We now turn to consider the other (p or TM) polarization, with the electric field
in the incident wave perpendicular to the corrugations. In this case W corresponds
to By, and the electric field is proportional to curlB, that is to ð�@zW; 0; @xWÞ. For a
perfect reflector, the component of the electric field parallel to the (local) surface is
to be zero. The boundary condition is thus

@zW� @xW df=dxð Þz¼f¼ 0: ð14:17Þ

W is the total field, again given by (14.13). Expansion in powers of f now gives
A0 ¼ 1 from the coefficients of the zeroth power, and
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An ¼ iðcn � isnÞðq2 � nKpÞ=qn;
A0
n ¼ iðcn þ isnÞðq2 þ nKpÞ=q0n;

ð14:18Þ

from the coefficients of the first power of f, A0 being unchanged to this order. We
note that (in this approximation) the coefficients An or A0

n diverge when qn or q0n go
through zero, that is at the passing off of the nth order. Rayleigh shows that the
passing off of an order of the spectrum can have an effect on other orders. For
example: in the special case of normal incidence, and a corrugation for which only
c1 and c2 are non-zero in the Fourier expansion (14.3), calculation of A1 to the
second power in f gives

A1 ¼ ik2c1
q1

� k2c1c2
2q21

q21 þ 2p2
� �� k2c1c2

2q1q2
q22 þ 2p2
� �

: ð14:19Þ

To this approximation, the coefficient of the first order can diverge when the second
order is passing off. According to Rayleigh (1907a), “we may at least infer the
probability of abnormalities in the brightness of any spectrum at the moment when
one of a higher order is disappearing, abnormalities limited, however, to the case
where the electric displacement is perpendicular to the ruling”. In a subsequent
paper Rayleigh (1907b) used these results to interpret and explain anomalies found
by Wood (1902) under precisely these conditions. There are in fact two types of
Wood’s anomalies: a sharp anomaly, appearing as a sudden change of intensity
along the spectrum at frequencies and indices corresponding to a passing off of a
higher order; and a diffuse anomaly related to resonance in the production of
surface waves in the grating. Grating anomalies and electromagnetic surface modes
are reviewed by Maystre (1982).

Rayleigh’s second method (Rayleigh 1896, 1907a) uses the Jacobi expansion

exp ia cos/ð Þ ¼ J0 að Þþ 2
X1

1

in cos n/JnðaÞ; ð14:20Þ

which follows on substituting t ¼ iei/ into the generating function for Bessel
functions (Watson 1944, Sect. 2.1)

exp a t � t�1� �

=2
� � ¼

X1

�1
tnJn að Þ ¼ J0ðaÞþ

X1

1

½tn þ �ð Þnt�n�Jn að Þ: ð14:21Þ

We will demonstrate the method for the simplest case of normal incidence onto a
pure cosine corrugation,

f xð Þ ¼ a cos px ð14:22Þ
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(c1 ¼ a, all other cn and sn are zero in (14.3)). At normal incidence
K ¼ 0; q ¼ k; qn ¼ q0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � n2p2
p

, and for a cosine corrugation the diffraction
pattern is symmetric, with An ¼ A0

n. Thus (14.13) becomes

W x; zð Þ ¼ eikz þA0e
�ikz þ 2

X1

1

An cos npxe�iqnz: ð14:23Þ

If the electric field is parallel to the corrugations, W corresponds to Ey and the
boundary condition W x; f xð Þð Þ ¼ 0 reads

exp ia cos pxð ÞþA0 exp �ia cos pxð Þþ 2
X1

1

An cos npx expð�ian cos pxÞ ¼ 0;

ð14:24Þ

where a ¼ ka; an ¼ qna. On applying (14.20) and setting the coefficients of cos npx
equal to zero for n ¼ 0; 1; 2; . . . one obtains an infinite set of linear equations for the
coefficients An. The first of these, obtained by equating the coefficient of the term
independent of x to zero, is

ð1þA0ÞJ0 að Þþ 2
X1

1

An �ið ÞnJn anð Þ ¼ 0: ð14:25Þ

Rayleigh (1907a) obtained the coefficients in the expansion in powers of the
amplitude a of the corrugation up to the third order. The first five are given below
up to the fourth order in a:

A0 ¼ �1þ aa1 þ 1
8
aa1ða2 � 4aa1 þ 2a21 � 2a1a2 þ a22Þ

A1 ¼ �iaþ ia
8

a2 þ 4aa1 � 3a21 þ 2a1a2
� �

;

A2 ¼ 1
2
aa1 þ a

48
ð3a2a1 � a2a3 � 12aa21 þ 5a31 � 6a21a2 þ 3a21a3 þ 6a1a22 � 6a1a2a3Þ

A3 ¼ ia
24

ða2 � 3a21 þ 6a1a2Þ

A4 ¼ � a
48

ða2a3 þ a31 � 3a21a3 � 3a1a22 þ 6a1a2a3Þ
ð14:26Þ

The infinite set of linear equations for the spectral amplitudes may be solved,
approximately but without assuming a to be small, by truncating at some n ¼ N.
That is, all An for n[N are set equal to zero, and the linear system is solved for the
Nþ 1 unknowns A0;A1; . . .;AN . The solution is checked by increasing N to see if
this produces an appreciable difference. Another check is to solve the modified but
equally valid systems obtained by multiplying (14.24) by an arbitrary power of
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expði cos pxÞ. For example, the terms independent of x in (14.24) multiplied by
expðia cos pxÞ or expð�ia cos pxÞ are respectively

J0 2að ÞþA0 þ 2
X1

1

Ani
nJn a� anð Þ ¼ 0; ð14:27Þ

1þA0J0 2að Þþ 2
X1

1

An �ið ÞnJn aþ anð Þ ¼ 0: ð14:28Þ

The preceding analyses were based on the Rayleigh hypothesis, namely on the
assumption that the wave function (14.10) is sufficiently general to satisfy the
boundary conditions on an arbitrary corrugated surface. The hypothesis turns out to
be true for some cases and false in others, but in a restricted least-squares sense it
can always be applied. Petit and Cadilhac (1966) showed that for the pure cosine
corrugation f xð Þ ¼ a cos px, and with W ¼ 0 on the boundary, the Rayleigh
hypothesis breaks down for pa[ 0:4477432. . ., that is when the amplitude a of the
corrugation is greater than about 7 % of its period 2p=p. This number comes from
solving the transcendental equation

eb ¼ bþ 1
b� 1

; pa ¼ ðb� b�1Þ=2; ð14:29Þ

which is obtained by considering properties of the solution (14.10) analytically
continued across the boundary z ¼ fðxÞ. Millar (1971) later demonstrated that the
Rayleigh hypothesis is valid for this problem when pa is smaller than the critical
value given above. These papers thus established that there are situations in which
the Rayleigh hypothesis is valid and others in which it is not. From the practical
point of view, the Rayleigh hypothesis may always be used if the coefficients are
determined by satisfying the boundary conditions in the least-squares sense, since it
has been shown that there is a linear combination of N elements of the set of plane
waves in (14.10) that converges on the boundary to the prescribed boundary values,
in the mean-square sense, as N ! 1 (Yasuura 1971; Millar 1973).

The Rayleigh methods can be used to study scattering by non-periodic surfaces
z ¼ fðxÞ or z ¼ fðx; yÞ, since the function f can artificially be made periodic by
repetition of a large section of the surface, and f can then be expanded in a single or
double Fourier series. We noted above (see (14.6), (14.11) and the discussion
following (14.19)) that evanescent waves, with imaginary components of the nor-
mal component of the wavenumber, and corresponding to grating orders that have
“passed off”, are associated with the production of surface waves. A rough surface
thus enables coupling of an incoming plane wave to electromagnetic surface waves.
For metal surfaces this effect is important in the study of surface roughness and of
surface electromagnetic waves in metals (referred to in solid state physics as surface
plasmons or surface polaritons). Reviews of this field may be found in the col-
lection edited by Agranovich and Mills (1982): see in particular the chapters by
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Raether (1982) and Maradudin (1982); further references will be given at the end of
this chapter. For smooth surfaces, coupling to electromagnetic surface waves is
possible via attenuated total reflection, as discussed in Sects. 10.6 and 12.6.

14.3 Scattering of Light by Liquid Surfaces

A clean and undisturbed liquid surface, such as that of mercury or water, gives an
impression of perfect smoothness. The liquid surface is however roughened by
thermal excitation of surface waves. Mandelstam (1913) calculated the angular
distribution of the light scattered by the thermally induced fluctuations in a liquid
surface, in the plane of incidence. His calculation is based on expanding the surface
distortion in terms of a double Fourier series,

f x; y; tð Þ ¼
X

k

eik:rfkðtÞ: ð14:30Þ

(In this section k is a two-dimensional wavevector in the plane of the surface, and
r ¼ ðx; yÞ a two-dimensional position vector in the plane.) It follows from the
equations of continuum hydrodynamics that the Fourier components fk are the
normal mode coordinates for the surface vibrations, since the Hamiltonian of the
excitations is, to second order in fk,

H ¼ 1
2
A
X

k

.
k
@tfkj j2 þðqgþ rk2Þ fkj j2

n o

; ð14:31Þ

where A is the area of the surface, q is the mass density of the liquid, g is the
acceleration due to gravity, and r is the surface tension. Comparison of (14.31) with

the harmonic oscillator Hamiltonian 1
2m @txð Þ2 þ x2x2

h i

shows that the effective

mass mk and angular frequency xk of the mode corresponding to fk are given by

mk ¼ qA
k
; x2

k ¼ gkþ rk3

q
: ð14:32Þ

From statistical mechanics of the harmonic oscillator the thermal average of fkj j2 is

fkj j2
D E

¼ �h
2mkxk

coth
�hxk

2T
; ð14:33Þ

where �h is Planck’s constant divided by 2p and T is the temperature, expressed in
energy units. When T � �hxk, which holds for most of the surface excitations of
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classical liquids but not for those of the quantum liquids He3, He4 and H2, (14.33)
gives

fkj j2
D E

� T
mkx2

k

¼ T
A qgþ rk2ð Þ : ð14:34Þ

Mandelstam’s calculation was based on Rayleigh’s theory of gratings, as out-
lined in the last section. There we assumed for simplicity that the corrugated surface
was a perfect reflector. This would be a good approximation for the surfaces of
liquid metals, but a very poor approximation if applied to dielectric fluids. We will
therefore give a condensed treatment of Rayleigh’s calculation for reflection and
scattering off a corrugated interface between two media of dielectric functions e and
~e. A plane electromagnetic wave of angular frequency x with wavevector in the zx
plane is incident at angle h onto a one-dimensionally corrugated surface

f xð Þ ¼
X

fne
inpx; ð14:35Þ

where the sum is over positive and negative integers n but excluding zero. This
Fourier series is equivalent to (14.3) if fn ¼ ðcn � isnÞ=2 for positive n and
ðcn þ isnÞ=2 for negative n. The incident, specularly reflected, and nth order dif-
fracted waves are again given by

wi ¼ eiðKxþ qzÞ; w0 ¼ eiðKx�qzÞ; wn ¼ Ane
iðKnx�qnzÞ; ð14:36Þ

where the tangential and normal components of the wavevectors are related by

K2 þ q2 ¼ ex2=c2; K ¼ ffiffi
e

p ðx=cÞ sin h; q ¼ ffiffi
e

p ðx=cÞ cos h; ð14:37Þ

K2
n þ q2n ¼ ex2=c2; Kn ¼

ffiffi
e

p ðx=cÞ sin hn; qn ¼
ffiffi
e

p ðx=cÞ cos hn; ð14:38Þ

with Kn given by the grating equation (14.6) or (14.6′), Kn ¼ Kþ np. The total
wave on the incidence side of the surface is

W ¼ wi þw0 þ
X

n 6¼0

wn: ð14:39Þ

The total wave on the other side is

~W ¼ ~w0 þ
X

n 6¼0

~wn ¼ B0e
iðKxþ ~qzÞ þ

X

n6¼0

Bne
iðKnxþ ~qnzÞ; ð14:40Þ

where

K2 þ ~q2 ¼ ~e x2=c2; K ¼
ffiffi

~e
p

ðx=cÞ sin ~h; ~q ¼
ffiffi

~e
p

ðx=cÞ cos ~h; ð14:41Þ
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K2
n þ ~q2n ¼ ~e x2=c2; Kn ¼ Kþ np; ~qn ¼

ffiffi

~e
p

ðx=cÞ cos ~hn ð14:42Þ

We will consider the case where the electric field vector is along the corruga-
tions. Then W and ~W represent the electric field, and the boundary conditions are
the equality of W and ~W and of their normal derivatives on z ¼ fðxÞ. The latter
condition implies that

@zW� @xW df=dxð Þz¼f¼ @z ~W� @x ~Wdf=dx
� �

z¼f ð14:43Þ

(compare (14.17)). The equality of W and of ~W on z ¼ fðxÞ gives, after removal of
the common factor eiKx,

eiqf þA0e
�iqf þ

X

n 6¼0

Ane
iðnpx�qfÞ ¼ B0e

i~qf þ
X

n6¼0

Bne
iðnpxþ ~qfÞ: ð14:44Þ

To first order in f this reads

1þA0 � B0 þ
X

n6¼0

An � Bnð Þeinpx þ if q� qA0 � ~qB0ð Þ ¼ 0: ð14:45Þ

The zeroth order part gives B0 ¼ 1þA0, and the first order part (on using (14.35)
and equating coefficients of einpx) gives

Bn � An ¼ ifn q 1� A0ð Þ � ~qB0f g: ð14:46Þ

The boundary condition (14.43) may be written as

@z W� ~W
� � ¼ @x W� ~W

� �

df=dx on z ¼ fðxÞ; ð14:47Þ

in which we use

W� ~W ¼ eiKx eiqz þA0e
�iqz � B0e

i~qz þ
X

n 6¼0

einpxðAne
�iqnz � Bne

i~qnzÞ
( )

: ð14:48Þ

Thus (14.47) reads, to the first order in f,

q 1� A0ð Þ � ~qB0 þ if q2 1þA0ð Þ � ~q2B0
� �� �

X

n 6¼0

einpx qnAn þ ~qnBnð Þ

¼ pK 1þA0 � B0ð Þ
X

n 6¼0

nfne
inpx: ð14:49Þ
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The zeroth order part of (14.49) is q 1� A0ð Þ ¼ ~qB0, and the first order part gives,
on equating coefficients of einpx and using the fact that 1þA0 ¼ B0 (which makes
the right-hand side of (14.49) zero),

ifnB0 q2 � ~q2
� � ¼ qnAn þ ~q2nBn: ð14:50Þ

The zeroth order parts 1þA0 ¼ B0 and q 1� A0ð Þ ¼ ~qB0 give the specular
coefficients

A0 ¼ q� ~q
qþ ~q

; B0 ¼ 2q
qþ ~q

: ð14:51Þ

Thus A0 and B0 are the Fresnel reflection and transmission amplitudes for a flat
surface (Sect. 1.1). Also (14.46) implies Bn ¼ An (to this order in f) and (14.50)
gives

An ¼ 2ifnq
q� ~q
qn þ ~qn

¼ 2ifn
ffiffi
e

p ðx=cÞ
cos h sin ~h� h

	 


sin ~h cos hn þ sin h cos ~hn
: ð14:52Þ

Equation (14.52) gives the angular dependence of the amplitude of the
non-specularly reflected or transmitted radiation due to the Fourier component fn of

the corrugation. The average intensity is proportional to Anj j2
D E

and thus to

fnj j2
D E

; the latter is found from (14.34) on identifying the wavenumber k of the

surface waves with the change in the lateral component of the radiation wavevector.
From (14.42) this is np ¼ Kn � K ¼ ffiffi

e
p ðx=cÞðsin hn � sin hÞ. The intensity (in the

plane of incidence) scattered into the direction hn by a thermally roughened surface
is thus proportional to

Anj j2
D E

¼ 4e
x2

c2
T=A

qgþ r Kn � Kð Þ2
q q� ~qð Þ
qn þ ~qn

� �2

: ð14:53Þ

This, in essence, is the result of Mandelstam (1913). Andronov and Leontovich
(1926) and Gans (1926) later obtained formulae for the scattered intensity which are
not restricted to the plane of incidence. Bouchiat and Langevin (1978) have
extended these results by including scattering by surface structural and orientational
fluctuations, but still keeping the assumption of a discontinuous interface. Earlier, in
an unpublished thesis, Triezenberg (1973) had in fact constructed a perturbation
theory for light scattering from thermal fluctuations in a thin diffuse interface.
Triezenberg’s results are restricted to the s polarization (electric field perpendicular
to the plane of incidence), and thus are not applicable to ellipsometric data.
Beaglehole (1980) first gave a theoretical expression for the ellipsometric ratio
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rp=rs, to first order in the distortions of an interface. It takes the form (3.46), namely
that obtained for a planar diffuse interface, with

I1 ¼ e� ~eð Þ2
eþ~e

Tkmax

pr
; ð14:54Þ

where kmax is a wavenumber cut-off for the thermally excited surface waves. This
result was deduced using the work of Bedeaux and Vlieger (1973) and Kretschman
and Kroger (1975). A more complete theory leading to (14.54) has been given by
Zielinska et al. (1981, 1983). Further discussion may be found in Beag1ehole
(1982, 1983).

14.4 The Surface Integral Formulation of Scattering
by Rough Surfaces

The preceding two sections have introduced and applied the Rayleigh method of
calculating scattering by rough surfaces. An alternative method is based on the
Kirchhoff formulation of diffraction theory. It is sometimes called the Kirchhoff
method, although the approach was developed by Antokolskii, Brekhovskikh,
Isakovich, Davis, Beckmann and others. References to the original work may be
found in Beckmann and Spizzichino (1963), Shmelev (1972) and Bass and Fuks
(1979); the outline given below is based on Beckmann’s part of the book by
Beckmann and Spizzichino. A more detailed treatment is given in Chap. 4 of
Ogilvy (1991) and Chap. 7 of Nieto-Vesperinas (2006).

The method to be described is based on the following theorem of Helmholtz
(Baker and Copson 1950, Sect. 4.2): if E is a solution of ðr2 þ k2ÞE ¼ 0 whose
first and second partial derivatives are continuous within and on a closed surface S,
R is the distance from a fixed point P and @n denotes differentiation along the
inward normal to S, then if P lies inside S,

E Pð Þ ¼ 1
4p

ZZ

dS E@n
eikR

R


 �

� eikR

R
@nE

� �

: ð14:55Þ

Thus the solution of the wave equation ðr2 þ k2ÞE ¼ 0 at an interior point of a
region can be found in terms of the values of E and @nE on the boundary of the
region.

Consider now the evaluation of the integral in (14.55) in terms of the (presumed
known) values of E on a rough surface, when the point P is taken to be far from the
surface. If R is the distance to P from a radiating element on the surface, which is at
r relative to an origin near the surface, and k and k0 are the wavevectors of the
incoming and scattered radiation, then R � R0 � k0:r=k, where R0 is the distance
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from the origin to P, and k is the magnitude of k and of k0. In the surface integral
(14.55), the spherical wave radiating from the element at r may be approximated as

eikR

R
� eikR0

R0
e�ik0:r: ð14:56Þ

The unknowns in (14.55), namely the field E and its normal derivatives @nE, are
approximated from the field that would be present at a given point on the surface if
the surface were replaced by its tangent plane at that point. If the radiation is excited
by an incident plane wave expðik:rÞ, and is assumed to have the electric field locally
along the surface (the latter can only be true in an average sense for a surface with
two-dimensional roughness), then E corresponds to Ey when zx is the plane of
incidence. If further the surface is assumed to reflect perfectly, the scattered
intensity which follows from the squared modulus of (14.55) is shown to be pro-
portional to

F2
Z1

�1
dx

Z1

�1
dy eixDKx þ iyDKyv Dq; .ð Þ: ð14:57Þ

Here DKx and DKy are the x and y components of k� k0, and Dq ¼ qþ q0 is the
z component of k� k0. The function v is the expectation value of exp½iDq f1 � f2ð Þ�,
where f1 and f2 are the vertical displacements of the surface (from a mean value of
zero) at two points separated on the surface by the distance . ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. The
factor F depends on the angle of incidence h, and on the direction of the scattered
radiation ðh0;/0Þ with h and h0 being measured relative to the normal to the aver-
aged surface, and /0 being the azimuthal deviation of the scattered radiation from
the specular plane:

Fðh; h0;/0Þ ¼ 1� cos h cos h0 � sin h sin h0 cos/0

cos hðcos hþ cos h0Þ : ð14:58Þ

On transforming the integration variables from x; y to .;/ via x ¼ . cos/; y ¼
. sin/; (14.57) becomes

F2
Z1

0

d. . v Dq; .ð Þ
Z2p

0

d/ eiða cos/þb sin/Þ; ð14:59Þ

where a ¼ .DKx and b ¼ .DKy. The integral over / is equal to 2pJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

Þ;
this follows from the Jacobi expansion (14.20). Thus the scattered intensity is
proportional to
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2pF2
Z1

0

d. . v Dq; .ð ÞJ0ð.DKÞ; ð14:60Þ

where DK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DK2
x þDK2

y

q

. The scattered intensity is seen to depend on both Dq

and DK, the magnitudes of the normal and lateral components of the change in
wavevector due to the scattering, k� k0.

An important special case is that of scattering by a normally distributed surface
(Beckmann, Sect. 5.3) for which

v Dq; .ð Þ ¼ exp �R½1� C .ð Þ�f g: ð14:61Þ

In (14.61) R is the roughness parameter defined in Sect. 14.1,

R ¼ qþ q0ð Þ2 f2
� � ¼ Dqð Þ2 f2

� �

; ð14:62Þ

and Cð.Þ is the correlation function for vertical displacements of the surface,
characterized by a lateral correlation length l:

C .ð Þ ¼ fð0Þfð.Þh i
f2
� � ¼ expð� .2

l2
Þ: ð14:63Þ

In this case (14.60) becomes

2pF2e�R X1

0

Rn

n!

Z1

0

d. . expð�n
.2

l2
ÞJ0ð.DKÞ: ð14:64Þ

The integral in (14.64) is known as Weber’s first exponential integral (Watson
1944, Sect. 13.3), and is equal to ðl2=2nÞexp½� lDKð Þ2=4n�. The n ¼ 0 term is zero,
except for exactly specular reflection (DK ¼ 0), in which case it diverges. This
divergence is a consequence of having calculated the intensity for an infinite and
perfectly reflecting surface (see also the discussion following (3.34) in Rice 1951).
We omit the n ¼ 0 term; the non-specular intensity is thus proportional to

pF2l2e�R X1

1

Rn

n!n
exp½� lDKð Þ2=4n�: ð14:65Þ

The series in (14.65) has the upper and lower bounds

R exp � lDKð Þ2
4

" #

\
X1

1

Rn

n!n
exp � lDKð Þ2

4n

" #

	
ZR

0

dr
er � 1ð Þ

r
: ð14:66Þ
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The lower bound comes from taking the first term in the series, the upper bound
from setting lDK ¼ 0. For a slightly rough surface (small R), (14.65) is approxi-
mately equal to

pF2l2R exp½�R � lDK=2ð Þ2�: ð14:67Þ

For other than specular reflection the intensity depends on both the mean-square
height variation f2

� �

, and on the latera1 correlation length l.
The specular intensity has to be obtained separately. Beckmann shows that it

depends on Dqð Þ2 f2
� �

only, being proportional to e�R. Details may be found in
Beckmann (Sect. 5.3) and Chandley and Welford (1975); see also Bennett and
Porteus (1961) for a discussion and experimental test of the e�R law at normal
incidence, and Nieto-Vesperinas and Garcia (1981) for an analysis of the validity of
the surface integral method.

14.5 Absorbing and Rough Surfaces that Are Wet

From early childhood we learn to distinguish wet from dry, not just by touch, but
also by sight. Many objects, notably those with rough and absorbing surfaces, are
darker when wet: they reflect less light. Ångström (1925) noted that the ‘reflection
power of the surface of the earth’ needs to be known in order to understand ‘the
heat economy of the earth’s atmosphere and the circulation of energy within it’. He
suggested why a rough absorbing surface reflects less light when wet: diffuse
reflection from the rough surface. If the rough absorbing surface is covered by a

Fig. 14.2 Liquid layer on a rough surface. The fraction of light intensity along paths in the liquid
layer is indicated. The dashed lines indicate light which contributes to the albedo
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thin layer of water, the diffuse reflection leads to internal reflection from the
water-air interface, and thus more absorption.

This idea is illustrated in Fig. 14.2: a fraction 1� R (R is the reflectivity at the
liquid surface) is transmitted into the liquid layer, a fraction a of this is absorbed at
the solid surface, and ð1� RÞð1� aÞ reflected. At the liquid surface, there is
probability p of reflection back to the absorbing solid, and so on. (A planar liquid
surface is drawn, but the idea works for an arbitrarily curved or distorted surface).

The probability of absorption by the rough surface is

P ¼ 1� Rð Þ aþ a 1� að Þpþ a 1� að Þ2p2 þ . . .
h i

¼ 1� Rð Þa
1� 1� að Þp : ð14:68Þ

Ångström evaluated probability p of internal reflection at the liquid surface by
assuming that all of the light with internal angle of incidence greater than the critical
angle hc ¼ arcsinð1=nÞ for the liquid is reflected (as it is) and that none incident at
smaller angle is reflected (an approximation). His result, assuming a Lambertian
surface, which has intensity reflected at angle h proportional to its area projection
onto the outgoing direction, namely to cos h, is

p ¼ cos2hc ¼ 1� 1=n2: ð14:69Þ

The equations (14.68) and (14.69) are together equivalent to Ångström’s result,
except that he also omitted the ð1� RÞ factor. The effect of reflection below the
critical angle can be calculated (Lekner and Dorf 1988) but the resulting p is only
about 10 % bigger for water.

The albedo A ¼ 1� P for a wetted surface is plotted against the corresponding
dry value (no liquid film) in Fig. 3 of Lekner and Dorf (1988). The wet albedo is
found to be smaller than the dry albedo except in the limit of very small absorption.

A very different explanation of the wet-dark effect was given by Bohren (1983)
and Twomey et al. (1986) in terms of multiple scattering by particulate matter. The

Fig. 14.3 A light ray requires just two scatterings at 90° to re-emerge, but six scatterings at 30°
(the shortest possible path is assumed in both cases, with equal distances between scattering).
Enhanced forward scattering increases the likelihood of absorption
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basic idea is that water or other wetting liquids decrease the relative refractive index
and thereby increases the degree of forward scattering. (An extreme case is perfect
index matching, in which case there is no scattering, or equivalently, entirely for-
ward scattering.) In wet sand, for example, each sand grain scatters more in the
forward direction than in dry sand. This is schematically illustrated in Fig. 14.3,
based on Fig. 3 of Bohren’s (1983) paper.

One interesting and verifiable consequence of the multiple scattering explanation
is that the better the match of the liquid refractive index with that of the scatterer,
the more forward bias there is in the scattering, and the darker the wetted substance.
The Bohren papers show sand (n � 1:5) wetted with water (n � 1:3) and with
benzene (n � 1:4). The latter is much darker, because of the closer index match.
The effect of index matching is also in the Ångström theory through the probability
of absorption a, which is greater when the solid is wetted, because it reflects less. In
fact the multiple scattering approach gives a graph of wet versus dry albedo
(Twomey, Bohren and Mergenthaler, Fig. 5) almost the same as Fig. 3 of Lekner
and Dorf (1988), based on Ångström’s idea and its developments.

The two theories, based on such different approaches, clearly apply to different
circumstances. Ångström’s idea is best for surfaces such as asphalt or concrete, the
Bohren idea of multiple scattering together with enhanced forward scattering
applies best to porous granular materials such as sand. Clothing fabric is an
intermediate case.

14.6 Coherent Backscattering

Suppose that in Fig. 14.3 the wave follows the paths A ! B, and simultaneously the
reversed paths B ! A as well. (We assume an incoming wave front wider than AB
in both cases.) The two amplitudes corresponding to the direct and reversed paths
will be in phase, and will thus interfere constructively. Thus we can expect
enhanced reflection in the backscattering direction. For perfect coherence and exact
reversal the intensity is expected to peak at twice the nearby intensity, since
coherent superposition of two waves w gives intensity 2wj j2, whereas the inco-
herent (random phase) intensity is 2 wj j2. The coherent backscattering effect is
generally weak, and may be difficult to measure because of occlusion of the detector
by the source. Enhanced backscattering is just visible from the air at high altitude
above dry ground, in a narrow angle about the shadow point of the aircraft. Wet
ground and especially clouds give strong backscattering, the ‘glory’, but this is due
to the large backward scattering amplitude of individual dielectric spheres, the
water droplets (Bohren and Huffman (1983); Nussenzveig (2002)). Akkermans
et al. (1986) discuss coherent backscattering by disordered media, and show the-
oretically that the ideal backscattering intensity maximum is twice the background,
as the simple argument given above suggests.

Measurements dating back to the 1920’s showed an anomalously strong reflec-
tance of the lunar surface near full moon; Gehrels et al. (1964) deduced that
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reflection from the moon’s surface can be enhanced by up to a factor two in the
retro-direction. In exploring the possible cause of this enhanced backscattering
Oetking (1966) found that volume scatterers can produce backscattering peaks for
angles of incidence up to 50°. Egan and Hilgeman (1976) saw similar backscattering
effects in photometric standards and paints and Becker et al. (1985) found unusually
strong backscattering from soils at infrared wavelengths. O’Donnell and Mendez
(1987) studied surfaces whose height fluctuations are approximately Gaussian. They
found that when the lateral correlation length is larger than a wavelength and the
surface slopes are mild, the Beckmann theory (Sect. 14.4) gave good agreement with
measured reflectances, provided the angle of incidence was not too large. However,
for stronger slopes, enhanced backscattering was observed. An extensive series of
simulations of scattering from rough surfaces have been carried out by Maradudin
and collaborators (Simonsen et al. 2010a, b, 2011; Nordam et al. 2014).
Well-defined backscattering peaks were found in all of these numerical studies.
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Chapter 15
Particle Waves

In Sect. 1.3 we saw that there is a one-to-one correspondence between the propa-
gation in planar-stratified media of the s polarized electromagnetic wave, and of the
non-relativistic particle wave satisfying the Schrödinger equation

� �h2

2m
r2WþVW ¼ EW: ð15:1Þ

(E and m are particle energy and mass, V is the potential energy, and �h is Planck’s
constant divided by 2p). In this chapter we give a representative selection from the
main results derived in the book for the electromagnetic s wave, translated into
quantum mechanical language and notation. The next chapter discusses neutron
reflection, and Chap. 19 deals with the reflection of particle wavepackets.

15.1 General Results

Equation (15.1) may be written as r2Wþ k2W ¼ 0, where

k2 ¼ 2m

�h2
ðE � VÞ ð15:2Þ

is the square of wavevector. We assume that V is a function of one spatial coor-
dinate only, V ¼ VðzÞ, and takes the limiting values V1 and V2 at z ¼ �1 and
z ¼ 1. Then

2m

�h2
E � V1ð Þ ¼ k21  k2 zð Þ ! k22 ¼

2m

�h2
E � V2ð Þ: ð15:3Þ

For planar stratification the wave equation separates. For propagation in the zx plane
the wavefunction is W ¼ eiKxwðzÞ, where K is the x-component of the wave vector,
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K ¼ k1 sin h1 ¼ k1 sin h2; ð15:4Þ

h1 and h2 being the angles of incidence and refraction. Equation (15.4) gives Snell’s
Law for particle waves, and shows that the refractive index is proportional to

E � Vð Þ1=2, that is, to the square root of the kinetic energy of the particle.
The function w satisfies

d2w
dz2
þ q2w ¼ 0; q2 zð Þ ¼ k2 zð Þ � K2: ð15:5Þ

The normal component of the wavevector, qðzÞ, has limiting values q1 ¼
k21 � K2
� �1=2 and q2 ¼ k22 � K2

� �1=2. The reflection and transmission amplitudes r
and t are defined by the limiting forms of w as z! �1:

eiq1zþ re�iq1z  w zð Þ ! teiq2z: ð15:6Þ

The left side of (15.6) represents an incident plane wave of unit amplitude, and a
reflected plane wave of amplitude r. With x and time dependence included, the
incident plane wave is exp iðKxþ q1z� Et=�hÞ. The factor exp iðKx� Et=�hÞ is
common to all parts of the wavefunction in the propagation of plane waves through
stratified media, and will usually be omitted. The time and x dependence is needed
only in the treatment of wavepackets (Sect. 15.9, Chap. 19), and of finite beams
(Chap. 20).The reflection and transmission amplitudes are found by solving the
wave equation (15.5). In the simplest case of a potential step at (say) z1, where VðzÞ
changes from V1 to V2;w is given by

w ¼ eiq1zþ r0e�iq1z ðz� z1Þ
t0eiq2z z� z1ð Þ :

�

ð15:7Þ

Continuity of w and dw=dz at z1 gives the step reflection and transmission
amplitudes

r0 ¼ e2iq1z1
q1 � q2
q1þ q2

; t0 ¼ ei q1�q2ð Þz1 2q1
q1þ q2

: ð15:8Þ

Other exactly solvable potential energy profiles will be considered in the next
section. Here we give some results valid for arbitrary profiles. Let VðzÞ and ~VðzÞ be
two potential functions with the same limiting values, V1 at �1 and V2 at þ1.
Consider the reflection of plane waves by the two profiles, at the same angle of
incidence (the limiting values q1 and q2 are thus also common to the two reflection
problems). In Sect. 2.1 we showed that the corresponding reflection amplitudes r
and ~r are related by the comparison identities
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r ¼ ~r � im

�h2q1

Z1

�1
dz V � ~V
� �

w~w; ð15:9Þ

q1 1� r~r�ð Þ � q2t~t
� ¼ im

�h2

Z1

�1
dz V � ~V
� �

w~w�: ð15:10Þ

The second identity holds for real ~V only. For ~V ¼ V it gives

q1 1� rj j2
� �

¼ q2 tj j2; ð15:11Þ

which expresses the conservation of particle flux at a non-absorbing barrier, since
the probability current density

J ¼ �h
2im

W�rW�WrW�ð Þ ¼ �h
m
ImðW�rWÞ ð15:12Þ

has x-component �hK=m, and z-component limiting values

�hq1
m

1� rj j2
� �

 Jz ! �hq2
m

tj j2: ð15:13Þ

Other identities can be obtained (as in Sect. 2.1) by comparing the wave incident
from medium 1 with that incident from medium 2. If these are denoted by the
subscripts 12 and 21 respectively, a comparison identity relating the corresponding
transmission amplitudes is

q2~t12 � q1t21 ¼ im

�h2

Z1

�1
dz V � ~V
� �

w21
~w12: ð15:14Þ

Setting ~V ¼ V in (15.14) gives

q2t12 ¼ q1t21; ð15:15Þ

so that (15.14) may be rewritten as

t12 ¼ ~t12 � im

�h2q2

Z1

�1
dz V � ~V
� �

w21
~w12: ð15:16Þ
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Comparison of w21 with ~w�12 gives, for real ~V ,

q2r21~t
�
12þ q1t21~r

�
12 ¼ �

im

�h2

Z1

�1
dz V � ~V
� �

w21
~w�12: ð15:17Þ

For ~V ¼ V this implies

q2r21t
�
12þ q1t21r

�
12 ¼ 0; ð15:18Þ

which gives, on using (15.15),

r21 ¼ � t12
t�12

r�12: ð15:19Þ

The last relation shows that r12j j2¼ r21j j2: the reflectance is the same in either
direction for a non-absorbing barrier of arbitrary profile. A particle wave will be
reflected by the same fractional amount in going up or down a potential gradient, in
the absence of absorption and total reflection.

For a potential energy VðzÞ which varies only in the interval z1� z� z2; with
V ¼ V1 for z� z1; and V ¼ V2 for z� z2; general expressions for r and t may be
written down in terms of two independent solutions FðzÞ and GðzÞ of (15.15). In the
interval z1; z2ð Þ;w ¼ aFþ bG. Also w and w0 are continuous at z1 and z2; assuming
that VðzÞ has no delta function singularities (or worse) at the end-points. The
continuity conditions give four equations for r; t; a and b; the solution of which
gives

r ¼ e2iq1z1 q1q2 F1G2 � G1F2ð Þþ iq1 F1G
0
2 � G1F

0
2

� �

þ iq2 F
0
1G2 � G

0
1F2

� �

� F
0
1G

0
2 � G

0
1F

0
2

� �n o

=D

t ¼ eiðq1z1�q2z2Þ2iq1W=D;

a ¼ eiq1z12iq1ðG02 � iq2G2Þ=D; ð15:20Þ

b ¼ �eiq1z12iq1ðF02 � iq2F2Þ=D:

In (15.20) W is the Wronskian FG0 � GF0 (a constant), and the common denom-
inator D is given by

D ¼q1q2 F1G2 � G1F2ð Þþ iq1 F1G
0
2 � G1F

0
2

� �

� iq2 F01G2 � G01F2
� �þ F01G

0
2 � G01F

0
2

� �

:
ð15:21Þ
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Some general properties of r and t follow directly from (15.20), as shown in
Sects. 2.2 and 2.3. For non-absorbing interfaces, rj j ¼ 1 when q2 is imaginary: total
reflection occurs for

h1� hc ¼ arcsin
E � V2

E � V1

� �1=2

: ð15:22Þ

As the thickness Dz ¼ z2 � z1 of the profile tends to zero, r and t tend to the step
(Fresnel) values given in (15.8). The probability density current conservation law
(15.11) follows from (15.20), for non-absorbing interfaces. And finally, at grazing
incidence the reflection amplitude tends to �1, for profiles of arbitrary shape, with
or without absorption, and even for internally reflected waves. Thus Lloyd’s mirror
experiment (discussed for neutron reflection in Sect. 16.5) produces diffraction
fringes with destructive interference at the mirror’s edge, for particle as well as for
electromagnetic waves.

Potential energy profiles of the form

V zð Þ ¼ 1
2

V1þV2ð Þ � 1
2

V1 � V2ð Þf z; að Þ; ð15:23Þ

where the function f depends on parameters (collectively denoted by a) which are
independent of V1;V2 and E; have following property. If the reflection amplitude at
normal incidence is known as a function of the limiting magnitudes k1 and k2 of the
wavevector, the same functional form gives the reflection amplitude at oblique
incidence, with the normal components of the wavevector q1 and q2 replacing k1
and k2 (see Sect. 2.5). The homogeneous, linear, and hyperbolic tangent profiles
have the scaling property (15.23); the exponential and Rayleigh profiles do not.
(These exactly solvable profiles are among those discussed in the next section.)

If VðzÞ changes monotonically between V1 and V2; the reflectivity of this profile
cannot be greater than that of the potential step between V1 and V2 (at the same
energy and angle of incidence):

R� q1 � q2
q1þ q2

� 	2

: ð15:24Þ

This upper bound was obtained in Sect. 5.4.

15.2 Some Exactly Solvable Profiles

Homogeneous layer. For a potential barrier or well with V constant in
ðz1; z2Þ; z2 ¼ z1þDz, we have from Sect. 2.4 that
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r ¼ e2iq1z1
q q1 � q2ð Þcþ i q2 � q1q2ð Þs
q q1þ q2ð Þc� i q2þ q1q2ð Þs ; ð15:25Þ

t ¼ eiðq1z1�q2z2Þ
2q1q

q q1þ q2ð Þc� i q2þ q1q2ð Þs ; ð15:26Þ

where q2 ¼ k2 � K2; �h2k2=2m ¼ E � V ; K ¼ k1 sin h1, c ¼ cos qDz and s ¼ sinDz.
Equivalent formulae may be written down in terms of the reflection amplitudes at
the discontinuities in potential,

r1 ¼ q1 � q
q1þ q

; r2 ¼ q� q2
qþ q2

: ð15:27Þ

These are

r ¼ e2iq1z1
r1þ r2e2iqDz

1þ r1r2e2iqDz
; ð15:28Þ

t ¼ eiðq1z1�q2z2Þ
1þ r1ð Þ 1þ r2ð ÞeiqDz

1þ r1r2e2iqDz
: ð15:29Þ

Zero reflection is possible if (i) r1 ¼ r2 and e2iqDz ¼ �1, or if (ii) r1 ¼ �r2 and
e2iqDz ¼ 1. Condition (i) is satisfied if q2 ¼ q1q2 and 2qDz is an odd multiple of p.
At normal incidence q2 ¼ q1q2 is satisfied if

E ¼ U � V2 � V1V2

2V � V1 � V2
: ð15:30Þ

At oblique incidence q2 ¼ q1q2 can be satisfied only if E[U; it then holds at one
angle,

h1 ¼ arcsin
E � U
E � V1

� �1=2

: ð15:31Þ

The second condition for zero reflection can be satisfied only when V1 ¼ V2, and
can hold at more than one angle, given by

h1 ¼ arcsin
E � V � �h2

2m
np
Dz

� �2

E � V1

8

><

>:

9

>=

>;

1=2

; ð15:32Þ

where n is an integer. Conditions (i) and (ii) hold when Dz is respectively equal to
an odd or an even multiple of k=4; where k ¼ 2p=q is the effective wavelength
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within the layer for propagation in the z direction. Zero reflection is not possible in
the tunneling case, E\V .

Provided V lies between V1 and V2; the reflectance R ¼ rj j2 of a homogeneous
layer does not exceed the reflectance q1 � q2ð Þ2= q1þ q2ð Þ2 of a single potential
step between the same values V1 and V2 (at the same energy and angle of inci-
dence). This is a special case of the inequality (15.24): a monotonic profile cannot
reflect more than the corresponding step profile.

From (15.28) and (15.29) we see that for real q, that is when

E � V [ E � V1ð Þ sin2 h1; ð15:33Þ

the reflectance R and transmittance T ¼ q2=q1ð Þ tj j2 are periodic functions of qDz;
with period p. The reflectance

R ¼ r21 þ 2r1r2 cos 2qDzþ r22
1þ 2r1r2 cos 2qDzþ r1r2ð Þ2 ð15:34Þ

has extrema with respect to Dz when cos 2qDz ¼ �1; these are

Rþ ¼ q1 � q2
q1þ q2

� 	2

; R� ¼ q2 � q1q2
q2þ q1q2

� 	2

: ð15:35Þ

R� is less than Rþ when V lies between V1 and V2; when V is outside this range,
Rþ becomes the minimum value.

Linear profile. A transition region where the classical force �dV=dz is constant
has the potential energy

V zð Þ ¼
V1 z� z1
V1þ DV

Dz z� z1ð Þ z1\z\z2
V2 z� z2;

8

<

:
ð15:36Þ

where Dz ¼ z2 � z1 and DV ¼ V2 � V1. Within ðz1; z2Þ the wave equation (15.5)
for motion normal to the interface can be written in terms of a dimensionless
variable n ¼ q2a2 as

d2w

dn2
þ nw ¼ 0; ð15:37Þ

where the length a is given by

a ¼ �h2

2m
Dz
DV



















� 	1=3

: ð15:38Þ
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The standard pair of independent solutions of (15.37) are the Airy functions
Ai �nð Þ;Bið�nÞ (definitions and elementary properties of the Airy functions are
given in Sect. 5.2). The reflection and transmission amplitudes may be obtained
from (15.20), care being taken to convert between derivatives with respect to z and
n via

dw
dz
¼ a2

Dq2

Dz
dw
dn
¼ a2

2m

�h2
�DV

Dz

� 	
dw
dn

: ð15:39Þ

The linear profile has the scaling property (15.23), the function f being given by

f z; z1; z2ð Þ ¼
�1 z� z1
2z� z1 � z2ð Þ z2 � z1ð Þ z1\z\z2
1 z� z2:

8

<

:
ð15:40Þ

Hyperbolic tangent profile. This may be written in several equivalent ways, the
first of which explicitly shows the scaling property (15.23):

V zð Þ ¼ 1
2

V1þV2ð Þ � 1
2

V1 � V2ð Þ tanh z=2a

¼V1þV2ez=a

1þ ez=a
¼ V1

1þ ez=a
þ V2

1þ e�z=a
:

ð15:41Þ

The solution for this profile in terms of hypergeometric functions is discussed in
detail in Sect. 2.5. There is no need to translate the formulae given there into
quantum mechanical notation, since they are given in terms of the variables y1 ¼
q1a and y2 ¼ q2a and thus can be applied directly to either electromagnetic or
particle waves.

sech2 profile. The potential energy is given by

V zð Þ ¼ V0þDVsech2
z
a
: ð15:42Þ

The Schrödinger equation for the probability amplitude w reads

d2w
dz2
þ q20 �

2mDV

�h2
sech2

z
a

� �

w ¼ 0: ð15:43Þ

Here q0 is the limiting value at large zj j of the normal component of the wavevector,
given by

q20 ¼
2m

�h2
E � V0ð Þ � K2 ¼ k20 cos

2 h; ð15:44Þ

370 15 Particle Waves

http://dx.doi.org/10.1007/978-3-319-23627-8_5
http://dx.doi.org/10.1007/978-3-319-23627-8_2


where

k20 ¼
2m

�h2
E � V0ð Þ;K ¼ k0 sin h: ð15:45Þ

A solution of (15.43) can be found in terms of the hypergeometric function, as
discussed for the electromagnetic case in Sect. 4.3. The solution is characterized by
two dimensionless parameters,

a ¼ �2ma2DV=�h2; b ¼ q0a: ð15:46Þ

Formulae for the reflection and transmission amplitudes in terms of a and b are
given in Sect. 4.3. Tunneling can occur for positive DV , when

E � V0ð Þ cos2 h\DV ; or b2\� a: ð15:47Þ

Certain negative DV values give zero reflection, at any energy. This remarkable
phenomenon is discussed in detail in Sect. 19.2.

Exponential profile. The potential energy is given by

V zð Þ ¼
V1 z� z1
E � E � V1ð Þ exp z� z1ð Þ=a z1\z\z2
V2 z� z2

8

<

:
ð15:48Þ

where the length a depends on V1;V2 and E; and can be positive or negative:

a ¼ z2 � z1ð Þ
ln E�V2
E�V1

� � : ð15:49Þ

Transformation to a dimensionless independent variable proportional to the local
magnitude of the wavevector,

u ¼ 2ka ¼ 2a
2m

�h2
E � Vð Þ

� �1=2

; ð15:50Þ

converts (15.5) to Bessel’s equation

d2w
du2
þ 1

u
dw
du
þ 1� 2Kað Þ2

u2

" #

w ¼ 0: ð15:51Þ

The general solution within ðz1; z2Þ is thus aJs uð Þþ bYsðuÞ, where s ¼ 2Ka. Note
that both the order s and the argument u of the Bessel functions are proportional to
the thickness of the inhomogeneity. The order also depends on the angle of inci-
dence, increasing from zero at normal incidence to 2k1a at grazing incidence.
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Reflection and transmission amplitudes may be obtained from (15.20), on con-
verting between derivatives with respect to z and u via

dw
dz
¼ k

dw
du

: ð15:52Þ

Some reduction of the formulae is possible by using the properties of Bessel
functions. Details are given in Sect. 2.5.

Rayleigh profile. Within this potential transition the local wavelength 2p=kðzÞ is
linear in z. It is therefore useful to work in terms of a dimensionless variable which
is linear in z,

g zð Þ � kDzð Þ�1¼ g1þ z� z1ð ÞDg=Dz: ð15:53Þ

The interface extends from z1 to z2 ¼ z1þDz; and

Dg ¼ g2 � g1 ¼ k�12 � k�11

� �

=Dz: ð15:54Þ

The potential energy is given by

E � V zð Þ ¼ �h2

2mg2 zð Þ Dzð Þ2 : ð15:55Þ

At normal incidence the wave equation has a simple power-law solution: on
changing to the variable g the equation d2w=dz2þ k2w ¼ 0 becomes

d2w
dg2
þ w

g2 Dgð Þ2 ¼ 0; ð15:56Þ

and has the solutions w� ¼ g1=2�m; where

m2 ¼ 1
4
� Dgð Þ�2: ð15:57Þ

(The parameter m is introduced for mathematical convenience, and to increase
commonality with the results of Sect. 2.5.) On converting between z and g
derivatives via

dw
dz
¼ Dg

Dz
dw
dg

; ð15:58Þ

the reflection and transmission amplitudes at normal incidence are found from
(15.20) to be
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rn ¼ e2ik1z1
1
2 iDg .m � 1½ �

.m � 1� imDg .mþ 1½ � ; ð15:59Þ

tn ¼ �ei k1z1�k2z2ð Þ 2imDg.
m
2�1

4

.m � 1� imDg .mþ 1½ � ; ð15:60Þ

where . is the square of the ratio of the refractive indices,

. ¼ g1
g2

� 	2

¼ k2
k1

� 	2

¼ E � V2

E � V1
: ð15:61Þ

The reflectivity at normal incidence takes different forms, depending on whether
Dgð Þ2 is greater than or less than four. When Dgð Þ2 [ 4, m is real, and

Rn ¼
1
4 Dgð Þ2 .m � 1ð Þ2

.m � 1ð Þ2þ mDgð Þ2 .mþ 1ð Þ2 : ð15:62Þ

When Dgð Þ2\4; m ¼ i mj j and

Rn ¼
sin2ð12 mj j ln .Þ

4 mj j2þ sin2ð12 mj j ln .Þ : ð15:63Þ

At m ¼ 0 these two forms take the common value

Rn m ¼ 0ð Þ ¼ ln2 .

16þ ln2 .
: ð15:64Þ

From (15.63) we see that the normal incidence reflectivity is zero when Dgð Þ2\4
and mj j ln . is an integer multiple of 2p. This happens when the interface thickness
Dz takes one of the values

Dz ¼ k1 � k2j j
k1k2

1
4
þ np

ln k2=k1ð Þ
� 	2

( )1=2

; n ¼ 1; 2; . . . ð15:65Þ

At oblique incidence the wave equation in the g variable reads

d2w
dg2
þ

1
4� m2

g2
� KDz

Dg

� 	2
" #

w ¼ 0; ð15:66Þ

and has solutions proportional to g1=2 times Bessel functions of order m and
imaginary argument �i KDz=Dgð Þg. The reflection and transmission amplitudes
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may thus be obtained from (15.20). A reference to explicit expressions obtained in
this way is given in Sect. 2.5.

References to listings and systematic generation of solvable profiles are given at
the end of Chap. 2.

15.3 Perturbation and Variational Theories

Perturbation theory gives expressions for the unknown function w satisfying (15.5)
and (15.6) (and thus also for its reflection and transmission amplitudes r and t) in
terms of some known function w0, satisfying

d2w0

dz2
þ q2w0 ¼ 0; eiq1zþ r0e

�iq1z  w0 ! t0e
iq2z: ð15:67Þ

The solution is given in terms of w0ðzÞ and a Green’s function Gðz; fÞ, which
satisfies

@2G
@z2
þ q20 zð ÞG ¼ d z� fð Þ; ð15:68Þ

and has the appropriate limiting forms to make w, given by the integral equation

w zð Þ ¼ w0 zð Þ �
Z1

�1
dfDq2 fð ÞG z; fð Þw fð Þ; ð15:69Þ

take the limiting forms (15.6). In the above, q and q0 share the limiting values q1 at
�1 and q2 at þ1, and

Dq2 ¼ q2 � q20 ¼ �
2m

�h2
V � V0ð Þ: ð15:70Þ

(V and V0 also share the limiting values V1 and V2, and the equations for w and w0

are to be solved at the same particle energy.) Note that the perturbation Dq2 is
independent of energy and of the angle of incidence.

In the long wave case the perturbation is built up from the step potential energy
profile

V0 zð Þ ¼ 1
2

V1þV2ð Þ � 1
2

V1 � V2ð Þsgn zð Þ; ð15:71Þ

for which the wavefunction w0 and Green’s function Gðz; fÞ are given in Sect. 3.1.
The perturbation theory expression for rn (the contribution of order V � V0ð Þn to the
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reflection amplitude) is given in (3.12). When V0ðzÞ is constant
V1 ¼ V2 ¼ V0ð Þ; r0 ¼ ðq1 � q2Þ=ðq1þ q2Þ is zero, and r1 is equal to the Fourier
transform of the deviation of the potential from V0:

r1 ¼ � im

q0�h2

Z1

�1
dz V � V0ð Þe2iq0z: ð15:72Þ

This is divergent at grazing incidence, when q0 ! 0.
In the short wave case the perturbation theory is constructed from the

Liouville-Green functions of Sect. 6.2:

wþ ¼ q1=qð Þ1=2exp i/ð Þ; w� ¼ q2=qð Þ1=2exp �i/ð Þ; / zð Þ ¼ Z
z
dfq fð Þ;

ð15:73Þ

the Green’s function being given in Sect. 6.5. The corresponding first order per-
turbation result for the reflection amplitude is

rð1Þ ¼ 1
4i

Z1

�1
dz

dc
dz
þ 1

2
qc2

� �

e2i/; ð15:74Þ

where the dimensionless function c ¼ q�2dq=dz must be small everywhere for the
perturbation result to be accurate. The short wave perturbation theory thus also fails
at grazing incidence.

Variational expressions for the reflection amplitude may be derived from the
perturbation theories. The general variational principle is dðF2=SÞ ¼ 0; where F
and S are first and second order in the unknown w:

F ¼
Z1

�1
dzDq2 zð Þw zð Þw0 zð Þ; ð15:75Þ

S ¼
Z1

�1
dzDq2 zð Þw2 zð Þþ

Z1

�1
dzDq2 zð ÞwðzÞ

Z1

�1
dfDq2 fð Þw fð ÞG z; fð Þ: ð15:76Þ

The variational estimate for the reflection amplitude is

rvar ¼ r0 � F2

2iq1S
: ð15:77Þ

Further details are given in Chap. 4. Here we note only that the variational theory
based on the long-wave perturbation theory removes the grazing incidence diver-
gence which troubles all orders of the perturbation theory when V1 ¼ V2:
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15.4 Long Waves, Integral Invariants

In the long wave limit a given potential energy profile reflects predominantly as a
step profile, with a small correction which depends on the deviation of the profile
from the step V0ðzÞ given by (15.71). This correction can be expressed as a series in
the ratio of the interface thickness to the wavelength of the wave. The reflection
amplitude, written as r0þ r1þ r2. . . where the subscript n here refers to the order
(power) in the interface thickness, is found from the long-wave perturbation theory
of the previous section to be given by

r0 ¼ q1 � q2
q1þ q2

; r1 ¼ � 2m

�h2

� 	
2iq1l1
q1þ q2ð Þ2 ; ð15:78Þ

r2 ¼ 2m

�h2

� 	
2q1

q1þ q2ð Þ3 2 q1þ q2ð Þq2l2 �
2m

�h2
l21

� �

;

where

ln ¼
Z1

�1
dz V zð Þ � V0ðzÞ½ �zn�1: ð15:79Þ

The integrals ln depend on the relative positioning of the profiles V and V0, with
the exception of l1 in the case where V0 is a constant ðV1 ¼ V2Þ.

The reflectivity R ¼ rj j2, a measurable quantity, must be independent of the
relative positioning of the actual and step profiles. When qðzÞ is real everywhere, R
differs from R0 ¼ r20 by a term which is of second order in the interface thickness:

R ¼ R0þ r1j j2þ 2r0r2þ . . .

¼ R0 � 4q1q2
q1þ q2ð Þ4

2m

�h2

� 	2

2 V1 � V2ð Þl2 � l21

 �þ . . . ð15:80Þ

The expression in braces, which we call i2, is invariant to the relative positioning of
V and V0. It is the first in an infinite set of integral invariants which may be
constructed from the ln (see Sect. 3.3). The result (15.80) shows that the reflectivity
takes a universal form in the long wave limit:

R ¼ q1 � q2
q1þ q2

� 	2

� 4q1q2
q1þ q2ð Þ4

2m

�h2

� 	2

i2þ . . . ð15:81Þ

This holds for all non-absorbing profiles VðzÞ which do not contain delta function
singularities or worse. When V1 ¼ V2 the l2 integral is not needed (to this order)
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and l1 is separately invariant. The reflectivity is then proportional to l21; and is
independent of the sign of V � V0, to this order. When V1 6¼ V2 and V is real
everywhere it is possible to position the profiles V and V0 to make l1 ¼ 0. The
second order invariant i2 may then be put in the form

i2 ¼ V2 � V1ð Þ
Z1

�1
dz

dV
dz

z2 ðl1 ¼ 0Þ; ð15:82Þ

which shows that R� R0 is proportional to ðV2 � V1Þ times the second moment of
the force �dV=dz. When V increases or decreases monotonically, i2 is positive and
the second order term decreases the reflectivity from that of a step profile, as may be
expected. The last result may be strengthened by writing the second order invariant
as

i2 ¼ �
Z1

�1
dz1

Z�1

�1
dz2 V z1ð Þ � V0ðz1 � z2Þ½ � V z2ð Þ � V0ðz2 � z1Þ½ �: ð15:83Þ

This form shows that i2 is positive if VðzÞ lies between V1 and V2 for all z, as can be
seen by considering the sign of the integrand for z1\z2 and for z1 [ z2. Thus the
second order term decreases the reflectivity if

min V1;V2ð Þ � VðzÞ � max V1;V2ð Þ: ð15:84Þ

The functional form of i2 for the profiles considered in Sect. 3.6 (all but one of
which, the double exponential profile, were transcribed to the quantum mechanical
case in Sect. 15.2) can be obtained from Table 3.1 by the substitution e! E � V .
For example, the homogeneous layer of thickness Dz and potential V has

i2= Dzð Þ2¼ V1 � Vð Þ V � V2ð Þ; ð15:85Þ

and the exponential profile of thickness Dz has

i2= Dzð Þ2¼ V1 � V2

ln E�V2
E�V1

( )2

� E � V1ð Þ E � V2ð Þ: ð15:86Þ

(The energy dependence in (15.86) comes from the energy dependence of the
potential for the exponential profile, given by (15.48).)

Profiles of the form (15.23), for example the linear, tanh, error function and
double exponential profiles (the last being defined in (3.69)) all have i2 proportional
to V1 � V2ð Þ2, provided the function f is continuous.
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15.5 Riccati-Type Equations; the Rayleigh Approximation

The second order differential equation (15.5) is equivalent to a pair of coupled first
order equations in w and w0 ¼ dw=dz. On setting

w ¼ FþG; w0 ¼ iq F � Gð Þ; ð15:87Þ

we find that F and G satisfy

F0 ¼ iqF � q0

2q
F � Gð Þ; ð15:88Þ

G0 ¼ �iqGþ q0

2q
F � Gð Þ: ð15:89Þ

From (15.6) we see that when incidence is from medium 1;F ! eiq1z and G!
re�iq1z as z! �1. Thus the ratio . ¼ G=F tends to e�2iq1z times the reflection
amplitude r as z! �1, and to zero as z!1. The equation satisfied by . is of the
generalized Riccati type:

.0 þ 2iq.� q0

2q
1� .2
� � ¼ 0: ð15:90Þ

On writing . ¼ .j jeih, separating the real and imaginary parts, and integrating the
equation for .j j0 over all z, one finds

ln
1þ rj j
1� rj j ¼ �

Z1

�1
dz

q0

q
cos h ð15:91Þ

(more detail may be found in Chap. 5). From this follows the inequality of Sect. 5.4,

R� q1 � q2
q1þ q2

� 	2

; ð15:92Þ

any non-absorbing monotonic profile cannot reflect more than a step profile
between the same limiting values of potential, at the same energy and angle of
incidence. An alternative approach is to deal directly with the reflection amplitude,
by setting

w ¼ f ei/þ ge�i/; w0 ¼ iq f ei/ � ge�i/
� �

; ð15:93Þ
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where / is the phase integral defined in (15.73). On using /0 ¼ q we find that f and
g satisfy the equations

f 0 þ q0

2q
f � ge�2i/
� � ¼ 0; ð15:94Þ

g0 þ q0

2q
g� f e2i/
� � ¼ 0: ð15:95Þ

If the lower limit in the integral defining / is chosen so as to make /! q1z as
z! �1, the ratio g=f tends to the reflection amplitude r as z! �1, and in fact
may be interpreted as the reflection amplitude rðzÞ for a profile truncated at z, as
explained in Chap. 5. The equation satisfied by r zð Þ ¼ g=f is

r0 zð Þ ¼ q0

2q
e2i/ � r2 zð Þe�2i/� �

: ð15:96Þ

The reflection amplitude r of the entire profile is thus

r ¼ �
Z1

�1
dz

q0

2q
e2i/ � r2 zð Þe�2i/� �

: ð15:97Þ

The Rayleigh or weak reflection approximation is obtained by neglecting the term
proportional to r2ðzÞ in the integrand:

rR ¼ �
Z1

�1
dz

q0

2q
e2i/; ð15:98Þ

its long-wave limit is

rR ! 1
2
ln
q1
q2

: ð15:99Þ

The Rayleigh approximation works well at all wavelengths, provided the reflection
is weak. It fails whenever the reflection is strong, for example at grazing incidence.
Note that the factor q0=q in the integrand of both the exact and the approximate
formulae (15.97) and (15.98) for the reflection amplitude can be written as

q0

q
¼ q2ð Þ0

2q2
¼ �dV=dz

�h2q2=m
: ð15:100Þ
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The contributions to the reflection amplitude are thus weighted by the local value of
the ratio of the force �dV=dz to the kinetic energy of motion normal to the
interface, �h2q2=2m:

15.6 Reflection of Short Waves

In Sect. 6.2 we saw that the Liouville-Green functions

wþ ¼ q1
q

� 	1=2

ei/; w� ¼ q2
q

� 	1=2

e�i/; / ¼
Zz

dfqðfÞ ð15:101Þ

are approximate solutions of the wave equation (15.5). In fact w� satisfy

d2w�

dz2
þ q2 1þ 1

2
dc
d/
þ c2

4

� �

w� ¼ 0; ð15:102Þ

where the dimensionless function cðzÞ is given by

c ¼ dq
q2dz

¼ dq
qd/

: ð15:103Þ

If dc=d/ð¼ q�1dc=dzÞ and c2 are small compared to unity, the functions w�, and
approximations to r and t resulting from their use, are expected to be accurate.
Since

c ¼ 1
2q3

dq2

dz
¼ �mdV=dz

�h2q3
; ð15:104Þ

where �dV=dz is the force, �h2q2=2m the kinetic energy and 2p=q the effective
wavelength (all relating to change or motion in the z direction),

4pc ¼ force 	 wavelength
kinetic energy

: ð15:105Þ

Thus 4pc is the ratio of the potential energy change in one wavelength to the local
kinetic energy of motion in the z direction.

Short wavelength approximations all depend on c2 and dc=d/ being small, at
least for most of the range of z. They generally fail at grazing incidence ðq1 ! 0Þ,
and special techniques are needed at discontinuities in the slope of the potential, and
at turning points (where q2 passes through zero). We will translate, without proof,
some of the results of Chap. 6 into particle-wave language.
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The Rayleigh approximation (15.98), which can be written as

rR ¼ � 1
2

Z1

�1
d/ ce2i/ ¼ 1

4

Z1

�1
dz

dV=dz

E � V � �h2K2=2m
e2i/; ð15:106Þ

turns out to be closely related to the first order perturbation theory result

rð1Þ ¼ � 1
2

Z1

�1
d/ c� c2=4i

� �

e2i/; ð15:107Þ

based on the approximate solutions w� and a Green’s function constructed from
them.

When the potential VðzÞ has discontinuities in its gradient at the profile
boundaries, but is otherwise smooth (as is the case for the linear, exponential and
Rayleigh profiles), (15.106), (15.107), or (15.20) with F ¼ wþ and G ¼ w�; all
give the reflection amplitude

r 
 1
4
ei /1 þ/2ð Þ c1e

�iD/ � c2e
iD/


 �

; ð15:108Þ

where /1 and /2 are the values of /ðzÞ at z1 and z2, D/ ¼ /2 � /1 is the change in
the accumulated phase across the profile, and the function c changes from zero to c1
at z1 and from c2 to zero at z2. Exponentially small terms, originating from the
smooth variation in VðzÞ other than at the end points, are omitted from (15.108).
The resulting reflectivity is

R 
 1
16

c21þ c22 � 2c1c2 cos 2D/

 �

: ð15:109Þ

The dominant part of the reflectivity thus depends quadratically on the disconti-
nuities in the potential gradient, and shows oscillatory decay with increasing
energy.

Regions where q2ðzÞ\0, which are classically inaccessible since the kinetic
energy of motion in the z direction is then negative, occur where

E � V\ E � V1ð Þ sin2 h1: ð15:110Þ

The locations where q2 zð Þ ¼ 0 are called classical turning points. When V2 [V1

and h1� hc ¼ arcsin E � V2ð Þ= E � V1ð Þ½ �1=2, total reflection occurs. Interest then
centres on the phase of the reflection amplitude, which determines the time of
arrival and the shape of reflected pulses, as discussed in Sect. 19.1. We write
r ¼ eid; the phase d is then given by (in the short wave limit, on reflection from a
profile with a single turning point)
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d 
 2 /0 � /�ð Þ � p=2; ð15:111Þ

where /0 is the value of the phase integral at the turning point, and /� is defined by

/ zð Þ ! q1zþ/� as z! �1: ð15:112Þ

The result (15.111) is derived in Sect. 6.7. A simpler version follows if one takes
the (so far unspecified) lower limit of integration in the definition of / to be the
turning point z0, in which case /0 ¼ 0. If also the origin z ¼ 0 is chosen such that
q ¼ q1 for z\0, (15.111) becomes

d 
 2
Zz0

0

dz q zð Þ � p
2
: ð15:113Þ

In the case of a potential barrier, (15.110) may hold in an interval between two
turning points, z1 and z2. The wave penetrates the classically forbidden region
where q2\0, and a part of it tunnels through to beyond z2 where q2 [ 0. For well
separated turning points, and smooth potential energy barriers with V1 ¼ V2, the
reflection and transmission probabilities are given in Sect. 6.8:

R 
 tanh2ðDUþ ln 2Þ; T 
 sech2ðDUþ ln 2Þ: ð15:114Þ

Here DU is the increment in the imaginary part of the phase between the turning
points (and thus gives the exponent of the change in amplitude across the barrier),

DU ¼
Zz2

z1

dz qðzÞj j: ð15:115Þ

For large DU the results (15.114) have the limiting forms

R! 1� e�2DU; T ! e�2DU: ð15:116Þ

15.7 Absorption, the Optical Potential

As we saw in Sect. 1.5, a medium containing scatterers can be approximated by an
effective potential VðzÞ. When there is absorption, as for example in the case of
neutrons by means of a nuclear reaction, or in the case of electrons by trapping or
by “annihilation” with hole quasiparticles, the interaction with the medium can be
approximated by a complex potential. This is in close analogy with the electro-
magnetic case, where absorption is represented by an imaginary part in the
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dielectric function or refractive index. Because of the analogy, the complex
potential is referred to as the optical potential in nuclear and atomic physics. For a
medium with z-stratification, the propagation normal to the interface is character-
ized by the wave equation (15.5), with

q2 zð Þ ¼ 2m

�h2
E � V zð Þð Þ � K2: ð15:117Þ

In the presence of absorption the potential has a negative imaginary part, as we shall
see. Accordingly we set

V ¼ Vr � iVi; ð15:118Þ

with Vi� 0. The normal component of the wavevector is also complex,
q ¼ qr þ iqi. From the real and imaginary parts of (15.117) we get

q2r � q2i ¼
2m

�h2
E � Vrð Þ � K2; ð15:119Þ

2qrqi ¼ 2m

�h2
Vi: ð15:120Þ

In a homogeneous medium the transmitted wave is proportional to
exp i Kxþ qzð Þ ¼ exp i Kxþ qrzð Þ expð�qizÞ. Both qr and qi are non-negative, and
hence so is Vi. The real and imaginary components of q, for incidence at angle h1
from a medium with real potential V1, are found from (15.119) and (15.120) to be
given by

q2r ¼
m

�h2
E � Vr � E � V1ð Þ sin2 h1þ ½ðE � Vr � E � V1ð Þ sin2 h1Þ2þV2

i �1=2
n o

;

ð15:121Þ

qi ¼ mVi

�h2qr
: ð15:122Þ

(Vi ¼ 0 is a degenerate case; then either qi ¼ 0 or qr ¼ 0, depending on whether h1
is less than or greater than the critical angle hc given by (15.22).) In a homogenous
absorbing medium (a square well or potential in quantum mechanical terms) the
surfaces of constant amplitude are planes parallel to the interface, while surfaces of
constant real phase are the planes Kxþ qrz ¼ constant. The normal to these planes
is inclined at an angle h02 to the normal to the interface, where h02 ¼ arctanðK=qrÞ,
with �h2K2=2m ¼ E � V1ð Þ sin2 h1. In general the angle of refraction h2, defined by
Snell’s Law (15.4), is complex. It is equal to the real angle h02 only at normal
incidence, or when V is real.

At a sharp boundary between a medium with real potential V1 and an absorbing
medium with V2 ¼ Vr � iVi, the reflection amplitude and reflectivity are
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r ¼ e2iq1z1
q1 � qr � iqi
q1þ qr þ iqi

; R ¼ q1 � qrð Þ2þ q2i
q1þ qrð Þ2þ q2i

ð15:123Þ

(z1 being the location of the interface). The formulae for the homogeneous
absorbing potential barrier are obtained from those of Sect. 15.2 by making q
complex. The same is true for the hyperbolic tangent profile, for which formulae in
the absorbing case are given in Sect. 10.7.

The conservation law (15.11) no longer holds in the presence of absorption,
since particles are removed and the probability density current thus decreases into
the absorbing medium. However, the reciprocity law (15.15) remains valid, and so
the transmittance through an arbitrary inhomogeneous absorbing interface (between
two non-absorbing media) is the same in either direction:

T12 ¼ q2
q1

t12j j2¼ q1
q2

t21j j ¼ T21: ð15:124Þ

The result that r ! �1 at grazing incidence also holds in the presence of
absorption.

A non-absorbing film on an absorbing substrate can give zero reflection (and
thus total absorption) at an angle given by

q2 � q1qr
� �

qr � q1ð Þ ¼ q1q
2
i ; ð15:125Þ

where q1; q; and qr þ iqi are the normal components of the wavevector in the first
medium, the film, and the substrate. This case is discussed in Sect. 10.3. Formulae
for the reflectance and transmittance of an absorbing layer on a non-absorbing
substrate are given in Sect. 10.4.

Thin absorbing films between two unlike media (V1 6¼ V2) can either decrease or
increase the reflectivity, depending on whether the particles go up or down in
potential. This follows from the general expression for the reflection amplitude to
first order in the film thickness, which, from (15.78), is

r ¼ r0 � 2iq1
q1þ q2ð Þ2

2ml1
�h2
þ . . . ð15:126Þ

The corresponding reflectivity is

R ¼ q1 � q2
q1þ q2

� 	2

� 4q1 q1 � q2ð Þ
q1þ q2ð Þ3

2m

�h2

Z1

�1
dz Vi zð Þþ . . . ð15:127Þ

Since Vi is non-negative, we see that an absorbing film will (to first order in the film
thickness) decrease the reflectance if V1\V2, and increase the reflectance if
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V1 [V2. The transmittance is always decreased by absorption, on the other hand.
From (15.16) with ~V ¼ V0 and ~w ¼ w0 we find

t ¼ t0 � 2iq1
q1þ q2ð Þ2

2ml1
�h2
þ . . .; ð15:128Þ

where t0 ¼ 2q1= q1þ q2ð Þ: Thus the transmittance to first order in the film thickness
is

T ¼ q2
q2

tj j2¼ 4q1q2
q1þ q2ð Þ2 1� 2

q1þ q2

2m

�h2

Z1

�1
dz Vi zð Þþ . . .

8

<

:

9

=

;
: ð15:129Þ

In the presence of absorption the flux conservation law Rþ T ¼ 1 does not hold.
One can define an absorptance A such that Rþ T þA ¼ 1; A is the probability of a
particle being absorbed within the film. From (15.127) and (15.129) we find that, to
first order in the film thickness,

A ¼ 4q1
q1þ q2ð Þ2

2m

�h2

Z1

�1
dz Vi zð Þþ . . . ð15:130Þ

Reflection at a gradual transition between a non-absorbing medium (potential
V1) and an absorbing medium (potential V2 ¼ Vr � iVi), which would be total when
Vi ¼ 0 for h1 [ hc in the V1\Vr case, is less than total in the presence of
absorption. The decrease from unity is greater the thicker the transition region, as a
result of the greater probability of particle penetration into the absorbing region.
The formulae derived for the tanh profile in Sect. 10.7 apply directly to the particle
case.

15.8 Inversion of a Model Reflection Amplitude

An exact inversion, due to Gelfand, Levitan and Marchenko, is possible if the
reflection amplitude is known for all wavenumbers. (References are given in
Chap. 11.) The exact inversion depends on the solution of an integral equation. An
approximate inversion, based on the Rayleigh approximation and Fourier analysis,
was given in Sect. 11.3. This is adapted here to the particle case. The Rayleigh
approximation to the scattering amplitude is, from (15.98),

r 
 �
Z1

�1
dz

dq=dz
2q

e2i/; / ¼
Zz

df q fð Þ: ð15:131Þ
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This may be written as the Fourier transform rðq1Þ of the function � dq=dxð Þ=2q,
where x ¼ /=q1:

r q1ð Þ 
 �
Z1

�1
dx

dq=dx
2q

e2iq1x: ð15:132Þ

The Fourier inverse of (15.132) is

� dq=dx
2q


 1
2p

Z1

�1
dq1e�2iq1xr q1ð Þ � F 2xð Þ; ð15:133Þ

where the reflection amplitude is analytically continued to negative q1 via
r �q1ð Þ ¼ r�ðq1Þ. Thus, on integrating (15.133) from �1 to x,

q xð Þ 
 q1 exp �2
Z2x

�1
dy FðyÞ

2

4

3

5: ð15:134Þ

The square of (15.134) gives, on using q2 ¼ 2m=�h2
� � E � Vð Þ � K2,

E � VðxÞ
E � V1


 sin2 h1þ cos2 h1 exp �4
Z2x

�1
dy FðyÞ

2

4

3

5: ð15:135Þ

From the definition (15.133) of F, the long wave limit of the reflection amplitude is

Z1

�1
dy F yð Þ ¼ r q1 ! 0ð Þ: ð15:136Þ

A check on the accuracy of the solution (15.135) is thus provided in the limit as
x!1. The left side of (15.135) then tends to ðE � V2Þ=ðE � V1Þ; the right side
tends to the same value if the long wave limit (15.99) of the Rayleigh approxi-
mation, r ! 1=2 lnðq1=q2Þ, is substituted. But if the correct limit ðq1 �
q2Þ=ðq1þ q2Þ is substituted in the x!1 limit of (15.135), the two sides differ by a
term of order V1 � V2ð Þ3.

The approximate inversion formula (15.135), which can be expected to work
well if the reflection is weak at all wavenumbers, must be supplemented by a
relationship between the variable x and the physical depth z. This is obtained by
integrating d/ ¼ qdz ¼ q1dx, using (15.134):
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z xð Þ ¼
Zx

0

dx1
q1

qðx1Þ 

Zx

0

dx1 exp 2
Z2x1

�1
dx2Fðx2Þ

0

@

1

A ð15:137Þ

The inverse relation is

x zð Þ ¼ / zð Þ=q1 ¼ q�11

Zz

0

df qðfÞ

.

15.9 Time Delay in the Reflection of Wavepackets

Sections 19.2 and 19.3 deal in detail with zero, partial or total reflection of quantum
particle wavepackets. Here we consider one aspect, namely the time delay in the
reflection of a wavepacket made up by superposition of plane wave energy
eigenstates, each with time dependence e�iEt=�h, which we write as e�ixt. If

wi tð Þ ¼
Z1

�1
dx f xð Þe�ixt ð15:138Þ

represents the incident wavepacket at some reference plane (say z ¼ 0) then,
because of the linearity of Schrödinger’s equation, the reflected wave at the same
plane is made up of a similar superposition, each energy component having
reflected with its own reflection amplitude:

wr tð Þ ¼
Z1

�1
dx r xð Þf xð Þe�ixt: ð15:139Þ

When the energy distribution of the incident wavepacket is strongly peaked about
some value E0, the wavepacket is nearly sinusoidal, with wi tð Þ ¼ A tð Þe�ix0t and an
amplitude function AðtÞ which varies slowly over most of its range. (An example of
such a pulse is given in Sect. 19.1.) From the Fourier inverse of (15.138), the
energy (or frequency) distribution function f ðxÞ is given by
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f xð Þ ¼ 1
2p

Z1

�1
dt A tð Þei x�x0ð Þt; ð15:140Þ

and thus the reflected wavepacket is

wr tð Þ ¼ 1
2p

Z1

�1
dx r xð Þe�ixt

Z1

�1
ds A sð Þei x�x0ð Þs: ð15:141Þ

An explicit form for the reflected wavepacket can be obtained on the assumption
that r xð Þ ¼ rðxÞj jeidðxÞ is well represented (within the dominant range of energies
which make up the incident wavepacket) by

rðxÞj j 
 r x0ð Þj j; d xð Þ 
 d0þ x� x0ð Þd00; ð15:142Þ

where d0 ¼ dðx0Þ and d00 is the derivative dd=dx ¼ �hdd=dE evaluated at E0. Then
(15.141) gives

wrðtÞ 
 r x0ð Þj jeid0A t � d00
� �

e�ix0t: ð15:143Þ

The amplitude function of the reflected wavepacket is thus unchanged in shape, but
the wavepacket is delayed by

Dt ¼ d00 ¼ �h
dd
dE

� �

E0
: ð15:144Þ

We will give some applications of this time-delay formula. The simplest case is
that of partial reflection at a potential step, located at z ¼ z1. At normal incidence
the reflection amplitude is

r ¼ e2ik1z1
k1 � k2
k1þ k2

; ð15:145Þ

and the time-delay formula (15.144) gives

Dt ¼ 2z1�h
dk1
dE ¼

2z1
u1

; ð15:146Þ

where u1 ¼ �hk1=m is the group speed dx=dk ¼ �h�1dE=dk in the first medium. The
reflected pulse is delayed by just the time it takes to propagate to the barrier and
back, at the group or wavepacket speed.
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When E\V2 there is total reflection. Again considering reflection at a step
located at z1, at normal incidence, we have

r ¼ e2ik1z1
k1 � i k2j j
k1þ i k2j j ¼ exp 2i k1z1 � arctan

k2j j
k1

� 	

; ð15:147Þ

where

k21 ¼
2m

�h2
E � V1ð Þ; k2j j2¼ 2m

�h2
ðV2 � EÞ: ð15:148Þ

The time-delay formula (15.144) now gives

Dt ¼ 2z1
u1
þ �h E � V1ð Þ V2 � Eð Þ½ ��1=2¼ 2

u1
z1þ k2j j�1

� �

: ð15:149Þ

The reflected wavepacket is thus delayed by more than the travel time 2z1=u1 to and
from the potential step. The increase can be interpreted in terms of penetration to
the depth k2j j�1 into the barrier. (This penetration depth diverges as E tends to V2

from below, but (15.144) is not valid as k2j j ! 0 because the square root singularity
in d cannot be approximated by (15.142).)

For total reflection at a gradually rising potential barrier, the phase shift can be
approximated by the short wave formula

d 
 2
Zz0

0

dz k z; Eð Þ � p=2 ð15:150Þ

(this is the normal incidence form of (15.113)). The time-delay can then be written
in terms of the local value of the wavepacket speed, u ¼ �h�1dE=dk ¼ �hk=m:

Dt 
 2
Zz0

0

dz
uðz; EÞ: ð15:151Þ

(The turning point z0 is also a function of E, but in the differentiation of d the term
dz0=dE is multiplied by kðz0; EÞ, which is zero.) The interpretation of (15.151) is
that the wavepacket travels up to the classical turning point z0, where E ¼ V z0ð Þ,
and back, at the group velocity uðz; EÞ. In contrast to (15.149), there is negligible
penetration into the classically forbidden region where E\VðzÞ, because (15.151)
was derived using the semiclassical formula (15.150). For a linear variation of V
with z in z1 � z � z1þDz, with V rising between V1 and V2 ¼ V1þDV , (15.151)
gives
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Dt 
 2z1
u1
þ 2 2m E � V1ð Þ½ �12 Dz

DV
: ð15:152Þ

Note that the correction to 2z1=u1 is the same as the classical time delay

2
Rz0

z1

dz=vðzÞ, where 1
2mv

2 zð Þ ¼ E � VðzÞ.
The time-delay discussed above is based on the approximation

d 
 d0þ x� x0ð Þd00. Higher order terms in the Taylor expansion of d about x0

lead to pulse spreading and distortion; references to these are given in Sect. 19.1.
(The intrinsic spreading of the wavepacket with time has been neglected here, but is
made explicit in Sects. 19.2 and 19.3, where exact solutions of Schrödinger’s
time-dependent equation are used. This spreading takes place even in a homoge-
neous medium, but can be made small for highly mono-energetic wavepackets.)
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Chapter 16
Neutron and X-ray Reflection

All reflection, whether of particle, electromagnetic or acoustic waves, is the result of
the constructive interference of many scattered waves originating from scatterers in
a planar stratified medium, as we saw in Sect. 1.5. For regular arrays (gratings or
lattices), specular reflection can be viewed as a special case of diffraction: it is the
zero order diffraction peak, and the only one when the wavelength is greater than
twice the lattice spacing. When the latter condition holds, an assembly of scatterers
can be replaced by a medium characterized by a potential V , or dielectric function e,
or refractive index n. The same can be done for disordered systems, again in an
averaged sense, except that incoherent scattering is thereby omitted. For
planar-stratified media whose properties depend spatially only on the depth z,
reflection properties follow (in principle, at least) from the knowledge of VðzÞ or
eðzÞ or nðzÞ. We know from Sect. 1.3 that there is a one-to-one correspondence
between electromagnetic s-wave reflection and particle wave reflection, with an
effective dielectric function e ¼ 1� V=E, where E is the particle energy. We shall
see that because the form of V for neutrons given in Sect. 1.5 and the form of e for
an electron gas given in Sect. 7.6, there is a close correspondence between neutron
and X-ray reflection. A major application of reflection experiments is to the study of
solid surfaces and liquid-vapour interfaces (Penfold and Thomas 1990; Felcher and
Russell 1991; Lu et al. 1996). A review of X-ray and neutron reflection study of
polymers at interfaces is given by Russell (1990). Neutron and X-ray reflection has
the advantage of much shorter wavelengths compared to reflection at visible
wavelengths, and thus the ability to probe down to nanometre scale. A disadvantage
is that the reflection is very weak except near glancing incidence.

The topics covered in this chapter all relate to specular reflection. Non-specular
reflection, discussed in Chap. 14, occurs for any reflectors without an ideal strati-
fication dependent in its properties only on the depth variable z. X-ray and neutron
scattering from rough surfaces has been calculated in the first Born approximation
by Sinha et al. (1988); more recent work on this topic includes Felcher et al. (1994),
and Sentenac and Daillant (Chap. 2) and Daillant, Mora and Sentenac (Chap. 3) in
X-ray and neutron reflectivity, edited by Daillant and Gibaud (2009).

A much wider range of neutron optics is covered in the review by Werner and
Klein (1986), in the monograph by Sears (1989), and in the compilation X-ray and
neutron reflectivity noted above.
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16.1 Common Features of X-ray and Neutron Optics

The dielectric function for a free-electron plasma is

eðxÞ ¼ 1� x2
p=x

2; x2
p ¼ 4pne2=m; ð16:1Þ

where n is the number of electrons per unit volume. The same form holds for X-rays
interacting with matter, provided x is not close to one of the atomic excitation
frequencies. Another way of writing (16.1) is as

eðkÞ ¼ 1� k2=L2; L2 ¼ pv=re; ð16:2Þ

where v ¼ 1=n is the volume per electron, and re ¼ e2=mc2 � 2:818� 10�15 m is
the classical electron radius. (Gaussian units were used in the definitions of xp and
re above. In SI units e2 is to be replaced by e2=4pe0 in both definitions, but (16.2)

does not change.) For water, v � 2:99 Å
3
, L � 577 Å and for 1:54 Å wavelength

(X-rays of about 8 keV energy), 1� e � 7� 10�6. X-ray reflection at normal
incidence is tiny: one must go to glancing incidence to get substantial reflection.
Since e\1, even total reflection is possible, as discussed in the next Section.

Neutron motion is according to Schrödinger’s equation

� �h2

2M
r2WþVW ¼ EW ð16:3Þ

where V is the potential energy and E the total energy. Fermi and others (see
Sect. 1.5, Sears 1989, or Lekner 1991 for references) show that the effective
potential for neutrons in a medium consisting of particles off which the neutrons
scatter coherently with bound scattering length b, and where the volume per scat-
terer is v, is

V ¼ �h2

2M

� �

4pb=v � �h2

2M

� �

4pq; q ¼ b=v ð16:4Þ

(q ¼ b=v is the scattering length density.) The scattering is predominantly due to
nuclei: neutron-electron interaction is much weaker in nonmagnetic media. The

refractive index for particle waves (see Sect. 1.3) is ð1� V=EÞ1=2. The energy E is
equal to �h2k2=2M, where k ¼ 2p=k, k being the free-space neutron wavelength.
Thus the effective-medium dielectric function for neutrons, the square of the
refractive index, can be written as

e ¼ 1� bk2=pv ¼ 1� k2q=p; ð16:5Þ
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and is thus of the same form as (16.2):

eðkÞ ¼ 1� k2=L2; L2 ¼ pv=b ¼ p=q: ð16:6Þ

The neutron wavelength is k � 9:04 Å=ðE=meVÞ1=2, so an 81 meV neutron has a

wavelength of about 1 Å. For un-magnetized Fe, b � 9:5 fm and v � 11:8 Å
3

(Werner and Klein 1986, Table II), so L � 625 Å, and 1� e � 2:6� 10�6. The
effective potential for neutrons in iron is of the order of 0:2 μeV, which is about the
same as the work needed to raise a neutron by two metres in the earth’s gravita-
tional field.

We have seen that not only can the X-ray and neutron interactions with matter be
characterized by the same form of wavelength-dependent dielectric function, but
that in both cases, for typical wavelengths, this differs from unity by parts per
million. Hence only reflection not too far from glancing incidence is important (in
Sect. 2.3 we saw that reflection becomes perfect as the glancing angle tends to zero,
for all reflecting profiles).

Further, it is known (Sect. 1.3) that reflection of particle waves by stratified
media is mathematically the same as reflection of electromagnetic s-waves. Thus we
can treat X-ray s-wave and scalar-interaction neutron reflection together. X-ray
reflection of p-waves is nearly the same as that of s-waves in the regions of interest,
as we shall see shortly.

16.2 Reflection Near the Critical Angle

The dielectric function eðkÞ ¼ 1� k2=L2 is less than unity for X-rays, and also for
neutron targets with net positive scattering length. Thus total reflection of X-rays or
neutrons incident from vacuum onto such materials is possible. The critical angle is
close to grazing incidence, and in X-ray and neutron reflection it is usual to work in
terms of glancing angle, this being given the same symbol h used for the angle to
the surface normal in optics. Snell’s law for refraction at a boundary media 1 and 2,
in terms of glancing angles h1 and h2, reads

e1 cos2 h1 ¼ e2 cos2 h2: ð16:7Þ

When e1 ¼ 1 and e2 ¼ 1� k2=L22, with L2 being the interaction length associated
with the substrate, total reflection will occur for q22 ¼ 2p=kð Þ2 e2 � cos2 hð Þ ¼
2p=kð Þ2ðsin2 h� k2=L22Þ� 0, that is when

sin h1 � sin hc ¼ k=L2: ð16:8Þ

From now on we make no use of h2, and can drop the subscript 1 on h1, so h will
always mean h1, the glancing angle of incidence. Waves with k= sin h[ L2 will be
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totally reflected. For the examples used above, X-rays of wavelength 1.54 Å will
totally reflect from water for h\hc � 0:153�, and neutrons of wavelength 1 Å will
totally reflect from unmagnetized iron for h\hc � 0:092�.

Any smooth, non-absorbing planar-stratified medium will reflect totally below
the critical glancing angle hc ¼ arcsinðk=L2Þ, where L2 means the final value taken
by LðzÞ as the depth z increases into the medium. As in the optical case, we take the
zx plane to be the plane of incidence. Then the incident, reflected and transmitted
plane waves have exp iðKx� xtÞ for the x and t dependence, with K ¼ kx ¼
2p
k cos h (incidence from vacuum is assumed in this chapter).

For the electromagnetic s-wave, and for neutrons, the remaining factor of the
probability amplitude is wðzÞ, which satisfies

d2w
dz2

þ q2w ¼ 0; q2 zð Þ ¼ 2p
k

� �2

e zð Þ � cos2 h
� �

: ð16:9Þ

The square of the normal component of the wavevector can also be written as

q2ðzÞ ¼ q21 � ½2p=LðzÞ�2 ¼ 2p
L2

� �2 sin h
sin hc

� �2

� L2
LðzÞ

� �2
" #

: ð16:10Þ

where q1 ¼ ð2p=kÞ sin h is the normal component of the wavevector in the incident
wave.

The form of (16.10) shows that, for a fixed profile LðzÞ on the same substrate, the
s-wave or neutron reflection properties will be the same for the same value of
sin h= sin hc. Thus

S ¼ sin h= sin hc ¼ q1=qc ½qc ¼ ð2p=kÞ sin hc ¼ 2p=L2�

is the appropriate variable in plotting the reflectance, since then data taken at
different wavelengths and different angles of incidence can be plotted on one curve
characteristic of a given profile (Lekner 1991).

For negative neutron scattering length (titanium for example) there is no real
critical angle, and the above characterization in terms of the angle variable S ¼
sin h= sin hc has to be modified. For example, we can define S ¼ k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

pv= bj jp

sin h,
and then the reflection amplitude for neutrons by a step profile can be written as

r0 ¼ ðq1 � q2Þ=ðq1 þ q2Þ ¼ S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ 1
p� �

= Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ 1
p� �

¼ � Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ 1
p� ��2

:

For magnetized cobalt, one neutron polarization has a positive total scattering
length, while the other polarization has negative total scattering length. This case is
discussed in Sect. 16.7, with the reflectivities shown in Fig. 16.11.

394 16 Neutron and X-ray Reflection



For the electromagnetic p wave, with B ¼ ð0; By; 0Þ, we have Byðz; x; tÞ ¼
BðzÞ exp i ðKx� xtÞ as in (2.21), with

e
d
dz

1 dB
e dz

� �

þ q2 zð ÞB ¼ 0; ð16:11Þ

where q2ðzÞ is given by (16.9) or (16.10) as before. The characteristics of the
reflecting profile thus appear in the logarithmic derivative e�1de=dz as well as in
q2ðzÞ, and reflectivities will not fall on one curve when plotted against
S ¼ sin h= sin hc. However, we shall see that the difference between the s and p
reflectivities is of order sin2 hc compared to unity, and can be ignored for
short-wavelength X-rays.

For reflection at a step (an interface which is sharp on the scale of the wave-
length) the reflection amplitudes of the s-wave and of neutrons are given by (1.13),
namely rs0 ¼ ðq1 � q2Þ=ðq1 þ q2Þ. For h	 hc this gives

rs0 ¼
sin h� sin2 h� sin2 hc

	 
1
2

sin hþ sin2 h� sin2 hc
	 
1

2

¼ S� S2 � 1ð Þ12
Sþ S2 � 1ð Þ12

¼ 1

Sþ S2 � 1ð Þ12
h i2 : ð16:12Þ

The reflectivity Rs0 ¼ rs0j j2 is unity for h� hc, and falls rapidly as h increases

beyond hc: at sin h ¼ 2 sin hc the reflectivity is 2� ffiffiffi

3
p	 
4� 5� 10�3, and for

sin h[[ sin hc, Rs0 ! sin hc=2 sin hð Þ4¼ qc=2q1ð Þ4.
The p-wave reflection amplitude is, from (1.31),

rp0 ¼ � sin h cos2 hc � sin2 h� sin2 hc
	 
1

2

sin h cos2 hc � sin2 h� sin2 hc
	 
1

2

: ð16:13Þ

Note that at the critical angle rs0 ¼ 1 and rp0 ¼ �1. (These are the reverse of the
limiting values at grazing incidence, h ! 0). As discussed following (1.25), the
reflection amplitude for Ez is �rp, so (for small hc) the p-wave dominant electric
field component Ez has the incident and reflected waves in-phase at the critical
angle. For the s-wave there is only one component ðEyÞ, and the incident and
reflected electric fields are in-phase at hc. (For the variation of the phases of rs0 and
rp0 when total reflection exists, see the Appendix of Chap. 20).

The difference between Rs0 and Rp0 is of order sin2 hc, and is negligible for most
X-ray reflection studies. From (16.12) and (16.13) we find

rp0 ¼ sin2 hc sin2 hB � rs0
1� rs0 sin2 hc sin2 hB

ð16:14Þ
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where hB is the Brewster angle at which the p reflectivity goes to zero. From
(16.13), it given by

sin2 hB ¼ 1=ð2� sin2 hcÞ or tan hB ¼ sec hc: ð16:15Þ

hB is close to 45� for X-rays with wavelength small compared to L ¼ ðpv=reÞ1=2.
Note also that when angles are measured from the surface normal, the last relation
of (16.15) reads tan hB ¼ sin hc.

Figure 16.1 shows the reflectivity Rs0 for neutrons and X-rays, at the sharp
boundary of any medium with positive neutron scattering length b, and Rp0 for
X-rays of 1:54 Å and 15:4 Å wavelength incident on water L � 577 Å

	 


, for which
sin hc � 0:00267 and 0:0267, respectively. For the smaller X-ray wavelength the
s and p reflectivities are not distinguishable on this scale. For the larger wavelength
the difference is apparent for sin h	 5 sin hc (or R� 10�4).

The reflectivity is seen to fall off rapidly as h increases from hc; (16.12) and
(16.13) show that the behaviour near hc is dominated by the square root of h� hc
(or equivalently, the square root of kc � k where kc ¼ L2 sin h). Lekner (1991)
shows that this square root singularity is universal for non-absorbing smooth pro-
files. Absorption or surface roughness will round off the reflectivity drop at the
critical angle.

Fig. 16.1 Logarithmic plot (base 10) of the Fresnel reflectivities Rs0 for neutrons with positive
scattering length and for X-rays, and Rp0 for X-rays reflecting off water. A precisely defined
boundary surface is assumed (inset). The angle variable is S ¼ sin h= sin hc ¼ q1=qc, so the Rs0

curve is universal for s-polarized X-rays and for neutrons with a real critical angle (positive
scattering length). The solid curve is Rs0, for all neutron or X-ray wavelengths. For k ¼ 1:54Å, Rp0

is indistinguishable from Rs0 on this graph. The dashed curve is Rp0 for k ¼ 15:4Å; this goes
through zero at the Brewster angle, at sin hB � 26:5 sin hc (the imaginary part of the X-ray
refractive index, about a 1000 times smaller than the difference between the real part and unity, has
been set to zero. A nonzero imaginary part will make the reflectivity at hB nonzero)
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16.3 Reflection by Profiles Without Discontinuities

The following identity is derived in Sect. 5.6:

rs ¼ � 1
2

Z1

�1
dz q�1 dq

dz
½e2i/ � r2ðzÞ e�2i/�: ð16:16Þ

Here qðzÞ is (as always) the normal component of the wavevector in a z-stratified
medium, rðzÞ is the reflection amplitude for a profile truncated at z (see Fig. 5.1 for
definition of truncation), and / is the accumulated phase at z:

/ zð Þ ¼
Zz

df/ðfÞ: ð16:17Þ

The Rayleigh (1912) approximation for rs is obtained by dropping the r2 term in
(16.16):

rR ¼ � 1
2

Z1

�1
dz q�1 dq

dz
e2i/: ð16:18Þ

It can also be called the weak reflection approximation (Sect. 5.7), and works
extremely well for smooth profiles which reflect weakly, as seen for example in
Figs. 5.4 and 6.3. Lekner (1991) discusses various further approximations that can
be obtained from (16.18). Here we give one that is often used in X-ray reflection
(see for example Pershan 1990): we rewrite (16.18) as

rR ¼ �
Z

dz
dq2=dz
4q2

e2i/; ð16:19Þ

and replace 4q2 in the integrand by ðq1 þ q2Þ2, where q1 ¼ ð2p=kÞ sin h, and q22 ¼
q21 � ð2p=L2Þ2 from (16.10). In terms of the variable S ¼ sin h= sin hc, we can write

q1 ¼ qcS; q2 ¼ qc S2 � 1½ �12. Also, we can define a dimensionless profile shape
function f ðzÞ by

q2ðzÞ ¼ 1
2

q21 þ q22
	 
� 1

2
q21 � q22
	 


f ðzÞ: ð16:20Þ

(f ðzÞ tends to �1 in the medium of incidence, normally the vacuum, and to +1 deep
in the reflecting substance.) Then (16.19) becomes
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rR � q1 � q2
q1 þ q2

Z

dz
1
2
df
dz

e2i/: ð16:21Þ

Thus the reflection amplitude is written as a product of the Fresnel reflection
amplitude for a step profile, rs0 ¼ ðq1 � q2Þ=ðq1 þ q2Þ, and the Fourier transform of
the derivative of the profile shape function in the / variable. (Note that
R
df e2i/ ¼ R

d/
df
d/

e2i/.) Since q2 ¼ ex2=c2 � K2, (16.20) is the same as

eðzÞ ¼ 1
2
ðe1 þ e2Þ � 1

2
ðe1 � e2Þf ðzÞ; ð16:22Þ

and therefore

f ðzÞ ¼ e1 þ e2 � 2eðzÞ
e1 � e2

: ð16:23Þ

For X-rays eðzÞ ¼ 1� ðk2re=pÞnðzÞ where nðzÞ is the local electron density, while
for neutrons the effective dielectric function is eðzÞ ¼ 1� ðk2=pÞqðzÞ, where
qðzÞ ¼ bðzÞ=vðzÞ is the scattering length density, with both nðzÞ and qðzÞ being zero
in the vacuum. Thus

f ðzÞ ¼ 2nðzÞ=n2 � 1 or f ðzÞ ¼ 2qðzÞ=q2 � 1 ð16:24Þ

in the X-ray and neutron cases. We will use the latter form to avoid possible
confusion between the electron density and the refractive index. Equation (16.21)
now reads

rR � q1 � q2
q1 þ q2

1
q2

Z

dz
dqðzÞ
dz

e2i/: ð16:25Þ

One further simplifying assumption is to replace 2/ by 2q1z, which is a good
approximation for X-rays and neutrons where q1 and q2 are nearly equal. Thus
finally the reflection amplitude is approximated as the product of the Fresnel
amplitude and a Fourier transform of the derivative of the scattering length (or
electron) density,

rR � q1 � q2
q1 þ q2

1
q2

Z

dz
dq
dz

e2iq1z: ð16:26Þ

For a single sharp transition between vacuum and the reflecting material,
dq=dz ! q2dðz� z1Þ, where z1 gives the reflecting boundary location. Thus
(16.26) correctly gives the Fresnel reflection amplitude in this limit.

As a test of (16.26), consider the reflection by a hyperbolic tangent profile,
f ðzÞ ¼ tanhðz=2aÞ of Sect. 2.5. The reflection amplitude is, from (2.88),
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rs ¼ eiU
sinh paðq1 � q2Þ
sinh paðq1 þ q2Þ ð16:27Þ

where U is a known phase. From (16.24),

qðzÞ ¼ 1
2
q2 1þ tanh

z
2a

� �

ð16:28Þ

and so

1
q2

Z1

�1
dz

dq
dz

e2iq1z ¼ 1
4a

Z1

�1
dz sech2

z
2a

� �

e2iq1z¼ 2pq1a
sinh 2pq1a

: ð16:29Þ

Thus for the hyperbolic tangent profile, from (16.27) and (16.26, 16.29),

Rexact ¼ sinh paðq1 � q2Þ
sinh paðq1 þ q2Þ
�
�
�
�

�
�
�
�

2

; Rapprox ¼ q1 � q2
q1 þ q2

�
�
�
�

�
�
�
�

2 2pq1a
sinh 2pq1a

� �2

: ð16:30Þ

These reflectivities are compared in Fig. 16.2, which shows Rexact and Rapprox for
X-rays or neutrons reflecting from an interface with a hyperbolic tangent profile, with
two thicknesses of the interface. Note that for this gradual transition between vacuum
and bulk matter the approximation (16.30) works quite well, and has the virtue of also

Fig. 16.2 Exact and approximate reflectivities for the tanh profile (inset), as a function of the
angle-wavelength variable S ¼ sin h= sin hc. The values of the dimensionless parameter paqc are
0:1 (upper curve) and 1 (lower curves). The approximate log10 R curve (dashed) is not
distinguishable from the exact reflectivity for the smaller value paqc ¼ 0:1. The reflectivities apply
equally to s-polarized X-rays and to neutrons
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being exact in the zero-thickness limit. At the critical angle, where q1 ¼ qc; q2 ¼ 0,
Rexact ¼ 1 and Rapprox ¼ ð2pqca= sinh 2pqcaÞ2, with qc ¼ ð2p=kÞ sin hc ¼ 2p=L2.
Thus when the dimensionless parameter paqc ¼ 2p2a=L2 is small compared to unity,
Rapprox is accurate near the critical angle. In Fig. 16.2, we have chosen the values 0:1
and 1 for paqc, so for X-rays reflecting from water the corresponding interface
thickness parameter has the values a ¼ L2=2p2 � 2:9 Å and 29 Å, respectively. The
10–90 thickness (the distance over which the change in the profile passes through 10
and 90 % of the total) of a tanh profile is ð2 ln 9Þa � 4:39a; the 10–90 thickness
corresponding to a � 2:9 Å is about 12.8 Å.

16.4 Reflection by Profiles with Discontinuities

We have seen that a version of the weak reflection approximation, (16.26), works
well for a gradual transition between two media. Consider now a homogeneous
layer on a substrate, with

qðzÞ ¼
0 z\0
q 0\z\D z
q2 z[D z

8

<

:
ð16:31Þ

The exact reflection amplitude was given in (2.58), which gives the reflectivity

Rexact ¼ r21 þ 2r1r2 cos 2qDzþ r22
1þ 2r1r2 cos 2qDzþðr1r2Þ2

; r1 ¼ q1 � q
q1 þ q

; r2 ¼ q� q2
qþ q2

: ð16:32Þ

From the identity ðr1 þ r2Þ=ð1þ r1r2Þ ¼ ðq1 � q2Þ=ðq1 þ q2Þ it follows that Rexact

coincides with the Fresnel reflectivity whenever cos 2q1Dz ¼ 1. In terms of the

variable S ¼ sin h= sin hc, q1 ¼ qcS; q2 ¼ qc S2 � 1½ �12 and q ¼ qc S2 � q=q2½ �12.
In evaluating the version (16.26) of the weak reflection approximation we

assume that the outer boundary of the reflecting surface is at z ¼ 0, as specified in
(16.31). The two steps in the scattering length density give delta functions in dq=dz
at z ¼ 0 and at z ¼ Dz, of strengths q and q2 � q. Thus (16.26) gives, for real q2
h[ hcð Þ,

rapprox ¼ q1 � q2
q1 þ q2

� �
q
q2

þ 1� q
q2

� �

e2iq1Dz
� 


; ð16:33Þ

Rapprox ¼ q1 � q2
q1 þ q2

� �2

1� 2
q
q2

1� q
q2

� �

ð1� cos 2q1DzÞ
� 


: ð16:34Þ

Both Rexact and Rapprox are bounded above by the Fresnel reflectivity, in accord with
a general theorem for monotonic profiles (Sect. 5.4). Figure 16.3 compares Rapprox
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and Rexact, this time for neutrons reflecting from silicon L ¼ 1208 Å
	 


covered with
a layer of water L ¼ 2363 Å

	 


, 1000 Å thick.
We see from Fig. 16.3 that the reflectivity given by the version (16.26) of the

weak reflection approximation is in qualitative agreement with Rexact, except near
the critical angle. The local minima and maxima are off, because q1 has replaced q
in the phase factor.

We can do better: Lekner (1991) has developed a sequence of approximations
which have the features that they give exact results for homogeneous layers, and are
correct at and near the critical angle. The simplest of these is

r0 ¼ e2iq1a
ðq1qb � q2qaÞcþ iðqaqb � q1q2Þs
ðq1qb þ q2qaÞc� iðqaqb þ q1q2Þs � e2iq1a

N0

D0
: ð16:35Þ

In (16.35) qa and qb are the values of q just inside the outer and inner boundaries of
a stratification, and c ¼ cosD/ and s ¼ sinD/, where D/ is the total phase
increment across the stratification:

D/ ¼ / bð Þ � / að Þ ¼
Zb

a

dz qðzÞ: ð16:36Þ

Extrema of the reflectivity, obtained as the absolute square of (16.35), occur when
D/ is a multiple of p=2. (For a homogeneous layer they occur when qDz is a
multiple of p=2.)

Fig. 16.3 Neutron reflection by a layer of H2O q ¼ 0:056� 10�5Å
�2

� �

on Si

q ¼ 0:215� 10�5Å
�2

� �

, as a function of the angle-wavelength variable S ¼ sin h= sin hc. The

smooth curve is for bare silicon. The solid curve is Rexact (16.32), the dashed curve is Rapprox

(16.34). The water layer is 1000Å thick. The inset shows the scattering length density profile
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When qa ¼ qb; r0 takes the same form as the exact reflection amplitude for a
homohogenous layer, within which the normal component of the wavevector is q (a
constant);

r ¼ e2iq1a
q q1 � q2ð Þcþ iðq2 � q1q2Þs
q q1 þ q2ð Þc� iðq2 þ q1q2Þs : ð16:37Þ

In (16.37), D/ ¼ qDz ¼ qðb� aÞ, and c ¼ cosD/; s ¼ sinD/ as before.
The zeroth approximation (16.35) is based on the simplest wavefunctions,

w

0 ¼ e
i/; / zð Þ ¼

Zz

dfqðfÞ: ð16:38Þ

The next approximation is based on the Liouville-Green wavefunctions of Sect. 6.2,

wþ
1 zð Þ ¼ qa

q zð Þ
� �1=2

ei/ðzÞ; w�
1 zð Þ ¼ qb

q zð Þ
� �1=2

e�i/ðzÞ: ð16:39Þ

The Liouville-Green wavefunctions take into account the variation in normal
component of wavenumber q through the dimensionless function c introduced in
Chap. 6:

c ¼ dq=dz
q2

¼ � 2p
q3

d
dz

b
v

� �

¼ 4p2

qLð Þ3
dL
dz

: ð16:40Þ

Let ca; cb be the values at z ¼ aþ ; z ¼ b�. Then the reflection amplitude takes the
form

r1 ¼ e2iq1a
N0 þN1

D0 þD1
; ð16:41Þ

where N0;D0 were defined in (16.35), and, from Lekner (1991) or from Sect. 6.3,

N1 ¼ � 1
2

q1qbcb þ q2qacað Þsþ i
2
qaqb½ cb � cað Þcþ 1

2
cacbs�; ð16:42Þ

D1 ¼ � 1
2

q1qbcb � q2qacað Þs� i
2
qaqb½ cb � cað Þcþ 1

2
cacbs�:

Both r0 and r1 give the correct result for a homogeneous layer, and for an arbitrary
layer correctly give unit reflectivity at the critical angle or critical wavelength when
q2 ! 0, and at glancing incidence when q1 ! 0.
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According to the formulae for r0 and r1, reflection is mainly the result of dis-
continuities at z ¼ a and b, and of interference between the reflections from these
discontinuities. Discontinuities in slope also contribute to r1, while a gradual
variation of the medium enters the formulae only through the phase increment D/.

The reflectivities R0 and R1, obtained by squaring the modulus of (16.35) and
(16.41), are compared with the exact reflectivity for a profile with linear variation
in q ¼ b=v in Figs. 16.4 and 16.5. Such profiles have q2 ¼ q21 � 4pq linear in z, and
the Airy functions of Sect. 5.2 are solutions of (16.9). Specifically, the solutions are
Ai �fð Þ; Bi �fð Þ, where

f zð Þ ¼ 1
4p

Dz
Dq

�
�
�
�

�
�
�
�

� �2
3

q2 zð Þ ¼ Dz
Dq2

�
�
�
�

�
�
�
�

2
3

q2 zð Þ ¼ 1
4p

Dz
Dq

�
�
�
�

�
�
�
�

� �2
3

q2a � z� að Þ4pDq
Dz

� 


:

ð16:43Þ

In (16.43), Dq ¼ qb � qa is the change in the scattering length density over the
extent Dz ¼ b� a of the profile. The exact reflectivity is calculated by substituting
F zð Þ ¼ Ai �fð Þ; G zð Þ ¼ Bi �fð Þ into w ¼ aFþ bG, and matching both w and
dw=dz at the boundaries. At z ¼ a we match to eiq1z þ re�iq1z, at z ¼ b to teiq2z. The
resulting equations are (with primes denoting derivatives with respect to z)

eiq1a þ re�iq1a ¼ aFa þ bGa; iq1ðeiq1a � re�iq1aÞ ¼ aF
0
a þ bG

0
a; ð16:44Þ

Fig. 16.4 Comparison of the exact and approximate reflectivities Re;R0 and R1 for a profile with
discontinuities in the scattering length density q at its boundaries, and a linear variation in qðzÞ in
between. The curves for Re and R1 are barely distinguishable; R0 is the dashed curve. The
angle-wavelength variable is S ¼ sin h= sin hc ¼ q1=qc. The scattering length densities are qa ¼
0:641; qb ¼ 0:215; q2 ¼ 0:805 (units of 10�5 Å

�2
), corresponding to D2O; Si and Fe respec-

tively. The layer thickness is 500 Å
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aFb þ bGb ¼ teiq2b; aF0
b þ bG0

b ¼ iq2te
iq2b: ð16:45Þ

The symbols have the meaning Fa ¼ F aþð Þ; F0
a ¼ dF=dzð Þz¼aþ ; . . .;

Gb ¼ G b�ð Þ; G0
b ¼ dG=dzð Þz¼b�. There are four unknowns in the four equations

(16.44), (16.45): r; t; a; b. The solution generalizes that given in Sect. 2.2 to profiles
with discontinuities at the boundaries. The reflection and transmission amplitudes are

r ¼ e2iq1a
q1q2 FaGb � GaFbð Þþ iq1 FaG0

b � GaF0
b

	 
þ iq2 F0
aGb � G0

aFb
	 
� ðF0

aG
0
b � G0

aF
0
bÞ

q1q2 FaGb � GaFbð Þþ iq1 FaG0
b � GaF0

b

	 
� iq2 F0
aGb � G0

aFb
	 
þðF0

aG
0
b � G0

aF
0
bÞ

ð16:46Þ

t ¼ eiq1a�iq2b
2iq1 FbG0

b � GbF0
b

	 


q1q2 FaGb � GaFbð Þþ iq1 FaG0
b � GaF0

b

	 
� iq2 F0
aGb � G0

aFb
	 
þðF0

aG
0
b � G0

aF
0
bÞ

These amplitudes have the same form as those given in (2.25) and (2.26) of Chap.
2, but allow for a jump in the effective potential or dielectric function at z ¼ a and
z ¼ b.

To calculate the approximate reflectivities R0 and R1 we need D/, the phase
increment over the inhomogeneity between z ¼ a and z ¼ b. For linear variation in
the scattering length density, this is

Fig. 16.5 As for Fig. 16.4, with the scattering length densities qa and qb interchanged: qa ¼
0:215; qb ¼ 0:641; q2 ¼ 0:805 (units of 10�5 Å

�2
); the layer thickness remains 500 Å. Note that

R0 (dashed curve) is not as good as in Fig. 16.4, because less of the reflection is now due to the
smaller discontinuities in q at the boundaries
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D/ ¼
Zb

a

dz qðzÞ ¼ 1
6p

Dz
Dq

ðq3a � q3bÞ: ð16:47Þ

We also need the values of c defined in (16.40) at the boundaries of the profile.
These are

ca ¼ �2p
Dq
Dz

q�3
a ; cb ¼ �2p

Dq
Dz

q�3
b : ð16:48Þ

We see that R0 is qualitatively correct, and R1 is barely distinguishable from the
exact reflectivity. The deep minima in the reflectivities are associated with the
nearby zero of cosD/ at sin h= sin hc � 1:724 (which makes the real part of N0

zero), close to a zero of the imaginary part of N0 at sin h= sin hc � 1:832.

16.5 Total Reflection: Extraction of the Phase in Lloyd’s
Mirror Experiments

We have so far considered partial reflection, for glancing angle h greater than the
critical angle. When h\hc, the reflectivity is identically unity, and all the infor-
mation about the scattering length density profile qðzÞ that can be measured is
contained in the phase of the reflected wave. Of course, the absolute phase has no
meaning; one has to measure the relative phase of the reflected and incident waves.
Lloyd’s mirror experiment produces interference fringes between the direct and
reflected beams, and Klein and Opat and collaborators have suggested Lloyd’s
mirror configuration for neutrons (Gudkov et al. 1993), and implemented it for light
(Allman et al. 1993a, b). They used the semiclassical short-wave reflected phase
expression of Sect. 6.7,

d � 2
Zz0

0

dz q zð Þ � p
2
; ð16:49Þ

It is assumed in the derivation of this expression that the scattering length density
profile qðzÞ is restricted to z 	 0. The classical turning point is at z0 defined by
q z0ð Þ ¼ 0. Since q2 zð Þ ¼ q21 � 4pq zð Þ; q z0ð Þ ¼ q21=4p. The approximation (16.49)
is known to fail at grazing incidence, where the effective wavelength 2p=q is large
(see Fig. 6.9 and the accompanying discussion). In the limit h ! 0, (16.49) gives
r ¼ eid ! �i, whereas the correct limit is always �1, as we know from Sect. 2.3.
Lekner (1995, 1996) shows that, for all profiles,
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d ¼ 
pþ chþO h3
	 
 ¼ 
pþ c0

sin h
sin hc

þO
sin h
sin hc

� �3

: ð16:50Þ

In total reflection, the normal component of the wavevector in the substrate is

imaginary: q2 ¼ i q2j j; q2j j ¼ 4pq2 � q21
	 
1

2¼ 2p=kð Þ sin2 hc � sin2 h
� �1

2, and the
exact formula (16.46) gives (we set a ¼ 0 for simplicity),

r ¼ iq1 q2j j FaGb � GaFbð Þþ FaG0
b � GaF

0
b

	 
� �� q2j j F0
aGb � G0

aFb
	 
� ðF0

aG
0
b � G0

aF
0
bÞ

iq1 q2j j FaGb � GaFbð Þþ FaG0
b � GaF0

b

	 
� �þ q2j j F0
aGb � G0

aFb
	 
þðF0

aG
0
b � G0

aF
0
bÞ

:

ð16:51Þ

Equation (16.51) can be written as

r ¼ q1 þ iQ
q1 � iQ

¼ e2i arctan Q=q1 ; Q ¼ q2j j F0
aGb � G0

aFb
	 
þðF0

aG
0
b � G0

aF
0
bÞ

q2j j FaGb � GaFbð Þþ FaG0
b � GaF0

b

	 
 :

ð16:52Þ

In the absence of absorption, Q is real. Thus the phase d of the reflection amplitude
r ¼ eid is given by

d ¼ 2 arctanQ=q1 ð16:53Þ

As q1 ¼ 2p=kð Þ sin h1 tends to zero, q2j j ¼ q2c � q21
	 
1

2! qc ¼ 4pq2ð Þ12¼
2p=kð Þ sin hc, and Q tends to its glancing incidence value Q0. Also, for real X,

arctanX ¼ p
2
sgn Xð Þ � X�1 þOðX�3Þ: ð16:54Þ

Hence we have a proof of (16.50) for reflecting profiles of finite thickness:

d ¼ p sgn Q0ð Þ � 2q1
Q0

þO
q1
Q0

� �3

: ð16:55Þ

Equation (16.55) determines the constants c and c0 in (16.50) to be
c ¼ � 4p=kð ÞQ�1

0 ; c0 ¼ �4p=Q0L2 ¼ �4
ffiffiffiffiffiffiffiffi
pq2

p
=Q0. Lekner (1995) evaluates the

slope of the reflection phase for the homogeneous layer, the linear profile, and the
hyperbolic tangent profile. The last variation of the scattering length density extends
continuously without bound, but still has the form (16.50). Analytic forms of c for
linear and quadratic profiles are given in Lekner (1996).

For the linear variation of scattering length density we know from Sect. 16.4 that
the functions F and G are Airy functions, and the reflection phase can be evaluated
exactly from (16.52) and (16.53). Figure 16.6 show the phase for the profile of
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Fig. 16.5, and Fig. 16.7 for the same material parameters, but a thicker layer of
2000 Å depth. These figures also show the high-frequency approximation (16.49),
in which the integral is to be taken over the real part of qðzÞ. Since q2 zð Þ ¼
4pq2S

2 � 4pq zð Þ is negative for S ¼ sin h= sin hc\Sa ¼ sin ha= sin hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

qa=q2
p

,
the real part of the phase integral in (16.49) is zero for S\Sa. There is also a change
in analytic form at Sb ¼ sin hb= sin hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

qb=q2
p

. The phase integral thus has three
forms (Lekner 1995): zero for S\Sa, and

Zz0

0

dz qðzÞ ¼ 1
6p

Dz
Dq

q21 � 4pqa
	 
3

2; Sa\S\Sb;

Zz0

0

dz qðzÞ ¼ 1
6p

Dz
Dq

q21 � 4pqa
	 
3

2� q21 � 4pqb
	 
3

2

n o

; Sb\S\1: ð16:56Þ

We see that the high frequency approximation (16.49) fails at glancing incidence, as
is expected, since q1 ! 0 there, and is not good at the smaller thickness of Dz ¼
500 Å in Fig. 16.6, but it is a good approximation (away from glancing incidence)
for Dz ¼ 2000 Å shown in Fig. 16.7. The phase curves are drawn against
S ¼ sin h= sin hc, and are thus universal as regards wavelength and angle of inci-
dence. They differ in the thickness and form of the layer, the operative dimen-
sionless constants being Dzð Þ2q, where the various scattering length densities

Fig. 16.6 The reflection phase d plotted as a function of S ¼ sin h= sin hc, for the same material
parameters as the profile of Fig. 16.5, with layer thickness 500 Å. The straight line is the
small-angle variation predicted by (16.55), the dashed curve is the short-wave approximation
(16.49), and the full curve is the exact phase (16.53)
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qa; qb; q2 are substituted for q. These dimensionless constants are all sixteen times
larger when the thickness is quadrupled, improving the agreement with the exact
reflection phase.

In the preceding we explored the properties of the reflection phase d, which
relates to the motion in the z-direction, normal to the reflecting stratification. There
is also a phase difference between the reflected and direct neutron waves due to
motion in the x-direction. Figure 16.8 shows the two paths.

The phase difference between the reflected and direct neutron rays can be broken
up into the straight-path contributions (where the neutrons travel in vacuum), and
the curved part contribution from within the reflecting stratification. The
straight-path phase difference is, with L ¼ DþDxþ d being the horizontal distance
between the source and the detector, and Dx the horizontal component of the curved
path,

Ds ¼ 2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þH2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ h2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þðH � hÞ2
q� 


¼ 2p
k

�Dxþ 2Hh
L

þ H2 þ h2ð ÞDx
2L2

þOðL�3Þ
� 


: ð16:57Þ

The curved part contributes

Dc ¼ KDxþ d ¼ 2p
k
Dx cos hþ d: ð16:58Þ

Fig. 16.7 Reflection phase d for the linear profile. As for Fig. 16.6, but now with four times
greater thickness of the linear variation in density, Dz ¼ 2000 Å
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The tangential component K of the wave vector is a constant of the motion in a
planar stratification. The value of Dx in the ray picture is, from (10.50) of Sect. 10.3,

Dx � 2
Zz0

0

dz cot hðzÞ ¼ 2
Zz0

0

dz
K
qðzÞ ¼

K
ffiffiffi
p

p
Zz0

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q z0ð Þ � qðzÞp : ð16:59Þ

The last equality follows from q2 zð Þ ¼ q21 � 4pq zð Þ and 0 ¼ q21 � 4pq z0ð Þ, the
definition of the classical turning point. The semiclassical value of Dx given in
(16.59) also follows from Dx � dd=dK ((10.51) of Sect. 10.3) when d is approx-
imated by (16.49).

The total phase difference between the direct and reflected waves is
D ¼ Ds þDc, and the Lloyd mirror fringe intensity is proportional to
1þ exp iDð Þj j2¼ 4 cos2 D

2. The contribution of the curved part of the reflected ray
itself depends on the scattering length density variation with z, as can be seen from
(16.59). Lekner (1996) gives details for the linear and quadratic variation with z.
The fringe spacing, which correspond to a change of 2p in D, is

Dh ¼ 2p
dD=dh

: ð16:60Þ

For a linear profile without discontinuities this is constant, equal to kD=2H; for a
quadratic variation the spacing decreases as h increases. Thus, in principle at least,
neutron scattering density profiles can be distinguished in the Lloyd mirror
experiment (the feasibility of optical refractive index determination has been
demonstrated in Allman et al. 1993a, b). In the neutron Lloyd’s mirror experiment,
the wavelength is smaller and the fringes are closer together. Photographic film

Fig. 16.8 Lloyd fringe formation in total reflection, with vertical distances enhanced for clarity. If
the total horizontal distance between source and detector is L ¼ DþDxþ d, the direct ray has

length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ H � hð Þ2
q

. Since H=D ¼ tan h ¼ h=d, we have D ¼ L� Dxð Þ 1þ h=H½ ��1;

d ¼ h=Hð ÞD
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impregnated with boron 10 or lithium 6 may give better resolution than conven-
tional detectors (Lekner 1995).

Other methods of extracting the phase in neutron reflectometry have been pro-
posed: Majkrzak and Berk (1995) by means of a known reference layer having
three tuneable values of the scattering length density, and de Haan et al. (1995) by
adding to the unknown layer a known ferromagnetic layer. For liquid surfaces and
thin films on liquid surfaces, the phase problem can be treated in the distorted-wave
Born approximation (Blasie et al. 2003).

16.6 Reflection of Neutrons by Periodic Stratifications

It is well known that periodic structures diffract waves strongly into certain
directions determined by the constructive interference of the scattered waves. Planar
periodic structures reflect specularly, as we saw in Chap. 13, and most strongly at
wavelengths and angles of incidence which are such as to combine in phase the
waves reflected from each of the repeated components of the stratification. These
stop bands or Bragg peaks, as they are known, are of finite width (in angle, or
wavelength, or frequency), because the periodic structure which produces the
reflection modifies the propagating waves to such an extent that, if the structure
were infinite, forbidden bands would appear, within which only evanescent
non-propagating waves are possible. The infinite and semi-infinite cases have been
thoroughly explored, for instance in solid-state physics. In neutron reflection
studies, interest lies in finite stratifications with a relatively small number of rep-
etitions of the basic unit, for example nickel-titanium multilayers (Penfold 1991), or
lamellar phases of polyolefin diblock copolymer films (Foster et al. 1992). The
theory is treated in Lekner (1994) and Sears (1997). Figure 16.9 illustrates a
four-fold repetition of a Ni–Ti bilayer.

In Sect. 12.2 we showed that the reflection and transmission amplitudes for a
general stratification are given in terms of the stratification matrix M ¼ mij

� �

by

r ¼ e2iq1a
q1q2m12 þm21 � iq2m11 þ iq1m22

q1q2m12 � m21 þ iq2m11 þ iq1m22
; ð16:61Þ

t ¼ eiq1a�iq2b 2iq1ðm11m22 � m12m21Þ
q1q2m12 � m21 þ iq2m11 þ iq1m22

: ð16:62Þ

(We have reinstated the matrix determinant det Mð Þ ¼ m11m22 � m12m21, normally
unity, in the numerator.) We shall compare these with the general formulae (16.46)
in Sect. 16.2, expressed in terms of exact solutions F;G of d2w=dz2 þ q2w ¼ 0
within the reflecting layer, namely
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r ¼ e2iq1a
q1q2 F;Gð Þþ iq1 F;G0ð Þ þ iq2 F0;Gð Þ � ðF0;G0Þ
q1q2 F;Gð Þþ iq1 F;G0ð Þ � iq2 F0;Gð Þþ ðF0;G0Þ ; ð16:63Þ

t ¼ eiq1a�iq2b 2q1ðFbG0
b � GbF0

bÞ
q1q2 F;Gð Þþ iq1 F;G0ð Þ � iq2 F0;Gð Þþ ðF0;G0Þ : ð16:64Þ

In (16.63) and (16.64) we have used the shorthand notation

FaGb � GaFb ¼ F;Gð Þ; FaG
0
b � GaF

0
b ¼ F;G0ð Þ;

F0
aGb � G0

aFb ¼ F0;Gð Þ; F0
aG

0
b � G0

aF
0
b ¼ ðF0;G0Þ: ð16:65Þ

The combination W ¼ FG0 � F0G is the Wronskian of the solutions; W is inde-
pendent of z. Comparison of (16.61) with (16.63) and (16.62) with (16.64) shows
that the exact matrix elements are (Lekner 1994)

m11 ¼ �ðF0;GÞ=W ; m12 ¼ ðF;GÞ=W ; m21 ¼ �ðF0;G0Þ=W ; m22 ¼ ðF;G0Þ=W :

ð16:66Þ

With the common factor W�1 in (16.66), the matrix is unimodular:

det Mð Þ ¼ W�2 F;Gð Þ F0;G0ð Þ � ðF0;GÞðF;G0Þf g ¼ 1: ð16:67Þ

Fig. 16.9 A fourfold repetition of a Ni–Ti bilayer, on a substrate of nickel. The layer thicknesses are
Ni : 47:8 Å; Ti : 55:7 Å. The structure shown is drawn to scale, with bound coherent scattering
lengths b Nið Þ ¼ 10:3fm; b Tið Þ ¼ �3:4fm, and volumes per atom v Nið Þ ¼ 11:14 Å

3
; v Tið Þ ¼

17:67 Å
2
. The corresponding scattering length densities are q Nið Þ � 9:25� 10�6 Å

�2
; q Tið Þ �

�1:92 �10�6 Å
�2
, indicated by Ni and Ti on the diagram
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This result follows from the identity (2.31).
We now consider a periodic stratification, consisting of N repetitions of a fun-

damental unit cell. In the example of Fig. 16.9, N ¼ 4, and the unit cell is a Ni–Ti
bilayer. We know from Chap. 13, (16.1) to (16.4), that if M ¼ mij

� �

is the matrix
of one period, the matrix for N periods is

MN ¼ m11SN � SN�1 m12SN
m21SN m22SN � SN�1

� �

; ð16:68Þ

SN ¼ sinNU
sinU

; cosU ¼ 1
2
trace Mð Þ ¼ m11 þm22ð Þ: ð16:69Þ

In the simplest case of pairs of homogeneous layers, as illustrated in Fig. 16.9, the
unit cell matrix is a product of the unimodular matrices of the two homogeneous
layers:

M ¼ cl q�1
l sl

�qlsl cl

� �

ch q�1
h sh

�qhsh ch

� �

¼ clch � q�1
l qhslsh q�1

h clsh þ q�1
l slch

�qlslch � qhclsh clch � qlq�1
h slsh

� �

: ð16:70Þ

The notation used in (16.70) is as follows: the subscripts h; l stand for the high and
low values of the scattering length density q ¼ b=v, cl ¼ cos dl; sl ¼ sin dl; dl ¼ qll,
where ql is the value of the normal component of the wavevector in the layer where
q ¼ ql, found from q2 ¼ q21 � 4pq, and likewise for ch; sh; dh. The matrices for the
homogeneous layers follow from (16.66) on setting F ¼ cos qz;G ¼ sin qz. For this
unit cell matrix the phase U is given by

cosU ¼ clch � 1
2
slsh q�1

l qh þ qlq
�1
h

	 


¼ cos dl þ dhð Þ � 1
2
slsh

ffiffiffiffiffiffiffiffiffiffiffi

ql=qh
p

�
ffiffiffiffiffiffiffiffiffiffiffi

qh=ql
p� �2

: ð16:71Þ

We see that U is approximately equal to the total phase increment across a single
period, U � dh þ dl. The same approximation holds for a general bilayer (Lekner
1994). The Bragg formula 2d sin h ¼ nk, which applies to radiation of wavelength
k incident at glancing angle h onto planes of scatterers separated by distance d, can
be written as qd ¼ np, since the normal component of the wavevector is q ¼
2p=kð Þ sin h (if one assumes the planes of scatterers to be separated by vacuum).
Thus, according to the Bragg formula, reflection maxima occur when the phase
increment qd across one period is a multiple of p. (This begs the question: when the
medium is not vacuum, but a composite structure, what q should one put into the
Bragg formula?) As we have seen in Sect. 13.2, a semi-infinite periodic stratifi-
cation reflects totally whenever cosU lies outside the range ½�1; 1�. Such regions
correspond to band gaps; the band edges are given by cos2 U ¼ 1. When
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cos2 U[ 1 the waves cannot propagate within the periodic structure, and reflection
is perfect for a non-absorbing semi-infinite medium, and strong for finite or
absorbing periodic structures. We conclude that the designation of regions of strong
reflectivity as Bragg peaks is a simplification of (or at best a shorthand for) the
underlying band structure, even though in neutron reflection the stop bands can be
very narrow, as illustrated in the figure below.

Figure 16.10 shows the function cosU and the reflectivity R for a single bilayer
and a 15-bilayer Ni–Ti stack on a nickel substrate, a part of which was shown in
Fig. 16.9.

To calculate the reflectivity of a periodic structure with N periods, we substitute
the matrix elements of the matrix MN for the complete stratification as given in
(16.68) into the reflection amplitude (16.61). The result is

Fig. 16.10 Glancing angle dependence of the function cosU ¼ ðm11 þm22Þ=2 and the reflectivity
R for a 15-bilayer Ni–Ti stack, with parameters as given in Fig. 16.9. Whenever cos2 U[ 1 the
infinite periodic structure has a band gap, and reflects totally; the corresponding imaginary part of
U is shown in the upper graph. The non-oscillatory curve on the lower graph is the Fresnel
reflectivity of the bare substrate, RF ¼ q1 � q2ð Þ2= q1 þ q2ð Þ2. The smooth oscillatory curve is the
reflectivity of a single period on the same substrate. The graphs are plotted as a function of the
angle variable S ¼ sin h= sin hc.The diamonds on both graphs indicate the locations of the Bragg
angles, for which S is an integer times p=qcd, from q1d ¼ np
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r ¼ e2iq1a
q1q2m12 þm21 � iq2ðm11 � rNÞþ iq1ðm22 � rNÞ
q1q2m12 � m21 þ iq2ðm11 � rNÞþ iq1ðm22 � rNÞ : ð16:72Þ

As in Sect. 13.2, it is convenient to work in terms of the quantity

rN ¼ SN�1

SN
¼ sin N � 1ð ÞU

sinNU
¼ cosU� sinU cotNU. ð16:73Þ

We noted in Sect. 13.2 that when NU is a multiple of p and ðN � 1ÞU is not, rN is
infinite and R ¼ rj j2! q1 � q2ð Þ2= q1 þ q2ð Þ2, the Fresnel reflectivity of the bare
substrate. On the other hand, when ðN � 1ÞU is a multiple of p and NU is not, rN is
zero, and the reflection amplitude is the same as that of a single period of the
structure (supported by the substrate), namely as given by (16.61) with the matrix
elements of (16.70). Hence the rapid variation of the reflectivity with angle of
incidence for the N ¼ 15 stratification seen in Fig. 16.10.

16.7 Neutron Reflection by Magnetic Materials

The neutron magnetic dipole l interacts with the magnetic field B, the interaction
energy being �l:B. Neutron spin is quantized, with equal and opposite magnetic
moments parallel and antiparallel to the magnetic field, so the magnetic interaction
will add equal and opposite terms to the interaction potential. The result is that two
waves of opposite spin travel with different phase velocities within magnetic media,
just as waves of opposite circular polarization are characterized by different
refractive indices in the case of chiral media (Chap. 18).

It follows from Maxwell’s equations in magnetic media that only the magneti-
zation tangential to the surface of the reflecting medium is active in the
neutron-medium magnetic interaction. Let us suppose, as usual, that the plane of
incidence is the zx plane, and that the outer surface of the magnetic reflector is the
z ¼ 0 plane. The simplest case arises when the magnetization is along the y
direction (normal to the scattering plane). Then the magnetic interaction potential is
(Sears (1989) Sect. 3.5, Zabel et al. (2007))

2p�h2

Mv
bmry; ry ¼ 0 �i

i 0

� �

: ð16:74Þ

In (16.74) ry is the y-component Pauli spin matrix, which has eigenvalues 
1; M is
the mass of a neutron, and v the volume per scatterer. In this simplest case the total
effective medium-neutron interaction is
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V
 ¼ Vn 
 Vm ¼ 2p�h2

Mv
bn 
 bmð Þ ¼ 2p�h2

Mv
b
: ð16:75Þ

The subscripts n;m stand for nuclear and magnetic, and the plus sign is associated
with neutron spin parallel to the ambient field, the minus sign with spin antiparallel.
The effective dielectric function replacing (16.5) becomes

e
 ¼ 1� k2

pv
ðbn 
 bmÞ ð16:76Þ

From q1 ¼ 2p
k sin h and q22 ¼ q21 � 4pb=v we see that reflection will be total for the

two neutron spin orientations for glancing angles smaller than the critical angles h
c
given by

sin h
c ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b
=pv
p

ð16:77Þ

The scattering lengths b
 can be quite different: for Fe for example,
bn ¼ 9:54; bm ¼ 5:98; bþ ¼ 15:52; b� ¼ 3:56. (The scattering lengths here and
below are in fm ¼ 10�15 m, from Table 3.4 of Sears 1989.) Thus a range of angles
exists for which one polarization is reflected totally, and the other is not. For
neutrons of 10 Å wavelength incident on fully magnetized iron,
hþ
c � 1:17�; h�c � 0:56�.
For Co the antiparallel polarization has a negative total scattering length, and

therefore no critical angle: bn ¼ 2:50; bm ¼ 4:64; bþ ¼ 7:14; b� ¼ �2:14:
Figure 16.11 shows the reflectivity of the two neutron spin orientations from
magnetized cobalt, assuming a sharp interface. The volume per scatterer in cobalt is

11:1 Å
3
, and hþ

c � 0:82� for neutrons with 10 Å wavelength. The neutrons with
positive spin orientation have the reflectivity obtained by squaring the step profile
reflection amplitude (16.12) for h	 hþ

c (and unity for h� hþ
c ):

Rþ ¼ Sþ S2 � 1
	 
1

2

h i�4
; S ¼ sin h

sin hþ
c

ð16:78Þ

For negative spin orientation we can use the formulation of Sect. 16.2, namely

R� ¼ Sþ S2 þ 1
	 
1

2

h i�4
; S ¼ sin h

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b�j j=pvp ð16:79Þ

The analysis of neutron polarization experiments involves correction for the
polarizer and analyser efficiencies, and contamination by unwanted spin states.
These aspects are covered by Wildes (1999, 2006).
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Chapter 17
Acoustic Waves

Section 1.4 introduced the basics of sound propagation in isotropic media, and
some elementary properties of compressional wave reflection and transmission. An
important aspect noted there was the possibility of zero reflection at a sharp
boundary between two media at the Green’s angle, the acoustic analogue of the
Brewster angle. This chapter will summarize known results in the reflection and
transmission of sound waves. As for electromagnetic and particle waves, there are
relations that must be satisfied by the exact reflection and transmission amplitudes
of acoustic compressional waves in an arbitrary planar stratification. These are the
conservation and reciprocity theorems. We shall also give low-frequency and
high-frequency limiting forms, and an upper bound on the reflectivity. These are
compared with analytic solutions for two special stratifications, both having
exponential variation of density with depth, and linear or exponential variations of
sound speed.

17.1 General Relations for Stratified Media

The linearized equation for the acoustic pressure p is (Bergmann 1946;
Brekhovskikh 1960)

r2p� q�1rq � rp� v�2@2
t p ¼ 0; ð17:1Þ

where v2 ¼ @qpa is the adiabatic derivative of the hydrostatic or ambient pressure
pa with respect to the density q. For planar stratifications, p and v are functions of
the depth z only; vðzÞ is usually referred to as the local value of the phase velocity,
but this is literally true only if the medium changes little in one ‘wave-
length’ = ‘speed’/frequency (Gupta 1965). For a plane monochromatic wave
propagating in the zx plane, solutions of (17.1) have the form

p z; x; tð Þ ¼ ei Kx�xtð ÞPðzÞ; ð17:2Þ
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where x is the angular frequency of the wave and K is the x component of the wave
vector, which is a constant of the motion. The angle hðzÞ between the normal to the
wave front and the z axis, and the local sound speed vðzÞ, are related to K via the
generalized Snell’s law,

K ¼ x
vðzÞ sin hðzÞ ¼ constant: ð17:3Þ

The differential equation for P was given in (1.57):

q
d
dz

1
q
dP
dz

� �
þ q2P ¼ 0; q2 zð Þ ¼ x2

v2ðzÞ � K2; ð17:4Þ

where qðzÞ is the normal component of the wavevector. Here we consider reflection
and transmission by a bounded stratification between z ¼ a and z ¼ b, with
homogeneous media (for z\a and z[ b) above and below. Acoustic parameters
relating to these bounding media will be labeled by the subscripts a or b; thus
qa ¼ x=vað Þ cos ha is the value of the normal component of the wave vector in
medium a. When sound is incident from medium a and transmitted, via the strat-
ification, to medium b, the pressure variable PðzÞ takes the forms

Pab ¼ eiqazþ rabe�iqaz z� að Þ; Pab ¼ tabeiqbz z� bð Þ ð17:5Þ

in media a and b. When sound is incident from below, the forms taken by PðzÞ in
media a and b are

Pba ¼ tbae�iqaz z� að Þ; Pba ¼ e�iqbzþ rbaeiqbz z� bð Þ: ð17:6Þ

We shall derive general relations linking the reflection amplitudes rab; rba and the
transmission amplitudes tab; tba, and their relation to the appropriate acoustic
reflectances and transmittances.

17.1.1 General Results for the Reflection and Transmission
Amplitudes

Let FðzÞ and GðzÞ be two solutions of (17.4), and consider their Wronskian

W F;Gð Þ ¼ FG0 � F0G; ð17:7Þ

where the prime denotes differentiation with respect to z. The derivative of W is
W 0 ¼ FG00 � F00G. From (17.4), F00 ¼ q0=qð ÞF0 � q2F, and likewise for G, so
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W 0 ¼ q0

q
W ; lnW ¼ ln qþ constant: ð17:8Þ

Thus W=q is a constant: the Wronskian of the two solutions is proportional to the
local density q zð Þ.

Consider first the Wronskian of PabðzÞ and PbaðzÞ. From (17.5) and (17.6) we see
that in medium a this takes the value �2iqatba, and in medium b the value �2iqbtab.
Since W=q is a constant, this proves the reciprocity relation

Qatba ¼ Qbtab; ð17:9Þ

where Q denotes the normal component of the wave vector divided by the density:

Q zð Þ ¼ q zð Þ
q zð Þ ¼

x cos h zð Þ
vðzÞq zð Þ ; Qa ¼ qa

qa
; Qb ¼ qb

qb
: ð17:10Þ

The derivation of (17.9) assumes that there is no attenuation in media a or b
(otherwise the forms (17.5) and (17.6) would, with complex qa or qb, show
unacceptable exponential growth).

Total internal reflection is excluded for the same reason. It has not been assumed
that the stratification between the homogenous media a and b is free from atten-
uation. The equality (17.9) demonstrates that the (complex) transmission ampli-
tudes tab and tba carry the same phase. It also implies that the transmittance (the
fraction of acoustic intensity transmitted through the stratification) is the same from
above and from below,

Tab ¼ Tba; where Tab ¼ Qb=Qað Þ tabj j2; Tba ¼ Qa=Qbð Þ tbaj j2: ð17:11Þ

To see that the transmittance is Tab ¼ Qb=Qað Þ tabj j2, consider the situation in
Fig. 17.1, in which a beam incident from medium a insonifies a strip of unit width
on the z ¼ a boundary. The energy density of a plane wave with complex acoustic
pressure p is proportional to pj j2=qv2, so the energy flux is proportional to pj j2=qv.
For the case shown, the amount of energy in the primary wave that is incident on a
unit area of interface in unit time is proportional to cos ha=qava, while the energy
reflected away in unit time is proportional to rabj j2cos ha=qava. The energy trans-
mitted in unit time is proportional to tabj j2cos hb=qbvb. It follows that

Rab ¼ rabj j2; Tab ¼ qava
qbvb

cos hb
cos ha

¼ Qb

Qa
tabj j2: ð17:12Þ

We next consider the Wronskian of Pab and P�ba, assuming the absence of
attenuation everywhere (if P is a solution of (17.4), so is its complex conjugate P�,
provided q2 is real). This Wronskian takes the value 2iqarabt�ba in medium a, and
�2iqbtabr�ba in medium b. Since W=q is constant, we have the reciprocity relation
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Qarabt
�
ba ¼ �Qbtabr

�
ba: ð17:13Þ

Together with the reciprocity relation (17.9), this shows that

r�ba ¼ � t�ba=tba
� �

rab; ð17:14Þ

which in turn implies the equality of the reflectances Rab ¼ rabj j2 and Rba ¼ rbaj j2.
Note that the required reality of qa and qb also excludes total internal reflection: for
example, if the wave is totally internally reflected from medium b, qb is imaginary.

Under the same conditions, the Wronskian of Pab and P�ab is equal to �2iqað1�
rabj j2Þ in medium a, and �2iqb tabj j2 in medium b; the constancy of the Wronskian
divided by the density thus implies

Qa 1� rabj j2
� �

¼ Qb tabj j2; ð17:15Þ

which is the energy conservation law

Fig. 17.1 A strip of unit width on the stratification is insonified by a beam of width cos ha; the
transmitted beam has width cos hb (the reflected beams are not shown)
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Rabþ Tab ¼ 1: ð17:16Þ

(The same equality links Rba and Tba.) The analogous results for electromagnetism
and quantum mechanics are derived, by different methods, in Sect. 2.1.

The differential equation (17.4), to be satisfied by the acoustic pressure variable
PðzÞ, is linear and of the second order. Thus, in a general stratification, (17.4) has
two linearly independent solutions, say FðzÞ and GðzÞ, and PðzÞ is a linear com-
bination of these within the stratification:

P ¼ uFþ vG: ð17:17Þ

Consider the reflection-transmission problem, in which sound is incident from
medium a. Then P is given by (17.5) in media a and b, while within the inho-
mogeneous layer it is given by (17.17). The boundary conditions at z ¼ a and z ¼ b
are the continuity of P and of q�1dP=dz. (Note that these conditions are implied by
the differential equation (17.4), and are not additional physical input.) These
boundary conditions give four equations in the four unknown constants u; v; r, and
t:

eiaþ re�ia ¼ uFaþ vGa; uFbþ vGb ¼ teib; ð17:18Þ

iQa eia � re�ia
� � ¼ uFaþ vGa; uFbþ vGb ¼ iQbteib: ð17:19Þ

Here a ¼ qaa; b ¼ qba; r and t are the reflection and transmission amplitudes for
insonification from medium a (we will drop the ab subscript from now on unless it
is specifically needed); Fa stands for FðzaÞ, Fa for the derivative of F at z ¼ a
divided by the value of q just inside the stratification, and so on (This notation
allows for possible discontinuity of density at either interface). Solving (17.18,
17.19) we find

r ¼ e2ia
QaQb F;Gð Þþ iQa F;G

� �þ iQb F;G
� �� ðF;GÞ

QaQb F;Gð Þþ iQa F;G
� �� iQb F;G

� �þðF;GÞ ; ð17:20Þ

t ¼ eiða�bÞ
2iQa FbGb � FbGb

� �
QaQb F;Gð Þþ iQa F;G

� �� iQb F;G
� �þðF;GÞ ; ð17:21Þ

u ¼ eia
2iQa Gb � iQbGb

� �
QaQb F;Gð Þþ iQa F;G

� �� iQb F;G
� �þðF;GÞ ; ð17:22Þ

v ¼ �eia 2iQa Fb � iQbFb
� �

QaQb F;Gð Þþ iQa F;G
� �� iQb F;G

� �þ F;G
� � : ð17:23Þ

17.1 General Relations for Stratified Media 423

http://dx.doi.org/10.1007/978-3-319-23627-8_2


In (17.20–17.23), F;Gð Þ � FaGb � GaFb; F;G
� � � FaGb � GaFb, et cetera. Note

that there is a common denominator to all four expressions. Corresponding results
for electromagnetic waves were given in Sect. 2.2.

If the density q is continuous across both the interfaces at z ¼ a and at ¼ b, the
equations linking the derivatives across the boundaries simplify, and the (17.20–
17.23) may be replaced by a set in which Qa ! qa;Qb ! qb and F ! F0;G! G0.

In the absence of attenuation or total internal reflection, q is real everywhere.
Then F and G may be chosen to be real, being the solutions of a real differential
equation, and R ¼ rj j2 and T ¼ Qb=Qað Þ tj j2 are given by

R ¼ QaQb F;Gð Þ � F;G
� �� 	2 þ Qa F;G

� � þ Qb F;G
� �� 	2

QaQb F;Gð Þ þ F;G
� �� 	2 þ Qa F;G

� �� Qb F;G
� �� 	2 ; ð17:24Þ

T ¼ 4QaQb FbGb � FbGb
� �2

QaQb F;Gð Þ þ F;G
� �� 	2 þ Qa F;G

� �� Qb F;G
� �� 	2 : ð17:25Þ

By using the identity

F;Gð Þ F;G� �� F;G
� �

F;G
� � ¼ ðFaGa � FaGaÞðFbGb � FbGbÞ � W

q

� �
a

W
q

� �
b
;

ð17:26Þ

and the fact that W=q is a constant, the conservation law (17.16) is seen to be
satisfied by (17.24) and (17.25). It also follows from (17.24) that R\1, as can be
seen by writing it in the form

R ¼ 1� 4QaQb W=qð Þ2
QaQb F;Gð Þþ F;G

� �� 	2 þ Qa F;G
� �� Qb F;G

� �� 	2 : ð17:27Þ

In total internal reflection (the angle of incidence exceeding the critical angle

arcsin va=vb), q2b ¼ x2

v2b
� K2 ¼ x2

v2a

v2a
v2b
� sin2 ha

� �
is negative, qb is imaginary, and the

reflection amplitude takes the form r ¼ e2iaðiA� BÞ=ðiAþBÞ, so that rj j2¼ 1. But
note that this is true only in the absence of attenuation, which makes the reflection
less than perfect even if qb is pure imaginary.

At grazing incidence (from medium a) the normal component qa ¼
x=vað Þ cos ha of the wave vector tends to zero. It follows from (17.20) to (17.21)
that

r ! �1; t! 0 as ha ! 90�: ð17:28Þ

(F and G are functionals of q2 zð Þ ¼ x2=v2ðzÞð Þ � K2, and thus depend on the angle
of incidence through K ¼ x=vað Þ sin ha; however, this dependence cannot override

424 17 Acoustic Waves

http://dx.doi.org/10.1007/978-3-319-23627-8_2


the effect of Qa ! 0 in (17.20) and (17.21)). Thus there is perfect reflection and
zero transmission at glancing incidence. The reflected wave is then 180� out of
phase with the incident wave. These statements hold whether or not there is
attenuation in the stratification and/or the bottom medium, and also hold when there
is total internal reflection (qb imaginary).

The reflection and transmission amplitudes for insonification ‘from below’ may
be obtained by applying the boundary conditions to (17.6) with P written in the
form (17.17). They are

rba ¼ e�2ib
QaQb F;Gð Þ � iQa F;G

� �� iQb F;G
� �� ðF;GÞ

QaQb F;Gð Þþ iQa F;G
� �� iQb F;G

� �þðF;GÞ ; ð17:29Þ

tba ¼ eiða�bÞ
2iQb FbGb � FbGb

� �
QaQb F;Gð Þþ iQa F;G

� �� iQb F;G
� �þðF;GÞ : ð17:30Þ

Together with rab and tab given by (17.20) and (17.21), they satisfy the reciprocity
theorems (17.9) and (17.14). The corresponding solution for the constants in P ¼
uFþ vG is

u ¼ e�ib
2iQb Gaþ iQaGa

� �
QaQb F;Gð Þþ iQa F;G

� �� iQb F;G
� �þðF;GÞ ; ð17:31Þ

v ¼ �eib 2iQb Faþ iQaFa
� �

QaQb F;Gð Þþ iQa F;G
� �� iQb F;G

� �þðF;GÞ : ð17:32Þ

The general expressions for reflection and transmission amplitudes derived here
will be used in the next three sections to obtain low-frequency and high-frequency
limiting forms, and exact solutions for certain velocity and density profiles.

17.2 Matrix Methods

The techniques introduced in Chap. 12 may be adapted to acoustic compressional
waves. The method involves taking the product of N 2	 2 matrices when the
stratification is approximated by N layers. These layers can be chosen to have linear
variation in the acoustic parameters to best represent the actual stratification without
undue complexity in the resulting matrix elements. It is possible to guarantee
unimodularity of the matrices, thus making sure that the energy conservation law
(17.15) or (17.16) and the reciprocity law (17.13) or (17.14) are automatically
satisfied. The accuracy of these methods will be tested in Sects. 17.3 and 17.4
against an exactly solvable model stratification, in which the density and speed of
sound both vary exponentially with depth.
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The second-order differential equation (17.4) for PðzÞ may be written as a pair of
coupled first-order differential equations in P and its derivative divided by the
density:

1
q
dP
dz
¼ D;

dD
dz
¼ � q2

q
P: ð17:33Þ

We divide the inhomogeneous stratification lying between z ¼ a and z ¼ b into N
layers, with zn� z� znþ 1 in the nth layer, and z1 ¼ a, zNþ 1 ¼ b. The integral
versions of (17.33), incorporating the boundary values at zn, are

P zð Þ ¼ Pnþ
Zz
zn

dfq fð ÞD fð Þ; D zð Þ ¼ Dnþ
Zz
zn

df
q2 fð ÞPðfÞ

qðfÞ : ð17:34Þ

These coupled integral equations can be solved by iteration. We set

P zð Þ ¼
X1
j¼0

Pj zð Þ; D zð Þ ¼
X1
j¼0

Dj zð Þ; ð17:35Þ

and start with P0 ¼ Pn;D0 ¼ Dn. The superscript j gives the degree of the cor-
rection in the thickness dzn ¼ znþ 1 � zn. The first iterates are

P1 zð Þ ¼ Dn

Zz
zn

dfq fð Þ; D1 zð Þ ¼ �Pn

Zz
zn

df
q2 fð Þ
qðfÞ : ð17:36Þ

The second-order iterates, evaluated at znþ 1, are

P2 znþ 1ð Þ ¼
Zznþ 1

zn

dz q zð ÞD1 zð Þ ¼ �Pn

Zznþ 1

zn

dz q zð Þ
Zz
zn

df
q2 fð Þ
qðfÞ ; ð17:37Þ

D2 znþ 1ð Þ ¼
Zznþ 1

zn

dz q2ðzÞP1 zð Þ=q zð Þ ¼ �Dn

Zznþ 1

zn

dz q2ðzÞ=q zð Þ
Zz
zn

dfqðfÞ: ð17:39Þ

To find the matrix relation between Pnþ 1;Dnþ 1 and Pn;Dn we evaluate (17.35) at
znþ 1. To second order in dzn ¼ znþ 1 � zn we need the integrals
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I1 ¼
Zznþ 1

zn

dz q zð Þ; I2 ¼
Zznþ 1

zn

dz q zð Þ
Zz
zn

df
q2 fð Þ
qðfÞ ; ð17:40Þ

J1 ¼
Zznþ 1

zn

dz
q2 zð Þ
q zð Þ ; J2 ¼

Zznþ 1

zn

dz q2ðzÞ=q zð Þ
Zz
zn

dfqðfÞ: ð17:41Þ

The second-order matrix which relates P and D at znþ 1 to the values at zn is thus

Pnþ 1

Dnþ 1

� �
¼ 1� I2 I1

�J1 1� J2

� �
Pn

Dn

� �
: ð17:42Þ

We note that by interchange of the order of integration J2 may be written in the
form

J2 ¼
Zznþ 1

zn

dz q zð Þ
Zznþ 1

z

df
q2 fð Þ
qðfÞ : ð17:43Þ

It follows that

I2þ J2 ¼ I1J1: ð17:44Þ

Thus the determinant of the 2	 2 layer matrix in (17.42) is equal to 1þ I2J2; the
matrices obtained by iterating P and D to second order in dzn have a correction to
unimodularity of order dznð Þ4. If we had stopped at first order, the determinant
would have been 1þ I1J1, and the correction to unimodularity would have been of
second order in dzn.

The importance of unimodularity is the link with conservation and reciprocity
laws, as we shall see shortly. Here we note that symmetrized starting values in the
iteration, namely

P0 ¼ 1
2

PnþPnþ 1ð Þ; D0 ¼ 1
2

DnþDnþ 1ð Þ; ð17:45Þ

improve the unimodularity. Lekner (1990a) shows that, to second order, the matrix
for the layer zn� z� znþ 1 is

Mn ¼
1�I2=2
1þ I2=2

I1
1þ I2=2

�J1
1þ J2=2

1�J2=2
1þ J2=2

 !
: ð17:46Þ

That this matrix is exactly unimodular follows from the identity (17.44).
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The reflection and transmission amplitudes are found by multiplying together the
layer matrices. To see this, we note that from (17.5)

P1 ¼ eiaþ re�ia; D1 ¼ iQa eia � re�ia
� �

; a ¼ qaz1 ¼ qaa; ð17:47Þ

PNþ 1 ¼ teib; DNþ 1 ¼ iQbteib; b ¼ qbzNþ 1 ¼ qbb: ð17:48Þ

The values of P and D are related by the layer matrices:

PNþ 1

DNþ 1

� �
¼ MN

PN

DN

� �
¼ MNMN�1

PN�1
DN�1

� �
¼ � � � ¼ M

P1

D1

� �
: ð17:49Þ

M is the profile matrix, the ordered product of all the layer matrices:

M ¼ MNMN�1. . .Mn. . .M2M1 ¼ m11 m12

m21 m22

� �
: ð17:50Þ

From (17.47), (17.48) and (17.50), we have

teib

iQbteib

� �
¼ m11 m12

m21 m22

� �
eiaþ re�ia

iQa eia � re�iað Þ
� �

: ð17:51Þ

Solving for the reflection and transmission amplitudes r and t we find

r ¼ e2ia
QaQbm12þm21þ iQam22 � iQbm11

QaQbm12 � m21þ iQam22þ iQbm11
; ð17:52Þ

t ¼ eiða�bÞ
2iQadetM

QaQbm12 � m21þ iQam22þ iQbm11
: ð17:53Þ

We note the close correspondence between the exact expressions (17.20), (17.21)
and the matrix expressions (17.52), (17.53). The correspondence becomes equiv-
alence in the limit N !1. In (17.53) detM ¼ m11m22 � m12m21 is the determinant
of the profile matrix; detM ¼ 1 when the matrix is unimodular.

In the absence of dissipation within any part of the system, and also excluding
total internal reflection, all q and Q values are real. No absorption within the
stratification also implies that all the matrix elements are real. Then the reflectance
R ¼ rj j2 and transmittance T ¼ Qb=Qað Þ tj j2 are given by

R ¼ QaQbm12þm21ð Þ2 þ Qam22 � Qbm11ð Þ2
QaQbm12 � m21ð Þ2 þ Qam22þQbm11ð Þ2 ; ð17:54Þ

T ¼ 4QaQb detMð Þ2
QaQbm12 � m21ð Þ2 þ Qam22þQbm11ð Þ2 : ð17:55Þ
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Since there is no dissipation, the incident intensity must be equal to the sum of the
reflected and transmitted intensities, Rþ T ¼ 1. From the formulae (17.54) and
(17.55),

Rþ T ¼ 1� 4QaQb detM 1� detMð Þ
QaQbm12 � m21ð Þ2 þ Qam22þQbm11ð Þ2 : ð17:56Þ

Thus energy conservation requires detM ¼ 1 or detM ¼ 0. The latter is excluded,
as we now show. In the case of representation by homogeneous layers, M is a
product of unimodular matrices: if within zn� z� znþ 1 the density q ¼ qn and the
normal component of the wavevector q ¼ qn, and Qn ¼ qn=qn, the solutions of
(17.33) in this layer are

P zð Þ ¼ Pn cos qn z� znð ÞþQ�1n Dn sin qn z� znð Þ; ð17:57Þ

D zð Þ ¼ Dn cos qn z� znð Þ � QnPn sin qn z� znð Þ: ð17:58Þ

Hence the homogeneous layer matrix is unimodular:

Mn ¼ cos dn Q�1n sin dn
�Qn sin dn cos dn

� �
: ð17:59Þ

M is then the product of unimodular matrices, and detM ¼ 1. Since detM is a
continuous function of the matrix elements, a zero determinant is excluded in the
general case.

Next we compare the reflection and transmission when the wave is incident
‘from below’ (from the homogeneous medium b). Equation (17.49) still holds, with
the same M as before, but now

P1 ¼ t0e�ia; D1 ¼ �iQat
0e�ia; a ¼ qaz1 ¼ qaa; ð17:60Þ

PNþ 1 ¼ e�ibþ r0eib; DN þ 1 ¼ �iQbðe�ib � r0eibÞ; b ¼ qbzNþ 1 ¼ qbb:

ð17:61Þ

(We use the shortened notation r ¼ rab; t ¼ tab; r0 ¼ rba; t0 ¼ tba in this section.)
Thus (17.51) is replaced by

e�ibþ r0eib

�iQbðe�ib � r0eibÞ
� �

¼ m11 m12

m21 m22

� �
t0e�ia

i� iQat0e�ia

� �
: ð17:62Þ

As before, we can solve for the reflection and transmission amplitudes. The results
are
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r0 ¼ e�2ib
QaQbm12þm21 � iQam22þ iQbm11

QaQbm12 � m21þ iQam22þ iQbm11
; ð17:63Þ

t0 ¼ ei a�bð Þ 2iQb

QaQbm12 � m21þ iQam22þ iQbm11
: ð17:64Þ

The reciprocity law (17.9), here written as Qat0 ¼ Qbt, (which implies the important
result that the transmittances T ¼ Qb=Qað Þ tj j2 and T 0 ¼ Qa=Qbð Þ t0j j2 are equal,
even if there is absorption within the stratification) is seen to be valid on comparing
(17.53) with (17.64), provided detM ¼ 1. The other reciprocity law (17.14),
namely r0 ¼ �t0r�=t0�, which implies that the reflectance is the same from either
side, is valid only in the absence of absorption. It can be verified from the equations
for r; r0 and t0 given above, independently of the value of detM.

We have shown that unimodularity of M is necessary for energy conservation
and for the reciprocity law T 0 ¼ T . If each layer matrix is unimodular, M will be
unimodular, since the determinant of a product of matrices is equal to the product of
their determinants. Thus unimodularity of the layer matrix guarantees these laws,
and is a desirable characteristic in any approximation scheme. We have seen an
example of an approximate layer matrix which is exactly unimodular, given in
(17.46). Section IV of Lekner (1990a) gives the elements of this matrix when the
variation of q and of q within each layer is linearly approximated. The integrals
I1; J1; I2; J2 are then

I1 ¼ 1
2
dzn qnþ qnþ 1

� �
; ð17:65Þ

J1 ¼ 1
2
dzn q2n=qnþ q2nþ 1=qnþ 1

� � ¼ 1
2
dzn Q2

nqnþQ2
nþ 1qnþ 1

� �
; ð17:66Þ

I2 ¼ 1
2
I1J1þ dznð Þ2qnqnþ 1ðQ2

n � Q2
nþ 1Þ=12; ð17:67Þ

J2 ¼ 1
2
I1J1 � dznð Þ2qnqnþ 1ðQ2

n � Q2
nþ 1Þ=12: ð17:68Þ

Note that the identity (17.44) is satisfied. Section V of Lekner (1990a) compares
seven algorithms, based on constant or linear approximation of the density and
normal wavenumber component, with or without unimodularity. The unimodular
matrices are numerically superior, as well as avoiding violation of the conservation
and reciprocity laws.
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17.3 Low-Frequency Reflection and Transmission

The low-frequency regime is attained when the dimensionless parameter x=vð ÞDz is
small compared to unity, where Dz ¼ b� a is the thickness of the stratification, and
v some relevant speed, such as va. Since the parameter x=vð ÞDz is equal to 2pDz=k
the low-frequency limit is equally well characterized as the thin-layer or
long-wavelength limit. We first note that as x=vð ÞDz! 0 the reflection and
transmission amplitudes tend to the sharp-transition values

r0 ¼ e2iqaa
Qa � Qb

QaþQb
; t0 ¼ eiðqa�qbÞa

2Qa

QaþQb
: ð17:69Þ

These are obtained by matching P and q�1dP=dz at the boundaries with the
homogeneous media a and b. As before, Qa ¼ qa=qa;Qb ¼ qb=qb. The fact that the
equations (17.69) give the low-frequency limits of (17.20) and (17.21) is intuitively
plausible: At long wavelengths the wave is mainly affected by the change in the
acoustical parameters, and is not sensitive to details in the transition between the
two homogeneous media.

An important question is: What are the corrections to (17.69) and to the
reflectance and transmittance? It is natural to express the corrections as power series
in Dz (more precisely, as power series in a dimensionless parameter such as
x=vð ÞDz):

r ¼ r0þ r1þ r2þ � � � : ð17:70Þ

A variety of techniques for extracting r1 and the higher-order corrections are
developed in Chap. 3 and Sect. 12.4. Here we will make use of the results (17.52)
and (17.53), with the matrix elements up to second order in the layer thickness
given by the integrals I1; J1; I2; J2 in the matrices (17.42) and (17.46).

The corrections to the reflectance R ¼ rj j2 depend on whether there is attenua-
tion or not. If attenuation is negligible within the stratification and in the homo-
geneous media, and in the absence of total internal reflection, all matrix elements
and wavevectors are real, the first-order correction to R0 ¼ r0j j2 is zero, and to
second-order

R ¼ R0þ 4QaQb

QaþQbð Þ4 Q2
aQ

2
bI

2
1 þ J21 � 2Q2

aJ2 � 2Q2
bI2


 �
: ð17:71Þ

The low-frequency approximation to the reflectance, namely the expression (17.71),
is shown compared to the exact reflectance in Fig. 17.2, for a stratification in which
both density and sound speed vary exponentially with depth. For this stratification,
all the integrals needed in (17.71) may be found analytically. The exact reflectance
is calculated from the formulae of Sect. 17.5. Also shown is the high-frequency
approximation of Sect. 17.4.
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Attenuation changes the low-frequency behavior dramatically: whereas the
correction to R0 given in (17.71) is second order in the small parameter x=vð ÞDz,
attenuation makes one of the first-order contributions to the matrix elements
complex: (17.41) gives

J1 ¼
Zb
a

dz
k2 zð Þ � K2

qðzÞ ¼
Zb
a

dz
k2r � k2i � K2þ 2ikrki

qðzÞ : ð17:72Þ

The wavenumber has been split into its real and imaginary parts:
x=vðzÞ � k zð Þ ¼ kr zð Þþ ikiðzÞ. The consequence is a first-order correction to the
reflectance: rj j2¼ r20 þ 2Re r�0r1

� �þ � � �. From (17.52) we find

r0 ¼ e2ia
Qa � Qb

QaþQb
; r1 ¼ e2ia

2iQa

QaþQb
ðJ1 � Q2

bI1Þ: ð17:73Þ

The reflectivity to first order in the thickness parameter x=vð ÞDz is thus

R ¼ R0 � 8Qa Qa � Qbð Þ
QaþQbð Þ3

Zb
a

dz
kr zð Þki zð Þ

q zð Þ þ � � � : ð17:74Þ

Fig. 17.2 Reflectance of a stratification in which both density and speed vary exponentially,
versus the layer thickness Dz times ka ¼ x=va: exact from Sect. 17.5, low-frequency
approximation (17.71) and high-frequency approximation given by (17.93). The parameters used
are qb ¼ 2qa; vb ¼ 4

3

� �
va, with q and v continuous at z ¼ a and at z ¼ b ¼ aþDz. The angle of

incidence is ha ¼ 30�
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Since kr and ki, the real and imaginary parts of x=vðzÞ are both non-negative, so the
reflectance is decreased from R0 if Qa [Qb, and increased from R0 if Qa\Qb. On
using Q ¼ x cos h=qv and the constancy of K ¼ x sin h=v (Snell’s law), we find
that Qa [Qb if

tan2 ha [
qavað Þ2� qbvbð Þ2
q2aðv2b � v2aÞ

: ð17:75Þ

For stratifications in which q and v increase together, the right-hand side of (17.75)
is negative, and so Qa [Qb and attenuation in the stratification decreases the
reflectance of long waves from R0 at all angles of incidence. We note in passing that
the equality Qa ¼ Qb, which makes R0 ¼ 0, requires equality in (17.75). The angle
at which this happens is Green’s angle hG, the acoustical analog of Brewster’s angle
in optics (Sect. 1.4, (1.61)). At Green’s angle (if it exists) the first-order correction
to the reflectance vanishes. This is not true of the transmittance T ¼ Qb=Qað Þ tj j2,
which from (17.53) and (17.72) is, to first order in x=vð ÞDz,

T ¼ 4QaQb

QaþQbð Þ2 1� 4
QaþQb

Zb
a

dz
kr zð Þki zð Þ

q zð Þ þ � � �
8<
:

9=
;: ð17:76Þ

Thus there is a first-order correction to the transmittance at all angles, and the
low-frequency attenuation correction always decreases the transmittance, as
expected. The second-order correction to T , in the absence of attenuation and using
(17.71) and Rþ T ¼ 1, is

T ¼ T0 � 4QaQb

QaþQbð Þ4 Q2
aQ

2
bI

2
1 þ J21 � 2Q2

aJ2 � 2Q2
bI2


 �
: ð17:77Þ

The degree of attenuation required for it to dominate the low-frequency cor-
rections may be estimated from (17.71) and (17.74) or (17.77). The first-order and
second-order terms are, respectively, of magnitude kiDz and x=vð ÞDz½ 
2, with ki and
v here representing average values within the stratification. Attenuation is corre-
spondingly important in the low-frequency case unless

ki � x=vð Þ2Dz: ð17:78Þ

If there is attenuation in medium b, this will be important at all frequencies,
manifesting itself in the formulae via a complex Qb.
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17.4 High-Frequency Limiting Forms

Reflection and transmission of high-frequency (or short-wavelength) acoustic
waves is intrinsically more complicated than at low-frequencies, because short
waves are sensitive to details of the stratification while long waves are influenced
by average properties as expressed in integrals over the reflecting inhomogeneity.
There is no universal form of the high-frequency reflectivity, in contrast to the low
frequency case of the previous section. Nevertheless it is possible to give explicit
formulae for the dominant terms in the reflection amplitude in some simple cases.

We first transform (17.4) by defining a new dependent variable p ¼ qa=qð Þ12P
(Bergmann 1946). The differential equation satisfied by pðzÞ is, with primes
denoting differentiation with respect to z,

p00 þ q2þ q00

2q
� 3
4

q0

q

� �2
" #

p ¼ 0: ð17:79Þ

At high frequencies the q2 term is dominant and approximate solutions of (17.79)
are the Liouville-Green functions of Sect. 6.2,

p� zð Þ ¼ qa
q

� �1
2

e�i/; / zð Þ ¼ Zz
df qðfÞ: ð17:80Þ

The phase integral / zð Þ gives the accumulated phase at depth z; its derivative is
/0 ¼ q. The corresponding approximations to the solutions of (17.4) are

P� zð Þ ¼ Qa

QðzÞ
� �1

2

e�i/ðzÞ: ð17:81Þ

The Liouville-Green functions p� zð Þ both satisfy

p00 þ q2þ q00

2q
� 3
4

q0

q

� �2
" #

p ¼ 0: ð17:82Þ

In the case of acoustic waves incident from medium a, the limiting forms of pðzÞ are

eiqazþ re�iqaz  pðzÞ ! qa
qb

� �1
2

teiqbz: ð17:83Þ
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The limiting forms of pþ are

eiqaz  pþ ðzÞ ! qa
qb

� �1
2

eiðqbzþ/þ Þ: ð17:84Þ

We have chosen the lower limit in the integral defining / so as to make / zð Þ ! qaz
as z! �1; /þ is a constant phase. We now multiply the differential equation for
p by pþ , that for pþ by p, subtract, and integrate from �1 to þ1. The result is a
comparison identity similar to that obtained in Sect. 6.4,

r ¼ 1
4iqa

Z1
�1

dz
q00

q
� q00

q
� 3
2

q0

q

� �2

þ 3
2

q0

q

� �2
" #

ppþ : ð17:85Þ

This holds for all stratifications; the reflection amplitude is given as an integral over

the derivatives of q ¼ x=vað Þ v2a=v2 � sin2 ha
� 	1

2 and of the density q. The function
pþ given by (17.80), while p is unknown. A useful approximation to r at high

frequencies is obtained by replacing p by pþ ¼ qa=qð Þ12ei/ in (17.85):

rð1Þ ¼ 1
4i

Z1
�1

dz
e2i/

q
q00

q
� q00

q
� 3
2

q0

q

� �2

þ 3
2

q0

q

� �2
" #

: ð17:86Þ

A closely related “weak reflection” or Rayleigh approximation is (Lekner 1989)

rR ¼ �
Z1
�1

dz e2i/
Q0

2Q
: ð17:87Þ

This may be put in a form similar to (17.86) by changing to / as integration
variable, integrating by parts, and then changing back:

rR ¼ � 1
2

Z1
�1

d/ e2i/Q�1
dQ
d/
¼ 1

4i

Z1
�1

d/ e2i/
d
d/

dQ
Qd/

� �
¼ 1

4i

Z1
�1

dz e2i/
Q0

qQ

� �0

¼ 1
4i

Z1
�1

dz
e2i/

q
q00

q
� q00

q
� 2

q0

q

� �2

þ q0

q

� �2

þ q0q0

qq

" #
: ð17:88Þ

Both approximations fail if q is zero, as happens at a classical turning point where
q2 ¼ 0; v2 ¼ v2a= sin

2 ha; or if q is small, as at grazing incidence, when qa ! 0.
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As an application of (17.86) or (17.87, 17.88), we will consider the
high-frequency reflection amplitude from a stratification that is smooth except at a
finite number of points zj where there are discontinuities in the derivatives of q or v,
or of both. Under these conditions the dominant terms in the integrands of (17.86)
or (17.87, 17.88) are delta functions at zj, arising from the second derivatives of q
and q.

Let the density derivative q0 change by Dq0j as z passes through zj. This dis-
continuity in the derivative contributes Dq0jdðz� zjÞ to q00. A discontinuity in the
derivative of q gives a delta function whose strength may be calculated from

dq
dz
¼ 1

2q
dq2

dz
¼ x2

2q
dv�2

dz
¼ � x2

qv3
dv
dz

: ð17:89Þ

A change Dv0j in the derivative of v as z passes through zj thus contributes

� x2=qjv3j
� �

Dv0jdðz� zjÞ to q00. The integrand near zj thus contains the singular

delta function term originating from q00=q2 � q00=qq of the form �rjdðz� zjÞ. The
dimensionless strength r of the delta function is determined by the discontinuities
in the derivatives of density and sound speed:

r ¼ Dq0

qq
þ x2Dv0

q3v3
: ð17:90Þ

The phase factor exp 2i/ oscillates rapidly in the high-frequency limit. This ensures
that smooth parts of the integrand average out to near zero, so that

rð1Þ 
 i
4

X
j

rj exp 2i/j ð17:91Þ

(/j being the value of the phase integral at z ¼ zj). Since r varies with frequency as
x�1, the resulting reflectance is proportional to x�2, with oscillatory terms due to
the phase factors exp 2i/j.

A simple and important special case is that of a stratification that is smooth
except for discontinuities in the derivatives of q and/or v at the boundaries z ¼ a
and b. The formula (17.91) gives

rð1Þ 
 i
4

ra exp 2i/aþ rb exp 2i/bð Þ; ð17:92Þ

with the reflectance
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Rð1Þ 
 1
16

r2aþ r2bþ 2rarb cos 2D/
� �

: ð17:93Þ

In (17.93) D/ is the increment in phase across the stratification,

D/ ¼ /b � /a ¼
Zb
a

dz q zð Þ ¼ x
va

Zb
a

dz
v2a

v2 zð Þ � sin2 ha

� 
1
2

: ð17:94Þ

Figure 17.2 showed the high-frequency reflectance (17.93) for the exp-exp strati-
fication discussed in the next section, continuous in q and v at z ¼ a and z ¼ b. For
this case

q zð Þ ¼ qae
ðz�aÞ=Lq ; v zð Þ ¼ vaeðz�aÞ=Lv : ð17:95Þ

The lengths Lq; Lv are related by the stratification thickness Dz ¼ b� a by

Lq ¼ Dz
lnðqb=qaÞ

; Lv ¼ Dz
lnðvb=vaÞ : ð17:96Þ

The strengths of the delta functions in this case are

ra ¼ q�1a L�1q þ L�1v sec2 ha
� �

;rb ¼ �q�1b L�1q þ L�1v 1� v2b=v
2
a

� �
sin2 ha

� 	�1� �
:

ð17:97Þ

Assuming that the angle of incidence is less than the critical angle
hc ¼ arcsinðva=vbÞ, so that qðzÞ remains real, the phase increment is

D/ ¼ Lv K arctan qb=K � arctan qa=K½ 
 � ðqb � qaÞf g: ð17:98Þ

As usual, K ¼ ðx=vaÞ sin ha is the tangential component of the wavevector. At
normal incidence K ! 0, qa ! x=va; qb ! x=vb, and (17.97) and (17.98) reduce
to

ra ¼ va
xDz

ln
qbvb
qava

; rb ¼ � vb
xDz

ln
qbvb
qava

: ð17:99Þ

D/ ¼ xLv
va

1� va
vb

� 

: ð17:100Þ

Figure 17.3 compares the normal incidence exact reflectance with the high fre-
quency limiting form (17.93), to higher values of the parameter xDz=va than were
shown in Fig. 17.2. Note that the contributions from the discontinuities in the
derivatives of q and v, which give the characteristic oscillatory decay with fre-
quency, become dominant at quite moderate values of xDz=va.
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It is interesting to show in Fig. 17.3 the Rayleigh approximation (17.87), which
correctly incorporates the high-frequency limiting reflectance, and also is good at
low frequencies, provided the reflection is not too strong. From (17.87) to (17.95)
we find, at normal incidence,

RR ¼ 1
4

1þ Lv
Lq

� �2

Ci að Þ � Ci bð Þ½ 
2 þ Si að Þ � Si bð Þ½ 
2
n o

; ð17:101Þ

In (17.101), a ¼ 2xLv=va, b ¼ 2xLv=vb, and Ci and Si are the standard cosine and
sine integrals (Temme 2010),

Ci zð Þ ¼ ln zþ c�
Zz
0

dt t�1 1� cos tð Þ; Si zð Þ ¼
Zz
0

dt t�1 sin t: ð17:102Þ

The low-frequency limit of (17.101) is, in agreement with equation (34) of Lekner
(1989),

RR ! 1
4

ln
qbvb
qava

� 
2
: ð17:103Þ

This result may be obtained directly from (17.87), since in the long-wave limit the
phase / is nearly constant over the stratification, so at arbitrary angle of incidence

rR ! 1
2
ln
Qa

Qb
; RR ¼ rRj j2! 1

4
ln
Qa

Qb

� 
2
: ð17:104Þ

Fig. 17.3 Reflectance of an
exp-exp stratification. The
notation and parameters are
the same as in Fig. 17.2,
except that the results here are
for normal incidence and to
higher frequency, and that the
Rayleigh approximation
(17.101) is also shown
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The Rayleigh approximation (17.103) differs from the exact normal incidence
low-frequency limit

R0 ¼ qbvb � qava
qbvbþ qava

� �2

ð17:105Þ

by an amount of fourth order in the quantity x ¼ ðqbvb � qavaÞ=ðqbvbþ qavaÞ: The
leading term in the difference RR � R0 is 2

3 x
4, and the fractional difference is

RR=R0 � 1 ¼ 2
3 x

2þ � � �. For the case shown in Fig. 17.3, the ratio x ¼ 5=11, and
there is an appreciable difference between R0 and the Rayleigh approximation value
given by (17.103).

17.5 Exact Solutions for the exp-lin and exp-exp
Stratifications

Several variations of the phase velocity are known for which analytic solution of the
acoustic pressure equation (17.4) is possible: exponential decrease of sound speed
with depth (Heller 1953), linear variation of speed (Gupta 1965), and linear vari-
ation of the reciprocal of sound speed (Morris 1970). Here we will give solutions
for exponential variation of density, accompanied by either linear or exponential
variation of the sound speed, following Lekner (1990b). Only the case where both
sound speed and density vary exponentially will be discussed in detail. For expo-
nential density variation, with densities q1 at z ¼ aþ and q2 at z ¼ b�,

q zð Þ ¼ q1e
ðz�aÞ=Lq ; Lq ¼ Dz

ln q2=q1
: ð17:106Þ

When the density is continuous at the boundaries, q1 ¼ qa and q2 ¼ qb, and we
regain (17.95) and (17.96). The function p ¼ q�

1
2P satisfies (17.79), which for

exponential variation in q reduces to

p00 þ q2 � 2Lq
� ��2h i

p ¼ 0: ð17:107Þ

If the speed of sound vðzÞ is linear in the depth z, d=dz ¼ Dv=Dzð Þd=dv, and
(17.107) may be written in terms of v as independent variable:

d2p
dv2
þ Dz

Dv

� �2 x2

v2
� K2 � 2Lq

� ��2� 

p ¼ 0: ð17:108Þ
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Comparison with equation 10.13.1 of Olver and Maximon (2010) shows that
solutions of (17.108) are v

1
2 zð ÞMl½sv zð Þ
, where Ml is any of the modified Bessel

functions I�l;Kl, the order l and “slowness” parameter s being given by

l2 ¼ 1
4
� xDz

Dv

� �2

; s ¼ Dz
Dv

����
���� K2þ 2Lq

� ��2h i1
2
: ð17:109Þ

Since the order l changes from real to imaginary when the angular frequency
increases through x0 ¼ 1

2 Dv=Dzj j, the two frequency ranges ð0;x0Þ and ðx0;1Þ
have to be considered separately. The formulae (17.20) and (17.21) give the
reflection amplitudes r and t in terms of two linearly independent solutions F and G

of (17.4), of the form qvð Þ12MlðsvÞ.
The remainder of this section will be concerned with the exp-exp stratification, in

which the density varies according to (17.106) and the sound speed according to

v zð Þ ¼ v1e z�að Þ=Lv ; Lv ¼ Dz
ln v2=v1

: ð17:110Þ

It is understood, as for the density variation, that v1 is the sound speed at z ¼ aþ ,
and v2 at z ¼ b�. Equation (17.107) then reads, on transforming to the dimen-
sionless slowness variable r ¼ v1=v ¼ expða� zÞ=Lv, and noting that
q2 ¼ x2=v21

� �
r2 � K2,

r2
d2p
dr2
þ r

dp
dr
þ xLv=v1ð Þ2r2 � KLvð Þ2� Lv=2Lq

� �2h i
p ¼ 0: ð17:111Þ

Two linearly independent solutions of (17.111) are the Bessel functions
Jl yð Þ; YlðyÞ, where

l ¼ Lv K2þ 2Lq
� ��2h i1

2
; y ¼ y1r; y1 ¼ xLv=v1: ð17:112Þ

The solutions of (17.4) may thus be taken as

F ¼ q
q1

� �1
2

Jl yð Þ;G ¼ q
q1

� �1
2

Yl yð Þ; y ¼ xLv
v1

eða�zÞ=Lv ;
q
q1
¼ eðz�aÞ=Lq : ð17:115Þ

Equations (17.20) and (17.21) then give the reflection and transmission ampli-
tudes. As noted in Sect. 17.1, if the density q is continuous across both the inter-
faces at z ¼ a and at z ¼ b, the equations linking the derivatives across the
boundaries simplify, and the equations (17.20–17.23) may be replaced by a set in
which Qa ! qa;Qb ! qb and F ! F0;G! G0. This is the case for the profile
whose reflectivity is plotted in Figs. 17.2 and 17.3.
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17.6 An Upper Bound on the Acoustic Reflectivity

In Sect. 5.4 we derived bounds on the reflection of s and p polarized electromag-
netic waves. For the s polarization the result is simple: when the profile dielectric
function eðzÞ increases or decreases monotonically between its boundary values
ea; eb, the reflectivity is always less (at the same angle of incidence) than for a sharp
transition between the same values. The p polarization result is more complicated,
since the effective normal wavevector component is Q ¼ q=e. The same compli-
cations arise in the reflection of acoustic waves: the effective normal wavevector
component is Q ¼ q=q, and the inequality stated above will hold when Q is
monotonic.

From Sect. 5.4 or from Sect. IV of Lekner (1989), we have an identity for the
reflection amplitude r ¼ rj jei/:

ln
1þ rj j
1� rj j ¼ �

Z1
�1

dz
Q0

Q
cos/: ð17:116Þ

(A minus sign is missing from the corresponding equation (17) in Lekner 1989.) Let
2a be the dimensionless quantity on the right side of (17.116). Then rj j ¼ tanh a
and

R ¼ rj j2¼ tanh2 a� 1: ð17:117Þ

(In the absence of absorption, Q ¼ q=q is either real or imaginary: when v2 [ v1, it
is imaginary for h1 [ hc ¼ arcsin v1=v2 and there is total internal reflection. Hence
Q0=Q is real.)

Suppose that Q0=Q has one sign throughout the stratification, which implies that
Q increases or decreases monotonically. Since the cosine of the phase / is bounded
above by þ 1 and below by �1, the right side of (17.116) is bounded above by
lnQmax=Qmin, where Qmax and Qmin are the greater and lesser of Qa and Qb. Thus, if
QðzÞ is monotonic,

1þ rj j
1� rj j �

Qmax

Qmin
; R ¼ rj j2� Qa � Qb

QaþQb

� �2

: ð17:118Þ

Thus a profile for which Q is monotonic (or at least does not increase or does not
decrease within the profile), will not reflect more than an abrupt transition between
the same two media, at the same angle of incidence, and at any frequency. (The
reflectance from a step profile is independent of frequency.)

Under what circumstances is Q monotonic? Since Q ¼ q=q,
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Q2 zð Þ ¼ x2

v2 zð Þ � K2
� 


q�2 zð Þ; dQ2

dz
¼ � 2

q2
q2

d ln qv
dz

þK2 d ln v
dz

� 

: ð17:119Þ

At normal incidence K ¼ 0ð Þ, dQ2=dz has the sign of �d ln qv=dz, so if the
product qv of speed and density increases or decreases monotonically, the reflec-
tivity at normal incidence is never greater than that for a sharp interface.

At general incidence, if qv and v both increase or both decrease monotonically,
the reflectivity at any angle will be smaller than the reflectivity (at the same angle)
at an abrupt change between the same bounding media. (In this case there is no
Green’s angle, at which R0 ¼ 0, see (1.61).) If, on the other hand, qv increases
monotonically and v decreases monotonically (or vice versa), the expression within
large parentheses in (17.22) may change sign, in which case there is the possibility
of greater reflection than from a sharp interface.

The exp-exp profile of the previous section is an example in which both q and v
increase monotonically with the depth z, and thus the reflectivity is less than that of
an abrupt transition between the boundary values of density and sound speed,
provided there is no discontinuity of either at either boundary.

Another example is that of reflection from a homogeneous layer of thickness
Dz ¼ b� a, within which the speed and density are constant. By the methods of
Sect. 2.4, the reflection amplitude is

r ¼ e2iqaa
raþ rbe2iqDz

1þ rarbe2iqDz
; ra ¼ Qa � Q

QaþQ
; rb ¼ Q� Qb

QþQb
: ð17:120Þ

The reflectivity is the absolute square of r; for real qa; qb and q, this is

R ¼ rj j2¼ r2a þ 2rarb cos 2qDzþ r2b
1þ 2rarb cos 2qDzþ r2ar

2
b

: ð17:121Þ

For fixed frequency and angle of incidence (fixed q and Qa;Qb;Q), this is a periodic
function of the layer thickness Dz, with period p=q (equal to pv=x at normal
incidence), provided there is no attenuation and q is real. The extrema of (17.121)
occur when cos 2qDz ¼ �1; these extrema take the same form as for the electro-
magnetic p wave given in (2.73):

Rþ ¼ Qa � Qb

QaþQb

� �2

¼ R0; R� ¼ QaQb � Q2

QaQbþQ2 : ð17:122Þ

The theorem proved above states that if QðzÞ is monotonic (which includes the case
of discontinuities all of the same sign), R�R0. Applied to the problem at hand, this
reads that if Q lies between Qa and Qb, the reflectance must be no greater than R0.
The implication is that Rþ ¼ R0 is greater than R� when the value of Q is between
Qa and Qb. From (17.122), we find that Rþ is greater than R� when
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Q2 � Q2
a

� �
Q2 � Q2

b

� �
\0; ð17:123Þ

which is true when Q lies between Qa and Qb, in agreement with the theorem.
It is interesting to compare the exact reflectivity for the homogeneous layer with

the Rayleigh approximation (17.87), which rewrite as

rR ¼ � 1
2

Z1
�1

dz e2i/
d
dz

lnQ: ð17:124Þ

At za and zb there are discontinuities in lnQ, by the amounts lnQ=Qa, and lnQb=Q.
The derivative of a step function is a delta function of strength equal to the mag-
nitude of the step, so for the homogeneous layer the Rayleigh approximation
reflection amplitude and reflectance are

rR ¼ � 1
2

e2i/a lnQ=Qaþ e2i/b lnQb=Q

 �

; ð17:125Þ

RR ¼ 1
4

ln2 Q=Qaþ ln2 Qb=Qþ 2ðlnQ=QaÞðlnQb=QÞ cos 2qDz

 �

: ð17:126Þ

(The argument of the cosine follows from /b � /a ¼ qDz.) Figure 17.4 compares
the normal incidence exact and approximate reflectivities, as a function of the
thickness of the homogenous layer. The parameters are chosen to approximate a
layer of sediment on a seafloor or lake bottom (Hamilton 1980). We note that the
Rayleigh reflectivity is most accurate where the reflection is smallest: in Sect. 5.7
we also used the alternative name weak reflection approximation.

Fig. 17.4 Normal incidence reflectivity from a homogenous layer, as a function of kDz ¼ x
v Dz.

The solid curve is the exact reflectivity (17.121); the dashed curve is the Rayleigh approximation
(17.126). The density values used (in g/cm3) are qa ¼ 1; q ¼ 1:7;qb ¼ 2; the corresponding sound
speeds (in km/s) are va ¼ 1:5; v ¼ 1:7; vb ¼ 2. The horizontal line shows the upper bound R0 ¼
Rþ of (17.118)
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17.7 Profiles with Discontinuities in Density
or Sound Speed

The exact results (17.20) and (17.21) for the reflection and transmission amplitudes
are general enough to include discontinuities in density and/or sound speed, or in
their derivatives with respect to depth z. The previous section provided one example
(the homogeneous layer), and compared the exact and the Rayleigh approximation
reflectivities. Discontinuities dominate the reflection process, and a perturbation
theory or the Rayleigh approximation do not provide an adequate starting point. An
alternative formulation was given in Lekner (1990c), which leads to results that are
exact in the high-frequency limit, and also exact for the homogeneous layer at all
frequencies. At low frequencies the formulae derived here fail (except for the
homogeneous layer), but there the limiting forms derived in Sect. 17.3 can be used.
The problem being discussed is shown schematically in Fig. 17.5. Note that we now
need to distinguish the densities and speeds just inside the stratification from those
just outside, in the homogeneous media a and b above and below. The densities in
the homogeneous media a and b are denoted by qa; qb, those just inside the
stratification at z ¼ aþ ; z ¼ b� by q1; q2, and likewise for the sound speeds v.

In special cases one can find analytic solutions of the equation (17.4) for the
acoustic pressure, and then the reflection and transmission amplitudes r and t can be
found exactly from (17.20) to (17.21), modified to allow for the discontinuities in
density or sound speed at the boundaries of the inhomogeneous layer:

r ¼ e2ia
QaQb F;Gð Þþ iQa F;G

� �þ iQb F;G
� �� ðF;GÞ

QaQb F;Gð Þþ iQa F;G
� �� iQb F;G

� �þðF;GÞ ; ð17:127Þ

Fig. 17.5 Schematics of reflection and transmission by an inhomogeneous stratification with
discontinuities in density q and sound speed v at its boundaries. Only the sound-speed profile is
shown
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t ¼ eiða�bÞ
2iQa F2G2 � F2G2

� �
QaQb F;Gð Þþ iQa F;G

� �� iQb F;G
� �þðF;GÞ ; ð17:128Þ

In (17.127–17.128), a ¼ qaa; b ¼ qbb as before, but now F;Gð Þ � F1G2 � G1F2;

F;G
� � � F1G2 � G1F2, et cetera.

We are interested in getting approximate r and t for any discontinuous stratifi-
cation of the type shown in Fig. 17.5. To this end we approximate the solutions F
and G by the Liouville-Green waveforms (17.81), except that we now need to insert
the values of density and speed just inside the stratification:

F zð Þ 
 Q1

QðzÞ
� �1

2

ei/ðzÞ; G zð Þ 
 Q2

QðzÞ
� �1

2

e�i/ðzÞ: ð17:129Þ

The phase integral /ðzÞ is the accumulated phase at z defined in (17.80), and
Q zð Þ ¼ qðzÞ=q zð Þ;Q1 ¼ q1=q1; Q2 ¼ q2=q2.

The resulting approximate values of ðF;GÞ to F;G
� �

are, with
s ¼ sinD/; c ¼ cosD/,

F;Gð Þ 
 �2is; F;G
� � 
 iQ2 �2cþ c2sð Þ; F;G

� � 
 iQ1 2cþ c1sð Þ;

F;G
� � 
 iQ1Q2 �2sþ c1 � c2ð Þc� 1

2
c1c2s

� �
:

ð17:130Þ

In (17.130) D/ is the phase increment on going through the stratification from a to b:

D/ ¼
Zb
a

dz qðzÞ ¼ x
va

Zb
a

dz
v2a

v2 zð Þ � sin2 ha

� 
1
2

; ð17:131Þ

and c1; c2 are the (internal) boundary values of the dimensionless function

c zð Þ ¼ dQ=dz
qQ

¼ q�1
1
q
dq
dz
� 1
q
dq
dz

� �
: ð17:132Þ

The function cðzÞ, and its derivative divided by q, should be small throughout the
stratification if the Liouville-Green functions (17.129) are to be good approxima-
tions to the exact solutions of (17.4), since from (17.129) and (17.132) we see that
F and G satisfy the equation

q
d
dz

1
q
dF
dz

� �
þ q2 1þ 1

2q
dc
dz
þ c2

4

� �
F: ð17:133Þ
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(The exact acoustic pressure satisfies (17.4), which is (17.133) with c set to zero.)
Thus the approximations based on the Liouville-Green waveforms generally fail at
low frequencies (c is proportional to x�1) and also whenever q is small, as happens
at grazing incidence, and at classical turning points (zeros of q). We note that
q2ðzÞ ¼ x2=v2a½v2a=v2 zð Þ � sin2 ha
 stays positive, and classical turning points will
not occur, if v zð Þ\va= sin ha. This inequality excludes both total reflection, which
occurs for sin ha [ va=vb, and the possibility of ‘tunneling’ through a region of
negative q2 but with vb\va= sin ha.

From (17.130), we find the reflection and transmission amplitudes on substi-
tuting into (17.127) and (17.128). We expand these in powers of c:

r ¼ r0þ r1þ � � � ; t ¼ t0þ t1þ � � � : ð17:134Þ

The zeroth-order amplitudes are, again with s ¼ sinD/; c ¼ cosD/,

r0 ¼ e2ia
QaQ2 � QbQ1ð Þc� iðQaQb � Q1Q2Þs
QaQ2þQbQ1ð Þc� iðQaQbþQ1Q2Þs ; ð17:135Þ

t0 ¼ eiða�bÞ
2Qa Q1Q2ð Þ12

QaQ2þQbQ1ð Þc� iðQaQbþQ1Q2Þs : ð17:136Þ

When Q1 ¼ Q2 ¼ Q, these reduce to the homogeneous layer values (r0 is given in
different form in (17.120))

r0 ¼ e2ia
Q Qa � Qbð Þc� iðQaQb � Q2Þs
Q QaþQbð Þc� iðQaQbþQ2Þs ; ð17:137Þ

t0 ¼ eiða�bÞ
2QaQ

Q QaþQbð Þc� iðQaQbþQ2Þs : ð17:138Þ

Note that an inhomogeneous layer could have Q1 ¼ Q2; to zeroth order in c, the
approximation used here will give the same reflection and transmission amplitudes
as a homogeneous layer, but a correction appears in the first-order terms.

The contributions of first order in c to the reflection and transmission amplitudes
are

r1 ¼ e2ia
iQaQ1½Q2

2 c2 � c1ð Þc2þ Q2
bc1þQ2

2c2
� �

s2þ 2iQbQ2c1cs

QaQ2þQbQ1ð Þc� i QaQbþQ1Q2ð Þs½ 
2 ; ð17:139Þ

t1 ¼ eiða�bÞ
Qa Q1Q2ð Þ12½ QaQ2c2þQbQ1c1ð Þs� iQ1Q2ðc1 � c2Þc


QaQ2þQbQ1ð Þc� i QaQbþQ1Q2ð Þs½ 
2 : ð17:140Þ
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When there is no discontinuity in Q at either boundary (Q1 ¼ Qa andQ2 ¼ Qb), r0
is zero and t0 reduces to the perfect transmission value eiða�bÞ Qa=Qbð Þ12eiD/, while
r1 takes the value

r1 ! e2iaiðc2e2iD/ � c1Þ=4; ð17:141Þ

which is equivalent to the result (17.92) derived earlier.
The above theory is based on the assumption that c and its derivative dc=d/ ¼

q�1dc=dz are both small. The approximations thus fail at low frequencies (except
for the homogeneous layer, for which c is identically zero). There we have the
long-wavelength expansions derived in Sect. 17.3. In particular, the reflectance in
the absence of absorption is given by (17.71) in terms of the integrals I1; J1; I2; J2,
which are explicitly written down for the exp-exp profile in (17.24) of Lekner
(1990c).

We shall compare the results of this section with the exact solution given in
Sect. 17.5 for the exp-exp profile, in which both density and sound speed vary
exponentially within the stratification, according to (17.106) and (17.110). For the
high-frequency expressions (17.137–17.140) we need c1; c2 and D/. From the
defining relation (17.132), and q2 zð Þ ¼ x2=v2 zð Þ � K2, we have

cðzÞ ¼ �q�1 x
vq

� �21
v
dv
dz
þ 1

q
dq
dz

" #
: ð17:142Þ

Into this general expression, we insert the exp-exp profile values

1
v
dv
dz
¼ 1

Lv
;

1
q
dq
dz
¼ 1

Lq
; ð17:143Þ

and then obtain c1 and c2 by substituting the values q1 and q2 for q and v1 and v2 for
v. The phase increment D/ across the stratification, assuming no absorption and
angle of incidence less than arcsinðva=vmaxÞ so that q remains real, can be found
analytically for the exp-exp profile (compare (17.98), which holds for profile con-
tinuous in q and v with the bounding media):

D/ ¼ Lv K arctan q2=K � arctan q1=K½ 
 þ q1 � q2f g ¼ xLv
1
v1
� 1
v2

� �
þOðK2Þ:

ð17:144Þ

The high-frequency reflectivity is calculated from (17.137) to (17.139) as
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Rhf ¼ r0þ r1j j2: ð17:145Þ

Figure 17.6 shows the reflectivity from a model exp-exp stratification, with acoustic
parameters chosen to correspond to the Tufts abyssal plain, as presented by
Chapman (1980). The exact reflectivity is obtained from the results of Sect. 17.5,
the low-frequency curve from (17.71), and the high-frequency curve from (17.137),
(17.139), (17.142), (17.143) and (17.145).

We see that the low-frequency approximation is good up to about
xDz=va ¼ 1ðka� 6DzÞ, while the high-frequency results are good from about
xDz=va ¼ 2ðka� 3DzÞ. In the intermediate region, the errors can be 20 % or more,
and it may be necessary to use the matrix methods of Sect. 17.2 and Lekner
(1990a).

Appendix: Universal Properties of Acoustic Pulses
and Beams

The results of this Appendix are restricted to pulse and beam propagation within
isotropic homogeneous media, within which the acoustic pressure satisfies the wave
equation ((17.1) of this chapter with rq ¼ 0). We also neglect dissipation of
energy or momentum, due either to viscous damping, or to scattering by impurities
or bubbles.

Fig. 17.6 Normal incidence reflectivities for an exp-exp stratification, with discontinuities at its
boundaries, as a function of frequency. The dimensionless parameter kaDz ¼ xDz=va equals 2p
times the thickness of the stratification divided by the wavelength in medium a. The solid curve is the
exact reflectivity, the dashed curves are the low- and high-frequency approximations, as indicated.
The parameters used are qa ¼ 1;q1 ¼ 1:5;q2 ¼ 1:7;qb ¼ 2:2 (g cm−3), and va ¼ 1:5; v1 ¼ 1:7;
v2 ¼ 2:3; vb ¼ 5:2 (km s−1)
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We begin with a summary of the existing known universal properties of local-
ized acoustic pulses, namely (i) the time invariance of the total energy E,
momentum Pz and angular momentum Jz of the pulse, and (ii) the inequality
cPz \E. (In this Appendix pulse propagation is along the z-direction, and the speed
of sound is c, a constant.)

The conservation of energy, momentum and angular momentum in the absence
of dissipation is as expected, but the inequality cPz \E is in contrast to the sound
quantum ‘phonon’, for which the momentum is unidirectional, and cP ¼ E. The
implication of the inequality cPz \E seems to be that we cannot model the phonon
by any localized pulse wave-function satisfying the wave equation.

Peierls (1983) considered the energy and momentum of localized sound pulses.
However, in calculating the energy and momentum, Peierls made approximations
that removed the transverse localization, and in the long-wave limit his equation (3.
12) gives equality of energy and c times momentum. Lekner (2006a) examined the
energy and momentum densities e r; tð Þ; pðr; tÞ of a three-dimensionally localized
sound pulse, and the total energy and total momentum

E ¼
Z

d3r e r; tð Þ; P ¼
Z

d3r p r; tð Þ: ð17:146Þ

He showed that E and P are independent of time (are conserved, as expected), and
further, that cPz \E for predominant propagation in the z-direction. Localized
pulses are always converging to or diverging from their focal region, hence there is
a transverse momentum density, integrating to zero. This is the reason for the
inequality, and the prime distinction between pulses and phonons. A consequence
of this universal convergence toward or divergence from the focal region is that the
pulse pressure gradient, density gradient and particle velocity are not purely lon-
gitudinal, as they are for pulses localized in only one dimension. Exact solutions of
the wave equation are used to construct specific examples of localized pulses in
Lekner (2006b).

We may expect that the total angular momentum of a localized sound pulse
should also be constant in time, again in the absence of dissipation. This is indeed
true: the angular momentum density j ¼ r	 p integrates to give the total angular
momentum

J ¼
Z

d3r j r; tð Þ ¼
Z

d3r r	 p r; tð Þ: ð17:147Þ

In the translation of the coordinate system, r! r� a, the total angular momentum
transforms to J! J� a	 P. Thus the component of J parallel to P is invariant to
the choice of origin. As before, we take direction of P to define the z-axis; then Jz is
the invariant component of interest. Lekner (2006c) has shown that the time
derivative of Jz is zero, and gives examples of exact localized solutions of the wave
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equation, with analytic expressions for the energy, momentum, and angular
momentum.

There are analogous conserved quantities for acoustic beams, again in the
absence of dissipation. These follow from the conservation of matter, momentum
and angular momentum:

@tqþr � qvð Þ ¼ 0; ð17:148Þ

@t qvið Þþ
X
k

@kPki ¼ 0 ði; k ¼ x; y; zÞ; ð17:149Þ

@tjiþ
X
k

@kKki ¼ 0 ði; k ¼ x; y; zÞ: ð17:150Þ

The tensors P;K are the momentum flux density and angular momentum flux
density tensors (Lekner 2007; Zhang and Marston 2011). Equation (17.148) may be
written as @tqþr � p ¼ 0, with q the mass density and p ¼ qv the momentum
density.

For monochromatic acoustic beams of angular frequency x the motion every-
where within the sound beam is periodic with period T ¼ 2p=x, and the cycle
average of (17.148) gives r � p ¼ 0, where the bar denotes average over one or any
number of periods, at a fixed point in space. Suppose that the acoustic beam is
propagating in the z direction. Integration of r � p ¼ 0 over the transverse direc-
tions x and y then gives (Lekner 2007)

@z

Z
d2r pz ¼ @zP

0
z ¼ 0 ðd2r ¼ dxdyÞ: ð17:151Þ

The meaning of (17.151) is that the longitudinal cycle-averaged momentum content
within a transverse slice of the beam is constant along the beam: P0z ¼

R
d2r pz is an

invariant. Note that it was conservation of matter which led to the momentum
content beam invariant, not conservation of momentum.

Each component of the conservation of momentum, equation (17.149), leads to
another invariant on cycle averaging. The conservation of angular momentum leads
to three more. Thus the conservation laws give seven universal beam invariants,
just as in the electromagnetic case (Sect. 20.1). Perhaps surprisingly, the
cycle-averaged energy content in a transverse slice of the beam, E0 ¼ R d2r e, is not
an invariant in general. Neither is the angular momentum content, but both are
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constant along the length of the beam for a special class of generalized Bessel
acoustic beams (Lekner 2006d). For generalized Bessel beams one finds cP0z�E0,
and, for beams with azimuthal dependence eim/, a proportionality between the
energy and angular momentum contents per unit length of the beam. Beams with
azimuthal dependence eim/ are termed acoustic vortex beams by Zhang and
Marston (2011).
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Chapter 18
Chiral Isotropic Media

Optical activity is the ability of some crystals, liquids and gases to rotate the plane
of polarization of light. Optical activity, or rotatory power, is caused by chirality,
either of the molecules making up the substance, or in the helical arrangement of
the atomic or molecular constituents in a crystal. (A chiral object is one which
cannot be superimposed on its mirror image.) In 1811 Arago found that a plate of
quartz produced effects on light polarized by reflection from a pile of glass plates
which are now understood to arise from the rotation plane of polarization of the
light. In five memoirs presented to the Académie des Sciences from 1812 to 1837,
Biot showed that the rotatory power is proportional to the thickness of the quartz
plates (propagation is along the optic axis of the crystals), that the rotation depends
on the wavelength, approximately as k�2, and that optical activity appears in liquids
and gases, as well as in crystals. Fresnel conjectured in 1822 that on entering an
optically active medium light is split into two beams of opposite circular polar-
ization which travel with different phase velocities. In 1848 Pasteur demonstrated
that the optical activity of a tartrate solution is related to the form that the crystals of
the tartrate take: crystals of opposite handedness dissolve to give solutions with
opposite rotatory power. References to these early works and further details may be
found in the thorough historical account given by Lowry (1935) in his book on
Optical Rotatory Power. Other historical outlines may be found in Silverman
(1993) and Lindell et al. (1994); a selection of papers on natural optical activity has
been compiled by Lahktakia (1990). Modern electromagnetism begins with
Maxwell and the electromagnetic theory of light, but although he considered the
propagation of light in crystals (Maxwell 1891/1954, Article 794), he did not treat
chiral media.

This chapter deals only with isotropic chiral media (chiral liquids, or cubic chiral
crystals). It is based largely on the work of Silverman and collaborators, and
extensions given by Lekner (1996).

© Springer International Publishing Switzerland 2016
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18.1 Constitutive Relations

The propagation of light in isotropic non-chiral media is describable in terms of a
dielectric function e and a magnetic permeability l which relate the fields D to
E and B to H via D ¼ eE and B ¼ lH. The curl equations of Maxwell in non-chiral
media are

cr� E ¼ �@B=@t; cr�H ¼ @D=@t: ð18:1Þ

All research seen by the author agrees that these are to be retained in chiral media.
All researchers do not agree on the constitutive relations in chiral media, namely on
what replaces D ¼ eE and B ¼ lH. The results given in this chapter are based on
the symmetrized Condon set (Condon 1937)

D ¼ eE� g@H=@t; B ¼ lHþ g@E=@t; ð18:2Þ

as advocated by Silverman (1986). (Condon omitted the l; relations with it
included are called symmetrized). Silverman has shown that the constitutive rela-
tions in Born’s Optik (1972), namely

D ¼ eBEþ gBr� E; B ¼ lBH; ð18:3Þ

lead to reflectances in excess of unity in the vicinity of critical angles. Another
choice, known as the Drude–Born–Fedorov relations, is discussed in Chap. 3 of
Latkhtakia et al. (1989) and in Sect. 1.2.1 of Lindell et al. (1994):

D ¼ eDBFðEþ br� EÞ; B ¼ lDBFðHþ br�HÞ: ð18:4Þ

From the curl equations (18.1) it is clear that (18.2) and (18.4) are equivalent to first
order in g and b.

For monochromatic waves in which the fields have a time dependence given by
the factor expð�ixtÞ, the relations (18.2) become, on introducing the chiral index
c ¼ xg,

D ¼ eEþ icH; B ¼ lH� icE: ð18:5Þ

The Drude–Born–Fedorov relations become, with the use of (18.1) and on setting
v ¼ xb=c,

D ¼ eDBFðEþ ivBÞ; B ¼ lDBFðH� ivDÞ: ð18:6Þ

These relations are equivalent to (18.5) if the dielectric constants and permeabilities
differ by a term second order in the chiral index c:

454 18 Chiral Isotropic Media



eDBF ¼ e� c2=l; lDBF ¼ l� c2=e; v ¼ c=ðel� c2Þ: ð18:7Þ

The inverse relations are (Lakhtakia et al. 1988; Lindel et al. 1994)

e ¼ eDBF= 1� eDBFlDBFv
2� �

; l ¼ lDBF= 1� eDBFlDBFv
2� �

; ð18:8Þ

c ¼ eDBFlDBFv=ð1� eDBFlDBFv
2Þ:

Bassiri et al. (1988) assume a harmonic time dependence, and use the relations

D ¼ eBPEEþ inB; H ¼ inEþB=lBPE: ð18:9Þ

This form was deduced by them from the work of Jaggard et al. (1979), who
calculated the properties of a medium composed of short wire helices. (The effect of
the scattered fields of the helices on each other was neglected.)

The Born relations (18.3) can be eliminated on physical grounds: they predict
reflectances in excess of unity in the vicinity of critical angles, and also a difference
in the normal incidence reflectance of the two circular polarizations which is first
order in the chirality parameter gB, and in disagreement with experiment (Silverman
et al. 1988; Lukyanov and Novikov 1990).

As we shall see in Sect. 18.4, the relations (18.5) lead to normal incidence
reflectances from an achiral–chiral interface which are independent of the chiral
index c, while the relations (18.9) give reflectances which contain terms of second
order in the chiral parameter n. In Sect. 18.5 it is shown that the chiral index c is
related to d, the rotation of the plane of polarization on passing normally through a
chiral plate of thickness d, by

c ¼ kd=2pd: ð18:10Þ

The specific rotation d=d for AgGaS is large, for example, 0:95� per lm at
k ¼ 0:485 lm, yet even this relatively large value gives c � 1:28� 10�3. The
differential reflectance measurement reported by Lukyanov and Novikov (1990)
was on α-LiIO3 crystals cut normal to the optic axis, with d=d ¼ 86:8� per mm at
k ¼ 0:63 lm and c � 1:52� 10�4. No difference in the normal incidence reflec-
tance of the two circular polarizations was detected to within 10�7, but an effect of
order c2 is smaller than this. Thus experiment does not yet rule out or confirm
normal incidence differential reflectances which are of second order in the chirality
index.

The specific rotation d=d which follows from (18.9) is related to n via

nlBPE ¼ kd=2pd: ð18:11Þ

(Bassiri et al. 1988, (18.72)). Comparison of (18.5) and (18.9) identifies nlBPE with
c, and substitution of n ¼ c=lBPE into (18.9) gives
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D ¼ ðeBPE þ c2=lBPEÞEþ icH; B ¼ lBPEH� icE: ð18:12Þ

Thus (18.5) and (18.9) are in agreement if

lBPE ¼ l; eBPE ¼ e� c2=l; n ¼ c=l; ð18:13Þ

that is if the Bassiri, Papas and Engheta dielectric function is made to depend on the
square of the chirality index γ . If indeed we set eBPE ¼ e� c2=l in the formulae of
Bassiri et al. (1988), we find that for the achiral–chiral interface the normal inci-
dence reflection and transmission amplitudes become independent of c.

We henceforth adopt the constitutive relations (18.2) and (18.5) advocated by
Silverman (1986), with e and l independent of the chiral index c. This is also the
choice made in the monograph by Lindell et al. (1994), and is consistent with
experiment: Silverman et al. (1988) have used optical phase modulation to measure
chiral asymmetries in specular reflection from a gyrotropic medium, and have found
agreement with the reflection amplitudes calculated by Silverman (1986) using
(18.2).

18.2 Reflection and Transmission Amplitudes,
Conservation Laws

The optics of stratified chiral and/or anisotropic media can be quantified in terms of
four reflection and four transmission amplitudes. These can be of two kinds,
depending on whether the wave description is in terms of planar or circular
polarization.

In the case of plane polarized states, the electric field components of the incident,
reflected and transmitted waves are resolved along the p and p0 directions which lie
in the plane of incidence, and the sð¼ s0) direction perpendicular to the plane of
incidence. If propagation is in the zx plane (the plane of incidence) and in the
direction of positive x, with wavevector components in the (homogeneous) medium
of incidence k1 ¼ ðK; 0; q1Þ, an s-polarized incident wave of unit electric field
magnitude will be

Es ¼ ð0; 1; 0Þexp iðKxþ q1zÞ: ð18:14Þ

If h1 is the angle of incidence, the reflected wave electric field will be (by definition
of the reflection amplitudes rss and rsp)

E0 ¼ ðrspcosh1; rss; rspsinh1Þexp iðKx� q1zÞ: ð18:15Þ
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For an incident p-polarized wave the incoming and reflected waves are

Ep ¼ ðcosh1; 0;�sinh1Þexp iðKxþ q1zÞ; ð18:16Þ

E0 ¼ ðrppcosh1; rps; rppsinh1Þexp iðKx� q1zÞ: ð18:17Þ

(The reflection amplitude for the x component is rpp, while for the z component it is
�rpp: see equations (1.26) and (1.27) of Sect. 1.2.)

The cause of the reflection is assumed to be a general planar-stratified layer
(which may be chiral and anisotropic) resting on a homogeneous achiral isotropic
substrate, in which the wavevector of the transmitted wave is k2 ¼ ðK; 0; q2Þ. Note
that the component of the wavevector along the stratification (the x component K) is
a constant of the motion, because of translational invariance in the x direction. The
transmitted wave when the incident wave is s-polarized is

E00 ¼ ðtspcosh2; tss;�tspsinh2Þexp i½Kxþ q2ðz� dÞ�; ð18:18Þ

where h2 is the angle of refraction in the substrate and d is the total thickness of the
chiral (and possibly anisotropic) layer. The corresponding transmitted electric field
when a p-polarized wave is incident is

E00 ¼ ðtppcos h2; tps;�tppsinh2Þexp i½Kxþ q2ðz� dÞ�: ð18:19Þ

These relations define the transmission amplitudes tss; tsp; tpp and tps.
If the chiral layer is non-absorbing, the reflected plus transmitted fluxes of

energy must add up to the incident flux. The energy density of a plane electro-
magnetic wave in a medium with dielectric constant e and permeability l is pro-
portional to e Ej j2 and the speed is c=

ffiffiffiffiffi
el

p
; thus the energy flux is proportional to

ffiffiffiffiffiffiffi

e=l
p

Ej j2. The amount of energy in the primary wave which is incident on a unit

area of the interface in unit time is proportional to
ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1, the amount

reflected to
ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 times the absolute square of the reflected field, and the

amount carried away by the transmitted wave similarly to
ffiffiffiffiffiffiffiffiffiffiffi

e2=l2
p

cos h2 times the
absolute square of the transmitted electric field. (See Fig. 2.1 for the geometry
leading to the factors cos h1 and cos h2.) Thus energy conservation reads, for
incident s and p polarizations,

ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rssj j2� rsp
�
�

�
�
2

� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

e2=l2
p

cos h2ð tssj j2 þ tsp
�
�

�
�
2Þ;

ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rpp
�
�

�
�
2� rps

�
�

�
�
2

� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

e2=l2
p

cos h2ð tpp
�
�

�
�
2 þ tps

�
�

�
�
2Þ: ð18:20Þ
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These relations hold for arbitrary non-absorbing stratifications. When there is
absorption, the difference between the left- and right-hand sides gives the absorp-
tion in the stratification.

An alternative characterization of polarization states is in terms of positive and
negative helicities (opposite circular polarizations). For circularly polarized incident
light we need the reflection and transmission amplitudes rþ þ ; rþ�; r�þ ; r�� and
tþ þ ; tþ�; t�þ ; t��, where, for example, rþ� gives the complex amplitude of the
light reflected with negative helicity when positive helicity light is incident. (We
avoid the left and right circular polarization terminology, because two opposite
conventions are in use.) Let ðp; s; k1Þ denote a right-handed triplet of vectors for the
incident light, with p and s being unit vectors perpendicular to the direction of
propagation, and, respectively, parallel and perpendicular to the plane of incidence.
Similarly, let ðp0; s0; k01Þ be a similar triplet for the reflected light (the choice s0 ¼ s
then implies that p0 ! �p at normal incidence, and p0 ! p at glancing incidence).
Then ðpþ isÞ=p 2 represents an incident wave of positive helicity and unit mag-
nitude. As usual the zx plane is the plane of incidence, with s ¼ ð0; 1; 0Þ ¼ s0,
p ¼ ðcos h1; 0;� sin h1Þ and p0 ¼ ð� cos h1; 0;� sin h1Þ. From (18.15) and (18.17),
an electric field of unit magnitude along s reflects to rsss0 � rspp0, and an electric
field of unit magnitude along p reflects to �rppp0 þ rpss0. The reflected field is
therefore

½ �rpp � irsp
� �

p0 þ ðrps þ irssÞs0�=p2: ð18:21Þ

From (18.21) we extract the coefficients of positive and negative helicity, namely of
ðp0 � is0Þ=p2, to find

rþ þ ¼ 1=2 rss � rpp
� �� 1=2iðrsp þ rpsÞ;

rþ� ¼ �1=2 rss þ rpp
� �� 1=2iðrsp � rpsÞ: ð18:22Þ

Similarly, when the incident wave is ðp� isÞ=p 2 (negative helicity), the reflected
field is

½ �rpp þ irsp
� �

p0 þ ðrps � irssÞs0�=p2; ð18:23Þ

and the corresponding reflection amplitudes are

r�þ ¼ �1=2 rss þ rpp
� �þ 1=2iðrsp � rpsÞ;

r�� ¼ 1=2 rss � rpp
� �þ 1=2iðrsp þ rpsÞ: ð18:24Þ

For all the cases considered in this chapter, rsp ¼ rps and so rþ� ¼ r�þ .
The transmission amplitudes as characterized by helicity are found as follows.

Let ðp� isÞ=p2 represent the electric fields of incident waves of positive and
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negative helicity, and likewise ðp00 � is00Þ=p2 for the transmitted helicities. When
ðpþ isÞ=p2 is incident, the transmitted field is

½ tpp þ itsp
� �

p00 þ ðtps þ itssÞs00�=p2 ð18:25Þ

The coefficients of positive and negative helicity in (18.25) give

tþ þ ¼ 1=2ðtpp þ tssÞþ 1=2iðtsp � tpsÞ;

tþ� ¼ 1=2ðtpp � tssÞþ 1=2iðtsp þ tpsÞ: ð18:26Þ

Similarly, for negative helicity incident we find

t�þ ¼ 1=2 tpp � tss
� �� 1=2iðtsp þ tpsÞ;

t�� ¼ 1=2 tpp þ tss
� �� 1=2iðtsp � tpsÞ: ð18:27Þ

The inverse relations are as follows:

rss ¼ 1=2 rþ þ þ r��ð Þ � 1=2ðrþ� þ r�þ Þ;

rpp ¼ �1=2 rþ þ þ r��ð Þ � 1=2ðrþ� þ r�þ Þ;

rsp ¼ 1=2i rþ þ � r��ð Þþ 1=2iðrþ� � r�þ Þ;

rps ¼ 1=2i rþ þ � r��ð Þ � 1=2ðrþ� � r�þ Þ: ð18:28Þ

tss ¼ 1=2 tþ þ þ t��ð Þ � 1=2ðtþ� þ t�þ Þ;

tpp ¼ 1=2 tþ þ þ t��ð Þþ 1=2ðtþ� þ t�þ Þ;

tsp ¼ �1=2i tþ þ � t��ð Þ � 1=2iðtþ� � t�þ Þ;

tps ¼ 1=2i tþ þ � t��ð Þ � 1=2iðtþ� � t�þ Þ: ð18:29Þ

Energy conservation relations may also be written down in terms of the helicity
reflection and transmission amplitudes. For incident waves of respectively positive
and negative helicity, energy conservation implies

ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rþ þj j2� rþ�j j2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

e2=l2
p

cos h2ð tþ þj j2 þ tþ�j j2Þ;
ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� r��j j2� r�þj j2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffi

e2=l2
p

cos h2ð t��j j2 þ t�þj j2Þ: ð18:30Þ
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18.2.1 Differential Reflectance, Ellipsometry

Chiral media in general reflect opposite circular polarizations differently. When a
wave of unit amplitude and positive helicity is incident, the amplitudes of the
reflected waves of positive and negative helicities are rþ þ and rþ�, respectively.
If the detector is polarization-insensitive, the reflected intensity is proportional to
Rþ ¼ rþ þj j2 þ rþ�j j2. (This result may be verified by expressing the reflected
wave as

rþ þ p0 þ is0ð Þ
ffiffiffi

2
p þ rþ� p0 � is0ð Þ

ffiffiffi

2
p ¼ rþ þ þ rþ�ð Þp0

ffiffiffi

2
p þ i

rþ þ � rþ�ð Þs0
ffiffiffi

2
p :

Then E0j j2¼ 1=2ð rþ þ þ rþ�j j2 þ rþ þ � rþ�j j2Þ ¼ rþ þj j2 þ rþ�j j2.) Similarly, a
wave of unit amplitude and negative helicity produces a reflected intensity pro-
portional to R� ¼ r��j j2 þ r�þj j2. The differential circular reflectance (DCR) is
defined as (Silverman 1986)

DCR ¼ Rþ � R�
Rþ þR�

: ð18:31Þ

If linearly polarized waves of s or p polarization are incident, and the detector is

polarization-insensitive, the reflected intensities will be proportional to Rs ¼
rssj j2 þ rsp

�
�

�
�
2
or Rp ¼ rpp

�
�

�
�
2 þ rps

�
�

�
�
2
, respectively. Differential linear reflectance

(DLR) is defined as (Silverman et al. 1988)

DLR ¼ Rs � Rp

Rs þRp
: ð18:32Þ

Silverman and collaborators have made measurements on chiral media of both DLR
(Silverman et al. 1988) and of DCR (Silverman et al. 1988; Silverman and Badoz
1992; Silverman et al. 1992; Badoz and Silverman 1992).

The reflection amplitudes rpp; rss; rps and rsp can be used to calculate the
reflection ellipsometric signal, which in the common experimental configurations is
one of the ratios qP or qA defined in Chap. 9:

qP ¼ rpp þ rsptanP
rps þ rsstanP

; qA ¼ rpp þ rpstanA
rsp þ rsstanA

: ð18:33Þ

In (18.33) P is the angle between the polarizer easy axis and the incident p
direction, while A is the angle between the analyser easy axis and the reflected p0

direction. (The p and p0 TM directions lie in the plane of incidence, the s TE
direction is perpendicular to the plane of incidence; all are perpendicular to the
incoming or reflected beams.)

460 18 Chiral Isotropic Media

http://dx.doi.org/10.1007/978-3-319-23627-8_9


We note in passing that at the polarizing angle defined by rpprss ¼ rsprps (see
Sect. 18.4), qP and qA become independent of the orientations of the polarizer and
analyser, and take the respective values rpp=rps and rpp=rsp. For the cases considered
in this paper, rsp ¼ rps, so qP and qA are equal at the polarizing angle.

Ellipsometry of chiral media is discussed in more detail in Sect. 5 of Lekner
(1996).

18.3 Wave Propagation in Chiral Media

Let us first consider the general case of chiral inhomogeneous media; e, l and c can
all be dependent on position. We will henceforth assume the validity of the two curl
equations (18.1) and of the constitutive relations (18.2). Since the equations are
linear in the fields, we can deal with one Fourier component at a time; we assume a
time dependence e�ixt, so that we can use (18.5) and

cr� E ¼ ixB; cr�H ¼ �ixD: ð18:34Þ

The fields B, H and D can be eliminated from (18.5) and (18.34) by substitution of
B ¼ ðc=ixÞr � E into H ¼ ðBþ icEÞ=l, and then of the latter expression into
D ¼ ðc=xÞr �H ¼ eEþ icH. The result is a second-order equation for E, namely

lr� 1
l
r� E

� 	

¼ el� c2
� �x2

c2
Eþ x

c
cr� Eþ lr� ðc

l
EÞ


 �

: ð18:35Þ

The equation for H has the same form, with E;H and e; l interchanged.
When the medium is z-stratified, e, l and c are functions of z only. Suppose that

there is a plane wave incident on the stratification, propagating in the zx plane.
Because of the assumed translational invariance in the x and y directions, there will
be no y dependence in any field component, and the x dependence of all field
components is contained in the factor expðiKxÞ. K is the x-component of the
wavevector, and is a constant of the motion because of the translational invariance
in the x direction. For a z-stratified chiral medium, the three components Ex;Ey;Ez

satisfy the coupled ordinary differential equations

E00
x �

l0

l
E0
x þ el� c2

� �x2

c2
Ex � x

c
2cE0

y þ c0 � c
l0

l

� 	

Ey


 �

� iK E0
z �

l0

l
Ez

� 	

¼ 0;

E00
y �

l0

l
E0
y þ el� c2

� �x2

c2
� K2


 �

Ey þ x
c

2cE0
x þ c0 � c

l0

l

� 	

Ex


 �

� 2i
x
c
cKEz

¼ 0;
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el� c2
� �x2

c2
� K2


 �

Ez � iKE0
x þ 2i

x
c
cKEz ¼ 0: ð18:36Þ

(The primes denote differentiation with respect to z.)
Finally, we specialize to a homogeneous chiral medium. In this case e, l and c

are constant within the medium. We look for plane wave eigenstates, in which all
field components have the variation expðiqzÞ, where q is the z-component of the
wavevector. The differential equations (18.36) then reduce to the three homoge-
neous linear algebraic equations

el� c2
� �x2

c2
� q2


 �

Ex � 2i
x
c
cqEyþ qKEz ¼ 0;

2i
x
c
cqEx þ el� c2

� �x2

c2
� K2 � q2


 �

Ey � 2i
x
c
cKEz ¼ 0;

qKEx þ 2i
x
c
cKEy þ el� c2

� �x2

c2
� K2


 �

Ez ¼ 0: ð18:37Þ

A solution with non-zero E is possible only if the determinant of the coefficients of
Ex, Ey and Ez in this set of equations is zero. This gives the condition

k2c � q2 �2i xc cq qK
2i xc cq k2c � q2 � K2 �2i xc cK
qK 2i xc cK k2c � K2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ 0; ð18:38Þ

where

k2c ¼ el� c2
� �x2

c2
: ð18:39Þ

A similar eigenvalue equation for q is obtained for anisotropic media, as we saw in
Chap. 8. There the matrix of coefficients was symmetric, here it is Hermitian.
Equation (18.38) is a quartic in q, with solutions �qþ and �q�, where

q2� ¼ ffiffiffiffiffi
el

p � cð Þ2x
2

c2
� K2 � k2� � K2: ð18:40Þ

The four possible plane waves in the chiral medium have wavevectors

ðK; 0;�qþ Þ and ðK; 0;�q�Þ: ð18:41Þ
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The two with the upper sign are for waves propagating in the þ z direction, the two
with the lower sign are for waves propagating in the �z direction. The square of the
wavevector is

K2 þ q2� ¼ ffiffiffiffiffi
el

p � cð Þ2x
2

c2
� k2� � n2�

x2

c2
: ð18:42Þ

Thus there are two effective indices for the chiral medium

n� ¼ ffiffiffiffiffi
el

p � c � n� c; ð18:43Þ

which correspond to waves of positive and negative helicity, as we shall see shortly.
The average of the two indices is n ¼ ffiffiffiffiffi

el
p

, and their product is

el� c2 ¼ ckc=x
� �2

.
The electric field eigenstates which correspond to the eigenvalues q� given in

(18.42) are obtained from (18.37) by substituting q� for q. We find, for the waves
propagating in the þ z direction,

Eþ 	 ðqþ ; ikþ ;�KÞ; E� 	 ðq�;�ik�;�KÞ; ð18:44Þ

where k� ¼ n�x=c. The corresponding wavevectors are k� ¼ ðK; 0; q�Þ, and we
see that, for each mode, the electric field eigenstate is perpendicular to the
wavevector. The fields given in (18.44) have a phase difference of 90� between
their y and z; x components. Also k2� ¼ K2 þ q2�, so the two eigenstates correspond
to circularly polarized light of positive and negative helicity.

The other fields can be found from E by means of B ¼ ðc=xÞk� E, H ¼
ðBþ icEÞ=l and D ¼ eEþ icH. They are

Bþ ¼ �inþEþ ; B� ¼ in�E�;

Hþ ¼ �i
ffiffiffiffiffiffiffi

e=l
p

Eþ ; H� ¼ i
ffiffiffiffiffiffiffi

e=l
p

E�; ð18:45Þ

Dþ ¼ nþ
ffiffiffiffiffiffiffi

e=l
p

Eþ ; D� ¼ n�
ffiffiffiffiffiffiffi

e=l
p

E�:

The Poynting vectors have the appropriate directions: for example, Eþ �H

þ is

proportional to kþ . The corresponding fields for plane waves propagating in the �z
direction are obtained by replacing qþ by �qþ and q� by �q� in k� ¼ ðK; 0; q�Þ
and in (18.44). The helicities are then negative for Eþ 	 ð�qþ ; ikþ ;�KÞ and
positive for E� 	 ð�q�;�ik�;�KÞ.

18.3.1 Eigenstates of Curl

An elegant alternative approach to propagation in homogeneous chiral media is in
terms of two related linear combinations of the E and H fields (Bohren 1974;
Eftimiu and Pearson 1989; Lindell et al. 1994),
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F� ¼ E� igH; g ¼
ffiffiffiffiffiffiffi

l=e
p

: ð18:46Þ

Provided that η is constant in space, the curl equations (18.34) and the constitutive
equations (18.5) together imply that Fþ and F� are eigenstates of the curl operator

r� F� ¼ �k�F�; ð18:47Þ

where k� ¼ n�x=c ¼ ðn� cÞx=c as before. Eigenstates of curl are also known as
Beltrami fields, discussed in a wider context in Chap. 1 of Lakhtakia (1994).

If we write (18.47) collectively as r� F ¼ kF (with F ¼ F� and k ¼ �k�),
plane wave propagation in the zx plane, with F proportional to expiðKxþ qzÞ, is
possible if

�iqFy ¼ kFx; iqFx � iKFz ¼ kFy; iKFy ¼ kFz : ð18:48Þ

These are three homogeneous equations in the field components ðFx;Fy;FzÞ and a
non-zero solution will exist only if the determinant of their coefficients is zero,
namely if

k iq 0
�iq k iK
0 �iK k

�
�
�
�
�
�

�
�
�
�
�
�

¼ 0: ð18:49Þ

This determinant factors to kðk2 � K2 � q2Þ. The nonzero values of k are �k�, and
thus we regain (18.42). From (18.45) we see that for the positive helicity wave
Hþ ¼ Eþ =ðigÞ and so Fþ ¼ 2Eþ . For the negative helicity wave H� ¼
E�=ð�igÞ and F� ¼ 2E�. Thus for plane wave eigenstates in homogeneous chiral
media, (18.47) reads

r� Eþ ¼ kþEþ ; r� E� ¼ �k�E�; ð18:50Þ

or the same equations with E� replaced by H�.
For inhomogeneous media the positive and negative helicities are coupled:

(18.47) is replaced by

r� F� ¼ �½k�F� þ 2gð Þ�1rg� Fþ � F�ð Þ�: ð18:51Þ

18.3.2 Boundary Conditions

We shall see that the boundary conditions at an interface between chiral media are
the continuity of the tangential components of E and H. For a z-stratified medium
and plane waves propagating in the zx plane, the curl of E is
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r� E ¼ ð�E0
y;E

0
x � iKEz; iKEyÞ: ð18:52Þ

Since the time derivative of B, which by (18.1) is proportional to r� E, is to be
free of singularity at the interface, it follows that E0

x and E0
y are non-singular and

thus that Ex and Ey are continuous across the interface. Likewise, since the time
derivative of D, which is proportional to the curl of H, is free of singularity at the
interface, Hx and Hy are continuous across the boundary.

The continuity of Ex also follows directly from the last equation in (18.36), while
the terms containing derivatives in the first two equations of (18.36) can be written
as ix=c times

lH0
y þ icE0

y and lH0
x þ icE0

x: ð18:53Þ

Thus the continuity of Ex and Hx follows from the differential equations for the
components of E, whereas these differential equations allow discontinuities in Ey

and Hy across the interface, provided lH0
y þ icE0

y remains non-singular. The pos-
sibility of discontinuities DHy and DEy satisfying lDHy þ icDEy ¼ 0 is eliminated
by the differential equations for Hx, Hy and Hz. These have the same form as those
for the components of E, with Hx replacing Ex, et cetera, and l interchanged with e.
They imply that eE0

x þ icH0
x and eE0

y þ icH0
y are non-singular, and that Hx is con-

tinuous at the boundary. Discontinuities in Ey and Hy would then have to satisfy
both lDHy þ icDEy ¼ 0 and eDEy þ icDHy ¼ 0. The determinant of the coefficients
of DEy and DHy in these two equations is elþ c2, which we take to be nonzero,
thus implying DEy ¼ 0 and DHy ¼ 0. We conclude that the continuity of the tan-
gential components of E and H follows from the differential equations, provided
elþ c2 is not zero.

18.4 Reflection from an Achiral–Chiral Interface

Reflection at the surface of a chiral medium was considered by Silverman (1986),
who derived the reflection and transmission amplitudes on the basis of (a) the
symmetric set of constitutive relations (18.2), and (b) the constitutive relations
(18.3). He showed that the results are not equivalent, with small violations of
energy conservation in case (b) under conditions of total reflection. Here the
reflection and transmission amplitudes are derived on the basis of the symmetric set
of constitutive relations (18.2). As we saw in Sect. 18.1, the Drude-Born-Fedorov
relations (18.5) give equivalent results for time-harmonic waves.
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18.4.1 Wavefunctions

Let a plane wave be incident from an optically non-active medium (dielectric and
permeability constants e1 and l1), at an angle h1 to the interface normal. We wish to
find the four reflection amplitudes rss; rsp; rpp and rps which completely characterize
the reflection properties of the interface.

Inside the optically active medium the two plane wave eigenstates which
propagate in the þ z direction have electric field vectors

Eþ ¼ ðcos hþ ; i;� sin hþ Þexp iðKxþ qþ zÞ; ð18:54Þ

E� ¼ ðcos h�;�i;� sin h�Þexp iðKxþ q�zÞ:

Here h� are the angles of refraction for the two plane waves of opposite helicity.
Their cosines and sines are given by

cos h� ¼ q�=k�; sin h� ¼ K=k�: ð18:55Þ

For incident s (TE) plane-polarized waves, the incoming and reflected waves have
electric fields given by (18.14) and (18.15). Thus the electric field in medium 1 is

E1 ¼ rsp cos h1e�iq1z; eiq1z þ rsse�iq1z; rsp sin h1e�iq1z
� �

eiKx: ð18:56Þ

The magnetic field H1 in medium 1 is given by

H1 ¼ B1=l1 ¼ ðc=ixl1Þr � E1: ð18:57Þ

At the boundary z ¼ 0 this takes the value

H1ðz ¼ 0Þ ¼ n1
l1

� 1� rss½ � cos h1;�rsp; ½1þ rss� sin h1
� �

eiKx: ð18:58Þ

Inside the optically active medium, the electric and magnetic fields are

E ¼ tsþEþ þ ts�E�; H ¼ �i
ffiffiffiffiffiffiffi

e=l
p

ðtsþEþ � ts�E�Þ; ð18:59Þ

where tsþ and ts� are the transmission amplitudes for the two circularly polarized
waves in the chiral medium.

18.4.2 Reflection and Transmission Amplitudes

The continuity of the tangential components of E and H across the interface at
z ¼ 0 gives four relations, which can be solved for the four unknowns rss; rsp, tsþ
and ts�. We find, with
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c1 ¼ cos h1; c� ¼ cos h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n1
n�

sin h1

� 	2
s

; ð18:60Þ

D ¼ c21 þ
c1 cþ þ c�ð Þ mþm�1ð Þ

2
þ cþ c�; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

el1=e1l
p

;

that the reflection and transmission amplitudes when s-polarized light is incident are
given by

rss ¼ c21 �
c1 cþ þ c�ð Þ m� m�1ð Þ

2
� cþ c�


 �

=D;

rsp ¼ �ic1ðcþ � c�Þ=D; ð18:61Þ

tsþ ¼ �ic1ðc1 þ c�=mÞ=D;

ts� ¼ ic1ðc1 þ cþ =mÞ=D:

For p polarization incident the incoming and reflected waves have electric fields

ðcos h1; 0;� sin h1Þexp iðKxþ q1zÞ; ð18:62Þ

ðrpp cos h1; rps; rpp sin h1ÞexpiðKx� q1zÞ:

The electric field E1 is the sum of these; the magnetic field H1 given by (18.57)
takes the value at the z ¼ 0 boundary

H1ðz ¼ 0Þ ¼ n1
l1

rps cos h1; 1� rpp; rps sin h1
� �

eiKx: ð18:63Þ

The fields inside the chiral medium are now

E ¼ tpþEþ þ tp�E�; H ¼ �i
ffiffiffiffiffiffiffi

e=l
p

ðtpþEþ � tp�E�Þ: ð18:64Þ

The reflection and transmission amplitudes when p-polarized light is incident are
again found from the continuity of the tangential components of E and H:

rpp ¼ � c21 þ
c1 cþ þ c�ð Þ m� m�1ð Þ

2
� cþ c�


 �

=D;

rps ¼ �ic1ðcþ � c�Þ=D; ð18:65Þ

tpþ ¼ c1ðc1=mþ c�Þ=D;
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tp� ¼ c1ðc1=mþ cþ Þ=D:

The formulae (18.61) and (18.65) are in accord with those of Silverman (1986), but
are not identical to those of Bassiri et al. (1988), unless we make the identification
(18.13). We note that rsp ¼ rps. When the chirality is zero, rsp and rps are also zero,
while rss and rpp reduce to the usual Fresnel amplitudes. The diagonal reflection
amplitudes satisfy

1� r2ss ¼ c1ðcþ þ c� þ 2c1mÞ½c1 cþ þ c�ð Þmþ 2cþ c��=mD; ð18:66Þ

1� r2pp ¼ c1½ cþ þ c�ð Þmþ 2c1Þ�½c1 cþ þ c�ð Þþ 2cþ c�m�=mD:

For non-absorbing chiral media the right-hand sides of (18.66) are non-negative, so
the ss and pp reflectivities cannot exceed unity. Also the magnitude of rsp ¼ rps is
less than unity, by inspection.

At normal incidence K ! 0 and the cosines c1 and c� tend to unity; the
reflection and transmission amplitudes then take values independent of the chirality
parameter γ:

rss; rpp ! 1� m
1þm

; rsp; rps ! 0; ð18:67Þ

tp� ! 1
1þm

; ts� ! �i
1þm

:

The transmission amplitudes for positive and negative helicities follow from the
definitions of ts� and tp� in (18.59) and (18.64). An incident wave with electric field
vector p� is transmits to tpþEþ þ tp�E� � itsþEþ � its�E� ¼ tpþ � itsþ

� �

Eþ þ tp� � its�
� �

E�: Therefore

tþ þ ¼ tpþ þ itsþ ; tþ� ¼ tp� þ its�; ð18:68Þ

t�þ ¼ tpþ � itsþ ; t�� ¼ tp� � its�:

The helicity reflection and transmission amplitudes for a sharp achiral–chiral
interface located at z ¼ 0 are all real when the chiral medium is non-absorbing:

rþ� ¼ c1 cþ þ c�ð Þ m� m�1ð Þ
2D

¼ r�þ ;

rþ þ ¼ c1 � cþð Þ c1 þ c�ð Þ
D

; r�� ¼ c1 þ cþð Þ c1 � c�ð Þ
D

; ð18:69Þ

tþ þ ¼ c1 c� þ c1ð Þ 1þm�1ð Þ
D

; tþ� ¼ c1 cþ � c1ð Þ 1� m�1ð Þ
D

;
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t�� ¼ c1 cþ þ c1ð Þ 1þm�1ð Þ
D

; t�þ ¼ c1 c� � c1ð Þ 1� m�1ð Þ
D

:

(D and m are defined in (18.60).) The normal-incidence limiting values are

rþ þ ; r�� ! 0; rþ�; r�þ ! m� 1
mþ 1

; ð18:70Þ

tþ þ ; t�� ! 2
mþ 1

; tþ�; t�þ ! 0:

At glancing incidence ðc1 ! 0Þ all the transmission amplitudes go to zero,
rþ þ ; r�� tend to �1, rþ�; r�þ tend to zero, rpp ! 1 and rss ! �1. The proba-
bility for photon spin-flip is zero at both normal and glancing incidence. (Helicity is
reversed at normal incidence because of the reversal of the direction of travel of the
light on reflection.)

Reflection near the critical angles h�1 given by sin h�1 ¼ n�=n is discussed in
Sect. 18.5, together with the chiral layer case. There the off-diagonal reflection
amplitudes rsp; rps and rþ�; r�þ are proportional to the square root of the chiral
index γ, as we shall see.

The energy conservation conditions to be satisfied by the reflection and trans-
mission amplitudes follow from arguments along the lines given in relation to
(18.20), and were first written down by Silverman and Badoz (1989). The helicity
amplitudes satisfy

ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rþ þj j2� rþ�j j2
� �

¼
ffiffiffiffiffiffiffi

e=l
p

cos hþ tþ þj j2 þ cos h� tþ�j j2
� �

;

ð18:71Þ
ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� r��j j2� r�þj j2
� �

¼
ffiffiffiffiffiffiffi

e=l
p

cos hþ t�þj j2 þ cos h� t��j j2
� �

:

Since plane-polarized waves are not eigenstates within the chiral medium, the
corresponding relations involving rss; rsp; rps and rpp are of a hybrid form:

ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rssj j2� rsp
�
�

�
�
2

� �

¼ 2
ffiffiffiffiffiffiffi

e=l
p

cos hþ tsþj j2 þ cos h� ts�j j2
� �

;

ð18:72Þ
ffiffiffiffiffiffiffiffiffiffiffi

e1=l1
p

cos h1 1� rpp
�
�

�
�
2� rps

�
�

�
�
2

� �

¼ 2
ffiffiffiffiffiffiffi

e=l
p

cos hþ tpþ
�
�

�
�
2 þ cos h� tp�

�
�

�
�
2

� �

:

The reason for the factor of 2 on the right-hand sides of (18.72) lies in our definition
of the electric fields and of the transmission amplitudes: from (18.54) we see that
E�j j2¼ 2, while the incoming s-polarized or p-polarized electric fields are nor-
malized to unity (see (18.14) and (18.16)).
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18.4.3 The Angles hB; hpp; and hpol

At the boundary between two non-chiral media, zero reflection of a p-polarized
incident wave occurs at the Brewster angle hB, where

tan2 hB ¼ e
e1

el1 � e1l
el� e1l1

� 	

¼ elðm2 � 1Þ
el� e1l1

; m ¼
ffiffiffiffiffiffiffi
el1
e1l

r

: ð18:73Þ

The result (18.73) follows from setting to zero the achiral limit of the reflection
amplitude rpp given in (18.65). It is a generalization of familiar formula tan2 hB ¼
e=e1 of Sect. 1.2, to which it simplifies when l ¼ l1. A physical zero can occur
only when the right-hand side of (18.73) is positive.

For the achiral–chiral interface we can ask for the angle hpp at which rpp is zero,
in analogy with the anisotropic crystal case discussed in Sect. 8.4. From (18.65) we
see that this occurs when

2ðcþ c� � c21Þm ¼ c1 cþ þ c�ð Þ m2 � 1
� � ð18:74Þ

The squares of the cosines of the angles of incidence and refraction can be
expressed in terms of s21 ¼ sin2h1 (by use of Pythagoras’ theorem, and of Snell’s
law n1 sin h1 ¼ n� sin h�):

c21 ¼ 1� s21; c2� ¼ 1� n1=n�ð Þ2s21 ð18:75Þ

If we square both sides of (18.74), isolate the product cþ c�, and then square again,
we will obtain an algebraic equation for s21. This turns out to a quartic in s21, or
equivalently a quartic in t21 ¼ tan2 h1, one of the solutions of which gives tan2 hpp.
When we substitute (18.43) into the quartics, we find that hpp is given by the
right-hand side of (18.73) plus a term of order c2. Because c is small for natural
optically active media, the second-order difference between hB and hpp is usually
not of experimental interest.

Another angle of interest is the polarizing angle at which a monochromatic plane
wave of arbitrary polarization becomes linearly polarized on reflection, mentioned
in Sect. 8.4. For a linearly polarized wave, the angle / between the electric field
vector E and the p direction is given by tan/ ¼ s � E=p � E, where p and s are unit
vectors as before. For the reflected wave the azimuthal angle is given by tan/0 ¼
s0 � E0=p0 � E0 where

E0 ¼ ðp � EÞ rppp0 þ rpss0
� �þðs � EÞ rspp0 þ rsss0

� �

:

Thus

tan/0 ¼ rps þ rsstan/
rpp þ rsptan/

: ð18:76Þ
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The condition for /0 to be independent of / is

rpprss � rpsrsp ¼ 0: ð18:77Þ

The condition (18.77) guarantees that the same polarization azimuth /0 will result
for all incident azimuths /, namely the /0 given by

tan/0 ¼ rps
rpp

¼ rss
rsp

ð18:78Þ

For isotropic non-chiral media, the condition (18.77) reduces to rpprss ¼ 0, which
for l ¼ l1 is satisfied by rpp ¼ 0 at angle of incidence hB given by tan2 hB ¼ e=e1,
and gives an s-polarized reflected wave. For chiral media (18.77) implies

2ðcþ c� þ c21Þm ¼ c1 cþ þ c�ð Þ m2 þ 1
� �

: ð18:79Þ

The same method that we outlined for the rpp ¼ 0 case (which satisfies (18.74))
reduces (18.79) to a quadratic in sin2 h1, or equivalently, to a quadratic in tan2 h1.
As we found for tan2 hpp, the polarizing angle determined by (18.79) is given by
(18.73) plus a term of second order in the chirality parameter c . Thus measurement
of either the Brewster angle or of the polarizing angle is not a viable method of
determining a small c. The full formula for the angle of incidence at which the
reflected light is linearly polarized is

tan2 hpol ¼
ðm2 � 1Þ m2 � 1ð Þ 2n2þ n

2
� � n21 n2þ þ n2�

� �� 
þ 2 m2 þ 1ð Þnþ n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2þ � n21
� �

n2� � n21
� �

qn o

4m2ðn2þ � n21Þðn2� � n21Þ
ð18:80Þ

The symbols have their usual meaning: n1 ¼ ffiffiffiffiffiffiffiffiffi
e1l1

p
; n� ¼ ffiffiffiffiffi

el
p � c;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

el1=e1l
p

.
As we noted in relation to tan2 hB, a physical polarizing angle can occur only

when the right-hand side of (18.80) is positive.

18.5 Optical Properties of a Chiral Layer

The optical properties of a chiral layer are discussed by Basisri et al. (1988),
Jaggard and Sun (1992), Lindell et al. (1994), Silverman and Badoz (1994), among
others. Lekner (1996) gives a first-principles derivation of exact analytic expres-
sions for the reflection and transmission amplitudes. Here we shall just give an
outline of the method and discuss some special cases.
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We consider reflection and transmission by an optically active layer of thickness

d, between the medium of incidence with index of refraction n1 ¼ ðe1l1Þ1=2 and the
substrate with index n2 ¼ ðe2l2Þ1=2. The layer lies between z ¼ 0 and z ¼ d, and is

characterized by two indices n� ¼ ðelÞ1=2 � c. Because of multiple reflections
within the layer, the electromagnetic field inside is made up of four eigenstates or
modes, two propagating in the positive z direction, and two in the negative z
direction. For each direction of propagation there are two possible helicities. The
electric fields have the space and time dependence

Ef
� exp i Kxþ q�z� xtð Þ; Eb

� exp i Kx� q�z� xtð Þ; ð18:81Þ

where the superscripts f and b denote forward and backward propagation inside the
slab, and q� are given by (18.40).

The reflection and transmission amplitudes are found by applying the continuity
of the tangential (x and y) components of E and H at the two boundaries z ¼ 0 and
z ¼ d of the chiral slab. The s wave in the medium of incidence has electric and
magnetic fields given by (18.56) and (18.58). The electric field inside the slab is

E ¼ fþEf
þ þ f�Ef

� þ bþEb
þ þ b�Eb

�: ð18:82Þ

There are eight equations (given in Lekner 1996) arising from the boundary con-
ditions, and these determine the eight unknowns (for s-polarization incident),
namely rss; rsp; tss; tsp; fþ ; f�; bþ ; b�. Likewise for the p polarization. These
simultaneous equations are solved by using mode, phase and layer matrices, as for
the anisotropic layer (Sect. 8.9). The general solution is given in the Appendix of
Lekner (1996). The conservation laws (18.20) are satisfied by the exact reflection
and transmission amplitudes.

18.5.1 Normal Incidence

The simplest special case is that of normal incidence, for which one obtains

rss ¼ rpp ¼ rþ r0Zþ Z�
1þ rr0Zþ Z�

; rps ¼ rsp ¼ 0; ð18:83Þ

tss ¼ tpp ¼ ð1þ rÞð1þ r0ÞðZþ þ Z�Þ=2
1þ rr0Zþ Z�

;

tps ¼ �tsp ¼ ið1þ rÞð1þ r0ÞðZþ � Z�Þ=2
1þ rr0Zþ Z�

:

In these formulae r and r0 are the normal incidence reflection amplitudes at the first
and second interfaces,
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r ¼ 1� m
1þm

; r0 ¼ m0 � 1
m0 þ 1

; m ¼
ffiffiffiffiffiffiffi
el1
e1l

r

; m0 ¼
ffiffiffiffiffiffiffi
el2
e2l

r

: ð18:84Þ

Zþ and Z� are the phase factors for waves of positive and negative helicity
traversing the layer:

Zþ ¼ exp iqþ dð Þ; Z� ¼ expðiq�dÞ: ð18:85Þ

At normal incidence q� ¼ n�x=c, from (18.40) and (18.42). From (18.22), (18.24)
and (18.83) we find that, at normal incidence

rþ þ ¼ r�� ¼ 0; rþ� ¼ r�þ ¼ �rss ¼ �rpp: ð18:86Þ

The normal incidence transmission amplitudes characterized by helicity reduce to
(on using (18.26), (18.27) and (18.83))

tþ þ ¼ ð1þ rÞð1þ r0ÞZþ
1þ rr0Zþ Z�

; t�� ¼ ð1þ rÞð1þ r0ÞZ�
1þ rr0Zþ Z�

; tþ� ¼ t�þ ¼ 0: ð18:87Þ

A chiral slab will thus transmit a normally incident pure circularly polarized wave
without mixing in any of the opposite circular polarization. A linearly polarized
wave can be regarded as an equal mix of the two opposite circular polarizations (for
example, p ¼ ðpþ isÞ=2þðp� isÞ=2). On transmission through the slab, the
positive and negative helicities are phase-shifted by different amounts, so that a
wave of unit amplitude initially linearly polarized along p will after transmission
through the slab have amplitude

pþ isð Þtþ þ
2

þ p� isð Þt��
2

¼ ð1þ rÞð1þ r0Þ
1þ rr0Zþ Z�

pðZþ þ Z�½ Þþ isðZþ � Z�Þ�

¼ 1þ rð Þ 1þ r0ð Þ
1þ rr0Zþ Z�

expðinxd=cÞ½p cos d� s sin d�:
ð18:88Þ

Here n ¼ ðnþ þ n�Þ=2 ¼ ffiffiffiffiffi
el

p
is the average index in the chiral medium, and

d ¼ ðnþ � n�Þxd
2c

¼ c
xd
c

¼ c
2pd
k

: ð18:89Þ

From (18.88) and (18.89) (which prove (18.10)) we see that the plane of polar-
ization is rotated by d. For propagation along the optic axis of crystalline quartz, for
example, the rotation is 18:8� per mm at k ¼ 633 nm, so that nþ � n� �
6:6� 10�5 and c � 3:3� 10�5.
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We note that at normal incidence the multiple reflections within the slab have no
effect on the rotation of the plane of polarization, although they do affect the amount
of light transmitted. The situation is more complicated at oblique incidence: the
ratio of tþ þ to t�� no longer equals Zþ =Z�, and also tþ� and t�þ are not zero.

18.5.2 Optical Properties Near the Critical Angles

Enhancement of chirality effects in the vicinity of the critical angles has been noted
by Silverman and Badoz (1989, 1992), and by Badoz and Silverman (1992). Here
we give the reflection amplitudes for a bulk chiral medium. Section 4.5 of Lekner
(1996) gives the reflection amplitudes for a chiral layer.

If the medium of incidence has refractive index n1 greater than one or both of the
indices n�, there will be an angle of incidence at which only one of the helicities
can propagate within the chiral medium. Suppose that c[ 0 ðnþ [ n�Þ. Then the
negative helicity wave will be the first to decay exponentially within the bulk chiral
medium, at angles of incidence greater than the critical angle h�1 given by

sin h�1 ¼ n�=n1: ð18:90Þ

At this critical angle of incidence c� ¼ cos h� is zero, and, with n ¼
ðnþ þ n�Þ=2 ¼ ffiffiffiffiffi

el
p

as before,

cþ ¼ cos hþ ¼ 2
nþ

ffiffiffiffiffi
cn

p � 2

ffiffiffi
c
n

r

: ð18:91Þ

At h1 ¼ h�1 the reflection amplitudes for the bulk medium, (18.61) and (18.65),
have the following form:

rss ¼ 2mc1 þ cþ ð1� m2Þ
2mc1 þ cþ ð1þm2Þ ¼ 1� mcþ

c1
þO c2þ

� �

;

rpp ¼ � 2mc1 � cþ 1� m2ð Þ
2mc1 þ cþ 1þm2ð Þ ¼ �1þ cþ

mc1
þO c2þ

� �

;

rps ¼ rsp ¼ �2imcþ
2mc1 þ cþ ð1þm2Þ ¼ � icþ

c1
þO c2þ

� �

: ð18:92Þ

Thus rps and rsp are proportional to the square root of the small chirality parameter
c, and measurements at h1 ¼ h�1 may be used to determine c.
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Chapter 19
Pulses and Wavepackets

The preceding chapters have dealt with the reflection of monochromatic plane
waves from planar interfaces. Here we consider the reflection and transmission of
electromagnetic pulses and of quantum particle wavepackets by stratified media.
The theory of pulse reflection is simplest for those still having a plane wave spatial
character but bounded in time (or, equivalently, bounded in spatial extent along the
direction of propagation at a given time). Such pulses are built up by a superpo-
sition of plane waves of differing frequencies. We shall find, accordingly, that the
reflection of such pulses is determined by the frequency dependence of the
reflection amplitude. Particularly important is the case of total reflection, where all
the frequency and angle dependence is contained in the phase of the reflection
amplitude, since its modulus is then unity.

Sections 19.2 and 19.3 deal with exact solutions of the time-dependent
Schrödinger equation for wavepackets at potential barriers. The Appendix sum-
marizes the known universal properties of electromagnetic wavepackets.

19.1 Reflection of Nearly Monochromatic Pulses: The
Time Delay

For simplicity (and in this section only) we consider an electromagnetic pulse
which is launched and detected at some fixed position, here taken to be at the plane
z ¼ 0. The initial pulse EiðtÞ may be written as a superposition of monochromatic
plane waves by means of the Fourier integral:

Ei tð Þ ¼
Z1

�1
dx f ðxÞe�ixt: ð19:1Þ
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The Fourier inverse of (19.1) is

f ðxÞ ¼ 1
2p

Z1

�1
dt Ei tð Þeixt: ð19:2Þ

For example, if the initial pulse is sinusoidal with amplitude AðtÞ,

Ei tð Þ ¼ A tð Þe�ix0t; f xð Þ ¼ 1
2p

Z1

�1
dt A tð Þeiðx�x0Þt: ð19:3Þ

If AðtÞ varies slowly over most of its range, this represents a wavepacket which is
nearly monochromatic. The simplest case is a truncated sine wave, for which
A tð Þ ¼ A0 when �T=2\t\T=2, and A tð Þ ¼ 0 otherwise; then

f xð Þ ¼ A0
sin x� x0ð ÞT=2

pðx� x0Þ : ð19:4Þ

Each Fourier component reflects with its own reflection amplitude rðxÞ. Thus if
(19.1) represents the initial pulse at z ¼ 0, the reflected pulse at z ¼ 0 will be given
by

Er tð Þ ¼
Z1

�1
dx r xð Þf xð Þe�ixt: ð19:5Þ

For a sinusoidal pulse with amplitude AðtÞ this may be written as

ErðtÞ ¼
Z1

�1
dx rðxÞe�ixt 1

2p

Z1

�1
dsA sð Þeiðx�x0Þs: ð19:6Þ

We now specialize further to the case where the modulus of rðxÞ is slowly varying
compared to the phase, and the frequency variation of the phase is adequately
approximated by the first term in its Taylor expansion about
x0 : r xð Þ ¼ rðxÞj jeidðxÞ, with

r xð Þj j � r x0ð Þj j; d xð Þ � d0 þ x� x0ð Þd0
0: ð19:7Þ

Here d0 ¼ d x0ð Þ and d
0
0 is the derivative dd=dx evaluated at x0. (The approxi-

mation (19.7) is particularly suited to the treatment of total reflection, where
r xð Þj j ¼ 1.) On substituting (19.7) in (19.6), 2pð Þ�1 times the integral over x

becomes a delta function, which selects the time, s ¼ t � d
0
0 in the s integral. Thus
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Er tð Þ � r x0ð Þj jeiðd0�x0tÞA t � d
0
0

� �

: ð19:8Þ

The reflected pulse in this approximation is thus decreased in amplitude by r x0ð Þj j
and phase shifted by d0. The pulse is unchanged in shape (it has the same time
envelope A), but is delayed by the group delay time

Dt � d
0
0 ¼

dd
dx

� �

x¼x0

: ð19:9Þ

We will consider some examples of the application of (19.9). The simplest case
is that of reflection from a discontinuity in the refractive index. If the discontinuity
occurs at z1, the reflection amplitude at normal incidence is, from (1.15),

rn ¼ e2in1 x=cð Þz1 n1 � n2
n1 þ n2

: ð19:10Þ

The phase is thus a constant (0 or �p depending on the sign of n1 � n2), plus
2n1z1x=c, and the delay time according to (19.9) is 2n1z1=c, equal to the distance
2z1 travelled from z ¼ 0 to z1 and back, divided by the speed c=n1.

The above example is special because the medium is homogeneous everywhere
except at the discontinuity. In the general case of reflection by a stratified medium
we showed in Sect. 6.7 that in the short wave limit, the phase shift on total
reflection is approximately

d � 2ð/0 � /� � p=4Þ; ð19:11Þ

where

/0 ¼
Zz0

dfq fð Þ; /� ¼ lim
z!�1

Zz

dfq fð Þ � q1z

8

<

:

9

=

;
: ð19:12Þ

The lower limit in the phase integral is arbitrary. It is convenient to set it equal to z0 (the
classical turning point, at which q ¼ 0). Then /0 ¼ 0, and /� may be written as

/� ¼ lim
z!�1

Z z

z0

dfðq fð Þ � q1Þ � q1z0: ð19:13Þ

If q zð Þ ¼ q1 at and below the observation point z ¼ 0, the phase of the reflection
amplitude becomes

d �
Zz0

0

dz q z;xð Þ � p=2: ð19:14Þ
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At normal incidence (vertical propagation in the case of pulses reflected from the
ionosphere),

d � x
c

Zz0

0

dz n z;xð Þ � p=2: ð19:15Þ

The time delay can be written in terms of the group velocity uðz;xÞ; it is also
estimated by (19.9) as

Dt ¼ 2
Zz0

0

dz
u z;xð Þ �

dd
dx

� 2
c

Zz0

0

dz n z;xð Þþx
@n
@x

� �

: ð19:16Þ

(The turning point z0 is also a function of x, but its derivative is multiplied by
nðz0;xÞ, which is zero.) The approximate equality of integrals in (19.16) shows that
the pulse travels to the turning point and back at the group velocity

u z;xð Þ ¼ c
n z;xð Þþx@n=@x

: ð19:17Þ

Hence the name group delay time given to Dt. Equation (19.17) is equivalent to the
usual definition of group velocity, u ¼ dx=dk, since here k ¼ nx=c: In the sim-
plest model of the ionosphere,

e z;xð Þ ¼ n2 z;xð Þ ¼ 1� x2
pðzÞ=x2; ð19:18Þ

then the group velocity u and the phase velocity v ¼ c=n are related by

uv ¼ c2: ð19:19Þ

The above derivation of the group delay time is based, in part, on Ginzburg
(1964, Sect. 19.21). An alternative treatment may be found in Budden (1961,
Chap. 10, and 1985, Chap. 5); a general discussion of phase, group, signal and
energy transport velocities is given by Brillouin (1960).

So far we have considered only the linear term in the Taylor expansion

d xð Þ � d0 þ x� x0ð Þd00 þ
1
2

x� x0ð Þd000 þ . . .: ð19:20Þ

The first order term leads to the time delay discussed above; the second and higher
order terms cause pulse spreading and distortion. These effects are discussed by
Budden and Ginzburg in the limit (common in optics and radio) where the pulse is
nearly monochromatic. The opposite extreme is common in underwater acoustics
and in seismology, where explosive sources or sudden crust movements give pulses
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which are strongly localized, and not at all harmonic. There is then no dominant
frequency x0, and use of expansions such as (19.20) is not appropriate.
A discussion of this case and further references may be found in Brekhovskikh
(1980, Sect. 19.15).

Particular examples of exact solutions relating to reflection and nonreflection of
highly non-monochromatic particle wavepackets are discussed in the next two
sections.

19.2 Nonreflection of Wavepackets by a Subset
of the sech2 Potentials

We saw in Sect. 4.3 that the sech2 profile did not reflect, at any angle of incidence,
when the parameter a ¼ De xa=cð Þ2¼ n nþ 1ð Þ; n a positive integer. In the quantum
particle context, the potential well

V zð Þ ¼ � �h2

2ma2
l lþ 1ð Þ
cosh2 z

a

ð19:21Þ

is reflectionless, at any energy, if l is a positive integer. The potential (19.21), or
the equivalent dielectric function profile, was first considered by Epstein (1930) and
Eckart (1930), and is treated in the quantum mechanics texts Landau and Lifshitz
(1965) and Flügge (1974). The l ¼ 1 form of (19.21) appears as the simplest of a
family of reflectionless profiles (Kay and Moses 1956). We shall show later in this
section that positive integer values of l are special because they give critically
bound states, with delocalized wavefunctions.

When l is a positive integer, there is no reflection at any energy, and thus zero
reflection of any wavepacket formed by superposition of positive energy eigen-
states. Lekner (2007) has reduced the positive energy eigenstates to elementary
form, of which examples are given below.

For positive energies we write E ¼ �h2k2=2m, and the Schrödinger equation with
potential energy given by (19.21) reads

d2w
dz2

þ k2 þ lðlþ 1Þ
a2 cosh2 z=a

� �

w ¼ 0: ð19:22Þ

The potential is even in z, so parity is a good quantum number, and the two
independent solutions of (19.22) can be taken to be the even and odd functions. For
l ¼ 0 these are proportional to the cosine and sine of kz, as expected:

we
0 ¼ cos kz; wo

0 ¼
sin kz
ka

: ð19:23Þ

19.1 Reflection of Nearly Monochromatic Pulses: The Time Delay 481

http://dx.doi.org/10.1007/978-3-319-23627-8_4


For l ¼ 1 these are

we
1 ¼ cos kz� tanh

z
a
sin kz
ka

; ð19:24Þ

wo
1 ¼ 1þðkaÞ2

h i�1
ka sin kzþ tanh

z
a
cos kz

n o

: ð19:25Þ

The even and odd eigenfunctions for l ¼ 1 and l ¼ 2 are shown in Figs. 1 and 2 of
Lekner (2007).

We can superpose the even and odd eigenstates to obtain the reflectionless
energy eigenstates propagating in either the þ z or �z directions, for example

wþ
0 ¼ we

0 þ ikawo
0 ¼ eikz; ð19:26Þ

wþ
1 ¼ we

1 þ
i 1þðkaÞ2
h i

ka
wo
1 ¼ 1þ i

ka
tanh

z
a

� �

eikz: ð19:27Þ

19.2.1 Construction of Reflectionless Wavepackets

We wish to solve the time-dependent Schrödinger equation HU ¼ i�h@tU to follow
the passage of a wave packet through the l ¼ 1 potential. In the absence of a
potential (l ¼ 0) a Gaussian wave packet, starting at t ¼ 0 centred on z ¼ z0,

U0 z; 0ð Þ ¼ exp ik0ðz� z0Þ � ðz� z0Þ2=2b2
n o

; ð19:28Þ

is known (Kennard 1927; Darwin 1928) to have the time development

U0 z; tð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ i�ht
m

q exp ik0 z� z0 � 1
2
ut

� �

� ðz� z0 � utÞ2
2 b2 þ i�ht

m

	 


( )

: ð19:29Þ

In (19.29) u ¼ �hk0=m is the group velocity of the packet, and b gives the spatial
extent of the packet at t ¼ 0. Figure 19.1 shows the propagation and spreading of
the free space Gaussian packet.

A corresponding wave packet built up from the nonreflecting energy eigenstates
wþ
1 ðk; zÞ is (Lekner 2007)

U1ðz; tÞ ¼ U0ðz; tÞ aðz� z0 � ik0b2Þ
b2 þ i�ht=m

þ tanh
z
a

� �

; ð19:30Þ
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where U0 is the free-space Gaussian wave packet given in (19.29). The propagation
of the packet through the potential well region is illustrated in Fig. 19.2.

Kiriushcheva and Kuzmin (1998) made a numerical study of wave packet
propagation in the presence of the l ¼ 1 potential. They found that a wave packet,
constructed to have the form (19.28) at time zero, propagated through the potential
region faster than at the group speed u ¼ �hk0=m of the free-space Gaussian solu-
tion, and also was narrower after passing through the potential than the free-space
Gaussian packet. Lekner (2007) examined the speed and width of the U1ðz; tÞ wave
packet, given in (19.30).

The envelope of this packet is U1ðz; tÞj j, where

U1ðz; tÞj j2¼ U0ðz; tÞj j2 tanh2
z
a
þ

2ab2ðz� z0 � utÞ tanh z
a þ a2 ðz� z0Þ2 þ k20b

4
h i

b4 þð�ht=mÞ2

2

4

3

5;

ð19:31Þ

with

U0ðz; tÞj j2¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þð�ht=mbÞ2
q exp

�ðz� z0 � utÞ2
½b2 þð�ht=mbÞ2�

( )

: ð19:32Þ

The Gaussian free-space wave packet has, by inspection of (19.32), group speed

u ¼ �hk0=m and width w0ðtÞ ¼ b2 þð�ht=mbÞ2
h i1

2
. The results for the group speed

Fig. 19.1 Motion of the
free-particle Gaussian
wavepacket U0ðz; tÞ through
its focal region. The
parameters used are z0 ¼ �5b,
k0b ¼ 1. The time varies from
t ¼ �10b=u to þ 10b=u,
where u ¼ �hk0=m is the group
speed. The position varies
from z ¼ �16b to þ 6b.
The focal region is centred on
z0 ¼ �5b at t ¼ 0. The plot
shows contours of the
probability density U0j j2
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and wave packet width of (19.31) are in qualitative agreement with the numerical
example given by Kiriushcheva and Kuzmin (1998).

Next we consider the question what is so special about the integer values of l?
The phenomenon of zero reflection of waves is common in optics, acoustics and
quantum mechanics (Lekner 1990). For example antireflection coatings can make
reflection zero at one wavelength, or very small over a range of wavelengths. What
is rare is zero reflection at any wavelength. In optics and acoustics there is zero
reflection by a sharp interface at the Brewster and Green angles (Sects. 1.2 and 1.4)

tan2 hB ¼ e2
e1
; tan2 hG ¼ ðq2v2Þ2 � ðq1v1Þ2

q21ðv21 � v22Þ
; ð19:33Þ

where e, q, v are dielectric constants, densities and sound speeds, respectively. The
reflection of the electromagnetic p-wave and of the acoustic wave is however zero
only in the limit when the step from e1 to e2 or ðq1; v1Þ to ðq2; v2Þ is very rapid on
the scale of the wavelength.

Here we have an example of a potential (or dielectric function profile) with a
characteristic length a, and zero reflection for any values of a at any energy,
provided l is an integer. Why?

The potential (19.21) has, for given l, the bound states (Landau and Lifshitz 1965)

En ¼ � �h2

2ma2
ðl� nÞ2; n ¼ 0; 1; 2. . .½l� ð19:34Þ

Fig. 19.2 Motion of the
non-reflecting wavepacket
U1ðz; tÞ through the potential
region; contours of U1j j2 are
plotted. The parameters are as
in Fig. 19.1, and a ¼ b. The
potential V1ðzÞ is indicated by
the band at z ¼ 0. Note the
constriction in the probability
density as the packet passes
over the potential well,
centred on z ¼ 0
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where ½l� is the integer part of l. It is shown in Lekner (2007) that the special
property of the integer-l potentials ð��h2=2ma2Þlðlþ 1Þsech2z=a is that they
support a critically-bound state: one that has zero energy and a wavefunction of
infinite range (Lekner 1972). Systems which are near critical binding have special
properties associated with the long range of the wavefunction. This is one reason
for the nonreflecting integer-l sech2 potentials. Another is the Vð�zÞ ¼ VðzÞ
symmetry of the potential: reflection amplitudes of symmetric profiles automatically
have coincident zeros of their real and imaginary parts, whereas general profiles do
not (Lekner 1990).

The above association between critical binding strengths of the potentials and
zero reflection adds a physical heuristic to the mathematical explanation of
supersymmetric quantum mechanics. In the latter the potentials (19.21) and, with
integer n,

��h2

2ma2
ðl� nÞðl� nþ 1Þsech2 z

a
ð19:35Þ

are shown to be partners in supersymmetric algebra. If one of the partners has zero
reflection amplitude they all do (Cooper et al. 2001, (3.32)). When l is an integer
one of the potentials will be zero, and a null potential does not reflect, so all the
integer-l potentials are nonreflecting. Cox and Lekner (2008) obtain the
nonreflecting eigenstates of the sech2 potential directly from supersymmetric
considerations.

19.3 Exact Solutions of Total and Partial Reflection
of Wavepackets

Closed-form solutions of the time-dependent Schrödinger equation can be obtained,
describing the propagation of wavepackets in the neighbourhood of the potentials
with spatial dependence 1=z2 and dðzÞ, respectively. The first of these forms an
impenetrable barrier and thus causes total reflection. The second gives partial
reflection and transmission. Cox and Lekner (2008) obtained the results for the z�2

potential from supersymmetric quantum mechanics, and the dðzÞ potential by ele-
mentary methods. We shall just state the results to illustrate total and partial
reflection of wavepackets.

For the impenetrable potential

V zð Þ ¼ �h2

mz2
; ð19:36Þ

which forms a barrier at the origin, we shall consider wavepackets that come up to
this barrier from z ¼ �1 and are totally reflected, with zero probability amplitude
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at the z ¼ 0 singularity. In the free particle case we build on the stationary wave
eikz � e�ikz, which leads to the wavepacket

~U0 z; tð Þ ¼ U0 z; tð Þ � U0 �z; tð Þ: ð19:37Þ

Cox and Lekner show that the wavepacket in the presence of the potential (19.36) is

Uðz; tÞ ¼ �@z þ 1
z

� �

U0ðz; tÞ � U0ð�z; tÞ½ �
¼ 1

z þ z�z0�ik0b2

b2 þ i�ht=m

h i

U0ðz; tÞ � 1
z þ zþ z0 þ ik0b2

b2 þ i�ht=m

h i

U0ð�z; tÞ:
ð19:38Þ

The z�1 terms in (19.37) do not cause a singularity at the origin, in fact the leading
term is Oðz2Þ. Figure 19.3 shows the propagation and total reflection of this
wavepacket.

The term proportional to U0ðz; tÞ in (19.38) has maximum probability at z �
z0 þ ut and will be dominant at negative times, while the term proportional to
U0ð�z; tÞ has maximum probability at �z � z0 þ ut and will be dominant at pos-
itive times (assuming that z0j j=b is not too large), since the wavepacket is confined
to z\0.

Fig. 19.3 Total reflection of the wavepacket given in (19.38) by the potential �h2=mz2; the
parameters are as in Fig. 19.1. Note the large probability Uj j2 near z ¼ �1:5b, ut ¼ 2:8b, greater
than at the centre of the focal region because of constructive interference between the incident and
reflected parts of the wavepacket. The impenetrable potential is centred on z ¼ 0, indicated by the
thick horizontal line
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Next, we consider the partially reflecting delta function potential

V zð Þ ¼ �h2j
m

d zð Þ: ð19:39Þ

We characterize the delta function potential by the reciprocal length j (the mag-
nitude of j gives the strength, and the sign determines whether the potential is
repulsive or attractive):

The delta function causes a discontinuity in the gradient of an energy eigenstate w
at z ¼ 0: setting E ¼ �h2k2=2m, the time-independent Schrödinger equation becomes

�@2
z þ 2jdðzÞ	 


w ¼ k2w: ð19:40Þ

Integrating across the origin from �e to þ e and letting e ! 0 gives

w0 0�ð Þ � w0 0þð Þþ 2jw 0ð Þ ¼ 0: ð19:41Þ

Let q and s be the plane wave reflection and transmission amplitudes, so that

wðk; zÞ ¼ eikz þ q e�ikz ðz\0Þ
s eikz ðz[ 0Þ

�

ð19:42Þ

Continuity of w at z ¼ 0 implies 1þ q ¼ s, and the discontinuity in the derivative at
z ¼ 0 (19.41) gives ikð1� qÞ � iksþ 2js ¼ 0, so that

q ¼ �ij
kþ ij

; s ¼ k
kþ ij

: ð19:43Þ

To construct a wavepacket we superpose the energy eigenstates (19.42) by
integrating over k with some Fourier amplitude. In superposing the energy eigen-
states we can obtain simple results if, as suggested by the form of (19.43), we use
the Fourier amplitude

F kð Þ ¼ kþ ijð ÞF0 kð Þ; F0 kð Þ ¼ be�ikz0�1
2ðk�k0Þ2b2 : ð19:44Þ

Then we have (with U0 the free-space Gaussian, as before)

1
ffiffiffiffiffiffi

2p
p

Z1

�1
dk eikz�

ik2�ht
2m F0 kð Þ ¼ U0 z; tð Þ; ð19:45Þ

and, by differentiation of (19.45) with respect to z,

1
ffiffiffiffiffiffi

2p
p

Z1

�1
dk eikz�ik2�ht=2mikF0ðkÞ ¼ @zU0 ¼ � z� z0 � ik0b2

b2 þ i�ht=m
U0: ð19:46Þ
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The superposition of wðk; zÞ given by (19.42), with Fourier amplitude
ðkþ ijÞF0ðkÞ, gives the wavepackets (we remove a factor i)

Uðz; tÞ ¼ ð�@z þ jÞU0ðz; tÞ � jU0ð�z; tÞ z\ 0
�@zU0ðz; tÞ z [ 0

�

ð19:47Þ

Note that one part of the wavepacket, namely �@zU0ðz; tÞ, is the same on both sides
of the delta function potential. This part propagates straight through the potential.
The other parts at negative z, proportional to the potential strength j, are the
forward-propagating packet U0ðz; tÞ, and the backward-propagating packet
U0ð�z; tÞ. The three parts on the left overlap when near z ¼ 0, producing an
interference maximum, whereas the single transmitted part remains smooth on the
right. Figure 19.4 illustrates the process.

There is a large variety of patterns that result from the reflection of a wavepacket
by a delta function barrier, as described by (19.47). Four lengths characterize the
reflection problem: b; z0; k�1

0 ; j�1. The example we have given corresponds to a
highly localized wavepacket, entering its focal region before the barrier. One can
move the focal region, change the localization, and change the barrier strength. For
example, highly delocalized wavepackets give rise to fringes due to interference
between the incoming and reflected waves.

Fig. 19.4 Partial reflection of a wavepacket by the delta function repulsive potential. The
parameters are z0 ¼ �5b, k0b ¼ 1 and jb ¼ 1. The delta function potential (at zero z) is indicated
by the thick line. The slope in the diagram gives speed; the incident pulse has slope ¼ �hk0=m, the
group speed. Note that, for this parameter set, the reflected parts separate into a slower and a faster
group
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A reflectance R and transmittance T for the wavepacket as a whole can be
obtained as follows: at large positive time, the part dominant for negative z is
U ¼ �jU �z; tð Þ, while the part for positive z is always U ¼ �@zU0ðz; tÞ. Each of
these has a probability density current J z; tð Þ ¼ �h=mIm U� z; tð Þ@zUðz; tÞf g.
Integrated over z, at large positive times, these currents are respectively propor-
tional to � �hk0=mð Þj2; �hk0=mð Þ½k20 þ 3=2b2�. From these currents and Rþ T ¼ 1 we
deduce

R ¼ S
1þ S

; T ¼ 1
1þ S

; S ¼ j2

k20 þ 3=2b2
: ð19:48Þ

S is the scattering strength of the delta function potential (which is proportional to j),
for a wavepacket characterized by its mean wavenumber k0 and minimum width b.
For the parameters used in Fig. 19.4, S ¼ 2=5;R ¼ 2=7; T ¼ 5=7. In the plane wave
limit k0b � 1 the reflectance and transmittance given in (19.48) become the
plane-wave expressions obtained by taking the absolute squares of q and s in
(19.43), evaluated at the dominant wavenumber k0.

Notice that z0, the location of the focal centre of the Gaussian wavepacket at
t ¼ 0, does not enter into (19.48), which was obtained by local integration over
well-separated parts of the wavepacket. In this context we note that the coherence
length of wavepackets remains unchanged on propagation (Kaiser et al. 1983; Klein
et al. 1983); again this result is independent of the location of the focal region.

The reader may have gained the impression that all quantum particle
wavepackets are based on the free-space Gaussian packet U0. This is not necessarily
so: other exact solutions exist, for example one based on the Airy function (Lekner
2009), but these have a more complicated space-time dependence. Three-
dimensional Gaussian wavepacket solutions of Schrödinger’s time-dependent
equation are known (Darwin 1928); these can be made to rotate (Lekner 2008).
No exact results in the reflection of three-dimensional wavepackets by stratified
media are known to the author.

Appendix: Universal Properties of Electromagnetic Pulses

This Appendix surveys the existing known universal properties of electromagnetic
pulses, namely (i) the time invariance of the total electromagnetic energy U,
momentum P and angular momentum J of the pulse, and (ii) the inequality cPz\U.
(Net pulse propagation is taken to be along the z direction.) In both (i) and (ii) the
theorems follow directly from Maxwell’s equations.

The conservation of energy, momentum and angular momentum is no surprise,
but the inequality cPz\U implies that all localized electromagnetic pulses have a
zero-momentum frame (not a ‘rest’ frame, waves are never at rest). The above is of
course in contradistinction to Einstein’s light quantum, for which the momentum
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P is purely in one direction, and cP ¼ U (Einstein 1917). The implication seems to
be that we cannot form a model of the photon by any pulse wave-function satisfying
Maxwell’s equations. If the momentum P and energy U formed a four-vector
cP;Uð Þ;U2 � c2P2 would be a Lorentz invariant. This holds for point particles, but
not universally for wavepackets. We show however that u2 � c2p2 is universally a
Lorentz invariant, non-negative at all space-time points (u and p are the energy and
momentum densities).

We also discuss the helicity of electromagnetic pulses, and the counter-intuitive
relation between the helicity and angular momentum of certain exactly calculable
examples.

Maxwell’s equations, with the electric and magnetic fields expressed in terms of
the vector potential Aðr; tÞ and scalar potential Vðr; tÞ via

E ¼ �rV� @ctA; B ¼ r� A; ð19:49Þ

and with A and V satisfying the Lorenz condition r:Aþ @ctV ¼ 0, lead (in free
space) to V and the components of A all satisfying the wave equation

r2w� @2
ctw ¼ 0: ð19:50Þ

Electromagnetic pulses can then be constructed from solutions of (19.50). For
example, the choice V ¼ constant;A ¼ r� 0; 0;wð Þ ¼ @y;�@x; 0

	 


w gives us the
transverse electric (TE) pulse with

E ¼ �@ctA ¼ �@y@ct; @x@ct; 0
	 


w; B ¼ r� A ¼ @x@z; @y@z;�@2
x � @2

y

� �

w:

ð19:51Þ

The wave equation (19.50) has an infinity of solutions, for example
w ¼ f ðz� ctÞ, with f an arbitrary twice-differentiable function. These solutions,
and also the textbook plane wave exp iðk:r� cktÞ and spherical waves
r�1 exp ikðr � ctÞ; are not localized in space-time. The spherical wave solutions
generalize to r�1f ðr � ctÞ, with f again any twice-differentiable function. These
spherical wave solutions are singular at the origin.

Bateman (1904) obtained a general solution of the wave equation in integral
form. For solutions with axial symmetry (independent of the azimuthal angle /) the

Bateman solution is, with q ¼ x2 þ y2ð Þ12 being the distance from the z-axis,

w q; z; tð Þ ¼ 1
2p

Z2p

0

dh f zþ iq cos h; ctþ q sin hð Þ: ð19:52Þ

We outline a proof (different from Bateman’s): the wave equation in cylindrical
polars, with no azimuthal dependence, reads
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@2
q þ

1
q
@q þ @2

z � @2
ct

� �

w ¼ 0: ð19:53Þ

Carrying out the partial differentiations in ðr2 � @2
ctÞf , and comparing with @2

h f
shows that

@2
q þ

1
q
@q þ @2

z � @2
ct

� �

f ¼ �q�2@2
h f : ð19:54Þ

Operating on (19.52) with r2 � @2
ct therefore gives zero:

�2pq2 r2 � @2
ct

	 


w ¼
Z2p

0

dh @2
h f ¼ @hf½ � 2p

0
¼ 0: ð19:55Þ

On the propagation axis q ¼ 0 the pulse wavefunction becomes

wð0; z; tÞ ¼ f ðz; ctÞ: ð19:56Þ

For example, if the on-axis wavefunction takes the form

f ðz; tÞ ¼ ab
a� iðzþ ctÞ½ � bþ iðz� ctÞ½ �w0; ð19:57Þ

the corresponding full wavefunction obtained by integrating (19.52) is

wðq; z; tÞ ¼ ab
q2 þ a� iðzþ ctÞ½ � bþ iðz� ctÞ½ �w0: ð19:58Þ

This wavefunction has been obtained by other means (see references in Lekner 2003).

Conservation Laws, Energy-Momentum Inequalities

The energy, momentum and angular momentum densities of an electromagnetic
field, in free space and in Gaussian units, are (Jackson 1975)

uðr; tÞ ¼ 1
8p

ðE2 þB2Þ; pðr; tÞ ¼ 1
4pc

E� B; jðr; tÞ ¼ r� pðr; tÞ:
ð19:59Þ

Eðr; tÞ and Bðr; tÞ are the real electric and magnetic fields at position r and time t.
The total energy, momentum and angular momentum at time t of an electromag-
netic pulse are
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U ¼
Z

d3r uðr; tÞ; P ¼
Z

d3r pðr; tÞ; J ¼
Z

d3r jðr; tÞ: ð19:60Þ

It will come as no surprise that these are all conserved quantities: the integrals in
(19.60) are all independent of time. The energy and momenta of electromagnetic
pulses based on the solution (19.58) of the wave equation were evaluated in Lekner
2003. Proofs of the constancy of U and of P were sketched in Lekner (2004b). The
conservation of angular momentum was proved in Lekner (2004a). In all cases, the
proofs follow from taking the time derivatives of the quantities U; P and J defined
in (19.60), applying Maxwell’s free-space equations

r 	 B ¼ 0 r 	 E ¼ 0
r� Eþ @ctB ¼ 0 r� B� @ctE ¼ 0

ð19:61Þ

and using elementary analytical techniques.
In order for the quantities U, P and J to exist (let alone be conserved), the

electromagnetic pulse has to be localized. The first evaluation of U for any localized
pulse was in Feng et al. (1999); later evaluation of energy, momentum and angular
momentum for various electromagnetic pulses found (Lekner 2003) that all had
U[ cPz, with the transverse momenta Px and Py zero. Thus these pulses could be
Lorentz-transformed into their zero momentum frames, in which the pulse con-
verges onto its focal region and then diverges from it, maintaining zero net
momentum at all times. The proof that U[ cPz for all localized electromagnetic
pulses is elementary (Lekner 2004a): let the total momentum vector P point along
the z direction, and consider the energy and momentum densities uðr; tÞ and pzðr; tÞ.
From (19.59) we have

8pðu� cpzÞ ¼ E2 þB2 � 2ðE� BÞz
¼ E2

x þE2
y þE2

z þB2
x þB2

y þB2
z � 2ðExBy � EyBxÞ

¼ ðEx � ByÞ2 þðEy þBxÞ2 þE2
z þB2

z 
 0
ð19:62Þ

Equality of U and cPz would require u� cpz to be zero everywhere and at all times,
which from (19.62) requires Ez ¼ 0 ¼ Bz (purely transverse fields) and also Ex ¼
By and Ey ¼ �Bx. The divergence equations in (19.63) then give

�@xEy þ @yEx ¼ 0 and @xEx þ @yEy ¼ 0: ð19:63Þ

Thus Ex and �Ey would be a Cauchy-Riemann pair in the variables x and y, and
satisfy

ð@2
x þ @2

y ÞEx ¼ 0; ð@2
x þ @2

y ÞEy ¼ 0: ð19:64Þ

Such harmonic functions cannot have a maximum except at the boundary of their
domain, and thus cannot be localized in x and y (for any z and t). For localized
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electromagnetic pulses we therefore always have the total energy greater than c
times the net total momentum,

U[ cPz: ð19:65Þ

U and P are defined by (19.60) as spatial integrals, which have been shown to be
independent of time in any given inertial frame. If together they formed the
four-vector ðcP;UÞ, U2 � c2P2 would be a Lorentz invariant, the same in all inertial
frames. Such four-vectors exist for point particles, but cannot be associated (in
general) with extended wavepackets. Consider however the squares of the volume
densities, u2ðr; tÞ and p2ðr; tÞ. From (19.59) we have

ð8pÞ2ðu2 � c2p2Þ ¼ ðE2 þB2Þ2 � 4ðE� BÞ2
¼ ðE2 þB2Þ2 � 4E2B2 þ 4ðE 	 BÞ2

¼ ðE2 � B2Þ2 þ 4ðE 	 BÞ2
ð19:66Þ

Hence u2 � c2p2 is everywhere non-negative, and further it is a Lorentz invariant,
since E2 � B2 and E 	 B are Lorentz invariants. We shall return to the Lorentz
transformation of pulses at the end of the Appendix.

Angular Momentum, Helicity

We have seen that the energy U, momentum P and angular momentum J are all
conserved (do not change with time) for any electromagnetic pulse in free space.
The energy and momentum are also independent of the choice of origin of the
spatial coordinates (which are integrated over, see (19.60)). However, the angular
momentum does depend on the choice of origin: in the translation r ! r� a,
J ! J� a� P. Textbooks make statements such as (Mezbacher 1998, p. 569) ‘the
photon has vanishing mass and cannot be brought to rest in any Lorentz frame of
reference’. As we have seen, any localized electromagnetic pulse satisfying
Maxwell’s equations does have a zero momentum frame (not a ‘rest’ frame). In the
frame where P is zero the angular momentum is independent of the choice of origin,
and thus we can associate an intrinsic angular momentum with a localized elec-
tromagnetic pulse.

Suppose (as we have here) that the net momentum of a pulse is along the
z-direction, P ¼ ð0; 0;PzÞ. A Lorentz boost at speed c2Pz=U, along the z-axis, will
bring the pulse to its zero momentum frame. The component Jz of the angular
momentum is unchanged in this Lorentz transformation. This is because the
four-tensor of angular momentum Jij ¼ XiPj � XjPi (Xi and Pi represent compo-
nents of the space-time and momentum-energy four-vectors) has the same structure
as the electromagnetic field four-tensor composed of E and P (Landau and Lifshitz
1951, Sect. 2.6)
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½Jij� ¼
0 Jz �Jy J14

�Jz 0 Jx J24
Jy �Jx 0 J34
J41 J42 J43 0

0

B
B
@

1

C
C
A

ð19:67Þ

where

J41 ¼ �J14 ¼ iðctPx � xU=cÞ
J42 ¼ �J24 ¼ iðctPy � yU=cÞ
J43 ¼ �J34 ¼ iðctPz � zU=cÞ

ð19:68Þ

For comparison, the field four-tensor, also in the Minkowski notation, is

½Fij� ¼
0 Bz �By �iEx

�Bz 0 Bx �iEy

By �Bx 0 �iEz

iEx iEy iEz 0

0

B
B
@

1

C
C
A

ð19:69Þ

Since Bz is unchanged by a Lorentz boost along the z-axis, Jz will also be
unchanged by such a transformation. Thus we can regard the component of the
angular momentum along the momentum (Jz, in this Appendix) as the intrinsic
angular momentum of the pulse.

The helicity of the pulse is þ 1 if the sign of Jz is the same as that of Pz (in a
frame with Pz 6¼ 0), �1 if the signs are opposite. There is no helicity (or the helicity
is zero) if Jz is zero.

We shall give some examples of results for electromagnetic pulses based on the
wavefunction (19.10). The first is for the TEþ iTM pulse for which

A ¼ r� ð0; 0;wÞ ¼ ð@y;�@x; 0Þw; ð19:70Þ

B ¼ r� Aþ i@ctA; E ¼ iB: ð19:71Þ

(Here Bðr; tÞ and Eðr; tÞ are complex; their real and imaginary parts are separately
solutions of Maxwell’s equations.) The total energy, momentum and angular
momentum found in Lekner (2003) are

U ¼ p
8
aþ b
ab

w2
0; cPz ¼ p

8
a� b
ab

w2
0; Jz ¼ 0: ð19:72Þ

For this pulse, a Lorentz boost at speed bc, b ¼ cPz=U ¼ ða� bÞ=ðaþ bÞ, will
bring the pulse to its zero-momentum frame.

If instead one takes the vector potential to be

A ¼ r� ½iw;w; 0�; ð19:73Þ
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with B and E defined by (19.71) as before, one finds (Lekner 2003)

U ¼ p
8
aþ 3b
a2

w2
0; cPz ¼ p

8
a� 3b
a2

w2
0; cJz ¼ p

4
b
a
w2
0: ð19:74Þ

This example shows that non-zero angular momentum can result from a wave-
function without azimuthal dependence: the curl operator supplies the twist.

More complex exact solutions of the wave equation have been tried, and the
energy, momentum and angular momentum evaluated (Lekner 2004c, d). There we
find the surprising result that when the wavefunction w has an eim/ azimuthal
dependence, the helicity is opposite to the sign of m. Since Jz is represented by the
operator �i�h@/ in quantum mechanics, Jzeim/ ¼ �hmeim/, so there the eim/ depen-
dence produces Jz ¼ �hm, the same sign as m. It is not understood physically why
electromagnetic pulses do the opposite.

Figure 19.5a, b and c illustrate a time sequence of a pulse based on w equal to
q ei/= bþ iðz� ctÞ½ � times the wavefunction in (19.58), with A given by (19.70), V
constant, and E and B given by (19.51). The total energy, momentum and angular
momentum of the pulse are (Lekner 2004d)

U ¼ p
16

3aþ b
b2

w2
0; cPz ¼ p

16
3a� b
b2

w2
0; cJz ¼ � p

8
a
b
w2
0: ð19:75Þ

Lorentz Transformation of Pulses

For point particles of mass M, the energy and momentum are related by
U2 ¼ M2c4 þP2c2, and the combination ðcP;UÞ is a four-vector, meaning that it
transforms in the same way as ðr; ctÞ. It follows that U2 � c2P2 is a Lorentz
invariant, in this case M2c4.

Electromagnetic wavepackets are extended objects, evolving in space-time, and
the transformation between inertial frames is more complicated. However, as we
have seen in equation (19.66), u2 � c2p2 is a non-negative Lorentz invariant, for
any electromagnetic pulse.

Consider the transformation of a scalar wavefunction such as (19.58). A Lorentz
boost along the direction of motion (here along the z-axis) at speed bc leaves the
transverse coordinate q unchanged, and changes z and t to z0 and t0:

z ¼ cðz0 þ bct0Þ; ct ¼ cðct0 þ bz0Þ; c ¼ ð1� b2Þ� 1
2: ð19:76Þ

The effect is to change the weight of the z� ct components of w:

zþ ct ¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ b
1� b

s

ðz0 þ ct0Þ; z� ct ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� b
1þ b

s

ðz0 � ct0Þ: ð19:77Þ
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Fig. 19.5 The energy density
contours and transverse
momentum densities of a
helical pulse (wavefunction
given in the text), with
a ¼ 2b. The longitudinal
component pz of the
momentum density is not
shown. The pulse is shown in
its focal plane z ¼ 0, at
ct ¼ �b; 0; b, time increasing
upward from the lowest
figure. The pulse is travelling
out of the page toward the
reader. It has negative angular
momentum about the
propagation direction

496 19 Pulses and Wavepackets



For the wavefunction in (19.58), a Lorentz boost with b ¼ ða� bÞ=ðaþ bÞ or
ð1þ bÞ=ð1� bÞ ¼ a=b transforms w to (Lekner 2003)

w r0; t0ð Þ ¼ abw0

q2 þ ffiffiffiffiffi

ab
p � i z0 þ ct0ð Þ� 
 ffiffiffiffiffi

ab
p þ i z0 � ct0ð Þ� 
 ; ð19:78Þ

in which the forward and backward propagations are balanced. Such a choice of b
brings the TEþ iTM pulse to its zero momentum frame, as we have seen in (19.70)–
(19.72). Moreover, the energy in the zero momentum frame, U0 ¼ p

4w
2
0=

ffiffiffiffiffi

ab
p

, is
equal to the square root of U2 � c2P2

z , so in this respect the pulse momentum and
energy behave as four-vector components. (U and Pz were given in (19.72).)

However, other pulses constructed from the same wavefunction require a dif-
ferent b to bring them to their zero momentum frame, as in the example specified by
(19.73) and (19.74) for which b ¼ ða� 3bÞ=ðaþ 3bÞ. For this b the wavefunction
(19.58) is transformed to

wðr0; t0Þ ¼ abw0

q2 þ ffiffiffiffiffiffiffiffi

3ab
p � iðz0 þ ct0Þ� 
 ffiffiffiffiffiffiffiffiffiffi

ab=3
p þ iðz0 � ct0Þ
h i : ð19:79Þ

The transformed momentum is zero, and the transformed energy is

U0 ¼ p
4
w2
0=

ffiffiffiffiffiffiffiffi

3ab
p

: ð19:80Þ

This is not (unless a ¼ 3b) equal to the square root of U2 � c2P2
z , for which the

values in (19.74) give

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 � c2P2
z

q

¼ p
4
w2
0

ffiffiffiffiffi

3b
a3

r

: ð19:81Þ

Thus the same solution of the wave equation can lead to pulses for which the
energy and momenta may or may not behave like four-vectors. In general, the
Lorentz transformation of electromagnetic wavepackets is more complicated than
that of point particles, as may be expected.
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Chapter 20
Finite Beams

Chapters 1–18 have dealt with the reflection of monochromatic plane waves from
planar interfaces. The previous chapter discussed the reflection of electromagnetic
pulses and of quantum particle wavepackets. Here we shall consider transversely
finite beams. The simplest beams to consider are those bounded in space but still
monochromatic. These can be viewed as a superposition of plane waves of the same
frequency but differing propagation directions. We shall find, accordingly, that the
reflection of beams depends on the angular dependence of the reflection amplitude.
Particularly important is the case of total reflection, where all the frequency and
angle dependence is contained in the phase of the reflection amplitude, since its
modulus is then unity. The variation of the s and p phases with angle of incidence is
discussed in Appendix 1, and applied to calculation of the lateral beam shift in
Sect. 20.2. Section 20.3 gives analytic results for the reflection of Gaussian beams.
Appendix 2 summarizes the polarization properties of finite beams. We start by
reviewing the properties of finite beams.

20.1 Universal Properties of Scalar
and of Electromagnetic Beams

This section is concerned with universal properties of scalar and of electromagnetic
beams, by which we mean properties that all physical beams must have (or cannot
have). We begin with a summary of the existing exact solutions.

For monochromatic beams in free space, in which the time dependence of the
complex fields is contained in the factor e�ixt, the quantum and acoustical scalar
amplitudes w satisfy the Helmholtz equation

r2 þ k2
� �

w ¼ 0; k ¼ x=c : ð20:1Þ

Also all the components of E and B of an electromagnetic wave satisfy (20.1). This
follows from Maxwell’s equations by expressing the magnetic and electric fields in
terms of the vector and scalar potentials A and V,
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B ¼ r� A; E ¼ �rV� @ctA; ð20:2Þ

and choosing the Lorenz gauge

r � Aþ @ctV ¼ 0: ð20:3Þ

In free space, V and all components of A then satisfy (20.1) (see for example
Jackson (1975), pp. 218ff), and so do their derivatives such as E and B.

The textbook solutions of (20.1) are the plane wave expðik � rÞ and the spherical
waves expð�ikrÞ=r. Physical beams are localized transversely to the direction of
propagation, in contradistinction to the textbook solutions. Deschamps (1971) noted
that a complex shift along the propagating direction (the z-axis, in most of this
chapter) gives an exact solution of (20.1) localized transversely:

w ¼ eikR

R
; R2 ¼ x2 þ y2 þðz� ibÞ2 ¼ q2 þðz� ibÞ2: ð20:4Þ

This solution is singular on the circle fq ¼ b; z ¼ 0g and so cannot represent a
physical beam. One can regularize by subtracting the complex-shifted spherically
converging wave expð�ikRÞ=R (Sheppard and Saghafi 1998) to obtain

w00 ¼
sin kR
kR

¼ j0ðkRÞ; ð20:5Þ

and generalize to (Ulanowski and Ludlow 2000)

w‘m ¼ j‘ðkRÞPm
‘

z� ib
R

� �

eim/; ð20:6Þ

but problems remain in the divergence of some invariants (see Lekner (2001) and
below), and in the backward-propagating components associated with the terms
proportional to expð�ikRÞ=R.

The Helmholtz equation (20.1) is separable in cylindrical coordinates ðq;/; zÞ: it
reads

@2
q þ

1
q
@q þ 1

q2
@2
/ þ @2

z þ k2
� �

w ¼ 0: ð20:7Þ

This is solved by JmðKqÞeim/eiqz (with K2 þ q2 ¼ k2), and thus also by the gen-
eralized Bessel beams (Lekner 2004b)

wm rð Þ ¼ eim/
Zk

0

dK f Kð Þ Jm Kqð Þeiqz; K2 þ q2 ¼ k2: ð20:8Þ
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Note that K is restricted to the interval ½0; k�, so q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � K2
p

is a real mapping
onto ½0; k�. These beams are therefore purely forward propagating, by construction.
The amplitude function f ðKÞ can be complex; it is constrained by the necessary
finiteness of integral invariants (see below). We show first how w0 rð Þ is related to
the time-harmonic version of Bateman’s integral solution of the wave equation.

20.1.1 Bateman Integral Solution of the Wave Equation

Bateman (1904) considered integral representations of solutions to the wave
equation r2 � @2

ct

� �

w ¼ 0. The simplest case is that where the solution is inde-
pendent of the azimuthal angle /, in which case his solution reduces to

Wðq; z; tÞ ¼ 1
2p

Z2p

0

dhFðzþ iq cos h; ctþ q sin hÞ: ð20:9Þ

We can adapt this to find the general solution of the Helmholtz equation (20.1)
which is independent of the azimuthal angle. For time-dependence e�ixt ¼ e�ikct,
the function F must take the form

F zþ iq cos h; ctþ q sin hð Þ ¼ gðzþ iq cos hÞ e�ikðctþ q sin hÞ; ð20:10Þ

and then the spatial part of W in (20.9) becomes

wðq; zÞ ¼ 1
2p

Z2p

0

dh gðzþ iq cos hÞ e�ikq sin h: ð20:11Þ

We can verify that this is a solution of the Helmholtz equation as follows. Let
Gðq; z; hÞ ¼ gðzþ iq cos hÞ e�ikq sin h. A short calculation shows that ðr2 þ k2ÞG ¼
�q�2@2

hG and so 2p r2 þ k2ð Þw ¼ q�2@hG½ �0� q�2@hG½ �2p¼ 0. Thus the expression
(20.11) is the most general form of the scalar wavefunction corresponding to axially
symmetric monochromatic beams. Note that on the beam axis ðq ¼ 0Þ we get

wð0; zÞ ¼ gðzÞ: ð20:12Þ

Therefore the amplitude function g in (20.11) given by the axial value of the beam
wavefunction.

There is a one-to-one correspondence between (20.11) and the m ¼ 0 general-
ized Bessel beam solution (20.8). Since K2 þ q2 ¼ k2 we can write w0ðrÞ as an
integral over q instead of over K:
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w0 rð Þ ¼
Zk

0

dq h qð ÞJ0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2
p	 


eiqz; h qð Þ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2
p f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2
p	 


:

ð20:13Þ

The zero-order Bessel function containing the square root can be rewritten by using
Bessel’s integral (Watson 1966, Sect. 2.21), which transforms (20.13) into

w0 q; zð Þ ¼ 1
2p

Z2p

0

dh e�ikq sin h
Zk

0

dq h qð Þeiq zþ iq cos hð Þ: ð20:14Þ

Comparison of (20.11) and (20.14) shows that, for the m ¼ 0 generalized Bessel
beams, the amplitude function g is given by

gðzþ iq cos hÞ ¼
Zk

0

dq hðqÞeiqðzþ iq cos hÞ: ð20:15Þ

The axial value of the beam wavefunction is thus equal to the finite Fourier
transform of hðqÞ:

w 0; zð Þ ¼ g zð Þ ¼
Zk

0

dq h qð Þeiqz: ð20:16Þ

20.1.2 Conservation Laws and Beam Invariants

The energy, momentum and angular momentum densities of an electromagnetic
field in free space are, in Gaussian units, given by

u r; tð Þ ¼ 1
8p

E2 þB2� �

; p r; tð Þ ¼ 1
4pc

E� B; j r; tð Þ ¼ r� p r; tð Þ:
ð20:17Þ

Here Eðr; tÞ and Bðr; tÞ are the real fields. For monochromatic fields it is convenient
to work in terms of complex fields EðrÞ and BðrÞ with the real electric field being
given by

Eðr; tÞ ¼ Re EðrÞe�ixtf g ¼ Re ½ErðrÞþ iEiðrÞ�½cosxt � i sinxt�f g
¼ Er rð Þ cosxtþEi rð Þ sinxt: ð20:18Þ
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The average of uðr; tÞ over one period 2p=x is

�uðrÞ ¼ 1
8p

EðrÞ � E�ðrÞþBðrÞ � B�ðrÞf g: ð20:19Þ

Likewise the cycle-averaged momentum density is

�pðrÞ ¼ 1
16pc

EðrÞ � B�ðrÞþE�ðrÞ � BðrÞ½ �: ð20:20Þ

The conservation of energy equation, r � Sþ @tu ¼ 0, where S ¼ c2p is the energy
flux density, has the cycle-average equal to c2 times

r � �p ¼ @x �px þ @y �py þ @z�pz ¼ 0: ð20:21Þ

Applying
R
d2r ¼ R1

�1 dx
R1
�1 dy ¼ R1

0 dq q
R 2p
0 d/ to (20.21) gives, for trans-

versely finite beams propagating in the z direction (Lekner 2004a)

@z

Z

d2r �pz ¼ 0; or P0
z ¼

Z

d2r �pz ¼ constant: ð20:22Þ

We use the notation P0
z, since dPz ¼ P0

z dz is the total z-component momentum
contained in a transverse slice of the beam, of thickness dz. Equation (20.22) states
that the momentum content per unit length, along the direction of net propagation of
the beam, is an invariant. Note that the invariance of the momentum content per unit
length is derived from the conservation of energy (the energy flux density is pro-
portional to the momentum density).

The conservation of momentum equation is expressed in terms of the stress (or
momentum flux density) tensor

@tpi þ
X

j

@jsij ¼ 0; sij ¼ 1
4p

1
2
ðE2 þB2Þdij � EiEj � BiBj

� �

: ð20:23Þ

Taking the cycle average gives
P

j @j�sij ¼ 0, and operating with
R
d2r gives

@z
R
d2r �siz ¼ 0 ði ¼ x; y; zÞ. Thus momentum conservation leads to three invari-

ants (Lekner 2004a)

T 0
xz ¼

Z

d2r �sxz ¼ � 1
4p

Z

d2r ExEz þBxBz
� �

;

T 0
yz ¼

Z

d2r �syz ¼ � 1
4p

Z

d2r EyEz þByBz
� �

;

T 0
zz ¼

Z

d2r �szz ¼ 1
8p

Z

d2r E2
x þE2

y � E2
z þB2

x þB2
y � B2

z

h i

:

ð20:24Þ
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Three more invariants follow from the conservation of angular momentum,
@tji þ

P

‘ @‘l‘i ¼ 0, where the angular momentum flux density tensor l‘i ¼
P

j

P

k eijkxjsk‘ is defined in terms of the momentum flux density tensor sij (Barnett
2002). These invariants are

M0
zx ¼

Z

d2r �lzx ¼
Z

d2r y�szz � z�syz
� �

;

M0
zy ¼

Z

d2r �lzy ¼
Z

d2r z�sxz � x�szz½ �;

M0
zz ¼

Z

d2r �lzz ¼
Z

d2r x�syz � y�sxz
� �

:

ð20:25Þ

Thus there are seven universal invariants of electromagnetic beams, arising from
the conservation of energy, momentum and angular momentum. Perhaps surpris-
ingly, the energy per unit length of the beam, U0 ¼ R

d2r �u, is not always an
invariant, although it is constant for the types of generalized Bessel beams dis-
cussed in Lekner (2004b), as is J 0z ¼

R
d2r�jz.

The invariants for quantum particle beams and for sound beams also correspond
to conservation laws. In both cases they originate from the conservation of particles
(continuity equation) and conservation of momentum and of angular momentum
(Lekner 2004, 2007).

20.1.3 Non-existence Theorems

In textbooks a light beam is usually represented by a plane wave, with E, B and the
propagation vector k everywhere mutually perpendicular. This ‘beam’ can be
everywhere linearly polarized in the same direction, or everywhere circularly
polarized in the same plane, and its energy is everywhere transported in a fixed
direction at the speed of light. It has been shown (Lekner 2003) that none of these
properties can hold for a transversely finite beam. We shall just state the theorems,
except for the one relating to linear polarization, for which the proof given in
Lekner (2003) is incomplete.

(i) Pure TEM beams do not exist.
(ii) Beams of fixed linear polarization do not exist.
(iii) Beams which are everywhere circularly polarized in the same direction do not

exist.
(iv) Beams or pulses within which the energy velocity (Lekner 2002) is every-

where in the same direction and of magnitude c do not exist.

Proof of (ii) Suppose E ¼ Fðx; y; zÞ; 0; 0ð Þ, so the beam is linearly polarized along
x̂, everywhere. Then from the Maxwell curl equations, with e�ikct time dependence,
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we have ikB ¼ r� E ¼ ð0; @z;�@yÞF, and ikr� B ¼ �½@2
y þ @2

z �; @x@y; @x
	

@zÞF ¼ k2E. Hence ð@2
y þ @2

z þ k2ÞF ¼ 0 and @x@yF ¼ 0 ¼ @x@zF. The last two
equations imply Fðx; y; zÞ ¼ f ðxÞþ gðzÞþ hðy; zÞ, which cannot represent a beam
localized transversely in the x direction.

Appendix 2 gives more detail about the polarization of finite beams.

20.1.4 Focal Plane Zeros

We have seen that electromagnetic beams can be constructed from solutions of the
scalar Helmholtz equation (20.1). In particular the TM, TE, ‘LP’ and ‘CP’ beams
have their vector potentials proportional (respectively) to

0; 0;wð Þ; @yw;�@xw; 0
� �

; w; 0; 0ð Þ and �iw;w; 0ð Þ: ð20:26Þ

(The quotation marks indicate that the ‘LP’ and ‘CP’ beams are fully linearly and
circularly polarized only in the plane wave limit: compare theorems (ii) and (iii) of
the previous section.)

What are the universal properties of physically acceptable solutions? We have
already seen that seven beam invariants must exist. We also saw that certain
textbook properties of plane wave electromagnetic beams cannot hold for laterally
finite beams. Here we argue that an infinity of zeros of w must occur in the focal
plane.

The solutions wðrÞ of the Helmholtz equation are, in general, complex functions
of position, w ¼ wr þ iwi. The real and imaginary parts wr and wi are (in free space)
smooth functions of position. These functions are zero on surfaces Sr and Si, and
where these surfaces meet (on curves C in space) both wr and wi are zero. If we write

wðrÞ ¼ MðrÞeiP rð Þ ¼ w2
r þw2

i

� �1
2exp i arctan

wi

wr

� �

ð20:27Þ

we see that, on any such curve C, the modulus MðrÞ is zero, and the phase PðrÞ is
indeterminate. Nye and Berry (1974) called these curves wave dislocations; Chap. 5
of Nye’s (1999) book gives illustrations of such phase singularities.

Lekner (2013) has given a topological argument for the existence of zeros of w
in the focal plane, on the assumption that the isophase surfaces intersect the focal
plane. At the zeros of w the phase can be any real number excluding integer
multiples of p, as explained below.

The focal plane is a plane of symmetry for an ideal beam, and can be taken as the
z ¼ 0 plane; we can also take the phase of w to be zero at the origin. Then the
isophase surfaces correspond to negative PðrÞ for z\0 and positive PðrÞ for z[ 0.
The surfaces P ¼ �np and P ¼ np can meet where w is not zero, since the phase
difference is an integer (n) multiple of 2p. These isophase surfaces are concave
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toward the origin, since a physical beam is converging toward the focal region for
z\0 and diverging from it for z[ 0. All other isophase surfaces can only meet on
the focal plane if on it there exist curves where w is zero. On such curves (circles, in
the simplest case) the phase surfaces P ¼ �p=2 and P ¼ þ p=2 can meet, for
example. The surfaces with 0\ Pj j\p meet on the first zero curve, p\ Pj j\2p
meet on the next, and so on. Figure 20.1 illustrates the phenomenon, conjectured to
be universal at the focal plane. Because of the topological nature of the above
argument, we expect the zeros to persist even when the beam is perturbed (for
example, focused by an imperfect lens or mirror). The focal plane would then be
distorted to a nearly-planar surface, and the circles of zeros to approximately cir-
cular closed curves, where the perturbed phase surfaces �P meet.

One counter-example to the above conjecture (of the universality of rings of
zeros in the focal plane) appears to be separable spheroidal beams, for which

wðn; g;/Þ ¼ RðnÞSðgÞeim/ with q ¼ b n2 þ 1
� �

1� g2ð Þ� �1
2; z ¼ bng. The focal

plane z ¼ 0 corresponds to n ¼ 0 for q� b and g ¼ 0 for q	 b. Thus if SðgÞ is zero
for g ¼ 0, w ¼ 0 for q	 b in the focal plane, and the �P and þP isophase surfaces
can meet anywhere on the focal plane outside of the central disk q� b. However,
such spheroidal wavefunctions have been shown to be non-physical (Boyack and
Lekner 2011).

Fig. 20.1 Isophase surfaces and surfaces of constant modulus for the j0ðkRÞ beam, (20.5), plotted
for kb ¼ 6. The three-dimensional picture is obtained by rotating about the z-axis. The phase is
shown at intervals of p=3; it has been chosen to be zero at the origin. The surfaces with phase

equal to an integer multiple of p converge onto the circles q ¼ ðX=kÞ2 þ b2
h i1

2
, where tanX ¼ X.

The other isophase surfaces converge onto the zeros of j0ðkRÞ in the z ¼ 0 plane, namely on the

circles qn ¼ ðnp=kÞ2 þ b2
h i1

2
. The beam axis and focal plane are indicated by the heavy horizontal

and vertical lines
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20.2 Reflection of Beams: The Lateral Beam Shift

We would expect a lateral beam shift in the case of total reflection from an interface
with gradually decreasing refractive index: the semiclassical or geometric optics
picture is shown in Fig. 20.2. If the angle between the ray and the z axis is hðzÞ,
geometric optics gives the lateral shift as

Dx ¼ 2
Zx0

x1

dx ¼
Zz0

0

dz tan hðzÞ: ð20:28Þ

For a sharp transition between media of dielectric constants e1 and e2, with e1 [ e2
and h1 [ hc ¼ arcsin e2=e1ð Þ12, the turning point z0 and the beginning of the tran-
sition coincide, and (20.28) gives zero lateral shift. Goos and Hänchen (1947)
however found a non-zero beam shift in this case, with a maximum lateral dis-
placement just beyond the critical angle. This phenomenon is referred to as the
Goos-Hänchen effect. It is universal for wave phenomena: a comprehensive review,
with references to work in optics, acoustics, quantum mechanics and plasma
physics has been given by Lotsch (1970); illustrations of acoustic beam displace-
ment may be found in Brekhovskikh (1980). Figure 20.3 illustrates the lateral
displacement of a beam at a sharp boundary.

We will show that the beam shift in most cases (excluding the immediate
neighbourhood of the critical angle) is well approximated by the formula

Dx ¼ �dd=dK : ð20:29Þ

Here d is the phase of the reflection amplitude, K is the lateral component of the
wavevector (K ¼ e

1
2 x=cð Þ sin h) and the derivative is to be evaluated at the domi-

nant K value of the incident beam. The two extremes illustrated in Figs. 20.2 and
20.3 are encompassed by (20.29), except at the critical angle where, as is shown in
Appendix 1, d has a square root singularity.

Fig. 20.2 Lateral shift of a ray totally reflected from an inhomogeneous region. The
inhomogeneity begins at z ¼ 0, and the turning point is at z0. The upper medium is optically
denser: dark indicates small refractive index. The entry into the inhomogeneous optically less
dense medium is at ðx1; 0Þ, the exit point is ðx1 þDx; 0Þ, and the turning point is ðx0; z0Þ
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A transversely finite beam may be built up by superposing plane waves with a
spread of propagation directions, centred on the direction of the beam. We consider
only a spread in the angle of incidence: the beam is taken to extend a large distance
in the y direction. It is convenient to characterize the plane wave components by
their lateral wavenumbers K, following Brekhovskikh (1980, Sect. 14.1). The plane
waves exp iðKx� qz� xtÞ, with K2 þ q2 ¼ e1x2=c2, are solutions of the wave
equation in medium 1, and the incident beam is made up of a superposition of these:

Ei z; xð Þ ¼
Z1

�1
dK f Kð ÞeiðKxþ qzÞ: ð20:30Þ

When K2 [ e1x2=c2, q is imaginary, implying evanescent waves. This possibility
is excluded here since we will be considering well-collimated beams, with f ðKÞ
non-zero only in a narrow range of K about K1 ¼ e

1
2
1 x=cð Þ sin h1.

The reflected beam is obtained by summing over the reflected component plane
waves, each with its own reflection amplitude r Kð Þ ¼ rðKÞj j exp idðKÞ:

Er z; xð Þ ¼
Z1

�1
dK f Kð Þr Kð ÞeiðKx�qzÞ: ð20:31Þ

If Ei at some reference plane z ¼ 0 is given by E0ðxÞ, then

E0 xð Þ ¼
Z1

�1
dK f Kð ÞeiKx; f ðKÞ ¼ 1

2p

Z1

�1
dx E0 xð Þe�iKx: ð20:32Þ

The reflected field at z ¼ 0 is thus given by

Er 0; xð Þ ¼
Z1

�1
dK r Kð ÞeiKx 1

2p

Z1

�1
dx0 E0 x0ð Þe�iKx0 ð20:33Þ

Fig. 20.3 Goos-Hänchen effect: the lateral beam shift in total reflection at a discontinuous
transition
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We now assume that rðKÞj j varies slowly with K compared to the phase dðKÞ (this
assumption is exact for K[Kc ¼ ffiffiffiffi

e2
p

x=cð Þ, when rðKÞj j ¼ 1), and also that the
variation of dðKÞ is well approximated by the linear term in its Taylor expansion
about K1:

rðKÞj j 
 r K1ð Þj j; d Kð Þ 
 d K1ð Þþ ðK � K1Þd0 K1ð Þ: ð20:34Þ

Here d0 K1ð Þ stands for dd=dK evaluated at K1. The integral over K in (20.33)
becomes, in this approximation, 2p times a delta function in x0, which selects the
value x0 ¼ xþ d0 K1ð Þ. Thus the reflected wave at z ¼ 0 is

Er 0; xð Þ 
 r K1ð Þj jei d�K1d
0ð ÞE0 xþ d0ð Þ: ð20:35Þ

Thus the beam is reduced in amplitude by r K1ð Þj j, phase shifted by d� K1d
0, and

moved in the x direction by the distance �d0. The last statement is equivalent to
(20.29). Note that under the approximations (20.34) the beam shape does not
change: the beam is simply translated. This is analogous to the reflection of pulses
considered in Sect. 19.1, where we saw that the corresponding frequency expansion
of the reflection amplitude leads to a time delay, with no change in shape of the
reflected pulse.

We will now apply (20.29) to the cases illustrated in Figs. 20.2 and 20.3. In the
geometrical optics limit the phase is well approximated (except near grazing inci-
dence) by the short wave formula (19.14). On substituting in (20.29) and using
q z0ð Þ ¼ 0, and dq=dK ¼ �K=q ¼ � tan h, we regain (20.28).

In the sharp transition case, we will consider the region of total reflection. The
s and p phases are discussed in Appendix 1. They are given by (20.63) and (20.67),
which we rewrite in terms of K:

ds ¼ �2 arctan
K2 � k22
k21 � K2

� �1
2

; dp ¼ �p� 2 arctan
e1
e2

K2 � k22
k21 � K2

� �1
2

: ð20:36Þ

Here k1 ¼ n1x=c and k2 ¼ n2x=c are the magnitudes of the total wavevectors in
media 1 and 2. The formula (20.29) gives the beam shifts

Dxs ¼ 2K
q1 q2j j ¼

k1
p

tan h1

sin2 h1 � sin2 hc
� �1

2

; ð20:37Þ

Dxp ¼ Dxs
sin2 hc

1þ sin2 hc
� �

sin2 h1 � sin2 hc
; ð20:38Þ

k1 being the wavelength in the first medium. Near hc the p wave beam shift is larger
by 1= sin2 hc ¼ e1=e2; near grazing incidence it is smaller by the factor e2=e1. The
formulae are not applicable at the critical angle or at grazing incidence, since they
were derived by using the truncated Taylor expansion (20.34), which fails at a
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square root singularity. The fact that ds and dp always have a term linear in q2j j ¼
K2 � k22
� �1

2 near hc is established in Appendix 1. The behaviour near grazing

incidence, with a term linear in q1 ¼ k21 � K2
� �1

2 is also universal, as may be seen
(for example) from (20.89) on letting q1 tend to zero. Equations (20.36) and
Fig. 20.4 show these singularities explicitly in the sharp boundary case.

The simple theory which gives the beam shift as Dx ¼ �dd=dK thus fails at the
critical angle and at grazing incidence, the predicted beam shift diverging as

K2 � k22
� ��1

2 and k21 � K2
� ��1

2 respectively. (Note however that the shift transverse
to the reflected beam direction is Dx cos h1, which stays finite as h1 ! p=2.)

Horowitz and Tamir (1971) have studied the reflection of a Gaussian beam by a
sharp interface, without making an approximation equivalent to (20.34). They find
that the results given in (20.37) and (20.38) are accurate down to
h1 � hc 
 60 millidegrees when the beam width parameter w is one thousand
wavelengths, and to about 6 millidegrees when w is ten thousand wavelengths. The
definition of w for a Gaussian beam is via the electric field amplitude at the beam
waist (see Sect. 20.3):

E qð Þ� exp � q=wð Þ2
h i

: ð20:39Þ

Here q is the distance measured from the beam axis, transversely to the beam
propagation direction. Their analysis gives a beam displacement independent of

angle in the immediate neighbourhood of hc, with magnitude proportional to wkð Þ12:

Fig. 20.4 Angular dependence of the phases of the s and p wave reflection amplitudes, for a sharp
boundary between glass and air, refractive indices 3

2 and 1 (dashed curves), and for a homogeneous
layer of water (refractive index 4=3) between the glass and air, with x=cð ÞDz ¼ 1=2 (solid curves).
The Brewster and critical angles for the glass-air boundary are indicated; hB 
 33:7�; hc 
 41:8�.
Normal incidence is at left, glancing incidence at right
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Dxs hcð Þ ¼ C 1
4

� �

2
3
2

tan hcð Þ12
cos hc

wkð Þ12
p

; ð20:40Þ

with the p polarization displacement larger by e1=e2. Note that setting h1 ¼
hc þ k1=w in (20.37) and (20.38) (that is, letting the angle of incidence approach the
critical angle to within the diffraction-limited broadening of the beam) gives the
qualitative features of (20.40) for small k1=w:

Dxs hc þ k1=wð Þ 
 1

2
1
2

tan hcð Þ12
cos hc

wkð Þ12
p

: ð20:41Þ

Experimental test of the Tamir-Horowitz prediction is difficult, since to approach
the critical angle closely one must have a highly collimated beam to obtain the
required angular resolution. Laser beams have the required collimation, but the
wavelength is then small, and so is the beam shift. Early data of Wolter (1950) (also
displayed on page 200 of the Lotsch review) are in good agreement with the simple
theory.

The lateral shift on reflection is of importance in waveguides, especially in fibre
optics. See for example White and Pask (1977) and Snyder and Love (1983,
Chap. 10).

20.3 Reflection of Gaussian Beams

In Sect. 20.1 we saw that electromagnetic beams can be constructed from solutions
of the scalar Helmholtz equation (20.1). Equation (20.26) gave the vector potentials
corresponding to TM, TE, ‘LP’ and ‘CP’ beams. In this section we consider
Gaussian beams, which are solutions of the paraxial equation, in which one sets
w ¼ eikzG, and then neglects the term @2

z G in the resulting equation for G (to be
given below). This amounts to assuming that the dominant z-dependence of the
beam lies in the eikz factor. For axially symmetric solutions we omit the azimuthal
derivative, so the Helmholtz equation takes the form (20.7), and the equation for G
becomes

ð@2
q þ q�1@q þ 2ik@z þ @2

z ÞG ¼ 0: ð20:42Þ

The fundamental solution of (20.42) with the @2
z term omitted (that is, of the

paraxial equation), gives (Zangwill 2013, Sect. 16.7)

wG ¼ eikzG ¼ b
bþ iz

exp ikz� kq2

2 bþ izð Þ

 �

: ð20:43Þ
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Alternatively, we can write the Gaussian beam fundamental mode in the modulus
times phase factor form:

wG ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ z2
p exp

�kbq2

2 b2 þ z2ð Þ
� �

exp i kz� arctan
z
b

	 


þ kzq2

2 b2 þ z2ð Þ

 �

: ð20:44Þ

The arctangent term in the phase causes the phase of the beam to decrease by p
relative to the plane wave phase kz as the beam passes through its focal region. This
phase lag associated with focusing is universal for waves. It was first noted by Gouy
in 1890.

The length b is the Rayleigh or diffraction length: it gives the longitudinal extent
of the beam focal region directly, as one can see from the modulus exponential in
(20.44). The beam waist size, located at the focal plane (here z ¼ 0) is obtained
from the modulus in the focal plane, expð�kq2=2bÞ. It is usually written as
w0 ¼

ffiffiffiffiffiffiffiffiffiffi

2b=k
p ¼ ffiffiffiffiffiffiffiffiffiffi

bk=p
p

. If we define the beam width wðzÞ by setting the expo-
nential factor in the modulus equal to exp �q2=w2ðzÞ½ �, we get

w2 zð Þ ¼ 2ðb2 þ z2Þ
kb

: ð20:45Þ

Thus w ¼ w0 at the beam waist, w2 ¼ 2w2
0 at z ¼ �b, and w2 ! 2z2=kb when

zj j 
 b. Away from the focal region the beam spreads as a cone of half-angle
arctan

ffiffiffiffiffiffiffiffiffiffi

2=kb
p

. For kb ¼ 2 and 6 this angle is 45� and 30�, respectively.
We need to consider the validity of the paraxial approximation which leads to

the Gaussian beam solution. As noted in Lekner (2001), the quantity w�1
G r2wG

should equal �k2, but instead equals �k2 times

1þ 2

k2 bþ izð Þ2 �
2q2

k bþ izð Þ3 þ q4

4 bþ izð Þ4 : ð20:46Þ

The errors are thus negligible in the regions where

k2 b2 þ z2
� � 
 1 and b2 þ z2 
 q2 : ð20:47Þ

We conclude that if kb is of order unity, the paraxial approximation fails in the focal
region zj j � b. Thus tightly focused beams are not well described by wavefunctions
based on wG. However, we can hope to describe beam reflection by means of wG for
larger kb, and this is what we shall now do.

We shall consider two examples of normal incidence reflection and transmission
of a scalar Gaussian beam at a sharp interface between two media. We are looking
for effective reflection and transmission amplitudes for the central part of the beam.
We cannot hope to find these for the whole beam, since the outer parts of the beam
will reflect differently from the central part. In any case the second inequality in
(20.47) is violated in the focal region when q exceeds b, and the paraxial expression
(20.43) becomes inaccurate.
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20.3.1 Reflection at a Potential Spike (Delta Function)

The simplest example is that of the delta function potential for which exact
wavepacket solutions were discussed in Sect. 19.3. The Helmholtz equation for the
beam reads

½@2
q þ q�1@q þ @2

z þ k2 � 2jdðzÞ�w ¼ 0: ð20:48Þ

Approximate (paraxial) solutions of (20.48), everywhere except at z ¼ 0, are the
Gaussian beams

wþ ¼ b
bþ iðz� aÞ exp ikðz� aÞ � kq2

2½bþ i z� að Þ�

 �

;

w� ¼ b
b� iðzþ aÞ exp �ikðzþ aÞ � kq2

2½b� i zþ að Þ�

 �

:

ð20:49Þ

The first corresponds to a forward-propagating beam with focal plane at z ¼ a,
the second to a backward-propagating beam with focal plane at z ¼ �a (the image
position of the z ¼ a plane with respect to the interface at z ¼ 0). We have chosen
these forms to make wþ q; 0ð Þ ¼ w�ðq; 0Þ for all q. We shall try to find effective
reflection and transmission amplitudes r; t such that

w q; zð Þ ¼ wþ þ rw� z\0ð Þ; w q; zð Þ ¼ twþ ðz[ 0Þ: ð20:50Þ

From the differential equation (20.48), both w and @qw must be continuous at z ¼ 0.
Because of the delta function, @zw is discontinuous at z ¼ 0 (compare (19.41)):

@zw q; 0þð Þ � @zw q; 0�ð Þ ¼ 2jwðq; 0Þ : ð20:51Þ

Since wþ q; 0ð Þ ¼ w� q; 0ð Þ and also @qw
þ q; 0ð Þ ¼ @qw

� q; 0ð Þ for all q, the con-
tinuity of both w and @qw at z ¼ 0 is satisfied by 1þ r ¼ t. The condition (20.51)
can however be satisfied exactly only on the beam axis q ¼ 0, by

r ¼ �ij

kþ ij� i aþ ibð Þ�1 ; t ¼ k � i aþ ibð Þ�1

kþ ij� i aþ ibð Þ�1 : ð20:52Þ

These reflection and transmission amplitudes are accordingly for the central part of
the beam; they lose validity for q comparable to or greater than aþ ibj j. When
either ka or kb are large (the focal planes far away from the reflecting plane, or wide
beams, both on the scale of the wavelength), the amplitudes tend to the plane wave
values of (19.43).
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20.3.2 Reflection at a Sharp Boundary Between Two Media

We shall take the boundary between the two media in which the wave numbers are
k1; k2 to be the z ¼ 0 plane, and the focal plane of the incident beam to be z ¼ a1.
The incident beam is, from (20.49),

wi ¼
b1

b1 þ iðz� a1Þ exp ik1ðz� a1Þ � k1q2

2 b1 þ iðz� a1Þ½ �

 �

ð20:53Þ

The reflected beam is obtained by setting z ! �z, and taking its focal plane at the
image in the reflecting surface of the incident beam focal plane, namely at z ¼ �a1:

wr ¼
rb1

b1 � iðzþ a1Þ exp �ik1ðzþ a1Þ � k1q2

2 b1 � iðzþ a1Þ½ �

 �

: ð20:54Þ

If a1 is negative (focal plane of the incident beam to the left of the reflecting
surface), the focal plane of the reflected beam will be virtual, to the right of the
reflecting surface. The transmitted beam is

wt ¼
tb2

b2 þ iðz� a2Þ exp ik2ðz� a2Þ � k2q2

2 b2 þ iðz� a2Þ½ �

 �

: ð20:55Þ

The reflection and transmission amplitudes (for the central part of the beam) are r
and t. The boundary conditions are the continuity of w; @zw; @qw at z ¼ 0, where
w ¼ wi þwr z\0ð Þ;w ¼ wt z[ 0ð Þ. (If any of these were discontinuous, there
would be resultant delta functions in their derivatives at z ¼ 0.) For the terms in the
exponents proportional in q2 to agree at z ¼ 0, we need to set

b2 ¼ ðk2=k1Þb1; a2 ¼ ðk2=k1Þa1: ð20:56Þ

The first equation in (20.56) implies that the beam waist (real or virtual), has the
same width w0 ¼

ffiffiffiffiffiffiffiffiffiffi

2b=k
p

in the incident, reflected and transmitted beams, since
b2=k2 ¼ b1=k1. The location of the focal plane of the transmitted beam is scaled by
the same factor k2=k1. These relations also make, at z ¼ 0, the beam prefactors all
equal to b1=ðb1 � ia1Þ, and the coefficients of �q2 in the exponent all equal to
k1=2ðb1 � ia1Þ. When the equations (20.56) are applied to the transmitted beam
(20.55), we find that the continuity of w and of @qw is exactly satisfied at z ¼ 0
when

1þ r ¼ eiðk1a1�k2a2Þt ¼ eik1a1ð1�k22=k
2
1Þt: ð20:57Þ

The other boundary condition (continuity of @zw at z ¼ 0) is satisfied to order
kbð Þ�1 when the reflection and transmission amplitudes take the values
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r ¼ k1 � k2
k1 þ k2

� �
k2 b1 � ia1½ � þ 1
k2 b1 � ia1½ � � 1

¼ k1 � k2
k1 þ k2

1þ 2
k2b1

þOðb�2
1 Þ


 �

; ð20:58Þ

t ¼ e�ik1a1ð1�k22=k
2
1Þ 1þ rð Þ ¼ e�ik1a1ð1�k22=k

2
1Þ 2k1
k1 þ k2

1þ k1 � k2
k1k2b1

þOðb�2
1 Þ


 �

:

ð20:59Þ

The leading expressions in (20.58) and (20.59) make the beam wavefunction and its
first derivatives exactly continuous on the axis of the beam, that is on q ¼ 0. Both
amplitude expressions contain the location a1 of the focal plane of the incident
beam. However, we see that the effective reflection amplitude is independent of the
location of the focal plane of the incident beam, provided it is not too distant from
the reflecting surface (a term proportional to a1=b21 is in the O b�2

1

� �

term in
(20.58)). The location of the focal plane does determine the phase of the trans-
mission amplitude, as is made explicit in (20.59). For a plane wave reflecting from
an abrupt interface at z ¼ 0, the phase would be zero, as we saw in (1.13) or (1.15),
which give the normal incidence values

r ¼ k1 � k2
k1 þ k2

; t ¼ 2k1
k1 þ k2

: ð20:60Þ

The effective reflection and transmission amplitudes for the central part of the beam,
given by (20.58) and (20.59), do not exactly satisfy the conservation law

k1 1� rj j2
	 


¼ k2 tj j2 of Sect. 2.1. There is a difference between the two sides of

order b�1
1 , arising from the transfer of flux transversely within the beam.

Appendix 1: Total Internal Reflection: The rs, rp Phases
and Their Difference

In Sect. 20.2 we considered the reflection of bounded beams, with emphasis on the
problem of beam shift. The latter depends on the variation of the phase of the
reflection amplitude with the angle of incidence, and is greatest near the critical
angle where the derivative becomes infinite. We shall give examples of the angular
dependence of the phases of rs and rp, and then show that a square root singularity
at the critical angle is universal for non-absorbing profiles.

Reflection at a sharp boundary. The s and p reflection amplitudes for a step
profile located at z ¼ 0 are given by (1.13) and (1.31):

rs ¼ q1 � q2
q1 þ q2

; rp ¼ �Q1 � Q2

Q1 þQ2
: ð20:61Þ
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When medium 1 is optically denser e1 [ e2ð Þ; q1 [ q2 and rs has zero phase (all
phases are modulo 2p) up to the critical angle hc, where q2 ¼
x=cð Þ2 e2 � e1 sin2 h1

� �

passes through zero and q2 changes from real to imaginary:

q2 ¼ i q2j j ¼ x
c

e1 sin2 h1 � e2
� �1

2; ½h1 	 arcsin e2=e1ð Þ12 ¼ hc� ð20:62Þ

Beyond this angle of incidence rsj j ¼ 1 and

ds ¼ �2arctan q2j j=q1ð Þ; ð20:63Þ

where

q2j j
q1

¼ cos2 hc tan2 h1 � sin2 hc
� �1

2¼ 1� e2
e1

� �

tan2 h1 � e2
e1


 �1
2

: ð20:64Þ

We note the square root singularity at hc, which leads to an infinite value of dds=dh1
at hþ

c : in terms of Dh ¼ h1 � hc this is

ds ¼ �2
4e2

e1 � e2

� �1
4

ðDhÞ12 þOðDhÞ: ð20:65Þ

The s wave phase decreases monotonically from 0 at hc to �p at grazing incidence,
approaching �p linearly in the glancing angle c ¼ p

2 � h1:

ds ¼ �pþ 2
e1

e1 � e2

� �1
2

cþO c2
� �

: ð20:66Þ

The p wave phase is zero from normal incidence to the Brewster angle hB ¼
arctan e2=e1ð Þ12 where Q1 ¼ Q2 and rp changes sign. In the interval hB\h1\hc we
can set dp equal to þ p or �p. We take dp ¼ �p, this choice being dictated by
continuity of the phase as a function of interfacial thickness, as the next example
will make clear. Beyond hc the p wave phase is (from (20.31) with Q2 ¼ i Q2j j)

dp ¼ �p� 2arctan
Q2j j
Q1

¼ �p� 2arctan
e1 q2j j
e2q1

: ð20:67Þ

The strength of the square root singularity is thus larger for the p phase shift by the
factor e1=e2:

dp ¼ �p� 2
e1
e2

4e2
e1 � e2

� �1
4

ðDhÞ12 þOðDhÞ: ð20:68Þ
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The inverse factor applies as dp tends to �2p at grazing incidence:

dp ¼ �2pþ 2
e2
e1

e1
e1 � e2

� �1
2

cþOðc2Þ: ð20:69Þ

Figure 20.4 shows ds and dp for the sharp boundary between two media, and also
for a homogeneous layer between the same two media (the latter to be discussed
shortly).

The ellipsometric ratio rp=rs is equal to exp iðdp � dsÞ for h1 [ hc. The phase
difference D ¼ dp � ds is given by

D ¼ �pþ 2 arctan
q2j j
q1

� arctan
e1
e2

q2j j
q1

� �

: ð20:70Þ

The phase difference has an extremum at the angle of incidence

hm ¼ arctan
2e2

e1 � e2

� �1
2

: ð20:71Þ

For comparison we list the tangents and sines of hB; hc and hm:

tan2 hB ¼ e2
e1
; tan2 hc ¼ e2

e1 � e2
; tan2 hm ¼ 2e2

e1 � e2
; ð20:72Þ

sin2 hB ¼ e2
e1 þ e2

; sin2 hc ¼ e2
e1
; sin2 hm ¼ 2e2

e1 þ e2
: ð20:73Þ

At the extremum the phase difference D ¼ dp � ds is given by

Dm ¼ 4hB � 2p; ð20:74Þ

and the ratio of the reflection amplitudes takes the value

rp
rs

¼ e21 þ e22 � 6e1e2 þ i4 e1e2ð Þ12ðe1 � e2Þ
e1 þ e2ð Þ2 ðh1 ¼ hmÞ: ð20:75Þ

At hm the trajectory of rp=rs in the complex plane is farthest to the right on the unit
circle. The phase difference D ¼ dp � ds is shown in Fig. 20.5, together with that
for a homogeneous layer.

Reflection phases for a homogeneous layer. For a layer of dielectric constant
e and of thickness Dz, the s and p reflection amplitudes are given by (2.52) and
(2.68):
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rs ¼ q q1 � q2ð Þcþ i q2 � q1q2ð Þs
q q1 þ q2ð Þc� i q2 þ q1q2ð Þs ; ð20:76Þ

�rp ¼ Q Q1 � Q2ð Þcþ i Q2 � Q1Q2ð Þs
Q Q1 þQ2ð Þc� i Q2 þQ1Q2ð Þs : ð20:77Þ

Here q2 ¼ x=cð Þ2 e� e1 sin2 h1
� �

and c ¼ cos qDz; s ¼ sin qDz;Q ¼ q=e; the film
extends from z ¼ 0 to Dz. When e1 [ e[ e2 we have to consider three ranges of

h1 : h1 � hc ¼ arcsin e2=e1ð Þ12; hc � h1 � h0c ¼ arcsin e=e1ð Þ12, and h1 	 h0c. In the first
range q1; q2; q are all real, in the second q2 ¼ i q2j j and q1; q are real, and in the third
q2 ¼ i q2j j and q ¼ i qj j. Of particular interest to the beam shift to be discussed in the
next section is the behaviour of the phases for h1 slightly above hc We again find a
square root singularity, with

ds h1ð Þ ¼ ds hcð Þ � 2 q2j j=q1c
1� e1�e

e1�e2
sin2 qcDz

þOð q2j j2Þ; ð20:78Þ

dp h1ð Þ ¼ dp hcð Þ � 2 Q2j j=Q1c

1� 1� e21ðe1�eÞ
e2ðe1�e2Þ

	 


sin2 qcDz
þOð q2j j2Þ; ð20:79Þ

where

q21c ¼
x2

c2
e1 � e2ð Þ; q2c ¼

x2

c2
e� e2ð Þ; ð20:80Þ

The phases at the critical angle are given by

ds hcð Þ ¼ 2arctan
e� e2
e1 � e2

� �1
2

tan qcDz

( )

; ð20:81Þ

dp hcð Þ ¼ �pþ 2arctan
e1
e

e� e2
e1 � e2

� �1
2

tan qcDz

( )

: ð20:82Þ

The numerators in (20.78) and (20.79) are the sharp boundary values, and have
been expressed in terms of Dh ¼ h1 � hc in (20.65) and (20.68). For the s wave the

coefficient of ðDhÞ12 is larger for the homogenous layer than for the Fresnel case; for
the p wave it can be larger or smaller, depending on the dielectric constants.

Figure 20.4 shows the s and p phase shifts and Fig. 20.5 their difference for
x=cð ÞDz = 1

2. Note that there is no square root singularity in ds or dp at h
0
c where

q passes through zero, the s and p phases having the variation d ¼ d h0c
� �þO q2ð Þ

with
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ds h0c
� � ¼ �2arctan

e� e2ð Þ= e1 � eð Þ½ �12
1þ e� e2ð Þ12 x=cð ÞDz

( )

; ð20:83Þ

dp h0c
� � ¼ �p� 2arctan

e1
e2

e� e2ð Þ= e1 � eð Þ½ �12
1þ e

e2
e� e2ð Þ12 x=cð ÞDz

8

<

:

9

=

;
: ð20:84Þ

Thus h0c is not a true critical angle, even though q makes a sharp right-angle turn in
the complex plane at h0c, just as q2 does at hc.

Total Reflection by the Hyperbolic Tangent Profile

For h1\hc the phase for the s polarization is given by (2.89); as hc is approached
from below the phase tends without singularity to

ds hcð Þ ¼ 2
X1

n¼1

arctan
2y31c

nðn2 þ 3y21cÞ

 �

; ð20:85Þ

where y1c ¼ q1ca; a being the length characterizing the thickness of the profile, and

q1c ¼ x=cð Þ e1 � e2ð Þ12. For h1 [ hc an analysis based on (2.84) and using the
infinite product representation of the gamma function (2.85) gives

Fig. 20.5 Dependence of D ¼ dp � ds on the angle of incidence, the parameters being as in
Fig. 20.4. Normal incidence is at left, glancing incidence at right. Dashed curve glass|air; solid
curve glass|water|air. The homogeneous film rp=rs ratio was shown in Fig. 2.8
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ds ¼ 2
X1

1
arctan

2y1ðy21 þ y2j j2Þ
nðn2 þ 3y22 � y2j j2Þ

( )

� 2 arctan
tan p y2j j
tanh py1

� �

; ð20:86Þ

where y1 ¼ q1a; y2j j ¼ q2j ja. Thus there is again a q2j j term in the phase just above
the critical angle:

ds ¼ ds hcð Þ � 2pa q2j j
tanh paq1c

þOðq22Þ: ð20:87Þ

The expression (20.86) tends to the sharp profile result (20.63) as a ! 0. For large
interfacial thickness the coefficient of q2j j in (20.86) tends to �2pa, and the strength
of the square root singularity is then proportional to the thickness. At grazing
incidence ds ! �p as before.

The above examples are sufficient to make it plausible that the h1 � hcð Þ12 sin-
gularity in the phase shift is a universal property. We shall give a proof for the
restricted class of finite-ranged profiles, for which the s wave reflection amplitude is
given by (2.25), which we write in the form

rs ¼ q1q2Aþ iq1Bþ iq2C � D
q1q2Aþ iq1B� iq2CþD

: ð20:88Þ

(We again set z1 ¼ 0: the inhomogeneity extends from z ¼ 0 to Dz; the substrate
has dielectric function e2.) When h1 [ hc we have q2 ¼ i q2j j and

rs ¼ �aþ ib
aþ ib

; a ¼ q2j jCþD; b ¼ q1ð q2j jAþBÞ: ð20:89Þ

Thus ds ¼ 2arctan a=bð Þ. The leading terms in a=b near hc are

a
b
¼ D

q1B
� q2j j

q1

W
B

� �2

þO q2j j2
	 


; ð20:90Þ

where W is the Wronskian of the solutions of the wave equation; we have used the
identity AD� BC ¼ W2 equation (2.31). This shows that all such profiles have a
term linear in q2j j, with negative coefficient, leading to a square root singularity:

ds ¼ 2arctan
D
q1B

� �

c
� 2 q2j j

q1c

W=Bð Þc
1þ D=q1Bð Þ2c

þO q2j j2
	 


: ð20:91Þ

(A similar result may be written down for dp, using (2.40), (2.48) and (2.49).) For
the homogeneous layer, with solutions sin qz and cos qz in 0� z�Dz, we have
W ¼ q;B ¼ q cos qDz;D ¼ q2 sin qDz, and (20.91) gives the results contained in
(20.78) and (20.81).
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Appendix 2: Polarization of Electromagnetic Beams

In most of the book we have considered two linearly polarized waves, the s and p
polarizations of Sects. 1.1 and 1.2. By these designations we mean that the electric
vector E is respectively perpendicular and parallel to the plane of incidence. For
plane waves, the corresponding magnetic vector B is respectively parallel and
perpendicular to the plane of incidence; E and B are perpendicular to the
wavevector, as well as to each other. Plane waves with E and B both circularly
polarized were the eigenstates propagating within chiral media, Chap. 18. Here we
shall discuss the most general polarization of a coherent monochromatic electro-
magnetic wave, and gives examples of the polarization properties of electromag-
netic beams.

A coherent monochromatic light beam is specified by electric and magnetic
vectors varying in space and harmonically in time. In general the polarization
properties of the electric and magnetic vectors differ from each other, in contrast to
the plane wave idealization. Most polarizers act on the electric field, and most
detectors sense the electric field, so it is conventional to refer to the polarization of
the electric field as the polarization. For monochromatic waves of angular fre-
quency x we can write

E r; tð Þ ¼ Re EðrÞe�ixt
� � ¼ Er rð Þ cosxtþEiðrÞ sinxt; ð20:92Þ

where Er rð Þ and EiðrÞ are the real and imaginary parts of the complex electric field
vector EðrÞ. The magnetic field is expressed in terms of the real and imaginary parts
of the complex vector BðrÞ in the same way. For a plane wave in vacuum we have
E rð Þ ¼ E0eik�r;B rð Þ ¼ k�1k� EðrÞ where k ¼ x=c and the wavevector k defines
the direction of propagation. If the constant vector E0 is real (or more generally, if
its real and imaginary parts are collinear), it defines the direction of linear polar-
ization. If the complex vector E0 has equal and perpendicular real and imaginary
parts, as in the plane wave E rð Þ ¼ E0eikzðx̂� iŷÞ, the physical electric vector E r; tð Þ
rotates at any point in space with angular frequency x, and the wave is circularly
polarized. The most general case is that of elliptic polarization, in which the end-
point of the vector E r; tð Þ describes an ellipse in time 2p=x, as we shall now show.

For any E rð Þ ¼ Er rð Þþ iEiðrÞ one can write

Er þ iEi ¼ ðE1 þ iE2Þeic; ð20:93Þ

and c can be chosen so that the real vectors E1 and E2 are perpendicular. This value
of c and the components E1 and E2 are given by

tan 2c ¼ 2Er � Ei

E2
r � E2

i
; ð20:94Þ
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E1 ¼ Er cos cþEi sin c; E2 ¼ Ei cos c� Er sin c: ð20:95Þ

Thus the physical electric field can be written as

E r; tð Þ ¼ Re ðE1 þ iE2Þeic�ixt
� � ¼ E1 rð Þ cosðxt � cÞþE2ðrÞ sinðxt � cÞ:

ð20:96Þ

When c is given by (20.94), the components E1 and E2 are orthogonal, and have
magnitudes given by

E2
1

E2
2

� �

¼ 1
2

E2
r þE2

i � E2
r � E2

i

� �2 þ 4 Er � Eið Þ2
h i1

2


 �

: ð20:97Þ

From (20.96), E1 and E2 give the lengths of the semiaxes of the polarization ellipse.
For linear polarization E2 ¼ 0; the condition for linear polarization is therefore

that Er;Ei be collinear,

E2
r E

2
i ¼ Er � Eið Þ2: ðlinear polarizationÞ ð20:98Þ

For circular polarization E2
1 ¼ E2

2, for which we need Er and Ei to be perpendicular
and equal in magnitude:

Er � Ei ¼ 0 and E2
r ¼ E2

i : ðcircular polarizationÞ ð20:99Þ

One spatial function can define the local degree of linear polarization (Lekner
2003), namely

K rð Þ ¼ E2
1 � E2

2

E2
1 þE2

2
¼

E2
r � E2

i

� �2 þ 4 Er � Eið Þ2
h i1

2

E2
r þE2

i
¼ E2 rð Þ�

�
�
�

E rð Þj j2 : ð20:100Þ

K rð Þ is unity when the real and imaginary parts of E rð Þ ¼ Er rð Þþ iEiðrÞ are
collinear (the linear polarization condition), and zero when the circular polarization
conditions are met. Equivalently, the eccentricity e of the polarization ellipse
provides the same information:

e2 ¼ 1� E2
2

E2
1
¼ 2K

1þK
: ð20:101Þ

This has the same values as K of unity and zero for the limiting cases of linear and
circular polarizations. Yet more polarization measures exist, namely the Hurwitz
(1945) ratio 2E1E2=ðE2

1 þE2
2Þ and the Stokes parameters (Born and Wolf 1999,

Sects. 1.4.2, 10.8.3)
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S0 ¼ E2
r þE2

i ; S1 ¼ E2
r � E2

i ; S3 ¼ 2Er � Ei; S4 ¼ 2 E2
r E

2
i � Er � Eið Þ2

h i1
2
:

ð20:102Þ

The relation between the degree of linear polarization K and the Stokes parameters
is K2 ¼ 1� S23=S

2
0.

The remainder of this Appendix gives specific examples of polarization prop-
erties of finite monochromatic electromagnetic beams. A broader range of topics
may be found in Swindell (1975), a collection of reprints of fundamental papers on
polarized light with commentary, and in monographs by Collett (1992), Huard
(1997) and Brosseau (1998).

Examples of Exactly and Approximately Linearly
Polarized Beams

The simplest example is the TM (transverse magnetic) beam, for which the vector
potential is given by the first entry in (20.26), A ¼ A0ð0; 0;wÞ. For this beam B is
transverse to the propagation direction (here along the z axis):

B ¼ r� A ¼ A0 @xw;�@yw; 0
� �

: ð20:103Þ

When w is independent of the azimuthal angle /, the complex fields are

BðrÞ ¼ A0 sin/@qw;� cos/@qw; 0
� �

;

EðrÞ ¼ iA0

k
ðcos/@q@zw; sin/@q@zw; @2

zwþ k2wÞ:
ð20:104Þ

If we take A0 real, and write the complex wavefunction wðq; zÞ as wr þ iwi, the real
and imaginary parts of BðrÞ are both proportional to (sin/;� cos/; 0Þ, and are thus
collinear. The magnetic field is therefore everywhere linearly polarized. The electric
field is elliptically polarized, in general.

The dual of the TM beam under the transformation E ! B;B ! �E (one of a
set of duality transformations that leave the free space Maxwell equations
unchanged) is the TE beam, transverse and linearly polarized in its electric field.
The electric field lines are circles concentric with the beam axis (see Fig. 20.1 of
Lekner 2003, for example). However, both the TM and the TE beams disappear in
the plane-wave limit: as w ! exp ikz the electric and magnetic fields in both the TM
and the TE beams tend to zero.

A beam which does have a plane-wave limit is the ‘LP’ beam, with vector
potential A ¼ A0ðw; 0; 0Þ. The magnetic and electric fields are
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B ¼ r� A ¼ A0 0; @zw;�@yw
� �

; ð20:105Þ

E ¼ i
k
r r � Að Þþ ikA ¼ iA0

k
ð@2

xwþ k2w; @x@yw; @x@zwÞ ð20:106Þ

In the plane wave limit w ! exp ikz;B ! ikA0 0; 1; 0ð Þ;E ! ikA0 1; 0; 0ð Þ, which is
the textbook linearly polarized plane wave with E and B transverse and mutually
perpendicular. But note the quotes around ‘LP’: this beam is linearly polarized only
in the plane-wave limit, as we shall now see. We again consider beams with w is
independent of the azimuthal angle /, for simplicity. Then

B ¼ ik 0; @zw;� sin/@qw
� �

; ð20:107Þ

E ¼ iA0

k
ðcos2 /@2

qwþ sin2 /q�1@qwþ k2w;

sin/ cos/½@2
qw� q�1@qw�; cos/@q@zwÞ:

ð20:108Þ

Neither E nor B have real and imaginary parts collinear in general. The electric field
in the x ¼ 0 plane (cos/ ¼ 0Þ is linearly polarized along the x direction, as can be
seen from (20.108). The polarization measure K is given in (20.27) and is plotted
for the w00 ¼ j0ðkRÞ beam in Fig. 20.3 of Lekner (2003) for kb ¼ 2, and in
Fig. 20.6 for kb ¼ 6. The polarization is linear at the beam centre, and K 
 1 in the

Fig. 20.6 Degree of linear polarization K in the focal plane z ¼ 0 of an ‘LP’ beam with
w ¼ w00; kb ¼ 6. The light shading corresponds to linear polarization, dark to circular polarization
(K ! 1 and K ! 0, respectively). The lateral extent is kxj j � 9; kyj j � 9

524 20 Finite Beams



central region q � b, but, remarkably, there are areas of approximately circular
polarization in the outer part of the beam.

Approximately Circularly Polarized Beams

We wish to construct beams which in the plane wave limit have the circularly
polarized electric field

E rð Þ ¼ E0eikzð1; i; 0Þ;
E r; tð Þ ¼ Re E rð Þe�ixt

� � ¼ E0ðcos kz� xtð Þ;� sin kz� xtð Þ; 0Þ: ð20:109Þ

The vector potential A ¼ k�1E0ðiw;�w; 0Þ gives the complex fields

B ¼ k�1E0 @z; i@z;�ð@x þ i@yÞ
� �

w;

E ¼ E0 1þ k�2@x @x þ i@y
� �

; iþ k�2@y @x þ i@y
� �

; k�2@z @x þ i@y
� �� �

w: ð20:110Þ

Fig. 20.7 Degree of linear polarization K in the focal plane of a ‘CP’ beam with w ¼ w00; kb ¼ 6.
The light shading corresponds to linear polarization, dark to circular polarization (K ! 1 and
K ! 0, respectively). The lateral extent is kxj j � 9; kyj j � 9. The beam is completely circularly
polarized on the axis, and approximately so in the central dark region. However, there are circles
of exactly linear polarization in the outer part
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(We have used the fact that w satisfies the Helmholtz equation (20.1).) Both the
magnetic and the electric fields are therefore circularly polarized, with positive
helicity, in the plane wave limit w ! exp ikz. Figure 20.7 shows the polarization
measure K for the electric field of (20.110), with w ¼ sin kR=kR; kb ¼ 6, which has
the focal plane zeros shown in Fig. 20.1. We note that the dark central part is
circularly polarized, but the outer region of the beam (where the intensity is very
low) there are circles of linear polarization. More analytic detail may be found in
Section 4 and Appendix B of Lekner (2003).

These examples illustrate the theorems (ii) and (iii) of Sect. 20.1, and show that
finite beams are quite different from the textbook plane waves, not just in having
longitudinal components, but also in their polarization properties.

References

Bateman H (1904) The solution of partial differential equations by means of definite integrals. Proc
Lond Math Soc 1:451–458

Barnett SM (2002) Optical angular momentum flux. J Opt B: Quantum Semiclass 4:S7–S16
Born M, Wolf E (1999) Principles of optics, 7edn. Cambridge University Press, Cambridge
Boyack R, Lekner J (2011) Non-existence of separable spheroidal beams. J Opt 13:085701 (3 pp)
Brekhovskikh LM (1980) Waves in layered media, 2nd edn. Academic Press, New York
Brosseau C (1998) Fundamentals of polarized light: a statistical optics approach. Wiley, New York
Collett E (1992) Polarized light, fundamentals and applications. Dekker, New York
Deschamps GA (1971) Gaussian beam as a bundle of complex rays. Electron Lett 7:684–685
Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys

1:333–346
Horowitz BR, Tamir T (1971) Lateral displacement of a light beam at a dielectric interface. J Opt

Soc Amer 61:586–594
Huard S (1997) Polarization of light. Wiley, New York
Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York
Lekner J (2001) TM, TE and ‘TEM’ beam modes: exact solutions and their problems. J Opt A:

Pure Appl Opt 3:407–412
Lekner J (2002) Phase and transport velocities in particle and electromagnetic beams. J Opt A:

Pure Appl Opt 4:491–499
Lekner J (2003) Polarization of tightly focused laser beams. J Opt A: Pure Appl Opt 5:6–14
Lekner J (2004a) Invariants of atom beams. J Phys B: At Mol Opt Phys 37:1725–1736
Lekner J (2004b) Invariants of electromagnetic beams. J Opt A: Pure Appl Opt 6:204–209
Lekner J (2004c) Invariants of three types of generalized Bessel beams. J Opt A: Pure Appl Opt

6:837–843
Lekner J (2007) Acoustic beam invariants. Phys Rev E 75:036610 (6 pp)
Lotsch HKV (1970) Beam displacement at total reflection: the Goos-Hänchen effect. Parts I to IV,

Optik 32:116–137, 189–204, 299–319 and 553–569
Nye JF (1999) Natural focusing and fine structure of light. Inst Phys Publishing, Bristol
Nye JF, Berry MV (1974) Dislocations in wave trains. Proc R Soc Lond A 336:165–190
Sheppard CJR, Saghafi S (1998) Beam modes beyond the paraxial approximation: a scalar

treatment. Phys Rev A 57:2971–2979
Snyder A W and Love J D (1983) Optical waveguide theory. Chapman and Hall, London
Swindell W (ed) (1975) Polarized light. In: Benchmark papers in optics, vol 1. Wiley

526 20 Finite Beams



Ulanowski Z, Ludlow IK (2000) Scalar field of nonparaxial Gaussian beams. Opt Lett 25:
1792–1794

Watson GN (1966) A treatise on the theory of Bessel functions, 2edn. Cambridge University Press,
Cambridge

White IA, Pask C (1977) Effect of Goos-Hänchen shifts on pulse widths in optical waveguides.
Appl Opt 16:2353–2355

Wolter H (1950) Untersuchungen zur Strahlversetzung bei Totalreflexion des Lichtes mit der
Methode der Minimumstrahlkennzeichnung. Z. Naturforschung 5a:143–153

Zangwill A (2013) Modern electrodynamics. Cambridge University Press, Cambridge

Further Readings

Additional references on beam shifts and related topics
Riesz RP, Simon R (1985) Reflection of a Gaussian beam from a dielectric slab. J Opt Soc Am

2A:1809–1817
Tamir T (1982) The lateral wave (Chapter 13), and Chen WP, Burstein E (1982) Narrow beam

excitation of electromagnetic modes in prism configurations (Chapter 14). In: Boardman AD
(ed) Electromagnetic surface modes. Wiley

White IA, Snyder AW, Pask C (1977) Directional change of beams undergoing partial reflection.
J Opt Soc Am 67:703–705

Section 20.1 is based on
Lekner J (2013) Universal properties of electromagnetic beams. In: PIERS Proceedings Taipei,

pp 464–469

References 527



Appendix
Reflection and Transmission Formulae

n1 ¼ ffiffiffiffi
e1
p

; n2 ¼ ffiffiffiffi
e2
p

; n1 sin h1 ¼ cK
x
¼ n2 sin h2;

q1 ¼ n1
x
c
cos h1; q2 ¼ n2

x
c
cos h2

Critical angle hc ¼ arcsin n2
n1
; q2 hcð Þ ¼ 0; cKc

x ¼ n2

swave

Ey x; z; tð Þ ¼ ei Kx�xtð ÞE zð Þ; d2E
dz2
þ q2E ¼ 0; q2 ¼ e

x2

c2
� K2 ¼ k2 � K2

eiq1zþ rs e�iq1z  E zð Þ ! ts eiq2t

pwave

By x; z; tð Þ ¼ ei Kx�xtð ÞB zð Þ; d
dz

1
e
dB
dz

� �
þ x2

c2
� K2

e

� �
B ¼ 0

eiq1z � rp e�iq1z  BðzÞ ! n2
n1

tp eiq2t

Step profile

rs0 ¼ q1 � q2
q1þ q2

; ts0 ¼ 2q1
q1þ q2

rp0 ¼ Q2 � Q1

Q2þQ1
;

n2
n1

tp0 ¼ 2Q1

Q1þQ2
; Q1 ¼ q1

e1
;Q2 ¼ q2

e2

hB ¼ arctan
n2
n1

;Q2
1 ¼ Q2

2 ¼
ðx=cÞ2
e1þ e2

¼ Q2
B; e1e2Q

2
B ¼ K2

B ¼
e1e2

e1þ e2

x
c

� �2

© Springer International Publishing Switzerland 2016
J. Lekner, Theory of Reflection, Springer Series on Atomic, Optical,
and Plasma Physics 87, DOI 10.1007/978-3-319-23627-8

529



General profile

q1 1� rj j2
� �

¼ q2 tj j2; q2t12 ¼ q1t21; r21 ¼ � t12
t�12

r�12

If FðzÞ and GðzÞ are solutions of the s-wave equation d2E
dz2 þ q2E ¼ 0 in the region

z1� z� z2, bounded by homogeneous media 1 and 2,

rs ¼e2iq1z1
q1q2 F1G2 � G1F2ð Þþ iq1 F1G

0
2 � G1F

0
2

� �þ iq2 F
0
1G2 � G

0
1F2

� �� ðF 01G02 � G
0
1F

0
2Þ

q1q2 F1G2 � G1F2ð Þþ iq1 F1G
0
2 � G1F

0
2

� �� iq2 F 01G2 � G01F2
� �þðF 01G02 � G01F

0
2Þ

ts ¼ ei q1z1�q2z2ð Þ2iq1ðF2G
0
2 � G2F

0
2Þ

q1q2 F1G2 � G1F2ð Þþ iq1 F1G
0
2 � G1F

0
2

� �� iq2 F 01G2 � G01F2
� �þðF 01G02 � G01F

0
2Þ

Glancing incidence: h1 ! p=2, q1 ! 0, rs ! �1; rp ! 1 (all profiles).
[For e continuous at z1 and z2 the p wave reflection and transmission amplitudes are
given by (2.40) and (2.41); discontinuities in e give formulae of the form (17.20)
and (17.21).]

Homogeneous layer, thickness Dz:

rs ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; r ¼ q1 � q

q1þ q
; r0 ¼ q� q2

qþ q2

ts ¼ eiðq1z1�q2z2Þ
1þ rð Þ 1þ r0ð ÞeiqDz

1þ rr0e2iqDz

rs ¼ e2iq1z1
q q1 � q2ð Þ cos qDzþ i q2 � q1q2ð Þ sin qDz
q q1þ q2ð Þ cos qDz� i q2þ q1q2ð Þ sin qDz

�rp ¼ e2iq1z1
rþ r0e2iqDz

1þ rr0e2iqDz
; r ¼ Q1 � Q

Q1þQ
; r0 ¼ Q� Q2

QþQ2
;Qi ¼ qi

ei
;Q ¼ q

e

n2
n1

tp ¼ eiðq1z1�q2z2Þ
1þ rð Þ 1þ r0ð ÞeiqDz

1þ rr0e2iqDz

�rp ¼ e2iq1z1
Q Q1 � Q2ð Þ cos qDzþ i Q2 � Q1Q2ð Þ sin qDz
Q Q1þQ2ð Þ cos qDz� i Q2þQ1Q2ð Þ sin qDz
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Equations for the reflection amplitudes

/ zð Þ ¼
Zz

dfq fð Þ; r0 ¼ q0

2q
e2i/ � r2e�2i/
� �

; rs  rðzÞ ! 0

rs ¼ �
Z1

�1
dz

q0

2q
e2i/ � r2e�2i/
� �

; rp ¼
Z1

�1
dz

Q
0

2Q
e2i/ � r2e�2i/
� �

Rayleigh or weak reflection approximation

rRs ¼ �
Z1

�1
dz

q0

2q
e2i/; rRp ¼

Z1

�1
dz

Q0

2Q
e2i/

Absorption

q2 ¼ qr þ iqi; q2r � q2i ¼
x2

c2
er � e1sin2h1
� �

; 2qrqi ¼ x2

c2
ei

cqr
x

� �2
¼ 1

2
er � e1 sin2 h1þ er � e1 sin2 h1

� �2þ e2i

h i1
2

	 

;

cqi
x
¼ ei=2

cqr=x

Qr ¼ erqr þ eiqi
e2r þ e2i

; Qi ¼ erqi � eiqr
e2r þ e2i

Rs ¼ q1 � qrð Þ2þ q2i
q1þ qrð Þ2þ q2i

; Rp ¼ Q1 � Qrð Þ2þQ2
i

Q1þQrð Þ2þQ2
i

Matrix methods

Enþ 1

Dnþ 1

� �
¼ cos dn q�1n sin dn
�qn sin dn cos dn

� �
En

Dn

� �
¼ Mn

En

Dn

� �
;

dn ¼ qn znþ 1 � znð Þ; D ¼ dE
dz

Bnþ 1

Cnþ 1

� �
¼ cos dn Q�1n sin dn
�Qn sin dn cos dn

� �
Bn

Cn

� �
;Qn ¼ qn

en
;C ¼ 1

e
dB
dz

M ¼ m11 m12

m21 m22

� �
¼ MNMN�1. . .Mn. . .M2M1

rs ¼ e2ia
qaqbm12þm21 � iqbm11þ iqam22

qaqbm12 � m21þ iqbm11þ iqam22
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ts ¼ eiða�bÞ
2iqa

qaqbm12 � m21þ iqbm11þ iqam22

�rp ¼ e2ia
QaQbm12þm21 � iQbm11þ iQam22

QaQbm12 � m21þ iQbm11þ iQam22

eb
ea

� �1=2

tp ¼ eiða�bÞ
2iQa

QaQbm12 � m21þ iQbm11þ iQam22

a ¼ qaz1; b ¼ qbzNþ 1

Periodically stratified media

M ¼ m11 m12

m21 m22

� �
; MN ¼ m11SN � SN�1 m12SN

m21SN m22SN � SN�1

� �

SN ¼ sinN/
sin/

; cos/ ¼ 1
2
trace M ¼ 1

2
m11þm22ð Þ ½detM ¼ 1�

rN ¼ SN�1
SN
¼ sin ðN � 1Þ/½ �

sinðN/Þ ¼ cos/� sin/ cotðN/Þ

rs ¼ q1q2m12þm21þ iq1ðm22 � rNÞ � iq2ðm11 � rNÞ
q1q2m12 � m21þ iq1ðm22 � rNÞþ iq2ðm11 � rNÞ

ts ¼ 2iq1S�1N

q1q2m12 � m21þ iq1ðm22 � rNÞþ iq2ðm11 � rNÞ

�rp ¼ Q1Q2m12þm21þ iQ1ðm22 � rNÞ � iQ2ðm11 � rNÞ
Q1Q2m12 � m21þ iQ1ðm22 � rNÞþ iQ2ðm11 � rNÞ

n2
n1

tp ¼ 2iQ1S�1N

Q1Q2m12 � m21þ iQ1ðm22 � rNÞþQ2ðm11 � rNÞ

Uniaxial anisotropy

q2o ¼ eo
x
c

� �2
�K2

qe values found by solving ecq
2þ 2acDeKqþ eaK

2 � eoee
x
c

� �2
¼ 0
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q� ¼ ��q� acKDe
ec

; �q2 ¼ eo
e2c

eeec
x
c

� �2
�eacK2

� �

ec ¼ eoþ c2De; ea ¼ eoþ a2De
eac ¼ eoþða2þ c2ÞDe ¼ eoþð1� b2ÞDe ¼ ee � b2De

(a; b; c are the direction cosines of the optic axis, relative to the laboratory coor-
dinate axes) General expressions for reflection and transmission amplitudes for an
isotropic|uniaxial boundary are given in Sect. 8.3.

Chiral isotropic media

D ¼ eEþ icH; B ¼ lH� icE; c ¼ kd=2pd

The plane of polarization rotates by d on passing normally through a chiral plate of
thickness d.

Plane wave eigenstate normal components

q2� ¼
ffiffiffiffiffi
el
p � cð Þ2x

2

c2
� K2 � k2� � K2; n� ¼ ffiffiffiffiffi

el
p � c � n� c

Reflection amplitudes at an achiral|chiral boundary

c1 ¼ cos h1; c� ¼ cos h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1 sin h1=n�ð Þ2

q
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el1=e1l

p

D ¼ c21þ
c1 cþ þ c�ð Þ mþm�1ð Þ

2
þ cþ c�

rss ¼ c21 �
c1 cþ þ c�ð Þ m� m�1ð Þ

2
� cþ c�

� �
=D

rpp ¼ � c21þ
c1 cþ þ c�ð Þ m� m�1ð Þ

2
� cþ c�

� �
=D
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Index

A
Absorbing film, 242
Absorbing medium, 234
Absorbing periodically stratified media, 332
Absorbing quarter-wave stack, 337
Absorbing stratified media, 295
Absorption, 233, 382
Achiral–chiral interface, 465
Acoustic beams, 449
Acoustic compressional waves, 419–451
Acoustic pressure, 419
Acoustic pulses, 448
Acoustic waves, 16
Ai(ζ), 162
Airy functions, 118
Airy’s equation, 162
Angular momentum flux density, 450
Angular momentum (pulses), 493
Anisotropic stratifications, 184
Anisotropy, 175–213
Antireflection coating, 57, 59
Attenuated total reflection, 249, 256

B
Band edges at oblique incidence, 325
Band gaps, 311
Basal plane, 198
Bateman’s integral solution, 490, 501
Beam invariants, 450, 502
Beltrami fields, 464
Bessel beams, 502
Bi(ζ), 162
Birefringence, 177
Boundary conditions (chiral media), 464
Bounds of uniaxial reflection amplitudes, 199
Bragg formula, 412
Bragg peaks, 413

Bremmer series, 151
Brewster angle, 9, 470

C
Calcite, 178
Calculation of wavefunctions, 306
Chiral index, 454
Chirality, 453
Chiral layer, 471
Circularly polarized beams, 525
Circular polarization, 458, 522
Clausius-Mossotti formula, 24
Coherent backscattering, 358
Comparison identities, 42, 145, 179, 247, 364
Compensator, 217
Conservation of angular momentum, 492, 504
Conservation of energy, 15, 43, 448, 489, 503,

504
Conservation of momentum, 492, 503
Constitutive relations (chiral media), 454
Corrugated surfaces, 343
Coupled first order equations, 115
Critical angle, 15, 20, 194, 393, 474

D
Degree of linear polarization, 522
Delta function potential, 487
Dielectric function profiles, 90
Dielectric layer on absorbing substrate, 241
Dielectric tensor, 191
Differential circular reflectance, 460
Differential equations for reflection amplitudes,

128
Differential linear reflectance, 460
Dipolar fields, 23
Direction cosines of optic axis, 193
Discontinuities in slope, 142
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Double exponential profile, 91
Double refraction, 177

E
Effective potential, 22
Eigenstates of curl, 463
Eigenvalue equation, 462
Electromagnetic beams, 499
Electromagnetic pulses, 477, 489
Ellipsometric measurements, 221
Ellipsometric ratio, 267, 517
Ellipsometry, 215

of homogeneous layer, 225
of uniaxial crystals, 228

Energy conservation, 316, 422, 459, 469
Energy-momentum inequalities, 491
Exp-exp stratification, 437, 439, 442, 447
Exp-lin stratification, 439
Exponential profile, 66, 137, 144, 156, 371
Extraction of the phase, 405
Extraordinary critical angle, 201
Extraordinary electric field, 195
Extraordinary ray, 196

F
Field eigenstates, 463
Flux conservation, 141
Focal plane zeros, 505
Form birefringence, 329
Four-tensor of angular momentum, 493
Fresnel formulae, 5, 9
Frustrated total reflection, 298

G
Gaussian beam, 512
General expressions for rs and rp, 46
Geometrical optics rays, 140
Goos-Hänchen effect, 507
Green, George, 18, 141
Green’s angle, 18, 20
Green’s function, 76, 85, 95, 150
Group delay time, 480
Group velocity, 388, 480

H
Helicity, 458, 493
Helicity amplitudes, 459, 469
Helmholtz equation, 499, 501
High-frequency (acoustic waves), 434
High-frequency waveforms, 139
High-low stack, 322
Homogeneous anisotropic film, 181
Homogeneous anisotropic media, 191

Homogeneous film between like media, 269
Homogeneous layer, 55, 91, 367, 400, 442, 517
Hulthén-Kohn variational method, 110
Hyperbolic tangent profile, 62, 91, 135, 148,

160, 164, 370, 398, 519

I
Impenetrable barrier, 485
Index matching, 178
Integral equation for r, 131
Integral invariant, 27, 81, 376
Internal reflection, 357
Invariants for six profiles, 92
Inversion, 265, 385

of reflection ellipsometric data, 272
of Rayleigh approximation, 276
of transmission ellipsometric data, 271

Ionosphere, 187
Isophase surfaces, 505
Isotropic layer on a uniaxial substrate, 209

J
JWKB, 141

K
k, K and q, 3

L
Lateral beam shift, 507
Laws of reflection and refraction, 3
Layer matrices, 287, 316
Linearly polarized beams, 523
Linear polarization, 522
Linear profile, 91, 117, 161, 369, 408
Liouville-Green waveforms, 141, 159, 265,

375, 380, 402, 434, 445
Liquid surfaces, 349
Lloyd mirror fringe intensity, 409
Lloyd’s mirror, 405
Localized electromagnetic pulses, 489
Long wave expansions, 26, 124, 376
Lorentz invariant, 490, 493
Lorentz-Lorenz formula, 24
Lorentz transformation of pulses, 495
Lorenz gauge, 500
Low-frequency acoustic waves, 431

M
Matrices relating fields and derivatives, 285
Matrices relating independent solutions, 281
Matrix method, 281, 425
Metallic reflectivities, 237
Mode matrix, 204
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Modulator, 219
Momentum flux density, 450
Multilayer dielectric mirrors, 317

at normal incidence, 290
Multiple scattering, 357

N
Neutron optics, 392
Neutron reflection by magnetic materials, 414
Neutron scattering and reflection, 21
Non-existence theorems, 504
Nonreflection of wavepackets, 481
Normal incidence on uniaxial plate, 205
Normal-incidence reflection and transmission,

202
Normal modes in uniaxial crystals, 192, 193
Null reflectivity (ellipsometry), 218
Numerical methods based on the layer

matrices, 301

O
Omnidirectional reflection by multilayer

dielectric mirrors, 323, 327
Optical activity, 453
Optic axis, 193
Optical potential, 383

P
Paraxial equation, 511, 512
Particle waves, 12, 14, 363
Periodic stratifications, 311, 410
Perturbation theory, 374

for short waves, 150
of reflection, 75

Phase matrix, 211
Phase shift on total reflection, 479, 517
Polarization of electromagnetic beams, 521
Polarizer–compensator–sample–analyser, 217,

223
Polarizer–modulator–sample–analyser, 219
Polarizer–sample–analyser, 215, 223
Polarizer–sample–compensator–analyser, 218,

224
Polarizer–sample–modulator–analyser, 221
Polarizing angle, 201, 461, 470
Premelting of ice, 209
Principal angle, 52, 221, 239
Principal angle of an absorber, 278
Principal coordinate system, 191
Probability density current, 43
Profiles with discontinuities, 400, 444
Profiles without discontinuities, 397
P wave, 6, 50
P wave layer matrix, 315

Q
Quantum particle wavepackets, 477
Quarter-wave stack, 317

R
Ray direction, 140, 177, 195
Rayleigh approximation, 29, 130, 276, 379,

435, 438
Rayleigh hypothesis, 348
Rayleigh profile, 68, 136, 143, 275, 372
Rayleigh roughness criterion, 342
Rayleigh’s second method, 346
Reciprocity theorems, 25, 44, 49, 421, 425, 427
Reflectance, 6, 288, 321
Reflection

and transmission amplitudes, 4, 456
by absorbing media, 240
by diffuse absorbing interface, 259
by layer between like media, 106
matrix, 204
of Gaussian beams, 511
of long waves, 75, 293
of wavepackets, 485

Reflectionless wavepackets, 482
Refractive index, 3, 14
Riccati equations, 115, 140
Rotation of the plane of

polarization, 455
Rotatory power, 453
Rough surfaces, 342
Rough surfaces that are wet, 356

S
Scattering and reflection, 20
Scattering length density, 392
Scattering length (neutrons), 392
Schrödinger’s equation, 12, 363
Schwinger variational theory, 96
Sech2 potentials, 481
Sech2 profile, 99, 273, 370
Semiclassical particle trajectories, 140
Short wavelength approximations, 380
Short wave results for rp and rp/rs, 152
Single exponential profile, 91
Single turning point total reflection, 159
Snell’s law, 3, 18, 364, 398, 420
Sound propagation, 16, 419
Square root singularity, 516, 520
Step profile, 6, 10, 98, 394, 414, 515
Stokes principle of reversion, 45

parameters, 522
Stop band, 292, 311, 319, 322, 410
Surface integral, 353
Surface waves, 249, 253, 349
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S wave, 2, 46, 313
to second order in interface thickness, 79

Symmetric stratifications, 52
Synthesis of a profile from r, 273

T
Tanh profile, 62, 91, 149, 259
TEþ iTM pulse, 494
Thin film

between like media, 88
on anisotropic substrate, 182
on isotropic substrate, 179

Thin inhomogeneous absorbing films, 245
Time delay, 477

in reflection of wavepackets, 387
Time reversal, 45
Total reflection, 15, 48, 61, 367, 485, 515
Trajectory of rp/rs, 238
Transmission ellipsometry, 222

with a polarization modulator, 225
Transmittance, 25, 288, 321, 421

of stratified medium, 295
Triple principal angles, 54
Tunneling, 166
Turning point, 159, 381
Two turning points, 166

U
Uniaxial layer, 211

Unimodularity, 427, 430
Unimodular matrices, 286, 304, 311
Universal properties, 448, 489, 499
Upper bound

on acoustic reflectivity, 441
on Rs and on Rp, 122

V
Variational estimate for rs, 98
Variational principle, 97, 111, 375
Variational theory for p wave, 103

W
Wave propagation in chiral media, 461
Weak reflection, 130, 435
Weak reflection approximation, 276, 379
WKB, 141
Wronskian, 49, 51, 420

X
X-ray reflection, 392

Z
Zero momentum frame, 489, 497
Zero reflection from dielectric layer, 262
Zeros of reflection amplitudes, 200
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