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Preface

Assisting human movement using electrical stimulation and mechanical support is a
challenging task. It must balance the demands of controlling highly complex,
non-linear, time-varying dynamics with the practical requirements that exist when
performing tests with neurologically impaired users. These demands naturally
compete since the process of model identification and controller tuning is labour
intensive, time-consuming, and may therefore fatigue or demotivate the user. This
has led researchers in the field to focus on simplicity at the expense of performance
and functional scope.

The motivation for this book is to develop a comprehensive control design
framework to enable performance and pragmatism to be transparently balanced.
Emphasis is placed on applying and translating robust performance results into
intuitive procedures that are suitable for application in practice with users. These are
illustrated by case studies demonstrating how the control approaches have been
applied in a clinical setting, and the outcomes that have been achieved.

The rehabilitation systems developed and clinically evaluated in this book are a
result of a decade of collaboration with my colleagues Dr. Ann-Marie Hughes and
Professor Jane Burridge, both of the Faculty of Health Sciences at the University of
Southampton. It is their clinical expertise that has driven the engineering compo-
nent of this research, ensuring that it is strongly focused on solving real-world
problems that meet users’ needs. Clinical evaluation of the technology reported in
this book has also involved substantial input from Dr. Katie Meadmore, Trish
Sampson and Emma Hallewell. In terms of engineering contribution to the reha-
bilitation systems developed at Southampton, both Mustafa Kutlu and Dr. Tim
Exell have provided critical input into the hardware development of the systems
reported in Chaps. 7 and 9, respectively. In addition, Dr. Kai Yang and Dr. John
Tudor developed the fabric electrodes described in Chap. 10, and Professor Mark
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French has provided significant input to the estimation-based multiple model
iterative learning control framework summarised in the same chapter. My sincere
thanks to them all.

Southampton Chris Freeman
September 2015
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Chapter 1
Introduction

Fifteen million people annually experience a stroke, and every two seconds someone
in the world will have a stroke for the first time [1]. During a stroke, tissues in the
brain are damaged because their blood supply is obstructed by a blood clot or by a
narrowing or bursting of blood vessels. A third of people who experience a stroke are
left permanently disabled, and require care. Since stroke is an age-related disease,
the number of strokes worldwide is expected to increase. The burden of stroke is
often measured using disability-adjusted life years (DALYs), which combine years
of potential life lost due to premature death with years of productive life lost due
to disability. Using this measure, stroke burden is projected to rise from 38 million
DALYs globally in 1990 to 61 million DALYs in 2020.

A common result of stroke is an impaired ability to control movement. For exam-
ple, half of all acute stroke patients starting rehabilitation have a marked impairment
of function of one arm, of whom only about 14% will regain sensory-motor func-
tion. This is particularly detrimental since it has also been argued that arm and hand
function is more important than mobility in achieving independence after stroke.

The brain’s ability to reorganize itself by forming new neural connections means
that it is possible to ‘re-learn’ lost movement capability through intense practice of
functional tasks. As with learning any new skill, this process requires sensory feed-
back (e.g. visual, proprioceptive or haptic) to promote the necessary reorganization
of pathways in the motor cortex of the brain. The problem facing the stroke patient
is that they are unable to practice moving their impaired limb and therefore are
unable to receive feedback. The longer this disuse continues, the less likely recovery
becomes because surrounding areas of the motor cortex are gradually taken over by
other functions still under the patient’s voluntary control.

1.1 Rehabilitation Technologies

Conventional therapy consists of performingmovement exercises using the impaired
arm,with assistance provided by a physiotherapist.Unfortunately, conventional treat-
ments have been found to have a very limited effect on recovery of useful function,
and there is hence a pressing need for novel rehabilitation technologies to support

© Springer International Publishing Switzerland 2016
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recovery of arm function post-stroke. Governments around the world are urging
health and social care services to adopt innovative technology that patients can use
at home to support independent living. For example, the UK government termed the
situation a ‘ticking time bomb’ in a recent report, and in 2014 introduced the ‘Care
Bill’ calling on health and social services to adopt innovative technology that patients
can use at home to support independent living.

In recent years new assistive technologies have emerged to reduce impairment
post-stroke, including electrical stimulation [2–5] and rehabilitation robots [6],which
facilitate intense practice of movement in a motivating environment. These technolo-
gies have potential to provide the motivation, assistance, range and duration of task
practice required for effective rehabilitation of functional movement.

Electrical stimulation (ES) uses electric impulses to artificially contract muscles
and has become an area of intense engineering and clinical research over the last
few years. By directly activating weak or paralyzed muscles, ES is able to drive
neuroplastic cortical changes to enable recovery. ES is supported by a growing body
of clinical evidence [7–9]. For example, meta-analysis of 22 randomized control
trials involving 894 participants in [8] found that neuromuscular stimulation of the
wrist/finger flexors/extensors had a significant beneficial effect on motor function
(impairment) and muscle strength. This body of clinical evidence has theoretical
support from neurophysiology [10] and motor learning [11] which shows that the
therapeutic benefit increaseswhen it is applied co-incidentlywith a patient’s own vol-
untary intention [12]. Hence ESmust precisely assist the patient’s own voluntary task
completion in order tomaximize functional recovery. Its inherent affordabilitymeans
there is also intense commercial interest in ES technology, with numerous products
available on the market. Use of ES has also gained recognition from bodies such
as The Royal College of Physicians (RCP), National Institute for Health and Care
Excellence (NICE), and Evidence-Based Review of Stroke Rehabilitation (EBRSR).
The latter concludes that ‘there is strong evidence that ES treatment improves upper
extremity function’.

Increasingly ES is being combined with mechanical support, taking the form
of either passive orthoses or active robots. These devices help support the affected
limb, and may resist or assist movement through various training modalities. They
can therefore help reduce muscle fatigue or provide functionality that ES cannot (e.g.
to assist with forearm supination or help stabilze the scapula).

Although systematic reviews support the use of robots [13] and electrical stimu-
lation [8, 9] to reduce impairments and in some cases improve function, translation
into clinical practice remains poor. A recent survey has found that removal of key
barriers limiting translation requires improvements in assistive technology design,
pragmatic clinical evaluation, better knowledge and awareness and improvement in
provision of services [14].
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1.2 Role of Control Systems

ES and robotic technologies both have rich potential to help people with impaired
movement perform the tasks they need for every-day living. Their performance in
doing so is governed by the ability of their control systems to accurately support the
intended movement. Model-based control is critical to enable any dynamic system
performing a tracking or regulation task to maximize performance in the presence of
measurement noise and exogenous disturbances. However few model-based upper
limb ES approaches have been implemented within clinical ES systems and none in
commercial products. The controllers typically employed are open-loop or triggered
by switches or external events, and therefore do not adjust the supplied ES according
to the movement produced. This not only means that the resulting movements are
generally crude and inaccurate, but they also do not adequately promote voluntary
contribution from the user. Current systems are therefore limited in terms of the type
of tasks they train, and the amount and manner in which they assist movement. This
severely limits the quality of the assistance they provide, and hence the effectiveness
of treatment when used therapeutically for the purpose of rehabilitation. Principal
reasons for this are the difficulties in:

• modeling the movement produced by ES,
• identifying the dynamic model effectively and efficiently in practice,
• defining and assisting complex tasks involving many muscles and joints,
• sensing the positions of relevant joints in real-time, and
• designing control systems that allow the user to perform the task accurately despite
physiological changes in their response to ES, exogenous disturbances and mea-
surement error.

Therefore, this book focuses on constructing a control design framework with the
necessary generality and scope to address all these modeling, identification, task
specification and control design issues. Its aim is to provide a systematic set of
theoretical results, procedures and illustrative case-studies that together provide a
comprehensive and widely applicable framework for upper limb ES control design.
Although the analysis is necessarily theoretical, results are tied to practical design
considerations intended tomaximize the effectiveness of ES technology (combined if
necessary with mechanical support) to assist impaired people to complete functional
activities such as reaching, pressing buttons, grasping and manipulating objects.

The book will primarily focus on rehabilitation with the assumption that the task
is presented to the user during a training paradigm, and is therefore known a priori
and is repetitive in nature. However, extensions are outlined to more general assistive
utility, in which ES is employed as an orthosis (i.e. to assist people in performing
movements during their day-to-day lives without an intended therapeutic re-learning
effect). It will also outline extensions to incorporate increased sensor data, emerging
hardware, and address pertinent challenges in the field.
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1.3 Book Structure

Chapter2 introduces the dynamic structures that comprise the control problem: the
stimulated human arm combined with a robotic or passive support. Identification
methods are also presented and exemplified.

Chapter3 presents control design procedures for a general class of feedback con-
trollers, leading to explicit stability guarantees for both actuated and unactuated joint
variable sets.

Chapter4 extends the control framework to include an additional update mecha-
nism termed ‘iterative learning control’ that enables the system to learn fromprevious
attempts at the task. Results provide a transparent separation between the feedback
controller and the learning update with respect to both tracking performance and
robust stability margins.

Chapter5 presents results from a clinical feasibility trial undertaken with people
with multiple sclerosis, in which the dual feedback and iterative learning control
framework is implemented and assessed.

Chapter6 extends the previous control strategies by embedding principles from
human motor control so that they can support fully functional tasks. Results are then
presented from an experimental study to confirm accuracy of the proposed human
motor control models.

Chapter7 describes how the controller extensions are used in a further clinical
feasibility study with stroke participants. The system is described, and clinical fea-
sibility results are presented and discussed.

Chapter8 applies the earlier control framework to the emerging field of ES elec-
trode arrays, and provides design procedures that address the difficulty in obtaining
an accurate model when using these arrays. Design freedoms embedded in both con-
troller structures are exploited to meet this challenge, together with mechanisms with
which to make identification feasible in clinical practice.

Chapter9 develops a general procedure which integrates both arrays and single-
pad electrodes within a comprehensive, overarching design framework. This frame-
work is then employed within an upper limb rehabilitation system which embeds
novel hardware, including depth cameras, arrays and a touch table. Experimental
results from a usability study with stroke participants are then presented and dis-
cussed.

Chapter10 outlines conclusions and future research directions which focus on the
translation of technology into patients’ homes. These include extensions to the frame-
work which remove the need to perform identification tests, and the development of
wearable electrode array prototypes.

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_5
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_9
http://dx.doi.org/10.1007/978-3-319-25706-8_10
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Chapter 2
Modeling and Identification

Assistive upper limb technologies must be applied within a controlled environment
in order to ensure safety and comfort across a broad spectrum of patient ability.When
using electrical stimulation to assist completion of upper limb reaching movements,
this environment may be provided by a passive/orthotic support device such as a
simple sling or hinged ‘de-weighting’ structure, or an active robotic mechanism
of which many designs are available [1]. In this chapter a suitable model of the
combined human arm and mechanical support is developed that has widespread
application across upper limb rehabilitation. This representation will then be used in
subsequent chapters for model-based controller development.

2.1 Modeling of the Mechanically Supported Human Arm

Spasticity (velocity-dependent stiffness) is common in stroke and typically produces
resistance to arm extension due to overactivity of biceps, wrist and finger flexors,
and loss of activity of triceps, anterior deltoid, wrist and finger extensors [2]. For
effective upper limb stroke rehabilitation, ES should therefore be provided to assist
muscles that have experienced a loss of activity, such as the triceps, anterior deltoid,
wrist and finger extensors [2–4]. This is in contrast to overactivity of muscles such
as the biceps, wrist and finger flexors, which typically produce a resistance to arm
extension as a result of spasticity. Triceps and anterior deltoid are hence often selected
for stimulation because they align with the clinical need to increase muscle tone and
restore motor control of weakened muscles.

© Springer International Publishing Switzerland 2016
C. Freeman, Control System Design for Electrical Stimulation
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The relationship between muscle stimulation and subsequent movement is well
explored, and sophisticated muscle models exist with multiple attachment points
across more than one joint, and movement over complex sliding surfaces [5]. Clear
divisions exist between modeling for analysis and for direct model-based control
application. The former encompass muscles with multiple attachment points, often
biarticular structure, and movement over pre-defined sliding surfaces [5, 6]. How-
ever, dynamic models used for experimental motion control must be identifiable
and assumptions such as muscles eliciting moments about a single fixed axis offer
practical routes for parameter identification. A pragmatic approach appropriate to
clinical implementation is therefore taken, with additional simplifications discussed
in Sect. 2.2. This opens up routes for both parameter identification and controller
derivation that have not yet been possible for more complex models [7].

2.1.1 Human Arm Dynamics

A general dynamic model of the human arm is given by

Bh(Φ)Φ̈ + Ch(Φ, Φ̇)Φ̇ + Fh(Φ, Φ̇) + Gh(Φ) = τ (u,Φ, Φ̇) (2.1)

in which Φ = [φ1, . . . , φp]� is the vector of p joint angles, Bh(·) and Ch(·) are
inertial and Coriolis p × p matrices respectively, and Fh and Gh are frictional and
gravitational p×1 vectors respectively. The term τ (u,Φ, Φ̇) comprises themoments
generated through application of ES, so that if m muscles are assumed to actuate the
upper limb system, u(t) = [u1(t), . . . , um(t)]�. The i th element of themuscle torque
vector τ (·) is the sum of moments generated by each of the m muscles that may each
impart a moment about the i th joint.

2.1.2 Muscle Selection and Modeling

A well-established model of the moment, τ(t), generated by applying stimulation,
u(t), to a muscle acting about a single joint, φ(t), is

τ
(
u(t), φ(t), φ̇(t)

) = h(u(t), t) × F̃M
(
φ(t), φ̇(t)

)
(2.2)

where h(u(t), t) is a Hammerstein structure incorporating a static non-linearity,
hIRC(u(t)), representing the isometric recruitment curve, cascaded with linear acti-
vation dynamics, hLAD(t). The multiplicative term F̃M (·) captures the effect of joint
angle and angular velocity on the force generated. When multiple joints are actuated
by multiple muscles and/or tendons which may each span any subset of joints, then
the general expression for the total moment generated about the i th joint is
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τi =
m∑

j

{
ri, j (φi ) × τi, j

(
u j (t), φi (t), φ̇i (t)

)}
, i = 1, . . . , p

=
[

ri,1(φi )F̃M,i,1
(
Φ(t), Φ̇(t)

)

︸ ︷︷ ︸
FM,i,1

(
Φ(t),Φ̇(t)

)
, . . . , ri,m(φi )F̃M,i,m

(
Φ(t), Φ̇(t)

)

︸ ︷︷ ︸
FM,i,m

(
Φ(t),Φ̇(t)

)

]
⎡

⎢
⎣

h1(u1(t), t)
...

hm(um(t), t)

⎤

⎥
⎦

(2.3)

Here ri, j (φi ) = ∂ E j (φi )

∂φi
is the moment arm of the j th muscle with respect to the i th

joint, where E is the associated excursion (displacement) [8]. If eachmuscle length is
primarily dependent on a single joint angle, the form F̃M,i, j (Φ, Φ̇) = F̃M,i, j (φi , φ̇i )
can be taken, leading to the simplified structure

τi =
[

ri,1(φi )F̃M,i,1
(
φi (t), φ̇i (t)

)

︸ ︷︷ ︸
FM,i,1

(
φi (t),φ̇i (t)

)
, . . . , ri,m(φi )F̃M,i,m

(
φi (t), φ̇i (t)

)

︸ ︷︷ ︸
FM,i,m

(
φi (t),φ̇i (t)

)

]
⎡

⎢
⎣

h1(u1(t), t)
...

hm(um(t), t)

⎤

⎥
⎦ .

(2.4)

It is also possible to include the neuromuscular reflex in the form of an additional
dynamic function placed in serieswith themusclemodel.However it is neglected here
since ES produces negligible effect on the reflex loop when applied on amacroscopic
scale as in the transcutaneous case considered in [9, 10]. It is also worth noting
that recent works have shown that Hill-Huxley models [11–13] may be at least as
accurate as aHammerstein structure in representing the activation dynamics [14]. The
drawback that their complexity undermines application to control has been countered
by the proposal of a Hammerstein-Wiener structure [15], but as yet Hill-Huxley
models have not been shown to extend to non-isometric conditions, and have not
been used in controller derivation.

2.1.3 Mechanical Support

As stated, the human arm is often supported by a mechanical device during ES
assisted task practice in order to reduce fatigue and provide additional assistance.
A general dynamic model of the support structure which assumes rigid links is

Ba(Θ)Θ̈ + Ca(Θ, Θ̇)Θ̇ + Fa(Θ, Θ̇) + Ga(Θ) + Ka(Θ) = −J�
a (Θ)h (2.5)

where Θ = [θ1, . . . , θq ]� is a vector of q joint angles, h is a q × 1 vector of
externally applied force, and Ba(·) and Ca(·) are q ×q inertial and Coriolis matrices
respectively. In addition, Ja(·) is the system Jacobian, and Fa(·) and Ga(·) are friction
and gravitational q ×1 vectors respectively. Finally, vector Ka(·) comprises the q ×1
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(a) (b) (c)

Fig. 2.1 ArmeoSpring: a mechanical support, b kinematic relationships, and c human arm

moments produced by the assistive action of the support mechanism. This may be
passive, via springs or counter-balances, or active, as in the case of a robotic structure
supplying active torque to assist, or even resist, the intended movement.

A popular form of support is an exoskeletal structure which enables assistance
to be applied about individual joints. An example is the commercial ArmeoSpring
(Hocoma AG) which provides adjustable force against gravity via two springs. Each
joint is aligned in either the horizontal or vertical plane, as shown in Fig. 2.1a, with
measured joint variables Θ = [θ1, θ2, θ3, θ4, θ5]�. The patient’s arm is rigidly
strapped to the exoskeleton support with lengths l0, l1 relating the shoulder joint
to a fixed base frame.

Hence for the ArmeoSpring Ba(·) and Ca(·) are 5-by-5 inertial and Corelis matri-
ces, and moments produced through gravity compensation provided by each spring
yield the form Ka(·) = [0, 0, k3(θ3), 0, k5(θ5)]�. Figure2.1c shows the axes corre-
sponding to anthropomorphic joints.

Another common structure is the end-effector type where support is only supplied
at a single attachment point. An example is the SaeboMAS (Saebo, Charlotte, USA)
shown in Fig. 2.2. Here the support takes the form Ka(·) = [k1(θ1), 0, 0, 0]�.

2.1.4 Combined Dynamics

It is now assumed that within the necessary joint ranges there exists a unique bijective
transformation between coordinate sets, given by Θ = k(Φ), which allows the
mechanical support and human arm models to be combined. This explicitly holds
for exoskeletal passive or robotic structures (where q = p), and can be extended to
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(a) (b)

Fig. 2.2 SaeboMAS: a mechanical support and kinematic relationships, and b human arm

end-effector robot devices developed for rehabilitation. The Lagrangian equation in
one variable can be expressed in terms of the other through application of the chain
rule, and the results added to produce the combined model

B(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ + F(Φ, Φ̇) + G(Φ) + K (Φ) = τ (u,Φ, Φ̇) − J�(Φ)h
(2.6)

where

B(Φ) = Bh(Φ) + k1(Φ)� Ba(k(Φ))k1(Φ), J�(Φ) = k1(Φ)� J�
a (k(Φ)),

C(Φ, Φ̇) = Ch(Φ, Φ̇) + k1(Φ)�Ca(k(Φ), k1(Φ)Φ̇)k1(Φ)

+ k1(Φ)� Ba(k(Φ))k2(Φ, Φ̇),

F(Φ, Φ̇) = Fh(Φ, Φ̇) + k1(Φ)� Fa(k(Φ), k1(Φ)Φ̇), K (Φ) = k1(Φ)� Ka(k(Φ)),

G(Φ) = Gh(Φ) + k1(Φ)�Ga(k(Φ)),

with k1(Φ) = dk(Φ)

dΦ
and k2(Φ, Φ̇) = d

dt

(dk(Φ)

dΦ

)
.

Now let eachhLAD, j (t)be realizedusing continuous-time state-spacemodelmatri-
ces {MA, j , MB, j , MC, j } (state, input and output respectively), with corresponding
states x j (t). The system (2.6) can then be expressed over time interval t ≥ 0 in the
following state-space form
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ẋs(t) =

⎡

⎢
⎢⎢⎢⎢
⎣

Φ̇(t)
B(Φ(t))−1X

(
Φ(t), Φ̇(t)

)

MA,1x1
...

MA,m xm

⎤

⎥
⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
fs (xs (t))

+

⎡

⎢
⎢⎢⎢⎢
⎣

0
0

MB,1hIRC,1(u1(t))
...

MB,mhIRC,m(um(t))

⎤

⎥
⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
gs (u(t))

,

Φ(t) = [
I 0 · · · 0

]
xs(t)

︸ ︷︷ ︸
hs (xs (t))

, Φ(0) = Φ0, (2.7)

where xs(t) = [Φ(t)�, Φ̇(t)�, x1(t)� · · · xm(t)�]�, and the i th row of
X

(
Φ(t), Φ̇(t)

)
is given by

Xi
(
Φ(t), Φ̇(t)

) =
m∑

j

(
MC, j x j (t)FM,i, j

(
Φ(t), Φ̇(t)

)) − (
J�(Φ(t))

)
i h(t)

− Ci
(
Φ(t), Φ̇(t)

)
Φ̇(t) − Fi

(
Φ(t), Φ̇(t)

) − Gi (Φ(t)) − Ki (Φ(t)).

2.2 Model Identification

We next develop procedures to identify parameters in composite model (2.6) that
can be used in a clinical setting. We first assume it is possible to manipulate each
joint individually whilemeasuring and recording the resulting joint angle and applied
force signals. This is clearly not possible for all joints in the wrist and hand, and so
alternative identification approaches for these structures are presented in Chap. 8.

Depending on the underlying musculo-tendon structure, it is often possible to set
terms within (2.3) or (2.4) to zero by defining joint axes which align with the axes
about which muscles generate moments. This is discussed next, before an illustrative
example is presented in Sect. 2.2.5.

2.2.1 Muscle Axis Identification

After measuring rigid body lengths, the next step is to define the position and orien-
tation of each joint in the kinematic chain of the anthropomorphic system. In some
cases these axes are uniquely defined (e.g. the elbow joint) and in others multiple
choices are possible (e.g. the glenohumeral joint). In the latter case joints can be
specified to align with the one or more axes about which ES produces movement
(e.g. motion about the glenohumeral joint due to anterior deltoid stimulation). Iden-
tification of these axes is simplified if they can be assumed to be fixed with respect
to a rigid link, and a suitable procedure is described in the appendix of [16]. This
involves applying stimulation followed by the least squares fitting of a three dimen-

http://dx.doi.org/10.1007/978-3-319-25706-8_8
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sional plane to the arc traced out by a point attached to the link. Fixed rotations are
introduced into the kinematic chain to align the axis with a vector orthogonal to this
plane. This procedure results in components of FM (·) within (2.3) being set to zero.
For example, if muscle j is aniarticular (i.e. acts about a single joint axis) and the
above approach is applied to identify corresponding joint axis i , this produces the
simplified form

FM,i, j (Φ(t), Φ̇(t))

{=0, j �= i
�=0, j = i.

(2.8)

2.2.2 Passive Parameter Identification

With no applied ES, system (2.6) simplifies to

B(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ + F(Φ, Φ̇) + G(Φ) + K (Φ) = −J�
h (Φ)h (2.9)

and can bewritten in a linear-in-parameter form. First introducematrixYB containing
kinematic data, and vector πB containing a minimal parameter set, such that

YB
(
Φ(t), Φ̇(t), Φ̈(t)

)
πB

= B(Φ(t))Φ̈(t) + C(Φ(t), Φ̇(t))Φ̇(t) + G(Φ(t)) + K (Φ(t)).

Similarly represent F(Φ, Φ̇) using piecewise linear functions by introducing matrix
YF containing kinematic data, and vector πF containing a minimal parameter set,
such that

YF
(
Φ(t), Φ̇(t)

)
πF = F(Φ(t), Φ̇(t)). (2.10)

Using these (2.9) is written as

[YB(t), YF (t)]︸ ︷︷ ︸
Y(t)

[
π�

B , π�
F

]�

︸ ︷︷ ︸
π

= −J�
h (Φ(t))h(t)

︸ ︷︷ ︸
τ̂ (t)

. (2.11)

A 6-axis force/torque sensor is attached to the extreme link of themechanical support
to provide externally applied force and torque vector h. This can be done using a
handle attached to the sensor which is used to kinematically excite the system, during
which the kinematic variables Y(t) and forces τ̂ (t) are recorded at discrete times
t = {t1, . . . , tN }. For structures with multiple degrees of freedom, this process may
need to be repeated with different attachment points to provide sufficient kinematic
excitation to all joints. From these assemble the matrices

Ȳ = [
Y(t1)� · · ·Y(tN )�

]�
, τ̄ = [

τ̂ (t1)� · · · τ̂ (tN )�
]�

.
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The least squares solution to the problem minπ ‖Ȳπ − τ̄‖2 for the parameter vector
is π = Ȳ†τ̄ where A† = (A� A)−1 A� denotes the pseudoinverse of A.

There is always a compromise between accuracy and repeatability in practice, and
hence the simplest realistic structure should be used to represent unknown functional
forms appearing in (2.6). For example, biomechanical coupling between anthropo-
morphic joints can be omitted to give the form

F(Φ, Φ̇) = [Fe,1(φ1) + Fv,1(φ̇1), . . . , Fe,p(φp) + Fv,p(φ̇p)]�, (2.12)

provided effects such as spasticity in bi-articular elbow/shoulder muscles are suffi-
ciently mild [17, 18]. The form (2.12) requires p instances of the structure

Ne∑

n=1

an Xn(φi ) +
Nv∑

n=1

bn Xn(φ̇i ), i = 1, . . . , p (2.13)

with basis function Xn()̇, and Ne, Nv denoting the number of parameters appearing in
each functional form. This gives rise to vector [a1, . . . , aNe , b1, . . . , bNv ] appearing
in πF for each instance, and a total of p × (Ne + Nv) parameters. Taking the more
general form

F(Φ, Φ̇) = [Fev,1(φ1, φ̇1), . . . , Fev,p(φp, φ̇p)]�, (2.14)

requires p instances of the form

Ne×Nv∑

n=1

cn Xn(φi , φ̇i ), i = 1, . . . , p (2.15)

and hence a total of p×(Ne × Nv) parameters appear in πF . More general functional
forms therefore require far more data to identify, with the most general structure
requiring p2 × Ne × Nv parameters. The simpler form of (2.12) has been found to be
accurate provided effects such as spasticity in bi-articular elbow/shoulder muscles,
which introduce biomechanical coupling between joints, are sufficiently mild [17].
Further information on constructing basis functions appears in [18].

2.2.3 Muscle Identification

Next consider the Hammerstein structures h j (u j , t), j = 1, . . . , m appearing
in torque vector τ (t), defined by (2.2). These are identified by fixing the sensor
handle and applying ES inputs, u j (t), to each muscle in turn. Vector τ̂ (t) is recorded
and the torque generated about the i th joint axis is extracted using

τi, j (u j (t),Φ, Φ̇) = Yi (t)π̂ − τ̂i , i = 1, . . . , p (2.16)
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where π̂ is provided by the previous tests. Here Yi (t) corresponds to static oper-
ating conditions Φ = Φ̄, Φ̇, Φ̈ = 0, and taking without loss of generality
FM,i, j (Φ̄, 0) = 1,

τi, j (u j (t), Φ̄, 0) = h j (u j , t) × FM,i, j (Φ̄, 0) = h j (u j , t). (2.17)

Algorithms developed specifically for stroke patients appear in [19], and can be
applied to data sets {u j , τi, j (·)}i=1,...,p to identify the Hammerstein structures
h j (u j , t), j = 1, . . . , m. Each of these comprises static nonlinearity hIRC, j (·) and
linear activation dynamics hLAD, j (·). The latter is then expressed using state-space
matrices MA, j , MB, j , MC, j for inclusion in state-space form (2.7).

2.2.4 Multiplicative Muscle Function Identification

To identify the general form of muscle function FM,i, j (Φ(t), Φ̇(t)), kinematic exci-
tation is again applied and Y(t) and τ̂ (t) recorded at samples t = {t1, . . . , tN }.
However now ES sequences u j (t) are applied and using the Hammerstein models
previously identified, the isometric muscle torque is calculated using h j (u j , t), so
that

FM,i, j (Φ(t), Φ̇(t)) = τ ∗
i (t) − τ̂i (t)

h j (u j (t), t)
, j = 1, . . . , m. (2.18)

Here τ ∗(t) = Y(t)π̂ is the passive torque, with π̂ provided by previous tests.
FM,i, j (·) is now represented as YFM (t)πFm , with an optimal parameter set πFM =
Ȳ†τ̄ , where

Ȳ =
⎡

⎢
⎣

YFM (t1)
...

YFM (tN )

⎤

⎥
⎦ , τ̄ =

⎡

⎢⎢⎢⎢
⎢
⎣

τ ∗
i (t1) − τ̂i (t1)

h j (u j (t1), t1)
...

τ ∗
i (tN ) − τ̂i (tN )

h j (u j (tN ), tN )

⎤

⎥⎥⎥⎥
⎥
⎦

.

Given the limited time available for identification in a clinical setting, accuracy
can be improved by taking the simplest structure capable of capturing the underlying
relationship. For example, if muscle length can be assumed to predominantly depend
on a single joint angle, structure (2.4) yields

FM,i, j (Φ(t), Φ̇(t)) = FM,i, j (φi (t), φ̇i (t)), j = 1, . . . , m (2.19)

giving rise tom instances of the form (2.15), and a total ofm×(Ne × Nv) parameters,
each associated with kinematic excitation of a single variable. To produce more
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repeatable muscle functions, it has been proposed in [20] that the muscle model
function takes the form

FM,i, j (Φ(t), Φ̇(t)) = FM1,i, j (φi (t)) × FM2,i, j (φ̇i (t)), j = 1, . . . , m (2.20)

and taking logarithms produces the identifiable form

log
(
FM1,i, j (φi (t))

) + log
(
FM2,i, j (φ̇i (t))

) = log

(
τ ∗

i (t) − τ̂i (t)

h j (u j (t), t)

)
(2.21)

reducing the number of parameters to m instances of form (2.13) with a total of
only m × (Ne + Nv) parameters. After identification, functions FM1,i, j (φi (t)) and
FM2,i, j (φ̇i (t)) are retrieved through application of the exponential function.

2.2.5 Case Study: Triceps and Anterior Deltoid with
ArmeoSpring

Consider the combined anthropomorphic and mechanical support structure shown in
Fig. 2.1 and assume that ES is applied to the triceps and the anterior deltoid muscles.
Following the procedure of Sect. 2.2.1, we assume the triceps generates a moment
about an axis orthogonal to both the forearm and upper arm, and that the anterior
deltoid generates a moment about an axis that is fixed with respect to the shoulder.
These axes are shown in Fig. 2.3.

Fig. 2.3 Human arm
kinematic relatioships
(m = 2, p = 5)
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Fig. 2.4 Kinematic model
with α and β defining the
anterior deltoid axis, together
with fitted experimental data.
Experimental values α = 8◦,
β = −87◦, are shown
together with φ1 = φ2 =
φ3 = φ4 = φ5 = 0

To identify the anterior deltoid axis experimentally, the participant is seated in
the ArmeoSpring, which is adjusted to their individual arm dimensions. The level of
support in each spring is modified so that their arm is raised above their lap. Surface
electrodes are placed on the anterior deltoid and triceps muscles and adjusted to elicit
the maximum appropriate movement. ES is then applied to the anterior deltoid using
a trapezoidal profile to slowly lift the arm, and then lower it back to the starting
position. To orientate the φ2 axis to correspond with the stimulated anterior deltoid,
two additional rotations, with variables α and β, are introduced as shown in Fig. 2.4.
After initial rotation of the base frame by φ1, it is rotated about the z-axis by α and
about the x-axis by β. The identification procedure described in the appendix of [16]
yields values of α and β which are then substituted into the augmented dynamic
model. An example of the fitted axis is shown in Fig. 2.4.

Next the passive identification procedure of Sect. 2.2.2 is applied using the func-
tional form (2.12), yielding the parameter vector π appearing in (2.11). Examples of
resulting frictional parameters relating to joint φ2 are shown in Fig. 2.5.

Themuscle identificationprocedure described inSect. 2.2.3 is then applied.Exper-
imental results are shown in Fig. 2.6 where the forms
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Fig. 2.5 Identified forms a
Fe2(φ2) and b Fv2(φ̇2)

(a)

(b)

Fig. 2.6 Fitting results for:
a torque component τ2,1 and
modelled h1(u1, t)
corresponding to isometric
anterior deltoid muscle, and
b torque component τ5,2 and
modelled h2(u2, t)
corresponding to isometric
triceps muscle

(a)

(b)

Fig. 2.7 Fitting results for:
a FM1,2,2(φ2) and
b FM2,2,2(φ̇2)

(a)

(b)

hIRC,1(u1) = a1,i
exp(a2,i u1) − 1

exp(a2,i u1) + a3,i
, and hLAD,1(t) = L −1

{ w2
n,i

s2 + 2wn,i s + w2
n,i

}

have been taken for i = 1, 2.
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Finally, multiplicative muscle functions of the form (2.20) have been identified
through application of the procedure of Sect. 2.2.4. Results are given in Fig. 2.7. Note
that since axes are aligned with muscle moments, all components of FM (·) are zero
apart from FM,2,1(·) and FM,5,2(·). Further results and fitting accuracy data can be
found in [18, 21] for the case of both unimpaired and stroke participants.

2.3 Conclusions

This chapter has introduced general structures that model the dynamic response
of the mechanically supported, electrically stimulated, upper limb. Identification
procedures have been proposed and representative experimental results presented
for the case of a passive exoskeletal support. In the next two chapters the general
model form of (2.6) is used to design controllers which enable a reference tracking
task to be completed. Chapter5 then employs these model and controller structures
within a clinical intervention to assist stroke patients’ completion of upper limb
reaching tasks.
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Chapter 3
Feedback Control Design

Many control techniques have been applied to assist upper limb movement using
electrical stimulation. However in clinical trials with neurologically impaired partic-
ipants the applied control schemes remain mostly open-loop, triggered [1], or based
on electromyographic (EMG) [2, 3] or electroencephalographic (EEG) feedback
[4, 5] to provide a measure of the users’ voluntary intention. Used mainly with spinal
cord injured participants, another approach involves employing artificial neural net-
works (ANNs) to create a mapping between muscle activity and kinematic variables
[6–10]. However limitations include a lack of robust performance analysis, transpar-
ent parameter tuning, and the need to re-train for use with different movements or
physiological changes.

Feedback approaches which employ a model of the relationship between applied
stimulation and resulting movement are crucial to address the complex, time-varying
dynamics. However, such approaches have transferred to clinical practice with neu-
rological participants in only a small number of cases and fewer still benefit from a
model. This is due to difficulties in obtaining an accurate model since the identifi-
cation time available is restricted by the onset of fatigue and the time constraints of
the impaired participant, carer, physiotherapist and/or engineer. Time-varying phys-
iological effects also mean that models should ideally be re-identified at the start
of, and even during, each treatment session. A further feature of the rehabilitation
problem is that ES is applied only to a subset of weak or paralyzed muscles, and
hence the controller must ensure stability of the joints that are not supported by ES.
It is also beneficial that control parameters may be tuned in a transparent manner so
that performance can be maintained despite changes in underlying dynamics.

This chapter addresses the design of feedback controllers to stabilize all joints
in the upper limb system. Moreover, robust stability margins are derived to ensure
that changes in the dynamics do not destabilize the system. To maximize practical
utility, these are employed to derive bounds on the most significant sources of model
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inaccuracy, with explicit focus on muscle fatigue. In the next chapter a feedforward
control actionwill be combinedwith the feedback controllers developed here in order
to further improve tracking accuracy and hence ensure successful task completion.

3.1 General Feedback Control Framework

The combined mechanical and anthropomorphic system was shown to take the form

M :
{

ẋs(t) = f s(xs(t)) + gs(u(t))
Φ(t) = hs(xs(t)), t ≥ 0

(3.1)

with components given by (2.7). Since f s(·), gs(·), hs(·) are continuously differen-
tiable, M has the properties of uniqueness and continuity [11]. In this chapter we
consider a general feedback control structure given by

K :
{

ẋc(t) = f c(xc(t), e(t))
u(t) = hc(xc(t), e(t)), t ≥ 0

(3.2)

where functions f c(·), hc(·) are continuously differentiable, so that K also has the
properties of uniqueness and continuity. Figure3.1 shows the combined structure,
where the reference vector is denoted Φ̂ ∈ L

p
2 and the tracking error is e = Φ̂ − Φ.

This must be designed to embed robustness to model uncertainty and disturbance,
together with baseline tracking performance of the resulting closed-loop system

[
ẋs(t)
ẋc(t)

]

︸ ︷︷ ︸
ẋ(t)

=
[

f s(xs(t)) + gs(hc(xc(t), Φ̂(t) − hs(xs(t))))
f c(xc(t), Φ̂(t) − hs(xs(t)))

]

︸ ︷︷ ︸
f (x(t), Φ̂(t))

Φ(t) = hs(xs(t))︸ ︷︷ ︸
h(x(t))

, t ≥ 0. (3.3)

Fig. 3.1 Feedback control scheme with K : e �→ u : L p
2 → L m

2

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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The functional movements used in rehabilitation may not involve all joint axes.
Equally movement about certain joints may need to be actively avoided, due to
the presence of subluxations, stiffness, or limited angular range of movement for
example. To embed this flexibility in controlled joint selection, we define the setP
containing the controlled joint indices, with elements P = {

p1, . . . , pnp

}
, np ≤ p.

We denote the complement of P by P̄ = {1, . . . p} \ P . For signal x and set of
distinct indices S we use notation xS (t) = [xS (1)(t), . . . xS|S |(t)]� where S (i)
is the ith smallest element ofS . With this notation, the controlled and uncontrolled
joint angle signals are ΦP ∈ L

np
2 and ΦP̄ ∈ L

p−np
2 respectively. Armed with this

notation, we can now introduce a definition of stability for use in control design:

Definition 3.1 Feedback controller (3.2) is said to stabilize the closed-loop
system [M, K] about operating-point Φ̄ ∈ L

np
2 if it achieves global asymptotic

stability of the controlled joints, ΦP , about Φ̄.

Satisfying the condition of Definition3.1 stabilizes joints with indices in set P ,
but musculo-tendon interaction and dynamic rigid body coupling cause movement
in the remaining joints. We therefore next derive conditions to ensure stability of the
uncontrolled joints, φi, i ∈ P̄ .

3.1.1 Stability of Unactuated Joints

To examine stability of uncontrolled joints, φi, i ∈ P̄ , first express components of
C(Φ, Φ̇) in standard form as

ci,j =
p∑

k=1

ci,j,k φ̇k, ci,j,k = 1

2

(
∂bi,j

∂φk
+ ∂bi,k

∂φj
− ∂bj,k

∂φi

)
, i, j = 1, . . . , p (3.4)

where bi,j are components of B(Φ). Then using η1 = ΦP̄ , η = [η�
1 , η�

2 ]�, ξ =
[ξ�

1 , ξ�
2 , ξ�

3 ]�, the system (2.7) and controller (3.2) can be represented as

ẋ = f (x), (3.5)

η̇ = ω (ξ , η, t) , (3.6)

ξ(x) =
⎡

⎢
⎣

Φ̄ − ΦP

Φ̄
(1) − Φ

(1)
P

Φ̄
(2) − Φ

(2)
P

⎤

⎥
⎦ =

⎡

⎢
⎣

Φ̄ − hP (x(t))

Φ̄
(1) − hP (f (x(t)))

Φ̄
(2) − hP (f ′(x(t))f (x(t)))

⎤

⎥
⎦ , (3.7)

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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whereΦ = [η�
1 , Φ̄

� − ξ�
1 ]�, Φ̇ = [η�

2 , (Φ̄
(1)

)� − ξ�
2 ]�, and the uncontrolled joint

dynamics are

ω (ξ , η, t)

=

⎛

⎜⎜
⎝

η2

B−1
P̄

(Φ)
(
τP̄

(
K(Φ̂P − Φ̄ + ξ1), Φ̄ − ξ1, Φ̄

(1) − ξ2
) − CP̄(Φ, Φ̇)η2 − GP̄(Φ)

−CP̄P(Φ, Φ̇)
(
Φ̄

(1) − ξ2
) − FP̄(Φ, Φ̇) − KP̄(Φ) − BP̄P(Φ)

(
Φ̄

(2) − ξ3
))

⎞

⎟⎟
⎠ .

Terms CP̄ (Φ, Φ̇) and CP̄P (Φ, Φ̇) respectively have elements

CP̄,i,j =
n∑

k=1

cP̄(i),P̄(j),kφ̇k, CP̄P,i,j =
n∑

k=1

cP̄(i),P(j),kφ̇k

and likewise BP̄ (Φ) and BP̄P (Φ) have elements

BP̄,i,j = bP̄(i),P̄(j), BP̄P,i,j = bP̄(i),P(j). (3.8)

Assuming the passive parameter form (2.12), FP̄ (Φ, Φ̇) has elements

FP̄,i(Φ, Φ̇) = Fe,P̄(i)(φP̄(i)) + Fv,P̄(i)(φ̇P̄(i))

:= Fe,i(ΦP̄ ) + Fv,i(Φ̇P̄ ), i = 1, · · · p − np

From (3.5)–(3.7) the surface ξ = 0 defines an integral manifold for the system

η̇ = ω (0, η, t) . (3.9)

Since the controlled joints are assumed to be stable about this surface via Defini-
tion3.1, system (3.9) is globally attractive and defines the zero dynamics relative to
the controlled outputΦP = Φ̄.We next state theCenterManifold Theorem, see [12].

Theorem 3.1 Suppose that ω
(
0, η∗

1, t
) = 0 for t ≥ 0, i.e. (0, η∗

1) is an equi-
librium of the full system (3.5)–(3.7), and η∗

1 is an equilibrium of the zero
dynamics (3.9), and that Definition3.1 is satisfied. Then (0, η∗

1) of the full
system (3.5)–(3.7) is locally stable if η∗

1 is locally stable for dynamics (3.9).

Stability of all joints, Φ, is hence assured if both the controlled and uncontrolled
joints are independently stable. The former is guaranteed via Definition3.1, and the
following theorem gives conditions for the latter.

http://dx.doi.org/10.1007/978-3-319-25706-8_2


3.1 General Feedback Control Framework 25

Theorem 3.2 Let feedback controller K satisfy Definition3.1 and uncon-
trolled joints, ΦP̄ , be passive with respect to (τ ∗

P̄
(Φ∗

P̄
),Φ∗

P̄
), i.e.

(ΦP̄ − Φ∗
P̄

)�
(
Fe(ΦP̄ ) + GP̄ (ΦP̄ ) + KP̄ (ΦP̄ ) − τ ∗

P̄
(ΦP̄ )

) ≥ 0 (3.10)

where Φ∗
P̄

satisfies Fe(Φ
∗
P̄

) + GP̄ (Φ∗
P̄

) + KP̄ (Φ∗
P̄

) = τ ∗
P̄

(Φ∗
P̄

), with

τ ∗
P̄

(Φ∗
P̄

) = τP̄

(
K(Φ̂P − Φ̄), Φ̄, ˙̄Φ) − C̄P̄P (Φ∗

P̄
) ˙̄Φ − BP̄P (Φ∗

P̄
) ¨̄Φ the

moment transferred from controlled to uncontrolled joints, and let the
uncontrolled joint damping function satisfy the sector bounds

Fv,i(φ̇)

{
>F̄v,iφ̇i if φ̇ > 0,

<F̄v,iφ̇i otherwise.
i ∈ P̄ where F̄v,i =

∑

i,k /∈P, i 
=k

∣
∣
∣
∑

j∈P
ci,j,k

˙̄φj

∣
∣
∣

(3.11)

Then the uncontrolled joints are locally stable about (τ ∗
P̄

(Φ∗
P̄

),Φ∗
P̄

).

Proof From (2.7) the uncontrolled system dynamics are given by

BP̄(Φ)Φ̈P̄ + CP̄(Φ, Φ̇)Φ̇P̄ + CP̄P(Φ, Φ̇)Φ̇P + FP̄(Φ, Φ̇) + GP̄(Φ) + KP̄(Φ)

+ BP̄P(Φ)Φ̈P = τP̄
(
K(ξ1 + Φ̂P − Φ̄), Φ̄ − ξ1, Φ̄

(1) − ξ2
)
. (3.12)

The term CP̄P (Φ, Φ̇) can be partitioned as CP̄P (Φ, Φ̇P ) + CP̄P (Φ, Φ̇P̄ ),
where

CP̄P,i,j =
np∑

k=1

cP̄(i),P(j),P(k)
φ̇P(k) and CP̄P,i,j =

p−np∑

k=1

cP̄(i),P(j),P̄(k)
φ̇P̄(k)

.

Furthermore CP̄P (Φ, Φ̇P̄ )Φ̇P can be written as CP̄ (Φ, Φ̇P )Φ̇P̄ with

CP̄,i,j =
np∑

k=1

cP̄(i),P(k),P̄(j)φ̇P(k).

This enables (3.12) to be rewritten using substitutions CP̄P ⇔ CP̄P and CP̄ ⇔
CP̄ , where CP̄ = CP̄ + CP̄ , to give

BP̄ (Φ)Φ̈P̄ + CP̄ (Φ, Φ̇)Φ̇P̄ + CP̄P (Φ, Φ̇P )Φ̇P + FP̄ (Φ, Φ̇) + GP̄ (Φ)

+ KP̄ (Φ) + BP̄P (Φ)Φ̈P = τP̄

(
K(ξ1 + Φ̂P − Φ̄), Φ̄ − ξ1, Φ̄

(1) − ξ2
)
.

(3.13)
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When ξ = 0 the zero dynamics correspond to the system

BP̄ (η1)η̇2 + CP̄ (η1, η2)η2 + CP̄P (η1)Φ̄
(1) + FP̄ (η1, η2) + GP̄ (η1) + KP̄ (η1)

+ BP̄P (η1)Φ̄
(2) = τP̄

(
K(Φ̂P − Φ̄), Φ̄, Φ̄

(1))
(3.14)

where the muscle dynamic forms (2.2)–(2.4) mean τP̄ (·) is bounded input, bounded
output stable, and functional dependence on Φ̄, Φ̄

(1)
has been omitted. System (3.14)

equates to η̇2 = −h(η1, η2) − g(η1) where

h(η1, η2)= BP̄(η1)
−1
(
CP̄(η1, η2)η2 + Fe(η1) + Fv(η2) + GP̄(η1) + KP̄(η1)

)
,

g(η1)= BP̄(η1)
−1
(

CP̄P(η1)Φ̄
(1)+ BP̄P(η1)Φ̄

(2)− τP̄
(
K(Φ̂P − Φ̄), Φ̄, Φ̄

(1)))
.

The equilibrium point of the uncontrolled joints satisfies h(η∗
1, 0) + g(η∗

1) = 0, and,
following [13], the system can be interpreted as conservative system η̇2 + g(η̃1 +
η∗
1) = 0 acted on by external force −h(η̃1 + η∗

1, η2) where η̃1 = η1 − η∗
1. Accord-

ingly, introduce energy function

V(η̃1, η2) = η�
2

BP̄(η̃1 + η∗
1)

2
η2 +

∫ η̃1

0

(
Fe(σ ) + GP̄(σ ) + KP̄(σ )

)
δσ

+
∫ η̃1

0

(
C̄P̄P(σ )Φ̄

(1)+ BP̄P(σ )Φ̄
(2)− τP̄

(
K(Φ̂P − Φ̄), Φ̄, Φ̄

(1)))
δσ .

The first and second terms respectively correspond to the kinetic and potential energy
in the uncontrolled joint system, and the third to the potential energy transferred from
the controlled joints. The rate of energy satisfies

V̇(η̃1, η2) = η�
2 BP̄ (η̃1 + η∗

1)η̇2 + η�
2

ḂP̄ (η̃1 + η∗
1)

2
η2

+ η�
2

(
Fe(η̃1 + η∗

1) + GP̄ (η̃1 + η∗
1) + KP̄ (η̃1 + η∗

1)
)

+ η�
2

(
C̄P̄P (η̃1 + η∗

1)Φ̄
(1) + BP̄P (η̃1 + η∗

1)Φ̄
(2)

− τP̄

(
K(Φ̄P − Φ̄), Φ̄, Φ̄

(1)))

= η�
2

(
ḂP̄ (η1)

2
− CP̄ (η1, η2)

)

η2 − ηT
2 Fv(η2)

≤ η�
2

(
1

2
ḂP̄ (η1) − CP̄ (η1, η2) − F̄v

)
η2.

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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Hence the system converges to η1 = η∗
1, η2 = η̇1 = 0 if

min
i

�
(

λi

(
ḂP̄ (η1)

2
− CP̄ (η1, η2) − CP̄ (η1, η2) − F̄v

))

< 0.

As 1
2 ḂP̄ (η1) − CP̄ (η1, η2) is skew-symmetric, a sufficient condition is that the term

CP̄ (η1, η2) + F̄v is diagonally dominant with positive diagonal entries, which is
satisfied by (3.11). �

The conditions of Theorem3.2 motivate the following intuitive guidelines for ensur-
ing stability of the uncontrolled joints:

Procedure 1 (Design guidelines for stabilizing uncontrolled joints)

Add damping: The condition on Fv(φ̇), given by (3.11), can always be met
by adding viscous damping to the uncontrolled joints.
Feedback controller tuning: Bounds onFv scalewith |Φ̄(1)|, and hence (3.10)
and (3.11) are easy to satisfy if the controlled joint equilibrium trajectory is
smooth. This motivates (de)-tuning of feedback controller (3.2).
Reference selection: The controlled joint equilibrium trajectory can also be
made smoother through selection of the reference trajectory Φ̂P .
Arm structure selection: The amount of damping required for stability is
dictated by the degree of axis coupling which is reflected in the magnitude
of elements CP̄ (·). The components of CP̄ (·) are related to the elements of
B(Φ) via (3.4). Note that they do not involve components on the principal
diagonal of B(Φ) and hence the bound is solely dependent on the amount of
interaction between the system joints. With no interaction Fv,i = 0, reducing
to the requirement that Fv(·) is passive.
Stimulated muscle selection: Musculo-tendon coupling produces moments
τP̄ (·) about uncontrolled joints due to applied ES. This solely has the effect
of displacing the equilibrium point Φ∗

P̄
.

Mechanical support: This also displaces the equilibrium point Φ∗
P̄
, but can

also be used to satisfy passivity condition (3.10). Note that the mechanical
support must provide sufficient support such that an equilibrium point, Φ∗

P̄
,

exists for the uncontrolled joints.

3.2 Case Study: Input-Output Linearizing Controller

The feedback control design approach is next illustrated by applying it to the clinically
relevant system that was introduced in Sect. 2.2.5. Here ES is applied to the anterior
deltoid and triceps muscles using inputs u1(t) and u2(t) respectively. The kinematics

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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are shown in Fig. 2.3, and the clinical objective is to ensure φ2(t) and φ5(t) track
reference signals φ̂2(t) and φ̂5(t) respectively, with the remaining joint angles stable
[14, 15]. Hence we set m = 2, p = 5, np = 2 and P = {2, 5}.

The linear actuation dynamics hLAD,i(t), i = 1, 2 appearing in dynamic model
(2.7) can be assumed to be second order [16], so that without loss of generality
L

{
hLAD,i(t)

} = ni,1s+ni,2

s2+di,1s+di,2
. This gives rise to the Hammerstein structures

ẋi(t) =
[−di,1 −di,2

1 0

]

︸ ︷︷ ︸
MA,i

xi(t) +
[
1
0

]

︸︷︷︸
MB,i

hIRC,i(ui(t)),

hi(ui, t) = [ ni,1 ni,2 ]
︸ ︷︷ ︸

MC,i

xi(t), i ∈ {1, 2}. (3.15)

We employ musclo-tendon mapping (2.4) and since muscles are aligned with joints

τ 1 = 0, τ 2(u,Φ, Φ̇) = FM,2,1(φ2(t), φ̇2(t))h1(u1, t), τ 3 = 0, τ 4 = 0,

τ 5(u,Φ, Φ̇) = FM,5,2(φ5(t), φ̇5(t))h2(u2, t).

Using xs = [Φ�, Φ̇�
, x�

2 , x�
5 ]� the controlled dynamics,M, of system (3.1) are hence

ẋs =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Φ̇

B(Φ)−1

⎛

⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢
⎣

0
FM,2,1(φ2, φ̇2)MC,1x1

0
0

FM,5,2(φ5, φ̇5)MC,2x2

⎤

⎥⎥⎥⎥
⎦
− X(Φ, Φ̇)

⎞

⎟⎟⎟⎟
⎠

MA,1x1
MA,2x2

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
f s(xs)

+

[g1(xs), g2(xs)]
︷ ︸︸ ︷⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0
0 0
0 0
0 0
0 0

MB,1 0
0 MB,2

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

[
hIRC,1(u1)
hIRC,2(u2)

]

︸ ︷︷ ︸
gs(u)

ΦP =
[

φ2

φ5

]
=

[
h1(xs)

h2(xs)

]
(3.16)

where
X(Φ, Φ̇) = C(Φ, Φ̇)Φ̇ + F(Φ, Φ̇) + G(Φ) + K(Φ).

To satisfy Definition3.1, we next design K using input-output linearization in order
to control ΦP using u = [u1, u2]�. As described in [12], for an m × m system the
control action is

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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[ hIRC,1(u1)
hIRC,2(u2)

]
= χ(xs)

−1(v − μ(xs)
)

(3.17)

with control input demand v = [v1, v2]�. The components of μ, χ are

μi(xs) = Lki
f hi(xs), χij(xs) = Lgj L

ki−1
f hi(xs)

respectively, with i, j = 1, . . . , 2, and ki the relative degree of output i. The Lie
derivatives of hi(xs) are defined by

Lf hi(xs) = δhi

δxs
f s(xs), Lgi hi(xs) = δhi

δxs
gi(xs) (3.18)

and Lj
f hi(xs) and Lgi L

j−1
f hi(xs) are respectively given by

Lf
(
Lj−1

f hi(xs)
)

and Lgi

(
Lj−1

f hi(xs)
)
.

Relative degree ki satisfies Lgi L
ki−1
f hi(xs) 
= 0, and Lgi L

n
f hi(xs) = 0 for n = 1, 2, . . .

(ki − 2). Hence (3.17) becomes

[
hIRC,1(u1)
hIRC,2(u2)

]
=

[
Lg1Lk1−1

f h1(xs) Lg2Lk1−1
f h1(xs)

Lg1Lk2−1
f h2(xs) Lg2Lk2−1

f h2(xs)

]−1 (

v −
[

Lk1
f h1(xs)

Lk2
f h2(xs)

])

with k1 = 3 if n1,1 = 0, and k1 = 4 otherwise, and k2 = 3 if n2,1 = 0, and k2 = 4
otherwise. Applied to (3.16) this yields

u1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h−1
IRC,1

(
δ

δxs

(
δf s,7(xs)

δxs
f s(xs)

)
f s(xs)−v1

(B(Φ)−1)2,2FM,2,1(φ2,φ̇2)n1,2

)

if n1,1 = 0

h−1
IRC,1

(
δf s,7(xs)

δxs
f s(xs)−v1

(B(Φ)−1)2,2FM,2,1(φ2,φ̇2)n1,1

)

otherwise

(3.19)

u2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h−1
IRC,2

(
δ

δxs

(
δf s,10(xs)

δxs
f s(xs)

)
f s(xs)−v2

(B(Φ)−1)5,5FM,5,2(φ5,φ̇5)n2,2

)

if n2,1 = 0

h−1
IRC,2

(
δf s,10(xs)

δxs
f s(xs)−v2

(B(Φ)−1)5,5FM,5,2(φ5,φ̇5)n2,1

)

otherwise.

(3.20)

The case ni,1 
= 0, i ∈ {1, 2} is now assumed, however similar analysis applies if
ni,1 = 0. Inputs (3.19) and (3.20) yield the decoupled signals
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φ
(4)
2 = v1, φ

(4)
5 = v2 where φ

(k)
i = δk

δtk
φi. (3.21)

3.2.1 Optimal Tracking Controller

Having decoupled and linearized the controlled joints ΦP , an optimal tracking con-
troller is next designed to achieve global stability, as required by Definition3.1. We
select the control demand, v, as

v = Φ̂
(4)
P − Λ

⎡

⎢⎢⎢⎢
⎣

Φ̂P − ΦP

Φ̂
(1)
P − Φ

(1)
P

Φ̂
(2)
P − Φ

(2)
P

Φ̂
(3)
P − Φ

(3)
P

⎤

⎥⎥⎥⎥
⎦

(3.22)

with Λ = [A0, A1, A2, A3]. From (3.21), v = Φ
(4)
P , so the resulting closed-loop joint

dynamics (3.5) and (3.7) are then given by

d

dt

⎡

⎢⎢⎢
⎢
⎣

Φ̂P − ΦP

Φ̂
(1)
P − Φ

(1)
P

Φ̂
(2)
P − Φ

(2)
P

Φ̂
(3)
P − Φ

(3)
P

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
ẋ

=

⎡

⎢⎢
⎣

0 I 0 0
0 0 I 0
0 0 0 I

−A0 −A1 −A2 −A3

⎤

⎥⎥
⎦

︸ ︷︷ ︸
A

⎡

⎢⎢⎢
⎢
⎣

Φ̂P − ΦP

Φ̂
(1)
P − Φ

(1)
P

Φ̂
(2)
P − Φ

(2)
P

Φ̂
(3)
P − Φ

(3)
P

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
x

, (3.23)

ξ(x) = [
I, 0

]
x. (3.24)

Selecting elements of matrix Λ which ensure the eigenvalues of matrix A are stable
can be achieved by computing Λ to minimize the cost

J(v) =
∫ ∞

0

(
v�R̃v + x�Q̃x

)
dt (3.25)

which weights error and input energy norms, subject to v − Φ̂
(4)
P = −Λx and

ẋ =

⎡

⎢⎢
⎣

0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

⎤

⎥⎥
⎦ x + [

0 0 0 I
]� (

v − Φ̂
(4)
P

)
. (3.26)
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Fig. 3.2 Input-output linearizing control scheme with stabilizing feedback

Writing mappings (3.19) and (3.20) as u = κ(v, xs) then yields the overall control
action

K :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋc =

⎡

⎢⎢
⎣

0 0 0 0
0 0 I 0
0 0 0 I

−A0 −A1 −A2 −A3

⎤

⎥⎥
⎦ xc +

⎡

⎢⎢
⎣

I
0
0
0

⎤

⎥⎥
⎦

[
0 1 0 0 0
0 0 0 0 I

]
e

︸ ︷︷ ︸
eP︸ ︷︷ ︸

f c(xc,e)

,

u = κ
(
Φ̂

(4)
P − Kxc, xs

)

︸ ︷︷ ︸
hc(xc,e)

(3.27)

which hence satisfiesDefinition3.1with equilibriumpoint Φ̄ = Φ̂P . Note that (3.25)
can also be solved over a finite range [0, T ], T < ∞ resulting in a time-varying Λ

which also provides stability of the error dynamics.
In practice an observer may also be required to provide estimates of system states

xs, comprising the system joint angles and angular velocities, together with the
muscle states x1, x2. The resulting augmented feedback structure is shown in Fig. 3.2.
Experimental results using this control scheme appear in Sect. 4.2, where it is also
combined with an ILC feedforward action.

3.3 Robust Performance

Design of feedback controller K to satisfy Definition3.1 requires stabilizing nom-
inal system model M. However, in practice all such models possess uncertainty so
stabilization is not guaranteed when the feedback action is subsequently applied
to the true plant. Theorem3.2 showed that stability of uncontrolled joints can be
addressed despite model uncertainty simply by increasing damping and stiffness,
but still requires that Definition3.1 holds. Therefore a comprehensive treatment is
required to examine the robust stability of the full closed-loop system incorporating
both controlled and uncontrolled joints. A powerful framework is now developed to
address this, and will yield practical design guidelines.

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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We first consider the openloop nominal plant, and derive stability conditions for
all joints. These will then be used by the subsequent robust performance analysis.

Proposition 3.1 Let passive function F(Φ, Φ̇) have form (2.12), then the rigid
body system

B(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ + F(Φ, Φ̇) + G(Φ) + K(Φ) = τ , (3.28)

with input τ and output Φ, is bounded-input, bounded-output (BIBO) stable
about operating point (τ̄ , Φ̄) if it satisfies the passivity condition

(Φ − Φ̄)�
(
Fe(Φ) + G(Φ) + K(Φ) − τ̄

) ≥ 0 (3.29)

Proof Following [17]we impose additional conditions on a suitable systemLiapunov
function to enable asymptotic stability to be exchanged for the stricter condition of
BIBO stability. Assuming for simplicity ˙̄Φ = 0, operating point Φ̄ satisfies

K(Φ̄) + G(Φ̄) + Fe(Φ̄) = τ̄ , (3.30)

hence the system dynamics can be represented about the equilibrium point by

B(Φ̃ + Φ̄)Φ̈ + C(Φ̃ + Φ̄, Φ̇)Φ̇ + K(Φ̃ + Φ̄) + G(Φ̃ + Φ̄) + FvΦ̇ + Fe(Φ̃ + Φ̄)

− K(Φ̄) − G(Φ̄) − Fe(Φ̄) = τ − τ̄ (3.31)

where Φ̃ = Φ − Φ̄, with ˙̃
Φ = Φ̇, ¨̃

Φ = Φ̈. Since (3.29) holds we can select the
symmetric positive-definite Liapunov function

V(Φ̃, Φ̇) = Φ̇
� B(Φ̃ + Φ̄)

2
Φ̇ +

∫ Φ̃

0

(
Fe(σ ) + G(σ ) + K(σ )

− Fe(Φ̄) − K(Φ̄) − G(Φ̄)
)
δσ (3.32)

so that

V̇(Φ̃(t), Φ̇(t)) = Φ̇(t)�B(Φ̃(t) + Φ̄(t))Φ̈(t) + Φ̇(t)� Ḃ(Φ̃(t) + Φ̄(t))

2
Φ̇(t)

+ Φ̇(t)�
(
Fe(Φ̃(t) + Φ̄(t)) + G(Φ̃(t) + Φ̄(t))

+ K(Φ̃(t) + Φ̄(t))
) − Φ̇(t)�

(
Fe(Φ̄(t)) + G(Φ̄(t)) + K(Φ̄(t))

)

= Φ̇(t)�
(

Ḃ(Φ(t))

2
− C(Φ(t), Φ̇(t)) − Fv

)
Φ̇(t)

+ Φ̇(t)�(τ (t) − τ̄ (t)).

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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Since 1
2 Ḃ(Φ(t)) − C(Φ(t), Φ̇(t)) is skew-symmetric, Ḃ(Φ(t))

2 − C(Φ(t), Φ̇(t)) − Fv

is negative definite since Fv has positive diagonal entries. Hence ∃ α > 0 such that

Φ̇(t)�
(

Ḃ(Φ(t))

2
− C(Φ(t), Φ̇(t)) − Fv

)
Φ̇(t) ≤ −α

∥∥Φ̇(t)
∥∥2 (3.33)

which gives the bound

V̇(Φ̃(t), Φ̇(t)) ≤ −α
∥∥Φ̇(t)

∥∥2 + ∥∥Φ̇(t)
∥∥∥∥τ (t)

∥∥
τ̄

≤ −∥∥Φ̇(t)
∥∥
(
α
∥∥Φ̇(t)

∥∥ − ∥∥τ (t)
∥∥

τ̄

)
. (3.34)

Following the approach of [17], we now show that there exists a finite β such that∥∥Φ̃(t)
∥∥ ≤ β

∥∥τ (t)
∥∥

τ̄
. First note that for all bounded τ (t)

∥∥Φ̇(t)
∥∥ ≥ ‖τ (t)‖τ̄

α
⇒ V̇(Φ̃(t), Φ̇(t)) ≤ 0 (3.35)

and since B(·) and C(·) are bounded and continuous,
∥
∥Φ̃(t)

∥
∥ is bounded when

∥∥Φ̇(t)
∥∥ <

‖τ (t)‖τ̄
α

, with ‖τ‖τ̄ = 0 ⇒ Φ = Φ̄ so that
∥∥Φ − Φ̄

∥∥ ≤ γ1 ‖τ‖τ̄ for some
finite γ1. Then through application of LaSalle’s Invariance Principle we note that
for the system (3.31) to maintain V̇(Φ̃(t), Φ̇(t)) = 0 for fixed τ the trajectory must

be confined to the line given by (3.28) with ˙̃
Φ = 0,

¨̃
Φ = 0 ⇒ Φ̈ = ¨̄Φ, Φ̇ = ˙̄Φ. This

can only be satisfied when τ = τ̄ which hence corresponds to the set-point dynamics
given by (3.30). Therefore for each τ there exists a finite γ2 such that

∥
∥Φ̇

∥
∥ ≥ ‖τ‖τ̄

α
⇒

∥
∥∥Φ̃

∥
∥∥ ≤ γ2 ‖τ‖τ̄ . (3.36)

Combining the above cases guarantees ∀τ

‖Φ‖Φ̄ ≤ max{γ1, γ2} ‖τ‖τ̄ (3.37)

and it follows that system (3.28) is BIBO stable about equilibrium (τ̄ , Φ̄). �

Proposition3.1 shows that the map τ �→ Φ is BIBO stable if all joints are passive
about the operating point (τ̄ , Φ̄). Compared with the closed-loop stability condi-
tions of Definition3.1 and Theorem3.2, it imposes extra conditions on the joints φi,

i ∈ P , but relaxes conditions on joints φi, i ∈ P̄ .
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Themap τ �→ Φ corresponds to the rigid body dynamics component of the system
M, which can be written in operator form using the following representations:

M : L m
2 → L

p
2 : u �→ Φ :

{
Φ = hs(xs),

ẋs = f s(xs) + gs(u)

: Φ = HRBFm(Φ, Φ̇)HLADhIRCu (3.38)

where, from (2.2), (2.3) and (2.6), components HRB, Fm(Φ, Φ̇), HLAD and hIRC are

HRB : L p
2 → L

p
2 : τ �→ Φ

:

⎧
⎪⎪⎨

⎪⎪⎩

Φ = [I, 0]
[
Φ

Φ̇

]
,

d
dt

[
Φ

Φ̇

]
=
[

Φ̇

B(Φ)−1(τ − C(Φ, Φ̇)Φ̇) − F(Φ, Φ̇) − G(Φ) − K(Φ))

]

(3.39)

Fm(Φ, Φ̇) : L m
2 → L

p
2 : w �→ τ : τ =

⎡

⎢
⎣

FM,1,1(φ1, φ̇1) · · · FM,1,m(φ1, φ̇1)
...

. . .
...

FM,p,1(φp, φ̇p) · · · FM,p,m(φp, φ̇p)

⎤

⎥
⎦w

(3.40)

HLAD : L m
2 → L m

2 : v �→ w : w = diag{HLAD,1, · · · , HLAD,m}v,
HLAD,j : vj �→ wj :

{
ẋj = MA,jxj + MB,jvj
wj = MC,jxj

, j = 1, · · · m

(3.41)

hIRC : L m
2 → L m

2 : u �→ v : v =
⎡

⎢
⎣

hIRC,1(u1(t))
...

hIRC,m(um(t))

⎤

⎥
⎦ . (3.42)

We now expand our analysis to consider the closed-loop system shown in
Fig. 3.3a, where u0 and y0 are external disturbances. We introduce the projection

operator from external to internal dynamics ΠM//K :
(

u0

y0 + Φ̂

)
�→

(
u
Φ

)
, where it

follows that the plant operating point satisfies

(
ū
Φ̄

)
= ΠM//K

(
0
Φ̂

)
. We next

(a) (b)

Fig. 3.3 Feedback system incorporating control action K : ẽ �→ ũ given by (3.2), with external
disturbances u0, y0 and: a nominal plant dynamics M : u �→ Φ, b true plant dynamics N : u �→ Φ

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
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represent the true plant by operator N as shown in Fig. 3.3b and define its projection

ΠN//K :
(

u0

y0 + Φ̂

)
�→

(
u
Φ

)
, with the operating point

(
ū1

Φ̄1

)
= ΠN//K

(
0
Φ̂

)
. To

obtain conditions for stability of the true closed-loop system [N, K], we need the
following property linking the two plant descriptions.

Proposition 3.2 Let closed-loop systems [M, K] and [N, K] have respective

operating points (ū, Φ̄), (ū1, Φ̄1). Let (τ̄ , Φ̄) and (τ̄ 1, Φ̄1) satisfy Propo-

sition3.1 with bounded τ̄ = τ (ū, Φ̄, ˙̄Φ) and τ̄ 1 = τ (ū1, Φ̄1,
˙̄Φ1). Then there

exists a surjective map between the graph ofGM and the graph ofGN , defined by

GM :=
{(u

Φ

)
:
∥∥∥

u
Φ

∥∥∥( ū
Φ̄

)< ∞,Φ = Mu
}
, GN :=

{(u
Φ

)
:
∥∥∥

u
Φ

∥∥∥( ū1
Φ̄1

)< ∞,Φ = Nu
}
.

Proof AmapΨ : GM �→ GN is surjective if ∀ y ∈ GN ∃ x ∈ GM such thatΨ (x) = y.

Let us choose an element y ∈ GN where y =
( u + ū1

N(u + ū1)

)
for some ‖u‖ < ∞. It fol-

lows that ‖u + ū1‖ū1 < ∞. As Proposition3.1 is satisfied, the map τ + τ̄ 1 �→ Φ +
Φ̄1 is bounded, and since u + ū1 �→ τ + τ̄ 1 is bounded (due to bounded hIRC, HLAD

and Fm), u + ū1 �→ Φ + Φ̄1 is bounded. Hence ‖N(u + ū1)‖ū1 = ‖Φ + Φ̄1)‖Φ̄1
<

∞. Define: x =
( u + ū

M(u + ū)

)
. Since ‖u‖ < ∞ it follows that ‖u + ū‖ū < ∞. As

Proposition3.1 is satisfied, themap τ + τ̄ �→ Φ + Φ̄ is bounded, and sinceu + ū �→
τ + τ̄ is bounded, u + ū �→ Φ + Φ̄ is bounded. Hence ‖M(u + ū)‖ū = ‖Φ +
Φ̄)‖Φ̄ < ∞ and x ∈ GM which means the mapping: Ψ (x) = Ψ

(
u + ū

M(u + ū)

)
=

( u + ū1
N(u + ū1)

)
= y is surjective. Finally, note that Ψ

( ū
Φ̄

)
=

( ū1

Φ̄1

)
. �

Proposition3.2 enables us to use awell-establishedmeasure of the difference between
the true plant, N , and the nominal plant model, M, as follows:

Definition 3.2 The non-linear biased gap metric measures the mismatch
between the plant model M and the true system N . It is defined as

δ(M, N) := inf
{
‖(Ψ − I)GM ‖( ū

Ψ̄

) : Ψ is a causal, surjective map from

GM to GN with Ψ
( ū
Φ̄

)
=

( ū1

Φ̄1

)}
, (3.43)
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and if the conditions of Proposition3.2 are satisfied, it can be bounded as

δ(M, N) ≤ sup
‖u‖
=0

‖(N |ū1 − M|ū)u‖
‖u‖ (3.44)

where P|xu = P(u + x) − Px for an operator P and set-point x.

Proof Proposition3.2 guarantees existence of subjective map Ψ
( u + ū

M(u + ū)

)
=

( u + ū1
N(u + ū1)

)
. Hence insertion in definition (3.43) yields

δ(M, N) ≤ ‖(Ψ − I)GM ‖( ū
Φ̄

)

= sup
x∈GM\{0}

∥∥∥(Ψ − I)x − (Ψ − I)
( ū
Φ̄

)∥∥∥

∥
∥∥x −

( ū
Φ̄

)∥∥∥

≤ sup(
u + ū

M(u + ū)

)
∈GM\{0}

∥∥
∥(Ψ − I)

( u + ū
M(u + ū)

)
− (Ψ − I)

( ū
Φ̄

)∥∥
∥

∥∥∥
( u + ū

M(u + ū)

)
−
( ū
Φ̄

)∥∥∥

= sup(
u + ū

M(u + ū)

)
∈GM\{0}

∥∥∥
( u + ū1

N(u + ū1)

)
−
( u + ū

M(u + ū)

)
−
(( ū1

N ū1

)
−
( ū

Mū

))∥∥∥

∥∥∥
( u

M(u + ū) − Mū

)∥∥∥

= sup
‖u‖
=0

∥∥∥
( 0
(N(u + ū1) − N ū1) − (M(u + ū) − Mū)

)∥∥∥

∥∥
∥
( u

M(u + ū) − Mū

)∥∥
∥

≤ sup
‖u‖
=0

∥∥(N(u + ū1) − N ū1) − (M(u + ū) − Mū)
∥∥

‖u‖ .

�
We can now state the main robustness result, which provides robust performance
bounds for the closed-loop system [N, K] of Fig. 3.3b containing the true plant model
N . This differs from the nominal feedback system [M, K] of Fig. 3.3a with identified
plant model M due to unmodeled dynamics and the presence of time-varying effects
such as fatigue and spasticity.
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Theorem 3.3 Let K be selected to stabilize the nominal plant M by satisfying

‖ΠM//K‖( 0
Φ̂

) = sup∥∥∥
(

u0
y0

)∥∥∥
=0

∥∥∥ΠM//K

( u0

y0 + Φ̂

)
−
( ū
Φ̄

)∥∥∥

∥∥∥
(u0

y0

)∥∥∥
≤ bM//K < ∞.

(3.45)

Then the true feedback system [N, K] is BIBO stable if

δ(M, N) < b−1
M//K (3.46)

and its performance is bounded with respect to its operating point as

‖ΠN//K‖( 0
Φ̂

) ≤ bM//K
1 + δ(M, N)

1 − bM//Kδ(M, N)
(3.47)

Proof This theorem is proved in [18] and requires that [M, K] and [N, K] are well
posed, which is guaranteed by structures (3.1) and (3.2). �

The bound bM//K in (3.45) is the familiar ‘gain margin’ of the nominal system
with respect to its operating point. The requirement of nominal stability, bM//K < ∞,
is a generalization of Definition3.1 and Theorem3.2, which both comprise necessary
conditions. In particular, if K = 0, then satisfying (3.45) reduces to the requiring that
M is BIBO stable which is established by Proposition3.1.

Theorem3.3 together with gap bound (3.44) provides a powerful tool with which
to study the effect of uncertainties on ES feedback control systems. However its
practical utility is increased by localizing the most likely sources of modeling uncer-
tainty. To do this we substitute representations (3.38)–(3.42) into Theorem3.3 and
restrict uncertainty to the most common sources of model inaccuracy. To illustrate
this approach we next consider muscle fatigue which we assume to take the form of
modeling inaccuracy within IRC component hIRC.

Proposition 3.3 Let M and N satisfy the conditions of Proposition3.2 and
the controller be designed such that the nominal closed-loop system [M, K]
satisfies (3.45). Suppose a model mismatch exists between true and modeled
IRC components, h̃IRC and hIRC respectively. Then the true system [N, K] has
a robust stability margin, and in particular is stable if

ΔIRC <
b−1

M//K − ‖HRBFm|w̄1 − HRBFm|w̄‖‖hIRC|ū‖
‖HRBFm|w̄1‖

(3.48)
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where the model mismatch is characterized by

ΔIRC = max
i

sup
‖u‖
=0

‖(h̃IRC,i|ū1,i − hIRC,i|ūi)u‖
‖u‖ (3.49)

and HRBFm|w̄ = HRB|τ̄ Fm(Φ, Φ̇)|w̄, HRBFm|w̄1 = HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1 are the
remaining plant components in M and N evaluated at their respective operat-
ing points. Furthermore, the gain bound for [N, K] satisfies

‖ΠN//K‖(ū1
Φ̄1

)≤ bM//K (1 + ΔIRC‖HRBFm|w̄1‖+‖HRBFm|w̄1 −HRBFm|w̄‖‖hIRC|u‖)
1−bM//K (ΔIRC‖HRBFm|w̄1‖+‖HRBFm|w̄1 −HRBFm|w̄‖‖hIRC|u‖)

(3.50)

Proof From Proposition3.2 a surjective map Ψ exists from GM to GN . Then note the
expression M|ū1 in (3.44) is

M(u + ū) − Mū = HRB|τ̄ Fm(Φ, Φ̇)|w̄HLADhIRC(ū + u)

− HRB|τ̄ Fm(Φ, Φ̇)|w̄HLADhIRC(ū)

= HRB|τ̄ Fm(Φ, Φ̇)|w̄HLADhIRC|ūu (3.51)

where w̄ = HLADhIRC(ū). Similarly, with w̄1 = HLADhIRC(ū1), N |ū1 is given by

N(u + ū1) − N ū1 = HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1HLADhIRC|ū1u. (3.52)

Inserting these in (3.44) and assuming without loss of generality ‖HLAD‖ = 1 gives

δ(M, N) ≤ sup
‖u‖ 
= 0

Φ − Φ̄, Φ̇ − ˙̄Φ ∈ L
p
2

‖(HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1HLADh̃IRC|ū1−HRB|τ̄ Fm(Φ, Φ̇)|w̄HLADhIRC|ū)u‖
‖u‖

≤ sup
‖u‖ 
= 0

Φ − Φ̄, Φ̇ − ˙̄Φ ∈ L
p
2

‖(HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1 − HRB|τ̄ Fm(Φ, Φ̇)|w̄)u‖
‖u‖ sup

‖u‖
=0

‖hIRC|ūu‖
‖u‖

+ sup
‖u‖
=0

‖(h̃IRC|ū1 − hIRC|ū)u‖
‖u‖ sup

‖u‖ 
= 0

Φ − Φ̄1, Φ̇ − ˙̄Φ1 ∈ L
p
2

‖HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1u‖
‖u‖ .

(3.53)



3.3 Robust Performance 39

The decoupled form of hIRC means that δ(M, N) ≤ ΔIRC‖HRBFm|w̄1‖ + ‖HRBFm|w̄1

− HRBFm|w̄‖‖hIRC|u‖ and it follows that

ΔIRC‖HRBFm|w̄1‖ + ‖HRBFm|w̄1 − HRBFm|w̄‖‖hIRC|u‖ < b−1
M//K (3.54)

guarantees (3.46) is met which can be rearranged to give (3.48). �

Proposition3.3 provides a condition for robust stability in a realistic situation that
is highly relevant to rehabilitation. More generally it illustrates how Theorem3.3
and gap bound (3.44) can be applied to yield stability conditions given assumptions
on where the model uncertainty lies. For example, by inserting the full structure of
controller K and plant M dynamics, explicit stability conditions can also be obtained
for any parameter appearing in the plant description (2.6) that is subject to uncertainty.
This is performed for the case of input-output linearization in [19]. The gain bound
(3.50) arises by substituting the left-hand side of (3.54) into (3.47) and characterizes
the true performance: the lower the right-hand side of (3.50) the closer the output of
the true system follows Φ̄1.

There exist many control approaches to stabilize M. However, often a simple
scheme is most appropriate if plant knowledge is limited and tuning heuristic. The
next proposition gives a stability condition when only a local linear model of the
dynamics M : u �→ Φ is available and is used to design feedback controller K .

Proposition 3.4 Let N satisfy Proposition3.2. Suppose linear approximations
to the dynamics HRB, tendon function Fm and muscle curve hIRC, given by
HRBFm and h̄IRC respectively, are used to construct the stable nominal model
M = HRBFmHLADh̄IRC, and then used to design K satisfying (3.45). Then the
true system [N, K] has a robust stability margin, and in particular is stable if

ΔIRC <
b−1

M//K − ΔRB‖h̄IRC‖
‖HRBFm|w̄1‖

or ΔIRC <
b−1

M//K − ΔRB‖hIRC|ū1‖
‖HRBFm‖

(3.55)

where the muscle uncertainty and deviation from linearized dynamics are
respectively characterized by

ΔIRC = max
i

sup
‖u‖
=0

‖(h̃IRC,i|ū1,i − h̄IRC,i)u‖
‖u‖ , ΔRB = ‖HRBFm|w̄1 − HRBFm‖.

Proof This follows by inserting the form M = HRBFmHLADh̄IRC into (3.53) and into
the analogous expression

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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δ(M, N) ≤ sup
‖u‖ 
= 0

Φ, Φ̇ ∈ L
p
2

‖(HRB|τ̄ 1Fm(Φ, Φ̇)|w̄1 − HRB|τ̄ Fm(Φ, Φ̇)|w̄)u‖
‖u‖ sup

‖u‖
=0

‖hIRC|ū1u‖
‖u‖

+ sup
‖u‖
=0

‖(h̃IRC|ū1 − hIRC|ū)u‖
‖u‖ sup

‖u‖ 
= 0
Φ, Φ̇ ∈ L

p
2

‖HRB|τ̄ Fm(Φ, Φ̇)|w̄u‖
‖u‖

�
Proposition3.4 addresses the important case where a linear model is used for design,
and provides transparent, intuitive bounds on the model inaccuracy that can be tol-
erated to maintain stability of the true closed-loop system. The amount of modeling
inaccuracy that can be accommodated can, in principle, be made arbitrarily large by
tuning feedback controller K for increased robustness rather than performance.

As well as yielding explicit robust performance bounds, the framework presented
in this section directly leads to the following guidelines for feedback control design.

Procedure 2 (Design guidelines for robust stability)

Minimise bM//K : Design feedback controller to minimize bM//K via (3.45).
Alternatively design several feedback controllers and switch to one with a
smaller bM//K between task attempts if the system shows signs of instability.
Reduce modeling uncertainty: This directly reduces the mismatch δ(M, N),
but requiresmore identification tests, and cannot in practice characterize unpre-
dictable time-varying dynamic effects such as spasticity.
Choose an appropriate linearization point: If designing K based on a lin-
earized description of dynamics M, ΔRB is minimized if the operating point
corresponds to that of the true plant (i.e. w̄1).
Reduce norm of HRB, Fm(Φ, Φ̇), HLAD, hIRC components: These norms
multiple uncertainty terms and can be reduced by, e.g. reducing stimulation
levels, changing mechanical structure and applying passive/active support.

Reducing bM//K increases robustness but inevitably reduces tracking performance
which degrades rehabilitation outcomes. This can be addressed by adding a feedfor-
ward control signal, and is the subject of the next chapter.

3.4 Case Study: Proportional-Integral-Derivative Controller

To illustrate how the previous results can be applied, we now design a feedback
controller K using a linearized model of the upper arm system. To provide such
a model, we take the clinically relevant system that was identified in Sect. 2.2.5,
and linearize it about the set-point φ2 = π

4 , φ5 = π
2 . This produces the plant model

(where we have restricted attention to the controlled joints, and then applied model
reduction):

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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⎡

⎣
−0.00178s5+0.0349s4−0.361s3+2.72s2−2.11s

s5+2.51s4−1.17s3−2.87s2−1.76s+2.55
0.0015s3−0.00871s2+0.0798s

s3+233s2−407s+177

−0.00967s3+0.0357s2−0.0433s
s3+4.40s2−9.91s+4.63

−0.00293s5+0.0577s4−0.602s3+4.56s2−3.55s
s5+2.56s4−1.02s3−3.3s2−1.51s+2.52

⎤

⎦ .

(3.56)

Note that the strongly diagonal form reflects that the joint angles were chosen to align
with stimulated muscles in order that Fm and HRB are diagonalized, reducing ΔRB.

We then use (3.56) to design a proportional-integral-differential (PID) controller.
This controller corresponds to structure (3.2) with the terms

f c(xc(t), e(t)) = diag

{[− 1
c 0
1 0

]
,

[− 1
c 0
1 0

]}
xc(t) + diag

{[
1
0

]
,

[
1
0

]}
e(t),

hc(xc(t), e(t)) = diag
{[(

ki1 − kd1
c2

)
ki1
c

]
,
[(

ki2 − kd2
c2

)
ki2
c

]}
xc(t)

+ diag

{(
kp1 + kd1

c

)
,

(
kp2 + kd2

c

)}
e(t)

where kp1, kp2, kd1, kd2, ki1, and ki2 are controller gains, and c is a small positive scalar.
We first choose gains Kp1 = 28.8, Kp2 = 19.2, Ki1 = 48.4, Ki2 = 28.4, Kd1 = 0.24
and Kd2 = 0.16 in order to achieve a response time of 2 s. This gives rise to a value
of bM//K = 1.72. When K is applied to the true upper arm dynamics N , the resultant
closed loop system [N, K] is therefore stable if

δ(M, N) < 0.58. (3.57)

This constrains the true plant to a ‘ball’ in the uncertainty space with radius 0.58,
centred on M.

Next these gains are modified to achieve a response time of 1 s by setting Kp1 =
6.2, Kp2 = 3.6, Ki1 = 119, Ki2 = 71.2 and Kd1 = Kd2 = 0.04. This gives rise to
a value of bM//K = 2.25. When K is applied to the true upper arm dynamics N ,
stability condition (3.57) is replaced by

δ(M, N) < 0.44.

The ball in which the true plant must belong has therefore shrunk and now has
a radius of only 0.44. This illustrates the compromise between performance and
robust stability. The PID control structure is tested experimentally in Sect. 4.3.

3.5 Conclusions

This chapter has developed a framework for the design of a feedback controller K
to assist reference tracking using ES. The focus has been on stabilizing all joints
in the mechanically supported anthropomorphic system, including those which may
not be involved in the prescribed tracking task. By applying mild conditions on the

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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system, robust performance tools have then been employed to derive conditions for
the true plant, N , to be stabilized. These conditions also quantify the performance of
the closed-loop system [N, K] as a function of the distance that the true plant is from
the nominal model, M, used for design (as measured by the gap metric δ(M, N)).

The next chapter focuses on how tracking performance can be further improved
by exploiting the inherently repetitive nature of rehabilitation.
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Chapter 4
Iterative Learning Control Design

Having developed tools to design robust feedback controllers that deliver guaranteed
performance bounds in the presence of model uncertainty and external disturbance,
we now augment the control structure to further improve tracking accuracy. To do
this we exploit the inherently repetitive nature of the rehabilitation process, which
involves neurologically impaired participants repeatedly performing tracking move-
ments with their affected arm, with a rest period in between attempts during which
their arm is returned to the starting position. We will use the data collected over pre-
vious task attempts to adjust the control action in order to compensate for tracking
error on the subsequent task attempt.

The framework we employ is called iterative learning control (ILC), and has
been used for three decades primarily for the control of industrial robots performing
repeated tasks. The ILC paradigm addresses tracking of a fixed reference trajectory
over a finite time interval of length T seconds. Each attempt is termed a ‘trial’, and
the system is reset between trials to the same starting position. The tracking error is
recorded during each trial, and in the reset period between trials it is used to update
the control signal with the aim of reducing the error during the subsequent trial. There
are a great number of methods available to compute this update, and an overview is
available in [1, 2].

ILC has been successfully used by several groups to assist lower limb motion
using ES, see for example [3–6]. Feasibility of using ILC for upper limb stroke
rehabilitation was first established in [7] where ES was applied to the triceps muscle
to assist impaired participants’ completion of a reaching task. In particular, each
participant’s hand was strapped to a robot end-effector and they attempted to follow
a target moving along an illuminated elliptical track. Each participant attempted this
task six times, and between attempts the ILC algorithm updated the stimulation to be
applied on the next attempt using a dynamic model of the arm [8, 9]. High levels of
tracking accuracy were achieved by ILC [9, 10], which translated into statistically
significant results across a range of outcome measures when used in clinical trials

© Springer International Publishing Switzerland 2016
C. Freeman, Control System Design for Electrical Stimulation
in Upper Limb Rehabilitation, DOI 10.1007/978-3-319-25706-8_4
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46 4 Iterative Learning Control Design

with stroke participants spanning 18–25 treatment sessions [7, 11, 12]. The models
and controllers used in these feasibility studies all fit within the framework developed
in this book.

4.1 General ILC Framework

Chapter3 considered the design of feedback controller K : e �→ u to stabilise the
system shown in Fig. 3.1 and achieve some level of tracking performance for the
controlled joints, ΦP . The resulting closed-loop system [M, K ] is represented by

G :L p
2 [0, T ] → L

p
2 [0, T ] : Φ̂ �→ Φ

:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
ẋs(t)
ẋc(t)

]

︸ ︷︷ ︸
ẋ(t)

=
[

f s(xs(t)) + gs(hc(xc(t), Φ̂(t) − hs(xs(t))))
f c(xc(t), Φ̂(t) − hs(xs(t)))

]

︸ ︷︷ ︸
f (x(t), Φ̂(t))

Φ(t) = hs(xs(t))︸ ︷︷ ︸
h(x(t))

, t ∈ [0, T ].

(4.1)

where T is the task duration. The tracking error of the controlled joints is measured
using eP , which can be written in terms of G as eP = Φ̂P − GP Φ̂. Here Φ̂P is the
reference trajectory, and the following notation extracts the output associated with
the controlled joints from operator G:

Lemma 4.1 The relationship between the reference and controlled joints is
defined by the map

GP : L p
2 [0, T ] → L

n p
2 [0, T ] : Φ̂ �→ ΦP (4.2)

with components

GP Φ̂ = (GΦ̂)P =

⎡

⎢⎢
⎣

(GΦ̂)P(1)
.
.
.

(GΦ̂)P(n p)

⎤

⎥⎥
⎦ , (GΦ̂)P(i) : L p

2 [0, T ] → L2[0, T ] : Φ̂ �→ φP(i)

and since f (·), h(·) are continuous, GP is unique and continuous [13].

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Fig. 4.1 ILC scheme added to feedback structure [M, K ]

We now add a feedforward signal v to the previous control scheme, producing the
structure shown in Fig. 4.1. Here subscript k = 1, 2, . . . denotes the trial number.
Signals vk ∈ L

p
2 [0, T ] andΦk ∈ L

p
2 [0, T ] are the ILC input and joint angle outputs

respectively on the kth trial, and the tracking error on trial k is ek = Φ̂ − Φk ∈
L

p
2 [0, T ]. Note that the analysis which follows can equally be applied to the case

where the ILC input is placed between the feedback controller K and the stimulated
arm system M , and yields similar results.

The ILC problem is to ultimately generate a feedforward signal v∞ which mini-
mizes the norm of the controlled joint tracking error. This can be stated as:

v∞ := min
v

J (v), J (v) = ∥
∥ Φ̂P − GP (Φ̂ + v)︸ ︷︷ ︸

eP

∥
∥2. (4.3)

In the ILC framework this problem is solved using iterative optimization methods
which employ experimental data to embed robustness against model uncertainty.
When the system GP is nonlinear, this can be accomplished using successive linear
approximation of the system dynamics, as stated in the following theorem:

Theorem 4.1 Consider the ILC update sequence

vk+1 = vk + Lk(ek)P , k = 0, 1, . . . (4.4)

If learning operator Lk : L n p
2 [0, T ] → L

p
2 [0, T ] is designed to satisfy

∥∥I − ḠP |
Φ̂+v∞ Lk

∥∥ < 1 ∀ k (4.5)

where the operator norm is induced from the inner product 〈·, ·〉, then

lim
k→∞(ek)P = 0 (4.6)
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and, for v0 chosen sufficiently close to v∞, the ILC update converges to

lim
k→∞(Φ̂ + vk) = L∞(ḠP |

Φ̂+v∞ L∞)−1Φ̂P . (4.7)

Alternatively, if the learning operator Lk is chosen to satisfy

‖I − Lk ḠP |
Φ̂+v∞‖ < 1 ∀ k (4.8)

then, for v0 chosen sufficiently close to v∞, the ILC update converges to

lim
k→∞(Φ̂ + vk) = (L∞ḠP |

Φ̂+v∞)−1L∞Φ̂P . (4.9)

Proof This result follows from application of conditions in [14] for solving the non-
linear equation Φ̂P − GP (Φ̂ + v) = 0 using iterative minimization. In particular,
on each iteration the error dynamics locally satisfy

(ek+1)P = (
I − ḠP |

Φ̂+vk
Lk

)
(ek)P (4.10)

so that, if (4.5) holds, the error converges monotonically to zero since

‖(ek+1)P‖ ≤ ‖I − ḠP |
Φ̂+vk

Lk‖‖(ek)P‖ < ‖(ek)P‖ ∀ k.

If v0 is sufficiently close to v∞, then ḠP |
Φ̂+vk

= ḠP |
Φ̂+v∞ and Lk = L∞ ∀ k, so

that

(ei )P =
i∏

j=0

(
I − ḠP |

Φ̂+v̄ j
L j

)
(e0)P = (

I − ḠP |
Φ̂+v∞ L∞

)i
(e0)P (4.11)

yielding the input expression

vk+1 = v0 + L∞
k∑

i=0

(ei )P = v0 + L∞
k∑

i=0

(
I − ḠP |

Φ̂+v∞ L∞
)i

(e0)P

= v0 + L∞
k∑

i=0

(ei )P = v0 + L∞
k∑

i=0

(
I − ḠP |

Φ̂+v∞ L∞
)i

× (
Φ̂P − ḠP |

Φ̂+v∞(Φ̂ + v0)
)
. (4.12)
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Since we have assumed that (4.5) holds, we have the limit

lim
k→∞ vk = v0 + L∞

(
I − (

I − ḠP |
Φ̂+v∞ L∞

))−1(
Φ̂P − ḠP |

Φ̂+v∞(Φ̂ + v0)
)

(4.13)

= L∞
(
ḠP |

Φ̂+v∞ L∞
)−1

Φ̂P − Φ̂.

Under the same assumption, we also note that the direct input update sequence is

vk+1 = vk + L∞
(
Φ̂P − ḠP |

Φ̂+v∞(Φ̂ + vk)
)

= (
I − L∞ḠP |

Φ̂+v∞
)
vk + L∞

(
Φ̂P − ḠP |

Φ̂+v∞Φ̂
)

= (
I − L∞ḠP |

Φ̂+v∞
)kv0 +

k∑

i=0

(
I − L∞ḠP |

Φ̂+v∞
)i

L∞
(
Φ̂P − ḠP |

Φ̂+v∞Φ̂
)

(4.14)

and if (4.8) holds we obtain the limiting input

v∞ = (
I − (

I − L∞ḠP |
Φ̂+v∞

))−1
L∞

(
Φ̂P − ḠP |

Φ̂+v∞Φ̂
)

= (
L∞ḠP |

Φ̂+v∞
)−1

L∞
(
Φ̂P − ḠP |

Φ̂+v∞Φ̂
) = (

L∞ḠP |
Φ̂+v∞

)−1
L∞Φ̂P − Φ̂.

Setting v0 = 0 in (4.12) and (4.14) we can also conclude

L∞
k∑

i=0

(
I − ḠP |

Φ̂+v∞ L∞
)i =

k∑

i=0

(
I − L∞ḠP |

Φ̂+v∞
)i

L∞ ∀ k. (4.15)

�

Here ḠP |v̄ : L p
2 [0, T ] → L

n p
2 [0, T ] denotes the system obtained by linearizing

GP about operating point v̄, and can be computed using the following result.

Lemma 4.2 Around operating point v̄, dynamics ΦP = GPv are represented
by linear time-varying (LTV) state-space system Φ̃P = Ḡ|v̄ṽ, where

˙̃x(t) = A(t)x̃(t) + B(t)ṽ(t)
Φ̃P (t) = C(t)x̃(t), x̃(0) = x̄(0), t ∈ [0, T ] (4.16)

with

A(t) =
(

∂

∂x
f (x(t), v(t))

)

x̄(t),v̄(t)
, B(t) =

(
∂

∂v
f (x(t), v(t))

)

x̄(t),v̄(t)

C(t) =
(

d

dx
hP (x(t))

)

x̄(t)
(4.17)
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with corresponding map Ḡ|v̄ : L p
2 [0, T ] → L

n p
2 [0, T ] : ṽ �→ Φ̃P given by

(Ḡ|v̄ṽ)(t) =
∫ t

0
C(t)Γ (t, τ )B(τ )ṽ(τ )dτ

where Γ (t, τ ) is the state transition matrix for system (4.16).

Depending on the system dynamics and choice of input and output sets, problem
(4.3) may have a single or an infinite number of solutions, v∞. To examine whether
perfect tracking is possible, denote the set of achievable joint motions as

im(GP ) := {
y = GP x | x ∈ L

p
2 [0, T ]} . (4.18)

We next show how ILC update operator Lk can be chosen to satisfy (4.5) in the case
that perfect tracking is possible, or to satisfy (4.8) in the case that it is not.

Theorem 4.2 Within (4.4) let the ILC operator be given by

Lk = (Ḡ|
Φ̂+vk

)∗
(
I + Ḡ|

Φ̂+vk
(Ḡ|

Φ̂+vk
)∗

)−1
. (4.19)

Setting vk+1 − vk = Δvk , this is equivalent to solving

Δvk := min
Δv

{
‖Δv‖2R + ‖(ek)P − Ḡ|

Φ̂+vk
Δv‖2Q

}
, v0 = 0. (4.20)

with symmetric positive-definite weights R, Q, and ‖x‖2A = ∫ T
0 x(t)� Ax(t)δt .

If Φ̂P ∈ im(GP ) this satisfies (4.5) and generates an input sequence satisfying

lim
k→∞ vk = v∞, v∞ := min

v
‖v‖2 s. t. eP = Φ̂ −GP (Φ̂ +v) = 0. (4.21)

If Φ̂P /∈ im(GP ) this satisfies (4.8) and generates an input sequence satisfying

lim
k→∞ vk = v∞, v∞ := min

v

∥∥eP
∥∥2. (4.22)

Proof A necessary condition for local error convergence on trial k is that ∃ σ > 0
satisfying 〈e, Ḡ|

Φ̂+vk
(Ḡ|

Φ̂+vk
)∗e〉 ≥ σ 2‖e‖2, ∀ e. If σ > 0 the solution to (4.20)

is then Δvk = Lk(ek)P with Lk given by (4.19) which satisfies (4.21) since ‖I −
Ḡ|

Φ̂+vk
Lk‖ ≤ (1 + σ 2)−1 < 1 ∀ k so that ‖(ek+1)P‖ < ‖(ek)P‖∀ k. The limit

(4.7) is given by
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v∞ = (Ḡ|
Φ̂+v∞)∗

(
I + Ḡ|

Φ̂+v∞(Ḡ|
Φ̂+v∞)∗

)−1

× (
Ḡ|

Φ̂+v∞(Ḡ|
Φ̂+v∞)∗

(
I + Ḡ|

Φ̂+v∞(Ḡ|
Φ̂+v∞)∗

)−1)−1
Φ̂P

= (Ḡ|
Φ̂+v∞)∗

(
Ḡ|

Φ̂+v∞(Ḡ|
Φ̂+v∞)∗

)−1
Φ̂P . (4.23)

If σ = 0 then (4.19), which can also be written as

Lk = (
I + (Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk

)−1
(Ḡ|

Φ̂+vk
)∗, (4.24)

gives ‖I −Ḡ|
Φ̂+vk

Lk‖ = 1, however if ∃ ε > 0 satisfying 〈e, (Ḡ|
Φ̂+vk

)∗Ḡ|
Φ̂+vk

e〉 ≥
ε2‖e‖2, ∀ e, then

‖I − Lk Ḡ|
Φ̂+vk

‖ = ‖I − (
I + (Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk

)−1
(Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk
‖

= ‖(I + (Ḡ|
Φ̂+vk

)∗Ḡ|
Φ̂+vk

)−1‖ = (1 + ε2)−1 < 1,

and from (4.14), with v0 = 0,

v∞ =
k∑

i=0

(
I − L∞ḠP |

Φ̂+v∞
)i

L∞Φ̂P

= I − (
I + (Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk

)−1(
I + (Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk

)−1
(Ḡ|

Φ̂+vk
)∗Φ̂P

= (
(Ḡ|

Φ̂+vk
)∗Ḡ|

Φ̂+vk

)−1
(Ḡ|

Φ̂+vk
)∗Φ̂P (4.25)

locally satisfying condition (4.22). In (4.19) and (4.24) cases adjoint operator
(Ḡ|

Φ̂+vk
)∗ : L n p

2 [0, T ] → L
p
2 [0, T ] is given by

((Ḡ|
Φ̂+vk

)∗z)(t) =
∫ t

0
R−1(t)B�(t)Γ (t, τ )C�(τ )Q(τ )z(τ )dτ

withΓ (t, τ ) the state transitionmatrix for state space system {A�(t), C�(t), B�(t)},
and hence can be computed efficiently using the adjoint system

˙̃x(t) = −A�(t)x̃(t) − C�(t)Q(t)z(t) (4.26)

((Ḡ|
Φ̂+vk

)∗z)(t) = R−1(t)B�(t)x̃(t), x̃(T ) = 0, 0 ≤ t ≤ T . �

The update of Theorem4.2 corresponds to the well-known norm optimal ILC update
[15–18], and addresses the demands of rehabilitation by allowing the designer to bal-
ance change in control input from trial-to-trial and the corresponding error reduction.
Asmore weight is applied to the right-hand term in (4.20), the algorithm corresponds
to Newton method based ILC [19], which can be implemented using the simple pro-
cedure outlined next:
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Lemma 4.3 Choosing R = rI, Q = qI, q/r → ∞, the ILC update (4.19)
realizes minimizing solutions (4.23) or (4.25) respectively in a single iteration.
In both cases the required term Lk(ek)P in (4.4) can be efficiently computed
off-line between experimental trials as the outcome, ΔvJ , of J iterations of

ż(t) = −A�(t)z(t) − C�(t)
(
(ek)P (t) − Ḡ|

Φ̂+vk
Δv j

k (t)
)
,

Δv j+1
k (t) = Δv j

k (t) + αB�(t)z(t), z(T ) = 0, 0 ≤ t ≤ T .
(4.27)

where J and α > 0 are sufficiently large and small values respectively.

Proof As q/r → ∞, updates (4.19) and (4.24) respectively converge to

Lk = (Ḡ|
Φ̂+vk

)∗
(
Ḡ|

Φ̂+vk
(Ḡ|

Φ̂+vk
)∗

)−1
, Lk = (

(Ḡ|
Φ̂+vk

)∗Ḡ|
Φ̂+vk

)−1
(Ḡ|

Φ̂+vk
)∗

which it is shown in [20] correspond to solutions of the minimum energy problem

min
Δvk

∥∥(ek)P − Ḡ|
Φ̂+vk

Δvk
∥∥2, v0 = 0. (4.28)

using gradient ILC [21]. This equates to j = 1, 2, . . . , J inter-trial iterations of
update

Δv j+1
k = Δv j

k + α(Ḡ|
Φ̂+vk

)∗
(
(ek)P − Ḡ|

Φ̂+vk
Δv j

k

)
, Δv0k = 0. (4.29)

Scalar α ∈ R+ must satisfy 0 < α < 2
σ
, where σ is the smallest σ > 0 that satisfies

〈e, Ḡ
Φ̂+vk

Ḡ∗
Φ̂+vk

e〉 ≤ σ 2‖e‖2,∀e. Using (4.26), update (4.29) yields (4.27). �

Whatever ILC update operator Lk is chosen, bounds on the convergence rate of the
approach of Theorem4.1 follow from properties of iterativeminimization techniques
established in [14]. These provide an upper bound on the convergence rate as a
function of the magnitude of the linearized system, nonlinearity, and proximity of
the initial input to the solution. However, these are only valid locally around the
operating point of each trial and thereforewewill undertake a comprehensive analysis
of robustness in Sect. 4.4.

The convergence of ILC to a fixed solution, v∞, of problem (4.3), enables us to
update our initial stability result of Theorem3.2 as follows:

Theorem 4.3 Let ILC operator Lk satisfy (4.5). Then the controlled joints
converge to reference Φ̂P , and the uncontrolled joints are locally stable if
Theorem3.2 is satisfied using operating-point (τ ∗

P̄
(Φ∗

P̄
),Φ∗

P̄
)

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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where
Fe(Φ

∗
P̄

) + GP̄ (Φ∗
P̄

) + KP̄ (Φ∗
P̄

) = τ ∗
P̄

(Φ∗
P̄

)

with

τ ∗
P̄

(Φ∗
P̄

) = τP̄

(
K v∞, Φ̂P , Φ̂

(1)
P

) − CP̄P (Φ∗
P̄

)Φ̂
(1)
P − BP̄P (Φ∗

P̄
)Φ̂

(2)
P .

Proof Follows from Theorem4.1, with substitution of resulting operating point Φ̄ =
Φ̂P into Definition3.1, Theorems3.1 and 3.2. �

4.2 Case Study: ILC Applied to Input-Output Linearized
System

In the special case that feedback controller K is selected to linearize the system
dynamics, the relationship GP : Φ̂ �→ ΦP is linear. It follows that system Ḡ|

φ̂+vk
=

GP ∀ k and the properties of Theorem4.1 hold globally.
To illustrate this, consider the electrically stimulated, mechanically assisted arm

system that was introduced in Sect. 2.2.5, and let feedback controller K be chosen
as the input-output linearizing controller of (3.27) developed in Sect. 3.2. About any
operating point, v̄, system Ḡ|v̄ then corresponds to the LTI system given in transfer-
function form

GP (s) = Ḡ|
φ̂+vk

= C(sI − A)−1B ∀ k (4.30)

with A, B and C matrices defined by:

A =

⎡

⎢
⎢
⎣

0 I 0 0
0 0 I 0
0 0 0 I

−A0 −A1 −A2 −A3

⎤

⎥
⎥
⎦, B =

⎡

⎢
⎢
⎣

0
0
0
A0

⎤

⎥
⎥
⎦, C = [ I 0 · · · 0 ],

which writing A j = diag{a1, j , a2 j }, j = 0, . . . , 3, gives rise to the form

GP(s) =
⎡

⎢
⎣

a10
s4 + a13s3 + a12s2 + a11s + a10

0

0
a20

s4 + a23s3 + a22s2 + a21s + a20

⎤

⎥
⎦.

To design an ILC operator Lk for this system which satisfies (4.5), we will employ
Theorem4.2. This involves minimizing the quadratic objective function of (4.20),

which since

[
(ek(t))2
(ek(t))5

]
− GPΔv =

[
(ek+1(t))2
(ek+1(t))5

]
, specifies in the current case to

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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∫ T

t=0

{
(vk+1(t) − vk(t))

� R(vk+1(t) − vk(t))

+ [
(ek+1(t))2, (ek+1(t))5

]
Q

[
(ek+1(t))2
(ek+1(t))5

]}
dt (4.31)

where T is the duration of the task. Through selection of symmetric positive-definite
weighting matrices R and Q, this objective function allows the designer to balance
accuracy of task completion with the amount of ES applied to assist the impaired
participant’s movement. The solution to minimizing (4.31) is given by (4.19), which
specifies in the current case to the update

vk+1 = vk + G∗(s)(I + G(s)G∗(s))−1
︸ ︷︷ ︸

Lk (s)

(ek )P︷ ︸︸ ︷[
(ek)2
(ek)5

]
. (4.32)

This can be implemented efficiently using Lemma4.3. Alternatively, implementation
in discrete-time follows immediately from the matrix representation of operators
G(s) and (G∗(s))−1. A further alternative is the equivalent optimal state feedback
plus predictive feedforward action implementation of [22].

4.2.1 Test Procedure

Following ethical approval, feedback controller (3.27) and ILC update (4.32) were
experimentally implemented with three unimpaired subjects. Nine clinically relevant
reference trajectory pairs {φ̂2, φ̂5}were calculated to lift and extend the upper arm and
forearm in three directions, over three distances, as shown in Fig. 4.2. The duration
of each trajectory, T , was set at 20 s. All tests used sampling frequencies of 1000 and
40Hz for signal capture and computation respectively.

Each unimpaired subject was seated in the ArmeoSpring, which was adjusted to
their individual arm dimensions. The level of support in each spring was modified so
that their armwas raised 5cm above their lap. The identification procedure described
in Sect. 2.2.5was conducted to produce the systemmodel of (2.7) relating stimulation
u to angular movement Φ. The optimal weights used in (3.25) to compute matrices
Ai , i = 0, . . . , 3 were R̃ = 0.01 and Q̃ = I , as these were found to achieve a
satisfactory balance between tracking accuracy and oscillatory behavior across all
subjects. Similarly, weights of R = I , Q = 5I were found to achieve a satisfactory
compromise between convergence rate and robustness of the ILC update (4.32).

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Fig. 4.2 The arm’s location, axis and the nine possible participant-specific reference trajectories:
made up of direction (centre, off centre, far) and distance (proximal, middle and distal)

4.2.2 Experimental Results

Tests with each subject comprised 10 trials of the far-distal and far-middle trajec-
tories, and summary data are shown in Table4.1. Representative tracking results
for joints φ2 and φ5 are shown in Fig. 4.3, together with the applied stimulation
pulsewidth signals u1 and u2. Corresponding error norm results are shown in Fig. 4.4.
The results confirm error convergence to low levels in a small number of trials, and
an input signal which is within comfortable limits.

To assess the stability of the unactuated joints, their movement from their initial
position, φi,k −φi,k(0), i ∈ P̄ = {1, 3, 4} is also quantified. The results confirm the

Table 4.1 Mean (standard deviation) error norms for unimpaired tracking task

I-O linearization + NOILC PID + Newton ILC

Far middle Far distal Far middle Far distal

‖e2,k‖2 Best trial only 3.5 (4.0) 4.2 (4.0) 3.4 (2.8) 3.3 (3.1)

Mean of first 6 trials 6.1 (8.1) 21.8 (20.9) 9.0 (8.2) 28.6 (25.9)

‖e5,k‖2 Best trial only 4.7 (4.3) 5.2 (4.9) 5.2 (4.9) 7.0 (6.1)

Mean of first 6 trials 15.1 (12.5) 30.5 (18.3) 21.9 (17.6) 47.9 (29.7)

‖φ1,k −φ1,k(0)‖2 Mean of all trials 7.4 (5.4) 8.8 (6.3) 12.3 (10.1) 16.6 (13.9)

Mean of first 6 trials 19.9 (15.1) 20.3 (17.5) 36.7 (25.6) 44.8 (34.7)

‖φ3,k −φ3,k(0)‖2 Mean of all trials 14.5 (10.8) 11.6 (9.2) 16.5 (12.7) 19.8 (16.1)

Mean of first 6 trials 28.3 (16.7) 33.0 (21.7) 42.2 (37.2) 51.6 (40.8)

‖φ4,k −φ4,k(0)‖2 Mean of all trials 11.0 (8.4) 16.3 (10.8) 15.7 (12.9) 18.7 (14.6)

Mean of first 6 trials 25.2 (22.1) 24.6 (23.8) 33.4 (26.5) 49.3 (37.0)
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Fig. 4.3 Trial k = 1, 10 signals for unimpaired Subject A using NOILC with Q = I , R = 5I

Fig. 4.4 Error norm results
for unimpaired Subject A
using NOILC with Q = I ,
R = 5I
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efficacy of the separate linearization and ILC actions, and confirm that a high level
of tracking accuracy is possible. They also support the analysis of Theorem3.2 that
oscillation in the uncontrolled joints is reduced by adding damping and appropriate
support about the operating point.

4.3 Case Study: ILC Applied to Non-linearized System

We next implement the ILC design procedure of Theorem4.1 with a feedback con-
troller that does not realise global linearization of the controlled joint dynamics. We
select the PID feedback controller that was considered in Sect. 3.4, and which has
previously yielded satisfactory performance within the rehabilitation domain [9].

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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This controller corresponds to

K :
{

ẋc,k(t) = f c(xc,k(t), ek(t) + vk(t))
uk(t) = hc(xc,k(t), ek(t) + vk(t)), t ∈ [0, T ]

with the functional forms

f c(xc,k(t), ek(t) + vk(t)) = diag
{[− 1

c 0
1 0

]
,
[− 1

c 0
1 0

]}
xc,k(t)

+ diag
{[ 1

0

]
,
[ 1
0

]}(
ek(t) + vk(t)

)
,

hc(xc,k(t), ek(t) + vk(t)) = diag
{[ (

ki1 − kd1
c2

) ki1
c

]
,
[ (

ki2 − kd2
c2

) ki2
c

]}
xc,k(t)

+ diag
{(

kp1 + kd1

c

)
,
(
kp2 + kd2

c

)}(
ek(t) + vk(t)

)

(4.33)

where kp1, kp2, kd1, kd2, ki1, and ki2 are controller gains, and c is a positive scalar.
Combined with identified arm model, this then yields closed-loop system (4.1).

Following Theorem4.1, the ILC update is given by (4.4) with learning operator Lk

computed after each task attempt using the linearized system description ḠP |
Φ̂+vk

.

Here Lemma4.2 is used to compute ḠP |
Φ̂+vk

using functions f (·), h(·) of the
controller dynamics (4.1).

We select Lk to correspond to the NOILC update of Theorem4.2, and use the
efficient implementation provided by Lemma4.3. Accordingly, system (4.27) is run
J = 100 times in between trials using a suitably small gain α, to provide the descent
term Lk(ek)P = Δvk which is then used in ILC update (4.4).

4.3.1 Experimental Results

The control scheme has been tested with six unimpaired subjects, employing the
same test procedure as in Sect. 4.2.1. These subjects undertook the far middle and far
distal tasks shown in Fig. 4.2. Figure4.5 shows representative tracking performance

(a) (b)

Fig. 4.5 Far middle error norm plots for unimpaired a Subject B and b Subject C
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Fig. 4.6 Far middle tracking performance for unimpaired Subject B (trial 10)

Fig. 4.7 Far middle tracking performance for unimpaired Subject C (trial 10)

results for two subjects (denoted B and C). The controller gains used with Subject B
are kp1 = kp2 = 20, ki1 = ki2 = 30, kd1 = kd2 = 2 and c = 0.01. The gains used
with Subject C are kp1 = kp2 = 5, ki1 = ki2 = 8, kd1 = kd2 = 1 and c = 0.01.
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The tracking error reduces quickly and maintains a low level over latter trials.
In some cases the error norm increases slightly in later trials because the subject’s
triceps started to suffer from fatigue. However, ILC was quickly able to modify the
stimulation to maintain a low error. Figures4.6 and 4.7 show tracking performance
over trial 10 for the same two subjects. These illustrate close reference tracking for
both controlled angles. Table4.1 includes summary statistics for all subjects, which
confirm high performance when applied to unimpaired subjects. In comparison with
the case-study of Sect. 4.2, it can be seen that the lack of decoupling action in the
Newton method based ILC scheme of Lemma4.3 causes transients which lead to
greater oscillation in the unactuated joint axes. Since the Newton based method is
designed without consideration of the unactuated joint dynamics, these degrade the
tracking performance of the actuated joints, leading to greater norms ||ei,k ||2, i ∈ P .

4.4 Robust Performance

In Chap.3 we derived robust stability conditions when feedback controller K is
employed with the true plant N . These required calculation of bound bM//K on the
map between external and internal signals when K is applied on the nominal plant
model M . This bound was then used to calculate the maximummismatch than can be
tolerated between the nominal and true plant while preserving closed-loop stability.
We now extend this analysis to include the ILC update loop that was introduced in
Sect. 4.1, and defined by (4.4) of Theorem4.1. To do this, we first embed the ILC
trial-to-trial update dynamics and the feedback controller ‘along the trial’ dynamics
within a single system description.

Since ILC runs over t ∈ [0, T ] during rehabilitation task attempts k = 0, 1, . . .,
we can express the dynamics of the kth trial as a single time instant of a so-called
‘lifted’ system [23]. To do this we first write the signals appearing in Fig. 4.1 as

vk = v(k) ∈ L
p
2 [0, T ], ek = e(k) ∈ L

p
2 [0, T ],

Φk = Φ(k) ∈ L
p
2 [0, T ], uk = u(k) ∈ L m

2 [0, T ],
and then define the corresponding lifted signal spaces

v ∈ L
p
2 [0, T ] × N, e ∈ L

p
2 [0, T ] × N, Φ ∈ L

p
2 [0, T ] × N, u ∈ L m

2 [0, T ] × N.

The lifted representation of the plant, feedback controller, and ILC operators are then
directly inherited from their non-lifted counterparts as:

M̄ : L m
2 [0, T ] × N → L p

2 [0, T ] × N : u �→ Φ : Φ(k) = Mu(k), (4.34)

K̄ : L p
2 [0, T ] × N → L m

2 [0, T ] × N : (v + e) �→ u : u(k) = K (v(k) + e(k)),

(4.35)

http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Fig. 4.8 ILC and feedback control scheme in lifted form (equivalent to Fig. 4.1 when u0 = y0 = 0)

L̄ : L p
2 [0, T ] × N → L p

2 [0, T ] × N : e �→ v : v(k+1) = v(k) + Le(k), v(0)=0
(4.36)

for k ∈ N+. Here M and K are respectively defined by (3.1) and (3.2) over t ∈ [0, T ],
and L is defined by (4.4) in Theorem4.1 with trial-dependence omitted for notational
simplicity. These definitions allow the nominal system of Fig. 4.1 to be equivalently
represented as in Fig. 4.8 which includes the external disturbances u0, y0. Here C̄ :
ẽ �→ ũ : ũ = K̄ (L̄ + I )ẽ, u(k) = u0(k)− ũ(k), ẽ(k) = Φ̂+ y0(k)−Φ(k). The lifted

projection operator from external to internal signals, ΠM̄//C̄ :
( u0

y0 + Φ̂

)
�→

( u
Φ

)
,

can then be used to bound the allowable mismatch between M̄ and true lifted system
N̄ defined by

N̄ : L m
2 [0, T ] × N → L

p
2 [0, T ] × N : u �→ Φ : Φ(k) = N u(k). (4.37)

with associated projection operator ΠN̄//C̄ :
( u0

y0 + Φ̂

)
�→

( u
Φ

)
. Using these defi-

nitions, we can directly apply Theorem3.3 to the lifted system simply by replacing
M by its lifted counterpart M̄ , and K by its lifted ILC counterpart C̄ . However to
produce a more useful result we first need to relate the gap metric between lifted
plants M̄ , N̄ to the gap metric between the original unlifted plants M , N that was
defined in Definition3.2.

Theorem 4.4 The gap metric measure of mismatch between lifted plant oper-
ators M̄ and N̄ can be related to the mismatch between their respective unlifted
counterparts M and N via

δ(M̄, N̄ ) ≤ sup
k∈N+

δk(M, N ) (4.38)

where the unlifted gap with respect to the kth trial operating point satisfies

δk(M, N ) ≤ sup
‖u‖�=0

‖(N |ū1(k) − M |ū(k))u‖
‖u‖ . (4.39)

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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If M is linear M |ū(k) = M ∀ k, and likewise for N. If both M and N are
linear operators then δk(M, N ) = δ(M, N ) ∀ k and

δ(M̄, N̄ ) ≤ δ(M, N ) ≤ sup
‖u‖�=0

‖(N − M)u‖
‖u‖ . (4.40)

Proof First note that {ū(k), Φ̄(k)}k=0,...,∞,with
( ū
Φ̄

)
= ΠM̄//C̄

( 0
Φ̂

)
, is the sequence

of operating point trajectories generated by [M̄, C̄] in the absence of disturbance,

and likewise {ū1(k), Φ̄1(k)}k=0,...,∞, with
( ū1

Φ̄1

)
= ΠN̄//C̄

( 0
Φ̂

)
, is the sequence of

operating point trajectories generated by [N̄ , C̄] in the absence of disturbance. From
Proposition3.2, the lifted graphs then are

GM̄ :=
⎧
⎨

⎩

( u
Φ

)
:
∥∥∥
( u
Φ

)∥∥∥(
ū
Φ̄

) =
( ∞∑

k=0

∥∥∥
( u(k)

Φ(k)

)∥∥∥
2
(

ū(k)

Φ̄(k)

)

) 1
2

< ∞,Φ(k) = Mu(k)

⎫
⎬

⎭
,

GN̄ :=
⎧
⎨

⎩

( u
Φ

)
:
∥∥
∥
( u
Φ

)∥∥
∥(

ū1
Φ̄1

) =
( ∞∑

k=0

∥∥
∥
( u(k)

Φ(k)

)∥∥
∥
2
(

ū1(k)

Φ̄1(k)

)

) 1
2

< ∞,Φ(k) = N u(k)

⎫
⎬

⎭
.

Map Ψ̄ : GM̄ �→ GN̄ is surjective if ∀ y ∈ GN̄ ∃ x ∈ GM̄ such that Ψ̄ (x) = y. We

therefore define the map y(k) = (Ψ̄ x)(k) = Ψk(x(k)) = Ψk

( u(k) + ū(k)

M(u(k) + ū(k))

)
=

( u(k) + ū1(k)

N (u(k) + ū1(k))

)
= y(k). From the proof of Proposition3.2 ‖x(k)‖( ū(k)

Φ̄(k)

) =
∥∥
∥
( u(k) + ū(k)

M(u(k) + ū(k))

)∥∥
∥( ū(k)

Φ̄(k)

) =
∥∥
∥
( u(k)

Φ(k)

)∥∥
∥ < ∞ ∀ k. Hence x ∈ GM̄ and we note

Ψ̄
( ū

Φ̄

)
=

( ū1

Φ̄1

)
. From Definition3.2,

δ(M̄, N̄ ) ≤ ‖(Ψ̄ − I )GM̄
‖( ū

Φ̄

)

= sup
x∈GM̄ \{0}

( ∞∑

k=0

∥∥∥(Ψk − I )x(k) − (Ψk − I )
( ū(k)

Φ̄(k)

)∥∥∥
2
) 1

2

( ∞∑

k=0

∥∥∥x(k) −
( ū(k)

Φ̄(k)

)∥∥∥
2
) 1

2

≤ sup
‖u‖�=0

(
∑∞

k=0 ‖(N (u(k) + ū1(k)) − N ū1(k)) − (M(u(k) + ū(k)) − M ū(k))‖2) 1
2

‖u‖

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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= sup
‖u‖�=0

(
∑∞

k=0 ‖(N |ū1(k) − M |ū(k)

)
u(k)‖2) 1

2

‖u‖

≤ sup
‖u‖�=0

(
∑∞

k=0

(

sup‖u(k)‖�=0

∥∥(N |ū1(k)−M |ū(k)

)
u(k)

∥∥2

‖u(k)‖2

)
∥∥u(k)‖2

) 1
2

‖u‖

≤ sup
‖u‖�=0

⎛

⎝sup ‖v‖ �= 0
k ∈ N+

∥∥(N |ū1(k)−M |ū(k)

)
v
∥∥

‖v‖

⎞

⎠(∑∞
k=0

∥∥u(k)‖2∥∥) 1
2

‖u‖

= sup
k∈N+

(

sup
‖v‖�=0

∥∥(N |ū1(k) − M |ū(k)

)
v
∥∥

‖v‖

)

.

�

Further properties relating lifted and non-lifted gap metrics appear in [23]. We can
generalise Theorem3.3 as follows:

Theorem 4.5 Let K and L be selected such that there exists bM̄//C̄ satisfying:

‖ΠM̄//C̄‖(
0
Φ̂

) = sup∥∥
∥
(

u0
y0

)∥∥
∥�=0

∥∥∥ΠM̄//C̄

( u0

y0 + Φ̂

)
− ΠM̄//C̄

( 0
Φ̂

)∥∥∥

∥∥∥
(u0

y0

)∥∥∥
≤ bM̄//C̄ < ∞.

(4.41)

Then the true combined feedback and ILC system [N̄ , C̄] is BIBO stable if

sup
k∈N+

‖N |ū1(k) − M |ū(k)‖ < b−1
M̄//C̄

(4.42)

and its performance is bounded with respect to its operating point as

‖ΠN̄//C̄‖(
0
Φ̂

) ≤ bM̄//C̄

1 + supk∈N+ ‖N |ū1(k) − M |ū(k)‖
1 − bM̄//C̄ supk∈N+ ‖N |ū1(k) − M |ū(k)‖ . (4.43)

Like our previous analysis in Theorem3.3, Theorem4.5 bounds the allowable
mismatch between the true and nominal plants, but now bM//K is replaced by bM̄//C̄ .
In the special case that M and K are linear operators, the lifted bound bM̄//C̄ can
be directly related to the bound, bM//K for the feedback controller alone, thereby
enabling transparent design of feedback and feedforward control actions.

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3


4.4 Robust Performance 63

Theorem 4.6 Let plant model M and controller K be linear, and ILC operator
L be designed to satisfy either (4.5) or (4.8) of Theorem4.1. Then

bM̄//C̄ = bM//K +

∥∥∥
( I

M

)
K (I + MK)−1

∥∥∥‖L‖∥∥(I + MK)−1(−M, I )
∥∥

1 − γ

(4.44)

where the gain bound for the feedback controller alone (i.e. with L = 0) is

bM//K = bM̄//K̄ =
∥∥∥
( I

M

)
(I + KM)−1(I, K )

∥∥∥ (4.45)

and γ = ‖I − ḠP L‖ or ‖I − LḠP‖ depending on whether it is condition
(4.5) or (4.8) of Theorem4.1 that is satisfied.

Proof With the inclusion of disturbances u0 ∈ L m
2 [0, T ]×N, y0 ∈ L

p
2 [0, T ]×N,

the signals in Fig. 4.8 satisfy

ẽ(i) = y0(i) + Φ̂ − M
(
u0(i) + K (v(i) + ẽ(i))

⇒ (I + MK)ẽ(i) = y0(i) + Φ̂ − Mu0(i) − MKv(i)

⇒ (I + MK)ẽ(i + 1) = y0(i + 1) + Φ̂ − Mu0(i + 1) − MKv(i + 1)

⇒ (I + MK)
(
ẽ(i + 1) − ẽ(i)

) = (
y0(i + 1) − y0(i)

) − M
(
u0(i + 1) − u0(i)

)

− MK
(

v(i + 1) − v(i)︸ ︷︷ ︸
L ẽ(i)

)
.

Since M and K are linear ḠP = GP = G := (I + MK)−1MK, so that

ẽ(i + 1) = (
I − (I + MK)−1M K︸ ︷︷ ︸

G

L
)
ẽ(i) + (I + MK)−1( y0(i + 1) − y0(i)

)

− (I + MK)−1M
(
u0(i + 1) − u0(i)

)
(4.46)

which we can express recursively as

ẽ(i + 1) = (I − GL)i+1 ẽ(0)

+
i∑

j=0

(I − GL) j (I + MK)−1(−M, I )
(
w0(i + 1 − j) − w0(i − j)

)



64 4 Iterative Learning Control Design

where w0(i) =
( u0(i)

y0(i)

)
. It can be shown

k∑

i=0

ẽ(i) = ẽ(0) +
k−1∑

i=0

ẽ(i + 1)

= ẽ(0) +
k−1∑

i=0

(I − GL)i+1 ẽ(0)

+
k−1∑

i=0

i∑

j=0

(I − GL) j (I + MK)−1(−M, I )
(
w0(i + 1 − j) − w0(i − j)

)

=
k∑

i=0

(I − GL)i ẽ(0)

+
k−1∑

i=0

i∑

j=0

(I − GL) j (I + MK)−1(−M, I )
(
w0(i +1− j) − w0(i − j)

)

=
k∑

i=0

(I − GL)i ẽ(0)

+
k−1∑

j=0

{
(I − GL) j (I + MK)−1(−M, I )

k−1∑

i= j

(
w0(i + 1 − j) − w0(i − j)

)
}

=
k∑

i=0

(I − GL)i ẽ(0)

+
k−1∑

j=0

{
(I − GL) j (I + MK)−1(−M, I )

(
w0(k − j) − w0(0)

)}

where we have used the identity

k∑

i=0

i∑

j=0

A j y(i − j) =
k∑

j=0

A j
k− j∑

i=0

y(i) =
k∑

j=0

A j
k∑

i= j

y(i − j). (4.47)

So that, taking v(0) = 0, ẽ(0) = (I + MK)−1
(
Φ̂ + (−M, I )w0(0)

)
,

v(k + 1) = v(0) + L
k∑

i=0

ẽ(i) = L
k∑

i=0

(I − GL)i (I + MK)−1Φ̂

+ L
k−1∑

i=0

(I − GL)i (I + MK)−1(−M, I )w0(k − i).
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Now

ẽ(k + 1) = y0(k + 1) + Φ̂ − M
(
u0(k + 1) + K

(
v(k + 1) + ẽ(k + 1)

))

= (I + MK)−1Φ̂ + (I + MK)−1 × (−M, I )w0(k + 1) − (I + MK)−1MKv(k + 1)
(4.48)

Therefore

v(k + 1) + ẽ(k + 1) =(I − G)v(k + 1) + (I + MK)−1(Φ̂ + (−M, I )w0(k + 1)
)
.

We can then produce the plant input

u(k + 1) = u0(k + 1) + K
(
v(k + 1) + ẽ(k + 1)

)

= u0(k + 1) + K (I + MK)−1(Φ̂ + (−M, I )w0(k + 1)
) + K (I − G)L

×
( k∑

i=0

(I − GL)i (I + MK)−1Φ̂

+
k−1∑

i=0

(I − GL)i (I + MK)−1(−M, I )w0(k − i)

)

= (I + KM)−1(I, K )w0(k + 1) + K (I + MK)−1Φ̂ + K (I + MK)−1L

×
( k∑

i=0

(I − GL)i (I + MK)−1Φ̂ +
k−1∑

i=0

(I − GL)i (I + MK)−1(−M, I )w0(k − i)

)

(4.49)

and if we use our earlier expression (4.15)

u(k + 1) = (I + KM)−1(I, K )w0(k + 1)

+ K (I + MK)−1Φ̂ + K (I + MK)−1

×
( k∑

i=0

(I − LG)i L(I + MK)−1Φ̂

+
k−1∑

i=0

(I − LG)i L(I + MK)−1(−M, I )w0(k − i)

)
.

Hence we can define the following maps

[
ΠM̄//C̄

(
u0

Φ̂ + y0

)]
(k + 1)

=
(

I
M

)(
(I + KM)−1(I, K )w0(k + 1) + K (I + MK)−1Φ̂ + K (I + MK)−1
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L

( k∑

i=0

(I − GL)i (I + MK)−1Φ̂

+
k−1∑

i=0

(I − GL)i (I + MK)−1(−M, I ) × w0(k − i)

))
,

[
ΠM̄//C̄

(
0
Φ̂

)]
(k + 1)

=
(

I
M

)
K (I + MK)−1

(

I + L
k∑

i=0

(I − GL)i (I + MK)−1

)

Φ̂. (4.50)

Therefore if (4.5) holds

lim
k→∞

[
ΠM̄//C̄

(
0
Φ̂

)]
(k) =

(
I
M

)
K (I + MK)−1(I + L(GL)−1(I + MK)−1)Φ̂

=
(

I
M

)
K (I + MK)−1L(GL)−1Φ̂. (4.51)

It follows that ‖ΠM̄//C̄‖(
0
Φ̂

) is given by

sup
w0

‖w0‖ �= 0

( ∞∑

k=−1

∥
∥∥
( I

M

)(
K (I + MK)−1L

k−1∑

i=0

(I − GL)i (I + MK)−1(−M, I )w0(k − i)

+(I + KM)−1(I, K )w0(k + 1)
)∥∥
∥
2)1/2

(∑∞
k=0 ‖w0(k)‖2

)1/2

(4.52)

Hence an upper bound on ‖ΠM̄//C̄‖(
0
Φ̂

) is

sup
w0

‖w0‖ �= 0

( ∞∑

k=0

∥
∥∥
∥
( I

M

)
K (I + MK)−1L

k∑

i=0

(I − GL)i (I + MK)−1(−M, I )w0(k − i)

∥
∥∥
∥

2
)1/2

(∑∞
k=0 ‖w0(k)‖2

)1/2

+ sup
w0

‖w0‖ �= 0

( ∞∑

k=0

∥
∥∥
∥

(
I
M

)
(I + KM)−1(I, K

)
w0(k)

∥
∥∥
∥

2)1/2

(∑∞
k=0 ‖w0(k)‖2

)1/2 . (4.53)
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Consider the lifted gain bound ‖ΠM̄//K̄ ‖(
0
Φ̂

), corresponding to L = 0. From (4.50)

[
ΠM̄//K̄

(
u0

Φ̂ + y0

)]
(k + 1) =

(
I
M

)(
(I + KM)−1(I, K )w0(k + 1) + K (I + MK)−1Φ̂

)

[
ΠM̄//K̄

(
0
Φ̂

)]
(k + 1) =

(
I
M

)
K (I + MK)−1Φ̂ (4.54)

so that, recalling the definition of bM//K from Theorem3.3

‖ΠM̄//K̄ ‖(
0
Φ̂

) = sup
w0

‖w0‖ �= 0

( ∞∑

k=0

∥∥∥
( I

M

)
(I + KM)−1(I, K )w0(k)

∥∥∥
2
)1/2

(∑∞
k=0 ‖w0(k)‖2

)1/2

≤ sup
w0

‖w0‖ �= 0

∥∥
∥
( I

M

)
(I + K M)−1(I, K )

∥∥
∥
( ∞∑

k=0

∥∥w0(k)
∥∥2

)1/2

(∑∞
k=0 ‖w0(k)‖2

)1/2

=
∥∥∥
( I

M

)
(I + KM)−1(I, K )

∥∥∥

= sup
‖w0(k)‖�=0

∥∥
∥ΠM//K

( u0(k)

Φ̂ + y0(k)

)
− ΠM//K

( 0
Φ̂

)∥∥
∥

‖w0(k)‖
= ‖ΠM//K ‖(

0
Φ̂

)

= bM//K . (4.55)

Now consider the numerator of the left-hand term in (4.53)

( ∞∑

k=0

∥
∥
∥
( I

M

)
K (I + MK)−1L

k∑

i=1

(I − GL)i−1(I + MK)−1(−M, I )w0(k + 1 − i)

∥∥
∥
∥
2)1/2

≤
∥
∥
∥
( I

M

)
K (I + MK)−1L

∥
∥
∥
( ∞∑

k=0

k−1∑

n=0

∥
∥(I − GL)k−n−1(I + MK)−1(−M, I )w0(n)

∥
∥2

)1/2

≤
∥
∥∥
( I

M

)
K (I + MK)−1L

∥
∥∥
( ∞∑

n=0

∞∑

k=n+1

∥∥(I − GL)k−n−1(I + MK)−1(−M, I )w0(n)
∥∥2

)1/2

≤
∥
∥
∥
( I

M

)
K (I + MK)−1L

∥
∥
∥
∥
∥(I + MK)−1(−M, I )

∥
∥
( ∞∑

j=0

∥
∥(I − GL) j∥∥2

) 1
2
( ∞∑

n=0

∥
∥w0(n)

∥
∥2
) 1

2

http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Provided ‖I − GL‖ < 1, it follows that
∥∥(I − GL) j

∥∥ ≤ ‖I − GL‖ j for 0 ≤ j ≤ ∞.
Hence an upper bound for the left-hand term in (4.53) is

∥∥∥
( I

M

)
K (I + MK)−1L

∥∥∥
∥∥(I + MK)−1(−M, I )

∥∥
( ∞∑

j=0

∥∥∥(I − GL) j
∥∥∥
2
)1/2

≤

∥∥∥
( I

M

)
K (I + MK)−1L

∥∥∥
∥∥(I + MK)−1(−M, I )

∥∥

1 − ‖I − GL‖ . (4.56)

Combining (4.53), (4.55) and (4.56) results in the final expression

‖ΠM̄//C̄‖(
0
Φ̂

) ≤ bM//K +

∥∥∥
( I

M

)
K (I + MK)−1L

∥∥∥
∥∥(I + MK)−1(−M, I )

∥∥

1 − ‖I − GL‖ .

(4.57)

Note that if instead of ‖I − GL‖ < 1, we have ‖I − LG‖ < 1, (4.57) is exchanged
for

‖ΠM̄//C̄‖(
0
Φ̂

) ≤ bM//K +

∥∥
∥
( I

M

)
K (I + MK)−1

∥∥
∥
∥∥L(I + MK)−1(−M, I )

∥∥

1 − ‖I − LG‖ .

�
If the true plant N is also linear, then condition (4.42) simplifies to ‖N −M‖ < b−1

M̄//C̄
which means the proposed controller stabilizes a ‘ball’ of plants in the uncertainty
space centred about M . The radius of this ball is b−1

M//K in the case of feedback action
alone, but reduces when ILC action is added (due to the introduction of the additional
term on the right hand side of (4.44)). Note that the right hand side of (4.44) is always
finite if ‖L‖ is bounded, so the radius of this ball is always greater than zero and
increases in size as ‖L‖ reduces to zero. This means that Theorem4.6 provides a
transparent method of weighting performance against robustness. Theorem4.6 can
also be applied to the case of a nonlinear feedback controller K as follows:

Theorem 4.7 Let K be a stable nonlinear operator, then the true system
[N̄ , C̄] is stable if

sup
k∈N+

‖N |ū1(k) − M |ū(k)‖ < b−1
C̄lin ,M̄

(
1 − bM̄,C̄lin

sup
k∈N+

‖K |ek+vk − Klin‖
)

(4.58)

where bM̄,C̄lin
, bC̄lin,M̄ are the gain bounds for [M, Klin], which is obtained

by linearizing the system about operating point vk . In particular, bM̄,C̄lin
is
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computed using (4.44), and

bC̄lin,M̄ = bM̄,C̄lin
− bM//K + bK//M (4.59)

with

bK//M = bK̄//M̄ =
∥∥∥
( K

I

)
(I + MK)−1(−M, I )

∥∥∥. (4.60)

Proof Since L is designed using a linearized systemmodel GP |
Φ̂+vk

corresponding

to [M̄, C̄lin], this motivates using the linear components of C̄lin, denoted M and
Klin, within Theorem4.6 to provide a robust stability bound computed using (4.44).
However, in this case the robustness result of Theorem3.3 is no longer valid as there
is also a mismatch between K and Klin. We therefore apply the more general stability
condition of [24] which results in

δ(C̄lin, C̄)‖ΠC̄//M̄‖ + δ(M̄, N̄ )‖ΠM̄//C̄‖ < 1. (4.61)

As K is bounded it can be shown that

δ(C̄lin, C̄) ≤ sup
‖u‖�=0

‖(K |ek+vk − Klin)u‖
‖u‖ (4.62)

and ΠC̄//M̄ :
(

u0

y0 + Φ̂

)
�→

(
ũ
ẽ

)
can be calculated using (4.48) and ũ(k + 1) =

K (ẽ(k + 1) + v(k + 1)) to give

(
ũ
ẽ

)
=

(
K
I

)
(I + KM)−1(Φ̂ + (−M, I )w0(k + 1)

) +
(

K (I + MK)−1

−(I + MK)−1MK

)
v(k + 1)

Proceeding as in the proof of Theorem4.6, we result in

‖ΠC̄//M̄‖(
0
Φ̂

) ≤ bK//M +

∥∥∥
( I

−M

)
K (I + MK)−1

∥∥∥‖L‖∥∥(I + MK)−1(−M, I )
∥∥

1 − γ

where the gain bound for the feedback controller alone (i.e. with L = 0) is given by
(4.60). We then use (4.44) to give ‖ΠC̄//M̄‖(

0
Φ̂

) ≤ bC̄lin//M̄ = bK//M + (bM̄//C̄lin
−

bM//K ) which produces (4.58). �

The previous results provide explicit conditions guaranteeing robust performance,
but also motivate the following design procedure:

http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Procedure 3 (Design guidelines for robust stability)

Feedback controller design: Design stabilizing feedback controller K tomin-
imize bM//K using the procedure of Chap.3, if necessary sacrificing perfor-
mance for stability. Note that if M and K are linear then bM//K is given by
(4.45).

ILC design: Design L to satisfy condition (4.5) or (4.8) of Theorem4.1, the
former guaranteeing nominal convergence to zero error. To maximize overall
robustness requires minimizing the right hand side of (4.44). This requires
balancing the minimization of ‖L‖ and ‖I − ḠP L‖ (or ‖I − LḠP‖).
Add robustness filter: A robustness filter, F , can be added to update (4.4),
giving

vk+1 = F(vk + Lk(ek)P ), k = 0, 1, . . .

in order to restrict learning to below a frequency cut-off, so that the competing
objectives above are easier to satisfy. This results in only minor modification
of the bound bM̄//C̄ in Theorems4.6 and 4.7.

Minimize model uncertainty: All stabilizing K and L satisfying (4.41) can
tolerate a degree of plant uncertainty (since bM̄//C̄ is finite). This means that

if the true plant is contained within a ball of radius b−1
M̄//C̄

centred on M in

the uncertainty space, then the true closed-loop system [N , K ] will be stable.
It is therefore important to obtain the most accurate model possible (or most
appropriate linearization point) for use in control design.

Using a nonlinear K : If K is nonlinear then Theorem4.7 shows that the
requirements of reducing both model uncertainty, δk(M, N ), and nominal gain
bound, bM̄,C̄ , do not change. A nonlinear K may enable bM̄,C̄ to be reduced,
but adds conservatism to the robust stability result (via (4.58)). Therefore the
most appropriate linearization point to compute Klin is required.

Theorems4.6 and 4.7 provide precise robust performance guarantees which con-
firm that ILC can utilize the available robustness margins to significantly improve
tracking capability. Having specified a general bound on the allowable difference
between the unlifted model M and true plant N , we can now apply these to the most
common sources of modeling uncertainty. The next result illustrates this approach,
and is an extension of Proposition3.4.

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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Proposition 4.1 Let the plant satisfy Proposition3.2, and suppose linear
approximations to the dynamics HRB, tendon function Fm and muscle curve
hIRC, given by HRB Fm and h̄IRC respectively, are used to construct the nominal
model M = HRB Fm HLAD h̄IRC, which is subsequently used to design feedback
controller K and ILC operator L satisfying Theorem4.5. Then the system has
a robust stability margin, and in particular is stable if

ΔIRC < sup
k∈N+

b−1
M̄//C̄

− ΔRB‖h̄IRC‖
‖HRB Fm |w̄1(k)‖ (4.63)

where the model mismatch is characterised by

ΔIRC = max
i

sup
‖u‖ �= 0
k ∈ N+

‖(hIRC,i |(ū1(k))i − h̄IRC,i )u‖
‖u‖

and the linearization model accuracy is characterised by

ΔRB = sup
‖u‖ �= 0
k ∈ N+

‖(HRB Fm(Φ, Φ̇)|w̄1(k) − HRB Fm)u‖
‖u‖ .

Proof We apply the forms N |ū1(k) = HRB Fm(Φ, Φ̇)|w̄1 HLADhIRC|u1(k) and
M |ū(k) = HRB Fm HLAD h̄IRC within definition (4.39). From (4.42) this gives require-
ment

sup
‖u‖ �= 0
k ∈ N+

‖(HRB Fm(Φ, Φ̇)|w̄1(k)HLADhIRC|u1(k) − HRB Fm HLAD h̄IRC)u‖
‖u‖ < b−1

M̄//C̄
.

Taking, without loss of generality ‖HLAD‖ = 1, the left hand side is bounded by

sup
‖u‖�=0

‖h̄IRCu‖
‖u‖ sup

‖u‖ �= 0
k ∈ N+

‖(HRB Fm(Φ, Φ̇)|w̄1(k) − HRB Fm)u‖
‖u‖

+ sup
‖u‖ �= 0
k ∈ N+

‖(hIRC|u1(k) − h̄IRC)u‖
‖u‖ sup

‖u‖ �= 0
k ∈ N+

‖HRB Fm(Φ, Φ̇)|w̄1(k)‖
‖u‖

�

As in Theorem3.4, this result bounds the effect of muscle fatigue which is embedded
within the termΔIRC. It also bounds the accuracy of the linearized system that is used
in the control procedure of Theorem4.1. The feedback and/or ILC design can always

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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be modified to ensure condition (4.63) is satisfied, e.g. by sacrificing convergence
speed, tracking accuracy of the first ILC attempt, and/or range of frequencies over
which convergence occurs.

4.5 Conclusions

This chapter has introduced a feedforward signal into the feedback control scheme
in order to improve the accuracy with which ES is able to assist joint angles in the
human arm to track a specified reference trajectory. The framework ‘learns’ from
previous attempts at the task, and thereby exploits the inherently repetitive nature of
rehabilitation. General guidelines for designing the ILC operator have been given,
together with conditions for convergence to zero tracking error.

This chapter has also extended the robustness analysis of the previous chapter
to produce a powerful robust performance framework for combined feedback and
ILC design. In particular, the design of each control component can be separated,
with each utilizing the available robustness margins of the other to maximize overall
performance.

The combined feedback and ILC framework is next employed in practice within
a clinical rehabilitation programme with neurologically impaired participants.
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Chapter 5
Clinical Application: Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic, degenerative disorder affecting the central
nervous system. It leads to a wide range of symptoms including upper limbweakness
which is experienced by a large percentage of people with MS (pwMS). Despite
advances in pharmaceutical options to reduce the number and severity of relapses,
rehabilitation continues to play an essential role in reducing motor disability [1],
however few studies relate to rehabilitation of the upper limb in MS [2].

To address this, we employ the ES control framework developed in Chaps. 3
and 4 to assist pwMS in performing virtual reality (VR) training tasks. Stimulation
is applied to the shoulder and elbow, and additional support is provided using the
instrumented passive robotic support described in Sect. 3.2. A clinical feasibility
study is conducted using the system with pwMS to establish the efficacy of the
system for improving upper limb function for neurologically impaired participants.
More detailed results of the study and in-depth analysis can be found in [3].

5.1 System Description and Set-Up

The system elements are shown schematically in Fig. 5.1. The passive robotic support
described in Sects. 3.2 and 4.2 provides kinematic data to a real-time processor that
interfaceswith customEShardware, aVR task display, and a graphical user interface.
The participant’s screen (located on their hemiplegic side) shows the trajectory to be
tracked and a representation of the participant’s arm (which mirrors the participant’s
movements in real-time). The support and trajectory task are depicted in Fig. 5.2.
The display provides the participant with immediate visual feedback and facilitates
motivation for the tracking task. The second screen displays a custom graphical user
interface which is used by the therapist to select the tasks and adjust the parameters
used by the ES control system.

Since pwMS typically experience a weakness in arm extension, ES is applied to
the anterior deltoid muscle and to the triceps to assist shoulder and elbow exten-
sion respectively. The combined support and stimulated arm system is represented
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Fig. 5.1 Signal flow diagram showing system components: passive robot; real-time processor; ES
hardware; therapist and participant displays

Fig. 5.2 a PwMS using mechanical support with ES applied to her left triceps and anterior deltoid
muscles, b Amonitor shows the trajectory task (blue) that the participant needs to follow with their
arm (white) with a ball (orange) indicating they are on target for this reaching movement

using the anthropomorphic model of Sect. 2.2.5. Using this model, the ES control
scheme comprises the combined input-output linearizing feedback controller and
feedforward ILC scheme described in Sect. 4.2. Specifically NOILC update (4.32)
was used with weights Q and R chosen to balance accuracy of task completion with
the amount of ES applied to assist the participant’s movement.

Following ethical approval (FoHS ETHICS-2013-5429) and written consent,
five pwMS were recruited from local MS societies. Each attended one pilot, two
assessment and eighteen intervention sessions with data collection performed by an

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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experienced physiotherapist. In the pilot session the electrodes were placed on the
anterior deltoid and the triceps. The pulsewidthwas set at amaximumvalue of 300µs
and the participant gradually increased the ES amplitude applied to eachmuscle until
they reached a comfortable level that produced movement. The pulsewidth was then
reduced to zero, and the stimulation amplitudes fixed for the remainder of each ses-
sion to ensure comfort and safety. The procedure of Sect. 2.2.5 was used to identify
the system model used throughout the intervention. During each of the 18 one-hour
intervention sessions that followed, theworkspacewas identified, and the stimulation
levels then set. The participant then practiced a minimum of six trajectories, each
repeated six times, with a rest period of 2–10s between each attempt. The reaching
tasks comprised the nine reaching movements shown in Fig. 4.2, which were scaled
to fit within the workspace to ensure a safe range of practice.

5.1.1 Outcome Measures

A primary outcome measure was the accuracy of unassisted task tracking over the
treatment period. This was assessed by each participant tracking the same four tra-
jectories at the beginning and end of every session, with no ES. A further primary
outcomemeasure was the tracking performance during ES-assisted task training, and
the corresponding change in amount of ES delivered over the treatment period.

Secondary outcome measures evaluated clinical changes to the upper limb and
were measured in assessment sessions before treatment and within one week after
the treatment period. The clinical outcome measures were: Action Research Arm
Test (ARAT) [4–7]; Nine Hole Peg Test (9HPT) [7–9]; Manual Ability Measure
(MAM-36) [10, 11]; and Fugl-Meyer Assessment (FMA) [7, 12–14]. Two indepen-
dent physiotherapists performed the clinical assessments; the same physiotherapist
performed both the pre and post assessment per participant.

The clinical outcome measures were analyzed using the Wilcoxon signed-rank
test. Conforming to prior studies [15, 16], the performance of tracking with ES
(assisted) and without ES (unassisted) was analyzed per participant for each of the 18
sessions by calculating best-fit linear regression slopes of performance for each task.
Two-tailed t-tests were applied, and the level of significance was set at p < 0.05. The
95% confidence intervals were also calculated to provide a measure of how precisely
the true mean can be bounded given the limited sample size. Tracking performance
for the anterior deltoid (i = 2) and triceps (i = 5) was normalized using

100 ×
(
1 − ‖(ek)i‖

‖Φ̂i‖
)
, i ∈ P = {2, 5}. (5.1)

A value of 100 indicated perfect tracking and 0 corresponded to no movement.

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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5.2 Results

Participant characteristic data are given in Table5.1. All participants were able to
increase the number of reaching tasks practiced per session to between eight and
eleven. All participants, except one, were able to receive less support from the passive
robot during the reaching movements: the exception was caused by one participant’s
biceps tone increasing whenever the support was reduced, so her level of support
was kept constant. No serious adverse events were reported during the intervention
period.

5.2.1 Assisted Tracking Performance

Performance was calculated for the final attempt of every tracking task using (5.1).
These performanceswere then averaged to calculate the overall tracking performance
and the maximum amount of ES provided. Figure5.3a, b show improved accuracy
of tracking performance at both the shoulder and elbow and Fig. 5.3c, d show the
percentage maximum ES required to improve participants’ tracking reduced over the
treatment period. Table5.2 shows the p-value and mean slope of the tracking per-
formance and percentage maximum ES, which was statistically significant for each
muscle group: triceps (elbow) and anterior deltoid (shoulder). The mean tracking
performance slopes (elbow 0.71, shoulder 1.31) correspond to an average improve-
ment over 18 sessions of 12.8 and 23.6% for the elbow and shoulder respectively.
The mean percentage maximum ES slopes (elbow −2.6805, shoulder −2.7143) cor-
respond to an average reduction over 18 sessions of 49.2 and 48.8% for the elbow
and shoulder respectively. This suggests that less ES was required to produce more
accurate movement over the treatment period. This was confirmed when the slope
of the tracking performance percentage was divided by the slope of the percentage
maximum ES for each participant. Taking the mean over participants yields a statis-

Table 5.1 Socio-demographic characteristics of participants (n = 5)

Pt Id MS1 MS2 MS3 MS4 MS5

Age (years) 60 40 61 51 61

Type of MS SPMS RRMS PPMS SPMS SPMS

Years MS diagnosed 34 4 16 14 31

Female/Male F F F F F

Side treated L R L L R

Original dominant hand R R R R R

Full time wheelchair user Y N Y Y Y

Glasses Y N Y Y Y

Pt Id–participant identification, SPMS–secondary progressive MS, RRMS–relapse-remitting MS,
PPMS–primary progressive MS, F–female, M–male, L–left, R–right, Y–yes, N–no
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(a) (b)

(c) (d)

Fig. 5.3 Assisted task tracking accuracy and amount of ES, averaged over all tasks: a tracking
accuracy at the elbow; b tracking accuracy at the shoulder; c amount of ES applied at the elbow;
and d amount of ES applied at the shoulder. Mean of individual slopes is shown by a dotted line

Table 5.2 Tracking performance metrics at elbow and shoulder showing the mean slope and p-
value of best fit linear regression lines collapsed across participants for assisted and unassisted
tasks

Task Elbow Shoulder

Mean
slope

p-value CI Mean
slope

p-value CI

Assisted

Tracking perf. % 0.71 0.027 (0.13,1.28) 1.31 0.015 (0.42,2.20)

% maximum ES −2.68 0.000
(−3.03,−2.33)

−2.71 0.000
(−3.38,−2.04)

Tracking perf. %/% max ES 0.12 0.000 (0.08,0.16) 0.19 0.021 (0.04,0.32)

Unassisted tracking perf. %

Centre proximal 2.37 0.006 (1.10,3.62) 6.24 0.065
(−0.62,13.10)

Centre distal 1.91 0.011 (0.72,3.10) 6.31 0.051
(−0.08,12.69)

Off-centre middle %/% max ES 2.21 0.018 (0.61,3.81) 3.75 0.017 (1.09,6.40)

Far distal 2.33 0.006 (1.08,3.58) 3.33 0.004 (1.72,4.93)

Note Small slope values are due to different axis units. CI denotes 95% confidence interval
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tically significant slope (elbow mean slope = 0.12, p < 0.001, shoulder mean slope
= 0.19, p < 0.05): see Table5.2 under ‘assisted’.

5.2.2 Unassisted Tracking Performance

Tracking performance was calculated for the four tasks, unassisted by ES, that were
completed at the beginning and end of each session, and an average was taken for
each task. Figures5.4 and 5.5 show tracking performance at the elbow and shoulder
respectively over the intervention. Statistically significant improved tracking accu-
racy for all four tracking tasks was identified across all participants at the elbow and
for two tasks at the shoulder. Table5.2 shows the p-value and mean slope of these
unassisted tasks. The positive mean slopes of all the unassisted tasks correspond to
performance increases of between 34.38 and 113.58% over the intervention.

Fig. 5.4 Unassisted task tracking accuracy at the elbow. Each participant’s performance is shown
as a function of session for the four tracking tasks, before/after the intervention. The four tracking
tasks are: a centre-proximal, b centre-distal, c off-centre-middle, and d far-distal
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Fig. 5.5 Unassisted task tracking accuracy at the shoulder. Each participant’s performance is shown
as a function of session for the four tracking tasks, before/after the intervention. The four tracking
tasks are: a centre-proximal, b centre-distal, c off-centre-middle, and d far-distal

5.2.3 Clinical Outcome Measures

All clinical outcome measures improved after the intervention period (Table5.3).
Improvements were seen at: impairment level, FMA increased by 6 (5.5) points
from 44.8 (5.8) to 50.8 (8.2) out of a maximum score of 66; perceived ability, MAM-
36 measure [11] increased by 3.6 (8.1) from 46.8 (10) to 50.4 (8); and actual ability
in arm function, ARAT increased by 0.6 (3.7) points from 45.6 (10.5) to 50.8 (8.2)
out of a maximum score of 57. The 9HPT time decreased from 145.3 (96) to 116.3
(88). Only the proximal arm section of the FMA, where the intervention was aimed,
identified statistically significant improvement (z = −2.06, p = 0.039) with an
improvement of 5.6 (3.9) points from 22.4 (4.1) to 28 (5.4) out of a possible 36
points. The distal arm section of the FMA was not trained and did not significantly
improve, suggesting that specificity in training is required.

5.3 Discussion

Themain aim of this study was to determine the feasibility and effectiveness of using
the training system for pwMS; this is the first time passive robotic arm support has
been combinedwith ES to improvemovement quality for this user group, and the first
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Table 5.3 Clinical outcome results showing baseline and post-intervention scores for five PwMS

Pt ID1 MS1 MS2 MS3 MS4 MS5 Mean (SD) p-value %
change2

MAM-36%3 B’line 40 56 59 37 42 46.8 (9.99) 0.345 3.6

Post 57 57 54 39 45 50.4 (8.05)

ARAT (57)4 B’line 56 57 33 42 40 45.6 (10.50) 1.0 1.05

Post 53 57 33 41 47 46.2 (9.55)

FMA (66)4 B’line 54 46 44 41 39 44.8 (5.81) 0.078 9.09

Post 64 50 43 45 52 50.8 (8.23)

FMA prox’
arm (36)4,5

B’line 30 23 20 18 21 22.4 (4.62) 0.039 15.56

Post 35 28 21 23 33 28.0 (6.08)

FMA distal
arm (30)4,6

B’line 24 23 24 23 18 22.4 (2.5) 0.891 1.33

Post 29 22 22 22 19 22.8 (3.7)

9HPT (300
secs)7

B’line 64 220 237 utc8 70 145.3 (96.39) 0.465 8.17

Post 229 143 43 utc8 78 116.3 (87.91)
1participant identification 2change in score divided by maximum possible score
3motor ability measure with 36 items converted to percentage using Rasch analysis tables [11]
4maximum score in brackets 5proximal arm section of FMA (shoulder-elbow-forearm)
6distal arm section of FMA (wrist-hand) 79 hole peg test time in seconds 8unable to complete

use of advanced model-based controllers to promote accuracy and voluntary effort.
The participants tolerated the intervention with no adverse effects and attended all 18
treatment sessions over a 10 week period. An improvement in arm awareness, better
arm control and daily usage of their impaired arm was reported. Three important
findings were identified following the intervention: improved tracking performance
during the unassisted task; reduced ES required during the assisted tasks and an
improvement in the proximal arm section of the FMA. Furthermore there were clear
trends for clinical improvement in most measures by most patients.

The implication of improved tracking performance during assisted tasks over the
treatment period, achieved with less ES supplied by the controller, suggests that the
participants’ voluntary effort (muscle power and arm control) increased. Similarly,
as participants progressed through the treatment sessions they were able to make
more accurate reaching movements with no ES applied. All participants improved in
the impairment domain of the International Classification of Functioning Disability
and Health (ICF), measured by the proximal arm section of the FMA. In particular,
statistical significance was identified at the shoulder and elbow active movement
control where the intervention was aimed. This is a new finding that indicates that
movement quality improved following training. As with all statistical tests using
small sample sizes, these conclusions must be treated with caution.
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5.4 Conclusions

The results demonstrate the feasibility of the ES and passive support training system
with pwMS. In particular, they show the identification and control design procedures
of Chaps. 3 and 4 can be applied to assist task tracking in a clinical setting. The
efficacy of task performance has translated into tangible outcome measures which
suggest there is treatment potential for this novel system to aid recovery. These results
are comparable to previous work undertaken on persons with stroke [15, 16] using
the same control framework. Other robotic studies on pwMS [17, 18] have identified
improvements on arm capacity tests but this is the first study to show improvements
in movement quality.

The results also show that training of the distal movements incorporating the wrist
and hand is important in future system development to enable all sections of the FMA
to be addressed. Extensions to the control framework to enable this are undertaken
in the next chapter.
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Chapter 6
Constrained ILC for Human Motor Control

In Chap.4 we considered the system shown in Fig. 6.1, and addressed the need for
joint angles ΦP = GP (Φ̂ + v) to track reference trajectory Φ̂P , where operator
GP is defined by (4.1). This objective assumes that a trajectory Φ̂P (t), t ∈ [0, T ]
is available. In the rehabilitation domain this is appropriate if the task is defined
and explicitly presented to the patient as it was in Chap. 5. However, this is not
possible when training more natural, everyday activities such as eating, washing or
manipulating objects. To address this, the problem definition is now extended to
encompass fully functional tasks.

6.1 Extended Task Representation

To expand the task definition to capture the needs of human motor control, we define
0 = t0 ≤ t1 ≤ · · · ≤ TS = T distinct points in [0, T ] which are deemed important
to the task completion. These break the task down into S intervals in which one or
more joints may be required to perform a synchronized movement. For example,
time interval [tj−1, tj] may correspond to the hand palm pushing a drawer along its
runners, or the fingers holding a cup during a pouring movement. If tj−1 = tj is

Fig. 6.1 Combined feedback and ILC control structure
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specified then the interval is an isolated time point, and may for example represent
the time where the index finger makes contact with a light switch.

Given joint angle signal ΦP defined over [0, T ], we extract the single or linear
combination of joints involved in any coordinated action by using the projection

P : L np
2 [0, T ] → L

p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS] : ΦP �→

⎡

⎢
⎣

(PΦP )1
...

(PΦP )S

⎤

⎥
⎦ (6.1)

with each component, (PΦP )j : L np
2 [0, T ] → L

pj
2 [tj−1, tj], defined by

((PΦP )j)(t) = PjΦP (t), t ∈ [tj−1, tj], j = 1, 2, . . . , S, (6.2)

where Pj is a pj × np matrix of full row rank specifying the joint angles involved in
the gesture or movement stipulated over time interval [tj−1, tj].

For ease of notation, the projected output PΦP is termed the “extended output”
and denoted by Φe

P ∈ L
p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS]. We can also incorporate

the projection into the system operator to yield the extended system operator Ge
P :

L
p
2 [0, T ] → L

p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS] defined by

Φe
P = Ge

P (Φ̂ + v) : Ge
P (Φ̂ + v) = (PGP )(Φ̂ + v). (6.3)

Using this extended task representation allows us to replace the ILC tracking problem
(4.3) by the more general form

v∞ := min
v

J(v), J(v) = ∥∥Φ̂e
P − Ge

P (Φ̂ + v)
∥∥2, (6.4)

where the extended reference trajectory and extended error are respectively

Φ̂e
P =

⎡

⎢
⎣

Φ̂
p1
P
...

Φ̂
pS
P

⎤

⎥
⎦ , ee

P =
⎡

⎢
⎣

Φ̂
p1
P − (PGP )1(Φ̂ + v)

...

Φ̂
pS
P − (PGP )S(Φ̂ + v)

⎤

⎥
⎦ = Φ̂e

P − Ge
P (Φ̂ + v). (6.5)

Here Φ̂e
P contains the reference trajectories/points that must be followed at time

points tj−1 = tj or over intervals [tj−1, tj]. Note that the extended reference can be
represented as the projection of a “virtual reference”, Φ̂P , denoted by Φ̂e

P = PΦ̂P ,

however Φ̂P is not required in the control strategy. If the designer chooses S = 1,
t0 = 0, t1 = T , and P1 = I then (6.4) collapses to the standard form (4.3).

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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6.2 Reduced Stimulation and Joint Subspaces

To reduce the number of degrees of freedom inproblem (6.4)we canmimic the natural
strategy of human motor control which involves a single neural command signal
controlling multiple muscles. Each group of muscles working together is called a
synergy, and the samemuscle can potentially be employedwithinmultiple synergies.
To do this we introduce a set of q ≤ m neural signals, denoted x ∈ L

q
2 [0, T ]. The

mapping between x and the m muscle stimulation signals u ∈ L m
2 [0, T ], can be

represented at time t by u(t) = X̄x(t). Here X̄ is a m × q matrix with full column
rank, with the jth column defining which muscles make up the jth synergy. The map
between neural and muscle stimulation signals is therefore defined by u = Xx, with

X : L q
2 [0, T ] → X [0, T ] : x �→ u, u(t) = X̄x(t). (6.6)

HereX [0, T ] is that subset of stimulation spaceL m
2 [0, T ]which is achievable given

the specified set of q synergistic muscle combinations, and is defined by

X [0, T ] := {
u = Xx, x ∈ L

q
2 [0, T ]} ⊂ L m

2 [0, T ]. (6.7)

The subspace X [0, T ] is convex: to see this let x̃, ỹ ∈ X , then x̃(t) = X̄x(t),
ỹ(t) = X̄y(t) then x̃(t)+a(ỹ(t)− x̃(t)) = X(x(t)+a(y(t)−x(t))), a = [0, 1]. Since
x + a(y − x) ∈ L

q
2 [0, T ] it follows from (6.7) that x̃ + a(ỹ − x̃) ∈ X [0, T ].

Operator X restricts the stimulation signal u to belong to a subspace X [0, T ] of
L m

2 [0, T ]. However, we can also reduce the degree of freedom of control problem
(6.4) by restricting the joint demand signal, v, generated by ILC to belong to a
suitable subspace of L p

2 [0, T ]. To do this we introduce a set of q signals which
represent synergies in joint space, and define the mapping between L

q
2 [0, T ] and

the achievable subset of joint space by

W : L q
2 [0, T ] → W [0, T ] : r �→ v, v(t) = W̄ r(t). (6.8)

where p × q matrix W has full column rank. The corresponding joint subspace is

W [0, T ] := {
v = W r, r ∈ L

q
2 [0, T ]} ⊂ L

p
2 [0, T ]. (6.9)

Embedding these subspaces into control problem (6.4) gives rise to:

Definition 6.1 Consider the system of Fig. 6.1 with control objective (6.4).
If the stimulation signal is restricted to subspaceX [0, T ], ILC problem (6.4)
is exchanged for

v∞ := min
v

J(v), J(v) = ∥∥

ee
P︷ ︸︸ ︷

Φ̂e
P − Ge

P (Φ̂ + v)
∥∥2, uk ∈ X [0, T ] ∀ k

(6.10)
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which simplifies to (6.4) if we impose the feedback controller structure

K : L p[0, T ] �→ X [0, T ] : K = XKX , KX : L p[0, T ] → L q[0, T ].
(6.11)

If instead the joint space demand signal is restricted to subspaceW [0, T ], ILC
problem (6.4) is exchanged for

v∞ := min
v

J(v), J(v) = ∥
∥ Φ̂e

P − Ge
P (Φ̂ + v)

︸ ︷︷ ︸
ee
P

∥
∥2, vk ∈ W [0, T ] ∀ k.

(6.12)

Themost general form of ILC problemwe need to solve is therefore (6.12), which
reduces to problem (6.4) if W = I , in which case W = L

p
2 [0, T ].

6.3 Extended ILC Framework

To address the problem (6.12) we extend Theorem4.1 as follows:

Theorem 6.1 Consider the ILC update sequence

vk+1 = vk + W Lk(ek)
e
P , k = 0, 1, . . . , v0 ∈ W [0, T ]. (6.13)

If learning operator Lk : L
p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS] → L

p
2 [0, T ]

satisfies

∥∥I − Ḡe
P |

Φ̂+v∞ W Lk
∥∥ < 1 ∀ k (6.14)

where the operator norm is induced from the inner product 〈·, ·〉, then

lim
k→∞(ek)

e
P = 0 (6.15)

and, for v0 chosen sufficiently close to v∞, the ILC update converges to

lim
k→∞(Φ̂ + vk) = W L∞(Ḡe

P |
Φ̂+v∞ W L∞)−1Φ̂e

P , with vk ∈ W [0, T ] ∀ k.

(6.16)

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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Alternatively, if the learning operator Lk satisfies

‖I − LkḠe
P |v∞ W‖ < 1 ∀ k (6.17)

then, for v0 chosen sufficiently close to v∞, the ILC update converges to

lim
k→∞(Φ̂ + vk) = W (L∞Ḡe

P |
Φ̂+v∞ W )−1L∞Φ̂e

P with vk ∈ W [0, T ] ∀ k.

(6.18)

Proof Update (6.13) is equivalent to applying vk = W rk to system (6.3) where

rk+1 = rk + Lk(ek)
e
P , k = 0, 1, . . . , r0 ∈ L

q
2 [0, T ] (6.19)

and hence vk ∈ W [0, T ] ∀ k. The error dynamics locally satisfy

(ek+1)
e
P = (ek)

e
P − PḠP |

Φ̂+vk
W Lk(ek)

e
P = (I − PḠP |

Φ̂+vk
W Lk)(ek)

e
P ∀ k

so if (6.14) holds, the extended error converges monotonically to zero since

‖(ek+1)
e
P‖ ≤ ‖I − PḠP |

Φ̂+vk
W Lk‖‖(ek)

e
P‖ < ‖(ek)

e
P‖ ∀ k. (6.20)

For v0 sufficiently close to v∞, then ḠP |
Φ̂+vk

= ḠP |
Φ̂+v∞ and Lk = L∞ ∀k, and

vk+1 = v0 + W L∞
k∑

i=0

(ei)
e
P = v0 + W L∞

k∑

i=0

(
I − PḠP |

Φ̂+v∞ W L∞
)i

× (
Φ̂e
P − P

¯
G
P

|
Φ̂+v∞(Φ̂ + v0)

)

= W L∞
k∑

i=0

(
I − PḠP |

Φ̂+v∞ W L∞
)i

Φ̂e
P − Φ̂

so that if (6.14) holds

lim
k→∞ vk = W L∞

(
PḠP |

Φ̂+v∞ W L∞
)−1

Φ̂e
P − Φ̂. (6.21)

In addition, the input signals locally satisfy
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rk+1 = rk + L∞
(
Φ̂e
P − PḠP |

Φ̂+v∞(Φ̂ + W rk)
)

= (
I − L∞PḠP |

Φ̂+v∞ W
)
rk + L∞

(
Φ̂e
P − PḠP |

Φ̂+v∞Φ̂
)

= (
I − L∞PḠP |

Φ̂+v∞ W
)k+1r0

+
k∑

i=0

(
I − L∞PḠP |

Φ̂+v∞ W
)i

L∞
(
Φ̂e
P − PḠP |

Φ̂+v∞Φ̂
)

so that, if (6.17) is satisfied,

lim
k→∞ vk = W

(
L∞PḠP |

Φ̂+v∞ W
)−1

L∞P
(
Φ̂P − ḠP |

Φ̂+v∞Φ̂
)

= W
(
L∞PḠP |

Φ̂+v∞ W
)−1

L∞Φ̂e
P − Φ̂. (6.22)

�

Within Theorem6.1, the linearized extended plant operator is defined by:

Lemma 6.1 Around operating point ṽ the dynamics Φe
P = Ge

Pv are captured
by the map Ḡe

P |ṽ : L p
2 [0, T ] → L

p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS] defined by

Ḡe
P |ṽv =

⎡

⎢
⎣

(PḠP |ṽ)1v
...

(PḠP |ṽ)Sv

⎤

⎥
⎦ (6.23)

where

((PḠP |ṽ)jv)(t) = Pj

∫ t

0
C(t)Γ (t, τ )B(τ )v(τ )dτ, t ∈ [tj−1, tj], j = 1, . . . , S (6.24)

in which A(t), B(t), C(t) and Γ (t, τ ) are defined in Lemma4.2.

Theorem 6.2 Within (6.13), let the ILC operator be given by

Lk = (Ḡe
P |

Φ̂+vk
W )∗

(
I + Ḡe

P |
Φ̂+vk

W (Ḡe
P |

Φ̂+vk
W )∗

)−1
. (6.25)

Setting vk+1 − vk = W (rk+1 − rk) = WΔrk, this is equivalent to solving the
underlying subspace problem

Δrk := min
Δr

{
‖Δr‖2[R] + ‖(ek)

e
P − Ḡe

P |
Φ̂+vk

WΔr‖2Q
}
, r0 = 0. (6.26)

where [R] = W 
RW , with symmetric positive-definite weights Q and R.

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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If Φ̂e
P ∈ im(Ge

PW ) then ILC operator (6.25) satisfies (6.14) and generates an
input sequence satisfying

lim
k→∞ vk = v∞, v∞ := min

v
‖v‖2R s. t. ee

P = Φ̂e
P − Ge

P (Φ̂ + v) = 0.

(6.27)
If Φ̂e

P /∈ im(Ge
PW ) then ILC operator (6.25) satisfies (6.17) and generates an

input sequence satisfying

lim
k→∞ vk = v∞, v∞ := min

v

∥
∥ee

P

∥
∥2. (6.28)

Proof If Φ̂e
P ∈ im(Ge

PW ) for all possible Φ̂e
P , it follows that

ker((Ḡe
P |

Φ̂+vk
W )∗) = {0} ∀ k. If ker((Ḡe

P |
Φ̂+vk

W )∗) = {0} the solution to (6.26) is
Δrk = Lk(ek)

e
P with Lk given by (6.25) which satisfies (6.14) with limiting solution

v∞ = W r∞ = W (Ḡe
P |

Φ̂+vk
W )∗

(
Ḡe
P |

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
)−1

Φ̂e
P (6.29)

corresponding to

(e∞)e
P = (

I − Ḡe
P |

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
(
Ḡe|

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
)−1)

Φ̂e
P = 0.

The Lagrangian associated with minimum energy problem (6.27) is just, with
Lagrange multiplier λ ∈ L

p1
2 [0, t1] × · · · × L

pS
2 [tS−1, tS],

L (r, λ) = ‖v‖2R + 2 < λ, Φ̂e
P − Ḡe|

Φ̂+vk
v >= ‖r‖2[R] + 2 < λ, Φ̂e

P − Ḡe|
Φ̂+vk

W r >

which has a stationary point when r∞ =(Ḡe
P |

Φ̂+vk
W )∗λ and Φ̂e

P = Ḡe
P |

Φ̂+vk
W r∞.

The stationary point solution λ=(
Ḡe
P |

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
)−1

Φ̂e
P is unique as is

the defined input solution r∞ = (Ḡe
P |

Φ̂+vk
W )∗

(
Ḡe
P |

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
)−1

Φ̂e
P .

This matches (6.29). If ker((Ḡe|
Φ̂+vk

W )∗) �= {0} the solution to (6.26) is Δrk =
Lk(ek)

e
P with

Lk = (
I + (Ḡe

P |
Φ̂+vk

W )∗Ḡe
P |

Φ̂+vk
W

)−1
(Ḡe

P |
Φ̂+vk

W )∗ (6.30)

which satisfies (6.17) with limiting solution, from (6.18),

v∞ = W r∞ = W
(
(Ḡe

P |
Φ̂+vk

W )∗Ḡe
P |

Φ̂+vk
W

)−1
(Ḡe

P |
Φ̂+vk

W )∗Φ̂e
P (6.31)
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with corresponding

(Φ∞)e
P = Ḡe

P |
Φ̂+vk

W
(
(Ḡe

P |
Φ̂+vk

W )∗Ḡe
P |

Φ̂+vk
W

)−1
(Ḡe

P |
Φ̂+vk

W )∗Φ̂e
P (6.32)

which is the minimizing solution of (6.28). �

Lemma 6.2 Choosing R = rI, Q = qI, q/r → ∞, the ILC update (6.25)
realizes minimizing solutions (6.29) and (6.31) respectively in a single ILC
iteration. In both cases the required term W Lk(ek)

e
P in (4.4) can be computed

efficiently as the outcome, ΔvJ , of J iterations of the computation

ż(t) = −A
(t)z(t) − C
(t)Q(t)P

i Pi

(
(ek)P (t) − ḠP |

Φ̂+vk
Δvj

k(t)
)
,

z(T) = 0, t ∈ (ti−1, ti), i = 1, . . . , S (6.33)

Δvj+1
k (t) = Δvj

k(t) + αW̄ W̄ 
R−1(t)B
(t)z(t) (6.34)

where J and α > 0 are sufficiently large and small values respectively.

Proof As q/r → ∞, update (6.25) and (6.30) respectively converge to

Lk = (Ḡe
P |

Φ̂+vk
W )∗

(
Ḡe
P |

Φ̂+vk
W (Ḡe

P |
Φ̂+vk

W )∗
)−1

, and

Lk = (
(Ḡe

P |
Φ̂+vk

W )∗Ḡe
P |

Φ̂+vk
W

)−1
(Ḡe

P |
Φ̂+vk

W )∗

which it is shown in [1] correspond to solutions of the minimum energy problem

min
Δrk

∥∥(ek)
e
P − PḠe

P |
Φ̂+vk

WΔrk
∥∥2, r0 = 0 (6.35)

using gradient based ILC [2]. This equates to j = 1, 2, . . . , J iterations of update

Δrj+1
k = Δrj

k + α(PḠe|
Φ̂+vk

W )∗
(
(ek)

e
P − PḠe

P |
Φ̂+vk

WΔrj
k

)

⇒Δvj+1
k = Δvj

k + αW (PḠe
P |

Φ̂+vk
W )∗

(
(ek)

e
P − PḠe

P |
Φ̂+vk

Δvj
k

)
. (6.36)

Operator (PḠe
P |

Φ̂+vk
W )∗ = W ∗(Ḡe

P |
Φ̂+vk

)∗P∗ is defined by a relation of the form

w = (PḠe
P |

Φ̂+vk
W )∗(v1, . . . , vS) as the continuous solution of the costate equation

ṗ(t) = −A
(t)p(t) − C
(t)Q(t)P

j vj(t) : t ∈ [tj−1, tj), p(T) = 0

w(t) = W̄ 
R−1(t)B
(t)p(t). (6.37)

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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Finally, ((ek)
e
P (t))i = Pi(ek)P (t), t ∈ [ti−1, ti], so that

(
(ek)

e
P (t) − Ḡe

P |
Φ̂+vk

Δvj
k(t)

)
i = Pi

(
(ek)P (t) − ḠP |

Φ̂+vk
Δvj

k(t)
)
, t ∈ [ti−1, ti]. �

Theorem6.2 and Lemma6.2 define specific ILC updates which satisfy Theorem6.1.
In turn, Theorem6.1 provides solutions to themost general form of extended tracking
problem, with optimal restricted stimulation and joint subspaces. We hence have the
tools needed to assist patients in tracking fully functional tasks.

Within subspace definition (6.8), W is not unique in defining a subspace. For
example, W̄ can be replaced by any matrix of the form W̄ W̄R, where W̄R ∈ R

q×q is
full rank, and it will yield the same subspace WR. In Theorem6.2 the convergence
behavior of NOILC depends on the operator, Ḡe

PW , and hence depends on the
arbitrary matrix WR. The next theorem shows how the convergence behavior can be
made independent of WR, thereby retaining control over convergence properties.

Theorem 6.3 Using the subspace operator W WR, application of NOILC
update (6.26) generates an input sequence {vk}k=0,1,...,∞ that is indepen-
dent of WR provided that the input subspace weight takes the form [R] =
(W WR)∗RW WR.

Proof WR can be interpreted as a similarity transform on the subspace, changing
the underlying basis while preserving the subspace. In particular let W̃ = W WR,
then if ker((Ḡe

P |
Φ̂+vk

W )∗) = {0} it follows that (Φ̂k+1)
e
P = (Φ̂k)

e
P + Ḡe

P |
Φ̂+vk

W̄ (Ḡe
P |

Φ̂+vk
W̃ )∗(Ḡe

P |
Φ̂+vk

W̃ (Ḡe
P |

Φ̂+vk
W̃ )∗)−1(ek)

e
P with

Ḡe
P |

Φ̂+vk
W̃ (Ḡe

P |
Φ̂+vk

W̄ )∗ = Ḡe
P |

Φ̂+vk
W̃ (W̃ ∗W̃ )−1W̃ ∗(Ḡe

P |
Φ̂+vk

)∗

= Ḡe
P |

Φ̂+vk
W̃ W̃ †(Ḡe

P |
Φ̂+vk

)∗

= Ḡe
P |

Φ̂+vk
(Ḡe

P |
Φ̂+vk

)∗.

Hence each (Φ̂k+1)
e
P is independent of WR. A similar result occurs in the case that

ker((Ḡe
P |

Φ̂+vk
W )∗) �= {0}. Finally note that, since the subspace is invariant of WR,

ker((Ḡe
P |

Φ̂+vk
W )∗) = {0} ⇔ ker((Ḡe

P |
Φ̂+vk

W WR)∗) = {0} (6.38)

so that if either of (6.38) holds then convergence to zero error is guaranteed. �

If a stimulation subspace is employed, we use feedback controller structure (6.11)
and set W = I within Theorem6.1. If X is replaced by XXR where XR is a similarity
transform, then its effect can be directly removed by setting KX equal to X−1

R KX .
This means that the control action is also invariant to the arbitrary choice of XR.

We finally note:
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• Appropriate selection of weight R in the NOILC update of Theorem6.2 can be
used to not only minimize the ILC control action, but other control signals. For
example, choosing R = H∗H, where H = (I + MK)−1K yields the minimum
stimulation solution to the problem, with (6.27) becoming

lim
k→∞ vk = v∞, v∞ := min

v
‖u‖2 s. t. ee

P = 0. (6.39)

• The solution (6.26) can also be implemented in the form of a combined state
feedback plus feedforward update, by extending the approach of [3]. These can be
chosen to replace the form of Lk given by (6.25).

• Avariety of extensions to the constrained NOILC problem have recently been pro-
posed, including the case where the control effort minimization v∞ := minv ‖v‖2
in (6.27) is replaced by a more general ‘auxiliary function’, to give

v∞ := min
v

J(z, v) s. t. Φ̂e
P = Ge

P (v + Φ̂), J(z, v) = ‖z‖2 + ‖v‖2 (6.40)

where z = Hv is a signal that is considered important in the problem, e.g. accel-
eration or jerk. For more details see [4, 5].

• Constraints involving signals other than the joint angles (e.g. joint velocity or
acceleration) are easily absorbed within the framework by incorporating dynamics
into the plant definition, e.g. by defining an augmented system operator as follows:

Lemma 6.3 Suppose P operator definition (6.2) is exchanged for the aug-
mented counterpart

((PΦP )j)(t) = Pj

[
ΦP (t)
Φ̇P (t)

]
, t ∈ [tj−1, tj], 1 ≤ j ≤ S. (6.41)

The corresponding PḠ|ṽ = Ḡe|ṽ definition of (6.24) is simply replaced by

((PḠ|ṽ)jv)(t) = Pj

∫ t

0

[
C(t)

C(t)A(τ )

]
Γ (t, τ )B(τ )v(τ )dτ +

[
0

C(t)B(t)

]
,

t ∈ [tj−1, tj], 1 ≤ j ≤ S. (6.42)

• Inequality constraints involving any of the signals appearing in Fig. 6.1 can also
be imposed by applying a projection to the NOILC operator Lk given by (6.25).
See [6] for full details.
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6.4 Robust Performance

Building on our previous robustness results in Chap.4, we now consider the set-up
shown in Fig. 6.2. Here the ILC update of (4.4) has been replaced by its extended
counterpart (6.13). This includes projectionP and joint subspaceW operators defined
by (6.1) and (6.8) respectively. The aim of this section is to establish robust perfor-
mance conditions for this extended system. To do this, we can apply the general
robust performance condition of Theorem4.5 directly to this system. However to
generate more specific design-orientated stability conditions we must calculate new
bounds between the external and internal signals to replace the previous result of
Theorem4.6. This is undertaken in the following theorem.

Theorem 6.4 Let plant model M and controller K be linear, and ILC operator
L be designed to satisfy either (6.14) or (6.17) of Theorem6.1. Then

bM̄//C̄ = bM//K +

∥
∥∥
( I

M

)
K(I + MK)−1W

∥
∥∥‖L‖∥∥P(I + MK)−1(−M, I)

∥
∥

1 − γ (6.43)

where bM//K is defined by (4.45) and γ = ‖I − Ḡe
PW L‖ or ‖I − LḠe

PW‖
depending on whether it is condition (6.14) or (6.17) that is satisfied.

Proof For the case of Fig. 4.8, we have from (4.49) the expression

u(k + 1) = (I + KM)−1(I, K)w0(k + 1) + K(I + MK)−1Φ̂ + K(I + MK)−1

×
( k∑

i=0

(I − LG)iLΦ̂ +
k−1∑

i=0

(I − LG)iL(I + MK)−1(−M, I)w0(k − i)

)
.

where G := (I +MK)−1MK = ḠP = GP as M and K are linear. Comparing update
(6.13) with (4.4) we see that L ⇒ W LP, and hence it follows that

Fig. 6.2 ILC and feedback control scheme in lifted form

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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u(k + 1) = (I + KM)−1(I, K)w0(k + 1) + K(I + MK)−1Φ̂ + K(I + MK)−1

×
( k∑

i=0

(I − W LPG)iW LPΦ̂

+
k−1∑

i=0

(I − W LPG)iW LP(I + MK)−1(−M, I)w0(k − i)

)
.

We next employ the identity:

W L
k∑

i=0

(
I − PGW L

)i =
k∑

i=0

(
I − W LPG

)i
W L ∀ k

to obtain

u(k + 1) = (I + KM)−1(I, K)w0(k + 1) + K(I + MK)−1Φ̂ + K(I + MK)−1W L

×
( k∑

i=0

(I − PGW L)iPΦ̂

+
k−1∑

i=0

(I − PGW L)iP(I + MK)−1(−M, I)w0(k − i)

)
(6.44)

which if condition (6.14) holds, ultimately produces the bound

‖ΠM̄//C̄‖(
0
Φ̂

) ≤ bM//K +

∥∥
∥
( I

M

)
K(I + MK)−1W L

∥∥
∥
∥∥P(I + MK)−1(−M, I)

∥∥

1 − ‖I − PGW L‖ .

(6.45)

Next use the identity:

L
k∑

i=0

(
I − PGW L

)i =
k∑

i=0

(
I − LPGW

)i
L ∀ k (6.46)

and substitute it into (6.44) to obtain

u(k + 1) = (I + KM)−1(I, K)w0(k + 1) + K(I + MK)−1Φ̂ + K(I + MK)−1W

×
( k∑

i=0

(I − LPGW )iLPΦ̂

+
k−1∑

i=0

(I − LPGW )iLP(I + MK)−1(−M, I)w0(k − i)

)
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which, if condition (6.17) holds, ultimately produces the bound

‖ΠM̄//C̄‖(
0
Φ̂

) ≤ bM//K +

∥∥∥
( I

M

)
K(I + MK)−1W

∥∥∥
∥∥LP(I + MK)−1(−M, I)

∥∥

1 − ‖I − LPGW‖ .
(6.47)

Hence (6.43) is an upper bound for both (6.45) and (6.47) cases. �

Therefore the definition of bM̄//C̄ given by Theorem6.4 replaces that of (4.44),
allowing us to directly apply Theorems4.5, 4.7 and Proposition4.1 to the system
of Fig. 6.2. These supply precise conditions for robust performance. Assuming a
model and feedback controller have been designed, they also motivate the following
design procedure:

Procedure 4 (Design guidelines for robust stability)
Define task: Represent functional tasks as a minimum set of position and/or
velocity and/or acceleration requirements involving subsets of joints, over
subsets of intervals. Almost all functional tasks can be represented in this way.
Use these parameters to define P via (6.1) and Lemma 6.3.
Define subspace: If necessary to improve realism or reduce identification time
(as will be discussed in Chap.8), introduce subspacesW and/orX by defining
the matrices W̄ and X̄ respectively. In the latter case K is designed to satisfy
(6.11) and we set W = I .
ILC design: Compute an ILC operator L to satisfy Theorem6.1. Suitable
examples are provided by the NOILC operators of Lemma6.1.
Gain bound computation: Use Theorem6.4 to compute the gain bound
bM̄//C̄ , trying to produce the smallest value that can achieve the desired perfor-
mance. Note that the ILC component (right hand term of (6.43)) can be made
arbitrarily small if convergence speed is not an issue (i.e. through choice of L
with a small norm).
Establish robust uncertainty: Use bM̄//C̄ to compute robustness bounds for
realistic uncertainty using Theorem4.7 and Proposition4.1. These define a
‘ball’ of stabilized plants in the uncertainty space of radius b−1

M̄//C̄
.

Experimental evaluation: Implement the controller, measure and quantify
performance. If necessary, redefine the task (to reduce ‖P‖), slow learning
(to reduce ‖L‖) or de-tune feedback tracking performance (to reduce bM//K )
in order to increase the radius of the stabilized ball of plants. Alternatively,
re-identify the plant model M to reduce the mismatch, δ(M, N), between it
and the true stimulated arm system N .
Refine control system: If performance deteriorates, update the task defini-
tion, subspace(s), model, and control operator design between experiments to
maximize robust performance. In practice, the process of switching the con-
troller to a more robust design that provides stability at the expense of tracking
performance can be automated.

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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6.5 Human Motor Control

Task description (6.4) embeds natural motion into the control action, and removes the
need for a predefined reference trajectory. In this section we show how functional
tasks relevant to rehabilitation can be expressed as the required set of gestures or
coordinated joint movements occurring at distinct time-points or over sub-intervals.
We start by placing this problem in the wider context of human motor control.

6.5.1 Computational Models of Upper Limb Motion

Human motor control is a well-established field of research, and many studies have
been reported characterizing motion during upper limb reaching tasks. The majority
extract relationships between key variables (e.g. timing and amplitude of kinematic,
kinetic or electromyographic data) in order to examine the effect of task conditions
and/or participant groups on task execution. These include effect of age [7], task
conditions [8], and compensatory strategies post stroke [9]. For example [10–12]
find significant inter-patient differences in the performance of reaching tasks follow-
ing stroke compared with unimpaired participants. Human sensorimotor control has
also been expressed computationally in order to more fully capture the underlying
dynamics of movement [13, 14]. Approaches can be divided into those that attempt
to simulate the internal feedback/feedforward mechanisms present in the central
nervous system, and those that try only to model the resulting kinematic motion
at the task level. The latter have traditionally posed reaching tasks as optimization
problems, involving, for example, the minimization of jerk [15], torque change [16],
variance [17], interaction torques or combinations of these [18]. However the focus
has so far overwhelmingly been on planar point to point tasks. The case of functional
tasks necessary to complete activities of daily living has not yet been addressed.

To show how general classes of functional tasks fit within the extended task
description (6.4) we next describe a series of experiments in which functional move-
ments are recorded from unimpaired subjects. Using their identified armmodels, task
parameters within the projection P are then fitted in simulation so that the solution to
(6.4) corresponds with their recorded arm movements as closely as possible. More
details of the experimental results reported in this section can be found in [19].

6.5.2 Unimpaired Motion Data Collection

Following ethical approval, twelve unimpaired volunteerswere recruited to the study.
Inclusion criteria were that the participants had to be: (i) aged 30–80years old;
(ii) able to comply with study protocol; (iii) able to communicate effectively and (iv)
able to provide written informed consent. Exclusion criteria were: (i) the requirement
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of an interpreter; (ii) uncorrected visual impairment (iii) a skin disease or allergy
to sticky tape; (iv) severe pain in the arm, shoulder or hand; and, for the control
participants, (v) a neurological condition that affects movement in the arm.

The unimpaired participants (six male and six female) were aged between 49 and
77 (M = 64, SD = 10). All unimpaired participants, except for one, were right
handed. The side tested for each participant was randomized; six participants com-
pleted the tasks using their right hand and six using their left hand. Five participants
were tested using their dominant hand. The testing side for unimpaired participants
was randomized so as to be more representative of the stroke population, which are
almost equally distributed between left and right sided incidence [20].

All participants attended one testing session lasting 2-3 hours in which the kine-
matic movements of the upper limb and hand during three functional reaching tasks
were recorded. The tasks were closing a drawer, turning off a light switch and pick-
ing up a can to drink from. Position data were recorded using a Vicon MX T-Series
motion capture system (Vicon, Oxford, UK) using 12 cameras (6 x T40 and 6 x
T160) sampling at 100 Hz. Reflective anatomical markers were positioned on key
landmarks of the torso, shoulder complex, upper limb, wrist and hand, as shown in
Fig. 6.3. Marker clusters were attached to the sternum and acromion on the side that
was being tested, with additional markers placed on the radial and ulnar styloids and
the second and fifth carpometacarpal (CMC) and metacarpophalangeal (MCP) joints
of the hand. A marker wand was used to locate specific anatomical landmarks with
respect to the relevant marker cluster, see [21]. These additional bony landmarks
consisted of: sternal notch, xyphoid process, C7 vertebrae, T8 vertebrae, sternoclav-
icular joint, acromioclavicular joint, scapula acromion angle, scapula medial spine
scapula, scapula inferior angle and medial and lateral epicondyles of the elbow. The
elbow joint centre was estimated as the midpoint between the medial and lateral
epicondyles. The glenohumeral joint centre was defined according to the regres-

Fig. 6.3 a Positioning of Vicon marker clusters used during trials and b additional marker wand
locations used for calibration
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sion method of [22]. Additional markers were positioned on the task objects to aid
movement identification. Four markers were positioned in a square on the front edge
of the drawer and light switch. Markers were located so that they did not inhibit
participants’ movements during tasks.

Participants were seated at a table that was adjusted so that the underside was
10cm above their knee. For each task, the participant was asked to start with their
hand (palm down) on their knee. On a ‘start’ command, the participant completed
the task and then placed their hand back on their knee. Tasks were performed at both
self-selected and maximal speeds. Five successful trials were collected for each task
and each speed; trials were repeated if any of the reflectivemarkers were occluded for
more than 25 epochs during the trial. Participants were given a 15–30 s break between
each trial. All participants completed the drawer closing task first. Maximum reach
for each participant was measured from the anterior edge of the acromion to the end
of the index finger.

Drawer Closing Task

Acustommade cabinet that had a drawer with a large, round, central knobwas placed
on the table in front of the participant so that the drawer knob was directly in line
with the participant’s shoulder for the side being tested. The cabinet was placed at a
distance corresponding to 100%of the participant’smaximum reach, with the drawer
knob directly in line with the participant’s shoulder for the side being tested. When
opened, the drawer knob was at a distance of 75% of the participant’s maximum
reach. Participants were asked to move their hand from their knee to push the drawer
closed using the knob and to return their hand back to their knee.

Light Switch Task

A standard light switch is mounted on the opposite side of the cabinet. The cabinet
was positioned so that the light switch was in line with the participant’s shoulder, at
75% of their maximum reach. Participants were asked to move their hand from their
knee to turn off the light switch and to return their hand back to their knee. Participants
were always required to push in the top of the light switch, which required more arm
control and stability than pressing the bottom of the switch.

6.5.3 Data Analysis

Vicon Nexus (Version 1.8) software reconstructed 3D position data for all the mark-
ers. Marker position data were filtered using a 4th order low-pass Butterworth filter,
with a cut-off frequency of 10Hz.Anatomical landmarks, recreated from their known
positions with respect to the marker clusters, were used to define local coordinate
systems for the thorax, scapular, humorous and ulna following ISB guidelines [23].
The hand was defined with an origin at the midpoint between the second and fifth
CMC markers, the Y axis was defined as being parallel with the line formed by the
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mid-point of the CMC markers to the mid-point of the MCP markers pointing dor-
sally, the Z axis parallel to the line from the second CMC marker to the fifth CMC
marker pointing laterally (with the hand supinated), with the X axis orthogonal to
the Y and Z axes. Positional data were averaged at each time point across the five
repetitions, for each participant, task, and speed. Key timings were then extracted,
comprising the start and end of the movement, defined by the initial hand movement
from the participant’s knee and the hand returning to the knee, respectively. For the
light task an additional timing was when the light switch was pressed. For the drawer
task two additional timings were the start and end of the drawer movement.

6.6 Computational Model Development

The electrically stimulated human arm model of Sect. 2.2.5 has been extended to
include forearm rotation, wrist flexion/extension and abduction/adduction through
inclusion of joints φi, i = 6, 7, 8. The model parameters are shown in Fig. 6.4, where
li and ai denote link and centre ofmass lengths respectively for i ∈ {u, f , w}, andmi, Ii

are mass and inertias respectively. The general formF
(
Φ(t), Φ̇(t)

)
given by (2.14) is

assumed. The resulting model retains the structure of (2.6) withΦ = [φ1, . . . , φ8]
,
and has state-space implementation (2.7). Note that u(t) specifies the innervation
input, which could be through either voluntary action or application of electrical
stimulation.

Fig. 6.4 Unimpaired participant performing task, and corresponding 8 dof upper limb model

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_2
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The minimum input energy model of human movement proposed by [13, 14] can
be expressed using the extended task description of (6.4) and, in particular, exactly
corresponds to the NOILC solution (6.27). Adopting this form means we only need
to define parameters in projectionP. The problem of coming to rest at the light switch
at time t = T is expressed by the following definitions of P and PḠP :

Lemma 6.4 Let operator P be defined by

(PΦP )(t) = P1

([
ΦP (t)
Φ̇P (t)

])
=

[
k(ΦP (t))

J (ΦP (t)) Φ̇P (t)

]
, t = t1 = T .

(6.48)
with corresponding linearized extended plant operator, (6.24), given by

(PḠP |ṽv)(t) =
∫ t

0
J(Φ̃(t))C(t)

[
I

A(t)

]
Γ (t, τ )B(τ )v(τ )dτ, t = t1 = T .

(6.49)

In (6.48), projection P extracts the Cartesian hand position k(ΦP )(t) and veloc-
ity d

dt k(ΦP )(t) = J (ΦP (t)) Φ̇P (t), which hence makes P a nonlinear func-
tion of ΦP . This means that Ḡe

P |ṽ = PḠP |ṽ is defined as in (6.49), where

Φ̃ = ∫ t
0 C(t)Γ (t, τ )B(τ )v(τ )dτ is the joint operating point. Form (6.49) then

replaces (6.24) for application in the ILC updates of Theorems6.1 and 6.2. The
drawer closing task is similarly defined, and includes an additional time-point so
that M = 2. Tracking is defined on interval [t1, t2] to stipulate the drawer moving
along its runners.

Having defined the task, the next step is to solve (6.4). This is done in simulation
in order to efficiently predict the movement generated by the control system if it
were used to assist motion. Results will then be compared with the experimental
motion actually produced by the unimpaired participant. Accordingly, we apply vk
to model Ḡe

P to generate (ek)
e
P = Φ̂e

P − Ḡe
Pvk . The next input is then calculated

using NOILC update (6.34), which is repeated until convergence occurs.

6.7 Results

For each participant dynamic model (2.7) was identified using the simple decoupled
formFi(φi(t), φ̇i(t)) = biφ̇i(t)+ki(φi(t)−θ̃i)where bi, ki and set-point φ̃i are scalars
for the joint angles i ∈ {1, . . . , 8} employed in the model. Reference positions Φ̂(ti),
i ∈ {0, 1} and i ∈ {0, 1, 2} for the light switch and drawer tasks respectively were
defined by the placement of the participant and manipulated objects. In particular,
Φ̂(0) = Φ̂0 was taken by averaging the initial arm position over the five repetitions
of each task. For the light switch task, t1 was the average time taken to press the

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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(a) (b)

(c) (d)

Fig. 6.5 Simulated and experimental joint angles for light switch task a maximal speed reach
component, b self-selected speed reach component, c maximal speed reach and return components,
d self-selected speed reach and return components

Fig. 6.6 Simulated and
experimental paths in
Cartesian space for maximal
speed reach component of
the light switching task
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(a) (b)

(c) (d)

Fig. 6.7 Simulated and experimental joint angles for drawer closing task a maximal speed reach
component, b self-selected speed reach component, c maximal speed reach and return components,
d self-selected speed reach and return components

Fig. 6.8 Simulated and experimental paths in Cartesian space for maximal speed reach component
of the drawer closing task
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switch, and for the drawer task, t2 was the average time taken to first make contact
with the drawer knob and t3 the average time to fully close the drawer.

To solve (6.4), update (6.34) was iterated in simulation until ‖(ek)
e‖ < 0.001 was

achieved, and the corresponding ‘virtual reference’ Φ̂ = Gvk computed. Results
expressing the difference in experimental and simulated joint angles appear in
Table6.1 for the self-selected speed where the normalized error, expressed as a per-
centage, is 100× ‖Φ̂ − Φ‖/‖Φ̂ − Φ0‖. For the reach component of the light switch
task at self-selected speed, the mean fitting across the 12 participants is 71.437%
confirming high accuracy. The procedure has been repeated for the maximal speed
light switch task, with fitting results shown in Table6.1. The fitting is now 75.892%.
Figure6.5a and b show the signals Φ and Φ̂ (solid and dotted lines respectively) at
both speeds for a single participant (P1). Figure6.6 shows the corresponding paths
in Cartesian space for the reach component of the maximal speed light switch task.

Fitting results for the full reach and return light switch task are shown in Table6.1
at both speeds, with values also given for the reach and return sub-components of
the task. This incorporates the arm returning to the start position after completing
the switch task, and hence an additional time point is required in the definition of P.
The mean fitting for the reach and return light switch task across the 12 participants
is now 69.166% and 64.626% for maximal and self-selected speeds respectively.
Figure6.5c and d shows the signals Φ and Φ̂ (solid and dotted lines respectively) at
both speeds for participant P1.

Fitting results for the drawer closing task are shown in Table6.2 and confirm a
mean accuracy of 77.194 and 83.961% for the self-selected and maximal speeds
respectively. Figure6.7a and b show experimental and simulated joint angles at both
speeds for participant P1. Figure6.8 shows the corresponding paths in Cartesian
space for the reach component of the maximal speed drawer closing task.

Mean fitting results for the reach and return drawer closing task are shown in
Table6.2 and confirm a total accuracy of 69.417 and 73.698% for the self-selected
and maximal speeds respectively. This incorporates the arm returning to the start
position after closing the drawer, and hence the definition of P is augmented to
employ an additional time-point. Figure6.7c and d shows the signals Φ and Φ̂ (solid
and dotted lines respectively) at both speeds for participant P1.

6.8 Conclusions

The tracking control problem has been extended to encompass fully functional
motion, and illustrated by comparing model outputs with experimental data col-
lected from unimpaired subjects performing common activities of daily living. This
model description accurately represents natural movements, and means that a refer-
ence trajectory defined over t ∈ [0, T ] is no longer required. A framework to design
ILC control algorithms has been proposed to enforce tracking of these extended
tasks. In the next chapter the control scheme is used within a clinical trial to examine
whether its ability to assist functional tasks leads to improved outcome measures.
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Chapter 7
Clinical Application: Goal-Orientated
Stroke Rehabilitation

The control framework of Chap.6 enables functional tasks to be assisted in a natural
manner by exploiting underlying humanmotor control principles. To confirm its util-
ity for rehabilitation, these are now used to assist tasks involving real objects, with ES
applied to the wrist and finger extensors, as well as to muscles in the arm and shoul-
der. As highlighted in Chap.5, there is strong evidence that functional improvement
following training is mostly restricted to the actually trained functions and activities
[1]. By supporting functional, whole arm tasks including wrist extension and open-
ing of the hand, we therefore address limitations in the previous system. In addition,
we incorporate non-invasive, markerless sensing technology. More detailed results
of the study and in-depth analysis can be found in [2].

7.1 System Description and Set-Up

The underlying kinematics are shown in Fig. 7.1 and include the wrist action con-
sidered in Chap. 6. The rehabilitation system is shown in Fig. 7.2 and facilitates
recovery of upper limb motor control and function through goal-oriented, func-
tional tasks assisted by ES. The stroke participant sits at the workstation and ES
electrodes are positioned on the anterior deltoid, triceps and wrist and finger exten-
sors of their impaired arm. If required, mechanical support is provided by the Sae-
boMAS unweighting device described in Sect. 2.1.3 that facilitates movement by
supporting the arm against gravity. A Microsoft Kinect (Microsoft, Washington,
USA) is used to provide shoulder, elbow and wrist joint positions, and has an accu-
racy of approximately 10mm [3, 4]. It is combined with an electro-goniometer
(Model SG75, Biometrics Ltd, Newport, UK) placed over the wrist joint to measure
flexion/extension and abduction/adduction. Using these data, the joint angles shown
in Fig. 7.1 are computed and used by the ES control scheme. A custom made graph-
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Fig. 7.1 Human arm
kinematic relationships

ical user interface is used to select appropriate tasks and monitor training. For safety
purposes an over-ride ‘stop’ button terminated trials with immediate effect.

The rehabilitation system incorporates five main functional tasks that span
a 3-dimensional workspace and offers a range of reaching and grasping challenge.
They comprise closing a drawer, pressing a light switch (located at 90◦ or 115◦ of
shoulder elevation), stabilizing an object, pressing a button (placed at one of four
different locations in the workspace) and lifting to reposition an object. Objects can
be placed at different locations on the table corresponding to percentages of arm
reach (60, 75, 80, 95%), and either directly in line with the shoulder or 45◦ to either
side (see Fig. 7.2). The table was at a distance of 45% of arm length away from
the gleno-humeral joint and 35cm below the arm when held 90◦ horizontal to the
shoulder. These values were used to define the extended task tracking problem (6.4)
of Chap.6 which is then solved by following control design Procedure 4. Since only
the reaching component was used, the button pressing and drawer closing tasks were
defined as in Sect. 6.6 with parameter T modified for each participant. Repositioning
of objects involved specifying a further point to correspond to the original and final
object positions.

A convenience sample of five chronic stroke participants was recruited with
characteristics displayed in Table7.1. All participants had suffered strokes between
22months and 7years prior to recruitment to the study; four had left hemiplegia
and one right hemiplegia. None had visual neglect or visual field deficits. A pre
and post study design was adopted in which participants’ upper limb motor activity
and impairment were assessed before and after 18 intervention sessions. Feedback
regarding the system was also obtained via a semi-structured interview. The assess-
ments and interviews were conducted according to standard protocol, by assessors
who were independent of the study. Data collection was carried out by a team of
experienced researchers.

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_6
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Fig. 7.2 Rehabilitation system incorporating SaeboMAS, Microsoft Kinect, task display, operator
monitor and real-time control hardware. The bubble displays the task template customized to each
participants arm length. Green = button located at 60% of arm length; Blue = button located at
80% of arm length; Red = button located at 75% of arm length, 45◦ to the impaired side; Yellow =
button located at 75% of arm length, 45◦ across body; small yellow circles = location that object
was grasped from and repositioned to (60 and 95% of arm length). The cabinet housed the light
switch tasks (located at 75 and 80% of reach for the high and low light switch tasks respectively);
the draw task (located at 80% of reach) was on the reverse side of the cabinet

At the beginning of each session, participants were positioned at the workstation
and their hemiplegic arm strapped into the arm support which was adjusted to allow
the participant’s hand to rest easily on the table top. ES electrodes were place over
the anterior deltoid, triceps and wrist/finger extensors. To identify ES amplitudes for
each muscle, the pulsewidth was set at a maximum value and the therapist gradually
increased the ES amplitude applied to each muscle until they reached the maximum
comfortable level. The pulsewidth was then reduced to zero. Following this the
biomechanical model was identified using the procedure of Chap. 2.

During the intervention, the therapist selected a range of tasks that spanned the
workspace. Participants repeated each task 6-12 times, starting each with their hand
resting on the red square shown in Fig. 7.2. Participants were instructed to contribute
maximum voluntary effort.

http://dx.doi.org/10.1007/978-3-319-25706-8_2
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Table 7.1 Socio-demographic characteristics of participants (n = 5)

Pt Id P1 P2 P3 P4 P5

Age (years) 53 42 49 46 48

Type of stroke I I I I H

Time since stroke (months) 22 84 52 48 84

Female/Male M M M F M

Side of stroke R R R R L

Original dominant hand R R R R L

Pt Id–participant identification, I–infarct, H–haemorrhage, F–female, M–male, L–left, R– right

7.1.1 Outcome Measures

Clinical assessments: As in Chap.5, the FMA and ARAT were used to assess upper
limb motor impairment and motor activity respectively. Their assessment was com-
pleted one to six days before and after the 18 intervention sessions.

ES-unassisted performance: Participants completed five unassisted tasks (i.e.without
ES): the four button pushing tasks (located at 60% or 80% of reach in-line with the
shoulder, or at 75% of reach, 45◦ to the left or right of the shoulder), and the high
light switch task (located at 75% of reach and 115◦ of elevation) at the beginning
and end of each session. The unassisted tasks consisted of one trial only. The time
it took to complete a task (or until maximum effort was achieved), joint angles and
task success (i.e. whether the task was successfully performed) were recorded for
each trial. ES-unassisted data obtained at the beginning of each training session were
used to map changes in these performance measures over time.

ES-assisted performance: The tracking error for each muscle group was calculated
across the six repetitions of each assisted task to quantify the change in task perfor-
mance elicited by ILC. The error was calculated over the full task duration using the
virtual reference Φ̂(t) = (GPv∞)(t), t ∈ [0, T ].
Level of Arm support used during ES-assisted tasks: To maximize voluntary effort,
the level of arm support was reduced following consistently successful performance,
and was monitored and recorded for each task completed. Note that the level of arm
support remained constant for the ES-unassisted tasks.

As in Chap.5 and our previous clinical trials [5, 6], a one-tailed, paired t-test, with
a significance level of p < 0.05, was used to compare pre- and post-intervention
FMA and ARAT outcome measures. Changes in the ES-unassisted and ES-assisted
performance, and level of arm support required across the 18 sessions were ana-
lyzed by calculating best-fit linear regression slopes of performance against session
number collapsed across all participants. Significance was associated with a value of
p < 0.05.

http://dx.doi.org/10.1007/978-3-319-25706-8_5
http://dx.doi.org/10.1007/978-3-319-25706-8_5
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7.2 Results

All five participants complied with the study protocol and there was no withdrawal.
Participants reported no intervention adverse effects.

7.2.1 Assisted Tracking Performance

ES improved performance compared to when no ES was provided (see Fig. 7.3).
Furthermore, ILC successfully controlled the amount of ES applied independently to
eachmuscle, facilitatingmovement patternsmore similar to the reference trajectories
over a series of trials. This is illustrated in Fig. 7.3, in which the participant completes
the task more quickly in trial 6 compared to trial 1 and their movement more closely
resembles the ideal reference movement (as defined by the virtual reference).

The amount of support delivered by the un-weighting armmechanismwas reduced
over the 18 sessions for all participants for the case of ES-assisted button tasks,
the drawer task and the low light switch task, but not the high light switch task
(see Table7.2 and Fig. 7.4). The results demonstrate that the amount of mechanical

Fig. 7.3 Tracking detail. The left panel shows the referencemovement (blue line) and a participant’s
movement when unassisted (dashed green line), assisted for trial 1 (black line with circles) and trial
6 (red line with asterisks) of a set of button pressing tasks at 80% of reach for the shoulder (top
panel), elbow (middle panel) andwrist (bottom panel). Note that themovement produced in trial 6 is
shorter than trial 1 (i.e. participant completes the task more quickly) and more closely resembles the
ideal reference movement. Note also that the reference movement is completed when the movement
plateaus but the end position is held until 20 s elapses. The right panel shows the stimulation applied
on trial 1 (black line with circles) and trial 6 (red line with asterisks)
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Table 7.2 Best-fitting regression slopes and p-values for arm support levels in ES-assisted tasks

Task Mean slope p-value t-value

Button −0.226 0.00 −11.62

Drawer −0.202 0.00 −7.95

Low light switch −0.173 0.00 −6.86

High light switch 0.019 0.66 0.44

Note The small slope values are due to the different units in the axes

Fig. 7.4 Arm support levels
for the button pressing tasks
for each participant across
the 18 training sessions. The
black solid line = the line of
best fit across all participants

assistance in the button tasks was decreased by at least 2 support levels for each
participant, with two participants no longer requiring any support whatsoever to
complete the tasks. Note that each level corresponds to an un-weighting action of
approximately 0.5Kg.

7.2.2 Unassisted Tracking Performance

Table7.3 shows that significant reductions were found in the time taken to perform
both the button press at 80% of reach and button press at 75% of reach, 45◦ to the
impaired side. In addition, the end positions of the hand away from the participant
in terms of distance in the direction of the button were found to increase over the 18
sessions (significantly so for the far button). Taken together, these results indicate
that participants became more successful at reaching these buttons and did so in a
shorter time over the course of the 18 sessions (see Table7.3).

None of the participantswere able to complete the high light switch task unassisted
byES.However, the time takenon this task and themaximumelevation at the shoulder
achieved by participantswere both found to significantly increase over the 18 sessions
(ts > 3.51, ps < 0.001, see Fig. 7.5). This demonstrates that, as the intervention
progressed, participants spent more time trying to achieve this task, and got closer to
completing it (i.e., they could lift their arm higher and nearer to the target and could
maintain this position for longer).
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Table 7.3 Regression slopes and p-values for ES-unassisted tasks

Task End hand position Time taken Maximum Extension

Mean
slope

p-value
t-value

Mean
slope

p-value
t-value

Mean
slope

p-value
t-value

Button at 80% 25.62 0.01 −0.38 −2.44

2.61 0.02

Button on impaired side 12.08 1.47 −0.29 0.03

0.15 −2.17

High light switch 0.55 0.00 −0.08 0.001

5.37 −3.51

Note The small slope values are due to the different units in the axes

Fig. 7.5 High light switch task a time taken and b maximum extension for each participant across
the 18 training sessions. The black solid line = the line of best fit across all participants. For
maximum extension 0◦ corresponds to the arm by side of the body, 90◦ corresponds to the arm held
horizontal to the body; 180◦ corresponds to pointing upwards

7.2.3 Clinical Outcome Measures

The scores from the two clinical outcome measures are shown in Table7.4. Improve-
ments were seen in scores; in four participants for the FMAand for all participants for
theARAT.This improvementwas statistically significant for bothFMA(t (4) = 2.44,
p = 0.036) and ARAT (t (4) = 4.49, p = 0.005).

Table 7.4 Clinical outcome assessment baseline and post-intervention scores

Pt ID1 MS1 MS2 MS3 MS4 MS5 Mean (SD) p-
value

%
change2

ARAT (57)3 Baseline 0 3 4 3 3 2.6(1.52) 0.036 7.719

Post 7 7 5 8 8 7(1.22)

FMA (66)3 Baseline 15 19 17 21 22 18.8 (2.86) 0.005 6.667

Post 24 24 21 27 20 23.2 (2.77)
1participant identification 2change in score divided by maximum possible score
3maximum score in brackets
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7.3 Discussion

Results demonstrate that the control scheme of Chap.6 is able to independently
and precisely control stimulation applied to the shoulder, elbow and wrist and fin-
ger extensors of chronic stroke participants to facilitate coordinated reach to grasp
tasks. Statistically significant improvement was measured in four different outcome
measures following completion of the intervention: an increase in both FMA and
ARAT clinical assessment scores, an improvement in ES-unassisted performance,
and a reduction in the arm support levels. This translated into a clinically relevant
change in the clinical assessment measures (defined as 10% of the value of the scale)
for only one participant. In addition to measured quantitative outcomes, participant
feedback provided positive qualitative responses. These results are reported in [2].

An important finding from this study is that both the primary outcome measures,
FMA and ARAT scores, showed statistically significant improvements from pre to
post intervention. Thus, following the intervention participants showed reductions
in motor impairment and were able to perform more functional motor activities. The
same intervention period of one hour was used to facilitate comparison with previous
work using ILC mediated ES which showed statistically significant improvements
only in the FMA assessment and not the ARAT (see Chap.5 as well as the additional
studies [5, 6]). This has been attributed to the fact that in these studies wrist and hand
extensors were not specifically trained, with only the triceps and/or anterior deltoid
being stimulated. Indeed, upper limb treatments and therapies are suggested to be
location specific [7]. Training of the shoulder and elbow will only improve motor
impairment in the shoulder and elbow [5, 6, 8], just as training of the wrist and finger
extensors shows improvements in hand function [9]. As such, to achieve functional
changes the whole upper limb should be considered in training. This study set out
to address this by incorporating ILC mediated wrist and finger stimulation, and the
results are very promising to the recovery of whole arm functional movements.

Nevertheless, despite observing an improvement andparticipants reportinggreater
ability to perform everyday tasks at home, such as lifting, stabilizing and pressing
light switches, it was still evident that fine finger movement is required to translate
the benefits observed to activities of daily living.

7.4 Conclusions

The next chapter will address the problem of achieving precise control of hand and
wrist movement that has been highlighted as a critical limitation to achieving more
significant clinical outcome measures. Electrode arrays show potential in providing
the requiredmuscle selectivity, but the feasibility of incorporating them into a clinical
system is a challenging problemdue to the difficulty in obtaining an underlyingmodel
relating stimulation and resulting movement. Our objective is therefore to integrate
model-based electrode array controllers into the existing design framework in order

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_5
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to assist fine wrist and finger movements. This will allow us to subsequently extend
the rehabilitation system demonstrated in this chapter so that it can provide more
effective therapy.
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Chapter 8
Electrode Array Control Design

The recent emergence of transcutaneous electrode arrays has potential to improve
selectivity, automate placement, and reduce fatigue and discomfort compared with
single pad electrodes [1, 2]. The freedom they embed to adjust the size and shape of
the electrode means they can isolate smaller muscle groups, and thereby enable the
user to perform a variety of functional tasks including walking [3, 4], and hand/wrist
motion [2, 5]. However, existing control strategies are open-loop and use time-
consuming electrode element selection procedures, limiting accuracy and usability.

In this chapter the model developed in Chap.2 is extended to represent electrode
arrays. The control procedures of Chaps. 3, 4 and 6 are then applied using locally
linear models which embed a restricted stimulation subspace. Clinically feasible
model identification procedures are proposed for this form to replace the identifica-
tion method of Chap. 2 which is unsuitable for arrays due to the impracticality of
manipulating each joint of the hand and wrist while measuring applied force. Finally,
the robustness properties established in Chaps. 3, 4 and 6 are extended to provide
transparent robust performance margins for the electrode array scheme.

8.1 Modeling of a Single Array

For simplicity we consider control of a single electrode array in this chapter, but
will integrate this into a general framework encompassing an arbitrary number of
arrays and single pad electrodes in Chap.9.We have assumed each channel, ui, of ES
signal u ∈ L m

2 [0, T ] represents the electrical stimulation applied to the ith muscle.
Since each array element does not necessarily correspond to a single muscle, we
now introduce signal z ∈ L n

2 [0, T ] containing the stimulation applied to each of the
n elements of the array over t ∈ [0, T ]. The stimulation provided to the ith muscle
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is assumed to be a linear combination of those array elements within spatial range,
and hence can be modeled using the relationship

ui(t) =
n∑

j=1

ai,jzj(t), i = 1, . . . , m, t ∈ [0, T ]. (8.1)

From Chap.3, the resulting system is hence expressed in operator form as

M : Φ = HRBFm(Φ, Φ̇)HLADhIRC(Az), A : z �→ u : u(t) =
⎡

⎢
⎣

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

⎤

⎥
⎦ z(t)

(8.2)

with elements defined by (3.39)–(3.42). This reduces to (3.38) when n = m and
A = I (i.e. each ES channel is associated with a single muscle).

It is possible to identify parameters in (8.2) by extending the approach devel-
oped in Chap.2. However, in the case of the wrist and hand there are at least 41
musculo-tendon units actuating16 joints with 23 degrees of freedom [6]. This makes
measurement of all joint angles and application and sensing of force/moments about
each axis highly challenging. In addition, since the muscles are small and closely
packed, the model system is sensitive to small changes in array position as well as to
physiological changes such as fatigue and spasticity, and environmental conditions
such as temperature and humidity. This makes the previous approach impractical,
and therefore it will be exchanged for the identification of local linear models (as
incorporated as an option within the design procedures of Chaps. 3, 4 and 6).

8.2 General Array Control Framework

Application of control design Procedure4 of Sect. 6.4 to the array control prob-
lem first requires designing feedback controller K to stabilise the linearised model
descriptionM|zk . The impractically of obtaining a global non-linearmodelmeans that
we must identify M|zk around each operating point zk . The structure of M : z �→ Φ

is given by (8.2) and has n inputs and p outputs, making it potentially high dimen-
sion. To recover a tractable identification problem we therefore embed a restricted
plant stimulation space with dimension q < n. From Definition 6.1, this necessitates
feedback structure (6.11), and hence the control scheme takes the form shown in
Fig. 8.1, where operator X is given by (6.6) with full rank X̄ ∈ R

n×q. We can expand
the previous design procedure as follows:

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_3
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http://dx.doi.org/10.1007/978-3-319-25706-8_2
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http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
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Fig. 8.1 Feedback and ILC control scheme specified to electrode array structure

Procedure 5 (Design for Robust stability: specification to electrode array)

Define task: Choose P via (6.1) and Lemma 6.3 to capture the required func-
tional task (or for simplicity chooseP = I to track reference Φ̂ over t ∈ [0, T ]).
Define stimulation subspace, X: This will be addressed in Sect. 8.3.
Model identification: Apply input sequence zk = Xrk to the ES electrode
array, and use resulting input-output data set {zk,Φk} to identify a linear
approximation to the dynamics M|zk about zk = Xrk . Here

M|z(k) : L n
2 [0, T ] → L

p
2 [0, T ] : z �→ Φ

: Φ = (
HRB|wFm(Φ, Φ̇)HLADhIRC(Az)

)|zk z (8.3)

Feedback controller design: Design KX : L p
2 [0, T ] → L

q
2 [0, T ] to stabilize

M|z(k)X. This is equivalent to designing K to stabilize M|z(k) given structure
(6.11).
ILC design: Design L to satisfy condition (6.14) or (6.17) of Theorem6.1 for
the resulting closed-loop system

G|
Φ̂+vk

: L p
2 [0, T ] → L

p
2 [0, T ] : v �→ Φ : Φ = (I + M|z(k)K)−1M|z(k)Kv. (8.4)

The first condition guarantees nominal convergence to zero error, but requires
q ≥ p. In both cases, implement ILC update using (6.26).
Examine robustness: Calculate bM̄//C̄ for above K and L forms using Theo-
rem 6.4. Use in Theorem 4.7 and Proposition 4.1 to inspect allowable model
mismatch and its effect on robust performance.

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4


124 8 Electrode Array Control Design

We next present examples of explicit forms of KX and L for application in the
above procedure. These assume that the form of linearized system (8.3) is stipulated
by the designer as a static p × n mapping, i.e. with form

F : L n[0, T ] → L p[0, T ] : z �→ Φ : Φ(t) = F̄z(t), F̄ ∈ R
p×n, (8.5)

followed bySISO linear dynamics. In practice this assumption is supported by similar
muscle and rigid body dynamics in the wrist and hand, together with the presence of
spasticity, inherent stiffness, and the low bandwidth of required movements.

Proposition 8.1 Let linearized dynamics (8.3) have form M|z = H̄(s)F where
F is given by (8.5) and H̄(s) is a SISO system. The feedback control action
KX : e �→ r : r = K̄(s)(FX)†e, where K̄(s) is a SISO system, applied to system
Φ = M|zXr realizes stimulation input

r = Nw(s)r� (8.6)

where r� is the unique minimizer of a weighted norm of the tracking error,
e = Φ̂ − Φ, and the SISO system

Nw(s) := (I + K̄(s)H̄(s))−1K̄(s)H̄(s). (8.7)

The resulting closed-loop system dynamics are

Φ = Nw(s)(FX)⊥Φ̂ (8.8)

where the orthogonal projection onto the range of FX is FX(FX)† = (FX)⊥,

(FX)⊥ : L p[0, T ] → L p[0, T ] : Φ̂ �→ x : x(t) = F̄X̄(F̄X̄)†Φ̂(t). (8.9)

Proof Consider theweighted tracking error r� = minr ‖Φ̂ − Φ‖2Q whereweightQ =
(H̄(s)−1)∗H̄(s)−1 with (·)∗ the adjoint operator. This has solution

r� = min
r

‖Φ̂ − Φ‖2Q = min
r

‖Φ̂ − H̄FXr‖2Q = min
r

‖H̄−1Φ̂ − FXr‖2 = (FX)†H̄−1Φ̂.

The proposed control action KX = K̄(s)(FX)† realizes (when q ≤ p)

r = K̄(FX)†(Φ̂ − H̄FXr) ⇒ (I + K̄(FX)†H̄FX)r = K̄(FX)†Φ̂

⇒ (I + K̄H̄)r = K̄(FX)†Φ̂

⇒ r = (I + K̄H̄)−1K̄(FX)†H̄H̄−1Φ̂ ⇒ r = Nwr� (8.10)
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The corresponding closed-loop dynamics are

Φ = H̄FXr = H̄FX(I + K̄H̄)−1K̄(FX)†H̄H̄−1Φ̂ = Nw(s)FX(FX)†Φ̂.

�
The feedback control action KX = K̄(s)(FX)† of Proposition 8.1 therefore ensures
that Φ tracks the demand input Φ̂ (or Φ̂ + vk if ILC is also applied) as closely as
possible, subject to dynamics Nw specified by the designer. It requires only that SISO
feedback controller K̄(s) be selected to stabilize dynamics (8.7), but has the property
of stabilizing all p joints. By enforcing dynamics G|

Φ̂+vk
= Nw(s)(FX)⊥, it also

facilitates the following simplified ILC update:

Proposition 8.2 The system of Fig.8.1 with M = H̄(s)F, the feedback action
of Proposition 8.1, and ILC update

vk+1 = vk + LPek, L = l(PNw(FX)⊥)†, l ∈ (0, 1] (8.11)

satisfies (6.17) and enforces convergence to the minimum extended error
norm, i.e.

lim
k→∞ vk = v�, v� = min

v
‖Φ̂e − Φe‖2. (8.12)

Furthermore, if K̄(s) is tuned so that Nw(s) approximates a pure delay of λ

seconds then (8.11) corresponds to the phaselead update

vk+1(t) = vk(t) + l(Pj(F̄X̄)⊥)†ee
k(t + λ), t ∈ [tj−1, tj], j = 1, . . . S.

(8.13)

Proof We set W = I in Theorem 6.1 and assume q ≤ p. Since Proposition 8.1
yields closed-loop dynamics G|

Φ̂+vk
= Nw(s)(FX)⊥, we then substitute L = l

(PNw(FX)⊥)† and G = Nw(s)(FX)⊥ into I − LPG to give I − l(P(FX)⊥)†

P(FX)⊥ = I(1 − l) which satisfies (6.17). The corresponding limiting error solu-
tion (6.22),

(
I − PG(LPG)−1L

)
Φ̂

e
, is given by (I − (P(FX)⊥)⊥)Φ̂

e
which is the

orthogonal projection onto the kernel of Φ̂
e
. This is theminimumachievable error and

hence solves (8.12). If Nw(s) = e−sλ then L = l(e−sλP(FX)⊥)† = lesλ(P(FX)⊥)†

with time-based implementation (8.13). �

Note that update (8.13) takes the ‘phase-lead ILC’ form, which has received signif-
icant research attention due to its simple structure (with only two parameters, l, λ)
that enables heuristic tuning [7–9].

We next examine how stimulation subspace X can be chosen to balance tracking
accuracy with practicality of identification.

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
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8.3 Subspace Identification

The identification of subspaceX is addressed in this section, with subsequent iden-
tification of the q input, p output system M|ū(k)X following in Sect. 8.4. The purpose
of X is to reduce the dimension of the latter problem so that it can feasibly be
performed within the limited time available in practice. The use of X is motivated
by the observation that only a subset of muscles are required for a given posture, and
the underlying muscle locations can be assumed to not change. It is hence possible
to select an input subspace that covers those muscles needed to perform a required
set of tasks, together with the possible variation in array placement. In practice a
suitable input subspace can be constructed using:

• previous experimental input and output data, and/or
• structural information based on prior system knowledge.

From the comments made following Theorem 6.3, any basis can be used to define
the stimulation subspace without affecting subsequent performance (i.e. X may be
exchanged for XXR with any full rank XR).

8.3.1 Selection Using Experimental Data

Assume that previous experiments (with any choice of input subspace) have yielded
input and output signal pairs {z,Φ} for plant M given by (8.2) (where z is the stim-
ulation applied to the n elements of the array). From these select those with outputs
close to the required movement(s), and denote as {zi,Φ i}, i = 1, . . . , c. These can
be used to produce a basis for the input set by directly inserting in X as

X̄(t) = [z1(t), z2(t), . . . , zc(t)] ∈ R
n×c (8.14)

and setting q = c. If X is time-invariant, then a finite set of {zi(tj)}i,j can instead
be employed. In the case of linear M, any reference in the set spanned by a linear
combination ofΦ i (corresponding to the range ofMX, im(MX)), will be tracked with
zero error using the ILC algorithms of Theorem 6.1. If Φ̂ does not belong to this
set, then the subsequent error is the orthogonal projection of Φ̂ onto ker((MX)∗), as
shown in Fig. 8.2. If c � n, the dimension of MX is far smaller than that of M. The
direct use of previous inputs is not ideal as q cannot be independently prescribed
(since q = c). Inputs may also be linearly dependent, and thereby provide no new
information. This is now addressed.

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_6
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Fig. 8.2 Output space
showing error as an
orthogonal projection onto
achievable plant dynamics

8.3.1.1 Previous Input Data

Let subspace dimensionq beprescribed anddata sets {zi,Φ i}, i = 1, . . . , c available.
The next proposition provides optimizations to yield X : L q

2 [0, T ] → L n
2 [0, T ]:

Proposition 8.3 The distance between each zi ∈ L n
2 [0, T ] and the closest

element in the image of X is minimized by solving

min
(X,H)

J(X, H), J(X, H) = ‖Z − XH‖2HS (8.15)

where ‖ · ‖HS is the Hilbert-Schmidt norm and operators

H : Rc→ L
q
2 [0, T ] : a �→ b : bi =

c∑

i=1

Hiai,

Z : Rc→ L n
2 [0, T ] : a �→ b : bi =

c∑

i=1

ziai. (8.16)

Using the Frobenius norm ‖ · ‖F, this can also be expressed as

min
(X,H)

J(X, H), J(X, H)=
∫ t

0

∥∥Z(t) − X̄(t)H(t)
∥∥2

F dt. (8.17)

Proof The total distance between each zi ∈ L n
2 [0, T ] and the closest element in the

image of
X : L q

2 [0, T ] → L n
2 [0, T ] : r �→ z : z(t) = X̄(t)r(t). (8.18)

is minimized by solving

min
(X,H)

J(X, H), J(X, H)=
c∑

i=1

‖zi − XHi‖2 (8.19)

=
c∑

i=1

∫ t

0
‖zi(t) − X̄(t)Hi(t)‖2dt (8.20)
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where Hi ∈ L
q
2 [0, T ]. This is simplified by using

∥∥
∥zi − XHi

∥∥
∥
2 =

∥∥
∥Zqi − XHqi

∥∥
∥
2
, qi ∈ R

c := qi
i = 1, qi

j = 0, j 
= i, j, i ∈ {1, . . . , c}

since {qi ∈ R
c : i =∈ {1, . . . , c}} is an orthogonal basis of Rc, it follows that

J(X, H) =
c∑

i=1

‖zi − XHi‖2 =
c∑

i=1

∥∥
∥(Z − XH)qi

∥∥
∥
2 = ‖Z − XH‖2HS . (8.21)

Note, from (8.20), that this can also be expressed as

J(X, H) =
c∑

i=1

∫ t

0
‖zi(t) − X̄(t)Hi(t)‖2dt =

∫ t

0

∥∥Z(t) − X̄(t)H(t)
∥∥2

HS dt

=
∫ t

0

∥∥Z(t) − X̄(t)H(t)
∥∥2

F dt. (8.22)
�

Solutions of factorization procedures (8.15) and (8.17) are generally non-unique,
and there exist many solution methods through incorporation of different constraints
(e.g. principal component analysis, singular value decomposition, nonnegative oper-
ator factorization [10]). Optimization (8.19) has the interpretation of calculating a
‘line of best fit’ between {zi} in the input space, as shown in Fig. 8.3.This procedure
ensures that inputs close to those previously encountered are achievable, and hence
minimizes corresponding tracking error. As the prescribed parameter q is increased,
the image of X enlarges to ultimately satisfy zi ∈ im(X) ∀i, Φ i ∈ im(MX) ∀i.

8.3.1.2 Previous Output Data

Amore direct procedure is to select a subspacewhichminimizes the distance between
each element of the set {Φ i} and the closest achievable joint trajectory. Having
identified a linear M, we select q and compute X using:

Fig. 8.3 Input space projections of {zi} onto range of subspaces Xa, Xb. Note the latter corresponds
to a reduced total projection length
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Proposition 8.4 The distance between each Φ i ∈ L
p
2 [0, T ] and the closest

element in the image of MX is minimized by solving

min
(X,H)

J(X, H), J(X, H)=‖Z − XH‖2HS,[M∗M] (8.23)

where H and Z are defined in (8.16).

Proof In this case (8.19) is replaced by

min
(X,H)

J(X, H), J(X, H) =
c∑

i=1

∥
∥∥Φ i − MXHi

∥
∥∥
2 =

c∑

i=1

∥
∥∥Mzi − MXHi

∥
∥∥
2

(8.24)

=
c∑

i=1

∥∥
∥zi − XHi

∥∥
∥
2

[M∗M] =
c∑

i=1

∥∥
∥(Z − XH)qi

∥∥
∥
2

[M∗M]

= ‖Z − XH‖2HS,[M∗M] . �

Problem (8.23) can be solved using a suitably weighted operator factorization pro-
cedure. This has the interpretation of calculating a ‘line of best fit’ to the points {Φ i}
in the joint output space, as shown in Fig. 8.4. For any Φ̂ lying near an element in
the set {Φ i}, the resulting error is then small since it is also the orthogonal projection
onto this line which corresponds to the achievable plant dynamics. The disadvantage
of this approach is that M is assumed to be a known linear operator.

Procedure 6 (Computational Procedure)

If zi is sampled with period Ts, then (8.15) and (8.23) can be replaced by
equivalent matrix computations by taking

Fig. 8.4 Output space projections of {Φ i} onto range of MXa, MXb, where Xa, Xb are subspaces.
Note the former corresponds to a reduced total projection length
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Z = [
z1, z2, . . . zc

] ∈ R
nN×c, zi =

⎡

⎢⎢⎢
⎣

zi(0)
zi(Ts)

...

zi(T)

⎤

⎥⎥⎥
⎦

∈ R
nN , (8.25)

with correspondingH ∈ R
qN×c andX ∈ R

nN×qN ,whereN = 1 + T/Ts.Alter-
natively, we can instead use H ∈ R

q×c and X ∈ R
nN×q to produce a solution

X with embeds the required structure [X̄(0), X̄(Ts), . . . X̄(T)]�, which is then
interpolated to produce X̄(t), t ∈ [0, T ]. Optimizations (8.15) and (8.23) can
also be performed for time-invariant subspaces, that is

X : L q
2 [0, T ] → X [0, T ] ⊂ L n

2 [0, T ] : r �→ z : z(t) = X̄r(t). (8.26)

If the above matrix computation is used, then (8.25) is replaced by

Z = [
z1, z2, . . . zc

] ∈ R
n×cN , zi = [

zi(0), zi(Ts), . . . zi(T)
] ∈ R

n×N ,

(8.27)

with H ∈ R
q×cN and X̄ ∈ R

n×q, and M expressed in discrete ‘lifted’ form.

If an extended task description is used, then sampling should be conducted in the
intervals [tj−1, tj], j = 1, . . . S that appear in extended task operator definition (6.1).

8.3.2 Selection Using Structural Knowledge

The limited experimental data available may be replaced or enriched by muscu-
loskeletal physiology and/or array geometry data in the construction of a subspace.
Note that the proximity and complexity of musculo-tendon structures in areas such
as the forearm means it is inadvisable to rely solely on assumed anatomical relation-
ships.

8.3.2.1 Muscle Locations

Knowledge of the underlying musculoskeletal physiology can be directly embed-
ded by selecting q muscles that provide the required movements, and specifying a
stimulation pattern, zi, for each one. If the subspace is time-varying, zi ∈ L

q
2 [0, T ]

generate X̄(t) via (8.14). If the subspace is time-invariant, then each zi ∈ R
q is the

http://dx.doi.org/10.1007/978-3-319-25706-8_6
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steady-state stimulation level needed to activate the ith muscle, and X̄ is given by

X̄ = [
z1, z2, . . . , zq] ∈ R

n×q (8.28)

which then generates the subspace operator X via (8.26).

8.3.2.2 Muscle Synergies

As previously described, synergies comprise groups of muscles that are recruited
in blocks, maintaining constant amplitude relationships. These are often assumed
time-invariant, with many studies focusing on identification and analysis using EMG
[11]. Suppose a total of d muscles are required to perform the task set, and the spatial
location of each is specified using the notation of Sect. 8.3.2.1. We then express a
synergistic combination of muscles using the vector Pi ∈ R

d which contains the
relative amplitude of each of the d muscles. If q synergies are identified, the resultant
subspace of possible stimulation inputs are defined by using

X̄ = [
z1, z2, . . . , zd][

P1, P2, . . . , Pq
] ∈ R

n×q, (8.29)

X̄(t) = [
z1(t), z2(t), . . . , zd(t)

][
P1, P2, . . . , Pq

] ∈ R
n×q (8.30)

within the operator definitions (8.26) and (8.18) for time-invariant and time-varying
cases respectively. If synergies are not known, they can be constructed from known
literature or the approaches of Sects. 8.3.1.1 and 8.3.1.2 can be interpreted as an
alternative method for their identification.

8.3.2.3 Array Positional Variation

Themodel is highly dependent on small changes inwhere the electrode array is placed
on the patient. Hence it is necessary to expand any input set {zi}, such as those used in
Sects. 8.3.1.1, 8.3.2.1, and 8.3.2.2, based on all possible transformations that capture
this variation in array placement. Consider an n element array with h horizontal and v
vertical elements. Let element (i, j) be indexed at position (i − 1)h + j within vector
z(t) ∈ R

n. Then the transformation matrices

Tv =
[
0 Ih(v−1)
Ih 0

]
∈ R

n×n, Th =
[

0 1
Ihv−1 0

]
∈ R

n×n (8.31)

respectively denote vertical and horizontal shifts in array position by the height
or width of a single array element. Hence diag{Tv, . . . , Tv}z(t) transforms z(t) to
account for repositioning. Similarly, clockwise rotation of the array by angle θ results
in the input transformation: map the input row index i to the array position vector
p(i), and thence to the new array position p′(i) using rotation matrix R(θ),
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[
p′
1(i)

p′
2(i)

]

︸ ︷︷ ︸
p′(i)

=
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

︸ ︷︷ ︸
R(θ)

[
i − 1 − �(i − 1)/h�h

�(i − 1)/h�
]

︸ ︷︷ ︸
p(i)

. (8.32)

Mapping back to the new input index yields the transformation

Tθ : (i, j) =
{
1 if j = p′

1(i) + p′
2(i)h

0 otherwise.
(8.33)

If the new index (p′
1(i) + p′

2(i)h) is not an integer, p′
1(i) and p′

2(i)must instead be used
to weight their four surrounding integer indices. Each of these is then used in (8.33)
and the results summed in relation to their associated weights. This extrapolation
technique can also be used to form non-integer transformations (8.31). Transforma-
tions Tv, Th, Tθ do not define a subspace themselves, but are used in the general
procedure given next.

8.3.3 General Stimulation Subspace Identification Procedure

The following procedure combines the placement variation of Sect. 8.3.2.3 with the
procedures of Sects. 8.3.1.1, 8.3.1.2, 8.3.2.1, and 8.3.2.2, including each of the former
as a special case. It enables all available system knowledge to be fused in a flexible,
transparent manner. It is assumed that the array element indexing of Sect. 8.3.2.3 is
used.

Procedure 7 (Stimulation subspace X construction procedure)

(a) Assemble input data set {zi} encompassing possible solutions to the track-
ing task(s). These time-varying or time-invariant data may include previ-
ous experimental inputs or solutions based on an assumed model(s).

(b) Use physiological knowledge (perhaps augmented by tests performedwith
a single electrode moved over the patient’s arm) to assemble a set of input
data {zi} which specifies electrode elements that correspond to known
muscle positions. Use (8.29) or (8.30) to embed known synergies.

(c) Combine the two data sets of steps (a) and (b) to form the set {zi}i=1,...,c,
and decide on weights to reflect relevance/reliability of each element.

(d) Decide on a set of transformations and rotations that describe the range
of possible array placement variations. Suppose the possible range of ver-
tical and horizontal positional variation be represented by nv, nh levels
respectively. Similarly select nθ levels to span the expected rotation vari-
ation. Applying every possible transformation and rotation to the set {zi}
expands it from c to c × nv × nh × nθ elements.
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(e) Decide on the required dimension, q, of the input subspace based on the
available identification time.

(f) Apply Procedure 6 to solve (8.15) or (8.23) using the weighting of step
(c) to generate a subspace which approximates the required search space
given the dimensional constraint q.

(g) GenerateX using (8.18) or (8.26) for time-invariant and time-varying cases
respectively.

Remark 8.1 A restricted stimulation subspace may also be used to prevent stim-
ulation areas comprising single array elements, which may cause discomfort and
muscle fatigue to the patient. This is achieved by ensuring that each input comprises
a set of two or more adjacent array elements. Adopting the same array indexing as
previously, introduce the notation

Ĩa,b =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Ib 0 · · · · · · 0
Ib Ib · · · · · · 0

0 Ib
. . .

. . . 0
...

...
. . .

. . .
...

0 0 · · · . . . Ib
0 0 · · · · · · Ib

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

∈ R
ab×(a−1)b. (8.34)

Every possible arrangement of two horizontally adjacent elements is realized using

X̄ = diag
{

v
︷ ︸︸ ︷
Ĩh,1, Ĩh,1, · · · , Ĩh,1

} ∈ R
n×(h−1)v (8.35)

so that the time-invariant input subspace dimension is q = (h − 1)v. Similarly,
arrangement of two vertical elements corresponds to the time-invariant input sub-
space

X̄ = Ĩv,h ∈ R
n×h(v−1) (8.36)

with the input subspace dimension reducing to q = h(v − 1). In the case of two by
two adjacent elements the time-invariant input subspace is

X̄ =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Ĩh,1 0 · · · · · · 0
Ĩh,1 Ĩh,1 · · · · · · 0

0 Ĩh,1
. . .

. . . 0
...

...
. . .

. . .
...

0 0 · · · . . . Ĩh,1

0 0 · · · · · · Ĩh,1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

∈ R
n×(h−1)(v−1) (8.37)

so that the dimension further reduces to q = (h − 1)(v − 1).
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8.4 Model Identification

Having established a suitable X, the problem of identifying linearized system M|xX
in Step 2 of Procedure 5 can be stated as follows:

M|zk X = arg min
Λ:L q

2 [0,T ]→L p
2 [0,T ]
J(Λ), J(Λ) = ‖ΔΦ − ΛΔr‖2 (8.38)

where X : L q
2 [0, T ] → L

p
2 [0, T ] takes form (8.18) or (8.26). Here {Δr,ΔΦ} ∈

L
q
2 [0, T ] × L

p
2 [0, T ] are an experimental signal pair chosen to sufficiently excite

the systemdynamics about rk . Note thatΔr andΔΦ are taken relative to the operating
point, hence r = rk + Δr,Φ = Φk + ΔΦ are the local experimental input and output
signals. Many methods are available to solve (8.38), each of which benefit from the
reduced input subspace X constructed in Sect. 8.3.3. The selected method must be
fast, sufficiently exciting, and avoid injecting large or rapidly varying signals which
may be uncomfortable for the patient.

Simplification is immediately possible by using tests in which only one chan-
nel of r is varied at a time. This requires q tests each, where in the ith test a sig-
nal ri ∈ L

q
2 [0, T ] is applied, whose ith input channel is ri

i = rk,i + Δri
i, while the

remaining input components are fixed at rk,j, j 
= i. To guarantee sufficient excitation
of dynamics, a maximum range of stimulation, zi,width, is specified for the ith test to
affect a compromise between accuracy and proximity to the operating point, which
is then translated to the signal r using ri,width = ‖X̄i‖−1∞ zi,width. The zero entries in
Δri mean that (8.38) is replaced by the q lower order subproblems

(M|zk X)i : ri → Φ := arg min
Λi:L2[0,T ]→L p

2 [0,T ]
J(Λi), J(Λi

i) =
∥
∥∥ΔΦ i − ΛiΔri

i

∥
∥∥
2

(8.39)

with ΔΦ i ∈ L
p
2 [0, T ] the output of test i relative to the operating point.

Further simplification occurs if M|zk X has the form H(s)FX assumed in Proposi-
tions 8.1 and 8.2, where F has structure (8.5) and H(s) is a SISO transfer-function.

Procedure 8 (Simplified identification procedure)

Perform q tests, where in the ith test ri is applied to stimulate channel i to give
Φ i. Collect data set {ΔΦ i,Δri}, and perform the following computations:

(a) H(s): For any i, j, fit SISO transfer-function to the pair {ΔΦ i
j,Δri

i}.
(b) FX: Compute Δξ i

i = H(s)Δri
i and substitute in (8.39) to give

(FX)i := arg min
Λi:L2[0,T ]→L p

2 [0,T ]
J(Λi), J(Λi) = ∥∥ΔΦi − ΛiΔξ i

i

∥∥2

=
∫ T

0
‖ΔΦi(t) − Λi(t)Δξ i

i(t)
∥
∥2dt.
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(a) (b)

Fig. 8.5 Signals on ith test: a jth output against ith input ri
i (where ri

j , j 
= i are fixed), and b Δri
i,

where ri
i = ra,i + Δri

i

For time-varying X, FX is defined by y = FXr, y(t) = (F̄X̄)(t)r(t), where
the columns and individual elements of (F̄X̄)(t) are respectively

(F̄X̄)i(t) = (ξ i
i(t))

−1ΔΦ i(t), (F̄X̄)i,j(t) = (ξ i
i(t))

−1ΔΦ i
j(t). (8.40)

For time-invariant X, FX is defined by y = FXr, y(t) = F̄X̄r(t), where the
columns and individual elements of F̄X̄ are respectively

(F̄X̄)i = (�∗
p�p)

−1�∗
pΔΦ i, (F̄X̄)i,j = (�∗

1�1)
−1�∗

1ΔΦ i
j (8.41)

where �l : Rl → L l
2[0, T ] : a �→ b : b = ξ i

i(t)a.

Solution (8.41) corresponds to the ‘line of best fit’ when ξ i
i is plotted against Φ

i
j.

Hence the approach corresponds to approximating the response of the jth output
to the single varying input, by a straight line, thus reducing the effect of noise in
a transparent manner. This can be seen clearly when Δri

i is chosen to consist of
straight line segments, as shown in Fig. 8.5 where for simplicity we set H(s) = 1.
This provides a smooth input for the patient, while covering the necessary ri,width,
ensuring sufficient dynamic excitation. For all choices ofΔri

i the input applied to the
physical system on the ith test is

zi
i(t) = X̄ira,i(t) + X̄i

ri,width

2
Δri

i(t) = za,i(t) + zi,width

2
˜̄XiΔri(t) (8.42)

and zi
j = za,j for j 
= i. Here ˜̄Xi is the normalized vector X̄i‖X̄i‖−1∞ .

8.5 Case Study: Functional Hand and Wrist Motion

The subspace selection, identification and control design procedures are now tested in
a clinically relevant setting. The electrode array is shown in Fig. 8.6b and comprises
4 × 6 elements printed on a polycarbonate substrate, using a hydrogel interface layer.
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(a) (b)

Fig. 8.6 a Electrode array (5 × 8 elements), multiplexor hardware and stimulator unit, and b elec-
trode array (4 × 6 elements) positioned on participant’s forearm while performing a task

It ismanufactured byTecnalia-Fatronik, San Sebastian, Spain, and is described in [4].
Each of then = 24 array elements can be routed to one of fourES channels. Routing is
achieved using custommade RS232 controlled multiplexor hardware, comprising an
Arduino board and shift register array. As in the systems of Chaps. 5 and 7, the control
system produces a 5V 40Hz square pulse train for each ES channel. These signals
are then amplified by a modified commercial four channel stimulator (Odstock,
UK). Two non-contact sensors (Kinect and PrimeSense) were used to measure wrist
flexion/extensor, wrist abduction/adduction, and flexion of the metacarpophalangeal
and proximal interphalangeal joints of each finger and the thumb, giving a total
of p = 12 joint angles. The kinematic relationships, and details of the sensors and
computations appear in Sect. 9.2.3.

To establish feasibility, tests were conducted on two unimpaired participants
(denoted P1, P2) who were instructed to provide no voluntary effort. The array
was positioned as shown in Fig. 8.6b, to cover wrist and finger extensor muscles
including: extensor carpi radialis longus, extensor carpi radialis brevis, extensor dig-
itorum, extensor pollicis longus, extensor pollicis brevis, extensor indius, and flexor
digitorum profundus. At the beginning of each test session, the stimulator amplitudes
were set by routing one channel to two adjacent elements of the array, outputting
a 300 µs signal and slowly increasing the amplitude until a maximum comfortable
level was reached. The amplitudes of the remaining channels were set to identical
levels. The stimulation signal pulsewidth of each channel is the controlled variable
and combines with the routing hardware to realise electrode array stimulation signal
z, as shown in Fig. 8.1. Each test started from an initial wrist angle of approximately
20◦ flexion, 0◦ abduction, and finger joint angles of 35◦ flexion, 0◦ abduction.

8.5.1 Unrestricted Stimulation Space

Procedure 5 of Sect. 8.2 was first tested using an unrestricted subspace to estab-
lish baseline accuracy, setting q = n, X = I . In Step 2, Procedure 8 of Sect. 8.4

http://dx.doi.org/10.1007/978-3-319-25706-8_5
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_9
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was employed to identify M|zX. This involved sequentially applying the ramp input
shown in Fig. 8.5 to each of the n = 24 array elements in turn, while the p = 12
angular outputs were recorded. The duration of each identification test was chosen
as 5 s with a sampling time of Ts = 0.01 s. Proposition 8.1 was then used to design
feedback controller K in Step 3. Here K̄(s) took the form of a PD controller with
gains of Kp = 1.6, Kd = 0.4 so that Nw(s) approximated a pure time delay of 0.7 s.

Three different reference postures were selected to verify the optimization proce-
dure; “pointing” with the index finger, a “pinch” hand posture and an “open” hand
posture. In order to clearly assess tracking accuracy, the reference was defined at all
time points by selection of P = I . Each task incorporated specific finger movements
as well as extension of the fingers and wrist, which comprise challenging movements
for stroke patients to perform. This led to three reference signals, Φ̂ ∈ L

p
2 [0, T ],

T = 12, with examples of the final gestures produced shown in Fig. 8.8. These pos-
tures each involve wrist angle extension of approximately 60◦ relative to the initial
starting position, and extension of the two joint angles of each finger by 25◦ for one
or more fingers. In addition, the open posture involved abduction of each finger by
approximately 15◦. Within Step 4 of Procedure 5, the ILC update of Proposition 8.2
was used, with l = 0.4, λ = 0.7.

Remark 8.2 Controller output z is the stimulation pulsewidth of the n elements of
the array, which may all take different values. The current hardware cannot achieve
this with only four independent channels, and hence constraints described in [12]
were added to the controller to attain the closest approximation possible.When using
a restricted subspace in the next section, these constraints can be translated to only
appear in the calculation of subspace operator X. For example, specifying q = 2 and
allowing each element of X̄(t) to be either 0 or one of two non-zero values means
that each element of z(t) can only ever be 0 or one of three non-zero values.

Tracking results are shown in Fig. 8.7a for the pointing task, and show the improve-
ment produced by ILC compared with feedback action alone (i.e. when k = 1). To
quantify the accuracy of successive input updates, percentage error was calculated
across all joints for each posture using 100 × ‖ek‖ / ‖e0‖, where e0 = Φ̂ − Φ0, with
Φ0 the initial posture prior to stimulation. Results are shown in Table8.1 for the first
3 iterations of each task, averaged across P1 and P2. Each execution of ILC reduces
the error to approximately 40%, yielding results with a mean joint angle error of typ-
ically less than 5◦. Figure8.8 shows the stimulation sites corresponding to z3 across
each task for P1. Tests were also performed using alternative initial hand positions,
and gave rise to very similar final output positions in each case (although reduction in
the normalized error occurred when the initial hand position was close to that of the
reference posture). Results for the case of ILC applied with no feedback controller
appear in [12]. The use of an iterative model-based update leads to significantly
reduced error compared with the most accurate existing approaches in the literature,
but incurs an identification test duration of 120s per iteration.
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(a) (b)

Fig. 8.7 P1 tracking results for pointing gesture, with a unrestricted and b restricted subspaces

Table 8.1 Unrestricted subspace: percentage error across all joints for k = 1, 2, 3

Pointing Pinching Open

100 × ‖e1‖
‖e0‖ P1 26.1898 21.6141 14.7336

P2 20.7930 29.1885 17.7463

100 × ‖e2‖
‖e0‖ P1 11.2145 10.4494 14.6097

P2 13.0393 15.0268 12.4822

100 × ‖e3‖
‖e0‖ P1 3.7661 4.2790 4.3712

P2 1.5297 4.0167 3.5955

Fig. 8.8 Stimulation patterns for pointing, pinching and open hand gestures (z3, t = T )
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Table 8.2 Task and
participant-specific restricted
subspace, q = 4: percentage
error across all joints for
k = 1, 2, 3

Pointing Pinching Open

100 × ‖e1‖
‖e0‖ P1 33.9884 27.9243 27.2419

P2 38.1187 31.3543 23.9668

100 × ‖e2‖
‖e0‖ P1 14.4129 16.9458 19.1558

P2 13.2719 15.0851 17.0341

100 × ‖e3‖
‖e0‖ P1 5.6186 4.5904 5.0830

P2 3.8271 4.5765 6.0992

Table 8.3 Participant-
specific restricted subspace
q = 6: percentage error across
all joints for k = 1, 2, 3

Pointing Pinching Open

100 × ‖e1‖
‖e0‖ P1 35.8611 27.6188 28.0452

P2 43.6825 36.8248 29.951

100 × ‖e2‖
‖e0‖ P1 23.5090 22.6162 22.1861

P2 24.7642 23.7063 21.4247

100 × ‖e3‖
‖e0‖ P1 7.4743 6.3322 5.6863

P2 5.2641 6.1649 6.2601

8.5.2 Stimulation Subspace

A restricted stimulation subspace is now employed in Step 1 of Procedure 5 to speed
up the test procedure. For simplicity the subspace was constructed using Step (a) of
Procedure 7. In particular, data sets z1, z2, z3, and z4 corresponded to each of the
tests undertaken using the unrestricted subspace in Sect. 8.5.1. These were directly
inserted as columns in X̄ using (8.14), leading to c = 4. Each participant took a rest
period of 30min following the previous tests. Tracking results are shown in Fig. 8.7b
for the pointing task, with error norm values given in Table8.2. These show only a
small reduction in accuracy, while the identification test time is reduced to 20 seconds
per iteration. Similar convergence rates are observed to the previous tests since X
has been chosen such that the reference belongs to im(MX).

The previous results require a separate subspace for each task. To generate a single
subspace for all three tasks, Step (f) in Procedure 7 was applied, using Proposition
8.3 to compute a single input space of dimension q = 6. In particular, Computational
Procedure 6 was performed using Matlab function nnmf. Results are shown in
Table8.3. With only a small drop in accuracy this subspace covers a wide range
of functional tasks, and corresponds to an identification test time of 30s.

These results indicate that an identification time of approximately 2min (com-
prising three identification routines, each followed by an ILC iteration to compute
the new zk) is sufficient to produce an input subspace that covers the required range
of hand and wrist movements.
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8.6 Conclusions

This chapter has applied the model structure of Chap.2 and design framework of
Chap.6 to electrode array based stimulation. In particular, we have exploited a
restricted stimulation subspace to yield model identification procedures suitable for
clinical practice. We next embed the control structure in a rehabilitation system to
evaluate its performance in assisting stroke patients to perform functional tasks.
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Chapter 9
Clinical Application: Fully Functional Stroke
Rehabilitation

In this chapter electrode arrays are combined with single-pad electrodes to produce a
rehabilitation system that supports functional task practice. Performance and usabil-
ity of the system is then assessed with stroke participants in a clinical trial. The
control system employs the electrode array control scheme developed in the last
chapter within the general control framework developed in Chap.6. This thereby
demonstrates how arrays and single-pad electrodes can be transparently combined
within the same control scheme.

The stroke rehabilitation system is the first to usemodel-basedES array controllers
to support goal-oriented upper-limb task training. The system also embeds innova-
tions in the stimulation hardware, sensing equipment and task display compared with
the system described in Chap. 7. The major additions include:

1. A 24 element electrode array placed over the wrist and finger extensors to activate
muscles such as extensor carpi radialis longus, extensor carpi radialis brevis,
extensor digitorum, extensor pollicis longus, extensor pollicis brevis, extensor
indicis, and flexor digitorum profundus.

2. A PrimeSense Carmine 1.09 (Apple Inc., California) depth camera that uses an
RGB camera and infrared sensor to measure hand and wrist joint angles, reducing
set-up time and removing constraints associated with contact-based sensors (e.g.
the electro-goniometer used in Chap. 7).

3. A capacitive touch table (DISPLAX Inc., Portugal) that adds additional interac-
tivity and motivation to the task display.

These new developments are intended to promote further reduction in upper limb
motor impairments. The controllers canmore precisely assist the functional task set of
Chap.7 to more fully support functional improvement [1]. The touch table promotes
adherence through stimulating andmotivating rehabilitation, as required in long term
self-management. In combination with inexpensive non-contact depth sensors, this
represents a significant step towards translation into the home environment. Note that
more detailed results and in-depth analysis of the clinical feasibility study reported
in this section appears in [2].

© Springer International Publishing Switzerland 2016
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Fig. 9.1 Feedback and ILC control scheme for arbitrary electrode structures

9.1 General Integrated Control Framework

Before describing the system, analysis is presented which enables the array con-
trollers developed in Chap.8 to be transparently employed within the general design
frameworks of Chaps. 4 and 6. To do this we generalize the control schematic shown
in Fig. 9.1 to enable inclusion of arbitrary numbers of both single-pad and array
electrode types. This results in the following control design procedure:

Procedure 9 (Embedding arrays within general robustness framework) Sup-
pose N groups of single-pad electrodes or electrode arrays are used. Let the
i th group contain ni electrode elements, stimulating mi muscles and have a
specified subspace of dimension qi . Then the system can be represented by
Fig. 9.1 where operator A is defined by

A : L n
2 [0, T ] → L m

2 [0, T ] : z �→ u, u j = A j z j , j = 1 . . . N (9.1)

where m = ∑N
i=1 mi , n = ∑N

i=1 ni , and operator A j : L
n j
2 [0, T ] →

L
m j
2 [0, T ] is given by (8.2), where for a group of single-pad electrodes,

n j = m j with ai,l = 1 for i = l and ai,l = 0 otherwise. Similarly, oper-
ator X is defined as

X : L q
2 [0, T ] → L n

2 [0, T ] : r �→ z, z j = X j r j , j = 1 . . . N (9.2)

where q = ∑N
i=1 qi and operator X j : L

qi
2 [0, T ] → L ni

2 [0, T ] has
form (6.6) where for a group of single-pad electrodes, q j = n j , X̄ j = I .

http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_6


9.1 General Integrated Control Framework 143

The signals associated with the j th group are uM j , rQ j , zN j where

M j =
⎧
⎨

⎩
1 +

j−1∑

i=1

mi , . . . ,

j∑

i=1

mi

⎫
⎬

⎭
,N j =

⎧
⎨

⎩
1 +

j−1∑

i=1

ni , . . . ,

j∑

i=1

ni

⎫
⎬

⎭
,

Q j =
⎧
⎨

⎩
1 +

j−1∑

i=1

qi , . . . ,

j∑

i=1

qi

⎫
⎬

⎭
.

If controllers K X and L are chosen such that bM̄//C̄ given byTheorem6.4 (with
K = X K X ) is finite, then from Theorem 4.5 robust stability of the system
shown in Fig. 9.1 is guaranteed provided the modeling mismatch satisfies

sup
k∈N+

∥
∥N | z̄1(k) − M | z̄(k)

∥
∥ < b−1

M̄//C̄
(9.3)

where M, N : z �→ Φ are the nominal and true generalized plant maps.

Design Procedure 9 shows that arrays can be incorporated in the control scheme
simply by specifying consistent A and X structures. However, for each array, the
component of model M linking array inputs and corresponding actuated joints must
be identified experimentally on each iteration as described in Chap. 8. This can be
achieved using the subspace identification approach of Sect. 8.3, but this approach
should be extended to include all ES inputs, not just those of the array. Furthermore,
because all joint angles may be affected by array stimulation, this procedure should
in principle replace any use of an underlying model when using an electrode array.

In many cases each ES array assists joint angles that are not significantly affected
by other stimulated muscles around an operating point (e.g. in the case of an array
stimulating finger muscles). In this case a more pragmatic approach is to apply array
identification Procedure 8 of Sect. 8.4 to the subset of joints known to be affected
by array stimulation, and include only the array ES inputs. This hence preserves
the simplicity and speed of the identification approach. It is then desirable to use a
globalmodel to capture the response of the remaining joints to single-pad stimulation,
however this will be inaccurate if it omits the dynamics produced by the array (e.g.
wrist and hand movement). A solution is to extend the global model to include the
most significant source of interaction caused by the array in the form of a simplified
lumped parameter representation with identifiable parameters (e.g. extend the arm
model to include a lumped wrist representation).

The assumption of a subset of joints being locally dependent only on array ES
inputs therefore leads to significant simplification. The next procedure specifies
explicit robustness margins for this case to enable the designer to gauge applicability.

http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Theorem 9.1 (Robustness using partially decoupled design) Assume a par-
tially decoupled model in which the i th array block has dynamics ΦPi =
Mi zNi (where with no loss of generality we assume i = 1), but the remain-
ing joints use full model structure ΦP̄i

= Mi z. Then applying the linearized
design procedure of Chap.4 or 6 with feedback and ILC structures

K =
[

Ki 0
Ki,i Ki

]
, L =

[
Li 0

Li,i Li

]
such that

{ ‖I − Gi Li‖ ≤ γi < 1
‖I − Gi Li‖ ≤ γi < 1

,

(9.4)
where Gi = (I + Mi Ki )

−1Mi Ki , Gi = (I + Mi Ki )
−1Mi Ki , robustly stabi-

lizes the resulting closed-loop system if the true plant N satisfies

sup
k∈N+

∥
∥∥∥N | z̄1(k) −

[
Mi |z(k) 0

Mi,i |z(k) Mi |z(k)

]∥
∥∥∥ <

∥
∥∥∥

[
βM̄i //C̄i

0
βM̄i,i //C̄i ,i

βM̄i //C̄i

]∥
∥∥∥

−1

(9.5)

where Mi,i |z , Mi |z denote Mi linearised with respect to zNi , z ¯Ni
respectively,

bM̄i //C̄i
, bM̄i //C̄i

are gain bounds on [M̄i , C̄i ], [M̄i , C̄i ] alone (computed using
Theorem 4.6 with {M, K , L} ={Mi , Ki , Li }, {Mi , Ki , Li } respectively), and

bMi,i //Ci,i

=
∥∥
∥
∥

(−Ii Ki Ii

Īi Mi |z Ii

)∥∥
∥
∥

∥∥
∥
∥

(− Īi Mi |z Īi

−Ii −Ki Īi

)∥∥
∥
∥

⎧
⎪⎪⎨

⎪⎪⎩

∥∥
∥
∥

(
Mi,i |z 0
0 Ki,i

)∥∥
∥
∥

⎛

⎜
⎜
⎝1 +

∥∥
∥∥

(
Ki Īi

Īi

)
Li

∥∥
∥∥

1 − γi

+‖Ki Li ‖‖( Īi ,− Īi Mi |z)‖
1 − γi

⎞

⎟⎟
⎠ + ‖Ki Li,i ‖

1 − γi
+ ‖Ki Li ‖‖Gi,i Li + Gi Li,i ‖

(1 − γi )(1 − γi )

⎫
⎪⎪⎬

⎪⎪⎭
(9.6)

where Gi,i = Īi (Mi,i |z Ki + Mi |z Ki,i )(I + Mi,i |z Ki,i )
−1, Ii = (I +

Ki Mi |z)
−1, Īi = (I + Mi |z Ki )

−1, Ii = (I + Ki Mi |z)
−1 and Īi = (I +

Mi |z Ki )
−1.

Moreover, design of Ki and Li using Propositions 8.1 and 8.2 preserves
the nominal properties of the electrode array dynamics ΦPi = Mi zNi , zNi =
Xi rQi , rQi = Ki (vPi + ePi ) established in these propositions.

Proof Denote M1 = Mi |z , M2 = Mi,i |z , M3 = Mi |z , K1 = Ki , K2 = Ki,i , K3 =
Ki , L1 = Li , L2 = Li,i , L3 = Li , I j = (I + K j M j )

−1, Ī j = (I + M j K j )
−1, j =

1, 2, 3. Then M j I j K j = I − Ī j = M j K j Ī j , K j Ī j M j = I − I j = K j M j I j , and
M |z = M , where

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8


9.1 General Integrated Control Framework 145

M =
[

M1 0
M2 M3

]
, so that K M =

[
K1 0
K2 K3

]

︸ ︷︷ ︸
K

[
M1 0
M2 M3

]
=

[
K1M1 0

K2M1 + K3M2 K3M3

]

and

(I + K M)−1 =
[

(I + K1M1)
−1 0

−(I + K3M3)
−1(K2M1 + K3M2)(I + K1M1)

−1 (I + K3M3)
−1

]

so from (4.60) the projection operator for the feedback case (L = 0) is

ΠM̄//K̄ =
(

I
M

)
(I + K M)−1(I, K ) =

⎛

⎜⎜
⎝

I1 0
−I3(K2M1 + K3M2)I1 I3

M1 I1 0
M2 I1 − M3 I3(K2M1 + K3M2)I1 M3 I3

I1K1 0
I3K2 − I3(K2M1 + K3M2)I1K1 I3K3

M1 I1K1 0(
M2 − M3 I3(K2M1 + K3M2)

)
I1K1 + M3 I3K2 M3 I3K3

⎞

⎟⎟
⎠.

By reordering inputs and outputs, this can be partitioned by

[
ΠM̄1//K̄1

0
ΠM̄2//K̄2

ΠM̄3//K̄3

]
where ΠM̄1//K̄1

=
(

I
M1

)
I1(I, K1),

ΠM̄3//K̄3
=

(
I

M3

)
I3(I, K3) (9.7)

are the projection operators for [M̄1, K̄1], [M̄3, K̄3] alone, and

ΠM̄2//K̄2
=

[−I3(K2M1 + K3M2)I1 I3(K2 Ī1 − K3M2 I1K1)

( Ī3M2 − M3 I3K2M1)I1 Ī3M2 I1K1 + M3 I3K2 Ī1

]

=
(−I3K3 I3

Ī3 M3 I3

)(
M20
0 K2

)(
I1 I1K1

−M1 I1 Ī1

)
. (9.8)

Next consider the inclusion of ILC, with associated component of (4.50) given by:

ΠM̄//L̄ w(k + 1) =
(

I
M

)
K (I + M K )−1L

k∑

i=0

(I − GL)i (I + M K )−1(−M, I )w(k − i).

(9.9)

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4


146 9 Clinical Application: Fully Functional Stroke Rehabilitation

Using the identity G = (I + M K )−1M K =
(

G1 0
G2 G3

)
where G1 = Ī1M1K1,

G3 = Ī3M3K3, G2 = Ī3(M2K1 + M3K2) Ī1, we can denote

(
L̄1 0
L̄2 L̄3

)

︸ ︷︷ ︸
L̄

:= L
k∑

i=0

(I − GL)i =
(

L1 0
L2 L3

) k∑

i=0

(
I −

(
G1 0
G2 G3

)(
L1 0
L2 L3

))i

=
(

L1 0
L2 L3

) k∑

i=0

(
I − G1L1 0

−(G2L1 + G3L2) I − G3L3

)i

which equals

(
L1 0
L2 L3

)

⎛

⎜⎜⎜⎜⎜
⎝

k∑

i=0

(I − G1L1)
i 0

−
k∑

i=0

i−1∑

j=0

(I − G3L3)
i−1− j (G2L1 + G3L2)(I − G1L1)

j
k∑

i=0

(I − G3L3)
i

⎞

⎟⎟⎟⎟⎟
⎠

.

Using this, (9.9) can then be written as

⎛

⎜⎜
⎝

K1 Ī1 0
−K3 Ī3M2K1 Ī1 + I3K2 Ī1 K3 Ī3

M1K1 Ī1 0
Ī3M2K1 Ī1 + M3 I3K2 Ī1 M3K3 Ī3

⎞

⎟⎟
⎠

(
L̄1 0
L̄2 L̄3

)
⎛

⎜⎜
⎝

−( Ī1M1)
� ( Ī3M3K2 Ī1M1 − Ī3M2 I1)�

0 −( Ī3M3)
�

Ī �
1 −( Ī3(M2K1 + M3K2) Ī1)�
0 Ī �

3

⎞

⎟⎟
⎠

�

.

By sequentially setting paired L̄ components to zero, this can be expressed as

⎛

⎜⎜
⎝

0
I
0

M3

⎞

⎟⎟
⎠ K3 Ī3 L̄2 Ī1

( −M1 0 I 0
) +

⎛

⎜⎜
⎝

K1

I3(K2 − K3M2K1)

M1K1

Ī3(M2K1 + M3K2)

⎞

⎟⎟
⎠ Ī1 L̄1 Ī1

( −M1 0 I 0
)

+

⎛

⎜
⎜
⎝

0
I
0

M3

⎞

⎟
⎟
⎠ K3 Ī3 L̄3 Ī3

(
(M3K2M1 − M2)I1 −M3 (M2K1 + M3K2) Ī1 I

)
(9.10)
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Applying the same partitioning as in (9.12), (9.10) equals

⎛

⎝
0 0(

K3 Ī3
M3K3 Ī3

)
L̄2(− Ī1M1, Ī1) 0

⎞

⎠+

⎛

⎜⎜
⎝

(
K1 Ī1

M1K1 Ī1

)
L̄1(− Ī1M1, Ī1) 0

(−K3 Ī3 I3
Ī3 M3 I3

)(
M2 0
0 K2

)(
K1 Ī1

Ī1

)
L̄1(− Ī1M1, Ī1) 0

⎞

⎟⎟
⎠

+
⎛

⎝
0 0(

K3 Ī3
M3K3 Ī3

)
L̄3

(
Ī3,− Ī3M3

)
(

M2 0
0 K2

)( −I1 −K1 Ī1
− Ī1M1 Ī1

) (
I

M3

)
K3 Ī3 L̄3 Ī3(−M3, I )

⎞

⎠.

Recall that L̄1 = ∑k
i=0(I − G1L1)

i , L̄3 = ∑k
i=0(I − G3L3)

i ,

L̄2 = L2

k∑

i=0

(I − G1L1)
i − L3

k∑

i=0

i−1∑

j=0

(I − G3L3)
i−1− j (G2L1 + G3L2)(I − G1L1)

j .

(9.11)

Comparison with (9.9), and using (9.7), means that we can write

ΠM̄//C̄ w(k + 1) =
[

ΠM̄1//K̄1
0

ΠM̄2//K̄2
ΠM̄3//K̄3

]

︸ ︷︷ ︸
ΠM̄//K̄

w(k + 1) +
[

ΠM̄1//L̄1
0

ΠM̄2//L̄2
ΠM̄3//L̄3

]

︸ ︷︷ ︸
ΠM̄//L̄

w(k − i)

(9.12)

where ΠM̄1//L̄1
w(k + 1) =

(
I

M1

)
K1 Ī1 L̄1 Ī1(−M1, I )w(k − i), ΠM̄3//L̄3

w(k + 1) =
(

I
M3

)
K3 Ī3 L̄3 Ī3(−M3, I )w(k − i) are the projection operators for

[M̄1, C̄1], [M̄3, C̄3] alone, and
ΠM̄2//L̄2

w(k − i)

=
{(

K3 Ī3
M3K3 Ī3

)
L̄2(− Ī1M1, Ī1) +

(−K3 Ī3 I3
Ī3 M3 I3

) (
M2 0
0 K2

)(
K1 Ī1

Ī1

)
L̄1(− Ī1M1, Ī1)

+
(

K3 Ī3
M3K3 Ī3

)
L̄3

(
Ī3,− Ī3M3

)( M2 0
0 K2

)( −I1 −K1 Ī1
− Ī1M1 Ī1

)}
w(k − i)

=
(−I3K3 I3

Ī3 M3 I3

){(
0 0
0 K3

)
L̄2 +

(
M2 0
0 K2

)(
K1 Ī1 0

Ī1 0

)
L̄1

+
(
0 0
0 K3

)
L̄3

(
0 0
Ī3 − Ī3M3

)(
0 M2

K2 0

)}(− Ī1M1 Ī1
−I1 −K1 Ī1

)
w(k − i). (9.13)
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To bound ‖ΠM̄2//L̄2
‖ we follow the proof of Theorem 4.6, with the relation

∞∑

i=0

∥
∥

i−1∑

j=0

(I − G3L3)
i−1− j (G2L1 + G3L2)(I − G1L1)

j
∥
∥

≤ ‖G2L1 + G3L2‖
∞∑

i=0

‖I − G3L3‖i
∞∑

i=0

‖I − G1L1‖i (9.14)

and summing each component of (9.13) we arrive at

‖ΠM̄2//L̄2
‖ ≤ βM̄2//L̄2

=
∥
∥
∥
∥

(−I3K3 I3
Ī3 M3 I3

)∥
∥
∥
∥

∥
∥
∥
∥

(− Ī1M1 Ī1
−I1 −K1 Ī1

)∥
∥
∥
∥

{‖K3L2‖
1 − γ1

+‖K3L3‖‖G2L1 + G3L2‖
(1 − γ1)(1 − γ3)

+
∥
∥
∥
∥

(
M2 0
0 K2

)∥
∥
∥
∥

⎛

⎜
⎜
⎝

∥
∥
∥
∥

(
K1 Ī1

Ī1

)
L1

∥
∥
∥
∥

1 − γ1
+ ‖K3L3‖‖( Ī3, − Ī3M3)‖

1 − γ3

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

(9.15)

Hence from (9.12)

‖ΠM̄//C̄‖ ≤ βM̄//C̄ =
∥
∥
∥∥
∥

[
βM̄1//C̄1

0

βM̄2//C̄2
βM̄3//C̄3

]∥
∥
∥∥
∥

where βM̄ j //C̄ j
= βM̄ j //K̄ j

+ βM̄ j //L̄ j
,

with ‖ΠM̄ j //C̄ j
‖ ≤ βM̄ j //C̄ j

, ‖ΠM̄ j //L̄ j
‖ ≤ βM̄ j //L̄ j

. Adding bounds on (9.8) and

(9.15) gives (9.6). Since [Mi |z(k), Ki ] is independent of plant dynamics M̄i , M̄i,i ,
then nominal closed-loop properties Φi = Gi vi , zi = Mi zi are preserved. �

Theorem 9 shows that a robust stability margin exists if Ki , Li are designed to
minimise βM̄i //C̄i

, Ki , Li are designed to minimise βM̄i //C̄i
, and Mi,i , Ki,i , Li,i ,

Gi,i are stable operators. In particular, condition (9.5) reveals the dual aims of the
designer:

• Modeling: Include as accurate an interaction term Mi,i as possible (thereby reduc-
ing the left hand side of (9.5)). This means that the lumped parameter global model
of the upper arm, Mi , must include enough joints associated with the array(s) to
capture the main interaction effects.

• Control: Following linearization, design feedback and ILC operators for the array
and upper arm independently, minimizing βM̄i //C̄i

and βM̄i //C̄i
respectively. Fol-

lowing this, design the interaction operators Ki,i , Li,i to minimize the gain bound
βM̄i,i //C̄i ,i

associated with the interaction dynamics (and hence maximize the right

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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hand side of (9.5)). The simplest approach is to set Ki,i = Li,i = 0, which reduces
bound (9.6) to

bMi ,i //Ci ,i =
∥∥∥∥

(−Ii Ki Ii

Īi Mi |z Ii

)∥∥∥∥

∥∥∥∥

(
Īi Mi |z − Īi

Ii Ki Īi

)∥∥∥∥
∥∥Mi,i |z

∥∥

×

⎛

⎜⎜
⎝1+

∥∥∥
∥

(
Ki Īi

Īi

)
Li

∥∥∥
∥

1 − γi
+ ‖Ki Li‖‖( Īi ,− Īi Mi |z)‖

1 − γi

⎞

⎟⎟
⎠

However, this approach may lead to an unacceptable transient response as, for
example, the wrist dynamics cause oscillations in the upper limb joints (which
could have been damped by a suitable Ki,i 	= 0).

Theorem 9 motivates fusing a linearized global model, Mi |z = [Mi,i |z, Mi,i |z],
with between-trial identification of array dynamics Mi X |z(k) using identification
Procedure 8 of Sect. 8.4. If interaction term Mi,i is negligible then the designer does
not have to augment the global model to include joints associated with the array. This
reduces the time necessary to identify parameters in themodel, controller complexity
and also the overall gain margin bM̄//C̄ . In this case Theorem 9 simplifies to:

Theorem 9.2 (Robustness using decoupling design) Let a fully decoupled
model be assumed in which the i th array block has dynamics ΦPi = Mi zNi ,
and the remaining joints use ΦP̄i

= Mi z ¯Ni
. Then the system that results from

applying the linearised design procedure of Chap.4 or 6 with the feedback and
ILC update structures

K = diag{Ki , Ki }, L = diag{Li , Li } where

{ ‖I − Gi Li‖ ≤ γi < 1,
‖I − Gi Li‖ ≤ γi < 1

(9.16)
is robustly stable if

sup
k∈N+

∥
∥∥∥N | z̄1(k) −

[
Mi |z(k) 0

0 Mi |z(k)

]∥
∥∥∥ <

∥
∥∥∥

(
bM̄i ,C̄i

0
0 bM̄i ,C̄i

)∥
∥∥∥

−1

(9.17)

where without loss of generality we assume i = 1. Design of Ki and Li

using Propositions 8.1 and 8.2 preserves the nominal properties of the array
dynamics ΦPi = Mi zNi , zNi = Xi rQi , rQi = Ki (vPi + ePi ) established in
these propositions.

http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Proof The result immediately follows from setting M̄i,i = 0, K̄i,i = 0 and
L̄i,i = 0 in the proof of Theorem 9.1. Note that, although interaction is embed-
ded via computation of M |z(k) at the combined operating point, the linearized form
then assumes no interaction between {zi ,Φi } and {zi ,Φi } in each trial. �

It is desirable to relate stability conditions (9.5) and (9.17) to specific components of
the plant, e.g. to quantify levels of fatigue that may be tolerated. As in Propositions
3.4 and 4.1, this is easily achieved by inserting the forms

N |z1 z =
(

Ni |z1
Ni |z1

)
z =

(
(HR B Fm)i |w1 HL AD hIRC|z1
(HR B Fm)i |w1 HL AD hIRC|z1

)
z,

M |z z =
[

Mi |z(k) 0
Mi,i |z(k) Mi |z(k)

]
z =

(
(HR B Fm)i HL AD h̄i

IRC 0
(HR B Fm)i HL AD h̄i

IRC (HR B Fm)i HL AD h̄i
IRC

)
z,

M |z z =
[

Mi |z(k) 0
0 Mi |z(k)

]
z =

(
(HR B Fm)i HL AD h̄i

IRC 0
0 (HR B Fm)i HL AD h̄i

IRC

)
z,

where h̄i
IRC = ∂

∂ zNi
hIRC(z) and hi

IRC = ∂
∂ z ¯Ni

hIRC(z), into the left hand side of (9.5)

and (9.17) respectively.
In the next section the control design framework is applied within a clinical

feasibility trial with stroke participants.

9.2 System Description and Set-Up

The rehabilitation system comprises the five components shown in Fig. 9.2. Par-
ticipants sit on a perching stool in front of the touch table, and a SaeboMAS arm
support (Saebo Inc., Charlotte) is used to de-weight their upper extremity accord-
ing to individual need. Surface electrodes are positioned on the anterior deltoid and
triceps, and an electrode array is placed over the common extensor complex of the
forearm. The PrimeSense is used in combination with another depth camera (Kinect,
Microsoft Washington) to measure the position of joint centres within the shoulder,
elbow and wrist. Data from these sensors are fed into the control algorithm hardware
and software, which updates the ES control signals for each muscle group to assist
performance of functional tasks. The therapist uses an operator monitor displaying
a graphical user interface (GUI) to select appropriate tasks and monitor training
progression. The therapist also has an over-ride stop button which can be used to
terminate trials with immediate effect.

http://dx.doi.org/10.1007/978-3-319-25706-8_3
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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Fig. 9.2 System components: (1) Motion tracking hardware, (2) interactive touch table display, (3)
ES controller and multiplexor hardware, (4) SaeboMAS and perching stool, and (5) electrode-array

9.2.1 Task Design

Figure9.3 shows the fourmain images displayed by the touch table; a default image, a
bathroom sink, a coffee table, and a chopping board. The same task set as in Chap. 7
is employed to provide a varied range of functional activities: closing a drawer,
switching a light switch, stabilizing an object, pressing a button and repositioning an
object relevant to each image (e.g. a tube of toothpaste). The light switch is located
at two different heights (low and high) and there are four table-mounted positions at
which the virtual buttons can be located or real objects repositioned both in the sagittal
plane and towards the frontal plane (45◦ across body, 45◦ to the hemiplegic side or
in line with the shoulder) as illustrated in Fig. 9.3. The objects are placed at different
percentages of arm length (60, 75, and 90%) from the participant’s glenohumeral
joint as shown in Fig. 9.3a). The table was positioned at a distance of 45% arm length
from the glenohumeral joint and 35cm below the arm when the arm was held 90◦
horizontal to the shoulder.

9.2.2 System Software

The software and data flow is shown schematically in Fig. 9.4. The system soft-
ware undertakes tracking of the participant’s movement in real-time, extraction of

http://dx.doi.org/10.1007/978-3-319-25706-8_7
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(a)

(c) (d)

(b)

Fig. 9.3 Task design and graphical backgrounds: a default (overlaidwith task placement geometry),
b bathroom sink, c coffee table and d chopping board

Fig. 9.4 Software signal flow diagram

kinematic variables, and subsequent implementation of ES control schemes. A cus-
tom made C++ application interfaces with Kinect middle-ware (Skeletal Viewer),
which in turns receives data from PrimeSense via a Client/Server (Transmission
Control Protocol (TCP)) connection with its associated middle-ware (3Gear Sys-
tems). This application directly communicates with real-time hardware (dSPACE
ds1103), which handles all data processing and control implementation, and inter-
faces with the touch table and graphical user interface via direct hardware access.
Communication with the touch table employs Snowflake software (NUITEQ Inc.,
Sweden) which controls the task display and touch feedback. TheGUI oversees com-
munication with the system inputs and outputs and is responsible for customizing
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control parameters, implementing the ES control, collecting and storing position
data, selecting the task to be performed and reviewing performance after each ses-
sion. The real-time hardware generates pulse-width modulated (PWM) signals for
each ES channel, together with RS232 serial data to control the electrode array. Dig-
ital inputs and outputs are also used to interface with the instrumented task objects.

9.2.3 Motion Tracking

Recently various low-cost position sensors have emerged that are suitable for home-
use by patients with minimal assistance. A Kinect was employed in Chap.7 to mea-
sure shoulder and arm joint angles, and a goniometer measured wrist flexion and
abduction. To collect a comprehensive set of hand/wrist angles we now exchange
the goniometer for the PrimeSense which provides joint centre position data for the
wrist and fingers, from which joint angles can be extracted as described next.

Figure9.5 shows the assumed kinematic model, which integrates a hand and wrist
description into the model described in Sect. 7.1. The Kinect is used to capture
joint centre locations (xi , yi , zi )

� for the shoulder, elbow and wrist, i = 1, 2, 3
respectively. The PrimeSense captures joint centre locations (xi , yi , zi )

� for the hand

Fig. 9.5 Human arm joint centre locations and kinematic model variables

http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_7
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and wrist, i = 3, . . . , 19, respectively. As previously, joint angles φ1, . . . , φ5 denote
the orientation of the upper arm and forearm segments, with joint axes chosen to align
with motion elicited by ES. The procedure used to define φ1, . . . , φ5 is described in
[3], together with the mapping

(
(x1, y1, z1)�, . . . , (x3, y3, z3)�

) �→ (φ1, . . . , φ5).
The position vectors (xi , yi , zi )

� are denoted s, e, w and r for the shoulder (i = 1),
elbow (i = 2), wrist (i = 3) and root (i = 19) respectively with m, p and f similarly
denoting the metacarpophalangeal (MCP) joint positions, proximal interphalangeal
(PIP) joint positions and fingertip positions respectively. Note that the model does
not include the distal interphalangeal joints due to their limited range of movement.
Using these data, forearm rotation, wrist flexion/extension and abduction/adduction
joint angles are then computed respectively by

φ6 = cos−1
(
((s − e) × (e − w)) · ((r − w) × (w − m3))

‖(s − e)‖‖(e − w)‖‖(r − w)‖‖(w − m3)‖
)

,

φ7 = cos−1
(
(r − w) · (w − m3)

‖r − w‖‖w − m3‖
)
, φ8 = cos−1

(
((r − w) × (w − m3)) · (m5 − m3)

‖(r − w)‖‖(w − m3)‖‖m5 − m3‖
)

.

MCP joints angles, φ9 to φ13, and PIP joints, φ14 to φ18, are similarly computed by

φ14−i = cos−1
(

(w − mi ) · (mi − pi )

‖(w − mi )‖‖(mi − pi )‖
)
, φ19−i = cos−1

(
( pi − fi ) · ( pi − fi )

‖( pi − fi )‖‖( pi − fi )‖
)
,

respectively for i = 1, . . . , 5. Although there is evidence that simultaneous use of
the Kinect and PrimseSense cameras can cause interference, this has been found
to have little effect on measurement and is strongly correlated with the distance
between sensors and observed object [4]. To examine sensor efficacy, joint error has
been recorded during repeated tests performed using the proposed training task set,
and performance then quantified through comparison with an electro-goniometer.
A minimum mean joint error of less than 10◦ has been established with the Kinect
placed at 45◦ on the opposite side of the impaired arm at a−20◦ pitch angle in sitting
mode, and the PrimeSense positioned 700mm above the touch-table.

9.2.4 Stimulation Hardware

As in Chap.7, two single pad ES electrode pairs are positioned over the anterior
deltoid and triceps muscles. In addition, the electrode array is placed on the forearm
to actuate wrist and hand extensor muscles as in Chap. 8. The key movements pro-
duced using the electrode array are shown in Fig. 9.6 and comprise open-hand and
pinching movements for grasping and releasing objects, and a pointing movement
for switching lights and pushing buttons.

The electrode array (Tecnalia-Fatronik, San Sebastian, Spain) comprises 4× 6
elements printed on a polycarbonate substrate, using a hydrogel interface layer. Four
stimulation channels are produced by the control hardware, each comprising a 5V,

http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Fig. 9.6 Experimental hand gestures and identified array elements (left hand view): a Starting, b
Open hand, c Pointing, and d Pinch gestures

40Hz pulse train, where pulse-width is the controlled variable (0–300µs). These are
then fed to a four channel stimulator (Odstock Medical Ltd., Salisbury, UK) which
amplifies the voltage of each channel to a fixed level determined at the beginning of
each session by applying a 300µs signal to the stimulation site and slowly increasing
a dial on the stimulator until the maximum comfortable level is achieved. When
setting the voltage amplitude of an array channel, the stimulation site comprises two
adjacent array elements located over the wrist and hand extensors.

9.2.5 Control Design

Theorems 9.1 and 9.2 provide two choices with which to design a control scheme
integrating arrays and single-pad electrodes. For simplicity we select the simpler
design procedure of Theorem 9.2 which assumes locally decoupled dynamics about
an updated operating point. The underlying assumption of weak local interaction
between the upper arm and wrist/hand is motivated by the inertial and Coriolis
coupling between arm segments and the hand being negligible compared with the
coupling due to spasticity and inherent stiffness of the muscular tendon structure.

As described, the system has n = 26 electrode sites, q = 4 stimulation channels,
and p = 17 joints. The first two electrode sites, first two channels, and first five
joints are associated with the single-pad electrodes, giving n1 = 2, n2 = 24, q1 = 2,
q2 = 2, p1 = 5 and p2 = 12. Following Procedure 9 we therefore set A1 = I
and X1 = I in the forms of A and X given by (9.1) and (9.2) respectively. At the
beginning of each treatment session the subspace X2 is identified for each participant
using Procedure 7 of Sect. 8.3 which involves using past experience and known
muscle geometry. The operator X2 maps the two array stimulation channel signals,

http://dx.doi.org/10.1007/978-3-319-25706-8_8
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r ∈ L
q2
2 [0, T ], to the stimulation appearing at the array elements, z ∈ L n2

2 [0, T ].
Physically this routing is achieved via custom-made RS232 controlled multiplexor
hardware, comprising an Arduino board and shift register array, which interface with
a relay bank.

The decoupled design of Theorem 9.2 means that joints ΦP1 = [φ1, . . . , φ5]�
are controlled only using stimulation input rQ1 = zN1 = [u1, u2]�, with model M1
matching that used in Chap.7. Hence exactly the same feedback and ILC controllers
as designed for the upper arm in Chap.7 can be used. In addition, joints ΦP2 =
[φ6, . . . , φ17]� are controlled using only array stimulation rQ2 = [u3, u4]�, zN2 =
X2rQ2 , with linearized model M2|z(k) matching that employed in Chap.8. Hence the
specialized feedback and ILC control implementations of Propositions 8.1 and 8.2
can be employed and maintain their nominal properties.

Remark 9.1 If were desired to implement the partially decoupled design of
Theorem 9.1, the necessary steps would be to: (1) augment the upper limb model
with a lumped parameter representation of the wrist, (2) use it to compute the lin-
earized interaction component M2,1|z(k) appearing in M , and (3) use M to design a
controller which includes the interaction term K2,1 in its structure. This augmented
control action allows the upper arm stimulation to respond to changes in the wrist
position.

9.3 Results

The system has been tested with both unimpaired and stroke participants. Following
ethical approval, 6 participants (2 unimpaired and 4 stroke) were recruited with
demographic characteristics for the latter given in Table9.1. At the beginning of
each session they were set-up at the workstation, which took 15min and comprised:

1. Participant placement as described in Sect. 9.2,
2. Electrode-array and single electrode placement and setting of comfortable stim-

ulation amplitude for each channel as described in Sect. 9.2.4,
3. Array stimulation subspace identification as described in Procedure 7 of Sect. 8.3.

Table 9.1 Stroke participant demographic characteristics

Participant Gender Age (years) Side of paresis Time since stroke
(months)

1 M 54 L 35

2 M 51 L 64

3 F 47 L 60

4 M 43 L 96

Average 48.75 63.75

http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_7
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Each unimpaired participant attended a single session, in which they used the
system to perform the tasks described in Sect. 2.1. They were instructed to provide
no voluntary effort, and were not shown the task. Each stroke participant attended
17 intervention sessions. The inclusion criteria were the same as in Chap.7. The
set-up procedure also followed steps (1)–(3) above, and was followed by 60min
practising of a subset of ES-assisted functional reach and grasp tasks dictated by
clinical need. At the beginning and end of each intervention session, each stroke
participant completed two tasks without ES assistance (high light switch and button
pressing tasks). The same clinical assessments as used in the previous clinical trial
and described in Sect. 7.1.1 were used. The assessments were conducted according to
standard protocol, by qualified physiotherapists who were independent of the study.
Data collection was carried out by a team of experienced researchers.

9.3.1 Unimpaired Participants

The hand and wrist identification procedure of Sect. 8.4 should ideally be repeated
between trials to identify model component M2|z(k) within Theorem 9.2, which
assumes the structure H̄(s)F . However, due to the dominant effect of spasticity and
stiffness outweighingvariation in operatingpoint conditions, satisfactory resultswere
obtained by performing a single identification test at the start of each participant’s
experimental session.

The upper arm feedback and ILC controllers K1 and L1 were calculated as in
Chap.7. In particular, K1 took the form of a PD controller about both the shoulder
and elbow joints, with proportional gains between 2 and 3 and derivative gains of
0.1. ILC operator L1 took the form of a phase-lead ILC update.

Then array control operators K2 and L2 were computed using Propositions 8.1
and 8.2 respectively. In particular, K̄ (s) took the form of a PD controller, with
proportional gains between 1 and 1.2 and derivative gains between 0.3 and 0.5.
These were chosen so that Nw(s) in Proposition 8.1 approximated a pure delay.

Parameters required to represent each task were extracted in separate tests with
12 unimpaired participants, as reported in [5]. These were used to define extended
task operator P which, due to the decoupled design, had components of the form
Pj = diag{P1, j , P2, j }, j = 1, . . . , S. Since both subsystems use the same ILC
structure, we can express the update as

vk+1(t) = vk(t) +
[

l1(P1, j )
† 0

0 l2(P2, j (F X2)
⊥)†

] [
(ek)

e
P1

(t + λ1)

(ek)
e
P2

(t + λ2)

]

,

t ∈ [t j−1, t j ], j = 1, . . . , S, k = 0, 1, . . .
(9.18)

where l1, l2 > 0 are gains andλ1,λ2 > 0 phase-leads. In practice, suitable parameters
were l1 = 0.3 and λ1 = 0.8s, l2 = 0.3 and λ2 = 0.8s.

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Fig. 9.7 Tracking results for unimpaired Participant 1 during far reach task

Tests comprised 6 trials of each of the far reaching and low light switch tasks.
SaeboMAS support was set according to participant needs. Results for Participant 1,
as illustrated by Fig. 9.7, confirm improved tracking between trials k = 1 and k = 6
with summary performance measures given in Table9.2. Here the virtual reference
Φ̂ = Gv∞ is used to provide a clear measure of error at each time point t ∈ [0, T ].
Although all wrist and hand axes were controlled, results for φ7 and φ11 (wrist and
index finger extension) are shown as 42% of the functional movements of the hand
involve the four fingers moving together [6].

The effect of fatigue and moderate to severe spasticity was addressed by re-tuning
the feedback control parameters, and reducing learning gains l1, l2 to sacrifice con-
vergence speed for robustness. Results confirm satisfactory accuracy and feasibility
of the system.

Table 9.2 Unimpaired participants assisted results

Task Trial no Norm of error

‖φ̂2 − φ2‖ ‖φ̂5 − φ5‖ ‖φ̂7 − φ7‖ ‖ ˆφ11 − φ11‖
Participant 1 Far

reaching
1 8.54 8.72 12.76 8.51

6 3.45 6.34 6.55 5.02

Low light
switch

1 9.95 11.33 6.12 3.73

6 4.33 3.68 4.95 3.02

Participant 2 Far
reaching

1 12.09 6.86 8.49 7.05

6 7.92 4.68 4.90 4.99

Low light
switch

1 7.30 7.03 19.58 12.38

6 2.03 6.42 6.60 8.17
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9.3.2 Stroke Participants

For each stroke participant the set-up procedure steps (1)–(3) were performed at the
beginning of each of the 17 intervention sessions, using the same identification pro-
cedure and control structures as the unimpaired case. However, due to time constrains
the arm model identification process was not repeated each session unless perfor-
mance was deemed unsatisfactory. The four chronic participants each completed the
intervention over a 6–8 week period.

9.3.2.1 Assisted Tracking Performance

When assisted by ES, each participant was supported by both the SaeboMAS and ES
according to their clinical need. The level of gravitational support was varied between
tasks based on physiotherapist observations and participant voluntary action. For all
participants the level reduced over the intervention. As shown in Figs. 9.8 and 9.9,
improvements were seen in mean tracking accuracy for all four joints as was the
case with unimpaired participants. The results demonstrate the success of the control
system for improving movement accuracy during reaching and grasping tasks. Sum-
mary performancemeasures are given in Table9.3 and confirm that tracking accuracy
increased between the first and last ILC trials. For example, the norm of tracking
error for all joints (last column) reduced on average to less than half, attaining an
accuracy on trial k = 6 which confirms that the overall movement was performed
to a satisfactory level of precision to support functional movement. Since the first
trial (k = 1) corresponds to vk = 0, these results clearly show the improvement
compared with using feedback controllers alone.

Fig. 9.8 Tracking results for Stroke Participant 1 during ES-Assisted drawer closing task
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Fig. 9.9 Tracking results for Stroke Participant 4 during ES-Assisted low light task

Table 9.3 ES-assisted tracking results for stroke participants taken mid-way during intervention
(session 9)

Task Trial no Norm of error

‖φ̂2 −φ2‖ ‖φ̂5 −φ5‖ ‖φ̂7 −φ7‖ ‖φ̂11 −
φ11‖

‖Φ̂ − Φ‖

Participant 1 Drawer
closing

1 16.6 10.8 14.9 8.47 192.8

6 10.1 7.42 6.28 4.9 72.74

Participant 2 Far
reaching

1 24.9 9.94 9.77 7.78 196.68

6 19.1 5.01 5.36 6.52 89.12

Participant 3 Near
reaching

1 16 5.42 30.4 12.5 186.84

6 12 3.24 13.5 6.21 105.88

Participant 4 High light
switch

1 25.3 8.68 12.9 9.55 217.96

6 37.6 5.37 5.42 5.52 125.64

9.3.2.2 Unassisted Tracking Performance

During ES-unassisted tasks each participant was only supported by the SaeboMAS.
The level of support was set by the physiotherapist at a constant level during the first
treatment session according to each participant’s needs. The range of movement,
defined as the difference between maximum and minimum joint angles, was calcu-
lated for each ES-unassisted task. Results in Table9.4 demonstrate improved range
of movement at all four stimulated joints over the intervention. In particular mean
improvements over the course of the intervention were 5◦ in shoulder flexion (high
light switch), 13◦ in elbow extension (contralateral reach), 42◦ in wrist extension
(near reach), and 34◦ in index finger extension (far reach). As in Chap.7 and prior

http://dx.doi.org/10.1007/978-3-319-25706-8_7
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Table 9.4 Stroke participant clinical assessment data

Participant Action Research Fugl-Meyer ES-Unassisted Range of Movement

Arm Test φ2 φ4 φ6 φ11

Base-
Line

Post- Base-
Line

Post- Base-
Line

Post- Base-
Line

Post- Base-
Line

Post- Base-
Line

Post-

P1 8 9 26 33 6 14 30 33 30 50 11 23

P2 6 5 28 28 7 13 10 23 65 130 15 42

P3 7 3 30 35 2 16 16 29 59 73 6 44

P4 10 13 23 38 3 8 30 35 40 76 32 45

ttest p-value 0.0596 0.0054 0.0041 0.0322 0.0364

studies [7–9], one-tailed t-tests were applied to best-fit linear regression slopes of
range of movement against session number, and yielded p-values <0.05 in all cases.

9.3.2.3 Clinical Outcome Measures

As in the previous clinical applications, the primary outcome measures were the
motor component of the FMA and the ARAT, with maximum scores of 66 and 57
respectively. Scores are shown in Table9.4 with improvements seen in both; for two
participants the ARAT and for three participants the FMA improved. A paired t-test
was applied to the FMA scores but the p-value of 0.0596 is not deemed significant.

9.4 Discussion

The system detailed in this chapter was motivated by evidence that shoulder and
elbow training only improves motor impairment in the shoulder and elbow [7, 8],
as reflected in the clinical case-studies of Chaps. 5 and 7. Similarly, training of the
wrist and finger extensors has been found to only improve hand function [10]. How-
ever, when thesemuscle groups are trained simultaneously, significant improvements
are observed, with participants reporting greater capacity to perform everyday tasks
at home, such as opening drawers, stabilizing and moving objects, and pressing light
switches [9]. Unfortunately the majority of systems reported in the literature stimu-
late too fewmuscles and use non-selective, large electrodes. They also do not employ
position feedback or model-based control algorithms. This leads to inadequate sup-
port during functional activities.

The aim of this study is to establish the feasibility of combining state-of-the-art
technologies to enable people with stroke to practice goal-oriented functional tasks.
The system developed in this chapter incorporates VR, ES hardware, advanced sens-
ing, control and passive support. Compared with previous systems, this demonstrates
a substantial development in the scope of technology for upper-limb rehabilitation. It
also shows that the integrated control scheme provides fine finger movements during

http://dx.doi.org/10.1007/978-3-319-25706-8_5
http://dx.doi.org/10.1007/978-3-319-25706-8_7
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training of everyday tasks by employing a model of the hand and wrist, and learning
from past experience. While the study confirmed acceptance and positive outcomes,
limitations included the small sample size, absence of a control group or follow-up
(due to time constraints).

9.5 Conclusions

The control framework has been demonstrated within a rehabilitation system which
supports functional task training,with assistanceprovidedby a combinationof single-
pad electrodes and an electrode array. As the first upper-limb system to employ
model-based controllers to assist shoulder, elbow and hand movement, it has estab-
lished the feasibility of the control framework for clinical use. The next chapter
describes subsequent challenges that must be addressed in order to translate this
technology into the home environment.
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Chapter 10
Conclusions and Future Research Directions

The ES control framework developed in this book is applicable to a wide range of
musculoskeletal systems combined with passive/robotic support devices, and can
incorporate an arbitrary number of single-pad or electrode arrays positioned over
appropriate muscles to assist movement. Utility has been illustrated in a series of
clinical feasibility studies which have trained increasingly functional tasks. Imple-
mentation has culminated in the system described in Chap. 9, which embeds a moti-
vating training environment, a varied task set, with ES assistance supplied to muscle
groups that are aligned with clinical need. Figure10.1 shows the control structure
of Fig. 9.1, as expressed in the lifted notation and augmented by exogenous distur-
bances, u0, y0.

The ultimate goal of this rehabilitation technology is to translate into patients’
homes, where it can be used without direct supervision from a therapist over longer
training periods. Further developments are required to facilitate this, and include:

1. Lengthy and often fatiguingmodel identification tests (thatmay require a therapist
to administer) must be reduced or eliminated.

2. Control scheme parameter tuning must automatically compensate for physiolog-
ical changes such as fatigue, spasticity and change in electrode position.

3. ES hardware must be easy to don and doff, and incorporate as few components
and wires as possible.

4. Patient-specific motor re-learning models are necessary to enable tasks and treat-
ment modalities to be automatically chosen to maximize long-term treatment
outcomes.

5. Expensive components (e.g. dSPACE, touch table, SaeboMAS) shouldbe replaced
with affordable alternatives (e.g. embedded ‘system on chip’ hardware, tablet/
smart TV/smartphone,BakxMagicArm/FocalMeditechBalancer/SammonsPre-
ston Stable Slide).

© Springer International Publishing Switzerland 2016
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Fig. 10.1 General feedback and ILC control scheme in lifted framework with external disturbance

These developments are aligned with the needs of patients, carers and healthcare
professionals that have been identified in [1], and in questionnaires reported in [2].
The next section describes an approach which has potential to address points (1) and
(2), and the subsequent section provides a route to address point (3).

10.1 Elimination of Identification and Manual Controller
Tuning

The control design framework developed in this book involves obtaining a plant
model description,M|z(k), that captures the plant dynamics about the operating point,
z(k), corresponding to the kth task attempt. The feedback and ILC controllers K and
L are then computed using this model. In the case of single-pad electrodes, feedback
controller K may alternatively be designed using a global model, M, but L must still
be designed using the linearized model M|z(k).

While this provides a powerful framework to enable ES to support functional
movements, the need to identify the underlying model is a significant limitation. For
example, in the studies ofChaps. 7 and9 identification took approximately 15min and
was conducted only at the start of each treatment session. Similarly, time constraints
also meant that identification of an array model between trials was not undertaken,
and incurred further reduction in tracking accuracy. This was also the reason the
fully decoupled design of Theorem9.2 was used instead of the partially decoupled
design of Theorem9.1. A further issue is the presence of fatigue and spasticity which
can rapidly change the stimulated arm dynamics leading to degraded levels of per-
formance. It is therefore desirable to reduce, or ideally remove, the need for model
identification, while at the same time adapting the controller to maintain satisfactory
performance.

An obvious solution is to expand the framework to automatically chose the ‘best’
model that matches observed input-output data from a bank of possible models that
are specified by the designer before the experiment or treatment session begins.
Such a framework, however, requires carefully selection of the candidate model set,
controller properties and switching in order to preserve robust stability bounds (as
specified by tracking performance bound (4.43) of Theorem4.5).

http://dx.doi.org/10.1007/978-3-319-25706-8_7
http://dx.doi.org/10.1007/978-3-319-25706-8_9
http://dx.doi.org/10.1007/978-3-319-25706-8_9
http://dx.doi.org/10.1007/978-3-319-25706-8_9
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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A suitable framework has recently become available in the form of estimation
based multiple model switched adaptive control (EMMSAC) developed in [3, 4].
EMMSAC uses a bank of Kalman filters to assess the performance of a set of can-
didate plant models, and the controller corresponding to the most suitable plant
model is then switched into closed-loop. Distinct from other switchedmultiplemodel
approaches, robust performance bounds for EMMSAC are invariant to the size of
the set of possible models chosen by the designer. This means that adding more can-
didate models does not degrade the resulting closed-loop performance properties.
Feasibility of using EMMSAC for ES-based upper limb rehabilitation was estab-
lished in [5], where it was employed to assist participants perform isometric tracking
tasks using ES, while supported by a robotic arm. Results with five unimpaired par-
ticipants showed that it is possible to eliminate model identification while employ-
ing closed-loop ES controllers that maintain high performance in the presence of
rapidly changing system dynamics. The axiomatic framework of EMMSAC places
no restriction on control structure or plant uncertainty form, but delivers explicit guar-
antees for robust performance. A comprehensive framework for extension to ILC has
recently been formulated in [6] and is termed estimation based multiple model ILC
(EMMILC). Experimental results confirm further increased tracking performance
due to the addition of ILC.

Acting in the lifted space, EMMILC employs exactly the same lifted structure
that has been used extensively in this book to perform stability analysis. However,
instead of a single model and controller pair {M̄, C̄} defined by (4.34)–(4.36) we now
define n pairs {M̄i, C̄i}i=1,...,n before the experiment or treatment session begins.
Note that for simplicity they and the true plant, N̄ , are assumed to be LTI. For
each model M̄i in our candidate model set G := {M̄i}i=1,...,n we implement an
estimator NE(M̄i) which uses observations (ũ, ẽ)� to generate a residual ri[k] at the
end of trial k. The size of ri[k] corresponds to the norm of the minimum disturbance
needed to explain the observed signals if M̄i was the true plant (ri[k] can readily be
computed using a Kalman filter running over t ∈ [0, T ] on trial k). These values are
fed to the minimization operator H, which returns the index, qf , of the plant with
minimal residual. The free switching signal qf is then delayed long enough to prevent
instability effects caused by rapid switching, and thereby ensure overall convergence
of the closed-loop signals. For this purpose we implement a delay operator D which
ensures that a delay of Δ iterations must elapse before another is permitted. The
signal q then determines the controller choice C̄q(k) (corresponding to the selected
plant) which is switched into closed-loop. Together these components comprise the
switching operator S = DH(NE, G) shown in Fig. 10.2. The table summarizes the
structural requirements that specify the switching algorithm illustrated in Fig. 10.2,
where restriction operator Rkv := (v(0), . . . , v(k)).

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
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Fig. 10.2 EMMILC structure: switch S = DH(NE, G) outputs switching signal q to determine
which atomic controller choice C̄q(k) to switch into closed-loop. With no switching (q fixed), this
corresponds to the framework of Chap.6

Controller: C̄ : ẽ �→ ũ : ũ(k) = C̄q(k)

[{ 0 if i < ks
ẽ(k) if i ≥ ks

]
(k)

Estimator: NE : ri[k] = inf
{∥
∥
∥

u0
y0

∥
∥
∥ : Rk(y0 + Φ − ẽ) = RkM̄i(u0 − ũ)

}

Minimizer: H : qf (k) := min
1≤i≤n

ri[k], ∀k ∈ N

Delay: D : q(k) :=
{ qf (k) if k − ks(k) ≥ Δ

q(ks(k)) else, ks(k) := max{i ≤ k, q(i) 	= q(i − 1)}

The comprehensive nature of the axiomatic EMMILC framework of [6] means
that there are numerous possible design options with which to specify each controller
and estimator. A possible procedure that is appropriate to ES-based rehabilitation is
outlined below:

Procedure 10 (EMMILC design procedure)

• Select an uncertainty set U ∈ M̄ we seek to control. This is the smallest set
that contains the true plant description N̄ . Here M̄ is the set of all lifted LTI
models L m

2 [0, T ] × N → L
p
2 [0, T ] × N (which can be directly generated

from their non-lifted counterparts L m
2 → L

p
2 ).

http://dx.doi.org/10.1007/978-3-319-25706-8_6
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• Select a candidate model set, G ⊂ M̄ , which satisfies the condition

∃ M̄i ∈ G such that δ(M̄i, N̄) < δmax.

This specifies amaximum distance of δmax betweenmodels, measured using
the gap metric (precise computation of δmax is given in [6]).

• Associate each model M̄i with a stabilizing controller C̄i using a control
design procedure C̄i = ΩM̄i. If hardware allows, then each controller can
be computed individually. Alternatively we can select a minimal set of con-
trollers that stabilizes each element in U (computed using robust stability
bound (4.42)), and associate multiple estimators with the same controller.

Recall that robust performance bounds computed using (4.43) for the case of a
fixed controller C̄ determine how closely the true plant maintains its operating point
in the presence of external disturbance. These bounds take the form

‖ΠN̄//C̄‖(
0
Φ̂

) ≤ b

with explicit values of b < ∞ computed in Sects. 4.4 and 6.4. From (4.42), these
hold provided the model is sufficiently close to the true plant N̄ , thereby quantifying
robust stability. EMMILC provides the following equivalent condition which holds
across the entire uncertainty space U.

Theorem 10.1 EMMILC design using Procedure 10 stabilizes the true closed-
loop system [N̄, C̄], and delivers the tracking performance bound

‖ΠN̄//C̄‖(
0
Φ̂

) ≤ bmax

where C̄ = ΩN̄ , with finite values of δmax and bmax computed in [6] as a
function of U and control design procedure Ω .

Proof The analysis in [6] is applicable to the system of Fig. 10.1, but uses the sim-
pler controller structure C̄ = L̄ in place of C̄ = K̄(I + L̄). We hence must verify
the EMMILC controller assumptions (defined in [6]) hold for this case. Consider
Fig. 10.1 and substitute K = XKX and L = WLP. First note the update relationship

ũ(k + 1) = Kv(k + 1) + K ẽ(k + 1)

= K(v(k) + Lẽ(k)) + K ẽ(k + 1)

= ũ(k) + K(L − I)ẽ(k) + K ẽ(k + 1)

http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_4
http://dx.doi.org/10.1007/978-3-319-25706-8_6
http://dx.doi.org/10.1007/978-3-319-25706-8_4


168 10 Conclusions and Future Research Directions

= ũ(k) + K(L − I)
(
Φ̂ + (−M, I)w0(k) − Mũ(k)

)

+ K
(
Φ̂ + (−M, I)w0(k + 1) − Mũ(k + 1)

)
.

Therefore

(I + KM)ũ(k + 1) = (
I + K(I − L)M

)
ũ(k) + KLΦ̂

+ K(L − I)(−M, I)w0(k) + K(−M, I)w0(k + 1)

⇒ ũ(k + 1) = (
I − (I + KM)−1KLM

)
ũ(k) + (I + KM)−1KLΦ̂

+ (I + KM)−1K(L − I)(−M, I)w0(k)

+ (I + KM)−1K(−M, I)w0(k + 1)

so that

ũ(k) = (
I − (I + KM)−1KLM

)jũ(k − j)

+
j∑

i=1

(
I − (I + KM)−1KLM

)i−1
(I + KM)−1

× K
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i) + LΦ̂

}
. (10.1)

We next use relation
∑k

i=1(I − XLM)iX = X
∑k

i=1(I − LMX)i to give

ũ(k) = (
I − (I + KM)−1KLM

)jũ(k − j)

+ (I + KM)−1K
j∑

i=1

(
I − LM(I + KM)−1K

)i−1

×
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i) + LΦ̂

}

= (
I − (I + KM)−1KLM

)jũ(k − j) + (I + KM)−1K
j∑

i=1

(
I − LG

)i−1

×
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i) + LΦ̂

}
. (10.2)

Now ũ(0) = K ẽ(0) = K(I + MK)−1
(
Φ̂ + (−M, I)w0(0)

)
so this can be written as

ũ(k) = (
I − (I + KM)−1KLM

)k ũ(0) + (I + KM)−1K
k∑

i=1

(
I − LG

)i−1

×
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i) + LΦ̂

}
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= (
I − (I + KM)−1KLM

)k
K(I + MK)−1(Φ̂ + (−M, I)w0(0)

)

+ (I + KM)−1K

×
k∑

i=1

(
I − LG

)i−1
{
(L − I)(−M, I)w0(k − i)

+ (−M, I)w0(k + 1 − i) + LΦ̂
}
.

We then use the relationship (I − XLM)kX = X(I − LMX)k to give

ũ(k) = (I + KM)−1K
(
I − LG

)k(
Φ̂ + (−M, I)w0(0)

) + (I + KM)−1K

×
k∑

i=1

(
I − LG

)i−1
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i) + LΦ̂

}

which can be written as

ũ(k) = (I + KM)−1K
k∑

i=1

(
I − LG

)i−1
L(I + MK)−1(−M, I)w0(k − i)

+ (I + KM)−1K × (−M, I)w0(k)

+ (I + KM)−1K
[(

I − LG
)k +

k∑

i=1

(
I − LG

)i−1
L
]
Φ̂,

and so the operating point bias on ũ is given by

ū(k) = (I + KM)−1K
[(

I − LG
)k +

k∑

i=1

(
I − LG

)i−1
L
]
Φ̂. (10.3)

Hence (10.2) can be written as

ũ(k) = (
I − (I + KM)−1KLM

)jũ(k − j) + ū(j) + (I + KM)−1K
j∑

i=1

(
I − LG

)i−1

×
{
(L − I)(−M, I)w0(k − i) + (−M, I)w0(k + 1 − i)

}
− (I + KM)−1K

(
I − LG

)j
Φ̂

= (
I − (I + KM)−1KLM

)jũ(k − j) + ū(j) + (I + KM)−1K
j∑

i=1

(
I − LG

)i−1

× L(I + MK)−1(−M, I)w0(k − i) + (I + KM)−1K(−M, I)w0(k)

− (I + KM)−1K(I − LG)j(−M, I)w0(k − j) − (I + KM)−1K
(
I − LG

)j
Φ̂.
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Convergence of ũ with respect to the operating point is hence

ũ(k) − ū(k) = (
I − (I + KM)−1KLM

)j
[
ũ(k − j) − ū(k − j)

]
− ū(k)

+ (
I − (I + KM)−1KLM

)jū(k − j) + ū(j) + (I + KM)−1K
j∑

i=1

(
I − LG

)i−1

× L(I + MK)−1(−M, I)w0(k − i) + (I + KM)−1K(−M, I)w0(k)

− (I + KM)−1K(I − LG)j(−M, I)w0(k − j) − (I + KM)−1K
(
I − LG

)j
Φ̂.

Now note that

ū(j) − ū(k) + (
I − (I + KM)−1KLM

)jū(k − j) − (I + KM)−1K
(
I − LG

)j
Φ̂

= (I + KM)−1K

{[
(I − LG)j +

j∑

i=1

(I − LG)i−1L
]

−
[
(I − LG)k +

k∑

i=1

(I − LG)i−1L
]

+ (I − LG)j
[
(I − LG)k−j +

k−j∑

i=1

(I − LG)i−1L
]

− (
I − LG

)j
}
Φ̂

= (I + KM)−1K

⎧
⎨

⎩

j∑

i=1

(I − LG)i−1L −
k∑

i=1

(I − LG)i−1L

+
k−j∑

i=1

(I − LG)i−1L

⎫
⎬

⎭
Φ̂ = 0

so that we obtain the relation

ũ(k) − ū(k) = (
I − (I + KM)−1KLM

)j
[
ũ(k − j) − ū(k − j)

]

+ (I + KM)−1K
j∑

i=1

(
I − LG

)i−1
L(I + MK)−1(−M, I)w0(k − i)

+ (I + KM)−1K(−M, I)w0(k) − (I + KM)−1K(I − LG)j(−M, I)w0(k − j).
(10.4)

The corresponding operating point for ẽ is given by ē(k) = Φ̂ − Mū(k) and using

ẽ(k) = y0(k) + Φ̂ − M(u0(k) + ũ(k))
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convergence of ẽ(k) with respect to the operating point follows

ẽ(k) − ē(k) = y0(k) − Mu0(k) − Mũ(k) + Mū(k) = (−M, I)w0(k) − M(ũ(k) − ū(k)).

(10.5)
Combining (10.4) and (10.5) gives

(ũ(k) − ū(k)

ẽ(k) − ē(k)

)
=

( I
−M

)(
ũ(k) − ū(k)

) +
( 0
(−M, I)

)
w0(k) =

(K
I

)
(I + MK)−1

× (−M, I)w0(k) +
( I
−M

){(
I − (I + KM)−1KLM

)j
[
ũ(k − j) − ū(k − j)

]

+ (I + KM)−1 × K

{ j∑

i=1

(
I − LG

)i−1L(I + MK)−1(−M, I)w0(k − i)

− (I − LG)j(−M, I)w0(k − j)

}}
.

Let ‖I − (I + KM)−1KLM‖ < γ1, then we can bound

|w2(k) − w̄2(k)| = |(ũ(k) − ū(k), ẽ(k) − ē(k))�|
≤ ‖(I, M)�‖γ j

1|ũ(k − j) − ū(k − j)|
+ ‖(K, I)�(I + MK)−1(−M, I)‖|w0(k)|

+ ‖(I, M)�(I + KM)−1K‖
j∑

i=1

γ i−1‖L(I + MK)−1(−M, I)‖|w0(k − i)|.

Hence, recalling that K = XKX and L = WLP, we define

b1 = ‖(I, M)�(I + KM)−1K‖‖L(I + MK)−1(−M, I)‖,
b2 = ‖(K, I)�(I + MK)−1(−M, I)‖

in the Mα and Mβ structures defined in Proposition 3 of [6], which yield

‖w2|I3‖w̄2 ≤ γ
|I2|
1 ‖(I, M)�‖‖Mα(|I3|)‖‖w2|I1‖w̄2 + ‖Mβ(|I2|, |I3|)‖‖w0|I1∪I2∪I3‖.

where intervals I1, I2, and I3 are defined in [6]. The terms Mα and Mβ are then used
to calculate values of delay Δ and gap distance δmax such that robust stability bound
(10.1) holds [6]. Since terms b1 and b2 appear explicitly within the fixed controller
robust stabilitymargin of Theorem4.6, they are necessarily finite, and hence give rise
to a finite value of bmax satisfying (10.1). Therefore EMMILC can always guarantee
robust stability over the entire uncertainty space U specified by the designer. �

Application of EMMILC therefore enables the control framework developed in this
book to be used autonomously in patient’s own homes without the presence of
an engineer to perform identification tests or tune controller parameters. However,

http://dx.doi.org/10.1007/978-3-319-25706-8_4
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future work is needed to extend the current isometric arm implementation of [5] to
encompass the full arm structure of (2.6). Following this, future research will involve
constructing a suitable set of candidate models which captures all possible variation
in the underlying stimulated arm dynamics.

10.2 Wearable ES Technology

In terms of assistive technology development, the highest priority for stroke par-
ticipants and carers has been identified as ‘ease of set-up’ followed by ‘comfort’
and ‘durability’ [1]. Wearable ES technology which exploits intrinsic properties
of fabric is a central component in realizing this requirement. Manufacturing suit-
able electrode arrays directly on an appropriate fabric is the most direct method of
producing a flexible, breathable, and light weight device. However, no fabrication
technique has so far realized such an electrode array economically. Embroidery has
been used to manufacture smart fabric type electrode pads and electrode wiring on
fabric for neuroprosthetic applications [7]. However, this required expensive high
quality custom made silver sputtered yarns produced using plasma vapor sputter-
ing since commercial metal coated yarns (e.g. silver coated Nylon 66 ‘ShieldX’)
showed low uniformity due to the degradation of the conductive yarn surface during
the embroidery process [8].

Weaving and knitting have been used in fabricating smart fabrics for various
wearable electronic applications (e.g. sensing, display, health monitoring, power
generating) [9–11]. However, these methods are also not suitable for fabricating a
wearable ES array.Weaving and knitting approaches impose limitations on the design
of the array because the conductive path is constrained to follow the physical location
of the yarns within the fabric. There is also a lack of homogeneity in the resistance
of the conductive pattern due to the imprecise gaps between the conductive yarns.

A flexible and breathable fabric electrode array (FEA) has, however, recently
been demonstrated and is shown in Fig. 10.3b. This is fabricated entirely by screen
printing the active electrode array directly onto a standard fabric. Screen printing is
a straightforward and cost effective fabrication method which facilitates significant
design freedom in terms of pattern geometries [12, 13]. It is a well established
technology in both the textile and printed electronic fields.

The printed FEA has required the development of bespoke polymer based screen
printable pastes that can be processed in a manner compatible with textiles. These
materials are now commercially available fromSmart Fabric Inks Ltd, UK (see http://
www.fabinks.com for details). A carbon loaded silicone rubber has been applied to
form the electrodes which enable dry contact via the conductive pad-skin interface
and avoids the need to use the hydrogel that is typically required by existing electrodes
[14]. The materials with skin contact used in the FEA are biocompatible.

The performance of the FEA has been compared to that of the leading alter-
native, which comprises the flexible array on polycarbonate with a hydrogel layer
(Fatronik-Tecnalia, Spain) used in Chap. 8 and shown in Fig. 10.3a. The FEA can

http://dx.doi.org/10.1007/978-3-319-25706-8_2
http://www.fabinks.com
http://www.fabinks.com
http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Fig. 10.3 a Flexible
polycarbonate array from
Fatronik-Tecnalia, and b
Fabric electrode array

(a)

(b)

produce comparable angular jointmovement compared to the polycarbonate array; in
addition, FEA has significant improvement on the flexibility, breathability and com-
fort. Critical postures of daily life have been achieved by stimulation of an optimized
selection of electrode elements.

To quantify the difference in accuracy using the two electrode array types, results
in Chap.8 have been repeated with two new participants. Each participant used both
the fabric array and the polycarbonate array under identical conditions, with a rest
period in between tests. The results are shown in Table10.1 for each task. The ILC
procedure gives rise to results with a mean joint angle error of typically less than
7% of the initial value. It can also be seen that the FEA is able to produce slightly
superior results when compared with the flexible polycarbonate array. Full details of
the electrode manufacture and experimental test results appear in [15].

These results hence lay the foundation for development of wearable ES rehabilita-
tion technology embedded in normal clothes. One possible realization of a wearable
ES sleeve is shown in Fig. 10.4, where the ES electronics are mounted within the

Table 10.1 Percentage error, 100 × ‖e3‖/‖e0‖, across all joints using each array type

Array Type Particpant Pointing Pinch Open hand

FEA P1 5.29 5.33 6.18

P2 3.55 6.97 5.45

Polycarbonate
array

P1 6.81 7.73 7.90

P2 4.46 6.86 6.51

http://dx.doi.org/10.1007/978-3-319-25706-8_8
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Fig. 10.4 Possible design of
wearable clothing

clothing using encapsulation. This system could then be used in conjunction with
a tablet computer running software which directs stroke participants in performing
training movements using suitable audio-visual prompts.

10.3 Wider Application Domains and Greater Scope

Precise control of ES to assist movement has rich potential to aid recovery in neu-
rological conditions such as cerebral palsy, head injury, Parkinson’s disease, and
Spinal Cord Injury (SCI). For example, 50–60% of the 100,000 UK Multiple Scle-
rosis patients have impaired hand/arm function and could benefit from ES or robot
assisted technology. This was illustrated in Chap.7 which described an MS Society-
funded pilot study confirming the feasibility of applying ES and robotic assistance
for upper limb rehabilitation. The same technology can also be directly utilized for
restoration of lower-limb function, with researchers from Technischen Universität
Berlin, ETH Zürich, University of Washington and University of California having
all employed ILC to control ES applied to the lower extremity.

The control framework developed has assumed that the patient repeatedly attempts
the same task for the purpose of rehabilitation. However the combination of ES and
robotics also has rich potential to function in a purely assistive manner, i.e. acting as
an orthosis to help perform a one-off task specified by the user that may take place
anywhere in or out-side their home. This firstly poses a challenge in terms of sensing
their movement, since static depth cameras may be inappropriate. Greater emphasis
then falls on fusing wearable inertial measurement systems, body-mounted depth
sensors, or biopotential signals to predict movement indirectly.

http://dx.doi.org/10.1007/978-3-319-25706-8_7
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Biopotential signals (e.g. electromyographic (EMG), electroencephalographic
(EEG)) can also be used within the underlying modeling and control framework
to predict the user’s intended movement, and is a rich area of current research. They
also have great potential to improve the accuracy of the control systems developed
in this book since they provide a mechanism to account for the user’s voluntary
contribution to the task completion (which affects the controller operating point).
In terms of measuring suitable signals, the array technology described in Sect. 10.2
can be used in conjunction with electronic filtering to extract EMG signals from the
relevant muscles.

As well as expanding the underlying models, more flexibility can be embedded
within the ILC framework of Chap.6. For example, it is possible for learning to
still take place during repeated but non-identical tasks, which would enable more
varied tasks to be used in training. Such tasks would increase user motivation during
therapy, as well as unlock the potential for wider assistive utility. When used in an
assistive manner, it is also possible to embed a model of the task employed within the
EMMILC framework, so that the estimator bank not only matches the plant model,
but also chooses the task that most closely fits the user’s intention. Another possible
expansion of the generalized ILC framework of Chap.6 is to enable the point-to-
point times {ti} to also be updated automatically to minimize a cost function, or to
more closely match the user’s voluntary intention. Feasibility of the former case has
recently been established in [16].

Perhaps the most challenging area of future research is to develop computa-
tional models of patients’ sensorimotor re-learning during therapy. These models
are required to capture changes in arm impairment as a function of (1) parameters
governing the rehabilitationmodalities (e.g. gains/weights determining task and con-
trol action), and (2) underlying patient physiology. Suitably optimized, they would
then enable rehabilitation systems to automate the treatment modalities applied to
maximize long-term recovery, and hence ensure clinical effectiveness without rely-
ing on the continued presence of a therapist. Starting points in this area include the
fitting of linear state-space models to the recovery process reported in [17].
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