
Progress in IS

Coordination
in Large-Scale
Agile Software
Development

Alexander Scheerer

Integrating Conditions and Configurations
in Multiteam Systems

Progress in IS

More information about this series at http://www.springer.com/series/10440

Alexander Scheerer

Coordination in Large-Scale
Agile Software Development
Integrating Conditions and Configurations
in Multiteam Systems

123

Alexander Scheerer
SAP SE
Walldorf, Baden-Württemberg
Germany

ISSN 2196-8705 ISSN 2196-8713 (electronic)
Progress in IS
ISBN 978-3-319-55326-9 ISBN 978-3-319-55327-6 (eBook)
DOI 10.1007/978-3-319-55327-6

Library of Congress Control Number: 2017933555

This book is based on a doctoral thesis successfully defended at the Business School of the University of
Mannheim.
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The original version of the book was revised:
For detailed information please see erratum.
The erratum to this book is available at
DOI 10.1007/978-3-319-55327-6_6

v

Acknowledgements

This dissertation is the result of a successful cooperation between the research
group of Prof. Dr. Armin Heinzl at the Institute of Enterprise Systems, University of
Mannheim, Germany and SAP SE, Walldorf, Germany. Developing and writing
this book has been a challenging and enriching experience. I would like to thank
many people who have supported and accompanied me during this process.

First and foremost, I would like to thank my academic advisor Prof. Dr. Armin
Heinzl for giving me the support, the guidance and also the freedom to develop my
research ideas and skills in teaching. I deeply appreciate his encouragement and
support to present at international conferences and to develop my work during a
research stay abroad with Dr. Rashina Hoda at the University of Auckland.

This dissertation project would not have been possible without the amazing
support I received from colleagues at SAP SE. Through innumerable discussions,
interviews and workshops I had the unique opportunity to study agile software
development with and from experts in the field. My special thanks goes to Tobias
Schimmer (né Hildenbrand), who has been invaluable in this research endeavor. He
has always been an encouraging and highly supportive mentor throughout this
journey. Martin Fassunge, Juergen Heymann, Michael Römer and Joachim Schnitter
guided me through the world of software development at SAP SE. Without their
support, the successful completion of this joint research project would not have been
possible. Furthermore, I would like to thank Behnaz Gholami, Herbert Illgner, Roger
Kilian-Kehr, Günter Pecht-Seibert, Felix Maximilian Roth, Sarah Träutlein and Dirk
Völz at SAP SE for their support. Furthermore, the empirical study would not have
been possible without the support of more than 90 colleagues who were willing to be
interviewed for my research on top of their daily work.

While working on my dissertation, I had the opportunity to collaborate with a
great team of colleagues at the Chair of General Management and Information
Systems. The ongoing exchanges about our work and beyond was all-important to
this journey. Through this time spent together I was fortunate enough to have
gained many a friend. My very special thanks goes to Okan Aydingül, Saskia Bick,
Jens Förderer, Erik Hemmer, Lars Klimpke, Tommi Kramer, Thomas Kude,

vii

Miroslav Lazic, Nele Lüker, Tillmann Neben, Marko Nöhren, Sven Scheibmayr,
Kai Spohrer, Christoph Schmidt, Sebastian Stuckenberg and Aliona von der
Trenck. I would also like to thank the chair’s assistants Luise Bühler and Ingrid
Distelrath as well as the student assistants, Stefan Eckhardt, Alexandra Lang, Lea
Offermann and Martin Pfannemüller.

My deepest gratitude goes to my family, who have given me the utmost of
encouragement and advice, especially to Saskia for her unceasing patience and my
parents, who have always given me unconditional support in all aspects of life.

Mannheim, Germany Alexander Scheerer
December 2016

viii Acknowledgements

Contents

1 Introduction . 1
1.1 Problem Statement . 1
1.2 Research Questions and Objectives . 3
1.3 Research Design and Organization . 4
References. 5

2 Theoretical and Conceptual Foundations . 7
2.1 Coordination . 7

2.1.1 Coordination in Organizational Theory 8
2.1.2 Coordination Theory . 10
2.1.3 Coordination in Team Cognition Studies 11
2.1.4 Outcomes and Conditions of Coordination 12
2.1.5 Summary. 14

2.2 Teams and Multiteam Systems . 14
2.3 Agile Software Development . 16

2.3.1 The Scrum Framework . 18
2.3.2 Agile Software Development on the Team Level 21
2.3.3 Industrial Frameworks for Large-Scale Agile

Development . 23
2.3.4 Agile Software Development on the Multiteam System

Level . 26
2.4 Prior Work on Coordination in Multiteam

Systems and Large-Scale Agile Development. 27
2.4.1 Coordination in Multiteam Systems 27
2.4.2 Coordination in Large-Scale Agile Development 28

2.5 Research Framework . 29
References. 32

ix

3 Research Design . 39
3.1 Research Context . 39

3.1.1 Organizational Context . 40
3.1.2 Embedded Research Setup . 40

3.2 Selection of a Research Strategy. 41
3.3 Specification of the Case Study Strategy . 42
3.4 Data Collection and Analysis Procedure . 44

3.4.1 Data Collection . 44
3.4.2 Analysis of Process Changes. 45

References. 47

4 Case Study Results on Coordination in Multiteam Systems 49
4.1 Single-Case Analysis . 49

4.1.1 Case Alpha . 50
4.1.2 Case Beta . 62
4.1.3 Case Gamma. 72
4.1.4 Case Delta. 78
4.1.5 Case Epsilon . 85

4.2 Cross-Case Analysis . 90
4.2.1 Imbalances of Integrating Conditions 90
4.2.2 Deriving Instantiations of Coordination Configurations 92
4.2.3 Analysis of the Relationship Between Integrating

Conditions and Coordination Configurations 95
4.2.4 Analysis of the Relationship Between the Coordination

Configuration Dimensions and the Integrating
Conditions. 98

4.2.5 Temporal Analysis of Integrating Conditions
and Coordination Configurations. 99

4.2.6 Stereotypes of Multiteam Systems. 105
References. 106

5 Discussion and Summary . 107
5.1 Summary of the Findings . 107
5.2 Theoretical Contributions . 109
5.3 Practical Contributions . 112
5.4 Limitations of the Study and Future Research 113
5.5 Summary . 114
References. 116

Erratum to: Coordination in Large-Scale Agile Software
Development . E1

Appendix . 119

x Contents

Abbreviations

APO Area Product Owner
Arch Architect
CPO Chief Product Owner
DSDM Dynamic Systems Development Method
IC Integrating Condition
IS Information Systems
IT Information Technology
LeSS Large-Scale Scrum Framework
MTS Multiteam System
PO Product Owner
RUP Rational Unified Process
SAFe Scaled Agile Framework
SM Scrum Master
UI User Interface
XP Extreme Programming

xi

List of Figures

Figure 1.1 Research Organization . 4
Figure 2.1 Research Framework . 30
Figure 4.1 Process visualization key . 50
Figure 4.2 Alpha inter-team task dependencies. 53
Figure 4.3 Alpha-P1 process. 56
Figure 4.4 Alpha-P2 process. 57
Figure 4.5 Alpha-P3 process. 58
Figure 4.6 Alpha-P4 process. 59
Figure 4.7 Alpha-P5 process. 60
Figure 4.8 Alpha-P6 process. 61
Figure 4.9 Alpha-P7 process. 62
Figure 4.10 Beta inter-team task dependencies . 64
Figure 4.11 Beta-P1 process . 67
Figure 4.12 Beta-P2 process . 68
Figure 4.13 Beta-P3 process . 69
Figure 4.14 Beta-P4 process . 70
Figure 4.15 Beta-P5 process . 71
Figure 4.16 Beta-P6 process . 72
Figure 4.17 Beta-P7 process . 73
Figure 4.18 Gamma inter-team task dependencies 75
Figure 4.19 Gamma-P1 process . 76
Figure 4.20 Gamma-P2 process . 78
Figure 4.21 Gamma-P3 process . 79
Figure 4.22 Delta intra-team task dependencies . 81
Figure 4.23 Delta-P1 process . 83
Figure 4.24 Delta-P2 process . 84
Figure 4.25 Delta-P3 process . 85
Figure 4.26 Epsilon inter-team task dependencies 87
Figure 4.27 Epsilon-P1 process . 88
Figure 4.28 Epsilon-P2 process . 89
Figure 4.29 Miniature representation of the coordination configuration . . . 94

xiii

Figure 4.30 Coordination configurations leading to integrating
conditions . 94

Figure 4.31 Coordination configurations leading to integrating
conditions across all cases . 96

Figure 4.32 Analysis of organic versus mechanistic coordination
configurations leading to integrating conditions. 99

Figure 4.33 Analysis of autonomous versus participatory versus
prescriptive coordination configurations leading to
integrating conditions . 100

Figure 4.34 Coordination configurations leading to integrating
conditions split into process steps for cases
alpha and beta . 101

Figure 4.35 Coordination configurations leading to integrating
conditions split into process steps for cases gamma
and delta . 102

Figure 4.36 Coordination configurations leading to integrating
conditions split into process steps for case epsilon
and all cases . 103

Figure 4.37 Three stereotypes of multiteam systems. 104
Figure 5.1 Process leading to a change in the coordination

configuration . 108

xiv List of Figures

List of Tables

Table 2.1 Definitions of coordination . 8
Table 2.2 Dependencies and examples of coordination processes 10
Table 2.3 Definitions of integrating conditions for coordinated

action . 14
Table 2.4 Traditional versus agile software development 17
Table 2.5 Definitions of large-scale agile development 24
Table 3.1 Overall multiteam system demographics 43
Table 3.2 Definitions of graph parameters . 46
Table 4.1 Case alpha characteristics . 51
Table 4.2 Case alpha graph parameters. 54
Table 4.3 Case beta characteristics . 63
Table 4.4 Case beta graph parameters. 65
Table 4.5 Case gamma characteristics. 73
Table 4.6 Case gamma graph parameters . 75
Table 4.7 Case delta characteristics. 80
Table 4.8 Case delta graph parameters . 82
Table 4.9 Case epsilon characteristics . 86
Table 4.10 Case epsilon graph parameters . 87
Table 4.11 Descriptive values integrating conditions 91
Table 4.12 Lack of integrating conditions appearing together. 93

xv

Chapter 1
Introduction

Software is like entropy. It is difficult to grasp, weighs nothing,
and obeys the second law of thermodynamics; i.e. it always
increases.

—Norman Ralph Augustine

1.1 Problem Statement

Software has permeated every aspect of modern life. Human kind flew to the moon
on 140,000 lines of source code1 and yet, when you wake up in the morning and put
on your smartwatch, more than 10 million lines of code have just been strapped to
your wrist. The same goes for the smartphone that happens to be buried somewhere
in your bag; 12+ million lines of code in your pocket. The plane on route to your
vacation destination will be hurling you and 14+ million lines of code through the
air. These magnitudes are already impressing, and yet a quick ‘like’ on your
favorite social network will be powered by 61+ million lines of code2 and the pair
of socks you have just bought at the retailer of your choice will fire off data into an
enterprise system consisting of more than 400 million lines of code.3 To put these
numbers into perspective, one million lines of code printed out, would cover 18,000
pages and equals about 14 copies of War and Peace.4 The development of such
massive and complex software involves equally substantial and complex organi-
zations whose members need to be carefully coordinated.

For a long time, the prevalent approach to develop large software products has
been to minimize risk by intense upfront planning and rigid stage-gated processes
and structures. As the years went by, this led to a long time-to-market and inflexible
requirements management, which prevented quick reactions to changing customer
wishes (Mackert et al. 2010).

1http://www.itworld.com/article/2725085/big-data/curiosity-about-lines-of-code.html.
2http://www.informationisbeautiful.net/visualizations/million-lines-of-code/.
3http://blogs.gartner.com/robert-anderson/2015/06/10/musings-sapphire-now-2015/.
4War and Peace by Leo Tolstoy, first published in 1869 with 1225 pages.

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_1

1

http://www.itworld.com/article/2725085/big-data/curiosity-about-lines-of-code.html
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://blogs.gartner.com/robert-anderson/2015/06/10/musings-sapphire-now-2015/

The introduction of more lightweight development methods in the middle of the
1990s can be seen as a countermovement to this very heavyweight approach. Their
flexibility and adaptability has let them become a de facto standard in large parts of
many software organizations of different sizes (VersionOne Inc. 2012; West et al.
2010).

As the origins of agile development lie in small settings with a limited amount of
developers, many of these approaches have been regarded in light of small com-
panies, single team settings, or student developer teams. However, these develop-
ment methods have increasingly gained prominence in large-scale settings as well
(e.g. Begel and Nagappan 2007; Fry and Greene 2007; Nerur et al. 2005). When
moving into the context of large development efforts, new challenges specific to
those settings arise as the higher number of people contributing to these large
development projects need to be carefully coordinated (Shepperd 1993). Such
development efforts usually follow the general movement in new product devel-
opment of team-based organizations (Kozlowski and Bell 2003) and result in a team
of teams setup (Larman and Vodde 2008), where several teams have to work
together on a single software product.

This organizational setup has been defined as a multiteam system (MTS), which
is a setting of multiple teams working jointly and interdependently towards col-
lective goals (Mathieu et al. 2001).

Literature on coordination would suggest a more top-down planning approach to
coordination in such large-scale settings (cf. Van De Ven et al. 1976). Yet, agile
development methods focus on a strong bottom-up adjustment style of coordina-
tion. The combination of these two opposing strategies seems contradicting.
Nonetheless, the primarily knowledge-intensive tasks in software development
must be coordinated across different organizational levels, which includes
bottom-up approaches to make use of specialized knowledge and top-down
strategies to create efficiency within the system. One the one hand, this clearly calls
for a setting where both coordination strategies are necessary. On the other hand,
however, two shortcomings become evident.

First, the two mentioned coordination approaches are often presented as two
stereotypes, which in fact represent the two extremes of a broad spectrum, com-
binations of which have barely been looked at. Second, the classical coordination
approaches are usually viewed as static or situational characteristics of a (multi-
team) system, despite the fact that these coordination mechanisms are being applied
over time. For example, in a bottom-up approach to coordination teams apply
certain collaborative and iterative methods and tools to provide feedback to higher
organizational levels as well as to their collaborating teams and thereby actually
undergo a time-dependent process of coordination. That is, the applied coordination
approach within a system of actors is conceptualized as a characterization of this
system, rather than seen as a dynamic process of change. Conceptualizing coor-
dination as a change process, which can, if answering a disruptive situation, make
use of several different coordination mechanisms depending on the environmental
situation, is a view independent of a system’s basic coordination strategy.

2 1 Introduction

The call for more research on inter-team coordination in large-scale agile soft-
ware development systems has only recently started to emerge. Dingsøyr and Moe
(2013, 2014) present a research agenda with the topic of inter-team coordination
ranked as number one. This research intends to answer their call and shed light on
coordination in large-scale agile software development.

1.2 Research Questions and Objectives

Previous studies revealed that a thorough theoretical understanding in the field of
agile software development is lacking and have called for more studies on the
underlying fundamental concepts in this field (Abrahamsson et al. 2009; Ågerfalk
et al. 2009; Dybå and Dingsøyr 2008). More precisely, there is not only a lack of
research on large-scale agile software development in general and the ongoing
processes in particular, but there is also close to no research on coordination on an
inter-team level which has led to several calls for research (Dingsøyr and Moe
2013, 2014). To characterize the existing coordination processes in these multiteam
systems, a coordination configuration was developed with the dimensions coordi-
nation type, locus and direction. The enactment of a specific coordination config-
uration enables the emergence of particular integrating conditions for coordinated
action, which in turn leads to a state of coordinated action. This research project
intends to advance the understanding of coordination in agile multiteam software
development systems by answering the central research question via two sub
questions:

How do changes in the coordination configuration affect the integrating conditions for
coordination in multiteam software development systems?

(1) Why does the coordination configuration change?
(2) How are the integrating conditions for coordination attained?

The results that aim to answer these research questions are expected to be of
interest for both research and practice. This study is among the first to investigate
large agile multiteam software development systems from a coordination per-
spective and thereby seeks to substantially advance the understanding of inter-team
coordination in large-scale agile settings (Dingsøyr and Moe 2013, 2014). In doing
so, this study seeks to contribute to the two main areas described above: large-scale
agile software development and inter-team coordination. By examining different
multiteam systems in the field, this study shall improve the understanding of dif-
ferent scaling approaches within large-scale agile software development in real life
settings. Among the studies on coordination, this research is one of the first to
investigate the underlying factors, which are considered to be necessary conditions
for coordinated action. In regarding these conditions that separate the mechanisms
of coordination from the coordinated action they achieve, a deeper understanding of
detailed coordination processes and the inherent process changes is sought. Finally,
the study results should provide practitioners with a guideline to evaluate

1.1 Problem Statement 3

coordination practices in large-scale agile development settings and act as a
foundation for evidence-based management of software products.

1.3 Research Design and Organization

This study follows a qualitative case study approach (Eisenhardt 1989) sometimes
referred to as soft positivism (Kirsch 2004; Madill et al. 2000). This allowed the
data analysis to be performed with certain expectations based on prior theory, but at
the same time permitted unexpected results and explanations to be derived from the
data, an approach closer to the interpretivist paradigm.

Research in the field of agile software development is considered to be at an
intermediate state (Dybå and Dingsøyr 2008). Based on this assessment, a quali-
tative case study approach (Yin 2009) seems particularly fitting as the research
phenomenon is not supported by a strong theoretical base (Benbasat et al. 1987).
Similarly, Edmondson and McManus (2007) suggest an exploratory qualitative
approach for research areas in a nascent theoretical state.

The research is structured along two stages (see Fig. 1.1). In the first stage, a
deductive approach was taken through a review of the literature on coordination and
agile development, which led to the construction of a research framework. In the
second stage, a multiple case study was conducted with a process theoretical
approach (Markus and Robey 1988; Mohr 1982) as this research project intends to
achieve more explanatory power through a time-based view. In line with Lyytinen
and Newman (2006, 2008), who propose interviews, observations and document
analysis as principal data collection for process models, an exploratory multiple
case study with five MTSs and a total of 66 interviewees was undertaken.

This thesis is structured into five main chapters. Having introduced the study in
the current chapter, Chapter 2 presents the foundations of coordination research,
teams and multiteam systems, agile software development and prior work on

Deductive Approach
• Review of coordination literature
• Review of large-scale agile literature

• Analysis of Coordination Configurations
and Integrating Conditions

• Temporal Analysis
• Stereotypes of Multiteam Systems

Research Framework

Multiple Case Study
• Interviews, archival data, project

management data

Stage 1

Stage 2

• Team Dependency Networks
• Empirical Process Models
• Scaling Approaches in Large-Scale Agile

Fig. 1.1 Research Organization

4 1 Introduction

http://dx.doi.org/10.1007/978-3-319-55327-6_2

coordination in multiteam systems, as well as large-scale agile development that act
as the groundwork from which the research framework is constructed. Chapter 3
describes the context of this study as well as the employed research data collection
and analysis methods used herein. Chapter 4 provides the findings of the multiple
case study conducted, starting with the single-case and continuing with the
cross-case analyses of the five cases. Chapter 5 summarizes the study results and
discusses the theoretical and practical contributions. This last chapter closes with
limitations and future work as well as the concluding remarks.

References

Abrahamsson, P., Conboy, K., & Wang, X. (2009). “Lots done, more to do”: The current state of
agile systems development research. European Journal of Information Systems, 18(4), 281–284.
Retrieved from http://www.palgrave-journals.com/ejis/journal/v18/n4/abs/ejis200927a.html

Ågerfalk, P. J., Fitzgerald, B., & Slaughter, S. (2009). Flexible and distributed information systems
development: State of the art and research challenges. Information Systems Research, 20(3),
317–328.

Begel, A., & Nagappan, N. (2007). Usage and perceptions of agile software development in an
industrial context: An exploratory study. In International Symposium on Empirical Software
Engineering and Measurement (pp. 255–264). IEEE Computer Society. Retrieved from http://
doi.ieeecomputersociety.org/10.1109/ESEM.2007.12

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of
information systems. MIS Quarterly, 11(3).

Dingsøyr, T., & Moe, N. B. (2013). Research challenges in large-scale agile software
development. ACM SIGSOFT Software Engineering Notes, 38(5), 38–39. Retrieved from
http://dl.acm.org/citation.cfm?id=2507288.2507322

Dingsøyr, T., & Moe, N. B. (2014). Towards principles of large-scale agile development. In T.
Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile methods.
Large-scale development, refactoring, testing, and estimation (Vol. 199, pp. 1–8). Springer
International Publishing. Retrieved from http://www.springer.com/computer/swe/book/978-3-
319-14357-6

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9–10), 833–859. Retrieved from http://
linkinghub.elsevier.com/retrieve/pii/S0950584908000256

Edmondson, A. C., & McManus, S. E. (2007). Methodological fit in management field research.
The Academy of Management Review, 32(4), 1155–1179.

Eisenhardt, K. M. (1989). Building theories from case study research. The Academy of
Management Review, 14(4), 532–550. Retrieved from http://www.jstor.org/stable/258557

Fry, C., & Greene, S. (2007). Large scale agile transformation in an on-demand world. In
Proceedings of the AGILE Conference 2007 (pp. 136–142). Washington, DC.

Kirsch, L. J. (2004). Deploying common systems globally: The dynamics of control. Information
Systems Research, 15(4), 374–395.

Kozlowski, S. W. J., & Bell, B. S. (2003). Work groups and teams in organizations.
In W. C. Borman, D. R. Ilgen, & R. J. Klimoski (Eds.), Handbook of psychology:
Industrial and organizational psychology (Vol. 12, pp. 333–375). New York: Wiley.

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational
tools for large-scale Scrum. Upper Saddle River, NJ: Addison-Wesley Professional.

1.3 Research Design and Organization 5

http://dx.doi.org/10.1007/978-3-319-55327-6_3
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_5
http://www.palgrave-journals.com/ejis/journal/v18/n4/abs/ejis200927a.html
http://doi.ieeecomputersociety.org/10.1109/ESEM.2007.12
http://doi.ieeecomputersociety.org/10.1109/ESEM.2007.12
http://dl.acm.org/citation.cfm?id=2507288.2507322
http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://www.jstor.org/stable/258557

Lyytinen, K., & Newman, M. (2006). Working papers on information systems punctuated
equilibrium, process models and information system development and change : Towards a
socio-technical process analysis. Sprouts: Working Papers on Information Systems, 6(2006),
1–49. Retrieved from http://sprouts.aisnet.org/46/1/060101_.pdf

Lyytinen, K., & Newman, M. (2008). Explaining information systems change: A punctuated
socio-technical change model. European Journal of Information Systems, 17(6), 589–613.
Retrieved from http://www.palgrave-journals.com/ejis/journal/v17/n6/abs/ejis200850a.html

Mackert, O., Hildenbrand, T., & Podbicanin, A. (2010). Vom Projekt zum Produkt - SAP’s Weg
zum “Lean Software Product Development.” In Vom Projekt zum Produkt. Fachtagung des
GI-Fachausschusses Management der Anwendungsentwicklung und -wartung im Fachbereich
Wirtschaftsinformatik (WI-MAW), 01.-03. Dezember 2010 in Aachen (pp. 13–25).

Madill, A., Jordan, A., & Shirley, C. (2000). Objectivity and reliability in qualitative analysis:
Realist, contextualist and radical constructionist epistemologies. British Journal of Psychology,
91(1), 1–20. Retrieved from http://dx.doi.org/10.1348/000712600161646

Markus, M. L., & Robey, D. (1988). Information technology and organizational change: Causal
structure in theory and research. Management Science, 34(5), 583–598. Retrieved from http://
www.jstor.org/stable/10.2307/2632080

Mathieu, J. E., Marks, M. A., & Zaccaro, S. J. (2001). Multiteam systems. In N. Anderson,
D. S. Ones, H. K. Sinangil, & C. Viswesvaran (Eds.), Handbook of industrial, work and
organizational psychology, Volume 2 Organizational psychology (Vol. 2, pp. 289–313).
London: Sage Publications Ltd.

Mohr, L. B. (1982). Explaining organizational behavior. San Francisco: Jossey-Bass.
Nerur, S. P., Mahapatra, R. K., & Mangalaraj, G. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM, 48(5), 72–78.
Shepperd, J. a. (1993). Productivity loss in performance groups: A motivation analysis.

Psychological Bulletin, 113(1), 67–81.
Van De Ven, A. H., Delbecq, A. L., & Koenig, R. J. (1976). Determinants of coordination modes

within organizations. American Sociological Review, 41(2), 322–338. Retrieved from http://
www.jstor.org/stable/2094477

VersionOne Inc. (2012). 7th Annual State of Agile Development Survey. Retrieved from http://
www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

West, D., Grant, T., Gerush, M., & D’Silva, D. (2010). Agile development: Mainstream adoption
has changed agility. Forrester Research.

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage Publications, Inc.

6 1 Introduction

http://sprouts.aisnet.org/46/1/060101_.pdf
http://www.palgrave-journals.com/ejis/journal/v17/n6/abs/ejis200850a.html
http://dx.doi.org/10.1348/000712600161646
http://www.jstor.org/stable/10.2307/2632080
http://www.jstor.org/stable/10.2307/2632080
http://www.jstor.org/stable/2094477
http://www.jstor.org/stable/2094477
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

Chapter 2
Theoretical and Conceptual Foundations

The theoretical foundations outline extant literature on coordination as well as on
agile software development. To provide a basis for agile development on a large
scale, first the underlying core concepts of coordination and agile software devel-
opment on a small scale are presented before delving into prior work on coordi-
nation in multiteam systems and large-scale agile software development.

2.1 Coordination

Coordination is a multi-faceted research area, which takes its inputs from a variety
of fields including but not limited to organizational theory and teamwork studies.
Before the following chapter gives an overview of the different facets of coordi-
nation, different definitions of coordination will be discussed.

Across the different fields, there exist many definitions of coordination.
Table 2.1 gives an overview. While covering a wide array of research interests,
three common aspects within the definitions become apparent. The first refers to the
actors who need to work together, the second being the work, which is interde-
pendent, and thirdly a goal in the form of a piece of work, which is achieved
(Okhuysen and Bechky 2009). In the context of software development, coordina-
tion can be viewed as the establishment of common understanding on what should
be built, how to build it as well as alignment and integrating activities (Kraut and
Streeter 1995). In its purest form, coordination is the “achievement of concerted
action” (Kotlarsky et al. 2008, p. 96). It is this definition that will be adopted in this
work.

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_2

7

2.1.1 Coordination in Organizational Theory

The study of coordination in organizational theory has a long and rich history. In
the classical work from March and Simon (1958), the two prominent schools of
thought of the time are presented: scientific management (Taylor 1911) and the
administrative management school (Gulick and Urwick 1937). Scientific manage-
ment deals with the analysis and management of workflows, especially of routine
production tasks, and seeks to create prescribed operating procedures for effec-
tiveness in organizations (Tosi 2008). The departmentalization model of the
administrative school seeks to achieve organizational goals by examining how to
organize jobs into components within the organization (e.g. grouping by common
purpose or by common processes).

March and Simon (1958) criticized both streams because of their lack of
appreciation for the human factor. They distinguished two main types of coordi-
nation: (1) coordination by plan and (2) coordination by feedback. In standardized
and repetitive situations, the tasks become “programmable” through scheduling and
are thus best coordinated by plan. If the circumstances require the diffusion of new
information, coordination by feedback seems better suited. Feedback, being based
on communication between employees, is also seen as a way to deal with deviations
from the plan (March and Simon 1958).

Several years later, Thompson (1967) published his seminal work in which he
cites March and Simon (1958) and presents three generic forms how coordination
can be achieved. Based on the type of interdependence, an appropriate method of
coordination is proposed. Three types of interdependencies are illustrated,
(1) pooled or general, (2) sequential and (3) reciprocal. The pooled dependency,
being the least coupled of all, arises when units within an organization accomplish
completely separate tasks and do not need to interact. In the end, each business unit
performs its part in the overall picture of the organization, which creates an implicit

Table 2.1 Definitions of coordination

Definition Authors

Coordination is the achievement of concerted action Kotlarsky et al. (2008, p. 96) citing
Goodhue and Thompson (1995)

Coordination means integrating or linking together
different parts of an organization to accomplish a
collective set of tasks

Van De Ven et al. (1976, p. 322)

Coordination is managing dependencies between
activities

Malone and Crowston (1994, p. 90)

Different people working on a common project agree
to a common definition of what they are building,
share information, and mesh their activities

Kraut and Streeter (1995, p. 69)

A temporally unfolding and contextualized process
of input regulation and interaction articulation to
realize a collective performance

Faraj and Xiao (2006, p. 1157)

8 2 Theoretical and Conceptual Foundations

dependency to the other entities. The second dependency type, sequential, arises
when one unit depends on the output of another to continue its work. A typical
example for this is the production assembly line, where each consecutive step needs
the input from the previous one. Finally, reciprocal dependency is the strongest
form of coupling and occurs when input and output flow in both directions
simultaneously between the dependent units (Thompson 1967).

Thompson (1967) suggests an appropriate coordination style for each type of
task interdependency. As such, a pooled or generalized interdependence should be
coordinated by standardization with little communication and decision effort. The
sequential dependency type is best coordinated by planning and requires medium
effort for communication and decision-making. The final type of dependency,
reciprocal, should be coordinated by mutual adjustment, which is based on March
and Simon’s (1958) coordination by feedback. This coordination type is most
challenging with regards to communication and decision efforts (Thompson 1967).

Van De Ven et al. (1976) considered three modes of coordination based on the
work of March and Simon (1958) and Thompson (1967), namely impersonal,
personal and group coordination. They argue that all coordination types in the form
of programming, e.g. plans, rules and hierarchies (see Kieser 1993), can be grouped
in the impersonal mode. The feedback or mutual adjustment type can be divided
into personal and group modes, depending on the number of people involved.
Furthermore, the personal mode includes either horizontal or vertical channels, up
or down the hierarchy or across hierarchical levels, through which communication
occurs. The group mode can be split into scheduled or unscheduled meetings of
several people. In their study, Van De Ven et al. (1976) identified which factors
influence the choice of coordination mechanisms. Three factors were chosen: task
uncertainty, task interdependence and size of work unit (i.e. number of people
employed in a work unit). They found that higher task uncertainty leads to higher
use of mutual adjustment through horizontal channels and group meetings. With
rising task interdependence, the amount of coordination mechanisms across all
three modes rises as well. Finally, a higher unit size induces the use of more
impersonal modes in the form of plans.

Mintzberg (1980) introduces five coordination mechanisms: (1) direct supervi-
sion, (2) standardization of work processes, (3) standardization of outputs, (4) skills
and (5) mutual adjustment. Coordination via direct supervision entails one indi-
vidual giving specific orders to others and thereby ensuring coordination.
Standardization of work processes involves the regulation of how the work is done
by rules or regulations, while the standardization of outputs specifies performance
measures or work outputs. Through a set of standard expertise and knowledge, the
standardization of skills is achieved. Finally, coordination by mutual adjustment
includes communication by informal means among people (Mintzberg 1980).
Concerning the location of coordination within organizations, Mintzberg (1980)
advances the concept of centralization or decentralization of decision making
within the firm boundaries as a key determinant of organizational structure.

2.1 Coordination 9

This chapter has reviewed key works in organizational theory relating to coor-
dination and the mechanisms used to achieve it. The next chapter will delve deeper
into what is known as coordination theory (Malone and Crowston 1990, 1994).

2.1.2 Coordination Theory

Proposed by Malone and Crowston (1990), the main focus of their work lies on the
analysis of coordination with respect to actors, interdependent activities and goals
(Malone and Crowston 1994). The naming of this stream of literature is misleading,
as the work published does not conform to the longstanding discussion on what
constitutes a theory (Bacharach 1989; Sutton and Staw 1995). Bacharach (1989)
pointed out based on Hempel (1965), that “the vocabulary of science has two basic
functions: (a) to adequately describe the objects and events being investigated and
(b) to establish theories by which events and objects can be explained and pre-
dicted” (Bacharach 1989, p. 496). While the work published on this topic (cf.
Malone et al. 2003; Malone and Crowston 1991, 1994) can be seen as fulfilling
function (a) since it describes dependency types and in parts how these interde-
pendencies should be coordinated, no predictive power arises as no hypotheses or
propositions are stated.

The types of dependencies considered by Malone et al. (1999) exist between
resources and activities. Three basic types of dependencies that ensue from
resources being associated with multiple activities are defined. The fit dependency
occurs when several activities collectively produce a single resource. The manu-
facturing industry shows several examples of such dependencies, e.g. the produc-
tion of cars or planes where several components need to be integrated to eventually
form a complete product. The flow dependency occurs whenever a resource is
produced by one activity, which is then the input to another. According to Malone
et al. (1999), the flow dependency is comprised of three different kinds of con-
straints, a prerequisite, an accessibility and a usability constraint. All of these
dependencies must be managed for a flow dependency, e.g. the right thing (us-
ability) needs to be in the right place (accessibility) at the right time (prerequisite).
Finally, a sharing dependency arises when several activities all use the same
resource, i.e. the use of the same machine in several production processes.

More examples of dependency types that are given by Malone and Crowston
(1994) are listed in Table 2.2. Here, the producer-consumer dependency is

Table 2.2 Dependencies and examples of coordination processes

Dependency Examples of coordination processes

Producer-consumer (flow) Sequencing and tracking for prerequisite constraints
Inventory management for accessibility constraints
Standardization for usability constraints

Task-subtask Goal selection, goal decomposition

Based on Malone and Crowston (1994)

10 2 Theoretical and Conceptual Foundations

characterized by an activity producing a resource that is consumed by another
activity, essentially the same as a flow dependency mentioned earlier. Exemplary
coordination processes for managing such a dependency are sequencing and
tracking for a prerequisite constraint, an inventory management for the accessibility
constraint and lastly standardization for the usability constraint.

Malone and Crowston (1994) propose that the management of task-subtask
dependencies can be achieved by the coordination processes goal selection and
decomposition. An often found dependency, the task-subtask dependency, repre-
sents a situation where an overall goal includes a group of subtasks, which need to
be completed in order to achieve the higher goal. A top-down goal decomposition
can be utilized to manage task-subtask dependencies. Although this type of
dependency is usually managed through a sequential process of goal selection and
decomposition, it is entirely possible that a bottom-up identification of goals is
achieved when employees recognize that tasks they are doing or new ideas they
have could lead to new goals in line with the overall goal (Malone and Crowston
1994).

As mentioned earlier, no predictive or explanatory power arises from this work.
In its current state it is deemed more of a pattern model (Crowston et al. 2006).
Furthermore, issues of context and time are not taken into consideration. The
diverse range of previous work on the topic of coordination (cf. Okhuysen and
Bechky 2009) shows the necessity to include the context into any contemplation on
the subject. Especially aspects of time are of great significance, as coordination is
considered to be a temporally enfolding phenomenon (see Table 2.1).

Within the area of team cognition studies, coordination of individual team
members has been a long-standing topic of interest. In the next chapter, aspects of
coordination within this research stream will be presented.

2.1.3 Coordination in Team Cognition Studies

Within the research field of team cognition studies, which covers established
concepts such as shared mental models or transactive memory systems within
teams, the coordination modes have been subdivided into explicit and implicit
coordination styles (Espinosa et al. 2004). The previously presented coordination
modes in organizational theory are considered to be explicit in that they are carried
out deliberately to coordinate groups in order to achieve a state of coordination.
Implicit coordination on the other hand, is a mode of coordination that arises as a
consequence of other acts and is used without the intention to coordinate. An
example of this type is the often mentioned “water cooler” talk, i.e. informal
exchanges of information between colleagues that nevertheless lead to better
coordination.

Espinosa et al. (2010) present a taxonomy of coordination types including,
mechanistic, organic and cognitive coordination. The first two originate from
organizational theory as presented in Sect. 2.1.1, with cognitive coordination

2.1 Coordination 11

arising from research on team cognition. While mechanistic coordination includes
coordination by plan or rules with little communication, organic coordination refers
to coordination by means of mutual adjustment or feedback via interaction. This
communication can be formal and planned or informal and spontaneous. Cognitive
coordination, on the other hand, is based on tacit team knowledge the actors have
about each other and is achieved implicitly (Rico et al. 2008).

Shared mental models (Cannon-Bowers et al. 1993) and transactive memory
systems (Moreland et al. 1996) are two examples of cognitive or implicit coordi-
nation mechanisms (Espinosa et al. 2004). Shared mental models are the “common
or overlapping cognitive representations of task requirements, procedures and role
responsibilities” (Cannon-Bowers et al. 1993, p. 222). The transactive memory
system contains the knowledge embedded in each person individually and a
metamemory about the expertise domains of the other participants in this system
(Moreland et al. 1996). While shared mental models represent a shared under-
standing between actors, transactive memory systems conceptualize the aspect of
knowing who knows what. The shared mental model construct is central to
teamwork, as it acts as a facilitator for the teams’ goal focus and contributes to
common understanding and action (Salas et al. 2005).

While this stream of coordination research proposes team cognition constructs as
coordination mechanisms, the question remains what tangible coordination activity
takes place. As the implicit nature of these types suggests, no overt coordination
activity is observable. As such, these constructs may be viewed as traits, which lead
to a reduction of mechanistic coordination, or even as conditions necessary for
coordinated action.

2.1.4 Outcomes and Conditions of Coordination

After decades of research in the organizational domain (cf. Mintzberg 1983;
Thompson 1967; Van De Ven et al. 1976), recent advances on the conditions and
outcomes of coordination have been made outside of this field, namely in the areas
of team cognition (cf. Cannon-Bowers et al. 1993; Moreland et al. 1996) and
information systems (cf. Pikkarainen et al. 2008; Strode et al. 2012). The following
section summarizes research on outcomes and conditions of coordination.

From the definitions of coordination in Table 2.1 it can be deduced that coor-
dination can be conceptualized in two ways. Kotlarsky et al. (2008, p. 96) view
coordination as “the achievement of concerted action”, which depicts coordination
as a state that is achieved, similarly to Lawrence and Lorsch (1967) who view
coordination as a state to be attained. By contrast, Faraj and Xiao (2006, p. 1157) or
Malone and Crowston (1994, p. 90) describe it as the management of dependencies
or the “contextualized process of input regulation and interaction articulation”,
which expresses coordination as a process. In the end, it can be understood either as
the process necessary to achieve concerted action or as the state that is achieved by
this process.

12 2 Theoretical and Conceptual Foundations

Both coordination as a process and coordinated action as state are regarded as
central aspects in achieving an overarching performance measure. The positive
influence of coordination on performance measures has been widely recognized
throughout literature (cf. Cheng 1984; Faraj and Xiao 2006; Kozlowski and Bell
2003; Nidumolu 1995; Simon 1976). As such, Cheng (1984, p. 830) describes
coordination as “a necessary condition for effective organizational performance”,
however it is not sufficient by itself. Within the domain of team research,
Kozlowski and Bell (2003, p. 353) state that previous “empirical research has
shown team coordination to be an important correlate of team performance”. In the
domain of software development, Nidumolu (1995) shows that higher levels of
coordination lead to higher levels of project performance. In their classical work
from 1967, Lawrence and Lorsch reported a positive relationship between coor-
dination and organizational performance. Similarly, Simon (1976) states that
organizational objectives are achieved through the coordination of the participants’
behavior. Finally, Faraj and Xiao (2006, p. 1157) prominently included the positive
influence of coordination in their definition by describing coordination as a process
to “realize a collective performance”.

The outcomes of coordination processes have been characterized in multiple
different ways. As previously stated, Okhuysen and Bechky (2009) conceptualize
this outcome as coordinated action. Coordination effectiveness by Lee et al. (2013)
focuses on the aspects of redundant work and roadblocks in coordination for their
construct. Espinosa et al. (2012) introduce the construct coordination problems
including items on missed delivery dates, misunderstanding, redundant work etc.
This conceptualization is very encompassing concerning coordination problems,
but does not depict the underlying forces, which coordination mechanisms seem to
influence. Strode et al. (2011) present their conceptualization of coordination
effectiveness with the two main dimensions of implicit and explicit coordination
outcomes. The implicit domain includes five knowledge related aspects (e.g. know
why, know what is going on, know what to do and when, know who is doing what,
know who knows what) and three aspects in the explicit dimension (right place,
right thing and right time). However, a problem with their view of coordination
effectiveness as an outcome construct is the seemingly mediating role the implicit
domain plays on the explicit domain. As such, knowing what to do and when, will
strongly influence the explicit dimensions right thing and right time.

To consolidate the widespread knowledge and identify the underlying conditions
of coordination, Okhuysen and Bechky (2009) reviewed existing coordination lit-
erature in the diverse streams it has been published in and integrated this knowledge
back into organizational theory. Previous studies focused on the mechanisms to
achieve coordination, their mix within the coordination strategy or the process of
coordination to achieve team effectiveness. Therefore, a unified view on the direct
conditions, or intermediate states, leading to coordination has remained elusive.
Okhuysen and Bechky (2009) propose three integrating conditions that lead to what
they refer to as coordinated action: (1) common understanding, (2) predictability
and (3) accountability (see Table 2.3). Common understanding supports coordi-
nated action “by providing a shared perspective on the whole task and how

2.1 Coordination 13

individuals’ work fits within the whole” (Okhuysen and Bechky 2009, p. 488). The
aspect of predictability “enables interdependent parties to anticipate subsequent
task-related activity by knowing what the elements of the task are and when they
happen” (Okhuysen and Bechky 2009, p. 486). Finally, accountability delimits
“who is responsible for specific elements of the task” (Okhuysen and Bechky 2009,
p. 483). In proposing these three conditions, they stress the importance of the
elements that enable coordinated action and “working together and separately,
assist in the enactment of coordinated activity” (Okhuysen and Bechky 2009,
p. 492). Through the theoretical separation of the coordination mechanism from the
coordinated action they support, the intermediate outcomes of these mechanisms
can be investigated and explained more deeply (Okhuysen and Bechky 2009).

2.1.5 Summary

The preceding discussion shows the focus areas of the previous literature on
coordination. Prior work has concentrated on dependencies between actors in the
system to be coordinated and the necessary coordination mechanisms to achieve
concerted action, depending on situational factors. This neglects the underlying
factors necessary for coordination and posits that one merely needs the correct
coordination mechanisms for the situation at hand. Based on Okhuysen and
Bechky’s (2009) three integrating conditions for coordinated action, common
understanding, accountability and predictability, this work tries to fill this gap by
empirically investigating inter-team coordination in a field setting.

2.2 Teams and Multiteam Systems

As little is known about the structure of large-scale agile development organiza-
tions, a unit of analysis needs to be identified which depicts the organizational
structure present in such systems. To benefit from extant knowledge in neighboring

Table 2.3 Definitions of integrating conditions for coordinated action

Term Definition Source

Common
understanding

A shared perspective on the whole task and how
individuals’ work fits within the whole

Okhuysen and
Bechky (2009,
p. 488)

Accountability Addresses the question of who is responsible for
specific elements of the task and makes clear where
the responsibilities of interdependent parties lie

Okhuysen and
Bechky (2009,
p. 483)

Predictability Enables interdependent parties to anticipate
subsequent task related activity by knowing what
the elements of the task are and when they happen

Okhuysen and
Bechky (2009,
p. 486)

14 2 Theoretical and Conceptual Foundations

disciplines, the multiteam systems unit rooted in organizational psychology is
chosen to conceptualize the team of teams setup.

Over the past years, companies have focused more and more on structuring their
organization into smaller units of people and thus implementing a team-based
organization. “A team […] can be defined as a collection of individuals who share a
common goal, whose actions and outcomes are interdependent, who are perceived
by themselves and others as a social entity, and who are embedded in an organi-
zational context” (Devine 2002, p. 291). Previous definitions of software devel-
opment teams as project teams (Devine 2002; Kozlowski and Bell 2003) see these
teams as a temporary unit, assembled for a specific purpose and as soon as their job
is done they disband. However, in software product development this is not the
case. Here, the team composition is of a permanent nature as the same teams will be
developing the next version of the software product they have been working on
previously. In this research the team is seen as the smallest entity within a multi-
team system consisting of several teams.

With the introduction of agile development approaches in the software industry,
the guideline has been to create teams of around seven plus or minus two people
and scale this through a hierarchical team of teams setup (Larman and Vodde 2008),
where several teams have to work closely together in order to release a single
software product.

These sorts of collectives have been of ongoing interest to the stream of mul-
titeam systems research. This organizational setup has been defined as a multiteam
system by Mathieu et al. (2001), who assert that MTSs are “two or more teams that
interface directly and interdependently in response to environmental contingencies
toward the accomplishment of collective goals” (Mathieu et al. 2001, p. 290). In
contrast to other organizational forms such as subsystems (cf. Katz and Kahn 1978)
or matrix organizations (cf. Davis and Lawrence 1977), an MTS is a team-based
collective with members requiring collaborative integration of teamwork which
leads to the high degree of interdependence within MTSs (Zaccaro et al. 2012).

The core elements of an MTS are a goal hierarchy and functional inter-team
dependencies. The collective goal of this system can be broken down into a goal
hierarchy and constitutes a key characteristic of any MTS. The goal hierarchy marks
the boundary of an MTS in that all teams within the system share at least a distal goal
while the individual teams pursue their more proximal goals. This structure of goals
leads to teams displaying input, process and outcome interdependencies with at least
one other team (Mathieu et al. 2001). Within software product development the
distal goal of all involved teams is the completion of a new release of the software
that is being implemented. The proximal goals of each team within the MTS usually
comprise of responsibility for a software subcomponent of the product or of certain
features to be added to the next release of the software.

Over the past decades, research on teams has been widespread, leading to a deep
understanding of team processes and work (cf. Guzzo and Dickson 1996; Ilgen
et al. 2004; Kozlowski and Bell 2003; Mathieu and Maynard 2008). Our under-
standing of multiteam systems and especially these systems in a software devel-
opment environment remains exceptionally limited.

2.2 Teams and Multiteam Systems 15

2.3 Agile Software Development

The history of agile software development is often traced back to the Agile Manifesto
in the year 2001 (Fowler and Highsmith 2001). The origins of the underlying con-
cepts, namely iterative and incremental development, reach as far back as the 1950s
(Larman and Basili 2003). Even early plan-based approaches established iterative
feedback as an essential element. The waterfall model (Benington 1956), often
described as the foe of serious agilists, showed first beginnings of iterative ideas
through Royce’s (1970) adaptation, which included iterative feedback.

Over the years, newer software development models have continued to include
more and more ideas based on iterations and feedback. Starting with the spiral
model, the notion of several iterations was codified into the development process as
a core component (Boehm 1988). While the waterfall model is heavily specification
driven, the spiral model is driven by risk management. In the 1990s, resulting from
the proliferation of object-oriented programming languages and design, the
Rational Unified Process (RUP) (Kruchten 1998) was specified to be model- or
architecture-based. It distinguished itself by constituting a process framework,
which can be adapted to the setting in which it is deployed.

What all of these process models have in common is their rather heavyweight
approach to process management, specifications and large design upfront based on
documents, and comparatively long iteration cycles. As a countermovement to these
heavyweight models, the mid-1990s saw a push towards more lightweight processes.

One of the first was the Dynamic Systems Development Method (DSDM
Consortium, n.d.) in 1994. It values eight principles: (1) Focus on the business
need, (2) deliver on time, (3) collaborate, (4) never compromise quality, (5) build
incrementally from firm foundations, (6) develop iteratively, (7) communicate
continuously and clearly and (8) demonstrate control. A year later, Scrum was first
publicly presented (Sutherland and Schwaber 1995). It defines a project manage-
ment framework based on time-boxed iterations with defined roles and a focus on
face-to-face communication. Extreme Programming (XP) saw the light of day in
1996 and was later published in book form (Beck 2001). It is based on a set of
values, fundamental principles, activities and practices. In contrast to Scrum, XP
defines technical practices for the development work of programmers.

In 2001, several prominent advocates of lightweight development methods
gathered to create the Agile Manifesto (Fowler and Highsmith 2001). They pro-
posed four values, which constitute the essence of agile development methods:

individuals and interactions over processes and tool

working software over comprehensive documentation

customer collaboration over contract negotiation

responding to change over following a plan

The first value emphasizes the people orientation of the agile movement. The
relationships between team members, customers and partners are valued above

16 2 Theoretical and Conceptual Foundations

prescribed processes and some methods’ heavy reliance on cumbersome tools.
Agile methods value close proximity in the form of co-location and intensive team
communication. In the end, a piece of working software is more useful than a
sizeable documentation of software that is not what the customer wanted or even
worse, unusable. At the end of short iterations, the goal is to present an increment of
working software to the customer for validation. With the help of automated testing,
quality, as part of the ‘working’ software, is ensured. Trust between customer and
development team is the essential foundation of agile methods. Instead of stressing
precise contracts, the customer is involved very heavily in the development of the
software to ensure he is satisfied with the product. As agile focuses on fast value
delivery, risk is minimized for the customer as well. The last value points to the
core of agile development, the necessity to adapt to a changing environment. All
people involved in an agile project, the customers and the developers, both experts
in their field, can judge if a project needs to adjust to better satisfy the needs of the
customer and not just plainly follow a specified plan.

These values illustrate the considerable mind shift in agile software develop-
ment, which emphasizes cross-functional teams with time-boxed development
phases and continuous management of requirements. Abrahamsson et al. (2002)
state that a development method is agile when it is incremental, cooperative,
straightforward and adaptive. This differs strongly from traditional development.
The core differences between agile development and traditional approaches are
summarized by Nerur et al. (2005) in Table 2.4.

Table 2.4 Traditional versus agile software development

Traditional development Agile development

Fundamental
assumptions

Systems are fully specifiable,
predictable, and are built through
meticulous and extensive planning

High-quality software is developed
by small teams using the principles
of continuous design improvement
and testing based on rapid feedback
and change

Control Process centric People centric

Management
style

Command and control Leadership and collaboration

Knowledge
management

Explicit Tacit

Role
assignment

Individual—favors specialization Self-organizing teams—encourages
role inter-changeability

Communication Formal Informal

Customer’s role Important Critical

Development
model

Life-cycle model (waterfall, spiral
or some variation)

The evolutionary-delivery model

Desired
organizational
form

Mechanistic (bureaucratic with
high formalization), aimed at large
organizations

Organic (flexible and participative
encouraging cooperative social
action), aimed at small and medium-
sized organizations

Based on Nerur et al. (2005, p. 75)

2.3 Agile Software Development 17

While many methods are considered agile, only a select few have become
prominent in industry. By far the most widely used method is Scrum (VersionOne
Inc. 2013). The following section will give an overview of the Scrum framework.

2.3.1 The Scrum Framework

Originally presented at a conference in 1995 (Sutherland and Schwaber 1995), the
idea is based on research from Takeuchi and Nonaka (1986) who investigated new
product development in Japan and the United States. The investigated companies
have taken a new approach to product development, which they named the rugby
approach. Companies utilizing this approach show six characteristics of new pro-
duct development: (1) built-in instability, (2) self-organizing project teams,
(3) overlapping development phases, (4) multilearning, (5) subtle control and
(6) organizational transfer of learning (Takeuchi and Nonaka 1986).

Built-in instability is created by top management, which tasks a project team
with a very challenging goal and gives the team great freedom in achieving this
goal. Because of this freedom, the project team can act like a start-up company in
taking initiatives and risks. Instead of relying on a sequential order of process
phases, these phases overlap to minimize bottlenecks that may lead to a system
standstill. Through overlapping project phases, shared responsibility and commit-
ment are increased. For example, the involvement of production experts in early
phases can accelerate the development process, as feedback concerning the pro-
duction is gathered early on and not in one of the later phases. Multilearning
involves gathering information from outside in order to respond quickly to a
changing market. On the team level, continuous learning is necessary, as the
challenging goals need new strategies to solve them. In contrast to the command
and control style of management, the rugby approach suggests self-control and
control through peer pressure as ways to manage such projects. Starting with the
right people in an open work environment, tolerating mistakes and rewarding group
performance as opposed to individual performance, leads to more subtle ways of
management being able to control such projects. An organizational transfer of
learning is achieved by assigning key people to follow-up projects to promote what
they have previously learned (Takeuchi and Nonaka 1986).

Based on the presented rugby approach to new product development, the Scrum
framework was established for software development projects. While often referred
to as a software development method, Scrum is strictly speaking a project man-
agement framework for software development projects. Within this framework, no
technical aspects of development work are defined. What follows is an in-depth
look at the Scrum framework based on its roles, events and artifacts (based on
Deemer et al. 2012; Schwaber and Beedle 2002; Schwaber and Sutherland 2013).

The Product Owner (PO) is responsible for the business value of the product to
be developed. He identifies product features and translates these into an ordered list,
with the highest value items on top. This role has the sole responsibility for the

18 2 Theoretical and Conceptual Foundations

profit or loss of the developed product. In general, there are two scenarios for the
role of the Product Owner. In the first case, the customer and the Product Owner is
the same person, which is often the case in internal development projects. The other
option is the Product Owner as the representative of the customer, of whom there
might be many in the market. In this case, he consolidates the customers’ needs and
requirements to form a backlog (Deemer et al. 2012).

The development team implements the backlog items specified by the Product
Owner. There should be no fixed specialists, such as tester or architect, only team
members. The team is cross-functional and includes all necessary expertise to
implement the backlog items and deliver a potentially shippable product at the end
of a sprint. Areas of expertise that do not yet exist within the team are expected to
be acquired through continuous learning. As a self-organizing and autonomous
team, the members decide which set of backlog items to implement from those
specified and prioritized by the Product Owner. The team is most effective if all
members of the team are allocated one hundred percent to one product and do not
switch between projects, which avoids costly context switching. The size of a
development team is specified to be seven plus minus two people. Ideally, a Scrum
team is co-located (Deemer et al. 2012).

The Scrum Master (SM) acts as a facilitator to the development team and the
Product Owner. He helps both to learn and apply the Scrum process and is an
essential figure in Scrum’s fundamental principle ‘inspect and adapt’. Contrary to
other project management approaches, the Scrum Master is not a project manager as
he neither manages the team, nor manages the product under development. In some
team setups, he also takes on part-time development duties. The Scrum Master does
not have people management responsibilities; instead, he acts as a coach and tea-
cher and ensures that the Scrum process is followed. Furthermore, he makes sure
that impediments are taken care of and resolved. As Scrum usually entails a cultural
change within the organization, the Scrum Master guides not only the team and the
Product Owner through this change, but also helps the larger organization in
implementing Scrum (Deemer et al. 2012).

At the center of Scrum lies the sprint, a time-boxed period during which a
potentially shippable software product increment is built. In practice, the sprint is
usually two or four weeks long. During a development effort, one sprint follows the
next to form a continuous succession. Within one sprint, no changes are allowed in
the product backlog that would jeopardize the current sprint goal as agreed upon
between team and Product Owner. If backlog items turn out to be larger or more
difficult than initially expected, items can be de-committed and moved to the next
sprint in order to still successfully complete the other items (Schwaber and
Sutherland 2013).

As the name suggests, the sprint planning is a meeting to prepare for the
upcoming sprint. It should answer what will be delivered and how this will be done.
In the first part of this meeting, the Product Owner and the team examine what has
been determined as the sprint goal. Continuing, the backlog items necessary to
achieve that goal are examined and discussed to establish a common understanding
of the functionality to be developed. Based on the value-ordered list of backlog

2.3 Agile Software Development 19

items in the product backlog, the team chooses which items to pick for the next
sprint. This selection is usually based on the team’s capacity in the upcoming sprint
and their past performance. The second part of the planning meeting pertains to
how the items in the sprint backlog will be implemented. The team starts by
designing the work needed to transform the selected backlog items into a working
product increment. At the end of the sprint planning meeting it should be clear what
the team commits itself to implement and how this will be done (Schwaber and
Sutherland 2013).

The daily Scrum is a 15-min meeting recurring every day. It is often called daily
standup, to show that it is intended to be a quick meeting. In this time-boxed event,
the development team synchronizes its activities and creates a plan for the next
24 h. During the meeting, each team member answers three questions: (1) ‘What
did I accomplish yesterday?’, (2) ‘What will I do before the next daily Scrum
meeting?’ and (3) ‘Are there obstacles in the way?’. The developers give answers to
these questions to the other team members. The daily Scrum is not intended to be a
status meeting towards the Scrum Master or other roles, it is purely from the team
for the team. The Scrum Master is responsible for removing impediments that were
brought up in the daily Scrum. No in-depth discussion is supposed to take place in
this daily meeting. If further clarification is needed this can be scheduled for
interested parties directly after the daily Scrum meeting (Schwaber and Sutherland
2013).

The product backlog refinement is an ongoing process, usually done in the form
of a workshop. No more than ten percent of the team’s capacity for the sprint should
be spent on this activity. This activity, also called backlog grooming, is meant to
split large backlog items, estimate and prioritize them for future sprints. Both the
Product Owner and the development team attend this activity. If this refinement is
done regularly, the sprint planning meeting should become relatively simple as the
items on the top of the backlog will be prepared in detail, meaning their content and
business value is clear as well as an effort estimate available (Deemer et al. 2012).

The sprint review is a meeting where all involved stakeholders review the work
done during the sprint. Based on the principle of ‘inspect and adapt’, this meeting
focuses on the product. It should allow for an in-depth conversation on specific
details of the product, giving the Product Owner the chance to see what is going on
within the team and the software and giving the team the chance to learn from the
Product Owner what is going on in the market. The team presents the latest soft-
ware product increment in a live demo. Thereby, all people present have the chance
to interact and inspect the software and give feedback to the team (Deemer et al.
2012).

In the sprint retrospective, the focus is on team-internal processes and their
environment. Here, the team discusses what works well and what does not. At the
end of the retrospective, major items that went well and improvement areas are
identified. Moreover, a plan for implementing actions regarding these areas is
agreed upon (Schwaber and Sutherland 2013).

The product backlog is a list of customer-focused items that are desired in the
product. The individual backlog items are ordered according to the Product

20 2 Theoretical and Conceptual Foundations

Owner’s perception of their business value. The product backlog is a living artifact
as it never stops changing. The Product Owner refines backlog items, changes their
value and the team estimates the effort needed to implement the items. The higher
an item is ranked in the backlog the more detailed and refined it has become. Items
further down on the list are more granular and less detailed (Schwaber and
Sutherland 2013).

A product increment is the sum of the work completed in the current sprint and
all previous ones. It is a potentially shippable product state and must be in a usable
condition. The definition of done is a shared understanding of when a backlog item
is done. This definition can include minimum requirements concerning the docu-
mentation or functionality tests for the developed increment. The Product Owner
and the team need to agree on this definition and it should continually evolve with
the maturity of the team (Schwaber and Sutherland 2013).

2.3.2 Agile Software Development on the Team Level

As agile software development originated from small-scale settings, much of the
research has focused on the team level. Here, the effects of individual agile tech-
niques such as pair programming or test-driven development (Balijepally et al.
2009; Erdogmus et al. 2005; Mangalaraj et al. 2009) were a natural point of
departure for research.

In a literature review by Erickson et al. (2005), research in the fields of Agile
Methodology, Agile Modelling and Extreme Programming with a focus on the later
was found. Within the XP publications, two main directions are visible. On the one
hand, there are case studies with experience reports of practitioners, which cover the
XP approach as a whole, and on the other, there is research on individual or small
sets of the core XP practices. The mentioned case studies are lacking detail and
generally conclude with the positive assessment of XP as a development method.
As an individual practice, mostly pair programming was studied, providing mixed
results. Erickson et al. conclude with “hard, empirically-based economic evidence
is lacking” and “other empirical efforts to study XP, in total or its core practices, are
quite limited as well” (Erickson et al. 2005).

Subsequently, a broader avenue of inquiry was followed concentrating on four
main categories: introduction and adoption, human and social factors, customer and
developer perceptions and comparative studies (Dybå and Dingsøyr 2008). Dybå
and Dingsøyr (2008) report a total of 1996 studies published until 2005 with only
36 showing acceptable rigor, credibility and relevance, most dealing with
XP. Within the four identified categories following research was observed.

Introduction and adoption. Although easy to adopt and introduce in small
organizations, agile processes can prove to be difficult to implement in complex
organizations. Especially practices that involve testing (test-first or continuous
testing) need to be introduced early as it takes time and effort to properly embrace
these concepts. Nevertheless, test-first programming contributed to higher quality in

2.3 Agile Software Development 21

code as did pair programming, which, in addition, also enhanced learning among
team members. However, a few developers mention it to be exhausting, inefficient
and a waste of time, suggesting an attitude polarization among users of that prac-
tice. It was found that XP worked best with experienced programmers who have a
solid domain knowledge. On the management side, training has to occur simulta-
neously as technical problems appear earlier, which can lead to unfamiliar situa-
tions with issues being raised too early for management. Overall, XP teams showed
that improved communication with continuous feedback seems to be a key success
factor, although many XP teams were perceived as being more isolated by other
teams.

Human and social factors. Evidence of agile teams having faith in their own
abilities, while showing respect and responsibility, has surfaced. Moreover, trust is
pervasive and goes beyond pair-partner trust, as it was also found to be true across
pairs and sub teams. The skills of good XP team members are described as ana-
lytical, good people-skills and an affinity for learning.

Customer and developer perceptions. Customers appreciated the agile
development process, as daily meetings kept them up to date and the higher
involvement reduced confusion about development questions. However, this high
customer involvement seems to be unsustainable as planning, testing and retro-
spective activities are demanding and require the customer to acclimatize to each
development organization. The developers’ perception of XP and Scrum is very
good with employees claiming that pair programming sped up the development
process and Scrum led to a reduction of overtime.

Comparative studies. In comparison to a more traditional incremental
approach, the agile approach allowed the incorporation of changes at later stages
with less impact on the overall project. Furthermore, the presentation of working
software to the customer combined with his continuous feedback led to a sharp
increase in customer satisfaction and an earlier demonstration of business value. In
four studies comparing traditional development methods with XP, the productivity
differences vary extremely and do not allow for drawing sensible conclusions. This
may in part be due to the inherent difficulty of measuring software development
productivity and as Dybå and Dingsøyr (2008) mention, the studies did not have an
appropriate recruitment strategy to ensure unbiased comparisons. However, many
developers themselves indicated that their productivity increased with the intro-
duction of XP. The aspect of product quality can also be characterized as varying,
although the quality differences are in a much narrower interval in comparison to
productivity. Over all, the improvement of quality ranges from no difference to a
65% improvement in prerelease quality. In a study comparing developers using XP
practices with ones that did not, the XP users were more satisfied and comfortable
with their jobs (Dybå and Dingsøyr 2008). The studies show a clear bias towards
XP and relatively young development teams. They conclude with the finding that
both the number and the quality of studies on agile software development needed to
be increased (Dybå and Dingsøyr 2008).

Diverging from co-located small-scale settings, Jalali and Wohlin (2012)
focused on research on agile practices in distributed settings, in which globally

22 2 Theoretical and Conceptual Foundations

distributed teams collaborated over a long time on small to medium-sized projects.
They agree that the majority of existing literature is in the form of industrial
experience reports. The most common practices found were continuous integration,
daily standup meetings, pair programming, retrospectives, Scrum of Scrums
meetings and test-driven development. Furthermore, many agile practices had been
customized to fit their environment (Jalali and Wohlin 2012). They conclude that an
insufficient number of studies analyzing the challenges of applying agile in dis-
tributed settings has been conducted in order to conclude that agile was efficiently
applicable in large distributed projects. The authors demand for further research on
modifications of agile methods to support practitioners with guidelines on how to
adapt practices to their needs (Jalali and Wohlin 2012).

Recently, Chuang et al. (2014) published a bibliometric analysis of agile literature
in the years between 2001 and 2012. Key outlets for agile research, top individual
contributors, most cited articles as well as institutions and countries most engaged in
agile research were identified. They conclude with the need for more research not
only of a practical but of a scholarly nature in particular, since most research on agile
development methods are at the infancy stage (Chuang et al. 2014).

The preceding discussion shows that in the domain of agile software develop-
ment much of the recent literature has focused on individual practices and adoption
of agile methods. After having presented the current state of research on agile
software development on the team level, the following chapter delves into the topic
of large-scale agile development.

2.3.3 Industrial Frameworks for Large-Scale Agile
Development

The foundations of large-scale agile development lie in the previously presented
agile development approaches. These are extended or modified to better support the
differing large-scale environment. Before presenting the practical approaches to
scaling agile development, a fundamental question needs to be answered: How big
is large-scale?

This question remains unresolved although a few attempts have been made to
come to a consistent definition. Participants of the workshop ‘Towards Principles of
Large-Scale Agile Development’ as part of the XP2014 conference (Dingsøyr and
Moe 2014) have gathered definitions of large-scale agile development, which can
be seen in Table 2.5. Work done by Dingsøyr et al. (2014) suggest that a taxonomy
of scale in agile development should best be based on the number of teams involved
in the development project. They suggest three levels: (1) small-scale (one team),
(2) large-scale (two to nine teams) and (3) very large-scale (ten teams or more).

When transferring agile into large settings, the differences become very obvious.
As soon as several teams have to cooperate to develop one piece of software, the
coordination overhead becomes elevated as now communication and coordination

2.3 Agile Software Development 23

lines increase many times over. Not only the number of people involved adds
complexity, in large organizations with many locations, the distributed nature of
such development setups brings challenges in the form of temporal, geographic and
socio-cultural differences (Hossain et al. 2009). Furthermore, many large devel-
opment efforts are of a product development nature, i.e. the continuous develop-
ment of one product over many years. This leads to a considerable code history, or
legacy code, that needs to be dealt with. To overcome these challenges and give
guidance to practitioners, several frameworks have been developed to scale agile
methods to large settings. The frameworks, Large-Scale Scrum (LeSS) (Larman and
Vodde, n.d.), Scaled Agile Framework (SAFe) (Leffingwell, n.d.) and Scaled
Professional Scrum (Nexus) (Schwaber et al., n.d.) will be presented in the fol-
lowing sections.

Large-Scale Scrum. This is an approach that sets out to scale Scrum within the
constraints of pure Scrum. Essentially, LeSS is regular Scrum applied to large-scale
settings. While it attempts to preserve the strengths of Scrum, it reinforces the need
for more process clarity with defined structures. Within the LeSS framework, two
variants exist, one for two to eight teams and one for more than eight teams
(Larman and Vodde, n.d.).

Variant A keeps all the basic roles of Scrum unchanged but adapts the meeting
structure. The previously mentioned sprint planning meeting is held with repre-
sentatives of each team, so as not to gather too many people in one meeting. At the
end of the sprint, a cross-team retrospective is added to advance the overall system
improvement. To support inter-team coordination, additional meetings such as
Scrum of Scrums can be added. Scrum of Scrums is a meeting to synchronize
inter-team activities. Representatives of each team gather regularly, similar to the
daily Scrum, to discuss ongoing implementations and current impediments (Larman
and Vodde, n.d.).

Variant B, for systems with more than eight teams, introduces the additional role
of an Area Product Owner (APO). This role is responsible for requirement areas,
which are customer-centric clusters of product backlog items. The leading Product
Owner groups each product backlog item into one requirement area and hands the
responsibility to the corresponding Area Product Owner. This item is then priori-
tized by the Area Product Owner who specializes in one part of the product from
the customer perspective. Each requirement area has several teams working in it

Table 2.5 Definitions of
large-scale agile development

Over 50 developers OR 1/2 million lines of code OR more than
3 sites/time zones

Over 50 persons, over 5 teams, developing together the same
product/project using agile method

Agile being applied to more than one team, one project, one
product

Multiple teams working together in order to deliver software
artefacts

Based on Dingsøyr and Moe (2014)

24 2 Theoretical and Conceptual Foundations

that pull their items from the area backlog. A requirement area is organized around
customer centric requirements, while traditional development areas are organized
around the product architecture (Larman and Vodde, n.d.).

Scaled Agile Framework. This framework operates on three levels, portfolio,
program and team (Leffingwell, n.d.). Within the portfolio area, individuals are
responsible for strategic themes, investment budgets and their allocation to release
trains. These release trains essentially constitute individual programs or products in
development. The high-level portfolio backlog is broken down into the program
backlogs, which are then broken down into the team backlogs. The program level
management takes the program epics (high-level backlog items) from the portfolio
level and creates a vision and a product roadmap, which guide the development in
the next releases. A product increment starts with a planning event, where the
program management introduces the vision for the upcoming release and each team
plans their individual share of the total development effort. The team level is made
up of the cross-functional development teams, which pick their backlog items from
the team backlogs (Leffingwell, n.d.).

Scaled Professional Scrum. The Scaled Professional Scrum framework (Nexus)
was created by some of the initial developers of Scrum and considers the inter-
operation of teams and dependencies between them, the main challenge of scaling
Scrum. This framework introduces a team called the ‘nexus’ integration team that is
responsible for successful integration of the work done by the individual devel-
opment teams. A nexus consists of no more than nine teams, which need to inte-
grate their work in order to create a potentially shippable product increment
(Schwaber et al., n.d.).

All three frameworks try to scale agile development to multiple teams, however,
the direction of their approaches seems very different. While Large-Scale Scrum
and Scaled Professional Scrum are at their hearts Scrum scaled to several teams
with only slight modifications, the Scaled Agile Framework is much more
heavyweight and encompassing. LeSS and Nexus clearly come from the agile side
and try to transfer the basic values and concepts to large-scale settings, while SAFe
approaches from the more heavyweight side of the spectrum and tries to bring in
agile. On the one hand, the lacking involvement of higher management in the LeSS
and Nexus approach is covered explicitly in SAFe, but on the other hand, LeSS and
Nexus seem much closer to the original principles of the agile development
movement.

Furthermore, one could question the applicability of such industrial scale
frameworks, as they mostly tend to assume a green field approach. However, taking
into account the previously mentioned environmental factors of large organizations
that gradually adopt more lightweight development methods, such radical frame-
works that require not only a change of the organizational culture, but also an entire
restructuring of the development workforce, might not always be applicable in
practice. Oftentimes, adapted or contextualized (cf. Hoda et al. 2010) forms of
large-scale agile development approaches are more realistic to be implemented.
They do not pose those kind of risks to the organization that often come along with
a major restructuring.

2.3 Agile Software Development 25

2.3.4 Agile Software Development on the Multiteam
System Level

Since the origins of agile development lie in small team contexts, the associated
methods have only recently and hesitantly been promoted and studied in large-scale
settings. Only 23 papers could be identified, which deal with large-scale agile
software development. All papers were reviewed for their coverage of large-scale
agile and classified according to their research method, approach and general topic
area. The following paragraphs will present the found literature, structured
according to type.

The largest group of literature belonged to the experience reports. Within this
group, several papers illustrate how agile was implemented and what pitfalls were
discovered. Many also described the way these impediments were solved within the
context of the implementing organization (Benefield 2008; Fry and Greene 2007;
Lee 2008; Moore and Spens 2008; Paasivaara and Lassenius 2011; Smits and
Pshigoda 2007; Sutherland et al. 2009). Paasivaara et al. (2014) report on the
introduction of so called ‘Value Workshops’ to come to a common understanding
across the teams about which values the development area has and how to promote
them. Three models of architecture support are proposed by Eckstein (2014) to
promote emergent architecture within large-scale agile development systems.

Articles in the group of conceptual literature try to shed light on fundamental
questions within large-scale agile development. As such, Dingsøyr et al. (2014)
examine the concept of size based on the number of teams in one development
system. They come to the definition that two to nine teams are to be considered
large-scale, while ten and more teams should be considered very large-scale.
Twenty-one principles of scaled agile are proposed in Laanti (2014) including the
notion of controlling processes as opposed to people or to utilize tacit knowledge.
Kettunen and Laanti (2008) introduce a framework for understanding the multi-
dimensional nature of agility within large organizations. Finally, Power (2014)
develops a decision support model for distinguishing what the ‘large’ is referring to
in pursuing agile in an organization. He distinguishes between three different large
settings: the implementation in one team in a large organization, the use of agile
across a large project or if organizational agility is strived for.

The final group consists of two empirical articles, which investigate networking
and productivity respectively. Moe et al. (2014) investigated through a case study
how a newly introduced role of technical area responsible supports knowledge
networks between teams. They conclude that this role is central in the knowledge
network and acts as a boundary spanner between teams. Furthermore, the size of the
knowledge network depended heavily on the company tenure of the team members.
Productivity and delays are the core topics in a study by Badampudi et al. (2013).
Through a Grounded Theory interview study of five projects, the challenges within
those projects were identified. It was revealed that the influencing factors within
requirements creation and use, namely collaboration and knowledge management,
were predominantly influencing productivity and delays.

26 2 Theoretical and Conceptual Foundations

2.4 Prior Work on Coordination in Multiteam Systems
and Large-Scale Agile Development

Although a considerable amount of research on agile software development has
been published (see Sects. 2.3.2 and 2.3.4), the specific topic of coordination in
agile multiteam systems remains neglected in previous literature. The following
sections present the scarce extant work on coordination in multiteam systems and
coordination in large-scale agile development.

2.4.1 Coordination in Multiteam Systems

While the concept of MTS has received increasing attention in organizational
psychology over the last decade (e.g. Asencio et al. 2012; Davison et al. 2012;
DeChurch and Marks 2006; Lanaj et al. 2012), the topic of coordination is
underdeveloped within this stream as well. Marks et al. (2001) present a time-based
conceptual framework of team processes, including action and transition episodes.
Action phases primarily include activities directly related to goal accomplishment,
and transition phases include evaluation or planning activities. Within MTSs, the
management of these performance episodes is viewed as a central part of coordi-
nation (DeChurch and Marks 2006). Marks et al. (2005) found that cross-team
processes had the most value in MTSs with a highly interdependent goal hierarchy.
Well-managed MTS transition processes influenced MTS performance positively,
but did not support team level action processes. Decentralized planning led to
enhanced multiteam system performance by fostering proactivity and higher aspi-
ration levels. Nevertheless, strong negative effects were found in excessive risk
seeking and coordination failures (Lanaj et al. 2012).

Asencio et al. (2012) propose multiteam charters as a means to develop efficient
leadership structures and communication networks. Boundary spanners and com-
munication norms across teams are mentioned as important considerations in MTS
collaboration. These differentiated team roles are viewed as a key factor for per-
formance by Davison et al. (2012). Teams that included boundary spanning roles
consistently outperformed teams that did not. The reasoning lies in the information
processing complexity inherent in large organizations, which leads to the need for
formalized boundary spanning (Davison et al. 2012).

In their study of leadership in multiteam systems, DeChurch and Marks (2006)
trained teams of leaders in two ways, either by facilitating strategy development or
coordination. They found that strategy training was positively related to explicit
coordination, with coordination training affecting implicit coordination more
heavily.

Beyond these first forays, little is known about coordination in MTSs. However,
the notion of cross-team processes (Marks et al. 2005) including communication
across teams (Asencio et al. 2012) suggests the importance of directionality of

2.4 Prior Work on Coordination in Multiteam Systems … 27

coordination in MTSs. Furthermore, the aspect of decentralized planning (Lanaj
et al. 2012) conveys the influence of coordination locality in MTSs.

2.4.2 Coordination in Large-Scale Agile Development

The topic of coordination in large-scale agile development literature is extremely
scarce. Overall, only six papers were identified that approach the topic of coordi-
nation in large-scale settings. The following sections present these articles
according to the areas they focus on.

Challenges of Coordination through Representatives. Paasivaara et al. (2012)
report on a case study of two distributed large-scale Scrum projects. Both projects
comprised of at least twenty teams and were distributed worldwide. The practice
under study was the Scrum of Scrums meeting, whereby representatives of each
team meet regularly to discuss current issues and future topics on an inter-team
level. The results show that, with the amount of teams present in each project, the
individual interests of all participants were too wide to be of interest to everybody
else. Furthermore, some representatives did not know what to report and so did not
contribute anything to the meeting. A possible solution that was implemented was a
feature-specific Scrum of Scrums meeting for the teams working together on one
feature. A location specific Scrum of Scrums meeting was reported as not working
very well. Similarly, Hole and Moe (2008) found that modularization of the soft-
ware enables agility and supports Scrum of Scrums meetings. However, they report
that co-location was a facilitator of this type of meeting.

Influences on Coordination Mechanisms and Coordination Strategies. Hole
and Moe (2008) investigated how three distributed projects applying agile methods
coordinated their work. They observed that in order to reduce standardization and
direct supervision in global software development projects, trust was an essential
trait. Furthermore, the possibility for short exchanges via online messengers sup-
ported mutual adjustment. Li and Maedche (2012) present preliminary results of a
study to show what factors influence the formation of coordination strategies. In an
agile distributed software development setting, a difference in time zones seemed to
increase the use of mechanistic coordination. Both mechanistic and organic coor-
dination mechanisms were needed to cope with changing customer requirements.
Finally, the introduction of explicit coordination mechanisms improved mutual trust
and shared cognition of long-standing colleagues through intensified communica-
tion and agile practices (Li and Maedche 2012). Scheerer et al. (2014) present
different conceptual coordination strategy types for inter-team coordination. These
types are based on the amount of existing mechanistic, organic and cognitive
coordination and are illustrated with examples from large-scale agile product
development settings.

Challenges and Their Alleviation in Large-Scale Agile Development.
Lagerberg et al. (2013) present results of a quantitative study on two projects with
14 and 15 teams respectively. Only one of the two projects had fully implemented

28 2 Theoretical and Conceptual Foundations

agile development methods. From the comparison between the two, agile methods
facilitated knowledge sharing and increased visibility of the status of other teams.
Based on the higher awareness of other teams in the agile project, they concluded
that a higher inter-team and intra-team coordination effectiveness was present in
comparison to the non-agile project. Lagerberg et al. (2013) propose that the use of
complete teams with feature responsibility and open space offices contributed to the
higher coordination effectiveness. Scheerer et al. (2015) describe the problem of
sequential task dependencies in agile backlogs within multiteam development
settings. Through a simulative modeling approach, they conclude that the degree of
freedom a Product Owner has in choosing a backlog order is severely limited. As
such, one dependency already limits his choice by 50%. In order to mitigate this
problem they suggest dependency avoidance through different team structures
within multiteam systems or the early detection and active management of
dependencies through techniques such as user story mapping or dedicated depen-
dency tracking practices.

Overall, the previous literature remains very limited. However, Hole and Moe’s
(2008) study suggests that different locations influence the chosen coordination
types while Paasivaara et al. (2012) findings advocate an influence of development
system size on the direction of coordination. Finally, work done by Scheerer et al.
(2015) shows the influence of task dependencies on the coordination of software
development MTSs. After having illustrated the limited previous work on coordi-
nation in MTSs and large-scale agile development, what follows next is the con-
struction of the research framework underlying this study.

2.5 Research Framework

The point of departure for this study is the view that coordinated action is a
necessary condition for organizational performance (cf. Cheng 1984; Lawrence and
Lorsch 1967; Simon 1976). Therefore, the perspective of Okhuysen and Bechky
(2009) and Kotlarsky et al. (2008) is taken that coordination is an outcome state in
the form of coordinated action which in turn necessitates the integrating conditions
common understanding, predictability and accountability (see Sect. 2.1.4).

Coordination Configuration. The notion of a coordination strategy is expanded
upon by the introduction of a coordination configuration. While previous research
has examined types of coordination mechanisms (cf. Strode et al. 2012) and their
direction in conjunction with their location (cf. Nidumolu 1995, 1996), to the best
of the author’s knowledge no study has incorporated all three aspects of coordi-
nation type, locus, and direction into one configuration. The coordination config-
uration is based on the previously discussed literature (see Sect. 2.1) with three core
dimensions. The coordination type describes the type of coordination mechanisms
in use and ranges from a pure mechanistic approach to a predominantly organic

2.4 Prior Work on Coordination in Multiteam Systems … 29

type (Espinosa et al. 2010; Thompson 1967; Van De Ven et al. 1976). The coor-
dination locus resembles what Mintzberg (1980) calls decentralization of decision
making (see Sect. 2.1.1) in that it signifies the location in the multiteam system
where coordination activities take place. It ranges from a primarily centralized
system, e.g. with decisions about coordination situated centrally in the MTS, to a
decentralized approach, e.g. where coordination is located in a more dispersed
fashion among the individual teams within the MTS. Within the coordination
direction dimension, the orientation of communication necessary for coordination is
depicted. This can occur either in a vertical fashion across hierarchical levels or
within one level between different actors of the latter (Davison et al. 2012;
Mintzberg 1980; Nidumolu 1995; Van De Ven et al. 1976). The three dimensions
can be arranged to form archetypes, of which two are outlined in Fig. 2.1. Top-
down planning represents a mechanistic, centralized approach with predominantly
vertical coordination. On the other hand, bottom-up adjustment is portrayed as a
largely organic and decentralized strategy with horizontal coordination. These two
extreme ends of a continuum do not represent a general, static orientation towards
coordination in a multiteam system. Rather, these archetypes together with multiple
variations in between, are to be understood as a set of coordination configurations
that together form a change process in reaction to a discrete event. The integrating
conditions for coordination are established by enacting specific coordination con-
figurations that are a composite of the just mentioned dimensions within the
configuration.

Customer Delivery Cycle Product ComplexityRequirements Uncertainty

Locations # Employees
Task Dependencies

Trigger

Coordination Configuration

T
yp

e
L
oc
us

D
ir
ec
ti
on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Integrating Conditions

Common Understanding

Accountability

Predictability

Contingency Factors

Fig. 2.1 Research Framework. Based on Davison et al. (2012), Espinosa et al. (2010), Mintzberg
(1980), Okhuysen and Bechky (2009), Thompson (1967), Van De Ven et al. (1976)

30 2 Theoretical and Conceptual Foundations

Trigger. Other studies have viewed the link between coordination mechanisms
and the situational context in terms of fit. That is, the utilized coordination mech-
anisms are based on situational factors of the coordination process, i.e. time zone
differences require more mechanistic coordination or higher project complexity
increases the frequency of synchronization activities (cf. Li and Maedche 2012;
Strode et al. 2012). This study views the enacted coordination configuration as a
reaction to a trigger within the multiteam system. Therefore, the previously static
view of the coordination strategy is altered into a quasi-dynamic one, as this
research proposes a time-dependent view of the coordination process. These trig-
gers can manifest in different ways. Poole et al. (2000) characterize two causal
forces, ones that operate continuously and others that only come into play at
specific points in time. The more apparent trigger is what will be called the discrete
exogenous trigger. These types of trigger are of a discrete nature and can be
attributed to a specific point in time. The second type is what will be called a latent
endogenous trigger. These are more slowly moving causes which are of a latent
nature and build up over time until a threshold is reached whence they act to trigger
a change (Grzymala-Busse 2010).

Integrating Conditions. Previous studies (see Sect. 2.1) have considered the
direct influence of coordination mechanisms, e.g. coordination by plan or rules, or
coordination by mutual adjustment, on coordination outcomes. As the underlying
factors that coordination, especially task coordination, tries to achieve are not
considered, the conditions as proposed by Okhuysen and Bechky (2009) are viewed
as the integrating conditions to be achieved for coordinated action to occur (see
Sect. 2.1.4). As the focus of this study lies on task coordination and not on exe-
cution activities, coordinated action can be regarded as the outcome of the inte-
grating conditions common understanding, predictability and accountability, while
the task coordination activities are depicted through the coordination configuration.

Contingency Factors. The coordination within an MTS and thus the enacted
coordination configuration may be influenced by contingent factors, which impel
the system to react in different ways based on the manifestation of these factors.
Organizational aspects such as the number of locations (Hole and Moe 2008) and
employees (Paasivaara et al. 2012) of an MTS may influence coordination.
Furthermore, procedural traits in the form of customer delivery cycles affect the
time available to coordinate tasks and thus may affect coordination. Finally, aspects
such as requirements uncertainty, product complexity (Tatikonda and Rosenthal
2000) and task dependencies (Scheerer et al. 2015) have been shown to have an
impact on planning and task coordination procedures within MTSs and thus lead to
an altered coordination configuration enactment.

In conclusion, the preliminary research framework acts as a frame to examine
and illustrate changes in the coordination configuration originating from a trig-
gering event. These changes lead to the establishment of integrating conditions that
are viewed as preconditions for coordinated action.

2.5 Research Framework 31

References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods. Vtt Publications, 478(3), 167–168. Retrieved from http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.161.5931&rep=rep1&type=pdf

Asencio, R., Carter, D. R., DeChurch, L. A., Zaccaro, S. J., & Fiore, S. M. (2012). Charting a
course for collaboration: A multiteam perspective. Translational Behavioral Medicine, 2(4),
487–494. Retrieved from http://link.springer.com/article/10.1007/s13142-012-0170-3

Bacharach, S. B. (1989). Organizational theories: Some criteria for evaluation. Academy of
Management Review, 14(4), 496–515.

Badampudi, D., Fricker, B., & Moreno, A. M. (2013). Perspectives on productivity and delays in
large-scale agile projects. In Proceedings of the 14th International Conference Agile Processes
in Software Engineering and Extreme Programming (pp. 180–194).

Balijepally, V., Mahapatra, R., Nerur, S. P., & Price, K. H. (2009). Are two heads better than one
for software development? The productivity paradox of pair programming. MIS Quarterly, 33
(1), 91–118. Retrieved from http://aisel.aisnet.org/misq/vol33/iss1/7/

Beck, K. (2001). Extreme programming explained: Embrace change. Addison-Wesley
Professional.

Benefield, G. (2008). Rolling out agile in a large enterprise. In Proceedings of the Annual Hawaii
International Conference on System Sciences (pp. 1–10).

Benington, H. D. (1956). Production of large computer programs. In Proceedings, ONR Symposium
on Advanced Programming Methods for Digital Computers, June 1956 (pp. 15–27).

Boehm, B. (1988). A spiral model of software development and enhancement. Computer, 21(5),
61–72.

Cannon-Bowers, J. A., Salas, E., & Converse, S. (1993). Shared mental models in expert team
decision making. In N. John Castellan (Ed.), Current issues in individual and group decision
making (pp. 221–246).

Cheng, J. L. C. (1984). Organizational coordination, uncertainty, and performance: An integrative
study. Human Relations, 37(10), 829–851.

Chuang, S.-W., Luor, T., & Lu, H.-P. (2014). Assessment of institutions, scholars, and
contributions on agile software development (2001–2012). Journal of Systems and Software,
93, 84–101. Retrieved from http://www.sciencedirect.com/science/article/pii/S01641212
14000697

Crowston, K., Rubleske, J., & Howison, J. (2006). Coordination theory: A ten-year retrospective.
In P. Zhang & D. Galletta (Eds.), Human-computer interaction in management information
systems (pp. 120–138). M. E. Sharpe, Inc.

Davis, S. M., & Lawrence, P. R. (1977). Matrix. Reading: Addison-Wesley.
Davison, R. B., Hollenbeck, J. R., Barnes, C. M., Sleesman, D. J., & Ilgen, D. R. (2012).

Coordinated action in multiteam systems. Journal of Applied Psychology, 97(4), 808–824.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22201246

DeChurch, L. A., & Marks, M. A. (2006). Leadership in multiteam systems. Journal of Applied
Psychology, 91(2), 311–329. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16551186

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2012). The Scrum primer version 2.0.
Retrieved from http://www.scrumprimer.org/scrumprimer20_small.pdf

Devine, D. J. (2002). A review and integration of classification systems relevant to teams in
organizations. Group Dynamics: Theory, Research, and Practice, 6(4), 291–310.

Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What is large in large-scale? A taxonomy of scale
for agile software development. In A. Jedlitschka, P. Kuvaja, M. Kuhrmann, T. Männistö,
J. Münch, & M. Raatikainen (Eds.), Product-focused software process improvement (Vol.
8892, pp. 273–276). Springer International Publishing. Retrieved from http://link.springer.
com/10.1007/978-3-319-13835-0

Dingsøyr, T., & Moe, N. B. (2014). Towards principles of large-scale agile development. In T.
Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile methods.

32 2 Theoretical and Conceptual Foundations

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.5931&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.5931&rep=rep1&type=pdf
http://link.springer.com/article/10.1007/s13142-012-0170-3
http://aisel.aisnet.org/misq/vol33/iss1/7/
http://www.sciencedirect.com/science/article/pii/S0164121214000697
http://www.sciencedirect.com/science/article/pii/S0164121214000697
http://www.ncbi.nlm.nih.gov/pubmed/22201246
http://www.ncbi.nlm.nih.gov/pubmed/16551186
http://www.scrumprimer.org/scrumprimer20_small.pdf
http://link.springer.com/10.1007/978-3-319-13835-0
http://link.springer.com/10.1007/978-3-319-13835-0

Large-scale development, refactoring, testing, and estimation (Vol. 199, pp. 1–8). Springer
International Publishing. Retrieved from http://www.springer.com/computer/swe/book/978-3-
319-14357-6

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9–10), 833–859. Retrieved from http://
linkinghub.elsevier.com/retrieve/pii/S0950584908000256

Eckstein, J. (2014). Architecture in large scale agile development. In T. Dingsøyr, N. Moe, R.
Tonelli, S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile methods. Large-scale
development, refactoring, testing, and estimation (Vol. 199, pp. 21–29). Springer
International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-14358-3_3

Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach
to programming. IEEE Transactions on Software Engineering, 31(3), 226–237.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and
extreme programming: The state of research. Journal of Database Management, 16(4), 88–
100. Retrieved from http://www.igi-pub.com/articles/details.asp?ID=5327

Espinosa, J. A., Armour, F., & Boh, W. F. (2010). Coordination in enterprise architecting: An
interview study. In System Sciences (HICSS), 2010 43rd Hawaii International Conference on
(pp. 1–10).

Espinosa, J. A., Cummings, J. N., & Pickering, C. (2012). Time separation, coordination, and
performance in technical teams. IEEE Transactions on Engineering Management, 59(1),
91–103.

Espinosa, J. A., Lerch, J. F., Kraut, R. E., Salas, E., & Fiore, S. M. (2004). Explicit vs. implicit
coordination mechanisms and task dependencies: One size does not fit all. In Team cognition:
Understanding the factors that drive process and performance (pp. 107–129). Washington,
DC: American Psychological Association.

Faraj, S., & Xiao, Y. (2006). Coordination in fast-response organizations. Management Science,
52(8), 1155–1169. Retrieved from http://dx.doi.org/10.1287/mnsc.1060.0526

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Retrieved from http://www.pmp-
projects.org/Agile-Manifesto.pdf

Fry, C., & Greene, S. (2007). Large scale agile transformation in an on-demand world. In
Proceedings of the AGILE Conference 2007 (pp. 136–142). Washington, DC.

Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS
Quarterly, 19(2), pp. 213–236. Retrieved from http://www.jstor.org/stable/249689

Grzymala-Busse, A. (2010). Time will tell? Temporality and the analysis of causal mechanisms
and processes. Comparative Political Studies, 44(9), 1267–1297. Retrieved from http://cps.
sagepub.com/content/44/9/1267

Gulick, L., & Urwick, L. (1937). Papers on the science of admininstration. New York: Institute of
Public Administration, Columbia University.

Guzzo, R. A., & Dickson, M. W. (1996). Teams in organizations: Recent research on performance
and effectiveness. Annual Review of Psychology, 47(1), 307–338. Retrieved from http://dx.doi.
org/10.1146/annurev.psych.47.1.307

Hempel, C. (1965). Aspects of scientific explanation and other essays in the philosophy of science.
New York: The Free Press.

Hoda, R., Kruchten, P., Noble, J., & Marshall, S. (2010). Agility in context. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and
Applications (pp. 74–88). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.
1145/1869459.1869467

Hole, S., & Moe, N. B. (2008). A case study of coordination in distributed agile software
development. In R. O’Connor, N. Baddoo, K. Smolander, & R. Messnarz (Eds.), Software
process improvement (Vol. 16, pp. 189–200). Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/978-3-540-85936-9_17

Hossain, E., Babar, M. A., & Paik, H. P. H. (2009). Using scrum in global software development:
A systematic literature review. In Global Software Engineering, 2009. ICGSE 2009.
Fourth IEEE International Conference on (pp. 175–184).

References 33

http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://dx.doi.org/10.1007/978-3-319-14358-3_3
http://www.igi-pub.com/articles/details.asp%3fID%3d5327
http://dx.doi.org/10.1287/mnsc.1060.0526
http://www.pmp-projects.org/Agile-Manifesto.pdf
http://www.pmp-projects.org/Agile-Manifesto.pdf
http://www.jstor.org/stable/249689
http://cps.sagepub.com/content/44/9/1267
http://cps.sagepub.com/content/44/9/1267
http://dx.doi.org/10.1146/annurev.psych.47.1.307
http://dx.doi.org/10.1146/annurev.psych.47.1.307
http://doi.acm.org/10.1145/1869459.1869467
http://doi.acm.org/10.1145/1869459.1869467
http://dx.doi.org/10.1007/978-3-540-85936-9_17

Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2004). Teams in organizations: From
input-process-output models to IMOI models. Annual Review of Psychology, 56(1), 517–543.
Retrieved from http://dx.doi.org/10.1146/annurev.psych.56.091103.070250

Jalali, S., & Wohlin, C. (2012). Global software engineering and agile practices: A systematic
review. Journal of Software: Evolution and Process, 24(6), 643–659. Retrieved from http://dx.
doi.org/10.1002/smr.561

Katz, D., & Kahn, R. L. (1978). The social psychology of organizations. Wiley.
Kettunen, P., & Laanti, M. (2008). Combining agile software projects and large-scale

organizational agility. Software Process: Improvement and Practice, 13(2), 183–193.
Retrieved from http://dx.doi.org/10.1002/spip.354

Kieser, A. (Ed.). (1993). Organisationstheorien. Kohlhammer.
Kotlarsky, J., van Fenema, P. C., & Willcocks, L. P. (2008). Developing a knowledge-based

perspective on coordination: The case of global software projects. Information & Management,
45(2), 96–108.

Kozlowski, S. W. J., & Bell, B. S. (2003). Work groups and teams in organizations work groups
and teams in organizations. In W. C. Borman, D. R. Ilgen, & R. J. Klimoski (Eds.), Handbook
of psychology: Industrial and organizational psychology (Vol. 12, pp. 333–375). New York:
Wiley.

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development. Communications of
the ACM, 38(3), 69–81.

Kruchten, P. (1998). The rational unified process: An introduction. Amsterdam: Addison-Wesley
Longman.

Laanti, M. (2014). Characteristics and principles of scaled agile. In T. Dingsøyr, N. Moe, R.
Tonelli, S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile methods. Large-scale
development, refactoring, testing, and estimation (Vol. 199, pp. 9–20). Springer
International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-14358-3_2

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., & Stahl, D. (2013). The impact of agile
principles and practices on large-scale software development projects: A multiple-case study of
two projects at Ericsson. In International Symposium on Empirical Software Engineering and
Measurement (pp. 348–356).

Lanaj, K., Hollenbeck, J. R., Ilgen, D. R., Barnes, C. M., & Harmon, S. J. (2012). The
double-edged sword of decentralized planning in multiteam systems. Academy of Management
Journal, 56(3), 1–61. Retrieved from http://amj.aom.org/content/early/2012/07/20/amj.2011.
0350.short

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history.
Computer, 36(6), 47–56.

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational
tools for large-scale Scrum. Upper Saddle River, N.J: Addison-Wesley Professional.

Larman, C., & Vodde, B. (n.d.). LeSS Framework. Retrieved August 18, 2015, from http://less.
works/

Lawrence, P. R., & Lorsch, J. W. (1967). Differentiation and integration in complex organizations.
Administrative Science Quarterly, 12(1), 1–47. Retrieved from http://www.jstor.org/stable/
2391211

Lee, E. C. (2008). Forming to performing: Transitioning large-scale project into agile. In Agile
2008 Conference (pp. 106–111). Toronto, ON.

Lee, G., Espinosa, J. A., & DeLone, W. (2013). Task environment complexity, global team
dispersion, process capabilities, and coordination in software development. IEEE Transactions
on Software Engineering, 39(12), 1753–1771.

Leffingwell, D. (n.d.). Scaled agile framework. Retrieved from http://www.scaledagileframework.
com/

Li, Y., & Maedche, A. (2012). Formulating effective coordination strategies in agile global
software development teams. In Proceedings of the International Conference on Information
Systems (ICIS 2012) (pp. 1–6).

34 2 Theoretical and Conceptual Foundations

http://dx.doi.org/10.1146/annurev.psych.56.091103.070250
http://dx.doi.org/10.1002/smr.561
http://dx.doi.org/10.1002/smr.561
http://dx.doi.org/10.1002/spip.354
http://dx.doi.org/10.1007/978-3-319-14358-3_2
http://amj.aom.org/content/early/2012/07/20/amj.2011.0350.short
http://amj.aom.org/content/early/2012/07/20/amj.2011.0350.short
http://less.works/
http://less.works/
http://www.jstor.org/stable/2391211
http://www.jstor.org/stable/2391211
http://www.scaledagileframework.com/
http://www.scaledagileframework.com/

Malone, T. W., & Crowston, K. (1990). What is coordination theory and how can it help design
cooperative work systems? In Proceedings of the Conference on Computer Supported
Cooperative Work. Los Angeles.

Malone, T. W., & Crowston, K. (1991). Toward an interdisciplinary theory of coordination. ACM
Computing Surveys, 120(120), 1–45. Retrieved from http://dspace.mit.edu/handle/1721.1/2356

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM
Computing Surveys, 26(1), 87–119. Retrieved from http://portal.acm.org/citation.cfm?doid=
174666.174668

Malone, T. W., Crowston, K., & Herman, G. A. (Eds.). (2003). Organizing business knowledge:
The MIT process handbook. Cambridge, MA: MIT press.

Malone, T. W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., … O’Donnell, E.
(1999). Tools for inventing organizations: Toward a handbook of organizational processes.
Management Science, 45(3), 425–443. Retrieved from http://mansci.journal.informs.org/cgi/
doi/10.1287/mnsc.45.3.425

Mangalaraj, G., Mahapatra, R., & Nerur, S. P. (2009). Acceptance of software process innovations
—The case of extreme programming. European Journal of Information Systems, 18(4), 344–
354. Retrieved from http://www.palgrave-journals.com/ejis/journal/v18/n4/abs/ejis200923a.
html

March, J. G., & Simon, H. A. (1958). Organizations. New York: Wiley.
Marks, M. A., DeChurch, L. A., Mathieu, J. E., Panzer, F. J., & Alonso, A. (2005). Teamwork in

multiteam systems. Journal of Applied Psychology, 90(5), 964–971. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/16162068

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and
taxonomy of team processes. The Academy of Management Review, 26(3), pp. 356–376.
Retrieved from http://www.jstor.org/stable/259182

Mathieu, J. E., Marks, M. A., & Zaccaro, S. J. (2001). Multiteam systems. In N. Anderson, D.
S. Ones, H. K. Sinangil, & C. Viswesvaran (Eds.), Handbook of industrial, work and
organizational psychology, Volume 2 Organizational psychology (Vol. 2, pp. 289–313).
London: Sage Publications Ltd.

Mathieu, J. E., & Maynard, M. T. (2008). Team effectiveness 1997–2007: A review of recent
advancements and a glimpse into the future. Journal of Management, 34(3), 410–476.
Retrieved from http://jom.sagepub.com/cgi/doi/10.1177/0149206308316061

Mintzberg, H. (1980). Structure in 5’s: A synthesis of the research on organization design.
Management Science, 26(3), 322–341. Retrieved from http://mansci.journal.informs.org/
content/26/3/322.short

Mintzberg, H. (1983). Structure in fives: Designing effective organizations. Prentice-Hall, Inc.
Moe, N. B., Šmite, D., Šāblis, A., Börjesson, A.-L., & Andréasson, P. (2014). Networking in a

large-scale distributed agile project. In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (pp. 12:1–12:8). New York,
NY: ACM. Retrieved from http://doi.acm.org/10.1145/2652524.2652584

Moore, E., & Spens, J. (2008). Scaling agile: Finding your agile tribe. In Agile 2008 Conference
(pp. 121–124). Toronto, ON.

Moreland, R., Argote, L., & Krishnan, R. (1996). Socially shared cognition at work: Transactive
memory and group performance. InWhat’s social about social cognition? Research on socially
shared cognition in small groups (pp. 57–84). Sage Publications, Inc. Retrieved from http://
psycnet.apa.org/psycinfo/1996-98278-003

Nerur, S. P., Mahapatra, R. K., & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72–78.

Nidumolu, S. (1995). The effect of coordination and uncertainty on software project performance:
Residual performance risk as an intervening variable. Information Systems Research, 6(3), 191.

Nidumolu, S. (1996). A comparison of the structural contingency and risk-based perspectives on
coordination in software-development projects. Journal of Management Information System,
13(2), 77–113. Retrieved from http://dl.acm.org/citation.cfm?id=1189558.1189564

References 35

http://dspace.mit.edu/handle/1721.1/2356
http://portal.acm.org/citation.cfm?doid=174666.174668
http://portal.acm.org/citation.cfm?doid=174666.174668
http://mansci.journal.informs.org/cgi/doi/10.1287/mnsc.45.3.425
http://mansci.journal.informs.org/cgi/doi/10.1287/mnsc.45.3.425
http://www.palgrave-journals.com/ejis/journal/v18/n4/abs/ejis200923a.html
http://www.palgrave-journals.com/ejis/journal/v18/n4/abs/ejis200923a.html
http://www.ncbi.nlm.nih.gov/pubmed/16162068
http://www.ncbi.nlm.nih.gov/pubmed/16162068
http://www.jstor.org/stable/259182
http://jom.sagepub.com/cgi/doi/10.1177/0149206308316061
http://mansci.journal.informs.org/content/26/3/322.short
http://mansci.journal.informs.org/content/26/3/322.short
http://doi.acm.org/10.1145/2652524.2652584
http://psycnet.apa.org/psycinfo/1996-98278-003
http://psycnet.apa.org/psycinfo/1996-98278-003
http://dl.acm.org/citation.cfm?id=1189558.1189564

Okhuysen, G. A., & Bechky, B. A. (2009). Coordination in organizations: An integrative
perspective. The Academy of Management Annals, 3(1), 463–502.

Paasivaara, M., & Lassenius, C. (2011). Scaling scrum in a large distributed project. In Empirical
Software Engineering and Measurement (ESEM), 2011 International Symposium on (pp. 363–
367).

Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012). Inter-team coordination in large-scale
globally distributed scrum: Do Scrum-of-Scrums really work? In Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE International Symposium on
(pp. 235–238).

Paasivaara, M., Väättänen, O., Hallikainen, M., & Lassenius, C. (2014). Supporting a large-scale
lean and agile transformation by defining common values. In T. Dingsøyr, N. Moe, R. Tonelli,
S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile methods. Large-scale development,
refactoring, testing, and estimation (Vol. 199, pp. 73–82). Springer International Publishing.
Retrieved from http://dx.doi.org/10.1007/978-3-319-14358-3_7

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile
practices on communication in software development. Empirical Software Engineering, 13(3),
303–337.

Poole, M. S., Van De Ven, A. H., Dooley, K., & Holmes, M. E. (2000). Organizational change
and innovation processes: Theory and methods for research. Oxford University Press.

Power, K. (2014). A model for understanding when scaling agile is appropriate in large
organizations. In T. Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, & K. Petersen
(Eds.), Agile methods. Large-scale development, refactoring, testing, and estimation (Vol. 199,
pp. 83–92). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-
319-14358-3_8

Rico, R., Sánchez-Manzanares, M., Gil, F., & Gibson, C. (2008). Team implicit coordination
processes: A team knowledge-based approach. Academy of Management Review, 33(1), 163–
184.

Royce, W. W. (1970). Managing the development of large software systems. In Proceedings of
IEEE WESCON (Vol. 26, pp. 328–388).

Salas, E., Sims, D. E., & Burke, C. S. (2005). Is there a “big five” in teamwork? Small Group
Research, 36(5), 555.

Scheerer, A., Bick, S., Hildenbrand, T., & Heinzl, A. (2015). The effects of team backlog
dependencies on agile multiteam systems: A graph theoretical approach. In System Sciences
(HICSS), 2015 48th Hawaii International Conference on (pp. 5124–5132). Koloa, HI.
Retrieved from http://ieeexplore.ieee.org/document/7070428/

Scheerer, A., Hildenbrand, T., & Kude, T. (2014). Coordination in large-scale agile software
development: A multiteam systems perspective. In System Sciences (HICSS), 2014 47th
Hawaii International Conference on (pp. 4780–4788). Waikoloa, HI. Retrieved from http://
ieeexplore.ieee.org/document/6759189/

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.
Schwaber, K., Dame, D., Hundhausen, R., Kong, P., Maher, R., Porter, S., … Verheyen, G. (n.d.).

Scaled Professional Scrum (Nexus) Framework. Retrieved August 21, 2015, from https://
kenschwaber.files.wordpress.com/2015/06/nexusguide_v1-0.pdf

Schwaber, K., & Sutherland, J. (2013). The Scrum Guide. Retrieved from https://www.scrum.org/
Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf

Simon, H. A. (1976). Administrative behavior: A study of decision-making processes in
administrative organization. The Free Press.

Smits, H., & Pshigoda, G. (2007). Implementing scrum in a distributed software development
organization. In Agile Conference (AGILE), 2007 (pp. 371–375).

Strode, D. E., Hope, B., Huff, S. L., & Link, S. (2011). Coordination effectiveness in an agile
software development context. In PACIS 2011.

Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software
development projects. Journal of Systems and Software, 85(6), 1222–1238. Retrieved from
http://dx.doi.org/10.1016/j.jss.2012.02.017

36 2 Theoretical and Conceptual Foundations

http://dx.doi.org/10.1007/978-3-319-14358-3_7
http://dx.doi.org/10.1007/978-3-319-14358-3_8
http://dx.doi.org/10.1007/978-3-319-14358-3_8
http://ieeexplore.ieee.org/xpls/abs_all.jsp%3farnumber%3d6759189
http://ieeexplore.ieee.org/document/6759189/
http://ieeexplore.ieee.org/document/6759189/
https://kenschwaber.files.wordpress.com/2015/06/nexusguide_v1-0.pdf
https://kenschwaber.files.wordpress.com/2015/06/nexusguide_v1-0.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-Guide.pdf
http://dx.doi.org/10.1016/j.jss.2012.02.017

Sutherland, J., Schoonheim, G., & Rijk, M. (2009). Fully distributed scrum: Replicating local
productivity and quality with offshore teams. In System Sciences, 2009. HICSS’09. 42nd
Hawaii International Conference on (pp. 1–8).

Sutherland, J., & Schwaber, K. (1995). Business object design and implementation workshop. In
Addendum to the proceedings of the 10th annual conference on Object-oriented programming
systems, languages, and applications (Addendum) (pp. 170–175). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/260094.260274

Sutton, R. I., & Staw, B. M. (1995). What theory is not. Administrative Science Quarterly, 40(3),
371–384.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard Business
Review, 64(1), 137–146. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/
0737678286900536

Tatikonda, M. V., & Rosenthal, S. R. (2000). Technology novelty, project complexity, and
product development project execution success: A deeper look at task uncertainty in product
innovation. IEEE Transactions on Engineering Management, 47(1), 74–87.

Taylor, F. W. (1911). The principles of scientific management. New York, London: Harper &
Brothers.

Thompson, J. D. (1967). Organizations in action: Social science bases of administrative theory
(Vol. 48). New York: McGraw-Hill.

Tosi, H. L. (2008). James March and Herbert Simon, Organizations. In Theories of organization
(pp. 93–102). SAGE Publications, Inc.

Van De Ven, A. H., Delbecq, A. L., & Koenig, R. J. (1976). Determinants of coordination modes
within organizations. American Sociological Review, 41(2), 322–338. Retrieved from http://
www.jstor.org/stable/2094477

VersionOne Inc. (2013). 8th Annual State of Agile Development Survey. Retrieved from www.
versionone.com/pdf/2013-state-of-agile-survey.pdf

Zaccaro, S. J., Marks, M. A., & DeChurch, L. A. (2012). Multiteam systems: An introduction.
In S. J. Zaccaro, M. A. Marks, & L. A. DeChurch (Eds.), Multiteam systems an organization
form for dynamic and complex environments (pp. 3–32). New York, NY, USA: Routledge.

References 37

http://doi.acm.org/10.1145/260094.260274
http://linkinghub.elsevier.com/retrieve/pii/0737678286900536
http://linkinghub.elsevier.com/retrieve/pii/0737678286900536
http://www.jstor.org/stable/2094477
http://www.jstor.org/stable/2094477
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

Chapter 3
Research Design

The previous chapter depicted the foundations of this study, based on which the
preliminary research framework was built. The following chapter presents the
industrial research context of this study as well as the selection and specification of
the research strategy. It finishes with the data collection and analysis procedures
employed.

3.1 Research Context

The exploration of coordination configurations and their change over time was
conducted at SAP SE (further referred to as ‘SAP’), a multinational software
development organization specializing on enterprise software. With more than
84,000 employees, customers in 190 countries and an annual revenue of more than
22 billion Euro, it is one of the largest enterprise software companies worldwide.
Over 15,000 developers are currently working in the major development locations
including Germany, United States, India, Bulgaria and China.

The history of agile software development at SAP started in 2004 with first
experiments on Extreme Programming. A few teams decided to try agile practices
but realized quickly that in a largely waterfall-based development organization this
turned out to be increasingly difficult. Starting in 2006, a small team was formed to
support development teams with the implementation of Scrum. Over the next two
years, around 120 projects were completed with the Scrum method (Schnitter and
Mackert 2010). The year 2012 marks the completion of the move to agile devel-
opment methods in all of SAP’s development areas (Scheerer et al. 2013).

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_3

39

3.1.1 Organizational Context

One major change was the introduction of Scrum as a process framework on the
team level. Along with Scrum, there was no longer a ‘project manager’, but the
roles of Scrum Master, responsible for the team process, and Product Owner,
responsible for the product towards customers, were introduced.

Originating from small-scale settings (Schwaber and Beedle 2002), Scrum is not
a perfect fit for large-scale development projects at first sight. Most of the devel-
opment units at SAP, however, included several teams and comprised 150 devel-
opers and more. In the context of this industrial setting, the difference between
‘project’ and ‘product’ development became evident. Project development usually
included a very limited amount of customers, often only one, and had a clear
timeline when it would end. The teams staffed on such projects worked on them for
a limited time and moved on to the next project once the previous was finished.
Product development on the other hand, was based on the continuous implemen-
tation of a software product with mostly the same teams working on the software
until it reached the end of its product life cycle. Some developers mentioned that
they had essentially worked in the same team since they had started at SAP
15 years earlier. To cope with and benefit from this setting, an approach based on
Larman and Vodde (2008, 2010) was implemented to scale Scrum for large soft-
ware products.

Within this approach, the role of Chief Product Owner (CPO) was established.
The CPO is responsible for an entire application or solution. Depending on the size
of the product, there are usually one to two levels of (Area) Product Owners (APO),
i.e. the overall product is divided into several ‘product areas’. Within these teams,
software developers, architects, user interface designers, documentation writers, etc.
are working together to implement requirements.

The multiteam systems and the development teams contained therein are very
heterogeneous with respect to technical characteristics (e.g. programming lan-
guages used, type of software developed), system setup (e.g. delivery or planning
cycles) as well as organizational setup (e.g. component or feature orientation).
These differing characteristics provide the diversity needed for the study at hand.

3.1.2 Embedded Research Setup

This research project had privileged access to the aforementioned company as the
author worked as a research assistant at SAP between 2011 and 2015. During this
time, he had the unique opportunity to gain deep insights into the issues under study
in a real world professional software development setting. He further had the
chance to join several trainings on development methodologies and contributed to
SAP’s agile efforts through various workshops with managers and developers alike.
Over the course of the research project, additional exploratory studies focusing on

40 3 Research Design

different topics were conducted, which were outside the scope of the current study.
Among them were interviews with 25 agile developers in five teams, network
analyses of project management data from two multiteam systems, graph theoretical
modelling of inter-team dependencies and countless informal talks with managers,
technical experts and coaches. Some of these results have been published elsewhere
(Scheerer et al. 2015, 2014, 2013).

In order to establish first insights into the problem space of inter-team work in
large-scale agile development environments, an exploratory data analysis of the
project management data of one product was carried out. A full release cycle was
scrutinized in order to visualize and understand bottlenecks in the software
development process. Overall, six months worth of data from more than 125 teams
were examined. Through cumulative flow diagrams (Petersen and Wohlin 2011)
and several interviews with employees responsible for continuous improvement, the
underlying processes became apparent. A key finding was that strong mechanistic
coordination alone could not mitigate interdependencies between teams. Four
informal interviews with employees working together on another product (product
management and developers) generated congruent insights. The management of
dependencies, especially between teams, was the leading cause of problem esca-
lations. The detailed results of this study have not been published, as organizational
constraints did not allow for all research carried out to be made publicly available.
However, the insights gained from this work formed the basis for the study at hand
and strongly influenced the research strategy described in the following sections.

3.2 Selection of a Research Strategy

To answer the posed research questions, an appropriate research strategy must be
chosen. Within the social sciences, researchers can choose from a plethora of
differing research strategies including experimental, survey or case-based studies
(Bhattacherjee 2012; Saunders et al. 2009).

A commonly used frame for the selection of a research strategy is based on three
dimensions, the type of research question to be answered, if the study requires
control of behavioral events and if a focus on contemporary events is necessary
(Yin 2009). To these, Benbasat et al. (1987) add the established theoretical base of
the researched phenomenon as another dimension.

The study’s setting is in a large productive development organization with
ongoing product development. This field environment does not lend itself to
behavioral control in the form of experiments. Moreover, it is also not desirable to
control the events under study, as this research wants to investigate and explore
coordination in large-scale agile development systems in its natural setting, unaf-
fected from outside influences. Furthermore, as agile development is a recent
phenomenon the focus of this study is of a contemporary nature. Finally, the posed
research question of this study is ‘How do changes in the coordination

3.1 Research Context 41

configuration affect integrating conditions in multiteam software development
systems?’ with two sub questions (1) ‘Why does the coordination configuration
change?’ and (2) ‘How are the integrating conditions for coordination attained?’.

The how and why research questions together with the focus on contemporary
events and the necessity to study these in their natural setting, strongly indicate the
usage of the case study as a research strategy. Research in the field of agile software
development is considered to be at a nascent to intermediate state (Dybå and
Dingsøyr 2008; Hummel 2014). Based on this assessment, a qualitative case study
approach (Yin 2009) seems particularly fitting as the research phenomenon is not
supported by a strong theoretical base (Benbasat et al. 1987).

3.3 Specification of the Case Study Strategy

The inherent time-dependent nature of the research question in that it asks how
changes affect software development systems, is the point of departure for pursuing
a process theoretical approach (Mohr 1982).

In the realm of process theories concerned with organizational change and
development, Poole et al. (2000) describe four types of theory inherent structures:
evolution, dialectic, life cycle and teleology. These differ according to their unit and
mode of change. Evolution, due to its premise of regarding change in populations,
deals with multiple entities by definition. This change is of the prescribed variety, as
forms are incrementally adapted in a pre-specified direction. Dialectic theories, also
belonging to the multiple entities class, because of their need for at least two entities
in the form of thesis and antithesis, are concerned with constructive change. This
type of change produces new forms, which are often unpredictable based on pre-
vious forms. Life cycle and teleology theories deal with single entities and differ in
their mode of change as life cycle views the entity as it progresses through different
predefined cycle steps, while teleology, by its very nature, constructs change
through the setting of new goals (Poole et al. 2000).

The research phenomenon investigated exhibits signs of constructive change, as
coordination activities are conducted to achieve certain goals (e.g. new feature
implementation or timely delivery) and a change to this type of process is a willful
act in order to remedy some form of discontent. If a dissatisfaction with the current
way of coordinating is present, new or alternative ways are searched for to reach the
envisioned goals. The MTS as the unit of analysis is viewed as a single entity.
According to Van de Ven and Poole (1995), this structure “can operate for an
individual or for a group of individuals or organizations who are sufficiently
like-minded to act as a single collective entity”. This is the presumption concerning
software product development teams, which have to work together in order to
deliver one piece of software to customers. The single entity as the unit of change
together with the constructive motor of change leads to this studies usage of the
teleological type of process theory.

42 3 Research Design

Underlying any scientific endeavor is an epistemological stance, a theory of
knowledge that influences the chosen methodology and how a researcher views the
data. Positivism, interpretivism and realism are a few examples of such positions
(Chalmers 1999; Crotty 1998).

A positivist stance implies that an objective reality exists independent of the
human mind (Orlikowski and Baroudi 1991). From this perspective, knowledge is
created by experiences and observations of the world and depicts an objective and
independent reality (Chalmers 1999). Interpretivism puts forth a view that reality is
a product of social construction (Orlikowski and Baroudi 1991). Here, the reality
and the researcher are of an inseparable nature where knowledge is intentionally
constituted through the researcher’s experience (Weber 2004).

This study follows a qualitative case study approach (Eisenhardt 1989) some-
times referred to as soft positivism (Kirsch 2004; Madill et al. 2000). As the nascent
state of research in the field of agile software development (Dybå and Dingsøyr
2008; Hummel 2014) did not provide a strong theoretical base, this approach was
employed in order to perform the data analysis with certain expectations based on
available prior theory, but at the same time permitting some unexpected results and
explanations to be derived from the data, closer to the interpretivist paradigm.

To increase the generalizability of the results, a multiple case study design was
chosen, with the individual coordination configuration change process being the
unit of analysis. In order to grasp the full spectrum of events that are likely to affect
the evolution of changes in coordination configurations, a diverse sampling
(Gerring 2007) approach was conducted. This matches the nature of the research, as
mainly the generation of event sequences is of interest and not the testing of
hypotheses. Within the software development company under study, the cases were
selected based on varying the characteristics of the multiteam system (Zaccaro et al.
2012) to generate a heterogeneous sample (Poole et al. 2000). As such, five mul-
titeam systems with differing sizes, delivery and planning cycles, as well as loca-
tions were identified for this study (see Table 3.1).

Table 3.1 Overall multiteam system demographics

Alpha Beta Gamma Delta Epsilon Total

Interviewees 23 22 9 7 5 66

CPO 1 2 – 1 1 5

APO – 1 2 – – 3

PO 11 8 – 5 4 28

SM 10 9 5 – – 24

Other 1 2 2 1 – 6

Teams 13 9 7 6 4 39

Locations 4 2 6 1 3 –

Employees *140 *95 *50 *85 *40 *410

Product
type

On-premise Cloud On-premise
and cloud

On-premise On-premise
and cloud

3.3 Specification of the Case Study Strategy 43

3.4 Data Collection and Analysis Procedure

After having described the research and case study strategy in the previous sections,
the following paragraphs will depict the data collection and analysis procedure in
this research.

3.4.1 Data Collection

Data collection was divided into two phases. The first case data was gathered in
October 2013, while the data from other cases was gathered between June 2014 and
December 2014. Wherever possible, the interviews were held face-to-face.
Interviews with remote partners were conducted via telephone, supported by col-
laborative tools (e.g. screen sharing).

Since change processes of coordination within multiteam systems are at the core
of this study, interview partners in charge or with great knowledge of coordination
within MTSs were chosen. In large-scale agile development, task coordination
between teams lies mainly with the Product Owners and to a smaller extent with the
Scrum Masters. The data was gathered by retrospective semi-structured interviews
with Chief Product Owners in charge of the multiteam systems and the individual
team Product Owners as well as Scrum Masters, Area Product Owners, architects
(Arch) and other select roles (see Table 3.1). This retrospective approach made it
possible to gather relevant coordination processes and changes to the multiteam
system covering several months and at the same time minimizing data overload
compared to a continuous longitudinal approach (Huber et al. 2013). Table 3.1
provides an overview of the multiteam systems investigated and their general
demographics.

The interviews held were of a semi-structured nature (Kvale and Brinkmann
2009; Yin 2009). This type of interview is based on a skeleton in the form of an
interview guideline to steer the conversation into the relevant direction.
Nevertheless, the interviewee has the chance to speak openly and the researcher can
veer from the guideline if interesting topics arise (Kvale and Brinkmann 2009).
Based on the framework presented in Sect. 2.4.2, an interview guideline was
developed to gain information concerning the context as well as aspects relevant to
the coordination (see Appendix A Interview Guideline). To tease out coordination
processes between teams, the Critical Incident Technique was utilized (Butterfield
2005; Flanagan 1954). The interviewees were asked to report on critical events
where coordination between teams unfolded in a particularly successful or unsuc-
cessful way. In doing so, the possibility of a cognitive bias was taken into account
by asking about specific events instead of more general views. Using this question
format, the participants were deliberately asked to think of specific events they
experienced personally in the past, rather than describing their general perception of
circumstances. Instead of asking could you describe situations where things often

44 3 Research Design

http://dx.doi.org/10.1007/978-3-319-55327-6_2

go wrong, they were asked to describe one particular situation in the past that they
personally experienced. Questions 47 and 48 of the interview guideline (see
Appendix A Interview Guideline) are exemplary to the posed questions within this
technique.

Around 58 h of interviews were recorded with conversations lasting on average
40 minutes. This data was complemented by internal documentation and project
management data available in the IT systems used for coordinating work in order to
triangulate the data and increase internal validity (Yin 2009). All interviews were
recorded and transcribed before the subsequent analysis. The transcriptions com-
prise more than 380,000 words (more than 1100 pages) of qualitative data. The data
was then entered in computer assisted qualitative data analysis software (QSR
NVivo 10) to help with the management and analysis of the empirical data
collected.

In order to enhance the quality of the analysis, all responses and processes were
additionally coded by a second researcher. The inter-rater agreement ratio (Dubé
and Paré 2003) achieved between the two researchers was 74%. The remaining
disagreements were discussed extensively to overcome discrepancies in the coding
of the data and until an overall agreement could be reached.

3.4.2 Analysis of Process Changes

The single-case analysis of this study was guided by the research framework (see
Sect. 2.5) with the individual change process of the coordination configuration as
the unit of analysis. It followed an iterative three-stage process of data analysis
outlined below (based on Huber et al. 2013).

Stage 1: Case story, Context and Network Analysis

This first stage included writing case stories for each analyzed multiteam system in
order to gain an in-depth understanding of each case and its context as proposed by
Miles and Huberman (1994). Supplementary sources in the form of wikis or other
electronic documents were identified and investigated where available.

Based on the interview data and a coding scheme (see Appendix B Coding
Schemes), sequential and reciprocal task dependencies (cf. Thompson 1967)
between teams were identified and inserted into a dependency matrix for each case.
Each of these matrices was then transferred into a directed graph, with reciprocal
dependencies weighted double. From this directed graph, the in/out degree,
betweenness centrality and strongly connected components were calculated and
visualized (for definitions see Table 3.2). The result was a graphical representation
of the team dependency structure of each MTS with the strongly connected com-
ponents marked with colored slices. This helped in gaining an in-depth under-
standing of the contingency factor task dependencies that were present between
teams in each MTS and formed the base for analyzing the trigger—change process—
outcome episodes.

3.4 Data Collection and Analysis Procedure 45

http://dx.doi.org/10.1007/978-3-319-55327-6_2

Stage 2: Analyzing Trigger—Change Process—Outcome Episodes

In the second stage the data was coded in NVivo based on a coding scheme (see
Appendix B Coding Schemes). Every piece of process data was mapped to parts of
the research framework. Starting with the triggering event and the initial integrating
conditions, the changes in the coordination configuration and the final integrating
conditions were identified in the interview data. Next, a representation in the form
of a visual map was constructed for each process (Langley 1999). With the help of a
second researcher the coding of process as well as all visual maps were discussed
and compared until no discrepancies were present anymore.

Stage 3: Examining the Attainment of Integrating Conditions

In the final stage, a cross-case analysis was conducted to identify how the inte-
grating conditions were attained. Coordination configurations were determined that
acted as the source of the generated integrating conditions. In order to do so, all
processes were reviewed and the originating coordination configuration was carved
out for each final integrating condition of each process (see Appendix E Process
Overview).

The types of coordination configurations and their relationship to the integrating
conditions was analyzed based on contingency tables for which a chi-squared test of
independence was performed. The null hypothesis H0 = coordination configura-
tions are independent of the integrating conditions was established with the
alternative hypothesis being that the coordination configurations and the integrating
conditions have an association. However, sparsely populated contingency tables are
a problem for Pearson’s Chi-squared test of independence, in particular cells with
an expected value of less than five lead to an incorrect approximation of the
Chi-squared value (Hogg and Tanis 1996). To overcome this issue, another test was
employed. An approach for small contingency tables is Fisher’s exact test, which,
as the name implies, calculates exact p-values.

Table 3.2 Definitions of graph parameters

Parameter Definition

In/out degree The in-degree is the number of ingoing edges connected to a vertex
and the out-degree is the number of outgoing edges (Newman 2010,
p. 135)

Betweenness
centrality

Measures the extent to which a vertex lies on paths between other
vertices (Newman 2010, p. 185)

Strongly connected
components

A strongly connected component is a maximal subset of vertices
such that there is a directed path in both directions between every
pair in the subset (Newman 2010, p. 144)

Density The ratio of edges present in a graph to the maximum possible
number of edges between vertices (Newman 2010, p. 134)

Diameter The diameter of a graph is the length of the longest geodesic path
between any pair of vertices in the network for which a path actually
exists (Newman 2010, p. 140)

46 3 Research Design

The aspect of time was integrated next, through the examination of which
integrating condition was generated in which process step (see Figs. 4.34, 4.35 and
4.36). It was towards the end of this stage that the findings were compared to the
existing view on coordination.

Having presented the qualitative process theoretic research design of this study,
the following chapter will describe the results of the multiple case study on coor-
dination in multiteam systems.

References

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case research strategy in studies of
information systems. MIS Quarterly, 11(3), 369–386.

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices. USF Open
Access Textbooks Collection, Book 3.

Butterfield, L. D. (2005). Fifty years of the critical incident technique: 1954–2004 and beyond.
Qualitative Research, 5(4), 475–497.

Chalmers, A. F. (1999). What is this thing called science? (3rd revise). Hackett Publishing
Company.

Crotty, M. J. (1998). The foundations of social research: Meaning and perspective in the research
process. SAGE Publications Ltd.

Dubé, L., & Paré, G. (2003). Rigor in information systems positivist case research: Current
practices, trends, and recommendations. MIS Quarterly, 27(4), 597–636. Retrieved from http://
www.jstor.org/stable/30036550

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9–10), 833–859. Retrieved from http://
linkinghub.elsevier.com/retrieve/pii/S0950584908000256

Eisenhardt, K. M. (1989). Building theories from case study research. The Academy of
Management Review, 14(4), 532–550. Retrieved from http://www.jstor.org/stable/258557

Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358.
Gerring, J. (2007). Case study research: Principles and practices. Social Science (Vol. 1).

Cambridge University Press.
Hogg, R. V., & Tanis, E. A. (1996). Probability and statistical inference (5th ed.). Prentice Hall.
Huber, T. L., Fischer, T. a., Dibbern, J., & Hirschheim, R. (2013). A process model of

complementarity and substitution of contractual and relational governance in IS outsourcing.
Journal of Management Information Systems, 30(3), 81–114.

Hummel, M. (2014). State-of-the-art: A systematic literature review on agile information systems
development. In System Sciences (HICSS), 2014 47th Hawaii International Conference on
(pp. 4712–4721).

Kirsch, L. J. (2004). Deploying common systems globally: The dynamics of control. Information
Systems Research, 15(4), 374–395.

Kvale, S., & Brinkmann, S. (2009). Interviews: Learning the craft of qualitative research
interviewing. Los Angeles, CA: Sage.

Langley, A. (1999). Strategies for theorizing from process data. The Academy of Management
Review, 24(4), 691–710.

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational
tools for large-scale Scrum. Upper Saddle River, NJ: Addison-Wesley Professional.

Larman, C., & Vodde, B. (2010). Practices for scaling lean and agile development: Large,
multisite, and offshore product development with large-scale scrum (1st ed.). Upper Saddle
River, NJ: Addison-Wesley Professional.

3.4 Data Collection and Analysis Procedure 47

http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://www.jstor.org/stable/30036550
http://www.jstor.org/stable/30036550
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://www.jstor.org/stable/258557

Madill, A., Jordan, A., & Shirley, C. (2000). Objectivity and reliability in qualitative analysis:
Realist, contextualist and radical constructionist epistemologies. British Journal of Psychology,
91(1), 1–20. Retrieved from http://dx.doi.org/10.1348/000712600161646

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook
(2nd ed.). Sage Publications, Inc.

Mohr, L. B. (1982). Explaining organizational behavior. San Francisco: Jossey-Bass.
Newman, M. (2010). Networks: An introduction. Oxford University Press.
Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations:

Research approaches and assumptions. Information Systems Research, 2(1), 1–28.
Petersen, K., & Wohlin, C. (2011). Measuring the flow in lean software development. Software

Practice and Experience, 41(9), 975–996. Retrieved from http://dx.doi.org/10.1002/spe.975
Poole, M. S., Van De Ven, A. H., Dooley, K., & Holmes, M. E. (2000). Organizational change

and innovation processes: Theory and methods for research. Oxford University Press.
Saunders, M., Lewis, P., & Thornhill, A. (2009). Research methods for business students.

Prentice-Hall.
Scheerer, A., Bick, S., Hildenbrand, T., & Heinzl, A. (2015). The effects of team backlog

dependencies on agile multiteam systems: A graph theoretical approach. In System Sciences
(HICSS), 2015 48th Hawaii International Conference on (pp. 5124–5132). Koloa, HI.
Retrieved from http://ieeexplore.ieee.org/document/7070428/

Scheerer, A., Hildenbrand, T., & Kude, T. (2014). Coordination in large-scale agile software
development: A multiteam systems perspective. In System Sciences (HICSS), 2014 47th
Hawaii International Conference on (pp. 4780–4788). Waikoloa, HI. Retrieved from http://
ieeexplore.ieee.org/document/6759189/

Scheerer, A., Schmidt, C. T., Heinzl, A., Hildenbrand, T., & Voelz, D. (2013). Agile software
engineering techniques: The missing link in large scale lean product development. In S.
Kowalewski & B. Rumpe (Eds.), Lecture Notes in Informatics (LNI)—Proceedings of the
SE2013 (Vol. P-213, pp. 319–330).

Schnitter, J., & Mackert, O. (2010). Introduncing agile software development at SAP AG—
Change procedures and observations in a global software company. In Proceedings of the 5th
International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE).

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.
Thompson, J. D. (1967). Organizations in action: Social science bases of administrative theory

(Vol. 48). New York: McGraw-Hill.
Van de Ven, A. H., & Poole, M. S. (1995). Explaining development and change. The Academy of

Management Review, 20(3), 510–540.
Weber, R. (2004). Editor’s comments: The rhetoric of positivism versus interpretivism: A personal

view. MIS Quarterly, 28(1), iii–xii.
Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage Publications, Inc.
Zaccaro, S. J., Marks, M. A., & DeChurch, L. A. (2012). Multiteam systems: An introduction.

In S. J. Zaccaro, M. A. Marks, & L. A. DeChurch (Eds.), Multiteam systems an organization
form for dynamic and complex environments (pp. 3–32). New York, NY: Routledge.

48 3 Research Design

http://dx.doi.org/10.1348/000712600161646
http://dx.doi.org/10.1002/spe.975
http://ieeexplore.ieee.org/document/7070428/
http://ieeexplore.ieee.org/document/6759189/
http://ieeexplore.ieee.org/document/6759189/

Chapter 4
Case Study Results on Coordination
in Multiteam Systems

This chapter presents the results of the conducted case study on coordination in
multiteam systems. The first part in Sect. 4.1 introduces a single-case analysis of
each of the five cases in this study with their respective MTS structure, depen-
dencies and coordination as well as the coordination configuration change pro-
cesses. The second part in Sect. 4.2 presents a cross-case analysis wherein the cause
for coordination configuration changes and an analysis of the attainment of the
integrating conditions for coordinated action is presented.

4.1 Single-Case Analysis

What follows are the insights gained from the analysis of each individual case. As
outlined in Sect. 3.4, the following presents the outcome of the single-case analysis.
Each multiteam system is introduced before its individual contextual factors are
shown. The MTS structure, team dependencies and coordination aspects are
described. As it is inherently difficult to scale coordination from small to large-scale
settings (Barlow et al. 2011), the agile method scaling approach or the way in which
the MTSs adapted agile to their individual settings is presented. Finally, the change
processes within each case are depicted in detail.

To illustrate these processes in a comparable manner, a unified representation
was developed, which is explained in Fig. 4.1. The processes start out with a
triggering event, illustrated in the oval form on the top. The initial integrating
conditions that were present at the time of the trigger are depicted in the box below.
In Fig. 4.1, the integrating condition common understanding was lacking, indicated
by the hollow circle before it. The filled circle before accountability illustrates the
presence of this condition. If no circle is present in the integrating conditions, these
were not relevant for this process (e.g. predictability in this case). The change
process is portrayed on the right, where several coordination configurations are
plotted vertically. These give a picture of how the configurations evolved over time.

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_4

49

http://dx.doi.org/10.1007/978-3-319-55327-6_3

The boxes shaded in grey show which of the three dimensions, type, locus and
direction, were present. Lastly, the box on the bottom left describes the final
integrating conditions present after the change process was concluded.

4.1.1 Case Alpha

The first of the five cases investigated is MTS Alpha, which was developing a
logistics solution with 13 teams in four locations (see Table 4.1). This solution had

late delivery of
needed

functionality

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on
Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Common Understanding

Accountability

Predictability

Legend
integrating condition not relevant

coordination dimension not present

coordination dimension present

integrating condition present

integrating condition not present

Fig. 4.1 Process visualization key

50 4 Case Study Results on Coordination …

been in development for more than 10 years with around 140 employees involved
in the multiteam system. The product had attracted many customers across a
diversified field, which it supported. Due to the wide range of customers with their
diverse requirements, the underlying business process was very complex. The result
of this was a high product complexity, as rated by the interview participants. Due to
the many aspects that were regulated in the logistics industry, the uncertainty of
requirements was seen as low-medium. The needed functionality that the customers
demanded seemed to be evident yet very comprehensive, although all details were
seldom clear from the beginning. Additionally, the high-level requirements did not
change often. The on-premise software product was characterized as being a tightly
integrated system with almost no requirements that could be implemented within
one single team.

4.1.1.1 MTS Structure, Dependencies and Coordination

The development teams within this multiteam system were divided according to the
process steps supported by the product they were developing. Due to the complex
and broad domain knowledge needed to develop this solution, the teams were each
specialized on certain aspects of the underlying business process (e.g. invoicing).
The composition of each team covered all aspects of the software stack including a
user interface expert, quality testing engineers, and architecture specialists.

The solution stemmed from the traditional large enterprise on-premise world,
where customers were hesitant to update their mission critical enterprise software
hastily. As such, new releases of the product were delivered to the customer
approximately every 12 months, which represents a formidable reduction of the
release cycle that previously was considerably longer. Based on this long-term

Table 4.1 Case alpha
characteristics

Teams 13

Locations 4

Employees *140

Product type On-premise

Avg. Company Tenure 12 years

Avg. MTS Tenure 5 years

Avg. Team Tenure 4 years

Avg. Role Tenure 3 years

Product maturity >10 years

Customer delivery *12 months

Team sprint length 4 weeks

Product complexity High

Requirements uncertainty Low-medium

Inter-team coordination responsibility Central Team, PO

4.1 Single-Case Analysis 51

perspective, the high-level release planning looked several years ahead. On the
inter-team level, the upcoming sprints of four weeks were planned in a cycle of
three months.

In general, the teams had little autonomy concerning the development topics.
A central team compiled the higher-level work items (epics) and pushed these to the
individual teams. The central team was staffed with employees outside of the teams.

Interviewee 32: “Content wise, the work items are rather prescribed through the
central team. […] So we have relatively little freedom concerning that.”
Interviewee 1: “Well, we have minimal empowerment. Essentially, the backlog
items are tossed in from above. So, there is a central team which thinks about the
next things which should be done and that is then defined.”

Interestingly, one team mentioned their independence from this central team due
to the new nature of their development topic and their direct and close interaction
with the customer.

Interviewee 5: “[…] as I have meetings with customers three to ten times a week
where I talk about the requirements with them, I decide what is done in the next
sprint. I present that to the central team, so that they now what is going on. Until
now they have always agreed to my suggestions.”

To manage task allocation and establish a minimal form of status transparency, a
common backlog management tool was promoted, but its usage varied heavily.
Some teams used it very consistently while others decided to use it minimally and
continue their team planning in other office tools. In addition, a comprehensive wiki
was cultivated with current information on the general setup of the multiteam
system and material on technical and administrative aspects.

The inter-team dependencies depicted in Fig. 4.2 show many one-way sequen-
tial dependencies, which depicts the existence of producer-consumer relationships
between the teams. The large slice illustrates the tightly integrated core teams, with
several reciprocal dependencies between four teams. In contrast to this cluster, the
four individual teams can be viewed as service teams. These teams show little to no
sequential dependencies toward other teams and could act more independently than
the rest of the system in order to fulfill their requirements. These service teams
implemented modules with self-contained features and relied only on data struc-
tures from the main teams.

Looking at the parameters of the task dependency graph, the density figure of
case Alpha is the lowest in comparison to the other cases (see Table 4.2). This can
be explained through the high overall number of teams within the MTS relative to
the lower number of core development teams. Those four teams that were not part
of the one large strongly connected component were acting as service teams to the
core component teams. With these almost external service providing teams, few
dependencies existed. Within the largest strongly connected component, however,
the core teams were much more heavily connected, which would—if adjusted to the
number of core teams—then lead to a higher value of overall density. The

52 4 Case Study Results on Coordination …

parameter diameter is also the largest in case Alpha, which underscores the tightly
integrated software built by Alpha and the fact that very few features could be
implemented by only one team. Regarding the betweenness centrality, or the extent
to which a vertex lies on paths between other vertices (see definitions in Table 3.2),
case Alpha stands out once more, as many of the core teams’ nodes have a very
high betweenness centrality, depicted by the node size. An overview of all graph
parameters across the five MTSs is provided in the Appendix C Network Analysis
Results (for parameter definitions see Table 3.2).

The general coordination style within this multiteam system can be characterized
as top-down. A central team came up with high-level epics and assigned a lead team
to each, based on which team fits best to the topic. Initial dependencies were
specified but many times not all were discovered. The assigned lead team then had
to detail out the epic and coordinate with other teams in case input from them was
needed. The discovery of further dependencies and delivery timeline discussions
with other teams also fell into the hands of the lead team. Often, discussions
between teams did not lead to any resolution, and were then escalated back up to
the central team.

Alpha4
4/0
0.0

Alpha11
1/0
0.0

Alpha8
5/2
8.17

Alpha7
4/1
1.67

Alpha13
2/0
0.0

Alpha9
1/6
23.0

Alpha10
2/4
24.5

Alpha1
2/8
10.5

Alpha6
2/2
5.0

Alpha2
4/7

31.33

Alpha3
3/3

19.33

Alpha5
3/2
0.5

Alpha14
3/1
2.0

Reciprocal Dependency

Sequen al Dependency

Fig. 4.2 Alpha inter-team task dependencies

4.1 Single-Case Analysis 53

http://dx.doi.org/10.1007/978-3-319-55327-6_3
http://dx.doi.org/10.1007/978-3-319-55327-6_3

Interviewee 7: “[…] we steer rather central and top-down. We aren’t bottom-up,
we are clearly top-down in our management.”

From the examined data, a new condition in the form of transparency became
evident. An open and proactive communication culture concerning current prob-
lems and background information or explanations for decisions taken were men-
tioned, essentially the aspects of problem and decision transparency came to light.
Workload and progress transparency was mentioned as a critical item in order to
assess the status of individual teams from a team-to-team and a team-to-central team
perspective. The definition adopted in this research is “the perceived quality of
intentionally shared information from a sender” (Schnackenberg and Tomlinson
2014, p. 5). In this light, the integrating condition transparency was added to the
research framework and examined together with the three established conditions
from literature.

4.1.1.2 Agile Method Scaling Approach

Scaling via Central Team Directives
One way to cope with the increased difficulty of coordinating a large number of
teams and employees is to install an entity specifically for that purpose. In case
Alpha, the central team is an example of such an approach. Seven people, including
the CPO, architects and product experts, formed this team, which generated the
high-level work items in the form of epics and allocated them to a lead development
team. The central team met daily for one hour to discuss current and pressing topics
as well as to plan the upcoming sprints. This team was a separate entity to the
development teams in the multiteam system and did not include any team
representatives.
Once per sprint, the central team hosted a status and handover meeting with each of
the development teams individually. In this meeting, the central team wanted to see
what was achieved by the development team in the last sprint and to communicate
what the backlog items and their priorities for the next sprint were.

The scaling approach via a central team dealt with the matter of team interlocks
due to priority conflicts.

Interviewee 7: “An issue which we could address through the introduction of the
central team was the mutual blocking of teams. Because they are strongly inter-
connected, we previously often had the situation that priority 1 from one team was
priority 3 of the next team and these two teams actually had to work together.”

Table 4.2 Case alpha graph
parameters

Graph Parameter Value

Strongly connected components 5

Average degree 2.692

Density 0.231

Diameter 5

54 4 Case Study Results on Coordination …

However, not all members of the multiteam system were positive about this
setup.

Interviewee 7: “The POs normally don’t like this solution, because we restrict the
responsibility a PO has considerably […].”

Another consequence of this approach seemed to be that the central team could
not foresee all dependencies between teams, which led to recurring escalations to
solve resulting issues.

Interviewee 7: “[…] usually we can’t anticipate all the dependencies between
teams in the central team.”

Finally, responsibility for inter-team coordination was relocated to the central
team.

Interviewee 11: “[…] we always inform to one group of people [the central team]
and it is up to them to talk to the others.”

This also led to a centralized problem solving strategy, where the central team
was generally called upon to settle disputes.

Interviewee 43: “[…] so we wouldn’t have planned for it [a backlog item from
another team], somehow the other team would escalate and we would end up
spending time on the topic which we have not planned, because a combination of
the local management here and then the central team decided.”

The perceived quality of coordination was heterogeneous. While some inter-
viewees saw room for improvement or rated it as acceptable, others considered the
coordination within their multiteam system as highly problematic.

4.1.1.3 Change Processes

Alpha-P1 Unclear Mutual Expectations
In the first coordination configuration change process Alpha-P1 (see Fig. 4.3),
unclear mutual expectations acted as a catalyst to reveal missing common under-
standing that led to a change of the configuration from very organic, decentral and
horizontal to purely mechanistic and centralized.

Interviewee 5: “[…] it wasn’t exactly clear what was wanted or what was needed
[…] at some point it becomes apparent that something isn’t right. […] We escalate
[…] have meetings and reprioritize […].”

An interviewee of MTS Alpha reported an incident where his team needed a
delivery of functionality from another team. During development, interviewee 5’s
team became aware of the fact that the delivery did not fit to what was needed. This
issues was then escalated to the central team, which actively got involved in the
discussion between the two teams. The lack of knowledge about the needed

4.1 Single-Case Analysis 55

functionality indicates a lack of common understanding, which resulted in the
depicted dependency conflict. By stepping in and taking mechanistic measures in
the form of plan adaptation and reprioritization, the central team centralized the
coordination and resolved the situation.

The integrating conditions present after the process were accountability and
predictability, because the central team reprioritized and adapted the plan. However,
no common understanding was present, as the involved teams did not come to an
agreement concerning the issue.

Alpha-P2 Lacking Knowledge of Another Team’s Activities
The process Alpha-P2 (see Fig. 4.4) was initially set off because some teams were
not aware of another team’s activities. This uncovered a lack of transparency and
common understanding across several teams. These lacking conditions led to a
situation where an organic and decentralized configuration switched completely to a
mechanistic and centralized one. Interviewee 1 described a circumstance where his
team had built new functionality and had assumed that the other teams that were
affected by the implementation had already considered the changes in their tasks.
This had not been the case and caused a direct escalation to the central team. They
in turn obliged the involved teams to take care of this requirement and deliver what
was still needed in order to finish the requirement.

unclear mutual
expectations

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.3 Alpha-P1 process

56 4 Case Study Results on Coordination …

Interviewee 1: “[…] team 1 builds something and somehow it is forgotten to talk
with team 2 and 3 and in the end something doesn’t work because somebody
expected that the requirement, which was built by team 1, is also taken into con-
sideration in the other teams.”

Since no change in the teams’ information sharing behavior was undertaken and
both teams did not increase their understanding of the topic, neither condition was
present after the change process. However, accountability and predictability existed
as the central team assigned work items to the teams and communicated due dates.

Alpha-P3 Unknown Dependencies Between Teams
The absence of transparency and common understanding was also the case in
process Alpha-P3 (see Fig. 4.5). Here, unknown dependencies between teams
exposed the lack of the two conditions that caused a change in the configuration.
The central team assigned a plan to a lead team, which discovered that other teams
would have to deliver new functionality in order to implement that requirement.
The other teams did not have time to do this and would not commit to the plan. This
deadlock situation was then communicated to the central team, which got involved
in the discussion. The blocked topic was stopped while the discussions were
ongoing in order to reprioritize or stop the blocking topics.

Interviewee 7: “Often we think that topics are independent and give them to the
teams only to have the experts come back to us and tell us, if we should implement
this then another team has to implement something first and the other team doesn’t
have time right know. We have that sort of problem a lot.”

The final integrating condition present was common understanding, as the dis-
cussions among the teams and the central team led to a better perception of the

lacking
knowledge of
other team’s

activities

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.4 Alpha-P2 process

4.1 Single-Case Analysis 57

backlog items among all participants. Transparency was not affected, because no
sustainable changes were implemented to be aware of such dependencies in the
future.

Alpha-P4 Increase in Geographic Dispersion
The process Alpha-P4 (see Fig. 4.6) depicts a loss of integrating conditions for
coordination due to an increase in geographic distance. The PO of one of the teams
had to undertake work travel. Previously, the other team and this PO had a daily
sync call early in the morning. During the PO’s absence, the daily calls had stopped
and after returning, the practice was not reestablished. Instead of a call, the other
team sent a daily status e-mail to inform what had been done the previous day. The
information shared with the Product Owner decreased and no opportunity for
questions was possible.

unknown
dependencies

between teams

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L
oc
us

D
ir
ec
tio

n

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L
oc
us

D
ir
ec
tio

n

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L
oc
us

D
ir
ec
tio

n

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.5 Alpha-P3 process

58 4 Case Study Results on Coordination …

All three integrating conditions present in the beginning became absent during
the course of this change process.

Alpha-P5 Corruption of Shared Codebase
The lack of accountability in process Alpha-P5 (see Fig. 4.7) became evident
through the corruption of a shared codebase between two teams. The search for the
cause of this corruption led to a finger-pointing situation between the two teams
with no resolution of the issue possible. The involved POs and SMs discussed how
to mitigate such situations in the future and created a regular Scrum Master sync,
where this kind of issue could be reported.

Interviewee 58: “[…] we came to the conclusion that we should have a Scrum
Master sync, so the team doesn’t come to a pointing at each other situation, rather
you would inform the Scrum Master and in the Scrum Master sync we bring this up
and try to check out if this really is an issue or if this is a showstopper type of issue
and we look into it.”

In the course of this process, due to the creation of resolution mechanism which
could be used in the future the integrating condition accountability was established
in a sustainable manner.

increase in
geographic
dispersion

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.6 Alpha-P4 process

4.1 Single-Case Analysis 59

Alpha-P6 Work Item Spanning Across Teams
The process Alpha-P6 (see Fig. 4.8) shows the establishment of all integrating
conditions. A new work item was pushed from the central team to a lead team. As
this item included work for which several teams had to be involved, one team
became the designated lead team and was responsible for the coordination of the
work between the involved teams. The lead PO established a daily synchronization
call for the duration of the implementation between the teams to discuss priorities
and current issues.

Interviewee 61: “He [the PO] made sure that we had a daily sync call across three
locations. Every day, we used to discuss ‘these are the top priority issues that need
to be solved’’. […] It was good, because everybody was on the same page.
Everybody knew what issues were of top priority and what everybody needed to
work on. This daily sync call was really effective […].”

corruption
of shared
codebase

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.7 Alpha-P5 process

60 4 Case Study Results on Coordination …

Through this sync call, transparency was established as all involved teams
reported their status and issues. Common understanding was created within the
discussions of how to implement certain requirements and accountability and
predictability was formed in direct communication among the teams.

Alpha-P7 Unclear Work Items
The lack of common understanding, accountability and predictability in process
Alpha-P7 (see Fig. 4.9) was uncovered after the assignment of unclear work items
by the central team. The teams that were supposed to implement the functionality
did not comprehend the requirements. This led to multiple meetings across the
hierarchy including the central team. These meetings were needed in order to clarify
and prioritize work items. Finally, common understanding and accountability was
created through these discussions, but predictability could not be established, as the
implementation took longer than expected.

work item
spanning

across teams

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.8 Alpha-P6 process

4.1 Single-Case Analysis 61

4.1.2 Case Beta

The second case in this analysis is a multiteam system called Beta, which was
developing an integration platform to connect on-premise systems with cloud
solutions. This MTS consisted of nine teams with around 95 employees spread
across two locations (see Table 4.3). The development of this product had been
carrying on for more than five years. In contrast to case Alpha, the business process
complexity underlying this solution was lower, however, the technical complexity
was rated much higher. This lead to an overall assessment by the interviewees of a
medium-high product complexity. Most of the requirements, as they were of a
technical nature, were known and did not change during the development phases.
This resulted in low-medium requirements uncertainty evaluation by the interview
partners. In line with the more technical focus of this product, the software archi-
tecture was modularized along the technical components needed for the integration
services provided by the solution.

unclear work
items

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.9 Alpha-P7 process

62 4 Case Study Results on Coordination …

4.1.2.1 MTS Structure, Dependencies and Coordination

The team structure in case Beta was originally based on the technical components
of the software. Starting in 2014 however, most of the teams had transitioned to a
feature team approach (Larman and Vodde 2008) and could implement customer
features along the entire software stack. Each team retained parts of their original
component responsibility, as the technical expertise was the greatest among those
teams.

The product was delivered to the customer every four weeks with high-level
planning covering a period of three months. The detailed sprint planning by each of
the teams was carried out for the next four weeks with individual sprints lasting two
weeks.

The development teams had a large degree of autonomy as the team Product
Owners gathered in a monthly CPO/PO round. This round was a regular meeting
that included the two Chief Product Owners and the individual team Product
Owners. Within this virtual team, the members gathered to discuss system-wide
requirements, cross-team topics and priorities as well as potential dependencies.
Decisions which affected the teams and the overall product were taken here and an
implementation plan was derived.

Interviewee 36: “We can plan small scale improvements on our own, but larger
ones need to be agreed upon in the PO round. Through me as a PO the team has
influence on that as well. So, I always ask the team, ‘what should we do? What do
you view as useful?’ I take those suggestions up and bring them into the PO
round.”

Throughout the entire MTS, a common backlog management tool was advocated
and its usage was uniformly high across the multiteam system. On top of that, a

Table 4.3 Case beta
characteristics

Teams 9

Locations 2

Employees *95

Product type Cloud

Avg. Company Tenure 11 years

Avg. MTS Tenure 4 years

Avg. Team Tenure –
a

Avg. Role Tenure 2 years

Product maturity >5 years

Customer delivery 1 month

Team sprint length 2 weeks

Product complexity Medium-high

Requirements uncertainty Low-medium

Inter-team coordination responsibility PO, SM
aNot enough data was available to calculate this figure

4.1 Single-Case Analysis 63

comprehensive wiki was cultivated with current information on the general setup of
the multiteam system, their definition of done and material on technical and
administrative aspects.

Figure 4.10 shows the inter-team task dependencies for the MTS Beta. This
graph shows a balanced amount of dependencies compared to the number of teams.
Some two-way sequential relationships can be seen (e.g. between Beta 3 and 5).
What becomes very apparent is a division in foundation teams and user interface
(UI) teams. Teams 6-9 built the UI layer for this solution. Beta 9 built a foundation
layer for the other UI teams, which explains the individual assignment into one
component with sequential dependencies to the other UI teams. In contrast to case
Alpha, where only the core teams show a high density of dependencies, in case Beta
almost all teams have several dependencies towards other teams (higher average
degree) (see Table 4.4). The general coordination style was a mixed and collabo-
rative approach with high-level planning originating from the Chief Product
Owners and bottom-up proposals coming from the teams.

Interviewee 57: “I cannot differentiate completely whether it is top-down or bot-
tom-up. It is a mixed approach, which we take.”

Reciprocal Dependency

Sequential Dependency

Beta9
2/4
3.2

Beta8
5/3

4.67

Beta7
2/2
0.0

Beta6
6/2

1.17

Beta1
1/6
0.2

Beta4
3/4

1.87

Beta3
3/6

7.17

Beta5
3/6
5.2

Beta2
3/4

0.53

Fig. 4.10 Beta inter-team task dependencies

64 4 Case Study Results on Coordination …

The planning process within Beta is best described by one of the interviewees:

Interviewee 36: “In the middle of the takt,1 the CPOs call for input from the team
POs. As a team, we collect requirements and through the CPOs, requirements come
in as well. Every team PO sends his topics for the next takt to the CPOs and to the
other POs. We then discuss those topics in the CPO/PO round. Each team PO
should call attention to dependencies, so to topics which need input from other
teams. This is then discussed to the last detail in the PO round. At the end of the takt
the topics are sorted according to their priority, so that the POs know what the
CPOs priorities are for the next takt.”

When facing problems or other unplanned events, the development teams of
Beta followed a clear process to resolve those issues. The involved team POs would
discuss among themselves and come to a resolution, which was then communicated
to the CPOs and the other team POs.

4.1.2.2 Agile Method Scaling Approach

Scaling via Iterative Proxy Collaboration
MTS Beta chose an approach which is close to the Scrum of Scrums method
described in literature (Larman and Vodde 2010). Representatives of each team met
up on the next higher level of the hierarchy and formed a virtual central team. As
such, Beta had a CPO/PO round consisting of the two CPOs and all POs of the
development teams. This virtual team met regularly to discuss the upcoming sprint
and plan, which backlog items were to be developed. Disputes and coordination
problems, which could not be solved directly between teams, were resolved in this
group.

In the middle of the current sprint, the CPOs gathered new topics for the next
sprint from the POs. These were discussed in the aforementioned CPO/PO round
and discussed in detail, explicitly considering dependencies to other teams. As the
team POs were already part of the planning process from the beginning no explicit
handover meeting was necessary.

Table 4.4 Case beta graph
parameters

Graph parameter Value

Strongly connected components 3

Average degree 3.111

Density 0.389

Diameter 3

1In the MTS Beta, two sprints formed a so called ‘takt’. The takt served as the MTS-wide
synchronization and integration point.

4.1 Single-Case Analysis 65

If problems arose during the implementation phase, a defined process was fol-
lowed. The team POs discussed the issue among themselves and came up with a
solution. This solution was then communicated to the CPOs who had to accept the
proposal.

Interviewee 36: “If something unexpected happens in the development sprint, we
have to file a change request to the CPOs and mail it around to the other POs so
that everybody knows that something has changed and it could affect other teams as
well.”

Among the interviewed, the overall satisfaction with the coordination was very
high.

Interviewee 51: “Generally speaking it [the coordination] is working well.”
Interviewee 57: “I think it’s pretty well managed.”

4.1.2.3 Change Processes

Beta-P1 Missing Communication of Decommitment
Interviewee 66 described a situation in process Beta-P1 (see Fig. 4.11), where the
absence of transparency and predictability was noticed through the missing com-
munication of a decommitment of backlog items. His team had relied on a delivery
of functionality from another team to finish their current backlog items within the
sprint. The needed functionality was promised to be delivered in the current sprint.
However, a more important issue arose in the second team, which prevented this
team to fulfill the request. This decommitment was not communicated to inter-
viewee 66’s team and led to a delay in his team’s delivery of backlog items, as they
could not be finished within the sprint in which they were started. To prevent such
situations from happening in the future, a discussion among the POs and CPOs was
initiated subsequent to this circumstance. It was decided to establish a regular
synchronization meeting between POs to discuss which backlog items were being
picked in the next sprint.

Interviewee 66: “[…] they got some extra backlog items which are more important
so they can’t deliver, at least the decommitment is coming a little late and that is
forcing us to not release our software […].”

The regular synchronization meeting brought about transparency on the status of
backlog items and what the teams were currently working on. As the main focus
was on communicating what backlog items were definitely going to be imple-
mented in the coming sprint, the condition of predictability was established.

Beta-P2 Work Item Spanning Across Teams
In process Beta-P2, the absence of common understanding and accountability was
recognized through a work item spanning across teams (see Fig. 4.12). This
cross-team item was brought into the CPO/PO round for discussion and then

66 4 Case Study Results on Coordination …

assigned to a leading PO. Interviewee 35 further described that as a leading PO for a
backlog item it was now his responsibility to get into contact with the other team
needed for this item and discuss how to proceed with the implementation. Time
horizons were elaborated and possible blocking topics were eliminated. The deci-
sion of the two POs was then communicated back to the CPOs.

Interviewee 35: “I discuss with the other Product Owner and Scrum Master and
ask if they can help and what to do. At the ground level, we get some kind of
agreement and then we tell the CPO which topics are dropped from this team
because this topic is more important and this team has to help here.”

Through the intensive discussions among the team POs and SMs, the integrating
conditions common understanding and accountability could be established.

Beta-P3 Unclear Usage of New Development Framework
The process Beta-P3 (see Fig. 4.13), shows how a lack of common understanding
became evident, because the usage of a new development framework was unclear to
one development team. The CPOs had decided that a framework developed by
another team was to be used by all other teams in the multiteam system. However, it
was still unclear how to exactly use this framework and what the standards of usage
were. To clarify these issues, additional information had to be acquired from the
team that had developed it in order to properly use the framework.

missing
communication of

decommitment

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.11 Beta-P1 process

4.1 Single-Case Analysis 67

The direct exchange between the two teams led to a transfer of knowledge and a
better awareness of how to use the framework. Because of this, a common
understanding between these teams was established and supported the usage of the
framework in the future.

work item
spanning

across teams

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.12 Beta-P2 process

68 4 Case Study Results on Coordination …

Beta-P4 Major Testing Failures of New Feature
In this process, the absence of the integrating condition common understanding
became prevalent through major testing failures after a new feature was imple-
mented (see Fig. 4.14). This feature required the contribution of several teams and
it was not until the testing began that major failures started to show up. It became
clear that the concept for this new feature was not reviewed with enough detail
before the start of the implementation. The CPO level was immediately informed
and got involved in the discussions among the teams. The CPO/PO round decided
that patches were needed to fix the implemented functionality and encouraged the
teams to deliver them quickly in order to solve the issues.

Through the discussion among all persons involved, a common understanding of
the problems and how this situation arose was formed. Predictability was created by
the encouragement of the CPO/PO round to deliver patches fast.

Beta-P5 New Cross Team Feature Originating From Team
The process Beta-P5 (see Fig. 4.15) shows the establishment of three integrating
conditions whose lack was noticed through the need to implement a new cross-team
feature. This feature originated from one of the development teams and was dis-
cussed in the CPO/PO round and reviewed in the architecture round. After being
discussed in both rounds, the feature was prepared enough to be rolled out via the

unclear usage of
new development

framework

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.13 Beta-P3 process

4.1 Single-Case Analysis 69

implementation plan originating from the CPO/PO round. After these steps, the lead
team PO took over the coordination between the teams and this feature was
implemented.

Common understanding was established through the discussions in the CPO/PO
rounds together with the detailed review in the architecture meeting. The integrating
condition accountability was created in the CPO/PO round via the implementation
plan. Finally, predictability was gained through the implementation plan and the
coordination of the lead PO.

Beta-P6 Priority Conflict Within Takt
Beta-P6 (see Fig. 4.16) illustrates a change in the coordination configuration due to
a lack of common understanding, which was revealed by a priority conflict within
the development takt. An interviewee reported of a situation, where in the middle of
the development phase, a priority mismatch between two teams was discovered,
which led to a problem in a completed task in one of the backlogs. This issue was
immediately discussed among the team POs and a solution was found. The pro-
posed solution was communicated to the CPOs via a change request, who accepted
the resolution and communicated it to the rest of the POs in the multiteam system.
This change request process had been institutionalized as this situation had occurred
from time to time in the past. A common understanding between the teams was

major testing
failures of new

feature

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.14 Beta-P4 process

70 4 Case Study Results on Coordination …

established through the discussions between the team POs. Accountability and
predictability was created with the communication to the CPOs and their passing on
of this information.

Beta-P7 Assumptions Mismatch
In process Beta-P7 (see Fig. 4.17), the lack of common understanding was rec-
ognized because assumptions made during the time it was planned were not correct
anymore. A topic which had been planned three iterations earlier was started in one
team and began to face problems. It quickly became clear that assumptions made
during the planning of this topic were not correct anymore and the topic needed to
be stopped. The issues were discussed with the CPO level and the team decided that
a topic rework was the best course of action.

Through the discussions with the CPO level, a common understanding of the
topic was generated and a new approach could be taken.

new cross
team feature
originating
from team

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.15 Beta-P5 process

4.1 Single-Case Analysis 71

4.1.3 Case Gamma

The multiteam system Gamma was developing a mobile application development
platform with seven teams in six main locations (see Table 4.5). The product in its
current form had been under development for more than one year, but had existed in
different forms previously. Many different technologies were used to implement the
separate modules of this solution and thus the product complexity was rated as
medium-high. The uncertainty of requirements was seen as low-medium as
requirements did not appear to change much during the development phase.

prio conflict
within takt

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.16 Beta-P6 process

72 4 Case Study Results on Coordination …

assumptions
mismatch

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.17 Beta-P7 process

Table 4.5 Case gamma
characteristics

Teams 7

Locations 6

Employees *50

Product type On-premise and
cloud

Avg. Company Tenure 12 years

Avg. MTS Tenure 5 years

Avg. Team Tenure 3 years

Avg. Role Tenure 2 years

Product maturity >1 year

Customer delivery 4 months

Team sprint length 2 weeks

Product complexity Medium-high

Requirements uncertainty Medium-high

Inter-team coordination
responsibility

SM

4.1 Single-Case Analysis 73

4.1.3.1 MTS Structure, Dependencies and Coordination

Due to its history, several previous products were integrated to compile this solu-
tion, which exhibited a compound structure. The teams were arranged according to
the technical modules of the product and were solely responsible for their respective
areas within the solution.

This product was delivered to the customer on a four monthly basis, with
high-level release planning covering three months. The upcoming sprints were
planned in a cycle of four weeks with individual sprints lasting two weeks.

The individual teams could influence the backlog in the beginning of the release
through discussions with the product management. This influence dwindled as the
development phase carried on, because backlog items were gradually more defined
by a central architecture team and the release backlog could not be adapted
anymore.

Unlike the previous two cases, the usage of a common backlog tool was clearly
specified together with a process how to enter backlog items. The way in which
these backlog items were broken down into user stories for the teams was centrally
specified as well. In contrast to the first two MTSs, an overarching central infor-
mation repository, e.g. in the form of a wiki, was not used. However, individual
groups within this MTS had started to create such repositories to keep track of the
accumulated knowledge in their fields (e.g. quality engineering). Awareness of
other teams and the technology expertise was only passed on informally and mostly
through verbal interaction with colleagues.

The inter-team dependencies depicted in Fig. 4.18 show a few two-way
sequential dependencies between the core teams (Gamma 1-3). The other teams
worked on very distinct modules, which did not need as much interaction, i.e.
deliveries from the other teams. The number of strongly connected components in
comparison to the number of teams also reinforces these distinct modules (see
Table 4.6).

The general coordination style was described as a mix of top-down and
bottom-up. Top-down coordination was evident in the time-frame, e.g. the shipment
date, for current and future release as this was decided from management. The
initial scope of the release in the form of high-level epics, was the responsibility of
the product management but was the result of discussions with all participants, e.g.
from individual teams and customers. These were detailed out by the central
architecture team, which built prototypes and discussed with team architects on how
to build the epics. The details of the user stories were worked out in collaboration
between the central architecture team and the respective teams. However, the pri-
oritization was decided solely by the product management. The bottom-up aspect of
coordination was evident in the coordination between teams in the development
sprints. It was the sole responsibility of the teams to communicate and synchronize
with the other involved teams.

The problem solving strategy employed within Gamma relied heavily on a
bottom-up approach, in that Scrum Masters and individual team roles discussed
problems among their peers to come to a solution. These either surfaced in the

74 4 Case Study Results on Coordination …

regular Scrum of Scrums call or were brought up and clarified in an ad hoc manner
between the individual teams.

4.1.3.2 Agile Method Scaling Approach

Scaling via Central Team Planning based on Team Inputs
In case Gamma, the scaling of coordination was done through a balance of central
planning and decentralized input from the development teams. The initial high-level
backlog items were gathered through input from the teams and the product

Reciprocal Dependency

Sequential Dependency

Gamma1
3/4
3.0

Gamma2
2/4
0.0

Gamma3
2/4
0.0

Gamma4
5/0
0.0

Gamma6
0/1
0.0

Gamma5
3/0
0.0

Gamma7
0/2
0.0

Fig. 4.18 Gamma inter-team task dependencies

Table 4.6 Case gamma
graph parameters

Graph parameter Value

Strongly connected components 5

Average degree 2.143

Density 0.357

Diameter 2

4.1 Single-Case Analysis 75

management. These were then detailed out by the central architecture team, which
discussed technical and functional aspects with the individual development teams.
Prototypes and proof of concepts were constructed in close collaboration with the
teams. After this validation, the high-level backlog items were detailed out into user
stories, which could be implemented by the development teams. All dependencies
between teams were recorded in a central document. In the development phase, all
Scrum Masters came together in a twice-weekly call to discuss the current status
and review dependencies based on the mentioned document.

Interviewee 59: “We have a twice-weekly call where we discuss what is the status
and what it is that the other teams are requesting.”

All interviewees regarded the coordination in the multiteam system as good with
some even mentioning it being a well-coordinated project.

4.1.3.3 Change Processes

Gamma-P1 Late Delivery of Needed Functionality
The change process Gamma-P1 (see Fig. 4.19) was set off by a late delivery of
needed functionality that exposed the absence of transparency and predictability.

late delivery of
needed

functionality

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.19 Gamma-P1 process

76 4 Case Study Results on Coordination …

One development team received a delivery from another team towards the end of
the release cycle and still had to test the module. However, the late delivery did not
allow for any fixes, in case errors were reported during testing. This situation was
escalated to the Area Product Owner level, which decided to implement a
twice-weekly call between teams to discuss such concerns.

Interviewee 59: “Such issues are now mitigated by having these calls, where we say
‘ok this is the drop [of software functionality delivery] that we expect in this sprint.’
We can negotiate about that and tell the requesting team why we need this drop
earlier, because we are waiting for an integration test. This is one scenario that
occurred because we get drops really late and then things get messed up in the end
of the delivery cycle.”

The integrating conditions transparency and predictability were created through
this regular call, because the involved teams shared information on their status and
thus allowed the other teams to judge deliveries.

Gamma-P2 Rapid Delivery of Patch Necessary
In process Gamma-P2 (see Fig. 4.20), through the need for a rapid delivery of a
patch, a deficiency in all integrating conditions became evident.

Interviewee 60: “We had to get a patch out very quickly. So we had sort of one
person driving the coordination and what they did is, they listed out all the steps
needed with everybody involved that needed to do something, […] and the schedule
was built right then and there and everybody had input into it and then people
would just follow and […] we delivered the patch in one day. And that is because
everybody was saying ‘I am done’ and people kept checking in on each other and I
think it went really well, because we were in constant communication.”

Through the strong collaboration in the planning meeting, common under-
standing and accountability was established straight from the beginning. The
intense communication and permanent status messages helped create transparency
and predictability through up to date information on the progress.

Gamma-P3 Work Item Spanning Several Teams
The process Gamma-P3 (see Fig. 4.21) depicts the absence of common under-
standing, accountability and predictability, which became evident through a work
item spanning across several teams. The topic concept was worked out jointly in an
initial conference call and was iteratively refined through follow-up conversations
to clarify responsibilities and topic understanding. The decisions taken were then
implemented in the iteration plan and the coordination was subsequently carried out
between the involved team POs.

Interviewee 23: “We had an initial conference call, where we defined the topic […]
and then iteratively detailed out a plan which we were all satisfied with and then we
started with the implementation.”

4.1 Single-Case Analysis 77

Common understanding was created through the initial conference call and then
refined through the iterative detailing of the topic. Within the collaboratively cre-
ated iteration plan accountability and predictability was developed.

4.1.4 Case Delta

The next MTS, Delta, was developing a material management solution with six
teams and around 85 employees (see Table 4.7). This multiteam system was
entirely co-located and had been developing this solution for more than three years.
Due to the integration of two comprehensive business areas with profound business
domain knowledge necessary to grasp the processes contained in the solution, the

rapid delivery
of patch

necessary

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.20 Gamma-P2 process

78 4 Case Study Results on Coordination …

product complexity was viewed as high. High-level requirements were detailed out
in close collaboration with initial customers, who were generally aware of what
they needed. The customers could supply long lists of what the solution should be
able to provide and support, which is why the requirements uncertainty was rated
low-medium. The product was developed as an on-premise solution that was
characterized as an integrated system, modularized along the business process,
which it supported.

4.1.4.1 MTS Structure, Dependencies and Coordination

As discussed above, the product integrated two very distinct business domains.
Because of this, the teams either belonged to one of the business domains or

work item
spanning several

teams

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.21 Gamma-P3 process

4.1 Single-Case Analysis 79

fulfilled an integrative role between the two fields. Therefore, the team division in
this multiteam system was based on business topics of the product they were
developing.

Customer delivery of the product occurred every three months. The same
time-frame was used for the high-level planning. The sprint length as well as the
sprint planning cycle was both four weeks long.

The aspect of team autonomy was prevalent as POs were counted on to influence
the product backlog. However, the adherence to certain rules and conventions was
also expected.

Interviewer: “Can individual team POs influence the Product Backlog?”
Interviewee 12: “They are supposed to! If they do not, then in my opinion, they do
not deserve the title Product Owner. If they want to have it finely sorted bit by bit
from some higher authority, then they are demoted to assembly line workers and
that cannot and should not be the case.”
Interviewee 18: “Concerning certain topics we are relatively autonomous. But we
are expected to adhere to certain things and be visible to the outside in a certain
way. For example, we present our team backlog regularly and it is expected that it
is prepared in a specific way.”

The product management team had specified the usage of a common backlog
tool and with it a clear process was implemented how backlog items were to be
entered and then broken down into user stories for the teams. A comprehensive wiki
was cultivated and maintained by all members of the MTS, including current
information on the general setup of the multiteam system and material on technical
and administrative aspects.

The inter-team dependencies in Fig. 4.22 show many one-way sequential
dependencies. This is in line with the description of the interview partners that the

Table 4.7 Case delta
characteristics

Teams 6

Locations 1

Employees *85

Product type On-premise

Avg. Company Tenure 18 years

Avg. MTS Tenure 2 years

Avg. Team Tenure 3 years

Avg. Role Tenure 4 years

Product maturity >3 years

Customer delivery 3 months

Team sprint length 4 weeks

Product complexity High

Requirements uncertainty Low-medium

Inter-team coordination responsibility CPO, PO

80 4 Case Study Results on Coordination …

teams exhibited mainly producer-consumer relationships, in that functional deliv-
eries were the cause of most interdependencies. The strongly connected compo-
nents and the average degree values (see Table 4.8) underpin these sequential
dependencies. The four teams grouped into one strongly connected component and
the overall small number of dependencies to other teams (average degree) are as
expected if one thinks of sequential linear dependencies between teams where one
team delivers one process step of an overall business process.

The general coordination style in this multiteam system is best described as a
mixed approach. On the one hand, it shows aspects of top-down in that the CPO
determined many high level topics, but on the other hand also expected the team
POs to actively engage in the development of the product backlog. What sets this
multiteam system apart from the others is how they planned the next development
iteration. At the beginning of each release, a planning workshop was conducted
with all development teams to jointly plan the upcoming release. An entire day was
scheduled for a workshop where all members of the MTS gathered in one room.
The contents of this day are best described by one of the interviewees:

Reciprocal Dependency

Sequen al Dependency

Delta1
2/1
2.5

Delta2
1/2
2.0

Delta6
2/0
0.0Delta5

1/3
2.5

Delta4
2/1
0.0

Delta3
2/3
6.0

Fig. 4.22 Delta intra-team task dependencies

4.1 Single-Case Analysis 81

Interviewee 13: “At the beginning of the release, we introduced the backlog to each
other. The CPO presented the high-level view, what should the release deliver in
the end, the business value, what is the customer value etc. Then the individual
team POs introduced their backlogs and then the teams discussed dependencies
and broke it all down into user stories in individual breakout sessions.”

Despite this collaborative nature of planning, unexpected situations or problems
between teams had to be escalated to the CPO or other more central roles in order to
be resolved.

4.1.4.2 Agile Method Scaling Approach

Scaling via Full Collaboration
The multiteam system Delta had introduced a joint planning workshop several
releases ago. In the run-up to this workshop, the team Product Owners prepared the
high-level backlog items for the next release, which were to be discussed that day.
On the workshop day itself, all the teams were introduced to the business cases for
the next release of the software product by the CPO and then started with individual
sessions to break down their team backlogs. Dependencies to other teams or topics,
which were still unclear, could be discussed right away with the appropriate people.
Overall, the employees in the MTS were very pleased with this approach.

Interviewee 13: “This is evolving very well. I’m very satisfied!”

Contrary to this very inclusive and involving approach for release planning, the
problem solving strategy within this case still relied on escalation to the CPO.

4.1.4.3 Change Processes

Delta-P1 Competing Concept Deadlock
Process Delta-P1 (see Fig. 4.23) pictures a competing concept deadlock situation.
This deadlock situation exposed a lack of accountability, as two teams were
proposing different suggestions that had the other team respectively doing more
work. The Product Owner of one team came up with a concept for one of the
requirements, which involved only small changes in this team but larger imple-
mentation tasks in another team. The PO of this other team suggested a different

Table 4.8 Case delta graph
parameters

Graph parameter Value

Strongly connected components 3

Average degree 1.667

Density 0.333

Diameter 3

82 4 Case Study Results on Coordination …

approach, which essentially reversed the effort. No agreement could be made
between the two teams about how to proceed. This situation was escalated to the
CPO who then got involved in the discussions. As this was a very technical issue,
he involved a trusted advisor and decided how to solve this implementation
question.

Interviewee 12: “PO1 says, ‘ok if I do this in my team, this small piece, then it
should work. How about you do the rest?’ PO2 says, ‘hmm, if we implement it the
other way around, then we only have to do a small part which I believe is man-
ageable, then your team can do the rest.’ A deadlock situation, which has to be so
resolved somehow.”

The missing condition accountability was established through the intervention of
the CPO and his decision about which of the concepts to implement.

Delta-P2 Unresolved Prioritization of Topic
This process shows the change process of the coordination configuration due to a
lack of accountability and predictability, which became evident in the form of an
unresolved prioritization of a topic (see Fig. 4.24). This topic was left for the teams
to resolve and stagnated over the course of a few weeks. The CPO learned about
this situation and intervened. They assigned a high priority to the backlog item as

competing
concept deadlock

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability
T

yp
e

L
oc

us
D

ir
ec

ti
on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.23 Delta-P1 process

4.1 Single-Case Analysis 83

well as an accountable PO. Through this decision, the CPO created accountability
and predictability and allowed the coordination between the teams to proceed as
well as the implementation of the requirement to continue.

Interviewee 20: “Before, it plodded along, it was not aligned, not prioritized. After
the decision, it had a clear priority, a high priority. It was implemented then
accordingly. From my perspective, it worked because it was sufficiently prioritized
and it was clearly said who was in charge.”

unresolved
prioritisation of

topic

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.24 Delta-P2 process

84 4 Case Study Results on Coordination …

Delta-P3 Cross-Team Item Facing Asymmetric Team Knowledge
The process Delta-P3 (see Fig. 4.25) shows a lack of common understanding with
transparency and accountability already present at the time of the trigger. A work
item spanning across two teams led to the situation that one team did not have
enough knowledge concerning the requirement in order to implement it. It was
decided between the two teams that a knowledge exchange was needed. The team
with the expertise shared this knowledge through information sessions and thus
ensured a smooth development. This process differs from the other presented
processes here, as no coordination configuration change happened. However, due to
the already strong presence of transparency and accountability at the time of the
trigger, the lack of common understanding did not necessitate a change in the
configuration. The condition common understanding was established through the
intensification of the already present organic and decentralized configuration
between the teams in order to overcome the lack of common understanding.

4.1.5 Case Epsilon

The last multiteam system presented here was developing a solution to manage
safety processes and their compliance. With around 40 employees in four teams at

cross-team item
facing

asymmetric team
knowledge

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.25 Delta-P3 process

4.1 Single-Case Analysis 85

three locations, Epsilon was developing both an on-premise as well as a cloud
version of their product (see Table 4.9). Due to the integration of four distinctive
components in this solution, the product complexity was seen as medium-high.
Requirements uncertainty was also viewed as medium-high due to the changing
nature of regulatory compliance standards and the close collaboration with cus-
tomers wishing to adapt the product to their needs.

The solution was made up of four separate modules, which had little overlap
from a content perspective but which shared a common technological foundation.

4.1.5.1 MTS Structure, Dependencies and Coordination

The team structure in this case was based on the four separate modules, which this
solution combined.

The product was delivered to the customer approximately every three months.
The same time-frame was used for the high-level plan. The sprint planning cycle
and sprint length were both four weeks.

The teams could act autonomously with regards to the content, but technology
wise there were clear standards which the teams were obliged to comply with.

The use of a joint backlog management tool was established, but its usage style
varied from team to team. A central information repository, e.g. in the form of a
wiki, was not used. Knowledge of other teams and the technology was passed on in
regular information transfer sessions.

The inter-team dependencies in Fig. 4.26 are somewhat misleading, as the four
teams had very little overlap and dependencies in their respective topics. What they
did share was the foundation layer where teams Epsilon 1–3 needed to collaborate
from time to time in order to implement new requirements. In line with this

Table 4.9 Case epsilon
characteristics

Teams 4

Locations 3

Employees *40

Product type On-premise and
cloud

Avg. Company Tenure 13 years

Avg. MTS Tenure 7 years

Avg. Team Tenure 5 years

Avg. Role Tenure 3 years

Product maturity >10 years

Customer delivery 3 months

Team sprint length 4 weeks

Product complexity Medium-high

Requirements uncertainty Medium-high

Inter-team coordination
responsibility

PO, Architect

86 4 Case Study Results on Coordination …

characterization, the graph parameters (see Table 4.10) are less meaningful as in the
other cases.

The general coordination style of Epsilon can be summarized as bottom-up with
top-down guidance. Regular input from customers to the team POs was discussed
on an ad hoc basis with the CPO to decide if, when and how to implement these
requests. The CPO in the end decided what was going to be implemented. The
detailed implementation was then discussed with the customers by the POs.

The problem solving strategy of this MTS was built on communication between
the team POs. If unexpected issues arose or problems needed to be solved, dis-
cussions among the teams were carried out for clarification. As the MTS exhibited
little dependencies between teams and the topic of each team was also very distinct,

Reciprocal Dependency

Sequential Dependency

Epsilon3
2/2
0.0

Epsilon2
2/2
0.0

Epsilon1
2/2
0.0

Epsilon4
0/0
0.0

Fig. 4.26 Epsilon inter-team task dependencies

Table 4.10 Case epsilon
graph parameters

Graph parameter Value

Strongly connected components 2

Average degree 1.500

Density 0.500

Diameter 1

4.1 Single-Case Analysis 87

more responsibility and autonomy lay in the hands of the team POs. If they were
not able to clear up issues among themselves, an escalation path was given to the
CPO who got involved in the discussion and helped in solving the matter.

Each team consistently practiced the sprint retrospective to review their own
team and inter-team processes and improve upon them. Previous topics were
tracked and inspected each retrospective.

4.1.5.2 Agile Method Scaling Approach

Scaling via Ad Hoc Communication
Since the teams in case Epsilon only shared a foundation layer and the rest of the
implementation work was independent from each other, the need for task coordi-
nation between the teams was reduced. Therefore, the weekly CPO/PO call served
as an update meeting to inform the CPO of the status of each team. If the teams had
to extend the underlying platform, the involved teams communicated selectively to
implement the needed features.

The coordination in the multiteam system was considered to be quite good,
because an open communication culture allowed the easy access of other team
members if a feature required outside input.

4.1.5.3 Change Processes

Epsilon-P1 Recognition of Reuse Possibility
Similar to process Delta-P3, Epsilon-P1 (see Fig. 4.27) shows no change in the
coordination configuration. One team presented a new topic to another team to find

recognition of
reuse possibility

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.27 Epsilon-P1 process

88 4 Case Study Results on Coordination …

out if this would be of benefit to them as well. A reuse possibility was recognized
and so the two team POs discussed possibilities how to adapt the topic.

The reason behind this lack of change is the same as in the previous process; the
already strongpresenceof two integrating conditions onlyneeded the intensification in
the already enacted configuration to attain common understanding between the teams.

Epsilon-P2 Discovery of Redundancies
In process Epsilon-P2 (see Fig. 4.28), the lack of three integrating conditions was
exposed by the discovery of redundancies. In the backlogs of two teams, duplicate
work was encountered and both teams had the understanding that the other team
would implement this item and nothing happened. After a while, the team POs
discussed with the CPO how to mitigate such problems in the future. The decision to
increase the frequency of synchronization meetings between those teams was taken.

discovery of
redundancies

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

Transparency

Common Understanding

Accountability

Predictability

Fig. 4.28 Epsilon-P2 process

4.1 Single-Case Analysis 89

Interviewee 26: “So, there was somehow missing coordination and not enough
communication, that one of the teams was with the understanding that the other
team will take care of the topic. So after one or two months it appeared that this
was not the case.”

Through this increase and the exchange of information between the teams,
transparency as well as common understanding was established. The creation of
accountability was due to the introduced regular meeting which also involved
discussions on the responsibility of each backlog item.

4.2 Cross-Case Analysis

After providing a very detailed picture of each studied MTS, what follows is a
cross-case analysis of those aspects that pose questions as to how and why they
differ across the examined cases. Imbalances of integrating conditions are presented
first, followed by the specific instantiations of coordination configurations inves-
tigated in this research and their description. An analysis of the relationship
between coordination configurations and integrating conditions as well as an
analysis of the coordination configuration dimensions proceeds afterwards. The
chapter closes with a temporal analysis of integrating conditions and coordination
configurations.

4.2.1 Imbalances of Integrating Conditions

The depicted processes in the previous chapter show clearly that a change process
was initiated once a deficiency of integrating conditions for coordinated action was
recognized. All processes were provoked by the absence of one or several of the
integrating conditions. However, the participants of the coordination process were
seldom aware of the underlying factors that were missing. A triggering event acted
as the catalyst for the actors to become aware of their absence. These triggering
events can either be of a regular deliberate nature (e.g. Fig. 4.15) or happen
abruptly and constitute a deviation (e.g. Fig. 4.3) from everyday business. The
regular deliberate events imply that this type of event was foreseen or the unex-
pected was expected in that deviations from a plan were anticipated. The abrupt
events constitute an unforeseen issue, which did not have any resolving process in
place and needed an ad hoc solution to allow progress. Interestingly, these unex-
pected triggers happened with a surprising regularity in some of the studied mul-
titeam systems.

When focusing on the integrating conditions across all cases studied, three
questions are of particular interest (see Table 4.11). The first being how many times
which integrating condition was missing at the onset of a particular coordination

90 4 Case Study Results on Coordination …

process (row one in Table 4.11). The second question concerns itself with the
amount of unachieved integrating conditions (row two in Table 4.11). Here, the
number of instances where a certain integrating condition was identified as being
lacking in the beginning of the coordination process and this still being the case at
the end of this process is of interest. The final question is what additional inte-
grating conditions were established which were not lacking at the onset of the
coordination process (row three in Table 4.11).

The sum of missing integrating conditions (row one in Table 4.11) displays
common understanding as the top condition missing in the investigated coordina-
tion processes. It seems that one of the main problems within MTS is achieving a
shared understanding of the mostly complex topics processed. The three other
integrating conditions achieve similar values across all cases. The unachieved
integrating conditions (row two in Table 4.11) shows values skewed towards
transparency and common understanding. In the investigated processes, these two
conditions seem to be harder to attain. As accountability and predictability can be
attained relatively easily by intervention from outside or from higher up the hier-
archy, it seems plausible that these would be achieved more often. In the case of
transparency, the teams themselves must provide information, which can be
drowned out in the day-to-day work or if more pressing issues are at the forefront of
attention. Common understanding, finally, necessitates at least two actors, which
have to be willing to absorb information and be able to understand what someone
else is trying to convey. In comparison, this appears to be much harder to achieve.

Table 4.11 Descriptive values integrating conditions

Transparency Common
understanding

Accountability Predictability

Sum of missing
integrating
conditions

Alpha 3 5 3 2

Beta 1 6 2 2

Gamma 2 2 2 3

Delta 0 1 2 1

Epsilon 1 2 1 0

Total 7 16 10 8

Unachieved
integrating
conditions

Alpha 3 3 1 1

Beta 0 0 0 0

Gamma 0 0 0 0

Delta – 0 0 0

Epsilon 0 0 0 –

Additionally
established
integrating
conditions

Alpha 0 0 2 2

Beta 0 0 0 2

Gamma 0 0 0 0

Delta 0 0 0 0

Epsilon 0 0 0 0

4.2 Cross-Case Analysis 91

In the cases under study, only Alpha showed these unachieved integrating condi-
tions in the coordination processes examined.

Additionally established integrating conditions (row three in Table 4.11) could
be seen in cases Alpha and Beta. Here, accountability and predictability were
created although not initially needed in the coordination process. In the two
instances of accountability creation, this can be viewed as an alternative to the
initial lack of common understanding (processes Alpha-P1 and Alpha-P2). The two
teams could have solved their coordination problem, i.e. who is responsible for
what by having a common understanding of the current activities. This not being
the case, the central team had to step in, assign accountable teams, and thereby
solve this coordination problem.

In order to investigate potential relations between the integrating conditions,
Table 4.12 shows the number of integrating conditions which were found to be
lacking together with other integrating conditions. The cells which have the same
integrating condition in the row as well as the column show instances where solely
this particular integrating condition was lacking. In case Alpha, transparency was
often lacking at the same time that common understanding was missing as well.
This case shows two instances where a single integrating condition was lacking in a
coordination process, namely common understanding and accountability. Case Beta
shows three occurrences where only common understanding was lacking.
Furthermore, accountability and common understanding appeared to be lacking
together in two instances.

Overall, common understanding and accountability as well as accountability and
predictability appeared to be lacking together in six instances. The lack of common
understanding and accountability seems intuitive, as both aspects are at the heart of
productive collaboration between teams. On the one hand, everybody involved
needs to have an understanding of the topic in development and on the other, it
needs to be decided who is doing what in order to develop software in a timely
fashion. Transparency and common understanding as well as common under-
standing and predictability were lacking together in five occurrences across all cases
and processes investigated. Only two of the integrating conditions appeared to be
lacking singularly. Common understanding and accountability were lacking alone
in four and two processes respectively.

4.2.2 Deriving Instantiations of Coordination
Configurations

In order to examine the source of each final integrating condition, all processes were
scrutinized and the originating coordination configuration was recorded for each
final integrating condition for each process (see Appendix E Process Overview). To
achieve a better overview of all processes, a miniature representation of the coor-
dination configuration was chosen as depicted in Fig. 4.29.

92 4 Case Study Results on Coordination …

Table 4.12 Lack of integrating conditions appearing together

Alpha

T
ra

ns
pa

re
nc

y

C
om

m
on

U
nd

er
st

an
di

ng

A
cc

ou
nt

ab
ili

ty

Pr
ed

ic
ta

bi
lit

y

Beta

T
ra

ns
pa

re
nc

y

C
om

m
on

U
nd

er
st

an
di

ng

A
cc

ou
nt

ab
ili

ty

Pr
ed

ic
ta

bi
lit

y

Transparency 0 3 1 1 0 0 0 1

Common
Understanding

1 2 2 3 2 1

Accountability 1 2 0 1

Predictability 0 0

Gamma Delta

Transparency 0 1 1 2 0 0 0 0

Common
Understanding

0 2 2 0 0 0

Accountability 0 2 1 1

Predictability 0 0

Epsilon All

Transparency 0 1 1 0 0 5 3 4

Common
Understanding

0 0 0 4 6 5

Accountability 0 0 2 6

Predictability 0 0

4.2 Cross-Case Analysis 93

In the 22 processes investigated, only a limited number of coordination con-
figurations lead to the creation of integrating conditions. Overall, six configurations
led to the establishment of integrating conditions in the presented processes (see
Fig. 4.30). These six configurations can be grouped according to the type of
coordination mechanism employed, which is either mechanistic or organic. The
second dimension is the degree of co-management present in the respective con-
figuration. The three aspects are autonomous, participatory and prescriptive. The
autonomous aspect implies that the team could coordinate in an independent
fashion without being subject to other entities within the MTS. The participatory
aspect describes a coordination configuration in which central actors in the MTS
(e.g. CPO or central teams) and the development teams consider themselves as
equals and jointly come to decisions based on mutual discussion for example. On
the opposite side of this spectrum lies the prescriptive aspect, where central actors
impose decisions on development teams and team POs without their participation in
the decision process.

The first two configurations under the heading organic autonomous configura-
tion are characterized by an organic coordination mechanism, decentralized locus
and a horizontal or both horizontal and vertical direction. An example of this
configuration would be a direct team-to-team communication in the form of an
informal chat between team Product Owners. If the results of this chat were
communicated to the CPO, the vertical direction would also be highlighted in the
configuration.

The next two configurations both exhibit a participatory nature, in that both
central and decentral entities participate in the coordination and the direction is
horizontal as well as vertical. They differ in the mechanism they enact, one shows

T
yp

e
L

oc
us

D
ir

ec
ti

on

Mechanistic Organic

Centralized Decentralized

Vertical Horizontal

converted to

Fig. 4.29 Miniature
representation of the
coordination configuration

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Fig. 4.30 Coordination
configurations leading to
integrating conditions

94 4 Case Study Results on Coordination …

mechanistic, the other organic mechanisms. A meeting with team Product Owners
and Chief Product Owners, where the participants collaboratively discuss issues,
would be an example of an organic participatory configuration. If in said meeting a
plan was collaboratively created, then this would be a mechanistic participatory
configuration.

The last two of the five configurations are based on a centralized locus with a
vertical direction and either a mechanistic or an organic mechanism. An example of
a mechanistic prescriptive configuration is a plan developed by a central team,
which is then pushed into the development teams. The organic variation could be a
decision by a CPO that is then verbally communicated to others.

4.2.3 Analysis of the Relationship Between Integrating
Conditions and Coordination Configurations

Transparency. In all cases where transparency was established in one of the
change processes, it was created in an organic autonomous configuration (see
Fig. 4.31). Recalling the definition of transparency from Sect. 4.1.1.1, “the per-
ceived quality of intentionally shared information from a sender” (Schnackenberg
and Tomlinson 2014, p. 5), this comes as no surprise. As the information needs to
be “intentionally shared” from one team with the rest of the MTS, this happens
predominantly in autonomous configurations as only the teams themselves can
choose to provide such information. While one could imagine a more centralized
approach with central provisions on information sharing, the teams could avoid
these simply by not letting anyone know about certain aspects happening within the
team. Furthermore, as the coordination between teams was of interest and many of
the investigated processes were the result of an unexpected trigger, the easiest, and
perhaps fastest, way to achieve this condition is by organically coordinating, e.g.
communicating directly with another team. It follows, at least with respect to the
five cases examined here, that transparency is only generated from within the team
in an autonomous fashion.

Common Understanding. This integrating condition was generated in organic
configurations across all five cases (see Fig. 4.31). Based on the definition “a shared
perspective on the whole task and how individuals’ work fits within the whole”
(Okhuysen and Bechky 2009, p. 488), it seems that this shared perspective is best
created through organic communication among the participants in the MTS. The
central aspect within the organic mechanism is the focus on communication as a
means for coordination. While a mechanistic coordination (i.e. a plan) could impart
some form of common understanding among the participants of the coordination
process, it is always limited by its rigidity and one-way information transfer. It is
the goal of mechanistic coordination to limit communication and thus ensure effi-
ciency. Precisely this reason makes it difficult to exchange information of a com-
plex nature. Communication in the form of verbal exchange on the other hand offers

4.2 Cross-Case Analysis 95

the possibility to collaboratively come to an understanding of the topic at hand.
Furthermore, in this two-way communication, the involved entities can ensure that
a common understanding is present and not only an information transfer with
imperfect understanding. As such, organic coordination can be viewed as the
foundation for understanding and building a common mental model for complex
topics.

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Grand
Total

Transparency 1 1 Transparency 1 1

Common
Understanding

1 1 2 4
Common

Understanding
2 1 3 6

Accountability 1 3 4 Accountability 2 2

Predictability 1 2 3 Predictability 2 1 1 4

Grand Total 3 1 3 5 12 Grand Total 5 1 4 2 1 13

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Grand
Total

Transparency 1 1 2 Transparency

Common
Understanding

3 3
Common

Understanding
1 1

Accountability 2 2 Accountability 2 2

Predictability 2 1 3 Predictability 1 1

Grand Total 3 2 3 2 10 Grand Total 1 3 4

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Integrating
Conditions

Grand
Total

Transparency 1 1 Transparency 4 1 5

Common
Understanding

1 1 2
Common

Understanding
5 2 9 16

Accountability 1 1 Accountability 2 4 5 11

Predictability Predictability 5 1 1 3 1 11

Grand Total 2 2 4 Grand Total 14 4 12 4 8 1 43

Case Alpha Case Beta

Case Gamma Case Delta

Case Epsilon All Cases

Fig. 4.31 Coordination configurations leading to integrating conditions across all cases

96 4 Case Study Results on Coordination …

The originating configurations of this integrating condition can be distinguished
between ones which are of a pure bottom-up nature (e.g. organic, decentralized and
horizontal) and ones in which central involvement is discernible. As such, the
MTSs created a common understanding mostly in a decentral manner between the
involved teams (see Case Delta Fig. 4.31) or in a participatory manner where more
central actors of the MTS took part as well, without prescribing what to do (see
Case Gamma Fig. 4.31).

These first two integrating conditions could be linked to originating coordination
configurations rather clearly. The conditions accountability and predictability paint
a more diffuse picture. Both of these integrating conditions could not be clearly
associated with individual configurations across all cases, rather it seems that there
are different ways in how to create these two integrating conditions.

Accountability. Accountability “addresses the question of who is responsible
for specific elements of the task and makes clear where the responsibilities of
interdependent parties lie” (Okhuysen and Bechky 2009, p. 483). In the five cases
investigated, accountability was mostly created in mechanistic configurations,
either in a prescriptive manner or through participation of all involved parties (see
Fig. 4.31). The mechanistic coordination mechanisms, e.g. plans, rules or roles,
inherently impart a form of accountability. A role assignment’s goal is to identify
and define a responsible person. Similarly, a plan will pinpoint what should be
achieved and who should complete it—another form of accountability determina-
tion. The question of who is responsible is usually established through role defi-
nitions or captured through the creation of a plan in the form of assignees in the
backlog management tool, which exemplifies the mechanistic nature of these
configurations. The two instances where accountability was established in an
organic participatory configuration can be traced back to missing clarity between
actors. As such, a misunderstanding concerning accountability is more easily
clarified through communication and participation of all involved parties.

Cases Gamma and Beta exhibited mechanistic participatory configurations in
order to establish accountability. Here, responsibility was assigned jointly in
meetings with all parties involved or through self-assignment. In the cases Alpha
and Delta, accountability was created through prescriptive action, in that work items
were externally or centrally assigned to teams. The way in which these assignments
come to be, e.g. through self-assignment or through external assignment, seems to
be the central distinguishing element in the difference between the prescriptive and
participatory nature of these two groups.

Predictability. Predictability “enables interdependent parties to anticipate sub-
sequent task related activity by knowing what the elements of the task are and when
they happen” (Okhuysen and Bechky 2009, p. 486). In the all cases chart of
Fig. 4.31, the creation of predictability was rather dispersed across all coordination
configurations. However, an accumulation can be seen in organic autonomous and
mechanistic prescriptive configurations. Cases Beta and Gamma enacted organic
autonomous configurations more often to establish predictability than other con-
figurations. Through participatory involvement in planning and thus accountability,
the teams considered their work items their own and felt responsible to ensure

4.2 Cross-Case Analysis 97

predictability to other teams and the program they were working in. The other
identifiable group consists of cases Alpha and Delta, which predominantly created
predictability in mechanistic prescriptive configurations. The prescriptive nature of
planning and work item allocation in these two cases did not seem to create the
same amount of identification with the work as in the other cases investigated. As
such, predictability was established extrinsically through directives that prescribed a
certain amount of reporting to the other or central teams.

4.2.4 Analysis of the Relationship Between the Coordination
Configuration Dimensions and the Integrating
Conditions

The previously established instantiations of the coordination configuration show
two dimensions along which they can be grouped. The first one being the type of
coordination mechanism employed, namely organic or mechanistic. The second one
can be described as the degree of co-management present in the respective con-
figuration. The three facets here are autonomous, participatory and prescriptive. The
autonomous facet contains the notion of a sovereign coordination process inde-
pendent of other actors within the multiteam system. The participatory facet
describes a coordination in which an equal representation of more central actors and
the development teams is achieved. An example are the joint discussion and
decision meetings of CPOs and POs where important decisions are made on a
mutual basis. Quite the contrary can be seen in the prescriptive configurations,
where central actors, such as the CPO or a central team, take decisions which are
then enforced throughout the MTS.

Figure 4.32 shows organic versus mechanistic mechanisms and which inte-
grating conditions were established when employing each. The key question is, if
the coordination mechanism employed is independent of the established integrating
condition. The contingency table shown in Fig. 4.32 was used as the base for a
chi-squared test of independence. The null hypothesis H0 = coordination configu-
rations are independent of the integrating conditions was established with the
alternative hypothesis being that the coordination configurations and the integrating
conditions have an association. The results of Pearson’s Chi-squared test show a
p-value of 0.00002472. This leads us to the conclusion that the results are highly
significant on a p < 0.001 level. Based on this the null hypothesis can be rejected.

However, sparsely populated contingency tables are a problem for Pearson’s
Chi-squared test of independence, in particular cells with an expected value of less
than five lead to an incorrect approximation of the Chi-squared value (Hogg and
Tanis 1996). To overcome this issue, another test can be employed. An approach for
small contingency tables is Fisher’s exact test, which, as the name implies, calculates
exact p-values. In the test of independence of organic and mechanistic coordination
configurations and the integrating conditions in which they were established, the
exact test provides an even lower p-value (p = 0.000005803 < 0.001) and thus

98 4 Case Study Results on Coordination …

supports the result of the Chi-squared test. Therefore, highly significant support to
reject the null hypothesis of independence of integrating conditions and coordination
configurations in the form of organic or mechanistic configuration is given. Hence, it
is highly likely that organic and mechanistic configurations are used to establish
different integrating conditions.

Another way of merging the coordination configurations is by their autonomous,
participatory or prescriptive nature. This can be seen in Fig. 4.33. The same tests of
independence as previously mentioned were conducted on this contingency table.
The results of Pearson’s Chi-squared test show a p-value of 0.0004167. This leads
us to the conclusion that the results are highly significant on a p < 0.001 level.
Based on this, the null hypothesis of coordination configuration dimensions being
independent of integrating conditions can be rejected. Fisher’s exact test supports
this statement with a p-value of 0.00003473.

4.2.5 Temporal Analysis of Integrating Conditions
and Coordination Configurations

The following sections will dive into the temporal analysis of the investigated
coordination processes. To begin with, the aspect of time is enfolded by detailing

Pearson's Chi-squared test
χ2 = 24.022

df = 3
p-value = 0.00002472

Fisher's Exact Test for Count Data
p-value = 0.000005803

or
ga

ni
c

m
ec

ha
ni

st
ic

Integrating
Conditions

Grand
Total

Transparency 5 0 5

Common
Understanding

16 0 16

Accountability 2 9 11

Predictability 8 3 11

Grand Total 31 12 43

Fig. 4.32 Analysis of
organic versus mechanistic
coordination configurations
leading to integrating
conditions

4.2 Cross-Case Analysis 99

the process sequences from the point of view of all cases together as well as the five
cases individually. Subsequently, the integrating conditions and their differing
establishment across these process steps will be the focal point.

All Cases. The overall view across all cases in Fig. 4.36 shows the temporal
sequence of integrating condition creation. The horizontal axis show the six
instantiations of the coordination configurations, while the vertical axis shows the
coordination process split up into the three process steps which were at most
necessary. These process steps originate from the single case analysis where the
individual processes depicted one to three change steps before being completed.
The figures show the aggregated data per MTS/overall split up into the individual
process steps. The data shows that common understanding was addressed strongly
in the first step of the coordination process. In some instances accountability and in
one instance predictability was focused on initially. Transparency was never
attended to in the first process step across any of the cases. In the second step, all
integrating conditions were established, with a strong focus on accountability and
predictability. Here, transparency was first created in the coordination process. The
third and final step shows no establishment of common understanding and little
accountability creation. However, transparency and predictability are still created in
this step.

Pearson's Chi-squared test
χ2 = 24.532

df = 6
p-value = 0.0004167

Fisher's Exact Test for Count Data
p-value = 0.00003473

au
to

no
m

ou
s

pa
rt

ic
ip

at
or

y

pr
es

cr
ip

tiv
e

Integrating
Conditions

Grand
Total

Transparency 5 0 0 5

Common
Understanding

7 9 0 16

Accountability 0 6 5 11

Predictability 6 1 4 11

Grand Total 18 16 9 43

Fig. 4.33 Analysis of
autonomous versus
participatory versus
prescriptive coordination
configurations leading to
integrating conditions

100 4 Case Study Results on Coordination …

Alpha. In case Alpha (see Fig. 4.34), the initial focus lay on accountability with
single instances of common understanding and predictability creation present in the
data. In the second step, common understanding was established in three config-
urations, with accountability and predictability being created twice each. Finally,
transparency was produced once in this process step as well. Case Alpha only
showed two process steps across all coordination processes observed.

Beta. The coordination processes in case Beta (see Fig. 4.34) exhibited a strong
focus on common understanding creation in the first step, with no other integrating
condition being established this early in the process. The second step shows gen-
eration of accountability twice, as well as one occurrence of transparency and
predictability. Finally, the third and last process step displays another instance of
transparency creation and a stronger focus on predictability with two occasions
establishing this integrating condition.

Gamma. Similar to Beta, case Gamma (see Fig. 4.35) focused on early gener-
ation of common understanding. Step 2 shows the establishment of transparency
and predictability and two instances of accountability creation. The third and final

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Grand
Total

Transparency Transparency

Common
Understanding

1 1
Common

Understanding
3 3

Accountability 2 2 Accountability

Predictability 1 1 Predictability

Transparency 1 1 Transparency 1 1

Common
Understanding

1 1 1 3
Common

Understanding

Accountability 1 1 2 Accountability 2 2

Predictability 1 1 2 Predictability 1 1

Transparency Transparency 1 1

Common
Understanding

Common
Understanding

Accountability Accountability

Predictability Predictability 1 1 2

Step 1

Step 2

Step 3

Case Alpha Case Beta

Step 1

Step 2

Step 3

Fig. 4.34 Coordination configurations leading to integrating conditions split into process steps for
cases alpha and beta

4.2 Cross-Case Analysis 101

process step exhibits transparency establishment and two occurrences of pre-
dictability creation.

Delta. In the first step of the coordination processes within this case (see
Fig. 4.35), common understanding and accountability were created in two instan-
ces. The second step exhibits two occurrences of accountability creation and one
predictability establishment. In the final step, accountability was created in one
coordination process.

Epsilon. The last case, shown in Fig. 4.36, exhibits common understanding
establishment in process step 1. In the second step, case Epsilon created common
understanding and accountability in one occurrence each. In the third and final
process step, transparency was generated in one instance.

While the previous sections offered the temporal analysis from the point of view
of the five cases investigated, the following sections will present the analysis from
the perspective of the integrating condition.

Transparency. From a time perspective, transparency was created in later steps
of the change process (see illustrations Figs. 4.34, 4.35 and 4.36). In none of the

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Grand
Total

Transparency Transparency

Common
Understanding

3 3
Common

Understanding
1 1

Accountability Accountability 1 1

Predictability Predictability

Transparency 1 1 Transparency

Common
Understanding

Common
Understanding

Accountability 2 2 Accountability 2 2

Predictability 1 1 Predictability 1 1

Transparency 1 1 Transparency

Common
Understanding

Common
Understanding

Accountability Accountability 1 1

Predictability 1 1 2 Predictability

Case Delta

Step 1

Step 2

Step 3

Step 1

Step 2

Step 3

Case Gamma

Fig. 4.35 Coordination configurations leading to integrating conditions split into process steps for
cases gamma and delta

102 4 Case Study Results on Coordination …

cases was it established in the first step. It seems that the MTSs deemed the other
integrating conditions such as common understanding and accountability to be
more critical in early steps of coordination. Another line of explanation would be
the argument, that for there to be transparency, the aspects of common under-
standing and accountability need to be in place first. In other words, first one needs
to come to a common understanding of what is being development before one can
intentionally share information about that development.

Common Understanding. This integrating condition was created early in the
change process in cases Beta, Gamma, Delta and Epsilon. Only in case Alpha was
this condition mostly generated in later process steps (see illustrations Figs. 4.34,
4.35 and 4.36). This could be explained by the fact that one usually has to first
come to an understanding of what is being developed before transparency,
accountability and predictability become more important. However, in case Alpha
the central team allocated work items to teams and therefore established account-
ability before a common understanding was sought.

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

au
to

no
m

ou
s

or
ga

ni
c

pa
rt

ic
ip

at
or

y

m
ec

ha
ni

st
ic

pa

rt
ic

ip
at

or
y

m
ec

ha
ni

st
ic

pr

es
cr

ip
tiv

e

or
ga

ni
c

pr
es

cr
ip

tiv
e

Grand
Total

Grand
Total

Transparency Transparency 0

Common
Understanding

1 1
Common

Understanding
2 7 9

Accountability Accountability 3 3

Predictability Predictability 1 1

Transparency Transparency3 3

Common
Understanding

1 1
Common

Understanding
1 1 2 4

Accountability 1 1 Accountability 2 4 3 9

Predictability Predictability3 2 5

Transparency 1 1 Transparency 1 2 3

Common
Understanding

Common
Understanding

0

Accountability Accountability 1 1

Predictability Predictability22 4

Step 1

Step 2

Step 3

All Cases

Step 1

Step 2

Step 3

Case Epsilon

Fig. 4.36 Coordination configurations leading to integrating conditions split into process steps for
case epsilon and all cases

4.2 Cross-Case Analysis 103

Accountability and Predictability. These two integrating condition were
established at two distinct points in time, depending on the case. Case Alpha stands
out as creating these integrating conditions early on. Only in one instance did case
Delta create accountability in the first process step. Cases Beta, Gamma, Delta and
Epsilon established these two integrating conditions later in the coordination pro-
cess. A possible explanation could be the already mentioned initial focus on cre-
ating a common understanding before decisions on accountability are taken. A later
focus on predictability seems plausible as work needs to be done first before its
status can be communicated to others.

In the analysis of the integrating conditions of coordination, an answer to the
question of how these conditions were attained was sought. Previous literature that
influenced the research framework of this study proved insufficient in suggesting
determining factors of the MTS and how they generate the four integrating con-
ditions. Contingency factors such as number of locations or employees of the MTS,
requirements uncertainty or task dependencies did not determine the way in which
the studied MTS established the integrating conditions for coordination. This
became especially evident in the analysis of the conditions predictability and
accountability.

Pr
es

cr
ip

tiv
e

A
cc

ou
nt

ab
ili

ty

&
 P

re
di

ct
ab

il
ity

cr
ea

tio
n Group 1

Alpha

Group 2

Delta &
Epsilon

Pa
rt

ic
ip

at
or

y
an

d
A

ut
on

om
ou

s
A

cc
ou

nt
ab

ili
ty

&

 P
re

di
ct

ab
il

ity
cr

ea
tio

n Group 4 Group 3

Beta &
Gamma

Early Focus on Accountability &
Predictability
Late Focus on Common Understanding

Early Focus on Common Understanding
Late Focus on Accountability &
Predictability

Fig. 4.37 Three stereotypes of multiteam systems

104 4 Case Study Results on Coordination …

4.2.6 Stereotypes of Multiteam Systems

In order to disentangle the sources of predictability and, on a smaller scale,
accountability, other factors needed to be identified. In the data at hand, the enacted
configurations and the sequence in which the integrating conditions were estab-
lished determined groups within the five cases investigated. Particularly, the way in
which accountability and predictability were created, either participatory/
autonomous or prescriptive, established subgroups. The second dimension focu-
ses on the point in time when accountability and predictability as well as common
understanding were created. The one group established accountability and pre-
dictability early on in the coordination process, while the second group focused first
on common understanding and later on accountability and predictability (see
Fig. 4.37). The following paragraphs give an overview of the four groups identified
and characteristics of said groups.

Group 1: Alpha. This group generated accountability and predictability early on
in the process, while common understandingwas created in later steps (see Fig. 4.34).
This is because their planningwas strongly based on top-down directives.Work items
were centrally assigned to individual teams, which were then tasked with under-
standing and implementing these items. This planning approach also explains case
Alpha’s strong use of prescriptive configurations in its generation of predictability and
accountability. Furthermore, their problem resolution strategy was escalation-based,
which also implies that a central entity must determine how to solve issues.

Group 2: Delta and Epsilon. As in the previous group, group 2 generated
accountability and predictability in a prescriptive fashion. Although Delta’s plan-
ning mode was described as very inclusive, their way of dealing with unexpected
situations remained escalation-based and thus mechanistic prescriptive. While
Epsilon’s planning mode was more decentralized, the strong influence from the
CPO and their way of solving issues also revolved around the intervention of a
central entity. The main difference to case Alpha lies in the early focus on common
understanding in the process. While group 1 created accountability and pre-
dictability early, group 2 focused first on the establishment of common under-
standing and then on accountability and predictability.

Group 3: Beta and Gamma. In this group accountability was created through the
enactment of participatory and autonomous configurations. The planning and system
setup of both cases were characterized by their involvement of the teams in decisions
and particularly in planning activities. As such, accountability was also created in
these coordination configurations where planning occurred. Predictability wasmostly
created in organic autonomous configurations. The two MTSs in this cluster relied
heavily on decentral team PO interaction to exchange information concerning
delivery of backlog items. Furthermore, the shorter sprint length of these two cases
may have influenced the predilection of this configuration, as it can operate faster.
Decentral communication between teams is more flexible and reactive as the enact-
ment of a mechanistic configuration involves a central entity, which reduces reaction
speed because more actors are involved.

4.2 Cross-Case Analysis 105

Group 4: This group remained empty in the five cases investigated in this
research. While the combination of dimensions in this group remains theoretically
possible, the likelihood of a participatory and autonomous creation of account-
ability and predictability together with an early focus on both mentioned integrating
conditions is less likely. If an MTS exhibits participatory traits it is much more
likely that the teams coming together to discuss work items or topics are first going
to focus their communication on building a common understanding before deciding
who is accountable and how to achieve predictability.

References

Barlow, J. B., Giboney, J. S., Keith, M. J., Wilson, D. W., & Schuetzler, R. M. (2011). Overview
and guidance on agile development in large organizations. Communications of the Association
for Information Systems, 29(2), 25–44.

Hogg, R. V., & Tanis, E. A. (1996). Probability and statistical inference (5th ed.). Prentice Hall.
Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational

tools for large-scale scrum. Upper Saddle River, N.J: Addison-Wesley Professional.
Larman, C., & Vodde, B. (2010). Practices for scaling lean and agile development: Large,

multisite, and offshore product development with large-scale scrum (1st ed.). Upper Saddle
River, N.J: Addison-Wesley Professional.

Okhuysen, G. A., & Bechky, B. A. (2009). Coordination in organizations: An integrative
perspective. The Academy of Management Annals, 3(1), 463–502.

Schnackenberg, A. K., & Tomlinson, E. C. (2014). Organizational transparency: A new
perspective on managing trust in organization-stakeholder relationships. Journal of
Management, Advance online publication. Retrieved from http://jom.sagepub.com/content/
early/2014/03/06/0149206314525202.abstract

106 4 Case Study Results on Coordination …

http://jom.sagepub.com/content/early/2014/03/06/0149206314525202.abstract
http://jom.sagepub.com/content/early/2014/03/06/0149206314525202.abstract

Chapter 5
Discussion and Summary

The last chapter of this dissertation starts with a discussion of the findings in light of
the posed research questions. The theoretical and practical contributions are then
followed by the limitations of this research as well as the avenues for future work.
The chapter finishes with a conclusion.

5.1 Summary of the Findings

This study is in line with previous work on the integrating conditions for coordi-
nated action (e.g Okhuysen and Bechky 2009). It advances this understanding by
taking a time-dependent view of the interplay between coordination type, locus and
direction as well as how these lead to the integrating conditions for coordinated
action. In the section that follows, the research questions that guided this study are
recapped and corresponding answers are outlined.

The overarching research question ‘How do changes in the coordination con-
figuration affect the integrating conditions for coordination in multiteam software
development systems?’ was broken down into two specific questions. With this
approach, the main research question is answered exhaustively by first answering
the two more specific questions.

(1) Why does the coordination configuration change?

The study results (see Chap. 4) show that the identification of a deficiency in the
integrating conditions present, leads to a change in the coordination configuration.
The analysis of 66 interviews resulted in 20 change processes that involved a
change in the enacted coordination configuration. The data illustrates that a trig-
gering event in the coordination between two or more teams leads to the identifi-
cation of an insufficient state concerning the integrating conditions for coordinated
action. This realization in turn leads to a change in the enacted coordination con-
figuration in order to establish the missing integrating conditions (see Fig. 5.1).

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_5

107

http://dx.doi.org/10.1007/978-3-319-55327-6_4

All processes were provoked by the absence of one or several of the integrating
conditions. However, the participants of the coordination process were seldom
aware of the underlying factors that were missing. Based on Poole et al. (2000) two
causal forces were identified in the data, one that operates continuously and the
other that only comes into play at specific points in time. The discrete exogenous
trigger is of a distinct nature and can be attributed to a specific point in time (see
Fig. 4.7). The second type is the latent endogenous trigger, a more slow moving
cause which is of a latent nature and builds up over time until a threshold is reached
whence it acts to trigger a change (Grzymala-Busse 2010) (see Fig. 4.11).

(2) How are the integrating conditions for coordination attained?

This research shows, that through the enactment of specific coordination con-
figurations, the integrating conditions for coordinated action can be (re-)attained.
Based on the previously mentioned processes, six unique configurations in which
one of the integrating conditions was established were identified.

In all instances, transparency was created in an organic autonomous configu-
ration, as only the teams themselves can choose to intentionally share information
(see Sect. 4.1.1.1 for a definition of the term ‘transparency’). The integrating
condition common understanding was established in organic autonomous and
organic participatory configurations. Both configurations exhibit an organic coor-
dination mechanism, which supports the formation of a shared understanding
through communication.

The integrating conditions accountability and predictability exhibit distinct
variations in how they were constituted. From the empirical data, the five investi-
gated cases showed three groups which differed along two dimensions, namely the
prescriptive or participatory nature of accountability and predictability creation and
the order in which the integrating conditions common understanding and
accountability and predictability were established in the coordination configuration
change process (see Sect. 4.2.5). Group 1 generated accountability and pre-
dictability early on in the process within prescriptive configurations, while common
understanding was created in later steps (see Fig. 4.34). This is because their

Trigger

Change in enacted
Coordination
Configuration

Establishment of
Integrating
Conditions

Integrating
Conditions
Deficiency

leads to
identification of

Fig. 5.1 Process leading to a change in the coordination configuration

108 5 Discussion and Summary

http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4

planning was strongly based on top-down directives, with work items being cen-
trally assigned to individual teams, which were then tasked with understanding and
implementing these items. Group 2 established accountability and predictability in a
prescriptive fashion as well. The main difference to group 1, i.e. case Alpha, lies in
the early focus on common understanding in the process. In group 3 accountability
was created through the enactment of participatory and autonomous configurations.
The planning and system setup of both cases was characterized by their involve-
ment of the teams in decisions and particularly in planning activities. As such,
accountability was also created in these coordination configurations where planning
occurred. Predictability was mostly created in organic autonomous configurations.

In summary, the main research question, ‘How do changes in the coordination
configuration affect integrating conditions in multiteam software development
systems’ can be answered with: the perception of an imbalance or absence in the
integrating conditions for coordinated action leads to a change in the coordination
configuration in order to (re)establish said condition(s).

5.2 Theoretical Contributions

The findings of this study contribute to the two main research areas indicated in the
introduction: large-scale agile software development and inter-team coordination.
As for the first area, the contributions are manifold. First, this research enhances our
comprehension of coordination in large-scale software development systems by
deriving three particular stereotypes of coordination in these settings from the data.
The underlying two dimensions of these types are the prescriptive or participatory
nature of accountability and predictability creation and the order in which the
integrating conditions common understanding and accountability and predictability
were established in the coordination configuration change process (see Sect. 4.2.5).
Second, this study improves the understanding of different scaling approaches
within large-scale agile software development. It carefully carves out and abstracts
the five different practical approaches, namely scaling via Central Team Directives,
Central Team Planning based on Team Inputs, Ad Hoc Communication, Iterative
Proxy Collaboration and via Full Collaboration (see Sect. 4.1). Contributions to the
field of inter-team coordination comprise an improved understanding of how
integrating conditions for coordinated action in multiteam systems are established.
Furthermore, the integrating conditions were extended with transparency as a fourth
dimension. Finally, and most importantly, the conducted research contributes to the
integration of the two research fields, by using the lens of inter-team coordination in
large-scale agile settings. Doing so, both the established framework as well as the
very detailed insights into coordination processes in multiteam systems lead to a
better understanding of coordination in large-scale agile software development
settings.

5.1 Summary of the Findings 109

http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4

Introducing Stereotypes of Coordination in Large-Scale Agile Settings
By grouping the five investigated cases along two dimensions, four groups were
generated (see Fig. 4.37). The prescriptive or participatory nature of accountability
and predictability creation and the order in which the integrating conditions com-
mon understanding and accountability and predictability were established in the
coordination configuration change process (see Sect. 4.2.5) are the underlying
aspects of this grouping. Of the four possible groups, three could be populated with
the cases examined in this research. The unpopulated one seems less likely to be
discernible in practice, as the simultaneous focus on early accountability and pre-
dictability generation paired with a participatory creation of said integrating con-
ditions does not appear to be an intuitive combination. The participatory nature
would most likely lead to the creation of common understanding in a first step and
not the other two integrating conditions. These findings contribute to the research
stream on large-scale agile software development (cf. Hole and Moe 2008;
Lagerberg et al. 2013; Paasivaara et al. 2012).

Better Understanding of Scaling Approaches in Large Agile Software
Development
The topic of scaling agile development methods to larger settings has mainly been
the focus of practitioner books and frameworks (Ambler and Lines 2012; Larman
and Vodde, n.d., 2008, 2010; Leffingwell, n.d.). The amount of published scientific
papers on this topic remains scarce (e.g. Lee 2008; Paasivaara et al. 2012; Paasivaara
and Lassenius 2011; Smits and Pshigoda 2007). This study has identified how each
of the five cases scaled agile practices, either via central team directives, iterative
proxy collaboration, central team planning based on team inputs, full collaboration
or via ad hoc communication (see Sect. 4.1). By illustrating and explaining the way
each of the five cases tried to scale agile methods within its multiteam system, this
research contributes to the discussion on large-scale agile development, which until
now, followed a mostly normative approach through practitioner guidance (Larman
and Vodde 2015; Leffingwell, n.d.).

Advancement and Better Understanding of Integrating Conditions for
Coordination
This study contributes to literature that has analyzed the underlying aspects of
coordination. In particular, it adds to work that proposed integrating conditions for
coordinated action (Okhuysen and Bechky 2009). Previous publications on coor-
dination can be divided into literature that focused on the decomposition of work
(e.g Taylor 1911) and a stream dedicated to the design of work systems, e.g. the
specification of coordination structures, mechanisms and strategies (e.g. Espinosa
et al. 2004; Li and Maedche 2012; Mintzberg 1983; Thompson 1967). Both streams
focus either on teams or on organizations and neglect the more recent multiteam
systems form of organizational setup. This study goes beyond these two streams by
disentangling the coordination processes between teams. It explains coordination
from a process theoretic view and shows how the integrating conditions for coor-
dination are created. The establishment of the four integrating conditions,

110 5 Discussion and Summary

http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4

transparency, common understanding, accountability and predictability, through the
enactment of six coordination configurations (see Fig. 4.30), two organic autono-
mous ones, an organic participatory, a mechanistic participatory, a mechanistic
prescriptive and an organic prescriptive configuration, is one key finding of this
study. The enactment of specific coordination configurations to establish certain
integrating conditions contributes to a stream of research analyzing the underlying
aspects of coordination (cf. Okhuysen and Bechky 2009). By developing a coor-
dination configuration framework, this work allows the visualization and analysis of
changes in inter-team coordination and contributes to the stream of research ded-
icated to the design of work systems (cf. Espinosa et al. 2004; Li and Maedche
2012; Mintzberg 1983; Thompson 1967).

This research contributes to Okhuysen and Bechky’s (2009) work by extending
the integrating conditions for coordination with transparency as a fourth condition.
In large-scale software development systems, the possibility to gather an overview
of other teams and their state of affairs is essential. As teams are more empowered
and gain autonomy, they need to start intentionally sharing correct and relevant
information concerning their status or other aspects that could affect surrounding
teams. This allows teams within the same multiteam system to anticipate changes
and reduces unexpected issues. So far only Dabbish et al. (2014) have associated
transparency with coordination. However, the context of their work is situated in
the open source community, which exhibits fundamental differences in organiza-
tional structure and coordination. The study at hand is one of the first empirical
works utilizing the notion of integrating conditions for coordination. In doing so, it
can be viewed as a confirmation of the integrating conditions by Okhuysen and
Bechky (2009).

Aptness of Embedded Information Systems Development Research
This study would not have been possible in its current form without the opportu-
nities given in the context of an embedded research project. Due to the complex
nature of large-scale software development, such an inside view of development
systems was invaluable as it allowed for a deep understanding of the context and
the underlying influencing factors. Furthermore, the possibility to investigate sev-
eral multiteam systems was profoundly supported by the size and accessibility
within the larger organization. The synergy of academia and industry allowed this
research to evolve in a highly relevant way for theory and practice.

Future researchers in the IS domain should consider a similar setup. It allows the
contemplation of processes and methods apart from the daily business, where often
enough a long-term reflective view, oriented towards understanding, explaining and
advancing key elements of the work process, falls behind in relation to more
pressing short term topics. In doing so, researchers can advance their theoretical
understanding of phenomena while arousing interest from large software devel-
opment organizations by consulting and advising on the topics under study.

5.2 Theoretical Contributions 111

http://dx.doi.org/10.1007/978-3-319-55327-6_4

5.3 Practical Contributions

Coordination in large-scale agile software development systems is a highly relevant
topic for practitioners. As bigger and more complex software is being developed in
an agile manner, the need to understand inter-team coordination is essential.

Agile and especially large-scale agile development constitutes a structural
change in the organization and needs concurrent change management and contin-
uous improvement to develop according to the given context it is deployed in. The
range of agile methods, techniques and advice is enormous and each adoption
customizes the textbook approaches to their needs. Most literature on large-scale
agile is of a normative nature originating from consultants wishing to promote their
work. It is here that this study provides evidence as to how agile has been scaled in
real life settings and can act as a foundation of evidence-based management of
software products (Boehm and Lane 2010; Dybå et al. 2005). This permits leaders
to base their decisions on factual evidence rather than anecdotal narratives and
allows managers to perform their jobs better by employing a deeper logic to the
explanation of what works and what does not.

The interest in agile and especially in large-scale agile software development is
mounting across the industry (VersionOne Inc 2012; West et al. 2010). The
company-wide introduction of agile methods at SAP SE confirms the high interest
of large organizations to take advantage of agile development. However, as both
shown in this study and Schmidt (2016) the adoption of such methods is accom-
panied by a significant cultural change. The manageable act of introducing agile
methods into software development processes is not enough. A continuous effort to
transform the organization is needed. As such, aspects such as scaling agile
methods to larger settings and the adjustment of said methods to the organizational
environment at hand necessitate a long-term change management, which practi-
tioners need to be aware of before deciding to go down this path.

The results provide practitioners with a guideline to evaluate coordination
practices in large-scale agile development settings. Based on the four integrating
conditions for coordination from this study, transparency, common understanding,
accountability and predictability, decision makers such as Scrum Masters or
Product Owners, and other agile leaders can assess if currently employed coordi-
nation practices contribute to these conditions and lead to the intended results. By
focusing on common understanding and transparency for example, Scrum Masters
can evaluate if proposed large-scale practices such as the Scrum of Scrums practice
is the right choice for their environment and if it is generating the intended results.
In multiteam systems, integrating conditions such as common understanding are
increasingly difficult to establish as compared to small settings. Therefore, agile
coaches and Scrum Masters need to pay special attention to practices that create this
condition early on, such as joint release planning with all involved roles for the next
release (e.g. product owners, product managers, etc.). Furthermore, the integrating
conditions can act as a guide in developing coordination structures for future

112 5 Discussion and Summary

multiteam systems by explicating clear goals of what to strive for in the coordi-
nation of agile software development multiteam systems, specifically transparency,
common understanding, accountability and predictability.

5.4 Limitations of the Study and Future Research

The embedded nature of this study allowed for unique access and a rare opportunity
to study large-scale development systems in the field. Simply put, this research
would not have been possible from an outside perspective. The possibility to
identify appropriate cases for this study, talk informally with any colleague, gather
data in the form of large interview studies or have access to project management
systems, are just a few of the advantages of this setting. However, some drawbacks
due to the nature of this approach had to be accepted. While participants stemmed
from 11 locations in five countries, all belonged to one organization developing
enterprise systems. This controls for inter-firm differences in that contextual factors
originating from different organizational settings are minimized. However, due to
the focus on one organization, the results of this study may be limited in their
generalizability, as the contextual environment is likely to differ in other firms.
Furthermore, the author’s embeddedness may have led to a biased perspective, as
context-specific characteristics and phenomena may have been overrated or not
considered. However, this bias was controlled by continuous discussions with
colleagues in academia and other professional software development organizations.

Although an accepted data gathering and analysis process with a second coder
was followed until consensus was reached, the assessment of conditions and
mechanisms may show biases due to subjective ratings. Additionally, because of
the large-scale nature of this research, it was necessary to interview numerous
people per case. Starting with the Chief Product Owner all the way to each team
Product Owner and many Scrum Masters as well as additional roles led to a
thorough penetration of each case. On the one hand this mitigated a key informant
bias (Kumar et al. 1993) but on the other did not allow for a great amount of cases
to be investigated. Future research should therefore investigate this study’s topic in
varied settings. Different types of software under development and in particular
different organizational cultures would be of great interest.

As this study can be regarded as a first foray into coordination in large-scale
agile development systems, future research can delve more deeply into particular
aspects of this study. As such, this study distinguished two categories of inter-team
dependencies. With the ongoing interest in different team compositions, e.g. feature
teams, multiteam systems employing such a composition may exhibit different
types of dependencies. An interesting line of inquiry might be the differentiation of
more dependencies categories, e.g. knowledge dependencies (Faraj and Sproull
2000; Strode et al. 2012), between teams and their impact on the multiteam system.

This study revealed certain enacted coordination configurations as a precursor to
particular established integrating conditions. However, no assertion can be made to

5.3 Practical Contributions 113

the necessity of the occurrence of all integrating conditions. The process level
investigated showed several processes that established only three or fewer condi-
tions. One possible explanation might be that the other conditions were already
present in the larger environment surrounding the processes. Future studies may
examine this relation and how it affects a threshold that might be present for the
integrating conditions to lead to coordinated action.

In line with this train of thought, the interplay of integrating conditions and how
these conditions influence the establishment of coordinated action is another
promising area. Future research may investigate if all integrating conditions are
necessary to achieve coordinated action or even if some conditions can substitute
others.

The findings of this study showed large differences between multiteam systems
concerning their development and planning cycle. Especially between cases Alpha
and Beta, these distinctions were obvious. Their current general coordination style
may be deeply rooted in their product structure, which may have influenced their
organizational structure as well (cf. Colfer and Baldwin 2010; Conway 1968;
MacCormack et al. 2008). Such an inquiry seems particularly promising to
investigate more closely the relationship between product structure and organiza-
tional structure and its impact on coordination between teams.

5.5 Summary

The introduction of agile software development methods in the 1990s has had a
profound effect on the way software is being developed today. Originally promoted
by consultants and practitioners, early evidence from industry seemed promising.
Over the years, agile development methods have gained widespread acceptance and
have become the de facto standard in large parts of the industry (VersionOne Inc
2013; West et al. 2010). The last decade has seen an increase in research concerning
agile development, however a theoretical understanding is still in its infancy (Dybå
and Dingsøyr 2008). As the acceptance of agile has spread, so too has the interest of
large organizations to benefit from the promoted advantages these development
methods have to offer. However, large-scale settings with several development
teams (multiteam systems), often including 50 people and more, pose a very dif-
ferent challenge than small team settings (cf. Dingsøyr et al. 2014). The coordi-
nation of these higher number of teams and people becomes an increasingly difficult
task, which has led to a call for research on inter-team coordination in large-scale
agile development (Dingsøyr and Moe 2013, 2014). The study at hand, answers this
call through a qualitative process-theoretic multiple case study. It examined five
multiteam systems in a real-life industry setting at SAP SE.

Based on a thorough review of the literature on coordination in organizational
science, teamwork cognition and previous work in the field of agile development, a
preliminary research framework was constructed. This framework was then refined
through interview data to act as the foundation for the analysis of coordination

114 5 Discussion and Summary

processes in large-scale agile development systems. The framework consists of a
coordination configuration with the dimensions coordination type, locus and
direction and integrating conditions for coordinated action in the form of trans-
parency, common understanding, accountability and predictability. The integrating
conditions for coordination are established by enacting specific coordination con-
figurations that are a composite of the just mentioned dimensions within the con-
figuration. The study resulted in 58 hours of recorded interviews summing up to
1100 pages of transcribed data. The 66 interviewees belonged to five different
product development programs each consisting of four to 13 teams.

Overall, 20 processes of inter-team coordination were identified, each leading to
a change in the integrating conditions for coordinated action. Based on this
empirical evidence several key findings emerged. The data illustrates that a trig-
gering event in the coordination between two or more teams leads to the identifi-
cation of an insufficient state concerning the integrating conditions for coordinated
action. This realization in turn leads to a change in the enacted coordination con-
figuration in order to establish the missing integrating conditions. Based on the
previously mentioned processes, this study identified six unique configurations in
which one of the integrating conditions was established. Another key finding of this
study was revealed in the cross-case analysis. Namely, it exposed three stereotypes
of multiteam systems based on the prescriptive or participatory nature of
accountability and predictability creation and the order in which the integrating
conditions common understanding and accountability and predictability were
established in the coordination configuration change process (see Sect. 4.2.5). The
research unveiled different scaling approaches of the examined multiteam systems
and showed that the participatory or prescriptive nature of coordination was
determined by the approach chosen to scale agile methods to the respective mul-
titeam setting.

This study contributes to a better understanding of coordination in large-scale
agile development settings by disentangling the coordination processes between
teams. It explains coordination from a process theoretic view and shows how the
integrating conditions for coordination are established. It advances the notion of
integrating conditions for coordination by presenting empirical evidence and
extends these conditions by introducing transparency as fourth condition. This
research contributes to practice by showing evidence of real life scaling of agile
methods in a field setting. The results provide a guideline to practitioners on how to
evaluate large-scale coordination efforts and underline the continuous effort needed
to promote agile methods in these settings as the introduction of these methods
necessitates a cultural change.

Future research should build on the presented insights and expand upon them to
gain a deeper understanding of inter-team coordination in large-scale agile settings.

5.5 Summary 115

http://dx.doi.org/10.1007/978-3-319-55327-6_4

References

Ambler, S. W., & Lines, M. (2012). Disciplined agile delivery: A practitioner’s guide to agile
software delivery in the enterprise. IBM Press.

Boehm, B., & Lane, J. A. (2010). Evidence-based software processes. In J. Münch, Y. Yang, &
W. Schäfer (Eds.), New modeling concepts for today’s software processes (Vol. 6195, pp. 62–
73). Berlin, Heidelberg: Springer. Retrieved from http://dx.doi.org/10.1007/978-3-642-14347-
2_7

Colfer, L., & Baldwin, C. Y. (2010). The mirroring hypothesis: Theory, evidence and exceptions
(No. 10-058). Harvard Business School.

Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28–31.
Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. D. (2014). Transparency and coordination in peer

production. Retrieved from http://arxiv.org/abs/1407.0377
Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What is large in large-scale? A taxonomy of scale

for agile software development. In A. Jedlitschka, P. Kuvaja, M. Kuhrmann, T. Männistö,
J. Münch, & M. Raatikainen (Eds.), Product-focused software process improvement (Vol.
8892, pp. 273–276). Springer International Publishing. Retrieved from http://link.springer.
com/10.1007/978-3-319-13835-0

Dingsøyr, T., & Moe, N. B. (2013). Research challenges in large-scale agile software
development. ACM SIGSOFT Software Engineering Notes, 38(5), 38–39. Retrieved from
http://dl.acm.org/citation.cfm?id=2507288.2507322

Dingsøyr, T., & Moe, N. B. (2014). Towards principles of large-scale agile development.
In T. Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, & K. Petersen (Eds.), Agile
methods. Large-scale development, refactoring, testing, and estimation (Vol. 199, pp. 1–8).
Springer International Publishing. Retrieved from http://www.springer.com/computer/swe/
book/978-3-319-14357-6

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9–10), 833–859. Retrieved from http://
linkinghub.elsevier.com/retrieve/pii/S0950584908000256

Dybå, T., Kitchenham, B. A., & Jorgensen, M. (2005). Evidence-based software engineering for
practitioners. IEEE Software, 22(1), 58–65.

Espinosa, J. A., Lerch, J. F., Kraut, R. E., Salas, E., & Fiore, S. M. (2004). Explicit vs. implicit
coordination mechanisms and task dependencies: One size does not fit all. In Team cognition:
Understanding the factors that drive process and performance. (pp. 107–129). Washington,
DC: American Psychological Association.

Faraj, S., & Sproull, L. (2000). Coordinating expertise in software development teams.
Management Science, 46(12), 1554–1568. Retrieved from http://www.jstor.org/stable/
2661533

Grzymala-Busse, A. (2010). Time will tell? Temporality and the analysis of causal mechanisms
and processes. Comparative Political Studies, 44(9), 1267–1297. Retrieved from http://cps.
sagepub.com/content/44/9/1267

Hole, S., & Moe, N. B. (2008). A case study of coordination in distributed agile software
development. In R. O’Connor, N. Baddoo, K. Smolander, & R. Messnarz (Eds.), Software
process improvement (Vol. 16, pp. 189–200). Berlin, Heidelberg: Springer. Retrieved from
http://dx.doi.org/10.1007/978-3-540-85936-9_17

Kumar, N., Stern, L. W., & Anderson, J. C. (1993). Conducting interorganizational research using
key informants. Academy of Management Journal, 36(6), 1633–1651.

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., & Stahl, D. (2013). The impact of agile
principles and practices on large-scale software development projects: A multiple-case study of
two projects at Ericsson. In International Symposium on Empirical Software Engineering and
Measurement (pp. 348–356).

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational
tools for large-scale scrum. Upper Saddle River, N.J: Addison-Wesley Professional.

116 5 Discussion and Summary

http://dx.doi.org/10.1007/978-3-642-14347-2_7
http://dx.doi.org/10.1007/978-3-642-14347-2_7
http://arxiv.org/abs/1407.0377
http://link.springer.com/10.1007/978-3-319-13835-0
http://link.springer.com/10.1007/978-3-319-13835-0
http://dl.acm.org/citation.cfm?id=2507288.2507322
http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://www.springer.com/computer/swe/book/978-3-319-14357-6
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
http://www.jstor.org/stable/2661533
http://www.jstor.org/stable/2661533
http://cps.sagepub.com/content/44/9/1267
http://cps.sagepub.com/content/44/9/1267
http://dx.doi.org/10.1007/978-3-540-85936-9_17

Larman, C., & Vodde, B. (2010). Practices for scaling lean and agile development: Large,
multisite, and offshore product development with large-scale scrum (1st ed.). Upper Saddle
River, N.J.: Addison-Wesley Professional.

Larman, C., & Vodde, B. (2015). Large-scale scrum: More with LeSS. Addison-Wesley
Professional.

Lee, E. C. (2008). Forming to performing: Transitioning large-scale project into agile. In AGILE
Conference (pp. 106–111). Los Alamitos, CA, USA: IEEE Computer Society.

Leffingwell, D. (n.d.). Scaled agile framework. Retrieved from http://www.scaledagileframework.
com/

Li, Y., & Maedche, A. (2012). Formulating effective coordination strategies in agile global
software development teams. In Proceedings of the International Conference on Information
Systems (ICIS 2012) (pp. 1–6).

MacCormack, A., Baldwin, C. Y., & Rusnak, J. (2008). Exploring the duality between product and
organizational architectures: A test of the “mirroring” hypothesis. Research Policy, 41(8),
1309–1324.

Mintzberg, H. (1983). Structure in fives: Designing effective organizations. Prentice-Hall, Inc.
Retrieved from http://psycnet.apa.org/psycinfo/1992-98280-000.

Okhuysen, G. A., & Bechky, B. A. (2009). Coordination in organizations: An integrative
perspective. The Academy of Management Annals, 3(1), 463–502.

Paasivaara, M., & Lassenius, C. (2011). Scaling scrum in a large distributed project. In Empirical
Software Engineering and Measurement (ESEM), 2011 International Symposium on (pp. 363–
367).

Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012). Inter-team coordination in large-scale
globally distributed scrum: Do Scrum-of-Scrums really work? In Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE International Symposium on
(pp. 235–238).

Poole, M. S., Van De Ven, A. H., Dooley, K., & Holmes, M. E. (2000). Organizational change
and innovation processes: Theory and methods for research. Organizational change and
innovation processes theory and methods for research. Oxford University Press.

Schmidt, C. (2016). Agile software development teams. Springer International Publishing.
Smits, H., & Pshigoda, G. (2007). Implementing scrum in a distributed software development

organization. In Agile Conference (AGILE), 2007 (pp. 371–375).
Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software

development projects. Journal of Systems and Software, 85(6), 1222–1238. Retrieved from
http://dx.doi.org/10.1016/j.jss.2012.02.017

Taylor, F. W. (1911). The principles of scientific management. New York, London: Harper &
Brothers.

Thompson, J. D. (1967). Organizations in action: Social science bases of administrative theory
(Vol. 48). New York: McGraw-Hill.

VersionOne Inc. (2012). 7th annual state of agile development survey. Retrieved from http://www.
versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

VersionOne Inc. (2013). 8th annual state of agile development survey. Retrieved from www.
versionone.com/pdf/2013-state-of-agile-survey.pdf

West, D., Grant, T., Gerush, M., & D’Silva, D. (2010). Agile development: Mainstream adoption
has changed agility. Forrester Research.

References 117

http://www.scaledagileframework.com/
http://www.scaledagileframework.com/
http://psycnet.apa.org/psycinfo/1992-98280-000
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

Erratum to: Coordination in Large-Scale
Agile Software Development

Alexander Scheerer

Erratum to:
A. Scheerer, Coordination in Large-Scale
Agile Software Development, Progress in IS,
DOI 10.1007/978-3-319-55327-6

In the original version of the book, in Copyright page (p. iv) of the front matter,
the sentence “This book is based on a doctoral thesis successfully defended at the
Business School of the University of Mannheim” should be added and also the
table in “Appendix B Coding Schemes” is to be formatted as two tables in p. 124.
The erratum book has been updated with the changes.

The updated original online version for this book can be found at
DOI 10.1007/978-3-319-55327-6

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6_6

E1

10.1007/978-3-319-55327-6
http://dx.doi.org/10.1007/978-3-319-55327-6

Appendix

A Interview Guideline

Introduction Discussion Partners

1. Joint Research project between Mannheim University and SAP
2. Scientific research on coordination in large scale agile development systems.
3. Ensuring anonymity and approval of interview recording.

Background Questions

4. We would like to know more about you and your work. Could you provide us
with your background and roughly introduce your tasks?

a. What is your role/your responsibilities?
b. What professional experience and educational background do you have?

5. How long have you been working for SAP?

a. Within this product area?
b. In this team?

Project Characteristics

6. What software are you developing?
7. How long has this product been in existence?
8. When did the current release start?
9. What is the status of the release?

10. How long are your sprints?
11. How often do you deliver to the customer?
12. How long are the planning cycles (Waves) in your program?
13. Would you describe the coordination within your unit as rather bottom up or

top down?

© Springer International Publishing AG 2017
A. Scheerer, Coordination in Large-Scale Agile Software Development,
Progress in IS, DOI 10.1007/978-3-319-55327-6

119

14. How would you characterize the project?

a. Complexity
b. Uncertainty

15. How novel are the tasks?

a. Technological novelty of the outcome
b. novelty related to the working methods used in the program
c. novelty of the resource and competence needs in the program

16. How analyzable are the tasks of the project

a. working methods are well-known
b. resource and competence needs understood and defined
c. clarity about inter-project interdependencies
d. clarity about relevant stakeholders

Team and MTS Characteristics

17. How many teams are involved in the project?
18. What is the average number of members of a team?
19. What kind of tasks are done by your team

a. New development
b. Enhancements of existing functionalities
c. Support
d. Bug fixing

20. How do you report progress?
21. How do you communicate beside the official channels?
22. How are the teams structured?

a. Are the teams either component or feature based?
b. With which team you collaborate the most? Which team do you dependon

the most?
c. What kind of dependencies exist between the mentioned teams?
d. Are there changes over time?
e. Does this collaboration work well?

23. How autonomous are the single teams?

a. Can they choose development techniques by themselves?
b. Can they influence the backlog?

Technical Characteristics

24. Which programming languages do you use?
25. How yo do you integrate code?

a. Continuous integration
b. ABAP transports

120 Appendix

26. How do you test, which type of tests do you use?

a. unit tests, integration tests
b. Selenium
c. Scenario tests

27. How do you validate?

a. takt based validation
b. Validation at the end of the release

Context Characteristics

28. How is your team embedded into the organization?

a. Dependencies to other departments

29. Do the teams work in different locations?

a. Which locations?
b. How do you communicate with these teams?

30. What effects follow from this separation?

a. Time differences
b. lack of critical task awareness

31. Are the teams similar in terms of problem solving, decision making and
coordination processes?

32. What problems do you encounter when trying to communicate, coordinate, or
exchange information with other teams?

a. Locally
b. With other sites

33. How are these problems addressed, or how could they be addressed effectively?

a. Locally
b. With other sites ?

34. How are coordination activities like Scrum meetings conducted with teams in
different locations?

a. Synchronous communication tools (online meeting, …)
b. Asynchronous communication tools (wiki, email, …)

35. What were, in your opinion, the main coordination challenges in regard to

a. Temporal differences
b. Geographic distance
c. Cultural differences and language differences

Appendix 121

Coordination Mechanisms

36. How much project understanding is needed?

a. in order to develop it
b. in order to coordinate the teams?

37. Who is responsible for the coordination

a. Between teams?
b. In your team?

38. How are backlog items distributed to single teams?

a. What kind of planning is used?

1. Regular meetings
2. Open discussions
3. Fixed planning

39. How are dependencies between teams managed?
40. What are typical reasons/causes for/sources for dependencies between teams?
41. Which mechanisms and activities do you think are especially helpful? What

makes them so helpful?
42. What technologies are used?

a. For coordination
b. For Communication

43. How do you improve your processes?
44. Where do you get information regarding skills and knowledge of your

colleagues?

a. From where do you know who you have to contact if you have
problems/questions?

45. What are in your opinion necessary requirements for good coordination?

Coordination-Effectiveness

46. How would you describe the coordination effectiveness of this product?

a. Was it overall a well-coordinated or problematic coordinated project?
b. What are the reasons for this evaluation?

47. Please imagine a situation where you collaborated with another team and the
coordination between the teams was not effective.

a. Could you give us a detailed description?

1. Who was involved?
2. When did it occur?

122 Appendix

b. How often did such situations occur?
c. Why was it not effective?
d. How was the situation solved?

48. Please imagine a situation for the same context, where coordination between
the teams was very effective.

a. Could you give us a detailed description?

(i) Who was involved?
(ii). When did it occur?

b. How often did such situations occur?
c. What was different regarding the previous situation?

49. Based on your past experience, when are teams well-coordinated?
50. What would help you coordinate better?
51. What are best practices or lessons learned which you could recommend to other

programs?

Conversation closer

Did we forget to talk about any aspects of inter-team coordination?

B Coding Schemes

Construct Values Coding scheme Examples

Product
complexity

Low The product was easy to
develop and understand

–

Low-medium The software required very
little technical or business
domain knowledge and
was straightforward to
implement

–

Medium An average technical or
business domain
knowledge is necessary.
A developer can become
acquainted with both in a
reasonable time frame

“It is of average
complexity”

Medium-high The product exhibits an
above average need for
specific business domain
or technical knowledge.
A few weeks time are
needed for developers to
become acquainted with
the product

–

(continued)

Appendix 123

(continued)

Construct Values Coding scheme Examples

High A developer needs several
months to grasp all the
facets of the product. High
business domain
knowledge or technical
expertis is needed to
develop the product

“It is the highest level of
orchestration” “It is a very
configurable product and
therefore highly complex”

Requirements
Uncertainty

Low Requirements are defined
and do not change

“We have stable
requirements”

Low-medium Software requirements are
defined and do not change
very often over the course
of development

“They haven’t changed
much”
“The requirements don’t
change that fast”

Medium Requirements can change
in development on a more
regular basis and
developers need to clarify
questions regarding the
requirements

“Even as we get into the
development there are still
open questions”

Medium-high The requirements exhibit a
lack of detail and almost
all of them need
clarification. Requirements
change from time to time
in the development phase

“The backlog items we get
are rather coarse grained”

High New Requirements arrive
on a constant basis and are
very broadly described

“We constantly get new
requirements”

Construct Values Coding scheme

Coordination
Type

Mechanistic Plan, rules, regulations or roles were used as mechanisms

Organic Communication, mutual adjustment and feedback was
utilised

Coordination
Locus

Centralized A central team or central superior is in charge of
coordination

Decentralized Employees on the same hierarchical level are in charge of
coordination decisions

Coordination
Direction

Vertical Communication across hierarchical levels is necessary for
coordination

Horizontal Communication on the same hierarchical level is necessary
for coordination

(continued)

124 Appendix

(continued)

Construct Values Coding scheme

Dependencies Sequential Backlog items are dependent on an item from another team.
One team consumes from another team. A team delivers an
item to another team

Reciprocal Collaborative working style between two teams. They have
to work closely together and must simultaneously
implement requirements

C Network Analysis Results

Graph parameter Alpha Beta Gamma Delta Epsilon

Strongly connected components 5 3 5 3 2

Average degree 2.692 3.111 2.143 1.667 1.500

Density 0.231 0.389 0.357 0.333 0.500

Diameter 5 3 2 3 1

Alpha4
4/0
0.0

Alpha11
1/0
0.0

Alpha8
5/2

8.17

Alpha7
4/1

1.67

Alpha13
2/0
0.0

Alpha9
1/6

23.0

Alpha10
2/4

24.5

Alpha1
2/8

10.5

Alpha6
2/2
5.0

Alpha2
4/7

31.33

Alpha3
3/3

19.33

Alpha5
3/2
0.5

Alpha14
3/1
2.0

Reciprocal Dependency
Sequential Dependency

Reciprocal Dependency
Sequential Dependency

Beta9
2/4
3.2

Beta8
5/3

4.67

Beta7
2/2
0.0

Beta6
6/2
1.17

Beta1
1/6
0.2

Beta4
3/4

1.87

Beta3
3/6

7.17

Beta5
3/6
5.2

Beta2
3/4

0.53

Alpha (see Fig. 4.2) Beta (see Fig. 4.10)
(continued)

Appendix 125

http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4
http://dx.doi.org/10.1007/978-3-319-55327-6_4

(continued)

Reciprocal Dependency
Sequential Dependency

Gamma1
3/4
3.0

Gamma2
2/4
0.0

Gamma3
2/4
0.0

Gamma4
5/0
0.0Gamma6

0/1
0.0

Gamma5
3/0
0.0

Gamma7
0/2
0.0

Reciprocal Dependency
Sequential Dependency

Delta1
2/1
2.5

Delta2
1/2
2.0

Delta6
2/0
0.0Delta5

1/3
2.5

Delta4
2/1
0.0

Delta3
2/3
6.0

Gamma (see Fig. 4.18) Delta (see Fig. 4.22)

Reciprocal Dependency
Sequential Dependency

Epsilon3
2/2
0.0

Epsilon2
2/2
0.0

Epsilon1
2/2
0.0

Epsilon4
0/0
0.0

Epsilon (see Fig. 4.26)

D Multiteam System Characteristics Overview

Alpha Beta Gamma Delta Epsilon

Teams 13 9 7 6 4

Locations 4 2 6 1 3

Employees *140 *95 *50 *85 *40

Avg.
Company
Tenure (years)

12 11 12 18 13

(continued)

126 Appendix

http://dx.doi.org/10.1007/978-3-319-55327-6_4

(continued)

Alpha Beta Gamma Delta Epsilon

Avg. MTS
Tenure (years)

5 4 5 2 7

Product type On-premise Cloud On-premise
and cloud

On-premise On-premise
and cloud

Product
complexity

High Medium-high Medium-high High Medium-high

Requirements
uncertainty

Low-medium Low-medium Low-medium Low-medium Medium-high

High-level
planning
horizon
(months)

Years 3 3 3 3

Customer
delivery
(months)

12 1 4 3 3

Sprint
planning
horizon
(weeks)

12 4 4 4 4

Sprint length
(weeks)

4 2 2 4 4

Product
architecture

Highly
integrated

Modular Modular Integrated Modular

Product
Maturitya

(years)

>10 >5 >1 >3 >10

Inter-team
coordination
responsibility

Central team,
team product
owner

Team product
owner, scrum
master

Scrum master Chief product
owner, team
product owner

Team product
owner, team
architect

aProduct Maturity was difficult to specify, as the current products often had precursors which either were
consumed in newer solutions or where used as foundation for a new product

Appendix 127

E Process Overview

The purpose of the colors in this chart are for better readability.

128 Appendix

	Acknowledgements
	Contents
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions and Objectives
	1.3 Research Design and Organization
	References

	2 Theoretical and Conceptual Foundations
	2.1 Coordination
	2.1.1 Coordination in Organizational Theory
	2.1.2 Coordination Theory
	2.1.3 Coordination in Team Cognition Studies
	2.1.4 Outcomes and Conditions of Coordination
	2.1.5 Summary

	2.2 Teams and Multiteam Systems
	2.3 Agile Software Development
	2.3.1 The Scrum Framework
	2.3.2 Agile Software Development on the Team Level
	2.3.3 Industrial Frameworks for Large-Scale Agile Development
	2.3.4 Agile Software Development on the Multiteam System Level

	2.4 Prior Work on Coordination in Multiteam Systems and Large-Scale Agile Development
	2.4.1 Coordination in Multiteam Systems
	2.4.2 Coordination in Large-Scale Agile Development

	2.5 Research Framework
	References

	3 Research Design
	3.1 Research Context
	3.1.1 Organizational Context
	3.1.2 Embedded Research Setup

	3.2 Selection of a Research Strategy
	3.3 Specification of the Case Study Strategy
	3.4 Data Collection and Analysis Procedure
	3.4.1 Data Collection
	3.4.2 Analysis of Process Changes

	References

	4 Case Study Results on Coordination in Multiteam Systems
	4.1 Single-Case Analysis
	4.1.1 Case Alpha
	4.1.1.1 MTS Structure, Dependencies and Coordination
	4.1.1.2 Agile Method Scaling Approach
	4.1.1.3 Change Processes

	4.1.2 Case Beta
	4.1.2.1 MTS Structure, Dependencies and Coordination
	4.1.2.2 Agile Method Scaling Approach
	4.1.2.3 Change Processes

	4.1.3 Case Gamma
	4.1.3.1 MTS Structure, Dependencies and Coordination
	4.1.3.2 Agile Method Scaling Approach
	4.1.3.3 Change Processes

	4.1.4 Case Delta
	4.1.4.1 MTS Structure, Dependencies and Coordination
	4.1.4.2 Agile Method Scaling Approach
	4.1.4.3 Change Processes

	4.1.5 Case Epsilon
	4.1.5.1 MTS Structure, Dependencies and Coordination
	4.1.5.2 Agile Method Scaling Approach
	4.1.5.3 Change Processes

	4.2 Cross-Case Analysis
	4.2.1 Imbalances of Integrating Conditions
	4.2.2 Deriving Instantiations of Coordination Configurations
	4.2.3 Analysis of the Relationship Between Integrating Conditions and Coordination Configurations
	4.2.4 Analysis of the Relationship Between the Coordination Configuration Dimensions and the Integrating Conditions
	4.2.5 Temporal Analysis of Integrating Conditions and Coordination Configurations
	4.2.6 Stereotypes of Multiteam Systems

	References

	5 Discussion and Summary
	5.1 Summary of the Findings
	5.2 Theoretical Contributions
	5.3 Practical Contributions
	5.4 Limitations of the Study and Future Research
	5.5 Summary
	References

	6 Erratum to: Coordination in Large-Scale Agile Software Development
	Erratum to:A. Scheerer, Coordination in Large-Scale Agile Software Development, Progress in IS,DOI 10.1007/978-3-319-55327-6

	Appendix

