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PREFACE

The boundary layer is the lowest 1-2 km of the atmosphere, the region most
directly influenced by the exchange of momentum, heat, and water vapor at the
earth's surface. Turbulent motions on time scales of an hour or less dominate the
flow in this region, transporting atmospheric properties both horizontally and
vertically through its depth. The mean properties of the flow in this layer—the
wind speed, temperature, and humidity—experience their sharpest gradients in the
first 50-100 m, appropriately called the surface layer. Turbulent exchange in this
shallow layer controls the exchange of heat, mass, and momentum at the surface
and thereby the state of the whole boundary layer. It is hardly surprising we should
have a lively curiosity about this region.

What is surprising is that systematic scientific investigation of the surface
layer and its overlying boundary layer is confined to the last 30 years. Almost all
of that inquiry, furthermore, has been devoted to the simplest situation, the
boundary layer over flat, open land. During this period, micrometeorologists in
the main concentrated on atmospheric behavior above simple surfaces such as
grass or bare soil, while agricultural meteorologists grappled with the complexities
of turbulent exchange within plant canopies. With some isolated exceptions, the
extension to more complex situations such as flat but heterogeneous surfaces and
hills and valleys has been pursued only during the last 15 years by a small but
growing group of researchers.

The reasons for the slow accumulation of understanding in this area are
twofold: difficulties in measurement and difficulties in handling the mathematical
description. The root cause of both is turbulence—the chaotic, essentially
unpredictable variations in the atmospheric properties. Recent advances in sensing
technology and computing power have greatly enhanced our ability to tackle both
problems.

The earliest attempts to make quantitative measurements of atmospheric
turbulence can be traced back (as can so much in modern fluid dynamics) to G. I.
Taylor. In 1917, Taylor deduced such fundamental features of turbulent flow as
anisotropy and the eddy flux of momentum from observations of the gyrations of
balloons and universally jointed wind vanes. Other isolated essays into turbulence
measurement appeared sporadically. In 1930, for example, we have a description
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by F. J. Scrase of his measurements over Salisbury Plain in England with a small
propeller-type air meter, a swinging plate anemometer, and a bivane attached to a
recording pen. Fascinating as these early attempts were, useful measurements of
turbulence in the atmosphere had to await the 1960s.

At that time availabili y of sonic anemometers and other fast-response
sensors was matched by modern digital computers that made it possible to handle
the vast amounts of data such instruments generated. Early descriptions of
boundary layer turbulence had relied entirely on data from slow-response instru-
ments such as cup anemometers and simple thermometers that could furnish only
the average values of wind speed and temperature. Even major scientific field
expeditions such as the 1967 Australian Wangara experiment made no turbulence
measurements and had to use empirical formulas borrowed from aerodynamics to
account for the influence of turbulence on their results. The 1968 Kansas
experiment was the first to deploy fast-response sensors on a large scale and to
process the data in real time with a mobile computer system.

The mathematical difficulties were just as intractable as the practical ones.
The governing equations of atmospheric flow are the Navier-Stokes equations—
nonlinear, second-order, partial differential equations—attributes that spell diffi-
culty when it comes to obtaining practically useful solutions. Furthermore, while
the Navier-Stokes equations describe the instantaneous state of the wind, what we
actually measure, or work with, are the averaged properties of the turbulent wind.
We can obtain the equations governing the behavior of these averaged properties
using the Navier-Stokes equations as a starting point, but exact solutions for these
equations are just as difficult to obtain as those of the Navier-Stokes equations
themselves. Since solutions of some kind are what we need to make predictions
about the way the boundary layer will evolve or to deduce some physically
important property such as momentum flux from easily measured variables, we
abandon mathematical rigor and adopt an engineering approach. In pursuing this
approach, the digital computer has been an indispensable tool. The equations and
formulas you will encounter throughout this book reflect this blend of mathemat-
ical analysis, physical insight often based on experience, and unabashed empiri-
cism. This is the state of the art.

In Chapter 1, we describe the surface layer within the context of a boundary
layer over flat ground. The emphasis is on similarity relations, formulas that
describe universal relationships between measurable quantities, but we shall try to
draw, as we progress, a physical picture of the properties that give rise to these
formulas. We have chosen those forms that best illustrate the process we are
describing. Our objective is an uncluttered narrative that conveys a sense of the
order and symmetry, idealized perhaps, that emerges in atmospheric turbulence
measurements.

In Chapter 2, we discuss surface layer structure again in the context of a
boundary layer over flat ground but from the point of view of spectral behavior.
Here the functional forms complement those of the time-averaged properties in
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Chapter 1. Together, they set the stage for our discussions of flow over more
complicated terrain. Chapter 3 draws us into the first level of complexity, flat
terrain with uniform vegetation. We investigate the interaction between the wind
and the plant canopy and how the canopy modifies the universal relations
described in the first two chapters.

In Chapter 4, we abandon horizontal homogeneity and the one-dimensional
simplicity that it brought to surface layer formulations to discuss changes in
surface conditions and the advective boundary layers they generate. Chapter 5
takes us from the relatively well understood flat earth to the complications of hills
and valleys. New coordinate systems and new methods of analysis are needed to
describe the flow over such a landscape. Chapters 6 and 7 deal with the practical
aspects of boundary layer investigation. A knowledge of instrumentation options
and analysis strategies is crucial to the planning of any experiment, but even users
of processed data benefit from the knowledge of how the data were obtained and
treated.

This book brings under one cover a description of the basic flow structures
that are observed in the atmospheric boundary layer and the techniques available
for studying them. The topics reflect our interest and perceptions, although we
have striven for objectivity. As is necessary in a basic text, many interesting topics
have received a cursory treatment; internal gravity waves and mesoscale features
such as sea breezes and valley winds are examples that spring immediately to
mind. We hope you will be sufficiently motivated by the material included here to
pursue such fascinating topics through more specialized sources.
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1
FLOW OVER FLAT UNIFORM TERRAIN

We start with the simplest of boundary layers, that over an infinite flat surface.
Here we can assume the flow to be horizontally homogeneous. Its statistical
properties are independent of horizontal position; they vary only with height and
time. This assumption of horizontal homogeneity is essential in a first approach to
understanding a process already complicated by such factors as the earth's rotation,
diurnal and spatial variations in surface heating, changing weather conditions,
and the coexistence of convective and shear-generated turbulence. It allows us
to ignore partial derivatives of mean quantities along the horizontal axes (the
advection terms) in the governing equations. Only ocean surfaces come close
to the idealized infinite surface. Over land we settle for surfaces that are locally
homogeneous, flat plains with short uniform vegetation, where the advection terms
are small enough to be negligible.

If, in addition to horizontal homogeneity, we can assume stationarity, that
the statistical properties of the flow do not change with time, the time derivatives
in the governing equations vanish as well. This condition cannot be realized in
its strict sense because of the long-term variabilities in the atmosphere. But for
most applications we can treat the process as a sequence of steady states. The
major simplification it permits is the introduction of time averages that represent
the properties of the process and not those of the averaging time.

These two conditions clear the way for us to apply fluid dynamical theo-
ries and empirical laws developed from wind tunnel studies to the atmosphere's
boundary layer. We can see why micrometeorologists in the 1950s and 1960s
scoured the countryside for flat uniform sites. The experiments over the plains
of Nebraska, Kansas, and Minnesota (USA), Kerang and Hay (Australia), and
Tsimliansk (USSR) gave us the first inklings of universal behavior in boundary
layer turbulence.
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1.1 Boundary layer structure and depth

Our concept of the atmospheric boundary layer (ABL) and its vertical extent
has changed significantly over the last few decades. Sutton (1953) separated the
boundary layer into two regions:

1. A surface layer region 50-100 m deep of approximately constant (in
the vertical) shearing stress, where the flow is insensitive to the earth's
rotation and the wind structure is determined primarily by surface friction
and the vertical gradient of temperature

2. A region above that layer extending to a height of 500-1000 m, where the
shearing stress is variable and the wind structure is influenced by surface
friction, temperature gradient, and the earth's rotation

The two-layer concept roughly parallels that of the inner and outer regions in
laboratory shear flows, although the true extent of the similarity in the scaling laws
in each of those regions to laboratory flow was not known at that time. (Velocity
fluctuations scale with distance from the surface in the inner layer and with the
thickness of the whole boundary layer in the outer layer.) Above these two layers
is the free atmosphere, where the flow is in near-geostrophic balance and no longer
influenced by surface friction.

Viewed as the height at which the wind first attains geostrophic balance, the
ABL depth Zh can be expressed as (Sutton, 1953)

where Km is the exchange coefficient for momentum (discussed in later sections)
and f is the Coriolis parameter representing the effect of the earth's rotation. f
is equal to 27r£ sin £7 being the earth's rotation rate and </> the latitude. This
definition was based on the assumption that Km is constant with height, an
unfeasible assumption, and was soon abandoned.

Theoretical considerations (Tennekes, 1982) pointed to a boundary layer
depth that is proportional to u*/ f, where ut is the friction velocity (also discussed
later) representing the wind stress at the surface

where C is an empirical constant. A value of C = 0.25 yields boundary layer
heights close to observed daytime heights. In reality, the frictional and Coriolis
effects are often overwhelmed by external factors such as subsidence and lapse
rate evolution, so ut/ f cannot be depended on to provide reliable estimates of zh.

Both of the above definitions assume a neutrally stable boundary layer, one
in which air parcels displaced up and down adiabatically maintain exactly the
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same density as the surrounding air and thus experience no net buoyancy forces.
The temperature stratification that produces this state, referred to in meteorology
as the adiabatic lapse rate (~ 1°C/100 m drop in temperature with height), is
often transitory. The more persistent states are the daytime convectively mixed
boundary layer, where the temperature drops more rapidly with height than the
adiabatic rate in the lower regions of the layer and displaced parcels accelerate
vertically away from their original positions, and the nighttime stable boundary
layer, where the temperature drops less rapidly with height and displaced parcels
return to their original positions. The upper limits for these two states define the
depths of the daytime and nighttime boundary layers. They are represented by

where Zi is the height of the base of the inversion layer capping the daytime
boundary layer, and h is the height of the top of the nighttime ground-based
turbulent layer identified in different studies as the top of the surface inversion,
as the level of the wind speed maximum that develops sometimes within and
sometimes above the inversion, or simply as the top of the strongest near-surface
echo layer in sodar (see Chapter 6) records.

In the convective boundary layer (CBL), the capping inversion acts as a lid
damping out vertical motions. The steepest gradients in the mean wind speed,
wind direction, and temperature occur in the first 10% or so of the CBL; in the
upper 90% of the CBL strong convective mixing smoothes out almost all vertical
variations in the mean profiles (Fig. 1.1). At height Zi, the mean profiles begin

FIG. 1.1. Mean vertical profiles of wind speed, wind direction, and potential temperature
in the convective boundary layer.
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FIG. 1.2. Mean vertical profiles of wind speed, wind direction, and potential temperature
in the stable boundary layer.

to depart from their near-constant CBL values to approach the free atmosphere
values above.

The top of the stable boundary layer (SBL) is not as sharply defined as the
top of the CBL. Turbulence levels decrease gradually with height, damped out
by a combination of static stability and diminished wind shear. Although there is
general agreement that h should be the height where turbulence drops to negligible
levels, say 5% of surface values, its correspondence to the height of the surface
inversion and/or that of the wind maximum depends very much on the history of
the SBL evolution. All these significant features are represented in the wind and
temperature profiles of Fig. 1.2 without the stipulation that the inversion top and
the wind maximum simultaneously coincide with h . The wind maximum may be
above or below the inversion top, but the sodar echoes usually stop at the lower of
the two. (There is no temperature turbulence at the wind maximum and therefore
no echoes from that height.) This height is probably the best estimate of h we can
obtain in the absence of direct turbulence measurements.

In both Figs. 1.1 and 1.2 we have plotted temperature in the form of potential
temperature 0, the temperature an air parcel with absolute temperature T and
pressure p would have if brought adiabatically to the pressure at the 1000-mb
(millibar) level. To the first order we can write 9 — T + (g/cp)Az, where g is the
acceleration due to gravity, cp is the specific heat at constant pressure, and Az is
the height difference from the 1000-mb level.

We then have
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g/Cp is the adiabatic lapse rate mentioned earlier. At 1000 mb, T and 9 are,
by definition, equal. In neutrally stratified air, do /dz = 0; unstable and stable
layers are easily recognized in this representation by their respectively negative
( d o / d z < 0) and positive ( d o / d z > 0) slopes.

When significant moisture is present, such as over water surfaces or in plant
canopies, the contribution of moisture to the air density is included by defining a
potential virtual temperature

where Tv = T(l + 0.61q). Tv, the virtual temperature, is the temperature at
which dry air has the same density as moist air at the same pressure and q is the
specific humidity. Over land the difference between 6 and 0V is small and often
ignored. We follow the same practice here, recognizing that wherever buoyancy
effects are involved, 0V would replace 0.

1.2 States of the ABL

Although the overland ABL is evolving continuously in response to the heating
and cooling of the earth's surface, it does have distinct states (Figs. 1.1 and 1.2)
that can be described in fairly simple terms. Following sunrise, a convective layer
develops near the ground (Fig. 1.3) as the sun's rays heat the surface and, indirectly,
the air in contact with it. The convective layer grows through the morning, reaching

FIG. 1.3. Evolution of the convective and stable boundary layers in response to surface
heating and cooling. The time indicated is Local Standard Time (LST).
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heights of 1-2 km by midafternoon. The surface inversion that prevailed before
sunrise evolves as the capping layer, rising with the convective layer as it grows
upward. Often, the capping inversion will stay at about the same height through
much of the afternoon, its strength and persistence determined largely by prior
lapse rate history. A strong morning inversion followed by subsidence through the
day invariably produces a well-defined capping inversion. Close to the ground,
an unstable surface layer approximating Sutton's (1953) definition is clearly in
evidence during the day, as seen in Fig. 1.3.

Within the CBL, convection is carried out by small plumes that merge into
larger plumes (thermals) that transport the heat all the way to the capping inversion
base, as depicted in Fig. 1.4. The figure also shows the entrainment process by
which air from above the inversion base is drawn into the CBL in the regions of
sinking motion. Occasionally, the more energetic thermals penetrate the capping
inversion, but for the most part, they simply distort the upper interface of the CBL,
making it appear highly convoluted. Horizontal roll vortices and dust devils also
appear when conditions favor their development, adding to the modes available
for convective mixing in the CBL.

With the approach of sunset, the capping inversion weakens and becomes
patchy as one or more shallow inversion layers form below it (Fig. 1.5). At this
time there is a rapid collapse of turbulent motions in the boundary layer as the
buoyant plumes that maintain them lose their energy source near the surface
where the ground is cooling quickly from radiative heat loss to space. The air
immediately above the surface cools and mixes progressively upward through the
action of turbulence generated by wind shear. The inversion that begins to form at
the surface grows steadily to a depth of 100-200 m by midnight. A shallow, stable

FIG. 1.4. Schematic of convective boundary layer circulation and entrainment of air through
the capping inversion (from Wyngaard, 1990).
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surface layer can be discerned here as well (Fig. 1.3), where the flow remains
sensitive to the presence of the boundary below. Flow within the SBL is character-
ized by strong wind shear, small eddies, and occasional wave activity (Fig. 1.5);
stratified inversion layers may appear and disappear above the SBL. The wind
maximum (or low-level jet, as it is often called) may develop within the inversion
or above it, as mentioned earlier. Gravity-driven drainage winds usually have their
maxima within the inversion layer, but jets that form in response to the inertial
oscillations induced by the earth's rotation develop considerably above the surface
inversion and move downward as the night progresses.

The SBL seldom, if ever, attains the same state of equilibrium reached by
the CBL. The mean wind and temperature profiles continue to evolve through
the night and even small slopes in the terrain generate drainage winds. Internal
gravity waves may grow and propagate. Usually by sunrise, these disturbances
settle down and the stage is set for the development of a new CBL.

This sequence of CBL and SBL evolution is typical for land surfaces in the
midlatitudes. In the tropics, the base of the trade wind inversion (~ 1.5 km) serves
as the upper boundary for all vertical transfers, including (almost always) cumulus
convection. When clouds are present, the subcloud layer (which extends about 100
m below the cloud base) acts much like the capping inversion in Fig. 1.1. The
base of this subcloud layer (~ 600 m), where Ov begins to increase to its cloud
base values, is taken as the boundary layer top and used as the scaling height for
the convection processes below (LeMone, 1978). Over oceans within the tropics,
temperature gradients tend to be very close to the adiabatic value, and convection
is supported mainly by latent heat from moisture flux at the surface. Nevertheless,
the marine CBLs show surprising similarities to CBLs over land (LeMone, 1978).

FIG. 1.5. Schematic of stable boundary layer flow showing eddy structure, waves, and
elevated inversion layer (from Wyngaard, 1990).



10 ATMOSPHERIC BOUNDARY LAYER FLOWS

1.3 Surface layer

1.3.1 Profiles and fluxes

The idealizations embodied in our assumptions of horizontal homogeneity and
stationarity are more easily realized in the surface layer than elsewhere in the
ABL. In this layer, we also have strong vertical gradients controlling the transfer
of momentum, mass, and heat through it. They raise the possibility that simple
laws, analogous to those that govern molecular diffusion in laminar flows, might
apply here. The relationship between the vertical fluxes of these properties and
their time-averaged vertical gradients was perceived by investigators in the 1950s
and 1960s as the central problem in micrometeorology. Our perception is broader
today, but the vast amount of data collected and analyzed over the years did yield
relationships we now take for granted and use as a baseline for testing surface
layer behavior over more complicated terrain.

Carrying the analogy of molecular diffusion to turbulent transport in the
atmosphere, we can express the fluxes of momentum (r), heat (H), and moisture
(E) in terms of gradients in the vertical direction z:

where Km, Kh, and Kq are the turbulent exchange coefficients for momentum,
heat, and moisture; u, 0, and q are the mean streamwise wind component, mean
potential temperature, and mean specific humidity; and p is the density of air.
(Note that r, in contrast to H and E, is defined positive downward.) The ex-
change coefficients are the counterparts of viscosity, conductivity, and diffusivity
in laminar flow, but their magnitudes are typically three orders of magnitude larger.
The extension of that concept to turbulent exchange in the atmosphere is known
as K-theory.

The downward flux of momentum has dimensions of stress (force/area).
It is a vector quantity with components TX and Ty. In the surface layer over
uniform terrain, the decrease in stress with height is small enough to be negligible.
Constancy of stress implies constancy also in the wind direction with height, and
this allows us to treat the momentum transport as a one-dimensional problem in
(1.6). Because the flow is horizontally homogeneous, we can assume that u, like
the scalars 0 and q, varies only in the vertical. Aligning the x direction with the
wind direction, we have TX = TO and ry = 0 in the surface layer.

We now define a reference velocity u*, known as the friction velocity, to
represent the effect of wind stress TO on the ground,



This velocity, which varies with the nature of the surface and the magnitude of the
wind, has emerged as an important scaling parameter in surface layer studies.

1.3.2 Logarithmic wind profile

The introduction of u* leads to a simple formulation for wind profiles in a neutrally
stratified atmosphere. We can represent Km, which has dimensions of length x
velocity, as the product of the two surface layer scaling parameters with those
dimensions, height z and u*:

where k is the constant of proportionality. Substituting for r and Km in (1.6), we
get

Integration of (1.10) yields the classical logarithmic wind profile

Here Z0, the constant of integration (known as the roughness length), is the height
at which u, extrapolated downward, vanishes. Laboratory measurements indicate
ZQ to be approximately 1/30 the height of the roughness elements, but over natural
flat terrain the factor is often observed to be larger (Yaglom, 1979). The constant
k is known as the von Karman constant, with reported values ranging from 0.35
to 0.43. For this constant we adopt a value of 0.4, the one most generally accepted
in boundary layer work today.

The logarithmic wind profile is strictly valid only for the neutral atmosphere.
As the atmosphere becomes more stable or unstable, the profile departs from be-
ing logarithmic (Fig. 1.6). For most applications very close to the ground (i.e.,
z < 10m), however, the wind profile can be assumed to be almost always loga-
rithmic. This allows us to use the relationships in (1.6), (1.7), and (1.8) to compute
the fluxes from gradient measurement of properties in the layer.

Thus, if u1 and u2 are the mean winds measured at two heights z\ and Z2, we
have

FLOW OVER FLAT UNIFORM TERRAIN 11
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FIG. 1.6. Wind profile in stable, neutral, and unstable air.

substituting for u* from (1.12). If the reference height zr is the geometric mean
of z\ and z2, that is, (z1z2)1/2, then at z = zr, the mean wind speed is equal to
(u1 + u2)/2.

Now, if we assume that close to the ground Km = Kh — Kq (Panofsky and
Dutton, 1984), all we need for computing the vertical fluxes are the mean values
of 9 and q measured at the same heights at which u1 and u2 are observed. If we
can also assume that their profiles are approximately logarithmic, we can, using
(1.10) and (1.12), express the gradient of the mean of any such variable £ as

The fluxes of momentum, heat, and moisture assume the form

We can now write
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Estimation of fluxes from profiles is subject to several constraints. We require the
fluxes to be constant with height, which implies uniform flat terrain and observing
heights well within the surface layer. The logarithmic law applies strictly to
neutral surface layers; the estimates become less reliable as the stability departs
from neutral and the profiles deviate more and more from logarithmic.

1.3.3 Eddy correlation and fluxes

Earlier in this chapter we defined the fluxes of momentum, heat, and moisture in
terms of the mean vertical gradients of those properties. Because these fluxes are
almost entirely the result of turbulent mixing, we should be able to define them
more directly in terms of the turbulent (or eddy) components of velocities and of
the properties being transferred. Mean flux across any plane implies correlation
between the wind component normal to that plane and the entity in question. In
the covariance between the two, we have a direct measure of the flux across the
plane.

We start with the definition of velocity components u, v, and w along right-
handed coordinate axes x, y, and z, respectively. These velocities and scalars
such as 9 and q can each be separated into a mean component denoted by an
overbar and an eddy component denoted by a prime:

By definition, we have u' = v' = w' = o' = q' = 0. If the x axis is defined
in the direction of the mean flow, v = w = 0; only u = 0. Over a flat, level,
homogeneous surface, we take x and y to be horizontal and z to be vertical and
positive upwards.

The fluxes can now be written as

The covariance terms on the right are unambiguous measures of the fluxes, requir-
ing no assumptions about the mixing properties of turbulence. To realize them,
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however, we need fast-response sensors that can faithfully follow the fluctuations
in all the variables and digital sampling at rates (10-20 Hz depending on height),
much faster than needed for mean profile measurements. (The mean products
of the velocity fluctuations are referred to, in general, as Reynolds stresses, and
—pu'w', in particular, as the Reynolds shear stress.)

1.3.4 Measures of stability

We have seen how the ABL responds to changes in stability brought about by
the heating and cooling of the ground. As we search for universal behavior in the
boundary layer, we need to establish a proper measure of stability in the surface
layer. The most widely used indicator of stability in laboratory and early atmo-
spheric work is the gradient Richardson number Ri, a nondimensional parameter
representing the relative importance of buoyancy and shear in producing turbu-
lence:

where g is the acceleration due to gravity (the term g/o is referred to as the
buoyancy parameter1). The advantage in using the Richardson number is that it
contains gradients of mean quantities that are easy to measure. Ri is positive
for stable stratification, negative for unstable stratification, and zero for neutral
stratification. Above a critical value Ric (= 0.25 for inviscid flow), the flow
undergoes a transition from turbulent flow to laminar. Between values 0 and Ric,
turbulence is almost entirely mechanical in origin, generated by wind shear; at
Ri < 0, we have a mixture of both mechanical and convective turbulence. The
disadvantage in using Ri is that it is an unknown function of height and therefore
not an appropriate stability parameter for characterizing surface layer structure.

Two other forms of the Richardson number, Rf the flux Richardson number
and RI, the bulk Richardson number, are sometimes used. Rf is the ratio of the
rate of production of turbulence by buoyancy to that by shear:

In (1.22) the numerator represents the production (or destruction) of turbulence by
thermal stratification, and the denominator represents the production by turbulent
stress working against the mean strain. We will be discussing these concepts

'Strictly speaking, the buoyancy parameter g/0 should be g/Tr(z), where Tr(z) is a hydro-
static adiabatic reference state defined by dTr/dz = —g/cp and Tr(zT] = T(zr) (zr being the
reference height). For practical purposes, in the ABL we can write g/TT(zr) ~ g/T(z) ~ g / 9 ( z ) .



FLOW OVER FLAT UNIFORM TERRAIN 15

later in the context of the turbulent kinetic energy budget in the surface layer.
Although Rf properly characterizes the effect of flow stratification on turbulence,
it is awkward to use in practice, being a mixture of eddy correlations and mean
gradients, and is therefore seldom used.

Rb is a useful indicator of stability close to the ground, particularly under
conditions of low wind shear when Ri becomes undependable:

where 0Z and 0o denote mean potential temperatures at height z and the surface,
respectively, and uz denotes the mean wind at height z. In light winds, the denom-
inator in this expression behaves more predictably than in (1.21). Its application
is limited because it is only a crude approximation of Ri and requires nomograms
(Panofsky and Dutton, 1984) relating it to Ri and ln(z/zo) to render it useful.

The stability parameter now recognized by boundary layer meteorologists as
appropriate for the surface layer is the ratio of height z to the scaling length L (the
Obukhov length), which can be expressed as

where (w'0 ' )o denotes temperature flux at the surface. The ratio z/L is essentially
the same as Rf with substitutions in the denominator of u*/kz for du/dz and
u2

* for —(u'w1). The negative sign is introduced so z/L has the same sign as
Ri and Rf, negative when the atmosphere is unstable and positive when it is
stable. This quantity is more useful than Ri because L can be assumed constant
through the surface layer. It also implies that within the surface layer [where this
parameter forms the basis for the similarity hypothesis proposed by Monin and
Obukhov (1954)], the effects of varying height and stability (as represented by L)
are interchangeable.

1.3.5 Monin-Obukhov similarity

Empirical evidence from field experiments conducted over flat terrain points to
a surface layer where the structure of turbulence is determined by a few key
parameters as proposed by Monin and Obukhov (1954). These are the height z,
the buoyancy parameter g/0, the kinematic surface stress T O / p , and the surface
temperature flux Ho/pcp. According to the Monin-Obukhov (M-O) hypothesis,
various atmospheric parameters and statistics, such as gradients, variances, and
covariances, when normalized by appropriate powers of the scaling velocity u*

and the scaling temperature T* (as defined below), become universal functions of
z/L:
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Although defined strictly in terms of fluxes at the surface, u* and T* are evaluated,
in practice, from measurements of the fluxes at some convenient height within
the surface layer where their vertical variations can be assumed negligible with
height, a reasonable assumption for z< |L | (Haugen et al., 1971). The important
nondimensional forms to emerge in the surface layer are

where aw and ag are the standard deviations of w and 9, and e is the rate of
dissipation of turbulent kinetic energy. We introduce e here because of its relevance
to discussions of the turbulent kinetic energy budget later in this chapter. Its
relationship to velocity spectra will be discussed in Chapter 2.

All the above functions follow M-O scaling with surprisingly small scatter, as
evident in the plots of the Kansas data (Businger et al., 1971; Wyngaard and Cote,
1971). The following formulations are essentially the Kansas results, reexamined
and refined through comparison with other observations (Dyer, 1974; Hogstrom,
1988):

The forms of these functions, plotted in Fig. 1.7, cannot be predicted from
dimensional analysis. They have to be determined empirically from field experi-
ments. Conspicuously absent from this list are forms for the standard deviations
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FIG. 1.7. Similarity functions in the surface layer.

of u and v. They do not follow M-O similarity for reasons that will become clear
as we examine the behavior of their spectra in Chapter 2. We can, however, ex-
pect scalar properties such as q and their fluxes to follow M-O similarity and to
have functional forms resembling those of <j>h and fa when normalized by the
appropriate scaling parameter, in this case q*, defined as —(w'q')o/u*.

In our idealizations of these wind profiles, we have forced (f>m = 4>h = (j)e = \
at z/L = 0. Not all experiments support the assumption of unity for neutral 4>m

and </>h (Businger et al., 1971) but many do (Dyer, 1974; Dyer and Bradley, 1982).
The forms we have chosen for <pm and <f>h are known as the Businger-Dyer relations
(Businger, 1988; Panofsky and Dutton, 1984). We have 0e also approaching unity
at neutral stability because of the expected balance between shear production and
viscous dissipation of turbulence in the absence of any buoyant production and
transport:

Having chosen a form for </>m, we can derive an expression for the diabatic
(nonneutral) wind profile. (The mean profiles u/u*, 0/T*, etc., are not functions
of z/L; they have to be derived from the gradients.) Integration of </>m yields a
modified logarithmic profile (Panofsky and Dutton, 1984):
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where the diabatic term tm is the integral of (1 - </>m)/(z/L) over limits z0/L
to z/L. pm is thus a function of z/L. The expression for im is simple for the
stable surface layer (-5 z/L, for our choice of </>m) but more cumbersome for the
unstable layer. im values corresponding to </>m in unstable air (1.31) are presented
in Table 1.1.

The basic definitions for </>m and </>h in (1.26) and (1.27) lead to the following
identities:

Table 1.1. <|>m and fm in Unstable Air

z/L

0.00

-0.10

-0.20

-0.30

-0.40

-0.50

-0.60

-0.70

-0.80

-0.90

-1.00

-1.10

-1.20

-1.30

-1.40

-1.50

-1.60

-1.70

-1.80

-1.90

-2.00

<l>m

1.000

0.788

0.699

0.644

0.606

0.577

0.554

0.535

0.519

0.505

0.493

0.482

0.472

0.463

0.455

0.447

0.440

0.434

0.428

0.422

0.417

I m

0.000

0.284

0.461

0.595

0.702

0.793

0.873

0.943

1.006

1.063

1.116

1.165

1.211

1.253

1.293

1.331

1.367

1.401

1.434

1.465

1.495
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From (1.31) and (1.32) we have

which leads to simple expressions for Kh/Km and Ri.

The equivalence of Ri and z/L in unstable air is a consequence of the Busin-
ger-Dyer formulation. (Ri is derived purely from the mean profiles and z/L from
the eddy fluxes, so their close functional dependence has been viewed as a test of
M-O similarity in the surface layer.) Plots of Kh/Km, Ri, and Rf as functions of
z/L are presented in Fig. 1.8.

The correlation coefficients for uw, wO, and uO (stable only) also follow
M-O similarity. Figure 1.9, based on a replot of the Kansas data, shows how these
functions behave in the range -2 < z/L < 1. Their forms may be approximated

FIG. 1.8. Surface layer parameters Kh/Km, Ri, and Rf shown as functions of z/L.
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FIG. 1.9. Cross-correlation coefficients for uw, wd and uO in the surface layer.

as follows:

ruO is not M-O similar in unstable air. Its value is largest near neutral (where
it might range anywhere from —0.2 to —0.6) but drops with increasing height,
sometimes sharply and at other times more gradually.

Our similarity functions are shown as extending through —2 < z/L < +1.
In reality, the curves begin to approach their free convection asymptotic forms
at z/L = — 1 (Wyngaard and Cote, 1971) as they become insensitive to surface
stress TO/p. On the stable side, the similarity functions are well behaved only up to
z/L = +1. Beyond that, the functions no longer respond to surface layer scaling
as the layers decouple from the surface. On the basis of their conformity to M-O
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similarity, we define the surface layer depth at z = \L\ for both stable and unstable
conditions. Some investigators (e.g., Holtslag and Nieuwstadt, 1986), however,
prefer to define it as a fraction of the boundary layer depth, as 0.1 Zi for the unstable
surface layer and 0. \h for the stable surface layer.

1.4 Above the surface layer

1.4.1 Convective mixed layer

Above the unstable surface layer, roughly above O.l zi, a different scaling law
takes effect. This is the region where large-scale convective motions driven by
surface heating force a near-uniform distribution of u and 0 and where the flow is
clearly insensitive to the presence of the ground below. Neither TQ/P nor z exerts
any influence on the turbulence here. The controlling parameters are surface
temperature flux HO/pcp and CBL depth zi.

In this mixed layer we have a new scaling velocity W* and a new scaling
temperature O*; mixed layer similarity implies that the statistical properties of
turbulence, nondimensionalized with w* and $*, should be functions only of z/Zi:

The validity of this scaling law was established by Willis and Deardorff (1974) in
their laboratory simulations of the CBL and was later confirmed for the atmosphere
by Kaimal et al. (1976), Caughey and Palmer (1979), and Lenschow et al. (1980).
Their findings are remarkably consistent. Plotted in Fig. 1.10 are the profiles of
various turbulence parameters in their mixed layer forms. The curves are based
on data from the Minnesota experiment (Kaimal et al., 1976), augmented by
more measurements from Ashchurch (Caughey and Palmer, 1979); both were
obtained with the same turbulence instrumentation, attached to the same type of
balloon (Caughey and Palmer, 1979). The data points (not shown) do not exhibit
the tight grouping observed in the surface layer plots of Businger et al. (1971)
and Wyngaard and Cotd (1971), but their distribution indicates a clear functional
dependence that seems to hold in the mixed layer. Most studies of mixed layer
turbulence describe results in terms of variances (not standard deviations, as in
the surface layer), a practice we continue here.

The horizontal velocity variances, which did not follow M-O similarity in
the surface layer, exhibit a rare consistency when plotted in the mixed layer
framework. They show a slight maximum near the surface but otherwise stay
relatively invariant with height over much of the mixed layer. In this layer we
have, from Caughey and Palmer (1979),
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FIG. 1.10. Vertical profiles of nondimensional mixed layer parameters (after Caughey and
Palmer, 1979). Dashed portions of curves imply extrapolations through the surface layer.

Laboratory measurements of Adrian et al. (1986) are also in good agreement with
(1.47).

The fluctuations in the horizontal, being controlled primarily by the large
convective motions in the CBL, follow mixed layer scaling almost to the surface.
A formulation in terms of u2 is possible, but not as a function of z/L. Recognizing
that
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In the mixed layer, Lenschow et al. (1980) found &g/8l and o2
qjQ\ (scaling

parameter Q* for humidity denned the same way as $*) to have similar profiles
and to follow the same vertical distribution observed by Kaimal et al. (1976) in
the range 0.12, < z < 0.5zi:

This is, in fact, the asymptotic form for crs/T* in (1.34). Above 0.5^, both the
temperature and humidity variances rise to roughly their surface layer values, reach
a maximum at z ~ Zi, then drop sharply above Zi, as in Fig. 1.10. This increase
near Zi is associated with entrainment of warmer air downward from above the
ABL and therefore does not follow mixed layer scaling. [For a discussion of the
entrainment process, see Deardorff (1978).]

Also shown in Fig. 1.10 are the normalized profiles of w'9' and of e, the

we can write

The surface layer form for o^ _„/«*, proposed by Panofsky et al. (1977), in fact
approaches (1.49) in the unstable limit from its value of 4 at neutral.

(Zi/L is often used as an indicator of the relative importance of convection over
shear in the boundary layer, whereas Zi/wf is viewed in diffusion studies as the
characteristic time scale for mixing in the CBL.) The functional forms for a^/wl
as well as for w'3/wl established by aircraft (Lenschow et al., 1980) and tower
(Hunt et al., 1988) measurements are
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dissipation rate of turbulent kinetic energy. w'O' decreases steadily with height,
crossing zero at about 0.8z, to reach a minimum value at about z,:. The strong
negative heat flux at Zi is another manifestation of the entrainment process men-
tioned above, e, on the other hand, remains fairly constant up to z ~ Zi and falls
off rapidly above that height.

1.4.2 Convective matching layer

The layer of the CBL between —L and 0. Izj serves as a matching layer between
the surface and mixed layers (Panofsky, 1978). The gradients of wind and tem-
perature are not negligible in this layer; and although u* is no longer significant,
height z, not z^ is the controlling length scale. It is considered a matching layer
because relationships expressed as functions of z/L in the surface layer translate
to equivalent forms for the mixed layer, as functions of z/Zi, with only an ad-
justment for the presence of k in the former. The scaling velocity Uf and scaling
temperature Tf (Wyngaard et al., 1971) for this layer are

Turbulence parameters nondimensionalized with u/ and Tf should be constants in
this framework. (The height dependence does not disappear; it is simply included
in the scaling parameters.) Both crw/Uf and OQJTj assume values about 1.34 as
we might expect from (1.51) and (1.53). The equivalence of dimensionless terms
in the three frameworks in this layer is illustrated for the case of aw:

Note that (1.57) is the asymptotic form for the surface layer expression in (1.33).
The scaling laws in the CBL, summarized in Table 1.2, show how the controlling
parameters evolve with height as one progresses upward through the matching
layer.

Although the presence of the matching layer is satisfying from a theoretical
standpoint, its importance to modeling and other applications is minimal and
therefore ignored in many discussions of CBL structure. Note that in CBLs where
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Table 1.2. Evolution of Scaling Laws with Height in the CBL

Height Range

O.lz,. s= z=s z,

-L =S z =S 0. lz,.

z=S -L

Layer
Characteristic

Mixed layer

Matching layer

Surface layer

Controlling
Parameters

z,, HO/(,CP, g/e
z, #o/pCp, g/e
z, L, TO/P,

#o/P<> #/e

Scaling
Parameters

w,, 6,

uf Tf

u,, T,

Functional
Dependence

/(z/z,.)

Constant

/(z/L)

£, < — WL (i.e., where the influence of buoyancy is weak compared with shear),
the matching layer may be replaced by a deep layer where all three length scales,
z, L, and Zi, exert control. Here the scaling laws are less clearly defined. This
situation is typical for the marine boundary layer where we find L « —200 m and
Zi KI 600 m. On a convective day over land, in contrast, we often have L w — 20 m
and Zi « 1 km.

1.4.3 Stable outer layer

At heights greater than L in the SBL, in the layer we loosely refer to as the stable
outer layer, we again encounter departures from surface layer scaling. Here it
reflects a growing tendency for the turbulence to be decoupled from the surface.
Height becomes irrelevant, hence the term z-less stratification (Wyngaard and
Cote, 1972) is used to describe the flow in this layer. Caughey et al. (1979) showed
how the stable outer layer statistics from the Minnesota experiment responded to
scaling with h. Their h corresponded to the height at which heat flux dropped to
5% of its surface value. For those runs, that height was fairly close to the inversion
top and to the jet maximum. All fluctuation statistics, normalized by M* and T*,
dropped monotonically to 0 as z approached h (see Fig. 1.11).

Nieuwstadt (1984) and Sorbjan (1986) present arguments for a local M-O
similarity, where u*, T*, and L are replaced by local values of those scaling
parameters computed from —u'w' and w'9' measured at level z. When non-
dimensionalized with these local scaling parameters, the variances and fluxes in
the SBL display a certain invariance with height. This implies a strong inter-
nal consistency in the relationships among the gradients, variances, and fluxes.
The local stability parameter z/Lz is essentially the flux Richardson number Rf
discussed earlier. When z/L becomes much larger than unity, this local scaling
breaks down giving way to buoyant oscillations in the form of gravity waves at
frequencies equal to or less than the Brunt-Vaisala frequency N, where
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1.5 Budgets of turbulent kinetic energy, temperature
variance, and fluxes

An examination of the terms in the kinetic energy equation offers some important
insights into the nature of turbulent production and destruction in the boundary
layer. The behavior of the terms within the surface layer is especially interesting;
there the terms are larger and thus easier to measure than in the layers above. In
its simplified form, assuming horizontal homogeneity, the equation for the time
rate of change of kinetic energy De/dt can be written as in Panofsky and Dutton
(1984):

where e = (1/2)(u'2 + v12 + w'2),p is the atmospheric pressure, and e is the
dissipation rate of turbulent kinetic energy. The Eulerian derivative, D/Dt =

FIG. 1.11. Vertical profiles of variances and fluxes in the stable boundary layer normalized
by their near-surface (4 m) values (after Caughey et al., 1979).

in units of radians/second. (Note the discussion of the buoyancy parameter g/9 in
Section 1.3.) These waves, with periods (2n/N) ranging from roughly a minute
to an hour, appear prominently in time traces of vertical velocity, temperature,
and pressure. They also appear as separate peaks at the low-frequency end of the
power spectra of those variables (Caughey, 1977; Finnigan et al., 1984).
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d/dt + u(d/dx) + v(d/dy] + w(d/dz), represents the time rate of change fol-
lowing a fluid element.

In (1.59), the first two terms on the right are the production rates of turbulence
by shear and buoyancy. The shear production term (I) is always positive, a source
for turbulence, whereas the buoyant production term (II) can be either a source
or a sink, depending on the sign of w'O'. Both terms can be measured directly.
The third and fourth terms are transport terms and represent the import or export
of turbulent kinetic energy by the turbulence itself. The third term, the pressure
transport term (III), has never been accurately measured but is inferred indirectly
as a residual after measurement of all other terms. The fourth term, the turbulent
transport term (IV), is the rate at which turbulent kinetic energy is exported or
imported by velocity fluctuations. This term can also be measured directly. The
last term, the viscous dissipation term (V), is the rate at which turbulent kinetic
energy is converted into internal energy (i.e., heat) by doing work against viscous
stresses. As we will see in the next chapter, this term can be calculated from the
spectral energy at the high-frequency end of the turbulence spectrum.

Assuming steady state (i.e., de/dt = 0) and multiplying all terms on the
right by kz/u^, we find that (1.59) in the surface layer reduces to a relationship
between dimensionless terms, some of which are the similarity functions plotted
in Fig. 1.7:

where I is the imbalance presumed to be the pressure term. Both <pm and <p£ are
known functions of z/L. In the Kansas data, Wyngaard and Cot6 (1971) found
the transport term

In every case, in the unstable surface layer (f>t was positive, indicating turbulent
transport is exporting energy upwards at the same rate as its production by buoy-
ancy. The various terms in (1.60) are plotted as functions of z/L in Fig. 1.12. It
appears that the imbalance term / in (1.60) is the difference between shear produc-
tion and dissipation in the unstable surface layer. In the stable surface layer, with
<j>m ~ <pe and <j>t ~ 0, the imbalance term appears to be of the same order as the
buoyant production term z/L, which is a loss in the budget. For the imbalance to
be zero, 0e will have to be much smaller (w 1 + 4 z/L) than observations indicate.
The question of energy balance in the stable layer remains unresolved.

Energy budgets above the convective surface layer are much harder to mea-
sure accurately since all terms diminish in magnitude. Shear production is very
small because du/dz w 0; buoyant production changes from being a source
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below 0.8zi to a sink above, reflecting the change in the sign in the w'O' profile
at that height. Turbulent transport changes from a loss to a gain above 0.4 Zj.
The findings of Caughey and Wyngaard (1979) were inconclusive, but the aircraft
measurements of Lenschow et al. (1980) confirm our expectations of a balance
among buoyant destruction, turbulent transport, and dissipation through much of
the mixed layer. In the SBL, turbulence levels are too small to measure with any
degree of precision (see Fig. 1.11) and are often complicated by the presence of
gravity waves. Energy budgets under the resulting unsteady conditions have been
presented by Finnigan and Einaudi (1981), and Finnigan et al. (1984).

The budget of temperature variance (actually 0'2/2 for consistency with
the form for kinetic energy) was examined by Wyngaard and Cote (1971). The
equation reduces to

The terms on the right are the production rate (I), the turbulent transpost rate (II),
and the dissipation rate (III) of half the temperature variance. Ng can be calculated
from the temperature spectrum if e is known, as we will see in Chapter 2. All other
terms can be measured. In the Kansas data, Wyngaard and Cote (1972) found the

FIG. 1.12. Similarity functions representing terms in the turbulent kinetic energy budget in
(1.59).
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transport term to be negligible in the surface layer compared with the other two.
Assuming steady state in the surface layer and multiplying the two remaining
terms by kz/u*T%, and recognizing w'&' = —n^T*, we have the nondimensional
form of the budget

which implies that most of the temperature variance produced is destroyed in the
surface layer. (<pjv is the dimensionless temperature dissipation rate analogous to
0e.) Above the surface layer the terms in the temperature variance budget become
extremely small, erratic, and difficult to evaluate.

The budgets of momentum flux and heat flux over a horizontally homoge-
neous surface reduce, respectively, to (Wyngaard et al., 1971)

and

In both equations, the terms on the right represent shear or gradient produc-
tion (I), buoyant production (II), turbulent transport (III), and pressure destruction
(IV). Destruction of both these fluxes is brought about primarily by pressure forces
and only minimally by viscous dissipation. This accounts for the absence of the
dissipation terms in (1.64) and (1.65). Wyngaard et al. (1971) found the transport
terms in both equations to be small in the surface layer compared to the shear
and buoyant production terms. If we assume steady state, we are left with a bal-
ance between the pressure destruction term, which was not measured, and the two
production terms.
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SPECTRA AND COSPECTRA OVER
FLAT UNIFORM TERRAIN

Turbulent flows like those in the atmospheric boundary layer can be thought of as
a superposition of eddies—coherent patterns of velocity, vorticity, and pressure—
spread over a wide range of sizes. These eddies interact continuously with the
mean flow, from which they derive their energy, and also with each other. The
large "energy-containing" eddies, which contain most of the kinetic energy and are
responsible for most of the transport in the turbulence, arise through instabilities
in the background flow. The random forcing that provokes these instabilities
is provided by the existing turbulence. This is the process represented in the
production terms of the turbulent kinetic energy equation (1.59) in Chapter 1.

The energy-containing eddies themselves are also subject to instabilities,
which in their case are provoked by other eddies. This imposes upon them a finite
lifetime before they too break up into yet smaller eddies. This process is repeated
at all scales until the eddies become sufficiently small that viscosity can affect
them directly and convert their kinetic energy to internal energy (heat). The action
of viscosity is captured in the dissipation term of the turbulent kinetic energy
equation.

The second-moment budget equations presented in Chapter 1, of which (1.59)
is one example, describe the summed behavior of all the eddies in the turbulent
flow. To understand the conversion of mean kinetic energy into turbulent kinetic
energy in the large eddies, the handing down of this energy to eddies of smaller
and smaller scale in an "eddy cascade" process, and its ultimate conversion to
heat by viscosity, we must isolate the different scales of turbulent motion and
separately observe their behavior. Taking Fourier spectra and cospectra of the
turbulence offers a convenient way of doing this. The spectral representation
associates with each scale of motion the amount of kinetic energy, variance, or
eddy flux it contributes to the whole and provides a new and invaluable perspective
on boundary layer structure.

The spectrum of boundary layer fluctuations covers a range of more than five
decades: millimeters to kilometers in spatial scales and fractions of a second to

2
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hours in temporal scales. The field experiments of the last two decades confirm
that spectral representations in the wavenumber or frequency domain follow sim-
ilarity laws much like the time-averaged statistics discussed in Chapter 1. When
nondimensionalized with the appropriate scaling parameters (it*, T,, w*, and #*),
the spectral and cospectral forms reduce to a set of universal curves that are func-
tions only of z/L in the surface layer and z/Zi in the convective mixed layer. The
existence of such order in the spectral domain is indeed gratifying to the boundary
layer meteorologist. On a practical level, it provides engineers and modelers with
the equations they need for a range of applications, from design of structures to
air pollution predictions. In the ABL, the experimenter can use that information
to determine the frequency requirements for sensors operating at a given height
or, conversely, to adjust the observing height to suit the response characteristics
of available sensors.

This chapter assumes familiarity with the general principles of the application
of Fourier transforms to random processes. The essential formulas are presented
in Appendix 2.1.

2.1 Spectral characteristics of boundary layer turbulence

The turbulent eddies we observe in the boundary layer are spatially extensive
structures, and, ideally, their analysis requires information from many points in
space. Such measurements are becoming increasingly available from aircraft and
remote sensors, but the greater part of the data available to the micrometeorol-
ogist is still derived from point measurements in space as a function of time.
To convert these temporal measurements into spatially distributed data, we com-
monly adopt Taylor's frozen turbulence hypothesis, which assumes that eddies
change imperceptibly as they are convected by the mean wind u past an in situ
sensor (Appendix 2.2). This assumption works best in the surface layer and worst
in the high-intensity turbulence of a plant canopy or in the mixed layer. (In the
recirculating flow behind a hill, it does not work at all.)

With two sensors a distance r apart, we can form the two-point covariance
tensor Rij (x,r) that provides the fundamental description of spatial structure in
the turbulence

The Fourier transform of Rij(x,r) converts that covariance to a two-point
spectrum tensor Eij(x,n), where K represents the wavenumber vector. Eij(x,n)
contains complete information on the distribution of turbulent variance and co-
variance over wavenumber space. Unfortunately, more information on the flow
structure than we usually possess is required to form either EIJ (x, K) or R^ (x, r)
and we usually work with simpler and more attainable descriptions.
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FIG. 2.1. Schematic of energy spectrum in the atmospheric boundary layer showing distinct
regions of energy production (A) and dissipation (C) and the inertial subrange (B), where
both energy production and dissipation are negligible. A is the integral scale of turbulence
and 77 is the Kolmogorov microscale.

A particularly useful conceptual picture of the distribution of energy in
wavenumber space, if we are dealing with turbulence that is homogeneous in
all directions, is provided by the scalar energy spectrum E(K). E(K) represents
the contribution to the total kinetic energy from Fourier modes with wavenumber
magnitudes between K and K + dn, where n = \K . For a precise definition of
E(K), see Lumley and Panofsky (1964). E(K) peaks in the energy-containing re-
gion, by definition, and drops to zero at both ends of the spectrum. In its schematic
representation in Fig. (2.1) we identify the three major spectral regions, A, B, and
C, relevant to boundary layer flow.

A The energy-containing range, which contains the bulk of the turbulent
energy and where energy is produced by buoyancy and shear.

B The inertial subrange, where energy is neither produced nor dissipated
but handed down to smaller and smaller scales.

C The dissipation range, where kinetic energy is converted to internal en-
ergy.

The energy-containing and dissipation ranges have their own characteristic length
scales: In the former it is the Eulerian integral length scale A; in the latter, the so-
called Kolmogorov microscale 77. In Fig. 2.1 we show E(K) reaching its maximum
at a wavenumber corresponding roughly to the Eulerian integral length scale1

1 We cannot be more precise because E(K) is not easily measured in the atmosphere. Also, there
is no simple relationship between Rij (\, r) and E(K) except in fully isotropic turbulence (Batchelor,
1960), where the spectrum can be shown to peak at vWA, close enough for our approximation of
I/A.
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(K ~ I/A). With a single sensor and the use of Taylor's hypothesis, we are
constrained to define that integral length scale in terms of its components Au, A.v,
and AU,, derived from the integral time scales TU,TV, and Tw, available from our
measurements of u, v, and w. These integral time scales actually represent the
time scales over which the turbulence remains correlated (Fig. 2.2).

Taking Au as an example we can write

where pu (£) is the autocorrelation function as defined above, £ the time lag with
respect to time t (Fig. 2.2), and u the mean wind velocity. If pu (£) is an exponential
function, the integral time scale is the value of £ atpu(£) = 1/e ~ 0.37(e ~ 2.72,
the base for natural logarithms). For a discussion of autocorrelation functions and
integral time scales, see Appendix 7.2 in Chapter 7.

In the dissipation range the scaling length r\ is given by

where v is the kinematic viscosity of air and e is the dissipation rate of turbulent
kinetic energy. Whereas Au varies typically from 10 to 500 m, 77 is of the order of
0.001 m.

FIG. 2.2. Autocorrelation function and its relation to the integral time scale Tu. The 1/e
point on the curve is usually a good approximation of the integral time scale even when the
correlation function is not strictly exponential. [The area under the rectangle should equal
the area under pu(£).]
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In the inertial subrange, energy is neither produced nor dissipated, and the
transfer of energy from the energy-containing to the dissipation range is controlled
entirely by e, the rate at which energy is converted to heat in the dissipation range.
Here, the form of the spectrum can be deduced from purely dimensional arguments
(Kolmogorov, 1941).

Adopting Taylor's hypothesis implies a natural relationship between wave-
numbers and frequencies. All our observations are henceforth defined in terms of
the streamwise wavenumber K\ (subscript 1 for component in the stream wise di-
rection), which corresponds to 2?r/A, where A is the wavelength approximated by
u / f , f being the cyclic frequency. The one-dimensional spectra FU(KI),FV(K\),
and FW(K\) of the three wind velocity components (available to us through spec-
trum analysis of measurements from fixed sensors) have forms somewhat different
from E(K) but are predictable nevertheless in both the inertial subrange and the
energy-containing region.

2.2 Inertial subrange

Kolmogorov, who first conceived the idea of an inertial subrange separating the
energy-containing and dissipation ranges, argued from dimensional considerations
that E(K) in this region should be proportional to e2/3K~5/3 (Kolmogorov, 1941).
Here the u spectrum, in its familiar one-dimensional form, becomes

where a\ is the Kolmogorov constant with a value estimated between 0.5 and
0.6. This is the well-known -5/3 power law for the inertial subrange. Theoretical
arguments suggest that turbulence is isotropic in this range. Isotropy implies that
the velocity field is independent of rotation and reflection about the spatial axes.
Even though isotropy does not apply to the energy-containing eddies, we can
assume that the small-scale (A <C Au) structure is effectively isotropic. This local
isotropy is important for the derivation of small-scale turbulence statistics. (Local
in this context refers to wavenumber space not physical space.) If local isotropy
exists in the inertial subrange, we have the following relationship among the u, v,
and w spectra:

which is illustrated in Fig. 2.3. In this log-log representation of the spectra, power
laws appear as constant slopes and ratios as fixed separations. The spectra for v
and w are placed higher than u in the inertial subrange, where they all fall off as
rej~ . Another consequence of local isotropy is the vanishing of all correlations
between velocity components and between the velocity components and scalars;

F
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K-\

FIG.. 2.3. Idealized velocity spectra presented in log-log coordinates showing -5/3 slope
in the inertial subrange and the 4/3 ratio between the transverse and stream-wise velocity
components.

this implies there can be no turbulent fluxes in the inertial subrange. The three
conditions: —5/3 power law, 4/3 ratio between transverse and longitudinal veloc-
ity components, and vanishing (or very low) cospectral levels are used as a test for
the existence of an inertial subrange. [The ability to reach well into this region of
the spectrum through the use of sonic anemometers (Chapter 6) to confirm these
inertial subrange properties was critical to later development of universal forms
for ABL spectra.] The —5/3 power law extends approximately to wavenumber
KI = Q.lr)~~l (Dubovikov and Tatarskii, 1987), above which it begins to fall off
sharply with increasing K\.

Corrsin (1951) proposed an inertial subrange form for the temperature spec-
trum that appears to be valid for other scalars such as humidity:

where N9 is the dissipation rate for half the temperature variance and 0\ is a
universal constant with a value about 0.8 (Kaimal et al., 1972). [Note that at
high wavenumbers approaching the dissipation range, the temperature spectrum
exhibits a "bump" due to straining effects on the temperature eddies (Hill, 1978)
not observed in the velocity spectra.]

2.3 Energy-containing range

The spectral forms in the energy-containing range tend to be different for each
variable, since the integral scales they respond to are different. Yet they all seem
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to behave in a consistent manner when plotted in dimensionless similarity coor-
dinates.

Implicit in the development of spectral forms in this range is the assumption
that a spectral gap exists, separating boundary layer turbulence from external
fluctuations. Fortunately for the meteorologist, a spectral gap of sorts can often
be found in the CBL at a frequency / between 0.001 and 0.0001 Hz, between the
convection-driven boundary layer scales and the synoptic scales (Van der Hoven,
1957). This end of the spectrum, however, is susceptible to contamination from
long-term trends present in the data. These may be caused by gravity waves,
diurnal variation, synoptically induced changes, or simply drift in the sensor. In
the absence of such trends in the record, F ( K \ ) is seen to level off to a constant
value as KI —> 0, a consequence of the one-dimensional representation of the
three-dimensional turbulence spectrum (see Appendix 2.3). Identifying energy
peaks in this type of spectral plot is difficult. For a more realistic representation
of peaks and valleys in the distribution of turbulent energy, meteorologists use the
wavenumber-weighted form K\F(K\) of the spectrum. In Fig. 2.4 we see K\F(n\)
for the u component peaking at K\ w 1/AM while falling off as «*' on the low
side and K, 3 on the high side.

The low-frequency spectrum can usually be approximated by one of two
analytic forms:

FIG. 2.4. Log-log representations of the frequency-weighted and unweighted power spec-
tral densities. We show both plots in the same graph even though the two spectra have
different dimensions (variance and variance/unit frequency interval) to compare their be-
havior as a function of n\.



where a = u, v, w, or 0; A, B, C, and D are adjustable constants, and the subscript
m denotes K1 at the spectral peak. Equation (2.6) fits unstable w spectra and all
the stable spectra. Equation (2.7) fits the unstable u, v, and 9 spectra slightly better
than (2.6).

This wavenumber-weighted spectrum is also referred to as a logarithmic
spectrum since it represents the variance per unit logarithmic wavenumber interval.
Its units are those of variance (e.g., m2 s-2) instead of variance per wavenumber
interval A«i (as in the unweighted spectrum). Yet, when plotted on a log-log scale,
power relationships appear as straight lines as with the unweighted spectrum, a
distinct advantage when dealing with atmospheric spectra. The log-log plot is,
however, not area-preserving since

We use a different symbol to represent the frequency spectrum. If K1 = 2-irf/u,
we have

For an equal area spectrum, K 1 F a ( K 1 ) should be plotted on a linear scale and K\
on a log scale, but power laws will not be straight lines on that plot.

2.4 Conversion from wavenumber to frequency scales

Although spectral theories are formulated in wavenumber space, most measure-
ments are performed in frequency space. To convert spatial scales to frequency
scales we invoke Taylor's hypothesis, K1 = 2nf/u, where / is the cyclic fre-
quency as defined earlier.

Taking the u spectrum as an example, we have
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or

or
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It can be shown that the relationship in (2.10) holds for any form of /, includ-
ing the nondimensional frequency n(= fz/u), used in surface layer work. Thus,
K \ F U ( K \ ) , f S u ( f ) , and nSu(n) all represent the same numerical value, allowing
us considerable freedom in choosing frequency scales for the abscissa. For exam-
ple, f S ( f ) can be plotted as a function of KI , f, or n, without any conversion of
units.

2.5 Surface layer spectra

Following conventions established for M-O scaling, we use ut and T» for nondi-
mensionalizing velocity and temperature spectra in the surface layer. The appro-
priate dimensionless frequency scale for representing spectra would be n = fz/u,
which is the ratio of height z to wavelength A. We also recall the dimensionless
form for e introduced in Chapter 1:

which, according to similarity theory, should be a function only of z/L.
We start with the inertial subrange u spectrum expressed in the framework

of surface layer similarity,

Denoting the dimensionless frequency fz/u by n and using values a\ = 0.55 and
k = 0.4 (see Appendix 2.4), we have (Kaimal et al., 1972)

When plotted on a log-log scale, the inertial subrange spectra collapse to a
single straight line with a —2/3 slope. All the variability in the ordinate is absorbed
in 0j'3. We have from Chapter 1 the functional form for ^?//3:

The dimensionless spectra for the remaining velocity components and tem-
perature can similarly be expressed as
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For the temperature spectrum in (2.17) we assumed /3\ = 0.8. In Chapter 1
we defined the similarity function for Ng as

Also, in the temperature variance budget, we found a local balance between
the production and destruction of temperature variance (Ns ~ —w'6'dQ/dz),
which suggests that (J>N ~ 0^. Hence (2.17) can be expressed in terms of (j>h as

With the velocity and temperature spectra anchored to the inertial subrange
formulations of (2.13), (2.15), (2.16), and (2.17), we can now examine the rest of
the spectrum to see if it will collapse into a narrow band (as in the inertial subrange)
or progress in some orderly fashion as a function of z/L. The plots for the four
variables from the Kansas experiment (Kaimal et al., 1972) are given in Figs. 2.5-
2.8. Of the four, the w spectrum exhibits the most systematic variation with z/L;

FIG. 2.5. Normalized surface layer u spectrum shown varying with z/L.



42 ATMOSPHERIC BOUNDARY LAYER FLOWS

FIG. 2.6. Normalized surface layer v spectrum shown varying with z/L.

only in the range -0.3 > z/L > -2 (shown as a hatched area in Fig. 2.7) does
the spectrum exhibit an insensitivity to z/L. This happens because the normalized
spectral peak nm stops shifting to lower frequencies with increasing z/L (see Fig.
2.9), an indication that the peak wavelength Am scales only with z. The u, v, and 6-
stable spectra also progress systematically, but their unstable spectra spread over a

FIG. 2.7. Normalized surface layer w spectrum shown varying with z/L.



h

FIG. 2.8. Normalized surface layer 6 spectrum shown varying with z/L.

larger area (hatched); in u and v, an "excluded" region (crosshatched) can be seen
separating the stable and unstable spectra. The limiting curves for stability regimes
approaching neutral from both sides are indicated by notations z/L = 0+ and 0—
in the figures. Clearly, the unstable u and v spectra do not follow M-O similarity,
and since no measurements of the boundary layer depth Zi were made in Kansas,
it was not known at the time that their Am's scaled with z,. Later, the Minnesota

FIG. 2.9. Nondimensionalized frequency at spectral maxima shown as functions of z/L.
For u, v, and 6, the curves are discontinuous at z/L = 0 and therefore valid only to z/L =
0+, the neutral limit on the stable side.
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experiment (Kaimal et al., 1976) and the laboratory work of Willis and Deardorff
(1974) revealed Am to be approximately l.Szj. The wavelength at the spectral
peak ATO is a length scale of greater importance to boundary layer meteorologists
than the integral length scale A since it is representative of the size of the eddies
with the most energy. In Fig. 2.9, Am is presented in its dimensionless form z/\m,
or nm. On the stable side, we find nm for all variables increasing rapidly with
z/L. On the unstable side, only nm for w decreases systematically with —z/L,
approaching its free-convection limit of nm — 0.17 at z > —L. (The unstable 6
spectral peaks tend to be less predictable than the w peaks.)

The behavior of (Xm)w in the surface layer and in the layer immediately
above may be expressed as follows:

The free-convection form for (\m)w leads to the familiar approximation A.w ~ z
used in the lower boundary layer, where (Xm)w is typically six to seven times
larger than Aw. The tendency for (Xm)w to become independent of z as z exceeds
2L on the stable side is consistent with Wyngaard and Cote's (1972) "z-less
stratification" concept mentioned in Chapter 1.

The stable spectra exhibit a common form when normalized by their variances
and plotted against the dimensionless frequency f/fo', /o is the value of / where
the extrapolated inertial subrange meets the f S a ( f } / a ^ = 1 line (see Fig. 2.10).
The spectra for u, v, w, and 9 conform to the shape (Kaimal, 1973)

where a = u,v, w, or 6.
By substituting for f S a ( f ) from (2.13), (2.15), and (2.16) and assuming

au/u* = 2.17, av/u* = 1.78, and uwjuif = 1.36 from the Kansas stable data,
Moraes( 1988) showed
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FIG. 2.10. Normalized stable surface layer spectrum representing u, v, w, and 9. The
abscissa is normalized by the frequency where the inertial subrange slope intercepts the
fS(f) = 1 line, as shown in the figure.

The frequency /0 is also related to the integral time scale Ta of the variable
a since the low-frequency behavior of (2.22) is controlled by Ta (see Appendix
2.3).

The forms foru,v, and w most commonly used in engineering applications
are the neutral Kansas spectra (Kaimal et al., 1972) shown in Fig. 2.11 with minor
adjustments to provide the expected 4/3 ratio in the inertial subrange. They can be
represented by

2.6 Mixed layer spectra

In the mixed layer, which comprises the upper 9/10 of the CBL, we find M-O
similarity being replaced by a different scaling law: with zt replacing —L, w*
replacing u*, and #* replacing T*, as we saw in Chapter 1. Since none of the new
scaling parameters varies with height, we expect the spectra also to be invariant
with height. In this new framework, Am, e, and the magnitude of the /£(/) peak
will remain constant with height changing only from run to run in response to
changes in (w'Q')o and Zi. This is indeed the case for u, v, and w spectra, as seen



FIG. 2.11. Normalized neutral (z/L = 0+) spectra for u, v, and w in the surface layer.

FIG. 2.12. Normalized mixed layer u, v, and w spectra. The two curves define the envelopes
of spectra that fall within the z/Zi range indicated.
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in their idealized representations in Fig. 2.12. Note that in the energy-containing
range, w follows mixed layer similarity only down to 0.1 Zj, whereas u and v
follow it almost all the way down.

The inertial subrange spectral form for u reduces to

wherew* — [(g/T)(w'0')0Zi\l/3andipe = e/(<7/0)(«/0')o,theratioof dissipation
rate to buoyant production rate near the surface. Representing fzt/u by a new
dimensionless frequency rij and assuming a\ = 0.55, we can write (Kaimal et al.,
1976)

V>e should have a value between 0.4 and 0.5 in the mixed layer if we assume
negligible wind shear and a linear heat flux profile in the layer. The Minnesota data
show ijjc ranging from 0.5 to 0.7, perhaps because of larger than expected shear
production rates in some runs (Kaimal et al., 1976). Note that ̂ e is identically the
dimensionless dissipation rate ezi/w^ shown in Fig. 1.10.

The spectral peaks for u, v, and w are approximated as follows:

The mixed layer form for (Am)w, shown in Fig. 2.13, was derived by
Caughey and Palmer (1979) from a combined plot of data from the Minnesota
and Ashchurch experiments. The mixed layer (Am)0 does not show a consistent
pattern because the temperature fluctuations are generally small above the surface
layer and easily overwhelmed by the effects of entrainment and the diurnal trend
in the temperature. The profile of a^ presented in Chapter 1 shows the variance
decreasing to a minimum at about 0.6zi and rising to its near-surface value at Zi,
a clear demonstration of the influence of entrainment in the temperature statistics.
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The evolution of u, v, w, and 0 spectra with height in the ABL is shown
schematically in Fig. 2.14. The u and v spectra appear flattened and stretched
out in the surface layer as they adjust to conform to the mixed layer spectral
forms of Fig. 2.12 in the energy-containing range and to the constraints of (2.13)
and (2.15) in the inertial subrange. These spectra do not show much variation
with height, except in the inertial subrange where the energy drops sharply with
height in conformance with (2.14). The w spectrum, on the other hand, gains
steadily in intensity as its peak moves down the frequency scale, consistent with
the formulation in (2.20), and approaches the mixed layer form of Fig. 2.12 at
z = 0.2zi.

Two different approaches have been proposed to model this behavior of the
u and v spectra. Kaimal (1978) used a simple interpolation formula linking the
analytic form for the mixed layer spectrum

to the inertial subrange forms of (2.29), (2.30), and (2.31). H0jstrup (1982) treated
the u and v spectra as the sum of two spectra—a low-frequency spectrum scaling
with Zi and a high-frequency spectrum scaling with z:

FIG. 2.13. Variation of the vertical velocity peak wavelength with height.
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FIG. 2.14. Schematic representation of the evolution of spectra for velocity (left frames)
and temperature (right frames) with height in the convective boundary layer. The thin
reference line in the temperature plots is the spectrum of the diurnal trend.

The high-frequency contributions in (2.35) and (2.36) are identical to the Kansas
forms in (2.26) and (2.27).

The modification of the 9 spectrum with height is represented schematically
in Fig. 2.14. The spectrum drops to its lowest point between 0.52, and 0.7 'zj,
approaching spectral levels attributable to just the diurnal trend (used as reference
in all the frames in Fig. 2.14); it rises again to its z « 0.2zt level at z = Zi. We can
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express these shifts in terms of the inertial subrange behavior of the 6 spectrum
which, in the mixed layer framework, becomes

#* = (w'0')o/w#, and 7 is the nondimensional equivalent of T/V in(2.29)-(2.31)
given by

In the CBL, 7 exhibits a profile with a predictable minimum at about 0.5,2,. The
Minnesota results (Kaimal et al., 1976) have been approximated by

We attribute the rise in the spectral energy above 0.7,2, to entrainment of warmer
air from above the capping inversion into the mixed layer.

2.7 Stable outer layer spectra

In the stable outer layer (i.e., h > z > L, where L often ranges from 1/10
to 1/3 of the inversion depth h), the energy due to turbulence in the spectrum
decreases rapidly with height, whereas that of the wave components present does
not. At z = h, only the wave energy remains unless nonlinear processes induce
wave breaking, thereby producing turbulent kinetic energy; at frequencies where
turbulent energy shows a peak at the lower heights, the spectrum is flat and
significantly depressed. (Note that Taylor's hypothesis does not apply to gravity
waves as they are not transported by the mean wind.) A flat f S ( f ) spectrum
appears to be characteristic of stable atmospheric flows at Ri « 0.2 (Kaimal
and Izumi, 1965; Okamoto and Webb, 1970); it represents a background noise
containing equal energy per octave, analogous to the "pink noise" used in audio
testing.

The evolution of u, v, w, and 6 spectra with height in a hypothetical stable
layer is shown schematically in Fig. 2.15. It is apparent that the vertical variations
of Am cannot be generalized in any way because the stable outer layer is continually
evolving (Caughey et al., 1979) and never reaching equilibrium. The positions and
relative magnitudes of the turbulent peaks and the wave peaks can be expected
to change with time in this layer. Examples of combined wave and turbulence
spectra can be found in Finnigan et al. (1984).
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FIG. 2.15. Schematic representation of the evolution of spectra for velocity (left frames)
and temperature (right frames) with height in the stable boundary layer.

2.8 Structure parameters and spectra

The structure parameter, a widely used indicator of the small-scale structure of
turbulence in wave propagation studies, was originally defined in terms of the
structure function D(r) (Tatarski, 1961), where

Here, Ca is the structure parameter, a any variable (usually u, 0, or q), and r the
distance separating two measurements of a along the x axis. It can be shown that
C& is related to the one-dimensional spectrum of a through the relationship
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where F is the gamma function, provided the distance r is small enough to
be within the range of length scales in the inertial subrange. The parameters,
C%,,CT, and CQ for u,S, and q, respectively, are closely identified with C%,
the structure parameter of the refractive index for acoustic and electromagnetic
waves propagating through the atmosphere. Cy and Cj, are related to terms in the
one-dimensional spectral forms for velocity and temperature as follows:

(The form for CQ is the same as for C^, with the same numerical coefficient and the
appropriate dissipation rate for humidity.) In the surface layer, the dimensionless
forms for Cy and Cy may also be expressed in terms of <p functions defined
earlier.

where <pN = kzNg /u* T% as in Chapter 1. For normalizing our temperature spectra
we earlier assumed 4>N — <f>h, but such a substitution in (2.45) would produce
a form asymptotically incompatible with the —4/3 power law observed for 7 at
z < 0.5zi. Instead we adopt the empirical form for Cj. derived directly from data
(Wyngaard et al., 1971), adjusted to provide a good match with 7 for k = 0.4. The
form for </></ in (2.14), in fact, evolves asymptotically to a constant in the lower
mixed layer. Our formulations for the surface layer are

shown as functions of z/L in Fig. 2.16. Their mixed layer asymptotic forms are
now
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FIG. 2.16. Normalized structure parameters for velocity and temperature shown as func-
tions of z/L.

The mixed layer profiles for Cy and C\ are presented in Fig. 2.17. Their evo-
lution with height follows observations reported by Caughey and Palmer (1979).
Of all the asymptotic power laws discussed so far, the form in (2.49) for C\, shows
the best fit with observations (Kaimal et al., 1976) over a very deep layer of the
convective boundary layer. We do not have comparable asymptotic forms for Cy
and C^ in the stable outer layer.

The functional forms for CQ are the same as for C^ in the surface layer
and in the lower mixed layer. The location of the minimum (Fig. 2.17) would,
however, fluctuate greatly depending on the relative magnitude of moisture flux
from above, through entrainment, and the surface flux (Fairall, 1987).

2.9 Cospectra of turbulence

The cospectra of uw and w9 give us valuable information on the averaging times
and frequency responses needed for estimating momentum flux and heat flux
(the fluxes are the integrals of the cospectra from / = 0 to oo as shown in
Appendix 2.1). In the surface layer we have universal curves developed from field
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FIG. 2.17. Vertical profiles of the normalized structure parameters in the convective bound-
ary layer. Note that the shape of the C\ profile shown follows that of 7 in (2.39).

measurements (Kaimal et al., 1972) that we can use as guides for establishing the
sampling and sensor response requirements for any given application.

Inertial subrange cospectral forms for uw and wd proposed by Wyngaard
and Cote (1972) show them falling off as n~7/3 (vanishing more rapidly than the
power spectra of u, w, and 9, consistent with the requirement for isotropy). In this
—7/3 range we would expect the normalized cospectral values to be functions
only of z/L and n. Their logarithmic forms, when non-dimensionalized, become

where G(z/L) and H(z/L) are functions of z/L, determined empirically from
experiments. Note that u*r* = -(wW)0. If we hold G(0) = H(0) = 1, from the
Kansas experiment (Kaimal et al., 1972), we have
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The universal curves for the two cospectra are combined in Fig. 2.18. In stable
air the cospectral curves separate systematically according to z/L as the spectra
did in earlier figures, whereas the unstable cospectra crowd into a narrow band
that straddles the neutral cospectrum. For convenience, we take the z/L = Gf
curves for uw and wO as the cospectral forms for the unstable surface layer
(0 < z/L < -2). These curves can be approximated by

FIG. 2.18. Normalized surface layer cospectra of uw and wd, as represented in (2.52) and
(2.53), shown varying with z/L. Note that the wO cospectrum attains —4/3 behavior at a
higher frequency than uw.

where
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We can see from Fig. 2.18 that the two cospectra exhibit similar behavior
at n < 0.5 (i.e., A > 2z). They attain —7/3 behavior at different frequencies,
however, about an octave higher in wd than in uw. The extended range in wO
implies that the smaller eddies (A ~ z) transport heat more effectively than
momentum, pointing to the need for higher frequency response in surface layer
measurements of heat flux compared to momentum flux. [On the basis of available
evidence (e.g., Schmitt et al., 1979), we can assume that cospectra of w with scalars
like moisture will exhibit the same shape and characteristics as the wB cospectrum,
and require sensors that are equally fast for flux measurement.]

The variation of the uw and wQ cospectral peaks with z/L is represented by
a single curve in Fig. 2.19. In stable air it follows the same trend observed earlier
in the velocity and temperature spectra (Fig. 2.9). In unstable air there is little, if
any, variation with z/L, as one might surmise from Fig. 2.18.

As we move up into the mixed layer (0.1 Zj < z < Zi) where the fluxes of
momentum and heat are typically small and even change sign, as in the case of heat
flux (Fig. 1.10), the cospectra become increasingly unpredictable. Often they show
large excursions in both directions with no well-defined envelopes; the fluxes we
measure are merely small differences between upward and downward transport
located in different frequency bands (Kaimal et al., 1976). This is particularly
true for the heat flux cospectra in which the balance shifts gradually with height
until at about Q.&Zi the downward transport from entrainment begins to dominate.
[Caughey and Kaimal (1977) found evidence of (Xm)w9 approaching \.5zi in
the lower mixed layer.] Baroclinicity introduces similar uncertainties in stress
cospectra. As a result, we have no universal forms to present for the mixed layer.
Cospectral forms for the outer stable layer also tend to be unpredictable, but this

FIG. 2.19. Nondimensionalized frequency at the cospectral maxima shown as a function
of z/L.
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comes as no surprise given the very low levels of turbulence and the evolving
nature of flow in that layer (Caughey et al., 1979).

Appendix 2.1 Fourier spectra: Essential formulas and relationships

A.2.1.1 Fourier transform pair

The three-dimensional energy spectrum Eij (K) and the covariance tensor Rij (r) for ho-
mogeneous flow form a Fourier transform pair that is usually expressed as

(For inhomogeneous flow, both the spectrum and the covariance tensor will be functions
of the position vector x as well, as expressed in Section 2.1.)

A.2.1.2 Energy spectrum

The sum of the diagonal components of Rij (0) is twice the turbulent kinetic energy e:

which leads to the definition of spectral density as twice the contribution to turbulent kinetic
energy from an element of wavenumber space dn.

The directional information in EH(K) can be removed by integrating over a spherical
shell in wavenumber space of radius K = K\. This operation defines the energy spectrum
£(«):

From (2.58b) we have

where da is an element of the shell and 1/2 is included to ensure that
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A.2.1.3 One-dimensional covariances and spectra

The most commonly measured covariances are those with separations in the x direction
(r\) since those can be replaced with a time delay (£) using Taylor's frozen turbulence
hypothesis

The autocovariance function for variable a (= u, v, or w)

becomes

The Fourier transforms of Ra (r\) and Ra (£) are the one-dimensional spectra of a'
in the wavenumber and frequency domains, respectively. These are two-sided spectra we
identify with a A to distinguish them from the one-sided power spectra we deal with in this
chapter and elsewhere:

where K\ (= 2irf /u) is the wavenumber component in the streamwise (x) direction, and
u (= 2-rrf) is the angular frequency. Their inverse transforms have the form

The two spectra are related through Taylor's hypothesis
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The type of spectrum we deal with in atmospheric work and in many engineering
applications is the one-sided power spectrum S a ( f ) such that

Since S a ( f ) is the positive half of an even function, we are constrained, in the interest of
preserving the variance, to have

Note that the conversion of S a ( f ) to Sa(w) requires multiplication by 2-jr.

A.2.1.4 Eulerian integral length and time scales

The autocovariance functions lead us directly to definitions of the Eulerian integral length
scale Aa and time scale Ta:

where p(r\) and /}(£) are the familiar autocorrelation functions in space and time, the
normalized versions of the autocovariance functions in (2.62a) and (2.62b). As in (2.65)
we have, through Taylor's hypothesis,

We define the autocorrelation only for positive r\ 's and £'s because the autocovariance is
an even function, and we have

The integral scales are related to the one-dimensional spectra through (2.63a,b),
(2.67a,b), (2.66), and (2.69):
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(In Appendix 7.2, Chapter 7, we discuss the consequences of high-pass filtering of data
which essentially removes all energy at zero frequency, forcing Aa and Ta, as defined here,
to zero.)

A.2.1.5 Cross covariances and cross spectra

The cross covariance between variables a and /3 can be expressed as

This function, unlike the autocovariance function, is not an even function. We find, in
general,

and its Fourier transform has both real and imaginary parts. The cross spectrum Crap(K\)
[transform of Raf>(r\)] separates into real and imaginary parts:

The real part of the cross spectrum is the cospectrum and the imaginary part the quadrature
spectrum. If Rap (r \) is split into its even and odd parts, Eap(r\) and 6a/j (n), respectively,

it can be shown that Cap(K\) is the Fourier transform of Eap(r\} and Qap(K\) the
transform ofOa0(r\)'.
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Their transforms are, respectively,

Oap(r\) makes no contribution to -Ra/3(0). Hence, from (2.76b) we have

The one-sided cospectrum Cap(f) used in our discussions is defined such that

Appendix 2.2 Taylor's hypothesis in the atmospheric boundary layer

Taylor's frozen turbulence hypothesis enables us to convert temporal measurements at
a point to spatial patterns in space through the transformation x = ut. Implicit is the
assumption that the turbulent field is frozen in time and transported horizontally past the
observer. Frequency scales become wavenumber scales (KI = 2irf /u), but the spectra
remain unchanged in their shapes as well as their magnitudes.

We know, however, that atmospheric turbulence is neither frozen (it evolves with time)
nor transported precisely at local mean wind speeds. The former fact we ignore because,
typically, the eddy life times are long compared to their travel time across the sensor. The
latter we usually ignore on the basis of correlation studies conducted by early investigators
(Lumley and Panof sky, 1964). The high degree of consistency in the time-averaged statistics
and spectra observed over the years has served to reinforce that practice.

There is, however, ample evidence of eddy convection velocities departing from u,
the local mean wind speed, in the CBL. Wilczak and Businger (1984), in their compre-
hensive study of eddy transport in the convective surface layer (z < 150 m) using tower
measurements, tracked ramplike temperature structures (plumes and thermals) moving at
speeds that varied from ramp to ramp; the larger structures, as a rule, moved faster than the
smaller ones. The large thermals, along with their roots in the surface layer, are converted
at mean mixed layer wind velocities (Davison, 1974), whereas the smaller (and shorter)
plumes, sustained by local sources of warm air near the surface, travel at speeds smaller
than u (Kaimal, 1974). Taken as a whole, the effective convection velocity, according to
Wilczak and Businger (1984), is between 0.7 and 0.8 times the mixed layer mean wind.
This is consistent with the findings of Kaimal et al. (1982), which showed 150-m tower
u, v, and w spectral peaks shifted to slightly lower (less than one octave) wavenumbers
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compared to their aircraft counterparts. Whereas the aircraft and tower u spectra are virtu-
ally indistinguishable in their shapes and placement, the aircraft v and w spectra showed
more rapid rolloff on the low-frequency side of their peaks compared to tower spectra.

Wind tunnel turbulence (neutral air) shows somewhat different behavior, as pointed
out by Perry and Li (1990). In the near-wall region, they find small eddies traveling with the
local mean wind, whereas larger "attached" eddies moved faster, causing u spectra from
a flying hot-wire anemometer probe to shift slightly to lower frequencies. Within plant
canopies, this behavior is exaggerated. Finnigan (1979), for example, measured the mean
convection velocity of energy-containing eddies in a wheat canopy as 1.8 times the mean
wind speed at canopy top. There is strong evidence of similar behavior over a wide range
of natural and model plant canopies (Raupach et al., 1989). The behavior of large eddies in
plant canopies is discussed in detail in Chapter 3.

Despite these findings, we continue to use u as the convection velocity in most bound-
ary layer applications. This practice will continue as long as investigators find reasonably
good agreement between atmospheric measurements made with moving and stationary
probes.

Appendix 2.3 Low-frequency behavior of one-dimensional spectra

One-dimensional spectra of turbulence, available to us through measurements in the at-
mosphere, give misleading information on the behavior of three-dimensional turbulence
at very low frequencies (Tennekes and Lumley, 1972) because modes of wavenumber K
traveling nearly normal to the K\ direction (the direction that defines the one-dimensional
spectrum) appear as very low wavenumber contributions in F U ( K \ ) , F V ( K \ ) , and F W ( K \ ) .
The phenomenon is analogous to measuring wave separation along the direction parallel
to the shoreline when ocean waves are approaching the shoreline almost at right angles to
it. As a result, the one-dimensional spectrum may show finite energy at KI =0 when, in
fact, there is no energy at zero wavenumber.

Typically, the one-dimensional spectra of u, v, and w level off to a constant value at
the low wavenumber end, as shown in Fig. 2.4. Interestingly enough, it is their intercept at
KI = 0 that transforms into the integral time scale Ta (or Aa).

For the one-dimensional, one-sided power spectrum of a, the relationship between
this apparent energy at / = 0 and Ta can be derived directly from the relationship

where a2
a is the variance and pa (£) the autocorrelation function of a (Fig. 2.2). At / = 0,

we have

which is the same as the relationship (2.71) derived from the two-sided spectrum. From
(2.78) and (2.79) we can derive the asymptotic form for the low-frequency behavior of
/Sa(/)A£inFig.2.10:
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Combining (2.80) and the asymptotic form for (2.22) as / —> 0, we get

or

In the spectrum defined by (2.22), the peak occurs at frequency fm — 3.8/0, which leads
us to the relationship

or

For the hypothetical spectrum with pa(£) = e ?' ° (Lumley and Panofsky, 1964), the
peak frequency is exactly l/2irTn.

Appendix 2.4 Relationship between Kolmogorov and von Karman
constants

In the formulation of (2.12) we have an implicit relationship between the Kolmogorov
constant a\ and the von Karman constant fe that dictates the value of one when the other is
known. In neutrally stable air, where we can assume </>£ = 1, (2.12) reduces to

or

In the inertial subrange, at say n = 4, the Kansas data (Kaimal et al., 1972) yield

Then
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We have in (2.85) the rationale for choosing QI = 0.55 to match the now accepted value
of k = 0.4 in place of the a\ = 0.5, k = 0.35 combination used with the Kansas data.
The formulations of the inertial subrange relationships in (2.13), (2.15), and (2.16) remain
unchanged. The choice of ai = 0.55 does, however, alter the coefficient for the structure
function of velocity in (2.42). The new value is 2.2 instead of the generally used value of
2.0.

Frenzen (1973), who pointed out the connection between the two constants, used a
different formulation. In place of u» he used the wind profile equivalent (kzdu/dz)2 to
get aik4/3 = 0.136 in the logarithmic layer under neutral conditions. Frenzen's present
estimate (personal communication) for a\ k4'3, based on a reexamination of his wind profile
measurements, falls between 0.16 and 0.17. A value of 0.162 is consistent with choosing
ai = 0.55 and k = 0.4.

References

Batchelor, G. K., 1960: The Theory of Homogeneous Turbulence. Cambridge University
Press, Cambridge, 197 pp.

Caughey, S. J., and J. C. Kaimal, 1977: Vertical heat flux in the convective boundary layer.
Quart. J. Roy. Meteor. Soc., 103, 811-815.

Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the
depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811-827.

Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable
boundary layer. J. Atmos. Scl, 36, 1041-1052.

Corrsin, S., 1951: On the spectrum of isotropic temperature fluctuations in an isotropic
turbulence. J. Appl. Phys., 22, 469-473.

Davison, D. S., 1974: The translation velocity of convective plumes. Quart. J. Roy. Meteor.
Soc., 100, 572-592.

Dubovikov, M. M., and V. I. Tatarskii, 1987: Calculation of the asymptotic form of spectrum
of locally isotropic turbulence in the viscous range. Soviet Phys. J. Exp. Theor. Phys.,
66 (English translation by the American Institute of Physics, 1988, 1136-1141).

Fairall, C. W., 1987: A top-down and bottom-up diffusion model for C\- and CQ in the
entraining convective boundary layer. J. Atmos. Sci., 44, 1010-1017.

Finnigan, J. J., 1979: Turbulence in waving wheat. I. Mean statistics and honami. Bound.-
Layer Meteor., 16, 181-211.

Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity
wave and turbulence in the stably stratified nocturnal boundary layer. J. Atmos. Sci.,
41, 2409-2436.

Frenzen, P., 1973: The observed relation between the Kolmogorov and von Karman con-
stants in the surface boundary layer. Bound.-Layer Meteor., 3, 348-358.

Hill, R. J., 1978: Models of the scalar spectrum for turbulent advection. /. Fluid Mech., 88,
parts, 541-562.

H0jstrup, J., 1982: Velocity spectra in the unstable boundary layer. J. Atmos. Sci., 39,
2239-2248.

Kaimal,!. C., 1973: Turbulence spectra, length scales and structure parameters in the stable
surface layer. Bound.-Layer Meteor., 4, 289-309.

Kaimal, J. C., 1974: Translation speed of convective plumes in the atmospheric surface
layer. Quart. J. Roy. Meteor. Soc., 100, 46-52.



SPECTRA AND COSPECTRA OVER FLAT UNIFORM TERRAIN 65

Kaimal, J. C., 1978: Horizontal velocity spectra in an unstable surface layer. /. Atmos. Sci.,
35, 18-24.

Kaimal, J. C., and Y. Izumi, 1965: Vertical velocity fluctuations in a nocturnal low-level
jet. J. Appl. Meteor., 4, 576-584.

Kaimal, J. C., R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn, and J. A. Businger,
1982: Spectral characteristics of the convective boundary layer over uneven terrain.
J. Atmos. Sci., 39, 1098-1114.

Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of
surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563-589.

Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J.
Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos.
Sci., 33, 2152-2169.

Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers. Doklady ANSSSR, 30, 301-304.

Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley-
Interscience, New York, 239 pp.

Moraes, O. L. L., 1988: The velocity spectra in the stable surface layer. Bound.-Layer
Meteor., 43, 223-230.

Okamoto, M., and E. K. Webb, 1970: Temperature fluctuations in stable stratification.
Quart. J. Roy. Meteor. Soc., 96, 591-600.

Perry, A. E., and J. D. Li, 1990: Experimental evidence for the attached-eddy hypothesis
in zero pressure gradient turbulent boundary layers. J. Fluid Mech., 218, 405-438.

Raupach, M. R., J. J. Finnigan, and Y. Brunei, 1989: Coherent eddies in vegetation canopies.
Proc. Fourth Australian Conference on Heat and Mass Transfer, Christchurch, New
Zealand, 9-12 May 1989, 75-90.

Schmitt, K. R, C. A. Friehe, and C. H. Gibson, 1979: Structure of marine surface layer
turbulence. J. Atmos. Sci., 36, 602-618.

Tatarski, V. I., 1961: Wave Propagation in a Turbulent Medium (translation from Russian
by R. A. Silverman). McGraw-Hill, New York, 285 pp.

Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, Cambridge,
300 pp.

Van der Hoven, L, 1957: Power spectrum of horizontal wind speed in the frequency range
from 0.0007 to 900 cycles per hour. J. Meteor., 14, 160-164.

Wilczak, J. M., and J. A. Businger, 1984: Large-scale eddies in the unstably stratified
atmospheric surface layer. Part II: Turbulent-pressure fluctuations and budgets of
heat flux, stress, and turbulent kinetic energy. J. Atmos. Sci., 41, 3551-3567.

Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary
boundary layer. J. Atmos. Sci., 31, 1297-1307.

Wyngaard, J. C., and O. R. Cote, 1972: Cospectral similarity in the atmospheric surface
layer. Quart. J. Roy. Meteor. Soc., 98, 590-603.

Wyngaard, J. C., Y. Izumi, and S. A. Collins, 1971: Behavior of the refractive-index-
structure parameter near the ground. J. Opt. Soc., 61, 1646-1650.

Additional Reading

Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence. Wiley-Interscience, New
York, 397 pp.



3

FLOW OVER PLANT CANOPIES

Any land surface that receives regular rainfall is almost certain to be covered by
vegetation. Most of the inhabitable regions of the globe fall into this category.
Often the vegetation is tall enough to call into question the assumption, implicit in
the discussion of the first two chapters, that the roughness elements on the ground
surface are much lower than any observation height of interest to us. In fact, if we
venture to make measurements too close to tall vegetation, we discover significant
departures from many of the scaling laws and formulas that seem to work in the
surface layer above the canopy.

To take one example, momentum is absorbed from the wind not just at the
ground surface but through the whole depth of the canopy as aerodynamic drag on
the plants. Consequently, although we still observe a logarithmic velocity profile
well above the canopy, its apparent origin has moved to a level z = d near the top
of the plants. The precise position of this "displacement height," d, depends on
the way the drag force is distributed through the foliage and this in turn depends
on the structure of the mean wind and turbulence within the canopy.

Our interest in the nature of within-canopy turbulence, however, is not mo-
tivated solely by its influence on the surface layer above. The understanding of
turbulent transfer within foliage canopies provides the intellectual underpinning
for the physical aspects of agricultural meteorology. As such it has a history almost
as venerable as investigations of the surface layer itself. The landmark study of
Weather in Wheat by Penman and Long (1960) was the first of a series of seminal
papers to establish the quantitative link between the turbulent fluxes in a canopy
and the physiological sources and sinks of heat, water vapor, and carbon dioxide
(CO2). Prominent and influential among these early publications were those by
Uchijima (1962), Denmead (1964), Brown and Covey (1966), and Lemon and
Wright (1969).

Whereas these authors were motivated by curiosity about plant physiology
and the transfer of water and other scalars through the soil-plant-air continuum,
other workers forged the link between the classical surface layer studies detailed in
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Chapter 1 and the structure of within-canopy turbulence. Some early contributors
to this facet of canopy work were Inoue (1963), Uchijima and Wright (1964), and
Wright and Lemon (1966). The many wind tunnel and field studies conducted
over the last two decades have shed considerable light on the nature of turbulent
transport in and above plant canopies, but most of what we know, in the micro-
meteorological sense, comes from studies of crops and forests on level ground.
We shall therefore limit the scope of this chapter to uniform plant canopies on
flat land, making the assumption that on the scale of a few or more plants, the
canopy structure can be viewed as one-dimensional, varying only in the vertical
(z) direction.

Characterizing and measuring the flow within a canopy is made particularly
difficult by the very high turbulence intensities encountered there. These exceed
by far the turbulent intensities encountered elsewhere in the surface layer and
result, predominantly, from energy production in the intense shear layer at the
top of the plants, although smaller scale turbulence produced in plant wakes also
makes a significant contribution. Furthermore, the quasirandom distribution of air
spaces between the plants introduces spatial as well as temporal complexity to the
turbulence there. Add to that the presence of three-dimensional arrays of sources
and sinks of momentum and scalars such as heat and water vapor, and it is not
surprising that many of the theoretical concepts that form the mainstay of surface
layer theory do not apply here. For example, the failure of eddy diffusivities to
describe turbulent transfer in canopies was established a decade ago. As a direct
consequence, there is to date no general similarity scheme with the unifying power
of Monin-Obukhov theory.

The plant canopy is a biologically active entity with water vapor and CO2

transfers across leaf surfaces. These exchanges are controlled by a complex biome-
chanical system that opens and closes tiny pores called stomata on the leaf surface
in response to a variety of stimuli. Among the foremost of these is the amount of
water in the plant and the soil, which depends in turn on the history of evaporation
and precipitation. The canopy can be viewed, therefore, as an interface between
essentially rapid physical processes such as solar irradiation and turbulent ex-
change in the boundary layer and slower-acting biological factors. Consequently,
a proper treatment of the canopy recognizes that it does not simply form a rough
lower boundary to the surface layer but plays a dynamic role in the partitioning of
radiant energy into sensible and latent heat.

3.1 Flow above the canopy

There are many situations where, although we wish to take account of the presence
of the foliage and its influence on the flow above, we prefer not to consider the
detailed distribution of turbulence in the canopy air space. In such cases, we turn
to single-layer models that treat the canopy as a notional plane at the bottom of
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the boundary layer at which momentum and scalars are absorbed (or emitted) and
where radiant energy is partitioned into sensible and latent heat. Such models are
of two kinds: those deriving directly from surface layer similarity (Chapter 1) and
those involving application of the "combination equation" to the whole canopy.
The first group includes the logarithmic law for velocity and scalars and bulk
transfer formulas, which are essentially applications of the logarithmic law at two
levels, the ground and a reference level above. The combination equation takes a
different approach, which we shall discuss later.

3.1.1 Logarithmic law

In near-neutral conditions, the logarithmic portion of the wind profile above the
canopy extrapolates downward to a height (d + ZQ) at u = 0 (Fig. 3.1). The height
d, referred to as the displacement height, typically falls within 70% to 80% of the
canopy height hc. We write, therefore,

FIG. 3.1 Mean wind profile over a plant canopy showing relationships between canopy
height (hc), displacement height (d), and roughness length (z0). Here, height is plotted on
a logarithmic scale and mean wind speed, normalized by Uhc (the mean speed at canopy
top), on a linear scale.
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We now have a new origin for the logarithmic law at z = d, which also coincides
with the mean level of momentum absorption (Jackson, 1981). Plotted as a function
of ln(z — d), the u profile will show a zero intercept at the roughness length ZQ
and a slope equal to u*/k, as in (1.11). Corresponding expressions for heat and
humidity, assuming the same d for both, are

Over canopies, the traditional nondimensional surface layer functions become

where Zh and zq are new roughness lengths for heat and humidity (analogous to
z0), #o and g0 are the values of 0 and q at heights (d+Zh) and (d+zg), respectively,
and q* is the humidity scale analogous to T* defined as

where (f>m, tf>h, and (f>q are functions now of (z - d) instead of z. It is readily seen
that (3.5), (3.6), and (3.7) are equivalent to flux-gradient expressions

In neutral conditions, Km = Kh = Kq = k(z — d)u*. This is an assumption
supported by a great deal of evidence collected over short vegetation and embodied
in the 0 functions (1.26) and (1.27) presented in Chapter 1 (Dyer, 1974; Hogstrom,
1988).
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3.1.2 Bulk transfer coefficients and roughness lengths

A convenient way to characterize the capacity of the canopy to absorb momentum,
heat, and water vapor is in terms of transfer coefficients Cf , Ch, and Cq, where

We then have from (3.8) to (3.10)

Combining (3.1), (3.2), and (3.3) with (3.11), (3.12), and (3.13), we can express
ZQ , Zh. and zq in neutral conditions as

Hence, while ZQ expresses the capacity of the canopy to absorb momentum,
Zh and zq characterize its capacity to absorb (or emit) heat and water vapor
relative to its ability to absorb momentum. Thorn (1975) estimated z/t and zq to
be equal to zo/5, but their precise values will be different for different canopies
and for different values of do and q0. The numerical value of this ratio illustrates,
nevertheless, that canopies are far more efficient at absorbing momentum than at
absorbing scalars. This discrepancy is called the "bluff body effect" (Thorn, 1975)
and arises because momentum is transferred to the vegetation mainly by pressure
forces that have no counterpart in the transfer of scalars.

In the absence of direct measurement of the turbulent fluxes in the constant
flux layer above the vegetation, the usual way of estimating d, zo,Zh, zq,u*,T*,
and q* is to fit equations (3.1), (3.2), and (3.3) to measurements of mean concen-
trations and wind speed above the canopy. Unfortunately, over even moderately
tall vegetation such as cereal crops, let alone over forests, the multiple regression
analysis required is fraught with difficulty. At best, it can lead to errors of ±25%
in d. ZQ, and M* (Bradley and Finnigan, 1973); at worst, it can produce profiles
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that exhibit completely spurious diabatic forms. The best way to avoid errors is to
fix d independently by measuring the velocity profile within the canopy, finding
the height of the centroid of the drag force and equating it to d (Thorn, 1971;
Jackson, 1981). This approach has been found to produce a fairly consistent value
of d ~ 0.75/ic over a wide range of natural canopies.

The dependence of ZQ on canopy densities has been studied by Seginer (1974).
As surface roughness increases with the addition of plants to bare soil, ZQ and C/
also increase until a point is reached when the plants crowd together so closely
that the "shelter effect" reduces their individual capacity to absorb momentum.
The physiological requirements of each plant to grow and absorb sunlight place
an upper limit on this process, but the maximum aerodynamic roughness of the
canopy occurs at an intermediate density where each plant can use its area to
maximum advantage in intercepting the wind. The corresponding value of ZQ is
close to hc/5.

3.1.3 Roughness sublayer

The roughness sublayer is the region at the bottom of the boundary layer where
the presence of the canopy impinges directly on the character of the turbulence.
It extends from the ground to a height of about 3hc and includes the canopy
air space. If we make measurements above the canopy but within the roughness
sublayer, we encounter further problems in applying the formulas of the last
section. The first departure from standard behavior that we find is an increase in
the eddy diffusion coefficients, Km, K^, and Kq above their logarithmic values
of [ku*(z - d) </>„'], [ku*(z - d)<j)frl], and [ku*(z - d)(f>~]], respectively.

We can examine these departures by comparing measured values of the
inverse diabatic influence functions, 0^', 0^', and 0~' as defined in (3.5), (3.6),
and (3.7) with the standard surface layer formulas given in Chapter 1. We compare
the inverses because their ratios are directly proportional to the ratios of the eddy
diffusivities. To clarify the distinction we identify the measured (f> functions over
canopies with a star <p*n, <p*h, and 0*; the unstarred <p functions denote the formulas
of Chapter 1.

We expect that as we move outside the roughness sublayer to heights z^3hc,
(<p*n !) <$>*h~ , and </> * ~') will approach ((p^1, <p~^', and </>"'). An increasing number
of experiments where fluxes and gradients have been measured independently in
the roughness sublayer allows us to examine how this approach occurs. Thus, we
see in Fig. 3.2 that, over closed canopies, 0*~l scatters around unity at neutral
stability and moderate instabilities, whereas 4>*h~

l and <p*~l reach values ranging
from 2 to 5 under similar conditions (Shuttleworth, 1989). Garratt (1978) found
that over a scattered, open, savannah-type canopy, 4>*^' at neutrality was close to
2. Figure 3.2 includes data points from a variety of experiments with measurement
heights at varying distances above the canopy top. The scatter in the data points,
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FIG. 3.2. Diabatic influence functions </>* ' shown as a function of stability for (a) heat, (b)
humidity, and (c) momentum. Data points are measured values; solid lines follow standard
surface layer formulas for 4>h , <Pq , a, and 0™ from Chapter 1 (after Shuttleworth, 1989).

therefore, reflects not only the variation between canopies but also the height
dependences of <f>m/</>*„, (frh/tfa, and <pq/<p*. This feature has been explored in
more detail by Cellier (1986) and Fazu and Schwerdtfeger (1989). We shall return
to the reasons for this kind of behavior when we examine turbulent transfer in the
canopy later in this chapter.
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These roughness sublayer effects present another obstacle to inferring eddy
fluxes over tall vegetation by fitting measurements of mean concentrations to
equations (3.1), (3.2), and (3.3). Over very tall vegetation such as forests it may
be a practical impossibility to make measurements above two or three canopy
heights; furthermore, over canopies of any size, scalar gradients may become
extremely small outside the roughness sublayer. This is particularly true for CC>2.

3.1.4 Combination equation

The surface layer similarity relationships we have just discussed treat the transfer
of different scalars and of momentum independently. An important relationship
that, in contrast, emphasizes the link between sensible and latent heat fluxes is the
combination equation. The combination equation was first developed to describe
evaporation from an open water surface or from short green vegetation amply
supplied with water (Penman, 1948; Ferguson, 1952). It was extended by Monteith
(1965) to situations in which the physiological state of the plants restricted the
availability of water for evaporation.

To obtain the combination equation we first recast (3.15) and (3.16) in terms
of transfer resistances ra/t and raq:

where the aerodynamic resistances rah and raq describe the resistance to dif-
fusion between plant surfaces and the reference level z. The resistances, which
have dimensions of inverse velocity, can be written immediately in terms of the
logarithmic law. In neutral conditions the relationships are

Unless the plants are wet, water is not available for evaporation on the surface of
the canopy but instead diffuses as water vapor from the interior of the leaves via
the tiny stomatal pores on the leaf surface. It is usually a good approximation to
take thin leaves to be isothermal and to assume that the substomatal air cavities in
the leaves are saturated at the leaf temperature. Consequently, we can introduce a
canopy resistance rc by the expression
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where <?sat(0o) is the saturated specific humidity at $o-
The term rc is intended to capture the physiological response of a canopy

to vapor transfer from the leaf interior to the surface, which is controlled by the
stomatal apertures. These respond through complex biomechanical feedbacks to
sunlight, the amount of water in the plant, the ambient water vapor, CC>2 levels,
and other stimuli. At the present time, these are far from fully understood (Zeiger
et al., 1987). In fact, the canopy resistance rc cannot be a completely accurate
reflection of the combined stomatal resistances of all the leaves in a canopy for
a variety of reasons. These have been explored and quantified by Raupach and
Finnigan (1988). The most obvious reason is that for this to be so, 9$ and <?o should
be properly weighted averages of 9 and q on the surfaces of all the transpiring
leaves. In fact, the values of OQ and q0 that fit the logarithmic expressions (3.2) and
(3.3) do not correspond to such properly weighted quantities (except by accident)
because they are affected by nonbiological factors such as turbulent transfer within
the canopy and the distribution of wind speed and thermal radiation. Another
aspect of the same problem is that rah and raq are defined in typical single-layer
fashion, as if all the sources of heat and water vapor were concentrated close to
z = d, whereas the spatial distribution of sources and sinks of momentum heat
and moisture is often quite different (Denmead, 1984).

The thermal energy balance at the bottom of the surface layer is convention-
ally written as

where Rn is the net radiation, made up of incoming short and long waves minus
outgoing short and long waves, Gs is the heat flux going into storage in the soil
or vegetation, Pi is the small amount (usually less than 2% of Rn) consumed in
photosynthesis, and Xe is the latent heat of vaporization. A is called the available
energy because it is available for conversion to sensible and latent heat at the
surface. Equations (3.22), (3.23), (3.24), and (3.25) can be combined, using a set
of now standard procedures, to yield the combination equation

where A = q(z) - «?sat(0) is the specific saturation deficit at level z and
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is the dimensionless rate of change of saturated specific humidity with temperature
(es = 2.2at20°C).

Equation (3.26) is often written in a more compact way by defining the
climatological resistance T-J

and noting that, since raq and rah seldom vary by more than a few percent, we
can write

Then,

where (3 = H/\eE is known as the Bowen ratio.
The combination equation neatly encapsulates the two essential physical

controls on evaporation: the supply of energy and the diffusion of water vapor
from the surface. It also separates the physical constraint on diffusion, ra, from
the physiological one, rc.

Equation (3.26) or (3.29) can be used in several different ways. If ra and
rc are known or assumed, the combination equation furnishes a diagnostic model
of evaporation. Widely used approaches such as the Priestley-Taylor model of
evaporation (Priestley and Taylor, 1972) can be shown to be equivalent to inserting
particular expressions for ra and rc into (3.26). With knowledge of the behavior of
A, the specific saturation deficit, which might come from the output of a boundary
layer model, the combination equation forms the core of prognostic models of
evaporation. For example, it is the basis of land surface parameterizations in
global climate models; see, for example, Raupach (1991) and references therein.
Alternatively, inserting measurements of A, XeE, and ra into (3.26) or (3.29)
allows inferences to be drawn about the physiological state of the canopy as
embodied in rc. Used in this way, the combination equation is an important tool of
agronomy and agricultural meteorology, one that allows, for example, the water
use efficiency of different plant species to be compared (Dunin et al., 1978). In
Table 3.1, typical values of ra and rc for well-watered cereal crops or grasses
and forests are compared with an open water body to show the range of variation
commonly encountered.

We can infer useful information about the partition of radiant energy by
considering the limiting cases of (3.29). This has been done in a complete and
instructive way by Thorn (1975). Here we give three examples.

0
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Table 3.1. Typical Values of Aerodynamic and Canopy
Resistance for Well-Watered Plants

Surface /•„ (s m"1) rc (s m"1)

Water 200 0

Grass/cereal 50 50

Forest 20 200

1. If rc is negligible or actually zero, as occurs after rain when the vegetation
is wet, we have

This is called "potential evaporation," the evaporation you get when the stomata
exert no control.

2. If ra 3> rc, 7"j, a situation corresponding to very light winds and humid
conditions, we have

or

This is known as "equilibrium evaporation." In this case also, the canopy resistance
exerts no control on evaporation but for quite a different reason: not because rc

is negligible but because the inability of water vapor to diffuse away from the
leaves is the limiting factor. Equilibrium evaporation has been proposed as the
asymptotic state to be expected far downwind over extensive regions of well-
watered, transpiring crops (Denmead and Mcllroy, 1970). More complete and
recent analysis (McNaughton and Spriggs, 1986) has shown that diffusion of
dry air from above the capping inversion at Zi, and hence the dynamics of the
entire convective boundary layer, must be considered to obtain the proper limiting
behavior in such situations. Nevertheless, equation (3.31) usually provides a useful
first estimate of energy partition over extensive vegetation free of water stress.

3. Finally, consider rj/ra —> oo,rc/ra —> oo, the situation that occurs in dry
windy conditions over irrigated vegetation, what is sometimes called the 'oasis'
situation. We see now, by combining (3.27), (3.28), and (3.29), that
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Evaporation is maintained by the downward flux of dry air, and stomatal control
is paramount.

To relate the "bulk" parameters that have appeared in the logarithmic and
combination equations to the morphology of the underlying canopy in any but
an empirical way, we must look in detail at the structure of turbulent flow within
the canopy itself. As we pointed out in the introduction, the motivation for a
closer investigation of the canopy air space extends much further than providing
underpinnings for single layer models; there are many hydrological, agronomic,
and biological applications for which the proper characterization of the canopy
microclimate is indispensable. It is this requirement that we now address.

3.2 Flow within the canopy

Measurements of canopy turbulence both in the field and in the wind tunnel pose
difficulties because of the very high turbulence intensities present and the need for
some kind of spatial averaging. From a practical point of view it means that much
of the data collected more than 15 years ago cannot give reliable indications of all
the components of the wind vector. The earliest data set where confidence could
be placed in the instantaneous values of u, v, and w was obtained in a cornfield
by Shaw et al. (1974). Their mean velocity data u(z), normalized with Ufic (the
value of u at z = hc), is plotted against z/hc in Fig. 3.3a, together with data from
seven other uniform canopies where we have confidence in the measurements.
These range from two plantations of Pinus (Uriarra, Bordeaux), through a forest
of eucalyptus and banksia (Moga), two fields of corn at different stages of growth
(Shaw's corn and Wilson's corn), down to three wind tunnel (WT) model crops:
rigid strips (WT strips), rods (WT rods), and an aeroelastic model of wheat (WT
wheat). The vital statistics of the canopies and references to the published results
are given in Table 3.2.

What is striking is the good collapse of these data when normalized by hc

and uhf:, given that the range of heights varied by a factor of 500, whereas the
type and distribution of "foliage" ranged from simple rods in a wind tunnel to
complex combinations of crown, trunk space, and understory in forests. The only
significant variation in the form of the profiles is the secondary maximum that
occurs in the two forest canopies with clearly marked trunk spaces, Uriarra and
Bordeaux.

Other recent data sets of comparable accuracy that fall within the range of
scatter of Fig. 3.3a (and the subsequent Figs. 3.3b, 3.3c, and 3.3d) have been
presented by Amiro (1990) from three natural boreal forest canopies and by Shaw
et al. (1988) and Maitani and Shaw (1990) from a deciduous forest. Statistics col-
lected in an almond orchard by Baldocchi and Hutchison (1987) and in a deciduous
forest of oak and hickory by Baldocchi and Meyers (1988) fall somewhat outside
the range—the first probably because of its unnaturally uniform row structure, the
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FIG. 3.3. Observed profiles of (a) mean wind speed, (b) shear stress, (c) standard deviations
of u, and (d) standard deviations of w, within and immediately above the canopy, for a
range of real and model experiments.

second because of the exaggerated concentration of foliage in the crown space. If
the deciduous data of Baldocchi and Meyers are plotted against (z - d)/(hc - d),
however, the correspondence with the curves of Fig. 3.3a is restored. This sounds
a note of warning that in dense canopies, pronounced vertical variation in foliage
density may override the simple picture of Fig. 3.3a and a more sophisticated
vertical scaling may be called for. Nevertheless, the composite curves of Fig. 3.3



LAI is the simplest useful measure of the canopy area density. The upper part of
the u profile is fairly well approximated by
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Table 3.2. Physical and Aerodynamic Properties of Eight Canopies for Which
High-Quality Turbulence Data Exist

Sensors

Canopy Site Reference hc LAI uhju, ve Mean Turbulence

Strips WT Raupach et al. (1986) 60 mm 0.23 3.3 0.84 T T

Wheat WT Brunei, Finnigan, and Raupach' 47mm 0.47 3.4 1.6 T T

Rods WT Seginer et al. (1976) 19cm 1.0 5.0 1.7 X X

Corn Elora Shaw et al. (1974) 260cm 3.0 3.6 2.4 C F

Corn Elora Wilson et al. (1982) 225cm 2.9 3.2 4.1 C, F F

Forest Moga Raupach, Finnigan and Brunei" 12m 1.0 2.9 1.7 C, S3 S3

Forest Uriarra Denmead and Bradley (1987) 20m 4.0 2.5 1.7 C SI

Forest Bordeaux Brunei" (personal communication) 13.5m 3.0 2.2 3.2 C S3

Note: WT denotes wind tunnel. Sensors: C, cup anemometer; F, split-film servo-driven anemometer; X, X-configuration hot-wire
anemometer; T, coplanar triple hot-wire anemometer; SI, single-axis (vertical) sonic anemometer; S3, three-axis sonic anemometer.
"Papers in preparation

form a remarkably robust guide to a wide range of canopies. Let us examine them
in more detail.

3.2.1 Velocity statistics

The mean wind shear attains a maximum at the canopy top with both u and du/dz
attenuating within the canopy at a rate determined by the density of the foliage.
Foliage area density a(z) is the area of plant surface per unit volume of space.
The integral of a(z) through the whole canopy depth is called the leaf area index
(LAI), where

where the extinction coefficient VR tends to increase with LAI as seen in Table 3.2.
The data collapse in Fig. 3.3b, where we plot —u'w'/u^ as a function of z/hc,

is even more impressive. We identify U* with (—u'u/)1/2 at hc, as all the profiles
display an excellent constant stress layer down to the top of the canopy. Here
we encounter one of the principal ways in which canopy turbulence is different
from that in the layer above; it is strongly inhomogeneous in the vertical. In Fig.



80 ATMOSPHERIC BOUNDARY LAYER FLOWS

3.3b we see, at least in the denser canopies (LAI >1), that all the momentum is
absorbed in the upper part of the canopy so the shearing stress transmitted to the
ground surface is essentially zero.

Vertical heterogeneity is prominent again in the measurements of cru/u# and
aw/u*. These are shown in Figs. 3.3c and 3.3d, respectively. Although both au

and aw scale with u*, they approach typical surface layer values of 2.5u* and
1.25u* only above the roughness sublayer. Both quantities decrease through the
depth of the roughness sublayer to attain values of 2.0w* and 1. lu», respectively,
at z — hc,

Although we observe a constant stress layer above the canopy, the correlation
coefficient ruw, which has a value of -0.3 in the surface layer, increases through
the roughness sublayer to reach a value of —0.45 at z = hc. This coefficient,
defined as

is a measure of the efficiency of the turbulence in transferring momentum relative
to the absolute amount of turbulence present. Within the canopy, ruw attenuates
rapidly. In other words, turbulence at the top of the canopy is efficient at downward
momentum transfer, but this efficiency decays even more rapidly than the variance;
in fact, —u'w' decreases more rapidly than a^ or cr^.

FIG. 3.4. Typical profiles of skewness and normalized integral length scales for u and w
within and above the same range of canopies as in Fig 3.3.
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Another characteristic property of canopy turbulence, its intermittency,
emerges when we consider higher velocity moments. In the surface layer, the
skewnesses of u and w, both measures of intermittency in the flow, are close to
the Gaussian value of zero:

As the canopy is approached from above, Sku increases through the roughness
sublayer to reach a value of 1.0 in the canopy, whereas Skro changes over the same
distance to —0.6 (Fig. 3.4). There is considerable scatter in published results caused
primarily by morphological differences between canopies, but this combination
of strongly positive u skewness and strongly negative w skewness tells us that the
turbulence is dominated by intermittent downward moving gusts.

In the description of turbulence, length scales and time scales are just as
important as velocity moments. We can obtain the Eulerian integral length scales,
Au and Aw of Chapter 2, for streamwise and vertical components by applying
Taylor's frozen turbulence hypothesis to the respective integral time scales. De-
spite the high turbulence intensities, A,u and A.w are good indicators of the size
of the eddies that dominate the turbulence spectrum (Raupach et al., 1989), the
so-called energy-containing eddies. The profiles of length scale normalized by hc

that are shown in Fig. 3.4 are reasonable approximations for the canopies of Fig.
3.3. Around z = hc, we have Au « hc and A^, « /ic/3. The realization that these
eddies are typically of canopy size, coupled with the picture of a canopy turbulence
dominated by large-scale intermittent incursions of fast-moving air, has profound
consequences for the way we parameterize or describe canopy transport.

3.2.2 Scalar statistics

In Fig. 3.5a we illustrate typical midday and nighttime profiles of potential tem-
perature 0 for the natural forest canopies of Fig. 3.3. Note the strong maximum in
0 at about z/hc ~ 0.75 in the daytime profile. The peak coincides with the level
of strongest absorption of solar radiation in the foliage. Above this maximum we
observe a conventional lapse profile, but below it the airspace is stably stratified.
This inversion is a prominent feature of forest canopies with distinct crown and
trunk spaces but is also observed, albeit less dramatically, in uniform canopies
such as corn and rice (Uchijima, 1976). The nighttime profile is almost a mirror
image of midday behavior with a weak lapse profile in the lower canopy and
stable stratification above. The numerical values of (0 - 0^c), the departure from
the canopy top temperature, are typical of summertime conditions in temperate
forests with light-to-moderate winds.
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FIG. 3.5. Typical mean potential temperature and heat flux profiles in and above the canopy
for daytime and nighttime conditions.

The corresponding flux profiles are shown in Fig. 3.5b. To preserve the sign of
the flux, they are normalized with the modulus ofw'0' at the top of the canopy. The
most striking feature is the region of counter-gradient flux between the ground and
the maximum in the daytime 0 profile. The reasons for this surprising behavior
lie in the large size of the eddies responsible for most of the transport, as we
noted in Fig. 3.4b. We shall return to this point in the next section. Measured
nighttime flux profiles generally display no counter-gradient behavior, although
few simultaneous eddy flux and profile data have been gathered at such times.

Figures 3.6a and 33.6b display daytime specific humidity concentration and
flux profiles for the same average canopy as in Fig. 3.5. The profile of q has a

FIG. 3.6. Typical daytime mean humidity and humidity flux profiles in and above the
canopy when the ground is moist.
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less pronounced secondary maximum in the crown space and attains its greatest
value just above the ground. A profile of this shape is observed when the ground
and overlying leaf litter are moist, a condition that may persist beneath closed
forest canopies for several days after rain. The flux profile once again displays
counter-gradient behavior in the midcanopy space as well as a rapid flux increase
at the lowest level.

Figures 3.3, 3.5, and 3.6 demonstrate the rich vertical structure of wind
and scalar concentrations and fluxes that even simply structured plant canopies
conceal. As we shall see in more detail in Sections 3.3 and 3.4, this structure is
closely linked to the distribution of sources and sinks of momentum and scalar
quantities, the latter a direct consequence of the canopies' biological function.

3.2.3 Stability effects in the roughness sublayer

The potential temperature profile of Fig. 3.5a makes it obvious that local stability
within the canopy air space varies strongly with height. [Because of the impor-
tance of water vapor transport in canopy dynamics, it is conventional to express
stability in terms of virtual potential temperature ~0V (see Chapter 1) as we shall
do henceforth.] During the day, in the lower canopy, the Richardson number Ri
is positive, denoting stability, but the flux Richardson number Rj is negative,
denoting instability. In fact, the stability of the lower canopy space often appears
to be bimodal in time also with intermittent incursions of large eddies that effect
the positive heat flux (negative Rf) interspersed with quiescent periods where
Ri is strongly positive. In these intervening times it is not unusual to record pe-
riodic gravity wave oscillations on surface pressure sensors. These waves have
frequencies close to the average Brunt-Vaisala frequency of the inversion. Such
phenomena have been clearly observed in Uriarra and Moga forests (Table 3.2)
by Finnigan and at Camp Borden by Leclerc (personal communication).

At night, the lower canopy space may be unstably stratified, promoting turbu-
lent mixing there, whereas the upper crown space is stable with little turbulence.
This activity can lead to dew formation in the crown, which is cooled by radiation,
while the trunk space remains dry. Once again it must be emphasized that these
features are not observed with such clarity in shorter, more uniform canopies such
as cereals and grasses.

Above the midcrown both Ri and Rf have the same sign as in the surface
layer, but neither parameter has been used consistently to collapse data from a
range of stabilities. Attempts to use a simpler measure hc/L (where L is the
Obukhov length) have met with some success (Shaw et al., 1988; Leclerc et al.,
1990), but no universal behavior has yet emerged. For hc/L to be a true measure
of canopy response to stability, it would imply that the canopy turbulence structure
was determined by the same parameters that govern the behavior of the surface
layer above the roughness sublayer. In fact, as we shall see in the next section,
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canopy turbulence is dominated by the large eddies that form in the intense shear
layer confined to the crown or upper part of the canopy. The character of this
shear layer and the turbulence within it is set by the foliage distribution both in
the vertical and the horizontal and also by the distribution of temperature on the
plant surfaces. The velocity shear itself has a maximum value roughly equal to
Uhc/(hc - d) (Raupach et al., 1989), where uhc is the mean wind at canopy top.

Above z = d, where fluxes are generally cogradient, the flux Richardson
number Rf is, by definition, a good measure of stability effects. In Chapter 1
we saw that it is possible to write Rf = z/L(o)rn. Use of hc/L as a stability
parameter, therefore, is tantamount to representing the shear at the canopy top by
u*/k(hc — d) just as in the surface layer above, rather than by the correct and
somewhat larger quantity uhc/(hc - d). Hence, while hc/L may be generally
indicative of the canopy's response, it is unlikely to exhibit the success enjoyed
by z/L above the roughness sublayer in ordering a wide range of phenomena.
Clearly a good deal more work is required before we can speak with confidence
about this particular facet of canopy flow.

3.3 Dynamics of canopy turbulence

3.3.1 The momentum balance

The essential differences between turbulence in the canopy air space and that in the
boundary layer above result from the sources and sinks of momentum and scalars
that are spread through the canopy. The distribution of these plant surfaces dictates
a corresponding variation in the time-averaged moments of velocity and scalars.
If we want average moments to reflect the same dependence on z as does the
average canopy morphology, we have to average them in space as well as in time.
The appropriate spatial average is taken over a thin slab parallel to the ground and
extending over many plants in the horizontal direction. The practical lower limit on
the thickness of this slab is the resolution of the measuring instrument. A schematic
view of such an averaging volume is provided in Fig. 3.7. Note that because plant
parts intercept the averaging volume (which is taken to consist only of the air, not
the solid plants), the averaging volume is a "multiply connected" space (Courant,
1959). This is a mathematical concept that has profound consequences for the
derivation of the canopy flow equations.

Applying this spatial average to the conservation equations for momentum
and for turbulent kinetic energy is a convenient way of introducing the extra
physical processes that occur in the canopy. The now standard form in which we
present them evolved through the efforts of various workers. The essential steps
may be found in Raupach and Shaw (1982), Finnigan (1985), and Raupach et al.
(1986).

If we assume steady flow with no evolution in the streamwise direction, at
least on scales larger than the spatial average, the conservation of streamwise
momentum can be written as

L
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In discussing canopy statistics such as u up to this point, we have been
tacitly assuming the volume-averaging operations that have now been formally
introduced. In particular, reinterpret u^c as (u)hc, and so on.

The first term on the right-hand side of (3.37) is the vertical gradient of
volume-averaged turbulent shear stress. The next term is less familiar; it represents
the contribution to momentum transfer from correlations between point-to-point
variations in the time-averaged flow. It is called the dispersive flux (of momentum)
and on the relatively few occasions that it has been measured, has proved to be
only about 1% of the first term, the Reynolds stress (Coppin et al., 1986).

The last term is the drag exerted by the canopy on the mean air flow. It is
minus D(z), the average of viscous plus pressure drag forces exerted on each

FIG. 3.7. Schematic view of an averaging volume V in a forest. The solid plant parts are
excluded from the average, causing V to be a "multiply connected" space.

where D ( z ) is the aerodynamic drag on the canopy per unit volume of space. The
angle brackets denote volume averages, whereas time mean quantities have been
split into the sum of their volume average and the local departure from it, the latter
denoted by a double prime. For example,
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plant part in the averaging volume. Equation (3.37) shows immediately why we
observe large gradients of (u'w1) in the canopy. In horizontally homogeneous
conditions, a vertical gradient in shearing stress is necessary to sustain a steady
air flow against the aerodynamic drag of the foliage. Just above the canopy, in the
surface layer, the aerodynamic drag disappears, the gradient of shearing stress is
zero, and we recover the familiar constant stress layer.

Equation (3.37) also illustrates the two extra processes we encounter in the
canopy: the transport by correlations between spatial variations in time-averaged
quantities and the contribution of spatially distributed sources and sinks to the
conservation of some measurable quantity. The equations for conservation of heat
and humidity under the same horizontally homogeneous conditions, therefore,
become

where d( is the fluctuating part of the drag on the foliage and v[ the component
of foliage velocity. When the canopy is not moving v( — 0. In the last two
terms we have resorted to tensor notation since wake production (VII) and waving
production (VIII) receive significant contributions from all three axial directions.
The other terms above are shear production (I), turbulent transport (II), pressure
transport (III), buoyant production (IV), viscous dissipation (V), and dispersive
transport (VI). Equation (3.40) has the same form as the turbulent kinetic energy
budget given in Chapter 1, but angle brackets now remind us that all mean moments

where (Fh) and (Fq represent the average transport of heat and humidity across
the surface of every plant part in the averaging volume.

3.3.2 Turbulent kinetic energy

We see both extra processes at work again when we consider the budget of turbulent
kinetic energy in the canopy. The equation is
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are averaged spatially as well as in time and three new terms have appeared that
are peculiar to canopy flow.

The first new term is the dispersive transport (VI), which is precisely analo-
gous to the dispersive flux terms of equations (3.37), (3.39a), and (3.39b). It is the
counterpart under volume averaging of the standard turbulent transport term. The
other additional terms, wake and waving production, represent the conversion of
mean to turbulent kinetic energy that occurs as the wind interacts directly with the
foliage.

The wake production term has the same form as shear production but de-
pends on local variations in shear stress doing work against local variations in
mean strain rates. We associate these variations with the wakes of individual
plants, hence, wake production. If we assume the canopy is horizontally homo-
geneous on the large scale and the flow steady, the wake production term reduces
to ~(u) d/dz((u'w') + (w"u>"}). Furthermore, if we can assume (u"w"), the
dispersive stress term, to be negligible, as measurements so far have shown it to
be in the upper part of uniform canopies (Coppin et al., 1986), we have a form
that enables the wake production term to be evaluated in practice.

The waving production term is associated specifically with plant motion and
is present in varying degrees in all real canopies. It arises because work must be
done to move the plants. This process is a net sink for turbulent kinetic energy
since the plant waves in response to fluctuating aerodynamic forcing, while the
damping of plant motion through internal friction or as adjacent plants rub together
converts this motion to heat. This is not to say that leaf fluttering or plant waving
is not an effective way of converting aerodynamic forcing at one frequency to
eddy motion at the plant's preferred (resonant) frequencies, but this transfer of
energy across the frequency spectrum cancels out in the total budget equations
when contributions from all frequencies are summed.

Figure 3.8 presents profiles of the scaled budget terms representative of three
of the canopies in Table 3.2: Moga, WT strips, and WT wheat, of Camp Borden
(Leclerc et al., 1990) and of the deciduous forest of Meyers and Baldocchi (1991).
Each term is multiplied by hc/u\, where u*is determined in the constant stress
region above the canopy. The forest data are taken in neutral conditions whereas
those from the wind tunnel are adiabatic. Individual budgets are surprisingly
similar over a 500-fold disparity in size, from the forest canopies to the wind
tunnel models.

Shear production peaks near the canopy top where d(u}/dz is at a maximum
but —(u'w1) has not fallen below its constant value of u2^. Wake production is
highest in the upper third of the canopy, but the most unexpected behavior is
exhibited by the turbulent transport term, which appears as a significant sink for
turbulent kinetic energy at the top of the canopy and up to about z = 2hc, and an
equally strong source in the lower canopy, where both shear and shear production
have fallen to very low values. Hence, transport is instrumental in maintaining
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turbulent kinetic energy levels in the lower canopy, where most of the turbulence
is not locally produced but imported from above. This is consonant with the large
values of skewness observed in the lower canopy. Dispersive transport has been
measured in one forest canopy (Moga) and one wind tunnel model (WT strips)
and was found to be negligible in both cases.

In the WT strips, WT wheat, and Moga forest canopies, viscous dissipation
has been estimated using the standard Kolmogorov relationship (Chapter 2); and
values obtained from u and w spectra show surprising consistency. Both the wake
and waving production terms, however, have the capacity to "short circuit" the
spectral energy cascade by converting eddy motion with length and time scales in
the energy-containing range to smaller eddies much closer to the dissipation range.
This process should produce dissipation rates much higher than those observed in
the free stream.

We see in Fig. 3.8, for example, that the dimensionless dissipation rate ehc/u\
is about 6.0, which is close to the imbalance in the budget terms, whereas, ac-
cording to surface layer scaling, tz/u\ = \/k = 2.5. Consequently, dissipation
values obtained from Kolmogorov's relationship should be taken as merely in-
dicative of the actual values. In particular, they cannot be used to infer the other
major unknown component of the budget, the pressure transport term. That term
is even harder to measure in a canopy than in the free surface layer because of the

FIG. 3.8. Normalized profiles of terms in the kinetic energy budget within and above the
canopy.

88
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high turbulence levels. Present estimates suggest that pressure transport is roughly
proportional to turbulent transport but opposite in sign.

Not enough data exist concerning the effect of buoyancy on the turbulent
kinetic energy budget to state firm conclusions. The most complete investigation
to date is that by Leclerc et al. (1990), who noted not only the expected contribution
of buoyant production as a source or sink term, depending on the sign of the local
heat flux, but strong influences on the other terms in the budget. For example, when
hc/L was positive or stable, they observed large increases in shear production at
the top of the canopy.

We shall not present budgets of shear stress or scalar fluxes here. Examples
of these for the type of canopies we are examining can be found in Raupach et al.
(1986), Raupach (1988), Coppin et al. (1986), Leclerc et al. (1990), and Meyers
and Baldocchi (1991). They too show, as a central feature, the maintenance of
stress or eddy flux within the canopy by turbulent transport, which appears as a
sink in the range 2.5hc > z > 0.8hc and as a source below 0.8hc. In contrast
to the turbulent kinetic energy budget, there are no important extra source terms
in the (u'w'} or (w'c'} budgets (where c is the arbitrary scalar), although source
terms similar to wake and waving production do appear in the budgets of turbulent
normal stresses and horizontal scalar fluxes.

3.3.3 Turbulent transport in the canopy

We saw in (3.8), (3.9), and (3.10) that within the surface layer, Monin-Obukhov
similarity is equivalent to describing turbulent transport by flux-profile or "K-
theory" relationships. That is, eddy fluxes and mean gradients are linked by an
eddy diffusivity. Adopting these parameterizations is tantamount to assuming that
turbulent transport and source terms make negligible contributions to the eddy
fluxes of momentum, heat, and moisture. [This was demonstrated by Wyngaard
(1983) for the free boundary layer and Finnigan (1985) in the canopy context.]
Absence of transport terms connotes a state of local equilibrium in the turbulence,
where production of turbulent energy or eddy flux is in balance with destruction
(by viscous dissipation or interaction with pressure fluctuations).

Much earlier than this, Corrsin (1974) showed that the eddy diffusivity con-
cept can only be applied if the random motions that do the mixing, the large
eddies in this case, are much smaller than the scale over which the mean gradients
change. Neither this nor the condition of local equilibrium is satisfied in canopy
flow. As we have seen, turbulent transport is vital in maintaining turbulent kinetic
energy and eddy flux within the canopy, whereas the characteristic length scales
of the turbulent motion, A.u and Aw, are of order hc, which is also the distance
over which mean gradients change most rapidly.

Despite arguments such as these and earlier rumblings of disquiet, eddy
diffusivity models formed the basis of canopy transport prediction for many years
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and such efforts are still appearing in the literature. The excellent two-volume
work, Vegetation and the Atmosphere, edited by Monteith (1975, 1976), and the
review by Raupach and Thorn (1981) are watershed volumes in the understanding
of this particular aspect of canopy flow as they separate the time of universal
acceptance of K-theory from the present, when it has been abandoned by serious
students.

Early evidence for the failure of K-theory came from measurements of sec-
ondary maxima in forest wind speed profiles. Combined with necessarily mono-
tonic — {uw} profiles, these would have required counter-gradient momentum
transfer in the lower crown space. Compare, for example, the curves for u/Uhc
and —u'w'/ul for the Uriarra and Bordeaux forest in Fig. 3.3. Earlier examples
of secondary velocity maxima were usually explained away as a consequence
of cup anemometer overspeeding (Chapter 6) in the high-intensity, trunk-space
turbulence, until the pivotal example of counter-gradient behavior, from simulta-
neous measurements of heat, water vapor, and CO2 eddy fluxes in Uriarra forest
by Denmead and Bradley (1985) made it impossible to ignore the phenomenon.
Their observations of fluxes in the canopy (Fig. 3.9) demonstrate the coexistence
of counter gradient (or zero gradient) fluxes within the trunk space and cogradient
behavior above.

It is most important to realize that the mere existence of co-gradient fluxes
does not mean that the mechanisms that cause pathological, counter-gradient be-
havior in extreme cases have switched off. Simple K-theory, in fact, fails through-
out the roughness sublayer, leading to the breakdown of the classical surface layer

FIG. 3.9. Profiles of mean potential temperature (9), mixing ratio (r), and CO>2 concentra-
tion (c) observed in Uriarra forest over a period of 1 hour, near noon, together with directly
measured eddy fluxes (in W m~2) at two levels (after Denmead and Bradley, 1985).
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forms for (j)m, fa, and (j)q that we discussed in Section 3.1. In this context, we
must mention the role of Professor George Thurtell of Guelph University, who
contributed seminal ideas to the reappraisal of K-theory. The physical reason
for the failure of K-theory, the domination of transport by large gusts, was also
demonstrated by Denmead and Bradley (1985) as they graphed the penetration of
the canopy by cool, dry gusts that displace the warm moist canopy air. Similar but
more extensive pictures of heat, moisture, and momentum transfer by large eddies
have now been obtained in the Camp Borden forest by Gao et al. (1989) and in a
pine forest by Bergstrom and Hogstrom (1989).

Another striking visual demonstration of the large eddies, this time in their
role as transporters of momentum, is afforded by the coherent waves that appear
on flexible cereal crops such as rice, wheat, or barley on windy days. Finnigan
(1979a) showed that this phenomenon, which is often called by its Japanese name
"honami," results from the coupling between the natural elastic frequency of the
stalks and the characteristic frequency of the energy-containing eddies of the
turbulence. This work provided one of the early demonstrations that the dominant
canopy eddies were typically of canopy size.

An interesting discussion of the rise and fall of K-theory may be found in
Raupach (1988), who also develops the third theoretical objection to such models,
which relies on a Lagrangian formulation. This Lagrangian formulation also makes
it very clear that the apparent diffusivity (i.e., the flux divided by the gradient)
is strongly influenced by the source distribution of the particular entity under
consideration. It is worth taking some time to explore the Lagrangian viewpoint
since it provides the most direct refutation of the eddy diffusivity concept as well
as forming the basis of a physically valid alternative (Raupach, 1989a, 1989b).

The Lagrangian or fluid-particle-following formulation assumes that the
transfer of a scalar released from a point source is statistically equivalent to
the dispersion of an ensemble of marked fluid particles that pass through the
point and thereafter carry the scalar. This assumption is an extremely good one
in the high-Reynolds-number turbulence of a natural plant canopy. The scalar
sources and sinks that spread over the surfaces of plants throughout the canopy
are regarded as a distribution of such point sources, each producing a plume of
marked particles that is advected downwind by the mean flow and spread by the
turbulence. The concentration of the scalar at any point is the ensemble average
of all the particles arriving at that point from all the sources or, equivalently, the
average of the concentrations in all the overlapping plumes that envelop the point.
This process is shown schematically in Fig. 3.10a. Note that most of the sources
influencing a given measurement point will be located upwind but that in the
high-intensity turbulence of the canopy air space, nearby downwind sources will
also contribute.

To understand the behavior of any given plume, we can focus on a single
typical particle; the Lagrangian treatment assumes that each marked particle moves



92 ATMOSPHERIC BOUNDARY LAYER FLOWS

FIG. 3.10. Figure 3.10 (a) Scalar plumes from just a few of the infinite number of point
sources scattered through the canopy. The plumes overlap at the measuring point M, and the
measured concentration is the sum of the contributions from all the sources, (b) Schematic
of the distribution of concentration across the plume.

independently of all others. If Z(t) is the height of the typical particle and t is
the travel time from the source, then W(t} = dZ/dt is its Lagrangian (particle-
following) vertical velocity. The depth of the scalar plume is identified with crz,
the standard deviation of Z(t), given by

where the square brackets denote an ensemble average over all particles with the
same travel time.
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In homogeneous turbulence, Taylor (1921) derived the classic result:

This behavior is illustrated in Fig. 3.10b. To quote Raupach (1989b): "In the
near field, persistence causes W(t) to differ only a little from W(0) and the particle
trajectories Z(t) to depart only a little from straight lines so that the cloud depth
grows linearly with i. In the far field, on the other hand, the effects of persistence
are negligible and Z(t) behaves as a random walk just as in a diffusive process."
In fact, the Lagrangian analysis makes it clear that, for travel times from the
source that are large compared to TL , the spread of the plume and the consequent
relationship between the vertical flux of the scalar and its concentration gradient
can be described by an eddy diffusivity.

The forms that we have given for (3.42) and (3.44) are only precisely true
in homogeneous turbulence. We have seen that canopy turbulence is far from this
state, but the homogeneous formulas are sufficient to illustrate the crucial point
we wish to make; indeed, surprisingly, Raupach (1989a) shows that much of the
paradoxical behavior of canopy transport, including counter-gradient diffusion,
can be reproduced by assuming that canopy turbulence is homogeneous.

Returning to our picture of a single plume in Fig. 3.10b, the time axis can be
turned into a distance axis x by the transformation x = (u)t. (We will ignore the
complications caused by streamwise diffusion.) Then, because of the large size
of crw and of A.w (Figs. 3.3d and 3.4b), we see that the near field of any point
source extends a distance of order h around the source. Hence, any measurement

where RL(£) is the Lagrangian correlation function of W at time lag £ defined by

The most important characteristic of RL (£) is its integral time scale Tj,, the integral
of RL(£) from £ — 0 to £ = oo. This Lagrangian time scale TL is related to the
vertical Eulerian integral length scale Aw of Fig. 3.4b; for our present purposes
we can assume that TL ~ h.w/a-w (Raupach, 1989b). Raupach (1989a) described
TL as a measure of the "persistence" of the turbulent eddies or, equivalently, of
the "memory" of W(t).

According to (3.42), the depth of the scalar plume has two different types
of behavior in the limits of small and large relative travel time t/TL. These are
known as the near field and far field limits, respectively:
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point will be in the near field of sources, less than about a canopy height away
and in the far field of more distant sources. The concentration measured will
be the superposition of near-field and, therefore, more concentrated plumes from
nearby sources and more diffuse far-field plumes from distant sources. These more
concentrated, near-field plumes dominate the concentration profile, impressing the
character of the local source distribution upon it, whereas the more numerous far-
field plumes dominate the total rate of spread and therefore the scalar flux. In
essence this near-field, far-field dichotomy decouples the flux from the gradient
and invalidates the functional dependence implied by an eddy diffusivity.

Raupach (1989a, 1989b) treats these concepts in exhaustive detail and shows
how to incorporate the mechanics of near-field, far-field diffusion into a practical
and physically valid model of canopy dispersion that is equivalent to K-theory
and can be used in its stead. The only drawback of the Lagrangian approach is
that there is no obvious way to apply it to momentum transport, primarily because
the existence of pressure forces makes it invalid to assume that fluid particles
"marked" with momentum move independently.

3.4 Sources and sinks in the canopy

3.4.1 Momentum sinks

We said in the last section that the aerodynamic drag term (D)(z) represents the
mean value of the pressure and viscous forces on all the canopy elements in an
averaging volume. Focusing on a single leaf,1 its total aerodynamic drag Fdi can
be expressed in terms of its area ALi and the mean wind speed Ui measured just
outside the leaf boundary layer through a dimensionless drag coefficient CM'.

where the subscript i distinguishes the ith leaf in the averaging volume. (Note
that the micrometeorological convention does not include a factor of 1/2 in the
definition of Cd-)

Pressure forces on the ith leaf vary as [U2i and the frontal area of the leaf,
whereas, viscous forces vary as Ui and the leaf's total surface or "wetted" area. At
Reynolds numbers typical of most leaves in the upper part of a canopy, however,
which is where the greater part of the momentum is absorbed, the pressure force
is at least four times larger than the viscous force so Cdi is only a weak function
of Ui.

It is not a practical proposition to sum (3.45) for every leaf in an averaging
volume. We write instead

'in this section for convenience we shall use leaf to refer to any plant part. Remember, how-
ever, that although all of the plant can be active in heat and momentum exchange, transpiration occurs
almost entirely at the surface of a genuine leaf.



where (D)(z) is the momentum sink or the drag term in (3.37). The variations
in leaf area, the random orientations and mutual interference of leaves, as well as
the effects of turbulence are all subsumed in Cj, the effective drag coefficient, and
a ( z ) , the leaf area per unit volume of space.

Cdi, the drag coefficient of any individual leaf, depends not only on how Ai
is chosen but also on physical effects such as leaf fluttering, orientation, stream-
lining (which emphasizes the viscous component of drag), and particularly on the
turbulence intensity and scale. There have been many wind tunnel measurements
of the drag coefficients of individual leaves and groups of leaves, with and with-
out turbulence; their comparison with the drag of a similar leaf in situ in the real
canopy is generally poor.

The net effect of these influences is to reduce Cd below what is measured
for an isolated leaf in a wind tunnel. At Reynolds numbers typical of a leaf in a
canopy, the wind tunnel value of Cdi is roughly equal to 0.5, but in field conditions
Cdi falls to about 0.2. This is the so-called shelter effect mentioned earlier; it is
discussed more thoroughly in Raupach and Thorn (1981).

The connection between the distribution of drag in the canopy and bulk
parameters such as ut, ZQ, and Cf that we dealt with in earlier sections is readily
seen by integrating (3.37) from just below the surface 0— (so that the ground is
counted as part of the canopy) to just above canopy height, hc+:
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3.4.2 Scalar sources

The transfer of a scalar to or from a leaf is precisely analogous to the transfer
of momentum by viscosity, but there is no counterpart of pressure drag in scalar
transport. This leads to significant differences between the distribution of momen-
tum sinks and scalar sources, differences often referred to as the bluff body effect
or the failure of "Reynolds analogy." We encountered this phenomenon earlier in
the context of differences between zo,Zh, and zq in Section 3.1.

As we did for the single layer model [equations (3.20) and (3.21)], we follow
convention and parameterize the scalar flux from an individual leaf through a
"boundary layer resistance," r^,.

Hence, using subscript i to distinguish an individual leaf, we have
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rbh and rbq must now accommodate a similar range of environmental factors
as Cd, the effective drag coefficient, and there are similar discrepancies between
rbhi and rbqi, measured on single leaves in laboratory conditions, and the values
that apply to the average leaf in a canopy. In contrast to what we saw for momentum
transfer, these influences tend to increase the transfer rate so that within-canopy
resistances are lower than those measured on leaves in isolation or deduced directly
from engineering formulas. On most occasions, leaves in the canopy experience a
regime of forced convection when their boundary layer resistances vary directly as
the square root of a characteristic leaf dimension, such as the width of a deciduous

1 /2leaf or the diameter of a pine needle, and inversely as Ui1\2 . Formulas for these
resistances in both forced and free convection together with a discussion of the
effects of turbulence intensity and scale may be found in Finnigan and Raupach
(1987).

The connection between the distribution of scalar source strength and the bulk
parameters Tf, qf, C/,, and Cq, follows in the same way as it did for momentum
[equation (3.47)] by integrating (3.49a) and (3.49b) from 0- to hc+.

3.4.3 Combination equation

Values of temperature or humidity on the leaf surface are difficult or impossible
to measure in practice. We can, however, apply the combination equation (3.26)
to eliminate this necessity. We proceed first by specializing the energy balance
equation (3.25) to the surface of a single leaf, then by combining it with (3.49a)
and (3.49b) obtain

where the flux densities are taken as positive along the outward normal to the leaf
surface, qi and 9t mark conditions just outside the leaf boundary layer, while 60i

and q0i denote surface values, and all the variables are averages across the leaf
surface.

As in the case of leaf drag, we do not attempt to obtain Fh and Fq, the scalar
source terms of equation (3.39a,b) by summing (3.48a,b) for every leaf but rather
by defining average resistances rbh and r^q.



where the subscript i refers to an individual leaf, the vapor flux density Ej is
positive along the outward normal to the surface, the saturation deficit A; is taken
just outside the leaf boundary layer, and the canopy resistance rc has been replaced
by a stomatal resistance rsi. All the variables are averages across the leaf surface.

Relationships among individual leaf resistances, r^;,?-^, and rai and the
bulk values of (3.26) can be found by replacing the variables of (3.50) by smooth
averages at each level in the canopy and integrating from 0- to hc+ just as in
the last two sections. This operation makes it clear that, although rsi is truly a
physiological property of the plant, rc is strongly influenced by the distribution of
temperature, humidity, and available energy in the canopy. The temperature and
humidity are determined primarily by turbulent transfer, the available energy by
canopy morphology and sun angle (Ross, 1975). The stomatal resistance rsi is an
important biological variable and is often measured directly using leaf porometry.
On the other hand, rc is generally obtained by the micrometeorological methods we
have described in this chapter, so that the divergence between these two quantities
is of considerable interest. It has been quantified in some common situations by
Finnigan and Raupach (1987) and Raupach and Finnigan (1988).

3.5 Spectra and cospectra

All of the reasons for studying turbulence spectra and cospectra that were detailed
in Chapter 2 apply with equal force in plant canopies. This was apparent in the
pioneering spectral measurements of Uchijima and Wright (1964) in corn, and
of Allen (1968) in a plantation of larch. Unfortunately, such early studies were
handicapped by the state of the art in sensor design and signal processing so the
first really useful turbulence spectra date from 1974. These were obtained by Shaw
et al. (1974) using servodriven, split-film anemometers in a corn crop.

3.5.1 Velocity spectra

We are particularly interested in how spectra measured in the roughness sublayer
depart from the shapes and scaling relationships developed in Chapter 2. We
begin, therefore, by reproducing Fig. 2.1 and indicating on it the extra physical
processes that operate within the canopy. This is shown schematically in Fig. 3.11.
As before, we expect shear production to produce eddies in the energy-containing
range centered at wavenumbers around Km, where Km ~ I/A (Chapter 2). In
contrast, conversion of kinetic energy of the mean flow to turbulent energy by the
wake and waving production mechanisms produces eddies with a range of scales.
The range is determined by the dimensions of plant elements and the thicknesses
of the boundary layers upon them and the wakes behind them. As a result, this
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range brackets the bottom of the inertial subrange and the top of the viscous range.
For example, the Kolmogorov microscale 77 is about 1 mm in canopies; this is also
the typical depth of attached boundary layers on small leaves or stems.

We must also remember that the wake and waving production processes are
able to extract energy from large eddies and convert it to energy at the smaller wake
or waving scales. In the special case of coherent waving of cereal crops, the plant
waving frequency can actually coincide with the energy-containing frequencies.
Furthermore, the relative rate of viscous dissipation is much higher in the canopy
than in the free boundary layer because the viscous component of canopy drag
occurs through thin boundary layers, where the rate of dissipation is very high as
it is in the intense shear layers in plant wakes. We saw this demonstrated clearly
in the budget of turbulent kinetic energy discussed in Section 3.3.

There is considerable variation in published spectra from canopies of different
types. The most striking differences are seen between measurements made in
relatively open and uniform canopies (LAI < 5) and those from forests with
dense crowns (LAI ~ 10) capping open trunk spaces. In Fig. 3.12 we present
power spectra of u, v, and w, respectively, based on Moga forest data and typical
of the more open, uniform canopies. Curves of normalized, frequency-weighted

FIG. 3.11. Schematic showing energy from wake and waving production feeding directly
to the bottom end of the inertial subrange of the energy spectrum, both directly through the
action of the mean flow and through the spectral shortcut from large eddies that penetrate
the canopy.
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FIG. 3.12. Normalized velocity spectra from measurements above the canopy (solid), near
the top of the canopy (dashed), and within the canopy (dash-dot) for the (a) u component,
(b) v component, and (c) w component.

spectra fSa(f)/<j^ (a = u,v,w) are plotted against the dimensionless frequency
at z/hc = 1.5,1.0, and 0.5. We shall discuss the distinguishing features of these
spectra, focusing on three characteristics: the position of the spectral peaks, the
behavior of the various components in the inertial subrange, and the isotropy
in the inertial subrange. Note first that the frequency axis is scaled as fhc/Uhc,

c

o2 2a
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where we recall that Uhc is, in fact, (u)hc- This corresponds to the normalized
frequency n = fz/u, introduced in Chapter 2 for the surface layer, with the
essential difference that we use fixed values of u and z appropriate to the canopy
top. Note also that since A, the eddy wavelength, is defined as A = u / f , then
n = fz/u = z/X and hcf/u = hc/\.

3.5.2 Spectral peaks and eddy scales

With the above choice of scaling, the positions of the peaks in fSu (/), fSv (/), and
f S w ( f ) do not vary as we descend through the roughness sublayer to midcanopy
height. Constancy in the position of the spectral peak is observed in almost all of
the reliable data sets available for comparison; for example, see Shaw et al. (1974)
in corn, Wilson et al. (1982) in corn, Seginer et al. (1976) and Raupach et al. (1986)
in the wind tunnel, Bergstrom and Hogstrom (1989) in a pine forest, and Amiro
(1990) in three forest canopies (see also Table 3.2). This lack of variation also
fits in well with the data of Fig. 3.4b, which (with the exception of Wilson corn)
show only a weak variation of Au or Aw with height. An important deduction
from this is that the large eddies that dominate canopy transport extend through
the whole depth of the foliage and into the air above. This has now been confirmed
most powerfully by the three-dimensional space-time correlation maps obtained
in the WT wheat canopy (Table 3.2) by Raupach et al. (1989). The position of the
peak is different for the three components u, v, and w. f S u ( f ) peaks at a scaled
frequency of fh,./uhc ~ 0.15(±0.05), whereas measured values of the f S w ( f )
peak cluster around 0.45 (±0.05). The peaks in /£„(/) are more variable; values
range from fhc/uhc ~ 0.1 in the Shaw et al. (1974) corn to 0.35 in the Moga
forest (Table 3.2). We chose the Moga value for the purpose of illustration.

This behavior is quite different from that reported for the surface layer in Fig.
2.9 of Chapter 2. In the surface layer, the peak wavelengths, (Xm)u,v,w, for the
three velocity components, u,v, and w (and for the 0 spectrum as well), are directly
proportional to z, for any given value of z/L > 0+, on the stable side of neutral.
The constants of proportionality are plotted in Fig. 2.9. This proportionality does
not extend down to the ground but is lost through the upper part of the roughness
sublayer as the curves of (Xm)u,v,w versus z approach constant values in the
canopy. Figure 3.13 illustrates this situation, where the near-neutral (z/L = 0+)
relationships of Fig. 2.9 are projected down to the canopy top and compared with
the constant values observed within the lower part of the roughness sublayer.
[Note that over a tall canopy we must adjust the origin and expect (z — d)/X to
be constant in the surface layer.]

We would reasonably expect these two relationships to merge above the
vegetation, providing a smooth transition through the roughness sublayer from
surface layer to canopy values. This is the kind of behavior suggested by the plots
of integral length scale displayed in Fig. 3.4b, and indeed we see that this is what

h

u v
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FIG. 3.13. Wavelength of the spectral peak, normalized by canopy height hc, shown as
a function of z/hc. The peak wavelength stays invariant with height within the canopy
(scaling with hc) but quickly increases with height above the canopy top consistent with
the neutral surface layer relationship in Fig. 2.9.

happens in the case of (Xm)w. The surface layer, horizontal peak wavelengths,
(Xm)u and (Am)i,, in contrast, shift more abruptly to their above-canopy values.
The explanation for this abruptness, as well as for the success of the scaling
fhc/Uhc in collapsing peak wavelengths over a range of canopies from wind
tunnel to forest, lies in the mechanism by which the dominant eddy structure in
the upper canopy evolves.

The peaks in the surface layer u and v spectra, Figs. 2.5 and 2.6 of Chap-
ter 2, represent eddies of such a scale that at small heights, the presence of the
ground forces them to be almost horizontal motions, playing little part in the
transfer of momentum. Bradshaw (1967) has called such sideways "sloshing"
components, "inactive motion." These large-scale horizontal motions, however,
modulate the production of canopy-scale eddies that are not "inactive" but crucial
in the transfer of momentum and scalars, as we have seen repeatedly through-
out this chapter. Raupach et al. (1989), in discussing the origin and structure of
large eddies in canopies, marshalled evidence to show that the dominant eddies
result from a continuous, hydrodynamic instability process linked to the inflected
velocity profile in the upper canopy. As is shown in Fig. 3.3a, the maximum
shear is located at z = hc and the depth of the strongly sheared region is approxi-
mately hc-

Eddies produced by this instability process have integral length scales of
order hc, are advected downwind at speed Uflc, and extend through the canopy
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and into the roughness sublayer above. The instability process is most active at
times of strong shear, and these times coincide with larger gusts (the inactive
motion components mentioned above) impinging on the canopy from the surface
layer aloft. Large eddy production, therefore, is most active when the total in-
stantaneous horizontal velocity (u)hc exceeds Uflc. Accordingly, the large eddies
move downwind somewhat faster than Uhc- Nevertheless, in a given canopy, the
average eddy convection velocity is proportional to Uhc (Finnigan, 1979b) so that
Uhc furnishes a physically based velocity scale. The link forged by the instability
process between the eddy size and hc gives a similar physical relevance to hc as
the length scale for flow in canopies.

As the canopy eddies are linked dynamically to the height scale of the
vegetation in this way, there must be an abrupt transition in the peak wavelengths
of u and v from the larger scale inactive motions well above the roughness sublayer
to smaller, active, canopy-scale motions within the roughness sublayer. The former
are represented by the asymptotically neutral values of (\m)u and (Xm)v obtained
from Fig. 2.9; the latter by the peak values shown in Figs. 3.12a and 3.12b.

In the discussion so far, we have assumed that Taylor's hypothesis continues
to be valid within the canopy. As we saw in Chapter 2, Kolmogorov's inertial
subrange relationships apply in wavenumber space and the Taylor transformation
K\ = 2jrf/u is implicit when we apply Kolmogorov's theory in frequency space.
Taylor's hypothesis is, however, generally not valid when turbulent fluctuations
are large relative to the mean wind, that is, when au/(u},/jv/(u), crw/(u) ~ 1,
because, in such conditions, turbulent eddies can evolve substantially in the time
taken for them to be advected past a sensor. But these are precisely the conditions
that occur in plant canopies, and, not surprisingly, reservations about the use of
Taylor's hypothesis are often expressed [e.g., Amiro (1990)]. A saving grace is that,
as we have just pointed out, large eddies have convection velocities substantially
larger than the mean wind in the canopy, particularly the mean wind in the lower
canopy (Finnigan, 1979b; Raupach et al., 1989).

3.5.3 Spectral slopes and isotropy

Turning now to the spectral slopes of Fig. 3.12, we see that in the inertial subrange
f S u ( f ) rolls off as /^2/3 except within the canopy, where the roll-off rate is
slightly steeper. Within the canopy f S v ( f ) and f S w ( f ) , in contrast, roll off at
less than /~2/3. The only experiment where this kind of deviation from classic
inertial subrange behavior is not observed is in Shaw's corn. The wind tunnel
study of Seginer et al. (1976) clearly points to wake production as the source of
energy in the v and w spectra, whereas the more rapid roll-off of f S u ( f ) can
be explained in the same way. The aerodynamic drag term (3.45) is quadratic in
the total velocity and therefore is much more efficient at extracting energy from
u component fluctuations than from v and w. Unless this energy is immediately
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dissipated, and, of course, some of it is, the generally random orientation of eddies
in plant wakes ensures that v and w fluctuations will be boosted at the expense of
the u fluctuations.

A note of warning must be sounded at this point about the interpretation of
wind tunnel spectra. The problems arise because of the relatively low Reynolds
numbers obtainable in model canopies. It is generally agreed that to observe
straight lines at /^2/3 slope in the inertial subrange, a minimum of two decades
in frequency or wavenumber must separate the energy-containing and viscous
subranges. In wind tunnel models, for example, Coppin et al. (1986), this gap
is generally no more than a decade. In such cases the /~2//3 line is merely a
tangent to a spectral form that, on a log-log plot, curves continuously from the
energy-containing to the dissipation range. The danger lies in the possibility that
this "hump" may be wrongly interpreted as a sign of wake production feeding into
the inertial subrange.

In the surface layer, eddies in the inertial subrange are isotropic. As we saw
in Chapter 2, isotropy implies that Sv(f) = Sw(f) = (4/3)5u(/). Within the
canopy it is clear, despite a good deal of scatter in the data, that isotropy is generally
violated. Spectral ratios in the inertial subrange vary from S w ( f ) / S u ( f ) = 1.7
for the Moga data to S w ( f ) / S u ( f ) = 0.94 in Shaw's corn. The data of Amiro
(1990) in three different forest canopies showed Su(f): Sv(f): Sw(f) ~ 1±0.15,
whereas the data of Baldocchi and Meyers (1988) from a dense deciduous forest
fall into the same range as Moga and Shaw's corn data. We should not be too
surprised at this large departure from classical isotropy, given that wake and
waving production are so strongly coupled to each canopy's morphology and
elastic properties.

We have described the way in which the dominant large eddies in a canopy
are linked to the shear at z = hc. The smaller eddies produced by the wake and
waving production mechanisms display no such connection. In coherently waving
cereal crops, the natural frequency of the stalks provides a further important time
scale (Finnigan, 1979b), but more usually there is a broad band of length and time
scales associated with these processes, ranging from the size of dominant foliage
clumps, through trunk diameters, to leaf width and spanning tree swaying to leaf
fluttering frequencies. In such cases, it is impossible to single out one scale as
representative; we can, however, make some useful observations about the total
effect of these processes on spectral shape.

We have already seen the changes in slope that occur in the inertial subrange
of moderately dense canopies due to these "spectral shortcut" effects. They can
also lead to overall changes in spectral shape as the wind speed increases. The
change in shape follows from the quadratic dependence of aerodynamic drag and,
consequently, the wake production term, on windspeed. Data of Amiro (1990)
taken from a dense spruce canopy in quite strong (uhc — 3,5 m s^') winds showed
both f S u ( f ) and f S w ( f ) decreasing much more rapidly than /~2/3 in the first3
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(low frequency) two-thirds of the inertial subrange, whereas at lower windspeeds
(uhc — 1.5 m s"1) the /~2/3 law was obeyed quite well right across the range.
Similar rapid rolloff of all spectral components within the canopy space was
observed in the very dense forest studied by Baldocchi and Meyers (1988).

Their data exhibit another departure from the behavior we have
sketched out, one to be expected in any canopy with a very dense crown and
open understory. In such conditions, the depth of the region of strong shear that
determines the scale of the large eddies is no longer even approximately equal to
hc. A better measure is (hc - d), which, in the case of the Baldocchi and Meyers
forest, is close to O.\hc. Scaling their frequency axis as f(hc — d)/uhc in fact
brings the spectral peaks measured in the crown space back into the same range as
all our other data, but this same scaling moves their trunk space and higher level
peaks to uncomfortably low dimensionless frequencies. The reason for dwelling
on this single case at some length is to emphasize that many problems in interpre-
tation still remain, particularly when investigating natural canopies with strongly
variegated foliage density, and despite the simple forms shown in Fig. 3.12, wide
variations may be expected in any individual case.

3.5.4 Spectrum of temperature

Spectra of the most readily measured scalar, 8, have been published on only a few
occasions. The measurements of Amiro (1990) show it rolling off at /~2/3 in the
inertial subrange as standard surface layer scaling predicts (Chapter 2). Its peak
seems to coincide with (Am)u .

3.5.5 Cospectra

Cospectra of u and w have been published less frequently than the individual
power spectra, and it is difficult to draw any general conclusions. We expect the
f C u W ( f ) slope in the inertial subrange to be /~4/3 (Chapter 2). Amiro (1990),
who presents the most extensive data set, observes it rolling off at approximately
f~l, as do Baldocchi and Hutchison (1987) in an almond orchard, but Shaw et al.
(1974), measuring in corn, saw standard /~4//3 behavior. Few of the published data
are in a form that enables the cospectral peak to be located on the dimensionless
frequency axis. The indications from Raupach et al. (1986) in the wind tunnel, in
data from the Moga forest (Table 3.2), and in a wheat canopy (Finnigan, 1979a)
are that it follows (Am)u and has its maximum at a dimensionless frequency about
0.15.

Cospectra of w and 9 have similarly been presented on too few occasions
to draw any general conclusions, but Amiro's (1990) measurements of f C w g ( f )
show it rolling off like /~4//3 in the inertial subrange in accordance with surface
layer theory. At this stage, the total lack of relevant published data prevents us
from investigating the influence of stability on spectral shape.
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3.6 Special symbols

a leaf area per unit volume of space
AH area of individual leaf
c any variable
Cdi drag coefficient of an individual leaf
Cf,Ch, Cq transfer coefficients for momentum, heat, and water vapor
d displacement height
di drag on the foliage
D(z) aerodynamic drag, function of z
Ei vapor flux density from an individual leaf
Fdi vector aerodynamic drag on individual leaf
Fh, Fq transport rate for heat and water vapor across plant surfaces
h,. canopy height
Pi energy consumed by photosynthesis
qi humidity outside individual leaf boundary layer
qoi humidity at individual leaf surface
q0 q at height (d + zg)
</sat(#) saturation specific humidity at 6
r mixing ratio
ra general resistance to diffusion from plant surface
Tah , fag transfer resistance for heat and water vapor from plant

surface
rb leaf boundary layer resistance
rbh , fbq boundary layer resistance for heat and water vapor
fbhi, Tbqi boundary layer resistance for heat and water vapor on an

individual leaf
rc canopy resistance
Ti climatological resistance
r Si stomatal resistance of an individual leaf
uhc wind speed at canopy top
Ui mean wind speed outside individual leaf boundary layer
v't component of foliage velocity
Zh, zq roughness length for temperature and humidity
A specific saturation deficit
es dimensionless rate of change of saturated specific humidity

with temperature
Oi temperature outside individual leaf
BQ 9 at height (d + zh)
Ooi temperature at individual leaf surface
QVQ Ov at height (d + zh)
(t>*h,(j)*m, 0* similarity functions as observed above plant canopy
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FLOW OVER CHANGING TERRAIN

The micrometeorologist setting out to find a field site that satisfies the requirements
of horizontal homogeneity will soon be reminded that most of the earth's surface
is not flat and that most of the flat bits are inconveniently heterogeneous. This
is what forced the location of early pioneering experiments to remote sites such
as Kansas, Minnesota, or Hay (Chapter 1), where the elusive conditions could be
realized. Vital as these experiments were to the development of our understanding,
they are merely the point of departure for applications to arbitrary terrain. The
components of arbitrariness are two: changes in the land surface and hills. In this
chapter we discuss the first of these, flow over changing surface conditions; in
Chapter 5 we look at flow over hills. In the real world, the two conditions often
occur together — in farmland it is the hills too steep to plow that are left covered
with trees — but we separate them here to clarify the explication of phenomena
and because treating them in combination would exceed the state of the art.

We simplify the problem of horizontal heterogeneity still further and discuss
mainly single changes in surface conditions from one extensive uniform surface
to another. Furthermore, the change will typically be at right angles to the wind
direction so the resulting flow field is two-dimensional. Although multiple changes
are now receiving theoretical attention (Belcher et al., 1990; Claussen, 1991), there
exist as yet no experimental data for comparison.

Two types of surface change may be distinguished at the outset: change in
surface roughness, which produces a change in surface momentum flux with a
direct effect upon the wind field, and change in the surface availability of some
scalar. Those of most interest are the active scalars, heat and moisture. (These are
called active because their fluxes and concentrations affect stability and thereby
turbulent mixing and momentum transfer, as we saw in Chapters 1 and 3.) We shall
discover significant differences in flow behavior according to whether the wind
blows from a smooth to a rough surface or a rough to a smooth surface. Similarly,
flow from a cold to a hot surface produces quite a different result from a hot to a
cold surface. In nature, such temperature changes are most often associated with
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changes in moisture availability as when the wind blows from the sea to the land.
The changes in sensible and latent heat fluxes that result are coupled through the
surface thermal energy balance as expressed in (3.25). In the simplest changes,
such as those from open water to perfectly dry land, this coupling is easily taken
into account, but over land covered with vegetation the consequences are more
subtle.

The problem of surface heterogeneity can be considered on several scales.
On the smallest scale the effects are confined to the surface layer. This is the
classic case of local advection in micrometeorology. Local advection is of interest
when choosing field sites for studies of the surface layer as we then want to know
how far downwind of a change we must go to find a flow in equilibrium with
the local surface. It is also important in calculating changes in temperature and
humidity or rates of evaporation when the wind blows from arid to irrigated land.
More fundamentally, an understanding of local advection is required to estimate
surface fluxes from profile measurements once the one-dimensional conditions,
upon which Monin-Obukhov similarity is predicated, are lost.

At the next larger scale we can follow the effects of the disturbance downwind
until the whole depth of the ABL is affected. At this scale advective flows have
received a good deal of recent attention, particularly where neutral or stable air
flows onto a warm surface as in onshore breezes. Finally, at the mesoscale it
is possible to track the readjustment of the whole ABL to the new surface and
the reattainment of geostrophic balance. Included on this scale are thermal wind
effects like the sea breeze, flows around urban "heat islands," and the question of
average evaporation when wind blows from arid land to an extensive irrigation
area. As we do throughout this volume, we shall avoid other than the briefest
discussion of these larger scale effects and confine our interest to the ABL.

Flows over surface changes display three characteristic features:

• An internal boundary layer develops over the new surface, growing in
height with downwind distance.

• Profiles of wind, temperature, and other scalars behind the change are not
in equilibrium with the new surface.

• A complicated turbulent response to the change is observed with loss of
the local-equilibrium character of homogeneous surface flow.

Our understanding of these effects rests mainly upon field experiments. A
pervasive problem with most studies is the absence of reliable measurements of
surface fluxes. The only roughness change experiment to overcome this obstacle
has been that of Bradley (1968), who measured both wind profiles and surface
shear stress changes in a neutral flow. Bradley studied both smooth-to-rough and
rough-to-smooth changes and made unequivocal measurements of surface shear
stress using a drag plate. His novel technique was to move large sheets of artificial
roughness so that the fetch from the change to the drag plate and profile masts
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varied. Despite a variety of other less complete field studies, Bradley's data set
remains the touchstone of theory.

Surface measurement of scalar fluxes is equally difficult. Dyer and Crawford
(1965) used a lysimeter, the evaporation equivalent of a dragplate (see Chapter 6),
to measure surface moisture flux directly at one point and to anchor an otherwise
sparse data set, but the closest approach to Bradley's effort is the experiment
of Itier et al. (1978) who used an array of minilysimeters to study a change in
moisture over bare soil.

For studies of local advection, the wind tunnel offers opportunities. Unfor-
tunately, one of the best known and most complete experiments on roughness
change (Antonia and Luxton, 1971), which described a smooth-to-rough change,
had roughness elements so large relative to the upwind inner layer depth1 that
its atmospheric equivalent would be flow to a city of skyscrapers. In the case of
rough-to-smooth flow, the wind tunnel studies of Antonia and Luxton (1972) and
Mulhearn (1978) offer excellent data sets of direct application to the atmosphere.
The wind tunnel is also a candidate for studying scalar changes, with the added
advantage of directly measurable surface fluxes if electrically generated heat is
used as the scalar; unfortunately, all of the available data sets have features that
compromise their application to the atmosphere. Despite the limitations of these
studies, it is to the wind tunnel that we must turn for most of our information on
the response of turbulence to surface changes in local advection.

Following the flow farther downwind to where the internal boundary layer is
well outside the surface layer, most information comes from studies of the coastal
boundary layer. Flow from sea to land with an unstable or convective internal layer
has been studied at a large scale using aircraft or at a smaller scale using towers.
Offshore winds usually produce stable internal boundary layers (arctic regions are
the exception), and observations here are usually provided by aircraft.

The experiments of the last 25 years have been accompanied by a great deal
of theoretical effort. Much of this work is discussed in the recent comprehensive
review by Garratt (1990). The basic fluid mechanical principles behind the wind
field changes have also been reviewed by Smits and Wood (1985). In this chapter
we shall discuss only those aspects of theory that serve to unify the available data.

Our discussions revolve around two types of changes: changes in surface
roughness and changes in scalar flux and concentration; in each we discuss the
effects of local advection and development farther downwind. The many combi-
nations of these features that characterize the experimental data mean that it would
be presumptuous to illustrate the points we shall make with idealized examples of
flow behavior. We rely instead on examples taken directly from experiments. In
this respect the chapter differs substantially from the preceding ones.

1 In a fully developed turbulent boundary layer in a wind tunnel, the inner layer is the region
of constant shear stress and logarithmic velocity profile and so corresponds to the surface layer of the
ABL.
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4.1 Changes in surface roughness

We simplify our discussion by considering an abrupt change in surface roughness
from one extensive uniform region to another. The line of surface discontinuity
is perpendicular to the wind direction, which, as usual, we identify with the x
direction. As the airflow encounters the new surface it either slows down because
of increased surface friction (smooth-rough) or speeds up as surface friction falls
(rough-smooth). The effect of this acceleration or deceleration, which is initially
confined to the air layers in contact with the new surface, is diffused vertically by
turbulence, and the effect of the change is felt through a steadily growing internal
boundary layer.

The effects of the change are also transmitted by pressure forces, which are
associated with streamline deflection at the roughness change. These effects are not
confined to the internal layer. Unless there is a significant change in displacement
height, such as in flow to or from a tall crop or forest, the velocity perturbations
caused by this effect are negligible compared to those confined to the internal
boundary layer. The only place where the pressure forces are important is in the
immediate neighborhood of the discontinuity. Most theories simply ignore the
pressure effect.

4.1.1 Characterizing the strength of the roughness change

What we require is some simple measure that will enable us to classify the
magnitude of the roughness change independently of the particular airflow over
it. The measure normally taken is the ratio of roughness lengths or its logarithm.
We define

where subscripts 1 and 2 indicate, respectively, properties upwind (x < 0) or
downwind (x > 0) of the discontinuity. [Note that some authors (e.g., Walmsley,
1989) define M* as 202/201 and M = In(202) — ln(zo1), reversing the order of
roughness lengths.]

Although not as dependent upon flow properties as quantities like the surface
stress, the roughness length ZQ is not entirely independent and only attains equi-
librium values far downstream of the change. Despite this drawback it remains
the best measure we have, falling as it does between a geometric description of
the surface, which cannot be readily related to momentum absorption even in
horizontally homogeneous conditions, and the extremely flow-dependent stress
ratio. M and M* are natural classifications for flow models that generally take
the logarithmic law as a lower boundary condition (Rao et al., 1974a).
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4.1.2 Internal boundary layer depth

Within the internal boundary layer (IBL) the flow field displays characteristics of
the downwind surface. Outside it, apart from the small perturbation caused by the
pressure pulse at the change, the flow field is identical to that upwind. The internal
boundary layer depth Si is usually defined, therefore, as the height at which the
downwind velocity or the shearing stress T(Z) attain fixed fractions (say 99%)
of their upwind values at the same height. Note that because turbulent stresses
adjust differently than mean profiles, the magnitude of Si depends on the definition
chosen.

The height <5j may also be identified with changes in the velocity shear du/dz.
When plotted in log-linear form, a sharp discontinuity in slope is often observed at
the edge of the internal layer (Bradley, 1968). A schematic diagram of the devel-
opment of the internal boundary layer is shown in Fig. 4.1 a. Antonia and Luxton

FIG. 4.1 (a) Schematic diagram of IBL growth. The hypothetical inner equilibrium region
of the IBL is marked by the dashed curve. Note that this region is not expected to begin
until some distance after the change in surface, (b) Logarithmic velocity profiles after a
roughness change; the upwind equilibrium profile is denoted by the dashed line.
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(1971, 1972) also argued on theoretical grounds and confirmed experimentally
that plotting u as a function of z1/2 would reveal sharp discontinuities in velocity
gradient at z = Si.

There are two approaches to quantifying the growth rate of the internal
boundary layer: empirically based power law formulas and more complex formulas
that recognize the diffusive character of the growth of the internal layer. In neutral
conditions, turbulent boundary layer growth on a smooth, flat plate is proportional
to x°-8 (Schlichting, 1968). Elliott (1958) proposed an analogous empirical formula
for the internal boundary layer:

where n = 0.8 and the constant of proportionality A\ has a weak dependence on
the strength of the roughness change

Reasonable agreement has been found with expressions of this kind, although
there is no agreement on the precise magnitude of the exponent or of the propor-
tionality constant A\. Both Bradley's (1968) smooth-rough and rough-smooth
cases were well fitted by n = 0.8, as were Antonia and Luxton's (1971) smooth-
rough wind tunnel data and Mulhearn's rough-smooth tunnel experiment in one
configuration. However, Antonia and Luxton's (1972) rough-to-smooth experi-
ment showed n = 0.43 and the fit with larger compendia of data (Walmsley, 1989)
shows less than ideal agreement with power law expressions in general. The ad-
vantage of power law formulas nevertheless is that they give Si as a function of x
explicitly.

The alternative approach was initiated by Miyake (see Panofsky and Dutton,
1984, p. 150). It is based on the idea that the characteristic velocity of vertical
diffusion should be proportional to u»2, where w*2 = (fta/p)1/2 is the downwind
friction velocity. This is a notion commonly used in treatments of scalar diffusion
from a ground source. [A good review and list of references may be found in
Raupach (1983).] It follows from this assumption that

where B\ is a constant of order one.
With the assumption that u(x) = (u*2/k)\n(z/ZQ2) and the initial condition

that Si = ZQ2 at x = 0, equation (4.4) may be integrated to obtain an implicit
formula for 6i (Panofsky and Dutton, 1984),
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An immediate objection to (4.5) is that no account is taken of the influence of
the upstream boundary layer and its length and velocity scales z0\ and ut\ on
the growth of Si. In an earlier version of (4.5), Jackson (1976) replaced ^02 by
zo = [(zm + ^02) /2] • This choice introduced some acknowledgment of the
upstream state into the formula but in an apparently arbitrary way that lost the
simple interpretation of the derivation of (4.5).

Walmsley (1989) has made a comparison of (4.2), (4.5), and Jackson's mod-
ified version of (4.5) with the available atmospheric data. Elliott's formula (4.2)
was used both in M-dependent and M-independent (M set equal to 0) form. The
constant B\ in (4.5) was taken as 1.25. Overall, the Panofsky-Dutton formula
(4.5) gave much better agreement with data than (4.2), which consistently over-
estimated Si regardless of whether the M-dependent or M-independent form was
used.

A reliable expression for the internal boundary layer depth is a most im-
portant tool since all of the more usable descriptions we shall encounter for the
development of velocity and scalar profiles behind the change rely on this pa-
rameter to furnish their vertical scale. The success of (4.5) in collapsing a range
of data is, therefore, encouraging empirically as well as offering support to the
concept of the diffusive growth of the internal boundary layer. One note of caution
should be sounded, however. The wind tunnel data of Antonia and Luxton (1972)
downwind of a rough-to-smooth change showed Si growing substantially more
slowly than (4.5) demands. This experiment had a large positive value of M, and
the downstream growth of 6i was therefore controlled for a considerable distance
by turbulence generated on the upstream rough surface, a situation that clearly
contradicts the assumptions.

The lowest region, probably the lowest 10%, of the internal boundary layer
is often called the equilibrium layer (Fig. 4.la). In this region it is supposed that
a new constant-stress inertial sublayer has been achieved in equilibrium with the
new surface. Within this layer, local equilibrium in the sense discussed in Chapter
3 (i.e., a balance between shear production and viscous dissipation of turbulent
kinetic energy with advection and transport much smaller) is assumed to exist.
We shall return to this question when we consider turbulence dynamics in Section
4.3. For the moment it is sufficient to point out that the rather sparse evidence, all
from wind tunnel experiments, tends to support this concept, as long as we are not
too close to the roughness change.

4.1.3 Velocity profiles

Schematic diagrams of velocity profile changes behind a smooth-to-rough and a
rough-to-smooth change are shown in Fig. 4.1b. Plotted in log-linear form, the
profiles show a new logarithmic profile in the lower part of the internal boundary

1/2
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layer and a blending region occupying most of the internal layer across which the
velocity profile adjusts to merge with the upstream logarithmic profile at z = Si.
The apparently sharp break between the log-linear profile in the internal layer
and the unchanged upstream log-linear profile above Si is largely an artifact of the
logarithmic height scale. Based on the behavior of numerical simulations some
authors have suggested that a point of inflection should be observed between
the inner and outer logarithmic profiles (Peterson, 1969; Rao et al., 1974a). This
behavior, however, has not been observed with any certainty in experimental data.

Figures 4.2a and 4.2b display consecutive downstream profiles taken from
Bradley's (1968) smooth-rough and rough-smooth cases, respectively. In each case
we see the internal layer deepening and, depending on the sign of M, slowing
down or speeding up as we progress downstream. The logarithmic behavior of the
velocity profiles within the internal boundary layer suggests that they might be
described through a modified logarithmic law,

where the function f ( z / S i ) has limiting values

FIG. 4.2 The development of logarithmic velocity profiles after a roughness change taken
from Bradley (1968). (a) Smooth-rough: z0\ = 0.02 mm, 202 = 2.5 mm, M = -4.8; (b)
Rough-smooth: ZQI = 2.5 mm, 202 = 0.02 mm, M = +4.8.
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The first limit says that outside the internal boundary layer, the upstream profile is
recovered. The second limit ensures a logarithmic wall layer in equilibrium with
the new surface.

A variety of forms has been proposed for /. The simplest, by Elliott (1958),
has / = 0 for z < Si. This choice dictates a logarithmic profile in equilibrium
with the new surface all the way up to Si and a sharp discontinuity in slope there.
Despite the contradiction between this assumption and measurements, the other
predictions of Elliott's theory are, on the average, not greatly at variance with
observations and, importantly, the theory is simple to apply. As a consequence it
is still widely used as a first approximation and is incorporated into at least one
proprietary model of airflow over complex terrain. Other assumed forms for / are
reviewed by Garratt (1990).

A somewhat different approach to describing the downwind profiles was
adopted by Townsend (1965, 1966) and by Mulhearn (1977). They assumed that
changes in the velocity and shear stress profiles in the internal boundary layer
were "self-preserving." This concept enjoys wide validity in aerodynamics, and
an excellent introduction is offered by Townsend (1976). We shall encounter it
in the next chapter in the context of the far wakes of hills. Self-preservation of
both velocity and shear stress means that the functional forms for the vertical
distributions of these quantities are invariant with fetch and that their length and
velocity scales are functions of fetch only. Following Mulhearn (1977), the self-
preserving forms are as follows:
For velocity,

and for shear stress,

where r\ is assumed invariant with height, up is the velocity perturbation caused by
the pressure pulse or streamline displacement, generally ignored in calculations,
and UQ is the velocity scale of the perturbation. In Mulhearn's theory, u0 is defined
as

The dimensionless height ry is given by r] = z/lo, where IQ is the vertical scale of
the perturbation. Although the theory defines l0 rigorously, for practical purposes
we can take IQ = Si so that r\ = z/6:L.
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Forcing the forms (4.8a) and (4.8b) to be compatible with the equations of
motion ensures that the unknown functions g(rj) and h(rj) obey a single ordinary
differential equation that can be solved if a closure assumption is made about
the relationship between TI(Z) and du2/dz. The assumption made by Mulhearn

was that <pm = <kz/ [T2(z)/p] j (du2/dz) = 1. This is a somewhat weaker

assumption than that made by Elliott, which was that <pm = (kz/u^) (du2/dz)
= 1, but it still amounts to an assumption that shear stress and velocity gradient
are linked by a simple eddy-diffusivity formula in the evolving flow behind the
discontinuity.

To test the validity of this assumption, independent measurements of velocity
and shearing stress in the internal layer are required. These are available only from
the wind tunnel experiments of Antonia and Luxton (1971, 1972) and Mulhearn
(1978). Measurements of <frm at a position 2 m behind Mulhearn's rough-smooth
change are plotted in Fig. 4.3 and show substantial departures from unity in the
central part of the internal layer. Also in Fig. 4.3 are curves of (f>m from the
sophisticated turbulence closure model of Rao et al. (1974a). Profiles for four
values of M are plotted; the one for M = 4.8 is the closest approximation
to Mulhearn's data. Rao et al.'s model provides at least a qualitative surrogate
for the nonexistent empirical results and may be taken as confirmation that the

FIG. 4.3 The nondimensional wind shear <f>m = (kz/uf2)du/dz for several values of the
roughness change parameter M. Solid lines are results of the model of Rao et al. (1974a).
Data points come from Mulhearn (1978) and correspond most closely to M = +4.8.

1/2
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FIG. 4.4 Comparison between Mulhearn's (1977) theory and the roughness change data
of Bradley (1968). (a) Smooth-rough: zm = 0.02 mm, 202 = 2.5 mm, M = -4.8. (b)
Rough-smooth: zo\ = 5 mm, «02 = 0.2 mm, M = +5.5. Note that this is a different
rough-smooth data set than that used in Fig. 4.2b.

relationship between shear stress and velocity gradient, at the least, takes a rather
complex form. We shall return to consider this question in more detail when we
discuss turbulence dynamics below. As we might expect, the departure of <j>m from
1 decreases as we move further from the roughness change.

Returning to Mulhearn's model, in Figs. 4.4a and 4.4b we compare his pre-
dictions with data from Bradley (1968). The quantity plotted is the dimensionless
velocity perturbation g = (k/u0)Au versus the dimensionless height r\. Two
things are noteworthy: The theory performs better for a smooth-rough than for a
rough-smooth change, and it is more accurate the further we get from the disconti-
nuity. The latter observation we should expect from the foregoing discussion; the
further we proceed downwind, the better becomes the correspondence between
the closure assumption <pm — 1 and observations. The fact that the theory is
not grossly in error in predicting the velocity profile quite close to the change
has an unfortunate corollary. It means that the surface shear stress cannot be
easily inferred from velocity gradient measurements until sufficiently downwind
of the discontinuity; the distance that is sufficient is substantially greater for a
rough-smooth than for a smooth-rough change.
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4.1.4 Changes in surface stress

Figures 4.5a and 4.5b reproduce data from Bradley (1968) showing changes in
surface stress behind roughness changes. Figure 4.5a is from a smooth-to-rough
transition, and Fig. 4.5b is from a rough-to-smooth one. The roughness of the two
surfaces is characterized by the aerodynamic roughness lengths they would have in
equilibrium conditions. For the rough surface this was 2.5 mm and for the smooth
surface between 0.02 and 0.002 mm (Rao et al., 1974a). The corresponding M
values are M = -4.83 (smooth to rough), and M = 4.83 (rough to smooth, with
ZQ for the smooth surface).

Two features of these results are noteworthy: the overshoot in stress at the
transition and the rapid attainment of a new equilibrium. In the smooth-rough case
the downwind surface stress TQI is eight times its upstream value TQ\ immediately
behind the change (x = 0.5 m) but has dropped to its equilibrium value of about

FIG. 4.5 Comparison between Bradley's (1968) measurements of surface shear stress de-
velopment and various theories, (a) Smooth-rough change (201 = 0.02 mm, zw. = 2.5
mm, M = -4.8): •, Bradley data; , Rao et al. (1974a), , Panofsky and
Townsend (1964); , Jensen (1978). (b) Rough-smooth change (ZQ\ = 2.5mm,
Z02 = 0.02 mm, M = +4.8): -A- Rao et al. (1974a); , Panofsky and Townsend
(1964), -B- Rao et al. (1974a), with z02 = 0.002 mm, M = 7.1.
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3.5To1 byx = 2m. In the rough-smooth case the stress initially falls to 0.13T01

then takes somewhat longer to recover to its downstream equilibrium state of
0.3-ro1, which it does by x = 6m.

The overshoot phenomenon is easily understood. In the smooth-to-rough case
an airstream, traveling relatively rapidly over the smooth surface, generates a high
stress on first encountering the roughness. As the new, rougher surface absorbs
momentum from the air layers above it and this region of decelerated flow thickens
into an internal boundary layer, the velocity of the air layer in contact with the
enhanced roughness falls and so does the resulting surface stress. In the rough-to-
smooth case, the air layers arriving at the new surface are initially moving slowly
and the stress drops as they encounter the smoother ground. They are then able
to accelerate because the smooth surface absorbs less momentum and the surface
stress climbs until a new equilibrium is reached. The slower adjustment of stress
after a rough-to-smooth transition is a phenomenon we shall observe in all flow
properties.

The various theories we have encountered so far all make predictions about
the development of surface stress after the change. We have included curves from
three of them in Figs. 4.5a and 4.5b. The best agreement is provided by the second-
order closure model of Rao et al. (1974a). The distinguishing feature of this class
of turbulence models is that they do not link shear stress and shear by an eddy
diffusivity. As a result they tend to perform much better in situations in which the
turbulent flow is far from local equilibrium and eddy diffusivities are untenable
(see Section 4.3 below). We see that the model of Rao et al. is the only one to
reproduce the rapid stress change near the discontinuity accurately.

The model curve of Panofsky and Townsend (1964) is typical of the simpler
models. Although it reproduces equilibrium conditions quite well, it completely
fails to capture the sharp changes at the boundary. The simplest approach of
all is that taken by Elliott (1958). His assumption of a sharp discontinuity at
z = Si between logarithmic profiles in equilibrium with the upwind and downwind
surfaces [i.e., / = 0 in (4.6)] leads directly to an expression for the stress ratio
(Jensen, 1978):

This formula works surprisingly well, lying almost on top of Rao et al.'s curve.
It is, however, critically dependent on the calculation of Si and so, in a sense, is
only as good as the expression used for that quantity.

4.1.5 Effects of roughness changes at larger scales

The depth of the surface layer is typically 50-100 m, and the measurements and
theories we have discussed so far are confined to this region. This is because
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the measurements used small towers, and the theories assumed a logarithmic
upwind profile. We can calculate, using the formula (4.5) of Panofsky and Dutton
(1984), how far downwind we can go before <5» exceeds the height of the surface
layer. If we assume a large smooth-to-rough change (201 — 0.03 m; £02 = 1 -0
m; M = -3.5),6t = 100 m at x = 700 m. After a rough-to-smooth change
Ooi = 0.03 m; z02 = 0.001 m; M = +3.4), 6, = 100 m at x = 2000 m. At
fetches larger than this, we are out of the region of local advection and must
consider the response of the entire ABL to the surface change.

Experimental data on the evolution of the internal layer to longer fetches in
neutrally stratified ABLs are sparse but some are presented in Sempreviva et al.,
(1990). (As we noted in Chapter 1, neutral stratification throughout the depth of
the whole ABL is an uncommon state of affairs in general.) During onshore flow,
Sempreviva et al. measured wind profiles at the shoreline and at four masts up
to 30-km inland. Using simple models to interpolate the data, they attempted to
deduce seasonal changes in area-averaged ZQ. It must be said that the results were
inconclusive. The question has also been considered theoretically, however, and
the results are worth recording as they emphasize that we still have a good deal to
understand about this situation.

Jensen (1978), for example, used some simple arguments to point out a con-
tradiction between the apparent early attainment of equilibrium in surface stress
behind the roughness change that is exhibited in Bradley's results (Fig. 4.5) and
in surface layer models and the current understanding of the magnitude of the
geostrophic drag coefficient u*/G, where G is the geostrophic wind speed. His
arguments suggest that by the time the entire ABL has come into equilibrium with
the new surface, the surface stress ratio TQI/TOI will have evolved substantially
from the equilibrium observed soon after the change. To take a numerical exam-
ple, Bradley's smooth-to-rough data (Fig. 4.5a) indicate an equilibrium value of
T02/T~oi = 3.5. Jensen (1978) suggests that this will fall to T$I/TQ\ ~ 2.0 when
final equilibrium is attained.

The simple model of Taylor (1969) indicates how this equilibrium might be
approached. Taylor extended a surface layer model to the whole ABL by assuming
a form for an eddy diffusivity that would be valid across the whole ABL depth.
For a neutrally stratified ABL, one definition of the ABL depth zh is the height at
which the mean velocity u(z) matches the geostrophic wind [see (1.1)]. With this
definition, Taylor found that in both rough-smooth and smooth-rough changes the
internal layer filled the whole ABL when X/ZQ\ ~ 106. (Taylor's calculations were
done for M = ±2.3 and surface Rossby number R = G/fz0\ = 107.) Up to this
point there were no wind direction changes in the boundary layer. These occurred
between X/ZQ\ = 106 and X/ZQI — 108, and the direction changes occurred
simultaneously through the depth of the ABL. In a smooth-rough change, the angle
between the surface and geostrophic wind direction (the geostrophic departure)
increased, whereas in a rough-smooth change it decreased. For the parameters
chosen by Taylor the magnitude of the change in geostrophic departure was about
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—4° in the rough-smooth case (from 19° to 15°) and +5° in the smooth-rough
(from 19° to 24°).

4.2 Changes in scalar flux and concentration

In this section we are concerned primarily with the active scalars, heat and mois-
ture. Passive scalars introduced through a change in surface properties do not cause
any adjustments in the wind and turbulence fields. Fluxes of the active scalars are
coupled at the ground through the surface thermal energy budget, as mentioned
earlier, and changes in them usually result from changes in moisture availability.
Thus, if the available radiative energy remains constant as the wind blows from
a dry to a wet surface, the increase in latent heat flux will be at the expense of
the sensible heat flux. We will consider this coupling at greater length later in this
section.

Changes in moisture flux are also usually associated with changes in ZQ.
The obvious example is the transition from water to land; another is between dry
soil and irrigated crops, a common agrometeorological problem. The effect of a
ZQ change is, as we might expect, greatest in the surface layer where it strongly
modulates the effect of the scalar fluxes. (Alternatively, in local advection, we can
view the buoyancy flux as strongly modulating the effect of a roughness change.)
In contrast, roughness changes appear to have little effect on the development of
convective internal boundary layers on larger scales.

Convective internal boundary layers develop after a cold-hot change. They
have been studied most intensively in the context of onshore sea breezes. The mo-
tivation is usually problems in coastal pollution (Stunder and Sethuraman, 1985),
although routing of microwave links has also been cited (Hsu, 1986). This context
has meant that most studies have been relatively large scale, based on aircraft,
balloon, or sodar measurements, and have ignored the surface layer. Exceptions
are the tower-based experiments of Vugts and Businger (1977), Smedman and
Hogstrom (1983), and Ogawa and Ohara (1985).

In direct contrast to this, stable internal boundary layers developing after a
warm-cold transition have mainly been studied in the context of local advection.
This is commonly the micrometeorological situation of airflow from nonirrigated
to irrigated land. The most complete experiment remains that of Rider et al. (1963),
with Dyer and Crawford (1965) and Itier et al. (1978) also contributing important
data sets. Stable internal layers at larger fetches occur in offshore winds and
are less accessible to measurement, usually requiring aircraft (Garratt and Ryan,
1989).

4.2.1 Internal boundary layer depth: Local advection

We denote the scalar internal boundary layer by 8g for temperature and 6q for
moisture or by 8C for an arbitrary scalar c if we do not wish to be specific. The
local advection stages of internal layers following hot-cold and cold-hot transitions
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are drawn schematically in Figs. 4.6a and 4.6b, respectively. The development of
a convective internal layer to longer fetch is depicted in Fig. 4.6c.

None of the experiments studying local advection from hot-to-cold surfaces
used towers high enough to track the edge of the internal layer. Rider et al.
(1963), in particular, made no temperature measurements above 1.5 m. We have
slightly more information on cold-to-hot transitions, but not enough for the kind
of empirical determination of the height-to-fetch relationship that was possible for
the momentum boundary layer. Consequently, we look for analogies with better
understood situations.

In laminar flow, the ratio of momentum and scalar boundary layer depths
6/8,. is equal to the square root of the ratio of molecular diffusivities,

where Km/Kc = Sct is the turbulent Schmidt number, Km and Kc being
eddy diffusivities for momentum and scalar c. The turbulent Prandtl number,
correspondingly, is defined as Prt = Km/Kh-

Equation (4.12) would be correct if Km and Kc were substantive properties
of the fluid such as their molecular counterparts. In reality, they are secondary
characteristics of the flow field, and they, as well as their ratio Prt, respond to all
the factors influencing the fluxes and gradients of momentum and temperature.
Most of the evidence concerning the behavior of Prt in boundary layer flows
under near-neutral conditions come from the wind tunnel. From the available
data, Prt in the surface layer seems to be about 0.95 and varies little across the
depth of the surface layer (Launder, 1976). In advective flows, however (as we
shall see in Section 4.3), Prt may vary in the streamwise direction. Despite these
caveats, when Si and 6C are less than the depth of the surface layer, it is generally
assumed that a relationship such as (4.12) will apply to the growth of the internal
boundary layer.

v is the kinematic viscosity and kc the diffusivity of scalar c. Their ratio is called
the Schmidt number Sc. If the scalar c is temperature, then the ratio is known as the
Prandtl number Pr. (The square root is a consequence of the nature of boundary
layer growth with constant molecular diffusivity.) For example, during laminar
airflow over a heated flat plate, the ratio of momentum to thermal boundary layer
thicknesses at any point is equal to 0.84 because the Prandtl number of air is 0.7.

As we noted earlier, the turbulent boundary layer grows approximately as
XQ.S and^ in analogy with (4.11), we might expect



FIG. 4.6 Schematic diagrams of potential temperature profiles after changes in surface
temperature or heat flux. (a) The development of an advective inversion after a hot-cold
transition. (b) The growth of a CIBL after a cold-hot transition. (c) The structure of a CIBL
at longer fetch. Note the jump in 02 at z = Se, the stable temperature profile above 69, and
the change in sign ofw'8' at z ~ Q.&Sg. Note also that the surface layer with a pronounced
lapse profile may occupy a larger fraction of the total CIBL depth than in the classical
convective mixed layer.
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The Monin-Obukhov formulas (1.31), (1.32), and Fig. 3.2 are adjusted to
ensure that Prt = 1 in neutral conditions. As we depart from neutrality, on the
stable side, Prt remains close to 1, but on the unstable side we have, from (1.38a)
and (1.40), Kh/Km = 0m/</>/, = (1 + 16 z/L\)l/4. We should not expect strict
adherence to these essentially one-dimensional formulas in advective conditions,
but they give some indication of the changes to be expected.

Differences may also appear between the scalar diffusivities K^ and Kq.
These are usually assumed to be equal in horizontally homogeneous flows, al-
though Kq has not been determined nearly as reliably as Kh and Km. In an
experiment that studied a severe hot-cold, dry-wet change (flow from hot, dry
ground to a flooded rice paddy), Lang et al. (1983) determined the ratio Kh/Kq

directly from eddy flux and gradient measurements. They found that Kh/'Kq = \
at neutral stability but that the ratio decreased to 0.65 with increasing stability.

Clearly the analogy with laminar flow embodied in (4.12) and the foregoing
discussion should alert us to the possibility of substantial variation among Si,Sg,
and Sq. Unfortunately, we have little direct data to test this possibility. Vugts and
Businger (1977) deduced indirectly that 60 ex x0.8 in a cold-hot, wet-dry change,
and Meroney et al. (1975) also observed 6g oc x0.8 in the local advection stage of
a wind tunnel simulation, but the data of Ogawa and Ohara (1985) on 6g growth
do not fit a power law. The data set of the latter authors is complicated by a sea
wall at the transition that forces a momentum boundary layer growth of the form
Si oc x0.57 and probably compromised the data set for our present purposes. What
their data do show is 60 almost twice as deep as St by 160 m from the transition. At
the present time under local advection, our knowledge of the scalar fetch-height
relationship for both kinds of transition is seriously incomplete.

4.2.2 Internal boundary layer depth: Longer fetches

Cold-hot changes. The basic structure of the convective internal boundary layer
(CIBL) is illustrated in Fig. 4.6c. It is usually depicted in the same way as the
standard horizontally homogeneous ABL comprising an unstable surface layer
surmounted by a well-mixed region and a sharp discontinuity in potential tem-
perature separating the well-mixed from the inversion region above. This picture
carries the presumption that the CIBL is growing in an initially stable boundary
layer. This is usually but not always the case with onshore winds. In practice,
particularly if the turbulence level in the upwind boundary layer is not negligible,
a sharp temperature discontinuity is not observed at the top of the internal layer
(Smedman and Hogstrb'm, 1983).

Several definitions of the height of the CIBL have been used. Venkatram
(1977) and Anthes (1978) use 6g, identifying it with the point where the poten-
tial temperature gradient above the surface layer shows a sudden change to an
inversion. Others (Lyons, 1975; Raynor, 1979; Gamo et al., 1982) prefer a defi-
nition based on Si, the height where turbulence levels decrease sharply. Gamo et
al. (1982) concluded that a Si based on turbulence is 1.4 times higher than a 6g
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defined by temperature gradient. A third definition (Weisman, 1976) uses SH, the
height at which the heat flux passes through zero. In general, 8H < 6g < Si, e.g.,
Shao et al. (1991) in a detailed study of the CIBL observed that St ~ l.26H.

In pollution studies we are often interested in the point at which a smoke
plume from a chimney stack, initially traveling horizontally and spreading slowly
in the stable marine boundary layer, encounters the growing CIBL. At this point
it will be rapidly mixed to ground level by the active turbulence of the CIBL, a
process called fumigation. For this application it is the height based on turbulent
activity that is more relevant. Formulas for CIBL height, however, invariably
predict either Se or SH.

Formulas for the CIBL height at long fetch are almost all derived by assuming
the same dynamics for the CIBL as for the daytime evolution of the horizontally
homogeneous mixed layer (Chapter 1). From morning to early afternoon the
horizontally homogeneous mixed layer height Zi is observed to grow as t1/2

(Tennekes and Driedonks, 1981). Models of the CIBL substitute travel time x/um

for t, where um is the average mixed layer velocity. This leads to CIBL heights
proportional to x1/2. Such models implicitly assume that the CIBL has evolved
to a quasi-one-dimensional state and therefore are inapplicable except at long
fetches.

Smedman and Hogstrom (1983) used the mixed layer parameterization of
Tennekes and Driedonks (1981) to produce a general formula for 6g, which in-
cluded the effects of entrainment at the inversion, mechanically (shear) produced
turbulence at the ground, and convectively driven turbulence. They applied this
model to results obtained at moderate fetch and found that in order to match
their observations, both mechanical turbulence and entrainment were essential but
convection was less important.

Stunder and Sethuraman (1985) compared seven other formulas for 6g with
two further data sets. They found good agreement in one case with the formula
of Raynor et al. (1975). This expression was based on straightforward physical
reasoning and takes the form:

where Cd = u*2/um is a drag coefficient, and T[)2 and TQI are downwind and
upwind surface temperatures. Although (4.13) performed well in the particular
case for which it was developed, Stunder and Sethuraman (1985) found that
the formula of Weisman (1976) gave better agreement with a wider data set.
Weisman's expression was

where H02 is the surface heat flux over land.
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Venkatram (1986) has pointed out several inconsistencies in such formulas.
To derive simple closed form expressions such as (4.13) and (4.14), it is necessary
to assume that #o2orHo2 are constant over land, an unlikely proposition. Such for-
mulas also predict continual growth proportional to a;1/2 as we advance inland. In
fact, the growing CIBL must eventually merge with the land-based ABL, which has
dynamics governed by energy availability at the surface (Tennekes and Driedonks,
1981). At this stage, it is wise to exercise care in applying any of these formulas
in conditions significantly different from those for which they were developed.

Hot-cold changes. Much of the interest in the stable internal boundary layer
(SIBL) at large fetch centers on offshore flow from warm land to cool sea. The
growth rate of the SIBL is much smaller than the CIBL with fetches of several
hundred kilometers resulting in values of 89 of only a few hundred meters. Mul-
hearn (1981) applied dimensional analysis to data obtained in offshore flow over
Massachusetts Bay in the fetch range 5-100 km. His expression for 8g was

where A(?(, is the difference in equivalent potential temperature between the sea
surface and the well-mixed upwind boundary layer, and Qe is the background
equivalent potential temperature, ug is a mean velocity measured near the bound-
ary layer top (actually at z = 300 m).

The most detailed data set available is that of Garratt and Ryan (1989). Based
on these data, Garratt (1987) and Garratt and Ryan (1989) have produced a more
precise, physically based expression for SIBL growth,

Their formula (4.16) bears a close resemblance to Mulhearn's but differs through
the specification of the constant a\, which is a function both of the geostrophic drag
coefficient u^/G2 and the geostrophic departure (3\, which is the angle between
ug +, the wind just above the boundary layer, and the geostrophic wind G. At long
fetches, such a dependence is to be expected. For the data set studied by Garratt
and Ryan (1989), a\ ^ 0.024, whereas numerical model results (Garratt, 1987)
gave a\ ^ 0.014. In all of these studies of the SIBL, Sg is defined as the point
at which the profile of potential temperature (or equivalent potential temperature)
merges with the upstream profile.
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4.2.3 Scalar profiles: Local advection

Hot-cold changes. We recall our operational definition of local advection as the
situation in which the growing internal boundary layer is no deeper than the
upstream surface layer. Typical temperature profiles are depicted in Figs. 4.6a
and 4.7 and show the development of a deepening inversion layer in an existing
unstable lapse profile. This is usually referred to as an advective inversion. The
curves in Fig. 4.7 are taken from Dyer and Crawford (1965) and represent the
classical agrometeorological circumstance of airflow from hot dry to cool irrigated
pasture.

The self-preservation hypothesis can be applied to these profiles as demon-
strated by Mulhearn (1977). In analogy with (4.8), he wrote,

FIG. 4.7 The development of an advective inversion after flow from dry to irrigated rye
grass from Dyer and Crawford (1965).

where g s ( z / 6 g ) is a profile shape function, and do a temperature scale defined as
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Temperature changes due to streamline displacement are ignored. The internal
boundary layer height Sg can be determined independently or through the theory.
Implicit in the treatment by Mulhearn is the identity Sg/6i — Kh/Km = Prt.
Reference to the discussion earlier in this section suggests that this can only be
true when Kh — Km, which in turn confines Mulhearn's theory to near-neutral
conditions. The agreement between Mulhearn's theory and the field data of Dyer
and Crawford (1965) is excellent, as Fig. 4.8 shows. Equally good agreement
was achieved with the results of Rider et al. (1963), but the same caveats apply
to this scalar application of the self-preserving hypothesis as to its momentum
counterpart. In particular, it does not work well too close to the change of surface.

Cold-hot changes. For small departures from stability, the self-preservation theory
of Mulhearn (1977) should apply to unstable conditions as it does to stable internal
boundary layers, but a data set sufficiently complete to test this is not available.
All that can be said is that at short fetches the available data (Ogawa and Ohara,
1985; Vugts and Businger, 1977) show the development of a lapse profile (Fig.
4.6b), whereas the data of Smedman and Hogstrom (1983) capture the transitional
situation where the CIBL has grown outside the surface layer but has not yet
achieved a standard mixed-layer form. Smedman and Hogstrom observed an inner

FIG. 4.8 Comparison between Dyer and Crawford's (1965) results and the theory of Mul-
hearn (1977).
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region 50 m deep with a strong lapse profile surmounted by a well-mixed layer with
weak temperature gradient extending to about 120 m above the surface. Depending
on wind direction, their measurement site was 1200-1800 m downwind of the
coast, and the incoming boundary layer was stable with only weak turbulence.

4.2.4 Scalar profiles: Longer fetches

Hot-cold changes. Mulhearn (1981) found that potential temperature profiles ob-
tained in land-sea flow at moderately large fetch (x > 16 km) could be described
quite well by the expression

In other words, they observed a concave rather than a convex temperature
profile. They comment that the shape of their profiles was consistent with ob-
servations of the vertical divergence of temperature flux through the SIBL. The
transition between the two profile shapes emphasizes the considerable distances
required to achieve self-preserving forms in these weakly mixing stable internal
layers.

Garratt and Ryan (1989) also measured velocity profiles and noted two char-
acteristic features that were reinforced by Garratt's (1987) model simulation:

• The appearance of a pronounced low level maximum in the velocity profile
• A reduction in the geostrophic departure relative to the upwind overland

flow

The reduction is consistent with the reduction in surface shear stress that oc-
curs both because of the smaller surface roughness over the sea and the reduced
turbulence levels in the SIBL.

Cold-hot changes. A typical well-mixed profile capped by a temperature dis-
continuity is sketched in Fig. 4.6c. Growing CIBLs conforming to this pattern
have been documented in some detail on several occasions (Durand et al., 1989;
Raynor et al., 1979; Shao and Hacker, 1990). In each of these cases, the CIBL
grew into an initially stably stratified marine boundary layer. At long fetch the
evidence suggests that these CIBLs behave like the horizontally homogeneous

Garratt and Ryan (1989) studied offshore flows at longer fetches (~ 100 km) and
found in contrast to (4.19)
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mixed layer described in Chapter 1. Their essential features are well-mixed wind
and temperature profiles from the top of the surface layer to 89 (which is equated
with Zi). Strong vertical and horizontal wind shear occurs at 6g, and here also
a sharp gradient of potential temperature usually occurs. Models of the situation
generally idealize this as a discontinuity in 0(z).

4.2.5 Changes in surface flux: Local advection

Surface flux changes have been studied in the wind tunnel and the field. Both
approaches have their limitations. In the field there has been no scalar experiment
as complete as Bradley's (1968) study of roughness change, where unequivocal
measurements of the development of surface momentum flux were made. In the
wind tunnel it is possible to measure the surface flux electrically if heat is used
as the scalar, but it is impossible to reproduce the important coupling between the
surface fluxes of radiant energy and sensible and latent heat that is so important
in micrometeorology.

Flow over a step change in surface temperature has been investigated in
the wind tunnel by Antonia et al. (1977), Charney et al. (1979), and Ligrani
and Moffat (1985). The experiment of Ligrani and Moffat is the most relevant
to micrometeorology, since they conducted their tests over a rough surface. The
changes they observed in the surface flux of heat were qualitatively similar to the
stress changes discussed in Section 4.1 with a large overshoot in flux just behind
the change, followed by a relaxation to an equilibrium state. Of more interest to
us is the situation in which the surface fluxes of the active scalars, temperature,
and humidity, are coupled through the surface energy budget

where a is the albedo, e\ the emissivity, a the Stefan-Boltzmann constant, TO
the surface temperature, 84 the downward shortwave radiation, LA the downward
longwave radiation, and Ga the flux of heat going into storage in the ground. In
(4.21a) and (4.21b), the small amount of radiant energy used in photosynthesis is
neglected. Recall from Chapter 3 the shorthand terminology: Rn, the net radiation,
and A, the available energy.

Following a change in surface conditions, the available energy can change
because of changes in albedo or emissivity, but these are usually less important
than changes in the longwave emission attendant on changes in TO or changes
in ground heat flux as soil water content alters. All of these effects are, in turn,
usually less significant than the change in energy partition between H0 and \E0.

If we consider first the flow from a dry surface with HQ ~ A to a moist or
wet surface, then XeEo increases rapidly at the expense of HQ. Close behind the



A downward flux of sensible heat at the surface, (Ho < 0) means that H(z)
must pass through zero at some height z' so that if (4.23) is integrated from
z = 0 to z = z', it is clear that the downward flux of heat needed to sustain
(\EQ/A) > 1 is supplied by a cooling of the air in the growing internal boundary
layer. Agricultural meteorologists working over green crops recognize times when
the Bowen ratio (3 is negative [where /3 = Ho/XeEo = (A/XeEo) — 1] as an
indicator of advective conditions and as a warning to use caution in applying
one-dimensional formulas.

Figure 4.9 from Dyer and Crawford (1965) illustrates the situation. The sur-
face fluxes were obtained from mean profiles of 0,u, and q by integrating (4.23)
with the assumptions that H = 0, where dO/dz = 0 and XeE = 0, where
dq/dz = 0. This is not a particularly good assumption close to x = 0 (as we shall
see in Section 4.3), but it is reasonably accurate at longer fetches as the good agree-
ment with the single lysimeter measurement attests. Unfortunately, it prevents us
from observing whether the expected large overshoot in flux values occurs just
behind the change. The data of Itier et al. (1978) obtained from minilysimeter
measurements show a rapid attainment of quasi-constant moisture flux and con-
firm that any large overshoot in flux is confined to the region immediately behind
the change.

For more detail we must turn to model simulations. Two are relevant. The
second-order closure scheme of Rao et al. (1974b) uses a sophisticated description
of the turbulent mixing, taking proper account of the effects of changing stability,
but it uses a simplistic lower boundary condition. Over green vegetation or moist
bare soil, biological and physical resistances to the movement of water vapor
through the plant or through the soil ensure that the surface vapor concentration
is lower than the saturated concentration at the surface temperature, namely,

9o < <7sat (To)-
This process is parameterized by the surface or canopy resistance rc [(3.24)

in Chapter 3], which links the surface concentration to the flux:
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change, the ratio XEo/A can become much greater than unity, the extra energy
for evaporation being supplied by a downward flux of sensible heat, which is
maintained in turn by horizontal advection. We can describe this situation more
formally by writing the equation for conservation of enthalpy,

and retaining terms of leading order to obtain the simplified balance
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Over green vegetation, rc is dominated by the behavior of the stomata and hence
is largely a biologically determined variable, whereas over bare soil, rc depends
primarily on the soil structure and the rate at which the upper layers of soil
are drying (Philip, 1967). Instead of using (4.24), Rao et al. (1974b) fixed the
relative humidity RQ = <?o/5sat(^o) at the surface. Their boundary condition only
corresponds to (4.24) in the limiting case of RQ = 1.0 and rc = 0, which we find
over open water.

A solution of the advection problem using (4.24) as a boundary condition
has been provided by Philip (1987). His treatment of the turbulent flow was much
simpler than that of Rao et al. (1974b) and took no account of stability effects or
roughness change, restricting its quantitative predictions to near neutral conditions
and surfaces of similar roughness. Nevertheless, his analytic formulation is much
more readily applied than Rao et al.'s numerical model. In practice, the predictions
of both models are qualitatively similar. In Fig. 4.10 we reproduce data from Rao
et al. (1974b) that shows the large jump in XeEo with XeEo/A 3> 1 just behind

FIG. 4.9 Partition of available energy after the dry-wet transition studied by Dyer and
Crawford (1965). These curves correspond to the temperature profiles of Fig. 4.7. The open
and closed squares are \Eo and Ho values, respectively, obtained from the lysimeter.
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FIG. 4.10 Partition of available energy after a dry-wet transition; model results of Rao et
al. (1974b).

the change followed by a rapid fall and a gentler approach to equilibrium. The
behavior of \eE0 is reciprocated by that of HQ.

An important deduction of Philip's (1987) analysis is that for any given
A, there is a value of rc above which an advective inversion will not form.
(Philip's solution models turbulent flux by an eddy diffusivity so that negative
HQ is synonymous with a ground-based inversion.) This is illustrated in Fig. 4.11
from Philip's paper, where we see that with A — 400 Wm~2, an inversion never
forms when rc exceeds 200 s m"1 and is confined to within 50 m of the change
for rc = 100 s m- 1 . A typical value of rc for green crops is 50 s m- 1 , whereas
a forest might have rc = 200 s m-1 (Chapter 3). Behavior of this kind — the
absence of an inversion — is seen in one of the cases treated by Dyer and Crawford
(1965).

The wet-dry, cold-hot change does not display these complications, as a
downward flux of latent heat cannot sustain an upward flux of sensible heat except
in the rather special event of dew formation. Note that neither the experimental
results nor the model simulations have a natural x-wise scaling, which seriously
reduces their value for describing the generic case. The self-preserving model of
Mulhearn (1977) has a streamwise scaling linked to the growth of the internal
boundary layer, but this approach is invalid close to x = 0 where rapid and
interesting changes in surface flux are occurring.
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FIG. 4.11 Variation in HO after a dry-wet transition for various values of surface resistance,
rc; model results of Philip (1987).

4.2.6 Change of surface flux: Longer fetches

We saw in the last section that just behind the change, the properties of the
new surface, particularly the availability of moisture as embodied in the surface
resistance rc, is of paramount importance in determining the surface flux. Recent
work by McNaughton and Jarvis (1991), however, has shown how this control is
relaxed as we proceed farther downstream. They considered the question of how
sensitive the area-averaged evaporation is to changes in the value of rc when we
have traveled far enough from the change for the whole ABL to have adjusted to
the new surface. This is an important question that arises not only in the context
of estimating evaporation or other fluxes over large-scale changes in land use,
but also in the topical question of parameterizing surface variability in global or
regional climate models.

McNaughton and Jarvis show that environmental feedbacks can diminish
(usually) or augment (occasionally) the influence of changes in surface properties.
To illustrate what we mean we recall (3.21), which describes evaporation between
the surface and a reference level zr using an aerodynamic resistance r to describe
atmospheric transport of humidity,



Imagine now a reduction of rc caused by, for example, irrigating a region. If
other variables remained fixed, Eo would increase; but in reality, increased evap-
oration would tend to increase qZr by humidifying the boundary layer while TO
would fall, causing gsat(To) to diminish. The formation of a stably stratified advec-
tive inversion would also reduce turbulent mixing and thereby cause an increase
in raq. These three processes constitute negative feedbacks in the terminology of
McNaughton and Jarvis, reducing the response of EQ to changes in rc.

These authors conclude that for rc < 50 sm-1, which is the range expected
of cultivated crops, changes in rc have little effect on regional evaporation because
the dominant controls on Eo are processes on the ABL scale such as entrainment
through the inversion. For rc between 50 and 250 sm- 1 , meteorological feed-
back is important but not completely dominant. This range of resistances covers
most of the world's nonagricultural vegetation. McNaughton and Jarvis conclude
that only for the very driest surfaces with rc > 250 sm-1 does the surface moisture
availability control evaporation on the regional scale.

This is an area of active research and the conclusions reported here may well
be subject to revision; the numerical values in particular depend on the details of the
ABL models they have used. Nevertheless, the basic principles of meteorological
and environmental feedback are accepted by most workers in the field and are
implicit in the formulation of models such as Philip's (1987) local advection
treatment. We must be aware of them when estimating the downwind adjustment
of area-averaged fluxes to surface change. An added refinement of this problem
has been discussed by Raupach (1991), who has looked at continually changing
surfaces and how processes in the whole ABL affect evaporation from them.

4.3 Turbulence

The information on turbulence response to surface change is much less complete
than that on the mean fields. This means that it is very sketchy indeed. To de-
scribe local advection after roughness changes we must rely heavily on the wind
tunnel even though most of the wind tunnel data are not strictly appropriate to
atmospheric flows. Information about scalar changes, particularly active scalars,
is even sparser except in the case of far downwind development after cold-hot
changes. Unfortunately, this situation is less interesting from a fluid mechanical
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and combine this relationship with (4.24) to obtain
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point of view than is local advection, since far downwind, IBLs usually develop
forms that are locally similar to well-studied, horizontally homogeneous boundary
layers.

4.3.1 Changes in surface roughness: Local advection

Smooth-rough changes. Two data sets are available: the wind tunnel data of
Antonia and Luxton (1971) and the field experiment of Peterson et al. (1979),
which was performed during neutral flow from sea to land. Unfortunately, the
roughness elements of Antonia and Luxton's experiment were so high relative to
the depth of the upwind logarithmic layer as to resemble flow from grassy fields to
a city of tall buildings as pointed out earlier, whereas Peterson et al. were only able
to estimate eru at the change and two stations downwind by combining outputs
from cup and hot-wire anemometers (Chapter 6). With these caveats in mind, we
can describe the changes in shear stress and variance.

Figure 4.12a shows the development of -u'w'. These profiles asymptote to
the kinematic surface stress u2*2 at z = 0. We saw in Fig. 4.5a that after a smooth-
rough change this quantity showed an initial sharp rise then fell with increasing x
to a smaller equilibrium value. Figure 4.12a reveals that as the near-surface value
of —u'w' falls with increasing x from its initial high value, a peak in shear stress
moves away from the surface. The profiles of au and aw (Fig. 4.12b) do not display
this overshooting behavior, at least down to the lowest measurement level, nor do
they show a peak above the surface. No information on the lateral moment crv is
available from these experiments. We note that the profiles of turbulence moments
merge into the upstream profiles at the same height as the mean velocities. In other

FIG. 4.12 Development of turbulent shear stress and variance after a smooth-rough change.
Data of Antonia and Luxton (1971). (a) —u'w'(z)/u2

t(x,, where utoa denotes the wind-
tunnel free stream velocity, (b) a-u(z)/u\oo and aw(z)/u\ao with symbols as in (a).



where we have assumed that the flow is steady, that the pressure gradient associated
with streamwise displacement at the roughness change is negligible, that w = 0
(these being approximations of the same order), and that viscous stresses may
be ignored. We then see immediately that the positive gradients of au in the
streamwise direction and negative gradients of —u'w' in the vertical we observe
in Figs. 4.12a and 4.12b correspond to mean flow deceleration in the internal
boundary layer.

As in the horizontally homogeneous cases studied in Chapters 1 and 3, an
examination of the terms in the turbulent kinetic energy equation offers important
insights into the distribution of turbulence in the boundary layer. The equation for
a steady, two-dimensional flow is

where e = (1/2) (u'2 + v'2 + w'2) , e represents viscous dissipation, the advec-
tion term has been simplified by assuming w = 0 as in (4.27), and viscous transport
has been ignored. Equation (4.28) will be recognized as a more elaborate form
of (1.59) in which streamwise gradients of mean moments now appear. Note par-
ticularly an extra production term (III) corresponding to acceleration of the mean
flow. Term III is positive in a decelerating flow and negative when the flow is
accelerating.

In Fig. 4.13 the terms of (4.28) are plotted in budget form using data from
Antonia and Luxton's (1971) experiment. Indicated on the same graph is the
budget for the equilibrium boundary layer upstream. We see that the streamwise
production term (III) is a gain over the internal layer, whereas advection (I) is a
loss with its largest negative contribution occurring at z ~ Si/2. Over most of the
internal layer, turbulent transport (IV) is a gain except near the surface, where it is
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words, Si defined by turbulence fluxes in this case coincides with Si defined by
the mean flow.

We can write the equation describing the streamwise balance of mean mo-
mentum for this flow as
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a loss. [In fact, only the vertical component of turbulent transport -(d/dz)(w'e)
is computed. The streamwise component — ( a / a x ) ( u ' e ) is assumed to be much
smaller and is included implicitly in the residual term. Actual measurements of this
term by Mulhearn (1978) support this assumption.] Turbulent transport, therefore,
represents the vertical diffusion of turbulent kinetic energy from the rough surface
to the outer part of the IBL. The residual term consists of dissipation (VII) plus
pressure transport (V) and the horizontal component of turbulent transport. There
is evidence from some recent experiments that pressure transport tends to oppose
turbulent transport but to be somewhat smaller than it. The residual therefore is
primarily dissipation. Buoyant production (VI) is zero in this adiabatic flow.

Near the surface, production and dissipation are almost in balance, but over
most of the IBL depth the transport terms I and IV are of the same order of
magnitude as II, III, and VII. This is in sharp contrast to the situation upwind
where production and dissipation are in approximate balance over most of the
boundary layer depth. There are important implications here for the concept of
local equilibrium, which, as we saw in Chapter 3, underpins the use of eddy
diffusivities to describe turbulent transport. We return to consider this question in
detail later in this section.

Rough-smooth changes. Relevant data for this case came from the wind tunnel
experiments of Antonia and Luxton (1972) and Mulhearn (1978). Figure 4.14a

FIG. 4.13 Turbulent kinetic energy budget 111 mm behind the smooth-rough change of
Antonia and Luxton (1971). Terms are normalized by the boundary layer thickness S,
where at this station S ~ 5Si, and by the free stream velocity uioo. Estimates of pro-
duction and dissipation on the smooth wall upstream are included for comparison. ,
-(a/uJoJ^Sifc/az); — ,-(£/«L,)0(^)/dz; ,-(6/u3

lao)u2(de/dx);
LZ--,_-(5/wL)(^'2 - w'i)(du2/dx); , residual; , -(S/u3

too)
u'w'(du\/dz) (upwind); , dissipation (upwind).
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FIG. 4.14 Development of turbulent shear stress and variance after a rough-smooth change.
Data of Mulhearn (1978). (a) —u'w'/u2

lao, where uioo denotes wind tunnel free stream
velocity; (b) <TU(Z)/U\X and aw(z)/uioc symbols as in (a).

displays the development of —u'w' profiles in a similar form to (4.12a). The
undershoot in ul2(x), as discussed in Section 4.1, is just apparent in the lowest
values of —u'w', but this phenomenon is confined to very near the surface. The
significant variations in au, shown in Fig. 4.14b, follow those of —u'w', but much
smaller changes, proportionately, are seen in aw (Fig. 4.14b); av changes by a
negligible amount.

The streamwise and vertical gradients of au,aw, and — u'w1, respectively,
that we see in Fig. 4.14 correspond to mean flow acceleration in the internal
boundary layer as reference to (4.27) reveals. As we noted for the smooth-to-
rough case, <5j defined by the turbulence moments corresponds to Si defined by
the mean velocity.

The turbulent kinetic energy budget, (4.28), is displayed in Fig. 4.15 with
upstream values for reference. We see that the extra terms responsible for the
deviation from the upstream equilibrium form are all opposite to the smooth-
rough case in Fig. 4.13. Advection (I) is now a gain and acceleration production
(III) is a loss, whereas (vertical) turbulent transport (IV) is a loss in the outer
part of the IBL and a gain near the surface. Shear production (II) has also fallen
substantially across the IBL as has the residual term, assumed as before to be
mainly dissipation. As in the smooth-rough case, the additional transport terms
are of the same order as the production and dissipation in the middle of the IBL,
but now this state of affairs continues all the way to the surface.
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4.3.2 Change of scalar flux and concentration: Local advection

Here, most information comes from the wind tunnel, which means that it strictly
applies to passive scalars only. (It is impossible to produce dynamically significant
density gradients in most wind tunnels.) The most relevant experiment is that of
Ligrani and Moffat (1985). It can be inferred from their observations following a
cold-hot change on a rough surface that far enough from the change w'0'/u*2T*
collapses to a universal shape when plotted against z/Si . Tst(x] and u^x)
were defined in terms of the local heat flux and surface stress according to the
definitions (1.25a and 1.25b). Unfortunately, they do not describe profiles in the
more interesting region close to the discontinuity. The results of Ogawa and Ohara
(1985) closer to a cold-hot (sea-land) change show w'0' profiles similar to the shear
stress profiles after a smooth-rough change that we saw in (4.12a), with an initial,
near-surface overshoot followed by the heat flux peak moving away from the
surface so that the largest streamwise gradients in w'0' occur about z = Sg/4.

Charnay et al. (1979) studied the IBL that develops over a sudden drop in
surface temperature on a smooth floor. Upstream of the change, surface tempera-
ture exceeded free stream air temperature and the situation reversed downstream.

FIG. 4.15 Turbulent kinetic energy budget 607 mm behind a rough-smooth change.
Data of Mulhearn (1978). Data are normalized by 6, and u]00. Note that the normaliz-
ing length scale is different from that in Fig. 4.13. , -(6i/u3

lao)u'w'
(du2/dz); ——, -(6i/u3

lao)d(W^)/dz; , -(6i/u3
}00)u2de/dx;j --^

-(6i/u3,x)(u
12 - w'2)(du2/dx); , residual; , -(6i/u\x}u'w'

(du\/dz] (upwind); , residual (upwind).
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In Figs. 4.16a and 4.16b, we plot their dimensionless mean temperature and heat
flux profiles, respectively. In 4.16a, we see the development of a classic advective
inversion similar to the field data of Dyer and Crawford (1965) shown in Fig.
4.7. The accompanying heat flux profiles (Fig. 4.16b) correspond to the cooling
of the internal layer and the transfer of heat to the surface. Except at the most
downstream stations, measurements were not made close enough to the surface to
explore the region where w'9' was negative. It is pertinent to note, however, that
w'O' changes sign at a z value about half of that at which ao / d z = 0.

Charnay et al. (1979) also constructed budgets of 0 '2/2, which may be thought
of as a scalar equivalent of turbulent kinetic energy. The equation for 9'2/2 to the
same order of approximation as the turbulent kinetic energy budget (4.28) is

where N0 represents the dissipation of temperature fluctuations by molecular
conduction. As in (4.28), Roman numerals are used to identify the different budget

FIG. 4.16 Temperature and heat flux profiles after a hot-cold change. Data of Charnay et
al. (1979). (a) Temperature profiles showing the development of an advective inversion.
T01 is upstream wall temperature and Too free stream temperature. 8 is the boundary layer
thickness, (b) Normalized heat flux profiles for the same experiment.
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terms representing advection (I), production (II), transport (III), and dissipation
(IV). The budgets before and after the change are shown in Figs. 4.17a and
4.17b. The residual term is assumed to be predominantly dissipation, N0. We
note the same kind of structure we observed in turbulent kinetic energy budgets
after roughness changes. In particular, over most of the internal boundary layer,
advection and turbulent transport are of similar order to production and dissipation
of 0'2/2.

4.3.3 Turbulent fluxes and local equilibrium: Local advection

In Section 3.3 we discussed the problems encountered when eddy diffusivities are
used to model the turbulent flux of momentum or scalars in a plant canopy. Funda-
mentally, the difficulties arose because eddy covariances were not simply related
to the gradients of the appropriate mean quantities. For example, at some height
z within the canopy a significant amount of w'O' was "imported" from higher
levels by the turbulence itself. Linking w'6' and a 0 / d z by an eddy diffusivity Kh
produced anomalies such as zero or negative values of Kh within the canopy.

Wyngaard (1983) has shown that a minimum prerequisite for using an eddy
diffusivity to model turbulent flux in the boundary layer is that production and
destruction of eddy flux should almost balance locally and be much larger than
any transport term. The argument is simple and is worth reproducing here.

FIG. 4.17 Budget of 0'2/2 fluctuations after a hot-cold transition. Data_of Charnay et al.
(1979). (a) x = 0 mm: , -~rfOi(dO/dz); , -MId(W*/2) /dx ; ,
-(1/2)d(w'6'2)/dz; , residual; (b) x = 350mm: symbols as in (a).re
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The equation for the vertical flux w'cf of an arbitrary scalar c in a two-
dimensional steady flow is

where we have made the usual simplification of the advection term and assumed
that production and turbulent transport terms involving horizontal gradients of
mean quantities are much smaller than those involving vertical gradients.

In the absence of advection and turbulent transport, (4.30) reduces to

and to maintain a steady state, the pressure gradient term must be a destruction
term balancing production. We expect such a destruction term to be of the general
form

where at is a constant of order one, and Tc an 'eddy turnover timescale' (Wyn-
gaard, 1982). Substituting (4.32) into (4.31), we obtain

where the term in parentheses takes the form of an eddy diffusivity Kc. Returning
to the full equation (4.30), we observe that this derivation can only proceed when
advection and turbulent transport are negligible. If they are not, the essentially
local connection between flux and gradient that leads to (4.33) is broken by the
addition of these inherently nonlocal transport terms.

In the advective flows we have been discussing in this chapter, there have
been few published budgets of eddy fluxes. An exception is Lang et al.'s (1983)
measurements of some of the terms in the heat and moisture flux equations at
6i/x > 10 in an advective inversion. They found that turbulent transport was
about 10% of production over a range of stability; unfortunately, advection was
not measured.

Faced with the lack of this information, we turn instead to the turbulent kinetic
energy and 0 '2/2 budgets. These are representative of the fundamental state of the
turbulence and are taken as sensitive indicators of the state of local equilibrium.
The smooth-rough turbulent kinetic energy budget displayed in Fig. 4.13 shows
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a clear departure from local equilibrium over most of the IBL. The only region
where shear production and dissipation dominate is close to the surface. In the
rough-smooth case (Fig. 4.15), the absence of local equilibrium continues all the
way to the surface.

In the budget of 0'2/2 at and after a heat flux inversion shown in Fig. 4.17,
we see the important, first-order role played by advection and turbulent transport
across the internal layer. Antonia et al. (1977) presented 0'2/2 budgets after a
cold-hot change and also found the transport terms to be important across most of
the IBL. Only very close to the surface was local equilibrium approached.

It is clear that we should expect some problems with eddy-diffusivity for-
mulations across the IBL. Figure 4.3 shows the wide variation in (f>m across the
internal boundary layer for neutrally stratified smooth-rough and rough-smooth
changes. We saw in Chapter 3 that Km = kzu*<j)^ in diabatic flows obeying
Monin-Obukhov similarity. The large departures from <pm = 1, the value that
we expect in adiabatic equilibrium flows, suggest caution in using equilibrium
formulations in advective flows, but do not invalidate the use of eddy diffusivities
per se.

Closer to the surface we should expect better adherence to the local equilib-
rium form Km = M* kz, particularly in the smooth-rough case where, as we have
just seen, production and dissipation dominate at the bottom of the IBL. Figure
4.18 shows the mixing length lm = u*2/(du2/dz) = kz/4>m after smooth-rough
and rough-smooth changes using data from Antonia and Luxton (1971, 1972). It is
clear that close to a smooth-rough change the standard equilibrium form lm — kz
with <j)m = 1 does not hold; the farther downwind we proceed, the greater the
depth of flow obeying this relationship, but a considerable downwind distance
must elapse before the equilibrium form describes the link between momentum
flux and velocity profile. The rough-smooth situation is worse with no obvious
approach to lm = kz within the extent of the measurements. Referring to the
discussion of the IBL in Section 4.1, we can now see that the evidence for the
existence of an equilibrium layer at the foot of the IBL is far from compelling
until we are well downwind. A more direct demonstration of the inapplicability
of eddy diffusivities is provided by the heat flux experiment of Charnay et al.
(1979). They found in an advective inversion that the height at which w'6' = 0
was roughly half that at which dO/dz = 0.

It is of interest to ask how far downwind of a change in surface we must
go in order to use eddy diffusivity formulations and Monin-Obukhov forms for
gradients and fluxes with acceptable accuracy. At this stage, no definitive answer
can be provided to either of these questions. It is clear that a smooth-rough change
achieves a new equilibrium more rapidly than a rough-smooth change. Similarly,
the (somewhat weaker) evidence suggests that a cold-hot change comes to equilib-
rium faster than a hot-cold change. Physically based estimates of these distances
must take account of the asymmetry of the changes. In a smooth-rough change the
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Fro. 4.18 Comparison between the near-surface value of the mixing length lm =
(-u'w')l/2/ (du2/dz) = kz/(j>m and the equilibrium adiabatic form lm = kz after
roughness changes. Data of Antonia and Luxton (1972). (a) Smooth-rough. (b) Rough-
smooth.

high production rate of new turbulence at the surface tends to control the growth
rate of the IBL and dominate the decaying turbulence characteristic of the upwind
surface. After a rough-smooth change, conversely, the decaying upwind turbulence
can control the growth of 6i for a considerable distance. Analogous arguments
apply to the energetic turbulence generated downwind of a cold-hot change and its
asymmetric obverse, the hot-cold transition. A survey of the experiments where
the approach to local equilibrium, or more directly, the validity of the flux-gradient
connection can be compared with fetch suggests that eddy diffusivities should be
used with the greatest caution at fetches x < 106* or x < I06g.
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4.3.4 Turbulence behavior at longer fetches

Cold-hot changes. The study of Smedman and Hogstrom (1983) provided data
from one station at intermediate fetch, but the most detailed study to date of
turbulent structure is that of Shao and Hacker (1990) and Shao et al. (1991) using
aircraft in a strongly convective onshore flow. Using a local similarity scaling
similar to that introduced by Nieuwstadt (1984) for the stable boundary layer, they
found that velocity and temperature variances could be represented as functions
of u*, T*, and L (the Monin-Obukhov length), as long as these scaling parameters
were constructed from local rather than surface values of heat and momentum
flux (Shao and Hacker, 1990). This success showed that local equilibrium or self-
preserving behavior of some kind had been achieved, but because of the fetch and
height dependence of the scaling parameters, it was not too helpful in comparing
the global turbulent structure of different CIBLs.

Much more valuable from this viewpoint is the analysis of Shao et al. (1991).
Figures 4.19a and 4.19b from their paper compare dimensionless variances of
vertical velocity and temperature from their experiment and that of Smedman and
Hogstrom (1983), with the standard mixed layer data sets of Caughey and Palmer
(1979), and with Lenschow et al. (1980). The variances are made dimensionless

FIG. 4.19 Vertical velocity and temperature variances in two convective internal boundary
layers compared with standard mixed layer data sets. Mixed layer heights are scaled with
Zi and CIBLs with Sg. Local heat flux and 69 were used to form w* for the CIBLs. Typical
spread of the data points is indicated by error bars, (a) Profiles of al,/wl: , Shao
et al. (1991); - - - , Smedman and Hogstrom (1983), , Caughey and Palmer (1979)
and Lenschow et al. (1980). (b) a-g/0'i; symbols as in (a).
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with the mixed layer scales u>* and 9* introduced in Chapter 1, and the CIBL
height 60 is used instead of Zi for the advective data.

Although the data of Shao and Hacker and Smedman and Hogstrom are in
reasonable accord, their a^/wj values tend to be larger than the horizontally ho-
mogeneous data and their crg/O^ values smaller. Smedman and Hogstrom ascribe
their high ff^/wl values to the increased importance of mechanically (shear) pro-
duced turbulence compared with the classical horizontally homogeneous CBL,
and this explanation could also apply to the data of Shao and Hacker. The reason
for the low values of <?g/0l is less clear, and more research will be necessary to
clear up this point; we have at our disposal after all only two data sets. Never-
theless, these rather small variations from the standard form emphasize how well
the standard convective mixed layer model describes the downwind development
of the CIBL and lends strong support to the formulas based on this structure that
were introduced in earlier sections.

Hot-cold changes. Only Garratt and Ryan have presented relevant turbulence
data. Their aircraft measurements were made in offshore flows at fetches of several
hundred kilometers. Normalized variances uu/u^2, &w/u*2, and (—u'ui')1//2/u*2
were plotted against z/6g and were seen to scatter about the curve usually taken as
characteristic of nocturnal stable layers [Caughey and Palmer (1979), and Chapter
1, Fig. 1.11]. Insufficient data points were analyzed to discuss the dependence on
fetch.

4.3.5 Spectra

The spectral measurements available are a small subset of the experiments where
turbulence was recorded. Antonia and Luxton (1974) compared their smooth-
rough and rough-smooth experiments and noted some success in collapsing spectra
using M*2 and 8i as scaling velocity and length, respectively. They also observed
a major difference between the two cases. Across the smooth-rough internal layer
there was a substantial increase in the low wavenumber content of Sw ( f 8 i / u ) , but
not across the rough-smooth IBL boundary. This is consistent with more energetic
transport of the turbulent kinetic energy produced at the new rough surface to
the edge of the IBL (where it controls the growth of 6i) than in the contrasting,
rough-smooth case.

Neither Antonia and Luxton (1974) nor Mulhearn (1978) saw significant
changes in integral properties of the spectra such as the integral time scales
(Chapter 3) when entering the rough-smooth internal layer. Note that it is safer
to compare integral time scales in these advective situations than integral length
scales formed using Taylor's hypothesis. Near the change particularly, rapid de-
velopment of flow structure invalidates the use of Taylor's hypothesis.

There are no spectra available in advective inversions, but they have been
measured on a couple of occasions behind cold-hot changes. Smedman and
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Hogstrom (1983) obtained data at moderately large fetch at two heights: z/6g =
0.1 (10m) and z/6e - 0.8(75 m). At 10 m, they found that f S w ( f ) followed the
standard form set out in Chapter 2, but that below the spectral peak in f S u ( f ) ,
data points fell squarely in the "excluded region" between z/L = 0 and —2.0 (see
Chapter 2, Section 2.5). At 75 m, they found that f S w ( f ) followed standard mixed
layer forms (Section 2.6), but f Su(f) exhibited more low-frequency energy than
the standard forms. Both the low-level and upper-level behaviors are consistent
with a greater contribution to turbulent kinetic energy from mechanically (shear)
produced turbulence than we expect in a classical convective mixed layer.

H0jstrup (1981) has produced a model of spectral adjustment that combines
the simple model of 6i growth and surface stress development described by Jensen
(1978) (Section 4.1) with an assumption about the way a turbulent eddy will
decay as it enters the internal boundary layer. The model predicts that the high
wavenumber portion of the spectrum adjusts to the new surface more rapidly than
the low, the adjustment time being characterized by a wavenumber-dependent
timescale. The model appears to describe quite well the adjustment of both velocity
and temperature spectra behind changes of roughness and heat flux in the local
advection region of onshore flow (H0jstrup, 1981).

The tentative conclusions that we are able to draw about the behavior of
turbulence in general, highlight the venerability of the basic data sets upon which
we continue to rely. New theories are invariably compared with Bradley's (1968)
roughness change data or Rider et al.'s (1963) and Dyer and Crawford's (1965)
studies of change in evaporation. The continued reliance on these experiments is
a resounding vote of confidence in these pioneering efforts, but the many unan-
swered questions that have arisen during this chapter await definitive experiments
for their resolution.

4.5 Special symbols

A1, B1 constants in the IBL wind profile equations
c any scalar
E0 surface moisture flux
f(z/&i) function modifying logarithmic law in the IBL
g(n) velocity profile shape function
gs(z/Sg) temperature profile shape function
G geostrophic wind
h(n) stress profile shape function
Ho surface heat flux
kc molecular diffusivity for scalar c
ID vertical scale of perturbation in self-preserving model
lm mixing length
Ld downward longwave radiation

f

ATMOSPHERIC BOUNDARY LAYER FLOWS



FLOW OVER CHANGING TERRAIN 151

M logarithm of M*
M* ratio of roughness lengths
n exponent in IBL growth equation
Pr Prandtl number
Prt turbulent Prandtl number
go specific humidity at the surface
qsat(T0) saturation specific humidity at T0

raq aerodynamic resistance
R. Rossby number
RQ relative humidity at the surface
Rn net radiation
Sc Schmidt number
Sct turbulent Schmidt number
Sd downward shortwave radiation
TO surface temperature
T01 , To2 surface temperature upwind and downwind of temperature change
T^ free stream temperature in wind tunnel
u1oo free stream velocity in wind tunnel
um average mixed layer velocity
UQ velocity scale in self-preserving model
Uf, mean velocity at IBL top
U(jg+ mean velocity just above thermal boundary layer top
Z01 , z02 roughness lengths upwind and downwind of roughness change
a albedo
a1 constant in IBL growth equation
at constant in scalar budget equation
B1 geostrophic departure
<5 height of a momentum boundary layer in the wind tunnel
6i height of the momentum IBL
SH height at which the heat flux passes through zero
8g, Sq, Sc height of thermal, moisture, and any scalar boundary layer or IBL
e\ emissivity
Oe equivalent potential temperature
$o scaling temperature for the IBL
TQI , TQ2 surface shear stress upwind and downwind of roughness change
77 ratio of z to IQ or to <5;
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5

FLOW OVER HILLS

We now move on to the next obstacle to understanding how the boundary layer
behaves in general through the study of flow over ridges and hills. In Chapter 4
we examined simple changes in surface conditions and showed how their effects
extend upwards with increasing downwind distance. The distinguishing features
of the flow over those changes were a small perturbation in the pressure field and an
internal boundary layer, the depth of which was controlled by turbulent diffusion
from the new surface. Here, we confront not a change in surface properties but a
change in surface elevation that forces large-scale changes in the pressure field.
The response to this forcing is more complicated than any we have tackled so
far, but the work of many scientists over the past 25 years gives us a measure of
understanding of the processes involved.

In addition to extending to hillsides the kind of analyses of wind and tur-
bulence we have already presented, there are new questions that only arise in
the context of hill flows. One, with ramifications for large-scale prediction of the
weather and climate, is how much drag hills exert on the atmosphere flowing over
them. For large hills and mountains this problem is dominated by the behavior of
the internal gravity waves initiated by hills; over lower topography, however, it
involves a subtle balance between changes in the surface stress distribution and the
pressure field. In questions of wind turbine siting, understanding the position and
magnitude of accelerations in the mean wind becomes crucial, whereas changes
to both the mean wind and turbulence are important when predicting the fate of
atmospheric pollutants in hilly terrain or estimating wind loads on buildings.

The pattern of airflow around a hill is determined not only by the hill shape
but also by its size. A characteristic feature of the atmosphere as a whole is its
static stability, extending all the way to the ground at nighttime and down to z,
during the day. As a result, the vertical movement of air parcels that must occur
as the wind flows over a hill is accompanied by a gravitational restoring force.
If the hill is large enough to disturb the whole ABL, then buoyancy-driven flow
patterns are important at any time of day; conversely, flow patterns around a hill



as defined in Chapter 1.
Taking the characteristic downwind length of the hill as Lh, the half-width

of the hill at half-hill height, and the characteristic velocity in the boundary layer
as U, the ratio we require is the Froude number FL,

For FL <S 1, the flow is affected significantly by buoyancy forces. For FL » 1,
the more familiar balance between inertial effects and turbulent friction is ob-
served. The ratio U/N is typically 1 km so hills of kilometer length scale or less
may be free of buoyancy effects for much of the daylight hours and when winds
are strong, whereas hills much larger than this, say, Lh ~ 5 km, are always af-
fected by stratification to some degree. Height-to-length scales of natural hills are
typically in the ratio 1:10 so the corresponding hill heights are 50-500 m. (As far
as we are concerned, topographical features much larger than this are mountains.)
Most of the available data concerning turbulent boundary layer flow over hills
have been gathered on lower hills with h ~ 100 m or less, and it is these data that
we shall concentrate upon initially. We will return to consider buoyancy effects in
Section 5.2.

Restricting our attention to hills rather than mountains, which we might define
as hills with length scales greater than 10 km, brings the added convenience of
allowing us to ignore explicit rotational effects. These become important when
U/.fLh<l, where / is the Coriolis parameter. Since / ~ 104 s~' in midlatitudes,
this restriction is less severe than that of thermal stratification.

To a greater degree than in the other areas we have covered, our understanding
of hill flow has been shaped by mathematical modeling. This is not surprising when
we realize that the expensive and delicate instruments used in one-dimensional
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on scales much smaller than the ABL depth are only affected by buoyancy when
the boundary layer is stably stratified.

Hills of height h ~ 500 m or more occupy a significant fraction of the
daytime ABL depth and always cause some disturbance of the stable atmosphere
above, whereas hills of height h ~ 100 m are only strongly affected by buoyancy
when the boundary layer is stably stratified or when the capping inversion is at a
low level early in the morning.

We can quantify these conditions by comparing the time an air parcel takes
to traverse a hill (and, therefore, the time during which it is displaced vertically)
with the period of its vertical oscillation in the stable density gradient. This period
is the inverse of the Brunt-Vaisala or buoyancy frequency N, where
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micrometeorological experiments must be duplicated many times over to capture
the two- or three-dimensional flow fields above real topography. At Askervein
Hill, the site of the most complete field experiment to date, for example, 50 towers
were deployed with 27 of them equipped with three-component turbulence sensors
(Taylor and Teunissen, 1987).

The most influential theoretical work to emerge (Jackson and Hunt, 1975;
Hunt et al., 1988a, 1988b) has relied on techniques of asymptotic matching applied
to flow over low hills, where the equations of motion can be linearized. The results
of this work have had a profound influence on the way we view flow over hills of
much greater steepness than the linearized approach strictly accommodates. By
dividing the boundary layer into several sublayers, each with essentially different
flow dynamics, these linear theories provide a link with the similarity relationships
that proved so useful on flat ground. We shall see that in the lowest layer, the "inner
layer," whose thickness depends on the size and roughness of the hill, we can still
use a modified form of Monin-Obukhov similarity, but farther from the surface
the presence of advection does not allow the condition of "local equilibrium" in
the turbulence that such scaling requires. On hills so steep that the tenets of linear
theory are totally inapplicable, a complete description of the flow field requires a
numerical model.

There is a great deal more structure to be explored in the mean flow above
an arbitrary hill than in the horizontally homogeneous and advective situations we
have dealt with so far. The labor involved in fully sampling the flow around a three-
dimensional hill has, however, meant that almost all the available information has
been gathered in winds normal to two-dimensional ridges or on the centerlines
of axisymmetric hills. We must keep this restriction in mind when we generalize
from the measurements we have.

A further restriction is imposed by the fact that, until recently, most published
data had been gathered in near-neutral conditions. This is not entirely accidental
as many of the experiments were motivated by questions of wind turbine siting
and were, as a result, biased toward strong winds. At this time, we certainly lack
any reliable measurements of scalar fluxes and concentrations over hills. What we
think we know about scalar fluxes and gradients comes entirely from mathematical
models and inference from the behavior of the velocity field.

5.1 Measurements and coordinates

We have already touched upon the logistical requirements that a hill experiment
in the field can demand, but there are special measurement problems to confront
as well. First, the depth of the recirculating "separation bubble" that forms if the
hill is steep enough is typically equal to the hill height, which puts it out of the
reach of tower-mounted instruments on all but the shallowest hills. In practice
this has meant that most of the information we have about this region comes
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from wind tunnel simulations. This recourse also, unfortunately, has its problems.
The reversing flow encountered in a separation region denies the possibility of
using the standard tool of the wind tunnel, the hot-wire anemometer, because of
its rectifying action. The pulsed wire anemometer does offer a viable alternative,
however, and has been used in some experiments (Arya and Gadiyaram, 1986;
Britter et al, 1981).

There are other problems with modeling hills in the wind tunnel that have
meant it has played a minor role, at least in shaping our general understanding.
To maintain a reasonable facsimile of the atmospheric surface layer in a wind
tunnel, the tunnel surface roughness must exceed a certain minimum height.
This ensures "aerodynamically fully rough" flow, which occurs for U*ZQ/V > 5
(Schlichting, 1968), and is the minimum requirement for accurately reproducing
the atmospheric surface layer in a tunnel. Unfortunately, when a real hill is reduced
in scale to fit into a wind tunnel, the surface roughness—grass, heather, stones—
usually shrinks too much to satisfy the above condition. The alternatives are to
work with an aerodynamically smooth model or to increase the surface roughness
disproportionately. The first option allows the possibility of incorrectly modeling
near-surface turbulence and phenomena such as separation that depend critically
upon it; the second option means that the crucial inner layer, where changes in
turbulence affect the flow dynamics, may be almost entirely occupied by the
magnified roughness elements (Finnigan et al., 1990). Over a typical smooth,
grass-covered hill about 100 m high, the inner layer depth is roughly 10 m and we
are interested in probing its behavior in detail since it is there, as in the lower part
of the surface layer on flat ground, where scalar and wind gradients are largest.

Another feature of hill flows we shall encounter is a steep gradient of shearing
stress near the surface. This makes it difficult to infer the surface stress from
measurements at the lowest viable level of a sonic anemometer (see Chapter 7)
in the field or a hot wire anemometer in the wind tunnel. Attempts have been
made to use x-configuration hot wires in the field to overcome this difficulty but
with mixed success (Mason, 1986). The problem is that local surface features—
the boulder, clump of heather, or surface hollow immediately upwind—may bias
point measurements, and the kind of area average used in canopy studies (Chapter
3) is what is needed.

Obtaining reliable measurements at a given point above a hill is the first
problem. Finding a useful conceptual framework to compare measurements at one
point with those at another is the next. Rectangular Cartesian coordinates continue
to be useful for locating points at which data are collected, but when it comes to
interpreting the relationship between the hill shape, the turbulence, and the mean
flow they are conceptually clumsy. They also present practical difficulties when
interpreting measurements, particularly in the field. The conceptual problems arise
because we are no longer able to identify a coordinate axis with the mean wind
direction.
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Over flat uniform terrain it is possible to align the x coordinate along the
mean wind direction near the ground so the momentum balance in the x direction
contains most of the dynamical information we require. Over hills, in contrast, we
would have to take account of the momentum balances along all three Cartesian
coordinate axes. Our intuition suggests, however, that there is a preferred direction,
that of the local mean velocity vector, that might play the same role over hills as
the Cartesian x axis does in flow over flat land.

Close to the ground, the wind vector must parallel the underlying surface
for reasons of continuity, so surface-following or s-n coordinates have been used
on several occasions. The equations of motion in such a system were described
by Howarth (1951). In this scheme the z coordinate is the straight line normal
to the surface, whereas the x and y coordinates lie on surfaces parallel to the
ground. Unfortunately, s-n coordinates offer only a partial solution to our problem,
because although the wind flows parallel to the ground near z = 0, at high levels
it is approximately horizontal and there remains a mismatch between coordinate
axes and the wind direction aloft.

One way out of this dilemma is to use physical streamline coordinates. In
this system the x direction is along a streamline and so is always parallel to the
local mean velocity vector, whereas the y and z directions are at right angles to it.
Velocities, together with any other vector or tensor quantity, are referred to a local
rectangular Cartesian frame aligned with the local streamline and are therefore
the physical quantities with which we are familiar. The y and z coordinate lines
are orthogonal trajectories to the streamlines, the three sets of coordinate lines
forming an orthogonal, curvilinear coordinate system.

These coordinates are sketched in Fig. 5.1, which represents the case of flow
over a three-dimensional hill. The z lines intersect the surface at right angles
whereas the x and y lines lie on stream surfaces of which the ground is the lowest
one. In these coordinates v = w = 0 by definition, so the total velocity vector
has components (u + u'),v',w', corresponding to the x, y, and z directions,
respectively.

As we should expect in a curvilinear coordinate system, the equations of
motion have extra terms to account for spatial variation in the coordinate directions.
We see this in the momentum equation for two-dimensional, steady flow in the x
direction (as over a ridge extending infinitely in the y direction),

where gx is the component of the acceleration-due-to-gravity vector in the x di-
rection and viscous terms have been ignored; they are almost always negligible in
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FIG. 5.1 Orthogonal curvilinear coordinate system for describing flow around curved
surfaces. The x axis is aligned with the local streamline, whereas the y and z axes are
normal to it as shown in the figure.

turbulent atmospheric flows. Care must be taken with the form of the buoyancy
term, the last term on the right-hand side. Problems arise because the origin of z
coordinates does not lie on a geopotential. This is not a difficulty of streamline
coordinates alone but with any surface-following system. The reference tempera-
ture 00 is the value of potential temperature in the undisturbed upwind flow at the
same height as the (x, y, z) point under consideration. Since this height changes
as we traverse a hill along a line of constant z, OQ must be a function of x.

R is the local radius of curvature of a; coordinate lines and La an acceleration
length scale. In two-dimensional flow, La is equal to R, the radius of curvature
of the z lines as shown in Fig. 5.2. La and R are related to the divergence and
vorticity of the flow in the following way:

where $ly is the component of the mean vorticity in the y direction. La and R
are simultaneously geometric parameters of the coordinates and properties of the
flow field. Their appearance in (5.3) emphasizes the essential difference between
streamline coordinates and more conventional choices: the fact that the flow field
itself determines the coordinate frame. We shall see below that l/La and l/R are
important parameters for describing flow dynamics.

Moving from two dimensions to flow over the centerline of a three-dimen-
sional hill, the streamwise momentum equation becomes
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FIG. 5.2 Local radius of streamline curvature R. and acceleration length scale La defined
for flow over a two-dimensional ridge.

where we have ignored viscous terms as before, as well as second-order terms in
l/R, l/La, 1/Lb, and 1/LC, which only become appreciable on very steep hills.

The length scales Lb and Lc characterize the departure of the flow from two
dimensionality as we now encounter curvature in the y lines. They are related to r,
the local radius of curvature of the y coordinate lines by the following formulas:

L0 is no longer equal to R, the radius of curvature of the z lines. It now satisfies

Equation (5.6) contains all the terms necessary to characterize flow on the cen-
terline of an axisymmetric hill. But it does not describe completely the general
three-dimensional flow over topography where another parameter, the torsion or
twist of the streamlines, becomes important. Since we do not have useful ex-
perimental information about the general situation, however, it is unnecessary to
introduce this complication.

In both (5.3) and (5.6), the extra parameters of dynamical significance are
I/La and l/R. l / L b and 1/LC can be represented in terms of l/R and 1/La by
integral formulas, but it is much more revealing to write them in terms of r as in
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(5.7) because r, like R, can often be approximated in the near-ground region by
adding z to the surface values of streamwise and lateral radii of curvature.

It is clear from (5.3) and (5.6) that we have simplified the advection term on
the left-hand side of the equations at the expense of adding extra terms to the right-
hand side. These reflect the influence of curvature and acceleration on the turbulent
stress divergence. Note also that (5.3) and (5.6) contain no partial derivatives a /ax,
only ordinary, or "directional," derivatives a/ax along the coordinate lines. This
is a necessary consequence of attaching a Cartesian reference frame to curvilinear
coordinates. It does not affect the interpretation of the equations in any way but
must be accounted for when calculating in streamline coordinates. This point,
together with the derivation of (5.3) and (5.6) and the related equations up to
second order, can be followed in Finnigan (1983, 1990).

The use of these coordinates avoids a practical problem in field and wind
tunnel measurements—that of aligning instruments with, or rotating data into, an
arbitrary Cartesian or surface-following coordinate frame. To do this the alignment
of instruments relative to the chosen coordinate frame must always be accurately
known, an exceedingly difficult requirement in practice. To use streamline coordi-
nates, instruments need only be pointed roughly into the mean wind and the data
rotated ex post facto so that v = w = 0. A final rotation about the x axis is then
performed to fix the y and z directions. Formally, the z direction is the direction of
the principal normal to the streamline, that is, the direction in which the streamline
appears to have its maximum curvature. Practical ways of finding this direction
are discussed in Chapter 6.

No single reference frame works in all situations, and streamline coordinates
are no exception: They are difficult to use in regions of reversed mean flow. A
practical way out of this difficulty is to use the idealized streamlines of inviscid,
potential flow about the hill as a bridge between the real streamlines of the attached,
nonreversing flow upwind of the separation bubble and the real streamlines of the
wake flow behind the reattachment point. An even simpler procedure, requiring
no calculations, is to use surface-following coordinates to bridge the separation
region although a smooth fit to the real streamlines may be harder to achieve with
this choice. The procedure is illustrated in Fig. 5.3. It provides continuity of the
coordinate system across the separation region. A disadvantage is that we can
no longer attach physical meaning to terms in the equations over this region. We
shall see when we discuss the turbulence in the separation bubble in Section 5.3,
however, that there, the conventional Reynolds separation of flow into mean and
turbulent components has little relevance or explanatory power so the disadvantage
is a minor one.

A comparison of streamline and surface-following coordinates, as used, for
example, by Finnigan et al. (1990) and Bradshaw (1973), respectively, shows
that all of the terms appearing in streamline equations have counterparts in the
surface-following equations. The latter also has a set of extra terms accounting
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FIG. 5.3 Reversed mean flow in the wake of a hill when separation occurs compared to
idealized streamlines for inviscid potential flow that can be used to define the x coordinates.

for the local mismatch between coordinate and flow direction. Near the surface,
where this mismatch is usually small, these terms are of second order (and are
often ignored in applications) so the streamline equations may be viewed as a first
approximation to the surface-following equations or vice versa. This is a point
of view we find convenient to adopt in this chapter as it allows us to present
and interpret data gathered in surface-following coordinates as if they were really
in the local streamline reference frame. The error involved in doing this is less
than typical error bounds attached to field measurements. We shall also revert to
standard rectangular Cartesian coordinates where necessary. Such occasions will
be clearly labeled; otherwise, streamline coordinates should be assumed.

5.2 Mean flow

We begin by examining the mean flow under neutral conditions and postpone
a discussion of the influence of stratification until later in this section. Imagine
we are recording the velocity along streamlines that approach an isolated two-
dimensional (2-d) ridge roughly at right angles. Close to the surface, we see the
flow decelerate slightly at the upwind foot of the hill before accelerating to the
hilltop. If the hill is steep enough, this deceleration may cause a small separation
bubble to form at the foot of the hill. The wind reaches its maximum velocity above
the hilltop, then decelerates behind the hill. If the hill is steep enough downwind, a
separation bubble forms in which the flow direction at the lowest level is opposite
to that above (Fig. 5.4). Whether or not a separation bubble forms, a wake region
develops behind the hill with a marked velocity deficit extending for many hill
heights downwind. If we follow the higher streamlines, we observe monotonic
acceleration to the crest followed by deceleration behind the hill.

Following the streamlines over the crest of an axisymmetric hill, we observe
the same features with one difference: The upwind deceleration is absent. It is
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FIG. 5.4 Flow over a two-dimensional ridge showing formation of a separation bubble
when the downwind slope is steep enough.

replaced by a region of lateral flow divergence as the streamlines divide to pass
around the hill. This lateral divergence decreases as we move up the hill centerline,
disappearing completely at the crest.

This evolution of the mean wind is displayed in two different ways in Figs.
5.5 and 5.6. In Fig. 5.5 we present typical vertical profiles upwind, on the crest and
behind the hill. The heights, distances, and velocities are normalized by parameters
we will define later. The height scale is logarithmic to display the near-surface
structure in the profiles. Note the large increase in velocity near the ground on the
hilltop and the velocity deficit in the hill wake. The same features can be seen in
Fig. 5.6 as we follow two streamlines, one close to the ground, starting, let us say,
at a height of 0.05h upwind, and a higher streamline starting at 0.5h. Along the
lower streamline, in the two-dimensional case, both the upwind and downwind
decelerations are marked as is the speedup at the crest. On the higher streamline we
see no upwind deceleration and the speed variation in general is less pronounced.

To make the information displayed in Figs. 5.5 and 5.6 more concrete, we
can imagine the profiles developing over a ridge or axisymmetric hill of height
h = 100 m, length scale Lh = 200 m, and surface roughness zo = 0.02 m, which
is typical of grazed pasture. We shall soon define the horizontal scale Lh more
precisely.

Before we attempt to quantify the behavior we have just described, it is
helpful to introduce a division of the flow field into three separate regions: an
inner layer extending from the surface to a height /, an outer layer, and a wake
region. These are sketched in Fig. 5.7. The justification for this division is the
essentially different dynamical processes that dominate in each region. In the outer
layer, mean flow patterns are determined by inertial forces; turbulent friction is
relatively unimportant and we can treat the mean flow as essentially inviscid. In



FIG. 5.5 Normalized wind profiles observed upwind, at the crest, and at the downwind
foot of a two-dimensional ridge.

FIG. 5.6 Normalized mean wind in the inner (I) and outer (II) layers plotted as a function
of dimensionless distance from the hill crest.
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FIG. 5.7 Schematic of flow over a two-dimensional ridge showing different regions of the
flow: inner, middle, outer, and wake regions.

the inner layer, turbulent friction plays a major role not least in causing separation
to occur, whereas in the separation bubble and in the wake region turbulence
dominates.

5.2.1 Speedup

The magnitude of the speedup on the hilltop holds obvious interest both for
wind-power enthusiasts and for engineers interested in predicting wind loads on
buildings. According to convention, the fractional speedup As is defined as

where u0(z) is the reference wind profile sufficiently far upwind to be removed
from any influence of the hill. We further define Asmax as the value of As where
Au is maximum; it occurs at some height above the hill crest. On hills low enough
to avoid separation, which in practical terms means that the downwind hill slope
should be less than about 10°, the speedup can be understood in a qualitative way
using ideas borrowed from the linearized theories.

Flow accelerations are driven by the pressure field that develops around the
hill. If the hill were embedded in a uniform, unsheared flow with upstream velocity
U, the pressure field could be calculated using classical potential flow theory. The
pressure perturbation that developed over the hill would have a characteristic
magnitude ~ pU2. This would act upon the flow, whose characteristic velocity
was U, to produce a speedup As. The spatial distribution and absolute magnitude
of As would depend on the hill shape.

In reality, hills are embedded in shear flows with different characteristic



This definition allows a useful subdivision of the outer layer by specifying a
middle layer (hrn > z > I), the inviscid but rotational part of the outer layer
where turbulent stresses have negligible effect on the mean flow but where the
role of the mean vorticity cannot be ignored in calculations. Lh may be taken as
the distance from the crest to the half-height point (see Fig. 5.7).

In the inner layer we take U ~ uo(l], the reference velocity at height I,
the inner layer depth. Typically, l/hm ~ 0.1 and, if the approach flow UQ(Z) is
logarithmic with realistic values of z0, then uo(hm) » uo(l). The pressure field
is, however, still determined primarily by the outer flow field so the pressure
perturbation in both layers has characteristic magnitude pu20(hm). In the outer
layer this produces a speedup As similar to that predicted by potential theory but
in the inner region, where the background velocity is so much smaller it produces
As values much larger than those in the outer regions.

We loosely defined the inner layer as the region where turbulent stresses affect
the changes in the mean flow. Before we can propose quantitative expressions
for speedup we need to be more specific. We define I, therefore, as the height
at which mean flow advection, streamwise pressure gradient, and cross-stream
divergence of shearing stress [the first, second, and fifth terms in (5.3) ] are of
comparable magnitude. For z » I the effect of the turbulence stress becomes
negligible, whereas for z < I it becomes the dominant term. To quantify this
definition requires some assumption to be made about the form of the mean
velocity and shear stress profiles over the hill. The simplest assumption is that
the hill constitutes only a small perturbation to an existing logarithmic velocity
profile. This assumption is appropriate over low hills where linearized theories
apply and leads to the following definition for I:

where c is a constant of order 1. The value taken by c in the two-layer theory of
Jackson and Hunt (1975) and in the more comprehensive theory of Hunt et al.
(1988a) that has superseded it is c = 2k2, where k is von Karman's constant.
We shall encounter other choices for c later in this chapter. Over the hypothetical
hill used as the basis of Figs. 5.5 and 5.6, with h = 100 m, Lh = 200 m, and
Z0 = 0.02 m, we find that I = 10 m and hm = 66 m.
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velocities in their inner and outer layers. In the outer layer we take U ~ uo(hm),
the reference velocity at hm, the height at which the shear in the upwind profile
ceases to be important in the flow dynamics. It is defined by the formula (Hunt et
al., 1988a):
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The linear theory of Hunt et al. (1988a) produces an expression for speedup
in the inner layer (z < I)

where 6 = [ln(l/z0)] -1. The value of Asmax given by (5.14) and its location at
z = 1/3, both predictions of the Hunt et al. (1988a) theory, match observations on
Askervein Hill (Taylor and Teunissen, 1987) and Cooper's Ridge (Coppin et al.,
1986) quite closely. 1/3 seems to be a reasonable estimate of the height of Asmax

on a wide range of hill shapes, although it must be said that the absence of sharp
peaks in the Au profile ensures a good deal of scatter in the experimental data.
Certainly, at this stage, no clear difference can be detected between the location
of the peak in Au on two-dimensional and axisymmetric hills.

In the middle layer, (hm > z > I), the same theory predicts a different
expression for speedup. This now becomes

C is a function of order 1 that factors the precise shape of the hill into the expression
for As. The hill shape is important because it determines the details of the pressure
field around the hill. ( is also responsive to the surface roughness, z0.

A useful general form for the hill shape is the so-called Witch of Agnesi
profile. In two dimensions, it is given by

[The hill shape defined by (5.13) is often used in mathematical models of hill
flow because it has a particularly simple Fourier transform; it also shows that the
definition of Lh as the distance to the half-height point is not accidental.] With
this choice for the hill shape we can compute (,(x, ZQ). Specializing still further to
the case of maximum Aw, which occurs for x = 0 and z ~ 1/3, we have

where £ is a factor of similar magnitude to C, which plays the same role above the
inner layer. The crucial parameters of Hunt et al.'s (1988a) linearized theory are
summarized in Table 5.1. The theory of Hunt et al. (1988a), although comprehen-
sive, is not simple to apply to arbitrary hill shapes. Taylor and Lee (1987), basing
their calculations on the earlier theory of Jackson and Hunt (1975), formulated
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Table 5.1 Parameters Used in the Linearized Theory of Hunt et al.
(1988a) to Calculate Speedup

Parameter

Inner layer height

Middle layer height

Scale size

Symbol

/

hm

8

Formula

(M,*)ln(//z0) = 2k2

hm = Lh[ln(Lh/z0)r
V2

8 = [In(//z0)]-'

simple guidelines for estimating wind speed changes over small-scale topographic
features without separation. We can summarize their recommendations as follows:

Asmax — 1-6/i/Z/h, for axisymmetric hills, (5.16a)

Asmax ~ Q.&h/Lh, for two-dimensional escarpments, (5.16b)

Asmax ~ 2.Qh/Lh, for two-dimensional ridges. (5.16c)

A good deal of experimental evidence both from the wind tunnel and field mea-
surements suggests that (5.16a, 5.16b, 5.16c) are generally accurate within ±15%
(Finnigan, 1988), whereas on low hills that fit the assumptions of linear theory
more closely, the agreement is even better.

When hills become steep enough to establish steady separation regions, many
of the basic tenets of linearized theory break down. Instead of the pressure field
being approximated by potential flow around the hill shape, it is the flow around
the hill shape plus separation bubble that is important and that must be used to
calculate L^. The appearance of the separation bubble and its streamwise growth
with increasing hill steepness, a phenomenon we shall discuss more fully in the
next section, put an upper limit on Asmax of about 1.25 and this value is attained
on axisymmetric hills where the separation bubble size is minimal.

5.2.2 Separation

When separation occurs, it changes the wind field not only in the separation region
itself but over the entire hill. It does this because the large-scale pressure field that
develops around the hill and drives the flow perturbations is dominated by flow
in the outer layer, and this in turn reacts as if the hill and its attached separation
bubble formed a single obstacle. It follows that quantifying the onset and extent of
separation is necessary before we can apply the speedup formulas (5.12)-(5.16).

We define the separation point operationally as the x position where the
near-surface flow reverses. We can write this condition precisely as
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The flow can only reach condition (5.17) by passing through a point where du/dz
at the surface is zero; in laminar flow this coincides with the point where the
surface shear stress vanishes. In turbulent separation, however, we find that eddy
diffusivity parameterizations of the stress fail near the separation point so this
coincidence need not occur. In fact, at the present time we lack any coherent pre-
dictive theory of turbulent separation so we shall confine ourselves to qualitative
remarks and a review of the empirical evidence.

At the surface du/dz = —Qy, where £ly is the cross stream component
of mean vorticity, the only nonzero component of vorticity at the surface. In an
attached boundary layer, £ly is negative (du/dz > 0). The rate of generation of
Jly at the surface is equal to — (1//0) dp/dz\ in other words, an adverse (positive)
streamwise pressure gradient at the wall generates a flux of positive fly (negative
du/dz) into the flow (Morton, 1984). The resultant vorticity (or shear) at the wall
and the consequent possibility of separation [through (5.17)] are determined by
the balance between this flux, the advection of vorticity from upstream, and the
turbulent diffusion of vorticity to the wall from higher in the boundary layer. An
illuminating discussion of this balance may be found in Lighthill (1989) and a
more quantitative treatment in Finnigan et al. (1990).

In fully turbulent atmospheric boundary layers, any agency that reduces near-
wall advection of negative tly from upstream or reduces diffusion of negative £ly

toward the surface in a region where the pressure gradient is positive will tend
to encourage separation. Increasing momentum absorption at the surface by an
increase in surface roughness is one way of reducing near-surface advection while
a particularly pervasive reducer of turbulent diffusion is the convex streamline
curvature that occurs over a hilltop. We will treat this mechanism in greater detail
when we consider the turbulent structure; for the moment, we point out that the
extremely high curvature and accompanying adverse pressure gradient at a sharp
edge ensures the separation of flow there. This is the one situation where the
separation point is easy to predict. At a sharp edge also, all of the deceleration
necessary for separation occurs at the edge itself, and the measurable surface flow
may appear to accelerate right up to the point where it separates.

If the mechanism of flow separation is poorly understood, the recirculating
flow in the bubble region between separation and reattachment is even less well
known. What data we do have come from wind tunnel studies because the bubble
depth is characteristically of order h, too high to be explored by the meteorological
towers of field experiments. Unfortunately, many of these model studies have used
smooth hills in rough wall boundary layers, which allowed measurements to be
made close to the surface but introduced the complications of rough-smooth
transition discussed in Chapter 4. Nevertheless, they have provided answers to the
basic question of how steep a hill must be before separation occurs.

The available data on two- and three-dimensional hills were summarized by
Finnigan (1988). On smooth two-dimensional ridges, whether smoothly curved
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like natural hills or of triangular cross section, the critical downwind hill slope
angle for steady separation is about 18°, but this angle reduces with increasing
surface roughness. The limit for a very rough two-dimensional ridge, such as that
studied by Finnigan et al. (1990), which had h/z0 ~ 400, seems to be about 10°.

The streamwise extent of the separation bubble depends to a significant
degree on the angle the separating boundary layer makes with the mean flow
direction. For example, on a smooth two-dimensional ridge with triangular cross
section and 30° slope, Snyder and Britter (1987) detected a separation bubble
about 3h-Ah in horizontal extent, whereas on a triangular ridge of 60° slope,
Arya and Shipman (1981) measured a bubble extending for 13/z downstream and
attaining a maximum depth of 2.5h. The bubble extent also increases with surface
roughness so that on a very rough (h/zo — 120) 30° triangular ridge, Castro and
Snyder (1982) observed a bubble of depth ~h that extended downwind about
11h from the hill crest. On more naturally curved hills the separating shear layer
is roughly parallel to the mean flow and the downwind extent of the separation
bubble is usually only 2h or 3h.

As the hill's horizontal aspect ratio decreases from two-dimensional to axi-
symmetric, the critical angle for separation increases whereas the extent and width
of the separation region shrinks. On a smooth cone, 30° seems to be the minimum
angle to ensure steady separation, but adding surface roughness reduces this angle
to about 20°. The extent and width of the separation bubble is now so dependent
on the precise hill geometry that the available data do not allow us to discern any
meaningful trends.

One striking conclusion is the sensitivity of separation to surface roughness
even on very abrupt hills where we would expect topographical effects to dominate
totally. The search for a useful theory of rough wall turbulent separation has not
yet produced simple applicable rules, although it is an area of active research.
Consequently, we have avoided including results from mathematical hill flow
models in this brief survey, as those that do predict separation have yet to be
matched confidently with experiment.

The structure of the mean flow within a separation bubble is complicated.
Separated shear layers are unstable so that even the separation bubbles behind two-
dimensional ridges may spontaneously break up into cells with three-dimensional
circulation, whereas the bubbles behind truly three-dimensional hills display com-
plex topologies closely connected to the shape of the hill. One important distinction
can be made, however, between two- and three-dimensional separation regions
following the work of Hunt et al. (1978) and Tobak and Peake (1982). This is that
three-dimensional separation bubbles are not closed; there is a mean inflow and an
outflow to and from the separation region. Two-dimensional bubbles, in contrast,
are bounded by a closed stream surface that joins the separation and reattachment
lines. It follows that transfer of scalars from a two-dimensional separation region
can only occur by turbulent diffusion across this stream surface, but in the three-
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dimensional case mean flow advection can play a role. This is an important result
in the context of atmospheric pollution dispersal.

Many of the points we have covered in this section can be followed in much
more detail in Finnigan (1988), Taylor (1988), and Taylor et al. (1987).

5.2.3 The wake region

Even in the absence of a true separation bubble, the near wake region just behind
the hill has a structure that is still quite specific to a particular hill shape. The far
wakes of isolated hills, however, display some universal features in common with
those behind other surface obstacles such as wind breaks and buildings. Their
properties have been comprehensively reviewed by Taylor (1988). In Fig. 5.8 we
define characteristic parameters for the wake behind a two-dimensional ridge.
The wake depth lw is defined as the height at which the velocity attains a fixed
fraction, say 95%, of the velocity of the upstream undisturbed profile at the same
height, whereas the wake velocity deficit, uw is the difference between wake and
upstream velocities at the same z value. The position of the virtual origin XQ varies
from case to case depending on conditions in the near wake.

A variety of theories has proposed that the wake will display a "self-
preserving" behavior expressed in the following power laws:

where the velocity deficit uw is defined in Fig. 5.8 and the constants A and B as
well as the shape function f(z/lw) depend on the character of the near wake. In the
two-dimensional case there is general agreement that b — — 1, whereas a mixture
of theory, wind tunnel tests, and field experiments has not decided between two
possibilities for a: a = 0.5 or a = 1.

FIG. 5.8 Characteristic parameters for the wake region behind a two-dimensional ridge.
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In Taylor's (1988) words, the information on three-dimensional wakes "has
a distinct signal-to-noise problem." We are now required to consider growth in the
y as well as the z direction and define corresponding exponents az and ay in the
obvious way, while the shape function becomes f(y/lwy> z/lwz). There seems to
be agreement that az = 0.5, while Lemberg (1973) suggests that ay = 0.5 also.
There is more consensus on the value of b with wind tunnel measurements and
theory clustering close to b = ~1.5.

The relatively slow decay of the velocity deficit indicated by these formulas
tells us that the hill wake may be detectable many tens of hill heights downwind.
Equation (5.18b) relates the strength of the wake at any point to the initial velocity
deficit and this, in turn, is much larger behind hills with well-established separation
bubbles than behind those without separation. The far-field behavior of the wake
makes an important contribution to the estimation of the total drag force on a hill,
and we will return to it when we consider distributions of turbulence moments
over the hill.

5.2.4 Effect of stability on the mean flow

So far we have only discussed the neutral case where N ~ 0. Turning now to
diabatic flows we can conveniently group the effects of stability into classes based
on the value of the Froude number we introduced early in this chapter and a new
number Fh(= U/Nh) defined using the hill height h. These classes are

1. Weakly stable: u*/NLh < 1; FL > 1; Fh > 1.
2. Moderately stable: FL < 1; Fh > 1.
3. Strongly stable: 1 > Fh > 0.
4. Weakly unstable: 1 > —l/L > 0, where L is the upwind Monin-Obukhov

length.
5. Moderately unstable: —l/L ~ 1.
6. Strongly unstable: -l/L > 1.

Note that U = u()(hm) is the scaling velocity used for calculating FL and Fh.
The effects of weak and moderate stability and of weak and moderate insta-

bility can be understood using the same ideas we used to explain speedup earlier
in this section, that is, through the way the perturbation pressure field responds to
changes in the outer layer flow. In weakly stable through moderately unstable con-
ditions, the pressure field changes primarily because its scaling velocity u0(hm)
varies according to the predictions of Monin-Obukhov similarity, increasing rela-
tive to uo(l) in stable conditions and decreasing in unstable. In moderately stable
flows, the effect of buoyancy is more severe as the dynamics of the outer layer
flow respond directly to buoyancy forces.

The perturbation pressure field that develops around a hill is intimately con-
nected to the vertical velocity the hill induces. In the outer layer over low hills,

L
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this is well described by the linearized inviscid equation for w, the mean vertical
velocity in Cartesian coordinates. Even over steeper hills, the outer layer responds
to a hill shape smoothed out by the presence of separation bubbles so the linearized
equation may still be appropriate. In two dimensions, it takes the form

where we have reverted to Cartesian coordinates to write this equation in standard
form. Equation (5.19) is derived in the Boussinesq approximation, which assumes
that, whereas variations in density are responsible for the buoyancy term, they may
be neglected in the inertial terms of momentum equations. For the amplitudes
of vertical displacements encountered in boundary layer flows, the Boussinesq
approximation is always valid. Its assumptions are set out clearly by Smith (1979).
A slightly more complicated version of (5.19) applies in three dimensions (Smith,
1979), but the points we intend to make are not affected.

The first two terms in (5.19) are the inertial or acceleration terms, whereas the
terms within the square brackets describe, respectively, the influence of buoyancy
and shear (strictly, mean flow vorticity) on w and, consequently, on the pressure
field. Choosing a height z = Lh to place us firmly in the outer layer, noting that
with a moderately stable (or unstable) logarithmic wind profile U = uo(hm) —
uo(Lh) and representing d2u/dz2 by U/L2

h, we see that the ratio of the shear to
the buoyancy term in (5.19) is F^.

Strong stability and instability involve more profound changes to the total
flow around the hill. It is now no longer profitable to think of a pressure field,
determined primarily by the outer flow, driving accelerations in an inner layer. At
the same time, even over low hills, buoyancy forces produce such large perturba-
tions in the outer layer that a linearized equation such as (5.19) is not appropriate.
This will be clear as we consider the various stability classes in more detail.

Weak stability (u* /NLh < 1; FL > 1; Fh » 1). Under weak stability condi-
tions the perturbation pressure field changes in magnitude in response to changes
in the velocity field in the outer layer. These changes can be quantified by insert-
ing Monin-Obukhov diabatic forms into (5.12), (5.14), and (5.15), the equations
specifying speedup in the inner and middle layers. In doing this it is necessary
to modify not only the scaling velocity UQ but also the scaling heights I and hm,
since the formulas given for these quantities are derived with the assumption of
neutral logarithmic wind profiles. The required formulas for I and hm are given
in Table 5.2.

Figure 5.9 compares speedup modified in this way with data measured at a
height of 8 m on the crest of Cooper's Ridge (Coppin et al., 1986). The unpublished
data in Fig. 5.9 are reproduced with their kind permission. Cooper's Ridge is one

h

h
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Table 5.2 Diabatically Modified Formulas for / and hn

Parameter

/

hm (z/L > 0)

hm (z/L < 0)

Diabatic Forma,b

(//L,)[ln(//Zo) + (i|<Jr=J = 2 k2

hm/Lh = l\n(hm/z0) + 5hm/Lr1'2

hJLh ={(1 + 15hm/\L\rw/[ln(hm/z0) + (^m)2=AJ}1/2

aln detennining these expressions, the values for i|/w given in Chapter 1 have been used.
bL is measured upwind, but both I and hm must be determined iteratively.

of the few data sets where boundary layer measurements have been made over a
range of stability. On Cooper's Ridge, /, the inner layer depth, was 17 m, so Fig.
5.9 describes conditions in the middle of the inner layer. The Obukhov length L
was measured in the undisturbed upwind profile.

On the stable side of the graph the modified formula (5.12) works reasonably
well down to a value of L ~ 40 m. By using the Monin-Obukhov forms for wind
and temperature profiles, it is possible to express FL as a function of z/L. When
we do so we conclude that a value of L = 40 m corresponds to FL — 1.5. In
stratification stronger than this the limits of weak stability are clearly exceeded, and
we should not expect these simple modifications to As formulas to be successful.

Comparisons between the Cooper's Ridge data at the top of the inner layer
and the middle layer formula (5.15) show agreement similar to that in Fig. 5.9
up to L = 40 m, but the formula seriously overestimates the speedup at greater
stabilities. The reason is that simply modifying the scaling velocities w0(0 and
uo(hm), leaving the pressure distribution functions £ and £ unchanged, takes
no account of the changes buoyancy is effecting in the outer layer flow and,
consequently, in the pressure gradient that drives the speedup. We shall see what
these changes are in the next section.

FIG. 5.9 Normalized speedup measured at z/l = 0.5 on the crest of Cooper's Ridge
compared to (5.12) with Monin-Obukhov adjustment of the scaling velocities.
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Moderate stability (FL < 1; Fh > 1). We now enter a regime where few experi-
mental data are available for comparison, but a good appreciation of the changes to
be expected is provided by the analytical solution of (5.19). This can be obtained
by taking UQ and N2 to be constant in the outer layer. To match the solution to
surface parameters such as z/L, we assume the constant values of UQ and N2 are
those that hold at z = hm and that below this height, Monin-Obukhov profiles
apply. With these assumptions we are able to use the theory of Hunt et al. (1988a,
1988b) to calculate speedup in the inner and middle layers.

The result of doing this for a two-dimensional ridge with the Witch of Agnesi
profile (5.13) and Lh,h, and ZQ values matching Cooper's Ridge are displayed
in Figs. 5.10a and 5.10b. In Fig. 5.10a we plot Au(l/3)/u0(hm), the normalized

FIG. 5.10 (a) Inner layer speedup shown as a function of Froude number FL for a two-
dimensional hill with a Witch of Agnesi profile, (b) Outer layer speedup over the same
hill.
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velocity perturbation at a height of z = 1/3 for a series of FL values. This
reference height was chosen so that under neutral conditions (FL = oo) on the
crest (x/Lh = 0), Au would equal Aumax. Between FL = oo and FL = 2 little
change is observed in the Aw profile but by FL — 1, the deceleration region at the
upwind foot of the hill has started to deepen, the speedup at the crest is markedly
reduced, and a secondary maximum has appeared behind the hill.

With further increases in stability to FL — 0.5 and FL = 0.33, these features
come to dominate the flow with a substantial upwind lull, much reduced speedup
on the crest, and strong wind speed maxima on the downwind side of the hill. It
appears that, when stability is strong, the most sheltered place to stand is in front
of a hill and the windiest spot is behind it. By FL = 1, also, the periodic velocity
perturbations that denote lee waves have started to appear behind the hill.

Moving to the outer layer in Fig. 5.10b, essentially the same features are
observed with quantitative rather than qualitative differences. The maximum in Au
at the crest is lost sooner, the lee waves behind the hill are more pronounced, and
by FL = 0.33 the upstream lull and downstream speedup are almost symmetrical
in magnitude and position about the crest. Complete symmetry of those features
about the hilltop is achieved in the "hydrostatic limit," which occurs when the
pressure field is determined entirely by the density distribution in the outer layer,
the dynamical effects of velocity variations being completely overwhelmed. It is
interesting to compare the near symmetry in AM in the outer layer at FL = 0.33
with the strong asymmetry in the inner layer, where shear and turbulent stress
exert a strong influence.

Although setting N2 and uo(z) constant enables us to generate analytic
solutions to (5.19), these are not very realistic choices for the atmosphere. Much
more common is for N2 to be a strong function of height, either reducing sharply
above a ground-based inversion at nighttime or increasing sharply through an
elevated inversion, then dropping to a smaller value above the inversion during
the day. It is also common to observe strong wind shear at an elevated inversion.

These situations have been investigated analytically by Hunt et al. (1988b)
and numerically by Carruthers and Choularton (1982), whereas the classical ap-
proach to the structure of the outer layer flow is presented in detail by Smith
(1979). These studies reveal the extreme sensitivity of the details of the flow to
the vertical distribution of l2s(z), where I2

s(z] = \(N2/uQ - (l/u0)d
2uQ/dz2}, the

coefficient of w in (5.19).
For example, the existence of trapped lee waves depends on the so-called

Scorer condition being fulfilled. For a Witch of Agnesi profile the condition is
I2 < Tr2/L2

h aloft but I2
a > ir2 / L2

h at some lower level. In practice this requires a
strongly stable layer near the ground and stability decreasing or U 0 ( Z ) increasing
strongly aloft. Trapped lee waves can be very energetic phenomena, producing
destructive downslope winds in the lee of hills or regions of recirculating flow
called rotors, which are hazardous to aircraft.
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The sensitivity of the upper layer flow and pressure fields to elevated inver-
sions is the reason why hills that occupy a significant fraction of the ABL depth
are never unaffected by stability, even though the air flowing directly over them
may be neutral or unstably stratified. Unfortunately, the resulting flow depends
not only on the inversion strength and height but also critically on the magnitude
of the stability above and below the inversion. For a detailed treatment of many
of the combinations we can encounter in practice, refer to Hunt et al. (1988b).

Strong stability (1 > Fh > 0). In strong stability linear approximations are no
longer acceptable, even over gentle topography. Indeed, it is clear that in the linear
calculations used in the last section and illustrated in Fig. 5.10, buoyancy produces
large amplitude perturbations in the outer layer flow, which of themselves invali-
date the linearization assumptions. We turn for guidance instead to consideration
of the energy balance and to hydrostatic approximations for the pressure field.

Over small hills (h ~ l 00m) ,F h << 1 usually corresponds to a strong,
ground-based inversion; the limit may also be attained with weaker stability but
on a much larger scale over mountain ranges. In such circumstances, the energy
required to lift fluid parcels over the hill may exceed the kinetic energy available
in the approach flow. These ideas led Sheppard (1956) to enunciate the dividing
streamline concept. The dividing streamline separates streamlines that pass over
the hill from those that go around it as we illustrate in Fig. 5.11. The height
of the dividing streamline far upwind, hs, is of great importance in pollution
studies, since a contaminant plume that originates above hs can pass over the hill,
whereas a plume starting below hs may impinge on the hill with consequent high
concentrations at the surface.

Sheppard's (1956) work produced an integral formula for hs that can be
written (in Cartesian coordinates) as

FIG. 5.11 Illustration of the dividing streamline concept. With three-dimensional hills, in
the presence of a strong ground-based inversion, the flow below this streamline will go
around the hill rather than over the top.
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Equations (5.20) and (5.21) are based on energy balance considerations only,
neglecting continuity and departures from hydrostatic behavior. Smith (1990), in
presenting an alternative derivation, has commented that Sheppard's emphasis on
potential energy and neglect of pressure changes in determining hs invalidates his
derivation. Nevertheless, both the simple (5.21) and more complete formula (5.20)
match surprisingly well to towing tank measurements on a range of hill shapes
(Snyder et al., 1985) and the limited field data available (Hanna and Strimaitis,
1990). A complete discussion of the dividing streamline idea, together with a
description of extensive laboratory experiments designed to test it, is provided by
Snyder et al. (1985). They comment that in times of strong upwind shear (5.20)
should be regarded as a lower limit on hs.

If the fluid below a given streamline is unable to flow over the hill, it must
flow around it. If the hill is a two-dimensional ridge, this cannot occur and the
upwind flow is blocked below hs. Before this situation is reached, however, a
variety of interesting phenomena occur. These are inherently nonlinear but can
be analyzed analytically with the simplifying assumptions of two dimensionality,
constant velocity in any vertical plane, and hydrostatic pressure; the nonlinearity
in the advection terms is retained. Under these circumstances the well-known
shallow water flow equations (Turner, 1973) apply, where the state of flow over
the hill is determined by two parameters: the upstream Froude number Fh and the
ratio of hill height to inversion height. The basic categories of supercritical flow
(where the inversion rises over the hilltop) and subcritical flow (where it drops) as
well as the possibility of hydraulic jumps, the abrupt, turbulent transitions from
one state to another, are discussed in detail by Lamb and Britter (1984). They also
investigated the three-dimensional case where even the draconian assumptions
of constant U 0 ( Z ) and hydrostatic pressure are insufficient to avoid a numerical
treatment.

Experimental measurement of these phenomena has been confined to studies
in towing tanks or flumes. They have been documented near mountain ranges such

where the left-hand side can be interpreted as the kinetic energy of a fluid parcel
located at a height hs far upstream and the right-hand side as the potential energy
the parcel gains in being lifted to a height h through the stable density gradient
Po/gN2. Equation (5.20) is an implicit equation that must be solved numerically,
but by making the simplifying assumptions of constant N2(z) and constant UQ(Z)
we obtain the explicit formula:
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as the Sierra Nevada (Turner, 1973). But over the lower boundary layer hills we
are concerned with, the shallow water equations are usually too far from reality
to have more than qualitative explanatory power; in this restricted role they have
proved quite useful.

Weak and moderate instabilities (1 > — l/L > 0). For this case the speedup can be
calculated by inserting the Monin-Obukhov expressions for u0 into (5.12), (5.14),
and (5.15) in the same way as we did for weakly stable flows. The results can be
seen in Fig. 5.9, the comparison with data from Cooper's Ridge. The changes in
A.s are much less for negative, unstable values of z/L than for stable stratification.
This occurs because, in unstable flows, the wind shear and, therefore, the ratio of
uo(hm) to «o(0 decreases with increasingly negative z/L, whereas the opposite
occurs in stable flow. Above the surface layer in times of unstable stratification,
we approach the constant velocity (zero shear) state of the mixed layer.

Strong instability (—l/L ~s> 1). The very small, negative values of F% required
to meet this condition are necessary before unstable buoyancy forces can play a
role in the dynamics of the surface layer mean flow over the hill. With realistic
values of surface heat flux, they can only occur at times of almost zero mean
wind speed. Then, anabatic, upslope flows may develop on hillsides. Although
this phenomenon has certainly been observed, there are at present no reliable
quantitative data available.

In this hurried journey through the various stability categories we have done little
more than point to the vast range of fascinating phenomena to be studied. We have
concentrated on near-surface effects and on the relatively few useful formulas
at hand. For most of these we have relied on the analytical, linear, asymptotic
theories of Hunt et al. (1988a, 1988b). Numerical models of boundary layer flow
that incorporate stability and might be appropriate to steeper hills are not yet
available. We have also touched on the analytic solutions for outer layer flow as
well as the shallow water approximations. These have a more venerable history
than boundary layer studies. Classic papers by Queney (1948) and Scorer (1949)
were among the first in a long series of distinguished contributions on lee waves
[see Smith (1979) for a summary], whereas studies of the shallow water equations
date back to Lord Rayleigh and Lord Kelvin.

5.3 Turbulence

The linear asymptotic models that provided such a valuable guide to the behavior
of the mean flow can offer no comparable help when we consider the turbulence in
the flow. To predict quantitatively the behavior of individual turbulence moments
requires a much more sophisticated approach: the employment of second-order
closure models (Wyngaard, 1983). As yet, there have been few applications of
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such models to hills; however, we shall find that the qualitative ideas they embody
are indispensable in interpreting the data.

The main concepts we need are local equilibrium, rapid distortion, and turbu-
lence memory. We have already encountered local equilibrium in several contexts
in earlier chapters. This is the state of affairs where production and dissipation of
turbulence are in balance, with advection and turbulent transport playing little part
in the budget of turbulent stress or kinetic energy. Local equilibrium leads natu-
rally to the representation of turbulent fluxes by eddy diffusivities. For example,
in this region we should expect the momentum flux, —pu'w', to be proportional to
the mean shear, d u/dz, as it is in the surface layer over homogeneous flat ground.

Rapid distortion is the antithesis of local equilibrium. It occurs when the
mean flow, from which the turbulence derives its energy, is changing too quickly
for the turbulence to come into any kind of equilibrium with it. The aspects of
the mean velocity field that are important in rapid distortion are the rates of strain
since it is these that appear in the production terms of second-moment equations
such as (1.59) or (3.40). These rates of strain are expressed conveniently in
streamline coordinates as shear, du/dz, streamwise acceleration, du/dx oru/La,
and curvature or centrifugal strain, u/R.

The time it would take for turbulence to attain an equilibrium state, if the
strain rates were held constant, defines the turbulence memory. It can be estimated
by comparing the kinetic energy of the turbulence with the rate it is being destroyed
by dissipation. As we examine the behavior of turbulence moments above a typical
hill we shall encounter a region of local equilibrium at the bottom of the inner
layer while rapid distortion prevails above the inner layer. We shall also find the
concept of turbulence memory invaluable in interpreting the observations. These
concepts will be discussed in greater detail when we consider turbulence structure
later in this section. As we did for the mean flow, we begin by concentrating on
neutral conditions and postpone consideration of the effects of stratification until
later.

5.3.1 Turbulent stresses

To demonstrate the changes in turbulent second moments or Reynolds stresses we
form typical ratios of the various standard deviations to their values far upwind.
These ratios will be presented in two ways: as z-wise profiles at the hill crest
and as x-wise profiles along three streamlines located at different heights. The
vertical profiles draw on the largest body of data because upwind and hilltop
measurements have been made in all experiments. The streamwise variations rely
on a more limited data set; fortunately, this includes some of the most reliable
measurements. Normalized vertical profiles are presented in Fig. 5.12: streamwise
and lateral moments cru and crv in Fig. 5.12a, and aw and —u'w1 in Fig. 5.12b. The
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FIG. 5.12 Typical profiles of standard deviations of wind components and of shear stress
at hill crest.

height scale is logarithmic to display the near-surface structure. Although these
are representative profiles, they may be thought of as developing over the same
model hill we introduced in Section 5.2 as the basis for Figs. 5.5 and 5.6.

We are struck immediately by the differences between the behavior of the
streamwise and lateral moments and that of aw and —u'w'. Both cru and av, after
exceeding their upwind values at the surface, fall rapidly as z increases, cross
parity with upwind about z/l = 0.3 and remain at a fairly constant, reduced level
thereafter. aw and —u'w1, in contrast, after also exceeding their upwind levels near
the surface, crossing parity at a slightly lower height than cru, attain a minimum
value near z/l = 1, then recover to a secondary maximum. In the case of aw

this once again exceeds upwind values, but —u'w' does not recover to the same
extent. Sufficiently far above the surface all the moments must approach their
upwind values. The precise form of the variation of the moment ratios with z/l,
particularly the heights at which they cross parity with upwind ratios, depends
on the detailed shape of the hill as well as its surface roughness. Nevertheless,
the generic features presented here are observed in all cases with relatively minor
variations.

Upwind, the moment ratios satisfy au : av : aw : u* = 2.4 : 1.9 : 1.25 : 1
as we discussed in Chapter 1. Close to the bottom of the inner layer we can expect
local equilibrium conditions, but this does not mean these ratios are preserved.
In fact, the available experimental data suggest that although the ratio crw/u* is
essentially unchanged from upwind to hill top, auju* and O^/M* both fall. Note,
however, that the very steep gradients exhibited by all the moments near the ground
(a feature that is deemphasized by the logarithmic height scale of Fig. 5.12) makes

z



FLOW OVER HILLS 183

unequivocal measurements of the limiting surface values a difficult undertaking.
A reason for this change in the near-surface moment ratios can be found in the
influence that turbulence structure aloft exerts on the horizontal moments near the
surface.

We saw in Chapter 1 that au and av do not obey surface layer scaling but
reflect instead some of the properties of the mixed layer well above the surface.
This is possible because horizontal motions are not restricted by the proximity of
the ground. These "extra" contributions to horizontal variance have been called
inactive motions (Bradshaw, 1967) since they do not contribute to —u'w' and,
hence, to momentum transport. In an analogous way, the near surface values of
(TU and av reflect the reduced values of au and av at higher levels, and the ratios
(TU/U* and avjuif fall in consequence.

As a final comment on these changes in the moment profiles, we observe that
u*/u*o ~ 1.6 whereas, for the same hill, we should expect that Asmax = 2.0. In
other words, the hilltop surface friction or drag coefficient ut/u(l/3) has fallen
to 80% of its value on flat land. We return to this important point in Section 5.4.

Next, in Figs. 5.13 and 5.14, we follow the ratios along three streamlines. We
choose streamlines originating at z/l = 0.05,0.5, and 3.0 far upstream and denote
them as I, II, and III, respectively. Streamline I is in the local equilibrium region
at the bottom of the inner layer, and along I the ratios of UWJOWQ (Fig. 5.14a) and
u'w'/(u'w')o (Fig. 5.14b) conform closely to each other. Their evolution reflects
the changes in near-surface mean shear that correspond to the upwind deceleration
close to the surface, the speedup at the crest, and the deceleration in the wake.
These were demonstrated in Fig. 5.6. The speedup over the crest leads to greatly
increased shear below 1/3 and a corresponding increase in aw and —u'w', whereas
the velocity reduction in the wake leads to a decrease in the moments there. cru/cruo
and crv /<r,,o (Figs. 5.13a and 5.13b) follow much the same pattern with differences
corresponding to the inactive motion component and so reflecting their behavior
on the higher streamlines.

When we move to streamlines II and III we see variations that are strikingly
different from those near the surface. Beginning with au along streamline II (Fig.
5.13a), we now observe a significant rise in this moment at and just behind the
upwind deceleration region, a fall on the hill crest to well below upstream values,
then a large increase downwind as the streamline enters the wake. This pattern
is repeated along III apart from the disappearance of most of the upwind rise in
the moment. We recall from Fig. 5.6 that the upwind deceleration region does not
extend out to this streamline.

In Fig. 5.14a, crw displays even more variation. Along II this moment drops at
the upwind deceleration point then climbs rapidly in the region of concave surface
(and streamline) curvature on the upwind face of the hill. This is followed by a
rapid fall over the hill crest, which is a region of convex surface and streamline
curvature. Finally, aw increases again when the wake region is encountered just as
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FIG. 5.13 Standard deviations of (a) the u component and (b) the v component (normalized
by their reference values in the undisturbed flow) shown as they evolve along streamlines
originating at three heights far upstream: I (z/l = 0.05); II (z/l = 0.5); III (z/l = 3.0).

did au. Generally, similar behavior can be seen on the higher streamline III except
that the response to the deceleration region has disappeared and the reduction over
the crest is now severe enough to drop the moment ratio below 1.

The behavior of —u'w' on these higher streamlines mirrors that of aw with
decreases upwind on II, a rise on both II and III in the upslope region of concave
curvature, a decrease on the crest, and a large increase in the wake (Fig. 5.14b).
Changes in the crv ratio on streamlines II and III are shown in Fig. 5.13b. They
show a neutral response to upwind deceleration, a rise in the same position as aw

and —u'w', and a corresponding fall over the crest. The steep rise in the wake
follows all the other moments.

All of the moments show some differences in their behavior over an axisym-
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FIG. 5.14 As in Fig. 5.13 but for (a) the standard deviation of w and (b) the shear
stress.

metric as opposed to a two-dimensional hill. To begin with, the upwind decelera-
tion is absent in the axisymmetric case so all the responses we have connected with
this feature disappear also. Furthermore, the lateral flow divergence that replaces
this deceleration and continues on the upwind hill centerline leads to enhanced
increases in av and, to a smaller extent, —u'w' in the region of concave surface
curvature. Behind the hill there is some evidence that av values on streamlines
II and III on the centerline would be much less than in the two-dimensional case
(Gong and Ibbetson, 1989). This, presumably, is a consequence of the bilateral
symmetry of eddies behind an axisymmetric hill as well as lateral flow conver-
gence there; it is unlikely to be present behind less regular, three-dimensional
hills.

The positions of the three streamlines were carefully chosen to lie in the
near-surface, local equilibrium region, I, the middle of the inner layer, II, where
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we should not have strayed too far from local equilibrium, and the rapid distortion
region III. Changes in the moments along these representative paths enable us to
draw some general conclusions about the changes in turbulent stresses. To begin
with, we have observed a near-surface region where moments respond to changes
in shear, changes that may be estimated from the variation in u along the streamline
through z/l — 0.3, the position of maximum speedup. In this region the stress
ratios do not vary much as we pass over the hill. The response to flow distortion
is approximately the same for each moment.

At higher levels we observed striking changes, with au apparently increasing
in the region of flow deceleration and decreasing over the hilltop, whereas aw and
—u'w' increased strongly when surface and streamline curvature was concave then
decreased greatly on the hilltop, possibly to well below their upwind values. The
behavior of av is supported by fewer experimental data than the other moments
but is somewhere between au and aw. All the moments increased strongly in
the wake. Away from the surface, evidently, the moments all respond differently
to flow distortion. This is the main reason why simple models are inadequate to
predict turbulence over hills.

We must take care not to extend these divisions of the flow field dynamics
naively into the wake region. Although it is true that local equilibrium must prevail
very close to the surface behind the hill, the dynamics of the separation and wake
region in general are very different from those of the attached flow upwind of the
crest. A primary difference is the region of elevated shear that develops above the
strong velocity deficit in the wake (Fig. 5.5). This shear has its maximum at about
the hill height h and results in an inflected velocity profile for typically 10 or more
hill heights downwind. The result is a pattern of mean and turbulent velocities that
have many of the characteristics of a mixing layer (Wygnanski and Fiedler, 1970).
For example, all the moment ratios peak at the level of maximum shear, z = h,
attaining numerical values of 2 or 3 for the first 10 or more hill heights downwind
[see, e.g., Arya and Shipman (1981), Arya and Gadiyaram (1986), Finnigan et al.
(1990)]. Along with this enhancement in turbulence magnitude, turbulence length
scales also increase greatly, being set by the width of the "free shear layer" rather
than distance to the ground. Most of the data on the wake come from the wind
tunnel for precisely this reason; the depth of the region of strong turbulence as
well as the large length and time scale of the eddies place them outside the reach
of tower-based field instruments.

We have not yet offered any justification for ascribing the variations in
moments to deceleration in the case of au and curvature and lateral divergence
in the case of av, aw, and — u'w'. Nor have we explained why we expect local
equilibrium near the surface and rapid distortion above. This will be the concern
of the next section, where we shall introduce some different interpretations for
the inner layer depth I and show how the concepts of turbulence memory and
rapid distortion lead to qualitative estimates of turbulence response over arbitrary
topography.
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5.3.2 Turbulence structure

When we dealt with flow over flat, uniform terrain in Chapter 1, we were able to
appeal to well-established similarity relations backed up by extensive experimental
data to bring order to the turbulence moments. Over hills, no equivalent similarity
laws exist except in restricted regions of the flow. For an alternative guide to the
structure of the second moments we turn to their governing equations. We shall
confine ourselves to a simplified treatment of the properties of these equations. You
can find them discussed in much greater detail in Wyngaard (1983) and Tennekes
and Lumley (1972), as well as in many other texts.

The equations for turbulent second moments describe the relationship be-
tween the mean flow and the Reynolds stresses that act upon it. Adopting the
standard viewpoint, turbulent stresses or moments result from the interaction of
existing turbulence with the mean flow strain rates. The stresses so produced are
then advected along mean streamlines, diffused by the turbulence itself, and de-
stroyed by the isotropizing effect of pressure fluctuations (in the case of shear
stresses) or by the dissipative effect of viscosity (in the case of normal stresses).
The level of turbulent stress at any point in the flow is the outcome of the balance
between these four processes.

The energy-containing eddies (Chapter 2) comprise the scales of motion that
interact most strongly with the mean flow. Their size, intensity, and structure,
particularly their anisotropy, are determined primarily by the characteristics of the
mean strains that produced them. These eddies are important because they are
responsible for most of the observed stress.

Production. The mean strain field encountered over a hill can be conveniently
decomposed into a superposition of basic strains. Those important in the gener-
ation of stresses appear in the production terms of the appropriate equations. In
streamline coordinates on the centerline of an axisymmetric hill, these equations
reduce to the following:

Turbulent kinetic energy budget:

al Budget:
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a2
w Budget:

u'w' Budget:

where only the advection and production terms have been written out in full. gx

and gz are the x and z components, respectively, of the acceleration due to gravity
vector, and eu,ev, and ew are the viscous dissipation rates of u'2,v'2, and w'2,
respectively. Pressure strain interaction describes the isotropizing effect of turbu-
lent pressure fluctuations. This is the main destruction process for shear stresses
and is responsible for transferring energy among the three normal stresses u'2, v'2,
and w'2. As such, it disappears from the turbulent kinetic energy equation, where
the normal stresses are summed. Turbulent diffusion includes both turbulent and
pressure transport. Equations for flow over a two-dimensional ridge are recovered
by setting \/Lc equal to 0.

The important strain rates are shear (du/dz), streamwise acceleration
(u/La = du/dx), centrifugal acceleration or rotation (u/R), and lateral di-
vergence (u/Lc). It is worth repeating that \/Lc is not a fundamental property of
the flow field as it can always be written in terms of integrals of \/La and \/R,
but it is more convenient to work with the simpler form. In completely general
three-dimensional flows other strain rates also play important roles. The equations
above demonstrate one of the most useful features of streamline coordinates: The
strain rates are given relative to the mean streamlines along which the turbulence
is advected. This greatly simplifies the interpretation of the production terms.

It is apparent from (5.23) through (5.26) that production of each stress de-

c

o2Budget:
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pends on a different mix of strain rates and, furthermore, that the influence of
an individual production rate is conditioned by the magnitude of the stress that
multiplies the strain rate. For example, u'2 production responds to shear du/dz,
acceleration u/La and curvature u/R, but it is most sensitive to acceleration be-
cause u'2 is typically —5u'w'. In contrast, w'2 responds to curvature, acceleration,
and lateral divergence with a twofold weighting to curvature, whereas —u'w' is
dominated by curvature.

Because all of the strain rates except du/dz vanish at the surface, shear
dominates at the bottom of the inner layer. The other strain rates become relatively
more important as we move away from the surface and their distributions about
the hill are strikingly dissimilar. This is illustrated in Fig. 5.15, where we have
plotted strain rate changes along two streamlines over the archetypal hill of Fig.
5.4, the first at z/l = 0.2, the second at z/l = 3.0. All the strains are normalized
with duo/dz on the same streamline.

Along streamline I (Fig. 5.15a), which is within the inner layer below the
height of maximum speedup, we observe changes in du/dz closely following the
velocity changes shown in Fig. 5.6, whereas the other strain rates are an order
of magnitude smaller. Upwind, only du/dz is nonzero. On streamline II shown
in Fig. 5.15b, the picture is quite different. Here du/dz drops to a low value on
the crest and both u/R and u/La are of comparable magnitude. The distribution
of these extra strains about the hill is also markedly different; u/R is symmetric
about the hill crest, whereas u/La is skew symmetric. Included in both figures
is an estimate of u/Lc for the axisymmetric hill. This strain rate also is skew
symmetric about the crest. One feature of the strain field not illustrated in Fig.
5.15 is the region of strong shear forming the upper boundary of the wake. A
streamline starting at z ~ hm upwind would encounter this. As the turbulent fluid
is advected over the hill the strain distribution is impressed upon the production
terms of (5.22) through (5.26). The anisotropy of the strains combined with the
anisotropy of the production terms is a first clue to the observed distribution of
stresses.

Dissipation. Viscous dissipation occurs at scales too small for changes in the mean
flow to affect it, but the rate of dissipation is controlled by the rate at which energy
can be passed from larger to smaller eddies in the eddy cascade process (Chapter
2). This process, which is mediated by nonlinear interaction between eddies, is
not indifferent to changes in the mean strain field. The time scale characterizing
both dissipation rate and the pressure-strain destruction of shear stress is the
eddy lifetime or turnover time Te. We can define Tf in various ways, the most
appropriate one in nonequilibrium flow being
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FIG. 5.15 Changes in strain rate relative to upwind shear duo/dz. (a) Along streamline I
(z/l = 0.05). (b) Along streamline II (z/l = 0.5).

If production of the turbulent kinetic energy e were switched off, Tf would
represent the "e-folding" time of turbulence decay. Physically it can be thought
of as the time that elapses between an eddy appearing as a result of interaction
with the mean flow and losing its identity through nonlinear interaction with its
neighbors. Small values of Te tell us that dissipation is proceeding rapidly relative
to the local level of turbulent kinetic energy.

Turbulence memory. Combining Te with the mean velocity defines l£, the average
distance an eddy is advected in its lifetime:



FLOW OVER HILLS 191

Typical values of lf on streamlines I, II, and III of Figs. 5.13 and 5.14 are plotted
in Fig. 5.16. Ze is normalized with Lh. Lh is a reasonable measure of the distance
over which strain rates change significantly. We see that on the lower streamline I,
where z/l ~ 0.05, le/Lh is substantially smaller than 1 so that eddies encounter
essentially constant strain rates during their lifetimes; they have a short memory.
On streamline II at z/l ^ 0.5, le/Lh hovers around 0.5, but on streamline III at
z/l ~ 3.0, le/Lh never drops far below 2 so eddies at this level reflect a range of
strains in their structure; they have a long memory.

If we make the simplifying assumption that flow over the hill is a small
perturbation on a logarithmic background flow, we can use the Monin-Obukhov
forms of Chapter 1 to estimate lf. We take e ~ 3u^ and e = u\/kz, whence
Te ~ z/u*, and

Comparing (5.29) with the expression for I, the inner layer depth given in Table
5.2, we obtain another interpretation for I as the height at which the average

FIG. 5.16 Changes in turbulence memory le relative to hill halflength Lh along streamlines:
I (z/l = 0.05); II (z/l = 0.5); III (z/l = 3.0).
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distance an eddy is advected in its lifetime approximately equals L^. At heights
much less than I, eddies encounter little change in the strains they are subjected
to through their lifetime; when z is much larger than /, the opposite is true.

In turbulent shear flows the eddy size, as described by integral length scales
(see Chapter 2), is observed to be closely proportional to le; larger eddies are
longer lived than smaller ones and are advected farther in their lifetimes. Finnigan
(1988) demonstrated that this correspondence continues to hold true in the strongly
advective flow over hills. If eddy size is small compared with the scale over
which mean strain rates change, the turbulence will exhibit local homogeneity.
Homogeneity in the x direction means that advection will be small compared to
production or dissipation; homogeneity in the z direction leads to small relative
values of turbulent transport. In Chapter 3 we saw that transport in plant canopies
was significant precisely because this condition was violated.

Local equilibrium. We can now see why we should expect local equilibrium at
the bottom of the inner layer. Eddy length scales are small there, the turbulence is
relatively homogeneous so that advection and transport are small, and production
must be balanced by dissipation. Conversely, well above the inner layer all these
conditions are reversed. The turbulence is strongly inhomogeneous and advection
is strong. In fact, a third interpretation of the top of the inner layer defines it as the
height at which advection and production are in balance (Finnigan, 1988).

We saw earlier in Figs. 5.5 and 5.12 that shear and shear stress, the compo-
nents of the leading production term of the turbulent kinetic energy equation (5.22),
both peak at the bottom of the inner layer so this region satisfies all the require-
ments for local equilibrium (Townsend, 1976): Large production rates, negligible
advection or transport, and dissipation necessarily balancing production.

Rapid distortion. Well above the inner layer there is no balance between production
and dissipation. The large values of l f / L h there mean that dissipation is unable to
come into equilibrium with rapidly changing production rates. This is known as the
rapid distortion region for two reasons. First, because the mean strain rates change
rapidly compared to the eddy turnover time Tf; second, because the mean flow in
this region is essentially unaffected by turbulence and so turbulence moments may
be calculated by the kinematic, linearized turbulence approach of rapid distortion
theory (Hunt and Carruthers, 1990).

In the rapid distortion region, however, the turbulence is strongly inhomoge-
neous and all the basic strain rates exert their influence on production with com-
parable weight, producing a situation that cannot be handled easily with current,
analytic rapid-distortion methods. Nevertheless, we shall find that the observed
stress distribution in this region can be described qualitatively in terms of produc-
tion rates, advection, and eddy lifetime. Not surprisingly, the most difficult region
in which to predict the stresses is around z = I, where production, advection,
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and the nonlinear processes of pressure strain interaction and dissipation are all of
comparable magnitude.

Wake turbulence and the separation region. Far downwind the wake flow relaxes
to a self-preserving form and both shear stresses and mean velocity can be handled
by similarity methods (Taylor, 1988). Much less tractable is the near-wake region,
including the separation bubble. Despite some detailed wind tunnel investigations
of this region (Arya and Gadiyaram, 1986; Arya and Shipman, 1981; Snyder and
Britter, 1987), there has been little attempt to link the turbulent structure to the
mean flow in a consistent way.

A unique feature of the flow field here is the point of inflection that develops
in the mean velocity profile just behind the hill. If there is a separation bubble this
feature begins as a free shear layer bounding the separation region and continues
for at least 10 hill heights downwind. This whole region, as a result, displays
turbulence characteristics similar to that of a mixing layer (Wygnanski and Fiedler,
1970) rather than a boundary layer. These include a peak in all turbulence moments
at the height of maximum shear, which is at z ~ h just behind the hill and increases
slowly downwind; large turbulence intensities compared with boundary layers; and
turbulence length scales of the order of the mixing layer depth, that is, of order
h. The large size of the turbulent eddies relative to the scale over which the strain
rates vary ensures that the turbulence is strongly inhomogeneous so that turbulent
transport is significant and local equilibrium does not exist. A similar situation is
observed at the top of a plant canopy (Raupach et al., 1989).

The near wake behind a three-dimensional hill is more complicated. Turbulent
stress levels display a marked bimodal distribution in the y direction with minima
on the centerline and peaks in intensity to either side. This results from the pair of
trailing, counterrotating vortices that develop behind an axisymmetric hill (Arya
and Gadiyaram, 1986). Less symmetrical three-dimensional hills have even more
complex vortex and turbulence distributions behind them.

If the turbulence structure of the near wake is poorly understood, that of the
separation bubble is virtually terra incognita. In three dimensions in particular, the
flow is so complex and unsteady and turbulence scales so large, that the instan-
taneous velocity field never approaches the time-mean field. In such a situation
it is doubtful if the Reynolds decomposition of the flow into mean and turbulent
components has other than a purely formal meaning. It seems more likely that
understanding of this feature of the flow will require quite different methods to
those we have used thus far.

We can now return to see how well these general considerations fit the observed
changes in the stresses. We begin with streamline III of Figs. 5.13 and 5.14, which
is firmly in the rapid distortion region. Here, we expect changes to be dominated
by changes in production terms. Because lc/Lh exceeds 1 on this streamline, the
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turbulence structure should reflect a range of upwind strains weighted by their
proximity to the measurement point. This is indeed the case. Referring to equation
(5.23) and Fig. 5.13a, we see au fall as the flow accelerates over the hill crest,
because u/La is positive and —2u'2(u/La) is a loss term for a^, and we see au

recover in the wake, where the flow decelerates again.
In contrast, —u'w' along III (Fig. 5.14b) responds mainly to curvature. It

rises steeply through the upwind concave region, where u/R is positive and
—2u'2(u/R) is a gain for —u'w', then falls over the crest, where this term changes
sign. A simple rule for working out the sign of R. is that R is positive if the center
of curvature of the streamline lies in the positive z direction. Hence R is negative
over the hilltop and positive on either side as we saw in Fig. 5.15b. There is
significant 'cross talk' between production terms in their response to the various
strain rates. For example, the rise in —u'w' through the upwind concave region
feeds into w'2 through —4u'w'(u/R) of (5.25) and augments the response of w'2

there. A similar process occurs in reverse over the hilltop.
Variations along streamline I present few surprises. The dominant strain rate

is shear, which varies as shown in Fig. 5.15. The ratios au/u,t, av/u* and aw/u*
do not vary much (see comments made earlier in this section), and the behavior is
what we might expect in a local equilibrium region from our experiments in the
neutral surface layer over flat land (Chapter 1).

Much more surprising is the behavior on streamline II. This streamline is at a
height of z/l = 0.5, and we might not have expected large departures from local
equilibrium behavior. In fact, the stresses behave in essentially the same way as in
the rapid distortion region. Indeed, we now see a rise in a2

t following the upwind
deceleration on this streamline. This rise is linked to the term -2u'2(u/La) of
(5.23). Although shear is not small except just over the crest (we are above the
height of Awmax), the effect of the additional strains is overwhelming.

It is clear from the above that response to curvature dominates the behavior
of —u'w', whereas o\ responds predominantly to acceleration and cr2^ to both
strains with curvature exerting the greater influence. This is true not only in the
outer region but also at z = 0.51. In fact, one of the most unexpected features of
the data is that production terms provide a reliable qualitative guide to changes
in the moments even within the inner layer, where nonlinear processes are impor-
tant. Clearly pressure-strain interaction and dissipation modify but do not negate
changes due to production.

It is well known that shear flows are extremely sensitive to the imposition
of "extra" strain rates, particularly acceleration and curvature, the relative change
in Reynolds stress typically being an order of magnitude greater than the relative
change in strain (Bradshaw, 1973; Smits and Wood, 1985; Sreenivasan, 1985;
Townsend, 1980). This magnified response to additional strain dictates that only
at the bottom of the inner layer, well below z/l = 0.5, can the changes in moments
be linked to changes in shear alone.
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h the changes in second moments over arbitrary hills, we
have summarized these responses in Table 5.3. This sets out the primary reaction
of stresses to strain rate changes on various parts of the hill. It does not take
account of the cross-talk effects we alluded to earlier, whether caused by changes
in one stress feeding into another's production term or by pressure-strain transfer
of energy between stresses. Despite this, it is a reliable if qualitative guide to much
of the available data as long as two points are kept in mind:

1. At any point on a hill, there will be a combination of strains to consider
and these must be accorded their proper weight.

2. The turbulence memory must be taken into account when deciding what
strain rates may be influencing stress at a given location.

Buoyancy curvature analogy. Since shearing stress is the most important agent
of cross streamline momentum transfer and thereby of the overall flow structure,
it is proper to look more closely at curvature. We might reasonably expect that
a numerical model of turbulence would be required to do this in such a complex
flow regime. Indeed, the second-order closure model of Zeman and Jensen (1987)

Table 5.3 Reaction of Stresses to Strain Rates on Various Parts of a Hill

Strain Rate

Acceleration

Deceleration

Shear increases

Shear decreases

Positive curvature

Negative curvature

Lateral divergence

Lateral convergence

Formula

- ^ > 0
La

1<0
La

( 

du dun \
— - — - )>0
dz dz )

(d_u_du,\

\dz dz )

^ > 0
R

* < 0
R

* > 0
Lc

~u
— <0
Lc

Position

Upwind of crest

Upwind foot of hill on 2-d ridges;
behind the hill

Upwind of crest for z < 1/3
(excluding upwind foot of hill on
2-d ridges); outer boundary of the
wake

Upwind hill foot near ground;
above z = 1/3 over hill crest;
bottom of the wake

Upwind slope of hill; behind hill,
if no separation

Over the hilltop

Upwind foot of axisymmetric
hills

Downwind of axisymmetric hill
without separation

Primary Stress
Response

u72 falls
w '2 rises

u '2 rises
w'2 falls

u'2 rises
— u'w' rises

IT2 falls
—u'w' falls

w'2 rises
— u'w' rises

w '2 falls
—u'w' falls

v '2 rises
-u'w' increases

V72 falls

0

0

arbitrary hills, we



where tly = (u/R - du/dz) is the y component of vorticity. In analogy with
its diabatic namesake, Rc is the ratio of centrifugal to shear forces on the fluid.
Rc is also the "flux curvature Richardson number" as we see by comparing shear
and curvature production terms in the turbulent kinetic energy equation (5.22). At
the bottom of the hill, where streamlines are concave, Rc is negative and the flow
behaves as if it were unstably stratified; over the hilltop Rc is positive and the
flow appears stably stratified.

In Fig. 5.17 we show Rc on the three streamlines of Figs. 5.13 and 5.14.
We recall that these streamlines had z/l values of 0.05, 0.5, and 3.0, respectively.
Along streamline I, Rc never exceeds 0.1 but on the higher streamlines, particularly
over the hill crest, where du/dz is small (above z/l ~ 0.3) Rc reaches large
positive values of 2 or 3. We can clearly expect substantial effects on flow structure
if the analogy holds.

In turbulent flows the response to positive and negative Rc is qualitatively
quite different (Hoffmann et al., 1985; Muck et al., 1985). In a concave, unstable
region an inviscid instability mechanism promotes the growth of streamwise vor-
tices similar to the Gortler vortices of laminar flow and cross-stream momentum,
and scalar transfer is greatly increased. The effect of convex, stabilizing curvature
(positive Rc) is much closer to true diabatic stability. Its immediate manifestation
is a reduction in the extent of fluid particle movement in the z direction. This
damping of cross-stream movement is reflected immediately in integral length
scales of cross-stream fluctuations (Chapter 2) as is the earlier increased motion
in the unstable concave region (Finnigan, 1988).

The buoyancy curvature analogy is a useful guide to turbulence response
throughout the flow regime; an equivalent heuristic picture of the effect of accel-
eration is only available in the local equilibrium region. There it combines with the
buoyancy curvature analogy to modify Monin-Obukhov similarity in a consistent
way so we can apply it over topography. This will be the subject of Section 5.4.
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gave a convincing demonstration of the importance of including curvature in
such models. Fortunately, there exists a well-developed heuristic approach to the
influence of curvature on shear flows, the "buoyancy curvature analogy," that has
more explanatory power.

Recognition of the analogy between centrifugal and diabatic effects in a shear
flow goes back at least as far as Lord Rayleigh (Chandrasekhar, 1961), but the
analogy was formalized in a useful way by Bradshaw (1969). In this approach the
net effects of curvature are summarized in the curvature Richardson number Rc,
which is assumed to influence the flow in the same way as the gradient Richardson
number Ri of Chapter 1. In streamline coordinates Rc is defined as
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FIG. 5.17 Curvature Richardson number Rc along three streamlines: I (z/l = 0.05); II
(z/l = 0.5);Ill(z/l = 3.0).

More complete accounts of the effects of curvature and acceleration and their
relationship to rapid distortion can be found in Finnigan (1988) and Finnigan et
al. (1990).

5.3.3 Spectra and integral scales

In the last section we made passing mention of the behavior of various integral
scales over the hill. Unfortunately, very few spectra have been published to date
and it is difficult to draw firm conclusions about the way the spectral forms of
Chapter 2 might be modified. Hilltop and upwind spectra have been presented by
Mason and Sykes (1979) and Mason (1986), whereas information about changes
in various integral scales over a wind tunnel model and some real hills can be
found in Finnigan (1988).

5.3.4 Effect of stability

A natural classification arises when we compare turbulence generation by buoy-
ancy with that caused by strain rates induced by the presence of the hill. We can
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characterize the first by the flux Richardson number, Rf, and the second by the
curvature Richardson number, Rc. Rf is not easily expressed in terms of simple
scales but we noted in Chapter 1 that

Outside the inner layer, we saw in Fig. 5.17 that Rc ~ 1 and we can ask, under what
conditions can \Rf\ attain comparable values? The answer can be summarized as
follows:

Rf — 1 corresponds to F'h — 1, which implies strong stability.
Rf = — 1 corresponds to F% ~ —2, which implies moderate instability.

(Note that Ri - 1 for Rf = I and Ri « -0.5 for Rf - -I in Fig. 1.8, Chapter
1.) Here we have used the classifications introduced in Section 5.2 to provide a
link with the influence of stability on the mean flow.

Within the inner layer the appropriate scale for shear is l and we should write
Rf ~ \ / F f , where FI = U/Nl is still another Froude number, in this case based
on /. There, the typical value of Rc is 0.1 (Fig. 5.17). However, FI is roughly
equal to 0.lFh, so that within the inner layer too, strong stability or instability is
necessary for diabatic effects to overwhelm hill-induced flow distortions in the
production of turbulence.

We have little empirical information on the behavior of turbulence in times
of strong stability. On a large scale, energetic turbulence may be generated in
hydraulic jumps, although these are uncommon features of boundary layer hill
flows. Another possibility is generation of turbulence by lee waves, particularly if
the lee waves break. Such extreme occurrences are sometimes reported by aviators
in the lee of substantial hills. On the unstable side we enter the realm of anabatic
flow and the approach to free convection. No quantitative data appear to describe
this limit. Most interest, therefore, centers on the regime of weak stability and

and for

These relationships are only exact where Monin-Obukhov theory holds, but they
are indicative of the relative values of Rf and Ri over a much wider range.

If we now take h as a characteristic length scale for shear outside the inner
layer, we can write
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instability where turbulence moments respond to changes in the mean strain rates;
these in turn result from changes in upwind profiles as Monin-Obukhov theory
predicts and as we saw in Section 5.2.

It is natural to ask whether the Obukhov length continues to play a useful
role in characterizing local diabatic effects on a hill. First, we recognize that in
streamline (or surface-following) coordinates, the hill slope naturally induces two
Obukhov lengths: Lx and Lz, corresponding to the x and z components of the
gravity vector. Similarly, the reference potential temperature $o of (1.24) must be
replaced by the position-dependent GQ(X), as we pointed out in Section 5.1. The
biggest obstacle to the usefulness of z/L is, however, placed by the assumptions
implicit in the derivation of Monin-Obukhov similarity itself. These are the use of
M* as the velocity scale characterizing cross-stream momentum transfer and the
adoption of "moving equilibrium" as the foundation of the asymptotic matching
process that leads to the logarithmic law. Moving equilibrium states that only the
local values of the governing length scales, ZQ and L, are important and not their
upstream histories (Yaglom, 1979). Finnigan (1992) has shown that over hills,
moving equilibrium can hold only at the bottom of the inner layer, that is, in the
local equilibrium region. The steep gradients of shearing stress near the surface
(Fig. 5.12b) confine the use of u* as a velocity scale to the same thin layer.

This restricts application of Monin-Obukhov scaling and the use of z/L to
z <• //3. The relationship between I and Lh (Table 5.2) ensures that this region is
only of consequential depth on long shallow hills. On such hills also, gz 3> gx so
that, if L is used, we may ignore Lx and set L = Lz. A way of combining the use
of L with La and Rr to provide a complete characterization of turbulence in the
inner layer is suggested in the next section.

5.4 Local similarity over hills

In a local equilibrium flow we expect to describe fluxes by eddy diffusivities
such as those implicit in the Monin-Obukhov formulas of Chapters 1 and 3. The
failure of flux-gradient relationships, when local equilibrium does not hold, was
seen in plant canopies in Chapter 3. Monin-Obukhov or local similarity theory
lies at the root of most descriptions of the surface layer as we saw in Chapters
1 and 2. The logarithmic law, its most famous prediction, links surface fluxes of
momentum, heat, and other conserved scalars to their mean vertical gradients. The
ability to deduce these fluxes from simpler measurements of the mean quantities
is an experimental tool whose power is difficult to overestimate. It would be
exceedingly valuable if we could apply this technique on a hill, because it would
enable surface fluxes to be inferred without making turbulence measurements in
the steep, near-surface gradients of eddy flux that are encountered there. (See, e.g.,
Fig. 5.12b.)

A method of extending local similarity to topography has been proposed
by Finnigan (1992). It relies upon the natural characterization of flow distortion



The values above closely match those given in the Monin-Obukhov formula (1.31)
(with Rc substituted for z/L), confirming the buoyancy curvature analogy in a
quantitative way.
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provided by the parameters R and La of streamline coordinates. In this scheme
the Monin-Obukhov relationship in Chapter 1 for momentum (1.26) becomes

The dependence on Rc is the formal expression of the buoyancy curvature anal-
ogy, and the inclusion of z/La, another dimensionless parameter, introduces a
buoyancy acceleration analogy. We discussed briefly the interpretation of z/L
in Section 5.3. Equation (5.33) shows how diabatic effects combine with flow
distortion in this formulation; for the rest of this section, however, we will restrict
ourselves to the neutral case for clarity. Hence, (5.33) becomes

The local equilibrium region is restricted to z/l < 0.3. Both La and R are always
much larger than I and, in the near wall region, Rc ~ (u/u*)(z/R) so that the
numerical values of the arguments of (5.34) in its domain of applicability are much
less than 1. As a result, the unknown function (f>m may be replaced by the leading
terms in its Taylor series expansion about (/>m(0,0):

where

are constants.
Comparison with an extensive body of wind tunnel data (Finnigan, 1992) has

produced values for J3:

and
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Comparison with a much smaller body of data has produced a value for a in
the accelerated flow

where /3 is the leading coefficient in the expansion of / <j)mdz about Rc = 0. In this
form it has been applied to velocity profiles on the top of Cooper's Ridge (Coppin
et al. 1986), Nyland's Hill (Mason, 1986), and on the upwind face of Askervein
(Bowen and Teunissen, 1986). The results obtained are encouragingly consistent,
but it must be emphasized that a good deal more experimental confirmation of
the theory is necessary. The main predictions of the modified logarithmic law are
summarized below:

1. Diabatically stable, logarithmic profiles matching (5.35) should be ob-
served on hilltops. This has been shown to be true in a small set of
examples.

2. Diabatically unstable profiles matching (5.35) should be observed on the
upwind slopes of hills. This has been shown to be true in an even smaller
number of cases.

3. A substantial reduction in the surface drag coefficient u*/u(z < 1/3)
relative to a flat surface of the same roughness should be observed on the
hilltop and an increase in u^/u in the upwind unstable region. This has
been observed in several wind tunnel simulations.

4. A further prediction, not treated in detail above, is that no local equilibrium
and logarithmic region will exist over a hill covered with tall roughness
such as a forest canopy. This effect has been noted in wind tunnel mod-
els where it forms a major obstacle to reproducing inner layer behavior
(Finnigan et al., 1990).

The problem with fixing a is that strongly decelerated boundary layers separate
so that substantial negative values of z/La are unobtainable. On the other hand,
strongly accelerated, smooth wall boundary layers tend to relaminarize and data
from accelerated rough walls are sparse indeed. Separating boundary layers, how-
ever, have no local equilibrium regions, so it is a reasonable step to take a to be
continuous through z/La = 0 and use the value given in (5.36b) for the small
region of the decelerated domain where the theory is applicable.

Equation (5.35) may be integrated to obtain a modified logarithmic law:
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The small number of cases for which the theory has been tested so far reflects
the difficulty of obtaining field data with the required spatial resolution to provide
not only well-determined profiles in the z direction but also unequivocal values
of z/La and Rc.

5.5 Scalar fields and fluxes

We have had little or nothing to say about the behavior of scalar quantities over
hills; this is a fair reflection of the amount of experimental data available. Whereas
some measurements have been made of mean temperature and heat flux over
Bungedore Ridge and Cooper's Ridge (E.F. Bradley and RA. Coppin, personal
communication), they are incomplete and do little more than suggest yet one more
set of interesting phenomena to study. Our most reliable guide at this stage is the
theoretical work of Raupach et al. (1992) who have extended the linearized, small
perturbation model of Hunt et al. (1988a) to scalar transport.

The conclusions of their work can be briefly summarized as follows:

1. Substantial changes in scalar fields and fluxes over low hills are confined
to the inner layer.

2. Within the limits of linear theory, these effects can be split into three ad-
ditive components associated, respectively, with streamline convergence
and divergence, stress gradients above the surface, and changes in sur-
face conditions, specifically surface flux and surface stress. Of these three
components, the first is usually dominant close to the surface whereas the
last is dominant above z = I.

This chapter has taken us on a rapid trip through the world of boundary layer
flow over hills. Despite its relatively superficial treatment of so many topics and
its restriction, primarily, to turbulent flow over low hills, it has proved to be one
of the longer chapters in this volume. This emphasizes the vast range of this topic.
Indeed, from a hilltop perspective, it seems fair to regard boundary layer processes
over flat land as merely limiting cases of flow over topography. It is an exciting
field to be in at the moment, with many more questions than answers and unlimited
scope for innovative theory and wind tunnel modeling.

5.6 Special symbols

a, b exponents in power laws for lw and uw

az, ay exponents in the power laws for the parameters for 3-d wakes
c constant (~ 1) in the definition of inner layer depth l
FI Froude number based on the inner layer depth
FL Froude number based on hill dimension Lh

Fh Froude number based on hill height h

a
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gx,gy, gz components of g in the x, y, z directions
h height of hill
hm height above which wind shear is negligible
hs height of streamline dividing those that go over the hill and

those that go around it in strongly stable air
l depth of the inner layer
l2

S coefficient in linearized inviscid equation for w (in two di-
mensions)

lw wake depth
le distance eddy is adverted in its lifetime
La acceleration length scale that is identically the local radius of

curvature of the z coordinate lines in two-dimensional flow
Lb, Lc length scales characterizing departure of flow from two di-

mensionality
Lh half-width of hill at half hill height
Lx, Lz Monin-Obukhov lengths corresponding to gx and gz

r local radius of curvature of the y lines
R local radius of curvature of the x lines
R radius of curvature of z lines
Rc curvature Richardson number
As dimensionless increase in wind speed on the hilltop
Asmax value of As, where Aw is maximum
UQ(Z) reference velocity profile in the undisturbed upwind flow
Uo(hm) reference velocity at z = hm

uo(l) reference velocity atz = l
uw wake velocity defect
Au velocity speedup
U characteristic velocity in the boundary layer
a, /3 coefficients in Taylor series expansion of 0m

6 scale size in the theory of Hunt et al. (1988a)
CMI f-vi £w dissipation rates for u, v, w
£(x) hill shape function in inner layer speedup formula
0o upwind reference potential temperature, function of x
Po upwind air density
£(x) hill shape function in the middle layer speedup formula
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SENSORS AND TECHNIQUES FOR OBSERVING
THE BOUNDARY LAYER

Sensors used for boundary layer measurements fall into two broad categories: in
situ sensors that can be mounted on the ground, on masts, towers, tethered balloons,
free balloons, or aircraft; and remote sensors, ground-based or aircraft-mounted,
that infer atmospheric properties through their effects on acoustic, microwave,
and optical signals propagating through the air. In situ sensors are the traditional
instruments of choice for surface and lower boundary layer studies, being the only
ones capable of the accuracy and resolution needed for quantitative work. A major
portion of this chapter will therefore be devoted to discussions of their character-
istics. Remote sensors have the advantage of increased range and spatial scanning
capability, but the constraints on minimum range and spatial resolution limit their
usefulness for surface layer measurements. Used in combination, however, the
two types of sensors provide a more complete description of the flow field being
studied than either of the two can provide separately. New remote sensors with
shorter minimum ranges and finer range resolutions are now becoming available
for boundary layer applications. A brief discussion of such devices is also included
in this chapter.

The variables of greatest interest to boundary layer meteorologists are wind
speed, temperature, humidity, and the fluxes of momentum, heat, mass, and radiant
energy. Given suitable fast-response measurements of wind velocity and scalar
fluctuations, we can calculate the eddy fluxes directly from the products of their
fluctuating components (e.g., u'w',w'0') as explained in Chapter 1. If only the
gradients of their means are available, however, then over a flat homogeneous
surface the fluxes may be inferred from the Monin-Obukhov relationships of
Chapters 1 and 3. Practical methods for doing that are described in many texts;
see, for example, Monteith (1975, 1976). (Those simple relationships do not hold,
as we know, under advective conditions, in plant canopies, and over hills.) There
are also sensors in use that measure surface and near-surface fluxes directly, such
as the drag plate (surface stress), the lysimeter (latent heat flux), flux plates (soil
heat flux), and radiometers (radiant heat flux). We will discuss these and a few
other types as well because of their application to studies of plant canopies.

6
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We begin our survey with in situ sensors that measure the mean and fluctuating
properties of air above the ground. The requirements for measurements of the two
are different. Sensors for measuring the time-averaged properties of the flow
require a high degree of absolute accuracy and long-term stability and should
be able to provide good averages over periods 10 min and longer. Sensors for
measuring the turbulent properties of the flow need a frequency response broad
enough to cover all the eddy scales contributing to the process, but the accuracy
need only be relative, that is, with respect to any arbitrary working mean. For
measuring both means and fluctuations, the accuracy requirements are the same:
±0.05 m s~' for wind velocity, ±0.05°C for temperature, and ±0.05 mb for
humidity. The response time for mean sensors can be as large as 1 min; but for
fluctuation sensors it should be no longer than 0.1 s. These requirements are based
on our present understanding of boundary layer structure over uniform terrain. In
the case of technologies that are evolving (e.g., trace gas measurements), however,
the accuracies and response times are what the state of the art can offer.

6.1 In situ sensors for profile measurements

6.1.1 Mean wind sensors

Cup anemometers, propeller anemometers, and vanes are the devices most com-
monly used to measure wind profiles. They are rugged, dependable, and relatively
inexpensive. They depend on moving parts coming into dynamic equilibrium with
the flow, so their response times are typically too long for turbulence work. But
they are entirely adequate for mean profile measurements. Periodic calibrations
and intercomparison checks are essential to ensure accuracy in the vertical gradient
estimations.

Cup and vane systems are marketed in a variety of shapes and forms. The most
common configuration is a three-cup anemometer and direction vane mounted side
by side at the ends of a T-shaped horizontal boom. Both rotate on vertical axes,
so they are separated horizontally to avoid mutual interference. The advantage
of the cup anemometer is that it can accept winds from any direction. (Only the
directions blocked by the wind vane and the supporting mast would be considered
unfavorable.) For wind vanes with potentiometer systems that read vane position,
the gap in the resistance element, typically a 10° sector, is often pointed in the
direction of the mast to keep the number of unfavorable directions to a minimum.
Starting speeds for cups are typically 0.5 m s"1, and distance constant (63%
recovery time converted to distance) is between 1.5 and 5 m. Properly designed
cup anemometers can be calibrated in wind tunnels to an accuracy of ±1%.
There is a tendency in cup anemometers to overspeed, resulting partly from their
nonlinear response to wind speeds (Fig. 6.1) and partly from sensitivity to the
vertical component of the wind (see Fig. 6.2). Reports of overspeeding error range
from 5% to 10%.
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FIG. 6.1 Cup anemometer response (heavy curve) to square wave velocity function.

Propeller anemometers do not overspeed, but they operate dependably only
when pointing directly into the wind. Propellers exhibit significant deviations
from perfect cosine response (Fig. 6.3). When they are used in a fixed orthogonal
configuration, corrections for deviation from cosine response have to be made
based on an iterative approximation to the true wind direction (Horst, 1973). The
measured wind components will otherwise be underestimated. A configuration
well suited for profile measurements is the propeller-vane anemometer with its
propeller mounted at the end of a vane with closely matched response characteris-
tics. The vane keeps the propeller oriented into the wind. Propellers can be flat or
helicoid. Two- and four-blade propellers are available, the former for high wind
(>30 m s~~'). Accuracies and distance constants for propeller-vane anemome-
ters are comparable to those of lightweight cup anemometers. Their calibrations
should be checked in the wind tunnel; for most noncritical applications, periodic

FIG. 6.2 Vertical velocity sensitivity in cup anemometers compared with ideal cosine
response (after Busch et al., 1980). The inclination angle (f> is defined positive for winds
pointing downward.
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FIG. 6.3 Off-axis propeller response compared with ideal cosine response (after Busch et
al., 1980). 0 denotes the angle between the wind direction and the propeller axis.

calibration checks with a motor of known rotation rate (usually supplied by the
manufacturer) are sufficient.

The optimum vertical spacing for wind profile measurement depends on the
specific application. In the surface layer (2<50m), where the wind profile is
roughly logarithmic, a vertical spacing that doubles with height (e.g., 1, 2, 4,
8, 16, 32 m) is often used. Above 50 m a fixed spacing is preferred, since the
wind profile is no longer as sensitive to the presence of the ground below. For
applications in which only one wind observation is required, as in surface wind
networks, the World Meteorological Organization-recommended height is 10m.

6.1.2 Mean temperature sensors

Temperature sensors most commonly used for measuring vertical gradients are
platinum resistance thermometers, thermocouples, thermistors, and quartz ther-
mometers. Accuracies of the order of 0.05°C and resolutions of 0.01 °C can be
achieved with careful calibration and attention to the design of leads, grounding,
radiation shielding, and aspiration. The sensing elements are usually encapsulated
in glass or metal for protection from atmospheric contamination and wear. The
resulting increase in sensor mass and the attendant increase in time constant are
not serious problems for mean profile measurements.

Platinum resistance thermometers are frequently used for both temperature
and temperature difference measurements. The bridge circuit (see Fig. 6.4) is
ideally suited for difference measurement. The bridge output V0 may be viewed
as the difference between two voltage divider outputs:
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where E is the voltage across the bridge, a is the temperature coefficient of
resistance (0.0039 at 0°C for platinum), T\ and TI are the temperatures in degrees
Celsius at the two elements, and Ta is the ambient temperature equal to (T\ +T2)/2.
The bridge sensitivity decreases with increasing Ta. For platinum, this amounts
to a decrease of 12% over the range 0-30°C. Where long leads are involved, lead
compensation should be provided to counterbalance the temperature and length
differences (Fig. 6.4).

Thermocouples have relatively small outputs (~ 40/uV/°C for copper con-
stantan), but this is not a serious disadvantage now that stable dc amplifiers are
available. Absolute temperature measurement is less convenient with thermocou-
ples because of the need for a stable temperature reference. Copper leads can be
used for measurements at a distance from the amplifier, but care must be taken to
keep the lead junctions at the same temperature (see Fig. 6.5).

Thermistors have high (negative) temperature coefficients of resistance, about
10 times those of platinum-resistance thermometers, but their thermal dissipation
rates make self-heating a problem, tending to reduce the available sensitivity dras-
tically. Nonlinearity in output and poor long-term stability are problems common
to thermistor probes.

The ideal choice for a temperature profile system is the quartz thermometer.
Its output is a beat frequency that varies linearly with temperature, and its basic

FIG. 6.4 Typical bridge circuit with lead compensation for a platinum-wire thermometer.
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accuracy (0.001°C) is degraded only by the errors (±0.05°C) introduced by the
radiation shield and the aspirator. The main drawback is its cost, but the benefits
of trouble-free performance may make it worth the cost for many applications.

Several types of aspirated radiation shields are available. They all perform
reasonably well except at very low sun angles, where some designs do not provide
adequate shielding. Wind-aspirated shields mounted on vanes have, in general,
not proved satisfactory.

6.1.3 Mean humidity sensors

Humidity is among the more difficult variables to measure in the boundary layer.
Many different definitions are used to specify the water vapor content of air: vapor
pressure (in mb), absolute humidity (mass per unit volume), specific humidity
(mass of water per mass of moist air), and relative humidity (mass of water in air
per mass of water in saturated air at the same temperature and pressure).

Dewpoint (or frostpoint) hygrometers provide absolute measurement of hu-
midity, whereas psychrometers that measure wet-bulb depression yield specific
humidity through the psychrometric equation. Hygroscopic devices that respond
to changes in relative humidity are simpler to use but usually depend on curves
provided by the manufacturer for calibration.

For applications in which accuracy and long-term stability are of critical
importance, the dewpoint hygrometer would be the most logical choice. In this
device, a mirrored surface is maintained thermoelectrically at the temperature at
which the moisture in the air begins to condense or freeze on it (Fig. 6.6). The
temperature of the mirror is sensed by a platinum resistance thermometer, ther-
mocouple, or thermistor. The device is generally housed in an aspirated shield.
The sensor requires periodic cleaning of the mirror surface and checks of the cali-
bration adjustments; with reasonable maintenance, absolute accuracies of ±0.5°C
are attainable.

The psychrometric technique, used widely in field experiments, is inexpen-
sive (compared with the cost of dewpoint devices), simple in concept, and rela-
tively easy to maintain. It consists of two identical ventilated temperature sensors,

FIG. 6.5 Thermocouple configuration with external junctions kept at the same temperature.
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FIG. 6.6 Optical dewpoint hygrometer.

one of which is covered with a wick saturated with distilled water. Great care
is needed in its design to ensure proper shielding from solar radiation, adequate
ventilation, and wetting of the wick. The accuracy of this system is low at low hu-
midities and temperatures, but is usually assessed in terms of the reading at 100%
relative humidity. Accuracies of 0.5-1.0°C equivalent dewpoint temperatures can
be maintained over a 20% to 80% relative humidity and a 0-25°C temperature
range. The errors increase sharply below freezing because it is difficult to form
and maintain an ice bulb on the wet thermometer. An example of an aspirated,
radiation-shielded psychrometer of a type successfully used at Commonwealth
Scientific and Industrial Research Organization (CSIRO) is shown in Fig. 6.7.
This radiation shield is not affected by rays from low sun angles.

The hygroscopic sensors are also relatively inexpensive and easy to use. The
Vaisala humicap is one of the more widely used sensors of this type. It responds to
humidity with a capacitance change. The sensor provides a voltage directly pro-
portional to relative humidity. Among its common failings are hysteresis effects,
susceptibility to contamination, and loss of accuracy at high relative humidities.
Because the humicap senses relative humidity, the air temperature must also be
measured before absolute humidity can be obtained. Zero drifts caused by any of
the effects mentioned above mean that sensors must be interchanged regularly if
they are used for profile measurements. In practice, humicaps are often used not
as in situ sensors but in the bench-mounted mode, held at a known reference tem-
perature, taking measurements of air drawn along tubes from the sampling points.
In this arrangement, it may be necessary to heat the tubes to avoid condensation
when relative humidities are high.

6.1.4 Trace gas sensors

The most important trace gases in the atmosphere, from the biological point of
view, are water vapor and CC>2. Mean concentrations of both these gases can be
measured with great accuracy by infrared gas analyzers (IRGA). Standard IRGAs
are bench-mounted instruments that must be shielded from vibrations and placed



214 ATMOSPHERIC BOUNDARY LAYER FLOWS

FIG. 6.7 CSIRO aspirated radiation-shielded psychrometer.

in a relatively stable temperature environment. They operate by comparing the
absorption of infrared radiation in a sample of air drawn from the measurement
point with that in a reference sample of accurately known concentration (Szeicz,
1975). For measuring CO2, a reference sample containing a known amount of
COa would be used, but to measure water vapor a reference sample containing
NH3 or ethane, gases that absorb infrared in the same bands that absorb water
vapor, would be used.

Other gases that can be conveniently measured with IRGAs are N2O, CO,
SO2 (although not in trace amounts), and CH4. The IRGA is a slow-response
device requiring a minute or so to come to equilibrium with the sample. It can,
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however, be used in a continuous flow mode so that concentration variations are
obtainable, albeit with this rather long time constant. Further detailed discussions
of techniques used for trace gas measurements will be found in Andreae and
Schimel (1989).

6.2 In situ sensors for turbulence measurements

6.2.1 Velocity fluctuation sensors

The hot-wire anemometer is the sensor traditionally used in turbulence work. It
is best suited for laboratory and wind tunnel studies in which the dimensions
of the sensor have to be small (on the order of millimeters) and the frequency
response high (on the order of 10 kHz). For boundary layer flux measurements,
the excellent frequency response of the hot-wire anemometer does not make up
for its three major drawbacks: susceptibility to calibration shifts from atmospheric
contamination, fragility, and narrow wind acceptance angle. The spatial scales
of interest in the boundary layer range from 1 m to 10 km, and continuous
measurements are sometimes needed for periods ranging from days to weeks. In
such applications, the sonic anemometer is the preferred instrument; it has none
of the response problems associated with rotating-type anemometers. The high
cost of sonic anemometers, however, has led many researchers to look for simpler
and less expensive options such as dynamic anemometers. Dynamic anemometers
measure wind velocity by sensing either the pressure or the drag force on an object
placed in the flow. They include thrust anemometers, anemoclinometers, and
vortex anemometers. They respond to fluctuations in the wind more slowly than
sonic anemometers but more quickly than the rotating types. Most of these devices
are custom-made at various laboratories and are not available commercially. The
types of sensors currently used for measuring wind fluctuations in most low-budget
applications are configurations of lightweight propeller anemometers and bivanes
offered by manufacturers of meteorological instruments.

Sonic anemometers measure wind velocity by sensing the effect of the wind
on transit times of acoustic pulses traveling in opposite directions across a known
path. The main limitation to their frequency response is imposed by line averaging
along the path, which we will discuss later in the context of array geometries.
Sonic anemometers can be of either the pulse type or the continuous-wave type.
The former measures transit time differences directly to compute the velocity
component along the path, whereas the latter measures phase differences that
can be converted to time differences. Both measurements relate directly to wind
velocity (see Appendix 6.1). The velocity component, Vd, along path length d, can
be expressed as
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where c is the velocity of sound in air and t\ and ti are the transit times for sound
pulses traveling downwind and upwind along parallel paths. If c and d are known,
Vd reduces to the measurement of (ti — t\), z. relatively simple time interval
measurement. For most applications, the velocity of sound can be approximated
by

'A different nonorthogonal configuration, using three intersecting paths tilted 30° from the vertical in an
equilateral arrangement, has been described by Zhang et al. (1986). Commercial versions using that concept are
available from Kaijo Denki, Inc., and Solent Instruments, Ltd. (UK).

where T is the absolute temperature, e is the vapor pressure of water, and p is the
atmospheric pressure, all expressed in SI units. The contribution of e/p is small
and usually neglected. Thus c2 in (6.2) can be replaced by 403T, where T is the
average temperature for the observing period. In the earlier sonic anemometers,
(tz — t\) was measured electronically and adjustments in the calibration made
during data analysis for variations in the mean temperature. Two separate paths
were then used for simultaneous transmission of pulses in opposite directions.

The advent of integrated circuits and microprocessors opened the way for a
more direct approach to measuring velocity through the relationship (Appendix
6.1):

Newer sonic anemometers of the type described by Coppin and Taylor (1983),
Hanafusa et al. (1980), and Kaimal et al. (1990), among others, exploit this fact;
two of the above systems even extract temperature from the reciprocals of t\
and ti (Appendix 6.1), as we shall see in the section to follow. All three use
a single path to transmit sound pulses back and forth and measure t\ and t2

separately, thus reducing the number of transducers needed in the probes. (The
transducers at the end of each path serve alternately as transmitters and receivers.)
The first two, produced commercially by Kaijo Denki, Inc. (Japan) and Dobbie
Instruments (Australia), have nonorthogonal path configurations (Figs. 6.8 and
6.9). The third, produced by Applied Technologies Inc. (US), offers an orthogonal
path configuration (Fig. 6.10). They all have their paths arranged to measure one
vertical and two horizontal wind components,' but the different arrangements of
the paths reflect different needs and operating philosophies. (Kaijo Denki and
Applied Technologies offer other probe configurations as well.)

The probes in Figs. 6.8 and 6.9, with their 120° separation between the
horizontal axes, are designed to face the wind for best results. For winds within



FIG. 6.9 CSIRO/Dobbie single-path (d = 0.1 m) nonorthogonal sonic anemometer probe.

FIG. 6.8 Kaijo Denki single-path (d = 0.2 m) nonorthogonal sonic anemometer-thermometer
probe.
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FIG. 6.10 Applied Technologies single-path (d = 0.15 m) orthogonal sonic anemometer-
thermometer probe.

an azimuth range of ±30° from the probe's central axis (Grant and Watkins,
1989), the horizontal wind readings require no correction for shadowing by the
structural supports or transducers at the upwind end of their paths. In order to
benefit from this design, it is essential that the probe be reoriented periodically
into the mean wind direction. The transformation equations for this array are given
in Appendix 6.2. The CSIRO/Dobbie probe,2 with its short path and vertically
offset horizontal axes, operates on the same principle but offers a more compact
measuring volume (~12-cm-diameter sphere) for use in plant canopies, close to
branches and leaves and to within 1 m of the ground. Here, we accept a higher
degree of flow distortion and transducer shadowing (Wyngaard and Zhang, 1985)
as the price for compactness in the sampling volume and consequent improvement
in frequency response.

The probe in Fig. 6.10, on the other hand, is designed for fixed operation
at the end of a boom and aims to correct, in real time under microprocessor
control, any deviations from cosine response due to upwind obstructions to the
flow. By separating vertically the two horizontal paths, the error reduces to only
the deficit due to shadowing by the transducers at the ends of horizontal paths.
The form of the velocity deficit varies with the probe and the transducer shape
(Wyngaard and Zhang, 1985); it is maximum for winds blowing along the axis

Parallel versions of the original CSIRO and Dobbie versions are in use.
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and drops off gradually as the wind deviates from that direction. Response curves
for Applied Technologies' 1-cm-diameter transducer are presented in Appendix
6.3, plotted as a function of path length-to-transducer diameter ratio. The 37-cm
vertical separation in the horizontal paths has been shown to have negligible effect
on the observed mean and turbulence statistics at 10 m and 22 m over flat ground
(Kaimal et al., 1990). The probe is not recommended for use below 4 m where
the vertical gradients of wind speed are typically the largest and the eddy scales
of interest too small to be resolved accurately by this probe.

As pointed out earlier, the main limitation to the frequency response of
the sonic anemometer is the one imposed by line averaging along the acous-
tic paths. Spatial separation between the paths also introduces distortions at the
high-frequency end; its effect is mostly felt in the transformed horizontal wind
components u and v, which are derived primarily from measurements along spa-
tially separated horizontal paths. A rough rule of thumb for calculating the onset
of spectral distortion attributable to path length d, or separation distance s, is K\d
or (K\S) - 1, where K\ is the streamwise wavenumber (~ 2irf/u), as defined in
Chapter 1. The larger of the two effects determines the onset frequency, which we
will define here as the 98% power cutoff.

The exact form for the spectral response in the wind components therefore
depends on the length of the paths and orientation with respect to the mean wind
direction. Kaimal et al. (1968) had shown that the line-averaging effect for the
w component (from a single vertical path) approximates that of a single-pole,
low-pass filter with half-power point at A (or u / f ) = d, as shown in Fig. 6.11.
In the nonorthogonal array of Fig. 6.8, the power spectral responses for u and v
differ from that of w because of the spatial separation (s « 0.6d) between the
horizontal paths. For all three, however, the roll-off starts at A « 2nd (or 1.25 m
for d = 20 cm).

In the case of the orthogonal probe in Fig. 6.10, the 37-cm vertical separation
between the horizontal axes determines the useful wavelength range for u and v
measurements; it will be A > 2?r x 37 cm, compared with A > 2?r x 15 cm for
w. For measurements above 4 m height over flat terrain this will not seriously
degrade the estimations of u'w' and w'O' since the bandwidth requirements for
the two fluxes also differ by a factor of 2.5, as seen in Fig. 2.18. Over complicated
topography and in canopies, however, this benefit may not be realized because
the w path may not be normal to the mean wind vector. In that case, it is wise to
assume a sampling diameter that includes not only the sonic paths but also any
scalar sensor contributing measurements for flux calculations.

It is instructive to compare the dynamic responses of the bivanes (vanes that
can rotate vertically as well as horizontally) and propellers used in atmospheric
work with those of the sonic anemometer. Manufacturers' specifications list delay
distances for bivanes (50% recovery) and distance constants for propellers (63%
of step change) as being close to 1 m. These distances, however, translate to much
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FIG. 6.11 Power spectral transfer functions for 14,11, and w in athree-axis sonic anemometer
with d = 0.2 m and 120° separation between the horizontal axes for wind blowing along
the probe's central axis. The (sin2 x)/x2 function representing simple line averaging along
the direction of the flow is shown for comparison (after Kaimal et al., 1968).

longer cutoff wavelengths if we define the response in terms of departures from
the ideal spectral response (Finkelstein et al., 1986). Figure 6.12 shows response
functions for the vertical wind component w measured by R. M. Young's bivane
system and the Gill propeller anemometer. These functions were derived from
comparison tests with a sonic anemometer at 10 m height. Defining Xc, the cutoff

FIG. 6.12 Power spectral transfer functions for the w component measured by a propeller
bivane and a single vertical propeller anemometer (after Finkelstein et al., 1986).
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wavelength, as the point where the power spectrum drops to 98% of its true value,
we find Ac to be 32 m for the vertical propeller and 7 m for the propeller-bivane
combination.

The bivane's response to w appears to be superior to that of the propeller for
A < 32 m, but the amplification at the middle frequencies raises concern as to its
effect on flux calculations. To a moderate degree, the enhancement in the variance
is beneficial because it compensates for the high-frequency cutoff; vertical velocity
variances from the bivane compare very closely with sonic anemometer values.
The propeller w variances, on the other hand, are severely underestimated: 25%
lower under daytime conditions and up to 50% lower under nighttime conditions,
at 10 m height.

The large Ac value for the w propeller is not surprising when we consider the
off-axis degradation in response and the relationships that exist between distance
constant I, half-power wavelength A0, and Ac. The distance constant for the Gill
propeller increases from 1 to 2 m as the flow deviates from axial to 80° off axis.
In principle, the distance constant approaches infinity at 90° off axis.

For a linear first-order system, the power transfer function can be written as

At the half-power point we have

and Ac, defined here as the 98% power point, becomes

With l = 2 m (for the w measurement), Ac would be 80 m for a linear first-
order system. Fortunately, the propeller's response is better by a factor of 2.5 (Fig.
6.13), which brings the actual value of Ac down to 32 m as observed.

6.2.2 Temperature fluctuation sensors

Fine-wire platinum-resistance thermometers, thermocouples, thermistors, and sonic
thermometers have all been used for temperature fluctuation measurements. Ther-
mistor and thermocouple sensing elements cannot be made as small as platinum
wire probes, so they tend to be less responsive and not as well suited for flux
measurements near the ground. All three types are normally exposed to free air
without the benefit of protection from radiation shields. They are, therefore, vul-
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FIG. 6.13 Response of a single vertical propeller compared with first-order linear response
showing the disparity between half-power wavelength Ao and distance constant l (after
Finkelstein et al., 1986).

nerable to damage from winds, rain, snow, and flying debris. The chances of
damage can be reduced significantly if the element is properly supported. Such
supports increase the time constant of the sensor. The 12.5-/xm platinum wire in
the fast-response probe (also marketed by Atmospheric Instrumentation Research)
used at the Boulder Atmospheric Observatory (BAO) (Kaimal and Gaynor, 1983)
is wound around a small helical bobbin on threads strung across the windings of
the helix. The spectral response of the wire is degraded by conduction through the
support, but only at frequencies above 5 Hz. With this support, the sensing element
can survive for weeks and even months without breaking. Freezing rain, wet snow,
and very high winds are the events that usually break the wire. It should be pointed
out that platinum wires should not be left exposed to the elements for too long.
Contamination of the wire has a direct effect on its time constant. A convenient
scheme for calibrating the platinum wire probe in the field is illustrated in Fig.
6.14. Switching in a fixed resistance changes the current flowing through the wire
by an amount corresponding to a known temperature change (5°C). The amplifier
gain is adjusted to set the corresponding step change in the output voltage of the
temperature circuit to 5 V to match the input calibration requirement in the data ac-
quisition system. A small flask is slipped over the platinum wire probe to suppress
the fluctuations in the signal while this calibration is in progress. This procedure
compensates for probe-to-probe variations in resistance and even changes due to
aging.

The sonic thermometers incorporated in the Kaijo Denki and Applied Tech-
nologies sonic anemometers have the requisite frequency response for boundary
layer flux measurements. Temperature is sensed along the same path as w, so its
spatial averaging characteristic is compatible with that of w. The sonic temper-
ature, which is proportional to [(l/t\) + (l/^)]2, is, however, contaminated by



FIG. 6.14 Switching arrangement for field calibration of a fast-response platinum wire
thermometer.

residual sensitivities to humidity and to the wind component normal to the path.
These errors are negligible under daytime unstable conditions when temperature
fluctuations are large. The wind contamination, in particular, however, can be
significant under near-neutral and stable conditions (Kaimal, 1969). The nature of
the cross-wind contamination on the evaluated heat flux is such that it introduces
a bias in the estimation of the time the atmosphere passes through neutral stabil-
ity, shifting it slightly into the stable regime. We show in Appendix 6.1 how the
crosswind velocity (Vn) modifies the sonic thermometer equation:

Substituting for c2 from (6.3) we have, for the temperature measured along the
vertical path,

where Vx and Vy are the wind components along the orthogonal horizontal axes
of the anemometer and all variables are expressed in SI units. In the Applied
Technologies sonic thermometer (Fig. 6.9), Vx and Vy, compensated for trans-
ducer shadowing, are used to correct, in real time, each temperature reading as it
is processed for transfer to its output registers.
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and could be used directly in its place in applications where the contribution to
buoyancy from moisture should be included. A case in point is the Obukhov length
L, where the temperature flux term should, in the presence of moisture, be w'T^
(for most applications we assume O'v = T^). The V% corrected temperature from
the sonic thermometer approximates Tv to within 0.01°C, well within the bounds
of experimental uncertainty.

6.3.2 Humidity fluctuation sensors

Three different techniques are currently used for measuring humidity fluctuations.
They involve the absorption of ultraviolet radiation by water vapor (Lyman-alpha
and krypton hygrometer), the absorption of infrared radiation by water vapor
(infrared hygrometer), and the dependence of microwave refractivity on humidity
(microwave refractometer).

The simplest of the three devices is the ultraviolet hygrometer. The Lyman-
alpha version requires a source (excited hydrogen), a nitric oxide detector, and a
space between the two where the absorption takes place (see Fig. 6.15). Magnesium
fluoride windows are needed on the source and detector tubes since most other
materials are opaque to ultraviolet radiation. The cutoff frequencies of the nitric
oxide detector and the magnesium fluoride windows neatly bracket the Lyman-
alpha emission line of atomic hydrogen (121.56 nm). The other emission lines in
the hydrogen glow discharge produced by the source are thus filtered out.

The very strong absorption of this emission line by water vapor makes mea-
surement possible over short path lengths (~1 cm). (By comparison, absorption
by ozone and oxygen, the only other absorbers in the atmosphere, can be neglected
in the boundary layer.) The dimensions of the sensor are small enough (15 cm
long x 2 cm diameter) to permit installation close to a sonic anemometer. For
uniform exposure in the azimuth, the sensor is mounted with its path oriented
vertically. Two sources of drift in the calibration should be noted: aging of the
Lyman-alpha source and window degradation from reaction of atmospheric con-
stituents with the window material. The effect of aging is retarded to some extent
by using higher hydrogen pressures and sealing uranium hydroxide in the source
body. The window degradation is reversible, since it occurs on the outer surface;
washing with alcohol and rubbing with a fine abrasive restores its transmission
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The humidity term and its effect on calculated variances and fluxes can be
ignored, as is often done, or compensated for in the data analysis if concurrent
measurements of humidity fluctuations are available. Kaimal and Gaynor (1991)
argue that the sonic-derived temperature on the left in (6.9) should be treated as
the true virtual temperature Tv, which it approximates very closely since
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FIG. 6.15 Lyman-alpha hygrometer (after Buck, 1976).

properties. Nevertheless, for maximum accuracy, this device should be operated
in conjunction with a dewpoint hygrometer, so its calibration can be continuously
updated by comparing changes in its mean readings with those derived from the
slower, more accurate, dewpoint measurements.

In the krypton hygrometer, the ultraviolet source is a krypton glow tube. This
produces ultraviolet emission at 123.58 and 116.47 nm, rather than the 121.56 nm
of the hydrogen line. In all other respects they operate the same way. The advantage
of the krypton device is the long-term stability of the source in comparison with
the degradation over time of the hydrogen source. The disadvantage is the greater
absorption of the krypton lines by oxygen and ozone. In practice, this does not
pose a severe problem, and reliable commercial krypton hygrometers are now
available.

The infrared hygrometer detects humidity through differential measurement
of infrared transmittance at two adjacent wavelengths, one located in a region of
high water vapor absorption and the other where the absorption is negligible. The
transmitting path is typically 0.2-1.0 m long, and the beams are usually modulated
by a mechanical chopper to permit high-gain amplification of the detected signal.
Optical components such as narrow-band filters and beamsplitters add to the
complexity of this device.3 At humidities approaching saturation, the calibration
is undependable because of scattering from water adsorbed and absorbed by
particles in the air.

- Recently, Y. Mitsuta and colleagues at the Kyoto University Disaster Prevention Research Institute have
claimed success with a simpler single wavelength infrared system in which the filament temperature at the source is
varied sinusoidally for stability in the humidity measurements (personal communication).
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The microwave refractometer measures the refractive index of air in a cavity
and depends on the relationship between refractivity, specific humidity, temper-
ature, and pressure to derive humidity. Strictly speaking, simultaneous data on
temperature and pressure fluctuations in the cavity are needed to remove their
influence on the refractive index; in practice, pressure fluctuations are ignored
since they are usually small (<1 mb) compared with the absolute pressure. The
temperature measurement is made as close to the cavity as possible. The sensing
element in the microwave refractometer is a resonating cavity with ventilating
ports. The cavity dimensions are small, but the spatial resolution of the sensor is
more a function of its flushing efficiency than of its actual size. For a 5-cm cavity,
in moderately light winds, spectral attenuation starts at a wavelength of 1.5 m.
In an experiment comparing various humidity sensors, Priestley and Hill (1985)
found the refractometer response falling off rapidly at 2 Hz with wind speeds at
3-4 m s-1. The Lyman-alpha hygrometer's response under the same conditions
extends another decade, to 20 Hz.

6.2.4 Trace gas fluctuation sensors

Infrared absorption by CO2 occurs at a different wavelength than water vapor.
In recent years successful rapid-response open-path devices working on the same
principle as infrared hygrometers have become available. The commercial versions
measure both CO>2 and water vapor simultaneously. Recently the same technique
has been extended to CH4 at yet another infrared wavelength. Absorption of
gases such as CO2 and SO2 at very low concentration is strongly modulated by
density changes caused by temperature and water vapor fluctuations. The required
corrections for measured eddy fluxes of the trace gases amount to 100% or more
over freely transpiring vegetation (Webb et al., 1980), making such measurements
over water problematic at best.

6.2.5 Static pressure fluctuation sensors

The most difficult dynamic variable to measure in a strongly turbulent flow is
the static pressure fluctuation p' because any probe introduced into the airstream
causes dynamic pressure fluctuations p'd = p(u'p)

2/2, where u'p is the local
velocity variation caused by the probe. p'd is typically an order of magnitude
larger than the desired static pressure fluctuation p'. If the probe can be aligned
to within a few degrees of the wind vector, then sampling ports can be arranged
so that contributions to p'd from ports at different points on the probe cancel out,
leaving the required signal p'. In turbulent flows where the instantaneous wind
vector varies rapidly about the probe axis, an optimum configuration for the ports
is much more difficult to achieve.

One successful probe design for surface layer studies is described by Elliot
(1972). His spoon-like probe is relatively insensitive to wind angles of attack
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within ±135° in the azimuth and ±15° in elevation. This restriction limits its use
to measurements in relatively low-intensity turbulence. A new omnidirectional
probe claiming acceptance angles of ±30° in elevation has been described by
Nishiyama and Bedard (1991). Their probe consists of a series of outer and inner
ports arranged in rings around a vertical tube fitted with four discs as shown in
Fig. 6.16. The width and placement of the discs provide cancellation of dynamic
pressure changes at the inner ports over the ±30° range of elevation angles. The
probe can operate in adverse environments. This probe has been deployed in field
experiments and awaits confirmation of its usefulness for measuring p' in turbulent
kinetic energy budget studies.

where Rn is the net radiation flux density at the surface, Gs is the flux of heat
into the soil, H is the sensible and XeE the latent heat flux from the surface as
defined in Chapter 3. Rn and Gs are routinely measured with net radiometers and
soil heat flux plates, respectively, whereas XeE can be measured directly with
a lysimeter. We also discuss the use of drag plates to measure the momentum
flux at the surface directly. Its disuse in recent years notwithstanding, the drag
plate remains the only sensor capable of measuring unequivocally the momentum
flux at the surface, invaluable in situations in which the constant flux assumption
cannot be invoked. Also included is radiometric sensing of surface temperature
because of its increasing use in boundary layer studies.

FIG. 6.16 Omnidirectional pressure fluctuation sensor (after Nishiyama and Bedard, 1991).

6.3 Sensors for surface measurements

Heading this list are sensing techniques that have been used for decades to measure
the parameters needed to calculate energy balance at the earth's surface. The energy
balance at the surface can be written, in its simplest form, as
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6.3.1 Net radiometers

Net radiometers measure the difference between total (all wavelength) incoming
and outgoing radiation. The standard version of the instrument consists of two
small (~ 20 mm square) black surfaces facing up and down, separated by an
insulator and protected from the wind by polyethylene hemispherical domes, as
shown in Fig. 6.17. The temperature difference between the upper and lower
surfaces drives a thermopile so that the unamplified signal from the radiometer is
typically a few millivolts. The whole assembly is mounted at the end of a tube
1 m long. In radiometers with thin polyethylene domes (Funk type), the space
enclosed by the domes is ventilated with a supply of dry inert gas that also keeps
them inflated; those with rigid polyethylene domes (Fritschen type) are usually
not ventilated, but an external tube of desiccant is plumbed to the spherical space
around the thermopile to prevent condensation.

Because Rn is usually the small difference between two large numbers, great
care must be taken with calibration and installation of the instrument. The ra-
diometer must be carefully leveled and the downward-looking hemisphere should
"see" a representative section of the ground. Over short vegetation or bare soil,
the radiometer is mounted about 2 m above the surface on its own mast, but over
taller plants, as in forest canopies, it may be necessary to use a tall instrument
tower. In such cases the radiometer should be mounted at the end of a long boom to
remove as much of the tower as possible from the field of view of the radiometer.
Ingenious arrangements are necessary to level an instrument that may be 4-5 m
out from the tower. More discussion of net radiometers can be found in Szeicz
(1975).

6.3.2 Soil heat flux plates

The sensible heat flux across the soil surface is commonly measured directly with
soil heat flux plates. These are available commercially and consist of metal plates
(~10 cm2 in area) separated by a material of known conductivity. The temperature

FIG. 6.17 Funk net radiometer.
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differences between the plates drive a thermopile that provides the sensor output.
Three or four such plates are usually connected electrically and distributed a few
millimeters below the soil surface at representative locations. Errors arise through
sampling problems if the surface is heterogeneous. More serious errors occur in
a drying soil where the site of soil evaporation has moved below the surface and
a significant fraction (~50%, at times) of energy flux to the ground is through
diffusion of water vapor in the upper soil layers. These problems are discussed in
detail by deVries and Philip (1986).

6.3.3 Lysimeters

In the weighing lysimeter, a block of soil large enough to be a representative
sample of the surface and deep enough to contain the roots of any plants present is
isolated from the surrounding soil in a watertight container mounted on a sensitive,
continuously recording balance. The balance must be capable of resolving a few
tens of grams, whereas the block itself may weigh several tons. Both the water
running off at the surface during rain and the water percolating through the soil
monolith past the roots are collected and recorded, while the time record of the
change in the weight of the lysimeter itself gives the evaporation rate. A small
correction may have to be made for plant growth over the long term. The accuracy
obtainable from a lysimeter depends ultimately on the representativeness of the
sample. This may be as small as 1 m2 in an area over short grass or bare soil,
whereas forest lysimeters covering areas more than 10m2 and containing mature
trees have also been operated successfully. For the large lysimeters, excavating
the soil monoliths in situ with minimum disturbance to the sample is a major
undertaking. For more information see Dunin et al. (1991).

6.3.4 Drag plates

The same principle embodied in the lysimeter is used here to measure the flux of
momentum to the surface, TO = /aw2. The drag plate consists of a representative
sample of the ground surface mounted on a sensitive balance designed to measure
the tangential force on the surface. The entire mechanism is buried beneath the
ground so that no surface discontinuity or disturbance is apparent to the observer
above. Typical drag plate configurations have circular platforms 1-2 m in diameter,
deep enough (^10 cm) to hold sufficient soil to keep short vegetation alive for the
duration of an experiment. The weight of the plate imposes severe demands on
the mechanical structure supporting it. Also, the gap around the rim of the sample
has to be very small (a few millimeters) to keep spurious aerodynamic pressure
forces from swamping the small tangential forces due to TO, requiring essentially
zero deflection under load. All these requirements lead to a heavy, high-precision
device of the type described by Lynch and Bradley (1972). The drag plate approach
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is best suited for use over flat homogeneous surfaces with adequate fetch, bare or
covered with short vegetation such as mowed grass or wheat stubble.

6.3.5 Radiometric thermometers

It is sometimes necessary to have a measure of surface temperature. Over bare soil,
the surface temperature may be measured directly with an in situ thermometer;
but over vegetated surfaces, infrared thermometers mounted on towers, aircraft,
or satellites offer a means to measure that quantity remotely without the sampling
limitations inherent in the in situ approach. Errors arise from many sources such
as the dependence of soil surface emissivity on water content and surface texture,
the "cool-skin" effect on open water bodies, and the difference between bulk
aerodynamic temperature and radiometric temperature in plant canopies. A vast
literature has recently bloomed on this subject.

6.4 Measuring from towers and masts

Towers, masts, booms, and mounts used for supporting a sensor can interfere
with the flow, thus introducing errors in the measured gradients and fluxes. It is
possible to reduce these errors to acceptable levels if care is exercised in the design
of the supporting structure and placement of the sensors. There is considerable
discussion on this subject in the literature. No simple solutions or relationships for
flow distortion have emerged because the geometries of the obstacles discussed
vary so greatly (Wucknitz, 1980). Upwind of the tower we need to consider two
distinct regions of the disturbed flow: one close to the obstacle, at distances smaller
than the diameter of the obstacle, where the flow is complicated and difficult to
describe theoretically; the other at distances greater than the diameter, where
potential flow can be assumed in order to calculate flow distortion.

The first region is one the experimenter would do well to avoid. For a tower
with structural members that are small and widely separated (ratio of obstructed-to-
unobstructed area < 0.1), we might consider installing sensors at upwind distances
smaller than the outside dimensions of the tower. Most towers have structural
member densities between 0.2 and 0.3. In that case, the sensors should be mounted
no closer than 1.5 times the largest lateral dimension of the tower. (Up to 4 times the
tower width is possible with certain portable and guyed TV-antenna-type towers
that have lateral dimensions on the order of 0.3 m but are capable of reaching up
to 60 m.) In applications where only one level of observation is needed (say at
10 m), the anemometer should be mounted on top of the tower (or mast) to avoid
direct tower shadowing. To reach the region where potential flow can be assumed,
the sensor has to be at least three lateral dimensions above the top of the tower
and supported by a thinner mast.

Another region of the flow to be avoided is the downwind side of the tower.
At the very least, readings from this region should be treated with caution. Here,
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the flow is strongly influenced by the wake structure. Even on towers with low
structural member densities, the combined effect of wakes from the separate
members can be greater than for a solid tower offering the same obstruction area
to the flow. The wake intensity and width vary with Reynolds number and are
sensitive to both the roughness elements on the tower and the turbulence intensity
in the undisturbed flow. For the high Reynolds numbers appropriate to masts and
towers in atmospheric flows, the wake is often nonstationary. Experimental results
of different investigators therefore tend to be inconclusive.

In the absence of any firm guidance on the subject, we develop useful rales
of thumb. For example, the data can be restricted to a sector that excludes wind
directions through the tower and 30° on either side (as a safety factor). For sensors
mounted at the end of a boom 1.5 times the tower width, as at the B AO (Fig. 6.18),
a 270° sector is then available for useful measurements. Identical instrumentation
on booms pointing in opposite directions is essential for full 360° coverage. In
many research applications, the investigator can afford to wait for favorable wind
directions or confine analyses only to periods when conditions are acceptable.

The amount of reduction in the measured average wind speed 1.5 tower
diameters upwind of the tower is typically 5%. The wind direction deflection, on

FIG. 6.18 Boom configuration on the Boulder Atmospheric Observatory tower (Kaimal
andGaynor, 1983).
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the other hand, is small directly upwind but increases as the wind shifts to either
side. The maximum deflection observed on the BAO tower is 5° (at a distance 1.5
times the tower width), for winds normal to the direction of the boom.

The influence of towers on flux measurements must be addressed. Investi-
gators have examined errors in the measured stress from flow distortions caused
by boxes stored on tower platforms, by the horizontal booms supporting the sonic
anemometer and other sensors, and by the probe itself. Every effort should be
made to avoid placement of obstacles above, below, and even downwind of the
sensor and to incorporate as much vertical symmetry as possible in the probe
design.

If we choose to work in standard Cartesian coordinates, the need for careful
alignment of the measurement coordinates with respect to a known reference di-
rection is critical. The momentum flux (-u'w') is especially sensitive to leveling
errors (Kaimal and Haugen, 1969). Leveling accuracies of ±0.1 ° can be achieved
in a sonic anemometer by attaching to each probe an electrolytic level indicator
with remote readout. An alternate approach is to analyze data in streamline coordi-
nates as described in Chapter 5. Over complex terrain, this is the preferred choice,
but even over nominally homogeneous terrain, working in streamline coordinates
can remove the need for exact instrument alignment. (Practical procedures for
using this approach will be discussed later in this chapter.) There are some appli-
cations (as in strongly distorted flows), however, where it is essential to know the
orientation of sensors to an external reference frame.

When mounting two sensors side by side for flux measurements (e.g., vertical
velocity and temperature), the spatial separation between them should be kept as
small as possible. We find that the fluctuations measured become increasingly
uncorrelated at wavelengths A < 2irs (where s is the separation distance). Thus
the criterion for maximum separation distance is approximately the same as for
spatial averaging in individual sensors: s < \c/2ir, where Xc is the 98% power
point. One attempt to minimize this separation distance and to provide some degree
of vertical symmetry in the w measurement is illustrated in Fig. 6.19.

6.5 Measuring in plant canopies

In plant canopies both the spatial heterogeneity and the very high turbulence
intensities encountered impose extra constraints on the measurement techniques
available.

6.5.1 Mean velocity

The very high turbulence intensities in plant canopies (au/u often as high as 2
or 3) combine with the overspeeding properties of cup anemometers to register a
significant and completely spurious mean flow in the lower canopy (Wilson et al.,
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FIG. 6.19 Instrumentation at each observation level and adjustments for leveling the boom
on the Boulder Atmospheric Observatory tower (Kaimal and Gaynor, 1983).

1982). Despite this, they remain in regular use in non-critical situations; however,
accurate mean velocities are now usually obtained with sonic anemometers.

6.5.2 Velocity fluctuations

As in the surface layer over flat terrain, the sonic anemometer is the instrument
of choice for measuring velocity fluctuations in a canopy. The effective sampling
volumes of most commercial sonic anemometers are small enough for use in
forest canopies but too large for smaller crop canopies. A significant portion of the
variances and fluxes would be missed. Even in forest canopies, the large amount
of small-scale, wake-generated turbulence present dictates the use of probes with
the smallest effective path length, such as the CSIRO/Dobbie sonic anemometer.
In reasonably dense canopies with plant height 1-2 m or less, even a 5-cm path
sonic anemometer may miss significant amounts of the variance. The only small-
scale instrument to have met this challenge to date is the servo-driven, split-film
anemometer described by Shaw et al. (1973). It must be emphasized, however,
that this solution requires considerable technical skill to implement. The research
community still awaits a truly miniaturized sonic anemometer to use in plant
canopies.

6.5.3 Scalar fluctuations

Temperature fluctuations seldom present a problem with thermocouple or platinum
wire probes, which can be made very small. The short path length of Lyman-alpha
and Krypton hygrometers makes them suitable for use in most canopies, but the
longer path of the infrared devices limit their use to larger forest canopies where
sonic anemometers may also be used.
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6.5.4 Net radiation

Within the canopy, absorption of radiation on plant surfaces produces vertical di-
vergence in the net radiation flux Rn. At the same time, the penetration of sunlight
through gaps in the foliage makes mandatory some kind of spatial averaging in
the Rn measurements. This can be accomplished by moving standard spherical
net radiometers on tracks through the canopy or, more conveniently, by using
cylindrical net radiometers. These may be several meters long, depending on the
particular requirements of the canopy in question. Unlike spherical net radiome-
ters, their response function depends on solar azimuth as well as inclination so
that the orientation of the device relative to the sun's position at zenith becomes
important. The problems involved are discussed by Lang (1978).

6.5.5 Ground heat flux

In forests containing large trees, the energy storage term Gs is no longer associated
with the flux into the soil alone but also into the more massive trunks and branches.
The term is often estimated from measurements of tree surface temperature and
an assumption for the thermal conductivity of the green wood.

In Chapter 3 we emphasized the requirement for spatial averaging in canopies.
This means, in practice, that multiple towers may be needed to sample properly
the turbulent flow in general and to deduce the dispersive flux in particular. It also
means that objective placement of sensors is required if biased samples of the flow
are to be avoided. In simple terms, siting every anemometer in a clearing between
plants is not acceptable. With objective placement of instruments, some end up
in spaces, whereas others are thrust into tree crowns. This is most important in
open forests and row crops and least important (also least practical) in dense crop
canopies.

Finally, it is useful to remember the pitfalls that exist when standard methods
for inferring fluxes from mean gradients are applied too close to the canopy top.
Most such techniques rely on assuming equality between the eddy diffusivities
for heat, water vapor, and CO2 (the Bowen ratio method) or between scalars and
momentum (the aerodynamic method). In the roughness sublayer above the top of
the canopy, these equalities are lost even at neutral stability, as we saw in Chapter
3. Nevertheless, the rapid decrease in scalar gradients, as we move away from
the surface, tempts many workers to use these methods in the roughness sublayer,
where gradients are large and more easily measured. The literature is littered with
the anomalous and inexplicable results of such adventures.

6.6 Measuring over sloping terrain

We have already mentioned the errors that arise in measured fluxes when instru-
ments are not carefully leveled (Section 6.3). To be more precise, problems occur
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when vector quantities like velocities or fluxes are measured in a reference frame-
work that does not coincide with that of the equations used to analyze them. In the
most familiar case of homogeneous flow over flat ground described in Cartesian
coordinates, such difficulties do not occur. In more complex flows, we must be
aware of them and deal with them. Two different strategies can be adopted to
avoid this problem:

The first is to choose a set of axes that will be used to interpret the mea-
surements, then to align all instruments carefully with the local direction of these
axes. A familiar example is the choice of rectangular Cartesian coordinates with
the z axis aligned with the geopotential gradient, x in the E-W direction and y
in the N-S direction. The difficulties are those of accurately knowing the x, y, z
directions at every instrument and aligning the instrument with them. On a single
rigid tower such as the BAO, this is the usual choice. In experiments with many
instruments mounted on portable towers this strategy is much more difficult to
follow.

The second choice is to allow the flow to set the coordinate directions. For
example, x may be taken in the direction of the local mean wind vector u. The
instrument is aligned at its optimum orientation to the prevailing wind and mea-
surements transformed mathematically from the reference frame of the instrument
into the chosen frame after they have been collected. The use of streamline coor-
dinate equations, recommended in Chapter 5 as the preferred choice for complex
terrain studies, relies on this strategy. The problems with this approach are three-
fold:

1. Choosing an appropriate set of equations in which to analyze the data.
The streamline coordinate equations are one such set, but in using them
we encounter the second problem.

2. Choosing the direction of the y and z axes. (We assume x is taken along a
streamline.) In streamline coordinates, y and z are in the directions of the
binormal and principal normal to the streamline. To define these directions
we need to know how the streamline is varying in space, whereas usually
we only have a measurement at a single point. This is a crucial question,
and we return to it below.

3. Knowing the direction of the accelerations due to gravity g relative to the
axes of the instrument. (This may be easier sometimes than aligning the
instrument's vertical path with that direction.) If the buoyancy forces are
important, we need this information.

The simplest way to illustrate these problems is to go through the steps of
producing data in streamline coordinates. Three mathematical transformations are
required to get from the instrument's reference frame to the streamline reference
frame. We assume that digitally sampled velocity data are recorded in the instru-
ment's rectangular Cartesian reference frame which we denote by x1, y1, z1. The



236 ATMOSPHERIC BOUNDARY LAYER FLOWS

velocity components in this frame are u\, v\, w\, whereas the components of the
acceleration due to gravity vector g are gx1, g y 1 , gz1.

The first step is to average the time series of velocities to produce a mean
wind vector u with components U1,v i ,w\ . It is immediately clear that the mean
vector depends upon both the averaging time chosen and the spatial resolution of
the instrument. McMillen (1988), in partially adopting the streamline strategy we
describe here, used a 200-s running-mean filter to detrend incoming variables and
applied a coordinate rotation at the end of each 30-min period.

The first transformation swings the x\ and y\ axes around z\ to produce a
new set of axes (x2, y 1 / 2 , 2 2 ) with x2 in the plane spanned by u and z\ (Fig. 6.20).
The new velocity components are given by

where

FIG. 6.20 Three-dimensional coordinate rotations for alignment of coordinate axes to the
flow field over sloping terrain.
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This rotation forces «2 = 0, but the vertical component is unaffected. The com-
ponents of the gravity vector become

At this point the XT, axis points in the direction of the mean wind vector, but
the directions of the yj, and 2/3 axes depend on the initial choice of instrument
alignment. Before we decide on a means to define the y and z directions, we must
discuss the physical basis for the choice of axes in streamline coordinates.

In Chapter 5 we pointed out that the z axis in streamline coordinates points in
the direction in which the streamline is curving most rapidly, the principal normal
direction. In two-dimensional flows, as in winds blowing normal to a ridge, the
principal normal direction is always perpendicular to the stream surfaces and
so is the natural generalization of the z direction over flat ground. This is true
for axially symmetric flows also, but in three-dimensional flow the behavior
of stream surfaces is often much more complicated. In fact, the stream function,
whose constant surfaces are the stream surfaces, does not exist in three dimensions
except in some restricted types of flows.

The second rotation swings XT_ and Z2 about 3/2 into new directions £3,2/3, z^
so £3 now points along the mean wind direction (Fig. 6.20). The new velocity
components are

where

This rotation forces u>3 = 0. The gravity vector becomes



where t — u/|u|, n is the unit vector in the principal normal direction, and R is
the local radius of streamline curvature. Equation (6.15) can be rewritten in terms
of derivatives taken in the Cartesian reference frame of the instrument (xi,y\,z\)
but to do this would not be helpful since a single instrument does not provide the
information on the spatial gradients of the velocity field necessary to deduce the
components of n from (6.15).

We are, however, familiar with one means of connecting spatial velocity gra-
dients with single point measurement, that is, by an eddy diffusivity. In rectangular
Cartesian coordinates the connection between the mean strain and turbulent stress
tensors through an eddy diffusivity K can be written as

The quantity C123 that appears in (6.17b) is called the commutator of the
field of streamlines. It is a measure of the degree that streamlines twist as well as
curve. It is zero in two-dimensional and axially symmetric flow fields and on the

If we transform the off-diagonal (i ^ j) components of (6.16) into streamline
coordinates, we obtain
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In principle, we could identify a stream surface over flat ground somewhere
upwind of our observing site and follow it as it is distorted over a hill, keeping
our 23 direction normal to its surface. In practice this is impossible. Instead we
continue to identify the 23 direction with the principal normal. We do this for two
reasons: first, for compatibility with the simpler two-dimensional case; second, and
more fundamentally, because this choice is what forces the canonical separation
of the momentum equation in streamline coordinates into equations for linear and
angular momentum.

The principal normal direction is defined by the spatial rate of change of t,
the unit tangent to the streamline as we move a distance s along the streamline.
This dependence is expressed in the Serret-Frenet formula:
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centerline of axially symmetric hills because streamlines are plane curves in these
situations. It is likely to be very small close to the surface over low topography,
which we might define as hills that are gentle enough to avoid separation. In fact,
it is a reasonable rule of thumb that 6*123 will be negligible in any region where
we can apply the modified surface similarity theory proposed for use over hills in
Chapter 5, Section 5.4. We should, however, be wary of assuming 6*123 = 0 over
steep topography, on the flanks of axially symmetric hills, or far from the surface
in any kind of three-dimensional complex terrain.

With these caveats, we see that, if C*123 = 0 and an eddy diffusivity can be
used (its actual form is immaterial), equation (6.17b) provides a means of choosing
the z direction; we simply rotate the t/3, £3 axes around £3 until v'w' = 0, as
indicated in Fig. 6.19. The new velocity components are

where

If v2W2 = 0, no rotation is needed. If v\ = u>|, we have ij) = 45°. The components
of the gravity vector become

Two notes of caution must be sounded at this point. Typical run-to-run vari-
ations in measured v'3w'^ from any of the causes discussed in Chapter 7 may lead
to apparently erratic behavior in the direction of the z axis. Careful choice of
smoothing filters may be necessary to rectify this. Second, rotating into streamline
coordinates does not mean that momentum transfer in the y direction vanishes.
Equation (6.17c) demonstrates this even for the restrictive case where an eddy
diffusivity may be used.

In situations where we cannot assume that K exists and 6*123 = 0, there
is no alternative to direct measurement of the spatial variation in the velocity
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field. In such situations it is tempting to choose the z direction arbitrarily. For
example, it could be taken as lying in the plane containing u and g. It must
be emphasized, however, that data collected in such a reference frame would
not form the dependent variables of the streamline coordinate equations and a
new set of equations would have to be derived in order to perform the analysis.
Such equations would be linear combinations of the streamwise and cross-stream
momentum equations but the interpretive power of the streamline equations, for
which (u4 + u'4),v'4, and w'4 are automatically the dependent variables, would
be lost.

In order to apply streamline coordinate analysis, the important length scales
La and R must be deduced. The acceleration length scale La can be inferred if
velocity data from a series of masts are available. See, for example, Finnigan and
Bradley (1983). Close to the surface, it is usually reasonable to take R = R0 + z,
where RO is the surface curvature. This could be measured directly by surveyor's
methods or, on the large scale, deduced from a contour map. It is not advisable to
attempt to deduce R from (6.17a).

To summarize, over gentle hills or close to the surface on steeper topography,
as long as separation regions are avoided, working in streamline coordinates
can avoid the necessity of accurately aligning anemometers relative to some
external reference frame. In flows with complex distortions, although streamline
coordinates may still be the preferred choice for analysis, information on the spatial
evolution of the flow is required to fix the coordinate directions and to deduce
the curvature and acceleration length scales. In such cases the relative orientation
of the sensors, at least, must be accurately known. It is worth noting that most
surface layer analyses undertaken to date fall into the first category; very few field
experiments dealing with strongly distorted flows, as defined above, have yet been
attempted.

6.7 In situ measurements above tower heights

Extending measurements made near the ground with in situ sensors into the
upper boundary layer is by no means a simple task. The techniques available for
reaching those heights to measure mean winds, temperatures, and humidities are
many. They include free balloons, tethered balloons, kytoons (inflatable kites),
aircraft, and drones. Measuring fluxes and variances above tower heights poses
an even greater challenge. The difficulty arises because turbulence measurements
require stable platforms and precise leveling for best results. Two techniques have
so far provided dependable turbulence data above 100 m, but they are both costly
and complex and involve specialized equipment and trained personnel to operate
them. In one, the tethering cable of a very large balloon is used to suspend sensors
at different heights (Caughey and Palmer, 1979; Readings et al., 1974). In the
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other, an aircraft is instrumented for level flights at different heights over the site
(Lenschow et al., 1980; Nicholls and Readings, 1981).

The tethering cable of a large balloon offers the closest approximation to a tall
tower. Barrage balloons of the type used in the Minnesota experiment (Readings
et al., 1974) are ideal for this purpose, being capable of ascents up to 3 km
with large payloads. This type of balloon is relatively insensitive to turbulent
fluctuations in the wind but does oscillate laterally as it hovers downwind of the
tethering point. The oscillation, although very slow (5-10-min period), introduces
overestimations in the measured wind speed (^10%) and its variance (~30%)
without seriously affecting the vertical velocity and temperature variances or even
the fluxes of momentum and heat (Haugen et al., 1975). The turbulence probe
has to be specially designed to maintain its verticality and orientation to the wind
while attached to the tethering cable.

The instrumented aircraft measures the spatial-temporal distribution of vari-
ables which differs from the temporal measurements obtained from sensors on the
balloon cable. (If the aircraft speed U is large compared with the turbulent velocity
scales, we can use Taylor's hypothesis, writing n\ = 2irf/U.) The aircraft can
probe the entire depth of the CBL above 50 m in less than 2 h, flying in combined
horizontal- and vertical-profiling modes. The aircraft itself, however, responds
to turbulent motions, and this contamination has to be measured accurately and
removed from the data. Sensors for measuring wind, temperature, and humidity
fluctuations are usually mounted on specially designed booms or supports on the
front of the aircraft. These sensors have to respond more rapidly to the fluctuations
than their counterparts on balloon cables because aircraft speeds are higher than
eddy translation speeds in the boundary layer. Corrections also need to be ap-
plied for compressibility and aircraft flow distortion effects on the measurements.
These corrections complicate subsequent analysis of the aircraft data. Details of
the instrumentation and the various corrections applied to the measurements are
described by Lenschow (1986). Accuracies of 10% in the second moments can be
achieved with flight legs of 20 min (80-120 km) or more.

6.8 Remote sensors for the boundary layer

Remote sensors are now used increasingly in boundary layer experiments. They
have the range to get above tower heights, but their accuracies and spatial reso-
lutions are still too coarse for detailed turbulence work. Turbulence parameters
such as Cy, Cy and the fluxes of heat and momentum can be inferred indirectly
from backscattered and forward-propagated signals with varying degrees of ac-
curacy. In many applications they are valued for the broad spatial coverage they
offer in the forms of vertical profiles of winds and temperatures; for time-height
plots showing evolution of such features as the daytime capping inversion, gravity
waves, elevated inversion layers, and SBL depths; and for flow fields over com-
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plicated terrain. Such remote sensors fall into three major categories depending
on the type of signal used and are commonly referred to as sodars, radars, and
lidars, acronyms for sound, radio, and light detection and ranging, respectively.

6.8.1 Sodars

The standard Doppler sodar, operating at frequencies around 2 kHz, is available
in different versions from several manufacturers. In its monostatic version, the
sodar measures radial wind components along three narrow beams, one pointing
vertically and two tilted 30° (typically) from zenith pointing E (or W) and N
(or S). The wind components are derived from Doppler shifts measured in the
backscattered sound pulses transmitted sequentially in the three directions. (Each
antenna switches from transmitting to receiving mode to sense the back-scattered
signal.) The three beams may be produced either from three separate collocated
antennas or from a phased array of transducers that steer the beam electronically
into those directions. The range resolution for such a sodar (i.e., the length of the
acoustic pulse transmitted) is typically 30 m over a height range 50-500 m. (Radial
velocities measured along the two tilted beams are converted into horizontal
components along the cardinal directions.) The minimum cycling time for one
set of transmissions is typically 6 s; the minimum averaging time for a reliable
estimate of the radial wind component is 6 min. Expected accuracy in these sodars
is ±1 m s-1 .

Doppler minisodars operating in the 5-8-kHz range, with similar antenna
options, claim better accuracies (± 0.5 m s-1), better range resolutions (~10 m),
shorter averaging times (~1 min), and greatly reduced operating range (10-200
m). Only a few research versions exist (Coulter, 1990). Because of their small size
and portability, they can be placed in difficult-to-reach locations; their low cost
and short range permit deployment of several units in the same area for studies of
complicated flows within valleys and on sloping terrain.

Time-height facsimile records of the monostatic echo intensities, familiar
to sodar enthusiasts for over two decades, provide useful records of temperature
structures in the ABL and their evolution with time. In the monostatic mode
these backscattered signals are produced entirely by temperature inhomogeneities
(Cf,). Many ABL structures [e.g., convective plumes, waves, gust fronts, capping
inversions, and ground-based stable turbulent layers (used often as an indicator
of SBL depth)] contain temperature inhomogeneities that scatter sound, and each
can be identified by its own special signature (Neff and Coulter, 1985). Because of
the sodar's limited maximum range, the capping inversion can be tracked through
only part of its rise, until about 1000 local time on most days.

In the bistatic mode (in which separate tilted transmitter and receiver beams
intersect at designated heights above ground), scattering is produced primarily by
velocity inhomogeneities (Cy); the contribution from C^, usually two orders of
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magnitude smaller, is ignored (Thomson et al., 1978). Bistatic Doppler systems
(e.g., Kaimal and Haugen, 1977), common a decade ago, need more area on
the ground than the monostatic systems to accommodate their widely separated
antennas and, moreover, perform less well. The trend today is toward increasingly
compact transducer groupings, such as multiple monostatic antennas and phased
arrays.

6.8.2 Radar

Doppler wind profiling radars operating at UHF (915 and 404 MHz) and VHP (50
MHz) frequencies currently used for monitoring winds in the troposphere (Frisch
et al., 1986; Strauch et al., 1984), have minimum ranges that are too high (~1
km) for boundary layer measurements. The new 915-MHz boundary layer profiler
described by Ecklund et al. (1988), with its highly portable (0.9 x 0.9 m) microstrip
antenna panels and compact electronics, appears, however, ideally suited for that
application. It has a height resolution of ~50 m, a minimum range of ~ 100 m, and
a maximum range conservatively rated at 1.5 km. It adequately covers the CBL
depth except under very dry conditions when moisture fluctuations also happen
to be very low. In a moist environment, the maximum range can be as high as
4.5 km.

Like monostatic Doppler sodars, these radar wind profilers are ground-based,
three-beam systems: one beam vertical and two tilted 15° from zenith in the N (or
S) and E (or W) directions. The antennas are pulsed rapidly (~100-/Lis repetition
rate), the propagation speed being much higher for the electromagnetic wave than
for sound. This rapid sampling is necessary because the signal-to-noise ratio in
radar returns is very low compared to sodars, and a large number of samples
is needed to achieve comparable accuracy. Typically, a single reading from any
range gate (time gate corresponding to calculated range interval along the beam)
is an average of ~ 150,000 successive returns (transmission every 100 //s for, say,
15 s). Counting the time needed for switching between antennas, the total cycling
time for one sequence of data points is about 1 min. A minimum of 20 such data
points is needed to construct a wind profile accurate to within ±0.5 m s-1.

The strongest radar returns are predominantly from refractive index variations
of scale size A/2, where A is the radar wavelength (33 cm at 915 MHz). If the
A/2 scale sizes are in the inertial subrange of the turbulence spectrum, the radar
reflectivity is given by 0.38 C^A^1/3 (Ottersten, 1969). (C£ is the refractive
index structure parameter mentioned in Chapter 2.) The abrupt drop observed in
backscatter intensity above the CBL is attributed to a sharp attenuation of turbulent
energy in the A/2 scale sizes in the relatively smooth flow in that region. Lack
of moisture also plays a role. For radar signals, C^ is most strongly influenced
by CQ, with lesser contributions from C\, and CTQ- This new term, CTQ, is the



The CTQ contribution may be positive or negative, depending on the sign of
the correlation between temperature and humidity, so it could either enhance or
diminish C^. In any case, radar reflectivity drops off abruptly at the top of the
CBL, and the level where this drop begins can, under ideal conditions, be used as
a measure of zt.

6.8.3 Lidars

Pulsed Doppler lidars are optical analogs of the more familiar Doppler radars.
The lidar's shorter wavelength makes it sensitive to aerosols and cloud particles
that follow air motions well and therefore serve as good targets for wind sensing.
The aerosol loading in the boundary layer is usually sufficient for many lidars to
operate with good signal-to-noise ratio. This ratio can drop to very low values
above the CBL if the air is very "clean." Obscurants like smoke will also limit its
range, whereas thick fog and clouds could block it entirely.

The lidar can be deployed in a three-beam mode as in radar wind profilers.
It is, however, most effectively used in the velocity azimuth display (VAD) mode
making conical scans through 360° azimuth at constant elevation angle (say 30°).
The lidar beam has no side lobes and therefore suffers no complication from
ground clutter, except for direct strikes. The COi Doppler lidar, operating in the
infrared (10.6 ^m), is ideal for wind profiling. It is eyesafe and can therefore
be used in field experiments to provide low-angle conical and elevation scans
of the wind field over a 10-km horizontal range. In the VAD mode, the radial
winds in each range gate execute a sinusoidal pattern as the beam moves through
its conical scan. The azimuth of the velocity peak yields the wind direction and
the amplitude of the peak, the speed. This assumes that the flow is horizontally
homogeneous. The range resolution is poor (~300 m) because of the minimum
record length needed for Doppler processing; however, at shallow scan angles this
range resolution would translate to much better height resolutions.

The lidar may also be used as an indicator of z,. The top of the CBL is often
clearly delineated in lidar backscatter displays because of strong aerosol gradients
in that region. C^ for optical waves is produced primarily by CT, with much
smaller contributions from CQ and CTQ (Friehe et al., 1975). Nevertheless, the
C\ maximum at z^ (Chapter 2), although strong enough to be identified in the
sodar returns, is not apparent in lidar plots.

Present CC>2 lidars operating in the Doppler mode are large, complicated
systems (Hardesty, 1984). They have proved valuable in complex terrain studies,
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structure parameter derived from the temperature-humidity cospectrum (Friehe et
al., 1975) through the relationship:
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especially for mapping flows through canyons. Because of their complexity and
high operating cost, they are seldom available for low-budget boundary layer stud-
ies. Doppler lidar technology is, however, rapidly moving toward less expensive,
more compact, and more robust systems with hopes also for better accuracy and
resolution; when those systems are developed, we can expect to see lidars used
more widely in boundary layer experiments.

6.8.4 Radio acoustic sounding system

Radio Acoustic Sounding System (RASS) combines both radar and acoustic tech-
niques to sense temperature profiles remotely. The concept is not new, but it was
not widely used in the United States until the arrival of sensitive Doppler radar
systems (such as those developed for wind profiling). These new radars are capable
of tracking Doppler shifts in the weak signals scattered back from radar refractive
index undulations induced by sound waves propagating upward from a source
near the radar. The Doppler shift in the signal is a measure of the speed of sound,
which is directly related to the virtual temperature, Tv. [From our definitions in
(6.3) and (6.10), we have c2 ~ 403T,,.] The heights of observation would be
those corresponding to the radar range gates where the receding refractive index
undulations (accompanying the sound) provide strong enough returns for Doppler
processing.

Strong backscattered signals are obtained when the wavelength of the trans-
mitted acoustic signal is matched to half the radar wavelength (the Bragg condi-
tion) and the radar and acoustic phase fronts are matched. For the 915-MHz radar,
the matching acoustic frequency is ~2 kHz at temperatures typically encountered
in the ABL. But exact matching is difficult to achieve with a fixed frequency
acoustic source, given the spatial and temporal temperature variabilities in the
ABL. So a frequency-modulated, continuous-wave (FM-CW) acoustic signal is
transmitted (upward) to ensure Bragg match with the radar at all heights that give
a detectable radar signal. The range gates where both Bragg match and phase
match are achieved, and where the Tv readings are the most reliable, would vary
from one radar scan to the next. However, the temperature readings thus obtained,
when consolidated, yield profiles with fine details that include sharp inversions
(Currier etal., 1988; May etal., 1990) that compare very well (within ±1°C) with
radiosonde data.

In all RASS systems (404- and 50-MHz systems included), the maximum
range achieved is limited by strong winds that advect the acoustic wavefronts
so they no longer match the radar wavefronts, by turbulence and temperature
gradients that distort the acoustic wavefronts, and by acoustic attenuation. In
the 915-MHz RASS, acoustic absorption is particularly serious. The maximum
range of this RASS system is typically 750 m, although observations have been
reported up to 1.2 km in moist air (Currier et al., 1988). The presence of moisture
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enhances RASS performance because acoustic absorption in the 2-kHz range (at
temperatures encountered in the ABL) decreases with increasing humidity. The
height resolution and minimum range for RASS are the same as for the 915-MHz
wind profiler, ~50 m and ^100 m, respectively.

6.9 Special symbols

a transducer diameter
c velocity of sound in air
C*i23 commutator of the field of streamlines
E voltage across bridge
9x, 9y,9z components of gravity vector along x,y,z directions
g gravity vector
#(A) power transfer function, function of A
I distance constant of anemometer
La acceleration length scale
Ma, Mw molecular weights for air and water vapor
n unit vector in the principal normal direction
Pd dynamic pressure
R local radius of curvature of streamline
RQ surface curvature
s separation distance
s distance along streamline
t unit tangent vector to a streamline
t\, £2 sonic anemometer transit times
up local pressure variation caused by the pressure probe
u local mean wind vector
U aircraft speed
Vd velocity component along acoustic path d
Vn velocity component normal to Vd
V0 bridge output in volts
VA , VB velocity components along nonorthogonal sonic anemometer axes,

A and B
VH horizontal wind vector
Vx, VY velocity components along orthogonal sonic

anemometer horizontal axes, X and Y
7a, 7W ratio of specific heats for air and water vapor
& azimuth angle
Ac cutoff wavelength
AO half-power wavelength
<p elevation angle
•0 angle of coordinate rotation around the u direction
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Appendix 6.1 Principle of the sonic anemometer and thermometer

The sonic anemometer measures wind components from transit times of acoustic
signals traveling in opposite directions along a fixed path. Figure 6.21 illustrates
the effect of wind V on the sound ray vectors for a single-axis anemometer. If
t\ and ti are the transit times for pulses traveling along wind directions defined
positive and negative, respectively, we have

where d is the path length, c is the velocity of sound, Vd is the wind component
along the path, and 7 = sin~' (Vn/c), Vn being the component normal to the path.

Two methods are used to extract Vd. One, which involves measuring (t\ - t2),
is simpler to implement if the pulses travel simultaneously along two close, but
separate, parallel paths. The measurement has a residual temperature sensitivity,
which, although small, cannot be ignored. Assuming V% <C c2, we have

FIG. 6.21 Sound ray vectors for a single-axis, single-path sonic anemometer.
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on substituting for c2 from (6.3) and assuming T(l + 0.32e/p) is an adequate
approximation of the virtual temperature Tv [defined as T(l + 0.38e/p)]. The
error involved in assuming the measured temperature equals Tv is on the order
of 0.01°C (Kaimal and Gaynor, 1991), well within the bounds of experimental
uncertainty. [The difference arises from the fact that the coefficient of e/p in
the expression for Tv is (1 - Mw/Ma), where Mw and Ma are the molecular
weights for water vapor and air, whereas that for the sonic-derived temperature
is (7tu/7a — Mw/Ma), where 7^ and 7Q are the ratio of specific heats for water
vapor and air.]

The other method computes the reciprocals of t\ and t2 to give

which is free of any temperature sensitivity. This approach is implemented in
the newer single-path sonic anemometers that transmit signals back and forth
sequentially along the same path and measure t\ and £2 separately, instead of the
difference between them.

Sonic thermometry benefits as well from the separate determinations of t\
and ti. We can write

Substituting for c2 from (6.3) and assuming again that the temperature derived
from the speed of sound approximates Tv, (6.21) becomes

or

or
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If l/*i and l/<2 are determined from the w axis of the sonic anemometer, Vn would
be the magnitude of the horizontal wind vector VH •

In the orthogonal array of Fig. 6.9,

where Vx and Vy are wind components measured along the horizontal X and Y
axes, corrected for transducer shadowing as described in Appendix 6.3.

Appendix 6.2 Nonorthogonal array

In an orthogonal array (e.g., Fig. 6.9), coordinate transformation to resolve the
horizontal wind components is fairly straightforward. For the nonorthogonal 120°
array (Fig. 6.8), however, the transformation involves more terms. If VA and VB
are the velocities measured along the horizontal axes A and B (Fig. 6.22) and u
and v are the velocity components along the vector mean coordinates,

FIG. 6.22 Horizontal vector-mean wind coordinates (x, y) and nonorthogonal sonic
anemometer axes (A, B).
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where

where 0 is the angle between the horizontal wind vector and the axis of symmetry
of the array.

Appendix 6.3 Correction for transducer shadowing

In the orthogonal array of Fig. 6.9, partial shadowing of the acoustic path by
the transducers causes the velocity readings to be underestimated. Results of wind
tunnel and atmospheric tests indicate a linear drop in response as the wind direction
approaches the direction of the acoustic path. The degree of attenuation is a strong
function of the aspect ratio d/a for d/a < 50, where d is the path length and a the
diameter of the transducer (Fig. 6.23). The measured velocity component (Vd)m

for d/a =15 becomes

where

FIG. 6.23 Velocity attenuation from transducer shadowing in a sonic anemometer shown
as a function of wind direction for various values of d/a.
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0 is the angle between Vd and the horizontal wind vector VH. The atten-
uation for d/a other than 15 can be estimated from the curves in Fig. 6.19. Note
that Fig. 6.19 represents the shadow effect produced by the Applied Technolo-
gies' 1-cm diameter x 1-cm long transducer mounted at the end of a short 1-cm
diameter transducer holder (Fig. 6.9). The shapes will be different for other types
of transducers and mounts (Kaijo Denki and CSIRO/Dobbie arrays), as pointed
out by Wyngaard and Zhang (1985).
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7

ACQUISITION AND PROCESSING OF ATMOSPHERIC
BOUNDARY LAYER DATA

Much of what we know about the structure of the boundary layer is empirical, the
result of painstaking analysis of observational data. As our understanding of the
boundary layer evolved, so did our ability to define more clearly the requirements
for sensing atmospheric variables and for processing that information. Decisions
regarding choice of sampling rates, averaging time, detrending, ways to minimize
aliasing, and so on, became easier to make. We find we can even standardize most
procedures for real-time processing. The smaller, faster computers, now within
the reach of most boundary layer scientists, offer virtually unlimited possibilities
for processing and displaying results even as an experiment is progressing.

The information we seek, for the most part, falls into two groups: (1) time-
averaged statistics such as the mean, variance, covariance, skewness, and kurtosis
and (2) spectra and cospectra of velocity components and scalars such as temper-
ature and humidity. We discuss them separately because of different sampling and
processing requirements for the two. A proper understanding of these requirements
is essential for the successful planning of any experiment.

In this chapter we discuss these considerations in some detail with examples
of methods used in earlier applications. We will assume that sensors collecting the
data have adequate frequency response, precision, and long-term stability and that
the sampling is performed digitally at equally spaced intervals. We also assume that
the observation heights are chosen with due regard to sensor response and terrain
roughness.

7.1 Time-averaged statistics

For calculations of means and higher order moments we need time series that are
long enough to include all the relevant low-frequency contributions to the process,
sampled at rates fast enough to capture all the high-frequency contributions the
sensors are able to measure. Improper choices of averaging times and sampling
rates can indeed compromise our statistics. We need to understand how those two
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factors affect our measurements in order to make sensible decisions on how long
and how fast to sample.

7.1.1 Choice of averaging time

Ideally, the statistical quantities we would use to describe the properties of turbu-
lent flow would be those obtained by "ensemble" averaging (i.e., averaging over
many realizations under identical conditions). In reality we are forced to describe
them in terms of averages over time, making the "ergodic" hypothesis that time
averages are, for all practical purposes, equivalent to ensemble averages. For this
assumption to be true, the fluctuations must be statistically stationary over the pe-
riod chosen for analysis. Only then can we justify the application of the Reynolds
averaging rules (Appendix 7.1), which specify conditions the data must satisfy for
proper separation of the fluctuating components from the mean.

Statistical stationarity of a time series a(t) demands that variances and co-
variances approach stable values as the averaging time T is increased, which
implies that an integral time scale Ta exists for a(t). The requirements for averag-
ing time T with T » Ta can then be expressed in terms of d^, the variance of the
measured time mean a about the expected ensemble mean, and a^, the ensemble
variance of a. From Lumley and Panofsky (1964), we have

For averaging times T 2> Ta,a^ becomes negligible. We can now specify an
acceptable level of error cr^/a (say e) and express the averaging time required to
keep (Ta/a within that level as

In order to use (7.2) to estimate suitable averaging times, we have to replace
the ensemble variance a^ by the more accessible time average variance—a fur-
ther application of the ergodic hypothesis. For typical daytime values of cru =
I m s~l,Tu = 10 s, and u = 5 m s"' and specifying a^ = 0.1 m s~l (i.e.,
e = 0.02), we get T = 2000 s ~ 30 min, a reasonable averaging time for mean
horizontal winds, corresponding to the passage of two or three of the large con-
vective cells that extend through the depth of the CBL. Lumley and Panofsky
(1964) offer a clear discussion of ergodicity and averaging requirements. Using
the expression (7.2), they show how T increases with the order of the moment,
estimating that it takes roughly five times longer to measure the fourth moment to
the same accuracy as the second moment, assuming Ta is the same for both (here
a represents the higher powers or products of measured variables). The reason
for this is the tendency for (7a/a to increase with the order of the moment. The
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averaging time requirement can also be different for different second moments,
depending on the magnitude of aa /a.

If the averaging period can be increased indefinitely, e can be kept to within
negligible levels. T ~ 1 h is, however, about as long as we can extend the averaging
period without encountering nonstationarity in the form of diurnal variations in
surface heat flux and boundary layer depth. With an averaging period this long
we can expect errors on the order of 3.5%, 5%, and 10%-50% for near-surface
a2

w,w'0', and u'w', respectively (Haugen, 1978).

7.1.2 Choice of sampling rate

Having established a suitable averaging time based on the accuracies we desire in
the results, we turn to the next important consideration: how frequently to sample
the signal. We assume the sampling process itself is virtually instantaneous, that is,
the sensors are at least fast enough to respond to all the frequencies contributing to
the process. (In the boundary layer, this means a high-frequency cutoff somewhere
in the inertial subrange where spectral energy is falling off rapidly.) The conserva-
tive approach would be to sample at a rate commensurate with the frequency
response of the sensors. But this is really not necessary because the accuracy in
our statistics should, under stationary conditions, be a function only of the number
of samples, N.

For equally spaced instantaneous samples with sampling interval At > Ta,
the error variance can be expressed in a form similar to (7.1):

FIG. 7.1 Percentage error in calculated variances and fluxes as functions of the number of
discrete samples used (after Haugen, 1978).
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where N = T/At. As with T in (7.2), we can estimate the number of samples
needed to maintain a given level of confidence in a. For au = 1 m s"1, we need
N = 100 to ensure that a^ < 0.1 m s~'. For T = 2000 s, calculated from (7.2)
for the same set of conditions, this value of .N suggests a sampling interval At =
20 s. Here too, it can be shown that the number of samples needed to keep e within
desired limits increases with the order of the moment.

The results of Haugen's (1978) calculations, summarized in Fig. 7.1, confirm
the dependence of e on N. Using various combinations of T (» Ta) and At, he
derived empirical curves from field data that show the number of samples for 10%
accuracy in a2

w and w'd' to be 200 and in u'w' to be 750. The implication is that At
can be increased without loss of accuracy as long as T is increased proportionally
to maintain N at the same level. Note that we still require the sampling to be near
instantaneous. The accuracy in the moment calculations depends on our ability to
capture, at least occasionally, the peaks and valleys in the signal, as illustrated in
Fig. 7.2. In the frequency domain, the process is explained in terms of spectral
folding (see Section 7.2).

7.2 Spectra and cospectra

Conversion of data collected in the form of equally spaced samples in the time
domain to spectral and cospectral estimates in the frequency domain involves a
series of calculations we refer to as spectrum analysis or Fourier analysis. Several
methods for accomplishing this conversion exist, but the one most widely used
today is the fast Fourier transform (FFT), which accepts data points in groups of
powers of 2 (e.g., TV = 210 = 1024) and calculates the Fourier components in
an elegant, time-efficient manner ideally suited to low-level computer assembly
language. [For details on FFT processing see Bendat and Piersol (1971) and

FIG. 7.2 Time series of w showing how even infrequent (but instantaneous) sampling
(represented by the dots) can capture enough values at the peaks and valleys to approximate
the true variance. The time indicated is Mountain Standard Time (MST).



258 ATMOSPHERIC BOUNDARY LAYER FLOWS

FIG. 7.3 Averaging period T and its relationship to spectral resolution and to the center
frequency of spectral estimates.

Ramirez (1985).] The choices we make for T and At have particular relevance
for FFT analysis because they directly influence the range and resolution of the
spectral information the analysis provides. We discuss below the implications of
those choices.

7.2.1 Choice of record length

For spectrum analysis we usually require record lengths somewhat longer than for
variance calculations because of the clearer definition they promise in the energy
peak and the rolloff on the low-frequency side of the spectrum. The selection of
T automatically establishes the lowest frequency (1/T) we can resolve as well as
the width of each elementary frequency band A/ in the spectrum output:

The elementary bands (excluding the first and last, which are only A//2 wide) are
centered on frequencies 1/T, 2/T, 3/T... , (l/2At - 1/T), as shown in Fig. 7.3.
The number of spectral (or cospectral) estimates we obtain from an FFT analysis'
is N/2, which gives us a total bandwidth of 1/2 At in our spectral data.

1 The FFT yields N/2 estimates that are complex numbers, so there is no loss of information. The squared
magnitudes of the spectral estimates comprise the power spectrum, whereas the phase information is used in forming
the cospectra and quadrature spectra (Appendix 2.1, Chapter 2).
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With spectra (and cospectra) it is easy to determine whether the chosen T
is long enough. A well-defined spectral peak in the f S ( f ) [or fC(f)] plot and a
rolloff over a decade or so on the low-frequency side are indications of an adequate
T and a reasonably good approach to stationarity. To achieve this for wind and
temperature spectra over most of the ABL requires averaging times of 60-90 min,
which often conflict with nonstationarity caused by diurnal variations. If there is
no evidence of a peak or even a leveling of the spectrum (or cospectrum) at the low
end, the time series should be examined, even plotted out, to determine if T should
be increased (to include a significant peak that was not originally anticipated) or if
the data need to be filtered (to remove a long-term trend that is masking a real peak
within the existing spectral range). These questions and more will be discussed in
the next section dealing with the preparation of time series for spectrum analysis.

7.2.2 Choice of sampling rate

Here, the bandwidth desired in the calculated spectra and cospectra determines
the rate at which the variables should be sampled. The decision is simple if the
spectrum of the variable has a clearly defined cutoff frequency fc. Shannon's
sampling theorem tells us that at least two samples per cycle are needed to define
a frequency component in the original signal completely; for this band-limited
signal the sampling interval At should be

Note that, in theory, (7.5) applies to an infinite record. With a finite record we must sample more frequently
to properly resolve fc. In practice, this would only be a problem for very short records.

Sampling at this rate is referred to as "critical sampling." Sampling more frequently
(At < l/2/c) yields no additional benefits2, since no useful spectral information
exists between fc and l/2At. Sampling less frequently (At > l/2/c) yields a
spectral bandwidth inadequate to cover the full range of frequencies contained in
the signal. The spectral information at frequencies above 1/2At is not lost but
folded back into the spectrum in an accordion fold, as shown in Fig. 7.4. This
process is called "aliasing," since it results in high-frequency components emerging
as low-frequency components within the resolved bandwidth. The frequency /o(=
1/2At) is referred to as the folding frequency or Nyquist frequency.

We rarely find sharp cutoffs in boundary layer turbulence. The inertial sub-
range, however, presents a logical place to establish the cutoff for data acquisition
purposes. There are three benefits:

1. Being in a region of rapidly falling spectral energy, the folding is confined
to no more than the first fold and its effects seldom extend below 0.5/0
(Kg. 7.5).



FIG. 7.4 Folding of spectral energy in an aliased spectrum. Frequencies A, B, and C appear
at A', B', and C' in the resolved spectrum.

FIG. 7.5 Aliased energy shown raising spectral levels at the Nyquist frequency by a factor
of 2. (Log scales on both axes.)
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2. With the slope of the spectrum known, the true spectrum can be approx-
imated by simple extrapolation. In the absence of any high-frequency
noise, the spectrum at f0 is raised by a known factor (~ 2).

3. No significant transport of momentum and heat occurs in this region of
the spectrum. Therefore, a cutoff here is ideal from the point of view of
flux measurements.

The ideal choice for fo is one that would reveal at least two octaves of the
inertial subrange (allowing for aliasing errors) to provide a basis for extrapo-
lation. This implies f0 > 4 f a , where fj(~ 2u/z, when M-O scaling applies) is
the low-frequency limit of the inertial subrange and u is the mean wind speed at
height z. This criterion is often stretched for measurements close to the ground. (In
that case, particular care should be taken to minimize aliasing by using methods
discussed in the following section.) The sampling frequency for turbulence data
over reasonably flat terrain is usually set at 10 or 20 Hz depending on whether the
observation height is above or below 5 m.

In selecting the sampling frequency for turbulence sensors, it is wise to
consider where the power line frequency (50 or 60 Hz) would fall within the
spectrum. Since line frequency contamination is present to some extent in most
analog information transmitted over signal cables, it is important to place the
aliased line frequency where it will do the least harm, that is, at f = 0. For
At = 1/10 s, both 50 and 60 Hz frequencies should fold back to f = 0. The
choice of At = 1/20 s, although ideal for the 60-Hz line frequency, would,
however, place the 50-Hz line frequency at f = fo as seen in Fig. 7.6. Hence, the
logical choice for At in countries with 50-Hz line frequency would be 1/25 s in
applications where sampling at 1/10 s is not fast enough.

7.3 Preparing data for spectrum analysis

Measurements in the real atmosphere may not always satisfy our definitions of
stationarity, or the sampling rate may not be fast enough to avoid serious aliasing

FIG. 7.6 Aliasing of power line frequency for 20- and 25-Hz sampling rates. Line frequen-
cies are given in Hz.
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in the part of the inertial subrange we are able to cover. These deficiencies can
be met through proper intervention before the spectrum analysis. Some of the
techniques most commonly used to minimize their effects are discussed below.

7.3.1 Reduction of aliasing

Since the very act of sampling at discrete intervals causes energy above frequency
/o to be aliased back to lower frequencies, any scheme to minimize aliasing has to
be applied very early in the data handling stage. There are two simple approaches;
both depend on low-pass filtering to reduce the energy above /o that is available
for aliasing. Both can be incorporated in the sensor electronics.

1. Analog prefiltering. Before digital conversion, the analog signal is low-
pass filtered with an analog filter whose half-power point is set at f0 = 1/2At.
This will reduce the energy at the Nyquist frequency f0 by 50%. When this filtered
signal is sampled at interval At, aliasing restores the energy to nearly its true value
at f0 (assuming energy only in the first fold counts) and to slightly lower values
in the range 0.5f0 < f < f0 as shown in Fig. 7.7. The steeper the filter rolloff,
the narrower the frequency band affected. The advantage of this method is that
multiplexing and analog-to-digital (A/D) conversion speeds can be maintained at
a lower rate. The disadvantage is the possibility of additional noise and drift from
low-pass filters inserted ahead of the multiplexer contaminating the data. No filters
are needed, however, if the sensor response drops off naturally to half-power at f0.

FIG. 7.7 Analog prefiltering aimed at reducing aliasing and restoring full energy at the
Nyquist frequency. Filtering reduces energy at Nyquist frequency by a factor of 0.5. (Log
scales on both axes.)
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2. Digital prefiltering. When sampling speed is not a limiting factor (but the
digital recording capacity is), it is more convenient to sample the variable at rates
10 to 20 times higher than f0 and have the low-pass filtering performed digitally
at the sensor output by constructing nonoverlapping block averages of the time
series. Taking nonoverlapping block averages is equivalent to subjecting the time
series to a moving average filter of width At but using only points At apart. With
the first step, we impose the power transfer function (sin27r/At)/(7r/At)2 on
the original spectrum; with the second we alias back into the spectrum whatever
energy remains above fo after filtering, as shown in Fig. 7.8.

The block averaging is accomplished by accumulating successive readings
in the output buffer of the sensor (if it has a digital output) or of the local A/D
converter sampling the signal (in the case of analog signals). Note that in this
simple digital prefiltering scheme, aliasing restores only part of the energy lost
through filtering (Fig. 7.8) because of the 60% drop in power at f0. (Aliasing
introduced by the original sampling at the higher rate will not normally affect
the spectrum, unless large noise spikes exist at frequencies that could fold back
into the frequency band between 0 and f0.) The advantage of this approach is its
simplicity. More sophisticated digital filters can be used if recording capacity is
not a limiting factor; the low-pass filtering would then be performed at a later
time, after the experiment.

FIG. 7.8 Digital prefiltering achieved by computing nonoverlapping block averages with
oversampled data. Energy at the Nyquist frequency is only partially restored because
filtering reduces it by a factor of 0.4. (Log scales on both axes.)
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7.3.2 Trend removal

The presence of a trend in the time series makes the data nonstationary and
therefore less suitable for analysis. We define a trend as any frequency component
with a period longer than the record length T. In the limit of very long periods (e.g.,
diurnal variation in temperature), the trend may appear to be linear within that
period. Least-squares methods are often used to remove both linear and polynomial
trends. For many applications, digital high-pass filtering is preferred because it is
simpler and better understood. The same digital filter should be applied to all the
variables processed, ensuring uniform low-frequency treatment of the signals.

Trends in the time series produce distortions at the low-frequency end of the
spectrum (Fig. 7.9). This distortion, if large enough, could totally mask the true
maximum in the f S ( f ) spectrum and replace it with a spectrum that continues
to rise with decreasing f (Fig. 7.10a). Detrending offers no guarantee that the
true shape of the spectrum can be retrieved. The particular detrending method
used often determines the shape of the detrended spectrum and the location of
its maximum (Fig. 7.10b). Trend removal should be performed only if trends are
physically expected or clearly apparent in the time series. Automatic detrending
is not recommended, except for certain va'riance and flux calculations where the
presence of trends can be highly detrimental (e.g., u'O' with trends likely in u
and 9).

One indication of a linear trend in the time series is an f-1 slope at the
low end of the f S ( f ) versus / plot of the spectrum (Fig. 7.10a) best seen in
temperature spectra. A linear trend would appear as a replicated ramp function in
the Fourier analysis, producing harmonics that decrease in power as f~2, hence
the f-1 slope in the f S ( f ) plot. Autocorrelation plots also announce the presence
of trends (Fig. 7.9). The correlation function fails to drop to zero even at large
lags; trend removal brings it down to zero very quickly.

FIG. 7.9 Effects of trend on the spectrum (left) and on the autocorrelation function (right).
(Log scales for spectrum axes.)
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FIG. 7.10 (a) Spectrum distortion from trends of varying magnitudes (A-D). (b) Sensitivity
of low-frequency spectrum shape to three hypothetical detrending procedures (I-III). (Log
scales on all axes.)

There are arguments both for and against detrending. Scientists who work
with data from aircraft find it essential to detrend. Others argue that trends, es-
pecially those in w associated with wave motions in stable air (curves A and B,
Fig. 7.10a) are physically significant and should be included in the variance and
flux calculations because they contribute to vertical transport. The undetrended
spectrum should always be available for comparison with the detrended one to
ensure that the detrending process removes only the suspected trend and no more.
Autocorrelation functions and integral time scales calculated from such data can
be particularly misleading because of their strong sensitivity to the detrending
procedures used.

The simplest high-pass filter for detrending is one in which the original time
series x^ is differenced from an equally weighted running mean of width TL- The
process can be viewed as a sequence of low-pass, moving-average filtering and
subtraction. The filtered time series x'- becomes

where y, represents the low-pass filtered time series. The power spectral transfer
function [K(f)\2 for this high-pass filter is well known:

where

H(f) is the low-pass filter function. All frequencies with periods longer than TL
are attenuated when the power spectrum of Xi is multiplied by [ K ( f ) ] 2 .



At is the time interval between data points and TC is the time constant of the
desired low-pass filter. When Ai/Tc <C 1, we have a ~ 1 - (At/rc). The new
time series is x' = (xi — j/j), as in the simple moving-average detrending filter.

It is important to point out in this context that departures from the running
mean cannot be used directly for computing the fluxes as we would use departures
from the conventional time average. Running means do not satisfy Reynolds
averaging rules (see Appendix 7.1) so we cannot assume, as we do with simple
deviations from the time average, that

where the underbarred terms represent the running means and the deviations from
them.

Integral time scales Ta calculated from high-pass filtered time series also
need to be treated with caution. This is because the integral to infinity of the
autocorrelation R(£) is zero for any high-pass filtered signal. The form of R(£),
over the range of time lags we normally use to compute the function, is very
sensitive to TH, the time constant of the high-pass filter, for TH < 107^ (see
Appendix 7.2). For TH > 107^,, the time lag at the 1/e point on the correlation
curve is usually a good estimate of Ta. At TH ~ Ta, the time lag corresponding
to the first zero-crossing can be taken as an estimate of Ta. At TH < Ta, the
correlation curve will be too compromised for any calculation of Ta. All these
points are treated in detail in Appendix 7.2.

7.3.3 Tapering the time series

When the sampling duration is too short to satisfy the condition T S> Ta, a
tapering window is applied to the time series to bring the values down to zero, or

where
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Much sharper detrending filters, with less oscillation near / = 1/r/,, can be
constructed using recursive techniques in which the results of successive filtering
operations are fed back to the input terms. The operation involves fewer terms
than the above "boxcar" approach, and the filter characteristics can be tailored to
approximate those of electronic filters (e.g., R-C, Butterworth). McMillen (1988)
describes one that simulates an ideal R-C filter with an easily specified time
constant. With x; and y; representing, as before, the original and low-pass-filtered
time series, respectively, a simple recursive filter can be constructed for which
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close to it, at both ends of the sampling period. It minimizes the adverse effect
of finite sampling3 on the magnitude of the computed spectrum and improves our
ability to resolve discrete contributions to the spectrum from waves in the signal.

The process of limiting the data to a finite period is equivalent to multiplying
the time series with a rectangular time window of unit height and width T. In
the frequency domain, this translates to a convolution of the true transform of
the process with the function (sin Tr/T) / 7r/T. Convolution, being a smoothing
operation, smears out details present in the original transform and extends its range
along the frequency axis. The effect on the power spectrum is loss of resolution
and overestimation in regions where the power spectrum is dropping off rapidly,
as in the inertial subrange. The smaller the T, the wider the lobes of the (sin Tr/T)
/ Tr/T function and the greater the smearing and overestimation. For a discussion
of the effects of finite sampling on power spectra, see Kaimal et al. (1989).

By multiplying the time series (from which the mean has been removed) with
a tapered window we are, in effect, replacing (sin Tr/T) / Tr/T with a different
function, one with a slightly wider main lobe but with greatly suppressed side
lobes (the negative and positive oscillations on either side of the main lobe). In
the time domain, the tapering reduces the discontinuity at the boundaries of the
data when viewed as a replicated sequence of the same time series. Kaimal and
Kristensen (1991) tested a number of tapered windows and found the Hamming
window brings the measured spectrum to within 1% of the spectral levels we
might expect from a long enough record. The window has the form

3In earlier discussions of the effects of finite sampling (e.g., Pasquill and Smith, 1983) the process is
treated as being analogous to high-pass filtering with a spectral transfer function fl — H ( f ) 2 ] , where H ( f ) —
(sin 7T/T)/7r/T; the actual transfer function is more complicated (Kaimal et al., 1989) and approaches the above
function only as T —> oo.

where w(ri) is the window function and TV is the number of equally spaced data
points in the sample. The taper in the window reduces the variance in the time
series, so the spectrum has to be compensated for that loss by multiplying it
with the ratio of the squares of the areas of the two windows. For the Hamming
window, this ratio is 2.52. (Note that, after windowing, the finite time series may
have acquired a non-zero mean which must be removed before applying the FFT.)

A striking example of its application is the shipboard measurement of fluxes
in the marine boundary layer through the "inertial-dissipation" method (Fairall et
al., 1990), where it is necessary to compute the dissipation rates of turbulent kinetic
energy, temperature variance, and humidity variance from very short samples of
data (T w 7^). Use of the Hamming filter on samples of the order of seconds
yields dependable inertial-subrange spectral intensities for the flux extimates.
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Other windows tested by Kaimal and Kristensen (1991) fared less well. The
Hanning (cosine squared), Gaussian, and Bartlett (triangle) windows performed
almost as well as the Hamming window, but the Poisson (exponential) and the
25% cosine taper windows were clearly unacceptable. [See Harris (1978) for
definitions of above windows.] The last two caused overestimations approaching
50%, about the same as reported for the untapered (rectangular) window. Clearly,
the commonly used cosine taper is not recommended for very short samples.

The other important benefit to be derived from tapering is the reduction in
"side-band leakage" (the leakage of energy to neighboring frequencies through
the side lobes in the convolving function), which is especially bad with the
(sin 7T/T) / TT/T function. Spurious spikes could appear in the spectrum that may
be difficult or impossible to distinguish from spikes representing discrete waves.
Finnigan et al. (1984) successfully used a Hamming window to identify gravity
waves in their studies of wave-turbulence interactions.

7.3.4 Addition of zeros

When the time series available falls short of the length required for the spectrum
analysis program on hand (power of 2, if an FFT is used), it is common practice
to add zeros to the data sequence to make up the required number of points. This
procedure, referred to as "padding", should be approached with caution because
the consequences of improper application can be severe. The addition of zeros
reduces the spectral estimates by a factor (N — NZ}/N, where Nz is the number of
zeros added and N is the total number of points including the zeros. The spectral
estimates should be corrected for this reduction. We can assume that the spectral
estimates are diminished uniformly across the bandwidth as long as Nz < N/3. It
is essential that means and trends be removed from the time series before adding
zeros.

7.3.5 Block averaging

When the number of data points in the period selected for analysis is too long for
a designated spectrum analysis program, it is customary to block average the time
series in unweighted, nonoverlapping blocks to reduce the original time series to
the number of points desired. Such compression of data enables us to examine
the low-frequency behavior in spectra and cospectra quickly. (FFT programs that
can handle an entire hour of data, 36,000 data points for instance, in one pass
certainly exist, but the computing time needed to produce spectra and cospectra
with all the points would be longer and the data handling more cumbersome.)
The block averaging introduces some attenuation at the high-frequency end (see
Section 7.1), but the loss is easily restored in the spectral output. A good reason
for block averaging is to keep aliasing under control.
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FIG. 7.11 (a) Scatter in the unsmoothed high-frequency spectral estimates, (b) Scatter
reduced by smoothing with a frequency window that expands in width with frequency.
(Log scales on all axes.)

7.4 Processing spectral data

The raw spectral density estimates derived from spectrum analysis programs, such
as the FFT, are too numerous and too ragged to be of direct use to meteorologists.4

Atmospheric turbulence covers a spectral range of five decades; this is best rep-
resented on a logarithmic scale not a linear one. The spectral density estimates
generated by the digital programs, however, appear at equally spaced intervals
(A/ = 1/T) on the frequency scale (Fig. 7.3). On a logarithmic scale this spac-
ing results in excessive crowding and large scatter of spectral estimates at the
high-frequency end, as illustrated in Fig. 7.1 la. Some form of frequency smooth-
ing is needed to extract a representative spectral curve from the estimates. Spectra
derived through separate computations covering different segments of the desired
spectral bandwidth are easier to splice if they are properly smoothed.

7.4.1 Frequency smoothing

An effective smoothing procedure for boundary layer work is one in which the
averaging interval keeps expanding with frequency /. If m is the number of
estimates in each nonoverlapping block, m is systematically increased as a function

4The power spectral estimates obtained directly from the FFT program (which when summed
equal the variance of the original time series) have to be divided by A/(= 1/T = \/NAi) to get
them in the form of spectral densities S(f) used in the spectral plots. S(f) has units of variance per
A/, and the area under that curve equals the variance. The frequency-weighted spectrum f S ( f ) , on
the other hand, has units of variance, since multiplication by /(= iA/, where i = 1,2, 3 , . . . N/2)
removes the A/ dependence.
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of frequency (roughly exponentially) to yield about seven to eight estimates per
decade, as in Fig. 7.1 Ib. Each smoothed estimate (of width mAf) is assigned to
the center frequency of the band. In practice the first few estimates are accepted
as they are; then m is increased in steps 3, 5, 7, and so on, until the density of
smoothed estimates per decade reaches seven (or eight). The expected power law
in the inertial subrange can only be tested dependably after such smoothing.

Other types of frequency smoothing are sometimes applied to spectral data. A
three-point Manning window (weighted 1/4,1/2,1/4) is one of many recommended
in earlier treatises on the subject (Blackman and Tukey, 1958). Filtering the spectral
estimates with such fixed bandwidth windows may provide the smoothing needed
in many engineering applications where the spectral range of interest is often
narrow, but is not particularly useful for boundary layer work because it still
causes crowding of estimates at the high-frequency end.

7.4.2 Spectral splicing

When dealing with a very long time series (N > 210), it is advisable to split the
record into two sets:

1. A set of r short records each with N/r data points
2. A series made up of N/r nonoverlapping block averages (r point averages)

of the original time series

The former yields a bandwidth r/N At to 1 /2At and the latter 1 /NAt to 1 fir At
(Fig. 7.12). They overlap over the range r/NAt to l/2rAt which, on a log scale,
corresponds to a frequency ratio of N/2r2. [For the Kansas spectra, Kaimal et
al. (1972) had At ~ 1/20 s, T = 3600 s, N = 72,000, and r = 16 with an
N/2r2 = 136, which corresponds to an overlap of more than two decades. With

FIG. 7.12 (a) Splicing spectra from the shortened and the block-averaged time series in the
absence of significant trends in the data, (b) Effect of trend in the time series that precludes
matching in the regions of overlap. (Log scales on all axes.)
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this choice of parameters, the same 4096-point FFT routine was used for both the
high-end and the low-end spectral computations.]

The r successive spectra from the short records are first averaged to pro-
duce a single high-frequency spectrum. This "incoherent averaging" within each
frequency band produces a spectrum that is very smooth. By comparison, the
low-frequency spectrum will typically have more scatter. Figure 7.12a illustrates
how the two usually combine. The match in the region of overlap is often very
good so the analyst can decide where to drop the estimates from one spectrum
and start with the other. If there is a mismatch, as in Fig. 7.12b, it is invariably the
result of a long-term trend in the data. When that occurs, either the data should be
detrended or the run discarded as unsatisfactory.

Unacceptably high noise levels at the high-frequency end may also be grounds
for rejecting the spectrum. They usually appear as a large rise in the spectrum,
approaching an /+1 slope, stretching over a decade or more at the high end, where
the spectrum should be falling off (Fig. 7.13). This type of noise can be traced to
one of the following:

• Sensor noise rising above signal levels as the signal drops below the
sensor's noise threshold

• Sporadic spikes in the signal from radio frequency interference, a faulty
cable, or mistriggering in the sensor (e.g., sonic anemometer or thermome-
ter)

FIG. 7.13 High-frequency distortions arising typically from spikes in a sonic anemometer
w signal and white noise in a platinum wire thermometer. (Log scales on both axes.)



272 ATMOSPHERIC BOUNDARY LAYER FLOWS

Their effects on spectra are illustrated in Fig. 7.13. The noise threshold effect is
usually observed in platinum-wire fast-response thermometer spectra when the
temperature f S ( f ) levels drop to 10~4 °C2 or lower. The noise spectrum has the
characteristics of white noise: flat in the S(f) versus f plot, f+1 slope in the
f S ( f ) versus f plot (Fig. 7.13). This noise is often accepted as inevitable. Spikes,
on the other hand, cannot be ignored, unless they are isolated and infrequent, as
their effect can extend to all frequencies. Their contribution to the high end of the
spectrum can cause it to exceed in magnitude the energy in the true turbulence
peak. Corrective action (adjustments and repairs) should be taken to prevent the
spikes from contaminating the signal.

In the context of spectral splicing we have to consider the possible implica-
tions of deriving the high-frequency portion of the spectrum by averaging spectra
from relatively short segments of the time series. The overestimation predicted
by Kaimal et al. (1989), discussed earlier, has negligible effect on the spectral
estimates in most applications unless we choose the duration T of those segments
to be smaller than the period of the spectral peak (rm). In the Kansas data analysis
T was 3.75 min with rm typically 3-4 s for daytime w spectra. In Kaimal et al.'s
(1989) study, the effects of finite sampling became apparent only when T dropped
below about 1 Orm.

7.5 Archiving strategies

In field experiments of limited duration, raw data can be easily stored on digital
magnetic tapes and played back as needed for analysis. Different strategies are
needed for data collection over extended periods. In an operation similar to the
Boulder Atmospheric Observatory where data collection is continuous, it is im-
perative that a system of archival and retrieval be worked out so the information
is standardized and accessible to future users (Kaimal and Gaynor, 1983).

At the BAO, slow-response channels are sampled once a second and fast-
response channels 10 times a second. A schematic of the operations at the BAO
is shown in Fig. 7.14. In the fast response sonic anemometer channels, aliasing
is minimized through digital prefiltering (20-point block average); in the fast-
response platinum-wire temperature channels the natural rolloff from thermal
conduction losses provides the needed high-frequency attenuation. Three types of
data are prepared by the data acquisition computer at the BAO site for transmission
to the central computer in Boulder, 25 km away:

• 10-s averaged values of readings on all channels, fast and slow
• 10-s grab samples (last data point in each 10-s block) of all fast-response

channels
• Frequency-smoothed spectral estimates (35 estimates) over the frequency

range 0.01-5 Hz, updated every 20 min
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FIG. 7.14 Schematic of data acquisition and processing at the Boulder Atmospheric Ob-
servatory (BAO).

The on-site computer also generates partial sums of fast-response data and
summaries of slow-response data for presentation of profiles, variances, fluxes,
Obukhov lengths, and so on, at the end of each 20-min archiving period.

The 10-s averaged data are saved for future reconstruction of time plots and
for filling in the low-frequency end of the spectra (0-0.05 Hz) as discussed in
the section above. The 10-s grab samples are the "decimated" data points needed
for recomputing fluxes, variances, and third moments over periods longer than 20
min. They are also useful for detecting the presence of noise in the original signal,
which may not show up in plots of the 10-s averaged data.

Each 20-min spectrum is an average of ten 2-min (1024 point) FFT spectra.
The choice of 20 min as the basic archiving block was arbitrary, selected as a
compromise between the need for stability in the statistics and the need to track
mesoscale variations in the boundary layer. Frequency smoothing is performed
over blocks of increasing width, as discussed in Section 7.4. To fill in the low-
frequency end of the spectrum, a 512-point FFT program is used on the 10-s
averaged data with the option of adding zeros when the number of data points
available falls short of 512. (Even combining four 20-min periods, the time series
will be 32 points short.) How well this scheme fits in with spectral shapes in stable
and unstable air can be seen in Fig. 7.15.

The partial sums generated in real time for the calculation of data summaries at
the end of each 20-min period significantly reduces the processing time at the end.
Individual variables and their products (e.g., w, 0, w2,92, w0) are accumulated in
separate registers as they are sampled. At the end of the 20-min period, variances
and fluxes are generated by simple subtractions:
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FIG. 7.15 Scheme for compressing turbulence data: high-frequency information stored as
smoothed spectral estimates, low-frequency information as time series.

In deriving (7.11) and (7.12) we assume that w'O — w6' = 0, which is valid
if w = w + w' and 0 = 0 + 0'. The same principle can be used for more
complicated calculations involving coordinate transformation of the horizontal
velocity measurements to the longitudinal (u) and lateral (v) components. If um

and vm are horizontal wind components (right-handed) measured along the probe
axes and wm is the measured vertical component, we should be able to compute
the variances and fluxes in single operations immediately following ingest of the
last data point in that averaging period in order to have them ready for display
before the start of the next period. The algebraic operations involved are
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Similar expressions can be derived for a full three-dimensional coordinate rotation
if a tilt correction for sloping terrain or for an incorrectly mounted sensor makes
it necessary. In the above transformation we assumed wm = 0.

7.6 Special symbols

fc cutoff frequency
fi low-frequency limit of the inertial subrange
fo folding (Nyquist) frequency
n number of data points
N number of data points in period T
Nz number of zeros added for padding
r factor by which number of data points is reduced
Ai sampling interval
T averaging time
um, vm, wm measured wind components along instrument axes
w(n) window function, function of n
X i , y i time series of variables x and y
a(t) any time series
6r azimuth rotation angle
pa (£) autocorrelation function of a
TC time constant for recursive low-pass filter
TH time constant for high-pass filter
TL cutoff period for boxcar low-pass filter

Appendix 7.1 Reynolds averaging and running mean filters

In standard operations of turbulence analysis, such as the derivation of flow equations or
the computation of eddy fluxes, the averaging operator (denoted by an overbar) is assumed

where the angle of rotation (counterclockwise) is
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to separate the mean and fluctuating parts of a variable according to certain rules. These
are known as the Reynolds averaging conditions and may be summarized as follows:

1. All primed (fluctuating) quantities must average to zero (w1 = 0).
2. The correlations between primed and averaged quantities must vanish (w'9 = 0).
3. The average of an average must be equal to the same average (w = w).
4. Differentiation in space and time commutes with the averaging operations

neglecting the terms w'9 and w9''. These terms are, by definition, zero if the overbar
represents a true Reynolds average. In fact, disappearance of these terms can be used as a
test of its validity for the data being used.

Only ensemble averages can be expected to obey the Reynolds averaging rules pre-
cisely, but in practice we usually use time averages, making the ergodic hypothesis that they
are equal to ensemble averages. (If the time series is not statistically stationary over relevant
time scales, this assumption must be made cautiously.) In many situations, a running-mean
low-pass filter is applied to the time series to approximate the "background" variations; the
filtered time series is then subtracted from the original signal (i.e., the original is high-pass
filtered) to derive the fluctuating components. We should point out that the terms w'6_ and
wJ 9_' do not necessarily vanish (underbar denotes running-mean quantities) because w' and
tf_ may not have zero means and w and 0_ have spectral energy spread over finite bandwidths.
Thus, the spectra of w/ and 0, for example, can be expected to overlap in the region where the
high-pass and low-pass filters also overlap (Fig. 7.16). As a result, we can assume w'9_ = 0
only if a spectral gap exists in either w or 0 in the region where the two filters overlap.
The same_comments apply to the computation of variances, since, by the same argument,
wfyl and 9'9_ cannot be expected to vanish. These considerations are important if moments
computed in this way are used in budget calculations that are based on equations derived
by Reynolds averaging.

Appendix 7.2 High-pass filtering and integral time scales

In Section 7.4 we discussed the use of digital high-pass filtering to remove low-frequency
trends in the data and its consequences for the estimation of integral time scales Ta. These
consequences arise because the procedure has the effect of forcing the spectrum at zero
frequency Sa (0) to zero, causing Ta to be zero, if the standard definition of the integral
time scale is used (Appendix 2.1). Here we will examine how high-pass filtering affects the
autocovariance function and through it the integral time scale.

For illustration, we use an example provided by Leif Kristensen (personal communi-
cation), which starts with a near-realistic spectrum for variable a

For example, when computing fluxes by the eddy correlation method, we usually write
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FIG. 7.16 Overlap of «/ and # spectra resulting from overlap in the transfer functions for
the running mean high-pass and low-pass filters.

(For convenience, we retain the two-sided spectral convention used in Appendix 2.1.) Its
autocovariance Ra (£) has the simple exponential form

and an integral time scale, by our standard definition,

At u = 0, the spectrum reduces to the form derived in Appendix 2.1:



278 ATMOSPHERIC BOUNDARY LAYER FLOWS

We now apply a first-order high-pass filter with time constant TH and a power transfer
function (o>Tff)2/[l + (wrn)2] that ensures zero contribution at w = 0. The filtered
spectrum will be

and the corresponding autocovariance function becomes

The effect of filtering on the autocorrelation function pa (£) (the normalized autoco-
variance function) is shown in Fig. 7.17 for different ratios of TH/Ta:0.\, 1.0, 10, and oo.
The effect of high-pass filtering is to introduce a negative lobe (visible, at least, in the first
two curves), large enough to make the integral to infinity equal zero. For TH /Ta = 1, the
zero crossing occurs at £ = Ta. For TH /Ta < 1, the zero crossing is shifted closer to the
origin and for TH /Ta > 1, farther away from £,/Ta = 1.

For Tn/Ta > 10, the zero crossing occurs outside the plot, at some distant £ and
pa (f) is only slightly altered in the range we usually observe. Fortunately, this is the case in
most applications, for otherwise the experimenter would be collecting highly compromised
data.

The shapes of the correlation functions will, no doubt, vary with the type of filter
chosen, but the above exercise does offer some useful insights on high-pass filtering.

1. It tells us roughly how far TH has to be separated from Ta to ensure that important
turbulence information is not lost along with the unwanted trend. Note that at TH /Ta = 1,

Fie. 7.17 Effect of high-pass filtering on the autocorrelation function for various ratios of
filter time constant to integral time scale (from Leif Kristensen, personal communication).
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the filter half-power point (/ = \/2irTH) corresponds approximately to the frequency
where the fS(f) spectrum peaks [which roughly equals l/2irTa as shown in (2.82),
Appendix 2.3]. So, a filter with rn/Ta > 10 would preserve much of the energy at the
spectral peak and the frequencies above.

2. Designing a high-pass filter for a given application requires prior knowledge of the
magnitude of Ta, or where fS(f) might peak. The relationships in Chapter 2 could serve
as a guide because the collected data may be too contaminated by the trend to provide that
information. The experimenter, by choosing TH in this manner, runs the risk of excluding
from consideration conditions that deviate significantly from the norm. (The choice of
record length T can be limiting in the same way.)

3. Practical alternatives to obtaining Ta by integrating pQ(£) to infinity are needed
because it is, first, impossible to implement with real data and, second, of questionable
value, given the theoretical expectation of Ta = 0 for filtered data. One approach is to
choose the value of £ at which /oa(£) = 1/e ~ 3.7 (e ~ 2.72 being the base for natural
logarithms), which, for an exponential autocorrelation function, is precisely Ta, as pointed
out in Chapter 2. Another alternative is to integrate to the first zero crossing or to the point
where pa (£) is very close to zero. Both these methods will systematically underestimate
Ta, seriously so ifrn/Ta is much less than 10.

The concept of the Eulerian integral time scale, or length scale, is intimately related
to the question of ergodicity—whether time averages converge to constant values as the
averaging time approaches infinity. As £ increases, an ergodic variable not only becomes
uncorrelated with itself, it also becomes statistically independent of itself. The integral
time scale is a measure of the time for which a(t) "remembers" itself. At £ :§> Ta, it
approaches statistical independence. A well-designed high-pass filter would preserve the
scales of motion that contribute to this decorrelation and remove only those that interfere
with it. As a final caution, note that analyses such as those involved in the estimate of errors
in moments from finite time averages (Section 7.3) are based on the standard definition of
the integral time scale.
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( ) time average
( ) running average
( )' deviation from time average
( )" deviation from spatial average
{( )} spatial average
[( )] ensemble average in Lagrangian framework
A available thermal energy
cp specific heat at constant pressure
Cn structure parameter for refractive index
CTQ structure parameter for temperature-humidity covariance
Cy structure parameter for temperature
Cy structure parameter for velocity
CQ structure parameter for humidity
Guw (/) stress cospectrum, function of /
Cwg(f) heat flux cospectrum, function of /
Crap (KI ) two-sided cross spectrum of a and (3,

function of K\
Cag (r\) two-sided cospectrum of a and

/3, function of r\
Cgq (K1 ) cospectrum of temperature and humidity, function of K1
Cd drag coefficient
Da (r) structure function for variable a, function of r
e turbulent kinetic energy per unit mass, also base

for natural logarithms ~ 2.72 in Chapters 2 and 7
E vertical moisture flux
E(K) energy spectral density, function of K
Eij (x, K) two-point spectrum tensor, generalized form
Ea0(r1) even part of R a p(r1)
f cyclic frequency, also Coriolis parameter in Chapters 1 and 5
Fa (K1 ) one-sided spectrum of a, function of n\
Fa(K\) two-sided spectrum of a, function of K\
g acceleration of gravity
Gs flux of heat into storage in the soil or vegetation
G(z/L), H(z/L) cospectral coefficients for stress and heat flux cospectra
h depth of the stable boundary layer
H vertical heat flux

flux
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/ imbalance term in turbulent kinetic energy budget
k von Karman constant
Kh, Km, Kq turbulent exchange coefficients for heat, momentum, and water vapor
L Obukhov length
n dimensionless surface layer frequency
ni dimensionless mixed layer frequency
N Brunt-Vaisala frequency
Ng rate of dissipation of 1/2 x temperature variance
O a f i ( K 1 ) odd part of Rap(ri)
p atmospheric pressure
q specific humidity
§» surface layer humidity scale
Q* mixed layer humidity scale
Qa/i (KI ) two-sided quadrature spectrum of a and /3, function of K\
r distance between spatial correlation measurements
r separation vector
r\ separation in the x direction
Rb bulk Richardson number
Rf flux Richardson number
Ri gradient Richardson number
Rij (x, r) two-point covariance tensor, generalized form
Rij (r) two-point covariance tensor in homogeneous turbulence
RL (£) Lagrangian correlation of W(t), function of time lag £
Rn net radiation flux
Rap (r\) cross covariance of a and J3, function of n
Ra (£) autocovariance function, function of £
Sa (/) one-dimensional spectrum of a
Sa ((*>) two-sided spectrum of a, function of u
t time
T temperature
Tf free convection layer scaling temperature
Tr(z) hydrostatic adiabatic reference temperature, function of z
Tv virtual temperature
Tt surface layer scaling temperature
TE eddy turnover time
u longitudinal (streamwise) velocity component
Uf free convection scaling velocity
u» surface layer scaling velocity (friction velocity)
v lateral velocity component
w vertical velocity component
w* mixed layer scaling velocity
W(t) vertical velocity of Lagrangian particle, function of time
x distance along the x direction
x position vector
x, y, z longitudinal (streamwise), lateral, and vertical coordinate directions
z height above ground
ZQ roughness length
Zh boundary layer depth

flux



GENERAL LIST OF SYMBOLS 283

Zi height of capping inversion base taken as the
height of the convective boundary layer

Z(t) height of particle in the Lagrangian framework, function of time
QI Kolmogorov constant for velocity spectra
/3 Bowen ratio
/3 spectral constant for temperature (based on Ng for

1/2 x temperature variance)
a, /3 any two fluctuating variables
7 dimensionless mixed layer temperature destruction rate
F gamma function
e rate of dissipation of turbulent kinetic energy
TJ Kolmogorov microscale
9 potential temperature
Ov virtual potential temperature
6f mixed layer scaling temperature
K wavenumber magnitude
K wavenumber vector
K\ streamwise wavenumber component
A wavelength
Ae latent heat of vaporization
(Am)Q wavelength at spectral maximum for variable a
AQ integral length scale for variable a
v kinematic viscosity
Ve extinction coefficient
p density of air
a Stefan-Boltzmann constant
aa standard deviation of variable a
az standard deviation of Z(t)
pa (£) autocorrelation function for a, function of £
T shear stress
TO surface shear stress
TX,TV, TZ shear stress components along x, y, and z directions
Ta integral time scale for variable a
TL Lagrangian time scale
(j> latitude
4>H dimensionless vertical temperature gradient
</>m dimensionless vertical wind shear
(j>q dimensionless vertical humidity gradient
4>t dimensionless vertical turbulent transport of e
<J>N dimensionless rate of destruction of 1/2 x temperature variance
4>w dimensionless form for aw

4>f dimensionless rate of dissipation of turbulent kinetic energy
(fig dimensionless form for ag
ipe dimensionless mixed layer dissipation rate of turbulent kinetic energy
ipm diabatic term in the wind profile equation
u> circular frequency
fi earth's angular velocity
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Absolute temperature, 6
Acceleration length scale, 240
Adiabatic

lapse rate, 7
reference state, 14 n. 1

Advection, local, 110, 123, 129, 132, 134, 138,
139, 141

Aerodynamic
drag, 85, 86, 94, 103
forcing, 87
resistance, 73, 136

Aircraft, 148, 240, 241
Albedo, 132
Aliasing, 259, 262-63, 268
Anemoclinometer, 215
Anemometer

cup, 79, 138, 208
hot-wire, 79, 138, 158,215
propeller, 208, 209, 215, 219-20
sonic, 37, 79, 158, 215-19, 233, 247-51
split film, 79, 233
thrust, 215
vortex, 215

Archiving data, 272-75
Atmospheric boundary layer

depth, 4-5
states of, 7

Autocorrelation function, 35, 59, 278
Autocovariance function, 58, 277
Available energy, 132
Averaging time, 255
Axially symmetric flow, 237-38
Axisymmetric hill, 156, 169, 185, 189, 239

Balloon
free, 207, 240
tethered, 207, 240

Bivane, 215, 221
Block averaging, 268
Bluff body effect, 70, 95
Boom on towers, 230-31
Boundary layer

convective, 5, 8
marine, 9, 131
neutral, 4-5, 11

resistance, 95
stable, 6, 8-9

Boussinesq approximation, 174
Bowen ratio, 75, 234
Bragg condition, 245
Brunt-Vaisala frequency, 25, 83, 156
Budget

of half temperature variance, 28-29, 143
of heat flux, 29
of momentum flux, 29, 188
of scalar flux, 145
of surface energy, 74, 132, 227
of turbulent kinetic energy, 26-28, 86, 139,

143, 187
of turbulent normal stress, 187-88
of turbulent shear stress, 29, 188

Bulk Richardson number, 15
Bulk transfer coefficient, 70
Buoyancy acceleration analogy, 200
Buoyancy curvature analogy, 195-97, 200
Buoyancy parameter, 14
Businger-Dyer wind profile, 17, 19

Canopy
drag, 98
height, 68
resistance, see Resistance, canopy

Capping inversion, 5, 8, 241
Cartesian coordinates, 235
Centrifugal

acceleration, 188
effects, 198

Climatological resistance, 75
Combination equation, 68, 73-77, 96-97
Commutator, 238
Conservation of

enthalpy, 138
heat, 86
humidity, 86
momentum, 84

Constant stress layer, 4, 10, 79
Convection velocity, 61-62, 102
Convective

boundary layer, 5, 8
boundary layer depth, 5,21
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matching layer, 24
mixed layer, 21

Coordinates
Cartesian, 235
curvilinear, 158
streamline, 160, 162, 181, 235, 237
surface following, 162-63

Coriolis force/parameter, 4, 122, 156
Correlation coefficient, 19-20, 79
Cosine tapering, 268
Cospectrum

of heat flux, 53-57, 104
of stress, 53-57, 104
of temperature and humidity, 244

Cospectrum peak, 56, 104
Counter-gradient diffusion, 93
Counter-gradient flux, 82-83, 90
Covariance tensor, 33
Critical sampling, 259
Cross covariance, 60
Cross spectra, 60
Cup anemometer, see Anemometer, cup
Cup anemometer overspeeding, 90, 232
Curvature Richardson number, 196, 198
Curvilinear coordinates, 158
Cyclic frequency, 39

Decimation, 273
Detrending, 264-66
Diabatic

effects, 196
influence functions, 71
wind profile, 17-18

Diffusion coefficient, 71
Diffusivity, 10, 93
Digital sampling, 14, 254, 259
Dispersive flux of momentum, 85
Displacement height, 68
Dissipation rate of

half temperature variance, 26, 28, 37
turbulent kinetic energy, 16, 24, 26, 35, 36, 86,

139, 187
Dissipation range, 34, 35
Diurnal trend, 47, 49
Dividing streamline, 178
Doppler

lidar, 244
shift, 242

Drag
aerodynamic, see Aerodynamic drag
canopy,98
coefficient, 95, 127, 183,201
geostrophic, 122

Drag plate, 110, 207, 227, 229
Drainage wind, 9
Drone, 240
Dust devil, 8

Eddy
cascade, 32

correlation, 13
diffusivity, 89, 144
flux, 89
turnover time scale, 145, 189-90, 192

Emissivity, 132
Energy

available, 132
balance, thermal, 74, 132, 227
cascade, 32, 88
spectrum, 34, 57
turbulent kinetic, 26, 86, 139, 187

Energy-containing
eddies, 187
range, 34, 37, 103

Entrainment, 8, 23, 47, 53
Equilibrium evaporation, 76
Ergodic hypothesis, 255, 276, 279
Eulerian integral

length scale, see Integral length scale, Eulerian
time scale, see Integral time scale, Eulerian

Exchange coefficients for
heat, 10, 19, 70
humidity, 10, 70
momentum, 4, 10, 18, 19, 70

Excluded region, 43, 150
Extinction coefficient, 79

Fast-Fourier transform, 257, 269
Filter

high-pass, 265, 266, 276-79
low-pass, 265
running mean, 266, 275

Flux
counter gradient, 82-83, 90
curvature Richardson number, 196
eddy, 89
of heat, 4, 10, 12-13, 70, 74, 82, 199
of latent heat, 74, 123, 132,227
of moisture, 4, 10, 13,70,82
of momentum, 4, 10, 12-13, 70, 199, 229
plate, 207, 228

Flux Richardson number, see Richardson number,
flux

Folding frequency, 259
Foliage velocity, 86
Fourier spectrum, 32, 57
Free convection, 44
Frequency

cyclic, 39
dimensionless, 40, 47, 104
smoothing, 269

Friction velocity, 4, 10, 114
Froude number, 156, 173, 179, 198

Geostrophic drag, 122
Gortler vortices, 196
Gradient Richardson number, see Richardson

number, gradient
Gravity vector, 159, 236
Gravity waves, 9, 25, 28, 38, 50, 241
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Hamming window, 267
Heat flux, see Flux, of heat
Heat flux budget, 29
Heterogeneity, horizontal, 109-10
Homogeneity, horizontal, 3, 10, 26, 109
Honami, 91,98
Horizontal roll vortices, 8
Hot-wire anemometer, see Anemometer, hot-wire
Humidity scaling parameter

for mixed layer, 23
for surface layer, 17

Hygrometer
dewpoint, 212
infrared, 225
krypton, 224, 225, 233
Lyman-alpha, 224-25, 233
psychrometric, 212

Imbalance term, 27
Inactive motions, 101, 183
Incoming radiation, 74
Inertial subrange, 34, 36, 40, 54, 99, 102, 103
Infrared

gas analyzer, 213-15
hygrometer, 225

Inner layer, 156, 164, 167-69, 174-75, 185
In situ sensors, 208
Integral length scale, Eulerian, 34-35, 44, 59, 80,

89,93, 101, 192, 196
Integral time scale

Eulerian, 35,45, 59, 80,93, 266, 276-79
Lagrangian, 93

Intermittency, 80
Internal boundary layer

convective, 123, 127
depth, 110, 113, 126-28
long fetches, 126-28
scalar, 123
stable, 123, 128

Inverse diabatic influence functions, 71
Inversion

in canopy, 81
capping, 5, 8
nighttime, 5

Isotropic turbulence, 103
Isotropy, 36, 99, 102-3

Kinematic viscosity, see Viscosity, kinematic
Kolmogorov

constant, 36, 40, 47, 63
microscale, 34, 35, 98

Krypton hygrometer, 224, 225, 233
K-theory, 10,89-91
Kytoon, 240

Lagrangian
correlation function, 93
integral time scale, 93

Lapse rate, 7
Latent heat of vaporization, 9, 74

Leaf Area Index (LAI), 79
Lee waves, 180, 198
Length scale, Eulerian integral, see Integral length

scale, Eulerian
Lidar, 242, 244-45
Local

advection, see Advection, local
equilibrium, 144-46, 157, 181, 192, 200
isotropy, 36
M-O similarity, 25

Logarithmic
moisture profile, 69
spectrum, 39
temperature profile, 69
wind profile, see Wind profile, logarithmic

Lyman alpha hygrometer, 224, 233
Lysimeter, 110, 133, 207, 229

Matching layer
convective, 24
scaling, 24, 25
similarity, 24

Microscale, see Kolmogorov microscale
Microwave refractometer, 226
Middle layer, 167-69, 174-75
Mixed layer

convective, 21-24
scaling, 21, 25,45
similarity, 21,47
spectra, 45-50
structure functions, 52-53

Moisture flux, see Flux, of moisture
Momentum flux, see Flux, of momentum
Momentum flux budget, 29
Monin-Obukhov (M-O)

hypothesis, 15, 67, 198
local similarity, 26
scaling, 15,40,45, 199
similarity, 15, 17, 19, 40, 69, 173

Moving equilibrium, 99

Net radiometer, 228, 234
Noise, pink, 50
Noise in spectrum, 271
Nyquist frequency, 259

Oasis situation, 76
Obukhov length, 15, 175, 199, 224, 273
Outer layer

over hills, 164, 167, 169, 177
stable, 25, 50

Padding, 268
Photosynthesis, 74
Pink noise, 50
Plant canopies, 66
Platinum resistance thermometer, see Therometer,

platinum resistance
Plumes, convective, 8
Potential evaporation, 76
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Potential temperature, 6
Potential virtual temperature, 7
Power line frequency, 261
Prandtl number, 125
Prefiltering

analog, 262
digital, 263

Pressure
atmospheric, 6, 26
field around hill, 169, 173
on foliage, 70
gradient, 170
probe, 226
transport, 88, 140

Pressure strain interaction, 187-88
Principal normal direction, 237
Profile

of humidity, 10
of temperature, 10, 81, 129-32
of wind speed, 10, 11-13, 115-16

Propeller anemometer, see Anemometer, propeller

Quartz thermometer, 210, 211

Radar, 242, 243
Radiation

longwave, 74, 132
net, 74, 132,227,234
shortwave, 74, 132

Radio Acoustic Sounding System (RASS), 245
Radiometer

cylindrical, 234
net, 228

Radiometric thermometer, 230
Radius of curvature of streamline, 161
Rapid distortion, 181, 186, 192, 193
Record length, 258
Reference temperature

adiabatic, 14
for hill flow, 160

Refractive index structure parameter, 243
Remote sensors, 207, 241
Resistance

aerodynamic, 73, 136
boundary layer, 95
canopy, 73, 74, 97, 133
climatological, 75
stomatal, 74, 97
surface, 133, 136

Reynolds averaging, 255, 275
Reynolds stress, 14
Richardson number

bulk, 15
curvature, 196, 198
flux, 14, 19, 25, 83, 84, 198
flux curvature, 196
gradient, 14, 19, 83, 196

Roughness change, see Surface change
Roughness length

for humidity, 69, 70

for temperature, 69, 70
for velocity, 11,69,70

Roughness sublayer, 71, 73, 80, 83, 97, 100
Running mean, 265-66, 275-76

Sampling
critical, 259
digital, 14, 254
rate, 14, 256, 259

Saturated specific humidity, 74
Schmidt number, 125
Scorer condition, 177
Second-order closure model, 118, 121, 133, 180
Self-preserving behavior, 117, 129-30
Separation bubble, 157, 162, 163, 169-72, 193
Separation region, 162, 169-72
Serret-Frenet formula, 238
Shelter effect, 71,95
Side-band leakage, 268
Similarity

local, 26, 199
matching layer, 24
mixed layer, 21, 47
surface layer, see Monin-Obukhov, similarity

Skewness, 80
Sodar

bistatic Doppler, 242
Doppler, 242-43
Doppler, mini, 242
echoes, 5
monostatic Doppler, 242-43

Soil heat flux, 74, 132, 222, 228
Sonic anemometer, see Anemometer, sonic
Sonic thermometer, see Thermometer, sonic
Specific humidity, 10, 74, 212
Spectral

peak, 42-45, 47, 50, 100-102
shortcut, 103
splicing, 270

Spectrum
analysis, 257, 269
canopy, 97
over hills, 197
logarithmic, 39
mixed layer, 45-50
one-dimensional, 36, 58, 59
stable outer layer, 50
step change of surface, 149
surface layer, 40-45
temperature, 41, 43, 49, 51, 104
three-dimensional, 38, 57

Speedup, 166, 168-69, 180
Stable outer layer, 25, 50
Stationarity, 3, 10, 255
Stefan-Boltzmann constant, 132
Stomatal resistance, 74, 97
Strain rates over hills, 189, 190
Streamline convergence, 202
Streamline coordinates, see Coordinates, streamline
Streamline curvature, 186, 238
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Stream surface, 159,238
Streamwise acceleration, 181, 188
Streamwise wavenumber, 36
Stresses, 10, 181
Structure function, 51
Structure parameter, 51-53
Surface change

cold-to-hot, 123, 126, 130, 131, 146, 148-49
hot-to-cold, 123, 128-29, 131, 146, 149
rough-to-smooth, 112, 120, 122, 140-41
in scalar flux, 123, 136-37, 142-44
smooth-to-rough, 112, 120, 122, 138-40
in stress, 120-23

Surface curvature, 240
Surface energy budget, see Budget, of surface

energy
Surface layer, 4, 10, 103
Surface resistance, 133, 136

Tapering windows, 266-68
Taylor's hypothesis, 33, 35-36, 39, 58, 61, 80,

102, 241
Temperature

absolute, 6
flux, 15
hydrostatic adiabatic reference, 14
potential, 6
surface, 132
virtual, 7
virtual potential, 7, 86

Temperature scaling parameter
for matching layer, 24-25
for mixed layer, 21, 25, 45
for surface layer, 15-16, 25, 40

Temperature spectrum, see Spectrum, temperature
Temperature variance budget terms

advection, 144
dissipation, 28, 144
production, 28, 144
vertical transport, 28, 144

Thermals, 8
Thermistor, 210, 211,221
Thermocouple, 210, 211, 221
Thermometer

platinum resistance, 210-11, 221, 222
quartz, 210, 211
radiometric, 230
sonic, 221,222-24, 248

Three-dimensional hill, 171
Time scale

Eddy turnover, see Eddy turnover time scale
Eulerian integral, see Integral time scale,

Eulerian
Lagrangian, 93

Tower, 207
Trace gas sensors, 213-15, 226

Transducer shadowing, 218, 250
Trend removal, 264
Tropics, 9
Turbulence

closure model, see Second-order closure model
memory, 181, 190-92, 195
wake-generated, 233

Turbulent kinetic energy, see Energy, turbulent
kinetic

Turbulent kinetic energy budget terms
buoyant production, 27, 47, 86, 89, 140
dispersive transport, 86-87
dissipation, 27, 47, 86, 88, 139, 140, 188
pressure transport, 27, 86-89, 140, 188
shear production, 27, 86-87, 89, 97, 141
turbulent transport, 27, 86-89, 139, 141,

188
wake production, 86-87, 97-98, 103
waving production, 86-87, 97-98

Two-dimensional ridge, 157, 169, 170, 171, 172,
185

Vapor flux density, 97
Velocity scaling parameter

for matching layer, 24, 25
for mixed layer, 21, 25, 45
for surface layer, 15-16, 25, 40

Viscosity, kinematic, 10, 35, 79, 158
Viscous dissipation, 27
Viscous stress, 27
Volume averaging, 85
von Karman constant, 11, 63
Wake

production, 26, 41, 47
region, 164, 172
turbulence, 193
velocity defect, 172

Wake-generated turbulence, 233
Wavenumber

magnitude, 34
space, 34
Streamwise, 36

Window function, 267
Wind profile

behind change of roughness, 115-19
diabatic, 17-18
over hills, 163-65
logarithmic, 11-13, 17, 68, 115-16, 167, 174,

199,201
in plant canopies, 77-78

Wind profiling radar, 243
Wind vane, 208
Witch of Agnesi profile, 168, 176, 177

Z-less stratification, 44




