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Preface 

The present book is based on a course developed as part of the large NSF-funded 
Gateway Coalition Initiative in Engineering Education which included Case West­
em Reserve University, Columbia University, Cooper Union, Drexel University, 
Florida International University, New Jersey Institute of Technology, Ohio State 
University, University of Pennsylvania, Polytechnic University, and University of 
South Carolina. The Coalition aimed to restructure the engineering curriculum 
by incorporating the latest technological innovations and tried to attract more and 
better students to engineering and science. Drafts of this textbook have been used 
since 1992 in statistics courses taught at CWRU, Indiana University, Bloomington, 
and at the universities in Gottingen, Germany, and Grenoble, France. 

Another purpose of this project was to develop a courseware that would take 
advantage of the Electronic Learning Environment created by CWRUnet-the all 
fiber-optic Case Western Reserve University computer network, and its ability to 
let students run Mathematica experiments and projects in their dormitory rooms, 
and interact paperlessly with the instructor. 

Theoretically, one could try to go through this book without doing Mathematica 
experiments on the computer, but it would be like playing Chopin's Piano Concerto 
in E-minor, or Pink Floyd's The Wall, on an accordion. One would get an idea 
of what the tune was without ever experiencing the full richness and power of the 
entire composition, and the whole ambience would be miscued. 

Acknowledgments 

Thanks are due to several groups of students that have taken different versions of 
this course over the last six years. They patiently and consistently found mistakes, 
produced good graphics, and came up with interesting data sets from their own 
disciplines. Their individual contributions are acknowledged in the text. We also 
appreciate help from Tom Ryan and Jiming Jiang of the CWRU Statistics Depart­
ment, who read various portions of the manuscript and pointed out places that could 
be improved upon. We thank Steve Pinkus of Yale University and Burt Singer 
of Princeton University for discussing with us their recent work on computable 
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read several chapter of the manuscript with his usual sharp eye towards details and 
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matica developers, and kept us current on the latest Mathematica developments. 
We thank him for his support. Neepa Mukherjee, a CWRU statistics graduate 
student, assisted us in preparation of the final versions of non-Mathematica figures 
and working with her was a pleasant experience. Finally, we want to acknowledge 
a patient and benevolent guidance and encouragement from Wayne Yuhasz and 
Lauren Lavery, our Birkhiiuser editors. 
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Introduction 

Goal and Audience 

The present book is intended as a text for an introductory level statistics course. It 
addresses the phenomenon of uncertainty, which appears in most of the engineering 
and scientific problems for various reasons, and which can be modeled in several, 
basically different, ways. The book's novelty is integration of ideas about statistics 
of random phenomena stemming from three distinct viewpoints: 

algorithmic! computational complexity, 
classical probability theory, and 
chaotic behavior in nonlinear systems. 

Given an elementary level of the textbook and an anticipated preparation of 
the targeted audience, the exposition depends heavily on the Mathematica1 com­
puter experimentation and simulations by the students. Here, we would like to 
think about instruction proceeding in an environment of Uncertain Virtual Worlds 
(UVW), and we provide some Mathematica tutoring as we move along. The goal 
is to give engineering and science students a forward looking alternative to the 
usual introductory statistics courses, an alternative that we feel will become the 
norm of the future as pressures to incorporate a study of algorithmic complexity 
and chaos-induced uncertainty increases in the already crowded curriculum. Such 
a course can be comfortably and profitably taken by either upper division under­
graduate students or graduate engineering and science students who have never 
had a statistics course before. 

Prerequisites include a typical engineering/science 2-3 semester calculus se­
quence (including some differential equations and linear algebra) in addition to a 
basic programming course in computer science (generally taken during the stu­
dent's first year). The course can serve both as an important technical engineer­
ing/science statistics elective and, possibly, as a mathematics or statistics curricular 
requirement. 

10r any other symbolic manipulation software, such as, e.g., Maple. 

xvii 



xviii Introduction 

Typically, a course like this would be taught out of a Statistics Department. 
However, in many schools, departments of Mathematics, Mathematics and Statis­
tics, Applied Mathematics, or even some non-mathematical sciences departments 
(such as Industrial Engineering, Systems Engineering and Operations Research) 
could be responsible for this course. 

Although the primary deliverers of this course would be statisticians, the course 
should be fun as well to teach for mathematicians and broader-minded engineers. 
It goes beyond the orthodox beginning statistical offering (same for, more or less, 
the last 50 years) to some mathematically thrilling territory, while maintaining a 
fairly introductory level accessible to broad student audiences. 

Philosophy 

Persi Diaconis is fond of saying that "statistics is a physics of numbers" and 
our philosophy is not too far from that statement. Loosely speaking, the book will 
emphasize statistics as a science (as opposed to a formal abstract theory and a branch 
of probability theory) concerned with all facets of handling large numerical data 
sets. It very much subscribes to the standard scientific methodology: proceed from 
experiment to inductive inference. It is woven around themes like data collection, 
compression, representation and analysis, modeling of random phenomena, model 
identification and design of experiments. We emphasize that all the data actually 
collected in today's computerized environment are discrete. Continuous models 
are then a convenient analytical abstraction- that is how Gaussian distribution was 
initially perceived by de Moivre, before the central limit theorem was proved. 
Examples from actual engineering and science studies are plentiful and are an 
integral part of the exposition. 

In 1992, just as we started putting our ideas together on paper and in the class­
room, we found out that French mathematicians and physicists David Ruelle and 
lvar Ekeland, published two volumes popularizing a position that was also ours. 
We couldn't have hoped for a better preparation of the public for the appearance 
of our textbook. Ruelle's book Chance and Chaos was published by Princeton 
University Press, and Ekeland's Au Hasard: La Chance, La Science, Le Monde 
appeared in Paris at Le Seuil. We used Ruelle's book as a mandatory additional 
reading assignment for students enrolled in the Uncertainty course, and an essay­
style project related to the book was routinely assigned. 

In the perennial "Bayesians vs. frequentists" debate we come squarely on the 
frequentist side, but only as a more effective pedagogical approach. Recent studies 
in the psychology of learning showed that "the mind is a frequentist device". This 
may be a result of the way the human brain evolved through environmental pres­
sures. The above claim even found its way into the popular press. The Economist, 
in the 4th of July 1992 issue, argued, in a piece2 entitled "A critique of pure rea-

2Reproduced at the end of this book as Appendix C. 
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son", that the psychologists' findings show that "merely rephrasing a problem in 
frequentist rather than Bayesian terms generally increases the number of people 
who can solve it". 

In real life, modem applied statistics takes advantage of powerful software pack­
ages. However, we felt that the pedagogical benefits of using them from the start 
are limited because they do not give students sufficient insight into the nature of 
algorithms and do not let students experiment with random phenomena. The latter 
have to be simulated and that simulation methodology is now widespread in the 
engineering and science research and design communities. It is therefore a crucial 
topic to explain randomness from the algorithmic and computational viewpoint. 

Although random phenomena have always struck peoples' imagination and af­
fected their lives, until recently, students of randomness came to the subject with a 
limited experience usually acquired by playing the games of chance. However, to 
detect the laws of random behavior, the data sets have to be so large that one cannot 
easily see or grasp these regularities in everyday circumstances. The situation was 
thus basically different from, say, mechanics or calculus where students' intuition 
is formed by a lifetime of experiences of walking, throwing baseballs, swimming, 
and sledding. In the past, the usual path to the discovery of the laws of random­
ness, even in our elementary school programs, was by logical understanding and 
abstract computations. However, with the advent of computers and, especially, 
very flexible symbolic manipulation programs, such as Mathematica and Maple, 
it became possible to obtain a reasonably quick insight and develop sophisticated 
intuition about randomness by doing computer experiments. The software enables 
students to handle large sets of data in a relatively simple fashion. It seemed obvi­
ous to us that such an approach has to be built-in in any modem statistics course. 
The textbook takes advantage of this development permitting students independent 
exploration and self-paced instruction. 

Also, during the last decade or so, the chaotic behavior in nonlinear systems 
emerged as an omnipresent source of randomness in real physical nonlinear dy­
namical systems. So, it was obvious to us that its study should be incorporated in 
the statistics curriculum from the very beginning. 

Finally, it is worth observing that this book could have the subtitle The Kol­
mogorov's Legacy. Indeed, it is Andrei Nikolaevich Kolmogorov (1903- 1987), 
a Russian mathematician, whose life's intellectual journey is being retraced on 
the pages of this volume. In his 1933 treatise he laid the rigorous mathematical 
foundation for probability theory (see Chapter 5) and statistics which blossomed 
afterwards into major areas of the scientific enterprise. Then, after World War II, 
he made major breakthroughs in the study of nonlinear dynamical systems in his 
work on turbulence and development of the concept of entropy, and conducted 
fundamental studies of the idea of randomness in terms of algorithmic (computa­
tional) complexity. This book could not have been written without Kolmogorov's 
seminal contributions. 



XX Introduction 

Organization 

Major topics included in the book are 

I. Descriptive Statistics-Compressing Data. This part includes chapters on nu­
merical and graphical representation of data, statistical functions, analytic rep­
resentation of discrete data, and introduces the concepts of fractals and random 
fractals in association with image compression. The topic of computer generation 
of ''random sequences" is also discussed. 

II. Modeling Uncertainty. Here models arising via simple mathematical recur­
sive relations but nevertheless exhibiting random behavior are introduced. Rela­
tionships between randomness and algorithmic complexity, so important in com­
puter science and engineering, are studied, pseudo-random numbers and questions 
of validity of the Monte-Carlo methods are discussed. This material is followed by 
the concept of statistical independence and the classical Kolmogorovian probability 
theory. The part ends with an exposition on basic properties of chaotic dynamical 
systems and a discussion on how uncertainty appears in the real physical systems. 

III. Statistical inference-Selecting a Model. This part introduces the common, 
and generally accepted, methodology for designing experiments and making in­
ferences on the basis of their outcomes. General principles of experimental design 
and data collection are explained, as well as the principal statistical functions 
(estimators) on which inference is based. The two types of statistical inference, 
confidence intervals and test procedures, are developed in the framework of nor­
mal models. In particular, the one- and two-sample models, regression, and the 
analysis of variance for one- and two-factor completely randomized designs are 
studied. 

The textbook specifically addresses needs of engineering and science students 
by a selection of examples of statistical problems arising in real-life industrial and 
scientific lab situations. They form a constant background for our discussions 
as we proceed through the material in a spiral-like fashion, starting at each level 
with real-life examples, followed by a simulated computer exploration, and then a 
formulation of formal analytical principles. The examples have been collected from 
engineering and scientific literature and through direct interaction with practicing 
engineers and scientists. In particular, sets of experimental data for statistical 
analysis are made accessible to the students on Internet. 

A series of student projects should be an essential part of the course and play a 
major role in students' evaluation. At CWRU we encouraged students to work in 
small groups of 2 to 3 people. Except for the projects for Chapters 3 and 5 which 
are analytic in nature and individual, all the projects are Mathematica intensive and 
students should be required to turn in the code, explanations, analysis, and plenti­
ful graphics. Figures 0.0.1 and 0.0.2 present some of the graphics obtained by the 
students in projects that involved Gaussian approximation in the central limit theo­
rem (Fig. 0.0.1 a), analysis of the algorithmic complexity of binary representations 
(Fig. O.O.lb), or simulation of the invariant density for the logistic chaotic map­
ping of the unit interval (Fig. 0.0.2a). Sometimes, students explorations resulted in 
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interesting insights: Bill Dickinson produced an unorthodox 3-dimensional orbit 
diagram for the logistic dynamical system which, in addition to the usual repre­
sentations of bifurcations, also displayed relative frequencies of visits to different 
states (Fig. 0.0.2b). The Mathematica projects usually engendered a lot of enthu­
siasm and independent work by the students. The length of many of the reports 
could be a mixed blessing to the instructor though as they easily run into 40 to 50 
pages each; more recently we gave students page limitations. 

The last, nontechnical individual project was an essay on the theme of the above 
mentioned book by David Ruelle from the vantage point of the material learned 
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FIGURE 0.0.2 

in the course. The students were asked to select a chapter from Ruelle's book that 
they found most stimulating or provocative (whether they agreed or disagreed with 
it) and provide their own commentary to it. The project emphasized good writing 
skills and the students often displayed an amazing maturity and sophistication. 
They wrote with flair on self-selected topics that ranged from predictably techni­
cal, such as ''The Bell Inequality in Quantum mechanics", to "Life, Intelligence, 
Uncertainty", "Determinism and the Orthodox Judaism", "Determinism, Free Will 
and Choice", "True Meaning of Sex" and a Platonian dialogue on the question of 
randomness. 

Realistically, given the amount of the material, it is impossible to go through 
the whole book in great detail in a one-term course. We have successfully taught 
three somewhat different courses using early drafts of the textbook: 
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1. A more elementary version based on Parts I and III, emphasizing concrete 
algorithmic skills. 

2. A more advanced version that would cover Parts I and II and include more 
theoretical material on algorithmic complexity, statistical independence modeling, 
and chaotic behavior in dynamical systems. 

3. A selection of sections from all three parts, with some other sections assigned 
as independent reading. 

The book is complemented by data sets and interactive uvw Mathematica pack­
ages written by Bernard Y cart of the Grenoble University; the latter are described 
in detail in Appendix E. These electronic materials are extensively used throughout 
this book in the Mathematica experiments, and can be downloaded by the reader 
from the UVW Web Site which can be accessed at the Internet address 

http://www.birkhauser.com/book/isbn/0-8176-4031-2. 

The uvw Web Site is an integral part of our book. In the future, we plan to develop 
it into a fully interactive, electronic version of this text. 

http://www.birkhauser.com/book/isbn/0-8176-4031-2
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Chapter 1 

Why One Needs to Analyze Data 

In this chapter you will find a collection of examples of phenomena where the ran­
domness plays an essential role. Browse through them at your leisure, experiment 
with the data provided, and use this opportunity to ease your way into Mathemat­
ica. The idea is to get a general feel for the issues to be discussed later in the book 
in greater detail. 

1.1 Coin tossing, lottery, and the stock market 

Coin tossing is a proverbial and generic example one associates with random­
ness. One tosses a (fair) coin repeatedly and the observed outcome is either heads 
or tails. For the sake of simplicity we will code heads as "1" and tails as "0", so the 
outcome of an experiment consisting of multiple tosses of a coin can be encoded as 
a string1 of zeros and ones, a long word in the alphabet consisting of two "letters" 
0 and 1. Here are a few examples of such strings: 

(a) 1111111111111111111111111 
(b) 10101010101010101010101010 
(c) 10010011100100111001001110010011 
(d) 011011100101110111100010011010 
(e) 10111001011111001000000110101001 

Their length n are, respectively, 25, 26, 32, 30, and 32. 
Intuitively, not all of them seem equally random. If the coin is "fair", one could 

test its "fairness" (or the lack of preference for either side- arguably, an attribute 
of randomness) by comparing relative frequencies of appearance of heads and tails. 
Recall that for a string 

X!, X2, X3, ... , Xn (1) 

1 Note that in Mathematica "strings" are a special InputForm not to be confused with algebraic 
expressions and lists. All of them, though, are strings in the sense of this chapter. 

3 © Springer International Publishing AG 2017 
M. Denker, W. Woyczynski, Introductory Statistics and Random Phenomena, 
Modern Birkhäuser Classics, DOI 10.1007/978-3-319-66152-0_1 
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consisting of Os and 1 s, the relative frequency of either of these letters is defined 

as 
#{i: Xi= 0} 

fo = , (2) 
n 

#{i:xi=1} 
/J= . (3) 

n 

The notation #A means the number of elements (cardinality) of set A, so that the 

numerator#{i: Xi= O}reads: thenumberofindicesi forwhichthestringelement 

Xi is equal to 0. In all of the above strings, except the first one, both frequencies 

are equal 
/o = /1 = 1/2. (4) 

So, the violation of equality (4) seems to be sufficient grounds to eliminate the 

first string as random: we would like to believe that the "fortune" is blind. (On 

the other hand, coin tossing is a dynamical system subject to the Newtonian laws 

of mechanics and, given sufficient initial data about each toss, we should be able 

to precisely determine the outcome of each toss. Or should we?2) 

However, the fact that strings (b-e) satisfy the "equipartition" rule (4) does not 

make them look totally random to us. As a matter of fact, we can detect a vague 

increasing degree of randomness in these strings as we move from the first to the 

last. How can we express this intuition more formally and provide a framework 

for a quantitative analysis of this uncertainty? 
The first, and not unreasonable, hunch could be that the randomness (or the 

uncertainty, but let us stick to the first term for the time being) in each of these 

strings has something to do with the complexity of each sequence or, more exactly, 

with our inability to encode the strings perceived as random in simple terms or, to 

rephrase it one more time, to provide short descriptions for them. However, such 

an approach-define a string as random if it has no short description-requires 

some caution because of what is known as the Richard -Berry Paradox. 3 The 

description 

THE SMALLEST NUMBER THAT CAN NOT BE DEFINED 

WITH LESS THAN ONE THOUSAND LETTERS 

has itself less than one thousand letters!!! 
So, let us return for a moment to the equipartition idea and see if we can exploit 

it in a more sophisticated fashion. Observe that although the strings (b-e) have 

similar relative frequency of zeros and ones, the situation changes dramatically if 

we start inspecting the relative frequency of consecutive blocks of letters of length 

more than one. In the case of blocks of length 2, we get 

2This and related issues of the chaotic behavior in dynamical systems will be discussed in detail 

in Chapter 6. 
3This paradox and the related algorithmic complexity issues will be discussed at length in Chapter 

4. 
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(a) 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 
(25- 1 = 24 blocks) 

(b) 10 01 10 01 10 01 10 01 10 01 10 01 10 10 01 10 01 10 01 10 01 10 01 10 
( 25 blocks) 

(c) 10 00 01 10 00 01 11 11 10 00 01 10 00 01 11 11 10 00 01 10 00 01 11 11 
10 00 01 10 00 01 11 (31 blocks) 

(d) 01 11 10 01 11 1110 00 0110 01 11 1110 0111 11 1110 00 00 01 10 00 
01 11 10 01 10 (29 blocks) 

(e) 10 01 11 11 10 00 01 10 01 11 11 11 11 10 00 01 10 00 00 00 00 00 01 11 
10 01 10 0110 00 01 (31 blocks) 

Now, both (a) and (b) fail this equipartition test of order 2 as, out of four possible 
blocks 00, 01, 10, 11 oflength 2, block 11 is favored in the first string and blocks 
10 and 01 in the second. Think about them as letters of an alphabet consisting of 
four letters: 00, 01, 10, 11. Neither of them should be favored if a string is to be 
called random. 

This suggests the following hierarchy of tests of randomness for the binary (zero 
or one) strings Xt, x2, ... , Xn: 

1. Test of order 1. Check the relative frequencies of Os and 1 s. If they are equal 
(or, in practical situations, close) to 112, then we can say that the string passes the 
1st order test of randomness. 

String (a) fails this test but strings (b-e) pass it. 

2. Test of order 2. Check the relative frequencies of blocks 00, 01, 10, 11, 
computed as follows: 

#{i: (Xj, Xi+t) = (0, 0)} 
/oo = 1 ' n-

~ #{i: (Xi, Xi+l) = (0, 1)} 
JOl = , 

n-1 
(5) 

f #{i: (Xj,Xi+l) = (1,0)} 
10 = ' n-1 

#{i: (Xj, Xi+t) = (1, 1)} 
Ill= . 

n-1 
(6) 

If they are all close to 114, then we can say that the string passes the 2nd order test 
of randomness. 

As observed above, strings (a) and (b) fail the test of order 2. Strings (c) and 
(e), practically, pass it as for both, /oo = /ot = Ito = 8/31, Ill = 7/31. The 
case of string (d) is more debatable because then /oo = 4/29, lot = /10 = 
8/29, fll = 9/29, but more on this string below. Note that for shorter strings it 
may be impossible to achieve a perfect frequency balance between different blocks; 
our concepts are more appropriate for very long strings. 

At this stage it is clear how to proceed further. The 3rd order test would check 
that the frequencies of blocks of length three are about 118, and the k-th order test 
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would check that the frequencies of blocks of length k stay close to 1 /2k, and so 
on. 

Definition 1.1.1 Equipartition Property. 
A long string is said to enjoy the equipartition property if it passes the tests of 

randomness of all orders k = 1, 2, 3, ... 

In our examples, string (c) fails the test of randomness of order 8 because it is 
periodic. This becomes obvious if we write it in the form 

(c) 10010011 10010011 10010011 10010011. 

There are 28 = 256 different possible blocks of length 8, and each of them should 
have the same frequency 1/256. String (c) contains 32-7 = 25 blocks of length 
8. The block 10010011 appears with the relative frequency 4125, the seven blocks 
00100111,01001110,10011100,00111001,01110010,11100100,11001001with 
the frequency 3/25, and other blocks have frequency 0. 

So, that leaves open the question: How random are strings (d) and (e)? Well, on 
a closer inspection one discovers that string (d) can be rewritten in the form 

(d) 011011100101110111100010011010 ... 

which we immediately recognize as the binary representation of the decimal string 
representing the so-called Champernowne number 

(d') 0. 1 2 3 4 56 7 8 9 10 11 12 13 14 ... 

-hardly a sequence anybody would call random. However, it turns out that (d), 
as an infinite sequence, passes the tests of randomness of arbitrary order although 
the proof of its equipartition property is not easy. So, what is really going on? 
Despite the equipartition property, the string is perfectly predictable, violating 
another obviously desirable attribute of randomness, the unpredictability. Indeed, 
if the previous term of string (d') is known, one can produce a very deterministic 
formula to produce the next term: 

where g(x) = x + 1. 

Clearly, equipartition property cannot be equated with randomness although it 
should be implied by the latter. And what about the sequence (e)? It was produced 
by a ''random" number generator on a computer. We will return to computer 
generation of "random" numbers later. 

The above informal discussion gives a taste of foundational problems with which 
we are faced when we try to formalize the notion of uncertainty or randomness. 
They will be addressed in greater depth and detail in the remainder of this book. 
Of course, the questions of randomness routinely arise in engineering, science, 



1.1. Coin Tossing, Lottery, and the Stock Market 

DOW JONES 
Friday closes 

7 

Friday, Jan. 13, 1995 
3908.46 

~~mnftft~~mnftft~~~mnftft~~mnnn~~mmftft~~~mnftft~ 

IDI~~~~~~~~~~~~~~~~~~~~~~~~H\~ 

IIJ6 H+++Hifi~Hifl~~++t+i~Hifi~Hifl~~+++ 

lni~*HM*~~*HM*~~~**~~~ 

IDI ~*HM*~~~M*~~~*HH+ 

117& H+++~++++H+H~Hifl++t+i~+++ 

1471 ~*HM*~I+*I~++ 

lmi lttti+H+t+t+1 

m& 

1111 

1111 

1111 

1111 

m& 

FIGURE 1.1.1 
The Plain Dealer of January 15, 1995. 

economics, and daily life. We open our local paper to inspect if our latest picks in 
the stock market are panning out (Fig. 1.1.1), or to check if we won in last night's 
lottery drawing (Fig. 1.1.2) - both, perplexingly uncertain events. 

In the next few sections we will go through a number of real-life examples where 
uncertainty is an important aspect of the phenomenon. 

Computer experiments and projects are an important ingredient of this book. We 
conduct them in the Mathematica symbolic manipulation software environment, 
but any other similar language, such as Maple, would do. To facilitate your intro­
duction to Mathematica, we will go through a series of beginner-friendly tutorials 
which, however, should not replace your independent and systematic familiariza­
tion with Mathematica using any of the excellent books listed in the Bibliographical 
Notes at the end of this chapter. The larger data with which you are asked to ex­
periment are supplied on the Internet UVW Web Site; no need to keyboard them 
manually. 

Mathematica Experiment 1. Zeros and Ones. Mathematica makes it possible 
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OHIO LOTTERY 

Last night's drawing I 
PICK3: 8 3 2 PICK4: 2 1 2 0 

BUCKEYE 5: Friday, Jan. 13 

6 9 21 29 37 

SUPER LOTTO: Saturday, January 14 

QJ[!][!]~~~ 
The Wednesday, January 18 
jackpot was not available. 

Monthly Million 
Dollar Giveaway 

JACKPOT: $4 million • KICKER: 626256 
for information, see a lottery retailer 

or call216-787-4100 or 1-800-589-6446 

Fri.1/13 
PICK 3 320 
PICK4 0480 

FIGURE 1.1.2 
The Plain Dealer of January 15, 1995. 

Sat.117 
072 

to manipulate data written in the format list={a,b, ... ,} where a,b, ... ,z are 
arbitrary numbers. Here list is just a name given to the string a, b, ... , z. The 
following command lines for Mathematica help produce various frequencies for a 
specific list: 

Length [list] 
Usage: returns the length of the list. 

Sum[list[[i]] ,{i,1,Length[list]}]/Length[list] 
Usage: returns the relative frequency of ls in the list. 

li11[i_] :=list[[i]]*list[[i+1]] ; Sum[li11[i], 
{i,l,Length[list]-1}]/(Length[list]-1) 
Usage: returns the relative frequency of two consecutive ls. 

li10[i_] :=list[[i]]*C1-list[[i+1]]) ; Sum[ 
li10[i] ,{i,1,Length[list]-1}]/(Length[list]-1) 

Usage: returns the relative frequency of blocks 10. 

N [expression] 
Usage: gives the numerical value of expression. 

Now, the relative frequencies in string (e) can be computed as follows: 

In[1] := bernE={1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,0,0, 
0,0,0,1,1,0,1,0,1,0,0,1} 

Out[1]= {1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 
0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,1 } 

In[2] := Length[bernE] 
Out [2]= 32 
In[3] := Sum[bernE[[i]],{i,1,31}]/32 
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Out[3]= {16/32} 
In [ 4] : = N [%] 

Out[4]= 0.5 
In[5] := N[Sum[bernE[[i]] ,{i,1,Length[bernE]}]/Length[bernE]] 
Out[5]= 0.5 
In[6] := bernE01[i_] :=(1-bernE[[i]])•bernE[[i+1]]; N[Sum[ 

bernE01[i], {i,1,Length[bernE]-1}]/(Length[bernE]-1)] 
Out[6]= 0.258064 
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So, the frequency of ls in string (e) is 0.5 and the frequency of blocks 01 is 
0.258064. Further examples of this type, using much longer strings supplied on 
the uvw Web Site, are provided in Section 1.14: Experiments, Exercises, and 
Projects. 

1.2 Inventory problems in management 

A hardware distribution company has to prepare its inventory (say, for tax pur­
poses, annual report, bankruptcy proceedings, etc.). In the process, the number of 
items in each category (nails, rat traps, snow shovels, memory chips, etc.) has to 
be determined. Who is doing the checking and how the checking is to be done 
is often a point of contention (see, e.g., Huff's How to Lie with Statistics quoted 
in the Bibliographical Notes), and one would like to have fair and sound auditing 
procedures written into the law of the land. 

Obviously, counting all of the items one by one would be too expensive and time 
consuming. A more reasonable alternative, assuming that the items are stored in 
bins of the same size, would be to take a small sample of bins and on that basis 
determine the number of each item in the whole population. If this is the procedure 
on which we settle, then we immediately face a number of practical questions: 

How to take the sample? Clearly the sample has to be representative in the 
sense that every source of bias has to be removed. 

How to judge the degree to which the sample is representative? 

• How large or small should it be? 

• What procedure should be used to determine the total population from the 
sample count? 

How to organize the storage system to optimize the above sampling pro­
cess, and permit an optimization of the statistical techniques used? 

The statistical techniques depend on the assumed underlying empirical 
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(or theoretical) relative frequency distributions which can be different for 
different companies and product types. How can they be determined? 

Similar issues arrise in many other areas where testing the whole population is 
impossible, e.g., in public opinion polls. 

1.3 Battery life and quality control in manufacturing 

The following hypothetical (the data are simulated) example represents the typ­
ical situation. 

Example 1.3.1 Batteries Are Not Forever. 
Lifetimes of 50 batteries have been tested at the manufacturing company. The test 
lasted 10 hours and by the end of the test period 41 batteries failed, with their 
lifetimes (in hours) being 

0.33, 5.71, 2.23, 3.41, 1.83, 3.01, 0.71, 3.95, 4.37, 0.90, 0.30, 1.94, 
8.31, 5.15, 3.25, 0.06, 2.89, 6.99, 2.15, 6.58, 5.28, 0.78, 1.70, 6.68, 
4.73, 5.94, 4.26, 7.23;8.31, 2.52, 1.35, 2.66, 1.30, 0.71, 2.41, 3.66, 
9.69, 0.43, 4.41, 8.77, 9.66 

The remaining 9 batteries were still going strong at the end of the 1 0-hour testing 
period. The company has to make a decision about the advertised and guaranteed 
battery lifetime on the basis of the above, censored, data. It plans to replace 
batteries that do not meet advertised specifications. A number of natural questions 
arise: 

• Given the unit manufacturing cost, what should be the warranty period for 
the company to break even? 

• Given that the warranty duration is given (say, forced by competition), 
what should be the price of the item for the company to break even? 

• Which parameters computed from the above data are essential for answer­
ing the above questions? Equivalently, how should the above data be 
compressed to preserve what is really important? 

Example 1.3.2 Bombs Away. 
A Cleveland company manufactures bases for fragmentation bombs (no peace div­
idens here yet). Measurements (in inches) of75 bomb bases' heights are provided 
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below, with more complete data on 145 bases (provided by Ravi Jayaraman, a 
graduate student in Systems Engineering) to be found on the uvw Web Site in the 
BOMBS file: 

0.831 0.829 0.836 0.840 0.826 0.834 0.826 0.831 0.831 0.831 
0.836 0.826 0.831 0.822 0.816 0.833 0.831 0.835 0.831 0.833 
0.830 0.831 0.831 0.833 0.820 0.829 0.828 0.828 0.832 0.841 
0.835 0.833 0.829 0.830 0.841 0.818 0.838 0.835 0.834 0.830 
0.841 0.831 0.831 0.833 0.832 0.832 0.828 0.836 0.832 0.825 
0.831 0.838 0.844 0.827 0.826 0.831 0.826 0.828 0.832 0.827 
0.838 0.822 0.835 0.830 0.830 0.815 0.832 0.831 0.831 0.838 
0.831 0.833 0.831 0.834 0.832 

The randomness found in the above data is encountered in most manufacturing 
processes due to the variability of materials, machinery, conditions, and human 
factors. The manufacturer's goal is to reduce this randomness but those efforts 
have to be balanced against increased costs. For mass produced items, the usual 
quality control procedure is to measure the variability in a given batch and reject 
the whole batch if that variability is too large. The ways to assess this variability 
will be discussed later. 

Mathematica Experiment 1. Batteries Are Not Forever. This is a good opportu­
nity to introduce additional Mathematica commands: 

Position[list, number] 
Usage: shows the position of the number in the list. 

Delete[list,{{a},{b}, ... ,{z}}J 
Usage: deletes the elements with numbers a,b, ... ,z from the list. 

Sort [list] 
Usage: sorts the elements of the list in the increasing order. 

Floor[number] 
Usage: returns the largest integer less than or equal to number. 

The file BATTERY on the UVW Web Site contains the lifetimes of batteries from 
Example 1.3.1, including those that survived the 10 hour test. The first data ma­
nipulating step in our experiment is to remove all the lOs from the data set. Then 
we compare the averages of the new list created by this deletion with the original 
list in the BATTERY file. Finally, we want to find the number such that 20% of the 
observed lifetimes in the original data set fall below that number. 

In[1) := battery={0.33, 5.71, ... ,8.77, 9.66} 
In[2) := Position[battery,10.0] 
Out[2)= {{4},{14},{17},{24},{32},{38},{43},{44},{47}} 
In[3] := Delete[battery, %] 
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Remark: Here, % stands for {{4},{14},{17},{24},{32},{38}, 

{43},{44},{47}}, i.e., the data from the preceding line 
which, therefore, need not be rekeyed. 

Out[3]= {0.33, 5.71, 2.33, 3.41, 1.83, 3.01, 0.71, 
0.90, 0.30, 1.94, 8.31, 5.15, 3.25, 0.06, 
2.15, 6.58, 5.28, 0.78, 1.70, 6.68, 4.73, 
7.23, 8.31, 2.52, 1.35, 2.66, 1.30, 0.71, 
9.69, 0.43, 4.41, 8.77, 9.66} 

In[4]:= battery!=%; 

3.95, 
2.89, 
5.94, 
2.41, 

Remark: This names the deleted list as battery! 

4.37, 
6.99, 
4.26, 
3.66, 

In[5] := Sum[battery1[[i]],{i,1,Length[battery1]}]/Length[battery1] 

Out[5]= 3.82073 
In[6] := Sum[battery[[i]] ,{i,1,Length[battery]}]/Length[battery] 
Out[6]= 4.933 
In[7] := Sort[battery] 
Out[?]= {0.06, 0.3, 0.33, 0.43, 0.71, 0.71, 0.78, 0.9, 1.3, 1.35, 

1.7, 1.83, 1.94, 2.15, 2.33, 2.41, 2.52, 2.66, 2.89, 
3.01, 3.25, 3.41, 3.66, 3.95, 4.26, 4.37, 4.41, 4.73, 
5.15, 5.28, 5.71, 5.94, 6.58, 6.68, 6.99, 7.23, 8.31, 
8.31, 8.77, 9.66, 9.69, 10., 10., 10., 10., 10., 10., 

10.' 10.' 10.} 
In[8] := battery2= %; 
In[9] := battery2[[Floor[Length[battery]*0.2]]] 
Out [9] = 1. 35 
In[10] := Quit 

See Section 1.14 for more experiments and projects of this nature. 

1.4 Reliability of complex systems 

Example 1.3.1 illustrates a common situation where only statistical, and often 

censored, data about the lifespans of manufactured components is available. These 

items, incorporated into a more complex device, may then be put to work under 
different (sometimes extreme) conditions and the ability of the device to function 

properly depends on the ability of its individual components to survive, or-in 

other words-on their reliability. 

Development of the reliability theory was largely spurred by the electronics 

industry where, typically, devices are built of hundreds or thousands of not perfectly 

reliable parts, and there is a need to evaluate the reliability of the whole instrument 

based on information about its components. For a fixed component, the reliability 

r could be measured as the proportion of components of the same type that are 

likely to work without failure for a given period of time. 
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Then, for example, we could inquire about the reliability of a large device con­
sisting of many components of known reliability interconnected in a particular 
fashion. In the simplest case, the reliability of a device consisting of n components 
C1, Cz, ... , Cn in series (Fig. 1.4.1) of reliability r1, rz, ... , rn. respectively, can 
be shown to be equal to the product r1 · rz · ... · r n. Hence, it is clear that the 
reliability of a serial device can never be better than the reliability of its worst 
component. 

FIGURE 1.4.1 
A serial device. 

-----0---
On the other hand, for a parallel device (Fig. 1.4.2), the reliability turns out to 

be 
1 - (1 - rJ) · (1 - rz) · ... · (1 - rn). (1) 

So, the reliability of a parallel device is never worse than the reliability of its best 
component. 

• • 

FIGURE 1.4.2 

A parallel device. 

The serial and parallel devices represent the simplest device structures. De­
termination of the reliability of more complex devices like, for instance, the one 
shown in Fig. 1.4.3, may be quite difficult. 

Mathematica Experiment 1. Reliability. In this experiment we will compute: 
(1) Reliability of a serial device consisting of 35 elements with individual reli­

abilities rm = 1/m, m = 1, ... , 35. 
(2) Reliability of a parallel device consisting of 35 elements with individual 

reliabilities rm = 1/m, m =I, ... , 35. 
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FIGURE 1.4.3 

A more complex device. 

It is worthwhile to compare the results of (1) and (2). Are there any surprises? 

The experiment will be concluded by computation of the reliability of serial and 

parallel devices for any number of individual components with individual reliabil­

ities r m given by an arbitrary list. 
You will find the following new Mathematica commands useful: 

Product[function[i],{i,minimum,maximum}] 

Usage: returns the product of the numbers function[argument] for the 

values of the argument between minimum and maximum. 

Table[expression[i],{i,minimum,maximum}] 

Usage: makes a list of elements where the i-th element is expression [i]. 

Save ["name .m", definition!, definition2, ... ] 

Usage: saves definitions into a file called name .m. 

In[1]:= f[i_] := 1/i 
Remark: This defines the function f(x)=1/x. 

In[2] := rel1= Product[f,{i,1,35}] 
Out[2]= {1/ 10333147966386144929666651337523200000000} 
In[3]:= g[i_]:= 1-1/i 
In[4]:= rel2=1-Product[g,{i,1,35}] 
Out [4]= 1 
In[5] :=serial[!_]:= Product[l[[i]],{i,l,Length[l]}] 
In[6] := probab=Table[1/m, {m,1,35}] 
Out[6]= {1, {1/2}, {1/ 3}, {1/ 4}, {1/ 5}, {1/ 6}, 

{1/ 7}, {1/ 8}, {1/ 9}, {1/ 10}, {1/ 11}, {1/ 12}, 
{1/ 13}, {1/ 14}, {1/ 15}, {1/ 16}, {1/ 17}, {1/ 18}, 
{1/ 19}, {1/ 20}, {1/ 21}, {1/ 22}, {1/ 23}, {1/ 24}, 
{1/ 25}, {1/ 26}, {1/ 27}, {1/ 28}, {1/ 29}, {1/ 30}, 
{1/ 31}, {1/ 32}, {1/ 33}, {1/ 34}, {1/ 35}} 

In[7]:= serial[probab] 
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Out[7]= {1/ 10333147966386144929666651337523200000000} 
In[8] :=parallel[!_]:= 1-Product[1-l[[i]] ,{i,1,Length[l]}] 
In[9] := parallel[probab] 
Out [9]= 1 
In[10] := Save["device.m", serial, parallel] 
In[11] := ! !device 

Remark: Press enter here! 
serial[!_]:= Product[l[[i]],{i,1,Length[l]}] 
parallel[!_]:= 1-Product[1-l[[i]] ,{i,1,Length[l]}] 

In[12] := Quit 
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In real life, the reliability depends on time. The number N(t) of units surviving 
at time t in a population that started with N (0) units at time t = 0 is decreasing 
with time and a typical survival curve is pictured in Fig. 1.4.4. 

Early failure Life time Wearout 

FIGURE I .4.4 
A typical survival curve. 

Then, the time-dependent reliability r(t) of the device can be defined as 

N(t) 
r(t) = N(O)' (2) 

the proportion of surviving units at time t. The function r is equal to 1 at t = 0 and 
decays monotonically to 0 as t increases, following the general shape in Fig. 1.4.4. 

Often, the quantity one wants to watch is the failure rate )..(t) of the device (per 
unit time and per unit device), which can be expressed via the formula 

N(t)-N(t+M) d 
)..(t) = ~ --logr(t). 

M N(t) dt 
(3) 
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A typical graph of the failure rate time-dependence, corresponding to the survival 

curve of Fig. 1.4.4 is shown in Fig. 1.4.5. It reflects the typical reliability history 

of a device: the initial high failure rate due to the presence of "bugs", the constant 

failure rate during the intermediate "utility" period of the device's lifetime, and the 

steadily increasing failure rate as the device wears out with age. 

A,(t) 

Early 
failure 

I 
I 
I 
I 
ItA 

FIGURE 1.4.5 

Constant failure rate 

A typical failure rate curve. 

I 
I 
I 
I tE 

Failure by wearout 

Notice that if the failure rate A.(t) = A. is constant in the time interval [to, tt], 

then solving the simple differential equation 

d 
-logr(t) = ->.., 
dt 

one obtains that, in that interval, the survival curve decays exponentially and 

N(t) = N(to)e->..<t-to). 

(4) 

(5) 

The reliability of serial and parallel devices assembled from components with time 

dependent reliability can then be determined via formulas discussed in the first part 

of this section. 
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1.5 Point processes in time and space 

There are many situations where the experimental data or observations form 
a sequence of random singular point signals spread over time or space. Work­
stations' connection times to the server, particle arrivals registered in the Geiger 
counter, locations where gold deposits were found, or recorded outbursts of a mad 
cow disease, or arrival times of customers in a queue are typical examples here. 
Technically, they are called point processes in time or in space, depending on the 
context. 

Example 1.5.1 Bright Stars. 
The set of data shown on the next page was supplied by Jacqueline Monkiewicz, a 
CWRU astronomy major. The data includes the magnitudes and sidereal positions 
of the stars brighter than 2.5 magnitude in the year 2000. More complete data, for 
all the stars brighter than the 3rd magnitude, are provided on the uvw Web Site. 
The stars' coordinates are given by their declinations (angle from the celestial 
equator) and right ascensions (angular distance from the vernal equinox, measured 
in hours). Also included is the basic spectral class of each star. 

What is the explanation for this particular, seemingly random, distribution of 
stars? Could it be derived from the Big Bang hypothesis? Perhaps from simpler 
geometric arguments? 

Example 1.5.2 Water Drips. 
The set of data provided below represents the time intervals (in seconds) between 
consecutive water drips from a nozzle. 

0.1822 0.1962 0.1342 0.1035 0.1551 0.2327 0.2023 
0.1289 0.1868 0.2265 0.2611 0.1917 0.1376 0.1483 
0.2227 0.1605 0.1378 0.0952 0.2457 0.1738 0.2581 
0.1893 0.2542 0.2246 0.2615 0.1095 0.2203 0.1014 
0.1969 0.1281 0.1359 0.1005 0.2558 0.1404 0.2556 
0.1352 0.2519 0.2531 0.2565 0.0720 0.2222 0.1065 
0.2308 0.1430 0.1203 0.0757 0.2835 0.1340 0.2535 
0.1360 0.1596 0.2041 0.2544 0.1051 0.2245 0.1085 
0.2314 0.1876 0.1481 0.1376 0.2255 0.1429 0.2121 
0.1243 0.1705 0.2637 0.2244 0.1357 0.2210 0.1485 

What is the source of randomness in this data set? The mechanical system used 
in the experiment remained unchanged for the duration of the experiment. The 
data set was collected by Bill Dimmock, a CWRU physics major. 
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Table 1.5.1 Magnitudes and sidereal positions of stars 

Magn. J<,.A. uectm. Cl. Magn. R.A. Dec lin. Cl. 
:Z.(J~ g ~Jii.1 ~~l~648 H :Z.D u u 10.6 59 IS 59 .... 
2.39 K 2.04 0 43 35.3 -17 59 12 K 
2.47 0 56 42.4 60430 B 2.06 1 9 43.9 35 37 14 M 
0.46 1 37 42.9 -57 14 12 B 2.02 2 31 50.5 89 15 51 F 
2.00 2 7 10.3 23 27 45 K 2.26 2 3 53.9 42 19 47 K 
1.79 3 24 19.3 49 51 41 F 2.12 3 8 10.1 40 57 21 B 
1.65 5 26 17.5 28 36 27 B 0.85 4 35 55.2 16 30 33 K 
2.23 5 32 0.3 -0 17 57 B 0.08 5 16 41.3 45 59 53 G 
0.12 5 14 32.2 -8 12 6 B 1.64 5 25 7.8 6 20 59 B 
1.70 5 36 12.7 -1 12 7 B 2.05 5 40 45.5 -1 56 34 0 
2.06 5 47 45.3 -9 40 11 B 0.5 5 55 10.3 7 2425 M 
1.9 5 59 31.7 44 56 51 A 1.98 6 22 41.9 -17 57 22 B 
-0.72 6 23 57.2 -52 41 44 F 1.93 6 37 42.7 16 23 57 A 
-1.46 6 45 8.9 -16 42 58 A 1.5 6 58 37.5 -28 58 20 B 
2.06 14 6 40.8 -36 22 12 K -0.04 14 15 39.6 19 10 57 K 
2.31 14 35 30.3 -42 9 28 B -0.01 14 39 36.2 -60 50 7 G 
1.33 14 39 36.2 -60 50 7 K 2.3 1441 55.7 -47 23 17 B 
2.08 14 56 46 -11 24 35 K 2.23 15 34 41.2 26 42 53 A 
2.32 16 0 19.9 -22 37 18 B 2 15 59 30.1 25 55 13 B 
0.96 16 29 24.4 -26 25 55 M 1.92 16 48 39.9 -69 1 40 K 
2.29 16 50 9.7 -34 17 36 K 2.43 17 10 22.6 -15 43 29 A 
1.63 17 33 36.4 -37 6 13 B 1.87 17 37 19 -42 59 52 F 
2.08 17 34 56 -38 3 56 A 2.41 17 42 29.1 -39 1 48 B 
2.23 17 56 36.6 51 29 20 K 1.85 18 24 10.3 -3423 5 B 
0.03 18 36 20.9 38 47 1 A 2.02 18 55 15.8 -26 17 48 B 
2.06 14 6 40.8 -36 22 12 K 1.84 7 8 23.4 -26 23 35 F 
2.45 7 24 5.6 -29 18 11 B 1.58 7 3435.9 31 53 18 A 
1.59 7 34 35.9 31 53 18 A 0.38 7 39 18.1 5 13 30 F 
1.14 7 45 18.9 28 1 34 K 2.25 8 3 35 -40 0 11 0 
1.78 8 9 31.9 -47 2012 w 1.86 8 22 30.8 -59 30 34 K 
1.96 8 4442.2 -54 42 30 A 2.21 9 7 59.7 -43 25 57 K 
1.68 9 13 12.1 -69 43 2 A 2.25 9 17 5.4 -591631 A 
2.5 9 22 6.8 -55 0 38 B 1.98 9 27 35.2 -8 39 31 K 
1.35 10 8 22.3 11 58 2 B 2.37 11 1 50.4 56 22 56 A 
1.79 11 3 43.6 61 45 3 K 2.14 1149 14.8 16 14 34 A 
2.44 1153 49.8 53 41 41 A 1.58 12 26 35.9 -63 5 56 B 
2.09 12 26 36.5 -63 5 58 B 1.63 12 31 9.9 -57 6 47 M 
2.17 12 41 30.9 -48 57 34 A 1.25 12 47 43.3 -594119 B 
1.77 12 54 1.7 55 57 35 A 2.27 13 23 55.5 54 55 31 A 
0.98 13 25 11.5 -11 9 41 B 2.3 13 39 53.2 -53 27 59 B 
1.86 13 47 32.3 49 18 48 B 0.61 14 3 49.4 -60 22 22 B 
0.77 19 50 46.9 8 52 6 A 1.94 20 25 38.8 -56 44 7 B 
2.2 20 22 13.6 40 15 24 F 1.25 20 41 25.8 45 16 49 A 
2.46 20 46 12.6 33 58 13 K 2.44 21 18 34.7 62 35 8 A 
2.39 214411.1 9 52 30 K 1.74 22 8 13.9 -46 57 40 B 
2.1 22 42 40 -46 53 5 M 1.16 22 57 39 -29 37 20 A 
2.42 23 3 46.4 28 458 M 2.49 23 4 45.6 15 12 19 B 
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Example 1.5.3 DNA Sequences. 
DNA and protein data are stored world-wide in huge databases (like the U.S. 
Human Genome project) to provide easy access to information needed in a rapidly 
developing research area. In fact the information about each DNA "sequence" is 
encoded as a (unique) word written in a fixed alphabet. To discover similarities 
between different proteins much work has been done on methods of comparison 
of such sequences. For example, similarities were found between src proteins of 
the bovine cyclic AMP dependent kinase and the Roussavian and Maloney murine 
sarcoma virus. 

Such comparisons involve uncertainty because the above mentioned encoding 
is one-to-one only with a certain (unknown) probability. Hence, one has to devise 
qualitative statistical criteria for the matching decision process. The work on this 
problem is still in progress and the dynamic programming methods have also been 
used for this purpose. 

If A1, ... , An and B1, ... , Bm. are two such sequences, then one considers the 
"diagonals" (A;, Bj ), where the difference i - j is a fixed number, and one studies 
the k-word matches on these diagonals by looking at the match-indicators x; = 0 
or I. If, for I :::: i :::: k, A; = Bj. then one sets x; = I (and 0 otherwise). For 
a q such that I :::: q :::: k, a q-match is said to hold if at least q of the x;s are 
equal to I. For long strings of A;s and B;s one obtains a sequence of k-words 
consisting of Os and Is, which are strongly dependent. Therefore, their analysis 
has to use tools different than those that have been developed for studying, say, 
repeated independent experiments. 

Mathematica Experiment 1. Bright Stars. The file STARS on the UVW Web Site 
contains expanded data from Example 1.3.1. To carry out our experiment, we need 
Mathematica commands to find elements, rows, and columns of a matrix, and to 
represent matrix data in the graphical form: 

ListPlot[{{a,b}, {c,d}, ... }] 
Usage: plots points in two dimensions. 

TableForm[list] 
Usage: gives a table of the data in the list. 

Prolog->AbsolutePointSize[n] 
Usage: plots point of size n times the basic unit. 

Axes->False 
Usage: suppresses axes in the graph. 

Cos [x] , Sin [x] 
Usage: cosine and sine functions. 

Transpose[matrix] 
Usage: interchanges columns and rows. 

In[1]:= star={{2.06, 0, 8, 23.2, 29, 5, 26, B}, 
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{0.12, 5, 14, 32.2, -8, 12, 6, B}, 
{1.5, 6, 58, 37.5, -28, 58, 20, B}, 
{1.87, 17, 37, 19, -42, 59, 52, F}, 
{1.16, 22, 57, 39, -29, 37, 20, A}, 
{0.03, 18, 36, 20.9, 38, 47, 1, A}, 
{0.5, 5, 55, 10.3, 7, 24, 25, M}, 
{2.32, 16, 0, 19.9, -22, 37, 18, B}}; 

In[2] := TableForm[%] 
Out[2]//TableForm= 

2.06 0 8 23.2 29 5 26 B 
0.12 5 14 32.2 -8 12 6 B 
1.5 6 58 37.5 -28 58 20 B 
1.87 17 37 19 -42 59 52 F 
1.16 22 57 39 -29 37 20 A 
0.03 18 36 20.9 38 47 1 A 
0.5 5 55 10.3 7 24 25 M 

2.32 16 0 19.9 -22 37 18 B 

In[3] := star([5]] 
Out[3]= {1.16, 22, 57, 39, -29, 37, 20, A} 
In[4]:= star([5,4]] 
Out(4] := 39 
In[5] := Transpose[star] 
Out[5]= {{2.06, 0.12, 1.5, 1.87, 1.16, 0.03, 0.5, 2.32}, 

{0, 5, 6, 17' 22, 18, 5, 16}, 
{8, 14, 58, 37, 57, 36, 55, 0}, 
{23.2, 32.2, 37.5, 19, 39, 20.9, 10.3, 19.9}, 
{29, -8, -28, -42, -29, 38, 7, -22}, 
{5, 12, 58, 59, 37, 47, 24, 37}, 
{26, 6, 20, 52, 20, 1, 25, 18}, 
{B, B, B, F, A, A, M, B}} 

In[6] := %[(8]] 
Out[6]= {B, B, B, F, A, A, M, B} 
In[7] := ListPlot[ Table[ 

{Cos[(star[[i,2]]+star[[i,3]]/60+star[[i,4]]/3600) Degree] 
* Cos[(star([i,5]]+star[[i,6]]/60+star[[i,7]]/3600) Degree], 

Sin[(star[[i,2]]+star[[i,3]]/60+star[[i,4]]/3600) Degree] 
* Cos[(star[[i,5]]+star[[i,6)]/60+star[[i,7]]/3600) Degree]}, 

{i,1,Length[star]}], 
Axes->False, Prolog->AbsolutePointSize[8], 
Frame->True, GridLines->Automatic] 

Out[7]= Graphics 
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Mathematica Experiment 2. Queue Arrivals. This experiment uses the Un­
certain Virtual Worlds package UVW' TimeRep' which simulates random arrivals to 
a single queue (so-called Poisson process and M/M/1 queue). The precise sig­
nificance of the quantitative information obtained here will become clear in later 
chapters. 

In[1] := <<UVW'TimeRep' 
In[2] := <<Statistics'ContinuousDistributions' 
In[3] := arr=Table[Random[Exponentia1Distribution[1.]],{100}]; 
In[4] := Geiger[arr] 
In[5] := CumulatedTimes[arr] 
In[6] := ser=Table[Random[Exponentia1Distribution[1.2]],{100}]; 
In[7] :=Queue[arr,ser] 

1.6 Polls-social sciences 

Complex social phenomena often produce random and uncertain results when 
subject to empirical study. You have seen political pollsters presenting opinions 
or electoral predictions based on random sampling. 

The table on pages 24 and 25 presents the rate (per 100,000 resident population) 
of sentenced prisoners in state and federal institutions on Dec. 31, of the years 
1971 to 1991 (by region and jurisdiction). Is there any regularity in the table? The 
data depend both on time and geographical location. Are the rates for different 
states correlated over the years? And how? The data was provided by Ramona 
Myers, a CWRU chemical engineering graduate student, who also does volunteer 
work with the prisoners. 
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Mathematica Experiment 1. Vive le Quebec? The 1941 Canada Census com­
pared family sizes depending on the age at marriage (0=15-19 years; 1=20-24 
years), years of schooling (U=0-6; E=7+), income class (L=low income, H=high 
income), and language (F=French-speaking, M=mixed ), among others. The list 
CENSUS on the uvw Web Site contains a sample of data for eight different groups. 
The last two variables are, respectively, the average number of children in that 
group and the number of families examined. 

To carry out this experiment it will be necessary to sort data, select sublists, 
merge lists, etc. Finally, we will extract a sublist consisting of those groups that 
are French-speaking. Again, the idea is to ease your way into manipulating data 
using Mathematica, and the following commands will be useful: 

Sort [list] 
Usage: sorts a list in lexicographical ordering. 

Drop[list, {m,n}J 
Usage: drops the elements list [ [m] J , ... , list [ [n] J. 

Intersection[list1,list2, ... ,listk] 
Usage: forms the list consisting of the elements which are included in all 

lists list1, ... , listk 

If[statement for numerical data, out1 if true, out2 if false, out3 

if neither true nor false] 
Usage: returns one of the three out expressions (1, 2, or 3 here but, in 

general, not necessarily numerical), according whether the statement is true, 
false, or neither. 

Do[expression[i], {i,1,n}J 
Usage: evaluates expression [i] for each i beginning with i=1 and ending 

with i= n. 

In[1] := census= {{0, U, L, F, 7.4, 5}, {0, E, L, M, 11.3, 7}, 
{1, E, H, M, 8.8, 12}, {1, u, L, F, 8.3,10}, 
{1, E, H, F, 10.3, 28}, {0, E, H, F, 8.7, 15}, 
{1, E, L, F, 6.7, 37}, {1, u, L, M, 9.7, 3}}; 

In[2] := TableForm[%] 
Out[2]// TableForm= 0 u L F 7.4 5 

0 E L M 11.3 7 
1 E H M 8.8 12 
1 u L F 8.3 10 
1 E H F 10.3 28 
0 E H F 8.7 15 
1 E L F 6.7 37 
1 u L M 9.7 3 

In[3] := Sort[census] 
Out [3] = {{O, E, H, F, 8.7, 15}, {0, E, L, M, 11.3, 7}, 

{0, u, L, F, 7 .4, 5}, {1, E, H, F, 10.3, 28}, 
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{1, E, H, M, 8.8, 12}, {1, E, L, F, 6.7, 
{1, U, L, F, 8.3, 10}, {1, u, L, M, 9.7, 

In[4]:= TableForm[%] 
Out[4]// TableForm= 0 E H F 8.7 15 

0 E L M 11.3 7 
0 u L F 7.4 5 
1 E H F 10.3 28 
1 E H M 8.8 12 
1 E L F 6.7 37 
1 u L F 8.3 10 
1 u L M 9.7 3 

In[5]:= Sum[census[[i,6]],{i,1,Length[census]}] 
Out[5]= 117 

37}, 
3}} 

Remark: number of families in the study 
In[6]:= TableForm[Drop[census, {2,4}]] 
Out[6]// TableForm= 0 u L F 7.4 5 

1 E H F 10.3 28 
0 E H F 8.7 15 
1 E L F 6.7 37 
1 u L M 9.7 3 

In [7] : = f [M] =0; d[i_]:=If[f[census[[i,4]]]==0, 
Drop[census,{i,i}],census,census] 
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Remark: defines a function d which returns a dropped or 
original list. f[M]=O sets M to a numerical value for the 
test procedure. 

In[8] := d[2] 
Out[8]= {{0, U, L, F, 7.4, 5}, {1, E, H, M, 8.8, 12}, 

{1, U, L, F, 8.3, 10}, {1, E, H, F, 10.3, 28}, 
{0, E, H, F, 8.7, 15}, {1, E, L, F, 6.7, 37}, 
{1, U, L, M, 9.7,3}} 

In[9]:= Intersection[ d[1], d[2], d[3]] 
Out[9]= {{0, E, H, F, 8.7, 15}, {0, U, L, F, 7.4, 5}, 

{1, E, H, F, 10.3, 28}, {1, E, L, F, 6.7, 37}, 
{1, U, L, F, 8.3, 10}, {1, U, L, M, 9.7, 3}} 

In[10] :=french[1]=d[1]; Do[ 
french[i+1]= Intersection[french[i], d[i+1]], 

{i,1,Length[census]-1}] 
In[11] :=TableForm[french[Length[census]]] 
Out[11]// TableForm= 0 E H F 8.7 15 

0 U L F 7.4 5 
1 E H F 10.3 28 
1 E L F 6. 7 37 
1 U L F 8.3 10 
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Table 1.6.1 The rate (per 100,000 residents) of sentenced prisoners 

Region '71 '72 '73 '74 '75 '76 '77 '78 '79 '80 
NORTHEAST 56 57 60 63 70 73 77 82 84 87 
CT 63 59 54 48 59 62 53 70 69 68 
ME 45 46 44 50 60 57 61 53 58 61 
MA 38 32 34 38 42 46 48 49 50 56 
NH 28 31 35 27 31 30 26 32 35 35 
NJ 73 72 74 72 77 78 78 74 76 76 
NY 65 64 71 79 89 98 108 114 120 123 
PA 45 53 55 57 60 56 56 65 67 68 
RI 41 36 43 49 41 53 56 56 63 65 
VT 47 30 40 52 51 64 57 76 62 67 
MIDWEST 73 66 63 69 84 95 108 104 105 109 
IL 52 50 50 56 73 87 95 96 95 94 
IN 83 73 63 58 73 79 80 82 98 114 
lA 54 46 49 52 63 66 70 70 72 86 
KS 91 74 61 64 76 91 97 98 95 106 
MI 107 94 87 95 119 137 151 162 163 163 
MN 40 35 36 35 42 41 44 49 51 49 
MO 77 75 79 88 92 105 111 116 113 112 
NE 69 63 66 68 80 93 83 80 71 89 
ND 21 29 25 21 27 26 30 21 19 28 
OH 85 77 72 87 107 117 120 122 125 125 
SD 58 51 35 37 49 70 76 74 77 88 
WI 55 45 47 56 65 71 72 73 73 85 
SOUTH 124 125 128 135 150 161 169 181 198 188 
AL 110 104 105 110 121 83 94 144 141 149 
AR 84 80 82 100 102 115 111 115 132 128 
DE 33 49 57 76 100 118 120 173 181 183 
DC 349 341 324 289 326 334 330 383 433 426 
FL 136 139 133 138 183 211 221 239 220 208 
GA 146 174 173 191 204 225 224 216 224 219 
KY 94 90 89 92 100 107 106 97 105 99 
LA 113 92 108 128 126 120 152 184 190 211 
MD 125 139 144 155 169 192 198 193 187 183 
MS 83 83 76 92 103 91 67 110 141 132 
NC 153 160 184 207 210 214 234 223 240 244 
OK 144 140 120 109 114 133 129 146 147 151 
sc 118 121 130 158 198 230 239 243 237 238 
TN 86 82 84 91 109 114 127 134 151 153 
TX 141 136 147 141 154 167 176 189 196 210 
VA 109 107 108 105 110 126 142 157 158 161 
wv 60 59 61 57 65 71 67 63 66 64 
WEST 82 79 86 94 84 91 92 99 101 105 
AK 66 61 57 57 56 63 75 127 133 143 
AZ 74 77 81 97 118 125 129 146 139 160 
CA 87 84 99 106 81 85 80 88 93 98 
co 86 81 78 79 80 87 89 93 90 96 
HI 34 39 37 39 42 39 44 57 58 65 
ID 49 50 558 66 71 82 87 91 92 87 
MT 35 40 44 46 50 73 81 87 96 94 
NV 124 121 135 130 136 156 187 204 224 230 
NM 61 56 66 81 86 105 126 123 112 106 
OR 94 84 75 88 108 122 122 117 122 120 
UT 53 51 45 46 54 60 64 69 68 64 
WA 82 77 77 86 96 109 118 122 113 106 
WY 78 76 77 74 80 87 98 102 95 113 
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Table 1.6.1 in state and federal institutions on Dec. 31, of the years 
1971 to 1991. 

'81 '82 '83 '84 '85 '86 '87 '68 '89 '90 '91 
103 115 127 136 145 157 169 186 215 232 248 
95 114 114 119 127 135 144 146 194 238 263 
71 69 75 72 83 106 106 100 116 118 123 
65 77 79 84 88 92 102 109 122 132 143 
42 47 50 57 68 76 81 93 103 117 132 
92 107 136 138 149 157 177 219 251 271 301 

145 158 172 187 195 216 229 248 285 304 320 
78 88 98 109 119 128 136 149 169 183 192 
72 82 92 92 99 103 100 118 146 157 173 
76 84 72 74 82 81 91 98 109 117 124 

121 130 135 144 161 173 184 200 225 239 255 
113 119 135 149 161 168 171 181 211 234 247 
138 152 164 165 175 181 192 202 217 223 226 
88 93 92 97 98 98 101 107 126 139 144 

116 129 152 173 192 217 233 232 222 227 231 
165 162 159 161 196 227 259 298 340 366 388 
49 50 52 52 56 58 60 64 71 72 78 

131 147 162 175 194 203 218 236 269 267 305 
104 99 91 95 108 116 123 129 141 140 145 
33 47 51 54 55 53 57 62 62 67 68 

139 160 155 174 194 209 219 243 279 289 324 
97 109 115 127 146 160 160 143 175 187 191 
93 96 102 105 113 119 126 130 138 149 157 

201 224 225 231 236 248 255 266 292 316 333 
183 215 243 256 267 283 307 300 328 370 394 
143 166 179 188 195 198 227 230 261 277 317 
208 250 273 263 281 311 326 331 333 323 344 
467 531 558 649 738 753 905 1,078 1,132 1,148 1,221 
224 261 235 242 247 272 265 278 307 336 344 
220 247 259 254 251 265 282 281 300 327 342 
114 110 127 128 133 142 147 191 222 241 262 
216 251 290 310 308 316 346 370 396 427 462 
218 244 277 285 279 280 282 291 323 348 366 
177 210 211 229 237 249 256 277 293 307 330 
248 255 233 246 254 257 250 249 250 265 269 
169 201 212 236 250 288 296 323 361 381 416 
251 270 276 284 294 324 344 369 416 451 473 
171 173 187 154 149 157 156 157 213 207 227 
210 237 221 226 226 228 231 240 257 290 297 
165 177 177 185 204 215 217 230 263 279 311 
80 77 83 82 89 77 77 78 84 85 83 

119 139 152 166 176 197 214 234 256 277 287 
170 194 219 252 288 306 339 355 361 348 345 
184 209 223 247 256 268 307 328 350 375 396 
114 135 150 162 181 212 231 257 283 311 318 
92 108 109 104 103 115 145 174 207 209 249 
77 88 103 124 134 142 141 136 142 150 153 
99 107 121 127 133 144 144 157 180 190 205 

104 114 104 121 136 135 147 158 165 176 183 
245 301 354 380 397 447 432 452 438 444 439 
100 126 142 133 144 154 174 180 178 196 191 
124 146 157 170 165 176 200 215 235 223 228 
73 77 77 84 98 108 110 115 137 142 149 

125 148 155 156 156 147 134 124 142 162 182 
117 135 138 143 148 168 190 199 216 237 237 
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1. 7 Time series 

Natural phenomena are often observed over a period of time at discrete time 
intervals and then recorded as a time series. Typical examples would be daily 
recordings of rainfall or maximum temperature at a given location, or stock price 
fluctuations on the New York Stock Exchange. 

Example 1.7.1 SAMS in Space. 

The Table 1.7.1 below (and the file SHUTTLE on the UVW Web Site) provides data 
extracted from the Space Accelerometer Measurement System (SAMS) that was 
present aboard the space shuttle Columbia during STS-50. The acceleration ruins 
the diffusion controlled aggregation experiments that were supposed to be con­
ducted in the near-zero gravity environment; so it was important to keep track 
of it. The data period begins on day 007, hour 22 (MET). Sampling rate is 12.5 
samples/second. No significant peaks are present in this sample, so the data can be 
interpreted as random background noise and accelerations. The data were provided 
by Milton Moskowitz, a graduate student in the Materials Science Department, 
and were obtained as part of a CWRU Microgravity Lab project. 

Often to detect regularities, or irregularities, it is more convenient to present the 
time series in the graphical form. 

Example 1.7.2 EKG on Soaps. 

Fig. 1.7.1 shows successive R-R intervals (in seconds) of a normal, resting dog. 
A major upward "blip" on an electrocardiogram (EKG) is called an R-wave, and 
the R-R interval is an interval between two consecutive R-waves. You may have 
watched many a soap opera emergency room where a confident young doctor 
would casually opine to an emaciated patient: "See, your R-R interval correlation 
dimension has fallen from the normal of 2-3 to near 1, so things look very grim." 
But what did the good doctor really mean? You will find out later on. Note that 
presented at a different time scale, things may look quite different (see Fig. 1.7.2), 
and sharp "blips" do not look that sharp anymore. 

Figs. 1.7.3 and 1.7.4 show portions of an electroencephalogram (EEG) of a 
normal, waking adult. There is no way to add regular "blips" to an EEG, so these 
rhythms never quite make it to prime time TV. The above sample is 2 minutes long, 
sampled at 200 Hz. The data were provided by Mark D. Bej, of the Cleveland 
Clinic Foundation. 

Sometimes the periodicities and time-correlations in the signal are quite obvious 
as in the following example. 
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Thble 1. 7.1 Acceleration aboard space shuttle Columbia sampled at 

the rate of 12.5 samples/second. 

0 -1.393413e-04 1 -1.347195e-04 2 -1.1007 44e-04 
3 -9.775257e-05 4 -1.008320e-04 5 -1.1 00709e-04 
6 -1.285549e-04 7 -1.424222e-04 8 -1.408843e-04 
9 -1.331803e-04 10 -1.239331e-04 11 -1.193078e-04 
12 -1.069854e-04 13 -9 .928829e-05 14 -1.270203e-04 
15 -1.424276e-04 16 -1.254827e-04 17 -9.620895e-05 
18 -7.001450e-05 19 -7.001350e-05 20 -9.928802e-05 
21 -1.393437e-04 22 -1.455037e-04 23 -1.085298e-04 
24 -8.388260e-05 25 -1.162321e-04 26 -1.439624e-04 
27 -1.224023e-04 28 -1.147032e-04 29 -1.362659e-04 
30 -1.516663e-04 31 -1.347214e-04 32 -1.1007 48e-04 
33 -1.193151e-04 34 -1.532005e-04 35 -1.562799e-04 
36 -1.1 00700e-04 37 -9.466843e-05 38 -1.193158e-04 
39 -1.393405e-04 40 -1.316371e-04 41 -1.331771e-04 
42 -1.377995e-04 43 -1.285593e-04 44 -1.208582e-04 
45 -1.347212e-04 46 -1.470435e-04 47 -1.316405e-04 
48 -1.193169e-04 49 -1.116138e-04 50 -1.285562e-04 
51 -1.501199e-04 52 -1.377996e-04 53 -1.085368e-04 
54 -1.085385e-04 55 -1.177798e-04 56 -1.316410e-04 
51 -1.362619e-04 58 -1.270204e-04 59 -1.362619e-04 
60 -1.516642e-04 61 -1.331787e-04 62 -9 .928946e-05 
63 -1.054490e-04 64 -1.300945e-04 65 -1.300968e-04 
66 -1.193166e-04 67 -1.085363e-04 68 -1.008375e-04 
69 -1.054583e-04 70 -1.008344e-04 71 -9.158860e-05 
72 -9 .620688e-05 73 -9.312755e-05 74 -1.069962e-04 
15 -1.131623e-04 76 -1.008200e-04 77 -9.464904e-05 
78 -1.069712e-04 79 -1.146803e-04 80 -1.193076e-04 
81 -1.085253e-04 82 -1.131418e-04 83 -1.115988e-04 
84 -1.239222e-04 85 -1.193024e-04 86 -1.254620e-04 
87 -1.162172e-04 88 -1.162160e-04 89 -1.285403e-04 
90 -1.424036e-04 91 -1.192985e-04 92 -1.1 00573e-04 
93 -1.300821e-04 94 -1.454869e-04 95 -1.470287e-04 
96 -1.454863e-04 97 -1.439431 e-04 98 -1.239184e-04 
99 -1.085183e-04 100 -1.285449e-04 

Example 1.7.3 Breathing Patterns. 

27 

Fig. 1.7.5 shows the activation times of a neural cell in the brain (top graphs in 
each of the modes 1-4). The selected cell is responsible for inspiration. Modes 1 
and 2 show, respectively, spontaneous activity of the cell during wakefulness and 
non-rapid-eye-movement (non-REM) sleep. Modes 3 and 4 show, respectively, 
intense activity of the cell during a smoke-induced apnea (suspended breathing, 
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FIGURE 1.7.1 

Successive R-R intervals on an EKG. 

FIGURE 1.7.2 
A portion of Fig. 1.7.1. 

seen as a long pause in tracing 3) and in response to the conditioning stimulus. 
In each mode, the tracing below the cell activation times (action potentials) is the 
intratracheal pressure, with negative pressures (inspiration) indicated by upward 
deflections. These data were supplied by Sharmila Kopanathi, a bio-engineering 
graduate student. 

2000 
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1"104.--------..-------..-------..--------.-------, 

FIGURE I.7.3 
EEG of a normal, waking adult. 

sooo 

FIGURE 1.7.4 
A portion of Fig. 1.7.3. 

1.8 Repeated experiments and testing 

Repeated (and repeatable) experiments are the mainstay of engineering and 
scientific research. The famous Lord Rutherford's advice "If your experiment 
needs statistics, you ought to have done a better experiment" has, obviously, only 
limited applicability. 
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FIGURE 1.7.5 

Activation pattern in an inspirational neuron. 

Example 1.8.1 Less Pain. 
Bob Ruff, Ted Carroll and Richard Welser, faculty members at the CWRU 

Medical School, tested a new medication regimen to reduce pain in 21 terminal 

cancer patients over a certain period of time. Patients were of different ages and 

tumors were located at different sites and the dosage for both old and new regimens 

were different for different patients. The results of the probe were recorded as 

subjective patient evaluations on a scale from 0 to 10 of the current, best, and 

worst pain suffered during pre-regimen and post-regimen periods. The results are 

presented in Table 1.8.1 below. 
How effective was the new regimen of medication in comparison to the old 

one? How can this statement be quantified? What was the dependence of the 

effectiveness of the new regimen on the dosage and on the location of the tumor? 

Was the patient sample sufficient to draw any firm conclusions? Did the researchers 

have any control over the sample size? There could have been only so many patients 

available. What about a control population? 

Here is an example of an engineering testing problem. 

Example 1.8.2 Cracks Propagate. 
Mechanical and civil engineers often face the problem of component failure in 

situations when the latter are subject to cyclic loading which may lead to creation 

and propagation of fatigue cracks. Remember that fateful flight of Aloha Airlines 

when the whole top of the plane came off in midair. The later investigation by the 

Federal Aviation Administration showed that the fuselage, submitted to periodic 

pressurizing and depressurizing during, respectively, takeoffs and landings, finally 

succumbed to the excessive fatigue cracking. 
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Table 1.8.1 Pain rating in terminal cancer patients. 

Pain rating 

Patient Pre-regimen Post-regimen 

No. Now Best Worst Now Best Worst 
1 4 1 8 1 0 3 
2 6 6 9 0 0 2 
3 5 3 8 2 0 4 
4 7 5 9 0 0 3 
5 4 4 4 2 0 4 
6 7 5 9 1 0 3 
7 4 2.5 9 2 2 4 
8 6 4 8 0 0 0 
9 5 5 8 0 0 4 

10 6 3 9 1 0 3 
11 5 3 7 2 0 4 
12 4 4 7 0 0 2 
13 4 2 8 2 0 5 
14 4 2 6 2 1 4 
15 7 2 10 2 0 4 
16 2 0 5 0 0 2 
17 8 5 10 0 0 2 
18 5 3 8 2 0 4 
19 8 5 10 0 0 5 
20 2 2 9 0 0 2 
21 2-3 2-3 8 0 0 4 

The crack is usually initiated at a (random) site of unavoidable material defect, 
often microscopic, where stresses are particularly high. Then, periodic loading 
causes accumulation of damage in the micro-structure of the material and the 
crack propagates. The lab data are usually collected via periodic inspection of the 
trajectory of the crack and consist of recording the crack length a corresponding 
to the total number of load cycles N(a) up to that time. Even for fairly uniform 
samples, the data show a lot of randomness. In a study by P. Goel, a statistician at 
Ohio State University, and D. Virkler, a mechanical engineer at Purdue University 
(see Fig. 1.8.1), 68 replicate tests were conducted under identical loading. The 
specimens were aluminum panels, and the constant-amplitude load was cycled at 
20Hz. 
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FIGURE 1.8.1 
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Crack Length a in rum's 

The time-evolution of crack lengths for 68 identical centercracked aluminum panels 

subject to 20Hz cyclical loading. 

1.9 Simple chaotic dynamical systems 

Surprisingly, random effects can arise in seemingly simple dynamical systems 
with only deterministic and well-controlled ingredients. When this happens we 
often talk about the system's chaotic behavior. 

Example 1.9.1 Billiard vs. Pinball. 

Consider a ball moving on a rectangular billiard table. Assume, idealizing the 
situation, that there is no friction and no spin, and that the ball moves with constant 
unit speed along straight line intervals between reflections, and obeys the law of 
equal incidence and reflection angles on collision with the boundaries. 

The trajectories of such a ball can be of different nature: periodic, sweeping 
perhaps only part of the billiard table, or aperiodic which may sweep the whole 
table surface. It is clear that the single ball's trajectory depends on the ball's initial 
position and velocity (angle), and on the relationship between the sizes of the ball 
and the table. Theoretically, with an ideal point-size ball, when the initial angle is 
a rational multiplicity of 1r the trajectory is periodic and, when it is irrational, the 
trajectory is aperiodic (see a related discussion on irrational rotations in Chapter 
6). In computer experiments, the question of irrationality is delicate; only rational 
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FIGURE 1.9.1 
Billiard table. The initial angle between the trajectories of two balls is 0.001. The 
trajectories are almost indistinguishable. 

FIGURE 1.9.2 
Pinball table. The initial angle between the trajectories of two balls is 0.001. The 
trajectories quickly diverge. 
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FIGURE 1.9.3 
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The time-evolution of the angle between trajectories of two balls shot at slightly 

different initial angles. Top: On the billiard table pictured in Fig.1.9.1. Bottom: On 
the pinball table with a round obstacle pictured in Fig. 1.9.2. 

numbers can be produced, although, perhaps, with a lesser or greater degree of 
complexity. 

Now, consider trajectories of two balls shot from the same point but at slightly 
different angles (Fig. 1.9 .1 ). The time-evolution of the angle between the velocities 
of two balls is shown in the top half of Fig. 1.9.3. Notice that, except for short­
duration "blips" due to boundary effects, the angle a between the trajectories of 
the balls is being preserved. In the same situation the distance between two balls 
increases linearly with time (see Fig. 1.9.4, top). 

Next, let us analyze what happens if we put a round obstacle in the middle of the 
billiard table thus creating a sort of simple pinball table. For a single ball, periodic 
trajectories are still possible, and so are the aperiodic trajectories, sweeping the 
whole pinball table and hitting the obstacle infinitely often. However, if one looks 
now at the trajectories of two balls shot from the same point at close initial angles 
(Fig. 1.9.2.) the situation differs dramatically from the one we encountered in the 
case of the billiard table. 

After the first collision with the obstacle, the angle between the two trajectories 
is (see Fig. 1.9.5) 
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FIGURE 1.9.4 
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The time-evolution of the distance between two balls shot at slightly different initial 
angles. Top: On the billiard table pictured in Fig. 1.9.1. Bottom: On the pinball 
table with a round obstacle pictured in Fig. 1.9 .2. Distances between the positions 
of two billiard balls in the case of the billiard table without an obstacle and the 
billiard table with an obstacle. 

and since, for a small initial angle a, the angle fJ is proportional to a (say fJ =a), 
we see that 

In other words, the initial angle between trajectories is tripled after the first 
collision with the obstacle. The same will happen after the second collision so that 

Again, were it not for the boundary, each collision with the round obstacle 
would triple the angle between the trajectories, causing it to grow exponentially. 
This phenomenon is called a sensitive dependence on initial conditions and it does 
not occur in the billiard table without obstacles. Also, if one looks at the behavior 
of the distance between the two balls on the pinball table there seems to be no 
regularity there; we have discovered chaotic behavior in a very simple, otherwise 
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FIGURE 1.9.5 

The angle between the trajectories of two balls triples after each collision with the 
obstacle. 

deterministic, dynamical system. In 1970, the above heuristic arguments have 
been made rigorous by a Russian mathematician Yakov G. Sinai. 

Example 1.9.2 Brazilian Butterfly. 
Consider a dynamical system (x(t), y(t), z(t)) evolving in a three-dimensional 
space, depending on the continuous time t, and described by a system of three 
ordinary nonlinear differential equations: 

dx 
- = -ax+ay, 
dt 

dy 
- = -xz +rx- y 
dt 

dz 
- =xy-bz. 
dt 

(1) 

The system was proposed in 1963 by Edward N. Lorenz as a "toy" atmospheric 
circulation model but it helped jump-start the modem theory of chaotic behavior 
in the physical sciences. Despite its simplicity it displays a sensitive dependence 
on initial conditions (see Fig. 1.9.6). The model gave rise to the well-popularized 
chaos-theory image: a butterfly flapping its wings in the Brazilian rain forest can 
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FIGURE 1.9.6 
The trajectory of the points (x, y, z) corresponding to the solutions of (1) with 
initial conditions near (0, 0, 0) and with a = 5, b = 7, r = 2. 

cause a typhoon a few weeks later in the China Sea. In 1990 Lorenz was awarded 
the Kyoto Prize ($500,000) for his contribution. 

The nonlinearity is essential for the complex behavior of the Lorenz model. 
The equations are obtained by truncation of the Navier-Stokes equations (see also 
Section 1.10 on complex dynamical systems) that describe the conservation laws of 
the fluid flow. Fig. 1.9 .6 and 1.9. 7 show Mathematica simulations of the trajectories 
of the Lorenz system which used the package UVW'Lorenz. Depending on the 
parameter values the behavior of the system may be quite different. 

Example 1.9.3 Iterations of Quadratic Maps. 
To conclude this section we will take a quick look at a simple dynamical system 
determined by iterations of the function f(x) = ax(l - x), 0 :::: x :::: 1, which 
will play a role later on in Chapter 6. The timet = 0, 1, 2, ... is assumed to be 
discrete. Starting with an xo E [0, 1], the successive states X!, xz, ... E [0, 1] of 
the system are produced according to the following recursive formula 

Depending on the value of the coefficient a and the starting point xo the system 
displays a whole variety of behaviors from asymptotically stable, to periodic, to 
chaotic. 

Mathematica Experiment 1. Billiard vs. Pinball. The above analysis of the 
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FIGURE 1.9.7 
The trajectory of the points (x, y, z) corresponding to the solutions of ( 1) with 
initial conditions near (0, 0, 0) and parameters 
{{{3, 26.5, 1}, {3, 25, 1}}, {{4, 26.5, 1}, {4, 25, 1}}}. 

billiard and pinball was conducted via the Mathematica package UVW' Billiard' 
which is a part of the Uncertain Virtual Worlds (UVW) packages that can be 
found on the uvw Web Site. Before you start experimenting with it, the package 
has to be loaded using the command «UVW'Billiard' .4 

In[1]:= <<UVW'Billiard' 
In[2]:= BilliardAnimate[{0.2},20] 
In[3] := BilliardTrajectories[{0.2,0.3,0.4,0.5},10] 
In[4]:= BilliardDifferences[0.4,0.001,20] 
In[5]:= BilliardDifferences[0.4,0.001,20,0.] 

Mathematica Experiment 2. Iterations of Quadratic Maps. In this experiment 
we will need the following Mathematica commands: 

NestList[f, x, n] 
Usage: Produces a list ofn successively nested (iterated) functions f, i.e. 

x, f[x], f [f [x] ], . . . , f[f [f .... f [x] ] ] 
Random[Real, {0,1}, n] 

Usage: Produces an n-digit pseudorandom number in the range 0 to 1. 

4Instructions for installation of UVW packages can be found in Appendix E. Also see Mathematica 
bibliography at the end of this chapter. 
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The following experiment will produce a (joined) graph of 200 iterations of 
the quadratic (logistic) function f(x) = 4x(l - x) starting with a random point 
between 0 and 1 determined with the precision of 200 digits. You may further 
experiment with this system by changing the coefficient 4 to any number a, 0 < 
a < 4. Note that for a > 4 the system no longer maps the unit interval state space 
into itself. We will take a closer look at its complex behavior in Chapter 6. 

In[1] := f[x_] := 4 x(1-x) 
In[2]:= ListPlot[NestList[f, Random[Real, {0,1}, 200]], 200], 

PlotJoined -> True] 

Out[2] := -Graphics-

0.8 

0.6 

0.4 

0.2 

The output of the graphics is random because the starting point was selected ran­
domly. Every time you run the above experiment the trajectory will be slightly 
different. 

110 Complex dynamical systems 

Loosely speaking, by a complex dynamical system we mean a system with a 
very large, or even infinite, number of degrees of freedom. As an example consider 
the system of gas particles in the classroom. The instantaneous state of the system 
is described by the vector 
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where (x;, y;, z;) are the coordinate vectors of the ith particle and (.i;, y;, i.;) is 
its velocity vector and i = 1, 2, ... , N. The number of degrees of freedom in 
this system is 6 · N, with N, roughly speaking, of the order of the Avogadro's 
number, i.e., N ~ 6.0225 · 1023 . Another example is given below by following the 
continuum fluid flow dynamical system, which, as a matter of fact, can be obtained 
from the above particle system by taking the number N of particles to infinity. 

Example 1.10.1 Turbulent Flows and Diffusions. 
The motion of an incompressible fluid is described by the following system of 
nonlinear partial differential equations 

a,e + (u · V)(- <e. V)u = R-1 ~e. 

div u = 0, e =curl u, 

where 
U(a:) = ( Ul (Xt, X2, X3), U2(Xt, X2, X3), U3(Xt, X2, X3)) 

is the velocity field, e is the vorticity field, t is the time, and 

( a a a ) 
v = axl • ax2 • ax3 • 

(1) 

are, respectively, the gradient and the Laplacian differential operators. Equations 
(1) are called Navier-Stokes equations and their solutions are vector fields de­
pending on time and space location, and can be thought of as points in an infinite 
dimensional space of vector-valued functions of three variables. Depending on 
initial and boundary conditions, and the value of the Reynolds number R which 
is proportional to the characteristic scale and velocity of the flow, and inversely 
proportional to the viscosity of the fluid, the behavior of the solutions can vary 
from laminar flows to turbulent ones (see Fig. 1.10.1). 

What is often important in the study of atmospheric and oceanic flows is how 
a passive tracer, that is light particles that are carried by the fluid flow but do 
not affect the flow itself, is transported in turbulent and more generally, random 
velocity flows. This is the problem of turbulent diffusion that until this day is not 
completely understood. 

Fig. 1.10.2 shows the density distribution of a passive tracer at t > 0. At the 
initial time t = 0 it was uniformly distributed in space and then was carried by a 
random potential velocity flow. 

Fig. 1.10.3 shows the contour of constant density of the passive tracer carried 
by an incompressible flow. The contour initially was a circle indicating a radial 
symmetric distribution of the tracer density. One can demonstrate that the length 
of such a contour grows exponentially in time. 
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FIGURE 1.10.1 
Radial section of a turbulent flow from an axisymmetric jet. 

The turbulent velocity field shown in Fig. 1.1 0.1 appears random and not likely 
to appear again in exactly the same way even if the experiment is repeated under 
the same conditions. So, a fluid dynamicist would study a more stable object 
connected with it, namely the distribution (histogram) of the velocity components 
in a measurement taken over a certain period of time, see Fig. 1.1 0.4. 

1.11 Coin tossing revisited: pseudorandom number generators 
and the Monte-Carlo methods 

Simulation of random phenomena, often generically called the Monte-Carlo 
Method, introduced by Stanislaw Ulam, John von Neumann and Nicolas Metropo­
lis in the late 1940s, is now a routine technique in engineering and the physical 
sciences. It depends on the computer's ability to produce a random sequence of 
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Time 0.0 Time 0.5 

FIGURE 1.10.2 

Distribution of the passive tracer in the random potential velocity flow. The initial 

distribution was uniform in space. 

Time 0.00 Time 4.00 

FiGURE 1.10.3 

Contour of constant passive tracer density in an incompressible fluid. The initial 

contour was a circle. 

numbers. However, the random command should not be used uncritically because 

its execution is always a result of the deterministic code. What kind of "random­

ness" can actually be expected from such a procedure? As it turns out, to get the 

computer to reproduce a coin-tossing experiment is not an easy matter. 

Actually, there are only a few truly distinct methods used by computer random 
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t 

FIGURE 1.10.4 
The turbulent signal on the right appears random and not repeatable, but the 
distribution (histogram) of its values shown on the left is a more stable object. 
(From U. Frisch, Turbulence, Cambridge University Press, 1996.) 

number generators, and none of them produce perfectly random sequences because 
they are all using deterministic algorithms. For that reason it is safer to call them 
pseudorandom number generators. It is clear that one expects from' such a gener­
ator more than just satisfaction of the equipartition property discussed in Section 
1.1. After all, in the Champemowne number 

C=0.1234567891011121314151617181920212223 ... 

all blocks of the same length have identical frequencies but nobody would propose 
it as a random, or even pseudorandom number. 

Example 1.11.1 Midsquare Method. 
The oldest computer method for producing pseudorandom numbers is due to John 
von Neumann and is called the midsquare method. It works as follows: Take a 
four digit number, say 6514, compute its square 42432196 and take the middle 
four digits 4321 as the next pseudorandom number. Then repeat the procedure 
to obtain the next pseudorandom number 6710 and so on. One hopes that with a 
clever choice of the initial seed number one gets a sequence uniformly distributed 
among ten thousand four-digit numbers. However, it is easy to see that this is not 
so and the method, although simple in execution, has serious statistical flaws. 

Example 1.11.2 Fibonacci Sequence. 
It is also called the additive congruential method. The prescription is as follows: 
Pick the first two integers xo, Xt arbitrarily and then proceed recursively by defining 

Xi= Xi-1 +Xi-2 (modm) 
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for a choice of m. So, 

1, 1,2,3,5,8, 13,21,34,55,89,144,233,377, 110,487,97,84, 181, ... 

is the Fibonacci sequence form = 500. The problem with the Fibonacci sequence 
is that it can never produce triples x;, x; -I, x; -2 satisfying inequalities 

Xi-1 < Xi+l <X;, X; < Xi+l < Xi-1, 

and such triples should appear with frequency 116. Right? Try to explain why. 

FIGURE 1.11.1 

The Turbo Pascal random number generator shows an obvious lack of randomness. 
(From D. Griffeath, in Statistical Science, Vol. 8( 1993 ).) 

Example 1.11.3 Bold Stripes: Linear Congruential Method. 
The prescription is somewhat similar to the one considered above. One picks 
xo arbitrarily, and for a choice of fixed parameters a, c, and m, one computes 
pseudorandom numbers by the recursive formula 

x; =ax;-I+ c (modm). 
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This method is commonly used in modern computers. The choice m = 231 - 1 = 
2147483647, a= 16807, and c = 0 is implemented in some computer languages. 

However, take a look at Fig. 1.11.1 which plots (starting with the top row, left to 
right) pseudorandom numbers (Os represented by white dots and Is by black dots) 
generated by TURBO PASCAL on a rectangular grid of 256 x 240 pixels. The 
obvious nonrandom pattern that shows up should shatter anybody's absolute faith 
in random number generators. On the other hand, as we will see later, devising a 
perfect random number generator is impossible, so one has to use what we have, 
understanding its shortcomings and limitations. The so-called Minimal Standard 
32-bit generator is based on the recursive formula 

Xn+l = 16807xn (mod 2147483647), 

and you can easily implement it yourself in Mathematica. 

Recently, George Marsaglia of the Florida State University produced a Random 
Number CD ROM including the Diehard Battery of Tests of Randomness which is 
based on mixed techniques incorporating some data collected from observations 
of inherently random quantum effects. This looks like a promising avenue in 
developing new pseudorandom number generators. 

1.12 Fractals and image reconstruction 

Some complex images can be encoded in a simple fashion although what is 
meant by "simple encoding" can require additional explanations. A good example 
of such a situation is fractals and random fractals (the term is used here in a 
colloquial sense). The first, presented on Fig. 1.12.1 has a very simple description 
in terms of the angle between the branches, the length of the branches, and the 
number of levels. 

The picture presented on Fig. 1.12.2 is similar, yet subtly different. Some of the 
branches are missing, but there is no simple pattern to how they were dropped. 
This is a random fractal. To reconstruct it exactly would take a long description. 
However, one can easily reconstruct it "statistically" by specifying the above pa­
rameters of the deterministic fractal and, in addition, provide a probability with 
which the branch in each generation is dropped. This is often the approach taken in 
the practically important area of image reconstruction (see Bibliographical Notes). 
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FIGURE 1.12.1 

A deterministic fractal. 

FIGURE 1.12.2 
A random fractal. 
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1.13 Coding and decoding, unbreakable ciphers 

When one tries to encrypt a confidential message, a high complexity of the 
encryption system could be a desirable goal. Consider a simple fixed code 
It assigns to each letter a certain fixed sequence of numbers. If the message is 
long enough, the code can be broken by analyzing the frequencies of different 
symbols. During World War I the AT&Temployee GilbertS. Vemam and Major 
Joseph 0. Mauborgne of the U.S. Army Signal Corps developed a different coding 
system, called the one-time pad system, that subsequently was demonstrated to be 
unbreakable and is commonly used in clandestine communications. 

A good illustration of how it works is provided in Fig. 1.13.2, which shows a 
photograph of a sheet of paper found in 1967 on the body of the Latin American 
revolutionary Che Guevara after he was captured (with CIA help) and executed 
by the Bolivian Army. It contains an encoded massage Guevara prepared for the 
Cuban President Fidel Castro who was supporting the insurrection. 
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A t-+ 6 B t-+ 38 C t-+ 32 D t-+ 4 E t-+ 8 F t-+ 30 
G t-+ 36 H t-+ 34 I t-+ 39 J t-+ 3I K t-+ 78 L t-+ 72 
M t-+ 70 N t-+ 76 0 t-+ 9 P t-+ 79 Q t-+ 7I R t-+ 58 
S t-+ 2 T t-+ 0 U t-+ 52 V t-+ 50 W t-+ 56 X t-+ 54 
Y t-+ I Z t-+ 56 

FIGURE 1.13.1 
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An example of a fixed code that translates each letter of the alphabet into a one­
or two-digit decimal number. It was used in the message shown in Fig. 1.13.2. 

The message (in Spanish) was first encoded using a fixed code shown in 
Fig. 1.13.I which transformed the original text into a sequence of decimal dig­
its written out in the first line of each three line paragraph. For convenience the 
encoded message was broken into five-digit blocks. 

The second line of each paragraph contained a sequence of random (pseudo­
random) numbers known only to Guevara and Castro, used only once to encode 
this message and then destroyed. The third line contains the sums (written without 
carries) of the two digits appearing in the first two lines directly above them. It was 
only this line that was transmitted over open shortwave radio and then decoded 
by the reverse procedure in Havana. Because of the encryption procedure the 
cryptogram itself is a pseudo-random sequence; the more random, the better. 

Physicists and cryptographers discuss current coding methods based on quantum 
effects (see Bibliographical Notes). 

Mathematica Experiment 1. Union Jack in London Fog. Electronic transmission 
of messages over long distances (for example, from a spacecraft) unavoidably 
introduces some errors. In this experiment we will examine how random errors 
can influence the perception of the message, in this case the digitized picture of 
the Union Jack which is stored in file UJACK on the uvw Web Site. 

The following Mathematica commands will be used: 

Show [Graphics [Raster [nx n matrix]]] 

Usage: produces a two-dimensional picture with (unmarked) rasters (i,j) 

where the intensity of the grey is given by the value of the matrix element at 
position ( i, j). 0 stands for black and I for white. 

<< Statistics'DiscreteDistributions' 

Usage: loads the package Statistics 'DiscreteDistributions'. 

Random[BernoulliDistribution[p]] 

Usage: returns a string of Os and Is. In the long run, Is will have the relative 
frequency close to p. 
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FIGURE 1.13.2 
Latin American revolutionary Che Guevara prepared this encoded message to 
Cuban President Fidel Castro in 1967 just before he was captured and executed by 
the Bolivian Army. He used the unbreakable, one-time pad, Vernam-Mauborgne 
cipher. (From C.H. Bennet et al., Scientific American, October 1992, pp. 50-57.) 

Mod[k,n] 
Usage: the remainder when dividing k by n. 

A typical session follows. 

In[1]:= <<Statistics'DiscreteDistributions' 
In[2]:= Mod[2,2] 
Out[2]= 0 
In[3]:= TableForm[Table[{i,Mod[i,2]},{i,0,5}]] 
Out[3]// TableForm= 0 0 

1 1 
2 0 
3 1 
4 0 
5 1 
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In[4] := Random[BernoulliDistribution[0.5]] 
Out[4]= "randomly 0 or 1" 
In[5]:= Table[Random[BernoulliDistribution[0.5]] ,{12}] 
Out[5]= "list of twelve random O's and 1's" 
In[6] := Table[Random[BernoulliDistribution[0.1]] ,{12}] 
Out[6]= "list of twelve O's and 1's with the frequency of 1's 

equal to 1/10" 
In[7] := ran[p_] :=Table[Table[Random[BernoulliDistribution[p]], 

{30}] ,{30}] 
In[8]:= ran[0.3] 
Out[8]= "30 by 30 matrix with random O's and 1's" 
In[9] := ujack={ ... }; 
In[10] :=Show[Graphics[Raster[ujack]]] 
Out[10]= "Graphics" 
In[U] := co[p_] :=Table[Mod[r[p] [[i,j]]+ujack[[i,j]] ,2], 

{i,1,30},{j,1,30}] 
In[12] := r[0.01]=ran[0.01]; Show[Graphics[Raster[co[0.01]]] 
Out[12]= "Graphics" 
In[13] := r[0.12]=ran[0.12]; Show[Graphics[Raster[co[0.12]]] 
Out[13]= "Graphics" 
In[14] := Quit 

1.14 Experiments, exercises, and projects 
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1. Mathematica Experiment 1.1.1 continued. The file ZEROONE1 on the UVW 
Web Site contains a list of 0 and I. It should be loaded and examined. 
The colon in the following command suppresses the statement Out [7] . 

In[1] := zeroone1={ ... }; 
In[2]:= Length[zeroone1] 
Out[3]= 500 
In[4]:= N[Sum[zeroone1[[i]],{i,1,Length[zeroone1]}]/ 

Length[zeroone1]] 
Out [ 4] = 0 .48 
In[5]:= Quit 

1a) Compute the frequencies of the blocks 01 in the list zeroone1.m. 

1 b) Compute the frequencies of 1 in the lists (a)-( d). 

1c) Compute the frequencies of all blocks of length one, two and three 
in the lists zeroone1, zeroone 2, zeroone 3. 
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1 d) Find a string of Os and 1 s of length nine for which the frequencies of 
all the blocks of length two are 1 I 4. Check your findings. (Solution: 
000110110.) 

1e) Repeat Exercise 1d for strings of length 26, blocks of length 3, and 
frequencies 11 8. (Solution: 00000101001110010111011100.) 

2. Mathematica Experiment 1.3.1 continued. 

2a) Find the 5th, 23rd and 52nd largest number in the list contained in 
the BA'ITERY file on the uvw Web Site. 

2b) The file REFRIGER on the uvw Web Site contains the list oflifetimes 
for two brands of refrigerators. For each list compute the k -th largest 
where k is a multiple ofLength[list]/10. Compare the two sequences 
and discuss how different they are. 

2c) The data in file RIVET on the UVW Web Site contains the measure­
ments of rivet heads. Find the number of measurements and deter­
mine the range of the measurements, i.e., the smallest and the largest 
measurements. 

3. Mathematica Experiment 1.4.1 continued. 

3a) Find the reliability of serial and parallel devices with reliabilities of 
individual components rj = 1/3 + j 2fj! for j = 1, 2, ... , 15. Use 
the definitions of serial and parallel saved from the Mathematica 

Experiment 1.4.1 (you need to do that experiment first, quit and restart 
again to do this exercise). 

3b) Find the reliability of a device consisting of three components, the 
first two in parallel and the third in series with the first two. Take 
rj = 1/j, j = 1,2,3. 

4. Project. (Mathematica Experiment 1.5.1 continued). Draw a map of the 
stars contained in the file STARS on the UVW Web Site. Select one of four 
different dot sizes to indicate the star's brightness. 

5. Mathematica Experiment 1.6.1 continued. 

Sa) Select the list of all educated groups in the list CENSUS. 

5b) Compute the average number of children in the group of all unedu­
cated and low income families in the list CENSUS . 

5c) The file PRISON in the uvw Web Site contains data on the rate of 
sentenced prisoners from the table in Section 1.6. Order the list by 
region as in the printed table. 

5d) Order the list PRISONER alphabetically by states. 

5e) Extract the list of all states in PRISONER where, in 1991, the rate of 
sentenced prisoners per 100.000 residents was above 250. 
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6. Project (Mathematica Experiment 1.6.1 continued). For each year, make 
a list containing the name of the states with the lowest and the highest rate 
of sentenced prisoners. Which state had the highest overall rate? 

7. Mathematica Experiment. Lorenz equations. Experiment with the uvw 
Web Site package UVW'Lorenz' varying the parameters. Note those that 
give rise to a chaotic behavior. A sample session is quoted below. 

In[1]:= <<UVW'Lorenz' 
In[2]:= Lorenz[3,26.5, 1] 
In[3] := para={{{3,26.5,1},{3,25,1}},{{4,26.5,1},{4,25,1}}}; 
In[4] := LorenzArray[para] 

8. Project. Midsquare generator. Use the uvw' PsedoGene' package to gener­
ate pseudorandom strings via the midsquare algorithm with different seeds. 
A sample session follows. 

In[1] := <<UVW'PsedoGene' 
In[2]:= MidsquareGenerator[1234, 100] 
In[3]:= MidsquareLoop[4578] 
In[4]:= MidsquareLoop[9854] 
In[5] := MidsquareLoop[1245] 

Then, using the tools developed in Mathematica experiments in Section 
1.1.1, investigate its equipartition properties. Analyze the structure of the 
package itself. 

9. Project. Congruential generator. Use the UVW'PsedoGene' package to 
generate pseudorandom strings via the congruential algorithm with various 
seeds. A sample session follows. 

In[1] := <<UVW'PsedoGene' 
In[2] := samp=CongruGenerator[0.23, 181,0,16384,2000] 
In[3] := <<UVW'DataRep' 
In[4] := RegularHisto[samp,0,1,10] 
In[5] := LargeNumbers[samp] 
In[6] := Centra1Limit[samp,0.5,Sqrt[1./12],6] 
In[7] := samp2=Partition[samp,2]; 
In[8]:= SamplePlot2D[samp2] 
In[9] := Congruentia1Loop[10,181,0,16384]; 
In[10] := Length[%] 

Then, using the tools developed in Mathematica experiments in Section 
1.1.1, investigate its equipartition properties. Analyze the structure of the 
package itself. 
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10. Project. Mathematica Experiment 1.13.1, continued. Write a file of 
2,500 zeros and ones producing a picture of your choice using the Raster 
command (here, one can also use a standard scanner equipment). Analyze 
and document changes in the picture and its perception as random errors 
are introduced with parameter p ranging in the interval [0, 1]. Discuss 
your findings. 

11. Mathematica Experiment 1.6.1, an alternative. Use Mathematica pack­
age Statistics 'DataManipulation' to repeat Experiment 1.6.1 on the 
database of the number of children in French-speaking Canadian families. 

1.15 Bibliographical notes 

With online Mathematica help that now comes with the software one can do 
without any hard copy manuals. However, we have found the following books 
helpful: 

[1] S. Wolfram, The Mathematica Book, Wolfram Media, Champaign, IL, 
1996. 

[2] W.T. Shaw and J. Tigg, Applied Mathematica, Addison-Wesley, Reading, 
MA, 1994. 

[3] R. Maeder, Programming in Mathematica, Addison-Wesley, Reading, 
MA, 1991. 

[4] T.B. Bahder, Mathematicafor Scientists and Engineers, Addison-Wesley, 
reading, MA, 1995. 

[5] E. Martin, Ed., Mathematica 3.0 Standard Add-on Packages, Wolfram 
Media, Cambridge University Press, Champaign, IL, 1996. 

There are standard catalogs of celestial objects, and the one used in Section 1.5 

was 

[6] D. Hoffteit, The Fourth Revised Edition ofThe Bright Star Catalogue, Yale 
University Observatory, 1982. 

One of the successful nonlinear models of mass clustering in the universe is dis­
cussed in 

[7] S.F. Shandarin, Three-dimensional Burgers' equation as a model for 
the large-scale structure formation in the universe, Stochastic Models 
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in Geosystems, S.A. Molchanov and W.A. Woyczynski, Eds., Springer­
Verlag, New York, 1997. 

[8] W.A. Woyczynski, Gottingen Lectures on Burgers Turbulence, Springer­
Verlag, New York, 1998. 

The following are good surveys in their respective areas: 

[9] C.H. Bennet, G. Brassard, and A.K. Ekert, Quantum Cryptography, Sci­
entific American, October 1992, pp. 50-57. 

[ 1 0] M.F. Barns ley and L.P. Hurd, Fractal/mage Compression, AKPeters Ltd., 
Wellesley, MA. 1993.) 

[11] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo 
Methods, SIAM, Philadelphia, 1992. 

[12] J.M. Hammersley and D.C. Hanscomb, Monte Carlo Methods, Chapman 
and Hall, London, 1964. 

The last position, although dated, still reads very well. 
If you want to read an amusing but also informative account of the perils of 

(ab)using statistics, see the classic 

[13] D. Huff, How to Lie with Statistics, Norton, New York, 1954, 

which became an honest-to-goodness bestseller with over half-a-million copies 
sold. 
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Data Representation and Compression 

The principal question addressed in this chapter is how to present in a readable 
fashion (often) large sets of data, extracting their essential features in a compact 
and digestible form which, for instance, would permit an easy comparison of 
different data sets, discern trends, facilitate management and engineering decisions, 
or predict future behavior. This is what we call the problem of data representation 
and compression. 

2.1 Data types, categorical data 

Data compression can take different forms, such as graphical representation (bar 
charts, histograms, etc.), condensing the information to a single number, or a few 
numbers, characterizing some features of the data (say, median, mean, variance), 
or an analytic or algorithmic representations discussed in the next chapter and used 
in modeling and in, for example, fractal image compression techniques. 

The material is organized depending on the type of data: 
• categorical data 
• numerical data 

multidimensional data 
• fractal data 
However, one has to recognize that many of our examples involve data that are 

of mixed nature, say, both categorical and numerical, and that the above classi­
fication is intended to systematize for the reader the tools that are available for 
representation and compression in each grouping. Each of these categories can 
also display a time dependence (i.e., trends), and the associated time series need 
to be represented as well. 

Also, data can be collected in different ways and, depending on the data collec­
tion method, different statistical techniques have to be utilized for their analysis. 
This consideration gives rise to another classification into 

55 © Springer International Publishing AG 2017 
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systematically collected data, and 
• random samples. 
The first type, like the number of prisoners tallied by state and year in Section 

1.6, comes from a complete and systematic collection of information about dif­
ferent categories. The legitimate question is how to represent them best but their 
compression always involves a loss of information. Calculation of the average 
number of prisoners per 1 ,000 of population in the Midwest is an example of such 
a compression. 

On the other hand, the random samples, usually numerical, can be meaningfully 
compressed without any loss of information. For example, their relative frequency 
distributions or cumulative distribution functions contain all the information about 
them. 

Many popular publications, such as U.S.A. Today, the Economist, the Scientific 
American, have long recognized that data displays and related graphics have a 
decorative value, especially if full color is included. Such an "artistic" approach 
may or may not improve the transmission of information to the reader, but has to 
be considered seriously as a way to improve data presentation. 

The treatment of categorical data, that is data in which each observation of the 
sample belongs to one of the finite number of categories, has to be, naturally, quite 
different than the treatment of numerical data. The positive or negative outcome of 
a medical treatment in a group of patients can be tabulated depending on their blood 
type which can be one of the four types: 0, A, B, or AB. The result is categorical 
data that record the number of patients in each of the four categories who positively 
responded to the treatment. Data on positions of bright stars in Example 1.5.1 
were numerical as far as the magnitude, right ascensions, and declinations were 
concerned, but categorical as far as their spectral class was concerned. The data 
on rates of sentenced prisoners in Section 1.6 were categorized by state, but for 
each state they formed a time series as a function of the year. 

Further subclasses of categorical data can be distinguished such as 

• nominal data 
• ordinal data 

For nominal categorical data, different categories are assigned different numbers in an 
arbitrary fashion. There is no mathematical relationship between those numbers which 
could be interpreted in terms of the characteristic properties of each category. Examples 
of such nominal data are car license plate numbers, blood types, gender, and color. 

If a, {3, ... , ware categories in our data set of size n, and we assign arbitrarily numbers 
1, 2, ... , m to these categories, no algebraic or order-related manipulation of these data 
would be meaningful. However, computation of frequencies makes perfect sense. If 
n1, n2 , ... , nm are, respectively, numbers of data points in each category a, {3, ... , w, 
then the corresponding relative frequencies are 

and we can represent them graphically by a bar chart or a pie chart. 
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Ordinal categorical data is a further subclass of nominal categorical data in which dif­
ferent categories are assigned different numbers (ranks) the ordering thereof has a mean­
ingful interpretation in terms of the characteristic property of each category. Examples of 
such ordinal data are the degree of response to a new drug treatment (low, medium, high), 
students' grades, social ranking, and weekly NCAA basketball and football rankings. 

In this case, in addition to the frequency tabulation, bar charts, and pie charts available 
for general nominal data, we can also perform order-related manipulations such us finding 
the j-th smallest category, sort the data according to their rankings, or even to split them 
into quantilelike subgroups which are described in detail in Section 2.2. 

In this section we show how the categorical (or mixed) data can be represented 
graphically. More and much richer information of the subject can be found in the 
sources quoted in the Bibliographical Notes at the end of this chapter. 

Example 2.1.1 Telephone Charges. 
The cost of three-minute international calls in various countries was surveyed by the 
National Utility Services in February 1995. The results appeared in the Economist, 
March 25, 1995, in the form of two barcharts presented in Figure 2.1.1. Note the 

Long-dtstance national calls 

February 1995, $ 

• Discounts applied 

FIGURE 2.1.1 

International and long-distance national telephone charges for a three-minute call. 
(From the Economist, March 25, 1995.) 

horizontal position of the bars; it is much easier to label them than the vertical 
bars. Also, other pertinent data such as the source of the information, the date, 
and the units are meticulously (but unobtrusively) displayed. For a clearer un­
derstanding of relationships of charges in different countries, the corresponding 
bars were arranged in the decreasing order of magnitude. The data were collected 
systematically and they contain a categorical (country, long-distance national vs. 
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international) and numerical (rates) components. They do not form a random sam­
ple although it is quite obvious that the numbers came via some kind of compression 
of a random sample of, say, long distance calls to selected locations. One can think 
of countries as being ordinal data if you insist on putting them in alphabetical order. 

Example 2.1.2 Japanese Technical Citations. 

The CWRU Mathematics Department has a foreign language reading requirement 
for its Ph.D. students. French, German, and Russian have been ruled to be ac­
ceptable "major foreign languages". Barbara Margolius, a graduate student who 
studied Japanese for a number of years, seeking a waiver of departmental rules, 
presented data showing the growing trend of Japanese language citations in the 
mathematical technical literature, and asked that the department accept Japanese 
as a "major foreign language". The trend, shown in Fig. 2.1.2, shows the ratio 
of Japanese citations to the German, Russian, and French citations. Note that the 
length of time intervals over which the data were aggregated varied, reflecting 
different sample sizes in different time periods. This is an example of an effec­
tive presentation of aggregate time-dependent categorical data. Needless to say, 
Barbara's request was granted. She collected the data by a systematic and ex­
haustive computer search of the MathSci Index. They are categorical (nominal) by 
country, categorical (ordinal, trend displaying) by year groupings, and numerical 
(proportional) in terms of relative citation numbers. 

Different hatchings of bars corresponding to different categories are not always 
the most fortunate graphical technique to differentiate categorical data, as they 
often produce unwanted Moire effects. Different grayscale levels are preferable. 

FIGURE 2.I.2 

Ratio of Japanese Citations 
to German, Russian and French 
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The trend in the ratio of Japanese citations in mathematical literature, to German, 
Russian, and French citations. 
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Example 2.1.3 Emergency Calls. 

The times of 39,939 emergency calls to the 6th District of the Cleveland Police 
Department were recorded from Dec 28, 1993 to July 31, 1994, and stored as 
computerized data in each of the four priority categories. Priority 1 (the highest) 
calls are the calls requiring immediate response (felony assault in progress, etc.). 
Priority 4 calls are the lowest priority calls (abandoned vehicle, blocked driveway, 
etc.). Fig. 2.1.3 shows the time dependence of the average (over the whole data set) 
number of calls per hour (intensity of call arrivals) over the 24-hour time period for 
each of the four priorities but in a cumulative (stacked up) fashion, starting with 
Priority 1 at the bottom of the graph. This continuous (in reality the time step was 
discrete and equal to 1/60 h) multivariate time series was obtained by calculating the 
average of the number of calls for each priority within the moving time-window 
frame of size equal to 1 hour. The data were collected systematically and they 
contain a categorical ordinal (priority) component, and the numerical component 
(call intensity). The data also display time dependence. Some compression was 
already done (averaging) and resulted in loss of information but improved the 
clarity of the representation. 

6th District Call Arrivals by Priority 

I 2:00am 4:00am 08:00am !2:00pm 04:00pm 08:00pm 
Time of Day 

FIGURE 2.1.3 

Police emergency call arrivals' intensity. (From B. Margolius, Time-Dependent 
Multiserver and Priority Queues, Ph.D. Dissertation, CWRU, Cleveland, 1996. 
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Our final example shows an interesting and surprising property of the decimal 
expansion of the number 1r. 

Example 2.1.4 Random Number Generation: To Pi or Not to Pi. 

Mariya Tikhunova, a Computer Engineering junior at CWRU, investigated a pos­
sibility of using the decimal expansion of the number 1r as a random number 
generator. The Mathematica command N [Pi, 10000] produced a string of 10,001 
digits 

3.14159265358979323846264338327950288419716939937511 ... 37568, 

and the starting point of the project (see, Section 4.6 for further developments) was 
to check the equipartition property (frequencies) for 10 single digits, 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, and for 100 pairs of digits, 00, 01, ... , 98, 99. These frequencies are 
shown in Fig. 2.1.4, where they are compared with the results of similar experi­
ments for the decimal expansion of the number e = 2.7182818284 ... , and 10,000 
pseudorandom digits generated in C++. 

Remark 2.1.1 Psychology of Graphical Representation. The human percep­
tion of relations of quantities represented by different graphical techniques varies. 
Thus, the pie charts (not to mention the distortion-prone but popular 3-D pie charts) 
convey the relation between quantities less accurately than bar charts. Empirical 
studies (W.S. Cleveland and R. McGill, Graphical perception; Theory, experi­
mentation, and application to the development of graphical methods, J. Amer. Stat. 
Asso. 19, 531-554,1984) have demonstrated that the absolute error in judging per­
centage differences in two slices of a pie was greater than in judging differences in 
two bars. This could be related to the fact that the perception of the area size is not 
linear but scales as the actual area raised to an exponent of about 0.8 (you can try to 
determine it yourself by polling your class about relative area sizes of two irregular 
shapes that you have measured in advance). The area perception dominates in the 
pie chart, whereas in a bar chart it is principally the bar length that dominates the 
perception. 

Mathematica Experiment 1. Manipulation of Categorical Data: Party Alle­
giance. A random sample of 39 voters was asked about their political preferences: 
Democratic, Republican, and Perotistas. Their responses are included in the file 
VOTERS on the uvw Web Site. This is a purely categorical and nominal set of data. 
We compute the frequency of each party's supporters and represent the data as a 
pie chart. 
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Frequencies of single digits and pairs of digits in the first 10,000 decimals of rr 
(top), e (middle), and a C++ generated random number (bottom). 

In[1] := <<Statistics'DataManipulation' 
In[2]:= <<Graphics' 
In[3] :=voters= {{1,D},{2,D},{3,R},{4,P},{5,D},{6,D},{7,R}, 

{8,D},{9,R},{10,P}, {11,D},{12,D},{13,R},{14,D},{15,P}, 
{16,P},{17,P},{18,P},{19,R},{20,D},{21,P},{22,D},{23,R}, 
{24,R},{25,P},{26,P},{27,P},{28,D},{29,R},{30,P},{31,D}, 
{32,D},{33,D},{34,P},{35,D},{36,D},{37,P},{38,R},{39,D}} 

Out[3]= 
{{1,D},{2,D},{3,R},{4,P},{5,D},{6,D},{7,R},{8, D},{9,R}, 
{10,P},{11,D},{12,D},{13,R},{14,D},{15,P},{16,P},{17,P}, 
{18,P},{19,R},{20,D},{21,P},{22,D},{23,R},{24,R},{25,P}, 
{26,P},{27,P},{28,D},{29,R},{30,P},{31,D},{32,D},{33,D}, 
{34,P},{35,D},{36,D},{37,P},{38,R},{39,D}} 

In[4] := Frequencies[Column[voters,2]] 



62 Chapter 2. Data Representation and Compression 

Out[4]= {{17,D},{13,P},{9,R}} 
In[5]:= Length[voters] 
Out[5]= 39 
In[6]:= PieChart[%4] 
Out[6]:= Graphics 

Mathematica Experiment 2. Countries of the World. The file World in the 
Mathematica package WorldPlot contains names of 174 countries. We consider 
this data set as categorical assigning each country to 1 of the 26 categories A,B, ... ,Z 
depending on its initial. The percentage of countries in each category is then 
represented by a bar chart. The pie chart would not be legible and informative in 
this case because the number of categories is too large. 

In[1]:= <<Miscellaneous'WorldPlot' 
In[2]:= <<Graphics'Graphics' 
In[3]:= World 
Out[3]= {Afghanistan, Albania, ........ ,Zambia,Zimbabwe} 
In[4]:= Length[World] 
Out[4]= 174 
In[5]:= Map[FromCharacterCode,Range[97,122]] 
Out[5]= {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} 
In[6]:= Map[FromCharacterCode, Range[65,90]] 
Out[6]= {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} 
In[7]= s[x_]:=Sum[If[StringMatchQ[StringTake[World[[i]],1], 

FromCharacterCode[x]],1,0],{i,1,174}] 
In[8]:= tabl=Table[{s[x],FromCharacterCode[x]},{x,65,90}] 
Out[8]= {{11,A},{17,B},{16,C},{3,D},{7,E},{5,F},{11,G},{3,H}, 

{8,I},{3,J},{4,K},{9,L},{12,M},{9,N},{1,0},{9,P},{1,Q}, 
{3,R},{19,S},{6,T},{7,U},{2,V},{1,W},{O,X},{1,Y},{3,Z}} 

In[9]:= BarChart[tabl] 
Out[9]= -Graphics-
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2.2 Numerical data: order statistics, median, quantiles 
In this section we assume that the data 

63 

(1) 

are numerical, that is form a finite sequence (vector) of real numbers called sample 
points, and in our examples they will come often from random samples. The 
positive integer n is called the sample size. We will often use the bold face x to 
denote sample (1). 

The simplest operation that introduces some organization into numerical data is 
reordering the sample in the increasing order of sample points. In other words, if 
(1) is the original sample, then there exists a permutation 

rr(1), rr(2), ... , rr(n), 

of indices 
l, 2, ... , n, 

such that 
Xn(l) S Xn(2) S · · · S Xn(n)· 

The ordered sample points 

Xn(l), Xn(2), .•• , Xn(n), (2) 

are called the order statistics (first through n-th) of the sample (1), and traditionally 
denoted by 

X(i)• X(2)• •.• , X(n)• 
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The permutation 1r is usually not mentioned explicitly. 

Example 2.2.1 A Die is Cast. 
A die was rolled eight times and the resulting sample was 

Xi = 1, X2 = 3, X3 = 2, X4 = 5, X5 = 2, X6 = 6, X7 = 5, Xg = 5. 

The ordered sample was then 

X(t) = 1, X(2) = 2, X(3) = 2, X(4) = 3, X(S) = 5, X(6) = 5, X(7) = 5, X(9) = 6. 

Once the sample has been reordered, it is relatively easy to determine a number 
of useful and informative numerical characteristics of the sample. For example, 
the first order statistic 

and the n-th order statistic 

X(t) = m.in X;, 
1:51 :5n 

X(n) = mil" X;, 
1:5t:5n 

are, respectively, the smallest and the largest sample points. The interval 

is called the sample interval, and its length 

gives the sample range. Thus, in Example 2.2.1, the sample interval is [1, 6] and 
the sample range is 5. 

The sample point that is located in the middle of the reordered sample, or the 
middle order statistic of the sample, is called the sample median. More precisely, 
the median med (z) of sample z is determined by the condition 

#{i : x; ::: med (z)} = #{i : x; ::: med (z)}. (3) 

Recall, that the notation #A means the number of elements of the set A, so that 
#{i : x; ::: med (z)} reads: the number of indices i for which x; ::: med (z). 
Hence, if the sample size n is odd, the median is exactly the middle element in the 
reordered sample, that is, 

med (z) = X((n+l)/2)· 
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However, when the sample size n is even, any number between X(n/2) and X((nf2H I) 
satisfies condition (3), so that median is not uniquely defined (unless, of course, 
X(n/2) = X((n/2)+1)). Traditionally, one chooses the midpoint between two middle 
elements, so that, for even-sized samples, 

1 
med (a:)= 2(X(n/2) + X((nf2)+!)). 

In a similar spirit one could define three quartiles Q1, Q2, Q3 of sample a: as 
numbers that divide the ordered sample into four groups with the same number of 
elements. In other words, 

(4) 

Obviously the second quartile is just the median: 

Q2 = med (a:), 

and the first and third quartiles can be obtained by finding the medians of the left 
and right halves of the ordered data. In a similar fashion, percentiles would then 
divide the sample into 100 equal groups. 

q(a) 
x(8)=6 0 

J x(S-?)=5 000 

1 x(4)=3 0 

J x(2)= x(3)= 2 o o 

l x(l) =I 0 

(X 

1/8 2/8 3/8 4/8 5/8 6/8 7/8 

FIGURE 2.2 .1 
The graph of the multi-valued quantile function q(a) as defined by (5),for the 
set of eight data points from Example 2.2.1 marked as circles to the left of the 
vertical axis. The function is well defined only for a = 0, 1/8, 3/8, 4/8, 7/8, 1. 
The bottom dots on each vertical bar indicate a unique selection of the version of 
quantile corresponding to formula ( 6 ). 
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Quartiles and percentiles are special cases of the general concept of a quan­
tile, but defining quantiles q(a) for an arbitrary 0 < a < 1 (rather than, say, 
a = 1/4, 1/2, and 3/4, as we have done for quartiles) and a finite sample 
Xt, ... , Xn, of size n, is a little more tricky. If the real number a is of the form 
a = k· ~ .... , n~l, ~ = 1, then one can define the a-quantile as a number 
q = q(a) such that 

(5) 

Like the median, the a-quantile q(a) is a multivaluedfunction, that is, there can 
be many acceptable values of q(a) for each a. The typical situation is displayed 
in Fig. 2.2.1, where the dot-plot of eight data points from Example 2.2.1 is marked 
on the vertical axis together with the labeling of the five possible values Vt, ••• , vs 
that the data can assume. 

The ambiguity embedded in the above definition of the quantile can be avoided 
if one specific realization of the quantile multivalued function is selected. For 
example, one can uniquely define 

q(a) = minq, (6) 

where the minimum is taken over all qs satisfying the defining condition (5). Such 
a selection is marked by dots at the bottom of vertical bars on Fig. 2.2.1. 

q(cx) 
0 

000 

0 1/8 218 3/8 4/8 5/8 6/8 7/8 

FIGURE 2.2.2 
The plot of the piecewise constant extension of the quantile function q (a) (con­
tinuous line), and the plot of the linearly interpolated extension corresponding to 
formula (7) (dotted line). The data are those of Example 2.2.1. 

E "f I . . f ( ) fi I 2 n-1 n 1 ven 1 one se ects a umque versiOn o q a or a = n' n' ... , ---n-• 1i = , 
there is no unique way to extend the definition of q(a) for other 0 < a < 1. Two 
common choices are: 
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Piecewise-constant extension: In this case, for any 0 < a < I, we select as 
q(a) the value q(k/n) from formula (5) for kfn immediately to the right of the 
number a. For data from Example 2.2.1, this selection of the quantile function is 
shown in Fig. 2.2.2 by the continuous line. 

Linearly interpolated extension: In practice, to avoid any ambiguity, often one 
defines the quantile q(a) for any< a < I via the interpolation formula 

qint(a) = X(Lna+l/2J) + ( na + 1/2- Lna + l/2J) ( X(Lna+l/2J+l) - X(Lna+l/2J)). 

(7) 
Recall, that the symbol Lx J denotes the floor or the integer part of the number x, 
i.e., the largest integer:::; x. The number q (a) cuts then, approximately, the sample 
into two paris; a · 100% of sample points are below q(a) and (1 -a) · 100% of 
sample points are above q(a). In particular, q(0.5) is the sample median, and 
q(0.25), q(0.75) correspond to the sample first and third quartiles. For data from 
Example 2.2.1, the interpolated quantile function is marked in Fig. 2.2.2 by the 
dotted line. 

Notice that the quantile function q(a) defined by (6) completely determines the 
(ordered) data set. Once it is known, one has the complete information about what 
are the possible values in the data set and how many times each of these values 
appears in the data set. 

Mathematica Experiment 1. A Die is Cast. The piecewise-constant exten­
sion is taken as a definition of quantiles in Mathematica under command Quan­
tile [data, a]. Mathematica also provides a command InterpolatedQuantile 
[data, a] which computes linearly interpolated quantiles. So, for data from Ex­
ample 2.2.1, we can proceed as follows: 

In[1] := <<Statistics'DescriptiveStatistics' 
In[2] := data= {1,3,2,5,2,6,5,5} 
Out[2]= {1,3,2,5,2,6,5,5} 
In[3] := Quantile[data,0.25] 
Out [3] = 2 
In[4] := Median[data] 
Out[4]= 4 
In[5]:= Quantile[data,0.75] 
Out[5]= 5 
In[6]:= Quantile[data,0.33] 
Out [6]= 2 
In[7] := InterpolatedQuantile[data,0.33] 
Out [7) = 2.14 

In practice, one often summarizes the quantile characteristics graphically in the 
form of the box plots (or, box-and whiskers plots) introduced by John Tukey (see 
Bibliographical Notes). We present a typical application in the next example. A 
package creating a box-and-whiskers plot is included on the uvw Web Site. 



Ph.D. 
Year 
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1970 
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1980 
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1990M 
1990F 

1991M 
1991F 

1992M 
1992F 

1993M 
1993F 
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Example 2.2.2 Salaries of New Ph.D.s. 
The American Mathematical Society annually publishes a salary survey for new re­
cipients of doctorates in the mathematical sciences (includes mathematics, applied 
mathematics, and statistics) who took positions in teaching, research, government, 
or business and industry. The results of the 1992-1993 survey for those employed 
in business and industry are summarized in Fig. 2.2.3. 

Twelve-Month Salaries Twelve-Month Business and Industry 
Reported 

Min ~ Median a, Max Median In 
1992$ 

BUSINESS AND INDUSTRY 1100 
(33 men+ 10 women) 

78 110 150 512 
1000 

100 136 180 580 
96 170 235 585 900 

114 187 240 460 
190 284 400 480 

800 280 360 400 420 493 513 !!? 
320 438 495 533 700 529 .!2 • 235 480 510 573 830 525 0 700 
208 450 530 820 1000 530 0 
270 480 580 800 1100 0 600 Ill 

320 443 480 533 630 ~ 390 440 500 525 700 "t:l 500 
c: 

330 500 520 587 830 
:;, 
:I: 400 235 420 481 554 720 

300 440 520 625 1000 300 
208 528 549 591 850 

270 500 560 600 1100 200 
424 475 588 600 670 

One year or less experience ( 17 men + 7 women} 100 
60 65 70 75 80 85 90 1993M 270 480 543 800 700 

Year 1993F 424 458 564 595 600 

FIGURE 2.2.3 
Starting business and industry, 12 -month salaries of mathematical sciences Ph.Ds. 
(FromA.M.S. Notices40 (9), 1993.) 

The table on the left summarizes the actual numerical values of the character­
istics, while the graph on the right shows a variant of the box plot with inflation­
adjusted data expressed in (hundreds ot) 1992 dollars, using the price deflator 
published annually by the Bureau of Economic Analysis, U.S. Department of 
Commerce. 

The box-and-whiskers plots provide the graphical representation of the same 
summarized data. The horizontal line shows the 1992 median salary. For a given 
year, the box incorporates the first and third quartiles and the median salary. Prior 
to 197 5 the quartiles were not available and the median is depicted by a horizontal 
stroke. The "wiskers" give additional information about the spread of data, ex­
tending to the extreme values that are between zero and 1.5 times the interquartile 

• 

92 
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distance from the edge of the box. The data points that are between 1.5 and 3 
times the interquartile distance from the edge of the box are called outliers, and 
those that are beyond three times the interquartile distance from the edge of the 
box are called extreme outliers. Usually, different symbols, like dots and asterisks, 
are used to identify the two types of outliers. 

Q-Q plots. Plotting quantiles q(x, a) and q(y, a) of two different samples 
x = (XJ, ... , Xn) andy = (Yl, ... , Yn) on the (q(x), q(y)-plane creates the so­
called Q-Q plot that can be used to compare their quantile functions, and thus the 
distributions of their values. To create such a plot one simply marks points with 
coordinates 

(q(x, kfn), q(y, kfn)), k = 1, 2, ... , n (8) 

on the (q(x), q(y)-plane, selecting an unambiguous definition of the quantiles. 
An example of the Q-Q plot is shown in Fig. 2.2.4. 

5 

4 

3 

2 

" 

FIGURE 2.2.4 

(q,(3/8), qy<3/8)) """ 

" " 

\.. ....... ~" 
" " " ... . 

" 

2 3 4 

" " 

• 
" " " . ," 

" " " " . 
• 

5 

Q-Q plot for the data set from Example 2.2.1 paired with the data set y 
(1, 1, 2, 2, 3, 4, 5, 6). 

An approximate alignment of points along the straight line y = ax + b is 
evidence that, up to a linear transformation, the two data sets have identical quantile 
functions. 

If data sets x andy are of different sizes, say nx and ny. then one usually picks 
n = min{nx, ny}. 

k -1/2 
a=--- k = 1, 2, ... , n, 

n 

and one finds the largest value of q(x) = q(x, (k -1/2)/n) and q(y) = q(y, (k-
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1/2)/n) among q(z) and q(y) satisfying conditions 

#{i : x; ~ q(z)} k- 1/2 
--------~ ' 

#{i : Yi ~ q(y)} k - 1/2 
-----~--- ~ ' (9) 

nx n ny n 

and then one plots points 

( ( k- 1/2) ( k- 1/2)) q z, ,q y, ' 
n n 

k=l,2, ... ,n, (10) 

on the Q-Q plot. 

2.3 Numerical data: histograms, means, moments 

Let a: = (Xt, x2, ... , Xn) be a sample of size n, where sample points take 
numerical values. In computing percentiles (or general quantiles) in the previous 
section we split the ordered sample into subsamples of equal (or prescribed) size 
In this section we take a different approach to summarizing the sample data by 
counting the number of sample points that take a prescribed value, or fall within 
given intervals of a partition of the sample range. The results of such a count are 
then plotted in the form of a histogram. 

Let us start with the situation where the sample points can take only finitely 
many values (sample taken from a discrete set) 

Vt, V2, ••• , VN. 

Then, the frequency distribution function ( dj.) t/J ( v) of sample a: counts how many 
times each of the possible values v appeared in the samples a:. Clearly, it can be 
nonzero only for vs from the allowable set v;, i = 1, 2, ... , N. More formally, 

t/J(vt) = #{i : x; = vt}, (1) 

....................... , 

and 
t/J(v)=O, if v=;fv;,i=1, ... ,N. 
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Its plot, often represented in the bar chart form (Fig. 2.3.1) is called the sample 
histogram. 

Mathematica Experiment 1. A Die is Cast. In Example 2.2.1, where the sam­
ple points represent the outcome of rolling a die, it is natural to take N = 6 
and VI = 1, ... , V6 = 6. The frequencies of data are computed by the Frequen­
cies [data] command and the bar chart of those frequencies can be produced by 
using the BarChart [Frequencies [data]] command. Both are within the Statis­
tics' DataManipulation' and 'Graphics' package. 

In[1] := <<Statistics'DataManipulation' 
In[2] := <<Graphics'Graphics' 
In[3] := data={1,3,2,5,2,6,5,5} 
Out[3]= {1, 3, 2, 5, 2, 6, 5, 5} 
In[4] := Frequencies[data] 
Out[4]= {{1, 1}, {2, 2}, {1, 3}, {3, 5}, {1, 6}} 
In[5]:= Insert[%, {0,4},4] 
Out[5]= {{1, 1}, {2, 2}, {1, 3}, {0,4}, {3, 5}, {1, 6}} 
In[6] := BarChart[%] 
Out[6]= -Graphics-

FIGURE 2.3.1 

The frequency distribution function¢, normalized by the sample size n, 

1 
f(v) = -f/J(v), 

n 
(2) 

is called the relative frequency distribution function and is often more convenient 
to use. Its plot is called the normalized histogram. Advantage of the normalization 
is that, of course, 

N 

L f(Vj) = 1. 
j=l 

(3) 
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If the relative frequency d. f. f (x) of a sample is known, then a number of 

numerical characteristics of the sample, compressing the information contained in 

a sample to a single number, are easily calculated. In particular, the fundamental 

location characteristic, the sample mean 

_ Xt + X2 + ... + Xn 1 ~ ~ 
x = =- L,.Xi = L.. vj[(vj), 

n n 
i=l j=l 

(4) 

which is simply an arithmetic average of sample points, but a weighted average of 

possible values v, with the relative frequency d.f. f(v) providing the weights. 
The sample mean provides only the coarsest information about the location of 

the sample and none about its spread, or dispersion, around the mean value. To 

measure the latter, the first impulse would be to look at the sample deviations from 

the mean 
Xt -X, X2 -X, ... , Xn -X, (5) 

and compute their mean, to get a single dispersion parameter. However, a simple 

calculation shows that the mean of the sample deviations from the mean is always 

zero. Hence, this quantity is not a suitable measure of dispersion. 
A better idea is to look at the mean absolute deviation (mean distance) of sample 

points from the mean 
1 n -L lx; - il = 0. 
n 

i=l 

(6) 

This turns out to be a respectable choice, but analytical calculations with absolute 

values are notoriously unpleasant, and that is why this is not the first choice of 

statisticians. Traditionally, they measure the spread of the sample points around 

the mean by computing the theoretical sample variance 

1 n 

var (x) =- L(x;- x)2 , 

n i=l 

(7) 

that is, the mean of the squares of deviations of sample points from the sample 

mean. The sample variance is easily computable if the relative frequency d.f. f is 

given. Indeed, 
N 

var (x) = L(Vj- x)2 f(vj). 

j=l 

Also, notice that the following formula 

(8) 

1 n l n ( l n )2 _ 
var (x) =- L:cx?- 2x;x + x2) =- L:x?- - L:x; = x 2 - x2 , (9) 

n i=l n i=l n i=l 
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is more economical computationally than the original definition of the variance 
(why?). It expresses the sample variance var (:z:) in terms of the sample mean 3: 
and the sample second moment 

(10) 

Higher, k-th sample moments 

- 1~ k 
mk(:z:) = :z:k =-~X;, 

n i=l 

(11) 

are defined in a similar fashion, for any positive integer k. 

Remark 2.3.1 Scaling Properties of Mean and Variance. The sample mean 
scales linearly, that is if the sample :z: is rescaled by a numerical factor a: 

a:z: = (ax1, ax2, ... , axn), 

then 
_ ax1 + ... +axn 
a:z: = = a · 3:. (12) 

n 

However, the theoretical sample variance does not scale linearly with the magnitude 
of the sample points because 

var (a:z:) = a 2var (:z:). (13) 

To remedy this flaw one often considers the theoretical standard deviation of the 
sample 

std (:z:) = ../var (:z:) = 
1 n 
- L(X; -3;)2 
n i=l 

(14) 

of the sample, which is the square root of the sample variance, and which grows 
linearly with the growth of the sample points' amplitude. Indeed, 

std (a:z:) = Ia I std (:z:). (15) 

Mathematica Experiment 1. A Die is Cast. In Mathematica the package Statis­

tics'DescriptiveStatistics' contains all the needed commands. Thus, the 
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sample mean is obtained via Mean [data], the theoretical sample variance by Vari­
anceMLE [data] . The MLE stands for "maximum likelihood estimate" and the 
command Variance [data] is reserved for the unbiased sample variance 

(16) 

The significance of the unbiased sample variance will be explained later on. The 
command MeanDeviation[data] stands for the mean absolute deviation, and the 
RootMeanSquare [data] -for the root mean square of the sample, i.e., Jm2(x). 

In[1]:= <<Statistics'DescriptiveStatistics' 
In[2] := data={1,3,2,5,2,6,5,5} 
Out[2]= {1, 3, 2, 5, 2, 6, 5, 5} 
In[4]:= Mean[data] 
Out[4]= 29/8 
In[5] := N[%] 

Out[5]= 3.625 
In[6] := Variance[data] 
Out[6]= 191/56 
In [%] : = N [%] 

Out[6]= 3.41071 
In[6] := VarianceMLE[data] 
Out[6]= 191/64 
In [%] : = N [%] 

Out[6]= 2.98437 
In[6]:= RootMeanSquare[data] 
Out[6]= Sqrt[129/8] 
In [%] : = N [%] 

Out[6]= 4.01559 

In the case of a sample drawn from a continuous set, or from a very large discrete 
set, the histogram based on frequencies calculated for each possible value v may 
turn out to be difficult to interpret because most of these values may appear only 
once or never. In such a case, a much more informative representation of data is 
obtained by counting frequencies of sample points falling into bins of prescribed 
size. One has to remember though that some information is lost in the process 
and that the binned histogram provides a coarser description of data than the full 
frequency d.f. 

More precisely, the binned histogram is now determined by a partition 

to < tt < t2 < ... < tp (17) 

of the sample interval 
[minx;, maxx;], 



... c: 
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(or, of a larger interval) into p bins 

(18) 

which usually are taken of equal size (step) (maxx;- minx;)jp. Then the his­
togram of the sample x corresponding to the partition (17) is the graph of the 
function 

1 
h(x) = -#{i: X; E Bj}, for X E Bj, j = 1, 2, ... , p. (19) n 

Outside the union of bins B,, ... , Bp, we set h(x) = 0. Within a given bin, 
the histogram function, which is piecewise constant, simply counts the number of 
sample points that fall within that bin. 

Example 2.3.1 Faculty Salaries. 
The American Mathematical Society annually gathers data about the faculty 
salaries in mathematical sciences. The summary of the 1993-1994 faculty salary 
survey (AMS Notices, November 1993) in 39 top mathematical sciences depart­
ments is shown in Fig. 2.3.2. 
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FIGURE 2.3.2 
The normalized binned histogram of 1993-94 faculty salaries. The bin sizes were 
selected to be 5k$. (From A.M.S. Notices, November 1993.) 
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In addition to the histogram of what is essentially three-dimensional continu­
ous data, the graph also summarizes the quartiles and means in all three faculty 
categories. The departments were asked to report the number of faculty whose 
1993-1994 academic-year salaries fell within given salary intervals. Reporting 
salary data in this fashion eliminated some of the concerns about confidentiality 
but did not permit determination of actual quartiles. What could be determined 
were the salary intervals in which the quartiles occurred; they are denoted by 
< a,b >. 

Mathematica Experiment 2. Rivets. This experiment explores different ways 
of constructing histograms for the data (rivet length measurements in millimeters) 
contained in the file RIVET which can be found on the uvw Web Site. 

In[1]:= <<Statistics'DescriptiveStatistics' 
In[2] := <<Graphics'Graphics' 
In[3]:= <<Statistics'DataManipulation' 
In[4]:= rivet={13.39, 13.43, ... , 13.58, 13.38} 
Out[4]= {13.39, 13.43, ... , 13.58, 13.38} 
In[5]:= Length[rivet] 
Out[5]= 184 
In[5]:= freq=BinCounts[rivet,{13.025,13.675, 0.05}] 
Out[5]= {0, 0, 2, 3, 10, 22, 22, 36, 28, 27, 18, 12, 3} 
In [6] := midpoints=Table[5+5k, {k,0,12}] 
Out[6]= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65} 
In[7]:= trans= Transpose[{freq,midpoints}] 
Out[7]= {{0, 5}, {0, 10}, {2, 15}, {3, 20}, {10, 25}, {22, 30}, 

{22, 35}, {36, 40}, {28, 45}, {27,50}, {18, 55}, 
{12, 60}, {3, 65}} 

In[8]:= BarChart[trans] 
Out[8]= -Graphics-
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Optimizing Histograms. A few of practical pointers on construction of his­
tograms are in order: 

(i) The bin boundaries should be selected in such a fashion that no sample points 
are on these boundaries. One way to achieve it is as follows: if data were collected 
with four-digit accuracy, say 13.39, 13.43, .......... ,13.58, 13.38, then pick as bin 
boundaries points 13.385, 13.395, ...... ,13.575, 13.585. That is how we proceeded 
in the Mathematica Experiment 1. 

(ii) Bin size has to be such that at least 5 to 7 data points fall within each bin. If 
the bin size is too small, then the histogram values are too random, and create too 
many false modes (local maxima), to draw any conclusions. 

(iii) The number of bins, or the resolution (step, bin size) of the histogram repre­
sentation, has to be selected for optimum conveying of the information contained 
in the sample. The Sturges' rule says that for a sample of size n the number p of 
bins should be of the order p ~ 1 + log2 n. Such a selection is justified by the 
Stability of Fluctuations Law of Section 3.6; also, see the Bibliographical Notes at 
the end of this chapter. 

2.4 Location, dispersion, and shape parameters 

In this section we will return to some of the characteristic parameters introduced 
in Sections 2.2 and 2.3, introduce some new ones, and provide their comparison 
from the viewpoint of the type of information they provide. 

Location Parameters. The sample mean fi: and the sample median med (a:) are 
obviously the prime location parameters indicating where the sample is centered. 
They, however, need not coincide. In a sample of family incomes of an urban 
population, the median can be quite small given that more than half of the people 
can be quite poor. However, the mean, due to a few billionaires residing in the 
city, can easily be much higher. In public discussions one can often observe 
a tendentious selection of the parameters used depending on the agenda of the 
selector. Several other location parameters are commonly used. 

(a) The mode is the value in the data set which corresponds to the local maximum 
of the frequency d.f., or, equivalently, of the histogram. A data set can have several 
modes. The principal mode is a mode that corresponds to the global maximum of 
the frequency d.f. It need not be unique, either. 

(b) As we observed in Section 2.3 (Remark 2.3.1), the sample mean scales 
linearly and it is always within the sample interval, that is 

min x; :::; fi; :::; max x;. 
l:::;i:::;n l:::;i:::;n 



78 Chapter 2. Data Representation and Compression 

However, it is not the only function of sample points with the above properties. 
For example, the weighted sample mean, 

with different weights 
Wt, W2, ••• , Wn ~ 0 

assigned to different sample points (say, because of lesser reliability of a part of 
the data) is another example of such a "mean" location characteristic. 

(c) Sometimes, for practical reasons, one may opt for another version of the 
"mean" called censored mean. Suppose we are measuring the lifetimes of light 
bulbs in a sample of size n. Ideally, one would want to wait until the last light bulb 
burns out and obtain a complete sample 

of failure times for the whole light bulb population. However, such an approach 
may involve an unacceptably long wait, so one often stops the experiment after a 
certain fixed time T, by which time the first k < n light bulbs fail. This leads to 
consideration of the censored mean: 

Such a censored mean is useful in reliability studies. 

(d) Another location parameter compressing the data is the so-called harmonic 
mean hmean (a:) satisfying the condition 

1 1 n 1 

hmean (a:) = ;; {:; x; · 

Remark 2.4.1 Mean and Median Under One Umbrella. For more theoretically 
minded readers, we would like to mention that both mean and median are special 
cases of the so-called M -estimators which are produced from the sample by means 
of a weight function 1/l(x) which is assumed to be increasing. Then the sample 
1/1-mean is defined as a number mt(a:) such that 

n 

L 1/l(mt(a:)- x;) = 0. 
i=l 
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For 1/f(x) = x, the 1/f-sample mean is the usual sample mean. For 1/f(x) = sgn (x) 

(defined as equal to + 1 for x > 0, and -1 for x < 0, and 0 at 0), the 1/f-mean is 
the sample median. 

Obviously, quartiles, percentiles, and other quantiles can also be considered as 
more subtle location parameters of the data sets. 

Remark 2.4.2 A General Concept of the Mean. A number m is said to be 
a mean of sample x = (x1, ... , Xn) (xk > 0, say) with respect to function 
/(X1, ... , Xn) if 

/(XJ, ... , Xn) = f(m, ... , m). 

In other words, replacing the sample points by the sample mean does not affect 
the value of the function. In mechanics of rigid bodies one uses the analogous 
concept of the barycenter. The system evolves as if the whole mass of the body 
were concentrated at the barycenter. The usual sample mean corresponds to the 
selection 

/(X!, ... , Xn) =(X!+.··+ Xn)fn, 

the harmonic mean to 

f(xt, ... , Xn) = [(lfxt + ... + lfxn)Jnr 1, 

and the geometric mean to 

A mean is called associative if it is not affected by the replacements of some 
subsets of sample points by their mean. The above three means are all asso­
ciative. Nagumo and Kolmogorov proved that all associative means are (in­
creasing) transforms of arithmetic weighted means. More precisely, if m(z) 
is such a mean then one can find an increasing function y (x) and the weights 
w1, ... , Wk > 0, EZ=t Wk = 1, such that 

In other words, they are all obtained by changing the scale of sample points via 
application of function y, calculating the (weighted) arithmetic average, and then 
reverting to the original scale by applying the inverse function y - 1• For example, 
the geometric mean corresponds to y (x) = log x, with y - 1 (y) = exp y. 
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The y-mean is greater than the arithmetic (linear) mean if the function y is 
concave upwards. Fig. 2.4.1 suggests the obvious way to prove it. 

One can also check that the means increase with the quantity y" fy', which 
measures the local concavity upwards. For power functions y (x) = xc we have 
y" fy' = (c- 1)x, which increases with c. The geometric mean corresponds to 
the case of y(x) R:J (xc- 1)/c, c--+ 0. In this fashion one can establish that the 
various means satisfy the following inequalities: 

harmonic < geometric < arithmetic < quadratic < cubic < ... 

FIGURE 2.4.1 
The illustration shows that ify(x) is concave upwards, then they-mean m(a:, y) 
is greater than the arithmetic mean z (with the same weights). 

Dispersion Parameters. The most often used parameters compressing infor­
mation about the dispersion of sample points are the sample variance var (a:) (or 
the unbiased sample variance defined by formula (2.3.16)), the standard deviation 
std (a:), and the sample range 

rng (a:) = X(n) -X( I)· 

Since all the deviations lx; - il ~ rng (a:), we always have that 

std (a:) ~ rng (a:) 

That is, the standard deviation is always estimated from the above by the range. The 
opposite inequality is, clearly, not valid. However, we have always the following 
useful and universal 

Chebyshev's Law: At least the fraction 1- (1/k2) ofthe sample points are 
located within k standard deviations u of the sample mean i. 
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In particular, with k = 3, we get that in any sample, at least 8/9 ~ 91% of 
sample points are located within the interval [i - 3 std (x), i + 3 std (x)]. For a 
more rigorous treatment of the Chebyshev's Law, see Theorem 5 .4.1. 

Another, related, dispersion parameter is the interquartile distance q(.15) -
q(.25) which already was used in the construction of the box-and-whisker plots. 
By definition, 50% of sample points are located in the interval [q(.25), q(.75)]. 

Shape Parameters. Several parameters can give compressed information about 
the general shape of the data distribution. 

The r-th central sample moments 

can be used to detect skewness in the frequency d. f., which is formally defined as the 
ratio cm3js3 of the third sample central moment and the third power of unbiased 
standard deviation. Clearly, for frequency distributions symmetric about their 
means the skewness parameter is zero, and its size can be viewed as a measure of the 
asymmetry of the histogram. Another useful parameter is kurtosis excess J-t4/ s4 -
3. In general, the fast growth of higher moments indicates that the frequency 
distribution is heavy-tailed and intermittent, the latter meaning that there are patchy 
pockets of high values of the frequency d.f. interspersed with intervals where there 
are no data. 

Mathematica Experiment 1. Rivets. This experiment explores different ways 
of compressing the data (rivet length measurements are in millimeters) contained 
in the file RIVET which can be found on the uvw Web Site. The Mathematica 
command Mode [data] finds the principal modes of the data. 

In[!]:= <<Statistics'DescriptiveStatistics' 
In[2] :=rivet ={13.39, 13.43, ... ,13.58, 13.58} 
Out[2]= {13.39, 13.43, ... ,13.58, 13.58} 
In[3] := <<Graphics'Graphics' 
In[4] := Mean[rivet] 
Out[4]= 13.4216 
In[5] := Median[rivet] 
Out[5]= 13.42 
In[6] := Mode[rivet] 
Out[6]= 13.4 
In[7] := LocationReport[rivet] 
Out[7]= Mean ->13.4216, HarmonicMean -> 13.4207, Median-> 13.42} 
In[8] := Quartiles[rivet] 
Out[8]= {13.34, 13.42, 13.5} 
In[9] := Quantile[rivet, 0.7] 
Out[9]= 13.48 
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In[10] := SampleRange[rivet] 
Out[10]= 0.56 
In[11]:= Variance[rivet] 
Out[11]= 0.0118738 
In[12]:= StandardDeviation[rivet] 
Out[12]= 0.108967 
In[13]:= DispersionReport[rivet] 
Out[13]= {Variance-> 0.0118738, StandardDeviation -> 0.108967, 

SampleRange ->0.56, MeanDeviation -> 0.0882053, 
MedianDeviation -> 0.08, QuartileDeviation -> 0.08} 

In[14]:= Skewness[rivet] 
Out[14]= -0.0656664 
In[15] := KurtosisExcess[rivet] 
Out[15]= -0.390325 
In[16]:= ShapeReport[rivet] 
Out[16]= {Skewness ->-0.0656664, QuartileSkeweness -> 0., 

KurtosisExcess -> -0.390325} 

2.5 Probabilities: a frequentist viewpoint 

Plotting the relative frequency d.f. for samples from continuous or very large 
data sets has its drawbacks related to possible intermittency in the data set, selection 
of bin size and location, loss of information in the process of producing binned 
histograms, etc. They can be partly circumvented by introduction of the sample 
cumulative distribution function 

1 . 
F(x) = F(t; x) = -#{z : x; ~ x}. 

n 
(1) 

Notice that it is a nondecreasing function, well defined for all x and positive within 
the sample interval, independently of the number N and location of the possible 
values v1, ... VN. For data from Example 2.2.1, the cumulative d.f. is plotted in 
Fig. 2.5.1. 

It is also easy to see that for any data set x = (x1, ... , Xn). the multivalued 
sample cumulative distribution function F (x) and the sample quantile function 
q(a) introduced in Section 2.2 are inverses of each other. The inverse function has 
to be understood here in a generalized sense (for example, as a reflection in the 
diagonal of the graph of the original function) since neither of the two functions 
is, in general, one-to-one. In particular, the cumulative d.f. shown in Fig. 2.5.1 
is the inverse function of the quantile function (for the same data set) shown on 
Fig. 2.2.2. 

The relative frequency d.f. and the cumulative d.f. are easily computable from 
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FIGURE 2.5.1 
Cumulative distribution function F (x) = F (x; x) for the data set x from Exam­
ple 2.2.1. It is the inverse function ofthequantilefunction q(a) shown in Fig. 2.2.2. 

each other via the following formulas: 

F(x) = F(x; x) = L f(vj) and f(vJ) = F(vJ)- lim F(x), 
X---+Vj-

(2) 

where, as before, VJ, ••• , VN, are all the values appearing in the data set x, the 
limit is taken for x approaching the value VJ from the left (see Fig. 2.5.1). Observe 
that cumulative d.f. F(x) is right continuous and has the left limits. 

In the case of a sample of size n taken from a discrete set v 1 , ... , v N, one can 
hope that the normalized histogram, that is, the plot of its relative frequency d.f. 
f(v) = fn(v), stabilizes as n becomes very large. If that is the case (in general, 
the limit need not exist), one could define a probability p ( v) of value v as the limit 

p(v) = lim fn(v). 
n---+oo 

(3) 

Intuitively, such an informal frequentist definition of probabilities on a discrete 
set makes perfect sense. Formally, however, it raises a number of difficulties, 
the foremost being the question of independence of the probability distribution 
function p(v) of the selected sample XJ, x2, ... Also, in practice, one never deals 
with infinite samples, so the question is: How large a sample is necessary to make 
the approximation error "negligible"? We will address these issues in Chapters 3 
and5. 

In the case of samples taken from a continuous population, the situation is even 
more complex. For a fixed partition, one would hope for the stability of the binned 
histograms as the sample size n goes to infinity. But in an effort to get a more and 
more complete information from the histograms, one may also want to increase 
their resolution, that is to decrease the bin size to zero. This double limit passage, 
if it works, could produce a "frequentist" probability d.f. on a continuous set of 
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values. Actually, this problem is even crisper if one thinks in terms of the limit of 

the corresponding cumulative d.f. F, which in the double limit (if they existed in 

some formal sense) would become a cumulative d. f. on a continuous set of values. 

This latter approach will prove useful. It will be formalized in Chapters 3 and 5, 

and utilized throughout the rest of this book. 

Example 2.5.1 Survival Curves and Cumulative D.F. 

Functions similar to sample cumulative distribution functions also appear naturally 

in several other contexts. Let us return to the survival curves introduced in Section 

1.4. If N(O) units (say, cars, computer chips, etc.) are put in use at timet = 0, 

we denote by N(t) the number of units still in use at timet. The graph of the 

function N (t) is called the survival curve. The reliability r (t) = N (t) 1 N (0) is the 

fraction of units still in use at timet and it decreases with time. The complementary 

function 
F(t) = 1- N(t) 

N(O)' 
(4) 

represents the fraction of units that failed by the time t. The function F (t) has all 

the features of a cumulative distribution function. It is nondecreasing, with values 

F(-oo) = 0 and F(+oo) = 1. Its derivative 

f(t) = dF(t), 
dt 

may be interpreted as the relative failure rate. 

(5) 

Mathematica Experiment 1. Spinning Yarn. The breaking strength data (in 

kilograms) for a batch of yam is shown in Table 2.5.1, and also can be found in 

the file COTTON on the uvw Web Site. To produce a Mathematica code that would 

show the cumulative d.f. F(x) for any data set x = (x1, ••. , Xn) of size n, note 

that we can write 
1 n 

F(x) =- LH(x -x;) 
n 

i=l 

(6) 

where H(x) = 0, for x < 0, and= 1, for x :::: 0, is the usual Heaviside step 

function. You can think of formula (6) for the cumulative d.f. as an algorithm that 

tells you to scan the real line from -oo to +oo, and each time you encounter one 

of the sample points Xi, ••• , Xn you accumulate (add) an extra 1 In to the value of 

F(x). So, you start with value 0 at -oo and by the time you get to +oo you will 

have added n 11ns, that is you end up with 1. 

The Mathematica command If [cond, a, b) produces a if condition cond is sat­

isfied and b if it is not. Hence H [x] :=If [x<O ,o ,1] defines the Heaviside unit step 

function. The command list [ [i) J selects the i -th element of the list. 
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Table 2.5.1 The breaking strengths of 50 cotton threads. 

No. Breaking No. Breaking 

strength strength 
in kg in kg 

i X(i) i X(i) 

1 1,10 18 2.13 
2 1.52 19 2.15 

3 1.63 20 2.16 
4 1.69 21 2.20 

5 1.73 22 2.23 

6 1.73 23 2.26 

7 1.78 24 2.30 

8 1.89 25 2.31 

9 1.92 26 2.32 

10 1.95 27 2.35 
11 1.98 28 2.36 
12 1.99 29 2.37 
13 2.02 30 2.39 

14 2.03 31 2.40 
15 2.07 32 2.40 
16 2.12 33 2.41 
17 2.12 34 2.47 

ln[1]:= <<Statistics'DescriptiveStatistics' 
ln[2]:= <<Graphics'Graphics' 

No. 

i 

35 

36 
37 
38 

39 
40 

41 

42 
43 

44 
45 

46 
47 

48 
49 

50 

In [3] : = cotton={ 1.10, . . . . . . . . . . . . . , 3. 30} 
Out[3]= { 1.10, ............ ,3.30} 
In[4]:= n=Length[cotton] 
Out[4]= 50 
ln[5]:= H[x_]:=lf[x<0,0,1] 

Breaking 

strength 

in kg 

X(i) 

2.50 
2.52 

2.55 
2.60 

2.63 
2.64 

2.65 

2.71 
2.71 

2.77 
2.79 
2.86 

2.91 
2.92 

3.02 
3.30 

In[6]:= F[x_]:=(1/n) Sum[H[x- cotton[[i]] ],{i,l,n}] 
In[7]:= Plot[F[x],{x, cotton[[!]] -1, cotton[[n]] +1}, 

Frame ->True, GridLines ->Automatic ] 
Out[7]= -Graphics-

85 
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Alternatively, we can get the same information from the quantile function x = 
q(a) for the same data, which is the inverse function for the cumulative d.f. a = 

F(x). 

In[1] := <<Statistics'DescriptiveStatistics' 
In[2] := <<Graphics'Graphics' 
In[3]:= cotton={ 1.10, ............. ,3.30} 
Out[3]= { 1.10, ............ ,3.30} 
In[4]:= f[x_] := Quantile[cotton,x] 
In[5]:= Plot[f[x] ,{x,0.001, 0.999},Frame->True, 

GridLines->Automatic] 
Out[5]= -Graphics-
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The above cumulative d.f. curve F(x) shows the fraction of the sample with 
breaking strength::::; x. Acustomershoppingforyarn with tensile strengthxo = 1.9 
or better will know immediately that he can expect about 16% of the batch to be 
"bad". 

Mathematica Experiment 2. Companies, Small Town, U.S.A. The number of 
employees inn = 18 companies located in Small Town, U.S.A., is listed in the file 
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COMPANY on the UVW Web Site. If the number of employees serves as a measurement 
of the company size, one can get information about the distribution of company 
sizes by counting the number N (x) of companies with ::s x employees. Then, 

F(x) = N(x), 
n 

where N is the total number of companies surveyed gives a cumulative d.f. of the 
sample. 

In[1] := <<Statistics'DescriptiveStatistics' 
In[2] := <<Graphics'Graphics' 
In[3] := company={3,3,4,4,4, 5, 6,6, 8,9,11,14,17,21,21,33, 

157,614} 
Out[3]= { 3,3,4,4,4, 5, 6,6, 8,9,11,14,17,21,21,33,157,614} 
In[4] := n=Length[company] 
Out[4]= 18 
In[5] := H[x_] :=If[x<0,0,1] 
In[6] := F[x_] :=(1/n) Sum[H[x- company[[i]] ],{i,l,n}] 
In[7] := Plot[F[x],{x, company[[!]] -1, company[[n]] +1}, 

Frame ->True, GridLines ->Automatic ] 
Out[7]= -Graphics-
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On the other hand, if E (x) denotes the number of employees employed by all 
companies with ::s x employees then one can consider the cumulative d.f. 

G(x) = E~), 

where E is the total number of employees of all surveyed companies. 

In[8] := G[x_] :=(1/Sum[company[[i]],{i,l,n}]) 
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Sum[company[[i]]H[x- company[[i]] ],{i,l,n}] 
In[9]:= Plot[G[x] ,{x, company[[!]] -1, Sum[company[[i]], 

{i,l,n}] +1}, Frame->True, GridLines->Automatic ] 
Out[9]= -Graphics-

0.8r-----+---+----tt-----+---l 

0.6r-----+---t----tt-----+----l 

0.41--;::+====+===::::tt--1~ 
I 0.2./ 

0 0 200 400 600 800 

One immediately finds that 90% of all companies have ::-:: 50 employees, but 
they employ only 20% of the total work force. 

2.6 Multidimensional data: histograms and other graphical 
representations 

The question of representation of multidimensional data, that is data in which 
each sample point is a vector with d components, has come up on several oc­
casions in the preceding sections. We can introduce for such data multivariate 
analogs of one-dimensional notions of the relative frequency distribution func­
tions, histograms, cumulative distribution functions, etc., which are then functions 
of d variables. Obviously, graphing them is an impossible task with the exception 
of 2-D data, where their graphs become surfaces. 

To be more precise, let us consider a 2-D sample of size n (you can think about 
it as an n-D vector in which each component is a 2-D vector) 

and assume that sample x = (x1, ... , Xn) consisting of first components takes 
values from the set of values 

V!, .•• , VN, 
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FIGURE 2.6.1 
A schematic example of a 2-D relative frequency df. for a discrete sample from 
2-D data. 

and sample y = (YI, ... , Yn) from the set of values 

WJ, ••• ,WM· 

Then the joint 2 -D relative frequency df. f ( Vj, wk) counts the relative frequencies 
of appearance in our 2-D sample of all possible pairs of values (vj, wk), j = 
1, ... , N, k = 1, ... , M. In other words, 

(1) 

A schematic example of the graph of a 2-D relative frequency d.f. for discrete data 
is given in Fig. 2.6.1 in the form of a stick graph. 

It is also easy to see that the relative frequency d.f.s of 1-D component samples 
x = (X!, ... , Xn) and y = (YI, ... , Yn) are easily obtainable from the joint 2-D 
relative frequency d.f. via the following formulas 

and 

M 

f(vj) = L f(vj, Wk), 

k=! 

N 

f(wk) = L f(vj, Wk). 

j=l 

(2) 

(3) 

Thus, the sample means and variances of the component samples x andy are easily 
available. There are, however, other characteristics of multidimentional samples 
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(a:, y) computable from the joint relative frequency d.f. f (x, y) that could not be 
obtained if only 1-D relative frequency d.f.s of component samples x andy were 
available. One of them is the covariance between the two component data defined 
as 

N M 

cov (a:, y) = L L(Vj- i)(wk- y)f(vj, wk). 
j=l k=l 

We will see its usefulness and interpretation in the next section. 

(4) 

Mathematica Experiment 1. Heart Trouble. The file HOSP/HEART on the UVW 

Web Site contains heart transplant data from all the organ transplant centers in 
the United States. The quantities listed are the median waiting times W, one­
year mortality rates M (that is, percentage of patients dying within one year of 
the operation), and the average annual number of transplant V at that center for 
a 4-year period beginning in October 1987. The data are three-dimensional. In 
this experiment we will produce the 2-D histogram of the paired data (M, V) 
pairing the mortality and volume at each organ transplant center. The command 
Histogram2D[list,xmin,xmax,nx,ymin,ymax,ny] of the UVW'DataRep' package 
produces a 2D histogram of a 2D list, within the [xmin,xmax] interval on the 
x -axis and [ymin, ymax] interval on the y-axis. The number of bins on the x -axis 
is nx and the number of bins on they-axis is ny. 

In[1] := <<Graphics'Graphics3D' 
In[2] := <<UVW'datarep' 
In[3] := heart={{17.9,27}, {23.1,4}, ... ,{17.6,26},{19.6,14}} 
Out[3]= {{17.9,27}, {23.1,4}, ... ,{17.6,26},{19.6,14}} 
In[4]:= Length[heart] 
Out[4]= 134 
In[5]:= Histogram2D[heart,0,100, 10,0,60, 10] 
Out[5]= -Graphics-
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The above concept of the joint 2-D relative frequency d.f. can be extended 
easily to representations of 3- or higher-dimensional data but it is quite clear that 
the graphical representation becomes more and more difficult as the dimension 
of the data set increases. There are, however, other ingenious ways to represent 
multivariate data and one of them is due to Hermann Chernoff. He suggested asso­
ciating multidimensional data with several features of the human face-an object 
humans are especially apt to recognize in its multiplicity of (multidimensional) 
features. Our light-hearted version of Chernoff's idea brings you StoGho-the 
quintessential stochastic ghost. Play with him in the next Mathematica experi­
ment. The curvature of his lip, the eye shape, pupils' position and the flatness of 
the Gaussian-shaped head encode four-dimensional information. 

Mathematica Experiment 2. StoGho Lives. Be patient here as it takes time. Also, 
StoGho can be coupled with Animate [] if there is enough memory in your computer. 
The command Random [Real, { -3, 3}] produces a pseudorandom random number 
uniformly distributed in the interval ( -3,3). 

In[1] := <<UVW'StoGho' 
In[2] := StoGho[Random[Real,{-3,3}]] 
Out[2]= -Graphics-
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In[3] := moods=Partition[Range[-Pi,Pi,2 Pi/15],4]; 
In[4] := GalleryOfPortraits[moods] 
Out[4]= -GraphicsArray-

2 7 2-D data: regression and correlations 

Consider a 2-D numerical data set 

of size n. When graphed in the 2-D plane as dots, the data produce the so-called 
scatter plot. 
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Example 2.7.1 Current and Conductivity. 
To verify the Ohm's Law an experimenter applied a fixed voltage V ton = 7 differ­
ent passive electrical circuits and measured the current intensity I and the circuits 
conductivity (inverse resistance) 11 R. The results are tabulated in Table 2. 7 .I, and 
the corresponding scatter plot is shown in Fig. 2. 7 .1. 

Table 2.7.1 Current intensity I vs. inverse resistance 1/ R experiment 

X= 1/R (in 1/Q) 
I (in rnA) 

5 • 
4 

3 

• 
2 

• 
• 

0.02 0.04 0.06 0.08 0.1 

FIGURE 2.7.1 

Scatter plot of2-D data from Table 2.7.1. It suggests a strong linear relationship 
between the two components, current intensity I and conductivity If R. 

The scatter plot suggests an almost perfect linear relationship between the two 
components, current intensity I and conductivity 11 R. 

Whenever there is a suspicion that there is a linear relationship between the 
components of 2-D data, the obvious goal is to find coefficients a and {3 which 
would make the straight line 

y =a+ {Jx (1) 

the best possible approximation for the scatter plot representing the data. In other 
words, the job is to find a compressed representation of the 2-D data in the form of 
an optimally selected straight line. Such a line is traditionally called the regression 
line for 2-D data. An historical explanation for the use of the term regression in 
this context can be found in Section 8.5. 

Obviously, to make the above task meaningful we have to decide on the op­
timality criterion for choosing a and {3 in the formula (1). The usual choice is 
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FIGURE 2.7.2 
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y=<X+~x 

'f' 
E; = Y; - (<X+~x;) 

-------- .... t .. 

X; 

A schematic illustration for the regression line selection algorithm for 2-D data. 

minimization of the total quadratic error 

m n 2 

Err (a, b)= I>?= L(Yi- (a +bx;)) (2) 

i=1 i=1 

of approximation of the scatter plot by the regression line over all possible choices 
of real numbers a and b. The quantities E; = y; -(a+ bx;), i = 1, 2, ... , n, 

represent the individual, sample point by sample point, errors of approximation and 
are also often called fit residuals; the optimization method itself is called Gauss' 
least squares method. 

Since function Err(a, b) is a nonnegative quadratic function of variables a and 
b, its minimum is achieved at the points (a, b) = (a, /3) satisfying equations 

a n 

-Err (a, /3) = -2 LYi -(a+ {3x;) = 0, a a 
i=1 

a n 

a Err (a, /3) = -2 L(Yi- (a+ {3x;))x; = 0, 
f3 i=1 

which are also called the normal equations for the regression problem. Finding 
explicit solutions of a system of two linear equations with two unknowns is not 
difficult, but a lucid notation helps to see what is happening. So, observe that the 
two normal equations can be rewritten as follows: 

n n 

i=1 i=1 
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n n n 

I:x;y; =a LX; +tJI:xl. 
i=l i=l i=l 

The first equation is recognizable as y = a + fJi, wherefrom, immediately, 

a= y- fJi. (3) 

Substituting this a into the second normal equation gives 

n n 

LXiYi = n(y- fJi)i + fJ I:xl. 
i=l i=l 

so that, finally 

(4) 

This formula, although good for numerical computations (why?) can be made 
more transparent if we recognize the quantity in the denominator as the theoretical 
sample variance of x (see formula (2.3.7)) multiplied by n, and the numerator as 
the theoretical sample covariance (see formula (2.6.4)) multiplied by n: 

n n 

n cov (x, y) = LXiYi - xfl = I:<x; - x)(y; - fl). (5) 
i=l 

In this notation, 

i=l 

fJ = cov (x, y). 
var (x) 

(6) 

Notice that the covariance of a 2-D data (x, x)T is just the variance of the 1-D data 
x: 

cov (x, x) = var (x). (7) 

Often, one normalizes the covariance by the standard deviations (2.3.14) of samples 
x andy to obtain what is called the correlation coefficient between 1-D samples 
x andy: 

cov (x, y) 
corr (x, y) = -----=-­

std (x) std (y) 

In view of the Schwarz Inequality (see Project 1 at the end of this chapter) 

-1 ::-::: corr (x, y) ::-::: I. 

That is why the normalization of the covariance was useful. 

(8) 

(9) 
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Note that, taking into account (3),(4),(6), and (8), the regression line equation 

(1) can now be written in the following elegant nondimensional form: 

y-jj x-x 
std(y) = corr(x,y)std(x)· (10) 

Its physical interpretation is clear and intuitive: The regression line passes through 

the point with coordinates (x, jj) and, after normalizing the scales of x andy 

by division by their respective standard deviations, the regression line's slope is 

equal to the correlation coefficient between x andy. The correlation coefficient 

is nondimensional, and so are the normalized quantities (x - x) f std x and (y -

y)/std y. 

Example 2.7.2 Extreme Correlations. 
It is illuminating to calculate values of the correlation coefficient of three sets of 

2-D data with the scatter plots presented on Fig. 2.7.2: 

• If Yi = fJx;, fJ < 0, then corr (x, y) = -1. 
• If y; = fJx;, fJ > 0, then corr (x, y) = + 1. 
• Ifx = (-1, -1, +1, +1) andy= (-1, +1, -1, +1), thencorr(x, y) = 0. 

cov(x,y)=-1 

FIGURE 2.7.3 

/ 

" 

/ 

• / 

~" cov(x,y)=l 

Three extreme cases of the correlation coefficient. 

• I 

-I 
• -1 

cov(x,y)=O 

• 
I 
• 

In Chapters 5 and 8 we will see that the above three examples (please, do all the 

calculations by hand) are of more than passing significance. 

Mathematica Experiment 1. Current and Conductivity. We'll work with 2-

D data from Example 2.7.1. The Mathematica command Fit[data, {1,x}, x] 

produces the least squares linear fit of the data. 

In[1] := <<Graphics'Graphics' 
In[2] := <<Statistics'LinearRegression' 
In[3] := current={{1/10,4.95},{1/20,2.52},{1/50,0.98}, 

{1/100,0.50},{1/300,0.16},{1/500,0.102}, 
{1/1000,0.052}} 

Out[3]= {{1/10,4.95},{1/20,2.52},{1/50,0.98}, 
{1/100,0.50},{1/300,0.16},{1/500,0.102}, 
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{1/1000,0.052}} 
In[4] := linear=Fit[current,{1,x},x] 
Out[4]= 0.00243603 + 49.6258 x 
In[5] := DisplayTogether[ListPlot[current],Plot[linear,{x,0,1}]] 
Out[5]= -Graphics-

3 
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You will notice that the linear fit is almost perfect confirming the validity of 
Ohm's law. 

Mathematica Experiment 2. Heart Trouble. Finally, let us take a look at a much 
larger data set from the 2-D data heart from Mathematica Experiment 2.6.1. 

In[1] := <<Graphics'Graphics' 
In[2] := <<Statistics'LinearRegression' 
In[3] := heart={{17.9,27}, {23.1,4}, ... ,{17.6,26},{19.6,14}} 
Dut[3]= {{17.9,27}, {23.1,4}, ... ,{17.6,26},{19.6,14}} 
In[4] := linear=Fit[heart,{1,x},x] 
Dut[4]= 18.2703 -0.201084 
In[5] := DisplayTogether[ListPlot[heart],Plot[linear,{x,0,100}]] 
Dut[5]= -Graphics-
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One notices immediately that the linear fit does not compress the data well. 
Moreover, the negative values on the fitted regression line do not make much 
sense. So, one could wonder if a nonlinear fit would be better suited here for the 
data compression job. Given the shape of the data we will try to find a fit by the 
function (model) 

50exp[-O.Olax] 

which contains the parameter a to be optimally selected by the least-squares 
method. The explicit analytic solution cannot be found as easily as in the linear 
model but Mathematica provides a command NonlinearFi t [data, model, vari­
ables, parameters] which fits the data to the model with the named variables, 
returning the model evaluated at the parameter values achieving the least-squares 
fit. You will notice that the computer takes much longer to find a nonlinear fit than 
a linear one. 

ln[6]:= <<Statistics'NonlinearFit' 
ln[7]:= exponential=NonlinearFit[heart, 50* 

Exp[-0.01 •alpha •x], {x}, {alpha}] 
Out[7]= {alpha -> 7.1603} 
In[S]:= DisplayTogether[ListPlot[heart],Plot[50 * 

Exp[-0.01 •7.1603 •x], {x,0,100}]] 
Out[S]= -Graphics-
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2.8 Fractal data 

Fractal (fractional dimension) data are generated by physical phenomena gov­
erned by chaotic dynamics, in interacting particle systems, flows in porous media, 
and in many other situations. Fig. 2.8.1 shows the bacteriaBaccillus subtilis culture 
growing in the Petri dish on the surface of agar plates. The mathematical models 
which give rise to such data will be discussed in Chapter 6. 

In this section we will address only the question of computing the fractal dimen­
sion in data sets that are suspected to be fractal, such as in Example 1.5.1 of time 
intervals between water drops, Example 1. 7.2 of the EKG time series showing the 
onset of seizure, or Fig. 1.1 0.2 and 1.1 0.3 showing the passive tracer density in a 
random velocity flow. 

There are several and, in general, nonequivalent definitions of the fractal dimen­
sion of a subset of ad-dimensional Euclidean space. They all coincide, however, 
for some simple sets. 

The simplest definition, due to Hermann Minkowski, relies on the fact that if 
you have a "solid" object in Rd (such as an interval in R 1, square in R2, or a cube in 
R3) then its "natural" dimension d coincides with the "coverage exponent" which 
can be explained as follows: 

For a "solid" set A c Rd consider a coverage by d -dimensional volume elements 
such as balls (or d-dimensional cubes) of radius (or edge size) E. Fig. 2.8.2 shows 
coverage of a 2-dimensional square by 2-dimensional discs of radius E. 

Then, it is intuitively clear that the smallest number N(E) of such volume ele­
ments needed for a coverage of A is equal to C E-d, where C is a certain constant. 
Solving this equality ford, and taking the limitE ~ 0 to free ourselves from the 
dependence on an unknown constant C, we obtain the following formula of the 
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FIGURE 2.8.1 

Bacteria colonies of Baccillus subtilis growing in a Petri dish show a fractal struc­
ture. (Courtesy ofM. Matsushita, Chuo University.) 

E 

FIGURE 2.8.2 

Coverage of a 2-D square by discs of radius e. 

dimension of set A : 
. lnN(e) 

dcap(A) = hm ---, 
£--+0 ln(l/E) 

A 

(1) 

which, if applied to an arbitrary subset A c Rd (with possible replacement of the 
limit by lim sup if the former does not exist), serves as a definition of the capacity 
dimension of A which can take noninteger values. 

Example 2.8.1 Cantor Set C. 
HereisaconstructivealgorithmforC. Thenumbering((l), (2.0), (2.2), ... , (n.k)) 
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of steps corresponds to the construction process itself to make it easier to see what 
is going on. Begin with the unit interval [0, 1]. 

(1) Remove the interval (1/3, 2/3) from [0, 1] to obtain the intervals [0, 1/3] 
and [2/3, 1]. 

(2.0) Remove the "middle third" interval (1/9, 2/9) from [0, 1/3] to obtain the 
intervals [0, 1/9] and [2/9, 3/9]. 

(2.2) Remove the interval (7 /9, 8/9) from [2/3, 1] to obtain the intervals 
[6/9, 7 /9] and [8/9, 1]. 

0 1/9 2/9 3/9 419 519 6/9 7/9 819 I 

DO on DO DO 

FIGURE 2.8.3 

Repeated "middle-third-removed" construction of the Cantor set. 

Then continue in the same fashion. The general recursive recipe is as follows: 

(n.k) Suppose we have obtained in the n-th step the interval [k3-n, (k + 1)3-n] 
for an integer k in whose triadic representation (i.e., using three digits: 
0,1,2) only digits 0 or 2 appear. Then, in the next step, remove the middle 
third interval ((3k+ 1)3-n-1, (3k+2)3-n-1) from [k3-n, (k+ 1)3-n] to 
obtain the intervals [(3k)3-n-1, (3k+ 1)3-n-1] and [(3k+2)3-n-1, (3k+ 
3)3-n-1]. Note, that both 3k and 3k +2 have again triadic representations 
containing only digits 0 or 2. 

The set of points that are in the intersection of all these "middle-third-removed" 
sequence of sets constructed above is the classical Cantor set. The fact that the 
Cantor set is nonempty is a deep mathematical theorem. Its existence is closely 
related to some other basic mathematical foundational facts such as the existence 
of irrational numbers. The Cantor set is an example of a fractal set, which means 
that its dimension is not an integer. Indeed, a direct application of the definition of 
the capacity dimension to the Cantor set C gives 

ln2 
dcap(C) = ln 3 = 0.6309 ... 
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The original Felix Hausdorff1 dimension is more complicated to introduce and 
to compute but, in view of its historical and theoretical importance, we will define 
it formally below. 

A cover of a set S c Rd is a family A of sets A; such that each point from S lies 
in at least one set of the covering family. The diameter of a set A is the maximum 
of the possible distances oftwo points from A, and will be denoted 8(A). A cover 
is called an E-cover if all the sets of the covering family have diameters less than 
E. 

Fix a d > 0 and define number 

where A is a cover of S. A number dH(S) is said to be the Hausdorff dimension 
of S if it satisfies the following two conditions: 

(a) For every d > dH(S), there exists a sequence of En-covers An. En -+ 0, such 
that supn N'(S, d, An) < oo, and 

(b) For every d < dH(S), there exists an unbounded sequence of numbers 
ME -+ +oo as E-+ 0 such that, for every E-cover A, N'(S, d, A) ~ME. 

In other words, 

dH(S) = inf{d > 0: 3En-covers An, En-+ 0, s.t. N'(S,d, An)< oo}. (2) 

Example 2.8.2 Hausdorff Dimension of the Unit Interval. 
LetS= [0, 1], and let An = {[k/n, (k + 1)n]: 0 ::=:: k < n- 1} be a 1/n-cover. 
Then, ford > 0, 

( 1 )d !-d N'(S, d, An) = n ;; = n . 

So, if d > 1, then supn N'(S, d, An) = 1, and if d < 1, then N'(S, d, An) -+ oo 
as n -+ oo. It follows that dH([O, 1]) = 1. 

Example 2.8.3 Hausdorff Dimension of the Cantor Set. 
Fix a number d > 0 and the diameter E = 3-n. The intervals in the n-th step of 
the construction of C have length E, cover C, and there are exactly 2n of them. For 
this cover 

Since 

1 Hausdorff was also a writer, publishing fiction under the pseudonym Paul Mongre 
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remains bounded if and only if 2/3d ::: 1, and that is possible only if the coefficient 
log 2 - d log 3 ::: 0, or, equivalently, d :=::: log 2/ log 3, we conclude that the 
Hausdorff dimension of the Cantor set is 

To prove the equality is not so easy and omitted. It is always true that 

and since dcap(C) = Iog2flog3, the Hausdorff dimension of the Cantor set is 
equal to its capacity dimension. 

The Hausdorff and capacity dimensions are not the most appropriate (or easiest 
to compute) quantities for fractal data that arise as time series because they do 
not take into account the frequency of visits to the same "state". This difficulty is 
overcome by the Grassberger and Procaccia's (1983) definition of the correlation 
dimension dcor which, for a discrete data set S = (xt, x2, ... , Xn). and a given 
(small) resolution E > 0, is defined by the formula 

where 

lnC(E) 
dcor(S, E)= - 1--, DE 

#{(x;,Xj): lx; -xjl < E, 1::: i,j::: n} 
C(E) = 2 n 

One can show that, for infinite data sets S, 

(3) 

(4) 

(5) 

and that, for many classes of sets, the above three concepts of fractal dimension 
coincide. 

Mathematica Experiment 1. Water Drips. We will use the water drips data 
provided in Example 1.5.2. 

In[1]:= drip={0.1822, 0.1962, ....... , 0.2210, 0.1485} 
Out[1]= {0.1822, 0.1962, ....... , 0.2210, 0.1485} 
In[2]:= n=Length[drip] 
Out[2]= 70 
In[3]:= dripdiff=Table[drip[[i]]-drip[[j]],{i,n},{j,n}] 
Out[3]= {{0.,-0.014, 0.048, ... , -0.0388, 0.0337}, 

{-0.0337,-0.0477, ... '-0.0725, 0. }} 
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The last command creates th~ 70 x 70 matrix of differences x; - Xj needed in 
formula ( 4). To see what is the reasonable selection of resolution E we will check 
the maximum and minimum of absolute values of the (nonzero) terms in the above 
matrix. The command Range [n] produces the list { 1, 2, ... , n} providing enu­
meration of all the rows of the matrix dripdiff. 

In[4]:= Max[ Abs[dripdiff[[Range[n]]] ]] 
Out[4]= 0.2115 
In[5]:= zeros=Position[dripdiff,O.] 
Out[5]= {{1, 1}, {2, 2}, ... , {69, 69}, {70, 70}} 
In[6]:= nozeros=ReplacePart[dripdiff,1,zeros] 
Out[6]= {{1,-0.014, 0.048, ... , -0.0388, 0.0337}, 

{-0.0337,-0.0477, ...• -0.0725, 1}} 
In[7]:= Min[ Abs[nozeros[[Range[n]]] ]] 
Out[7] :=0.0001 

The above result indicates that the values of the function dcor(E) forE < 0.0001 
are not of much interest as C (E) remains constant in that domain. Let us check the 
values of dcor(E) for a selection of E > 0.0001. 

In[8]:= H[x_]:=If[x<0,0,1] 
In[9]:= d[epsilon_]:=(1/Log[epsilon])* Log[ (1/n-2)* 

Sum[H[epsilon-Abs[dripdiff [[i]] [[j]] ] ], 
{i,1,n},{j,1,n}]] 

In[10] := Table[{0.1/k,d[0.1/k]},{k,10}] 
Out[10]= {{0.1, -0.434294 Log[922/1225]}, ... , 

{0.01, -0.217147 Log[164/1225]}} 
In[11]:= cordim1=N[%] 
Out[11]= {{0.1, 0.123405}, {0.05, 0.26549}, 

{0.0333333, 0.327238}, 
{0.025, 0.389185}, {0.02, 0.412454}, 
{0.0166667, 0.418268}, {0.0142857, 0.420781}, 
{0.0125, 0.42291}, {0.0111111, 0.42929}, 
{0.01, 0.436646}} 

In[12] := {{0.005,d[0.005]}, {0.003,d[0.003]}, 
{0.001,d[0.001]} ,{0.0001,d[0.0001]}, 

Out[12]= {{0.005, -0.188739 Log[39/490]}, ... } 
In[13]:= cordim2=N[%] 
Out[13]= {{0.005, 0.477669}, {0.003, 0.485482}, 

{0.001, 0.510611} ,{0.0001, 0.449525}} 
In[14]:= Join[cordim1, cordim2] 
Out[14]= {{0.1, 0.123405}, {0.05, 0.26549}, 

{0.001, 0.510611} ,{0.0001, 0.449525}} 
In[15]:= ListPlot[Join[cordim1, cordim2] 
Out[15]= - Graphics-
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Given the outcome of the above Mathematica experiment it would be reasonable 
to say that the correlation dimension of the above data is in the neighborhood of 
0.5. For further discussion of these issues, see Section 2.10, and Chapters 6 and 7. 

2.9 Measuring information content: entropy 

To avoid confusion caused by many colloquial interpretations of the word infor­
mation, we should make it clear at the very beginning that we are not seeking here 
the measure of information as measure of meaning or semantic content, but only 
as measure of content of information transmitted from a known pool of possible 
messages. The semantic aspects of communication, or the questions of the truth 
of messages, are totally irrelevant to our mathematical formulation. 

Example 2.9.1 Hot, Warm, and Cold. 

The weather reports in the Cleveland Plain Dealer provide five-day forecasts and 
one of the predicted items is temperature which is described as hot (H), warm 
(W), or cold (C). The past records show that during the Spring season the relative 
frequency of hot and cold weather was much smaller than the warm weather. How 
much information does tomorrow's forecast carry? Clearly, if the forecast says W, 
then the amount of new information provided to us is smaller than if the forecast 
says C, because on past evidence we already know that warm weather is more 
likely in the spring than cold weather. 

To settle on a particular quantitative measure of information content of a received 
message, let us take a look at another familiar example. 
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Example 2.9.2 Hard Disk. 
The amount of information carried by the data obviously depends on how many 
"bits" are necessary to transmit the data and on the frequency of different symbols 
appearing in the data. Thus, intuitively speaking, the 2-megabyte hard disk should 
be able to carry twice the amount of information on a !-megabyte disk, and the 
n-megabyte hard disk should carry n times the information on a !-megabyte disk. 

A received message that is one of the I 0,000,000 equally likely possible mes­
sages (here, think about your favored state lottery) is more valuable and carries 
more information than the message that comes from the pool of I 00 equally likely 
messages. In other words, the measure of information content should be an in­
creasing function of the pool size from which the messages come, assuming, on 
the past experience, that they all are equally likely. So, the information content 
has to be tied monotonically to the number of possible states of our data set. 

For a hard disk, the number of possible states N grows exponentially with the 
disk information storage capacity: 1-bit binary storage can store 2 messages, 0 and 
I, but then-bit binary storage can store N = 2n strings of length n. Thus, the disk 
capacity n required to store one of possible N states of our data set is 

n = log2 N. (1) 

For a general pool of N possible messages 

H=lnN (2) 

is usually called the Hartley information capacity. It is measured in bits. The choice 
of the natural logarithm is somewhat arbitrary and corresponds to the selection of 
a specific measurement unit. For binary messages, the choice of the logarithm to 
the base 2 would be more appropriate but the selection of the natural logarithm 
makes our approach uniform. Notice that the above formula can be written in the 
form 

I I 
H =-L N InN=- Lf(m)lnf(m), (3) 

m m 

where the summation is over all possible messages m, each appearing with the a 
priori relative frequency f (m) = I IN. 

On the other hand, if the disk has been destroyed and has Os permanently recorded 
on all its bytes, then its information capacity is obviously zero. 

This leads us to the question: What is the information content of a message 
received from the message pool if we know that the possible messages are not 
equally likely? Formula (3) suggests a measure of information content in this case 
as well. If m 1, m2, ... , m N, are possible messages in our pool, with prior relative 
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frequencies It, ... , IN, then the following natural generalization of (3), 

N 

H = H<ft, ... , IN)=- L .fi ln.fi, (4) 

i=t 

measures how much "uncertainty" is involved when we receive any particular 
message from this pool. The quantity H is called the Shannon entropy of the pool 
of messages (or data sets) and is traditionally also measured in bits. Notice that it 
depends just on the prior relative frequency d.f. .fi . 

Example 2.9.2 Continued. Hot, Warm, and Cold. 
Assume that the records show that in the past, for a Spring day, W was forecast with 
relative frequency lw = 0.5, H with frequency In = 0.2, and C with frequency 
lc = 0.3. Then the Shannon entropy of this message pool is 

H = H (0.5, 0.3, 0.2) = -0.5ln 0.5 - 0.3ln 0.3 - 0.2ln 0.2 = 1.02965 

If the past record indicated that all three forecasts appeared with the same relative 
frequency lw = In = fc = 1/3, then the Shannon entropy of this message 
pool would be H(1/3, 1/3, 1/3) = -ln(l/3) = 1.09861, larger than in the non­
identically distributed case above. 

If there are just two possible messages, say 0 and 1, with relative frequencies I 
and 1- I then 

H = H(f, 1- f)= -fin I- (1- f)ln(1- f) (5) 

Notice that its maximum is attained for 1 = 1/2, that is when both messages are 
equally likely. Indeed, this is confirmed by finding that, at I = 1 /2, the derivative 

dH 
-=-In I+ ln(1- f)- 1 + 1 = 0. dl (6) 

Mathematica Experiment 1. Shannon Entropy. We will graph entropy as a 
function of frequencies in the case of pools of messages consisting of two and three 
messages, that is, function H (/, 1 - f) of one variable 1. 0 ::: I ::: 1 and function 
H(fi, h. 1- It- h) oftwo variables /I, h. with 0::: It, h ::: 1, It+ h::: 1. 

In[l] := H[f_]:=-f Log[f]-(1-f) Log[(l-f)] 
In[2]:= Plot[H[f],{f,O,l}] 
Out[2]= -Graphics-
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In[3] := H[f1_,f2_]:=-f1 Log[f1]-f2 Log[f2]-(1-f1-f2) Log[(1-f1-f2)] 
In[4]:= Plot3D[H[f1,f2], {f1,0,1}, {f2,0,1}, PlotPoints ->40] 
Out[4]= -SurfaceGraphics-

A calculation similar to (6) (see, Experiments, Exercises, and Projects at the 
end of this chapter) proves the first of the following general properties of Shannon 
entropy: 

PROPERTY 1. The maximum of the Shannon entropy function HUt, ... , f N) is 
achieved for ft = ... = f N = 1 IN. Again, this is not surprising, as the selection 
from the most random source of information carries with it most information. 

PRoPERTY 2. H = 0 if, and only if, for one of the i = 1, ... , N, we have /; = 1 
(other frequencies are then 0). Intuitively, no information is carried if there is no 
uncertainty about the message. 

PRoPERTY 3· Any perturbation of the situation described in Property 2 towards 
the equalized one described in Property 1 will increase the information content 
of a message from the pool of messages. More precisely, if ft < h and if we 
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decrease the distance between fi and [2, then H will increase. In more generality, 
any averaging operation performed on J; s increases H, that is, if 

then 

N 

f( = L:aij/j. L:aij = L:aij = 1, 
j j=l 

H(f{, ... , /~) 2:: H(f,, · .. , fN). 

(7) 

(8) 

This is a simple consequence of the convexity of the function g(x) = -x Iogx. 
Obviously, entropy does not change if the above operation just leads to permutation 
of frequencies. 

Remark 2.9.1 Rigorous Derivation of the Entropy Function. The Shannon 
form(4)oftheentropyfunction H(f,, ... , fN) is not as arbitrary as it may initially 
seem. As a matter of fact, it can be rigorously derived on the basis of the following 
three natural postulates only: 

(i) H (f, 1 - f) is a continuous function of variable f. 
(ii) If H U1, ... , fn) is a symmetric function of its variables. 
(iii) If one message in our pool of messages is split into two possible messages 

with certain frequency weights, then the corresponding weighted split holds true 
for the respective entropy. More precisely, if fN = g, + g2 > 0, then 

Mathematica Experiment 2. Approximations to English. Any English-language 
text is written in the alphabet of 27 symbols, 26 letters A , B , ... , z plus space sp. If 
we assumed, naively, that all the symbols appear with equal frequency, then, using 
the pseudo-random number generator, we could produce a simulated English text 
of length as follows 

XFOML RXKHRJFFJUJ ZLP ....... . 

We could call it the zero-order approximation to the English language. If the text 
is, say, 200 letters long, the entropy (per symbol) is H = In 27200/200 = In 27 = 
3.29584. However, in the natural English language the frequencies of different 
letters are different, given, for a typical newspaper text, in the file LETTERFREQ on 
the UW Web Site, and their histogram is shown below. Also, the Shannon entropy 
is computed. 

In[l] := Graphics'Graphics' 
ln[2]:= letterfreq={{sp,0.206},{E,0.091},{T,0.077},{A,0.068}, 

{0,0.067},{N,0.054},{1,0.050},{R,0.050}, {H,0.047},{S,0.047}, 
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{D,0.029},{L,0.027},{C,0.023},{M,0.023},{U,0.023},{F,0.016} , 
{P,0.016},{Y,0.016},{B,0.012},{G,0.012},{W,0.012},{V,0.008}, 
{J,0.006},{K,0.006},{X,0.006},{Q,0.004},{Z,0.004}} 

Out[2]= {{sp,0.206},{E,0.091}, ... ,{Z,0.004}} 
In[3] := Sum[letterfreq[[i]] [[2]],{i,1,27}] 
Out [3]= 1. 
In[4] := freq=Part[letterfreq[[Range[27],2]]] 
Out[4]= {0.206, 0.091, ... , 0.004} 
In[S] := H=-Sum[ freq[[i]] Log[freq[[i]]], {i,1,27}] 
Out[S]= 2.84258 
In[6] := letters=Part[letterfreq[[Range[27],1]]] 
Out[6]= {sp, E, T, A, 0, N, I, R, H, S, D, L, C, M, U, F, P, Y, B, 

G, W, V, J , K , X, Q , Z} 
In[7] := BarChart[freq, BarLabels ->letters 
Out[7]= -Graphics-

0.2 

Thus, the frequency of E is .091, and the frequency of W is .012. A sample of an 
artificial text (let's call it the first-order approximation to the English language) produced 
with the help of a pseudo-random number generator is 

OCRO HLI RGWR NMIELWIS ..... 

The entropy of such a text (per letter) is 

H = - fsp In /sp - fA In !A - !B ln !B - ... - fz In fz = 2.84258, (10) 

less than for a uniformly random selection of letters. Although the sample visually feels 
more familiar than the zero-order approximation (one feels that some randomness has 
been removed from the text), it still does not look like an English text. To improve on our 
simulation of the English language, we would have to look at the blocks of two letters 
(all 272 of them) and their frequencies. These (and the frequencies for groups of three 
symbols) are given for the natural English language in Secret and Urgent. The Story 
of Codes and Ciphers, by Fletcher Pratt, Indianapolis-New York 1939, and reproduced 
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on the attached UVW Web Site. Using them and the pseudo-random number genemtor 
produces a simulated second-order approximation to the English text 

ON IE ANSOUTINYS ARE T INCTORE ST BE S DEAMY .... 

Looks better, doesn't it? It's entropy expressed by the formula 

1 
H = 2(- fAA In fAA- fAB lnfAB- ... - fzy lnfzy- fzz lnfzz). (11) 

The third-order approximation would look like this: 

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID .... 

with the corresponding entropy H. 
Then, instead of increasing the group size one can switch to the first order word ap­

proximation that would mimic the word frequency of the English language (given, e.g., 
in Relative Frequency of English Speech Sounds by G. Dewey, Harvard University Press, 
1923), as in the simulated example 

or, in 

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME 
CAN DIFFERENT NATIJRAL HERE 

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH 
WRITER THAT THE CHARACTER OF THIS POINT IS 
THEREFORE ANOTHER METHOD FOR THE LETTERS ..... 

which gives a second-order word approximation.2 

Remark 2.9.2 Entropy vs. Complexity. Shannon's entropy does not take into ac­
count the compressibility of information. Another measure of information, based on the 
algorithmic complexity, will address this issue in Chapter 4. 

2.10 Experiments, exercises, and projects 
1. Classify each of the data sets provided in Chapter 1 as categorical, numerical, 

mulitivariate, time dependent, etc. 

2. Mathematica Experiment: Telephone Rates. Manipulate the phone rates data from 
Example 2.1.1 to order them by: (a) the international call rates, (b) the long distance 
national call rates. Produce the correspondingly ordered bar charts. 

2The idea of different order approximations to the English language was borrowed from S. Shannon 
and W. Weaver, The Mathematical Theory of Communication, University oflllinois Press, Urbana, 
1949. 
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3. Explore Mathematica and write your own Mathematica formulas for various sta­
tistical functions: 

a. Sample means and weighted sample means. 

b. Ordered sample. 

c. Median, quartiles, and percentiles. 

d. Variance and standard deviation (biased and unbiased). 

e. Censored mean. 

f. Relative frequency distribution function. 

Test the above formulas and data representation techniques introduced in this chap­
ter (whichever are appropriate) on data from the following examples (available as 
files on the UVW Web Site). 

A. Fragmentation bombs bases from Example 1.3.2. 

B. Positions of bright stars from Example 1.5.2. 

C. Time intervals between water drops from Example 1.5.1. 

D. Accelerometer data from Example 1.7.1. 

Notice that some these functions (and many others) are available as part of the 
Mathematica Statistics packages and our own UVW packages provided on the 
UVW Web Site. Compare your code with that of those packages. 

4. Prove the Schwarz inequality: for any real numbers Xt, ..• , Xn, YL, •.. , Yn, 

Hint: Consider the nonnegative quadratic polynomial L(X; + ~Yi )2in ~ and check 
its discriminant. 

5. Write Mathematica formulas for 

a. sample covariance 

b. regression coefficients a and f3 
c. scatter plot and regression line 

Test the above formulas to 

A. Determine relation between normal stress (x variable) and the shear resistance 
of soil (y variable) given the following data (in kN/m2): 

X= 

y= 
11 

15.2 
13 

17.7 
15 17 19 21 

19.3 21.5 23.9 25.4 
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B. Test correlations between rates of sentenced prisoners from Section 1.6 for 
different states and regions of the United States. For each state (region), con­
sider the rates for years 1971-1991 as a single 21-dimensional data. Analyze 
the whole data set from this perspective. 

Compare your code with Mathematica Statistics and UVW packages. Use 
the latter for additional information. 

6. Use data on mortality rates, volume, and waiting period for transplants of kidneys, 
liver, heart and lungs, and pancreas provided on the UVW Web Site to produce 
relevant scatter plots, 2-D histograms, correlations, and regression line. Draw 
conclusions. 

7. Make a Q-Q plot of two selected data sets to judge similarity of their frequency 
distributions. You can use the single selected data set split into two subsets and test 
the frequency distribution of one part against the other. What are the implications 
of such an experiment? 

8. Produce a more complete graph of the function dcor (E) from Mathematica Exper­
iment 2.8.1. 

9. Analyze the correlation dimension of the space shuttle accelerometer data set from 
Example 1.7.1. 

10. Compare the Shannon entropy (use log2 base) of a message written in a four letter 
alphabet (say 00, 01, 10, 11) with letters appearing with the same frequencies 1/4, 
with that of a message written in the same alphabet but with letter frequencies 1/2, 
1/4, 1/8, 1/8. 

11. Check that the Shannon entropy function H (f1 , ••• , f N) attains the maximum for 
ft = ... = f N = 1 IN. Remember that it is a constrained maximum of a function 
of N variables with the additional condition / 1 + h + ... + f N = 1. Verify 
Properties 1-3, and (i)-(iii) in Section 2.9. 

12. Adjust the random number generator to simulate a sample text of 500 symbols (26 
letters plus space) with 

(a) the equally distributed symbols 

(b) symbols distributed as in the natural English language 

(c) pairs of symbols distributed as in the natural English language 

(d) triples of symbols distributed as in the natural English language 

Use the frequencies provided on the UVW Web Site and coding from Mathematica 
Experiment 2.1.2 and 2.9.2. For each case, calculate the entropy per letter. Devise 
a method to produce such simulations if you were not given these frequency tables 
and had to get these frequencies by analysis of concrete texts. 

13. Mathematica Experiment. Entropy Olympics. Calculate entropy of selected En­
glish, French, German and Spanish texts, a scanned picture, and classical or rock 
music. Could this information serve as a tool for the linguistic study of quantitative 
relationships between languages, or help decide which language was derived from 
which? Draw your own conclusions. 
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14. Mathematica Experiment. Estimating Fractal Dimension via Linear Regression. 
The formal definition of the Grassberger-Procaccia correlation dimension for gen­
eral sets will be postponed to Section 6.5 (see, also, Section 7.4). 

Let S = (x,, x2, ... , Xn) be a finite data set of d-dimensional vectors. For a fixed 
(small) resolution E > 0, define the correlation sum 

where lx- yl denotes the d-dimensional distance of vectors x andy. 

Assume, for the moment, that the correlation sum, as a function of E, is of the form 

Taking logarithms on both sides of (2), we obtain 

lnCn(E) =InK+ vInE. 

(2) 

(3) 

In Other WOrds, the relationship between In en (E) and In E is here linear, SO, in 
view of formula (2.8.3), the coefficient v is the correlation dimension of the finite 
setS. In reality, formula (2) can never be established rigorously, but can be taken 
as an approximation. In such a case, to estimate v we can use the usual linear 
regression techniques developed in Section 2.7 (see, also, Chapter 8). This method 
forms a basis for the command CorrelationDimension included in the package 
UVW' DynSyst'. 

Thus, we will proceed as follows: For any finite set of m (different) resolutions 
{ E" E2, ... , Em} chosen by the experimenter, consider the set of paired data 

{(IDE!, In cn(E,)), (lnE2, In cn(E2)), ... , (lnEm,ln cn(Em))}, (4) 

and find the best linear fit for it. The slope dear of the regression line will be called 
the correlation dimension of S based on resolutions {E~o ... , Em}. From Section 
2. 7 we deduce that 

(5) 

where 

and 
I m 

lnCn(E) =;;; LlogCn(E;). 
i=! 

As an example, consider the 4-dimensional data set iris included on the UVW Web 
Site. The four components provide the lengths and widths of petals and sepals 
of the iris flower. In this experiment we will take just the first ten data points and 
estimate their correlation dimension using m = 5 and E; = i/10, i = 1, 2, ... , 5. 
The relevant error analysis is discussed in Chapter 8. 

In[1]:= <<Statistics'LinearRegression' 
In[2]:= iris={ ............. } 
In[3]:= c[r_]:= (1/10.)-2 Sum[ Sum[ If[ Sum[ 
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In[4] := c[.2] 
Out[4= -0.16 

(iris [ [i]J [ [k]J -iris [ [j]J [ [k]J) ~2, 
{k,1,4}]<r~2,1,0], 

{j,1,10}],{i,1,10}] 

In[5] :=reg= Table[{Log[i/10.], Log[c[i/10.]]}, {i,1,5}] 
Out[5]= {{-2.30259, -2.30259}, {-1.60944, -1.83258}, 

{-1.20397, -1.42712}, {-0.916291, -1.02165}, 
{-0.693147, -0.1693147}} 

In[6] := Fit[reg, {1,x},x] 
Out[6]= -0.125049 + 0.989057 x 
In[7] := Quit 
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So the correlation dimension of iris is estimated to be 0.989057. Try the same 
technique on the drip data from the Mathematica Experiment 2.8.1. 

15. Mathematica Experiment. Entropy of a Finite Data Set. LetS = (X!, x2, ... , Xn) 
be a finite data set which may consist of numbers, d-dimensional vectors, or some 
other abstract objects (e.g., strings of letters). Let {m,, ... , mk} denote the set of 
different elements from this data set. Then, the entropy of S is 

1 k n 1 n 

H = -- '"""''"""' lm (XI) In-'"""' lm (XI), n~~ ' n~ l 

i=l 1=1 1=1 

where 1m(x) = 1 if x = m, and 0 otherwise. 
As an example, we will estimate the entropy of the data set rivet which can be 
found on the UVW Web Site. The data are first binned into bins of size 0.2 mm. 

In[1] :=rivet={ ...... } 
In[2] := Min[rivet] 
Out [2] = 13.13 
In[3] := Max[rivet] 
Out[3]= 13.69 
In[4] := Length[rivet] 
Out[4]= 200 
In[5] := freq[s_] := 

(1/200.) Sum[If[(s-1)*.2<rivet[[i]]]]-13.119< 
S*.2, 1,0], {i,1,200}] 

In[6] := h=-Sum[freq[s] Log[freq[s]], {s,1,3}] 
Out[6]= 0.91488 
In[7]:= Quit 

2.11 Bibliographical notes 
A relatively new source on how to graph data, addressed mainly to social scientists, is 
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[1] G.T. Henry, Graphing Data; Techniques for Display and Analysis, Sage Publica­
tions, Inc., Thousand Oaks, London, 1995. 

It contains an interesting analysis of the human perception of different methods of graphical 
data representation; see, also 

[2] W.S. Cleveland and R. McGill, Graphical perception; Theory, experimentation, 
and application to the development of graphical methods, J. Amer. Stst. Assoc. 
79(1984), 531-554. 

[3] John W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977. 

is a classic of statistical literature and contains a wealth of information, both for a profes­
sional statistician and a practical user. 

[4] E.R. Tufte, Envisioning Information, Graphic Press, Cheshire, CT, 1982, and 

[5] E.R. Tufte, The Visual Display of Quantitative Information, Graphic Press, 
Cheshire, CT, 1990 

contain a very imaginative exposition of how to represent complex information (not only 
statistical in nature). According to a review in the Computer: "A remarkable range of 
examples for the idea of visual thinking, with beautifully printed pages." 

A nice mathematical introduction to the issues of fractional dimension can be found in 

[6] G.A. Edgar, Measure, Topology and Fractal Geometry, Springer-Verlag, New York, 
1990. -

The February 1992 issue of the journal Statistical Science was devoted, in part, to the 
statistics of dynamical systems and their fractality, and included articles by S. Chatterjee 
and M. Yilmaz, by L.M. Berliner, and comments by other researchers working in the 
area. It is also a good source of more detailed references. 

The small volume 

[7] C. Shannon and W. Weaver, The Mathematical Theory of Communication, Uni-
versity of Illinois Press, Urbana, 1949, 

still remains a lucidly argued classic in the area. The idea of different order approximations 
to the English language was borrowed from it. For a more modern and more mathematical 
treatment of information theory, see, e.g., 

[8] A. Feinstein, Foundations of Information Theory, McGraw-Hill, New York, 1958. 

[9] S. Guiasu, Information Theory with Applications, McGraw-Hill, New York, 1977. 

The former contains a proof of Remark 2.9.1. 

[10] Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading, MA, 1964, 

and also discusses issues of the semantic content of information. The frequency tables 
for the English language were taken from 

[11] F. Pratt, Secret and Urgent. The Story of Codes and Ciphers, The Bobbs Merril 
Co., Indianapolis-New York, 1939. 

[12] G. Dewey, Relative Frequency of English Speech Sounds, Harvard University 
Press, Cambridge, MA, 1923. 
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A discussion of mathematical models of word frequencies in a natural language can be 
found in 

[13] B. Mandelbrot, On the theory of word frequencies and on related Markovian models 
of discourse, in Structure of Language and Its Mathematical Aspects, Amer. Math. 
Soc. , Providence, RI, 1961, pp. 190-219. 



Chapter3 

Analytic Representation of Random 
Experimental Data 

In Mathematica Experiment 2.5.1 we observed that the cumulative d.f. and his­
tograms of large samples drawn with finer and finer resolution or, in other words, 
with smaller and smaller bin size, often seem to smooth out and assume a form that 
is almost begging to be compressed into a single analytic formula. These various 
idealized limit relative frequency d.f.s, called probability density functions, and the 
related cumulative probability distribution functions, will be studied in this chap­
ter. We will also learn how to simulate data sets with an a priori given probability 
density function. 

We begin by discussing stability of frequencies and fluctuations as laws of nature 
and then move on to analytic formulas for 1-D discrete probability distributions, 
introduce the concept of changing scale and location in data description, and then 
move on to probability densities for continuous data. A section on multivariate 
probability distributions, both discrete and continuous, follows. The analytic com­
pression of fractal random objects is then briefly discussed. 

3.1 Repeated experiments and the law of large numbers 

Everybody has an intuitive notion of what a scientific experiment is. Our first 
step is to make this concept more precise. 

Example 3.1.1 Galileo on the Leaning Tower of Pisa. 

In order to measure the gravity constant, in 1627 Galileo performed a series of 
experiments, repeatedly dropping various bodies from the Leaning Tower of Pisa. 
Outcomes of these repeated experiments were not identical but they showed re­
markable stability; a typical sequence of 10 measurements (in kgjm3 units) could 
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have looked as follows: 

9.8102, 9.8107, 9.8098, 9.8101, 9.8109, 

9.8092, 9.8157, 9.8131, 9.8097, 9.8095 

The experiments produced random outcomes, the randomness arising from inaccu­
racies and other uncertainties of the experimental process, and the gravity constant 
was measured with what we now call statistical errors. They were relatively small. 

Example 3.1.2 Accidents Happen (Randomly). 
Monthly number of accidents at the Best Co. was recorded over a period of 20 
months, producing the following data set: 

3, 5, 7, 9, 10, 18, 6, 14, 11, 9, 5, 11, 15, 6, 11, 17, 12, 15, 8, 4. 

Each monthly survey can be thought of as an experiment. So, the above data set 
represents outcomes of 20 experiments. Now, the data set no longer looks like 
a representation of a constant affected by statistical errors. The data set displays 
large statistical fluctuations. 

Both of the above examples displayed some random behavior, although the 
mechanisms that produced them may have been of different nature. 

Example 3.1.3 Double-Blind Medical Test. 
A researcher studying acute leukemia would like to test the effectiveness of a new 
drug. His expectation is that the drug prolongs the duration of the illness' remission. 
For that purpose he performs a double-blind experiment: a random sample of 10 
patients from the population diagnosed with the illness is split (again, randomly) 
into two equal groups. Patients are not aware of which group they were assigned. 
Then, those in the first group are given a dose of the new drug, while those in the 
second group are given a neutral placebo. This is being done to eliminate the so­
called placebo effects (usually improvement) that the administration of any drug 
has on some patients. Then a physician, who also does not know to which group a 
particular patient belongs, questions the patients as to the duration of the remission. 
The collected data (in weeks) for five patients in each category are given below: 

Placebo: 1, 22, 3, 12,8 Drug: 10, 7, 32, 23,22 

Example 3.1.4 Drawing Balls at Random. 
An urn contains balls of different colors: red, blue, yellow, etc. The experiment 
consists in drawing a ball at random and recording its color. "Drawing at random" 
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means here that the drawing mechanism is blind and does not give preference to 
any particular ball; the chance of any ball to be drawn is the same and equal to 

1 

number of balls in the urn 

The outcomes of this experiment form a nominal categorical data set. We can trans­
form it into an ordinal categorical data by labeling different colors with numbers 
1, 2, ... 

In general, an experiment is performed on a physical "device" which produces 
data as an output. That physical "device" can be a measuring instrument used in a 
certain concrete situation, a pollster or a physician querying people, or a computer 
producing a string of numbers via its pseudorandom number generator. The data 
describing the outcome of an experiment, as we have seen in Chapter 2, can be 
either quantitative (numerical, vector, fractal) or qualitative (categorical). Another 
typical feature of the experiment is that, if repeated independently, it may yield a 
different set of data. 

A finite set of d experiments (conducted simultaneously or consecutively), each 
yielding (say) numerical data, can be thought of as a single grand experiment 
producing d-dimensional vector data. 

Symbolically, an experiment with random outcomes wiii be denoted by a cap­
ital letter, typically X, Y, Z, or X1, X2, ... , and called a random quantity if the 
outcomes are real numbers (resp. random vectors, functions, fields, etc. in other 
situations). In the case when outcomes are categorical, we wiii speak about random 
entities. 

An independent n-fold repetition of an experiment described by the random 
quantity X results in a new grand experiment described by the random vector 
X= (XJ, X2, ... , Xn). Single experimental random quantities X1, ... , Xn serve 
as components of X. A particular run of a series of n experiments will produce 
a sequence of real numbers (vectors, etc.) XJ, ••• , Xn, a concrete realization of 
independent random quantities X J, X 2, ... , Xn. 

The basic description of a random quantity X, i.e., the randomly varying out­
comes of an experiment, is via, already encountered in Chapter 2, relative frequency 
distribution function measured over multiple (ideally, infinite) independent repe­
titions of the experiment under the same circumstances. The requirement that the 
experiments be independently repeatable is an important postulate in experimental 
sciences. 

However, compared to our simple definition of the relative frequency d.f. for a 
fixed finite set VJ, ••• , v N, of possible experimental outcomes (Section 2.3) we will 
proceed slightly differently to permit analysis of experiments with any numerical 
outcomes. Our approach will be similar to that of the creation of a binned histogram 
with an arbitrary size and location of the bin. So, given a realization XJ, .•• , Xn of 
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n independent experiments involving the random quantity X, and an interval R on 
the real line, the real number 

number of Xi E R 1 . 
fn(R; X)= = -#{z: Xi E R}, (1) 

n n 

tells us the relative frequency with which the outcomes of n independent experi­
ments involving the random quantity X appear in the interval R. A similar quantity 
can be introduced in the case when each of the random quantities Xi is itself vector­
valued. In that case, the interval R has to be replaced by a rectangular box in the 
space of appropriate dimensionality. 

It is an empirical fact that for practically all intervals R, the relative frequen­
cies fn(R; X) stabilize as the number n of independently repeated experiments 
increases. This phenomenon, which we will call the Stability of Frequencies Law 
(SFL), is a law of nature like any other law of nature one learns about in physics. 
It can be summarized as follows: 

Stability of Frequencies Law (SFL). Suppose that the experiment X is inde­
pendently repeated and a sequence of outcomes Xt, x2, ... , Xn, is observed. Then 
the relative frequencies In stabilize as n becomes large, i.e., there exists a real 
number Pr (R; X) such that 

fn(R; X)~ Pr(R; X), as n ~ oo, (2) 

for almost all intervals R. The limit Pr (R; X) of the relative frequencies will be 
called the probability that the random quantity X takes values in R, and is also 
denotedPr{X E R}. 

Notice that the above law was phrased somewhat cautiously and talks about 
the limit (2) existing only for "almost all" intervals R. The reason is that our 
measuring instruments are never perfectly precise and the condition Xi E R, with 
its sharply defined cut-off points at the ends of the interval R, requires infinitely 
precise measurement to decide whether or not it is satisfied. 

To avoid this difficulty one usually introduces a more practical concept of a 
bounded and smooth test function 1/l(x) which represents a realistic measuring 
device. In this context, the general Law ofTestedAverages (LTA) can be formulated 
as follows: 
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Law of Tested Averages (LTA). Suppose that an experiment X is independently 
repeated and a sequence of outcomes Xt, x2, ... , Xn, ... is observed. Then the 
averages of outcomes 

Avn(1/I(X)) := 1/l(xt) + · · · + 1/I(Xn), 
n 

(3) 

measured via a bounded and smooth test function 1/l(x) converge, as n increases, 
to a constant, say /l-(1/I(X)), i.e., 

Avn(1/I(X)) ~ /l-(1/I(X)), as n ~ oo. (4) 

The limit /l-(1/I(X)) will be called the mean of random quantity X tested via the 
test function 1/1. 

Mathematica Experiment 1. Smooth Approximation ofDiscontinuous Test Func­
tion. The somewhat idealistic Stability of Frequencies Law can then be viewed 
as the special (in the limit) case of the Law of Tested Averages, where the test 
function is the discontinuous indicator function of the interval R: 

1 ( ) ·= { 1, ifx E R; 
R X • 0, if X f/. R. (5) 

Indeed, with 1/l(x) = lR(X), the tested average (3) becomes the relative frequency 
in (1), i.e., 

fn(R, X)= lR(Xt) + ... + lR(Xn). 
n 

(6) 

On the other hand, the indicator function lR(x) can be approximated by smooth 
test functions 1/1. In the Mathematica experiment that follows, we have selected 
R = [-1/2, 1/2]. 

In[1]:= H[x_] :=If[x<0,0,1] 
In(2]:= Indicator[x_]:=H[-(x-0.5)]•H[x+0.5] 
In[3]:= Psi[x_,a_]:=(1/Pi)(Pi-((ArcTan[(a(x-0.5))]+Pi/2)+ 

(ArcTan[(-a(x+0.5))]+Pi/2))) 
In(4]:= Plot[{Indicator[x], Psi[x,50],Psi[x,100],Psi[x,500]}, 

{x, -1.3, 1.3}] 
Out[5]= -Graphics-
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If the experimental outcomes XI, ... , Xn, ••• come from a bounded interval 
(independent of n ), as is often the case in practice, one can take as the test function 
l{t(x) = x, the unboundedness of which at large xs being irrelevant. In this case, 
the Law of Tested Averages becomes the celebrated 

Law of Large Numbers (LLN). Suppose that an experiment X is independently 
repeated and a sequence of outcomes X!, x2, ... , Xn, ••. is observed. Then the 
sample means x of outcomes converge, as n increases, to a constant, say J.L = J.L(X), 
i.e., 

_ X! + ... + Xn (X) 
X = ---+ J.L = J.L ' 

n 
as n--+ oo. 

The constant J.L(X) is called the mean of the random quantity X. 

(7) 

The above laws, introduced here as laws of nature, will be recovered as 
mathematical theorems, with precise assumptions, within the framework of Kol­
mogorov's axiomatic probability theory discussed in Chapter 5. They also permit 
a verification of independence of repeated experimental ensembles. 

Remark 3.1.1 Limitations on LLN. There are some limitations on the appli­
cability of the LLN. The Mathematica Experiment on Cauchy distributed random 
quantities in Section 3.8 shows an example of the situation where the LLN fails. 

Mathematica Experiment 2. Law of Large Numbers. In this experiment we take 
the computer as a physical device that produces various random numerical out­
comes. The command Random [Integer] produces a pseudorandom number equal 
to either 0 or 1. Then the command Table [Random[Integer], {i, 1 ,n}J will pro­
duce a sequence of n pseudorandom zeros and ones. The command SeedRandom [ 

] reseeds the pseudorandom number generator with the time of day (measured 



3.1. Repeated Experiments and the Law of Large Numbers 125 

in small fractions of a second) to make sure that two different sessions will give 
different and hopefully independent pseudorandom strings. Finally the command 
LargeNumbers [List] of the UVW' DataRep' will plot the successive averages of the 
data from the List. 

In[l]:= << UVW'DataRep' 
In[2]:= SeedRandom[] 
In[3]:= Tl =Table[Random[Integer],{i,1,1000}] 
Out[3]= {0, 1, 1, 1, 0, ... , 1, 0, 1, 1, 0, 1, 0, 1, 1} 
In[4]:= LargeNumbers[T1] 
Out[4]= -Graphics-
In[5]:= S1=Show[Y,,Frame ->True, GridLines->Automatic] 
Out[5]= -Graphics-

0.41-----i----+----+-----+-----1 

0.31----"----+-----+----+-----l------1 

0.21------+-----+----+-----l------1 

O.lt-----i----+----+-----+-----1 

0~------~~------~------~~------~------~ 0 200 400 600 800 l 000 

You will notice that the averages stabilize around 112 but the fluctuations around 
that value remain. Four repetitions of the same experiment give four different 
realizations of the data sets but the asymptotic behavior of their successive averages 
is similar. 

In[16] := LargeNumbers[T4] 
Out[16]= -Graphics-
In[17]:= S4=Show[Y,,Frame ->True, GridLines->Automatic] 
Out[17]= -Graphics-
In[18] := Show[GraphicsArray[{{S4,S2},{S3,S1}}]] 
Out[18]= -GraphicsArray-
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Independent random quantities. Suppose two series of experiments X and 
Y were conducted with outcomes Xt, ... , Xn, ... and Yt, •.. , Yn, ... According 
to the Stability of Frequencies Law, for almost all intervals R, S, the relative 
frequencies fn(R; X), fn(S; Y), for X, Y respectively, stabilize at probabilities 
Pr (R; X) and Pr (R; Y), but the same phenomenon also happens for these data 
considered as an outcome of a single 2-D vector experiment (X, Y) with outcomes 
(x;, y;), i = 1, ... , n, .. .. In other words, 

number of (x;, y;) E R x S, 1 ~ i ~ n fn(R X S; (X, Y)) := ___ __:___:_: _____ _ 
n 

~ Pr{R X S; (X, Y)} = Pr {(X, Y) E R X S}, (8) 

asn--? oo. Then, the relative frequency fn(R; XIS; Y) of outcomes of experiment 
X being in R given the extra information that the outcomes of experiment Y are 
in S (that is the fraction of pairs (x;, y;) in the rectangle R x S in the universe of 
pairs with the second coordinate y; E S) can be expressed via the formula 

f, (R· XIS· Y) = fn(R x S; (X, Y)). 
n ' ' fn(S; Y) 

(9) 

The number fn (R; X IS; Y) is called the conditional relative frequency of X being 
in R given Y being S. 

Now, to say that the experiment X with outcomes Xt, .•• , Xn, is independent of 
experiment Y with outcomes Yt , ••. , Yn, is equivalent to the statement that, for any 
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intervals RandS, the conditional relative frequency fn(R; XIS; Y) ~ fn(R; X), 
that is, it becomes independent of the extra information about the outcomes of Y. 
This independence condition can be rephrased, in view of definition (9), as a more 
symmetric independence condition 

fn(R x S; (X, Y)) ~ fn(R; X)fn(S; Y). (10) 

If the number of experiments n increases, the Stability of Frequencies Law 
assures that the conditional frequencies fn(R; XIS; Y) stabilize (unless Pr(Y E 

S) = 0) at the conditional probabilities 

Pr {X E R, Y E S} 
Pr (R; XIS; Y) = Pr {X E RIY E S} = ' (11) 

Pr{y E S} 

This leads to the following. 

Criterion oflndependence of Experimental Random Quantities. The exper­
imental random quantities X and Y are independent if 

Pr(X E R, YES)= Pr{X E R} ·Pr{Y E S}, (12) 

for any intervals R and S. 

Mathematica Experiment 3. Independence of Experiments. Let us check that 
four repetitions of experiments in the above Mathematica Experiments 2, which 
took advantage of the SeedRandom [ J command, satisfy approximately the above 
criterion of independence. Since there are only four possible values for (X, Y), 
namely, (0, 0), (0, 1), (1, 0), (1, 1), it is not necessary to check the condition (12) 
[or, in practice, condition (10)] for all possible rectangles R x S, and it suffices to 
verify that for any i = 0, 1 j = 0, 1, 

Pr (X = i, Y = j) ~ Pr (X = i) · Pr (Y = j). 

In[1]:= <<Statistics'DataManipulation' 
In[2]:= SeedRandom[] 
In[3]:= X =Table[Random[Integer],{i,1,1000}] 
Out[3]= {1,1,1,0,1,0, ... , 0,1,1,1,0,0} 
In[4]:= SeedRandom[] 
In[5]:= Y =Table[Random[Integer],{i,1,1000}] 
Out[5]= {1,1,0,1,1,0, ... , 1,1,0,0,1,0} 
In[6]:= (XcomaY)=Table[{X[[n]],Y[[n]]},{n,1000}] 
Out[6]= {{1,1},{1,1},{1,0},{0,1}, ... ,{1,0},{0,1},{0,0}} 
In[7]:= FrX=Frequencies[X] 
Out[7]= {{493, 0}, {507, 1}} 
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In[8]:= FrY=Frequencies[Y] 
Out[8]= {{474, 0}, {526, 1}} 
In[9]:= Fr(XcomaY)=Frequencies[XcomaY] 
Out[9]= {{229, {0, 0}}, {264, {0, 1}}, {245, {1, 0}}, 

{262, {1, 1}}} 
In[10]:= PrXtimesPrY= 

N[ Table [{FrX([m]] [[1]]*FrY[[k]] [[1]]/(10)-6, 
{FrX[[m]] [[2]], FrY [[k]] [(2]]}},{m,2},{k,2}] ,3] 

Out[10]= {{0.234, {0, 0}}, {0.259, {0, 1.}}, 
{0.240, {1., 0}}, {0.267, {1., 1.}}} 

In[11]:= Pr(XcomaY)=N[Table[{(XcomaY)[[m]][[1]]/1000, 
(XcomaY)[[m]] [[2]]},{m,4}]] 

Out[11]= {{0.229, {0, 0}}, {0.264, {0, 1.}}, 
{0.245, {1., 0}}, {0.262, {1., 1.}}} 

A comparison of Out [10] and Out (11] indicates that the claim of independence 
of X and Y is relatively well founded. Note that whenever you repeat the above 
experiments the particular output is going to be different. However, the relevant 
probabilities will be similar. 

3.2 Characteristics of experiments: distribution functions, 
densities, means, variances 

In practice, instead of all the probabilities Pr(R; X) for all the possible intervals 
R, one often operates with a one-parameter family of probabilities of the events 
that the experimental random quantity X ::::; x, i.e., with the cumulative distribution 
function of X: 

F(x; X):= Pr{X E R = (-oo, x]}, -00 <X< 00. (1) 

It is an analogue of the sample cumulative distribution function F (x, re) introduced 
in Chapter 2. Note that F(-oo; X) = 0, F(+oo; X) = 1 and that F(x; X) is 
nondecreasing. Sometimes, for the sake of better typography, we will write F x (x) 
instead ofF (x; X). A typical picture of a cumulative distribution function is shown 
in Fig. 3.2.1. 

Now, for a pair of experimental random quantities represented by the random 
vector (X, Y), the independence condition (3.1.12) can also be written in terms of 
the distribution functions: 

F(x,Y)(X, y) = Fx(x)Fy(y), x,y E R, (2) 
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0 
X 

FIGURE 3.2.1 
A typical picture of the cumulative d.f. F x (x) of a random quantity X. Notice 
that Fx(-oo) = 0, Fx(+oo) = 1 and that Fx(x) is nondecreasing. Intervals of 
constancy as well as jumps upwards are also possible. 

where the joint 2 -D distribution function 

F(x,Y)(X, y) := Pr{X :S x, Y :S y}. (3) 

Means of tested random quantities as integrals with respect to cumulative 
d.f. In the particular case of data Xt, ... , Xn uniformly distributed over the interval 
[a, b], that is, with 

b-a 
!l.x; =X; -Xi-1 = --, 

n 
(4) 

and for any bounded and continuous test function Y,(x), it is clear that the tested 
average Avn(1/l) defined in (3.1.3) is nothing but a discrete approximation to the 
Riemann integral of Y,(x) over the interval [a, b], or more precisely 

Avn(1/l) = Y,(xt) + ... + 1/f(xn) = _1_ ~ Y,(x;) !l.x; (5) 
n b-a~ 

i=l 

which converges, as n --+ oo, to 

1 1b JL(1/I)=b-a a 1/f(x)dx. (6) 

Also, in this case, the distribution function F (x) grows linearly in the interval 
[a, b), i.e., 

{ 
0, for -oo < x ::: a; 

with 

F(x) = (x - a)j(b -a), for a ::: x ::: b; (7a) 
1, forb::: x < +oo, 

{ 
0, 

dF(x) = dxj(b- a), 
0, 

for -oo < x ::: a; 
for a ::: x ::: b; 
for b ::: x < +oo. 

(7b) 
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Hence, we can symbolically write 

0.8 

0.6 

0.4 

0.2 

-0.25 

-0.5 

JL(t/1) = i: t/J(x) dF(x). 

1.5 -0.5 

(8) 

1.5 

1.5 

Mathematica Experiment 1. Cumulative d.f. for Uniform Data. We will il­
lustrate the limit passage for (5) to (6) using the tools developed in Mathematica 
Experiment 2.5.1. The interval [a, b] is taken to be [0, 1]. 

In[1]:= <<Statistics'DescriptiveStatistics' 
In[2]:= <<Graphics'Graphics' 
In[3] := n=6; 
In[4]:= uniformdata= (1/n)Range[n] 
Out[4]= {1/6, 1/3, 1/2, 2/3, 5/6, 1} 
In[5]:= H[x_]:=If[x<0,0,1] 
In[6]:= F[x_]:=(1/n) Sum[H[x- uniformdata[[i]] ],{i,1,n}] 
In[7]:= cdf6=Plot[F[x],{x,uniformdata[[1]]-1/2, 

uniformdata[[n]]+1/2 } ] 

Repeating the procedure for, say, n = 14, 34, and 83, and using the command 

In[23]:= Show[GraphicsArray[{{cdf6, cdf14}, {cdf34, cdf83}}]] 

produces the GraphicsArray shown above. 
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The above discussion suggests that, perhaps, for any experimental random quan­
tity X and a bounded continuous test function '1/1 we could view the tested mean as 
a kind of integral with respect to the cumulative d.f. Fx(x): 

JL('I/I(X)) = lim Avn('l/1) = lim t '1/f(x(j)ll.F(x(j)) = joo '1/f(x) dFx(x). 
n-+oo n-+oo 00 j=l -

(9) 
The integral on the right-hand side, called the Riemann-Stieltjes integral of '1/1 
with respect to Fx, is defined via the limit on the left-hand side whose existence 
and uniqueness (that is independence of any particular realization of a series of 
repeated independent experiments X) is assured by the Law of Tested Averages. 
In the intermediate discrete approximation formula, of course, 

ll.F(X(i)) = F(X(i))- F(X(i-1)) 

corresponds to the jump of the data :z: cumulative d.f. F(x, :z:) at the data point 
X= X(i)· 

In the above sense, the cumulative d.f. F x (x) of an experimental random quan­
tity X acts on test functions '1/1 as an operation 

'1/1 ~ JL('I/I(X)) = l: '1/f(x) dFx(x) 

which enjoys the following properties: 

(i) It is positive, i.e., 

'1/f(x) :S 0 ==> l: '1/f(x)dFx(x) :S 0; 

(ii) It scales homogeneously, i.e.,Jor any real number a, 

l: a'l/f(x)dFx(x) =a l: '1/f(x)dFx(x) 

(iii) It is additive on superpositions of test functions, i.e., 

(10) 

(11) 

(12) 

/_: ('1/!t(x) + '1/12(x))dFx(x) = /_: '1/!t(x)dFx(x) + /_: '1/12(x)dFx(x). 

(13) 
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Thus, the Riemann-Stieltjes integral J 1/1 d F x is just the mean of the experimen­
tal random quantity X tested by the test function 1/1. For the special choice of the 
test function 1/1 (x) = x, 

JL(X) = j xdFx(x) (14) 

is simply called the mean of the experimental random quantity X [or, its cumulative 
d.f. Fx(x)]. Notice that since 1/f(x) = x is an unbounded test function, the 
existence of the mean is not guaranteed for every cumulative d.f. Fx(x). It has 
to be understood as the limit off xl[a,bJ(x) dFx(x), for a ~ -oo, b ~ +oo, 
which may or may not exist. The indicator function l[a,bJ(x) is equal to 1 for xs 
inside interval [a, b], and 0 outside that interval. 

In this context, the probability 

Pr{a < X :::: b} = Fx(b)- Fx(a), (15) 

and the variance of an experimental random quantity X with the cumulative d.f. 
F x (x) is defined by the formula 

a 2(X) = r: (x- JL(X))2 dFx(x), (16) 

expressing the mean square deviation of the experimental random variable X from 
its mean JL(X). Observe that, in general, finiteness of the variance is not guaranteed 
either. Using the above properties (i-iii) of the Riemann-Stieltjes integral one can 
easily check that 

Var X= a 2 (X) = f x 2 dFx(X)- JL2 (X). (17) 

The quantity 

f.L2(X) = j x 2 dFx(x) (18) 

is called the second order moment of the random quantity X, or, equivalently, of 
its cumulative d. f. F x. By analogy, the k-th order moment are 

f.Lk(X) = j xk dFx(x). (19) 

All of these characteristics of the cumulative distribution functions (and thus ex­
perimental random quantities) are analogous to the corresponding finite numerical 
data characteristics introduced in Chapter 2. They will be revisited within the 
framework of the formal mathematical model of probability theory in Chapter 5. 
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For the purposes of the present discussion of analytic representations of random 
experimental quantities, we will note two classes of cumulative d.f.s. Examples 
from these two classes will fill the rest of this chapter. 

Discrete Distributions. Let us assume that the experimental random quantity 
X assumes values only from a fixed finite (or infinite) discrete set v,, ... , VN of 
real numbers, and that in the series of n independently repeated experiments the 
outcomes form a random sample x,, ... , Xn with relative frequencies 

#{i: x; = vd 
fn(v,; X)= , (20) 

n 

Then, by the Stability of Frequencies Law, as n ---+ oo, 

and by the Law of Tested Averages, for any test function 1ft 

Avn(lft(X))---+ Pllft(v!) + ... + PNVt(VN) = f lft(x)dFx(x), (21) 

where the cumulative d.f. F x (x) can now be identified as a function constant at 
all points x except x = v; where it has jumps upwards of size p;. Such random 
quantities and their cumulative d.f.s are called discrete. 

For discrete random quantities, the Riemann-Stieltjes integral formulas for 
mean, variance, moments, etc. become just sums (finite or infinite). For example, 

N N 

/.L = /.L(X) = LV; Pi' a 2(X) = L(v;- ~.t) 2 p;. (22) 
i=l i=l 

Absolutely Continuous Distributions, Densities. In some cases the cumulative 
d.f. Fx(x) is differentiable (at all except, say, some discrete points) and 

Fx(x) = j_~ fx(Y) dy. 

Such cumulative d.f.s are called absolutely continuous and their derivatives 

dFx(x) 
fx(x) = dx 

(23) 

(24) 
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are called the probability density function ( d.f.) of the random quantity X. In view 
of the monotonicity of F x (x) and the property F x ( +oo) = 1 of the cumulative 
d.f., any density function fx(x) must satisfy the following two properties 

(i) Positivity: 

(ii) Normalization: 

zero 
I 
I 
I 
I 

f(x) 

flat 

fx(x) ~ 0, x eR, 

l: fx(x) dx = 1. 

:....J!!!... 
I I 
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FIGURE 3.2.2 
A typical graph of a probability density function fx(x) (above) and the corre­
sponding cumulative distribution function Fx(x) (below). Notice that the density 
can have intervals where it is zero and singular points where it is infinity. 

For an absolutely continuous distribution Fx(x), the Stieltjes integral formulas 
for probability, mean, variance, moments, etc., become just the usual Riemann 

X 
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integrals, because for them dFx(x) = fx(x) dx. For example, 

Pr{a <X:::: b} = 1b fx(x)dx, (27) 

and 

JL = JL(X) = /_: xfx(x)dx, a 2(X) = /_: (x- JL)2 fx(x)dx. (28) 

Concrete examples of these types of distributions will be provided in the re­
mainder of this chapter. Also, not surprisingly, there are distribution functions 
that are mixtures of discrete and absolutely continuous distribution functions. A 
more striking fact is the existence of continuous cumulative d.f.s of the "devil 's 
staircase" type, which are not absolutely continuous. We will discuss them briefly 
in Chapter 5. 

Calculation of tested means, especially using Mathematica, can sometimes be 
simplified. If F(x) is a cumulative d.f. concentrated on [0, oo) (i.e., F(O-) = 0), 
and the test function 1/f(x) is continuously differentiable, and either 1/f(O) = 0 or 
F(O-) = F(O), then 

I 1/f(x)F(dx) = 100 
(1 - F(x))l{f' (x) dx. (29) 

We just check this useful identity for an absolutely continuous cumulative d.f. 
F(x) with the density f(x). Then, since d(l - F(x))jdx = - f(x), integrating 
by parts we get 

I 1/f(x)F(dx) = 100 
1/f(x)f(x)dx = [-(1-F)l/f]o+ 100 

1/f'(x)(l-F(x))dx. 

Often, we speak generically of the probability distribution of a random experi­
mental quantity X (or, simply, the distribution of X), by which we mean either the 
cumulative d.f. Fx(x), or the discrete probabilities p; of values v; taken by X, or 
the probability density function fx(x), whichever is appropriate or handy in any 
given case. 

Inverse Distribution Function; Quantile Function. If a cumulative d.f. F (x) 
is strictly increasing, then there is obviously a function G satisfying G(F(u)) = 
u = F(G(u)). Function G is called the inverse function ofF and is denoted by 
F(-l). Similarly to the sample quantiles q(a) discussed in Section 2.2 for sample 
cumulative d.f.s, F- 1 (a) is called the a-th quantile of the distribution function F, 
and F- 1 is called the quantile function. Number F- 1 (1 /2) is called the median and 
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F-1(1/4), F-1(2/4), F-1(3/4) are called the .first, second, and third quartiles, 
respectively. For cumulative d.f.s that are not strictly increasing, one also defines 
a generalized inverse function (quantile) following the ideas explained in Section 
2.2, e.g, via the formula 

F-1(z) = max{F(x): F(x) ~ z}, (30) 

3.3 Uniform distributions, simulation of random quantities, 
the Monte Carlo method 

A random quantity U is said to have a continuous uniform distribution on the 
interval [a, b] if its density has the form 

fu(x)={b~a fora~x~b 
0 for x outside the interval [a, b]. 

There are two parameters a and b, a< b. The corresponding cumulative d.f. 

I 0 for x ~a; 
Fu(x) = ~=~ fora< x < b; 

1 forb~ x. 

A simple calculation shows that the mean 

and the variance 

a+b 
JL(U) = -2-, 

2 1 ib ( a+ b)2 (b- a)2 u (U) = -- x - -- dx = . 
b- a a 2 12 

(1) 

(2) 

(3) 

(4) 

In this case, the standard deviation u is simply 1 1 (2../3) times the size of the interval 
b - a; a good illustration of the intuitive meaning of the notion of variance. 

A random quantity U is said to have a discrete uniform distribution on values 
V1, ••• , VN if 

Pr{U = vt} = ... = Pr{U = VN} = 1/N. (5) 

The continuous uniform density and the corresponding cumulative d.f. are 
pictured in Fig. 3.3.1. 
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f(x) 

1/(b-a) ------------

a b X 

F(x) 

a b X 

FIGURE 3.3.1 
Uniform density with parameters a, b, and the corresponding cumulative d.f. 

The problem of generation of the simulated data with a prescribed probability 
distribution is of fundamental importance in any computer-aided study of random 
phenomena. We have already discussed the pseudorandom number generators 
which produce sequences of zeros and ones with (almost) identical distribution of 
frequencies of blocks of different (reasonable) length. Considering these blocks 
to be binary representations of numbers in the interval (0, 1), we thus obtain a 
way to generate data with the uniform distribution in that interval. As a matter 
of fact, this is a function that is explicitly provided in Mathematica via command 
Random[ ] . 

Mathematica Experiment 1. Uniformly Distributed Pseudorandom Numbers. 
In Experiments of Section 1 we have seen how to generate uniformly distributed 
pseudorandom integers in the discrete set { 1, 2, ... , n}. The command Random [ J 
generates a pseudorandom number between 0 and 1, Random [Real, { xmin, xmax 
}J produces a pseudorandom number between xmin and xmax. The UVW'DataRep' 
package command RegularHisto [ list, xmin, xmax, nx] produces a histogram 
of the data contained in the listofdata with nx bins between xmin and xmax. 

In[1]:: <<UVW'Datarep' 
In[2]:: T1:Table[Random[Real,{-N[Pi/2],N[Pi/2]}],{1000}] 
Out[2]: {1.45002, 0.429825, 0.417296, -1.0639, ... , 

0.92243, 0.0658026, -1.25003, 0.20874} 
In[3]:: RegularHisto[T1,-N[Pi/2],N[Pi/2], 10] 
Out[3]: -Graphics-
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Now, assume that we have generated a pseudorandom data set 

(6) 

approximately uniformly distributed in the unit interval (0, 1) and we want to 
produce a simulated data set with a given cumulative d.f. F(x). The idea of 
how to proceed is suggested by the discussion in Sections 2.2, 2.4, and 3.2 on 
quantile functions and their relationship with the cumulative distribution functions. 
Indeed, if p-1(u), u E (0, 1), denotes the (generalized) inverse of the cumulative 
distribution function F(x), then the transformed data set 

(7) 

will have the cumulative relative frequency distribution F(x). Indeed, 

#{i: Xi:::; x} = #{i: p-1(ui) :S x} = #{i: Ui :S F(x)} R:: F(x) 
n n n 

in view of the monotonicity of the cumulative distribution function F (x) and its 
inverse, and the uniform distribution on (0, 1) of the data Ut, ••. , un. 

The above observation provides an obvious algorithm for simulation random data 
with prescribed probability distribution and is implemented in Mathematica pack­
ages Statistics and uvw. It is also the basis of the so-called Monte-Carlo method 
of numerically calculating integrals over very complex and high-dimensional do­
mains. In practice, one can also replace the above simple algorithm with more 
sophisticated numerical methods that provide faster convergence of simulated data 
histograms to theoretical probability densities. 

The simulation of a sequence X 1, .•. , Xn of independent random experimental 
quantities can then be accomplished via the general: 
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Monte-Carlo Law: If Ut, ... , Un are independent uniformly distributed on 
[0, 1] random quantities, and ifF is a given cumulative d.f., then the random 
quantities 

are independent, each with the cumulative d.f. F. 

The Monte-Carlo Law is easily verified, say, for n = 1, as follows: Let x be an 
arbitrary real number. Then 

Fx(x) = Pr{X:;:: x} = Pr{F- 1(U):;:: x} 

= Pr {U :;:: F(x)} = F(x), 

since F is monotone (the third equality), and U is uniformly distributed on [0, 1] 
(the fourth equality). For n = 2, 3, ... , the claim is proved similarly by noticing 
that the independence of U1 and U2 implies the independence of F-1(Ut) and 
F-1(U2). 

Concrete examples of the above procedures will be given in the next few sections. 
Also, remember that in practical applications the independence can be simulated 
by the use of the Mathematica SeedRandom [ ] command, see Section 3.1. 

3.4 Bernoulli and binomial distributions 

The family of Bernoulli distributions describes discrete random quantities X 
with only two possible values: vo = 0 and VI = 1, appearing with probabilities 
and fx(1) = Pr{X = 1} = p and fx(O) = Pr{X = 0} = 1 - p. This can be 
written as a formula 

fx(v)={1-p, ifv=O; 
p, ifv=l. 

(1) 

The mean of the Bernoulli distribution is 

/L(X) = 0 · fx(O) + 1 · fx(l) = 0 · (1- p) +I· p = p, (2) 

and its variance 

u 2(X) = (0- p)2 • (1 - p) + (1 - p)2 · p = p(1 - p). (3) 

The family depends on only one parameter p, 0 :;:: p :;:: 1. If there is reason 
to suspect that neither 0 nor 1 are favored in the data, i.e., p = 1/2, then the 
distribution is called symmetric Bernoulli distribution. 



140 Chapter 3. Analytic Representation of Data 

Let us now perform the following experiment. Toss a fair coin (p = 1 /2) n 
times. The i-th toss is described by the symmetric Bernoulli random quantity Xi 
and the random quantities X 1, ... , Xn, are independent. Suppose that each time 
the coin comes up heads (Xi = 1) you win one dollar and you win nothing if it 
comes up tails (Xi = 0). Your total win after n tosses is a random quantity 

Sn = X1 + ... + Xn, (4) 

and we are interested in determining its probability distribution. 
For a small n, say n = 2, we clearly see that in two tosses there are four 

possible outcomes (XJ, X2) E {(0, 0), (0, 1), (1, 0), (1, 1)} and because of the 
coin's symmetry they are all equally probable with probability 114. Hence, the 
distribution of the sum s2 is easily determined: 

Pr{S2 = 0} = Pr{(X1, X2) = (0, 0)} = 1/4 

Pr{S2 = 1} = Pr{(XJ. X2) = (0, 1)} + Pr{(X1, X2) = (1, 0)} = 1/2 

Pr{S2 = 2} = Pr{(XJ, X2) = (1, 1)} = 1/4 

Of course, such a pedestrian approach will have to be adjusted if we are to solve 
our problem for larger ns. Before we approach it theoretically let us conduct the 
following. 

Mathematica Experiment 1. Repeated Bernoulli Experiments. Our basic ex­
periment consists of tossing the fair coin n = 7 times. Repeat this experiment 
independently N times. The raw outcome of the experiment is a sequence 

where each sample point Xi, i = 1, ... , N, has the structure of a ?-dimensional 
vector: 

I 2 7 xi ,xi , ... ,xi, 

where x/ s are either 0 or 1. By the Stability of Frequencies Law, we can approxi­
mate the distribution of S1 by the relative f.d. of 

Si = xl +xi+ ... +xJ, i = 1, 2, ... , N, 

which simply sum all your wins in each basic experiment. The possible values 
of Yi are clearly nonnegative integers from 0 to 7. We take this opportunity to 
introduce some simple Mathematica programming. Let us begin with N = 10 
repetitions of our basic 7-toss experiment. We use rn (repetition number) instead 
of N because the latter is a protected symbol in Mathematica. 
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In[1]:= <<Graphics'Graphics' 
In[2] := <<Statistics'DataManipulation' 
In[3]:= <<Statistics'DescriptiveStatistics' 
In[4] := <<Statistics'DiscreteDistributions' 
In[5]:= n=7 
Out[5]= 7 
In[6]:= rn=10 
Out[6]= 10 
In[7] := Do[ 

r7=Table[{O},{rn}]; 
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For[i=1, i<=rn, i++, r7[[i]]=Table [Random[Integer],{n}]] 
J 

In[8]:= r7 
Out [8] = {{1, 0, 0, 1, 1, 0, 1}, {1, 1, 0, 0, 1, 0, 0}, 

{0, 0, 1, 0, 0, 1, 0}, {0, 0, 1, 0, 1, 1, 0}, 
{0, 0, 1, 1, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 1}, 
{1, 1, 1, 1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1}, 
{1, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 1, 1, 1}} 

In[9]:= Do[ 
r7sum=Table[{O},{rn}]; 
For[i=1,i<=rn, i++, r7sum[[i]]=Apply[Plus,r7[[i]]]] 
J 

In [10] : = r7sum 
Out[10]= {5, 4, 5, 5, 6, 3, 4, 4, 1, 2} 
In[11]]:= freq7=Frequencies[r7sum] 
Out[11]= {{1, 1}, {1, 2}, {1, 3}, {3, 4}, {3, 5}, {1, 6}} 
In[12] := relfreq7=N[{Column [freq7,1]/rn,Column [freq7,2] }] 
Out[12]= {{0.1, 0.1, 0.1, 0.3, 0.3, 0.1}, {1., 2., 3., 4., 5., 6.}} 
In[13] := hist7=BarChart[Transpose[relfreq7]] 
Out[13]= -Graphics-

So, after 10 independent repetitions of our basic 7 -toss experiment we obtained 
a relative frequency d.f. which, however, does not show any regularities; nothing 
to write home about. Moreover, the possible values 0 and 7 have not appeared 
among our 10 repetitions at all. Obviously, to approximate the distribution of S1 
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well, to take advantage of the SFL, we need many more repetitions. Redoing the 
above Mathematica session with rn=1000 (of course, you can leave steps In[8] 
and In [10] out) we obtain the following much more symmetric relative frequency 
d.f. 

In[22] := relfreq7=N[{Column [freq7,1]/rn,Column [freq7,2] }] 
Out[22]= {{0.004, 0.054, 0.15, 0.3, 0.289, 0.154, 0.046, 0.003}, 

{0, 1., 2., 3., 4., 5., 6., 7.}} 
In[23]:= hist7=BarChart[Transpose[relfreq7]] 
Out[23]= -Graphics-

Now, let us try to discover analytically a formula for the probability distribution 
of the random quantity Sn defined in ( 4). The derivation will be based on the 
assumption that in each n-toss series, all the possible outcomes are equally likely. 
Since there are 2n strings of nOs and Is of length n, the probability of each 

1 
Pr (X I = Xt. .•. , Xn = Xn) = 2n , x; = 0 or 1. (5) 

Among all of these strings there are (~) strings which have exactly k 1 s, as that is 
the number of ways in which you can choose k sites out of n positions. This gives 
the probability of a string with exactly k 1 s to be 

Pr (Sn = k) = (:);n' k = 0, 1, 2, ... , n, (6) 

where 

(n) n! 
k = k!(n- k)! 

(7) 

is the binomial coefficient. 
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If the coin is biased, with the Bernoulli probability p of 1 appearing in each 
toss, then via a similar reasoning, the probability of winning k dollars in n tosses 
becomes 

(n) k n-k Pr (Sn = k) = b(k; n, p) = k P (1- p) , k=0,1,2, ... ,n. (8) 

Not surprisingly, the above probability distribution is called the binomial distribu­
tion. Because of the binomial formula (see Experiments, Exercises, and Projects), 
the above binomial probability distribution satisfies the normalization condition 

n 

Lb(k; n, p) = 1. (9) 
k=O 

Notice that the binomial distribution has two parameters: the Bernoulli probability 
p, 0 ~ p ~ I, and the integer parameter n. Sample points from the population 
with the binomial distribution b(k; n, p) can take values k = 0, 1, 2, ... , n with 
probabilities given by formula (8). 

The above reasoning can be summarized in the following. 

Binomial Principle. lfn binary experiments, i.e., each of them with two possible 
outcomes (success/failure), are performed independently, then the probability Pk 
of exactly k successes is 

(n) k n-k Pk = b(k; n, p) = k p (1- p) , k = 0, 1, 2, ... , n, 

where p is the probability of success in a single trial. 

The mean 1-L of the population with the binomial distribution b(k; n, p) is 

(10) 

Ln (n -1)1 
= np -------·----px-1(1 _ p)(n-1)-(x-1) = np 

x=l (x- l)!((n- 1)- (x- 1))! 

in view of the same binomial formula we used before. The formula (10) also 
immediately follows from the definition ( 4) of Sn as the sum of n Bernoulli random 
quantities, each with mean value p. Similarly, one obtains the sample variance 

(11) 
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Mathematica Experiment 1 Continued. Repeated Bernoulli Experiments. 
The package Statistics' DiscreteDistributions' contains the command Bino­
mialDistribution[n,p]. We will compare it with the experimental data obtained 
earlier. 

In[24]:= bdist7=Binomia1Distribution[7,p] 
Out[24]= Binomia1Distribution[7, 0.5] 
In[25]:= tablebdist7=N[Table[PDF[bdist7, x], {x,0,7}], 3] 
Out[25]= {0.00781, 0.0547, 0.164, 0.273, 0.273, 0.164, 0.0547, 

0.00781} 
In[26]:= relfreq7 
Out[26]= {{0.004, 0.054, 0.15, 0.3, 0.289, 0.154, 0.046, 0.003}, 

{0, 1., 2., 3., 4., 5., 6., 7.}} 
In[27] := plotbdist7=ListPlot[tablebdist7, PlotStyle -> 

{GrayLevel[O],PointSize[0.03]}] 
Out[27]= -Graphics-
In[28] := Show[hist7,plotbdist7] 
Out[28]= Graphics-

Means, variances, quantiles, and other parameters can be readly evaluated. 
The command Random [dist] produces a pseudorandom number with probabil­
ity distribution dist]. A similar command RSDiscreteDistribution[freq, n] 
in uvw' DiscSamp' produces a pseudorandom sample of size n with prescribed fre­
quencies freq. 

In[29]:= Mean[bdist7] 
Out[29]= 3.5 
In[30] := Variance[bdist7] 
Out [30] = 1 . 75 
In[31] := Quantile[bdist7,0.75] 
Out[31]= 4 
In[32]:= Table[Random[bdist7],{50}] 
Out[32]= {1, 3, 4, 4, 4, 4, 3, 5, 4, 2, 2, 6, 5, 3, 3, 5, 6, 4, 7, 

6, 1, 1, 5, 4, 3, 3, 5, 3, 3, 5, 4, 5, 4, 4, 2, 2, 2, 2, 
5' 2' 5' 4. 5' 3' 1, 4' 6' 1' 5. 3} 
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3.5 Rescaling probabilities: Poisson approximation 
If parameter n in the binomial distribution b(k; n, p) increases to infinity, then 

both the mean IL = np ~ oo, and the variance u 2 = np(l - p) ~ oo (see, 
(3.4.10-11)). The distribution itself sort-of escapes to infinity while getting flatter 
and more and more spread out. 

Mathematica Experiment 1. From Binomial to Poisson Distribution. We will 
plot the values of binomial probabilities b(k; n, p), k = 0, 1, ... , n, for three 
values n = 7, 15, 29, and the Bernoulli probability p = 0.4. The latter choice 
makes the graphs asymmetric. 

In[1]:= <<Graphics'MultipleListPlot' 
In[2]:= <<Statistics'DiscreteDistributions' 
In[3] := p=0.4 
Out[3]= 0.4 
In[4]:= bdist7=Binomia1Distribution[7,p] 
Out[4]= Binomia1Distribution[7, 0.4] 
In[5]:= tablebdist7= Table[PDF[bdist7, x], {x,0,7}] 
Out[5]= {0.0279936, 0.130637, 0.261274, 0.290304, 0.193536, 

0.0774144, 0.0172032, 0.0016384} 
In[6]:= bdist15 =Binomia1Distribution[15,p] 
Out[6]= Binomia1Distribution[15, 0.4] 
In[?]:= tablebdist15= Table[PDF[bdist15, x], {x,0,15}] 
Out[?]= {0.000470185, 0.00470185, 0.021942, 0.0633879, 0.126776, 

0.185938, 0.206598, 0.177084, 0.118056, 0.0612141, 
0.0244856, 0.00741989, 0.00164886, 0.000253672, 
0.0000241592, 1.07374 .10~ (-6) } 

In [8] : = bdist29 = ........ . 
In[10] := MultipleListPlot[tablebdist7, tablebdist15, tablebdist29, 

PlotJoined ->True] 
Out[10]= -Graphics-

25 30 
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To remedy this "escape to infinity" problem we need to keep the mean bounded 
and the easiest way to accomplish this is by rescaling the Bernoulli probability 

1 
p=­

n 
(1) 

so that, by(3.4.10), themean#J.n oftherescaledbinomialdistributionsb(x; n, 11n), n = 
1, 2, ... , is 

1 
#Ln = n ·- = 1 

n 
(2) 

for any n = 1, 2, .... Also, it so happens that, by (3.4.11), the variance of so 
rescaled binomial distributions 

a = n- 1-- -+ 1 2 1 ( 1) 
n n n (3) 

as n -+ oo. So, as n grows, the rescaled binomial distributions b(x; n, 11n), n = 
1, 2, ... , stabilize their means and variances at 1. 

In terms of our original n-coin toss experiment, the above rescaling operation 
accomplished the following. The probability of 1$ win in each toss was reduced 
to 1 1 n so that in a series of n tosses the mean win remains constant at 1$. 

So, we managed to stabilize the means and variances of distributions b(x; n, 1 In), 
n = 1, 2, ... , but what about the probabilities themselves? 

Mathematica Experiment 1 Continued. From Binomial to Poisson Distribution. 
We will plot the probabilities of the rescaled binomial distribution b(x; n, 11n) for 
increasing values n = 3, 5, 10, 20. 

In[l]:= <<Graphics'Graphics' 
In[2]:= <<Statistics'DiscreteDistributions' 
In[3] := tablebdist[n_]:= N[Table[ {x, 

PDF[Binomia1Distribution[n,1/n], x]}, {x,O,Min[n,lO]}] ] 
In[4]:= DisplayTogether[ 

ListPlot[tablebdist[3], PlotStyle -> PointSize[0.025]], 
ListPlot[tablebdist[5], PlotStyle -> PointSize[0.02]], 
ListPlot[tablebdist[lO], PlotStyle -> PointSize[0.015]], 
ListPlot[tablebdist[20], PlotStyle -> PointSize[0.01]] 
] 

Out[4]= -Graphics-
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Why the domain of x was restricted to min(n, 10) is clear from the pictures; for x 
larger than 10 the values are practically zero. But the trend is clear: as n increases 
the probabilities b(x; n, 1/n) themselves seem to stabilize. 

So, it is not surprising to see the analytic proof of the convergence discovered 
experimentally above. For each fixed k, 0 ::::; k ::::; n, 

n' ( 1 )k ( 1 )n-k b(k; n, 1/n) = · - 1 - -
k!(n- k)! n n 

= n(n - 1) ... (n - k + 1) ( 1 _ ~)n-k 
k!nk n 

= 1(1- 1/n) ... (1- (k- 1)/n)) ( 1 _ ~)n-k 
k! n 

As n ~ oo, the numerator in the last expression clearly goes to 1. On the other 
hand, in view of the standard calculus formula limx--.00 (1 + 1/x)x = e, 

( 1)n-k [( 1)n] ( 1)-k 1 - ;; = 1 - ;; 1 - ;; ~ e-1 . 1. 

Therefore, as n ~ oo, for any k = 0, 1, 2, ... , 

-1 1 
b(k; n, 1/n) ~ e k!. 

(4) 

(5) 

The limit distribution is called the Poisson distribution (with parameter 1). The 
possible values of a Poisson random quantity X (with parameter 1) are all nonneg-
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ative integers k = 0, 1, 2, 3, ... , taken with probabilities 

-1 1 
Pr{X = k} = p(k; 1) = e k!' k = 0, 1, 2, .... 

Clearly, formula (3) defines a probability distribution as 

00 001 

LP(k; 1) = e-1 L k! = 1. 
k=O k=O 

(6) 

(7) 

Mathematica Experiment 1 Continued. From Binomial to Poisson Distribution. 
To illustrate the above approximation of the binomial distribution b(x; n, 1/n) for 
large n, by the Poisson distribution p(x; 1) let us compare their numerical values. 

In[1]:= <<Graphics'Graphics' 
In[2]:= <<Statistics'DiscreteDistributions' 
In[3]:= tablebdist100= N[Table[ 

{PDF[Binomia1Distribution[100,1/100],x], x},{x,0,6}], 3] 
Out[3]= {{0.366, 0},{0.37, 1.}, {0.185, 2.}, {0.061, 3.}, 

{0.0149, 4.}, {0.0029, 5.}, {0.000463, 6.}} 
In[4]:= tablepdist = N[Table[ 

{PDF[PoissonDistribution[1] ,x], x }, {x,0,6}], 3] 
Out[4]= {{0.368, 0}, {0.368, 1.}, {0.184, 2.}, {0.0613, 3.}, 

{0.0153, 4.}, {0.00307, 5.}, {0.000511, 6.}} 
In[5] := t= N[Table[{x+1, 

PDF[Binomia1Distribution[100,1/100],x ]}, {x, 0,6}],3] 
Out[5]= {{1., 0.366}, {2., 0.37}, {3., 0.185}, {4., 0.061}, 

{5., 0.0149}, {6., 0.0029}, {7., 0.000463}} 
In[6]:= DisplayTogether[ ListPlot[t, 

PlotStyle->PointSize[0.03]], BarChart[tablepdist] 
Out[6]= -Graphics-
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The above analytical arguments and experiments can be repeated (see Experi­
ments, Exercises, and Projects) with the rescaling condition (1) replaced by a more 
general condition 

IL 
p=-. 

n 
(8) 

where IL > 0 is an arbitrary constant. As a result, as n ~ oo, for any k = 
0, 1, 2, ...• 

(9) 

A random quantity X with this limit probability distribution is called the Poisson 
random quantity with parameter IL· and Pr {X = k} = p(k; /L), for any k = 
0, 1, 2, .... 

Mathematica Experiment 2. Poisson Distributions. The graphs of Poisson 
probability distributions for parameter values IL = 0.5, 1, 3 are shown below. The 
larger dots correspond to the larger values of IL· 

ln[1]:= <<Graphics'Graphics' 
ln[2]:= <<Statistics'DiscreteDistributions' 
ln[3] := DisplayTogether[ 

ListPlot[N[Table[ {x,PDF[PoissonDistribution[l],x] }, 
{x,0,7}],3 ], PlotStyle->PointSize[0.0175] ], 
ListPlot[ N[Table[ {x,PDF[PoissonDistribution[0.5],x] }, 
{x,0,7}],3 ], PlotStyle->PointSize[0.01] ], 
ListPlot[ N[Table[ {x,PDF[PqissonDistribution[ 3] ,x] }, 
{x,0,7}],3 ], PlotStyle->PointSize[0.025] ] 
] 

Out[3]= -Graphics-
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Since the probability distribution p(k; I.L) of a Poisson random quantity X is the 
limit of binomial distributions b(x; n, ILfn) with means equal top · (I.L/n) = IL 
and variances n(IL/n)(1 - (I.L/n)) converging toIL one would suspect that it itself 



150 Chapter 3. Analytic Representation of Data 

has the mean and variance equal to JL. This is indeed the case, and can be verified 
by a direct calculation: 

00 00 k 

JL(X) = Lkp(k; JL) =e-lL Lk~! 
k=O k=l 

00 k-1 
-JL " IL = e IL ~ ...,.,(k'--_----:-1 )-:-! = IL • 

k=l 

00 

cr2(X) = L k2 p(k; JL) - IL2 

k=O 

So, the parameter IL represent both the mean and the variance of the Poisson 
distribution. 

The Poisson distribution is often said to model rare events because it approx­
imates the binomial distribution with vanishingly small Bernoulli probability of 
success p. 

Other common discrete distributions. Introduced in the preceding sections, 
Bernoulli, binomial, and Poisson distributions are but a few examples of the large 
supply of analytically expressible probability distributions f (k) of discrete random 
quantities which can take integer values, and often appear in applications. The only 
requirements for f(k)s is that 

f(k) ~ 0 for all k, (10) 

and that 

L:t<k) = 1. (11) 

all k 
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In the remainder of this section we will provide additional examples of discrete 
probability distributions, indicating the type of physical situations in which they 
arise. 

Example 3.5.1 Geometric Distribution. 
In a series of independently repeated Bernoulli trials, the random quantity in which 
we are interested is the number k of trials until the first success, that is until the 
first 1 appears. This random quantity takes values k = 1, 2, ... , with probabilities 

f(k; p) = (1 - p)k-1 p, (12) 

where p is the probability of success in a single Bernoulli trial. Formula (12) 
reflects that fact that if it took k trials to achieve the first success, then this first 
success had to be preceded by k- 1 failures, each occurring with probability 1 - p. 
Clearly, formula (12) defines a probability distribution as 

00 00 

"'f(k; p) = "'p(l - Pl-1 = p = 1. 
~ ~ 1- (1- p) 
k=1 k=1 

Example 3.5.2 Negative Binomial Distribution. 
In a series of independently repeated Bernoulli trials, the random quantity we are 
interested in is the number of trials until a total of r successes are accumulated. 
The possible values of this random quantity are k = r, r + 1, r + 2, ... , and they 
are taken with corresponding 

f(k; r, p) = pr(l- Pl-r. (k-1) 
r-1 

Example 3.5.3 Hypergeometric Distribution. 
Suppose that a sample of size n is to be randomly chosen (without replacements) 
from a collection of N items, of which K are classified as defective and N - K as 
good. We are interested in the random quantity representing the number k of good 
items in the sample. This random quantity can take values 0, 1, ... , min(n, K) 
with probability distribution 

f(k . K N) - (!H~=f) 
'n, ' - (~) . 

Example 3.5.4 Discrete Pareto Distribution. 
This distribution often occurs in economic applications. The possible values of the 
corresponding random quantity are integers k = 1, 2, ... , and they are taken with 
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probabilities 
k-ot 

f(k; a) = "oo -a' 
L...n=l n 

where a is an arbitrary parameter greater than 1. 

3.6 Stability of Fluctuations Law: Gaussian approximation 

In Chapter 2 we considered the effects of changing scale and location of data on 
their compressed characteristics such as the mean and variance. We will pursue 
these ideas here, initially, in application to the binomial data, to obtain another 
universal approximation for the binomial distributions b(x; n, p) for large n. But 
the same approach will yield a much more general Stability of Fluctuations Law. 

Consider, as in the preceding two sections, random quantities X 1, ... , Xn, de­
scribing a series of n independent Bernoulli trials with Pr {X; = 1} = p = 1 -
Pr {X; = 0}, andthecorrespondingbinomialrandomquantity Sn = X1 + .. . +Xn. 

In this section we will take a look at the binomial random quantity which is both 
shifted by f3 and rescaled at the rate a, i.e., at the new random quantity 

(1) 

If you liked our gambling interpretation of Sn, i.e., the total winnings in the game 
of n coin tosses which pays $1 each time 1 (heads) come up and $0 if 0 comes 
up, you will immediately see that the formula (1) just changes the payout scheme 
in the same game. Indeed, the second part of (1) indicates that in ann-toss game 
played according to the new scheme, the payout is a(1 + {3/n) if 1 comes up and 
af3 In if 0 comes up. For example, with n = 20, f3 = -10, a = 4, the payout is 
$2 if 1 comes up and $-2 ifO comes up. 

The probability distribution of the random quantity Tn is easy to determine. 
Since the possible values of Sn were 0, 1, 2, ... , n, the possible values of Tn are 

a(k + {3), k = 0, 1, 2, ... , n, (2) 

and the corresponding probabilities are binomial, i.e., 

Pr {Tn = a(k + {3)} = b(k; n, p), k=0,1,2, ... ,n. (3) 
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Knowing the distribution of Tn permits, in tum, an immediate determination of its 
mean and variance: 

n 

JL(Tn) = L a(k + fJ)b(k; n, p) = a(np + fJ), (4) 

k=O 

and 
(5) 

The above calculation was facilitated by remembering that the mean and variance 
of binomial Sn is np and np(l- p), respectively. 

Now, if you recall our past struggles to stabilize the mean and variance of the 
binomial distribution, an obvious opportunity opens up. If we select 

fJ = -np, 
1 

a= , 
Jnp(1- p) 

(6) 

that is, if we consider 
Sn -np 

Yn = ' 
Jnp(1- p) 

(7) 

then its mean is going to be 0 and its variance 1: 

JL(Yn) = 0, (8) 

As before, we are curious if this rock -solid stability of means and variances of Yn s 
does anything to stabilize the behavior of the distributions of Yn s themselves. The 
interpretation of the random quantity Yn is obviously as that of fluctuations of 

Sn - JL(Sn) = Sn - np (9) 

of the binomial random quantities Sn about their means, resized by their natural 
scale, i.e., their standard deviation a(Sn) = Jnp(1 - p). 

Mathematica Experiment 1. Stability of Fluctuations Law. We will use the 
tools developed in Mathematica Experiment 3.4.1 related to repeated Bernoulli 
experiments to observe histograms of Yn as n increases. We will take p = 1/2 and 
produce rn=1000 repetitions of each series of n = 3, 5, 10, and 20 tosses. 

In[1]:= <<Graphics'Graphics' 
In[2] := <<Statistics'DataManipulation' 
In[3]:= <<Statistics'DescriptiveStatistics' 
In[4]:= n=3 
Out[4]= 3 
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In[5]:= rn=1000 
Out[5]= 1000 
In[6] :=Do[ r3=Table[{O},{rn}]; 

For[i=1, i<=rn, i++, r3[[i]]=Table [Random[Integer], 
{n}]]] 

In[7]:= r3 
Out[7]= {{1, 0, 0}, {1, 1, 0}, { 0, 0, 0}, 

{1, 1, 1}} 
In[8]:= Do[ r3sum=Table[{O},{rn}]; 

For[i=1,i<=rn, i++, r3sum[[i]]=Apply[Plus, 
r3 [ [i]]]] ] 

In[9]:= r3sum 
Out[9]= {1, 2, ... , 2, 0, 3} 
In[10] := freq3=Frequencies[r3sum] 
Out[10]= {{122, 0}, {380, 1}, {377, 2}, {121, 3}} 
In[11]:= relfreq3=N[{Column [freq3,1]/rn, Column [freq3,2] }] 
Out[11]= {{0.122, 0.38, 0.377, 0.121}, {0.,1., 2., 3.}} 
In[12] := relfreq3SFL={Table[relfreq3[[1]] [[i]],{i,n+1}], 

Table[((relfreq3[[2]] [[i]]-n*0.5)/N[Sqrt[n*0.25]]), 
{i,n+1}]} 

Out[12]= {{0.122, 0.38, 0.377, 0.121}, 
{-1.73205, -0.57735, 0.57735, 1.73205}} 

In[13] := hist3SFL=BarChart[Transpose[relfreq3SFL]] 
Out[13]= -Graphics-

Repeating the above experiment for n = 5, 10, 20, and putting the resulting 
histograms together gives the pictures shown below. You will notice that, e.g., 
for n = 20, not all 21 possible values of T2o appeared in our repeated sampling 
although the number of repetitions was large; their probability decays very fast 
when we move away from the mean value 0. For example, it follows from formula 
(3) that the probability of extreme values of T2o: 

Pr {T2o = ±4.47} = b(O; 20, 0.5) = Pr {X 1 = 0, ... , X2o = 0} 

= (1/2)20 = 9.53674. w-7 
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is very small, and even in a thousand repetitions these values are unlikely to appear. 
In this context, one has to pay attention to the term n+1 in line In [12] : = of the 
above code, and adjust it as necessary. 

In[34] := Show[ GraphicsArray[{{hist3SFL, hist5SFL}, 
{hist10SFL, hist20SFL}}]] 

Out[34]= - GraphicsArray-

The above experiments suggest the existence, as n -+ oo, of the limiting prob­
ability distribution of the random quantities Tn, which is bell shaped, continuous, 
and almost totally concentrated on the interval ( -3.5, 3.5). Armed with this intu­
ition we will find its shape analytically. 

To avoid possible high fluctuations in the histograms, we will analyze the limit 
behavior of the cumulative d.f. Fn (x) of the random quantity Yn. The summation 
[remember formula (2.5.6)] contained in the definition of the cumulative d.f. tends 
to smooth it out and make it easier to deal with analytically than the histograms 
themselves. So, in view of (3) and (7) 

{ Sn- n/2 } 
Fn(Z) = Pr {Yn ::S z} = Pr Jn/2 ::S Z 

=Pr {Sn :::=: (zvfn+n)/2} 

By Stirling's formula 
(10) 
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where"" means that the ratio of the two quantities approaches 1 as n -+ oo. Hence, 
the above cumulative d.f. 

(z../ii+n)/2 1 2 [ 1 (2k- n)2] 
Fn(Z)"" L ----exp -- --

k=O ..(iii ..(n 2 ..(n 

which we recognize as the Riemann sum approximation the integral 

Thus, as n -+ oo, 

1< 1 
r,:c exp( -x2 /2) dx. 

-..fo v27( 

1< 1 
Fn(Z) ~ cl>(z) = r,:c exp( -x2 /2) dx. 

-oo v27( 

Formula (11) immediately gives the limit density as 

1 
t/>(z) = r,:c exp( -x2 /2). 

v27( 

(11) 

(12) 

The continuous cumulative d.f. cl>(z) is called the standard Gaussian (or, normal) 
cumulative d.j., and t/>(z) is called the standard Gaussian (normal) probability 
density function. 

Mathematica Experiment 1 Continued. Stability of Fluctuations Law. Let us 
compare the above theoretical Gaussian limit distribution (both the density and 
the cumulative d.f.) with the corresponding objects for the rescaled and shifted 
experimental binomial random quantities f2o- Note that the bar charts used in the 
first part are not suitable for the comparison since (for esthetic reasons) they have 
gaps between vertical bars, so that their areas are distorted. For that reason we will 
use a RegularHisto command provided in the UVW'DataRep' package. 

In[34]:= <<UVW'DataRep' 
In[35]:= r20sumSFL=Table[((r20sum[[i]]-n*0.5)/N[Sqrt[n*0.25]]), 

{i,1000}]; 
In[36]:= RegHisto=RegularHisto[r20sumSFL,-3.2,3.2,15] 
Out[36]= -Graphics-
ln[37]:= GaussPDF[x_]:=(1/Sqrt[2Pi]) Exp[-x~2/2] 

In[38]:= Show[RegHisto, GaussPDF[x],{x,-3.2,3.2}] 
Out[38]= -Graphics-
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-3 

In[39]:= Fr20=Transpose[relfreq20] 
Out[39]= {{0.001, -3.1305}, {0.003, -2.68328}, {0.011, -2.23607}, 

{0.031, -1.78885}, {0.068, -1.34164}, {0.121, -0.894427}, 
{0.158, -0.447214}, {0.167, 0.}, {0.184, 0.447214}, 
{0.122, 0.894427}, {0.067, 1.34164}, {0.042, 1.78885}, 
{0.019, 2.23607}, {0.005, 2.68328}, {0.001, 3.1305}} 

In[40]:= H[x_]:=If[x<0,0,1] 
In[41]:= CumDiFun[x_]:= Sum[F20[[i]] [[1]]* 

H[x-F20[[i]]([2]] ],{i,1,Length[F20]}] 
In[42]:= GaussCDF[y_]:=(1/Sqrt[2Pi]) 

Nintegrate[Exp[-x-2/2],{x,-Infinity,y}] 
In[43]:= Plot[CumDiFun[x], GaussCDF[x], {x, -3.2, 3.2}] 
Out[44]= -Graphics-

-3 3 

A random quantity Z with standard Gaussian probability d. f. ell (z) is called the 
standard Gaussian (or normal) random quantity. Since its distribution is a limit 
of distributions of the random quantities Yn which have zero means and variances 
equal to one, one would suspect that 

/L(Z) = 0, (13) 
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This can be verified directly by integration by parts and use of the normalization 
condition (14) below; see also the approach through the gamma function discussed 
later in this chapter. 

Although the indefinite integral ( 11) cannot be expressed in terms of elementary 
functions, we still can check the normalization condition 

= - e-<t +s >12dt ds 1 100 !00 2 2 

27l' -00 -00 

(14) 

by changing to the polar coordinate system. 
By changing the scale of a standard Gaussian random quantity Z by a and 

shifting its location by JL, we obtain the whole family of random quantities 

ZJ.£,a2 = aZ + JL (15) 

with absolutely continuous cumulative d.f. 

= --e-x 12 dx l (Z-J.£)/a 1 2 

-oo ..(iii 

l z 1 [(x- JL)2] = r,::;---;; exp ,.,_2 dx, 
-oo -v 27l'a2 L.U 

(16) 

and the densities 

2 1 [<z-JL)2] 
cp(z; JL, a ) = ../27ra2 exp 2a2 . (17) 

Clearly, in view of (13) and (15), 

(18) 
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and the random quantity ZJ.L,u2• or the corresponding cumulative d.f. <l>(z; f.L, u 2) 

and the probability d.f. f/J(z; f.L, u 2), are called Gaussian (normal) with mean f.L 
and variance u 2, or, compactly, N(f.L, u 2) random quantities, cumulative d.f.s, 
and densities. 

Mathematica Experiment 2. Gaussian Densities. The Mathematica package 
Statistics' ContinuousDistributions' contains the commands: 
PDF[NormalDistribution [mu,sigma], x] which provides probability d.f. of 
N(f.L, u 2) atx, CDF[NormalDistribution [mu,sigma], x] which provides cumu­
lative d.f. of N (f.L, u 2) atx, and Random [NormalDistribution [mu, sigma]] which 
produces a pseudorandom number with N(f.L, u 2) distribution. In the process we 
will also see how one can place text within Mathematica graphics at any location 
prescribed by the coordinates of text's center. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= <<UVW'DataRep' 
In[3] := phi[x_, mu_, sigma_] := 

PDF[NormalDistribution[mu, sigma], x] 
In[4] := p1 = Plot[{phi[x, 0, 1], phi[x, -2, 1], 

phi[x, 0, 2.5], phi[x, 3, 0.6]}, 
{x, -6.5 ,6.5}, PlotRange -> {0, 0.7}, 
AspectRatio -> 0.5]; 
p2 = Graphics[Text["N(0,1)", {1.2, 0.42}]]; 
p3 = Graphics[Text["N(-2,1)", {-3, 0.42}]]; 
p4 = Graphics[Text["N(O, 2.5)", {-5.2, 0.08}]]; 
p5 = Graphics[Text["N(3, 0.6)", {5, 0.5}]]; 
Show[p1,p2,p3,p4,p5] 

Out[4]= -Graphics-

0.6 

0.5 

~ 4 ~ 2 4 6 

To simulate, say, an N (3, (0.6)2) random quantity and to compare the histogram 
of the simulated data with the density f/J(x, 3, (0.6)2) we will use the command 
Histogram[data, listofbounds] of the UVW'DataRep' package, which permits 
selection of bin locations to be matched to where the data are concentrated. Ideally, 
all the bins should contain the same amount of data points. 



160 Chapter 3. Analytic Representation of Data 

In[5]:= nd=Norma1Distribution[3,0.6] 
Out[5]= Norma1Distribution[3, 0.6] 
In[6]:= tr=N[Table[Random[nd],{1000}],3] 
Out[6]= {2.19, 3.72, ... , 2.29, 2.13, 3.28} 
In[7]:= ph= Plot[PDF[Norma1Distribution[3, 0.6], x], {x,0,5}]; 

lb = {1, 2, 2.5, 2.9, 3.1, 3.5, 4, 5}; 
hist = Histogram[tr, lb]; Show[ph, hist] 

Out[7]= -Graphics-
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It turns out that the Gaussian limit behavior (or the Gaussian approximation 
if you will) is not restricted to rescaled and shifted sums of Bernoulli random 
quantities, or even to discrete random variables. 

Mathematica Experiment 1 Continued. Stability of Fluctuations Law. Consider 
independent random quantities X 1, .•. , Xn, uniformly distributed on the interval 
[0,1] with the density given by the formula (3.3.1 ). Its mean and variance, according 
to the formulas (3.3-4) are, respectively, 1/2 and 1112. Therefore, the random 
quantities 

X1 + ... +Xn -n/2 
y; - ----==,----'--
n- ../n/12 

have means 0 and variance 1. To make their simulation and comparison with the 
N(O, 1) probability d.f. easier we will use the specially written command Cen­
tralLimit [ listofdata, mu, sigma, n] of the UVW'DataRep' package which 
takes consecutive groups of n data in listofdata. Then the sum of each group 
is centered by n •mu and then divided by Sqrt [n] •sigma. The results are repre­
sented on a regular histogram. In the mathematical literature, the name Central 
Limit Theorem is used for the Stability of Fluctuations Law (see Chapter 5). 

In[1]:= <<UVW'DataRep' 
In[2]:= unidata= N[Table[Random[],{2000}],2] 
Out[2]= {0.15, 0.76, 0.68, ... ,0.18, 0.18, 0.58} 
In[3]:= CentralLimit[unidata, 0.5, N[Sqrt[(1/12)]], 20] 
Out[3]= -Graphics-
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-3 3 

The above arguments can be rephrased in the form of a general 

StabilityofFiuctuationsLaw.Iftherandomquantities Xn =(XI, X2, ... , Xn) 
represent outcomes ofn repeated independent random experiments, each with mean 
J.L and variance u 2, then for large n, the cumulative p.d. of sample averages: 

A X X1+X2+ ... +Xn 
V ( n) = , 

n 

suitably centered and rescaled, is well approximated by the N(O, 1) cumulative 
df. <l>(z). More precisely,for each real number z the cumulative df. 

asn ~ oo. 

Obviously, the Stability of Fluctuations Law gives an approximate probability 
distributions of fluctuations of sample averages around their theoretical means. It 
will be given a more formal treatment, with precise assumptions, in Chapter 5, 
where it will become the so-called Central Limit Theorem. 

Note that the Gaussian densities f/J(z; J.L, u 2) are symmetric in z about the mean 
J.L, positive everywhere, and that the probability that the Gaussian random quantity 
Z = ZJL,u2 takes values far away from the mean 1-L is very small. Indeed, measured 
in terms of the natural scale parameter u, the probability of deviation from 1-L by 
more than au goes to zero very fast as a ~ oo: 

100 1 2 
Pr {IZ- ILl > au} = 2(1 - <l>(a; 0, 1)) = 2 r-ce-z 12 dz 

a -v2rr 

2 1oo Z -z2/2 d 2 -a2/2 < -- -e z= --e 
- .j2ii a a .j2ii a 
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2 = -l/J(a; 0, 1) (19) 
a 

This rate is much faster than the rate a-2 predicted by the crude but general Cheby­
shev's inequality: 

f lx- J.LI2 
Pr{IX- J.LI > au(X)} ~ 2 2 2 dFx(x) 

~>1 au (X) 
au (X) 

!00 lx - J.LI 2 1 
~ 2 2 ( dFx(x) = 2 . 

-oo a u X) a 
(20) 

Mathematica Experiment 2 Continued. Gaussian Densities. We will compare 
the exact values of Pr {I Z - J.L I > au} with the estimates given by (19) and (20). 
Initially, a = 3, that is, we seek the probability that the Gaussian random quantity 
deviates from its mean J.L by more than 3u. 

ln[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= nd=Norma1Distribution[0,1] 
Out[2]= Norma1Distribution[0,1] 
In[3]:= 2(1-CDF[nd, 3]) 
Out[3]= 0.0026998 
ln[4]:= (2/3)PDF[nd, 3] 
Out[4]= 0.00295457 
In[5]:= N[1/(3~2)] 
Out[5]= 0.111111 

So, the true value is fairly close to the estimate (19), while Chebyshev's estimate 
(20) is not very accurate. For a = 4, the analogous numbers are 0.0000633, 
0.0000892, 0.0625. 

The values of the N(O, 1) quantile function ct>-1 (a) that can be obtained using 
the Statistics' ContinuousDistributions' package are schematically pictured 
in Fig. 3.6.1. 

It satisfies the symmetry condition ct>- 1(1 -a) = -ct>-1 (a) so that it suffices 
to know its values only for, say, 1/2 ~a ~ 1. Also, traditionally, one often uses 
(see Chapters 7 through 9) the complementary normal upper tail quantile function 

Za = ct>- 1 (1 -a). (21) 

Graphically, the tail quantile za marks the point so that the area under the graph of 
the standard normal density l/J(z; 0, 1) to the right of Za is exactly equal to a (see 
Fig. 3.6.2). 
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cjl(z) 

z 

FIGURE 3.6.1 

The standard normal cumulative distribution a = <f> (z) and its inverse z = <f> -I (a) 
(quantile function). 

FIGURE 3.6.2 

The upper tail quantile Za marks the point so that the area under the graph of the 
standard normal density t/J(z; 0, 1) to the right ofza is exactly equal to a. 

3.7 How to estimate p in Bernoulli experiments 

In this section we provide a simple application of the Stability of Fluctuations 
Law to statistical inference concerning parameter p in the Bernoulli distributions. 
In general, it is the goal of statistics to retrieve properties of unknown distributions 
on the basis of experimental data; the subject will be further developed in Chapter 
7 through 9. 

In the case of a sequence x = (XI, ... , Xn) of outcomes of independently re­
peated experiments X n = (X 1, ... , Xn) with two possible outcomes, e.g., success 
or failure, the unknown distribution is in the class of Bernoulli distributions which 
are parametrized by the single parameter p E [0, 1 ]-the probability of success in 
a single trial. Its value is unknown and our goals are 

1) To estimate the value of p. 
2) To test the hypothesis whether p belongs to a certain subset Hoof [0, 1]. 
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By the Law of Large Numbers of Section 3.1, the sample average 

A (X ) _ X 1 + ... + Xn _ A 

V n - -P 
n 

(1) 

is a consistent estimator for p, i.e., p approaches, for large n, the correct value 
of p. Note that the estimator p is a random quantity depending on a particular 
realization a; = (x1, ... , Xn) of outcomes of independently repeated experiments 
Xn = (Xt, ... , Xn). Thenotationpforanestimatorofaparameter pis traditional 
in statistics. 

Also notice that the random quantity pis an unbiased estimator for p, which 
means that the theoretical mean of the estimator p of the parameter p is equal to 
p itself: 

( A) (X 1 + ... + Xn) f.L p = f.L = p. 
n 

(2) 

We can summarize the above discussion as follows: In independently repeated 
Bernoulli trials, the sample mean x is a consistent and unbiased estimator of the 
probability p of success. 

The random quantity n p = Sn has a binomial b(k; n, p) probability d.f., see Sec­
tion 3.5. Thus, we can calculate the probability that the estimator p approximates 
the parameter p with accuracy better than, say, a: 

Pr{lp- pi~ a}= Pr {n(p- a)~ np ~ n(p +a)} 

= Pr{n(p -a)~ Sn ~ n(p+a)} 

(3) 

For any selected accuracy level a > 0, if the number n of repetitions is large, the 
probability (3) is close to 1, say, 1 -a, with small a. This is a side effect of the 
Stability of Fluctuations Law and Chebyshev's type estimates (3.6.19-20); see also 
the Weak Law of Large Numbers of Chapter 6. 

The surprising main consequence of the Stability of Fluctuations Law is that 
given the accuracy level a, the probability a (or, conversely, given the probability 
a, the accuracy level a) can be chosen (almost) independently of the underlying 
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Bernoulli distribution, that is unknown value of parameter p. Indeed, for large n, 

Pr {lp- pi ~a} = Pr {I~ t. Xi -PI ~a} 
{ ,.fo a,.fo } 

= Pr .jp(l- p)IAv(Xn)- PI~ .jp(1 - p) 

a,fn 

~ f Jp(l-p) 1 -u2 /2 d 
~ --e u. 

- a,fn ..(iii 
Jp(l-p) 

(4) 

Now, fix a and choose a depending on p, so that 

Zaf2 = .jp(l _ p), 
a,.fo 

(5) 

where Zaf2 is the 1 - a /2-quantile of the N (0, 1) distribution, that is 

1-a = --e-T du. ! Za/2 1 u2 

-za/2 ./iii 
(6) 

Then we can rewrite ( 4) in the form 

A { ..;n A } Pr {lp- PI ~a} = Pr IP- PI ~ Zaf2 ~ 1 -a. 
.jp(1- p) 

(7) 

Since p approaches p for large n, we can replace p by pin the denominator (as 
long as p and p are not too close to 0 or 1 ), and get 

{ ..;n A } Pr A A IP- PI ~ Zaf2 ~ 1 -a, 
.jp(1- p) 

(8) 

The inequality 

..;n A 

.jp(l _ p) IP- PI~ Zaf2 (9) 

can be solved for p to give 

(10) 
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where the lower bound 

A A Jp(l- p) 
PL = P - Zaf2 Jn , (11) 

and the upper bound 

A A JjJ(l- p) 
PU = P+Zaf2 Jn · (12) 

The above analysis can be summarized as 

Parameter Estimation Procedure via Confidence Intervals: Let X = 
(X 1 •••• , X n) be a random vector representing n independently repeated Bernoulli 
experiments with an unknown probability of success p. Select 0 < a < 1. Then 
the sample average p = Av (X) is an unbiased, consistent estimator of the pa­
rameter p. Moreover, with probability 1- a, the true value of parameter plies in 
a random interval [fJL, pu ]. Such an interval is called a confidence interval with 
confidence Ievell -a. 

In other words, with probability 1 - a, the true value of p is within the distance 

A .jp(l- p) 
I= Zaf2 Jn (13) 

of the sample average p (for better confidence intervals, see Sec. 8.2). 

The second goal we set for ourselves at the beginning of this section is related 
to the first which was achieved by the construction of confidence intervals at a 
given confidence level. In the simplest case, we would like to have a procedure 
to decide whether the unknown parameter p in the Bernoulli experiments equals a 
fixed given value po E [0, 1] (e.g., whether a coin is fair, or whether the proportion 
of defective items on the assembly line is 2% ). This is called the hypothesis testing 
problem. 

By analogy with (3) and ( 4), assuming that the hypothesis Ho : p = Po is true, 

Pr{lp- Pol:::: a}= Pr {n(po- a):::: np:::: n(po +a)} 

and, for large n, we have 

(15) 
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in view of the Stability of Fluctuations Law. This means that provided the hypoth­
esis Ho : p = po is valid, the unbiased estimator p differs from Po by less than 
a. On the other hand, if the hypothesis Ho : p = po is false and an alternative 
Ht : p = PI ¥= po holds true, then the estimator p should, with probability close 
to 1, be close to PI and far away from po or, equivalently, the event that p and Po 
are close should be a rare, small probability event. Thus, we arrive at the following. 

Hypothesis Testing Procedure. Choose confidence level a at a preassigned 
level between 0 and 1, and then select a so that 

Pr {lfi- Pol ~a} =a. 

If lfi- Pol > a, reject the hypothesis Ho : p = Po and conclude that the true 
parameter value pis different from PO· In the opposite case IP- pol ~a, the 
hypothesis Ho is not rejected. 

Note that in the case lfi - Pol ~ a, we are not claiming that the hypothesis 
Ho : p = Po is to be accepted; the true value of p may be close to po and yet 
not equal to it. The construction of confidence intervals and hypothesis testing 
procedures will be discussed in greater depth in Chapters 7 and 8. 

Example 3.7.1 Statistical Quality Control. 
A batch of N items (light bulbs, capacitors, computer memory chips, etc.) is 
mass manufactured at a plant and needs to be tested before shipment to customers. 
Usually, one takes a random sample of size n « N from the whole batch, and then 
either tests each item in the random sample under working conditions until it fails 
(destructive testing), or one measures some important parameter of each item in 
the random sample without destroying it (nondestructive testing). 

It could be the customer's policy, say, to accept the batch of N items only if no 
item from the sample of size n fails before time T prescribed by the contract. In this 
case, the probability of acceptance of the batch is computed as follows: Suppose 
that the batch of N items contains B bad and G good ones, so that B + G = N. 
Consequently, 

G G - 1 G - (n - 1) 
Pr {acceptance} = --- ... ----

N N - 1 N - (n - 1) 

= ( 1 _ B) (1 _ _ B_) . . (1 _ ___ B_-=-) 
N N - 1 . . . N - (n - 1) . (16) 

If the number B of bad items is small and the sample size n is small compared to 
the batch size N, then the acceptance probability is high; the chance of discovering 
any bad items in the batch is small. 
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In this context, it seems that allowing some bad items in the random sample 
would not be a bad idea. The new procedure would call for accepting the batch 
if the number of bad items in the random sample does not exceed an integer c. If 
p is the probability that a randomly chosen item from the batch is bad, then the 
operational characteristic 

(17) 

which is just a cumulative d.f. for the binomial distribution, gives the probability 
of acceptance of the batch, based on the test plan (n, c). It is easy to check that: 

L(c; n, 0) = 1, (17) 

that is, if there are no bad items in the batch then the acceptance probability is 1; 

L(c; n, 1) = 0, (18) 

that is, if there are no good items in the batch then the acceptance probability is 0; 

L(c; n, PI) ?: L(c; n, P2), if 

L(c; nt, p) ?: L(c; n2, p), if (19) 

if 

By the Stability of Fluctuations Law, for a large sample size n, we have that 

~ 
A 1 Jnp(l-p) 1 u2/2 L(c; n, p) = Pr {np ~ c} "' --e- du. 

-00 ,J2ii 
(20) 

Of course, to be able to select a large random sample, the batch size has to be very 
large. 

Ideally, it would be desirable to choose Po such that the acceptance probability 
L(c; n, p) = 1 for p ~ po, and= 0 for p > Po (why?). This is, however, impos­
sible in view of (20). The way out of this dilemma is the following compromise 
quality control standard: 

(1) If the probability p of a bad item in the batch is small, say, ~ Pa• then 
the probability of acceptance must be :=::: a, where (Pa, a) sets the quality control 
standard (often, Pa = .02, a = .9). 



3. 7. How to Estimate p in Bernoulli Experiments 169 

(2) If the probability p of a bad item in the batch is large (say ~ pp), then the 
probability of acceptance must be~ fJ, where (pp, fJ) sets another quality control 
standard (often, pp = .05, fJ = .1). 

Heuristically, our standards demand that if the batch is really good (p ~ Pa). 
then it should be accepted with a very high probability, and if it is really bad, then 
its acceptance probability should be low. In this fashion, with a high probability, 
a really bad decision will be avoided. Of course, there will be a price to pay for 
using such standards: when the true probability p stays within the range (pa. pp), 
we are not going to be able to say how good our quality control procedure is, but 
it would not matter anyway. 

To implement the above standards, for given (pa. a) and (pp, fJ), we have to 
find a test plan (n, c) such that 

L(c; n, p) ~ L(c; n, Pa) =a, for all P ~ Pa. (21) 

and 
L(c; n, p) ~ L(c; n, pp) = fJ, for all p ~ PfJ· (22) 

In view of (20), this leads (asymptotically inn --+ oo) to the equations 

c-pqn 1.,/npa(I-Pa) 1 -u2 /2 d a= --e u 
-00 ./iii 

(23) 

and 
c-ppn 

fJ -j.Jnpf3(1-pf3) _1_ -u2f2d - e u. 
-00 ./iii 

(24) 

Denoting by 4>-1(a) the inverse of the N(O, 1) cumulatived.f. 4>(x), the equations 
(23) and (24) can be rewritten in the form 

4>_ 1(fJ) = c- ppn 
Jnpp(l - pp) 

The latter can be solved easily for nand c, giving 

and 

,Jn = Jpa(l- Pa)4>- 1(a)- .jpp(l- pp)4>-1(fJ) 
PfJ- Pa 

(25) 

(26) 

(27) 

(28) 
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Note that, finally, n has to be rounded to the next larger integer, and c to the next 
lower integer! 

Mathematica Experiment 1. Quality Control Plan. We will implement the above 
test plan for a = 0.9, {J = 0.1, Pa = 0.02, PfJ = 0.05, illustrating on the way 
other aspects of our discussion. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= Plot[CDF[Norma1Distribution[0,1],x],{x,-3,3}] 
Out[2]= -Graphics-

-3 3 

In[3]:= Phiinverse[x_]:= Quantile[Norma1Distribution[0,1],x] 
In[4]:= Plot[Phiinverse[x],{x,.001,.999}] 
Out[4]= -Graphics-

-3 

In[5]:= L[c_,n_,p_]:= Sum[Binomial[n,k] p~k(1-p)~{n-k},{k,O,c}] 
In[6]:= Plot[L(3,10,p),{x,.001,.999}] 
Out[6]= -Graphics-
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0.8 

In[7]:= u=N[(Sqrt[.02 * .98] Phi!nverse[.9]-Sqrt[.05 * .95] * 
Phi!nverse[.l])/.03] 

Out[7]= 15.2908 
In[8] := n=Ceiling[u~2] 
Out[8]= 234 
In[9]:= c=Floor[ N[ 234• .02 + Sqrt[234•.02 * .98]* 

Phi!nverse[.9]]] 
Out [9] = 7 
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3.8 Other continuous distributions; Gamma function calculus 

Thus far, we have encountered only two types of probability density functions: 

uniform, and Gaussian. In this section we will provide a number of other examples 

that are of importance in applied problems. 

Recall that the one-dimensional probability density function f (x) has to satisfy 

two conditions: 

f(x) ~ 0, XER (1) 

i: f(x) dx = 1. (2) 

The corresponding cumulative distribution function 

F(x) = 1:
00 

f(t) dt (3) 

is nondecreasing, 

F(-oo) = 0, F(oo) = 1. (4) 
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For the random quantity X with probability d.f. f (x), the probability that X has 
values within the interval (a, b] is 

F(b)- F(a) = 1b f(x) dx. (5) 

Also, by the Fundamental Theorem of Calculus, 

d 
f(x) = dx F(x). (6) 

The mean and variance of the random quantity X are 

r+oo 
/L(X) = }_

00 
xf(x) dx (7) 

and 

(8) 

Example 3.8.1 Exponential Distributions. 
The lifetime T of many devices is often a random quantity. For some of them, 
the experiments show that if the device survives up to time t then its remaining 
lifetime has the same probability distribution as that of a new device, displaying 
what we call the memoryless behavior. In terms of the cumulative distribution 
function Fr(t) = Pr {T ~ t), or, more conveniently, in terms of the corresponding 
reliabilityorsurvivalfunction(uppertaildistribution)R(t) = 1-F(t) = Pr(T > 
t), the memory less behavior can be written as the condition: 

R(t + s) = R(s) 
R(t) ' 

t,s > 0, (9) 

which can be rewritten in the form R(t + s) = R(t)R(s). The latter equation, 
differentiatied with respect tot, yields R'(t + s) = R'(t)R(s). Letting, t ~ 0 we 
obtain a simple differential equation 

R'(s) = -AR(s), A= -R'(O) > 0, (10) 

since R(s) is a decreasing function. The obvious solutionis R(s) = e->..s, s, A > 0, 
and the corresponding (normalized) density is of the form 

fort< 0; 
fort~ 0. 

(11) 
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The exponential family of probability d.f.s ( 11) is parametrized by the single pa­
rameter >.. > 0, which is often called the intensity of the exponential distribution. 
Exponential distributions also appear as probability distributions of waiting times 
between random events (such as log-ons to the server in a local area network) 
whose number in a given time-interval has the Poisson distribution introduced in 
Section 3.5. The corresponding cumulative distribution function 

F() {0 fort<O; 
T t = 1 - e-At fort ~ 0. (12) 

The mean and the second moment, via the integration by parts formula, are 

ioo 1 
JL(T) = t>..exp[-At]dt =-

0 )., 
(13) 

and the second moment 

(14) 

so that the variance u 2 (T) = >.. - 2 . 

Mathematica Experiment 1. Exponential Distributions. We shall plot the graphs 
of exponential densities and cumulative d.f. for >.. = 0.4, 1.6, 4. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= H[x_]:=If[x<0,0,1] 
In[3]:= dens [x_,l_]:= H[x]*l*Exp[-l*x] 
In[4]:= Plot[{dens[x,0.4],dens[x,1.6],dens[x,4]},{x,-1,4}, 

PlotRange->{0,4.2}, Ticks->{Automatic,{0.4, 1.6, 4}}] 
Out[4]= -Graphics-

4 

-I 2 3 4 

In[5]:= cumdf[x_,l_]:=H[x]*(1-Exp[-x*l]) 
In[6]:= Plot[{cumdf[x,0.4],cumdf[x,1.6],cumdf[x,4]} ,{x,-1,4}] 
Out[6]= -Graphics-
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-I 

Computation of higher moments of the exponential distribution requires calcu­
lations with integrals of the type J xke-x dx, which gives us the opportunity to 
introduce the gamma function f(x). The gamma function "calculus" is a very 
convenient tool in analysis of many probability d.f.s. 

The gamma function is defined by the formula 

f(a) := fooo xa-le-x dx. (15) 

Notice that the integral cannot be evaluated in closed form for most values of a. 
So, the gamma function f(a) is a new special transcendental function. It is easy 
to see that the integral (15) is well defined for a > 0. 

Mathematica Experiment 2. Gamma Function. We will obtain values of the 
gamma function and graph it. Actually, definition of the gamma function can 
be extended also to noninteger negative real numbers. Although a mathematical 
justification of this fact is beyond the scope of this book, we can explore the problem 
using Mathematica. 

In[1]:= {Gamma[-2.9999], Gamma[3.32], Gamma[4), Gamma[14.3]} 
Out[[1]= {-1666,88, 2.73975, 6, 1.3641 10-10 } 
In[2]:= Plot[ Gamma[x], {x,-5, 5}] 
Out[2]= -Graphics-

1 
-10 
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There are few cases when one can obtain by analytic means the precise value 
for r(a): 

r(lj2)2 = (100 X-lf2e-xdX) 2 = 100100 (Xy)-lf2e-x-ydxdy. 

Substituting u2 = x and v2 = y, we arrive at 

{00 {00 2 2 

r(l/2)2 = 4 Jo lo e-u -v dudv 

Finally, using polar coordinates (you have seen a similar "trick" before in calcula­
tions with Gaussian densities), 

Hence, 

roo r/2 2 

r(lj2)2 =4Jo Jo e-r d4Jrdr=rr 

r(1/2) = ../ii. 
Another useful identity is obtained by integration by parts: 

(16) 

ar(a) = [xae-x]go + 100 xae-x dx = r(a + 1) (17) 

so that the gamma function behaves like the factorial but is defined for all positive 
real numbers rather than just for integers. Moreover, that connection is very direct 
as 

r(l) = 100 
exp[-x]dx = 1, 

and, in view of (17), 

r(n) = (n - 1)! = (n- 1)(n- 2) ... 3. 2. 1. (18) 

Here are two applications of our gamma function calculus that provide alternative 
calculations for the Gaussian and exponential densities. 

Example 3.8.2 Gaussian Densities Revisited. 
For the N(J.L, u 2 ) random quantity X, we have 

100 100 1 (1-'!:/ 
4J(z) dz = 2 --e 2a dt 

-oo o ..fiiiu 
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and, substituting y = (x - JL)2 /(2u2), 

Example 3.8.3 Exponential Densities Revisited. 
For the exponential distribution, the mean 

JL = XAe->..x dx =- l-•e-Y dy = -f(2) = -, i oo 1 looo 1 1 
o A o A A 

and the second moment 

Other interesting and more complex examples of the gamma function calculus' 
applications can be found in Chapter 5. 

Example 3.8.4 Reliability Analysis; Weibull and Rayleigh Distributions. 
Recall that the reliability (survival) function of a device is defined by the formula 

R(t) = Pr (T > t), t ~ 0, (19) 

where T is the random quantity describing the lifetime of the device. Let Tt, T2, ... , 
be a sequence of independent random quantities with the same distribution as T. 
For a fixed t and small At we have, as n ~ oo, 

#{i ~ n : Ti E [t, t +At]} R(t)- R(t +At) R'(t) 
~--::-:------=-~---'- ~ ~ --At = A(t)At, 

#{i ~ n : T; > t} R(t) R(t) 
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where the hazard function 
R'(t) 

A(t) := R(t) ' 

177 

(20) 

need not be constant as was the case for the memoryless exponential distribution 
case of Example 3.8.1. It gives the infinitesimal rate of change of the failure 
rate once the device survived until time x. The differential equation (20) can be 
immediately solved to yield 

R(t) = exp [-it A(s) ds] . (21) 

In the special case when the hazard function is of the power form 

a, {J > 0, (22) 

we obtain 

R(t) = exp[ -tJI I {J], X> 0, (23) 

with the corresponding Weibull, or stretched exponential, probability d.f. 

f(t; a, {J) = { (aj{J)ta-l exp[-ta lfJ], fort> 0; (24) 
0, fort~ 0. 

If a = 1, the Wei bull probability d. f. f (t; I, {J) is just the familiar exponential 
distribution with intensity A. = 1 I {J. In the case a = 2, the Wei bull distribution is 
known as the Rayleigh distribution. Note that the Rayleigh distribution corresponds 
to the linear hazard function 

A(x) = 2xi{J. (25) 

Mathematica Experiment 3. Weibull Densities. We plot Weibull densities with 
parameters a = 0.5, 2, 4, and {J = 1. It is clear that for bigger a, the density 
f(t; a, {3) decays faster as t --+ oo. 

In[l]:= <<Statistics'ContinuousDistributions' 
In[2]:= WeiDen[t_,a_,b_]:= PDF[WeibullDistribution[a,b], t] 
In[3]:= Plot[{WeiDen[t,0.5,1], WeiDen[t,2,1], WeiDen[t,4,1]}, 

{t, 0.01, 4}, PlotRange->{0, 2}] 
Out[3]= -Graphics-
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2 

1.75 

2 3 4 

A more general version of the Weibull distribution can be obtained by shifting 
the origin to the point v. The extended family ofWeibull densities f(t; a, {3, v) is 
zero fort :5 v, and fort > v, it is given by the formula 

(fJ) (t- v)f3-l [ (t- v)f3] f(t) = ;; ~ exp - ~ (26) 

where v E R, a, f3 > 0 are parameters. The corresponding cumulative distribution 
function is again 0 for x :5 v, and for x > v it is given by 

(27) 

Example 3.8.5 Detection of Particles; Cauchy Densities. 
Consider a source located at the point with coordinates (0, '1) emitting par­
ticles in the half-plane with uniformly distributed random directions (angles) 
8 E [ -1r /2, 1r /2] (see Fig. 3.8.1). The particles are being detected by a flat 
panel device D (represented by the vertical line x = -r) at the distance -r from the 
source. What is the distribution of the random quantity representing the position 
Y particles on the detecting device? Clearly, 

Fy(y; 'I· -r) = Pr {Y :5 y} = Pr {tan 8 :5 (y- '1)/-r} (28) 

1 1 
= Pr {8::: arctan((y- '1)/-r)} = 2 +; arctan((y- '1)/-r). 
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FIGURE 3.8.1 
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From radially uniform to Cauchy distribution: detection, on a flat panel, of parti­
cles emitted by a point source. 

The corresponding Cauchy density with the location parameter 1J and the scale 
parameter r is given by the formula 

1 
fy(x; TJ, r) = rrr(l + [(y- TJ)/r]2) 

(29) 

for any real y. In the physical sciences, Cauchy densities are often called Lorentz 
densities. The location parameter TJ, the median, plays for the Cauchy distribution 
the role similar to the mean of a Gaussian distribution. The mean of the Cauchy 
distribution, however, does not exist. Indeed, the function xf(l + x 2) is not in­
tegrable over the whole real line. The scale parameter r measures the dispersion 
of the Cauchy distribution around its location parameter 1J but it is not its standard 
deviation. The latter does not exist either. 

Finally, observe that the tail probabilities 

rX) 'l" c 
Pr {Y >a} = Ja 7r(t"2 + (y- TJ)2) dy"' ~ (30) 

decay much slower, as a -+ oo, than those of Gaussian distributions, which decay 
at the rate e -a2 12 fa, despite a superficial similarity of the graphs of two densities. 
For that reason, Cauchy distributions are often described as "heavy-tailed". 

Mathematica Experiment 4. Cauchy Densities. We shall begin by comparing 
the densities of the Gaussian and Cauchy distributions, both with parameters 0 and 
1. Around the origin, the Cauchy density has a sharper peak than the Gaussian 
density, but is much, much flatter far away from the origin. The lack of mean 
and variance raises an interesting question about the validity of the Law of Large 
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Numbers and the Stability of Fluctuations Law for independently repeated Cauchy 
experiments. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= UVW'DataRep' 
In[3]:= Plot[{PDF[CauchyDistribution[0.,1.],x], 

PDF[Norma1Distribution[0.,1.],x]},{x,-10,10}, 
PlotRange->{0,0.42}, Ticks->{Automatic,{Pi-(-1), 0.399}}] 

Out[3]= -Graphics-

0.399 

-10 -5 

In[4]:= {PDF[CauchyDistribution[0.,1.],10], 
PDF[Norma1Distribution[0.,1.],10]} 

Out[4]= {0.00315158, 7.6946 10-(-23)} 

5 10 

In[5]:= data=Table[Random[CauchyDistribution[0.,1.]],{1000}] 
Out[5]= {2.23794, -2.43299, 0.463945, 7.96682, ... , 

-24.9201, -0.782545, -2.06564, 1.38234, -0.832504} 
In[6]:= LargeNumbers[data] 
Out[6]= -Graphics-

15 

10 -5 

'• 
~...... ----

200 400 600 800 I 000 

-5 

In[7]:= Centra1Limit[Data,0,1,10] 
Out[7]= -Graphics-

-------
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Note the dramatic difference in values of the Gaussian and Cauchy probability 
d.f.s at x = 10. The experiments (and they should be repeated several times to get 
a feel for the variety of pictures one can get here) indicate that neither LLN nor 
SFL holds true. The averages oscillate wildly, and the centered and rescaled by .;n 
averages just produce flatter and flatter histograms which do not seem converge 
to the N(O, 1) density. This is marked on the histograms but sometimes it is so 
concentrated around zero in comparison with the former that it is almost invisible. 
This is a warning that neither LLN nor SFL should be expected to hold without 
any precondition; some assumptions (like those mentioned in previous sections) 
are necessary. 

The distributions described in the next five examples will find applications in 
Chapters 5, 7, and 8. 

Example 3.8.5. Continuous Pareto Distributions. The density is given by the 
formula 

(31) 

The parameter a has to be > 1 to guarantee that the integral in (31) remains finite. 
These distributions appeared first in economics applications. The mean does not 
exist for 1 < a ~ 2. 

Example 3.8.6 Gamma Distribution. 
A gamma distribution is an absolutely continuous distribution with density 

for x > 0; 
for x ~ 0. 

(32) 

Parameters a, {3 are positive numbers and the distribution is concentrated on the 
positive half-axis. Substituting y = xI {3 we find that f0

00 xa-l exp[-xI {3] dx = 
par(a), so that f(x; a, {3) satisfies the normalization condition f f(x) dx = 1. 
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Mathematica Experiment 5. Gamma Density. 

In[1] := f[x_, a_, b_] :=x-(a-1)*Exp[-x/b]/((b-a) * Gamma[a]) 

In[2] := Plot[f[x,2.0,3.0],{x,0.0,15}] 

Out[2]= -Graphics-

0 2 4 6 7 10 12 14 

The mean 

100 f3r(ot + 1) 100 
J.t = x f(x; a, f3)dx = f(x; a+ 1, f3)dx = af3, 

o r~) o 

and the second moment 

(33) 

1oo 2 f32r(ot + 2) looo 2 
m2 = x f(x; a, {3) dx = f(x; a+2, {3) dx = ot(ot+ 1){3 , 

o r~) o 
(34) 

so that the variance 

(35) 

Probabilities for the gamma distribution are computed using the incomplete 

gamma function 

r(a, z) := 100 xa-l exp[-x] dx (36) 

which in Mathematica is called Gamma [alpha, z] . If the random quantity X has a 

gamma distribution with parameters a and {3, then 

Pr{u <X< v} = ta- 1 exp[-t/f3]dt i v 1 

- u {3ar(a) 

iv/{3 1 
= --sa-l exp[-s]ds 

u/{3 r(a) 
(37) 
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f(a, uj{J)- f(a, vj{J) 

f(a) 
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Gamma density with parameters a = 1 and f3 = 1 I A is just the exponential density. 

Example 3.8.7 The Chi-Square Distribution. 
The density of the x2-distribution 

{ 
(1/2)"12x(n/2)-l -x/2 

f(x) = f(x; n) := 0 f(n/2) e ' for x > 0; 
for x ~ 0. 

(38) 

n = 1, 2, ... , is a gamma density with parameters a = n/2 and f3 = 2. The 
parameter n is called the number of degrees of freedom of the x2-distribution. 

Mathematica Experiment 6. Chi-Square Distribution. 

In[1):= <<Statistics'ContinuousDistributions' 
In[2] := f[x_,n_]:= PDF[ChiSquareDistribution[n],x] 
In[3]:= Plot[{f[x,3], f[x,5], f[x,7]}, {x,0,15}] 
Out[3]= -Graphics-

It follows from Example 3.8.6 that its mean and variance are, respectively, 

1-L = n, (39) 

As we will see in Chapter 5, the sum of squares Xi + ... + x; of n independent 
N(O, 1) random quantities has the x2-distribution with n degrees of freedom. 
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Example 3.8.8 The Student t-Distribution. 
The density is given by the formula 

r ((n + 1)12) ( x 2 )(n+l)/2 
f(x· n)- 1 +-

' - .;mrr(nl2) n ' 
x eR. (40) 

The parameter n is called the number of degrees of freedom of the !-distribution. It 
is the distribution of the random quantity X I JYn In, where X is a N {0, 1) random 
quantity and Yn is an independent random quantity with x2-distribution with n 
degrees of freedom. 

Mathematica Experiment 7. Student t-Distribution. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= f[x_,n_]:= PDF[StudentTDistribution[n],x] 
In[3]:= Plot[{f[x,2], f[x,5], f[x,35]}, {x,-5,5}] 
Out[3]= -Graphics-

4 4 

For larger n, the Student !-distribution's density clearly approaches N(O, 1) 
density. 

Example 3.8.9 Fisher's F-Distribution. 
The density of an F -distribution with n, m degrees of freedom is concentrated on 
the positive half-line and defined there by the formula 

. _ (nlm)n/2 (n/2)-l ( n )-(n+m)/2 
f(x,n,m)- B(nl2,ml2)x 1+ mx , X> 0, (41) 

where 
B(nl2 ml2) = f(nl2)f(ml2). 

' f((n + m)l2) 

It is the distribution of the ratio (Xnln)I(Ymlm), where Xn is a random quantity 
with the x2-distribution with n degrees of freedom, and Ym is an independent 
random quantity with the x 2 -distribution with m degrees of freedom. 
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Mathematica Experiment 8. Fisher F -Distribution. 

In[1]:= <<Statistics'ContinuousDistributions' 
ln[2]:= f[x_,n_,m_]:= PDF[FRatioDistribution[n,m],x] 
ln[3]:= Plot[{f[x,2,2], f[x,5,3], f[x,10,20]}, {x,0.01,5}] 
Out[3]= -Graphics-

3 4 5 

3.9 Testing the fit of a distribution 

I85 

Suppose a random sample XI, ... , Xn, has been obtained from n independent 
repeated random experiments X 1, .•. , Xn, with the common cumulative distribu­
tion function F(x) = Pr {X ~ x} which is unknown to us. If we want to find 
F(x), the first thought is to approximate it by the cumulative relative frequencies 

#{i ~ n: Xi ~ x} ~ Pr (X ~ x) = F(x), 
n 

in the spirit of the Law of Large Numbers. Actually, the random quantities 

where 

A #{i ~ n: Xi ~ x} I~ 
Fn(x) := = - ~ H(x- Xi), 

n n i=l 

H(x)={O, forx<O; 
I, for x ::: 0. 

(1) 

(2) 

is the Heaviside unit step function, are called the empirical distribution functions 
and one can prove the following crucial fact. 
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Glivenko-Cantelli Law. For large sample size n, the empirical distribution 
Fn (x) uniformly approximates the true distribution F(x), i.e., 

lim max IFn(x)- F(x)i = 0. 
n-+00 -OO<X<OO 

The obvious next question is: How good is this approximation in the statisti­
cal sense? The surprising answer is provided by the following important result. 
For another goodness-of-fit test, see Section 8.6. Note that the random quantity 
IFn(x)- F(x)i takes values in the interval [0, 1]. 

Kolmogorov-Smirnov Distribution. For any continuous d.f. F(x), the distri­
bution of the nonnegative random quantity 

Dn := max IFn(X)- F(x)i 
-OO<X<OO 

is independent of F(x) and,for every z ~ 0, 

00 

lim Pr {Dn.Jii ::: z} = K (z) = 1 - 2 "'< -tl-1 exp[ -2k2z2]. 
n-+oo ~ 

k=1 

Mathematica Experiment 1. Kolmogorov-Smirnov Distribution. The evaluation 
of the Kolmogorov-Smirnov cumulative d.f., which is represented by an infinite 
series, can be implemented in Mathematica; the necessary computations take, 
however, a long time on the average platform, so it is worth it to experiment with 
K (z) a little bit more cautiously. Just trying to plot it does not give good results 
and you will see why. 

In[1] := K[z_]:= 1-2*Sum[(-1)-(k-1)*Exp[-2*k-2*z-2],{k,1,Infinity}] 
In[2]:= Plot[K[z],{z,0,1}] 
Out[2]= -Graphics-

1.75xl0-6 

l.Sxl0-6 

1.25xl0·6 

lxl0-6 

7.5xl0·7 

5xl0·7 

2.sx1o·7 

0.1 0.2 0.3 0.4 0.5 0.6 
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Clearly, Mathematica has a problem with huge differences in scales of different 
values of K (z). So, let us explore the individual values at discrete points. 

In[3]:= KS1={K[0.1], K[0.2], K[0.3], K[0.4], K[0.5], K[0.6]} 
Out[3]= {-3.90334 10~(-15), 5.05041 10~(-13), 9.3058 10~(-6) , 

0.00280767, 0.0360548, 0.135717} 

So, the values of K (z) become significantly positive only around z = 0.3. Now, 
instead of trying to graph K (z) as a continuous function, let us just ListPlot its 
values at 0.01 intervals. 

In[4]:= KS2=Table[{K[0.01*k], 0.01•k},{k,1,199}] 
Out[4]= {{0.01,-2.22 10~(-16)}, ... ,{1.99, 0.999}} 
In[5] := ListPLot[KS2] 
Out[5]= -Graphics 

0.8 

0.6 

0.4 

0.2 

1.5 2 

Of course, the initial tiny negative numbers appeared only because of round­
off errors in machine arithmetic. Actually, the first one has a special name, 
$MachineEpsilon, and it gives the distance between 1.0 and the closest number 
which has a distinct binary representation. 

The information contained in the Kolmogorov-Smimov Theorem can be used 
in two different ways: to construct confidence intervals for true F(t) and to test 
hypotheses about potential candidates for F(t). 

In the first mode, we can select Za so that K (Za) = a and claim that the random 
strip 

(3) 

around the empirical distribution F (x) is an a x I 00 percent confidence region for 
the true distribution function F(x). 

In the second mode, given a E (0, I) we can check if a candidate distribution 
function G(x) lies inside the confidence region (3). If it does not, then we can reject 
the hypothesis that G(x) is true. The probability that G(x) does not lie inside the 
confidence region, while it is the true distribution function, is at most I - a, so 
that if a is selected close to I, then probability of this type of error is small. Note 
that in case G(x) is inside the confidence region, no decision is made. 
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3.10 Random vectors and multivariate distributions 

A random vector X = (Xt •... , Xd) is a random quantity assuming vector 
values. It has an absolutely continuous distribution, if it possesses a multivariate 
probability d.f., that is, a function 

(1) 

which is a nonnegative function of d-variables, normalized so that 

1~ .. 100 
f(xt •... ,Xd)dxt ... dxd = 1, 

-00 -00 

(2) 

and such that the probabilities of events concerning X can be calculated in terms 
of multiple integrals of f(m). More precisely, if A is a subset of the d-space Rd, 
then 

(3) 

The mean of the i-th component X; in the random vector X= (Xt •... , Xn) is 
calculated via the formula 

Their variances are 

and covariances between the component random quantities X; and Xj are 

They form ad x d matrix. It is not sufficient to know the one-dimensional densities 
of the individual components X; to calculate the covariances. Also notice that by 
integrating out all the variables in the density f (xt, ... , Xd) except the i -th one, 
we obtain the probability d.f. (marginal density) of the random component X;: 

fx;(X) = 100 
.. ·100 

j(XIo ... , Xi-l, X, Xi+l• ... , XN)X 
-00 -00 



3.10. Random Vectors and Multivariate Distributions 189 

The components X 1, .•• , Xd of the random vector X with multivariate density 
f X (z) are independent, if and only if 

(8) 

Obviously, in view of (6) and (8), if X 1, ... , Xd are independent then their covari­
ances are zero. 

Similar definitions and formulas apply to the multivariate discrete probability 
distribution, with the integrals replaced by finite or infinite sums. 

Example 3.10.1 Multinomial Distribution. 
Each component k1, k2, ... , kd of and-dimensional vector k = (kt. ... , kd) can 
take nonnegative integer values from 0 to n under the additional constraint that 
their sum equals n. The probabilities are distributed according to the multinomial 
formula, i.e., 

n! k1 k2 kd 
/(k) = k 'k r k r PI . p2 ..... pd 

I· 2· · · · d· 
(9) 

if k1 + ... + kd = n, and is 0 otherwise, where PI, P2· ... , Pd are parameters such 
that 

PI + P2 + · · · + Pd = 1. 

The fact that all these probabilities add up to 1 follows from the multinomial 
formula which is an extension of the binomial formula. 

Example 3.10.2 Bivariate Normal Distribution. 
The general two-dimensional density of a normal random vector (X 1, X2) is given 
by the formula 

(10) 

A linear change of variables can reduce the double integral of this density to a 
product of single integrals and prove its normalization. More tedious calcula­
tions on double integrals show that the coefficients f..LI = f..L(XI), f..L2 = f..L(X2) 
are means of the first and second components, respectively, and that al = 
a 2(X t), af = a 2(X2) are corresponding variances. The components are them­
selves one-dimensional Gaussian quantities. The parameter p turns out to be the 
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correlation coefficient between the components X 1 and X2, that is 

(11) 

A quick check of (10) and (7) shows that the components Xt. X2, of a Gaussian 
random vector X are independent if and only if the correlation coefficient p = 0. 
With the correlation coefficient p defined in general by the equality (11}, this is 
not necessarily true if the random vector is not Gaussian. 

The graph of the surface representing the bivariate normal density is obtained 
in the next Mathematica Experiment. Note that the level curves are ellipses with 
half-axes u1, u2 and correlation parameter p determines the angle by which these 
half-axes are rotated with respect to the Xt, x2 axes. 

Mathematica Experiment 1. Bivariate Normal Distributions. The bivariate 
(and, in general, multivariate) normal distribution is specified by the command 
MultinormalDistribution[mu, sigma] where mu is the mean vector (J.Lt, l-£2}, 
and sigma is the covariance matrix (PUiO"j). 

In[l]:= <<Statistics'MultinormalDistribution' 
In[2]:= f[x1_,x2_,m_,s_]:=PDF[Multinorma1Distribution[m,s], 

{x1,x2}] 
ln[3]:= m={O,O} 
Out[3]= {0,0} 
ln[4]:= s={{1, 1/Sqrt[3]},{1/Sqrt[3],1}} 
Out[4]= {{1, 1/Sqrt[3]},{1/Sqrt[3],1}} 
ln[5]:= Plot3D[f[x1,x2,m,s],{x1,-3,3},{x2,-3,3}, 

PlotRange->{0, 0.2}] 
Out[5]= -Graphics-
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Next, we will create a simulated random sample of size n = 1000 of a Gaussian 
random vector with means J.Lt = 0, J.L2 = 0, variances u1 = 2, u2 = 1, and the 
correlation coefficient p = -0.8, taking advantage of the RSNormal2D [sigma1, 
sigma2,rho, n] command of the UVW'ContSamp' package. Then the sample will 
be pictured on the scatter plot and its two dimensional histogram will be produced. 
Finally, we will check that the projection of the data on the line with direction 
vector (0.5, 1.6) are approximately Gaussian. 

In[1]:= <<UVW'ContSamp' 
In[2]:= <<UVW'DataRep' 
In[3]:= gauss2d=RSNormal2D[2,1,-0.8,1000] 
Out[3]= {{4.78287, -1.83111}, ... , {-3.68319, 0.967511}} 
In[4]:= SamplePlot2D[gauss2d] 
Out[4]= -Graphics-

·.• .. : ···- . ,.. 

-6 

y 



192 Chapter 3. Analytic Representation of Data 

In[5]:= Histogram2D[gauss2d,-6,6,12,-3,3,12] 
Out[5]= -Graphics3D-

In[6]:= proj=gauss2d.Transpose[{0.5,1.6}] 
Out[6]= {-0.538344, ... , 1.47689} 
In[7] := Centra1Limit[proj,0,1,1] 
Out[7]= -Graphics-

-3 

Example 3.10.3 Uniform Multivariate Distributions. 

3 

Ad-dimensional random vector X is said to have a uniform distribution over a set 
A c Rd if, for any set B c Rd, 

Pr{XEB}=IAnBI, (12) 
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where ICI stands for the d-dimensional measure (area, volume, etc.) of a set C. In 
other words, the density of X is 

f(z) =_I lA(z) = { 1/IAI, fora: e A, 
IAI 0, fora:¢ A. 

(13) 

Of course, the uniform distribution over A makes sense only if the measure I A I < 
00. 

Distributions of various functions of the random vector X, themselves random 
quantities, may then be calculated. For example, the cumulative d.f. F R (r) of the 
distance from the origin 

(14) 

is, for X uniformly distributed over A, of the form 

(15) 

where Bd(r) is ad-dimensional ball centered at the origin with radius r. In the 
particular case where the X is uniformly distributed over Bd ( 1), the d -dimensional 
unit ball, 

(16) 

Mathematica Experiment 2. Uniform Distribution on the Unit Ball. We shall 
produce two random samples of size n = 1000 from the uniform distribution on the 
unit balls of dimensions 2 and 4, and then check the histograms of their distances 
from the origin, i.e., their norms R. These should be compared with the result in 
formula (16) which gives the density of R to be fR(r) = 2r in dimension 2, and 
fR(r) = 4r3 in dimension 4, both, of course, concentrated on the interval [0, 1] 

In[l]:= <<UVW'ContSamp' 
In[2]:= <<UVW'DataRep' 
In[3]:= ball2d=RSUnitBall[2,1000] 
Out[3]= {{-0.208536, -0.292938}, ... , {-0.355194, -0.0873841}} 
In[4]:= SamplePlot2D[ball2d,AspectRatio->1] 
Out[4]= -Graphics-
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y 

In[5]:= Histogram2D[ball2d,-1.1 ,1.1 ,12,-1.1 ,1.1 ,12] 
Out[5]= -Graphics3D-

f{x,y} 

In[6]:= norms=Sqrt[Table[ball2d[[i]].ball2d[[i]],{i,1000})] 
Out[6]= {0.359583, , 0.365785} 
In[7]:= RegularHisto[norms,0,1,20] 
Out[7]= -Graphics-
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In[8] := ball4d=RSUnitBall[4,1000]; 
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In[9] := norms=Sqrt[Table[ball4d[[i]] .ball4d([i]],{i,1000}]] 
In[10] := RegularHisto[norms,0,1,20] 
Out[10]= -Graphics-
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Example 3.10.4 Multivariate Normal Distribution. 
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The density f of and-dimensional normal random vector X = (XJ, ... , Xd)T 

(written here as a column) is now a function of the column vector x = 

(XI, •.• , Xd)T, and is given by the formula 

(17) 

where 

is the column vector of means of the component random quantities X;, i = 
1, ... , d. and the d x d matrix [C(X)] is the covariance matrix of the above 
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components, i.e., 

[C(X)] = [cov (X;, Xj)J . . . 
l~l.j~d 

(18) 

For a Gaussian random vector X with independent N (0, 1) components, that is 
with the covariance matrix C(X) which is the identity d-dimensional matrix with 
ones on the diagonal and zeros off the diagonal, the distance R from the origin 
expressed by the formula (14), has the chi-square distribution with d degrees of 
freedom (see Example 3.8.7). 

3.11 Experiments, exercises, and projects 

1. In l,OOOBemoulliexperiments, thesamplemeani = p = 0.48. Calculate 
the confidence level of the interval 0.48 ± 0.03. 

2. For the same experiments, calculate the size of the confidence interval 
given the confidence level 0.95. 

3. Find the number n of Bernoulli experiments needed to obtain for p a 
confidence interval of size 0.02, at confidence level 0.99. 

4. Random quantity X has the Laplace density fx(x; f..L, s) = ce-lx-JLI/s 
defined on the whole real line. Calculate c. Using Mathematica, graph 
this probability d. f. for different values of parameters f..L and s > 0, and the 
corresponding cumulative d.f. Fx(x; f..L, s). Calculate the mean, variance, 
and the n-th moment of X using the gamma-function calculus. 

5. Calculate the mean, variance, and the cumulative d.f. for the generalized 
Pareto density 

f(x; a, c) = c a - x ' { 
a-1( 1) -a 

0, 
ifc ~ x < oo; 
elsewhere. 

What restrictions are necessary on parameters a and c? 
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6. Mathematica Experiment. Simulation with a Given Density. Use UVW pack­
ages to simulate and analyze random samples with a prescribed density. A 
trial run is given below. Read first the detailed description of the packages 
given in the Appendix. 

In[1] := UVW'ContSamp' 
In[2]:= UVW'DataRep' 
In[3] := f[x_] :=1+Sin[x] 
In[4]:= samp= RSContinuousDistribution[£,0,10,2000] 
In[5]:= g1 = RegularHisto[samp, 0,10,20, DisplayFunction->Identity] 
In[6]:= integral=Nintegrate[f[x],{x,0,10}] 
In[7]:= fnorm[x_]:= f[x]/integral 
In[8] := g2 = Plot[fnorm[x],{x,0,10}, DisplayFunction->Identity] 
In[9] := Show[g1,g2, DisplayFunction->$DisplayFunction] 

7 Mathematica Experiment. Simulation with a Given Discrete Distribution. 
Use UVW' DiscSamp' package to simulate and analyze random samples with 
a prescribed discrete distribution. Follow the lines of Experiment 6. Select 
a discrete distribution yourself. 

8. Mathematica Experiment. Simulation with a Given Bivariate Density. Use 
uvw packages to simulate and analyze two-dimensional random samples 
with independent components with a prescribed density. A trial run is 
given below. Read first the detailed description of the packages given in 
the Appendix. 

In[1]:= UVW'ContSamp' 
In[2]:= UVW'DataRep' 
In[3]:= f[x_]:=x-2 
In[4]:= para2d= RSindependent2D[f,-1,1,f,-1,1, 2000] 
In[5] := SamplePlot2D[para2d,Frame->True] 
In[6]:= Histogram2D[para2d, -1,1,8,-1,1,8] 
In[7] := marge1=transpose[para2d] [[1]]; 
In[8] := RegularHisto[marge1,-1,1,10] 

9. Simulate a random sample of size n = 1000 with an exponential distribu­
tion and plot its histogram against the exponential density. Verify the Law 
of Large Numbers and the Stability of Fluctuations Law for these data. 
Use UVW and/or Statistics packages. 

10. Adjust the proof of the Poisson limit behavior (3.5.5) of the binomial 
distribution to show its generalization (3.5.9) for arbitrary intensities JL. 

11. Simulate sums of independent Cauchy random quantities but normalize 
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them by n-1 and n-3/ 2 instead of the usual SFL ..(ii. Draw the corre­
sponding histograms. Comment on what you see. 

12. Implement the Kolmogorov-Smimov test of fit for the exponential distri­
bution (find its mean first) and the water drops data contained in the file 
DROPS located on the UVW Web Site. Do the Q-Q plots as well. 

13. Devise the Mathematica code to produce the following display of the out­
comes of 100 repetitions of Bernoulli series of length 10. 

14. Calculate the mean and variance of the geometric and negative binomial 
distributions of Section 3.5. Use Mathematica if your analytic tools fail 
you. 

15. In the experiments supporting the SFL, draw the smoothed histograms 
of rescaled sums by shifting them by Ax = k/10th of the bin size, for 
k = 0, 1, ... , 9 and then averaging the 10 shifted histograms. Compare 
graphically the smoothed histograms with the N(O, 1) density. 

3.12 Bibliographical notes 

For more theoretical details on the Law of Large Numbers and the Stability of 
Fluctuations Law (Central Limit Theorem) consult Chapter 5 and/or any mathe­
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1987, 
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Chapter4 

Algorithmic Complexity and Random 
Stnngs 

In this chapter we will try to get to the heart of the notion of randomness by showing 
its fundamental connection with several concepts of algorithmic and computational 
complexity. Although the discussion illuminates the philosophical underpinnings 
of the concept of randomness for a concrete string of data, the conclusions are 
sobering: perfectly random strings cannot be produced by any finite algorithms 
(read, computers). A practical way out of this dilemma is suggested. 

4.1 Heart of randomness: when is random - random ? 

When one begins to contemplate the notion of randomness it is not unreasonable 
to start with consulting the relevant entry in the American Heritage Dictionary of 
the English Language. Here is what it says: 

ran·dom adj. 1. Having no specific pattern or ob­
jective; lacking causal relationships; haphazard. 2. 
Statistics. a. Of or designating a phenomenon that 
does not produce the same outcome or consequences 
every time it occurs underidentical circumstances. b. 
Of or designating an event having a relative frequency 
of occurrence that approaches a stable limit as the num­
ber of observations of the event increases to infinity. 
c. Of or designating a sample drawn from a popu­
lation so that each member of the population has an 
equal chance to be drawn. d. Of or pertaining to a 
member of such a sample: a random number. -See 
Synonymsatchance. -atrandom. Withoutdef­
inite method or purpose; unsystematically: "accusa-

203 © Springer International Publishing AG 2017 
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tions are not made at random, but form part of a coher­
ent whole" (Denis Baly). [Middle English randoun, 
from Old French randon, haphazard, from randir, to 
run, from Frankish ranrt(unattested), a running.] 
ran' dom·ly adv. 

Colloquially, randomness means a complete lack of discernible "rules" govern­
ing a given phenomenon and the lack of "predictability". However, such a broad 
and loosely worded definition is unlikely to produce a rigorous theory of random 
phenomena. To make our thinking on the subject more precise, let us begin by 
being more specific about what we mean by a "rule". 

Let us return to the five binary strings 

(a) 1111111111111111111111111 

(b) 10101010101010101010101010 

(c) 10010011100100111001001110010011 

(d) 011011100101110111100010011010 

(e) 0110111001011101111000100110101 

which were introduced at the beginning of Chapter 1. To what extent do we 
perceive them as random? Or more exactly, how would we order them depending 
on their perceived degree of randomness? To answer questions like this, we need 
to analyze what is so special about each of them that makes them feel more or less 
random. 

The following three properties of binary strings (i.e., finite words in the alphabet 
A consisting of two letters 0 and 1) seem intuitively acceptable as fundamental 
attributes of "randomness": 

(ML) The string has no exceptional features that stand out in the sense of belong­
ing to a large majority (reasonably defined) of strings, or perhaps, more 
cautiously, of being part of a large majority in the universe of strings of 
a given type. Such strings will be called here typical, or Per Martin-Lof 
random, as he was the person who crystallized this concept. 

(vM) Frequencies ofOs and Is in the string are stable under (admissible) rules of 
subsequence selection. Strings satisfying this property will be called here 
Richard von Mises random. 

(K) The string has a complex minimal description in the sense of not being 
easily described via easily discernible rules governing the alternation of 0 's 
and 1 's. Such strings will be called here Andrei Nikolaevich Kolmogorov 
random or computationally complex. The computational complexity 
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of a problem is its intrinsic difficulty as measured by the time, space or 
other quantity required for its solution. In other words, the computational 
complexity is the minimal cost of an algorithm which solves the problem. 

An effort to formalize the idea of a complex sequence which has no simple 
description rules might go as follows. Intuitively, the string of length n can always 
be described by n bits of information, that is, by a complete listing of its bits. 
But shorter descriptions may be possible. However, defining the computational 
complexity of a string xo, ... , Xn-i E A*, where A* denotes the family of all 
finite strings in the alphabet A, as the length of its shortest description in the 
natural language leads to the Richard-Berry Paradox discussed in Section 1.1. The 
expression 

The smallest number that cannot be defined in less than twenty 
words 

itself contains less than 20 words. 
The initial suspicion is that the problem lies in the "vagueness" of the natural 

English language. However, an example provided below shows that the natural 
language is not the main culprit here. 

Example 4.1.1 Richard-Berry Paradox in a Formal Programming Language. 
Consider a programming language PL strong enough to define all natural numbers. 
A description of a natural number n in PL is a pair D = (P, m), where P is a 
program in PL and the input m is a natural number. The program P would take m 
as an input, produce n as an output, and would stop (see Fig. 4.1.1) D 

m 
1------+ 

FIGURE 4.1.1 

p n 
1------+ 

Description of n in a formal language. 

PRINT 

For any natural number, there exists a trivial description 

Dn = (Pn, n), 

where Pn is the following program: 

BEGIN 
READ n 

STOP 

(1) 

(2) 
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PRINT n 
STOP 

By definition, the length of a description D = ( P, m) is the sum of the number 
of characters in program P and the number of bits in input m. So, for the trivial 
description (1) 

length Dn = 20 + log2 n + 1, (3) 

where 2 is the base in the binary representation for n. 
Now, the question of the computational complexity of a natural number n reduces 

to the optimization problem: For a given n E N, find in PL a description D = 
(P, m) of n such that the length of Dis minimal. Clearly, the trivial description 
Dn is not always optimal. Indeed, take the integer of the form n = 2k, k ~ 35, 
and consider the following program Rn: 

BEGIN 
READ k 
i = 1 
n=2 
WHILE i # k DO: n = n · 2, i = i + 1 
PRINT n 
STOP 

(4) 

The program has 49 characters, 29 more than Pn, but, since fork ~ 35 we have 
k < 2k-29, for large k the length of the trivial description (Dn, n) is greater than 
that of the description (Rn, k). 

It turns out that even in the formal programming language PL the optimization 
problem has no solution as long as PL is sufficiently strong to satisfy the following 
conditions: 

(a) It contains a program which, for every given program P in PL, computes 
the number of characters in program P and halts. 

(b) It accepts subroutines. 

(c) It performs some basic algorithms, including the WHILE construction. 

(d) It uses a finite alphabet. 

(e) It works with natural numbers written in a base p ~ 2. 

Each natural number n E N has at least one definition, for example the trivial 
definition (Dn, n) , and since the alphabet A used by PL is finite, the number of 
all definitions of length~ length (Dn. n) is finite. So, the optimization problem 
has (at least) one solution. However, the machine using PL would not be able to 
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find it. Indeed, assume to the contrary that there exists a program P in PL which 
produces such a shortest definition (P(n), m(n)) using inputm(n) (see Fig. 4.1.2). 

m 
t---+ 

FIGURE 4.I .2 

p 
SHORTEST 

DEFINITION 
OF n 

Program producing the shortest definition. 

Then consider, for all naturall EN, the following program Q1: 

BEGIN 
READ 1 
y=O 
z=O 
WHILE z < 1 DO: 

{ CALL P(y), 
z =length (P(y)) +length (m(y)) 
y=y+l} 

PRINT y 
STOP 

STOP 

(5) 

In view of the assumptions, it is a correct program. It prints the smallest natural 
numberrequiring definition oflength > l. But, on the other hand, for some constant 
c>O 

length(Qt) = length(l) + c < log2 1 + 2 + c < 1, (6) 

for llarge enough. A contradiction. 

It turns out that the resolution of this foundational difficulty can be achieved 
by considering the shortest description of a string for a given descriptive process 
(computer). Before we make these ideas more precise, we need to introduce the 
concept of a computable string, or a computable function. 

4.2 Computable strings and the Thring machine 
In this section we will try to formalize the idea of an effective description, or 

a computable string. The need for such a precaution follows from the discussion 
of the previous section. The device we choose is a symbolic computer called the 
Turing machine. It was proposed by the English mathematician Alan Turing, of 
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the Enigma decoding machine fame; the latter was credited with turning the tide 
in the World War II Battle of Britain. 

The Turing machine is a symbolic computing device that consists of the follow­
ing two components: 

(a) A control unit(CU), withafinitenumberofpossible states st •... , sm E S, 
one of which is called the halting state; 

(b) A (possibly) infinite memory tape divided into square (memory) cells, each 
cell containing one symbol of a finite alphabet at, ... , az E A or a blank 
B (see Fig. 4.2.1). 

cu 
FIGURE 4.2.1 

The Turing machine with a binary alphabet. 

The machine operates in discrete steps as follows: 

• At step 0 there is a finite contiguous (i.e., surrounded by blanks B) input 
written on the tape in the alphabet A. CU is positioned over the left-most 
cell containing the input. 

• At any step, CU is in one of the states St, ... , sm E S, scans the cell directly 
underneath, noting which character of the alphabet at, ..• , az E A appears 
in the memory cell. Then, depending on its own state and the character in 
the currently scanned memory cell, it performs one of the following four 
actions: 

(1) Changes its own state according to a finite matrix 

at a2 az 

.. C' St2 ,,, ) 
S2 S2t S22 S2z (1) 

Sm Smt Sm2 Smz 

(2) If the new state is the halting state, the machine halts. If its new state 
is not the halting state, then the machine: 
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(3) Moves one cell to the right (R) or to the left (L) according to a finite 
matrix 

at 

s1 ( du 
S2 d21 

Sm dmt 

(2) 

where dij = R or L; 

( 4) Changes the symbol on the currently scanned cell according to a finite 
matrix 

a1 a2 az 

,, ("" a12 .,, ) 
s2 a21 a22 a2z (3) 

Sm ami am2 amz 

Note that each Turing machine can be defined as a partial (i.e., not defined for 
all its arguments; this fact is indicated by the circle placed on top of the arrow) 
function 

T : S x A 3 (s, a) 
0 

1---+ T(s, a) E AU {B, L, R}, (4) 

with the understanding that the control unit halts when it faces the pair (s, a) for 
which the above function T is not defined. 

Every Turing machine generates a partial function 

(5) 

where, as usual, A* denotes the set of all finite strings in the alphabet A, by 
assigning a finite binary string Mr(z) E A to a finite binary string z E A as 
follows: 

(i) Write the string z on a blank tape; 

(ii) Place CU over the left-most letter of the string symbol of z and run it until 
it halts; 

(iii) Select as Mr(z) the maximal string (surrounded by blanks B) of which 
some letter is scanned when the machine comes to a halting state. 

The Turing machine permits us to introduce the correct definition of a com­
putable (recursive, effective) function. 
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Definition 4.2.1 Computable Functions. 
The function f which assigns finite strings f(x) E A* to certain finite strings 

x E A* is said to be computable if there exists a Turing machine T such that 
f(x) = MT(X). 

Remark 4.2.1 Computational Complexity. In practice, it is important to know 
how long it takes to compute the computable function for an input of given length, or 
how much space on the memory tape it would take to complete such a computation. 
It is simply not feasible to expect answers, even for reasonable input length, to 
problems that take an exponential time to solve, i.e., such that for an input of 
length n it takes ~ 10n steps to find the value of f. Even for n = 100, and a 
processor taking a billion steps per second, it would take about 1091 seconds to 
solve. With about 3 · 107 seconds in a year, that is some 3 · 1083 years, much more 
than the age of the Universe. 

For that reason, it is important to distinguish between problems in the class 
P-time that can be solved in polynomial time (i.e., in time less then nc, where n is 
the input length and cis a certain positive constant), or problems in the class P­
space that use a polynomial amount of memory, and other problems which are not 
thought to be feasible. There are many important problems that do not appear to 
be in the class P but can be demonstrated to have feasible (polynomial) algorithms 
for a nondeterministic Turing machine which permits a random outcome. Such 
problems are said to be in the class NP. It is known that the famous Hamilton 
circuit problem, that is a problem of deciding whether a graph G of n vertices has 
a path that visits each vertex exactly once and returns to the starting point, is in the 
class NP. It is known that 

class P-time c classNP c class P-space, (6) 

but it remains an open question whether or not these inclusions are proper. 

Remark 4.2.2 Martians and the Universal Turing Machine. There exists a 
universal Turing machine U such that for any Turing machine T there exists a 
binary string PT (a compiler ofT in the language of U) such that for all strings 
X E A* 

(7) 

where PTS is a concatenation of strings PT and s. Intuitively speaking, PT gives 
a program for machine T on the universal machine U. Such a universal Turing 
machine can be constructed effectively (see references in the Bibliographical Notes 
at the end of this chapter). It follows that Martians, humans, and computers will all 
approximately agree on the intrinsic complexity of n bits (for large n) of War and 
Peace, the Mona Lisa, and a Bernoulli sequence with parameter p. Experimentally, 
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the first two have been determined to be of the order n/3 and n/10, respectively, 
and the last one can be computed to ben(-p log p - (1 - p) log(1 - p))-the 
entropy of the Bernoulli sequence (see Section 2.8 and Kolmogorov's work on the 
complexity of works of art described in the Annals of Probability volume quoted 
in Bibliographical Notes). 

Remark 4.2.3 Undecidability of the Halting Problem. The number of all 
Turing machines is effectively denumerable, that is it is possible to provide an 
effective (computable) one-to-one pairing 

(8) 

between natural numbers and Turing machines. For this reason, the question 
"which machine computations eventually terminate with a definite result and which 
machine computations go on forever without a definite conclusion?" is undecidable. 
This surprising result can be formulated rigorously as: 

Thring Lemma. There is no computable function f such that for all n E N and 
x E A*, we have f(n, x) = 1 if Mrn (x) is defined, and f(n, x) = 0 otherwise. 

PROOF Suppose to the contrary, and define a partial recursive function 1/l(x) 
by 1/l(x) = 1 if f(x, x) = 0, and 1/l(x) is undefined otherwise (remember that 
f is totally recursive). Let 1/1 have an index k in the fixed enumeration (1) of 
partial recursive functions, i.e., 1/1 = Mn. Then Mn (k) is defined if and only if 
f(k, k) = 0, according to 1/l's definition. But this contradicts the assumption of 
existence of f as defined in the statement of the lemma. I 

The above proof depends on the "diagonalization" argument invented by Georg 
Cantor to prove that the set of all real numbers is not denumerable. The Turing 
Lemma itself is directly related to Kurt GOdel 's famous 1931 incompleteness 
theorem stating that there are statements of (Peano 's) arithmetic that are unprovable 
within such a system. 

Remark 4.2.4 Formal Definition of Recursive Functions. More formally, the 
set of recursive functions can be defined as the smallest set of functions containing 

(A) Successor functions 

Succf : A* 3 x ~----+ Succf(x) = a;x E A*; 

(B) Constant functions 

c: : (A*)n 3 (X!, ... , Xn) 1---+ c:(x,' ... 'Xn) = y E A*; 
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(C) Projection functions 

and which is closed under function composition and primitive recursion. The latter 
is defined as follows: f: (A*)n+l ~ A* is obtained by primitive recursion from 
g : (A*)n ~ A* and h; : (A*)n+2 __. A*, i = 1, ... , p if 

f(xt, ... , Xn, J..) = g(xt, ... , Xn), 

f(xt, ... , Xn, Succf(y)) = h;(Xt, ... , Xn, y, /(Xt, ... , Xn, h)) 

for all i = 1, ... p, Xt, ... , Xn, y E A*. A concatenation con2(A*)2 __. A* 
defined by the formula con2(x, y) = xy is a good example here. 

4.3 Kolmogorov complexity and random strings 

Having established in the previous section the formal notion of computable 
(recursive) functions, we are now prepared to introduce the correct notion of com­
plexity of a fixed string. Consider a finite alphabet 

A = {at, ... , az} (1) 

consisting of z ::: 2 letters and a (partial) computable function 

4J: A* x N 3 (x,n) 1---+ 4J(xin) E A*, (2) 

where, as before, A* is the set of all finite words in the alphabet A (including the 
empty word 0). 

Definition 4.3.1 Kolmogorov Complexity. 
The Kolmogorov complexity induced by 4J is a function 

Ktf> : A* x N 3 (:z:, n) t---+ Kq,(:z:in) E N U {oo}, (3) 

defined by the formula 

{
min {length (y): yEA*, 4J(yim) = :z:}, if :z: = 4J(yim) 

Ktf>(:z:im) = for some y E A*; 
oo, otherwise. 
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In other words, for each positive integer n, we have an effective dictionary 
l/J( . . In) translating some finite words y into the finite word x, and the related 
Kolmogorov complexity of x is the length of the shortest word y that the dictionary 
would translate into x or +oo if there are no words translatable into x. To gain an 
intuitive understanding of this concept, let us go through a number of examples. 

Example 4.3.1 Trivial Dictionary. 
Let q, : A* x N --+- A* be defined via a single, independent of n, trivial computable 
function f/J(xin) = x, for every x E A* and n EN. Then 

K~!J(xim) = length (x), x E X*,n EN. (4) 

D 

Example 4.3.2 Single Nontrivial Dictionary. 

Let f : N ~ A* be a (partial) computable function. In other words, we have a 
single dictionary containing effectively a denumerated list of finite words. Define 

l/Jt(xin) = f(n), for all x E A*, n EN. (5) 

If x = f(n) for some n, then l/Jt(0in) = x, where 0 is the empty word. Conse­
quently, 

K (x, m) = { 0, if x = [(m) 
1/Jt oo, otherwise. 

(6) 

Simply stated, if a word is listed in our dictionary, then its complexity is 0, and if 
it is not listed, then its complexity is infinite. 0 

Example 4.3.3 Series of Dictionaries, Each Containing Words of Fixed Length. 

Consider a partial recursive function q,: A* x N ~ A* given by the formula 

Then 

f/J(xin) = { x, ifleng~ (x) = n 
oo, otherwise. 

K.~.(xin) = {length (x), iflength (x) = n 
"' oo, otherwise. 

(7) 

(8) 

D 
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Example 4.3.4 "Optimal" Coding of Integers. 
Consider positive integers written in the binary form (i.e., finite strings written in 
the alphabet A= {0, 1}, with z = 2). In the set A~ of all strings of fixed length 
n introduce the following special enumeration: first, group strings in order of 
increasing number of 1 s in each string, and then, within each group, order strings 
lexicographically. For instance, the 24 = 16 strings of length 4 would thus be 
ordered as follows: 

0000 
0001,0010,0100,1000, 
0011,0101,0110, 1001,1010,1100, 
0111,1011,1101,1110, 
1111. 

Now, the idea is to encode sparse strings ::c E A~ more economically by their 
number, No.(::c), in the above enumeration. The number No.(::c) of a string ::c with 
small frequency m of 1 s will be relatively small, so the length of its description 
in the new enumeration would be small as well. Given our discussion of the 
information contents in Section 2.8, it is not surprising to see that if the relative 
frequency p = mIn of 1 s in string ::c is ~ 1 /2, then the number of binary digits 
required to encode No.(::c) is approximately (on the average) equal to 

nH(m/n), (9) 

where H is the binary entropy function 

H(p) = -plog2 p- (1- p)log2(1- p), O<p<l. (10) 

If our description of the new enumeration system itself requires, say, c binary 
digits, then the length of the new description of a string ::c E A~ containing exactly 
m 1 s is, approximately, 

nH(m/n) +c. (11) 

Observe that for large nand small frequencies mfn of ls this number is certainly 
smaller than n-the length of string ::c. Take, for example, two binary strings of 
length 32: 

00001001100000010100000000100000 

01001110100111101000001100101101 

and note that for the first one the ratio mfn = 6/32 and for the second one it is 

112. So, the first has a shorter definition. D 

Let us put this example in the context of Kolmogorov complexity. For each 
n EN, define 

t/>(No.(::c)ln) = x, 
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that is the number No.(z) (say, expressed as a string in the binary form) of the 
string z in the new enumeration is mapped into z. For example, in the case of 
n = 3, we get the following table of values of the (computable) function cfJ: 

( z ) ( 0 I 10 11 100 101 
C/J(zl3) = 000 001 010 100 011 101 

110 111) 
110 111 

If we denote by m(z) the number of Is in the string z, then the result of the above 
intuitive analysis can be rewritten in the form: for all z E A* 

( m(z) ) 
Kq,(zllength (z)) ~ length (z) · H 1 gth 

en (z) 
(12) 

whenever 
m(z) 1 

:-----:---:--:- < - . 
length (z) - 2 

(13) 

You will be asked to confirm this result experimentally in the Experiments, Exer­
cises, and Projects section at the end of this chapter. 

At this point we are ready to define a Kolmogorov random string as a string of 
maximal, or close to maximal, Kolmogorov complexity. More formally, we have: 

Definition 4.3.2 
A string z E A* is called Kolmogorov random if 

K(zllength (z))::: length (z). (14) 

Given an integer m, 0 < m < length(:~:), a string z E A* is called Kolmogorov 
m-random if 

K(zllength (z))::: length (z)- m. (15) 

ltis natural to ask the question: Are there any random or m-random strings? The 
answer is yes and it depends on a couple of simple estimates that are rigorously 
proved below. They also give a taste of what can be accomplished within the 
rigorous complexity theory. Recall that the general assumption is that the strings 
z E A* are written in the finite alphabet A= {aJ, ... , azl, z ::: 2. 

Proposition 4.3.1 
For all positive integers n, r E N, n ::: r, there are at most zr strings of length n 

and Kolmogorov complexity r, i.e., 

#{z E A*: length(:~:)= n, Kq,(zln) = r} :S zr. (16) 
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PROOF Denote 

A = {z E A* : length (z) = n, KtfJ(zln) = r} 

and define a mapping D : A ~ (subsets of A*) by the following formula: 

D(z) = {y E A* : length (y) = r, t/J(y, length (z)) = z}. 

Then, for any z E A, the set D(x) =f:. 0, and if x1 =f:. x2 then D(x1) n D(x2) = 0 
so that D(xi) =f:. D(x2). Thus, by a simple counting argument, 

# A = # D(A) ~ # A' = z'. I 

The above proposition immediately yields the following: 

Proposition 4.3.2 
For any integers n, m E N, 0 ~ m < n, there are at most (zn-m - 1)/(z - 1) 

strings of length n and Kolmogorov complexity smaller than n - m, i.e., 

n-m 1 #{ z E A* : length (z) = n, KtfJ(Zin) < n - m} ~ z z _ ~ . (17) 

PROOF Add sidewise the inequalities from Proposition 4.3.1 for r = 
0, 1, 2, ... , n - m- 1. Then, an application of the formula for the sum of the 
geometric progression gives us the estimate (17). I 

Applying the above upper estimate to the complementary set of strings with 
complexity at least n - m, and recalling that the total number of strings of length 
n is zn, we get the following: 

Corollary 4.3.1 
For any n, m E N, 0 ~ m < n, the fraction of all strings of length n which 

are m-random is strictly positive. More precisely, denote by c(n, m) the number 
of strings of length n with the Kolmogorov complexity within m of the maximal 
complexity of such strings, i.e., 

c(n, m) := # {z E A*: length (z) = n, KtfJ(Zin) ~ n- m }· (18) 

Then 
c(n, m) > (l _ z-m - z-n) > ( 1 _ z-m ) ~ O. 
~ z-1 z-1 

(19) 
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In particular, the fraction of Kolmogorov random strings is positive as 

(20) 

The last estimate shows that there is at least one Kolmogorov random string of 
each length, that is a string z of length n whose complexity satisfies condition 
Kq,(zin) :::: n. It also shows a drastic difference between the properties of binary 
strings and strings written in longer alphabets: If z :::: 3, then, in view of (20), 
limn-oo c(n, 0) = oo that is the number of Kolmogorov random strings of length 
n increases to infinity as n -+ oo. As a matter of fact, in such a case, more than 
half of all the strings are Kolmogorov random. However, inequality (20) does not 
give such assurance for z = 2 in which case it only states that c(n, 0) > 0 (or 
c(n, 0) > 1, if one uses the stronger first inequality from Corollary 4.3.1). On the 
other hand, if m > 0, then the number of m-random binary strings also increases 
to infinity with n. For example, if z = 2, m = 10, then more than 99.8% of all 
strings oflength greater then 10 are 1 0-random. 

Remark 4.3.1 Godel's Incompleteness Theorem. The above proofs of exis­
tence are non-effective. The Kolmogorov complexity function K(z) is not com­
putable. Indeed, if K ( z) were computable, then we could define a string of high 
complexity with a short program - the program would make use of the algorithm 
to compute K(z). 

In other words, although we have proved the existence of Kolmogorov ran­
dom strings, the statement "z is Kolmogorov-random" is not provable within any 
consistent1 formal deductive system (i.e., consisting of definitions, axioms, rules 
of inference) for all but finitely many strings. 

Indeed, fix a formal system :F (say, described completely by f bits) in which the 
statement "z is Kolmogorov-random" is expressible. Assume to the contrary that 
the proof of such statement, for all random x of any length n, is contained within 
the system :F. Then, take a random string of length n » f and print the proof that 
it is random. 2 The whole proof uses only log n + f < n bits of data-impossible 
if the system :F is consistent. 

Results of this type, although in a different context, are known as Gooel incom­
pleteness results. Here, although initially it might sound pessimistic and look like 
a reincarnation of the Berry-Richard paradox, it is understandable if one contem­
plates the notion of randomness at a deeper level. 

1 Recall that a formal system is said to be consistent if no statement is expressible in this system 
that can be proved to be both true and false. 
2The notation a » b means that a is much greater than b. 
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In our present context, the existence of the universal Turing machine mentioned 
in Section 4.2 also can be put on a more formal ground. The next result is funda­
mental for the theory of algorithmic complexity. 

Kolmogorov's Universality Theorem. There exists a partial recursive function 

w: A* x N--+ A* such that for any¢ : A* x N--+ A* one can effectively find a 
C(= C(w, ¢))such that 

Kw(xjm) ~ K4>(xjm) + C V x E A*, mEN. 

The importance of the result rests, of course, on the fact that the constant C is 
independent of the string x and its length m, which means that the complexity 
measured by different devices is essentially the same (up to a constant C). For 
very long strings, the differences are negligible. So, for them all the previous 
considerations in this section can be assumed to be conducted in the context of 
a fixed universal Kolmogorov complexity K = Kw. Then, in view of the Kol­
mogorov's Universality Theorem and Example 4.3.1 (where ¢(x, m) = x) there 
exists a c E N such that 

K(xjlength (x)) ~length (x) + c, Vx E A*, 

In particular, if the number z of characters in the alphabet A is > 2, then there 
exists a sequence (mn) C N such that 

n ~ mn ~ n +c, 

and such that 

lim # {x E A*: length (x) = n, K(xjn) = mn} = oo. 
n--+oo 

4.4 Typical sequences: Martin-Lof tests of randomness 

In this section we return to the idea of a typical or Martin-Lof random string first 
brought up in Section 4.1. In the context of random strings it is often beneficial to 
think about very long, perhaps even infinite, strings. How do we define "small", 
"negligible", "exceptional", or "atypical", families of such strings? One natural 
way to introduce a "measure" measuring the size of families of, say binary, strings 
written in the alphabet A= {0, 1} is to proceed as follows: 

Denote by A00 the set of all infinite binary strings and by A*, as before, the 
set of all finite binary sequences. Each finite string x = (xt, x2, ... , Xn) E A* 
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determines what is called an-dimensional elementary cylindrical set r x of infinite 
strings that begin with the finite string x and have no restrictions imposed on the 
digits Xn+ 1, Xn+2• ... , i.e., 

fx := {y E A00 : YI =X}, ... Yn = Xn, Yn+l· Yn+2· ... arbitrary}. (1) 

The name "cylindrical" is an obvious analogy to cylindrical sets in Euclidean 
spaces for which some coordinates are subject to constraints while others remain 
unconstrained. Since there are 2n n-dimensional elementary cylindrical sets in 
A 00 , and they are all mutually disjoint, we will assign to each of them the same 
measure 

Pr (fx) = T length (X). (2) 

It corresponds to the symmetric Bernoulli probability distribution on the binary 
strings of length n. So, for example, there are 24 = 16 4-dimensional elementary 
cylinders, starting with the cylinder the string therein being of the form 

0000 ......... . 

The strings in the second, third, and so on, cylinders are of the form 

0001 ........ . 

0010 ........ . 

0011. ....... . 

1101. ....... . 

1110 ........ . 

1111 ........ . 

Each of these cylinders is assigned probability= 1116. 
In this context it is tempting to try to define a "negligible" family of infinite 

strings N as any subset of A00 which has the probability (2) zero. This means that 
N would have to be contained in a finite collection of cylinders (and we already 
know how to measure those via the formula (2)) of arbitrarily small total probability. 
More formally, we have: 

Definition 4.4.1 Sets of Infinite Strings of Probability Zero. 
Let N be a set of infinite binary strings. We shall say that 

Pr(N) = 0 
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if, for any e > 0 there exist an integer k eN and finite strings ~ 1 , ... , ~k e A* 
such that 

(i) U7=1 r ~i :) N, 

(ii) E7=1 Pr (r ~i) < e. 

Then the next step would be to call a string "atypical" if it belongs to at least one 
"negligible" set of probability zero and, finally, to call a string "typical" if it is not 
"atypical", i.e., the family T of "typical" strings would be defined by the formula 

T =A00 \ U N. 
Pr (N)=O 

As attractive as this line of reasoning might look, it is not successful since, as it is 
easy to check, with this definition the set T of "typical" strings would be empty. 

The above approach was salvaged by Per Martin-LOf who has shown how the 
above definition of the family of strings of probability zero can be fixed. 

Following his approach, we shall say that a set in infinite strings is effectively of 
probability zero if the cylinder bases in Definition 4.4.1 can be selected effectively. 
More precisely, we have: 

Definition 4.4.2 Sets of Infinite Strings Effectively of Probability Zero. 
A set N c A00 is said to be effectively of probability zero, in short 

Pr (N) c;g 0, 

if, for any e > 0, there exist an integer k E Nand computable strings ~1 , ... ~k 
which satisfy conditions (i) and (ii) of Definition 4.4.1. 

Now, the set T of typical strings 

is nonempty, and moreover 

T :=A00 \ U N 

Pr (N)~O 

This is the contents of the Martin-LOf's Theorem. For its proof, and a more detailed 
analysis of the concept of Martin-LOf randomness, we refer to the Bibliographical 
Notes at the end of this chapter. In this context, a string ~ e A00 is called Martin­
Lot random if~ e T. 
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Example 4.4.1 A Typical State of the Glass of Water.3 

In large systems, such as statistical mechanical ensembles, the property of being a 
member of a large majority is often related to having a certain measurable "typical 
property". Consider a gas G of n molecules of mass 2, with three component 
velocities v;', vl, vi, i = 1, 2, ... , n, which describe the kinetic state of the system. 
Our "universe" consists of systems G for which the total kinetic energy is bounded 
by a certain constant, say 1, i.e., such that 

n 

KinEn (G):= L [<v;')2 + (vt) 2 + (v?)2] ~ 1. 
i=l 

In other words, in the phase space R 3n 3 (v;', v;, vi), i = 1, 2, ... , n, our "uni­
verse" is simply a 3n-dimensional ball of radius 1, with a 3n-dimensional volume 
equal to 

T{3nj2 

Vn = r(l + 3n/2). 

We assume that the energies are randomly uniformly distributed over this unit 
ball (see Mathematica Experiment 3.10.2). Now, the volume of the part of our 
"universe" that consists of states with kinetic energy less than 1 - e is equal to 
( 1 - e )3n Vn so that the fraction of our "universe" with energies within an e of the 
maximum energy 1 is 

1 - (1 - e)3n. 

This number is extremely close to 1 for large systems, that is for large values of n. 
For example, even with only n = 3000 molecules, 99.99% of our "universe" 

has approximately the same (thus the typical) kinetic energy equal to 1. More 
precisely, 

Volume { G : .999 ~ KinEn (G) ~ 1} 
. ~ .9999. 

Volume {G: KmEn (G)~ I} 

In other words, the probability that the kinetic energy of a molecule is within 0.001 
of 1, is about 0.9999. Just imagine how close to 1 that probability would be with 
a more realistic n = 1023 molecules. D 

The above simple calculation explains an intuitively obvious thermodynamic 
fact that although different molecules can and do have different and "randomly" 
distributed velocities, it is extremely unlikely to observe in a glass of water a 
spontaneous formation of subregions (say bottom and top halves of the glass) with 
drastically different temperatures (say, 32° F and 212° F.) 

3Tbis striking example was borrowed from David Ruelle's book. 
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The notion of a typical or Martin-LOfrandom string permits us to construct tests 
of randomness. So, consider a finite binary string a:= XtX2 •• . Xn written in the 
alphabet A = { 0, 1}, and remember that the quantity 

Xt + ... +xn, (3) 

simply counts the total number of 1s in the string a:. The sum (3) is familiar 
from the development ofthe binomial distribution in Section 3.1. Remembering 
the construction of measure (2) on cylindrical sets of strings, and the fact that the 
equipartion of Os and 1 s was a fundamental desirable feature of random strings (see 
Section 1.1), we can propose the following algorithm of testing the hypothesis4 

that "a: is random". 

Example 4.4.2 A Basic Test of Randomness. 
Select the significance level c = 2-m, m = 1, 2, ... , n, and find the smallest 
constant 8 = 8 (m, n) such that the number of strings y of length n for which the 
inequality 

I Yt + ... + Yn 11 ------- >8 
n 2 -

holds is< 2n-m or, in other words, the number 8 has to satisfy the inequality 

Then: 
(i) Reject the hypothesis of randomness of a: (at the significance level c), if 

IX!+ ... + Xn 11 ------- >8· 
n 2 - ' 

(ii) Do not reject it, in the opposite case. 

For example, for strings of length n = 10 and significance level c = 2-S, that 
ism = 5, it is easy to see that 8 = 8(5, 10) = 0.4, since exactly 22 strings y out 
of the total of 210 = 1024 satisfy the inequality 

I Yt + ... + Yto - ~I > ~. 
10 2 - 10 

4The general idea of statistical hypothesis testing will be studied at length in Part 3 of this book. 
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Indeed, these are the strings containing either zero, one, nine, or ten 1 s. Hence, 

Pr { A to : I Yt + ... + Yw - ~I > ~} = ~ ~ 0.215 < rs. 
y E 10 2 - 10 1024 

Thus our test would not reject, at significance level 2-5 ~ 3% (meaning that the 
small minority of at most 3% of all strings of length 10 would fail this tests), as 
random all the strings for which the relative frequency of 1s differs from 1/2 b~ 
less than 0.4, i.e., all the strings containing at least two, and at most eight, 1 s. U 

Of course the above test is just a coarse example but its spirit is correct, and 
Martin-Lof used this simple idea to propose a general concept of a test (or rather a 
series of tests with improving significance levels) of randomness of strings written 
in an alphabet A= {at, ... , az}. 

Definition 4.4.3 Martin-LiifTest of Randomness. 
A non-empty effectively enumerable set V c A* x (N \ 0) is called a Martin-Lof 
test if, for each n EN and m = 1, 2, ... , 

and 

Vm+l C Vm := {:.c E A* : (:.c, m) E V}, 

zn-m 
#{:.c E A* : length (:.c) = n, :.c E Ym} < --. 

z-1 

(4) 

(5) 

It is an obvious observation that if V is a Martin-Lof test and (:.c, m) E V, then 
necessarily 

length (:.c) > m ~ 1. 

Now, let us consider a number of illuminating examples. The first one will connect 
the notion of the Martin-LOf test of randomness with the notions of Kolmogorov 
complexity and randomness considered in Section 4.3. 

Example 4.4.3 Testing Randomness via Kolmogorov Complexity. 
Consider a computable function tfJ : A* x N -+ A*. Then 

yt/> = { (:.c, m): :.c E A*, m = 1, 2, ... , and 

Ktf>(xilength (x)) <length (x)- m} 

is a Martin-LOf test. This follows directly from Proposition 4.3.2. D 
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Example 4.4.4 
Select an q E Nand a finite string x E A* such that length (x) > q :::: 1. Then, 
the set 

H(x, q) = {(x, 1), (x, 2), ... (x, q)} 

defines a Martin-Loftest. In fact, Vm = {(x, m)} form ::: q, and= 0 form > q. 
It just declares one particular string to be non-random. We need to check only the 
second condition (5). This is done as follows: Because 

#{yEA*: length (y) = n, (y, m) E H(x, q)} (6) 

is equal to 1 if n = length (x), and 1 ::: q ::: q, and 0, otherwise, we have that 
the number in (6) is less than zn-m /(z - 1), since length (x) > q > m, i.e., 
zn-m/(z -1) > 1. D 

Example 4.4.5 
Take x, q as in Example 4.4.4. Then, 

H(x,q) = {<y,n): y E A*,n EN, 1::: n::: q,y :J x}. 

is a Martin-Lof test. The notation y :J x means that y is a concatenation of x and 
some other string w E A*, i.e., y = xw. Again, we will verify only the second 
part of Definition 4.4.3. Take n, m E N with m :::: 1. Then, 

#{yEA*: length (y) = n, (y, m) E H(x, q)} 

= {#{yEA*: length(y) = n, y :J x}, if 1 ::: m::: q, n:::: length(x), 
0, otherwise, 

= { zn-length(x), if 1 ::: m ::: q, n :::: length (x), 
0, otherwise, 

< zn-m /(z- 1), 

because length (x) > q > m. D 

The question of how to select proper tests of randomness is not easy. Testing 
equipartition is one idea suggested by our discussion in previous chapters. Other 
tests are suggested by the theoretical models of randomness such as those arising 
in the context of the notion of statistical independence and the Kolmogorov's 
axiomatic probability theory which will be developed in Chapter 5. They could 
involve, for instance, testing the Gaussianness of deviations from the mean (the 
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Central Limit Theorem) or other, more subtle phenomena, such as the law of the 
iterated logarithm. 

The set of all Martin-Loftests is effectively enumerable. However, a finite union 
of Martin-Loftests of type H(x, q) (see Example 4.4.4) need not be a Martin-LOf 
test. For example, take z = 2, a1 = 0, a2 = 1, XJ = 00, x2 = 01, X3 = 10. Then 

H = H(XJ, 1) U H(x2, 1) U H(x3, 1) 

is not a Martin-Lof test as the second condition in Definition 4.4.3 is violated. On 
the other hand, there exists an analog of the Kolmogorov's Universality Theorem 
of Section 4.3. 

Martin-Lof's Universality Theorem. There exists a universal Martin-Liif test 
U such that for every Martin-Lof test V one can effectively find a positive integer 
c = c(U, V) such that,for all m ~ 1, 

A universal Martin-Lof test U has the following property: if a string is random 
with respect to U, then it is random with respect to any other test (with perhaps a 
change of the significance levels). 

Definition 4.4.4 
The critical level induced by an Martin-Liif test V is given by a function 

mv: A*~ N 

defined by the formula 

( ) { max{m ~ I : x E Vm}, 
mv x = 

0, 
ifx E V1, 

otherwise. 

In other words, the critical level is the smallest level of significance (i.e., z-m) 

at which the randomness hypothesis is rejected. In terms of the critical level, the 
definition of the universal test U can be rephrased as follows: U is a universal 
Martin-Loftest if for every Martin-LOftest V there exists a constant c = c(U, V) 
such that for all x E A* 

mv(x) ::::: mu(x) +c. 

Also, there exists a relation between the fixed Kolmogorov's universal complex­
ity discussed in Section 4.3 and the critical level of a universal Martin-LOf test. 
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Namely, one can find a positive integer q such that for all a: E A* 

!length (a:)- K{:z: !length (a:))- mu(a:)l ~ q. 

The proof of this result is quite difficult and will not be given here (see Bibliograph­
ical Notes). However, given the above result, it is not hard to see that a Martin-LOf 
test associated with the universal Kolmogorov complexity is universal. 

Corollary 4.4.1 
Fix a universal Kolmogorov algorithm w : A* x N -+ A*. Then every 

Kolmogorov-random string withstands the universal Martin-Liiftest vw. 

Less formally, Kolmogorov-random strings possess almost all conceivable sta­
tistical properties of randomness. Also, every m-random string withstands the 
universal Martin-LOf test vw. Indeed, for some 

m < length (x), K {a: !length (a:)) 2::: length (a:) - m 

so that (a:, m) ¢ vw. 
On the other hand, asymptotically random strings are not constructable, i.e., 

there is no effective algorithm for generating (m)-random strings. More exactly, 
the function 

K: A*-+ N, K(:z:) = K(:z:llength (a:)) 

is not recursive. More generally, iff : N ~ A* satisfies, for n in the domain of 
f, the condition 

Kw(f(n)ln) 2::: a(n), 

and a : N 1-+ N is such that limn~oo a(n) = oo (e.g., a(n) = n, a(n) = Llog2 nJ, 
a need not be recursive), then f is not a computable function. In particular, the 
critical level induced by an Martin-Loftest Vis not computable, and the universal 
Kolmogorov algorithm w is not computable. 

4.5 Stabllity of subsequences: von Mises randomness 

In this section we briefly return to the notion of von Mises randomness to com­
plete the discussion of Section 4.3. The idea is that the frequencies of letters in a 
string should be stable under the operation of substring selection. This is clearly 
related to the equipartition ideas introduced in Section 1.1. 
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To illustrate what we have in mind, let us consider a string of Os and 1 s of 
length n containing exactly m Is. For any "method" of splitting a random string 
into two substrings oflengths n 1 and n2, with m 1 and m2 Is, respectively (so that 
n = n1 + n2, and m = m1 + m2), one would like to see the frequency of Is in the 
original string preserved in the substrings, i.e., one would like the quantity 

to be small. More precisely, for random strings of increasing length, one would 
like to see, for each e > 0, 

Pr{zeAn:l::-::l<e}~1. as n 1 ,n2~oo. (1) 

where Pr is the uniform measure on the cylindrical sets of strings introduced in 
Section 4.4. 

Clearly, not every "method" of selecting substrings is admissible. If we say: 
select the subsequence which contains only 1 s then, for sure, the stability of fre­
quencies will be ruined. So, one of the principal tasks here is to describe admissible 
algorithms of selecting substrings. 

For simplicity, let us consider an infinite binary string z = (x1, x2, ... , ) written 
in the alphabet A = {0, 1}. The following definition of an admissible algorithm q; 
was devised in the late thirties by Alonzo Church. 

Definition 4.5.1 
The Church-admissible substring selection algorithm is a computable function 

q;: A*~ {Yes, No}, 

such that the decision Yes to include the Xk in a substring depends only on the 
values of x1, •.. , Xk-1· and such that the selected digits appear in the substring 
in the same order as in the original one. To be more precise, the input of q; is 
= x1, ... , Xk-1· and the output= Yes for inclusion of Xk in the substring, or No 
for exclusion of that digit. 

The subsequent development of the algorithmic complexity theory demon­
strated, however, that such a concept of admissible selection algorithm is somewhat 
too strict when placed in the context of Kolmogorov and Martin-LOf rapdom­
ness, and the resulting class of Church-random sequences-too large. All the 
Kolmogorov-random strings tum out to be Church-random but there are Church­
random strings that fail some basic Martin-LOf tests of randomness (such as the 
tests based on the so-called Law of Iterated Logarithm, see Chapter 5). 
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In response to this crisis, Andrei Nikolaevich Kolmogorov introduced the fol­
lowing broader selection rule: 

Deflnititm 4.5.2 
The Kolmogorov-admissible substring selection algorithm is a computable func­

tion for which the inputs are ,for each kEN, 

and the output is nk+t (# nt, ... , nk) and Yes or No, that is, a decision on whether 
or not to include Xnk+ 1 in the substring. In this definition, the order of the terms in 
the selected substring need not be the same as in the original string. 

This definition, and the older von Mises' ideas of"collectives", permit introduc­
tion of a usable concept of von Mises randomness. 

Definition 4.5.3 
An infinite binary string is said to be von Mises-random if the frequency of Is of 
any of its Kolmogorov-admissible substrings is equal to I /2. 

It is known that any Kolmogorov-random sequence is also von Mises-random. 
However, the problem of whether these two classes of random sequences are the 
same remains open. 

4.6 Computable framework of randomness: 
degrees of irregularity 

As we have seen in this chapter, an analysis of the concept of randomness of a 
fixed binary string very quickly leads to subtle, or even philosophical considera­
tions. Although all of this analysis impacts the computer generation of pseudoran­
dom numbers used in simulation, Monte Carlo methods and secure ciphers (see 
Sections 1.13, 2.8, etc.), the latter has its own demands and requirements such as 
ease of coding, set-up and running time, memory requirements, and portability. 

The concept of Kolmogorov randomness as maximal computational complexity, 
although intellectually so appealing, and obviously of great relevance for crypto­
graphic purposes, is, by definition, the worst one for computer implementation 
and suffers from fundamental incomputability problems. So, in practice, as we 
mentioned in Chapter 1, one uses relatively simple recipes, such as the linear con­
gruential methods or quadratic residue (QR) methods, containing few parameters 
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and one concentrates on optimal selection of these parameters from the viewpoint 
of a battery of tests one can run on them and that are theoretically suggested by the 
notion of Martin-LOf's hierarchy of tests. As a matter of fact, different purposes 
for which the pseudorandom numbers are generated may require different batteries 
of tests. 

Practically, one always deals with periodic random strings, and, of course, one 
wants the periods to be as large as possible. One also wants to avoid any obvious 
httrinsic structure (such as lattice structure, see Fig. 1.11.1) in a pseudorandom 
string. Then one runs some of the statistical tests on it such as the uniformity 
test checking the equiparition properties (based on the Kolmogorov-Smimov law 
of Section 3.9), frequency test (based on the Law of Iterated Logarithm of Sec­
tion 5.7), gap test, run test, permutation test, or the test for serial correlation that 
probes the interdependencies within the pseudorandom sequence. What we mean 
by some of them will become clearer after we develop appropriate probability the­
ory and statistics tools in subsequent chapters. Here are some simple examples 
complementing the Kolmogorov-Smimov goodness-of-fit test from Section 3.9. 

Example 4.6.1 Chi-Square Test. 
This test applies to the general discrete random quantity taking values Vt, ..• , VN 

with distribution F. The null hypothesis Ho is " the sequence Xt, •.. , Xn, is 
a sample of independent random quantities with common distribution F = 
(pt •... , PN )". Let/; besamplefrequenciesofvalues v;, i = 1, 2, ... , N (binning 
can be employed for an absolutely continuous distribution). Then, asymptotically, 
for large n, the random quantity 

N 2 
2 ""' (Ji - np;) 

XN-1 := L...-
i=l np; 

(1) 

has the chi-square distribution with N -1 degrees of freedom. The approximation 
becomes reasonable if the minimum frequency of the possible values is at least 
five. The hypothesis Ho is rejected, at a prescribed significance level, for values 
of x;_1 larger than the corresponding critical value. D 

This general test can be applied to test the particular uniformity hypothesis, of 
interest in this section, in several ways. One of the possibilities is shown below. 
For more details on this test see Chapter 8. 

Example 4.6.2 Birthday Spacing Test. 
The null hypothesis Ho is ''the sequence u 1, ... , Uk. is a sample of independent 
random quantities uniformly distributed on the unit interval [0, 1)". Select a pos­
itive integer d. Sort the sequence of integers h = Ldu d, ... , A = LdukJ in the 
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nondecreasing order to obtain the order statistics 

Denote by X the random quantity equal to k minus the number of distinct spacings 
among 

j(2) - j(1)· j(3) - j(2)· ... , j(k-2) - j(k-1)• j(l) + d- j(k)· 

It is known that under Ho, asymptotically, for large d, the random quantity X has 
the Poisson distribution 

i = 1, 2, .... (2) 

Now, independently repeating this procedure n times, we can apply the chi-square 
test of Example 4.6.1. 0 

Example 4.6.3 Autocorrelation Test. 
The null hypothesis Ho is again "the sequence u 1, •.. , Uk, is a sample of indepen­
dent random quantities uniformly distributed on the unit interval [0, 1)". Define 
the autocorrelation, with delay d, by the formula 

1 k-d 
AC (d) := k _ d L)u; - 1/2) (u;+d - 1/2). 

i=1 

(3) 

Under the hypothesis Ho, the random quantity AC(d) has mean value 0 and variance 
1j(l44(k- d)). One can show that the random quantity T = 12Jk- d AC (d), 
has asymptotically, fork much larger than d, the N(O, 1) distribution. This fact 
now can be used in a standard way to reject hypothesis Ho at a given significance 
level, selecting the critical rejection interval from the tables of the standard normal 
distribution, like in Section 3.7. 0 

Degrees oflrregularity. In this section, we would also like to describe a recent 
effort by Steve Pincus, Burton H. Singer, and Rudolf E. Kalman (see references 
in the Bibliographical Notes section), to produce a computable framework for 
randomness based on the concept of approximate entropy. 

Consider a binary string z = (XI. x2, ... , Xn) of length n and its n - m + 1 
blocks 

z(i) = (X;, Xi+1, ... , Xi+m-1), i = 1, ... , n- m + 1, (4) 
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of length m ~ n each. The distance d(x(i), x(j)) between the blocks x(i) and 
x(j) is defined as 

d( x(i), x(j)) := _max lxi+k-1 - Xj+k-II 
k-!,2, ... ,m 

(5) 

It is either 0 if the two blocks are the same, and 1 if they are different. For a fixed 
real number 0 < E < 1, the quantity 

m #{j : d(x(i), x(j)) ~ E, 1 ~ j ~ n- m + 1} 
C; := ~~--------~------------------~ 

n -m+ 1 
(6) 

measures the fraction of blocks of length m which are exactly the same. The role 
of E is not essential here, but it is introduced so that nonbinary strings could also 
be considered within this framework. 

Definition 4.6.1 Approximate Entropy. 
Consider a fixed binary string x = (x,, xz, ... , Xn) of length n, and its blocks 

of length m. The approximate entropy of x measures the logarithmic frequency 
with which blocks of length m that remain identical for blocks augmented by one 
position. More precisely, 

m;::: 1, (7) 

where 
n-m+! 

<l>m := L lncm, 
n-m+l 1 

i=l 

(8) 

with AE~(x) := -<1> 1• 

The above definition is, obviously, a cousin of the concepts of the Grass berger 
and Procaccia's correlation dimension and of Shannon's entropy, introduced in 
Sections 2.8 and 2.9. Large values of AE(x) imply strong fluctuations and irreg­
ularities in the string x. 

Definition 4.6.2 Irregular Strings. 

A binary string x~n) of length n is said to be {m, n}-irregular if 

(9) 
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where the maximum is taken over all 2n binary strings of length n. It is called 
n-irregular if it is {m, n}-irregular form= 0, 1, 2, ... merit(n), where 

merit(n) := max{m: 22m :::; n}. (10) 

The selection of merit is motivated by the fact that for a "typical" Bernoulli 
random string Xn the limit 

is equal to the entropy of the Bernoulli ensemble. 

Example 4.6.4 Irregular Strings of Length n = 5. 
In this case, merit (n) = 1, and the string x = (Xt, x2, X3, X4, xs) is 5-irregular if 
both 

(11) 

and 
AE1(x) = maxAE1(x) ~ 0.7133. 

X 
(12) 

Out of 25 = 32 binary strings of length 5, the {0, 5}-irregular strings satisfying 
condition (11) are those with three Os and two 1s, or two Os and three 1s. There 
are 20 of them. Of these, only four, 

(1,1,0,0,1), 
(1,0,0,1,1), 
(0,0, 1' 1 ,0), 
(0, 1 '1 ,0,0), 

satisfy the condition (12) as well, that is are also {1, 5}-irregular. Note in each of 
the 5-irregular strings, each of the four blocks oflength two, (0,0), (0,1), (1,0), and 
(1,1), occurs once, the property not enjoyed by 16 strings that are (0,5)-irregular, 
but not (1,5)-irregular. D 

Remark 4.6.1 As the length n of the strings increases, the fraction of those that 
are n-irregular decreases. It is easy to see for n-irregular strings of even length 
n = 2k, since they have to have exactly k Os and 1s, and the fraction of those 
among all 2n strings of length n is, in view of Stirling's formula, 

e:) (2kje)2k.f41Ck 1 1 
22k ~ (k/e)2k2rrk 2 2k = ,Jlik" (13) 
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For infinite binary strings x = (XI, x2, ... ), for which the limit 

(14) 

exists, we can introduce the following definition of computational randomness: 

Definition 4.6.3 Infinite Computationally Random Strings. 

An infinite binary string xis said to be computationally random if AEm(x) = 

In 2 ~ 0.693,/or all m ~ 0. 

Clearly, In 2 is selected because it gives the maximal entropy rate for Bernoulli 
random sequences, with the maximum information per digit carried. One can show 
that if the approximate entropy is less than In 2, then the finite prior history block 
biases the subsequent observations, resulting in a degree of predictability for the 
string. 

Example 4.6.5 Deficits from Maximal Irregularity of the Champemowne number, 
1r, e, ../2, and ./3. 
We can study the proximity to maximal irregularity of a finite string x 
(xi, ... , xn) of length n by considering the quantities 

DEFm(x) :=max AE~(y)- AE~(x), 
y 

(15) 

which we will call the deficit from maximal irregularity. D 

For the initial string of length 20 of the base 2 Champemowne number 

~ = (0, 1' 1' 0, 1' 1' 0, 0, 1' 1' 0, 1' 1' 1' 1' 0, 0, 0, 1' 0, 

checking the blocks of length 2 (i.e., for m = 1 ), gives the deficit from maximal 
regularity 

DEFm(~) :=max AEi0(y)- AEi0 (~) ~ 0.693-0.677 = 0.016, (16) 
y 

whereas, for the periodic 

p = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ) 



234 Chapter 4. Algorithmic Complexity 

we have the deficit 

DEFm(p) :=max AE~0(y)- ~0(p) ~ 0.693-0.000 = 0.693. (17) 
y 

Recently, Pincus and Kalman (see Bibliographical Notes) computed the deficits 
from maximal irregularity for initial strings of length n of the binary expansions 
of the numbers 1r, e, ,.fi, and ../3, checking the approximate entropy for 1-blocks 
and 3-blocks, that is computing DEF,: and DE~. The computations were carried 
out for n = 1, 2, ... , 300000 and the results are shown in Fig. 4.6.1. 

The difference between the expansions of 1r and e are quite dramatic, with ,J2 
somewhere inbetween. Clearly, for the binary expansion of 1r the deficit from 
maximal irregularity is much smaller than for the binary expansion of e. Remark­
ably, this difference almost totally disappears if instead of binary expansions one 
studies the decimal expansions. The results are shown in Fig. 4.6.2. 

Linear Complexity Profiles. As we have already noticed, practical use of 
the Kolmogorov complexity is difficult because one cannot easily calculate the 
minimum size of a universal Turing machine program that produces a given string. 
In the area of cryptography, the following substitute concept of linear complexity 
is popular. For details, see Shu Tezuka's monograph quoted in the Bibliographical 
Notes section. 

Definition 4.6.4 Linear Complexity. 
The linear complexity A.(zln) of a binary string z = (Xt, ... , Xn) of length n is 

the minimum degree r < n of a polynomial 

( ) r r-1 
p z = z +ar-IZ + ... +atz +ao, (18) 

with binary coefficients (with mod 2 multiplication), such that 

Xi+r = ar-tXi+r-1 + ... + atXi-1 + aoxi (mod 2), (19) 

fori = 1, ... , n - r. 

Clearly, for a binary string of period T, the linear complexity of its initial piece 
of length n is at most n if n < T, and for larger n it is at most T. Also, the algorithm 
computing the linear complexity of any binary string of length n, in about n2 ln n 
binary steps, is known. 

It is more difficult to show that the mean value of the linear complexity of the 
random symmetric Bernoulli sequence X= (Xt, ... , Xn) of length n is equal to 
n/2 + Cn, where the constants Cn are known to be in the interval [0, 5/18]. The 
variance of this random quantity is about 86/81. The linear complexity is a serious 
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(A) defo(N) 

v'3 
0 50000 100000 150000 200000 250000 300000 

N 

w-2 
(C) def2(N) 

e 

0 50000 100000 150000 200000 250000 300000 
N 

FIGURE 4.6.1 

Deficit from maximal irregularity for initial strings of length n of the binary expan­
sions of the numbers 1f, e, .../2, and ,.[3. Top: DEF>(x). Bottom: DEF2(x). From 
Pincus and Kalman ( 1997 ). 
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w-3 (A) defe(N) 

N 

0.0 0.2 0.4 0.6 0.8 
N 

FIGURE 4.6.2 
Deficit from maximal irregularity for initial strings of length n of the decimal 
expansions ofthe numbers 1r, e, ..fi. and ../3. Top: DEFl(z). Bottom: DEF2(z). 
From Pincus and Kalman ( 1997). 



4. 7. Experiments, Exercises and Projects 237 

alternative to the Kolmogorov complexity K(xln) of Section 4.3 because of the 
following asymptotic estimate: for any e E (0, 1), 

lim Pr (1- e)A.(XIn) ~ ~ (1 + e)A.(XIn) = 1. { K(Xin) } 
n--+oo 2 

(20) 

In other words, as the Bernoulli string's length increases to infinity, the probability 
that the random quantities A.(XIn) and K(Xin) remain arbitrarily close to each 
other approaches 1. 

One then is tempted to say that an infinite binary string x = (xi, x2, ... ) has a 
perfect linear complexity profile if 

n+1 
A.(xln) = - 2-, for n = 1,2, ... (21) 

However, it turns out that the strings with perfect linear complexity profiles are 
just those that satisfy the string of recurrence relations 

(mod 2), for i = 1, 2, ... , (22) 

with XI = 1. Thus, for the first 2n bits of such strings there are only 2n rather 
than 22n choices, not a good cryptographic property. Linear complexity profiles of 
well-known pseudorandom number generators, such as those based on Fibbonacci 
sequences, have been studied. 

4. 7 Experiments, exercises, and projects 

1. The length of a finite binary string x, interpreted here as a natural number 
in a binary representation, is defined as the number of bits it contains. 
Show that the length of xis equal to Llog2(x + 1)J. 

2. (a) Find a probability function f(x) defined on positive integers x E N 
with a binary representation of length 1 (x) ~ n such that for each 
k ~ n the conditional probability Pr {X = xll(x) = k} = 2-k, that 
is, it is uniform. Show several examples of such f(x). 
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(b) Show that the following two probability distribution functions 

f(x) = T2l(x)+l' f(x) = 6 Tl(x)' 
rr212 (x) 

defined on the set of all positive integers x e N give uniform 
conditional probabilities for integers with a given length of the bi­
nary representation, i.e., for each k e N the conditional probability 
Pr{X = xll(x) = k} = 2-k. Givesomeotherexamplesofsuch 
p.d.f.s. 

3. Construct a Thring machine, that is matrices (4.2.1-3), which translates 
any binary word written in the alphabet {0, 1} into the word in which the 
roles of 0 and 1 are interchanged. 

4. Construct a Thring machine that would replace any standard English text 
written in the alphabet of 26 letters plus "space" by the text in which all 
the vowels are dropped. Use Mathematica for this project. 

5. Mathematica Project. Using the Kolmogorov-Smimov test, and the chi­
square test, check the equipartition property for singles, pairs, etc., at 
different significance levels, and for substrings, for pseudorandom gener­
ators of Chapter 1, the generator provided by Mathematica, and for pieces 
of George Marsaglia pseudorandom numbers provided on the uvw Web 

Site. 

6. Mathematica Experiment. This experiment is designed to illustrate the 
conclusions reached in Example 4.3.4 which dealt with "optimal" coding 
of sparse binary integers. Use the UVW'ZeroOne' package to make your 
job easier. 

(i) Produce a graph of the entropy function H (p ), 0 < p < 1. 

(ii) Write a Mathematica code computing the number k of a string of 
length n in the special ordering of Example 4.3.4. Then, produce a 
code computing the number K of binary digits needed to encode k. 

(iii) Show, by experimenting with a large number, say 1000, of random 
strings oflength n = 30, 50, and 100, that if the string is sparse, i.e., 
the number m of Is in the string is small (say, less than 10), then 
K is approximately n · H(mfn). Present your results graphically to 
obtain something like the graphics shown below. 
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7. List all the 6-irregular and 7 -irregular binary strings following the analysis 
of Example 4.6.1. Use Mathematica to help, if necessary. Find common 
characteristics of these strings. 

8. Mathematica Project. Design a Mathematica experiment reproducing re­
sults of Example 4.6.5. Find the deficit from maximal irregularity DEF! 

for 2-blocks of binary and decimal expansions rr, e, ,.fi, ../3, for several 
values ofn, say n = 100, 1000, 10000, 10000. Test the hypothesis of uni­
formity for these expansions using the autocorrelation test and the birthday 
spacings tests. Produce your own versions of Fig. 4.6.1 and 4.6.2. 

9. Mathematica Project. Find the deficit from maximal irregularity for 1-, 2-, 
and 3-blocks of binary and decimal expansions for the Euler constant y, 
and ../7, for several values of n, say n = 100, 1000, 10000, 10000. Test 
the hypothesis of uniformity for these expansions using the autocorrelation 
test and the birthday spacings tests. Recall, that the Euler constant can be 
defined as 

lo l 1- coss ! 00 coss 
y = ds - -- ds ~ 0.57721566490. 

0 S I S 

For information on applications of this constant see, e.g., A.l. Saichev and 
W.A. Woyczynski, Distributions in the Physical and Engineering Sciences. 
Volume 1. Distributional and Fractional Calculus, Integral Transforms 
and Wavelets, Birkhauser-Boston, 1997. 
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4.8 Bibliographical notes 
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Press, Cambridge, 1987 
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46(1940), 130-135. 
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[7] R. von Mises, Probability, Statistics and Truth, MacMillan, New York, 
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sis ofKolmogorov's contributions to probability theory, computational complexity, 
and dynamical systems theory. The physics of the coin tossing were discussed in 

[8] J. Ford, How random is a random coin toss, Physics Today 36(1983), 40-47 
(April). 

As always, the multi-volume 
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[9] D. E. Knuth, The Art of Computer Programming, Volumes 1-3, Addison­
Wesley, Reading, MA, 1973, 

is an invaluable source for anything related to computing. The second volume 
contains a good discussion of the pseudorandom number generation problem. More 
recent sources in this area are 

[10] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo 
Methods, SIAM, Philadelphia, 1992. 

[11] S. Tezuka, Uniform Random Numbers. Theory and Practice, Kluwer, 
Boston, 1997. 

The equipartition property of the Champemowne number has been proved in 

[12] D.G. Champemowne, The construction of decimals normal in the scale of 
ten, J. London Math. Soc. 8 (1933), 254-260. 

A pseudorandom number generator using the digits of number rr has been re­
cently proposed in 

[13] Y. Dodge, A natural random number generator, Int. Stat. Review 64(1996), 
329-344 

and nonlinear methods in pseudorandom number generation are discussed in 

[14] J. Eichenauer-Herrmann, Pseudorandom number generation by nonlinear 
methods, Int. Stat. Review 63(1995), 247-255. 

A compact disc 

[15] G. Marsaglia, The Marsaglia Random Number CD ROM Including the 
Diehard Battery of Tests of Randomness 

distributed in 1995 as freeware by the Department of Statistics and Supercomputer 
Computations Research Institute at the Florida State University, is very relevant to 
the discussions of this chapter. 

Finally, Section 4.6 is based on two very recent articles: 

[16] S. Pincus and B.H. Singer, Randomness and degrees of irregularity, Proc. 
Nat/. Acad. Sci. USA 93 (1996), 2083-2088. 
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[17] S. Pincus and R.E. Kalman, Not all (possibly) "random" sequences are 
created equal, Proc. Natl. Acad. Sci. USA 94 (1997), 3513-3518. 



ChapterS 

Statistical Independence and Kolmogorov's 
Probability Theory 

Independently repeated experiments with random outcomes have a formal counter­
part in the mathematical concept of statistical independence. The cleanest way to 
introduce the latter can be found within the framework of Kolmogorov 's axiomatic 
probability theory which, since the 1930s, became the standard, and by far most 
widespread, mathematical model of randomness. 

5.1 Description of experiments, random variables, 
and Kolmogorov's axioms 

In this section we will consider experiments with several (or, infinitely many) 
possible random outcomes which cannot be precisely predicted given the experi­
mental conditions. It is convenient to have a special term for this kind of empirical 
situation: we will call such experiments random trials. Many diversified examples 
of random trials can be found in Chapter 1. 

Example 1.3.2 gives measurements of diameters of bases of fragmentation 
bombs in a Cleveland factory. Although the bases were manufactured under "iden­
tical" (as much as the manufacturer can reasonably control them) conditions, the 
outcomes of the measurement process were not uniquely determined. Each mea­
surement can thus be viewed as a random trial. 

In Example 1.7.1 we provided the space shuttle Columbia accelerometer read­
ings taken at different times. Again, the values of the gravitational constant at that 
point in space are scattered, the fluctuations impossible to determine exactly by 
taking into account the physical conditions. When, in the 17th century, Galileo 
kept dropping different objects from the Leaning Tower of Pisa to determine the 
gravitational constant on the surface of the Earth, he was just conducting random 
trials. 

243 © Springer International Publishing AG 2017 
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Obviously, our thought experiments of random coin tossing and dice rolling, 

or blindly selecting 6 out of the 45 balls in the Ohio Lottery drawing, are also 

convenient examples of random trials. In these three cases the expressions "random 

tosses" or "blind selection" referred to the assumption that equal chances (thought 

of as relative frequencies in long runs of the experiment) were assigned to different 

outcomes of the experiment; often this assumption was implicitly justified by built­

in symmetries of the physical phenomenon under study. 

We will begin a description of the A.N. Kolmogorov 's probability theory, which 

was lilesigned to provide a mathematical model of random trials, by introducing a 

formal labeling of their possible outcomes. 

Definition 5.1.1 Probability Space. 

A mathematical model of a random trial is a probability space (Q, B, P), where 
n, the sample space, consists of all possible simple outcomes w of the trial which 
are called sample points. B is the family of all composite outcomes B c B, called 
random events, for which the probability measure P(B) is defined a priori. The 
latter is assumed to satisfy the following three requirements (axioms): 

(i) Positivity Axiom: For any random event B E B, 

0:::: P(B):::: 1, 

(ii) Normalization Axiom: 

P(Q) = 1, 

(iii) Additivity Axiom: For any disjoint random events A, B E B, An B = 0, 

P(A U B) = P(A) + P(B). 

Obviously, the probability space axioms are motivated by the corresponding 

properties of the relative frequencies for empirical data. By induction, the Addi­

tivity Axiom (iii) immediately implies the finite additivity of probability measure 

P: 

P(B, U ... U Bn) = P(B!) + ... + P(Bn) (1) 

for any pairwise-disjoint random events B,, ... , Bn E B, B; n Bj = 0, i # j. 

A Mathematical Aside: Countable Additivity. For infinite sample spaces n, the 

Additivity Axiom (iii) is usually replaced by the condition of countable additivity: 
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(iii') Countable Additivity Axiom: For any pairwise-disjoint sequence of ran­
dom events Bt, B2, ... E B, Bi n Bj = 0, i =I= j, 

00 00 

P(U Bi) = L P(Bi). (2) 
i=l i=l 

The infinite union of sets appearing on the left-hand side is understood as follows: 

00 

UBi:= {wE Q: wE Bi, for some i = 1, 2, ... } 
i=l 

(3) 

Compared to ( 1 ), this is more than just a cosmetic change. Actually, the condition 
(2) is equivalent to the assumption that probability measures on infinite sample 
spaces are continuous as set functions. Indeed, the Countable Additivity Axiom 
is satisfied if and only if for every sequence of descending random events Bt ::) 
B2::) ... , oo 

_lim Bi := n Bi :={wE Q: wE Bi, for every i = 1, 2, ... }, 
t---+00 

i=l 

we have P( lim Bi) = lim P(Bi). 
i ---+00 i ---+00 

(4) 

The Countable Additivity Axiom also makes selection of the random events family 
B more poignant. It turns out that if one chooses as the sample space Q the ooit 
interval [0, 1] and as the random events family B the collection of all subsets of 
the sample space, then there exists no nontrivial countably additive probability P 
which would provide a way to measure probabilities of all B E B. This is a fairly 
deep mathematical result and shows that, for richer sample spaces, one has to be 
careful about what one calls random events. 

The question of extension of a finitely additive probability to a countably additive 
probability is quite subtle. Contemplate for few minutes the following example: 

Take as Q the countable set Q of all rational numbers in the interval [0,1]. 
Introduce, on intervals of rational numbers [a, b], a .:::; b, a, b E Q, the probability 
measure P([a, b]) := b- a which defines the probability of finding a rational 
number in the rational interval [a, b] as its colloquially understood length. Such a 
probability is obviously finitely additive but it has no countably additive extension. 
Indeed, by definition, the probability of each simple event P([a, a]) = 0, so if P 
were countably additive then we would have 

P(Q) = L P([a, a]) = 0, 
aEQ 

a contradiction since, by the Normalization Axiom, P(Q) = I. 
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Of course, if one accepts the Countable Additivity Axiom, then it is not possible 
either to have a probability distribution giving equal probabilities to every one of 

the natural numbers. Yet, intuitively, such a distribution seems to be quite natural 

and useful. This issue is discussed in a recent article "Using finitely additive 
probability: uniform distributions on the natural numbers" by J. B. Kadane and A. 
O'Hagan, J. Amer. Stat. Asso. 90(1995), 626-631. 

To summarize the above discussion we emphasize that the subject of the ax­
iomatic probability theory is the probability space (Q, B, P), where the probability 

measure P is selected up-front by other applied probability considerations taking 

into account the physical nature of the phenomena under study. How to fine-tune 
this selection to real-life experimental data is the subject matter of statistics which 

will be discussed in Part 3 of this book. 

The need for such a rigorous approach became clear towards the end of the 

19th century when a number of probabilistic "paradoxes" baffled the experts. All 

of those "paradoxes" were caused by differing interpretation of what the word 
"random" meant in terms of the probability measure P. 

Example 5.1.1 Bertrand Random Chord Paradox. 

What is the probability P that a randomly selected chord is shorter than the side S 

of an equilateral triangle inscribed in the circle? 

A 

(a) (b) 

FIGURE 5.1.1 
Different, and "equally" justified, ways of selecting "uniform" probability P in 
the Bertrand random chord paradox. 

Here are two possible solutions corresponding to illustrations in Fig. 5.1.1: 

(a) A chord is determined by its two end points. Fix one of them to be A. For 
the chord to be shorter than the side S, the other end point must be chosen on either 
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the arc AB or the arc CA, and each of them is subtended by an angle of 120°. 
Thus, P = 2/3. 

(b) A chord is completely determined by its center. For the chord to be shorter 
than the side S, the center must lie outside the circle of radius equal to the half 
of the radius of the original circle and the same center. Hence, the probability P 
equals the ratio of the annular area between two circles and the area of the original 
circle, which is 3/4. 

This "paradox", still hotly debated in 1907 when Jean Bertrand lectured on 
probability theory at the Paris Sorbonne, can be resolved only by an a priori impo­
sition of the probability measure P, the recipe Kolmogorov recommended in the 
axiomatic theory introduced in his 1933 book. The answer to the question "Which 
of the two solutions is correct?" cannot be provided within the framework of prob­
ability theory. However, it can be phrased as an empirical (and thus statistical) 
question, or an applied probability question about the physical mechanism of the 
chord selection. 

We will illustrate the formal probability theory framework by returning to the 
generic examples of random phenomena that were previously discussed. 

Example 5.1.2 Single Coin Toss. 
The sample space Q here can be chosen to consist of only two sample points; say the 
first sample point is H (for Heads), and the second sample point is T (for Tails). The 
random events family B consists of the empty set 0, the simple random events {H} 
and {T} consisting of single sample points, and one composite event {H, T} = Q 
which happens to coincide with the whole sample space. If we want to model a fair 
coin toss, then we have to assign the probability measure to random events (notice 
that for finite sample spaces it suffices to define it on events consisting of single 
sample points) as follows: P(0) = 0, P({H}) = P({T}) = 1/2, and P(Q) = 1. 
If a biased coin toss is to be modeled, then we have to select a number p, 0 < p < 1, 
and impose the probabilities P(0) = 0, P({H}) = p, P({T}) = 1 - p, and 
P(Q) = 1. 

Example 5.1.3 Multiple Coin Toss. 
For n coin tosses, the sample space Q can be selected to consist of sample points 
w = (TJI, ... , TJn). where each of '7i is either equal to H or to T. There are 2n 
sample points in this sample space. The family B of random events is again the 
family of all subsets of the sample space, including the empty set 0 and the whole 
sample space Q-there are 22n random events in B (check it for small ns first). 
For n = 10, the collection of all the 10-toss series in which exactly 2 heads came 
up constitutes a random event (call it BJ0); it consists of(~~ = 45 sample points 
which easily can be written out explicitly. You may want to do it by hand as a 
warm-up exercise. 
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In the fair coin model, assuming equal probabilities of all sample points, we 

have no choice but to impose the probability P on simple random events by the 

condition P({w}) = 2-n for all w E Q, and by extending it to other (composite) 

random events via the finite additivity property of P. So, for n = 10, we have 

P(BJ0 ) = 45 · 2-IO ~ 0.04394. 

In the biased coin model, we must select a number p, 0 < p < 1, and then 

we can impose the following probabilities on simple random events consisting of 

a single sample point w = (171, ... , 11n) with exactly k, 0 :"S k :"S n, of 17;s equal 

to H [like, e.g., w = (T, H, T, T, T, T, H, T, T, T), where k = 2]: 

(5) 

So, for example, for n = 10 and p = 4/10, we get P(BJ0 ) = 45 · 0.42 . 0.68 ~ 
0.75583. 

That all of these probabilities add up to 1, thus satisfying the Normalization 

Axiom (ii), is a direct consequence of the binomial theorem: 

L P({w}) = t . L pk(l-p)n-k = t (:)pk(l-p}n-k = 1. (6) 

wE!.1 k=O w:#{z:1J;=H}=k k=O 

An experimenter who has found (5) as the relative frequencies of the appearance of 

k heads in n tosses, obviously knows that (6) has to hold true: no other outcomes 

are possible and one of them has to occur. 

Example 5.1.4 Random Numbers from the Unit Interval. 

Select as the sample space Q the set of all real numbers from the unit interval [0, 1], 

and as the family B of random events the intervals (a, b], 0 :-:::a < b :-::: 1, and all 

the other subsets of the unit interval that can be produced effectively (in the sense 

of Chapter 4) from the above intervals using the operations of union, intersection, 

and complement, and their limits (plus the usual empty set and the whole sample 

space). The sample points w are just real numbers in the unit interval. If our 

desire is to model random numbers uniformly distributed on the unit interval, then 

we have to impose the probabilities P([a, b]) = b- a on random events that are 

intervals and extend it to other random events using the additivity property of P. 

Thus, the event {w: lw- 1/31 > 1/9} has probability 

The sample space here (and hence the family of random events) is infinite and 

simple random events consisting of single sample points have probability 0. 
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Example 5.1.5 A System of n Molecules. 
As in Example 4.4.1, consider a model for the 3-dimensional gas consisting of n 
molecules of mass 2 located in a unit cube and of total kinetic energy bounded by 
1. Then, as the sample space Q we can select the set of all phase space points 

(7) 

such that 

O~xf~1, k=1,2,3, i=1, ... ,n, (8) 

and 
n 

KinEn (w) = L((v/)2 + (v;)2 + (vJ)2 ) ~ 1. (9) 
i=l 

You can try to visualize this sample space as a unit cube in 3n position dimensions 
and a ball of radius 1 in the remaining 3n velocity (momentum) dimensions. As 
the family B of random events, we can select the subsets of Q that are produced 
from 6n-dimensional parallelepipeds via procedures described in Example 3.1.1. 
The probability measure P can be selected in many different ways dictated by 
the physics of the situation, and one choice is to choose that probability to be the 
normalized 6n-dimensional volume on subsets of Q, i.e., for a B E B, define 

Volume B 
P(B) = , 

Volume Q 

the number in the denominator being equal to just the volume of the 3n -dimensional 
Euclidean ball of radius 1 because the d-dimensional volume of the unit d­
dimensional cube is equal to 1 anyway. Recall that the uniform distribution on 
ad-dimensional ball was simulated in the Mathematica Experiment 3.10.2.1 

In theoretical models of experiments one is often interested not in the original 
labeling w of the experimental outcomes themselves, but in some other numerical 
or vector quantities that depend, that is, are functions of the outcomes. Functions 
for which the probability distributions of their values are computable, at least in 
principle, are called random variables or random vectors, if they take vector values. 
They are usually denoted by capital letters X, Y, ... More formally, we have the 
following: 

1 Recall that the unit sphere in Rd has the (d - I)-dimensional surface measure SJ _ 
2rr:d/Z I f'(d/2), and that the d-dimensional volume of the unit ball is SJ/d. 
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Definition 5.1.2 Random Variables. 
A real-valued function 

X : Q 3 w ~ X(w) E R (10) 

is called a random variable on the probability space (Q, B, P) if, for every x e R, 
its cumulative distribution function (dj.) 

Fx(x) := P({w: X(w)::: x}) (11) 

is well defined, i.e., if 
{w : X (w) ::: x} e B. (12) 

Similarly, the vector-valued function 

X: Q 3 w ~ X(w) = (Xt(w), ... , Xn(w)) ERn (13) 

is called a random vector on the probability space (Q, B, P) if for every 
Xt, .•. , Xn e R, its joint cumulative distribution function 

is well defined. 

Obviously, components of a random vector are random variables, and the cumu­
lative d.f. (see also a more elementary discussion in Chapter 3) enjoys the following 
properties that are direct consequences of the three axioms of Definition 5 .1.1: 

(i) 

0::: Fx(x) ::: 1; (15) 

(ii) 
lim Fx(x) = 0, lim Fx(x) = 1; (16) 

x-+--oo X--+-00 

(iii) Fx(x) is nondecreasing and continuous on the right, i.e., 

lim Fx(x) = Fx(xo). 
x-+-xo+ 

(17) 

In view of the additivity property of the probability P, we have also 

P(a < X :::b)= Fx(b)- Fx(a). (18) 
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Note that the sample point label w, the argument of the function X(w) is being 
suppressed in our notation. It is not essential. As a matter of fact, in most of the 
probabilistic problems, cumulative d.f.s and/or related distributional descriptors 
such as densities, are the only objects of interest. The underlying probability space 
(Q, B, P) is of no direct interest and remains invisible in calculations. Obviously, 
any of the cumulative distribution functions discussed in Chapter 3 on analytic 
representation of data can serve as an example of cumulative probability d.f. within 
the framework of axiomatic probability theory. The reader should review that 
material before proceeding any further. 

The typical picture of a simple cumulative probability d.f. is shown in Fig. 5 .1.2 
(see also Fig. 3.2.2). 

FIGURE 5.1.2 

F(x) _ 

1 

0 

-~ 

X 

Example of a simple cumulative distribution function Fx(x). The intervals I 
where Fx(x) is flat carry no probability mass, that is, the probability that the 
random variable X takes values in I is zero. Jumps occur at points x such that the 
probability of the random event {X= x} is strictly positive. 

Example 5.1.6 Single Coin Toss. 
If we model a game in which heads result in winning $1 and tails in winning $0, 
then the random variable of interest, defined on the probability space described in 
Example 5.1.1, would be 

X(w)={b: 

The corresponding cumulative d.f. 

I 0, 
Fx(x) = 1/2, 

1, 

ifw = H; 
ifw = T. 

if X< 0; 
ifO ~X < 1; 
if 1 ~X. 

(19) 

(20) 
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This random variable has what we recognize as the Bernoulli distribution with 
p = 1/2. If we model a game in which heads result in winning $1 and tails in 
loosing $1, then the appropriate random variable defined on the same probability 
space n = { H, T}, would be defined by 

Y(w) = { ~l, 

The corresponding cumulative d.f. 

{ 
0, 

Fy(x) = 1/2, 

1' 

if w = H; 
if w = T. 

ifx < -1; 
if-l::;x<l; 
if1::;x. 

Both cumulative d.f.'s are pictured in Fig. 5.1.3. 

Fx(x) 

------------------ ------··~-----

1/2·----

Fy<x) 

------------------- -----~··· ------

(21) 

(22) 

X 

-1 X 

FIGURE 5.1 .3 

Graphs of cumulative distribution functions of random variables X and Y from 
Example 5.1.5. 
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Example 5.1.7 Total Wins in a Series of Coin Tosses. 
The probability space is that of Example 5.1.2. The corresponding random variable 

n 

Z(cu) := LX(q;), (23) 
i=l 

where cu = (711, ... , 11n), and X is the Bernoulli random variable introduced in 
Example 5.1.5 above. Now, it is easy to see (see Section 3.4) that the corresponding 
cumulative d.f. is binomial, and for general p, 1 < p < 1, given by the formula 

(24) 

The notation lx J stands for the "floor" of the number x, i.e., the largest integer less 
than or equal to x. This cumulative d.f. is pictured, for n = 10, and p = 1/2, in 
Fig. 5.1.4. 

1 

0.8 s 
0.6 -
0.4 r--

0.2 u-
0 0 2 4 6 8 10 

FIGURE 5.1.4 

The cumulative distribution function of the binomial random variable with param­
eters n = 10, p = 1/2. 

Example 5.1.8 System of Molecules Revisited. 
Define the random variable 

X(cu) = KinEn (cu), (25) 
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as introduced in Example 5.1.4. Its cumulative d.f. 

Volume of 3n-dimensional ball of radius x 3n 
Fx(x) = = x , (26) 

Volume of 3n-dimensional ball of radius 1 

for 0 :5 x :5 1, and F x (x) = 0 for x :5 0, and = 1 for x ~ 1. For several values of 
the dimension n, the cumulative p.d. is pictured in Fig. 5.1.5. For n larger than 100 

it is practically indistinguishable from a function that is 0 for x < 1 and 1 for x ~ 1, 

which corresponds to the probability mass almost totally concentrated at x = 1; 

see, comments in Example 4.4.1 and also Mathematica Experiment 3.1 0.2, where 
the vector random quantity uniformly distributed over the unit n-dimensional ball 

was simulated. 

-0.2 

FIGURE 5.1.5 

F(x) 

0.8 

0.6 

0.4 

0.2 

Cumulative distribution functions from Example 5.1.7 for dimensions n 
1, 3, 9, 27,81 (from left to right). 

There is a standard way to produce a random variable with a given cumulative d. f. 
F(x) satisfying the above condition (15-17) which is an analogue of the quantile 
function method of Section 3.3. Take as the probability space (g, B, P) the unit 
interval [0, 1], and Band the uniform probability Pas specified in Example 5.1.3. 

Since 

F : R 3 x ~ F(x) E [0, 1] = g (27) 

is nondecreasing, the (generalized) inverse function 

F-1 : g 3 w ~ F-1(w) = min{x: F(x) ~ w} E R (28) 
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defines a random variable X = p-1 on the standard probability space [0, 1] with 

cumulative d.f. equal to F(x). Indeed, 

P(X :s x) = P({w: F-1(w) :s x}) = P({w: w :S F(x)}) = F(x). (29) 

We have already employed the same idea in Section 3.3, where we devised a method 
to simulate a random quantity with the prescribed relative frequency distribution. 
A graph of the inverse function p-1 (w) is simply the reflection in the diagonal 
w = x of the graph of the original cumulative d.f. F (x), and is nothing but the 
graph ofthe quantile function Q(q) of the cumulative d.f. F(x) (see Fig. 5.1.6). 

1.5 

- I 

-1 -0.5 , 0.5 1.5 2 

/ 
, 

-0.5 
/ 

-1 

FIGURE 5.1.6 
Graph of the standard representation of a random variable p-I (w) = Q(q), with 

a prescribed cumulative d.f. F(x) is obtained by reflecting the graph of F(x) in 
the diagonal. 

As we have already observed in the more elementary context of Chapter 3, there 
are two basic types of cumulative d.f.s: discrete and (absolutely) continuous, and 
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they correspond to the classification introduced in Chapter 3, where we used both 

of them as analytical approximations to experimental frequency distributions. 

Discrete distributions. The discrete random variable X can only take a finite or 

a countable number of values Xt, x2, ... E R (or Rd) with positive probability, and 

the corresponding probability distribution is determined by a sequence of discrete 

probabilities 
Pi:= P(X =Xi) (30) 

which have to satisfy the condition 

(31) 

In this case, for any set A c R, 

P(X E A)= L Pi· (32) 

{i:XiEA} 

In particular, for a discrete random variable X, the cumulative d.f. 

Fx(x) = L Pi. (33) 

{i:Xj~X} 

and it is piecewise-constant with jumps upwards of size Pi at points Xi. Sev­

eral examples of discrete probability distributions (Bernoulli, binomial, Poisson, 

multinomial) were given in Chapter 3. 

Absolutely continuous distributions. An (absolutely) continuous random vari­

able X takes an uncountable number of values x and its cumulative probability d.f. 

is determined via the formula 

Fx(x) = j_~ fx(y)dy, (34) 

where the density function fx(x) is nonnegative(;::: 0), and must satisfy the nor­

malization condition i: fx(x)dx = 1. (35) 

Ad-dimensional (absolutely) continuous random vector X= (Xt. X2, ... , Xd) 

has the joint cumulative probability d. f. determined by the analogous formula: 

(36) 
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where the joint density function f X (xi, x2, ... , Xd) ~ 0 satisfies the normaliza­
tion condition 

The corresponding probabilities are computed by integrating the densities over 
the desired region: 

P(X E A)= i fx(x)dx (38) 

in the one-dimensional case, with a similar formula in the d-dimensional case. No­
tice that, in view of the fundamental theorem of calculus, for absolutely continuous 
cumulative probability d.f.s 

dFx(x) 
dx = fx(x). (39) 

A similar formula involving partial derivatives holds true for the d-dimensional 
case. 

Several examples of absolutely continuous distributions (uniform, exponential, 
Gaussian, multivariate normal, Weibull, Cauchy, Pareto, etc.) were given in Sec­
tion 3.5. Other natural examples will arise later in this chapter. 

Singular distributions. Although it is not apparent at the first sight, the dis­
crete and continuous cumulative probability distributions and their mixtures do 
not exhaust the realm of all possible distributions. Consider the so-called devil' s 
staircase cumulative d. f. F (x) obtained with the help of the Cantor set (see Section 
2.7)) as indicated in Fig. 5.1.7. 

Such a function is indeed a cumulative probability d.f. since F(x) = 0 for 
x :::=: 0, and = 1 for x ~ 1, and since it is nondecreasing and right-continuous. As 
a matter of fact, one can check that it is continuous everywhere, but its derivative 
is zero wherever it is defined. So, obviously, F (x) cannot be the indefinite integral 
of its derivative, i.e., the cumulative d.f. F does not have a density. In other words, 
it is "continuous" but not "absolutely continuous"; hence, the need to distinguish 
between those two concepts. 

Cumulative probability d.f.s that are neither absolutely continuous, nor discrete, 
nor their mixtures, are called singular. 

If one knows the joint cumulative probability d.f. of a random vector, then 
it is easy to recover from it the cumulative probability d.f.s of its !-dimensional 
components which are called marginal cumulative probability d.f.s. Indeed, if, say 
X = (X, Y), then 

Fx(x) = P(X :::=: x) = P(X :::=: x, Y < oo) = Fx(x, oo), (40) 



258 Chapter 5. Independence and Probability Theory 

F(x) 

----------------+---

3/4 

112 

1/4 

FIGURE 5.1.7 

A step in the construction of the devil' s staircase cumulative probability d.f. We 
start with setting F(x) = 2-t on the "middle-third" interval of length 3-t in 
the interval [0,1], then set F(x) = 2-2 and, respectively, 3 · 2-2, on the next 
generation two "middle-third" intervals of length 3-2, and continue this process 
indefinitely. 

and, in the absolutely continuous case, the marginal density of the first component 

dFx(x) dFx(x, oo) joo 
fx(x) = = = fx(x, y)dy 

dx dx -oo (41) 

is obtained by integrating out the second variable in the joint density. 

5.2 Uniform discrete distributions and counting 

Uniform discrete distributions on finite sets are imposed in view of various sym­
metry considerations. We have encountered such distributions (e.g., symmetric 
Bernoulli) in Chapter 3. Calculation of related probabilities requires techniques 
to count the number of sample points in random events of interest. The area of 
mathematics that studies such problems (often, very involved) is called combina­
torics. In this section we will review a few combinatorial tools that are helpful in 
determining discrete probabilities. 

A general model of the uniform discrete distribution assumes a finite sample 
space g = {wt, ... , wn}. the family of random events B consisting of all 2n 
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subsets of Q, and the probability of any A E B 

k 
P(A) = -, 

n 

259 

(1) 

where k = I A I is the number of sample points in A. This model is sometimes called 
the Laplace probability space. Here are a few special cases where the methods are 
standard. 

Multiplication of choices. If sets A I, ... , Ak contain, respectively, n I, ... , nt, 
points, then the number of different k-tuples (vectors) (XI, ..• , Xk), where x; E 

A; , i = 1, ... , k is equal to 
(2) 

Hence, there are 2 · 2 · ... · 2 (10 times) = 2 10 = 1024, different outcomes 
of 10 coin tosses, 6 · 6 · 6 = 216 different outcomes of a roll of three dice, and 
30 · 29 · 28 = 24360 ways of selecting the president, vice-president, and treasurer 
of the Phi Gamma Delta fraternity with a membership of 30. The multiplication 
rule leads to another useful formula: 

Permutations. LetS = {si, s2, ... , sn} be a set of n different objects. The 
numbers of ways k objects, k ::; n, can be selected from Sin a particular order 
(and without replacement) is 

n! 
n(n- 1)(n- 2) · ... · (n- k + I) = --:---:--:­

(n- k)! 
(3) 

The derivation of the formula is clear: the first object can be selected inn ways, the 
second in (n- 1) ways, until, finally, the k-th object can be selected in (n- k + 1) 
ways. At this point, one applies the multiplication of choices principle. The above 
number is called the number of permutations of k objects selected from a set of 
n objects. It is important to remember that the orderings count: (si, s3, s2) and 
(s2, s3, SI). say, are different permutations. 

For example, the top 6 downhill NASTAR racers can place in the field of 13 in 
13! I ( 13 - 6)! = I, 235, 520 ways, and there are 13! = 6, 227, 020, 800 ways all 
13 racers can place (i.e., 13! is the number of permutations of 13 objects). 

Example 5.2.1 Two People With the Same Birthday. 
A party is attended by n revelers. What is the probability Pn that at least two people 
have the same birthday? It is easier to calculate the complementary probability, 
that is, the probability of the event that all the n people have different birthdays. 
There are 365! I (365 - n)! ways different birthdays can be selected out of the total 
of 365n ways the birthdays can occur in a group of n. Thus, the sought probability 
is 

P, - 1- 365! 
n - -:-:(3::-:6:-=5---n--c)-:-!-::-36-::-5::-n 
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Check that P23 ~ 0.5, Pso ~ 0.97 (use Stirling formula n! ~ ,J2iinn+ll2e-n to 
approximate the factorials). 

Combinations. LetS= {SJ, s2, ... , sn} be again a set of n different objects. 
If one selects objects from a set, then we say that a combination of k objects was 
selected from S if they were picked at once, and the order of selection does not 
matter: (s1, s3, s2) and (s2, s3, SJ), say, are the same combinations. Obviously, 
the number of combinations of k objects out of n is smaller than the number of 
permutations, since k! permutations count as a single combination. Thus, the 
number of combinations of k objects out of a set of n objects (or, as one often says, 
the number of combinations ofn objects taken kat a time) is 

(4) 

the familiar binomial coefficient. 

Example 5.2.2 Drawing Balls With Replacement. 
We have n boxes, and each contains w white balls and r red balls. We draw a ball 
from each box (this is equivalent to drawing n times from the same box, replacing 
the ball after each draw). What is the probability Pk of drawing k white balls and 
n - k red balls? There are ( w + r )n different equiprobable n draws of w + r balls, 
and out of those there are G)wkrn-k ways to select exactly k white balls. Thus, 
the sought probability is 

p _ _ k l _ n-k ( n) wkrn-k (n) 
k - k (w + r)n - k p ( p) ' 

where p = wf(w + r). It is the familiar binomial distribution. 

Example 5.2.3 Drawing Balls Without Replacement. 
We draw, without replacement, n :::; min (w, r) balls from a box containing w 

white balls and r red balls. What is the probability Pk of drawing k white balls, 
k :::; n, and n- k red balls? There are (w + r)(w + r- 1) · ... · (w + r- n + 1) 

possible selections out of which 

(:)w(w- 1) · · · (w- k + l)r(r- 1) ... (r- (n- k) + 1) 

have exactly k white balls. Thus the desired probability 
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Example 5.2.4 A Politically Incorrect Committee. 
A faculty committee of 4 is to be selected at random from a group of 5 men 
and 11 women. What is the probability P that the committee consists of 3 men 
and 1 woman? Out of the total number of c:> = 1820 possibilities, there are 

G)(?} = 110 ways to select a committee of 3 men and 1 woman. Thus, P = 
110/1820 = 0.06. 

Example 5.2.5 Distributing Christmas, Hanukkah, and Kwanzaa Presents Among 
Relatives. 
We distribute n presents among m relatives and all the mn ammgements are as­
sumed to be equally probable. Then, the probability that for each i = 1, 2, ... , m, 
the i-th relative receives k; presents, k1 + ... + km = n, is 

n! 1 
·-, 

kdk2! · · ·km! mn 

which corresponds to the multinomial distribution introduced earlier. 

5.3 Statistical independence as a model for repeated 
experiments 

Introduced in Example 5.1.3 probabilistic model for multiple, fair, coin tosses 
has one curious property: The imposed joint probability distribution of the vector 
(X 1 , •.• , X n) and its marginal distributions, that is the distributions of the compo­
nent real-valued random variables X 1, ... , Xn, are connected by the multiplicative 
formula: 

1 (1)n P(Xt =X], ... ' Xn = Xn) =- = - = P(Xt = xt) ... P(Xn = Xn). 
2n 2 

(1) 
As it turns out, this multiplicative property of joint distributions can serve as a gen­
eral model of randomness within the Kolmogorov's axiomatic probability theory. 

Definition 5.3.1 Random Vectors With llldependent Components. 
Components Xt, ... , Xn of a random vector X = (XI, ... , Xn) are said to 

be statistically independent random variables, if the joint cumulative probability 
d.f. of X is equal to the product of the marginal cumulative probability d.f.s 
of its component random variables, that is, if for every n-tuple of real numbers 
X], ... ,Xn, 

(2) 
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In practice, one often casually speaks of random variables being independent, 
but one has to remember that such a notion is meaningless unless one has the joint 
distributions of these random variables. Notice that for discrete random variables, 
the definition of their independence can be written as the condition that for every 
n-tuple of real numbers XI, ... , Xn, 

P(XJ = x,, ... , Xn = Xn) = P(X! = x!) · ... · P(Xn = Xn). (3) 

For absolutely continuous random variables, independence simply means that their 
joint density is a product of marginal densities, that is, 

(4) 

Besides recalling Example 5.1.2, we will provide here two additional examples 
of independent random variables. 

Example 5.3.1 Bivariate Normal Random Vectors. 
A Gaussian random vector (X, Y) with the joint density function 

1 2 
f<x.n(x, y) = 2rr exp( -ll(x, y)ll /2) (5) 

has independent components since, for every x, y E R, 

_1_ exp (-ll(x, y)112) = _1_ exp (- x2 + y2) = e-xz/2 . e_Yz/2. 
2rr 2 2rr 2 ..(ii ..(ii 

Example 5.3.2 A Generic Construction of Independent Random Variables. 
Consider the unit square Q = [0, 1] x [0, I] 3 w = (w,, W2) with probability 
defined as the standard planar area measure. Then, any random vector of the form 

(X(w), Y(w)) = (X(w!), Y(W2)) 

in which the first component depends only on the first variable in the square and the 
second depends only on the second variable, has statistically independent compo­
nents. This follows from the properties of the planar area measure (see Fig. 5.3.1). 

Indeed, the set 

{w: X(w) ~ x, Y(w) ~ y} = {w, : X(w!) ~ x} x {W2: Y(W2) ~ y} 
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-+---+{ro: X:sx, Y:sy} 

FIGURE 5.3.1 
A generic construction of independent random variables. 

is a rectangle, so its area (=probability) 

P(w: X(w) ~ x, Y(w) ~ y) = P(w1: X(wl) ~ x) · P(W'J.: Y(W7.) ~ y). 

Using then-dimensional cube instead of the square, one can similarly construct n 
independent random variables with prescribed marginal distributions. A construc­
tion of the random variable on the standard probability sample space 0 = [0, 1], 
and with a prescribed cumulative probability d.f. F(x), was shown in Fig. 5.1.6. 

Modeling of more involved random phenomena within the probability theory 
framework requires a study of infinite sequences of statistically independent ran­
dom variables. 

Definition 5.3.2 Infinite Sequences of Independent Random Variables. 
Random variables X 1, X2, ... are said to form a sequence of independent ran­

dom variables if for each finite collection of indices i 1, ... , in, the random vector 
(X; 1 , ••• , X;.) has statistically independent components. 

A Mathematical Aside: Do Infinite Sequences of Independent Random Variables 
Exist? The question of existence of an infinite sequence of independent random 
variables with prescribed distributions is somewhat delicate, and it was exactly the 
issue Kolmogorov had to address to construct his successful probability theory. It 
is clear that what is needed is an extension of the generic construction of finitely 
many independent random variables provided in Example 5.3.2, to infinitely many 
random variables. Then the natural sample space to consider would be an infinite 
dimensional analogue of our familiar n-dimensional cube. The formal proof of the 
existence theorem can be found in the probability theory textbooks quoted in the 
Bibliographical Notes. However, in some cases it is easy to see that the infinite 
dimensional cube is not needed. 
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Example 5.3.3 Infinite Sequence of Independent Bernoulli Random Variables. 
Consider the standard sample space Q = [0, 1], with standard linear Lebesgue 
measure taken as probability P, and an infinite sequence X 1 ( w), X 2 ( w), ... , of 
random variables on n defined by the formulas 

sgn sin(2rr2;w) +I 
X; (w) := --'---------

2 
i =I, 2, ... , (6) 

The first four random variables X1(w), X2(w), X3(w), X4(w) are shown in 
Fig. 5.3.2. 

FIGURE 5.3.2 
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The first four functions representing an infinite sequence of independent Bernoulli 
random variables defined on the standard sample space Q = [0, 1], with the 
Lebesgue measure taken as probability measure P. 

Clearly, for each i, the probability P(X; = 0) = P(X; = 1) = 1/2 and one can 
check that the random variables X 1 (w), X2(w), ... form an independent sequence. 

The notion of statistical independence can be introduced in terms of random 
events. The random events A, B E B are said to be independent if 

P(A n B) = P(A) · P(B). (7) 

Note that this equation can be rewritten in the form 

P(B) _ _ P_(A_n_B_) 
- P(A) ' 

(8) 
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where the quantity on the right-hand side is usually called the conditional proba­
bility of B given A and denoted P(BIA). Its meaning is obvious: the conditional 
probability P ( B 1 A) measures the probability of the random event B but is restricted 
to the new probability space Q' = A. In other words, we assume that we know for 
sure that the event A has occurred. In this context, the statistical independence of 
random events A and B s-imply means that 

P(BIA) = P(B), and P(AIB) = P(A), (9) 

that is, the conditional probability of B given condition A is independent of that 
condition, and vice versa. 

This point of view also can be reinterpreted in terms of the repeated experimental 
data and their relative frequency distributions. The condition that the data sets 
XI, •.. , Xn and YI, •.. , Yn, were obtained from "independent" experiments can be 
written as a condition 

#{i : x; E R, Yi E S}/n #{i : Yi E S} 
--------~----~~--~----

#{i :X; E R}jn n . 
(10) 

for the joint relative frequencies, which has to be satisfied for all intervals R and 
S. In other words, the outcome of the first experiment did not affect the outcome 
of the second experiment. 

5.4 Expectations and other characteristics of random variables 
5.4.1 Expectations. 

In our probability model, the role of the sample mean is played by the (mathe­
matical) expectation of a random variable X, which in the discrete case is defined 
by the formula 

E(X) = L:x;P(X = x;), (1) 

and in the absolutely continuous case, by the formula 

E(X) = r: xfx(x)dx (2) 

In other words, the expectation is just the "weighted average" of the values taken 
by the random variable with weights provided by its probability distribution. It is 
important to remember that the expectation of a random variable depends only on 
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its distribution and not on a particular selection of the probability space (0, B, P) 
or a particular realization X (w) of the random variable. 

The following exposition is presented in terms of the absolutely continuous 
random variables, the formulas in the discrete case being analogous; simply, the 
integrals have to be replaced by summations. The case of random variables that 
are neither discrete nor absolutely continuous will be briefly addressed at the end 
of this section. 

Example 5.4.1 Random Variable Taking 3 Values. 
For a random variable X with distribution 

P(X = 1) = 0.1, P(X = 2) = 0.4, P(X = 3) = 0.5, 

the expectation 

E(X) = 1 · 0.1 + 2 · 0.4 + 3 · 0.5 = 2.4. 

Example 5.4.2 Poisson Random Variable. 
For the Poissonian random variable X with parameter A, 

Example 5.4.3 Exponential Random Variable. 
For a random variable X with exponential distribution with parameter A, 

Note that the integral is restricted to the positive halfline because the exponential 
density is zero for negative real numbers. 

Remark 5.4.1 Warning: Expectations Need Not Exist. One should remember 
that, for a general random variable, the expectation need not be well defined. 
Indeed, the series (resp. the integral) in formula (1) [resp. (2)] may diverge. For 
example, the discrete random variable with the distribution 

P(X = i) = ~. C = (f: .;)-l 
I i=l I 
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has no expectation because the harmonic series diverges: 

00 c 00 1 
I> -=I= c.I>- = oo. l l 
i=l i=l 

The Cauchy distribution introduced in Chapter 3 has no expectation either. Cal­
culations of expectations for other probability distributions are provided in Chapter 
3, where we discussed densities as a means of compression of experimental data. 

5.4.2 Expectations of functions of random variables. Variance. 
In more generality, if g(x) is a function and X is a random variable, then the 

expectation of the random variable g(X) is defined by the formula 

E(g(X)) =I: g(x)fx(x)dx. (3) 

In particular, selecting g(x) = (x - E(X))2 we get the variance 

Var (X) = a 2 (X) = E(X- E(X))2 = I: (x- E(X))2 fx(x) dx (4) 

of the random variable X. In other words, the variance of X measures the average 
square deviation of the random variable X from its expectation E(X). The bigger 
the variance, the more spread-out the distribution is. The following result provides 
an estimate of the probability of such a "deviation from expectation" in terms of 
the variance. It will play a crititical role later in this chapter in our study of the 
Law of Large Numbers. 

Theorem 5.4.1 Chebyshev's inequality. 
For any random variable X, and any E > 0, 

Var (X) 
P(IX- E(X)I >E):::: 2 . 

E 
(5) 

PROOF In the absolutely continuous case, if lx - E(X)I > E, then 

(x- E(X))2 
fx(x) :::: 2 fx(x). 

E 

Hence, 

P (IX- E(X)i > E) = f fx(x) dx 
J{x:lx-E(X)I>E) 
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i (x - E(X))2 1 100 

~ 2 fx(x)dx ~ 2 (x- E(X))2 fx(x)dx 
{x:lx-E(X)I>£} € E -oo 

Var(X) 
= 

A similar argument gives the Chebyshev inequality for discrete random variables. 
I 

EulftJik 5.4.4 A Universal ''Three Sigma" Estimate. 
For any random variable X with expectation J.t and variance u 2, the Chebyshev 
inequality immediately yields the estimate 

a 2 I 
P (IX- E(X)I > 30') ~ 9a2 = 9. 

In other words, the probability that any random variable differs from its expectation 
by more than three standard deviations t:1 = a(X) = ../VBE (X), is at lllOSt 1/9. 
Expressed differently, 

1 8 
P (IX- E(X)I ~ 3t:~) ::: 1 - 9 = 9 = 0.8888, (6) 

the probability that any random variable takes values within three standard devi­
ations a of its expectation is at least 8/9. For particular random variables, the 
Chebyshev inequality (5) may give a somewhat crude estimaae. For example, if X 
is a standard Gaussian random variable, then the actual probability on the left-hand 
side of (6) is .9987, the value that can be verified ill Matlte~Hatica or in the table 
at the end of this book. However, the val11e of the Chebyshev inequality lies in its 
universal applicability. 

Expectations scale linearly, that is, rescaling the random variable X leatls to the 
identical rescaling of its expectation. Indeed, 

E(aX) = l: axfx(x) dx = aE(X). (7) 

5.4.3 Expectatiells of functiens of vectors. Covariance. 

ThenotionofexpectationisalsoapplicabletorandomvectorsX = (Xt, ... , Xn) 
by defining the expectation comp>nentwise: 

EX= (EXt, ... , EXn). 
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To avoid too many brackets we will often write EX instead of E(X). On the other 
hand, if g(xt, ... , Xn) is a real-valued function of n variables, then the expectation 
of the random variable g(X) is defined by the formula 

Taking the fvnction of two variaBles g(x, y) = (x- EX)(y- EY) produces the 
covariance 

Cov (X, Y) = Eg(X, Y) = E(X- EX)(Y- EY) 

= i: i: (x- EX)(y- EY)/(x,Y)(X, y) dx dy 

of random variables X and Y. Its normalized version 

C Cov (X, Y) 
orr (X, Y) = u(X)u(Y) 

(9) 

(10) 

is called the correlatiOR coe.fficie1'1t of random variables X and Y [compa£e (10) 
with the Section 2.6 definition of the correlation coefficient for finite experimental 
data], and satisfies the inequality 

-1 :0:: Corr (X, Y) :0:: 1. (11) 

Indeed, in view of the Schwarz inequality, for any real-valued functions g and h, 

(12) 

which gives (11) by substituting g(x) = x -EX, h(y) = y- EY. 

5.4.4 Expectation efthe product. Variance of the sum of independent 
random variables. 

For independent random variables we have 
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Theorem 5.4.2 

If X andY are independent random variables and g(x) and h (y) are real functions, 

then 
E(g(X)h(Y)) = Eg(X) · Eh(Y), 

as long as the expectations are well defined. In particular, 

E(XY) = EX· EY, 

that is, for independent random variables the expectation of the product is the 

product of expectations. 

PROOF Indeed, in view of the independence of X and Y, the joint density 

f<x.n(x, y) = fx(x)fy(y), so that 

E(g(X)h(Y)) = r: r: g(x)h(y)f(X,Y)(X, y) dx dy 

= r: g(x)fx(x)dx. r: h(y)jy(y)dy 

= Eg(X) . Eh(Y). I 

This striking property of independent random variables (notice that it essen­

tially claims that the integral of the product of two functions is the product of 

integrals-not a common occurrence), immediately implies that the covariance of 

two independent random variables disappears: 

Cov (X, Y) = E(X- EX)(Y- EY) = E(X- EX)· E(Y- EY) = 0. (13) 

This justifies the interpretation of the correlation coefficient Corr (X, Y) as a 

numerical measure of the degree of independence of two random variables. Its 

values are always between -1 and + 1, with the minimal value -1 taken for 

negatively linearly dependent random variables X = -a Y, a > 0, maximal value 

+ 1 taken for positively linearly dependent random variables X= aY, a > 0, and 

the value 0 taken for independent random variables X, Y. Note, however, that two 

random variables can be uncorrelated without being independent. 

The expectations not only scale linearly but are also additive so that, in general, 

they act as a linear functional on random variables, and we have: 
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Theorem 5.4.3 
If X andY are random variables with finite expectations, then 

E(aX + f3Y) =a EX+ f3EY. 

PROOF Let f<x.n(x, y) be the joint density of random vector (X, Y). Then 

E(aX + f3Y) 

= i: i: (ax+ f3y)f<x.n(x, y) dx dy 

=a i: xi: f<x.n(x, y)dydx + f3 i: y i: f<x.n(x, y)dxdy 

=a i: xfx(x)dx + f3 i: yfy(y)dy 

= aEX +f3EY. 

For discrete random variables, the proof is analogous. I 

The above theorem combined with Theorem 5 .4.2 gives another striking property 
of variances of independent random variables (which, remember, are quadratic 
functionals of random variables): 

Theorem 5.4.4 
If X and Y are independent random variables with finite variances, then 

Var (X + Y) = Var (X)+ Var (Y), 

that is, for independent random variables the variance of the sum is the sum of 
variances. 

PROOF Indeed 

Var (X+ Y) 

= E((X + Y)- E(X + Y)f 
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= E((X- EX)+ (Y- EY)f 

= E(X- EX)2 + E(Y- EY)2 + 2E(X- EX)(Y- EY) 

= Var (X) + Var (Y) 

since, in view of Theorem 5.4.2, 

E(X- EX)(Y- EY) = 0. I 

5.4.5 Moments and the moment generating function. 

The above numerical characteristics are often complemented by so-called higher 

order moments of random variables. By definition, the n-tlt order moment of the 

random variable X is defined by the formula 

(14) 

The knowledge of moments is, in general, not sufficient to uniquely characterize a 

probability distribution. For that reason, one introduces the Laplace transform of 

the random variable (whenever it exists): 

f{Jx(u) = E (e"x) = /_: e"x fx(x)dx, (15) 

and the density fx(x) can then be recovered from fPx(u) by the inverse Laplace 

transform procedure. In view of the linearity and continuity of the expectation 

functional, one obtains the following useful formulas which express. all the mo­

ments of random variable X in terms of the derivatives of its Laplace transform: 

so that, for example, 



5.4. Expectations, Characteristics of Random Variables 273 

In general, the Laplace transform of X contains information about moments of X 
of all orders, since 

(16) 

For that reason, rpx (u) is also called the moment generating function of X. 

Example 5.4.5 Moments of the Normal Random Variable. 
A calculation of the Laplace transform of the standard normal random variable X 
gives 

(17) 

since the above integral integrates out to I as a Gaussian density. Formulas (16-17) 
immediately permit calculation of any moment of the Gaussian random variable. 
In particular, 

etc. 

Example 5.4.6 Poisson Random Variable. 
Let X be a Poisson random variable with parameter A. Then 

Example 5.4.7 Exponential Random Variable. 
Let X be an exponential random variable with parameter A. Then 
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and is defined only for t < A.. 

In view of the multiplicative property of expectations of products of independent 
random variables, the Laplace transform has another important property which 
will be formulated as a theorem. In the next three sections, it will help us identify 
distributions of sums and arithmetic averages of independent random variables. 

Theorem 5.4.5 Laplace Transform of a Sum of Independent Random Variables. 
If X and Y are independent random variables, then 

fPX+r(u) = fPx(u)fPy(u), (18) 

that is the Laplace transform of the sum of independent random variables is the 
product of the Laplace transform of the summands. 

PROOF The proof is immediate from Theorem 5.4.2, by selecting g(x) = 
h(x) = e"x. Indeed, then 

Of course, the power of the Laplace transform comes from the fact that it can 
be inverted, that is, that we can find the function with a given Laplace transform. 
This is not always easy to do analytically by hand , but quite automatic with 
Mathematica. Just load the package Calculus' Laplace Transform', and command 
LaplaceTransform[expr, x, u] will give you the Laplace transform of expr as 
a function of u. The command InverseLaplaceTransf orm [expr, u, x] will get 
you the inverse transform as a function of u. 

In this context, Theorem 5.4.5 is usually applied to obtain an explicit formula 
for the probability d. f. fx +Y (x) of the sum of two (or more) independent random 
variables. The former is obtained by taking the inverse Laplace transform of the 
product of the Laplace transforms of fx(x) and fr(x). Some examples of this 
procedure are included in the Experiments, Exercises, and Projects section. 

Remark 5.4.2 Laplace vs. Fourier Transform. The Laplace transform tool has 
its limitations; not all probability d.f.s have the Laplace transform. For example, if 
X is the Cauchy random variable, then its Laplace transform does not exist since 
the integral f~oo e"x (1r (1 + x2)) -l dx is not well defined for all u =1= 0. The remedy 
is to use the general Fourier transform 

t/Jx(u) = EeiuX = i: eiux fx(x)dx, (19) 
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which is always well defined since the complex factor eiux is always bounded, 
unlike the real exponential e"x in the Laplace transform. As a matter of fact, 
I e; ux I = 1. The Fourier transform has properties similar to the Laplace transform, 
but its values are, in general, complex numbers; see the Experiments, Exercises, 
and Projects section. 

5.4.6 Expectations of general random variables. 

Here are a few comments on expectations of general random variables which do 
not have to be either discrete or continuous. 

If X 2: 0 is an arbitrary non-negative random variable with the cumulative 
probability d.f. F x (x) = 0 for x < 0, then one can approximate its expectation 
as a limit of an increasing sequence of discrete random variables Xn defined as 
follows: 

Pick a sequence of points 

n i n x. = -, i = 0, I, ... , n2 , 
1 2n 

partitioning the interval [0, n] into subintervals of length 1/2n and set, 

Xn(w) = { (i- 1)/2n' 
0, 

if (i- 1)2-n ~ X(w) < i2-n, i = 1, ... , n2n; 
if X(w) 2: n, 

for n = 1, 2, ... Each of the random variables Xn is bounded by n and takes n2n 
values. The expectations of discrete random variables xn are well defined: 

n2n i - 1 
EXn = L 2iJ(F(iTn)- F((i- 1)Tn)) 

i=l 

and they increase with n. Thus, we can define 

EX= lim EXn. 
n-->oo 

since the limit of a monotonically increasing sequence always exists (if +oo is a 
permissible value). 

If X takes both positive and negative values, then we can always write it as a 
difference 

X= x+ -x-
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of two nonnegative random variables and, if both of them have finite expectations 
defined by the above procedure, set 

EX=/_: xdFx(x) =Ex+- Ex-. 

This method gives the usual Riemann integral if the cumulative probability d.f. 
F x (x) has a density, and it produces the appropriate sums for expectations of 
discrete random variables. However, it is also able to handle mixed discrete­
continuous distributions, and even distributions of the devil 's staircase type which 
are of neither type. One can develop calculus rules for such expectations (inte­
grals). For example, if F x (x) is a distribution function vaAishing on ( -oo, 0] 
and g (x) is a differentiable function with continuous derivative, then the following 
computationally useful version of the integration-by-parts formula is valid: 

E(g(X)) =loco h(x)d Fx(x) = fooo h' (x)(l - Fx(x)) dx. 

In particular, 

E(X) = fooo (1- Fx(x)) dx. 

The above, loosely sketched construction corresponds to the general construction 
of the so-called Lebesgue integral which can be found in the monographs quoted 
in the Bibliographical Notes. 

5.5 Averages of independent random variables 

In the earlier chapters, arithmetic averages of random data (sample means) 
played a critical role in verifying presence of randomness. In the next few sections, 
we will see how a similar object can be studied within the rigorous Kolmogorov's 
probability theory. For that purpose, consider the arithmetic averages 

n = 1,2, ... , (1) 

of an infinite sequence of independent random variables X 1, X2, .... The fact 
that the sequence is infinite, and that the random variables are independent play a 
critical role in our model. 
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The influence of multiplication by the constant 1 In on the distribution of a 
random variable is easy to establish. Indeed, 

Fax(x) = P(aX:::; x) = P(X:::; xfa) = Fx(xfa), a> 0. (2) 

So, in this section we shall concentrate on the study of the numerator in (1), that 
is, on the partial sums 

n = 1, 2, ... , (3) 

of an iDfinite sequence of independent random variables X 1 , X 2, .... 

Writing the formula for the cumulative probability d.f. of a sum of two inde­
pendent absolutely continuous random variables X and Y is not difficult: after a 
change of variables x = t - y in the integral, 

Fx+Y(Z) = P(X + Y :S z) = i: i:x fx(x)fy(y)dydx (4) 

= j_~ (/_: fx(t- y)fy(y)dy) dt, 

which implies that the sum X+ Y has a density which is the convolution of densities 
of ran®m variables X and Y: 

fx+Y(Z) = /_: fx(z- x)fy(x) dx = (fx * fy )(z). (5) 

Then, by induction, for the sum of n independent random summands, 

fxJ+ ... +x.(z) = Ux1 * ... * fx.)(z). (6) 

However, as one may remember from the calculus classes, evaluation of convo­
lutions, especially the multiple convolutions reqwired to obtain densities of sums 
of more than two independent random variables, is notoriously unpleasant and 
cumbersome. Their discrete series counterparts are even more tricky. Of course, 
in some special cases it can, and should, be done with the help of Mathematica. 
In most cases, the method of Laplace transform (or other related methods, like the 
Fourier transform) are preferable, see Theorem 5.4.5. 
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Example 5.5.1 Sums of Independent, Uniform Random Variables. 

Let X and Y be independent random variables with identical uniform densities 

fx(x) = fy(x) = { ~: 

Then, the sum X + Y has the density 

{
X, 

fx+r(z) = 2- x, 
0, 

ifO~x~1. 

elsewhere. 

ifO ~ x ~ 1; 
if 1 ~X~ 2; 
elsewhere. 

(6) 

(7) 

The formula is obtained by inserting the definition of fx(x) into the formula (5) 
and performing the integration (watch for the limits of the integral). 

Example 5.5.2 Gamma Distribution and Sums of Independent Exponential Ran­
dom Variables. 
Gamma distribution is an absolutely continuous distribution with the density 

for x;::: 0, (8) 

and equal to 0 on the negative half-axis (x < 0). It depends on two parameters, a 

and f3. Substituting y = x j f3 we find 

so that f(x; a, f3) is indeed a density function (see Section 3.8 for the gamma 
function calculus). The gamma-distribution with parameters a = 1, f3 = 1/J..., is 
simply the exponential distribution with parameter J.... 

The expectation and the second moment of a gamma-distributed random variable 
X are easily calculated: 

1oo {3f(a + 1) 1oo 
EX= xf(x, a, f3)dx = f(x; a+ 1, f3)dx = af3, 

o r~) o 
(9) 

and 

x2 f(x; a, f3)dx = f(x; a+2, f3)dx = a(a+l)f32 , (10) 1oo {3zr(a + 2) 1oo 
o r~) o 
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which, in tum, yields the variance 

(11) 

If X and Y are independent and have gamma densities with parameters Ott , {J and 
0t2, {J, respectively, then their sum X+ Y has a gamma-density with parameters 
Ott + 0t2, {J. Indeed, according to (5), 

fx+y(t) = i: fx(t- x)fy(x) dx 

where we used the identity2 

So, in particular, if X 1, ... , Xn, are independent exponential random variables 
with parameter).. = 1f{J, then their sum has a gamma density with parameters 
a = n, {J = lj).., that is 

fx 1+ ... +x.(x) = f(x; n, 1/A). (12) 

2The left-hand side defines a new special transcendental beta jUnction B(at. a2) which appears 
naturally in fractal calculus. For a proof see A.l. Saichev and W.A. Woyczynski, Distributions in 
the Physical and Engineering Sciences, Volume 1, Distributional and Fractal Calculus, Integral 
Transforms and Wavelets, Birkhliuser-Boston, 1997, Sections 6.8 and 6.9. 
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Example 5.5.3 Sums of Independent Gaussian Random Variables. 
For sums of independent Gaussian random variables, it is easier to use the Laplace 
transform to determine their distribution and Theorems 5.4.3 and 5.4.4 to determine 
their expectations and variances. Thus, we get that if X 1, ... , X n, are independent 
random variables with Gaussian distributions with expectations JL 1, ... , JLn, and 
variances al, ... , a;, respectively, then their sum, 

Sn=XI+ ... +Xn, 

is also a Gaussian random variable with expectation 

E(Sn) = JLI + ... + JLn, (13) 

variance 
Var (Sn) = al + ... + aJ, (14) 

and the density 

1 [ X - (JL I + ... + JLn) ] 
fsn (x) = exp - 2 2 . 

/2rr(af + ... +a ;f) 2(al + · · · +an) 
(15) 

This result can also be obtained by calculations with the gamma functions, similar 
to those in Example 5.5.2. 

In the following example we shall identify the distribution of a more compli­
cated, quadratic function of independent Gaussian random variables which is of 
importance in the statistical applications in Chapters 7-9. 

Example 5.5.4 Chi-Square Distribution and Sums of Squares of Independent 
Gaussian Random Variables. 
By definition, a random variable Y is said to have a chi-square distribution with 
parameter n = 1, 2, 3, ... (which is often called the number of degrees of freedom) 
if its density is 

for x ::=: 0, (16) 

and 0 on the negative half-line. Obviously, this is the gamma density with param­
eters f3 = 2 and a = n/2. Hence, the expectation and the variance are 

EY = fooo x x;(x) dx = n, VarY= 2n. (17) 
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The importance of the x2 distribution comes from its relation to the normal distri­
bution. If X 1, ... , Xn, are independent standard Gaussian random variables (with 
expectations 0 and variance 1), then the random variable 

Y = xi + x~ + ... + x; (18) 

has the x2 distribution with parameter n. Indeed, this follows immediately from 
the formula for the density of the sum of independent gamma random variables 
and from the fact that, for each i, the random variable XJ has a x2 density with 
parameter n = 1. 

Graphs of the gamma and chi-square densities are shown, using Mathematica, 
in Section 3.8. 

5.6 Laws of large numbers and small deviations 
One of the first attributes of randomness discussed and confirmed experimentally 

in the preceding chapters, is the stability of sample means as the sample size 
becomes larger and larger. In terms of consecutively and independently repeated 
experiments with outcomes Xt, ... , Xn, one would like to see the (time) averages 

Xt + ... +xn 
n 

converge, as the number of experiments n ~ oo. This, in particular, also gives 
the related desirable attribute of randomness: the stability of relative frequencies. 

The goal of this section is to establish rigorously, within the model of Kol­
mogorov's probability theory, that if X, Xt, X2, ... , is a sequence of independent, 
identically distributed random variables, then 

. Xt+ ... +Xn 
hm =EX, (1) 

n->oo n 

whenever EX is well defined. In other words, the arithmetic "time" averages 
of the sequence converge to their common expectation, i.e., probability "space" 
mean (average). In probability theory, results of this type are called the Laws of 
Large Numbers (LLNs). Of course, we have not yet specified in what sense the 
convergence in (1) takes place. Here, there are several possibilities and we will 
explore two of them below. 

In our first law of large numbers we will measure the difference of the left-hand 
and right-hand sides in (1) (i.e., the distance between the "time" average and the 
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"space" average) in terms of the expected mean square distance. For that reason, 

the next theorem is often called the Law of Large Numbers in the Mean (Square). 

Theorem 5.6.1 Law of Large Numbers in the Mean. 

If X, X1, X2, ... is a sequence of independent and identically distributed random 

variables with .finite variances, then 

lim E (XI+ ... + Xn - EX) 2 = 0 
n->oo n 

PROOF In view of Theorem 5.4.4, the variance of the sum of independent 

random variables is the sum of their variances. Hence, 

. ((XI- EX1) + ... + (Xn- EXn)) 2 n Var X 
hm E = lim 2 = 0. 

n->oo n n->oo n 
(2) 

I 

Our second law of large numbers asserts that for large n, the probability of 

even smallest deviations of the "time" average from the "space" average becomes 

negligible. For that reason, the following result is called the Law of Large Numbers 

in Probability, or, sometimes, the Weak Law of Large Numbers. 

Theorem 5.6.2 Weak Law of Large Numbers. 
If X, X 1, X 2, ... is a sequence of independent and identically distributed random 

variables with .finite variances, then,for any E > 0, 

PROOF In view of the Chebyshev inequality (Theorem 5.4.1), and the calculation 

(2) in the proof of LLN in the Mean, we have that for any E > 0, 

(I X1 + ... + Xn I ) Var ((XJ + ... + Xn)/n) _ Var X 
p - EXJ > E :5 2 - --2-, 

n € nE 

which, for any fixed E > 0, does converge to 0 as n ~ oo. 
(3. 

Inequality (3), a direct consequence of Chebyshev's inequality, is very useful in 

its own right and can be used to obtain various estimates. 
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Example 5.6.1 One Million Coin Tosses. 

Estimate the probability that in one million tosses of a fair coin one obtains between 
490,000 and 510,000 heads. The answer can be obtained by an application of 
the inequality (3). Indeed , take X I, ... , X I,ooo.ooo. to be independent random 
variables with identical symmetric Bernoulli distribution 

P(X = 0) = P(X = 1) = 1/2. 

Then, EX = 1/2 and Var X = 1 I 4. Hence, 

P( 490,000 < X1 + ... + XI,OOO,OOO < 510,000) 

= P( -10,000 <(XI+ ... + XI,ooo,ooo)- 500,000 < 10,000) 

= p (--1- < (XI+ ... + XI,ooo,ooo) _ ~ < _1_) 
100 1,000,000 2 100 

= P (I (XI+ ... + XI,ooo,ooo) _ ~~ < _1_) 
1, 000,000 2 100 

-1-P -- >-_ (i<XI+ ... +XI,ooo,ooo) 11 1) 
1, 000,000 2 - 100 

1/4 399 
> 1 - ---------=-
- 1, 000, 000. (1/100)2 400 

In a similar fashion one can answer another, similar question: How many times do 
we need to toss a fair coin so that the relative frequency of heads approximates 1/2 
with accuracy better than .00001 with probability at least .99? 

An alert reader must have already noticed that our LLN in the Mean and Weak 
LLN require that the variances of random variables involved are finite. That is a 
somewhat more restrictive assumption than the existence of the expectation EX 
that we hoped for in (1). An even stronger result, called the Strong LLN, and 
requiring that just EIXI < oo, is indeed true, and can be obtained also via a more 
complicated theoretical machinery. You can find the proof in any of the probability 
theory monographs cited in the Bibliographical Notes. 
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S. 7 Central limit theorem and large deviations 

Another-you could say, second level-attribute of randomness was discovered 

experimentally in Section 3.6: the stability, for large sample sizes, of the probability 

distributions of fluctuations around the sample means. More precisely, we have 

found out those universal asymptotic distributions to be Gaussian. In this section 

we will establish this rigorously within the framework of the Kolmogorov model 

of independent random variables. 
In the preceding section we proved the Laws of Large Numbers, which establish 

that for independent, identically distributed random variables X, X 1 , X 2, ... , 

X,+ ... +Xn 
------EX--+ 0, 

n 
as n--+ oo, (1) 

where the converg~&DCe of the difference between the "time" average and the "space" 

average to zero was meant either in the mean square (Theorem 5.6.1), or in prob­

ability (Theorem 5.6.2). The direct study of the distributions of the differences on 

the left-hand side of (1) does not promise much; indeed their distributions collapse 

to 0 since, by LLN in the Mean, 

X,+ ... +Xn a 2 
Var = - --+ 0, as n --+ oo, (2) 

n n 

where a 2 = Var X. However, the experiments of Section 3.6 suggest that a proper 

scaiing can produce a nontrivial limit distribution. In our present probability theory 

model, in view of (2), the correct rescaling of (1) is 

(3) 

(XI- EX,)ja + ... + (Xn- EXn)fa 

.;n 

so that, for all n = 2, ... , the new rescaled random variables Yn all have means 

= 0 and variances = 1. They are the proper object of the fluctuations' distribution 

study. Indeed, the next result, traditionally called the Central Limit Theorem (CLT), 

shows that the cumulative probability d.f.s of Yns converge, as n --+ oo, to the 

standard Gaussian cumulative probability d.f. 

Theorem 5.7.1 Central Limit Theorem. 
If X, X 1, X 2, ... is a sequence of independent and identically distributed random 
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variables with common expectation J.L and variance a 2 < oo, then, for each real 
number z, 

p (Xt + ... + Xn- nJ.L ~ z)-+ ~z e-x2f2 dx = <l>(z), (4) 
ay'n -oo $ 

asn-+ oo. 

PROOF We will sketch the proof only in the case when the Laplace transform 
({Jx is well defined. In view of (3), it suffices to consider the case J.L = 0 and 
a = 1. The obvious tool to study the distributions of averages of independent 
random variables is the Laplace transform introduced in Section 5.4. Actually, it 
will be more convenient here to use the logarithm of the Laplace transform 

L(u) := log({Jx(u). 

Then, by formula (5.4.16), 

L(O) = 0, L'(O) = J.L = 0, L"(O) = 1, 

and by Theorem 5.4.5, and the calculus' L'Hospital's rule applied twice, 

l. 1 ( ) 1. L(ujy'n) 1. L'(ujy'n)u 
1m og ({Jy u = 1m = 1m 

n--->oo n n--->oo n-1 n--->oo 2n-1/2 

Hence, the limit cumulative probability d.f. F (x) has the Laplace transform ({J(u) = 
e"2 12 and the result in Example 5.4.6 identifies it as the standard normal cumulative 
probability d.f. I 

Observe that the scaling 1 1 y'n in the Central Limit Theorem depends on the 
assumption that the random variables X, Xt. X2, ... , have finite variance. The 
alert reader should have also noticed that the proof used a continuity property of 
the Laplace transforms: The limit cumulative probability d.f. has the Laplace 
transform that is the limit of Laplace transforms. This analytical result has not 
been formally established in this book but can be found in sources quoted in the 
Bibliographical Notes. 
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One can show, via integration by parts, that the asymptotics of the tails of the 

standard Gaussian cumulative probability d.f. <l>(y) is 

(5) 

as x ~ oo. Thus, a formal application of the CLT for independent, identically 

distributed random variables with mean= 0, and variance= 1, suggests that, for 
the "time" averages Yn, 

1 e-a~/2 2 
P(Y: >a ) '"" ----- = e-anO+bnl/2 

n - n ../2ii an ' (6) 

as long as bn ~ 0, and an ~ oo. Actually, this large deviation result can be 
proved rigorously for discrete random variables with finitely many values, and an s 

such that an/ ,fii ~ 0. 

A Mathematical Aside. The Law of the Iterated Logarithm. For more general 
random variables the situation is more subtle and other, less obvious and intuitive, 

large deviation results can be found in the literature. A related result, called the 
Law of the Iterated Logarithm (LIL), is quoted below and sometimes used for 

higher-level tests of randomness. 

Theorem 5.7.2 Law of the Iterated Logarithm. 
Let X 1, X2, ... , be independent, identically distributed random variables with 

mean 0 and variance I. Then 

( . X1+ ... +Xn ) 
P hm sup = 1 = 1. 

n-+oo .../2n In Inn 
(7) 

Its effects can be seen only for very large n because the iterated logarithm 

function grows very slowly; indeed, observe that the iterated (decimal) logarithm 

of 10100 is equal to only 2. 
The CLT displayed a universal limit law (Gaussian) in the context of independent 

identically distributed random variables X 1, X2, .... There are many other results 
of this type (see also simulations with the Cauchy limit distribution in Chapter 

3). As another example we shall quote the so-called Arcsine Law which describes 

the limit distribution for the fraction of time the sum Sn = X 1 + ... + Sn (with 
EX; = 0, Var X; = 1) remains positive: 

. (#{k : sk > o} ) I 0• . hm P ~ x = ~ arcsm..ji, 
n-+oo n 1, 

forx ~ 0; 
forO~x~1; 

for x ::: 1. 
(8) 
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This limit law is also often used in high-level tests of pseudorandom number 
generators. 

5.8 Experiments, exercises, and projects 
1. How many times do you need to roll a die to guarantee that the frequency 

of 5s is within ±0.01 of 116, with probability more than 9/10? 

2. A closet contains 12 pairs of shoes. If 6 shoes are randomly selected, what 
is the probability that there will be 

a) no complete pair; 

b) exactly one complete pair; 

c) exactly two complete pairs? 

3. If the odds are 5 to 3 that event M will not occur, 2 to 1 that event N will 
occur, and 4 to 1 that they will not both occur, are the two events M and 
N independent? This exercise introduces the notion of the odds. 

4. Using the Chebyshev inequality, construct a table showing the upper 
bounds for the probabilities that a random variable differs from its mean 
by at least 1 ,2, and 3 standard deviations. Find the corresponding exact 
probabilities for the binomial distribution with n = 16 and p = 1/2. 

5. Explain the connection between the appearance of the binomial coefficient 
G) in the binomial distribution, and the coefficients in the expansion of 
the binomial (a+ b)", generalizing the familiar formula (a+ b)2 = a 2 + 
lab+ b2• 

6. To illustrate the Law of Large Numbers, find the probabilities that the 
proportion of heads will be anywhere from 0.49 to 0.51, when a balanced 
coin is flipped (a) 1,000 times, (b) 10,000 times. 

7. Find the mean and the standard deviation of a random variable X, with 
gamma distribution with parcA.IIleters a = 2 and fJ = 2. Recall that 

and r(a) = fo00 X 01 -!e-xdx. 

for x > 0; 
elsewhere, 

8. Suppose that events A, B, and Care independent (that is, the multiplicative 
law holds for all pairs and triples) with probabilities 112, 113, and 115, 
respectively. Find: 
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(a) P(A n B n C), 

(b) P(A U B U C), 
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(c) P(exactly one of the three events occurs). 

9. A pollster wishes to know the percentage p of people in a population to 
vote for candidate Z. How large must a random sample be in order to be 
99% sure that the sample percentage is within 1% of p? 

10. Let X, Y be independent, discrete random variables uniformly distributed 
on 1, 2, ... , n. Find: 

(a) P(X = Y), 

(b) P(X ~ Y), 

(c) P(min(X, Y) = k), fork= 1, 2, ... , n. 

11. What is the expected number of 6s appearing on three die rolls? What is 
the expected number of odd numbers? 

12. A random variable X has expectation 10 and standard deviation 5. 

(a) Find the smallest upper bound for P(X ~ 20). 

(b) Could X be a binomial random variable? 

13. In a certain population 5% of the people are poor, 1% are downtrodden 
and 0.1% are poor and downtrodden. Find the: 

(a) probability that a person is not poor, 

(b) probability that a person is poor but not downtrodden, 

(c) probability that a person is either poor or downtrodden. 

14. The four major blood types are present in the following proportions in 
the population of the U.S.: A -42%, B-10%, AB-4%, and 0-44%. 
These are all separate types. If two people are picked at random, what is 
the chance that their blood is of the same type? Of different types? 

15. Suppose that each week you buy an Ohio Lottery ucket which gives you 
a chance of one in ten million of a win. What is the chance that you get 
k = 0, 1, 2 wins during the year? 

16. Suppose that each of 300 patients has the probability of 113 of being helped 
by a treatment independent of its effects on the other patients. Find ap­
proximately the probability that more than 120 patients are helped by the 
treatment. 

17. A hat contains n coins, f of which are fair and b of which are biased to land 
heads with probability 213. A coin is drawn from the hat and tossed twice. 
The first time it lands heads, and the second time it lands tails. Given this 
information, what is the probability that it is a fair coin? 
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18. In the World Series, the Cleveland Indians and the Atlanta Braves play 
until one team wins four games. Suppose that all games are independent, 
and that in each game the probability that the Indians beat the Braves is 
2/3. 

(a) Find the probability that the Indians win in four games. 

(b) Find the probability that the Indians win the World Series given that 
the Braves won Games 1 and 2. 

19. Suppose that X, Y are two independent random variables with the same 
density function f(x) = x exp( -x2 /2). Find: 

(a) the density of Z = min(X, Y); 

(b) EZ2• 

20. For X, Y independent and uniformly distributed on [ -1, 1] find: 

(a) P(IX + Yl :::; 1), 

(b) EIX + Yl. 

21. Suppose that X, Y have the joint density function 

{ Cjx3 
/(X,Yj(X, y) = O, ' 

where C is a constant. 

(a) Find C; 

(b) Find the marginal density of X. 

for x > y > 1, 
otherwise, 

22. Let X, Y by independent with the Laplace density fx(x) = fy(x) = 
ae-.lllxl. Given {3, find a and then find fx+Y(x). 

23. Use the CLT, the Arcsine Law, and the Law of the Iterated Logarithm to 
test pseudorandom number generators of your choice. 

24. Use Mathematica's commands LaplaceTransform[expr, x, u], Fouri­
erTransform[expr, x, u], and the InverseLaplaceTransform[expr, 
x, u], InverseFourierTransform[expr, x, u] commands to calculate 
the probability d.f.s of the following sums of independent random vari­
ables. The Fourier transform commands are in the package Calcu­
lus' FourierTransform'. Produce the graphs (for specific ns) of their 
probability d.f.s, and cumulative probability d.f.s. 

(a) Sum of 3, 4, 5, 10, and, in general, n independent random variables 
uniformly distributed on the interval [0,1]. 

(b) Sum of 3, 4, 5, 10, and, in general, n independent random variables 
with the Cauchy distribution. 
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(c) Sum of 3, 4, 5, 10, and, in general, n independent random variables 

with the chi-squared distribution with the 2 degrees of freedom. 

(d) Sum of the independent standard normal and the exponential (with 
parameter 1) random variables. 

25. Conditional Probabilities and Bayes' Formula. If a random event B has 

positive probability P, then the conditional probability of a random event 
A given B is defined by the formula P(AIB) = P(A n B)/ P(B). 

(a) Prove that if random events B1, B2, ... , Bn form a partition of the 
sample space Q, i.e., B1 U B2 U ... U Bn = Q, B; n Bj = 0, i =/= 
j, i, j = 1, ... , n, then, for any random event A, 

n 

P(A) = L P(AIB;)P(B;). 
i=l 

This formula is known as the total probability formula. 

(b) Under the same assumption as in (a), prove the Bayes formula for 
reverse conditional probabilities: For each i = 1, ... , n, 

P(B;IA) = P(AIB;)P(B;) 
P(AIBt)P(BI) + ... + P(AIBn)P(Bn) 

(c) A channel transmits binary symbols 0 and 1 with random errors. 
The probability that the symbols 0 and 1 appear at the input of the 
channel are, respectively, 0.45 and 0.55. Given that the symbol 0 
was transmitted, the probability of receiving 0 is equal to 0.95. For 
the symbol 1 the analogous conditional probability is 0.9. Find the 
probability that the symbol 1 was transmitted, given that the symbol 
1 was received. 

26. Weibulldistributionandrelatedextremaldistributions. Suppose T1, ... , Tn, 

are independent real-valued random variables. Define two new random 

variables by setting 

Tmin = min T; and Tmax = max T;. 
I :5i :5n I :5i :5n 

Such random quantities play a role in many practical situations, for exam­
ple, in reliability problems. If a device consists of n components in series, 

and all of them have to function for the whole device to function, then the 
time of failure of the device is the minimum of times to failure of the indi­
vidual components. If the components are in parallel (redundant) then the 
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corresponding time is the maximum of individual failure times. A landing 

gear of an aircraft consists of several components which are subject, during 
each ground-to-air cycle, to stresses caused by the dynamic loads during 

taxing, take-off, landing impact, and landing runs. The stresses are random 

in nature due to the runway unevenness, and wind conditions, and together 

with non-homogeneity of the material and manufacturing processes they 

cause crack formation at random times. If we consider random variables 

describing the times of the first crack appearance in each component of 
the landing gear, then the time of the first crack appearance in the whole 
landing gear (of importance, for example, in determining the time intervals 

between inspections) is the minimum value of these variables. 
If T; 's are identically distributed with the cumulative distribution function 
F(t), then 

Pr (Tmax S t) = Pr (Ti S t for all i) = Fn(t). 

It turns out that for large n, under some technical conditions on F, a 

version of the Central Limit Theorem holds true, and the distribution of 

T max converges to the Weibull distribution 

f(t, a, {3) = af3(tf{3)01-l exp[-(t/{3)01 ], t:::: 0, 

where a is the shape parameter and {3 is the scale parameter. This is one 
of the so-called extremal distributions. 
Find the expectation, the variance, and the moment generating function of 
a random variable with the Weibull distribution. 

27. For random variables X, Y, with the joint density function 

f(x, y) = { x + y, 
0, 

0 <X, y < 1; 
elswhere, 

find the correlation coefficient between X and Y. 

28. Let P(X = xJ) = 1 - P(X = x2) = p < 1 and P(Y = yJ) = 
1 - P(Y = Y2) = q < 1. Show that X andY are independent if and only 
if the correlation coefficient between them is zero. 
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Chapter6 

Chaos in Dynamical Systems: How 
Uncertainty Arises in Scientific and 
Engineering Phenomena 

The two preceding chapters analyzed the phenomenon of randomness from the 
viewpoint of algorithmic and computational complexity of a fixed string of data, 
and in the context of the formal mathematical probability theory based on Kol­
mogorov's concept of a sequence of statistically independent random variables. 
We complete this picture in the present chapter by demonstrating that certain, 
seemingly deterministic, dynamical systems also exhibit some attributes of ran­
domness such as stability of frequencies and fluctuations. The essential features 
here are nonlinearity and/or sensitive dependence on initial conditions. 

6.1 Dynamical systems: general concepts and typical examples 

We shall begin with an introduction of some basic terminology and examples 
of dynamical systems. The former will facilitate our more rigorous discussion 
of the behavior of such systems, and the latter will provide motivation for their 
study. Several real-life examples of dynamical systems were mentioned in Chapter 
1 (water dripping from a faucet, turbulent flows, etc.). Others were experimented 
with in computer simulations (billiards). On the other hand, some of the examples 
described below have a character of greatly simplified cartoons of real systems. 
Their value is in their transparency and the relative ease of their analysis. Although 
simple, they are not simple-minded; it took experts quite a bit of time to discover 
some of them, or to realize their usefulness. 

The dynamical system evolves on a state space which we will denote by S, with 
individual states denoted by s, x, y, etc. The state space Scan be very simple 
and very small; for a single coin toss, it can consist of two states, 0 and 1. For a 
complex system, such as a gas of molecules, it can be a huge ca. 6·1 023 -dimensional 
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Euclidean space, see Examples 4.4.1 and 5.1.5. In studies of physical systems one 
often selects the state space to coincide with the phase space, but the same physical 
system may be given different dynamical system descriptions depending on the 
level of accuracy desired. For example, the coin toss could be described also as a 
motion of the rigid 3-dimensional body in a rich phase space with its several degrees 
of freedom, rather then as a simplistic evolution in a two-point state space. At a 
superficial level, the state space S also resembles the sample space 0 introduced 
in the Kolmogorov probability theory to label possible outcomes. Their roles are, 
however, different; for the sample space 0, its structure was of little consequence, 
any other labeling would suffice, and the unit interval could always serve as a 
universal sample space. What mattered was the distribution of a random variable. 
On the other hand, the structure of a dynamical system's state space is of great 
significance; the systems on a unit interval may display behavior very different 
from those on a two-dimensional torus. 

In this chapter we will discuss mainly dynamical systems with discrete time 
t = 0, 1, 2, ... As a description of real-life phenomena it is often a simplification, 
although one can argue that data collected via computerized measuring tools are 
always discrete-time. Evolution of a system with the state space S is determined 
by a mapping (function) 

I : S 3 s ~ l(s) E S, (1) 

which, colloquially, is often referred to as the "dynamics" of the system. In one 
time-step, the system, originally in states, is transformed into another state l(s) 
in the same state space S. This process is then iterated to determine the future 
states of the system at discrete times. So, starting from s E S, we can observe time 
evolution of the initial states under consecutive iterations of the map 1: 

s l(s) l(f(s)) l<f(f(s))) f 
~ .... (2) 

For simplicity, we shall denote the n-th iteration of the function l(s) by r(s) 
(not to be confused with the n-th power of a real-valued function). The orbit of 
the initial state s in the system, whose dynamics is determined by the mapping I, 
is the sequence of states 

SO= S, St = l(s), S2 = 1 2(s), ... , Sn = r(s), · · · · (3) 

Fig. 6.1.1 visualizes evolution of the dynamical system. 
Discrete vs. continuous-time systems. The dynamics of a discrete dynamical 

system can also be described equivalently via its increments: 

Xn- Xn-1 = I(Xn-t)- Xn-1· (4) 
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FIGURE 6.1.1 
A schematic representation of the orbit of the initial state s, generated by the map 
f on the state space S. 

Denoting 
~Xn = Xn- Xn-!, and F(x) = f(x)- x, (5) 

evolution of our discrete dynamical system can be described by the difference 
equation 

(6) 

which, if we denote the unit (in our case) time increment ~n = n - (n - 1) = 1, 
takes the form 

~Xn 
- = F(Xn-!). 
~n 

(7) 

This description provides a connection with the usual description of continuous­
time dynamical systems via differential equations. Replacing, if possible, the 
discrete time n by the continuous time t permits one to pass to the limit ~n = 
~t ~ 0 in the equation (7), which leads to the differential equation 

dx(t) -- = F(x(t)) 
dt 

(8) 

with the initial condition x(O) = xo. If the dynamics is permitted to change with 
time (a similar generalization is, of course, possible in discrete time as well), then 
the equation (8) takes the form 

dx(t) -- = F(x(t), t), 
dt 

(9) 

familiar from physics and engineering courses. On the other hand, for numerical 
purposes, the continuous-time differential equation (9) are routinely approximated 
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by discrete difference schemes 

x(t +h)- x(t) ~ F(x(t), t) · h, (10) 

with the time-step h. 
For a discrete system, the following two types of problems are of interest: 

(I) Determine the system's behavior a few time-steps ahead into the future, 
assuming that its recent past is known. In other words, given xo, x1, ... , Xn-1• find 
the behavior of Xn, Xn+ 1, ... , Xn+k. for small values of k. Often this problem boils 
down to finding good approximations for otherwise cumbersome formulas. 

(2) Determine the system's behavior in the far future, assuming that its 
whole, long past is known. In other words, for large values of k and n, given 
xo,x1, ... ,Xn-1. find the behavior of Xn+k· Here, two basic phenomena can be 
observed. Either the system is relatively stable and small changes of the initial 
conditions lead to small changes in large-time behavior, or the system is chaotic 
and small variations in the past behavior may lead to large changes in the future 
behavior. In the first case, reasonable deterministic predictions about the future 
can be made; in the second case, they are practically impossible and one has to 
resort to statistical tools. 

Before proceeding with the theoretical analysis any further, let us take a look at 
a number of examples. 

Example 6.1.1 A Finite-Dimensional Linear Map. 
Here, the state space S is the d-dimensional Euclidean space Rd, with states s 
represented by d-dimensional vectors (points) x = (x1, x2, ... , Xd). A map f : 
Rd -+ Rd is said to be linear if, for any real numbers a, {3, and any vectors x, y, 

f(ax + {Jy) = af(x) + /3/(y). (II) 

A linear map f on Rd always has a representation of the form 

f(x) =Ax', (12) 

where A = (aiJ)1~i.J~d· is ad x d matrix, x' is the transpose of vector x, and 
Ax' stands for the matrix multiplication. In other words, if y = Ax', then its 
coordinates 

d 

Yi = L,:a;kXk. 
k=l 

i = 1, 2, ... ,d. (13) 
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Suppose, for instance, that d = 2 and 

A= G i)· 
Then the point z = (1/2, 1/5) is mapped toy= (9/10, 7 /10). The iterations of 
the linear map f (z) = Az', which determine the orbit of the system, correspond 
to the matrix multiplication, so that 

n = 0, 1, 2, ... , (14) 

where An is the n-th power of matrix A. 

Example 6.1.2 Rotation of the Unit Circle. 
The state space T is here the unit circle {(x, y) : x2 + y2 = 1} in the plane. It is 
convenient to write it in the complex-plane form 

j(J T = {z E C: Z = e , () E [0, 2H)} = {z E C: lzl = 1}, (15) 

where C 3 z = x + iy, i = J=T. The map f corresponds to the rotation of the 
circle at the fixed angular rate a per time-step (see Fig. 6.1.2). 
In other words, 

(16) 

Its iterations, and thus the orbit of a given starting point on the unit circle, are easily 
determined since 

n = 0, 1, 2, .... (17) 

They track the trajectory of the initial point xo = ei8 as it is rotated counterclock­
wise at the angular velocity of a radians per unit time-step. 

Example 6.1.3 Rotation As a Map of the Unit Interval. 
Rotation of the unit circle can be written as a map of the state space S = [0, 1), 
where one thinks of the unit interval as being wrapped around, so that its endpoints, 
0 and 1, are identified. In this setting, the rotation-of-the-circle map corresponds 
to the additive shift transformation, modulo 1: 

f(x) = (x +a) (mod 1) := (x +a) - Lx + aJ, X E [0, 1], a E R, (18) 

where L b J is the integer part of a real number b. A plot of this map is shown on 
Fig. 6.1.3. 
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FIGURE 6.I .2 

Rotation map of the unit circle. 

FIGURE 6.1.3 
A plot of the additive shift map, modulo I, on the state spaceS= [0, 1). 

Example 6.1.4 Multiplication Modulo 1, and Independent Bernoulli Random 
Variables. 

The state space S is again the unit interval [0, 1), and the map is defined by the 
formulas 

f(x) = 2x (mod 1) = { 2x, ~fO :5 x < 1/2; (19) 
2x - 1 , tf 1 /2 :5 x < 1. 
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A plot of this map is shown in Fig. 6.1.4. 

FIGURE 6.1.4 

A plot of the multiplication-by-2, modulo 1, map of the unit interval. 

It is relatively easy to determine iterations of this map. Indeed, the second 
iteration, see Fig. 6.1.5, 

1
4x, 

f 2 (x) = f(f(x)) = :~ = ~: 
4x- 3, 

FIGURE 6.1.5 

ifO :S x < 1/4; 
if 1/4 :S X < 2/4; 
if2/4 :S X< 3/4; 
if 3 I 4 :s X < 1. 

(20) 

Graphs of the second (n = 2) and third (n = 3) iterations of the multiplication­
by-2, modulo 1, map of the unit interval. 

The n-th iteration clearly produces a function with the slope equal to 2n, 
"wrapped around" the unit interval 2n times. Rather than writing the explicit 
formulas for r(x), we produce their graphs for n = 2, and 3, see Fig. 6.1.5. 
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These graphs should bring back memories of independent Bernoulli random 
variables considered in Example 5.3.3. Indeed, let us test our dynamical system 
(19) via the test function 

cfJ(x) = { o1•• ifO.::: x < 1/2; 
1/2 .:5 X< 1; 

(21) 

which simply probes if the state of our dynamical system is above the level 112 or 
below it. Plots of the tested via cfJ successive states of the orbit of ( 19), 

cp(x), cfJ(f(x)), cp(f2(x)}, cp(JJ(x)), ... (22) 

are shown in Fig. 6.1.6. 

I I 
n=O n=l I n=2 I ,....., r--i i1 i1 i1 r-! I I I I I I I I I I 

I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

0 0 0 

FIGURE 6.1.6 
Graphs of the tested iterations of the multiplication-by-2-modulo-1 map of the unit 
interval. 

They are obviously identical with plots of the independent Bernoulli random vari­
ables on the standard sample space Q = [0, 1] considered in Example 5.3.3. In 
light of the results of Chapter 5, this is the first indication that one could expect 
to see some randomness effects in a purely deterministic dynamical system. Also, 
the notion of a test function introduced above will be useful later on. The partic­
ular test function cp (x) is also called the indicator function of the set [0, 1 /2) and 
denoted l[o,tf2)(x). 

Example 6.1.5 Shifting Binary Strings and Independent Bernoulli Random Vari­
ables. 

In this example, the state space S consists of all infinite binary strings 

X= (Xt, X2, •• • ), (23) 
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with the digits Xi = 0, or 1. The map f consists of shifting all the digits to the left 
and dropping the left-most one. More precisely 

f(x) = (X2, X3, ... ). (24) 

The graphical representation of this dynamical system becomes easy if one re­
members that one can identify each string x = (Xi, x2, ... ), with the real number 

(25) 

from the interval [0, 1]. In other words, the string (23) is a binary representation 
of the number x from (25). In this interpretation it becomes immediately clear 
that the shift map is identical with the multiplication-by-2, modulo 1, map of 
Example 6.1.4. Testing it again with the indicator function l[l/2,)(x) brings back 
independent Bernoulli random variables. 

Example 6.1.6 The Logistic Function in Population Dynamics. 

The state space here is the unit interval S = [0, 1] and for a point x E [0, 1] 

f(x) = ax(l - x). (26) 

As long as 0 ~ a ~ 4, the quadratic function f maps the unit interval into itself, 
and its graph is shown in Fig. 6.1.7 together with a sample orbit (notice a convenient 
way of constructing graphically orbits of maps of the interval). 

The system describes a typical behavior of the growth rate in population dy­
namics. The population size is assumed not to exceed a certain maximal value M. 
The quantity x represents the size of the population as a fraction of the maximum 
population, hence x E [0, 1]. If the size of the population is small, its growth is not 
restricted by the food supply, space, and other environmental limitations. After 
the population reaches its maximal size, the same environmental factors cause the 
rate of growth to decline. 

Mathematica Experiment 1. Iterations of Logistic Function. The iterates r (x) 
of the function (26) are obviously polynomials of degree 2n, and can be drawn 
easily using Mathematica. 

In[l]:= f[a_,x_]:=a*x*(l-x) 
In[2]:=Plot[{f[2,x], f[3,x], f[3.75,x], f[4,x]}, {x,O,l}, 

Frame->True, AspectRatio->1, GridLines->Automatic] 
Out[2]= -Graphics-
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FIGURE 6.1.7 
A plot of the logistic map f(x) = ax(l - x), and its sample orbit. 

I ~ 
.~ , 

~ 

~ 
~ 

~i 
o~-x~-------f~(~x)------~f2~(x~)--~ 

In[3] := f2[a_,x_]:=f[a,f[a,x]] 
In[4] := f3[a_,x_]:=f[a,f2[a,x]] 
In[5]:= f4[a_,x_]:=f[a,f3[a,x]] 
In[6] := p1=Plot[f[3.75,x],{x,0,1}, AspectRatio->1] 
In[7] := p2=Plot[f2[3.75,x],{x,0,1}, AspectRatio->1] 
In[8] := p3=Plot[f3[3.75,x],{x,0,1}, AspectRatio->1] 
In[9] := p4=Plot[f4[3.75,x],{x,0,1}, AspectRatio->1] 
In[10] := Show[GraphicsArray[{{p1,p2}, {p3,p4}}], 

Frame->True, FrameTicks->None] 
Out[10]= -GraphicsArray-
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Example 6.1.7 Anemia in Rabbits. 
A laboratory study of hemolytic anemia in rabbits called for a model of the time­
evolution of the number Xn of red blood cells per unit blood volume. Initially, J. 
Williams proposed 1 that the logistic model (26) be used with an experimentally 
fitted parameter a. Although this model correctly reflected some features of the 
system's evolution, it did not lead to a good prediction of experimental red blood 
cell counts. A better model, described by the discrete dynamics 

(27) 

where L, K, and s are certain parameters, has been proposed by Andrzej Lasota in 
1977. A particular example of the function governing Lasota's dynamics is shown 
in Fig. 6.1.8. 

Continuous-Time Dynamics in Physical Systems. In the following few examples 
the continuous-time dynamics is provided by differential equations. 

Example 6.1.8 A Particle in the 3-Space. 
A particle is moving in the 3-dimensional space with velocity 

v(t) = (u(t), v(t), w(t)) 

1 Journal of Mathematical Biology 3(1976), 1-5. 
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FIGURE 6.1.8 
A special case of Lasota's dynamics for hemolytic anemia in rabbits corresponding 
to f(x) = 3x- 2.9x2 exp(l- x). 

at time t. If we denote its position at time t by 

x(t) = (x(t), y(t), z(t)), 

then x(t) and v(t) are tied together by the differential equation 

:i: = v(t). (28) 

For each initial position (xo, yo, zo), its solution is given by the formulas 

x(t) = xo +lot u(s) ds, 

y(t) =Yo+ lot v(s) ds, 

z(t) = zo +lot w(s)ds. 

In particular, after time t = 1, its new position is 

f((xo, Yo. zo)) = (x(l), y(l), z(l)), 
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and the above function f defines a map 

The velocity function v could also depend on the location, that is v = v(t, :~:), 
defining a more general dynamical system. The corresponding nonlinear differen­
tial equation 

:i: = v(t, :~:) (29) 

is, however, much harder to solve, so that, in general, we can define the correspond­
ing map f only implicitly. As a matter of fact, in certain cases, the last equation 
may have no solutions at all. 

Example 6.1.9 Hamiltonian Systems in Classical Mechanics. 
A major program of study of physical dynamical systems was launched between 
1892 and 1897 by French mathematician Henri Poincare in connection with his 
work on celestial mechanics. For the past 100 years, those investigations had a 
major impact on development of the theory of dynamical systems. Simple celestial 
mechanics models describing the motion of planets around the sun, go back to Isaac 
Newton and Johannes Kepler. Newton's second law of dynamics says that a force F 
acting on a moving particle with mass m is directly proportional to its acceleration. 
This law is expressed by a second order differential equation 

(30) 

where:~: = (xi, x2, XJ) denotes the particle's position. If the particle is subject to 
a gravitation force field exerted by another material point of mass M, where, say, 
M is much larger than m, and located at the origin of the coordinate system, then 

F __ mM:~: 
- g 11:~:11 3 , (31) 

where II:~: II is the distance of the particle from the origin. The above two vector 
equations lead to three scalar differential equations: 
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which have solutions describing the particle's motion along a conical curve 
(parabola, ellipse, or hyperbQ!,a). This idealized model, applied to the real plane­
tary system (like the Earth moving in the Sun's gravitational field), provides a good 
approximation of what really happens only on short astronomical time-scales. To 
obtain good long-range predictions, one has to adjust the model to take into account 
gravitational fields of other planets, influence of other masses inside our Galaxy, 
etc. This leads to a much more complex system of differential equations describing 
the so-called n-body problem of classical mechanics. At this stage of our knowl­
edge we do not know how to solve it, or even how to decide if it is stable. The 
n-body problem is one of the most important outstanding problems in astrophysics 
and the theory of dynamical systems. 

Notice that the above model of Newtonian motion in the central gravitational 
force field can be rewritten as follows: 

where 

d a 
-d (m:i:) + -Ep(m) = 0, 

t am 

1 
Ep(m) = -gmMu;-u 

is the potential energy of the gravitational force field, and 

a (a a a) 
am = axl ' ax2 ' ax3 

is the gradient operator. If we denote the kinetic energy of the particle by 

(32) 

(33) 

then the Newton equation of motion can be rewritten, one more time, in terms of 
the so-called Lagrangian 

(34) 

to obtain 

(35) 
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The motion minimizes the action functional J L(x, i, t)dt. So, if we introduce 
the system's Hamiltonian 

H(p, q, t) = pq- L(q, q, t) = Ek + Ep. (36) 

where q and p are interpreted as a generalized position q = x and momentum 
p = m:i;, then the Newton equation can be written as a pair of equations 

dq aH 
= - , 

dt ap 

dp aH 
--

dt aq 
, 

which is known as the system of Hamiltonian equations. As it turns out, very 
general dynamical systems are governed by equations of this type. They are called 
Hamiltonian systems and their general solutions are not known except in very 
special cases. In most practical cases, a numerical approximation is used. If a 
Hamiltonian system has a solution, then it generates a dynamical system by setting 
f' (xo) to be the position of the solution after timet assuming that the initial position 
at time t = 0 was xo. 

6.2 Orbits and fixed points 

Evolution of the dynamical system generated by the map f S ~ S, and 
starting at the state xo E S, is described by its orbit 

xo, Xt = /(xo), x2 = f(xt), , Xn = /(Xn-1), · · ·, (1) 

which is a sequence of consecutive states of the system in the state space S. In this 
section we will take a look at different types of orbits and their various properties. 

Example 6.2.1 Rectilinear Motion. 
Consider a map 

f((xo, yo, zo)) = (xo + u, yo+ v, zo + w), (2) 

on the three-dimensional state space R3 3 v = (u, v, w), which describes a 
rectilinear discrete-time motion of the particle, with velocity v. It is the special 
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case of a general linear map of Example 6.1.1. Iteration of this map (see Fig. 6.2.1) 
yields orbit points 

r«xo, yo, zo)) = (xo + nu, Yo+ nv, zo + nw) (3) 

for integers n = 1, 2, .... 

FIGURE 6.2.1 

Orbit of the dynamical system described by a rectilinear discrete-time motion. 

As long as the velocity vector v =/:. 0, the orbit is unbounded and escapes to 
infinity. In particular, it does not approach the initial state xo at any future times. 

The latter property of the orbit of the rectilinear D,J.Otion, called transience, can be 
formulated more precisely as follows: there is no subsequence Xk 1 , Xk2 , .•• , kt < 
k2 < ... , of the orbit that converges to xo. Accordingly, the state xo is called 
transient if its orbit is transient. The set of all transient states is called the dissipative 
set of the dynamical system. 

In the opposite case, when the state xo is the limit point of some subsettuence 
Xk 1 , Xk2 , ••• , kt < k2 < ... , it is called a recurrent state. The set of all recurrent 
states is called the conservative set of the dynamical system. The simplest example 
of a recurrent state is any state that is an element of a finite, cyclic orbit. 

In what follows we will see examples of systems in which both phases, dissipative 
and conservative, exist. 

Definition 6.2.1 Fixed Points. 
The state s E S is said to be a fixed point (or, equivalently, a stable point, or an 

equilibrium state) of the map f iff (x) = x. 

Clearly, any orbit starting at a fixed point xo remains there forever since Xn = 
r (xo) = xo. Finding fixed points requires solving the equation f (x) = X. 

Definition 6.2.2 Periodic Orbits. 
The orbit xo, Xt, ... , is said to be periodic (or a cycle) if the set {xo, Xt, ... } is 

finite and xo is recurrent, or, equivalently, if there exists an integer p > 0, called 
a period, such that,for all integers k, Xk+p = Xk. 
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A periodic orbit visits the same point every p steps. The smallest period p is 
called the principal period of the orbit. Each state on a periodic orbit is called 
a periodic state. Each periodic state is visited infinitely many times. Finding 
periodic points with period p requires solving the equation f P (x) = x. The orbit 
is called aperiodic if it contains no periodic states. 

Example 6.2.2 Rotation of the Unit Circle Revisited. 
The rotation map f(z) = zeia on the unit circleT = {z : lzl = 1} C C, considered 
as a subset of the complex plane and introduced in Example 6.1.2, displays different 
kinds of recurrent orbits depending on the angular velocity parameter a. 

If a is an integer multiplicity of 2rr, that is, 

a= 2rrm, m EZ, 

then each point z of the state space T is a fixed point, 

ze2lrm = z, z E T, 

since rotation by an integer multiplicity of 2rr will return the point back to its 
original position. 

FIGURE 6.2.2 
(i) Periodic orbit of rotation map with parameter a = 2rr /3 has period 3. (ii) The 
orbit of the rotation map with parameter 2rr / ../3 is aperiodic. 

If a is a rational multiplicity of 2rr, that is, 

m 
a= 2rr-, 

n 
mE Z,n EN 
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(assume, for simplicity, that m and n have no common divisors), then each point z 
of the state space T is a periodic state with period n since 

z E T, 

and since, in view of a lack of common divisors of m and n, n is the principal 
period. The orbit of any point consists of exactly n points (see Fig. 6.2.2). Notice 

that as the denominator n increases, more and more points on the unit circle are 
visited by the orbit. 

If a is an irrational multiplicity of 2rr, that is, 

a= 2rry, 

where y is an irrational number not representable as a fraction mjn, m, n E Z, 

then each point z of the state space T is an aperiodic (non-periodic) state since for 
no positive integer k 

z E T. 

Indeed, were it otherwise, e2rryk = 1 and we would have yk =I, for an integer I, 
which would imply that y = I I k in violation of its irrationality. The orbit of an 
irrational rotation contains thus infinitely many different states. It can be shown that 

each state xo is recurrent. Use Mathematica to produce orbits for different xo, and 
check this condition numerically. Remember, however, that in computer practice 
we almost always end up with rational approximations to irrational numbers. 

The behavior of a system in a neighborhood of a periodic point is one of the 
central problems in the theory of dynamical systems. Here, we will encounter only 
two different types of behavior: 

(i) The fixed point x E S is said to be repelling if the orbit starting in its 
neighborhood runs away from it (at least in the short run). 

(ii) The fixed point x E S is said to be attracting if the orbit starting in its 
neighborhood converges to it. 

For maps f : R ~ R of the real line (and, in particular, of the unit interval) 
there is a simple criterion (see Fig. 6.2.3) of when the fixed point x is repelling or 
attracting. Namely, if 

lf'(x)l > 1, 

then the point is repelling, and if 

lf'(x)l < 1, 
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FIGURE 6.2.3 
Two types of fixed points for maps of the unit interval. ( i) State x is repelling since 
If' (x) I > 1. ( ii) State x is attracting since If' (x) I < 1. 

then the point is attracting. The fixed point x is called super-attractive iff' (x) = 0, 
that is, when it is also a critical point in the sense that the map is not locally 1-1. 
In the critical case when If' (x) I = 1, states on one side of the fixed point can be 
attracted to it and points on the other side can be repelled (see Fig. 6.2.4). Such a 
point is called a neutral point. 

/ 

FIGURE 6.2.4 

/ 

/ 
/ 

A neutral (unstable) fixed point for a map of the unit interval. Points to the right 
of it are attracted to it but points to the left are repelled by it. 

If x is a periodic point, with principal period p, say, then x is a fixed point 
of the p-th iterate fP, i.e., fP(x) = x, and we shall say that x is an attracting, 
repelling, or neutral point, according to whether it has this property with respect 
to f P. It is easy to see that for a differentiable f, the derivative of f P is constant 
on xo, x1, ... , Xp-1· Hence, all points in a periodic orbit are of the same type. In 
this case, we also say that the periodic orbit is attracting, repelling, or neutral (see 
Fig. 6.2.5). 

The irrational rotation in Example 6.2.2 has the property of equicontinuity, which 
means here that the distance of ze2rriy and ye2rriy is the same as the distance of z 



312 

" " " % ••••••••••••• 
-I 

FIGURE 6.2.5 

Chapter 6. Chaos in Dynamical systems 

" " " '-·············· 

I 
··············~ 

" : 

-I 

(i) Map f(x) = -x113 of the interval [-1, 1] has a periodic orbit {-1, 1} which 

is attractive. Map f (x) = - x 3 has also the same periodic orbit { -1, 1} but it is 
repelling. 

andy. Thus, the distance relations in two different orbits do not change in time. 
Such a mapping is completely regular, or, in other words, deterministic. It produces 

no random effects. 

On the opposite end of the behavior, the orbit will be called chaotic if is exponen­
tially unstable, dense in the state space, and if it is neither periodic nor attracted by 

a periodic orbit. An orbit originating in the neighborhood of a repelling fixed point 
is called exponentially unstable if it moves away from it (for some, perhaps limited, 
period of time) at the rate eJ...n, with Liapunov exponent).., for some).. > 0. We 

have seen this kind of behavior in the billiard Mathematica experiment in Chapter 
1, when a convex obstacle was present. One can also express this property in terms 

of the sensitivity to initial conditions. Indeed, two orbits starting at nearby points 
diverge at an exponential rate as time progresses. This phenomenon is particu­

larly troubling for computer simulations, where the same experiment conducted 
on two different computers with different error rounding mechanisms can produce 
dramatically different results. 

Example 6.2.3 Logistic Map Revisited. Consider again the logistic map 

f(x) = ax(1 - x) 

of the unit interval considered in Example 6.1.6. The derivative !' (x) = a - 2ax. 

It turns out that, depending on the parameter a, this family of dynamical systems 
on the unit interval displays a variety of different behaviors. 

For a = l/3, that is, for f(x) = (1/3)x(l - x), the fixed point x has to solve 
the equation 

1 
x = -x(l-x). 

3 
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Clearly, only x = 0 satisfies this equation inside the unit interval (the other solution 
x = -2 is outside our state space). The fixed point x = 0 is attractive as /' (0) = 
1/3 < 1. 

If a < 3, the system has an attracting fixed point. Indeed, the equation ax(1 -
x) = x has solutions 

{ 
0, 

x = 0 and (a - 1)/a, 
if a .::: 1 
if a > 1. 

For a < 1, we have /' (0) = a < 1, so the only fixed point x = 0 is attracting. 
For a = 1, the fixed point x = 0 although neutral, is also attracting nearby states 
to the right of it. 

For a > 1, the fixed point 0 is repelling since !' (0) = a > 1. The other fixed 
point x = (a- 1)/a, where f'((a- 1)/a) = 2- a, is repelling if 3 <a .::: 4, 
neutral for a = 3, and attracting if 1 < a < 3. However, as the parameter a 
crosses the critical point x = 3, attractive periodic orbits appear, with periods of 
length 2n with n-+ oo as a t aF =~ 3.57 .... 2 

For a = aF ~ 3.57 ... there is a fractal attractor which, however, is not the 
usual attracting set because it is a limit of repelling periodic points (see Fig. 6.2.6). 
In this case, the Liapunov exponent A. is still = 0. 
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FIGURE 6.2.6 
The fractal attractor of the logistic system for a = aF ~ 3.57 .... Also marked are 
the relative frequencies of visits in 1000 bins which will be studied in more depth 
in Section 6.3. 

For parameter values a > aF ~ 3.57 ... , the orbits become irregular. The 
whole spectrum of behaviors of the logistic maps is pictured on the orbit diagram 

2The critical value a F is sometimes called the Feigenbaum number in honor of the physicist who 
first discovered it. 



314 Chapter 6. Chaos in Dynamical systems 

in Fig. 6.2.7. The period doubling phenomenon observed on the diagram, as 
parameter a increases towards the critical value aF, is called bifurcation. It is 
considered one of the typical routes to chaos in parameter-dependent dynamical 
systems. 

For the logistic function f(x) = 4x(l - x), there are two fixed points x = 0, 
and x = 3/4, and both are repelling (see Fig. 6.1.7). However, in the long run, one 
can see (depending on the starting point) orbits visiting arbitrarily close to x = 0 
arbitrarily often; this is the first indication that we can have a new, "chaotic" type 
of behavior in a simple dynamical system (see Fig. 6.2.8 and 6.2.9). 

The system also shows chaotic behavior and sensitivity to initial conditions (see 
Fig. 6.2.9). Moreover, there are orbits that are dense in the state spaceS= [0, 1]. 

Mathematica Experiment 1. Logistic Map. We would like to study orbits of 
the logistic system f(x) = 4x(l- x) with nearby starting points: (i) x = 1rjl0, 
and (ii) x = Jr/10 + 0.001, and later look at their distances for the first 200 
steps. There are several functional operations in Mathematica that will be useful 
for iterating maps. The command Nest [f ,x,n] applies the function f nested n 
times to x. NestList [f , x, n] generates the list { x, f [x] , f [f [x] J , ... }. where f 
is nested upton deep. FixedPointList [f, x] generates the list {x, f [x] , f [f [x] J , 
... }. stopping when the elements no longer change. 

In[1] := f[x_] :=4*x*(1-x) 
In[2] := NestList[f, x, 4] 
Out[2]= {x, 4 (1- x) x, 16 (1- x) x (1- 4 (1- x) x), 

64 (1 - x) x (1 - 4 (1 - x) x) (1 - 16 (1 - x) 
x (1- 4 (1- x) x)), 
256 (1 - x) x (1 - 4 (1 - x) x) (1 - 16 (1 - x) 
x (1 - 4 (1 - x) x)) 
(1 - 64 (1 - x) x (1 - 4 (1 - x) x) (1 - 16 (1 - x) 
x (1 - 4 (1 - x) x)))} 

In[3] := Expand[%] 
Out[3]= {x, 4 x - 4 x-2, 16 x - 80 x-2 + 128 x-3 - 64 x-4 , 

64 x - 1344 x-2 + 10752 x-2 - 42240 x-3 + 90112 x-4 
- 106496 x-5 + 65536 x-6 - 16384 x-8, 
256 x - 21760 x-2 + 731136 x-3 - 12899328 x-4 
+ 137592832 x-5 - 963149824 x-6 + 4656988160 x-7 
- 16066609152 x-8 + 40324038656 x-9 - 74281123840 x-10 
+ 100327751680 x-11 - 98146713600 x-12 + 67645734912 x-13 
- 31138512896 x-14 + 8589934592 x-15 - 1073741824 x-16} 

In[4] := 11=Table[Nest[f, N[Pi/10],i], {i,200}] 
Out[4]= {0.861853, 0.47625, 0.997744, 0.00900467, 

0.645448, 0.915379, 0.309841} 
In[5] := lp1=ListPlot[l1, AspectRatio->1/3, PlotJoined->True] 
Out[5]= -Graphics-
In[6]:= 12=Table[Nest[f, N[Pi/10+0.001] ,i], {i,200}] 
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FIGURE 6.2.7 
TheorbitdiagramofthelogisticsystemforO <a~ 4. Thedotsindicatethestates 
visited. Attractingperiodicorbitsofperiods2nappearfor3 <a< aF ~ 3.57 ... , 
with n -+ oo as a t a F. For aF <a ~ 4, the orbits are irregular. 
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FIGURE 6.2.8 
"Chaotic" behavior of a selected orbit for the logistic map f (x) = 4x ( 1 - x ). 

Out[6]= {0.863336, 0.471949, 0.996853, 0.0125502, 
0.543269, 0.992511, 0.0297308} 

In[7]:= lp2=ListPlot[l2, AspectRatio->1/3, PlotJoined->True] 
Out[7]= -Graphics-
In[8] := ld=Table[Abs[l1[[i]]-12[[i]]],{i,200}] 
Out[8]= {0.00148273, 0.00430102, 0.000891191, 0.0035455, 

0.10218, 0.0771322, 0.28011} 
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Another look at the "chaotic" behavior of selected orbits for the logistic map 
f(x) = 4x(l - x), with starting points x = 0.1, 0.25, 0.3, 0.51, 0.57, 0.749, 
0.7499999, 0.74999999999, 0.75, 0.8, 0.9, 0.99. 
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In[9] := lpd=ListPlot[ld,AspectRatio->1/3,PlotJoined->True] 

Out[9]= -Graphics-
In[10] := Show[GraphicsArray[{{lp1},{1p2},{lpd}}], Frame->True] 

Out[10]= -GraphicsArray-
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Note the "exponential" initial growth of the distance between the two orbits 
which, of course, is later limited by the boundedness of the state spaceS = [0, 1]. 

Sensitive dependence on initial conditions. The behavior observed in the Lorenz 
system, billiard with a convex obstacle, and the logistic system with a = 4, displays 
the so-called sensitive dependence on the initial conditions. Roughly speaking, this 
means that if the initial conditions differ a little, say 8xo, then the orbits diverge 
exponentially as time progresses, so that, for a certain A > 0, we have 8xn ~ e'AN. 

The number A is called the Liapunov exponent (or, the characteristic exponent) 

of the system and it measures the rate of divergence of the orbits. If we operate 
with finite precision (resolution), as is always the case with real physical measure­
ments, or when we use computers for simulation or data collection, the sensitive 
dependence means that we can start with identical (meaning, indistinguishable) 
initial conditions and still have wildly differing orbits. This is a new way to pro­
duce random effects in physical phenomena and a new attribute of randomness. 
In the rest of this chapter, we will show that chaotic dynamical systems also pos­
sess more traditional attributes of randomness such as stability of frequencies and 
Gaussianness of fluctuations. 
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A Mathematical Aside. Formally, we say that f : S -+ S has sensitive 

dependence on initial conditions if there exists lJ > 0 such that for any x E S and 

any neighborhood V of x, there exists y E V and n > 0 such that 

For maps of the unit interval S = [0, 1], this condition means that there exists 

lJ > 0 such that, for any x E [0, 1], and any E > 0, there exists y and n > 0 

such that lx- Yl < E but lr(x)- r<Y)l > lJ. This, of course, means that the 

derivative (or, at least, the differential ratios) of some iterations of the map become 

very large. Indeed, 

I n n I dr(XO) 1 dr(Xo) 
~Xn = Xn - xn = f (xo) - f (x0) ~ (xo - x0) = ~xo. 

dx dx 

Applying the chain rule to the n-fo1d composition of the map f we have 

dr(xo) 

dx 

df(Xn-I) df(Xn-2) 

dx dx 

df(xo) 
···--

dx 

so that the average rate of growth per unit time-step can be defined as 

, 1. 1 1 Jdr(xo) J 
11. = 1m - og . 

n-+oo n dx 
(1) 

That this limit exists for "almost all" initial states xo is a deep mathematical the­

orem called the Multiplicative Ergodic Theorem. It was proved by the Russian 

mathematician Oseledec in 1968. We will explore this avenue further in the next 

section. 

Example 6.2.4 Liapunov Exponents of the Logistic Family. 
Using (1) or, more precisely, the formula 

with fa(x) = ax(l - x) one can easily compute the Liapunov exponents for 

different values of parameter a in the logistic system. The results, showing a curve 

of great complexity, are shown in Fig. 6.2.1 0 
The logistic map considered above on the interval [0, 1] is, after rescaling, a 

special case of the quadratic polynomial z ~ z2 + c on the complex plane. Al­

though such mappings have a simple and transparent structure, they can produce 
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a 
3.5 3.7 3.9 

FIGURE 6.2.10 
Liapunov exponent A.(a) of the logistic map fa(x) = ax(1- x) depends on the 
parameter a. This dependence is shown in the above "dripping paint" graph. This 
particular calculation was done for n = 100, 000 iterations, for 300 values of a, 
spaced 0.002 apart. (Adapted from Ruelle (1987).) 

an amazing spectrum of behaviors. Answering simple questions like "What is the 
set of initial states for which the orbits are bounded?" or, "What is the (closure 
of) repelling periodic states for a given map f?" often leads to objects of daunting 
complexity and exhilarating richness (see Fig. 6.2.11 and 6.2.12). Other maps (see 
Fig. 6.2.13) are also of great interest in this context. 

Fig. 6.2.11 shows the boundary of the so-called Mandelbrot set, the set of points 
c in the complex plane C for which the starting atOorbits of the map f(z) = z2 +c, 
do not tend to infinity as n -+ oo. The large cusp is at c = 1/4 and the left-most 
point is c = -2. Although the set contains arbitrarily small copies of itself, it is 
not selfsimilar, as each small copy is embelished by different "ornaments". 

Mathematica Experiment 2. Sensitive Dependence on Input in Numerical Cal­
culations. Finite precision numerical procedures, especially those that depend 
on "excavating" progressively less and less significant digits of the input, often 
show sensitive dependence on the initial condition. The following Mathematica 
experiment has been adapted from Wolfram (1996). 

The map f(x) we will take a look at is familiar from Example 6.1.4 the mul­
tiplication map modulo 1, that is f(x) =ax- LaxJ, for a certain constant a or, 
in other words, the map f assigns the fractional part of the multiplicity ax to the 
input x. Initially, we take a = 2, and look at the orbits of close initial values. In 
the binary expansion terms, you may remember that the mapping is just a shift map 
of Example 6.1.5. We select as the starting point x = 1/9, for which we discover 
immediately that the orbit is periodic with principal period equal to 6. However, 
if we take various approximations to x = 1/9, like 0.1111 and 0.1112, the story is 
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FIGURE 6.2.I I 

Boundary of the so-called Mandelbrot set, the set of points c in the complex plane 

C for which the starting at 0 orbits of the map f (z) = z2 + c, do not tend to infinity 

as n -+ oo. The large cusp is at c = 1 f 4 and the left-most point is c = -2. 

quite different, and, sometimes, nonsensical numbers result. 

The command RealDigi ts [x, b, len, n] returns the first len digits starting with 
the coefficient of bn, and N [x, k] gives the numerical value of x with precision k. 

In[1]:= NestList[((2 #)-Floor[2 #])&, 1/9, 10] 

Out[1]= {1/9, 2/9, 4/9, 8/9, 7/9, 5/9, 1/9, 2/9, 4/9, 
8/9, 7/9} 

In[2] := {0.111111, 0.222222, 0.444444, 0.888889, 0.777778, 
0.555556, 0.111111, 0.222222, 0.444444, 0.888889, 

0.777778} 
In[3] := NestList[((2 #)-Floor[2 #])&, 0.1111, 10] 
Out[3]= {0.1111, 0.2222, 0.4444, 0.8888, 0.7776, 0.5552, 

0.1104, 0.2208, 0.4416, 0.8832, 0.7664} 
In[4] := NestList[((2 #)-Floor[2 #])&, 0.1112, 10] 
Out[4]= {0.1112, 0.2224, 0.4448, 0.8896, 0.7792, 0.5584, 

0.1168, 0.2336, 0.4672, 0.9344, 0.8688} 
In[5]:= RealDigits[Take[%,5], 2, 8, 0] 
Out[5]= {{{0, 0, 0, 1, 1, 1, 0, 0}, 0}, 

{{0, 0, 1, 1, 1, 0, 0, 0}, 0}, 
{{0, 1, 1, 1, 0, 0, 0, 1}, 0}, 
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FIGURE 6.2.12 
Successive blowups of the Mandelbrot set centered around z ~ -0.1480798 + 
i0.6515558. 



322 Chapter 6. Chaos in Dynamical systems 

FIGURE 6.2.13 
Julia sets, that is (closures of) sets of repelling periodic states. Top: For f(z) = 
.36ez; Bottom: f(z) = 0.66i cos z, z E C. 
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{{1, 1, 1, 0, 0, 1, 1, 1}, 0}, 
{{1, 1, 0, 0, 0, 1, 1, 1}, 0}} 

In[6] :: NestList[((40 #)-Floor[40 #])&, N[1/9, 20], 20] 
Out[6]: {0.111111111111111111111, 0.4444444444444444444, 

0.777777777777777778, 0.1111111111111111, 
0.444444444444444, 0.7777777777778, 
0.11111111111, 0.4444444444, 0.77777778, 
0.1111111, 0.44444, 0.778, 
0.11, 0., 0., 0., 0., 0., 0., 0., 0.} 

In[7]:: NestList[((40 #)-Floor[40 #])&, 1/9, 20] 
Out[7]: {1/9, 4/9, 7/9, 1/9, 4/9, 7/9, 1/9, 4/9, 7/9, 

1/9, 4/9, 7/9, 1/9, 4/9, 7/9, 1/9, 4/9, 7/9, 
1/9, 4/9, 7/9} 
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Obviously, Out [7] shows periodicity with the principal period equal to 3, 
whereas the same computation with precision 20 completely deteriorates after 
15 steps. 

Mathematica Experiment 3. Sensitive Dependence on Initial Conditions for 
Continuous-Time Dynamical Systems. We mentioned before that differential equa­
tions are a continuous-time counterpart of discrete-time dynamical systems. They 
also can display sensitive dependence on initial conditions. In this experiment we 
will take a look at two solutions of the Duffing nonlinear differential equation 

1 
x" (t) + 2ax' (t) - 2x(t)(1 - x 2(t)) = b cos(wt), 

withinitialconditionsx(O) = xo, x'(O) = Xt, whichdescribesharmonicallyforced 
oscillations in a quartic double-well potential, resulting in the cubic nonlinearity. 
The equation provides a rough model for the motion of a cart rolling on a track 
with two valleys, subject to horizontal forcing frequency, see Fig. 6.2.14. Viscous 
damping a is also included. 

In[1]:: sol:NDSolve[ 
{x''[t]+0.15 x'[t]-x[t]+x[t]-3 :: 0.3 Cos[t], 
y''[t]+0.15 y'[t]-y[t]+y[t]-3 :: 0.3 Cos[t], 
x[O] :: y[O] :: -1, x'[O] :: 1, y'[O] :: 1.001}, 
{x, y}, {t, 0, 35} ] 

Out[1]: {{x -> InterpolatingFunction[{{O., 35.}}, <>], 
y -> InterpolatingFunction[{{O., 35.}}, <>] }} 

In[2] :: p1:Plot[Evaluate[x[t] /. sol],{t,0,35}] 
Out[2]: -Graphics-
In[3]:: p2:Plot[Evaluate[y[t] /. sol],{t,0,35}] 
Out[3]: -Graphics-
In[4]:: pd:Plot[Evaluate[Abs[x[t]-y[t]] /. sol],{t,0,35}] 
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FIGURE 6.2.14 
Duffing cart in a double potential well, driven by a lateral harmonic displacement 
of the track. The resulting differential equation has a cubic nonlinearity. 

Out[4]= -Graphics-
In[5]:= Show[GraphicsArray[{{pl},{p2},{pd}}, Frame->True]] 
Out[5]= -GraphicsArray-
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6.3 Stability of frequencies and the ergodic theorem 

In this section we will begin a systematic study of randomness in simple dy­
namical systems on the unit interval. Needless to say, even more striking random 
behavior is possible for more complex systems. The approach will be mostly 
through computer experimentation; theoretical mathematical proofs of the results 
to be presented are quite difficult and beyond the scope of this book. The reader 
interested in pursuing this subject on a more rigorous level can find additional 
references in the Bibliographical Notes section at the end of this chapter. 

The first attribute of randomness discussed in this book was the stability of 
frequencies and we will initially take a look at this basic statistical property as 
applied to orbits of dynamical systems. As usual, the first step is to introduce the 
proper formal framework wherein our question can be discussed. 

FIGURE 6.3.1 

A schematic illustration of the calculation of the fraction of "time" the dynamical 
system starting at x spends in the given subset T of the state spaceS. 

Consider, again, a dynamical system on the state spaceS, generated by the map 
f : S ~--+ S, and its orbit 

(1) 

originating at the state x E S. Notice a little change: we dropped the subscript 0 
in the designation of the starting point. Seemingly an innocent alteration, but it 
indicates a certain change of viewpoint in this section compared with the previous 
section; we will look here at the orbits with starting points varying all over the state 
spaceS. For a subset T of the state spaceS (see Fig. 6.3.1), the relative frequency 
of visits, during the first n time-steps, by the orbit (1) starting at the state x, is 
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An(T,x) = #{j: 1:::: j:::: n, fi(x) E T} 
n 

IT(f(x)) + ... + tr(r(x)) 
= 

n 

where the indicator function 

lT(X) = { ~: if X E T; 
otherwise, 

(2) 

(3) 

helps to count the number of visits. Observe that An (T, x) can also be interpreted 

as the fraction of (discrete) time the orbit spends inside the subset T of the state 

spaceS, and that, a priori, it depends on the starting point x E S. 

The reader may note that the discussion in this section parallels the analysis in 

Section 3.1. This is not an accident. 

There is one immediate basic question: Do the relative frequencies (2) of vis­

its to T stabilize as n increases or, more formally, does the limit A00 (T, x) = 

limn-+oo An (T, x) exist for every T? If this is the case, the starting state x is 

called a generic state of the system. The limiting frequency A 00 (T, x), if it exists, 

possesses a number of useful properties: 

(i) For any subset T of the state spaceS, and any starting point x, 

0 ::=:: A 00 (T, x) ::=:: 1, and A 00 (S, x) = 1. (4) 

(ii) For any two disjoint subsets T1, T2 c S, T1 n T2 = 0, the relative frequency 

of the visits to the union T1 U T2 is equal to the sum3 of frequencies of visits to 

each set, i.e., 
(5) 

For that reason we can refer to A00 (T, x) as the counting measure for the orbit 

starting at x. 

(iii) The counting measure of each generic orbit is invariant under action of the 

map f, that is, for any subset T c S, 

(6) 

where the inverse image f- 1 T of the subset T is the set of states x that are mapped 
by f into T, i.e., f- 1T :={xES: f(x) E T}. 

3 As in probability theory of Chapter 5, there remains the question of countable additivity of such 

measure. This property holds in many cases of interest, but we will ignore it in this book. 
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Indeed, property (6) can be verified as follows: 

= lim lr(/2 (x)) + ... + Ir<r+1(x)) 
n--+oo n 

= lim lr(f(x)) + ... + lr<r<x)) 
n--+00 n 

Ir<r+1(x)) -lr(f(x)) 
+lim 

n--+00 n 

I. lr(/(x)) + ... + lr(r(x)) _A (T ) 
tm - oo ,x. 

n--+00 n 
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For that reason, we shall call A00 (T, x) the invariant measure generated by the orbit 
starting atx. It is clear that, for any integer k, we have A00 (T, x) = A00 (T, fk (x )). 
Hence, the invariant measure only depends on the orbit, and not on the particu­
lar starting point. In this context, the fundamental question is: When is the in­
variant measure unique, i.e., independent of the starting point x? In that case, 
A00 (T, x) = A00 (T), we can think about the dynamical system as being equipped 
with the unique probabilistic measure structure (S, A00), similar to that considered 
in Chapter 5; then the analogues of the Law of Large Numbers and the Central 
Limit Theorem (Stability of Fluctuations Law) can be investigated. Systems with 
unique invariant measure are also called uniquely ergodic.4 The unique ergodicity 
implies the following property, which will play an essential role later on in this 
section: 

Definition 6.3.1 Ergodic Invariant Measure. 
The invariant measure A00 (T, x) is said to be ergodic for the dynamical system 

(S, f) if, for any invariant set T, i.e., such that f- 1T = T, we have either 
A00 (T, x) = 0, or A00 (T, x) = 1. 

In the case when the state space S is an interval, a circle, the real line, or more 
generally, a subset of the d -dimensional Euclidean space Rd, we shall be interested 
in those unique invariant measures A00 (T) which are described by a density, i.e., 

41n general, there is no unique invariant measure, not even for maps of the unit interval. However, 
very often there is a unique absolutely continuous invariant measure which is automatically ergodic. 
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an invariant measures for which there exists a nonnegative function h(x) on the 
state space S c Rd such that, for all measurable subsets T c S, 

A00 (T) = £ h(x) dx. 

Mathematica Experiment 1. Invariant Measures for Rotations of the Unit Circle. 
For rational rotations 

lzl = 1, 
m 

a= 21r-, 
n 

where m, n are integers without common divisors, all orbits are periodic with period 
n (see Examples 6.1.2 and 6.2.2). Since zeina = zei2n"m = z, an orbit starting at z 
visits exactly n distinct states 

(7) 

each with the same relative frequency asymptotically (n --+ oo) equal to 1/n. So, 
the invariant measure A00 (B, z) strongly depends on the starting point z. It is a 
sum of discrete masses of size 1 1 n concentrated at points of the orbit (7). Often, 
the Dirac-delta notation is used to denote such a measure: 

1 n-1 

Aco(B, z) = - ~::::c~zexp(ika)(B), 
n k=O 

B c {z : lzl = 1}, (8) 

where the Dirac-delta measure &x(B) of a set B assigns to this set a "weight" 1 if 
x is in B, and "weight" 0 if point x is outside B, i.e., 

&x(B) = { 1, ~fx E B; 
0, tfx (/B. 

(9) 

As n increases, the corresponding invariant measures are carried by more and 
more points on the circle and their support becomes more and more dense in the 
state space, while individual points "weigh" less and less; the invariant measure 
becomes more diffuse. 

In the experiment below, we will select the point sizes so that the total area 
of the discs, which indicate how much invariant measure is concentrated at each 
point, remains constant for different values of n = 3, 8, 17, 63. Remember that 
the semicolon at the end of a command line suppresses output. 
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In[1]:= p1= ParametricPlot[{Cos[x], Sin[x]},{x,0,2•Pi}, 
AspectRatio->1, Ticks->None] 
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In[2]:= p3 = ListPlot[Table[{Cos[2*Pi•i/3], Sin[2•Pi•i/3]}, {i,3}], 
AspectRatio->1,PlotStyle->PointSize[0.1]] 

In(3]:= p8 = ListPlot[Table[{Cos[2•Pi*i/8], Sin[2•Pi•i/8]}, {i,8}], 
AspectRatio->1,PlotStyle->PointSize[0.1•(3/8)-(1/2)]] 

In[4]:= p17=ListPlot[Table[{Cos[2*Pi•i/17],Sin[2•Pi•i/17]}, {i,17}], 
AspectRatio->1,PlotStyle->PointSize[0.1*(3/17)-(1/2)]] 

In[5]:= p63=ListPlot[Table[{Cos[2•Pi•i/63],Sin[2*Pi•i/63]},{i,63}], 
AspectRatio->1,PlotStyle->PointSize[0.1•(3/63)-(1/2)]] 

In[6]:= p13=Show[p1,p3] 
In[7]:= p18=Show[p1,p8] 
In[8]:= p117=Show[p1,p17] 
In[9]:= p163=Show[p1,p63] 
In[10]:= Show[GraphicsArray[{{p13,p18},{p117,p163}}]] 
Out[10]= -GraphicsArray-

Irrational rotations can be thought of as limits of rational rotations with the 
denominator (period) n .__. oo. Indeed, any irrational number can be approximated 
be a sequence of rational numbers with denominators increasing to infinity. The 
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corresponding invariant measures become uniformly washed over the whole state 
space (unit circle) and the limit invariant measure has a constant density (2:7r)- 1 

with respect to the uniform measure on the circle: 

Aoo(B, z) = Aoo(B) = (21r)- 11BI, (10) 

where IBI denotes the arc length (Lebesgue) measure of B. In other words, for 
an irrational rotation map, the fraction of time an orbit spends in a set B is equal 
to the length of B divided by 21r. Notice that in the process, the dependence on 
the starting point has disappeared: the irrational rotation map on the unit circle 
produces a uniquely ergodic dynamical system. This result, due to the Swiss 
mathematician Hermann Weyl, can also be obtained as a rigorous mathematical 
theorem which is an example of a more general Ergodic Theorem that we will 
discuss later on in this section. 

Equipartition Theorem for Irrational Rotations. The dynamical system de­
fined by an irrational rotation of the unit circle is uniquely ergodic and its invariant 
measure is the normalized arc length. 

A formal proof of this theorem can be found in the literature quoted at the end 
of this chapter. We will verify it on a particular example of where, for a change, 
the rotations of the unit circle are encoded as addition map f : x ~ x + a 
(mod 1) on the unit interval [0, 1). We will select a = 1/.JIT and will trace 
the relative frequency of visits Ak(T, x) to the set T = [1/4, 1/2), which is of 
Lebesgue measure 114. The starting point x is selected to be 0, and we will use 
formula (2) which employs the indicator function of T. It is worth remembering 
that Mathematica can calculate with arbitrary precision, and as long as possible 
keeps things in the symbolic form without any loss of precision. This is, of course, 
of great importance when doing calculations with irrational numbers. 

The Mathematica command Apply [Plus, list] adds all the elements of the 
list, and Take [list, k] forms the list of the first k elements of the list. 

In[l]:= Ind[x_]:=If[x<1/4,0,1]-If[x<1/2,0,1] 
In[2]:= Plot[Ind[x],{x,0,1}, AspectRatio->1] 
Out[2]= -Graphics-
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In[3] := a=1/Sqrt[7] 
Out[3]= 1/Sqrt[7] 
In[4] := N[%, 40] 

0.25 0.5 

Out[4]= 0.3779644730092272272145165362341800608158 
In[5] := g[x_] :=(x+a)-Floor[x+a] 
In[6] := Plot[g[x] ,{x,0,1}, AspectRatio->1] 

0.2 

0.2 0.4 

In[7]:= 11= NestList[((N[a]+ #)-Floor[N[a]+ #])&, 0, 100] 
Out[?]= {0, 0.377964, 0.755929, 0.133893, 0.511858, ... , 

0.662554, 0.0405184, 0.418483, 0.796447} 
In[8] := t1= Table[ Ind[l1[[i]]], {i,100}] 
Out[8]= {0, 1, 0, 0, 0, 0, 1, 0, 0, 1} 

In[9] := t2= Table[N[(1/k) Apply[Plus,Take[t1,k]]], {k,100}] 
Out[9]= {0, 0.5, 0.333333, 0.25, 0.2, 

0.255102, 0.252525, 0.26} 
In[10] := ListPlot[t2, PlotJoined->True, PlotRange->{0,0.6}] 
Out[10]= -Graphics-
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Remark 6.3.1 Observe that the rational rotations of the unit circle have other 
invariant measures besides (8). In particular, the normalized arc-length measure is 
invariant under any rotation, but only for irrational rotations it is ergodic. 

Mathematica Experiment 2. Invariant Measure for a Tent Map. In this exper­
iment we consider another kind of a simple map of the unit interval S = [0, 1] 
defined by the piecewise linear function 

f(x) = 1 - alx- 1 + 1/al, 

In[1]:= f[x_]:= 1-a•Abs[x-1+1/a] 
In[2]:= a=(1+Sqrt[5])/2; 
In[3] := N[%,20] 
Out[3]= 1.6180339887498948482 
In[4] := N[{f[O], f[1], f[1-1/a]}] 
Out[4]= {0.381966, 0, 1.} 

a= (1 + ./5)/2. 

In[5]:= p1=Plot[f[x],{x,0,1}, AspectRatio->1, 
Ticks->{{0,1},{0,1}}]; 

In[6]:= p2=Plot[f[f[x]]], {x,0,1}, AspectRatio->1, 
Ticks->{{0,1},{0,1}}]; 

In[7]:= p3=Plot[f[f[f[x]]], {x,0,1}, AspectRatio->1, 
Ticks->{{0,1},{0,1}}]; 

In[8]:= p4=Plot[f[f[f[f[x]]]], {x,0,1}, AspectRatio->1, 
Ticks->{{0,1},{0,1}}]; 

In[9]:= Show[GraphicsArray[{{p1,p2}, {p3,p4}}], Frame->True] 
Out[9]= -GraphicsArray-

(11) 
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Since we have no prior intuitions about the frequencies of visits for the tent map 
system, we will proceed in a systematic fashion to find out what they look like for 
different subsets of the state space [0,1]. Since, the sets in which we are interested 
can be patched together from disjoint, sufficiently small intervals, and since the 
invariant measure is additive on disjoint sets, we will partition the unit interval 
into 20 small bins T1, ... , T2o. and find out experimentally A00 (Tk. x) (or, more 
precisely, An(Tt, x) for n = 5, 000) by constructing the histogram of its orbit 
starting at x = 0.21. You will also note that some orbits are periodic, but they are 
an exception. 

In[1] := <<UVW'DataRep' 
In[2] := a=(1+Sqrt[5])/2 
In[3] := g[x_] := 1-N[a]*Abs[x-1+N[1/a]] 
In[4] := lO=NestList[(g[#])&, 0, 9] 
Out[4]= {0, 0.381966, 1., 0., 0.381966, 1., 0., 0.381966, 

1.' 0.} 
In[5] := 1021=NestList[(g[#])&, 0.21, 5000] 
Out[5]= {0.21, 0.721753, 0.450213, 0.889574, 0.178673, 

0.671064, 0.532229, 0.756869, 0.393394, 
0.981509, ... } 

In[6] := lp021=ListPlot[Take[l021,200], AspectRatio->1/3, 
PlotJoined->True] 

Out[6]= -Graphics-
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In[7]:= rh=RegularHisto[l021,0,1,20] 

Out[7]= -Graphics-
In[8]:= p=Plot[If[x<1-1/a,a/(2a-1),a-2/(2a-1)],{x,0,1}, 

PlotRange->{0,1.3}] 

Out[8]= -Graphics-
In[9]:= Show[rh,p] 
Out[9]= -Graphics-
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The outcome suggests the ergodic behavior of the tent map and the existence of 

the invariant measure which admits a density h(x) that takes only two values, one 

to the left of the tip of the tent and another to the right of the tip. One can prove 

that, more exactly, 

h( ) = { aj(2a- 1), ifO ~ x ~ 1- 1ja; 
x a2 j(2a -1), if1-lja < x ~ 1. 

(12) 

This density was superimposed on the histogram of the orbit in the above Mathe­

matica experiment. The invariant measure itself of a set T is then of the form 

A00 (T) = £ h(x) dx, (13) 

and one can check by direct calculation that this measure is indeed invariant under 

action of the tent map. 
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Mathematica Experiment 3. Ergodic Invariant Measure for the Logistic Map. 

The Experiment 2 technique used to find the invariant measure for the tent map 

will now be used to find a more complex invariant measure for the logistic map 

f(x) = 4x(l - x) discussed in Examples 6.1.6 and 6.2.3. The histogram of 

relative frequencies of visits to 80 small bins for the orbit of length 10,000 starting 

at x = 0.21 is studied below. 

In[!]:= <<UVW'DataRep' 
In[2] := f[x_] := 4*x*(1-x) 
In[3] := nl=NestList[(f[#])&, 0.21, 10000] 

Out[3]= {0.21, 0.6636, 0.89294, 0.382392, 0.944674, 

0.209062, 0.66142, 0.895775, 0.37345, .. } 

In[4] := rh=RegularHisto[nl, 0, 1, 80] 

In[5] := p=Plot[1/(Pi*Sqrt[(x(1-x))]),{x,0.001,0.999}, 

PlotRange->{0, 5.6}] 

In[6] := Show[rh, p, PlotRange->{0,5.6}] 

Out[6]= -Graphics-
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By a lucky coincidence, this density actually can be calculated explicitly if we 

observe that, by direct substitution, the map 

X E [0, 1] 

where 1/f(x) = (2/n) arcsin Jx, is the tent map 1 - 21x - 1/21, for whic\1 the 

invariant measure is simply the length (Lebesgue) measure on the unit interval; its 

density has constant value equal to 1. Changing variables back we obtain for our 

logistic map the invariant measure density of the form 

' 1 
h(x) = , 

11: .Jx(1 - x) 
X E [0, 1]. (14) 
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Its shape was suggested by our experiment. Moreover, this invariant measure is 
also ergodic. 

The theoretical question of when the invariant measure is independent of the 
starting point is answered in the celebrated Ergodic Theorem first proved in 1930s 
by the American mathematician George Birkhoff. 

Ergodic Theorem. Iff : S --+ S is a dynamical system and if the invariant 
measure A00 (T, xo) is ergodic for some xo E S, then the set To of points x E S 
such that A00 (T, x) = A00 (T, xo) is of full A00 measure, i.e., A00 (To, xo) = 1. 

Conversely, if A00 (T, x) is almost everywhere constant, then A00 (T, x) is an 
ergodic measure. 

As we saw earlier, the rational rotations of the unit circle are not ergodic if 
one takes the normalized arc-length measure as the invariant measure (see Re­
mark 6.3.1 ); on the other hand, the irrational rotations are ergodic. 

Remark 6.3.2 Ergodic Hypothesis and the Recurrence of the Universe. In 
general, it is very difficult to check ergodicity of many complex physical dynam­
ical systems. Ever since the days of Boltzmann, Gibbs and Poincare, who first 
posed the so-called ergodic hypothesis at the end of the 19th century, the general 
ergodic hypothesis remains unsolved. In those days the hypothesis caused fierce 
philosophical debates because it implies a recurrence property of dynamical sys­
tems. Consider two recurrence properties: 

(a) foreachx E Stheorbitx, f(x), f 2 (x), ... , returnsarbitrarilyclosetox, 
infinitely many times. 

(b) There are infinitely many ns SUCh that, for each X E S, r (X) is close to X. 

We know that the ergodic theorem implies the recurrence property (a), which is 
weaker than (b). If the recurrence property (b) were a consequence of the ergodic 
hypothesis, then the iterations of the map f itself would return infinitely often 
arbitrarily close to the identity map. In other words, the whole system would 
return infinitely often arbitrarily close to the original state-a shocking conclusion 
if applied to, say, the whole universe. 

The irrational rotation of the unit circle satisfies the recurrence property (b). 
Indeed, if we start, say, at the North Pole, and select a small neighborhood arc of 
the North Pole of length E > 0, then the Ergodic Theorem guarantees that we will 
return infinitely often to this neighborhood and, because of its isometric property, 
every point will return to its E -neighborhood at the same time. A point spends 
E /2rr > 0 fraction of eternity in its E -neighborhood. 

Mathematica Experiment 4. StoGho Returns. This experiment illustrates the 
recurrence phenomenon for an irrational linear map on the unit square (mod 1) 
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(thought of as an irrational rotation of the 2-dimensional unit torus). The starting 
set being mapped is marked by black pixels (it also happens that the original 
state produces a visage of StoGho). After n=lO iterations (say, years) StoGho is 
deconstructed and reaches a state that looks quite random and chaotic. However, 
if you wait n = 200 years, then StoGho will return to life in a state recognizably 
close to the original picture. He comes back over and over, always a little different, 
only to be dissolved into randomness again. After n = 1414213562400 years he 
will be back in a state pretty close to the original, although, by then, he will have 
lost his eyesight and grown a beard. 

In[1] := hair=Table[{i-1}*0.005,E~(-((i-101)*0.005)~2/(2/25)), 
{i,1,201]}; 

mouth=Table[{0.01i,0.22+(0.1/225)(i-50)~2,{i,35,65}]; 

eyes={{0.4,0.6},{0.6,0.6}}; 
stogho=Join[hair,mouth,eyes]; 
lpO=ListPlot[stogho,PlotStyle->PoinSize[0.02], 

Frame->True, FrameTicks->None, 
FrameLabel->{"",'"',"n=O",""}] 

Out[1]= -Graphics-
In[2] := k=2; 

hairtrans=Table[{0.005*i,Mod[stogho[[i]] [[2]]+ 
Sqrt[2]*k+k*0.005*i,1],{i,1,201}]; 

mouthtrans=Table[{0.34+0.01*i,Mod[mouth[[i]] [[2]]+ 
Sqrt[2]*k+ k*0.01*i,1],{i,1,31}]; 

eyestrans= {{0.4,Mod[eyes[[1]] [[2]]+Sqrt[2]*k+ 
k*0.01*i,1]}, 

{0.6,Mod[eyes[[2]] [[2]]+Sqrt[2]* 
k+k*0.01*i,1]}; 

stoghotrans =Join[ hairtrans ,mouthtrans ,eyestrans ] ; 
lp2=ListPlot[stoghotrans , PlotStyle->PointSize[0.02], 

Frame->True,FrameTircks->None, 
FrameLabel->{"","","n=2",""}] 

Out[2]= -Graphics-

In[16] := Show[GraphicsArray[ { 
{lpO,lp2,lp3}, 
{lp10,lp55,lp66}, 
{lp199,lp200,lp201}, 
{lp367,lp31467,lp77777}, 
{lp1485475,lp1414213562400, lp1414213562475}}] 

Out[16]= -GraphicsArray-



338 

n=l99 
.......... _..::,· ... ~ l. 

/:":":":::.~ .. ~-0./ . . :::::.:-.::··~ .... . . . . . .. :. .. . .· 
:. ·. •,J',•:,.. .. .. . :. . .. .... . .. 

n=367 .. · .· .· ... ..,. ........ ·. ·•··· .... · ......... ·. ·. •••• • ••• ··.=:.· .,.,..:-.::. • •• ••• ·· .. · .·.··.· -~··· · .. ·.·· .... .... · .·.··.· .· .. ~,_·.·. · .. ···· .. . ·.·.·· .... -;:. ·. ·.·.·· ..... 
•• • •• .·.:·.· •• •• ·:.=· ••• •• ••••• 

n=l785475 
......... ··. ·::.:~:":: ... :: ..... .. . . ·. .... , .... · .. .. . . . . "'"' ...... . .. ·.·.··.··.·.···~~::·:·. ···. ·. · .. · .. '.·:: .. :::: .... . ·:.·. ·. · .. ... ·.,:;:.:: ... . · .. ·.·.··.:.· .................. . 

Chapter 6. Chaos in Dynamical Systems 

n=55 · ........ ·:'·" ·' .. · .. :. .:····· .. ·:··: ...... · ... · .. :: · .................. · .. :. . ;····:·.··":'···· ·"' ... ·· ...... : ·.:···· ...•.. ,_: .. · ... : :. ·.:···· .. J··:. :·· ... · ... ·. · ........... ,_ ......... .. 
n=200 

n=31467 

n=l414213562400 

n=66 

·.•.· ·. ·. ·.•.· ..... ;.;.:···· .. ·. ·. · ..... ,.:, ... · ..... . · ... ·. ·. •:-:· ... .,. .. · ..... . .. ·.·.·. · .. \ '.····-=·:·:····· . ·. ·. ·. · .. ·."· ··':· .... .... . . ... · ...... , ..• ·. · ...... . •.·.·•·• ··.·~·:· ................. . 

n=77777 .. ·:.: ::..: .. :.,:·-.:::.· . ....... ,. .. .. .· 
• :::::: ~=: i=~::·.::::.: : .. ·····~=-··--········ .. ·::::'~·:'·'··:·····:· ::::::: :-·:: ::::·.:::::-. 

•• • .a •· •• • 

n=l414213562475 .. ·.•.•·. ·-,:.· ·,.: .. ·:· .. . . . ..... , . . . . . . . 
··:. ·.:·.:·.;·:::.~t ... :: .... . ·:.·:·. · .. ·. · ..... :: ... : ...... .. . . . ·. '-·•·"". . . . ·:.·.·.·· . .:·····:;::::-: ..·. ·. · .. ·.~···:-:: ....... 

A Mathematical Aside. Ergodic Theorem for Test Functions. The Ergodic The­

orem has an extension to averages more general than the frequencies of visits to 

various sets. The generalization uses the idea of a test function, already encoun­

tered in Example 6.1.4, where the Bernoulli random variables were produced from 

iterations of the map 2x (mod I) of the unit interval by superposing them with the 

test function ¢ which tested whether the orbit was above the level 112 or below it. 

Ergodic Theorem for General Test Functions. Iff : S ~ S is an ergodic 

dynamical system with invariant measure f.L and¢ : S ~ R is a ( semicontinuous5) 

test function, then the set of starting points x E S for which 

lim l/J(x) + l/J(f(x)) + ... + l/J(fn-1 (x)) = [ l/J(x) JL(dx) 

n...,.oo n Js (15) 

5i.e., a monotone limit of continuous functions. 
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is of measure J.L equal to 1. If the invariant measure has a density h (x), then, of 
course, 

lim <f>(x) + <f>(f(x)) + ... + <t>cr-l (x)) = r <f>(x)h(x) dx (16) 
n-oo n Js 

Selecting <f>(x) = ls(x), the indicator function of the set B, as the test func­
tion gives our original ergodic theorem for relative frequencies of visits. As an 
illustration of the general result, we will consider two examples. 

Example 6.3.1 Law of Large Numbers for Bernoulli Random Variables. 
For the map 2x (mod 1) of the unit interval, the invariant measure is just the length. 
Selecting</> (x) = 1[1/2,11 (x) as the test function, the above general ergodic theorem 
gives that 

1. <f>(x)+</>(f(x))+ ... +<f><r-'Cx)) 1' 1 ( )d 1 
tm = [1/2 I) X X=-, 

n-oo n o ' 2 
(16) 

for almost all (with respect to the length measure) x E [0, 1]. This, of course, 
is a version of the Law of Large Numbers of Section 5.66 since the superposi­
tions <f>(x), <f>(f(x)), ... , <t>cr-' (x)) form a sequence of independent Bernoulli 
random variables on the standard probability sample space [0,1]. 

Example 6.3.2 Shifts of Binary Strings Revisited. 
LetS be the state space of binary strings (see Example 6.1.5) and a be the shift 
map on S. By definition, if 

X = (Xo, X!, Xz, ... ) E S 

then 

Thus, each string has the whole orbit of the map embedded in it as its different 
tails. For example, if 

x=010100010101010100000001111010101 ... 

then 
a 9 (x) = 101010100000001111010101 ... 

6Notice, however, that the type of convergence considered here is different than the one considered 
in Section 5.6. 
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If we define 

then the average 

¢(x) = { ~ if xo = 1; 
if xo = 0; 

An(¢, x) = ¢(x) + ¢(/(x)) + ... + rP<r- 1 (x)) 
n 

is equal to the relative frequency of 1 s in the first n bits of the string x. 
If x is a string representing the Champemowne number 

0110111001011101111000 ... , 

(17) 

and if n = 2 + 22 + 23 + ... + 2k = 2k+1 - 1, then it is easy to see that among the 

first n digits xo, ... , Xn-1 there are exactly as many Os as ls, so the average 

An(¢, x) = 1/2. 

With a little more effort one can show that, actually, limn--+oo An(¢, x) = 1/2 or, 

in more generality, that any finite string of zeros and ones has the same frequency. 

If we think of the infinite binary strings as representing real numbers in the interval 

[0,1], then the length measure f.L(B) = IBI is the invariant measure of the shift 

map a, and, by the Ergodic Theorem, for almost all (with respect to f.L) strings x 
the limit relative frequency of ones (and thus also zeros) is equal to 1/2. This is 

the Equipartition Theorem for binary representations of real numbers. The same 

can be said about other, say, decimal representations of real numbers. 

6.4 Stability of fluctuations and the central limit theorem 

In the previous section we established the ergodic behavior in certain simple 

dynamical systems: for large "times", the relative frequencies of visits to certain 

sets of states stabilized at what we called the invariant measures of those sets. The 

ergodic behavior was an analogue of the law of large numbers valid for sequences 

of independent random variables in probability theory. In this section, we will 

pursue this analogy a bit further by investigating the central limit behavior in 

dynamical systems, i.e., the stability of the distribution of fluctuations of the relative 

frequencies as they approach their ergodic limit. It is a much more rare event than 

the ergodic behavior, but it is still revealing that such a "second-order" attribute of 

randomness can be encountered at all in a simple deterministic dynamical system. 
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We shall begin by putting the familiar central limit theorem for Bernoulli random 
variables in the dynamical systems context. 

Example 6.4.1 Central Limit Theorem for Bernoulli Random Variables. 
Again, consider the map f(x) = 2x (mod 1) of the unit intervalS= [0, 1] with the 
length as the invariant measure, and the test function cp(x) = l[lf2,IJ(x). Consid­
ered as random variables on the generic sample space Q = [0, 1], the superpositions 
cp(x), cp(f(x)), ..• , cp(r-1(x)), ... , formasequenceofindependent, identically 
distributed Bernoulli random variables taking values 0 and 1 with probability 112 
each. The Ergodic Theorem of Section 6.3, Example 6.3.1 (alternatively, the strong 
version of the Law of Large Numbers of Section 5.6) assures us that the averages 

An(tP, x) = cp(x) + cp(f(x)) + ... + cp(r-1 (x)) ~ ~ (1) 
n 2 

as n -+ oo, for almost all (with respect to the length measure) x E [0, 1]. The 
limit constant 1/2 here plays a dual role: the integral fs cp (x) dx of the test function 
cp against the invariant measure (as promised by the general ergodic theorem of 
Section 6.3) and the common expectation JL of the Bernoulli random variables (as 
promised by the law oflarge numbers). 

At this point it is the Central Limit Theorem (Theorem 5.7.1) that helps us to 
establish stability of fluctuations around the limiting mean. It says that if you 
subtract the limit A 00 ( cp, x) = 1/2 from the mean An ( cp, x) and then normalize 
it by its standard deviation (square root of variance), then, for large ns , the thus 
standardized random variable has a distribution close toN (0, 1) standard Gaussian 
distribution, i.e., for each y, -oo < y < oo, 

( An(tP, x)- 1/2 ) iy e-z212 
P x: <y ~ ~ dz . 

.jvar Aoo(tP, x) -oo v2']'( 
(2) 

In this case, in view of the additivity of the variance for sums of independent random 
variables (Theorem 5.4.4), the variance in the above formula is easily calculated 
to be (1/4)/n, so that finally we get 

P (X .. An(tP, x)- 1/2 < ) iy e-z212 

(1/2)/ .jn Y ~ -oo $ dz, (3) 

where the probability measure P is simply the Lebesgue length measure on subsets 
of the unit interval. 

If one contemplates the possibility of a similar behavior for other dynamical 
systems on the unit interval, then the first thing of concern is that, in general, the 
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iterates are not statistically independent, and the simple calculation of the variance 
of An ( t/J, x) for Bernoulli random variables has to be replaced by a more elaborate 
procedure. However, as it turns out, at least in certain cases, a result of the central 
limit theorem type of the form 

F.() { 
An(t/J,x)-A00 (t/J,x) } JY e-z2 /2 

n Y = IL x : < y -----+ cl>(y) = r,:c dz. 
Sn -oo v27r 

(4) 
is still valid. Here, 11-(T) = A 00 (T, x) = A 00 (T) is the unique absolutely contin­
uous ergodic invariant measure for the map f : S ~ S, and 

Aoo(t/J) =Is t/J(x) JL(dx), (5) 

and the variance 

s; =Is (An(t/J, x)- A 00 (tjJ))2 JL(dx) (6) 

= : 2 Is (t/J(x) + t/J(f(x)) + ... + t/J(r-•(x))- nA00 (t/J) f 11-(dx). 

Remember that if the invariant measure IL has a density with respect to the 
Lebesgue measure on the unit interval, that is, /L(dx) = h(x) dx for a certain 
nonnegative function h(x), then 

{ 
An(t/J, x)- A 00 (t/J, x) } ( 

Fn(Y) = IL X: Sn < Y = Jo h(x)dx, (4a) 

where the integration domain D is the set of x satisfying the condition spelled out 
inside the braces. Similarly, 

Aoo(t/J) =Is t/J(x) h(x) dx, (5a) 

etc. 
Although simple additivity of identical variances is not valid in general, for 

certain systems one can prove that, asymptotically, as n ~ oo, 

s 
s "'-n.jn 

where the constant ("asymptotic variance") 

(7) 

(8) 
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+2 f, 1 (f/J(x)- Aoo(</J))(</J(r(x))- Aoo(</J))JL(dx) < oo. 
n=l S 

For some details, see the discussion at the end of this section. So, the plausible 
stability-of-fluctuations effects we should look for are of the following form: for 
any y, -oo < y < oo, as n ~ oo, 

{ 
f/J(x) + f/J(f(x)) + ... + f/J(fn-l(x))- nAoo(</J) } 

Fn (y) = 1L x : '- :S Y 
svn 

(9) 

Mathematica Experiment 1. Central Limit Theorem for the Tent Map. Consider 
again the tent map 

f(x) =I- I,B(x- a)l, a= I -,8- 1 (IO) 

on the unit intervalS= [0, I]. It turns out that for ,8 > ../2, the dynamical system 
generated by the map f satisfies the Central Limit Theorem in the form (9). To 
verify this fact by numerical experimentation, we shall select, as in Mathematica 
Experiment 6.3.2, 

,8 =a = (I + .J5)/2 ';::j 1.6I80 ... 

so that ,82 - ,8 - I = 0, and the critical points of this map have a particularly 
simple orbit 

f: 0~ a~ I~ 0. 

This fact permits explicit calculation of the invariant density, moments, and the 
asymptotic variance s2 needed in the study of stability of fluctuations described by 
formula (9). In particular, the invariant density 

h(x) = { (I + a)- 1 ';::j 0.7236, if 0 ::::; x ::::; a ';::j 0.3820; 
,B(I + a)- 1 ';::j 1.1708, if 0.3820';::j a < x ::::; 1. 

We will conduct the experiment for the test function fjJ (x) = x, so, in calculation 
of the limit variance, we will need the first moment of the invariant density 

In I a2 I ( I a2) ,8 
A 00 (</J) = xh(x)dx = --- + --- -- ';::j 0.5528, 

o 2 I+a 2 2 I+a 

so that 
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The second moment 

{I 2 a2 + 1 
Jo x h(x) dx = - 3- =~ 0.3812, 

and, finally, the individual variances 

In this experiment it is not practical to compute the asymptotic variance from (8); if 
you try it, you will find some limitations of this procedure and also of Mathematica. 
Instead, we use formulas (6) and (7) to obtain 

This integral can be computed numerically for small values of n (say, n = 8, 9, ... ) 
using the Mathematica package «NumericalMath' Listintegrate'. One finds 
that 

2 { 0.0115, for n = 8; s ~ 
0.0108, for n = 9. 

The algorithm we will employ is as follows: 

(1) First, for n = 1, 2, ... , 25, we compute by numerical integration approxi­
mate standard deviations s[n] of the averages 

X+ f(x) + · .. + r-l(x) 

n 

by sampling it at 100 points x in the interval [0,1]. 

(2) Then, for n = 25, and for 100 starting points x = 0.01, 0.02, ... , 0.99, 1.00, 
we shall find the values of the standardized average 

n-1(x + f(x) + ... + r- 1(x))- 0.5528 
Ave (x) = s[251 , 

and plot the cumulative distribution function of these data remembering the shape 
of the underlying invariant density h (x): at the data point Ave (x) corresponding 
to x ::::; a ~ 0.3820 the cumulative d.f. will jump up ~ (1/100) · 0.7236, and 
at the data point corresponding to x > 0.3820, the cumulative d.f. will jump 
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up~ (1/100) · 1.1708. More precisely, the approximate cumulative d.f. will be 
calculated from the formula 

100 h(0.01k) 
F(y)='EH(y-Ave(0.01·k))· 100 , 

k=l 

where H (y) is the Heaviside unit step function, = 0 for negative y and = 1 
for positive y. Finally, the result will be compared with the standard Gaussian 
cumulative d.f. cl> (y). 

In[1]:= b=N[(1+Sqrt[5])/2] 
Out [2] = 1 . 61803 
In[2] := a=1-1/b 
Out[2]= 0.381966 
In[3]:= h[x_]:=If[x<a,1/(1+a),b /(1+a)] 
In[4]:= Nintegrate[x•h[x], {x,0,1}] 
Out[4]= 0.5527 
In[5]:= f[x_]:= 1- Abs[b(x-a)] 
In[6]:= Iter[x_,n_]:=NestList[(f[#])&, x, n-1] 
In[7]:= Iter[0.3,10] 
Out[7]= {0.3, 0.867376, 0.21459, 0.72918, 0.438197, 

0.909017, 0.147214, 0.620163, 0.61459, 0.623607} 
In[8] := s[n_]:= Sqrt[ Sum[ 

(Apply[Plus,Iter[0.01•k,n]]•n~(-1)-0.5528)~2* 

h[0.01•k]•(1/100),{k,1,100}] ] 
In[9] := stab=Table[s[n],{n,1,25}]; 
Out[9]= {0.276467, 0.110703, 0.0846131, 

0.0186036, 0.0198077, 0.0192055, 0.0174124} 
In[10] := ListPlot[ stab, PlotRange->{0,0.3}] 
Out[10]= -Graphics-
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In[11] := sd=s[25] 
Out[11]= 0.0174124 
In[12] := Ave[x_] := (Apply[Plus, Iter[x,25]]/25-0.5528)/sd 
In[13] := F[y_] :=Sum[ If[y-Ave[0.01*k]<0,0,1]* 

h[0.01*k]*(1/100) , {k,1,100}] 
In[14] := Fcdf= ListPlot[Table[{-3+0.1*k,F[-3+0.1*k]}, 

{k,1,60 }]] 
Dut[14]= -Graphics-
In[15] := Phi[y_]:=(1/Sqrt[2*Pi])*Nintegrate[E-(- x-2/2), 

{x,-Infinity,y}] 
In[16] := Phicdf=Plot[Phi[y],{y,-3,3}] 
Out[16]= -Graphics-
In[17] := Show[Fcdf,Phicdf] 
Out[17]= -Graphics-

-3 -2 3 

A Mathematical Aside. CLT for Hyperbolic Systems. Besides the above system 
generated by the tent map, many other ergodic dynamical systems display stabil­
ity of fluctuations effects, and satisfy the Central Limit Theorem. The so-called 
hyperbolic maps of the state space S in then-dimensional Euclidean space Rd are 
one such category. A twice differentiable map f : S -+ S is called hyperbolic in 
a subset T C S if, for any point x E T, the Jacobian matrix 

has eigenvalues of modulus not equal to I, and if f maps T into T. A general 
dynamical system f on S is called hyperbolic if there exists a compact subset 

T c S c Rd on which f is twice differentiable and hyperbolic, and such that for 
any pointx £/. T, 

lim r(x) E T. 
n->oo 
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Example 6.4.2 
Let 

S = {(x, y): 0::::: x < 1, 0::::: y < 1} 

denote the unit square and let 

as in Example 6.1.1. This is a linear map on R2 with eigenvalues 

}q = ../2, >..2 = -../2. 

M also induces a map on the torus S, given by the formula 

f((x, y)) = (u (mod 1), v (mod 1)) 

347 

where M(x, y)T = (u, v). Clearly, the derivative off at every point (x, y) E Sis 
the matrix M itself. Hence, the map is hyperbolic. 

The Central Limit Theorem behavior (9) for hyperbolic maps can be proved for 
Lipschitz continuous test functions r/J : S ~ R, that is, for maps for which the 
differential ratio (f (x) - f (y)) I lx - y I remains bounded over the state space, but 
the proof is difficult and well beyond the scope of this text (see the Bibliographical 
Notes for further references). However, the constants appearing in its formulation 
(8, 9) easily can be justified analytically. 

To begin with, the constant A is the common average of all the iterations fi of 
f since, in view of the integral's invariance with respect to the invariant measure, 

A = Is r/J(y) /.L(dy) = Is r/J(fi (y)) /.L(dy). 

To justify the formula (8) for the variance v2 , at least asymptotically, one needs 
to observe that 

v~ =Is (r/J(y) + r/J(f(y)) + ... + r/J(fn-!(y))- nA) 2 
/.L(dy) 
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Separating the diagonal and off-diagonal terms in the square, and taking advantage 
of the invariance of the integral, we see that the above expression 

If the series representing v2 in the formulation of the Central Limit Theorem 
converges, then it is reasonable to assume that 

Example 6.4.2 
Consider the automorphism of the torus considered in Example 6.4.2. The projec­
tion t/J ( (x, y)) = x is a Holder continuous function. Since the Lebesgue measure 
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is the invariant measure, the mean A00 (</J) is easily computable to be 

A= ~a• fo 1 
ydxdy = 1/2. 

The assertion of the above Central Limit Theorem holds true also in some other 
cases which are not necessarily hyperbolic. One such class consists of piecewise 
invertible maps on an interval which are twice differentiable, with the derivative 
larger than 1, and which admit an absolutely continuous invariant measure JL. Such 
maps are called Lasota-Yorke maps. The tent map is an example of such a map. 

Another class of maps for which the Central Limit Theorem holds true is a class 
that admits an absolutely continuous invariant measure JL and which is related to 
so called expanding maps. A map f is called expanding if it maps open sets into 
open sets and if it expands distances, that is, if there exists an expanding constant 
L > 1 such that, for any sufficiently close pair x, y E S, we have 

dist (/(x), f(y)) ::=:: L dist (x, y). 

Example 6.4.3 
The map z ~ z2 + 5 in the complex plane C has an expanding repeller J. The 
map restricted to the repeller is expanding and satisfies the Central Limit Theorem. 

There is a lot of research activity going on in this area. For example, as of this 
writing, the latest word on the familiar logistic system fa(x) = ax(1 - x), 0 < 
a ~ 4, is that the mapping fa has an attracting cycle, and thus is hyperbolic, for 
an open and dense set of parameters a, see the Annals of Mathematics paper by 
Jacek Graczyk and Grzegorz SwiQ,tek cited in the Bibliographical Notes. 

6.5 Attractors, fractals, and entropy 

Even simple dynamical systems f : S ---+ S can have a very "strange" behavior. 
In particular, attractors of dynamical systems, loosely defined here as a set of 
states where the orbits {fn(x)} accumulate for large times n, can have fractal 
structure. This phenomenon had been known in mathematics for more than 50 
years, but its study from the viewpoint of physical, and other science and technology 
applications, is much more recent. 

Example 6.5.1 Cantor Set as an "Attractor". Consider a map of the unit interval 
pictured in Fig. 6.5.1. 
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FIGURE 6.5.1 

The graph of the map f : [0, 1] ~ [0, 1] defined by formula (1) and its first 
iterate f 2 (x) = f(f(x)). The sets where the iterates do not vanish form an 
approximation to the Cantor set. 

and defined by the formula 

13x for 0 ::S x ::s 1j3; 
f(x) = 0 for 1/3 < x < 2/3; 

-2 + 3x for 2/3 ::S x ::S 1. 
(1) 

Its first iterate f 2 (x) = f (f (x)) is also shown in Fig. 6.5.1. It is clear that the 
sets of states Cn, n = 1, 2, ... , where the iterations fn(x), n = 1, 2, ... , do not 
vanish, form approximations to the fractal Cantor set C discussed in Section 2.7. 

In general, an attractor of f : S ~ S is an invariant subset T c S (i.e., 
f(T) c T) such that there exists an open set 0 c S satisfying the following three 
conditions: 

1. TeO 
2. f(O) C 0 

3. nn r(O) = T 

Similarly, a repeller set T c Sis defined by the above condition 1, and conditions 

2'. f- 1(0) c 0 
3'. nn f-n(O) = T 

If the system has a repeller (or an attractor) T, and if it is sensitive to initial 
conditions (that is, has a positive Liapunov exponent) in the neighborhood of T, 
then the repeller (attractor) is called strange. 

The presence of a strange attractor in a dynamical system can be viewed as 
evidence of self-organization of the system at the post-transient stage, i.e., on the 
attractor T; on the latter the system has a lower number of degrees of freedom than 
the whole system. It is thus attracted to a lower dimensional phase space, and the 
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dimension of this reduced phase space represents the number of active degrees of 
freedom in the self-organized system. In particular, it is of interest to determine 
this dimension. 

Example 6.5.2 Attractor of the Henon map. Consider the map 

f : R 2 ~ R 2 defined by the formula 

f((x, y)) = ( 1 - 1.4x2 + y, 0.3x ). (2) 

Fig. 6.5.2(i) shows the orbit of 100,000 iterates of the Henon map with the starting 
point at (0, 0), while Fig. 6.5.2(ii) shows the same number of iterates but starting 
at(-1,0). 

A more extensive experimentation would show that the orbits starting at arbitrary 
points will either converge to the structure shown on Fig. 6.5.2(i) or would diverge 
to infinity. The exact mathematical nature of this strange attractor is still unknown. 
However, we will take an experimental and statistical approach to this problem and 
will determine the correlation dimension (see Section 2.7) of the attractor (which 
for strange attractors and repellers is the same as the Hausdorff dimension). 

FIGURE 6.5.2 

(i) Orbit of 100,000 iterates of the Henon map with the starting point at (0, 0), 
( ii) shows the same number of iterates but starting at ( -1, 0). 

Mathematica Experiment 1. Correlation Dimension of the Henon Map. For a 
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(Gibbs) measure JL, the correlation integrals are defined as follows: 

C(E) = J JL(B(x, E})JL(dx), 

where E is any positive number and where B(x, E) denotes the ball of radius E and 
center at x. The quantity JL(B(x, E)) is the measure of all points y which are at a 
distance less than E from x. The Grassberger-Procaccia correlation dimension of 
11- is defined by the formula 

d 1. log C(E) 
cor= 1m • 

E-->0 Jog E 

whenever this limit exists. Heuristically, it means that CO is a function of the 
form 

C (E) = K Edcor + lower order terms, 

so that, to find the correlation dimension it seems reasonable to estimate the slope 
of the regression line in log-log coordinates. Details of this procedure have been 
explained in Section 2.7. 

Now, consider a finite segment 

T = {xo =X, Xt = f(x), X2 = f 2 (x), ... , Xn-! = r- 1(x)} 

of an orbit of the dynamical system f : S -+ S. For a finite set {Et, E2, ... , Em} of 
(different) radii, we will find the best linear fit for the data set 

{(In Et, InC" (Et)), (In E2, InC" (Ez)), ... , (In Em, log C" (Em))}. 

The estimated slope 

where 

~ L~= 1 logE; logC"(E;)- mElogC"(E) 
d = "m 2 -z , 

L...i=l r; -mE 

1 m 

E=- LE;, 
m 

i=l 

n n #{(x;,Xj):lx;-Xji<E,O::::;i,j::::;n-1} 
c (E, T) = c (E) = 2 

n 
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and 

will serve as an estimator of the correlation dimension dear. The experiment is 
based on 100 iterations, a rather low number. However, the result d = 1.23893 is 
quite satisfactory compared to the true value, which is not known exactly, but lies 
around 1.25. 

In[1] := <<Statistics'LinearRegression' 
In[2] := f[{x_,y_}] := {1-1.4 x-2 + y, .3 x} 
In[3] := hen=NestList[f,{0,0},100] 
In[4]:= ListPlot[hen, PlotStyle->PointSize[0.01]] 
Dut[4]= -Graphics-

•••• . .. •• .. • ... .o.J ... .. . • • •• 0.2 . - ·-• • ,. 
"'• • • 0.1 .. •• 

• ., 
-I -0.5 0.5 ,·. • 

-0.1 • • ••• ,. 
-0.2 • • • • 

• • •• .. • -0.3 
• • • • 

In[4] := c[r_] := (1/100.)-2 Sum[ Sum[ If[ Sum[ 
(hen[[i]] [[k]]-hen[[j]] ([k]])-2, {k,1,2}]<r-2,1,0], 
{j,1,100}] ,{i,1,100}] 

In[5] :=reg= Table[{Log[i/10.], Log[c[i/10.]]}, {i,1,4}]; 
In[5]:= ListPlot[reg] 
Out[5]= -Graphics-
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-1.5 

-1.75 • 
-2 

-2.25 • 
-2.5 

-2.75 

-3 

• -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 

ln[6]:= Fit[reg, {l,x},x] 
Out[6]= -0.279958 + 1.23893 x 

Example 6.5.3 The Ikeda Map. 

• 

The Ikeda map is derived from a model of the plane wave interaction field in the 
optical ring laser. The defining map f : R2 ~ R2 can be represented by the 
formula: 

f((x, y)) = ( 0.97 + 0.9(x cos -r - y sin -r), 0.9(x sin -r + y cos -r) ). (3) 

where 
6.0 

-r = 0.4 - 1.0 + x2 + y2 . (4) 

It has a strange attractor whose fractal dimension is~ 1.7 (see Fig. 6.5.3). 

FIGURE 6.5.3 

The chaotic strange attractor of the Ikeda map (3-4). 

Thus far, we have viewed the chaotic behavior of the system, with its sensitive 
(exponential) dependence on initial conditions, through the existence of positive 
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Liapunov exponents and strange attractors. However, the sensitive dependence 
can be seen as a way to create information, and the way to measure the rate of 
the information contents creation was via the entropy (see Section 2.8). Intuitively 
speaking, the phenomenon is clear. If we work with fixed resolution of our data, the 
sensitive dependence leads to the situation where indistinguishable states (differing 
only in insignificant digits) lead to distinguishable states (differing in significant 
digits). In other words, with each new step the system creates new information. 

Example 6.5.4 Entropy of the Shift Map for Binary (and Other) Strings. 

Consider again the shift map a on the state space of all binary strings or, equiva­
lently, the 2x (mod 1) map, if binary strings are viewed as representations of real 
numbers in the unit interval. The invariant measure of the system corresponds to 
the length (Lebesgue) measure in the unit interval interpretation, or to the under­
lying probability measure for any sequence of independent identically distributed 
symmetric Bernoulli random variables. For the single Bernoulli random variable, 
the entropy (as introduced in Section 2.8) is 

1 1 1 1 
H(l/2 1/2) = --ln-- -ln- = ln2. 

' 2 2 2 2 
(5) 

Thus, for a string of length k, where 2k possible states are possible, each taken with 
probability 2-k, the total entropy is (entropy is additive for independent random 
variables) 

-k -k k 1 1 
H(2 , ... ,2 )=-2 2k1n 2k =kln2. (6) 

So, the rate of entropy creation per unit digit (time step) is constant and equal to 

(7) 

This number is called the Kolmogorov-Sinai entropy of the shift dynamical system. 

For a general dynamical system f : S --+ S admitting an invariant normalized 
measure JL the approach has to be more subtle and one cannot expect a fixed rate of 
entropy creation per unit time-step. The Kolmogorov-Sinai approach is as follows: 

(i) Consider a partition P of the state space S into a union of pairwise disjoint 
sets P1, ... , Pm. i.e., Pin PJ = 0 and 

S = P1 U ... U Pm, 
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and define its entropy (information content) by the formula 

m 

H(P) = - L ~t(P;) In ~t(Pj). (8) 

i=1 

For the shift dynamical system of Example 6.5.4, one can take as the initial partition 
of the unit interval 

[0, 1) = [0, 1/2) u [1/2, 1), 

so that (with the Lebesgue measure as the invariant measure) its entropy is In 2 as 
given by formula (5). 

(ii) After the first time step, the map f : S f-+ S generates a new partition of S 

(9) 

which, in the case of the shift system [see the graphoffunction f(x) = 2x (mod 1)] 
consists of two sets 

f-1([0, 1/2)) = [1/4, 1/2) u [3/4, 1), 

and 
f- 1([1/2, 1)) = [0, 1/4) u [1/2, 3/4). 

So, the finer, cumulative partition after the first time-step, generated by both the 
initial partition, and partition after the first time-step, is built of all the sets of the 
form 

i, j = 1, ... , m. 

We will denote it by p<l). In the case of the shift system, it consists off our intervals 

[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1). 

Its entropy, defined by the general formula (8), is, in the particular case of the shift 
system, equal to 

H(P(1)) = 2ln2. 

(iii) In general, after n time-steps, the map f : S f-+ S generates a n-th order 
partition of S 

(10) 

and the cumulative (refined) partition of the n-th order 

i1, ... ,in=l, ... ,m, 
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which, in the case of the shift system, divides the unit interval into 2n+I equal 
dyadic subintervals. The corresponding entropy is H(P(n)), which is just n In 2 
for the shift system. 

(iv) The entropy of the partition P (the asymptotic rate of creation of information 
per unit time-step) is defined by the formula 

H(p<nl) 
h(P) = lim 

n-+00 n 
(11) 

This limit always exists. The Kolmogorov entropy h(f.L) of the system is obtained 
by taking the largest of possible partition entropies or, more precisely, 

h(f.L) = suph(P), 

where the supremum is taken over all partitions P. For a concrete dynamical 
system, it is often very difficult to prove that there exists a partition for which the 
supremum is attained. For the Bernoulli shift, this maximizing partition happens 
to be [0, 1/2) u [1/2), so that h(f.L) =In 2. 

A Mathematical Aside: Entropy vs. Fractal Dimension vs. Liapunov Exponents. 

As could be guessed, all three quantities (entropy, Liapunov exponents, and fractal 
dimension) are interconnected, although at this points only incomplete information 
is available. 

For example, it is known that iff : Rn r+ Rn has derivatives of all orders which 
satisfy the HOlder condition, and the ergodic measure f.L for f has a density with 
respect to the Lebesgue measure, then 

h(f,L) = L: A.;, 
A;>O 

that is, the Kolmogorov-Sinai entropy is simply the sum of positive Liapunov 
exponents which individually determine the rates of exponential growth of the 
orbits (in, perhaps, different directions). 

On the other hand, the information dimension of the ergodic measure f.L for f 
acting on (some smooth surface of) Rn, which is defined as 

(12) 

can be also calculated from the formula 

I. In f,L(Bx(E)) 
1m =a, 

€-+0 lnE 
(13) 
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where Bx(E) is the ball of radius E centered at x, if ex is independent of x. In that 
case, the mass J..t(Bx(E)) is scaling like Ea, independently of x.1 

Again, iff : Rn ---+ Rn has derivatives of all orders which satisfy the Holder con­
dition and the ergodic measure J-1- for f has a density with respect to the Lebesgue 
measure, then 

where 
k = max{i : At + ... +A; > 0}. 

As before, here A 1, ... , Ar are here the Liapunov exponents of J-1-. 
In the case where a twice smoothly differentiable f acts on a compact surface 

Sand J-1- is an ergodic measure with Liapunov exponents At > 0 > A2, then the 
information dimension, entropy, and the Liapunov exponents are related by the 
Young formula: 

Example 6.5.5 Entropy, Liapunov Exponent and Fractal Dimension for Asym­
metric Bernoulli Systems.8 

LetS = [0, 1], x E S be considered as a binary sequence, and let Sp c S be the 
subset of the binary strings x = (Xt, x2, ... ) for which the relative frequency of 1s 
is equal top, 0 < p < 1. By the equipartition theorem we know that the Hausdorff 
dimension 

dimH St/2 = 1. 

For other ps, one can prove that 

dimH Sp = - 1-[-plnp- (1- p)ln(l- p)]. 
ln2 

(14) 

Consider the shift map u on Sp [that is, u(x) = 2x (mod 1)], and let J-1- be the 
invariant normalized measure on S satisfying 

J-1-p{X : Xt = 1} = p, 

which, for p = 1/2, is the usual Lebesgue measure. The Liapunov exponent 

du 
A =In-= ln2, 

dx 

1 If a = a (x) depends on x, then one often talks about the multifractal structure of the attractor. 
8 Adapted from Ruelle (1989). 
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and the Kolmogorov-Sinai entropy 

h(J-Lp) = -pIn p- (1 - p) ln(l - p). 

Then, the formula (14) implies that there exists a set T C S with /1-p(T) = 1 and 
the Hausdorff dimension 

d" (T) - h(J-Lp) 
ImH - ).. . 

The proofs and further literature on this subject can be found in the Bibliograph­
ical Notes. 

To see the relationship between various concepts of dimension and entropy 
introduced above, notice that the quantity C(E) in the above definition of the 
correlation dimension can be rewritten in the form 

1 N(E) N(E) k2 N(E) 

C(~:) = lim 2 L kt = L lim ~ = L f?, 
N-+oo N N-+oo N 

i=l i=l i=l 

where k; is the number of points in the ith volume element that are within E of 
each other, N(E) is the number of ~:-volume elements in the coverage of S, and/; 
is the (limit) relative frequency that an observation falls in the ith volume element. 
Then, the formula for the correlation dimension can be rephrased 

where the numerator 

In ""N(E) !.2 
dcor(S) = lim L...i=l i , 

E-+0 In E 

N(E) 

Inl:f? 
i=l 

is known as the Renyi entropy of order 2. 
If, instead of the Renyi entropy, one uses the ordinary entropy 

N(E) 

H(~:) =- L /;In/; 
i=l 

of the above relative frequency distribution, then one arrives at the definition of the 
information dimension 

. lnH(E) 
dinf(S) = hm . 

E-'>0 ln(ljE) 
(4) 
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It is known that 

A Mathematical Aside: Entropy vs. Kolmogorov Complexity. There is a remark­
able theorem due to the Russian mathematician A.A. Brudno (see Bibliographical 
Notes) which shows the connection between Kolmogorov complexity and entropy. 
It turns out that if the infinite string z is the code of an orbit of a dynamical system 
with respect to a generating partition 'P, then the Kolmogorov complexity K (z) is 
equal to the entropy for almost every z. 

6.6 Experiments, exercises, and projects 

1. For each of the following maps f, and each given point x, determine 
f(x), / 2(x), and j 3(x). 

(a) f(x) = j(1- x); x = .230835; x = .002546096; x = .827993; 

(b) f =the Bernoulli shift map; x = 001011101011101...; 

(c) f(x) = 1r sinx; x = 1.3843302; x = -.983775. 

2. A particle moves at a constant speed V = 3 5:: in the 3-dimensional space 
parallel to the x-axis. Determine the map f describing the position of the 
particle after 1 second. 

3. A particle moves at a constant speed V = 1.27 :c in 3-dimensional space 

along a parabola y = x2 + c; z = d, where c and d are constants. Deter­
mine the map f describing the position of the particle after 1 second. 

4. For the tent map Ta determine the values a for which 0 is a periodic point 
with the principal period 3, 4, and 5. 

5. Conduct a study of the fluctuations for the logistic model f(x) = 4x(1 -
x), analogous to the experiment of Section 6.4 for the tent map. Use 
Mathematica package UVW'DynSyst'. 

6. Conduct a study of the frequency and fluctuations' stability for the map of 
the unit interval given by the formula f (x) = 1 I ( 1 + x). Iterations of this 
map are continued fractions. Find the invariant measure for this map. 

7. Show that the rotation map of the unit circle displays no sensitive depen­
dence on the initial conditions. 

8. Verify analytically the form of the invariant density given for the tent map 
in Section 6.3. 
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9. Verify analytically the form of the invariant density given for the logistic 
map in Section 6.3. 

10. Consider the logistic function f(x) = ax(l - x). 

(a) Compute 100 iterates of this function (start withxo = 1/2, forexam­
ple)forthefollowingvaluesofa: 0.5, 0.75; 1, 1.5, 2.0, 3.0, 3.25, 
3.5, 3.55, 3.83, 4. 

(b) Graph each orbit r (xo), n = 0, ... , 100 as a function of n. 

(c) In the case a = 4, graph orbits of the following starting points: 
0.1, 0.25, 0.3, 0.51, 0.51, 0.749. 

(d) Produce the orbit diagram for the above system. 

11. Check via simulation the validity of the equipartition theorem for irra­
tional rotations of the unit circle. Use three different sets and find relative 
frequencies of visits to them, for 10 different (randomly chosen) starting 
points. Use 1000 iterations and take advantage of Mathematica "infinite 
precision" capabilities. 

12. Illustrate the Central Limit Theorem for the tent map using randomized 
starting points rather than the uniformly spaced starting points. 

13. Approximate the function C(r) (needed in the correlation dimension cal­
culation) for the map 

f((x, y)) = (1 - 1.4x2 + y, .3x). 

Apply the linear regression procedure from Chapter 1 to the function 
log C (r) in order to detect linearity in variable log r. Then use the Cor­
relationDimension command ofUVW'DynSyst' package to confirm your 
results. 

14. Find experimentally an approximation for the invariant density for the tent 
map using starting points different than the one used in Section 6.3. 

15. Use Mathematica to produce Fig. 6.5.1. 

16. Study experimentally the equipartition property of the Champemowne 
numbers in base 2 and 10. 

17. Find the correlation dimensional of data DROPS from the UVW Web Site 
(also, see Example 1.5.2). 

18. Repeat Experiment 6.4.1 for other test functions. 

19. Mathematica Project. Design an experiment reproducing Fig. 6.2.10. 
A number of other experiments and examples are included in the Math­

ematica uvw' DynSyst' and UVW' Random Walk' packages included in Ap­
pendix E. 
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20. Mathematica Project. Use the mapping [0, 1] x [0, 1] 3 (x, y) f-* 

(x, y + ,J2 +x(mod 1)) E [0, 1] x [0, 1] to illustrate the ergodic behavior. 
Experiment with other, more complex, mappings of the unit square (both 
linear and nonlinear) to see if similar effects are encountered. 

21. A Non-Mathematica Project. Study the toss of a coin of radius R as 
a physical dynamical system. Assume that the evolution of the system is 
describedbytheNewtondynamicsy"(t) = -g, 8 11 (t) = 0, withtheinitial 
conditions y(O) = R, y'(O) = V > 0, 8(0) = 0, 8'(0) = Q > 0, where 
y(t) denotes the height of the coin's center over the soft (no bounces!) 
and flat landing surfaceS, and (J(t) is the angle between the normal to the 
landing surface and normal to the heads side of the coin. Let us denote by 
to the time when the edge of the coin touches S. 

(a) Solve the above Newton evolution equations. 

(b) Find a condition on 8(to) equivalent to the coin landing on the heads 
side. 

(c) Find the region H in the 2-D phase space of the initial conditions 
(VI g, Q) corresponding to the coin landing on the heads side. Com­
pare it to the complementary region. Draw conclusions in terms of 
the sensitivity of the system to the initial conditions. Experiment (in 
real, not virtual worlds) to get an idea of what the range of realistic 
values of V and Q might be. 

(d) Show that, if the initial conditions V and Q are random variables of 
the form V = W + v and Q = Z + vj R, where the joint density 
f(w, z) of(W, Z) is strictly positive, then P(H) ~ 1/2, as v ~ oo. 
Interpret this result. 
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[7] H.O. Peitgen and D. Saupe, Eds., The Science of Fractal/mages, Springer­
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Chapter 7 

General Principles of Statistical Analysis 

The exploration of experimental data and the reliability of the statistical inference 
based on these data depend heavily on the selection of the mathematical model and 
on the design of the data collection method. 

Many of the principles of modem statistical analysis were formulated by R.A. 
Fisher. Such an analysis can usually be divided into the following steps, with some 
feedback among them: 

Design of experiments and planning of investigation; 

Specification of the model; 

• Determining the method of statistical inference. 

This chapter will discuss these steps in some detail. 

7.1 Design of experiments and planning of investigation 

Standard statistical analysis of observations from experiments is applicable only 
if the latter are conducted independently of each other, and are repeatable. Thus, 
the issue of random sample selection becomes paramount. If the population to be 
studied is uniform and finite, pseudo-random numbers are used to select a sample. 
All other cases have to be reduced to this case by splitting the whole population 
into uniform subpopulations. For example, if fifty trucks filled with iron ore are to 
be tested for the quality of the delivered mineral, then one way to proceed would 
be to select a smaller number of trucks randomly, then divide loads in the selected 
trucks in a systematic fashion into N portions, select a small random sample of size 
n « N of the portions, and test only the mineral contained in the selected portions. 
It is obvious that the process of taking random samples is often tricky, and by no 
means simple. Another well known example comes from studies of consumers' 
behavior, when the general population has to be split into uniform subpopulations 
according to, e.g., age, income, gender, etc. 
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Example 7.1.1 Quality Control. 
The usual quality control methods for mass produced items rely on selection of 
a limited number of items to be tested. The selection process must be random to 
ensure that no systematic factors affect the quality of chosen items. 

Example 7.1.2 Randomized Experiments. 
In experimental situations, the (experimental) units may have to be randomized in 
the following sense. When examining the yield of com under different watering 
and fertilizer conditions, one has to take into account the possibility that other 
factors are also influencing the yield. If the type of soil affects the yield, the design 
of the experiment has to eliminate this influence by randomization over the types 
of soil; that is, by distributing experimental units equally over different types of 
soil. 

The above two situations are only very simple examples of what we mean by 
planning an experiment. In practice it may be very difficult to ensure the ran­
domness of the experiment. Also, there are no generally accepted rules to ensure 
randomness. Nevertheless, there are certain minimal requirements to be satisfied. 
An obvious demand is that the choice of the experimental unit must depend neither 
on its properties nor on the investigator's own preferences and biases. Tests of ran­
domness were discussed in previous chapters; their detailed exposition is beyond 
the scope of this book. 

In most of the cases (excepting some special statistical procedures such as se­
quential analysis) the number of observations must be determined in advance. This 
number determines the precision of the estimators used and, thus, the reliability of 
the confidence bounds and power in testing procedures. These terms, used collo­
quially here, will acquire a technical meaning later on. They were discussed in a 
preliminary fashion in Example 3.7.1. 

In principle, the number of observations affects the precision through the vari­
ance of the statistic (a function of observations) used. It is important to notice 
that in populations with more complex structure, this variance may not be uni­
form throughout the whole population and may vary from one subpopulation to 
another. For example, in an automobile assembly plant, various subassembly units 
may have different statistical properties from the view point of quality control. 
In such cases, sampling should consider this structure and divide the population 
into a (finite) number of homogeneous subpopulations, drawing a random sample 
from each subpopulation, instead of a single sample from the total population. The 
number of samples in a subpopulation has to be chosen in an optimal fashion to 
minimize the errors. These problems are simple examples of issues addressed in 
the theory of experimental designs and, more specifically, in the context of analysis 
of variance (ANOVA). 

In practice, it is sometimes possible to rely on previous experience or "intelli­
gent guessing" to find an (almost) optimal design for the experiments. It is often 
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helpful to have some idea as to what are the approximate values of parameters of 
interest. Computer simulations often come in handy in gaining approximate prior 
experience. In Chapters 1, 2, and 4, we discussed the problem of pseudo-random 
number generation and demonstrated how these numbers can be used to simulate 
populations with prescribed probability distributions. Performing statistical anal­
ysis on such data can give some insight into the strengths and weaknesses of the 
statistical method. Whenever a new practical situation arises such an approach is 
advisable. 

The design of an experiment, such as the decision on the sample size, can often 
be affected by the selection of a model; a feedback between these two steps is 
needed. 

Mathematica Experiment 1. Random Sample Selection. We conclude this sec­
tion performing a random selection of n different objects from a population of size 
N. The selection can be done with replacement or without replacement; the latter 
alternative was selected below. 

In[1] :=objects= Table[N[5 Sin[x]+3 Cos[x]], {x,1,40}] 
Out[1]= {5.82826, 3.29805, ... ,1.72475} 
In[2] := f[n_] := Random[Integer, {1,41-n}] 
In[3] := t1=Table[f[n], {n,1,11}] 
Out[3]= {28, 30, 28, 35, 6, 27, 30, 16, 26, 4, 8} 
In[4] := t2=Table[t1[[i]]+ Sum[If[t1[[j]]>t1[[i]],0,1], 

{j,1,i-1}],{i,1,11}] 
Out[4]= {28, 31, 29, 38, 6, 28, 35, 17, 28, 4, 10} 
In[5] := choice=Table[objects[[t2[[i]]]] ,{i,1,11}] 
Out[5]= {-1.53329, 0.724039, -5.56234, 4.34706, 1.48343, 

-1.53329, -4.85199, -5.63248, -1.53329, -5.74494, 
-5.23732} 

7.2 Model selection 

The next step is to select a mathematical model for observations to be made. 
The models are most often statistical (probabilistic) in nature, but as we have seen 
in Chapters 4 through 6, other models are sometimes more desirable, especially 
when one deals with chaotic dynamical systems. 

In the simplest cases, when the observations come from independently per­
formed experiments, one only needs to specify the distribution function describ­
ing the probabilistic features of parameters of interest in the experiment. In the 
success/failure types of experiments, such a parameter can be, for example, the 
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probability of success in a single trial; it can be the diameter of rivet heads manu­

factured in a fastener plant, the starch content in potatoes grown on a farm, or the 

specific pollutant concentration in a river. 
Of course, there are some standard models for such probability distributions. 

If the parameter is constant and randomness occurs only as a result of errors in 

measurement, inaccuracy of the equipment, etc., then the normal distribution with 

density 
1 [ (x-())2 ] 

f(x; (),a) = ...tiiia exp - 2a 2 

is often adequate as a statistical model. As a matter of fact, it was the early 19th­

century analysis of this situation by Carl Friedrich Gauss of Gottingen University 

that marked the beginning of modern statistical theory. More generally, if the 

measured parameter fluctuates due to many small influences, then the normal dis­

tribution can be reasonably assumed in view of the Central Limit Theorem which 

asserts that the sum of many small independent random quantities is asymptotically 

normal (see Chapter 5). A bit of caution is in order here, since the Central Limit 

Theorem is proved under certain (admittedly mild) assumptions which, however, in 

some practical cases (such as the analysis of rare events and heavy tail distributions) 

need not be fulfilled. 

Another type of continuous model is related to the so-called extreme value statis­

tics. In this case the experimental unit is a system of many components, and one 

is interested in preventing the failure of the system, which occurs if one of the 

components fails. If the random quantities Xi denote the time until failure of the 

i-th component, the failure time of the whole system is the minimum value of all 

the random quantities Xi. This minimum is a random quantity with the specific 

probability distributions discussed in Section 3.8. In the special case of constant 

failure rate, the above distribution is exponential with the density 

f(x) = ± exp [ -i], X:::: 0. 

The associated number N of components failing during the unit time interval has 

the discrete Poisson probability distribution 

)..k 

P(N = k) = k! exp[ -A.]. 

Clearly, failures of many components are rare events because the inverse of the 

factorial functions decays very rapidly. 

In some experiments the outcomes are binary. For example, a yes/no decision is 

being made on the basis of each observation. Such situations occur, for example, 

in simple models of quality control where an item is only judged as functioning or 

not functioning. We discussed such models at length in Chapter 3. 
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However, in many cases, the statistical model of the experiment is unknown or 
only partially known. Then the standard statistical models of the types described 
above cannot be utilized. In such situations, the statistician first tries to draw some 
conclusions from graphical descriptions of the data; it can be called the graphical 
analysis. For example, if we are considering random observations Y; depending on 
some known "independent" variable X;, (i = 1, .. , n ), the model may be specified 
by a linear dependence relation 

Y; =aX; +b+E;, 

where E; are random fluctuation effects superposed on the linear relationship. 
Whether such a statistical model is suitable or not is, in practical application, 
determined by inspection of the scatterplot, that is the plot of Y;s against X;s. 
This simple form of linear regression was considered in Section 2.7. A nonlin­
ear regression (e.g., polynomial) and time series models are other, more complex, 
possibilities that, however, go beyond the scope of this book. 

In many applications of interest the collected data is not numerical and, as a result, 
there is no natural random quantity attached to the outcome of the experiment. 
Often, only the relative rank (or category) of observations is of importance. Thus, 
for example, one may have observations x,, ... , Xn where one is only interested 
in the relative rank ri of Xj among all x,, ... , Xn. Formally, rj = 1 if and only 
if Xj is the smallest observation, and rj = k if and only if there are exactly k - 1 
observations smaller and n - k observations larger than Xj. It is clear that for a 
sample x,, ... , Xn of observations taken from independent identically distributed 
observations X 1 , ••• , X n, the ordering of the observations is not relevant in the 
sense that the joint distribution of the random vector (X 1 , ••• , X n) does not change 
under coordinate permutation. The latter property of the random vector is often 
called exchangeability. Since sample x,, ... , Xn can be ordered in n! ways, the 
probability of a given rank vector (r,, ... , rn) equals 1/n! (one has to be a little bit 
cautious here and make sure that all the x; s are different). Thus, transforming the 
data yields new observables with the known distribution. When a parametric model 
cannot be specified, ranking procedures provide an important tool in nonparametric 
statistical inference. 

The first step in specifying the statistical model must include determination of 
whether the data are numerical or categorical. This classification was explained 
in Sections 2.1 and 2.2. 

For numerical data, statistical analysis depends on their exact values. Numerical 
data can be of two types: interval and proportional. Population size of a bee colony 
is an example of the former, and the Dollar/Yen exchange is an example of the latter. 

The categorical data types are further subdivided into nominal data and ordinal 
data. Nominal data are fictitious numbers attached to certain characteristics of 
sample points. For example, the individual's gender can be encoded by numbers 
0 and 1, or by -1 and + 1. This assignment may make the data recording more 
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convenient, but it really has no relation to the observed phenomenon. Automobile 
license plates can also serve as a convenient label in the population of all cars, 
although per se they do not reflect any physical characteristics of particular cars. 

Ordinal data, in addition to categorization of sample points, give extra informa­
tion through their ordering. For example, the examination grades A, A-, B+, ... , 
v-, F, can also be recorded as 4.00, 3.66, 3.33, ... , 0.66, 0.00, in which case the 
relation 1.66 < 3.33 tells us that the student whose grade was recorded as 3.33 
performed better than one whose record shows 1.66. Data of this type are also 
often collected when a new drug is being tested. If the aim of the new drug is to 
relieve pain, then the degree of pain relief provided is not objectively measurable 
and has to be judged on the basis of patients' subjective reporting and physicians' 
observations. The only practical solution may be to judge whether patient A is 
better off than patient B. Social status, athletic ranking, and grades of merchandise 
are other examples of ordinal data. 

Also, note that it is possible to measure numerical data but to use them as ordinal 
data. The converse is, of course, not possible. Usually, in case of numerical data, 
a parametric approach is desirable and the possible class of distributions has to be 
determined by one of the approaches sketched above. In the case of ordinal data, 
nonparametric (or semiparametric) models are often preferable. 

In general, if the model cannot be determined a priori, the graphical methods 
can be used. In Chapter 2 we have already seen that the Kolmogorov-Smirnov 
statistic can be used to provide an estimate (including the confidence bounds) 
for an unknown distribution. Other methods discussed in this book include box­
and-whiskers plots, Q-Q plots, and the chi-square goodness-of-fit test. Thus, a 
preliminary experiment to determine approximate distribution may be warranted. 
It would consist in plotting the empirical distribution function and making a rea­
sonable guess (based on basic characteristics of distributions such as skewness, 
symmetry, mean value, etc.) as to which of the known theoretical distributions 
provides the best fit. 

In conclusion, it is fair to say that model selection is a delicate problem and 
that it is best solved in a cooperative effort of a statistician, a probabilist, and an 
experimentalist. 

7.3 Determining the method of statistical inference 

Once the design of the experiment and the model are selected, one has to turn 
to the problem of determining the most appropriate method of statistical analysis 
of collected data. In this section we will concentrate on the problem of estimating 
parameters in the model family of distributions. 

Some parameters possess useful additional properties. For example, the mean 



7.3. Determining the Method of Statistical Inference 373 

(expectation) behaves nicely under translations and dilations and is thus a good 
location parameter. Indeed, if E(X) = Jt, then 

E(X + v) = Jt + v, and E(aX) = aJt. 

On the other hand, the variance u 2(X) scales nonlinearly, since 

Var (aX) = a 2Var (X). 

Thus, the standard deviation u (X) plays the role of a scaling parameter. In general, 
recall that if the random variable X has the cumulative d.f. F (x ), and v and a are 
constants, then the random variable X+ v has the cumulative d.f. F(x- v), and 
the random variable aX has the cumulative d.f. F(xfa). In the most common 
situations, where the normal or binomial models arise, the statistical inference is 
done for these parameters. If the population is not homogeneous, then the situation 
may become more complicated as each subpopulation could have different location 
and variability (scaling) parameters. 

In this section we will discuss three elementary methods of parameter estimation 
based on different principles. The first, the maximum likelihood estimation, relies 
on the notion that the true parameters are most likely (probable) to be reflected in a 
given collected sample. The second method, the least squares method, minimizes 
the mean square error of the estimate. The third, the method of moments, relies on 
the interpretation of the Law of Large Numbers. 

7.3.1 Maximum likelihood estimator (MLE) 

Let XJ, ••• , Xm be a sample of size m taken from a probability distribution with a 
density function f (x; 0), depending on an unknown parameter 0. We assume that 
the mapping 0 ~ f (x, 0) is smooth and has a unique maximum for each given x. 

The maximum likelihood estimation procedure provides an estimator 

(1) 

for the parameter 0 which maximizes (over 0) the likelihood function 

(2) 

This is the joint probability density of m independent random variables, each with 
density f(x; 0) evaluated at XJ, ••• , Xm, with only one unknown parameter 0. If 
the density f is smooth and has a unique maximum, then it is most convenient to 
find this maximum via differentiation (with respect to 0) of the logarithm 

logL = logj(x1; 0) + logj(x2; 0) + ... + logf(xm; 0) (3) 
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of the likelihood function. The logarithm is a strictly increasing function, so the 
functions L and log L attain their maximum at the same point. 

Thus, we find the MLE 0 by solving for(} equation 

where fe = Bf/CJ(}. 

Example 7.3.1 Gaussian Family. 
Let 

1 [ (x- 8)2 ] 
f(x; (}) = ..tiiiu exp 2u2 (5) 

be the family of normal distributions with unknown parameter(}. Parameter u 2 may 
be known or unknown; in this example it does not matter. We want to determine 
the MLE 0 for (} based on a random sample Xt, ... , Xm of size m. The likelihood 
function 

and 

. m 2 (Xt - 8)2 + ... + (Xm - 8)2 
logL(Xt. ... ,Xm, (}) = --2 log(2rru ) - 2 2u 

The derivative with respect to (} is 

The equation 

CJlogL(Xt, ... Xm;(J) Xt +x2+ ... +xm -m(} 

(j(} = 

alogL = 0 
(j(} 

has the unique solution 

A A Xt + ... +xm _ 
(} = 8(xt, ... , Xm) = =::c. 

m 

(6) 

(7) 

So, the maximum likelihood estimator for parameter (} in the normal distribution 
happens to be the sample mean. 
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1\vo observations are in order regarding the MLE in the above example. First, 
note that if we consider 

A A Xt + ... +Xm () = O(Xt, ... , Xm) = ----­
m 

as a random quantity depending on the normally distributed ensemble (X 1, ... , Xm) 
of all sample points (XJ, ... , Xm), then the expectation 

A A (X] + ... + Xm ) 
E(O) = E(O(Xt, ... , Xm)) = E m = 0. (8) 

In other words, the expected value of the estimator is equal to the estimated 
parameter-obviously a desirable property. In such cases the estimator is called 
unbiased. Second, in view of the Law of Large Numbers 

A Xt + ... +Xm 
O(XJ, ... , Xm) = -+ E(XJ) = () (9) 

m 

as the sample size m goes to oo. Thus, as the sample size increases, the error of the 
estimator becomes asymptotically negligible. Estimators enjoying this property 
are called consistent. 

Example 7.3.1 Continued. Gaussian Family. 
We shall find the MLE for u 2, based on the knowledge that() = 0 = z. The 
likelihood function becomes 

m 
m 2 1 '"' 2 log L = -- log(2:~r u ) - - 2 L..)xi - ii;) . 
2 20' 

i=l 

Differentiating with respect to u 2 (set u 2 = y, and take the derivative with respect 
toy) gives 

iHogL m 1 Lm 2 
-- = --+- (Xi - Z) . 

au2 2u2 0'4 
i=l 

Equating this expression 0 we obtain 

m 
A2( ) 1 '"' - 2 0' X), .•• ,Xm =-~(Xi- Z) . 

m i=t 
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This is not an unbiased estimator because 

It follows that 

~2 m- l 2 
E(a (XJ, ... , Xm)) =--a . 

m 

m 

2 l " 2 S = -- LJ(X;- :i:) 
m-1 

i=l 

is an unbiased estimator. Both estimators of a 2 are, however, consistent. 

Remark 7 .3.1 The method of partial derivatives does not always lead to the 
correct result, or even to any result. Here is an illuminating example. Consider a 
family of probability d.f.s defined by the formula 

f(x- O) = { lfO, ifO :5 ~:50; 
' 0, otherwtse. 

Based on the sample XJ, ••• , Xm, the likelihood function is 

L( .ll) = { lfOm, ifO :5 max1:5i:5mXi :50; 
XJ, .•• ,Xm,u O th . , o erwtse. 

Use Mathematica to graph this function for different data sets, and verify that L 
attains maximum for 

7 .3.2 Least squares estimator (LSE) 

In this subsection we will consider a linear model in which the observed quantity 
y is assumed to be an unknown linear function 

Y = fhxi + · · · + f3nXn (10) 

of the vector x = (xt. ... , Xn). Statistical inference for /31, ... , f3n, is to be 
based on m > n observations Yl , ... , Ym of the quantity y taken at m levels 
(xi!, ... , X;n). i = 1, 2, ... , m, of the independent variable vector x. Assuming 
the presence of a random additive noise E"J, ••• , E"m, in the system, independent for 
different observations, the statistical model equations for observations Yi can be 
written in the form 
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Yl = /3JX!t + f32x12 + ... + /3nX!n + EJ 

Ym = /3!Xm! + /32Xm2 + · · · + /3nXmn +Em. 

Traditionally, the matrix X = {Xij} is called the design matrix and (Et, ... , Em). 
the random error vector. The model is a generalization of the simple regression 
model considered in Section 2.7. 

The least squares estimator "/3 of f3 = (/3t, /32, ... , f3n) minimizes the quadratic 
error function 

m m n 2 

E2(/3) = I>l = L(Yi- L/3jXij) ' (11) 
i=! i=! j=! 

which also happens to be the square of the m-dimensional Euclidean distance 
between the vector (YI, ... , Ym) of observed responses and the vector (/3tX11 + 
... + /3nX!n •... , /3tXm! + ... + /3nXmn) of predicted responses. 

Example 7.3.2 Measuring a Constant. 
Suppose that m measurements of a single unknown quantity /3 are made in the 
presence of some errors. The corresponding linear model is 

Yi = /3 + E;, i =I, ... ,m. 

In this case, n = I , and the design matrix is 

The LSE method requires that we minimize the expression 

m 

E2(/3) = L(Yi - /3)2. 
i=l 
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Taking the derivative and equating it to zero we get 

m 

L(Yi- /3) = 0. 
i=! 

Hence, in this case, the LSE 

f3A Y! + · · · + Ym -= =Y 
m 

is again the sample mean. 

Example 7.3.3 Optimizing the Manufacturing of Chips. 
A chip manufacturer can choose between two manufacturing processes (say, I and 
II). He wants to organize his production lines to maximize his profits defined as 
the retail value minus production costs and minus distribution costs. Two samples 
of m chips each are manufactured using processes I and II, respectively. If a chip 
produced via process I (resp., II) passes the quality control, its profit is f3t (resp., 
fh). If the chip does not pass the quality standard, then its profit is /33 (resp., /34). 
Denoting by m 1 ::::; m the number of chips in the batch manufactured by process 
I that meet the quality standard, and by mz ::::; m the corresponding number for 
process II, the appropriate linear model is 

The design matrix X becomes 

fori= 1, ... , mt 

fori= mt + 1, ... ,mt +mz 
fori= mt + mz + 1, ... , m + mz 
fori= m +mz + 1, ... , 2m. 

0 0 0 

1 0 0 0 
0 0 0 

0 1 0 0 
0 0 1 0 

0 0 1 0 
0 0 0 1 

0 0 0 
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and the LSE for the vector (fJt, fJ2, /33, f34) is found by minimizing the expression 

m1 m1+mz 2m 

L(Yi- f3t)2 + L (Yi- /32)2 + L 
i=l 

Taking the partial derivatives with respect to f3t, fJ2, /33, /34, and equating them to 
zero, we obtain the following LSE for these parameters: 

I m1 

fit= -LYi· 
mt i=l 

Example 7.3.4 Regression Lines and Curves. 
This example has been studied in Section 2. 7, but it is worthwhile to recall it in the 
present context of general linear models. Suppose that Yt, ... , Ym are the observed 
responses, and Xt, ... , Xm are the corresponding values of the independent variable 
and, after a glance at the scatter plot of the paired data (xi, Yi ), we suspect that 
there is a linear relationship between an independent variable x and the observed 
response y. The appropriate linear model is 

Yi = fJo + f3txi + Ei, i = 1, ... , m, (12) 

which can be compactly written in the form 

y = X{3+e, (13) 

where 

X=(~ 7) 
1 Xm 

(14) 
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is the design matrix, f3 = (Po, fh)T is the vector of regression coefficients, and 
E = (Et. •.• , Em)T is the error (residuals) vector. To find the LSEs Po and PI, we 
need to minimize the function 

m m 

E2(/3o. f3I) = ~::::>; = L(Y;- Po- f3Ix;)2. 
i=I i=I 

The partial differentiation gives 

a 2 m 

a~ = -2 LYi- Po- f3Ix;, 
pO i=O 

and 
a 2 m 

~ = -2 LX;(y;- Po- /3IX;). 
af3I i=I 

Denoting by i, y, x 2 , and xy the means of samples (xi, ... , Xm), (yi, ... , Ym). 
(x?, ... , x~). and (XIJI, ... , XmYm). respectively, the equations 

(15) 

can be rewritten in a more transparent form: 

Po+ f3Ii = y, (16) 

Thus, we finally obtain the LSEs 

~ xy- iy 
f3I = ' 

x2- (i)2 
(17) 

As we observed in Chapter 2, the first order polynomial regression is only the 
simplest example of the general polynomial model 

(18) 
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of degree d, with the design matrix 

(19) 

To carry out statistical inference on the linear regression model, one needs to 
propose and test a statistical model for the residuals E 1 , ••• , Em, which are random 
quantities. One such approach will be discussed in Chapter 8. 

7.3.3 Method of moments (MM) 

The method of moments is based on the fact that, for certain cumulative d.f.s 
F x (x) , the sequence 

(20) 

of moments of the random quantity X, completely determines the distribution 
F x (x) itself. This is the case, for example, when the moment generating function 
f/J(u) = Ee"x is well defined and analytic in the neighborhood of 0, since then 
one can expand it in the power series 

(21) 

with coefficients determined by the moment sequence [see (5.4.14)]. Actually 
many families of distributions are determined just by a couple of moments (e.g., 
Gaussian, exponential, etc.). 

By the Law of Large Numbers, the average of independent identically distributed 
random observations X, X 1, ... , Xn, approaches, as n increases to oo, the expected 
value ILl = EX of the model distribution (if it exists). Thus the sample mean, that 
is, the first sample moment (see Section 2.3) 

( ) _ X} + X2 + ·· + Xn 
mt :r: = :r: = -----­

n 
(22) 

may serve as an estimator for /L 1 = EX, which is automatically consistent and 
unbiased. 



382 Chapter 7. General Principles of Statistical Analysis 

More generally, we can estimate the k-th moment ILk of the model cumulative 
d.f. Fx(x) (again, if it exists) by the sample k-th moment 

-k xt + x~ + ... + x! 
mk(Z) = z = -=---=---.......;.;c 

n 
(23) 

Again, by the Law of Large Numbers applied to the sequence xt, X~, ... , of 
independent and identically distributed random variables, the random quantity 
mk(X) converges to EXk. In particular, fork= 2, the above formula gives an 
unbiased and consistent estimator for the second moment E X2• 

Since the variance 

one could suggest 

2 2 ( )2 n A2() x1+ .. +xn Xt+ .. +xn 1"< _)2 
C1 Z = - = - ~ X; - X 

n n n i=l 
(24) 

as a good estimator for the variance of X. However, this estimator is biased because 
an easy calculation shows that 

A2 n- 1 2 2 
E(cr (Xt, ... , Xn)) = -- cr (X)=/= cr (X), 

n 
(25) 

although, as n --+ oo, the discrepancy between Efr2 and cr2 disappears (see Sub­
section 7.3.2). To remedy this difficulty, one usually considers the estimator 

2 n A 2 1 ~ 2 n -2 1 ~ - 2 
s (z) = n _ 1 cr (z) = n _ 1 ~X; - n _ 1 x = n _ 1 ~(x;- x) , (26) 

i=l i=l 

which, obviously, is an unbiased estimator of the variance; that is 

(27) 

In statistics, the primary problem is usually not the moment estimation per se but 
estimation of parameters of an unknown distribution. Often these parameters are 
functions of moments. Thus, we are given a family f(x; 0) of density functions 
with an unknown parameter () e Rd, where d 2:: 1 is an integer. For example, if 
f(.; 0) is the normal family, then(} = (#L. cr2) e R 2. To be more precise, assume 
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that the first d moments exist for every distribution in the family, and that the k-th 
moment ILk = A.k(9) is a function of 9. Then, the method of moments (MM) 
estimator of 9 is a vector 0 satisfying the condition 

for every k = 1, ... , d. Of course, this estimator need not exist, nor need it be 
unique. But in many important cases these equations have a unique solution. 

In order to see how to apply the MM estimators, let us return once more to 
the estimation of parameter u 2 for the normal family with the vector parameter 
9 = (IL, u 2). The first and second moments are 

ILl = j xf(x; 9)dx = IL. 

and 

IL2 = j x2 f(x; 9)dx = u 2 + IL2• 

Hence, the MM estimator 8-2 is the solution of the following two equations: 

and 

As another example, consider the family of Bernoulli distributions given by 
P(l; 9) = 9, and P(-1; 9) = 1-9. Then, 

ILl= 1 · P(l; 9) + (-1) · P(-1; 9) = 9- (1- 9) = 2fJ- 1. 

Thus, the estimator for 9 (the MM estimator of 9) is 

A 1 
9 = 2(:1: + 1). 

7.3.4 Concluding remarks 

The above three types of estimators-MLE, LSE, and MM-are only the most 
prominent and most frequently used estimators. They are usually followed by 
calculation of confidence intervals, or by test procedures and under a variety of 
models, including the normal models, regression model, ANOVA, the binomial 
model (appropriate when we want to estimate an unknown probability of success 



384 Chapter 7. General Principles of Statistical Analysis 

or failure), or the Poisson model which is often used to analyze rare (bad luck) 
events. More sophisticated estimators, such as median, rank, etc. will not be 
considered in this book (see the Bibliographical Notes). 

Confidence intervals give error bounds for the estimators. A typical statement 
would be that the true value of the parameter (} is within distance o of the estimator 
0, that is 

with a certain probability a, 0 < a < 1. The latter is called the confidence level. 
Finding such confidence intervals is preferable if one wants to obtain a precise 
measurement of an unknown numerical quantity (for example, the starch content 
of a stock of potatoes used in a manufacturing plant). 

Testing procedures are usually more sophisticated and result in a decision 
whether or not to reject a certain hypothesis. In general, natural sciences progress 
by suggesting theories purporting to explain various natural phenomena, and then 
testing those theories against experiments. As long as no contradiction appears, 
the theory is not rejected. So, new theories abound, and a lot of effort is directed 
at testing various hypothesis with an eye towards rejecting them. This is also the 
basic attitude of statisticians. We will formalize these concepts in Chapters 8 and 
9. 

7.4 Estimation of fractal dimension 
As a characteristic of data sets, the fractal dimension was already discussed in 

Sections 2.8 and 6.5 in connection with data compression techniques and attractors 
in nonlinear dynamical systems. In this section, we will develop a method of 
estimation of correlation integrals (and, thus, the correlation dimension) when 
the sample is taken from a sequence of independent, identically distributed d­
dimensional random vectors. This methodology is also widely applicable to chaotic 
data, where the independence assumption is not satisfied. 

Let us consider a probability distribution JL on the d-dimensional Euclidean 
space Rd. By definition, the support of JL is the smallest closed set in Rd of full JL 
measure 1. The support of JL may be a proper subset of Rd, and it can have fractal 
dimension. 

As a preliminary example consider the normal probability distribution JL2 on 
R2, with density 

(1) 

and the standard normal distribution JL 1 on R c R2 which, considered as a measure 
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on R2, acts on test functions cp(x, y) via the formula 

~ 1 100 
2 cp(x, Y)/L! (dx, dy) = vc cp(x, O)e-x 12dx. 

R2 v2rr -oo 
(2) 

Observe that for a square A = [-a, a] x [-a, a] C R 2, we have that /L2(A) = 
I-Ll (A)2. Thus, if a ~ 0, then the measure /L2(A) converges to 0 at a rate equal to 
the square of the rate of convergence for I-Ll (A). This is directly related to the fact 
that the dimension of the support of /L2 is 2, whereas the dimension of the support 
of I-Ll is 1. 

The concept of correlation integral is based on a similar idea of measuring such 
differences in asymptotics. Instead of the square A, we will take the integral over a 
ball of fixed radius and, then, average it over all possible balls to avoid the artificial 
centering at 0. More precisely, the correlation integral of a probability measure 1-L 
on Rd is the function 

CJL : (0, Eo) ~ [0, 00) (3) 

defined by 

where 1nx-yl<d = 1, if lx- yl < E, and= 0, otherwise, and where tL(B(x, E)) 
denotes the measure of the ball B(x, E) with radius E and center x E Rd. 

Now, let X,, X2, ... , Xn be a finite sequence of independent d-dimensional 
random vectors with distribution 1-L· Then 

for all 1 ::=:: i f. k ::=:: n. Therefore, because there are exactly n(n - 1) pairs i f. k, 

(6) 

Finally, given a random sample x,, x2, ... , Xn, from the distribution /L. we can 
use an idea influenced by the method of moments of Section 7.3. First, in view 
of the Law of Large Numbers, E(lnx 1-xi<E}) = tL(B(x, E)) can be estimated by 
(1/n) L?=illx-x;l<f· Taking another average, we obtain 

(7) 
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as a consistent estimator for CJ.L(E). Like the MM variance estimator, it is not 

unbiased; the unbiased estimator is obtained by deleting the diagonal sum. Indeed, 

- 1 n 

CJ.L(E) = n(n- 1) . ~ l(lx;-xkl<d 
t,k=l;t;fk 

is an unbiased and consistent estimator of C J.L (E). 

(8) 

The Grassberger-Procaccia correlation dimension dJ.L for l.t uses the correlation 

integral CJ.L(E). It is defined by the formula 

dJ.L = lim log C(E), 
E-+0 logE 

(9) 

whenever this limit exists. Intuitively, it means that C ( ·) is roughly a function of 

the form 
C(E) = KEdp. + lower order terms. (10) 

Therefore, as suggested in Chapters 2 and 6, for a finite set of (different) radii 

{EJ, E2, ... , Em}, the correlation dimension dJ.L is estimated by the slope of the 

regression line for the data set 

As a result, 

where 

and 

1 m 
E=- LE;, 

m i=l 

(11) 

Mathematica Experiment 1. Correlation Dimension of the Cantor Set. We will 

use the above procedure to estimate the correlation integral and dimension of the 

Cantor set. Recall (see Section 2.8) that the "middle-third-removed" Cantor set 
consists of all real numbers in the interval [0, 1] which have a triadic representation 

L Xk3-k, where each Xk is either 0 or 2. A natural measure 1.t on the Cantor set C 
is obtained by transporting the Lebesgue measure from [0, 1], using the map 
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Technically speaking, our goal is to estimate the correlation integrals and dimension 

of IL· 
The first task is to produce a realization of a sequence of independent random 

variables with the probability distribution IL on the Cantor set. For this measure, 
sequences of Os and 2s are like sequences of Os and 1 s for the symmetric Bernoulli 
measure(= Lebesgue measure on [0, 1]). Hence, it suffices to produce a string of 
Os and 1 s as a realization of the symmetric Bernoulli sequence and multiply each 
term by 2. Such a string, Xi, x2, ... , Xi, represents a random number 

l 

x = Lx;3-i 
i=l 

in the Cantor set, with the probability distribution approximately equal to IL· 

ln[1]:= <<Statistics'LinearRegression' 
In[2]:= ran= Table[ N[Sum[ 2•3-(-i)•Table[Random[Integer], 

{6}] [[i]]' {i,1,6}]]' {80}]; 
ln[3]:= c[r_] := (1/80.)-2 Sum[ Sum[ If[ Abs[ran[[i]]­

ran[[j]]]<r, 1,0], {j ,1,80}] ,{i,1,80}] 
In[4]:= reg= Table[{Log[1.8-(-i-2)], Log[c[1.8-(-i-2)]]}, 

{i,1,5}] 
Out[5]= {{-1.76336, -1.19671}, {-2.35115, -1.46696}, 

{-2.93893, -1.83846}, {-3.52672, -2.14398}, 
{-4.11451, -2.54148}} 

ln[6]:= Fit[reg, {1,x},x] 
Out[6]= -0.154239 + 0.572751 x 
ln[7]:= N[Log[2]/Log[3]] 
Out[7]= 0.63093 

So, in a single run of a relatively moderate length, we obtained 0.572751 as an 
estimate of the correlation dimension of the Cantor set, not a bad approximation to 
the true theoretical value of log 2/ log 3 ~ 0.63093. Of course, since we operate 
with random samples, each time you run the above program, the result is going to 
be slightly different. When we run it for the second time, we obtained the estimate 
0.578216. 

7.5 Practical side of data collection and analysis 

We shall conclude this chapter with a few comments on the practical side of data 
collection and analysis. First of all, one has to remember that statistical methods 
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are well suited only for studies of random phenomena. This randomness may 
be systemic (as in numerous natural and chaotic phenomena), or it may come 
from inaccurate and noisy measurements, incomplete information, or other similar 
sources. 

When collecting data in a survey and/or a series of experiments, one has to 
ensure that this randomness is not affected by systematic errors which can have 
various causes. Quite often the experimenter himself is responsible for faulty 
measurements, not to mention cases of ethical lapses when data sets are just made 
up or tampered with. But an instrument can also add some systematic measurement 
errors due to faulty calibration, positioning, fixed but unknown external fields, 
etc. Also, the process of instrument reading by different people may result in a 
systematic error. Often, the procedure for taking a random sample is not sound. 
Testing the general population's habits by polling a random sample of customers 
at an upscale shopping center may be a wrong approach as this is already a self­
selected population. 

The most important procedural point in data collection is to make sure that the 
complete original record for each experiment (the raw data) is securely stored and 
preserved. In order to make this documentation available for computer analysis, 
the data should be collected in computerized files, either immediately after the 
experiment is concluded, or as soon as possible. There are many statistical software 
packages that facilitate data collection. Often, the experiments are costly, and one 
wants data files readily available for analysis. 

Second, one has to keep in mind that the statistical analysis is a scientific re­
port, and such reports have to be reproducible as a scientific investigation. Data 
analysis often begins with the back-of-the-envelope stem and leaf diagrams (not 
only in the one sample case) to obtain some indication whether or not collected 
data approximately satisfy model assumptions. This initial interpretation of data 
requires a lot of experience and intuition, as there are only a few basic rules to be 
followed: checking for the presence of outliers-that is values which, with very 
high probability, seem to be outside the reasonable range; inspecting if the empiri­
cal distribution seems to have the correct range, symmetry properties and location 
parameters; constructing histograms is usually helpful in such situations. 

The next step in practical statistical analysis is a test of the hypothesis or con­
struction of the confidence intervals. These are done using one of the numerous 
commercial statistical software such as s+ or SAS but it is not our aim in this 
book to train students in their use. For many simpler situations, Mathematica 
Statistics packages will do a creditable job. One has to remember though that 
the procedures vary quite a bit from one software package to another, and changing 
your computer tools may require a big time investment and a steep learning curve. 

Computer analysis provides the statistician with a basis for his conclusions: 
the hypothesis is rejected or not rejected, the confidence interval is established. 
Sometimes, however, statistical results are used to draw conclusions that are too 
optimistic or not really justified. To avoid such mistakes, besides using correct 
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formal statistical tools, the experimenter has to be guided by an in-depth knowl­
edge of his own field. In a study of 149 articles which appeared in 10 respected 
medical journals (see Schoor and Karsten, Statistical evaluation of medical journal 
manuscripts, J. Amer. Med. Asso. 195 (1966), 1123-1128), 12% were found to 
contain conclusions that were not justified! Remember Huff's book How to Lie 
with Statistics quoted in Chapter 1. 

Finally, one has to guard against creating too high expectations for the results 
of statistical analysis. Statistical methods cannot prove anything in the classical, 
deterministic sense. They will not establish rigid cause-and-effect relationships 
in the sense that is possible, for example, in the classical Newtonian mechanics. 
The rigorous statements are obtained only for probabilities, but in the complex and 
chaotic world we live in, this is often the best one can do. 

7.6 Experiments, exercises, and projects 

1. Find equations for the MLE of the parameter {J in the Gamma distribution. 
Solve them for the simple exponential distribution with parameter A.. Show 
that the MLE for A. is unbiased and consistent. 

2. Find the MLE N for the parameter N in the discrete uniform distribution 
over integers 1, 2, ... , N, based on a sample of size n. 

3. Find the MLE for the parameter p of the Bernoulli distribution. Show that 
it is unbiased and consistent. 

4. Find the MLE for the parameter (} of the family of densities 

f(x; (}) = { e-x+O, for x :=: (}; 
0, otherwise. 

5. Find the MM estimators for parameters a and b in the uniform distribution 
on the interval [a, b]. 

6. Find the MLE for the parameter A. in the Poisson distribution, based on a 
random sample of size n. Show that it is unbiased and consistent. 

7. Find the MLE for the parameter p in the geometric distribution, based on 
a random sample of size n. 

8. Find the MM estimator for the parameter of the Bernoulli, Poisson and 
exponential distribution. 

9. Find the MM estimator for the parameter (} in the family of distributions 
from Exercise 4. 
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10. Draw a random sample of size 35 from the data set rivet on the uvw Web 

Site. Do it first with replacements, and then without replacements. 

11. Let random variables X 1, ... , Xn be independent with an identical sym­
metric probability distribution. Show that for the unbiased estima­
tors m1 (m) = x and s2 (m) for the mean and variance, respectively, 
Cov (mJ(XJ, ... , Xn). s2 (XJ, ... , Xn)) = 0. 

12. Find the likelihood and the log likelihood functions for the gamma distri­
bution with parameters a and {J. Then find the equations that define the 
MLEs for a and {J. Can you solve them explicitly? Show that the MLE 
for IL = a{J is x. 

13. Fit a regression model Y = {Jx + E (i.e., the true regression line passes 
through the origin) using the LSE to find the estimate for {J. 

14. Let t1, ... , tn be a random sample from a Wei bull distribution (see Exercise 
5.8.26). Find equations for the maximum likelihood estimators a and fi. 
Do not try to solve them explicitly though; explain why not. 

15. Estimate the correlation dimension of the Cantor set C using 200 randomly 
selected points. 

16. Estimate the dimension of the set {(x, y) E R2 : x E C, 0 ::: y ::: 1}. Try 
to calculate this dimension analytically. 

17. Estimatethedimensionoftheset{(x, y) E R2 : x, y E C}. Try to calculate 
this dimension analytically. 

18. Estimate the dimension of the "second-and-fourth-fifth-removed" Cantor­
type set. It is obtained by a procedure similar to the "middle-third­
removed" procedure that produces the standard Cantor set C, except that 
the partition at each step consists of five equal subintervals, of which the 
second and the fourth are removed. Try to calculate this dimension ana­
lytically. 

7. 7 Bibliographical notes 
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ented 
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ChapterS 

Statistical/ nference for Normal 
Populations 

In this chapter the general assumption is that the statistical model is normal. We 
begin by discussing the general issue of parametric inference and then quickly 
move to construction of confidence intervals for one-sample models and the related 
hypothesis testing issues. A few remarks on the two-sample model follow and 
the chapter concludes with the regression analysis for the normal model and a 
goodness-of-fit test. 

8.1 Introduction; parametric inference 

In the simplest one-sample experimental design, the model is completely de­
scribed by the 1--dimensional normal distribution with the density 

1 [ (x- J.L)2 ] 
f(x; f-L, a) = v'2rra2 exp - 2a2 ' (1) 

where f-L is a real number and a 2 > 0. The sample x1, .•• , Xn, comes from a 
finite number of independently performed experiments represented by a sequence 
X J, ... , Xn of independent random normal quantities, each with the probability 
density (1). The statistical decisions to be made in this model are about two 
parameters, f-L and a 2• 

A more involved, two-sample design calls for sampling from two independent 
sequences of independent random normal quantities X 1 •••. , Xn, and Y1, .•• , Y m, 
each sample with its own sample size, n and m, respectively, and possibly different 
parameters f-LI and af, and, respectively, f-L2 and ai. The corresponding densities 
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are 

I [ (x- JLt}2 ] 
/1(x) = ~exp - 2 , 

2rra2 20'1 1 

(2) 

and 

I [ (y- JL2)2] 
h(y) = R exp - 2 . 

2rro:2 2a2 
2 

(3) 

In the two-sample model there are four parameters to be estimated. Each sample 
comes from a finite set of independent normally distributed experiments. 

However, there is another two-sample model, called the paired two sample 
model, where X 1, ... , Xn and Y1, ... , Yn are two samples such that the paired 
variables (X1, Y1), ... , (Xn. Yn) are independent. It follows that in each of the 
subsamples, Xt. ... , Xn and Yt. ... , Yn, random variables are independent. In 
this model it is assumed that the differences 

D; =X; -Y; (4) 

are normal with their probability d.f. given by (I). Such models (and we shall 
investigate one of them in Example 8.l.I) are treated as one-sample models though 
the original data set has been obtained from a two-sample design. 

In a similar fashion one can consider multi-sample designs, normal or not normal. 
These designs can be further categorized, and we shall deal with these problems in 
the chapter on AN OVA, the analysis of variance. The simplest AN OVA design will 
be, for example, the model with k independent samples, all with the same variance 
but, possibly, different means. That is, we will be given a family X;j, i = 
I, ... , k, j = I, ... , n;, of independent random variables, which, for each i have 
the identical normal probability d.f. 

I [ (x- JL;)2 ] 
/;(x) = .J2m12 exp - 2 • 

2rra2 a 
(5) 

The final normal design to be considered in this chapter is the regression model 
already introduced in Chapters 2 and 8, and specified by equations 

Y; = fJo + /Jtx; + E;, i = I, ... ,n, 

where fJo and fJ1 are real parameters and where E;, i = I, ... , n, is a sequence of 
independent normal random variables with zero mean and (mostly unknown) vari­
ance u 2 > 0. In this design, statistical inference can be made on three parameters 
fJo, fJ1, and a 2 > 0. 
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In applications it is most important that the correct model be selected. We will 
illustrate the model selection process on a number of examples containing concrete 
experimental data. 

Mathematica Experiment 1. Cotton Threads. In order to examine the quality 
of linen manufactured at a plant, the quality control staff has taken a sample of 
50 cotton threads and tested their breaking strengths (in kg). The observations, 
already ordered according to their magnitude, are given in Table 2.5.1. The data 
represent a one-sample design and the inference to be drawn is about the population 
mean. Given that the thread's strength depends on the strengths of a large number of 
independent fibers, the plausible assumption is that the normal model is appropriate. 
Of course, in the second approximation one could argue that the fibers are not really 
acting independently of each other given the friction between them. Then a more 
sophisticated model would be in order. 

As the first step in deciding whether or not the data are normal, and what its 
parameters could be, one usually produces the location, dispersion and shape re­
ports, and a Q-Q plot of the data vs. the normal quantiles with the same mean and 
standard deviation. We shall use the COTTON data from the uvw Web Site. 

In[1] := <<Statistics'ContinuousDistributions' 
In[2]:= <<Statistics'DescriptiveStatistics' 
In[3]:= cotton={ 1.10, 2.32,1.52,2.35,1.63,2.36,1.69,2.37, 

1.73, 2.39, 1.73,2.40,1.78,2.40,1.89,2.41,1.92, 
2.47,1.95,2.50, 1.98,2.52,1.99,2.55, 2.02,2.60, 
2.03,2.63,2.07,2.64,2.12, 2.65,2.12,2.71,2.13, 
2.71,2.15,2.77,2.16,2.79,2.20,2.86, 
2.23,2.91,2.26,2.92,2.30,3.02, 2.31,3.30}; 

In[4] := LocationReport[cotton] 
Out[4]= {Mean-> 2.2912, HarmonicMean -> 2.203, 

Median -> 2.315} 
In[5] := DispersionReport[cotton] 
Out[5]= {Variance -> 0.180203, StandardDeviation -> 0.424503, 

SampleRange -> 2.2, MeanDeviation -> 0.331904, 
MedianDeviation -> 0.29, QuartileDeviation -> 0.29} 

In[6]:= ShapeReport[cotton] 
Out[6]= {Skewness -> -0.196803, QuartileSkewness -> -0.0172414, 

KurtosisExcess -> 0.0875748} 
In(?]:= Length[cotton] 
Out[4]= 50 
In[8] := m=Mean[cotton] 
Out[5]= 2.2912 
In[9] := s=StandardDeviation[cotton] 
Out[9]= 0.424503 
In[10] := t1=Table[{Quantile[Norma1Distribution[m,s],k*0.02], 

Quantile[cotton,k*0.02]},{k,1,49}] 
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Out[10]= {{1.41938, 1.52}, {1.54803, 1.63}, {1.63119, 1.63}, 
... , 

{2.95121, 2.92}, {3.03437,2.92}, {3.16302, 3.3}} 
In[11] := ListPlot[t1, AspectRatio->1, 

PlotStyle->PointSize[0.015]] 
Out[11]= -Graphics-
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The mean and median are almost the same, indicating lack of asymmetry in the 
distribution. The MeanDeviation is the mean absolute deviation: 

1" -- .L.,..ix; - xl = 0.331904. 
n . 

I 

It is a dispersion parameter which is less sensitive to extreme outliers than the 
standard deviation. The MedianDeviation stands for the median absolute deviation 

med ( (XJ - med (x), ... , (xn - med (x)) = 0.29. 

The skeweness, which is calculated as the third central moment nondimensionalized 
by dividing it by the cube of the standard deviation 
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is here quite small, further reinforcing the conclusion that the data are quite symmet­
ric. The fact that it is negative indicates that the underlying probability distribution 
has a longer left-sided tail. 

The KurtosisExcess is the kurtosis coefficient 

L;(x;- z)4 

u4(:z:) 

shifted by -3 so that it is zero for the normal distribution. It is positive for 
distributions with prominent peaks and heavy tails, and negative for distributions 
with prominent flanks (relative to the normal distribution). In our case it is very 
small and equal to 0.08757 48, an indication that the normality hypothesis has to be 
taken seriously. The linearity of the Q-Q plot clearly indicates that the normality 
assumption is warranted here. 

A more formal assessment of the normality of the data can be made on the 
basis of nonparametric inference relying on the goodness-offit test which ap­
plies the Kolmogorov-Smirnov Theorem discussed in Section 3.9. Recall that the 
Kolmogorov-Smimov Theorem states that if XI, ... , Xn, is a random sample from 
any continuous cumulative d.f. F(x), with order statistics X (I), ... , X(n)• and 

A i 
Fn(X) = -, 

n 
for X(i) :::X < x(i+l)• i = 0, 1, 2, ... ' n, 

is the sample (empirical) cumulative distribution function, then the statistic 

Dn =sup IFn(X)- F(x)l 
X 

(6) 

(7) 

is independent of the distribution F(x) (in other words, it is distribution free), and 
for every z :=::: 0, 

00 

lim Pr(Dnn112 ::: z) = 1-2 '\-l)i-I exp[-2i2z2]. (8) 
n--+oo ~ 

i=l 

In Section 3.9 we have shown how, with the help from Mathematica, this result 
can be used to find da such that, for large sample size n, 

Pr (.Jii"Dn :S: da} ~ 1- a. (9) 

See Section 8.6, for another goodness-of-fit test based on the chi-square distribu­
tion. 
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Mathematica Experiment 2. Rivets. The following table gives the frequency 

distribution of head diameters for a sample of n = 500 rivets. Observe that here­
as is often the case-the raw data are no longer available-only a class distribution 
(sometimes called a grouped distribution) has been presented. 

Table 8.1.1 Distribution of head diameters of 500 rivets (in mm) 
(Class length: 0.05 mm) 

Class Number 

midpoint of rivets 

t l/J 
13.07 1 

13.12 4 

13.17 4 

13.22 18 

13.27 38 

13.32 56 

13.37 69 

13.42 96 

13.47 72 

13.52 68 

13.57 41 

13.62 18 

13.67 12 

13.72 2 

13.77 1 

Since we can assume that the sample was taken from a homogeneous popula­
tion, and the fluctuations resulted from purely random errors of measurements and 
manufacturing, the normal model seems to be appropriate here. Note that since we 
no longer have the list of the original data, but just the grouped data frequencies, 
only an approximate calculation of the sample mean and variance are possible. 
Thus, if l/Ji denotes the number of rivets in class j with the class midpoint ti, and 
n = L: l/Jj, the approximate sample mean is the weighted mean, that is 

(10) 
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The sample standard deviation also can only be approximated by the formula 

2 1 "' 2 s ~ --1 L..../h (fj - X) ' (11) 
n-

j 

and, similarly, for the empirical distribution we obtain the expression 

(12) 

where H(t) is the Heaviside unit jump function. 

In[1] := <<Statistics'NormalDistribution' 
In[2]:= t={13.07, 13.12, 13.17, 13.22, 13.27, 13.32, 13.37, 13.42, 

13.47, 13.52, 13.57, 13.62, 13.67, 13.72, 13.77}; 
In[3] := Length[t] 
Out [3]= 15 
In[4] := phi={1, 4, 4, 18, 38, 56, 69, 96, 72, 68, 41, 18, 12, 2, 1}; 
In[5] := barx=(1/500)Sum[phi[[j]]*t[[j]],{j,1,15}] 
Out[5]= 13.4264 
In[6] := s=Sqrt[ (1/499)Sum[phi[[j]]*(t[[j]]-barx)-2,{j,1,15}]] 
Out [6] = 0. 
In[7] := H[x_] :=If[x<0,0,1] 
In[8] := F[x_] :=(1/500) Sum[ phi[[j]] * H[ x-t[[j]] ],{j,1,15}] 
In[9] :=tab= Table[{barx-3s+0.5*k*s,F[barx-3s+0.5*k*s]},{k,12}]; 
In[10] := p1=ListPlot[ tab,PlotStyle->PointSize[0.015]]; 
In[11] := p2=Plot[CDF[Norma1Distribution[barx,s],x],{x,13.1,13.8}]; 
In[12] := Show[p1,p2] 
Out[12]= -Graphics-
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0.8 

0.6 

0.4 

0.2 

13.7 13.8 

Mathematica Experiment 3. Pesticide Effectiveness. In an experiment testing 
the effectiveness of a pesticide, two populations of flies were exposed to nerve gas 
for 30 and 60 seconds, respectively. The quantity measured was the time elapsed 
from the instant the fly was exposed to the pesticide to the moment when it could 
no longer stand up. The design of the experiment called for assigning at random 
(using the pseudorandom number generator) a total of 31 flies to one of the two 
exposures. Thus, the model was a two-sample design. A Mathematica session 
analyzing the data follows. 

In[1] := <<Statistics'ContinuousDistributions' 
In[2]:= <<Statistics'DescriptiveStatistics' 

In[3] := t30= {3., 5., 5., 7., 8.99, 8.99, 10., 12., 20., 24., 24., 
34., 43.1, 46., 57.9, 140.}; 

In[4] := t60={2., 5., 5., 7., 8., 8.99, 14., 18., 24., 26., 26., 34., 
37., 42., 89.9}; 

In[5]:= {Length[ t30] ,Length[ t60]} 
Out[5]= {16, 15} 
In[6]:= {ShapeReport[t30], ShapeReport[t60]} 

Out[6]= {{Skewness -> 2.12991, QuartileSkewness -> 0.474753, 
KurtosisExcess -> 4.28096}, 

{Skewness-> 1.63001, QuartileSkewness -> 0.133238, 
KurtosisExcess -> 2.44}} 

In[7] := m={Mean[ t30], Mean[ t60]} 
Out[?]= {28.0641, 23.1278} 
In[8] := s={StandardDeviation[ t30], StandardDeviation[ t60]} 

Out[8]= {34.1968, 22.4419} 
In[9] := q1=Table[{Quantile[Norma1Distribution[m[[1]],s[(1]]] ,k*0.05], 

Quantile[t30,k*0.05]},{k,1,19}]; 
In[10] := ListPlot[q1, PlotRange->{3,140}, AspectRatio->1] 
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Thble 8.1.2 Times of reaction to pesticide of31 (16+15) flies 

Exposure time: 
30 seconds 

Logarithm of 
reaction time 

0.477 
0.699 
0.699 
0.845 
0.954 
0.954 
1.000 
1.079 
1.302 
1.380 
1.380 
1.532 
1.634 
1.663 
1.763 
2.146 

Out[10]= -Graphics-
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Exposure time: 
60 seconds 

Logarithm of 
reaction time 

0.301 
0.699 
0.699 
0.845 
0.903 
0.954 
1.146 
1.255 
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1.415 
1.415 
1.532 
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1.623 
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The session using the original data shows a skewed to the left underlying dis­
tribution and a very nonlinear Q-Q plot. So, the normality hypothesis has to be 
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rejected. However, the Q-Q plot suggests that the logarithmic transformation of 

the data could produce an approximately normal distribution of values. 

In[11]:= logt30= N[Table [Log[t30[[i]], 10], {i,1,16}], 4] 

Out[11]= {0.477, 0.699, 0.699, 0.845, 0.954, 0.954, 1., 1.079, 

1.302, 1.38, 1.38, 1.532, 1.634, 1.663, 1.763, 2.146} 

In[12] := ShapeReport[logt30] 
Out[12]= {Skewness-> 0.238372, QuartileSkewness -> 0.1485, 

KurtosisExcess -> -0.997441} 

In[13] := logm= Mean[logt30] 
Out[13]= 1.21919 
In[14] := logs= StandardDeviation[logt30] 

Out[14]= 0.0456112 
In[15]: q2= Table[{Quantile[NormalDistribution[logm,logs], k*0.05], 

Quantile[logt30,k*0.05]},{k,1,19}]; 

In[16] := ListPlot[q2, PLotRange->{0.45,2.2},AspectRatio->1] 

Out[16]= -Graphics-
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A similar analysis of the data t60 is left as an Exercise. The logarithmic trans­

formation of the data (also shown in Table 8.1.1) dramatically decreased skewness 
and kurtosis excess. The Q-Q plot is approximately linear. Now the transformed 
data can be analyzed under a two-sample normal model to be discussed in Section 
8.4. A random quantity X such that log X has the normal distribution is said to have 
a log-normal distribution. Such distributions appear in many areas of engineering 
and sciences. 

Example 8.1.1 Tire Wear. 
A car company wants to compare the durability of two types, A and B, of tires to 
be mounted on the company's cars as the original equipment. The experimental 

design calls for nine cars being selected at random from the production lines and 
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mounted with tires A, and then another nine cars being selected at random and 
mounted with tires B. Each car is driven for 20,000 miles under normal conditions 
and the wear is quantified by measuring at the end of the experiment the remaining 
thread depth in millimeters. Table 8.1.3 gives the results of the experiment. Clearly, 
a two-sample design with equal variances is called for here. 

Table 8.1.3 Remaining thread depth (in mm) after 20,000 miles 

Type A tire Type B tire 
Car no. Wear Car no. Wear 

1 12.0 1 10.2 

2 11.4 2 11.3 

3 12.2 3 12.4 

4 11.3 4 10.7 

5 11.7 5 11.2 

6 12.1 6 12.0 
7 12.3 7 12.2 

8 11.2 8 11.1 

9 12.2 9 11.7 

An argument can be made that a random selection of the two groups of cars 
introduced too much randomness in the design, making the comparison more dif­
ficult. The experimental design can be adjusted to answer this criticism by, for 
example, mounting two types of tires on the same car, say, type A on the left-hand 
side, type Bon the right-hand side (or vice versa). In this case we could consider a 
one-sample design for the differences D; of observations provided in Table 8.1.4. 

Table 8.1.4 One-sample design for measuring tire wear 

Car Wear A WearB D; =A; -B; 

1 12.0 10.2 1.8 
2 11.4 11.3 0.1 
3 12.2 12.4 -0.2 
4 11.3 10.7 0.6 
5 11.7 11.2 0.5 
6 12.1 12.0 0.1 
7 12.3 12.2 0.1 
8 11.2 11.1 0.1 
9 12.2 11.7 0.5 
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If the random quantities A and B are normal and can be assumed independent, 
then the difference D = A - B is also a normal random quantity with mean 

f.L = f.L 1 - f.L2 and unknown variance. 

Example 8.1.2 
The same car manufacturing company is interested in durability of three types of 
tires, A, B, and C, under three different types of weather conditions: snow, rain, 

and dry (more factors such as driving habits, traffic type, or road conditions could 
also be introduced here). This leads to a multi-sample model given by a two-way 
classification design. For each of the combinations of tire type-A,B, and C­
and weather condition-snow, rain, and dry-we make one observation X;j and 

arrange it in the matrix: 

A B c 
snow Xn xl2 x,3 
rain X21 Xzz Xz3 
dry x3, X32 X33 

This is the design matrix for our experiment. Of course, the measurement of 
each of Xij can be independently repeated a finite number nij of times. One says 

then that each cell i j contains n ij independent observations. This would give more 
precise statistical information. 

Mathematica Experiment 6. Lumberjack's Hypothesis. A forester needs to 

estimate the volume of lumber in a stand of trees. The conventional wisdom 
among lumberjacks is that the volume V of usable lumber in a tree is equal to 100 

plus two thirds of the square C2 of the circumference C of the tree trunk measured 

24 inches above the ground. The measurements of both, the circumferences and 
the volumes, from a random sample of size 25 are given in Table 8.1.5. 

The design clearly calls for a linear regression model in variable C2• If V; 

denotes the lumber volume of the i-th tree (selected at random) then the working 

hypothesis is that V; = f3o + f3I cf + Ej' where cf denotes the square of the 
circumference of the i -th tree. In this example, the first guess is that the residual 
errors E; are random and normally distributed, with expectation 0 and common 
variance a 2 > 0. Thus, the initial job here is to find the regression line 

EV; = f3o + f3I cf. 

Here is a simple fit via Mathematica. 

In[1] := <<Statistics'LinearRegression' 
In[2] := circum={4.7, 2.7, 3.5, 2.5, 4., 3.6, 2.7, 5.5, 5., 
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Table 8.1.5 Circumferences C of tree trunks and lumber volumes V 

No. oftree I 2 3 4 5 6 7 

C (in ft) 4.7 2.7 3.5 2.5 4.0 3.6 2.7 

cl. (in ftl.) 22.09 7.29 I2.25 6.25 I6.0 I2.96 7.29 

V (in ftj) 114 96 IOO llO ll2 108 IOO 

8 9 IO II I2 I3 I4 I5 I6 

5.5 5.0 2.6 2.5 6.0 3.8 5.8 3.9 2.8 

30.25 25.0 6.76 6.25 36.0 I4.44 33.64 I5.2I 7.84 

I32 118 IOO 94 I44 I10 I34 I06 102 

I7 I8 I9 20 2I 22 23 24 25 

5.8 3.5 3.6 2.5 3.5 4.7 3.6 2.5 5.8 

33.64 I2.25 I2.96 6.25 I2.25 22.09 I2.96 6.25 33.64 

I38 I02 I02 IOO 106 II8 106 98 132 

2.6, 2.5, 6., 3.8, 5.8, 3.9, 2.8, 5.8, 3.5, 3.6, 2.5, 

3.5, 4.7, 3.6, 2.5, 5.8}; 

In[3] := volume={114, 96, 100, 110, 112, 108, 100, 132, 118, 100, 

94, 144, 110, 134, 106, 102, 138, 102, 102, 100, 106, 

118, 106, 98, 132}; 
In[4]:= data=Table[{circum[[i]], volume[[i]]}, {i,25}] 

Out[4]= {{4.7, 114}, {2.7, 96}, {3.5, 100}, {2.5, 110}, 

{4., 112}, {3.6, 108}, {2.7, 100}, {5.5, 132}, {5., 118}, 

{2.6, 100}, {2.5, 94}, {6., 144}, {3.8, 110}, {5.8, 134}, 

{3.9, 106}, {2.8, 102}, {5.8, 138}, {3.5,102}, {3.6, 102}, 

{2.5, 100}, {3.5, 106}, {4.7, 118}, {3.6, 106}, {2.5, 98}, 

{5.8, 132}} 
In[5]:= Fit[data,{1,x-2}, x] 

Out[5]= 89.0685 + 1.34841•x-2 

In[6]:= f[x_] :=89.0685 + 1.34841•x-2; 

In[7]:= p1= ListPlot[data]; 
In[8] := p2= Plot[f[x], {x, 2, 7}]; 

In[9]:= Show[p1, p2] 
Out[9]= -Graphics-

405 
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So the best fitting curve comes close to the lumberjacks' lore. The issue for 
the statistician, which we will address in Section 8.5, is whether this hypothesis is 
justifiable and whether the normality assumption on the residuals is valid. 

8.2 Confidence intervals for one-sample model 

In this section :z: = (XI, xz, ... , Xn) is a random sample of size n, from the 
normal population with the density 

2 1 [ (x - /L)2] 
f(x; /L. a ) = ../2rra2 exp - 2a2 , (1) 

where the mean IL E R, and variance a 2 > 0. Our goal here is to do statistical 
inference for the parameters IL and a 2 when one (or both of them) is unknown. We 
shall do it first by constructing the confidence intervals for them. In the simple spe­
cial case of Bernoulli data, we have introduced this simple but effective estimation 
method in Section 3.7. 

Consider the sample mean 

(2) 

which happens to be the maximum likelihood estimator (MLE, see Chapter 7) for 
the true value of the unknown parameter IL· It is clear that with probability 1, the 
numerical value of the estimate {.t is different from /L. but we would certainly hope 
that they are close to each other. The statistical and coupled questions are: "How 
close?'', and "With what probability?". 



8.2. Confidence Intervals for One-Sample Model 407 

More exactly, having selected a precision level E > 0, we would like to repeat 
the above estimation procedure independently numerous times and find the relative 
frequency of the event "the estimate it = x is within E of the true value J.L of the 
mean", or, in other words, 

J.L E [x- E, X+ E]. (3) 

Note that the above interval is random; that is, it depends on the realization of the 
above estimation procedure. 

If, more formally, we interpret the sample x = (XI, x2, ... , Xn) as a realization 
of independent random quantities (X I, X2, ... , Xn) = X, each with density (1), 
then the question about the relative frequency of the event (3) becomes, in view of 
the Law of Large Numbers, a more easily answered question about the probability 

y(J.L, E, n) = Pr {X- E ::=:; J.L ::=:;X+ E} = Pr {J.L- E ::=:; X::=:; J.L + E}, (4) 

where 
(5) 

The probability y (J.L, E) depends, a priori, on the unknown parameter J.L, the sample 
size n, and the precision level E. 

In the case when the probability y (J.L, E, n) does not depend on the true value of 
parameter J.L, i.e., y(J.L, E, n) = y(E, n) then the random interval 

(6) 

is called an y x 100 percent confidence interval for J.L. The probability y = y ( E, n) 

is also called the confidence level. Traditionally, one selects a small positive a, 

and one talks about the (1 -a)-confidence level. This notation is justified by the 
hypothesis testing notation in Section 8.4. 

In more generality, we will record the following definition: 

Definition 8.2.1 Confidence Intervals. 
Let X I, ... , Xn be a random sample, i.e., independent, identically distributed 

random quantities, from the unknown normal distribution with the density ( 1) with 
parameters J.L and a 2. A (1 -a) x 100% confidence interval for J.L (respectively, 
a 2 ) is defined by two estimators 

and (7) 

such that, regardless of the true value of J.L, 

(8) 
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(respectively, by Lu2 and Uu2 such that, Pr {Lu2 :::: a 2 :::: Uul} = 1 -a). 

Note that in the case of the MLE estimator jl = X for JL 

In practice, the problems are: 

• Find the size € of the confidence interval given the sample size n and the 
confidence level I - a. 

• Find the sample size n that would guarantee the desired confidence level 1 -a, 
for a given size € of the confidence interval. 

The latter is, of course, one of the first questions in experimental design. 

Example 8.2.1 Confidence Intervals for Unknown JL, with Known a 2• 

If a 2 is known, then the random quantity 

X-JL 
Z=--

aj..fo 

is normal, with mean zero and variance 1. Hence, 

(10) 

Pr{-a:::: Z:::: a}= 1-2(1- <l>(a)) = 2<1>(a) -1 (11) 

where <l>(x) is the cumulative distribution function of the standard normal distri­
bution. 

Thus, given the confidence level a, and the tail quantile function Za = <I> -I (1 -
a) of the standard normal distribution, we find that for 

a= Za/2• (12) 

see Fig. 8.2.1, the probability from (11) is at the desired confidence level 1 -a, 
i.e., 

2<1>(a) -1 = 1-a. (13) 

In other words, putting (10), (11), and (13) together, 

{ - a - a} 
Pr X - Zaf2 Jn :::: JL :::: X + Za/2 Jn = 1 -a. 
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04 

-4 4 

FIGURE 8.2.1 

Tail quantiles of the N(O, 1) distribution. The tail quantile Zaf2 = <1>- 1(1- a/2), 
where <l>- 1(a) is the quantile function of the standard normal distribution. The 
area under the density, between -Zaf2 and Zaf2• is 1 - a. 

Alternatively, we can say that with 

u 
E = Zaf2 ,.jii 

the interval [X - E, X + E] is the ( 1 - a) x 100% confidence interval. The length 
ofthe confidence intervalis 2E = 2za;2uf,.fii. 

So, for example, if the desired confidence level 1 - a = 0.95, then the corre­
sponding a = 1.96 in (12), and the random interval 

[ x -1.96 :n· x + 1.96 :nJ (14) 

is the 95% confidence interval for J.L. In particular, if the known variance u = 2 
and the sample size n = 10, 000, then, with probability 0.95, the true mean 1-L will 
be inside the interval [X - 0.0392, X + 0.0392]. 

On the other hand, assuming the same known variance u = 2, if we demand 
that the size of the confidence interval be 2E = 0.1, and the confidence level be 
1 -a = .95, then the sample size n has to be at least such that 

2 
2 X 1.96 ,.jii = 0.1 

so that the sufficient condition for the sample size n is that n ~ (78.4)2 ~ 6147. 
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Mathematica Experiment 1. Cotton Threads. The Statistics 'Confiden­

ce!ntervals' package implements the above algorithm. The commands are self­
explanatory. We will apply it, at different confidence levels, to find the confidence 
intervals for the mean of data Cotton from Section 8.1, assuming that the true 
variance a 2 is known and equal to 0.18. 

In[1] := <<Statistics'Confidence!ntervals' 

In[2] := <<Statistics'ContinuousDistributions' 

In[3]:= cotton={ 1.10, 2.32,1.52,2.35, ... , 3.02, 2.31,3.30} 

In[4]:= MeanCI[cotton, KnownVariance->0.18, 
ConfidenceLevel->0.9] 

Out[4]= {2.19251, 2.38989} 
In[5] := MeanCI[cotton, KnownVariance->0.18, 

ConfidenceLevel->0.95] 
Out[5]= {2.1736, 2.4088} 
In[6]:= MeanCI[cotton, KnownVariance->0.18, 

ConfidenceLevel->0.99] 
Out[6]= {2.13665, 2.44575} 

Of course, the length of the confidence interval increases as we increase the de­
sired confidence level. Next, we calculate the sample size n sufficient to guarantee 
the confidence levels 1 - a with a prescribed confidence interval size 2E. The 
command Ceiling [x] calculates the smallest integer greater than or equal to x. 

In[7]:= Q[clevel_] := Quantile[Norma1Distribution[0,1], clevel] 

In[8] := samplesize[ clevel_, sigma_, epsilon_]:= 

Ceiling[(sigma*Q[(1+clevel)/2]/epsilon)~2] 

In[9] := {samplesize[ 0.95, 0.4, 0.2] ,samplesize[ 0.95, 0.4, 0.1], 

samplesize[ 0.95, 0.4, 0.05]} 

Out[9]= {16, 62, 246} 
In[10]:= {samplesize[ 0.90, 0.4, 0.1],samplesize[ 0.95, 0.4, 0.1], 

samplesize[ 0.99, 0.4, 0.1]} 

Out[10]= {44, 62, 107} 

Obviously, given the confidence level, the necessary sample size grows as the de­
sired confidence interval's size decreases. On the other hand, for a fixed size of the 
confidence interval, the necessary sample size increases as the desired confidence 
level increases. 

Construction of confidence intervals for the mean J.L with known variance a 2 

is relatively easy because the probability distribution of the standardized sample 
mean X remains normal. Other cases are not so simple and more complicated 
statistics L and U have to be considered. If the variance is unknown, it has to be 
replaced by the sample variance which is a random quantity. Hence, the size of 
the confidence interval becomes random as well. 
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Example 8.2.2 Confidence Intervals for J-t with Unknown a 2• 

In the case of unknown 1-t and a 2, simultaneously estimated by the unbiased esti­
mators 

- 2 - 2 X=Xt+ ... +Xn, 
n 

and 
2 (X t - X) + ... + (Xn - X) 

S (X)= 1 , 
n-

(15) 
the critical observation is that the condition 

(16) 

can be rewritten as an equivalent condition 

-..jnE X - 1-t ..jnE 
--<--<--s - Sj..jn - S ' 

(17) 

and that the random variable 
X-~-t 

T=--
Sj..jn 

(18) 

has the standard Student t-distribution with n - 1 degrees of freedom, which 
is independent of 1-t and a 2 ! The values of its upper tail quantile function 
t,x(n - 1) = Q(l - a; n - 1), where Q(fJ; n - 1) is the quantile function 
of the Student t-distribution with n - 1 degrees of freedom, are provided in 
the table in Appendix F. They are also available in Mathematica Statistics 
'ContinuousDistributions' package. Hence, if X and S2 = S2(X) are the 
sample mean and unbiased sample variance, respectively, used as the estimators 
for 1-t and a 2 , then the (1- a) x 100% confidence interval for J-t is 

[ - S - SJ X- ta;2(n- 1) ..jn' X+ ta;2(n- 1) ..jn . (19) 

Notice that in this case, finding the sample size n sufficient to guarantee the desired 
confidence level a and the desired confidence interval size 2E is not that simple as 
n enters in the interval construction (19) not only through ..jn but also through the 
tail quantile ta;2(n- 1); explicit analytic solution is not feasible here. 

In general, the Student t-distributions are flatter, with broader flanks and lower 
peaks than the N(O,l) distribution, see Example 3.8.8. This bigger dispersion is 
easy to explain: the lack of information about the variance causes more variability. 
In the Mathematica Experiment 3.8.7, the Student t-density with 2 degrees of 
freedom has the lowest peak and the one with 35 degrees offreedom, has the highest. 
But as the number of degrees of freedom increases, the Student t-distribution 
converges to the N(O,l) distribution; for n = 25 the difference is already very 
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small. Again, it is easy to understand. For large n, the sample variance S2(X) 
well approximates the true variance u 2; it is a consistent estimator. 

Mathematica Experiment 2. Cotton Threads. The command MeanCI [data, 
ConfidenceLevel->clevel] automatically calculates the confidence intervals for 
the parameter JL with unknown variance, using the Student t -distribution, at a 
given confidence level clevel. We will apply it to the cotton data used above. 
Not surprisingly, the confidence intervals are a little wider than in the Mathematica 
Experiment 1. 

In[1]:= <<Statistics'Confidenceintervals' 
In[2] :=cotton={ 1.10, 2.32,1.52, ... ,3.02, 2.31,3.30} 
In[3]:= MeanCI[cotton, ConfidenceLevel->0.9] 
Out[3]= {2.19055, 2.39185} 
In[4):= MeanCI[cotton, ConfidenceLevel->0.95] 
Out[4)= {2.17056, 2.41184} 
In[5):= MeanCI[cotton, ConfidenceLevel->0.99] 
Out[5]= {2.13031, 2.45209} 

Example 8.2.3 Confidence Intervals for u 2• 

In this estimation problem we will utilize the fact that if X 1 , ••• , X n, are inde­
pendent normal random quantities with identical densities f(x; f.L, u 2), then the 
random quantity 

(20) 

has the chi-square (x 2 (n)) distribution with n degrees of freedom and the random 
quantity 

1 ~ - 2 
2L.)Xi-X) 
CT i=l 

(21) 

has the x2 (n - 1) distribution with n- 1 degrees offreedom, see Examples 3.8.7 
and 5.5.4, where you can also find the plots of selected chi-square densities. Con­
sequently, if f.L is known, and xJ(n) = Q(l -a; n) denotes the chi-square tail 
quantile function (which can be calculated via Mathematica; selected values of the 
chi-square quantile function Q(a; n) are given in Appendix F), then we have that 
the probabilities 

(22) 

and 

(23) 
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FIGURE 8.2.2 
Selection of the confidence interval for u 2 using symmetric tail quantiZes x;(n) of 
the chi-square distribution. 

are both equal to a./2 (see Fig. 8.2.2), so that 

In other words, 

[
(n; l)S2 , (n- l)S2 ] 

Xa;2(n) xLa;2(n) 
(25) 

is a (1 -a.) x 100% confidence interval for u 2 • 

If IL is not known, replacing IL by X, and the tail quantiles of the x2 (n) distri­
bution by those of the x2 (n - 1) distribution gives the (1 -a.) 100% confidence 
interval of the form 

[ 
(n - l)S2 (n - l)S2 ] 

2 ' 2 Xa;2(n- 1) XI-a;2(n- 1) 
(26) 

The package Statistics' Confidencelntervals' automatically constructs the 
confidence intervals for u 2 with IL unknown, via the command VarianceCI [data, 
ConfidenceLevel-> clevel]. 

The above formulas for confidence intervals are summarized in Table 8.2.1. 
Recall that 

X =Xt + ... +Xn 
(27) 

n 
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denotes the sample mean, and that 

- 2 - 2 
s2 = _(X_t_-_X_)_+_._· _· +_(X_n_-_X_)_ 

n-1 
(28) 

is the unbiased sample variance. 

Table 8.2.1 Confidence intervals for IL and a 2 

Parameter Other (1 -a)-confidence 

estimated parameter interval 

IL a 2 known X _ aza;2 < IL < X + aza;2 ..;n - - ..;n 

a 2 unknown X_ Sta;2(n-1) < < X+ Sta;z(n-1) 
..;n - IL- ..;n 

a2 
Ln (X·- )2 Ln (X- )2 

IL known i-1 1 /1- < a2 < i-1 1 /1-

x;/2(n) - - x~-a/2(n) 

IL unknown (n-I)S2 < a2 < (n-I)S2 

X~;2 (n-1) - - X~-a/2 (n-1) 

8.3 From confidence intervals to hypothesis testing 

Let X t, ... , Xn be a random sample from a distribution with an unknown pa­
rameter e. Suppose that we have found an (1 -a)-confidence interval/ for the 
parameter(). In other words, with probability 1 -a, the true value of the parameter 
is contained in the random region I which depends on the particular sample. Sta­
tistical hypothesis testing is the process that leads to a decision on the truth/falsity 
of the hypothesis that the parameter () is located in a given, fixed, and nonrandom 
(i.e., independent of the sample) region H. Armed with information about the 
confidence intervals we can now follow one of the several alternatives: 
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1. If I n H = 0, i.e., H has an empty intersection with I, then it is unlikely 
that the true value of parameter () lies in H since it is likely that () is in I. 
In this case, the decision should reject the hypothesis H, that is proclaim 
that the true value of() is not in H but in its complement. 

2. If I c H, i.e., I is contained in H, then it is likely that the true value 
of parameter () lies in H since it is likely that () is in I. In this case, the 
decision should be not to reject the hypothesis H. 

3. If both I n H =1= 0 and Ic n H =1= 0, i.e., H has a nonempty intersection 
with I and with its complement Ic, the situation is obviously ambiguous. 
The accepted scientific method calls for keeping a hypothesis as a working 
hypothesis, i.e., not rejecting it as long as it is not disproved. 

The two possible decisions are thus: 

I. Reject the hypothesis H if In H = 0. 

II. Do not reject the hypothesis H if I n H =!= 0. 

Obviously, either of decisions I and II can be erroneous in view of randomness 
of the confidence interval I, but the error probabilities can be estimated. 

Type I Error: It occurs when the true hypothesis H is rejected. The upper bound 
for the probability of this error is 

Pr{() E H} :S Pr{() E Ic} = a. (1) 

Type II error: It occurs when the false hypothesis His not rejected. However, if 
the confidence level 1 -a is high, that is, a is small, the probability of type II error 
cannot be made small since 

Pr {H not rejected}= Pr {In H =!= 0} 

can be as large as 1 - a if the true value of parameter () is in I n He. 

The above discussion exemplifies the general hypothesis testing problem where, 
on the basis of a finite sample Xt, ... , Xn, from an unknown distribution F, the 
decision has to be made on whether or not F belongs to a specified family H 
of distributions. In parametric problems such a family is described by certain 
parameters belonging to a preselected range. For example, the normal family is 
parametrized by two parameters, the mean -oo < JL < oo, and the variance 
u 2 > 0, and we may want, for a given JLo, to test the hypothesis H : JL ::: JLo vs. 
the alternative Ht : JL < JLO· The Bernoulli distributions are parametrized by the 
single parameter 0 < p < 1, and we may want to test the hypothesis Ho : p ::: 1/2 
vs. its alternative Ht : p < 1/2. 
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Let us denote by C thesetofallpoints (xt, ... , Xn) inRn for which the associated 
confidence interval I based on Xt, ... , Xn, has an empty intersection with H (In 
H = 0), i.e., given random sample Xt, ... , Xn, the hypothesis H is rejected. The 
set C is called the critical region of the test based on the confidence interval I. In 
general, we shall introduce the following definition: 

Definition 8.3.1 Critical Region. 
A test procedure for hypothesis H specifies a region C in then-dimensional space 
an, called the critical or rejection region. If the sample vector (Xt, ... , Xn) is 
located in the critical region C, then the hypothesis His rejected. 

Of course, as the above discussion indicates, decisions based on the critical 
region C may be wrong for one of two reasons: 

Type I Error. The hypothesis His true but (Xt, ... , Xn) E C and His rejected; 

Type II Error. The hypothesis H is false but (xt, ... , Xn) ¢ C and H is not 
rejected. 

The probability of the type I error is bounded from above~'y the number a which 
is the maximum, taken over all F from the family H, of the probabilities that 
the random vector (X 1, ... , Xn). with independent components Xi with identical 
cumulative d.f. F(x), has values in the critical region C: 

a= max Pr {<Xt, ... , X11 ) E c} =max/·._{ dF(xt) ... dF(xn) (2) 
FeH FeH Jc 

=max/·. J f(xt; 8) · ... · f(xn; 8)dxt ... dxn. 
8eH Jc 

in case the density exis.ts. The number a is called the significance level of the test 
based on the critical region C. Clearly, it is desirable that the critical region C be 
selected so that the significance level a is as small as possible. 

Calculation of the probability of the type II error, that is the probability that we 
do not reject the false hypothesis H, is usually very difficult, although a bound can 
be found by minimizing the type II error of the test 

fJ(F) = Pr{(Xt, ... ,Xn) ¢ C} (3) 

over F outside H. 
It is also quite clear that if the critical region C is shrunk, then the corresponding 

significance level a decreases. However, this decrease of the probability of the 
type I error also leads to the increase of the probability f3 of the type II error. 
Thus, optimization of the hypothesis testing procedure by selection of the critical 
region C so that the probabilities of the type I and type II errors are minimized 



8.3. From Confidence Intervals to Hypothesis Testing 417 

simultaneously is impossible. The significance level a of the smallest (in a certain 
class) critical region C which causes rejection of a given random sample XI, ••• , Xn, 

is called the P-value of the random sample (for this class). Its precise meaning 
will be explained below. 

In the parametric case, the common approach, which combines the study of 
probabilities of type I and type II errors, is to consider the power function of the 
test 

rr(O, C)= Pr {His rejected while the true value is 0}. (4) 

Thus rr((J, C) is the probability of type I error for() E H, and p(()) = I- rr(O, C) 
is the probability of type II error for () ¢. H. 

The a-significance level test procedure based on the critical region C is said 
to be optimal at a given significance level a if, for any other a-significance level 
critical region C1, and any() ¢ H, 

rr((J, C1):::; rr((J, C). (5) 

In other words, for the optimal critical region at a given significance level a, the 
probability of the type II error is the smallest possible. 

Example 8.3.1 Hypothesis Testing for the Mean of the Normal Distribution. 

We shall consider the simple hypothesis Ho that says that the sample XI, ••. , Xn 

is a random sample from the N (f.Lo, u 2) distribution with known u 2, and test it 
against the simple alternative hypothesis H1 that says that the sample comes from 
the N(f.LJ, u 2) distribution with, say, f..LI > f.LO· Assuming tacitly the normality of 
the population, this is often written as the testing problem for the null hypothesis 
Ho : f.L = f.Lo vs. the alternative hypothesis H 1 : f.L = f.L 1 . In this case, the whole 
parameter space under consideration consists of just two points, f..Lo and f.L I· 

We will base our test on the sample mean statistics x. Note that under Ho the 
distribution of the random quantity X is N(f..Lo, ufvfn), and that under H1 the 
distribution of X is N (f.L 1 , u I vfn), see Fig. 8.3 .1. 

We will consider the critical regions of the form 

{ 
_ XI + ... + Xn } n 

Cc = (XI, •.• , Xn) : X= n 2: C C R (6) 

In other words, we will reject Ho : f.L = f.LO if the sample mean x exceeds a certain 
threshold value c. Then, assuming that Ho: f.L = f.Lo is true, the probability of the 
type I error is 
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FIGURE 8.3.1 

Probability df.s of X under Ho : JL = JLo (left curve), and under Ht : JL = JLI 

(right curve). At the significance level a, the rejection region, expressed in terms 

of the statistic i, is to the right of the point JLo + ZaU I ,fii. The shaded region on 

the right has the area = a, probability of type I error, and the shaded region on 

the left has the area = {3, probability of type II error. 

a= rr(JLo, C)= Pr {x::: c} 

=Pr > --{ X-JLo c-JLo} 
(1 I ,fii - a I ,fii 

= Pr {z > c- JLo} 
- al,fii 

(7) 

where Z is the N(0,1) random variable and <l>(z) is its cumulative d.f. So, given 

the significance level a, it follows immediately from (7) that the corresponding 

rejection region is Cc(a)• see (6), with 

(I 

c(a) = JLO + Za ,jii' 

where Za is the upper tail a-quantile of N(O, 1), i.e., 1- <l>(za) =a. 

(8) 



8.3. From Confidence Intervals to Hypothesis Testing 419 

Similarly, the probability of type II error 

{ c - ILl } (c- ILl) {J = 1- rr(ILJ, C)= Pr Z < ajJn =<I> ajJn . (9) 

So, for a given significance level a, taking into account (8), 

( ILO -ILl ) 
{J = {J(a) =<I> ajJn + Za . (10) 

The error probabilities a and {J, and the relationship between them, depends of 
course on the sample size n, the location of the threshold point c, and a. For a 
given sample i = (X!, ... , Xn). the corresponding P-value is 

{ 1 - <l>((:l:- ILo)Jnja) if :l: > ILO 
p = p(xJ, ... , xn) = "'((- ) '-! ) .f _ ..... x -ILo vn a 1 x < ILo 

(11) 

If, say, ILo = 0, ILl = 1, a = 1, n = 16, then for c = 1/2, that is for the 
critical region C1;2 = {i ::=: 1/2} 

a = 1 - <I> (0.5 · 4) = 0.0227, {J = <I> ( -0.5 · 4) = 0.0227. 

However, if c = 1/10, that is, the critical region C = {i ::=: 1/10}, 

a= 1- <1>(0.1 · 4) = 0.3446, {J = <1>(-0.9 · 4) = 0.0002. 

The power of the test is defined by the type-two error via 

7r(ILJ) = 1 - <l>((c- IL!),fiija). (12) 

If the alternative H1 is no longer simple, then the power function is defined by the 
formula 

rr (IL) = Pr { Ho is rejected while the true value is IL} = 1 - <I> (:;;) . 

This formula implies that the power tends to zero (resp., one) if IL tends to -oo 
(resp., +oo), and approaches a as IL approaches ILO· 

On the other hand, for a given significance level a, the rejection region is 

Cc = {:l: 2: c}, with c = ILO + zaa / ,Jii. (13) 
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The rejection regions for other hypotheses about the mean with the variance u 2 

unknown, and various hypotheses about the variance, are constructed using the 
Student t -distribution and the chi-square distribution, respectively, just the way we 
did it for confidence intervals in Section 8.2. All of these rejection regions are 
summarized in Table 8.3.1. 

Mathematica Experiment 1. Testing Hypotheses About the Strength of Cotton 

Yarn. Hypothesis testing is implemented in the Mathematica package Statis­

tics' HypothesisTests'. Recall that in the Mathematica Experiment 8.1.1 we 
obtained the sample mean for cotton data :l: = 2.2912 kg, and the sample vari­
ance as s2 = 0.1802. We will test the one-sided hypothesis Ho : f.Lo = 2.4 vs. 
the alternative H1 : f.L < 2.4, as well as the two-sided hypothesis Ho : f.Lo = 2.4 
vs. the alternative H1 : f.L # 2.4. Both the case of known variance (we take 
then u 2· = 0.15) and the unknown variance are considered. Then we will also 
experiment with testing the hypothesis about the variance, Ho : u 2 = 0.15 vs. 
H1 : u 2 > 0.15 The role ofP-values, which is the probability of the sample esti­
mate being as extreme as it is, given that the hypothesized population parameter is 
true, is clearly indicated throughout this experiment. 

In[1] := <<Statistics'HypothesisTests' 
In[2] := cotton={ 1.10, ... ,3.30} 
Out(2]= {1.10, ... ,3.30} 
In[3]:= MeanTest[cotton, 2.4] 
Out[3]= OneSidedPValue -> 0.0380336 
In[4] := MeanTest[cotton, 2.4, SignificanceLevel -> 0.05] 

Out[4]= {OneSidedPValue -> 0.0380336, 
Reject null hypothesis at significance level -> 0.05} 

In[5] := MeanTest[cotton, 2.2, SignificanceLevel -> 0.01] 

Out[5]= {OneSidedPValue -> 0.0675763, 
Accept null hypothesis at significance level -> 0.01} 

In[6]:= MeanTest[cotton, 2.4, SignificanceLevel -> 0.05, 
TwoSided->True] 

Out[6]= {TwoSidedPValue -> 0.0760672, 
Accept null hypothesis at significance level -> 0.05} 

In[7]:= MeanTest[cotton, 2.4, SignificanceLevel -> 0.01, 
TwoSided->True] 

Out[7]= {TwoSidedPValue -> 0.0760672, 
Accept null hypothesis at significance level -> 0.01} 

In[8] := MeanTest[cotton, 2.4, SignificanceLevel -> 0.01, 
TwoSided->True, FullReport->True, KnownVariance -> 0.15] 

Out[8]= {FullReport ->Mean TestStat, NormalDistribution, 
2.2912 -1.98641 

TwoSidedPValue -> 0.0469881, 
Accept null hypothesis at significance level -> 0.01} 
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Table 8.3.1 Rejection regions at significance level a for hypotheses 
about normal samples of size n 

Hypothesis Other parameter Rejection region 

Ho : JL ::: JLO u 2 known ii; ::=: /LO - ZaCT I ,Jii 

u 2 unknown :i: ::=: JLO- ta(n- 1)si-Jii 

Ho: JL:::: JLO u 2 known :i: ::: JLO + Za CT I ,Jii 

u 2 unknown :i:::: JLo+ta(n -1)si-Jii 

Ho: JL = JLo u 2 known l:i:- JLol ::: Zaf2CT I v'n 

u 2 unknown l:i: - JLO I ::: ta/2 (n - 1 )s I ,Jii 

Ho : u 2 ::: uJ JL known E<x; - JL>2 :::: xLa<n>uJ 

JL unknown <n- 1)s2 ~ xLa<n- 1>uJ 

Ho: u 2 ~ uJ JL known E<x; - JL>2 ::: x;<n>uJ 

JL unknown (n - 1)s2 ::: x;(n - 1)uJ 

Ho: u 2 = uJ JL known 
L(x;-1£)2 2 2 

u2 ¢ [Xt-a/2(n), Xa;2(n)] 
0 

421 

JL unknown <n:ys2 ¢ [xLat2<n- 1), x;;2<n- 1>1 
0 

In Table 8.3.1, Za is the upper a-tail quantile of the standard normal distribution, 
ta(n)-upper a-tail quantile of the Student t-distribution with n degrees of free­
dom, and Xa(n)-upper a-tail quantile of the x2-distribution with n degrees of 
freedom. 
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In[9] := VarianceTest[cotton, 0.15, SignificanceLevel->0.05, 

Out[9]= {FullReport -> 
TwoSided->True, FullReport->True] 
Variance TestStat DF, 
0.180203 60.0675 49 

ChiSquare Distribution, OneSidedPValue -> 0.133576, 
Accept null hypothesis at significance level -> 0.05} 

8.4 Statistical inference for two-sample normal models 

In this section we consider the issues related to parameter estimation and hy­
pothesis testing for the two-sample normal model, where X = (X 1, ... , Xn) and 
Y = (Y1, ... , Y m) are two, independent of each other, random vectors, each with 
independent, identically distributed components with distributions N (JL1, ar) and 

N(JL2, a?), respectively. As in Section 8.2, for J.L1 and J.L2, respectively, we obtain 
unbiased estimators 

X=X1+ .. +Xn, 
n 

Note that X~ N(JLt, ar fn), andY~ N(JL2, a? fm). 

The estimators for variances ar and a?, are, respectively, 

n 

•2 1 "" 2 S1 = --1 ~(X; - J.L1) , 
n-

i=1 

when JL 1 and J.L2 are known, and 

2 1 Ln -2 
S1 = -- (X; -X) , 

n-1 
i=1 

2 1 ~ - 2 
S2 = -- ~(Y; - Y) , 

m-1 
i=1 

when J.L1 and J.L2 are unknown. Finally, if ar =a?, 

is the total variance estimator for this two-sample model. 

(1) 

(2) 

(3) 

(4) 
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One can prove that 

nSf2 fat has the x2 distribution with n degrees of freedom; 

(n- 1)SUat has the x2 distribution with n- 1 degrees of freedom; 

mst fai. has the x2 distribution with m degrees of freedom; 

(m - 1)Si/a'.f. has the x2 distribution with m - 1 degrees of freedom; 

(m + n - 2)S2 ja2 has the x2 distribution with n + m - 2 degrees of 
freedom, if at = a'.f.. 

Now, as for the one-sample model discussed in Section 8.2, we can construct 
confidence intervals for the difference of two means 1-L 1 - /.L2 and for the ratio of 
two variances a '.f. I at, and the corresponding rejection regions for tests of equality 
of two population means and variances, and other hypotheses. 

In the case of known variances at and a'.f., the (1 -a)- confidence interval for 
the difference 1-L 1 - I-L2 is 

at a'.f. _ _ a2 a.2 
(X- Y)- Zaj2 - + - :S /.LI - /.L2 :S (X- Y) + Zaj2 _!_ + _1_. (5) 

n m n m 

In the case of unknown variances at and a '.f., satisfying condition at =a '.f., the 
(1 -a)-confidence interval for /.Lt - /.L2 has the endpoints 

- - t;;f1 (X- Y) ± taj2(n + m- 2)S - + -. 
n m 

(6) 

In the case of unknown 1-Lt and /.L2. the (1 -a)-confidence interval for the ratio 
a 2 ja2 is 2 I 

where fa(n, m) istheuppertaila-quantileofthe F -distribution with (n, m) degrees 
of freedom. Recall that the F -distribution with (n, m) degrees of freedom is defined 
as the distribution of the ratio 

X/n 
F=­

Yjm 
(8) 

of independent random variables X and Y with x 2 distributions with, respectively, 
n and m degrees of freedom. 
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The related rejection regions for most common hypotheses about the two-sample 

normal model are summarized in Table 8.4.1. 

In order to apply these procedures, use the following checklist: 

1. Is the problem a true two-sample problem, that is, are the two samples 

independent? If not, take the differences of the paired observation d; = 

x; - y; and proceed for the d; as in the one-sample model. If the answer 

is 'yes', move on to the next step. 

2. Determine whether the problem is about confidence intervals or hypothesis 
testing (two- or one-sided tests?). Determine for which parameter is the 

statistical inference to be done. 

3. Determine whether the other parameter is known or not. If a1, a2 are 
unknown, is thete-evidence to support that af = a{ ? 

4. Apply the appropriate Mathematica package. 

Mathematica Experiment 1. Testing Pesticide Effectiveness. Armed with more 

sophisticated estimation and hypothesis tools, we now return (see Mathematica 

Experiment 8.1.3) to the analysis of effectiveness of pesticide applied to two fly 

populations for t = 30 and t = 60 seconds, respectively. The original data t30 

(n = 16) and t60 (m = 15) turned out to be not normal, but their logarithms logt30 

and logt60 were approximately normal, with sample means x = 1.21919 and 

f1 = 1.17927, and sample standard deviations SJ = 0.456112 and s2 = 0.439349. 

We shall start with finding confidence intervals. 
The command MeanDiff erenceCI [datal, data2, Conf idenceLevel->c] of the 

Statistics' Confidenceintervals' package gives the c confidence interval 

for the difference between the population mean of datal and data2 based 

on the Student t-distribution. The additional options are KnownVariance-> 

{varl, var2} which returns confidence interval based on the normal distribution, 

and EqualVariances->True; note that if equal variances cannot be assumed, and 

n = m, the computed interval is larger, or more conservative, and is based on differ­

ent statistics. The command VarianceRatioCI [datal, data2, ConfidenceLevel­

>c] gives the c confidence interval for the ratio of the population variance of datal 

to population variance of data2 base on the F-ratio distribution. 

In[l] := <<Statistics'Confidenceintervals' 

In[2]:= <<Statistics'HypothesisTests' 

In[3] := logt30={0.477,0.699,0.699 ,0.845,0.954 ,0.954 , 

1.000 ,1.079 ,1.302 ,1.380,1.380 ,1.532 ,1.634 ,1.663 • 

1. 763, 2.146} ; 
In[4]:= logt60={0.301,0.699, 0.699, 0.845, 0.903, 0.954, 1.146, 

1.255,1.380,1.415, 1.415, 1.532, 1.568, 1.623, 1.954}; 

In[5] := logt301={0.477,0.699,0.699 ,0.845,0.954 ,0.954 , 
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Thble 8.4.1 Rejection regions at significance level a for the 
two-sample normal model 

Hypothesis Other parameter Rejection region 

2 2 kn :l:-fl. 
~ Za u1 ,u2 own 

Ju~fn+cr'ffm 
Ho: IL2 ~ILl 

2 2nkn 2_ 2 ~ ~ ta(m + n - 2) u 1 , u2 u own, u1 - u2 
s ;;+;;; 

2 2kn :l:-fl. ::5 -za u 1 , u2 own 
Ju~fn+cr'ffm 

Ho: IL2 ::5 ILl 

425 

__!::1L 2 2nkn 2_ 2 < -ta(n +m- 2) u 1, u2 u own, u1 - u2 
sy'N-

n m 

2 2kn u 1, u2 own i:l:-fl.i > z /2 
Ju~fn+cr'ffm - a 

Ho: ILl= IL2 
2 2nkn 2_ 2 ~ ~ taf2(n + m - 2) u 1 , u2 u own, u1 - u2 

s ;;+;;; 

Ho: uf:::: u£ s2 
IL 1 , IL2 unknown ) ~ fa(n- 1, m- 1) 

2 

Ho: uf ~ u£ s2 
IL 1 , IL2 unknown :! ::5 fl-a(n- 1, m- 1) 

s2 

R . u2- u2 
s2 

0' I- 2 ILl, IL2 unknown :! ¢ [fl-af2(n- 1, m- 1), 
s2 

faf2(n- 1, m- 1)] 

1.000 ,1.079 ,1.302 ,1.380,1.380 ,1.532 ,1.634 ,1.663, 
1. 763 } 

In[6]:= MeanDifferenceCI[logt30 ,logt60, ConfidenceLevel->0.95] 
Out[6]= {-0.289055, 0.368897} 
ln[7]:= MeanDifferenceCI[logt30, logt60, ConfidenceLevel->0.95, 

EqualVariances->True] 
Out[7]= {-0.289454, 0.369296} 
ln[B] := MeanDifferenceCI[logt301, logt60, ConfidenceLevel->0.95] 
Out[8]= {-0.335126, 0.291393} 
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In[9]:= MeanDifferenceCI[logt301, logt60, ConfidenceLevel->0.95, 
EqualVariances->True] 

Out[10]= {-0.33498, 0.291247} 
In[11] := VarianceRatioCI[logt30, logt60, ConfidenceLevel->0.95] 

Out[ll]= {0.365428, 3.11633} 

In[12] := VarianceRatioCI[logt30, logt60, ConfidenceLevel->0.80] 

Out[12]= {0.536325, 2.13971} 

The command MeanDifferenceTest [datal, data2, diff, 

Equal Variances->True] of the Statistics' HypothesisTests' package gives the 

P-value for the test that the difference in population means is diff based on the 

Student t-distribution. The same command, but without the EqualVariances-> 

True option, returns the P-value for the so-called Welch's approximate t-test (with 

a special formula to calculate the number of degrees of freedom) that the difference 

in population means if diff. This case was not discussed in this section. Other 
options are as in the previously discussed commands. The null hypotheses tested 

are Ho : f.LO - f.L 1 = 0, concerning the means and, then, Ho : u'f I u? = 1, concern­
ing the variances. In the VarianceRatioTest command, the FullReport->True 

option also lists explicitly the numerator's and denominator's numbers of degrees 

of freedom. 

In[13] := MeanDifferenceTest[logt30, logt60, 0, 
SignificanceLevel-> 0.05, TwoSided-> True, FullReport-> True] 

Out[13]= {FullReport -> MeanDiff TestStat DF, 
0.0399208 0.248195 28.9751 

StudentTDistribution, TwoSidedPValue -> 0.805734, 
Accept null hypothesis at significance level -> 0.05} 

In[14]:= MeanDifferenceTest[logt30, logt60, 0, 
SignificanceLevel -> 0.05, TwoSided -> True, 

EqualVariances -> True, FullReport -> True] 

Out[14]= {FullReport -> MeanDiff TestStat DF, 
0.0399208 0.247886 29 

StudentTDistribution, TwoSidedPValue -> 0.80597, 

Accept null hypothesis at significance level -> 0.05} 

In[15] := VarianceRatioTest[logt30, logt60, 1, 
SignificanceLevel-> 0.05, TwoSided-> True, FullReport-> True] 

Out[15]= {FullReport -> Ratio TestStat NumDF DenDF, 
1.07776 1.07776 15 14 

FRatio Distribution, TwoSidedPValue -> 0.893489, 
Accept null hypothesis at significance level -> 0.05} 
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8.5 Regression analysis for the normal model 

The linear least-squares fit of paired data 

(x, y)T = ((xt, yt), ... , (Xn, Yn)) (1) 

was discussed in a preliminary way in Section 2.7, where we found the following 
nondimensionalized form of the regression line 

y-fJ x-x 
-- = corr (x, y) -­
stdy stdy 

where 

and 

stdy = 
1 n 
- L(Yi- fJ)2 , 
n 

stdx = 
i=l 

cov (x, y) 
corr (x, y) = std (x)std (y)' 

1 n 
cov (x, y) = - L:<xi - x)(yi - fJ). 

n 
i=l 

(2) 

(3) 

(4) 

We returned to these issues in Section 7.3.2 while discussing the Least Squares 
Estimators. 

In this section we undertake a more sophisticated statistical analysis of this 
model. More precisely, the basic assumption here is that the response random 
variables Yt, ... , Yn. have the representation 

Yi =a +bxi +Ei, i = 1, ... , n, (5) 

where Et, ..• , En are normal, independent, zero-mean random variables with com­
mon variance a 2 > 0. The quantities a, b are real numbers and Xt, ... , Xn, are 
'manipulated' variables, chosen by the experimenter. 

More generally, to permit several measurements of the response variable y for 
the same value of the manipulated variable x, we will consider the model 

j=l, ... ,n, i=l, ... ,nj. (6) 
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where EJi are normal, independent, zero-mean random variables with common 
variance a 2 > 0. Thus, for each value XJ of the manipulated variable, we have n 1 

values of the response variable Y. 

Example 8.5.1 Starch Content of Potatoes. 
The starch content y (measured as percent of total weight) in potatoes is not easy 
to measure directly as it requires a costly chemical analysis; the specific gravity x 
is a parameter that is much easier to measure. Is there a linear relationship between 
the two parameters? 

A sample of 409 potatoes was taken and Table 8.5.1 shows the number n;,J 
of times when a specific pair (x;, YJ) was observed. The raw paired data 
(XJ, YJ;), j = 1, ... , 20, i = 1, ... , n1, is contained in the file POTATOES on the UVW 

Web Site. The scatter plot of these data, produced below, is obviously inadequate: 
the information about frequencies of paired data is lost there. 

25 • 
• 

22.5 • • • • • • 
20 • • • • • 

• • • • • 17.5 

• • • • • • •1s 
• • • • • • • • • • • • 12.5 

• • • • 
• 1.07 1.08 1.09 1.11 1.12 1.13 1.14 

Let us return to the general statistical analysis for the linear regression model 
(6). As before, the Least Squares Estimators a, b for the coefficients a and b, are 

(7) 

(8) 

where 

(9) 
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Table 8.5.1 Starch content and specific gravity of 409 potatoes 

Starch Specific gravity x 

content (in glcm3) 

y (in%) 1.064 1.068 1.072 1.076 1.080 1.084 

9.5 1 

10.5 1 1 

11.5 5 1 

12.5 1 5 2 3 1 

13.5 1 2 1 9 

14.5 6 9 

15.5 3 

1.088 1.092 1.096 1.100 1.104 1.108 1.112 

14.5 11 

15.5 19 18 6 
16.5 11 30 43 10 

17.5 2 11 33 54 

18.5 2 4 39 

19.5 2 

20.5 1 6 22 

1.116 1.120 1.124 1.128 1.132 1.136 1.140 

21.5 11 3 
22.5 1 1 4 1 

23.5 1 

24.5 

25.5 1 

and 

(10) 

is the total number of measurements of the response variable. Denoting 

n 

Sxx = :L>j(Xj- z)2 , 

j=l 
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n nj 

Syy = LL(Yji- Y)2 , 

j=l i=l 

n nj 

Sxr = L L(Yji - Y)(Xj - :l:), 
j=l i=l 

the formula (7) for the Least Squares Estimator b can be rewritten in the form 

A Sxr 
b=-. 

Sxx 
(11) 

Given paired data (Xj, Yj; ), the quantity Sxx is called the corrected sum of squares 

for x, Syy is called the corrected sum of squares for y, and Sxy is called the corrected 

sum of cross-products for x and y. An alternative formula for Sxy is 

with 

n 

Sxy = L nj (Yj- - fl)(xj - :l:), 
j=l 

1 nj 

Yj. =- "'Yji· n·~ 
J i=l 

(12) 

Note that in this notation a dot replaces the index over which the averaging has 
been done. 

Under the normality assumptions on Ej;S in model (6), for each given x, the 

Sxr. and thus band a, are random quantities with normal distributions, and Syy, 

properly normalized, has a chi-square distribution. Using calculations similar to 
those employed in Sections 8.2-4, one can construct confidence intervals for, and 
test hypotheses about, parameters a = E(b), b = E(a), the response variable 
y = a + bx = E(a + bx) (they are all unbiased estimators), and on future 
observations Y* = a+ bx +E. The results are summarized in Table 8.5.2 (see also 
Bibliographical Notes), which is followed by explanations of the notation used and 
commentaries. 

As before, t01 (N - 2) denotes the upper tail a-quantile of the Student t­
distribution with N-2 degrees of freedom. The unbiased estimator for the variance 
a2, 

A2 SSE 
a=--

N-2 
(13) 



8.5. Regression Analysis For the Normal Model 431 

Table 8.5.2 Linear Regression Model Yj; = a + bxi + €ji 

LSE estimator of b b = Sxr/Sxx 

LSE estimator of a a= Y- bz 

LSE estimator y =li+bx 
ofy =a +bx 

a -confidence interval 
A A 1 
b- 1af2(N- 2)0' ../SP ::: b 

forb ::: b + taf2(N - 2)8- k 

a-confidence interval A (N 2)A J 1 (x-i)2 
Y - 1af2 - 0' N + Sxx ::: Y 

for y =a +bx ::: Y + 1af2(N - 2)8-J k + (xSx~)2 

a-prediction interval Y - 1af2(N - 2)8-J 1 + k + (xSx~)2 ::: y* 

for y* = a + bx + € ::: y + 1af2(N- 2)uJ1 + k + <x"ix~>2 

depends on the error sum of squares 

n ~ n ~ 

SSE= LL(Yji- (li +bxj))2 = LL(Yji- Yj)2 (14) 
j=1 i=1 j=1 i=1 

which measures the fluctuations (variability) of the observations Yii not attributable 
to the variability of the regression line itself. Indeed, by simple algebra, the total 
corrected sum of squares 

(15) 

where 
n ~ n ~ 

SSR = L L(Y- (ii + bxj))2 = L L(Y- Yj)2 , (16) 
j=1 i=1 j=1 i=1 
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is called the regression sum of squares and measures variability in y; s accounted 
for by the regression line. 

The decomposition ( 15) of the total variability in response variable Y leads to a 
simple version of the analysis of variance which can be used to test for significance 
of the regression model. Intuitively speaking, if the regression sum of squares S S R 

contributes the lion's share of the total variability Syy, as compared to the error sum 
of squares SSE, then we would be inclined to say that the linear regression model 
is valid. This line of thinking can be quantified if one recognizes that the random 
variables SSR/u2 and SSEfu 2 have chi-square distributions with, respectively, 1 
and (N - 2) degrees of freedom. Thus, the statistic 

SSR/1 MSR 
Fo= ---

SSEJ(N- 2) MSE 
(17) 

has the F(l, N - 2)-distribution. We will reject the hypothesis Ho : b = 0 
(that the linear regression model is inappropriate) at the significance level a, if 
Fo > fa(l. N- 2). The above procedure is usually summarized in the analysis 
of variance (ANOVA) table. Other information usually included in the regression 
analysis is the estimated standard errors for parameters a and b: 

If A 

se (b)= , 
X 

and se (a)= (18) 

which reflect the fact that the variances of the unbiased estimators band a, are 

A u 2 
Var(b) = -, 

Sxx 
and Var (a) = u 2 - + ~ . ( 1 -2) 

N Sxx 
(19) 

Another useful parameter is the coefficient of determination 

(20) 

which is the square of the sample correlation coefficient. Obviously, 0 ~ R2 ~ 1, 
and the closer R2 is to 1 the bigger percentage of the total variability in the data 
can be attributed to the regression model. 

Mathematica Experiment 1. Starch Content of Potatoes. In this experiment 
we will do regression analysis on the data from Table 8.5.1 (and file POTA­

TOES located on the uvw Web Site) using the Mathematica package Statis­

tics' LinearRegression'. Most of the commands are, by now, self-explanatory. 
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The command Chop replaces the P-values below 10-6 with 0. The confidence and 
prediction intervals are computed at the confidence level 0.999. 

In[1] := <<Statistics'ContinuousDistributions' 
In[2] := <<Statistics'LinearRegression' 
In[3] := potatoes={ 

{1.064,9.5},{1.064,10.5}, 
{1.068,10.5}, {1.068,12.5}, 
{1.072, 11.5},{1.072, 11.5},{1.072, 11.5},{1.072, 11.5}, 

{1.124, 22.5},{1.124, 22.5},{1.124, 22.5},{1.124, 22.5}, 
{1.124, 23.5}, 
{1.128, 22.5},{1.140, 25.5} 
}; 

In[4] := L=Length[potatoes] 
Out[4]= 409 
In[5] := PotatoPlot=ListPlot[potatoes, PlotStyle->PointSize[0.015], 

PlotR~ge->All]; 

In[6]:= reg= Regress[potatoes, {1,x},x]; Chop[reg, 10-(-6)] 
Out[6]= {ParameterTable -> Estimate SE TStat PValue, 

1 -208.146 3.67963 -56.5671 0 
X 205.466 3.35632 61.2177 0 

RSquared -> 0.902036, AdjustedRSquared -> 0.901796, 
EstimatedVariance -> 0.538207, 
ANOVATable -> 

DoF 
Model 1 

SoS 
2016.99 

MeanSS 
2016.99 

Error 407 219.05 0.538207 
Total 408 2236.04 

FRatio 
3747.61 

In[7]:= xList=Part[Transpose[potatoes],1]; 
In[8] := xMean=(1/409)Sum[xlist[[i]],{i,1,409}] 
Out [8] = 1 . 09627 
In[9] := Sxx=Sum[(xList[[i]]-xMean)-2, {i,1,L}] 
Out[9]= 0.0477773 
In[10] := RegressionLineAndConfidenceBand= 

Plot[ 
{-208.146+205.446x, 

PValue} 
0 

-208.146+205.446x+ 
Quantile[StudentTDistribution[L-2],.9995]* 
Sqrt[0.538207*((1/L)+(x-xMean)-2/Sxx)], 

-208.146+205.446x­
Quantile[StudentTDistribution[L-2],.9995]* 
Sqrt[0.538207*((1/L)+(x-xMean)-2/Sxx)] 

}, {x,1.05,1.15}]; 



434 Chapter 8. Statistical Inference for Normal Populations 

In[11]:= Show[RegressionLineAndConfidenceBand, PotatoPlot] 

Out[12]:= -Graphics-

In[13] := RegressionLineAndPredictionBand= 
Plot[ 
{-208.146+205.446x, 
-208.146+205.446x+ 
Quantile[StudentTDistribution[L-2],.9995]* 
Sqrt[0.538207•(1+(1/L)+(x-xMean)A2/Sxx)], 

-208.146+205.446x­
Quantile[StudentTDistribution[L-2],.9995]* 
Sqrt[0.538207•(1+(1/L)+(x-xMean)A2/Sxx)], 

}, {x,1.05,1.15}]; 
In[14]:= Show[RegressionLineAndPredictionBand, PotatoPlot] 

Out[14]= -Graphics-
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1.06 1.08 1.12 1.14 

A more detailed discussion of the analysis of variance techniques can be found 
in Chapter 9. 

8.6 Testing for goodness-of-fit 

Testing normality of experimental data is of fundamental importance for im­
plementation of hypothesis testing techniques developed in this chapter. For that 
purpose, and for testing goodness-of-fit of any data to any particular distribu­
tion, we have used the Q-Q plots and the Kolmogorov-Smimov statistics. In this 
section we discuss another way to test the hypothesis Ho: the random sample 
X = (Xt, ... , Xn) comes from the population with the cumulative d.f. F(x). 

The procedure is as follows: 

(1) The range of the random variable X is divided into a finite number k of 

disjoint and exhaustive bins Bt, Bz, ... , Bk and the frequencies (the histogram) 

n 

ifJx(B;) = L1B;(X1) =#{}: x1 e B;}, 
}=1 

are calculated for all the bins. 

i = 1, ... ' k, (1) 

(2) Expected probabilities (expected values of the indicator functions of the bins) 

are calculated. 

p; = Pr {X E B;} = { dF(x) = El(B;), 18; 
(2) 
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(3) The test statistic, 

X2-~ (f/Jx(B;)- np;)2 
o-L..J ' 

i=l np; 
(3) 

is computed. It has an approximate chi-square distribution with k - 1 degrees of 
freedom if the distribution F is completely specified, and k - 1 - h degrees of 
freedom if h parameters of F have to be estimated using the random sample X. 

( 4) The hypothesis Ho is rejected at the significance level a if 

(4) 

where, as before, x~(k - 1 -h) is the upper tail a-quantile of the chi-square 
distribution with k - 1 - h degrees of freedom. 

Mathematica Experiment 1. Web Page Hits. A number of hits of the student's 
Web Page was watched in each 24-hour period over n = 30 days. The recorded 
frequencies were as follows: 0 hits were recorded on 8 days, 1 hit on 11 days, 2 
hits on 6 days, 3 hits in 3 days, 4 hits on 1 day, and 6 hits on 1 day. We will test 
the goodness-of-fit of the Poisson distribution with one (h = 1) parameter JL to be 
estimated from the sample. The k = 6 bins were selected as follows: 

Bt = {0}, B2 = {1}, B3 = {2}, B4 = {3}, Bs = {4}, B6 = {5, 6, ... }. 

The corresponding frequencies were 

with the estimated mean value 

JL = 3~ ( 0 . 8 + 1 . 11 + 2 . 6 + 3 . 3 + 1 . 4 + 1 . 6) = 1.4. 

Thus, remembering the Poisson distribution Pr{X = m} = e-JJ.,_,m;m!,m = 
0, 1, 2, ... , the respective probabilities p; from (2) are as follows: 

PI= Pr{X = 0} = 0.247, P2 = Pr{X = 1} = 0.345, 

P3 = Pr{X = 2} = 0.241, P4 = Pr{X = 3} = 0.113, 

Ps = Pr{X = 4} = 0.040, P6 = Pr{X = 5, 6, ... } = 0.014. 
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With this information the test statistic from (3) is x~ = 1.2601 with the number of 
degrees of freedom k - 1 - h = 4. At the a = .05 significance level 

x~ = 1.2601 < xJ.05 (4) = 9.488, 

and the hypothesis that the data come from the Poisson distribution with J.L = 
1.4 cannot be rejected. Actually, the P-value for our data is very high, a strong 
indication that the hypothesis is true: 

In[1):= Statistics'ContinuousDistributions' 
In[2] := PValue=1-CDF[ChiSquareDistribution[4],1.260] 
Out[2]= 0.868125 

Mathematica Experiment 2. Resistors. The data set RESISTORS was supplied 
by Jacob K. Matthews, a Chemical Engineering major at Case Western Reserve 
University. It represents a listing of the resistances (in ohms) of n = 200 resistors, 
which are all rated at 10 kn. We will test the goodness-of-fit of the normal distribu­
tion N (J.L, a 2), with both (h = 2) parameters J.L and a 2 estimated from the sample. 
The bins B; were selected to correspond to deciles of the normal distribution. 

In[1] := <<Statistics'DataManipulation' 
In[2] := <<Statistics'ContinuousDistributions' 
In[3] := <<Statistics'DescriptiveStatistics' 
In[4] := resistors={9.97910927, 9.833997401, 10.48797923, 

10.03217857, 10.19504918, 10.23059564}; 
In[5] := Length[resistors] 
Out [5]= 200 
In[6] := mu=Mean[resistors] 
Out[6]= 9.87989 
In[7] := sigma =StandardDeviation[resistors] 
Out[7]= 0.480209 

... ' 

In[8] := bins=Table[Quantile[NormalDistribution[mu,sigma ], 
i /10]' {i, 9}] 

Out[8]= {9.26448, 9.47574, 9.62807, 9.75823, 9.87989, 
10.0015, 10.\317, 10.284, 10.4953} 

In[9]:= phi=RangeCounts[resistors,bins] 
Out[9]= {5, 7, 16, 35, 30, 32, 34, 28, 12, 1} 

In[10] := xSquared = Sum[(phi[[i]]-20)-2/20, {i,1,10}] 
Out[10]= 78.2 
In[11] := PValue=l-CDF[ChiSquareDistribution[7),78.2] 
Out[11]= 3.20539 . 10-(-14) 

Thus, the hypothesis that the data RESISTOR have the N(9.88, (0.48)2) distribu­
tion has to be rejected at any reasonable significance level. 
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8. 7 Experiments, exercises, and projects 

1. Test the assumption of normality for the COTTON data from Mathematica 
Experiment 8.1.1 using the Kolmogorov-Smimov test and the goodness-of­
fit test of Section 8.6. Construct 0.95-confidence intervals for the variance 
of the population. 

2. Test the assumption of normality for the RIVET data from Mathematica 
Experiment 8.1.2 using the Kolmogorov-Smirnov test and the goodness­
of-fit test of Section 8.6. Construct 0.95-confidence intervals for the mean 
and variance of the population. Find the P-values for the sample mean and 
sample variance. 

3. Test the assumption of normality for the logarithms of the pesticide data 
from Mathematica Experiment 8.1.3 using the Kolmogorov-Smirnov test 
and the goodness of fit test of Section 8.6. Construct 0.95-confidence 
intervals for the means and variances of the two populations. Find the 
P-values for the sample means and sample variances. 

4. Using the data from Example 8.1.1, test the hypothesis that the tire wear 
is the same for two types of tires tested. Do it at 0.1, 0.05, and 0.01 
significance levels. 

5. Theoretical Project. On the basis of the Central Limit Theorem, derive 
the large sample confidence intervals for parameter p in the Bernoulli 
distribution. Start with the discussion in Section 3.7. Then, analyze and 
complete the following reasoning: 
Assume that in n independent trials, k successes were observed. By the 
CLT, the random quantity 

Z = kfn- p 
'J;::=p(rr1 =-=p~) f;=n 

is asymptotically standard normal. Thus, for a large sample size n, 

( lkfn- PI ) Pr < Zaf2 R:l 1 -a. 
Jp(1- p)fn 

The inequality inside the parentheses can be rewritten in the form 

2 2 2 (k) k 2 Za/2 2Za12 - -2p-+p <p--p -. 
n n n n 
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This inequality is quadratic in p and can be solved explicitly, showing that 
p has to be contained in the interval with the end points 

1 (k z;/2 J (kfn)(l - kfn) z;/2) 
2 - + -2 ± Za/2 + 4n2 ' 

1 +za;2fn n n n 
(1) 

which give the desired 1 - a confidence limits. Taking n large, derive the 
familiar approximate confidence limits 

k J (kfn)(1 - kfn) 
- ±za/2 . 
n n 

(2) 

Test how good these approximations are using Mathematica. For p which 
is neither close to 0, nor close to 1, a sample size of 25 should be adequate 
for (1), but one needs at least n = 100 to get good results with the cruder 
(2). 

6. A machine produces lids for jars. In order to obtain a proper fit for jars 
with a diameter of 3 inches, the deviation u should not exceed .05 inches. 
A random sample of 12lids showed the following diameters: 3.10, 3.05, 
3.02, 2.98, 2.97, 3.02, 3.03, 2.98, 2.95, 2.92, 3.07, 3.04. Obtain the 95% 
confidence interval for u using Mathematica. 

7. Obtain 0.95-level confidence bands and prediction bands for the regression 
problem considered in Mathematica Experiment 8.1.6. Test the lumber­
jack's hypothesis. 

8. Test the assumption of normality for the POTATOES regression problem from 
Table 8.5.1. Find the residuals first. 

9. Using Mathematica devise an experimental method of verifying the state­
ments concerning distributions of the sample variances, contained in bullets 
in Section 8.4. 

10. Using Mathematica produce the table of maximal differences between the 
values of the N (0, 1) density and the Student T-densities, for the number 
of degrees of freedom equal to 1, ... , 20. 

11. Repeat the Mathematica Experiment 8.1.3 on data t60. 

12. Construct confidence intervals for the variance u 2 of the N(J.L, u 2), based 
on a random sample of size n and assuming that the mean J.L is known. 

13. Use Mathematica pseudo-random number generator to create "virtual" 
random data for the regression analysis under the normal model. Start 
by creating tables of random residuals e1, ... , en, with various normal 
zero-mean distributions. Then create data sets by preselecting values of 
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Xt, ... , Xn, and considering as response variables y; = I (x;) + e; where 
I (x) are selected from the following list: 

l(x) = 2 + 3x 

l(x) = 2- 3x 

l(x) = -2+3x 

l(x) = -2- 3x 

l(x) = 2+ 3x2 

l(x) = 2- 3x2 

l(x) = 3expx 

I (x) = 3ln x (x > 0) 

Draw the scatterplots and calculated regression curves, together with con­
fidence and prediction bands, at different significance levels. Repeat the 
experiment for the model Yii = l(xj) + eii· 

14. Test theMathematica pseudo-random number generator using the goodness­
of-fit test. Do not stop at checking the uniform distribution of the digits. 
Test the uniform distribution of pairs, triples, etc. Repeat the experiment 
for various pseudo-random number generators discussed earlier in this 
book, including the decimal expansions of numbers 1r and e . 

15. Test the lumberjack's hypothesis from Mathematica Experiment 8.1.6, 
using the full power of Section 8.5. Do not forget to check the normality 
of residuals. 

8.8 Bibliographical notes 
Two classics on parameter estimation and hypotheses testing are 

[1] E.H. Lehman, Theory oiPoint Estimation, John Wiley & Sons, New York, 
1981, 
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Wiley & Sons, New York, 1984. 
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[ 4] D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for 
Engineers, John Wiley & Sons, New York, 1994. 

On the subject of linear regression, we would like to mention 
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[6] T. Ryan, Modern Regression Methods, John Wiley & Sons, New York, 
1997, 

and, on a more advanced level, 

[7] S.R. Searle, Linear Models, John Wiley & Sons, New York, 1970. 



Chapter9 

Analysis of Variance 

Analysis of Variance (ANOVA) is used to test whether the variability in response 
data taken for different levels of manipulated variables can be attributed just to 
random fluctuations, or is caused by the impact of different input levels. Such 
an approach has been briefly discussed in Section 8.5. A more general case, with 
several manipulated categorical variables (factors), will be sketched in this chapter. 
It is one of the basic tools in the design and analysis of experiments. 

9.1 Single-factor ANOVA 

In this model we consider the model of k independent random vectors 

of independent, normally distributed random variables X1,j with means J.LI, I = 
1, ... , k, and common variance a 2 > 0. The goal is to develop procedures for 
testing the hypothesis 

Ho : J.Lt = J.L2 = .. = J.Lk, (1) 

based on the realization a: 1 , ••• Zk, of the above random vectors obtained from an 
experiment. 

443 © Springer International Publishing AG 2017 
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Example 9.1.1 Fertilizer Yields. 
The yield of a crop depends on the type of fertilizer that has been applied. To 
test effects of fertilizers A, B, C, and D, a completely randomized design has been 
used to ensure that there was no systematic bias (in terms of soil type, drainage, 
exposure to sun, etc.) in selection of plots for application of different fertilizers. 
Fertilizer A has been applied on 8 plots, B-on 7, C-on 6, and D-on 9. The 
results of the experiment are summarized in Table 9 .1.1. 

Table 9.1.1 Fertilizers' effects on crop yield 

Fertilizer Yield in bushels 
A 151, 158, 162, 149, 153, 151, 150, 159 
B 142, 143, 142, 145, 147, 150, 148 
c 147, 142, 143, 146, 144, 142 
D 137,139,141,138,139,137,142,136,140 

This is a typical single-factor (or, one-way) experiment, the factor being the 
type of fertilizer treatment applied to the crop. The null hypothesis Ho : #LA = 
#LB = JLc = JLD asserts that there is no difference in effects of different fertilizer 
treatments on the distribution (mean) of crop yields. The alternative hypothesis 
H1 is that two or more treatments have (significantly) different effects. 

Recall that for the two-sample case (k = 2) discussed in Section 8.4, the rejection 
region at significance level 2a is given by the condition 

(2) 

where 

(3) 

(4) 

and where ta (n 1 + n2 - 2) is the upper tail a-quantile of the Student t -distribution 
with n 1 + n2 - 2 degrees of freedom. Since, by simple algebra, 

(5) 
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where 

(6) 

the rejection region (2) can be rewritten in the form 

( - - )2 (- - )2 n 1 x 1. - Z.. + n2 X2. -X.. 2( 2) 
2 2: t01 n 1 + n2 - . 

s 
(7) 

Since t~(n1 + n2- 2) also happens to be an upper tail a-quantile for the F­
distribution with (1, n 1 + n2 - 2) degrees of freedom, which is the distribution 
of 

the following extension of the above test to the k sample design is natural. 

Consider the total sum of squared deviations from the grand mean X .. : 

k n; 

TSS= LL)X;j -X .. )2 , 

i=l j=l 

where N = n1 + ... +nk. and 

_ l k n; 

X .. = NLLXij. 
i=l j=l 

is the grand mean taken over all samples. Again, by simple algebra, 

TSS = SSr +SSE, 

where 
k 

'"' - - 2 SSr = L....n;(X;.- X .. ) 
i=l 

is the treatment sum of squares and 

k n; 

SSE = L L(Xij - X;.)2 ' 

i=l j=l 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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is the error sum of squares. In other words, the total variability in the pooled 
samples has been split into the variability due to the effects of treatments and 
random fluctuations due to errors. 

Decomposition (11) is a foundation of the AN OVA method. The null hypothesis 
(1) will be rejected if the variability SST due to treatments is large relative to 
the variability SSE due to errors. As always, to construct rejection regions at 
specific significance levels we need information about the distributions of these 
two estimators. 

It can be demonstrated that the mean treatment sum of squares 

k 
SST 1 L - - 2 

MST = -k- = k-- n;(X;.- X .. ), 
-1 -1 

i=l 

(14) 

is an unbiased estimator for u 2, and SST fa2 has a chi-square distribution with k- 1 
degrees of freedom, when the hypothesis Ho is true. It is biased under H1, in which 
case it overestimates u 2 as E(M SST) > u 2 • 

On the other hand, the mean error sum of squares 

SSE 1 k n; - 2 
MSE= N-k= N-kLL(Xij-X;.), 

i=l j=l 

(15) 

is always an unbiased estimator for u 2, and SSEfa2 has a chi-square distribution 
with N - k degrees of freedom, when the hypothesis Ho is true. Thus, the statistic 

MST 
F=-­

MSE 
(16) 

has an F -distribution with (k - 1, N - k) degrees of freedom, and the rejection 
region for Ho at the significance level a is 

- 1- ~~ n·(z· - Z )2 
k-1 L...l=l I I· •• > I' (k- 1 N- k). (17) 

I ~k ~n; - 2 - Jot ' 
N-k L...i=l L...j=l (Xij - :!!;.) 

The above procedure is summarized in Table 9.1.2. 
Mathematica Experiment 1. Fertilizer Yield. In this experiment we will imple­

ment the analysis of variance procedures for the fertilizer yield data from Exam­
ple 9.1.1. 
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Table 9.1.2 Single-factor ANOVA table 

Source of Deg. of Sums of 

variability freedom squares 

Treatment k-1 SSr = 
k - - 2 

Li=l n;(X;. -X .. ) 

Error N-k SSE= 
k n; - 2 

Li=l Lj=l (Xij -X;.) 

Total N-1 TSS= 
error 

k ni - 2 
Li=l Lj=l (Xij -X .. ) 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= <<Statistics'DescriptiveStatistics' 
In[3]:= X ={{151,158,162,149,153,151,150,159}, 

Mean sums 

of squares 

MSr= 

P-t I 

MSE= 
~ 
N-k 

-

{142,143,142,145,147,150,148}, 
{147,142,143,146,144,142}, 
{137,139,141,138,139,137,142,136,140}}; 

In[4]:= k=4; 
In[5]:= n =Table[Length[X[[i]]], {i,1,k}] 
Out[5]= {8, 7, 6, 9} 
In[6] := CapN=Sum[n[[i]] ,{i,1,k}] 
Out[6]= 30 
In[7]:= BX=N[ Table[Mean[X[[i]]] ,{i,1,k} ]] 
Out[7]= {154.125, 145.286, 144., 138.778} 
In[8]:= BarX=N[(1/CapN)Sum[ n[[i]] BX[[i]], {i,1,k}]] 
Out[8]= 145.433 
In[9] := MST=(1/(k-1))Sum[n[[i]] (BX[[i]]-BarX)~2, {i.,1,k}] 
Out[9]= 338.503 
In[10] := MSE=(1/(CapN-k))Sum[ Sum[(X[[i]] [[j]]-BX[[i]])~2, 

{j,1,n[[i]]}], {i,1,k}] 
Out[10]= 10.6869 
In[11]:= MST/MSE 
Out[11]= 31.6746 

F-
Ratio 

MSr 
MSE 

-

-

In[12]:= f[alpha_] :=Quantile[FRatioDistribution[k-1, CapN-k], 
1-alpha] 

447 
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In[13]:= {f[0.10], f[0.05],f[0.01]} 
Out[13]= {2.30749, 2.97515, 4.63657} 
In[14]:= PValue=1-CDF[FRatioDistribution[k-1, CapN-k], MST/MSE] 
Out[14]= 7.77406 .10~(-9) 

So, at any reasonable significance level, the null hypothesis Ho is rejected; that 
is, the conclusion is that there is significant evidence that the effects of fertilizers 
A, B, C, and Don crop yield are not the same. For the one-way ANOVA table, see 
Section 9.3. 

9.2 Two-factor ANOVA 

In this section we analyze the experimental design where the outcomes depend 
on two factors, say A and B, which can have several levels, say, 

i = 1, 2, ... , I, 

j = 1,2, ... , J, 

respectively. Thus the appropriate normal model, related to this two-way classifi­
cation scheme is a family of normal random variables 

X= (Xijk). (1) 

indexed by three indices i, j, and k, with means #Lij depending on factor levels. 
The variance c:r2 is assumed to be the same for all XijkS. The index 

k = 1, 2, ... 'k;j 

indexes sample points for fixed levels i, j of the two factors. In general, the 
sample sizes can depend in the factor levels, but in what follows we will restrict 
our attention to the case when the sample sizes are uniform, that is 

k;j =K, i = 1, ... , I, j = 1, ... , J. 

The collection of random variables {Xijk : k = 1, ... , K}, corresponding to K 
repetitions of the experiment with factor A at level i and factor B at level j, is 
often called the (i, j)-cell. 
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Example 9.2.1 Workers' Productivity. 
A company wants to evaluate the productivity of unskilled (U) and skilled (S) 
workers, who can use either an old (0) or new (N). The situation calls for a two­
factor design, where the first factor is the workers' skill (and it can be at either of 
two levels, U and S) and the machine type (which can also have two levels, 0 and 
N). Taking samples of size K = 5, where each sample point represents the number 
of items manufactured in a week, resulted in the two-way Table 9.2.1. 

Table 9.2.1 Workers' productivity 

Machines 

Workers 0 N 

69 95 
69 98 

u 72 100 
74 96 
75 97 
81 105 
88 110 

s 84 107 
87 112 
88 118 

The question of interest is whether the workers' skill and machine age have any 
incremental or additive effects on workers' productivity. Note that labeling the 
cell means just /-Lij would not take the full advantage of the data structure. For that 
reason we will denote by 

the 'basic' mean productivity of the unskilled worker U working on an old machine 
0, by 

the mean productivity of the unskilled worker U working on a new machine N, by 

the mean productivity of the skilled worker S working on an old machine 0, and, 
finally, by 

the mean productivity of the skilled worker S working on a new machine N. 
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Here, the parameters a and f3 measure, but also separate, the additive effects 

of the skill and the modernization factors on productivity, while the parameter 

y measures the interactive effects of the two factors. To verify whether either 

of the two factors has any effect on the productivity, we will test the hypotheses 

Ho : a = 0 and Ho : f3 = 0. To verify the interactive effects of the two factors, 

we will test the hypothesis Ho : y = 0. Table 9.2.2 summarizes the structure of 

the means in our example. 

Table 9.2.2 Means' structure in productivity data 

Machines 

Workers 0 N 

u J.L J.L+f3 
s J.L +a J.L+a+f3+y 

The above example is typical for the general case in which the cell means in the 

experimental design (1) have the following 'additive' structure (decomposition): 

J.Lij = J.L + a; + /3j + Yij, (2) 

where, to guarantee uniqueness, L; a; = L; {3; = L; Yil = Lj Ykj = 0, for 

every 1 ::::: k ::::: I and 1 ::::: l ::::: J. Then, we say that a; represents the effect of the 

ith level of the first factor, /3j represents the effect of the jth level of the second 

factor, and Yij represents the interaction effect of levels i and j of the two factors, 

with the specific structure of the means, and we consider the linear model 

Xijk = J.L +a; + /3j + Yij + Eijk. 

where Eijk are independent N(O, a 2) random variables. 

Such an experimental design is visualized in Table 9.2.3. The dots indicate 

indices over which the averaging is performed. The notation in the table is as 

follows: 

1 J 

x; .. =- L:xij .. 
J. 

j=! 
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1 I J K 

z ... = IJK ~~Lxijk· 
1=1 j=l k=l 

Table 9.2.3 Data and means representation in two-factor experiments 

FactorB Row 

Factor A 1 2 .... J means 
Xlll XI2l XIJI 

Xll2 ZI·· 
1 

XllK Xl2K XIJK 

2 

Xfll XIJI 
I ZJ .. 

X IlK XIJK 
Column 

means z .•. z.2. Z.J. z ... 

Since the number K of observations in each cell is constant, one can first calculate 
the mean in each cell and then calculate the row and column means as in Table 9 .2.4. 

Table 9.2.4 Reduced table of means 

FactorB Row 
Factor A 1 2 J means 

1 :i: ll· :i:l2. WIJ. :i: •.. 
2 W2I· :i:u. :i:2 .. 

I xn Wf2. zu ZJ .. 
Column z .•. z.2. Z.J. z ... 
means 
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In the above two-factor experimental design, ANOVA will permit us to test the 
following hypotheses: 

HA : ClJ = ... = Cll = 0, (3) 

which asserts that the level change of factor A has no effect on the outcome of the 
experiment, 

HB : fJ1 = ... = f3J = 0, (4) 

which makes a similar assertion about the effects of factor B, and 

HAB : Yij = 0, for all i = 1, ... , I, j = 1, ... , J, (5) 

which asserts that there are no interactions between factors A and B. 
The analysis of variance for the two-factor design follows the same pattern as 

ANOVA in one-factor experiments discussed in Section 9.1. Define the total sum 
of squares 

I J K 

TSS = LLL(Xijk- X ... )2 , (6) 

i=i j=i k=i 

measuring the pooled variability of all the samples, the factor A sum of squares 

I 

" - - 2 SSA = J K L.)X; .. -X ... ) (7) 

i=l 

representing variability due to factor A, the factor B sum of squares 

J 
" - - 2 SSB = I K L.)X·j· -X ... ) (8) 

j=i 

representing variability due to factor B, the interaction sum of squares 

I J 

ssl = K L L:<Xij.- X; .. - X.j. + X ... )2 (9) 
i=i j=i 

representing variability due to the interaction between the two factors, and finally, 

the error sum of squares 

I J K 

SSE = L L L(Xijk - Xij.)2 (10) 

i=i j=i k=i 
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representing variability due to random errors. 
The expectations of all these estimators are given in Table 9.2.5. Note that, 

again, only the normalized SSE is always an unbiased estimator for a 2 , while the 
normalized SSA (resp., SSB, and SS1) is unbiased only under the hypothesis HA 
(resp., HB and H1 ). 

Table 9.2.5 Expectations of SS estimators in two-factor ANOVA 

(J - l)a2 + I K L,f=t f3j 

E(SSE) = I J(K- l)a2 

The distributions of the SS estimators, under respective hypotheses, are given 
in Table 9.2.6. 

The fundamental algebraic relation 

(11) 

splits the total variability of all the samples into variance components representing 
the variability due to factors A and B separately, to the interaction offactors A and 
B, and to random errors. 

As in one-factor ANOVA, we will reject hypotheses HA, HB. and HAB· respec­
tively, whenever the normalized SS estimators (mean sums of squares) 

and 

SSA 
MSA = --, 

I-1 

MS = SSB 
B ] -I' 

Ms = ss1 
I (/ - l)(J - 1)' 

(12) 

(13) 

(14) 
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Table 9.2.6 Distributions of SS estimators in two-factor ANOVA 

Under HA, SSA has a X 2 distribution ~ 
with I - 1 degrees of freedom. 

Under HB, ~ (J 
has a x2 distribution 

with J - 1 degrees of freedom. 

Under HAB· SS1 has a X 2 distribution ~ 
with (I - 1)(1 - 1) degrees of freedom. 

SSE has a x2 distribution ~ 
with I J(K- 1) degrees offreedom. 

are large relative to the mean error sum of squares 

SSE 
MSE = IJ(K -1)' 

(15) 

with the boundary of the rejection region determined, for a given significance level 
a, by the upper tail a-quantile fcx(·, ·)of the respective F -distribution. 

Thus, we will reject the hypothesis HA at the significance level a, if 

Z~; 2: fa(/- 1, I J(K- 1)), (16) 

the hypothesis H B, if 

:~: 2: !aU- 1, I J(K- 1)), (17) 

and, finally, the interaction hypothesis HAB· if 

::~ 2: fa((/- 1)(1- 1), I J(K- 1)). (18) 



9.2. Two-Factor ANOVA 455 

To be formally correct, the formulas ( 16-18) should have S S estimates rather than 
S S estimators (which are random variables) inserted, but we did not want to further 
complicate our notation. The above discussion is summarized in Table 9.2.7. 

Mathematica Experiment 1. Workers' Productivity. In this experiment we will 
implement the analysis of variance procedures for the workers' productivity data 
from Example 9.2.1. 

In[1]:= <<Statistics'ContinuousDistributions' 
In[2]:= <<Statistics'DescriptiveStatistics' 
In[3]:= X ={{{69,69,72,74,75},{95,98,100,96,97}}, 

{{81,88,84,87,88},{105,110,107,112,118}}}; 
In[4]:= 1=2; J=2; K=5; 
In[5]:= CellMeans= N[ Table[Mean[X[[i,j]]] , {i, L}, {j, J} ]] 
Out[5]= {{71.8, 97.2}, {85.6, 110.4}} 
In[6]:= RowMeans= N[Table[(1/J)Sum[Cel1Means[[i,j]], 

{j,1,J}],{i,1,L}]] 
Out[6]= {84.5, 98.} 
In[7]:= ColumnMeans= N[Table[(1/J)Sum[Cel1Means[[i,j]], 

{i,1,L}],{j,1,J}]] 
Out[7]= {78.7, 103.8} 
In[8]:= GrandMean= N[(1/(L•J))Sum[Sum[Cel1Means[[i,j]], 

{j,1,J}],{i,1,L}]] 
Out[8]= 91.25 
In[9]:= MSA=(1/(L-1))J•K•Sum[ (RowMeans[[i]]-GrandMean)~2, 

{i,1,L}] 
Out [9] = 911.25 
In[10]:= MSB=(1/(J-1))L•K•Sum[ (ColumnMeans[[j]]-GrandMean)~2, 

{j ,1, J}] 

Out[10]= 3150.05 
In[11] := MSI=(1/(L-1)(J-1))*K* Sum[Sum[ 

(CellMeans[[i,j]]-RowMeans[[i]]-ColumnMeans[[j]]+GrandMean)~2, 

{j,1,J}],{i,1,L}] 
Out[U]= 0.45 
In[12]:= MSE=(1/(L*J* (K-1))) Sum[Sum[Sum[ 

(X[[i,j,k]]-GrandMean)~2, 

{j,1,J}],{i,1,L}],{k,1,K}] 
Out[12]= 265.359 
In[13] := FRatios={MSA/MSE, MSB/MSE, MSI/MSE} 
Out[13]= {3.43402, 11.8709, 0.00169581} 
In[14]:= PValues={ 

1-CDF[FRatioDistribution[L-1,L*J*(K-1)] ,MSA/MSE], 
1-CDF[FRatioDistribution[J-1,L•J•(K-1)] ,MSB/MSE], 
1-CDF[FRatioDistribution[(L-1)(J-1),L*J*(K-1)],MSI/MSE] 

} 
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Dut[14]= {0.0824008, 0.00332561, 0.967662} 

Table 9.2.7 Two-factor ANOVA table 

Source of Degrees Sums of Mean sums F-
variability of freedom squares of squares ratio 

A /-1 SSA MS SSA MSA 
A= /-1 MSE 

B J-1 SSB MS SSB MSB 
B = J-1 MSE 

Interaction (/- 1)(1- 1) ss1 MS ss1 MS1 
I= (1-l)(J-1) MSE 

Error IJ(K- 1) SSE MS SSE E = IJ(K-1) -

Total error IJK -1 TSS MTS = 1 Ji~ 1 -

So, say, at the 0.05 significance level the hypotheses HA and HAB cannot be 
rejected, while the hypotheses H B is rejected. In other words, our data indicate that 
skill has little impact on worker's productivity while the machine age significantly 
influences it. Also, there seems to be no significant interaction between these two 
factors. 

To complete the analysis one should check the validity of the model by verifying 
the normality of residuals and the equality of their variances. For the two-way 
ANOVA table, see Section 9.3. 

9.3 Experiments, exercises, and projects 

1. The article "Origin of Precambrian Iron Formations" (Econ. Geology, 
1964, pp.1025-1057) provided the following data on the total content (in 
percent) of iron (Fe) for four types of iron formation: 
Carbonate: 20.5, 28.1, 27.8, 27.0, 28.0, 25.2, 25.3, 27.1, 20.5, 31.3; 
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Slicate: 26.3, 24.0, 26.2, 20.2, 23.7, 34.0, 17.1, 26.8, 23.7, 24.9; 
Magnetite: 29.5, 34.0, 27.5, 29.4, 27.9, 26.2, 29.9, 29.5, 30.0, 35.6; 
Hematite: 36.5, 44.2, 34.1, 30.3, 31.4, 33.1, 34.1, 32.9, 36.3, 25,5. 
Construct an ANOVA table for these data and comment on the results. 

2. Four different coatings are being considered for a pipe that can be buried 
in one of three different types of soil. The two-factor experiment was 
designed to bury 12 pieces of pipe each coated with one of the four coatings 
and buried in one of the three types of soil for a fixed time. Afterwards, 
the depth of the deepest corrosion pit in each piece of pipe was measured 
(in .0001 in.) and the results were as follows (in order of three types of 
soil): 
Coating 1: 64, 49,50 
Coating 2: 53, 51,48 
Coating 3: 47, 45, 50 
Coating 4: 51, 43,52 
Assuming the validity of the additive model, carry out the ANOVA to see 
whether the amount of corrosion depends on either the type of coating used 
or the type of soil. Use a = .05. Assume that the above numbers represent 
the means with variance 1. Sample size in each cell n = 3. 

3. Lifetimes of springs under two different stress levels were measured to be 
Stress level/: 225, 171, 198, 189, 189, 135, 162, 135, 117, 162 
S~esskvel/~216, 162,153,216,225,216,306,225,243,189 
Find a rejection region at the 5% significance level for the hypothesis 
Ho: JLt = Jl-2, given that uf = uf, but are unknown. Use the above data 
to reject or accept Ho. 

4. An experiment was conducted to check the effect of C2F6 flow rate on 
the uniformity of the etch on a silicon wafer used in integrated circuit 
manufacturing. For each of the flow rates shown below, the experiment 
was replicated six times. The following results were obtained (G.Z. Yin 
and D.W. Jillie, Solid State Technology, May 1987): 
Flow rate: 125 Etch uniformity (in percent): 2.7, 4.6, 2.6, 3.0, 3.2, 
3.8 
Flow rate: 160 
4.2 
Flow rate: 200 
5.1 

Etch uniformity (in percent): 4.9, 4.6, 5.0, 4.2, 3.6, 

Etch uniformity (in percent): 4.6, 3.4, 2.9, 3.5, 4.1, 

Perform the analysis of variance on this data set at significance level 0.05. 
Draw conclusions. Verify the model assumptions. 

S. Two factors, glass type and phosphor type, influence the brightness of a 
display screen. The response variable measured the current (in microamps) 
necessary to obtain a specified brightness level. The data, obtained in 
Industrial Quality Con~ol1956, pp. 5-8, were as follows: 
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Phosphor type 

Glass type 1 2 3 
I 280 300 290 
I 290 310 285 
1 285 295 290 
2 230 260 220 
2 235 240 225 
2 240 235 230 

Carry out the AN OVA on this data set at several significance levels. Draw 
conclusions. 

6. The uvw Web Site contains aMathematica file anoval that automatically 
produces the single-factor ANOVA table. Study the code and use it to 
analyze the fertilizer yield data from Mathematica Experiment 9.1.1. 

7. The UVW Web Site contains a Mathematica file anova2 that automatically 
produces the single-factor ANOVA table. Study the code and use it to an­
alyze the workers' productivity data from Mathematica Experiment 9.2.1. 

8. Show that t; (n) is the upper tail a-quantile of an F-distribution with 1 and 
n degrees of freedom. 

9. Write a Mathematica code to verify experimentally the result of the above 
exercise. 

10. Show that the parametrization for the means in the two-factor design, 

/Lij = 1L +a;+ IJi + Yii 

where E{=1 a; = 0, Ef=l {Jj = 0, E{=1 Yij = 0, Ef=l Yii = 0, is 
unique. 

11. 6. The data set irisl on the uvw Web Site contains the lengths and widths 
of petals and sepals of three different species of the iris flower. 

(a) Test the hypothesis that there is no difference in the length (resp., 
width) of the petals among the three different species. Use the sig­
nificance level 5% (resp., 1% ). 

(b) Test the hypothesis that there is no difference in the length (resp., 
width) of the sepals among the three different species. Use the sig­
nificance level 2% (resp., 0.5% ). 

(c) Consider the two-factor model: Factor A is the species, Factor B has 
two levels, petals, and sepals. ( 1) Does the level of factor B have any 
effect on the length of the petals and sepals? (2) Does the level of 
factor B have any effect on the width of the petals and sepals? (3) 
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Does the type of flower have any effect on the length of the petals 
and sepals? ( 4) Does the type of flower have any effect on the width 
of the petals and sepals? (5) Do the two factors have any interaction 
concerning the length of the petals and sepals? (6) Do the two factors 
have any interaction concerning the width of the petals and sepals? 

9.4 Bibliographical notes 
There exists a voluminous literature on the subject of ANOVA. In this chapter 

we have only scratched the surface. On a practical and elementary level 

[1] S.B. Vardeman, Statistics for Engineering Problem Solving, PWS Publish­
ing, Boston, 1994. 

is a good text. A more complete picture is presented in 

[2] D.C. Montgomery and G.C. Runger, Applied Statistics and Probability 
Engineers, John Wiley & Sons, New York, 1994. 

A full-fledged, graduate level, theoretical monograph on the ANOVA is 

[3] S.R. Searle, G. Casella, and C.E. McCulloch, Variance Components, John 
Wiley & Sons, New York, 1992. 
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Uncertainty Principle in Signal Processing 
and Quantum Mechanics 

Consider a (perhaps complex-valued) signal f(t) such that 

(1) 

The quantity lf(t)12 can be thought of as the signal's "mass" density and describes 
its distribution in time. If the signal f(t) is square integrable but (1) is not satisfied, 
then one can always normalize it by considering f(t)/(j lf(t)i2dt) 112. In this 
context, the quantity 

can be interpreted as the location in time of the signal's "center of gravity", or its 
mean location. For the purposes of this section, and without loss of generality, we 
will assume that its mean location is at 0 or, in other words, that f tif(t)i 2dt = 0. 
In this case, the quantity 

(2) 

measures the average square deviation from the mean time location, or the degree 
of localization of the signal around its mean in the time domain. 

On the other hand, the Fourier transform 

f(w) =- f(t)e-uvtdt - 1 I . 
2rr 

displays no direct information about the signal's time localization, but has explicit 
information about its frequency localization. The square of its modulus l](w)l2 
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is the frequency domain counterpart of the time density 1/(t)l2• Note that, by 
Parseval 's formula 

I lf(t)i2 dt = 2rr I i](w)i2 dw, 

we have 

so that 2rr I j (w) 12 can be viewed as the signal's normalized density in the frequency 
domain. Assume (again, without loss of generality) that the mean frequency 

Then the quantity 

(3) 

measures the mean square deviation from the mean frequency location, or the 
degree of localization of the signal in the frequency domain. 

The uncertainty principle asserts that there exists a lower bound on the simulta­
neous localization of the signal in time and frequency domains. More precisely, it 

states that 
(4) 

whenever the variances u 2[f] and u 2[j] are well defined. Note the universal 

constant 114. 

To see why the uncertainty principle holds true, consider the integral 

l(x) =I lxtf(t) + f'(t)i 2dt::: 0 (5) 

where x is a real parameter. Then, since 

lxtf(t) + f'(t)e = (xtf + f')(xtf* + (f')*), 

where f* denotes the complex conjugate off, we get that 
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The first integral in (6) is just a 2[f] [by definition (2)]. The second integral is 
equal to 

since tl/12 decays to zero at ±oo in view of the assumption a2[f] < oo. Finally, 
the third integral is equal to 

because of Parseval's formula and the fact that the Fourier transform of f' is 
i w j( w). As a result, the integral 

(7) 

This is a quadratic polynomial in variable x and, in view of (5), it is nonnegative 
for all values of x. As such, it has a nonpositive discriminant 

which immediately yields the uncertainty principle ( 4). 

Remark A.l The Heisenberg1 uncertainty principle in quantum mechanics. The 
(3-D version of the) above uncertainty principle concerning time-frequency local­
ization has a celebrated interpretation in quantum mechanics, where the principle 
asserts that the position and the momentum of a particle cannot be simultaneously 
measured with arbitrary accuracy. Indeed, in quantum mechanics the particle is 
represented by a complex wave function f(x), where lf(x)l2 is the probability 
density of its position in space. The observables are represented by operators A 
on wave functions; the mean value of the observable is 

j (Af)(x)f*(x)dx. 

The position observable is represented by a multiplication by variable (vector) x 
and the momentum observable is represented by the operation of differentiation 
ajax. However, via the Fourier transform, the latter also becomes an operation of 
multiplication but by an independent variable (vector) w in the frequency domain. 
Thus, the uncertainty principle ( 4) gives the universal lower bound for the product 

1 Werner Heisenberg ( 190 1-1976) was a Professor of Physics at the University of Gottingen. 
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of variances of the probability distributions of the position and of the momentum. 
In the three-dimensional space, and in the physical units, the lower bound 1/4 in ( 4) 
has to be replaced by a different mathematical constant multiplied by a universal 
physical constant called the Planck constant. 

Remark A.2 One can check that the equality in the uncertainty principle ( 4) ob­
tains only for the Gaussian function f(t) = rr- 1/ 4 exp( -t2 /2). Thus, the optimal 
simultaneous time and frequency localization is attained for a Gaussian-shaped 
signal. 

Bibliographical note. Issues related to the uncertainty principle in the context 
of signals and wavelets are further developed in Chapter 7 of 

[1] A.l. Saichev and W.A. Woyczynski, Distributions in the Physical and 
Engineering Sciences. Volume 1. Distributional and Fractal Calculus, 
Integral Transform and Wavelets, Birkhiiuser-Boston, Cambridge, MA, 
1997, 

from which the material of this appendix has been borrowed. There is, of course, 
a large literature on the subject of quantum mechanical uncertainty principle. We 
shall just quote two classics: 

[2] R.P. Feynman, R.B. Leighton and M. Sands, Feynman Lectures on Physics. 
Volume 3. Quantum Mechanics, Addison-Wesley, Reading, MA, 1965. 

[3] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Volume 
3. Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, New 
York, 1977. 
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Fuzzy Systems and Logic 

Fuzzy systems theory provides another, deterministic interpretation of probability 
and randomness which permits venturing outside the standard two-valued, TRUE­
FALSE binary logic to situations with undetermined outcome in which several, or 
even continuum, of undeterminacy levels are possible; the law of the excluded 
middle is thus violated. It is spiritually related to the uncertainty principle philos­
ophy, and counts among its predecessors the multivalued logic developed in the 
early 1930s by the Polish logician Jan Lukasiewicz. 

The term fuzzy set and the foundations of the theory of fuzzy systems were 
introduced in 1965 by system scientist Lofti Zadeh. Since then the theory devel­
oped a large following in the engineering community and found many practical 
applications, including the automobile traction control systems. The terms fuzzy 
engineer and defuzzification now have technical meaning. 

For a nonfuzzy subset A of the universe X the indicator function 

if X E A; 
ifx ¢A, 

(1) 

has just two values, 0 and 1. By contrast, the fuzzy subset A is defined by a 
membership function 

mA(x): X~ [0, 1], (2) 

that is, the membership of a point x in a fuzzy set A can be of any degree between 0 
and 1. Then, the usual two-valued set algebra is replaced by the continuum valued 
fuzzy set algebra, where 

mAuB(X) = max{mA(X), mB(X)}, 

mAc(x) = 1- mA(X), 

(3) 

(4) 

(5) 
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These rules create a possibility of nontrivial rJverlap and underlap fuzzy sets 
An Ac and AU Ac. 

A fuzzy system is the set of IF--THEN ruks that maps inputs to outputs. Each 
fuzzy rule defines a fuzzy Cartesian patch Aj x Bj c X x Y with the "if" fuzzy sets 
Aj c Rn identified by the membership function ai : Rn --+ [0, 1]. An additive 
system sums the "fired" THEN fuzzy sets Bj to give 

m m 

B = L:B} = L:aj(X)Bj, 
j=l j=l 

and then computes the output 

as the centroid which can be also written in the form 

where 

") = i: bj(y)dy > 0, 
f~oo ybj (y) dy 

Cj = f~oo bj(y) dy . 

Provided at least one rule "fires" so that aj(X) > 0 for some j, we have 

(6) 

(7) 

(8) 

(9) 

(10) 

if Yt = ... Vm and if the peak Pj of each "then" fuzzy set Bj equals the centroid 
ci. This structure of the output F(x) implies that it is the conditional expectation 
of Y given that the input X = x. 

The above sketch gives the flavor of the mathematical contents of the fuzzy 
systems theory. 

Bibliographical note. The multivalued logic is discussed in depth in the mono­
graph 

[1] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN 
Scientific Publishers, Warsaw, 1970. 
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The original paper 

[2] L. Zadeh, Fuzzy Sets, Information and Control8(1965), 338-353. 

is still one of the crispest presentations of the foundations. For more recent devel­
opments, and textbook-style presentations, we refer to 

[3] B. Kosko, Neural Networks and Fuzzy Systems. A Dynamical Systems 
Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ, 
1992. 

[4] L. Zadeh and J. Kacprzyk, Eds. Fuzzy Logic for the Management of Un­
certainty, John Wiley & Sons, New York, 1992. 

[5] W. Pedrycz, Fuzzy Sets Engineering, CRC Press, Boca Raton, FL, 1995. 
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A Critique of Pure Reason 

A new psychology says that the mind is not a computer that works by the rules of 
logic, but a set of tools evolved to help people live pre-industrial lives. 1 

You are a barman and you will lose your license if you serve a drink to an 
underage drinker. At your bar are four people; you know what two are drinking 
(one has beer, one has coke) and you know the ages of the other two (one adult, 
one teenager). Ask the minimum number of questions that will ascertain if you 
are breaking the law. If your answer is that you need only ask the beer drinker's 
age and teenager's tipple, then you join the 75% of those asked the question who 
get it right. Muted congratulations. 

Now consider someone laced with cards which have letters on one side and 
numbers on the other. He wants to check the rule "a card with a D on one side 
must have a 3 on the other", and he is presented with card D, card F, card 3 and 
card 7. Which cards must he turn over? More congratulations for the right answer 
this time, because only 25% of people say D and 7. 

The intriguing thing about these two problems is that, to a logician, they are 
the same. The structure of the card problem, and the answer, are identical to the 
drinking problem. Why then is one problem easy and the other relatively hard? A 
small group of psychologists think they know the answer to this meta-question; if 
they are right, a new theory of the mind will be in order, one which has no such 
thing as general intelligence within it, and is not dominated by symbolic reasoning 
skills. The mind is not, they say, a reasoning machine-it is a machine designed 
for scraping out an existence in a clan of hunter gatherers. 

The tests in the first paragraph are called Wason tests, after the psychologist 
who first tortured people with them. They are the essence of a simple reasoning 
task-the application of the rule "if p, then q". If the mind were a straightforward 
reasoning machine, all Wason tests would be equally soluble. In fact their solution 
depends on the story around them. Psychologists first guessed that it is all about 
familiarity with the content of the story-a familiar story would be easier for the 

1 Reprinted from The Economist, July 4th, 1992. We preserved the British punctuation and spelling. 
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mind to reduce to soluble ps and qs. The barman's problem is obvious, the other 

one is obscure. But experiments have ruled that out. Familiar contexts ("if a 

person eats hot chilli peppers, then he will drink cold beer") prove difficult, while 

strange ones ("if a man eats cassava root, then he must have a tattoo on his face") 

sometimes prove easy. 
Leda Cosmides and John Tooby of the University of California at Santa Barbara 

are among the band that thinks it has an explanation. They argue that the underlying 

logical structure is of little relevance, and that the familiarity of the context does 

not matter much either. What matters a lot is the nature of the context. If a rule of 

the form "he who takes the benefit must pay the cost" is at stake, then solving the 

problem means spotting cheats. People do this well. The mind is not following 

abstract reason; it is enforcing a social contract. 
To demonstrate this, Dr Cosmides gave students at Stanford University a series 

of Wason tests. Some were set in a fictitious culture in which rules such as the 

one that restricts cassava root to tattoo-wearers are laid down by a chief called Big 

Kiku. Others were simply nonsensical conjunctions of events: "If you eat duiker 

meat, then you have found an ostrich eggshell". The students proved far better at 

enforcing Big Kiku's laws than at pursuing arbitrary pieces of if-then logic. 
Gerd Gigerenzer, of Salzburg University, and his colleagues have gone one step 

further. In an ingenious Wason test, they asked two groups of students to tum over 

cards to test the statement: "If an employee gets a pension, then that employee must 

have worked for the firm for at least ten years". The statements on the cards were 

"Gets a pension", "Did not get a pension", "Worked for eight years", "Worked for 

12 years". The difference between the two groups was that one was told they were 

employers, the other that they were employees. 
If they were solving the problem in some purely logical way, both groups should 

get the right answer; the rule is broken only when somebody has worked for less 

than ten years but gets a pension, so the cards to tum are "Gets a pension" and 

"Worked for eight years". But if they are looking for cheats, employees will worry 

about those who worked for 12 years and do not get a pension, even though this is 

strictly irrelevant to the problem. So it proves. Almost all the employers, whose 

interests coincide with the right answer, turned the correct cards. The employees, 

however, apparently more concerned with justice than logic, plumped for "Did not 

get a pension" and "Worked for 12 years" by a ratio of six to one. 
Dr Cosmides and Dr Tooby take all this to mean that the Wason test awakens 

a specific mental mechanism that keeps the accounts in social contracts and is on 

the look-out for cheats. Following on from that, they suggest that the brain is a 

bundle of such job-specific mechanisms, shaped by evolution rather than applying 

the same general-purpose "reason" to all the problems it encounters. 
The inspiration for this notion is the idea that society is based on social exchange 

of the form "You scratch my back. I'll scratch yours." In animal societies, all 

apparently altruistic behaviour that is not based on kinship seems to work like this. 

Baboons help each other in fights and keep a close account of who owes whom 

favours. A vampire bat that does not regurgitate part of its blood meal with a 
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neighbour who came home hungry forfeits the return favour at a later date. 
Some anthropologists are coming to see human societies in much the same light. 

Kim Hill of the University of Michigan, who studies the Ache in Paraguay, has 
found that a hunter who returns from the forest laden with meat will give some 
to his partner and children, some surreptitiously to a woman he wants to have 
sex with-the trade is explicit-and some to other hunters who might return the 
favour later. A fatherless Ache family often nearly starves, because nobody has 
an incentive to share meat with a family that cannot reciprocate. Such a system 
of debts is well suited to hunters. A hunter may return empty-handed for days on 
end and then suddenly kill a tapir-far more than he can eat. Better to share it, and 
thus be owed a debt, than waste it. 

Gambling on certainty. Other aspects of rationality are starting to fall by the 
wayside, too. Dr Gigerenzer, a probability theorist by training, has tried, using 
similar ideas, and similar experiments to his work on social contracts, to explain 
the mistakes people make when thinking about probabilities. 

Probability theorists have always been split over the question of what probability 
is. "Bayesians"-named after the originator of their point of view-say it is a 
measure of subjective certainty about single events: "I'm 90% sure of my horse 
winning this race." "Frequentists" say it is the long-run frequency of events: "Nine 
out of my last ten tips were winners." People are quite good at assessing the latter 
while, to the delight of bookmakers, they are generally hopeless at the former. 

One example of this is the psychological paradox known as the "overconfidence 
effect". Overconfidence tends to be specific rather than general. When asked a 
general-knowledge question such as "which city is bigger, Bonn or Heidelberg?" 
people are more likely to think they know the correct answer than actually to know 
it. But after answering a string of questions, they are good at estimating the number 
they got right. Psychologists have used such "fallacies" to argue that people are 
bad at statistics. Dr Gigerenzer thinks, rather, that people are natural frequentists. 
He has found that merely rephrasing a problem in frequentist rather than Bayesian 
terms generally increases the number of people who can solve it (see the Section 
"Think again", below). 

Again, a look at primitive life suggests a reason why. The probability of a single 
event is a meaningless fact in a hunter's world: what can he do about the fact that 
his chances of killing a tapir today are 3%? But the frequency of past events and 
past conjunctions is vitally important and always has been: he killed a tapir on 
three of the last 100 visits to that valley, and five out of 100 visits to this one. A 
German psychologist, Egon Brunswik, argued as early as the 1960s that human 
brains are constantly, and unconsciously, assessing such frequencies as guides to 
future events. 

Given this view of man-a natural trader, ever concerned with social debts and 
an uncertain future-it is little wonder that human minds are interested in detecting 
cheats, not pursuing pure logic, and in sampling frequencies rather than making 
risky one-off guesses. Reasoning, in this view, depends on a number of such mental 
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subroutines. Logic is a refinement and codification of their results-a creative and 
powerful generalisation, but the crowning glory of human intellectual achievement 
rather than its deep foundation. 

Think again. Arguments about Bayesian v. frequentist statistics may sound 
esoteric, but they touch the real world. Dr Cosmides and Dr Tooby applied Dr 
Gigerenzer's ideas to a disturbing piece of research done in the late 1970s. 

Ward Casscells and his colleagues at Harvard Medical School had stopped 60 
doctors in the corridors of a prestigious hospital and asked them the question: "If 
a test to detect a disease, whose prevalence is 1/1,000, has a false-positive rate of 
5%, what is the chance that a person found to have a positive result actually has 
the disease, assuming you know nothing about the person's symptoms?" Only 11, 
or 18%, of the doctors knew the answer. Most said 95%, and the average answer 
was 56%. (The correct answer is one in 51, just under 2%.) 

Dr Cosmides and Dr Tooby asked the question of a group of Stanford students 
and got the same poor success rate. Even when they clarified the meaning of the 
term "false-positive", which laymen might not be familiar with (though doctors 
should be), people still got it wrong. Then they rephrased it. Instead of a Bayesian­
style question about the chance of a single infection, they asked a more frequentist 
one: "How many of 1,000 people who tested positive actually had the disease?" 
They expected the students (who were neither medically nor statistically trained) 
to do slightly better. They were stunned by the result: three times as many as 
before got the right answer. 

Nor is this just an abstract experiment. One young American recently committed 
suicide on learning he had tested positive for HIV. The test had a 4% rate of false 
positives and he believed his chance of carrying the virus was 96%. It was 10%. 
Beware of Bayesians bearing diagnoses; the mind is a frequentist device. 
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The Remarkable Bernoulli Familyr 

BERNOULLI. Originally from Antwerp, the family became citizens of Basel 
in 1622. Coat of arms: In silver, a tri-partite green branch, each having seven 
(sometimes nine) leaves. The progenitor was Jakob (d.1583), who in 1570 had 
fled from Antwerp to Frankfurt/Main, thus escaping Count Alba's persecution of 
heretics. Jakob Bernoulli, a wholesale grocer and tradesman, had 17 children. 
One line of his descendants stayed in Frankfurt, where it is still flourishing; others 
settled in Hamburg, Cologne, Breslau (Wroclaw), and Basel. 

1. Jakob (1598-1634) Grandson of progenitor Jakob, druggist and grocer, 
was made a citizen of Basel in 1622. 

2. Niklaus ( 1623-1708) Son of 1. Elected member of the board of the Saf­
fron's Guild; representing the guild on the city's Great Council [legislative] 
in 1668. 

3. Niklaus (1662-1716) Son of2, painter, elected to the Small Council [ex­
ecutive] in 1705. 

The family's reputation for its outstanding impact on science, especially 
mathematics, was established first by: 

4. Jakob2 ( 1654-1705) Brother of 3. Professor of Mathematics at Basel Uni­
versity. After graduating in theology in 1676, he traveled widely across 
Switzerland, France, the Netherlands, and England, where he made con­
tact with the most prominent mathematicians. On his return to Basel in 
1682, he inaugurated lectures on experimental physics and, in 1687, was 
appointed to the Chair of Mathematics. Inspired by, yet independently 
from, Leibniz, he explored the infinitesimal calculus. He published stud­
ies on the logarithmic spiral, the loxodromes, infinite fractions, infinite 

1 Adapted, with permission, from The Bernoulli News, June 1994, 15-17. 
2 Author of Ars Conjectandi 
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series (on which occasion the so-called Bernoulli numbers were discov­
ered), etc., as well as studies on the isoperimetric problem-hereby laying 
the foundation for variational calculus. In 1701 he became a member of 
the Berlin Academy. 

5. Johann (1667-17 48) Younger brother of 4. Also Professor of Mathemat­
ics and even more renowned for his contributions. He had studied medicine 
as well, qualifying in this discipline at Basel University in 1694. The next 
year he became Professor of Mathematics and Physics at Groningen. In 
1705 he succeeded his brother to the chair at Basel University. Listing all 
his achievements in mathematics would require a comprehensive survey of 
the whole higher analysis; suffice it to name his evaluation, using differen­
tial calculus, of the limits of quotients whose numerator and denominator 
both tend to zero, invention of calculus for exponential functions, most 
integration methods (together with Leibniz), etc. He was elected a corre­
sponding member of the Academies of Paris (1699), Berlin (1701 ), London 
( 1712), Bologna ( 1724), and Petersburg (1725). Among his students were 
his own sons Nildaus, Daniel, and Johann-and also Leonhard Euler. 

6. Niklaus3 (1687-1759) Son of 3. Mathematician, lawyer, and philosopher. 
His favorite field of research was the theory of infinite series. From 1716 
to 1719 he was Professor of Mathematics at Padua University; in 1722 
Basel University appointed him as Professor of Logic, and as Professor of 
Codified and Feudal Law in 1731. Member of the Academies of Berlin, 
London, and Bologna. 

7. Niklaus II (1695-1726) Son of 5. Mathematician and lawyer. Professor 
of Law at Bern University in 1723. In 1725 he left (with his brother Daniel) 
for Petersburg's newly founded Academy, where he suffered an early death 
on July 26, 1726. His contributions to mathematics lie above all in the field 
of integral and differential calculus. 

8. Daniel (1700--1782) Son of 5. Mathematician, physicist, medical doctor, 
and botanist, studied mathematics with his father and his brother Nildaus 
from the age of 11, and later studied medicine in Basel, Heidelberg, and 
Venice. In 1725 he left for Petersburg with his brother Niklaus. Between 
1725 and 1757 he was ten times awarded prizes for his mathematical work 
by the Paris Academy-on one occasion jointly with his father (1734); on 
another with his youngest brother, Johann. In 1733 he was made Professor 
of Anatomy and Botany at Basel University. His scientific achievements 
reach out into the most diverse areas of mathematics, physics, astronomy, 
etc. Member of the Academies of Petersburg, Berlin, London, and Paris. 

3Editor of Ars Conjectandi. He also applied the Law of Large Numbers to longevity data. 
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9. Johann D (1710-1790) Son of Johann (5.). Mathematician and lawyer. 
After obtaining his doctorate in law, 1732, he joined his older brother 
Daniel in Petersburg, but returned with him to Basle the following year. 
In 1743 he was given the Chair of Rhetoric at Basel University, which he 
exchanged for a Chair of Mathematics in 17 48. Four of his studies were 
awarded prizes by the Paris Academy. 

10. Johann III (1744-1807) Eldest son of9. Astronomer and mathematician. 
Appointed by the Berlin Academy in 1763, he became Director of the 
Berlin Observatory in 1767. Member of the Academies of Paris, Peters­
burg, Rome, London, and Stockholm. Director of the Berlin Acade_my. 

11. Daniel (1751-1834) Second son of 9. Doctor of Medicine, Professor of 
Rhetoric, followed by professorships in physics and medicine; finally, also 
Major-Domo of the Dean of the Basel Cathedral. 

12. Jakob II (1759-1789) Youngest son of Johann II (9.). Mathematician and 
physicist, he served as secretary to the Imperial Ambassador in Venice, 
from 1779. In 1786 he joined the Petersburg Academy. His research 
touched on problems of theoretical mechanics. 

The descendants of the fourth son of Johann II, Emanuel, live in Venice and 
Petersburg. From among the descendants of the fifth son, the pharmacist 
Niklaus, mention should be made of: 

13. Leonhard ( 1791-1871) Councillor of the city of Basel. 

14. Niklaus (1793-1876) President of the Criminal Court. 

15. August (1839-1921) Son of 13. Ph.D., renowned historian. 

16. August (1879-) Son of 15. Professor of Physical Chemistry at Basel 
University. 

17. Hans (1876-) Grandson of 14. Architect and Professor at ETH Ziirich. 

Among the descendants of Daniel ( 11) quite a few have been important 
figures: 

18. Christoph (1782-1863) Biologist and technologist; founder and director 
of the Philotechnic Institute; Professor of Natural History at Basel Univer­
sity. 

19. Carl Christoph (1861-) Grandson of 18. Ph.D., chief librarian of the 
Basel Great Council. 

20. Carl Albrecht (1863- ) Licentiate in Theology, novelist and dramatist. 
His works are listed in the Schweizerisches Zeitgenossen Lexikon (Swiss 
Lexicon of Contemporaries). 
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21. Johannes (1864--1920) Ph.D., Director of the Swiss National Library in 
Bern, 1895-1908. 

22. Eduard (1867-) Brother of 21. Professor of History of Music, Zurich 
University. 

23. Hieronymus (1745-1829) Great-nephew of 4 and 5. Biologist. 

24. Karl Gustav (1834--1878) Biologist. 

25. Johann Jakob (1831-1920) Ph.D., Professor of Archaeology at Basel 
University. 

The Bernoulli family is still thriving; Daniel Bernoulli is currently Professor of 

Geology at ETH Zurich. 

Bibligraphical Note: The above biographical data have been taken, with the 
help from M.G. Soland of ETH Zurich in preparation of the English version, from 

[1] H.Turler et al., Eds., Historisch-biographisches Lexikon der Schweiz, 7 
vols., Neuchfttel, 1921- 1934, Vol. 2 (1924). 

All Bernoullis active and successful in mathematics and/or any other area of knowl­

edge were given an entry, chronologically listed up to 1922. For detailed informa­
tion on specific achievements of this famous Swiss family consult 

[2] C. C. Gillespie, Ed., Dictionary of Scientific Biography, Vol.2, Charles 

Scribner and Sons, New York 1970. 
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Uncertain Virtual Worlds 
Mathematica Packages 

by Bernard YCART 

0. Introduction 

The word "packages" is not totally appropriate here. The functions are left with­
out input protections. They are not declared as packages in the language, and their 
denominations are not protected. This may cause some errors. However, it should 
permit easier 'on line' testing and modifications. The 13 files should be copied 
from the uvw Web Site to a subdirectory uvw of the directory PACKAGES in the Math­
ematica folder. Then they will be accessible by the command «UVW'Package'. 
They will work with Mathematica 2.0 or higher. 

The programming style is a compromise between two objectives. The first one 
is to respect the spirit and style of Mathematica, in order to use the language as effi­
ciently as possible. The second one is to make the functions transparent and easy to 
modify for the user. As an illustration of that compromise, one can compare for in­
stance the function Distribution in package uvw' DiscSamp', with the similar Fre­
quencies of the standard Mathematica package Statistics 'DataManipulation'. 
Numerous examples and suggestions for Mathematica experiments are included. 

All functions of the type 

RS ..• [. •. ,n] 

return, as a list, a Random Sample of size n, i.e., a realization of an n-tuple of 
independent identically distributed random variables. 

For easy reference, we provide first a complete list of uvw packages and com­
mands. The detailed descriptions follow later. The full code is available on the 
uvw Web Site, where it is augmented by various pedagogical programming com­
mentaries. 

477 © Springer International Publishing AG 2017 
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1. UVW' Billiard' (Billiards with a round obstacle) 
NextBounce[currentposition, r] 
Trajectory[shootingangle, tmax, r] 
Bundle[listofangles, tmax, r] 
Differences[alpha, deltaalpha, tmax, r] 

2. UVW'ContSamp' (Simulations of continuous distributions) 
RSContinuousDistribution[density, a, b, n] 
RSindependent2D[density1, a1, b1, density2, a2 ,b2, n] 
RSNormal2D[sigma1, sigma2, rho, n] 
RSUnitBall[dim, n] 

3. UVW'DataRep' (Data representations) 
Histogram[listofdata, listofbounds] 
RegularHisto[listofdata, xmin, xmax, nx] 
SamplePlot2D[listof2Ddata] 
Histogram2D[listof2Ddata, xmin, xmax, nx, ymin, ymax, ny] 
LargeNumbers[listofdata] 
CentralLimit[listofdata, mu, sigma, n] 

4. UVW'DiscSamp' (Simulations of discrete distributions) 
Distribution[listofdata] 
RSPermutation[list, n] 
RSExtract[list, k, n] 
RSDiscreteDistribution[dist, n] 

5. UVW'DynSyst' (Dynamical Systems) 
Mean[listofdata] 
Variance[listofdata] 
CovarianceFunction[listofdata, n] 
AsymptoticVariance[listofdata, n] 
CorrelationDimension[listofdata, step, nstep] 
TentFunction[a, x] 
LogisticFunction[a, x] 
IterateAPhi[matrixA, functionPhi, vectorXO, n] 

6. UVW'Fractals' 
Triangle 
Star 
Island 
Battlement 
Hat [sharpness] 

(Deterministic and random Von Koch curves) 

Wy[angle1, length!, angle2, length2] 
RSWy[n] 
RSTruncs[n] 
TransformSegment[segment, pattern] 



Appendix E. Uncertain VHtual Worlds 

IteratePattern[listofsegments, pattern, n] 
IterateRandomPattern[listofsegments, patterns, probas, n] 
DrawSegments[listofsegments] 

7. UVW'Interact' 
Checkerboard 
Diagonals 

(Simulation of spin systems in the plane) 

RConfig[p, width, height] 
Uniform[lambda, mu] 
Ising[Alpha, Beta] 
Contact [lambda] 
Voter 
Cyclic[n, bound] 
RepartConfig[config] 
Evolution[initialconfig, rates, niter] 
DrawConfig[config, opts] 

8. UVW'Lorenz' (Lorenz's attractor) 
Lorenz[s, b, r] 
LorenzArray[matrix] 

9. UVW'PseuGene' (Congruential and midsquare generators) 
CongruGenerator[seed, a, c, m, n] 
MidsquareGenerator[seed, n] 
CongruentialLoop[seed, a, c, m] 
MidsquareLoop[seed] 

10. UVW'RandWalk' (Random walks and random vector fields) 
RandomWalk[listof2Dvelocities, deltat] 
VectorField[arrayof2Dvelocities] 
VectorFieldTrajectory[arrayof2Dvelocities, deltat, tmax] 

11. uvw' StoGho' (Stochastic Ghost) 
StoGho[width, mood] 
GalleryOfPortraits[matrix] 

12. UVW'TimeRep' (Queues and time processes) 
Queue[interarrivals, services] 
CumulatedTimes[listoftimes] 
Geiger[listoftimes] 

13. UVW'ZeroOne' (Lists of zeros and ones) 
RSZeroOne[p, n] 
Binary[functionf, listofzeroones] 
PlotZeroOne[listofzeroones] 
AnimateShift[listofzeroones] 
ActualLength[listofzeroones] 

479 



480 Appendix E. Uncertain Virtual Worlds 

Weight[listofzeroones] 
WeightedAlphabeticalOrder[listofzeroones] 
Entropy[t] 

1. UVW'Billiard' -billiards with a round obstacle 

NextBounce [currentposition,r] computes the next bouncing point of a ball in­
side a square table with a circular obstacle of radius r. The initial conditions are 
given in the list currentposi tion that has four real coordinates, respectively the 
abscissa, ordinate, incoming angle of the ball, and the current time. The result 
is returned as another list of four elements, the abscissa and ordinate of the new 
bouncing point, the new direction of the ball and the current time incremented by 
the running time between the two bounces. 

Trajectory [shootingangle, tmax, r] draws a square table with a centered circular 
obstacle of radius r (default 0.5). Draws inside this support the trajectory of a ball 
starting at the bottom left comer with initial direction shootingangle, up to time 
tmax. 

Bundle [listof angles, tmax, r] draws a square table with a centered circular ob­
stacle of radius r. Draws inside the trajectories of balls starting at the bottom left 
comer with initial directions read in list of angles, up to time tmax. 

Differences [angle, dangle, tmax, r] simulates two trajectories of balls in a square 
table with a centered circular obstacle with radius r. Both trajectories start from 
the bottom left comer. They are followed up to time tmax. The shooting angle 
of the first trajectory is angle, its difference with the second shooting angle is 
dangle. The function represents three consecutive graphics. The first one is the 
billiard table with the two trajectories . The second one is the evolution of the 
absolute difference of angles as a function of time. The third one is the norm of 
the difference of positions as a function of time. 

Examples: 
Here are some trajectories with a growing obstacle. 

In[l] := <<UVW'Billiard' 
In[2]:= Trajectory[0.4,100,0.] 
In[3] := Trajectory[0.4,100,0.1] 
In[4]:= Trajectory[0.4,100,0.5] 
In[5]:= Trajectory[0.4,100,0.8] 
In[6]:= Bundle[Range[Pi/12,5*Pi/12,Pi/12],10,0.] 
In[?]:= Bundle[Range[Pi/12,5*Pi/12,Pi/12],50,0.] 
In[8]:= Bundle[Range[Pi/12,5*Pi/12,Pi/12],50,0.1] 
In[9]:= Bundle[Range[Pi/12,5*Pi/12,Pi/12],50,0.5] 
In[10]:= Bundle[Range[Pi/12,5*Pi/12,Pi/12],50,0.8] 
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Here is how two trajectories, with close shooting angles, start differing chaotically 
after several bounces off the circular obstacle. 

In[1] := <<UVW'Billiard' 
In[2] := Differences[0.4,0.001,20,0.] 
In[3]:= Differences[0.4,0.001,100,0.] 
In[4]:= Differences[0.4,0.001,20,0.1] 
In[5] := Differences[0.4,0.001,20,0.5] 
In[6]:= Differences[0.4,0.001,100,0.5] 
In[7] := Differences[0.4,0.001,200,0.5] 

2. UVW' ContSamp' - simulations of continuous 
distributions 

RSCont inuousDistribution [function£, a, b, n] returns a sample of size n for the 
distribution with density function£ on the interval [a, b]. 

RS!ndependent2D [funct ionf 1, a1 , b1, funct ionf2, a2, b2, n] returns a sample of 
size n, {{x1 ,y1}. ... , {xn,yn}} of a two-dimensional random vector (X, Y), where 
X andY are independent, X has density functionf1 on the interval [a1,b1], Y 
has density functionf2 on the interval [a2, b2]. 

RSNormal2D[Sigma1,Sigma2,rho,n] returns a sample of size n for the two­
dimensional Gaussian vector (X, Y). The means of X and X are zero, their standard 
deviations are sigma1 and sigma2. Their correlation coefficient is rho. 

RSUni tBall [dim, n] returns a sample of size n of vectors uniformly distributed in 
the unit ball of the space of dimension dim. 

Examples: 
Random samples of standard continuous distributions can be simulated using the 
standard function Random, together with the distributions defined in the package 
Statistics'ContinuousDistributions'. 

In[1] := Table[Random[] ,{100}] 
In[2] := Table[Random[Real,{2,4}] ,{100}] 
In[3] := <<Statistics'ContinuousDistributions' 
In[4]:= Table[Random[Exponentia1Distribution[1.]),{100}] 
In[5] := Table[Random[NormalDistribution[O. ,1.]] ,{100}] 
In[6]:= Table[Random[Weibul1Distribution[2.,1.]),{100}] 

A random sample of a distribution with an arbitrary density can be simulated 
using RSContinuousDistribution. Notice that the function f only needs to be 
non-negative over the prescribed interval. RSContinuousDistribution divides it 
automatically by its integral. 
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In[1]:= <<UVW'ContSamp' 
In[2]:= <<UVW'DataRep' 
In[3] := f[x_] :=1+Sin[x] 
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In[4]:= samp=RSContinuousDistribution[f,0,10,2000]; 
In[5]:= g1=RegularHisto[samp,0,10,20] 
In[6]:= integral=Nintegrate[f[x],{x,0,10}] 
In[7]:= fnorm[x_]:=f[x]/integral 
In[8] := g2=Plot[fnorm[x] ,{x,0,10}] 
In[9]:= Show[g1,g2] 

The function RSindependent2D returns a two-dimensional sample with indepen­

dent coordinates. Each coordinate is simulated using RSContinuousDistribution. 

In[1]:= <<UVW'ContSamp' 

In[2]:= <<UVW'DataRep' 
In [3] : = f [x_] : =x-2 

In[4]:= para2=RSindependent2D[f,-1,1,f,-1,1,2000]; 

In[5]:= SamplePlot2D[para2,Frame->True,AspectRatio->1] 

In[6]:= Histogram2D[para2,-1,1,8,-1,1,8] 

In[7]:= marge1=Transpose[para2][[1]]; 

In[8]:= RegularHisto[marge1,-1,1,10] 

The package Statistics' Mul tinormalDistribution', delivered with version 3.0 

of Mathematica, permits all sorts of manipulations with Gaussian vectors, includ­

ing their simulation by the standard Random function. RSNormal2D returns samples 

of Gaussian vectors in the plane. 

In[1]:= <<UVW'ContSamp' 

In[2]:= <<UVW'DataRep' 

In[3]:= gauss2=RSNormal2D[2,1,-0.8,2000]; 

In[4]:= SamplePlot2D[gauss2] 

In[5]:= Histogram2D[gauss2,-6,6,10,-3,3,10] 

In[6]:= combi=gauss2.Transpose[{0.5,1.6}]; 

In[7]:= RegularHisto[combi,-3,3,20] 

In[8]:= Centra1Limit[combi,0,1,1] 

Here is an illustration of the uniform distribution on the unit ball in dimensions 2, 

3, and 4. The norm of a random point in the unit ball in dimension n tends to 1 as 

n tends to infinity. 

In[1]:= <<UVW'ContSamp' 

In[2]:= <<UVW'DataRep' 
In[3]:= ball2=RSUnitBall[2,1000]; 

In[4]:= SamplePlot2D[ball2,AspectRatio->1] 

In [5] : = norms=Sqrt [Table [ball2 [ [i]] • ba112 [ [i]] , {i ,1000}]] ; 

In[6]:= RegularHisto[norms,0,1,10] 

In(7]:= ball3=RSUnitBall[3,1000]; 
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In[8]:= Show[Graphics3D[Table[Point[ball3[[i)]],{i,1000}]]] 
In[9] := norms=Sqrt[Table[ball3[[i]J .ball3[[i]] ,{i,1000}]); 
In[10] := RegularHisto[norms,0,1,10] 
In[11] := ball4=RSUnitBall[4,1000]; 
In[12] := norms=Sqrt[Table[ball4[[i)] .ball4[[i]],{i,1000}]]; 
In[13] := RegularHisto[norms,0,1,10] 

3. UVW' DataRep' - data representations 
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Histogram [list of data, listofbounds] represents the histogram of the data con­
tained in listofdata. The bounds of the bins are listofbounds. 

RegularHisto [listofdata,xmin,xmax,nx] represents the histogram of the data 
contained in listofdata. There are nx regular classes between xmin and xmax. 

Sa.mplePlot2D [listof2Ddata] plots in the plane the points whose coordinates are 
read in listof2Ddata. 

Histogra.m2D [listof2Ddata ,xmin ,xmax ,nx, ymin, ymax ,ny] represents a histogram 
in three dimensions for the two-dimensional data contained in listof2Ddata. The 
classes are regular. There are nx classes on the x -axis between xmin and xmax, and 
ny classes on the y-axis between ymin and ymax. 

LargeNumbers [listofdata] plots the partial means of the data contained in 
list of data. 

CentralLimit [listofdata, mu, sigma, n] takes consecutive groups of n data 
in listofdata. The sum of each group is centered by n*mu then divided by 
Sqrt [n] *sigma. The results are represented on a regular histogram with 20 classes. 
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Examples: 
Here is an illustration ofthe Law of Large Numbers and the Central Limit Theorem 

applied to the uniform distribution on [0, 1], and to the exponential distribution. 

The Central Limit Theorem states that the centered and reduced variables asso­

ciated to the sum of n independent random variables is approximately normally 

distributed, for n large enough. For the uniform distribution, it is true with a rea­

sonable precision, for n as low as 6. The exponential distribution, being more 

skewed, requires a much higher value of n. 

In[1] := <<UVW'DataRep' 
In[2]:= uni=Table[Random[],{2000}]; 
In[3] := Histogram[uni,{0.,0.1,0.3,0.6,0.8,1.}] 
In[4] := RegularHisto[uni,0,1,10] 
In[5] := LargeNumbers[uni] 
In[6] := Centra1Limit[uni,0.5,Sqrt[1./12],6] 
In[7]:= exp=Table[-Log[Random[]],{2000}]; 
In[8]:= RegularHisto[exp,0,5,10] 
In[9]:= LargeNumbers[exp] 
In[10] := Centra1Limit[exp,1.,1.,10] 

The Law of Large Numbers is false if the distribution of the random variables in 

the independent sequence does not have an expectation. Here is what happens with 

the Cauchy distribution. 

In[1]:= <<UVW'DataRep' 
In[2]:= <<Statistics'ContinuousDistributions' 

In[3] := samp=Table[Random[CauchyDistribution[0.,1.]],{2000}]; 

In[4] := LargeNumbers[samp] 

In[5] := Centra1Limit[samp,0,1,10] 

Here are several random samples in the plane, visualized through SamplePlot2D 

and Histogram2D. 

In[1] := <<UVW'DataRep' 
In[2] := uni=Table[(Random[] ,Random[]},{10000}]; 

In[3]:= SamplePlot2D[uni,Frame->True,AspectRatio->1] 

In[4] := Histogram2D[uni,0,1,8,0,1,8] 

In[5] := tri=Table[(Min[Random[],Random[]],Min[Random[] ,Random[]]}, (10000}]; 

In[6] := SamplePlot2D[tri,Frame->True,AspectRatio->1] 

In[7] := Histogram2D[tri,0,1,8,0,1,8] 

In[8]:= x=Transpose[uni] [[1]]; 
In[9]:= y=Transpose[uni] [[2]]; 
In[10] := uni2=Transpose[(x+y,x-y}]; 

In[11] := SamplePlot2D[tri,AspectRatio->1] 

In[12] := tri2=Transpose[(x/(x+y),2*x*y/(x+y)}]; 

In[13]:= SamplePlot2D[tri2,AspectRatio->1] 

In[14] := Histogram2D[tri2,0,1,8,0,1,8] 
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4. UVW' DiscSamp' -simulations of discrete distributions 

Distribution [listofdata] returns a list of pairs. The first element of each pair 
is the value appearing in listofdata, the second one is the frequency of that value 
in listofdata. 

RSPermutation[list ,n] returns a list of n random permutations of list. 

RSExtract [list, k, n] returns a list of n lists oflength k, extracted at random from 
list. 

RSDiscreteDistribution [dist, n] returns a random sample of size n of the dis­
tribution dist, given under the form of a list of non-negative reals. The list dist 
is first divided by its sum, then interpreted as a probability distribution on the set 
1, ... ,Length[dist]. 

Examples: 
Random samples of classical discrete distributions can be simulated using the 
standard function Random, together with the distributions defined in the package 
Statistics'DiscreteDistributions'. 

In[1] := Table[Random[Integer] ,{100}] 
In[2] := Table[Random[Integer,{2,4}] ,{100}] 
In[3] := <<Statistics'DiscreteDistributions' 
In[4] := Table[Random[Binomia1Distribution[3,0.5]] ,{100}] 
In[5] := Table[Random[GeometricDistribution[0.5)],{100}] 
In[6] := Table[Random[PoissonDistribution[1.]] ,{100}] 

To play Lotto, one has to extract a sample of 6 numbers from the set {1, ... , 49}. 
It can be done with RSPermutation or RSExtract. One can use also the 
functions RandomPermutation or RandomSubset of the standard package Dis­
creteMath' Combinatorica'. That package contains several other functions that 
return random discrete objects, such as graphs, tableaus, trees, heaps, etc. 

In[1] := <<UVW'DiscSamp' 
In[2) := fournine=Range[49]; 
In[3] := perm=RSPermutation[fournine,10]; 
In[4] := lotto1=Transpose[Take[Transpose[perm] ,6]]; 
In[5] := MatrixForm[%] 
In[6]:= lotto2=RSExtract[fournine,6,100]; 
In[7]:= Distribution[Flatten[lotto2]] 
In[8] := dist=Transpose[%] [[2])] 
In[9] := <<Graphics'Graphics' 
In[10] := BarChart[dist] 
In[11] := PieChart[dist] 

The following example uses RSDiscreteDistribution to illustrate the Law of 
Large Numbers. 
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In[1] := <<UVW'DiscSamp' 
In[2] := dist={.2, .3, .5) 
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In[3]:= sample1=RSDiscreteDistribution[dist,100]; 
In[4]:= sample2=RSDiscreteDistribution[dist,1000]; 
In[5] := sample3=RSDiscreteDistribution[dist,10000]; 
In[6] := Distribution[sample1] 
In[7]:= Distribution[sample2] 
In[8]:= Distribution[sample3] 

5. UVW 'DynSyst ' - dynamical systems 

Mean [list] returns the arithmetic mean of list. 

Variance [list] returns the maximum likelihood estimate of the variance of list. 

CovarianceFunction [list, N] returns in a list the values cov(i) fori ranging from 

0 to N . The value cov(i) is the covariance of list with its i-th shift. 

AsymptoticVariance [list, N] returns the sum of the values cov(i) for i ranging 

from 0 toN. The value cov(i) is the covariance of list with its i-th shift. 

CorrelationDimension [list, step ,nstep] computes the values of C (r ), r being 

an integer multiple of step, up to nstep values. Then the values log[C(r)] as a 

function of r are plotted, and the linear regression coefficients are computed. The 

slope of the regression line and the correlation coefficient are printed. 

TentFunction[a,x] returns 1-a*Abs[x-1+1/a]. 

LogisticFunction[a,x] returns ax(1-x). 

IterateAPhi[matrixA, functionPhi, vectorXO ,n] computes and returns in a list 

the images by the functionPhi of the vectorXO and its products by the successive 

powers of the matrixA. The coordinates of these vectors are reduced to their decimal 

parts. 

Examples: 
Can successive iterates of the logistic function be taken as random reals in the 

interval [0, 1]? 

In[1] := <<UVW'DynSyst' 
In[2] := <<UVW'DataRep' 
In[3] := f[x_] :=LogisticFunction[4.,x] 
In[4] := samp=NestList[f,0.23,1000]; 
In[5]:= RegularHisto[samp,0,1,10] 
In[6]:= samp2=Partition[samp,2]; 
In[7]:= SamplePlot2D[samp2] 
In[8]:= mu=Mean[samp] 
In[9]:= sigma=Sqrt[AsymptoticVariance[samp,10]] 
In[10] := Centra1Limit[samp,mu,sigma,10] 
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The function IterateAPhi generates better samples. 

In[1] := <<UVW'DynSyst' 
In[2] := <<UVW'DataRep1 
In[3]:= mat=1,2,1,1 
In[4] := phi[ell~ :=Apply[Plus,ell] 
In[5] := vec={0.23,0.12} 
In[6] := samp=IterateAPhi[mat,phi,vec,1000]; 
In[7] := RegularHisto[samp,0,1,10] 
In[8] := samp2=Partition[samp,2]; 
In[9] := SamplePlot2D[samp2] 
In[10] := mu=Mean[samp] 
In[11] := sigma=Sqrt[AsymptoticVariance[samp]] 
In[12] := Centra1Limit[samp,mu,sigma,10] 
In[13] := CorrelationDimension[samp,0.05,5] 
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6. UVW' Fractals' - deterministic and random Von Koch 
curves 

All fractal curve approximations are treated by this package as lists of segments, 
a segment being a list of two points, each of them being a list of two coordinates 
in the plane. The package contains a few examples of simple lists of segments 
(patterns). By replacing each of the segments of a list by a pattern, a new list 
is obtained, which can be used as another pattern, or a new starting point. This 
package contains the replacement and iteration functions that permit the production 
of many different curves, and also their representation. We start with examples of 
basic patterns. 

Triangle returns an equilateral triangle as a list of three segments in the plane. 

Star returns a star as a list of six segments in the plane. 

Island returns a notch and a triangle as a list of eight segments in the plane. 

Battlement returns a battlement as a list of eight segments in the plane. 

Hat [sharpness] returns a list of four segments in the plane. 

Wy [angle!, length!, angle2, length2] returns a Y-shaped list of four segments in 
the plane. angle1,length1,angle2 and length2 are the parameters of the two 
branches. 

RSWy [n] returns a random sample of size n of outputs of the function Wy. 

RSTruncs [n] returns a random sample of vertical segments in the plane. 

The following commands replace segments by patterns: 
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TransformSegment [segment ,pattern] returns a list of segments obtained from 
pattern by moving it in the plane so as to make its ends coincide with those of the 
initial segment. 

IteratePattern[listofsegments,pattern,n] applies the command Transform­

Segment to each of the segments in listofsegments. Iterates n times. 

IterateRandomPattern [listofsegments, patterns ,pro bas, n] iterates n times 
the following operation: for each of the segments in listofsegments, one of 
the patterns in patterns is chosen randomly according to a probability read in 
probas, and the segment is transformed accordingly by TransformSegment. 

The graphical representation can be obtained by means of the following com­
mand: 

DrawSegments [listofsegments] plots the elements of listofsegments in the 
plane. 

Examples: 
The celebrated Von Koch curves are constructed by iteratively replacing each seg­
ment of a jagged line by a given pattern. 

In[1]:= <<UVW'Fractals' 
In[2]:= h=Hat[Sqrt[3]/2]; 
In[3] := DrawSegments[h] 
In[4] := snowflake=IteratePattern[Triangle,h,4]; 
In[5]:= DrawSegments[snowflake,AspectRatio->1]; 
In[6]:= snow1=IteratePattern[Triangle,h,1]; 
In[7] := snow2=IteratePattern[snow1,h,1]; 
In[8]:= snow3=IteratePattern[snow2,h,1]; 
In[9]:= snow4=IteratePattern[snow3,h,1]; 
In[10] := g1=DrawSegments[snow1,AspectRatio->1] 
In[11] := g2=DrawSegments[snow2,AspectRatio->1] 
In[12] := g3=DrawSegments[snow3,AspectRatio->1] 
In[13] := g4=DrawSegments[snow4,AspectRatio->1] 
In[14] := picture={{g1,g2},{g3,g4}}; 
In[15] := Show[GraphicsArray[picture]] 
In[16] := DrawSegments[Battlement]; 
In[17] := IteratePattern[Battlement,Battlement,3]; 
In[18] := DrawSegments[%] 
In[19] := y=Wy[Pi/6,1,Pi/6,1]; 
In[20] := DrawSegments[y,AspectRatio->1] 
In[21] := IteratePattern[Star,y,4]; 
In[22] := DrawSegments[%,AspectRatio->1] 
In[23] := DrawSegments[Island]; 
In[24] := IteratePattern[Island,Island,3]; 
In[25] := DrawSegments[%] 

Random fractals are much better models for real life. 

In[l] := <<UVW'Fractals' 
In[2] := h=Hat[Sqrt[3]/2]; 
In [3] : = base={{{O. , 0.}, {1. , 0.}}}; 
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In[4]:= IterateRandomPatterns[base,{h,Island},{0.5,0.5},3]; 
In[5]:= DrawSegments[%] 
In [6] : = IterateRandomPatterns [base, {h, Island}, {0. 5,0. 5} ,3] ; 
In[7] := DrawSegments[%] 
In[8] := weights=Table[0.25,{4}]; 
In[9]:= madhatter=Table[Hat[2*Random[]],{4}]; 
In[10]:= IterateRandomPatterns[base,madhatter,weights,4]; 
In[11]:= DrawSegments[%] 
In[12]:= madhatter=Table[Hat[2*Random[]],{4}]; 
In[13] := IterateRandomPatterns[base,madhatter,weights,4]; 
In[14] := DrawSegments[%] 
In[15] := ry=Wy[(Pi/2)•Random[],Random[],(Pi/2)*Random[],Random[]]; 
In[16]:= tree=IteratePattern[ry,ry,4]; 
In[17]:= DrawSegments[tree] 
In[18]:= branches=RSWy[4]; 
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In[19]:= forest=IterateRandomPattern[RSTruncs[10],branches,weights,3]; 
In[20] := DrawSegments[forest] 

7. UVW' Interact' -simulation of interacting particle systems 
in the plane 

This package contains functions, examples of configurations, and transition rates 
needed for simulation of interacting particle systems on the two-dimensional square 
lattice. The lattice is finite and wrapping around itself, i.e., periodic boundary 
conditions are assumed. Each site on the lattice can be in one of the two possible 
states, 0 and 1. The flip rates from one state to the other at each site depend on the 
state at this site itself as well as on the number of neighboring sites that are in state 
1. 

We begin with examples of basic configurations. All configurations are two­
dimensional arrays of Os and 1 s. The element conf ig [ [x, y] ] is interpreted as the 
state of site (x, y). 

Checkerboard returns a 40-by-40 configuration ofOs and Is arranged in 10 by 10 
squares. 

Diagonals returns a 40-by-40 configuration of O's and 1 's arranged in diagonal 
stripes. 

RConfig[p,width,height] returns a width-by-height array of independent ran­
dom Os and 1 s, 1 being chosen with probability p. 

Here are some examples of rates. All lists of rates are returned as a 2-by-5 list 
of reals. In such a list, rate [ [i, j] l represents the rate at which the configuration 
will change at a site in state i (0 or 1) having j (from 0 to 4) neighbors in state 1. 
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Uniform[lambda,mu] are the rates corresponding to the case where the configura­
tion changes from 0 to 1 at rate lambda and from 1 to 0 at rate mu, independently 
from the number of neighbors in state 1. 

Ising[Alpha,Beta] returns the rates corresponding to the symmetric Stochastic 
Ising Model, admitting a Gibbs measure as a reversible state. Alpha is the potential 
of a site alone, Beta is the potential of a pair of neighboring sites. 

Contact [lambda] returns the rates of the contact process. The transition rate from 
1 to 0 (curing) is constant. The transition rate from 0 to 1 (infecting) is proportional 
to the number of neighbors at 1. 

Voter returns the rates of the Voter Model, where the transition rate from 0 to 1 is 
proportional to the number of neighbors in state 1 and vice versa. 

The following commands provide different treatments of a configuration: 

Cyclic [n, bound] returns bound if n is 0, 1 if n is bound+1, and n in any other case. 
(Periodic boundary conditions are assumed for all configurations.)" 

RepartConf ig [con£ ig] returns a 2-by-5 list of integers. Its element [ [i, j]] is the 
number of sites in state i (0 or 1) having j (from 0 to 4) neighbors in state 1. 

Evolution[initialconfig,rates,niter] simulates the evolution of a configura­
tion according to the spin system corresponding to rates. niter iterations are 
performed. One iteration consists of picking up a site at random and deciding to 
flip its state or not. 

The last command of this package provides for the graphical representation of 
the results. 

DrawConfig [config, opts] plots config as a rectangular array of black and white 
squares. 

Examples: 
Here is the evolution of the voter model on a square grid of 40 x 40 after 5000 and 
10000 iterations. 

ln[1]:= <<UVW'Interact' 
ln[2]:= whims=RConfig[0.5,40,40]; 
ln[3]:= g1=DrawConfig[whims] 
ln[4]:= opinions=Evolution[whims,Voter,5000]; 
In[5]:= g2=DrawConfig[opinions] 
In[6]:= opinions=Evolution[opinions,Voter,5000]; 
In[7]:= g3=DrawConfig[opinions] 
In[8]:= Show[GraphicsArray[{g1,g2,g3}]] 
In[9]:= RepartConfig[whims] 
In[10]:= RepartConfig[opinions] 

The contact process is a model of epidemics. If the parameter A. is smaller than 
its critical value, the population gets healthier and healthier. If it is larger, the 
epidemics lasts forever. 
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In[1]:=<<UVW'Interact' 
In[2]:= outburst=RConfig[0.05,20,20]; 
In[3]:= DrawConfig[outburst] 
In[4]:= epidemy=Evolution[outburst,Contact[2],2000]; 
In[5]:= DrawConfig[epidemy] 
In[6]:= cured=Evolution[epidemy,Contact[0.5],5000]; 
In[7]:= DrawConfig[cured] 
In[8] := RepartConfig[outburst] 
In[9] := RepartConfig[epidemy] 
In[10] := RepartConfig[cured] 
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Interacting particle systems are also used in image analysis with pixels interpreted 
as lattice sites that can be in different states. Here is a simple example of an image, 
first blurred by a random noise, then randomly cleaned up by two spin systems. 

In[1] := <<UVW'Interact' 
In[2]:= check=Checkerboard; 
In[3]:= DrawConfig[check] 
In[4] := noisy=Evolution[check,Uniform[1,1],100] 
In[5]:= DrawConfig[noisy] 
In[6] : = soaprates={{O ,0 ,0,1,1}, {1,1,0 ,0 ,0}}; 
In[7]:= clean1=Evolution[noisy,soaprates,1000]; 
In[8]:= DrawConfig[clean1] 
In[9]:= clean2=Evolution[noisy,Ising[0,1],1000]; 
In[10]:= DrawConfig[clean2] 
In[11]:= RepartConfig[check] 
In[12]:= RepartConfig[noisy] 
In[13]:= RepartConfig[clean1] 
In[14]:= RepartConfig[clean2] 

8. UVW' Lorenz' - Lorenz attractor 

Lorenz [s, r, b] computes and plots an approximate solution of the Lorenz equa­
tions with parameters (s, r, b), by the Runge-Kutta method. 

LorenzArray [matrix] plots an array of solutions of the Lorenz equations for the 
values of the parameters contained in matrix. 

Examples: 
The Lorenz function is rather slow. On a faster computer with a lot of memory it 
can be coupled with Animate or ShowAnimation. 

In[1]:= <<UVW'Lorenz' 
In[2]:= Lorenz[3,26.5,1] 
In[3] : = para={{{3,26. 5 ,1}, {3, 25 ,1}}, {{4, 26.5 ,1}, {4, 25 ,1}}}; 
In[4]:= LorenzArray[para] 

Reference: J.C. Culioli, Introduction a Mathematica, Ellipses, Paris (1991). 
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9. UVW' PseuGene' - congruential and midsquare 
generators 

CongruGenerator [seed, a, c, m, n] returns a list of then first iterates of the congru­
ential generator x(n+1) = a x(n) + c modulo m. seed is the first element x(O). 
If seed is an integer, the result will be a list of integers between 0 and m . If seed 
is real, all the results will be divided by m to return a list of reals between 0 and I . 

MidsquareGenerator [seed, n] returns a list of the first iterates of the midsquare 
generator, starting with seed (a four-digit integer). 

CongruentialLoop [seed, a, c , m] returns in a list the loop of the congruential gen­
erator x(n+1) = a x(n) + c modulo m, starting with x(O) = seed. 

MidsquareLoop [seed] returns in a list the loop of the midsquare generator, starting 
with seed. 

Examples: 
The midsquare generator is not very good. 

ln[1]:= <<UVW'PseuGene' 
In[2]:= MidsquareGenerator[1245,100] 
In[3]:= MidsquareGenerator[1246,100] 
In[4]:= MidsquareGenerator[1247,100] 
ln[5]:= MidsquareLoop[4578] 
In[6]:= MidsquareLoop[9854] 

Some congruential generators can be reasonably good, others very disappointing. 

In[1]:= <<UVW'PseuGene' 
In[2]:= samp=CongruGenerator[0.23,181,0,16384,2000]; 
ln[3]:= <<UVW'DataRep' 
In[4]:= RegularHisto[samp,0,1,10] 
In[5]:= LargeNumbers[samp] 
In[6]:= Centra1Limit[samp,0.5,Sqrt[1./12],6] 
In[7]:= samp2=Partition[samp,2]; 
ln[B]:= SamplePlot2D[samp2] 
In[9]:= Length[Congruentia1Loop[10,181,0,16384]] 
In[10]:= Length[Congruentia1Loop[1,181,0,16384]] 
In[11]:= CongruGenerator[10,181,0,16381,20] 
In[12]:= CongruGenerator[1,181,0,16381,20] 

10. UVW' RandWalk' -Random walks and random vector fields 

RandomWalk[ListofVelocities,Deltat] represents the trajectory of a point in a 
square. ListofVeloci ties is a list of two-dimensional vectors, interpreted as 
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consecutive speeds for the point. The point starts from the center with the first 
speed vector of the list. It changes its speed vector for the next one in the list at 
each integer multiple of del tat. 

VectorField [arrayof2Dveloci ties] represents graphically by segments on a grid 
the values of a discrete vector field. The arrayof2Dveloci ties is a list with three 
levels. The firsttwo correspond to the coordinates (i, j) of a point on the grid. The 
last level corresponds to the two coordinates of the vector attached to point ( i, j) : 
Vx ( i , j ) , Vy ( i , j ) . The function represents the grid and the vector attached to 
each point. 

VectorFieldTraj ectory [arrayof2Dveloci ties, deltat, tmax] represents first 
a vector field on a grid by calling VectorField [arrayof2Dveloci ties]. Then it 
draws the trajectory of a point starting at the center of the grid. At each integer 
multiple of del tat, the velocity vector of the point is changed for that of the vector 
field at the closest point on the grid. The trajectory is followed up to time tmax. 
The boundary conditions are periodic. 

Examples: 
Here is a representation of the discretized Brownian motion. 

In[1]:= <<UVW'RandWalk' 
In[2] := <<UVW'ContSamp' 
In[3] := vel=RSNormal2D[1,1,0,1000]; 
In[4] := RandomWalk[vel,0.02]; 
In[5] := vel=RSNormal2D[1,1,0,1000]; 
In[6] := RandomWalk[vel,0.02]; 

Here are two trajectories, one in a deterministic vector field, the other in a random 
one. 

In[1] := <<UVW'RandWalk' 
In[2] := field1=N[Table[{Cos[(i+j)/5Pi] ,Sin[(i+j)/5Pi]},{i,19},{j,19}J; 
In[3] := VectorField[field1] 
In[4] := VectorFieldTrajectory[field1,0.1,10] 
In [5] : = field2=Table [{Random [Real, {-1,1}] ,Random [Real, {-1,1}J}, {5}, {5}J 
In[6] := VectorFieldTrajectory[field2,0.5,100] 

11 UVW' StoGho ' - stochastic ghost 

StoGho [width, mood] portraits a gha(us)stly ghost by the name of StoGho who is 
known to roam around some old European castles. His shape depends on width 
and mood, modulo 2. 

GalleryOfPortrai ts [matrix] draws an array of portraits of our favorite spook. 
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Examples: 
The body, mouth, eyes, and pupils can easily be reparametrized in order to change 
the aspect of the ghost. StoGho can be made into a movie star if function StoGho 
is coupled with Animate or ShowAnimation. 

In[1]:= <<UVW'StoGho' 
In[2] := StoGho[Random[Real,{0,2}] ,Random[Real,{0,2}]] 
In[3] : = faces=Table [{x,y}, {x,O. ,1. 8,0. 6},{y ,0. ,1.8,0. 6}] ; 
In[4]:= GalleryOfPortraits[faces] 

12. UVW' TimeRep' - queues and other time-dependent 
random processes 

Queue [interarri vals, services] represents graphically, as a function of time, 
the evolution of the number of customers in a queue with one server. The times 
between consecutive arrivals are read in the first list, the service times in the second 
one. 

CumulatedTimes [listoftimes] represents graphically the function of time defined 
as follows: Starting from 0, it is incremented by one at dates separated by the times 
read in listoftimes. 

Geiger [listoftimes] plots on a line the dates separated by the durations read in 
listoftimes. 

Examples: 
Here is an illustration of the Poisson process with different intensities. 

In[1]:= <<UVW'TimeRep' 
In[2]:= <<Statistics'ContinuousDistributions' 
In[3]:= times=Table[Random[Exponentia1Distribution[1.]],{100}]; 
In[4]:= Geiger[times] 
In[5] := CumulatedTimes[times] 
In[6]:= times=Table[Random[Exponentia1Distribution[1.]],{500}]; 
In[7]:= CumulatedTimes[times] 
In[8]:= times=Table[Random[Exponentia1Distribution[2.]],{100}]; 
In[9]:= CumulatedTimes[times] 
In[10]:= times=Table[Random[Exponentia1Distribution[0.5]],{100}]; 
In[11]:= CumulatedTimes[times] 

The so-called M/M/1 single server queue has exponentially distributed interarrival 
and service times. It may be in equilibrium or saturated according to the values of 
the mean interarrival and service times. 

In[1] := <<UVW'TimeRep' 
In[2]:= <<Statistics'ContinuousDistributions' 
In[3]:= arr=Table[Random[Exponentia1Distribution[1.]],{200}]; 
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In[4] := ser=Table[Random[Exponentia1Distribution[1.1]],{200}]; 
In[5] := Queue[arr,ser] 
In[6]:= ser=Table[Random[Exponentia1Distribution[0.9]],{200}]; 
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Here is the same illustration with the D/M/1 queue (constant interarrival times). 

In[1]:= <<UVW'TimeRep' 
In[2] := <<Statistics'ContinuousDistributions' 
In [3] : = arr=Table [1. , {200}] ; 
In[4] := ser=Table[Random[Exponentia1Distribution[1.1]],{200}]; 
In[5]:= Queue[arr,ser] 
In[6] := ser=Table[Random[Exponentia1Distribution[0.9]] ,{200}]; 

13. UVW' Zero One' - lists of zeros and ones 
RSZeroDne [p, n] returns a random sample of n zeros and ones. One is chosen with 
probability p. 

Binary[functionf,listofzeroones] computes the real number in [0,1] which 
in the binary representation is given by the listofzeroones. Then its image by 
functionf (acting from [0,1] into R) is computed. The fractional part of it is 
returned in the binary form as a new list of zeroones. 

PlotZeroOne [listofzeroones] represents graphically a list of zeros and ones as 
black and white squares on a grey background. 

AnimateShift [listofzeroones] forms a list of zeros and ones three times as long 
as the initial list, by adding first a list of same length of random digits, then copying 
the initial list at the end. Then the successive shifts are animated as arrays of black 
and white squares. 

ActualLength [listofzeroones] returns the length of the list obtained when all 
zeros before the first one are dropped in the listofzeroones. 

Weight [listofzeroones] returns the number of ones in the listofzeroones. 

WeightedAlphabeticalDrder[listofzeroones] computes the rank of the given 
list of zeros and ones among lists of same actual length, when they are ranked 
according to increasing weights and alphabetical order for lists of same weight. 
That rank is returned in base 2 as another list of zeros and ones. 

Binary Numbers [n] returns a list of all the zn lists of binary digits with length n. 

Entropy [ t] returns -tLog [2, t]- ( 1-t) Log [2, 1-t] " 

Examples: 
Here is an illustration of the Kolmogorov complexity of a random sequence of 
zeros and ones. 
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In[1]:= <<UVW'ZeroOne' 
In[2]:= samp=RSZeroOne[0.5,100]; 
In[3]:= len=ActualLength[samp] 

In[4] := wei=Weight[samp] 
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In[5] := samp1=WeightedAlphabetical0rder[samp]; 

In[6]:= len1=Actua1Length[samp1] 

In[7]:= wei1=Weight[samp1] 

In[8] := samp2=Binary[Sin,samp]; 

In[9]:= len2=Actua1Length[samp2] 

In[10] := wei2=Weight[samp2] 

In[11] := g=PlotZeroOne[samp] 
In[12] := g1=PlotZero0ne[samp1] 

In[13] := g2=PlotZero0ne[samp2] 
In[14] := Show[GraphicsArray[{g,g1,g2}]] 

The following session illustrates the shifts of a sequence of zeros and ones. The 

animation may not work on all platforms. 

In[1] := <<UVW'ZeroOne' 

In[2]:= letter={O,O,O,O,O, 0,1,1,1,1, 0,0,0,0,1, 0,1,1,1,1, 

0,0,0,0,0}; 
In[3] := PlotZeroOne[letter] 

In[4] := AnimateShift[letter] 
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Tables 

The reader of this book is expected to use Mathematica (or other similar software, 
like Maple) to obtain numerical values of cumulative distribution functions and 
quantiles needed to do experiments, exercises and projects. However, when the 
power is down and/or your hard disk crashed, you still may have to resort to the 
old fashioned printed tables provided on the following pages. Besides, browsing 
through printed tables gives a good insight into the structure of various probability 
distributions. 
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498 Tables: Chi-Square Distribution, Upper Tail Quantiles x; (n) 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 



Tables: F-distribution, 0.05 Upper Tail Quantiles Fo.os(n, m) 499 

n\a O.IOOO 0.0500 0.0250 O.OIOO 0.0050 O.OOIO 0.0005 
I 3.078 6.3I4 I2.706 31.82I 63.657 3I8.3I7 636.6I 
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598 
3 1.638 2.353 3.I82 4.54I 5.84I 10.213 I2.924 
4 I.533 2.I32 2.776 3.747 4.604 7.I73 8.610 
5 I.476 2.0I5 2.57I 3.365 4.032 5.893 6.869 
6 1.440 1.943 2.447 3.I43 3.707 5.208 5.959 
7 1.4I5 1.895 2.365 2.998 3.500 4.785 5.408 
8 1.397 1.860 2.306 2.896 3.355 4.50I 5.04I 
9 1.383 1.833 2.262 2.82I 3.250 4.297 4.78I 

IO 1.372 1.8I3 2.228 2.764 3.I69 4.I44 4.587 
II I.364 1.796 2.20I 2.7I8 3.106 4.025 4.437 
I2 I.356 1.782 2.I79 2.68I 3.055 3.930 4.3I8 
13 1.350 1.77I 2.I60 2.650 3.0I2 3.852 4.22I 
I4 1.345 1.76I 2.I45 2.624 2.977 3.787 4.14I 
I5 1.34I 1.753 2.13I 2.602 2.947 3.733 4.073 
I6 1.337 1.746 2.I20 2.584 2.92I 3.686 4.0I5 
I7 1.333 1.740 2.IIO 2.567 2.898 3.646 3.965 
I8 1.330 1.734 2.10I 2.553 2.879 3.610 3.922 
I9 1.328 1.729 2.093 2.540 2.86I 3.579 3.883 
20 I.325 1.725 2.086 2.528 2.845 3.552 3.849 
2I I.323 1.72I 2.080 2.5I8 2.83I 3.527 3.8I9 
22 1.32I 1.7I7 2.074 2.508 2.8I9 3.505 3.792 
23 1.320 1.7I4 2.069 2.500 2.807 3.485 3.768 
24 1.3I8 1.711 2.064 2.492 2.797 3.467 3.745 
25 1.3I6 1.708 2.059 2.485 2.787 3.450 3.725 
26 1.3I5 1.706 2.056 2.479 2.779 3.435 3.707 
27 1.3I4 1.703 2.052 2.473 2.77I 3.42I 3.690 
28 1.3I2 1.70I 2.049 2.467 2.763 3.408 3.674 
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 
30 1.3II 1.697 2.042 2.457 2.750 3.385 3.646 
40 1.303 1.684 2.02I 2.423 2.704 3.307 3.55I 
60 1.296 1.67I 2.000 2.390 2.660 3.232 3.460 

I20 1.289 1.658 1.980 2.358 2.6I7 3.I60 3.373 
00 I.282 1.645 1.960 2.326 2.576 3.090 3.29I 



500 Tables: Chi-Square Distribution, Upper Tail Quantiles x;(n) 

2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597 
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.937 
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.085 16.748 
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548 
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.012 18.474 20.276 
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954 
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587 

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 
11 2.603 3.053 3.816 4.575 5.578 17 .. 275 19.675 21.920 24.724 26.755 
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 
13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817 
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 
15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799 
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 
17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716 
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156 
19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580 
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 
21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.479 38.930 41.399 
22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796 
23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179 
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558 
25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925 
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 
27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642 
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993 
29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333 
30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 
31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000 
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328 
33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646 
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964 
35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272 
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581 
37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880 
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181 
39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.426 65.473 
40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766 



Tables: F-distribution, 0.05 Upper Tail Quantiles Fo.os(n, m) 501 

2 18.51 19.00 19.16 19.25 19.30 19.40 19.43 19.45 19.47 19.49 19.50 
3 10.13 9.55 9.28 9.12 9.01 8.79 8.70 8.66 8.59 8.55 8.53 
4 7.71 6.94 6.59 6.39 6.26 5.96 5.86 5.80 5.72 5.66 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.74 4.62 4.56 4.46 4.40 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.06 3.94 3.87 3.77 3.70 3.67 
7 5.59 4.74 4.35 4.12 3.97 3.64 3.51 3.44 3.34 3.27 3.23 
8 5.32 4.46 4.07 3.84 3.69 3.35 3.22 3.15 3.04 2.97 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.14 3.01 2.94 2.83 2.75 2.71 

10 4.96 4.10 3.71 3.48 3.33 2.98 2.85 2.77 2.66 2.58 2.54 
11 4.84 3.98 3.59 3.36 3.20 2.85 2.72 2.65 2.53 2.45 2.40 
12 4.75 3.89 3.49 3.26 3.11 2.75 2.62 2.54 2.43 2.34 2.30 
13 4.67 3.81 3.41 3.18 3.03 2.67 2.53 2.46 2.34 2.25 2.21 
14 4.60 3.74 3.34 3.11 2.96 2.60 2.46 2.39 2.27 2.18 2.13 
15 4.54 3.68 3.29 3.06 2.90 2.54 2.40 2.33 2.20 2.11 2.07 
16 4.49 3.63 3.24 3.01 2.85 2.49 2.35 2.28 2.15 2.06 2.01 
17 4.45 3.59 3.20 2.96 2.81 2.45 2.31 2.23 2.10 2.01 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.41 2.27 2.19 2.06 1.97 1.92 
19 4.38 3.52 3.13 2.90 2.74 2.38 2.23 2.16 2.03 1.93 1.88 
20 4.35 3.49 3.10 2.87 2.71 2.35 2.20 2.12 1.99 1.90 1.84 
21 4.32 3.47 3.07 2.84 2.68 2.32 2.18 2.10 1.96 1.87 1.81 
22 4.30 3.44 3.05 2.82 2.66 2.30 2.15 2.07 1.94 1.84 1.78 
23 4.28 3.42 3.03 2.80 2.64 2.27 2.13 2.05 1.91 1.81 1.76 
24 4.26 3.40 3.01 2.78 2.62 2.25 2.11 2.03 1.89 1.79 1.73 
25 4.24 3.39 2.99 2.76 2.60 2.24 2.09 2.01 1.87 1.77 1.71 
26 4.23 3.37 2.98 2.74 2.59 2.22 2.07 1.99 1.85 1.75 1.69 
27 4.21 3.35 2.96 2.73 2.57 2.20 2.06 1.97 1.84 1.73 1.67 
28 4.20 3.34 2.95 2.71 2.56 2.19 2.04 1.96 1.82 1.71 1.65 
29 4.18 3.33 2.93 2.70 2.55 2.18 2.03 1.94 1.81 1.70 1.64 
30 4.17 3.32 2.92 2.69 2.53 2.16 2.01 1.93 1.79 1.68 1.62 
40 4.08 3.23 2.84 2.61 2.45 2.08 1.92 1.84 1.69 1.58 1.51 
60 4.00 3.15 2.76 2.53 2.37 1.99 1.84 1.75 1.59 1.47 1.39 

120 3.92 3.07 2.68 2.45 2.29 1.91 1.75 1.66 1.50 1.35 1.25 
999 3.84 3.00 2.60 2.37 2.21 1.83 1.67 1.57 1.39 1.22 1.00 
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