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PREFACE 

The knowledge of the dynamic behaviour of turbo-machinery is of great 

importance in power production engineering and in adjacent fields. The 

safe and efficient operation of power plants calls for a proper under­

standing of the mechanical behaviour of turbine rotors. 

The development of computers and computer techniques and instrumen­

tation and vibration monitoring has improved the tools for handling rotor 

vibrations and stability. 

It was the aim of the course DYNAMICS OF ROTORS, held at the Inter­

national Centre for Mechanical Sciences (CISM), Udine, in October 1980 

to present mod~rn trends and new scientific and engineering results. In 

general, basic knowledge of lhe state-of-the-art in rotor dynamics was 

required from the audience and is hence required from the reader. 

It has laken some time lo get the leclure noles refined and printed. 

Although the editor has tried to coordinale the contributions,some over­

lapping was unavoidable since the authors presented their subjects inde­

pendently. This, on the other hand, has the advantage to focus on some 

phenomena from different poinls of view. 

After an introduction to modal analysis in rotor dynamics lhe dynamic 

behaviour is widely trealed wilh parlicular respect lo the influence of 

journal bearings and to rotor instability. New calculation methods in bal­

ancing rotors are discussed and so are measuremenl and identification 

techniques. Special topics such as crack problems, blade vibrations and 
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torsional vibrations conclude the book. 

The lecturers and the editor hope that this book may serve as a 

source of information for engineers and scientists working in the field 

of rotor dynamics. 

o. Mahrenholtz 
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PART I 

MODAL ANALYSIS IN ROTOR DYNAMICS 



CHAPTER 1.1 

MODAL ANALYSIS IN ROTOR DYNAMICS 

R. Nordmann 

1 Introduction 

Many investigations in linear rotor dy~amics deal with the problems 

of 

- natural vibrations 

- unbalance ~ibrations 

- transient vibrations. 

Powerful approximation methods, e.g. the finite element method are avail­

able for calculation of the above problems. In most cases a fine parti­

tioning of the rotor model is necessary and this leads to large linear 

differential equation systems for the unknown displacements (displace­

ment method). 

With such large systems the calculation is very time consuming, espe­

cially in the case of transient vibrations (short circuit, blade break 

etc.). Therefore methods are needed, which allow a reduction and possibly 

a decoupling of the equations. 

A standard technique for calculating the response of nonrotating elastic 
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systems with synunetric matrices and proportional damping is "modal 

analysis". The idea is to reduce a system of simultaneous ordinary dif­

ferential equations to a set of independent ordinary differential equa­

tior.s. The successful application of the method requires the solution 

of an eigenvalue problem associated with the given system. The eigen­

vectors or natural modes possess the orthogonality property. which per­

mits the formulation of an expansion theorem for the response. The ex­

pansion in terms of the system natural modes leads to a set of independ­

ent ordinary differential equations of the same form as that describing 

the behaviour of a single degree of freedom system. 

In rotor dynamics the classical modal analysis fails to uncouple 

the nonconservative equations. The system matrices have skewsynunetric 

(gyroscopic effects, internal damping) and nonsynunetric (journal bearings) 

parts. 

An expansion in terms of natural modes of a corresponding conservative 

system permits a reduction of the number of equations, but they still 

stay coupled. 

On the other hand an expansion with eigenvectors of the nonconser­

vative system leads to an uncoupling as well as a reduction of the equa­

tions of motion. Both methods are described in this lecture. 
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2 Modal Analysis for Nonrotating Structures. The methods of 

calculation for a linear one degree of freedom system (Fig. I) are well 

developed in mechanical vibrations. The solution for the displacement 

~(t) can be readily obtained for different exciting forces F(t). 

f(t) 

k 

Fig. I SDOF-system 

Real elastomechanic structures usually cannot be modeled by a single 

degree of freedom system. Those systems have a continuous mass and stiff­

ness distribution and their number of degrees of freedom 1S infinite. 

They can be represented approximately by a finite number of coordinates 

resulting in a set of N coupled ordinary differential equations of mo­

tion of the system. 

5 

The calculation for large systems is much easier if the simultaneous 

equations can be transformed to a set of independent equations, each one 

describing the motion of a one degree of freedom system. This is possible 

by "modal analysis". For explanation we consider the elastic system in 

Fig. 2, a steel foundation for a power unit. 
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lIin!ll---Elasti: Sprin gs 

Fig. 2 Steel foundation for a power unit 

The equations of motion, derived by mean~ of the finite element method, 

are 

.. . 
M;{+Cir -+ K u F (t) ( 1 ) 

with symmetric matrices 

M mass matrix (order NxN) 

C damping matrix (order NxN) 

K stiffness matrix (order NxN) 
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and 

N 

F vector of exciting forces. 

The problem is finding the unknown displacements ~(t). Because the equa­

tions are coupled, they have to be solved simultaneously, which is very 

time consuming. 

A simplification - especially in the case of transient vibrations - is 

possible, if a suitable transformation for the coordinates 

with 

~ (t) ~ ~(t) 

ti(t) displacement vector (order N) 

~ transformation matrix (order ~xN) 

q(t) generalized coordinates (order N) 

can be found, which leads to uncoupled equations. 

( 2) 

7 

The modal matrix ~ of the undamped system represents such a linear trans­

formation matrix, provided that the damping matrix C 1S a linear combi­

nation of the mass and stiffness matrix. The modal matrix consists of the 

N natural modes 

(3) 

Investigations of the dynamic behaviour of structures usually start with , 
the computation of the N natural frequencies w. as well as the corre­

J 
sponding natural modes (eigenvectors) for the undamped system 

2 
(K_ - w. M) tt.. 

J - :r J 
o 

In this way natural frequencies and modes are usually present before 

(4) 
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calculating forced vibrations and they can be employed for the transfor­

mation. Fig. 3 shows for example the three lowest natural modes ¢. of the 
-J 

steel foundation with the corresponding natural frequencies. 

In the case of symmetric matrices ~ and ~ the natural modes possess the 

following orthogonality properties 

0 for j 
./ 

!j':! !k" M. for j 
J 

2 
K./M. w. 

J J J 

~~e can also write 

ZTk! ~ diag {M. } 
J 

!T!$ 2- diag {K. } 
J 

.. k 

k 

0 for j " /' 
~j~ P.k ·'K. for j 

J 

first bending mode 

with 21.8 Hz 

k 

k 

bending and torsional mode 

with 30.4 Hz 

torsional mode 

with 65.0 Hz 

(5) 

(6) 

( Sa) 
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= 

Fig. 4 Expansion ln terms of natural modes 

Expressing the system response by an expansion in terms of the natural 

modes (Fig. 4) 

.., 
u (t) 

.oJ 

L <p. q. 
-J J 

and substituting of eq. (1.3-7) in the equations of motion we obtain 

after premultiplying with !T 

<j>TM <l> 

.. 
<j>Te ¢TK ¢TF' "" ~ 

~ + <l> 9. + <l> ~ = 

diag {M. } "" ¢Te A "" diag {K. } ¢TF' q + '" q + 3.. J J 

(7) 

(8) 

The matrices ¢T~ ¢ and ¢TK ¢ ar,' Jiagonal, which is usually not the case 

9 

T T"'" for the transformed damping matrix ¢e A ¢ F is the vector of generalized 

forces acting upon the system. 

If the damping matrix e is a linear combination of the mass and stiffness 

matrices 

e=().1l+8~, (9) 
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~TC ¢ is also diagonal: 

~ TC ¢ ex diag {M. } + B diag {K. } diag {C. } 
J J J 

(10) 

Now we have N decoupled equations 

.. 
¢~ 

oJ 

M. {(\ M. B K. } + K. 
oJ 

F q. + + q. q. 
J J J J J J J J 

(11 ) 

which can be written in other form 

- {ex 
2 :., 2 ~ ¢: q. + + B w. } q. + w. q. F 

J J J J J M. J 
J 

(11 a) 

With the above mentioned methods of calculation for a single degree of 

freedom system the unknown generalized 

The system response is composed of the 

coordinates q. can be calculated. 
J 

natural modes ¢. with the gene­
-J 

ralized coordinates q. as factors (eq.7). 
J 

This method of obtaining the response of a system by using the modal 

matrix ¢ as the transformation matrix is called "modal analysis". 

3 Equations of Motion of Rotating Machinery. Contrary to non-

rotating structures the dynamic behaviour of rotating machines (turbo­

rotors etc.) is influenced by additional effects . Of great inportance 

are selfexciting and damping effects (nonconservative effects), caused 

by the oil film forces of journal bearings, forces in sealings and ex-
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ternal and internal damping forces. Furthermore gyroscopic effects have 

to be considered in certain circumstances. 

11 

For calculation of vibrations a mechanical model of the rotor is needed. 

Fig. 6 shows as an example a model of a turborotor. It consists of a 

flexible shaft with many beam-elements. Each beam-element is charac­

terized by constant parameters: bending stiffness, mass per unit length, 

moments of inertia, damping coefficients (internal and external) and mass 

eccentricity. The shaft is running in journal bearings with angular of 

velocity )1. 

! 
I 

Beam element n 

EIn. Jin. In. 
'~. 'p. b,. bo• en 

'-
" 

Flexible shaft 

Fig. 6 Mechanical model of a turborotor 

\ 
Journal bearing 

k'k • b,k 

It is well-known from lubrication theory, that the dynamic forces acting 

from the oil film to the shaft journal depend on the displacements and 

the velocities of the journal (l inear theory) 

~ 0 
k k .Q -c c 

xx xy xx xy 

k k c c ( 12) yx yy yx yy 

B B B B B 

..J 
. -F ~B u - fB ~B -B -B 
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k k k k are the stiffness coefficients, c c c c xx' xy' yx' yy xx' xy' yx' yy 
the damping coefficients of the oil film. They are functions of the 

running speed n. The matrices ~B and £B are nonsymmetric, which is of 

great importance for further methods 01 calculations. 

Exciting forces are caused by unbalance of the rotor. Other exciting 

forces may occur, caused by impacts to the shaft, a blade break, a short 

circuit etc. 

Different possibilities exist, to describe the motion of the above 

mentioned rotor with continuous mass and stiffness distribution. It is 

obvious to take as mathematical model the partial differential equations 

together with the appropriate boundary conditions. Only in simple cases 

it is possible to find analytical solutions. 

For practical calculations usually a discrete mathematical model is em­

ployed with a finite number of coordinates. The system behaviour is de­

scribed by ordinary differential equations. Working with matrices is very 

useful in such cases. 

The equations of motion mostly will be formulated with the principle of 

virtull work. In the expression of virtual work t"he unknown deflection­

functions are substituted by assumed deflection shapes 'with free para-

meters. In the finite element method local trial functions are applied 

to each beam element. Free parameters are the deflections and angles 

at the boundaries of the elements. Finally we obtain a d:scret~ mathe­

matical model, which consists of ordinary differential equations for the 

unknown displacements at the boundaries of the elements (displacement 

method) . 

The equations can be written with the system matrices ~. £, ~, the dis­

placement vector ~ and the vector of external forces F (Fig. 7). 
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Fig. 7 Equations of motion 

Coordinates 

ute) 

Mechanical 
model 

Equations 
of motion 

The matrices have bandstructure with an overlapping of the element ma­

trices. An investigation of the matrices ~, £, ~ for the described ro­

tating structure shows differences opposite to the matrices for nonro­

tating structures (Fig. 8). 

13 

The mass matrix here is also symmetric and describes the translatory and 

rotatory inertia behaviour of the rotor. 

Damping and stiffness matrices contain besides the symmetric terms also 

skewsymmetric and nonsymmetric terms. 

Skewsymmetry is caused by gyroscopic effects (damping matrix) and by 

internal damping (stiffness matrix). 

Nonsymmetry, caused by the oil film, appears In both stiffness and damping 

matrices. Therefore K and Care nonsymmetric In general with speed de­

pendent elements. 

There is also a coupling In the two planes (horizontal and vertical) 

caused by the mentioned effects. 

The special nature of the matrices (nonsymmetry, skewsymmetry) for ro­

tating systems requires other solution methods, especially in 

modal analysis. 



14 R. Nordmann 

.. .:- '" ,.; 

M u + C un u + K (rl) ~ F -
\ 
\ 

~ymmetric symmetric symmetric external 

translatory and external damping beam bending forces 

rotatory inertia internal damping 

skewsymmetric skewsymmetric 

gyroscopic effects internal damping 

nonsymmetric nonsymmetric 

journal bearings journal bearings 

Fig. 8 System matrices for rotating structures 

4 Modal Analysis for Rotating Structures. In chapter 2 we 

found out, that the equations of motion for nonrotating structures can be 

decoupled, if the system matrices are symmetric and the damping matrix 

is a linear combination of mass and stiffness matrices. 

for rotating structures the symmetry of the matrices normally IS not giv-

en (chapter 3) . The question is, In what way forced vibrations in 

rotor dynamics can be treated by a modal analysis. 

Two different ways are described in this chapter. 

Modal analysis in rotor dynamics with natural modes of a conserva­

tive system. We start with the equations of motion for a rotor described 

in chapter 3 
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" N ~ M U + c U + K u = F (t) (13) 

with nonsymmetric and ~-dep~ndent matrices ~ (n) and ~ (n). 

Similar to the consideration in chapter 2 the basic idea IS calcu­

lating the natural modes of a simple corresponding system and to employ 

them in the transformation matrix ~. 

The system matrices ~, £, ~ always can be subdivided into a symmetric 

15 

and a skewsymmetric part (Fig. 9). The symmetric parts of mass and stiff­

ness matrices as well as the skewsymmetric part of the damping matrix 

are conservative. On the other hand the symmetric part of the damping 

matrix and the skewsymmetric part of the stiffness matrix are nonconser­

vative. Disregarding the damping matrix ~ = fs + fA' we take only the 

symmetric part of the stiffness matrix K and the symmetric mass matrix -s 
M and calculate eigenvalues and eigenvectors of this special conservative -s 
problem 

2 
(K - w. M ) ~. 
-s J -s -J s o 

{. }8' 
{E'E}G' 
{E'.}B'8 

Fig. 9 Symmetric and skewsymmetric matrices 

(14 ) 



16 R. Nordmann 

The eigenvalue routines are well developed for this case. 

The natural modes ~. , respectively the modal matrix ~ possess again 
-JS -s 

the orthogonality properties 

T 
~ K ~ 
-s-s-s 

diag {K.} 
J 

diag {M.} 
J 

(15 ) 

Calculating the forced vibrations for the original nonconservative system 

(eq. 13) , we express the system response by an expansion in terms of 

the natural modes 

.v 
!! (t) 

N 
L 
j 

~. q~t) = ~ q 
-JS J -s-

(16 ) 

Substituting eq. 

obtain 

16 1n eq. 13 and premultiplying with ~T we 
-s' 

(17) 

or 1n regard to orthogonality relationships 

( 17a) 

Fig. 10 shows, .that in the transformed system only the matrices ~TM ~ 
-s-s-s 

and ~TK ~ are diagonal. The remaining matrices are filled and therefore -s-s-s 

I 

I \ 
\ \ \ 

~T M ~ .., <l>T C<I> 
;, 

(<I>TK <I> <l>TK <I> ) oJ <l>Tf q + q + + <J -s - s-s -s - -s -s-s-s -s-A-s - s -

Fig. 10 Coupling of the transformed system 
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a decoupling of the equations is not possible in this case. However the 

number of equations can be reduced by taking only some of the natural 

modes in the transformation matrix ~ . -s 

Modal analysis in rotor dynamics with natural modes of the non­

conservative system. In the last chapter we found, that the classical 

modal analysis with natural modes of a conservative system fails to un­

couple the equations of motion in rotor dynamics. However working with 

eigenvalues and natural modes of the nonconservative system leads to the 

desired decoupling. 

Eigenvalues and natural modes of the nonconservative system. The 

first step in modal analysis is always the determination of eigenvalues 

and natural modes. Therefore at first we give some remarks about eigen­

values and eigenvectors (natural modes) 1n rotor dynamics. 

The case, in which the force vector F = 0, 1S called free vibrations and 

1S characterized by the homogeneous equation 

M u :. 
+C~+Ku Q 

The solution of eq. 1.3-18 1S of the form 

~ (t) 
\t 

¢ e 

Substitution yields the quadratic eigenvalue problem 

o 

( 18) 

( 1 9) 

(20) 

with 2N eigenvalues A. and corresponding natural modes ¢ .• if the order 
J ~ 

of the matrices 1S N. 

The eigenvalues as well as the eigenvectors mainly occur 1n conjugate 

complex pairs (real eigenvalues and eigenvectors are not considered) 
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Eigenvalues: A. a. + lW. A. a. - iw. (21 ) 
J J J J J J 

Eigenvectors: <1>. s. + it. <1>. s. - it. (22) 
-J -J -J -J -J -J 

The part of the solution, which belongs to such a conjugate complex pair, 

can be written as 

li.(t) 
a.t {so sin(w.t + y.) cos(w.t + y.)} (23) B.e J + t. 

-J J -J J J -J J J 

w. IS the circular frequency and 
J 

a. the damping constant (decay constant). 
J 

The damping constant a. (real part of A.) determines, whether the solu-
J J 

tion ~.(t) decreases (a. < 0) or increases (a. > 0) Fig. I I shows the 
- J J J 

plane motion of one point of the shaft for the three cases a.<o )a. = 0 
J J 

(stability limit) and a. > o. 
J 

.J2 

\ 
a. < 0 stable 

J 
a. 

J 
o stability limit 

Fig. II Plane motion of a point of the shaft 

a. > 0 unstable 
J 

The constants B. and the phase angle y. depend on the initial conditions. 
J J 

Normally all of the conjugate complex pairs contribute to the solu­

tion of the natural vibrations. Discussing the natural modes we assume, 

that the initial conditions are chosen in a way, that only the above part 

~.(t) contributes to the solution. Then the systems vibrates with the -J 
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circular frequency w. and the corresponding natural mode. 
J 

To explain the natural mode is not so easy as in the case of conservative 

systems. The expression in parentheses { } of eq. 23 can be defined 

as natural mode, representing a time-dependent curve In space. 

Fig. 12' shows the modal shapes for two different points of time tl and 

t 2. There is no constant modal shape, proportions and relative phasing 

in general vnry from point to point at the shaft. 

Modal shape 
at time t, 

/ 

/<'-Modal shape 
at time t2 

Fig. 12 Natural mode of a nonconservative rotor 

Considering only one point of the shaft, the plane motion IS an ellip­

tical orbit (Fig. 12). 
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Orthogonality properties of left and right eigenvectors. The equa­

tions of motion of a N-degree of freedom system can be converted to 2N 

first order differential equations with the dependent variables i consti­

tuting a 2N dimensional state vector 

I~ ~ 
B } 0 

The matrices A and ~ are real and nonsymmetric. 

The corresponding eigenvalue problem 

o 

has the same eigenvalues A. as the problem 
1 

vectors 

obtain the eigenvectors <1>. of (20). 
-1 

(20) 

(24) 

(25) 

and the right eigen-

(26 ) 

If can be shown, that the transposed eigenvalue problem 

o (27) 

also has the eigenvalues A. but other eigenvectors - the left eigenvec­
J 

tors - consisting of 

( 28) 

If we premultiply two different eigenvalue equations (25) and (27) 
. 1.T T wIth and r. , transpose the second and substract the second from the 

-J -1 
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first, we obtain 

T T 1. Ar. ).. .1. Br. 0 
-J - -1 1-J - -1 

(29) 

T T T T 
r. A l. Lr. B l. '" 0 
-1 - -J J-1. - -J 

(30) 

().. .-L) T 
0 1. Br. 

J 1 -J - - 1 
(31 ) 

From these last equations we find the bi-orthogonality properties 

1. TBr . < 0 for j + i 

-J - -1 d. for j i 
J (32) 

T « 0 for j f i 
1. Ar. for j i· ).. . d. -J - -1 c. c. 

J 
, 

J J J 

If we represent the left and right eigenvectors in the modal matrices R 

and 1. 

the orthogonality properties can be written in the form 

diag (c.) ; LTBR 
J 

diag (d.) 
J 

(33) 

Normalizing the eigenvectors to get d. '" 1 for all eigenvectors 1S possi­
J 

ble. 

Decoupling of equations of motion. The equations of motion for the 

forced vibrations may be developed in first order form 

o M 

c (34) 

A r B 
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Again we express the unknown system response by an expansion in terms of 

the right eigenvectors of the nonconservative system 

.; 
r(t) 

2N 
l: 
j 

r. q. 
-J J 

with the generalized coordinates 

premultiplying with LT we obtain 

q .. Substituting 
J 

The matrices LT A Rand LT B R are diagonal. - - -

We normalize them to get 

LT A R diag (L) 1\ 
J 

LT B R diag (1) I 

(35) 

in eq. (34 ) and 

(36) 

(37) 

The system of ordinary differential equations (34) is reduced to a set 

of independent complex equations of first order for the generalized co­

ordinates 

L q. 
J J 

- q. 
J 

(38) 

The generalized forces are represented by the left eigenvectors ~. and 
-J 

the force vector F. 

The decoupled equations can be solved easily for actual load cases (har­

monic excitation, impulse etc.~. The general solution for the generalized 

coordinates is given by the combination of the complementary solution 

(homogeneous equation) and the particular solution. 

5 Example-Shaft in Two Journal Bearings. Applying the above 

described modal analysis we investigate a simple symmetric shaft, running 

in two equal journal bearings with angular velocity n (Fig. 13). 
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JOlJrnal 

~ecr:ng 

Shaf~ 

Fig. 13 Synnnetric shaft in two equal journal bearings 

Fig. 14 shows the five lowest natural frequencies w. and the corre­
J 

sponding damping constant o. versus the running speed ". If all of the 
J 

23 

damping constants o. are negative, the natural vibrations decrease. When 
J 

the stability limit is reached one of the damping constants become zero 

(this IS the case for 0 1 in Fig. 14). Above the stability threshold speed 

(0 1 > 0) the natural vibrations increase with time. 

From the plotted natural modes it can be explained, that the stiff­

ness of the shaft IS ~igh compared with the bearings. 

The intersections of the natural frequency curves w. with the straight 
J 

line w. = ~ indicate resonances of the system. Whether the individual 
J 

resonances with their corresponding natural modes are well excited or 

not, depends on the distribution of the exciting forces. 
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200 

o .--------r ,._.-- ----- .- -"""I 

200 J2. 1/s 1.00 600 

o --_.-- _---.--l __ ill--=~ ___ <"::-:=-.----- __ .. -.1 

<Xj j 
1/s 

100 -

~~-=----

/-.---

Fig. 14 Eigenvalues and natural modes 

R. Nordmann 

In Fig. 15 forced unbalance vibrations are investigated in the case of 

uniform distributed mass eccentricity. 

If the rotor is running with the angular velocity Q, the system is e~­

cited by harmonic unbalance forces with exciter frequency Q. The steady 

state response is harmonic too and the plane motion of one point of the 

shaft is an elliptical orbit (see Fig. 12). 

In the upper diagram of Fig. 15 (eigenfrequencies versus speed) the 1n­

tersections are indicating resonances. 
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400 

200 __ 

o 

3 _ 

o 

~~ 
WJ - J2 i 

I 
i 
I 
I 

e-----I 

i I 
I 

200 .Q 1/s 
I 

400 

-----r------ ------1 

200 .J2 1 Is 400 

Fig. 15 Steady state response caused by unbalance forces 

25 

In the lower diagram the nondimensional major aXiS of the ellipse (center 

of the shaft) is plotted versus the running speed. 

As a result of the symmetrical distributed exciting forces only the 

symmetrical mode shapes are excited. The solid line is the exact unbalance 

response of the model calculated with a complex Gauss algorithm. The 

solution found by "modal analysis" is plotted with crosses. Only the six 

lowest natural modes - of the nonconservative system - were employed and 

there is a good agreement with the exact solution. Working only with two 

eigenvectors the response is still good in the lower frequency range 

(dotted line in Fig. 15). The represented calculation of unbalance vibra­

tions with modal analysis is convenient, if the complex eigenvalues and 
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eigenvectors - all depending on the speed r. - are present for the 1n­

dividual running speeds D. Otherwise it is too time consuming and the 

direct calculation solving a linear algebraic equation system 1S more 

effective. 

On the other hand the application of modal analysis is convenient calcu­

lating disturbing cases during operation with constant running speed Q. 

In such cases there is no variation in the system matrices (left hand 

side of equations of motion), only the exciting forces are changed. The 

eigenvalues and eigenvectors need to be calculated only for the one run­

ning speed it. 

Fig. 16 shows the transient vibrations at the center of the shaft before 

and after a simulated blade break, which is equivalent with a local 

change in mass eccentricity. The running speed Q is constant (Q = 314 lis) 

The complementary as well as the particular solution have to be taken into 

account. 

c:: 
.9. 
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d 
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L 
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t ime 

0-6 5 

Fig. 16 Simulation of a blade break 
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The left plot shows the deflections in vertical direction, the right 

plot the plane motion. The amplitude magnification after the break is 

about five times higher than in the steady state solution before the 

break. 

Besides the operating frequency n especially the first eigenfrequency 

wI with a corresponding low damping (Fig. 14) determines the behaviour 

27 

of the response. Good results were obtained by modal analysis calculation 

working again with the first six eigenvectors. 



PART II 

DYNAMIC BEHAVIOUR OF ROTORS 



CHAPTER 2.1 

THEORY OF BEARING STATIC AND DYNAMIC PROPERTIES 

Z.A. Parszewski 

~ydrodyna~ic rorces. 

3earing dynamics characteristics is necf'ssary for rotor-bear::'r.g 

systen dynamic analysis. tTlhn 
•.• 1"", chnractcr~sti2s ~hould ~ukc r:ossib:c 

obtaining the forces actinc on the journal at any ~oncnt of its 

vl.'::;ratio:1~;. :.isc:usscd hC.n: ',:i=-i :;c 

hydrociyna';,ic journal '::Jearings, appl.i cci 

~idcly i.n ~achines. :he~;e bearincs a~ 

s~fficient oil supply, produce oil fil~ 

'8rODC'r radio.l cJ.co..rar:cc i~ the bcarir.8 
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o~' the sleeve und the journal r = H-H 
c 

The pressure distribution on the sleeve can be obtained from the 

equations of oil flow in the bearing clearance. 

The :~avier-~)tokes fluid flow equations together with the 

continuity equations, simplified for the bearing narrow clearance and 

intesrated across the oil film thickness reduce, for laminar flow and 

C'orrr~spol:dil1g iicynolds r;ur.lbers, to the l·:eynolc.s equation. That 

equation generalised for the unsteady state of journal plane 

vibrat!.ons in the sleeve [1], [?J, [3], has the form 

a ,,3 "p 
(~ 2....) 

ax .'1 Clx 
+ .i..- (!:2. ,,~p) = 6-ad (wHh) + 12l!!. az Tl ""1 X at (1) 

:~:troduction of nondimcr.sional co-ordinates 

~ 
x 21 h = ; z = 2--;: ; :! ;\ r 

(2) 

and the pressure function 

p(f) 
;> 

3 
I? 

U = t: 

TlW 
(3) 

and denotation of the derivatives by corresponding indices gives for the 

equation (1) the following nondir.!ensior;al ;'orrr. 

~2 

u + ~ u + d(¢,c,a)u 
q>O [,L zz (4) 

'..:here 

d(IP.c.a) 

(5) 
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and 

K = - ;,c sin (¢ - a) + 2~ cos(Q 
~t 

,).' (6 ) 

F:quation (4) can be progrn.r.u::<?cl :'c)!' cO!:',pu-:er after previous replace-

33 

ment of the derivatives by corresponding ratios o~ finite differences in 

the whole area of t~e developeri sleeve. 

~nd conditions to be fulfilled are 

(u) = p . 
¢=o z' (u) ¢=¢ = l\1 ; 

1 

(u) 
z=~: 1 

n 
'0 

and real area of pressure ,:c!wration 0:; the sleeve is to be fO'.l!1d. 

(7) 

'I'h is lRst is found d i rc('t 1 y .i n the computat ion process of success i vo 

approximations if the conditions (7) are co~pleted by tr~ 

require~ent [1] 

:;>0 

for incompressible fluid as oil is. Pressure distribution on a 

considered sleeve is computed in this way for ,journal positions 

described by the eccentricity ratio c = ~ and the angle a. 
j'i 

.l'he 

(8) 

journal rotates at the sar.Je ti~e with speed wand vi brates wi th a plane 

motion having the velocity of the following radial and circ~ferential 

components 

I dC 
w at 

1n the above conditions Ot! the circumference ¢ = 0 and ¢ = ¢1 give 

(9) 

the beginning and the end edge of the sleeve, Z = ±l gives outer edges 

of the sl,'eve and Pz' Pw- correspondingly denote the inlet and outlet oil 

pressure, po- is the external (atmospheric pressure). 

Components of the hydrodynamic i'orl!C in the radia.1 s and perpendicular 
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to it :iirection n U'i(~. 1) 

generated by the described journal 

~otion are hence given by the 

hltegral::; 

sp 

i" np 

flW 
('os ( ¢-:1.p ) (i¢dz 

( 1 0) 

sin ( Q-cxp ) (i¢dz 

The index p denotes the considered 

2 Static ~ho.racteristics 

~or stability or antivibratory reasons modern journal bearings are 

often built up from a few partial sleeves, concentric or eccentric. 

;"i g. (2) shows a three lobe bearing having three independent oil 

films, hence three stationary partial sleeves. 

~'he components of hydrodynamic forces of a bearing of n partial 

sleeves with independent supply and outflow of oil, (hence of 

independent n oil films) are obtained as geometric sums of those forces 

on all thc part 10.1 sl(~(~ves 

n 

= I 
p=l 

F (c,a')(~ .. ,;:..) 
sp ~ 

( 1 1 ) 
n 

n 
I F ( c , a , C t ' ,\ ) 

p=l np v 
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2.o1----+-_T __ f~----I-----l_-. ----+--+--tt----l 

(5 I 5:: fCc) 
~-+--- L-_-+_--,-

8 

7 

6 

5 

(Oll----_+__ 

2 

oL--c~~~::::=t;:: o OJ 0.'2 0.3 0.9 

Fig. 3 

The components 
'y' 

of' these forces in 

direction oppos i tr' 

load u:ld !"Jormul to 

C·ig. 2) arC' 

.. 
y 

x 

;;. cos(a-R) 
~) 
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x 

the 

to ~·.h (' 

i L 

( 12) 

J, l\ = 1 ~ if;. d t- r: c 

.' . 
c = .'~', J., (13 ) 
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number) of the berrrine 

s = S(c) (14 ) 

~he bearing nondimensional load capacity (14) , defined for a given 

direction as ~o~dimc~sional load (corresponding to the load P ) at an 
o 

equilibrium position and at a eiven s!)<',· J w, is given by the formula 

:\elations 

istics. 

, . . ) 

(14 ) and 

( 15) 

( 13) gi ve hence the bell~·:~. ", 'itiC character-

..:or.:puted results [4 ~ arc gi ven in ]:ies. 3 4 for a 

three lobe bearing wi, th the parU al sleeve arcs 01' 

<ill I = 1500 ; 

and 
L 

2:\ ::: 0.83 and 0.5 

Old 
~q, .:orrespondine; curves [5] for a 

I 5 bearing ~ith eccentric sleeves -
Cl 9 

le~o!1 shaped- (~ig. 5) are 

e;i ven in the Fig. 6 and 

7 a,t; ,c, for ~; 0.851 and 

t three va:ues of the sleeve 

ecccntr~ci:'y par~.ur.ctcr 

Both types of 

bearings arc used in e;cnerators 

of :~olmel-\'iroclaw prociuctior .. 

Fig. 5 
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3 _ .. yr..arr..1C ':-hara~ter:stics 

.: o'.lr!1al 'Ii trat ions in a tearing c'enerate addi t ional hydrodynrunic 

fcrc:es [6] 

-, "' 6" 
"' :; x X J 

( 16) 

':-!1ese :''.l!:c:t:'ons :::ay be li!1earised, Le. developed in a power series and 

o!"!l/ li!":.ear ter::iS -.. :: th respect to the co!':ponc!'1t displacements X, Y ar.d 

v::'Lra~.:icr. o,eloc.!.. ~:t Z~, '!~ , ;,reserved 

c' 'x 

" " 
(i< X+K '/+" X +,: 'f) 

xx xy" ~ xx t xy t 

( 17) 

~ll dlsplace~e~ts and velocities are here nondimensional. ilondimensional 

<:xprc-ssed in the form 

;t 
"xx 

xy 

yx 

~)1; 
'n cos?y 

+ -- ---
}o c 

d:'" 
s si.n X cos y + 

():" 

ao c 
s + 

c 
:i sin xco~; X + 

de 

C cos 2xc +:' (1-;, + sin X eos Xc ] 
xx c t "xojl2 c t 

;) ;,' :J;: d !: 
n ~.i.n 

si!1 y ac CO~3 y -
S s1n2y 'n ? 

ao --c- + ~os y dO 
X cos X + 

c 

l' 
( 1-;\ r: 

+ -
~ xx ? 

. ~. y ,~()~; y + 

sin y cos 
y" ] -e 't 

ai,' ;> 
s co~) y 

dCt l' 

+ sin y cos 
e 

"~ "xy'> C ":t 

y " ) 
"t j 

~;'i n y cos y + 
e 
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K 
yy 

C 
XY 

c 
yx 

elF 
s sin y cos y 

aa c 

aF aF . 2 
n sin y cos y + --E. ~ + 

3c Ja c 

_ C (l-A _ sin y cos y C 1 _ C Sin2yc 
yx 2 c l J YY c t 

aF aF. aF at 2 
s sin2y _ 2 __ s Sln Y cos Y + .-..I!. sin 2~. cos -y 

aCt aA c aCt y cos y - aA c 

aF F ar ar 
s . 0 s sin 2y n 2 n sin y cos y 
~ Sln y cos y + 2-- + cos Y + ~J' 
o'"'t at, c aCt a • C 

ar at' aF F 
s . 2 __ s cos 2y _ n sin 2y + 2 n sin y cos y 

ac Sln y cos y - aA c a" aA c 
~Ft ~~_"t 
o dF 0" ar . 2 

" s? + '") __ s sin y cos y s 2 __ s Sl!! .y 
,-yy = :)C t cos·y ,. aA c - aCt sin y cos y - aI, c 

where y = a - 6 

For journal vibrations round its equilibriwn position, with small 

velocity is 

39 

( 18) 

K xx 
aF aF sin y cos y _s_ sin 2 y + __ s ==-=---'-_--=-=---'--_ 

F 
+ 2 + 

c 

F a·e 2 on. 2~ 
ac Sln y cos Y + aCt c ac aCt c 

aF a- aF dj;' ;. . 2 sin 
K 

s 
sin 

s Sl!'"! Y n cos 2y n y cos Y r: y cos y - + + xy ~c dCt c dC aCt c c 

3ie d:e 
cos 2y 

3 :; F sin s 
Shl 

s --1L ~ _D_ Y cos Y K y cos y + - sin-Y 
yx dC 3Ct c ac ()::; c 

:lY d:-' 
, .. 

sin 
,; ~. :J ~. 

sin 2y 
K 

s 
cos 2y 

s y cos y r. s;n n - y cos y + 
yy oC dCJ. c dC aCt c 

3:-' dr' aF a:; 
cos 2y 

C 
s 

sin 2y s sin y cos y n 
sin 

n 
2T + y cos y - L 3;\ xx d~:t a-' c 1\ c v t 
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aF ClF . 2 aF aF 
C = s y cos y + 2 __ s ~ + --.E. cos2y + --.E. sin y cos y 

xy (lCt sin (lA c aCt aA c 

aF aF 2 aF ClF. 
C ~~s sin y cos y _ 2 __ s cos Y _ ~ sin2y + 2~ SIn y cos y 
yx O"t ClA c aCt aA c 

C 
yy 

ClF aF 
s 2 + 2 __ s sin y cos y 

ac cos y aA c 
t 

The stiffness matrix 

[K] 

and the damping matrix 

lc C J_. 
[C] = xx xy 

C C 
yx yy 

aF aF . 2 
n. 2~~ ac- SIn y cos y - aA c 
t 

as functions of parameters of the equilibrium state (i.e. of the 

eccentricity ratio c) give hence together the bearing dynamic 

characteristics. 

( 19) 

(20) 

(21) 

1be flow diagram for computation of the clements of these matrices for 

any bearing is given in Fig. 8. 

Computation results for the same two types of bearings, as described 

in the previous point are presented graphically in the Figs. 9 and 

10 for the three lobe bearing [7] and in Figs. 11 and 12 for 

the eccentric (lemon) bearing [8]. 
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CHAPTER 2.2 

STIFFNESS AND DAMPING CHARACTERISTICS OF TILTING-PAD 
JOURNAL BEARINGS 

H. Springer 

1. INTRODUCTION 

Lateral vibrations of large turborotors of steamturbines or hydro­

electric power plants are highly influenced by the stiffness and dampinc 

characteristics of the bearings. Larce turborotors are usually guided in 

hydrodynamic journal bearings. Tilting-pad journal bearings are used 

particularly for horizontal or vertical shafts of high diameters. If the 

amplitude of the shaft vibration is small compared with the clearance of 

the bearing, the characteristics of the hydrodynamic oil film can be 

described, corresponding to a linear theory, by unsymmetrical stiffness 

and damping matrices of dimension (2x2), containing four stiffness and 

four damping coefficients, respectively. When assuming a riCid and im­

movable bearing house then the stiffness and damping coefficients of the 

oil film depend only upon the static bearing load, the clearance and 

speed of the shaft and the specifications of the lubricant, see Ref.1,2. 

They are not influenced by the frequency of lateral shaft oscillations. 

However, when the bearing house is flexible or movable - for example, 
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when a tilting-pad bearing with flexibly pivoted pads is used - then an 

essential influence of lateral shaft vibrations upon the stiffness and 

damping coefficients could occur 3,4,5. This holds even for small ampli­

tudes of vibrations where a linear theory can be applied. 

In this paper journal bearings of vertical turborotors for hydroelec-
6 

tric power plants are investigated Figure I. shows a schematic diagram 

guide bearing 

Ponymotor 

guide bearing 

Generator 

guide bear ing 

thrust bearing 

. guide bearing 

Ru nner 

Figure I. Schematic diagram of a 
vertical turborotor for a 
hydroelectric power plant 

of a vertical turborotor guided 

by four tilting-pad journal bea-

rings and carried by one thrust 

bearing which is balancing the 

weight of the rotor and axial 

forces of the runner. Under 

transient operating conditions 

for example a pump or a turbine 

start up - the turborotor can be 

exposed to severe hydraulically 

excited vibrations. Then very 

high radial forces are acting 

upon the guide bearings causing 

radial and tangential displace­

ments of the flexibly supported 

pads. IVhen the flexibility of 

the support of the pads is of 

same order of magnitude as the 

flexibility of the oil film one 

can not neglect the movability 

of the pads . In other words, all 

degrees of freedom of the pads 

have to be taken into account if 

one is to determine correct stiffness and damping coefficients of such a 

guide bearing. Let us assume a small lateral harmonic excitation force F 
x 

acting upon the shaft with an angular frequency we' see Figure 2. Then 
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the shaft as well as all pads of the bearing will oscillate with the same 

frequency w • For small amplitudes of vibrations we can establish a set 
e 

of linear differential equations of motion for the bearing system. Now 

the de$rees of freedom of all pads can be eliminated from the equations 

of motion and a condensed dynamic stiffness matrix, describing the motion 

of the shaft center only, is set up. The resulting dynamic stiffness ma­

trix is of dimension (2x2) corresponding to the fact that two degrees of 

freedom for the movement of the shaft center remain after the condensa-

tion. 

The objective of this paper is the calculation of condensed dynamic 

stiffness matrices and flexibility matrices for large tilting-pad bea­

rings that guide a vertical turborotor . Socalled local bearing systems 

Figure 2. Schematic cross-section of a tilting-pad bearing 
with 12 pads. Radial excitation force F . 

x 

are assumed in this investigation, i.e., interactions between different 

bearings through the foundation are neglected. 
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2. HYDRODYNAMIC OIL FILM PRESSURE OF A FLEXIBLY SUPPORTED PAD 

Fi2ure 3 shows a detailed diagram of a pivoted pad for the radial 

guide bearing as drawn in Figure 2. The support of the pad is assumed to 

have a linear viscoelastic characteristic. Flexibility as well as mova­

bility of the foundation, carrying the pads, are not considered. The 

symbols used in Fi~ure 3 have the following meaning 7,8,9 

x - y 

x - Y 

h 
o 

hC:::"t) 

u,v,u,v 

r 

R 
s 

t, 
s 

¢ 

2~o 

k ,kt,k r a 

t 

coordinate system for the entire bearing 

coordinate system for one pad (called subsystem) 

+) radial clearance of the bearing (for n = 0) 

thickness function of the oil film of a pad 

displacements of the shaft center in the x-y and x-y 
system, resp. 

+) 

+) 

+) 

+) 

radial, tangential and angular displacements of the pad, 
resp. 

radius of the shaft 

radius of the curvature of the pad 

thickness of the pad at the supporting point 

angular position of the pad with respect to the x-axis 

mass of a pad 

moment of inertia of a pad with respect to the supporting 
point 

+) sector angle of a pad 

+) stiffness-} coefficients of visco-elastic supporting in 
radial, tangential and angular direction, 
respectively 

+) damping-

oil film forces acting upon the pad 

angular velocity of the shaft, assumed to be constant 

time 

+) indicated parameters are assumed to be equal for a1l pads of the 
bearing 
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shaft 

y 

x 

y 

Figure 3. Flexibly supported pad of a tilting-pad journal bearing 

In the following we consider a guide bearine with n~3 equally 

shaped pads which are flexibly supported to the foundation and symmetri­

cally mounted alone the circumference of the shaft, see Figure 2. Using 

References 7,8,9 the thickness function of the oil film for an out of 

center pivoted pad is given by 

H(Ti,t) h{!i, t) /h 

where the coefficients 

c 
o 

(R - r)/h 
s 0 

o 

(2.2a) 
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[a (R +6 )/h + (v-v )/h ]sin~ - [C -I+(u-u )/h ] cosY' (2.2b) 
s s s 0 s 0 s 0 s 0 s 

-[a (R +6 )/h + (v-v )/h l,.os<p - [C -I+(u-u )/h 1 sin<f. (2.2c) sss 0 s r:r so s oJ s 

depend on time t since the displacements u , v , a of the pad and the 
s s s 

displacements li, v of the shaft center depend on time t. The eccentricity 

of the supporting point of the pad is given by the angle ~s' see Ref.7.· 

In Figure 3 a centrally pivoted pad with ~ 
s 

0, is drawn. 

The distribution of the non-steady-state pressure within the oil 

film of a pad can be evaluated from the wellknown Reynolds differential 
2 equation 

6rn~ + 12~ 
aT) at 

(2. 3) 

The simple boundary conditions are p(1,r"t) = 0 at (n ±L/2,~,t) and 

(1,~ = ±B/2,t), where L is the length of the pad in circumferential 

direction, B is the width in axial direction and w is the dynamic vis­

cosity of the lubricant. 

An approximate solution of Equation (2.3) was eiven by the author 7, 

applying the method of Galerkin 10 to the variational principle corres­

ponding to Equation (2.3). By using that method the non-steady-state pres­

sure distribution p(n,("t) within the oil film can be approximately de­

termined in the form 

p(n,~,t) - ~LrD f(2n/L,t)g(2r,/B) -7 (2.4) 

o 

where 

N 

f('l,t) = L{av(t)[I-T2v (Il)] + bv(t)[TI(i)-T2v+I(Il)]} (2.5) 

v=1 

1S a Chebyshev-expansion - T being the Chebyshev-polynomial II of order 
v 
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v~2N+l - which describes the pressure distribution in circumferential 

direction, and 

g(r;) (2.6) 

is a parabolic function of order m~ 2 which determines the distribution 

of pressure in the axial direction. The calculation of the vector 

(2.7) 

containing the Chebyshev coefficients of the above series and the calcula­

tion of the exponent m are shown in Ref.7,8. The solution as given by 

Equation (2.4) to (2.6) is very useful for numerical computation since the 

Chebyshev-series has a very high rate of convergence. Hence, a lot of 

computer time can be saved in comparison with other numerical methods 

established in the literature. If cavitation occurs within the oil film 

of a pad then modified boundary conditions have to be applied 2,4,7 The 

components of the oil film forces acting upon the pad, see Fieure 3, can 

be calculated in matrix notation as follows 7,8 

(2.8) 

where A is a (2x2N) dimensioned geometrical coefficient matrix which can -s 
be evaluated from Ref.7,8. In Equation (2.8) ~ is the sector angle, 

o 
$ = h /r is the dimensionless clearance, and B is the width of a pad. The 

o 
moment of the oil film forces with respect to the supporting point of the 

pad is given in the form 

M 
C1 

-K-(R +t:. ) Y s s 
(2.9) 



52 H. Springer 

3. DYNAMIC STIFFNESS AND FLEXIBILITY MATRIX OF THE TILTING-PAD BEARING 

A guide bearing with n~3 equally shaped pads is considered. The 

pads are assumed to be symmetrically mounted along the circumference of 

the shaft, see Figure 2. Then, the angular positions of the pads are 

given by ~. = 2~(j-I)/n where j = 1,2,3 .•. n indicates the number of a 
J 

pad. The angular speed Q of the shaft is assumed to be constant. 

In the general case an external static load is acting upon the shaft 

in the radial direction. For that given load there exists an equilibrium 

Position for the shaft center at (u ,v ) and for the pads at (u va) o 0 so' so' so j 

where j=1 ,2, ... n. The equilibrium position of the bearing system can be 

calculated by iteration using Equations (2.8) and (2.9). The iteration has 

to be continued to the end that the nonlinear force exerted by the oil film 

upon each pad is in balance with the linear force exerted by the visco­

elastic supporting of the pad,and further,the resultinB nonlinear oil film 

force acting upon the shaft is in equilibrium with the given external 

static load. The nonlinear calculation is carried out through a computer 

program. 

In this paper the simple case of a vertical shaft is assumed and 

there is no external static load acting in the radial direction of the 

bearing system. Hence, for a symmetrical bearing the equilibrium position 

of the shaft is given by u =u =0, v =v =o,and the equilibrium position of o 0 0 0 
each pad is given by (ij ). = ij , (v). = v , (a ). = a as drawn in 

so J so so J so so J so 
Figure 4. The values of uso ' vso ' a so are found by a nonlinear numerical 

calculation. 

If the equilibrium state of the bearing is disturbed by external per­

turbation forces acting upon the shaft then the bearing system is excited 

to vibrations, see Figure 2. Assuming small amplitudes of oscillations 

compared with the clearance of the bearing a linear calculation is made 

possible. Then, in general, the bearing system is completely characterized 

by its dynamic stiffness matrix which is of dimension (2x2) and contains 

stiffness and damping of the oil film as well as inertia effects and visco-
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elastic supporting effects of the pads. Inertia effects of the rotor it­

self are not included into the bearing dynamics. Hence, the mass of the 

shaft is assumed to be zero for this investigation. In order to calculate 

the dynamic stiffness matrix of the whole bearing a subsystem is consi­

dered which contains the massless shaft and one pad only, being in the 

above mentioned equilibrium state, see Figure 4. 

x 

Figure 4. Zero-load state of the vertical shaft at u = v = 0 and of 
h d - I o. of F F tepa at u ,vso ' a Externa perturpatlon orces x-' -y' 

N . so so 
p-, p-, x y ex 

Now, the equilibrium state of the subsystem is disturbed by a small 

harmonic perturbation force (using complex notation with i =vr:J) 

F.(t) = {F_, F-y ' P-x ' P_, N }T 
-J x Y a j 

(3.1 ) 

where j indicates the number of the subsystem to be considered and 
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w = 2nf stands for the angular frequency of excitation. The components 
e e 

of the exciting force vector F. are indicated in Figure 4. The number of 
-J 

components of F. is equal to the number of degrees of freedom of the sub­
-J 

system. After transient vibrations have died out the bearing subsystem is 

excited to steady-state oscillations as given by the displacement vector 

z.(t) = {u, 
-J 

(3.2) 

If the magnitude of ~j(t) is small 

[ -2 -2 _2 -2 h, i.e., 
o 

max u + v + u + v + 
S s 

compared with 

2J 2 (ra) . «h 
s J 0 

the bearing clearance 

then the displacement 

vector is approximately a harmonic function 

(3.3) 

Then a linear relation 

'" F. 
J 

(3.4) 

...... 
between the amplitudes of the exciting forces F. and the amplitudes of 

-J 
displacements z. can be established. The complex valued matrix 

-J 

(3.5) 

is called the dynamic stiffness matrix of the bearing subsystem j, with 

M., C. and K. being the mass, damping and stiffness matrix of the subsy--J -J -J 
stem, respectively 9. S~ is of dimension (SxS). Considerino the equili--J <.> 

brium conditions for the massless oil film of a pad and using Equation 

(2.2) the dynamic stiffness matrix can be written in the form of Equation 

(3.6). In that Equation w = 2~f is the angular frequency of external 
e e 

excitation. Furthermore, the complex valued matrix 
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[S-- S-j xx XU 

s _ s . 
ax aa J 

lk--+iW c-­xx e xx 

k -+iw c -ax e ax 

55 

k- +iw c- J xa e XCl 

k +iw c . 
ClCl e ClCl J 

represents the constant stiffness and damping coefficients of the oil 

film of the subsystem. It can be shown that four independent stiffness 

coefficients k only and four independent damping coefficients conly 
~v wv 

exist for a pad 9 

S ~ (iw ) 
-J e 

s-­xx 

-s -
ax 

r 
s 

-s--xx 

s O.X 
r 

s 

-s -:xx 

s 

-s­
XCl 

r 
s 

Cla -
K* 

o 
2 r 
s 

r 
s 

I 
I 
I 
I 
I 

1 

I 

-s __ 
xx 

s -
ClX 

r 
s 

--- - -1----

s 
ax 

r s 

-s 
Cl(X 

-2- + 
r 

s 

s 
ClCl 

r 
s 

K* 
0 

r 
s 

s __ +t_ 
xx 

2 -m OJ s 

-s -
ClX 

r s 

s -
ax 

x 

e 

s_ 
xa -s_ 

r 
s 

-s 
::t::t 

-2- + 

r 

S 

s 

-s­
xa. 

r 
s 

::tCl -
-2-
r 

s 

K* 
0 

r 
s 

r 
s 

2 +t- - I!l ~ 
Y s e 

-s 
().(). 

r 
s 

XCl 

s 
a.a 

r 
s 

s 
a::t 

r 
s 

s + t 
a::t ::t 

j 
-I } 

s e 

(3.6) 

The term K*/r where r = R + /:>, , depends upon the oil film force K*~O 
o s' s s s 0 

which is acting between a pad and the shaft in the zero-load equilibrium 

state of the bearin~ system. K* is a socalled "reactive force" which, in 
o 
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general, does not vanish. As can be seen from the diagonal of the matrix 

Equation (3.6) the term -K*/r yields a destabilizing effect but in ge­
o s 

neral K* is very small compared with the term k /r and no instability 
o CtCt s 

appears. 

Furthermore, In Equation (3.6) {t-, t-, t }. = {k , kt , k }. + 
x y CtJ r CtJ 

+ iw {c , c , c J. represents the stiffness and damping coefficients of 
e r t ClJ 

the visco-elastic supporting of a pad, see Figure 3. 

Inertia effects of the pad are described by the mass m and the 00-
s 

ment of inertia I s' see Figure 3. A. , H. , V. , B. are submatrices to be 
-J -J -J -J 

needed later in Equation (3.8) . 

Under practical operating conditions of a rotor bearing system the 

pads are not excited by external perturbation forces. Hence, the compo-
A 

nents of the amplitude force vector in Equation (3.1) reduce to F-. ; 0, 
/'\ A 1\ /'\ 

XJ 
F-. ; 0, p-. p-. = 0, N Ctj = o. Using this, it is possible to e !imina te 

YJ XJ YJ ,. 
~ ~ )j the amplitudes of the displacements of the pad as (u , v s' from 

s s 
Equation (3.4) and a reduced system 

{ F _, F _ }T = S. (i w ) {~, ~ }T 
x y. -J e . 

J J 

(3.7) 

is obtained which no more contains the displacements of the pad but only 

the displacements of the .shaft. Excitation forces are acting upon the 

massless shaft and correspond to the subsystem j. The new matrix S.(i~ ) 
-J e 

is called the condensed dynamic stiffness matrix of the subsystem j and 

is of dimension (2x2). Using the submatrices as indicated in Equation 

(3.6) yields the condensation 

S. (iw ) 
-J e 

-I A. - H.B. V. 
-J -rJ-J 

(3.8) 

which can be calculated by using numerical means. In order to determine 

the dynamic stiffness matrix of the whole bearing system, including the 

shaft and all pads,the force and displacement vector in Equation (3.7) 

have to be transformed from the local x - y system of a pad into the 
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bearing system x - y, see Figure 3. This is carried out by the orthogonal 

transformation matrix 

[ 
cos¢ 

-sin¢ 
sin¢] 
cos¢ j 

After superposing the forces of all subsystems j 

dynamic stiffness matrix 

S(iw ) 
- e 

= [S xx s xy] = t T ~ IS. (i u; ) T. 
. -J -J e-J 
J = I s s yx yy 

1S obtained and the wellknown relation 

(3.9) 

1,2, •. n the resultant 

(3.10) 

(3. II) 

holds. Equation (3. II) determines the force vector in terms of the dis­

placement vector for a harmonicaly excited massless shaft guided in a 

tilting-pad journal bearing. The inverse of S 

a(iw ) 
- e 

-I 
S (i w ) 
- e (3. 12) 

1S called the dynamic flexibility or receptance matrix. The frequency re­

sponse of the bearing system is clearly characterized by drawing thp ele­

ments of a(iw ) in a complex plane {Nyquist-plot). Furthermore, - e 

and 

K(w ) 
- e 

C(w ) 
- e 

Re[~(i~'e)J = [:x> 
yx 

(3.13) 

(3.14) 
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respectively, are the stiffness and dampine matrices of the tiltinc-pad 

bearing system. In general they depend upon the frequency ~ of the shaft 
e 

excitation. 

4. NVXERICAL Ex&~LE 

A tilting-pad bearing for a large vertical turborotor is considered, 

see Figure 2. From Figure 3 the following specifications are assumed: 

Number of pads n = 12, centrally pivoted. Length and width of equally 

shaped pads L = 0.25 m and B = 0.25 m, respectively. Thickness of a pad 

, 0.085 m, radius of curvature R 's s 

~lass and moment of inertia of a pad m 
s 

4 E09 

N/m 

2 
.. .. 
~ 

0 
c: 
CI> 

U 
.... -2 .... 

CI> 
0 
lJ 

11) -4 11) 

CI> 
c: .... .... 
lI) -6 

-8E09 
1 2 5 10 20 

0.6515 m and sector angle 2'f. = 220. 
2 0 

= 50 kg and I = 0.26 kgm , re­
s 

---

50 100 200 liz 1000 

Frequency 't! 

Figure 5. Stiffness coefficient as a function of the frequency of lateral 
shaft excitation. Specifications as assumed above. 
---- value of the stiffness for zero frequency 
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spectively. Radius of the shaft r = 0.650 m. Radial clearance of the bea-

ring h = 200 ~m. Speed of the shaft n 375 rpm. Stiffness and damping 
o s 

Nm and c 
r 

of the support of the pad kr = 7xI08 N/m, kt = 00, ka = lOS 
4 7.5x10 Ns/m, c = 100 Nsm, respectively. Dynamic viscosity of the lubri-

C1 2 
cant ~ = 0.023 Ns/m . Using the above specifications, the equilibrium 

of the bearing system is evaluated to u 0.1038 h -state 0' vso = 0, 
so 

C1 1.1078 h /r for each pad and u o v = 0 for the shaft. so 0 0 ' 0 

From the above, four stiffness and four damping coefficients for 

oil film of each pad can be calculated and yields the matrix So, see 
J 

the 

Equation (3.6). The reactive force, acting between the shaft and each pad 

at the equilibrium state, is evaluated to K* = 14520 N. As a result of 
o 

the symmetry of the bearing system we obtain s = s and s xx yy 
Neglecting the moment of inertia of a pad and setting k 

a 

1.00E 07· 

Ns/m 

.. 
u" 

III -c: 
til 

U 

075 

050· 

..... ..... 
1\1 
o 
u 025· 
tn 
.~ 
Il. 
E 
o 
Cl O~--+----~·Y. -.-.... -.~--~-----~ 

, 2 5 10 20 50 

Frequency 'It 
100 200 

xy 
and c 

Q 

Hz 

= -s 
yx 

to zero 

1000 

Figure 6. Damping coefficients of a tilting-pad bearing as a function of 
the frequency of shaft excitation. 
---- damping value c for zero frequency xx 
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an isotropic bearing system results, for which the cross-coupling terms 

s = -s vanish. xy yx 

Figure 5 shows the coefficient of stiffness k of the bearing as a xx 
function of the frequency fe of shaft excitation. For the example consi-

dered, the cross-coupling term k is negligible small compared with the xy 
value of k . It can be seen from the diagram that for values of the fre-

xx 
quency less than about 20 Hz the stiffness remains nearly constant but 

changes rapidly when the frequency is exceeding the value of 20 Hz. When 

the frequency goes to infinity, the stiffness goes to negative infinity. 

This results from the inertia effects of the pads. The value of the stiff­

ness for zero frequency (static case) is drawn in the diagram as a broken 

line. 

--

05E-09r 
I 

miN i 

I 
I o r·----;-;=:-~-

i 
-05 r 

-10 1 

i 

-15E-091 

700 

-05E-09 

I 
I 
! 

I 
I 

o 05 miN 

FlexibIlity Re{axx} 

a 

10 

I 
I 

I 
1.0 1.5E-09 

Figure 7. Nyquist plot of the dynamic flexibility of a tilting-pad bearing. 
exact solution 

---- approximation for constant stiffness and damping 
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Figure 6 shows the coefficients of damping c and c xx xy in tenns 

of frequency f . Obviously the magnitude of e c is negligible compared xy 
with the magnitude of c 

xx Only for a small frequency range up to 3 Hz 

the damping values of the bearing can be assumed as nearly constant. If 

61 

the frequency increases, then the dynamic stiffness of the oil film 8rows 

and the resulting damping coefficient of the bearing decreases to a value 

which can be determined from the damping coefficient of the support of 

the pads only. 

Figure 7 shows a Nyquist-plot of the element Cl of the flexibility 
xx 

or receptance matrix of the bearing system considered. The solid line re-

presents the correct solution, the broken line is an approximation where 

stiffness and damping coefficients of the bearing are assumed to remain 

at their static values. There is an acceptable agreement between the 

1.5E-09 

miN 

" tJ " 1.0 

'" ~ ..:: 
.Q 

" GJ 

05 
..... 
0 

CD I 

1:1 I 
:J 570 
C 

_~---W= Dl 
0 
~ 0 

1 2 5 10 20 50 100 200 Hz 1000 

Frequency f~ 

Figure 8. Frequency response for the magnitude of the dynamic flexibility 
exact solution 

---- approximation for constant stiffness and damping 
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approximation and the exact solution only in a small frequency ranee up 

to 5 Hz. The first circle in the diagram (solid line up to f = 200 Hz) 

depends primari ly upon the characterist ics of the oil film and on the 

stiffness and damping of the supports of the pads. The second circle is 

mainly determined by the mass of the pads and the stiffness and damping 

of the supports. Hence, the influence of inertia effects on the bearing 

flexibility grows with increasing values of the frequency. Figure 8 shows 

the frequency response for the magnitude of the point flexibility a xx 
The broken line represents an approximation where constant values for 

stiffness and damping coefficients are assumed. At f = 570 Hz a resonance 

occurs corresponding to the mass-spring system of the elastically mounted 

pad. 

The frequency response of the phase angle [ is drawn in Figure 9. 
xx 

For low values of the frequency up to 5 Hz a good agreement between the 

exact solution and the approximation is obtained. For high values of the 

" IAJ" 

<IJ 
III 
o 
.c: 
Q -135 0 

-180 0 

1 2 5 10 20 50 100 200 Hz 1000 

F r e que n c y f~ 

Figure 9. Frequency response for the phase angle of the dynamic flexibility 
exac t so lu t ion 

---- approximation for constant stiffness and damping 



Stiffness and Damping Characteristics ... 

frequency the phase angle £ approaches -1800 accordinG to inertia ef­xx 
fects of the pads. The coefficient of the dynamic cross-flexibility a 

xy 
-a is drawn as a Nyquist plot in Figure 10. The magnitude of a is yx xy 
very small compared with the magnitude of a and xx decreases for inc rea-

sing values of the frequency. 

5. CONCLUSION 

63 

A linear theory for small amplitudes of oscillations is developed 

which makes it possible to calculate dynamic stiffness and flexibility 

matrices of tilting-pad journal bearings. The investigation shows that 

stiffness and damping coefficients of a bearing system with movable pads 

5 £-11 r----..,---

miN ESa I 
4 ~-~--~---+---.--~--~ 

I 
~ 3 !----+---+---+--.~---+---__i 

)c: 

~ --~ ! 
2 -, ---f--_.--+;---,,,,,, 

! I fl! :... . I 
,J-+----L--;--

-1 £-11 '::-: ~---'--
-5£-11 -4 

: I ~-=-- ... ~--.-~~ 
-3 -2 -/ miN a 1£-/1 

Ffexlbtlily Re{aXY } 

Figure 10. Nyquist plot of the cross-flexibility of a tilitng-pad bearing 



64 H. Springer 

depend not only on the Sommerfeldnumber of the bearing but on the fre­

quency of lateral shaft oscillations also. This result has to be taken 

into account if one is performing an eigenfrequency analysis or calcula­

ting critical speeds of a turborotor system. 
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CHAPTER 2.3 

PRINCIPLES OF ROTOR SYSTEM INSTABILITY 

Z.A. Parszewski 

Stabili ty Threshold 

Equations of ~ree transverse vibrations of a rotating shaft [lJ, [2], 

[3] describing small vibrations of the shaft around its equilibri~ 

position at the speed ~, are of the form 

( 1) 
1 a2 ~ a2y • 

y + -;:- -;;-:L( d-;:;-;:7) + 2h J + 2h. (y -wx ) 
"p oZ 0 Z e 1 

o 

External h and internal h. damping coefficients, reduced to the re:'ere!:.ce 
e 1 

unit mass C\p) of the shaft are 
o 

c c. 
h = e h = 1 

e 2(,\p)0 . i 2(Ap)0 
(2 ) 

c and c. are equivalent viscous coefficients of external and internal 
e 1 

da.':lping and Ap and 1::.I are respectively mass of unit length and stiffness 

of the shu:'t, both va~iable along the axial coordinate z. 

~he above is a set of partial dif:'erential equations, linear and 

homogenous. Its solutio!:. can be represented as a series in functions 

f:.:\:',) a::G :'y(z) correst-:ondirg to the characteristic (C:i.r:C~l) :'unctions 

descrbing the principal ::.odes of vibrations of the shaft (in rotating 

coordinates) . 
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In the case of rotary symmetry of the shaft and support these 

functions are identical with the characteristic functions and are the 

same for each axial plane 

hence 

f = f f 
x Y 

x = L fj(z)xj(t); 
j=l 

00 

y = L f.(Z)Yj(t) 
j=l J 

The characteristic functions are defined by the equation 

_ 1 d2 d2fj 
a ~ f j - Ap dz 2 (El dz 2 ) 

Equations (1 ) give hence for each x. and Yj J 

+ a 2x 
. 

+ 2hij (~j + wY ) 0 x. + 2h .Xj J j j eJ j 

Yj + a.?y. + 2heij + 2hij (Yj WXj ) = 0 
J J 

The solution for free vibration can be sought in the form 

The following set of algebraic linear on homogenous equations is 

obtained for the constants Xj and Yj 

2 (h j + h,,) s. + a j2] Xj 
e lJ J 

-2h .. wX. + [s2 + 2(h + h .. )s. + a~]Y. = 0 
lJ J j ej lJ J J J 

that gives for Xj and Yj non zero solution and hence vibrations of the 

(3) 

(4) 

(5) 

(6) 

(7) 

form (6) are possible only when the determinant vanishes giving the 

characteristic equation 

[Sj2 + 2(h . + h,,)s + a 2 ]2 + 4h" w2 = 0 
eJ lJ J lJ 

or (8) 

s2 + 4(h + h. )s~ + 2[2(h + h. )2 + a 2]s2 + 4(h + h )a2s + 4h 2w2 
j ej lj J ej lj j j ej ij j j ij 

+ a~ = 0 
J 
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which has the form 

(9) 

The considered system is stable, hence the vibrations will die out 

if the real parts of all the roots of the characteristic equations (8) 

are negative. The necessary condition (of Hurwitz criterion) is ful-

filled (all coefficients are positive). The sufficent condition for the 

4th order equation (9) is 

(10) 

Generally Hurwitz criterion requires that all the subdeterminants of the 

Hurwitz determinant built from the characteristic equation coefficients 

are positive. Criterion 

re-arrangement 

or 

( 10) 

~ < 
Cl. 

J 

gives for the equation (8) after 

( 11) 

The stability threshold corresponds to the stability limit of the 

lowest mode 

( 12) 

that will remain unstable at all higher speeds at which higher modes will 

be becoming unstable. 

The stability conditi.on is hence 

(13) 
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Here (I.[ is the first natural frequency of the system. The instabil i ty 

will not occur for speeds lower than the first critical speed of the shaft 

w 1 = a . Over this speed instability onsets the lower the higher is the cr 1 

rat io of internal to external dampi:.g. The n.bove did not consider the 

mechanism of energy transfer to the vibration at instability. It is easy 

however to name its source - it is the driving power of the shaft. Besides 

the mentioned supply of energy to the vibrations there always exists its 

dissipation. 

If the self excited vibration (instability) occurs in a 1::,,-,,,:, systerr, 

(when more enere;y is supplied than dissipated) they would gro'"" ,::-(tuually 

unlimited. Or, when the dissipation is hie;her than supply, vibration 

will gradually disappear. 

7he energy dissipated (supplied to) 

in each vibration cycle (Fig.I) 

is a nonlinear function of vibration 

wr. pl it ude . 2ven for viscotic 

(linear) dampine; is 
2 

dissipated energy a square function 

of amplitude i,. Limit cycle is 

hence attained ",ith an amplitude (Fig. 1) corresponding to the balance 

of supplied and dissipated energy. This amplitude may not usually be 

allowed :'or the structure. 

The ~echanism of the enere;y transfer to the vibration relies on 

forces dependine; on vibration velocities in the described dynamic instability. 
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It is distinct fro::: ~)tat:ic instubi:!.ity depE'::ding on position forces 

(tending to increase the displacement of the system fro~ its equilitri~~ 

position). 'rhe static instability can be hence descriced "by negative 

stiffness (or natural frcquC'ncy) wherpas oY!1amic inst.ability - by 

negative d~~ping. 

2 Free Vibration 

In the complex notati.on 

r = x + iy (14 ) 

the equations (3.2-5) give 

f J. + 2(h . + h .. );. + (u~ 
eJ IJ J J 

2ih . . w)r. 
IJ J 

o ( 15) 

Partial sol ution of the form 

(16 ) 

leads to the characteristic equation 

s~ + 2(h + h .. )5. + a~ 2ih .. W 0 
J ej 11 1 J 1 ' 

" v u 
( 17) 

hence 

+ 
s -(h . + h .. ) I(h. + h )' 2 + 2ih .. w 
j eJ 1J eJ ij -aj 1,) 

(18) 

or 

s. 
J 

-8 
+ 

D. 
,) 

( 19) 

where 

Aj = /~[aj - (hej + \j )2] ~;/ a1 - (hej + h ij )2 + 4hejW' 

B. = h . + h .. 
J cJ IJ 

t:. -i'" + .~ (20) 
,\ . 

J 

The general solution of the equation (15) t · th .th . represen Ing e J elgen-

vector r j of the shaft deflecUon in the stationary co-ordinate system is 
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h, , 

+ !11· v' + ,'- ~ w) t - i A ; +-
1\ J e ~ \.... 

h .. 
( h --2:...L).\ - h . + " - \ W t 111' t ~. E e eJ 1J IIJ' e J 

'j 

(21) 

::ere ~, ar:d ::. are cOr.lplex constar:.ts, A. is a real constant - circular 
2 J 

frequer:.cy of damped vibratior:.s (angular velocity of precession). ?he 

vibratory motion of ar:.y point o~ the shaft axis, described by the formula 

(21) gradually decreases or:.ly when the stability condition (11 ) 

is fulfi:led. l11is for!":"~ula represents two spiral ~otions. ?he first 

ter:!l in equation (21) describes a converging ~ecreasir:.d spiral motion 

of the shaft cross-section centres with orbiting circular velocity A. 
J 

opposite to the shaft speed w (opposite-retrograde precession). ~he 

second ten:: corresponds to u spi ral mot.i on with angular vel 0" i Ly Ai i t1 W 

direction (direct precession). This motion will be diverginr 

deflection will be increasing) when th~ rotor speed w exceeds ~: .. :r.l!t 

gi ver:. by the condition (11) 

Second term is always dominant (direct precession) as in case of 

stability it decreases slower than the first term and in case of 

instability it increases whereas the first ter~ always decreases. The 

deflection of the shaft for both the terms of the forr.lula (21) is 

according to (3) represented by the jth pair of the modes. When 

the shaft speed w attains the stability limit of its jth ~ode (11) 

w 
h. h .. 

e,l + l,i 
a. 

h. . J 
1J 

( 22) 

the formula (20) gives 

A. 
J 

a. 
J 

(23 ) 



Principles of Rotor System Instability 71 

The direct precession has then the angular velocity equal to the jth 

circular frequency of the shaft. The damping of this term (the 

second term in the formula (21) ) vanishes. The first term damped 

effectively - vanishes gradually. Limit cycle is hence attained 

r = 
j 

E f ( ) ia.t 
. . z e J 
J J 

with constant amplitude, at the limit shaft speed w given by the 

formula (22) ;"or hi gher w values thi.s component (second cOr.1ponent 

in formula 21) increases in time. 

General solution representing any small vibration of the shaft is 

represented in complex form as follows: 

00 

r = I 
j=l 

f.(z)r.(t) 
J J 

(24) 

The vibrations gradually vanish and the shafts steady rotatior. and its 

corres ponding equili br iill'! post ion are dynarnically stable, only v;hen the 

condition ( 11 ) is fulfilled i.e. for speeds w not exceeding the 

stability limit of the shaft's first mode 

(25) 

It next re!T:ains u."lstable for all h:'f,he~ sreeds. 

'ihe stability proble::: of hieher r.1odes is her.ce L. this caSE: usually 

i:;r,Q.terial as correspondin£ speeds car. not be ger,erally attair.ed. 

f..t '~:1(:' stability li::lit it lS at the speed 

w (26 ) 

the :;.otion tends to the l:'~it cycle in the first mode and direct precess-
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ion (the other components are Gradually da~ped out). }\t other speeds 

w vibratory motion of the shaft is more compound. ~ll modal components 

exist with ~odal deflection and precession angular velocities A. all 
J 

depending on the shaft speed w. 

3 :'arametric Instabilities 

Introduction. Variation of some parameters of machine systems may 

be introduci ng dynamic phenomena, ca lIed paranetric vibrations and 

parametric effects. 

Fig. 2 shows two examples of 

rotating machines with rotors of 

different principal stiffness in 

the first case and different 

principal moments of inertia in 

the second case. Time variation 

of corresponding system parameters 

P, 
(stiffness in the first case and 

)(, X, 
moment of inertia in the second) 

:-ie;. 2 
will occur durine rotor rotation. 

Theory of parametric vibrations is well developed and hence the 

parametric effects are known qualitatively [IJ, [4], [5], [6]. It is 

hence known that instability of equilibrium position or steady state 

motion may occur in those systems at circular frequencies 8 of variation 

of the parameters (circul:J.r frequency of parametric excitation) close to 

(27) 
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here: k,l,m = 1, 2, 3, ..... . 

CLk , CLI - any pair of the natural frequencies of the system for mediUT:l 

values of the variable parameters (zero coefficient of 

parametric excitation £ = 0). 

The set of e values for which instabil.i ty occurs at k = 1 gives 

simple instability region, and that at k i- 1 gives compound jnstability 

region. '['he formula (27) gives the positions of instability regions 

but their number and width depend on the val:.lc of thc para.'Iletric 

cxcitation coe!,ficient £ (it is gcnerally a nondimensional ::',caS:.lre of the 

ratio of the panunetcr variation umplitude to it~; averuGc value) und on 

the damping characteristics of the system. 

In real machine systcms instability rcgions may occur in the vicinity 

of e ( + ) for small m numce rs (f: rs t ord('r m = land sccond o;dcr m 2 
k,l,m 

ins tabil i ty ref,ions) or may not occur at all. (:0 if,. 3) 

:0 :g. 3 
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Critical states corresponding to resonance are possible in stable 

regions, leading to high amplitude of steady vibrations. These states 

occur at circular frequencies e given by the formula (28) 

mO(±) = Cl 
k,m k 

1. vw m=O,l, 2, 3, ... , (28) 

here vw is the circular frequency of the vth force harmonics. 

The quantities describing steady vibration (eg. its spectrum or marked 

trajectory) depend on: the exc.iting force arr,plitude, the value of 

parametric excitation coefficient and on damping. 

;".nswers to the following questions are of' importance for practical 

application: 

1) Is the equilibrium stable for all working values of parametric 

excitation frequency. 

2) What are the steady state vjbration characteristics for working 

values of parametric excitation frequency. 

Only quantitative analysis of a corresponding model of the system 

may answer those questions. Inclusion of the influence of supporting 

structure on machine dynamics is here of importance [6], [7], [8]. 'l'he 

model contains hence two dynamically interacting subsystems. One (rotor) 

being a parametric system, can be discretised and represented as having 

finite number of degrees of freedom (Fig. 8 bold lines). The second 

one nonparametric, contains the whole supporting structure (with the 

foundation and ground included), usually very complicated. ~eceptance 

(impedence) r.:,.atrix is hence used to descrihp. its dynRmic bphA.viour. Its 

elements can then be measured (if not calculated). 

Mathematical r,:odel. '::'ransverse vibratjor. of parllrllctdc rotor inter-
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acting with supporting structure, can be represented by a set of linear 

differential equations with variable coefficients •. 

Mi + ex + Ii + (y + i*y )x + 
r u E{ I [(IIl~ cos jOt 

j;;l 

s 
+ mj sin ~et)x + 

( c j s. ) • ( kC s + cj cos ot + Cj Sln jet x + j cos jOt + k j sin j 6t )x) ) 

(29) 

o 

here 

,A - is circular frequency of parametric excitation 
k - k 

E - is coefficient (or depth) of parametric excitation £ = x Y 
k + k 

x y 

M K C - are matrices of inertia, stiffness and of damping of the 

discrete parametric system 

III k e - are matrices of parametric excitation 

y y - are real and imaginary parts of stiffness matrix of the supporting r u 

structure, along the connecting co-ordinates. 

The solution of the set of equations (29) 

Floquet form 

x ;; e (""+ i*lJ)t I (a. 
i=O 1 

here 

sin ie~ + b. cos iO~). 
1 

~+ i*~ - is the Floquet's complex exponent. 

may be sought in the 

(30) 

The sum in equation (30) represents the Fourier series of a periodic 

function of the period 

T = ?2I.. 
G 

At the stability limit (on the boundary of stability region) the real 
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part ~ of the Floquet's exponent is zero. Hence, for finding the 

stability limits, the partial solutions of the system (29) can be 

sought in the form 

i*llt ~ x = e L (a i sin iOt + b. cos i6t) (31) 

i=O 1 

here 

a. and b. are complex matrices. 
1 1 

Introduction of (31) into (29) gives for the constants &., b. 
1 1 

an infinite set of linear algebraic equations. It has non zero 

solutions of the type (31) when its characteristic determinant is zero. 

The determinant has the following form 

o 2 3 4 5 

olE (8(+)) c:! (6(-)) 
I Y 0 1 1 

c:e (B(+)) E (6 (-)) 
1 1 0 Y 1 

( (-)) c:e 8 .. 
3 3 

( (-)) E:f B •• 
2 3 

( (-)) c:e B .. 
I. 3 

= 0 
( (-)) c:f 8 .. 

J 3 

( (-)) 
C:8 B •• 

5 3 

(32) 
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v.'here 

r (+) 2 ( '" ) . - (S. ) M + K + (S··) 
=1 1 Yr i 

l+ B~:+:)C + y (B'~:+:)) 
1 U 1 

-
(6(:+:)) - v (3(:+:)) I 

+ "'j i j 'i I 
+ (3(:)) + (,(:-)) i 

Vj ,. "'. P. I 1 J 1 , 
...J. 

and 

" (~ ) . 0 
,I = 1 '. p, 

I 

v.(S.(:+)) = ll-=(c;(+))7 S + S(')CC + ksl 
J 1 2 L ~ i III j i J jJ 

77 

(33) 
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i = 0, 1,2, ... j = 1, 2, ... 

Hence the proble~ of finding the boundaries of stability regions reduces 

to finding tr.e zero points of the determinant iwOl .. (e,~)I. 

The function W = ;W01 .. (e,~)i is a continuous function of two variables 

and represents hence a surface over the coordinate ilane ~,e. 

However, for real syster.ls, the function W = !WOl.. (8,~)1 is definite 

non-negative. Hence the zero points may have the character shown in the 

Fig. 3. 

e 

b 

In~ tobilif !:f req10n 
------+--- -""1 

Fig. 4 

Nur.:erical Procedures. 

Damped Systems (C + Y'l :f 0). 

The solutions of the a type nay be 

expected for damped systems 

(C + Y :f 0), as in those cases 
u 

non increasing and nondecreasing 

solutions are possible only on the 

stability regions boundaries hence 

for discrete values 0gl' eg2 

(Fie. 4a) . 

Unlimited number of solutions of 

the type (31 ) may correspond 

to each e value, for systens 

without damping (C + y = 0). 
u 

Hence solutions giving continuous 

lines jJ = II (il) may be expected, 

as in Fig. 4b. 

The determinant is non-
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negative in these cases, hence its minimum as function of two variables 

8, ~ is sought and checked for zero value. 

The minima were found with th·~ a:f..pl ication of the following numeric 

procedures. 

Values of the determinant Ware computed, with a step a, in the 

distance R from a point ° of the coordinate plane ~, 8 (Fig. 5) 
o 

until smallest value is found, at a point 01. 

Fig. 5 

The procedure is repeated for 

points in the distance R from 01' 

'starting from the straight line 

° ° . o 1 

This process is followed until 

the determinant mini~al value on 

a circle is higher than in its 

centre ° n 

The whole procedure is next 

repeated from ° with the radius ~ halved. 
n 

This is followed until 

the radius ~ attains a value s~aller than ass~ed error 6R. 

The procedure was programmed and executed on a computer ~or the 

third order approximatio~ o~ the deter~ina~t W = ;WOl2(~' O)!. The 

receptance funct ions '( (r~) and y (3) were read into the form of a table, 
r u 

which values were interpolated in the computing process. 

The computation results, .in the for:71. of the deter:::.inant values 

along the computing trajectory ~ere used for finding the determinant 

zero values (Fig. 8). 
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Flow ;)iagrams. The flow diagrams for computing the trajectory co-

ordinates and the determinant IwOl .. (~,e) I values are given in Fig. 6 

for damped systems and in Fig. 7 for undamped systems. 

T and P represent the e and ~ coordinates respectively, with TO, and 

PO being their initial values. Rand DAL give steps and TD, TG, PD and 

PG define the considered area. 

Instability Regions 

Undamped Systems, C + Yu = O. Instability regions, in such a system, 

are the sets of 0 values for which the periodic solutions of the type 

(31 ) are lackine;. :hese regions are shaded in the Fig. 3. 

Damped Systems, C + Yu ~ 0 Instability regions are sets of values 

between the solutions of the type shown in Fig. 4a. 

Those solutions are marked in the small bold circles in the Fig. 8. 

The i~stability regions are shaded in this diagram. The continuous 

lines in Fig. 8 are the univalue curves ( of the determinant 

IwOl .. (~,8)[) and the broken line gives the solution for no damping 

C + y = 0 
u 
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Instability regions as functions of the coefficient £ value for 

various damping coefficients c are shown in Fig. 9, 

First three instability regions for a rotor support system (an 

83 
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industrial ventilator) are s~own in Fig. 10 together with the 

a~plitude of its ~irst four harnonics in the vertical x and horizontal y 

d:rections. 

2 

b. 

];' . . lg. 

200 20 

1/1 Alii 
- '-'A)C/ I !I' 

10 

<lO 60 80 
IV IV 

-"-"A~f,A!I' 

7he instability region corresponding to two adjacent natural 

frequencies as a :'unction of the coefficient of par8.lYletric excitation is 

~~own in fi~. 11c for nonconservative ~;upport with stiffness cross-

coefficients varying with rotor speed (Fig. 11a) as is the case in 

hydrodynamic journal bearings. Corresponding vibration-t"imp diagrams 

are given in Fig. 12 A - ,J. 
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Disbalance re s ponse in some s peed range is shown in Fig . 13 . 
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Fig. 13 eives also comparison of some of the computed (various 

lines) and experimental (black squares) results. The journal centre 

loci in Fig. 13d were computer plotted and those in jo'ie. 13c 

are experimental. 
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CHAPTER 2.4 

FLUID FILM AND INSTABILITY 

Z.A. Parszewski 

Journal Bearing Stability. 

Hydrodynamic bearings effect is important in many machines. Besides 

lowering critical speeds it may lead also to instability of rotor steady 

motion and hence sel~ excited vibrations. 

A hydrodynamic journal bearing is characterised, for steady state 

(see chapter 2.1) by the nondimensior,a~ bearing capacitj' (So=erfield's 

nwnber) . 

S 
F(-3-) 2 

JL"w 
( 1 ) 

as function of journal eccentricity ratio c = ~ a;.d by the locu:: C:ie;. 

1 ) 0;' jO:lrnal ce:-:tre eq:ll_::.::-rlCl.':i positior.s (in stead:: state). 

these give static characteristics of the beari:-:B (Fig. 2) . ::ere ? 

is bearing load. ~::e Jenc3th o~ :!ie beari!1g -!.s ", dia.'ilater J a:-:d its 

radial cleara!1ce 1S H - w - r8tor ar.sular 

ve1oci. t :r. 
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Fig. 

Dynamic characteristics of the 

bearing give oil film stiffness 

K , ... , K and damping C , 
xx ~ ~ 

C coefficients, describing 
~ 

'(I inearized) hydrodynanic forces 
2 

... , 

acting on the journal in case of 

--1 C its small Vibrations around its 

equilibri~~ position. 

(K x + K + C x + C y) 
xx xyy xx xy 

(2) 

(K x + K y + C x + C y) 
yx ~ yx ~ 

Nondimensional values of those coefficients as functions of 

eccentricity ratio (at equilibrium position) are given in Fig. 3 and 

Fig. 4 
. L 

for a bearing of three partial arcs and D = 0.83 
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70r-'--'--'--T--'--'-'--~ characterised i~ Fig. and 

50. 2 [1], [2], [~]. 

The lowest (first) of principal 

p.!odes of vibrations becomes unstable 

first (at lo~est speed) and it 

remains u!1stab~e with increasing 

speed when the higher modes become 

consecutively unstable. 'i.'he 

2 stability threshold or limit of a 

systC::l is hence equal to t~1at ~or 

0 its first principal mode as was 

-/ 
0.2 O.~ 0.6 - -0.8 c explained in previous point. To 

characterise the bearine; stabE i ty 

Fig. 3 it is hence sufficient to consider 

a symllletrlc single span rotor 

15 supported in two identical bearinG::;· 

10 
8 

~lhe first principal. mode for this 

6 
I syste::J is a synmetric one. If -, 

4 
! 

--t- hence shaft deflection is disrer,arded 

the proble::; reduces to the analysis 

2 
of small vibrations of the jour!1al 

0 
(with hal f the rotor mass) in the 

C 

-/ 0.2 O·it 0.6 0.8 
single bearing. 

In nondimensional coordinants 

Fir;. 4 
and para.r.!eters: 
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Sr - Srw -
::',g) !{ K C (" 

? "' F 

-
rX, ~ 

~ 

q = , ~ q 1. 'yJ r rw (4) 

-.. 

~ w = I~ . 
:) 

the equat:on of free vibra~ions has the form 

[::;] { ef} + [c] {q: + [ K] { q} 0 

Here 

- 7 l ~ :j :j S(~) 0 C wo xx xx 
l r:J] S(-~-/I [K] [ Cj (5 ) 

0 K C 
1- wo yx ~yx 

\'lith partial solutions of equations (4) { q ) {Q} est the character-

istic equation is 

/
S(WW

o
')? s7 + C s + K 

xx xx 

I:::: s + K 
: yx yx 

c s + K 
xy xy 

o (6) 

of the form 

54 + a 53 + a s2 + a s + a 0 
3 2 1 8 

iiurwitz's criterion of stability for the l,th order characteristic 

equation reduces to the unequality 

a a a - a a 2 - a/a > 0 
173 03 14 

(7) 

ensuring negative real parts of all roots of equation (6) 
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The stability threshold (the limitng speed ratio) for the described 

bearing with ~ = 0.83 is given in Fig. 5 as function of journal 

eccentricity ratio c in steady rotation (equilibrium position). This 

diagram can be used for checking if, for the given bearing type and its 

work parameters, the journal equilibrium position in steady rotation will 

be stable. 

Example: Consider the generator of 120 11W of Jolmel production. Its 

bearings are of the type corresponding to Fig. 2 with the 

following dimensions. 

L = 314.5 D 380.936 
0.013 

J 380. 1;3 + C.Oll 
+ 0 r.J..':l mm = 

,i++P 
20 t---t---+--t-~- -+- --+---, I ' 

I I; I I 

: I 

IO~ ,+ 
8~--- ,- -L. .. 

01- • __ ~ ____ ..... 

I 

6 

2 
Stobie 

06 

Fig. 5 

08 c 

For t[',e working speed :;.s :-.ence 

mm = 
c 

- 2 165"0-2 J,s II - .~ 1. ::7 m 

m 
w 

32500 kg 

0.014 

n = 3000 ::e;~ 

-
~ = 0.83 

Load per bearing? = 0.5 m e = ::.62500 U -w 

Sommerfield's n~bers for the tolerance 

limits are 

S 
~ax 

-, T 
1) "-'TlW :::ax 

0.394 

0.3396 

~e~ce eccentricity ratios, taken from 

t:-:e diat;ra.'T. S = f( c), ;'ig. 

c 
::lax 

0.381, 

2 are 
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w 314 
-- = -- = 1.58 
w02 199 
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This gives sufficient safety margin at the eccentricity ratios in 

tolerance limits c l 0.384 and c2 = 0.346 (Fig. 5) • 

2 Fluid Film Influence on Critical Speeds. 

For assessing oil film influence a symmetric rotor in equal bearings 

will be considered. Again it is sufficient to consider small vibrations 

around equilibrium position. The end conditions characterising rotor-

bearing interaction reduce to the equality between rotor shear force T 

and bearing reaction lIF, [lJ, [3), [4). 

lIF 
x x 

lIF 
Y y 

The reaction is given by formula 

(8) 

(2) and rotor shear forces at 

the supports for the syw~etric case considered, can be expressed in the 

form 

where 

N 

(2)) 2 

1: 
i=1,3 ... 

1: 

? t. 
iO 

w.1' / 
1 - w Fk r;C i 

2 t 2 WFk 10 4 + i=2,4 .. .-:z---,-
w. - w.,. :;.1) . 

1 1 (. ~ 

(9) 

(10) 

;'mere w. are natural circular frequencies of the roLor supported on rigid 
1 

supports, and 
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t. 
10 

1 n 
n Z mjy. j £j' 
"j=l 1 x, 

~ 

J. 
1 

n 
r ~ y 7 
- "'j iJ' 

j=l 

Here mi are masses of the rotor segments, their deflections Yij in 

the ith mode and distance £. from the support, £ is the rotor span. 
J;: I 

Symmetric rotor can be hence characterised by N given by the formula 

95 

]0 as function of an argument wFk . The characteristics of this type 

for the l20~ru generator rotor is given in Fig. 6. The vertical 

assimptotes correspond to the w. values giving the first three critical 
1 

speeds of the rotor supported rigidly. 

N 
1000 

500 

400 

300 

'""'----+--'-:-_...---+---4--00-:-_ +-_ .•. - +--

400 600 
CJcr = 146 c.Jcr. :43"1 

J II 

6 

800 

The actual support conditions (8) 

• 
1000 1200 1400 CJFI< 

WC~ =1350 
III 

with (2) (in non-

dir.lensional form) give the following frequency equation (with damping 

neglected) 

K _ N2 
K xx xy 

0 ( ]] ) 

K K _N 2 
yx yy 
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This equation, for any:: values gives the bearing characteristics in 

the for~ o~ an equiva~ent frequency, being a function of eccentricity 

ratio c = ~ , as the stiffness coefficient of oil film are (Fig. 3). 
r 

This type of c::aracteristici is represented in Fig. 7 for the 

bearings considered in Chapter 2.1. For consecutive eccentricity ratio 

c values the values of stiffness coefficient were taken from Fig. 3 

and corresponding :; values computed fror:; equat ion 11). 

~he interaction conditions are fulfilled for 

II = N Rotor Bearing ( 12) 

It is sufficient hence to draw in the rotor characteristics 

(rig. 6) a horizontal line (Fig. 8) corresponding to the N 

value obtained from the bearing characteristics (Fig. 7) for the 

eccentricity ratio c at equilibrium. 

This eccentricity ratio c is obtained from Fig. 2 for the 

So~erfield's number S calculated for given rotor speed w. 

Abscissas of the intersection points (Fig. 8) Give the circular 

natural frequencies wFk of the rotor-bearing system at the assumed speed 

w. 

Critical speeds can be found by successive approximations ie. taking 

an obtained wFk value for wand repeating till resulting wFk value is 

sufficientl~ close to the preceeding one. In case of constant stiffness 

coefficie:.~.; 0:' support Fie;. 8 gives directly the critical speeds. 

Fig. 8 shows also direc~ly oil film influence on rotor-bearing 

natural frequencies and eventually critical speeds. 
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CHAPTER 2.S 

STABILITY OF ROTORS IN BEARINGS 

N.F. Rieger 

THE NATURE OF ROTOR INSTABILITY PROBLEMS 

Introduction 

A rotor is said to be unstable when the shaft orbit increases with 

time, without apparent limit. Instability begins when the rotor speed 

exceeds a so-called "threshold II speed. Stable operation usually resumes 

when the speed is aqain decreased below this threshold speed. Unstable 

whirl motions can cause mechanical problems such as rubbinq between 

journal and bearinq, seal rubbin(1, and blade/stator rub contacts, and may 

result in substantial machine damaqe. Unstable motions can also themselves 

introduce additional dynamic forces within the bearing which stabilize the 

whirling at a limitin'l whirl radius. Such whirl motions are called "bounded" 

instabilities. 

The most common types of unstable rotor conditions are listed in 
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table 1. Each of these instabilities is listed with the type of rotor-bearing 

system in which it has most frequently been observed. Typical threshold 

s?eed conditions wth are also indicated, tonether with the whirl frequency \l 

at which the rotor tends to precess, once the unstable whirl condition has 

been establi shed. 

Unstable whirling is distinguished from unbalance whirling by the 

following features: 
Unbalance_~hirling Unstable Hhirling 

a. Whirl frequency \l = W \l = W 
C 

b. Threshold speed none ~th 
-. w 

(where w is the lowest critical speed of the rotor in its bearings). 
c 

c 1, 

The above comparison shows that unstable whirl motions are initiated 

beyond a certain threshold speed, and occur at a frequency \l, which differs 

from the rotor speed w. The unbalance whirl frequency is the same as the 

rotation speed, i.e., \l = w. Unstable whirling is initiated at speeds above 

a certain threshold speed which is never less than the lowest critical 

frequency of the system. Unbalance whirlinf.l has no th!"eshold speed: it 

can occur at all rotor speeds, and may become resonant with some lateral 

mode of the system to cause the so-called"bending critical speeds. II 

The rotor threshold speed is a major operating parameter of the 

system. Beyond that speed, the rotor whirl orbit radius may grow rapidly 

with time in an outward spiral until some stable whirl radius is found 

(bounded instability) or until some constraining surface, such as bear-

ing or seal face, is struck. Unstable motions which are bounded by the 

bearing or seal dynamic properties are often acceptable operating 
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TYPE OF INSTABILITY WHIRL FREQUENCY V MACHINE SYSTEMS SUBJECT 
TO INSTABILITY 

101 

Hyster-elie instability V. W • (independent o(~abovel.W) 
c c lightly-damped rotor with shrink or press-fdlt'd parts 

on a central shaft. 

Sub harmonic shaft whi,.1 

Fluid fjlm instability 

Rigid rotor 

Flu:ible rotor 

ParametriC instability 

T (an sve"'se~ tor siona I 

interaction instability 

O. 45w(v(0. 50 w 

0.38<-><:11< 0.45w 

Rigid rotOr in fluid (ilm bearings 

Rotor in fluid-film journal bearings 

Machines wilh gas seals 

Machines with asymmetric rotor or asymmetric 

shart Or both. 

Machines carrying bladed disks, e.g. steam tur-bint 

v = wh Irf frequency 
W = running speed 

Table 1 Details of Various Instability Conditions 

conditions, especially for a rigid rotor, but once the journal contacts a 

bearing or seal surface, a violent counter-rotating whirl may be set up. 

This second whirl motion can destroy the bearing surface and damage the 

journal. Typical whirl orbits of common whirl motions are shown in 

figure 1. 

(c) HyHerun in,t.bll it),. 
v-"". e 

(d) tt.lf frrquenc), be.rin9 
whirl.v(w/2. 

U)/i 
I 1 
. I 
, i 

i 
(6) St.bl~ .. I'll rl 

unboll.an(~ only, 
(bl Oi\\l.,I.r stHtn~H 

.,lid \nsUblltty, 
'IJ - ""'2. 

Figure 1 Whirl Orbits Caused by Various Exciting 
Forces and Unstable Conditions 
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Types of Rotor Instability 

Hysteretic Instability 

Hysteretic instability may occur in built-up rotors consisting of disks 

which have been shrink- or press-fitted upon a central shaft, or which are 

assemblies of components bolted together. Rubbing between the compo-

nent parts produces a friction force which tends to suppress rotor whirling 

at speeds below the first bending critical speed, and to sustain such rotor 

whirl motions above the bending critical speed. Such whirl motions were 

first observed by Newkirk [1] and by Kimball [2], and were further 

investigated by Robertson [3]. In these tests, the frequency of the 

hysteretic whirl motion was observed to be the same as the first bending 

critical speed of the rotor. It was first thought that the hysteresis of the 

material itself was the main cause of this whirling. But measurement of 

these hysteresis forces by Kimball [4] showed that they were of very small 

magnitude compared with other forces acting on the system (e.g., rotor 

weight), and that the instability was more likely caused by rubbing between 

shrink-fitted parts on the shaft. Above the first bending critical speed, 

this type of whirling occurs at a frequency v equal to the first bending 

critical speed, w. Once started, the whirl orbit could grow to large de-
c 

structive proportions, which may not diminish with further increase in 

speed. Since Newkirk's studies in 1925, experimental investigations have 

been outnumbered by analytical studies. Investigations by Kimball [1), 

Robertson (2), Kushul (5), and Gunter [6] will be discussed in detail in 

later chapters of this book. The general conclusion is that hysteretic 

instability can be successfully suppressed by the addition of a suitable 
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combination of external stiffness and damping to the rotor-bearing system. 

Fluid Film Bearing Instability 

This well- known form of rotor instability - variously and somewhat 

loosely referred to as half-frequency whirl, fractional frequency whirl, oil 

whip, and resonant whipping - is a self-excited whirl of the rotor in its 

supports induced by cross-coupling effects within the journal bearing fluid 

film. It was first investigated and reported by Newkirk [1 J in 1924, who 

found that it may begin at speeds above 1.5- 2.0 times the first lateral 

critical speed of the rotor system. Two distinct types of such instability 

have been observed. The first type, known as "half-frequency whirl", 

occurs mostly in systems in which the rotor is dynamically rigid and when 

the whirl frequency is somewhat less than half the running speed. The 

second type. known as "resonant whip". is more severe. It builds up with 

a whirl frequency equal to the first bending critical speed of the system. 

This whirl can appear at rotor speeds 1.5-2.0 times the first bending crit­

ical speed of the system. Once started, the whirling involved is strong. 

and may persist over a wide range of higher speeds. The large rotor whirl 

amplitudes involved may consequently be very harmful to the system. 

Resonant whip. of which detailed investigations are presented in later 

chapters, is more likely to occur in flexible rotors. Research by Newkirk 

and Lewis [7]. Pinkus [8]. and Tondl [9] [10] has shown that plain 

cylindrical bearings are the most likely to become unstable in resonant 

whipping. and that the most stable bearing types are the tilting pad bear­

ing. the floating-ring bearing, and the three-lobe bearing. 

The fundamental conclusion reached by Tondl [11]. Lund [12] and 
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others concerning the stability of rotors in fluid film bearings is that rotors 

can be stabilized by addition of a suitable amount of damping, and by the 

selection of a bearing type which minimizes the amount of cross-coupled 

stiffness and dampin~ involved in the system. This conclusion has led to 

several designs of flexible, damped supports (employing spring-mounted 

bearings and an oil-film damper) known as squeeze film damper bear,ngs. 

Gas Bearinq Instability 

One limiting factor in the use of high-speed gas journal bearings has 

been the development of half-frequency whirl motion of the journal within 

the bearing. The whirl threshold speed represents an upper limit for the 

speed at which the rotor may be safely operated. Half-frequency whirl, 

once established, commonly leads to rapid growth of the journal orbit, and 

possibly to bearing seizure. 

Data on dynamic bearing properties is needed to predict the onset of 

half-frequency whirl. The compressible Reynolds equation with time-

dependent terms included for dynamic loading is: 

~ (h'lP 'bP) ... ~ (h~"o ~P)= 6U~ ("f) +11~(hf) (1) 
~x f 'bX 'hZ)J. ~2 bX\ ~t: 

where x = a 0 

0 = central an~le from the line of centers 

z = axial distance from the middle plane of the bearing 

h = C (1 + E cos G) 

C = radial clearance 

c = eccentricity ratio 

p = absolute pressure 

J = density 

\1 = viscosity 

U = alA), peripheral speed of journal due to rotation 
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Castelli and Elrod [15] developed an analysis in which the equations 

of motion for the rigid rotor and the compressible Reynolds equation were 

simultaneously integrated on a digital computer to determine the rotor 

orbital path. The stability, or instability, of particular cases was 

established from the growth, stabilization or decay of the orbit. With 

assumed initial conditions for both the rotor motion and the fluid-film 

pressure, the influence of incremental displacer.ients on the rotor equations 

and then on the fluid-film properties was calculated. The calculation was 

intended to provide data for the next incremental change. 

Cheng and Pan [16] applied Galerkin's method to solve the Reynolds' 

equation with time-dependent effects included, for the case of finite plain 

cylindrical bearings and other geometries for which a representative (ph) 

function could be deduced. 

Several experimental programs have been conducted to determine the 

effect of bearing geometry on the threshold of instability. The main 

results of these investigations are: 

• 

• 

• 

• 

There is a clearance which gives minimum onset speed for a given 

bearing load, references (16) and (17); 

For a given rotor mass and bearing clearance, the eccentricity 

ratio at the onset of instability remains virtually constant, even 

though the bearing load is varied significantly, reference [16]; 

As the bearing clearance increases, so does the eccentricity ratio of 

the onset of instability, reference [17]; 

If a gas bearing is designed for high stiffness and large clear­

ance, the threshold speed will be increased, reference [18]. 
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• Increasing the gas pressure in the bearing will increase the onset 

of instability as well, reference [19]. 

Kerr's detailed experiments [20], [21], show that by mounting the 

bearings in 0- ring supports, it is possible to proceed through the half-fre-

quency whirl region and operate at much higher speeds without unstable 

vibration. Some oscillation may occur as, with the increase of speed, the 

shaft support system passes through its own resonant or unstable regions. 

Tondl [22] found that the onset of self-excited vibrations could be 

efficiently raised by mounting the rotors on an elastically suspended founda-

tion mass with damping. He also determined that the nonlinear components 

of foundation damping did not cause any additional instabilities. 

In general. instability in gas-lubricated bearings closely resembles 

that found in fluid film bearings. 

An example of stabilization of a horizontal symmetrical rotor in a 

plain cylindrical hydrodynamic gas journal bearing. using a flexible 

damped foundation has been given by Rieger [23]. The rotor system had 

the following properties: 

Weight 12 lb. Operating speed 12.000 rpm 

Bearing Length 2.0 in. Dynamic load lq lb. (on each bearing) 

Bearing diameter 2.0 in. Ambient pressure lQ.7 psi 

Radial clearance 0.001 in. Viscosity 2.8 x 
-9 2 

10 Ib.sec./in. 
Temperature TOooF 

Using instability charts, the threshold speed for this rotor was found 

to be 7320 rpm. It was therefore expected that the rotor would become 

unstable before it reached its operating speed. A damped flexible 
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foundation was subsequently added to the analytical model, with foundation 

stiffness Kf = 600 lb. lin. and foundation damping Bf = 0.1 lb. sec. lin. 

Using the same method, it was then found that the threshold speed was 

still below the operating speed. The rotor would therefore still be unstable 

at its operating speed. 

The next step towards stabilization was to change some characteristics 

of the bearing and to add more damping while the stiffness of the founda-

tion was decreased, thus: 

Bearing length 

Bearing diameter 

Bearing stiffness Kf 
Bearing damping Bf 
LID 

1. 0 in. 

2.0 in. 

350 lb. lin. 

0.23 lb. Isec. lin. 

O. 5 

These changes considerably improved the stability of the rotor which ran 

up to 51,000 rpm without encountering any instability problem. That is, 

the threshold speed was now well above the operating speed. 

Gas Seal Induced Instability 

Steam turbine stages, compressor rotors, and pump stages may all 

experience seal-induced instability regions in which the seal dynamic forc-

es may overcome the system damping. Recognition of this has led to the 

conclusion that a threshold power level may exist for a given operating 

speed, beyond which speed the rotor may become unstable, even though it 

operates in bearings which usually stabilize a rotor system. Shaft desta-

bilizing seal forces and blade seal forces are generated, respectively, by 

shroud and shaft labyrinth seals and by flow action on the blades. Should 

these forces, acting together in the whirl direction, exceed the damping 



108 N.F. Rieger 

forces, a high pressure rotor may experience self-excited whirling whose fre­

quency is equal to the lowest natural frequency of the.rotor in its bearings. 

Several analyses have been made concerning the effect of labyrinth 

~eal forces on a whi rling rotor. Different basic assumptions have caused 

these analyses to differ substantially in their predictions of the rotor 

instability threshold conditions. Wright (24) conducted an experimental 

analysis using an apparatus capable of :neasuring accurately the labyrinth 

seal forces on a whi rling rotor (see figure 2). Wright's model was designed 

to provide a better understanding of the basic phenomena involved in seal­

excited whirling. He showed that the whirl excitation exponent may be 

negative or positive depending on the type of seal (converging or diverging) 

and on the type of whirl (forward or backward), and concluded that some 

control of steam whirl is possible by stiffening the rotor or modifying the 

bearing. He also suggested that the steam seals should be designed to 

have negative (stabilizing) forward whirl excitation constants which tend 

to cancel the positive (destabilizing) forward whirl excitation constants of 

the blade rows. 

Parametric Instabilities 

This type of instability arises from the variation in some system para­

meter with respect to time, such as shaft lateral stiffness. It can occur 

when an asymmetric rotor is mounted on a symmetric shaft, or when a sym­

metric rotor is mounted on an asymmetric shaft which has unequal lateral 

stiffnesses in its two principal stiffness directions. An introduction to 

this problem has been given by Den Hartog [25) who describes the IIflat 

shaft" problem, and shows that this leads to twice per-rev variation of the 
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stiffness term in the rotor equation of motion: 
.. 2 

MR + (K O + Kl cos 2wt)R =Maw (iwt) ( 2) 

where R is the rotor c.g. whirl radius, M is rotor mass, KO is shaft lateral 

stiffness, K 1 is the stiffness asymmetry, w is angular velocity, and a is 

mass eccentricity. This expression may be solved as a Van der Pol equation 

[26]. Other studies of this problem by Taylor [27], Foote, Poritsky and 

Slade [28], Kellenberger [29], Dimentberg [30], and Tondl [31] have indi-

cated regions of stability and instability in which the rotor amplitude will 

grow with time. Several of these authors have also noted that such shafts 

also have speed ranges w in which subharmonics of the dissimilar stiffness 

effect also induce vibrations at w/4, w/8, w/16, etc. 

Yamamoto and Ota [32] have contributed to the investigation of para-

metric instability of a rotor with dissimilar inertia properties. The exper-

imental apparatus shown in figure 3 was used. A vertical shaft of 

diameter d : 11.55 mm, and length I : 601.9 mm was driven by a 45 hp 

DC motor. It was supported at its upper end by two self-aligning double 

row ball bearings placed at a distance Lo = 36.00 mm apart. By exchanging 

two attached weights W of the rotor it was possible to vary the dissymmetry 

parameter l'>. When a disk of diameter 180 mm and of thickness 3 mm was 

added to the rotor I motions at the edge of the disk were recorded optically 

in both directions x and y. The guard rings Gland G2 were arranged to 

check the increase of shaft deflection. Using various kinds of oil in the 

damper vessel at the lower end of the shaft to restrain the whirl amplitude, 

various damping coefficients were obtained. 

These authors concluded that for a rotating shaft system carrying an 

unsymmetrical rotor I instability occurs near the speed range where the sum 
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of two natural frequencles of the system equals twice the rotating speed of 

the shaft. It was also found that this unstable range may be diminished by 

adding sufficient viscous damping. In a later experiment, Yamamoto [341 

studied the case where the sum of the two system natural frequencies is 

equal to twice the rotating speed of -the shaft. The test rigs used are 

shown in figures 4 and 5. The unstable vibrations which appeared in these 

regions were studied for a system consisting of a rotor with unsymmetrical 

inertia, and a shaft with unequal stiffness. A theoretical investigation, 

which was verified by this experiment, showed that such unstable vibrations 

can be removed by selecting a suitable combination of the inequalities in 

inertia and stiffness, as well as by external viscous damping. 

Transverse-Torsional Interaction 

Interaction between transverse motions and torsional shaft motions has 

been shown to induce instability. This problem has been studied by B roniarek 

[35], Tondl [31], and Smith [36]. Smith [36] investigated a specific problem 

of synchronous whirl in a group of steam turbines in which the source of 

the trouble was not excessive unbalance, but an uncommon type of instability. 

Here, the whirl frequency developed below rotational frequency. A slow build­

up of vibrations occurred when the transverse whirl frequency coincided 

with the running speed of the rotor. 

The occurrence of this instability was erratic and unpredictable, 

but always showed the same general pattern. Large vibrations developed 

within a specific speed range. Vibration was at first particularly strong in 

the low pressure turbine, at a frequency of l··per-rev plus harmonics, 
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especially the three per rev. No low frequency component below 1 frev was 

present. The harmonics grew much more slowly than the synchronous 

component, which was strongest in the high pressure turbine. When 

speed could be varied, the synchronous whirl dropped rapidly in amplitude 

outside a sensitive speed band between 5 and 15 percent of operating 

speed, and sometimes even stabilized. Amplitude growth could be started 

or restarted by a change in the generator load. The different stages of 

the self-excited vibrations are shown in figures 6 and 7. 

Smith concluded that this instability was due to the torsional-transverse 

interaction. The principal mechanism was resonant vibration of the LP 

turbine blades. 

Causes of Instability 

The purpose of this section is to explain some of the most common 

sources of instability. The approach follows that given by Lund [37] 

Consider the simple symmetric rotor model shown in figure 8, consisting 

of a shaft with a stiffness of 2 k and a lumped central mass 2 m. The 

shaft is supported at its ends in bearings with stiffness K, such that 

the natural frequency of the system is: 

Wn =V m(~,"KI (31 

The angular speed of rotation is Q. External damping is provided at 

the rotor mass and at the bearings with damping coefficients 2b and B, 

respectively. (See figure 8.) Although practical rotors are considerably 

more complex, this simplified model contains the essential features of the 

problem,and allows useful closed form solutions to be obtained. 
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Figure 4 

Figure 5 
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The system is assumed to be linear, with constant properties. Let 

(x,y) and (x" y,) be the coordinates of the rotor mass and of the shaft 

at the supports respectively. Using this simple model, the following cases 

may be considered: 

Hysteretic Instability 

Assuming that the energy dissipation is viscous, the shaft may be 

assigned a damping coefficient c. The equations of motion then become: 

mx<bx = -k(X-X t ) -c(x-x t ) -oc(Y-Y t ) = -K-xt-DX, (4) 

my<by = -k(y-y t ) -c<Y-Y t ) +oc(x-x1) = -Kyt-DY t (5) 

h and y, are the amplitudes at the rotor disk and for the were x, y, x" 

journal in a fixed coordinate system. 

Usually, c is small and,assuming the external dampinf) band B to be 

equally small, only fi rst order terms in c, band B need to be retained. 

With solutions for the amplitude of the form est, the characteristic equation 

is obtained as: 

2 k 2 K 2 kK +. K 2 0 
ms + [b+(K+k) B + (K+k) c]s + K+k - 1)1 r K+k) c =. (6~ 

Separating this expression into real and imaginary parts, it is found 

that the whirl frequency v is equal to w , and the condition which defines 
n 

the instability threshold speed is: 

In the absence of external damping, the rotor becomes unstable when 

the first bending critical speed is reached. To operate in a stable manner at 

higher speeds, external damping, as described in equation (2) is required. 
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I t is assumed in the above analysis that the shaft internal damping is 

of a viscous nature. The dissipated energy then becomes proportional to 

frequency. This characteristic, however, is not typical of most shaft 

materials. Generally, the dissipation is of hysteretic nature, and is inde-

pendent of frequency. A more realistic model may be introduced by adopting 

a material property y as the fixed angle by which the strain lags the stress, 

such that the hysteresis loop in the stress-strain diagram becomes an 

ellipse. The dissipated energy is then proportional to sin y, and hence to 

the square of the stress amplitude. On this basis, the equations of motion 

are: 

As y is small, cos y and sin y may be replaced by 1 and y respectively. 

AssuminC) the external damping to be equally small and retaining only first 

order terms in y, band B, an exponential solution for the amplitudes 

leads to the following characteristic equation: 

2 k 2 kK ~- 2 
ms -t[b-t(K-tl:) B) s+ K-tk ~i(JciF.) ky=O. (10) 

With s =- iv at the threshold of instability, it is found that v 

the rotor is stable when: 

=-~. and 
n 

( 11 ) 

In contrast to the case of viscous internal damping, where instability 

can occur only above the first critical speed, hysteretic dampinC) causes 

the rotor to be potentially unstable at all speeds. Once, however, the 
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required external dampin~ is ~rovided, the rotor is always stable; whereas 

with viscous damping, there is a finite threshold speed. 

Whirl in Hydrodynamic Bearings 

For small amplitudes of self-excited whirling induced by hydrodynam-

ically lubricated journal bearings, the equations of motion can be written as: 

mX~bic = -k(x-x1) = -K x -D Xl -K_Y -13 Y -DX l (12) xx 1 xx xr 1 xy I 

The eight dynamic bearing coefficients, Kxx , .... ,B xx .... depend on 

the particular bearing geometry and, in addition, on the operating condi-

tions, expressed through the Sommerfeld number: 

2 in ~O~L (~ 
where L 

o 
R 

S 

bearing length 

journal diameter 

journal radius 

c 
w 

radial clearance 

bearing applied load and 

lubricant viscosity. 

( 14) 

Assuming a short (LID ~ 1/1) plain cylindrical journal bearing, 

operating at sufficiently high speed such that: 

L2 
2 (D) S> I, 

( 15) 

then the dynamic bearing coefficients are approximately given by: 

( 16) 

( 17) 

( 18) 
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( 19) 

( 20) 

At the threshold of instability, the r.lotion is purely harmonic with frequency 

w, whereby the equations of motion can be written as: 

{
(K +lwB -Z) xx xx 

(K +iwD ) 
yx yx 

( 21) 

2 2 2 2 
where Z - k(-mw +iwb) . D _ k(k-mw )mw -(wb) 

-- k_mw 2 +iwb -lw - (k_mw 2)2 +(wb)2 

k2 
-lw ( 2 2 2 b+BJ • 

(k-mw ) +(wb) 

( 22) 

This value must equal the root of the determinant of equation 4 which 

becomes: 

Z=~(K +K) +l[WB +K 
£ xx yy DC- x:y 

As w is equal to t Sl or less, the second term inside the square root is of 

2 the order of (~), and can be ignored. With this condition Z is approximately 

equal to: 

( 24) 

where 

1 G W ) 
K =." (I\: +1\: ) ~- -C-;-. 

L. xx yy n ( 25) 
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Equating real and imaginary parts of equations 5 and 6, and neglecting the 

term (wb 2>. the whirl frequency is determined as: 

tI kK w- w -
- n - m(k+K)' (26) 

The condition for stability becomes: 

K+k 2 1 
iii n + (-k-) w b > (7f C'l-w ) B 
n n L. nxx ( 27) 

The whirl motion is a forward precession. 

It has been shown by Lund [21] and others that a more effective 

method than external dampinq for stabilizing hydrodynamic bearing whirl 

is to mount the bearing in a flexible damped support. By proper tuning, 

the instability can be completely eliminated. 

Equation 7 shows that in the absence of external damping, this rotor 

is unstable in cylindrical bearings when the speed exceeds twice the first 

critical speed. This is true only for sufficiently large values of the 

Sommerfeld numbers, i. e., for low bearing operatin9 eccentricity values. 

It should also be noted that the inequality itself is based on several 

assumptions, and consequently that it will be less valid where these 

assumptions are violated. 

Interaction with Fluid Flow Forces 

Any whirl motion of the shaft in rotating machinery affects the flow 

field of the working fluid and sets up addition<ll forces and moments. 

Coupling thereby exists between the motion of the shaft and the fluid-

dynamic reaction forces which could potentially be destabilizing. One 

mechanism for such a coupling was sugoested by Alford [38]. This applies 
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to axial flow machines where a radial displacement of the wheel center in a 

sta~e generates a transverse force proportional to the displacement. 

Here, the coefficient of proportionality becomes: 

where K - the stage efficiency 

T the stage torque 

r the pitch radius 

H - the vane height 

h - the tip clearance 

and the subscript 0 refers to the concentric condition. 

( 28) 

Assuming the central rotor mass to be a turbine stage, the equations of 

motion are: 

mX -tbx+xy = -k(x-x1) = -Kx1-BX1 

my -+by-xx = -k(Y-Yl) = -Ky1-B}·1· 

(29) 

( 30) 

Neglectinf) second order terms in K, band B, the characteristic equation 

becomes: 

(31) 

on substituting an exponential solution for the amplitudes x, y. 

Letting s = iv at the threshold of instability, the whirl frequency is 

found to be equal to w while the stability condition becomes: 

k 2 . 
w b + (~) w B:> \x \. 
t\ r..-+K r. 

( 32) 

At the onset of instability, the whirl motion is a forward precession when K 

is positive, and a backward precession when K is negative. 
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Hotor Asymmetry 

Practical cases of rotor parametric excitation arise from dissimilar lateral 

stiffness properties of the shaft. Writing the principal lateral stiffnesses of 

the shaft as K + t. K and K - t. K respectively gives the system equations of 

motion as: 

Introducing the parameters: 

K flk 
a =-- --

K+k k 
( 35) 

b k 2 B 
fl=~+(K~~ ~. ( 36) 

An exponential form est is again assumed for the amplitudes. 

As t. K /K is normally small and assuming that 3 is also small and of the 

same order, the above equations can be solved, retaining only first order 

terms in ex and 8. The characteristic determinant then has roots as follows: 

( 37) 

At the threshold of instability, the real part of s is zero. Hence, the 

imaqinary part is also zero according to equation 8 because the right-hand 

side is real for the assumptions used. This expression can then be solved 

for the threshold speed, which is given by: 

22 2J4 2224 o = w ... -2fl ..:!: 4fl -4w" fl +a ~ ( 38) 



122 N.F. Rieger 

The rotor is unstable between the two speeds determined from equation 9. 

The instability ref.lion disappears when: 

( 39) 

or 
~ 40) 

or K .. k 2 k 2 
(-K ) W b .. (-K) w D '> t>k o • 0-

( 41) 

Thus the rotor can be stabilized with the required amount of dampin~ either 

at the rotor mass or at the supports. The instability threshold frequency is 

equal to the first critical speed of the rotor, and the shaft whirls in the 

same direction as the rotation. 

Sample calculation: 

Let 2m 600 kg 

2k 1. 4 x 108 N m 

K 0.9 x 108 N . m 

m 
0.9 x 0.7 x 108 
(o.~·""")("""3ilo 362.3 rad./sec/" 3460 rpm ( 42) 

In the first case, the shaft has internal damping equivalent to a 

10!1arithmic decrement, 0, of 3.16 percent for the free vibrations of the 

simply supported rotor" Therefore: 

c = ~ ~ = 1932 N- scc/m _ 
tT Wo 

The required external dampin!l is computed from equation 2 as: 

b '> Gll. 4 • (~- 1) N",a.-c/m 
u;n 

o 
U>Jl94-(--I) N·scc/m" 

wh 

( 43) 

( 44) 

( 45) 
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If, instead,the internal dampin~ is hysteretic, the angle y by which the 

strain lags the stress becomes 

y = ~ = 0.01 radians = 0.57 deg. 
T1 

The stabilizing external damping is obtained by equation 3 as: 

b 611. 4 N· sec 1m 

B > 3194 N· sec 1m. 

( 46) 

( 47) 

(48) 
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Next, consider the rotor to be supported in hydrodynamic journal bearings 

with the following characteristics: 

o 
c 

L 

therefore, 

0.125m 

6.25xl0 5m 

0.0625 m 

w 

N 

• 6 W 8 / K = - r; = 0.90· 10 N m, 
f1 I.-

1. 5 x 10 2 N. sec. ,'m 2 

2942 N 

6000 rpm 

( 49) 

which yields from equation 7 the external damping required for stabilization 

as: 

o 5 / b>(~-1).2.8187.10 N·scc m 
n 

( 50) 

D > (2~ - 1)·1. 4726.106 N· scc/m . (51 ) 

" 
Next, consider the case of a rotor which may experience gas-seal induced whirl. 

The rotor carries a single turbine stage with a power of 1000 kw at 3460 rpm, 

and the parameters defined previously as: 

To = 2760 N.m. 

r = 0.15 m 

H 0.05 m 
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which gives for the coupling coefficient: 

K 1 O' 2760 
• 2.0.15.0.05 

The damping required for stability is: 

b > 507.9 N· sec/m 

D> 2653 N· sec/m . 

5 
1.84· 10N/m 

N.F. Rieger 

( 52) 

Finally, the variation in lateral stiffness is assumed to be :t 1 percent. such 

that IIK = 0.7 x 106 N/M. 

In the absence of damping, the rotor is unstable from 3450 to 3469 rpm. 

The instability zone is eliminated by adding external damping according 

to equation 9: 

Out of five types of instability considered, hydrodynamic bearing 

whirl is by far the strongest. Unless amplified or specifically aggravated 

in a given design, the above calculation shows that the four other forms of 

instability considered can only occur in very lightly damped systems. Such 

light damping may result from system design (rolling element bearings), from 

the environment (cryogenic systems), or in fluid-film bearing systems whose 

operating conditions approach the hydrodynamic whirl threshold condition. In 

this latter circumstance, the resulting whirl may be influenced by parametric 

effects, or the other destabilizing influences referred to in this section. 
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General Stability Analysis 

A general form of the equations for forced damped motion of a multi-mass 

linear elastic system (unbalanced rotor in fluid-film bearings) is: 

, , , 
, 1 1 

, I I I t I 

M ~Xt- 04" (e>".I' .. Bt-)Xt- + (Ie,.., : .. f(,,)Xt-- ~,.Xt.I-Kt-Xr.1 = P,. ~·tWt·cI~) , , ' - Br.,)<r., - 1<'1"-1)(1"-' + 
• 1 

1 , , , 
1 ' I, . I 

- B,,:, )(",1- leN.,X,.,., 04" M .. X ..... te> .. ·,+B .. ) X,., + l ~., ~1e,.)X .. 

where Pn cos (wt + ~ n) represents the rotating unbalance of the system, 

These equations may be written in matrix form as: 
, 

" M, 0 ---------··0 X, e" -~, - - - 0 X, 

0 M'1. - - - - - - - - - - 0 Xi -B, B, .. B'1 -G'2. 0 Xt 

M; - - - - . 0 X, + X'\ 
1 " , 

0 
-

0 0 0 - - - - M .. 'XN 0 G"'I B".f·3 ... X .. 

k, - K, - - - - - - 0 XI P.e9, 
-k, ", .. I< 1. - - - - - - 0 X'l. Pl e.¢1. 

= Re lwt 
+ p" e;" e 

X,,> 
, , , 

0 1( 10/., " ... 1 + Ie .. X'" P.. e~" 

or M'x + Bx + Kx = P cos wi = Re{ Pe iwt} 
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Considering now the homo~eneous portion of this equation, and 

introducin~ the trial solutions: 

gives: 

X 1 x lept 

X 2 = x 2ept 

(M,P't.B,P.I<~ -~6,p~I(,) ____ .. o •••• o ___ • - 0 X, 

- (S,P' k.) (M1P"(B,+B,)P-(K,+l(t)) -B,P+l(t - 0- 0 X'l. 

o 

o .. - - - 0 j~"'_IP. I(",,} x. 

+ [DJ {X} = {OJ 

:.0 

where [DJ is the stability determinant. This equals zero for non-trivial solutions. 

Expandin~ this determinant into the characteristic equation gives an 

expression of the form: 

which can be written: 

. A p2r 1 
r 

o 

The relations between the A coefficients in this polynomial and their 
r 

influence on the stability of the system have been studied by Routh (1877) 

and Hurwitz (1895). The stability or instability of the dynamical system 

depends on the nature of the roots of the polynomial. These roots are the 
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roots of the algebraic equation D(p) = O. In general, the 2N roots will be 

complex numbers. Since the coefficients A are real numbers, the roots 
r 

of D(p) = 0 occur in complex conjugate pairs of the form: 

Pt'"::~r·+i.j)r i Pt'";:~ .. -i.\Jl'"i rOil r:I,'l, ___ ,2N 

If the real parts a. of all the roots are negative numbers, the solution to 
r 

this equation will contain decrement factors of the form eart, Ct = -ve. If r 

this occurs when the system is disturbed from its equilibrium position 

(x = 0), it will return to this (stable) position. Alternatively, if one or 

more of the Ctr is positive, any displacement of the system will cause the 

whirl amplitude to increase indefinitely with time (unstable system). 

It is thus clear that for a linear system to be stable, all the roots 

must have negative real parts. If the system also has on or more 

of the a.r equal to zero while the other a.r values are negative, then 

any disturbance will eventually execute sustained oscillations of 

constant, finite amplitude. Routh has shown that the stability or instabil-

ity of a system may be determined from a study of the Ar coefficients. 

Routh's criterion provides a means for determining whether or not an 

equation has real positive roots without solving it. For example, with an 

eighth-order system, the procedure is to set up the following array: 

Au "-l " '\ 'Aa 
A, ~ " ~ 
c1 S c3 Cq 

°1 °2 °3 
El E2 E3 

Fl F2 
G1 ~ 
HI 
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where C 1 A] Al - Ao A3 ; C 3 A6 Al Ao A] 

Al Al 

C] A qAl - AO '\ C q AS 

Al 

0 1 A 3Cl - Al C] 0 3 A 2Cl - Al Cq 

C 1 C 1 

O 2 A SCI - Al C3 

C 1 

El C 201 - O2 Cl E3 0 3 

C 1 

E2 C 301 - C l D3 

0 1 

Fl ° 2 E 1 - ° 1 E] F2 ° 3 E 1 - DIE; 

El El 

G 1 E 2F 1 - E IF] G 2 E3 

Fl 

HI F 2Gl - Fl S 
G 1 

The necessary and sufficient condition of stability is that all of the 

coefficients of the first column of the array must be positive, i.e.: 

The following calculation for the steam-excited whirling of a turbine rotor 

illustrates this procedure: 
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Consider the stean: turbine rotor in fluid-film bearings shown in 

figures 9 and 10. The rotor is acted on by a steam force G in the direction 

DEFLECTION DUE TO 
SHAFT FLEXIBILITY CONCENTRATED MASS 

OF JOURNAL CEN T E R 

r-­
DEFLECTION 

DUE TO BEARING 
FLEXIBILITY 

----,---­
BEARING 

CENTERLINE 

Figure 9 Model of Turbine Rotor System 
with Steam-Excited Whirl. 

y 
Steam 
Whirl 
Force 

x 

Figure 10 Coordinate System and Steam Forces 

JOURNAL 
~--CENTER 
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of rotation. In the absence of rotor unbalance, the equations of motion of 

the rotor e.g. are: 

~lX 

MY Ks(Y Yo), Gr cos 

A force balance at either bearing gives: 

; K 5 (X Xo) K XO' K Yo' fl >:0' B Yo xx xy xx xy 

K Xo. K Yo B Xo. B Yo yx yy yx yy 

introducing solutions of the form: 

x 

Y 

51 ,e 

5t 
ye 

Xo 

Yo 51 
yoe 

leads to the following determinant of coefficients for system stability; 

K G K 0 
5 5 

G K Ms2 0 ·K 
5 5 

0 
, K s 0 K t Ks t B 5 K • E3 5 xx xx xy xy 

- i K s K • B 5 K 1 K t B 5 yx yx yy 5 yy 

Expanding this expression gives the sixth-order stability polynomial: 

o 
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where the constants a., i=1, •.. ,6 are given by: 
I 

-2 - - - -
ao . M (BxxByy -BxyByx l 

-2 - - - - - - - - -
a l . M (B K + iB + j8 + B K -B K ··B K 

xx yy xx yy yy xx xy yx y x xy 

-2 - - - - - -
a,·.-M(K K +jK +iK -K K +0 

< xx yy xx yy xy yx 

- - --
BxyKyx - 8yxKxyl -iM(Bxx + Byyl 

a ~ 2M(i< K + ji< + ii< -K K + ~I + 
4 xx yy xx yy xy yx 

(c 2 'l)is B -8 B l-jM(K +K +11 
xx yy xy ylC xx yy 

-2 - - - - - - --
as (G + I) (8 K + 8 K + iB + iB _. BxyKyx xx yy yy xx xx yy 

ByxKxyl - H8 + B I + jG(8 - 8 I xx yy xy yx 

a =iC 2 +II(K K +iK + Ii< -K K +0 
6 xx yy xx yy xy yx 

- - -
it K + K + I I + jG (K - K I + ~ 

xx yy xy yx 

The bar over the variables indicates that these quantities have been 

normali zed by the shaft stiffness, i. e. : 

B 
xx 

8 8 
8xy,~. ~,. ~ 

5 5 

r-­yy .. 
K 

~ 
5 

n-- 8 
yy =r 

5 
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Routh's criterion can now be used to investigate the stability of the turbine 

rotor system. The H. P. steam turbine rotor in figure 9 has the following 

properties: 
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Rotor weight 

First bending critical 
speed 

Bearing diameter 

Bearing length 

Bearing load 

Radial clearance 

Oil viscosity 

Average temperature 

Average speed 

Steam force coefficient 

Nci = 2349 rpm 

D ~ 12.0 in 

L = 8.0in 

W = 18058 Ibf 
C = 0.008 in 

-6 2 
~ _ 2.5 x 10 lb. seetin 

T = 1200 F 

N = 3600 rpm 

G = 8.16 X 104 Ib/in 

The Sommerfeld number is given by: 

S:/{NLD (B.)'2.: (7.'':;'''O-')<'0)(8l\"1'2)(~\"= 0.47 
\Iv c. 180r,S \8'10-\) 

N.F. Rieger 

The tilting pad bearing dynamic coefficients are obtained from Lund [39]: 

CKxx 4.2 
-W-

~ O. 7 
W 

CKxy = C:yx 0 
W 

CwBxx 4.3 
-W--

Cw:yy 1.3 

CwBxy = CwByx = 0 
W W 

The procedure now is to seek by trial and error that value of G which 

will cause the rotor to become unstable at 3600 rpm operatinq speed. For 

example, substitutin~ values of G to form the coefficients of the stability 

polynol!lial for G (assumed) = 1.106 Ib/in gives: 
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G= 

AO= 
A 1= 
A2= 
A3= 
A4= 
A5= 
A6= 

Bl= 
Cl= 
01= 
El= 
Fl= 

1000000 

9.66864E-16 
1. 16086E-12 
4.58307E-l0 
1. 03662E-07 
2.44960E-05 
2.09726E-03 
.28669 

3.71968E-l0 
3. 26653E- 08 
9.05557E-06 
1.68392E-04 
.28669 
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The stability criterion is that the terms AO, Al, Bl, Cl, 01, El, Fl in the 

left column of the array must be of the same algebraic sign for stability. 

Between G = 1.5 x 106 and G = 1.75 x 10~ we observe: 

G = 1. 50 x 106 Ib lin 

G= 

AO= 
A 1= 
A2= 
A3= 
A4= 
A5= 
A6= 

Bl= 
Cl= 
01= 
El= 
Fl= 

1500000 

9.66864E-16 
1. 16086E-12 
4.58307E-l0 
1. 03662E-07 
2.45742E-05 
2.19112E-03 
.324284 

3.71968E-l0 
3.26653E=08 
8.96745E-06 
6.54560E-05 
.314284 

G = 1. 75 x 106 Ib/in 

G= 

AO= 
A 1= 
A2= 
A3= 
A4= 
A5= 
A6= 

Bl= 
Cl= 
01= 
El= 
Fl= 

1750000 

9.66864E-16 
1. 16086E-12 
4.58307E-l0 
1.03662E-07 
2.46250E-05 
2.25212E-03 
.332219 

3. 71968E -10 
3. 26653E -08 
8.91017E-06 

-2.62655E-06 
.332219 

i.e., the si~n of El changes between these values. A cross plot of El vs G 

establishes the critical value of the steam coefficient G as 1. 72 x 106 Ib/in. 

The stated value of the coefficient for this machine is G = 8.16 x 104 Ib/in. 

Thus the machine has ample margin against steam whirl for these conditions. 
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Computer Calculation of Instability 

Several computer programs have been written for the determination of 

the stability threshold. In these programs, the following techniques have 

been used to find the instability threshold speed of rotors operating in 

linear bearings. 

a. Modal growth factor analysis, based on sign of real part of 

complex eigenvalue. Si~n change, negative to positive,on any mode signals 

the onset of instability; 

b. Orbit plots to determine conditions at which the rotor whirl will 

begin to grow without bound; 

c. Routh-Hurwitz criterion applied to the coefficients of the 

characteristic polynomial for the system. 

Table 2 gives details of some of these programs. 

The programs MTI and WPAFB use the complex real part technique 

and observe sign changes in the modal growth factors. The NASA !Jrogram 

and LINK III use the Routh-Hurwitz criterion. An analqous procedure for 

obtaining whirl orbits is also described in the NASA program report. 

The GIBERSON program is used to examine the stability of rotors 

in nonlinear bearings. This program provides a stability analysis which 

may include an extremely broad range of system parameters. 

All the above calculations consider flexible rotors which operate in 

damped, flexible bearings. The NASA rotor is a single disk rotor, whereas 

the ROTDYN rotor may have up to 100 masses, and the CADENSE 25 rotor may 

have up to 60 mass stations. 
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Vendor 

Address 

ungUIge 

Author 

Comment 

Synchronous 
Ruponse Only! 

Liquid M.II 
Rotor? 

Circular Orbit r 

Orblt.1 Response 
e.leul.tlon 1 

Type 

line.r Inon-hnur 

Eight-Coe" . 
Repr.sent.tton 

Sou"C. of Bunng 
Co.". 0.'11 

M,., No. Rotor 
Rotor Stlttons 

Rotor For"'ulUlon 

Shear Effects 

How Input' 

S~'t Tlper 
Inclu:":~-.! 

ROTDVN 

F renklln Inlt. 
Re, .. rch ubs. 

BenJ. frenklln 
Pkwy .. Philo., PI. 

6S,OOO (pockoge) 

N. Roddl 

MIIchln. oellgn 
1972 

Ona Option of 
Cen. RotordynlmlCI 
Progr,m 

No 

v .. 

No. computed 

v .. 

IS 

Linea,. 

Matrix of coerh. 
re Ilted to.1I be.rin!) 
degree, of freedom 

Other program or 
~ck·9· 

100 
OOOD.D.F. 

Lumped mu, 
finile element 

Included 

V .. 

v .. 

CADENSE 21,27 

MTI·CAD 21,27 

"I Albany' 
Sheker Rd. 
Lllthllm. NY 

Fortrln IV 

61.000 

J. Lund 

ASME 1967 

Specific 
Program or P.rt 
of Plckag' 

Yes (non-Iync. 
option) 

NO. distributed 

No. elliptic.1 

No. optlonel 
elllpUcel 
dlsploy. 

MTI-WPAFB 

MTI'WPAFB 

"I Alb.ny 
Sh.ker Rd. 
Lethen. NY 

Fortren IV 

Hil Fortran 
St.temenu 

J. Lund 

WPAFB 6S-TR-IIS 

Specific 
Progr.m. 

V .. 

V .. 

No, ellipUce' 

NO. exel 

CIBERSDN 

TurboreH.rch 

'uo PhoeniX 
Ave., Welt 
Chelter. PA 

Fortr.n 

10K Fortr.n 
St.temenu 

Advanced 
ComprehenSIve 
P r 09ram 
Pack.ge 

No 

NO, computed 

Ve. 

120 IS 10 

Lln .. r Lin .. r Non-lin .. r 

Yel, optionl for Vel,' tilt N~ 
other be.rlng coefts .• Ito 
degreel of fr .. dom 

Other progrem or Olhel" Ihan proy'am q,oullne In 
~cke'Je program 

60 

Oilt. rNlU 
eluticlty 

Yes 

Yes 

Mill. inertia 

No 

Lumped "..." 

No No 

V .. V .. 

Mall. inerll' 

NO 

Table 2 Computer Programs for the Prediction 
of Instability Threshold 

135 

~_I1 __ 

Com/Code Corp. 

lSSO Hunt Ave .. 
Alex.nd,.. •• VA 

Fortr.n IV 

P. V. Ch.ng 

One Option of 
Centre I P.cklge 

Op\ion 

Vel end 
dlltributed 

No 

No 

10 

Lin .. r 

V .. 

Other progr.m 

lumped .nd 
disi. miSS 
el.stlclty 

V .. 

Ve. 

V .. 
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CyrolCoplc Elfocll: 
SI\ofl 
Disk. 

Tran,latory Inertle 
SI\o'1 
Disk. 

A.~I Thrust 

Int.,.~1 Camping 

Stiffness 

M.,I 

Olscretel 
dl,trlbuted 

Input Oat.. Source 

FOUNDATION 

Stlffne .. 

o.",pln~ 

Mu. 

Oitcr.t./Ol,l 

Inpu' O.~ Source 

ENVIRONMENT 

C., Forces: 
St.Uc 
Dy"" .. 1c 

Cravlty 

F&e-ld Force 

Eccentric CeI" l.oIId 

Arbltnry Rogtlng 
Loed/MotnenI 

~ 

Printout 

-OrbU Det.iI s 

- Relponse Amp. 

-Transmitted 
force 

-Stress 

Cnphicl CaJNbility 

-with Prog. 

-Selecled Om II 

-Response Amp. 
v •. Speed 

- T ransmitled 
Fon:e 

ROTOVN 

No 
V .. 

No 
Ye. 

No 

No 

Vo> 

Ves 

Ves 

Oiler.t. 

Other than program 

I 
Foun&tion 
Corr •• pond, to 
Pede'tal 

1 

Yes 
V •• 

Y •• 

Y.,. lin .. ,. 

Yea 

As function 
of time 

Ve. 

Yea 

Yea 

Ve' 

Ye' 

Option 

Ye. 

No 

No 

CADENSE Zl,n MTI-WPAFB CIBEIISON 

Vel, dlscre'e . V.,. discrete V.,. dllCrete 

V .. V .. V .. 

V.,. dltcr.te Vel, dlacr.t. Vel, dIKr.'. 

V .. V .. V .. 

No No 

No No V .. 

V .. Ves Ves 

Ve. Ve. Ye. 

Ve. Yo> V •• 

Both Discrete Olscrele 

Other than Other than program Other than 
program program 

CAD 21. 27 

r 
Special 

• V •• Option,: 
Miwlignment. 

- V •• Settlement. 
founcs.tion etc. 

- Vel Correspond. to 
Pede'tal 

Other than 1 progr.", 

No No Yes 
Yel. coefh. V." coefh. Yea 

No No Ve. 

No No Ye. 

No No Ye. 

Specl.1 oplion No Ves. lin.r 0#' 

non-line" 

Yes Ve. Ye. 

Ves Ve. Ve. 

Y •• Yea Ye. 

Option No No 

Ves No Ye. 

Option No Ve. 

No No Ve' 

Ye. No No 

Yes No No 

Table 2 Computer Programs for the Prediction 
of Instability Threshold 

(continued) 
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LINK III 

Yes 
V .. 

V .. 
Y .. 

Y .. 

No 

Yes 

Ve. 

Ves 

Diser.te 

Other ttwln 
program 

f 
Foundation 
Correspond. to 
Pede'tal 

1 
No 
V." coeff •. 

No 

No 

No 

No 

Yea 

Yea 

Ye. 

No 

No 

No 

No 

No 

No 



Stability of Rotors in Bearings 137 

Conclusions 

Several different types of rotor instability in bearings have been 

identified. The experimental data on which these observations are based 

has been described. Several rotor system models which predict the ob-

served behavior have been demonstrated. A number of computer programs 

for stability threshold prediction of general multi-mass rotor systems have 

been detailed ,and the general literature of this subject has been specified. 

It should be noted that much of this chapter pertains to linear 

systems, i.e. for systems involving equations with constant coefficients. 

Good progress can be made using linear stability models, but the !Jredic· 

tion of instability of large orbit bounded (or unbounded) whirl orbits is 

a non-linear problem which must be solved by iterative or analog methods. 
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CHAPTER 2.6 

SUPRESSION OF ROTOR INSTABILITY 

N.F. Rieger 

Procedure for Suppressinf-j Unstable ·:Ihirling of Rotors 

The following principles are effective for increasing the stable 

operating speed range of a rotor: 

a. raise the lowestcritical speed of the system 

b. increase the external system damping 

The first requirement can be achieved by increasing the bearin~ radial 

stiffness or the bending stiffness of the rotor, or both. The second require­

ment can be met by using a bearinrr or support type which inherently 

contains more non-rotating velocity damping. It should be noted that the 

increase of any damping which rotates with the shaft itself has a stabilizing 

effect below the bending critical speed, and a destabilizin~ effect above the 

bending critical speed. 

Stabilization of Rotors in Fluid-Film Bearings 

r.~ore-Stable Bearing Types 

Several investigations have been carried out to assess the relative 

stability of different bearing types. Pinkus [1] compared the bearing types 

shown in figure 1. Hydraulically loaded bearinr.s and tilting pad bearmgs 

were found to be the most stable, i.e., to give rise to the highest instability 

threshold speed for the rotor system. Plain cylindrical bearings were the 
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least stable. The self-energizing bearing shown in figure 2 was designed 

to increase bearing loading by transferring pressure from the lower half of 

the bearing to the upper half. During testing, the top of the self-energizing 

be a r i n g was uti Ii zed to apply an additional external load to the journal. 

By closing either valve 1 or valve 2, the bearing could be either self-

energi zed or externally loaded. 

o 
CYlIHORICAL ELLIPTICAL AS."" THREE'LOaE 

o 
PRESSURi: SYMM THREE' lDB£ 

TILTING AIIO 

Fi~ure 1 Bearings Tested by Pinkus to Compare Stabi lity [1] 

~ PRESSURE OIL SUPPLY 

PRESSUP.E OIL SUPPLY 

Figure 2 Self-Energizing Bearing Pinkus [1] 
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Tondl t 2] also undertook an experimental investigation to compare 

several basic types of bearinfl geometry for their ability to resist initiation 

of unstable self-excited whirling. Tests were made on cylindrical and 

elliptical bearings, and also on specific multi-lobe bearing designs, flexible­

element bearings, and on two loose-bushing bearing designs. Of these, one 

design had a cylindrical bushing and the other had a flexible-element loose 

bushing element. 

Tondl's tests showed that self-excited whirling was always very inten­

sive for plain cylindrical bearings. Elliptical bearings exhibited better 

resistance to initiation of self excited whirling, i.e., the instability threshold 

speed was higher than for plain bearings. Tondl found that the multi-lobe 

bearings shown in figure 3 were also relatively stable. In such bearings 

Figure 3 Multi-Lobe Bearings Tested by Tondl [2] 

direct contact between the journal and the bushing surface appears to be 

possible only in small areas. Followinf.j the machinin~ of the original bush­

ing, wear was observed in both bushings after a short period of operation. 

The three types of flexible element bearings shown in figure 4, were 

tested by Tond!. These bearings had both three and four identically 

oriented elements. One additional bearing had three differently oriented 

elements. With such flexible element bearings, complete suppression of 
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self-excited vibrations was succes~fu"y accom;:>lished in certain cases for 

speeds up to eight times the lowest bending critical speed of the rotor system. 

'0 

Figure 4 Proportions of Flexible-Element Bearing, Tondl [2] 

Tests showed that self-excited whirling of relatively low intensity appeared 

within a limited range of rotor speeds, the limits of which depended slightly 

upon the temperature of the outlet oil. Outside this unstable speed range, 

self-excited whirling could not be induced even by striking the rotor. 

Tondl [2] conducted similar tests on bearings with loose bushings. 

Two differently-designed versions of these bearings were tested. The first 

had a cylindrical bushing, the second a bushing with a flexible element. 

Tests were conducted to determine whether this design could be further 

stabilized by loosening the working bushing and supporting it in a cushion 

of pressure oil. The objective was both to increase the damping of self-

excited vibration and to improve cooling of the working bushing with stream-

ing oil. The tests showed that both goals were attained, particularly in the 
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case of the loose flexible-element bushin~ where self-excited vibrations 

occurred only in rare cases, and only when their initiation speed was very 

high. A picture of these bearings is shown in figure 5. The superior 

stability of the floating rin!] (loose bush) bearing is attributed to the large 

damping effect of the outside cylindrical oil film. 

Figure 5 Loose-Bushing Bearing; Loose Bushing is of 
the Flexible-Element Type, Tondl (2) 

Two other bearing types are shown in fif'!ure 6. These are the three 

land bearing and the stabili zed bearing, respectively. These bearinC1s also 

have a practical record for hi~h stability threshold: see Smith (3). 

THREE LAND BEARING STABILIZED BEARING 

Figure 6 Two Types of Bearings Proposed by Smith (3] 

Bearinq Groove Modifications 

Since the first investigations on instability, it has been found that 

various modifications to the bearing surfaces favor stable operations at 
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s~eeds above twice the first critical speed of a rotor system. Newkirk [4] 

presented the design of a "more stable" qrooved bearing. This design is 

shown in figure 7. The developed bearin~ surfaces show the system of 

o 90' ,eo' 

Figure 7 

210' 

E • Q 

Groove Modifications by Newkirk [4] 

grooves which proved most satisfactory during testing. Oil entering at the 

horizontal joint on the downgoing side of the bearing surface is pumped by 

action of the shaft through the central peripheral groove to the dam at the 

end of the groove, where a considerable hydrodynamic pressure builds up, 

espe~ially if the ~eripheral speed of ~he journal is high. The upper half of 

the bearinf) distributes this pressure, figure 7. If the load on the bearing 

is sufficient to insure downward pressure under all circumstances, the 

bands in the upper half may be omitted (see figure 7). 

Fi~ure 8 from reference [4] shows the development of hydrodynamic 

pressure along the peripheral groove as a function of the angular distance 

from the point of entrance of oil. Figure 9 shows the variation in pressure 

developed at the dam as a function of journal speed. The oil is supplied to 

the bearing with a pressure of five or ten pounds per square inch to cause 

it to enter in sufficient quantity. There is no passage provided for oil 

exit, consequently end leakage carries away all the oil that passes through 
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the bearing. I t is essential that the bearing run full of oil. The amount of 

oil which must be supplied therefore depends on end leakage, which in turn 

depends on bearing diameter, clearance, pressure developed by the pumping 

action of the journal, and viscosity of oil. Figure 10 from reference [4] 

shows the amount of oil supplied, together with the pressure developed at 

the dam in tests of a 2.0 in. journal at 30,000 rpm with a 5.5 mil diametral 

clearance. The grooves must be able to carry enou!']h oil to supply the end 

leakage, and to cause the bearings to run full. 

Sherwood [5] examined the cylindrical bearinl'] design shown in 

figure 11, and proposed some bearinfl modifications to increase the stability 

of the rotor-bearin~ system. Increasin~ the bearing oil film pressure is 

one way to raise the oil film whirl threshold speed. One method is to load 

the top of the bearing, to increase downward pressure on the load-bearing 

surface journal, as mentioned previously. The other method involves 

reducing the load-carrying area of the bearing, i.e., by shortening the 

bearing length, by decreasing the diameter, or by increasing the si ze 

of the damper at the bearing split. Sherwood showed that reducing the 

length of a bearing has more effect on increasing the bearing oil film pres­

sure than might initially be expected; see reference [5]. In bearings where 

the L /D ratio is about 1.0, further reduction of length appreciably increases 

bearing oil film pressure because the effective load carrying area is strongly 

influenced by end leakage. Figure 11 shows a dammed groove bearing which 

has also been shown to increase stability. Fi~ure 12 from reference [5] 

indicates a preference for using larger values of eccentricity ratio to 

increase the instability threshold speed. Effects of a change in bearing 
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diameter can be explored in several ways. I f other factors are constant, 

decreasing diameter increases bearing pressure, which may be effective in 
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conferrin~ stability. In considerin~ the effect of changes in bearing clear-

ance, the stabilizing effect of an increase in C/O has already been noted. 

Therefore, it appears that a decrease in diameter would have a stabilizing 
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Figure 11 Methods of EliminatinCl Oil Whirl by 
Reducing Load Carrying Area, Sherwood [5] 
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effect on the rotor. Most of these conclusions were also confirmed in sub­

sequent tests conducted by Hori [6]. 

Foundation Modifications 

Later experiments and theoretical investigations have determined that 

the siqnificant factor in increasing the stability threshold is the addition of 

external damping. Lund [7] has stated that improvement in stabi lity for a 

fJiven design can only be achieved by some suitable revision of the support 

dampina. Thi s conclusion led to several designs using flexible mountings 

and film squeeze dampers. 

Seal Modifications 

An annular gas seal around a shaft can have a destabilizing effect 

similar to the addition of a plain cylindrical journal bearing at that location. 

In such cases it may be necessary to modify the seal surface by grooving to 

achieve stable rotor operation. A common procedure consists in changin!1 an 

existing plain seal design to a labyrinth seal. 

Hysteresi s Whi rl Stabi Ii zation 

Fluid-Film Damping 

From all the experiments that have been conducted on rotor hysteresis 

instability it is clear that an increase in foundation flexibility and foundation 

damping can significantly increase the stability threshold speeds of lightly 

damped hysteretic rotors. This fact was identified by Newkirk [8] as early 

as 1925, and has been amply verified by subsequent experience. The 

required external flexibility and damping in such cases can be efficiently 

provided by the use of a squeeze film damper. 
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Raising the System Critical Speed 

As all rotor instabilities are associated with the lowest critical speed 

of the rotor system, raising the first critical speed tends to increase the 

instability threshold speed. This can be done by "stiffening" the system, 

and also by decreasing the roto!'" mass. Increasing the bearing radial stiff-

ness and increasing the transverse stiffness of the rotor are also effective 

in raisin!) the system critical speed. Imposing a small amount of angular 

misalignment in the bearings exerts a similar stiffening effect on the system. 

Rotor Structural Changes 

Certain structural changes to the rotor have been shown to promote 

increased stability in the case of hysteretic problems. I t has been shown by 

Newkirk [8], Kimball [9], Robertson [10] and others, that shrink fits may 

cause whirl instability. However, these investigations raised the threshold 

speed by increasin9 the shrink pressure and decreasing the shrink length 

(see figure 13). 

o 

Figure 13 

b c 

-~-

Types of Hubs and Bosses Tested by 
Robertson [10] 

For long shrink fits such as compressor wheels and impeller spacers, 

it is important that these components should be undercut along the central 
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region of the inner bore so that the contact area is restricted to the ends 

of the shrink fit. 

Robertson [10] also suggested several designs of hubs and bores 

which have been effective in reducing internal friction effects. These are 

shown in figure 13. The length of the hub on the shaft should be no longer 

than necessary for secure fixing. If, for some reason, a greater length is 

necessary, the hub should then be undercut as shown at position A in 

figure 13. The construction shown at position C in figure 13, with bearing 

strips at the ends only, should be avoided in rotors which are run above 

their bending critical speed. With this pattern the central portion of the 

shaft may bend more than the hub, thereby increasing the amount of 

rubbing, or of "working" at the ends. If a long hub base is necessary on 

the shaft, and if it is not convenient to fit the hub along its whole length, 

it should have a bearing strip at the middle as well as at the ends, in order 

to stiffen the shaft. This is shown at position D. The hub should be 

carried on a base which is solid with the shaft, and has ample fillet radii in 

the corners. The base stiffens the shaft locally and should have as large a 

diameter as possible (see E in figure 13). Where possible the base should be 

undercut, as at F, until the web left at the center is just thick enough to 

meet the requirements of strength and stiffness. In one of his models, 

Kimball [9] successfully employed this arrangement to eliminate hysteretic 

effects from the fit of a flywheel on a shaft. 

Squeeze Film Dampers 

Many investigators have concluded that stability of rotors operating 

above their critical speed can only be ensured by an adequate selection of 
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support stiffness and support damping. Lund [11] and others have investi-

!1ated certain designs of flexible bearing mountings with squeeze film dampers. 

Figure 14 shows an example of a flexibly-mounted squeeze film damper. This 

arrangement is called a damped flexible support. Slots have been cut into 

Figure 14 Cross Section of Bearing ArranfJement with 
Damped Flexible Support 

Figure 15 View of Flexible Support Structure for 
Journal Bearing with Squeeze Film Damper 

the bearing shell, leaving 16 axial spokes to support the bearing sleeve, 

figure 15 . The composite radial stiffness of the spoke in the design tested 
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was 4. 107n /m. The clearance space between the bearing sleeve and the 

force gage ring shown is used as a squeeze film damper. This damper is 

fed with oil under pressure from eight equally spaced holes in the midplane, 

and is sealed off at the ends by piston ring type seals. The damper oil is 

the same as that used to lubricate the journal bearing. The damping 

coefficient was calculated to be 5.104 n.s/m. The damper bearing is 

centered in the force t")a!?e ring by a !=>air of differential adjustment screws 

to compensate for the static deflection caused by the load on the bearing. 

Cunningham [12] has used the same kind of device with the same 

principle, but applied to a ball bearing, as shown in figures 16 and 17. 

Figure 16 Schematic of Oil Squeeze Film Damper 
used in Experiments for the Steady-State 

Response of a Three Disk Rotor 

This design has been used to minimize the steady-state unbalance response 

of a three-disk flexible rotor. During this investigation, the oil squeeze-film 

dampers of this design have been proven successful in reducing the ampli-

tudes of motion for nonsynchronous whirl. 
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DeChoudhury and Gunter [13] reported on another squeeze film damper 

bearin~ design. When operated on a rigid support system, the rotor was 

unstable at an operating speed of 11,300 rpm. The whirling component had 

an angular velocity of 4300 rpm. Placing the rotor on a squeeze film damper 

support centered by rubber "O!' rings effectively stabilized the rotor with a 

eall a .. ,.ng Hou'ing 0 
.~~~ ~?"""" ,,-_._,",- * R.d'iI' a.11 a .. ,lng 

Figure 17 Components of a Flexible Damped Support 

small whirlin!l component. Figures 18 and 19 show rotor orbits for both 

cases. After a comprehensive investigation, these investigators stated that 

for a system to be stable there is an optimum support damping for any given 

support sti ffness. 

Some other experiments have been conducted by Darlow and 

Smalley [16] on the use of stabilizing dampers on super-critical power trans-

mission shafts (figure 20). The hollow test shaft was 3.66 m long and 

7.62 cm in diameter with a 3. 175 mm wall thickness and was supported at 

both ends by disk-type flexible couplings. To minimize support damping 

effects, the couplings were attached to hand-mounted spindles. When first 

tested without such dampers, at speeds above the first critical, the shaft 

became unstable at 1700 rpm with a whirl frequency equal to the first 
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critical speed. These results are shown in figure 21. 

Based on rotor dynamic analysis, a stiffness of 7.10 3 n/m was adopted, 

using an "0" ring as the sprin~ member. The squeeze-film damper was 

Rotor Orbits of Turbo Compressor Before and After 
Stabilization N=l1, 300 RPM, Fir!'t Critical N 1 =4,300 RPM 

Figure 18 

Unstable Rotor Orbit, Discharge 
Pressure PD=175 PSIG, Large N1 
Component, DeChoudhury (13) 

Figure 19 

Stabilized Rotor Orbit, P.J)=650 PSIG, 
Small N 1 Component, Decnoudhury (13) 

desiflned to be a sealed damper with no circulation of the oil. In this way, 

the damper would require no support hardware (such as oil supply pumps) 

which would prohibit its use in helicopter or other space- and weight-limited 

applications. A picture of the test riC] for this modern damper is shown in 

figure 20. The damper is evacuated, filled and sealed, and pressurized by 

the use of a bladder. The damper is predicted to generate less heat than 

the bearings, so the dissipation of heat is not expected to be a serious 

problem. The "0" rinCJ retainers are radially adjustable, so that the damper 
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may be centered manually, in order to compensate for static deflection of 

the "0" rings . The damper was designed to achieve a level of damping in 

the range of 8750 n-s/m for silicone oil with a viscosity of about 80 centi-

stokes, using the short bearing theory and assuming no cavitation . The 

radial clearance is 0.635 mm and the len!")th and diameter are 7.67 and 

10.16 mm respectively. AlthouClh the damper was designed to allow for two 

"0" rings, it was used initially with just one, in order to obtain a low parallel 

Figure 20 Squeeze Film Damper Installed in Super-
critical Power Transmission Shaft Test Rig 

support stiffness of 7 x 103 n 1m for a continuously supported "0" ring . 

Testing of this device showed that instability was successfully eliminated 

throughout the range of operating speeds to 7000 rpm. 
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The conclusions reached by Darlow and Smalley during this investiga-

tion were that this damper was extremely effective in eliminating an incipient 
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Figure 21 Frequency Spectrum Plot of Test Shaft Vibration 
with No Damper Running above First Critical Speed 

instability in the test shaft. With the damper installed, the test shaft, 

which had been marginally balanced through one critical speed without the 

damper, was easily balanced through three critical speeds. 

Figure 22 Effect of Thrust Bearing on Instability 

Earlier tests on similar systems consisting of long, thin shafts in 

end bearings were conducted by Voorhees and Meechan (23). These 

investigators found it impossible to adequately balance such systems for 
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smooth operation. They concluded that it was essential to provide a suit­

able damper in order to run their shafts through several critical speeds. 

Other Stabilization Procedures 

Misalignment of Bearings 

Misalignment of bearings has been demonstrated to be an effective 

method for rotor stabil ization by Newkirk [14], Pinkus [1], Hori [6], and 

Tondl [15]. Misalignment first increases the critical speed by stiffening 

the bearing then raises the fluid pressure inside the bearing, giving bet­

ter squeeze-film effects. Misalignment will also cause the bearing to 

operate at a greater eccentricity ratio, which is always consistent with 

greater stability, and with smaller effective diametral clearance. 

Gashed Shaft 

Rotors cross-sections with different principal stiffness values are 

another cause of rotor instability. An expedient frequently used to 

improve the stability of such systems is to "gash" the shaft, i. e., to 

machine a series of slots in the cross section. This reduces the higher 

principal stiffness and serves to obtain the same shaft stiffness in all 

transverse directions. For a shaft carrying a keyway I it is suitable to 

have another keyway 90° apart from the first one in order to avoid the 

dissimilar shaft stiffness instability 

Thrust Bearing 

Newkirk [14] recognized that thrust bearings are a very good way 

of suppressing the conical mode of instability. This was later verified by 

Cundiff [17]. Since a thrust bearing exhibits no radial stiffness or radial 

damping properties, the other shaft dynamical properties of critical speed 

in the later or radial modes will not be affected. The threshold speed is 
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raised by increasing the system dampinf.!. The stabilizing effect of a thrust 

bearinf.! is shown in figure 22. 

Computer Programs for Instability Threshold Prediction 

General purpose computer programs for instability threshold predic-

tion have been written by Lund [18], Giberson [10], Gunter [20], Pan [21], 

and others. A specific study of the effects of damping, seal effects and 

shaft hysteresis on the stability of a sample two-mass rotor in end bearings 

has been made by Rieger and Thomas [22]. 

Consider the two-mass flexible rotor in fluid-film bearings shown in 

figure 23. The disks are rigid and have no rotary or polar inertia. The 

shaft is massless and may be of any profile provided the transverse stiff­

ness, K, is known or may be found. Both bearing forces are identical and 

~ 

Disk Eccentricity GJ I Ud Gas Seal ',': 

Rotor Mass 
1 ! 

Shaft Flexibility 

Fluid-Film 

f--BL 
Kxx Bxx 

Bearing • I K BXY xy 
K B yx yx 

Rigid Foundation 
Kyy B yy r L pi 

Figure 23 Two Mass Flexible Rotor in Fluid-Film Bearings 

linear with rotor displacement and velocity from the equilibrium position 

of the journal in each bearing. The eight-coefficient bearing force 
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representation includes both direct and cross coupled effects, as follows: 

F =K X+K Y+B X+B Y 
x xx xy xx xy 

F =K X+K Y+B X+B Y 
Y yx yy yx yy 

Gas seals are located at both disks. Forces arising from disk eccentricity 

with 'stator clearance are given by: 

F = iGr 
s 

where G is the gas seal coefficient and r is the whirl radius. Structural 

hysteresis effects occur due to the shrink fit of the disk on the shaft, and 

are given by: 

where H is the hysteresis coefficient and ~ is the whirl velocity in rotating 

coordinates. The rotor is axisymmetric and system effects are symmetric 

about mid-span. The equations of motion for either disk, including the 

shaft, seal, and hysteresis effects, are: 

2 
MX, + HX, + K(X, - 8X) + (G + wH)Y, = Maw Cos wt 

MY, + HY, + K(Y, - 8Y) - (G + wH)X, = Maw 2 Sin wt + Mg 

A force balance at either bearing gives: 

K (X, - 8X) == K X + K Y + B X + B Y 
xx xy xx xy 

K (Y, - 8Y) = K X + K Y + B X + B Y 
yx yy yx yy 
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where 

To obtain a solution assume that: 

x = x est o 

s = a + iv 

Substituting in the above expressions and simplifying gives: 

* 

N.F. Rieger 

(Ms+Hs+K)h -(Gs+Hw)h yx xx 
= 0 

where * '\x .. Kxx + tiK + 58 XX 

hXY = KXY + sBXY 

hyx = Kyx + SByx 

* Ayy = K + BK + SByy yy 

To obtain the roots of this determinant a convenient procedure is to 

expand and form the corresponding polynomial in S, vi z: 

" 3 2 A1S6+A2SS+A3S +A"S +AsS +A6S+A 7 =O 

The coefficients A. of this polynomial are complex algebraic expressions. 
I 

A computer program was written to solve the stability polynomial for 

the lowest complex eigenvalue. Values of M, K, G, and H were held con-

stant for given cases. The program increments as explained earlier. Thus 
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corresponding values of the speed-dependent bearing coefficients are 

selected from an input table. Instability occurs when the real part of the 

eigenvalue changes sign from negative to positive. 

Sample Calculation 

The compressor rotor shown in figure 24 can be used to demonstrate 

the use of this procedure. The rotor wei~hs 1000 Ib (M=l. 39 Ib sec 2 lin per 

bearinC)) and operates in two 4.0 diameter by 2.0 in. lon~ plain cylindrical 

bearin'1s of diametral clearance 0.004 in. Oil of viscosity 22 cP at 110 OF 

and 4.84 cP at 200°F is supplied to each bearing at a rate of 1. 2S gal/min 

at operatinC"J speed under 20 Ib /in 2 gage pressure at 120°F. 

Structural 
Hyst.r.s t s 

6 - 40 lb disks 
G.s S •• ls 

4.0011. 

t---------.'O.Otn.--------l 

Figure 24 Compressor Rotor in Bearings with Seat and 
Structural Hysteresis Effects 

Parametric studies of the relative significance of bearing, seal, and 

structural hysteresis effects on the compressor rotor system stability were 

made. The system threshold speed without seals or hysteresis (i .e., bear-

inn instability) was first determined to be 9200 rpm with the rotor whirling 

in its translatory mode. The gas seal coefficient was then introduced and 

increased in value. A decrease in threshold speed was observed. Lastly, 
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the effect of increasing the structural hysteresis was studied, with gas 

seal forces operating. For known threshold values, the value of H was 

added and new threshold speeds were found. The results of these studies 

are shown in figure 25 in which the system threshold speed NT is plotted 
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Figure 25 Variation of Compressor Instability 
Threshold Speed with Gas Seal Force 

and Structural Hysteresis 

aaainst ~as seal coefficient G, with structural hysteresis coefficient H as 

parameter. It is evident that the threshold of instability is depressed with 

increase of gas seal coefficient. The effect of hysteresis is mixed: below 

the system fundamental critical speed (5850 rpm) it raises the threshold 
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speed, and above 5850 rpm it depresses the threshold speed, as antici pated 

from previous experience. Structural hysteresis has a minor effect on 

system instability threshold compared with aas seal effects where the rotor 

system incorporates fluid film bearings. 

An analoa stability study of this compressor rotor system was also 

undertaken. The analog circuit is shown in figure 26. Bearing coefficients 

corresponding to each speed were introduced by hand adjustment of circuit 

!,. 
L " 

~I'CI' 
~----~------~'r'~'----~ 

a.l J," t.,' 
.11 "'~ ,'"' .,. I 

Figure 26 Linear Analog Circuit [22] 

resistors. The gas seal coefficient G and the hysteresis coefficient H were 

held constant for each condition and the corresponding threshold speed was 
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found by observing orbit r1rowth or decay at selected speeds. 

The influence of ~as seals G=l. 50 x 105 Ib in and hysteresis H=200 Ib in 

are shown in figures 27 and 28 below and above the threshold speed. The 

analog orbits show that the tendency towards instability is a steadily devel-

oping trend. Below the threshold speed the rotor takes increasingly longer 

periods of time to establish a stable orbit. Above the threshold, orbit 

growth becomes increasingly more rapid as speed is further increased. 

A comparison of threshold speed results obtained by both the digital 

and analog methods are given in table 1. 

c., N· 9100 'Fo"I • • ~lo'" "'rrshold Speed. 

Ib) N· 9100 rpa. Sllqhtly Abo". Thr.thold Spe~d. 

Figure 27 
Journal Whirl Orbits for G+O and 
H=O, Linear Short Bearings Analysis 

Figure 28 
Journal Whirl Orbits where H=200 and 
N=7000 RPM 
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G 

lb/tn l 105 

0 
0 
0 

l.60-l.65 

2.85-2.90 

1. 85-1.90 
1.20-1.25 

.15- .20 
l.10-l.15 
2.80-2.85 
1.15-1.80 

.90- .95 
l.85-l.90 
2.15-2.80 
1. 50-1.55 
.60- .65 

Table 1 

Conclusions 

CoqIarfson of Analog and Dtgtul Threshold Speed Values 

Malog I Q!llU.l. 

H Threshold Speed G H Thres hold Speed 

lb sec/tn rpa. lb/tn. l 105 lb"Stc/tn rpa. 

0 9100-9200 0 0 9100-9200 
100 8100-8800 0 100 8800-8900 
ZOO 8500-8600 0 ZOO 85OG-86oo 
0 .5000 l.60-l.65 0 5000 
0 6000 2.85-2.90 0 6000 
0 1000 1.85-1. 90 0 1000 
0 8000 1.25-1.30 0 8000 
0 9000 .15- .20 0 9000 

100 5000 l.10-l.15 100 5000 
100 6000 2.85-2.90 100 6000 
100 1000 1.10-1.15 100 1000 

100 8000 .90- .95 100 8000 
200 5000 l.85-l.90 200 5000 
200 6000 2.80-2.85 200 6000 

200 1000 1. SO-1.55 200 1000 

200 8000 .60- .65 200 8000 

Variation of Threshold Speed with Compressor 
System Effects 

167 

Of the two procedures which are known to be effective in the suppres-

sion of instability, i.e., raising the critical speed and increasing the 

negative real part of the whirl exponent, the second procedure is the 

easiest to achieve in practice. This procedure can be instituted most 

efficiently by simultaneously adding external flexibility and damping in such 

a way that the damping properties of the system support are optimi zed. 

The squeeze film damper is an effective solution for many rotor insta-

bility problems. When this device cannot be used, various other solutions 

may be possible, such as using a more stable bearing type, by bearing 

modifications, such as grooving, sli~ht misalignment, small structural 

changes, etc. 
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As a general rule in the stability problem, every change which makes 

the rotor support system undergo additional forcing motion (bearing mis-

alignment, larrler bearing eccentricity, etc.) is a step towards stabili zing 

the rotor by raising the instability threshold speed. 

Table 2 provides a summary listing of various kinds of rotor insta-

bility and methods which have been used effectively to overcome them. 

INSTAOILITY 

Fluid Film 

Hysteretic instability 

OETAILS 

e •• rlng whirl or whip 

c., se'" "hid and 

.teem whid 

Instability uuted by 

shrink fit hysteresis 

Inst.lbility uused by 

rnat.,.I.' hysteresis. 

Dissimll.r shod. 

,Uffneu 

Shaft urrylng an 

un.y,"metrlal 

rotor 

SUPPRESSION PROCEOURE~ 

AdO support cs.fI'Iplng and U •• lbility 

- Ctwnyc bearmg type. Stabl. bearinQI arc 

• Tiling pad (mo., "able) 
• Flo.llng nn9 
• Prcllure d_m bearing 
• A_I.I groovf' 
• Three lobC' 
• Elliptka' (leu st.blcl 

Prenurue the Manng up~r h.lI 

Increase the journ.' operating eccenUicl1y 

- Increase the critiuI bending speed of the rotor 

Decruse the bearing 'englh 

Use I.lbynnth-type nat 

)nere.,e bearing operating eccentriCity 

Improve le.l operJltm9 concentriCity 

Un Imllil length.tight 5hrink fiu 

- Use a rigid rotor construction 

- IncrUIe e.ter~1 damping and IUpport flexibility 

- Use squeele film damper support 

- UH prevIOus design that has been proven efficient 

- Undercut long di.k contKt lurfaces 

- Add lupport dllmping and flexibility 

- Raise ~nding crltiul Ipped 

- UM IqUffu-fIlm support 

- Increa .. ~a"in9 damping 

- Relieve grellter stiffness with circum'erntla' guhes 

- Stiffen SNl'" Rai.e ~nding critiul spHd. 

- Incr .... boring damping 

- Re-establlih clrcu",f.renUal symmetry 'e.g. two 

roton toe apart. J-bladed propeller. etc.) 

Table 2 Causes of Instability and Methods of Suppression 
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CHAPTER 2.7 

HYSTERETIC INSTABILITY 

N.F. Rieger 

~ature of Hysteretic Whirlinq 

Hysteretic whirling is a self-excited instability usually associated 

with built-up rotors in lightly damped bearings, in which the rotor whirl 

amplitude increases with time. It is independent of the state of balance of 

the rotor and it commences at speeds above a certain threshold speed. It 

most frequently arises from rubbing between assemblies of shrink- or press­

fitted rotor components, e.g., compressor wheels on a central shaft. It 

can also arise from internal hysteresis of the shaft material. As many 

modern rotors are complex assemblies of components, the conditions under 

which assembly or material hysteresis may give rise to unstable whirling 

are of great interest (see figure 1). 

Experimental Observations of Hysteretic Whirling 

The first recorded observation of hysteretic instability was made by 

Newkirk [ 1] 1 in 19211 while investigating the cause of a series of bearing 

failures of blast furnace compressors. Newkirk constructed an experimental 

1. N umbers in brackets designate references at the end of this section. 
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rotor test ri9 to simulate a real compressor unit and extensive testinq led 

him to the following conclusions: 

• 

• 

• 

• 

• 

• 

• 

• 

Neither the threshold speed nor the whirl amplitude is affected 

by the state of balance of the rotor. 

The whirling always occurs above the first bending critical speed 

of the rotor, and never below this speed. 

The frequency of whirling is constant, regardless of the rotor 

speed, and equal to the first bendinf) critical speed of the 

system. 

Whirling is encountered only with built-up rotors. 

An increase of the foundation flexibility increases the 

threshold speed at which the whirling commences. 

Distortions or misalignment of the bearings increases the 

whi rl threshold speed. 

Introduction of damping into the foundation increases the 

whirl threshold speed. 

A small disturbance is sometimes required to initiate the whi rl 

motion in a well-balanced rotor. 

Newkirk found that increased foundation flexibility would improve the 

rotor stability, and that no bearing damping was needed to suppress whirl­

ing below the bending critical speed. Further, friction damping in the spring 

mounted bearing was capable of suppressing unstable rotor whirl motion 

above the bending critical speed. 
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Kimball suggested that forces normal to the plane of the deflected 

rotor could be produced by the hysteresis of the material undergoing 

cycles of stress reversal [3]. He postulated that, above the rotor critical 

speed, internal rotor friction would sustain the whirl. Newkirk concluded 

that some type of friction forces could be developed by the rubbing of a 

disk shrunk onto a shaft. 

The presence of material hysteresis in a rotating deflected shaft as 

it undergoes alternating stress cycles of compression and tension is shown 

in figure 2. This action causes the shaft to deflect sideways. By measure-

ment of the shaft vertical inclination angle, Kimball determined that the 

ratio of the internal friction forces to the elastic shaft forces for most 

ferrous and non-ferrous materials was in the order of 2 x 10- 3. The small 

order of magnitude of the friction forces observed by Kimball led Newkirk 

to conclude that the chief cause of the instability in his model was the 

friction created by the shrink fits of the impellers and spaces on the shaft. 

Figure Schematic of an Aircraft Engine Showing 
Complex Rotor Assembly 
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This conclusion was confirmed by an experiment conducted by 

Kimball [4] on a special test rotor with rings on hubs on the shaft. When 

all shrink fits were removed from the rotor no whirl instability would develop, 

whereas, with the rings on the shaft, it became unstable above the first 

bending critical speed. Kimball first demonstrated that with rotors operating 

above their bending critical speed, long clamping fits commonly lead to insta-

bility problems. 

Figure 2 Whirl Orbits of a Balanced Horizontal 
Rotor Below the Threshold Stability [5] 

The explanation given by Kimball for this phenomenon can be demon-

strated using the hysteresis loop shown in figure 3. For the same strain 

there are two different values of stress, corresponding to the upper 

(loading), and to the lower (unloading) branches of the loop. Figure 3(c ) 

shows the cross section of a rotating shaft. We see that during the motion 

of a surface fiber from position A 1 to position A2 , the stress varies from 

tension to compression. Consequently, the upper branch of the loop must 
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A) HYSTERESIS lOOP 

o 

S) DEFLECTED 
SHAFT 

c) SIDE VIEW OF ROTATING 
DEFLECTED SHAFT 
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Figure 3 Whirling of a Rotating Shaft Caused by 
Hysteresis, Kimball [4] 

Figure 4 

y 

Figure 5 

Model U sed by Robertson [5] 
for Hysteretic Deflection of a 
Rotating Shaft 

Model Used by Kimball [4] 

y' 

y 

Figure 6 

Exaggerated Hysteresis Loop [ 5] 
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be used. In the same way, the lower branch of the loop must be used 

during the motion from A2 to A 1. From this, it follows that the hysteresis 

effect may be taken into account by superposing these strains on the 

steady bending strains. This causes additional fiber stresses, which are 

positive below the horizontal diameter A1A2'and negative above A1A2. 

This system of stresses is the same as would be generated by the bending 

of the shaft in the yz plane, in addition to the bending about A 3A4 due to 

rotation. The combined bending stresses thus produce a bending moment 

in a plane which is inclined to the xz plane, i.e., with its neutral axis 

n 1n l' instead of nn in figure 3( c). This additional bending effect is then 

equivalent to a force Q as shown in figure 3(c ), the effect of which is to 

cause the rotor to whirl, under the forces shown in figure 4. 

Robertson [5] later gave an explanation for shaft hysteretic whirling 

which differs somewhat from that of Kimball and Newkirk. In figure 5, the 

center line of the bearings passes through H, and the center of the shaft 

is deflected to 0 by the weight of the rotor. The neutral axis of the 

section is XOX, at right angles to HO; the lower half of the section is 

tension and the upper half in compression. The stresses now consist of 

those which would occur with perfect elasticity, plus the discrepancy 

stresses arising from hysteresis. The former gives an elastic force along 

OH, and the latter a hysteretic force along OZ at right angles to OH. 

Figure 6, which srows an exaggerated hysteresis loop for a particular 

fiber on the shaft, X, Y, XI. yl, shows the point in the cycle correspond­

ing to the passage of the fiber across the axes similarly lettered in figure 5. 

The discrepancy between the loop and the mean elastic line is a 
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tensile stress striving to lengthen the fiber in the part Y X YI. Thus 

the discrepancy stresses are striving to elongate the right hand side of the 

shaft and to shorten the left hand side. They try to bend the shaft to the 

right, but as the weight prevents further movement in that direction, they 

give a hysteretic force acting forwards along OZ, i.e., directly opposite to 

the rotation of the shaft. With a deflection Y, the magnitude of the hyster-

etic force per unit mass of rotor may be written: 

o - y2y h -

where 0 h is the hysteretic force per unit mass of rotor and y is the hyster­

etic coefficient, which is not necessarily a constant. The resultant of this 

force and the direct elastic force must be vertical, as it has to balance the 

weight, therefore, 

«(Lo 4 + y4)ty = g 

2 2 
Tan e = y Iwo 

where Wo is the critical speed, 9 is gravitational acceleration, and e is the 

inclination of the deflection to the vertical. The horizontal deflection of the 

center of the shaft is: 

4 4 2 4 Y sin e = yg/(wo + y ) = (y Iwo ) g 

Since the bearing forces act through H, whereas the weight acts through 0, 

there is a torque opposing the rotation of the shaft whose amount is: 

224 
T = MgY sin e = Mg y Iwo 

where T is the torque opposing the rotation of the shaft, due to hysteresis, 

and M is the mass of the rotor. The work done against this torque 
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is converted into heat by the hysteresis. The amount of hysteresis work 

per cycle is: 

2 2 4 W = 21Tg My Iw o 

A measurement of the horizontal and vertical components of the deflection, 

or of its inclination to the vertical determines y2/w 0 2• 

Even short, highly stressed shrink fits are not entirely devoid of 

problems [5]. Provided the rotor is given a sufficiently large initial dis-

turbance or displacement to initiate relative internal slippage in the fit, 

even small, tight shrink fits may develop whirl instability. 

Robertson, following Kimball [3], made a study of the hysteretic 

transient shaft whirling. In the absence of hysteretic effects, the transient 

whirl decays under the action of friction. When hysteretic effects exist, 

there is an additional force normal to the radius whose amount per unit 

mass has already been written as y2y. Adding this to the friction force 

-2aw t jY, we now have: 

-j (2aw t ± y2)y = -j(2a/w t ± y2/w/)w~Y, (j = ;-:n 

where a is the friction factor, wt is the threshold speed for hysteretic 

driving of the transient whirl, and the factor j denotes "turn 90 degrees 

forward" (positive complex operator). The positive sign with this operator 

applies for shaft speeds below wt ' which is "practically identical" with the 

critical speed wo ' and the negative sign applies above the critical speed. 

If the shaft runs faster than the transient, i.e., where y2 Iw~ 

exceeds 2a/w t' the net force drives the transient rather than retarding 

it. A net driving force speeds up the transient slightly and thereby 

causes the centrifugal force to exceed the elastic force, causing an 
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outward acceleration which soon produces an outward velocity whose 

Coriolis force, combined with the whirl friction, balances the driving force. 

If this continues, the outward velocity may lead to a large shaft whirl 

radius. The ultimate result will depend upon the way in which ex and y2 
, 

change with the radius of th~ transient. When both these terms change at 

the same rate as the whirl radius, their difference retains the same sign. 

If the friction is the greater, the transient will decay and the rotor motion 

will be stable. But if the hysteretic force is the greater, the transient 

will grow and the shaft will become unstable. If they are equal at one 

radius, they will be equal at any radius and the transient whirl radius 

magnitude is then indefinite and intrinsically unstable. 

If ex is small but increases more rapidly than y2, the whirl will grow, 

up to that radius at which they become equal, and will continue at that 

magnitude. But if y2 grows more rapidly than a. the conditions are 

reversed. Below the point at which friction and hysteretic forces are 

equal, friction will be the greater and the whirl wilt decay. But beyond 

that point, the forward hysteretic force will exceed the friction and the 

excess will increase as the whirl grows. Thus the shaft is stable for small 

disturbances, and unstable for large ones. 

Robertson [5] reported that he frequently observed the sustained 

transient, but was never able to control it with certainty. In reference [5] 

he describes a simple method for experimentally producing it. An observa-

tion mark is placed on the rotating disk to follow the whirl orbit. When no 

transient exists, the observation mark traces out a circle, whose radius is 

the vector sum of its own eccentricity and the whirling radius of the disk. 
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In the case of the sustained transient, the circle grows and decays with 

the change of these vectors between the transient and the steady radius 

of the spot. If the mark is then viewed under constant illumination while 

the speed is a little above the critical value, the path of the spot is seen 

as a waxing and waning circle. But when the speed is considerably 

greater, two spirals are seen, a left-handed one for whirl growth and a 

right-handed one for whirl decay. This double spiral has the form of a 

trochoid. 

Robertson [5] finally concluded that a similar effect can be pro­

duced by any friction which opposes a change of the deflection of the 

shaft, such as the friction which exists at the connections of flexible 

couplings, and even in rigid couplings. The friction of this shaft through 

the bearing as it deflects can also lead to hysteretic whirling. 

Practical instability caused by friction is rarely discussed in the 

literature. In particular, there is very little information available on rotor 

behavior in the unstable region. However, in 1964, a translation (from 

the Russian) of Kushul's work [6] on self-induced oscillations of rotors 

became available. Kushul's experiments concerned the motion of some 

high-speed textile spindles which presented instability problems. The 

spindles were composed of a built-up structure of a long wooden spindle 

inserted over a thin steel shaft. With such a continuous shrink fit, 

troubles were encountered above the rotor's first critical speed. Some 

typical rotor orbits obtained by Kushul above the stability threshold are 

shown in figure 7. Unable to monitor rotor motion electronically, he used 

an optical system: a fine needle was attached to the spindle end, and 
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shaft orbit times were obtained by photographing the resulting end motion 

under a microscope. Figure 8 shows a sketch of his device. The orbits 

shown in figure 7 are of importance as they illustrate the conclusions that 

the rotor precession rate is approximately equal to the rotor bending 

critical speed, and also that the precession rate is constant over a large 

speed range. 

[IT] [eJ---] [8 I 
8000 rpm 8500 rpm 12800 rpm 

10 l em [QJ 
13300 rpm 15300 rpm 18200 rpm 

r-a I ~ em 
17400 rpm 21000 rpm 22200 rpm 

Figure 7 Typical Hysteretic Whi rl Orbits, K ushul [6] 

TEXl'ILf SPINDLE NEEDLE 

-6-1_~~ 
Figure 8 

~ LICHT SOURCE 

Experimental Device for Visualization of 
Textile Spindle Motion [6] 

The critical speed of the spindle was determined to be about 4300 rpm. 

The fact that the rotor nonsynchronous precession rate remains constant can 

be easily verified by inspection of the various whirl patterns of figure 7. 

For example, at the speed range of 8000 to 8500 rpm, the rotor orbit forms 
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one stationary internal loop. This indicates that the whirl ratio is one-half, 

that is, the precession speed wp is approximately 4700 rpm. 

At 17,800 rpm, a stationary orbit with two internal loops is formed, 

which indicates a whirl ratio of one-third w = 4300 rpm. Also at 21,000 to 
P 

22,000 rpm, a stationary pattern is formed with four internal loops to 

indicate a one-fifth ratio. Likewise, the rotor nonsynchronous precession 

rate at 27,000 rpm is still approximately 4300 rpm. 

Based on the analysis of various authors and the experimental observa-

tion of Kushul, it is clear that the assumption of W = W = constant has con­
p c 

siderable justification for lightly-damped systems. Some of the major con-

elusions that Kushul states on the rotor stability characteristics are: 

• Self-excited rotor whirling occurs only above the first bending 

critical speed. 

• The whirl frequency remains almost constant at all speeds and 

is close to the first natural frequency of the spindle. In certain 

cases, well above the threshold, the whirl frequency can 

abruptly change from the first to the second order spindle 

natural frequency. 

• The use of an elastic support by itself, without any increase in 

damping force, does not reduce the self-excitation. 

• External damping improves the rotor stability. 

• The most effective means to control the instability consisted of a 

spring-loaded bushing and damping sleeves. No dangerous self 

induced vibrations were obser¥ed with any spindle with this type 

of bushing. 
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Later experiments conducted in 1969 by Gunter [7] and in 1975 by 

Lund [8] using analog computer simulation led to the conclusion that, in the 

absence of external damping, a symmetric flexible foundation will reduce the 

rotor first bending critical speed and also increase the instability threshold 

speed. Both investigators fufly agreed with their predecessors on the fact 

that the stability threshold can be greatly improved by adding external 

non-rotating damping. 

Theory of Hysteretic Whirling 

Consider the single-disk horizontal rotor shown in figure 9 which 

runs at constant speed under the influence of viscous damping, gravity, 

and disk unbalance. The equation of motion for the disk c.g. is: 

2 iwt Mr + Bi- + Kr = Mg + Maw e 

where M is the mass of the disk, B is the velocity damping coefficient of 

the bearings and surroundings, assumed linear and viscous for convenience, 

K is the shaft flexural stiffness, a is the disk eccentricity , and r is the 

whirl radius of the shaft center given by: 

r = x + iy i = .,r-:-r-

where x and yare the Cartesian coordinates of the shaft center at any 

time t. 

Now transform this expression into rotating coordinates using the 

following expression: 

where: 

z;. = ~ + in 
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This yields: 

2 -iw t 2 
MCz:; + 2iw2 - w z:;) + Bc2 + iwz:;) + Kz:; = Mge + Maw 

Internal friction Coulomb damping is also assumed to act at the shaft-

disk interface. This occurs as an inwardly directed force (-P), along the 

Oamping B 

~-~ i 6 unba 1 ance 
Wa 

W = Mg 

~----~--------- y 

It 

Figure 9 Single Mass Unbalanced Rotor 

Figure 10 

Bearing center line 

shaft whirl orbit 

Graphical Representation of Shaft Whirl Orbit 
about Deflected Position 
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rotating radius vector S. This force may now be included in the mechanics 

of the rotor motion by adding it into the previous equation: 

.. 2 . t 2 
M( s + 2iw ~ - w s) + B (s + iw s) + K s - P = Mge -IW + Maw 

The true nature of this force is difficult to determine or specify for 

any particular case. For the present analysis, it is convenient to assume 

that P is a linear function of the rotating radial velocity~. Though the 

results of this assumption describe certain observed rotor phenomena, the 

mechanism is not strictly correct, as Robertson [5] and Tondl [9] have 

observed. On writing P = h~, the equation of motion with viscous and 

coulomb damping becomes: 

.. • 2 • -iwt 2 
M (s + 2iw s - w s) + B (~ + iw s) + K s - h s = Mge + Ma 

2 introducing the quantitites: y = B 1M, 0= hIM, w = K 1M, gives: 
c 

• 2 •. • 2 -iw t 2 s + 2iw s - w S + y( s + IW 1;;) + as + w s = ge + aw 
c 

Transforming back into non-rotating coordinates (X, Y) gives: 

•• 2 2 iw t 
r + yr + o(r - iwr) + Wc r = g + awe 

The complete solution to the above equation consists of a comple-

mentary function (damped transient) and a particular integral of the form: 

iwt r = r + r e g 
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This corresponds to the unbalance term and the gravity deflection term of 

the shaft. 

where 

Solving for the coefficients r e and r g gives: 

r = 
E 

r = 

2 
aw 

2 2 
(We - w ) + iyw 

g 
2 = g w - iow 

C 

2 
R aw 

= 2 2 2 2 2 e: (w -w) +yw 
c 

R 9 = 4 9 2 2 
Wc +0 W 

2( 2 2. ) aw Wc - w - Iyw -iq, 
22222=Re 

(w - £II 1 + y W E 
C 

g(w 2 + iow) 
c =R i'l' e 422 g w +ow 

C 

Tan :p yw 
2 2 

Wc - w 

Tan 'l' ow 
= 2 

W 
C 

These results are illustrated in figure 10. 

Stability of Whirl Motion 

Stability of the rotor is determined by whether the transient term 

grows or decays with time. The general form of the transient is: 

where r 1 and r 2 are constants of integration, and A l' A2 are the roots of 

the characteristic equation, found by substitution of r in the equation of 

motion: 

A2 -iA(Y+o) 2 - w + iow = 0 c 
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hence: 

± ~ 2 _ 1.( y + 0) 2 - i ow) IU c 4 

Writing: w 2 = w 2 - -4' (y + 0) 2 where w is the natural frequency of the o c 0 

damped vibration of the rotor, and observing that usually w 2 » ow we may 
o 

write the radical as: 

J W2 - ;aw 
o 

This gives the following expressions for A, and A2 

A, Wo + tf(y + a - a ~ ) 
0 

A2 1 . ( w = -w + "21 y + a + 0-
0 w 

The complementary function thus has the form: 

r = r, exp{iwo - ~~ + a{l - ~ )) H + r 2 exp{-iwo - t~ + 0(1 + ; ) H. 
o 0 

A study of the indices of this expression shows the conditions under which 

the rotor will be stable. First notice that as long as: 

i.e. w < W (l + 1.) o 0 

both terms in the transient amplitude expression will go to zero with in-

creasing time, or 

1 im r = O. 
t ... 00 
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However, if the inequality does not hold, but 

w > w (1 + 1.) o a 
then 

= lim rZ exp{-~y + a + ~) - iw}t = 0 
Wo 0 

i.e., the first term tends to infinity while the second decays to zero; thus 

11m r = 00 

t .. co 

It follows that, if the inequality 

where 

w<w (1 + 1.) o a 

y = B 1M (Viscous damping factor), and 

a = hIM (hysteretic damping factor) 

is not satisfied, the hysteretic whirl will be unstable. 

This leads to the following conclusions: 

1. The criterion for stability of a rotor with viscous and 
Coulomb damping is the inequality given above, which 
determines the hysteretic whirl threshold speed. 

2. Above the whirl threshold speed, the rotor will whirl at its 
damped natural frequency w with radius increasing with 
time. 0 

3. The threshold of hysteretic whirl is raised in proportion to 
the amount of viscous damping present in the system. 
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Hysteretic Whirling of a Rotor in Flexible Supports 

A more complete study for hysteretic whirl of a simple rotor in a flexi­

ble foundation has been conducted by Gunter [7]. This study considers the 

bearing mass, stiffness and damping of the foundation. A single mass rotor 

on an elastic foundation, shown in figures 11, 12, and 13, was investigated. 

The general equations of rotor motion are obtained by Lagrange's 

method. The only quantity which presented some difficulties is the internal 

damping due to friction for~es. These forces cannot be derived from a 

potential function (otherwise the system would be inherently stable) but can 

be obtained from a dissipation function of the proper form. 

The notations used by Gunter for this analysis are the following: 

A - rotor amplification factor - Wcro/DZ' 
(DIM) 

C1 = foundation damping coeffl·cient. 
Ib-sec/in. 

Cz = rotor internal damping coefficient, 
Ib-sec/ln. 

Dl = foundation damping - Cl/mZ: rad/sec 
DZ a rotor internal damping - CZ!mz: rad/sec 

D - damping ratl0 - DZ/Dl 
D - diss1pation function 

e~ - displacement of rotor mass center fror. 
shaft elastic centerline, in. 

~ - polar moment of inertia 
Kl - isotropic foundation stiffness. lb/in. 
KZ - rotor stiffness, lb/in. 
Kx - foundation stiffness in horizontal di­

rection, lb/ln. 
Ky - foundation stiffness in vertical direc­

tion, lb/in. 
L = Lagranglan - T - V 

ml - foundation mass, lb-secZ/in. 
mz - rotor mass, lb-sec 2/1n. 
qr - generallzed coordinate 

R - flexibility ratio - KZ/'S. or KZ/Kl for 
symmetric support 
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t c time 
T • kinetic energy 
T m rotor torque 

v - potent1al energy 

Xl - support horizontal displacement, in. 
X2 • rotor horizontal displacement relat1v~ 

to the support, in. 
X - rotor absolute horizontal displacemen~ 

xl + x2 
Y - rotor absolute vertical displacement -

Yl + Y2' 1n. 
a - foundation flexibility ratio -Kx/Ky 

(DIM) 

Om - mass ratio - ml/m2' (DIM) 
W - rotor angular velocity, rad/sec 

Ws - rotor stabil1ty threshold, rad/sec 
Wcro - rotor critical speed on rig1d supports 

o/X2 /m2 
Wcr - system critical speed on flexible sup­

ports - W cro JIll + R 
Wcx - rotor cr1t1cal speed 1n 

d1rect16n, rad/sec 
WCy - r~tor cr1t1cal speed 1n 

d1rection, rad/sec 
e - angular rotor coord1nate 
~ - K/m2' equat10n (21) 

the hor1zontal 

the vertical 

p - rotor att1tude angle - tan- l X2/Y2 
~ - rotor precession rate 

P2 - JX22 + \,"22 

Fqr - general1zed force 

N.F. Rieger 

The following assumptions apply to this analysis: 

• The gyroscopic forces are ignored; 

• The characteristics and displacements of each bearing housing 

are identical; 

• The relative shaft bearing displacements are negligible in 

comparison to the absolute rotor and support displacements; 

• There is no acceleration of the rotor (constant velocity); 

• There is no gravitational force included. 
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Figure 11 

Figure 12 

., 
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bMring 

.1. 
Single Mass Rotor with Massive Bearings [7] 

y 

L, 

Front View of Bearing Showing the Vertical 
and Horizontal Coefficients [7] 
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__ . ___ '5_ 

Figure 13 Geometry of Rotor Whirl Motion [7] 
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With these assumptions, the system will be fully described by four 

coupled second order equations of motion. We have for the position vectors: 

bearing mass: 

+ 
Vector OM 1 = Pl = 

+ + 
Xl nx + Y 1 ny 

rotor mass: 

Replacing wt by 0 gives five degrees of freedom to the system and 

hence five equations of motion are required to completely describe the system. 

This gives for the velocities: 

bearing mass: 

+ + 
= Xl nx + Y 1 ny 

rotor mass: 

Therefore, the kinetic energy is given by: 

and the potential energy is: 

v - ! [K x2 + K y2] 1 K [2 2J 
2 x 1 y 1 +"2 2 X2 + Y2 
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The external damping is given by the dissipation function: 

The dissipation function for internal damping is: 

Applying Lagrange's equation: 

where L = T- V, yields the following five generalized equations of motion: 

I : 
1 

ID 

-
1 

1 

X + IDZ 1 

y + -z 1 

[\ + Xz 
.2] . - e e .. in e + e (9) C05 9 + C X + Ie Xl - 0 

I' I' 1 1 :so 

[\ + Y - . z ] . + e e coa 9 _ e (9) a1n 9 + C Y + Ie Y - 0 
Z I' I' 1 1 7 1 

I . z· IDZ [x1 '+ Xz - e e a1n e • Z ] [. - °11 (9) cos 9 + Cz Xz + WY]+ICX-O Z Z Z 

y • 
Z· 

9: 

I' 

c.l X ) + Ie Yz - 0 
Z Z 

By neglecting the acceleration of the rotor, these equations can be reduced 

to four equations: 

( 1 + &ml 
? 2 

",.here 6 In = m 1 X + X .. D X + w X - e ILl cos wt 
1 2 1 1 x 1 ~ m 2 

w 2 kx 

+ 15m) + Y 2 2 x m 2 
( 1 'i + D Y + w \ - e W 51n wt 

1 2 1 1 Y I' 
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2 2 k 
X + X + D X + D W Y2 + "'2 X2 - e W cos wt 2 .J 1 2 2 2 2 u w 

y m2 

2 2 
2 k2 

w 2 c w ero Y1 + Y2 + D2 Y - D lOX + w Y - e W sln wt m 2 
2 2 2 2 2 u 

If the rotor total damping forces are considered small in comparison 

to the shaft elastic restoring forces, and if the bearing housing mass is 

neglected, then one of the displacement variables may be eliminated to 

obtain a single fourth order equation in either X or Y to represent the 

system. 

Eliminating y yields: 

·x· + [c + C ] x· + [IJ/ + W 2 + C C ] X + 
x y ex ey x y 

where: 

and: 

( 
I 

'" 

c - i1 + 
x x 

C - I! + 
Y y 

v 
X 

v 
Y 

2 
+w 

ey 
C X+ W W +WI!I! X::: 0 ] . [2 2 2 ] 

x ex ey x y 

natural system resonance frequency for the X direction 

\K: 'x - Wor.JR: , 
w = natural system resonance frequency for the Y direction cy 

K K 
2 Y 

(K + K ) 
2 Y F. W --

ero 1 + R 

Wcro = rotor natural resonance frequency on rigid supports. 
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Applying the Routh-Hurwitz stability criterion for 2N = II) the rotor 

threshold stability is obtained after some algebraic manipulations as follows: 

where: 

w 
s 

.(.0 ... /F+F2 ero V 1 

Following this investigation, a digital computer program was devel-

oped to calculate the threshold of stability by the general Routh procedure 

outlined previously. Since the coefficients of the characteristic equation are 

speed dependent, an iterative approach was employed to obtain the 



196 N.F. Rieger 

Gunter used the results of his investigation to draw some charts 

corresponding to various cases of rotor support properties. Figures 16 

and 17 represent the stability characteristics of a rotor on a symmetric 

foundation. The use of this chart is illustrated by an example. The rotor 

characteristics are the following: 

m2 = 0.25 Ib/sec2 lin. (96.6 lb. rotor) 

k2 = shaft stiffness = 250,000 Ib/in 

Kl = support stiffness = 250,000 Ib/in 

R = 
Dl 

D 1=D2 = 200 rad Isec; D = D2 = 1 

W = cro k2/m 2 = 1000 rad/sec - rotor natural frequency 
(considered on rigid supports) 

Wcr = 706 rad/sec = system natural frequency 

A = critical speed amplification factor = W ID2 = 5 cro 

The rotor stability threshold speed on rigid supports is 1000 rad/sec. 

Figure 14 shows that for D = 1 and R = 1; the stability threshold is raised 

to 1414 rad/sec. If the support damping Dl were zero, the stability 

threshold would be thereby reduced. 

For unsymmetric bearing support, figure 15 from [7] shows the 

stability threshold for stiffness values of R = 0.1, 1.0, and 10.0 with zero 

foundation damping. Examination of the stability curve for R = 10 shows 

the influence of small changes in D on stability. At low values of R, the 

vertical foundation stiffness is much stiffer than that of the rotor. Very 

little increase in the stability threshold speed is obtained by varying the 

hori zontal foundation stiffness. 
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threshold speed. In the computer program. F 1 is determined by the dif-

ference between the Routh coefficients D22 and E2. Figure 14 gives plots 

of these two functions for various values of external damping and over a 

range of rotor speeds . 
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Figure 16 Effect of Unsymmetric Bearing Support 
Flexibility on Rotor Whirl Threshold 
Speed - Zero Foundation Damping [7J 

Figure 17 represents the rotor stability characteristics for R 1, 

5 for various values of support damping. 

Figure 17 
on the 

t. 

i 
! .4~--~+~----~--+--r~ 
~ 
o . •. I~----t::=::= 

Effect of Unsymmetric Bearing Support Flexibility 
Rotor Whirl Threshold Speed for R=1. 0 and A=S.O 

General System [7J 
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To more clearly illustrate the rotor stability characteristics in the 

absence of foundation damping, a three-dimensional stability model was 

developed by Gunter [7]. This is shown in figure 18. 

Figure 18 Topographical Model of Rotor Stability 
Characteristics with Zero Foundation Damping [71 

It clearly shows that reduction of horizontal bearing flexibility and 

increase in foundation damping produce a rapid rise in the stability 

threshold. This is illustrated by an example: 

The characteristics of the system are the following -

0.25 Ib-sec2/in (96.6 Ib rotor) 

m1 0 Dl = D = 200 rad /sec 2 

K2 = K = 250,000 Iblin w = 577 rad/sec 
y cx 

K 125,000 = 707 rad /sec w x cy 

This example is identical to the previous one, except the support 

stiffness in the horizontal direction has been reduced to one-half of the 



200 N.F. Rieger 

previous case. This increases the rotor stability threshold from 1414 to 

over 3200 rad/sec. 

Figure 19 shows the variation of rotor stability for a range of 

values of internal damping, in a system with no external damping. It 

shows that large increases in rotor stability are possible by tne mtro-

duction of bearing asymmetry. It further shows the important conclusion 

that the larger the internal friction of the rotor, the less effective the 

bearing asymmetry on improving the stability. These results were later 

verified by Rieger and Thomas [10] in an analog computer study of the 

influence of hysteresis, viscous damping and seal effects on rotor stability 

threshold. 

IOO'r----:----.-r-...,;--.... --'I'1 
•. O'I---=-;..=-:;--;--t----t 1----+---t--t-;-1 

." 
i 
l •. Dt---j---t----"I:t-'rt- 'I--+;==-;:..!'~.~<+-"'" 

:: 
it 
... "OTOft CRITICAl. 51'[[0 = 10 -- --'~TuPiib" 
~ 0.1 .... , 

o -w« c: 0.5 

: 
~o .• .,/" 

0: 

I? 
~ 0.2 

.·r 

Figure 19 Effect of Unsymmetric Bearing Support 
on the Rotor Whirl Threshold 

Speed for Various Values of Internal Friction -
Zero Foundation Damping [7] 
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Conclusions 

Internal friction between the press- or shrink-fitted parts of a 

built-up rotor, and internal hysteresis of the material, are the two main 

causes of hysteretic instability. I nternal rotor damping tends to cause 

unstable, nonsynchronous precession above the rotor bending critical 

speed where no external damping acts on the system. The hysteresis 

whirl frequency is approximately equal to the rotor bending critical speed. 

This frequency remains constant over a wide speed range. 

One important aspect of this phenomenon is the influence of founda­

tion flexibility and damping on the instability threshold speed. A sym­

metric flexible foundation will reduce the rotor critical speed, and will 

also reduce the whirl threshold in the absence of external damping. If 

external damping is added, the stability threshold can be greatly in­

creased. To introduce foundation damping, it is necessary to permit some 

foundation motion. This lowers the system critical speed, and hence the 

whirl threshold speed. However, the threshold speed is increased signif­

icantly through the introduction of foundation damping. Of these two 

opposed effects, the influence of foundation damping is more significant 

than the foundation stiffness decrease. 
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CHAPTER 2.8 

FLUID INSTABILITY 

N.F. Rieger 

Nature of Fluid Film Instability 

Fluid-film instability may occur in high speed rotating machinery 

whose rotor-bearing system includes fluid-film journal bearings. This in­

stability is independent of rotor unbalance. It occurs as a self-excited 

whirl motion above a certain threshold speed, and is induced by the action of 

hydrodynamic forces within the journal bearings. The rotor journals then 

whirl in a circular or elliptical orbit within the bearing clearance, about the 

steady-state equilibrium position. The speed beyond which the shaft be­

~omes unstable and the whirl orbit begins to increase in diameter with time 

is defined as the threshold speed. Fluid-film instability is strongly in­

fluenced by the type of bearings which support the rotor, and by the relative 

flexibility of the rotor itself. 

Types of Fluid Film Instability 

Althou9h Newkirk and Lewis [1), Pinkus [2], Hori [3), Tondl [4), 

Sternlicht [5], and Smith [6] have all classified unstable whirling of rotor-

1. Numbers in brackets designate references at end of the section. 
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bearing systems in various ways, it can be concluded that there are two 

basic types of unstable rotor whi rl : 

• Subharmonic whirling (half-frequency, fractional-frequency, 

low-speed whirl, light-load instability) 

• Resonant whipping. 

It should be noted that there is general agreement that light-load 

instability and fractional-frequency whirl are of the same general nature 

as half-frequency whirl. In all these cases the whirl is usually bounded 

and its frequency may vary from slightly less than half running speed to 

one-thi rd of runn ing speed. 

In resonant whipping the threshold speed occurs at around twice 

the bending critical speed of the rotor system. The whirl frequency is 

typically the lowest bending critical speed of the system. 

The first class of whirling has been observed mostly with rigid rotors 

in plain fluid-film bearings, while resonant whipping--a violent, dynamic 

whirling of the rotor in its bearings--is more likely to occur with flexible 

rotors in plain, fluid-film bearings. 

Gas seals have also been known to contribute to instability in rotor 

systems. They tend to further destabilize the rotor in its bearinfls. The 

same classification of whirling stated above still applies, and the same 

threshold speed and whirl frequency properties apply. 

Experimental Observations of Fluid-Film Whirl 

Oil whip was first identified in 1924 by Newkirk [71 who first made an 

experimental study of this problem. A parametric study of both rigid rotor 
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instability and flexible rotor instability was later conducted by Newkirk 

and Lewis [1]. The following properties of unstable motion were observed: 

• Whirling occurred at a frequency close to half the running 

frequency (usually below). It was sharply resonant in a narrow 

speed range and built up only when the natural frequency of the 

system (critical speed) was close to half the runnin~ speed. This 

instability could occur for any running speed over twice the first 

critical speed of the rotor . 

• The second type of disturbance (resonant whipping) was 

also observed at speeds above twice the first critical speed of the 

rotor system. This disturbance was more severe, and it built up with 

a frequency equal to the first critical frequency of the rotor. It 

appeared only for speeds above twice the first critical speed. The 

main characteristic of this disturbance was that,once started, it 

persisted at all higher speeds. (These unstable whirl motions could 

be of a large amplitude and consequently could be very harmful if 

allowed to persi st.l Whirling was independent of the state of balance 

of the rotor, and the threshold speed was not influenced by external 

disturbances such as shocks. 

These tests (on three rotors and five types of bearings) were run 

with oils of various viscosities to study the conditions associated with the 

range for stable operation, usinr- cylindrical bearings at speeds above 

twice the lowest critical speed of the system. It was concluded that short 

bearinfls, rather than large clearance ratios and moderate unit bearing 
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loads, tend to favor a range of stable operation. In certain instances, this 

stable range may extend up to more than five times the lowest critical 

speed. Slight bearing misalignment can also cause a significant increase 

in the threshold speed. In a subsequent paper, Newkirk [8] reviewed 

results obtained earlier with a flexible rotor whose lowest critical speed 

was 1210 rpm (see figure 1). Within the speed range 2300-5000 rpm, the 

rotor whirled with a frequency around 1250 rpm (see figure 2). The 

severity of the whirl increased with increasing speed. This result was 

'0 iJ_tJ -
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Rotor Model Used 
by Newkirk (8) 
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Figure 2 

F req uency Plot of 
Rotor Model [8] 

, 

compared with those obtained usin~ a very stiff rotor for which there was 

no discernible (bending) critical speed up to 30,000 rpm. This shaft 

whirled at low speeds with a frequency slightly less than one-half the 

running speed. But the stiff rotor whirl died out at higher speeds, which 

varied from 7000 to 18,000 rev /min. (Low viscosity oil gave the higher 

limit.) Newkirk concluded that rotor bending flexibility was the key factor 

in explaining why the performance of these two machines was so different. 

A more extensive investiqation was carried out in 1956 by Pinkus [2] 
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on two rotors having relatively light bearing loads (23.4 and 8Ib/in 2, 

respectively) and reasonably high critical speeds (4000 and 6100 rev /min, 

respectively). These two rotors are shown in figure 3. The objective of 

this investigation was to compare the relative stability of several bearing 

types. Plain cylindrical, axial groov'e, elliptical, IIpressure-dam,1I three 

lobe, tilting pad, and hydraulically loaded bearings were studied. 

Generally, the testing procedure was to increase shaft speed while 

recording data on: 

• Inlet and outlet oil temperature 

• Frequency of shaft vibration 

• Frequency and amplitude of vibration 

• Inlet oil pressure 

Pinkus observed that cylindrical bearings were the least stable and 

hydraulically loaded hearings the most stable types, He also noted that, 

with sufficiently high applied hydraulic pressure, all whipping could be 

,-
< 
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Dimensions of Test Shafts [2] 
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suppressed. Amplitude vs. speed results obtained in this investigation 

are shown in figure 4. With the more flexible shaft, the initial amplitude 



208 N.F. Rieger 

peak corresponds to the rotor bendin!1 critical speed. Resonant whippin!1 

sets in at approximately 1. 6 times the system bending critical speed. It 

persists with a whirl frequency equal to this critical speed, and may tend 

to disappear around 3.5 times this critical speed. The large amplitude 

build-up in the same zone is the second system bending critical speed. The 

stiffer shaft shows an unbalance whirl peak followed by a steady build-up 

to full whipping amplitude at around three times the system bending 

critical speed with no tendency for the whirl to diminish, in this case, 

up to four times the bending critical speed. In both instances the shaft 

resonant whipping frequency was the system bending critical speed, as 

shown in figures 4 and 5. 
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In 1959, Hori [3] made an independent investigation of rotor system 

instability, including a theoretical analysis and some experimental studies. 

Ile examined the influence of different variables on the resonant whipping, 

operating speed, bearing load, oi I vi scosity , and of design variables such as 

rotor dimensions, journal eccentricity, flexibility of the rotor, bearing 

misalignment and shape. He, too, reached the conclusion that it was pos­

sible to stabilize a rotor by increasinfl the eccentricity of the journal 

within the bearing clearance; by using a shorter bearing; and by using a 

less viscous lubricant. He also reported that it was possible to decrease 

the amplitude of the whipping motion by making the oil force larger, by 

usin~ a longer bearing, and by usin'1 a more viscous lubricant. This 

is the opposite of the preceding statement, but the difference can be 

explained by the increased squeeze-fi 1m action of the bearing, once the 

violent whipping motion is established. These conclusions were drawn 

for rotors operating at speeds considerably higher than twice the first 

bending critical speed. 

An excellent discussion of most important test findings was given by 

Tondl in several publications between 1961 and 1968, references [4],[9], 

and [10), and in his book [11]. Tondl conducted a comprehensive test 

program in which he examined the influence of many bearing types on the 

stability of single--disk rotors. Tondl's experimental rig is shown in 

fiflure 6, and the types of bearinfls tested by him are presented in table 1. 

Tondl summari zed by concludinf'J that: to avoid unstable whirling, 

cylindrical bearings cannot be used at rotor speeds higher than twice the 

fi rst bending critical speed of the system; elliptical bearings exhibited 
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qreater resistance against the initiation of self-excited vibrations than 

cylindrical bearin~s; the threshold speed and the amplitude of whirling 

became higher where the ratio of horizontal and vertical clearances was 

greater. He recommended the use of elliptical bearings for machines 

whose operational speed does not exceed three times the first critical speed 

of the system. Higher whirl threshold speeds were obtained with flexible 

element bearings. Tondl described several cases of complete suppression 

of self-excited vibrations within the test speed range of up to eight times 

the first bending critical speed of the rotor. His results (amplitude 

versus frequency) for the various bearing types are shown in figures 7, 

8, 9, and 10. Tondl also found that in addition to the lower stability 

limit (threshold speed), there is also an upper limit of the speed interval 

in which the self-excited vibrations were initiated. He observed both 

1 

3 

[1I,pI,,,, 

W.1h/ltl,blr 

tltlMnts 

6 

1 Sf btiU'wlf 

wlltll,.,bk , tlttrMn/, 

Table 1 

0 

1~ -20 

0 
16-20 

Types and Principal Dimensions of 
Bearings Tested [11] 
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linear and non-linear unstable whirlinll. Under non-linear whirling 

conditions the onset speed appeared to be affected to some degree by the 

lack of refinement in the balancing of the rotor. This leads to bounded 

instability amplitudes. Observations were made that, after having reached 

a peak shortly above the threshold speed, the whirl amplitude actually 

diminished with further increase in rotor speed, e.g., references (2) and 

(9). Due to the non-linear motion associated with the oil film at large 

amplitudes, such rotors have been operated up to several times their 

threshold speed. Concerning the effect of oil viscosity on threshold speed, 

Tondl concluded that both low and high viscosity oils can be advantageous, 

dependin9 on the type of bearing used and the operating conditions. The 

best result, i.e., the most stable operation, was obtained with the loose 

flexible element bearing (fillure 11), for which instability was observed 

only occasionally. 

L =-- VL~,~ >------,ir.-' -t-f ----1Df----+, ~ ,.! 
I "_oo __ --'-I~. 000 J --

JU 

Figure 6 Experimental Ri9 Used by Tondl (9) 
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Most of the recent experiments on rotor stability have been performed 

in connection with the validation of computer pro~rams for stability 

analysis. In these experiments separate parameters which influence the 

onset of unstable whirling have been examined. Several studies have also 

investigated the influence of non linearity of the fluid-film on threshold 

and whirl radius. One such experimental study was made by Lund and 

Tonnesen [12]. Experiments were conducted on two rotor systems having 

the followinq properties: 

Rotor Rotor 2 

Weight 40 kg 187.5 kg 

Length 1040 mm 1190 mm 

Bearing span 880 mm 880 mm 

Shaft diameter 80 mm 80 mm 

Journal diameter 62.7 mm 62.7 mm 

Rotor 2 is shown in figure 12. Two types of bearings and supports were 

tested, (a) rigid bearings with axial grooves, and (b) cylindrical bearings 

mounted on a flexible support with a squeeze film damper. These rotor 

supports are shown in figures 13, 14, and 15. 
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Figure 13 

Cross Section View of Bearing Ar­
rangement with Rigid Support [ 12) 
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Figure 14 

Cross Section View of Bearing 
Arrangement with Danped Flexible 
Support (12) 

Figure 15 

View of Flexible Support Structure for Journal 
Bearing with Squeeze Film Damper (12) 
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Lund and Tonnesen calculated stability threshold and whirl frequency 

ratio by a computer program and verified the predicted results experimen­

tally with the two rotors described above. For the heavier rotor, figure 13, 

the stability threshold in rigid supports was found to be 12600 rpm. Use 

of a flexible foundation with a squeeze film damper enabled this same rotor 

to be operated at its maximum speed, 20,000 rpm without any indication of 

instability. 

Lund and Tonnesen [12] obtained the following conclusions from 

their test program: 

• 

• 

• 

The experiments confirmed the general validity of using an 

analytical model to predict the threshold speed and whirl 

frequency of a rotor-bearing system. The linear model predicted 

instability threshold in good agreement with the experimental 

findings. Discrepancies can more readily be ascribed to causes 

other than deficiencies in the analytical model. 

Unbalance vibrations were found to initiate self-excited whirl, 

with the result that the instability threshold speed is lowered. 

Unstable whirling was itself found to excite a spectrum of 

frequencies in the rotor system, but the whirl orbit is a station­

ary limit cycle, associated with a single whirl frequency. If a 

large limit cycle amplitude can be accepted, it has been shown 

to be feasible to operate the test rotors past the onset of 

instability. In practice, however, the threshold speed should 

be considered the maximum acceptable speed. 



Fluid Instability 217 

• The addition of flexibility and viscous damping to the founda-

tion is the crucial point in the suppression of instability for a 

rotor bearin~ system. 

Theoretical Investigations 

About the same time that oil whip was identified by Newkirk in 1924 

[7] and [13], Stodola [14] undertook a theoretical investigation of the 

influence of the journal bearings on the critical speeds of a rotor. I n the 

course of their investigation. he and Hummel [15] arrived at the conclusion 

that the fluid-film forces in a bearing may induce rotor instability in cases 

where the journal eccentricity in the bearing falls below 65 per cent of the 

radial clearance. 

Stodola's analysis is based on a linearization of the fluid-film forces 

which allows the stability of the equilibrium position to be calculated. 

This linearization procedure has subsequently been greatly developed. 

Examples of such calculations appear later in this chapter. To illustrate, 

assume the journal to have a mass M and let the journal center position be 

defined by Cartesian coordinates (X, Y). The fluid-film force components 

Fx and F y' depend on the instantaneous position and velocity of the journal 

center such that the linearized equations of motion become: 

MX Fx(x' 'Y, X, 'Y) a Fx X a Fx ~ + aFx y+ ~ Y (1) = = -- + ---r--

aX aX a'Y aY 

.. . 
~x+~~ + ~ 'Y + a~y y MY = Fy(X, Y, X, Y) = ( 2) 
ax ax av a Y 

where the partial derivatives are evaluated at the equilibrium position 
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- -
X = 0, Y = 0, dX /dt = 0, dY /dt= 0. There are two simultaneous, second-

order ordinary differential equations with constant coefficients which are 

readily tested for stability once the eight bearing coefficients are known. 

Although Stodola's method is correct and simple, it presents the 

problem of obtaining accurate values for the bearing coefficients. Before 

1950, the only available solution of Reynolds ' equation was Sommerfeld's 

solution [16], or modifications thereof, for the infinitely long 360-degree 

journal bearing. Thus, Stodola was forced to neglect the four damping 

coefficients and to arrive at the values for the four spring coefficients from 

an estimate of the functional relationship between the statically imposed 

bearing load and the journal center position. 

The first attempt to investigate the motion of a rigid journal within 

a bearing using hydrodynamic theory was made by Harrison [17], who 

derived expressions for the radial and tangential components of the f1uid-

film forces due to the journal displacement. These expressions are based 

on Reynolds ' assumptions and apply to an infinitely long, full (no cavita-

tion) bearing using an incompressible lubricant. 

Robertson [18] reconsidered Harrison's analysis and showed the 

dependence of radial force effects on the tangential components of surface 

velocity. In his analysis, he considered the damping coefficients 

neglected by Stodola, but i~nored the subambient pressures in the fluid 

film. This led to the incorrect conclusion that the journals are inherently 

unstable, and will whirl with a frequency equal to one-mlf the speed of 

rotation at all rotor speeds. This finding is only correct for a flooded 

vertical bearing. 
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Poritsky [19] showed that the inclusion of a radial force component 

in the equations of motion for a ri~id journal predicts stability at speeds 

below the rotor first critical speed. It also predicts that, at speeds above 

twice the first critical speed, the rotor will become unstable and whirl at the 

rotor critical frequency. These predictions agreed with observed 

performance and led to the well-known stability criterion: 

2 1 1 G -Mw K + K 1 < 4 
r 2.J 

( 3) 

where K and K are the rotor stiffness and bearing support stiffness r s 

respectively, M is the mass of the rotor at the journal, and w is the rota-

tional speed in rad Isec. Poritsky's analysis neglected the influence of 

fluid-film dampin!1, and no attempt was made to determine the value of the 

fluid film stiffnesses, except to postulate that these would be linear with 

displacement for small amplitude motions. Later investigations into the 

elastic and dampin~ properties of the cavitated fluid-film [20], [21], 

verified the existence of the radial force component, and also provided 

values for four-spring and dampin!1 coefficients. When damping is included, 

the predicted whirl frequency is less than 0.5 w. This afjrees with 

practical experience. 

Flooded vertical bearings were investigated by Boecker and 

Sternlicht [20], who found that plain bearings were inherently unstable at 

all speeds, whereas !1rooved bearings had a small stability margin. Bowman, 

Collingwood, and Midgley [22] also studied the performance of flooded 

bearings under laboratory conditions. 

To test the linearized equations for stability, most authors have used 

Routh's stability criterion Inclusion of the flexibility of 

the rotor in the equations of motion leads to a characteristic equation of 
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si xth order. The problem, however, is easi Iy reduced to one of fourth 

order and a solution can be obtained directly in closed form in terms of the 

eight bearing coefficients, as shown in references (23) and (24). This 

method makes it easy to recognize that the contribution of rotor flexibility 

to the oil whip problem is to lower the instability threshold speed, and not 

to influence the basic character of the onset of instability. This was first 

shown in reference! 251. 

The interest in the problem of oil whip increased markedly after 

World War II, beginning with Haf}g [26) in 1946, and has been growinfl 

since that time, primarily because of the trend towards high-speed machinery 

and the use of low kinematic viscosity lubricants. A considerable amount of 

additional work, both experimental and analytical, has been devoted to 

determining the eight Taylor coefficients (the spring and damping coeffi­

cients) for a wide variety of bearin!"] types [21], [27], [28], primarily to 

determine the bearing's influence on the critical speeds of the rotor. This 

work, however, has made it feasible to broaden the scope of the oil whip 

investigation to cover other and more practical bearing types than the 

plain cylindrical bearings. Hagg (29) evaluated the damping capacity of a 

tilting-pad bearing, and later gave curves for spring and damping constants 

for 120 degree ::>artial-arc bearings, together with a simple stability chart. 

Later work by Hag9 and Sankey (30), (31) gave more complete data 

on spring and damping constants for partial-arc and tilting-pad bearings 

for sMall-am~litudewhirl, determined experimentally. At both low and high 

Sommerfeld numbers these curves are in error, as in these zones they had 

been obtained by extrapolation. Accurate values for the cylindrical bearinf} 
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have been obtained [21] for the 150 de!1ree partial bearinq [23], and for 

the tilting-pad bearinq [32]. Each of these analyses was for incompres-

sible lubricants, but the results apply for compressible lubricants at 

low 1\ < 1.0 compressibility numbers. dagg and Warner [25) further 

examined the stability threshold speed, usinl) an analog computer to 

study the stability limit. This work gave good qualitative correlation with 

both test results, and with data obtained from an industrial turbine set. 

Typical oscillograms obtained are shown in figure 16. The upper curve 

shows a well developed whi rl ,and the lower curve shows transition from 

whirl to stable running, with decrease in speed. 

Badgley and Booker [33] made a theoretical study of the riC'Jid body 

dynamics of rotors supported in plain cylindrical, cavitated, fluid-film 

journal bearings. Expressions for journal force due to the fluid film are 

developed using the short bearing (Ocvirk), the long bearing (Sommerfeld), 

and Warner's finite length bearing approximate solution to the Reynolds 

equation. The nomenclature used by Badqley and Booker in reference [33] 

is: 

c = bearing radial clearance p = local fluid film pressure' 

D = bearing diameter t = time 

L = bearing length T = dimensionless time (radians) 

F<P, FE = fluid film force components 
= eccentricity ratio 

= acceleration of gravity <P = journal center attitude angle 
g 

0 = fluid film orientation angle 
jim = integral notation 

\l = local fluid film velocity n 
= equal to (g!c) i M = rotor mass per journal wg 

w = rotor weight per journal wj = journal angular velocity 

Forces acting on the journal e.g. from the fluid film are shown in figure 17. 
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Figure 16 Whirl Oscillogram Showing (a) Well-developed Whirl 
and (b) Transition from Whirl to Stable Running 

Figure 17 

with Decreasing Speed [25]. 

Geometry of Dynamically Loaded 
Journal Bearing [33]. 

With the assumption that only plane journal motion occurs. this 

motion (and thus that of the rigid rotor) may be described by two polar 
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equilibrium equations. In polar coordinates, with T = w .t 
J 

The film-force components may be obtained from the expressions: 

F' - f 7' CO& 8dA 
.4: 

which yields for the various configurations: 

Shart-B_,ing (Ocvi,k) Appraximcman 

( F' ) [ "'-/IDL J [LJ. [Col J' 
",,,.lIC • - -4 2w'(C/R). D ~ 

[ dt \I (dt!> 1)"",] X - J 1 + ( - - - .IJ 
dT dT 2 

lang-Bearing (Sammerfeld) Appraximatian 
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( 4) 

( 5) 

(6) 

(7) 

( 8) 

( 9) 

( F" ) [ "',JJDL J [W'J' [dt.J'?1 .t;:) 
",,'MC L - - 6 2W(C/R)' ~ dT ( I + , ( 2t ) (d<P 1) II II ] + 2 + (' dT - 2 (J 1 + JJ) (10) 

( F-) 6[ "',JJDL J[W'J'[dt II II (2t )(dtl> 1) 2'1] (11) 
fW/WC L -: - ~ 2W(C/R)' ~ dT (J1 + J,) + 2 + (' dT - 2 (J?, + JJ ) 
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Finite Length Bearing (Warner) Approximation 

-- - -- .I1 ( F') (F') ... ,'ltrc, ... ,'.\lC L 

( 12) 

( 13) 

where J ,- - d8 i ft .ia' (J cas" (J 

• I, (1 + f ClO8 8)' 

(1/J),(15) 

are ft.rctials of 9 l' 9 2 and E 

The quantities d 2E /dT2 and d 2cp /dT2 may be evaluated using the 

equations /Jand 5 for given values of E, cp, dEldT and dCP/dT, If the latter 

four quantities are specified initially, the resulting initial value problem may 

be solved by standard numerical "marching" techniques. In this investiga-

tion, solutions to the equations of motion were obtained by fourth order 

Runge-Kutta extrapolation techniques for a wide range of combinations of 

the £ and w./ w parameters. Initial displacements of the journal from its 
o J 9 

equilibrium position were simulated by specifying starting values of E larger 

than the value of Eo with cP set equal to CPo' Stability is determined 

visually and the solution is represented as a stable point on the E versus o 

w./u) parameter plane, Figure 18 shows the results of several "experi-
J 9 

mental" simulations, The fact that these points may be separated by a 

single line indicates that the direction of the initial displacement does not 
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Instability Threshold Curves -
Short Bearing Simulation after 
Various Initial Disturbances [33] 
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sensibly affect stability. The stability boundary is drawn through points 

estimated to represent neutral stability. Figure 19 shows a comparison of 

three sets of initial conditions investigated using the short bearing 

approximation. Solutions for the long and finite length bearing approxima­

tions are shown in figure 20. 

Badgley and Booker concluded that the long-bearing solution appeared 

to be most conservative (it predicts the onset of instability at lower angular 

velocity ratios than the other solutions) for static eccentricity ratios 

between 0 and O. 5,while the finite-bearing solution, with bearing length to 

diameter ratio LID equal to 1, appeared most conservative at higher static 

eccentricity ratios. Variations in LID between 0.5 and 7.0 did not affect 

journal path shapes appreciably. Variations in initial journal center velocity 

were found to be important, at least with the short-bearing solution; large 

initial velocities were observed to produce instability for certain parameter 

combinations which are stable under small initial positions or small velocity 

disturbances. In all cases investigated, instability was not observed above 

static eccentricity ratios of 0.83. 

In 1975 Myrick [34] developed an analytical method for the simulation 

of the transient and steady state response of flexible rotors supported by 

"realistic" incompressible film hydrodynamic journal bearings. His method 

combines realistic fluid-film bearin~s and nonlinear flexible-rotor dynamics. 

In this method the coupled nonlinear ordinary differential equation of 

motion (which describes a flexible rotor similar to that of figure 19) is 

formulated as an initial-value problem, and is solved by direct inte~ration 

on a digital computer with the hydrodynamic bearing forces and moments 
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obtained for each tilT.e increment fro:n a finite-difference formulation of 

the general Reynolds equation. This "realistic" bearing model includes: 

• Finite-length hydrodynamic bearings 

• 

• 

• 

• 

Wedge and squeeze films 

Fluid-film cavitation 

Oil inlet geometry and pressure 

Eccentricity and tilt (gyroscopics) of the journal. 
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With the numerical extrapolation approach, the transient and steady­

state response of the rotor may be simulated, and the stability of the 

nonlinear rotor-bearin~ system can be determined throu~h inspection of the 

generated rotor trajectories. The results given in ref. [34] were obtained 

using this approach; the response of a symmetric flexible rotor system for 

speeds up to the threshold of instability is demonstrated as a function of 

disk unbalance (single plane), and of viscous damping (see figure 23). The 

symmetric rotor parameter values for this study are listed in table 2,and the 

hydrodynamic journal bearing parameter values are listed in table 3. Curves 

for inlet oil supply pressure Pin and effective absolute oil viscosity Peff 

as functions of rotor speed are presented in figure 21. 

The numerical simulations of the response of the symmetrical test rotor 

were then compared with results obtained from experimental whirl data. 

Speeds through the critical speed region to the onset of oil whip were 

studied using an experimental test rig to obtain whirl and whip data for a 

flexible, horizontal rotor bearing system. The rotor consisted of a disk and 

two journals pressed onto a shaft, supported in two cylindrical hydro­

dynamic journal bearings. The shaft was comparatively long, and of 
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'\'oduItJ:-' of el.)stIClty. 

Shaft dl')fTwt(~,.. LJ , 
Shaft moment of ine,-tlc). 

Shaft seqmcnt Iprl~Jtll. Ls 

Rigid journal width. l~ 

Shaft length. Ltotal 

Oi I inlet hole diameter. DOh 

Lubricating oil number 

Rotor support length. Lspt 

Rotor specific weight. y (stoo) 

Total rotor weight 

Effective journal mass, m1 

Disk mass. md 

Effective disk mass. m3 

Effective journal polar mass 
moment of inertia. Iz 1 

20.} x 

2. r)q x 

2.0Q x 

1.9b x 

~. 07 X 

5. B I x 

G. 35 x 

SAE 15 

q.7q x 

7.68 x 

1.83 x 

1.68 N· 

lQ.O N 

15.3 N 

5.83 x 

; U liN 1 
/11 

10 2 
m 

I U 8rn I~ 

10 1m 

10 2m 

10 
I 
m 

10 3m 

10 1 m 

10 qN 1m 3 

10 2N 

s2/m 

s2 !m 

s2/m 

10 ~ N .m. s. 2 

Effective journal transverse mass 
moment of inertia. IXY1 1.63 x 10 3N . 2 

Undamped fundamental natural 
frequency. en 

Rotor speed. r, 

Disk mass"cceentricity. e R 

Di sk damping ratio. r, \' 

. s. 

55.7 Hl (calculated) 

110 Hl 

1.5Q x 106. e.09 x 10 6m 

O. 0.0?5. O.OQ. 0.05 

Table 2 Rotor Parameter Values for the Flexible 
Rotor Simulations (34]. 

Bearing Icngth, Lb 

Jour'!al radius, R = R 

Radial bcaring clearance, C r 

Bearing grid size, nv x n z 

SOR relaxation faetorw b 

Oil inlet hole location, v oh 

Effective lubricant 
absolute viscosity, v eff 

Atmospheric pressure, P atm 

Oil inlet supply pressure, Pin 

Pressure distribution 
error criterion f ( 

p 

2.5Q x IO-2m 

2.75 X IO-2 m 

7.62 x IO-5m 

16 x 6 

1. 290 

180 degrees 

(see figure 5) 

1. 01 x 10- 5N 1m2 

(see figure 5) 

Table 3 Hydrodynamic Journal Bearing Parameter 
Values for the Flexible Rotor Simulation I 34] . 

N.F. Rieger 
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snail diameter to insure reasonable flexibility. The test rotor bearing 

system was identical, within reasonable tolerances, to that used for the 

flexible rotor simulations presented above and shown in figure 22. Using 

the notations: 

W = unbalance of the system 

~ = viscous dampinCl ratio 

w = rotor forward precession critical speed, Hz c 

w = running speed, 

the most significant results of this analysis can be summari zed as follows: 

• 

• 

• 

• 

Oil whip has been successfully simulated by this analytical 

model of a flexible rotor /hydrodynamic journal bearing system; 

The oil whip could be suppressed by means of the addition of 

external viscous damping; 

-4 The analytical model (W = 4.24 x 10 N.M.; ~ = 0.04) accurately 

simulated the vertical response of the test rotor through the 

forward whirl critical speed region (0.8 w ~ w ~ 1.15 W ,for c c 

this study). The test rotor forward whirl critical speed was 

predicted with an error of less than 1 percent; 

Usinq viscous dampinq ratio ~ of 0.04 and O. OS, the analytical 

model (W = 6.24 x 10- 4) simulated the onset of unstable oil 

whip (W = 105.5 Hz) of the test rotor with less than 3 percent 

error in this system. 
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Figure 23 Disk Orbital Response as a Function of Rotor 
Speed, Disk Unbalance, and External Disk Damping [34]. 

Theory of Instability for a Rigid Rotor in Fluid Film Bearings 

Consider the rigid rotor in fluid film bearings shown in figure 24. 
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For convenience, this rotor is taken as a simple cylinder of mass M, trans-

latory inertia It and polar inertia Ip' Both bearings are identical and 

share the rotor load (gravity) equally, so that they both have the same 

operating eccentricity and bearing dynamic coefficients. At the instability 

threshold speed (;l the whirl frequency v will be somewhat less than 0. 5w, 
t 

as seen previously. Two possible modes of whirling exist, (a) translatory 

whirl (ends in in-phase),and (b) conical whirl (ends in anti-phase), 

figure 25. The question of the mode in which the rotor instability will 

occur is determined by the inequality 

4. 
I - ~ I 
t w P 
~.,1L 2 

< 1.0, translatory whirl ( 16) 

> 1.0, conical whirl, 
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where 
1 2 2 1 2 

It = 12 M ( 3R + L 1 and I p = '2 MR for a solid cylindrical rotor. 

v Writing 0.5 and substituting gives: 
ell 

2 R 2 2 
ML [1+3([1 - 3(~1 1 

4. 12ML 2 = 3" 

This expression applies for a solid cylindrical rotor at all speeds. 

In general, however, the ratio is 4[l t -(V/wll p I /ML 2 for a rotor 

symmetrical about the mid-span plane. The above result indicates 

Rigid 
11. J 

I 
-------~-

Fluid Film 

Figure 24 

K K 
xx xy 

K K 
yx yy 

Ri~id Rotor in Fluid Film Bearings 

that the tendency is for a rigid rotor to whirl in its translatory mode. 

To determine the half-frequency whirl threshold condition, consider 

( 17) 

the rotor to be perfectly balanced, as in figure 26, and symmetrical in all 

respects about the mid-span plane. Assuming that the rotor will whirl 

first in its translatory mode, the threshold conditions may be obtained by 

the procedure first given by Lund [351. The equations of motion are 
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; - - - - - - - - - - - - --, 

(a) Translatory Whirl (b) Conical Whirl 

Figure 25 Whirl Modes for Rigid Rotor in Flexible Bearings 
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Figure 26 Film Force Effects 
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Figure 27 Complex Plane Plot of Eigenvalue P Conditions 
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first written for the rotor c.g. restrained by the bearing forces: 

. . 
tMX = -K X-K Y-B X-B Y xx xy xx xy 

( 18) 

tMY = -K X-K Y-B X-B Y 
yx yy yx yy 

( 19) 

For a solution, set: 

X = xept ; ( 20) 

where p = a + iv. In this expression v is the rotor whirl frequency and a 

is the system damping coefficient. At the onset of whirl a = 0 and p = a +iv 

occurs at the boundary of the real axis. In this condition a is chan!)ing 

from nefjative to positive, as w increases (see fif.lure 27). Substituting 

a = 0 and p = i v gives: 

~K -Mv2 + iv 2B 2K + iv 2B j xx xx xy xy 

2K + iv2B 2K - Mv 2 + iv2B 
yx yx yy yy 

Expanding this yields: 

(2K -Mv 2+iv2B )(2K -Mv 2+iv2B )-(2K +iv2B ). 
xx xx yy yy xy xy 

·(2K +iv2B ) = 0 
yx yx 

2 2 2 2 (2K -Mv) (2K -Mv )-v 2B 2B -2K 2K -v 2B 2Byx+ 
xx yy xx yy xy yx xy 

iv2B (2K -Mv 2)+iv2B (2K -f..1v 2)-iv2K 2B 
xx yy yy xx xy yx 

iv2K 2B = 0 yx xy 

Equating the real and the imaginary expressions to zero gives: 

2K 2K +(Mv 2) 2-Mv 2(2K +2 K )-2K 2K 
xx yy xx yy xy yx 

-v 2(2B 2B -2B 2B ) 0 
xx yy xy yx = 

and 

( 21) 

( 22) 

( 23) 

(24) 
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v[2B 2K +2B 2K -Mv2(2B 2B )-(2K 2B +2K 2B »):: 0 (25) 
xx yy yy xx xx yy xy yx yx xy 

writinl=J V = yw where y is the whirl frequency ratio (v/w) gives: 

(K wB +K wB )-4< wB +K wB 
xx yy yy xx xy yx yx xy) = 1 2 2 (26) 

(w B +w B ) 2" Mw y ::: K 
xx yy 

1 2 l 2 
(K xx -2Mv)(K -2M\) )-K K 

yy xy yx 
wB wB -wB wB 

xx yy xy yx 
( 27) 

The bearing stiffness and damping coefficients are now written in 

terms of the speed of rotation. They may thus be selected directly for any 

!.'liven operating condition. 

To determine the whirl threshold speed, the procedure is as follows: 

• 

• 

• 

• 

• 

• 

Select a trial threshold speed w 

Determine the corresponding bearing coefficients Kxx, Bxx, etc. 

Substitute in equation 26, determine Mv 2:::aK 

Substitute in equation 27, determine y2 

2 2 2 
Calculate w from 2K /My -=w I hence w I ca ca 

Compare w I with wt . I' When W =:.L t this is the threshold speed. ca ria c 

Several trial calculations may be necessary before agreement is 

reached, The cross plot shown in figure 28 facilitates convergence. 

These equations may be easily programmed for direct solutions. 

Values of the bearing coefficients must be supplied for each trial speed 

assumed. 

~igid-rotor c.onical whirl stability threshold speeds may also be found 

by replacing the mass term in the above equations by the "effective mass" M 

acting at the bearings. As indicated previously, this is given by: 
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1 
M =-M e 3 

N.F. Rieger 

(28) 

( 29) 

i.e., the effective mass is one-third of the actual mass, for a rigid cylin-

drical rotor. Thus the term M becomes Me in equations 28 and 29, the value 

of which is 

I I 2 
( I - ~ I ) I (=) '" 4 ( I -

t w P 2 t 
M = e 

1 
~1 

O.SI) IL2 
p 

[General Rotor 
Symmetry] 

[Cylindrical Rotor) . 

Instability of a Flexible Rotor in Fluid-Film Bearings 

(30) 

The above analysis may be readily extended to the case of a flexible 

rotor in fluid--film bearinQs. Consider the flexible rotor shown in figure 29 

which carries two disks each of mass ~ a distance F,;L apart, where L is the 

rotor span between bearin~s. The system has mid-span symmetry, as 

previously. Two disks are used in this example so that either the 

Fiqure 28 Plot of wI vs.w d ca c. aSSUr.1e 
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1..-...----- L 

.. , I r" 
8 coeffictent IT . 1/:11 

bearing ~ 

~-l 
'IV 8 ',1 it coefficient 

1 H bearing 

Rigid Rigid 

(a) Fle.ible two mass rotor. 

(b) first ins.tabtl1ly ",hirl II'IOde. 

(el 5econd instabil tty whirl "",de. 

Fi~ure 29 Flexible Rotor and Whi rl Modes 

translatory instability whirl mode or the conical instability whirl mode may be 

obtained directly from the following analysis given by Lund [351, 

Shaft bending deflection between disk and bearing due to forces F: 

First mode: (X 1 Xl 

(Y ... Y 1 
1 

( 31) 

( 32) 
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as F = F = F 
ax bx x' (X,-X)=F (Ct. + Ct. b) (33)(34) 

X aa a 

and F = F = F ay by y' (Y,- Y) = F (Ct. + Ct. b) Y aa a (35)( 36) 

X, - ~X = F Ct. - FbxCt.ab ( 37) ax aa 
Second r.1ode: 

Y - ~Y = F Ct. - FbyCt.ab (38) , ay aa 

i.e., as above, (X 1 sX) = F x(Ct.aa - Ct.ab ) ( 39) 

(Y -
1 sY) =F (Ct. -Ct. ) 

Y aa ab ( 40) 

Introducing the conventions: 

First mode 

Second mode 

we may write the following expressions which are valid for both modes: 

( 41) 

( 42) 

The equations of motion may now be formed by recogni zing that: 

1 .. 
F x = -2" ~~X 1 ( 43) 

, .. 
F = -- MY Y 2 , (44) 

Hence, 
1 .. 

-2" Ct. MX , = (X, - sX) ( 45) 

(46) 

The force balance at the bearings is shown in figure 30. 
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First mode, 

(forces) 

Second mode, 

(moments) 

.!(X - ~X) ::: K X + K Y + B X + B Y Ct , xx xy xx xy 

.!('{ - Y) ::: K X + K 'y + B X + B Y Ct , yx yy yx yy 

F.~L:::(K X+K Y+B X+B Y).L::: 
x xx xy xx xy 

~L (X - ~X) 
Ct , 

F .~L:::(K X+K Y+B X+B Y)·L::: 
y xy yy xy yy 
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( 47) 

( 48) 

( 49) 

( 50) 

Aqain using the previous conventions, the above equations for both modes 

may be written as: 

( 51) 

~(Y,-Y):::K X+K Y+B X+B Y 
~ yx yy yx yy 

( 52) 

It is now necessary to eliminate X" Y, from the above equations. To do 

this, substitute 

X, 
ivt X ::: xei vt ::: x,e (53)(54) 

Y, 
ivt Y 

ivt 
::: 

Y1 e ::: ye (55) (56) 

into equations (45) and (46) and solve for x 1'Y1. This gives: 

~x ~x 
X ::: 

1 _.! at-:l v 
2 2 

1 1-.!(~ ) 
2 2 wn 

( 57) 

~y ~y 

Y 1 ' 2 1 -7 CXJ\Ii \) 
-1~ 
1-7 (wn) 

( 58) 
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where w ~ = 1 h.M. Substituting equations 53 through 58 into equations 51 

and 52 and cancelling the e ivt on both sides gives: 

~ { ~ x _ ~x }= K X + K Y 

CI. 1_!(:~~}2 
xx xy 

2 L.; 

~ { ~ y -~y }= K X + K Y a 1-!(:::'....- } 2 yx yy 
2 wn 

Multiplying throu~h by C /W and writing: 

t ivB X 
xx 

+ ivB X 
yx 

+ ivB Y 
xy 

+ ivB Y 
yy 

2 !(yS}2 
C~ . 2 
W CI. -""1;--- 2 

1--( yS) 
2 

( 59) 

(6}(60) 

( 61) 

allows equations 59 and 60 to be written in terms of dimensionless stiffness 

and damping ratios, as follows; 

where 

R xy 

k yx 

+ iyS yx 

CKxx 
-W-

= CKxy 
W 

CK 
~. 

W 

\I --B w xx 

\I --B w xy 

+ iYBxy._ J 
- Ie + iYB yy 

= CwB 
\I xx w--W-

__ \I CwB 
- xy W-w-

= YS xx· 

v -
-8 w yx 

v Cw8 -
~ = Y8yx 

v -
-8 w yy 

W W 

(62) 

( 63) 

( 64) 

( 65) 

( 66) 

and Y =: v/w th ' the whirl frequency ratio, usually sOMewhat less than 0.5, 

and s - (w th ), the threshold speed ratio. 

wn 
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F x 
F x 

Figure 30 
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x 

Forces and Moments on Rotor 

Journal diameter 
inches r'T' t't' t't' t't't' lS '0. 

bearing 
retails 
in text 

~----~---------60 in. ------~----~ 

Shaft diameter 7.5 in. 
6-401b disks 

Fi~ure 31 Compressor Rotor 

To find the eigenvalues of these equations. multiply out the determi-

nant of the coefficients and separate into real and imaginary parts. to obtain: 

(K wB + 
xx yy 

K wB ) - (R wB + 
yy xx xy yx K wB ) yx xy 

= K (67) 
K wB + K wB xx yy yy xx 
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(R - K) (K - K) - K K 
xx yy xy yx 

wB wB + wB wB xx yy xy yx 

2 
Y (68) 

These equations are of the same form as equations 26 and 27. They 

rray be solved the same way, rememberin~ that (a) the bearing coefficients 

Rxx" .etc. are speed-dependent, and (b) that K is given by: 

K := 
C~2 

Wa. 

.!.(Sy) 2 
2 

1 2 
1 - -(Sy) 

2 

( 69) 

Notice that C /Wa. acts as the dimensionless rotor stiffness in either 

mode (R). 

As an example of the use of this method, consider the rotor 

system shown in figure 31. A horizontal compressor rotor weighs 

1000 lb. and operates in 2 - 4.00 in. diam. x 2.00 in. long plain cylindrical 

bearings. Bearing clearance is 0.0040 in. on the diameter. Oil of viscosity 

22 cpo at 110°F and 4.84 cpo at 200°F is supplied to each bearinn at the 

rate of 1.25 gal/min at operatin~ speed under 20 Ib lin 2 gage inlet pressure, 

at 120°F. For these operatin~ conditions the variation of the bearinCJ 

dynamic coefficients is as shown in figure 32. What is the whirl threshold 

speed for this rotor in its bearings? At 10,000 rpm the bearing coefficients 

are, for S =2.2, £ := 0.17: 

K xx 

K 
'Ky 

O. 33 x 106 Ib / in. wB 

1.49 x 106 Ib/in. wB 

:= 2. 89 x 106 Ib/in. xx (70) (71) 

= 0.61 x 106 Ib/in. xy (72)(73) 
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K -1.120 x 106 Ib/in. 
yx 

wB 0.58 x 106 Ib/in. (74}(75) 
yx 

K = 0.59 x 106 Ib/in. 
yy 

wB = 2.52 x 106 Ib/in. (76)(77) 
yy 

By substitution in equation 67 

K = 0.445 x 106 Ib/in. 

From equation 68 

Now 

K = 

2 
Y 

~2 ~ (Sy)2 

a 1-1. (Sy) 
2 

0.256, Y = 0.506. 

1 
(E;=1, a = Mw 2) 

(78) 

( 79) 

A separate calculation for wn ~ives Nn = 8600 rpm. Note that this is the 

critical speed for the rotor in rigid bearings, wn 2 = l/Ma. Then: 

-I 

a ={(;~~) X (900)2] = 0.955 X 10-6 in/lb (half-weight). (80) 

1 2 
K = 1.045 X 106 . 2(0.256)S 

1 - ¥9.256)S2 
= 6 0.445 x 10 

Therefore 

9.55 wth = (1.165) (8600) -- 10.100 rpm 

Nth 10,100 rpm. 

lb/in. (8t) 

( 82) 

( 83) 

(84) 

This is the whirl threshold speed. It could be raised, if required, by 

(a) increased clearance (0.004 to 0.006 in.), (b) decreased bearing length 

(2.0 in. to 1.5 in.), (c) increased oil inlet temp (120° to 140°) or by chang-

in~ the bearina type (tilting pad) . 
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Comparisons of Theoretical and Experimental Values for Threshold 

Speed 

A computer program by Rieger and Thomas [361 to calculate the 

threshold speed associated with the lowest instability mode gave good 

correlation with results of previous work, e.g., Newkirk [1], Pinkus [2], 

and Tondl [9]. Variation of the eight bearing coefficients was incorporated 

into the program by curve-fitting the bearing coefficient charts. 

Table 4 gives details of several experimental rotor-bearing systems 

used by previous investigators. Using the program mentioned above, the 

threshold speed was calculated for each of these systems. Where details 

1/ -_. 

I ' I' LI----l--.---. - '--' 
___ : __ I_! -1-[ __ : __ ~ __ .._. 

I I' . 

! .. --.--!---!-.-.-.~--.- . -: : 
I . :: -; '// 
y ... :----~;/ 

:~l=-- -: ... . ___ l_!_ .. :_! z=_-~=: 
\-- -.-=- .~<- -=~::. 
i ~~" 1---_- __ 0 _____ • __ '. __ • __ ._ 

i . 
i . 
I , ,_ ,---- :-.--._.-. __ ._--.. i: 

,I ' I 
:. i 1. 0 10 

"';LO 2 
S~:T'.rrl.ld :;"~~.r S ~ "-7"' (RIC) 

10·------'-------
10 i.e 

Figure 32 Plain Cylindrical Bearing Coefficients 

were insufficient, e.g., descriptions of the bearing surface, oil supply 

pressure, outlet temperature, etc., reasonable assumed values were taken. 

Correlation of predicted threshold speeds with the experimentally observed 

values was quite close in most instances, and within the usual range of 
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practical threshold speed variation. It can be concluded that,where valid 

data on bearing geometry and operating conditions are available, the 

threshold speed of smooth-running rotors in fluid bearings can be pre-

dieted to within design accuracy by usinCl linear bearinq theory. Common 

sources of prediction errors are: (i) viscosity variation, (ii) bearing 

clearance, (iii) misalignment, and (iv) inlet pressure effects on the fluid 

P~TOR SlST[" r",I\"ET£,S f\l;:~$"~~' S:'EH' 

~ L1 fl 01 [r:'tr,f~ .... ~ C.l. 

Sourc@ IN. lH. IN. IN. LSS Xl O· 5 I~. RPH I'. ~:'" Q; ... 

Plntus·1956 .0025 84 9.425 32 25C~ 1;,..,.. .... "("'_"I 
.......... ·1 ..... !1:~ 

Plntus-1956 .0025 62 9.415 46 fie. ,2 1 Z I C~~ 13.1:1 

H ... tlrt·1956 .002 96 3.45 36 HC~ 2 337~ 3 ~:: 

H,.t t rt·1956 .004 95 5.14 36 118C II:: II :: 

H ... tlrt-1956 .004 48 2.57 42 15eO 3175 2;S: 

Tondl-1964 1. 55 1. 55 .008 .75 62.7 3.15 10 IC~ 1.39 3e:: );5: 

Tondl-1964 1.55 1. 55 .008 .75 30.3 3.15 40 21:."''' 1.39 1---,.. 11:0 

Rao·1970 .002 .5 4.87 7.7 20 , SC:l .5 ~:~: . .,::: 4 :::' 

Table 4 Details of Experimental Rotor Systems 
Comparison of Threshold Speeds Observed and Calculated 

film. Similar conclusions were obtained by Lund and Tonnesen [12]. 

Other computer proflrams have been written by Reddi, Lund, Giberson 

and Chang to investigate the stability of rotors in fluid-film bearings. 

These programs are discussed in more detail in Chapter 1 of this series. 

Conclusions 

a) The conditions under which fluid-film bearing and shaft gas seals 

may lead to unstable whirling of a rotor in its bearings have been 

identified. 
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b) Rigid rotors have been observed to whirl at speeds above 1.5 

2.0 times the lowest system critical speed. The whirl frequency 

for this class of rotors occurs at approximately half rotational fre­

quency. Whirl frequency increases with increase in rotor speed. 

c) Flexible rotors have been observed to whirl at speeds above 1.5 

- 2.0 times the lowest bending critical speed of the rotor in its 

bearings. The whirl frequency for flexible rotors occurs at the 

bending critical frequency of the rotor. This whirl frequency 

remains constant with increase in rotor speed. 

d) The whirl threshold speed depends on the type of journal bearing 

used. References are included to several investigations which 

have ranked the different bearing types in terms of their sus­

ceptibility to whirling. 

e) A variety of techniques have been developed and demonstrated 

for the calculation of whirl threshold speed, and whirl preces­

sion frequency. The features of several proven computer pro­

grams for stability analysis have been reviewed. 

f) Small-amplitude instability in which the whirl motions occur 

about the journal steady-state equilibrium position has been 

found to be accurately predicted by analysis in which the 

bearing first-order displacement and velocity terms of the 

forces alone are used. 

g) Large amplitude unstable whirling of the journal within and 

around the bearing circumference has been found to require 

some procedure in which the Reynolds equation is integrated 

step-by-step around the jouranl orbit, or some similar non­

linear approach. 

h) Small amplitude unstable whirl orbits cannot be predicted by 

linear analysis. Orbit studies involve some form of non­

linear analysis. 
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i) The major problem in prediction of the actual whirl threshold speed 

lies in accurately representing bearing conditions in analytical terms, 

in obtaining reliable bearing dynamic coefficients for the acutual 

bearing geometry and oil film conditions. 

References 

1. Newkirk and Lewis, "Oil Film Whirl, An Investigation of 
Disturbances due to Oil Films in Journal Bearings, II Trans. 
ASME, Vol. 78, p. 21 (1954) . 

2. Pinkus, O.J., "Experimental Investigation of Resonant Whip," 
Trans. ASME, Vol. 87, p. 975 (1956). 

3. Hori, Y., "A Theory of Oil Whip, II Journal of Applied Meeh., 
p. 189 (June, 1959). 

4. Tondl, A., "Experimental Investigation of Self-Excited Vibra­
tions of Rotors due to the Action of Whirling Oil Film in 
Journal Bearings," Monographs and Memoranda No.1 (1961). 

5. Sternlicht, B., "Stability and Dynamics of Rotors Supported 
on Fluid-Film Bearings," ASME Paper 62-WA-190 (1962). 

6. Smith, D.M., IIJournal Bearings in Turbomachinery," 
Chapman and Hall, Ltd. (1970). 

7. Newkirk, B.L., "Shaft Whipping, II General Electric Review 
(1924) . 

8. Newkirk, B. L., "Varieties of Shaft Disturbances due to Fluid 
Films in Journal Bearings, II Trans. ASME Vol. 78, p. 985 
(1956) . 

9. Tondl, A., "Notes on the Problem of Self-Excited Vibrations 
and Non-Linear 'Resonances of Rotors Supported in Several 
Journal Bearings," Wear, 8 (1965). 

10. Tondl, A., liThe Effect of the Out-of-Roundness of Journals 



248 

on Rotor and Bearings Dynamics," ACTA Technica Grav. 
No.1, p. 62 (1967). 

11. Tondl, A., "Some Problems of Rotor Dynamics," Publishing 
House of the Czechoslovakian Academy of Sciences, Prague, 
( 1965) . 

N.F. Rieger 

12. Tonnessen, J. and Lund, J.W., "Some Experim~ts on 
Instability of Rotors Supported in Fluid-Film Bearings," ASME 
Paper No. 77-DET-23 (1977). 

13. Newkirk, B. L., and Taylor, H. D., "Shaft Whipping due to 
Oil Action in Journal Bearings," General Electric Rev. (1925). 

14. Stodola, A., "Kritische Wellenstorung Infolge der 
Nachgiebigkeit des Oelpolsters im Lager," Schweizerische 
Bauzeitung, Vol. 85, p. 265 (1925). 

15. Hummel, C., "Kritische Drehzahlen als Folger der 
Nachgiebigkeit des Schmiermittels im Lager," VDI-Forschehft, 
Vol. 287 (1926). 

16. Sommerfeld, A., "lur Hydrodynamischen Theorie der 
Schmiermittelreibung," A. Math. Phys. Vol. 50, p. 124 (1904). 

17. Harrison, W. J., "The Hydrodynamical Theory of the Lubrica­
tion of a Cylindrical Bearing under Variable Load, and of a 
Pivot Bearing," Trans Edinburgh Philosophical Soc., 
Edinburgh, Scotland, Vol. 22, p. 373 (1919). 

18. Robertson, D., "Whirling of a Journal in a Sleeve Bearing," 
Phil. Mag. Series 7, Vol. 15, p. 113 (1933). 

19. Poritsky, H., "Contribution to the Theory of Oil Whip," Trans. 
ASME Vol. 75, p. 1153 (1953). 

20. Boeker, G.F. and Sternlicht, B., "Investigation of Trans­
latory Fluid Whirl in Vertical Machines," Trans. ASME Vol. 78, 
p. 13 (1956). 

21. Sternlicht, B., "Elastic and Damping Properties of Cylindrical 
Journal Bearings," Trans. ASME, Jnl. Basic Eng., Series D, 
Vol. 81, p. 101 (1959). 

22. Bowman, R.M., Collingwood, L.D., and Midgley, J.W., "Some 
Factors Affecting the Whirl Instability of a Journal Bearing, " 
Part I and Part II, Proc. First and Second Lubrication and 
Wear Conventions, Inst. Mech. Engrs., London (1963-1964). 



Fluid Instability 

23. Lund, J.W., "The Stability of an Elastic Rotor in Journal 
Bearings with Flexible, Damped Support," Trans. ASME 
Jnl. Appl. Mech., Series E, Vol. 87, p. 911. 

24. Sternlicht, B., Poritsky, H., and Arwas, E.B., "Dynamic 
Stability of Cylindrical Journal Bearings Using Compressible 
and Incompressible Fluids," First International Symposium on 
Gas-Lubricated Bearings, Washington, D.C., ONR/ACR-49 
p. 119 (October, 1959). 

25. Hagg, A. C. and Warner, P. C., "Oil Whip of Flexible Rotors," 
Trans. ASME, Vol. 75 (No. 7), p. 1339 (1953). 

26. Hagg, A.C., "The Influence of Oil-Film Journal Bearings on 
the Stability of Rotating Machines," Trans. ASME, Jnl. Appl. 
Mech., Vol. 68, p. A-211.(1946). 

27. Sternlicht, B., "Gas-Lubricated Cylindrical Journal Bearings 
of Finite Length - Part II-Dynamic Loading," General Electric 
Tech. Rep. ONR Contract No. Nonr 2844 (00), Task 
No. NR 097-348 (September, 1960). 

28. Warner, P. C. and Thoman, R. J., "The Effect of the 150 
Degree Partial Bearing on Rotor-Unbalance Vibration," Trans. 
ASME, Jnl. Basic Eng., Series D, Vol. 86, p. 337 (1964). 

29. Hagg, A. C., "Some Vibration Aspects of Lubrication," 
Lubric. Engng., p. 166 (August, 1948). 

30. Hagg, A. C. and Sankey, G. 0., "Some Dynamic Properties of 
Oil-Film Journal Bearings with Reference to the Unbalance 
Vibration of Rotors," Trans. ASME, Jnl. Appl. Mech., Vol. 78, 
p. 302 (1956). 

31. Hagg, A.C. and Sankey, G.O., "Elastic and Damping Prop­
erties of Oil-Film Journal Bearings for Application to Unbalance 
Vibration Calculation, II Trans. ASME, Jnl. Appl. Mech., 
Vol. 80, p. 141 (1958). 

32. Lund, J. W., "Spring and Damping Coefficients for the Tilting 
Pad Journal Bearing," Trans. Am. Soc. Lubric. Engrs., 
Vol. 7, p. 342 (1964). 

33. Badgley, R.H. and Booker, J.F., "Turborotor Instability: 
Effect of Initial Transients on Plane Motion, II Journal of 
Lubrication Technology, Trans ASME, Vol. 91, p. 625 (Oct. 1969) . 

249 



250 N.F. Rieger 

34. Myrick, S.T. and Rylander, H.C., "Analysis of Flexible 
Rotor Whirl and Whip Using a Realistic Hydrodynamic Journal 
Bearing Model, II ASME Paper No. 75-DET-68. 

35. Lund, J. W. Written Discussion of Paper by Warner, B.C. and 
Thoman, R. K. Trans ASME, Jnl. Basic Engineering, Series D, 
Vol. 86, p. 337 (1964): Ref. [28] above. 

36. Rieger, N.F., Thomas, C.B., "Some Recent Computer Studies 
on Theoretical Stability of Rotors in Fluid-Film Bearings, II 
International Union of Theories and Applied Mechanics, 
Prc. Dynamics of Rotor Symposium, Lyngby, Denmark, 
p. 436 (1976). 



CHAPTER 2.9 

EFFECT OF SUPPORTING STRUCTURE ON ROTOR DYNMUCS 

Z.A. Parszewski 

Introduction 

Receptance. It is advantageous in ~any scie~ti~jc as well as 

industrial situations to treat cor.sidered systems (::lechar:is::l, machine 

or its subassemblies as par~s (subsyste~s) of a lar{:e~ 3yste~. It ~ay 

contain, besides t~e considered assembly, a:so ot~er assenb:ies of the 

::lachine, bearines, s~pporting structure, ~:oor and tui~d:nG and t~e 

enviro~ent in genera~. 

'1'',;0 t/pes of protlem~; are i:::porta::t: 

I~ the firs~ ~ype of prob:e~ - t~~e i~~lue!ice o~ t~le ~est of tt:e 

syste~ on dynamic S 0:- the r;i yen sub~j:;stc!;.~), is cor:s idered. 

in particu::"ar- :'~e ~roD~.e:::.~; 0:' :"':.cx.:.t:.c !;:..;.pport. in:"'~.:..:.e:-.cc 0;' :;la.c~~ine 

dyna:::ics, and abo ~so:'at':'on r:;ro:;1.c:::s o:~ (passivc) objects :'ror:l 

e::viro:"_':le:".ta:. (i::'~:ematic) excitation. 

suhsyste::: (fro::! ::!ac~i::e or ~ts sutasse:::b:y) to a::other part of t~e 

systc~ is considered (to anotiler subas5e~bly o~ ~hc ~actline, to other 
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These are hence problems of dynamic isolation of active objects. In 

both type of problems at least two subsystems interacting dynamically 

always exist. 

A method of subsystems composition will be presented for finding 

dynamic characteristics and vibration of more complicated systems 

composed of simpler subsystems [lJ, [4], 17], [8]. 

Recepta!1ce methods is advar.tageous in those problems. Responses 

of the subsystem along connecting co-ordinates are hence necessary to 

harmonic excitation. ~hese can be found experimentally if necessary 

and tence tte method can be also applied to systems difficult for 

sufficiently accurate analytical description. 

':'hc reccptance matrix of the rank equal to the number of 

connecting co-ordinates is sufficient for the compositio!1 of the sub­

systems considered. It Gives not however a complete dynamic charact­

eristic.:; 0: the system. ;'or some ot::er problem another natrix may be 

required but correspo!1ding dynamic model may be different as well. 

T~e advantage of this method is simple possibility of finding 

(measuring) these quantities without any simplifications and omitments 

for complicated systens (eg. for the whole turbo-generator supporting 

subsystem including casings, supporting str~cture, foundation and 

ground) . 

~o introduce the receptance concept let us consider a mechanical 

system. It may be any continuous or discrete however linear system. 

It may represent a whole structure or machine or any of its elements or 

assemblies (Fig. 1). 
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0. b. c. 

II 

Let numbers j, i:, denote the x" x; co-ordinates ie. directions of 
~ 

displacements linear or angular in given points of the system. 

Let an harmonic complex force act in the direction of ;:, co-ordinate 

(Fig. 1). 

( 1 ) 

Vibration excited (in steady state) along the j co-ordinate (ie. 

dynamic displacement at a point and direction desiGned with n~~ber j) can 

be represented in the form 

where :z .• ! = a' r 
J"- J-' (2) 

is amplitude of the vibrations, and arg~ent S.o is the phase lag of the 
J>c 

displacement with respect to the force. 

The ratio c. 
Jx. 

a. . B 
~ -1 .. 

p e JI:-. , 
>. 

(3) 
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does no~ depend on ti~e. This ratio is a function of circural 

frequency ~ of exciting force F£depending on the system parameters only. 

Is hence characteristic for the system. 

for a syste~ on o~e degree of freedoM (Fig. 

" .I. 
Ct • , 

J.t" 
a = x st 

I 

w2 ,? I( 1- -:;? J + 

tgB = 2 

-.. here 

k 
and u = I m or 

h OJ 

CL a 
w? 

1 - ~2 

P 
k 

or 

s 
a = I B 

, h 2 w2 
4;:'- ~2 

;-1 
k 

s 

2h 5:.. 
m 

b or c) is 

(4) 

(5) 

For any linear subsystem continuous or discrete interacting with 

some other subsystem along n connecting co-ordinates, the displacement 

Zj can be expressed by the forces V£ as follows 

Z2 i 

LI 
or {z _ j 

,] 

Here 

c 
l nl 

c1n 

<: 2n 

~ 

r 
I 

c 
1 nn 

r 
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I F2 
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i 
I 
r 
I I 

I I 
I F 

1 n 
l 

(6) 

(7) 
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c1n 

c21 c2n 

~ (8) 

J 
c 

nn 

[c] l c j £] L 
is the dynarni c flexi bj 1j ty matrix or receptance matrix. 

Solving (6) for forces F£ we have 

(9) 

here 

1>' 
k12 k, 

-! 
! _n 

K22 K IK21 2n 

[k] lk '" 1 I: ( 10) 
JA. 

i. 
Ik k 

knn J ! r,l r:? 
L-

is tr.e dyr.anic st i ff!1ess !:"latr Ix 0:' '.he s::ster.;. for its 

interaction alor.g j, ~ co-ordir:ates of' !1urr:ber .. , 

composed of a ro~or :~lc.2a) a!1d casir:g ~itr. support:!1£ st~ucture 

included (::g. 2b). 

The connec:':;"ng co-ordi:--.ates are :'our; dircctio:"::s q." q,...., q ..... , q. 
..!.. c. j '+ 

perper::d:cular to -t:he rot-or axis :!': tr.e r.tiddle 0:'" the beari!'"!gs ~) and i. 

7hey can be best ~aken o~ti:8r;ona_! (correspor.ding ~o support syT.'L":letry) 

and equally or.ientec. at cac~! e~:d (:i;.:;. 2). 
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a) 

b) 

c) 
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Rccertu~;cc rr.atriccs will be: 

for the rotor 

[c 1 
w 

r,s = 1,2,3,11 

IcWll 
I 
I 

1'w21 

iCW31 

1 c I 
LW,;l 

For the supporting structure. 

c 

c 

c 

c 

[ c ] = [c J, r, s = 1, 2, 3, 4. p prs 

w12 
c 

w13 
c 

w14 

w22 c w23 
c w2!; 

w32 
c 

w33 
c 

w34 

w1+2 
c ·",2,3 c 

w~)t 

Examples of the matrices elements are defined in r'ig. 2 

257 

(11) 

( 12) 

The receptance matrix elements are functions of excitation frequency 

(and rotor speed in some cases) and are conplex quantities when damping 

is introduced. 

They can be easily measured if not calculated. 

In the considered case of machine casing with all supporting 

structures (Fig. 2b) a rotary exciter (Fif,. 3) can for example be 

installed consecutively in each bearing with the excitinc force directed 

once vertically and next horizontally. For each exciter position (eg. 

Pp2 Fig. 2c) dynanic displacerr.ents are neasured along all the 

connecting co-ordinates. The receptances are then defined as in 

Fie. 2. 
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~oi~g :t at various excitation circular frequencies wand measuring 

a~plitude and phase, diagrams of the type shown in Fig. 4 are 

octained. Rotor receptances (Fig.2) 

should be computed or measured 

for the rotor free in space. 

m In case of measure~ents the 

rotor may be suspended ego on 

ropes, so that its vibrations 

Fig. 3 
are practically uninfluenced 

by this constraint of very low 

frequency. This is necessary 

r;; o. 
160 

for the following subsystem 

composition with the receptance 

i method. 
80 1 

I Alternatively, rotor on rigid 

10 30 50 70 f Hz 
supports can be considered. 

b. 
1 eJf fim/N 2.8 

2. + 

This has the advantage that 

first approximation for the real 

syste~ is in this way at once 

I 
obtained (as compared with at 

/.2 t first meaninRless free rotor 

I 
0.4 I 

parameters) . Subsystem 

10 
-+_._.-+- _.--1--- .. -+- I 

30 50 70 90 f Hz 
composition is however with 

that method so~ewhat less 

straightforward (called mixed 
Fir;. 4a,b 
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c. method) . 

2 i\eceptance '·lethod. 

Receptance natrices are used 

for both subsystems being 

composed. [10J, [l1J 

Di splace::;ents of the sub-

~;y~;ter:is a and b (rig.5a,c) 

connected (interacted) along 

~I 
n co-ordinatcs (FiB. 5c) 

are in the for::: 

i q} Ie I ; Pa J 
~a a 

Fig. 4c (13 ) 

Corresponding displacenents (ie. at. the sane po':'nts ir, the "arne 

directions) for the s~;:;ter.l c cOr.lposed of looth subsystcr.lS (:'i(;.5) are 

i ~ \ = [c I ip ; 
l"1. C J C C 

7he syste::; c may as we~: be a part o~ a !arger ~yste::i inc:uding sub-

systen d etc. 

2or:;position conditions are 

1. 2qui~i~ri:.;..,;. co!".cii:'.~O:lS fo~ "t!-:e :o!"'ces acti:~t; on t.!'-'~e w'hole syster.! 

along the co-ord~nato:; 

. "::; . + : 

~. Conti~uity cO:ldit:o~.s 

~ q : 
a 

i ~ 
, ~!. C ' 

(14 ) 

( 15) 
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c. 
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Conditions (14) and (15) with ( 13) give the expression of the 

displace:::ents {q ; of the w!101e system by the forces {? ; acting on it. 
c ~ 

',his hence defines tr:e receptance matrix ~or the whol.e syste::-.. 

( 16) 

In the case of a rotor, let us repeat, t~,e receptances [c .. J have 
WJK 

to be in this method found for the rotor free in space (Fie. 2a) 

'l'his applies always to subsystems · .... hic~l have no external constraints (from 
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outside of the syste:n considered), ''''!1ic:~, :'or example, gives the 

foundation for the supporting structure. 

3 ;·lixed I,Jethod. 

In most practica: cases it is t~c inf:ue~ce o~ tte rest of the 

system on the dynamics of or.e distinguis~1ed SUcs:iste::o, that is 

considered. In t~le exaople gi ve!1 previously this distinguished sub-

system is t~e rotor and t:-:e influe!1ce 0:' the flexibility o~ supporting 

structure on its dynamics is considered. 

It is necessary already on design stage of that subsystem (rotor in 

this example) to find its dyno.:!lic properties even i1' sO::Je idea~isation 

of the rest of the system is necessary, ego assu:"ine; its rigidity. 

These properties give dynamic characteristics of the subsystem and at 

the same time an approximo.ti.on of the cllaracteristics of the actuo.l whol.e 

system. In many practical cases, this approxi::oation is finally 

sufficient, when support flexibility i!1fluence is negligible. 

ThL; approximation may be unavoidable because of no info~atio:: at 

that stage of the rest of the system, ee;. bearir.gs often and supporting 

structures a.lways are desir,ned and manufactured by another producer. It 

is hence necessa~; tc use this type of characteristic;~or the subsyste~ 

conposition (Fig.6). 

At the sa::.e t,j;~e t:lere is no necessity for findinG an additional 

characteristic.·of the subsyste::J as free in space. 

':'hc nixed r.1Ct::od aS~;UY.le:; the description of the considered subsystem 

a (Fir;. 6) witb .idea.l i sat.i on (asswnption of rir,idi ty) of the rest b of 

the systen. Of !1ecessity hence not in receptance forT:! but in mod:'l form. 
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::::s is an ag!'eer.ler.t ' .. lith genera':" method of dynamic model extension. 

Cn t~e othe!' ::and this also corresponds to the practical 

cyc:es of design and r.!anufacture, using the characteristics of simplified 

syste::J. for the syste:n extens:on and if necessary for introduction of 

:~Clrt!:er ir.f:Cle!1ces. [5], [6], [7], [8], [9]. 

kSSeSS::le!1t is at the same tir.le obtained of this influence on the 

':::asic d:.rna:::ic quantitites i.e. principal r.lodes and natural frequencies 

of the ~air. subsystem (the sir.lplifieti syster.! with rigid supports). Block 

diae:;rarr. is for this method shown in :.'ig. 6a. 

The bloc~ diagr&~ for the subsystem b is as before. It is Detter 

:IOW to e;ive its dynamic description in the form of dynamic stiffness 

::;atrix [kJ. 

[~l 
abrs -is 
-- e rs 
'los (17 ) 

':'he subsyste::J. a distinguished in this consideration (Fie;. 6a) the 

rotor for example, is descri6ed with its ::lodal functions f. fulfilling 
J 

end conditions of the subsystem a (Fig. 6a) correspondinG to ideal 

riEid support and with corresponding natural circural frequencies a .. 
J 

Then the modal funct ions Fk of the S8lY,e rotor supported flexibly are 

found 6y :..;uperposition of motion of the shaft as rie;id body on its 

vibrations with riEid support. 

~or O!1e span rotor is 

F 
k 

1,' .£:-z + F' £ + t Bk.f. 
• kl 9. kz Q, • 1 J J 

J= ' 

The compo:..;ition conditions arc now 

(18) 
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1. ( 1 9) 

Where T are shearing forces for the subsystem a. 
a 

2. The continuity conditions requires again the same displacements. 

An example of application of the mixed method is given in chapter 

~4 for fluid film influence on critical speeds. Direct method is 

applied in following examples. 

For multi-supported mu::'ti-discs or cor:tinuous rotor systems with 

flexible supports approximate methods are more effected than those based 

on the solution of vibration equation. Rotor is divided into a nUP.lber 

of segments and the mass of each se~ent is concentrated at its ends 

(Myklestad - Prohl's Method) or in its middle (Finite elements method). 

Deflections and internal forces for the segnents far-end are expressed 

by their values at its other end and a numerical procedure is applied to 

fulfil given end conditions. 

4 Myklestad-Prohl's ~ethod. 

A method based on Ho!zer's approach can be used for calculating 

transverse natura: freque"cies a~d principal ~odes for s haft or tea.'":!. 

~ ~J~1: F; f+ :: f--. ---=----. -----4. -t ~1 
I I 
i 

L X I • i a X.2 .. I .. 

Fir'. 7a 
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k" • Ig. 7b 

The shaft is di videa into :; segments each of possible constant 

radius (Fig. 7) and concentrated masses are located at the ends of 

the segments. Flexible supports are introduced at each of the masses, 

only those actually existlng will however have stiffness coefficient k n 

different from zero. This Gives the possibility of introducinG any 

nwnber of flexible supports (bearings) and simplifies progranuning. 

The deflections and forces at the n + 1 cross-section are expressed 

by their values at the n section (Fig. 8) 

v 
'n+1 

1>n+1 

T n+1 

X2 

"n + Xn+1 "n + L ~ '.! 
'I' "2 EJn+1 "n 

x 
~ +~:.l 

n EJ n+1 n 

M + X '1 
n n+1 n 

+ ~ '1' 
EJn+1 n 

T 
n 

2 
+ maY - K Y n+1 n+1 'n+1 n+1 

x3 
1 n+1 + ----'1' 
6 EJ 1 n n+ 

K y4 
n+1 n+1 

3EJ n+1 

( 20) 
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o. 

L--- --- . -.-
;Ynf'1 

, )( , ---
b. 

t! Tnf'I 
~Y m" +~ ., 

.-
)( 

Fif,. 8 

265 

:'e:ldint:; F..oments :.j , :~ U:1d shearing 
o J 

forces m 

" 0 ' 
at the shaft 

ends. Using eqt:ations 8 and 

moving from segment to se~e:1t, 

everyt~ing is expressed by the 

def:ection Y and deflectio~ angle 
o 

c at the starting shaft end. 
o 

Eventua:ly also :i~ and 1.1;; are 

expressed but these are vanishing, 

hence, the following equations are 

obtained. 

'T': Ao + BY = 0 
:J 0 0 (21) 

!·~H Co + :lY 0 
0 0 

Two cycles of computations are required for finding the coefficients 

A, B, C, D values corresponding to each frequency a 

The end conditions for x = 0 are for the first cycle. 

1) Y = 1 T = a 2m k 1 ,', = 0 0 = 0 
0 0 0 0 0 0 

For the second cycle they are 

2) Y = 0, T = 0, r~ 0, 0 1 
0 0 0 0 

The coefficients are hence 

A = ('.i' .l at 0 1 
!~ 0 

C (:,) at 0 1 
0 

Y 0 
0 

Y 0 
0 (22) 

B (T ~,) at 0 0 ., 0 
(:'\1 ) at 0 = 0 

0 

y J. 
0 

Y 1 
0 
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':'r.e abo're coefficients are f:mctions of frequency Ct.. Equations 

(21) can give for 5 and Y non zero solutions only when their 
o 0 

deter.:l::'nant va::ishes. 

IV 

Put 
CJ=w+H 

Put 

~(~) = AD - Be = a 

w =W +O.IH 

FIg. 9 

c.ompuf fO,. 
Wo~wt UJkon 

H, -accurac.y 

H - .step 

(23) 
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Its roots a, give the natural circular frequencies of t~e rotor. 
1 

principal modes are described by corresponding deflection Y. 

The net hod is convenient for programning for co~puter. 

Flow diagram i::; given in Fig. 9. 

Its 

An example showing support flexibility influence on consecutive 

four modes and corresponding natural frequencies, for a shaft sr.own in 

Fig. 10 is eiven in Fig. 11 for first mode, Fig. 12 for 

second mode, Fig. 13 for third mode and in Fig. 14 for the 

fourth mode. 

• 
. -----;. -= ~. - t-- . 

l') ~~ ~t 
<::> ~ ~ () <:::l C) -;;j, ~ ""' C\, \(j ~ -Q: ~ ~ ~ 

300 500 300 300 500 300 

Fig. 10 

267 
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~F: ==E::::::::. ==:FI ====;::1k==E=·3~ 

=:J ~ I<p a 3.92N/mm 
'w;75~-1 ~ 

~Kp:31.4 
W=211 ~ 

~ ~ --==-=-w-- <";'336 Kp:25/ 

w:215 ~ 
~K~ 

Fie;. II Fig. 12 

~~Kp'3.92 
w=201 ~ 

Fig. 13 Fie. 14 

The consecutive modes for the shaft supported riGidly are repeated 
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in Fig. 15. 

5 Rigid Finite Elements 

-+= Method. 

Specially convenient for 

programming and applications for 

interconnected rotor systems 

(with couplings) on flexible 

supports is the following 

approach developed by J. 

Skoraczynski [11] and based on 

Kruszewski's considerations [12]. 

The given rotor is divided 

w=13f1 
into sufficient for necessary 

accuracy, number of segments of 

constant cross-section (Fig. 

(16a) . Each section is then 
Fie. 15 

modelled as composed of two rigid 

parts connected by spring elements modelling bending and shearing 

contributions (stiffnesses) to deflection (Fig. 16b). Bending and 

shearing connecting springs stiffnesses are defined in Fig. 17. 

Equivalence of both actual element and its model requires equal 

displacements at equal forces. This gives for the bending spring 

(Fig. 17 a and b): 
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/i-I I, o. 

b. 
y 

t--___ -+-xc i+:L ________ , _____ C_._~ 

Fig. 16 

:.1. R.. M. &T. 
0 1 1 

0 1 1 1 --- = ':1- hence ~i = --ri 2EJ. zi ~i !I.. 
1 1 

and for the shear s:lring (Fig. 3.9.17 c, d). 

T.lI.. 
= -..!.......!. 

Y ri GA. 
1 

T. 
_ y _ ~ _1_ 
- zi - kTi hence k.ri = 

GA. __ 1 

!I.. 
.l 

I i ~I 

The rotor element between two connecting elastic elements is 

considered rigid and its mass is represented as a disc of mass m. 
1 

and moment of inertia B. with respect to its diameter. 
1 

presented in Fig. 16c is hence obtained. 

A system 

Each of the rigid elements may be supported flexibly (Fig.16c) 

at a given position, with only the actual supports ilaving sLlffness 

K different from zero. 
K 

In this way complete symmetry is obtained 

-X 

(24) 

(25) 
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c.d. 

Fig. 17 

271 

that gives simplest programming 

for computer analysis. 

Ltigrange's equations 

_a (a.E) +.§i.. = 0 
at a~· ay. 

i 1 

:. dE 
Zit (a 0. ) 

1 

~" cJv 
+­Clo. 

1 

o 

(26) 

wlth the energy expressions for 

the described system of rotor 

elements, 

E 

v 

• 2 . 2 
I m.y. B.o. 
L _1_1_+ ~ 

i=l 

I-l 
L 

i=l 

2 2 

K K.. (y +c x. )2 
L Kkk K 

k=l 
2 

+ 

(27) 

give the equations of motion in matrix form 

Mz + Kz = 0 
(28) 

with the elements of the matrices of the form 



1.11. 

0 

M= 0 

0 

0 

o 
K= 0 

o 
o 

\ 

0 

0 

0 EJ 
0 0 

0 0 

0 KL,i- 1 

0 0 

o o 

M .. = 
1,1 [

mi 0 1 
o B. 

1 

0 ~l 0 
, 

0 0 1 
i 

0 1 

arM:] 
0 0 

0 
--- ---

K I, L Ki)ltl 

o 

0 

0 

0 

'. 

0 1 
o 
01 
0; 

I ~ 
.~"'" .J 

-k_. I x . I ] --T1- r1-

- . + . x. x. ~l-I ~l-I r1-I ~1 

Z.A. Parszewski 

i~i-I + ~i + ~i 
K .. = i 

1,1 I 

l-~. IXo' + k .X . + ~.X. 
-~1- ~l r1 r1 -~1 1 

-~. IX o' + kT·x . + kp'x, J -~l- ~1 1 r1 1 1 

~i-I + ~i + ~i_IX~i + ~iX~i + ~iXi 

J-~i 
K-l l,i+l -k_.x . 

-~1 r1 

+~. x . I l -~l ~1+ 

-~i + ~i xU+l Xri_ (29) 
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Vibrations in principal modes are harmonic 

z = A sin at (30) 

Hence principal modes and natural frequencies are given by the equation 

(31 ) 

There are handy methods and computer programs for findine the eigen -

values (natural frequencies) of equation (31). 

6 Interaction with Real Supportine Structure. 

To introduce the influence of real casing and any supportinr, struct-

ure of any mass distribution (Fie. 18) 

necessary. 

a. 

/ 

b. ~ 

Fig. 18 

dynamic stiffness k (w) is 
kp 

Tile stif:r.ess matrix alonG the connecting co-ordinates (at the bearings) 

is inverse with respect to the receptance matrix (see 1) 

[K] [C]-l 
r r 
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The last one can always be measured if not computed as it was explained 

The elements kkP(w) of the stiffness matrix are hence known 

as function of circular frequency w. 

in 1. 

Receptance for the rotor free in space (Fig. 18c) can be 

computed with all the Kk = O. 

With harmonic excitation ~ applied to the element p at x giving 
p p 

displacement Ykp of element k at xk will be the receptance 

c = Ykp 
kp :? 

P 

Then kkp is the kp element of the matrix [kkpJ 

Connecting equations are hence 

(32) 

Equations (32) replace now previous equations (31 ) Their 

eigenvalues depend however on the assumed frequency and/or rotor speed w. 

Critical speed can hence be found by repetitions leading to w + a. 

7 Water Feed Pumps Vibrations and Corrections Analysis: 

Final element method, described in the point 5 was used for 

follow-up analysis of water feed pumps vibrations elimination problem. 

Not all the system parameters were known, hence it is the 

effectiveness of the applied remedy that is the analysis object rather 

than the actual speeds or frequencies. 
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,- 1460 165 3650 178 1065' 

I 

Fig. 19 

The pumps, (eg. Yalourn W2 (Fig. 19) ), developed severe 

vibrations of over 2Omm/sec at working speed of around w = 630 rad/sec 

and all went out of commission. External sealing were damaged. Second 

critical was responsible. Exchange of the flexible coupling (Fig. 20) 

between the pump and gear box, for another of about half the mass, lowered 

the vibrations, in all cases, to the level of 3.5mm/sec. This was 

achieved however after lone periods of test trials and errors by many 

home and overseas experts. 

~he following shows how easily 

the analysis applied in advance 

could have saved co~siderable 

numbers of menhours and could have 

given i!1crca:.cd numbers of ::\ega-

watts-hours. 

7he pump cross section is 

ne:. 20 21 Dimensions 



276 Z.A. Parszcwski 
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TABLE 

ASSES5ED A55UI1EJ) 

moss mOYYl€nf of Ng kg . 2 
Inerha kgm 

Stiffness of fhe kM= I lo.6Nm/rd 

I 60 06- coupling membrane5 kr =/i09N/ m 

pump 2 60 0.5 

3 60 05 
I; 60 0.5 

BeaTIng sliline5s k:klk3' k~ 'ZI0 8N/m 
f---

Working speed w: 630s-1 

._----- -. 
5 2 !Y- 0.1 E. 0206 Io.12N/m2 

coupling 6 100 OA 
- (; 081423 10. "N/m 

2 

7 25 o I 
gear 8 40 0.2 0' 3 3 

71S 10. kg/m 

No kg 
morne., f bend ,,'" 9 .5pr' n 9 shear" spn ng 

ma~s 
of inerrio kgm 

2 
sr, ffnes5 Nm/rd srlffne55 N/m 

I 13 7 0. 071S 0./64710. 7 0//54 10. 10 

2 28 '3 0. 4<167 0.54'16 10 7 0.2473 10. 10 

3 BI8 06626 01264 /0 8 05744 10. 10 

4 73 I o 5263 01264 10.8 05744/0. 10 

5 73 I 0.5273 o /264 lOB 05744 10. 10 

6 8/7 a 6798 0.540.810 7 02465 10. 10 
.-. -----

7 371 0.60.62 03639 10. 7 0../613 ./0 10 

8 469 03972 /10. 6 I 10 q 
--.-

'3 lOa. 0.4 /.10. 6 1·10 9 
-- .--. ------ -------

10 321 0. II; 13 0. 316 7 10 7 0_ 221 9 10 10 

1/ 142 00804 0.316710. 7 OZ21Q 10. 10 

12 54.2 0.280.7 03/6710. 7 02219 .10. 10 

13 14.2 0.0845 0.316710.' 0.2219 10. '0 
-- .-r----.-

14 7. I D 0.100 - --

Fig. 23 
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and nasses assessed from that drawing are given in Fig. 22 and the 

table. The table gives also assumed values. 

The final rigid element model is shown in Fig. 23 together with 

the table of ·/alues. 

i'{esults: Computed first three principal modes and natural frequencies, 

for the system with heavy coupling (i.e. before correction) are shown in 

F'ig. 24 together with approximate mass distribution of the coupling. 

Frequenc!J :. 28705 rad/s /2/6 48 

No 
01 5 

t------1r---- ---- ------;----------i 
6 100 i 04 

7 25 01 
'--_--'--_-4-__ 

662 69 

Fig. 24 

.- --_ ... _-- ---------

~~;:=Jl~~... ..~_\ 
Frerq,.uen<.':j = 288.53 rod/s 122861 ,-- ---- -~ 

I~~' 
----------- - - - - - ---

920 45 

Fig. 25 
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Second critical is close to working speed. Corresponding nodes and 

279 

frequencies for the system with the light coupling (i.e. after correction) 

are shown in Fig. 25 with the assumed mass -distribution of the 

coupling. 

Second critical was increased by 30% and lies at a comfortable 

djstance over working speed. First and third criticals were hardly 

chaneed. Resonance diagram for the coupling (elenent No.9 in Fig.~J) 

before (diap.ram a) and afte~ correction (dia~ram c) are given in Fig. 

26. Hotor response to unit inbalance of the coupling at working speed 

is shown in Fig. 26b before (continuous line) and after correction 

(broken line). 
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CHAPTER 2.10 

DYNAMICS OF MACHINE FOUNDATIONS INTERACTING WITH SOIL 

L. Gaul 
O. Mahrenholtz 

Introduction 

A method for calculating the globdl three-dimensional dyndmic re­

sponse of machine foundations interacling wilh subsoil and excited by 

rotor unbalances is presented. Fig. 1 shows a low-luned steel foundation 

with a concrete rafl. The light upper steel plate on flexible columns 

has the advantdge to minimize the dmplitudes of shaft whirling relative 

to the bearings. 

Formerly, high-tuned concrete foundations were dominating. Now, all 

foundations - except some special cases - are low-tuned. This development 

is influenceu by Lhe lIeeu or space for auxi 1 iary aggregates belOl~ the 

foundation plate. 
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Dynamic response results primarily from rotor unbalances, short 

circuit moments, shaft misalignment and seismic excitation. A dynamic 

analysis shall predict the amplitudes of vibration. The contents of the 

present contribution on this subject is listed below: 

o Analysis by 

- direct method 

- substructure method 

o Substructure behavior of 

- frame foundation 

- subsoil 

o Lumped parameter model of soil 

o Response of frame foundation 

- on subsoil 

- on piles and subsoil 

- interaction between adjacent structures 

2 Analysis 

Soil-structure internction analysis based on the direct method treats 

structure and soil in a combined analysis. Discretization by finite ele­

ments is used throughout (rig. 2). Due to the halfspace geometry of soil 

the analysis is restricted to plane and axisymmetric problems. At the 

lower rigid boundary undesired reflexions of waves generated by the struc­

tures occur trappinq the energy in the finite model domain. This leads 

to errors in the response. The so-called geometrical damping due to three­

dimensional wave propagation can only be approximated by viscous dashpots 

in a plane model. 
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Transmitting 
Boundary 

Fig. 2 Soil-structure model of direct method 

II 
{p} 

L. Gaul - O. Mahrenholtz 

Transmitting 
Boundary 

Free Field 

Viscous 
Boundary 

The substructure technique presented here provides solutions for 

three-dimensional displacements of structures which are of importance 

concerning machine foundations [3J. The substructures are machine foun­

dations and soil (Fig. 3). Dynamic stiffness matrices describing elastic, 

damping and inertia properties of the substructures are evaluated sepa­

rately, thus reducing the number of degrees of freedom. In a second step 

the substructure matrices are coupled at the interfaces between soil and 

base plates shown in Fig. 3 by continuity conditions of displacements 

and by the reaction principle of generalized forces. 
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II 
{U} 

Fig. 3 Soil-structure model of substructure method 

3 Substructure behavior 

To evalu~te the global vibr~tion behavior of a fr~me foundation ~ 

simplified model (Fig . 4) is treated. This substructure consIsts of a 

machine on the upper plate excited by inertia forces of the unbalanced 

rot.or . lJprer plate and base plate 8re connected by viscoelastic columns. 

The halfspace reactions are reduced to point B of the interface . The 

motion can be described by SIX displacement coordlnates v., u · and the 
I I 

six angles describing small rotations ¢ i and ~i of upper plate and base 

plate, respectively. 
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Fig. 4 
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....... 

Excitation 

Frame foundation on halfspace 
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a. = 1 • • p 

C1 w, 

Base 
plate 

The linearized equations of motion for small rotations are formulated 

by the Newton-Euler approach (Table 1, eqs. ( 1 ) to (5) ). For 

example, Euler's law for the upper plate contains inertia terms on the 

left-hand side. The coordinates of the inertia tensor 1D. correspond to 
IJ 

point D. M is the mass of upper plate and machine. The right-hand side 
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contains, as indicated in eq. ( 1 ) the moment of excitation and the 

moments of the column reactions. Eq. (2) gives Newton's second law: 

Mass times acceleration of the center of gravity equals the resultant of 

the force of excilation and column reactions. 

The column reactions are related to the genernlized displacements 
a 

by lhe dynamic stiffness matrix [K] of column a ,cq. (3) 

Uppe.Jt plate. 
D c 
I. 1l. + M e ijk r. 

1.1 .1 .1 

c ., 
M(~i-eijk r .1 ¢k) = 

Co~wnn-6 

A 
J 

1.1 J 
+m 

M. s a 
1 s 

p 
IF = 

r·,. 
IF 

P 
I 

r 

r 
e iJk x 

j 

B a 
p F Ci. F 

vk = L (e k r. + M. ) + 
Ci.= 1 1.1 J k I 

B 
L 

0.=1 

a r 
r. + K. exp (i ,,)t ) 

I I 

~1 

LJ1-e Imn . .0. 
~ K i 1 J 

"-

"1 

v1-e Imn 

.. :) 

- i. \ r: k Uk = x 
:1= 1 1.1 .1 

('1 

x m 

'1 
r m 

':' 

Pk 
~i 

.. 

A .. 

n 

n 

+ 
c. 
r·,. ") - (r~ 

1 

D 
1 . exp ( i wt ) ( 1 ) 

1 

(2) 

T D 

~/1l;: ~-p 

(3) 

(4) 

Fl 
0 

B\ 
Fk + e .. x 

j J 
1 IJk 

(5) 

Table 1 f'r;:lITlC foundalion, equCltions of rlotion 
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Analogous lo the equations of motion of the upper plate, those of 

the base plate are given in eqs. (4) (5 ) . The inertia, damping 

and elastic forces are combined in a dynamic stiffness matrix correspon­

ding to time-harmonic motion. This describes the substructure behavior 

of the frame foundation. 

Now, the substructure soil is treated. First, rigid base plates are 

modeled, later on the generalization for flexible plates is explained. 

Fig. ~ shows the free body diagram of halfspace surface. The plane inter­

faces are excited by forces and moments generated by the superstructures. 

Compared to the direct method, the halfspace is not discretized in depth. 

Fig. 5 Mixed boundary value problem for soil 

The interaction is formulated as a mixed boundary value problem of 

continuum mechanics. The field equations of soil are integrated: 

displacement boundary conditions are prescribed at lhe interfaces 
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a stress-free surface is required elsewhere. 

Rigorous formulations of mixed boundary value problems by dual integral 

equations restricted to simple base geometricies can be given [2,3]. 

Here, a superposition method provides solutions for arbitrary shapes of 

base plates and allows for taking flexible base plates into account. 

4 Lumped parameter model of soil 

Arbitrary shapes can be modeled by subdividing the interfaces into 

rectangular surface elements. The continuous stress distribution in the 

interface is discretized into constant pressures in one element, acting 

harmonically in time (Fig. 6). Each loaded element defines a stress 

boundary value problem of the halfspace. To bound the influence of shear 

stresses in the interface 

a perfectly smooth contact where the shear stresses vanish 

a welded contact where the in~lane displacements u, v vanish 

are assumed. 

Analytical solutions of both boundary value problems leading to dis­

placement influence matrices are obtained then. One element of this matrix 

gives the displacement in the middle of element k due to the loading of 

element t (Fi~. 6). The total displacements are found by superposition. 

The displacement boundary condition is locally fullfilled in the center 

of each element. It requires plane interfaces of both bases. This super­

position converges to the rigorous formulation with decreasing size of 

elements. Additionally, the resultants of the interface stress distri­

butions must be equivalent to the halfspace reactions (forces F and z 
moments M , M ). 

y x 
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-------- .---~ 

F iq. 6 Dynamic interaction of base I - halfspace - base II 

The dynamic interface stress distribution as well as the relations 

belween halfspace reactions and qenerali7ed displacements at the inter­

f,lces are evaluated, leadinq to the dynamic stiffness matrices of the 

substructure soil. 

Flexibility of the base pbte can be taken into account by subdividing 

the plate into fini le elemenl~; and coupl inq nodal force~; and disp13cernents 

with lhe haJfspace. 

The solulion of lhe Slff~SS boundary value problem of [JrlP sur-fClce 

(demenl of lhe inlerfaccis qiven bel[ll'J (rable~; 2-4, f>q~;. (6) to 

(20) ). Compart>d lo eb~;t ic halfspace lhcories a better approximalion 

of lhe rhf~oloCJical pr()perlle~; of the soil IS qiverl hy U~;lrllj the theor} 

of viscoelnsllcily. I t.urns out. that enerqy dis~;lf)alion in tile ~;od by 

material d3mping is of ('om;iderahle influence VIIlf'fl till' LJ(~()rlet nc,l! dampirH] 
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by wave radiation is small, especially in the case of rocking motion. 

The constitutive slress-strain relations of hereditary integral 

type express the dependency of the stresses in viscoelastic media on 

lulal hislury of strains with fadir.g memury property of materi21 (Table 

2). The fading memory properties can be measured by relaxation functions 

of shear G(t) and ccimpression K(t) corresponding to the deviatoric and 

the hydrostatic states of stresses and strains. ~e~ton's and Boltzmann's 

laws lead lo the coupled viscoelastic equations of motion in terms of 

displacements u .• These can be decoupled by a decomposition of the dis-
1 

placement field into two wave equations describing dilatational and 

rotational motion. A completeness theorem is given in [3]. 

Steady state harmonic motions lead to reduced ~ave equations descri­

bing complex amplitudes of ~ilatation and rotation with the frequency 

o3pendcnt complex moduli of shear G* and plane dilatation ED instead of 

the relaxation functions (Table 3). The solutions of the wave equations 

describe dilatation and shear waves. The displacement field and the 

stress field are superimposed by these solutions. The complex functions 

of integration A, Bk have to be determined by introducing boundary 

conditions. 

The stress boundary value problem is solved by superposition of 

basic harmonic solutions (Table 4). These basic solutiolls correspond to 

an exciting stress ~ave at the halfspacc surface. The halfspace response 

is a vertical displacement Navc. The amplitude and the phase behavior 

are expressed in lhe complex wave compliance equatinq the complex dis­

placement amplitude lo the complex stress amplitude. 

The compl ianee corresponding to the elastic halfspace (115=110=0) as 

far as welded contact ut lhe surface is concerned has n pole when the phase 

velocity of the stress vmve v [~qurlls lhe sheriI' l~ave velocity vS. 
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Con~t~tut~ve equat~on~ 

t a e. ( T) 
s.(t) = 2 ; G(t-T) _lJ dT 

1J _00 aT 
(6) 

Equat~on~ o~ mot~on (-Ok v~eoeJa~t~e eont~nuurq 

au. (t) 
= 0_1 

H2 
(7) 

Co~p~etene~~ theokem: Decomposition 

u (t) = <p (t) + e. 'k Wk ,(t) 
1 ,1 I J ,J 

(8) 

decouples equations of motions in wave equations 

t ED(l-T) a<p,ll(T) a2cp( t) 
r dT + F(t) = Dilatation dt) = <P,ll(t) (9) . 0 aT at 2 00 

Rotation 2 ~(t) = 

(10) 

if constraint condilion \IJk,k(t) = 0 is satisfied 

Tohle 2 Field equations of hRlfspRce 
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Hal(mon.ic. MoUon 

£ ,11 + 
pw 2 

ED*(iw) 
£ = 0 

= G. (x.) exp (iwt) 
1 J 

Reduc.ed ~~Jave equ.at:-ioM 

2 - pw 
w 

k,11 + G*(iw) w k = 0 

Re (Ct 5, D) ~ 0 , W k, k = 0 

~. = ~ + 2 e" 1 wk' = ~.(A,Bk) 1 ,i IJI< ,J 1 

a .. 
IJ 

= LED*(iw) - 2 G*(i:JJ)] ij " + G*(iw)(~ .. + k,k ~ij I,J 
-
u .. \ 

J ,11 

Table 3 Integration of field equations 
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(1 1 ) 

(12) 

(13) 

(14) 

= o .. (A,B, ) 
1 J .< 

( 15) 
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w 
St,'te.-6-6 trove at surface 

- 0 (x,y,t) = p(x,y,t) = p(B,y) cxp [i(Bx+yy+wt)] 
77 

exc i ted d.wp,~ac.ement trove 

w(x,y,t) = RS'v(s,y,(.» p(S,y) exp [i(Sx+yy+wt)] 
VI 

(JX'.ve c.omp.Uo.nc.e (we Ided contact u=v=O) 

2 2 
1/2 v v v 2 2 

_1_] (..2) [ (..2) [ (.2 n - -
- 1+ illO] v v l+ill v n v ~ s 

= = 2 1/2 l~ - Ck 1 p v S [(.2) ] 
v -l~ 

s 

Supe~rO-6~t~on: Fourier's inteqral 

00 

p(x,y) = / If p(B,y) exp [i(Sx+yy)] dS dy 
_cc 

00 

1/2 

w(x,y,t) = 2:: 
1 :: -s,V ""j 2[ ] r 

JJ H (S,y,w) p(x,y) exp ,i(Sx+yY+CcJt)] dS dy 

(16 ) 

( 17) 

( 18) 

( 19) 

(20) 

p(x,y)exp(iwt) 

~/."'v /' 

Table 4 Solution of stress boundary value problem 
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Smooth rontact leads to a pole when ttle velocity equals the Rayleiqh 

wave speed vR In order to obtain the excitinq stress distribution shown 

in Table 4 on a rectangular element, streus waves are superimposed by 

double Fourier integral. The corresponding displacement field contains 

the Fourier transform of the stress field and the wave compliance corre­

sponding to either smooth or welded contact. 

As the elastic halfspace due to the poles leads to und~tnrmined im­

proper integrals, it is complicaten to perform a numer ical contour in­

tegration in the complex plane after choosing Cauchy'S principle values 

of the integrals. Caul [2, 3, 5, 6J had the idea to inteqrate the visco­

elastic field equations in a nirect manner without lJsinq an elastic­

viscoelastic corre~)ponderlce pI' if](: iple. 

The reason i~> obvious: real and imilqinary flartu of the complex Vlilve 

compliances corresponding to smooth and ~elded contact stlO~ finite reso­

nant magnifications instead of poles (F"iq. n. The compliam:ns ilre plotten 

versus the ratio r·' of excitinq utress l'Ja"e velocity 1.0 shear I'Javn velocity. 

The integra Is ilre no lor1C]er improper I"li th respect. to trIP i nteqranL and 

can be integrated directly. Poirltmse evaluiltion of the dic;placnment field 

\'J(x,y) qives the displucernent influence matflx to be used for the ~)lJper­

pos it i on method. It ma:. be rnent loned thn t l'le I ded cont ac t I eads to re~>o­

nance connitlon at the sheClr wave velocity, smooth contact at the slightly 

slower Rayleigh WDve. 
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Characteristic displacement fields of waves generated In homogeneous and 

two-layer halfspace are shown in Fig. 8. 

fig. 9 

-._.--.., 

-~~----~-------
r, \.t1 

Fz 

Lumped parameter model 

~ 

Myexp(iwt) Halfspace 
reactions 

Halfspace 
model 

The results of the analysis can be used in practical problems with­

out detailed knowledge of the mathematical background. The dynamic stiff­

ness matrix of the substructure soil leads to simple lumped parameter 

models of soil consisting of springs and dashpots in parellel correspon­

ding to each degree of freedom of base motion (Fig. 9). The equivalent 

spring and damping coefficients c ,d of the soil model for vertical 
1 Z 

vibration of a rigid square base versus a dimensionless frequency a are o 
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plotted in Fig. 10: 

the frequency dependent spring describes restoring as well as inertia 

forces, 

the damping coefficient describes geometricRl damping. 

8r------,------.-----~----~r_----~----~------~----_. 
- C~ 

d"."r' ---------~ .' ---
C 

Smooth Contact 

---- Welded Contact 

'J o t. 

Vlscoe:astlc Halfspace .Q... = , 
KelVin - VOigt Model 

a 

2 ~s = 0 1 ~A /~~ = 2 

~ 2b x 

y 20 

o 05 10 15 00 20 

fir]. 10 E.qlJivalent spriny and dCimpinq coefficient; vertical motion of 
a riqid ba~;e 

Both parCimeters depend or1 material dampinCJ. The ir1fluence of the 

contact boundary condit ions (~;mooth Rnd welded contact) learh; only to R 

smRll difference with respect to the parRmeters of the halfspRce models. 
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5 Response of frame foundation 

Now, the substructure soil and frame foundation (Fig. 1) are coupled. 

The dynamic response of a concrete frame foundation with very stiff 

columns is shown in" a limited frequency range (Fig. 11). It is excited 

by an unbalanced rotor. The amplification functions describe the ampli­

tudes of horizontal displacements vI and ul and vertical displacements 

v3 and u3 of the upper pI ale and base plate respectively. The coupled 

rocking and sliding motions give raise to two resonant ~onditions indi­

cated by the horizontal displacements. 

The corresponding eigenmodes are shown in Fig. 12. The horizontal 

motion is strongly effected by material damping of the soil be~ause the 

dominating rocking mode causes only small geometrical damping. Contrary 

to this, lhe vertical molion causes strong wave radiation shown by the 

small resonance magnification. Hence, lhe influence of material damping 

is negligible. 

Fig. 13 displays results of the inleraction between lwo adjacent 

structures through the underlying soil. Foundation I is exciled by rotor 

unbalances. Foundation II is not loaded. The dimensionless amplitudes of 

vertical displacements in the middle of the foundation are plolted. The 

maximum amplitude of lhe nonexciled structure arrives at one third of the 

amplitude of the excited structure. The influence of small and high mate­

rial damping is indicaled comparing the full and dotted line correspon­

ding to different damping faclors of the conslant hysleretic model of 

viscoelasticity. 

Additional information aboul the dynamic loading of soil and base 

plates is given by the slress distributions in the interfaces. Fig. 14 

shows the adjacent bases loaded al a certain frequency by forces and by 

moments T and T a~ting with a phase shift of a quarter of a period of 
x y 

excitation. When the exciling forces reach their maximum the pressure 
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Fig. 12 Vibration modes of frame foundation on soil 
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distributions are governed by the real parts of complex pressure coeffi­

cients. A quarter of a period of excitation later, the moments reach 

their maximum. Then. the imaqinary parts govern the pressure distributions 

with singularities at the boundaries of the loaded rigid areas. 

Aboul-Ella and Novak [4] analyzed the dynamic response of turbo­

machinery frame foundations supported by piles or a foundation slab. They 

investigated interaction of all components of the system, i.e. flexible 

rotors, viscoleastic oil film, space frame, flexible mat, piles and soil 

(Fig. 15). The mat is composed of rectangular finite plate elements. The 

pile and soil resistance is included into the mat element stiffness matrix. 

The complex soil stiffness matrix is obtained from Gaul [5]. 

Fig. 15 

SHAF T l DISKS 

~ 
OIL FILM - r*-i+-- -~+---------++-----...., 

IN JOURNAL 
BEARING 

~I{i ii I I I i II i Iii i i iii 
PILES 

Turbomachinery frame foundation and its model [4] 

In the study of Aboul-Ella and Novak special attention is paid to 

the effects of soil-structure interaction. It was found that this inter­

action markedly affects the response of the frame as well as the rotors 

in the lowest resonant regions. The interaction reduces rotor and frame 

amplitudes. This results from the increase in damping due to energy 
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radiation in the soil and viscoelastic behavior of soil and mat. The 

interaction reduces the frame vibration more than the shaft vibration. 

307 

E.g. Fig. 16 compares vertical response of frame under bearing 

pedestal corresponding to a rotor on elastic frame and rigid foundation 

with a rotor on elastic frame and elastic fo~ndation. 
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PART III 

BALANCING OF FLEXIBLE ROTORS 



CHAPTER 3.1 

BALANCING OF FLEXIBLE ROTORS 

J. Drechsler 

Historical Background of Flexible Rotor Balancing Techniques 

When discussing flexible rotor balancing from an historical point of view, we can make 
out three classical development lines, mainly the modal theories developed by Bishop and 

Federn in England and Germany and the influence coefficient method developed in the 

USA. The classical papers on the modal balancing were published by Federn (1) in 1957 and 

by Bishop (2) in 1959. Papers on the influence coefficient approach were published by 

Goodman (3) in 1963, Rieger (4) in 1967 and Tessarzik, Badgley and Anderson (5) in 1971. 

If we look at the modal theories first, we notice that the only important differance 

between these two theories lies in the number of balancing planes, that the authors claim to 

need in order to balance a flexible rotor correctly. Federn claimed to need (N t 2) planes, 

N being the number of vibration modes that the rotor experiences on the run up to 

operating speed. This approach is logical in an historical and practical sense, when applied to 

heavy rotors which are relatively stiff compared to the stiffness of the bearinqs. Such rotors 

had to be balanced in two planes even for running speeds long below the first critical speed. 

For rigid rotor balancing rather sophisticated balancing machines were used. These 

balancing machines had a well defined bearing stiffness, so that it was possible to calculate 

the acting bearing forces from the measured vibration amplitUdes due to the initial 

unbalance. Now the objective of balancing was to cancel these dynamic bearing forces PI 

and P2 by the influence of balancing weights on these bearing forces accordinq to the 

equations ( 1) . 

( 1 ) 
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In these equations the complex bearing forces have been measured as well as the rotor speed 

n , and the influence coefficients hjk are functions of the rotor geometry only, thus the 

complex balancing weights mj . rj can be calculated by merely solving the above equation 

system. Electric circuits have been developed for the on line solution of this system. 

As rotor constructions were reduced in weight and operating speeds increased, the 

operating speeds gradually approached the first critical speed. This eventually called for an 

additional balancing plane, because the rotors developed a new degree of freedom as they 

approached this critical speed, see figure 1. The practical problem was, not to upset the 

attained state of balance for the rigid body modes, and at the same time reduce the 

vibrations caused by the first flexible mode. 

----zs:--F-----=f-~ 

-J----~ 

Fig. 1: Weight groups for rigid body and first flexural mode 

It is intuitively obvious, that the weight distribution (l - 2 1) exerts neither symmetric nor 

antisymmetric forces on the bearings at low speed. It can thus be termed a prebalanced 

group of balancing weights. Generalizing this approach for N critical speeds within the 

service speed range, this naturally leads to the N t 2 theory. 

If on the other hand the unbalance response of a flexible rotor is to be studied on a 

scientific scale, a light weight experimental rotor in relatively stiff bearings will be designed, 

because this is the most economical, most practical and safest solution. Such a rotor does 

not have large bearin9 vibrations at low speed, which necessitate rigid body balancing. Only 

in the vicinity of the first rotor critical speed the system will display large vibration 

amplitudes, which call for balancing. In this case one plane will be sufficient. As even higher 

critical speeds are negotiated, one additional plane is necessary for each new critical speed, 

which Daturally leads to the N-theory. But as we even in this case eventually have to take 

care, not to upset the state of balance attained for the low order criticals when trying to 

balance higher order modes, we have to work with prebalanced groups of balanCing weights 

here as well. 

As digital computers became available, the so called influence coefficient method was 

developed in the USA. The basic concepts for this method can be developed from the 
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equation system ( 1) . Supposing we do not know the stiffness of the bearings, we can 

calibrate the relation between the vibration amplitudes at the bearings and the applied 

balancing weights by applying test weights. The basic procedure is summarized in figure 2 

Run 

Testweight 

Response 

n = n o 

Influence 

Equation 

0 2 

PI 0 0 

P2 0 0 
complex wik' aik , u. 

I 

LI wlO w lI wI2 
p: plane 

L2 w20 w21 w22 
L: bearing, measuring station 

fig. 2: Basic procedure for influence coefficient balancing 

This procedure can obviously be extended to an arbitrary number of balancing planes 

and an arbitrary number of measuring locations. As the vibration responses are dependent 

on the rotor speed, we can even increase the number of equations without increasing the 

number of measurinq stations, merely by increasing the number of balancing speeds, at 

which the readings are taken. Thus we can wind up with a large number of surplus 

equations. Nevertheless this equation system can be seriously ill conditioned or even 

practically singular. 
Yet this eventual singularity of the equation system for a large number of balancing 

planes is not an unfortunate mathematical accident but can be physically explained and can 

even be utilized to calculate an optimum weight set, if this singularity is evaluated 

appropriately. For a physical understandina of this problem it is useful to review some basic 

results of the modal theory in more detail. 

2 Modal Balancing Theory and Orthogonal Balancing Weight Sets 

Strictly speaking the so called modal balancing methods are nothing but a reduced 

influence coefficient method. This becomes quite obvious, if we analyse the practical 

balancing procedure in detail which is summarized in figure 3. Comparing figure 2 and figure 

3 we notice, that the only difference lies in the number of unknowns, which have to be 

calculated. In modal balancing we only deal with one (complex) unknown at a time. 
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Run 0 

Testweight 0 

Response Wo WI 
n =12 1 :!! WI 

Influence -wo • wI = a l 

Equation Wo • a l u l = 0 

Fig. 3: Basic procedure for modal balancing 

At each critical speed the rotor is balanced in the same manner, but for higher critical 

speeds the test and balancing weights must be prebalanced groups of weights, which do not 

upset the balance for the previous critical speeds. If the testweight consists of a weight 
group the complex unknown u i determines, how this group has to be scaled and rotated in 

order to obtain the desired balance. 
We note, that it is not necessary to measure the responses in more than one measuring 

station, because the vibration state in the vicinity of a critical speed is dominated by the 

resonant mode shape. All the rotor responses that we might measure in different shaft 
locations are proportional to the resonant mode shape and do not supply other useful 

information. 

Thus it is not the basic procedure as such which is unique for the modal balancina 

technique, but it is the special weight sets, which are used, to reduce the problem to a step 

by step procedure. These weight sets have to be discussed in more detail, because this will 

shed some light on the problem of singular influence coefficient matrices, which has to be 

discussed later. 

The basic claim which is imposed on prebalanced groups of weights is as mentioned, 

that each new group does not upset the state of balance attained with all the previously 

attached groups. Denoting with ~i the modal deflections of the i-th mode at the selected 

balancing planes and with!i the weight set intended to balance this mode, these weight sets 

can be calculated from the equation system 

Ii. lk = 0 for i < k 
-I (2) 

= for i = k 

The number of individual weights in each group is equal to the order of the critical speed to 

be balanced. These groups can be called backward orthogonal. They are practical as each 

critical speed can thus be balanced with the least amount of effort and indeed, the time 

which has to be invested to attach test and balancing weights to a rotor is by no means 
negligible. 
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The disadvantage connected with these groups is that they inevitably excite the next 

modal component, as well as all other higher modal components. This makes it more and 

more difficult to negotiate higher critical speeds. Moreover higher order modal components 

with large generalized unbalance can have a very adverse effect on the running speed. The 

generalized unbalance uk due to a weight set !i «k > i) can be calculated from equation 

(2) • 

This problem can be overcome by employing forward orthogonal groups of balancing 

weights, each of which satisfying the orthogonality conditions 

'£\ ii = 0 for i =F k 

= 1 for i = k 
(3) 

The number of individual weights in these groups is equal to the number of planes available 

for the particular rotor. Although it seems to be unnecessary to install weights in all available 
planes in order to balance the first critical speed, the employment of such groups solves the 

problem of an optimum distribution of balancing weights. While the number of weight 

groups to be employed is naturally limited to the number of excited modes in the operating 

speed range, the number of balancing planes can be arbitrarily large. The more planes there 

are available, the better the final state of balance will be, because even the higher vibration 

modes have some influence on the residual vibration amplitudes at lower speed. 

Thus if N is the number of available balancing planes, the mode N + 1 is the first 

mode, that will be adversely affected by the installed balancing weights, provided that the 

above recommended forward orthogonality is observed. Figure 4 illustrates the discussed 

backward and forward orthogonal weight groups. 

is. 
I 

t::, l5. 
I I 

l::. 
t I I t 

I t I t , 1 , II 

r I 
T T 

I III 1 1 I , 1 

Fig. 4: Backward and forward orthogonal weight sets 

The modal balancing being a step by step procedure, obviously no attempt will be 

made, to balance vibration modes which do not show up in the vibration response. Thus the 

balancing process is naturally terminated as soon as all relevant groups are installed, even if 

lets say S more groups are available. In such a case the plane forward influence coefficient 

approach yields an equation system, which is S times singular. But if suitable precautions are 
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taken, when solving this singular equation system, even a forward orthogonal solution can be 

calculated. 

3 Modal Balancing Without Testruns 

As flexible rotors usually display a behaviour, which aqrees very well with the modal 

theory, it is in fact possible to exploit this theory more extensively than usually claimed. 

While the so called modal theory merely supplies some information on suitable weight 

groups, which allow a step by step balancing without much computational effort, it is even 

possible to balance a flexible rotor without previous testruns (6). 

According to the modal theory the rotor can be modelled by a single degree of 

freedom system in the vicinity of a critical speed, which yields 

(4) 

Wi represents the modal deflection at the selected measuring points, mi , c i ' si and ui 
represent the generalized mass, damping, stiffness and unbalance for the i-th vibration mode, 

which is defined by the mode shape <Pi (x). 
Measured deflections w( n) however are not equal to one modal deflection Wi ( n ) 

alone but contain even components of other vibration modes. But if measurements are 

taken at different speeds in the vicinity of the critical speed Wi only, we can assume that 

these contributions of other modes are constant, i.e. that they do not depend on P. This is 

expressed by equation (5) 

(5) 

Substitutingeq. (5) intoeq. (4) we obtain 

(6) 

w(n) being the time independent complex amplitude of the synchronous vibration measured 

at the selected measuring point and Wo the complex contribution from other mode shapes. 

This equation is valid for any rotor speed in the vicinity of w. Thus we can measure at K 
I 

different speeds nk ,k = 1,2, ... K in order to obtain K equations 

(7) 

Calculations on the mode shapes and the generalized mass are quite reliable, while the 
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damping and the exact critical speed cannot be calculated with sufficient accuracy to 

identify the generalized unbalance in eq. (7) . Therefore they have to be considered as 

unknown, as well as the generalized unbalance and the vibration amplitude wo ' which 

contains the contributions from other modes. Thus equation (7) contains products of 

the type s .. wand c., W . But the problem can easily be linearized by introducing 
I 0 I 0 

estimated values for Si and ci to begin with. After rearranging the equation system (7) 

we obtain: 

k = c. 
2 

I 

-nkwim -- n~ 
s. 

",rc n~ Ini - sio -ncio 0 I wk 

"[ 
k "'rc 

n' .« J Wo k Ini wk 
A lin n 2 In . irn 

k = n . rc ,. irn .- ncio n~Ini 0 -n~ 
Wo k i wk kWk wk - sio 

2 .... rc u. , 
..... im 
u 

k L I 

Apparently K, the number of measurements, has to be > = 3. If more than three 

measurements are taken into account, the result can be computed from a least square 

procedure and will be more reliable. 

Test results show, that it is possible to start with almost any values Sio and c io ' and 

that one or two iterations are generally sufficient to solve the problem. 

The generalized unbalance being identified, balancing weights can be calculated for any 

suitable set of weiqhts 1, which has to be scaled and rotated by an appropriate complex 

factor ai' in order to match the generalized unbalance ui according to the equation 

.pt a t + U = 0 
_1 I - I 

( 8) 

which yields 

(9) 

A word of caution is necessary when applying this method. It is assumed, that the phase 

angle measurements are correct. If sensors or amplyfiers introduce phase shifts these have to 

be accounted for appropriately. 

The method has been tested both on experimental rotors and large ASEA generator 

rotors and yields remarkably good results. 
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1m 

Re 

Fig. 5: Modal balancing without test runs 

4 Influence Coefficient Techniques 

The most crucial point in balancing of flexible rotors often lies in the assumed linearity 
and reproducibility of unbalance excited vibration in rotating machinery. This linearity 

often only exists in a statistical sense. This is especially so for large multispan shaft trains, 
but even applies to large turbo generators in a balancing pit. 

This means that each run of the rotor supplies us with new statistically relevant 
information on the behaviour of the rotatinq system. Looking at the vibration response at 

comparable conditions (same speed, same operating conditions, same balancing weights), we 

might find, that the measured vibration amplitudes are spread out over a certain area 

according to figure 6 

1700 RPM 
STATION 1 

K 
M M 

M 
800 RPM 

M ® 
M STATION 2 

M M M 
M 

M ® MEAN VALUE 
M 

x 

Fig. 6: Mean value and variation in vibration response 

M M 

M 

M 

Apparently it would be reasonable to use the mean value of all observations rather than 

some individual value in balancing weight computations. But even in the more general case, 

(same speed, same operating conditions but different balancing weights) similar averaging 
methods can be employed. 

4.1 Averaged influence coefficients 

When determining influence coefficients it should always be kept in mind, that the 

initial unbalance distribution can change with time, due to setting effects, wear, corrosion, 
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repair, overhaul and various other reasons. The influence of this changing initial unbalance 

on the influence coefficients is unwanted and most effectively eliminated by forming 

differences between consecutive trial runs only, as unknown changes in the initial unbalance 

are less likely, when the elapsed time interval between the considered trial runs is as small as 

possible. 

Considering now the relationship between an arbitrary applied change in the balance 

weight distribution Lu "and the corresponding change in the vibration response Lw , we -m -m 

can write down the following equation 

6u 
-m 

1. . . N 

Change in weight 
distribution • 

1. . . P [J' -I 

(X' 
-N 

Influence 
coefficients = 

6w 
-m 

P 

Change in 
vibration response 

(10) 

By establishing this equation for each observation available, we soon arrive at an 

overdetermined equation system which can be solved by the least square method. 

A' 
-

6U' 6W' - -

1 ... N 1 P 

N 

1 

M 

6U' A' 6w' (10) 

As this information generally is at hand and becomes more and more comprehensive as 

time goes on, it is just a matter of efficient data organisation to obtain really reliable 

influence coefficient matrices. The equation system can readily be solved as soon as 

M> = N, the resulting averaged influence coefficients being 

A' = [(LU)(LU)'I-I LULW' ( 11 ) 
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4.2 Averaged trial runs 

Likewise it is possible to average on the right hand side of the equation system for the 

balancing weights, in other words to identify the actual state of balance by averaging over 
the K latest representative runs available. This can even be done, if different balancing 

weights have been applied. As every measured response in the trial run ~i is composed of 

the effect of the initial unbalance ~o and the influence of the attached balancing weights 

( 12) 

we can calculate an averaged response over K trial runs to 

KKK 
Y:!av = 1/K.~ wi = 11K .~ (go + ~!:!) = go + !1 11K ~ u i (13) 

1=1 1=1 i=l 

In other words, the response averaged over the latest K trial runs is the expected response of 
the averaged balancing weights which were on the rotor during the considered trial runs. 

Of course it is not necessary to know the total weight installed in each plane. Often 
previously attached unknown balancing weights are present at the first trial run. These 
weights can be considered part of the initial unbalance distribution, so that the so called 

total weight is merely the total weight change relative to the first considered trial run. 

4.3 The Evaluation of Singular Influence Coefficient Matrices 

The influence coefficient matrix ~ can be composed of an arbitrar~' combination of 

columns ~j' which leaves it up to the distinction and intuition of the engineer, how man~' 

and which planes he wants to use for the calculation of balancing weights. 

With respect to balancing of large multispan shaft trains it seems to be an accepted 

rule, to preferently use those planes, which are close to the measuring points displaying high 

vibration amplitudes. Thus the occurrence of singular equation systems is automatically 

avoided. 

But as pointed out before, generally better balancing results are obtained, if all 

available balancing planes are used. This approach even tends to reveal the location of the 

unbalance and can be useful in field balancing of large shaft trains, because the calculated 

over all balancing weights might give more reliable suggestions as to which planes to use, 

than the above mentioned common sense approach. 

A singular equation system can be detected during the solution process of the equation 

system by studying the relative pivot element size. Figure 7 shows the situation which is 

encountered at some step during the elimination process, if the equation system is singular 
(7). 
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n-d 
-, !! -, H -, 

n A'A • !! + A'w = Q ~ 
--, 

• !!. + = 0 

d Q Q Q 

n 

Fig. 7: Singular equation system 

All elements under the broken line are comparatively small compared with the 
magnitude of the elements above it. Solving the upper part only yields a particular solution 

up and a set of d homogeneous solutions !j, d being the number of rows under the broken 
line, the deficiency of the matrix. The homogeneous solutions satisfy 

B H = 0 or H* B* = 0 (14) 

so that the general solution is 

~ = !:!p + t! !!. ( 15) 

This equation calls for additional information to determine the arbitrary constants a. 

Looking for a minimum solution satisfying 

u* u = min ( 16) 

we can calculate by plane least squares method 

( 17) 

By substituting! from eq. (17) into eq. (15) we find 

( 18) 

Premultiplying this equation with !j* yields 

( 19) 
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which means that the minimum weight distribution urnin is orthogonal to the homogeneous 

solutions H*. 

This orthogonality relationship can be used directly to calculate a minimum weight set, 
which because of (14) has to be some linear combination of the matrix B*. 

u = B* x 

Substituting this into the original upper half equation (see figure 7) which reads 

we finally turn out with 

u. = - mill 

(20) 

(21) 

(22) 

Comparing this with the usual least square solution of an overdetermined equation system 

reveals an interesting duality between the solution of an overdetermined and an 

underdetermined equation system. 
Thus we can summarize that a singular equation system ~*~ with a deficiency d allows 

to separate two groups of balancing weight sets, that are orthogonal to each other, the 

(n - d) columns of ~* containing those weight sets that have an important influence on the 

rotor behaviour in the investigated speed range and the d columns of H which contain 

homogeneous weight sets which only have a negligible influence in the investigated speed 

range. Hence these groups in !::! must be linear combinations of the higher modal weight 

groups, which are orthogonal to the dominating (n - d) mode shapes in the operating speed 

range. By composing the final balancing weight set as a linear combination of the first group 

only, we obtain a minimized balancinq weight set, which is orthogonal to the homogeneous 

weight groups. Figure 8 gives an overview of the matrix relationships and their dimensions . 

~. . !!-.!. 

H' 

Fig. 8: Orthogonality relationship between weight set B' and H 
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However according to the modal theory this is not the appropriate orthogonality 

condition yet, which states, that the modal unbalance u i (x) is orthogonal to the mode 

shapes <p. (x) and not to the modal unbalances u. (x) and reads 
) ) 

L 

J u(x) <p.(x) dx 
0' ) 

= m. , 
= 0 

the continuous i-th generalized unit unbalance being 

= J 

* j 
( 23) 

(24) 

In analogy to the continuous case we obtain for the discrete case of N balancing planes the 

orthogonality 
0 . u. <p = rn. -, -J , 

= 0 

the discrete i-th generalized unit unbalance being 

o 
u. -, 

= J 
i* 

(25) 

(26) 

where M L k is the lumped rotor mass associated with the balancing plane r: and <p the 
, -, 

deflection vector of the i-th mode shape <Pi at the N balancing planes. Thus we can even 

calculate the discretized mode shape ':Pi if the associated generalized unit unbalance u i is 

known. 

Applying this to the homogeneous solution t! of a singular influence coefficient 

matrix, which represent weight groups without influence on the rotor vibrations in the 

considered speed range, we can calculate the mode shape combinations associated with these 

groups t! by premultiplying with the inverse of the lumped mass matrix 

<I> = M- 1 H 
- -1.-

(27) 

This enables us to calculate low modal order weight groups which are orthogonal not to the 

groups t! but to their associated mode shapes p. . This can be done by simply introducing 

the lumped mass matrix ML into the orthogonality condition (14) 



326 J. Drechsler 

~ ~L 0L' !:! = ~ ~L if. = 0 or P* ~L~' = 0 (28) 

Composing the actual balancing weights !! as a linear combination of the weight set ML B* 

only, we can write similar to eq. (20) 

(29) 

Substituting this equation into eq. (21) we finally get 

(30) 

This is a balancing weight combination which balances the identified low order modal 

unbalances and is orthogonal to all high order mode shapes identified by the homogeneous 

weight groups t!. 
Thus we can summarize, that a singular equation system ~*~ with a deficiency d 

allows to separate two groups of balancing weight sets, which are mutually orthogonul to 
the set of deflections associated with the other weight set. According to figure 9 the (n - d) 

columns of Ml.~ contain those weight sets which have an important influence on the rotor 

behaviour in the investigated speed range, and the d columns of t! containing weight sets 

with negligible influence in this speed range. The corresponding shape sets ~ and H* ML I 

contain (n - d) modes shapes with important contribution to the actual rotor deflection in 

the investigated speed range and d mode shapes with negligible contribution to this 

deflection. By composing the final weight set as a linear combination of the first weight 

group only we do not add unbalance to the d higher modal components, which could show 

up in the actual deflection shape, if the exciting unbalance is getting too large. 
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Fig. 9: Orthogonality between weight sets and shape sets 
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Off course we can even introduce an arbitrary weighing matrix G instead of the mass 

matrix ~ I! which makes it possible to minimize the balancing weight sets according to 

practical limitations, as there are restrictions in the magnitude of weight which can be 

installed. Balancing weights with small weighing factors will thus be minimized preferently. 

This minimizing approach can also readily be applied to the total weight installed on 

the rotor. The orthogonal weight distribution !!orth ' which is equivalent to an arbitrary 

weight distribution ~o can be calculated to 

(31) 

Such a weight redistribution can sometimes result in a considerable weight reduction and in 

a considerable reduction of the vibration level at operating speed. 

The presented method of using all available balancing planes has been used in balancing 

large ASEA generators since 1978. This resulted in a drastic improvement of both 

production time and residual vibration level. 

5 Rotors with Intial Bow in Single and ~-1ultispan Situations 

If only the bearing forces are considered, the bent single span rotor will not behave 

differently from a straight rotor. Hence a bent single span rotor can be balanced, so that the 

dynamic bearing forces are entirely eliminated in the whole speed range. In this case the 

residual deflection consists of the initial bow only and will not change form at any speed. 

The problem is slightly more involved if shaft deflection measurements are considered. 

In this case the measured shaft deflection, the total run out, contains a geometric run out 

and a dynamic deflection due to unbalance. Only the dynamic deflection should be 

compensated. 

The geometric run out can easily be measured at low speed where the dynamic 

deflection is negligible. Then the dynamic deflection at high speeds can be identified by 

simply subtracting the geometric run out from the measured total run out. 

When balancing a single span rotor with initial bent by assessing shaft deflections and 

using the modal method without test runs, we do not even need low speed run out 

measurements, because this method would automatically identify both the unbalance and 

constant run out term. 

If the bearing conditions for a single span rotor are modified, the modal components of 

the residual unbalance change, due to changes in the mode shapes. But the total residual 

unbalance, that is the sum of all modal components is constant. 

The situation is more involved when dealing with muitispan rotors. Usually the bow 

will be different before and after mounting the rotor into its bearings due to the constraints 
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on the rotor imposed by the bearing aliqnment. Let the initial bow before mounting be b(x). 

After mounting there will be a state of equilibrium between the internal forces of the 

constrained bow c(x) and the elastic forces of the deflected bearings. 
Obviously the total elastic deflection re (x, t) of the rotor due to the bearing 

constraints and the dynamic deflection will be 

(32) 

the total measurable deflection r(x, t) will be 

(33) 

and the deflection of the center of gravity will be 

(34) 

Thus the principle of virtual work, which yields the equation of motion reads 

f Elr" c5r"dx + fIJi' c5rdx + r Sk rc5r + rMk i' c5r = 0 (35) 
c m k k 

Introducing equations (32) to (34) into (35) we find, that this equation contains 

the static equilibrium between the constrained shaft and the deflected bearings 

f EI r" c5 r" dx - f EI r" c5 r" dx - r s r c5r = 0 
b C k k C 

(36) 

Splitting off the static equilibrium (36) we obtain from eq. (35) 

(37) 

Equation (37) shows that not only the system behaviour, that is the mode shapes and 

critical speeds, are modified by the bearing conditions. Even the effective unbalance of the 

multispan rotor is influenced by the bearing conditions, if the rotor has an initial bow. Both 

the bearing mass and the bearinq stiffness influence the new unbalance distribution. 

An initial bow in a multispan rotor is usually due to coupling faults. It can introduce 

considerable unbalance, no matter how well the individual rotors are balanced before the 
final assembly. 
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PART IV 

~tEASUREMENT AND IDENTIFICATION 



CHAPTER 4.1 

VIBRATION MEASUREMENT AND MONITORING 

V. Schlegel 

1. Introduction 

Successful vibration measurement and analysis require an intimate 

familiarity with types of measurement, transducer characteristics and 

application, plus the capabilities and limitations of the diagnostic in­

strumentation. 

Since mechanical malfunctions have a tendency to disguise themselves 

with side effects and misleading disturbances, it is essential that the 

acquired data are reviewed in every reasonable manner prior to forming a 

conclusion. 

The aim of this puper is to give a general review about methods and 

effects in measlJrinq rotor vibrations, but not to present some interest­

ing case histories. 
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2. ! 'leas~Jrerr,ent dC'Jices cmd instrlJf'1entCltion 

The major t.ypes of transdlJcers lJsed in turoomachinery amllysis are 

rJlsplacefTlent prooes, velucity transducers Clnd nccelerometer. The proximi­

ty displacement probe can be conlactinc] or non-contacting devices, where­

as the velocily transdlJcers and the accelerometer have to be contactinq 

devices. The choice of proper transducers has to oe done according to en­

vironmental conditions like: 

InfllJence of oil, preSSlJre, lemperature and accessibility 

infllJence of sile and diameter of shaft 

eleclrical properties of lram;ducers (e.g. ranqe of frequency and am­

plitude, ilccuriwy, calioration procedures) 

number of traflsdlJcers in one plane. 

In the follovJinq the traw;dlJcers ilrr. descr ioed in sequence and COfTl­

pJ'f~h(~fl~;iverle~;~; according to their frequency in I'olnr vihl';d iorl rnpi-ISlJrp­

mr.flt. 

2.1 Displacel:lcnt. tran~3ducers 

2.1.1 the eddy-clJrren!. probe. Thr. probe (F iq. 1 ~ rndiates a r<J(jio 

fr£~qlJef1Cy fir.ld ill t.he imm(~diate <lrea ahead of thr. pruoe lip. As conduc­

t ive mn!.erial iflt(~r~;('ct~; thp fir.ld, eddy cllrrent~; are Cjr.nr.r'lted in lhe 

ARMORED SHEATHING "'" 

JAM NUT 

PROBE TIP-

r iq. 1 lypi('al eddy-clInt'llt proiJ(' 
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material, resulting in energy loss which is ~;en!)Pc1 hy an mwillHt.or cir­

cuil, which is modified lo provide n lincar elastical out.pul niqnal. This 

probe can be used for static qap measuremenl (axial or radial posit.ion) 

or for dynamic motion (vibration). The esscntial P1Ht of the probe is a 

small coil of wire t.hat is in thc tip of a fiberqlHss body. lhe fiber­

glass body can be mounted in !;everal differenl metal ca~;e desiqrm t.o aid 

lhe irmt.allation. The rangc of the probe is a funct.ion of tip diamder, 

in genernl ':> mm or 8 mm. Thc IHrewr t.he t.i(1, t.he lon!)cr the linear meas­

urinq rHnCJc. LJsulilly t.he prob~s cone I~.it.h an inteqrnl coaxial cable and 

conncclor. Sincc t.he sy!;tcm operat.e!; accordinq to induct.iv(~ proximily 

principlct;, t.hc probe does not. cont.act. t.he ob!;f)r-.!?d !;urface and i!; not 

affected by non-conduclimJ maleric.d!; !;uch lin air, oil, (FI!;, plastic!;, elc. 

in ltw yap heh"Jel:n t.he pI'obl: lip and t.he observed !;lJl'fac(~. 

Due lo t.he abilily of t.he eccent.ricily rHJ!;it.ion of the !;haft. in a 

journal bearinq 1.0 cham.je und!?r varyinq condilion!; of r.mchinery load, 

aliqnrnent, t.em(1erat.ure of oil and shaft., it. i!; important t.hat. U1() proximi­

t.yprobe lransducer !;,st.em ha!; a lonC.j linpar nHH1() !;ufficipnL to allot"J for 

the"e pcccnl ric i l y po" it ion chanqe!; to OCCll r ["J i t.hollt. hav i rHj ttl() !;ha ft mov!? 

out."ide of t.he lineHr ranqe :riq. 2:,. 

f iq. 2 

~ •.. 
. 

-....; .~ 
eO. ___ ~ __ 

IS IIIIfUu r 'r9 1""9' 
;·nDr.!.10f1. ",,,,_ 
11111 C:'\p:.c,,_n!.) 

Di!;plac!'rl()nt Cll:',C of " rot.or \ ibrat. ion mCl!!;ll:'irll) device I"Ji th 
rn(~Ci~;lJr i nq rar~rjP~; 
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A different. sspect is necessary when measuring smsll vibration am­

plitudes, where not the linesrity of the complete calibration curve is 

the decisive factor, but the differentisl linesrity. The typicsl devia­

tion of the calibration curve frofTl the best possible straight line for a 

lypical eddy-current probe is depicted in Fig. 3. Besides the properties 

of lhe eddy-current probes al fixed environmental conditions, there are 

deviations from lhe calibration curves caused by 

~-

~rr·or r.n~ accordP'I9 AP] 670 

.1--1 

F i q. 3 Different.ial linearity of sn eddy-currenl probe 

lemper<lture irlfluences on the ohmic and inductive resistance of the 

probe coil, 

therm<ll elongation of tIle probe body resulting in a displacement of 

the probe tip relative lo the transducer fixation, 

irlfluence of temperature snd supply vollage on the oscillator/demodu­

lator. 

Each of these effects cause errors in the vibrntion measurement in 

the range of some percent. 

Consideration must also be given to the shafl materials. The vibra­

tion signal is similar for most common shaft steel alloys. However, some 

materials have different surface areas which present varying values of 

resistivity, thus influencing the eddy currents in the surface. Depending 

on the frequency of the oscillalor used the depth of the eddy currents 



Vibration Measurement and Monitoring 337 

amounts to 10 - 15 u m. But some shaft surface treatments (chrome plating, 

metalizing, etc.) are thin enough to allow the eddy currents to penetrate 

down to see two different materials. 

The observed rotor surface must be free of all irregularities like 

scratches, rust and corrosion, out-of-roundness, chain m8rks etc. Such 

irregularities C8use a change in probe gap which is not vibration, thus 

giving rise to a signal error. On the other h8nd it is not always advi­

s8ble to grind the shaft surface of the rolor, because this can produce 

8dditional inhomogenilies in conductivily. 

2.1.2 The capacitive displacement probe. A plate shaped eleclrode 

in the transducer builds a conc1ensor wittl the shaft, l'Jh()se capacily dp.­

pends on lhe distance between transducer and shaft. The capacily' is meas­

ured by an oscillator/demodulator 8l high frequency. This mea~;urement 

principle is applicable to all electrically conducting malerials. The 

cable between transducer and oscillator must be shorl, similar lo lhe' 

eddy-current principle. This ty[)e of displacement probe is restricled to 

cases where the fluctu8te [)ermeability of (IiI within a lurbomnchine does 

not influence the gap between shaft and transducer. 

2.2 Velocity transducers 

The seismic transducers portion of the lran~;ducer ~;ystem operates 

accordin~ to the irlertipl ~ass/movinq case principle. The inertial mass 

is a co[)per-I'Jire roil I'JOund (In a bushing and suspended by sensitive springs 

inside the lransducer case. A permanent m8C)nel is rigidly at.lached to lhe 

transducer case and physically localed irlside the coil. When the trans­

ducer is properly inst811ed the vibration of the coil induces a currenl 

in the oil ~hich proportiunal lo the v~locily of vibraliorl, provided 

~;ufficient. frequency of motion i~; present.. 

This ty[)e of tramJdlJcer is mainly u"ed for measurinrj bearine:; vibra­

tions. 
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2.3 Accelerntion trcmSGlJcers 

The PlJrpose of nn ilcceleri-ltion transducer system (Fig. 4) is to meas­

lJl'F. strud.lJrH I 11101 i on in terms of acceleration. Its output is Q voltage 

proportional Lo the uecelerating along its sensitive axis of the surface 

on Wflich it is mounted. The nccelerometer uses a piezoelectric crystal 

~;i t.uated between the accelerometer base and an inertial reference mass. 

When the crYf>\.nl is ~;trained (compression or tension force), a displaced 

electric ctwl'LJe if> accumulated on the opposing major surface of the cry­

st.al, which h~l~; \.0 be ampli fied. The crystnl element acts as a precision 

spring to oppose the compresf>ion or tension force, nnd it supplies an elec­

t.rical siqnal proporLional Lo the applied force. 

Fig. 4 Typici-ll accelerution tnmsducer 

2.4. Phnse reference 

In most. cnses u transducer is installed on a machirle observing il 

once-per-tlJrn event (e.g. a gi-lb, notch, etc.) on n rotilting shaft providing 

a signal Lhat occurs once per revolution of the shnft. Thi~; pulse gi ves 

a reference for vibration data. It is a reference mark nnd time signal 

for speed, phase angle, frequency meaSlJrement ilnd illl d[lta acquisition. 
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In order to read phase angle accurately, instrumentation i~; required 

which filters the input signal synchronous to speed, because due to the 

irregularities of the shaft materials the vibration displacement silJnab 

contain very high harmonic components. Most of the commercially available 

phasemeters measure the zero crossi"ngs of the input. signals by fJhase de­

tecting, arld without filtering they would produce an incorrect readinq. 

2.5. Vibration monitors 

The monitor of a measurement syst.em for rotor vihrut.ion!; perform!; 

several funclions: 

recJulClt.ion Clnd di~t ribut.ion of power to t.he t.ran"ducr.rs 

conditioning of the siqnal according to t.he type of the selected 

meter display 

conditioning vibration siqnals to proport.iorlal recorder compalible 

signal!; 

se 1 f -check and check for pro~)er t ran"ducer funct ion i nCj 

continuous alarm r.lOnitorinr~ for excessive or olJt.-of-lirnit.!; vibr,~t.iorl 

conditions. 

3. Data presenlat ion 

3 . I . T i r'le dom;! i n 

\ ibrat.ion form ('un be s(~p,'rat('d into ll'JO cat.pCjcJrie!;: t. ir-1C base pre­

sentation and orbital presentHtion. Time hase ~resenlctlion is provided hy 

displaying transducer inputs on ttle oscilloscope in the time basc mode 

showing the complete waveform. If H motion, which is an exact ratio of ro­

tat i ve speed, i!, pre~;cnt a pha!;e mark L'Ji 11 appear t.o be locked onto the 

L'Javeform of the vibrat ion as displaJed on <'If 1 osci ]]o!;cope. I f a non-syn­

chronous waveform is present, thi~ mark will appear to move over the wave­

form. This ahilit) can he import.ant. in observation of whirl and ~~hip phe-
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nomena as well as in many rotor rub situations, where the phase mark will 

be unstable and jittery. 

The orbit presentation is provided by displaying the uutput from two 

separate prubes at 900 angles to one another and generally 450 off the 

vertical axis in the upper part of the ·casing (Fig. 5). 

Fig. 5 Vibration measurement system for one measuring plane 

In Fig. 6 the shaft orbit is depicted as an unfiltered motion. If a 

phase marker is used which provides a pulse with a decaying tail it is 

possible tn identify the procession of the orbit if this pulse modulates 

the brightness of an oscilloscope. 

Fig. 6 Typical orbit 
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The deviation of the measured vibration signal from the shaft motion 

is due to the already mentioned mechanical and electrical irregularities 

of the shaft surface. Thus, only in the case of high vibration amplitudes 

the orbit seen on the oscilloscope resembles the elliptical or circular 

orbit theoretically predicted. 

Where the 'fictitious' vibrations are present and amount to a major 

portion of the whole vibration signal, it is sometimes necessary to fil­

ter the hiqh frequency components from the waveform before making phase 

angle measurement. This can be done by utilizing two matched tunable fil­

ters with both of them being exactly tuned to the synchronous speed of 

the rotor. Dual low pass or band pass filtering is a successful mean of 

observing orbilal patterns with relatively high levels of fictitious vi­

bration. However, it is necessary to proceed with caution since the phase 

angle is usually shifted hy low or band pass filtering depending on the 

filter characteristics. But since phase measurement will usually not be 

made on the vibration orbits, this is no qreat disadvantage. 

Since the filter is tuned to the rotational frequency of the rotor, 

the initial vector is eliminating that portion of shaft fictitious vibra­

tion which is coincident with the rotational frequency or to eliminate an 

initial bow in the shaft. All higher orders of rotor fixed non-vibrational 

components of the transducer signal are eliminated through the filter ac­

tion of device. But care should be taken that no slow motion of the rotor­

foundation system is present because according to the filter principle 

signals with very low frequencies are not sufficiently suppressed. 

Once the initial vector has been compensated the remaining signal 

can be used to produce the true elliptical orbit. 

The other equipment to smooth the vibration signal is the digital 

compensator. It provides the capability to digitally memorize a slow-roll 

waveform. Once a waveform is captured it will be subtracted from all fu-
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ture dynamic ~aveforms thus showing the whole vibration changes. Since no 

filtering or pre-conditioning of waveforms was done prior to the memory 

function, the digit21 compensator processes the displacement signal in 

its complex form. But devices of this kind demand that all the fictitious 

vibration signals must not change as a function of time, shaft speed, ro­

tor axial position. 

3.2. Frequency domain 

Rotative machine response can be measured through the use of the 

Bode diagram, where rotative speed amplitude of a given measurement ver­

sus rotor speed is depicted along with the phase lag angle of that ampli­

tude vector against rotational speed. This plot is most useful in showing 

the speed of various resonances of the machine. The presence of any ini­

tial bow or fictitious vibration, however, adds a constant vector to the 

vector of vibration which may severely alter the Bode plot. 

Although sometimes the Bode diagram is an excellent way of portray­

ing amplitude and phase, there is another method available for presenting 

the same information, the Nyquist plot. 

On rotating machinery, the Nyquist (polar) plot is the amplitude and 

phase reading from a lransducer showing the response of the machine to its 

residual or deliberate unbalance as a function of speed (Fig. 7). The polar 

plots are unually made of shaft relative motion but may also be shaft ab­

~;olule displacement, casing velocity etc. They are much more descriptive 

and useful in displaying parameters of machine re~;ponse lhan the Bode 

plots and therefore have beerl used in theoretical as well as in experimen­

tal studies. Their mHin Hdvantaqe is the fact that the form of the polar 

is unchanqed when an init.ial vector is encountered, while t.he amplitude 

and phcwe of t.he Bode diagram show major changes. In addition, the appear­

ance of minor support resonances, which are barely discernable on t.he Bode 

diaqram can be detected more easily. 
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F iq. 7 Typical polar plot of rotor displacemenl during ~;tart-up 
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As a diSadvrmtarJe the polar plol requires a manual idenlification of 

~;peed at various posllions <llong lhe qraph. This mClY be <lccomplished dur­

im] t.he lime the plot i~; qeflf~rated or by comp<lrinq il to the standard 

80de plot. 
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By simulLaneously plotting two Nyquist diagrams of horizontal and ver­

tical transducers, or the right and left transducer, which is more common, 

at one specific lateral- location any variation in bearing damping and/or 

stiffness will show up as a deviation between the two generated plots. 

In the case of strongly nonisotropic stiffness and damping of the journal 

bearings the two plots will always differ. 

3.3. Signature analysis 

A very comprehensive way of presenting vibration data is known as 

'signature analysis', where the vibration signals at all speeds and loads 

of the turbomachine are monitored and depicted in a graph containing the 

amplitudes of all harmonics of the vibration signal at any speed. Thus, 

the graph delivers a complete impression of the vibration levels of a 

mach i ne (f i C]. 8). 

Fig. 8 
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A second possibility of plolling the vibratiorl speclrum is the CHS­

cade spectrum analysis. It is based on a series of spectrum plots from a 

single transducer depicting a change in one or more variables (e.g. vibra­

tion as a function of speed). The cascade plots provide a good deal of 

information regarding speclral content of the vibration signab, bul t.hey 

cannot be utilized to evaluate phase variations. 

4. Interpretation and diagnosis of measuring re!;ults 

The results of shaft v ibral ion measurements can shm'J H mul t i tude of 

phenomena. Depending on the number and type of the im;trumenl~; used in lhe 

measurement set-up certain characteristics of the shaft vibrations a!; well 

as their dependance on both, time and operatinq data carl be delermined. 

The vibrHt.ion moni tor in!] L'Jhich involves the extracl ion of fault "il]­

natures in most cases relies on the output produced by slarldard ilems of 

equipment for noise and structurul HnHlysis, 

Data analysis serves b'JO main purpo!lesj first, it concern!.> il!;elf 

L'lith the extracl ion of fHult signat.ures from background-L'Ji!;e and, !;econd­

ly, it aims to predict \'Jhich vibrntion!; a defect.ive machine is mm,t likely 

to produce. 

Host of t.he prediclive L'J()rk re~;ls on some key a~;slHTlpt.ion!, regarding 

hOl'I the s~stem l'Jil1 det.unr. it!,elf upon arri\,al of t.he faull. Tablr. : I: 
contains ~;everal e>:amples for flo"sible cause" of !,hnf"t \ibral.ion, It can 

help to int.erpret ttle result.s of measurement., Wit.hout Hny claim to com­

plr.\ef)ess, thi!; t.able I'Hl~; cumpiled as an aid for decisions and reference~, 

for the cli!wu,,!,ion and e\alualion of !,imple problems, HO\~ever, il should 

be kept in mind t.hal all the s)mptnrm; arc judyed on a qlobal basi!) L'Jith­

out any connection to quant.it.ative rotor parameter", Ihis i" left. to the 

field of f)arnr:leter identificatiun, 
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'J. ~1achinery surveillance and maintenance 

A normal operating machine will generally have a stable amplitude 

readinq of an acceptable low level. Any change in this amplitude reading 

indicates a change of the machine condition. But a simple investigation 

of amplitude and frequency alone does not provide sufficient information 

about machinery performance. Usually, a set of initial data is to be ac­

quired ~ith the machinery in a good state, so that any future change or 

deterioration in mechanical condition can be easily compared to the base­

line information. 

Most preventive maintenance programs are established ~ith periodic 

inspection of machinery and permanent monitoring of machines. Generally, 

the parameters being monitored were amplitudes of vibration on the shaft 

velocity of bearings or acceleration of bearing house. Periodic checks 

of frequency of vibration are often included as a part of a preventive 

maintenance program. 

A very difficult problem ir1 vibration analysis is the establishment 

of severity limits. machines have different sensitivities and resistances 

to vibration forces. As an example a method of crack surveillance is de­

picted in Fig. 9 [2J . 
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In order to interpret a certain range of changes in amplitudes dur­

ing normal operation it is necessary to average the measured values of a 

given interval. So a regression line has to trip preset limits. This cri­

terion is robust enough not to shul do~n a machine ~hen a small jump in 

vibration amplitudes occurs and sensitive enough to identify a developing 

crack. 

The measurement of eccentricity position can be an excellent indica­

tor of bearing VJear and um~anted condiliuns such as misalignment. Excen­

tricity position is the steady state position of the shaft in the journal 

bearings. The measuremenl is accomplished by monitoring lhe slowly vary­

ing mean value of lhe vibration siqnal which should correspond tu the 

mean distance of the centre of the shaft to the proximily probe. In prac­

tice this value is equated to the DC-output of the oscillator signal of 

the transducer system. 

6. Guidelines and standards 

For a better understanding of the behaviour of rotating machinery 

it is most desirable to standardize communication by means of a set of 

recommendations. So, in some countries guidelines and standards have been 

established. 

ISO-standards exist on mechanical vibralion of r.18chines L~ilh opera­

ting speeds from 10 to 200 rev Is [3,4,5]. These standards deal with bea­

ring vibralions measured by velocity transducers and slate specifications 

in figures of vibration sensitivity. 

In 1971 the first german guideline of the VOl appeared dealing ~ith 

evaluation of vibrations of flexible shafl.s. In lhe meantime this guide­

line has been revised and has appeared as draft in 1979 [IJ. It contains 

explanations of vibralions fUIldanenLals and diaqnosis samples Lo assist in 
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operating turbomachinery in industry and power plants. 

Besides guidelines for evaluation of vibration phenomena there is 

a german standard on vibration measurement instrumentation [6]. A similar 

paper has been issued by the API in the United Stales [7]. An ISO-stan­

dard on this subject is still to appear. 
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CHAPTER 4.2 

IDENTIFICATION OF ROTOR PARAMETERS 

V. Schlegel 

1. Inlroduclion 

Turhomarhincs do nol only posses~; t.he abilily to converl fluid 

enereJY into rolational enerqy hut. [11,,0 t.he undcfl.irable atlrihute thnt. 

their rotors vihrate. Therefore lhe mech,mical behm,iour of t.tlf~ rot.or 

ha~; t.o be analysed. Where<Js t.he inertia dist.rihution of lhp ~lhafl can he 

determincd from its geomelry, t.he stiffne~ls dislributicHl cannot- be oh­

t.ained ea~lily becau~je of jump~; in the diameler of the "haft.. In modelilHj 

lhe ~;>slem com;istinq of a rolor on ils bearinqs, lhe la~;k which present.s 

mm;t di fficult) i~; the descript. ion of t.he dynamical propert. ie~; of the oil 

film used in t.he jour·nal bearinlJ~l. In most. case~j a lirwar model, lhe sim­

ple~·,t orle, is ('h()~;en. The coefficient~; can eit.her he obtained experimen­

t.ally from very !limplified Lest. riqs ~it.h rigid rolors or hy lhe solution 

of the lineari~;ed hydrodynamic theory for oil film hearincrl. A second 

uncert.n.int.y in calclllat. inq the \ ibrHt inned behaviour of the rolor of a 

turhomachine is due to the diffirlJlt.y of "pecifyinq \'he true dist.ribution 

of the unb;11ance and the init.ial bell"! of a ro\.or. 
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1hw;, il is nol surprising that large differences between calcula­

tion and measuremenl are encountered when the rotor is run for the first 

lime. A promisinq way of making calculation to approximate reality is the 

use of syslem identificRtion. 

2. [rror definilion 

10 ennble one to compare lhe results of computation with those one 

can get from the ~,yslem identification, the analytical model should have 

lhe same form as t.he experimenlal one. 

Hence a I ine8r PHrt. ial di fferenlial equation is chosen HS lhe mathe­

malical description of the molion of a real rotor but with 8S yet unknown 

cllefficif'nt functions. Besides lhe bow of the rot.or caused by its weight 

Hn init ial bow vlill be laken inlo 8ccount. The 8ssumed reference line 

from vlhich Ule displacement. is measured is, however, the static line of 

lhe unbent roLor, so thaL the molion r(x,t) is defined as the displace­

ment of Lhe rolor from lhis line 

where 

nnd 

r 

c = 

a "\ ? 
[r(x,t.)] + -t D [r(x,t)] + L M [dx,l)J = F(x,l) 

j • a t 2 

, 'I 
dX 

n 

3 'I 

, 2 
aX 

F = f(x,t) + ~ Fk (L) 5(x - x k ) 

k=l 

(1) 

( 2) 

(3 ) 

The sliffness operalor is of fourth order Wittl t.he coefficient func­

tion A(x), which contains all the stiffness properlies distributed in the 

axial and radial directions. The damping operator D slands for all those 
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terms which describe viscous or qyroscopic forces. It is hy no means a 

linear combination of the inertia and the stiffness operator and is not 

restricted to modal damping. The operator M includes the inertial effects 

of the mass distribution. The exciting forces F(x,t) of a rotor are com­

posed of distributed unbalanre forces and of pointwise-acting bearin~ 

forces. 

The solution of this differential equation can orlly be examined by 

the actual motion of the real rotor po~nts of ~easurement. Unfortunately 

the vibration of a rotor installed in the casinq of a turbomachine ran 

only be measured at very few, unevenly distributed locations, because of 

the restricted accessibility and the possibly high temperature within the 

machine. That is why it is impos!;ible lo find vitJrat ion modes hy connec-

ting the radial displacements from measure~ent point to measurement point 

by polygons or any method based thereon. 

Thus, the vibrational behaviour of a rotor between measurement points 

has to be determined by suitably chosen interpolating functiorls (Fiq. 1). 

For the purpose of parameter identification all complet.e, orthoqonal 

functions sets ran, in principle, be used. 

lIIeasul'irHJ plUries 

acl~ 
I 

,/\ 
I I 
I I 
I I 

shape 

Bhupe 

Fiq. 1 Shape of vibration for a part.icular speed 
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Ho~ever, it is appropriate and advisable to take the eigenfunctions 

of the calculated analytical model, The better the computed eigenfunctions 

Clpprox imClle the mot ion of a real rotor, the sl:laller will be the di ffer­

ence between the real r.lotion 8nd the inlerpolation in the interval be­

t~een t~o r.Jeasurement locations. Depending on the expenditure spend on 

the calculation of the analytical model two kinds of approximating func­

tions for the experir.lental model of a rotor are at our disposal. lither 

the real, decoupled eigenfunctions of the associated conservative syster.J 

or the complex cUL'p~ed eiC)enfunct ions fron 2 discret i zat ion wi th local 

shape functions can be chosen. But both of these can only serve as 

approxir.lations, since the Clctual distribution of stiffness, damping and 

inertia differs from that used in the calculation. 

The poinls of measurement can now be rCQarded as stations in a collo­

cution, at which we demand that the chosen functions must. fit the diffe­

renlial eqlJalioll Ull(J the ~;olution of the equation must Clgree VJith the 

me~sured displacement. of the rotor, apart from st.atistical measuring 

error". l.et u,; now ussul:le a solution in series form with shape functions 

:; (x) : 

r (x, t.) = 
n 

11 

I. 
j=l 

q(t) 
J 

Hcre the L'le i yhts q. 
J 

y.( x) 
J 

are lime variable generalized c()ordinClt.e~;. 

(4) 

They (,(lrllc!in t.he dynamical part of lhe solulion and have to be determined 

by collored. i Oil 1 n ~;uch rt way, thal t.he difference between lhe approx ir;w­

Lion <Jlld the ~;olulion will be a~; ~;mcJlI as possible 8l the poinls of mert~;-

u r£~m(~nt . 

ThlJ~;, we obLlin: 

II n n 
C (,: . (x ) I D ( x \ .' r-,. :.~ . ( x f(x ~) , t .) : q + i q , 

" : "- (l ) , = 
J J " j J " J J " J=l " j=1. " j=l 

., 
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In matrix notation ~e obt3in the ordinar~ differential equation of 

second order with generalized coordinates 0 : 
'0 

M q + D q + C q = f(t) (6) 

The displacement of the rotor r(x ,t) is then given by the solution s 
of this differential equation multiplied by the shape functions ~(x): 

If we now express the error vector e by 

= 
A 

e r m m 

• <P (x ) 
n 1 

<PI (x ) • • • <:J (x ) m n m 

m ~ n 

we can pose the identification problem the following way: 

(7) 

(8) 

For given measurement values ~(x ,t) the matrices M, D and C are to s 
be determined in such a way, that the error e with respect to all 

points of measurement will become minimal in the sense of a given 

criterion. 

The identification problem has thus been converted by means of shape 

functions into a problem of parameter estimation, where the values of the 

shape functions are held constant during the estimation process. It is not 

neces9ary to kno~ the exact values of the operators M, D and C beforehand 

because the error is defined after the discretizetion 

3. Optim~z2tion method 

Since the error vector depends on the parameters M, D and C in a non­

linear way, we have a special cese of the general optimization problem of 

finding the stationary value of a functionel 
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J(x) = f (F(x)) V xED (9) 

where 

F D If( n -. IRm 

and 

f G IR fil ~ IRI 

This functional consists of t,~o successive ~;l<lppinCJJ. The inn2r r:13p-

ping F re~resents the r:1odel function and the other ~apping the error 

lcm. To forr:lulate an iteration alC]orithr:1 for a functional of this kind 

~ith a nonlinear operator F, we need an approximation. If the operator is 

Frerh~t-differentiable, ~e can expand il in a Taylor series at the iter­

alion point xk and truncate the series after the linear terr:1: 

J (x) = f 1 f Xk + f ' ( xk ) (x - xk ) f (10 ) 

If It)c ouler operator is t~ice differenliable we obtain the gradient 

of the funclioned at the i terat ion poinl r , LJsinq the rule for surressive 
:< 

J' ( x) = CJ k ( x) = f' 1 F Xk J_ F ' ( xk ) (x - xk ) IF' (x k ) ( 11 ) 

The symmetrir He~~ian m<llrix H Ciln now he expres"ed by the operator 

t Bnel ils eleriviltive~;: 

( 12) 

Hence 'ue car) lH i te the NevJton a lqor i thm 

oft he fund i (mil I unde r cons i de r cd. i 01) 
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'FO( ,TLJ (f' ) FO' ,;-lfO(. ,T fo/f, \T L xk i Cl f xk \ xk I J xk ' ,XI, J 

In the case when the operator f consists of a quadratic forn 

the Hessian matrix of the operator f simplifies to the unit natrix. 

Thus, the algorithrol reduces to the Gauf3-~ewton reltltion 
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(14; 

(l6 ) 

To adjust the unknown frequency function L~ith matrices as arquments 

to neasured dati'! the of1P"aton; in the itprat ion Cll(~orithm havp to be r('­

placed by their corresponding matrix expressions. The conpact notation 

for derivatives and differentials of matrix functions L'~ith matrices or 
I vectors as arguments, used by Vetter , proves to be extremely clear and 

useful for this purpose: 

an .. 
V A(B) - ~ k = I, ... ,p l = 1, ... ,q bke a bk,~ 

(In 
VBA(B) A k = I, ... ,s ? = I, ... , t - b p 

'\. 

k .• 

Further, two linear mappings of natrices onlo veclor!; will be emplo­

yed in the follOlIJing equation!>: 

and 

cs A = 

Both, the ro~ operalor r '· .> 

a : T 
nn-

;os m~ll ,J!; the column operator 

(18 ) 

(19) 

cs map 

any r.mtrix onto a vect.or in an un,ique and reversible ~'Jay. Here the ex­

pression 'mgt.rix function A(f3)' not. only means a function, ~;Ilich is built 
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from su~s or products of natricas of the sane order, but any ~apping of 

vectors or ~atrices. Function and argument need not necessarily have the 

S8!:1e dimension nor the same forr.1. 

We again expand the nonlinear matrix operator in a Taylor series 

and truncate the series after the linear term 

A'"B I• + dB', A'B) dA(B' _ = \ ~ + kl +++ (20) 

~Ji th the notation just introduced (OJe can express the complete matrix 

differential· dA by the derivative and the Kronecker product at d(rsB) 

Clnd t.he unil matrix 

V ( r ' T ) = A d.rsBk ; x I rsB 
k 

( 21) 

1 f we nOVJ express t.he 1 ineor approximation of the error f. ,\~here 

A cont <JIll!; the measured dutu, by 

[ = A - A(B ) - dA(Ak ) 
k 

we can wrile the error functional J as t.he Euclidian norr:1 

(22) 

(23) 

Ihe matrix repre!;ent.s t.he di fference oetvJeen the me<lsured d8tCl 

and the value!; of t.he flJne! ion of the model al lhe i lernl ion points. The 

tra('(~ of1crator rail be r(!placed by the vector operalors a I ready rnent.ionf~d 

t. r {~. i [.:: = r~;:·] C!3 ~ • I 

!Hl that after ,! !i(!colld !;uoHtitution the f"unct.iorw] J can b(~ expre!;spd 

by t.he collJr:m operalor 
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, : 
J = j cs [... ] cs (2) 

Applying the column operator to the matrix differential, the Kron­

ecker product vanishes. If we nON make use of the linearity of the colu~n 

operator, the functional can be written in its final form 

(26) 

The form of this functional is eouEl to the term of Eo. 1), so we can 

write the GauB-Newton algorithm as 

B (B ) T + j'V T A V A'-l VT A L rs k+l = rs k cs . cs > cs . cs rsBk rsBk rsBk 
(27 ) 

4. Frequency response functions 

The vibrational behaviour of mechanical structures excited by sinus­

oidal forces can be described by functions of the following form: 

N (N N " + N2" 2) -1 (no + nl" r = '00 0 + 1"" " (28) 

To fit such functions irlto the equations already derived we need the 

derivatives of some particular types of function. Applying the derivative 

operator and the column operator to inner products of matrices leads to 

expressions which contain Kronecker products. 

Here and in the following equations the differentiation arqu~ent is 

dropped for clearness. Besides the derivatives of products we need the de­

rivative of the irlverse of an aloebraic expression. Fortunately we can 

find a relation which circumvents the need to differentiate the inverse 

itself. The combination of both equations allows to evaluate the gradient 

ilnd the Hessian matrix of the frequency response function: 
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_1 , T )1 -1), 1 -1 T -1 I Vcs(A3 ~C) =:oc C x A) ,1 x cs(B : - (8 C) x (AB ) .1ksB . (29) 

Irl eslimHling the matrices in this function by the proposed iteration 

process the displacement vectors of the rotor vibration have to be meas­

ured at several frequencies D. to avoid a singular coefficient matrix 
J 

irl the linear system of equations ~hich yields the iteration step vector. 

Therefore, the errors at each frequency 

overall error 

J 
CJes 

= spur 
T 

(E E) 
J J 

1·1ak i ny use of the linearity of 

system of equutions for calculaliny 

l 
zrcsF .. ' 1 T I VcsF . ) dlrsB = 

j=l J J 

the 

the 

.f. 
l. 

J=l 

1I. 
J 

have to be summed to give an 

(30) 

column operator, we have a linear 

iteration step vector 

T V csF . csL. ( 31 ) 
J J 

The order of the coefficient malrix of this system is independent of 

t.he rllJr.1ber of r,lCaSlJrement. frequencies cmd depends only on t.he nUr.lber of 

~lcments irl the function arCJUr:lerll. 

SInce the 'Jariable~; irl t.he frequerlcy response function can USSUr:le 

complex values a linear, lHlique ,HId reversible mapping RM 

R~1 D rr pxq • lIi2p x 2q ( 32) 

is introduced to convert complex values into lheir real form 
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Thus, all lhe equations can be extended fro~ re21 nalrix oper2tors 

to complex matrices. This mapping is iso~orphic from ~hlCh follows thaL 

all computation rules including differenti,ltion ami inver!;ion re~ain vn­

~id. This property is p2rticularly ir;lport2fll if I {~vallJi;LirHJ t.he d£~rlval iv,~ 

of a conplex function L'jith respect to lhe reHl or im3qinary ["J'll'l. of 3n ar­

gument. 

Since the exci tinl] forces of a rolor arc unknOlUfl lie have to t.ake ~>()r.le 

matrix can be calcuL::ted I;i th the gre0Le~;L 3crurclCY. Denot inC) this ['f~fe­

rence by the subscr ipt :.: ~Je o~)t.a in lhe romp lex frequency re~;r)(H1se func­

tion of a rolor with lH1b,llnnce Hnd initial bmJ: 

I' = r (C . D " \ ,\J -, J :,\'" 
2 , 

l1..,' ) ~- I' 
'\ (J 

The vertor I' represent.!; ;;1l (hose r)arl~; of th[~ lilhr,l!lorl ~'Jllh 
o 

constant Clmp 1 i tudes ~Jhi rh are r;-IlJ,,~d b; UIC r;:e:lsurenrrll ~;y~;ten i:rHJ lIh I eh 

h<.ve no stHlislicd oric~n. Thea t;OUITC lIill be dl!;('IJ~;~;ed Liter. 1:le 

r.latrix ' corllaiflti the c(H1~;'UHlt c;;wpe fLHlCl!()[I~;. lhlrH; t.he r,j,JP~)lrl() Hr'1 

differcntiation needed in the Caur~-\e~'JtCJrI Jt(~r'ILI()fI. 

5. rdenl i fic:\' ion of elCJerlfLH'cllon~; 

l'Hlcrl the Iter'll. iCHl proce~;~; h,l~; i'e,-lChed L;ll~ mifllrllJ[;l of Ih[~ funcllOn,ll, 

~'Je have found the deSIred r;lil~;~;. dar.lpirH] ,lfId ~;t.lffrIP~;~; mat.rlx. l·Je no~ ~;olv2 

Lhe <l~;sociilted qIJilc~ri:lic p;C)pr~\nlIJ~ r)ro:Jlc~rl iHH~ obtair) the eiqenvalues of 

the 1(lerllifi.ecJ s:~;tef.l. 1he e!er:):'r1l~; of UlP r.ntr'x Y of th{~ conp l~;x 

r~cJht ei(jcrl\'ecLjr~; ci the' d;:,ci',~i2 ~;)~il:'r.) ('ill) tw r<;(;a;'(!ed <1" tJeic)hlimJ 

coeffiClCncs in t.he 1 ir;['ar cor ,h ir),iI lor) of the InIt.la!!: chm;erl ~;hape furlC­

tIorlS to 2\illu,:tp til(' el(j('nfurlCt lor: of the t(':;t~,cJ rotor. HlPre Hre lhree 

POSSlol!Jlles for thlc; roorcJlIl,:tc' tr,:r::,~·oj·rl;lllon: 
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real shape functions and ~odal da~ping in the identified system 

l\J(x) = <,O(x) • X (35) 

recl shape functions and arbitrary, viscous damping in the identi­

fj ed system 

-* X ] (36) 

conplex shRpe functions and arbitrary, viscous damping in the iden­

tified system 

(37) 

6. Identification of unbalance distribution 

hlhilp I'le ei()~nflJrlctions can be eV21u2ted, at lenst approxinately, 

the distribution of unbalance and initial bo~ remains unkno~n. Hence at 

the beginning of the iteration arbitrary vectors h2ve to be chosen as 

vectors for the ~cneralized unbalance nnd initicl bo~. The identificotion 

can only furnish the ~eneralizcd vectors b. 
,~ 

an(~ u", ~hich are refer-

enced to the mass netrix, DS elready menlioned. Ttle only use we can make 

or this is to confine the distribution of unbalance, if ~e de~and that 

the distribution e(x) should be expressed by a series of given func­

tions !l(x; 

n 
e(x) = 2. 

j=l 
[l. 

J 
h . (x) 

J 

The required coefficients 

linear system of equations: 

a. 
1 

(3B) 

arc obtained fron the solution of a 
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K· z = t' . 
'R u~ 

L'Jhere 

,£ 
k = r (0 . (x) h, (x) dx 

IJ .) 1 J 0 

The functio~s are the shape functions and the mctrix r·, 
R is the 
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(39) 

(L:O) 

mess matrix of the precalculation ~hich serves as an approximation for 

the true mass matrix of the rotor. 

7. Expcrimcntell irlVcslil]<'t iom; 

In addition to testing eJn identificiJtion nethod by sirHJlated data it 

is important to examine the behaviour of the al~orithn by using measured 

data from an existing rotor. Thus, measurements ~ere made on a test rotor 

LJhich sho~s 2 greater resembliJnce to turbomachines than the usual snaIl 

test rig (FiC). 2). This rotor is blJilt of three separate shafts. It 

L'Jeighs L~50 kg and has a length of 3 m. The disp12c(~ment of the rotor v~C's 

measlJred in four planes ~ith t~o proxinity probes in each plane positioned 

at 45' degrees to the vertical and at 90 degrees to each other. 

) ~ a ne )~3ne 2 )'ane .1 

, 
i~ ""'''-i1~'I"m ~ ::::J ------<" r-:i.l- : I I.: . . '--------a~ 

~,~~ '" ","-------.:..,7\\'· ~ ~--:~j~'I... I '" ...... 

- '030 --... .;. .... 0------ . -:~ ------

-.---------------3CS6------------------------

F i CJ. 2 Rolor of the model tlJrbomachinc 
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The electrical signals from the ~robes do not completely represent 

lhe real vibrRtion of the rotor but contain additional p~rts which should 

hp f'?\\pd 'firtit intJS vihrilt.ions' to avoid the misleadinq expression 'run 

put'. The y can be produced by changes of the displacement signal which are 

not associated ~ith vihrations, such as deviations of the cross-section 

of the shaft from circularity ur by the physical character of the trans­

ducer . Among minor influences, the inhomogeneous conductivity of the shaft 

AIJrface plays a major role when using proximity probes of the eddy current 

tYP2. 

The effects of lhese errors on the r;leasured signals are depicted in 

l"iqlJrc 3. 

-1,.. 
1,1 III rJ.:i IJ ,I..I! '1Ii:j I'l', . 6 

, , 

5 .', ... &t I ~)J .111:11 [. I'. 
, , , III 

160 200 
t sl 

rill I! • I! B 6 E5 .. ~ 
( ~ I!JIII ~ 5 

r..: ':;" ":1,1 I 
I!' • ~I! ~.i.I 

&;I 

I II: ij = Ii .~ 1 la r..! 5 

I ~ 
c 20 •• 80 '00 

t I sl 

l(]. 3 Vibration Aiqrwh Rt ;T1easIJring plane 5 ilt tl'lO different 
spceds 

sti 11 b!: recoqnilceJ. flJrther,one cnll nolic!: thnt ch;lrilcterist ic :)e<lk~; in 

t.h!: ,:, iqrlill r.laint.ain t.heir rtwse relativ(~ t.o thf' rpff'rC'fH'f' plJl:,p of the 
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rotor, independently of rotor speed. On the riQht-hand side of Fiq. , the 

signals from the two probes in the same plane are combined to qive a 

closed orbit showinq the shaft displacement during one revolution. The 

characteristic loops are caused hy the fictitious vibration siqnals. Be­

caU(3e in all cases the fictitious vibration remains const.cmt in Amplitud~ 

and phase it can be represented by complex and frequency invariant vec­

tors. As for the identification process, we only need to take into consi­

deration the first harmonic. 

The most suitable procedure for exl.r<lctinq the fin;t hnrmonic is to 

use the orthogonal correlation technique on the vibration siqnnl and a re­

reference siqnal. This technique produce:. the real and imaqinary part of 

lhe l'olol' vibralion. Dcpictinq t.hcflc vnlucfl in n ~YCllJiflt diarJl'am we have 

the clearest presentation of the frequency respon:.e function, especially 

because the influence of an arbitrnrily oriented initinl vector can be 

seen more clearly in a ~yqLJist. diaqrnm them by sepnrnte plot:. of ampl it.u­

de and phase. 

When dealinq wit.h rotors ~Jith non-con!,ervative and emisot.ropic jour­

nal bearinqs the '\yquist riiaqram!, of the two vibrrll.ion tran!,ducer!; in the 

same plane di ffer from each other. I n order to show th i s difference the 

plots are depicted toqether. The phase anqlps of the t.wo siqnals have been 

arranqed in such a \~ay that the anqular po:. i t ion of I.he r(~ference flul !;e 

coincides with the po:.itive real axis. 

Thi!; tf'mparature of the oil in the journal benrinqs of a turbolTlachine 

influence!, the !,prinq and dampinq constant:. of the bearino. The whole sy­

stem I rotor on journa I bear i n(p, I cannot be looked upon as H I i near sy!;tem. 

But vJhen we do so, the identification ~iclds parameter:. belonqinC] to that 

I ine2r !;)!;tem l·Jhich :l!,pro,<imat.e!; the real system best in the sense of the 

quadrntic mean. On the other hand the main Hdv;mtac]e of this identifica-

t ion method is the ease l·Jith l·Jhich nonlinear effects can be included in 

the error fund ionrll, a!; compar£~d wi th the more ro!,ular modal method. 
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In F if]ure 4 the result of the identification together with the meas­

ured frequency responses is shown. It should be pointed out that the fre­

quency responses of the two probes in this sample pl~ne as well ~s the re­

sponses of all the other probes were simultaneously used to adjust the pa­

rameters of the ~odel. 

- I 

transducer -

measured 
identlfied 

Rpm at points a 

a: 1000 b: 1600 
f: 2400 g: 2460 
k: 2530 I: 2570 
p: 3200 q: 3530 

-270" 

tr~nsdlJcer 8 

.. ..,._----
k 

to t 

c: 1870 d: 2000 e: 2300 
h: 2480 i : 2500 j: 2510 
m: 2670 n: 2880 0: 2950 
r: 3640 s: 3800 t: 4000 

Fig. 4 Comp~rison of the me~sured and identified Nyquist 
of the measurement pl~ne 4 

plots 
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B. Summary 

The method presented in this paper requires no assumptions about the 

type of the damping ~atrix and is thus not restricted to ~odal damping. 

The system ~atrices are found by an iter2tive estimation process. The 

iteration step is evaluated by a modified Gau8-Newton algorithm, which is 

extended to matrix functions. By using the identified system ~atrices the 

corresponding quadratic eigenvalue problem can be solved to yield the ei­

genfunctions of the rotor as a linear combination of the chosen shape 

functions. Further the generalized vector of the unbalance can narrow the 

possible distribution of the unbalance. 

Finally a particular error which specifically appears in rotor vibra­

tion measurement and which is subsumed under the expression' ficlitious 

vibration' can be included in the error function, thus separatin~ this 

error from purely random errors. 

9. 

1 
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CHAPTER 4.3 

IDENTIFICATION OF MODAL PARAMETERS OF ROTORS 

R. Nordmann 

Introduction 

The occurence of instability in rotating machinery may be caused by 

different effects: oil film in journal bearings, sealings, internal 

damping etc. 

A machine designer wants to know, whether a machine will run stable du­

ring operation and what size the stability threshold speed will have. 

Furthermore he needs information about the parameters influencing the 

instability of a rotor. 

Important informations about stability of a linear rotor-system are 

given by the complex eigenvalues, respectively the damping constants and 

natural frequencies. Together with the natural modes (eigenvectors) a 

valuation of the dynamic behaviour - free as well as forced vibrations -

is possible. Eigenvalues and natural modes are called the "modal para­

meters" of a system. The modal parameters normally are calculated in the 

design stage of a rotating machine. Because of uncertain input data for 

the calculation the results have to be considered critically. Therefore 
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mechanical engineers also try to find out the modal parameters of built 

rotating machines or test rotors by measurements during operation. Such 

measurements indicate the real dynamic behaviour and possibly show In 

what way the previously employed models for calculation have to be modi­

fied. 

Some years ago a combined experimental and analytical method was devel­

oped identifying modal parameters of nonrotating structures. This method 

1S usually named "modal analysis". One of the assumptions in the method 

1S the symmetry of matrices for the analytical model, which is not ad­

missable in the case of rotating systems (nonsymmetry caused by journal 

bearings etc.). Therefore improvements are necessary for application of 

the method in rotating machinery. Such improvements are treated in this 

paper and an example is given investigating the eigenvalues of a Laval­

shaft. 

2 Modal Parameters of Rotors. The dynamic characteristics of a 

rotor 1n journal bearings - shown in Fig. I - can be described by the 

modal parameters: eigenvalues and natural modes. 

jSJW;:'~ 

B~Xij ~;G 

Fig. I Rotor 1n two journal bearings 
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They can be calculated by the homogeneous equations of the rotor 

M u + C u + K ~ o 

The solution of eq. (4.3-1) is of the form 

At u = cjI e 

Substitution yields the quadratic eigenvalue problem 

o 
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(1) 

(2) 

(3) 

with 2N eigenvalues A. and corresponding natural modes cjI., if the order 
J . -J 

of the matrices is N. The eigenvalues as well as the eigenvectors mainly 

occur in conjugate complex pairs (real eigenvalues and eigenvectors are 

not considered), 

Eigenvalues: A. a. + lW. A. a. - lW. 
J J J J J J 

(4) 

Eigenvectors: ~ . s. + it. ¢. s. - it. 
':'.1 -J -J -.1 -J -J 

(5) 

The part of the solution, which belongs to such a conjugate complex pair 

can be written as 

~. (t) 
-J 

Ct.t[ . ( ) ( )' B. e ) ,so Sin w.t + y. + t. cos w.t + y. J 
J . -.1 J J -J J J 

w. is the circular natural frequency of this part of the solution and 
J 

~. the damping constant. The damping constant determines, whether the 
J 

solution u. decreases (a. 
-J .1 

< 0) or increases (Ct. > 0). 
J 

(6) 

The stiffness and damping coefficients of the oil film are functions of 

the runnin~ speed ;1. Therefore the modal parameters depend on the running 

speed, too. 
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Fig. 2 
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R. Nordmann 

In Fig. 2 the three lowest eigenvalues (circular natural frequencies w, 
J 

and damping constants a.) of the rotor (Fig. I) are plotted versus the 
J 

angular velocity 0. The intersection between the damping constant a l and 

the abscissa establishes the threshold of instability. 

The expression in parantheses { } of eq. ( 6) was defined as 

natural mode in chapter 1.' , representing a time dependent curve in 

space. Fig. 3 shows the modal shapes corresponding to the three lowest 

natural frequencies. For any point of the shaft the plane motion is an 

elliptical orbit. These orbits are different in the individual natural 

modes. The shaded planes contain the major axis of the ellipses. 

The following chapter deals with the problem, how to identify the des­

cribed modal parameters. 
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Fig. 3 ~atural modes of the rotor ln two journal bearings 

3 Identification of ~odal Parameters of Rotors. For some years 

past a combined experimental and analytical method identifying modal 

parameters of nonrotating elastic systems has been appL;pd ln alr-

craft-industry and recently in automotive industry, machine-tool In­

dustry and others. The aim of the method is to analyze a structure ln 

its elementary modes and to determine their characteristics; hence the 

name "modal analysis". It is an identification procedure working in the 

frequency domain. 

At first a number of measurement points with ~ measurement-coordinates 

are chosen for an actual structure. Test forces are 3~DLied sys-

tematically upon the structure at various points and the system response 

are measured. 
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After transformation (FFT) of the input and output signals into the fre­

quency domain, frequency response functions can be determined. 

It is also possible to represent analytical frequency response functions, 

which depend on the modal parameters of the system. The corresponding 

mathematical model normally assumes linearity, viscous damping and sym­

metric matrices etc. 

The analytical functions are fitted to the measured functions by 

variation of the modal parameters. Results of this iterative fitting 

procedure are the modal parameters. 

For application of the method three points are needed (Fig. 4) 

- a mechanical and mathematical model with given structure 

(linearity, viscous damping, symmetric matrices etc.) but 

free parameters. Analytical frequency response functions 

belong to the mathematical model. 

- a measuring device for the determination of frequency 

response functions. "Single point" excitation methods with 

a broadband-excitation are preferred today (Impact-excita­

tion). 

- a curve fitting procedure, which fits the analytical curves 

to the measured curves and calculates the modal parameters. 

Important differences have to be considered In appLying the 

method for rotating structures, for example 

- nonsymmetry of matrices (change in the model-structure) 

- speed dependence of modal parameters 

- excitation during operation of the rotor. 

In consideration of the above differences "modal analysis" is on prin­

ciple also aVailable for rotating structures. 

For representation of the method we subdivide into the maIn parts 

- ~echanical and mathematical model 

analytical frequency response 
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- Measurement of frequency response functions 

- Determination of modal parameters by curve fitting. 
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Fig. 4 Identification of modal parameters 

Mechanical and mathematical model - analytical frequency response. 

Equations of motion. We start with the mechanical model (Fig. 5), 

which can be represented by a linear system of N differential equations 

~ M u + C u + K u ~(t) (7) 

expressing the equilibrium of inertia-, damping- and stiffness forces as 

well as external forces. Damping and stiffness matrices are nonsymmetric 

and elements of them depend on the speed of the rotor. 

Frequency response functions. If one excites the linear rotor in a 

certain point £ by means of a harmonic force (input signal)/oscillating 

with a frequency w (Fig. 6), 
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COORDNATES ~ 

(j ~~ l ~ ~~ ~ 
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EQUATIONS OF MOTION 

L------ ------------1 
t1~ + C:1Il)~ + ~(\l)C! = E(t) ________________ J 

Fig. 5 Mechanical model 

EXCITATION: Fl = Fl Slnwt 

RESPO(.JSE U. = U, sin (wt-Ekl) 

Fig. 6 Input and output signals at the rotor 

R. Nordmann 
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'" F£ sinwt (8) 

further one measures the displacement (output signal) ln another point k 

~k(t) (9) 

the response behaviour of the rotor can be characterized by the ratio of 

the amplitudes of the two signals ~k/F£ and the phase ck£ between the 

two signals. 

Both are frequency dependent functions and named 

{w} amplitude frequency characteristic 

{w} phase frequency characteristic 

They are usually expressed ln one complex frequency response function 

defining the complex ratio of output-signal to input-signal 

(10) 

Hk£ (w) can be represented either by a polar diagram ln the complex plane 

(Nyquist-plot) or as amplitude ratio and phase angle ln function of the 

frequency (Bode-plot). 

As mentioned above Hki (~) is a function of the frequency ~, furthermore 

it depends on the system parameters (mass, stiffness, damping). On the 

u:~ler hand the frequency response is also representable by the modal pa­

rameters of the system. The next Fig. 7 shows an example of an amplitude 

frequency characteristic Hki in connection with the eigenvalues of the 

system. For constant running spepd ~ of the rotor, the corresponding 

eigenvalues are found by the intersections between the curves w.(n), 
J 

a.(~) and the line ~ = constant. 
J 
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It the frequency of excitation w coincides with one of the natural fre-

quencies w., a peak is expected in the amplitude frequency characteristic. 
J 

[- ----- ----------
EjG[NVA~UES. \- oJ +IW, 

I~~~~_-l.,,-_Q)_ _ \ , _____ _ 

1 . /Ll----c'Du ___ W - =c .".-""", W 
J 

~J-r=ffi ----- .---
n. constcn~! I 

,----,-----'-----'--,-

Fig. 7 Amplitude frequency characteristic and 

eigenvalues of a rotor 

In the case of high damping constants Q. the corresponding peaks either 
J 

will be very small or not occur at all. It is discernible that infor-

mations about modal parameters are contained in the frequency response. 

In the following chapter we shall express the frequency response by the 

modal parameters. 

Expansion of the frequency response In terms of modal parameters. 

It is well known that the response of a linear system can be represented 

in terms of the modal parameters (modal analysis). Expressing the frequen-

cy response, we start with the equations of motion 

servative rotor with N degrees of freedom 

.. 
M U + c U + K u 

(7) for a noncon-

( 1 1 ) 
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They can be converted to 2N first order differential equations with the 

dependent variables r constituting a 2N dimensional state vector (see 

chapter 1.1) 

( 12) 

~ 

A r B r f 

The system response can be expressed by an expansion ln terms of the 

right eigenvectors r. of the nonconservative system (see chapter 1.3) 
-J 

2N 
L 

j=l 
R q 

with the generalized coordinates q. and the modal matrix R. 
J 

( 13) 

Substituting in eq. ( 12) and premultiplying with the modal matrix of 

the left eigenvectors LT 

respectively 

\ q. - q. 
j J J 

T­
-t;J. F 
-J -

we obtain decoupled equations of motion 

W. are the eigenvectors of the transposed eigenvalue problem. 
-J 

(14a) 

(14b) 

In the case of harmonic excitation at point ~ of the shaft - written in 

complex form 

..... iwt 
{O,O, .... Fl ... O,O} e ( 15) 
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the steady state solution of eq. ( 14b) is 

A 

q. (t) I/IR./R. iwt e 
J A.-iw 

(16 ) 

J 

and 

!l= 
A 

- 2N I/IR./R. 
['; OJ 

iwt E(t) 1: J-J e 
j=1 iW-A. ~ .. 

J -J 

( 17) 

Therefore with the response at point k 

,.. A iwt 2N <Pk·I/IR.· A iwt uk(t) uke 1: J 1. F e 
j =1 iW-A. 1 

J 

( 18) 

A 
the analytical frequency response HkR. can be formulated in terms of the 

modal parameters 

iwt 
<P kj l/IR.j A uk uke ZN 1.# akR.j 

Hk,( I: 1: (19) 1\ iwt 
FR. FR.e r A iw-A. J"A iW-A. 

J J 

The expression ( 19) consists of the eigenvalues A. and elements of 
J 

left-eigenvectors l/IR.j and right eigenvectors <P kj . 

For a rotor with N degree~ of freedom NxN frequency response functions 

exist, assembled in the matrix BA (Fig. 8). 

It 1S important to note, that each T • 
row ~k conta1ns all of the left 

eigenvectors 1/1. and each column §R. -J contains all of the right eigen-
vectors <p. 

-J 

ZT <Pkl 1/1 T + 
~k2 T 

(20) --1/1 + ..... _k 
iW-A 

_I . A _2 1W-1 2 
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iW-A 
I 

¢ + - I iW-A 
2 

HI I 

H21 

Hk1 

HNI . " 

~2 + ••••. 

HI 2···· HH 

~2£ 

Hk2 Hk£ 

... 

I 
?.Q. 

••• HIN 

t-

. . 
HNN 

2N 1jJ .Q.j 
I. 

j =1 (iW-A.) 
J 

Fig. 8 Matrix of frequency response functions 

383 

(21) 

2N ¢kJ' 
~ _"--_ 1jJ.T 

j = I ( iw- A .) - J 
J 

¢. 
-J 

One row ~~ and one column ~.Q. of the frequency response matrix HA(w) need 

to be measured in order to identify all of the modal parameters Aj • Pj .~. 
of a rotor (Fig. 9). 
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Fig. 9 Measurement of frequency response functions 

R. Nordmann 

It is suffici~nt to measure only one column, if eigenvalues and 

right eigenvectors will be determined. For determination of eigenva1.ues 

A. without natural modes, the whole information is contained in one fre-
J 

quency response Hk£ already. In the last case the structure has to be 

excited in one point and the response has to be measured in the same 

point or another point. 

There are exceptions if the points of excitation or response are identi­

cal with node points of the natural modes. 

Measurements of the frequency response functions. The frequency 

response functions can be determined by measurements, too. 

In Fig. 10 the relationships between input and output of a linear system 

are represented in the time domain and in the frequency domain. In the 

time domain the unit impulse response is the connecting function, in the 

frequency domain the frequency response. 

For the determination of the frequency response we take advantage of the 
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fact that the ratio of the Fourier transformed signals is equal to the 

"" frequency response. The signals F£(t) are measured in the time domain, 

transformed to the frequency domain by means of the Fast-Fourier-Trans­

formation and the ratio is calculated. This procedure can be executed by 

efficient two channel Fourier analyzers. 

/ 
{ 

H (c.;)= u (w)/C: (....;) 
,', k i 

Fig. 10 Input-output relationships 

One could excite the system with harmonic forces (Fig. 11). In this case 

the force signal as well as the response signal are sinusoidal signals 

and therefore the frequency spectrum of both signals as well as the fre­

quency response have only one frequency line. 
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Applying forces with broadband characteristic in the frequency domain 

(impulse, random etc.) is more economical. because all frequencies of 

excitation are contained at once in a desired frequency range. 

If the rotor is excited by an impulse, both the force and the system 

response are broadband functions in the frequency domain and the measure­

ments can be carried out in a relative short time. 

With a short impulse the energy is concentrated in higher frequencies 

and with a long impulse in lower frequencies. The pulse duration, the 

frequency content and the amplitude of force can be influenced by selec­

tion of a hammer mass, the flexibility of the impact cap and thp impact 

velocity. 

Fig. 12 shows in principle the measuring device. A special hammer 

excites the rotating shaft and the force is measured. The displacements 

of the shaft are picked up with inductive displacement pick-ups. Force 
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and displacement signals are amplified and after analog-digital-conver­

sion and Fast-Fourier-Transformation the frequency response functions 

can be calculated. For further treatment the functions are stored on a 

magnetic tape. 

CIS"'LA C E:'~~n 
F2< l~ 

FI 
, 'In , I 

:-L~ 
--f 

A~PLlFIER 

Fig. 12 Measuring device 

FAST 
F~UR!ER 

TRANS­
FCri~~~ TIO~ 

FRECUE~;CY MAG-
RESPC~~SE ~~ETIC 
FU' ;CiiON TAPE 

Determination of modal parameters by curve fitting. For each rotor 

speed ~ the necessary frequency response functions Hk~(w) are present 

from measurements (Fig. 13). The corresponding functions of the mathe­
A 

matical model are Hk~ (w. Aj • akij )· 

The goal of the curve fitting procedure is finding such modal pa­

rameters Aj • ak£j - respectively ~j' ~j - to get best agreement between 

the functions HknM and H A 
'" k£ . 

A possible criterion is the minimization of the scalar function 

E L 
P 

(22) 
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Fig. 13 Curve fitting 

R. Nordmann 

This can be interpreted as a least squares criterion for the error. The 

condition of minimization of the function E leads to equations for the 

unknowns Aj and ak1j . These equations are solved by an iterative proce­

dure (linearization). After each step n the variation of the scalar func­

tion E is controlled. If the relative variation of E is less than a num­

ber c, the last values of A., ako ' - respectively ¢., ~. are taken as 
J ".I - J - J 

modal parameters for this speed. 

At the beginning of the procedure a starting vector of the unknowns must 

be chosen. 

Critical remarks. Tne above described method finding all modal pa­

rameters of a nonconservative rotor is applicable, if all measurement 

points are accessible - for example in test rotors. In this case eigen­

values A., as well as natural modes (eigenvectors) ¢" ~. and possibly 
J ~ ~ 

the system parameters (mass, damping, stiffness) can be determined. 
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In practise of rotating machinery there are only few points at the 

rotor, which allow to excite the system and to measure the response du­

ring operation. The determination of all modal parameters, the naturaL 

modes incLuded, is not possibLe in this case. 

If only the eigenvalues are needed (stability, resonances), one point for 

excitation and one point for Qeasuring the response are sufficient to 

determine at least one frequency response and the corresponding eigen­

values. 

Difficulties may arise in large turbomachinery, where a hand hammer 

normally will be to small. Other exciting mechanisms have been developed 

e.g. magnetic hammers, pneumatic hammers, snapping a loaded strap etc. 

Other difficulties may occur in the case of eigenvalues with high damp­

ing constants (overdamping), which may be equivalent with missing peaks 

in the frequency response. 

4 Example - Eigenvalues of a Test Rotor. For testing the method, 

measurements were carried out at an excisting test rig: Laval-shaft in 

two cylindrical journal bearings. This test rotor had only displacement 

pick ups near the bearings. Therefore the measurement of one column of 

the frequency response matrix ~A and the following determination of the 

natural modes ~. was not possible. So this investigation was limited to 
-J 

the identification of the eigenvalues and the stability threshold speed 

of the rotor. The results were compared with theoretical results. 

Rotor test rig. Fig. 14 shows the rotor test rig. It consists of a 

cylindrical shaft (diameter 50 mm, length 1000 mm) with a disk (mass 53 

kg, diameter 300 mm, width 100 mm) at the center of the shaft. 

A d.c.-electric motor with speed control drives the shaft, which is run­

ning in two cylindrical journal bearings with a length-diameter ratio 

BID = 0.8. 

The motor and the movable bearing pedestals are mounted on a concrete 

foundation with elastic springs. The foundation mass is 6000 kg. 

The hammer for pulse excitation has a mass of 1,2 kg. Each bearing has 
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two displacement pick ups for measuring the displacements in horizontal 

and vertical directions. 

~ ~~? I',::: v:: J\ -:­
PC,." \ .. P 

Fig. I 4 Ro tor t est rig 

~." :, ~ :;; 

•. : .. r. 

VI! ::~ ,'.-:- ,()~ . ~ , ", ::) 

: ..... v: 

Fig. 15 Measured quantities 

;'~:.' .. :,J SFcCc; /:-~ 
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Measured quantities. The most important measured quantities are 

the exciting force and the displacements of the shaft (Fig. 15). The 

Last ones contain besides the impulse response a residual synchronous 

response caused by unbalance. This part of the signal, which disturbs 

the signal processing, is eliminated by an electronic circuit. 

391 

Further measured quantities are the rotor speed and the oil temperature. 

Some results. Fig. 16 shows the natural frequencies w. and the 
J 

damping constants a. versus the running speed 0.. Without the oil film 
J 

(0. = 0) the natural frequency is 42.5 Hz. Two speed dependent eigen-

values were measured for the rotating shaft in the considered frequency 

range. The flexibility of the oil film reduces the natural frequencies 

but the oil film stiffness is relatively high compared with the shaft. 

Contrary to the damping constant a 2 the damping constant a l changes 

strongly with the running speed f!. The intersection between the damping 

constant a l and the abscissa establishes the threshold of instability. 

Instability occurs at a frequency of the rotating shaft 74 Hz with a 

natural frequency of 32 Hz. 

Besides the measured eigenvalues also calculated eigenvalues are plotted 

in Fig. 16. A finite element program was used for calculation. All im­

portant effects were taken into account. 

The comparison of measured and calculated values sl\('ws a good agreement. 

Further results are shown in Fig. 17 with other distanc P 5 between bear­

ings. There is again a good agreement between measurement and calcula­

tion. 
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CHAPTER 4.4 

IDENTIFICATION OF STIFFNESS AND DAMPING COEFFICIENTS 
OF JOURNAL BEARINGS BY MEANS OF THE IMPACT METHOD 

R. Nordmann 

Introduction 

It is well kno~from the preceding chapters, that vibrations of 

rotors with journal bearings are influenced by the dynamic behaviour of 

the oil film. Therefore in rotor dynamics investigations oil film char­

acteristics have to be considered. In linear theory the dynamic behav­

iour of the journal bearings can be described by four stiffness and four 

damping coefficients. These coefficients can be found either by calcula­

tions or by experimental methods. 

A review about calculating and experimental methods for the deter­

mination of oil film coefficients is given by Lund [I]. For calculation 

there exist several numerical methods to solve the Reynolds equations. 

Concerning experimental methods generally input signals (forces) and 

output signals (displacements) of the dynamic system are measured and 

the unknown parameters of the system are calculated by means of input­

output-relationships. 
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Most test rigs have a single test bearing, which floats on a very stiff 

rotating shaft [2,3]. The test bearing is excited by harmonic forces 

and the displacements of the test rig are measured. The determination 

of bearing coefficients is possible when there are at least two inde­

pendent sets of measurements, which can be obtained by two independent 

sets of forces. 

The here presented method is different in some essential points. It 

was first of all approved at a small '~xisting test rig. A rigid rotor, 

running in journal bearings, is excited by a hammer (pulse testing). 

Input signals (forces) and output signals (displacements of the rotor) 

are transformed into the frequency domain and the complex frequency 

response functions are calculated. Analytical frequency response func­

tions, which depend on the bearing coefficients, are fitted to the meas­

ured functions. Stiffness and damping coefficients are results of this 

iterative fitting process. 

2 Determination of Stiffness and Damping Coefficients. The new 

method was approved at a rotor, which IS very stiff compared with the 

stiffness of the bearings. For this real system a linear mechanical sys­

t~m can be modeled. The equations of motion for this mechanical system 

represent the mathematical model. We suppose that the structure of the 

mathematical model is known, whereas the parameters - the bearing C0-

efficients - are to be determined. At first the frequency response func­

tions of the real system are measured. Then in an iterative procedure 

the frequency response functions of the mathematical model are fitted to 

the measured functions by variation of the bearing coefficients. 

For representation of the method we subdivide in the main parts 

- Mechanical and mathenatical model 

- Measurements of the frequency response functions 

- Curve fitting (Parameterdetermination). 
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Mechanical and mathematical model. The mechanical model consists 

of a symmetrical rigid rotor with mass m, running with angular velocity 

n in two equal journal bearings. The dynamic behaviour of the bearings 

is characterized by the four stiffness coefficients kxx' kxy ' kyx' kyy 

and the four damping coefficients cxx ' c c c xy' yx' yy 

RIGID ROTOR 

JOURNAL 
BEARiNG 

JOURNAL 
BEARING 

Fig. I Mechanical model of a rigid rotor in journal bearings 

The motions of the rigid rotor can be described by the displacements 

~(t) and ~(t) of the centre of gravity. Because the exciting forces F (t) 
x .. 

and F (t) are appLied 
y 

only in the centre of the rotor (Fig. I), the 

system responds only with translatory motions; rotations about the x-axis 

and y-axis are omitted. The displacements of the journals are equal to 

the displacements of the center of gravity. 

The equations of motion for the mechanical model describe the equilibrium 

of the forces of inertia, the oil film forces and exciting forces 

+ 2 (c U + C 
AJ 

+ k + k ~) F (t) (1 ) m u v u 
xx xy xx xy x 

- .:- F (t) m v+ 2 (c U + c v + k u + k ~) 
yx yy yx yy y 



398 

With the following definitions 

w 
o 

2 

F 
stat 

g/t:J.r, 

mg/2, H 
o 

w n/w 
o 

t:J.r/2F , d( )/dT 
stat 

R. Nordmann 

(2) 

( ) 

the equations of motion can be written with the non-dimensional bearing 

coefficients 

ii' , 
B xx 

+ -­
W 

~" + 
B 
~ 
w 

il' + Bxy 
w 

ti' + 

~, + y ~ + Y v = H F 
xx xy 0 x 

v' + H F 
o Y 

The nondimcnsional bearing coefficients are defined as 

k 
xx 

t:J.r 
F stat 

B xx 
c 

xx 
t:J.r n 
F stat 

(3) 

(4) 

For a given bearing these nondimensional coefficients are only dependent 

on the Sommerfeld number So, respectively on the static equilibrium posi­

tion of the journal center. We can represent the coefficients in the 

nondimensional matrices 

y 
B (5) 

If we introduce a Sommerfeld number So with angular velocity w • we are 
o 0 

able to describe the system by the parameters So and w. 
o 
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frequency response of a rigid rotor in journal bearings. From the 

equations of motion the unknowns u,~ can be computed for different load 

cases. A~plying harmonic forces successively in the two directions, 

four frequency response functions of the model can be determined. If the 

exciting force is F (with the nondimensional frequency n = w/w ) y 0 

'" '" " w F ('r) F sin wt F sin w t 
y Y Y w 0 

0 (6) 
.... {F e in1 } F sin n1 1M y Y 

the following statement with the complex amplitude U* 

1E 
in1 xy in1 U (1) = 1M {~* e . I } = I ~ {~ e e' I } 

(7) 

leads to the complex frequency response 

irn 
IE 1£ 

~*e xy xy 
H 

u 
V 

in-r 
- e e 

xy ~ .. xy 
F e F 

(8) 

y Y 

which IS the response in x-direction caused by a force in y-direction. 

We obtain four frequency response functions 

1£ 2 E xx 
(Yyy 

yy ni) II /:-: (:1) H V e - n + 
xx xx w 0 

IE :3 
I! V e xy - (" + 

xy ni) 1\ /:~(n) xy xy 'xy w 0 

IE B (9) 
H \' e yx - (Yyx + 

yx ni) . H /-:\(n) yx yx w 0 

1£ 
2 B yy 

(Yxx 
xx 

"i) II /-:\(r,) II \' e - r, + --
yy yy w 0 
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wi th the denominator 

2 6 2 6 
N(I1) (y - xx 

ni) (y - yy 
ni) n + n + xx w yy w 

(10) 
6 6 

(Yxy + xy 
ni) (Yyx 

yx 
ni) - + --

W W 

The four functions contain the ratios of the amplitudes V V V 
xx' xy' yx' 

V - the amplitude frequency characteristics - and the phase frequency xy 
characteristics £xx' £ ,£ ,£ 

xy yx yy 

In the following the frequency response functions will be represented as 

nondimensional functions, for exampLe 

H 
xy 

H xy 
H 

o 

V 
xy 

H 
o 

e 
1£ 

xy V e 
xy 

1£ 
xy (11 ) 

Fig. 2 shows as an example the four amplitude characteristics V V 
xx' xy' 

V V for a rotor with cylindrical bearings BID = 0.8 and constant yx' yy 
parameters SOo and w. 

;I-~ -- ~--'~~~ 
v., __ . _____ u: I --:--~ 

! ! : : I 
o -)-- ---;----:-----;--1 

I I , I 

o 1 1/ - 2 

'I I li~!' 
t,---~~ 
~r=-N--I: -k 
o I I I 
o T/ - 2 

1 i . : I 

t ~L . i=i_-~=~-
It' I ,: Fy 

J~:~C=1~S~! 
d 1/ 2 

1/- 2 

Fig. 2 Amplitude frequency characteristics of a rigid rotor 

in journal bearings 
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Measurements of the frequency response functions. The frequency 

response functions can be determined by measurements. Similar to the 

calculation procedure, one could excite the system with harmonic forces 

successively. Working with impulse forces instead of harmonic forces is 

more economical, because an impulse force contains all exciter frequen­

rles at once in a determined frequency range. 

For the determination of the frequency from measured input and output 

signals we take advantage of the fact that the quotient of the Fourier 

transformed signals is equal to the frequency response. The signals F (t) 
x 

~ oJ 

F (t), u(t), vet) are measured in the time domain, transformed to the 
y 

frequency domain by means of the Fast Fourier Transformation and the re-

spective quotient is calculated. 

Fig.3 shows in principLe the measuring equipments. A special hammer ex-

cites the rotating shaft and the acceleration of the hammer is measured. 

Under certain assumptions the acceleration is a measure of the impact 

force. 

With a short pulse the energy can be concentrated in higher frequen­

Cles and with a long pulse in lower frequencies. The pulse duration, the 

frequency content and the amplitude of force can be influenced by selec­

tion of the hammer mass. the flexibility of the impact cap and the impact 

velocity. 

BEAR!~G 

DiS?:"hC~­
f)ENT P:Cf<-uP 

Ci. 

AiJiPLlFI:::R FAST 
FCL;;:;::::R 
TKA~;S -
FORMAT:ON 

Fig. 3 Equipment for frequency response measurements 

FR:::CJ:-:~CY MAG-
RESPC~SE NET!C 
FU~CTION TAPE 
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The pulse duration increases with hammer mass and flexibility of the 

impact cap. Correspondingly the frequency content decreases with hammer 

mass and the flexibility of the cap. The force amplitude increases with 

the hammer mass and the impact velocity/but decreases with the flexibil­

ity of the cap. 

With plastic material at the contact ~urface the friction force be­

tween hammer and shaft is powerfully reduced. 

The displacements of the shaft are measured with inductive displacement 

pick ups near the bearing location. Force and displacement signals are 

amplified and after analog-digital-converting and Fast Fourier Trans­

formation the frequency response functions can be calculated. For further 

treatment the functions are stored on a magnetic tape. 

Curve fitting. For determination of the parameter matrices rand B 

one does not need to work with the complete frequency response functions 

(amplitude frequency and phase frequency characteristics), because all 

of the unknown parameters y , Yxy' yyx' Y and B , B ,B , Bare xx yy xx xy yx yy 
aLready contained in the amplitude frequency characteristics V ,V ,V , xx xy yx 
V . Working only with these four functions the numerical effort in the yy 
curve fitting procedure is reduced. It could be shown by a numerical SIm-

ulation that this simplification gives good results for the unknown pa-

rameters. 

h dh 'V-MVMvMV M For eac rotor spee t e four functIonS are 
xx' xy' yx' yy' 

known from measurements (Fig. 4). The corresponding functions of the 

mathematical model depend on the bearing coefficients. The goal of the 

curve fitting procedure is finding such elements of the matrices y and 

B to get best agreement between calculated and measured functions. A 

possible criterion is the minimization of the scalar function 

z L 
i=x,y 

L 
k=x,y 

L 
P 

{V'k(n ,y,B) 
I P --

M 2 
ij 'k' (n )} 

I P 
( 12) 
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V (n r,ol (101) 
Ik I{;J. , 

Q'I I 
I~ 

~ 

Fig. 4 Determination of bearing coefficipnts 

This can be interpreted as a least squares criterion for the error. The 

condition of minimization of the function Z leads to nonlinear equations 

for the unknOl.n1s), and ? Thesl' equations are solved by an iterative 

procedure (linearization). After each step n tht, variation of the scalar 

function Z is controlled (Fig. ~). If the n-th step the relative variat­

tion of F is It'SS than a number ". the last vallJ('s of O( and:' are taken 

as stiffnl'ss and damping coefficients for this caSl'. 

At till' beginning of the procedur(' a start ing vector of the unknowns 
(0) (0) 

'( and ,', must be chosen, It can be found from tbe measurement curves. 

3 ~ll·asurer.lents at a Rotor Test Rig 

Rotor test rig. Fig. 5 shews tht· rotor test rig. The rotor 1n his 

middlt, range (length ~7) =) has a diameter of 150 =. the dianeter of 

thl' journals is 50 nm. A d-c electric motor \"ith spl·ed control drives 
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the shaft , which is running in two cylindrical bearings with BID 0.8. 

HA MER WITH 
ACCELEROMETER 

01 SPLACEMEN T 
PICK UP 

~~~~~~ i~' @ 
~- ,-~ _f,' '~;LUR-- DB -
,t2:n! . I \ -- 1 . 

/ j J , 

§:'.~«9X~yX"><~'y~~~~?XW~ X0.>Y~YX>iI~"'<>'X :« / I / - -
'x,. BEAR I G RIGID SHAFT BEARI G COUPU G D.C. ELECTRIC MOTOR 

l~ PEDESTAL PEDESTAL WITH SPEEoCONTROL 

~< CO CRETE FOUNDATION 
o ELASTIC S:='RI GS 

Fig. 5 Ro tor t est rig 

The radial clearance of the bearings is 210 I'm. The employed oil has a 

lubricant viscosity of 9,5. 10-2Ns/m2(20oC). The average bearing load 
o 0 

is 1,75 bar. The oil temperature can be regulated in a range 15 -60 C. 

The motor and the bearing pedestals are mounted on a concrete foundation 

with elastic springs . The foundation mass is 6000 kg. 

The hammer for pulse excitation has a mass of 1,2 kg. Each bearing 

has two inductive displacement pick ups for measuring the displacements 

in horizontal and vertical directions. 

Measured quantities. The most important measured quantities are 

the exciting force and the displacements of the shaft. The last ones 

contain besides the pulse response a residual synchronous response 

caused by unbalance. This part of the signal, which disturbes the signal 

processing, is eliminated by an electronic circuit. Further measured 

quantities are the rotor speed, the outlet temperature of oil and the 

pressure of the oil at the bearing inlet. 



Identification of Stiffness and Damping. . . 405 

Some results of bearing coefficients. For the described rotor In 

cylindrical bearings measurements were carried out in a speed range from 

1500 to 5400 rev/min (maximum of motor speed). For each constant speed 
hf f · M M M M 

t e our unctIons V ,V ,V ,V and the other measured quan-xx xy yx yy 
tities as speed, oil temperature etc. were determined. 

The values of y ,y ,y ,y and B ,B ,B • B were fitted and 
xx xy yx yy xx xy yx yy 

the corresponding Sommerfeld number was calculated. In Fig. 6 and 7 the 

nondimensional damping and stiffness coefficients are represented versus 

the Sommerfeld number So. 

8- -------------,----------~------~~---------

., , . 
-0 ____ - .---~--.--.-~~ I 

~Y.' '., -,- -
6--

t. - - -;-----_----....::-~;-----------j------------I-------------; 

1., ""'+c, . --,-- - ------
2- - --·----~--::----i 1 T~--

"'~"". 
O--~--------~~~-~~~~T=~.~~.~~~~~~ 

0.5 1,0 ---~-1,5 ______ }~_ So -2,5 

-2- - --!----- I 1 
-t.-'l- --i---;,- ---~--. ,-----=-=--; 
-6- - --; . ~~-t- t-------------:------------; 

-8-- _J ________ l _____ ----'-____ ---'--____ ~ 
Fig. 6 Nondimensional stiffness coefficients of a cylindrical 

bearing B/D = 0.8 

Because of the speed limitation and in default of variation possibil­

ities for other parameters, Sommerfeld numbers less than 0.75 could not 

be realized at this rotor test rig. 

Figures 6 and 7 show that the scatter IS relatively small for the stiff­

ness coefficients and greater for the damping coefficients, especially 

for Band B . Besides the measured bearing coefficients earlier re-yx yy 
suIts from Glienicke for the same type of bearing are represented with 
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dashed lines. The agreement IS relatively good, only some of the values 

have greater deviations. 

I ~OT . (J .,·-~;-----T -------l 
I I .• ' i: 

p 8J =,.·~=·~c ~~~: . ~ .~ ~ C .. ' .. 0:. .._-
I '" I 

:~~ -__ .-=--P.~~_:-.:... ~ __ >_~_~_-_. __ -_ :_-__ -___ ~ __ t--- -----~_I 

Fig. 7 Nondimensional damping coefficients of a cylindrical 

bearing BID = 0.8 

4 Control of the H·sults. A possible tl'sting of the results can 

be realized by driving the real system and the ml'chanical model with 

same systpm paraml'tl'rs by the same input and by studying till' different 

behaviour of the tlO/O systems. 

[n our case the amplitude frequency characteristics and the l'ssential 

l·igenvalue of the two systL'ms are compared. 

Comp~J sOI~~~~1~!mp_I~:.~_!i5'.9~Y.!2_~.:L~_harac tl'r i st i cs. For gi veIl 

system parameters So and w till' four functions \' V V \' of the 
o xx' xy' yx' yy 

mechanical model are calcu[atl'd, employing the ITleilSUf('d stiffnl'ss and 

damping cOl'fficil'nts. TIll'n at the rotor test rig till' four functions are 
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measured for the same parameters So and w. In fig. 8 we compare the 
o 

measured and calculated functions for the parameters So = 1,65 and 
o 

w = 1,75. There is a good agreement for all four functions. Certainly 

407 

we have to notice that such functions are compared, which were used to 

determine the bearing coefficients in a fitting process with the cri­

terion to get best agreement between calculation and measurement. 

__ J 

r--=~_):~~,-=; ____ i 
; 1/. '.,\(\ ! 

~-- // --~-.,,~ 
:~ ,~ 
----.-------••• --- 1 

: , 
o ~--_T---~--~--~! 

o 2 

1 

1 1,-----
~ 

I 
,--------

I 
, , 

-' --- ~---:/~ ...... -- ... _---, 
I I / \, 1./ _'-, : 
,---~t'<'---·----- "',-.----. 
~~ ", i 
~. ___ • ___ : ___ ---.:.~~~._J 
; ~ 

O~ __ . : 

o 2 

J- ~~EASUR::~.~=~n-! 
_.- ----- CALCULATiO~ -j 

, 1 I 
Vw ':---;---'---i---I 

oL~~~~~/~~ 
o 1 w/w,-- 2 

J __ : ____ I __ ~I 

~-:--~--:~. 
! , 

V", :---. ~~_ .-._-.---
~:;;;;;,;;.--,<~;<_rr.-~ __ : __ ~ ,_~ 

o 
o 1:"':('1-

,~, 2 

Fig. 8 Comparison of amplitude frequency characteristics 

(So = 1,65, w= 1,75) 
o 

Comparison of measured and calculated eigenvalues. 1 f Wl' rep 1 ace 

the diml'nsionless frequency ''1 in the denominator :-«',)(eq. 10) by 

the complex number i, ~(A) is the equation for determination of the 

system eigenvalues. Thl' l'igenvalues are either real or complex. If they 

are complex they appear in conjugate cOQplex pairs: ~. 
J 

the decay constantl. and the circular natural frequency 
J~ j . 

The rigid rotor in journal bearings has four eigenvalues, but tlvO 

of them [lave only little practical meaning. The corresponding eigen­

solution decays very rapidly. The rpmaining eigenvalues generally are 



408 R. Nordmann 

conjugate complex, we call them A) = u l + iw) and A) = u) - iw). Their 

corresponding eigensolution is a decreasing or increasing oscillatory 

motion, which is observable. 

for a given system parameter SOo = ) ,65 the eigenvalues AI' 11 

first of all are calculated for different rotor speeds, employing again 

the measurl:'d bearing coefficients. The experimental determination of the 

eigenvalues A), X) can be realized in the time domain by measuring the 

decay rate and the natural frequency directly from the natural vibrations. 

On the other hand calculation of the eigenvalues from measured frequency 

response curves in tIle frequency domain is possible. 

figures 9 and )0 show the measured and calculated (dashed line) 

non-dimensional decay constant a)/wo and the non-dimensional natural 

frequency w)/~ versus the rotor speed Q/w . Again there is a good agree-
o a 

ment betwl:'en measured and calculated values. 

0.5-- ----,-------------~-------,I 

o-,-----u C:5 1:0 1:5 w - 2,0 2,5 

__ .~-;~ I 
,_. I 

, I 

-0 5- - -. -------r 'i': -' tV:EASl,;R:::~,~E0JT 
CALCULATiON 

-1,0 -----'-----'------'-----------' 

fig. 9 Nondimensional decay constant of a rigid rotor in 

cylindrical bearings B/D = 0 8' So = I 65 
" (1 , 
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1.5 

1.0- -

0,5 -

l 
MEASURE!'-!ENT 

CALCULATION 
.~--.---.------.. _._- _.- -.-.. - ----

I 

.~----:------:~------:---.--! 
0.5 1'i w -- 7,0 /,5 

Fig. 10 Nondimensional natural frequency of a rigid rotor 

in cylindrical bearings BID = 0.8; So = 1.65 
o 

References: 

I I I Lund, J.W.: Evaluation of stiffness and damping coefficients for 

fluid film bearings. Shock and vibration digest (1978). 

409 

(21 Glienicke, J.: Feder- unci D5mpfungskonstanten von Gleitlagern fUr 

Turbomaschinen und deren EinfluB auf das Schwingungsverhalten eines 

einfachen Rotors. Dissertation Til Karlsruhe. (1966). 

(31 Nitchell, J.R.; Holmes. R. and von Ballegooyen H.: Experimental 

cieterr.lination of a bearing oil film stiffness. Instn. ~Iech. Engr. 

Proc. 18/, Pt. 3k, (1965-1966) pp 90-96. 



CHAPTER 4.5 

EXPERIMENTAL DETERMINATION OF BEARING STATIC PROPERTIES 

Z.A. Parszewski 

As it was expJ ained in chapter 2. t the bearing static characteristics 

is given by the relations 

S = S(c); c = c(a) (t) 

giving Sommerfield's nwnber S as function of the eccentricity ratio c ar.d 

corresponding locus of equilibri~~ positions of the journal centre in tr.e 

bearing. 

Following gives the results of computation as well as experir.lenta.1 

results obtained on a laboratory research stand (Fig. ) used for 

experimental measurement of static and dynamic characteristics of 

bearings ( [6 J , [7], [8 J chapter 3 . .1 and [II J chapter 2.4 ) . ';.'he bearing 

casing 1 together with the !3l.eeves (Fie;. 2 ) is suspended on a 

rigidly supported rotatir.c; shaft 2. Static ~_oad P is applied by 
o 

means of the sprinc;s and screws and the static displacement components 
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Fig. 
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y 

v 

2 

Fig. 

directions 

x 
o 

12 (u 
2 0 

~ 

)( 

q.=dsm(wt +fq.) 

2 

v ) 
o 

If;) 

u v are measured at various 
0' 0 

shaft speeds. 

The displacement co~ponents 

U, v are measured by t-,010 elcctro-

dynamic transducers, orientated a:-

450 to the load directio:1 (Fir,!;. 

and 2 ). ':'hesc eli !,place-

ments e;ive the fo.l.lowine; 

co~ponents in the x and y 

(c; + v ) 
;> 0 0 

(2) 

The eccentricity ratio c and the angle ~ describinG t~e journa~ 
o 

centre position in equi~i8~illi~ a~e ~ence~ ____ ~ 
. 1,"2 + .. , 

2n - t 
o 

:'0 rc '. 
arctg x r 

c = 
o 

(3) 

.:()!'":(li~ensiona: load capac:i.tJ~ S of a beari!"'.£, ~c:~ir:ed a!~ ~o~.d':'r.:c::sio!":.aJ. 

r;ive:: speed lS 

"" .. , ~ .... 
(..~ :", ., .. 

(4) 

7he descrited ~eas~re~e!":.ts Civc ~~e~ce the :ac~s o~ Jo~r~a: cen~re 

(5) 

~~ese re~atio~s rerrcse::t the static c~arac:erist~cs cf t~e ocarl!":.~. 
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8.--.-.,-.--.---.--,--,--,--,-­
Sor--+--~~--~~~ 

~eJ(pertmQntal resvlt.J 

6 ! ___ comp",ted resC//ts 
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o 02 0.6 c 

Fig. 3 

Z.A. Parszcwski 

This characteristic~ [7] 

is given in the Figs. 3 

and 4 for a three lobe 

bearing (Fig. ), with 

the partial sleeves arcs of 

and 

L L 0.83 -- = 
2R D 

Figures 3 and 4 give 

also the comparison of 

experinental (continuous 

O' lines) and computed (broken 

lines) results. 

Corresponding curves [8], for 

bearings with eccentric 
-- ellpertmen;-ol resC//ts 
- - - compC/;ed resvlfs sleeves (Fig. 5 are given 

Fig. 4 
in ?igs. 6 and 7 

':i'he para.':leter f = f 1 (f 2. + r 1) characteri ses the eccentricity of the 

sleeves (Fig. 5 ). 

Bearin:,s as described are used for example, in the generators of 

Dolmel-Hroc law production. 
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CHAPTER 4.6 

EXPERIMENTAL DETERMINATION OF BEARING DYNAMIC PROPERTIES 

Z.A. Parszewski 

The bearing dynamic characteristics (chapter 2.1) is given by the 

stiffness and damping matrices 

fK 
K -j 

lXX 
xy 

lKJ = 
K K 

yx yy -

( 1 ) 

~xx Cxy 1 
[c] 

Cyy J yx 

(2) 

The eler.:ents of both :'he matrices are fU:1ctions of the steady 

state (equilibri~~) par&~eter (~e:1ce of eccent~icity ratio). 

7hese coefficients (elements) can be obtained experimentally i~ an 

i:1direct way or:: the exper:::-.e!':.tal stand (:ig. ) described ::1 t~e 

preceedine chapter ((()],[7], [8] cr-.apter 3.1 a:1d l~;1 c~lapte~ 2.4.). 

Vibrations are excited at the bearinG casing around each eq~:l:bri~~ 

position (eccentricity ratio c at a give:--, ::'oad::> and. speed w) bJ' use 
o 

of the electro~agnetic exciters 3 and ~ (~:g. \ 
) . 

:r-.e exciting force5 q .. a:1U c: ancl corres~;or;dine d:,'na.~ic di5place-
'"" "T 

nents u and v of t~e form 

U = a sin (wt + e) ; (3) 
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are measured for vibrations excited around consecutive journal centre 

equilibrium positions, given by the static characteristics c = c(a ) 
o 

of the bearing. 

Elements of the stiffness and damping matrices are found from the 

set of equations of vibrations of the bearing casing 

~~ + K x + K y + C • + C y 
xx xy xx xy 

(4 ) 

my + K x + K y + C X + CyyY = Q yx yy yx ;/ 

written for two different sets of measured data, corresponding to two 

different sets of exciting forces q. 

m - is the mass of the bearing (the casing together with the sleeves) and 

12 12( + \r) ~ = 2" (~ - 0,) \ 2"~ 
(5) 

12 12 
v) x = - (u - v) y = - (u + 

2 2 

;lo:1dinensio:1al stiffness and daJ:lping coefficients of the bearing oil film 

Sr - Sw -
K 

P 
K C 

P 
v (6) 

0 0 

are given ([7] chapter 2.1 ) in Fig. and Fir;. 2 for the three lobe 

:~ear!"(3 (Fig. 1 Ch. 2.1) ·.dt~: -:-':l' ra!'t::a: s~eeves arcs 

, 1·'7° \}l3 = and 
T 
~ "83 S' = \,. . 

'~~hese :~i~:ure~) ci.ve also tte co~pD.riso~ of experirr.ental (continuous 

Corresponding curves ([8] chapter 2.1) for hearin~s with eccentric 

sleeves (Fig. 5 Ch, 4.5) are given in Figs. 3 and 4 
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PART V 

MISCELLANEOUS TOPICS 



CHAPTER 5.1 

THE VIBRATIONAL BEHAVIOUR OF A ROTATING SHAFT CONTAINING 
A TRANSVERSE CRACK 

B. Grabowski 

Part 1 

Crack Models and the Vibration ofa Rotor with Single Disk on Massless 

Shaft Containing a Transverse Crack 

1. Introduction 

Frequently cracks in turbine rotors were found. Nevertheless, until now 

it is not really known, how cracks can be recognized early enough so that 

large consecutive damage can be prevented. 

The latest greater damage in Germany occured in the nuclear power 

plant WUrgassen. For one year the plant had to be put out of operation 

because two new rotors had to be produced. Both the LP-rotors have had 

a crack in the middle of the shaft. At running speed there was noticed 

a higher level of vibration amplitudes and during rundown the resonance 

*) Since 1981 companion of the "IngenieurbUro fUr Maschinendynamik, 

MAHRENHOLTZ + PARTNER", 3000 Hannover 1, Freundallee 23, RF Germany 
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amplitudes were very large, but these vibrations have not been connected 

with a crack. The crack has been discovered accidentally. This makes clear, 

how less known is the result of a crack on the vibrational behaviour of a 

shaft. Certainly there has to be take into account, that in practice 

cracks are comparatively rare. On the other hand in 1922 Stodola [1] has 

already on principle shown the effect of a crack and these investigations 

were continued by other authors [2,3,4]. 

As far as known the first measurement results for a rotating shaft 

with a crack were published by Mayes and Davies [17] in September 1980. 

Like in Wurgassen an abnormal increase in shaft vibration was noticed at 

many other cracked rotors. But in some cases the warning signs were too 

small and some rotor broke, in some cases turbine plants virtually explo­

ded and fragments of the shafts flew away up to some hundred meters. 

Henry and Okah-Avae [7] also present cases, in which deep cracks 

have bpen found without any influence in vibration amplitudes. 

The cause for shaft vibrations due to a crack is the asymmetric cross 

section at the crack position in connexion with the self-weight of the 

shaft. 

Well known is the effect of an asymmetric cross section of shafts 

of biop1ar generators on the vibrational behaviour. Kellenberger [2] pro­

bably was the first who investigated such a system in 1958 a paper of 

later date is published in January 1980 [16] by Inagaki et.a1. 

2. Crack Models 

2.1 Gaping Crack. First of all the most simple assupmtion is an always 

gaping crack so that the stiffness of the shaft in a body fixed coordi­

nate system does not change. On principle this is the same as with a 

shaft of a bipolar generator. 

Fig. 1 shows the static deflection of a shaft with gaping crack due 

to the self-weight. Because of its dimension size the shaft can be 

assumed as a simple model for a large turbine rotor. Refered to a mean 

static deflection in the vertical direction the shaft lifts and goes 

down two times per revolution according to the effective moment of 

inertia resp. the stiffness. At each angle of rotation the shaft has a 

horizontal deflection except at vertical or horizontal directions of the 
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Fig_ 1 Self-weight deflection at shaft center for a gaping crack of 
50 percent depth 

main axes and this two times per revolution too. This causes a super­

position of the mean static deflection with a circular motion. The shaft 

moves on the circular orbit twice per revolution. However, this is valid 

only for slow rotations, at faster motions the effect of inertia of the 

mass of the shaft has to be regarded. 

2.2 Breathing Crack. A real crack will show another behaviour. Depending 

on the self-weight of the shaft the crack area opens and closes [Fig. 2]. 

(Sj' ®0" -.. ~~ ~ ,,~./~., ~ .:..: .-
/ .. . . /. . 

/ , ' 

. / , 

For a location above the 

horizontal diameter, the crack 

is subjected to only compression 

and the entire cross-section is 

supporting. At further rotation 

a part of the crack area opens. 

Fig. 2 Crack model cross-sections showing rotation angle-dependent 
stressed regions (shaded areas). After Grabowski [15]. 
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In Fig. 3 the crack is closed at the angle of ~ = 0°. When the shaft 

is rotating the crack area opens only slowly. At the angle of ~ = 90° 

it is assumed that the crack is suddenly gaping completely. That is the 

cause for the point of discontinuity at ~ = 90° and ~ = 270°. But this 

assumption has praktically no influence on one vibrational behaviour 

calculated later on. In this model a breathing crack between ~ = 90° 

and ~ = 270° shows the same behaviour as the always gaping crack. During 

one rotation the shaft moves on an onion-shaped orbit, only once per 

revolution. 
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Fig. 4 Self-weight deflection at shaft center for a breathing crack of 
50 percent depth 

In Fig. 4 the results of this crack model are compared with experimental 

results of Ziebarth et.al. [10]. The level of the amplitudes is adapted, 

only the shape of the curves shall be compared. There is a good agreement. 

2.3 Change of Stiffness due to a Crack. In the longitudinal direction 

of the shaft the extension of a crack is very small and of a gaping crack 

too. But the actual reduction of the stiffness at the crack position does 

not jump, the change is continuous along the neighbouring range. For steps 

in shafts the 45°-approximation is used with good results up to now. In 

order to simplify the mathematical model the wedge-shaped cut-out is re­

placed by a square cut with L = T [Fig. 5]. 

Fig. 5 Simulation of the 
decreased-section of 
the open crack. After 
Grabowski [15] 
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In addition to the development of the theoretical crack model the 

stiffness of a cracked shaft has been investigated. At a shaft of 46 mm 

diameter and 300 mm length [Fig 6] the crack was simulated by a thin 

milled transverse cut of 0,5 mm width. This shaft has been loaded in 

such a kind, that in the neighourhood of the crack a constant bending 

moment was produced. 

'Nellstelle 
F 

W.rkstott: 42 Crli404 

.1 

I 

~--- -----------2~------------- -------4OIJ I 
-------J ------------3001-------

Fig. 6 Shaft with milled cut 

Parallel to these measurements the stiffness has been calculated. 

At the crack position a square cut with L = T was assumed, but only for 

crack depths until 50 percent. For deeper cracks L has to be reduced 

analogically. 

In Fig. 7 the results of measurement and calculation are compared. 

The total compliance of the shaft depending on the crack depth is plotted. 

The difference between measurement and calculation amounts less than 10 

percent, except the crack depths of 20 and 70 percent. In consideration 

of the simple crack model even with these differences the agreement is 

remarkable good. 
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3. Vibration of a Rotor with Single Disk on Massless Shaft 

of Unequal Stiffness (Gaping Crack) 

3.1 Equations of Motion in Space-fixed System of Coordinates. The diffe­

rental equations of a rotor with single disk on massless shaft with symme­

tric cross-section in rigid bearings are very well known. With an asymme­

tric shaft the force FS changes depending on the angle of rotation Ot 

[Fig. 8]. Because of this just the stiffness matrix changes. The coeffi­

cients are well known as the moments of inertia in rotated coordinate 

system. It is essential, that in addition to a mean constant stiffness 

a stiffness difference appears, which changes two times per revolution 

and excites twice per revolution vibrations. 

In publications often a simplified formulation is used with a mean 

stiffness k • Than the factor ~ describes the normalized difference be­
rn 

tween the stiffness k~ and kn and the mean stiffness. 

However, the equations cannot be solved in this form with time 

dependent periodical coefficients. 
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3.2 Equations of Motion in Rotating System of Coordinates. If the equa­

tions of motion are formulated in rotating coordinates ~ and ~ the stiff­

ness will be time invariant. And if we use the main axes as coordinates 

the deviation moment is not needed [Fig. 9]. For that the velocity and 

acceleration must be formulated in rotating coordinates [Fig. 10]. The 

equations of motion in Fig. 11 now contains exclusively constant coeffi­

cients. The equations are easy to solve and the stability of the system 

can be investigated too. 
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The stability condition becomes 

(l 
02 2 2 

+ 4 2 0 2 
> 0 - 2) - IJ D 2 0.2-1) 

w w 
with 

2 k 
w 0.2-2) 

m 

3.3 Numerical Results. In Fig. 12 the stability map is plotted. For a 

constant crack depth tRe unstable 
. f .2 Tl d 2 elgen requencles w = -- an w = 

'1 m 
ness difference the corresponding 

kange is located between the two 

~. In addition of the normalized stiff­
m 
crack depth of a bilateral gaping crack 

is marked. Already at a crack depth of approx. 25 percent a viscous 

damping ratio of D = 0.1 is needed, so that the system does not become 

unstable. 
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To calculate the amplitude of the forced vibration due to unbalance, 

only the stiffness matrix of the differential equation is nessessary. 

This matrix completely contains the stability condition too. 
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To calculate some theoretical results, the simple model for the 

rotor of a LP-turbine was choosen [Fig. 13]. The Figures 14, 15 and 16 

show the vibration amplitudes as a result of unbalance and crack depen­

ding on the speed. At a crack depth of 10 percent the vibration is still 

stable [Fig. 14]. As for a shaft without crack the maximum of the once 

per revolution vibration amplitude (0) amounts to: R ~ ~D. 

The amplitude does not change depending on crack depth until the 

system becomes unstable. Furthermore there do not arise two resonance 

points in the once per revolution vibration as could be assumed as a 

result of the both different stiffnesses. Just if the system becomes 

unstable the stationary solution delivers two resonance speeds • 
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Fig. 14 Vibration amplitudes of a simple rotor 
with gaping crack D = 0.1, T = 10 %, £ 10 ~m 
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Fig. 15 
Vibration amplitudes of 
a simple rotor with 
gaping crack D = 0.1, 
T = 20 %, E = 10 ~m 

Fig. 16 
Vibration amplitudes of 
a simple rotor with 
gaping crack D = 0.1, 
T = 28 %, E = 10 ~m 

Although the crack depth with 10 percent of the diameter is small, 

the twice per revolution amplitudes are greater than the amplitudes due 

to unbalance. As the once per revolution amplitudes, the twice per revo­

lution amplitudes are directly inversely proportional to the damping ratio. 

And also the amplitude grows with crack depth. The resonance speed amounts 

to one half the critical speed of the unbalance vibrations. 

For a crack depth of 20 percent [Fig. 15] the vibration amplitudes 

due to unbalance do not change, however, the twice per revolution reson­

ance amplitudes are approx. eight times greater than for the crack depth 

of 10 percent. At a crack depth of 28 percent an unstable speed range 

arises [Fig. 16] between the two eigenfrequencies, which belong to the 
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greatest and the smallest stiffnes of the shaft. 

Fig. 17 shows four calculated orbits from Tondl [3]. Transmitted to 

the rotor in Fig. 14 the orbits a, b, c and d are applicable approx. at 

speeds of 250, 350, 600 an 700 rpm. 

Fig. 17 
1~) Vibration orbits. 

After Tondl [3] 

':...., FtO. 2.1,2d 

4. Some Comments on the Model for a Gaping Crack. In the crack model the 

moments of inertia are proportional to the static deflection as a result 

of the crack: In space fixed coordinates the moments of inertia change 

depending on angle of rotation. The Fourier analysis of this function for 

one rotation shows the harmonical components. These components correspond 

to the factor ~ in the equations of motion. With a gaping crack only the 

second harmonic excists [Fig. 18]. With a breathing crack [Fig. 19] the 

first harmonic component dominates. It shows a progressive increase as 

a function of the crack depth. The twice per revolution part has a defi­

nite maximum at approximately 35 percent crack depth and it is altogether 

essential smaller than with the gaping crack. The higher harmonics are 

small. At the other axis the difference is not important, here the twice 

per revolution part even dominates for small crack depths. It is similar 

for the deviation moment. 
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For a breathing crack it is 

supposed in this model, that the 

crack area opens and closes only 

due to self-weight bending as the 

shaft rotates. Some other authors 

assume that the opening and 

closing of the crack in addition 

to the deflection due to the 

self-weight of the rotor also 

depends on the vibration ampli­

tudes. The mean static deflection 

of a shaft which can be assumed 

as a model for a large LP-turbine 

amounts to 1 mm [Fig. 3]. At run­

ning speed vibration amplitudes 

of approx. 50 ~m can be assumed. 
Fig. 18 Harmonic parts of normalized second 

moments of area, gaping crack 
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and 1 110 for the crack model (1 0 : uncracked shaft). 
Grabo~skl [15] 
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In other words, a factor of approx. 20 is achieved. In this case, surely 

no influence of the vibration on the opening and closing of the crack 

will occur. Even at the critical speed, when amplitudes up to approx. 

250 ~m are assumed, such an influence will remain small. That means, how­

ever, that normally no relation exists between size and position of the 

out-of-balance and the vibration caused by a crack. 

Only at large crack depth, if due to the crack itself resonance 

amplitudes in the magnitude of the static deflection appear - as a rule 

the blades then touch the casing - the presented crack model will be no 

more valid. 

But in theory certainly this case with large amplitudes is inter­

esting too. Above all it can occur, that the crack is permanent open or 

closed. For such a model some results of Mcycr [12] shall be presented 

here. Similar investigations on a massless shaft with single disk are 

carried out by other authors. 

5. Vibration of a Rotor with Single Disk on Massless Shaft Containing a 

Breathing Crack (hinge). In recent years some authors have published in­

vestigations on the vibrational behaviour of cracked shafts [5,6,7,12]. 

They employ the rotor model with massless shaft and single disk. For 

modelling a breathing crack a spring-mounted hinge is assumed [Fig. 20]. 

The opening and closing chracteristic of the hinge depends on the self-

Fig. 20 Crack-model. After Gasch [6] 

weight deflection as well 

as on the bending vibra­

tion amplitude itself. 

With closed hinge the 

stiffness is symmetrical. 

With open hinge the stiff­

ness changes only in one 

direction. 

In rotating system of coordinates ~ and ~ the crack area is open at 

positiv and closed at negativ deflection ~ [Fig. 21]. With small vibra­

tion amplitudes during one half revolution we have a symmetrical shaft 

and during the next half revolution an asymmetrical shaft. 
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Fig. 21 Vibration orbit and 

B. Grabowski 

With large amplitudes the moment of swit­

ching at Tl = 0 can be shifted, at the limit 

it is possible that the crack area is con­

stantly open or closed. 

With this assumptions for the behaviour 

of a breathing crack on principle the equa­

tions of motion for the shaft with asymme­

trical cross section are valid. But the 

stiffness c is now depending on the sign 
Tl 

of the deflection Tl in rotating coordina-

tes. The equations can be solved on analog 

computer as well as on digital computer. 

system of coordinates. 
After Meyer [12] 

With regard to the harmonic parts of 

the moments of inertia in Fig. 19 it is 

expected that with this crack model in addition to the twice per revolu-

tion excitation due to an asymmetrical shaft above all once per revolu­

tion vibration and the higher harmonics appear. 

Fig. 22 shows one result of stationary-periodical vibrations. In this 

calculations it is assumed, that the vibration amplitudes are small in 

relation to the static deflection so that the moments of switching are 

not depending on the vibration amplitudes. Moreover the calculations are 

carried out without unbalance, this means, the vibrations are excited 

only by the crack. There appear once per revolution vibrations and due 

to the sudden change of stiffness in principle all higher harmonics too. 

The stiffness asymmetry in this example is approximately equivalent 

to a crack depth of the diameter. Additional unbalance vibrations have 

to be added or subtracted depending on the phase relationship. 

Similar to the asymmetric shaft unstable regions [Fig. 23] exist for 

this crack model. In Fig. 23 it is also supposed that the opening and 

closing of the crack area does not depend on vibration amplitudes. Beside 

the three plotted unstable regions there exist additional regions at 

smaller speeds. However, these regions are very narrow. 
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To calculate the vibration orbit in Fig. 24 the static deflection 

was taken as an initial value. The equations of motion were solved on an 

analog computer. The rotating speed is near the critical speed of the 

once per revolution vibration. On the right hand side the crack is con­

stantly gaping as a result of the size of the vibration amplitudes. And 

for a damping ratio of D = 0 . 01 a shaft with a gaping crack is unstable. 

The result in the figure on the left hand side has been achieved 

by doubling the unbalance. This effects, that the crack is no more con­

stantl:: gaping but partially closed. In this case a stable limited ampli­

tude results. 
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Part 2 

Turbine Rotors with Breathing Crack 

1. Introduction 

In the first part of this paper crack models are presented and the effect 

of cracks on the vibrational behaviour of simple rotors with single disk 

on massless shaft is discussed. A gaping crack excites only twice per 

revolution vibrations. A breathing crack excites mainly once per revolu­

tion as well as twice per revolution vibrations; the vibration amplitu­

des of the higher harmonics are small. 

The aim of the investigations in this second part of the paper is 

to determine whether and in what manner a crack in a turbine rotor can 

be recognized by measuring the shaft vibration so that large consecutive 

damage can be prevented. The results of the vibrational analysis of sim­

ple rotors are not or only inaccurate transferable to real turbine rotors. 

Above all they do not allow to estimate the vibration amplitudes at nor­

mal speed. However, in order to recognize a crack, first of all the 

change of the vibrational behaviour at normal speed has to be taken into 

account. The drive-up and drive-down offer an additional criterion. 

Because the analysis of the vibration of a real turbine rotor must 

include the non-conservative characteristics of the journal bearings, 

the formulation of the equations of motion in rotating system of coordi­

nates is no longer an advantage. So, in spacefixed coordinates the change 

in stiffness depending on angle of rotation leads to time dependent coef­

ficients in the equations of motion. These equations cannot be solved 

exactly. Numerical integration as well as iterative methods (as used by 

Mayes and Davies [17]) can be employed. 

The application of a rotor model (Fig. 1) which is more realistic 

than the simple model with single disk leads to a large numer of degrees 

of freedom. This in connection with the numerical solution method creates 

a considerable need of memory and computing time. Therefore in these in­

vestigations the concept of modal analysis was chosen [11] to reduce the 

numer of degrees of freedom. In a similar way Mayes [8] investigates the 

crack propagation in rotating shafts. 
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Fig. 1 

Rotor model and coordinate 
system 

2. Analysis There are applied approximately the eigenfunctions V(x) and 

W(x) of the conservative system in the vertical and the horizontal plane. 

The range of the local change of stiffness due to a crack covers the 

length L. A medium stiffness between open and closed crack will be taken 

approximately for the calculation of the eigenfunctions in this region. 

This is necessary for the consideration of the major curvature at the 

crack position, compared with the uncracked shaft. 

The deflections in the vertical direction y(x,t) and in the horizon­

tal direction z(x,t) will be composed by the first few eigenfunctions 

weighted with the generalized time dependent coordinates q(t), as follows, 

L 

z(x,t) = I Zoi(x) qz£(t) 
£=1 

(2-1 ) 

(2-2) 

The transformation yields a system of K + L coupled equations of motion 

for the generalized coordinates q(t) which is 

(2-3) 

~, C and K can be considered as mass matrix, damping matrix and stiffness 

matrix. On the right-hand side the function F(t) includes the out-of-ba­

lance distribution, while ~ contains the self-weight load. 

The time dependent elements in the sitffness matrix K(t) can be se-
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parated and we obtain 

(2-4 ) 

A Runge-Kutta-Fehlberg procedure of 5th order with constant step-size 

[14] which proved to be very exact for the necessary computing time, 

will be used by the numerical integration for the calculation of the 

instationary vibrational behaviour. The necessary initial values will be 

taken from the stationary solution of the equation (4) without the term 

6K(t). The time variable system has a stationary periodic solution. 

After the retransformation according to equations (1) and (2), the de­

flection of the entire rotor which depends on the angle of rotation is 

obtained. 

y 

The rotor displacements are 

described in two mutually per­

pendicular directions y and z 

with corresponding angular 

displacements' and, (Fig. 2). 
y z 

They are functions of the coordi-

nate x along the rotor axis. The 

rotor is supported at N stations 

by journal bearings. Each bearing 

is represented by a set of stiff­

ness and damping coefficients 

such that the bearing reaction 

Fig. 2 Sign convention for space fixed can written as 
coordinate system 

R 
y 

R 
z 

R 
-n 

n 

k k yy yz 

k k 
zy zz n 

- K u - c u -n-n -n-n 

y 

z 
n 

c c yy yz 

c c 
zy zz 

y 

z 
n n (2-6) 

(2-7) 
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The equations of motion for a differential element of the rotor are 

~y - V' 
Y 

+ I 6(x-x ) (K + cf) [YJ n - - t n z 
n=l 

~z - v' z 

.2 .. 2-
~l q>y + 2n~i q> + V - M' z z Y 

.2 .. 2-
- M' ~l q>z - zn~ i q> - V 

Y Y z 

f (t) - ~g 
Y 

f (t) 
z 

o 

o 

(2-8) 

where f (t) and f (t) are external forces due to the unbalance and ~g the 
Y z 

shaft weight per unit length. 

The deformation equations for the shaft are the conentional beam 

equations, 
V 

y' q>z + Y M EIq>' (2-9) 
kGA , 

Y Y 

V 
z 

M = EIq>'z (2-10) z = - q> + kGA , . 
Y z 

Calculating the eigenfunctions of equation (2-8), the damping matrix C 

and the coupling elements of the stiffness matrix K, k and k ,are 
- yz zy 

neglected. In this calculation a lumped-parameter approach is employed. 

Near the crack a symmetric average stiffness is assumed. Therefore each 

crack depth and each crack positon requires a new calculation of eigen­

functions. 

The solution provides two sets of R real eigenfunctions for the 

rotor displacements, 

y 
or 

Z = [Z l' Z 2 ••• Z 
-0 0 0 or 

and the angular displacements 

(j) 
-z 

o 

(j) 
z 
or 

(2-11 ) 

(2-12) 
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The modal solution of the transient response of equation (2-8) is of 

the form 

y(x,t) = Y (x) q (t) , 
-0 -y 

z(x,t) = Z (x) q (t). 
-0 -z 

The components are rearranged in matrix form 

~(x,t) [Y(X,t)] 
z(x,t) 

[ 
3.y (t) 1 
q (t) 
-z 

ry (x) 0 ] 

l-: z ~x) 
- -0 

and 
u (x) 
-0 

Then equation (2-13) becomes 

u(x,t) = U (x) q(t) 
- -0-

and it follows similarly for the angular displacements 

Additionally, the shear deformation ~(x,t) is required, 

with 

y(x,t) = rex) q(t) 
-0 -

r 0 -yo 

[S U I (x) - ~ (x)] q ( t ) 
--0 -0-

(2-13) 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

(2-19) 

r (2-20) 
-0 

o r 
-zo 

and 

o 

S (2-21) 

1 
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For the modal transformation of equation (2-8) the complete bearing ma­

trices K and C are used. External and internal damping is included as 

well. The result are 2R completely coupled ordinary differential 
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equations in terms of the modal coefficients n (t) an q (t) , 
~y -z 

(2-22) 

In calculations only the first K eigenfunctions in the y,x-plane and L 

eigenfunctions in the z,y-plane are used. So, the mass matrix, the dam­

ping matrix and the stiffness matrix have the size (K+L)(K+L). 

The matrix are defined by 

M 

c 

K 
-m 

/" UT U .2 
Jo[IJ-o-o+ 1J1 ~T ~ ] dx 

-0 -0 

~ + 
-0 

r + EI d. ~,T ~,] 
-0 ml-O-O 

c. o~, T S ~') + 
1 -0 --0 

dx + 

r 
-0 

- c. o rT S r ) 
-0 - --0 

dx + 
1 

here e is the body fixed radius of the unbalance, 

(2-23) 
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e 

e 
11 

ez: 

(2-24) 

and T contains the harmonic functions of the angle of rotation, nt, 

sin ntj 

cos nt 
(2-25) 

In addition to the constant stiffness the time dependent stiffness at 

the crack has to be considered. In the range L the second moments of 

area are 

I + LH (<p), I + LH (<p), I (<p) = I (<p). 
m y m z yz zy (2-26) 
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These functions are directly stored and during the numerical integration 

the time dependent part ~~(t) of the stiffness matrix is recalculated 

for every time step as follows: 

x 
c 

~,T f r E ~I(<p) ~, dx (2-27) 
0 0 

x 
c£ 

with r ~I I 
i y yz : 

i 

I I ~I 
, 

zy z J 

(2-28) 

The final result are K + L linear differential equations given by equa­

tion (2-4) 

. 
Mq + ~~ + [~+ ~K( t)] .9. 

3. Numerical Results. According to calculations of the author Fig. 3 

illustrates the principle form of the curve of the vibration amplitude 

close to a bearing of a large LP turbine. As a result of the crack, the 

critical speed of the once/revolution vibrations is reduced to smaller 

values and as a rule the amplitudes increase. The original amplitudes 
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can, however, also become smaller in the case of an opposite phase posi­

tion between the out-of-balance vibration and the vibration caused by the 

crack. 

20 

~ 10 
" 
a 
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i; 20 
I. 

I I 

I I 

I I ,.. 20 
1\ 

I ' I \ 
I \ 
I \ 

\ 
\ 
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Fig. 3 Amplitude of vibration for a turbine rotor (uncracked and cracked 
condi~ions). After Grabowski [15] 

In each of the half speeds of the resonance points of the once/revo­

lution vibrations, new resonance points with twice/revolution vibrations 

arises. This effect is known from generators in which their running speed 

is near the half of the second critical speed. As a result of the rotor 

which is not round, the twice/revolution vibrations can cause a non-

smooth run. 

Generally, the size of the vibration caused by the crack depends on 

a lot on the crack position, but most of all, it depends on the crack 

position which is relative to the excited eigenfunction. Where a symme­

trical rotor is concerned with a crack in its centre, the second twice/ 

revolution resonance point would completely disappear because the second 

eigenfunction in the shaft centre would show no curvature. The vibration 

amplitudes are at the largest when the shaft is cracked on a position 

which shows the largest curvature of an eigenfunction. This is the same 

for the once/revolution as well as for the twice/revolution vibrations. 

The simple model of a massless shaft with disk is suitable approxi­

mately for the range up to almost the ncl in Fig. 3, however, only for a 

crack located about in the centre of the shaft. 
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The influence of the crack on vibrational behaviour of a real tur­

bine rotor can vary extensively. The size of the excited vibration am­

plitudes depends mainly on the following four factors: 

size of the weight influence gk in equation (2-4); for a single 

eigenfunction we obtain 

fl. 

gk = £ g II (x) Yok (x) d x (3-1) 

with the shaft weight/unit length ll(X). The value gk is practi­

cally identical to the corresponding out-of-balance value of a 

constant eccentricity along the length of the rotor. 

- size of the term L\K(t) which depends on the angle of rotation in 

equation (2-4). For a single eigenfunction the corresponding com­

ponent is determined not only by the depth of a crack, but also 

by the curvature of an eigenfunction. The position of the crack 

plays the most important part here. 

- for the once/revolution vibration, the distance between the criti­

cal speeds and the running speed. 

twice/revolution vibrations are important at the running speeds 

that are approximately one half the critical speeds. 

3.1 Vibration Amplitudes Depending on Crack Depth~ An example for the 

vibration amplitudes of a LP turbine rotor at running speed is shown 

in Fig. 4. The crack was assumed to be located near the rotor centre. If 

the once/revolution vibration should have almost the same phase relation­

ship due to out-of-balance and crack, then the amplitudes add up as is 

the case for example on the right bearing. If the vibrations are opposi­

tely phased, then the original amplitude as a result of the out-of-balan­

ce will be smaller at first. At larger crack depths, finally the vibra­

tions caused by the crack will be dominant. Thus, the vibration amplitUde 

can also be smaller at first, along with increasing depth of the crack. 

The twice/revolution excitation concerns above all the second eigen­

function. Therefore only relatively small amplitudes occur in the rotor 

centre. On the other hand, near the bearings the amplitudes are up to 

crack depths of 40 ~o larger than those of the once/revolution vibration. 
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Fig. 4 Vibration amplitudes at normal speed of a cracked LP turbine 
rotor supported on oil film bearings. After Grabowski [15J 

The ~aximum at crack depth of 40 % is caused by the change of the moments 

of inertia (Fig. 19 in Part 1). However, this effect is overlapped by the 

curvature change of the eigenfunctions at the crack position (Fig. 5). 

3.2 Vibration Amplitudes Depending on Rotating Speed. Since the number of 

degrees of freedom can be severely reduced by means of the modal analysis, 

it is possible to even calculate the vibrational behaviour of trains of 

rotors. Fig. 6 shows an example for a LP rotor which is coupled with a 

generator. In this case eight eigenfunctions were needed, four in each 

plane. 
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The ploued once/revolution 

vibration amplitudes are posi-

tioned near the left bearing 

of the turbine, while the 

crack is located near the 

right end of the generator 

shaft. Such a behaviour _ 

large amplitudes on positions 

which are far from the crack _ 

has even been observed by 

cracks on existing turbine 

plants. Although at the 

calculation only a crack depth 

of 30 % was assumed, the exci­

ted amplitudes are very large. 

The calculation occurs wilh-

out-balance. 

Fig. 6 Vibration amplitudes of a coupled two-rotor 
system with a 30 percent depth crack. 
After Grabowski [15] 
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As a result of the asymme­

tric stiffness and damping 

of the bearing the harmo­

nic components of the 

vibration orbits are 

ellipses; the shape of 

the complete orbit can 

vary considerably. An 

example is shown in Fig.7. 

Fig. 7 Shaft vibration orbit and the first harmonic 
components near an end bearing, LP turbine rotor 
crack depth 40 percent, rotational speed n = 2n 1. 
After Grabowski [15] c 
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Fig. 8 Mass coverage of a rotor system of a turbine plant, crack 
positions and measuring point 

Fig. 8 shows three coupled turbine rotors of a 300 MW power plant. The 

vibration amplitudes near the left bearing of the MP-turbine have been 

calculated for both crack positions a and b. 
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The once per revolution vibration amplitudes due to the crack as well as 

the vibration amplitudes due to unbalance are plotted in Fig. 9. The 

crack depth amounts to 40 % of the diameter, the radius of unbalance 

is assumed to be constant along the three rotors. At the resonance 

speed of approximately 1800 rpm both amplitudes have nearly the same 

size, the major semiaxis amounts to 200 ~m. These resonance amplitudes 

are caused by an eigenmode of the MP-rotor. The resonance peak at approx. 

1300 rpm is caused by the LP-rotor. At this speed the crack excites very 

small vibrations, although the measuring point is located at the crack 

position. Depending on the phase relationship the vibration amplitudes 

due to crack and unbalance can be added or subtracted. 

The twice per revolution resonance speed of approx. 900 rpm in Fig. 

10 is half the critical speed of the MP-rotor. In this case the crack 

would excite a distinct twice per revolution resonance peak during the 

drive-up and drive-down which would give a clear indication of a crack. 

The two lower peaks belong to critical speeds above 3000 rpm. 

Fig. 11 shows for crack position b another example with large am­

plitudes at positions which are far from the crack, in this case up to 

300 ~m at approx. 1400 rpm. The amplitudes are caused by an eigenmode 

of the LP-rotor. 

Below the speed of 750 rpm the results become instable. Because of 

the employed method of numerical integration it cannot be decided, whether 

the mathematical procedure or the physical system is unstable. At this 

speed one would expect a twice per revolution resonance peak. 

The level of the twice per revolution resonance amplitudes at 

approx. 900 rpm in Fig. 12 is smaller than for crack position a; excited 

is an eigenmode of the MP-rotor, but at running speed the vibration 

level is higher than for crack position a. 
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4. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS 

4.1 Experimental Rotor and Crack Propagation. To confirm the theoretical 

results of the vibrational behaviour of cracked shafts experimental in­

vestigations were carried out. Figure13 shows the experimental rotor, 

which is supported by journai bearings in an experimental Helium-compres­

sor housing. At first it was intended to produce the crack by an oscilla­

ting load. However, other experiments with this kind of load have shown 

that a crack surface due to such a treatment is different from a crack 

surface which is produced by an alternating load. Therefore, we decided 

to produce the crack during the rotation of the shaft in the rig itself 

by the application of an external force. 
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Fig. 13 Experimental rotor 

Due to the high bearing load as a result of the external force F 

(Fig.l3) the ;ournal bearing at the crack side of the rotor was replaced 

by a ball bearing. The load was afforded by a ball bearing too. To redu­

ce the necessary amount of the external force the diameter of the shaft 

at the crack position was reduced to a diameter of 45 mm with a cut 

radius of 5 mm. For crack initiation, a 4 mm deep cut was sawed with 

a thin wire of 70 ~m diameter (Fig. 14). 

Fig. 14 Cross-section at crack 
position 

For crack propagation external 

forces of 5000 Nand 3000 N, depending 

on the crack depth, were applied for 

about 3 hours. The crack propagation 

was controlled by observing the twice 

per revolution resonance amplitude 

near the crack position using a 2-chan­

nel Fast-Fourier-Analyser. The rotating 

speed was equal to the corresponding 

resonance frequency. Unfortunatley, two 

cracks came into existence. Probably 

on the opposite side of the cut, a small 

groove was the cause of the initiation of 

the second crack. Therefore, the compari-

son of the theoretical and experimental 
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results is uncertain. 

For the theoretical calculations we have assumed a linear shape of 

the crack ground (Fig. 14) and a crack depth of 45 % of the diameter. We 

intend to carry out additional experiments with this rotor, e. g. with 

different unbalances. Therefore, we did not break the shaft at the 

crack position. 

4.2 Theoretical Model of the Rotor. The vibrational behaviour of the 

rotor has been calculated with the FEM and the transfer matrix method. 

To make use of the crack model with L = T, the geometry in the neighbour­

hood of the crack had to be modified. We have taken one element of dia­

meter of 64 mm and length of 32 mm (Fig. 15). This gives the same flexu­

ral shape as the real geometry. 

S=d,splocemenl pIckup 

___ J 
Fig. 15 Rotor model for calculation 

The change of stiffness due to the crack is the same as in the case 

of the original rotor. But difficulties result from the uncertain know­

ledge of the stiffness and damping coefficients of the journal bearings. 

The vibrations excited by a crack depend severely on the curvature 

of the eigenmodes at the crack position and on the weight influence 

(see Ref. 15). If 

i. 
J g ~(x) Yok(x) dx ~ 0, 
o 

(3-1) 

in which g is the gravitational constant, ~(x) the shaft weight/unit 
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length and Yok(x) the eigenmode, the crack does not excite any vibration. 

This is approximately the case for the second eigenmodes in the horizon­

tal and the vertical plance (see e.g. Fig. 16) and accordingly for the 

third and fourth complex eigenmode of the complete system (Fig. 18), too. 

Thus from the eigenmodes, one may have an idea about the speed ran­

ges in which crack-excited vibrations can occur. 

Fig. 16 Vertical eigenmodes of 
the undamped system 
(uncracked rotor) 
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Fig. 17 Vertical eigenmodes of the 
undamped system (cracked rotor) 
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Fig. 18 Second and fourth complex eigenmode of the uncracked rotor, 
complete damped system 
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5. THEORETICAL AND EXPERIMENTAL RESULTS 

5.1 Eigenfrequencies and Eigenmodes. The results of the numerical inves­

tigation of the vibrational behaviour of the cracked rotor are obtained 

by using the uncoupled eigenmodes of the conservative system (Fig. 17). 

The modal transformation includes the complete bearing stiffness and 

damping coefficients. 

Figures 16 and 17 show, that the difference between the calculated 

ei~enfrequencies of the uncracked and the cracked rotor amounts to appro­

ximately 3 %. The measured frequencies in figure 19 (uncracked) and figure 

21 (cracked) differ approximately by 12 %. This indicates that the assu­

med mean stiffness reduction in the calculation of the eigenfrequencies 

is too small. In the case of the uncracked rotor the measured and calcu­

lated eigenfrequencies are in good agreement. For comparison only the 

first few eigenmodes of the complete coupled nonconservative rotor (Fig. 

IS) are calculated with FEM. 

5.2 Rotor with Cut. An interesting experimental result is depicted in 

the figures 19 and 20. The cut with a depth of approximately 10 % of the 

diameter has no influence on the once per revolution vibration amplitudes. 

This corresponds to the theory for a gaping crack. (The small difference 

may be the result of a change in the distortion due to the storage during 

some days.) The amplitudes at low speeds seem to be due to the runout. 

The rotor is neither balanced nor equipped with an additional unbalance. 

The twice per revolution amplitudes may also contain runout, but less 

than 1 ~m. The resonance amplitude increases up to 16 ~m. One or two 

additional resonance frequencies can be observed at higher speeds. The 

small amplitudes of these resonance vibrations can be explained by the 

influence of the weight (see Eq. (5)). The rotor with cut has not been 

theoretically investigated. 

5.3 Cracked Rotor. As mentioned, the missing knowledge of the excat 

bearing stiffness and damping coefficients is a problem when calculating 

the vibrational behavior of rotating shafts. The theoretical model of 

this rotor does not include the measured rigid-body eigenmode at 2400 

rev/min (Fig. 21 and 23). The resonance frequency at 4000 rev/min is 

not theoretically determinable, too. But for crack detection 
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these effects are of secondary order. The comparison of the measured 

(Fig. 21 and 23) and calculated (Figs. 22 and 24) once per revolution 

vibration amplitude shows a very good agreement at both mesuring planes 

S56 and S78. We indeed expected a good agreement, but this exact agree­

ment must be an accidental one. 

On the other hand, between the measured and calculated twice per 

revolution resonance amplitudes contain a factor of 2. This is to be 

explaine with the two cracks in the shaft. The stiffness changes twice 

per revolution and therefore we have a greater excitation of twice per 

revolution vibrations than the crack model delivers. 
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Fig . 23 Measured vibration amplitudes 
of the cracked rotor at 
position S78 
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Fig. 24 Calculated vibration ampli­
tudes of the cracked rotor 
at position S78 (crack 
depth 45 % of the diameter) 

In figures 25 and 26, the complete frequency spectrum of the rotor 

with cut is compared with the spectrum of the cracked rotor. The scales 

are the same. This representation gives a good survey of the change of 

the vibrational behaviour due to the crack. 

At the rotitional speed of 7000 rev/min a resonance vibration appea­

red with a frequency of approximate'y 3500 rev/min for a very short time. 

Until now we have no explanation for this effect. 
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Fig. 25 Frequency spectrum of the 
rotor with a cut 
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Fig. 26 Frequency spectrum of the 
cracked rotor 
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6. Conclusion. To detect a crack in a turbine rotor by means of the shaft 

vibration monitoring, the influence of the crack on the vibrational beha­

viour has to be investigated first. For this purpose, a procedure is 

introduced wpich uses the modal analysis. The stiffness at the crack 

position depending on the angle of rotation will be determined according 

to model. Due to the structure of the computer program, the stiffness 

can also be obtained from test data. 

The numerical results show that in the speed range in which many 

turbine plants have their normal speed a crack can cause an important 

change of the shaft vibrations. The crack excites mainly one/revolution 

and twice/revolution vibrations. Both can be used for crack detection. 

The size of vibration amplitudes depends mainly on the construction of 

the rotor and on the crack position. 

The comparison of calculation and measurement shows in principle 

that it is possible to predetermine the vibration amplitudes excited 

by a crack. But at the same time this investigation shows the problems 

in modelling the system. Thedeveloped crack model seems to be useful. 

For crack supervision the phase should also be taken into account, 

because the amplitude of the sum of the original vibration and the 

vibration due to crack can become smaller with crack propagation. 

In the future the influence of unbalance is to be investigated. 

Our calculations have shown that this influence is often small for 

greater turbine rotors because the statical deflection is greater than 

the vibration amplitudes. But in rotors constructed as in the case of 

this experimental rotor, an influence can be expected. Here the vibration 

amplitudes at crack position have the same magnitude as the statical 

deflection. 
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Nomenclature 

A 

b -

C 

c 
e 

C. 
1 

C 

e 
1]' er;; 

E 

f 
y' 

f 
z 

F 

g 

.& 
G 

i 

1 

I + 61 m y, 

1m + 61 z ' 

I + 1 yz zy 

k 

K 

K 
-m 

K(t) 

i 

L 

M y' M 
z 

M 

qy' qz 

cross-sectional area of shaft 

support damping coefficient 

support damping matrix 

external damping coefficient 

internal damping coefficient 

modal damping matrix 

radius of unbalance in rotating 
coordinate system 

Young's modulus 

external force due to unbalance 

modal matrix of unbalance force 

gravitational constant 

modal vector of self-weight load 

shear modulus 

radius of mass moment of inertia 

cross-sectional transverse moment 
of inertia of shaft 

second moments of area at crack 

postion, depending on angle of 

rotation cp 

support stiffness coefficient 

support stiffness matrix 

constant part of modal stiffness 
matrix 

time dependent part of modal 
stiffness matrix 

length of shaft 

range of crack extension along 
the axis of the shaft 

bending moment 

modal mass matrix, diagonal 

modal coordinate 

B. Grabowski 
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R y' R z 
S 

T 

T 

~ 

U , ~ r 
-0 -0, -0 

V y' V 
z 

x 

x x c1 c r 
y,z 

y 
0' 

Z 
0 

"'(y' "'(z 

r y , r z 

6 

J( 

1.I 

'P 

'Py ' 'P z 

~ yo' ~ zo 

n 

bearing reaction force 

rectangular rotation matrix 

crack depth 

transformation matrix 

vector of displacements 

modal matrix 

shear force 

coordinate along rotor axis 

left and right boundary of the crack length L 

radial displacement 

eigenfunction for radial displacement 

angular displacement of shear deformation 

eigenfunction for shear deformation 

unit delta function 

cross-sectional shape factor for shear deformation 

shaft mass per unit length 

angle of rotation 

angular displacement 

eigenfunction for angular displacement 

angular speed of rotation 

Indexes and Superscripts 

k, K, fl, L number of eigenfunctions 

n, N bearing number 

0 eigenfunction 

r, R eigenfunction number 

y y direction 

z z direction 

( 
. 

) a 
at 

, a 
( ) 

ax 
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1. I nt roduct ion 

The vibralions of rolating blades are an imporlanl subject in 

t.urbomachinery. The problcm of delermirling the eiqenfrequem:ies and 

mode shapes of ~ibration of pre-t.wisled, tapered carllilever blades is 

of imparlance in the design of lurbine and compressor blading. The 

qcometry of a lurbine blade is a complex one. The lurbine blade can be 

pre-twisled and lapered bolh in width and depth. 

[he blades are lo be de!;rribed by a beam model which inclUdes the 

following influences: 

- the sliffcning effect of lhe cenlrifugal force field 

- tapercd blades 

- a bladed di!;k wilh slagger .mqle ex belwcen 0 <lnd 90 deg 

- pre-twisled bladcs 

- !;hcar deformat ion and rol<lry inert ia 

- f;uPJlort pi ast i (' i t y 

- coupled vibrations of thc di!;k and its blades 

- !;h rouded b I adc!;, bicmded q roups 0 I' t.u rb inc bucke t fi 

(packet vibraliorl!;) 

2. The purpose of calculat.ing vibralions 

One bem i c requ i rcmenl 1'0 r the deH i gn () I' re 1 i ab if, I u rbomach i nes is 

t.he avo i dance 0 I' re!HH1CH1CC !; i t.u<ll ions in the bl ad i nq. B) rcsonance is 

ITlc!mll t.hc coinci(h~r1re of thf~ eiqenfrequcncies of t.he blade!> wit.h t.he 

f'rf!querlCie!; of the excilation force!; of aerodynamic oriqin. If lhis 

!;ituat.iorl cannot be prevpnlf!d, f;tre!;Sf!!; are incre,wed in t.he blades 

,WHllHll i nq t.o many t. i me!; t hf~ st f~ady va luefi due 10 CJas pressure and cen­

I ri fuqal force. Should I he!;e nt.resses excef~d the rf!Sf!l'\wd filt illUC 

f;1 renqt.h of lhe material!; lJ!if~d, blade fai lure wi II en!;ue in a short 

time. 

The blading dCf;iqn I!; part icular.Ly di fficuit in I hE' ca!;£' of I urho­

machiner;, where cont.iIllJOuf; operat.ion if; required not ordy al a fixed 
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sp(~ecl but withln cl spped ['al)(]f'. lhi~; means Ulat frequenc~ ranges must 

be taken into account also for the aerodynamic excilation forces acling 

on the blades. When blades are designed the eiqenfrequencies must be 

kept out of the excitation range of the aerodynamic forces. The design 

of turbomachine blading from lhe vibralion aspect must satisfy two re­

quirements: 

- the amplitude and frequency of the aerodynamic forces actinq on lhe 

blades must be known 

- the eiqenfrequencies and the modes of vibrntion must be found out. 

The present work is devoted exclusively to the calculation of the 

eiqenfrequencie" of turbine blndes and bladed disks. 

3. BpI)(linq vibration of n r()tntinq untwi"ted "lender benm. 

Fig. I shows the bldded disk c<Jnsidered. fhe differential equation 

developed in this chapter nole the followinq assumptions: 

- The beam is fixed rigidly to a rolalinq, axi-symmetric disk 

- The disk rotales with a con~;t. anqulnr velocity D 

- A(x) = A(x=O) = con"l. 

- The beam is untwisted 

- L~>i " that means, the beam i" to be described by the classical beam 
y 

theory 

- The nntural vibrat.ions corl~;ide['ed are n~;sumed to be of smnll nmpl i-

tude, and the material homoqeneous and l.inear elaslic. 
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r iq. 1 Bladed disk, notation 

Equation of molion: 

For a differential element: 

• i or rim iaf + 8 cor'! = dm a 
reI 

(S.2-l; 

. . 
d~' = 0 (S.2-2) 

1he equat ion of mot ion are formulated on a rieformcd clement 

(Fiq. 2): 

- external force: 

. 
(~I dx+n dx) 1 + (Q I dx+q ox) k 

o 0 
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where 

- Deceleration: 

-1l7RT; + 
aB = w= O· , 

-+ 
(x+lJ) r +vl p = 

il cor 

Lv 

i1 cor 

a re] 

-+ -, 
= 2wxv reI 

~, 

".ljv rel 

, + 

= 20(,:Ji-lJk; 

, -, 
= ui+wk 

I 
, z. w 

, .' 
ui+wk 

, : ..Q.. 
ax 

w=ll 

t ilJ. 2 Intt'rrlal forcC's ilncl di~;pli1cement~; of il deformed element. 
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'iuostittJtinq these expressions into equation (').2-1), ~Je obtain (').2-3) 

<Jnd (').2-4) 

l'ji th u «( H+x; follom; 

~ , 
= :';L'j 

= Wl'j 

fqu;!lion ;').2-2\ applied to the deformed element Yields 

Ph~~;ical interprdrttion of the equiltions (':>.2-3) - :').2-)): 

l·.e ['e('o(jn i Ie 

(').2-3) 

(5.2-4) 

(5.2-5) 

- <l coupled lTlotlorl irl x- ;md 7-direction by Conolis-force irl 

equat ion : ':>. 2- 3; ilnd ,: I). 2-4) 

- a componerlt of the ccrltrlfuq<Jl force in x-direction (~l~L(R+x\ in 

equation ('j.2-3;)Jiq. 2<.1; 

- il comp(!nent of the centrIfugal force in z-dlrection (w:,ll'j in 

equrtUon (').2-4)) :riC). 2<1; 

- ilr1 influence of the cerltrifuqal force \ on the mOlTlent - shearing 

force reliltiorl in equation (').2-'); 
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a- 90° 

Fig. 2a Components of the differential centrifuqal force 

Kinematical equations and Hooke's law 

Relations between displacements, deformations and internal forces yield: 

u' 
N 

= EA 

wt I = _ M 
IT 

().2-6) 

().2-7) 

If the internal forces are eliminated and we assume that n = 0 and 
o 

qo = 0 we obtain from equation ().2-3) - ().2-7): 

().2-8) 

().2-9) 
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fur the natured vibrilt ions the displRcements CRn be represented us: 

u ( x , t) = U ( x ) • sin :.J t. 

e:.) - ci rcuiRr frequency 

w(x,.t; = W(x)·sin c.;t 

The equations (5.2-8) and (5.2-9) can besimplified by considering the 

following estimaliuns: 

~ and ,,' are of the same order of m3qni tude 

(R+x)>> W In Eq. (5.2-8) 

-':y W» 2~1:.d LJ W »U in [q. (5.2-9) 

I ' , 

-;fJ U max =U:..J 1 in Eq. (':>.2-U) 

1herefore,'he inertiu force equation (5.2-8) and the Coriolis-force .in 

eq:;. (5.2-8) Rnd (5.2-9) are neqligible. Then eqs.('J.2-8) and (5.2-9) 

reduce to eqs. (5.2-10) and (':>.2-11): 

(5.2-]0) 

(5.2-11) 

1hc boundary CUncllti()fl~; for a C,Hltilever beam Zlre: 

W(o) = W' (0) = () 

WI! (I ) = WI! I (l = 0 

The solution of equation (':>.2-10) by irlleqratirHl r['~;ults 
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L 
IN' d~ ~ 0 

= -J IJ~Y (R+O d~ 
x x 

\J(x) = p A(x) )J - mews per uni t 1enCJlh 

N(L) = 0 

Ir 
=) N(x) = pQ7JA(~) (R+~) d( (').2-12) 

x 

Equalion (').2-12) C'eln he C'nlC'uICltpd for Cl non-uniform bnr by numertC'al 

inleqriltion. :IJ(x) in eqlJillion (').2-11) can he rerlilCcd by lhe soIIJti(1rl 

of equiltion (').2-12). Then, the solution of equal10n (').2-11) can he 

found by vilrious ilpproximilt.ion methods, like 

- Rayleiqh - Rill method 

- Cillerkin procedure 

- transfer mall' i x mr,lhod 

- numerirul inteqrntion lechrllquc~; (H1HHjP - KuUn -

Fehlberq; 

- finite clement. method 

Resull~; are ~;hOl'm HI Fiq. 5 for if rotatirHj beam L'JIUI r:(Jn~;t. cr(Js~; ~;er-

lion. The curves inrrcClse rnrabolic,dl) I'Jlth rotat I[HI ~;pr'('d; ,HId the 

e i (jenfrequencies lnrren~;e I'Ji th :_ = II/I rec;perl I vrd). 
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75.0 

~t . ~ 

All .~~I 
• ---::: . 

• 

~n e: =..8. A: L2W ff L ' 'yO E 
50.0 

:p 
II = 90· 1<" t!n ~ 

ly-L~ 'yO E 

,.£=1 -25.0 Ad ... _e--
a a 

iyO -radius of gyration 

A,. - . 
OOO:::::::e:::1 • • 

. 0 
.0 1.0 2.0 3.0 4.0 K 5.0 

I HI. 5 f.lqcnfrequen(,le~ for bendinq vibration of ;] rotiltinq 'Eujer­

Bernoulli Beam' with canst. cross section 

Ar1 approximat lor1 of the ~>tiffeninl] effect of the centrifugal force 

fjeld is given hy SOUTHWELL's equalion: 

(').2-13) 

n - rolatinq speed 

". circular elgenfrequency al ;L = 0 

centrifugal force factor 

.. r' 
The factor :p was measured by ROHt·1 '1 : for twisted and untL'Ji~;ted beams: 

1. 'j'j R 1. 17 sin'() untwi~)ted beam~; '0 = + -y L 

1. ')3 R 
1. 19 sin 2a twisted beams Q = L + -
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lqlJel\.Jon (J.Z-l~ ) I!; V<ll.irl only tOT' tile fIrst clgerltrequenc,. 

SOUTHWELL's eqlJation is controversial for higher ei~enfreqlJcncies. 

Nevertheless, in L2j values for:;; are C]iven. 

For the experimental verificCltion of the theoT'eticClI results <-l 

lot of special tesl lechniqlJes helve been developed. lhe aim of carried 

out measurements is (1) to prove the basic assumptions ~hich are intro­

duced to describe the blade and (2) to test the acclJrac) of the nume­

rical approximation. Some results considering both aspects are qiven 

in ~ I : ,md later in r9~ wherc cxperimenhIl invf'stiqations of mode 

shHpes with help of a holographic tcchniqup Clrc dt>;;cribed. Typical 

holograms 19~ of lwo bending modes and - not disCIJSscd here in dptail -

torsionill mones of a t.wisted blade are shown in Fig. 3u. 

Mode of vibra"on 3T r: 4027 HI 

Mode of vibration 2T r: 2385 HI 

Mode of vibration 2T r: 2385 HI 

Mode of y,bration 411 f: 1632 11> 

F i q. 3il 

Holoqramn of monps 

of vibralions of 

;m lwist.en ;;lpndf'T' 

beam with rf'ctnnqu-

lilr CT'OSS ;ieclion 
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4. Consideration of further influences 

The equations of motion of a rotating pre-twisted cantilever beam 

~ith variable cross section, including shear deformation and rotary 

inertia are given by BOHM LI:: 

aq 
a " ov, a2v ~ + ax (n -;;-) + pA0.' (vcosa - VJsina)cosa = pA 

ax x aX at 2 
(5.2-14) 

am a 2y a 2y 
z (I ~ I __ z) 

qy + -- = p 
ax yz at' z at 2 

(5.2-15) 

:jq 
~ 3,') , a 2\'1 z (J 

(n pMl 2 (vcosa I'lsina)sina pA 
ax + 3x 

-) - - = x ax at l 

(5.2-16) 

3m Cl<y a2 y 
qz - ---.Y = p (- I -----..:..r + I __ z) 

dX y at l yz at 2 

(~.2-17) 

Ihe stress resultant n caused by rotation in the equations (5.2-14) 
x 

and (~.2-16) is obtained from 

l. 
n = p 0. 2 f A (R + [,)d~ 

x 
x 

r:on~;titutive equations of a pre-b'listed blade described by 

IIMOSHF~KO's beam theory: 

qy = k GA (~v + y z) 
"X 

3y ~y 

[ ( I '/ 
I ---..:..y\ m = - Clx + ~ I 

7 Z y7 ox 

qz = k CA 
( aVI 

'ax + \) 
oy dy 

1- ( I 7 
I ~-) m = ax + 

y yL Y aX 

(5.2-18; 

(5,2-19) 

(5.2-20; 

(5.2-21) 

(5.2-22; 

The influences of t.he parameter~; li"led above on the eiqenfreqlH'!ncies 
are described in the folloVJing paragraphs. 
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4.1. Tapered beHms 

A tapered beam can be considered in eq. (5.2-11) ~nd (5.2-12) hy re­

pl~cing 

~nd 

2 
I ~ I(x) = A(x) i (x) 

For a lapered nun-rotating beam with rectangular cruss seclion 

results are shown in Fig. 4. The first eigenfrequency increases with 

tapering while the second and third eigenfrequencies decrer!se. Under 

rotation lhe eigenfrequency of a tapered he~m increases lesn t.han for 

beam with uniform cram; section and the sume root cru~;s sect.ion. 

1.3 
).. 

r.r; 
1.2 

1. 1 

1.0 

.9 

.9 

. 7 

Y~ 

L-- L-.J 

Beam with 
rectangular 
cross section 

).,1 ___ • 

. --- ~­-----. 
.-- X L-_-'-- Ah<l = A 11- PIL'1 

::::::::--~"______ iyo = radius 01 gyration at x = 0 
.~ ----.." ).,1 

~ -----..::." 
.~ ------" .~ ----.~ ~" . 

i I 

.0 .2 • 4 . Ii 

Fig. 4 [iqenfreqlJenCle~; for hendirHJ \ihration of a tapered be~m 

_9 
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4.2. Stagger angle a 

The staqqer angle if) defined in Fig. 1. There are two different 

influences on the dynamical beh<lvior of turhine hl<ldes. 

a: lwo extreme cases of the stagger angle a are recognizable (Fig. 5): 

a=O° 

f if). 5 fffect of the centrifuqal force 
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:\ = [) deg: The centrifugal force component :..':> [.j in eq.().2-11; 

vanishes 

a = 90deg: The centrifugal force component J;::' [.J in eq. (J.2-11; 

increases the bendin~. So the centrifugal force compo­

nent UQ 2 H reduces the 'stiffness' of the blade. 

The influence of the stagger angle a on a rotating beam 

~ith constant cross section is sho~n in Fig. 6. 

b) A disk with blades of stagger angle a belt'Jeen 0 and 9Ddeg is consi­

dered. In this case, there is a negl i~Jible coupl inq bet~een the 

flap~ise and the chord~ise bending of the blade (see eqs. (5.2-14)­

(,).2-22)). 

The influence of Lhe Hlagqer angle a on the firHt eigenfrequeny can 

be taken int.o account by ~;OlJTIH'JfLL'!i equation ('>.2-15;. 

75.0 

~ 0=00 .~ 
A,) .~. E= 

-=1-
---:::. 

• 

50.0 to E =B. 
L 

A,= ~w~ 
lyO E 

25.0 

lJ:l-j K -tQ{-f 
- iyo E 

J=1 0=00 ~ 

A'2 ~ 
_e-==-- '0=900 
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4.3. Pre-t~isted beams 

A prp-t~isted beam ~ith constant cross section is considered. In 

this case there is a stronq coupling between the flapwise and the 

chord~ise bending of the blade. The influence of the total angle of 

tDist on the first and second eigenfrequency is shown in Fig. 7 and 

f-Iq. 8. The curves in fig. 7 and Fig. 8 are measured by BtiHM ~ 11. 

The first eigenfrequency is nearly constant with increasing total 

angle of t~ist while the second eigenfrequency is decreasing. 
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Fig. 9 shows measured and calculated eiqenf~cquencies for bendinq 

vibrations of pre-t~isted beams. Differential equations for bendirlCj vi­

brations of pre-t~isted beams are given by MO~IOYA :4j and BUHM ~lJ 

(see eqs. (S.2-14)-(S.2-22»). The infllJence of the total anqIe of tL"Jist 

on the first eigenfrequency can be taken into account by SOUIHWEI.L's 

equation ().2-13). 

FIC). 9 r"lcaslJred <lfld c<llclJiatf'd piCjcnfrC<llJenrip;, for tJpndinq vibralion 

of a rolallf)cJ pn~-\l"Ji~;ted beam 

Total <lnqle of t L"Jl 51 . nO 52.1° )7,8° B),Bo I] r ° 
I I ) 

txperimental • • • : / 

Theorellc"l C/ x + 

r - F lap~Jise bendintj H - [ttl) rckJ i sc bemJi I1Cj 
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4.4. Shear deformalion and rotary inertia 

For a reI iaille theoretical prediction of the eigenfrequencies of 

shorl bludes or higher modes, it is necessary to include the effects of 

she~r and roLary inerlia. The shear deformation, which is ignored in 

lhe Euler - Bernoulli - beam Uwory, constitutes an additional deforma­

lion to lhe bendinq deformation. Ay laking this into account the blade 

under consideration is asnumed to be more elastic, from ~hich it fol­

lo~s directly thal the eiqenfrequencien are reduced by the influence 

of the shear deformuLioll.lf not only the translation energy but also 

thp rotalion ell(~rqy of an element of length dx is included in the cal­

(~ulaLion, the kinetic energy of lhe blade is increased. Since the ex­

prpm;ion for th(~ kinetic enerqy contains ~2 and the elastic enerqy does 

not change, tukinq t.he rotation energy int.o account also has the effect 

of 1(ll'Jerinq the frequency. In the follo~Jinq differential equations an 

unLl·Ji~,ted, non-rotating blade is described by JIMOSH~\K(J's beam the()ry 

') 
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Fig. 10 shows the Influence of shear deformatIon and rotary inertia on 

the first three eigenfrequencles. 
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Fiq. 10 Influence of shear deformation and rotary inertia on the 

lateral frequencies of cantilever beams 

For example: 

50.0 

A beam wi th redanguJ ar cross sec-lion (30 mm x 10 mm, I = I DO mmi is 

considered. 

• 6 L 100 34.6 = = = 2.887 = y i (hi /12 y 

The t.hird eigenfrequency is IfWJered by nearly I I?o. 
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4.5. Support elasticity 

Absolutely rigid support implies that no displacement or slope 

occurs. O~ing to the existing support elasticity the eigenfrequencies 

of the blades fixed at one end are reduced compared to the case of riq­

id clamping. Even in an assembly where the blade and the disk are manu­

factured in one piece, at the blade root with x = 0 a displacement or 

a slope ~ill be induced under the action of a bending moment M or a 

lateral force Q. BEGlINGER takes these facts into account [6]. 

The elastic support of the blades is difficult to define, with no 

general validity in the case of turhomachines, since different construc­

tions of root fixings on disk are used. Often the influence of theelas­

tic support of the blades is described for the first eigenfrequency hy 

the following relation: 

~rigid - eigenfrequency for rigid 

supported hlades 

('leI - eiqenfrequency for elastic 

supported hlades 

~ - rneamJred factor 
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Fig. 11 shoVJs the factor :)i for dif f erent shapes of ' roots l L j . 
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4.6 Coupled vibrations of the disk and its blades 

It is important to considf'r lhe combined vibrations of the blades 

mounled on slender disks. for all possible vibrations of the disk and 

the blade, lhe differential equations are given in [81. Fach of them can 

bf' considered isolated from the other, i f ~~ell defined boundary condi­

tions can be found either for lhe disk at the bore and the rim or the 

blades al their root" or ends. However, to calculate the natural vibra­

tions of the l"!hole system of bladed disk, it is necessary to find forces 

and displacement relationships at the disk rim and the blade roots 

:1 iq. 12~. This lOJi II be done by assuming a large number of identical 

hlade~;, so t.hat lhe diBplncements and inner forces of all blades vary 

harmonically in ::: nround the disk. ~loreover a rigid connection beb'Jeen 

d i ~;k rim and blade rool i H supposed. 

Fig. 12 Connerlivity of lhe disk rim to the blnde root.s 



Dynamical Behavior of Rotating Turbine Blades 489 

In I 1'1. 13, the dimension.less eigenfrequencies, :\ , for the tangen-z 
tial vibrations of non-rotating blades of constant thickness and ~ith 

stagger angle a = 90 deg are plotted taking into account the torsional 

vibrations of the disk in its plane. The first natural mode of vibration 

is shown in Fig. 13, too. The dashed lines sho~ the first three eigen­

frequencies A B of the blades given by Eulers beam theory ~hen rigid z 
clamping is assumed at the blade root. Fig. 13 sho~s that there is no 

effect of disk elasticity on the blade frequencies for small values of 

( = R/L. However, for £>1 the eiqenfrequencies of the system ~ill be 

considerably belo~ those of the rigid clamped blade, specifically for 

the higher eigenfrequencies and small values of ~. 
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~or staqger angle ~ = 0 dey. the natural motion of the system con­

SistS of bendinq ~ibration of tt,~ disk and bending and torsional vibra­

tion of Lhe blades. fiq. 14 sho~s the eigenfrequencies over the K nodal 

diameter for a rotating bladed disk. The horizontal lines represent the 

first and second bending eigenfrequencies of the blade ~ith riqid clamp­

ed support. The dash-dotted lines represent the first eigenfrequencies 

of bendinq vibration of the unbladed disk, both for the non-rotatiny 

and the rotating case, respectively. The continuous curves show the ei­

~enfrequencies for the bladEd disk . 
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Usually thp stagger angle Q of the blades is bet~een 0 and 90 deq. 

In this rangp of Q the vibrations of the disk (in-plane and out of­

plane) and the torsional and bending vibrations of the blades are com­

pletely coupled. A typical mode is shOl"m in F iq. I,). The continuous 

lines show the eiqenfrequencies A of the bladed disk for the t~o cases 
z 

a = ')0 deq. and a = 80 deg .. 
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An important effect In bladed disk vibrations arises by mistuning 

the assembly. As Ewins ~IO~ pointed out frequency splitting and shifting 

occur, and both cause signIficant change in the dynamical behavior of 

the system ~hen the response to harmonic excitation is considered. Some 

results on this topic were recently reported by IRRETIER and SCHMIDT in 

: IIJ. As an example, Fig. 16 shows the blade tip deflections of a 24-

bladed disk assembly of the first row of 24 modes for both a tuned and 

a statistically mistuned system. 
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CHAPTER 5.3 

TORSIONAL VIBRATIONS IN LARGE TURBINE GENERATOR SETS 

J. Drechsler 

1. Excitation Sources for Torsional Vibrations in Turbo Generators 

The long turbogenerator shaft trains in modern power plants are loaded by 

considerable torsional moments, which have to be transmitted between the turbine and the 

generator. While the torsional moments under stationary full load conditions are well within 

tolerable limits from a material strength point of view, the oscillating torsional moments 

imposed on the shaft under transient conditions are large enough to eventually cause a 

material fatigue failure in the shaft. Thus it is necessary to both control excessive torsional 

vibration and to check the number and magnitude of excessive torsional vibration incidents, 

in order to perform life time calculations. 

Torsional vibrations will be excited by any sudden load change. Such transient 

operating conditions can give rise to both sudden changes in the electrical moment and to 

sinusoidal electrical moments in the generator which can excite dynamic torsional moments 

exceeding the stationary values by factors up to five. 

Among exceptional operating conditions which initiate torsional vibrations in the 

turboqenerator shaft train are 

short circuit across the generator terminals following full load operation, a classical 

design case; 

faulty synchronizing; 

- transmission line faults (short circuits); 

transmission line switching operations. 

Moreover it has been discovered, that when series capacitors are used in transmission 

lines electrically close to the generator, steady state and transient currents can be generated 

at frequencies below the normal power system frequency. The existence of such currents 

causes alternating torques in the generator which can reinforce natural vibration modes of 

the shaft and result in significant dynamic torques at or near the shaft couplings. 

For numerical calculations it has to be observed, that these above mentioned 

exceptional operating conditions typically occur in sequence: 
The first impact on the generator might be a sudden short circuit in a transmission line 
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close to the generator, which in electrical engineering is frequently called fault application. 

The second impact results from an electrical disconnnection of the faulty transmission 

line, which is called fault clearing or fault removal. Usually this is all that has to be done to 

extinguish the electrical arch, which has been initiated for some reason (typically lightning) 

and short circuits the line. 

After a brief disconnection the third impact is applied, when the line is electrically 

reconnected. This is also done automatically, the technical term for this operation is high 

speed reclosing. 

High speed reclosing can be successful if the fault is effectively cleared by the 

disconnection of the line or unsuccessful, if the fault persists after reclosing. 

In this case a fourth impact is applied by a second clearing. 

As these consecutive shocks are applied, while the shaft still oscillates due to the 

previous shock, the different shocks can add up to very high dynamic shaft torc:ues, 

depending on the timing interval between the shocks. These torques can be much higher 

than in the terminal short circuit case, which has been considered the worst design case until 
just a few years ago. 

1.1. Subsynchronous Resonance 

In the subsynchronous resonance case electrical net oscillations are in resonance with 

some torsional mode in the shaft system. As the load on the electrical power system is 

inductive to a large extent, it is common practice to compensate the system by series 

capacitors. Thus the system has the possibility to oscillate with a natural frequency, which 

according to figure 1 can be calculated to 

( 1 ) 

Fig. 1: Turbogenerator with compensated transmission 
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From a physical point of view the fundamental phenomenon of electrical self 

excitation of a rotating electrical machine may be regarded as operation as an induction 

generator. For a constant rotor speed and linear system characteristics the self excited 

currents may be initiated and grow quite independently of any applied armature voltage or 

field excitation. If there are no applied voltages, the machine will develop a torque which 

would in practice grow to some constant value. However if there are applied voltages, the 

self excited currents will interact with the normal rated frequency currents to generate a 

pulsating torque, which would be primarily at slip frequency f, = fo - fc . 

It is this pulsating torque, which may excite torsional movement of the rotor, if the 

slip frequency is near torsional resonance. Then, in turn, the now appreciable voltages 

generated by the rotor oscillations will themselves produce relatively large currents which· 

may be said to reinforce the self excited currents. 

For the convenience of those primarily concerned with mechanical vibration, the 

analogy between the mechanical and the electrical system dynamics is summarized below 

mass m reactance L 

flexibility 11k capacitance C 
damping c resistance R 
deflection x charge q = J i dt 
velocity x current q = i 
force p voltage u 

m X t c X t k x = p(t) L di/dt t R i t lIC J dt = u(t) 

2. Measurement of Torsional Vibrations 

Torsional vibrations of rotating shafts cannot be perceived as easily as lateral vibrations 

and their measurements presents some problems. In principle they can be detected as 

frequency modulations according to figure 2. 

The magnetic pick ups detect the instantaneous frequency of the passing teeth, which 

is composed of the rotational speed plus or minus the vibration velocity transversal to the 

sensors. The effects of vibration can be accounted for by measurinq on both sides of the 

shaft and taking the sum of both signals. 

But as shaft speed variations are small compared to the rated speed, even a very simple 

digital time measuring method can be used instead of the frequency demodulation method. 

The signal can be derived in this case from proximity probes measurinq on metal pieces, 

which can easily be glued to any accessible shaft section, so that they form a tooth wheel 

like pattern. The two proximity probes will produce modulated sinusoidal signals, which can 



500 

FM 
DETECTOR 

DECODED 
SPEED 

SIGNAL 

FM 
DETECTOR 

Fig. 2: Instantaneous speed measuring system 

J. Drechsler 

be added analogously. The resultinq signal will contain frequency modulations due to 
torsional vibration and partition errors, see figure 3. This signal can be pulse shaped and the 
period time between pulses can be measured digitally with a cristal clock. 

fig. 3: Digital instantaneous speed measurement 

The partition errors can be accounted for by a simple and obvious calibration 

procedure performed during steady state conditions with no torsional vibration present. 

The period time for an ideal signal without partition errors Tj is related to the raw 

period time between two pulses by the relationship 

(2) 
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with fIJi being the partition angle and 6. fIJi the partition error. 

At constant speed the angles fIJi and b.¢i can bE: expressed by their time equivalents, 

which yields 

b. T .,. = T. - T 
Cal,l r. 1 

(3) 

All additional variations in period time are then due to variations in the instantaneous rotor 

speed. 

Again because of small variations in speed, we can calculate 

(4) 

b.w = (5) 

where b. Ti can be calculated to 

(6) 

The advantage with these calculations is that they can easily be performed in real time. 

3. Reconstruction of Torsional Shaft Dynamics by Means of an Observer 

In order to get a complete picture of the torsional vibrations in a turbo-generator shaft 

train, several measuring stations have to be installed. Because this can be practically very 

difficult, the most advanced torsional monitor equipment determines torsional shaft 

vibrations and associated shaft torques by means of an observer. Such an observer consists 

of a torsional analog model of the rotor, which is supplied with information on the 

instantaneous generator moment and the turbine moments (u) and the instantaneous rotor 

speed (y) in at least one measuring point. 

Figure 4 shows the principal structure of such an observer. The matrix A contains a 

modal shaft model in state space representation. The matrix B is the input matrix for the 

control variables u, in this case the external moments on the shaft, C is the output matrix 

which represents a model of the measuring system and K is the feedback matrix, which 

supplies the model with information on the behaviour of the real system. 

For the determination of the matrix A a modal analysis of the torsional dynamics of 

the shaft system has to be performed. This the most effective approach, because only 
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I shaft train L J measuring device L 
I I L y 

u process y --- -------~~~-------------------

feedback: 
K(y - Yl y 

4 process model: measuring device 
x = (A + KC) x. Bu - Ky 

~ 
model: y= ex 

i,..,x 

Fig. 4: Structure of an observer 

relevant torsional modes have to be considered in the model. Thus the number of unknowns 

is reduced. 

The matrix B is determined by relating the measurable terminal voltages and phase 

currents at the generator to the air gap moment and the stream pressure at the turbines to 
the turbine moments. This moment distribution has to be analysed into modal components, 

which distributes the torsional excitation to the individual modes. 

The output matrix C relates the chosen state space variables, that is the amplitudes of 

the torsional modal components to the resulting instantaneous speed at the chosen 

measuring points, by means of the performed modal analysis of the system. 

The feedback matrix K can be calculated by preassigning the roots of the observer 

matrix (A + KC) to a suitable set An' These roots should be chosen considerably better 

damped and larger than the eigenvalues of the shaft train. 

3.1. Governing Equations for Torsional Vibrations 

Consider a rotor element of the length dx according to the figure 5. l'Tewtons law 

applied to this rotor element states that the resulting torque on the element must be equal 

to the rotational inertia J(x) dx multiplied by the angular acceleration. 

(7) 

Hooke's law relating the torsional deformation d.p /dx to the torsional moment MT(x) 

acting on the element, reads 

MT (x) = K(x) d.p/dx (8) 
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Fig. 5: Equilibrium for shaft element 

The torsional stiffness K(x) is related to the material property and shaft geometry by the 

relationship 

K(x) = G IT (x) (9) 

where G represents the shear elastcity of the material and IT the cross sectional torsional 

resistance. 

Differentiating eq. ( 8) and substituting into eq. ( 7) we obtain 

J(x) ,;p(x) = (K(x) .p' (x», + mT (x) ( 10) 

The boundary condition for a usual shaft is that there is no internal torque acting at the 

ends of the shaft, that is 

The solution to these equations is 

MT (0) = 0 .p' (0) = 0 

MT (1) = 0 .p'(1) = 0 

'" 
.p(X, t) =.p" + wt + r 9" (x)(an sin \, t + bn cos An t) 

n = 1 

( 11 ) 

(12) 

where the \, represent the as yet unknown eigenvalues and the ¢n the torsional mode 

shapes of the shaft. 

3.2. Numerical Solution of the Torsional Eigenvalue Problem 

For the actual determination of the mode shapes and the resonant frequencies we can 

use a very simple numerical procedure, which has been described some 60 years ago by 
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Holzer and Tolle. 

Substituting the solution cp eq. ( 12) into eq. ( 10) and ( 11) we obtain 
n 

2 
d/dx(K(x) • d/dxl/>" (x» + An J(x) 1/>" (x) = 0 ( 13) 

d/dxcfJn.x=o.L = 0 (14 ) 

Rewriting eq. ( 13) as two first order equations by reintroducing the internal torque, we 

obtain 

d/dx cfJ(x) = MT (x)/K(x) ( 15) 

2 
d/dx MT (x) = - \ J(x) cfJ(x) ( 16) 

These equations can easily be integrated for an assumed \ ' by f.i. rewriting them as finite 

difference formulas 

( 1 7) 

M 
I+! 

(18 ) 

Starting with the appropriate boundary conditions ¢ 0 = 1 and Mo = 0 and integrating over 
the whole shaft length, we get a residual moment Mr at the last shaft section, which is a 

function of the selected value for A . Plotting this function we will get a graph similar to 

figure 6. Wherever the residual moment is zero we have found an eigenvalue \' the 

a:~C~iated mode shape ¢n and the modal torque distribution MTn. 

~ ~~ 

Fig. 6: Residual moment and eigenvalues for the torsional eigenvalue search 

The mode shapes satisfy the wellknown orthogonality relationships 

N n (x) J(x) cfJm (x) dx = 0 

= J n 

for n i= m 

for n = m ( 19) 
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which yield the modal inertia I n associated with the n-th mode shape, and the generalized 

stiffness, which is 

K = A 2 J 
n n n 

(20) 

The influence of the exciting torsional moments on the individual modes, that is the 

generalized torsional moments can be calculated from the relationship 

mTn(t) = fmT(x,t)<I>n(x) dx (21) 

The instantaneous speed response in the selected measuring point Xi is 

N 

.p(xi,t) = /~I<I>n(x) ql1(t) (22) 

The qn (t) are the generalized coordinates, which are equal to the selected state space 

variables denoted x in figure 4 according to the terminology of the control theory. The 

instantaneous torque distribution is obtained by substituting the modeshape function in eq. 

( 22) by the modal torque distribution MTn (x). 

4. Torsional Damping Characteristics of Large Turbo Generator Units 

While the exact determination of the damping characteristics is not necessary for the 

construction of the observer, the assessment of realistic damping factors is indispensable for 

the estimation of the influence of transient loads on shaft fatigue and related life 

expectancy calculations. 

The effective torsional damping consists of a superposition of material damping, oil 

film damping, steam friction damping and electrical damping, each of which is a 

complicated function depending on many different parameters, as there are the magnitude 

of torsional stress, the load on the machine and oil viscosity. 

Thus the damping characteristics can only be assessed by measurements. In (15) the 

results of comprehensive measurements on four different shaft trains are reported. The 

authors used a modal approach and determined the modal damping associated with the first 

three torsional modes. Typical for all the measured damping curves is a decrease of the 

damping coefficient during the decaying time, as to be seen in figure 7. This is due to the 

non linear material damping which depends on the magnitude of the torsional stress and is 

increasing for higher stresses. 
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Fig. 7: Modal damping coefficients for mode 1 to 3 from experiments by BERGER 

and KUHLlG with a 1000 MW. 3000 RPM turbo generator unit 

5. Control of Torsional Vibrations in Turbo Generator Units 

Due to the nature of the problem most of the countermeasures to control vibrations in 

turbo generator units aim to reduce the excitation sources on the electrical side of the 

system. They can be classified as follows: 

S.l. Design of the Turbo Generator Unit 

- use of low resistance pole face damper windings to reduce the net negative resistance of 

the generator at subsynchronous frequencies: 

- design of the shaft train so that the lowest torsional natural frequency is greater than the 

subfrequency (fo - f< ) of the system; 

use of series reactances between the generator and the transmission system, to detune the 

resonant net work as seen by the generator. 

S.2. Design of the Transmission System 

layout of the series compensation such that the subharmonic frequency of the net work 

as seen from the generator is lower than the lowest torsional resonant frequency; 

connection of an appropriate sized reactor parallel to the series capacitor so that they 

will block the flow of subsynchronous currents; 

- connection of a bypass damping filter for the subsynchronous oscillations parallel with 

the series compensation consisting of a damping resistor in series with a parallel 

combination of a reactor and a capacitor tuned to the system frequency. 
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5.3. Preventive Clearing 

.. - fast fault clearing within a few cycles to reduce larger phase angle miss matches and 

consequent closing shocks; 

- unit tripping, as back up protection in case of long duration short circuit; 

- blocking relays for reclosing or synchronisation sensitive to the difference between the 

generator and the system angles. 

5.4. Filtering and Damping Close to the Generator 

- use of blocking filters in series with the generator tuned to the subsynchronous 
frequencies consisting of reactors and capacitors in parallel; 

- use of bypass damping filters in series with the generator tuned to the system frequency 
consisting of a reactor and capacitor in series with a damping resistor in parallel; 

- use of an active filter in series with the generator to cancel the subsynchronous voltage 

generated by the rotor oscillations, thus preventing self excitation due to the interaction 
of the electrical and the mechanical system; 

- use of a tyristor controlled reactor in parallel with the generator modulated in response 

to measured oscillations of the generator; 

- use of additional signals derived from rotor oscillations in the generator exciter system. 

By properly phased shifting and amplifying these signals damping to subsynchronous 

oscillations is provid~d. 

5.S. Operation of the Power System 

scheduling of system configuration and degree of series compensation as to avoid high 

transient torques or subsynchronous resonance. 

Unfortunately restrictions exist for practically all the above mentioned counter 

measures .. 

In the turbogenerator shaft train there are constraints on shaft and bearing size, which 

practically determine the range of the torsional natural frequencies. 

Reducing damper winding resistance lowers the main damping effects. 

Inserting series reactances between the generator and the system always reduces the 

system stability margin. 

Only in radial transmission systems a direct relationship exists betv:een the degree of 

series compensation and the subsynchronous resonance frequency to a reduction of the 

stability margin. 

In an interconnected system the resonance frequencies are resulting from the layout. 

Avoiding ali subsynchronous resonance problems would result in an uncompensated system. 

Excitation systems with additional signals derived from rotor oscillations will provide 

damping only to small steady-state oscillations. 
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