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Preface

The present book is based on a course developed as part of the large NSF-funded
Gateway Coalition Initiative in Engineering Education which included Case West-
ern Reserve University, Columbia University, Cooper Union, Drexel University,
Florida International University, New Jersey Institute of Technology, Ohio State
University, University of Pennsylvania, Polytechnic University, and University of
South Carolina. The Coalition aimed to restructure the engineering curriculum
by incorporating the latest technological innovations and tried to attract more and
better students to engineering and science. Drafts of this textbook have been used
since 1992 in statistics courses taught at CWRU, Indiana University, Bloomington,
and at the universities in Gottingen, Gerinany, and Grenoble, France.

Another purpose of this project was to develop a courseware that would take
advantage of the Electronic Learning Environment created by CWRUnet—the all
fiber-optic Case Western Reserve University computer network, and its ability to
Jet students run Mathematica experiments and projects in their dormitory rooms,
and interact paperlessly with the instructor.

Theoretically, one could try to go through this book without doing Mathematica
experiments on the computer, but it would be like playing Chopin’s Piano Concerto
in E-minor, or Pink Floyd’s The Wall, on an accordion. One would get an idea
of what the tune was without ever experiencing the full richness and power of the
entire composition, and the whole ambience would be miscued.

Acknowledgments

Thanks are due to several groups of students that have taken different versions of
this course over the last six years. They patiently and consistently found mistakes,
produced good graphics, and came up with interesting data sets from their own
disciplines. Their individual contributions are acknowledged in the text. We also
appreciate help from Tom Ryan and Jiming Jiang of the CWRU Statistics Depart-
ment, who read various portions of the manuscript and pointed out places that could
be improved upon. We thank Steve Pinkus of Yale University and Burt Singer
of Princeton University for discussing with us their recent work on computable

xiii
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framework for randomness. Piotr Biler of Wroctaw University kindly agreed to
read several chapter of the manuscript with his usual sharp eye towards details and
inconsistencies, and we are grateful for his help. Leszek Sczaniecki of Wolfram
Research, Inc., took an early interest in our project, put us on the list of Mathe-
matica developers, and kept us current on the latest Mathematica developments.
We thank him for his support. Neepa Mukherjee, a CWRU statistics graduate
student, assisted us in preparation of the final versions of non-Mathematica figures
and working with her was a pleasant experience. Finally, we want to acknowledge
a patient and benevolent guidance and encouragement from Wayne Yuhasz and
Lauren Lavery, our Birkhauser editors.
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Introduction

Goal and Audience

The present book is intended as a text for an introductory level statistics course. It
addresses the phenomenon of uncertainty, which appears in most of the engineering
and scientific problems for various reasons, and which can be modeled in several,
basically different, ways. The book’s novelty is integration of ideas about statistics
of random phenomena stemming from three distinct viewpoints:

algorithmic/computational complexity,
classical probability theory, and
chaotic behavior in nonlinear systems.

Given an c¢lementary level of the textbook and an anticipated preparation of
the targeted audience, the exposition depends heavily on the Mathematica' com-
puter experimentation and simulations by the students. Here, we would like to
think about instruction proceeding in an environment of Uncertain Virtual Worlds
(UVW), and we provide some Mathematica tutoring as we move along. The goal
is to give engineering and science students a forward looking alternative to the
usual introductory statistics courses, an alternative that we feel will become the
norm of the future as pressures to incorporate a study of algorithmic complexity
and chaos-induced uncertainty increases in the already crowded curriculum. Such
a course can be comfortably and profitably taken by either upper division under-
graduate students or graduate engineering and science students who have never
had a statistics course before.

Prerequisites include a typical engineering/science 2-3 semester calculus se-
quence (including some differential equations and linear algebra) in addition to a
basic programming course in computer science {(generally taken during the stu-
dent’s first year). The course can serve both as an important technical engineer-
ing/science statistics elective and, possibly, as a mathematics or statistics curricular
requirement.

TOr any other symbolic manipulation software, such as, e.g., Maple.
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Typically, a course like this would be taught out of a Statistics Department.
However, in many schools, departments of Mathematics, Mathematics and Statis-
tics, Applied Mathematics, or even some non-mathematical sciences departments
(such as Industrial Engineering, Systems Engineering and Operations Research)
could be responsible for this course.

Although the primary deliverers of this course would be statisticians, the course
should be fun as well to teach for mathematicians and broader-minded engineers.
It goes beyond the orthodox beginning statistical offering (same for, more or less,
the last 50 years) to some mathematically thrilling territory, while maintaining a
fairly introductory level accessible to broad student audiences.

Philosophy

Persi Diaconis is fond of saying that “statistics is a physics of numbers” and
our philosophy is not too far from that statement. Loosely speaking, the book will
emphasize statistics as a science (as opposed to a formal abstract theory and abranch
of probability theory) concerned with all facets of handling large numerical data
sets. It very much subscribes to the standard scientific methodology: proceed from
experiment to inductive inference. It is woven around themes like data collection,
compression, representation and analysis, modeling of random phenomena, model
identification and design of experiments. We emphasize that all the data actually
collected in today’s computerized environment are discrete. Continuous models
are then a convenient analytical abstraction- that is how Gaussian distribution was
initially perceived by de Moivre, before the central limit theorem was proved.
Examples from actual engineering and science studies are plentiful and are an
integral part of the exposition.

In 1992, just as we started putting our ideas together on paper and in the class-
room, we found out that French mathematicians and physicists David Ruelle and
Ivar Ekeland, published two volumes popularizing a position that was also ours.
We couldn’t have hoped for a better preparation of the public for the appearance
of our textbook. Ruelle’s book Chance and Chaos was published by Princeton
University Press, and Ekeland’s Au Hasard: La Chance, La Science, Le Monde
appeared in Paris at Le Seuil. We used Ruelle’s book as a mandatory additional
reading assignment for students enrolled in the Uncertainty course, and an essay-
style project related to the book was routinely assigned.

In the perennial “Bayesians vs. frequentists” debate we come squarely on the
frequentist side, but only as a more effective pedagogical approach. Recent studies
in the psychology of learning showed that “the mind is a frequentist device”. This
may be a result of the way the human brain evolved through environmental pres-
sures. The above claim even found its way into the popular press. The Economist,
in the 4th of July 1992 issue, argued, in a piece? entitled “A critique of pure rea-

? Reproduced at the end of this book as Appendix C.
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son”, that the psychologists’ findings show that “merely rephrasing a problem in
frequentist rather than Bayesian terms generally increases the number of people
who can solve it”.

In real life, modern applied statistics takes advantage of powerful software pack-
ages. However, we felt that the pedagogical benefits of using them from the start
are limited because they do not give students sufficient insight into the nature of
algorithms and do not let students experiment with random phenomena. The latter
have to be simulated and that simulation methodology is now widespread in the
engineering and science research and design communities. It is therefore a crucial
topic to explain randomness from the algorithmic and computational viewpoint.

Although random phenomena have always struck peoples’ imagination and af-
fected their lives, until recently, students of randomness came to the subject with a
limited experience usually acquired by playing the games of chance. However, to
detect the laws of random behavior, the data sets have to be so large that one cannot
easily see or grasp these regularities in everyday circumstances. The situation was
thus basically different from, say, mechanics or calculus where students’ intuition
is formed by a lifetime of experiences of walking, throwing baseballs, swimming,
and sledding. In the past, the usual path to the discovery of the laws of random-
ness, even in our elementary school programs, was by logical understanding and
abstract computations. However, with the advent of computers and, especially,
very flexible symbolic manipulation programs, such as Mathematica and Maple,
it became possible to obtain a reasonably quick insight and develop sophisticated
intuition about randomness by doing computer experiments. The software enables
students to handle large sets of data in a relatively simple fashion. It seemed obvi-
ous to us that such an approach has to be built-in in any modern statistics course.
The textbook takes advantage of this development permitting students independent
exploration and self-paced instruction.

Also, during the last decade or so, the chaotic behavior in nonlinear systems
emerged as an omnipresent source of randomness in real physical nonlinear dy-
namical systems. So, it was obvious to us that its study should be incorporated in
the statistics curriculum from the very beginning.

Finally, it is worth observing that this book could have the subtitle The Kol-
mogorov's Legacy. Indeed, it is Andrei Nikolaevich Kolmogorov (1903 - 1987),
a Russian mathematician, whose life’s intellectual journey is being retraced on
the pages of this volume. In his 1933 treatise he laid the rigorous mathematical
foundation for probability theory (see Chapter 5) and statistics which blossomed
afterwards into major areas of the scientific enterprise. Then, after World War 11,
he made major breakthroughs in the study of nonlinear dynamical systems in his
work on turbulence and development of the concept of entropy, and conducted
fundamental studies of the idea of randomness in terms of algorithmic (computa-
tional) complexity. This book could not have been written without Kolmogorov’s
seminal contributions.
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Organization

Major topics included in the book are

1. Descriptive Statistics-Compressing Data. This part includes chapters on nu-
merical and graphical representation of data, statistical functions, analytic rep-
resentation of discrete data, and introduces the concepts of fractals and random
fractals in association with image compression. The topic of computer generation
of “random sequences” is also discussed.

II. Modeling Uncertainty. Here models arising via simple mathematical recur-
sive relations but nevertheless exhibiting random behavior are introduced. Rela-
tionships between randomness and algorithmic complexity, so important in com-
puter science and engineering, are studied, pseudo-random numbers and questions
of validity of the Monte-Carlo methods are discussed. This material is followed by
the concept of statistical independence and the classical Kolmogorovian probability
theory. The part ends with an exposition on basic properties of chaotic dynamical
systems and a discussion on how uncertainty appears in the real physical systems.

HI. Statistical Inference-Selecting @ Model. This part introduces the common,
and generally accepted, methodology for designing experiments and making in-
ferences on the basis of their outcomes. General principles of experimental design
and data collection are explained, as well as the principal statistical functions
(estimators) on which inference is based. The two types of statistical inference,
confidence intervals and test procedures, are developed in the framework of nor-
mal models. In particular, the one- and two-sample models, regression, and the
analysis of variance for one- and two-factor completely randomized designs are
studied.

The textbook specifically addresses needs of engineering and science students
by a selection of examples of statistical problems arising in real-life industrial and
scientific lab situations. They form a constant background for our discussions
as we proceed through the material in a spiral-like fashion, starting at each level
with real-life examples, followed by a simulated computer exploration, and then a
formulation of formal analytical principles. The examples have been collected from
engineering and scientific literature and through direct interaction with practicing
engineers and scientists. In particular, sets of experimental data for statistical
analysis are made accessible to the students on Internet.

A series of student projects should be an essential part of the course and play a
major role in students’ evaluation. At CWRU we encouraged students to work in
small groups of 2 to 3 people. Except for the projects for Chapters 3 and 5 which
are analytic in nature and individual, all the projects are Mathematica intensive and
students should be required to turn in the code, explanations, analysis, and plenti-
ful graphics. Figures 0.0.1 and 0.0.2 present some of the graphics obtained by the
students in projects that involved Gaussian approximation in the central limit theo-
rem (Fig. 0.0.1a), analysis of the algorithmic complexity of binary representations
(Fig. 0.0.1b), or simulation of the invariant density for the logistic chaotic map-
ping of the unit interval (Fig. 0.0.2a). Sometimes, students explorations resulted in
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interesting insights: Bill Dickinson produced an unorthodox 3-dimensional orbit
diagram for the logistic dynamical system which, in addition to the usual repre-
sentations of bifurcations, also displayed relative frequencies of visits to different
states (Fig. 0.0.2b). The Mathematica projects usually engendered a lot of enthu-
siasm and independent work by the students. The length of many of the reports
could be a mixed blessing to the instructor though as they easily run into 40 to 50
pages each; more recently we gave students page limitations.

The last, nontechnical individual project was an essay on the theme of the above
mentioned book by David Ruelle from the vantage point of the material learned
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in the course. The students were asked to select a chapter from Ruelle’s book that
they found most stimulating or provocative (whether they agreed or disagreed with
it) and provide their own commentary to it. The project emphasized good writing
skills and the students often displayed an amazing maturity and sophistication.
They wrote with flair on self-selected topics that ranged from predictably techni-
cal, such as “The Bell Inequality in Quantum mechanics”, to “Life, Intelligence,
Uncertainty”, “Determinism and the Orthodox Judaism”, “Determinism, Free Will
and Choice”, “True Meaning of Sex” and a Platonian dialogue on the question of
randomness.

Realistically, given the amount of the material, it is impossible to go through
the whole book in great detail in a one-term course. We have successfully taught
three somewhat different courses using early drafts of the textbook:
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1. A more elementary version based on Parts I and 111, emphasizing concrete
algorithmic skills.

2. A more advanced version that would cover Parts I and Il and include more
theoretical material on algorithmic complexity, statistical independence modeling,
and chaotic behavior in dynamical systems.

3. A selection of sections from all three parts, with some other sections assigned
as independent reading.

The book is complemented by data sets and interactive UVW Mathematica pack-
ages written by Bernard Ycart of the Grenoble University; the latter are described
in detail in Appendix E. These electronic materials are extensively used throughout
this book in the Mathematica experiments, and can be downloaded by the reader
from the UVW Web Site which can be accessed at the Internet address

http://www.birkhauser.com/book/isbn/0-8176-4031-2.

The UVW Web Site is an integral part of our book. In the future, we plan to develop
it into a fully interactive, electronic version of this text.
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Notation and Abbreviations
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a

a

#A
A’F
14(x)

C

cov (x, y¥)
Cov(X,Y)
CLT

E(X)
fla

Sx(x)
Fx(x)

H(x)
LLN
med (x)
my(x)
MT

N
Pr{A}
P()

2y

)

b (mod n) means that @ and b have the same
remainder when divided by n

b means that @ is much greater than b

b; (t > s) means thata, /b, - last — s

b means that a is approximately equal to b

the number of elements (cardinality) of set A

the set of all finite strings written in alphabet A
1,ifx € A,and = Qif x & A, the indicator function
of the interval {or, in general, set) A

the set of all complex numbers

covariance of paired samples  and ¥

covariance of random quantities X and Y

Central Limit Theorem

expected value of random quantity X

inverse image of set A under function (map) f, i.e.,
the set of points x that are mapped by f into A
probability density function (p.d.f.) of random
quantity X

cumulative distribution function (c.d.f.) of random
quantity X

140,00) (x), the Heaviside unit step function

Law of Large Numbers

median of sample @

the k-th moment of sample & = (x, ...
transpose of matrix M

the set of all natural numbers (positive integers)
probability of event A

countably additive probability measure in
axiomatic probability theory

,xn)



Xxvi Notation and Abbreviations

Q — the set of all rational numbers
g, ) — a-quantile of sample z = (x1,...,x,)
Q(x, X) — o-guantile of random quantity X
R — the set of all real numbers
R? —  the set of d-dimensional vectors
mg(x) — range of sample &
SFL — Stability of Fluctuations Law
sz(a:) =  unbiased variance of sample & = (X1, ..., Xp)
std (x) — +/var (), standard deviation of
sample & = (Xy,..., Xp)
UVW — Uncertain Virtual Worlds Packages/Web Site
http://www.birkhauser.com/book/isbn/0-8176~4031-2
je| = JxF4xid4.. 423
X — i-thorder statistic of sample ® = (xy, ..., Xp)
X,Y — random quantities, random variables
var (z) — variance of sample * = (xy,..., Xp)
Var (X) = 02(X), variance of quantity X
& ~— sample mean of sample T = (x1, ..., X,)
Z — the set of all integers
fal — least integer greater than or equal to &
o] — greatest integer less than or equal to &
T(s) = o2 e "+*~1dt, the Gamma function
w(X) = EX k), the k-th moment of random quantity X
¢, ¥ — test functions
®(x) — c.df. of the standard Gaussian (normal) random
quantity
= — defining equality
> — mapsto
s — partial map, perhaps defined only for some
arguments
— . — converges 10
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Chapter 1

Why One Needs to Analyze Data

In this chapter you will find a cellection of examples of phenomena where the ran-
domness plays an essential role. Browse through them at your leisure, experiment
with the data provided, and use this opportunity to ease your way into Mathemat-
ica. The idea is to get a general feel for the issues to be discussed later in the book
in greater detail.

1.1 Coin tossing, lottery, and the stock market

Coin tossing is a proverbial and generic example one associates with random-
ness. One tosses a (fair) coin repeatedly and the observed outcome is cither heads
or tails. For the sake of simplicity we will code heads as *“1”" and tails as “0”, so the
outcome of an experiment consisting of multiple tosses of a coin can be encoded as
a string! of zeros and ones, a long word in the alphabet consisting of two “letters™
0 and 1. Here are a few examples of such strings:

(@) I111111111111111111111111

()] 10101010101010101010101010

© 10010011100100112001001110010011
(d) 011011100101110111100010011010
(e) 101110010111110G1000000110101001

Their length » are, respectively, 25, 26, 32, 30, and 32.

Intuitively, not all of them seem equally random. If the coin is “fair”, one could
test its “fairness” (or the lack of preference for either side-— arguably, an attribute
of randomness) by comparing relative frequencies of appearance of heads and tails.
Recall that for a string

X1y X2, X3, -ees Xn (1)

INote that in Mathemarica “strings” are a special InputForm not to be confused with algebraic
expressions and lists. All of them, though, are strings in the sense of this chapter.

© Springer International Publishing AG 2017 3
M. Denker, W. Woyczynski, Introductory Statistics and Random Phenomena,
Modern Birkhduser Classics, DOI 10.1007/978-3-319-66152-0_1
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consisting of Os and 1s, the relative frequency of either of these letters is defined
as

N ,'=0
foo Hiixi =0} @)
n
f1=#{l:xi:]}. 3
n

The notation #4 means the number of elements (cardinality) of set A, so that the
numerator #{i : x; = 0) reads: the number of indices i for which the string element
x; is equal to 0. In all of the above strings, except the first one, both frequencies
are equal

fo=H=1/2 C)]

So, the violation of equality (4) seems to be sufficient grounds to eliminate the
first string as random: we would like to belicve that the “fortune” is blind. (On
the other hand, coin tossing is a dynamical system subject to the Newtonian laws
of mechanics and, given sufficient initial data about each toss, we should be able
to precisely determine the outcome of each toss. Or should we??)

However, the fact that strings (b-€) satisfy the “equipartition” rule (4) does not
make them look totally random to us. As a matter of fact, we can detect a vague
increasing degree of randomness in these strings as we move from the first to the
last. How can we express this intuition more formally and provide a framework
for a quantitative analysis of this urcertainty?

The first, and not unreasonable, hunch could be that the randomness (or the
uncertainty, but let us stick to the first term for the time being) in each of these
strings has something to do with the complexity of each sequence or, more exactly,
with our inability to encode the strings perceived as random in simple terms or, to
rephrase it one more time, to provide short descriptions for them. However, such
an approach—define a siring as random if it has no short description—requires
some caution because of what is known as the Richard -Berry Paradox.®> The
description

THE SMALLEST NUMBER THAT CAN NOT BE DEFINED
WITH LESS THAN ONE THOUSAND LETTERS

has itself less than one thousand letters!!!

So, let us return for a moment to the equipartition idea and see if we can exploit
it in a more sophisticated fashion. Observe that although the strings (b-e) have
similar relative frequency of zeros and ones, the situation changes dramatically if
we start inspecting the relative frequency of consecutive blocks of letters of length
more than one. In the case of blocks of length 2, we get

2This and related issues of the chaotic behavior in dynamical systems will be discussed in detail
in Chapter 6.

3This paradox and the related algorithmic complexity issues will be discussed at length in Chapter
4.
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(@ 111 ririenniinnniritirininitiiiiiitinm
(25 — 1 = 24 blocks)

() 1001100110011001100110011010011001100110011001 10
{ 25 blocks)

(c) 100001100001111110000110000111111000011000011111
100001 1000 01 11 (31 blocks)

(d) 011110011111100001100111111001111111100080011000
01 11 10 01 10 (29 blocks)

(¢) 100111111000011001111111111000011000000000000111
1001 1001 10 00 01 (31 blocks)

Now, both (2) and (b) fail this eguipartition test of arder 2 as, out of four possible
blocks 00, 01, 10, 11 of length 2, block 11 is favored in the first siring and blocks
10 and 01 in the second. Think about them as letters of an alphabet consisting of
four letters: 00, 01, 10, 11. Neither of them should be favored if a string is to be
called random.

This suggests the following hierarchy of tests of randomness for the binary (zero
or one) strings xy, X3, ..., X!

1. Test of order 1. Check the relative frequencies of Os and 1s. If they are equal
(or, in practical situations, close) to 1/2, then we can say that the string passes the
1st order test of randomness.

String (a) fails this test but strings (b-e) pass it.

2. Test of order 2. Check the relative frequencies of blocks 00, 01, 10, 11,
computed as follows:

#li - (xi, xi41) = (0,0)) #i 2 (i, xiq1) = 0, D}

Joo = =1 . Ju= p— &)
#li: (ki x4 =0,0 o (x, xia ) =1,
flo = {i:(x itl)l ( )}’ f“=#{¢ (x Zil)] ( )]' )

If they are all close to 1/4, then we can say that the string passes the 2nd order test
of randomness.

As observed above, strings (a) and (b) fail the test of order 2, Strings (¢) and
(e), practically, pass it as for both, foo = fo1 = fio = 8/31, fi1 = 7/31. The
case of string (d) is more debatable because then foo = 4/29, for = fio =
8/29, f11 = 9/29, but more on this string below. Note that for shorter strings it
may be impossible to achieve a perfect frequency balance between different blocks;
our concepts are more appropriate for very long strings.

At this stage it is clear how to proceed further. The 3rd order test would check
that the frequencies of blocks of length three are about 1/8, and the &-th order test
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would check that the frequencies of blocks of length & stay close to 1/2%, and so
on.

Definition 1.1.1 Equipartition Property.
A long string is said to enjoy the equipartition property if it passes the tests of
randomness of all ordersk =1,2,3, ...

In our examples, string (c) fails the test of randomness of order 8 because it is
periodic. This becomes obvious if we write it in the form

(©) 10010011 10010011 10010011 10010011.

There are 28 = 256 different possible blocks of length 8, and each of them should
have the same frequency 1/256. String (c) contains 32 — 7 = 25 blocks of length
. 8. The block 10010011 appears with the relative frequency 4/25, the seven blocks
00100111,01001110, 10011100, 00111001, 01110010, 11100100, 11001001 with
the frequency 3/25, and other blocks have frequency 0.

So, that leaves open the question: How random are strings (d) and (€)? Well, on
a closer inspection one discovers that string (d) can be rewritten in the form

(d) 011011100101 116 111 1000 1001 1010 ...

which we immediately recognize as the binary representation of the decimal siring
representing the so-called Champernowne number

(d’) 0.1234567891011121314...

~—hardly a sequence anybody would call random. However, it turns out that (d),
as an infinite sequence, passes the tests of randomness of arbitrary order although
the proof of its equipartition property is not easy. So, what is really going on?
Despite the equipartition property, the string is perfectly predictable, violating
another obviously desirable attribute of randomness, the unpredictability. Indeed,
if the previous term of string (d’) is known, one can produce a very deterministic
formula to produce the next term:

Xnt+1 = 8(xn) where gx)=x+1.

Clearly, equipartition property cannot be equated with randomness although it
should be implied by the latter. And what about the sequence (e)? It was produced
by a “random” number generator on a computer. We will return to computer
generation of “random" numbers later.

The above informal discussion gives a taste of foundational problems with which
we are faced when we try to formalize the notion of uncertainty or randomness.
They will be addressed in greater depth and detail in the remainder of this book.
Of course, the questions of randomness routinely arise in engineering, science,



1.1. Coin Tossing, Lottery, and the Stock Market 7
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FIGURE 1.1.1
The Plain Dealer of January 15, 1995.

economics, and daily life. We open our local paper to inspect if our latest picks in
the stock market are panning out (Fig. 1.1.1), or to check if we won in last night’s
lottery drawing (Fig. 1.1.2) — both, perplexingly uncertain events.

In the next few sections we will go through a number of real-life examples where
uncertainty is an important aspect of the phenomenon.

Computer experiments and projects are an important ingredient of this book. We
conduct them in the Mathematica symbolic manipulation software environment,
but any other similar language, such as Maple, would do. To facilitate your intro-
duction to Mathematica, we will go through a series of beginner-friendly tutorials
which, however, should not replace your independent and systematic familiariza-
tion with Mathematica using any of the excellent books listed in the Bibliographical
Notes at the end of this chapter. The larger data with which you are asked to ex-
periment are supplied on the Internet UVW Web Site; no need to keyboard them
manually.

Mathematica Experiment . Zeros and Ones. Mathematica makes it possible
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OHIO LOTTERY
Last night's drawing BUCKEYE 5: Friday, Jan. 13
PICK3:8 32 PICK4 2120 6 9 21 29 37
. The Wednesday,
SUPER LOTTO: Saturday, January 14 jazkpot — :gt':xa\:lali]gl ;_8
112 8|28|34(39 Monthly Million
Dollar Giveaway

For information, see a lottery retailer
JACKPOT: $4 million » KICKER: 626256  orcall 216-787-4100 or 1-80(-589-6445

Fri. 113 | Thu. 112 | Wed. 1/11 Tue. 110 I Mon. 1/8 Sat. 1/7

PICK3 320 548 075 493 376 072
PICK4 0480 | 5277 | 2705 o821 | o718 | 8791

/\/\Mﬁ"‘\/\
FIGURE 1.1.2
The Plain Dealer of January 15, 1995.

to manipulate data written in the format list={a,b,...,} where a,b,...,z are
arbitrary numbers. Here list is just a name given to the string a,b,...,z. The
following command lines for Mathematica help produce various frequencies for a
specific list:

Lengthllist]

Usage: returns the length of the 1ist.
Sum[1ist[[i]],{i,1,Length[1ist]}])/Length{list]

Usage: returns the relative frequency of 1s in the 1ist.
1i11[i 3 :=1ist{[i11*1ist [[i+1]] ; Sum[1li11[i],

{i,1,Length[list]-1}]/(Length{1list]-1)

Usage: returns the relative frequency of two consecutive 1s.
111001 ) :=1ist [[i)1#(1-1ist {[i+111) ; Sum{
1i10[i],{i,1,Length{list]-1}}/(Length[1ist]-1)

Usage: returns the relative frequency of blocks 10.
N[expression]

Usage: gives the numerical value of expression.

Now, the relative frequencies in string () can be computed as follows:

In[1]:= bernkE={1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,0,0,
0,0,0,1,1,0,1,0,1,0,0,1}
OUt[1]= {1’ 0: 1: 1: ) Os 0, i, 0: 1,1, 1, 1, 11 0: 0: 1,
O »

1
0, ¢, 0, 0,0,

, 1,1, 0,1,0,1, ¢, 0,11}
In[2] := Length([bernE]
Out[2]= 32
In[3):= Sum[bernE([i}]1,{i,1,31}]/32
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Dut[3]= {16/32}

In[4] := N[%]

Out[4]= 0.5

In[5) := N[Sum[bernE[[i]],{i,1,Length[bernE]}] /Length[bernE]]

Dut[5]= 0.5

In[6]:= bernE01[i_]:=(1-bernE[[i]])*bernE[[i+1]]; N[Suml
bernEO1[i], {i,1,Length[bernE]l-1}]/(Length[bernE]l-1)]

Dut[6]= 0.258064

So, the frequency of 1s in string (e) is 0.5 and the frequency of blocks 01 is
0.258064. Further examples of this type, using much longer strings supplied on
the UVW Web Site, are provided in Section 1.14: Experiments, Exercises, and
Projects.

1.2 Inventory problems in management

A hardware distribution company has to prepare its inventory (say, for tax pur-
poses, annual report, bankruptcy proceedings, eic.). In the process, the number of
items in each category (nails, rat traps, snow shovels, memory chips, etc.) has to
be determined. Who is doing the checking and how the checking is to be done
is often a point of contention (see, e.g., Huff's How o Lie with Statistics quoted
in the Bibliographical Notes), and one would like to have fair and sound aunditing
procedures written into the law of the land.

Obviously, counting all of the items one by one would be too expensive and time
consuming. A more reasonable alternative, assuming that the items are stored in
bins of the same size, would be to take a small sample of bins and on that basis
determine the number of each item in the whole population. If this is the procedure
on which we settle, then we immediately face a number of practical questions:

How to take the sample? Clearly the sample has to be representative in the
sense that every source of bias has to be removed.

How to judge the degree to which the sample is representative?
» How large or small should it be?

e What procedure should be used to determine the total population from the
sample count?

How to organize the storage system to optimize the above sampling pro-
cess, and permit an optimization of the statistical techniques used?

The statistical techniques depend on the assumed underlying empirical
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(or theoretical) relative frequency distributions which can be different for
different companies and product types. How can they be determined?

Similar issues arrise in many other areas where testing the whole population is
impossible, e.g., in public opinion polls.

1.3 Battery life and quality control in manufacturing

The following hypothetical (the data are simulated) example represents the typ-
ical situation.

Example 1.3.1 Batteries Are Not Forever.

Lifetimes of 50 batteries have been tested at the manufacturing company. The test
lasted 10 hours and by the end of the test period 41 batteries failed, with their
lifetimes (in hours) being

0.33,5.71,2.23,3.41, 1.83,3.01,0.71, 3.95, 4.37,0.90, 0.30, 1.94,
8.31,5.15,3.25,0.06,2.89,6.99,2.15, 6.58, 5.28,0.78, 1.70, 6.68,
4.73,5.94,4.26,7.23,8.31,2.52, 1.35,2.66, 1.30,0.71, 2.41, 3.66,
9.69,0.43, 4.41, 8,77, 9.66

The remaining 9 batteries were still going strong at the end of the 10-hour testing
period. The company has to make a decision about the advertised and guaranteed
battery lifetime on the basis of the above, censored, data. It plans to replace
batteries that do not meet advertised specifications. A number of natural questions
arise:

e Given the unit manufacturing cost, what should be the warranty period for
the company to break even?

e Given that the warranty duration is given (say, forced by competition),
what should be the price of the item for the company to break even?

e Which parameters computed from the above data are essential for answer-
ing the above questions? Equivalently, how should the above data be
compressed to preserve what is really important?

Example 1.3.2 Bombs Away.
A Cleveland company manufactures bases for fragmentation bombs (no peace div-
idens here yet). Measurements (in inches) of 75 bomb bases’ heights are provided
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below, with more complete data on 145 bases (provided by Ravi Jayaraman, a
graduate student in Systems Engineering) to be found on the UVW Web Site in the
BOMBS file:

0.831 0.829 0.836 0.840 0.826 0.834 0.826 0.831 0.831 0.831
0.836 0.826 0.831 0.822 0.816 0.833 0.831 0.835 0.831 0.833
0.830 0.831 0.831 0.833 0.820 0.829 0.828 0.828 0.832 0.841
0.835 0.833 0.829 0.830 0.841 0.818 0.838 0.835 0.834 0.830
0.841 0.831 0.831 0.833 0.832 0.832 0.828 0.836 0.832 0.825
0.8331 0.838 0.844 0.827 0.826 0.831 0.826 0.828 0.832 0.827
0.838 0.822 0.835 0.830 0.830 0.815 0.832 0.831 0.831 0.838
0.831 0.833 0.831 0.834 0.832

The randomness found in the above data is encountered in most manufacturing
processes due to the variability of materials, machinery, conditions, and human
factors. The manufacturer’s goal is to reduce this randomness but those efforts
have to be balanced against increased costs. For mass produced items, the usual
quality control procedure is to measure the variability in a given batch and reject
the whole batch if that variability is too large. The ways to assess this variability
will be discussed later.

Mathematica Experiment 1. Batteries Are Not Forever. This is a good opportu-
nity to introduce additional Mathematica commands:

Position{list, number]
Usage: shows the position of the number in the list.

Delete(list,{{a},{b},...,{z}}]

Usage: deletes the elements with numbers a,b, ...,z from the list.
Sort[list]

Usage: sorts the elements of the 1ist in the increasing order.

Floor [number]
Usage: returns the largest integer less than or egual to nunber.

The file BATTERY on the UVW Web Site contains the lifetimes of batteries from
Example 1.3.1, including those that survived the 10 hour test. The first data ma-
nipulating step in our experiment is to remove all the 10s from the data set. Then
we compare the averages of the new list created by this deletion with the original
list in the BATTERY file. Finally, we want to find the number such that 20% of the
observed lifetimes in the original data set fall below that number.

In(1]:= battery={0.33, 5.7i, . . . ,8.77, 9.66}
In[2) := Position[battery,10.0]

Out [2]= {{4},{14},{17},{24},{32},{38},{43}, {44}, {47}}
In[3]:= Delete[battery, %)
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Remark: Here, % stands for {{4},{14},{17},{24},{32},{38},
{43},{44},{47}}, i.e., the data from the preceding line
which, therefore, need not be rekeyed.
Dut[3]= {0.33, 5.71, 2.33, 3.41, 1.83, 3.01, 0.71, 3.95, 4.37,
0.90, 0.30, 1.94, 8.31, 5.15, 3.25, (.06, 2.89, 6.99,
2.15, 6.58, 5.28, 0.78, 1.70, 6.68, 4.73, 5.94, 4.26,
7.23, 8,31, 2.52, 1.35, 2.66, 1.30, 0.71, 2.41, 3.66,
9.69, 0.43, 4.41, 8.77, 9.66}
In[4] := batteryl= %;
Remark: This names the deleted list as batteryl
In[5]:= Sum[batteryi{[i]],{i,1,Length([battery1]}]/Length[batteryl]
Out [6]= 3.82073
Ini6) := Suml{battery[[i]],{i,1,Length[battery]l}]/Lengthlbattery]
Outl[6]= 4.933
In[7] := Sort[battery]
out[7)= {0.06, 0.3, 0.33, 0.43, 0.71, 0.71, 0.78, 0.9, 1.3, 1.35,
1.7, 1.83, 1.94, 2.15, 2.33, 2.41, 2.52, 2.66, 2.89,
3.01, 3.25, 3.41, 3.66, 3.95, 4.26, 4.37, 4.41, 4.73,
5.15, 5.28, 5.71, 5.94, 6.68, 6.68, 6.99, 7.23, 8.31,
8.31, 8.77, 9.66, 9.69, 10., 10., 10., 10., 10., 10.,
10., 10., 10.}

In[8):= battery2= %;
In[9) := battery2[[Floor[Length[battery]*0.2]11]
Out{9]= 1.35

In[10] := Quit

See Section 1.14 for more experiments and projects of this nature.

1.4 Reliability of complex systems

Example 1.3.1 illustrates a common situation where only statistical, and often
censored, data about the lifespans of manufactured components is available. These
items, incorporated into a more complex device, may then be put to work under
different (sometimes extreme) conditions and the ability of the device to function
properly depends on the ability of its individual components to survive, or—in
other words—on their reliability.

Development of the reliability theory was largely spurred by the electronics
industry where, typically, devices are built of hundreds or thousands of not perfectly
reliable parts, and there is a need to evaluate the reliability of the whole instrument
based on information about its components. For a fixed component, the reliability
r could be measured as the proportion of components of the same type that are
likely to work without failure for a given period of time.
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Then, for example, we could inquire about the reliability of a large device con-
sisting of many components of known reliability interconnected in a particular
fashion. In the simplest case, the reliability of a device consisting of # components
Cy, Gy, ..., Cy in series (Fig. 1.4.1) of reliability r1, 2, .. ., rs, respectively, can
be shown to be equal to the product r; - 75 - ... - r,. Hence, it is clear that the
reliability of a serial device can never be better than the reliability of its worst
component.

R OaOSOS

FIGURE 1.4.1
A serial device.

On the other hand, for a parallel device (Fig. 1.4.2), the reliability turns out to
be

I-—(=r)-A=r) ...-(A=r). ¢}

So, the reliability of a parallel device is never worse than the reliability of its best
component.

FIGURE 1 4.2
A parallel device.

The serial and parallel devices represent the simplest device structures. De-
termination of the reliability of more complex devices like, for instance, the one
shown in Fig. 1.4.3, may be quite difficult.

Mathematica Experiment I. Reliability. In this experiment we will compute:

(1) Reliability of a serial device consisting of 35 elements with individual reli-
abilittes rp, = 1/m, m=1,...,35.

(2) Reliability of a parallel device consisting of 35 elements with individual
reliabilities rp, = 1/m, m =1, ..., 35.
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O~
O

FIGURE 14.3
A more complex device.

It is worthwhile to compare the results of (1) and (2). Are there any surprises?
The experiment will be concluded by computation of the reliability of serial and
parallel devices for any number of individual components with individual reliabil-
ities r,, given by an arbitrary list.

You will find the following new Mathematica commands useful:

Product [function[il,{i,minimum,maximum}]
Usage: returns the product of the numbers function(argument] for the
values of the argument between minimum and maximum.

Table [expression{i],{i,minimum,maximum}]
Usage: makes a list of elements where the i-th element is expression[i].

Save["name.m", definitionl, definition2,...]
Usage: saves definitions into a file called name .m.

In[1]:

In[2]:
Out 2]
In{3]:
In[4]:
Out {4]
In[5]:
In[é6]:
Out [8]

In(7]:

LI I (N (O

fli_l:= 1/i
Remark: This defines the function f(x)=1/x.

reli= Product[f,{i,1,35}]

{1/ 10333147966386144929666651337523200000000}

gli_]:= 1-1/i

rel2=1-Product(g,{i,1,36}]

1

serialll_]:= Product[1[[1]],{i,1,Length[1]}]

probab=Table[i/m, {m,1,35}]

{1, {172}, {1/ 3%, {1/ &}, {1/ 5}, {1/ 6},
{1/ 7}, {17 8}, {1/ 9}, {1/ 10}, {1/ 11}, {1/ 12},
{17 13}, {1/ 14}, {1/ 15}, {1/ 16}, {1/ 17}, {1/ 18},
{1/ 19}, {1/ 20}, {1/ 21}, {1/ 22}, {1/ 23}, {1/ 24},
{1/ 25}, {1/ 26}, {1/ 27}, {1/ 28}, {1/ 29}, {1/ 30},
{1/ 31}, {1/ 32}, {1/ 33}, {1/ 34}, {1/ 35}}

serial [probab]
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Out [7]= {3/ 10333147966386144929666651337523200000000}
Inf8]:= parallel[l_):= 1-Productf1-1[[i]],{i,1,Length[1]1}]
In[9] := parallel [probab]
Out(9]= 1
In[10] := Save["device.m", serial, parallel]
In[11]:= '!device
Remark: Press enter here!

serialll_Jl:= Product[1[{il}],{i,1,Length[1]}]

parallel[l_1:= 1-Product[1-1[[i]11,{i,1,Length[1]}]
In(12]:= Quit

In real life, the reliability depends on time. The number N (#) of units surviving
at time ¢ in a population that started with N (0) vnits at time # = 0 is decreasing
with time and a typical survival curve is pictured in Fig. 1.4.4,

A N

Ny~
I
t
|
| |
1 1 ,.,
Early failure Life time Wearout t
FIGURE 1.4.4
A typical survival curve.
Then, the time-dependent reliability r (1} of the device can be defined as
N@®)
1 =—", 2
r(t) NO) @

the proportion of surviving units at time ¢. The function 7 is equal to 1 at7 = 0 and
decays monotonically to 0 as ¢ increases, following the general shape in Fig. 1.4.4.

Often, the quantity one wants to waich is the failure rate A(z) of the device (per
unit time and per unit device), which can be expressed via the formuila

N@) - N+ A

M) = ALN(D)

- d ! t 3)
a1 og r(t). (
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A typical graph of the failure rate time-dependence, corresponding to the survival
curve of Fig. 1.4.4 is shown in Fig. 1.4.5. It reflects the typical reliability history
of a device: the initial high failure rate due to the presence of “bugs", the constant
failure rate during the intermediate “utility” period of the device’s lifetime, and the
steadily increasing failure rate as the device wears out with age.

A A

N

tA

-

Early Constant failure rate ) Failure by wearout
failure

FIGURE 1.4.5
A typical failure rate curve.

Notice that if the failure rate A(z) = A is constant in the time interval [fo, /1],
then solving the simple differential equation

d
—logr(t) = —A, 4
771087 (®) 4)
one obtains that, in that interval, the survival curve decays exponentially and
N(@®) = N(to)e 207 ®)

The reliability of serial and parallel devices assembled from components with time
dependent reliability can then be determined via formulas discussed in the first part
of this section.
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1.5 Point processes in time and space

There are many situations where the experimental data or observations form
a sequence of random singular point signals spread over time or space. Work-
stations’ connection times to the server, particle arrivals registered in the Geiger
counter, locations where gold deposits were found, or recorded outbursts of a mad
cow disease, or arrival times of customers in a queue are typical examples here.
Technically, they are called point processes in time or in space, depending on the
context.

Example 1.5.1 Bright Stars.
The set of data shown on the next page was supplied by Jacqueline Monkiewicz, a
CWRU astronomy major, The data includes the magnitudes and sidereal positions
of the stars brighter than 2.5 magnitude in the year 2000. More complete data, for
all the stars brighter than the 3rd magnitude, are provided on the UVW Web Site.
The stars’ coordinates are given by their declinations (angle from the celestial
equator) and right ascensions (angular distance from the vernal equinox, measured
in hours). Also included is the basic spectral class of each star.

What is the explanation for this particular, seemingly random, distribution of
stars? Could it be derived from the Big Bang hypothesis? Perhaps from simpler
geometric arguments?

Example 1.5.2 Water Drips.
The set of data provided below represents the time intervals (in seconds) between
consecutive water drips from a nozzle.

0.1822 0.1962 0.1342 0.1035 0.1551 0.2327 0.2023
0.1289 0.1868 0.2265 0.2611 0.1917 0.1376 0.1483
0.2227 0.1605 0.1378 0.0952 0.2457 0.1738 0.2581
0.1893 0.2542 0.2246 0.2615 0.1095 0.2203 0.1014
0.1969 0.1281 0.1359 0.1005 0.2558 0.1404 0.2556
0.13520.2519 0.2531 0.2565 0.0720 0.2222 0.1065
0.2308 0.1430 0.1203 0.0757 0.2835 0.1340 0.2535
0.1360 0.1596 0.2041 0.2544 0.1051 0.2245 0.1085
0.2314 0.1876 0.1481 0.1376 0.2255 0.1429 0.2121
0.1243 0.1705 0.2637 0.2244 0.1357 0.2210 0.1485

What is the source of randomness in this data set? The mechanical system used
in the experiment remained unchanged for the duration of the experiment. The
data set was collected by Bill Dimmock, a CWRU physics major.



Chapter 1. Why One Needs to Analyze Data?

Table 1.5.1 Magnitudes and sidereal positions of stars

Magn. | R.A. Declin. CI'] Magn. | R.A. Declin. Cl.
2.06 08232 29526 B 227 [00106 59859 F
2.39 02612.1 | 434048 | K | 2.04 043353 | -175912 | K
2.47 056424 | 60430 B | 2.06 19439 353714 | M
0.46 137429 571412 | B 2.02 231505 (891551 |F
2.00 27103 232745 | K | 226 23539 421947 | K
1.79 324193 | 495141 | F 212 3810.1 405721 (B
1.65 526175 [ 283627 | B | 0.85 435552 (163033 | K
223 53203 01757 | B 0.08 516413 | 455953 | G
0.12 514322 | -8126 B 1.64 52578 62059 B
1.70 536127 |-1127 B 2.05 540455 |-15634 | O
2.06 547453 | 94011 | B 0.5 555103 | 72425 M
1.9 55931.7 | 445651 | A 1.98 622419 |[-175722 | B
-0.72 623572 | 524144 | F 1.93 637427 | 162357 | A
-1.46 6458.9 -164258 | A | 1.5 658375 | 285820 | B
2.06 146408 | -362212| K || -004 | 1415396 | 191057 | K
2.31 1435303 -42928 | B | -0.0] 1439362 | -60507 | G
1.33 1439362 | -60507 (K | 2.3 1441557 | -472317 | B
2.08 14 56 46 -112435 [ K || 2.23 1534412 | 264253 | A
2.32 160199 |-223718 (B |2 155930.1 | 255513 | B
0.96 1629244 | 262555 | M | 192 1648399 | 69140 | K
2.29 165097 | -341736 | K | 2.43 1710226 | -154329 | A
1.63 1733364 | -37613 | B 1.87 173719 425952 | F
2.08 17 3456 38356 A |} 241 174229.1 | -39148 i B
2.23 1756366 | 512920 (K § 1.85 1824103 | -34235 | B
0.03 1836209 | 38471 A 1202 1855158 | -261748 | B
2.06 146408 |-362212 (K | 1.84 78234 -262335 | F
2.45 72456 291811 B 1.58 734359 1315318 [A
1.59 734359 | 315318 [ A | 038 739181 {51330 F
1.14 745189 | 28134 K | 225 8335 -40011 [ O
1.78 89319 472012 | W || 1.86 822308 | -593034 | K
1.96 844422 | -5442301 A | 221 97597 -432557 | K
1.68 913121 |-69432 | A |225 91754 -591631 1 A
2.5 92268 55038 | B 1.98 927352 |-83231 | K
1.35 108223 | 11582 B | 237 111504 | 562256 | A
1.79 113436 | 61453 K | 214 1149148 | 161434 | A
2.44 1153498 | 534141 | A 1.58 1226359 | 63556 | B
2.09 1226365 -63558 | B 1.63 123199 {-57647 | M
2.17 1241309 | 485734 | A 1.25 1247433 1-594119 | B
1.77 125417 | 555735 { A §2.27 1323555545531 | A
0.98 13251151 -11941 |B |23 1339532 |-532759 | B
1.86 1347323 | 491848 (B | 0.6] 143494 | -602222 | B
0.77 1950469 | 8526 A | 194 2025388 | -56447 | B
2.2 2022136 | 401524 | F 1.25 2041258 [ 451649 | A
2.46 2046126 | 335813 | K | 2.44 2118347 1 62358 A
239 214411.1 195230 K | 1.74 228139 | -465740 | B
2.1 224240 -46535 | M | L16 225739 293720 | A
2.42 233464 | 28458 M [ 249 234456 [151219 (B
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Example 1.5.3 DNA Sequences.

DNA and protein data are stored world-wide in huge databases (like the U.S.
Human Genome project) to provide easy access to information needed in a rapidly
developing research area. In fact the information about each DNA “sequence” is
encoded as a (unique) word written in a fixed alphabet. To discover similarities
between different proteins much work has been done on methods of comparison
of such sequences. For example, similarities were found between src proteins of
the bovine cyclic AMP dependent kinase and the Roussavian and Maloney murine
sarcoma virus.

Such comparisons involve uncertainty because the above mentioned encoding
is one-to-one only with a certain (unknown) probability. Hence, one has to devise
qualitative statistical criteria for the matching decision process. The work on this
problem is still in progress and the dynamic programming methods have also been
used for this purpose.

If Ay...., Apand By, ..., By, are two such sequences, then one considers the
“diagonals” (A;, B;), where the difference i — j is a fixed number, and one studies
the k-word matches on these diagonals by looking at the match-indicators x; = 0
orl. If, for 1 <i =k, A; = B;, then one sets x; = 1 (and O otherwise), For
a g such that 1 < g < %, a g-maich is said to hold if at least g of the x;s are
equal to 1. For long strings of A;s and B;s one obtains a sequence of k-words
consisting of Os and 1s, which are strongly dependent. Therefore, their analysis
has to use tools different than those that have been developed for studying, say,
repeated independent experiments.

Mathematica Experiment 1. Bright Stars. The file STARS on the UVW Web Site
contains expanded data from Example 1.3.1. To carry out our experiment, we need
Mathematica commands to find elements, rows, and columns of a matrix, and to
represent matrix data in the graphical form:

ListPlot{{{a,b}, {c,d}, ...}]
Usage: plots points in two dimensions.
TableForm{list]

Usage: gives a table of the data in the 1ist.

Prolog->AbsclutePointSizen)
Usage: plots point of size n times the basic unit.

Axes->False
Usage: suppresses axes in the graph.

Cos[x], Sinf[x]
Usage: cosine and sine functions.

Transpose [matrix]
Usage: interchanges columns and rows.

In[1]:= star={{2.06, 0, 8, 23.2, 29, 5, 26, B},
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{0.12, 5, 14, 32.2, -8, 12, 6, B},
{1.5, 6, 58, 37.5, -28, 58, 20, B},
{1.87, 17, 37, 19, -42, 59, 52, F},
{1.16, 22, 57, 39, -29, 37, 20, A},
{0.03, 18, 36, 20.9, 38, 47, 1, A},
{0.5, 5, 85, 10.3, 7, 24, 25, M},
{2.32, 16, 0, 19.9, -22, 37, 18, B}};
In[2] := TableForm[%]

Dut [2] //TableForm=

2.06 0 8 23.2 29 5 26 B
0.12 5 14 32.2 -8 12 6 B
1.5 6 58 37.5 -28 58 20 B
1.87 17 37 19 -42 59 52 F
1.16 22 57 39 -29 37 20 A
0.03 18 36 20.9 38 47 1 A
0.5 5 55 10.3 7 24 25 M
2.32 16 0 19.9 -22 37 18 B

In[3]:= star[[5]]
Outi3)= {1.16, 22, 57, 39, -29, 37, 20, A}
In[4]:= star[[5,4]]
Qut[4]:= 39
In[5]:= Transpose[star]
Dut[5]= {{2.06, 0.12, 1.5, 1.87, 1.16, 0.03, 0.5, 2.32},
{0, 5, 6, 17, 22, 18, 5, 16},
{8, 14, 58, 37, 57, 36, 55, 0},
{23.2, 32.2, 37.5, 19, 39, 20.9, 10.3, 19.9},
{29, -8, -28, -42, -29, 38, 7, -22},
{5, 12, 58, 59, 37, 47, 24, 37},
{26, 6, 20, 52, 20, 1, 25, 18},
{B, B, B, F, A, A, M, B}}
In[6]:= %[{8]]
Out[6]= {B, B, B, F, A, A, M, B}
In(7]:= ListPlot[ Tablel
{Cos[(star[[i,2]]+star[[i,3]]/60+star[[i,4]1]/3600) Degree]
* Cos[(star[[i,5]])+star([i,6]]/60+star[[i,7]]1/3600) Degree],
Sin[(star[[i,2)]+star[[i,3]]/60+star[[i,4]11/3600) Degree]
* Cos[(starl[[i,5]]+star{[i,6]]/60+star[[i,7]]/3600) Degreel},
{i,1,Length{star]}],
Axes->False, Prolog->AbsolutePointSize[8],
Frame->True, Gridlines->Automatic]
Out[7]= Graphics
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Mathematica Experiment 2. Queue Arrivals. This experiment uses the Un-
certain Virtual Worlds package UVW* TimeRep‘ which simulates random artivals to
a single queue (so-called Poisson process and M/M/1 queue). The precise sig-
nificance of the quantitative information obtained here will become clear in later
chapters.

In[1]:= <<UVW‘TimeRep®

In[2]:= <<Statistics'ContinucusDistributions’

In[3]:= arr=Table[Random[ExponentialDistribution[1.]],{100}];
In[4]:= Geigerlarr]

In{5]:= CumulatedTimes [arr]

In[6] := ser=Table[Random[ExponentialDistribution{1.2]]1,{100}];
In[7] :=Queue[arr,ser)

1.6 Polls-social sciences

Complex social phenomena often produce random and uncertain results when
subject to empirical study. You have seen political pollsters presenting opinions
or electoral predictions based on random sampling.

The table on pages 24 and 25 presents the rate (per 100,000 resident population)
of sentenced prisoners in stale and federal institutions on Dec. 31, of the years
1971 to 1991 (by region and jurisdiction). Is there any regularity in the table? The
data depend both on time and geographical location. Are the rates for different
states correlated over the years? And how? The data was provided by Ramona
Myers, a CWRU chemical engineering graduate student, who also does volunteer
work with the prisoners.
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Mathematica Experiment 1. Vive le Quebec? The 1941 Canada Census com-
pared family sizes depending on the age at marriage (0=15-19 years; 1=20-24
years), years of schooling (U=0-6; E=7+), income class (L=low income, H=high
income), and language (F=French-speaking, M=mixed ), among others. The list
CENSUS on the UVW Web Site contains a sample of data for eight different groups.
The last two variables are, respectively, the average number of children in that
group and the number of families examined.

To carry out this experiment it will be necessary to sort data, select sublists,
merge lists, etc. Finally, we will extract a sublist consisting of those groups that
are French-speaking. Again, the idea is to ease your way into manipulating data
using Marhematica, and the following commands will be useful:

Sort[1list]
Usage: sorts a 1ist in lexicographical ordering.

Dropl[list,{m,n}]
Usage: drops the elements Yist[[ml],...,list[[n]].

Intersection{listi,list2,...,listk]
Usage: forms the list consisting of the elements which are included in all
lists 1ist1,...,listk

If [statement for numerical data, outl if true, out2 if false, out3
if neither true nor falsel

Usage: returns one of the three out expressions (1, 2, or 3 here but, in
general, not necessarily numerical), according whether the statement is true,
false, or neither.

Dolexpressien[i], {i,1,n)]
Usage: evaluates expression[i] for each i beginning with i=1 and ending
with i= n.

In[1]:= census= {{0, U, L, F, 7.4, 5}, {0, E, L, M, 11.3, 7},
{1, E, H, M, 8.8, 12}, {1, U, L, F, 8.3,10},
{1, E, H, F, 10.3, 28}, {0, E, H, F, 8.7, 15},
{1, E, L, F, 6.7, 37}, {1, U, L, M, 9.7, 3}};
In[2]:= TableForm[¥]

Out[2]// TableForm= 0 U L F 7.4 5
¢ E L M 11.3 7
1 E H M 8.8 12
1 U L F 8.3 10
1 E H F 10.3 28
0 E H ¥ 8.7 15
1 E L F 6.7 37
1 U L M 9.7 3

In[3]:= Sortlcensus]
Out[3]= {{0, E, H, F, 8.7, 16}, {0, E, L, M, 11.3, 7},
{o, u, L, F, 7.4, 5}, {1, E, H, F, 10.3, 28},



1.6. Polls—Social Sciences 23

{1, E, H, M, 8.8, 12}, {1, E, L, F, 6.7, 37},
{1, U, L, F, 8.3, 10}, {1, U, L, M, 9.7, 3}}
In[4):= TableForm{%]
Out[4]// TableForm= 0 E H F 8.7 15

¢ E L M 11.3 7
© U L F 7.4 )
i1 E H F 10.3 28
1 E H M 8.8 12
1 E L F 6.7 37
1 U L F 8.3 10
1 U L M 9.7 3

In[5]:= Sumlcensus((i,6)],{i,1,Lengthlcensus]}]
Out[6)= 117
Remark: number of families in the study

In[6] := TableForm[Droplcensus, {2,4}]]

Qut[6)// TableForm= Q0 U L F 7.4 5

H F 10.3 28

H F 8.7 15

L F 6.7 37

U L M 9.7 3

f[M1=0; d[i_]:=If[f[census[[i,4]1]1]==0,

Proplcensus,{i, 1}],census,census]

Remark: defines a function ¢ which returns a dropped or
original list. f[M]=0 sets M to a numerical value for the
test procedure.

da[2]

{{o, v, L, F, 7.4, 5}, {1, E, H, M, 8.8, 12},
{1, v, L, F, 8.3, 10}, {1, E, H, F, 10.3, 28},
{0, E, H, F, 8.7, 15}, {1, E, L, F, 6.7, 37},
{1, v, L, M 9.7,3}}

In[9):= Intersection[ d[1]}, d[2], 4[3]]

out[9]= {{0, E, H, F, 8.7, 15}, {0, U, L, F, 7.4, 5},

{1, E, H, F, 10.3, 28}, {1, E, L, F, 6.7, 37},
{1, U, L, F, 8.3, 10}, {1, U, L, M, 9.7, 3}}
In[10] :=french[1]=d[1]; Dol
french(i+1])= Intersection[french(il], d[i+1]],
{i,1,Length[census]-1}]
In{11] :=TableForm[french[Length[census]]]
Out[11]// TableForm= 0 E H F 8.7 15

= O
1 o1t

Inf7]:

]

In[8):
Out [8]

¢ U L F 7.4 b

1 E H F 10.3 28
1 E L F 6.7 37
1 Uu L ¥ 8.3 10
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Table 1.6.1 The rate (per 100,000 residents) of sentenced prisoners

Region 71 72 73 74 75 76 77 718 79 'BO
NORTHEAST | 56 57 60 63 70 73 77 82 84 87
CT 63 59 54 48 59 62 53 70 69 68
ME 45 46 44 50 60 57 61 53 S8 6l
MA 383 32 34 38 42 46 48 49 S0 56
NH 28 31 35 27 31 30 26 32 3 35
NJ 072 14 72 77 78 18 714 76 76
NY 65 64 71 79 89 98 108 114 120 123
PA 45 53 55 57 60 56 56 65 67 68
RI 4 36 43 49 41 53 56 56 63 65
vT 47 30 40 52 51 64 57 6 62 67
MIDWEST 73 66 63 69 84 95 108 104 105 109
IL 52 50 50 56 73 8 9 9% 95 94
IN 83 73 63 58 73 79 380 8 98 114
IA 54 46 49 52 63 66 70 70 72 86
KS 91 74 61 64 76 91 97 98 95 106
Ml 107 94 87 95 119 137 151 162 163 163
MN 40 35 36 35 42 41 44 49 51 49
MO 77 75 79 88 92 105 111 116 113 112
NE 69 63 66 68 8 93 8 8 71 89
ND 21 29 25 21 27 26 30 21 19 28
OH 8 77 72 & 107 117 120 122 125 125
SD 58 5t 35 37 4% 70 76 74 77 88
WI 55 45 47 36 65 71 72 73 73 85
SOUTH 124 125 128 135 150 161 169 181 198 1388
AL 110 104 105 110 121 83 94 144 141 149
AR 84 80 8 100 102 115 111 115 132 128
DE 33 49 57 76 100 118 120 173 181 183
DC 349 341 324 289 326 334 330 383 433 426
FL 136 139 133 138 183 211 221 239 220 208
GA 146 174 173 191 204 225 224 216 224 219
KY 94 90 89 92 100 107 106 97 105 99
LA 113 92 108 128 126 120 152 184 190 211
MD 125 139 144 155 169 192 198 193 187 133
MS 8 8 76 92 103 91 67 110 141 132
NC 153 160 184 207 210 214 234 223 240 244
OK 144 140 120 109 114 133 129 146 147 151
SC 118 121 130 158 198 230 239 243 237 238
TN 86 82 84 91 109 114 127 134 151 153
TX 141 136 147 141 154 167 176 189 196 210
VA 109 107 108 105 110 126 142 157 158 161
wV 60 59 61 57 65 71 61 63 66 64
WEST 82 79 8 94 84 91 92 99 101 105
AK 66 61 57 57 56 63 75 127 133 143
AZ 74 77 81 97 118 125 129 146 139 160
CA 87 8 99 106 81 B85 B0 8 93 98
Cco 86 81 78 79 8 87 8 93 90 96
HI 34 39 37 39 42 39 44 57 58 65
ID 49 50 558 66 71 82 87 91 92 &7
MT 3 40 4 4 SO 73 81 8 9% 94
NV 124 121 135 130 136 156 187 204 224 230
NM 61 56 66 81 8 105 126 123 112 106
OR 94 84 75 88 108 122 122 117 122 120
UT 53 51 45 4 54 60 64 69 68 64
WA 8 77 77 8 96 109 118 122 113 106
WY 78 76 77 74 80 B7 98 102 95 113
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Table 1.6.1 in state and federal institutions on Dec. 31, of the years
1971 to 1991.

‘81 ‘82 ‘83 8B4 '85 '86 '87 "68 ‘89 '00 91
103 115 127 136 145 157 169 186 218 232 248
95 114 114 119 127 135 144 146 194 238 263
71 69 75 72 83 106 106 100 116 118 123
65 77 79 84 88 92 102 109 122 132 143
42 47 50 57 68 76 8l 93 103 117 132
92 107 136 138 149 157 177 219 251 271 301
145 158 172 187 195 216 229 248 285 304 320
78 88 98 109 119 128 136 149 169 183 192
72 82 92 92 99 103 100 118 146 157 173
76 84 72 74 82 81 91 98 109 117 124
121 130 135 144 161 173 184 200 225 239 255
113 119 135 149 161 168 171 181 211 234 247
138 152 164 165 175 181 192 202 217 223 226
88 93 92 97 98 98 101 107 126 139 144
116 129 152 173 192 217 233 232 222 227 231
165 162 159 161 196 227 259 298 340 366 388
49 50 52 52 56 58 60 64 71 72 78
131 147 162 175 194 203 218 236 269 267 305
104 99 91 95 108 116 123 129 141 140 145
33 47 51 54 55 53 57 62 62 67 68
139 160 155 174 194 209 219 243 279 289 324
97 109 115 127 146 160 160 143 t75 187 191
93 96 102 105 113 119 126 130 138 149 157
201 224 225 231 236 248 255 266 292 316 333
183 215 243 256 267 283 307 300 328 370 394
143 166 179 188 195 198 227 230 261 27 317
208 250 273 263 28F 311 326 @ 331 333 323 344
467 531 558 649 738 753 905 1,078 1,132 1,148 1,221
224 261 235 242 247 272 265 278 307 336 344
220 247 259 254 251 265 282 28! 300 327 342
114 110 127 128 133 142 147 191 222 241 262
216 251 290 310 308 316 346 370 3% 427 462
218 244 277 285 279 280 282 201 323 348 366
177 210 211 229 237 249 256 277 293 307 330
248 255 233 246 254 257 250 246 250 265 269
169 201 212 236 250 288 1296 323 361 381 416
251 270 276 284 294 324 344 369 416 451 473
171 173 187 154 149 157 156 157 213 207 227
210 237 221 226 226 228 231 240 257 290 297
165 177 177 185 204 215 217 230 263 279 31
80 77 83 82 8 77 171 78 84 85 83
119 139 152 166 176 197 214 234 256 277 287
170 194 219 252 288 306 339 355 361 348 345
184 209 223 247 256 268 307 328 350 375 396
114 135 150 162 181 212 231 257 283 311 318
92 108 109 104 103 115 145 174 207 209 249
77 88 103 124 134 142 141 136 142 150 153
99 107 121 127 133 144 144 157 180 190 205
104 114 104 121 136 135 147 158 165 176 183
245 301 354 380 397 447 432 452 438 444 439
100 126 142 133 144 154 174 180 178 196 191
124 146 157 170 165 176 200 215 235 223 228
7377 77 84 98 108 110 115 137 142 149
125 148 155 156 156 147 134 124 142 162 182
117 135 138 143 148 168 190 199 216 237 237

25
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1.7 Time series

Natural phenomena are often observed over a period of time at discrete time
intervals and then recorded as a time series. Typical examples would be daily
recordings of rainfall or maximum temperature at a given location, or stock price
fiuctuations on the New York Stock Exchange.

Example 1.7.1 SAMS in Space.

The Table 1.7.1 below (and the file SHUTTLE on the UVW Web Site) provides data
extracted from the Space Accelerometer Measurement System (SAMS) that was
present aboard the space shuttle Columbia during STS-50. The acceleration ruins
the diffusion controlled aggregation experiments that were supposed to be con-
ducted in the near-zero gravity environment; so it was important to keep track
of it. The data period begins on day 007, hour 22 (MET). Sampling rate is 12.5
samples/second. No significant peaks are present in this sample, so the data can be
interpreted as random background noise and accelerations. The data were provided
by Milton Moskowitz, a graduate student in the Materials Science Department,
and were obtained as part of a CWRU Microgravity Lab project.

Often to detect regularities, or irregularities, it is more convenient to present the
time series in the graphical form.

Example 1.7.2 EKG on Soaps.

Fig. 1.7.1 shows successive R-R intervals (in seconds) of a normal, resting dog.
A major upward “blip"” on an electrocardiogram (EKQG) is called an R-wave, and
the R-R interval is an interval between two consecutive R-waves. You may have
watched many a soap opera emergency room where a confident young doctor
would casually opine to an emaciated patient: “See, your R-R interval correlation
dimension has fallen from the normal of 2-3 to near 1, so things look very grim."
But what did the good doctor really mean? You will find out later on. Note that
presented at a different time scale, things may look quite different (see Fig. 1.7.2),
and sharp “blips" do not look that sharp anymore.

Figs. 1.7.3 and 1.7.4 show portions of an electroencephalogram (EEG) of a
normal, waking adult. There is no way to add regular “blips" to an EEG, so these
rhythms never quite make it to prime time TV. The above sample is 2 minutes long,
sampled at 200 Hz. The data were provided by Mark D. Bej, of the Cleveland
Clinic Foundation.

Sometimes the periedicities and time-correlations in the signal are quite obvious
as in the following example.
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Table 1.7.1 Acceleration aboard space shuttle Columbia sampled at
the rate of 12.5 samples/second.

0 | -1.393413e-04 | 1 -1.347195¢-04 | 2 | -1.100744¢-04
3 | -9.775257e-05 || 4 -1.008320e-04 | 5 | -1.100709¢-04
6 | -1.285549¢-04 | 7 -1.424222¢-04 | 8 | -1.408843e-04
9 | -1.331803e-04 | 10 | -1.239331e-04 | 11 | -1.193078e-04
12 | -1.069854e-04 || 13 | -9.928829¢-05 || 14 | -1,270203e-04
15 | -1.424276e-04 § 16 | -1.254827e-04 || 17 | -9.620895e-05
18 | -7.001450e-05 § 19 | -7.001350e-05 | 20 | -9.928802e-05
21| -1.393437e-04 | 22 | -1.455037e-04 | 23 | -1.085298e-04
24 | -8.388260e-05 | 25 | -1.162321e-04 | 26 | -1.439624e-04
27 | -1.224023¢-04 | 28 | -1.147032e-04 || 29 | -1.36265%¢-04
30 | -1.516663e-04 | 31 | -1.347214e-04 | 32 | -1.100748e-04
33 | -1.193151e-04 | 34 | -1.532005e-04 | 35 | -1.562799¢-04
36 | -1.100700e-04 § 37 | -9.466843e-05 | 38 | -1.193158e-04
39 | -1.393405e-04 § 40 | -1.316371e-04 | 41 | -1.331771e-04
42 | -1.377995e-04 § 43 | -1.285593e-04 | 44 | -1.208582¢-04
45 | -1.347212e-04 | 46 | -1.470435e-04 § 47 | -1.316405¢-04
48 | -1.193169e-04 | 49 | -1.116138e-04 § 50 | -1.285562e-04
51 [ -1.501199e-04 | 52 | -1.377996e-04 § 53 | -1.085368e-04
54 | -1.085385¢-04 § 55 | -1.177798e-04 | 56 | -1.316410e-04
57 | -1.362619e-04 | 58 | -1.270204e-04 } 59 | -1.362619e-04
60 | -1.516642e-04 | 61 | -1.331787e-04 | 62 | -9.928946e-05
63 | -1.054490e-04 | 64 | -1.300945¢-04 | 65 | -1.300968¢-04
66 | -1.193166¢-04 [ 67 ([ -1.085363¢-04 | 68 | -1.008375¢-04
69 | -1.054583e-04 [ 70 | -1.008344e-04 | 71 | -9.158860e-05
72 | -9.620688e-05 [ 73 [ -9.312755e-05 | 74 | -1.069962¢-04
75| -1.131623e-04 [ 76 | -1.008200e-04 | 77 | -9.464904e-05
78 | -1.069712e-04 | 79 | -1.146803e-04 § 80 | -1.193076e-04
81 [ -1.085253e-04 | 82 | -1.131418e-04 | 83 | -1.115988e-04
84 | -1.239222e-04 | 85 | -1.193024e-04 | 86 | -1.254620e-04
87 | -1.162172e-04 | 88 | -1.162160e-04 § 89 | -1.285403¢-04
90 | -1.424036e-04 | 91 | -1.192985e-04 § 92 | -1.100573e-04
93 | -1.300821e-04 | 94 | -1.454869e-04 | 95 | -1.470287¢-04
96 | -1.454863e-04 | 97 | -1.439431e-04 { 98 | -1.239184e-04
99 | -1.085183e-04 | 100 | -1.285449e¢-04

Example 1.7.3 Breathing Patterns.

Fig. 1.7.5 shows the activation times of a neural cell in the brain (top graphs in
each of the modes 1-4). The selected cell is responsible for inspiration. Modes 1
and 2 show, respectively, spontaneous activity of the cell during wakefulness and
non-rapid-eye-movement (non-REM) sleep. Modes 3 and 4 show, respectively,
intense activity of the cell during a smoke-induced apnea (suspended breathing,
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FIGURE 1.7.1
Successive R-R intervals on an EKG.
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FIGURE 1.7.2
A portion of Fig. 1.7.1.

seen as a long pause in tracing 3) and in response to the conditioning stimulus.
In each mode, the tracing below the cell activation times (action potentials) is the
intratracheal pressure, with negative pressures (inspiration) indicated by upward
deflections. These data were supplied by Sharmila Kopanathi, a bio-engineering
graduate student.
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EEG of a normal, waking adult.
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A portion of Fig. 1,7.3.

1.8 Repeated experiments and testing

Repeated (and repeatable) experiments are the mainstay of engineering and
scientific research. The famous Lord Rutherford’s advice “If your experiment
needs statistics, you ought to have done a better experiment" has, obviously, only
limited applicability.
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FIGURE 1.7.5
Activation pattern in an inspirational neuron.

Example 1.8.1 Less Pain.

Bob Ruff, Ted Carroll and Richard Welser, faculty members at the CWRU
Medical School, tested a new medication regimen to reduce pain in 21 terminal
cancer patients over a certain period of time. Patients were of different ages and
tumors were located at different sites and the dosage for both old and new regimens
were different for different patients. The results of the probe were recorded as
subjective patient evaluations on a scale from O to 10 of the current, best, and
worst pain suffered during pre-regimen and post-regimen periods. The results are
presented in Table 1.8.1 below.

How effective was the new regimen of medication in comparison to the old
one? How can this statement be quantified? What was the dependence of the
effectiveness of the new regimen on the dosage and on the location of the tumor?
Was the patient sample sufficient to draw any firm conclusions? Did the researchers
have any control over the sample size? There could have been only so many patients
available. What about a contrel population?

Here is an example of an engineering testing problem.

Example 1,8.2 Cracks Propagate.

Mechanical and civil engineers often face the problem of component failure in
situations when the latter are subject to cyclic loading which may lead to creation
and propagation of fatigue cracks. Remember that fateful flight of Aloha Airlines
when the whole top of the plane came off in midair. The later investigation by the
Federal Aviation Administration showed that the fuselage, submitted to periodic
pressurizing and depressurizing during, respectively, takeoffs and landings, finally
succumbed to the excessive fatigue cracking.
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Table 1.8.1 Pain rating in terminal cancer patients.

Pain rating
Patient Pre-regimen Post-regimen
No. | Now | Best | Worst | Now | Best | Worst
1 4 1 8 1 0 3
2] 6 6 9 0 0 2
31 5 3 8 2 0 4
41 7 5 9 0 0 3
51 4 4 4 2 0 4
6| 7 5 9 1 0 3
7 4 2.5 9 2 2 4
81 6 4 L) 0 0 0
9| 5 5 8 0 0 4
10 6 3 9 1 0 3
11 5 3 7 2 0 4
12 4 4 7 0 0 2
13] 4 2 8 2 0 5
14| 4 2 6 2 1 4
15| 7 2 10 2 0 4
161 2 0 5 0 0 2
17 8 5 10 0 0 2
18| 5 3 8 2 0 4
19 8 5 10 0 0 5
20 2 2 9 0 0 2
21 23|23 8 V] 0 4

31

The crack is usually initiated at a (random) site of unavoidable material defect,
often microscopic, where stresses are particularty high. Then, periodic loading
causes accumulation of damage in the micro-structure of the material and the
crack propagates. The lab data are usually collected via periodic inspection of the
trajectory of the crack and consist of recording the crack length a corresponding
to the total number of load cycles N (a) up to that time. Even for fairly uniform
samples, the data show a lot of randomness. In a study by P. Goel, a statistician at
Ohio State University, and D. Virkler, a mechanical engineer at Purdue University
(see Fig. 1.8.1), 68 replicate tests were conducted under identical loading. The
specimens were aluminum panels, and the constant-amplitude load was cycled at

20 Hz.
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FIGURE 1.8.1
The time-evolution of crack lengths for 68 identical centercracked aluminum panels
subject to 20 Hz cyclical loading.

1.9 Simple chaotic dynamical systems

Surprisingly, random effects can arise in seemingly simple dynamical systems
with only deterministic and well-controlled ingredients. When this happens we
often talk about the system’s chaotic behavior.

Example 1.9.1 Billiard vs. Pinball.

Consider a ball moving on a rectangular billiard table. Assume, idealizing the
situation, that there is no friction and no spin, and that the ball moves with constant
unit speed along straight line intervals between reflections, and obeys the law of
equal incidence and reflection angles on collision with the boundaries.

The trajectories of such a ball can be of different nature: periodic, sweeping
perhaps only part of the billiard table, or aperiodic which may sweep the whole
table surface. Itis clear that the single ball’s trajectory depends on the ball’s initial
position and velocity (angle), and on the relationship between the sizes of the ball
and the table. Theoretically, with an ideal point-size ball, when the initial angle is
a rational multiplicity of 7 the trajectory is periodic and, when it is irrational, the
trajectory is aperiodic (see a related discussion on irrational rotations in Chapter
6). In computer experiments, the question of irrationality is delicate; only rational
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FIGURE 1.9.1

Billiard table. The initial angle between the trajectories of two balls is 0.001. The
trajectories are almost indistinguishable.

FIGURE 1.9.2

Pinball table. The initial angle between the trajectories of two balls is 0.001. The
trajectories quickly diverge.
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FIGURE 193

The time-evolution of the angle between trajectories of two balls shot at slightly
different initial angles. Top: On the billiard table pictured in Fig. 1.9.1. Bottom: On
the pinball table with a round obstacle pictured in Fig. 1.9.2.

numbers can be produced, although, perhaps, with a lesser or greater degree of
complexity.

Now, consider trajectories of two balls shot from the same point but at slightly
different angles (Fig. 1.9.1). The time-evolution of the angle between the velocities
of two balls is shown in the top half of Fig. 1.9.3. Notice that, except for short-
duration “blips” due to boundary effects, the angle & between the trajectories of
the balls is being preserved. In the same situation the distance between two balls
increases linearly with time (see Fig. 1.9.4, top).

Next, let us analyze what happens if we put a round obstacle in the middle of the
billiard table thus creating a sort of simple pinball table. For a single ball, periodic
trajectories are still possible, and so are the aperiodic trajectories, sweeping the
whole pinball table and hitting the obstacle infinitely often. However, if one looks
now at the trajectories of two balls shot from the same point at close initial angles
(Fig. 1.9.2.) the situation differs dramatically from the one we encountered in the
case of the billiard table.

After the first collision with the obstacle, the angle between the two trajectories
is (see Fig. 1.9.5)

ol =a+28
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FIGURE 194

The time-evolution of the distance between two balls shot at slightly different initial
angles. Top: On the billiard table pictured in Fig. 1.9.1. Bottom: On the pinball
table with a round obstacle pictured in Fig. 1.9.2. Distances between the positions
of two billiard balls in the case of the billiard table without an obstacle and the
billiard table with an obstacle.

and since, for a small initial angle «, the angle 8 is proportional to @ (say 8 = «),

we see that

a! = 3a.

In other words, the initial angle between trajectories is tripled after the first
collision with the obstacle. The same will happen after the second collision so that

o’ = 3o = 9a.

Again, were it not for the boundary, each collision with the round obstacle
would triple the angle between the trajectories, causing it to grow exponentially.
This phenomenon is called a sensitive dependence an initial conditions and it does
not occur in the billiard table without obstacles. Also, if one looks at the behavior
of the distance between the two balls on the pinball table there seems to be no
regularity there; we have discovered chaotic behavior in a very simple, otherwise
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FIGURE 1.9.5

The angle between the trajectories of two balls triples after each collision with the
obstacle.

deterministic, dynamical system. In 1970, the above heuristic arguments have
been made rigorous by a Russian mathematician Yakov G. Sinai.

Example 1.9.2 Brazilian Butterfly.

Consider a dynamical system (x(¢), y(#), z(t)) evolving in a three-dimensional
space, depending on the continuous time ¢, and described by a system of three
ordinary nonlinear differential equations:

dx_ ox+to

dr >

%=—xz+rx—y 0
dz
2 o xy -z
ikl

The system was proposed in 1963 by Edward N. Lorenz as a “toy” atmospheric
circulation model but it helped jump-start the modern theory of chaotic behavior
in the physical sciences. Despite its simplicity it displays a sensitive dependence
on initial conditions (see Fig. 1.9.6). The model gave rise to the well-popularized
chaos-theory image: a butterfly flapping its wings in the Brazilian rain forest can
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=]

FIGURE 1.9.6

The trajectory of the points (x,y, z) corresponding to the solutions of (1) with
initial conditions near (0,0,0) and withe = 5,b=7,r = 2.

cause a typhoon a few weeks later in the China Sea. In 1990 Lorenz was awarded
the Kyoto Prize ($500,000) for his contribution.

The nonlinearity is essential for the complex behavior of the Lorenz model.
The equations are obtained by truncation of the Navier-Stokes equations (see also
Section 1.10 on complex dynamicat systems) that describe the conservation laws of
the fluid flow. Fig. 1.9.6 and 1.9.7 show Mathematica simulations of the trajectories
of the Lorenz system which used the package UVW‘Lorenz. Depending on the
parameter values the behavior of the system may be quite different.

Example 1.9.3 Iterations of Quadratic Maps.

To conclude this section we will take a quick look at a simple dynamical system
determined by iterations of the function f(x) = ax(l — x), 0 < x < 1, which
will play a role later on in Chapter 6. The time ¢ = 0, 1, 2, ... is assumed to be
discrete. Starting with an xp € [0, 1], the successive states x), xa, ... € [0, 1] of
the system are produced according to the following recursive formula

xe = f(x—1).

Depending on the value of the coefficient a and the starting point xp the system
displays a whole variety of behaviors from asymptotically stable, to periodic, to
chaotic.

Mathematica Experiment 1. Billiard vs. Pinball. The above analysis of the
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FIGURE 1.9.7
The trajectory of the points (x, y, z) corresponding to the solutions of (1) with
initial conditions near 0,0,0 and parameters

{113, 26.5, 1}, {3, 25, 1}, {{4, 26.5, 1}, {4, 25, 1}}}.

billiard and pinball was conducted via the Mathematica package UVW‘Billiard®
which is a part of the Uncertain Virtual Worlds (UVW) packages that can be
found on the UVW Web Site. Before you start experimenting with it, the package
has to be loaded using the command <<UVW‘Billiard‘.?

In[1]:= <<UVW‘Billiard®

In[2]:= BilliardAnimate[{0.2},20]

In[3]:= BilliardTrajectories[{0.2,0.3,0.4,0.5},10]
In[4]:= BilliardDifferences([0.4,0.001,20]

In[5] := BilliardDifferences[0.4,0.001,20,0.]

Mathematica Experiment 2. Iterations of Quadratic Maps. In this experiment
we will need the following Mathematica commands:

NestList[f, x, n]

Usage: Produces a list of n successively nested (iterated) functions f, i.e.
x, f[x], f0£0x33, ... , f[£[f....£[x]311
Random[Real, {0,1}, nl

Usage: Produces an n-digit pseudorandom number in the range O to 1.

Fnstructions for installation of UVW packages can be found in Appendix E. Also see Mathematica

bibliography at the end of this chapter.
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The following experiment will produce a (joined) graph of 200 iterations of
the quadratic (logistic) function f(x) = 4x(1 — x) starting with a random point
between 0 and 1 determined with the precision of 200 digits. You may further
experiment with this system by changing the coefficient 4 to any number a, 0 <
a < 4. Note that for @ > 4 the system no longer maps the unit interval state space
into itself. We will take a closer look at its complex behavior in Chapter 6.

In[1]:= f[x_] := 4 x(1-x)

In{2]:= ListPlot[NestList[f, Random[Real, {0,1}, 200]1, 200],
PlotJoined -> True]

Out{2]:= -Graphics-

100 150 200

The output of the graphics is random because the starting point was selected ran-
domly. Every time you run the above experiment the trajectory will be slightly
different.

1.10 Complex dynamical systems

Loosely speaking, by a complex dynamical system we mean a system with a
very large, or even infinite, number of degrees of freedom. As an example consider
the system of gas particles in the classroom. The instantaneous state of the system
is described by the vector

(X1, Y1, 21, X1, Y1, 21s o+ - XN, YN, TN, XN, YN EN),
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where (x;, y;, z;) are the coordinate vectors of the ith particle and (%;, ;, 2;) is
its velocity vector and i = 1,2,..., N. The number of degrees of freedom in
this system is 6 - N, with N, roughly speaking, of the order of the Avogadro’s
number, i.e., N & 6.0225 - 102, Another example is given below by following the
continuum fluid flow dynamical system, which, as a matter of fact, can be obtained
from the above particle system by taking the number N of particles to infinity.

Example 1.10.1 Turbulent Flows and Diffusions.
The motion of an incompressible fluid is described by the following system of
nonlinear partial differential equations

€+ (u-V)E - (E-VIu=RAE,

dive =0, € =curl u, N

where
u(®@) = (u1(x1,x2,xz), u2(x1, x2, X3), u3(xl,X2,X3))

is the velocity field, £ is the vorticity field, ¢ is the time, and

_ 2 d b
- 3X1,3x2’ax;; !

are, respectively, the gradient and the Laplacian differential operators. Equations
(1) are called Navier-Stokes equations and their solutions are vector fields de-
pending on time and space location, and can be thought of as points in an infinite
dimensional space of vector-valued functions of three variables. Depending on
initial and boundary conditions, and the value of the Reynolds number R which
is proportional to the characteristic scale and velocity of the flow, and inversely
proportional to the viscosity of the fluid, the behavior of the solutions can vary
from laminar fiows to turbulent ones {see Fig. 1.10.1).

What is often important in the study of atmospheric and oceanic flows is how
a passive tracer, that is light particles that are carried by the fluid flow but do
not affect the flow itself, is transported in turbulent and more generally, random
velocity flows. This is the problem of rurbulent diffusion that until this day is not
compleiely understood.

Fig. 1.10.2 shows the density distribution of a passive tracer at ¢ > 0. At the
initial time ¢ = Q it was uniformly distributed in space and then was carried by a
random potential velocity flow.

Fig. 1.10.3 shows the contour of constant density of the passive tracer carried
by an incompressible flow. The contour initially was a circle indicating a radial
symmetric distribution of the tracer density. One can demonstrate that the length
of such a contour grows exponentially in time.

2 92 92
=_mt 2t 3
dx] 8x2 axy
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FIGURE 1.10.1
Radial section of a turbulent flow from an axisymmetric jet.

The turbulent velocity field shown in Fig. 1.10.1 appears random and not likely
to appear again in exactly the same way even if the experiment is repeated under
the same conditions. So, a fluid dynamicist would study a more stable object
connected with it, namely the distribution (hisiogram) of the velocity components
in a measurement taken over a certain period of time, see Fig. 1.10.4.

1.11 Coin tossing revisited: pseudorandom number generators
and the Monte-Carlo methods

Simulation of random phenomena, often generically called the Monte-Carlo
Method, introduced by Stanistaw Ulam, John von Neumann and Nicolas Metropo-
lis in the late 1940s, is now a routine technique in engineering and the physical
sciences. It depends on the computer’s ability to produce a random sequence of
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Time 0.0

FIGURE 1.10.2
Distribution of the passive tracer in the random potential velocity flow. The initial
distribution was uniform in space.
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FIGURE 1.10.3
Contour of constant passive tracer density in an incompressible fluid. The initial
contour was a circle.

numbers. However, the randon command should not be used uncritically because
its execution is always a result of the deterministic code. What kind of “random-
ness” can actually be expected from such a procedure? As it turns out, to get the
computer to reproduce a coin-tossing experiment is not an casy matter.

Actually, there are only a few truly distinct methods used by computer random
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FIGURE 1.10.4
The turbulent signal on the right appears random and not repeatable, but the

distribution (histogram) of its values shown on the left is a more stable object.
{From U. Frisch, Turbulence, Cambridge University Press, 1996.)

number generators, and none of them produce perfectly random sequences because
they are all using deterministic algorithms. For that reason it is safer to call them
pseudorandom number generators. 1t is clear that one expects from such a gener-
ator more than just satisfaction of the equipartition property discussed in Section
1.1. After all, in the Champernowne number

C = 0.1234567891011121314151617181920212223 . ..

all blocks of the same length have identical frequencies but nobody would propose
it as a random, or even pseudorandom number.

Example 1.11.1 Midsquare Method.

The oldest computer method for producing pseudorandom numbers is due to John
von Neumann and is called the midsquare method. 1t works as follows: Take a
four digit number, say 6514, compute its square 42432196 and take the middle
four digits 4321 as the next pseudorandom number. Then repeat the procedure
to obtain the next pseudorandom number 6710 and so on. One hopes that with a
clever choice of the initial seed namber one gets a sequence uniformly distributed
among ten thousand four-digit numbers. However, it is easy to see that this is not
so and the method, although simple in execution, has serious statistical flaws.

Example 1.11.2 Fibonacci Sequence.
It is also called the additive congruential method. The prescription is as follows:
Pick the first two integers xp, x; arbitrarily and then proceed recursively by defining

X = Xj—1 + x;—2 (mod m)
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for a choice of m. So,

1, 1,2,3,5,8,13,21, 34, 55, 89, 144, 233,377, 110, 487, 97, 84, 181, ...

is the Fibonacci sequence for m = 500. The problem with the Fibonacci sequence
is that it can never produce triples x;, x;_1, x; - satisfying inequalities

Xi—) < Xj4l < Xj, X < Xj4] < X[,

and such triples should appear with frequency 1/6. Right? Try to explain why.

FIGURE 1.11.1

The Turbo Pascal random number generator shows an obvious lack of randomness.
(From D. Griffeath, in Statistical Science, Vol. 8(1993).)

Example 1,11.3 Bold Stripes: Linear Congruential Method.

The prescription is somewhat similar to the one considered above. One picks
xo arbitrarily, and for a choice of fixed parameters a, ¢, and m, one computes
pseudorandom numbers by the recursive formula

Xi = ax;_1 +c {modm).
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This method is commonly used in modern computers. The choicem =23 — 1 =
2147483647, a = 16807, and ¢ = 0 is implemented in some computer languages.

However, take a look at Fig. 1.11.1 which plots (starting with the top row, left to
right) pseudorandom numbers (Os represented by white dots and 1s by black dots)
generated by TURBQ PASCAL on a rectangular grid of 256x240 pixels. The
obvious nonrandom pattern that shows up should shatter anybody’s absolute faith
in random number generators. On the other hand, as we will see later, devising a
perfect random number generator is impossible, so one has to use what we have,
understanding its shortcomings and limitations. The so-called Minimal Standard
32-bit generator is based on the recursive formula

Xny1 = 16807x, (mod 2147483647),

and you can easily implement it yourself in Mathematica.

Recently, George Marsaglia of the Florida State University produced a Random
Number CDROM including the Diehard Battery of Tests of Randomness which is
based on mixed techniques incorporating some data collected from observations
of inherently random quantum effects. This looks like a promising avenue in
developing new pseudorandom number generators.

1.12 Fractals and image reconstruction

Some complex images can be encoded in a simple fashion although what is
meant by “simple encoding” can require additional explanations. A good example
of such a situation is fractals and random fractals (the term is used here in a
colloquial sense). The first, presented on Fig. 1.12.1 has a very simple description
in terms of the angle between the branches, the length of the branches, and the
number of levels.

The picture presented on Fig. 1.12.2 is similar, yet subtly different. Some of the
branches are missing, but there is no simple pattern to how they were dropped.
This is a random fractal. To reconstruct it exactly would take a long description.
However, one can easily reconstruct it “statistically” by specifying the above pa-
rameters of the deterministic fractal and, in addition, provide a probability with
which the branch in each generation is dropped. This is often the approach taken in
the practically important area of image reconstruction (see Bibliographical Notes).
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FIGURE 1.12.1
A deterministic fractal,

FIGURE 1.12.2
A random fractal.

1.13 Coding and decoding, unbreakable ciphers

When one tries to encrypt a confidential message, a high complexity of the
encryption system could be a desirable goal. Consider a simple fixed code
It assigns to each letter a certain fixed sequence of numbers. If the message is
long enough, the code can be broken by analyzing the frequencies of different
symbols. During World War I the AT&T employee Gilbert S. Vernam and Major
Joseph O. Mauborgne of the U.S. Army Signal Corps developed a different coding
system, called the one-time pad system, that subsequently was demonstrated to be
unbreakable and is commonly used in clandestine communications.

A good illustration of how it works is provided in Fig. 1.13.2, which shows a
photograph of a sheet of paper found in 1967 on the body of the Latin American
revolutionary Ché Guevara after he was captured (with CIA help) and executed
by the Bolivian Army. It contains an encoded massage Guevara prepared for the
Cuban President Fidel Castro who was supporting the insurrection.
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FIGURE 1.13.1

An example of a fixed code that transiates each letier of the alphabet into a one-
or two-digit decimal number. It was used in the message shown in Fig. 1.13.2.

The message (in Spanish) was first encoded using a fixed code shown in
Fig. 1.13.1 which transformed the original text into a sequence of decimal dig-
its written out in the first line of each three Jine paragraph. For convenience the
encoded message was broken into five-digit blocks.

The second line of each paragraph contained a sequence of random (pseudo-
random) numbers known only to Guevara and Castro, used only once to encode
this message and then destroyed. The third line contains the sums (wriiten without
carries) of the two digits appearing in the first two lines directly above them. It was
only this line that was transmitted over open shortwave radio and then decoded
by the reverse procedure in Havana. Because of the encryption procedure the
cryptogram itself is a pseudo-random sequence; the more random, the better,

Physicists and cryptographers discuss current coding methods based on quantum
effects (see Bibliographical Notes).

Mathematica Experiment 1. Union Jack in London Fog. Electronic transmission
of messages over long distances (for example, from a spacecraft) unavoidably
introduces some errors. In this experiment we will examine how random errors
can influence the perception of the message, in this case the digitized picture of
the Union Jack which is stored in file UJACK on the UVW Web Site.

The following Mathematica commands will be used:

Show[Graphics[Raster[nx n matrix]]]

Usage: produces a two-dimensional picture with (unmarked) rasters (i, j)
where the intensity of the grey is given by the value of the matrix element at
position (i, j). O stands for black and 1 for white.

<< Statistics‘DiscreteDistributions®
Usage: loads the package Statistics’DiscreteDistributions’.

Random [BernoulliDistribution[pl]

Usage: returns a string of Os and ts. In the long run, 1s will have the relative
frequency close to p.
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FIGURE 1,132

Latin American revolutionary Ché Guevara prepared this encoded message to
Cuban President Fidel Castro in 1967 just before he was captured and executed by
the Bolivian Army. He used the unbreakable, one-time pad, Vernam-Mauborgne
cipher. (From C.H. Bennet et al., Scientific American, October 1992, pp. 50-57.)

Mod [k,n]
Usage: the remainder when dividing k by n.

A typical session follows.

In[1] := <<Statistics‘DiscreteDistributions’
In[2] := Mod[2,2]

OQut[2]= ©

In[3]:= TableForm[Table[{i,Mod[i,2]},{i,0,5}]]
Out[3]// TableForm= 0 0

QbW
O R O R
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In[4] := Random[BernoulliDistribution[0.5]]

Out {4]= "randomly 0 or 1"

In[5]:= Table[Random[BernoulliDistribution[0.51],{12}]

Out{6]l= "list of twelve random 0’s and 1°’s"

In[6]:= Table[Random[BernoulliDistributionl[0.11],{12}]

Out[6]= "list of twelve O°s and 1’s with the frequency of 1’s
equal to 1/10"

In[7]:= ran[p_]:=Table[Table [Random [Bernoullibistribution(pl],
{3011, {30}]

In[8]:= ranf0.3)]

Out[8]= "30 by 30 matrix with random 0’s and 1’s"

In[9]:= ujack={...};

In[10] :=Show(Graphics [Raster {ujackl]]

Out[10]= "Graphics"

In[11]:= colp_]:=Table[Mod[r[pl [[i,jl]+ujack[[i,j]],2],
{i,1,30},4j,1,30}]

In[12]:= r[0.01]=ran(0.01]; Show[Graphics{Raster[co{0.01]]]

Out[12]= "Graphics"

Inf13]:= r[0.12]=ran(0.12); Show[Graphics[Raster[co[0.12]11]

Out[i31= "Graphics"

In[14):= Quit

1.14 Experiments, exercises, and projects

1. Mathematica Experiment 1.1.1 continued. The file ZEROONE1 on the UVW
Web Site contains a list of 0 and 1. It should be loaded and examined.
The colon in the following command suppresses the statement Out [7].

In[1]):= zerconel={ . . . };

In[2]:= Length[zeroonei]

Out [3]= 500

In(4]:= N[Sum[zeroonel[(i]],{i,1,Lengthlzerconei]}]/
Length[zeroonel]]

Cut(4)= 0.48

In[5]:= Quit

la) Compute the frequencies of the blocks D1 in the list zeroonel .m.
1b) Compute the frequencies of 1 in the lists (a)-(d).

Ic) Compute the frequencies of all blocks of length one, two and three
in the lists zeroonel, zeroone 2, zeroome 3.
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1d) Find a string of Os and 1s of length nine for which the frequencies of
all the blocks of length two are 1/4. Check your findings. (Solution:
000110110.)

le) Repeat Exercise 1d for strings of length 26, blocks of length 3, and
frequencies 1/ 8. (Solution: 00000101001110010111011100.)

Mathematica Experiment 1.3.1 continued.

2a) Find the 5th, 23rd and 52nd largest number in the list contained in
the BATTERY file on the UVW Web Site.

2b) The file REFRIGER on the UVW Web Site contains the list of lifetimes
for two brands of refrigerators. For each list compute the k-th largest
where k is a multiple of Length[list})/10. Compare the two sequences
and discuss how different they are.

2c¢) The data in file RIVET on the UVW Web Site contains the measure-
ments of rivet heads. Find the number of measurements and deter-
mine the range of the measurements, i.e., the smallest and the largest
measurements.

Mathematica Experiment 1.4.1 continued.

3a) Find the reliability of serial and parallel devices with reliabilities of
individual components r; = 1/3 + jifjtforj=1,2,...,15. Use
the definitions of serial and parallel saved from the Mathematica
Experiment 1.4.1 (you need to do thatexperiment first, quit and restart
again to do this exercise).

3b) Find the reliability of a device consisting of three components, the
first two in parallel and the third in series with the first two. Take
rp=1/j,j=12,3

Project. (Mathematica Experiment 1.5.1 continued). Draw a map of the

stars contained in the file STARS on the UVW Web Site. Select one of four
different dot sizes to indicate the star’s brightness.

Mathematica Experiment 1.6.1 continued.

5a) Select the list of all educated groups in the list CENSUS.

Sb) Compute the average number of children in the group of all unedu-
cated and low income families in the list CENSUS.

S5c¢) The file PRISON in the UVW Web Site contains data on the rate of
sentenced prisoners from the table in Section 1.6. Order the list by
region as in the printed table.

5d) Order the list PRISONER alphabetically by states.

5e) Extract the list of all states in PRISONER where, in 1991, the rate of
sentenced prisoners per 100.000 residents was above 250.
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6.

Project (Mathematica Experiment 1.6.1 continued). For each year, make
a list containing the name of the states with the lowest and the highest rate
of sentenced prisoners. Which state had the highest overall rate?

Mathematica Experiment. Lorenz equations. Experiment with the uvw
Web Site package UVW‘Lorenz® varying the parameters. Note those that
give rise to a chaotic behavior. A sample session is quoted below.

In[1]:= <<UVW‘Lorenz‘

In[2] := Lorenz([3,26.5, 1]

In[3]:= para={{{3,26.5,1},{3,25,1}},{{4,26.5,1},{4,25,1}}};
In{4] := LorenzArray[paral

Project. Midsquare generator. Use the UVW PsedoGene* package 10 gener-
ate pseudorandom strings via the midsquare algorithm with different seeds.
A sample session follows.

In[1]:= <<UVW'PsedoGene’

In(2] := MidsquareGenerator[1234, 100]
In[3]:= MidsquareLoop[4578]

In[4] := MidsquareLoop [9854]

In[5):= MidsquareLoop[1245]

Then, using the tools developed in Mathematica experiments in Section
1.1.1, investigate its equipartition properties. Analyze the structure of the
package itself.

Project. Congruential generator. Use the UVW‘PsedoGene‘ package to
generate pseudorandom strings via the congruential algorithm with various
seeds. A sample session follows.

In[1]:= <<UVW‘PsedcGene*

In[2] := samp=CongruGenerator[0.23, 181,0,16384,2000]
In[3] := <<UVW‘DataRep®

In[4]:= RegularHisto[samp,0,1,10]

In[5) := LargeNumbers [samp]

In[6]):= Centrallimit[samp,0.5,Sqrt[1./12],86]
In[7]):= samp2=Partition(samp,2];

In[8] := SamplePlot2D[samp2]

Inf9] := CongruentialLoop[10,181,0,16384];

In[10}:= Lengthl%]

Then, using the tools developed in Mathematica experiments in Section
1.1.1, investigate its equipartition properties. Analyze the structure of the
package itself.
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10. Project. Mathematica Experiment 1.13.1, continued.  Write a file of
2,500 zeros and ones producing a picture of your choice using the Raster
command (here, one can also use a standard scanner equipment). Analyze
and document changes in the picture and its perception as random errors
are introduced with parameter p ranging in the interval [0, 1]. Discuss
your findings.

11. Mathematica Experiment 1.6.1, an alternative. Use Mathematica pack-
age Statistics‘DataManipulation’ to repeat Experiment 1.6.1 on the
database of the number of children in French-speaking Canadian families.

1.15 Bibliographical notes

With online Mathematica help that now comes with the software one can do
without any hard copy manuals. However, we have found the following books
helpful:

[11 S. Wolftam, The Mathematica Book, Wolfram Media, Champaign, 1L,

1996.

[2] W.T. Shaw and J. Tigg, Applicd Mathematica, Addison-Wesley, Reading,
MA, 1994,

[3] R. Maeder, Programming in Marhematica, Addison-Wesley, Reading,
MA, 1991.

[4) T.B.Bahder, Mathematica for Scientists and Engineers, Addison-Wesley,
reading, MA, 1995.

[5]1 E. Martin, Ed., Mathematica 3.0 Standard Add-on Packages, Wolfram
Media, Cambridge University Press, Champaign, IL., 1996.

There are standard catalogs of celestial objects, and the one used in Section 1.5
was

[6] D.Hoffleit, The Fourth Revised Edition of The Bright Star Catalogue, Yale
University Observatory, 1982.

One of the successful nonlinear models of mass clustering in the universe is dis-
cussed in

{7) S.F. Shandarin, Three-dimensional Burgers’ equation as a model for
the large-scale structure formation in the universe, Stochastic Models
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(8]

in Geosystems, S.A. Molchanov and W.A. Woyczynski, Eds., Springer-
Verlag, New York, 1997,

W.A. Woyczynski, Gottingen Lectures on Burgers Turbulence, Springer-
Verlag, New York, 1998.

The following are good surveys in their respective areas:

9]

(10]

(11

[12]

C.H. Bennet, G. Brassard, and A.K. Ekert, Quantum Cryptography, Sci-
entific American, October 1992, pp. 50-57.

M.F. Bamnsley and L.P. Hurd, Fractal Image Compression, AKPeters Ltd.,
Wellesley, MA. 1993.)

H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia, 1992.

J.M. Hammersley and D.C. Hanscomb, Monte Carlo Methods, Chapman
and Hall, London, 1964.

The last position, although dated, still reads very well.
If you want to read an amusing but also informative account of the perils of
(ab)using statistics, see the classic

[13]

D. Huff, How to Lie with Statistics, Norton, New York, 1954,

which became an honest-to-goodness bestseller with over half-a-million copies

sold.



Chapter 2

Data Representation and Compression

The principal question addressed in this chapter is how to present in a readable
fashion (often) large sets of data, exiracting their essential features in a compact
and digestible form which, for instance, would permit an easy comparison of
different data sets, discern trends, facilitate management and engineering decisions,
or predict future behavior. This is what we call the problem of data representation
and compression.

2.1 Data types, categorical data

Data compression can take different forms, such as graphical representation (bar
charts, histograms, etc.), condensing the information to a single number, or a few
numbers, characterizing some features of the data (say, median, mean, variarice),
or an analytic or algorithmic representations discussed in the next chapter and used
in modeling and in, for example, fractal image compression techniques.

The material is organized depending on the type of data:

e categorical data

e numerical data

multidimensional data

« fractal data

However, one has to recognize that many of our examples involve data that are
of mixed nature, say, both categorical and numerical, and that the above classi-
fication is intended to systematize for the reader the tools that are available for
representation and compression in each grouping. Each of these categories can
also display a time dependence (i.e., trends), and the associated time series need
to be represented as well.

Also, data can be collected in different ways and, depending on the data collec-
tion method, different statistical techniques have to be utilized for their analysis.
This consideration gives rise to another classification into

© Springer International Publishing AG 2017 55
M. Denker, W. Woyczynski, Introductory Statistics and Random Phenomena,
Modern Birkhauser Classics, DOI 10.1007/978-3-319-66152-0_2
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systematically collected data, and

e random samples.

The first type, like the number of prisoners tallied by state and year in Section
1.6, comes from a complete and systematic collection of information about dif-
ferent categories. The legitimate question is how to represent them best but their
compression always involves a loss of information. Calculation of the average
number of prisoners per 1,000 of population in the Midwest is an example of such
a compression.

On the other hand, the random samples, usually numerical, can be meaningfully
compressed without any loss of information. For example, their relative frequency
distributions or cumulative distribution functions contain all the information about
them.

Many popular publications, such as U.S.A. Today, the Economist, the Scientific
American, have long recognized that data displays and related graphics have a
decorative value, especially if full color is included. Such an “artistic” approach
may or may not improve the transmission of information to the reader, but has to
be considered seriously as a way to improve data presentation.

The treatment of categorical data, that is data in which each observation of the
sample belongs to one of the finite number of categories, has to be, naturally, quite
different than the treatment of numerical data. The positive or negative outcome of
a medical treatment in a group of patients can be tabulated depending on their blood
type which can be one of the four types: O, A, B, or AB. The result is categorical
data that record the number of patients in each of the four categories who positively
responded to the treatment. Data on positions of bright stars in Example 1.5.1
were numerical as far as the magnitude, right ascensions, and declinations were
concerned, but categorical as far as their spectral class was concerned. The data
on rates of sentenced prisoners in Section 1.6 were categorized by state, but for
each state they formed a time series as a function of the year.

Further subclasses of categorical data can be distinguished such as

e nominal data

o ordinal data

For nominal categorical data, different categories are assigned different numbers in an
arbitrary fashion. There is no mathematical relationship between those numbers which
could be interpreted in terms of the characteristic properties of each category. Examples
of such nominal data are car license plate numbers, blood types, gender, and color.

Ife, B, ..., w are categories in our data set of size 2, and we assign arbitrarily numbers
1,2,...,m to these categories, no algebraic or order-related manipulation of these data
would be meaningful. However, computation of frequencies makes perfect sense. If
ny, N3, ..., My are, respectively, numbers of data points in each category @, 8, ..., @,
then the corresponding relative frequencies are

_m __h2 G
Pa—- n ;Pﬁ— n ,--v;Pw— n ]

and we can represent them graphically by a bar chart or a pie chart.
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Ordinal categorical data is a further subclass of nominal categorical data in which dif-
ferent categories are assigned different numbers (ranks) the ordering thereof has a mean-
ingful interpretation in terms of the characteristic propesty of each category. Examples of
such ordinal data ate the degree of response to a new drug treatment (low, medium, high),
students’ grades, social ranking, and weekly NCAA basketball and football rankings.

In this case, in addition to the frequency tabulation, bar charts, and pie charts available
for general nominal data, we can also perform order-related manipulations such us finding
the j-th smallest category, sort the data according to their rankings, or even to split them
into quantilelike subgroups which are described in detail in Section 2.2.

In this section we show how the categorical {or mixed) data can be represented

graphically. More and much richer information of the subject can be found in the
sources quoted in the Bibliographical Notes at the end of this chapter.

Example 2.1.1 Telephone Charges.

The cost of three-minute international calls in various countries was surveyed by the
National Utility Services in February 1995. The results appeared in the Economist,
March 25, 1995, in the form of two bar charts presented in Figure 2.1.1. Note the

Telephone charges for a three-minute call
international calis Long-distance national calls
Pebruary 1995, $ February 1995, $
0 1 2 3 4 ¢ 02 04 06 08 10 12
Germany Germany (i
Haly
Belgium :
Holland Australia*{
France Belgium(]
Australia* Uniled States* §
United Siates* Canada* |
Sweden
Britain*
Canada*
Source: National Utility Services * Discounts applied
FIGURE 2.1.1

International and long-distance national telephone charges for a three-minute call.
(From the Economist, March 25, 1995.)

horizontal position of the bars; it is much easier to label them than the vertical
bars. Also, other pertinent data such as the source of the information, the date,
and the units are meticulously (but unobtrusively) displayed. For a clearer un-
derstanding of relationships of charges in different countries, the corresponding
bars were arranged in the decreasing order of magnitude. The data were collected
systematically and they contain a categorical (country, long-distance national vs.
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international) and numerical (rates) components. They do not form arandom sam-
ple although it is quite obvious that the numbers came via some kind of compression
of arandom sample of, say, long distance calls to selected locations. One can think
of countries as being ordinal data if you insist on putting them in alphabetical order.

Example 2.1.2 Japanese Technical Citations.

The CWRU Mathematics Department has a foreign language reading requirement
for its Ph.D. students. French, German, and Russian have been ruled to be ac-
ceptable “major foreign languages”. Barbara Margolius, a graduate student who
studied Japanese for a number of years, seeking a waiver of departmental rules,
presented data showing the growing trend of Japanese language citations in the
mathematical technical literature, and asked that the department accept Japanese
as a “major foreign language”. The trend, shown in Fig. 2.1.2, shows the ratio
of Japanese citations to the German, Russian, and French citations. Note that the
length of time intervals over which the data were aggregated varied, reflecting
different sample sizes in different time periods. This is an example of an effec-
tive presentation of aggregate time-dependent categorical data. Needless to say,
Barbara’s request was granted. She collected the data by a systematic and ex-
haustive computer search of the MathSci Index. They are categorical (nominal) by
country, categorical (ordinal, trend displaying) by year groupings, and numerical
(proportional) in terms of relative citation numbers.

Different hatchings of bars corresponding to different categories are not always
the most fortunate graphical technique to differentiate categorical data, as they
often produce unwanted Moiré effects. Different grayscale levels are preferable.

Ratio of Japanese Citations
10 German, Russian and French

£ Gorman MethSci Index
Russian
I ¥rench

0.4

—

03+

0.1

a1

40-79 80-87 88-92 93-94

FIGURE2.1.2
The trend in the ratio of Japanese citations in mathematical literature, fo German,
Russian, and French citations.



Calls per Hour

2.1. Data Types, Categorical Data 59

Example 2.1.3 Emergency Calls.

The times of 39,939 emergency calls to the 6th District of the Cleveland Police
Department were recorded from Dec 28, 1993 to July 31, 1994, and stored as
computerized data in each of the four priority categories. Priority 1 (the highest)
calls are the calls requiring immedtate response (felony assault in progress, etc.).
Prionity 4 calls are the lowest priority calls (abandoned vehicle, blocked driveway,
etc.). Fig. 2.1.3 shows the time dependence of the average (over the whole data set)
number of calls per hour (intensity of call arrivals) over the 24-hour time period for
each of the four priorities but in a cumulative (stacked up) fashion, starting with
Priority 1 at the bottom of the graph. This continuous (in reality the time step was
discrete and equal to 1/60 h) multivariate time series was obtained by calculating the
average of the number of calls for each priority within the moving time-window
frame of size equal to 1 hour. The data were collected systematically and they
contain a categorical ordinal (priority) component, and the numerical component
(call intensity). The data also display time dependence. Some compression was
already done (averaging) and resulted in loss of information but improved the
clarity of the representation.

6th District Call Aerivals by Priority

4 %
B
H
s
A

0

12:00am  4:00am  08:00am 12:00pm :Ome 08:00pm
Time of D4y

FIGURE 2.1.3
Police emergency call arrivals’ intensity. (From B. Margolius, Time-Dependent
Multiserver and Priority Queues, Ph.D. Dissertation, CWRU, Cleveland, 1996.
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Our final example shows an interesting and surprising property of the decimal
expansion of the number 7.

Example 2.1.4 Random Number Generation: To Pi or Not to Pi.

Mariya Tikhunova, a Computer Engineering junior at CWRU, investigated a pos-
sibility of using the decimal expansion of the number 7 as a random number
generator. The Mathematica command N[Pi, 10000] produced a string of 10,001
digits

3.14159265358979323846264338327950288419716939937511 ... 37568,

and the starting point of the project (see, Section 4.6 for further developments) was
to check the equipartition property (frequencies) for 10 single digits, 0, 1, 2, 3, 4,
5,6,7, 8,9, and for 100 pairs of digits, 00, 01, .. ., 98, 99. These frequencies are
shown in Fig. 2.1.4, where they are compared with the results of similar experi-
ments for the decimal expansion of the number ¢ = 2.7182818284. . ., and 10,000
pseudorandom digits generated in C++.

Remark 2.1.1 Psychology of Graphical Representation.  The human percep-
tion of relations of quantities represented by different graphical techniques varies.
Thus, the pie charts (not to mention the distortion-prone but popular 3-D pie charts)
convey the relation between quantities less accurately than bar charts. Empirical
studies (W.S. Cleveland and R. McGill, Graphical perception; Theory, experi-
mentation, and application to the development of graphical methods, J. Amer. Stat.
Asso. 79, 531-554,1984) have demonstrated that the absolute error in judging per-
centage differences in two slices of a pie was greater than in judging differences in
two bars. This could be related to the fact that the perception of the area size is not
linear but scales as the actual area raised to an exponent of about 0.8 (you can try to
determine it yourself by polling your class about relative area sizes of two irregular
shapes that you have measured in advance). The area perception dominates in the
pie chart, whereas in a bar chart it is principally the bar length that dominates the
perception.

Mathematica Experiment 1. Manipulation of Categorical Data: Party Alle-
giance. A random sample of 39 voters was asked about their political preferences:
Democratic, Republican, and Perotistas. Their responses are included in the file
VOTERS on the UVW Web Site. This is a purely categorical and nominal set of data.
‘We compute the frequency of each party’s supporters and represent the data as a
pie chart.
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FIGURE 2.1.4

Frequencies of single digits and pairs of digits in the first 10,000 decimals of
(top), e (middie), and a C++ generated random number (bottom).

In[1] := <<Btatistics‘DataManipulation®
In[2) := <<Graphics®
In[3]):= voters= {{1,D},{2,D},{3,R},{4,P},{5,D},{6,D},{7,R},

{8,D},{9,R},{10,P}, {11,D3},{12,D},{13,R},{14,D},{15,P},
{16,P},{17,P},{18,P},{19,R},{20,D},{21,P},{22,D},{23.R},
{24,R},{25,P},{26,P},.{27,P},{28,D},{29,R},{30,P},{31,D},
{32,p},{33,0},{34,P},{35,D},{36,D},{37,P},{38,R},{39,D}}
Dut[3]=
{{1,p},{2,D},{3,8},1{4,P},{5,D},{6,D},{7,R},{8, D},{9,R},
{10,P},{11,D},{12,D},{13,R},{14,D},{15,P)},{16,P},{17,P},
{18,P},{18,R},{20,D},{21,P},{22,D},{23,R},{24,R},{25,P},
{26,P},{27,P},{28,D},{29,R},{30,P},{31,D},{32,D},{33,D},
{34,P},{35,D},{36,D},{37,P}, {38,R},{39,D}}
Inf4] ;= Frequencies[Column(voters,2]]
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Out{4]= {{17,0},{13,P},{9.R}}
In[5]:= Lengthivoters]
Dut[5]= 39

In[6] := PieChart[%4]

Out (6] := Graphics

Mathematica Experiment 2. Countries of the World. The file World in the
Mathematica package WorldPlot contains names of 174 countries. We consider
this data set as categorical assigning each country to 1 of the 26 categories A,B,. . .,Z
depending on its initial. The percentage of countries in each category is then
represented by a bar chart. The pie chart would not be legible and informative in
this case because the number of categories is too large.

In[1]:= <<Miscellaneous‘WorldPlot°®
In{2]:= <<Graphics‘Graphics’
In[3]) := World

Out{3]= {Afghanistan, Albania, . . . . . . . . ,Zambia,Zimbabwe}
In[4) := Length[World]
Out[4]= 174

In[5]:= Map{FromCharacterCode,Range[97,122]]

Out{5]= {a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,1r,8,t,u,v,w,X,y,2}

In[6]) := Map[FromCharacterCede, Rangel656,90]]

outi[6l= {a,B,C,D,E,F,G,H,I1,J],K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z}

In(7]= s[x_):=Sum[If{StringMatchQ[StringTake [World[[i]],1],

FromCharacterCode[x]],1,0]1,{i,1,174}]

In[8):= tabl=Table[{s[x],FromCharacterCodelx]},{x,65,90}]

Out[81= {{11,A},{17,B},{16,C},{3,D},{7,E},{5,F},{11,G},{3,H},
{8,1},{83,J},{4,K¥,{9,L},{12,M},{9,N},{1,0},{9,P},{1,0Q},
{3,R},{19,8},{6,T},{7,U},{2,v},{1,w},{0,X},{2,Y},{3,2}}

In[9] := BarChart [tabl]

Out[9)= -Graphics-
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ABCDEFGHIJKLMNOPQRSTUVWXYZ

2.2 Numerical data: order statistics, median, quantiles

In this section we assume that the data

Iz(x|1x2:"'sxn) (1)

are numerical, that is form a finite sequence (vector) of real numbers called sample
points, and in our examples they will come often from random samples. The
positive integer » is called the semple size. We will often use the bold face % to
denote sample (1).

The simplest operation that introduces some organization into numerical data is
reordering the sample in the increasing order of sample points. 1n other words, if
(1) is the original sample, then there exists a permutation

7(1), m(2),..., x(n),
of indices
t,2,...,n,

such that
Xa() S Xr@) o0 2 Xn(n)-

The ordered sample points

Xn(l)s Xz @)s « + +» X(n) (2)

are called the order statistics (first through r-th) of the sample (1), and traditionally
denoted by
A X(2)s oo s X(n)-
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The permutation s is usually not mentioned explicitly.

Example 2.2.1 A Dic is Cast.
A die was rolled eight times and the resulting sample was

x1=1Lx=3x3=2,x4=5x5=2,x=6,x7=5,x3 = 5.

The ordered sample was then

xn=lLxa=2,x3=2,x0=3,x5 =53, x6 =5, x71 =3, x9 =6

Once the sample has been reordered, it is relatively easy to determine a number
of useful and informative numerical characteristics of the sample. For example,
the first order statistic

X)) = min x;,
W= e
and the z-th order statistic
X(n) — max x;,
1<i<n

are, respectively, the smallest and the largest sample points. The interval

[xpys 2] = [lgliléln X, 1‘?;%: xi]

is called the sample interval, and its length

mg () = Xy — X(1y = mMax X; — min Xx;
g () (n) [4)) o i 1<r o is

gives the sample range. Thus, in Example 2.2.1, the sample interval is [1, 6] and
the sample range is 5,

The sample point that is located in the middle of the reordered sample, or the
middle order statistic of the sample, is called the sample median. More precisely,
the median med (x) of sample = is determined by the condition

#{i : x; < med (@)} = #{i : x; = med (z)}. 3)

Recall, that the notation #4 means the number of elements of the set A, so that
#{i : x; < med (x)} reads: the number of indices i for which x; < med ().
Hence, if the sample size n is odd, the median is exactly the middle element in the
reordered sample, that is,

med (T) = X((n41)/2)-



2.2. Numerical Data: Order Statistics, Median, Quantiles 63

However, when the sample size » is even, any number between x(,2) and x(n 2)+1)
satisfies condition (3), so that median is not uniquely defined (unless, of course,
X(nf2) = X((n/2)+1)). Traditionally, one chooses the midpoint between two middle
elements, so that, for even-sized samples,

1
med (x) = E(x(nﬂ) + X((r/2+1))-

In a similar spirit one could define three quartiles 0y, @2, Q3 of sample = as
numbers that divide the ordered sample into four groups with the same number of
elements. In other words,

Hiix <Q)=#Hi: Q1 <x<Q2)

=#i: Qr<x; < Q3)=#i:03=<x] )

Obviously the second quartile is just the median:

02 = med (x),

and the first and third quartiles can be obtained by finding the medians of the left
and right halves of the ordered data. In a similar fashion, percentiles would then
divide the sample into 100 equal groups.

A q@ {
M&=6 o4 [
x(5-7)=5 000 1
X =3 o l

A)=X3=2 o o= 1 1

X“)Z! ©

18 2/8 3/8 4/8 5/8 6/8 78 1

FIGURE 2.2.1

The graph of the multi-valued quantile function q(x) as defined by (5), for the
set of eight data points from Example 2.2.1 marked as circles to the left of the
vertical axis. The function is well defined only for @« = 0,1/8,3/8,4/8,7/8, 1.
The bottom dots on each vertical bar indicate a unique selection of the version of
quantile corresponding to formula (6).
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Quartiles and percentiles are special cases of the general concept of a quan-
tile, but defining quantiles g(cr) for an arbitrary 0 < « < 1 (rather than, say,
a = 1/4,1/2, and 3/4, as we have done for guartiles) and a finite sample
., X, of size n, is a little more tricky. If the real number « is of the form
}1 a=1 5 — 1, then one can define the a-guantile as a number

e, L
k
g (;) = X(k)- &)

a
q = q(o) such that

Like the median, the e-quantile g () is a multivalued function, that is, there can
be many acceptable values of g(a) for each . The typical situation is displayed
in Fig. 2.2.1, where the dot-plot of eight data points from Example 2.2.1 is marked
on the vertical axis together with the labeling of the five possible values vy, ..., vs
that the data can assume.

’

The ambiguity embedded in the above definition of the quantile can be avoided
if one specific realization of the quantile multivalued function is selected. For
example, cne can uniquely define

g(a) = ming, ©®

where the minimum is taken over all ¢s satisfying the defining condition (5). Such
a selection is marked by dots at the bottom of vertical bars on Fig. 2.2.1.

Aq(u) {
X@=6 °T |’:‘ ‘
X(5_7)=5 Q00—
’
-4 ,(
4
Xg=3 o+ 3
X=Xz =2 oo ——-—‘j,
A
xm=1 Q shaed
d’, 4
A

0 18 218 3/8 48 58 6/8 78 1

FIGURE22.2
The plot of the piecewise constant extension of the quantile function g () (con-

tinuous line), and the plot of the linearly interpolaied extension corresponding to
Jormula (7) (dotted line). The data are those of Example 2.2.1.

2
s

TR
ther 0 < o <

= |-

Even if one selects a unique version of g(a) for o =
there is no unique way to extend the definition of g(«) for
common choices are:

=]
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Piecewise-constant extension: In this case, for any 0 < a < 1, we select as
g(at) the value g(k/n) from formula (5) for k/n immediately to the right of the
number «. For data from Example 2.2.1, this selection of the quantile function is
shown in Fig. 2.2.2 by the continuous line.

Linearly interpolated extension: In practice, to avoid any ambiguity, often one
defines the quantile g(ar) for any < @ < 1 via the interpolation formula

gint (@) == X¢|nat1/2)) + (rwt +1/2 — |na + 1/2J)(x(Lm+1/2J+1) - x([na+1/2p)-

N
Recall, that the symbol |x] denotes the floor or the integer part of the number x,
i.e., the largest integer < x. The number ¢ (x) cuts then, approximately, the sample
into two parts; o - 100% of sample points are below g(e) and (1 — ) - 100% of
sample points are above g(x). In particular, g(0.5) is the sample median, and
g(0.25), g(0.75) correspond to the sample first and third quartiles. For data from
Example 2.2.1, the interpolated quantile function is marked in Fig. 2.2.2 by the
dotted line.

Notice that the quantile function g () defined by (6) completely determines the
(ordered) data set. Once it is known, one has the complete information about what
are the possible values in the data set and how many times each of these values
appears in the data set.

Mathematica Experiment I. A Die is Cast. The piecewise-constant exten-
sion is taken as a definition of quantiles in Mathematica under command Quan-
tilel[data, al}. Mathematica also provides a command InterpolatedQuantile
fdata, o] which computes linearly interpolated quantiles. So, for data from Ex-
ample 2.2.1, we can proceed as follows:

In[1]:= <<Statistics‘DescriptiveStatistics®
In[2] := data= {1,3,2,5,2,6,5,5}

Out(2)= {1,3,2,5,2,6,5,5}

In[3]) := Quantile{data,0.25]

Out[3]= 2

In[4] := Median[data]

Out[4]= 4

In[5]):= Quantile[data,0.75]

Dut[58]= &

In[6]:= Quantile[data,0.33]

Qut[6]= 2

In[7]:= InterpolatedQuantilel[data,0.33]
Qut[7]= 2.14

In practice, one often summarizes the quantile characteristics graphically in the
form of the box plots (or, box-and whiskers plots) introduced by John Tukey (see
Bibliographical Notes). We present a typical application in the next example. A
package creating a box-and-whiskers plot is included on the UVW Web Site.
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Example 2.2.2 Salaries of New Ph.D.s.

The American Mathematical Society annually publishes a salary survey for new re-
cipients of doctorates in the mathematical sciences (includes mathematics, applied
mathematics, and statistics) who took positions in teaching, research, government,
or business and industry. The results of the 1992-1993 survey for those employed
in business and industry are summarized in Fig. 2.2.3.

Tweive-Month Salaries Reported Twelve-Month Business and industry
PO Min Medan Q, Max Medianin
Year 1992

BUSINESS AND INDUSTRY 1100 r

{33 men + 10 wemen)
o -
1960 78 10 150 512 1000
1965 100 138 180  SBO
1970 96 170 235 685 900 1
1975 114 187 240 460
1880 180 284 400 480 800 -
1885 260 380 400 420 493 513 w
1980 320 438 495 533 700 529 ® *
1991 235 480 510 573 830 525 g 700 +
1992 208 450 530 620 1000 530 :
1993 270 480 560 €00 1100 — 5
ol - ]

1980M 320 443 490 533 630 B
1990F 390 440 500 525 700 -E 500 F — -
1997M 330 500 520 587 830 i
1991F 235 420 481 554 720 400
1992M 300 440 520 €25 1000 300 b ’ *
1992F 208 528 549 591 850
1993 270 500 560 600 1100 200
1993F 424 475 568 600 670
One yeer o1 less experience (17 men + 7 women) 100 . 1 ! - P —— L
1980M 270 480 545 800 700 60 65 70 75 80 85 90 92
1993F 424 458 584 595 600 Year

FIGURE2.2.3

Starting business and industry, 12-month salaries of mathematical sciences Ph.Ds.
{From A.M.S. Notices 40 (9), 1993.)

The table on the left summarizes the actual numerical values of the character-
istics, while the graph on the right shows a variant of the box plot with inflation-
adjusted data expressed in (hundreds of) 1992 dollars, using the price deflator
published annually by the Bureau of Economic Analysis, U.S. Department of
Commerce.

The box-and-whiskers plots pravide the graphical representation of the same
summarized data. The horizontal line shows the 1992 median salary. For a given
year, the box incorporates the first and third quartiles and the median salary. Prior
10 1975 the quartiles were not available and the median is depicted by a horizontal
stroke. The "wiskers” give additional information about the spread of data, ex-
tending to the extreme values that are between zero and 1.5 times the interquartile



2.2. Numerical Data: Order Statistics, Median, Quantiles 69

distance from the edge of the box. The data points that are between 1.5 and 3
times the interquartile distance from the edge of the box are called outliers, and
those that are beyond three times the interquartile distance from the edge of the
box are called extreme outliers. Usually, different symbaols, like dots and asterisks,
are used to identify the two types of outliers.

Q-0 plots. Plotting quantiles ¢(x, @) and g(y, a) of two different samples
T = (x1,....x5)and ¥y = (1. ..., y») on the (g(ax), g(¥)-plane creates the so-
called Q-(2 plot that can be used to compare their quantile functions, and thus the
distributions of their values. To create such a plot one simply marks points with
coordinates

gz, k/n), q(y, k/n)), k=1,2,...,n ®)

on the (g(x), g(y)-plane, selecting an unambiguous definition of the quantiles.
An example of the Q-Q plot is shown in Fig. 2.2.4,

a, A
61 ]
s
4
.
5¢+ | I
b
,I
4t L
Ld
,»‘
34 (4378).q,38) - .
,I
4
2 e’ @
7
I
.
1T e @

FIGURE224

Q-0 plot for the data set from Example 2.2.1 paired with the data set y =
(1,1,2,2,3,4,5,6).

An approximate alignment of points along the straight line y = ax + b is
evidence that, up to 2 linear transformation, the two data sets have identical quantile
functions,

If data sets = and y are of different sizes, say n; and n,, then one usually picks
n = min{n,, n,},

k—1/2
o =
n

) k=12,....n,

and one finds the largest value of g (&) = g (z, (k—1/2)/n) and g(y) = q(y, (k~
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1/2)/n) among g () and g (y) satisfying conditions

Miixi<q@} _k-1/2 #i:y <qy) k=172
ny R S ny - n

&)

and then one plots points

(q (z,k_lﬂ),q(y,k_llz)), k=1,2,....n,  (10)
n n

on the Q-Q plot.

2.3 Numerical data: histograms, means, moments

Let @ = (x1,x2,...,x,) be a sample of size n, where sample points take
numerical values. In computing percentiles (or general quantiles) in the previous
section we split the ordered sample into subsamples of equal (or prescribed) size
In this section we take a different approach to summarizing the sample data by
counting the number of sample points that take a prescribed value, or fall within
given intervals of a partition of the sample range. The results of such a count are
then plotted in the form of a hisrogram.

Let us start with the situation where the sample points can take only finitely
many values (sample taken from a discrete set)

vy, V2,...,UN.

Then, the frequency distribution function (d f.) ¢ (v) of sample = counts how many
times each of the possible values » appeared in the samples . Clearly, it can be
nonzero only for vs from the allowable setv;, i = 1,2, ..., N. More formally,

P(v) =#i: xi = n}, 4]

¢ (v) = #{i 1 x; = 12},

¢ (vn) =#i : x; = vy),

and
¢(w)y=0, if v#wp,i=1,...,N.
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Its plot, often represented in the bar chart form (Fig. 2.3.1) is called the sample
histogram.

Mathematica Experiment 1. A Die is Cast. In Example 2.2.1, where the sam-
ple points represent the outcome of rolling a die, it is natural to take N = 6
and vy = 1,..., v = 6. The frequencies of data are computed by the Frequen-
cies[data) command and the bar chart of those frequencies can be produced by
using the BarChart [Frequencies [datal] command. Both are within the Statis-
tics‘DataManipulation® and ‘Graphics® package.

In[1]:= <<Statistics‘DataManipulation®
In[2]:= <<Graphics‘Graphics®

In[3):= data={1,3,2,5,2,6,5,5}
Out(3)= {1, 3, 2, 5, 2, 8, 5, 5}
In[4]:= Frequencies [datal

Out[41= {{1, 1}, {2, 2}, {1, 3}, {3, 5}, {1, 6}}
In[5]:= Insert{%, {0,4},4]

Out[5]= {{1, 1}, {2, 2}, {1, 3}, {0,4}, {3, 5}, {1, 6}}
In[8] := BarChart[%]

Out[6]= ~Graphics-

FIGURE 2.3.1

The frequency distribution function ¢, normalized by the sample size s,
1
flv)= ;d’(v), @

is called the relative frequency distribution function and is often more convenient
to use. Its plot is called the normalized histogram. Advantage of the normalization
is that, of course,

N
Do fEp=1 3)
i=1
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If the relative frequency d.f. f(x) of a sample is known, then a number of
numerical characteristics of the sample, compressing the information contained in
a sample to a single number, are easily calculated. In particular, the fundamental
location characteristic, the sample mean

N
_ x1+x2+...+x 1<
T = . == ;m = v flu), @

j=1

which is simply an arithmetic average of sample points, but a weighted average of
possible values v, with the relative frequency d.f. f(v) providing the weights.
The sample mean provides only the coarsest information about the location of
the sample and none about its spread, or dispersion, around the mean value. To
measure the latter, the first impulse would be to look at the sample deviations from

the mean
X —& X2 — &, ..., Xp— T, &)

and compute their mean, to get a single dispersion parameter. However, a simple
calculation shows that the mean of the sample deviations from the mean is always
zero. Hence, this quantity is not a suitable measure of dispersion.

A better idea is to look at the mean absolute deviation (mean distance) of sample
points from the mean

1 n
=Y i — =0 (6)

This turns out to be a respectable choice, but analytical calculations with absolute
values are notoriously unpleasant, and that is why this is not the first choice of
statisticians. Traditionally, they measure the spread of the sample points around
the mean by computing the theoretical sample variance

l ”
var (@) = ~ 3 (i ~ &7, M
i=l

that is, the mean of the squares of deviations of sample points from the sample
mean. The sample variance is easily computable if the relative frequency d.f. f is
given. Indeed,

N
var (z) = ) _(v; — &) f(v)). ®)

i=1

Also, notice that the following formula

2
1 ¢ . 1 o 1 « —
var(a:)=;§ (xiZ—fow+m2):;Zx,-2—(;E Xi) =a2-z% 9
i=1 i=1 i=1
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is more economical computationally than the original definition of the variance
(why?). It expresses the sample variance var () in terms of the sample mean x
and the sample second moment

1 n
— 2 2
ma(x) =z = E x;. (10)

i=1

Higher, k-th sample moments

me(@) = ok = %ijf, an

are defined in a similar fashion, for any positive integer k.

Remark 2.3.1 Scaling Properties of Mean and Variance.  The sample mean
scales linearly, that is if the sample  is rescaled by a numerical factor a:

ax = (ax,axa,...,axy),

then axy+...+ax
=TT g g (12)
n
However, the theoretical sample variance does not scale linearly with the magnitude

of the sample points because

var (az) = a®var (x). (13)

To remedy this flaw one often considers the theoretical standard deviation of the
sample

std (x) = /var(x) =

(14)

of the sample, which is the square root of the sample variance, and which grows
linearly with the growth of the sample points” amplitude. Indeed,

std (az) = |a| std (). (15)

Mathematica Experiment 1. A Die is Cast. In Marhematica the package Statis-
tics‘DescriptiveStatistics® contains all the needed commands. Thus, the
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sample mean is obtained via Mean [data], the theoretical sample variance by Vari-
anceMLE[datal. The MLE stands for “maximum likelihood estimate" and the
command Variance [datal is reserved for the unbiased sample variance

l n
@) = — > i — @)%, (16)

i=1

The significance of the unbiased sample variance will be explained later on. The
command MeanDeviation[data] stands for the mean absolute deviation, and the
RootMeanSquare [data] —for the root mean square of the sample, i.e., /ma(z).

In[1]:= <<Statistics’DescriptiveStatistics®
In[2]:= data={1,3,2,5,2,6,5,5}

Out[2]= {1, 3, 2, 5, 2, 6, 5, 6}

In[4] := Mean[datal

Out [4]= 29/8
In[5]:= N[%]
Out[5]= 3.625

In[8] := Variance[data]
Dut[6]= 191/56

Inf[%):= N[%]

Out[6]= 3.41071

In{6] := VarianceMLE[datal
Out[6]= 191/64

In{%]):= N[%]

Dut [6]= 2.98437

In[6]:= RootMeanSquare [data)
Out [6]= Sqrt[129/8]
Inf%]:= N[%)

Qut[6]= 4.01559

In the case of a sample drawn from a continuous set, or from a very large discrete
set, the histogram based on frequencies calculated for each possible value v may
turn out to be difficult to interpret because most of these values may appear only
once or never. In such a case, a much more informative representation of data is
obtained by counting frequencies of sample points falling into bins of prescribed
size. One has to remember though that some information is lost in the process
and that the binned histogram provides a coarser description of data than the full
frequency d.f.

More precisely, the binned histogram is now determined by a partition

fh<hh<h<...<l (a7n

of the sample interval
[min x;, maxx;],
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(or, of a larger interval) into p bins

By =t til, By =(t1,82), ..., Bp = (tp—1, 4p], (18)

which usually are taken of equal size (step) (max x; — minx;)/p. Then the his-
togram of the sample & corresponding to the partition (17) is the graph of the
function

1
hix) = ;#{i ‘x; € B}, for xeB;,j=12,...,p. (19)

Outside the union of bins By, ..., Bp, we set i(x) = 0. Within a given bin,
the histogram function, which is piecewise constant, simply counts the number of
sample points that fall within that bin.

Example 2.3.1 Faculty Salaries.

The American Mathematical Society annually gathers data about the faculty
salaries in mathematical sciences. The summary of the 1993-1994 faculty salary
survey (AMS Notices, November 1993) in 39 top mathematical sciences depart-
ments is shown in Fig. 2.3.2,

FACULTY SALARIES 1993-1994
50 GROUP | — Doctorate-granting departments of mathematics (39)
28 usabla 588
45 — 1 1982--1969|
Rank No. R Q Median G, Mean Mean
0 Assistant Prof 138 <A540> «404B> «4045> 41,083 | 35,474
Asaociate Professor 196 <4550> «<4550> <50,55> 50275 | 48718
a5 Full Proh 844 <60.65> <70,75> <BOB5S> 74200 | 72,007
§ N 0 Assistant
N AN
'l )
NN B Associate
NN
N N
N—R W Fur —
n
N N
N— R
N NN
ML EEENR
S N
N A N
o YRAEFFFERER
i L}
= 4 2 3 4 x X o X 3 E4 2 o x L' X
Rgsigs?ﬁims§§£aaggge§a
Ed 8 8¢ ¢85 83822 ELs 333 35 5 3
& =8 5 - 3
FIGURE 2.3.2

The normalized binned histogram of 1993-94 faculty salaries. The bin sizes were
selected to be 5k$. (From A.M.S. Notices, November 1993.)
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In addition to the histogram of what is essentially three-dimensional continu-
ous data, the graph also summarizes the quartiles and means in all three faculty
categories. The departments were asked to report the number of faculty whose
1993-1994 academic-year salaries fell within given salary intervals. Reporting
salary data in this fashion eliminated some of the concerns about confidentiality
but did not permit determination of actual quartiles. What could be determined
were the salary intervals in which the quartiles occurred; they are denoted by
<aq,b>.

Mathematica Experiment 2. Rivets. This experiment explores different ways
of constructing histograms for the data (rivet length measurements in millimeters)
contained in the file RIVET which can be found on the UVW Web Site.

In[1]:= <<Statistics‘DescriptiveStatistics’

In[2] := <<Graphics‘Graphics®

In[3]:= <<Statistics‘DataManipulation’

In(4]):= rivet={13.39, 13.43, ... , 13.58, 13.38}
Out(4]= {13.39, 13.43, ... , 13.58, 13.38}

In{5]:= Length{rivet]

Dut [5]= 184

In[5]:= freg=BinCounts[rivet,{13.025,13.675, 0.05}]

Out[5]= {0, O, 2, 3, 10, 22, 22, 36, 28, 27, 18, 12, 3}

In [6):= midpoints=Table[56+5k, {k,0,12}]

Qut{61= {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65}

In[7]):= trans= Transpose[{freq,midpoints}]

dut [7]= ({0, 5}, {0, 10}, {2, 15}, {3, 20}, {10, 256}, {22, 30},
{22, 35}, {36, 40}, {28, 45}, {27,50}, {18, 55},
{12, 60}, {38, 65}}

In[8]:= BarChart[trans]

Dut [B]= -Graphics-

35 I
30p
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20
15
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5 10 15 20 25 30 35 40 45 50 55 60 65
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Optimizing Histograms. A few of practical pointers on construction of his-
tograms are in order:

(i) The bin boundaries should be selected in such a fashion that no sample points
are on these boundaries. One way to achieve it is as follows: if data were collected
with four-digit accuracy, say 13.39, 13.43,.......... ,13.58, 13.38, then pick as bin
boundaries points 13.385, 13.395,......,13.575, 13.585. That is how we proceeded
in the Mathematica Experiment 1.

(ii) Bin size has to be such that at least 5 to 7 data points fall within each bin, If
the bin size is too small, then the histogram values are too random, and creale too
many false modes (local maxima), to draw any conclusions.

(ii1) The number of bins, or the resolution (step, bin size) of the histogram repre-
sentation, has to be selected for optimum conveying of the information contained
in the sample. The Sturges’ rule says that for a sample of size n the number p of
bins should be of the order p = 1 + log, n. Such a selection is justified by the
Stability of Fluctuations Law of Section 3.6; also, see the Bibliographical Notes at
the end of this chapter.

2.4 Location, dispersion, and shape parameters

In this section we will return to some of the characteristic parameters introduced
in Sections 2.2 and 2.3, introduce some new ones, and provide their comparison
from the viewpoint of the type of information they provide.

Lecatien Parameters. The sample mean & and the sample median med () are
obviously the prime location parameters indicating where the sample is centered.
They, however, need not coincide. In a sample of family incomes of an urban
population, the median can be quite small given that more than half of the people
can be quite poor. However, the mean, due to a few billionaires residing in the
city, can easily be much higher. In public discussions one can ofien observe
a tendentious selection of the parameters used depending on the agenda of the
selector. Several other location parameters are commonly used.

(a) The mode is the value in the data set which corresponds to the local maximum
of the frequency d.f., or, equivalently, of the histogram. A data set can have several
modes. The principal mede is a mode that corresponds to the global maximum of
the frequency d.f. It need not be unique, either.

(b) As we observed in Section 2.3 (Remark 2.3.1), the sample mean scales
linearly and it is always within the sample interval, that is

min x; <& < max x;.
1<i<n 1<i<n
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However, it is not the only function of sample points with the above properties.
For example, the weighted sample mean,

WX+ waxo + . WKy D0 Wik
wy w2 +...+ wy T Wi

with different weights
wy, w2, ..., wy; >0

assigned to different sample points (say, because of lesser reliability of a part of
the data) is another example of such a “mean” location characteristic.

(c) Sometimes, for practical reasons, one may opt for another version of the
“mean” called censored mean. Suppose we are measuring the lifetimes of light
bulbs in a sample of size . 1deally, one would want to wait until the last light bulb
burns out and obtain a complete sample

hh=hh=...=1y

of failure times for the whole light bulb population. However, such an approach
may involve an unacceptably long wait, so one often stops the experiment after a
certain fixed time T, by which time the first ¥ < n light bulbs fail. This leads to
consideration of the censored mean:

W
l (Z i+ n— k)tk).
g e

Such a censored mean is useful in reliability studies.

(d) Another location parameter compressing the data is the so-called hgrmonic
mean hmean (z) satisfying the condition

I i 1
hmean (z) =n = xi ’
Remark 2.4.1 Mean and Median Under One Umbrella.  For more theoretically
minded readers, we would like to mention that both mean and median are special
cases of the so-called M-estimators which are produced from the sample by means

of a weight function y»(x) which is assumed to be increasing. Then the sample
¥-mean is defined as a number my, () such that

> Pimy (@) — xi) = 0.

i=1
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For ¥ (x)} = x, the ¥-sample mean is the usual sample mean. For y(x) = sgn (x)
(defined as equal to +1 for x > 0, and —1 for x < 0, and O at 0), the {¥-mean is
the sample median.

Obviously, quartiles, percentiles, and other quantiles can also be considered as
more subtle location parameters of the data sets.

Remark 2.4.2 A General Concept of the Mean. A number m is said to be
a mean of sample £ = (x;....,%;) (xx > 0, say) with respect lo function
F&x1, ..., xp) if

Fxi,...oxg) = f(m, ..., m).

In other words, replacing the sample points by the sample mean does not affect
the value of the function. In mechanics of rigid bodies one uses the analogous
concept of the barycenter. The system evolves as if the whole mass of the body
were concentrated at the barycenter. The usual sample mean corresponds to the
selection

SO oo x) =0+ .o+ x)/n,

the harmonic mean to

FOL o x) =[x 4.+ ) /)7

and the geometric mean to

f(xl,...,x,,) =(x1-... ,xn)l/n_

A mean is called associative if it is not affected by the replacements of some
subsets of sample points by their mean. The above three means are all asso-
ciative. Nagumo and Kolmogorov proved that all associative means are (in-
creasing) transforms of arithmetic weighted means. More precisely, if m(x)
is such a mean then one can find an increasing function y (x) and the weights
wi, ..o wg >0, 30, wr = 1, such that

m(@) =m@;y) =y (Z ww(xk)) :
k=1

In other words, they are all obtained by changing the scale of sample points via
application of function y, calculating the (weighted) arithmetic average, and then
reverting to the original scale by applying the inverse function y ~!. For example,
the geometric mean corresponds to ¥ (x) = log x, with y ~1(y) = exp y.
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The y-mean is greater than the arithmetic (linear) mean if the function y is
concave upwards. Fig. 2.4.1 suggests the obvious way to prove it.

One can also check that the means increase with the quantity ¥”/y’, which
measures the local concavity upwards. For power functions y (x) = x¢ we have
y”/y’ = (¢ — 1)x, which increases with c. The geometric mean corresponds to
the case of y(x) = (x¢ — 1)/c, ¢ — 0. In this fashion one can establish that the
various means satisfy the following inequalities:

harmonic < geometric < arithmetic < quadratic < cubic < ..

Y=Y X e — - e — — = —
|
V¢ ——— = - - A
I I
P=YG) b — e — \i’ 1
W=D | =S A | |

AN <4 L »

e -

X X3 X omy=y (® x,

FIGURE 2.4.1

The illustration shows that if y (x) is concave upwards, then the y-mean m(x, ¥)
is greater than the arithmetic mean & (with the same weights).

Dispersion Parameters. The most often used parameters compressing infor-
mation about the dispersion of sample points are the sample variance var (z) (or
the unbiased sample variance defined by formula (2.3.16)), the standard deviation
std (), and the sample range

mg (L) = Xy — X(1).

Since all the deviations |x; — ¥| < mg (s¢), we always have that

std () < mg (x)

That s, the standard deviation is always estimated from the above by the range. The
opposite inequality is, clearly, not valid. However, we have always the following
useful and universal

Chebyshev’s Law: At least the fraction 1 — (1/k?) of the sample points are
located within k standard deviations o of the sample mean X.
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In particular, with k = 3, we get that in any sample, at least 8/9 = 91% of
sample points are located within the interval [x — 3 std (), ¥ + 3 std (¢)]. For a
more rigorous ireatment of the Chebyshev’s Law, see Theorem 5.4.1.

Another, related, dispersion parameter is the interguartile distance q(.75) —
g(.25) which already was used in the construction of the box-and-whisker plots.
By definition, 50% of sample points are located in the interval [g(.25), g(.75)].

Shape Parameters. Several parameters can give compressed inforaation about
the general shape of the data distribution.
The r-th central sample momenis

cm, (z) = % D m—xy

i=1

can be used to detect skewness in the frequency d.f., which is formally defined as the
ratio cm3 /s> of the third sample central moment and the third power of unbiased
standard deviation. Clearly, for frequency distributions symmetric about their
means the skewness parameter is zero, and its size can be viewed as a measure of the
asymmetry of the histogram. Another useful parameter is kurtosis excess pa/s* —
3. In general, the fast growth of higher moments indicates that the frequency
distribution is heavy-tailed and intermitrent, the latter meaning that there are patchy
pockets of high values of the frequency d.f. interspersed with intervals where there
are no data.

Mathematica Experiment 1. Rivers. This experiment explores different ways
of compressing the data (rivet length measurements are in millimeters) contained
in the file RIVET which can be found on the UVW Web Site. The Mathematica
command Mode [data] finds the principal modes of the data.

In[1) := <<Statistics‘DescriptiveStatistics’
In[2]:= rivet ={13.39, 13.43,...,13.58, 13.58}
Out[2]= {13.39, 13.43,...,13.58, 13.58}
In[3):= <<Graphics‘Graphics®

In[4]:= Mean[rivet]

Out [4]= 13.4216

In[5] := Median([rivet]

OQut[B]= 13.42

In(6]:= Mode[rivet]

Out(6]= 13.4

In[7]:= LocationReport[rivet]

Out[7]= Mean ->13.4216, HarmonicMean -> 13,4207, Median —> 13.42}
In[B]:= Quartiles[rivet]

Out[8]= {13.34, 13.42, 13.5}

In[9]:= Quantilel[rivet, 0.7]

Out [9]= 13.48



82 Chapter 2. Data Representation and Compression

In[10] := SampleRange[rivet]

Qut [10]= 0.56

In(11] := Variance[rivet]

Out[11]= 0.0118738

In[12] := StandardDeviation[rivet]

Gut[12]= 0.108967

In[13]:= DispersionReport[rivet]

Qut[13])= {Variance -> 0.0118738, StandardDeviation -> 0.108967,
SampleRange ->0.56, MeanDeviation -> 0.0882053,
MedianDeviation -> 0.08, QuartileDeviation -> 0.08}

In[14] := Skewness[rivet]

Out [14]= -0.0656664

In[15] := KurtosisExcess[rivet)

Outfi5]= -0.390325

In{16] := ShapeReport [rivet]

Out [16]= {Skewness ->-0.0656664, QuartileSkeweness -> 0.,
KurtosisExcess -> -0.390325}

2.5 Probabilities: a frequentist viewpoint

Plotting the relative frequency d.f. for samples from continuous or very large
data sets has its drawbacks related to possible intermittency in the data set, selection
of bin size and location, loss of information in the process of producing binned
histograms, etc. They can be partly circumvented by introduction of the sample
cumulative distribution function

Fx)=F(,xz)= ;ll—#{i tx; < x}. (1)

Notice that it is a nondecreasing function, well defined for all x and positive within
the sample interval, independently of the number N and location of the possible
values vy, ...vy. For data from Example 2.2.1, the cumulative d.f. is plotted in
Fig.2.5.1.

It is also easy to see that for any data set © = (x1, ..., x,), the multivalued
sample cumulative distribution function #(x) and the sample quantile function
¢ (e) introduced in Section 2.2 are inverses of each other. The inverse function has
to be understood here in a generalized sense (for example, as a reflection in the
diagonal of the graph of the original function) since neither of the two functions
is, in general, one-to-one. In particular, the cumulative d.f. shown in Fig. 2.5.1
is the inverse function of the quantile function (for the same data set) shown on
Fig.2.2.2.

The relative frequency d.f. and the cumulative d.f. are easily computable from
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FIGURE 2.5.1

Cumulative distribution function F(x) = F(x; ) for the data set ® from Exam-
ple2.2.1. Itis the inverse function of the quantile function q () shown in Fig. 2.2.2.

each other via the following formulas:

F)=Fxz)= ) f) ad f(y)=Fv)~ lm Fx), (2
I—H.'Jv

Jyj<x

where, as before, vy, ..., vy, are all the values appearing in the data set @, the
limit is taken for x approaching the value v; from the left (see Fig. 2.5.1). Observe
that camulative d.f. F(x) is right continuous and has the left limits.

In the case of a sample of size n taken from a discrete set vy, ..., vy, one can
hope that the normalized histogram, that is, the plot of its relative frequency d.f.
f() = fu(v), stabilizes as » becomes very large. If that is the case (in general,
the limit need not exist), one could define a probability p(v) of value v as the limit

plv) = lim f,(v). 3)

Intuitively, such an informal frequentist definition of probabilities on a discrete
set makes perfect sense. Formally, however, it raises a number of difficulties,
the foremost being the question of independence of the probability distribution
function p(v) of the selected sample xj, x2, ... Also, in practice, one never deals
with infinite samples, so the question is: How large a sample is necessary to make
the approximation error “negligible”? We will address these issues in Chapters 3
and 5,

In the case of samples taken from a continuous population, the situation is even
more complex. For a fixed partition, one would hope for the stability of the binned
histograms as the sample size n goes to infinity. But in an effort to get a more and
more complete information from the histograms, one may also want to increase
their resolution, that is to decrease the bin size to zero. This double limit passage,
if it works, could produce a “frequentist” probability d.f. on a continuous set of
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values. Actually, this problem is even crisper if one thinks in terms of the limit of
the corresponding cumulative d.f. F, which in the double limit (if they existed in
some formal sense) would become a cumulative d.f. on a continuous set of values.
This latter approach will prove useful. It will be formalized in Chapters 3 and 5,
and utilized throughout the rest of this book.

Example 2.5.1 Survival Curves and Cumulative D.F.

Functions similar to sample cumulative distribution functions also appear naturally
in several other contexts. Let us return to the survival curves introduced in Section
1.4. If N(0) units (say, cars, computer chips, etc.) are put in use at time ¢ = 0,
we denote by N (¢) the number of units still in use at time #. The graph of the
function N (2) is called the survival curve, The relability r{t) = N(#)/N(0) is the
fraction of units still in use at time ¢ and it decreases with time. The complementary
function

N{t)

FO=1- 3o

4
represents the fraction of units that failed by the time 7. The function F (¢) has all
the features of a cumulative distribution function. It is nondecreasing, with values
F(—00) = 0 and F(+o00) = 1. Its derivative

_dF(@)
f)y=—-—. &)

may be interpreted as the relative failure rate.

Mathematica Experiment 1. Spinning Yarn. The breaking strength data (in
kilograms) for a batch of yarn is shown in Table 2.5.1, and also can be found in
the file COTTON on the UVW Web Site. To produce a Mathematica code that would
show the cumulative d.f. F(x) for any data set z = (xi, ..., x,) of size n, note
that we can write

1 n
F(x)=;ZH(x—x,') 6)
i=1

where H(x) = 0, for x < 0, and = 1, for x > 0, is the usual Heaviside step
function. You can think of formula (6) for the cumulative d.f. as an algorithm that
tells you to scan the real line from —oo to 4-co, and each time you encounter one
of the sample points x1, . .., x, you accumulate (add) an extra 1/7 to the value of
F(x). So, you start with value 0 at —co and by the time you get to +060 you will
have added r 1/ns, that is you end up with 1.

The Mathematica command If [cond, a, b] produces a if condition cond is sat-
isfied and b if it is not. Hence H{x] :=1f [x<0,0,1] defines the Heaviside unit step
function. The command list[[i]] selects the i-th element of the 1ist.
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Table 2.5.1 The breaking strengths of 50 cotton threads.
No. Breaking | No. Breaking | No. Breaking
strength strength strength
inkg in kg inkg
i XYy i Xy i X(iy
1 1,10 18 213 35 2.50
2 1.52 19 2.15 36 2.52
3 1.63 20 2.16 37 2.55
4 1.69 21 2.20 38 2.60
5 1.73 22 223 39 2.63
6 1.73 23 2.26 40 2.64
7 1.78 24 2.30 41 2.65
8 1.89 25 231 42 271
9 1.92 26 232 43 271
10 1.95 27 2.35 44 2,77
11 1.98 28 2.36 45 2.79
12 1.99 29 237 46 2.86
13 2.02 30 239 47 2.91
14 2.03 31 2.40 48 2.92
15 207 32 2.40 49 3.02
16 2.12 33 2.41 50 3.30
17 212 34 2.47
In[1]:= <<Statistics‘DescriptiveStatistics’

In[2]:=
In[3]:=
Qut (3]=
In[4]:=
Out(4]=
In[5]):=
In[6]:=
In[7]:=

Out[7]=

<<Graphics‘Graphics®
cotton={ 1.
{1.10, ...,

10, v,

n=Length[cott0n]

50

H[x_]:=1f[x<0,0,1]

Flx_1:=(1/n) Sum[H[x- cotton[[i]] 1,{i,1,n}]

Plot[F{x],{x, cotton[[1]] -1, cotton{[n]] +1},
Frame ->True, GridlLines ->Butomatic ]

-Graphics-

85
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Alternatively, we can get the same information from the quantile function x =
g (o) for the same data, which is the inverse function for the cumulative d.f. @ =
F(x).

In[1]:= <<Statistics‘DescriptiveStatistics®

In(2):= <<Graphics‘Graphics‘

In(3]):= cotton={ 1.10, ........... ..,3.30}

Out[3]={ 1.10, ............ .3.30}

In[4]:= flx_]:= Quantilelcotton,x]

In[5]:= Plot[f[x},{x,0.001, 0.999},Frame->True,
GridLines->Automatic]

Out [S]= -Graphics-

4

The above cumulative d.f. curve F(x) shows the fraction of the sample with
breaking strength < x. A customer shopping for yarn with tensile strengthxp = 1.9
or better will know immediately that he can expect about 16% of the batch to be
‘6bad"'

02 0.4 06 0.8 i

Mathematica Experiment 2. Companies, Small Town, U.S.A. The number of
employees in n = 18 companies located in Small Town, U.S.A., is listed in the file
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COMPANY onthe UVW Web Site. Ifthe number of employees serves as a measurement
of the company size, one can get information about the distribution of company
sizes by counting the number N (x) of companies with < x employees. Then,

Fx) = Nfl"),

where N is the total number of companies surveyed gives a cumulative d.f. of the
sample.

In[1]:= <<Statistics‘DescriptiveStatistics’

In[2] := <<Graphics‘Graphics’

In[3]:= company={3,3,4,4,4, 5, 6,6, 8,9,11,14,17,21,21,33,

157,614}

Out[3]= { 3,3,4,4,4, 5, 6,6, 8,9,11,14,17,21,21,33,157,614}

In[4] := n=Length[company]

Out{4]= 18

In[5]:= H[x_]:=If{x<0,0,1]

In[6]:= Flx_J:=(1/n) Sum[H[x- company[[il] J,{i,1,n}]

In[7]:= Plot[F[x],{x, company[[1]] -1, company[[n]] +1},
Frame ->True, GridLines ->Automatic ]

Out[7}= -Graphics-

08—
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On the other hand, if E(x) denotes the number of employees employed by all
companies with < x employees then one can consider the cumulative d.f.

where E is the total number of employees of all surveyed companies.

In{8}:= G(x_]:=(1/Sum[company{[il],{i,1,n}])
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Sum{company [[i]]H[x- company[[il] 1,{i,1,n}]
In[9] := Plot[GIx],{x, company[[1]] -1, Sum[company[[il],
{i,1,n}] +1}, Frame->True, GridLines->Automatic ]
Out [9]= -Graphics-

0.8

0.6

04

0.2

—

0 200 400 600 800

One immediately finds that 90% of all companies have < 50 employees, but
they employ only 20% of the total work force.

2.6 Multidimensional data: histograms and other graphical
representations

The question of representation of multidimensional data, that is data in which
each sample point is a vector with d components, has come up on several oc-
casions in the preceding sections. We can introduce for such data multivariate
analogs of one-dimensional notions of the relative frequency distribution func-
tions, histograms, cumulative distribution functions, etc., which are then functions
of d variables. Obviously, graphing them is an impossible task with the exception
of 2-D data, where their graphs become surfaces.

To be more precise, let us consider a 2-D sample of size n (you can think about
it as an n-D vector in which each component is a 2-D vector)

(‘xl’ yl)v =t (xny yﬂ)s

and assume thal sample @ = (xi, ..., x,) consisting of first components takes
values from the set of values

U1y ... UN,
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FIGURE 26.1

A schematic example of a 2-D relative frequency d.f. for a discrete sample from
2-D data.

and sample y = (yy. ..., y,) from the set of values

Wy, ..., Wy,

Then the joint 2-D relative frequency d.f. f(v;, wi) counts the relative frequencies
of appearance in our 2-D sample of all possible pairs of values (v;,ux), j =
1,....N,k=1,..., M. In other words,

1
fj,we) = ;#{i F(x i) = (v, we) ) (1

A schematic example of the graph of a 2-D relative frequency d.f. for discrete data
is given in Fig. 2.6.1 in the form of a stick graph.

It is also easy to see that the relative frequency d.f.s of 1-D component samples
T = (x1,....xy) and ¥ = (1, ..., ¥,) are easily obtainable from the joint 2-D
relative frequency d.f. via the following formulas

M
Sy =Y flo, we), @
k=1
and
N
Flwg) =D flvy, wy). 3)

=

Thus, the sample means and variances of the component samples & and ¥ are easily
available. There are, however, other characteristics of multidimentional samples
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(z, ¥) computable from the joint relative frequency d.f. f(x, y) that could not be
obtained if only 1-D relative frequency d.f.s of component samples  and y were
available. One of them is the covariance between the two component data defined
as

N M

cov (z, y) = 3, ¥ (v; — E)wx — ) flvj, we)- )

j=l k=1

We will see its usefulness and interpretation in the next section.

Mathematica Experiment 1. Heart Trouble. The file HOSP/HEART on the UVW
Web Site contains heart transplant data from all the organ transplant centers in
the United States. The quantities listed are the median waiting times W, one-
year mortality rates M (that is, percentage of patients dying within one year of
the operation), and the average annual number of transplant V at that center for
a 4-year period beginning in October 1987. The data are three-dimensional. In
this experiment we will produce the 2-D histogram of the paired data (M, V)
pairing the mortality and volume at each organ transplant center. The command
Histogram2D[list,xmin,xmax,nx,ymin,ynax,ny) of the UVW‘DataRep package
produces a 2D histogram of a 2D 1list, within the [xmin,xmax] interval on the
x-axis and [ymin,ymax] interval on the y-axis. The number of bins on the x-axis
is nx and the number of bins on the y-axis is ny.

In[1]:= <<Graphics‘Graphics3D‘

In[2] := <<UVW‘datarep®

In[3] := heart={{17.9,27}, {23.1,4},...,{17.6,26},{19.6,14}}
Out3l= {{17.9,27}, {23.1,4},...,{17.6,26},{19.6,14}}
In[4] := Lengthlheart]

Out[4]= 134

In[5) := Histogram2b[heart,0,100, 10,0,60, 10]
Out{6]l= -Graphics-
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The above concept of the joint 2-D relative frequency d.f. can be extended
easily to representations of 3- or higher-dimensional data but it is quite clear that
the graphical representation becomes more and more difficult as the dimension
of the data set increases. There are, however, other ingenious ways to represent
multivariate data and one of them is due to Hermann Chernoff. He suggested asso-
ciating multidimensional data with several features of the human face—an object
humans are especially apt to recognize in its multiplicity of (multidimensional)
features. Qur light-hearted version of Chernoff’s idea brings you StoGho—the
quintessential stochastic ghost. Play with him in the next Mathematica experi-
ment. The curvature of his lip, the eye shape, pupils’ position and the flatness of
the Gaussian-shaped head encode four-dimensional information.

Mathematica Experiment 2. StoGho Lives. Be patient here as it takes time. Also,
StoGho can be coupled with Animate [] if there is enough memory in your computer.
The command Random [Real, {-3,3}] produces a pseudorandom random number
uniformly distributed in the intervat (-3,3).

In{1):= <<UVW‘StoGho®
In[2]:= StoGho[Random[Real,{-3,3}]]
Out[2]= -Graphics-

1
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N

In[3] := moods=Partition[Range[-Pi,Pi,2 Pi/15],4];
In{4]:= GalleryOfPortraits[moods]
Out [4]= -GraphicsArray-

27 2-Ddata: regression and correlations

Consider a 2-D numerical data set

(X1 V1)1 oo s iy y)) = (2, )T

of size n. When graphed in the 2-D plane as dots, the data produce the so-called
scatter plot.
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Example 2.7.1 Current and Conductivity.

To verify the Ohm’s Law an experimenter applied a fixed voltage V ton = 7 differ-
ent passive electrical circuits and measured the current intensity / and the circuits
conductivity (inverse resistance) 1/R. The results are tabulated in Table 2.7.1, and
the corresponding scatter plot is shown in Fig. 2.7.1.

Table 2.7.1 Current intensity / vs. inverse resistance 1/R experiment

X=1/RGn1/Q) | 1/10 [ 1720 1750 [ 17100 | 1/300 | 1/500 | 171000
7 (in mA) 495 | 252 [ 098 | 050 | 0.16 | 0.102 | 0.052

0.02 0.04 0.06 0.08 0.1

FIGURE 2.7.1

Seatter plot of 2-D data from Table 2.7.1. It suggests a strong linear relationship
between the two components, current intensity I and conductivity 1/R .

The scaiter plot suggests an almost perfect linear relationship between the two
components, current intensity £ and conductivity 1/R.

Whenever there is a suspicion that there is a linear relationship between the
components of 2-D data, the obvious goal is to find coefficients « and 8 which
would make the straight line

y=a+ Bx (1

the best possible approximation for the scatter plot representing the data. In other
words, the job is to find a compressed representation of the 2-D data in the form of
an optimally selected straight line. Such a line is traditionally called the regression
line for 2-D data. An historical explanation for the use of the term regression in
this context can be found in Section 8.5.

Obviously, to make the above task meaningful we have to decide on the op-
timality criterion for choosing o and 8 in the formula (1). The usual choice is
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FIGURE 2.7.2
A schematic illustration for the regression line selection algorithm for 2-D data.

minimization of the total quadratic error

Er(ab) =) =) (w—G+ bx;))z @)
i=}

i=l1

of approximation of the scatter plot by the regression line over all possible choices
of real numbers @ and . The quantities ¢; = y; — (@ + bx;), i = 1,2,...,n,
represent the individual, sample point by sample point, errors of approximation and
are also often called fit residuals; the optimization method itself is called Gauss’
least squares method.

Since function Err(a, b) is a nonnegative quadratic function of variables a and
b, its minimum is achieved at the points (@, b) = (a, 8) satisfying equations

a n
S BT (@B =23 yi—(@+Bx) =0,

i=1

%Err (a, B) = —ZZ;()';' — (o +ﬁxi))xi =0,

which are also called the normal equations for the regression problem. Finding
explicit solutions of a system of two linear equations with two unknowns is not
difficult, but a lucid notation helps to see what is happening. So, observe that the
two normal equations can be rewritten as follows:

n n
Y yi=an+ B x,
i=] i=1
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n n n
Exiyi = Zx,- + B8 Zx?
i=1 i=1 i=]

The first equation is recognizable as y = o + Bx, wherefrom, immediately,
«=y— px. 3)

Substituting this & into the second normal equation gives

D%y =ny — DT+ .

i=l i=1

so that, finally _
_ Xizi %iYi —nxy
Z?:l xiz - nx_z '

This formula, although good for numerical computations (why?) can be made
more transparent if we recognize the quantity in the denominator as the theoretical
sample variance of & (see formula (2.3.7)) multiplied by », and the numerator as
the theoretical sample covariance (see formula (2.6.4)) multiplied by n:

B ®

neov(z, y) =) xiy— &g =y (xi ~ ) ~ ). (5
i=) i=1

In this notation,
_cov(z,y)

B=—— @ (6

Notice that the covartance of a 2-D data (2, )7 is just the variance of the 1-D data
x:
cov (x, &) = var (x). )]

Often, one normalizes the covariance by the standard deviations (2.3.14) of samples
x and y to obtain what is called the correlation coefficient between 1-D samples
@ and ¥

cov(z, o)
Y= —"7 8
€or @ 9) = Sd (m) std (@) ®
In view of the Schwarz Inequality (see Project 1 at the end of this chapter)
-l <corr(w,y) <1 @

That is why the normalization of the covariance was useful.
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Note that, taking into account (3),(4),(6), and (8), the regression line equation
(1) can now be written in the following elegant nondimensional form:

y-y X—x
@ corr (z, y)—std @ (10)

Its physical interpretation is clear and intuitive: The regression line passes through
the point with coordinates (2, #) and, after normalizing the scales of = and y
by division by their respective standard deviations, the regression line’s slope is
equal to the correlation coefficient between x and y. The correlation coefficient
is nondimensional, and so are the normalized quantities (x — z)/stdx and (y —

y/sdy.

Example 2.7.2 Extreme Correlations.
1t is illuminating to calculate values of the correlation coefficient of three sets of
2-D data with the scatter plots presented on Fig. 2.7.2:

olf y, = Bx;, B < O, thencorr (z,y) = —1.

o If y; = Bx;, B > 0, then corr (z, ¥) = +1.

elfx =(—1,—1,+1,+1) and y = (—1, +1, —1, +1), then corr (&, y) = 0.

cov{x,y)=-1 yvi=Bx cov(x,y)=0
B>0 ¢ i1 e
-
cov(x.y)=1 . . l—r [

FIGURE 2.7.3
Three extreme cases of the correlation coefficient.

In Chapters 5 and 8 we will see that the above three examples (please, do all the
calculations by hand) are of more than passing significance.

Mathematica Experiment 1. Current and Conductivity. We’ll work with 2-
D data from Example 2.7.1. The Mathematica command Fit[data, {1,x}, x]
produces the least squares linear fit of the data.

In[1] := <<Graphics‘Graphics’
In[2]:= <<Statistics‘LinsarRegression’
1n[3) := current={{1/10,4.95},{1/20,2.52},{1/50,0.98},

{1/100,0.50},{1/300,0.16},{1/500,0.102},
{1/1000,0.052}}

Out[3]= {{1/10,4.95},{1/20,2.52},{1/50,0.98},
{1/100,0.50},{1/300,0.16},{1/500,0.102},
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{1/1000,0.052}}

In{4] := linear=Fit[current,{1,x},x]
Dut [4]= 0.00243603 + 49.6258 x
In[6] := DisplayTogether [ListPlot [current] ,Plot[linear,{x,0,1}]]

Out[5]= -Graphics-

You will notice that the linear fit is almost perfect confirming the validity of
Ohm’s Jaw.

Mathematica Experiment 2. Heart Trouble. Finally, let us take a look at a much
larger data set from the 2-D data heart from Mathematica Experiment 2.6.1.

In{1]:= <<Graphics‘Graphics®

In{2] := <<Btatistics‘LinearRegression’

In[3}:= heart={{17.9,27}, {23.1,4},...,{17.6,26},{19.6,14}}
Out[3]= {{17.9,27}, {23.1,4},...,{17.6,26},{19.6,14}}

In[4]:= linear=Fit(heart,{1,x},x]

Dut[4]= 18.2703 -0.201084

In[5] := DisplayTogether[ListPlot [heart] ,Plot[linear,{x,0,100}1]
Out [6]= -Graphics-
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One notices immediately that the linear fit does not compress the data well.
Moreover, the negative values on the fitted regression line do not make much
sense. So, one could wonder if a nonlinear fit would be better suited here for the
data compression job. Given the shape of the data we will try to find a fit by the
function (model)

50 exp[—0.01ax]

which contains the parameter « to be optimally selected by the least-squares
method. The explicit analytic solution cannot be found as easily as in the linear
model but Mathematica provides a command NonlinearFit [data, model, vari-
ables, parameters] which fits the data to the model with the named variables,
returning the model evaluated at the parameter values achieving the least-squares
fit. You will notice that the computer takes much longer to find a nonlinear fit than
a linear one.

In(6]:
In(7]:

<<Statistics‘NonlinearFit"®
exponential=NonlinearFit[heart, 50 *

Exp[-0.01 =#alpha #*x], {x}, {alpha }]
Out[7]= {alpha -> 7.1603}
In(8]:= DisplayTogether[ListPlot[heart] ,Plot[560 *
Exp[-0.01 *7.1603 *x], {x,0,100}]]

[}

Out [8]= -Graphics-
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2.8 Fractal data

Fractal (fractional dimension) data are generated by physical phenomena gov-
emed by chaotic dynamics, in interacting particle systems, flows in porous media,
and in many othet situations. Fig. 2.8.1 shows the bacteria Baccillus subtilis culture
growing in the Petri dish on the surface of agar plates. The mathematical models
which give rise to such data will be discussed in Chapter 6.

In this section we will address only the question of computing the fractal dimen-
sion in data sets that are suspected to be fractal, such as in Example 1.5.1 of time
intervals between water drops, Example 1.7.2 of the EKG time series showing the
onset of seizure, or Fig. 1.10.2 and 1.10.3 showing the passive tracer density in a
random velocity flow.

There are several and, in general, nonequivalent definitions of the fractal dimen-
sion of a subset of a d-dimensional Euclidean space. They all coincide, however,
for some simple sets.

The simplest definition, due to Hermann Minkowski, relies on the fact that if
you have a “solid” object in R? (such as an interval in R!, square in RZ, or a cube in
R?) then its “natural” dimension d coincides with the “coverage exponent” which
can be explained as follows:

Fora“solid” set A C R consider a coverage by d-dimensional volume elements
such as balls (or d-dimensional cubes) of radius (or edge size) €. Fig. 2.8.2 shows
coverage of a 2-dimensional square by 2-dimensional discs of radius €.

Then, it is intuitively clear that the smallest number N (¢) of such volume ele-
ments needed for a coverage of A is equal to Ce ™%, where C is a certain constant.
Solving this equality for 4, and taking the limit ¢ — 0 to free ourselves from the
dependence on an unknown constant C, we obtain the following formula of the
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FIGURE 2.8.1

Bacteria colonies of Baccillus subtilis growing in a Petri dish show a fractal struc-
ture. {Courtesy of M. Matsushita, Chuo University.)

FIGURE 2.8.2
Coverage of a 2-D square by discs of radius €.

dimension of set A :

InN
doap(A) = Tim DN(E)

e>0In(1/¢)’ (1)

which, if applied to an arbitrary subset A C R“ (with possible replacement of the
limit by lim sup if the former does not exist), serves as a definition of the capaciry
dimension of A which can take noninteger values.

Example 2.8.1 Cantor SetC.
Here is a constructive algorithm for C. The numbering ((1), (2.0), (2.2), ..., (n.k))
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of steps corresponds to the construction process itself to make it easier to see what
is going on. Begin with the unit interval (0, 1].

(1) Remove the interval (1/3, 2/3) from [0, 1] to obtain the intervals [0, 1/3]
and [2/3, 1].

(2.0) Remove the “middle third” interval (1/9, 2/9) from [0, 1/3] to obtain the
intervals [0, 1/9] and [2/9, 3/9].

(2.2) Remove the interval (7/9,8/9) from [2/3, 1] to obtain the intervals
[6/9,7/9] and [8/9, 1].

[ 1 L ]
] I | [ ]
0 15 29 39 49 59 69 N9 &9 I
[1[7] (11 ' , [0 (1 []
FIGURE 2.8.3

Repeated "middle-third-remaved"” construction of the Cantor set.

Then continue in the same fashion. The general recursive recipe is as follows:

(n.k) Suppose we have obtained in the n-th step the interval [k37", (k + 1)37"]
for an integer & in whose triadic representation (i.e., using three digits:
0,1.2) only digits 0 or 2 appear. Then, in the next step, remove the middle
third interval ((3k + )37, 3k +2)37""1) from [k37", (k + 1)3™"] to
obtain the intervals [(34)3 7", (3k+1)37""and [3k+2)37"~, Bk +
3)3-7~1, Note, that both 3k and 3k + 2 have again triadic representations
containing only digits 0 or 2.

The set of points that are in the intersection of all these “middle-third-removed”
sequence of sets constructed above is the classical Cantor set. The fact that the
Cantor set is nonempty is a deep mathematical theorem. Its existence is closely
related to some other basic mathematical foundational facts such as the existence
of irrational numbers. The Cantor set is an example of a fractal set, which means
that its dimension is not an integer. Indeed, a direct application of the definition of
the capacity dimension to the Cantor set C gives

In2
dcap(c) = ill_3 =0.6309...
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The original Felix Hausdorff! dimension is more complicated to introduce and
to compute but, in view of its historical and theoretical importance, we will define
it formally below.

Acoverof aset S C R? is afamily .A of sets A; such that each point from § lies
in at least one set of the covering family. The diameter of a set A is the maximum
of the possible distances of two points from A, and will be denoted §(A). A cover
is called an e-cover if all the sets of the covering family have diameters less than
€.

Fix a d > 0 and define number

NS, d, A = BAN + G(AD? + (B4 + ...

where A is a cover of §. A number dy(S) is said to be the Hausdorff dimension
of § if it satisfies the following two conditions:

(a) Forevery d > dg (S), there exists a sequence of €,-covers A,, €, — 0, such
that sup, N'(S,d, A,) < oo, and

(b) For every d < dy(S), there exists an unbounded sequence of numbers
M. — 400 as € — 0 such that, for every e-cover A, (S, d, A) > M,.

In other words,

dy(S) = inf{d > 0: 3¢, —covers A,, 6, — 0,5.L. N(S.d, A) < oo} 2)

Example 2.8.2 Hausdorff Dimension of the Unit Interval.
LetS§ =[0,1],andlet A, = {[k/n, (k + Dn]: 0 <k < n— 1} beal/n-cover.
Then, ford > 0,

1 d
NS, d, A)=n (;) =nld,

So, if d > 1, then sup, N(S,4, A,) = 1, and if d < 1, then N'(§,d, A,) — o0
as n — oo. It follows that dy ([0, 1]) = 1.

Example 2.8.3 Hausdorff Dimension of the Cantor Set.
Fix a number d > 0 and the diameter ¢ = 37". The intervals in the n-th step of
the construction of C have length ¢, cover C, and there are exactly 2” of them. For
this cover

N(C,d, A) =237,

Since

lim 273~9"
H—>o0

THausdorff was also a writer, publishing fiction under the pseudonym Paul Mongré
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remains bounded if and only if 2/3¢ < 1, and that is possible only if the coefficient
log2 — dlog3 < 0, or, equivalently, 4 > log2/log3, we conclude that the
Hausdorff dimension of the Cantor set is

log2

dg(C) < @»

To prove the equality is not 50 easy and omitted. It is always true that

d}{(s) S d[‘ﬂp(S)’

and since dcqp(C) = log2/log3, the Hausdorff dimension of the Cantor set is
equal to its capacity dimension.

The Hausdorff and capacity dimensions are not the most appropriate (or easiest
to compute) quantities for fractal data that arise as time series because they do
not take into account the frequency of visits to the same “state”. This difficulty is
overcome by the Grassberger and Procaccia’s (1983) definition of the correlation
dimension dcor which, for a discrete data set § = (x1,x2,...,%,), and a given
(small) resclution € > 0, is defined by the formula

InC(e)
dior(S, €) = n ¢ ; 3)
ne
where H( ): | 1<i j<n)
Py Xj) - | — Xj| <€, - —_
Cloy="" NV R bI=R )
n
One can show that, for infinite data sets S,
EI_I:}) deor(S.€) <dy(S) < dCdP(S)v &),

and that, for many classes of sets, the above three concepts of fractal dimension
coincide.

Mathematica Experiment 1. Water Drips. We will use the water drips data
provided in Example 1.5.2.

In[1]:= drip={0.1822, 0.1962, ....... . 0.2210, 0.1485}
Outf1]= {0.1822, 0.1962, ....... ., 0.2210, 0.1485}
In[2] := n=Length[drip]

Qut[2]= 70

In(3):= dripdiff=Tableldrip[[il]-drip[[j]],{i,n},{],n}]
Out[3)= {{0.,-0.014, 0.048, ... , -0.0388, 0.0337},

{-0.0337,-0.0477, ... , -0.0725, 0. }}
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The last command creates the 70 x 70 matrix of differences x; — x; needed in
formula (4). To sec what is the reasonable selection of resolution ¢ we will check
the maximum and minimum of absolute values of the (nonzero) terms in the above
matrix. The command Range [n] produces the list {1,2, ..., n} providing enu-
meration of all the rows of the matrix dripdiff.

In(4] := Max[ Abs(dripdiff[{Range{n]]] }]

Out(4}= 0.2115

In[5]:= zeros=Position[dripdiff,0.]

gut[5]1= {{1, 1}, {2, 2}, ... , {69, 69}, {70, 70}}

In[6] := nozeros=ReplacePart [dripdiff,1,zeros]

Out(6]= {{1,-0.014, 0.048, ... , -0.0388, 0.0337},
{-0.0337,-0.0477, ... , -0.0725, 1}}

In{7]:= Min[ Abs[nozeros[[Range([nll] 1]

Out{7]) :=0.0001

The above result indicates that the values of the function d,,,,(¢) for ¢ < 0.0001
are not of much interest as C(¢) remains constant in that domain. Let us check the
values of d,, (€) for a selection of € > 0.0001.

In[8]:
In[9]:

H{x_1:=1f[x<0,0,1]
d[epsilon_]:=(1/Loglepsilonl)* Logl[ (1/n"2)*
Sum[H{epsilon-Absidripdiff [[i]1({(j1] ] 1.

{i,1,n},{j.1,n}]]
In[10}:= Table[{0.1/k,d[0.1/k]},{k,10}]
Dut[10]= {{0.1, -0.434294 Log(922/1225]},...,

{0.01, -0.217147 Logl[164/1225]1}}

In[11) := cordiml=N[%]
put[11]= {{0.1, 0.123405}, {0.05, 0.26549},
{0.0333333, 0.327238},
{0.025, 0.389185}, {0.02, 0.412454},
{0.0166667, 0.418268}, {0.0142857, 0.420781},
{0.0125, 0.42291}, {0.0111111, 0.42929},
{0.01, 0.436646}}

In[12]:= {{0.005,d[0.005]}, {0.003,d[0.003]},
{0.001,4{0.001]} ,{0.0001,d[0.0001]},
Out[121= {{0.005, -0.188739 Logl[39/4901}, . . .}

In[13):= cordim2=N[%]

Out[13]= {{0.005, 0.477669}, {0.003, 0.485482},
{0.001, 0.510611} ,{0.0001, 0.449525}}

In[14]) := Join(cordiml, cordim?2]

Out[14]}= {{0.1, 0.123405}, {0.05, 0.26549}, .... ,
{0.001, 0.510611} ,{0.0001, 0.449525}}

In[15] := ListPlot[Join{cordiml, cordim?2]

Out[15)= - Graphics-

]
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0.5¢

0.4y

03

0.02 0.04 0.06 0.08 0.1

Given the outcome of the above Mathematica experiment it would be reasonable
to say that the correlation dimension of the above data is in the neighborhood of
0.5. For further discussion of these issues, see Section 2.10, and Chapters 6 and 7.

2.9 Measuring information content: entropy

To avoid confusion caused by many colloquial interpretations of the word infor-
mation, we should make it clear at the very beginning that we are not seeking here
the measure of information as measure of meaning or semantic content, but only
as measure of content of information fransmitted from a known pool of possible
messages. The semantic aspects of communication, or the questions of the truth
of messages, are totally irrelevant to our mathematical formulation.

Example 2.9.1 Hot, Warm, and Cold.

The weather reports in the Cleveland Plain Dealer provide five-day forecasts and
one of the predicted items is temperature which is described as hot (H), warm
(W), or cold (C). The past records show that during the Spring season the relative
frequency of hot and cold weather was much smaller than the warm weather. How
much information does tomorrow’s forecast carry? Clearly, if the forecast says W,
then the amount of new information provided to us is smaller than if the forecast
says C, because on past evidence we already know that warm weather is more
likely in the spring than cold weather.

To settle on a particular quantitative measure of information content of areceived
message, let us take a look at another familiar example.
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Example 2.9.2 Hard Disk.

The amount of information carried by the data obviously depends on how many
“bits” are necessary to transmit the data and on the frequency of different symbols
appearing in the data. Thus, intuitively speaking, the 2-megabyte hard disk should
be able to carry twice the amount of information on a 1-megabyte disk, and the
n-megabyte hard disk should carry » times the information on a 1-megabyte disk.

A received message that is one of the 10,000,000 equally likely possible mes-
sages (here, think about your favored state lottery) is more valuable and carries
more information than the message that comes from the pool of 100 equally likely
messages. In other words, the measure of information content should be an in-
creasing function of the pool size from which the messages come, assuming, on
the past experience, that they all are equally likely. So, the information content
has to be tied monotonically to the number of possible states of our data set.

For a hard disk, the number of possible states N grows exponentially with the
disk information storage capacity: 1-bit binary storage can store 2 messages, 0 and
1, but the n-bit binary storage can store N = 2" strings of length n. Thus, the disk
capacity »n required to store one of possible N states of our data set is

n=1log, N. 1

For a general pool of N possible messages

H=IN 2

is usually called the Hartley information capacity. Itis measured in bits. The choice
of the natural logarithm is somewhat arbitrary and corresponds to the selection of
a specific measurement unit. For binary messages, the choice of the logarithm to
the base 2 would be more appropriate but the selection of the natural logarithm
makes our approach uniform. Notice that the above formula can be written in the
form

1 1
H=_Eﬁlnﬁ=~2f(m)lnf(m, 3

where the summation is over all possible messages m, each appearing with the ¢
priori relative frequency f(m) = 1/N.

On the other hand, if the disk has been destroyed and has Os permanently recorded
on all its bytes, then its information capacity is obviously zero.

This leads us to the question: What is the information content of a message
received from the message pool if we know that the possible messages are not
equally likely? Formula (3) suggests a measure of information content in this case
aswell. If m;, ma, ..., my, are possible messages in our pool, with prior relative
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frequencies fi, ..., fn, then the following natural generalization of (3),
N
H=H(fi,....f;)=-)_ filnfi, )
i=l

measures how much “uncertainty” is involved when we receive any particular
message from this pool. The quantity H is called the Shannon entropy of the pool
of messages (or data sets) and is traditionally also measured in bits. Notice that it
depends just on the prior relative frequency d.f. f;.

Example 2.9.2 Continued. Hot, Warm, and Cold.

Assume that the records show that in the past, for a Spring day, W was forecast with
relative frequency fw = 0.5, H with frequency fy = 0.2, and C with frequency
fc = 0.3. Then the Shannon entropy of this message pool is

H=H(05,0302)=-05In0.5-03In0.3 -0.2In0.2 = 1.02965

If the past record indicated that all three forecasts appeared with the same relative
frequency fw = fu = fc = 1/3, then the Shannon entropy of this message
pool would be H(1/3,1/3,1/3) = —In(1/3)} = 1.09861, larger than in the non-
identically distributed case above.

If there are just two possible messages, say 0 and 1, with relative frequencies f
and 1 — f then

H=H{(f1-H=—-fInf-(01-f)in(l - f) &)

Notice that its maximum is attained for f = 1/2, that is when both messages are
equally likely. Indeed, this is confirmed by finding that, at f = 1/2, the derivative

dH
7 = "lf+md-H-1+1=0. (6)

Mathematica Experiment 1. Shannon Entropy. We will graph entropy as a
function of frequencies In the case of pools of messages consisting of two and three
messages, that is, function H(f, 1 — f) of one variable f,0 < f < 1 and function
H(f1, f2, 1~ fi— f2) of two variables f1, fo, with0 < fi, o <1, i+ fa < 1.

In[1]:= HIf_ 1:=—f Log(f]-(1-f) Logl(1-£}]
In[2):= Plot[HIf],{f,0,1}]
Dut[2]= -Graphics-
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In[3]:= H[f1_,£2_]:=-f1 Loglf1]-f2 Logl[£f2]-(1-f1-£2) Logl[{1-f1~£2)]
In[4]):= Plot3D[H([f1,£2], {f1,0,1}, {£2,0,1}, PlotPoints ->40]
Out [4]= -SurfaceGraphics-

It

A calculation similar to (6) (see, Experiments, Exercises, and Projects at the
end of this chapter) proves the first of the following general properties of Shannon
entropy:

PROPERTY 1. The maximum of the Shannon entropy function H(fj, ..., fx)is
achieved for fi = ... = fy = 1/N. Again, this is not surprising, as the selection
from the most random source of information carries with it most information.

PrOPERTY 2. H = 0if, and only if, forone ofthe i = 1, ..., N, wehave f; = 1
(other frequencies are then 0). Intuitively, no information is carried if there is no
uncertainty about the message.

PROPERTY 3. Any perturbation of the situation described in Property 2 towards
the equalized one described in Property 1 will increase the information content
of a message from the pool of messages. More precisely, if fi < f; and if we
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decrease the distance between f; and f>, then H will increase. In more generality,
any averaging operation performed on f;s increases H, that is, if

J

N
f=2af @20 Yay=3a=1 O
=1 i

then
Hf o Y= H(f, s f)- (8)

This is a simple consequence of the convexity of the function g(x) = —xlogx.
Obviously, entropy does not change if the above operation just leads to permutation
of frequencies.

Remark 2.9.1 Rigorous Derivation of the Entropy Function.  The Shannon
form {4) of the entropy function H(f1, ..., fy) is notas arbitrary as it may initially
seem. As a matter of fact, it can be rigorously derived on the basis of the following
three natural postulates only:

(i) H(f, 1 — [f) is a continuous function of variable f.

@) If H(f1, -.., fy) is a symmetric function of its variables.

(iii) If one message in our pool of messages is split into two possible messages
with certain frequency weights, then the comresponding weighted split holds true
for the respective entropy. More precisely, if fy = g1 + g2 > 0, then

H(fi,.... fn-1, 81,80 = H(f1,.... fa)+ foH(g1/fn. g2/ fn). (¢)]

Mathematica Experiment 2. Approximations to English. Any English-language
text is written in the alphabet of 27 symbols, 26 letters A,B,. . .,Z plus space sp. If
we assumed, naively, that all the symbols appear with equal frequency, then, using
the pseudo-random number generator, we could produce a simulated English text
of length as follows

XFOML RXKHRJFFJUJ ZLP........

We could call it the zero-order approximation to the English language. If the text
is, say, 200 letters long, the entropy (per symbol) is H = In277%0/200 = In27 =
3.29584. However, in the natural English language the frequencies of different
letters are different, given, for a typical newspaper text, in the file LETTERFREQ on
the UVW Web Site, and their histogram is shown below. Also, the Shannon entropy
is computed.

Inf1]):
Inl2]:

u

Graphics‘Graphics®
letterfreq={{sp,0.206},{E,0.091},{T,0.077},{4,0.068},
{0,0.067},{N,0.054},{1,0.050},{R,0.050}, {H,0.047},{S,0.047},
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{D,0.028},{L,0.027},{C,0.023},{M,0.023},{U,0.023},{F,0.0186} ,
{P,0.016},{Y,0.016},{B,0.012},{G,0.012},{W,0.012},{V,0.008},
{J,0.006},{K,0.006},{X,0.006},{Q,0.004},{Z,0.004}}

Out(2]= {{sp,0.206},{E,0.091}, ... ,{Z,0.004}}
In[3]:= Sum[letterfreql[[i]][12]]1,{i,1,27}]

Cut{3]= 1.

In[4] := freg=Partlletterfreq([Range[27],21]]

Out [4]= {0.206, 0.091, ... , 0.004}

In[5]):= H=-Sum[ freq[[i]] Loglfreq[fill], {i,1,27} ]

Out [5]= 2.84258

In[6]:= letters=Part{letterfreq[[Rangel[27],1]1]]

Qut(6]l= {sp, E, T, A, O, N, I, R, H, S, D, L, C, M, U, F, P, Y, B,
G, W, VvV, J, K, X, Q, Z}

In[7]:= BarChart[freq, BarLabels ->letters ]

Out[7]= -Graphics~

HIRE RS '
ETAONIRHSDLCMUFPYBGWVIKXQZ

p

Thus, the frequency of £ is .091, and the frequency of W is .012. A sample of an
artificial text (let’s call it the first-order approximation to the English language) produced
with the help of a pseudo-random number generator is

OCRO HLI RGWR NMIELWIS .....
The entropy of such a text (per leiter) is
H=—-f,Inf, - falnfa~ falnfg—...— fzIn fz = 2.84258, (10)

less than for a uniformly random selection of letters. Although the sample visually feels
more familiar than the zero-order approximation (one feels that some randomness has
been removed from the text), it still does not look like an English text. To improve on our
simulation of the English language, we would have to look at the blocks of two letters
(all 272 of them) and their frequencies. These (and the frequencies for groups of three
symbols) are given for the natural English language in Secret and Urgent. The Story
af Codes and Ciphers, by Fletcher Pratt, Indianapolis-New York 1939, and reproduced
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on the attached UVW Web Site. Using them and the pseudo-random number generator
produces a simulated second-order approximation to the English text

ON IE ANSOUTINYS ARE T INCTORE ST BE S DEAMY....

Looks better, doesn’t it? It’s entropy expressed by the formula

1
H= '2'(_fAA Infan— fapInfap —...— fzyIn fzy — fzzIn fzz2). (1m
The third-order approximation would look like this:
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID....

with the corresponding entropy H.

Then, instead of increasing the group size one can switch to the first order word ap-
proximation that would mimic the word frequency of the English language (given, e.g.,
in Relative Frequency of English Speech Sounds by G. Dewey, Harvard University Press,
1923), as in the simulated example

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE ...

or, in

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER GF THIS PUINT IS
THEREFURE ANOTHER METHOD FUOR THE LETTERS.....

which gives a second-order word approximation.?
Remark 2.9.2 Entropy vs. Complexity. Shannon’s entropy does not take into ac-

count the compressibility of information. Another measure of information, based on the
algorithmic complexity, will address this issue in Chapter 4.

2.10 Experiments, exercises, and projects

1. Classify each of the data sets provided in Chapter 1 as categorical, numerical,
mulitivariate, time dependent, etc.

2. Mathematica Experiment: Telephone Rares. Manipulate the phone rates data from
Example 2.1.1 to order them by: (a) the international call rates, (b) the long distance
national call rates. Produce the correspondingly ordered bar charts.

The idea of different order approximations to the English language was borrowed from S. Shannon

and W, Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana,
1949,
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Chapter 2. Data Representation and Compression

Explore Mathematica and write your own Mathematica formulas for various sta-
tistical functions:
a. Sample means and weighted sample means.
b. Ordered sample.
Median, quartiles, and percentites.
. Variance and standard deviation (biased and unbiased).

. Censored mean.

-0 & 0

. Relative frequency distribution function.

Test the above formulas and data representation techniques introduced in this chap-
ter (whichever are appropriate) on data from the following examples (available as
files on the UVW Web Site).

A. Fragmentation bombs bases from Example 1.3.2.

B. Positions of bright stars from Example 1.5.2.

C. Time intervals between water drops from Example 1.5.1.

D. Accelerometer data from Example 1.7.1.
Notice that some these functions (and many others) are available as part of the

Mathematica Statistics packages and our own UVW packages provided on the
UVW Web Site. Compare your code with that of those packages.

Prove the Schwarz inequality: for any real numbers xy, ..., %4, Y1, ... ¥n,

n 2 n n
(Z x,y,-) <D Y 3
=1 i=| i=1

Hint: Consider the nonnegative quadratic polynomial 3 (x; +£ y:)?%in & and check
its discriminant.

. Write Marhematica formulas for

a. sample covariance
b. regression coefficients o and 8

c. scatter plot and regression line
Test the above formulas to

A. Determine relation between normal stress (x variable) and the shear resistance
of soil (y variable) given the following data (in kN/m?):

x= 11 13 15 17 19 21
y= 152 177 193 215 239 254
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6.

7.

8.

o

10.

11

.

12,

13,

B. Test correlations between rates of sentenced prisoners from Section 1.6 for
different states and regions of the United States. For each state (region), con-
sider the rates for years 19711991 as a single 21-dimensional data. Analyze
the whole data set from this perspective,

Compare your code with Marhematica Statistics and UVW packages. Use
the latter for additional information.

Use data on mortality rates, volume, and waiting period for transplants of kidneys,
liver, heart and lungs, and pancreas provided on the UVW Web Site to produce
relevant scatter plots, 2-D histograms, correlations, and regression line. Draw
conclusions.

Make a Q-Q plot of two selected data sets to judge similarity of their frequency
distributions. You can use the single selected data set split into two subsets and test
the frequency distribution of one part against the other. What are the implications
of such an experiment?

Produce a more complete graph of the function d,,{(¢) from Mathematica Exper-
iment 2.8.1.

Analyze the correlation dimension of the space shuttle acceierometer data set from
Example 1.7.1.

Compare the Shannon entropy (use log, base) of a message written in a four letter
alphabet (say 00, 01, 10, 11) with letters appearing with the same frequencies 1/4,
with that of a message written in the same alphabet but with letter frequencies 1/2,
1/4, 1/8, 1/8.

Check that the Shannon entropy function H (fy, ..., fx) attains the maximum for
Fi =...= fy = 1/N. Remember that it is a constrained maximum of a function
of N variables with the additional condition f) + /> + ...+ fy = 1. Verify
Properties 1-3, and (i)~(iii) in Section 2.9.

Adjust the random number generator to simulate a sample text of 500 symbols (26
letters plus space) with

{a) the equally distributed symbols

(b) symbols distributed as in the natural English language

(¢) pairs of symbols distributed as in the natural English language
(d) triples of symbols distributed as in the natural English langnage

Use the frequencies provided on the UVW Wet Site and coding from Mathematica
Experiment 2.1.2 and 2.9.2. For each case, calculate the entropy per letter. Devise
a method to produce such simulations if you were not given these frequency tables
and had to get these frequencies by analysis of concrete texts.

Mathematica Experiment. Entropy Olympics. Calculate entropy of selected En-
glish, French, German and Spanish texts, a scanned picture, and classical or rock
music. Could this information serve as a tool for the linguistic study of quantitative
relationships between languages, or help decide which language was derived from
which? Draw your own conclusions.
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t4. Mathematica Experiment. Estimating Fractal Dimension via Linear Regression.

The formal definition of the Grassberger-Procaccia correlation dimension for gen-
eral sets will be postponed to Section 6.5 (see, also, Section 7.4).

Let § = (x3, x3, ..., x,;) be a finite data set of d-dimensional vectors. For a fixed
{small) resolution € > 0, define the correlation sum

B, x) i —xl <€, 1 <4, j <nj
2

C*S,e) =CT(e) = , 1)

where |x — y| denotes the d-dimensional distance of vectors x and y.
Assume, for the moment, that the correlation sum, as a function of €, is of the form

C"(e) = Ke". )
Taking logarithms on both sides of (2), we obtain
InC*e) =InK + vine, 3)

In other words, the relationship between In C”(¢) and Ine€ is here linear, so, in
view of formula (2.8.3), the coefficient v is the correlation dimension of the finite
set S. In reality, formula (2) can never be established rigorously, but can be taken
as an approximation. In such a case, to estimate v we can use the usual linear
regression techniques developed in Section 2.7 (see, also, Chapter 8). This method
forms a basis for the command CorrelationDimension included in the package
UVW*:DynSyst ‘.

Thus, we will proceed as follows: For any finite set of m (different) resolutions
{€1, €2, . .., € ) chosen by the experimenter, consider the set of paired data

{(ner, InC"(e1)), (Inez, InC™(€2)), ..., {In€m, INC"{€n))}, )

and find the best linear fit for it. The slope JCD, of the regression line will be called
the correlation dimension of S based on resolutions {€, ..., €,}. From Section
2.7 we deduce that

_— Yo IneInC" (&) — mEINCT(e)

cor = m 3 =2 ,
Z,‘:l € —me

&)

where

I S .
€=~ Zl:e,-, and InCr(e) = - Elogc"(e,’).

As an example, consider the 4-dimensional data set iris included on the UVW Web
Site. The four components provide the lengths and widths of petals and sepals
of the iris flower. In this experiment we will take just the first ten data points and
estimate their correlation dimension using m = Sand¢; =i/10,i=1,2,...,5.
The relevant error analysis is discussed in Chapter 8.

In[1]:= <<Statistics‘LinearRegression®
Inf2}:=dris={ . . . . . . . . .., . . .}
Inf3):= clr_1:= (1/10.)"2 Sum{ Sum{ If[ Sumf

I}
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(iris([i13[[k]1-iris[(j110[kID) "2,
{k,1,4})<r"2,1,0],
{j,1,10}],4i,1,10}]
In[4]:= <[.2]
Out[4= -0.16
In[5]:= reg= Table[{Log[i/10.], Loglc[i/10.11}, {i,1,5}]
Out(B]= {{-2.30259, -2.30259}, {-1.60944, -1.83258},
{-1.20397, -1.42712}, {-0.916291, -1.02165},
{-0.693147, -0.1693147}}
In(6]:= Fitlreg, {1,x},x]
Out[6]= -0.125049 + 0.989057 x
In[7]:= Quit

So the correlation dimension of iris is estimated to be 0.989057. Try the same
technique on the drip data from the Mathematica Experiment 2.8.1.

15. Mathematica Experiment. Entropy of a Finite Data Set. Let § = (x1, x2, ..., Xy)
be a finite data set which may consist of numbers, d-dimensional vectors, or some
other abstract objects (e.g., strings of letters). Let {m1, ..., m} denote the set of
different elements from this data set. Then, the entropy of S is

1 k n 1 n
H=-- Y 3 1,60 - ;Lm (1),

i=1 =1

where 1,,(x) = 1 if x = m, and 0 otherwise.

As an example, we will estimate the eniropy of the data set rivet which can be
found on the UYW Web Site. The data are first binned into bins of size 0.2 mm.

In{1):= rivet={. . . . . .}

In(2] := Min{rivet]

Dut[2]= 13.13

In[3]:= Max[rivet]

Cut [3]= 13.69

In[4]:= Lengthlrivet]

Cut [4]= 200

In[5]:= freqls_]:=
(1/200.) Sum[If[(s-1)*.2<rivet[[1]1]1]]1-13.119<
s*.2, 1,0], {i,1,200}]

In[6]:= h=-Sumlfreqls] Loglfreqlsl], {s,1,3}]

Out[6]= 0.91488

In[7]):= Quit

2.11 Bibliographical notes

A relatively new source on how to graph data, addressed mainly 1o social scientists, is
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(1} G.T. Hemry, Graphing Data; Techniques for Display and Analysis, Sage Publica-
tions, Inc., Thousand Oaks, London, 1995.

It contains an interesting analysis of the human perception of different methods of graphical
data representation; see, also

[2] W.S. Cleveland and R. McGill, Graphical perception; Theory, experimentation,
and application to the development of graphical methods, J. Amer. Stst. Assoc.
79(1984), 531-554.

[3] John W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.
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{4] E.R. Tufte, Envisioning Information, Graphic Press, Cheshire, CT, 1982, and

[5]1 ER. Tufte, The Visual Display of Quantitative Information, Graphic Press,
Cheshire, CT, 1990

contain a very imaginative exposition of how to represent complex information (not only
statistical in nature). According to a review in the Computer: “A remarkable range of
examples for the idea of visual thinking, with beautifully printed pages."

A nice mathematical introduction to the issues of fractional dimension can be found in

[6] G.A.Edgar. Measure, Topology and Fractal Geometry, Springer-Verlag, New York,
1990. )

The February 1992 issue of the journal Staristical Science was devoted, in part, to the
stalistics of dynamical systems and their fractality, and included articles by S. Chatterjee
and M. Yilmaz, by L.M. Berliner, and comments by other researchers working in the
area. It is also a good source of more detailed references.

The small volume

[7] C. Shannon and W. Weaver, The Mathematical Theory of Communication, Uni-
versity of Illinois Press, Urbana, 1949,

still remains a lucidly argued classic in the area. The idea of different order approximations
to the English language was borrowed from it. For a more modern and more mathematical
treatment of information theory, see, ¢.g.,

[8] A. Feinstein, Foundations of Information Theory, McGraw-Hill, New York, 1958.

[9]1 S. Guiasu, Information Theory with Applications, McGraw-Hill, New York, 1977.
The former contains a proof of Remark 2.9.1.

{10} Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading, MA, 1964,

and also discusses issues of the semantic content of information. The frequency tables
for the English Janguage were taken from

[11] F. Pratt, Secret and Urgent. The Story of Codes and Ciphers, The Bobbs Merril
Co., Indianapolis-New York, 1939.

[12] G. Dewey, Relative Frequency of English Speech Sounds, Harvard University
Press, Cambridge, MA, 1923,
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A discussion of mathematical models of word frequencies in a natural language can be
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[13] B.Mandelbrot, On the theory of word frequencies and on related Markovian models
of discourse, in Structure of Language and Its Mathematical Aspects, Amer. Math.
Soc. , Providence, RI, 1961, pp. 190-219.



Chapter 3

Analytic Representation of Random
Experimental Data

In Marhematica Experiment 2.5.1 we observed that the cumulative d.f. and his-
tograms of large samples drawn with finer and finer resolution or, in other words,
with smaller and smaller bin size, often seem to smooth out and assume a form that
is almost begging to be compressed into a single analytic formula. These various
idealized limit relative frequency d.fs, called probability density functions, and the
related cumulative probability distribution functions, will be studied in this chap-
ter. We will also learn how to simulate data sets with an @ priori given probability
density function.

We begin by discussing stability of frequencies and fluctuations as laws of nature
and then move on to analytic formulas for 1-D discrete probability distributions,
introduce the concept of changing scale and Jocation in data description, and then
move on to probability densities for continuous data. A section on multivariate
probability distributions, both discrete and continuous, follows. The analytic com-
pression of fractal random objects is then briefly discussed.

3.1 Repeated experiments and the law of large numbers

Everybody has an intuitive notion of what a scientific experiment is. Qur first
step is to make this concept more precise.

Example 3.1.1 Galileo on the Leaning Tower of Pisa.

In order to measure the gravity constant, in 1627 Galileo performed a series of
experiments, repeatedly dropping various bodies from the Leaning Tower of Pisa.
Outcomes of these repeated experiments were not identical but they showed re-
markable stability; a typical sequence of 10 measurements (in kg/m> units) could

© Springer International Publishing AG 2017 119
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have looked as follows:

9.8102, 9.8107, 9.8098, 9.8101, 9.8109,

9.8092, 9.8157, 9.8131, 9.8097, 9.8095

The experiments produced random outcomes, the randomness arising from inaccu-
racies and other uncertainties of the experimental process, and the gravity constant
was measured with what we now call statistical errors. They were relatively small.

Example 3.1.2 Accidents Happen (Randomly).
Monthly number of accidents at the Best Co. was recorded over a period of 20
months, producing the following data set:

3,5,7,9,10,18,6, 14, 11,9,5,11, 15,6, 11, 17, 12, 15, 8, 4.

Each monthly survey can be thought of as an experiment. So, the above data set
represents outcomes of 20 experiments. Now, the data set no longer Jooks like
a representation of a constant affected by statistical errors. The data set displays
large statistical fluctuations.

Both of the above examples displayed some random behavior, although the
mechanisms that produced them may have been of different nature.

Example 3.1.3 Double-Blind Medical Test.

A researcher studying acute leukemia would like to test the effectiveness of a new
drug. His expectation is that the drug prolongs the duration of the illness’ remission.
For that purpose he performs a double-blind experiment: a random sample of 10
patients from the population diagnosed with the illness is split (again, randomly)
into two equal groups. Patients are not aware of which group they were assigned.
Then, those in the first group are given a dose of the new drug, while those in the
second group are given a neutral placebo. This is being done 1o eliminate the so-
called placebo effects (usually improvement) that the administration of any drug
has on some patients. Then a physician, who also does not know to which group a
particular patient belongs, questions the patients as to the duration of the remission.
The collected data (in weeks) for five patients in each category are given below:

Placebo : 1,22,3,12,8 Drug : 10,7,32,23,22

Example 3.1.4 Drawing Balls at Random.
An umn contains balls of different colors: red, blue, yellow, etc. The experiment
consists in drawing a ball at random and recording its color. “Drawing at random”
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means here that the drawing mechanism is blind and does not give preference to
any particular ball; the chance of any ball to be drawn is the same and equal to

1
number of balls in the urn

The outcomes of this experiment form a nominal categorical data set. We can trans-
form it into an ordinal categorical data by labeling different colors with numbers
1,2,...

In general, an experiment is performed on a physical “device" which produces
data as an output. That physical “device' can be a measuring instrument used ina
certain concrete situation, a pollster or a physician querying people, or a computer
producing a string of numbers via its pseuderandom number generator. The data
describing the outcome of an experiment, as we have seen in Chapter 2, can be
either quantitative (numerical, vector, fractal) or qualitative (categorical). Another
typical feature of the experiment is that, if repeated independently, it may yield a
different set of data.

A finite set of d experiments (conducted simultaneously or consecutively), each
yielding (say) numerical data, can be thought of as a single grand experiment
producing d-dimensional vector data.

Symbolically, an experiment with random outcomes will be denoted by a cap-
ital letter, typically X, Y, Z, or X, X,, ..., and called a random quantizy if the
outcomes ave real numbers (resp. randont vectors, functions, fields, etc. in other
situations). In the case when outcomes are categorical, we will speak about random
entities.

An independent n-fold repetition of an experiment described by the random
quantity X results in a new grand experiment described by the random vector
X = (X1, X2, ..., X»). Single experimental random quantities X1, ..., X, serve
as components of X . A particular run of a series of n experiments will produce
a sequence of real numbers (vectors, etc.) xj,..., x,, a concrete realization of
independent random quantities X, X3, ..., X,.

The basic description of a random quantity X, i.e., the randomly varying out-
comes of an experiment, is via, already encountered in Chapter 2, relative frequency
distribution function measured over multiple (ideally, infinite) independent repe-
titions of the experiment under the same circumstances. The requirement that the
experiments be independently repeatable is an important postulate in experimental
sciences.

However, compared to our simple definition of the relative frequency d.f. fora
fixed finite set vy, . . ., vy, of possible experimental outcomes (Section 2.3) we will
proceed slightly differently to permit analysis of experiments with any numerical
outcomes. Our approach will be similar to that of the creation of a binned histogram
with an arbitrary size and location of the bin. So, given a realization x1, ..., x, of
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n independent experiments involving the random quantity X, and an interval R on
the real line, the real number

numberofx; e B 1, .
Sa(R; X) = _—n; = ;#{t txi € R}, (M

tells us the relative frequency with which the outcomes of n independent experi-
ments involving the random quantity X appear in the interval R. A similar quantity
can be introduced in the case when each of the random quantities X; is itself vector-
valued. In that case, the interval R has to be replaced by a rectangular box in the
space of appropriate dimensionality.

It is an empirical fact that for practically all intervals R, the relative frequen-
cies f,(R; X) stabilize as the number n of independently repeated experiments
increases. This phenomenon, which we will call the Stability of Frequencies Law
(SFL), is a law of nature like any other law of nature one Iearns about in physics.
It can be summarized as follows:

Stability of Frequencies Law (SFL). Suppose that the experiment X is inde-
pendently repeated and a sequence of outcomes xy, x2, . . . , X, is observed. Then
the relative frequencies f, stabilize as n becomes large, i.e., there exists a real
number Pr (R; X) such that

Ja(R; X) — Pr(R; X), as n — 0o, (V3]

Jor almost all intervals R. The limit Pr (R; X) of the relative frequencies will be
called the probability that the random quantity X takes values in R, and is also
denoted Pr{X € R}.

Notice that the above law was phrased somewhat cautiously and talks about
the limit (2) existing only for “‘almost all" intervals R. The reason is that our
measuring instruments are never perfectly precise and the condition x; € R, with
its sharply defined cut-off points at the ends of the interval R, requires infinitely
precise measurement to decide whether or not it is satisfied.

To avoid this difficulty one usually introduces a more practical concept of a
bounded and smooth test function ¥ (x) which represents a realistic measuring
device. In this context, the general Law of Tested Averages (LTA) can be formulated
as follows:



3.1. Repeated Experiments and the Law of Large Numbers 123

Law of Tested Averages (LTA). Suppose that an experiment X is independently
repeated and a sequence of outcomes x|, xz,...,Xp, ... is observed. Then the
averages of outcomes

_ Y@+ )

Av, (Y (X)) := . 3)

measured via a bounded and smooth test function ¥ (x) converge, as n increases,
o a constant, say p(y (X)), i.e.,

Av, (¥ (X)) — w(¥r (X)), as n— oo, (4

The limit (W (X)) will be called the mean of random quantity X tested via the
test function .

Mathematica Experiment 1. Smooth Approximation of Discontinuous Test Func-
tion. The somewhat idealistic Stability of Frequencies Law can then be viewed
as the special (in the limit) case of the Law of Tested Averages, where the test
function is the discontinuous indicator function of the interval R:

1, ifxeR;
La(x) "[0, ifx & R. )

Indeed, with ¢ (x) = 1g(x), the tested average (3) becomes the relative frequency

in (1}, 1.e.,

Ip(x)) 4+ ...+ 1g(x)
n

(R, X) =

(6)

On the other hand, the indicator function 1z(x) can be approximated by smooth
test functions . In the Mathematica experiment that follows, we have selected
R=[-1/2,1/2].

In[1]):= HI[x_]):=If[x<0,0,1]
In[2]:= Indicator[x_]:=H[-{(x-0.5)]*H[x+0.5]
In[3):= Psilx_,a_]:=(1/Pi) (Pi-((ArcTan[(a(x-0.5))]+Pi/2)+

(ArcTan[(-a{x+0.5))]+Pi/2)))
In[4] ;= Plot[{Indicator([x], Psil[x,50],Psi[x,100],Psi[x,500]},
{x,-1.3,1.3}]
Dut [6]= -Graphics-
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If the experimental outcomes x1, ..., X,, ... come from a bounded interval
(independent of n), as is often the case in practice, one can take as the test function
¥(x) = x, the unboundedness of which at large xs being irtelevant. In this case,
the Law of Tested Averages becomes the celebrated

Law of Large Numbers (LLN). Suppose that an experiment X is independently
repeated and a sequence of outcomes x1,X2, ..., Xn, ... is observed. Then the
sample means T of outcomes converge, as n increases, to a constant, say p = u(X),

ie.,

g0t P LX), as n—> oo ')
n

The constant (X) is called the mean of the random quantity X.

The above laws, introduced here as laws of nature, will be recovered as
mathematical theorems, with precise assumptions, within the framework of Kol-
mogorov’s axiomatic probability theory discussed in Chapter 5. They also permit
a verification of independence of repeated experimental ensembles.

Remark 3.1.1 Limitations on LLN. There are some limitations on the appli-
cability of the LLN. The Marhematica Experiment on Cauchy distributed random
quantities in Section 3.8 shows an example of the situation where the LLN fails.

Mathematica Experiment 2. Law of Large Numbers. In this experiment we take
the computer as a physical device that produces various random numerical out-
comes. The command Randonm [Integer] produces a pseudorandom number equal
to either 0 or 1. Then the command Table [Random [Integer],{i.1,n}] will pro-
duce a sequence of n pseudorandom zeros and ones. The command SeedRandom [
1 reseeds the pseudorandom number generator with the time of day (measured
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in small fractions of a second) to make sure that two different sessions will give
different and hopefully independent pseudorandom strings. Finally the command
LargeNumbers [List] of the UVW*DataRep* will plot the successive averages of the
data from the List.

In{1):= << UVW'DataRep*

In{2] := SeedRandom({ ]

In[3]:= T1 =Table[Random[Integer],{i,1,1000}]

Qut[3])= 0, 1,1, 1,0, . . . ,1,0,1,1, 0,1, 0,1, 1}
In[4] := LargeNumbers[T1]

Out [4]= -Craphics-

In[5):= S1=Show![%,Frame ->True, GridLines->Automatic]

Dut [5]= -Graphics-
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You will notice that the averages stabilize around 1/2 but the fluctuations around
that value remain. Four repetitions of the same experiment give four different
realizations of the data sets but the asymptotic behavior of their successive averages
is similar.

In[16) := LargeNumbers[T4]

Out [16]= -Graphics-

In[17]) := S4=Show[%,Frame ~>True, GridLines->Automatic]
Out(17]= -Graphics-

In[18]) := Show[GraphicsArray[{{S4,52},{S3,51}}]1]
Out[18]= -GraphicsArray-
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Independent random quantities. Suppose two series of experiments X and
Y were conducted with outcomes xi,...,x,,... and ¥1,..., Y, ... According
to the Stability of Frequencies Law, for almost all intervals R, S, the relative
frequencies f;(R; X), fn(S;Y), for X, Y respectively, stabilize at probabilities
Pr (R; X) and Pr (R; Y), but the same phenomenon also happens for these data
considered as an outcome of a single 2-D vector experiment (X, ¥) with outcomes
{x;,¥i),i =1,...,n,.... In other words,

numberof (x;, ;) E R x §,1<i<n
n

Sa(R x §; (X, Y)) ==

— PriRx $; (X, )} =Pr{(X,Y)e R x S}, (8)

asn — oo. Then, the relative frequency f, (R; X|[S; Y) of outcomes of experiment
X being in R given the extra information that the outcomes of experiment ¥ are
in § (that is the fraction of pairs (x;, ¥;) in the rectangle R x § in the universe of
pairs with the second coordinate y; € S) can be expressed via the formula

Ja(Rx 5 (X, Y))
Jn(8; Y)

Sa(R; XIS Y) = ®

The number f,(R; X|S; Y) is called the conditional relative frequency of X being
in R given 'Y being §.

Now, to say that the experiment X with outcomes x|, .. ., X5, is independent of
experiment ¥ with outcomes yp, - . ., y¥,, is equivalent to the statement that, for any
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intervals R and §, the conditional relative frequency fn(R; X|S: Y) = fr(R; X),
that is, it becomes independent of the extra information about the outcomes of ¥
This independence condition can be rephrased, in view of definition (9), as a more
symmetric independence condition

HR XS (X, YN = fu(R; X) fo(S5 Y). (109)

If the number of experiments n inctreases, the Stability of Frequencies Law
assures that the conditional frequencies f,(R; X)S; ¥) stabilize (unless Pr{¥ ¢
S) = () at the conditional probabilities

Pr(R; X|5;¥Y)=Pr{X cR|Y € 5} = Pr{ire(yR;};]e S}’ (1mn

This leads to the following.

Criterion of Independence of Experimental Random Quantities. The exper-
imental random quantities X and Y are independent if

PriXeR YeS)=Pr{X e R} -Pr{Y €8}, (12)

for any intervals R and §.

Mathematica Experiment 3. Independence of Experiments. Let us check that
four repetitions of experiments in the above Mathematica Experiments 2, which
took advantage of the SeedRandom[ ] command, satisfy approximately the above
criterion of independence. Since there are only four possible values for (X, Y),
namely, (0, 0), (0, 1), (1, 0), (1, 1), it is not necessary to check the condition (12)
[or, in practice, condition (10)} for all possible rectangles R x S, and it suffices to
verify thatforanyi = 0,1 j =0, 1,

PriX=i,Y=7)~Pr(X=0 Pr(¥ =)

In[1] := <<Statistics‘DataManipulation®

In[2] := SeedRandom[ ]

In[3]:= X =Table[Random[Integer],{i,1,100C}]

Out{3]=- {t,1,1,0,1,0, ... , 0,1,1,1,0,0}

In[4]) := SeedRandom[ }

In[5):= Y =Table[Random[Integer],{i,1,1000}]

Dutf5]= {1,1,0,1,1,0, ... , 1,1,0,0,1,0}

In{6]:= (XcomaY)=Table[{X[[n1],Y([nl]},{n,1000}]

Outl6]l= {{1,1},41,1},{1,0},{0,1}, ... ,{1,0},{0,1},{0,0}}

In{7]:= FrX=Frequencies[X]
Ous[71= {{493, 0}, {507, 1}}
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In[8]:= FrY=Frequencies(Y]
Out.[8]= {{474, 0}, {626, 1}}
In[9]:= Fr(XcomaY)=Frequencies[Xcoma¥]

tut[9]= {{229, {0, O}}, {264, {0, 1}}, {245, {1, 0}},
{262, {1, 1}}}
In[10] := PrXtimesPrY=
N[ Table [{FrX[[m]]I[[1])]xFrY[[k11[[111/(10)"86,
{FrX([wl) ([21]1, FrY [[x]13L(2]113}},{m,2},{k,2}],3]
Out[10]= {{0.234, {0, 0}}, {0.259, {0, 1.}},
{0.240, {1., 0}}, {0.267, {1i., 1.}}}
In{11]:= Pr(XcomaY)=N[Table[{{XcomaY) [[m]11([1]1/1000,
(XcomaY) [ [mw]1[[2]1},{m,4}1]
Out[1i]= {{0.229, {0, 0}}, {0.264, {0, 1.}},
{0.245, {1., 0}}, {0.262, {1., 1.}3}}

A comparison of Out [10] and Out [11] indicates that the claim of independence
of X and Y is relatively well founded. Note that whenever you repeat the above
experiments the particular output is going to be different. However, the relevant
probabilities will be similar.

3.2 Characteristics of experiments: distribution functions,
densities, means, variances

In practice, instead of all the probabilities Pr(R; X) for all the possible intervals
R, one often operates with a one-parameter family of probabilities of the events
that the experimental random quantity X < x, i.e., with the cumulative distribution
Sfunction of X:

F(x; X) :=Pr{X € R = (—o00, x]}, —00 < X < 00. ()]

It is an analogue of the sample cumulative distribution function F(x, ) introduced
in Chapter 2. Note that F(—00; X) = 0, F(400; X) = 1 and that F(x; X) is
nondecreasing. Sometimes, for the sake of better typography, we will write Fx (x)
instead of F(x; X). A typical picture of a cumulative distribution function is shown
in Fig. 3.2.1.

Now, for a pair of experimental random quantities represented by the random
vector (X, Y), the independence condition (3.1.12) can also be written in terms of
the distribution functions:

F{X.Y)(ny)= FX(X)F}’()’), an’ERv (2)
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E(x) /’—

_— |

v

FIGURE 3.2.1

A typical picture of the cumulative d.f. Fx(x) of a random quantity X. Nolice
that Fx(—o0) = 0, Fx (400} = 1 and that Fx(x) is nondecreasing. Intervals of
constancy as well as jumps upwards are also possible.

where the joint 2-D distribution function

Fax G, »):=Pr{X <x,¥Y <y} 3

Means of tested random quantities as integrals with respect to cumulative
d.f. In the particular case of data x1, . . . , x, uniformly distributed over the interval
[a, b], that is, with b

—~a

Axi =X —Xi—1 = » (4)
n

and for any bounded and continuous fest function ¥ (x), it is clear that the tested
average Av,(yr) defined in (3.1.3) is nothing but a discrete approximation to the
Riemann integral of ¥+ (x) over the interval {a, &], or more precisely

Y1)+ PO 1 <
Ava () = - = ; ¥ (x:) Ax; ©)
which converges, as » — 0o, to
1 b
) = f () dx. ©
—_— a a

Also, in this case, the distribution function F(x) grows linearly in the interval
[a, b, 1.6.,

0, for —oo < x < a;
F(x)= ’(x—a)/(b-a), fora <x <b; (7a)
1, forb < x < 400,
with 0, for —00 < x < a;
dF(x) = {dx/(b—a), fora <x <b; b
0, forb <x < foo.
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Hence, we can symbolically write

[o0]
u(y) =f ¥(x)dF(x). @
—00
1 1
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Mathematica Experiment 1. Cumulative df. for Uniform Data. We will il-
lustrate the limit passage for (5) to (6) using the tools developed in Mathematica
Experiment 2.5.1. The interval [a, b] is taken to be [0, 1].

In{1]:= <<Statistics‘DescriptiveStatistics®

In[2] := <<Graphics‘Graphics®

In(3]:= n=6;

Inf4]:= uniformdata= (1/n)Range[n]

Dut[4]= {1/6, 1/3, 1/2, 2/3, 5/6, 1}

Inib]:= H{x_]1:=1f[x<0,0,1]

Inl[6] := Flx_]:=(1/n) Sum[H[x- uniformdata[[il] J],{i,1,n}]
In[7) := cdf6=Plot[F[x],{x,uniformdatal[[1]1]~1/2,

uniformdatal((n]]+1/2 } ]

Repeating the procedure for, say, » = 14, 34, and 83, and using the command
In{23):= Showl[CGraphicsArray[{{cdf6, cdf1d}, {cdf34, cdf83}}]]

produces the GraphicsArray shown above.



3.2. Characteristics: Cumulative d.f.s, Means, Variances 131

The above discussion suggests that, perhaps, for any experimental random quan-
tity X and a bounded continuous test function ¢ we could view the tested mean as
a kind of integral with respect to the cumulative d.f. Fx (x):

" 00
n(¥ (X)) ="lj;goAvn(~lf)=ngrgoZW(x<j)AF(x(j>) =f Y (x)dFyx(x).
j=1 o

&)
The integral on the right-hand side, called the Riemann-Stieltjes integral of
with respect to Fy, is defined via the limit on the left-hand side whaose existence
and uniqueness (that is independence of any particular realization of a series of
repeated independent experiments X) is assured by the Law of Tested Averages.
In the intermediate discrete approximation formula, of course,

AF(xg) = Flxg) — Flxg—n)

corresponds to the jump of the data & cumulative d.f. F(x, x) at the data point
X = X(y.

In the above sense, the cumulative d.f. Fx (x) of an experimental random guan-
tity X acts on test functions ¥ as an operation

¥ (X)) = f_ Y0 dFx(x) (10)

which enjoys the following properties:

(i) It is positive, i.e.,

(& ]
Yx) <0 = Y(x)dFx(x) <0 (1)

—00

(ii) It scales homogeneously, i.e., for any real number a,

f a¥ () dFx () = a f ¥ (x) dFx (x) (12)

(iii) It is additive on superpositions of test functions, i.e.,

f(¢1(1)+¢z(x))d1’"x(x)=f 1/!1(X)de(X)+/ Y2(x) d Fx (x).
(13
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Thus, the Riemann-Stieltjes integral [ ¥ d Fy is just the mean of the experimen-
tal random quantity X tested by the test function . For the special choice of the
test function ¥ (x) = x,

WX = f x dFx(x) (14)

is simply called the mean of the experimental random quantity X [or, its cumulative
d.f. Fx{(x)]. Notice that since ¥r(x) = x is an unbounded test function, the
existence of the mean is not guaranteed for every cumulative d.f. Fx (x). It has
to be understood as the limit of [ x1p, 4)(x)dFx(x), fora - ~o00,b — +o0,
which may or may not exist. The indicator function 1, ;) (x) is equal to 1 for xs
inside interval [a, b], and O outside that interval.

In this context, the probability

Pr{a < X < b} = Fx(b) - Fx(a), (15)

and the variance of an experimental random quantity X with the cumulative d.f.
Fx(x) is defined by the formula

o2(X) = f (x — u(XN?dFx(x), (16)

0

expressing the mean square deviation of the experimental random variable X from
its mean & (X). Observe that, in general, finiteness of the variance is not guaranteed
either. Using the above properties (i-ifi) of the Riemann-Stieltjes integral one can
easily check that

Var X = 0?(X) = fxzde(X) — W3 (X). an

The quantity
pa(X) = f x2 dFx(x) (18)

is called the second order moment of the random quantity X, or, equivalently, of
its cumulative d.f. Fx. By analogy, the k-th order moment are

() = f x* dFy (x). (19)

All of these characteristics of the cumulative distribution functions (and thus ex-
perimental random quantities) are analogous to the corresponding finite numerical
data characteristics introduced in Chapter 2. They will be revisited within the
framework of the formal mathematical model of probability theory in Chapter 5.
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For the purposes of the present discussion of analytic representations of random
experimental quantities, we will note two classes of cumulative d.f.s. Examples
from these two classes will fill the rest of this chaper.

Discrete Distributions. Let us assume that the experimental random guantity

X assumes values only from a fixed finite (or infinite) discrete set vy, ..., vy of
real numbers, and that in the series of » independently repeated experiments the
outcomes form a random sample x), . . ., x, with relative frequencies
#i: i =wn) #i: xi = vp)
Fulvr; X) = {+ cees Faloy: X) = —;T‘— (20)

Then, by the Stability of Frequencies Law, as n — oo,

Fi X) > Pr{iX =wn}=pi, ..., falon; X) = Pr{X = vy} = pu,
and by the Law of Tested Averages, for any test function v

AV (Y (X)) = pryr(v) + ...+ py¥ (o) = f V(x)dFyx(x), (21

where the cumulative d.f. Fx(x) can now be identified as a function constant at
all points x except x = v; where it has jumps upwards of size p;. Such random
quantities and their cumulative d.f.s are called discrete.

For discrete random quantities, the Riemann-Stieltjes integral formulas for
mean, variance, moments, etc. become just sums (finite or infinite). For example,

N N
p=u) =Y wp o2& = - wlp. 22)
i=1

i=1

Absolutely Continuous Distributions, Densities, In some cases the cumulative
d.f. Fx(x) is differentiable (at all except, say, some discrete points) and

mmzf'hm@. 23)

Such cumulative d.f.s are called absolutely continuous and their derivatives

aF
&mz—fﬁ 24)
X
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are called the probability density function (d.f.} of the random quantity X. In view
of the monotonicity of Fx(x) and the property Fx(4-00) = 1 of the cumulative
d.f., any density function fx (x) must satisfy the following two properties

(i) Positivity:
fx(x) =0, x €R, (25)

{ii) Normalization:

o
f fx(x)dx = 1. (26)

Moo
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FIGURE 3.2.2

A typical graph of a probability density function fx(x) (above) and the corre-
sponding cumulative distribution function Fx(x) (below). Notice that the density
can have intervals where it is zero and singular points where it is infinity.

For an absolutely continuous distribution Fy (x), the Stieltjes integral formulas
for probability, mean, variance, moments, etc., become just the usual Riemann

"y
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integrals, because for them d Fx (x) = fx (x) dx. For example,
&
Pria < X < b} =[ Fx(x)dx, 27
a

and

o0

= u(X) = f xfx()dx, oX(X) = j - Wi fx(dx.  (28)

Concrete examples of these types of distributions will be provided in the re-
mainder of this chapter. Also, not surprisingly, there are distribution functions
that are mixtures of discrete and absolutely continuous distribution functions. A
more striking fact is the existence of continuous cumulative d.f.s of the “devil’s
staircase" type, which are not absolutely continuous. We will discuss them briefly
in Chapter 5.

Calculation of tested means, especially using Mathematica, can sometimes be
simplified. If F(x) is a cumulative d.f. concentrated on [0, 00) (i.e., F(0—) = 0),
and the test function r(x) is continuously differentiable, and either yr(0) = 0 or
F{0—) = F(0), then

[ V(OF(@dx) = /0 (0 F)¥' () dx. 29)

We just check this useful jdentity for an absolutely continuous cumulative d.f.
F(x) with the density f(x). Then, since d(1 — F(x))/dx = — f (x), integrating
by parts we get

f V() F(dx) = fo w<x>f(x)dx=[—(1—F)w13°+f0 ¥ ()1~ F(x))dx.

Often, we speak generically of the probability distribution of a random experi-
mental quantity X (or, simply, the distribution of X), by which we mean either the
cumulative d.f. Fy(x), or the discrete probabilities p; of values v; taken by X, or
the probability density function fx (x), whichever is appropriate or handy in any
given case.

Inverse Distribution Function; Quantile Function. If a cumulative d.f. F(x)
is strictly increasing, then there is obviously a function G satisfying G(F (1)) =
u = F(G(u)). Function G is called the inverse function of ¥ and is denoted by
F=1), Similarly to the sample quantiles ¢ () discussed in Section 2.2 for sample
cumulative d.f.s, F~!(a) is called the a:-th quantile of the distribution function ¥,
and F~! is called the quantile function. Number F~1(1/2) is called the median and
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F~1(1/4), F~1(2/4), F~1(3/4) are called the first, second, and third quartiles,
respectively. For camulative d.f.s that are not strictly increasing, one also defines
a generalized inverse function (quantile) following the ideas explained in Section
2.2, e.g, via the formula

F Y @) = max{F(x) : F(x) <z}, 0<z<l. (30)

3.3 Uniform distributions, simulation of random quantities,
the Monte Carlo method

A random quantity U is said to have a continuous uniform distribution on the
interval [a, b] if its density has the form

1 fora<x<b
=15 =X = !
fux) | 0 for x outside the interval [a, b). @

There are two parameters ¢ and b, a < b. The corresponding cumulative d.f.

0 forx < a;
Fuyx) = { = fora<x<b (2)
1 forb < x.

A simple calculation shows that the mean

atb
wl) = 5 3)
and the variance
1 a+b\2 (b —a)?
2 — _ = . 4
o“(U) 5—al (x ) dx 3 4

In this case, the standard deviation o is simply 1/(2+/3) times the size of the interval
b — a; a good illustration of the intuitive meaning of the notion of variance.
A random quantity U is said to have a discrete uniform distribution on values
V.- UN if
Pr{U=un}=...=Pr{U =uvy}=1/N. 5)

The continuous vniform density and the cormresponding cumulative d.f. are
pictured in Fig. 3.3.1.



3.3. Uniform Distributions, Simulation of Random Quantities 137
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FIGURE 3.3.1
Uniform density with parameters a, b, and the corresponding cumulative d.f.

The problem of generation of the simulated data with a prescribed probability
distribution is of fundamental importance in any computer-aided study of random
phenomena. We have already discussed the pseudorandom number generators
which produce sequences of zeros and ones with (almost) identical distribution of
frequencies of blocks of different (reasonable) length. Considering these blocks
to be binary representations of numbers in the interval (0, 1), we thus obtain a
way to generate data with the uniform distribution in that interval. As a matter
of fact, this is a function that is explicitly provided in Mathematica via command
Random( ].

Mathematica Experiment 1. Uniformly Distributed Pseudorandom Numbers.
In Experiments of Section 1 we have seen how to generate uniformly distributed
pseudorandom integers in the discrete set {1, 2, ..., n}. The command Random[ ]
generates a pseudorandom number between 0 and 1, Random[Real, { xmin, xmax
}1 produces a pseudorandom number between xzin and xmax. The UVW‘DataRep*
package command RegularHisto[ list, xmin, xmax, nx] producesahistogram
of the data contained in the 1istofdata with nx bins between xmin and xmax.

In[1):= <<UVW'‘Datarep®

In[2] := Ti=Table[Random[Real,{-N[Pi/2],N[Pi/2]}],{1000}]

Out[2]= {1.45002, 0.429825, 0.417296, ~1.0639, ... ,
0.92243, 0.0658026, -1.25003, 0.20874}

In[3]:= RegularHisto[T1,-N{Pi/2],N[Pi/2], 10]

Out [3]= -Graphics-
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Now, assume that we have generated a pseudorandom data set

wy,U2,...,Up, (6)

approximately uniformly distributed in the unit interval (0, 1) and we want to
produce a simulated data set with a given cumulative d.f. F(x). The idea of
how to proceed is suggested by the discussion in Sections 2.2, 2.4, and 3.2 on
quantile functions and their relationship with the cumulative distribution functions.
Indeed, if F~! (), u € (0, 1), denotes the (generalized) inverse of the cumulative
distribution function F (x), then the transformed data set

xi=Flu), xp=Fwg), ... 5 = F (), Q)
will have the cumulative relative frequency distribution F(x). Indeed,

& F(x)

Bl x <x) M F ) <x}  #liw < F(x))
n - n - n

in view of the monotonicity of the cumulative distribution function F(x) and its
inverse, and the uniform distribution on (0, 1) of the data u;, . . ., u,.

The above observation provides an obvious algorithm for simulation random data
with prescribed probability distribution and is implemented in Mathematica pack-
ages Statistics and UVW. It is also the basis of the so-called Monte-Carlo method
of numerically calculating integrals over very complex and high-dimensional do-
mains. In practice, one can also replace the above simple algorithm with more
sophisticated numerical methods that provide faster convergence of simulated data
histograms to theoretical probability densities.

The simulation of a sequence X\, ..., X, of independent random experimental
quantities can then be accomplished via the general:
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Monte-Carlo Law: If Uy, ..., U, are independent uniformly distributed on
[0, 1] random quantities, and if F is a given cumulative d f., then the random

quantities
Xy =F'U),..., Xo = FI(U)

are independent, each with the cumulative df. F.

The Monte-Carlo Law is easily verified, say, for n = 1, as follows: Let x be an
arbitrary real number. Then

Fx(x) =Pr{X <x}=Pr{F1(U) < x}
=Pr{U < F(x)} = F(x),

since F is monotone (the third equality), and U is uniformly distributed on [0, 1]
(the fourth equality). Forn = 2,3, ..., the claim is proved similarly by noticing
that the independence of U/} and U, implics the independence of F~'(U/;) and
F ().

Concrete examples of the above procedures will be given in the next few sections.
Also, remember that in practical applications the independence can be simulated
by the use of the Mathematica SeedRandon[ ] command, see Section 3.1.

3.4 Bernoulli and binomial distributions

The family of Bernoulli distributions describes discrete random quantities X
with only two possible values: vg = 0 and vy = 1, appearing with probabilities
and fx(1) = Pr{X = 1} = pand fx(0) = Pr{X = 0) = 1 — p. This can be
written as a formula

O P
The mean of the Bernoulli distribution is
UX)=0-fx@+1-fx(H)=0-(1-p)+1-p=p, @
and its variance
o (X)=(0—p)*-(1—p)+ (1 —p)* p=p(l—p). )

The family depends on only one parameter p, 0 < p < 1. If there is reason
to suspect that neither O nor 1 are favored in the data, ie., p = 1/2, then the
distribution is called symmetric Bernoulli distribution.
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Let us now perform the following experiment. Toss a fair coin (p = 1/2) n
times. The i-th toss is described by the symmetric Bernoulli random quantity X;
and the random quantities X, ..., X,, are independent. Suppose that each time
the coin comes up heads (X; = 1) you win one dollar and you win nothing if it
comes up tails (X; = 0). Your total win after n tosses is a random quantity

Sh=X1+4...+X,, )

and we are inferested in determining its probability distribution.

For a small n, say n = 2, we clearly see that in two tosses there are four
possible outcomes (X1, X3) € {(0,0), (0, 1), (1,0), (1, 1)} and because of the
coin’s symmeiry they are all equally probable with probability 1/4. Hence, the
distribution of the sum S, is easily determined:

Pr{S =0} =Pr{(X1,X2) = (0,0} = 1/4

Pr{S; =1} = Pr{(Xy, X2) = (0, D} + Pr{{X1, X3) = (1,0} = 1/2
Pr{S; =2} =Pr{(X;, X2) =(1, 1)} =1/4

Of course, such a pedestrian approach will have to be adjusted if we are to solve
our problem for larger ns. Before we approach it theoretically let us conduct the
following.

Mathematica Experiment I. Repeated Bernoulli Experiments. Our basic ex-
periment consists of tossing the fair coin n = 7 times. Repeat this experiment
independently N times. The raw outcome of the experiment is a sequence

1, T2, ..., TN,
where each sample point x;, i = 1, ..., N, has the struciure of a 7-dimensional
vector:

%), x? , x;’,

i X

where xf s are either 0 or 1. By the Stability of Frequencies Law, we can approxi-
mate the distribution of S7 by the relative f.d. of

S; =x,-1+x,-2+...+x,-7,i= 1,2,..., N,

which simply sum all your wins in each basic experiment. The possible values
of ¥; are clearly nonnegative integers from 0 to 7. We take this opportunity to
introduce some simple Mathematica programming. Let us begin with N = 10
repetitions of our basic 7-toss experiment. We use rn (repetition number) instead
of N because the latter is a protected symbol in Mathematica.
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In[1):= <<Graphics‘Graphics’

In[2) := <<Statistics‘DataManipulation®
In[3]:= <<Statistics‘DescriptiveStatistics’
In(4]:= <<Statistics‘DiscreteDistributions’

In[5]):= n=7
Qut(8]= 7
In[6]:= rn=10
Out{6]= 10
In(7]:= Dol

r7=Table [{0},{rn}];
For[i=1, i<=rn, i++, r7[[i]]=Table [Random[Integer],{n}]]

]

In[8]:= r7

Outl8]= {{1, 0, ¢, 1, 1, 0, 1}, {1, 1, 0, O, 1, O, O},
{0, 0, 1, 0,0, 1, 0}, {0, 0, 1, 0,1, 1, 0O},
{0, 0, 1, 1,1, 1, 0}, {0, 1, 1, O, O, 1, 1},
{1, 1, 1,1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1},
{1, 0, ¢, 0, 0, 0, 0}, {1, 0, 0, 0, 1, 1, 1}}

In[9]:= Dol

r7sum=Table [{0},{zn}];
For[i=1,i<=rn, i++, r7sum{[i]]=Apply(Plus,r7[[i]]1]]
]
In[10]:= r7sum
Qut[io)= {5, 4, 5, 5, 6, 3, 4, 4, 1, 2}
In[11]]:= freq7=Frequencies[r7sum]
out[11)= {{1, 1}, {1, 2}, {1, 3}, {3, 4}, {3, 5}, {1, 6}}
In[12) := relfreq7=N[{Column [freq7,1]/rn,Column [freq7,2] }]
Outl[12]= {{0.1, 0.1, 0.1, 0.3, 0.3, 0.1}, {1., 2., 3., 4., 5., 6.}}
In[13):= hist7=BarChart [Transpose[relfreq7]]
Out [13]= -Graphics-—

0.3
0.25
0.2
0.15
0.1
0.05

So, after 10 independent repetitions of our basic 7-toss experiment we obtained
a relative frequency d.f. which, however, does not show any regularities; nothing
to write home about. Moreover, the possible values 0 and 7 have not appeared
among our 10 repetitions at all. Obviously, to approximate the distribution of S
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well, to take advantage of the SFL, we need many more repetitions. Redoing the
above Mathematica session with rn=1000 (of course, you can leave steps In[8]
and In[10] out) we obtain the following much more symmetric relative frequency
d.f.

In{22] := relfreq7=N[{Column [freq7,1]/rn,Column (freq7,2] }]

Out [22])= {{0.004, 0.054, 0.15, 0.3, 0.289, 0.154, 0.046, 0.003},
{0, 1., 2., 3., 4., 5., 6., 7.3}

Inf23]:= hist7=BarChart[Transpose[relfreq7]]

Dut [23]= -Graphics-

0.3
025
0.2
0.15
0.
0.05

Now, let us try to discover analytically a formula for the probability distribution
of the random quantity S, defined in (4). The derivation will be based on the
assumption that in each n-toss series, all the possible outcomes are equally likely.
Since there are 2" strings of n Os and 1s of length r, the probability of each

1
Pr(X1=x|,...,X,,=x,,)=2—n, x =0 or 1. (5)

Among all of these strings there are (;(') strings which have exactly k 1s, as that is
the number of ways in which you can choose % sites out of » positions. This gives
the probability of a string with exactly & 1s to be

ny 1
Pr(sn:k)z(k)i;;a k=0,1,2,...,n, 6)
where
n n!
(k) Ty Q)

is the binomial coefficient.
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If the coin is biased, with the Bernoulli probability p of 1 appearing in each
toss, then via a similar reasoning, the probability of winning & dollars in » tosses
becomes

n

Pr(S, =k) =blk;n, p) = (k

)p"(t —pt k=0,1,2,...n (8)

Not surprisingly, the above probability distribution is called the binomial distribu-
tion. Because of the binomial formula (see Experiments, Exercises, and Projects),
the above binomial probability distribution satisfies the normalization condition

Zb(k; np =1 &)

k=0

Notice that the binomial distribution has two parameters: the Bernoulli probability
p, 0 < p <1, and the integer parameter 2. Sample points from the population
with the binomial distribution b(k; n, p) can take values & = 0,1,2,...,n with
probabilities given by formula (8).

The above reasoning can be summarized in the following.

Binomial Principle. Ifr binary experiments, i.c., each of them with two possible
outcomes (successifailure), are performed independently, then the probability py
of exactly k successes is

p = blk; m, p) = (:)p"(l —p"*, k=0,1,2,...,n,

where p is the probability of success in a single trial.

The mean i of the population with the binomial distribution &(k; 7, p) is

n

n X1 H—X
w(Se) = gx(x)p (1-p (10)
—np Y (n-— 1) P = p)r DD

(x—DI{(n - — (x - 1!

x=1

in view of the same binomial formula we used before. The formula (10) also
immediately follows from the definition (4) of S,; as the sum of n Bernoulli random
quantities, each with mean value p. Similarly, one obtains the sample variance

o2(S,) = np(l - p). (1)
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Mathematica Experiment I Continued. Repeated Bernoulli Experiments.
The package Statistics‘DiscreteDistributions‘ contains the command Bino-
mialDistribution[n,pl. We will compare it with the experimental data obtained
earlier.

In[24] := bdist7=BinomialDistribution[7,p]

Out[24]= BinomialDistribution[7, 0.6]

In(25]):= tablebdist7=N[Table[PDF[bdist7, x1, {x,0,7}], 3]

Out[25]= {0.00781, 0.0547, 0.164, 0.273, 0.273, 0.164, 0.0547,

0.00781}

In[26] := relfreq7

Out[26]= {{0.004, 0.054, 0.15, 0.3, 0.28%, 0.154, 0.046, 0.003},
{0, 1., 2., 3., 4., 5., 6., 7.}}

In[27]:= plotbdist7=ListPlot[tablebdist7, PlotStyle ->
{GrayLevel[0] ,PointSize[0.03]}]

Out [27])= -Graphics-

In[28]:= Show[hist7,plotbdist7]

Out [28]= Graphics-

0.3
0.25
02

0.1
0.05

Means, variances, quantiles, and other parameters can be readly evaluated.
The command Random[dist] produces a pseudorandom number with probabil-
ity distribution dist]. A similar command RSDiscreteDistribution{freq, n]
in UVW‘DiscSamp® produces a pseudorandom sample of size o with prescribed fre-
quencies freq.

In[29] := Mean[bdist7])

Dut[29]= 3.5

In[30] := Variancel[bdist7]

Out{30]= 1.75

In[31] := Quantilel[bdist7,0.75]

Out[31]= 4

In[32] := Table[Random[bdist7],{50}]

Out{32]= {1, 3, 4, 4, 4, 4, 3, 5, 4, 2, 2
6, 1, 1, 5, 4, 3, 3, 5, 3, 3, 5,
5,2,5,4,5,3,1,4,6,1,5
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3.5 Rescaling probabilities: Poisson appreximation

If parameter # in the binomial distribution b(k; 2, p) increases to infinity, then
both the mean iz = np — oo, and the variance o2 = np(l — p) ~ oo (see,
(3.4.10-11)). The distributicn itself sort-of escapes to infinity while getting flatter

and more and more spread out.

Mathematica Experiment 1. From Binomial to Poisson Distribution. We will
plot the values of binomial probabilities b{k; n, p),k = 0,1,...,n, for three
values n = 7, 15, 29, and the Bernoulli probability p = 0.4. The latter choice
makes the graphs asymmetric.

In[1]:= <<Graphics‘MultipleListPlot’

In[2] := <<Statistics‘DiscreteDistributions®

In[3]:= p=0.4

Outl3]= 0.4

In[4]:= bdist7=BinomialDistribution(7,p]

Out[4]= BinomialDistribution[7, 0.4]

In{5]:= tablebdist7= Table[PDF[bdist7, x], {x,0,7}]

Out[5]= {0.0279936, 0.130637, 0.261274, 0.290304, 0.193536,
0.0774144, 0.0172032, 0.0016384}

In[6]:= bdist15 =BinomialDistribution[15,p]

Out [6]= BinomialRistribution[15, 0.4]

In[7]:= tablebdist15= Tablel[PDF[bdist15, x1, {x,0,15}]

Out [71= {0.000470185, 0.00470185, 0.021942, 0.0633879, 0.126776,
0.185938, 0.206598, 0.177084, 0.118056, 0.0612141,

0.0244856, 0.00741989, 0.00164886, 0.000253672,

0.0000241592, 1.07374 .10" (-6) }

In{8):= bdist2% = .........

In(19] := MultipleListPlot[tablebdist?, tablebdistl5, tablebdist29,

PlotJoined —>True]
Out [10])= -Graphics-—
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To remedy this “escape to infinity” problem we need to keep the mean bounded
and the easiest way to accomplish this is by rescaling the Bernoulli probability

1
p=- )
n

sothat, by (3.4.10), the mean p,, of the rescaled binomial distributions b(x; n, 1/n), n =
1,2,...,1s

1
n=n-~=1 )

forany n = 1,2,.... Also, it so happens that, by (3.4.11), the variance of so
rescaled binomial distributions

0"2:711(]~l)—>1 (3)

n

as n — co. So, as n grows, the rescaled binomial distributions b(x; n, 1/n),n =
1,2, ..., stabilize their means and variances at 1.

In terms of our original n-coin toss experiment, the above rescaling operation
accomplished the following. The probability of 1$ win in each toss was reduced
to 1/n so that in a series of n losses the mean win remains constant at 1$.

So, we managed to stabilize the means and variances of distributions b(x; n, 1/n),
n=1,2,..., but what about the probabilitics themselves?

Mathematica Experiment 1 Continued. From Binomial to Poisson Distribution.
We will plot the probabilities of the rescaled binomial distribution b(x; n, 1/n) for
increasing values n = 3, 5, 10, 20.

In[1]:= <<Graphics‘Graphics’
In([2]:= <<Statistics‘DiscreteDistributions’
In(3]:= tablebdist[n_]:= N{Table[ {x,
PDF [BinomialDistribution[n,1/n], xJ}, {x,0,Min[n,10]1}] ]
In[4]:= DisplayTogether[

ListPlot [tablebdist[3], PlotStyle ~> PointSize[0.025]],
ListPlot [tablebdist[5], PlotStyle -> PointSize[0.02]],
ListPlot [tablebdist [10], PlotStyle -> PointSize[0.015]],
ListPlot[tablaebdist[20], PlotStyle -> PointSize[0.01]]
]

Out [4]= -Graphics-
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Why the domain of x was restricted to min(n, 10) is clear from the pictures; for x
larger than 10 the values are practically zero. But the trend is clear: as n increases
the probabilities b(x; n, 1/n) themselves seem to stabilize.

So, it is not surprising to see the analytic proof of the convergence discovered
experimentally above. For each fixed kX, 0 < k < n,

n! 1\ 1\"*
ssn i) = g5 () (1-3)

_nan=D..(n—k+1 (1 1)""‘

ktn* n

1A =1n) ... (1= k—1D/n) (1 B 1)"“"
- K n :

As n — og, the numerator in the last expression clearly goes to 1. On the other
hand, in view of the standard calculus formula lim, oo (1 + 1/x)* = ¢,

(R () (B RS

Therefore, as n — oo, foranyk =0,1,2,...,

bkin, 1/r) —> e”'l

Ik &)

The limit distribution is called the Poisson distribution (with parameter 1). The
possible values of a Poisson random quantity X (with parameter 1) are all nonneg-
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ative integers k = 0, 1, 2, 3, .. ., taken with probabilities

1
Pr{X:k}:p(k;]):e*’?,, k=0,1,2,.... ©)

Clearly, formula (3) defines a probability distribution as

o (s I
2oph=e"d =1 ¥
k=0 k=0

Mathematica Experiment 1 Continued. From Binomial to Poisson Distribution.
To illustrate the above approximation of the binomial distribution b(x; n, 1/n) for
large n, by the Poisson distribution p(x; 1) let us compare their numerical values.

Inf1]:= <<Graphics‘Graphics’
In[2]:= <<Statistics‘DiscreteDistributions®
In[3]:= tablebdistl100= N[Tablel[
{PDF [BinomialDistribution[100,1/100],x], x},{x,0,6}], 3]
Dut[3)= {{0.3866, 0},{0.37, 1.}, {0.185, 2.}, {0.061, 3.},
{0.0149, 4.}, {0.0029, 5.}, {0.000463, 6.}}
In[4]:= tablepdist = N[Table[
{PDF[PoissonDistribution[1],x], x }, {x,0,6}1, 3}
Out[4]= {{0.368, 0}, {0.368, 1.}, {0.184, 2.}, {0.0613, 3.},
{0.0153, 4.}, {0.00307, 5.}, {0.000511, 6.}}
In[5]:= t= N[Table[{x+1,
PDF [BinomialDistribution[100,1/100]1,x 1}, {x, 0,6}1,3 1
out(5)= {{1., 0.366}, {2., 0.37}, {3., 0.185}, {4., 0.061},
{5., 0.0149}, {6., 0.0029}, {7., 0.000463}}
In[6] := DisplayTogether[ ListPlot[t,
PlotStyle—>PointSize[0.03]1], BarChart[tablepdist] ]
Out [6]= -Graphics-

0.35
0.3
0.25
0.2
0.15
0.1
0.05
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The above analytical arguments and experiments can be repeated (see Experi-
ments, Exercises, and Projects) with the rescaling condition (1) replaced by a more
general condition

p=2 ®)

Lol
n
where 4 > 0 is an arbitrary constant. As a result, as n — oo, for any k¥ =

012...,
k

—u
b&muM%+e”FEqul &)
A random quantity X with this limit probability distribution is called the Poisson
random quantity with parameter u, and Pr{X = k} = p(k; p), for any k =
0,1,2,....

Mathematica Experiment 2. Poisson Distributions. The graphs of Poisson
probability distributions for parameter values i = 0.5, 1, 3 are shown below. The
larger dots correspond to the larger values of u.

In[1]:= <<Graphics‘Graphics’
In[2]:= <<Statistics‘DiscreteDistributions’
In[3]):= DisplayTogether[

ListPlot [N{Table[ {x,PDF[PoisgonDistribution[1],x] 1},
{x,0,7}1,3 1, PlotStyle->PointSize[0.0175] 1,
ListPlot [ N[Table[ {x,PDF[PoissonDistribution[0.5],x] 1,
{x,0,7}1,3 1, PlotStyle->PointSize[0.01] ],
ListPlot[ N[Tablel[ {x,PDF[PoissenDistribution( 3],x] },
{x,0,7}],3 1, PlotStyle->PointSize[0.025] ]
]

Out [3]= -Graphics-

0.6
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} \ N : [ ] . - _!_
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Since the probability distribution p{k; 1) of a Poisson random quantity X is the
limit of binomial distributions b(x; n, u/n) with means equal to p - (u/n) = u
and variances n(u/n)(1 — (1£/n)) converging to y one would suspect that it itself
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has the mean and variance equal to g&. This is indeed the case, and can be verified
by a direct calculation:
o o /.l,k
w(X) =Y kpl; ) = e kE ko
k=0 =1

k—1

[o.0]
_ L
= u —
e ukE:I oD M

o?(X) = Y Kplk; w) —
k=0

Sl k
— ol _nHE — 2
=e gk(k Do Hh—u

=ut+u-pr=p.

So, the parameter u represent both the mean and the variance of the Poisson
distribution.

The Poisson distribution is often said to model rare events because it approx-
imates the binomial distribution with vanishingly small Bernoulli probability of
SUCCESS p.

Other common discrete distributions. Introduced in the preceding sections,
Bernoulli, binomial, and Poisson distributions are but a few examples of the large
supply of analytically expressible probability distributions f (k) of discrete random
quantities which can take integer values, and often appear in applications. The only
requirements for f(k)s is that

f&E) =0 for all &, (10)

and that
> r=1. an

all &
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In the remainder of this section we will provide additional examples of discrete
probability distributions, indicating the type of physical situations in which they
arise.

Example 3.5.1 Geometric Distribution.

In a series of independently repeated Bernoulli trials, the random quantity in which
we are interested is the number & of trials until the first success, that is until the
first 1 appears. This random quantity takes values k = 1, 2, ..., with probabilities

fe;p)=0-p)Flp, (12)

where p is the probability of success in a single Bernoulli trial. Formula (12)
reflects that fact that if it took % trials to achieve the first success, then this first
success had to be preceded by k — 1 failures, each occurring with probability 1 -- p
Clearly, formula (12) defines a probability distribution as

o0
k; l—pfl=
kz:;f( p) = Zp( p) (1_p)

Example 3.5.2 Negative Binomial Distribution.

In a series of independently repeated Bernoulli trials, the random quantity we are
interested in is the number of trials until a total of r successes are accumulated.
The possible values of this random quantity are k = r,r + 1,7 + 2, ..., and they
are taken with corresponding

k—1
flksr, p) = ( )p’(l —p).
r—1

Example 3.5.3 Hypergeometric Distribution.

Suppose that a sample of size # is to be randomly chosen (without replacements)
from a collection of N items, of which X are classified as defectiveand N — K as
good. We are interested in the random quantity representing the number £ of good
items in the sample. This random quantity can take values 0, 1, ..., min(n, X)
with probability distribution

ol
)

fl;n, K,N)=

Example 3.5.4 Discrete Pareto Disiribution.
This distribution often occurs in economic applications. The possible values of the
corresponding random quantity are integers & = 1, 2, .. ., and they are taken with
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probabilities
k -

pIRRT

where ¢ is an arbitrary parameter greater than 1.

flk; @) =

3.6 Stability of Fluctuations Law: Gaussian approximation

In Chapter 2 we considered the effects of changing scale and location of data on
their compressed characteristics such as the mean and variance. We will pursue
these ideas here, initially, in application to the binomial data, to obtain another
universal approximation for the binomial distributions b{x; n, p) for large n. But
the same approach will yield a much more general Stability of Fluctuations Law.

Consider, as in the preceding two sections, random quantities X1, ..., X, de-
scribing a series of # independent Bernoulli trials with Pr{X; =1} = p =1 —
Pr {X; = 0}, and the corresponding binomial random quantity S, = X;+...+X,,.

In this section we will take a look at the binomial random quantity which is both
shifted by £ and rescaled at the rate «, i.c., at the new random quantity

T,=aS,+p =) a (x.-+ﬁ). ¢))
=1

n

If you liked our gambling interpretation of S, i.e., the total winnings in the game
of n coin tosses which pays $1 each time 1 (heads) come up and $0 if 0 comes
up, you will immediately see that the formula (1) just changes the payout scheme
in the same game. Indeed, the second part of (1) indicates that in an #-toss game
played according to the new scheme, the payout is a(1 4 #/r) if 1 comes up and
af/n if 0 comes up. For example, with n = 20, 8 = —10, ¢ = 4, the payout is
$2 if 1 comes up and $—2 if 0 comes up.

The probability distribution of the random quantity 7, is easy to determine.
Since the possible values of S, were 0, 1, 2, .. ., n, the possible values of 7, are

alk + B), k=0,1,2,...,nm, 2)

and the cotresponding probabilities are binomial, i.e.,

Pr{T, = a(k + B)} = b(k; n, p), k=0,1,2,...,n. 3)
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Knowing the distribution of 7, permits, in turn, an immediate determination of its
mean and variance:

w(T,) =Y alk + bk n, p) = alnp + B). @
k=0
and
o2(T;) = e?np(1 ~ p). (5)

The above calculation was facilitated by remembering that the mean and variance
of binomial §,, is np and np(1 — p), respectively.

Now, if you recall our past struggles to stabilize the mean and variance of the
binornial distribution, an obvious opportunity opens up. If we select

1
B = —np, o= a0 6)
that is, if we consider .
then its mean is going to be O and its variance 1:
u¥) =0, o*¥)=1 ®

As before, we are curious if this rock-solid stability of means and variances of ¥,.s
does anything to stabilize the behavior of the distributions of ¥,,s themselves. The
interpretation of the random quantity ¥, is obviously as that of fluctuations of

Sp —u(Sp) =8, —np (€)

of the binomial random quantities §, about their means, resized by their natural
scale, i.e., their standard deviation o (S,;) = +/np(1 — p).

Mathematica Experiment 1. Stability of Fluctuations Law. We will use the
tools developed in Mathematica Experiment 3.4.1 related to repeated Bernoulli
experiments to observe histograms of ¥, as n# increases. We will take p = 1/2 and
produce rn=1000 repetitions of each series of n = 3, 5, 10, and 20 tosses.

In[1] := <<Graphics'Graphics®

In[2]:= <<Statistics‘DataManipulation®
In[3]:= <<Statistics‘DescriptiveStatistics’
In[4] := n=3

Out[4]= 3
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In[5]:=
Out[5])
In(6]:

noAl

3

In[7]:
Out [7]

In(8]):

]

In[9]:=
Dut [9]=

In[10]:=

Qut[10]=
Inf11]:
Out [11]
In[12):

0o

Out(12]=

In[13]):=
Qut[13]=
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rn=1000
1000
Dol r3=Table[{0},{rn}];

For[i=1, i<=rm, i++, r3[[i]]=Table [Random[Integer],

{n}]]]

r3
{{1, o, 03}, {1, 1,0}, ..., {0,0, 0},

{1, 1, 1}}
Do [ r3sum=Table[{0},{rn}];

For[i=1,i<=rn, i++, r3sum[[i]]1=Apply[Plus,

r3([i111] ]

r3sum
{1,2, ..., 2,0, 3}

freq3=Frequencies [r3sum]

{{122, 0}, {380, 1}, {377, 2}, {121, 3}}
relfreq3=N[{Column [freq3,1]/rn, Column [freq3,2] }]
{{0.122, 0.38, 0.377, 0.121}, {0.,1., 2., 3.}}
relfreq3SFL={Table[relfreq3[[1]] [[i]],{i,n+1}],
Table[{(relfreq3[[2]] [[i]]-n*0.5) /N[Sqrt[n*0.25]]),

{i,n+1}]}

{{0.122, 0.38, 0.377, 0.121},

{-1.73205, -0.57735, 0.57735, 1.73205}}
hist3SFL=BarChart [Transpose [relfreq3SFL]]
-Graphics-

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

-1.73205  -0.57735 057738 1.73205

Repeating the above experiment for n = 5, 10, 20, and putting the resulting
histograms together gives the pictures shown below. You will notice that, e.g.,
for n = 20, not all 21 possible values of 75y appeared in our repeated sampling

although

the number of repetitions was large; their probability decays very fast

when we move away from the mean value 0. For example, it follows from formula
(3) that the probability of extreme values of T5p:

Pr{To = 1447} = b(0; 20,0.5) =Pr{X, =0,..., X2 =0}

= (1/2% =9.53674- 10"
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is very small, and even in a thousand repetitions these values are unlikely to appear.
In this context, one has to pay attention to the term n+1 in line In[12]:= of the
above code, and adjust it as necessary.

In[34] := Show[ GraphicsArray[{{hist3SFL, histSSFL},
{hist10SFL, hist20SFL}}]1
Out[34]= - GraphicsArray-

The above experiments suggest the existence, as n — oo, of the limiting prob-
ability distribution of the random quantities 7,,, which is bell shaped, continuous,
and almost totally concentrated on the interval (—3.5, 3.5). Armed with this intu-
ition we will find its shape analytically.

To avoid possible high fluctuations in the histograms, we will analyze the limit
behavior of the cumulative d.f. F, (x) of the random quantity ¥,. The summation
[remember formula (2.5.6)] contained in the definition of the cumulative d.f. tends
to smooth it out and make it easier to deal with analytically than the histograms
themselves. So, in view of (3) and (7}

Fa@ =Pr(fa <2} = Pr {s_ﬁ%@ < z]

= Pr [Sn =< (Z«/ﬁ—}-n)/Z}
(z/n+n)/2 n 1\"
- = (0

n! ~ A 2ann"e ", (10)

By Stirling’s formula
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where ~ means that the ratio of the two quantities approaches 1 asn — oo. Hence,
the above cumulative d.f.

(zafn4n)/2

1 2 1 /2k—n\*
Fy(2) ~ e mexp [ = (==
¢ kg) V2r /n p[ 2( Vv )]

which we recognize as the Riemann sum approximation the integral

f-:/i % exp(~x2/2) dx,

Thus, as n — 00,

F,,(z)~—->d>(z)s/z ] exp(—x2/2) dx. (11)

—c0 ‘VZJT

Formula (11) immediately gives the limit density as

#(2) = \/%exp(—xz/zx (12)

The continuous cumulative d.f. ®(z) is called the standard Gaussian (or, normal)
cumulative d.f., and ¢(z) is called the standard Gaussian (normal) probability
density function.

Mathematica Experiment 1 Continued. Stability of Fluctuations Law. Let us
compare the above theoretical Gaussian limit distribution (both the density and
the cumulative d.f.) with the corresponding objects for the rescaled and shifted
experimental binomial random quantities Y7(. Note that the bar charts used in the
first part are not suitable for the comparison since (for esthetic reasons) they have
gaps between vertical bars, so that their areas are distorted. For that reason we will
use a RegularHisto command provided in the UvW‘DataRep* package.

In[34] := <<UVW‘DataRep*

In[35] := r20sumSFL=Table[((r20sun{[i]]-n%0.5)/N[Sqrt [n*0.2511),
{1,1000}]1;

In[36]:= RegHisto=RegularHisto [r20sumSFL,-3.2,3.2,15]

Out {36]= -Graphics-

In[37]:= GaussPDF[x_]:={1/Sqrt[2Pi]} Expl[-x"2/2]

In[38]:= Showl[RegHisto, GaussPDF[x],{x,-3.2,3.2}]

Out [38]= -Graphics-
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In[39]:
Out [39]

In[40]:
In[41]:

In[42];

In[43]:
Out [44]
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Fr20=Transpose[relfreq20]

{{0.001, -3.1305}, {0.003, -2.68328}, {0.011, ~-2.23607},
{0.031, -1.78885}, {0.068, -1.34164}, {0.121, -0.894427},
{0.158, -0.447214}, {0.167, 0.}, {0.184, 0.447214},
{0.122, 0.894427}, {0.067, 1.34164}, {0.042, 1.78885},
{0.019, 2.23607), {0.005, 2.68328}, {0.001, 3.1305}}

HIx_]:=If[x<0,0,1]

CumDiFun([x_]:= Sum{F20[[i}][[1]]+

H[x-F20[[i]]{[2]]1 1,{i,1,Length[F201} ]

GaussCDF [y_]:=(1/Sqrt [2Pi])

Nintegrate [Exp[-x~2/2],{x,-Infinity,y}]
Plot [CumDiFun[x], GaussCDF[x], {x, -3.2, 3.2}]
-Graphics-
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0.6
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A random quantity Z with standard Gaussian probability d.f. ®(z) is called the
standard Gaussian (or normal) random quantity. Since its distribution is a limit
of distributions of the random quantities Y, which have zero means and variances
equal to one, one would suspect that

w2Z)=0, X2 =1 (13)
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This can be verified directly by integration by parts and use of the normalization
condition (14) below; see also the approach through the gamma function discussed
later in this chapter.

Although the indefinite integral (11) cannot be expressed in terms of elementary
functions, we still can check the normalization condition

Sl | 2 2 ® 1] 2 ® 1y 1
——g "t jzdz) =[ —e ' /zdt/ — g5 g
(];oo Vzﬂ ~o0 V2W —oo V27
00 poo
= —l—f f e~ U+ 2y g (14
27 JoooJ 0

1 TofO
=—f f e Prdide =1,
27 0 0

by changing to the polar coordinate system.
By changing the scale of a standard Gaussian random quantity Z by o and
shifting its location by ¢, we obtain the whole family of random quantities

Z,s2=0Z+p (15)
with absolutely continuous cumulative d.f,

®(z; 1, 0%) =Pr{cZ+p <z} =Pr{Z < (z — p)/o}

(z—w)fo

2
= ——e 2 gx
—00 \/271’
T (x— u)z]
= ex dx, (16)
];w 2ral p[ 202

and the densities

an

Lo} (z—u)z]
¢(Z,M,U)—Wexp[ 227 |

Clearly, in view of (13) and (15),

w(Z, 52) =, o3(Z, ,2) =%, (18)
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and the random quantity Z,, 2, or ihe corresponding cumulative d.f. ®(z; u, a?)
and the probability d.f. ¢(z; i, a2), are called Gaussian (normal) with mean p
and variance o2, or, compactly, N(u, c%) random quantities, cumulative d.f.s,
and densities.

Marhematica Experiment 2. Gaussian Densities. The Mathematica package
Statistics‘ContinuousDistributions‘ contains the commands:
PDF [NormalDistribution [mu,sigma}, x] which provides probability d.f. of
N{u, a®) at x, CDF [NormalDistribution [mu,sigmal, x] which providescumu-
latived.f. of N (1, %) atx, and Random [NormalDistribution [mu,sigma]] which
produces a pseudorandom number with N (u, o%) distribution. In the process we
will also see how one can place text within Marhematica graphics at any location
prescribed by the coordinates of text’s center.

In[1]:= <<Statistics‘ContinuousDistributiocns’
In[2] := <<UVW‘DataRep’
In[3):= philx_, mu_, sigma_] :=
PDF[NormalDistribution[mu, sigmal, x)
Inl[4):= p1 = Plot[{philx, 0, 11, philx, -2, 1I,
philx, 0, 2.5], phiix, 3, 0.61},
{x, -6.5 ,6.5}, PlotRange —» {0, 0.7},
AspectRatio -> 0.5];
p2 = Graphics([Text["N(0,1)", {1.2, 0.42}]];

p3 = Graphics[Text["N{-2,1}", {-3, 0.42}]);
p4 = Graphics[Text["N{0, 2.5)", {-5.2, 0.08}]];
p5 = Graphics[Text["N{(3, 0.6)", {5, 0.5}1];

Show [p1,p2,p3,p4,pb]
Out[4]= -Graphics-—

N(G3.0.6)
0.6
0.5
N-2.1) 0.4{ N(O.1)
N(@©.2.5) 0.4
F3 P K3 ) ) 5

To simulate, say, an N (3, (0.6)?) random quantity and to compare the histogram
of the simulated data with the density ¢ (x, 3, (0.6)?) we will use the command
Histogram[data, listofbounds] of the UVW'DataRep’ package, which permits
selection of bin locations to be matched to where the data are concentrated. Ideally,
al) the bins should contain the same amount of data points.
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In[5]:= nd=NormalDistribution(3,0.6]

Out [5]= NormalDistribution[3, 0.6]

In[6]:= tr=N[Table[Random[nd],{1000}],3]

Out[6]= {2.19, 3.72, ... , 2.29, 2.13, 3.28}

In[7):= ph = Plot[PDF[NormalDistribution{3, 0.6}, x], {x,0,5}];
v = {1, 2, 2.5, 2.9, 3.1, 3.5, 4, 5};
hist = Histogram([tr, 1b]; Showlph, hist]

Out [7]= -Graphics-

0.6}

0.5¢

1 1[N
02 / \
0.1 f | E

1 2 3 4 5

It turns out that the Gaussian limit behavior (or the Gaussian approximation
if you will) is not restricted to rescaled and shifted sums of Bernoulli random
quantities, or even to discrete random variables.

Mathematica Experiment 1 Continued. Stability of Fluctuations Law. Consider
independent random quantities X}, ..., X,;, uniformly distributed on the interval
[0,1) with the density given by the formula(3.3.1). Its mean and variance, according
to the formulas (3.3-4) are, respectively, 1/2 and 1/12. Therefore, the random
quantities
¥ = X14+...+ X, —n/2

" /12

have means 0 and variance 1. To make their simulation and comparison with the
N(0, 1) probability d.f. easier we will use the specially written command Cen-
trallimit [ listofdata, mm, sigma, n] of the UVW‘DataRep‘ package which
takes consecutive groups of n data in listofdata. Then the sum of each group
is centered by n *mu and then divided by Sqrt [n]*sigma. The results are repre-
sented on a regular histogram. In the mathematical literature, the name Central
Limit Theorem is used for the Stability of Fluctuations Law (see Chapter 5).

In[1]:= <<UVW'‘DataRep®

In{2]:= unidata= N[Table[Random[],{2000}],2]

Duti2]= {0.15, 0.76, 0.68, ... ,0.18, 0.18, 0.58}
In[3):= CentralLimit[unidata, 0.5, N[Sqrt[(1/12)]], 20]

Out[3]= -Graphics—



3.6. Stability of Fluctuations Law: Gaussian Approximation 161

\

04

03} ﬁ:
0.2}
0.1
3 2 -l i3 3

The above arguments can be rephrased in the form of a general

Stability of Fluctuations Law, Ifthe random quantities X, = (X1, X2,..., X;)
represent outcomes of n repeatedindependent random experiments, each withmean
w and variance o2, then for large n, the cumulative p.d. of sample averages:

Xi+X+...+X
AV(X,) = 1+ 21— + "

suitably centered and rescaled, is well approximated by the N (0, 1) cumulative
d.f. ®(z). More precisely, for each real number 7 the cumulative d.f.

ﬁ z 1 _X'Z/z
Pr [—;—(AV(X,.)—M) Sz} — f_m ot

asn — O0.

Obviously, the Stability of Fluctuations Law gives an approximate probability
distributions of fluctuations of sample averages around their theoretical means. It
will be given a more formal treatment, with precise assumptions, in Chapter 5,
where it will become the so-called Central Limit Theorem.

Note that the Gaussian densities ¢ (z; 1, 02) are symmetric in z about the mean
{4, positive everywhere, and that the probability that the Gaussian random quantity
Z = Z, ;» takes values far away from the mean i is very small. Indeed, measured
in terms of the natural scale parameter o, the probability of deviation from u by
more than go goes 1o zero very fast asa — oo:

© 1]
Pr{|Z — ul > ac) = 2(1 ~d>(a;o,1>)=2f L rg,
Q 2

2 ] Ee_zzlzdz ~ 2 e_va2/2

2 Ja a 2na
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= §¢(a; 0, 1) (19

This rate is much faster than the rate ¢ 2 predicted by the crude but general Cheby-
shev’s inequality:

x — pi?

Pr{lX —pl>a00) < |, S dFx()
L1070 X)

* |x —uP? 1

Mathematica Experiment 2 Continued. Gaussian Densities. We will compare
the exact values of Pr {|Z — u| > ao} with the estimates given by (19) and (20).
Initially, @ = 3, that is, we seek the probability that the Gaussian random quantity
deviates from its mean g by more than 30.

In[1):= <<Statistics‘ContinuousDistributions®
In[2]) := nd=NormalDistributioen[0,1]

Dut[2)= NormalDistribution[0,1]

In[3):= 2(1-CDF(nd, 3])

Out [3]= 0.0026998
In[4):= (2/3)PDF[nd, 3]
Dut [4)= 0.00295457
In[5):= N[1/(3"2)]
Dutf5)= 0.111111

So, the true value is fairly close to the estimate (19), while Chebyshev’s estimate
(20) is not very accurate. For @ = 4, the analogous numbers are 0.0000633,
0.0000892, 0.0625.

The values of the N (0, 1) quantile function ®~! () that can be obtained using
the Statistics‘ContinuousDistributions® package are schematically pictured
in Fig. 3.6.1.

It satisfies the symmetry condition ®~1(1 — a) = —®~! (@) so that it suffices
to know its values only for, say, 1/2 < o < 1. Also, traditionally, one often uses
(see Chapters 7 through 9) the complementary normal upper tail quantile function

Za =P 11 — ). 21

Graphically, the tail quantile z,, marks the point so that the area under the graph of
the standard normal density ¢(z; 0, 1) to the right of z,, is exactly equal to o (see
Fig. 3.6.2).
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FIGURE 3.6.1
The standard normal cumulative distributiona = ®(2) and itsinversez = ®~(a)
(quantile function).

FIGURE 3.6.2

The upper tail quantile 7o marks the point so that the area under the graph of the
standard normal density ¢(z; 0, 1) to the right of 7, is exactly equal 1o &.

3.7 How to estimate p in Bernoulli experiments

In this section we provide a simple application of the Stability of Fluctuations
Law to statistical inference concerning parameter p in the Bernoulli distributions.
In general, it is the goal of statistics to retrieve properties of unknown distributions
on the basis of experimental data; the subject will be further developed in Chapter
7 through 9.

In the case of a sequence £ = (xy, ..., x,;) of cutcomes of independently re-
peated experiments X, = (X1, ..., X,;) with two possible outcomes, e.g., success
or failure, the unknown distribution is in the class of Bernoulli distributions which
are parametrized by the single parameter p € {0, 1]—the probability of success in
a single trial. Its value is unknown and our goals are

1) To estimate the value of p.
2) To test the hypothesis whether p belongs to a certain subset Hy of [0, 1].
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By the Law of Large Numbers of Section 3.1, the sample average

Xi1+...+ X, R
Av(X,) = —‘er;-w =5 )

is a consistent estimator for p, i.e., p approaches, for large n, the correct value
of p. Note that the estimator j is a random quantity depending on a particular
realization & = (x, ..., x,) of outcomes of independently repeated experiments
X, = (X1, ..., X;;). Thenotation p for an estimator of a parameter p is traditional
in statistics.

Also notice that the random quantity p is an unbiased estimator for p, which
means that the theoretical mean of the estimator p of the parameter p is equal to
p itself:

u(py = p (ﬁi-;z—j—ﬂ) = @
We can summarize the above discussion as follows: In independently repeated
Bernoulli trials, the sample mean & is a consistent and unbiased estimator of the
probability p of success.

The random quantity # 5 = S, has a binomial b(k; n, p) probability d.f., sce Sec-
tion 3.5. Thus, we can calculate the probability that the estimator p approximates
the parameter p with accuracy better than, say, a:

Pr{ip—pl <a} =Pr{n(p—a)5nﬁ5n(p+a)l

=Pr[n(p - @) < 8, <n(p + )

_ RN ko _\n—k :
= > (k)" (1-p" )

kin(p—a)sksn{pta)

For any selected accuracy level a > 0, if the number » of repetitions is large, the
probability (3) is close to 1, say, 1 — «, with small «. This is a side effect of the
Stability of Fluctuations Law and Chebyshev’s type estimates (3.6.19-20); see also
the Weak Law of Large Numbers of Chapter 6.

The surprising main consequence of the Stability of Fluctuations Law is that
given the accuracy level a, the probability e (or, conversely, given the probability
«, the accuracy level a) can be chosen (almost) independently of the underlying
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Bernoulli distribution, that is unknown value of parameter p. Indeed, for large n,

. 1 o
Pr{lp—plsa}=Pr”;):Xi— a]
i=1

Vn a\/n }
=Pr{—Y—— |AV(X,) — p| € ———
{v‘p(l—p)l V{Xn) =l ~p(1—p)
\/m 1 e W12
f af \/_ du. ()]
JE=p)

Now, fix o and choose @ depending on p, so that

av/n

Y. L 5
“r= - p )

where zg ;2 is the 1 — a/2-quantile of the N{0, 1} distribution, that is

(27 | 2 2 ©
1l -« =f u.
—Zaf2 '\/-——“

Then we can rewrite (4) in the form

5 v }
Pr — = —_— -— < Zw =1 - 7
lp~pl=al=Pr { p(l_p)lp Pl < zap2 o N

Since p approaches p for large n, we can replace p by p in the denominator (as
long as p and p are not too close to 0 or 1), and get

n
Pr LIP Pl<zappt ~1-a, 8
VA1 —p)
The inequality
n
' pl = zare ©

VP —p)
can be solved for p to give

PL < p< by, (10)
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where the lower bound

A R p(1 — p)

pL"—-P_th/Z——'—'p\/’—l i ’ (i)
and the upper bound

. . p(1 —p)

puy = P+Zu/2—~~*~~~~~*~“\/’_1 . (12)

The above analysis can be summarized as

Parameter Estimation Procedure via Confidence Intervals: Le: X =
(X1, ..., Xp) be arandom vector representing n independently repeated Bernouili
experiments with an unknown probability of success p. Select 0 < a < 1. Then
the sample average p = Av (X)) is an unbiased, consistent estimator of the pa-
rameter p. Moreover, with probability 1 — «, the true value of parameter p lies in
a random interval [ pr, py ). Such an interval is called a confidence interval with
confidence level 1 — a.

In other words, with probability | — a, the true value of p is within the distance

~ vp(l —p
= er/l‘—‘p"(;/—ﬁ-‘?_) (13)

of the sample average p (for better confidence intervals, see Sec. 8.2).

The second goal we set for ourselves at the beginning of this section is related
to the first which was achieved by the construction of confidence intervals at a
given confidence level. In the simplest case, we would like to have a procedure
to decide whether the unknown parameter p in the Bernoulli experiments equals a
fixed given value py € [0, 1] (e.g., whether a coin is fair, or whether the proportion
of defective items on the assembly line is 2%). This is called the hypothesis testing
problem.

By analogy with (3) and (4), assuming that the hypothesis Hg : p = po is true,

Pr{|p— pol <@} =Pr {n(po —a)<np <n(po +a)l

= > (';) Pl — poy %, (14)

n{pp—a)<k=n(po+ta)

and, for large n, we have

a/n
It |1
Pr{lp — pol <a) ~ f Y e, as)
_ 3 zn.

poli—po)
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in view of the Stability of Fluctuations Law. This means that provided the hypoth-
esis Hp : p = po is valid, the unbiased estimator p differs from pg by less than
a. On the other hand, if the hypothesis Hp : p = pp is false and an alternative
Hy : p = p) # po holds true, then the estimator p should, with probability close
to 1, be close to p; and far away from pop or, equivalently, the event that p and pg
are close should be a rare, small probability event. Thus, we arrive at the following.

Hypothesis Testing Procedure, Cheose confidence level o at a preassigned
level between O and 1, and then select a so that

Pr{|p—pol <a}=e.

If|p — po| > a, reject the hypothesis Hy : p = po and conclude that the true
parameter value p is different from py. In the opposite case |p ~ pol| < a, the
hypothesis Hy is not rejected.

Note that in the case |p — po| < a, we are not claiming that the hypothesis
Hg : p = pp is to be accepted; the true value of p may be close to pg and yet
not equal to it. The construction of confidence intervals and hypothesis testing
procedures will be discussed in greater depth in Chapters 7 and 8.

Example 3.7.1 Statistical Quality Control.

A batch of N items (light bulbs, capacitors, computer memory chips, etc.) is
mass manufactured at a plant and needs to be tested before shipment to customers.
Usually, one takes a random sample of size n <€ N from the whole batch, and then
either tests each item in the random sample under working conditions until it fails
(destructive testing), or one measures some important parameter of each item in
the random sample without destroying it (nondestructive testing).

It could be the customer’s policy, say, to accept the batch of N items only if no
item from the sample of size n fails before time T prescribed by the contract. In this
case, the probability of acceptance of the batch is computed as follows: Suppose
that the batch of N items contains B bad and G good ones, so that B4+ G = N.
Consequently,

GG-1 G-(n-1
NN-1 'N-@n-1)

B B B
(-8 rmt) oo

If the number B of bad items is small and the sample size # is small compared to
the batch size N, then the acceptance probability is high; the chance of discovering
any bad items in the batch is small.

Pr {acceptance} =
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In this context, it seems that allowing some bad items in the random sample
would not be a bad idea. The new procedure would call for accepting the batch
if the number of bad items in the random sample does not exceed an integer c. If
p is the probability that a randomly chosen item from the batch is bad, then the
operational characteristic

Licinp)=)_ (Z)p"(l -p an
k=0

which is just a cumulative d.f. for the binomial distribution, gives the probability
of acceptance of the batch, based on the fest pian (n, c). It is easy to check that:

Lic;n,0) =1, an

that is, if there are no bad items in the batch then the acceptance probability is 1;

Lic;n, 1) =0, (18)

that is, if there are no good items in the batch then the acceptance probability is 0;
Licin,p) =z Licsn, p2), if pr<py

L(c;ny, p} 2 L(c; n2, p), if  nr<ny (19)

Liciyn, p) = Licz; n, p), if a=ze.

By the Stability of Fluctuations Law, for a large sample size n, we have that

c~pn

o T 1 —u?f2
Lic;n,p)=Prinp <c¢ ~f —e du. 20
( » {np <c} NoT (20)

Of course, to be able to select a large random sample, the batch size has to be very
large.

Ideally, it would be desirable to choose pp such that the acceptance probability
L(c;n, p) =1 for p < po,and = 0 for p > po (why?). This is, however, impos-
sible in view of (20). The way out of this dilemma is the following compromise
quality control standard:

(1) If the probability p of a bad item in the batch is small, say, < p,, then

the probability of acceptance must be > «, where (py, ) sets the quality control
standard (often, p, = .02, & = .9).
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(2) If the probability p of a bad item in the batch is large (say > pg), then the
probability of acceptance must be < 8, where (pg, B) sets another quality control
standard (often, pg = .05, 8 = .1).

Heuristically, our standards demand that if the batch is really good (p < pg),
then it should be accepted with a very high probability, and if it is really bad, then
its acceptance probability should be low. In this fashion, with a high probability,
a really bad decision will be avoided. Of course, there will be a price to pay for
using such standards: when the true probability p stays within the range (p., pg),
we are not going to be able to say how good our quality control procedure is, but
it would not matter anyway.

To implement the above standards, for given {pa, @) and (pg, 8), we have to
find a test plan (n, ¢) such that

Lic;n, p) > Lic; n, po) = &, for all P = Pa, (21)

and
L(cin, p) < L(c; n, pp) = B, forall p= pg. (22)

In view of (20), this leads (asymptotically in # — 00) to the equations

o = fJ;.l;%(i—_’lE;) 1 e~u2/2 du (23)
—00 Ny’ 1
and
—le— 1 2
— A/ wgll—pp) e 72 du 24
£ f—oo V2 24)

Denoting by ® ! () the inverse of the N (0, 1) cumulative d.f. ®(x), the equations
(23) and (24) can be rewritten in the form

C — Pall

-1 _
MR @
o-1(g) = ——_PP" 26
g Vvnps(l — pp) @
The latter can be solved easily for n and c, giving
— -1 _ — -1
N Vel = pa)®7 " (@) — /ps(l — pp)®~ " (B) @7

Pg — Pu

and
¢ = npg + Vnpa (1 — pa)® ). (28)
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Note that, finally, » has to be rounded to the next larger integer, and c to the next
lower integer!

Mathematica Experiment 1. Quality Control Plan. We will implement the above
test plan fora@ = 0.9, 8 = 0.1, py = 0.02, pg = 0.05, illustrating on the way
other aspects of our discussion.

In[1]:= <<Statistics‘ContinuousDistributions*
In[2] := Plot [CDF[NormalDistribution[0,1],x],{x,-3,3}]
Out [2)= -Graphics-

08

0.6

0.27

3 2 B 1 2 3

In{3]):= Philnverse[x_]:= Quantile[NormalDistribution[0,1],x]
In[4] := Plot[Philnverse[x],{x,.001,.999})
Out[4]= -Graphics-
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In{5]:= L{c_,n_,p_]:= Sum[Binowial([n,k] p~k(1-p)~{n-k},{k,0,c}]
In[6]):= Plot[L(3,10,p),{x,.001,.999}]
Out[6)= -Graphics-
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1
08
0.6
0.4}
02
0.2 04 0.6 0.8 1
In(7):= u=N{(Sqrt[.02 * .98] Philnverse(.9]-Sqrt[.05 * .95] *
PhiInverse([.1]}/.03]
Out{7]= 15.2908
In[8) := n=Ceilingfu~2]
Dut[8l= 234
In[9):= c=Floor[ N[ 234% .02 + Sgrt[234+.02 « .98}«
PhiInversel.9]]]
Out[9]= 7

3.8 Other continuous distributions; Gamma function calculus

Thus far, we have encountered only two types of probability density functions:
uniform, and Gaussian. In this section we will provide anumber of other examples
that are of importance in applied problems.

Recall that the one-dimensional probability density function f(x) has to satisfy
two conditions:

flx) 20, xeR (D

[Oo fx)dx =1. )
¢ ~C0

The corresponding cumulative distribution function
X
For= [ soa ®
—0oQ

is nondecreasing,
F(—o00) =0, F(oo) = 1. (€Y
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For the random quantity X with probability d.f. f(x), the probability that X has
values within the interval (g, b] is

b
F(b)—F(a)=f f(x)dx. )

Also, by the Fundamenial Theorem of Calculus,

d
fx) = 7 F &) ©6)

X

The mean and variance of the random guantity X are

+00
u(X) = f xf(x)dx %
—c0
and +oo
o?(X) = ] (x — W f(x) dx. @®

Example 3.8.1 Exponential Distributions.

The lifetime T of many devices is often a random quantity. For some of them,
the experiments show that if the device survives up to time / then its remaining
lifetime has the same probability distribution as that of a new device, displaying
what we call the memoryless behavior. In terms of the cumulative distribution
function Fr(t) = Pt {T < t), or, more conveniently, in terms of the corresponding
reliability or survival function (upper tail distribution) R(?) = 1—-F(t) = Pr (T >
t), the memoryless behavior can be written as the condition:

R(t+5)
—— = R(s), I, 0, 9

RO () s > ®
which can be rewritten in the form R(r + s) = R(#)R(s). The latter equation,
differentiatied with respect to ¢, yields R’(t + 5) = R'(¢)R(s). Letting, t — 0 we
obtain a simple differential equation

R'(s) = —AR(s), A=—R'(0)>0, (10)

since R(s) is adecreasing function. The obvious solutionis R(s) = e ™, s, 4 > 0,
and the corresponding (normalized) density is of the form

0 fort < 0;
re ™ fort > 0.

fr@) = [ an
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The exponential family of probability d.f.s (11) is parametrized by the single pa-
rameter A > 0, which is often called the intensity of the exponential distribution.
Exponential distributions also appear as probability distributions of waiting times
between random events (such as log-ons to the server in a local area network)
whose number in a given time-interval has the Poisson distribution introduced in
Section 3.5. The corresponding cumulative distribution function

0 fort < 0
Fry = { 1—e™ fort>0. (12
The mean and the second moment, via the integration by parts formula, are
oo 1
u(T) = f thexpf—-itldt = 3 (13)
0
and the second moment
o 2
ma(T) = f Prexp[—Atldr = =, (14)
0 A

so that the variance o2(T) = A2,

Mathematica Experiment 1. Exponentigl Distributions. We shall plot the graphs
of exponential densities and cumulative d.f. for A = 0.4, 1.6, 4.

In[1]:= <<Statistics‘ContinuousDigtributions*

In(2]:= H[x_):=If[x<0,0,1]

In(3]:= dens [x_,1_]:= H[x)*1*Exp[-~1%x]

In[4] := Plot[{dens[x,0.4]) ,dens([x,1.6],dens{x,4]},{x,-1,4},

PlotRange->{0,4.2}, Ticks->{Automatic,{0.4, 1.6, 4}}]
Out[4]= -Graphics-

4
1.6
04
-1 0 i 2 3 4
In[5]:= cumdflx_,1_]:=H[x]*{1-Expl-x*1])
In[6]:= Plot[{cumdf [x,0.4],cumdf[x,1.6],cumdf[x,4]} ,{x,-1,4}]

Outl6)= -Graphics-
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Computation of higher moments of the exponential distribution requires calcu-
lations with integrals of the type [ x*e™* dx, which gives us the opportunity to
introduce the gamma function I'(x). The gamma function “calculus” is a very
convenient tool in analysis of many probability d.f.s.

The gamma function is defined by the formula

T (@) :=f x*le™* dx, 135
0

Notice that the integral cannot be evaluated in closed form for most values of a.
So, the gamma function I' (@) is a new special transcendental function. It is easy
to see that the integral (15) is well defined for a > 0.

Mathematica Experiment 2. Gamma Function. We will obtain values of the
gamma function and graph it. Actually, definition of the gamma function can
be extended also to noninteger negative real numbers. Although a mathematical
justification of this fact is beyond the scope of this book, we can explore the problem
using Mathematica.

In[1]):= {Gamma[-2.9999], Gamma[3.32], Gamma[4], Gamma[14.3]}
Qut[[1]= {-1666,88, 2.73975, 6, 1.3641 10°10 }

In[2):= Plot[ Gamma[x], {x,-5, 5})

Out[2]= -Graphics-

L-10
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There are few cases when one can obtain by analytic means the precise value
for T'(x):

o] 2 o0 pOO
r'(/2y? = ( f x_l"zehxdx) = f f (xy) V2 * Y dxdy.
0 0 0

Substituting 42 = x and v2 = y, we arrive at
o0 (e e] 2 2
r(/2* =4 j f e dudv
0o Jo

Finally, using polar coordinates (you have seen a similar “trick” before in calcula-
tions with Gaussian densities),

2 oo prf2 2
r{/2y =4 e dordr=nm
0 0

Hence,

r(/2) =/=. (16)
Another useful identity is obtained by integration by parts:

al'(@) = [x%e *I§° +f e Fdx =T(e+1) a7n
0

so that the gamma function behaves like the factorial but is defined for all positive
real numbers rather than just for integers. Moreover, that connection is very direct
as

oQ
I'(1) =/ expl—x]dx =1,
()]
and, in view of (17),

Fmy)=n-D=0xr-Dr-2)..3.-2-1. (18)

Here are two applications of our gamma function calculus that provide alternative
calculations for the Gaussian and exponential densities.

Example 3.8.2 Gaussian Densities Revisited.
For the N{u, 02) random quantity X, we have

o« d oo 1 (l»uz)2
2)dz = 2[ e 2?2 dt
[m¢( 0 210
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L i s 1
= —[ sV ds =,/ -T({1/2)=1.
T Jo b3

and, substituting y = (x ~ 1)?/(202),

®© 202y y ody

e
V2ot /202y

o2(X) = f ” = )z =2
—00 0

2 o0
= —i/di: A yl/ze_y dy
202 202
- %F(S/Z) = —ﬁ(l/z)l‘(l/Z) =02

Example 3.8.3 Exponential Densities Revisited.
For the exponential distribution, the mean

/wx}\e_“dx 1/00 2-le=y g 1l"(2) !
—_ —_— e —_ = -,
w= | )7 y=3 :

and the second moment

2

® 2, ks L% 50 1
= e Vdx = — e Vdy =T (3)= .
my fox e dx ,/(.) y ey = 3 32

;\2

Other interesting and more complex examples of the gamma function calculus’
applications can be found in Chapter 5.

Example 3.8.4 Reliability Analysis; Weibull and Rayleigh Distributions.
Recall that the reliability (survival) function of a device is defined by the formula

Rp)=Pr(T >0), t>0, (19)

where T is the random quantity describing the lifetime of the device. Let 77, T3, . . .,
be a sequence of independent random quantities with the same distribution as T'.
For a fixed ¢ and small At we have, asn — oo,

#i<n:T; elt,t + Ar]} R()— Rt + A1) R
Bi<n T>1 RG) RO

At = A(DAT,
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where the hazard function
R'(1)
A() i= ——, 20
) RO) (20)

need not be constant as was the case for the memoryless exponential distribution
case of Example 3.8.1. It gives the infinitesimal rate of change of the failure
rate once the device survived until time x. The differential equation (20) can be
immediately solved to yield

!
R(t) =exp [—f A(s) ds] . 2n
0

In the special case when the hazard function is of the power form

AQ) = %r“-‘, @, B >0, (22)

we obtain
R(1t) = exp[—¢*/B1, x>0, (23)

with the corresponding Weibull, or stretched exponential, probability d.f.

Flta, By = [(()a/ﬁ)t"‘" exp[—%/B), fort > 0; 24)

forr < Q.

If ¢ = 1, the Weibull probability d.f. f(z; 1, 8) is just the familiar exponential
distribution with intensity A = 1/8. In the case @ = 2, the Weibull distribution is
known as the Rayleigh distribution. Note that the Rayleigh distribution corresponds
to the linear hazard function

Ax) = 2x/8. (25)

Mathematica Experiment 3. Weibull Densities. We plot Weibull densities with
parameters @« = 0.5,2, 4, and § = 1. It is clear that for bigger «, the density
f@; a, 8) decays faster as 1 — cc.

In[1]) := <<Statistics‘ContinuousDistributions?®
In[2] := WeiDen[t_,a_,b_]:= PDF[WeibullDistributionl[a,b], t]
In[3]:= Plot[{WeiDen[t,0.5,1], WeiDen[t,2,1], WeiDen(t,4,1]},

{t, 0.01, 4}, PlotRange->{0, 2}]
Dut[3)= -Graphics-
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A more general version of the Weibull distribution can be obtained by shifting
the origin to the point v, The extended family of Weibull densities f(¢; o, B, v) is
zero fort < v, and for ¢ > v, it is given by the formula

o)) ()] e

where v € R, @, 8 > O are parameters. The cotresponding cumulative distribution
function is again O for x < v, and for x > v itis given by

N\
F(t;a,B,0) = 1 —exp [— (' - ”) ] @n

Example 3.8.5 Detection of Particles; Cauchy Densities.

Consider a source located at the point with coordinates (0, ) emitting par-
ticles in the half-plane with uniformly distributed random directions (angles)
©® e [-n/2,7m/2] (see Fig. 3.8.1). The particles are being detected by a flat
panel device D (represented by the vertical line x = 7) at the distance  from the
source. What is the distribution of the random quantity representing the position
Y particles on the detecting device? Clearly,

Frint)=Pr{Yy <y}=Pritan® < (y — n)/7} (28)

11
= Pr{@ <arctan((y — n)/7)} = 2 + - arctan{(y — n)/1).
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FIGURE 3.8.1

From radially uniform to Cauchy distribution: detection, on a flat panel, of parti-
cles emitted by a point source.

The corresponding Cauchy density with the location parameter 7 and the scale
parameter T is given by the formula

1
rr(l+ [y — /1%

frixin, )= (29)

for any real y. In the physical sciences, Cauchy densities are often called Lorentz
densities. The location parameter 7, the median, plays for the Cauchy distribution
the role similar to the mean of a Gaussian distribution. The mean of the Cauchy
distribution, however, does not exist. Indeed, the function x/(1 4+ x?) is not in-
tegrable over the whole real line. The scale parameter v measures the dispersion
of the Cauchy distribution around its location parameter # but it is not its standard
deviation. The latter does not exist either.
Finally, observe that the tail probabilities

T

v pr oy G (30)

Pr{Y>a}=fa00

decay much slower, as a — oo, than those of Gaussian distributions, which decay
at the rate e—%/2 /a, despite a superficial similarity of the graphs of two densities.
For that reason, Cauchy distributions are often described as “heavy-tailed™.

Mathematica Experiment 4. Cauchy Densities. We shall begin by comparing
the densities of the Gaussian and Cauchy distributions, both with parameters 0 and
1. Around the origin, the Cauchy density has a sharper peak than the Gaussian
density, but is much, much flatter far away from the origin. The lack of mean
and vartance raises an interesting question about the validity of the Law of Large
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Numbers and the Stability of Fluctuations Law for independently repeated Cauchy
experiments.

In[1]:= <<Statistics‘ContinuocusDistributions’
In[2] := UVW‘DataRep*
In[3]:= Plot[{PDF[CauchyDistribution[0.,1.],x],
PDF [NormalDistribution[0.,1.],x]},{x,-10,10},
PlotRange—>{0,0.42}, Ticks->{Automatic,{Pi~(-1), 0.399}}]
Out[3]= -Graphics-

-10

Inf4):

{PDF [CauchyDistribution[0.,1.],10],
PDF [NormalDistribution{0.,1.],10]}
Dut [4]= {0.00315158, 7.6946 10"(-23)}

In[5]:= data=Table[Random[CauchyDistribution(0.,1.]3,{1000}]
Out (5]= {2.23794, -2.43299, 0.463945, 7.96682, ... ,

~24.9201, -0.782545, -2.06564, 1.38234, -0.832504}
In[6] := LargeNumbers[datal
Out [6]= -Graphics-

15

10

Th——
5|
> ———
200 400 600 300 1000
R
-5 /—'///

In[7):= CentralLimit[Data,0,1,10}
Out [7]= -Graphics-
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Note the dramatic difference in values of the Gaussian and Cauchy probability
d.f.s at x = 10. The experiments (and they should be repeated several times to get
a feel for the variety of pictures one can get here) indicate that neither LLN nor
SFL holds wrue. The averages oscillate wildly, and the centered and rescaled by /n
averages just produce flatter and flatter histograms which do not seem converge
to the N (0, 1) density. This is marked on the histograms but sometimes it is so
concentrated around zero in comparison with the former that it is almost invisible,
This is a warning that neither LLN nor SFL should be expected to hold without
any precondition; some assumptions (like those mentioned in previous sections)
are necessary.

The distributions described in the next five examples will find applications in
Chapters 5, 7, and 8.
Example 3.8.5. Continuous Pareto Distributions. The density is given by the
formula
0 forx < 1;
fly= {x‘“/floou‘“du forx > 1. G
The parameter « has to be > 1 to guarantee that the integral in (31) remains finite.
These distributions appeared first in economics applications. The mean does not
existforl <o <2.

Example 3.8.6 Gamma Distribution,
A gamma distribution is an absolutely continuous distribution with density

: _ @ T@) x*texpl—x/B]1, forx > 0;
fxa By = {o, forx <0, (32)

Parameters «, 8 are positive numbers and the distribution is concenirated on the
positive half-axis. Substituting y = x/8 we find that f0°° xLexpl—x/Bldx =
BT (a), so that f(x; a, B) satisfies the normalization condition { f(x)dx = 1.
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Mathematica Experiment 5. Gamma Density.

Inf1]:= flx_, a_, b_):=x"(a~-1)*Exp[-x/bl/((b~a) * Gammal[a])
In[2]:= Plot[f[x,2.0,3.0],{x,0.0,15}]
Out [2]= -Graphics-

0.12

0.t
0.08
0.06
0.04
0.02

The mean
p=[ 5 secoprds= B2 [ oo+ 1prdr=op, 69
0 I'(e) 0
and the second moment
o0 2 o}
ma =f x2f(x;e, B)dx = EM[ Fla+2, B dx = ala+1)87%,
i I'(a) o
(39
so that the variance
o0? =a(@+ D - o?p% = af? (35)

Probabilities for the gamma distribution are computed using the incomplete
gamma function

MNa, z) = foo 1% exp[—x]dx 36)

which in Mathematica is called Gamma [alpha,z]. If the random quantity X has a
gamma distribution with parameters « and 8, then

Priu<X<v}= f EEFL(-(I_)“QA expl—1/B1d:

v/8 1 a—1 d
_‘/‘;/ﬂ & exp[—s]ds (37)
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_ T(e,u/B)—T(e,v/8)
- ')

Gamma density with parameters o = 1 and 8 = 1/ is just the exponential density.

Example 3.8.7 The Chi-Square Distribution.
The density of the x2-distribution

8! 2)71/2 /-1 ) .
fx) = flxin):= [ e forx >0, (38)
0 forx < 0.
n = 1,2,..., is a gamma density with parameters « = n/2 and § = 2. The

parameter # is called the aumber of degrees of freedom of the x*-distribution,

Mathematica Experiment 6. Chi-Square Distribution.

In[1]:= <<Statistics‘ContinuousDistributions’
In[2]:= f[x_,n_]:= PDF[ChiSquareDistribution[n],x]
Inf3]):= Plot[{f([x,3], f{x,5], £f[x,71}, {x,0,15}]

Out [3]= -Graphics-

02

0.15

0.1

0.05

Z 4 6 8 10 1z 1
It follows from Example 3.8.6 that its mean and variance are, respectively,

w=n, o? =2n. 30

As we will see in Chapter 5, the sum of squares X2 + ... + X2 of » independent
N (0, 1) random quantities has the x >-distribution with » degrees of freedom.
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Example 3.8.8 The Student t-Distribution.
The density is given by the formula

(40)

2y (1+1)/2
f(x;n)—r((n+l)/2) (l X ) , x €R.

T J/arl(n/2) "

The parameter n is called the number of degrees of freedom of the t-distribution. It
is the distribution of the random quantity X/./¥, /n, where X is a N (0, 1) random
quantity and ¥, is an independent random quantity with x2-distribution with n
degrees of freedom.

Mathematica Experiment 7. Student t-Distribution.

In[1]:= <<Statistics‘ContinuocusDistributions®
In(2]:= flx_,n_]:= PDF[StudentTDistribution[n],x]
In(3]):= Plot[{f[x,2], £(x,5), £f(x,351}, {x,-5,5)]

Out[3]= -Graphics-

2 4

For larger n, the Student t-distribution’s density clearly approaches N (0, 1)
density.

Example 3.8.9 Fisher’s F-Distribution,
The density of an F-distribution with n, m degrees of freedom is concentrated on
the positive half-line and defined there by the formula

. _ (n/m)y*/? /21 B\~ km)/2
fxin,m) = __B(n/z,m,fz)x (1 + mx) , x>0, 4D
where
_ /I (m/2)
B(n/2,m/2) = mﬂ(n iy

It is the distribution of the ratio (X, /n)/(Y,/m), where X, is a random quantity
with the x2-distribution with n degrees of freedom, and Y, is an independent
random quantity with the x2-distribution with m degrees of freedom.
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Mathematica Experiment 8. Fisher F-Distribution.

Inl[1]:= <<Statistics‘ContinuousDigtributions’
In(2]:= f{x_,n_,m_]:= PDF[FRatioDistribution[n,m],x]
In[3}:= Plot[{f[x,2,2], f[x,5,3), £[x,10,20]}, {x,0.01,5}]

Out [3]= -Graphics-
1
08
0.6
04

0.2

3.9 Testing the fit of a distribution

Suppose a random sample xi, ..., x,, has been obtained from n independent
repeated random experiments X, ..., X,, with the common cumulative distribu-
tion function F(x) = Pr{X < x)} which is unknown to us. If we want to find
F(x), the first thonght is to approximate it by the cumulative relative frequencies

#i<n:.x; <x}

n

~ Pr(X < x)= F(x), 1

in the spirit of the Law of Large Numbers. Actually, the random quantities

- #i<n: X,<x
Fo) = }——ZH(x—X, @
where
0, forx <0
H(")‘Il, for x > 0.

is the Heaviside unit step function, are called the empirical distribution functions
and one can prove the following crucial fact.
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_ Glivenko-Cantelli Law. For large sample size n, the empirical distribution
F,, (x) uniformly approximates the true distribution F(x), i.e.,

lim _ max |F,(x) = F(x)| = 0.

n—>00 —0Q<Xx <

The obvious next question is: How good is this approximation in the statisti-
cal sense? The surprising answer is provided by the following important result.
For another goodness-of-fit test, see Section 8.6. Note that the random quantity
11:‘,, (x) — F(x)| takes values in the interval [0, 1].

Kolmogorov-Smirnev Distribution. For any continuous d.f. F(x), the distri-
bution of the nonnegative random gquantity

D= _max |Eo(x) — F(x)|

-0 <

is independent of F(x) and, for every z > 0,

Jim PriD,v/n <z}=K@)=1- 2> (=D* " expl—2k22%).
k=1

Mathematica Experiment 1. Kolmogorov-Smirnov Distribution. The evaluation
of the Kolmogorov-Smimov cumulative d.f., which is represented by an infinite
series, can be implemented in Mathematica; the necessary computations take,
however, a long time on the average platform, so it is worth it to experiment with
K (z) a little bit more cautiously. Just trying to plot it does not give good results
and you will see why.

In[1]:
In[2]:
Qut (2]

tt

K[z_):= 1-25Sum[(~1) " (k-1)*Exp[-2%k~24z"2] ,{k,1,Infinity}]
Plot[K[z],{z,0,1}]
-Graphics-

[

175x10°° }
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Clearly, Mathematica has a problem with huge differences in scales of different
values of K (z). So, let us explore the individual values at discrete points.

In[3]:= KS1={K[0.1], K[0.2], K[0.3], K[0.4], K[0.5], K[0.6]}
Out[3]= {-3.90334 10~(-15), 5.05041 10°(-13), 9.3058 10" (-6) ,
0.00280767, 0.0360548, 0.135717}

So, the values of K (z) become significantly positive only around z = 0.3. Now,
instead of trying to graph K (z) as a continuons function, let us just ListPlot its
values at 0.01 intervals.

Inf4] := KS2=Table[{K[0.01xk], 0.01%k},{k,1,199}]
Out[4]= {{0.01,-2.22 107(-16)}, ... ,{1.99, 0.999}}
Inf5]:= ListPLot [KS2]

Out[5)= -Graphics

1
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Of course, the initial tiny negative numbers appeared only because of round-
off errors in machine arithmetic. Actually, the first one has a special name,
$MachineEpsilon, and it gives the distance between 1.0 and the closest number
which has a distinct binary representation.

The information contained in the Kolmogorov-Smirnov Theorem can be used
in two different ways: to construct confidence intervals for true F(¢) and to test
hypotheses about potential candidates for F'(2).

In the first mode, we can select z,, 50 that K{z,) = « and claim thal the random
strip . .

[Fa(x) — za/~/n. Fy(x) + 24 /+/n] 3

around the empirical distribution F(x)isana x 100 percent confidence region for
the true distribution function F(x).

In the second mode, given & € (0, 1) we can check if a candidate distribution
function G (x) lies inside the confidence region (3). If it does not, then we can reject
the hypothesis that G(x) 1s true. The probability that G{x) does not lic inside the
confidence region, while it is the true distribution function, is at most 1 — «, so
that if « is selected close to 1, then probability of this type of error is small. Note
that in case G (x) is inside the confidence region, no decision is made.
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3.10 Random vectors and multivariate distributions

A random vector X = (X,,..., Xy) is a random quantity assuming vector
values. It has an absolutely continuous distribution, if it possesses a multivariate
probability d.f., that is, a function

@)= f(xi,....x0) 2 0 O
which is a nonnegative function of d-variables, normalized so that

/f f(x1, ..., x)dxy...dxg =1, 2)

and such that the probabilities of events concerning X can be calculated in terms
of multiple integrals of f(x). More precisely, if A is a subset of the d-space R?,
then

Pr{XeA}:f...ff(x1,...,xd)dx1...dxd. 3)
A

The mean of the i-th component X; in the random vector X = (Xy,..., X)) 1s
calculated via the formula

o0 o
u(X;):/ / xif(x,...,xy)dxy .. .dxy. (4)

Their variances are

2 o i 2
)= [ [ e modndie )
-0 J—o0
and covariances between the component random quantities X; and X; are

Cov (X;, X;) =f f (x; — )& — p) f(xy, o xn)dxy . dxy. (6)
- —o0

o0}

They form a d x 4 matrix. Itis not sufficient to know the one-dimensional densities
of the individual components X; to calculate the covariances. Also notice that by
integrating out all the variables in the density f(x, ..., xs) except the i-th one,
we obtain the probability d.f. (marginal density) of the random component X;:

fx,-(x)zf f FO o s Xi 1, X K1,y o XN X
—00 —oo
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dxy...dxi_ydxiyq...dxn. @

The components X, ..., Xz of the random vector X with multivariate density
fx (x) are independent, if and only if

fxCa .o xa) = fx, (1) - oo - Sxg(xa). ®

Obviously, in view of (6) and (8), if X1, ..., X4 are independent then their covari-
ances are zero,

Similar definitions and formulas apply to the multivariate discrete probability
distribution, with the integrals replaced by finite or infinite sums.

Example 3.10.1 Multinomial Distribution.
Each component &1, k2, ..., k4 of an d-dimensional vector k = (k{, ..., kz) can
take nonnegative integer values from 0 to n under the additional constraint that
their sum equals . The probabilities are distributed according to the multinomial
formula, i.e.,
- n! ki k2 ka

f(k)w-ml’l Py Py )]
ifky +...+ kg = n, and is 0 otherwise, where p, p, ..., pg are parameters such
that

mntp+...+pa=1

The fact that all these probabilities add up to 1 follows from the multinomial
formula which is an extension of the binomial formula.

Example 3.10.2 Bivariate Normal Distribution.
The general two-dimensional density of a normal random vector (X, X7} is given

by the formula

1
Jonx) = ————x (10)
20024/ 1 — p?

1 x1— )2 x— w2\’ (x1 — w1)(x2 — ©2)
exP(—Z(l—pz)[( o1 )+( o2 )_2'0 0102 D

A linear change of variables can reduce the double integral of this density to a
product of single integrals and prove its normalization. More tedious calcula-
tions on double integrals show that the coefficients x1 = (X)), w2 = u(Xz2)
are means of the first and second components, respectively, and that 012 =
0%(X1), 05 = o%(X>) are corresponding variances. The components are them-
selves one-dimensional Gaussian quantities. The parameter o turns out to be the
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correlation coefficient between the components X and X5, that is

Cov (X}, X2) = po(X1)o(X2). (11D

A quick check of (10) and (7) shows that the components X1, X3, of a Gaussian
random vector X are independent if and only if the correlation coefficient p = 0.
With the correlation coefficient p defined in general by the equality (11), this is
not necessarily true if the random vector is not Gaussian.

The graph of the surface representing the bivariate normal density is obtained
in the next Mathematica Experiment. Note that the level curves are ellipses with
half-axes o7, o7 and correlation parameter p determines the angle by which these
half-axes are rotated with respect to the x1, x; axes.

Mathematica Experiment 1. Bivariate Normal Distributions. The bivariate
(and, in general, multivariate) normal distribution is specified by the command
MultinormalDistribution[mu, sigma) where mu is the mean vector (it1, p2),
and sigma is the covariance matrix (po;07;).

In[1]:= <<Statistics‘MultinormalDistribution’

Inf{2):= fixl_,x2_,m_,s_]:=PDF[MultinormalDistributionim,s],
{x1,x2}]

In[3]):= m={0,0}

Out[3]1= {0,0}

Inf4]:= s={{1, 1/Sqrt[31},{1/Sqrt[3],1}}

Out[4]= {{1, 1/Sqrt[3}},{1/Sqrt[3],1}}

In(5):= Plot3D{f[x1,x2,m,s),{x1,-3,3},{x2,-3,3},

PlotRange->{0, 0.2}]
Out [6]= -Graphics-
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Next, we will create a simulated random sample of size n = 1000 of a Gaussian
random vector with means g = 0, pp = 0, variances o) = 2,07 = 1, and the
correlation coefficient p = —0.8, taking advantage of the RSNormal2D[sigmal,
sigma2,rho, n] command of the UVW*ContSamp‘ package. Then the sample will
be pictured on the scatter plot and its two dimensional histogram will be produced.
Finally, we will check that the projection of the data on the line with direction
vector (0.5, 1.6) are approximately Gaussian.

Inf1] := <<UVW'‘'ContSamp°’

Inf2] := <<UVW'DataRep’

In[3]:= gauss2d=RSNormal2D{2,1,-0.8,1000]

Out[3]= {{4.78287, -1.83111}, ... , {-3.68319, 0.967511}}
In[4] := SamplePlot2D[gauss2d]

Out[4]= —Graphics-—
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In[5]:
Qut (5]

1l

Histogram2D[gauss2d,-6,6,12,-3,3,12]
~Graphics3D-

R :
mitso s

In[6]:= proj=gauss2d.Transpose[{0.5,1.6}]
Out[6]= {-0.538344, ... , 1.47689}
In{7]:= Centrallimit[proj,0,1,1]

Out[7]= -Graphics-

]

Example 3.10.3 Uniform Multivariate Distributions.

A d-dimensional random vector X is said to have a uniform distribution over a set
A C RY if, for any set B C RY,

Pr{X cB}=|ANB|, (12)
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where |C| stands for the d-dimensional measure (area, volume, etc.) ofaset C. In
other words, the density of X is

1 | 1/|A|, forze A,
f@) = s = [0, fora g A (13)

Of course, the uniform distribution over A makes sense only if the measure |A| <
©o.

Distributions of various functions of the random vector X, themselves random
quantitics, may then be calculated. For example, the cumulative d.f. Fg(r) of the

distance from the origin
R=Xx}+... +x2 (14)

is, for X uniformly distributed over A, of the form

Fr(r) =Pr{R <r}=Pr{X? +...+ X2 < r?)

://f la(®)dxy -...-dxg = |Ba(r) 0 |Al (15)
{lz)<r}

where B;(r) is a d-dimensional ball centered at the origin with radius . In the
particular case where the X is uniformly distributed over B; (1), the d-dimensional
unit ball,

0, ifr <0;
Fr(r) = [IBd(r)I/IBd(l)I =rd, of0<r<y; (16)
1, ifr=1.

Mathematica Experiment 2. Uniform Distribution on the Unit Ball. We shall
produce two random samples of size n = 1000 from the uniform distribution on the
unit balls of dimensions 2 and 4, and then check the histograms of their distances
from the origin, i.c., their norms R. These should be compared with the result in
formula (16) which gives the density of R to be fr(r) = 2r in dimension 2, and
fr(r) = 473 in dimension 4, both, of course, concentrated on the interval {0, 1]

In[1]:= <<UVW‘ContSamp’

In[2] := <<UVW‘DataRep’

Inf3] := ball2d=RSUnitBall{2,1000]

Out[3)= {{-0.208536, -0.292938}, ... , {-D.355194, -0.0873841}}
In[4] := SamplePlot2D[ball2d,AspectRatio->1]

Out [4]= -Graphics-
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In{8]:= Histogram2d[ball2d,-1.1 ,{.1 ,12,-1.1 ,1.1 ,12]
Out{8]= ~Oraphics3D-

In(6] := norms=Sqgrt [Table[bal12d[[i]].ball2d([11],{i,1000}]]

Out [6]= {0.359883, ... , 0.365785}
In(7]:= RegularHiste[norms,0,1,20]
Dut [7)= -Graphics-
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In[8] := ball4d=RSUnitBall[4,1000];

In[9] := norms=Sqrt [Table[bal24d[[i]].ball4d[[i]],{i,1000}1]
In[10] := RegularHisto[norms,0,1,20]

Out[10]= —-Graphics-
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Example 3.10.4 Multivariate Normal Distribution.

The density f of an d-dimensional normal random vector X = (Xj, ..

195

XD

(written here as a column) is now a function of the column vector * =

(x1,...,x2)7, and is given by the formula
f@®=flx,....xq) =

1

Vv (2r)4 det[C(X)]

1
exp(— 5 (@ — (O™ @ — w),

where
p=@ )’

17

is the column vector of means of the component random quantities X;,i =
1,...,d. and the d x d matrix [C(X)] is the covariance matrix of the above
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components, i.e.,

(€)= [cov (X, X)) a8)

1<ij<d

For a Gaussian random vector X with independent N (0, 1) components, that is
with the covariance matrix C(X) which is the identity d-dimensional matrix with
ones on the diagonal and zeros off the diagonal, the distance R from the origin
expressed by the formula (14), has the chi-square distribution with d degrees of
freedom (see Example 3.8.7).

3.11 Experiments, exercises, and projects

1. In1,000 Bernoulli experiments, the sample meanx = p = 0.48. Calculate
the confidence level of the interval 0.48 + 0.03,

2. For the same experiments, calculate the size of the confidence interval
given the confidence level 0.95,

3. Find the number n of Bernoulli experiments needed to obtain for p a
confidence interval of size 0.02, at confidence level 0.99,

4, Random quantity X has the Laplace density fx(x; j,s) = ce 1x#l/s
defined on the whole real line. Calculate c. Using Mathemarica, graph
this probability d.f. for different values of parameters i and s > 0, and the
corresponding cumulative d.f. Fx (x; i, s). Calculate the mean, vartance,
and the #-th moment of X using the gamma-function calculus.

§. Calculate the mean, variance, and the cumulative d.f. for the generalized
Pareto density

e~ Dx~®, ife < x < o0;
0, elsewhere.

o= |

What restrictions are necessary on parameters « and c?
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6. Mathematica Experiment. Simulation with a Given Denstty. Use UVW pack-
ages to simulate and analyze random samples with a prescribed density. A
trial run is given below. Read first the detailed description of the packages
given in the Appendix.

In[1]:= UVW*‘ContSamp*

In[2] := UVW‘DataRep'

In[3]:= flx_):=1+Sin[x]

In[4] := samp= RSContinuousDistribution[f,0,10,2000]

In[5]:= gt = RegularHisto{samp, 0,10,20, DisplayFunction->Identity]
In[6]:= integral=NIntegratelf[x1,{x,0,10}]

In[7]:= fnorm[x_):= f[x]/integral

In{8]:= g2 = Plot[fnorm[x],{x,0,10}, DisplayFunction->Identity]
In{9}:= Showlgi,g2, DisplayFunction->$DisplayFunction]

7  Mathematica Experiment. Simulation with @ Given Discrete Distribution.
Use tvW*‘DiscSamp* package to simulate and analyze random samples with
a prescribed discrete distribution. Follow the lines of Experiment 6. Select
a discrete distribution yourself.

8. Muthematica Experiment. Simulation with a Given Bivariate Density. Use
UVW packages to simulate and analyze two-dimensional random samples
with independent components with a prescribed density. A trial run is
given below. Read first the detailed description of the packages given in
the Appendix.

In[1]):= UVW‘ContSamp®

In[2) := UVW*DataRep®

In(3):= flx_]:=x"2

Inf4] := para2d= RSIndependent2D[f,-1,1,f,-1,1, 2000]
Inf5] := SamplePlot2D[para2d,Frame->True]

In(6] := Histogram2D[para2d, -1,1,8,-1,1,8]

In[7] := margei=transpose[para2d] [[1]];

Inf8] := RegularHisto[margel,-1,1,10]

9, Simulate a random sample of size n = 1000 with an exponential distribu-
tion and plot its histogram against the exponential density. Verify the Law
of Large Numbers and the Stability of Fluctuations Law for these data.
Use UVW and/or Statistics packages.

10. Adjust the proof of the Poisson limit behavior (3.5.5) of the binomial
distribution to show its generalization (3.5.9) for arbitrary intensities gt.

11, Simulate sums of independent Cauchy random quantities but normalize
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12.

13,

14.

15.
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them by n~! and n~3/2 instead of the usual SFL. /n. Draw the corre-
sponding histograms. Comment on what you see,

Implement the Kolmogorov-Smirnov test of fit for the exponential distri-
bution (find its mean first) and the water drops data contained in the file
DROPS located on the UVW Web Site. Do the Q-Q plots as well.

Devise the Mathematica code to produce the following display of the out-
comes of 100 repetitions of Bernoulli series of length 10.

Calculate the mean and variance of the geometric and negative binomial
distributions of Section 3.5. Use Mathematica if your analytic tools fail
you.

In the experiments supporting the SFL., draw the smoothed histograms
of rescaled sums by shifting them by Ax = k/10th of the bin size, for
k =0,1,...,9 and then averaging the 10 shifted histograms. Compare
graphically the smoothed histograms with the N (0, 1) density.
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MODELING UNCERTAINTY



Chapter 4

Algorithmic Complexity and Random
Strings

In this chapter we will iry to get to the heart of the notion of randomness by showing
its fundamental connection with several concepts of algorithmic and computational
complexity. Although the discussion illuminates the philosophical underpinnings
of the concept of randomness for a concrete string of data, the conclusions are
sobering: perfectly random sirings cannot be produced by any finite algorithms
(read, computers). A practical way out of this dilemma is suggested.

4.1 Heart of randomness: when is random - random ?

When one begins to contemplate the notion of randomness it is not unreasonable
to start with consulting the relevant entry in the American Heritage Dictionary of
the English Language. Here is what it says:

ran-dom adj. 1. Having no specific pattemn or ob-
jective; lacking causal relationships; haphazard, 2.
Statistics,.  a. Of or designating a phenomenon that
does not produce the same outcome or consequences
every time it occurs under identical circumstances.  b.
Of or designating an event having a relative frequency
of occurrence that approaches a stable limit as the num-
ber of observations of the event increases to infinity.
c¢. Of or designating a sample drawn from a popu-
lation so that each member of the population has an
equal chance to be drawn.  d. Of or pertaining to a
member of such a sample: a random number, —See
Synonyms at chance. —atrandem, Withoutdef-
inite method or purpose; unsystematically: “accusa-

© Springer International Publishing AG 2017 203
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tions are not made at random, but form part of a coher-
ent whole” (Denis Baly).  [Middle English randoun,
from Old French randon, haphazard, from randir, to
run, from Frankish rantt(unattested), a running.] —
ran’dom-ly adv.

Colloquially, randomness means a complete lack of discernible “rules" govern-
ing a given phenomenon and the lack of “predictability”. However, such a broad
and loosely worded definition is unlikely to produce a rigorous theory of random
phenomena. To make our thinking on the subject more precise, let us begin by
being more specific about what we mean by a “rule".

Let us return to the five binary strings

(a) ISR ERNRRREERT AR RRaIeNY!

()] 10101010101010101010101010

(© 10010011100100111001001110010011
(d) 011011100101110111100010011010
() 0110111001011101111000100110101

which were introduced at the beginning of Chapter 1. To what extent do we
perceive them as random? Or more exactly, how would we order them depending
on their perceived degree of randomness? To answer questions like this, we need
to analyze what is so special about each of them that makes them feel more or less
random,

The following three properties of binary strings (i.e., finite words in the alphabet
A consisting of two letters 0 and 1) seem intuitively acceptable as fundamental
attributes of “randomness";

(ML) The string has no exceptional features that stand out in the sense of belong-
ing to a large majority (reasonably defined) of strings, or perhaps, more
cautiously, of being part of a large majority in the universe of strings of
a given type. Such strings will be called here typical, or Per Martin-Ldf
random, as he was the person who crystallized this concept.

(vM) Frequencies of Os and 1s in the string are stable under {admissible) rules of
subsequence selection. Strings satisfying this property will be called here
Richard von Mises random.

(K) The siring has a complex minimal description in the sense of not being
easily described via easily discernible rules governing the alternation of 0's
and 1’s. Such strings will be called here Andrei Nikolaevich Kolmogorov
random or computationally complex. The computational complexity
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of a problem is its intrinsic difficulty as measured by the time, space or
other quantity required for its solution. In other words, the computational
complexity is the minimal cost of an algorithm which solves the problem.

An effort to formalize the idea of a complex sequence which has no simple
description rules might go as follows. Intuitively, the string of length n can always
be described by n bits of information, that is, by a complete listing of its bits.
But shorter descriptions may be possible. However, defining the computational
complexity of a string xo, ..., x,—1 € A*, where A* denotes the family of all
finite strings in the alphabet A, as the length of its shortest description in the
natural language leads to the Richard-Berry Paradox discussed in Section 1.1. The
expression

The smallest number that cannot be defined in less than twenty
words

itself contains less than 20 words.

The initial suspicion is that the problein lies in the “vagueness” of the natural
English language. However, an example provided below shows that the natural
language is not the main culprit here.

Example 4.1.1 Richard-Berry Paradox in a Formal Programming Language.

Consider a programming language PL sirong enough to define all natural numbers.
A description of a natural number #» in PL is a pair D = (P, m), where P is a
program in PL and the input m is a natural number. The program P would take m
as an input, produce n as an output, and would stop (see Fig. 4.1.1) 0

m

N P N PRINT — STOP

FIGURE 4.1.1
Description of n in a formal language.

For any natural number, there exists a trivial description

Dll = (ann)s (1)

where P, is the following program:

BEGIN (2)
READ n
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PRINT n
STOP

By definition, the length of a description D = (P, m) is the sum of the number
of characters in program P and the number of bits in input 7. So, for the trivial
description (1)

length D, =20 + log, n + 1, 3

where 2 is the base in the binary representation for .

Now, the question of the computational complexity of a natural number » reduces
to the optimization problem: For a given n € N, find in PL a description D =
(P, m) of n such that the length of D is minimal. Clearly, the trivial description
D,, is not always optimal. Indeed, take the integer of the form n = 2k k> 35,
and consider the following program R,;:

BEGIN @
READ k

i=1

n=2

WHILE i #k DO: n=n-2, i=i+1

PRINT n

STOP

The program has 49 characters, 29 more than P,, but, since for X > 35 we have
k < 229 for large % the length of the trivial description (D,, n) is greater than
that of the description (R, k).

It turns out that even in the formal programming language PL the optimization
problem has no solution as long as PL is sufficiently strong to satisfy the following
conditions:

(a) Itcontains a program which, for every given program P in PL, computes
the number of characters in program P and halts.

(b) Itaccepts subroutines.

(c) It performs some basic algorithms, including the WHILE construction,

(d) Ituses a finite alphabet.

(e) It works with natural numbers written in a base p > 2.
Each natural number n € N has at least one definition, for example the trivial
definition (D,, n) , and since the alphabet A used by PL is finite, the number of

all definitions of length < length (D,, n) is finite. So, the optimization problem
has (at least) one solution. However, the machine using PL would not be able to
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find it. Indeed, assume to the contrary that there exists a program P in PL which
produces such a shortest definition (P(n), m(n)) using input m(n) (see Fig. 4.1.2).

SHORTEST
LN P N DEFINITION — STOP
OF n

FIGURE 4.1.2
Program producing the shortest definition,

Then consider, for ail natural / € N, the following program ;:

BEGIN 5
READ
y=20
z=0
WHILE z </ DO:
{ caLL P(y),
z = length (P(y)) + length (m(y))
y=y+1}
PRINT y
STOP

In view of the assumptions, it is a correct program. It prints the smallest natural
number requiring definition of length > /. But, on the other hand, for some constant
c>0

length{Q;) = length() + ¢ < log,{ +2+¢ <!, 6)

for I large enough. A contradiction.

It turns out that the resolution of this foundational difficulty can be achieved
by considering the shortest description of a string for a given descriptive process
(computer). Before we make these ideas more precise, we need to introduce the
concept of a computable string, or a computable function.

4.2 Computable strings and the Turing machine

In this section we will try to formalize the idea of an effective description, or
a computable string. The need for such a precaution follows from the discussion
of the previous section. The device we choose is a symbolic computer called the
Turing machine. It was proposed by the English mathematician Alan Turing, of
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the Enigma decoding machine fame; the latter was credited with tumning the tide
in the World War II Battle of Britain.

The Turing machine is a symbolic computing device that consists of the follow-
ing two components:

(a)

(b)

A control unit (CU), with a finite number of possible states 51, ..., 5, € S,
one of which is called the halting state;

A (possibly) infinite memory tape divided into square (memory) cells, each
cell containing one symbol of a finite alphabet ay, ..., a; € A or a blank
B (see Fig. 4.2.1).

B | B}] O© lIl 0

Cu

FIGURE 4.2.1
The Turing machine with a binary alphabet.

The machine operates in discrete steps as follows:

At step O there is a finite contiguous (i.e., surrovnded by blanks B) input
written on the tape in the alphabet A. CU is positioned over the left-most
cell containing the input.

Atany step, CU is inone of the states 51, . . ., s, € S, scans the cell directly
underneath, noting which character of the alphabetay, . . ., @, € Aappears
in the memory cell. Then, depending on its own state and the character in
the currently scanned memory cell, it performs one of the following four
actions:

(1) Changes its own state according to a finite matrix

a) a e a,
St fsin s12 ... Sz
52 | s21 §s22 ... S22 )
Sm \Sml Sm2 -+ Smz

(2) If the new state is the halting state, the machine halts. If its new state
is not the halting state, then the machine:
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{3) Moves one cell to the right (R) or to the left (L) according to a finite

matrix
a a ... 4
s1 fdn di2 ... dy
s2 | dan dz ... do @
Sm \dm1 dm2 ... dmz

whered;; = Ror L;

(4) Changes the symbol on the currently scanned cell according to a finite

matrix
ay a ... a
51 Q1 a2 ... 4
§2 a ax? e az; (3)
Sm \Oml Om2 ... G

Note that each Turing machine can be defined as a partial (i.e., not defined for
all its arguments; this fact is indicated by the circle placed on top of the arrow)
function

T:SxA3(s,a) — T(s,a)e AU{B,L,R}, @

with the understanding that the control unit halts when it faces the pair (s, a) for
which the above function T is not defined.
Every Turing machine generates a partial function

My  A*>x —> Mr(x) e A", %)

where, as usual, 4* denotes the set of all finite strings in the alphabet A, by
assigning a finite binary string Mr(x) € A to a finite binary string x € A as
follows:

{i) Write the string = on a blank tape;

(i1) Place CU over the left-most letter of the string symbol of & and run it until
it halts;

(ii1)) Select as M7 (z) the maximal string (surrounded by blanks B) of which
some letter is scanned when the machine comes to a halting state.

The Turing machine permits us to introduce the correct definition of a com-
putable (recursive, effective) function.
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Definition 4.2,1 Computable Functions.
The function f which assigns finite strings f(x) € A* to certain finite strings
x € A* is said 1o be computable if there exists a Turing machine T such that

f(@) = Mr ().

Remark 4.2.1 Computationai Complexity.  In practice, it is important to know
how long it takes to compute the computable function for an input of given length, or
how much space on the memory tape it would take to complete such a computation.
It is simply not feasible to expect answers, even for reasonable input length, to
problems that take an exponential time to solve, i.e., such that for an input of
length r it takes =~ 10" steps to find the value of f. Even for n = 100, and a
processor taking a billion steps per second, it would take about 10°! seconds to
solve. With about 3 - 107 seconds in a year, that is some 3 - 103 years, much more
than the age of the Universe.

For that reason, it is important to distinguish between problems in the class
‘P-time that can be solved in polynomial time (i.e., in time less then n¢, where n is
the input length and c is a certain positive constant), or problems in the class P-
space that use a polynomial amount of memory, and other problems which are not
thought to be feasible. There are many important problems that do not appear to
be in the class P but can be demonstrated to have feasible (polynomial) algorithms
for a nondeterministic Turing machine which permits a random outcome. Such
problems are said to be in the class AP. It is known that the famous Hamilton
circuit problem, that is a problem of deciding whether a graph G of n vertices has
a path that visits each vertex exactly once and returns to the starting point, is in the
class AP It is known that

classP—time C classNP <€ class P—space, (6)

but it remains an open question whether or not these inclusions are proper.

Remark 4.2,2 Martians and the Universal Turing Machine.  There exists a
universal Turing machine U such that for any Turing machine 7T there exists a
binary string py (a compiler of T in the language of U) such that for all strings
zec A

Mr(s) = My (prs), 0

where p7s is a concatenation of strings pr and s. Intuitively speaking, py gives
a program for machine 7 on the universal machine U. Such a universal Turing
machine can be constructed effectively (see references in the Bibliographical Notes
at the end of this chapter). It follows that Martians, humans, and computers will all
approximately agree on the intrinsic complexity of z bits (for large n) of War and
Peace, the Mona Lisa, and a Bernoulli sequence with parameter p. Experimentally,
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the first two have been determined to be of the order n/3 and #/10, respectively,
and the last one can be computed to be n(—plog p — (1 — p)log(l — p))—the
entropy of the Bernoulli sequence (see Section 2.8 and Kolmogorov’s work on the
complexity of works of art described in the Annals of Probability volume quoted
in Bibliographical Notes).

Remark 4.2.3 Undecidability of the Halting Problem. The number of all
Turing machines is effectively denumerable, that is it is possible to provide an
effective (computable) one-to-one pairing

Nan <« T, (€3]

between natural numbers and Turing machines. For this reason, the question
“which machine computations eventually terminate with a definite result and which
machine computations go on forever without a definite conclusion?" is undecidable.
This surprising result can be formulated rigorously as:

Turing Lemma. There is no computable function f such that for alln € N and
« € A*, we have f(n, ©) = 1 if M1 (x) is defined, and f(n, ) = 0 otherwise.

PROOF  Suppose to the contrary, and define a partial recursive function ¥ ()
by y{(z) = 1if f(z,x) = 0, and ¥(x) is undefined otherwise (remember that
[ is totally recursive). Let ¥ have an index % in the fixed enumeration (1) of
partial recursive functions, i.e., ¥ = Mry,. Then My, (k) is defined if and only if
Sk, k) = 0, according to ¢r's definition. But this contradicts the assumption of
existence of f as defined in the statement of the lemma. |

The above proof depends on the “diagonalization” argument invented by Georg
Cantor to prove that the set of all real numbers is not denumerable. The Turing
Lemma itself is directly related to Kurt Godel’s famous 1931 incompleteness
theorem stating that there are statements of (Peano’s) arithmetic that are unprovable
within such a system.

Remark 4.2.4 Formal Definition of Recursive Functions.  More formally, the
set of recursive functions can be defined as the smallest set of functions containing

(A) Successor functions

Succ : A* 32— Succ(x) = aix € A"

(B) Constant functions

C3 (A 5 (x1, e d) b= CPMa, e Xn) = y € AN
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(C) Projection functions

PR (AN 3 (61, X205 X0) —> PR, x0) = X € A

and which is closed under function composition and primitive recursion. The latter
is defined as follows: f : (A*)"*! 1> A* is obtained by primitive recursion from
g (AY' > A*andh; : (AN > A% i=1,...,pif

f(xl:"'7xn;k) =g(x1$'~')xn)s

flxn, ..., X, Succ;“(y)) =hi(x1,.-., %0, ¥, f(X1,..., 2, A))

foralli = 1,...p, X1,...,%:,y € A*. A concatenation cony(A*)? — A*
defined by the formula conz(x, y) = xy is a good example here.

4.3 Kolmogorov complexity and random strings

Having established in the previous section the formal notion of computable
(recursive) functions, we are now prepared to introduce the correct notion of com-
plexity of a fixed string. Consider a finite alphabet

A={ali'--vaz} (1)

consisting of z > 2 letters and a (partial) computable function

¢: A* x N3 (x,n) —> @(x|n) € A%, @

where, as before, A* is the set of all finite words in the alphabet A (including the
empty word @),

Definition 4.3.1 Kolmogorov Complexity.
The Kolmogorov complexity induced by ¢ is a function

Ky : A*x N> (z,n) —> Kg(zln) € NU{oo}, A3)

defined by the formula

min {length (y) : ¥y € A*, ¢(y|m) ==}, ifx = ¢(ylm)
Ky (zlm) = for some y € A*;
oo, otherwise.
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In other words, for each positive integer n, we have an effective dictionary
¢(..|n) translating some finite words ¥ into the finite word @, and the related
Kolmogorov complexity of & is the length of the shortest word ¥ that the dictionary
would translate into & or +oc if there are no words translatable into . To gain an
intuitive understanding of this concept, let us go through a number of examples.

Example 4.3.1 Trivial Dictionary.
Let¢ : A* x N — A* be defined via a single, independent of n, trivial computable
function ¢ (x|n) = x, forevery & € .A* and n € N. Then

Ky (x|m) = length (x), ze X necN. @

Example 4,3.2 Single Nontrivial Dictionary.

Let £ : N > A* be a (partial) computable function. In other words, we have a
single dictionary containing effectively a denumerated list of finite words. Define

@7 (x|n) = f(n), forallx € A*, n € N. 5

If £ = f(n) for some n, then ¢;(@|n) = x, where @ is the empty word. Conse-
quently,

ifx = f(m)

otherwise.

Ky, (@, m) = [go ©

Simply stated, if a word is listed in our dictionary, then its complexity is 0, and if
it is not listed, then its complexity is infinite.

Example 4.3.3 Series of Dictionaries, Each Containing Words of Fixed Length.
Consider a partial recursive function ¢ : A* x N S oA given by the formula

@, iflength(x)=n

$(win) = oo, otherwise. @
Then
_ ) length (x), iflength(®) =n
Ke(z|n) = [ 00, otherwise. ®
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Example 4.3.4 “Optimal" Coding of Integers.

Consider positive integers written in the binary form (i.e., finite strings written in
the alphabet A = {0, 1}, with z = 2). In the set .4} of all strings of fixed length
n introduce the following special enumeration: first, group strings in order of
increasing number of 1s in each string, and then, within each group, order strings
lexicographically. For instance, the 2% = 16 strings of length 4 would thus be
ordered as follows:

0000

0001, 0010, 0100, 1000,

0011,0101, 0110, 1001,1010,1100,

0111,1011,1101,1110,

1111,

Now, the idea is to encode sparse strings € .AF more economically by their
number, No.(z), in the above enumeration. The number No. (&) of a string © with
small frequency m of 1s will be relatively small, so the length of its description
in the new enumeration would be small as well. Given our discussion of the
information contents in Section 2.8, it 1s not surprising to see that if the relative
frequency p = m/n of 1s in string « is < 1/2, then the number of binary digits
required to encode No.(z) is approximately (on the average) equal to

nt(m/n), )

where H is the binary entropy function

H(p)=—plog; p—(1—pjlog,(1—p), O<p<l (10)

If our description of the new enumeration system itself requires, say, ¢ binary
digits, then the length of the new description of a string & € A, containing exactly

m ls is, approximately,
nH{m/n)+c. (1)

Observe that for large n and small frequencies m/n of 1s this number is certainly
smaller than n—the length of string . Take, for example, two binary strings of
length 32:

00001001 100000010100000000100000

01001110100111101000001100101101

and note that for the first one the ratio m/n = 6/32 and for the second one it is
1/2. So, the first has a shorter definition. 0

Let us put this example in the context of Kolmogorov complexity. For each
n € N, define
¢ (No.(x)|n) = x,
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that is the number No.(x) (say, expressed as a string in the binary form) of the
string @ in the new enumeration is mapped into @, For example, in the case of
n = 3, we get the following table of values of the (computable) function ¢:

x Y _{0 1 10 11 100 101 110 111
3/ = \000 001 010 100 O11 101 110 111

If we denote by m(x) the number of 1s in the string &, then the result of the above
intuitive analysis can be rewritten in the form: for all x € A*

K (x|length (z)) ~ length () - H (Eg-h%) (12)

whenever ) i
_m@) < -, (13)
length () — 2
You will be asked to confirm this result experimentally in the Experiments, Exer-
cises, and Projects section at the end of this chapter.

At this point we are ready to define a Kolmogorov random string as a string of
maximal, or close to maximal, Kolmogorov complexity. More formally, we have:

Definition 4.3.2
A string © € A* is called Kolmogorov random if

K (z|length (z)) > length (x). (14)

Given an integer m, 0 < m < length(x), a string x € A* is called Kolmogoroy
m-random if
K (x|length (x)) > length () — m. (15)

1tis natural to ask the question: Are there any random or m-random strings? The
answer is yes and it depends on a couple of simple estimates that are rigorously
proved below. They also give a taste of what can be accomplished within the
rigorous complexity theory. Recall that the general assumption is that the strings
x € A* are written in the finite alphabet 4 = {4y, ..., a;}, z > 2.

Proposition 4.3.1
For all positive integers n,r € N, n > r, there are at most 27 strings of length n
and Kolmogorov complexity r, i.e.,

#[a: € A* : length (z) = n, Ky(zin) = rl <Zz. (16)
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PROOF  Denote

A ={x e A*: length(x) = n, Kp(z|n) =r}

and define a mapping D : A — (subsets of .4*) by the following formula:

D(zx) = {y € A* : length (1) = r, ¢(y, length (z)) = x}.

Then, forany @ € A, the set D(x) # @, and if x; # x2 then D(x)) N D(x2) = @
so that D(x1) # D(x2). Thus, by a simple counting argument,

#a=#DA)<#A =7 1|
The above proposition immediately yields the following:

Propaosition 4.3.2
For any integersn,m € N, 0 < m < n, there are at most (2" — 1}/(z - 1)
strings of length n and Kolmogorov complexity smaller thann —m, i.e.,
m_1

n— —_
#{:c € A* :length(x) = n, Kg(xln) < n — m} < 5—;——_—1—*

17
PROQOF Add sidewise the inequalities from Proposition 4.3.1 for r =
0,1,2,...,n —m — 1. Then, an application of the formula for the sum of the
geometric progression gives us the estimate (17). |

Applying the above upper estimate to the complementary set of strings with
complexity at least » — m, and recalling that the total number of strings of length
nis z", we get the following:

Corollary 4.3.1

For any n,m € N, 0 < m < n, the fraction of all strings of length n which
are m-random is strictly positive. More precisely, denote by c(n, m) the number
of strings of length n with the Kolmogorov complexity within m of the maximal
complexity of such strings, i.e.,

c(n, m) :=# [a: € A* : length &) = n, Kg(@|n) > n — m] (18)

(Y ()
" z—1 z—1
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In particular, the fraction of Kolmogorov random strings is positive as

0 -2, (20)
" z—1

The last estimate shows that there is at least one Kolmogorov random string of
each length, that is a string = of length n whose complexity satisfies condition
Kg(x|n) > n. It also shows a drastic difference between the properties of binary
strings and strings written in longer alphabets: If z > 3, then, in view of (20),
lim,_, o« c(n, 0) = co that is the number of Kolmogorov random strings of length
n increases to infinity as n — 00. As a matter of fact, in such a case, more than
half of all the strings are Kolmogaorov random. However, inequality (20) does not
give such assurance for z = 2 in which case it only states that ¢(n, 0) > 0 (or
c{n, 0) > 1, if one uses the stronger first inequality from Corollary 4.3.1). On the
other hand, if m > 0, then the number of m-random binary strings also increases
to infinity with n. For example, if z = 2, m = 10, then more than 99.8% of all
strings of length greater then 10 are 10-random.

Remark 4.3.1 Gddel’s Incompleteness Theorem.  The above proofs of exis-
tence are non-effective. The Kolmogorov complexity function K (x) is not com-
putable. Indeed, if X (x) were computable, then we could define a string of high
complexity with a short program — the program would make use of the algorithm
to compute K (x).

In other words, although we have proved the existence of Kolmogorov ran-
dom strings, the statement “& is Kolmogorov-random” is not provable within any
consistent! formal deductive system (i.e., consisting of definitions, axioms, rules
of inference) for all but finitely many strings.

Indeed, fix a formal system F (say, described completely by f bits) in which the
statement “x is Kolmogorov-random" is expressible. Assume to the contrary that
the proof of such statement, for all random x of any length », is contained within
the system F. Then, take a random string of length n >»> f and print the proof that
it is random.? The whole proof uses only logn + f < n bits of data—impossible
if the system F is consistent.

Results of this type, although in a different context, are known as Godel incom-
pleteness results. Here, although initially it might sound pessimistic and look like
a reincamnation of the Berry-Richard paradox, it is understandable if one contem-
plates the notion of randomness at a deeper level.

TRecall that a formal system is said to be consistent if no statement is expressible in this system
that can be proved to be both true and false.
2The notation a > b means that a is much greater than &,
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In our present context, the existence of the universal Turing machine mentioned
in Section 4.2 also can be put on a more formal ground. The next result is funda-
mental for the theory of algorithmic complexity.

Kolmogorov’s Universality Theorem. There exists a partial recursive function

w: A* x N> A* such that for any ¢ - A* x N > A* one can effectively find a
C(= Clw, ¢)) such that

K,(xz|m) < Ky(xlm)+C Yaxe A, meN.

The importance of the result rests, of course, on the fact that the constant C is
independent of the string & and its length m, which means that the complexity
measured by different devices is essentially the same (up to a constant C). For
very long strings, the differences are negligible. So, for them all the previous
considerations in this section can be assumed to be conducted in the context of
a fixed universal Kolmogorov complexity X = K. Then, in view of the Kol-
mogorov’s Universality Theorem and Example 4.3.1 (where ¢(x, m) = x) there
exists a ¢ € N such that

K (x|length (x)) < length (z) + ¢, vz € A,

In particular, if the number z of characters in the alphabet A is > 2, then there
exists a sequence (m,) C N such that

nSmR5n+C’

and such that

lim # {a: € A* : length (x) = n, K (@|n) = m,,] = o0.
n—>00

4.4 Typical sequences: Martin-Lof tests of randomness

In this section we return to the idea of a sypical or Martin-Lof random siring first
brought up in Section 4.1. In the context of random strings it is often beneficial to
think about very long, perhaps even infinite, strings. How do we define “small",
“negligible", “exceptional”, or “atypical”, families of such strings? One natural
way to introduce a “measure” measuring the size of families of, say binary, strings
written in the alphabet A = {0, 1} is to proceed as follows:

Denote by A the set of all infinite binary strings and by A*, as before, the
set of all finite binary sequences. Each finite string £ = (xy,%2,...,x,) € A*
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determines what is called a n-dimensional elementary cylindrical set T of infinite
strings that begin with the finite string & and have no restrictions imposed on the
digits x4 1, Xp42, ..., 1.8,

Tg:={ye A ¥ =X1,...¥n = Xn, Yntls Ynt2, ... abitrary}. (1)

The name “cylindrical” is an obvious analogy to cylindrical sets in Euclidean
spaces for which some coordinates are subject to constraints while others remain
unconstrained. Since there are 2" n-dimensional elementary cylindrical sets in
A, and they are all mutually disjoint, we will assign to each of them the same

measure
Pr (Fm) =2 lenglh (w)_ (2)

It corresponds to the symmetric Bernoulli probability distribution on the binary
strings of length n. So, for example, there are 2% = 16 4-dimensional elementary
cylinders, starting with the cylinder the string therein being of the form

Each of these cylinders is assigned probability = 1/16.

In this context it is tempting to try to define a “negligible" family of infinite
strings N as any subset of .A® which has the probability (2) zero. This means that
N would have to be contained in a finite collection of cylinders (and we already
know how to measure those via the formula (2)) of arbitrarily small total probability.
More formally, we have:

Definition 4.4.1 Sets of Infinite Strings of Probability Zero.
Let N be a set of infinite binary strings. We shall say that

Pr(N)=0
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if, for any & > O there exist an integer k € N and finite strings @', ..., x* ¢ A*
such that

(i) Ui Tai DN,
(i) T Pr(fy)<e

Then the next step would be to call a string “atypical” if it belongs to at least one
“negligible” set of probability zero and, finally, to call a string “typical” if it is not
“atypical”, i.e., the family 7 of “typical” strings would be defined by the formula

T=A°\ |J W

Pr (N)=0

As attractive as this line of reasoning might look, it is not successful since, as it is
easy to check, with this definition the set T of “typical” strings would be empty.
The above approach was salvaged by Per Martin-L6f who has shown how the
above definition of the family of strings of probability zero can be fixed.
Following his approach, we shall say that a set in infinite strings is effectively of
probability zero if the cylinder bases in Definition 4.4.1 can be selected effectively.
More precisely, we have:

Definition 4.4.2 Sets of Infinite Strings Effectively of Probability Zero.
A set N C A® is said 1o be effectively of probability zero, in short

Pr(N) Do,

if. for any & > 0, there exist an integer k € N and computable strings <!, . .. xk

which satisfy conditions (i) and (ii) of Definition 4.4.1.

Now, the set T of typical strings

T:=A°\ (J W

Pr (M)Z0

is nonempty, and moreover
rrE

This is the contents of the Martin-Lof’s Theorem. For its proof, and a more detailed
analysis of the concept of Martin-L6f randomness, we refer to the Bibliographical
Notes at the end of this chapter. In this context, a string & € A™ is called Martin-
Lofrandomifx e T,
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Example 4.4.1 A Typical State of the Glass of Water.

In large systems, such as statistical mechanical ensembles, the property of being a
member of a large majority is often related to having a certain measurable “typical
property”. Consider a gas G of n molecules of mass 2, with three component
velocities v,.l , v?, v?, i =1,2,..., n,whichdescribe the kinetic state of the system.
Our “universe” consists of systems G for which the total kinetic energy is bounded
by a certain constant, say 1, i.e., such that

KinEn (G) := Y [0} + 622 + ]| < 1

i=l

In other words, in the phase space R¥ > (vil, vf, v?). i=1,2,...,n, our “uni-
verse” is simply a 3n-dimensional ball of radius 1, with a 3r-dimensional volume
equal to

7 3n/2

Va = T +3n/2)

We assume that the energies are randomly uniformly distributed over this unit
ball (sce Marhematica Experiment 3.10.2). Now, the volume of the part of our
“universe” that consists of states with kinetic energy less than 1 — ¢ is equal to
(1 — £)*"V, so that the fraction of our “universe” with energies within an ¢ of the
maximum energy 1 is

1—(1—eP.

This number is extremely close to 1 for Jarge systems, that is for large values of n.

For example, even with only » = 3000 molecules, 99.99% of our “universe”

has approximately the same (thus the typical) kinetic energy equal to 1. More
precisely,

Yolume {G :.999 < KinEn (G) <1} 9999

Volume {G : KinEn (G) < 1} - )

In other words, the probability that the kinetic energy of a molecule is within 0.001
of 1, is about 0.9999. Just imagine how close to 1 that probability would be with
a more realistic n = 102> molecules.

The above simple calculation explains an intuitively obvious thermodynamic
fact that although different molecules can and do have different and *“randomly”
distributed velocities, it is extremely unlikely to observe in a glass of water a
spontaneous formation of subregions (say bottom and top halves of the glass) with
drasticaily different temperatures (say, 32° F and 212° F.)

FThis striking example was borrowed from David Ruelle’s book.
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The notion of a typical or Martin-L6f random string permits us to construct tests
of randomness. So, consider a finite binary string * = x;x2...x, wriiten in the
alphabet A = {0, 1}, and remember that the quantity

Il+->-+xﬂ: (3)

simply counts the total number of 1s in the string . The sum (3) is familiar
from the development of the binomial distribution in Section 3.1. Remembering
the construction of measure (2) on cylindrical sets of strings, and the fact that the
equipartion of 0s and 1s was a fundamental desirable feature of random strings (see
Section 1.1), we can propose the following algorithm of testing the hypothesis®
that “z is random”.

Example 4.4.2 A Basic Test of Randomness.
Select the significance level ¢ = 27, m = 1,2,...,n, and find the smallest
constant 8 = §(m, n) such that the number of strings y of length n for which the
inequality

‘ yit...+yn 1

,._'>¢S
n 21

holds is < 2"~ or, in other words, the number 8 has to satisfy the inequality

Mkl‘zg}“
n 2

Pr lyeA":

Then:
(1) Reject the hypothesis of randomness of x (at the significance level ), if

x1+...+xn_l‘>6‘
n 2|7

(i1) Do not reject it, in the opposite case.

For example, for strings of length n = 10 and significance level &£ = 273, that
is m = 5, it is easy to see that 8§ = §(5, 10) = 0.4, since exactly 22 strings y out
of the total of 2!° = 1024 satisfy the inequality

n+...+yo 1 Zi

10 2 10°

¥The general idea of statistical hypothesis testing will be studied at length in Part 3 of this book.
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Indeed, these are the strings containing either zero, one, nine, or ten 1s. Hence,

“ e 4 22
u_l‘> _]=m-vo.215<2“5.

P 1o,
r[yeA 10 2| = 10] T Toz4

Thus our test would not reject, at significance level 27> = 3% (meaning that the
small minority of at most 3% of all strings of length 10 would fail this tests), as
random all the strings for which the relative frequency of 1s differs from 1/2 b

less than 0.4, i.e., all the strings containing at least two, and at most eight, 1s. ﬁ

Of course the above test is just a coarse example but its spirit is correct, and
Martin-Lof used this simple idea to propose a general concept of a test (or rather a
series of tests with improving significance levels) of randomness of strings written
in an alphabet A = {a1, ..., 4}

Definition 4.4.3 Martin-Lof Test of Randomness.
A non-empty effectively enumerable set V. .C A* x (N \ 0) is called a Martin-Lif
testif. foreachn e Nandm = 1,2, ...,

Vil CVpi={z e A% : (z,m) € V}, (4

and

n—m

#Haxe A 'length (@) = n, @ € Vp} <

&)

-1

It is an obvious observation that if V is a Martin-L&f test and (z, m) € V, then
necessarily
length () > m > 1.

Now, let us consider a number of illuminating examples. The first one will connect
the notion of the Martin-Lof test of randomness with the notions of Kolmogorov
complexity and randomness considered in Section 4.3.

Example 4.4.3 Testing Randomness via Kolmogorov Complexity.
Consider a computable function ¢ : A* x N — A*. Then

Ve — [(m,m)::veA*,m: 1,2,..., and

Ky(x]length (x)) < length (x) — m}

is a Martin-Lof test. This follows directly from Proposition 4.3.2. 0
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Example 4.4.4
Select an ¢ € N and a finite siring € .A* such that length (z) > ¢ > 1. Then,
the set

H(z,q) = {(z, 1), (z,2),...(x,¢)}

defines a Martin-Lof test. In fact, V,, = {(x, m)} form < q,and =@ form > g.
1t just declares one particular string to be non-random. We need to check only the
second condition (5). This is done as follows: Because

#y € A" : length (y) =n, (y,m) € H(z, q)} (6)

isequalto 1 if » = length (x), and 1 < g < g, and 0, otherwise, we have that
the number in (6) is less than z"~™/(z — 1), since length (x) > ¢ > m, ie.,
"Mz —-1) > 1.

Example 4.4.5
Take @, g as in Example 4.4.4. Then,

H(z,q) = [(y,n):ye.A*,nEN,l5n5q,y3w},

is a Martin-Lof test. The notation ¥ O @ means that ¥ is a concatenation of  and
some other string w € A*, i.e., ¥y = xw. Again, we will verify only the second
part of Definition 4.4.3. Take n, m € N with m > 1. Then,

#y € A : length (3) = n, (y,m) € H(z, 9)}

_ #{y e A*: length(y) =n,y>D xz), ifl<m< q, n 2 ]ength(x)’
o, otherwise,
_ Z*7lengh(x) - if 1 <m < g, n > length (z),
0, otherwise,

<"z -1,

because length () > q > m. 0

The question of how to select proper tests of randomness is not easy. Testing
equipartition is one idea suggested by our discussion in previous chapters. Other
tests are suggested by the theoretical models of randomness such as those arising
in the context of the notion of statistical independence and the Kolmogorov’s
axiomatic probability theory which will be developed in Chapter S. They could
involve, for instance, testing the Gaussianness of deviations from the mean (the



4.4, Typical sequences: Martin-Lof tests of randomness 225

Central Limit Theorem) or other, more subtle phenomena, such as the law of the
iterated logarithm.

The set of all Martin-Lof tests is effectively enumerable. However, a finite union
of Martin-L&f tests of type H (x, ¢) (see Example 4.4.4) need not be a Martin-Lof
test. For example, take z = 2,a; = 0,a2 = 1, @) = 00, &3 = 01, &3 = 10. Then

H = H(z), ) U H(zz2, DU H(z3, 1)

is not a Martin-L&f test as the second condition in Definition 4.4.3 is violated. On
the other hand, there exists an analog of the Kolmogorov’s Universality Theorem
of Section 4.3.

Martin-L6f’s Universality Theorem. There exists a universal Martin-Lof test
U such that for every Martin-Lif test V one can effectively find a positive integer
c=c(U, V) such that, forallm > 1,

Vm+c C Um-

A universal Martin-L.6f test U has the following property: if a string is random
with respect to U, then it is random with respect to any other test (with perhaps a
change of the significance levels).

Definition 4.4.4
The critical level induced by an Martin-Lif test V is given by a function

my : A* - N

defined by the formula

max{m > 1:x € Vy}, ifxeV,
0, otherwise.

mv(w)={

In other words, the critical level is the smallest level of significance (i.e., z7™)
at which the randomness hypothesis is rejected. In terms of the critical level, the
definition of the universal test I can be rephrased as follows: U is a universal
Martin-Lof test if for every Martin-L6f test V there exists a constant ¢ = ¢(U, V)
such that for all x € 4*

my(x) < my(x) +c.

Also, there exists a relation between the fixed Kolmogorov’s universal complex-
ity discussed in Section 4.3 and the critical level of a universal Martin-L6f test.
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Namely, one can find a positive integer g such that for all € A*

length (z) — K (z | length (z)) — mu(m)‘ <q.

The proof of this result is quite difficult and will not be given here (see Bibliograph-
ical Notes). However, given the above result, it is not hard to see that a Martin-L6f
test associated with the universal Kolmogorov complexity is universal.

Corollary 4.4.1
Fix a universal Kolmogorov algorithm w : A* x N — A* Then every
Kolmogorov-random string withstands the universal Martin-Lof test V.

Less formally, Kolmogorov-random strings possess almost all conceivable sta-
tistical properties of randomness. Also, every m-random string withstands the
universal Martin-L&f test V. Indeed, for some

m < length (x), K(z | length (z)) > length (x) —m

so that (x, m) & V©.

On the other hand, asymptotically random strings are not constructable, i.e.,
there is no effective algorithm for generating (m)-random strings. More exactly,
the function

K:A* > N, K(z)=K(z|length (z))

is not recursive. More generally, if f : N S A* satisfies, for n in the domain of
f, the condition
Ko (fm)in) = a(n),

ando : N > Nissuchthatlim,_, o a(n) = co (e.g.,w(n) = n, a(n) = |logyn],
« need not be recursive), then f is not a computable function. In particular, the
critical level induced by an Martin-Lof test V is not computable, and the universal
Kolmogorov algorithm w is not computable.

4.5 Stability of subsequences: von Mises randomness

In this section we briefly return to the notion of von Mises randomness to com-
plete the discussion of Section 4.3. The idea is that the frequencies of letters in a
string should be stable under the operation of substring selection. This is clearly
related to the equipartition ideas introduced in Section 1.1,
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To illustrate what we have in mind, let us consider a string of Os and 1s of
length n containing exactly m 1s. For any “method" of splitting a random string
into two substrings of lengths »y and n;, with m; and mg 1s, respectively (so that
n = ny + np, and m = m; + m3), one would like to see the frequency of 1s in the
original string preserved in the substrings, i.e., one would like the quantity

m) my

ni n2

to be small. More precisely, for random strings of increasing length, one would
like to see, foreach ¢ > 0,

m) n2

Pr{:ce.A“:

<egt—1, as ni,ny— o0, 1
ny  n

where Pr is the uniform measure on the cylindrical sets of strings introduced in
Section 4.4.

Clearly, not every “method" of selecting substrings is admissible. If we say:
select the subsequence which contains only 1s then, for sure, the stability of fre-
quencies will be ruined. So, one of the principal tasks here is to describe admissible
algorithms of selecting substrings.

For simplicity, let us consider an infinite binary string ® = (x1, X2, ..., ) written
in the alphabet .4 = {0, 1]. The following definition of an admissikle algorithm ¢
was devised in the late thirties by Alonzo Church.

Definition 4.5.1
The Church-admissible substring selection algorithm is a computable function

p: A* — {Yes, No),

such that the decision Yes to include the xi in a substring depends only on the

values of x1, . .., xik—1, and such that the selected digits appear in the substring
in the same order as in the original one. To be more precise, the input of ¢ is
= X1, ..., Xk—1, and the output = Yes for inclusion of x; in the substring, or No

Jor exclusion of that digit.

The subsequent development of the algorithmic complexity theory demon-
strated, however, that such a concept of admissible selection algorithm is somewhat
too strict when placed in the context of Kolmogorov and Martin-Lof random-
ness, and the resulting class of Church-random sequences—too large. All the
Kolmogorov-random strings turn out to be Church-random but there are Church-
random strings that fail some basic Martin-Lof tests of randomness (such as the
tests based on the so-called Law of Iterated Logarithm, see Chapter 5).
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In response to this crisis, Andrei Nikolaevich Kolmogorov introduced the fol-
lowing broader selection rule:

Definition 4.5.2
The Kolmogorov-admissible substring selection algorithm is a computable func-
tion for which the inputs are, for each k € N,

nl!nZs '-'5nk:xn|:xn2v'--sxnks

and the output isng 11 (£ ny, .. ., ny) and Yes or No, that is, a decision on whether
or not to include x,, | in the substring. In this definition, the order of the terms in
the selected substring need not be the same as in the original string.

This definition, and the older von Mises’ ideas of “collectives", permit introduc-
tion of a usable concept of von Mises randomness.

Definition 4.5.3
An infinite binary string is said to be von Mises-random if the frequency of 1s of
any of its Kolmogorov-admissible substrings is equal to 1/2.

It is known that any Kolmogorov-random sequence is also von Mises-random.
However, the problem of whether these two classes of random sequences are the
same remains open.

4.6 Computable framework of randomness:
degrees of irregularity

As we have seen in this chapter, an analysis of the concept of randomness of a
fixed binary string very quickly leads to subtle, or even philosophical considera-
tions. Although all of this analysis impacts the computer generation of pseudoran-
dom numbers used in simulation, Monte Carlo methods and secure ciphers (see
Sections 1.13, 2.8, etc.), the latter has its own demands and requirements such as
ease of coding, set-up and running time, memory requirements, and portability.

The concept of Kolmogorov randomness as maximal computational complexity,
although intellectually so appealing, and obviously of great relevance for crypio-
graphic purposes, is, by definition, the worst one for computer implementation
and suffers from fundamental incomputability problems. So, in practice, as we
mentioned in Chapter 1, one uses relatively simple recipes, such as the linear con-
gruential methods or quadratic residue (QR) methods, containing few parameters
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and one concentrates on optimal selection of these parameters from the viewpoint
of a battery of tests one can run on them and that are theoretically suggested by the
notion of Martin-Lo£’s hierarchy of tests. As a matter of faci, different purposes
for which the pseudorandom numbers are generated may require different batteries
of tests.

Practically, one always deals with periodic random strings, and, of course, one
wants the periods to be as large as possible. One also wants to avoid any obvious
intrinsic structure (such as lattice structure, see Fig. 1.11.1) in a pseudorandem
siring. Then one runs some of the statistical tests on it such as the uniformity
test checking the equiparition properties (based on the Kolmogorov-Smirnov law
of Section 3.9), frequency test (based on the Law of Tterated Logarithm of Sec-
tion 5.7), gap test, run test, permutation tesi, or the test for serial correlation that
probes the interdependencies within the pseudorandom sequence. What we mean
by some of them will become clearer after we develop appropriate probability the-
ory and statistics tools in subsequent chapters. Here are some simple examples
complementing the Kolmogorov-Smirnov goodness-of-fit test from Section 3.9.

Example 4.6.1 Chi-Square Test.

This test applies to the general discrete random quantity taking values vy, ..., uy
with distribution F. The null hypothesis Hyp is * the sequence x1,..., X, is
a sample of independent random quantities with common distribution F =
(pi...., pn)7. Let f; be sample frequencies of values v;, i = 1,2, ..., N (binning
can be employed for an absolutely continuous distribution). Then, asymptotically,
for large n, the random quantity

N 2
(fi —np)
Xz%/—1 = z :—f n;p (N

i=1

has the chi-square distribution with N — 1 degrees of freedom. The approximation
becomes reasonable if the minimum frequency of the possible values is at least
five. The hypothesis Hy is rejected, at a prescribed significance level, for values
of xnz_] larger than the corresponding critical value.

This general test can be applied to test the particular uniformity hypothesis, of
interest in this section, in several ways. One of the possibilities is shown below.
For more details on this test see Chapter 8.

Example 4.6.2 Birthday Spacing Test.

The null hypothesis Hy is “the sequence u1, ..., u,, is a sample of independent
random quantities uniformly distributed on the vnit interval [0, 1)”. Select a pos-
itive integer d. Sort the sequence of integers j| = |du1], ..., jx = [dux] in the
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nondecreasing order to obtain the order statistics

0<jn=<jo=<.-.Zjw=d—1

Denote by X the random quantity equal to & minus the number of distinct spacings
among

Joy —Jays  J®m— i@, s dee2 — deen.  Jm+d— -

It is known that under Hp, asymptotically, for large d, the random quantity X has
the Poisson distribution

3 i
=ek3/4d(k /v4d) ,

m i=12,.... 2)

Pr{X =i}

Now, independently repeating this procedure n times, we can apply the chi-square
test of Example 4.6.1.

Example 4.6.3 Autocorrelation Test.

The null hypothesis Hp is again “the sequence u1, . .., u, is a sample of indepen-
dent random quantities uniformly distributed on the unit interval [0, 1)”. Define
the autocorrelation, with delay d, by the formula

k—d
1
AC@) = — > i — 1/2) (@ipa — 1/2). 3)
i=1

Under the hypothesis Hp, the random quantity AC(d) has mean value 0 and variance
1/(144(k — d)). One can show that the random quantity T = 12/k — d AC (d),
has asymptotically, for k¥ much larger than d, the N (0, 1) distribution. This fact
now can be used in a standard way to reject hypothesis Hp at a given significance
level, selecting the critical rejection interval from the tables of the standard normal
distribution, like in Section 3.7.

Degrees of Irregularity. In this section, we would also like to describe a recent
effort by Steve Pincus, Burton H. Singer, and Rudolf E. Kalman (see references
in the Bibliographical Notes section), to produce a computable framework for
randomness bhased on the concept of approximate entropy.

Consider a binary string « = (x1, x2,...,%,) of length n and its  ~- m 4 1
blocks

m(i)=(Xj,xf+],...,xi+m—]), i:l,,..,n—m+1, (4)
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of length m < n each. The distance d(x(i), ®(j)) between the blocks x(i) and
x(j) is defined as

d(2@).2()) == max |iprt = %ee] 6)

It is either O if the two blocks are the same, and 1 if they are different. For a fixed
real number O < € < 1, the quantity

— #li: dz@,z() <e, 1 <j<n—m+1}
¢ n—m+1

(6)

measures the fraction of blocks of length m which are exactly the same. The role
of e is not essential here, but it is introduced so that nonbinary strings could also
be considered within this framework.

Definition 4.6.1 Approximate Entropy.

Consider a fixed binary string € = (X1, X2, ..., X,) of length n, and its blocks
of length m. The approximate entropy of & measures the logarithmic frequency
with which blocks of length m that remain identical for blocks augmenied by one
position. More precisely,

AET () = ®” — @™t m > 1, @
where
1 n—m+1
P InC",
n-m+1 E n& ®

with AEX(z) = —@!.

The above definition is, obviously, a cousin of the concepts of the Grassberger
and Procaccia’s correlation dimension and of Shannon’s entropy, introduced in
Sections 2.8 and 2.9. Large values of AE(x) imply strong fluctuations and irreg-
ularities in the string x.

Definition 4.6.2 Irregular Strings.
A binary string =™ of length n is said to be {m, n}-irregular if

AEM (/™) = max AE (), )
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where the maximum is taken over all 27 binary strings of length n. It is called
n-irregular if it is {m, n}-irregular form = 0, 1, 2, ... m;: (n), where

merir(n) ;= max{m : 22" < n}. (10)

The selection of m,,;; is motivated by the fact that for a “typical” Bernoulli
random siring x, the limit

lim AEM " (z,) = h
n—>00
is equal to the entropy of the Bernoulli ensemble.

Example 4.6.4 Irregular Strings of Length n = 5.
In this case, m.,;(n) = 1, and the string = = (xy, x2, X3, X4, X5) is S-irregular if
both

AE}(@) = max AEY(x) ~ 0.673, an

and
AEl(x) = max AEL() ~ 0.7133. (12)

Out of 2° = 32 binary strings of length 5, the {0, 5}-irregular strings satisfying
condition (11) are those with three Os and two 1s, or two Os and three 1s. There
are 20 of them. Of these, only four,

(1,1,0,0,1),

(1,0,0,1,1),

{0,0,1,1,0),

0,1,1,0,0),
satisfy the condition (12) as well, that is are also {1, 5}-irregular. Note in each of
the S-irregular strings, each of the four blocks of length two, (0,0, (0,1), (1,0), and
(1,1), occurs once, the property not enjoyed by 16 strings that are (0,5)-iregular,
but not (1,5)-irregular.

Remark 4.6.1 As the length » of the strings increases, the fraction of those that
are n-irregular decreases. It is easy to see for n-irregular strings of even length
n = 2k, since they have to have exactly k 0s and 1s, and the fraction of those
among all 2" strings of length n is, in view of Stirling’s formula,

Gy ke Namk 11

2% Y ek 2% Jak (13)
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For infinite binary strings & = (x, x3, . ..), for which the limit

AE" () := nl_l)ngo AE (z) s

exists, we can introduce the following definition of computational randomness:

Definition 4.6.3 Infinite Computationally Random Strings.
An infinite binary string x is said to be computationally random if AE™(x) =
In2 = 0.693, for alim > 0.

Clearly, In 2 is selected because it gives the maximal entropy rate for Bernoulli
random sequences, with the maximum information per digit carried. One can show
that if the approximate entropy is less than In 2, then the finite prior history block
biases the subsequent observations, resulting in a degree of predictability for the
string.

Example 4.6.5 Deficits from Maximal Irregularity of the Champernowne number,
7, e, +/2, and /3.

We can study the proximity to maximal irregularity of a finite string «® =

(x1, ..., xp) of length n by considering the quantities
DEF™(x) = mi';lx AE (y) — AE] (@), (15)
which we will call the deficit from maximal irregularity. I

For the initial string of length 20 of the base 2 Champernowne number

¢=0 1,10 1,1,90090110111106,0010,)

checking the blocks of length 2 (i.e., for m = 1), gives the deficit from maximal
regularity

DEF" (g) := max AEL (1) — AE}y(s) ~ 0.693 — 0.677 = 0.016,  (16)

whereas, for the periodic

p=010101,0101010,1,0,1,0, 1,0 1,)
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we have the deficit

DEF"(p) .= max AE}y(y) — AELy(p) ~ 0.693 — 0.000 = 0.693. (17

Recently, Pincus and Kalman (see Bibliographical Notes) computed the deficits
from maximal irregularity for initial strings of length n of the binary expansions
of the numbers 7, ¢, +/Z, and /3, checking the approximate entropy for 1-blocks
and 3-blocks, that is computing DEFC and DEF2. The computations were carried
outforn =1, 2,..., 300000 and the results are shown in Fig. 4.6.1.

The difference between the expansions of v and e are quite dramatic, with +/2
somewhere inbetween. Clearly, for the binary expansion of # the deficit from
maximal irregularity is much smaller than for the binary expansion of e, Remark-
ably, this difference almost totally disappears if instead of binary expansions one
studies the decimal expansions. The results are shown in Fig. 4.6.2.

Linear Complexity Profiles. As we have already noticed, practical use of
the Kolmogorov complexity is difficult because one cannot easily calculate the
minimum size of a universal Turing machine program that produces a given string,
In the area of cryptography, the following substitute concept of linear complexity
is popular. For details, see Shu Tezuka’s monograph quoted in the Bibliographical
Notes section.

Definition 4.6.4 Linear Complexity.
The linear complexity A(x|n) of a binary siring © = (x1,...,x,) of length n is
the minimum degree r < n of a polynomial

p(2) =z +a,~1z’*l +...taiz -+ ap, (18)

with binary coefficients (with mod 2 multiplication), such that

Xigr = Gr—1Xi4r—1 + ... +a1xi—1 + aox; (mod 2), (19)

fori=1,....,n—r

Clearly, for a binary string of period 7', the linear complexity of its initial piece
of lengthnis atmostn ifn < T, and for larger n it is at most 7. Also, the algorithm
computing the linear complexity of any binary string of length n, in about 7% Inn
binary steps, is known.

1t is more difficult to show that the mean value of the linear complexity of the
random symmetric Bermoulli sequence X = (X, ..., X;;) of length » is equal to
n/2 + ¢, where the constants c, are known to be in the interval [0, 5/18]. The
variance of this random quantity is about 86/81. The linear complexity is a serious
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102}

(A) defo(N)

10—4 L

10'6 L

10'8 L

10-10 L

0 50000 100000 150’:(1)00 200000 250000 300000

(C) def2(N)

i

o ‘ 50000 100000 150!\?00 200000 250000 300000

FIGURE 4.6.1

Deficit from maximal irregularity for initial strings of length n of the binary expan-
sions of the numbers 1, e, \/2, and /3. Top: DEF®(z). Bottom: DEF?(z). From
Pincus and Kalman (1997).
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103 (A) defo(N)

107} (C) defz2(N)

10‘3 L

0.0 0.2 0.4 06 0.8 1.0 x10°
N

FIGURE 4.6.2
Deficit from maximal irregularity for initial strings of length n of the decimal

expansions of the numbers 1, e, /2, and /3. Top: DEF®(x). Bottom: DEF? ().
From Pincus and Kalman (1997).
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alternative to the Kolmogorov complexity X (x|n) of Section 4.3 because of the
following asymptotic estimate: for any € € (0, 1),

K(X|n)
2

Jim Pr i(l — €)AM(X|n) < = +E)t\(X|n)} =1 (20

In other words, as the Bermoulli string’s length increases to infinity, the probability
that the random quantities A (X |n) and K (X |n) remain arbitrarily close to each
other approaches 1.

One then is tempted to say that an infinite binary string ® = (x;,x2,...) hasa
perfect linear complexity profile if

1
A(min)z%, for n=12... 1)

However, it turns out that the strings with perfect linear complexity profiles are
just those that satisfy the string of recurrence relations

X241 = X2i + X; (mod 2), fori=1,2,..., (22)

with x; = 1. Thus, for the first 2n bits of such strings there are only 2" rather
than 22" choices, not a geod cryptographic property. Linear complexity profiles of
well-known pseudorandom number generators, such as those based on Fibbonacci
sequences, have been studied.

4.7 Experiments, exercises, and projects

1. The length of a finite binary string , interpreted here as a natural number
in a binary representation, is defined as the number of bits it contains.
Show that the length of @ is equal to [log,(x + 1) ].

2, (a) Find a probability function f(x) defined on positive integers x € N
with a binary representation of length /(x) < n such that for each
k < n the conditional probability Pr {X = x|{(x) = k} = 27, that
is, it is uniform. Show several examples of such f(x).
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(b) Show that the following two probability distribution functions

fay=2770% )= 271

[l

a22(x)

defined on the set of all positive integers x € N give uniform
conditional probabilities for integers with a given length of the bi-
nary representation, i.e., for each ¥ € N the conditional probability
Pr{X = x|l{x) = k} = 27%. Give some other examples of such
p.d.fs.

Construct a Turing machine, that is matrices (4.2.1-3), which translates
any binary word written in the alphabet {0, 1} into the word in which the
roles of 0 and 1 are interchanged.

Construct a Turing machine that would replace any standard English text
written in the alphabet of 26 letters plus “space” by the text in which all
the vowels are dropped. Use Mathematica for this project.

Mathematica Project. Using the Kolmogorov-Smirnov test, and the chi-
square test, check the equipartition property for singles, pairs, etc., at
different significance levels, and for substrings, for pseudorandom gener-
ators of Chapter 1, the generator provided by Mathematica, and for pieces
of George Marsaglia pseudorandom numbers provided on the UVW Web
Site.

Mathematica Experiment. This experiment is designed to illustrate the
conclusions reached in Example 4.3.4 which dealt with “optimal” coding
of sparse binary integers. Use the UVW*ZeroOne* package to make your
job easier.

(i) Produce a graph of the entropy function H(p),0 < p < 1.

(i) Write a Mathematica code computing the number k of a string of
length » in the special ordering of Example 4.3.4. Then, produce a
code computing the number K of binary digits needed to encode k.

(iii) Show, by experimenting with a large number, say 1000, of random
strings of length n = 30, 50, and 100, that if the string is sparse, i.e.,
the number m of 1s in the string is small (say, less than 10), then
K is approximately n - H (m/n). Present your results graphically to
obtain something like the graphics shown below.



4.7. Experiments, Exercises and Projects 239

g
—

2 3
' I
t

[
=]
)

w
<
4

Number of digits needed to
encode string in binary representation.
4 &

—
=3
L

[ IMinimum
SR Minimum

| — 8/}

I

Number of 1's in a string of length 100

List all the 6-irregular and 7-irvegular binary strings following the analysis
of Example 4.6.1. Use Mathematica to help, if necessary. Find common
characteristics of these strings.

Mathematica Project. Design a Mathematica experiment reproducing re-
sults of Example 4.6.5. Find the deficit from maximal irregularity DEF,',
for 2-blocks of binary and decimal expansions 7, e, v/'2, /3, for several
values of n, say n = 100, 1000, 10000, 10000. Test the hypothesis of uni-
formity for these expansions using the autocorrelation test and the birthday
spacings tests. Produce your own versions of Fig. 4.6.1 and 4.6.2.

Mathematica Project. Find the deficit from maximal irregularity for 1-, 2-,
and 3-blocks of binary and decimal expansions for the Euler constant y,
and /7, for several values of n, say n = 100, 1000, 10000, 10000. Test
the hypothesis of uniformity for these expansions using the autocorrelation
test and the birthday spacings tests. Recall, that the Euler constant can be
defined as

1 1— oo
, = / % ds — f COSS 45 ~ 0.57721566490.
0 1 5

For information on applications of this constant see, e.g., A.L. Saichev and
W.A. Woyczynski, Distributions in the Physical and Engineering Sciences.
Volume 1. Distributional and Fractional Calculus, Integral Transforms
and Wavelets, Birkhiuser-Boston, 1997.
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4.8 Bibliographical notes

Among several general sources on algorithmic complexity we quote two

[11 C. Calude, Theories of Computational Complexity, North Holland, Ams-
terdam, 1988

{2] M. Li and P. Vitanyi, An Intreduction to Kolmogorov Complexity and Its
Applications, Springer-Verlag, New York, 1993

which both contain exhaustive bibliographies and historical commentaries. The
first one is more mathematical. The second is more in the spirit of computer
science. It also conlains a very interesting chapter on physics and computation.
Another book, with a different emphasis,

[3] G. ). Chaitin, Algorithmic Information Theory, Cambridge University
Press, Cambridge, 1987

was writlen by one of the pioneers of the complexity theory. Some of the classic
works in the area of algorithmic complexity are

[4] A. Church, On the concept of a random sequence, Bull. Amer. Math. Soc.
46(1940), 130-135.

[5] A.N.Kolmogorov and V.A. Uspensky, Algorithms and randomness, SIAM
Journal in Probability Theory and Applications 32(1987), 389-412 (ap-
peared after Kolmogorov’s death in 1987).

[6] P. Martin-Lif, The definition of random sequences, Information and Con-
trol 9(1966), 602-619.

[71 R. von Mises, Probability, Statistics and Truth, MacMillan, New York,
1939,

Issue 17.3 (1989) of the Annals of Probability was devoted to the in-depth analy-
sis of Kolmogorov’s contributions to probability theory, computational complexity,
and dynamical systems theory. The physics of the coin tossing were discussed in

[8] J.Ford, How random is a random coin toss, Physics Today 36(1983), 40-47
(April).

As always, the multi-volume
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[91 D.E. Knuth, The Art of Computer Programming, Volumes 1-3, Addison-
Wesley, Reading, MA, 1973,

is an invaluable source for anything related to computing, The second volume
contains a good discussion of the pseudorandom number generation problem. More
recent sources in this area are

[10] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methads, SIAM, Philadelphia, 1992,
[11] S. Tezuka, Uniform Random Numbers. Theory and Practice, Kluwer,
Boston, 1997,
The equipartition property of the Champernowne number has been proved in

{12] D.G. Champernowne, The construction of decimals normal in the scale of
ten, J. London Math. Soc. 8 (1933), 254-260.

A pseudorandom number generator using the digits of number 7 has been re-
cently proposed in

[13] Y.Dodge, A natural random number generator, fnt. Stat. Review 64(1996),
329-344

and nonlinear methods in pseudorandom number generation are discussed in

{14] }. Eichenauer-Herrmann, Pseudorandom number generation by nonlinear
methods, Int. Stat. Review 63{1995), 247-255.

A compact disc

[15] G. Marsaglia, The Marsaglia Random Number CD ROM Including the
Diehard Battery of Tests of Randomness

distributed in 1995 as freeware by the Department of Statistics and Supercomputer
Computations Research Institute at the Florida State University, is very relevant to
the discussions of this chapter.

Finally, Section 4.6 is based on two very recent articles:

[16] S.Pincus and B.H. Singer, Randomness and degrees of irregularity, Proc.
Natl. Acad. Sci. USA 93 (1996), 2083-2088.
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{17] S. Pincus and R.E. Kalman, Not all (possibly) “random” sequences are
created equal, Proc. Natl. Acad. Sci. USA 94 (1997), 3513-3518.



Chapter 5

Statistical Independence and Kolmogorov’s
Probability Theory

Independently repeated experiments with random outcomes have a formal counter-
part in the mathematical concept of statistical independence. The cleanest way to
introduce the latter can be found within the framework of Kolmogorov’s axiomatic
probability theory which, since the 1930s, became the standard, and by far most
widespread, mathematical mode] of randomness.

5.1 Description of experiments, random variables,
and Kolmogorov’s axioms

In this section we will consider experiments with several (or, infinitely many)
possible random outcomes which cannot be precisely predicted given the experi-
mental conditions. It is convenient to have a special term for this kind of empirical
situation: we will call such experiments random trials. Many diversified examples
of random trials can be found in Chapter 1.

Example 1.3.2 gives measurements of diameters of bases of fragmentation
bombs in a Cleveland factory. Although the bases were manufactured under “iden-
tical” (as much as the manufacturer can reasonably control them) conditions, the
outcomes of the measurement process were not uniquely determined. Each mea-
surement can thus be viewed as a random trial.

In Example 1.7.1 we provided the space shuttle Columbia accelerometer read-
ings taken at different times. Again, the values of the gravitational constant at that
point in space are scattered, the fluctuations impossible to determine exactly by
taking into account the physical conditions. When, in the 17th century, Galileo
kept dropping different objects from the Leaning Tower of Pisa to determine the
gravitational constant on the surface of the Earth, he was just conducting random
trials.

© Springer International Publishing AG 2017 243
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Obviously, our thought experiments of random coin tossing and dice rolling,
or blindly selecting 6 out of the 45 balls in the Ohio Lottery drawing, are also
convenient examples of random trials. In these three cases the exptessions “random
tosses” or “blind selection” referred to the assumption that equal chances (thought
of as relative frequencies in long runs of the experiment) were assigned to different
outcomes of the experiment; often this assumption was implicitly justified by built-
in symmetries of the physical phenomenon under study.

We will begin a description of the A.N. Kolmogorov’s probability theory, which
was designed to provide a mathematical model of random trials, by introducing a
formal labeling of their possible outcomes.

Definition 5.1.1 Probability Space.

A mathematical model of a random trial is a probability space (2, B, P), where
Q, the sample space, consisis of all possible simple outcomes w of the trial which
are called sample points. B is the family of all composite outcomes B C B, called
random events, for which the probability measure P{B) is defined a priori. The
latter is assumed to salisfy the following three requirements (axioms):

(i) Positivity Axiom: For any random event B € B,

0<P(B)=<1,

(ii} Normalization Axiom.
PR =1,

(it}  Additivity Axiom: For any disjoint random events A, B € B, AN B =9,

P(AU B) = P(A) + P(B).

Obviously, the probability space axioms are motivated by the corresponding
properties of the relative frequencies for empirical data. By induction, the Addi-
tivity Axiom (iii) immediately implies the finite additivity of probability measure
P

P(BU...UB,)=P(B))+...+ P(B) )

for any pairwise-disjoint random events B1,..., B, € B, Bi N B; =0,i # j.

A Mathematical Aside: Countable Additivity. For infinite sample spaces €2, the
Additivity Axiom (iii) is usually replaced by the condition of countable additivity:
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(iti’ ) Countable Additivity Axiom: For any pairwise-disjoint sequence of ran-
domevents By, By,...€ B, BiNB; =0,i # J,

o0 oo
P By =) P(B). )
i=1 i=1

The infinite union of sets appearing on the left-hand side is understood as follows:

00
UBg::{weQ:weB;, forsomei=1,2,...} 3)

i=1

Compared to (1), this is more than just a cosmetic change. Actually, the condition
(2) is equivalent to the assumption that probability measures on infinite sample
spaces are confinuous as set functions. Indeed, the Countable Additivity Axiom
is satisfied if and only if for every sequence of descending random events B; 2
ByD..., .

lim B; := ﬂB,- ={weQ:we B, foreveryi =1,2,...},
Pee i=1

we have P(lim B)) = lim P(B)). 4
1-%00 {—>00

The Countable Additivity Axiom also makes selection of the random events family
B more poignant. It turns out that if one chooses as the sample space $2 the unit
interval {0, 1] and as the random events family B the collection of afl subsets of
the sample space, then there exists no nontrivial countably additive probability P
which would provide a way to measure probabilities of all B € B. This is a fairly
decp mathematical result and shows that, for richer sample spaces, one has to be
careful about what one calls random events,

The question of extension of a finitely additive probability to a countably additive
probability is quite subtle. Contemplate for few minutes the following example:

Take as 2 the countable set Q of all rational numbers in the interval [0,1].
Introduce, on intervals of rational numbers [a, b], a < b, a, b € Q, the probability
measure P([a,b]) := b — a which defines the probability of finding a rational
number in the rational interval [, b] as its colloquially understood length. Such a
probability is obviously finitely additive but it has no countably additive extension.
Indeed, by definition, the probability of each simple event P([a, a}) = 0, so if P
were countably additive then we would have

P(Q) =) P(la,al) =0,
aeQ

a contradiction since, by the Normalization Axiom, £(§2) = 1.
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Of course, if one accepts the Countable Additivity Axiom, then it is not possible
either to have a probability distribution giving equal probabilities to every one of
the natural numbers. Yet, intuitively, such a distribution seems to be quite natural
and useful. This issue is discussed in a recent article “Using finitely additive
probability: uniform distributions on the natural numbers” by J. B. Kadane and A.
O’Hagan, J. Amer. Stat. Asso. 90{1995), 626-631.

To summarize the above discussion we emphasize that the subject of the ax-
iomatic probability theory is the probability space ($2, B, P), where the probability
measure P is selected up-front by other applied probability considerations taking
into account the physical nature of the phenomena under study. How to fine-tune
this selection to real-life experimental data is the subject matter of staristics which
will be discussed in Part 3 of this book.

The need for such a rigorous approach became clear towards the end of the
19th century when a number of probabilistic “paradoxes” baffled the experts. All
of those “paradoxes™ were caused by differing interpretation of what the word
“random" meant in terms of the probability measure P.

Example 5.1.1 Bertrand Random Chord Paradox.
What is the probability 2 that a randomly selected chord is shorter than the side §

of an equilateral triangle inscribed in the circle?

A

B \/ C
(a) (b
FIGURE 5.1.1

Different, and “equally” justified, ways of selecting “uniform” probability P in
the Bertrand random chord paradox.

Here are two possible solutions corresponding to illustrations in Fig, 5.1.1:

{(a) A chord is determined by its two end points, Fix one of them to be A. For
the chord to be shorter than the side S, the other end point must be chosen on either
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the arc AB or the arc CA, and each of them is subtended by an angle of 120°.
Thus, P = 2/3.

(b) A chord is completely determined by its center. For the chord to be shorter
than the side S, the center must lie outside the circle of radius equal to the half
of the radius of the original circle and the same center. Hence, the probability P
equals the ratio of the annular area between two circles and the area of the original
circle, which is 3/4.

This “paradox”, still hotly debated in 1907 when Jean Berirand lectured on
probability theory at the Paris Sorbonne, can be resolved only by an a priori impo-
sition of the probability measure P, the recipe Kolmogorov recommended in the
axiomatic theory introduced in his 1933 book. The answer to the question “Which
of the two solutions is correct?” cannot be provided within the framework of prob-
ability theory. However, it can be phrased as an empirical (and thus statistical)
question, or an applied probability question about the physical mechanism of the
chord selection.

We will illustrate the formal probability theory framework by returning to the
generic examples of random phenomena that were previously discussed.

Example 5.1.2 Single Coin Toss.

The sample space §2 here can be chosen to consist of only two sample points; say the
first sample point is # (for Heads), and the second sample point is 7" (for Tails). The
random events family B consists of the empty set , the simple random events { H}
and {T'} consisting of single sample points, and one composite event {H, T} = Q
which happens to coincide with the whole sample space. If we want to model a fair
coin toss, then we have to assign the probability measure to random events (notice
that for finite sample spaces it suffices to define it on events consisting of single
sample points) as follows: P(#) =0, P({H}) = P({T}) = 1/2,and P(Q) = 1.
If a biased coin toss is to be modeled, then we have to selectanumberp, 0 < p < 1,
and impose the probabilities P(#) = 0, PUH)) = p, P{T)) = 1 — p, and
P =1

Example 5.1.3 Multiple Coin Toss.

For » coin tosses, the sample space €2 can be selected to consist of sample points
@ = (m, ..., 72), where each of #; is either equal to H or to T. There are 2°
sample points in this sample space. The family B of random events is again the
family of all subsets of the sample space, including the empty set @ and the whole
sample space 2—there are 22" random events in B (check it for small ns first).
For n = 10, the collection of all the 10-toss series in which exactly 2 heads came
up constitutes a random event (call it B}O); it consists of (%) = 45 sample points
which easily can be written out explicitly. You may want to do it by hand as a
warm-up exercise.
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In the fair coin model, assuming equal probabilities of all sample points, we
have no choice but to impose the probability P on simple random cvents by the
condition P({w}) = 27" for all @ € 2, and by extending it to other (composite)
random events via the finite additivity property of P. So, for n = 10, we have
P(BJ%) = 45.2710 ~ 0.04394.

In the biased coin model, we must select a number p, 0 < p < 1, and then
we can impose the following probabilities on simple random events consisting of
a single sample point @ = (11, ..., 7,) with exactly k, 0 < & < n, of ;s equal
to H (like,e.g., 0 =(T,H,T,T,T,T,H,T, T, T), where k = 2]

P(lo}) = p(1 — p)" k. (5)

So, for example, for n = 10 and p = 4/10, we get P(BJ%) = 45-0.42.0.6° ~
0.75583.

That all of these probabilities add up to 1, thus satisfying the Normalization
Axiom (ii), is a direct consequence of the binomial theorem:

n

SPlep=3. . Pa-pt=3 (’,:)p"(l—p)""‘ =1. (6

wes2 k=0 w:#{i:my=H}=k k=0

An experimenter who has found (5) as the relative frequencies of the appearance of
& heads in n tosses, obviously knows that (6) has to hold true: no other outcomes
are possible and one of them has to occur.

Example 5.1.4 Random Numbers from the Unit Interval.

Select as the sample space 2 the set of all real numbers from the unitinterval [0, 1],
and as the family B of random events the intervals (a, #], 0 <a < b <1, and all
the other subsets of the unit interval that can be produced effectively (in the sense
of Chapter 4) from the above intervals using the operations of union, intersection,
and complement, and their limits (plus the usual empty set and the whole sample
space). The sample points w are just real numbers in the unit interval. If our
desire is to model random numbers uniformly distributed on the unit interval, then
we have to impose the probabilities P{[a, #]) = b — a on random events that are
intervals and extend it to other random events using the additivity property of P.
Thus, the event {w : | — 1/3| > 1/9} has probability

(et ) - (2] oo D333

The sample space here (and hence the family of random events) is infinite and
simple random events consisting of single sample points have probability 0.

=1
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Example 5.1.5 A System of n Molecules.

As in Example 4.4.1, consider a mode] for the 3-dimensional gas consisting of »n
molecules of mass 2 located in a vnit cube and of total kinetic energy bounded by
1. Then, as the sample space 2 we can select the set of all phase space points

w= &}, xt %3 v, 08 03, xd a2 )2 u) v u)) e R, €3]
such that
O<xf<1, £=1,23, i=1,...,n, (8)
and
n
KinEn @) = Y ()2 + 022 + 6D < 1. ©

i=]

You can try to visualize this sample space as a unit cube in 3» position dimensions
and a ball of radius 1 in the remaining 35 velocity (momentum) dimensions. As
the family B of random events, we can select the subsets of §2 that are produced
from 6n-dimensional parallelepipeds via procedures described in Example 3.1.1.
The probability measure P can be selected in many different ways dictated by
the physics of the situation, and one choice is to choose that probability to be the
normalized 6n-dimensional volume on subsets of §2, i.e., for a B € B, define

Volume B

P(B) = ——,
8 Volume 2

the number in the denominator being equal to just the volume of the 3x#-dimensional
Euclidean ball of radius 1 because the d-dimensional volume of the unit d-
dimensional cube is equal to 1 anyway. Recall that the uniform distribution on
a d-dimensional ball was simulated in the Mathematica Experiment 3.10.2.1

In theoretical models of experiments one is often interested not in the original
labeling w of the experimental outcomes themselves, but in some other numerical
or vector quantities that depend, that is, are functions of the outcomes. Functions
for which the probability distributions of their values are computable, at least in
principle, are called random variables or random vectors, if they take vector values.
They are usuvally denoted by capital letters X, Y, ... More formally, we have the
following:

'Recall that the unit sphere in RY has the (d — 1)-dimensional surface measure sy =
214/2 /(¢ /2), and that the d-dimensional volume of the unit ball is sg/ld.
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Definition 5.1.2 Random Variables.
A real-valued function

X:Qowr XweR (10)

is called a random variable on the probability space (2, B, P) if, for every x € R,
its cumulative distribution function (d.f.)

Fx(x):= P(lw: X(@) <x] an

is well defined, i.e., if
{w: X(w)<x}ebB. (12)

Similarly, the vector-valued function

X: Q20— X(w) = (Xi(w),..., Xp(w)) € R (13)

is called a random vector on the probability space (82, B, P) if for every
X1, ..., Xy € R, its joint cumulative distribution function

Fx @, ....xp) = P({w: X1(w) <x1,..., Xp(®) £ xz}) (14)

is well defined.
Obviously, components of a random vector are random variables, and the cumu-

lative d.f. (see also a more elementary discussion in Chapter 3) enjoys the following
properties that are direct consequences of the three axioms of Definition 5.1.1:

(i)
0<Fx(x)<1; as)

{&i)

lim Fx(x)=0, im Fy(x)=1; (16)
X—>—00 X >0
(fii) Fx(x) is nondecreasing and continuous on the right, i.e.,

lim Fx(x) = Fx(xq). a7n
x—rx0+

In view of the additivity property of the probability P, we have also

Pla < X 2 b) = Fx(b) — Fx(a). (18)
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Note that the sample point label @, the argument of the function X (w) is being
suppressed in our notation. It is not essential. As a matter of fact, in most of the
probabilistic problems, cumulative d.f.s and/or related distributional descriptors
such as densities, are the only objects of interest. The underlying probability space
(2, B, P) is of no direct interest and remains invisible in calculations. Obviously,
any of the cumulative distribution functions discussed in Chapter 3 on analytic
representation of data can serve as an example of cumulative probability d.f. within
the framework of axiomatic probability theory. The reader should review that
material before proceeding any further.

The typical picture of a simple cumulative probability d.f. is shown in Fig, 5.1.2
(see also Fig. 3.2.2).

»
X

FIGURE 5.1.2

Example of a simple cumulative distribution function Fx(x). The intervals 1
where Fx(x) is flat carry no probability mass, that is, the probability that the
random variable X takes values in I is zero. Jumps occur at points x such that the
probability of the random event {X = x} is strictly positive.

Example 5.1.6 Single Coin Toss.
If we model a game in which heads result in winning $1 and tails in winning $0,

then the random variable of interest, defined on the probability space described in
Example 5.1.1, would be

X(w)={1, ifo=H; (19)

0, fw=T.

The corresponding cumulative d.f.

0, ifx <0
Fx(x) = [ 172, if0<x< 1, 20
1, ifl <x.
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This random variable has what we recognize as the Bernoulli distribution with
p = 1/2. If we model a game in which heads result in winning $1 and tails in
loosing $1, then the appropriate random variable defined on the same probability
space 2 = {H, T}, would be defined by

1, ife=H;
Tw) = I -1, fe=T. @n
The corresponding cumulative d.f.
0, ifx < —1;
Fy(x) = [ 172, if-1<x<l; (22)
1, ifl <ux.

Both cumulative d.f.’s are pictured in Fig. 5.1.3.

. X
_________________________ [ §
1/2 (e
l >
1 X
AFY(X)
................... e - @
! | >
-1 1 X

FIGURES.1.3
Graphs of cumulative distribution functions of random variables X and Y from
Example 5.1.5.
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Exampie 5.1.7 Total Wins in a Series of Coin Tosses.
The probability space is that of Example 5.1.2. The corresponding random variable

Z(w) =) X, (23)

i=1

where @ = (91,..., n,), and X is the Bernoulli random variable introduced in
Example 5.1.5 above. Now, it is easy to see (see Section 3.4) that the corresponding
cumulative d.f. is binomial, and for general p, 1 < p < 1, given by the formula

0, . ‘ ifx <0
Fz() =y XX (it —py, if0<x<m 24)
1, ifx > n.

The notation | x | stands for the “floor” of the number x, i.e., the largest integer less
than or equal to x. This cumulative d.f. is pictured, for n = 10, and p = 1/2, in
Fig. 5.1.4.

08

0.6

04

0.2

0 0 2 4 6 8 10

FIGURE 5.14

The cumulative distribution function of the binomial random variable with param-
etersn =10, p = 1/2.

Example 5.1.8 System of Molecules Revisited.
Define the random variable

X (@) = KinEn (w), (25
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as introduced in Example 5.1.4. Its cumulative d.f.

Volume of 3n-dimensional ball of radius x 5,
Volume of 3n-dimensional ball of radius 1

Fx(x) = , (26)

for0 < x < 1,and Fx(x) = O forx < 0,and = 1 forx > 1. For several values of
the dimension », the cumulative p.d. is pictured in Fig. 5.1.5. For » larger than 100
it is practically indistinguishable from a function thatisOforx < land 1forx > 1,
which corresponds to the probability mass almost totally concentrated at x = I;
see, comments in Example 4.4.1 and also Mathematica Experiment 3.10.2, where
the vector random quantity uniformly distributed over the unit n-dimensional ball
was simulated.

F(x)
l .
08}
0.6

0.4

02}

02 0 o0z 04 06 08 1 127
FIGURE §.1.5

Cumulative distribution functions from Example 5.1.7 for dimensions n =
1, 3,9, 27, 81 (from left to right).

There is a standard way to produce a random variable with a given cumulative d.f.
F(x) satisfying the above condition (15-17) which is an analogue of the quantile
function method of Section 3.3. Take as the probability space (2, B, P) the unit
interval [0, 1], and B and the uniform probability P as specified in Example 5.1.3.
Since

F:Roxr— F(x)e[0,1]=9 @n
is nondecreasing, the (generalized) inverse function

Fl: Q3w+ F Y (w =min{x: Fx) >w} ¢ R (28)
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defines a random variable X = F~’ on the standard probability space {0, 1] with
cumulative d.f. equal to 7 (x). Indeed,

PX<x)=P(lo: F '@ sx)=Plo: o< F®D=Fx). (29

We have already employed the same idea in Section 3.3, where we devised amethod
to simulate a random guantity with the prescribed relative frequency distribution,
A graph of the inverse function F~1(w) is simply the reflection in the diagonal
@ = x of the graph of the original cumulative d.f. F(x), and is nothing but the
graph of the quantile function Q(g) of the cumulative d.f. F(x) (see Fig. 5.1.6).

FIGURES.1.6

Graph of the standard representation of a random variable F~ Yw) = Q(g), with
a prescribed cumulative d.f. F(x) is obtained by refiecting the graph of F(x) in
the diagonal,

As we have already observed in the more elementary context of Chapter 3, there
are two basic types of cumulative d.f.s: discrete and (absolutely) continuous, and
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they correspond to the classification introduced in Chapter 3, where we used both
of them as analytical approximations to experimental frequency distributions.

Discrete distribations. The discrete random variable X can only take a finite or

a countable number of values x1, xz, . .. € R (or RY) with positive probability, and

the corresponding probability distribution is determined by a sequence of discrete
probabilities

pi = P(X =x3) (30)

which have to satisfy the condition

Y op=1 31

In this case, for any set A C R,

PXeAy= ) p. (32)
{i:x;ed)

In particular, for a discrete random variable X, the cumulative d.f.

Fx(x)= ) pi (33)

litx; <x}

and it is piecewise-constant with jumps upwards of size p; at points x;. Sev-
eral examples of discrete probability distributions (Bernoulli, binomial, Poisson,
multinomial) were given in Chapter 3.

Absolutely continuous distributions. An (absolutely) continuous random vari-
able X takes an uncountable number of values x and its cumulative probability d.f.
is determined via the formula

Fx (x) =f fx(dy, (34)

where the density function fx(x) is nonnegative (> 0), and must satisfy the nor-
malization condition

fw fx(x)dx = 1. (35)

A d-dimensional (absolutely) continuous random vector X = (X, Xz, ..., X4)
has the joint cumulative probability d.f. determined by the analogous formula:

X3 X1
FX(xl""'xd)=f f Fx(xi, .. xg)dxy ... dxy, 36)
~00 —00
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where the joint density function f X x5, %2, 0,00) = 0 satisfies the normaliza-
tion condition

0o o
f fX(xl,...,xd)dxldxg...dxd=1. (37

—00 —00

The corresponding probabilities are computed by integrating the densities over
the desired region:

P(XecdA)= f Fx(x)dx (38)
A

in the one-dimensional case, with a similar formula in the 4-dimensional case. No-
tice that, in view of the fundamental theorem of calculus, for absolutely continuous
cumulative probability d.f.s

dF
— W _ fe. 39)
X

A similar formula involving partial derivatives holds true for the d-dimensional
case.

Several examples of absolutely continuous distributions (uniform, exponential,
Gaussian, multivariate normal, Weibull, Cauchy, Pareto, etc.) were given in Sec-
tion 3.5. Other natural examples will arise later in this chapter.

Singular distributions. Although it is not apparent at the first sight, the dis-
crete and continuous cumulative probability distributions and their mixtures do
not exhaust the realm of all possible distributions. Consider the so-called devil’s
staircase cumulative d.f. F(x) obtained with the help of the Cantor set (see Section
2.7)) as indicated in Fig. 5.1.7.

Such a function is indeed a cumulative probability d.f. since F(x) = 0 for
x <0, and = 1 for x > 1, and since it is nondecreasing and right-continuous. As
a matter of fact, one can check that it is continuous everywhere, but its derivative
is zero wherever it is defined. So, obviocusly, F (x) cannot be the indefinite integral
of its derivative, i.e., the cumulative d.f. F does not have a density. In other words,
it is “‘continuous” but not “absolutely continuous™; hence, the need to distinguish
between those two concepts.

Cumulative probability d.f.s that are neither absolutely continuous, nor discrete,
nor their mixtures, are called singular.

If one knows the joint cumulative probability d.f. of a random vector, then
it is easy to recover from it the cumulative probability d.fs of its 1-dimensional
components which are called marginal cumulative probability d.fs. Indeed, if, say
X = (X,Y), then

Fx(x})=P(X =x)=P(X <x,Y <o0) = Fx(x,00), (40)
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AF(R) |
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FIGURE 5.1.7

A step in the construction of the devil's staircase cumulative probability d f. We
start with setting F(x) = 27! on the “middle-third” interval of length 371 in
the interval [0,1], then set F(x) = 272 and, respectively, 3 - 272, on the next
generation two “middle-third" intervals of length 372, and continue this process
indefinitely.

and, in the absolutely continuous case, the marginal density of the first component

fex )_de(x) dFX(x oQ)

f fx(x,y)dy (41)

is obtained by integrating out the second variable in the joint density.

5.2 Uniform discrete distributions and counting

Uniform discrete distributions on finite sets are imposed in view of various sym-
metry considerations. We have encountered such distributions (e.g., symmetric
Bernoulli) in Chapter 3. Calculation of related probabilities requires techniques
to count the number of sample points in random events of interest. The area of
mathematics that studies such problems (often, very involved) is called combina-
torics. In this section we will review a few combinatorial tools that are helpful in
determining discrete probabilities.

A general model of the uniform discrete distribution assumes a finite sample
space @ = {wi, ..., w,}, the family of random events B consisting of all 27
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subsets of §2, and the probability of any A € B

P(A) = E )]
n

where & = | A| is the number of sample points in A. This model is sometimes called
the Laplace probability space. Here are a few special cases where the methods are
standard.

Multiplication of choices. If sets A;, ..., A; contain, respectively, ny, ..., ng,
points, then the number of different k-tuples (vectors) (x, ..., x¢), where x; €
A;,i=1,... ., kisequalto

L STRE T (2)

Hence, there are 2- 2 - ... - 2 (10 times) = 2'° = 1024, different outcomes
of 10 coin tosses, 6 - 6 - 6 = 216 different outcomes of a roll of three dice, and
3029 . 28 = 24360 ways of selecting the president, vice-president, and treasurer
of the Phi Gamma Delta fraternity with a membership of 30. The multiplication
rule leads to another useful formula:

Permutations. Let § = {51, 52, ..., 5,} be a set of n different objects. The
numbers of ways & objects, & < n, can be selected from § in a particular order
{and without replacement) is

n!

nn =D =2)- =kt D=

(&)

The derivation of the formula is clear: the first object can be selected in n ways, the
second in {n — 1) ways, until, finally, the k-th object can be selected in (n — &k + 1)
ways. At this point, one applies the multiplication of choices principle. The above
number is called the number of permutations of k objects selected from a set of
n objects. It is important to remember that the orderings count: (s, 53, 53) and
(52, $3, 51), say, are different permutations.

For example, the top 6 downhill NASTAR racers can place in the field of 13 in
13!1/(13 — 6)! = 1, 235, 520 ways, and there are 13! = 6, 227, 020, 800 ways all
13 racers can place (i.e., 13! is the number of permutations of 13 objects).

Example 5.2.1 Two People With the Same Birthday.

A party is attended by » revelers. What is the probability P, that at least two people
have the same birthday? It is easier to calculate the complementary probability,
that is, the probability of the event that all the n people have different birthdays.
There are 365!/(365 — n)! ways different birthdays can be selected out of the total
of 365" ways the birthdays can occur in a group of n. Thus, the sought probability

1 365!

Pp=1- """
" (365 — n)!365"
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Check that Px3 = 0.5, Psp & 0.97 (use Stirling formula n! =~ J2an"t/2¢™" w0
approximate the factorials).

Combinations. Let § = {51, 52, ..., 5,) be again a set of n different objects.
If one selects objects from a set, then we say that a combination of & objects was
selected from S if they were picked at once, and the order of selection does not
matter: (s1, 53, s2) and (s2, 53, 51), say, are the same combinations. Obviously,
the number of combinations of & objects out of » is smaller than the number of
permutations, since k! permutations count as a single combination. Thus, the
number of combinations of k objects out of a set of n objects (or, as one often says,
the number of combinations of n objects taken k at a time) is

n! 1 _fn @
-k &k \&)
the familiar binomial coefficient.

Example 5.2.2 Drawing Balls With Replacement.

We have n boxes, and each contains w white balls and r red balls. We draw a ball
from each box (this is equivalent to drawing n times from the same box, replacing
the ball after each draw). What is the probability Py of drawing & white balls and
n — k red balls? There are (w + r)" different equiprobable » draws of w + r balls,
and out of those there are (})w*r"~* ways to select exactly k white bails. Thus,

the sought probability is

_(n whrn—k _{n\ & Nk
r= (L) = (oo

where p = w/(w + r). It is the familiar binomial distribution.

Example 5.2.3 Drawing Balls Without Replacement.

We draw, without replacement, » < min (w, r} balls from a box containing w
white balls and » red balls. What is the probability Px of drawing k white balls,
k <n,and n —kredballs? Thereare (w +r)(w+r—1)-...-(w+r—n+1)
possible selections out of which

(:)w(w—1)---(w—k+])r(r—l)...(r—(n—k)+l)

have exactly & white balls. Thus the desired probability

GO

P =
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Example 5.2.4 A Politically Incorrect Committee.

A faculty committee of 4 is to be selected at random from a group of 5 men
and 11 women. What is the probability P that the committee consists of 3 men
and 1 woman? Out of the total number of ('f) = 1820 possibilities, there are
(G)(}) = 110 ways to select a committee of 3 men and 1 woman. Thus, P =
11071820 = 0.06.

Example 5.2.5 Distributing Christmas, Hanukkah, and Kwanzaa Presents Among
Relatives.

We distribute n presents among m relatives and all the m” arrangements are as-
sumed to be equally probable. Then, the probability that foreachi = 1,2, ...,m,
the i-th relative receives k; presents, k; + ...+ &, =, is

n! 1
kilkot - k! mm

which corresponds to the multinomial distribution introduced earlier.

5.3 Statistical independence as a model for repeated
experiments

Introduced in Example 5.1.3 probabilistic model for multiple, fair, coin tosses
has one curious property: The imposed joint probability distribution of the vector
(Xi, ..., X,) and its marginal distributions, that is the distributions of the compo-
nent real-valued random variables X, ..., X,,, are connected by the multiplicative
formula:

1 1\"
PXi=x1,... Xy =x) = 5 = (i) = P(X|=x1) - P(Xy = x,).
ey

As it turns out, this multiplicative property of joint distributions can serve as a gen-
eral model of randomness within the Kolmogorov’s axiomatic probability theory.

Definition 5.3.1 Random Vectors With Independent Components.

Components X1, ..., X, of a random vector X = (X1,...,X,) are said to
be statistically independent random variables, if the joint cumulative probability
df. of X is equal to the product of the marginal cumulative probability d fs
of its component randem variables, that is, if for every n-tuple of real numbers
Xy erey Xny

Foxy, x) &1, .0 X)) = Fx (x1) -« Fx, (x). 2)
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In practice, one often casually speaks of random variables being independent,
but one has to remember that such a notion is meaningless unless one has the joint
distributions of these random variables. Notice that for discrete random variables,
the definition of their independence can be written as the condition that for every
n-tuple of real numbers x1, ..., x,,

PXy=xp,....Xp=x)=PX1=x1)...- P(Xy = xp). 3)

For absolutely continuous random variables, independence simply means that their
Joint density is a product of marginal densities, that is,

S xy &L, xa) = fx () - fx (). @)

Besides recalling Example 5.1.2, we will provide here two additional examples
of independent random variables.

Example 5.3.1 Bivariate Normal Random Vectors.
A Gaussian random vector (X, Y) with the joint density function

1
S, )= ——exp(-ll(x, »I2/2) &)

has independent components since, for every x, y € R,

1 u(x,y)nz) 1 ( x2+ y2) e X2 i
56X I — = ——€X — = . s

Example 5.3.2 A Generic Construction of Independent Random Variables.
Consider the unit square 2 = [0, 1] x [0, 1] 5 @ = (@, wz) with probability
defined as the standard planar area measure. Then, any random vector of the form

(X (@), ¥ (@) = (X (@), ¥ (@2))

in which the first component depends only on the first variable in the square and the

second depends only on the second variable, has statistically independent compo-

nents. This follows from the properties of the planar area measure (see Fig. 5.3.1).
Indeed, the set

fw: X(w) <x,¥(w) <y} ={w: X(@) <z} x{w: Y(w) <y}
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€t {0: X<x,Y<y}
Nz ... ..

{w,:Y (®,) <y}
0

- -

{o;: X {w,)=<x}

FIGURE 5.3.1
A generic construction of independent random variables.

is a rectangle, so its area (=probability)

Plw: X(w) <x,Y(w) <y)= Plwr: X(@1) <x)- Plwy: Y(wz) <y).

Using the n-dimensional cube instead of the square, one can similarly construct n
independent random variables with prescribed marginal distributions. A construc-
tion of the random variable on the standard probability sample space 2 = [0, 1],
and with a prescribed cumulative probability d.f. F(x), was shown in Fig. 5.1.6.

Modeling of more involved random phenomena within the probability theory
framework requires a study of infinite sequences of statistically independent ran-
dom variables.

Definition 5.3.2 Infinite Sequences of Independent Random Variables.

Random variables X\, X3, ... are said to form a sequence of independent ran-
dom variables if for each finite collection of indices i\, .. ., iy, the random vector
(Xiy, ..., X;,) has suatistically independent components.

A Mathematical Aside: Do Infinite Sequences of Independent Random Variables
Exist? The question of existence of an infinite sequence of independent random
variables with prescribed distributions is somewhat delicate, and it was exactly the
issue Kolmogorov had to address to construct his successful probability theory. It
is clear that what is needed is an extension of the generic construction of finitely
many independent random variables provided in Example 5.3.2, to infinitely many
random variables. Then the natural sample space to consider would be an infinite
dimensional analogue of our familiar n-dimensional cube. The formal proof of the
existence theorem can be found in the probability theory textbooks quoted in the
Bibliographical Notes. However, in some cases it is easy to see that the infinite
dimensional cube is not needed.
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Example 5.3.3 Infinite Sequence of Independent Bernoulli Random Variables.
Consider the standard sample space $2 = [0, 1], with standard linear Lebesgue
measure taken as probability P, and an infinite sequence X ((w), Xz(w), ..., of
random variables on S2 defined by the formulas

Xi(w) = 28 sm(2;r2 W+l iy, (6)

The first four random variables X{w), X2(w), X3(w), X4(w) are shown in
Fig. 5.3.2.

A ﬁ\
1 1
0
0 1 1
A A
= oo oynannnnnn
BRI
b bttt it
plr b |;|=|||{|”|=1=
I i 1 I Thidind i
by IR
NEREEREREL I
] ' 1

FIGURE 5.3.2

The first four functions representing an infinite sequence of independent Bernoulli
random variables defined on the standard sample space Q@ = [0, 1], with the
Lebesgue measure taken as probability measure P.

Clearly, for each i, the probability P{(X; = 0) = P(X; = 1) = 1/2 and one can
check that the random variables X {w), X2(w), . .. form an independent sequence.

The notion of statistical independence can be introduced in terms of random
events. The random events A, B € B are said to be independent if

P(ANB)= P(A)- P(B). )]

Note that this equation can be rewritten in the form

P(ANB
P(B) = —(Tpa)—), ®)



5.4. Expectations, Characteristics of Random Variables 265

where the quantity on the right-hand side is usually called the conditional proba-
bility of B given A and denoted P(B|A). Its meaning is obvious: the conditional
probability P(B|A) measures the probability of the random event B but is restricted
to the new probability space Q' = A. In other words, we assume that we know for
sure that the event A has occurred. In this context, the statistical independence of
random events A and B simply means that

P(B|A) = P(B), and P(A|B)= P(A), ®

that is, the conditional probability of B given condition A is independent of that
condition, and vice versa.

This point of view also can be reinterpreted in terms of the repeated experimental
data and their relative frequency distributions. The condition that the data sets
X),....%p and ¥y, ..., y,, were obtained from “independent” experiments can be
written as a condition

#i:x; e R,y €8)/n L HiiyeS)
#li  x; € R)/n n .

(10)

for the joint relative frequencies, which has to be satisfied for all intervals R and
S. In other words, the outcome of the first experiment did not affect the outcome
of the second experiment.

5.4 Expectations and other characteristics of random variables
5.4.1 Expectations.

In our probability model, the role of the sample mean is played by the (mathe-
matical) expectation of a random variable X, which in the discrete case is defined
by the formula

EX)=) xP(X =x), (1)
i
and in the absolutely continuous case, by the formula
o ¢]
B0 = [~ spxwas @
—00

In other words, the expectation is just the “weighted average” of the values taken
by the random variable with weights provided by its probability distribution. It is
important to remember that the expectation of a random variable depends only on
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its distribution and not on a particular selection of the probability space (2, B, P)
or a particular realization X (w) of the random variable.

The following exposition is presented in terms of the absolutely continuous
random variables, the formulas in the discrete case being analogous; simply, the
integrals have to be replaced by summations. The case of random variables that
are neither discrete nor absolutely continuous will be briefly addressed at the end
of this section.

Example 5.4.1 Random Variable Taking 3 Values.
For a random variable X with distribution

PX=1)=01, P(X=2)=04, P(X=3)=05,

the expectation

E(X)=1-01+2-04+43.0.5=24.

Example 5.4.2 Poisson Random Variable.
For the Poissonian random variable X with parameter A,

o0

00 -—k’\'i s Ai—l
E(X):E()ze ﬁ=e J\.E (i—l)!=k
=

i=1

Example 5.4.3 Exponential Random Variable.
For a random variable X with exponential distribution with parameter A,

o 00 X 1
E(X)= f xhe Mdx = x(—e ) +f e Mdx = —.
0 0 0 A

Note that the integral is restricted to the positive halfline because the exponential
density is zero for negative real numbers.

Remark 5.4.1 Warning: Expectations Need Not Exist.  One should remember
that, for a general random variable, the expectation need not be well defined.
Indeed, the series (resp. the integral) in formula (1) [resp. (2)) may diverge. For
example, the discrete random variable with the distribution

c ® p\"
PX=i)= c=(2i—2) :

i=1
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has no expectation because the harmonic series diverges:
oo (o o]
.C 1
dig=C) ;=00
i=1 i=1

The Cauchy distribution introduced in Chapter 3 has no expectation either. Cal-
culations of expectations for other probability distributions are provided in Chapter
3, where we discussed densities as a means of compression of experimental data.

5.4.2 Expectations of functions of random variables. Variance.

In more generality, if g(x) is a function and X is a random variable, then the
expectation of the random variable g(X) is defined by the formula

0

E(z(X)) = [ 8(0) fx (x) dx. @)

-0
In particular, selecting g(x) = (x — E(X))? we get the variance

Var (X) = 0?(X) = E(X — E(X))® = f ” (x— EXN fx(x)dx (4
~00

of the random variable X. In other words, the variance of X measures the average
square deviation of the random variable X from its expectation E(X). The bigger
the variance, the more spread-out the distribution is. The following result provides
an estimate of the probability of such a “deviation from expectation” in terms of
the variance. It will play a crititical role later in this chapter in our study of the
Law of Large Numbers.

Theorem 5.4.1 Chebyshev’s inequality.
For any random variable X, and any € > 0,

Var (X
POX - EX) >¢) < ‘“62( ), )

PROOF  In the absolutely continuous case, if |x — E(X)| > ¢, then

— E(X))?
Sx(x) < (xe#fx(x)-
Hence,
P(IX—E(X)I>€)=f Jx(x)dx
{x:lx— E{X)|>€)}
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_ 2
S] (_"ﬂf ) dx <_f x — EXO) fx(x)dx
fx:lx—- E(X)|>¢€)

€?

Var (X)
= 62 .

A similar argument gives the Chebyshev inequality for discrete random variables.

Example 5.4.4 A Universal “Three Sigma" Estimate.
For any random variable X with expectation . and variance o2, the Chebyshev
inequality immediately yields the estimate

P{iX - E(X})| > 30) <

o’
%2

In other words, the probability that any random variable differs from its expectation
by more than three standard deviations ¢ = ¢ (X) = /Var (X), is at most 1/9.
Expressed differently,

1
P(|X—E(X)|53cr)21—§=§-=0.8888, (6)

the probability that any random variable takes values within three standard devi-
ations g of its expectation is at least §9. For particular random variables, the
Chebyshev inequality (5) may give a somewhat crude estimate. For example, if X
is a standard Gaussian random variable, then the actual probability on the left-hand
side of (6) is .9987, the value that can be verified in Matkematica or in the table
at the end of this book. However, the value of the Chebyshev inequality lies in its
universal applicability.

Expectations scale lincarly, that is, rescaling the random variable X leads to the
identical rescaling of its expectation. Indeed,

E@X) = foo exfx{x)dx = a E(X). @)

5.4.3 Expectations of functiens of vectors. Covariance.

The notion of expectation is also applicable to random vectors X = (X, ..., X,)
by defining the expectation componentwise:

=(EXy....,EXp,).
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To avoid too many brackets we will often write E X instead of E(X). On the other
hand, if g(x1, ..., x,) is areal-vatued function of » variables, then the expectation
of the random variable g(X) is defined by the formula

E(X(X))zf [ 8(11,---,Xu)fX(XE....,xn)dIl'--dxn. ®)
—~00 —00

Taking the function of two variables g(x, ¥) = (x — EX)(y — EY) produces the
covariance

Cov (X,Y)=Eg(X,Y)=E(X — EX)Y — EY) €))

- f f (x — EX)(y — EY) for.y) (6, y) dx dy

of random variables X and Y. Its normalized version

_ Cov(X,Y)

is called the correlation coefficient of random variables X and ¥ [compare (10)
with the Section 2.6 definition of the correlation coefficient for finite experimental
data], and satisfies the inequality

—1<Corr (X,Y) < 1. (11
Indeed, in view of the Schwarz ineguality, for any real-valued functions g and 4,
Elg(X)h(Y)| <  E(g%(X)) - VERA(YY), (12)

which gives (11) by substituting g(x) = x — EX, h(y) =y — EY.

5.44 Expectation of the product. Variance of the sum of independent
random variables.

For independent random variables we have
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Theorem 5.4.2
IfX and Y are independent random variables and g(x) and h(y) are real functions,
then

E(g(XOh(Y)) = Eg(X) - ER(Y),
as long as the expectations are well defined. In particular,

E(XY)=EX - EY,

that is, for independent random variables the expectation of the product is the
product of expectations.

PROOF  Indeed, in view of the independence of X and Y, the joint density
S, ») = fx(x) fr(y), so that

E(COR(Y)) = f f e forp (x. Y dx dy

:f g(x)fx(x)dx-f h(y)fr(y)dy

—00 )

= Eg(X)-En(y). 1

This striking property of independent random variables (notice that it essen-
tially claims that the integral of the product of two functions is the product of
integrals—not a common occurrence), immediately implies that the covariance of
two independent random variables disappears:

Cov (X,Y)=E(X—-EX)Y —EY)=E(X-EX)-E(Y —EY)=0. (13)

This justifies the interpretation of the correlation coefficient Corr (X, ¥) as a
numerical measure of the degree of independence of two random variables. Its
values are always between —1 and +1, with the minimal value —1 taken for
negatively linearly dependent random variables X = —a¥, @ > 0, maximal value
+1 taken for positively linearly dependent random variables X = oY, o > 0, and
the value 0 taken for independent random variables X, Y. Note, however, that two
random variables can be uncorrelated without being independent.

The expectations not only scale linearly but are also additive so that, in general,
they act as a linear functional on random variables, and we have:
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Theorem 54.3
If X and Y are random variables with finite expectations, then

E@X + BY) = cEX + BEY.

PROOF  Let fix yy(x, y) be the joint density of random vector (X, Y). Then

E@X + BY)

= / / (ax + 8y) fix,v)(x, y)ydx dy
)
oQ o0 20 o0
=a[ If f(X,Y)(x’}’)dde‘f‘ﬂf y/ fax.n@, y)Ydxdy
-0 —O0 -0 00

v o0
=a[ xfx(x)dx + B yfr(y)dy

—0Q

=aEX + BEY.
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