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Preface

The concern about the effects of urban life on the ecological cycle has activated
several research areas that attempt to tackle part of this problem in one way or
another. Nowadays, much of the efforts concentrate on new sources of clean
energy, transportation and, of course, wastewater treatment. Since the quality
standards for wastewater treatment plants (WWTPs) are getting tighter, efficient
control methods need to be implemented for economic and environmental reasons.
As an example, there are effluent requirements defined by the European Union
(European Directive 91/271 Urban wastewater) with economic penalties.

From the operation and control point of view, several control methodologies have
been tested for WWTPs. Ranging from simple proportional-integrative (PI) and
PI-like single-loop controllers to multivariable model predictive controllers, from
model-driven to model-free, data-driven controllers. However, it is well known that
biological WWTPs are complex nonlinear systems with very different time con-
stants. The intricate behavior of the microorganisms and the large disturbances in
concentrations and flow rates of the influent makes the control of the WWTP a
complex task. In fact, during the last decade, the community has emphasized the
importance of integrated and plant-wide control and the wastewater industry is now
starting to realize the benefits of such an approach.

The purpose of the control methodologies presented in this book is to operate
WWTPs with the aim of improving the effluent quality and reduce operational
costs. However, it is important to emphasize the distinguished viewpoint of the
approach presented here with respect to existing works that can be found in the
research literature. Most of the approaches concentrate their efforts in providing a
trade-off between operational costs and effluent quality, being this quality measured
in an aggregated way by means of an appropriately defined index. In addition, as
environmental regulations establish maximum concentrations of pollutants for the
discharged effluent to receiving waters, it is therefore important to concentrate on
being under those limits if the plant is to be operated according to the regulations.
However, usual approaches found in the research literature for WWTP control and
operation do not tackle the effluent violations in an explicit way. The control and
decision operation system proposed here is aimed at proving that, in addition to
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achieving an improvement in the effluent quality, it is also possible to reduce the
percentage of time of pollution violations. It should be emphasized that none of
works in the literature are focused on reducing peaks of pollutant concentrations
until the complete elimination of effluent violations. It is of significant importance
because high concentrations of pollutants in the effluent can damage the environ-
ment and the health of the population.

The purpose of this book is therefore to present a proposal for WWTP operation
based on an incremental construction of the intelligent decision system that prevents
effluent pollutant concentrations to overpass the established environmental limits. As
it is conceived, these limits can be adapted to other design values on the basis of
eventually different local regulations. Even the presentation and design are based on
the well-known and established Benchmark Simulation Models, the proposal idea
can be conveniently extended to other WWTPs frameworks and scenarios.

This book is based on the research work that the authors have carried out over
recent years. It is not intended to be a research report but a unified presentation
of the works carried out. It can be found in the references chapter a complete list of
journal papers in which there are a deeper discussion of some control topics. Also
the comparison of the proposed design approach with some other previously
existing in the literature has been minimized in the book content. These compar-
isons can be found in the journal referenced works whereas the main goal of the
book is to serve as a methodological presentation of a design approach that, in the
authors’ opinion, deserves some extensions and particular applications that would
be difficult to forecast just by looking at the set of disconnected results that journal
papers usually constitute.

The book is intended to be used for by M.Sc. and Ph.D. students, consulting
engineers and process engineers at wastewater treatment plants. Even the discourse
is based on benchmark simulation scenarios, it is intended to provide a method-
ological, and scientifically based, steep way to deal with effluent WWTP require-
ments without forgetting about costs of operation.

The authors would like to acknowledge all the people who have contributed to
this book in one way or another, in particular, M. Meneses, M. Barbu just to name a
few. Special thanks go to the series Editor S.G. Tzafestas and the Editorial
Assistants Nathalie Jacobs and Cynthia Feenstra for their help during the prepa-
ration of the manuscript. Partial support of the research that originated the results
presented in this book has been provided by the Spanish Ministry of Economy and
Competitivity through grant DPI2013-47825-C3-1-R.

Bellaterra, Spain Ignacio Santín
Carles Pedret

Ramón Vilanova
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Chapter 1
Introduction

1.1 Motivation

During the last decade the importance of integrated and plant-wide control has been
emphasized by the research community and the wastewater industry is now starting
to realize the benefits of such an approach. Biological wastewater treatment plants
(WWTPs) are considered complex nonlinear systems and its control is very chal-
lenging, due to the complexity of the biological and biochemical processes that take
place in the plant and the strong fluctuations of the influent flow rate. In addition,
there are effluent requirements for instance the one defined by the European Union
(European Directive 91/271 Urban wastewater) with economic penalties, to upgrade
existing wastewater treatment plants in order to comply with the effluent standards.

In this work, the evaluation and comparison of the different control strategies is
based on Benchmark Simulation Model No.1 (BSM1) and Benchmark Simulation
Model No. 2 (BSM2), developed by the International Association on Water Pollu-
tion Research and Control. These benchmarks define a plant layout, influent loads,
test procedures and evaluation criteria. They provide also a default control strategy.
BSM1 corresponds to the secondary treatment of a WWTP, where the biological
wastewater treatment is performed using activated sludge reactors. The evaluation is
based on a week of plant operation. BSM2 is extended to a complete simulation of a
WWTP, including also a primary clarifier, anaerobic digesters, thickeners, dewater-
ing systems, and other subprocesses. In BSM2, the evaluation is based on one year
of operation data.

The application of different control strategies is focused on obtaining plant per-
formance improvement. In the literature there are many works that present different
methods for controllingWWTPs. Most of the works use BSM1 as working scenario.
In some cases they put their focus on avoiding violations of the effluent limits by
applying a direct control of the effluent variables. Nevertheless, they need to fix the
set-points of the controllers at lower levels to guarantee their objective, which may
imply a great increase of costs. Other works consider a trade-off between opera-

© Springer International Publishing Switzerland 2017
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2 1 Introduction

tional costs and effluent quality, but they do not tackle with effluent violations. They
usually deal with the basic control strategy (control of dissolved oxygen (SO) of the
aerated tanks and nitrate nitrogen concentration (SNO) of the second tank (SNO,2)),
or propose hierarchical control structures that regulate the SO set-points according
to some states of the plant, usually ammonium and ammonia nitrogen concentration
(SNH ) and SNO values in any tank or in the influent or SO in other tanks.

Other existing works in the literature use BSM2 as testing plant. Some of them are
focused on the implementation of control strategies in the biological treatment, as we
consider here. Specifically, they propose control strategies based on SO control by
manipulating oxygen transfer coefficient (KLa) of the aerated tanks, SNH hierarchical
control by manipulating the SO set-points, SNO,2 control by manipulating the internal
recycle flow rate (Qa) or total suspended solids (TSS) control by manipulating the
wastage flow rate (Qw).

1.2 Water Quality and Plant Operation

The purpose of themethodology presented in this book is to operateWWTPswith the
aim of improving the effluent quality and reducing operational costs. Of course, water
quality is a concern but can be faced from different points of view. Most of the actual
approaches concentrate their efforts in providing a trade-off between operational
costs and effluent quality, being this qualitymeasured in an aggregated way bymeans
of an appropriately defined index. In addition, as environmental regulations establish
maximumconcentrations of pollutants for the discharged effluent to receivingwaters,
it is therefore important to concentrate on being under those limits if the plant is
to be operated according to the regulations. However usual approaches found in
the research literature for WWTP control and operation do not tackle the effluent
violations in an explicit way. The control and decision operation system proposed
here is aimed at proving that, in addition to achieving an improvement in the effluent
quality, it is also possible to reduce the percentage of time of pollution violations. It
should be emphasized that none of works in the literature are focused on reducing
peaks of pollutant concentrations until the complete elimination of effluent violations.
It is of significant importance because high concentrations of pollutants in the effluent
can damage the environment and the health of the population.

Operational costs have not to be forgotten. Even this is true for every industrial
plant, it is of special concern for WWTPs. They can be seen as a special case of
industries where there is no income related to the final product. Instead, the ultimate
goal of a WWTP is the environmental protection. Because of this, it is necessary to
keep operational costs under some reasonable limits. This is one ofmotivations of the
approach presented in this book that incorporates in every controller tuning selection
the constraints for the operational costs. In this way, we can continuously search for
water quality improvement but with the constraint of no worsening operational costs.

This book uses first BSM1, and second BSM2 as working scenarios to evaluate
the applied control strategies. The main purpose of this text is to show how the use of
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high level control and decision strategies allows to avoid SNH in the effluent (SNH,e)
and total nitrogen (SNtot ) in the effluent (SNtot,e) limits violations and, at the same time,
to improve effluent quality and to reduce operational costs. The innovative proposed
control strategies are based on Model Predictive Control (MPC), Fuzzy Controller
(FC), functions that relate the input and manipulated variables, and Artificial Neural
Networks (ANN). The MPC controllers are implemented with the aim of improving
the control tracking. The control strategies applied with FCs and the functions that
relate the inputs with the manipulated variables are based on the processes that take
place in the biological reactors, whereas the ANNs are applied to predict effluent
concentrations by evaluating the influent at each sample time, in order to select the
appropriate control strategy to be applied.

1.3 Book Outline

The book is divided in nine chapters. The first two chapters introduce the working
scenarios used in order to simulate wastewater treatment plants, as well as a theo-
retical explanation of the control techniques applied. In Chap.2, BSM1 and BSM2
benchmarks and their default control strategies are described. InChap.3 the advanced
control techniques of MPC, FC, and ANN are depicted.

The next two chapters are focused on to improve the control performance of
the basic control loop and on the objective of effluent quality improvement and
costs reduction by the application of a hierarchical structure. Chapter 4 explains the
implementation and design of the MPC with feedforward compensation (MPC+FF)
controllers that compose the lower level of the hierarchical control structure. Here
it is also shown the control tracking improvement in comparison with the default
control strategy and with other lower level control approaches. Chapter5 focuses on
the higher level of the hierarchical control, choosing first, the controller alternatives
for manipulating SO in the fifth tank (SO,5) and second, extending the higher level
control by manipulating SO of the three aerobic reactors.

The following three chapters are related with the goal of effluent limits violations
removal. In Chap.6, the proposed control strategies for removing effluent pollutants
are presented. First, SNtot,e violations are taken into account. This follows by the
consideration of SNH,e violations. Also it is shown how to combine both approaches
for a simultaneous effluent violations removal. Chapter7 explains the implementation
of the ANNs for the required effluent predictions using BSM2 as working scenario,
in order to choose the suitable control strategy to be applied. Chapter 8 presents the
control strategies applied jointly with the advanced decision control system, with the
considerationwhen a risk of violation is detected and switching to a normal operation
the rest of the time in order to manage operational costs.

Finally, in Chap.9, the concluding remarks are drawn.
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Chapter 2
Process Modelling and Simulation Scenarios

The wastewater research community has extensively applied benchmark models to
develop and evaluate control strategies for WWTPs. The large number of journal
papers and conferences related to the use of benchmarks in WWTPs, issued up to
the present, prove the utility of these tools. This book also makes use of benchmark
models to test and compare the proposed control strategies. These benchmarks are
briefly described in the first section of this chapter.

The WWTP benchmarks include basic control strategies, which are commonly
applied in WWTPs. They are usually used in the literature in order to compare
the results achieved with new control strategies or techniques, in terms of control
performance and/or plant performance. These default control strategies are described
in the second section of this chapter.

2.1 Working Scenarios

In order to simulate the behavior of a wastewater treatment plant and to evaluate
different control strategies, two benchmarks have been used in this book, which are
called BSM1 [1] and BSM2 [24]. They have been widely applied to test control
strategies and to optimize the plant design.

BSM1 and BSM2 are composed by different models developed by the Interna-
tional Association on Water Pollution Research and Control (IAWPRC)

• The Activated SludgeModel No. 1 (ASM1) [30] describes the biological phenom-
ena that takes place in the biological reactors.

• The model developed in [59] describes the physical separation processes that take
place inside the secondary settler.

• The Anaerobic Digestion Model No. 1 (ADM1) [5] describes the dynamics of the
anaerobic digester.

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_2
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6 2 Process Modelling and Simulation Scenarios

BSM1 represents an activated sludge system that operates according to ASM1
with a secondary clarifier.

BSM2 integrates BSM1 with wastewater pre-treatment and sludge treatment
including ADM1.

2.1.1 Benchmark Simulation Model No. 1

This section provides a description of the BSM1 working scenario. This is a simu-
lation environment defining a plant layout, a simulation model, the procedures for
carrying out the tests, the criteria for evaluating the results and a default control
strategy.

Plant Layout

The schematic representation of theWWTP layout considered in BSM1 is presented
in Fig. 2.1. The plant consists of five biological reactor tanks connected in series,
followed by a secondary settler. The first two tanks have a volume of 1000 m3 each
and are anoxic and perfectly mixed. The rest three tanks have a volume of 1333 m3

each and are aerated. The settler has a total volume of 6000 m3 and is modeled in ten
layers, being the 6th layer, counting from bottom to top, the feed layer. Two recycle
flows, the first from the last tank and the second from the underflow of the settler,
complete the system. The sludge from the settler that is not recycled is led to be
disposed and is called wastage.

The plant is designed for an average influent dry weather flow rate of 18,446m3/d
and an average biodegradable chemical oxygen demand (COD) in the influent of 300
g/m3. Its hydraulic retention time, based on the average dry weather flow rate and
the total tank and settler volume (12,000 m3), is 14.4 h. Qw is fixed to 385m3/d that
determines, based on the total amount of biomass present in the system, a biomass
sludge age of about 9 days.

Qr

Qw

Qe

Qin

Qa

Influent

External recycle
Wastage

Effluent

Internal recycle

ClarifierBiological reactors

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
m=10

m=6

m=1

Fig. 2.1 Benchmark simulation model 1
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The nitrogen removal is achieved using a denitrification step performed in the
anoxic tanks and a nitrification step carried out in the aerated tanks. The internal
recycle is used to supply the denitrification step with SNO.

Models

The biological phenomena of the reactors are simulated by using the ASM1 that
considers eight different biological processes. The vertical transfers between layers in
the settler are simulated by the double-exponential settling velocitymodel [59]. None
biological reaction is considered in the settler. The two models are internationally
accepted and include 13 state variables.

The general equations for mass balancing are as follows:

• For reactor 1:

dZ1
dt

= 1

V1
(Qa · Za + Qr · Zr + Qin · Zin + rz,1 · V1 − Q1 · Z1) (2.1)

• For reactors 2–5:

dZk
dt

= 1

Vk
(Qk−1 · Zk−1 + rz,k · Vk − Qk · Zk) (2.2)

where Z is any concentration of the process, Z1 is Z in the first reactor, Za is Z in the
internal recirculation, Zr is Z in the external recirculation, Zin is Z from the influent,
V is the volume, V1 is V in the first reactor, Qr is the external recirculation flow rate,
Qin is the flow rate of the influent, Q1 is the flow rate in the first tank and it is equal
to the sum of Qa, Qr and Qin, k is the number of reactor and Qk is equal to Qk−1.

The proposed control strategies in this work are based on the conversion rates of
SNH (rNH ) and SNO (rNO). They are expressed as:

rNH = −0.08ρ1 − 0.08ρ2 −
(
0.08 + 1

0.24

)
ρ3 + ρ6 (2.3)

rNO = −0.1722ρ2 + 4.1667ρ3 (2.4)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1.
Specifically, ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of
heterotrophs, ρ3 is the aerobic growth of autotrophs and ρ6 is the ammonification of
soluble organic nitrogen (SND). They are defined as

ρ1 = 4

(
SS

10 + SS

) (
SO

0.2 + SO

)
XB,H (2.5)

ρ2 = 4

(
SS

10 + SS

) (
0.2

0.2 + SO

) (
SNO

0.5 + SNO

)
0.8 · XB,H (2.6)
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ρ3 = 0.5

(
NH

1 + NH

)(
SO

0.4 + SO

)
XB,A (2.7)

ρ6 = 0.05 · SND · XB,H (2.8)

whereSS is the readily biodegradable substrate,XB,H the active heterotrophic biomass
and XB,A the active autotrophic biomass. The biological parameter values used in the
BSM1 correspond approximately to a temperature of 15 ◦C.

Test Procedure

BSM1 [13] defines four different influent data: constant, dry weather, rain weather,
and storm weather. Each scenario contains 14 days of influent data with sampling
intervals of 15min. A simulation protocol is established to assure that results are got
under the same conditions and can be compared. Thus, first a 150 days period of
stabilization in closed-loop using constant influent data has to be completed to drive
the system to a steady-state, next a simulation with dry weather is run and finally the
desired influent data (dry, rain or storm) is tested. Only the results of the last 7 days
are considered for the plant operation evaluation.

Evaluation Criteria

In order to compare the different control strategies, different criteria are defined. The
performance assessment is made at two levels. The first level concerns the control.
Basically, this serves as a proof that the proposed control strategy has been applied
properly. It is assessed by Integral of the Squared Error (ISE), Integral of theAbsolute
Error (IAE), and average of the absolute error (mean (|e|)) criteria.

ISE =
∫ t=14days

t=7days
e2i · dt (2.9)

IAE =
∫ t=14days

t=7days
|ei| · dt (2.10)

mean ( | e | ) = 1

Ts

i=Ts∑
i=1

|ei| (2.11)

where ei is the error in each sample between the set-point and the measured value
and Ts is the total number of samples.

The second level of evaluation provides measures for the effect of the control
strategy on plant performance. It includes effluent violations, Effluent Quality Index
(EQI), and Overall Cost Index (OCI).

The evaluation must include the percentage of time that the effluent limits are
not met. The effluent concentrations of SNtot , Total COD (CODt), NH, TSS, and
Biological Oxygen Demand (BOD5) should obey the limits given in Table2.1.
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Table 2.1 Effluent quality limits

Variable Value

SNtot <18 g N · m−3

CODt <100 g COD · m−3

NH <4 g N · m−3

TSS <30 g SS · m−3

BOD5 <10 g BOD · m−3

Table 2.2 Bi values

Factor BTSS BCOD BNKj BSNO BBOD5

Value (g
pollution unit
g−1)

2 1 30 10 2

SNtot is calculated as the sum of SNO and Kjeldahl nitrogen (NKj), being this the
sum of organic nitrogen and SNH .

EQI is defined to evaluate the quality of the effluent. It is related with the fines to
be paid due to the discharge of pollution. EQI is averaged over a 7 days observation
period and it is calculated weighting the different compounds of the effluent loads.

EQI = 1

1000 · T
∫ t=14days

t=7days
(BTSS · TSS(t) + BCOD · COD(t) + BNKj · NKj(t)+

+ BSNO · SNO(t) + BBOD5 · BOD5(t))Q(t) · dt (2.12)

where Bi are weighting factors (Table2.2) and T is the total time.
OCI is defined as

OCI = AE + PE + 5 · SP + 3 · EC + ME (2.13)

where AE is the aeration energy, PE is the pumping energy, SP is the sludge produc-
tion to be disposed, EC is the consumption of carbon from external source and ME
is the mixing energy.

AE is calculated according to the following relation:

AE = Ssato

T · 1.8 · 1000
∫ t=14days

t=7days

5∑
i=1

Vi · KLai(t) · dt (2.14)

where i is the reactor number and Ssato is the saturation concentration for oxygen that
is equal to 8mg/l.
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PE is calculated as:

PE = 1

T

∫ 14days

7days
(0.004 · Qin(t) + 0.008 · Qa(t) + 0.05 · Qw(t))dt (2.15)

SP is calculated from the TSS in the flow wastage (TSSw) and the solids accumu-
lated in the system:

SP = 1

T
(TSSa(14days) − TSSa(7days) + TSSs(14days) − TSSs(7days)+

+
∫ t=14days

t=7days
TSSw · Qw · dt) (2.16)

where TSSa is TSS in the reactors and TSSs is TSS in the settler.
EC refers to the carbon that could be added to improve denitrification.

EC = CODEC

T · 1000
∫ t=14days

t=7days

(
i=n∑
i=1

qEC,i

)
dt (2.17)

where qEC,i is external carbon flow rate (qEC) added to compartment i,CODEC = 400
gCOD.m−3 is the concentration of readily biodegradable substrate in the external
carbon source.

ME is a function of the compartment volume

ME = 24

T

∫ t=14days

t=7days

5∑
i=1

[
0.005 · Vi if KLai(t) < 20d−1 otherwise 0

]
dt (2.18)

2.1.2 Benchmark Simulation Model No. 2

In order to include plant-wide operation considerations, BSM1 was extended in a
new version, BSM2, in [33] which was updated in [46]. BSM2 also defines a plant
layout, a simulation model, a test procedure, evaluation criteria and default control
strategies.

Plant Layout

The finalized BSM2 layout (Fig. 2.2) includes BSM1 for the biological treatment
of the wastewater and the sludge treatment. A primary clarifier, a thickener for the
sludge wasted from the clarifier of biological treatment, a digester for treatment of
the solids wasted from the primary clarifier and the thickened secondary sludge, as
well as a dewatering unit have been added. The liquids collected in the thickening
and dewatering steps are recycled ahead of the primary settler.
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Qin Qbypass

Qpo QeQpo

Qw

Qa

Primary
clarifier Activated sludge 

reactors
Secondary

clarifier

Thickener

Anaerobic
digester

Storage
tank Dewatering

Qr

Sludge
Removal

Fig. 2.2 BSM2 plant with notation used for flow rates

Models

This book is based on the implementation of control strategies in the zone of biolog-
ical treatment of BSM2. For this reason, the explanation of the simulation model is
focused on the activated sludge reactors. As in BSM1, the activated sludge reactors
consist in five biological reactor tanks connected in series. Qa from the last tank com-
plete the system. The design of the BSM2 plant is modified with respect to BSM1. It
has an average influent dry weather flow rate of 20,648.36m3/d and an average COD
in the influent of 592.53mg/l. The total volume of the bioreactor is 12,000, 1500 m3

each anoxic tank and 3000 m3 each aerobic tank. Its hydraulic retention time, based
on the average dry weather flow rate and the total tank volume, is 14h. The internal
recycle is used to supply the denitrification step with SNO.

ASM1 also describes the biological phenomena that take place in the biological
reactors of BSM2. However, unlike BSM1, the temperature is considered in the
BSM2.

The general equations for mass balancing are the same as in BSM1, but in this
case Qin and Zin are replaced by Q from the primary clarifier (Qpo) and Z from the
primary clarifier (Zpo), respectively

• For reactor 1:

dZ1
dt

= 1

V1
(Qa · Za + Qr · Zr + Qpo · Zpo + rz,1 · V1 − Q1 · Z1) (2.19)
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• For reactors 2–5:

dZk
dt

= 1

Vk
(Qk−1 · Zk−1 + rz,k · Vk − Qk · Zk) (2.20)

The proposed control strategies in this work are based on rNH and rNO. They are
shown in the following equations:

rNH = −0.08ρ1 − 0.08ρ2 −
(
0.08 + 1

0.24

)
ρ3 + ρ6 (2.21)

rNO = −0.1722ρ2 + 4.1667ρ3 (2.22)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1.
Specifically, ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of
heterotrophs, ρ3 is the aerobic growth of autotrophs and ρ6 is the ammonification of
SND. They are defined as

ρ1 = μHT

(
SS

10 + SS

) (
SO

0.2 + SO

)
XB,H (2.23)

where μHT is

μHT = 4 · exp
((

Ln
(
4
3

)
5

)
(Tas − 15)

)
(2.24)

where Tas is the temperature

ρ2 = μHT

(
SS

10 + SS

) (
0.2

0.2 + SO

) (
SNO

0.5 + SNO

)
0.8 · XB,H (2.25)

ρ3 = μAT

(
SNH

1 + SNH

)(
SO

0.4 + SO

)
XB,A (2.26)

where μAT is:

μAT = 0.5 · exp
((

Ln
(
0.5
0.3

)
5

)
(Tas − 15)

)
(2.27)

ρ6 = kaT · SND · XB,H (2.28)

where kaT is defined as:

kaT = 0.05 · exp
((

Ln
(
0.05
0.04

)
5

)
(Tas − 15)

)
(2.29)
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Test Procedure

The influent dynamics are defined for 609 days by means of a single file, which takes
into account rainfall effect and temperature. Following the simulation protocol, a
200-day period of stabilization in closed-loop using constant inputs with no noise
on the measurements has to be completed before using the influent file (609 days).
Nevertheless, only the data generated during the final 364 days of the dynamic
simulation are used for plant performance evaluation.

Evaluation Criteria

In the same way, as in BSM1, the assessment is made at two levels. The control
performance is assessed by the ISE and IAE criteria, whereas the plant performance
is evaluated by EQI, OCI, and the percentage that the pollutants concentration is
over the limits given in Table2.1. However, in this case OCI is modified adding
the methane production (METprod) generated in the anaerobic digester and the net
heating energy (HEnet), which is calculated as:

HEnet = max(0, HE − 7 · METprod) (2.30)

where HE is the necessary energy to heat the anaerobic digester to the operating
temperature, and it is calculated as:

HE = 1000 · 4.186
86400 · T

∫ t=609days

t=245days
(Tad − Tad,i)Qad(t) · dt (2.31)

where Tad is the temperature of the anaerobic digester, Tad,i is the temperature in the
entrance of the anaerobic digester and Qad is the flow rate of the anaerobic digester.

Finally, the OCI in BSM2 is calculated as

OCI = AE + PE + 3 · SP + 3 · EC + ME − 6 · METprod + HEnet (2.32)

2.2 Basic Plant Operation

The definition of the BSM1 and BSM2 scenarios include default control strategies,
which are commonly used as a reference for comparison.

The default control strategy of BSM1 [1] uses two Proportional-Integral (PI)
control loops as shown in Fig. 2.3. The first one involves the control of SO,5 by
manipulating KLa in the fifth tank (KLa5). The set-point for SO,5 is 2mg/l. The
second control loop has to maintain SNO,2 at a set-point of 1mg/l by manipulating
Qa.

In the case of BSM2, [33] proposes a default control strategy (defCL). Its closed-
loop control configuration consists of a PI that controls SO in the fourth tank (SO,4) at
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a set-point of 2mg/l by manipulating KLa in the third tank (KLa3), KLa in the fourth
tank (KLa4) and KLa5, with KLa5 set to the half value of KLa3 and KLa4. In addition,
qEC in the first reactor (qEC,1) is added at a constant flow rate of 2m3/d. Two different
Qw values are imposed dependent on time of the year: from 0 to 180 days and from
364 to 454 days Qw is set to 300m3/d; and for the remaining time periods Qw is set
to 450m3/d.

The finalisation of BSM2plant layout is reported in [46], inwhich two new control
strategies are proposed. The first control strategy (CL1) is based on modifying the
defCL, controlling the SO,4 set-point at 2mg/l, by manipulating KLa3 and KLa4, and
adding another loop to control SO,5 by manipulating KLa5. PI controllers are applied
for both control loops. The second control strategy (CL2) adds a hierarchical control
to CL1. Therefore, a PI controller is applied to control SNH in the fifth tank (SNH,5)
at a set-point of 1.5mg/l by manipulating SO,5 set-point. In the case of CL2, qEC,1 is
added at a constant value of 1m3/d.

Figure2.4 shows the three explained control strategies.

2.3 Summary

This chapter has introduced the scenarios where the evaluation of the control and
operation approaches will be tested. These scenarios are based upon the well known
benchmarks commonly used within the wastewater research community. A short
description of the BSM1 and BSM2 as well as their basic control strategies have been
provided. They are used in the literature in order to compare the results achieved with
new control strategies or techniques, in terms of control performance and/or plant
performance.



Chapter 3
Control Approaches

In WWTPs, the large number of variables, their intricate interrelation and the strong
fluctuations of the influent make the control very complex. Therefore, advanced
control techniques are proposed in this book for a successful control in WWTPs:
MPC, FC, and ANN. These controllers are briefly described in this chapter.

3.1 Model Predictive Control

3.1.1 Introduction

Model Predictive Control (MPC) refers to a large class of computer control methods
which make an explicit use of the process model to predict the future response of
the plant. An MPC algorithm attempts to optimize future plant behavior at each
control interval by computing a sequence of future manipulated variables. Only the
first element of the computed optimal sequence is sent into the plant and the entire
calculation is repeated at subsequent control intervals.

Early achievements and industrial implementations in MPC include IDCOM pre-
sented in [53] and Dynamic Matrix Control presented in [16]. These first algorithms
were based on step or impulse response models. More general linear input–output
models structures were presented as Generalized Predictive Control in [12]. Nev-
ertheless, an interest in MPC implementations based on state-space models were
created by the proposal presented in [44].

MPC is very popular nowadays in the industry: in process industries, concretely,
it is widely used and accepted. Probably the reason is due to its ability to deal with
multivariable processes and to handle state and input constraints explicitly. In the
field of waste water treatment processes, MPC has demonstrated to be effective and
has been vastly used [31, 56, 58, 63] or [54], among others).

© Springer International Publishing Switzerland 2017
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The basic concepts of MPC provided in this section are fairly standard and only a
brief description with main features is presented here. Nevertheless, the theoretical
and practical issues associated withMPC technology are well known in the literature
[9, 39].

3.1.2 MPC Principle

The principle of all the controllers belonging to the MPC class is characterized by
the following methodology, as represented in Fig. 3.1:

1. At each sampling time k, the future outputs for a horizon p, called the prediction
horizon, are calculated using the process model. The predicted outputs

y(k + i |k), i = 1, 2, . . . , p (3.1)

depend on the known values up to the instant k, i.e., past inputs and outputs, and
on the future control signals, for a horizonm, called the control horizon, (m < p),

u(k + i |k), i = 0, 1, . . . ,m − 1 (3.2)

Commonly, the control signal (3.2) is implemented as the rate of change,

Δu(k + i |k) = u(k + i |k) − u(k + i − 1|k), i = 0, 1, . . . ,m − 1 (3.3)

Here, y(k+ i |k) is the output, at time k+ i , predicted based on the measurements
at time k; y(k|k) refers to the output measured at time k. Similarly, Δu(k + i |k)
is the control move at time k + i , computed at time k;

2. The sequence of future control signals (3.3) is calculated byminimizing an objec-
tive function Jp(k) defined over the prediction horizon p as follows:

FuturePast

k k+pk+1 k+2

Prediction horizon

Reference trajectory

Predicted control input
Measured output
Predicted output

Past control input

Fig. 3.1 Model predictive control performance
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Fig. 3.2 Model predictive
control structure
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min
Δu(k+i |k), i=0,1,...,m−1

Jp(k), (3.4)

In essence, the purpose is to keep the process outputs close to the reference
signals r(k + i), i = 0, 1, . . .. It should be noted that the objective function (3.4)
can be constrained. Nevertheless, with a quadratic criterion, a linear model and
without constraints, an explicit solution can be obtained. Otherwise, an iterative
optimization method has to be used.

3. Although a sequence of optimal control inputs (3.3) is computed, only the first
computed control move Δu(k|k) is used. At the next sampling time k + 1, new
measurements are obtained from the plant and the optimization problem (3.4)
is solved again. Both the control horizon m and the prediction horizon p move
ahead by one step as time moves ahead by one step. The newmeasurements taken
at each time step serve to compensate for unmeasured disturbances and model
inaccuracy both of which cause the system output to be different from the one
predicted by the model.

The basic structure of anMPC configuration is illustrated in Fig. 3.2 in whichMV
and CV represent the manipulated and the controlled variables respectively.

The objective function Jp(k) in the optimization problem (3.4) can take many
forms to reflect the desired behavior of the predicted output (3.1). The most common
among them is the following quadratic form:

Jp(k) =
p∑

i=1

||Γy[y(k + i |k) − r(k + i)]||2 +
m∑
i=1

||Γ�u[�u(k + i − 1)]||2, (3.5)

where Γy, ΓΔu ≥ 0 are weighting matrices.
The following constrains on the manipulated input and output variables can be

enforced in the framework of MPC:
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Component-wise constrains on the state and output:

y j,min ≤ y j (k + i |k) ≤ y j,max, k ≥ 0, i = 1, 2, . . . , p, j = 1, 2, . . . , ny

Component-wise constraint on the rate of change of u:

|Δu j (k + i |k)| ≤ Δu j,max, k ≥ 0, i = 0, 1, . . . ,m − 1, j = 1, 2, . . . , nu

It can be shown that the optimization problem (3.4), with Jp(k) given by (3.5),
in the presence of any or all of the above mentioned constraints can be reduced to a
quadratic program [23] of moderate size.

3.1.3 Predictive Model Identification

The MPC algorithm requires a model to foresee how the plant outputs, y(k), react
to the possible variations of the control variables, Δu(k), and to compute the control
moves at each sampling time k. For the reason that MPC calculates the control
signals based on an optimization problem over a prediction horizon, closed-loop
performance will depend strongly on the predictive capabilities of the systemmodel.
Most industrial MPC algorithms are currently based on linear model representations
of the process dynamics [51] and, typically, model parameters are regressed based
on prediction error methods.

WWTPs are nonlinear systems, but their operation can be approximated in the
vicinity of a working point by a discrete-time state-space liner model,

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) + ξ(k),

(3.6)

where u(k) is a vector of measured variables (MV), y(k) is a vector of controlled
variables (CV), x(k) is a vector of state variables, ξ(k) is a vector of measurement
noise and A, B, C , and D are the state-space matrices. A discrete-time transfer
function model equivalent to the state-space representation (3.6) can be written in
the form of a matrix fraction description [35]:

y(k) = [I − Φy(q
−1)]−1[Φu(q

−1)u(k)] + ξ(k), (3.7)

where q−1 denotes the backward shift operator, so q−1y(k+1) = y(k). Multiplying
[I − Φy(q−1)] on both sides of (3.7) we obtain an Auto Regressive model with
eXogenous inputs (ARX) representation,

y(k) = Φy(q
−1)y(k) + Φu(q

−1)u(k) + ε(k), (3.8)

where ε(k) = [I − Φy(q−1)]ξ(k).



3.1 Model Predictive Control 21

Models in MPC are usually developed using identification techniques based on
process response data [38], in which ARX representation are widely used since the
parameter estimation in this model structure is a convex problem. In this context, the
multivariable ARX model (3.8) can be written in a vector form as an identification
model:

y(k) = φT (k)θ + ε(k), (3.9)

where θ is the vector that contains the estimated parameters and φ(k) is the infor-
mation matrix, i.e., the set of collected data containing previous outputs and inputs
on which the current output depends. Assuming ε(k) = 0, the output prediction is
denoted by ŷ(k|θ) = φT (k)θ to empathize that the estimate of y(k) depends from
past data and on the parameter vector.

The model parameter estimation approaches in most MPC implementations are
mainly based on minimizing a least squares criterion of the form,

J =
L∑

k=1

||(y(k) − φT (k)θ ||2 (3.10)

The problem is to estimate the vector θ∗ that best makes ŷ(k|θ) fit y(k).

3.1.4 Tuning Parameters

The control horizon m, the prediction horizon p, input rate weight Γ�u , the output
weight Γy , the sampling time Δt , i.e., the time difference between two consecutive
samples, and the overall estimator gain can be used as tuning parameters for the
process to perform as required.

The value of the sampling time Δt has a significant effect on the effectiveness
of the controller. High values of Δt can give poorer control performance, mainly
when there are important input disturbances, and low values of Δt can produce
changes too quickly in the actuators and also high energy consumption. Therefore,
it is recommended to choose k as the lowest value that allows achieving a successful
tracking of the controlled variables, without abrupt changes in the actuators and
without a significant aeration cost increase.

To decrease Γ�u or to increase Γy gives better performance of the controlled
variable, otherwise they could produce strong oscillations in the actuators, which
must be avoided.

The meaning of prediction horizon p is rater intuitive. It determines the limit of
the instants in which it is desirable for the output to follow the reference. If a high
value of p is taken it will originate a smooth response of the process and an increase
of the computational time. On the other hand, small values reduce the computational
effort at expenses of a possible oscillatory process response.
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Fig. 3.3 MPC with
feedforward control scheme
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The control horizon is also another basic tuning parameter for these controllers.
Performance of the process output improves as m increases, at the expense of addi-
tional computation. Values that are too high can increase the computational time in
excess, and on the other hand, values that are too small may result in oscillatory
responses.

At each sampling time k, the controller compares the measured values of the out-
puts with the expected values. The difference can be due to noise, to measurement
errors and to unmeasured disturbances.With the overall estimator gain parameter, the
percentage of this difference that is attributed to unmeasured disturbances is deter-
mined and the calculation matrix is consequently adjusted. Higher overall estimator
gains improve the results, but too high values can make the controller unfeasible.

3.1.5 Feedforward Compensation

Due to the presence of strong measurable disturbances (MD) on WWTPs, MPC has
difficulties in keeping the controlled variables at their reference level. To compensate
the disturbances, a feedforward control action is added, as in [14, 15, 56, 57]. This
is illustrated in Fig. 3.3.

MPC provides feedforward compensation for the measured disturbances as they
occur to minimize their impact on the output. The combination of feedforward plus
feedback control can significantly improve the performance over simple feedback
control whenever there is a major disturbance that can be measured before it affects
the process output. The idea of the feedforward control is to act on the process when
the disturbances appear and before they cause deterioration in the effluent quality.

3.2 Fuzzy Control

3.2.1 Introduction

Fuzzy control methods and algorithms, including many specialized software and
hardware available on the market today, may be classified as one type of intelligent
control. This is because fuzzy systems modeling, analysis, and control incorporate a
certain amount of human knowledge into its components (fuzzy sets, fuzzy logic, and
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fuzzy rule base). Using human expertise in system modeling and controller design
are not only advantageous but often necessary. Classical controller design has already
incorporated human skills and knowledge: for instance, what type of controller to
use and how to determine the controller structure and parameters largely depend on
the decision and preference of the designer, especially when multiple choices are
possible.

Compared with conventional approaches, fuzzy control utilizes more information
from domain experts and relies less on mathematical modeling about a physical
system. On the one hand, fuzzy control theory can be quite heuristic and somewhat
ad hoc. This sometimes is preferable or even desirable, particularly when low cost
and easy operations are required where mathematical rigor is not the main concern.
Within this context, determining a fuzzy set or a fuzzy rule base seems to be somewhat
subjective,where humanknowledge about the underlying physical systemcomes into
play. On the other hand, fuzzy control theory can be rigorous and fuzzy controllers
can have precise and analytic structures with guaranteed closed-loop system stability
and some performance specifications, if such characteristics are intended.

It is the purpose of this section not to perform an extensive review neither deep
presentation of Fuzzy control. For that purpose there do exists quite good references
such as [4, 11, 55] the reader is referred to. Instead, here we intend to present the
basic concepts and formulations of a Fuzzy control system that are needed in order
to present the Fuzzy controllers that will be applied in subsequent chapters.

3.2.2 Fuzzy Logic Controllers

The task of modeling complex real-world processes for the control system design is
a challenging engineering problem. Even if a relatively accurate model to control the
process is developed, it is often too complex to use it in controller development, as
much simpler process model is required by most of the conventional control design
techniques. Fuzzy logic control was first introduced by Mamdani [40] and is based
on Zade’s theory of fuzzy sets. Conventional controllers, for instance Proportional–
Integral–Derivative (PID), employ a process modeled by differential equations. On
the other hand, fuzzy control focuses on gaining intuitive understanding for bet-
ter control of the process, and this information is then loaded directly into fuzzy
controller.

The general structure of fuzzy logic controller consists of three basic portions,
that is, fuzzification unit at the input terminal, the inference engine built on fuzzy
logic control rule base in the core, and the defuzzification unit at the output terminal
as shown in Fig. 3.4.
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Fig. 3.4 Architecture of a fuzzy logic controller

3.2.3 Fuzzy Sets

A fuzzy set is represented by a membership function defined on the universe of dis-
course. The universe of discourse is the space where the fuzzy variables are defined.
The membership function gives the grade, or degree, of membership within the set,
of any element of the universe of discourse. The membership function maps the
elements of the universe onto numerical values in the interval [0, 1]. A membership
function value of zero implies that the corresponding element is definitely not an ele-
ment of the fuzzy set, while a value of unity means that the element fully belongs to
the set. A grade of membership in between these two values corresponds to the fuzzy
membership to the set. In crisp set theory, if someone is taller than 1.8m, we can state
that such person belongs to the set of “tall people.” However, such sharp change from
1.79m of a “short person” to 1.81m of a “tall person” is against the commonsense.
Another example could be given as follows: Suppose a highway has a speed limit of
110km/h. Those who drive faster than 110km/h belongs to the set A whose elements
are violators and their membership function has the value of 1. On the other hand,
those who drive slower do not belong to the set A. The sharp transition between
membership and nonmembership would be realistic? Should there be a traffic sum-
mons issued to drivers who are caught at 110.5km/h? Or at 110.9km/h? Therefore,
in practical situations there is always a natural fuzzification when someone analyses
statements. In such situations a smooth membership curve usually better describes
the grade in which an element belongs to a set.

Fuzzification

Fuzzification is the process of decomposing a system input and/or output into one
or more fuzzy sets. Many types of curves can be used, but triangular or trapezoidal
shaped membership functions are the most common because they are easier to rep-
resent in embedded controllers. Figure3.5 shows a system of fuzzy sets for an input
with trapezoidal and triangular membership functions. Each fuzzy set spans a region
of input (or output) value graphed with the membership. Any particular input is
interpreted from this fuzzy set and a degree of membership is interpreted. The mem-
bership functions should overlap to allow smoothmapping of the system. The process
of fuzzification allows the system inputs and outputs to be expressed in linguistic
terms so that rules can be applied in a simple manner to express a complex system.
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Fig. 3.5 Fuzzification by means of different membership functions

Suppose a simplified implementation for an air conditioning system with a tem-
perature sensor. The temperature might be acquired by a microprocessor which has
a fuzzy algorithm to process an output to continuously control the speed of a motor
which keeps the room in a good temperature. It also can direct a vent upward or down-
ward as necessary. Figure3.5 illustrates the process of fuzzification of the air tem-
perature. There are five fuzzy sets for temperature: COLD, COOL, GOOD, WARM,
and HOT.

The membership function for fuzzy sets COOL and WARM are trapezoidal, the
membership function for GOOD is triangular, and the membership functions for
COLD and HOT are half triangular with shoulders indicating the physical limits for
such process (staying in a place with a room temperature lower than 8 ◦C or above
32 ◦C would be quite uncomfortable). The way to design such fuzzy sets is a matter
of degree and depends solely on the designer’s experience and intuition. The figure
shows some nonoverlapping fuzzy sets, which can indicate any nonlinearity in the
modeling process. There an input temperature of 18 ◦C would be considered COOL
with a degree of 0.75 and would be considered GOOD with a degree of 0.25.

The fuzzifier adapts the input variables into suitable linguistic values by mem-
bership functions. Range of membership functions values are also set: minimum
value of the input variable (MinIn), maximum value of the input variable (Max In),
minimum value of the output variable (MinOut), maximum value of the output
variable (MaxOut). As the usual situation will be that of an input value that belongs
to different membership functions, its degree of membership to each one of those
fuzzy concepts should be determined. For example, Fig. 3.6 shows three triangular
membership functions (m f 1,m f 2, andm f 3) with an input value that ranges between
MinIn = 0 and Max In = 5. Thus, an input of 1.5 can be transformed into fuzzy
expressions as 0.25 of m f 1 and simultaneously 0.5 of m f 2.

In order to build the rules that will control the air conditioning motor, we could
watch how a human expert would adjust the settings to speed up and slow down the
motor in accordance to the temperature, obtaining the rules empirically. If the room
temperature is good, keep the motor speed medium, if it is warm, turn the knob of
the speed to fast, and blast the speed if the room is hot. On the other hand, if the
temperature is cool, slow down the speed and stop the motor if it is cold. This is the



26 3 Control Approaches

0.25

0.5

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

mf1 mf2 mf3

Input variable “Input"

0 5

MinIn MaxIn

Fig. 3.6 Example of membership functions of fuzzifier

beauty of fuzzy logic: to turn commonsense, linguistic descriptions, into a computer
controlled system. Therefore, it is required to understand how to use some logical
operations to build the rules.

Boolean logic operations must be extended in fuzzy logic to manage the notion
of partial truth - truth values between “completely true” and “completely false.” A
fuzziness nature of a statement like “X is LOW” might be combined to the fuzziness
statement of “Y is HIGH” and a typical logical operation could be given as “X is
LOW and Y is HIGH”. What is the truth value of this and operation? The logic
operations with fuzzy sets are performed with the membership functions. Although
there various other interpretations for fuzzy logic operations, the followingdefinitions
are very convenient in embedded control applications:

truth(X and Y) = Min(truth(X), truth(Y))
truth(X or Y) = Max(truth(X), truth(Y))
truth(not X) = 1.0 - truth(X)

Defuzzification

After fuzzy reasoning we have a linguistic output variable which needs to be trans-
lated into a crisp value. The objective is to derive a single crisp numeric value that
best represents the inferred fuzzy values of the linguistic output variable. Defuzzifi-
cation is such inverse transformation which maps the output from the fuzzy domain
back into the crisp domain. Some defuzzificationmethods tend to produce an integral
output considering all the elements of the resulting fuzzy set with the corresponding
weights. Othermethods take into account just the elements corresponding to themax-
imum points of the resulting membership functions. The following defuzzification
methods are of practical importance [55]:

• Center-of-Area (C-o-A) - The C-o-A method is often referred to as the Center-of-
Gravity method because it computes the centroid of the composite area represent-
ing the output fuzzy term.



3.2 Fuzzy Control 27

• Center-of-Maximum (C-o-M) - In the C-o-M method only the peaks of the mem-
bership functions are used. The defuzzified crisp compromise value is determined
by finding the place where the weights are balanced. Thus the areas of the mem-
bership functions play no role and only the maxima (singleton memberships) are
used. The crisp output is computed as a weighted mean of the term membership
maxima, weighted by the inference results.

• Mean-of-Maximum (M-o-M) - The M-o-M is used only in some cases where
the C-o-M approach does not work. This occurs whenever the maxima of the
membership functions are not unique and the question is as to which one of the
equal choices one should take.

3.2.4 Fuzzy Inference

A connection between cause and effect, or a condition and a consequence is made by
reasoning. Reasoning can be expressed by a logical inference, or by the evaluation
of inputs in order to draw a conclusion. We usually follow rules of inference which
have the form:

if (cause1=A and cause2=B) then (effect=C),

where A, B, and C are linguistic variables. For example, if “room temperature” is
Medium then “set fan speed to Fast.” Medium is a function defining degrees of room
temperature while Fast is a function defining degrees of speed. The intelligence lies
in associating those two terms bymeans of an inference expressed in heuristic if-then
terms.

In order to convert a linguistic term into a computational framework one needs
to use the fundamentals of set theory. On the statement if “room temperature” is
Medium, we have to ask the following question: “Is the room temperatureMedium?”
A traditional logic, also called Boolean logic, would have two answers: YES andNO.
Therefore, the idea of membership of an element x in a set A is a function μA(x)
whose value indicates if that element belongs to the set A. Boolean logic would
indicate, for example, μA(x) = 1, then the element belongs to set A, or μA(x) = 0,
the element does not belong to set A.

The fuzzy rule base is a set of if-then rules that store the empirical knowledge
of the experts about the operation of the process. First the fuzzy logic computes the
grade of membership of each condition of a rule, and then aggregates the partial
results of each condition using fuzzy set operator. The inference engine combines
the results of the different rules to determine the actions to be carried out, and
the defuzzifier converts the control actions of the inference engine into numerical
variables, determining the final control action that is applied to the plant. There
are two different methods to operate these modules: Mamdani and Takagi–Sugeno.
Mamdani system aggregates the area determined by each rule and the output is
determined by the center of gravity of that area. In a Takagi–Sugeno system the
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Table 3.1 if-then rule base for fuzzy logic control

u(t) e(t)

NB NM NS Z0 PS PM PB

Δe(t) NB NB NB NB NB NM NS Z0

NM NB NB NB NM NS Z0 PS

NS NB NB NM NS Z0 PS PM

Z0 NB NM NS Z0 PS PM PB

PS NM NS Z0 PS PM PB PB

PM NS Z0 PS PM PM PB PB

PB Z0 PS PM PB PB PB PB

results of the if-then rules are already numbers determined by numerical functions of
the input variables and therefore no defuzzifier is necessary. The output is determined
weighting the results given by each rule with the values given by the if conditions.

To implement the fuzzy rules on a digital computer, the discrete-time version
is used. Another alternate for determining the weight of control is to design fuzzy
rule base in tabular form for the complex control system, that is, representation of
linguistic terms in negative big (NB), negative medium (NM), negative small (NS),
zero (ZO), positive small (PS), positive medium (PM), and positive big (PB). A
typical rule base in tabular form to control the process is shown in Table3.1.

Using above table, fuzzy logic rule base can be designed for the different processes
to be controlled. Let us take an example of the rule.

if Δe(t) is NS and e(t) is NB then u(t) is NB.

Mamdani Model

Fuzzy logic control attempts to design the informal nature of the control design
process. The Mamdani architecture [40] is the way to design a fuzzy control system,
that is, in the absence of an explicit plant model and/or clear statement of control
design objectives, informal knowledge of the operation of the given plant can be
coded in termsof if-then or condition action, rules and form the basis for the linguistic
control strategy, for example, a fuzzy rule.

if speed is high and acceleration is small then braking is modest

where the speed and acceleration are input variables and on the other hand, braking
is an output variable. High, small, and modest are fuzzy sets, and the first two sets
are input fuzzy sets and the last one is the output fuzzy set.

Takagi–Sugeno Model

Takagi–Sugeno model [60] is an alternative architecture that uses a combination of
linguistic rules and linear functions to form a fuzzy logic control strategy. In the
Takagi–Sugeno fuzzy system, the conclusion of the fuzzy set is not a fuzzy set but a
crisp function of the inputs. Fuzzy if-then rule can be also designed using Takagi–
Sugeno modeling and can be expressed as
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if (x1 is A1) and (x2 is B1) then y = f1(x) = c10 + c11x1 + c12x2
if (x1 is A1) and (x2 is B2) then y = f2(x) = c20 + c21x1 + c22x2

The functions fi (x), i = 1, 2, . . . of the input vector x = [x1, x2, . . .] can be very
complex but the most commonly used function is linear one that can be described
by the coefficients [c0, c1, c2, . . .].

3.3 Artificial Neural Networks

3.3.1 Introduction

Artificial Neural Networks (ANNs) are inspired by the structure and function of
nervous systems. ANNs consist of a large number of simple processors, called neu-
rons [67], with many interconnections computed in parallel. ANNs have proved to
be effective for many complex functions, as pattern recognition, system identifica-
tion, classification, speech vision, and control systems [50, 66]. ANNs are frequently
used for nonlinear system identification to model complex relationships between the
inputs and the outputs of a system, as it is the case of WWTPs.

Early artificial neural networks were inspired by perceptions of how the human
brain operates. In the recent years, applied mathematical techniques have produced
a great technological development. ANNs retain two characteristics of the brain as
primary features: the ability to learn and generalize from limited information [28,
29].

Both biological and artificial neural networks employ massive, interconnected
simple processing elements, or neurons. The knowledge stored as the strength of
the interconnecting weights (a numeric parameter) in ANNs is modified through
a process called learning, using a learning algorithm. This algorithmic function, in
conjunction with a learning rule (i.e., backpropagation) is used to modify the weights
in the network in an orderly fashion. An ANN is not programmed, rather it is taught
to give an acceptable answer to a particular problem. Input and output values are
sent to the ANN, initial weights to the connections in the architecture of the ANN
are assigned, and the ANN repeatedly adjusts these interconnecting weights until it
successfully produces output values that match the original values. This weighted
matrix of interconnections allows the neural network to learn and remember.

3.3.2 The Artificial Neuron

Each neuron performs a simple computation. It receives signals from its input links
and uses these values to compute the activation level (or output) for the neuron. This
value is passed to other neurons via its output links. Therefore, it is a device that
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Fig. 3.7 Artificial neuron

generates a single output y from a set of inputs x j ( j = 1, 2, …, r ). This artificial
neuron consists of the following elements (Fig. 3.7):

• Set of x j inputs with r components
• Set of weights wi j that represent the interaction between the neuron i and neuron

j .
• Propagation rule, a weighted sum of the scalar product of the input vector and the
weight vector: ai = ∑

wi j · x j .
• Activation function provides the state of the neuron based on the previous state
and the propagation rule, i.e., threshold, piecewise linear, sigmoid, or Gaussian.

• The output y(t) that depends on the activation state and is computed according to
the equation shown below. This is the result of applying the activation function to
the weighted sum of the inputs, less the threshold.

ai = f

⎛
⎝ r∑

j=1

wi j · x j

⎞
⎠ (3.11)

Different activation functions can be applied as threshold, piecewise linear, sig-
moid, or Gaussian among others. In this book, the sigmoid function is used, which is
the most usual one applied. The activation function is often the same for all neurons
or at least for a set of neurons. The neurons can have a threshold value that indicates
when a neuron is activated. Thus, the threshold value is a parameter of the activation
function. For the concrete sigmoid case, the activation function takes the form:

f (x) = 1

1 − e−βx
. (3.12)



3.3 Artificial Neural Networks 31

Fig. 3.8 Structure of
artificial neural network
layers

Inputs OutputInputs

Input
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Output
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3.3.3 Types of Artificial Neural Networks

The inner workings and processing of an ANN are often thought of as a black box
with inputs and outputs. The architecture of an ANN is the structure of network
connections. The connections between neurons are directional and the information
is transmitted only in one direction. In general, neurons are usually grouped into
structural units called layers. Within a layer, the neurons are usually of the same
type. The most common type of artificial neural network consists of three groups,
or layers, of units: a layer of input units is connected to a layer of hidden units,
which is connected to a layer of output units. Figure3.8 shows the typical network
architecture with three layers. The activity of the input units represents the raw
information that is fed into the network. The activity of each hidden unit is determined
by the activities of the input units and the weights on the connections between the
input units and the hidden units. The behavior of the output units depends on the
activity of the hidden units and the weights between the hidden units and output
units [29].

ANNs are classified according to the structure of network connections. There are
two basic structures to connect neurons as follows: feedforward and feedback.

Feedforward Structure

In a feedforward network, which has been proposed in this book, each neuron is
connected to the neurons of the following layer and the information flows only from
inputs to outputs. They are static in the sense that the output only depends on the inputs
and not in the previous states of the network. There are no limitations on number
of layers, type of transfer function used in individual artificial neuron or number of
connections between individual artificial neurons. The simplest feedforward artificial
neural network is a single perceptron that is only capable of learning linear separable
problems.
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Feedback Structure

In a feedback network the information flows not only in one direction from input
to output but also in opposite direction. In addition, they are dynamic, due to the
feedback connections, and the output also depends on the previous state. Sometimes,
feedback loops involve the use of unit delay elements, which results in nonlinear
dynamic behavior, assuming that neural network contains non linear units.

3.3.4 Training of the ANN

Once a network has been structured for a particular application, it is ready to be
trained. To start this process, the initial weights are chosen at random. Then, the
training, or learning, begins.

Data Collection

Typically, a large data set of inputs / outputs data is needed to design an ANN. If the
number of samples is small, the ANN will find a specific solution for the training
samples but will not give the general solution. Samples must be representative of the
general population.

The choice of input variables of the ANN is a fundamental consideration and it
depends largely on the finding of relationships between data available to identify
suitable predictors of the output of ANN. The difficulty of selecting input variables
occurs due to the number of available variables, which can be very large; correlations
between potential input variables, which creates redundancy; and variables that have
little or no predictive power.

Learning Methods

ANNs are subjected to a learning process also called training. Typically, a large data
set of inputs and outputs is needed to design an ANN, and the input and output data
are divided into a set used for training the ANN and the rest for testing the results of
the ANN.

In a training process the following actions could be theoretically carried out: Addi-
tion and/or removal of connections, addition and/or removal of neurons, modification
of weights of the propagation function, modification of thresholds and/or activation
functions of neurons. Mostly, the procedure applied in the learning process is the
change of weights.

Performance is improved by updating iteratively the weights in the network. Each
training section including weights adjustment is called epoch. Usually many epochs,
are required to train an ANN. Different algorithms are available for training. When
the training is over, the ANN performance is validated, and depending on the results,
the ANN has to be trained again or can be implemented. The number of input nodes,
output nodes and the nodes in the hidden layer depend upon the problem being
studied. If the number of nodes in the hidden layer is small, the network may not
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have sufficient degrees of freedom to learn the process correctly, and if the number
is too high, the training will take a long time and the network may sometimes overfit
the data [36].

There are two main types of training: Supervised training and unsupervised train-
ing. In the supervised training, inputs and output samples are supplied. The response
of the network to the inputs is measured and the ANNmodifies its weights to reduce
the error between actual outputs and sample outputs. The backpropagation algo-
rithm is the most usual method in supervised training and it has been chosen for the
proposal of the present book. This algorithm is based on the calculation of the deriv-
atives of the output errors and their propagation backwards through the network. In
the unsupervised training, only inputs samples are supplied and the ANN adjusts its
weights to achieve that similar inputs cause similar outputs.

3.4 Summary

The basis of the control techniques applied in the subsequent chapters of this book
have been briefly described here. First, the fundamentals ofModel Predictive Control
have been provided. Then, the basic concepts and formulations of Fuzzy Control sys-
tems have been presented. Finally, the essentials of Artificial Neural Networks have
been summarized. It should be empathized that it is not the objective of this chapter
to perform a deep presentation nor an extensive review of the control approaches.
For this purpose there exists good bibliography the reader is referred to.



Chapter 4
Tracking Improvement of the Basic Lower
Level Loops

This chapter presents the lower level control of a hierarchical structure using BSM1
asworking scenario. This lower level is based on the default control strategy, i.e., SO,5

and SNO,2 control by manipulating KLa5 and Qa, respectively. Next, the SO control
is extended to the third and fourth tanks by manipulating KLa3 and KLa4. In this
chapter, MPC+FF has been employed with the objective of improving the SO and
SNO,2 tracking in comparison with the default control strategy and with the literature.

4.1 Applying Model Predictive Control Plus
Feedforward Compensation

The two PI controllers of the default BSM1 control strategy are replaced here by an
MPC+FF with two inputs (SO,5 and SNO,2) and two outputs (KLa5 and Qa), in order
to improve the tracking of SO,5 and SNO,2 set-points, whose results are evaluated by
the ISE criterion. Some studies deal with this basic control strategy (SO of the aerated
tanks and SNO of the last anoxic tank), but testing with different controllers such as
MPC and FC [6, 15, 27, 31, 62, 65].

In addition, two MPC+FF controllers are added to control SO in the third tank
(SO,3) and in the fourth tank (SO,4) by manipulating KLa3 and KLa4, respectively, see
Fig. 4.1.

Different variables have been considered for the feedforward action in the lit-
erature, but in our case Qin has been selected for its better results and easiness of
measurement. Any change in Qin affects directly the flow rates of all the tanks,
modifying their hydraulic retention time. Therefore, it is necessary to adjust the
manipulated variables immediately to compensate the Qin disturbances.

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_4
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Fig. 4.1 BSM1 with MPC+FF for the control of SNO,2 and SO in the three aerobic tanks

The variables of the state-space model (3.6) for the three MPC controllers are
described following: in the controller of SO,5 and SNO,2 the variable u1(k) is Qa,
u2(k) is KLa5, u3(k) is Qin and y1(k) is SNO,2 and y2(k) is SO,5; in the controller of
SO,4 the variable u1(k) is KLa4, u2(k) is Qin and y1(k) is SO,4; finally, in the controller
of SO,3 the variable u1(k) is KLa3, u2(k) is Qin and y1(k) is SO,3.

The identification of the linear predictive models for the MPC controllers was
performed using MATLAB® System Identification Tool. The data of the output
variables (SO,3, SO,4, SO,5, and SNO,2) are obtained by making changes to the manip-
ulated variables (KLa3, KLa4, KLa5, and Qa) with a maximum variation of 10%
regarding its operating point, which is the value of KLa necessary to obtain 2mg/l of
SO and the value of Qa necessary to obtain 1mg/l of SNO,2. Specifically, the working
points are 264.09day −1, 209.23day −1, 131.65day −1 and 16,486m3/day for KLa3,
KLa4, KLa5 and Qa, respectively. Different sources were tested to modify the input
variables as random, sinusoidal, or step and finally the best fit was obtained with
random source. These input variations are performed every 2.4h, in order to be real-
istic and to allow sufficient time to ensure the effect of these variations on the output
signals. Furthermore, for the feedforward compensation, a step to Qin of +10% is
added over 18,446m3/day, which is the average value during the stabilization period.

Two methods were tested for determining the model with the obtained data, pre-
diction error method (PEM) [38] and subspace state-space system identification
(N4SID) [49]. Finally, PEM was selected because it fits better with the real data of
the plant. The order of the models was chosen from a trade-off between the best
fit and the lowest order. Therefore the following third order state-space models are
obtained:

http://dx.doi.org/10.1007/978-3-319-46367-4_3
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SO,5 and SNO,2 control

A =
⎡
⎣ 0.8748 0.04463 0.1314
0.04091 0.7331 0.1796
0.2617 −0.1318 0.3007

⎤
⎦

B =
⎡
⎣ 7.641 · 10−6 0.004551 −2.749 · 10−5

−2.631 · 10−5 0.006562 −4.551 · 10−6

−9.63 · 10−6 −0.02161 2.447 · 10−5

⎤
⎦

C =
[
0.8812 −0.5948 0.02114
1.187 0.9893 −0.3754

]

D =
[
0 0 0
0 0 0

]

(4.1)

SO,3 control

A =
⎡
⎣ 0.7859 0.4576 −0.131

0.3334 0.2599 0.2718
−0.003132 0.03235 −1.003

⎤
⎦

B =
⎡
⎣ 0.009308 −2.285 · 10−5

−0.01546 3.503 · 10−6

0.003654 −1.987 · 10−5

⎤
⎦

C = [
0.6376 −0.4621 0.03698

]
D = [

0 0
]

(4.2)

SO,4 control

A =
⎡
⎣ 0.8201 0.371 −0.1016

0.3054 0.307 0.2544
−0.003381 0.03144 −0.9993

⎤
⎦

B =
⎡
⎣0.007712 −4.65 · 10−5

−0.0148 8.164 · 10−6

0.004523 −2.526 · 10−5

⎤
⎦

C = [
0.947 −0.496 0.02472

]
D = [

0 0
]

(4.3)

In order to predict the possible application in a real plant, data acquisition for the
identification is performed while the plant is kept at a certain desired operating point,
whose values are considered suitable for the biological wastewater treatment of this
plant. Therefore, what the identification needs is only the possibility of adding some
incremental changes to those operating conditions. As mentioned before, the inputs
used for identification purposes represent a maximum variation of 10%. Therefore,
they will not disturb the actual plant operation. The generated outputs will reflect the
effect of such input variablesmanipulation.Data for identification has been generated
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simulating one week. However, in the case of the real plant, the identification could
be carried out in different periods and not necessarily in consecutive days. Plant
operator knowledge can in addition be used to know the more appropriate days to
perform the experiment.

The selected tuning values for the MPC controllers are m = 5, p = 20, �t =
0.00025 d (21.6 s),Γy = 1 andΓ�u = 0.01 for SO,3, SO,4 and SO,5 control andΓy = 1
and Γ�u = 0.0001 for SNO,2 control and overall estimator gain = 0.8. It should be
noted that the values ofm and p are not critical and they can be slightly changed with
similar results.

4.2 Simulation Results

4.2.1 SO,5 and SNO,2 Control

Figure4.2 shows SO,5 and SNO,2 for the dryweather case comparedwith the default PI
control. Table4.1 shows that MPC+FF reduces ISE of SNO,2 control more than 99%
and ISE of SO,5 control more than 97% in comparison with the default PI controllers.
This control performance improvement results in a 1.1% of EQI reduction, keeping
a similar OCI (residual increment of 0.0063%).

This comparison is also done for the rain (see Fig. 4.3 and Table4.1) and storm
influents (see Fig. 4.4 and Table4.1), obtaining similar percentages of improvement:
ISE 99.6% (rain) and 99.5% (storm) for SNO,2 control and 92.02% (rain) and 90.8%
(storm) for SO,5 control, and reducing EQIwithMPC+FF 1.03% for rain and 1.09%
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Fig. 4.2 Dry influent: Control performance of SO,5 and SNO,2 with default PI controllers and with
MPC+FF
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Table 4.1 ISE, EQI, and OCI results using default PI controllers and MPC+FF for dry, rain, and
storm influents

PI MPC+FF %

Dry weather

ISE (SNO,2 control) 0.47 0.0013 −99.7

ISE (SO,5 control) 0.022 0.00067 −96.9

EQI (kg pollutants/d) 6115.63 6048.25 −1.1

OCI 16381.93 16382.97 +0.0063

Rain weather

ISE (SNO,2 control) 0.69 0.0028 −99.6

ISE (SO,5 control) 0.016 0.0013 −92.02

EQI (kg pollutants/d) 8174.98 8090.29 −1.03

OCI 15984.85 15990.85 +0.037

Storm weather

ISE (SNO,2 control) 0.69 0.0032 −99.5

ISE (SO,5 control) 0.020 0.0018 −90.8

EQI (kg pollutants/d) 7211.48 7132.60 −1.09

OCI 17253.75 17261.39 +0.044
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Fig. 4.3 Rain influent: Control performance of SO,5 and SNO,2 with default PI controllers and with
MPC+FF

for storm. OCI is similar, increasing a 0.037% for rain and 0.044% for storm;
nevertheless this increment cannot be considered significant.

For a more complete comparison, results of works that are present in the literature
that provide indicators of the control performance have been added and compared
with the proposedMPC+FF for dry influent in Table4.2. To ensure a fair comparison,
it is done with the referenced works, which control SO,5 at the set-point of 2mg/l
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Fig. 4.4 Storm influent: Control performance of SO,5 and SNO,2 with default PI controllers and
with MPC+FF

Table 4.2 Comparison of the performance of SO,5 and SNO,2 control between MPC+FF and the
referenced works

Proposed MPC+FF SO,5 control SNO,2 control SO,5 and
SNO,2

control

ISE IAE mean(|e|) ISE IAE mean(|e|) mean(|e|)
0.00067 0.047 0.0068 0.0013 0.067 0.0096 0.0082

Reference [27] – – – – – – 0.024

Reference [65] – – 0.9 – – – –

Reference [31] 0.0026 0.0892 – – – – –

Reference [6] 0.0012 0.0792 – – – – –

Reference [62] 0.00092 0.049 – 0.408 1.21 – –

and/or SNO,2 at the set-point of 1mg/l and use the original version of BSM1. To allow
the comparison with the greatest possible number of works, two control performance
criteria have been added to the usual ISE: IAE and mean(|e|).

The improvement of SNO,2 and SO,5 tracking as a result of applying MPC+FF
compared with other control techniques present in the existing literature is shown.

4.2.2 SO,3 and SO,4 Control

It is also important to obtain a good SO,3 and SO,4 tracking, because the variation
of the SO set-point is applied to the three aerobic reactors, as shown in the next
chapter. Figures4.5, 4.6, and 4.7 show SO,3 and SO,4 evolution applying MPC+FF
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Fig. 4.5 Dry influent: Control performance of SO,3 and SO,4 with MPC+FF
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Fig. 4.6 Rain influent: Control performance of SO,3 and SO,4 with MPC+FF

controllers for the dry, rain and storm influents. Table4.3 shows satisfactory results
of SO,3 and SO,4 control with the MPC+FF controllers. Comparison of the results
has been accomplished only with [65] for dry weather, due to it is the only referred
work that provides results of SO,3 and SO,4 control. However, it can be seen that the
control performance results are similar to those obtained with SO,5, and even better
in the case of SO,3, as it is shown in Tables4.1 and 4.2 of previous section.
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Fig. 4.7 Storm influent: Control performance of SO,3 and SO,4 with MPC+FF

Table 4.3 Results of SO,3 and SO,4 control with MPC+FF controllers for dry, rain and storm
weather conditions

SO,3 control SO,4 control

ISE IAE mean(|e|) ISE IAE mean(|e|)
Dry weather

MPC+FF 0.00037 0.038 0.0054 0.0027 0.096 0.014

Reference
[65]

– – 1.5 – – 2.7

Rain weather

MPC+FF 0.0004 0.039 0.0055 0.0027 0.094 0.013

Storm weather

MPC+FF 0.00056 0.043 0.0062 0.004 0.11 0.015

4.3 Summary

In this chapter, the lower level of a hierarchical control structure has been imple-
mented using BSM1 as working scenario. This is based on SO,3, SO,4, SO,5 and SNO,2

control by manipulating KLa3, KLa4, KLa5, and Qa, respectively.
First, the default control strategy has been evaluated. Next, anMPC+FF controller

has tracked SO,5 and SNO,2, improving the control performance with an ISE reduction
of more than 90% compared to the default PI controllers for the three influents. The
control performance of the MPC+FF configuration has been also compared with
other approaches existing in the literature, showing the improvement of the proposed
method and thus the successful tracking. Next, the SO control has been extended to
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the third and fourth tanks. Thus, twoMPC+FF controllers have been added to control
SO,3 and SO,4 by manipulating KLa3 and KLa4, respectively, obtaining similar control
performance results as in SO,5 control.

The tracking improvement of SO,5 and SNO,2 using MPC+FF controllers result in
an EQI reduction of around 1% with a similar OCI, in comparison with the default
PI controllers. In addition, the importance of the satisfactory SO tracking achieved
in the three aerobic tanks is remarkable. This fact is especially important for the
implementation of the hierarchical control structure that will be introduced in the
next chapter, in order to ensure that the value of SO is as close as possible to the
set-point provided by the higher level.



Chapter 5
Variable Dissolved Oxygen Set-Points
Operation

In this chapter the higher level control of a two-level hierarchical structure is pro-
posed using BSM1 as testing plant. The lower level is composed of the MPC+FF
controllers described in the previous chapter. The higher level controller has tomanip-
ulate SO set-points of the lower level controllers according to SNH,5. The biological
treatment of SNH andSNO is the result of various processes given byASM1.WhenSNH
increases, more SO is needed for nitrification. On the contrary, when SNH decreases,
less SO is required, producing less SNO (Fig. 5.1).

In this chapter, three alternatives are tested for the higher level: An MPC, an
affine function and a FC. For each of these alternatives a range of tuning parameters
is proposed. The control alternatives have been tested only by controlling the fifth
reactor.

5.1 Higher Level Control Alternatives

Some investigations propose a hierarchical control that regulates the DO set-points,
depending on some states of the plant, usually SNH and SNO concentration values in
any tank or in the influent [47, 48, 58, 62, 63] or DO in other tanks [17]. Nevertheless,
these investigations use PI controllers or MPC as higher level control, trying to keep
the controlled variable at a fixed set-point, but with a large resulting error.

5.1.1 Proposed Alternatives

First, a MPC is proposed for the higher level control, with the aim of keeping SNH,5

at a fixed set-point by manipulating the SO,5 set-point.
Next, an affine function is applied based on the biological processes. The nitrifi-

cation process is performed by the autotrophic bacteria whose growth is obtained by

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_5
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ρ3 (2.7). As it can be observed, higher SNH and SO produce a greater SNH removal.
However, increasing the SO value also increases SNO and operational costs, as it can
be observed in equations. For this reason it is important to increase SO when SNH
increases to reduce SNH peaks, and decrease SO when SNH decreases, producing less
SNO and reducing costs. Unlike MPC, the affine function regulates SO,5 set-point
based on SNH,5, to obtain the SO,5 value, but without having the aim of keeping SNH,5

at a reference level. Thus the following affine function is proposed:

SO,5 set − point(t) = SNH,5(t) − k (5.1)

where k is a constant. SO,5 value obtained is directly proportional to SNH,5, subtracting
the k value. Also, a constraint of a maximum value of SO,5 has been added to improve
the EQI and OCI trade-off. Values of k and SO,5 maximum are considered as tuning
parameters.

Finally, a higher level FC is also implemented, with the same idea of the higher
level affine function. Thus, the higher level FC modifies SO,5 based on SNH,5, but
does not try to keep SNH,5 at a given set-point. However, the methodology to obtain
the SO,5 set-point is modified, using fuzzy logic in this case.

5.1.2 Controllers Tuning

Higher Level MPC

As it has been done with lower level MPC in the previous chapter, a linear model
(3.6) of the plant is needed to compute predictions of the output variables of the

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_3
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Fig. 5.2 Dry influent: OCI and EQI trade-off with higher level MPC for a range of SNH,5 values
(points marked with crosses) and Γ�u = 0.001 (dashed line), 0.01 (solid line), 0.05 (dash-dotted
line) and 0.1 (dotted line)

MPC. In this case, the plant model has one input and one output. Concretely, u(t) is
the set-point value of SO,5, the manipulated variable, and y(t) is SNH,5, the controlled
variable.

In order to identify the linear model, SNH,5 has been determined by varying the
SO,5 set-point around 2mg/l, with maximum values of ±10%.

By using a prediction error method, a second order state-space model (3.6) is
obtained, as

A =
[
0.2531 0.3691
0.2781 −0.2695

]
B =

[−0.4507
−0.1712

]

C = [
0.08655 −0.01681

]
D = 0

(5.2)

The following tuning parameters have been selected:�t = 0.035 days (50.4min),
m = 2, p = 10. To determine Γ�u and SNH,5 set-point values, a trade-off represen-
tation for OCI and EQI is provided and showed in Fig. 5.2. Every line corresponds
to the results obtained for different Γ�u (0.1, 0.05, 0.01 and 0.001), and the points
marked with crosses are the results for a range of SNH,5 set-point values, from 0.5 to
6.5 with increments of 0.25.

The results with MPC+FF alone and with default PI controllers alone are also
represented. Figure5.2 shows an area in which results obtained with higher level
MPC controller improve simultaneouslyOCI andEQI in comparisonwithMPC+FF
and with default PI controllers alone. This is the proposed tuning region, which
determines the ranges for Γ�u and SNH,5 set-point that outperform both MPC+FF
alone as well as PI controllers. In fact the curves within the shaded area provide a
Pareto front whose corresponding tunings dominates the previous options.

http://dx.doi.org/10.1007/978-3-319-46367-4_3
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Fig. 5.3 Rain influent: OCI and EQI trade-off with higher level MPC for a range of SNH,5 values
(points marked with crosses) and Γ�u = 0.001 (dashed line), 0.01 (solid line), 0.05 (dash-dotted
line) and 0.1 (dotted line)

Fig. 5.4 Storm influent: OCI and EQI trade-off with higher level MPC for a range of SNH,5 values
(points marked with crosses) and Γ�u = 0.001 (dashed line), 0.01 (solid line), 0.05 (dash-dotted
line) and 0.1 (dotted line)

The OCI and EQI trade-off representation has also been done for rain and storm
influents (Figs. 5.3 and 5.4 respectively), obtaining also the corresponding tuning
regions. However, they are smaller than the one obtained for the dry influent.

Taking into account, the OCI and EQI trade-off representations for dry, rain, and
storm influents (Figs. 5.2, 5.3 and 5.4 respectively), Γ�u and SNH,5 set-points have
been selected for the cases of lowest EQI without increasing OCI and the lowest
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Table 5.1 Higher level MPC tuning: Γ�u and SNH,5 set-point

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

Γ�u 0.001 0.05 0.05 0.05 0.05 0.05

SNH,5
set-point

3.1 5.4 3.75 4.6 3.7 5

Fig. 5.5 Dry influent: OCI and EQI trade-off with higher level affine function for a range of k values
(points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5 (solid line), 3 (dash-dotted
line), 2.5 (dotted line)

OCI without worsening EQI for every influent in comparison with MPC+FF alone
(Table5.1). The selected values correspond with the crossing of the tuning Pareto
front with the horizontal and vertical lines passing to the MPC+FF tuning point.

Higher Level Affine Function

For the affine function, k values and maximum values of SO,5 have been selected for
the OCI and EQI trade-off representation showed in Fig. 5.5. In this case, each line
corresponds to the results obtained with different SO,5 maximum values (2.5-k; 3-k;
3.5-k; 4-k and 4.5-k), while each one of the points marked with crosses are the results
obtained for different values of k (from 0.3 to 1.6 with increments of 0.1). In the
same way, the results obtained with MPC+FF alone and with PI default controllers
alone are also shown.

The same range of k andSO,5 maximumvalues have been tested for rain and storms
influents, obtaining also the trade-off representations (Figs. 5.6 and 5.7 respectively).

As for the MPC+FF controller, a Pareto front is obtained, which provides the
tuning region that results in a simultaneous improvement of OCI and EQI in com-
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Fig. 5.6 Rain influent: OCI and EQI trade-off with higher level affine function for a range of
k values (points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5 (solid line), 3
(dash-dotted line), 2.5 (dotted line)

Fig. 5.7 Storm influent: OCI and EQI trade-off with higher level affine function for a range of
k values (points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5 (solid line), 3
(dash-dotted line), 2.5 (dotted line)

parison with MPC+FF alone and with default PI controllers alone, are larger than
those obtained with higher level MPC.

Taking into account the trade-off representations (see Figs. 5.5, 5.6, and 5.7),
Table5.2 shows SO,5 maximum and k values for the extreme cases of lowest EQI
without increasing OCI and the lowest OCI without worsening EQI in comparison
with MPC+FF alone and default PI controllers alone.
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Table 5.2 Higher level affine function tuning: k and SO,5 maximum values

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

k 0.59 1.23 0.48 0.79 0.39 0.96

SO,5
maximum

3.41 1.27 2.52 1.71 2.61 1.54

Higher Level Fuzzy Controller

The design of a FC is based on the knowledge of the process behavior. Here, the
implementation of the proposed FC was based on the observation of the simulations
results obtained by operating the plant with the default control of BSM1.

The input of the FC is SNH,5, the controlled variable. Three triangular membership
functions are applied to this input to fuzzify. The following fuzzy sets have been used:
low, medium, and high.

The output of the controller is the SO,5 set-point for the lower level control. Also
three triangular membership functions have been applied to the output with the same
fuzzy sets: low, medium, and high.

The if-then fuzzy rules, in fact the controllers decision logic, that relate the input
and output are:

if (SNH,5 is low) then (SO,5 is low)
if (SNH,5 is medium) then (SO,5 is medium)
if (SNH,5 is high) then (SO,5 is high)

The Mamdani method has been chosen to defuzzify the results of the above if-then
fuzzy rules and thereby to obtain a single value of the SO,5 set-point based on the
value of SNH,5.

Values of MinIn and MinOut are both fixed to 0.1. Several OCI and EQI results
have been obtained for different values ofMaxIn (3, 4, 5 and 7) andMaxOut (2, 2.5,
3, 3.5, 4, 4.5, 5 and 5.5). With these results, trade-off representations of EQI and
OCI for the three influents (dry, rain and storm) are made (Figs. 5.8, 5.9, and 5.10),
obtaining a tuning area where both OCI and EQI are improved in comparison with
MPC+FF alone and with the default PI controllers.

The areas of the tuning regions, which result in a simultaneous improvement of
OCI and EQI in comparison with MPC+FF alone and with default PI controllers
alone, are similar to the ones corresponding to the higher level with affine function.
Therefore, both higher level controllers provide similar advantages.

Table5.3 shows the MaxIn and MaxOut values for the extreme cases of lowest
EQI without increasing OCI and lowest OCI without worsening EQI in comparison
with MPC+FF alone and default PI controllers alone for the three influents.
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Fig. 5.8 Dry influent: OCI and EQI trade-off with higher level FC for a range of MaxOut values
(points marked with crosses) andMaxIn = 3 (dashed line), 5 (solid line), 7 (dash-dotted line), and
9 (dotted line)

Fig. 5.9 Rain influent: OCI and EQI trade-off with higher level FC for a range of MaxOut values
(points marked with crosses) andMaxIn = 3 (dashed line), 5 (solid line), 7 (dash-dotted line), and
9 (dotted line)

5.1.3 Simulations Results

In this section the selected controllers tunings will be applied in order to analyze its
results. For each one of the three controllers, the two extreme tunings will be tested
and compared. Results of the two-level control architecture will also be faced against
the use of the lower level MPC+FF alone.
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Fig. 5.10 Storm influent: OCI and EQI trade-off with higher level FC for a range ofMaxOut values
(points marked with crosses) and MaxIn = 3 (dashed line), 5 (solid line), 7 (dash-dotted line) and
9 (dotted line)

Table 5.3 Higher level FC tuning: MaxIn and MaxOut values

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

MaxIn 5 9 5 3 5 5

MaxOut 4.78 2.76 4.1 2.41 4.14 2.5

Higher Level MPC

In order to improve EQI, the values of SNH and SNO have to be reduced because they
are the pollutants with largest influence on the effluent quality. Figure5.11 shows
SNH,5, SNO in the fifth tank (SNO,5) and SO,5 for dry influentwith the tuning parameters
where the best EQI without increasing OCI is obtained. As it is shown in Fig. 5.11,
by varying the SO,5 set-point with two-level hierarchical control, SNH,5 peaks and
SNO,5 are reduced. In the case of higher level MPC, when SNH,5 is over the fixed set-
point, SO,5 reference of the lower level control is increased, which produces more
oxidation of SNH,5 and consequently softens its peaks, while SNO,5 and the aeration
costs grow. In opposition, when the SNH,5 is under the fixed set-point, SO,5 reference
is decreased, SNH,5 goes up and SNO,5 and aeration costs go down. The final balance
from day 7 to day 14 is a reduction of 1.8% of EQI in comparison with MPC+FF
alone (see Table5.4).

The same concentrations (SNH,5, SNO,5, and SO,5) for rain and storm influents are
shown in Figs. 5.12 and 5.13 respectively. Within 7 days of simulation (day 7 to
14), two days are shown coinciding with a rainfall (Fig. 5.12) and a storm (Fig. 5.13)
events. As it is observed, during the rain and storm events, the differences of SNH,5
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Fig. 5.11 Dry influent: Comparison of SNH,5, SNO,5, and SO,5.MPC+FF (dash-dotted line), higher
level MPC (dotted line), higher level affine function (dashed line), and higher level FC (solid line)

peaks and SNO,5 for higher level MPC and MPC+FF are lower compared with dry
weather. This has a direct consequence on the EQI results shown in Table5.4. As
it can be seen, there is also an improvement by working with higher level MPC in
comparison with MPC+FF alone, but with a lower percentage compared with dry
weather. For the rain influent case, EQI is decreased by 0.4% and for the storm
influent case, EQI is decreased by 0.5%.

In the opposite point of the trade-off representations (Figs. 5.2, 5.3, 5.4) (best
OCI without worsening effluent quality), OCI results are compared for the different
control structures with the three weather conditions. Figure5.14 shows KLa5 for the
higher levelMPC. The aeration costs depend directly on the KLa5 values. Figure5.14
shows that the values of KLa5 with higher level MPC are lower most of the time than
those obtained with MPC+FF alone, proving that costs can be reduced without
increasing EQI with a better optimization of KLa5. This reduction of KLa5 results in
a reduction of 0.8% of OCI (Table5.4).

The KLa5 evolution is also shown for rain and storm influents (Figs. 5.15 and
5.16 respectively), obtaining also an OCI reduction when working with the higher
level MPC in comparison with MPC+FF alone. In this case, with less percentage
in comparison with dry influent results (see Table5.4): for rain influent, higher level
MPC reduces OCI by 0.3%, and for storm influent the reduction is 0.4%.

The optimization of the SO,5 set-point value results in an AE reduction of 202.2,
96.42 and 137.92KWh/d for dry, rain and storm influents respectively, compared
with default BSM1 control, which corresponds, in terms of percentage, to an AE
reduction of 5.4, 2.6, and 3.7%, respectively.

Higher Level Affine Function

With the tuning parameters where the best EQI without increasing OCI is obtained
(see Table5.2), comparing SNH,5 peaks and SNO,5 for higher level affine function and
higher level MPC for the three influents (see Figs. 5.11, 5.12, and 5.13), a remarkable
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Fig. 5.12 Rain influent: Comparison of SNH,5, SNO,5, and SO,5. MPC+FF (dash-dotted line),
higher level MPC (dotted line), higher level affine function (dashed line) and higher level FC (solid
line)
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Fig. 5.13 Storm influent: Comparison of SNH,5, SNO,5, and SO,5. MPC+FF (dash-dotted line),
higher level MPC (dotted line), higher level affine function (dashed line) and higher level FC (solid
line)

difference is not observed. However Table5.4 shows that affine function is able to
reduce EQI in comparison with higher level MPC by 0.6% for dry influent, 0.7%
for rain influent and 1% for storm influent. In comparison with MPC+FF alone
the reduction is 2.4% for dry influent, 1.1% for rain influent and 1.5% for storm
influent.

Applying the tuning parameters to obtain the best OCI without worsening effluent
quality, KLa5 is compared with the other control structures for the three weather con-
ditions (see Figs. 5.14, 5.15, and 5.16), obtaining better KLa5 optimization compared
with MPC+FF alone and higher level MPC for the three influents, which result in



5.1 Higher Level Control Alternatives 57

7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
0

50

100

150

200

250

300

350

400

time (days)

K
La 5

Fig. 5.14 Dry influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-dotted line), higher
level MPC (dotted line), higher level affine function (dashed line), and higher level FC (solid line)

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
0

50

100

150

200

250

300

time (days)

K
La 5

Fig. 5.15 Rain influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-dotted line), higher
level MPC (dotted line), higher level affine function (dashed line), and higher level FC (solid line)
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Fig. 5.16 Storm influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-dotted line),
higher level MPC (dotted line), higher level affine function (dashed line), and higher level FC (solid
line)

an OCI reduction in comparison with higher level MPC of 0.3% for dry influent,
0.3% for rain influent and 0.4% for storm influent. In comparison with MPC+FF
the reduction is 1.1% for dry influent, 0.6% for rain influent and 0.8% for storm
influent (see Table5.4).
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This cost reduction is due primarily to an AE reduction of 259.45, 170.87 and
209.85KWh/d for dry, rain and storm influents respectively, compared with default
BSM1 control, which corresponds, in terms of percentage, to an AE reduction of 7,
4.7, 5.6%, respectively.

Higher Level Fuzzy Controller

For the case of the best EQI obtained, Figs. 5.11, 5.12, and 5.13 show that SNH,5 and
SNO,5 for the three influents are similar compared to higher level affine function. The
EQI results are shown in Table5.4 and they are very similar to the ones obtained with
the higher level affine function.

Applying the tuning parameters for obtaining the lowest OCI, Figs. 5.14, 5.15,
and 5.16 show KLa5 for the three sweather conditions. Looking at the OCI results
in Table5.4, there is no significant difference compared with higher level affine
function, getting also the same percentages of improvement over MPC+FF alone
and higher level MPC.

The reduction of AE is also similar to the results obtained using an affine function
as higher level controller: 255.67, 199.99, and 199.72KWh/d for dry, rain, and storm
influents respectively, compared with default BSM1 control, which corresponds, in
terms of percentage, to an AE reduction of 6.9, 5.4, 5.3%, respectively. As a result,
for the higher level control, with affine function and FC, the following improvements
are obtained in comparison with higher level MPC: For dry influent, AE reduction
of 57.25 and 53.47KWh/d respectively. For rain influent, 74.45 and 103.57KWh/d
respectively. And for storm influent, 71.93 and 61.8KWh/d respectively.

The reason of the improvement of the results of EQI and OCI by using the higher
level FC or the higher level affine function compared to the higher level MPC is that
the higher level MPC tries to maintain the value of SNH,5 at a fixed reference, but
the error is too high. Specifically, the ISE is 36.21 to achieve the best EQI and the
ISE is 22.69 to achieve the best OCI. Conversely, higher level affine function and
higher level FC regulate SO,5 set-point based on the biological process dynamics that
take place in the reactors (2.3, 2.4, 2.5, 2.6, 2.7, 2.8). On the one hand improving
the nitrification process (2.7) when SNH,5 increases, and therefore reducing its peaks.
On the other hand, reducing the SO,5 set-point level when SNH,5 decreases in order
to reduce the SNO generation (2.4) and the operational costs (2.13).

5.2 Application of Variable Dissolved Oxygen in the Three
Aerobic Reactors

The hierarchical control presented in the previous section is based on manipulat-
ing the SO,5 set-point. In this section the lower level control is expanded with an
independent manipulation of the SO,3, SO,4, and SO,5 set-points.

As it has been shown in Sect. 5.1, the results of OCI and EQI with higher level
affine function and higher level FC were similar and better than those obtained with
higher levelMPC. Thus, themanipulation of the three aerobic reactors (see Fig. 5.17)
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Fig. 5.17 BSM1 with MPC+FF and Hierarchical control for the three aerobic reactors

has been tested with an affine function and a FC in the higher level of the hierarchical
structure, but not with an MPC.

5.2.1 Controllers Tuning

Higher Level Affine Function

The same affine function (5.1) is proposed to manipulate the three aerobic reactors.
Thus, the set-point value determined for SO,5 is also applied to SO,3 and SO,4 set-
points. Also a constraint for the maximum SO,3, SO,4, and SO,5 values has been
considered. The OCI and EQI trade-off representations of the higher level affine
function are made based on k and SO maximum values, which is the same for the
three aerobic tanks. These trade-off analysis for the three weather conditions are
shown in Figs. 5.18, 5.19, and 5.20. Each line corresponds to one of the SO maximum
values considered: 2, 3, 4, and 4.5. And each point of one line, marked with crosses,
is obtained with a different value of k.

A tuning area is obtained where OCI and EQI are reduced compared to the default
PI controllers. SO maximum and k values have been selected for the extreme cases of
lowest EQI without increasing OCI and the lowest OCI without worsening EQI are
achieved. Table5.5 shows these tuning parameters selection for the three influents.
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Fig. 5.18 Dry weather: OCI and EQI trade-off representation with higher level affine function for
a range of k values from −0.6 to 1.4 with increments of 0.1 (points marked with crosses) and SO
maximum = 4.5 (solid line), 4 (dashed line), 3 (dotted line), 2 (dash-dotted line)

Fig. 5.19 Rain weather: OCI and EQI trade-off representation with higher level affine function for
a range of k values from −0.6 to 1.4 with increments of 0.1 (points marked with crosses) and SO
maximum = 4.5 (solid line), 4 (dashed line), 3 (dotted line), 2 (dash-dotted line)

Higher Level Fuzzy Controller

For the higher level FC, three triangular membership functions for input and for
output are used (low, medium, and high). The rules implemented are:

if (SNH,5 is low) then (SO is low)
if (SNH,5 is medium) then (SO is medium)
if (SNH,5 is high) then (SO is high)
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Fig. 5.20 Storm weather: OCI and EQI trade-off representation with higher level affine function
for a range of k values from −0.6 to 1.4 with increments of 0.1 (points marked with crosses) and
SO maximum = 4.5 (solid line), 4 (dashed line), 3 (dotted line), 2 (dash-dotted line)

Table 5.5 Higher level affine function tuning of the three aerobic tanks: k and SO maximum values

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

k −0.08 1.37 −0.1 0.62 −0.09 1.08

SO
maximum

4.5 2 3.5 2 3.5 2

Table 5.6 Higher level FC tuning of the three aerobic tanks:MaxIn and MaxOut values

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

MaxIn 3 3 3 3 3 3

MaxOut 6.5 2.75 5.6 3.4 5.6 3.15

The same output SO is applied for the three aerobic tanks.MinIn andMinOut are 0.1
and 0.8, respectively. MaxIn and MaxOut have been determined with OCI and EQI
trade-off representations, for the three weather conditions, shown in Figs. 5.21, 5.22,
and 5.23. Each one of the lines corresponds to the results obtained with different
MaxIn, i.e., 3, 5, 7, and each one of the points marked with crosses is the result
of a different MaxOut. The results obtained with the default PI controllers are also
shown.

In the same way as for the higher level affine function, for the three weather con-
ditions, a tuning region is obtained where OCI and EQI are improved in comparison
with the default PI controllers. The MaxIn and MaxOut values of the extreme cases
of lowest EQI without increasing OCI and lowest OCI without worsening EQI are
shown in Table5.6.
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Fig. 5.21 Dry weather: OCI and EQI trade-off with higher level FC for a range of MaxOut from
2.5 to 8 with increments of 0.5 (points marked with crosses) andMaxIn = 3 (solid line), 5 (dashed
line), 7 (dash-dotted line)

Fig. 5.22 Rain weather: OCI and EQI trade-off with higher level FC for a range of MaxOut from
2.5 to 7 with increments of 0.5 (points marked with crosses) andMaxIn = 3 (solid line), 5 (dashed
line), 7 (dash-dotted line)

5.2.2 Simulations Results

Table5.7 presents the results of best EQI without increasing OCI and best OCI
without worsening EQI of the hierarchical control for the three aerobic reactors in
comparison with the default control strategy. The comparison is done with the two
higher level alternatives (affine function and FC), using the three influent files (dry,
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Fig. 5.23 Storm weather: OCI and EQI trade-off with higher level FC for a range ofMaxOut from
2.5 to 7 with increments of 0.5 (points marked with crosses) andMaxIn = 3 (solid line), 5 (dashed
line), 7 (dash-dotted line)

rain, and storm). As it is shown, a satisfactory reduction in OCI and EQI is achieved
with the proposed hierarchical control. This reduction is higher in dry weather con-
ditions, especially the EQI reduction. The results obtained with higher level affine
function and higher level FC are similar, in the same way as the hierarchical control
by manipulating only SO,5, as shown in the previous section.

In order to explain the EQI improvement, Fig. 5.24 shows the behavior of SO of
the aerated tanks, SNH,5 and SNO,5 from day 7 to day 14. This is performed with
the default control strategy and the proposed hierarchical control with the tuning
parameters that give the lowest EQI for dry weather. Due to the results obtained with
higher level affine function and higher level FC are very similar, only the variables
of one of the two controllers (specifically affine function) are shown. As it is shown,
with hierarchical control, when SNH increases more SO is added for nitrification,
reducing SNH peaks (2.3 and 2.7). On the contrary, when SNH decreases, less SO is
required, producing less SNO in comparison with the default control strategy (2.4 and
2.7).

In order to clarify the reason of the cost reduction, Table5.8 shows the average
values of the parameters that compose theOCI equation. They are the values obtained
for dry influent by using the default control strategy and by applying hierarchical
control with higher level FC that is the alternative that achieves the lowest OCI.
As it is seen, the cost reduction is the result of an AE reduction of 683.72KWh/d.
This fact is due to the reduction of SO (and hence a reduction of KLa) of the aerated
tanks when SNH,5 is low. Although there is a PE increase of 53.43KWh/d, the saving
energy, considering both parameters, is 630.29KWh/d.
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Fig. 5.24 SO in the aerated tanks, SNO,5 and SNH,5 evolution from day 7 to day 14 with the default
PI controllers and with the proposed hierarchical control with higher level affine function for the
case of lowest EQI

Table 5.8 Average values of the parameters that compose the OCI equation for PI controllers of
the default control strategy and the proposed hierarchical control of the three aerobic tanks with
higher level FC for the case of lowest OCI

Average values of the
OCI parameters

Default PI controllers Hierarchical control Reduction

AE (KWh/d) 3696.67 3012.95 683.72

PE (KWh/d) 241.72 295.15 −53.43

ME (KWh/d) 240 240 0

EC (Kg/d) 0 0 0

SP (Kg/d) 2440.71 2439.16 1.55

5.3 Summary

In this chapter, the higher level control of the hierarchical structure has been applied
using BSM1 as testing plant. This level regulates the SO set-points of the aerated
tanks based on SNH,5.

First, for the selection of the higher level controller, three different alternatives
have been proposed by manipulating only SO,5 set-point: an MPC, an affine function
and a FC. They have been tested and compared in the three weather conditions:
dry, rain and storm. As a result, EQI and OCI have been reduced significantly. The
results of OCI and EQI with higher level affine function and higher level FC have
been similar and better than those obtained with higher level MPC. This is due to the
fact that the higher level MPC tries to keep the value of SNH,5 at a reference level,
but this is not possible. For that reason, the alternatives of affine function and FC for
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the higher level have been tested with the idea of varying SO,5 based on the SNH,5

measured, taking into account the variables behavior in the biological processes, but
without trying to keep SNH,5 at a fixed reference. Thus, improving the nitrification
process when SNH,5 increases, to oxidize more SNH and worsening the nitrification
process when SNH,5 decreases to generate less SNO and to reduce costs. To ensure
the right tuning of the controllers and therefore the correct relationship between the
applied control and the results, a trade-off analysis between OCI and EQI has been
performed by varying two tuning parameters for each controller.

Next, the higher level control has been extended, manipulating the three aerobic
tanks. Simulation results show thatmanipulating the SO set-points of the three aerobic
tanks, an EQI reduction of 5% and an OCI reduction of 3.9% has been achieved
for dry weather compared to the default control strategy. For the rain and storm
influent cases, also a satisfactory reduction of EQI and OCI has been obtained,
higher than 3%.



Chapter 6
Denitrification and Nitrification Processes
Improvement for Avoiding Pollutants Limits
Violations in the Effluent

In this chapter, different control strategies are applied with the aim of avoiding SNtot,e

or SNH,e violations using BSM1 as testing plant. These control strategies are imple-
mented simultaneously with the hierarchical control structure explained in previous
chapter, in order to achieve, at the same time, an EQI and OCI reduction. The tuning
of both higher level controllers is modified based on the required objective. The con-
trollers applied for the proposed control strategies are divided into two alternatives:
functions that relate the inputs and the manipulated variables, and FCs. Therefore,
on one hand, an affine function is proposed to eliminate SNtot,e violations and a com-
bination of a linear function with an exponential function to remove SNH,e violations.
At the same time, the higher level affine function is applied. On the other hand, two
FCs are proposed to avoid SNtot,e and SNH,e violations. The higher level FC is also
applied. For the cases of a rain or storm event and for the simultaneous SNtot,e and
SNH,e violations removal, an extra control is added based on affine functions, for both
alternatives.

6.1 SNtot,e Violations Removal

The variables with the highest influence in SNtot,e are SNO and SNH . Further efforts to
reduce more SNH by increasing nitrification also results in an increment of SNO and
consequently SNtot,e is not decreased. According to the biological processes of ASM1,
an increase of substrate produces a growth of XB,H and therefore the denitrification
process and the consequently reduction of SNO are improved. Therefore, SNtot,e is
reduced with the dosage of EC in the first tank (EC1). However, dosing EC1 results
in an increase of operational costs (2.13), so it is important to dosage EC1 only when
a violation of SNtot,e could take place. Consequently, the control strategy is based

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_6
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Fig. 6.1 BSM1 with a control strategy for SNtot,e violations removal

on the manipulation of qEC,1 according to SNH,5 plus SNO,5 (see Fig. 6.1). An affine
function with a sliding window and an FC are proposed for this control strategy.

6.1.1 Controllers Tuning

Functions

Here, the tunings of the both affine functions, for the higher level control and for the
control for SNtot,e violations removal, are described.

First, for the higher level affine function, a trade-off analysis is made considering
the percentage of operating time that SNH,e and SNtot,e is over the limits. The purpose
of this trade-off analysis is, besides the SNtot,e violations removal, not to increase OCI
and to reduce EQI and the percentage of time of SNH,e violations in comparison
with the default control strategy. This is done with hierarchical control strategy and
without adding EC1 (see Fig. 6.2). Tuning parameters are chosen for the point where
the percentage of operating time of SNH,e over the limits is the same as with default
control strategy (17.26%). The tuning parameters of the higher level affine function
are k = 1.07 and SO maximum = 3, and the percentage of operating time of SNtot,e

violation with these parameters is 6.35%.
The OCI and EQI trade-off representation shown in Fig. 5.18, in the points of the

tuning parameters mentioned, a difference in OCI of 2.5% is observed regarding the

http://dx.doi.org/10.1007/978-3-319-46367-4_5
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Fig. 6.2 Trade-off representation of the percentage of the operating time of SNH,e and SNtot,e
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default control strategy. From this Pareto representation, this means that there is a
saving in control operation costs that can be used for other purposes before exceeding
the initial costs. In our case, we will use qEC,1 dosage. However, it cannot be used in
a fixed or arbitrary way. The purpose of such additional dosage will be to deal with
violations removal but we cannot exceed the operational costs provided by the OCI
value of the default control.

Then, the following affine function is proposed for qEC,1 manipulation with the
objective of SNtot,e violations removal:

qEC1 = ((SNH,5 + SNO,5) − a)b, (6.1)

where a and b are used as tuning parameters, whose values are set depending on the
maximum value of SNtot,e given by a sliding window, which is shifted at each sample
time and presents only the values measured the s, 1 week before. Specifically, the
chosen equations for a and b values are

b = Md · 2 − 35.5 (6.2)

a = 34.25 − Md, (6.3)

where Md is the maximum value of the day, 1 week before. This approach tries to
dosage the minimum of qEC,1 to remove SNtot,e violations. The maximum qEC,1 value
was limited to 5m3/d.
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Fuzzy Controllers

The tuning of the FCs is implementedwith the objectives of removingSNtot,e violations
and, at the same time, reducing EQI, OCI, and the percentage of time of SNH,e

violations. First for the higher level FC and next for the FC that manipulates qEC,1

for SNtot,e violations removal.
For the tuning parameters selection of the higher level FC, a trade-off analysis of

the percentage of time over the limits of SNH,e and SNtot,e ismade (see Fig. 6.3). For this
analysis, the hierarchical control strategy is included but not the addition of EC1. The
tuning parameters of the higher level FC are selected in the point whose percentage
of operating time of SNH,e over the limits is the same as with the default control
strategy (17.26%). These tuning parameters areMaxIn = 3 andMaxOut = 4.1, and
the percentage of operating time of SNtot,e violation with these parameters is 6.39%.

The OCI and EQI trade-off representation shown in Fig. 5.21, in the points of the
tuning parameters mentioned, a difference in OCI of 2.6% is observed regarding the
default control strategy, which may be used for the EC1 dosage.

With these parameters selected for the higher level, an FC is added to manipulate
qEC,1. For this controller, three triangular membership functions for input and for
output are used (low, medium, and high). The rules implemented are
if (SNH,5+SNO,5 is low) then (qEC,1 is low)
if (SNH,5+SNO,5 is medium) then (qEC,1 is medium)
if (SNH,5+SNO,5 is high) then (qEC,1 is high)

The range of membership functions values are: MinIn = 10,MaxIn =
17.5,MinOut = −8,MaxOut = 6.75.
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Fig. 6.3 Higher level FC: trade-off of the time percentage of SNH,e and SNtot,e violations for
MaxIn = 3 and a range of MaxOut values from 3 to 7 with increments of 0.5 (points marked
with crosses)

http://dx.doi.org/10.1007/978-3-319-46367-4_5
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6.1.2 Considerations for Rain and Storm Influents

During a rain or storm event, Qin increases and SNH in the influent (SNH,in) decreases.
The Qin increment has the effect of reducing the hydraulic retention time and the
SNH,in reduction decreases the growth of XB,A and therefore the nitrification process
(2.7) isworsened.Due to this reason, there is an increase of SNH without incrementing
the generation of SNO ((2.4) and (2.7)). Therefore, the resulting SNtot,e is lower than for
dry weather. However, in the periods after the rain or storm events, the Qin reduction
has an immediate effect on the hydraulic retention time, but XB,H and XB,A need
more time to recover their normal levels and it causes a small SNtot,e increase. To
compensate this, qEC,1 is added based on SNH,5 plus SNO,5 and on the average of
SNH,in of the 2 days before (SNH,inmean2 ) with the following affine function:

qEC,1 = (SNH,5 + SNO,5)5 − SNH,inmean2 · 0.2857 − 75.7143 (6.4)

where the constants values are found by three experimental cases.

6.2 SNH,e Violations Removal

With the goal of removing SNH,e violations, Qa is manipulated based on SNH,5 and
SNH,in. Therefore, the MPC of the lower level that controls SO,5 and SNO,2 by manip-
ulating KLa5 and Qa is replaced by an MPC with one input (SO,5) and one output
(KLa5) (see Fig. 6.4). Thus, the MPC controller will leave the manipulation of Qa.

To facilitate the understanding of the proposed solution some considerations about
the propagation of the peaks in the reactor are provided: When a peak of pollution
enters in the reactors, it is propagated through them with a delay determined by the
retention time. Thus, any change in Qin or in the Qa directly affects the propagation
of the peaks of pollution inside the tanks. On the contrary, the peaks of flow rate are
transmitted to all the plants immediately, because the system is always full and any
variation in the influent causes an identical variation in the effluent and inside the
system. Thus, according to the mass balance equation in the first reactor (2.1), when
SNH,in increases, Qa is incremented to reduce the rise of SNH in the first tank (SNH,1),
and when the increase of SNH arrives to the fifth tank, Qa is reduced to increase the
retention time and so to improve denitrification process.

Two controllers are proposed for this control strategy: first, a combination of
a linear function and an exponential function, and next, an FC with two different
tunings.

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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6.2.1 Controllers Tuning

MPC+FF

As mentioned, to perform the control for removing violations of SNH,e, the MIMO
MPC+FF that controls SO,5 and SNO,2 by manipulating KLa5 and Qa, has been
replaced by a SISO MPC+FF that controls SO,5 by manipulating KLa5, because
Qa will be the manipulated variable based on SNH,5 and SNH,in, to deal with the
violations removal.

The model identification for the new MPC+FF was performed with the same
methodology as with the previousMPC controller, but with one input and one output.
However, in this case the model results in a second-order state-space model:

A =
[
0.8349 0.2746
0.2512 0.2894

]

B =
[
0.008745 −2.729 · 10−5

−0.02118 1.307 · 10−5

]

C = [
1.512 −0.3525

]
D = [

0 0
]

(6.5)

The selected values to tune the MPC are m = 5, p = 20, �t = 0.00025days
(21.6 s), Γy = 1 and Γ�u = 0.01, and overall estimator gain = 0.8.
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Functions

Here, the tunings of the controllers based on functions are described. First, the tuning
of the higher level affine function, and next, the combination of the linear function
and the exponential function for SNH,e violations removal.

For the higher level affine function (5.1), any parameter values within the tuning
region given by the OCI and EQI trade-off representation (see Fig. 5.18) can be
selected. In this case the chosen parameters are: k = 0.1 and SO maximum = 4.5.

For the control of SNH,e violations removal, a combination of exponential function
and linear function is proposed for this control strategy. When there are peaks of
SNH,in multiplied by Qin or SNH,5 (SNH,in· Qin > 106 or SNH,5 > 3.75), the following
exponential function is applied:

Qa = c

eSNH,5·d (6.6)

Otherwise the following linear function is applied:

Qa = SNH,in

SNH,5
· e, (6.7)

where c, d, and e are used as tuning parameters.
A trade-off analysis of OCI and percentage of operating time of SNtot,e violation

is made by varying the tuning parameters c and e of the exponential and linear
functions, reflecting only the results that avoid the SNH,e violations. It is obtained an
area where OCI and the operating time of SNtot,e violation are decreased compared to
default PI controllers (see Fig. 6.5). The value of d is fixed at 6, and c and e values
are chosen according to the Nash solution (see Appendix A): c = 2.5 · 1014 and
e = 7 · 10−4.

Fuzzy Controllers

Now, the tuning parameters of the higher level FC and the FC for SNH,e violations
removal are defined.

TheMaxIn andMaxOut values of the higher level FC have been also selected by
a trade-off analysis of OCI and percentage of operating time of SNH,e violation (see
Fig. 6.6), choosing the lowest percentage of SNH,e violation in order to facilitate its
posterior total elimination, but considering the increased costs that will be generated
by the new control strategy. In this case the chosen parameters are: MaxIn = 3 and
MaxOut = 5.5.

In the case of the FC for the SNH,e violations removal, two tunings are determined,
one when there are peaks of SNH,in or SNH,5, and the other the rest of the time. For
both cases, three triangular membership functions for input and output are used (low,
medium, and high). The rules implemented are
if (SNH,5 is low) then (Qa is high)
if (SNH,5 is medium) then (Qa is medium)
if (SNH,5 is high) then (Qa is low)

http://dx.doi.org/10.1007/978-3-319-46367-4_5
http://dx.doi.org/10.1007/978-3-319-46367-4_5
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Fig. 6.5 Trade-off representation of OCI and the percentage of operating time of SNtot,e violations
for a range of c values from 0.5 to 4 with increments of 0.5 (points marked with crosses) and e
values = 7 (solid line), 6 (dash-dotted line), 5.5 (dotted line), 5 (dashed line)

Fig. 6.6 Trade-off representation of OCI and the percentage of operating time of SNH,e violations
for MaxIn = 3 and a range of MaxOut from 3 to 7 with increments of 0.5 (points marked with
crosses)
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Fig. 6.7 Trade-off representation of OCI and the percentage of operating time of SNtot,e violations
for a range of MaxOut from 90,000 to 180,000 with increments of 10,000 (points marked with
crosses) and MaxIn = 2 (dotted line), 2.2 (dashed line), 2.4 (solid line), 2.6 (dash-dotted line)

When there are peaks of SNH,in or SNH,5, the tuning parameters are set looking for
a great variation in Qa when SNH,e is increasing. Therefore,MinIn,MaxIn,MinOut,
and MaxOut are 3.5, 4.1,−2 · 104, and 14 · 104, respectively. For the rest of the
time, MinOut and MaxOut are set by a trade-off analysis of OCI and percentage
of operating time of SNtot,e violation, reflecting only the results that avoid the SNH,e

violations. An area is obtained where OCI and the operating time of SNtot,e violation
are decreased compared to default PI controllers (see Fig. 6.7). Each one of the lines
corresponds to the results obtained with MaxIn = 2, 2.2, 2.4, and 2.6 and each one
of the points marked with crosses is the result of a differentMaxOut that varies from
90,000 to 180,000 with increments of 10,000. The results obtained with default PI
controllers alone are also shown. The parameters have been selected according to
the Nash Solution [2]:MaxIn = 2.4 and MaxOut = 100,000.

6.2.2 Considerations for Rain and Storm Influents

For rain and storm events the reduction of SNH,e using the presented control strategy is
not enough to eliminate violations. This is due to that, during rain and storm periods,
the Qin · SNH,in relationship is similar to that of dry weather, but Qin increases and
SNH,in decreases. This SNH,in reduction decreases the growth of XB,A and therefore
the nitrification process (2.7) is worsened. For this reason, during a rain or storm
event, when there is a peak of SNH,in · Qin and until SNH,5 is decreased, a dosage of

http://dx.doi.org/10.1007/978-3-319-46367-4_2
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5m3/d of qEC in the fourth and fifth tanks (qEC4−5 ) is added, which is the maximum
limit value. Normally, qEC4−5 is added to reduce SNO, nevertheless in rNH Eq. (2.3)
it is observed that although the elimination of SNH largely depends on nitrification
(2.7), SNH is also reduced with the growth of XB,H ((2.5) and (2.6)).

The days after the rain and storm events present also problems with SNH,e limits
violations due to the fact that the XB,A population decreases during those periods and
does not recover its normal level until some days later. During those days qEC4−5 is
added. As XB,A reduction is due to a SNH,in decrease, the addition of qEC4−5 is based
on SNH,inmean2 , using the following affine function:

qEC4−5 = SNH,inmean2(−0.2667) + 7; (6.8)

where the constants values are found by two experimental cases, which correspond
to the extreme cases of highest and lowest dosage of qEC4−5 that is needed to eliminate
violations of SNH,e.

6.3 Simulation Results

The above control strategies with the proposed tuning parameters for SNtot,e and SNH,e

violations removal are tested in this section for dry, rain, and storm influents.

6.3.1 SNtot,e Violations Removal

Figure6.8 corresponds to the evolution of qEC,1, SNtot,e , and SNH,e from day 7 to 14,
with the default PI controllers, applying control strategies for SNtot,e violations removal
with functions and applying control strategies for SNtot,e violations removal with
FCs. It is observed that, for both alternatives (functions and FCs), SNtot,e violations
are removed and the behavior of the variables are very similar. As it is shown,
qEC,1 dosage varies every day, while SNtot,e peaks are very similar. It proves that the
minimum necessary qEC,1 is added, increasing the lowest possible costs. For this
reason, and with the correct selection of the tuning parameters of the higher level
explained in previous sections, the removal of SNtot,e violations without increasing
OCI, in comparison with default control strategy is possible. The choice of the right
tuning parameters of the higher level affine function also makes possible to reduce
the time of SNH,e violation.

Table6.1 presents the results for EQI and OCI as well as the percentage of oper-
ating time out of the limits of SNtot,e and SNH,e obtained with the control strategies
for SNtot,e violations removal and compared to the default control strategy of BSM1.
It is shown that by adding qEC,1 and applying a hierarchical control of SO in the
three aerated tanks, the violations of SNtot,e can be avoided. Moreover, the results of
EQI and OCI as well as the operating time percentage of SNH,e violations are also

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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Fig. 6.8 qEC,1, SNH,e, and SNtot,e evolution from day 7 to 14 with default PI controllers (dash-
dotted line), applying control strategies for SNtot,e violations removal with functions (dashed line)
and applying control strategies for SNtot,e violations removal with FCs (solid line)

improved in comparison with the default PI controllers. This is achieved for the three
influents provided by the BSM1 scenario.

Figures6.9 and 6.10 show the time evolution of the most important variables for
the cases of simulating with rain and storm influents. Due to the great similarity of
the results between functions and FCs, only the simulated variables using functions
are shown. During a rain or storm event, the nitrification process (2.7) is worsened
as explained in Sect. 6.2.2. Due to this reason, there is an increase of SNH without
incrementing the generation of SNO ((2.4) and (2.7)). Therefore, the resulting SNtot,e

is lower than for dry weather and less qEC,1 is needed for removing SNtot,e violations.
In the periods after the rain or storm events, qEC,1 needs to be added until XB,H and
XB,A recover their normal levels. Even so, this qEC,1 addition is small, and OCI is
reduced for the three influents with the proposed control strategy in comparison with
the default control strategy. Nonetheless, it has to be said that the reduction of costs
would be greater if the savings costs obtained by avoiding the fines due to the effluent
violations were considered.

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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Fig. 6.9 Rain influent: time evolution of themost important variables applying the proposed control
strategy for SNtot,e violations removal with functions and applying the default control strategy of
BSM1

6.3.2 SNH,e Violations Removal

Figure6.11 shows the evolutions of Qa, SNtot,e , and SNH,e from day 7 to 14 with
default PI controllers, applying control strategies for SNH,e violations removal with
functions and applying control strategies for SNH,e violations removal with FCs. It
can be observed that, with this control strategy, SNH,e peaks are reduced under the
limits established. This fact is due to the increment of SO by the hierarchical control
(explained in the previous section) and mainly to the Qa manipulation. As shown in
Fig. 6.11, Qa evolution by applying control strategies for SNtot,e violations removal is
very different from the one obtained with the default control strategy. When a SNH,in

peak is detected, Qa is increased to itsmaximumallowed value (92,280m3/d) in order
to dilute SNH , and when this increase of SNH arrives to the fifth tank, the exponential
function rapidly reduces Qa in order to decrease also the hydraulic retention time
and so to improve the nitrification process. As a result, a large decrease of SNH,e

peaks is achieved and limits violations are avoided. The correct choice of the tuning
parameters of the higher level controller results also in obtaining a decrease in OCI
and time of SNtot,e violation.

Table6.2 shows the results of EQI, OCI, and percentage of time over the limits
of SNH,e and SNtot,e for the three weather conditions. It can be seen that with the reg-
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Fig. 6.10 Storm influent: time evolution of the most important variables applying the proposed
control strategy for SNtot,e violations removalwith functions and applying the default control strategy
of BSM1

ulation of Qa based on SNH,5 and SNH,in, and also with the hierarchical control of
SO in the three aerated tanks, it is possible to avoid SNH,e violations. In addition, an
improvement of 5.8 or 4.26% of EQI and 0.4 or 0.45% of OCI in comparison with
the default control strategy of BSM1 is achieved for dry influent. It is important to
highlight this performance indicator improvement, because all the operations objec-
tives are harder to accomplish. Here the EQI is improved by decreasing costs at the
same time that the pollutant in the effluent accomplish with the legal requirements.

For rain and storm events, the elimination of SNH,e violations is completely
achieved with the proposed control strategy and, in addition, a reduction of EQI
and the percentage of time of SNtot,e violation is achieved. However, an increase of
costs is required, due to the fact that, during rain and storm periods, the nitrification
process (2.7) is worsened as explained in Sect. 6.2.2. For this reason, extra addition of
qEC is needed when there is a rain or storm event, generating an increase of costs (see
Figs. 6.12 and 6.13). It should be noted that costs saved due to avoid violations are
not reflected in the OCI equation and therefore the cost comparison is not completely
fair.

OCI and percentage of operating time of SNtot,e violation are influenced by qEC4−5

value and therefore by the intensity and the duration of the rainfall.When there is rain
or storm event, greater nitrification is performed by Qa manipulation and therefore

http://dx.doi.org/10.1007/978-3-319-46367-4_2
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SNO and also SNtot,e increase. However, adding qEC4−5 also decreases the value of SNO
and thus SNtot,e . With storm influent, the percentage of the cost increase is lower than
in the case of rain influent because less qEC4−5 is needed for the SNH,e removal. On
the other hand, as in the case of rain influent the dosage of qEC4−5 is greater, there is a
reduction in the percentage of operating time of SNtot,e violation in comparison with
the storm influent.

6.3.3 SNtot,e and SNH,e Violations Removal

Up to now, SNtot,e and SNH,e limits violations have been considered separately. Now,
both control strategies for SNtot,e and SNH,e violations removal have been tested
together. As SNH,e violations present more difficulties to be removed than the ones
of SNtot,e , especially during rain and storm events, the tuning for the higher level
determined to avoid SNH,e violations is also applied in this case.

Table6.3 shows the results obtained by applying the control strategies to eliminate
both SNtot,e and SNH violations for the three weather conditions. As it can be observed,
the simultaneous SNtot,e and SNH violations removal is possible for dry, rain, and storm
weather conditions. However, removing the two pollutants simultaneously gives rise
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Fig. 6.12 Rain influent: time evolution of the most important variables applying the proposed
control strategy for SNH,e violations removalwith functions and applying the default control strategy
of BSM1

to an increase of OCI. It is due to the fact that the reduction of SNH peaks is based
on an improvement in the nitrification process, what causes a great generation of
SNO ((2.4) and (2.7)) and also a SNtot,e increase. To counteract it, the dosage of qEC is
increased, and qEC in the second tank (qEC,2) is also added, as shown in Fig. 6.14 in
the case of applying functions, and in Fig. 6.15 for the application of FCs. Therefore,
when a peak of SNH,in · Qin, and there is not a rainfall or storm event, qEC,1 is
added at its maximum value (5m3/d) and qEC,2 is calculated with the affine function
or the FC implemented for the control strategy for SNtot,e violations removal. This
qEC increase results in the total elimination of SNtot,e and SNH,e violations and an
EQI reduction, but the counterpart is an OCI increase. However, as explained in the
previous section, the OCI equation does not take into account the reduction of costs
of avoiding violations and thus, the cost comparison is not completely fair. The OCI
increase is higher using FCs because the addition of qEC,2 is based onNH5 plus NO5.
In the case of using functions, the addition of qEC,2 is only based on the maximum
value of the previous week. This alternative lets to add qEC,2 in advance and therefore
reduces their doses and consequently reduces costs. However, this option would not
be entirely satisfactory in the case of having a more variable dry influent.

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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Fig. 6.13 Storm influent: time evolution of the most important variables applying the proposed
control strategy for SNH,e violations removalwith functions and applying the default control strategy
of BSM1

6.4 Summary

This chapter has been focused on the objective of effluent violations removal using
BSM1 as testing plant. With this aim, two control loops have been added to the
hierarchical structure explained in previous chapters. These control loops consist in
the manipulation of qEC,1 based on SNH,5 plus SNO,5 and the manipulation of Qa

based on SNH,5, SNH,in, and Qin. Functions and FCs have been proposed for these
control strategies basing their control on the biological processes.

The improvement of the denitrification process, by adding qEC,1, achieves the
complete elimination of SNtot,e violations. This control strategy has been tested with
an affine function with a sliding window and with an FC. Both have been imple-
mented to dosage the minimum qEC,1 necessary for this aim. The improvement of
the nitrification process by manipulating Qa makes possible the SNH,e violations
removal. It has been tested first, with the combination of a linear function and an
exponential function, and next, with an FC which uses different tuning parameters
depending on if there are peaks of pollution in the tanks or not.

Simulation results show that SNtot,e and SNH,e violations have been removed for dry,
rain, and storm influents. In the cases of SNtot,e violations removal for the threeweather
conditions and SNH,e violations removal for dry weather, a simultaneous reduction of
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EQI and OCI is achieved in comparison with the default control strategy. The SNH,e

violations removal for rain and storm influents and the simultaneous elimination of
SNtot,e and SNH,e make inevitable an increase of OCI. In any case, it has to be said
that, with the removal of effluent violations, a reduction of costs has been obtained
for not paying fines, which is not considered in OCI.



Chapter 7
Effluent Predictions for Violations
Risk Detection

This chapter deals with the elimination of SNtot,e and SNH,e using BSM2, which
provides a more elaborated and variable influent with an assessment of one year.
Applying control strategies to avoid effluent violations, only when an increase of
contaminants is already detected in the reactors, is not enough in BSM2. Due to this
fact, an effluent prediction of the pollutants based on some variables in the influent
is required. ANNs are implemented with this aim.

7.1 Implementation of Artificial Neural Networks

For an efficient elimination of effluent violations, risk detection in advance is essen-
tial to react as soon as possible and to apply immediately the necessary preventive
actions to the plant; otherwise most violations cannot be avoided. This violations
risk detection is carried out by ANNs that estimate the future effluent values, based
on information at the entry point of the biological treatment.

ANN models have been tested in previous works for prediction of real WWTP
performance, due to their ability for learning its large nonlinearities. For instance, in
[26] to predict BOD and TSS of a WWTP in Cairo, Egypt; in [25] to predict COD
and TSS of a WWTP in Ankara, Turkey; in [45] to predict COD, BOD, and TSS in
a WWTP in Alexandria, Egypt and in [64] to predict COD in a WWTP in India.

Two ANNs are proposed in this chapter with the mentioned objectives. One ANN
predicts the SNH,e value (SNH,ep) and the other ANN predicts the SNtot,e value (SNtot,ep).
When the ANNs detect a risk of SNtot,e or SNH,e violation, special control strategies
using FCs (explained in the next subsection) are applied to avoid them. When a risk
of SNH,e violation is detected, Qa is manipulated based on SNH,5 to reduce SNH,e

peak. The rest of the time Qa is manipulated in order to control SNO,2 at the set-point
of 1mg/l. Regarding SNtot,e , when a risk of violation is detected (the value of SNtot,ep

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_7
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exceeds the limit), qEC is manipulated based on SNtot,ep , instead of being kept at a fixed
value as usual.

An accurate violations risk detection of SNH,e and SNtot,e is not possible due to the
fact that ANNs use only influent variables as inputs, while the effluent concentrations
also depend on other variables of the process, as SO and qEC which have a significant
impact on SNH,e and SNtot,e . Those variables cannot be taken into account because it is
necessary to detect the risk of effluent violations in advance. Moreover, all data used
to detect the risk has to be easily measurable. However, with an adequate choice of
the input variables of ANNs, it is possible to achieve an adequate approximation in
order to detect a risk of violation for applying the suitable control strategy.

Therefore, the inputs of ANNs have been determined according to the mass bal-
ance equations (2.19) and (2.20) explained in Sect. 2. The variables used to perform
the violations risk detection for both ANNs are Qpo, Zpo and Tas. The variable Qa

has also been used as an input for the ANN to detect the risk of SNtot,e violation,
but it is not used to detect the risk of SNH,e violation because it is a manipulated
variable in the control strategy applied to remove SNH,e violations and it would cause
dependency values problems. Specifically, SNH from the primary clarifier overflow
(SNH,po) is the pollutant concentration chosen as an input for both ANNs. On one
hand, SNH and SNO are the pollutants with higher influence on SNtot,e , but SNO from
the primary clarifier overflow (SNO,po) is very low and it is not taken into account. On
the other hand, SNH,po not only affects largely SNH,e, but also affects the nitrification
process, the consequent SNO production and therefore the resulting SNtot,e .

Tas is also added as an input variable for both ANNs due to its influence in the
nitrification and denitrification processes ((2.25) and (2.26)). The SNH,e and SNtot,e

values are inversely proportional to the Tas values. Due to the fact that the Tas varia-
tions during the day are not too large, the average value of each day has been selected.
However, it should be noted that variations in Tas throughout the year have a signif-
icant effect on SNH,e and SNtot,e making its selection as ANN input necessary for an
accurate violations risk detection.

Finally, due to the mentioned reasons, the inputs for the ANNs are

• Inputs of ANN for SNH,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas.
• Inputs of ANN for SNtot,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas, Qa.

It should be taken into account that in a real plant application, sensor failures
are quite common, particularly if they are located in the influent. For this reason,
controllers applied to a real plant should use some sensor failure detection algorithm.
On the other hand, in spite of that the SNH sensor needs an extra maintenance cost,
it is essential for the risk detection of violations and thus to achieve the effluent
violations removal.

To train and validate ANNs, a collection of input and output data is necessary. The
variations in the inputs affect the outputs with a variable delay that depends on the
hydraulic retention time. Due to this fact, and in order to simplify the data collection
process, for the ANNs inputs and outputs only the maximum and minimum values of
each day have been selected. Except for Tas, where the daily average value has been
considered. As a large number of data is necessary to generate a satisfactory model

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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Fig. 7.1 Structures of the
proposed ANNs SNHpo

Qpo

S QNHpo po

Tas

SNHe

10

Hidden Layer

(a) ANN for SNH,e violations risk detection

SNHpo

Qpo

S QNHpo po

Tas

SNtot,e

10

Hidden Layer

Qa

(b) ANN for SNtot,e violations risk detection

for an ANN, the data is obtained during a one year simulation period with the plant
working without the control strategies for avoiding SNtot,e and SNH,e violations. In a
real plant, the stored historical data could be used for this purpose. Each ANN has
one hidden layer with 10 neurons. ANNs have been trained with the aim of obtaining
a reasonable fitting rate of 0.93 or above. The structures are shown in Fig. 7.1.

For the training of theANN theMATLAB®NNToolbox has been used.As already
mentioned, recorded data corresponding to one year of running the plant with the
hierarchical control in place has been used. The data is partitioned in different sets
that are used for training (70% of data), another one to validate the network is gener-
alizing and to stop training before overfitting (15% of data). The rest of the data (the
remaining 15%) is used as a completely independent test of network generalization.
The training results are evaluated by means of error histogram. Figure7.2 shows the
error histograms corresponding to both ANN. The blue bars represent training data,
the green bars represent validation data, and the red bars represent testing data. As it
can be seen, the ANN for SNtot,e prediction is more difficult to train. Even this, there
are practically no significant outliers and, if any, their magnitude is really small.
It remains a subject of further exploration about the suitability of more complex
network structures if precise effluent following is needed.
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Fig. 7.2 ANN training error histograms

7.2 Simulation Results

There are moments where the high disturbances coming from the influent make plant
operation very difficult. Therefore, the ANN prediction will show the potential risk
of effluent limit violations.

TheBSM2 is nowsimulatedbyapplying thehierarchical control schemeexplained
in next chapter. In parallel, the influent data feeds both ANN and output pollutant
concentrations are predicted. As mentioned when describing the BSM2 scenario, the
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Fig. 7.3 SNH,e limit violation risk detection. Long time window

assessment period is extended to one year instead of one week. Figure7.3 shows,
as an example, the simulation results for SNH,e risk detection for a time window of
150days. It can be seen that the hierarchical two-level control system operates the
plant quite well, and only three risk situations are detected. It is in these cases when
supplementary control actions will be needed.

In order to better show how the risk detection works, Figs. 7.4 and 7.5 show the
risk detection for both output concentrations SNH,e and SNtot,e in an enlarged time
window. As it can be observed, the way of ANN have been trained allows for a real
effluent pollutants prediction. This allows for an early detection of the possible limit
violation. A flag signal is activated during 6h. For future use, this boolean signal
could be used to activate a decision system that signals for appropriate corrective
actions regarding these violations.

On the other hand, in Fig. 7.5, it is shown that there is a mismatch between the
number of real limit violations and the times that the risk signal is activated. This is
because of the three maximums the effluent do has during the violation period. In
any case, the fact that during one day the signal is activated three times, corresponds
to a really dangerous situation.

In order to assess the violations risk detections made by the ANNs, they have been
compared with the situations where there is, effectively, a limit violation (without
applying the control strategies for removing limit violations of the pollutants). For
SNH,e, there are four limit violations and 100% of the violations are detected and
subsequently eliminated.Moreover, theANNdetects six risks of violations, therefore
there are two situations that can be classified as “false alarm”. Regarding SNtot,e , not all
violations are detected. There are in fact 47 violations and 43 violation risk detections.
From these 43 detections, 34 violations are correct. Therefore, a total of 72.34% of
violations are detected.
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Fig. 7.4 SNH,e limit violation risk detection

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (days)

R
is

k 
de

te
ct

io
n

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563
4
6
8

10
12
14
16
18
20
22
24

S
N

to
t (m

g/
l)

S
N

tot,ep

S
N

tot,e

 real value

S
N

tot,e

 limit

Fig. 7.5 SNtot,e limit violation risk detection



7.3 Summary 95

7.3 Summary

For effluent violations removal in BSM2, effluent predictions are necessary in order
to select the suitable control strategy to be applied. In this chapter, the implementation
of theANNs for these effluent predictions has been described. Specifically twoANNs
have been applied, one for SNtot,e prediction and the other for SNH,e prediction. For
the case of SNtot,e prediction, the input variables have been Qpo, SNH,po, Qpo · SNH,po

and Tas. And for SNH,e prediction the input variables have been Qpo, SNH,po, Qpo ·
SNH,po, Tas and Qa.

Simulations have shown satisfactory predictions of SNtot,e and SNH,e, which are
used for risk detection and thus for selecting the suitable control strategy. For SNH,e

prediction, the threshold has been established at 4mg/l, the same as the limit value.
For the case of SNtot,e prediction, the threshold has been reduced to 17mg/l (1mg/l less
than the established limit) to ensure the avoidance of violation, but without reducing
it too much for not increasing costs.



Chapter 8
Advanced Decision Control System

This chapter presents the control strategies applied in BSM2 for SNtot,e or SNH,e

violations removal. This chapter continues with special emphasis on dealing with
the concentration limits of effluent pollutants, in order to accomplish the established
legal requirements. In this case, the greater variability in the influent provided by
BSM2 requires an advanced decision control system in order to select the control
strategies to be applied based on the effluent predictions explained in the previous
chapter.

8.1 SO,4, SO,5 and SNO,2 Tracking

The simulations and evaluations of the control strategies presented in this chapter
are carried out with BSM2. In the literature some works use BSM2 as testing plant.
Some of them are focused on the implementation of control strategies in the biolog-
ical treatment, as in the present chapter. Specifically, they propose a multi-objective
control strategy based on SO control by manipulating KLa of the aerated tanks, SNH
hierarchical control by manipulating the SO set-points, SNO,2 control by manipulat-
ing Qa or TSS control by manipulating Qw [7, 19, 20, 37]. These referred works have
different goals, but all of them obtain an improvement in effluent quality and/or a
reduction of costs. However, none of them aim to avoid the limits violations of the
effluent pollutants.

The control configurations proposed in this chapter are based on MPC+FF and
FCs.MPC+FF is used in order to keep the SO,4, SO,5 and SNO,2 at the given set-point.
FCs are applied, on one side, as higher level controller in a hierarchical structure to
vary the SO references to be tracked by the MPC controllers, and, on the other
hand, to remove SNtot,e and SNH,e violations by determining qEC,1 and Qa values.
The application of FCs are based on the biological processes, but without the goal of
keeping the controlled variable at a set-point. In this case, the control objectives are:
the improvement of OCI and EQI, and the violations removal of SNtot,e and SNH,e. The

© Springer International Publishing Switzerland 2017
I. Santín et al., Control and Decision Strategies in Wastewater Treatment Plants
for Operation Improvement, Intelligent Systems, Control and Automation:
Science and Engineering 86, DOI 10.1007/978-3-319-46367-4_8
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Fig. 8.1 Proposed control strategies for SNtot,e or SNH,e violations removal with a simultaneous
EQI and OCI reduction

advanced decision control system to be presented in this chapter relies on the effluent
predictions developed in the previous chapter (see Fig. 8.1) in order to appropriately
select the control strategy that better fits the actual state of the plant.

Two MPC+FF controllers are proposed for the aerated zone, to control SO,5 by
manipulatingKLa5 and to control SO,4 bymanipulatingKLa3 andKLa4 based on [46].
The aimof theseMPC+FF controllers is to improve the set-points tracking regarding
the PI controllers of defCL. Also, an MPC+FF is applied to control SNO,2 at a
reference value of 1mg/l bymanipulating Qa , based on the default strategy of BSM1.
In the sameway as inBSM1, in order to adjust themanipulated variables immediately
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to compensate the disturbances, Qpo has been selected for the feedforward action of
the MPC+FF controllers.

In this chapter, unlike the defCL, SO,4 and SO,5 references are not maintained
at a fixed value. Instead of this, a FC varies the set-point, adapting it based on the
conditions of the nitrification process. Due to this reason, it should be noted the
importance of the MPC+FF controllers performance to ensure that the SO,4 and
SO,5 values are as close as possible to the set-point given by the FC.

The variables of the state-space model (3.6) for the three MPC+FF controllers
are described following:

In the MPC+FF for SO,4 control the variable u1(k) is KLa4 and KLa3, u2(k) is
Qpo and y1(k) is SO,4; in the MPC+FF for SO,5 control the variable u1(k) is KLa5,
u2(k) is Qpo and y1(k) is SO,5; finally, in theMPC+FF for SNO,2 control the variable
u1(k) is Qa , u2(k) is Qpo and y1(k) is SNO,2.

The identification of the linear predictive models of the MPC+FF controllers
was performed using Matlab® System Identification toolbox. The data of the output
variables (SO,4, SO,5 and SNO,2) are obtained bymaking changes to the input variables
(KLa3, KLa4, KLa5 andQa) with amaximumvariation of 10% regarding its operating
point, which is the value of KLa necessary to obtain 2mg/l of SO,4, 1mg/l of SO,5 and
the value of Qa necessary to obtain 1mg/l of SNO,2. Specifically, the working points
are 120 day−1, 60 day−1 and 61944m3/day forKLa3/KLa4, KLa5 andQa respectively.
PEM was selected to determine the model with the obtained data. Therefore the
following second-order state-space models are obtained.

SO,4 Control

A =
[
0.9768 0.1215
0.09664 0.2635

]

B =
[
0.002984 −3.673 · 10−6

−0.01796 8.318 · 10−6

]

C = [
3.682 −0.4793

]
D = [

0 0
]

(8.1)

SO,5 Control

A =
[
0.9794 0.1109
0.0976 0.3544

]

B =
[
0.001836 −1.259 · 10−5

−0.01153 7.04e − 005

]

C = [
8.412 −0.1429

]
D = [

0 0
]

(8.2)

http://dx.doi.org/10.1007/978-3-319-46367-4_3
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SNO,2 Control

A =
[
0.8301 0.2828
0.0578 0.8674

]

B =
[

3.264 · 10−6 −1.358 · 10−5

−1.767 · 10−6 −2.87 · 10−6

]

C = [
5.035 0.2777

]
D = [

0 0
]

(8.3)

The selected values to tune the MPC+FF controllers are m = 5, p = 20,
�t = 0.00025 days (21.6 s), Γy = 1 and Γ�u = 1 · 10−5 and overall estimator gain
=0.8 for SO,4 control; m = 5, p = 20, �t = 0.00025 days (21.6 s), Γy = 1 and
Γ�u = 5 · 10−4 and overall estimator gain =0.8 for SO,5 control; m = 5, p = 50,
�t = 0.00025 days (21.6 s), Γy = 1 and Γ�u = 1 · 10−5 and overall estimator gain
= 0.9 for SNO,2 control.

Data acquisition for the model identification is based on simulations. However,
data can be acquired in a similar way in a real plant. In order to predict the possible
application in a real plant, the data acquisition for the identification is performed
while the plant is working around an operating point, whose values are considered
suitable for the biologicalwastewater treatment of this plant. Therefore, identification
can be performed adding some changes to those operating conditions. As mentioned
before, these changes correspond to amaximum variation of 10% of themanipulated
variables. Therefore they will not disturb the actual plant operation. The generated
outputs will reflect the effect of such variables manipulation. Data has been acquired
by simulating one week. However, in the case of a real plant, the identification could
be carried out in different periods and not necessarily in consecutive days. Plants
operator knowledge can in addition be used to know the more appropriate days to
perform the identification.

8.2 Manipulation of SO Set-Points, qEC and Qa

Five FCs have been implemented in the proposed control strategies with three objec-
tives: to reduce EQI and OCI, to remove SNtot,e violations and to eliminate SNH,e

violations. They are based on the biological processes given by ASM1.
For the five FCs applied, Mamdani [40] is the method selected to defuzzify. The

design of the FCs was based on the observation of the simulations results obtained
by operating the plant with the default control of BSM2. The corresponding designs
are described in the following.
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8.2.1 Fuzzy Controller for EQI and OCI Reduction

A FC is applied as higher level controller to manipulate SO,4 and SO,5 set-points
based on the SNH,5 with the aim to reduce EQI and OCI. Specifically, it is based on
the nitrification process, improving it ormaking it worse based on a trade-off between
the values of SNH and SNO. The idea of this control is to improve the nitrification
process by increasing SO,4 and SO,5 references (2.26) when there is an SNH,5 increase
caused by the influent, reducing thus SNH,e peaks. Conversely, to reduce the XB,H

growth when the SNH,5 level is low, in order to produce less SNO (2.26) and (2.22)
and at the same time to reduce operational costs (2.32).

For the higher level FC, three triangular membership functions for input and for
output are used (low, medium and high). The implemented i f − then rules are

if (SNH,5 is low) then (SO,4 set is low)
if (SNH,5 is medium) then (SO,4 is medium)
if (SNH,5 is high) then (SO,4 is high)

The range of the input values is from 0.2 to 4, and the range for the output values
is from −0.75 to 4.5. SO,5 set-point is equal to the half value of SO,4.

8.2.2 Fuzzy Controllers for SNtot,e Violations Removal

The idea of this control strategy is to add qEC in order to deal with SNtot,e peaks
and remove the corresponding limit violations, but doing this only when there is
a risk of violation in order to reduce operational costs. Instead of this, the default
control strategy keeps qEC,1 fixed at 2 m3/d continuously. Three FCs are proposed.
One FC is used as predictive control, adding qEC in the first and second reactors
(qEC,1−2) when a violation is predicted, based on SNtot,ep value given by the ANN
(explained above). This control strategy is necessary, because acting only when a
high SNtot value in the reactors is detected could not be enough if SNtot is quite high.
The second FC adds qEC in the fifth tank (qEC,5) based on SNH,5 plus SNO,5, which are
the contaminants with more influence on SNtot . This control acts when, in spite of the
predictive control, SNH,5 + SNO,5 increases excessively. As the biological process is
designed to treat a maximum flow rate of 60,420 m3/d, when the flow rate coming
from the primary treatment surpasses this value, the excess is bypassed directly to
the effluent without being treated. In the case of the bypass is active, the third fuzzy
control manipulates qEC,5 based on the bypass flow rate (Qbypass) multiplied by SNH
in the bypass (SNH,bypass), in order to compensate the increase of SNH,e due to the
flow rate that cannot be treated.

http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
http://dx.doi.org/10.1007/978-3-319-46367-4_2
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The first FC, which is based on the SNtot,ep , has one input and one output, with
three membership functions for each (low, medium and high). The implemented
i f − then rules are

if (SNtot,ep is low) then (qEC,1−2 is low)
if (SNtot,ep is medium) then (qEC,1−2 is medium)
if (SNtot,ep is high) then (qEC,1−2 is high)

If qEC,1−2 value is less than the maximum value of qEC set in each reactor (5 m3/d),
it is only added to the first reactor. If qEC is greater than 5 m3/d, qEC,1 is equal to 5
m3/d and qEC,2 is equal to the value of qEC,1−2 minus 5. The range of the input values
of the fuzzifier is from 17 to 19.5, and the range for the output values is from 4 to 15.
Therefore, qEC,1−2 is added when SNtot,ep is over 17mg/l instead of 18mg/l which is
the limit value, thus a margin of error of 5.5% in the prediction is established.

When a situation of risk is detected (SNtot,ep > 17mg/l),qEC,1−2 ismanipulated until
the three following conditions are met to ensure that the risk has disappeared: SNtot,ep

is lower than 16mg/l, SNH,5 plus SNO,5 is lower than 13.5mg/l and the controller
has been operating for at least 6h. The controller calculates a qEC,1−2 value at each
sample time, but the true value applied to the plant is themaximum of all the previous
samples, in order to ensure that the effluent violation is avoided.

The second FC, which manipulates qEC,5 based on SNH,5 +SNO,5, has one input
and one output, with three membership functions for each input and output (low,
medium and high). The range of the input values is from 15.3 to 15.9, and the range
of the output values is from −1 to 6. The implemented i f − then rules are

if (SNH,5 +SNO,5 is low) then (qEC,5 is low)
if (SNH,5 +SNO,5 is medium) then (qEC,5 is medium)
if (SNH,5 +SNO,5 is high) then (qEC,5 is high)

The thirdFC,whichmanipulates qEC,5 basedonSNH,5 +SNO,5 andQbypass ·SNH,bypass ,
has two inputs and one output, with three membership functions for each input and
output (low, medium and high). The range of the SNH,5 +SNO,5 input values is from
12 to 12.5, the range of the Qbypass · SNH,bypass input values is from 0 to 1.4·105 and
the range for the output values is from−1 ·104 to 6·105. The implemented i f − then
rules are:

if (SNH,5 +SNO,5 is low and Qbypass · SNH,bypass is low) then (qEC,5 is low)
if (SNH,5 +SNO,5 is medium and Qbypass · SNH,bypass is medium) then (qEC,5 is
medium)
if (SNH,5 +SNO,5 is high and Qbypass · SNH,bypass is high) then (qEC,5 is high)

This controller workswhile bypass is active. As in the first FC, the qEC,5 value applied
to the plant by the second and third FCs is themaximum of all the previous calculated
values during the situation of risk.
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8.2.3 Fuzzy Controller for SNHe Violations Removal

A FC is proposed to eliminate SNH,e violations by manipulating Qa based on SNH,5.
This control strategy is applied only when a SNH,e violation is predicted by the ANN,
explained in the previous chapter. The rest of the time Qa is manipulated to control
SNO,2.

When a risk of violation is detected (SNH,ep > 4mg/l), the proposed FC is applied,
first to dilute SNH,po and subsequently to reduce the hydraulic retention timewhen the
increase of SNH reaches the reactors. Thus, according to the mass balance equation
in the first reactor (2.19), when SNH,po increases, Qa is incremented to reduce the
rise of SNH,1, and when the increase of SNH arrives to the fifth tank, Qa is reduced
to increase the retention time and so to improve de nitrification process. When, in
spite of this control, SNH,5 reaches the value of 3.5mg/l, a complementary action is
applied and the SO,4 ans SO,5 set-points are increased bymultiplying its value by 1.5.

The FC has one input and one output, with three membership functions for each
(low, medium and high). The implemented i f − then rules are

if (SNH,5 is low) then (Qa is high)
if (SNH,5 is medium) then (Qa is medium)
if (SNH,5 is high) then (Qa is low)

The tuning parameters are set looking for a great variation in Qa . Thus, the range
of the input values is from 3 to 4.1 mg/l, and the range for the output values is from
−3 · 104 to 2·105 m3/d. A short range of input values is set in order to achieve a fast
Qa variation to reduce SNH peaks. For a satisfactory plant performance, this control
strategy is only active when there is a risk of SNH,e violation. Therefore, this FC is
only applied to specific SNH,5 values.

This control is interrupted when the risk of violation disappears (SNH,ep < 4
mg/l and SNH,5 < 3.5 mg/l). When it happens, the MPC+FF controller needs time
to recover a successfully SNO,2 control. In order to avoid abrupt changes in the
manipulated variable, variations of Qa are limited during one day after of the control
strategy application.

8.3 Simulation Results

In this section, the control configurations proposed in the above section are tested and
compared. Ideal sensors have been considered. The simulation protocol is established
in [33]: First, a steady state simulation of 200 days, and next a dynamic simulations
of 609 days. Nevertheless, only the data generated during the final 364 days of the
dynamic simulation are used for plant performance evaluation.

http://dx.doi.org/10.1007/978-3-319-46367-4_2
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In Table8.1 the results obtained with the proposed control strategies are shown.
The chosen indicators to show the results obtained are based on the proposed objec-
tives: EQI to evaluate the quality of effluent, OCI to evaluate costs, and the percent-
ages of time of SNH,e and SNtot,e violations.

The results have been compared with the default control strategy for BSM2 pro-
vided in [33], and with the two control strategies presented in the finalization of the
plant layout in [46]. In addition, the results of [19, 37] are also shown for illustra-
tive purposes. However, it should be noted that the comparison in these cases is not
completely fair. In the case of [19], the EQI equation includes the different oxidized
nitrogen forms, whatmakesworse the EQI result, and the simulation in [37] is carried
out using only 275 days of influent data, what results in lower EQI and OCI. On the
other hand, the comparison with the referenced works [7, 20, 21] is not possible. The
reason is that [7, 20] use an earlier version of BSM2 (instead of the modified version
in [46]), and [21] presents EQI and OCI graphs, but they do not provide numeric
values.

As shown in Table8.1, the results of the proposed strategies are obtained for
various fixed qEC,1 values. Obviously, when the control strategy for SNtot,e violations
removal is applied, the qEC,1 value is modified. Logically, as qEC,1 is increased, EQI
is reduced but OCI is increased. In comparison with defCL, [37] and [19], applying
qEC,1 = 0.5, both OCI and EQI are reduced, while the percentage of time of SNtot,e

and SNH,e violations is lower and sometimes zero. EQI and OCI reduction is mainly
achieved with the hierarchical control structure. Important aspects to be considered
in this hierarchical control are: first to get a good tracking through the lower level
MPC+FF controllers and, on the other hand, to give a suitable SO set-points by the
higher level FC.

Regarding the tracking of the lower level control, Fig. 8.2 shows one week evo-
lution of SO,4 control, where the improvement of MPC+FF controller compared to
the PI controllers of defCL can be observed. Table8.2 shows the numerical results
of the performance of both controllers, including the percentage of improvement of
MPC+FF for the SO,4 control. The results of SO,5 and SNO,2 control obtained in this
work are also shown.

One reason of the EQI and OCI reduction obtained with the proposed control
strategies, in comparison with the referred works of Table8.1, is the way how the
controllers of the higher level work. The referred papers try always to control SNH at
a fixed reference, but always with a very large error. This is not the case of the FC of
the present work, whichmodifies the SO set-points based on the biological processes,
but without trying to maintain SNH,5 at a fixed reference. It is also important to note
that the referred works only vary the SO set-point of one aerobic reactor, whereas
in the present work SO,4 and SO,5 set-points are modified. Figure8.3 shows one
week evolution of the most important variables when there are SNH,5 peaks. It shows
the comparison between hierarchical control and the control strategy with fixed SO

set-points. In the case of hierarchical control, when SNH,5 increases, SO,4 and SO,5

set-points are also increased and SNH,e peaks are reduced, and when SNH,5 decreases,
SO,4 and SO,5 are also decremented generating less SNO and reducing operational
costs.
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Table 8.1 Comparative results of control strategy for SNHe violations removal and control strategy
for SNtot,e violations removal

EQI OCI SNtot,e violation
(% of time)

SNH,e violation
(% of time)

[33] defCL 5577.97 9447.24 1.18 0.41

[46] CL1 5447 9348 N/A 0.29

% 2.35 1.05 N/A 29.27

CL2 5274 8052 N/A 0.23

% 5.45 14.77 N/A 43.9

[37] (different
simulation time)

S1 5249 7154 N/A N/A

% 5.9 24.27 N/A N/A

S2 5927 8773 N/A N/A

% −62.6 7.14 N/A N/A

S3 5530 8072 N/A N/A

% 0.86 14.56 N/A N/A

S4 5593 7442 N/A N/A

% 0.27 21.22 N/A N/A

[19] (different
EQI equation)

A1 6239 13324 2.17 19.44

% −11.85 −41.04 −83.9 −4641.46

A2 6172 13323 1.09 20.83

% −10.65 −41.02 7.63 −4980.49

A3 5995 13580 1.35 5.4

% −7.48 −43.74 −14.4 −1217.07

Control strategy
for SNtot,e

violations
removal

qEC,1 = 0 5318.95 6289.59 0.046 0.15

% 4.64 33.42 96.1 63.41

qEC,1 = 0.5 5197.49 6873.65 0.037 0.14

% 6.82 27.24 96.86 65.85

qEC,1 = 1 5069.51 7573.34 0.037 0.14

% 9.11 19.83 96.86 65.85

qEC,1 = 2 4852.49 9196.59 0.028 0.13

% 13 2.65 97.63 68.29

Control strategy
for SNH,e

violations
removal

qEC,1 = 0 5387.81 5942.77 2.39 0

% 3.41 37.09 −102.54 100

qEC,1 = 0.5 5217.9 6680.66 1.027 0

% 6.45 29.28 12.97 100

qEC,1 = 1 5112.01 7399.13 0.69 0

% 8.17 21.68 41.52 100

qEC,1 = 2 4875.14 9066.01 0.25 0

% 12.6 4.03 78.81 100

Regarding the effluent violations, Table8.1 shows that all SNH,e violations are
removed, while the vast majority of SNtot,e violations are also eliminated. There are a
few special cases where the SNtot,e violation is not possible to be avoided. Specifically,
it happens three times in the simulation year in the cases when qEC,1 is equal to 0, 0.5
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Fig. 8.2 Simulation of the first evaluated week of the control performance of the MPC+FF con-
trollers with fixed SO,4 and SO,5 set-points (2 and 1mg/l respectively) and fixed Qa (61944 m3/d)
(a); and with SNO,2 control at a set-point of 1mg/l and varying SO,4 and SO,5 set-points with
hierarchical control (b)

Table 8.2 Control performance results with fixed SO,4 and SO,5 set-points (2 and 1mg/l respec-
tively) and fixed Qa (61944m3/d) and with SNO,2 control at a set-point of 1mg/l and varying SO,4
and SO,5 set-points with hierarchical control

Fixed SO set-points and fixed Qa Hierarchical control and SNO,2 control

SO,4 control SO,5

control
SO,4

control
SO,5

control
SNO,2

control

PI of defCL MPC+FF % MPC+FF MPC+FF MPC+FF MPC+FF

IAE 9.079 0.33 96.36 0.44 0.44 0.37 3.91

ISE 0.4 0.0005 99.87 0.001 0.0049 0.0011 2.76
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Fig. 8.3 One week simulation comparison between control strategy with fixed SO set-points and
varying SO set-points with hierarchical control

and 1; and one time in the simulation year in the case when qEC,1 is equal to 2. These
violations are due to an increased flow rate just when peaks of pollutants are in the last
reactors, possibly due to a heavy rain. Furthermore, in two of these three times, the
influent flow rate exceeds the capacity of the plant and is partially led directly to the
effluent through the bypass, without being treated. Therefore, although the FC acts
adding qEC,5, there is not enough time in advance to avoid the violation. Figures8.4
and 8.5 show some cases where SNtot,e and SNH,e violations are eliminated, unlike
what happens with only hierarchical control. Figure8.5c shows one case where SNtot,e

violation removal is not possible.
As it can be seen in Figs. 8.4 and 8.5, the violations risk detections made by the

ANNs, explained in the previous chapters, allows to apply the appropriate control
strategy enough in advance to prevent violations. In case that a risk of SNH,e violation
is predicted, Qa is increased by a FC to dilute SNH , and when the increasing of SNH
reaches the fifth reactor, Qa is decreased to reduce the hydraulic retention time and
thus to improve the nitrification process. In the case that a risk of SNtot,e violation is
predicted, qEC,1−2 is added according to the value calculated by a FC.
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Fig. 8.4 Simulation of two cases of the control strategy for SNH,e violations removal application
and its comparison with hierarchical control alone

8.4 Summary

In this chapter, control strategies for effluent violations removal have been tested
in BSM2. The main novelty is that, due to the variability of the influent, an intelli-
gent control system selects the control strategies to be applied based on the effluent
predictions.

For the lower level of the hierarchical control structure, a satisfactory SO,4, SO,5

and SNO,2 control performance, by applying MPC+FF controllers, have been also
achieved. Due to the similar results obtained with functions and FCs in BSM1, in
this case only FCs have been proposed for the higher level and also to manipulate
qEC and Qa when a risk of SNtot,e or SNH,e violation is detected.

Simulation results have shown the complete elimination of SNH,e violations.
Regarding SNtot,e violations, they have been avoided except one time in a simula-
tion year, in which a large increase of flow rate coincides with a peak of pollutants in
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the last reactor and with a situation of bypass. In addition, an EQI and OCI reduction
has been achieved in comparison with defCL, CL1, CL2 and the referred works. The
percentage of reduction is compared to defCL, obtaining a maximum EQI reduction
of 13% and a maximum OCI reduction of 37%.



Chapter 9
Concluding Remarks

Concluding Remarks

In this book new control strategies have been applied in WWTPs. Being main
objectives the improvement of effluent quality, the reduction of operational costs
(evaluated by EQI and OCI indices respectively) and avoiding to exceed the estab-
lished limits of effluent pollutants concentrations.

The evaluation and comparison of different control strategies have been based on
two benchmarks, developed by IWA: BSM1 and BSM2. First, BSM1 has been used
as a testing plant because it requires a smaller simulation time and therefore different
control strategies can be tested more quickly. Subsequently, the operation of these
control strategies, adding some modifications, has been tested in BSM2. This is an
updated version of BSM1, closer to a real plant, extending to one year of simulation,
with a much more complex plant model, including also a pretreatment process and a
sludge treatment processes. In this case, a prediction of the effluent has been required
for the selection of the control strategy to be applied. In any case, control strategies
have been applied in the zone of the activated sludge reactors.

The book has been divided into nine chapters. The proposed control strategies have
been based onMPC, FC, functions that relate the input with the manipulated variable
and ANN. MPC controllers have been applied in order to improve the tracking. The
control of the FCs and the functions was based on the biological processes that
take place in the reactors. ANNs have been proposed in BSM2 to detect risks of
violation by effluent predictions, in order to apply the appropriate control strategy.
Both benchmarks and these control approaches have been explained in Chaps. 2 and
3 respectively.

Next, a hierarchical control has been applied in order to improve effluent quality
and to reduce operational costs. In Chap.4 the lower level has been implemented,
where the MPC+FF controllers track the SO in the aerated tanks and SNO,2, improv-
ing the control performance with an ISE reduction of more than 90% compared to
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the default PI controllers. The control performance of the MPC+FF controllers has
been also compared to the referenced works, showing the improvement of the pro-
posed method and thus the successful tracking. In Chap.5, the higher level has been
performed, which regulates the SO set-points of the aerated tanks based on SNH,5.
First, for the selection of the higher level controller, three different alternatives were
proposedmanipulating only SO,5 set-point: aMPC, an affine function and a FC. They
were tested and compared in the three weather conditions: dry, rain, and storm. As
a result, EQI and OCI were reduced significantly. The results of OCI and EQI with
higher level affine function and higher level FC were similar and better than those
obtained with higher level MPC. This is due to the fact that the higher level MPC
tries to keep the value of SNH,5 at a reference level, but this is not possible. For that
reason, the alternatives of affine function and FC for the higher level were tested
with the idea of varying SO,5 based on the SNH,5 measured, taking into account the
variables behavior in the biological processes, but without trying to keep SNH,5 at a
fixed reference. Thus, improving the nitrification process when SNH,5 increases, to
oxidize more SNH and worsening the nitrification process when SNH,5 decreases to
generate less SNO and to reduce costs. To ensure the right tuning of the controllers
and therefore the correct relationship between the applied control and the results, a
trade-off analysis between OCI and EQI has been performed by varying two tuning
parameters for each controller. Next, the higher level control has been extended,
manipulating the three aerobic tanks, achieving a greater reduction in EQI and OCI.
Simulation results show that manipulating the SO set-points of the three aerobic
tanks, an EQI reduction of 5% and an OCI reduction of 3.9% is achieved for dry
weather compared to the default control strategy. For the rain and storm influent
cases, also a satisfactory reduction of EQI and OCI is obtained, higher than 3%.

After this point, control strategies have been added with the objective of effluent
violations removal. In Chap.6, BSM1 has been used as testing plant. Functions and
FCs are proposed for these control strategies basing their control on the biological
processes. The improvement of the denitrification process, by adding qEC,1, achieves
the complete elimination of SNtot,e violations. This control strategy has been tested
with an affine function with a sliding window and with an FC. Both are implemented
to dosage the minimum qEC,1 necessary for this aim. The improvement of the nitri-
fication process by manipulating Qa makes possible the SNH,e violations removal. It
has been tested first, with the combination of a linear function and an exponential
function, and next, with an FCwhich uses different tuning parameters depending on if
there are peaks of pollution in the tanks or not. Simulation results show that SNtot,e and
SNH,e violations are removed for dry, rain, and storm influents. In the cases of SNtot,e

violations removal for the three weather conditions and SNH,e violations removal for
dry weather, a simultaneous reduction of EQI and OCI is achieved in comparison
with the default control strategy. The SNH,e violations removal for rain and storm
influents and the simultaneous elimination of SNtot,e and SNH,e makes inevitable an
increase of OCI. In any case, it has to be said that, with the removal of effluent vio-
lations, a reduction of costs is obtained for not paying fines, which is not considered
in OCI.
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In Chaps. 7 and 8, BSM2 is used as working scenario. For the application of
the control strategies for effluent violations removal in BSM2, effluent predictions
are necessary in order to detect risks of violation and thus selecting the suitable
control strategy to be applied. In Chap. 7, the implementation of the ANNs for these
effluent predictions is described. Simulations have shown a satisfactory predictions
of SNtot,e and SNH,e, which are used for detection of risk violations and thus for
selecting the suitable control strategy. In Chap.8, the control strategies selected by
an advanced decision control system have been implemented. For the lower level of
the hierarchical structure, a satisfactory SO,4, SO,5 and SNO,2 control performance, by
applying MPC+FF controllers, have been also achieved. Due to the similar results
obtained with functions and FCs in BSM1, in this case only FCs have been proposed
for the higher level. Also, FCs are implemented tomanipulate qEC andQa when a risk
of SNtot,e or SNH,e violation is detected. The simulation results have been presented for
different fixed values of qEC,1. They have shown the complete elimination of SNH,e

violations. Regarding SNtot,e violations, they have been avoided except one time in
a simulation year, in which a large increase of flow rate coincides with a peak of
pollutants in the last reactor and with a situation of bypass. In addition, an EQI
and OCI reduction has been achieved in comparison with defCL, CL1, CL2 and
the referred articles. The percentage of reduction is compared to defCL, obtaining a
maximum EQI reduction of 13% and a maximum OCI reduction of 37%.
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Appendix A
Pareto Optimality

Satisfying a set of specifications and constraints required by real-control engineering
problems is often a challenge. Problems in which the designer must deal with the
fulfillment of multiple objectives are known as multiobjective problems (MOPs). It
is common to define an optimization statement to deal with MOPs to calculate a
solution with the desired balance among (usually conflictive) objectives.

While dealing with an MOP, we usually seek a Pareto optimal solution [43]
in which the objectives have been improved as much as possible without giving
anything in exchange. Different optimization procedures and search techniques [41]
have been employed for the purpose of approximating the so-called Pareto set, where
all solutions are Pareto optimal. However, for a successful implementation of the
solution to the MOP, a Multi-Criteria Decision- Making (MCDM) step needs to be
carried out to select themost preferable solution from the approximated set.Hereafter,
this procedure (MOP definition, Pareto ser approximation and MCDM step) will be
known as the Multi-Objective Optimization Design (MOOD) procedure. Since the
MOOD procedure provides the opportunity to obtain a set of solutions to describe
the objective trade off for a given MOP, its use is worthwhile for controller tuning.
Due to the fact that several specifications need to be fulfilled by the control engineer,
a procedure to appreciate the trade off exchange for complex processes could be
useful. Nevertheless, the different MOOD steps are usually handled separately.

There are two different approaches to solve an optimization statement for anMOP.
According to [42]; first, the Aggregate Objective Function (AOF) where the designer
needs to describe all the trade-off at once and from the beginning of the optimization
process, for example, the designer can use a weighting vector to indicate relative
importance among the objective. Second, the Generate-First Choose-Later (GFCL)
approach in which the target is to generate a set of Pareto optimal solutions and then
the designer will select, a posteriori, the most preferable solution according to his/her
preferences [41]. This is the option used in this book.
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Fig. A.1 Pareto front
concept for two objectives

A.1 Pareto Optimal Solutions

In order to generate such set of desirable solutions in the GFCL approach, the Multi-
Objective Optimization (MOO) techniques might be used. Such techniques generate
what is called the Pareto front approximation, where all the solutions are Pareto
optimal. This means that there is no solution that is better in all objectives, but a set
of solutions with different trade-offs among the conflicting objective.

Therefore, a set of optimal solutions is defined as the Pareto set ΘP and each
solution within this set defines an objective vector. The projection into the objective
space is known as Pareto front JP . All the solutions in the Pareto front are said to
be nondominated and Pareto optimal solutions. This means in the Pareto front, there
is not a solution that is better than another one for all the competitive objectives.
To improve one objective will imply to introduce a loss regarding the other ones.
It is important to mention that the true Pareto front is unknown, for this reason
MOO techniques search for a discrete description of the Pareto set Θ∗

P capable of
generating a good approximation of the Pareto front J ∗

P , see Fig.A.1. In this way, the
decision-maker can analyze the set and select the most preferable solution. This set
of solutions implies that there is flexibility at the decision-making stage. The role of
the designer is to select the most preferable solution for a particular situation.

A.2 Multicriteria Decision

All points within the Pareto front are equally acceptable solutions. Once the Pareto
front approximation is provided, the designer needs to choose one of those points
as the final solution to the MOP for the implementation phase. Several tools and
methodologies are available, in order to facilitate the decision-making stage [8, 10,
22, 32, 61], a review with different techniques for decision-making analysis can be
consulted in [18] and a taxonomy to identify the visualizations is presented in [52].
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Somehow, the decision-making can be undertaken using two different approaches:
(i) by including additional criteria such that at the end only one point from the Pareto
front satisfies all of them, and (ii) by considering one point that represents a fair
compromise between all used criteria. In other words, as the MOP establishes the
search among the Pareto front for a compromise among a set of performance indices,
and additional performance (probably of secondary importance) can be introduced.
In this way, a new optimization problem will start with the search domain located in
the Pareto set in order to find the best solution. The second option does not introduce
more information for the decision-making and a fair point should be selected in order
to represent an appropriate trade-off among the different considered cost functions.

Obviously, the ideal setup would be to reach the utopia point. However, the utopia
point is normally unattainable and does not belong to the Pareto front approxima-
tion. This is because it is not possible to optimize all individual objective functions
independently and simultaneously. Thus, it is only possible to find a solution that
is as close as possible to the utopia point. Such solution is called the compromise
solution (CS) and is Pareto optimal. This approach, however, starts from a neither
attainable nor feasible solution. Therefore, it is not very practical as it does not take
into account what can be achieved for each one of the individual objectives functions.
Another procedure to select a fair point is to use bargaining games [3]. This solution
leads us to a practical procedure for choosing a unique point from the Pareto front,
as it will be seen in the next section.

A.3 Bargaining and Trade-Off Solutions Selection

In a transaction, when the seller and the buyer value a product differently, a surplus
is created. A bargaining solution is then a way in which buyers and sellers agree
to divide the surplus. There is an analogous situation regarding a controller design
method that is facing two different cost functions for a system. When the controller
locates the solution on the disagreement point (D), as shown in Fig.A.2, there is away
for the improvement of both cost functions. We can move within the feasible region
towards the Pareto front in order to get lower values for both cost functions. Let θ∗

1 and
θ∗
2 denote the values for the free parameter vector θ that achieve the optimal values
for each one of the cost functions f1 and f2, respectively. Let these optimal values be
f ∗
1 = f1(θ∗

1 ) and f ∗
2 = f2(θ∗

2 ). On that basis, the utopia point will have coordinates
f ∗
1 and f ∗

2 whereas the disagreement point will be located at ( f1(θ∗
2 ), f2(θ∗

1 )). As
the utopia (U) point is not attainable, we need to analyze the Pareto front in order to
obtain a solution. A fair point that represents an appropriate trade off among the cost

functions f1 and f2 is defined by the coordinates ( f P f
1 , f P f

2 ) = ( f1(θ
P f
1 ), f2(θ

P f
2 )),

where the superindex Pf means Pareto front. On the basis of this formalism, we can
identify, in economic terms the benefit of each one of the cost functions (buyer and
seller) as the differences f1(θ∗

2 ) − f P f
1 and f2(θ∗

1 ) − f P f
2 . The bargaining solution

will provide a choice for ( f P f
1 , f P f

2 ) therefore a benefit for both f1 and f2 with respect
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Fig. A.2 Location of the
bargaining solutions into the
Pareto front

to the disagreement. It is important to notice that the problem setup is completely
opposite to the one that generates the compromise solution (CS) as the closest one
to the utopia point.

Formally, a bargaining problem is denoted by a pair < S; d > where S ∈ R
2, d ∈

S represents the disagreement point and there exists s = (s1, s2)∈ S such that si < di .
In our case, S is the shaded area shown in Fig.A.2 delimited by the Pareto front and
its intersection with the axis corresponding to the coordinates of the disagreement
point. In Fig.A.2, different solutions for selecting a point from the Pareto front can
bee seen:

1. The disagreement solution (D): it is the solution associated to the disagreement
point. Even, if it is not the preferred solution for none of the players, it is a
well-defined solution.

2. The dictatorial solution for player 1 (DS1): it is the point that minimizes the cost
function for player 1. The same concept can be applied to player 2, yielding the
dictatorial solution for player 2 (DS2).

3. The egalitarian solution (ES): it is the greatest feasible point ( f P f
1 , f P f

2 ) that sat-
isfies f1(θ∗

2 ) − f P f
1 = f2(θ∗

1 ) − f P f
2 . This point coincides with the intersection

of the 45◦ diagonal line that passes through the disagreement point with the Pareto
front.

4. The Kalai–Smorodinsky solution (KS): it is the point ( f P f
1 , f P f

2 ) corresponding
to the intersection of the Pareto front with the straight line that connects the utopia
and the disagreement point.

5. The Nash Solution (NS): it selects the unique solution to the followingmaximiza-
tion problem:

max
( f P f

1 , f P f
2 )

( f1(θ∗
2 ) − f P f

1 )( f2(θ∗
1 ) − f P f

2 )

s.t. f P f
1 ≤ f1(θ∗

2 )

f P f
2 ≤ f2(θ∗

1 )
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A.4 The Nash Selection

In his pioneering work on bargaining games, Nash in [34] established a basic
two-person bargaining framework between two rational players, and proposed an
axiomatic solution concept which is characterized by a set of predefined axioms
and does not rely on the detailed bargaining process of players. Nash proposed four
axioms that should be satisfied by a reasonable bargaining solution:

• Pareto efficiency: none of the players can be made better off without making at
least one player worse off.

• Symmetry: if the players are indistinguishable, the solution should not discrimi-
nate between them. The solution should be the same if the cost function axis are
swapped.

• Independence of affine transformations: an affine transformation of the cost func-
tions and of the disagreement point should not alter the outcome of the bargaining
process.

• Independence of irrelevant alternatives: if the solution ( f P f
1 , f P f

2 ) chosen from a
feasible set A is an element of a subset B ∈ A, then ( f P f

1 , f P f
2 ) must be chosen

from B.

Nash proved that, under mild technical conditions, there is a unique bargaining
solution calledNash bargaining solution satisfying the four previous axioms. Indeed,
by considering the different options for selecting a point from the Pareto front, the NS
is the only solution that satisfies these four axioms [34]. In fact, the Nash solution is
simultaneously utilitarian (Pareto efficient) and egalitarian (fair). Also from a MOO
point of view, by maximizing the product ( f1(θ∗

2 ) − f P f
1 )( f2(θ∗

1 ) − f P f
2 ), we are

maximizing the area of the rectangle that represents the set of solutions dominated by
the NS. Actually, the NS provides the Pareto front solution that dominates the larger
number of solutions, therefore being absolutely better (that is, with respect to both
cost functions at the same time) than any one of the solutions of such rectangle. These
are the reasons why the NS represents an appropriate choice for the (semi)-automatic
selection of the fair point from the Pareto front.
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