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PREFACE

The knowledge of the dynamic behaviour of turbo-machinery is of great
importance in power production engineering and in adjacent fields. The
safe and efficient operation of power plants calls for a proper under-

standing of the mechanical behaviour of turbine rotors.

The development of computers and computer techniques and instrumen-
tation and vibration monitoring has improved the tools for handling rotor

vibrations and stability.

It was the aim of the course DYNAMICS OF ROTORS, held at the Inter-
national Centre for Mechanical Sciences (CISM), Udine, in October 1980
to present modern trends and new scientific and engineering results. In
general, basic knowledge of the state-of-the-art in rotor dynamics was

required from the audience and is hence required from the reader.

It has taken some time to get the lecture notes refined and printed.
Although the editor has tried to coordinate the contributions,some over-
lapping was unavoidable since the authors presented their subjects inde-
pendently. This, on the other hand, has the advantage to focus on some
phenomena from different points of view.

After an introduction to modal analysis in rotor dynamics the dynamic
behaviour is widely treated with particular respect to the influence of
Jjournal bearings and to rotor instability. New calculation methods in bal-
ancing rotors are discussed and so are measurement and identification

techniques. Special topics such as crack problems, blade vibrations and



Preface

torsional vibrations conclude the book.
The lecturers and the editor hope that this book may serve as a

source of information for engineers and scientists working in the field

of rotor dynamics.

0. Mahrenholtz
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PART 1

MODAL ANALYSIS IN ROTOR DYNAMICS



CHAPTER 1.1

MODAL ANALYSIS IN ROTOR DYNAMICS

R. Nordmann

1 Introduction

Many investigations in linear rotor dynamics deal with the problems
of
- natural vibrations
- unbalance vibrations

- transient vibrations.

Powerful approximation methods, e.g. the finite element method are avail-
able for calculation of the above problems. In most cases a fine parti-
tioning of the rotor model is necessary and this leads to large linear
differential equation systems for the unknown displacements (displace-
ment method).

With such large systems the calculation is very time consuming, espe-
cially in the case of transient vibrations (short circuit, blade break
etc.). Therefore methods are needed, which allow a reduction and possibly
a decoupling of the equations.

A standard technique for calculating the response of nonrotating elastic
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systems with symmetric matrices and proportional damping is 'modal
analysis". The idea is to reduce a system of simultaneous ordinary dif-
ferential equations to a set of independent ordinary differential equa-
tions. The successful application of the method requires the solution

of an eigenvalue problem associated with the given system. The eigen-
vectors or natural modes possess the orthogonality property, which per-
mits the formulation of an expansion theorem for the response. The ex-
pansion in terms of the system natural modes leads to a set of independ-
ent ordinary differential equations of the same form as that describing

the behaviour of a single degree of freedom system.

In rotor dynamics the classical modal analysis fails to uncouple
the nonconservative equations. The system matrices have skewsymmetric
(gyroscopic effects, internal damping) and nonsymmetric (journal bearings)

parts.

An expansion in terms of natural modes of a corresponding conservative
system permits a reduction of the number of equations, but they still

stay coupled.

On the other hand an expansion with eigenvectors of the nonconser~
vative system leads to an uncoupling as well as a reduction of the equa-

tions of motion. Both methods are described in this lecture.
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2 Modal Analysis for Nonrotating Structures. The methods of

calculation for a linear one degree of freedom system (Fig. 1) are well
developed in mechanical vibrations. The solution for the displacement

u(t) can be readily obtained for different exciting forces Fkt).

I W(¢)

1 Flt)

YT T T Ty

Fig. 1 SDOF-system

Real elastomechanic structures usually cannot be modeled by a single
degree of freedom system. Those systems have a continuous mass and stiff-
ness distribution and their number of degrees of freedom is infinite.
They can be represented approximately by a finite number of coordinates
resulting in a set of N coupled ordinary differential equations of mo-
tion of the system.

The calculation for large systems 1s much easier if the simultaneous
equations can be transformed to a set of independent equations, each one
describing the motion of a one degree of freedom system. This is possible
by "modal analysis'. For explanation we consider the elastic system in

Fig. 2, a steel foundation for a power unit.
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Fig. 2 Steel foundation for a power unit

The equations of motion, derived by means of the finite element method,

are

+ C

I=4 %}
+
~
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=N

with symmetric matrices

mass matrix (order NxN)

damping matrix (order NxN)

1= j0Ix

stiffness matrix (order NxN)
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and
~ I3 .
F  vector of exciting forces.

The problem is finding the unknown displacements §(t). Because the equa-
tions are coupled, they have to be solved simultaneously, which is very
time consuming.

A simplification - especially in the case of transient vibrations - is

possible, if a suitable transformation for the coordinates

u(t) = ¢ 4(e) (2)
with

U(t) displacement vector (order N)

¢ transformation matrix (order NxN)

J(t) generalized coordinates (order N)

can be found, which leads to uncoupled equations.

The modal matrix ¢ of the undamped system represents such a linear trans-
formation matrix, provided that the damping matrix C is a linear combi-
nation of the mass and stiffness matrix. The modal matrix consists of the

N natural modes

= 3
= {40 0 05 ....¢N} (3)
Investigations of the dynamic behaviour of structures usually start with

the computation of the N natural frequencies Wy as well as the corre-

sponding natural modes (eigenvectors) for the undamped system
(K—ng)Q.=O (4)
- ) - J

In this way natural frequencies and modes are usually present before
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calculating forced vibrations and they can be employed for the transfor-
mation. Fig. 3 shows for example the three lowest natural modes 35 of the
steel foundation with the corresponding natural frequencies.

In the case of symmetric matrices K and M the natural modes possess the

following orthogonality properties

for j # k 0 for j#k
0.K ¢ L .
k Ii- Ik ‘\Kj for j =k (5)

=z O
-
e}
s}
[
L}

first bending mode

with 21.8 Hz

bending and torsional mode

with 30.4 Hz

torsional mode

with 65.0 Hz

We can also write

2TM e = diag () (5a)
ek o -

diag {Kj}
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Fig. 4 Expansion in terms of natural modes

Expressing the system response by an expansion in terms of the natural

modes (Fig. 4)

a/ - -~

u(t) = £ . q. = ¢ ¢ 7

u $;9; =8¢ (7)
and substituting of eq. (1.3-7) in the equations of motion we obtain
after premultiplying with QT

?Me g ocedreked=oF

. =~ T ~ . ~ T~

diag {Mj} q+¢C¢q+diag {Kj} qQq=2%F (8)
The matrices ng ¢ and QTE % arc diagonal, which is usually not the case

. . T ~ . .
for the transformed damping matrix ¢C *. QTE is the vector of generalized
forces acting upon the system.

If the damping matrix C is a linear combination of the mass and stiffness

matrices

C=all+B8K, (9)
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¢TC ¢ is also diagonal:

pCo= o tp|

Tc o = o diag (M} + 8 diag (K;} = diag {C;) (10)

Now we have N decoupled equations

:: :‘ ~ T-l
M. q. + {o M. + B K.} q. +K. q. = 6. F 11
JqJ ] JqJ JqJ ] ()

which can be written in other form

§j+{a+em§} a'j+w§qj=;1—j¢§%' (11a)
With the above mentioned methods of calculation for a single degree of
freedom system the unknown generalized coordinates 3. can be calculated.
The system response is composed of the natural modesjgj with the gene-
ralized coordinates qj as factors (eq.7).

This method of obtaining the response of a system by using the modal

matrix ¢ as the transformation matrix is called "modal analysis".

3 Equations of Motion of Rotating Machinery. Contrary to non-

rotating structures the dynamic behaviour of rotating machines (turbo-
rotors etc.) is influenced by additional effects. Of great importance
are selfexciting and damping effects (nonconservative effects), caused

by the oil film forces of journal bearings, forces in sealings and ex-
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ternal and internal damping forces. Furthermore gyroscopic effects have
to be considered in certain circumstances.

For calculation of vibrations a mechanical model of the rotor is needed.
Fig. 6 shows as an example a model of a turborotor. It consists of a
flexible shaft with many beam-elements. Each beam-element is charac-
terized by constant parameters: bending stiffness, mass per unit length,
moments of inertia, damping coefficients (internal and external) and mass
eccentricity. The shaft is running in journal bearings with angular of

velocity Q.

Journal bearing

k, . b,
’ Flexible shaft ke Tk

Beam element n
Eln, #n; /n,
Ig. Ip, b, ba, €4

Fig. 6 Mechanical model of a turborotor

It is well-known from lubrication theory, that the dynamic forces acting
from the oil film to the shaft journal depend on the displacements and

the velocities of the journal (linear theory)

-
u

k k u c c
XX Xy XX Xy
k K ¥ c 7
yx yy yx yy (12)
B B B B
g T Kp Yg T L Y
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k ,k ,k ,k are the stiffness coefficients, ¢ , ¢ , ¢, ¢
X Xy yX yy XX Xy yX yy
the damping coefficients of the oil film. They are functions of the

running speed Q. The matrices K, and C, are nonsymmetric, which is of

B B
great importance for further methods of calculations.

Exciting forces are caused by unbalance of the rotor. Other exciting
forces may occur, caused by impacts to the shaft, a blade break, a short

circuit etc.

Different possibilities  exist, to describe the motion of the above
mentioned rotor with continuous mass and stiffness distribution. It is
obvious to take as mathematical model the partial differential equations
together with the appropriate boundary conditions. Only in simple cases
it is possible to find analytical solutions.

For practical calculations usually a discrete mathematical model is em-
ployed with a finite number of coordinates. The system behaviour is de-
scribed by ordinary differential equations. Working with matrices is very
useful in such cases.

The equations of motion mostly will be formulated with the principle of
virtu:l work. In the expression of virtual work the unknown deflection-
functions are substituted by assumed deflection shapes 'with free para-
meters. In the finite element method local trial functions are applied
to each beam element. Free parameters are the deflections and angles
at the boundaries of the elements. Finally we obtain a discrete mathe-
matical model, which consists of ordinary differential equations for the
unknown displacements at the boundaries of the elements (displacement
method).

The equations can be written with the system matrices M, C, K, the dis-

placement vector u and the vector of external forces F (Fig. 7).
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Coordinates
u(e)

Mechanical
model

Equations
of motion

Fig. 7 Equations of motion

The matrices have bandstructure with an overlapping of the element ma-
trices. An investigation of the matrices M, C, K for the described ro-
tating structure shows differences opposite to the matrices for nonro-
tating structures (Fig. 8).

The mass matrix here is also symmetric and describes the translatory and
rotatory inertia behaviour of the rotor.

Damping and stiffness matrices contain besides the symmetric terms also
skewsymmetric and nonsymmetric terms.

Skewsymmetry is caused by gyroscopic effects (damping matrix) and by
internal damping (stiffness matrix).

Nonsymmetry, caused by the oil film, appears in both stiffness and damping
matrices. Therefore K and C are nonsymmetric in general with speed de-
pendent elements.

There is also a coupling in the two planes (horizontal and vertical)
caused by the mentioned effects.

The special nature of the matrices (nonsymmetry, skewsymmetry) for ro-
tating systems requires other solution methods, especially in

modal analysis.
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pA -~ ~ ~
Mou o+ c@ § + k@ § = F
\
, | \
symmetric symmetric symmetric external
translatory and external damping beam bending forces
rotatory inertia internal damping
skewsymmetric skewsymmetric
gyroscopic effects internal damping
nonsymmetric nonsymmetric
journal bearings journal bearings

Fig. 8 System matrices for rotating structures

4 Modal Analysis for Rotating Structures. In chapter 2 we

found out, that the equations of motion for nonrotating structures can be
decoupled, if the system matrices are symmetric and the damping matrix

s a linear combination of mass and stiffness matrices.

For rotating structures the symmetry of the matrices normally is not giv-
en (chapter 3) . The question is, in what way forced vibrations in
rotor dynamics can be treated by a modal analysis.

Two different ways are described in this chapter.

Modal analysis in rotor dynamics with natural modes of a conserva-

tive system. We start with the equations of motion for a rotor described

in chapter 3



Modal Analysis in Rotor Dynamics 15

= F (0 (13)

[E=1}]
lCQ‘

Mu+Cu+K

1€?

with nonsymmetric and Q-dependent matrices K (Q) and C (Q).

Similar to the consideration in chapter 2  the basic idea is calcu-
lating the natural modes of a simple corresponding system and to employ
them in the transformation matrix §.

The system matrices M, C, K always can be subdivided into a symmetric

and a skewsymmetric part (Fig. 9). The symmetric parts of mass and stiff-
ness matrices as well as the skewsymmetric part of the damping matrix

are conservative. On the other hand the symmetric part of the damping
matrix and the skewsymmetric part of the stiffness matrix are nonconser-

vative. Disregarding the damping matrix C = C_  + EA’ we take only the

S
symmetric part of the stiffness matrix 55 and the symmetric mass matrix

MS and calculate eigenvalues and eigenvectors of this special conservative

problem
(K. - 2 M) ¢. =0
s 7 %5 37 35 (14)
ik '
63'~ + CA—_ 22 +
S . >
Ts—— * Ki al = |F

Fig. 9 Symmetric and skewsymmetric matrices
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The eigenvalue routines are well developed for this case.
The natural modes gjs, respectively the modal matrix QS possess again

the orthogonality properties

r
oK & = diag {Kj} !

Mo, = diag {Mj} (15)

Calculating the forced vibrations for the original nonconservative system
(eq. 13) , we express the system response by an expansion in terms of

the natural modes

N

i) = & 9. qe) = ¢

-d
9 q (16)
j If

Substituting eq. 16 in eq. 13  and premultiplying with QZ, we

obtain
> T -~ T ~ T=
+ + =

or in regard to orthogonality relationships

T~
F (17a)

. LT . T -
dlag{Mj} q+ 2 + {diag (Kj)+gs§A§s} q=2¢

[ESR A

c¢
=°s

Fig. 10 shows, that in the transformed system only the matrices ?ng?s

and gz&sgs are diagonal. The remaining matrices are filled and therefore

| | \
T T & T T o~
] [« + + =
o § oT co_ § Tk o+ oTk0) §= o

Fig. 10 Coupling of the transformed system
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a decoupling of the equations is not possible in this case. However the
number of equations can be reduced by taking only some of the natural

modes in the transformation matrix gs'

Modal analysis in rotor dynamics with natural modes of the non-

conservative system. In the last chapter we found, that the classical

modal analysis with natural modes of a conservative system fails to un-
couple the equations of motion in rotor dynamics. However working with
eigenvalues and natural modes of the nonconservative system leads to the

desired decoupling.

Eigenvalues and natural modes of the nonconservative system. The

first step in modal analysis is always the determination of eigenvalues

and natural modes. Therefore at first we give some remarks about eigen-

values and eigenvectors (natural modes) in rotor dynamics.

The case, in which the force vector E = o0, 1s called free vibrations and

is characterized by the homogeneous equation

=<
=
+
(@]
ce
+
1=
ce
1]
(@]

(18)

The solution of eq. 1.3-18 is of the form

i) = ¢ e'" (19)

Substitution yields the quadratic eigenvalue problem

(M +2rC+K} P =0 (20)
with 2N eigenvalues Xj and corresponding natural modes gj. if the order
of the matrices is N.

The eigenvalues as well as the eigenvectors mainly occur in conjugate

complex pairs (real eigenvalues and eigenvectors are not considered)
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Eigenvalues: X, = a. + iw, A, = a, - iw, (21)

-t 22
SIS (22)

]
1

Eigenvectors: Qj =s. + it. .

The part of the solution, which belongs to such a conjugate complex pair,

can be written as
~ a.t .
u.(t) = B.e {s. sin(w.t + yv.) + t. cos(w.t + v.)} 23
_J() sed sy (J YJ) L (J Y; (23)

wj is the circular frequency and aj the damping constant (decay constant).
The damping constant aj (real part of Aj) determines, whether the solu-
tion gj(t) decreases (aj < 0) or increases (aj > o) Fig. 11 shows the
plane motion of one point of the shaft for the three cases aj< O,aj =0

(stability limit) and aj > o.

o D) 5
1 or e

aj < o stable aj = 0 stability limit aj > o unstable

Fig. 11 Plane motion of a point of the shaft

The constants Bj and the phase angle Yj depend on the initial conditions.

Normally all of the conjugate complex pairs contribute to the solu-
tion of the natural vibrations. Discussing the natural modes we assume,
that the initial conditions are chosen in a way, that only the above part

- . . . .
gj(t) contributes to the solution. Then the systems vibrates with the
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circular frequency wj and the corresponding natural mode.

To explain the natural mode is not so easy as in the case of conservative
systems. The expression in parentheses { } of eq. 23 can be defined
as natural mode, representing a time-dependent curve in space.

Fig. 12 shows the modal shapes for two different points of time t 6 and

1

tz. There is no constant modal shape, proportions and relative phasing

in general vary from point to point at the shaft.

Modal shape
at time ¢,

Fig. 12 Natural mode of a nonconservative rotor

Considering only one point of the shaft, the plane motion is an ellip-

tical orbit (Fig. 12).
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Orthogonality properties of left and right eigenvectors. The equa-

tions of motion of a N-degree of freedom system can be converted to 2N
first order differential equations with the dependent variables i consti-

tuting a 2N dimensional state vector

. !
g _ o
- 0 (24)
r - =0
The matrices A and B are real and nonsymmetric.
The corresponding eigenvalue problem
{A-X2Blr. =0 (25)
a ;2 i Q

has the same eigenvalues Ai as the problem (20) and the right eigen-

vectors

o= | 17 (26)

obtain the eigenvectors gi of (20).

If can be shown, that the transposed eigenvalue problem
' -a8T 1 =0 (27)

also has the eigenvalues Xj but other eigenvectors - the left eigenvec-

tors - consisting of

1. = 373 (28)

If we premultiply two different eigenvalue equations (25) and (27)

. T T
with lj and L. transpose the second and substract the second from the
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first, we obtain

1.TAr, - A.1.%Br. =0 (29)
=y =-1 i=3 =-1 -
L D U D (30)
-1- 7] jt==3 -
(A.-x.) 1.°Br, = 0 (31)
SR SRS B S
From these last equations we find the bi-orthogonality properties
T 0 for j f i
1. Br, . .
=) --1 d. for ] = 1
) (32)
T 0 for i £ i
1. Ar. <:: . .
=] =--1 c. for j = 13 c., =X, d.
] J J ]

1f we represent the left and right eigenvectors in the modal matrices R

and L

the orthogonality properties can be written in the form
T . T .
L'AR = diag (c;) ; L'BR = diag (d)) (33)

Normalizing the eigenvectors to get dj = 1 for all eigenvectors is possi-

ble.

Decoupling of equations of motion. The equations of motion for the

forced vibrations may be developed in first order form

(34)

N [}
| ?l 4 o

|
1]
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Again we express the unknown system response by an expansion in terms of

the right eigenvectors of the nonconservative system

v 2N
t(t) = T r.q. =R 35
r(t) - 1,9, = Rq (35)
J
with the generalized coordinates aj' Substituting in eq. (34) and

premultiplying with L? we obtain

T

L' AR L'E (36)

1L
]

L' B R

121
[

The matrices L? A R and LT B

1=

are diagonal.

We normalize them to get

-

1%

|
n

di A,
iag ( J)

]
=d

)
| =
| =
]

diag (1) I (37)
The system of ordinary differential equations (34) 1is reduced to a set
of independent complex equations of first order for the generalized co-

ordinates
Ao § -G =1, = - p.7F (38)

The generalized forces are represented by the left eigenvectors ¥. and

the force vector F.

The decoupled equations can be solved easily for actual load cases (har-
monic excitation, impulse etc.). The general solution for the generalized
coordinates is given by the combination of the complementary solution

(homogeneous equation) and the particular solution.

5 Example-Shaft in Two Journal Bearings.  Applying the above

described modal analysis we investigate a simple symmetric shaft, running

in two equal journal bearings with angular velocity Q@ (Fig. 13).
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Jeurncl

Shcft N
Jourral tecring

oecr:ing

Fig. 13 Symmetric shaft in two equal journal bearings

Fig. 14 shows the five lowest natural frequencies wj and the corre-
sponding damping constant aj versus the running speed {i. If all of the
damping constants uj are negative, the natural vibrations decrease. When
the stability limit is reached one of the damping constants become zero
(this is the case for a, in Fig. 14). Above the stability threshold speed

1
(a1 > o) the natural vibrations increase with time.

From the plotted natural modes it can be explained, that the stiff-
ness of the shaft is high compared with the bearings.
The intersections of the natural frequency curves Uj with the straight
line wj = ( indicate resonances of the system. Whether the individual
resonances with their corresponding natural modes are well excited or

not, depends on the distribution of the exciting forces.



24 R. Nordmann

—_—

e
@ —
« | ,,/
s o

Fig. 14 Eigenvalues and natural modes

In Fig. 15 forced unbalance vibrations are investigated in the case of
uniform distributed mass eccentricity.

If the rotor is running with the angular velocity Q, the system is ex-
cited by harmonic unbalance forces with exciter frequency Q. The steady
state response is harmonic too and the plane motion of one point of the
shaft is an elliptical orbit (see Fig. 12).

In the upper diagram of Fig. 15 (eigenfrequencies versus speed) the in-

tersections are indicating resonances.
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400 _

s

200

T

T
0 | 200 Rwus w00
3.
@/e
2 _
1
_(r& e ;o
0 200 JZ 1is w00

Fig. 15 Steady state response caused by unbalance forces

In the lower diagram the nondimensional major axis of the ellipse (center
of the shaft) is plotted versus the running speed.

As a result of the symmetrical distributed exciting forces only the
symmetrical mode shapes are excited. The solid line is the exact unbalance
response of the model calculated with a complex Gauss algorithm. The
solution found by '"modal analysis" is plotted with crosses. Only the six
lowest natural modes - of the nonconservative system ~ were employed and
there is a good agreement with the exact solution. Working only with two
eigenvectors the response is still good in the lower frequency range
(dotted line in Fig. 15). The represented calculation of unbalance vibra-

tions with modal analysis is convenient, if the complex eigenvalues and
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eigenvectors - all depending on the speed & - are present for the in-
dividual running speeds . Otherwise it is too time consuming and the
direct calculation solving a linear algebraic equation system is more
effective.

On the other hand the application of modal analysis is convenient calcu-
lating disturbing cases during operation with constant running speed Q.
In such cases there is no variation in the system matrices (left hand
side of equations of motion), only the exciting forces are changed. The
eigenvalues and eigenvectors need to be calculated only for the one run-
ning speed Q.

Fig. 16 shows the transient vibrations at the center of the shaft before
and after a simulated blade break, which is equivalent with a local
change in mass eccentricity. The running speed 9 is constant (Q = 314 1/s)
The complementary as well as the particular solution have to be taken into

account.

—

<t &) o\
IC\.‘_{{J} ] 1] Lk ;}__ . . j:z:'ﬁ

Fig. 16 Simulation of a blade break
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The left plot shows the deflections in vertical direction, the right
plot the plane motion. The amplitude magnification after the break is
about five times higher than in the steady state solution before the
break.

Besides the operating frequency Q especially the first eigenfrequency
w, with a corresponding low damping (Fig. 14) determines the behaviour

of the response. Good results were obtained by modal analysis calculation

working again with the first six eigenvectors.
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DYNAMIC BEHAVIOUR OF ROTORS



CHAPTER 2.1

THEORY OF BEARING STATIC AND DYNAMIC PROPERTIES

Z.A. Parszewski

1 HYydrodynamic Forces.

RBearing dynamics characteristics is necessary for rotor-bearing

systern dynemic analysis. The characteristics should meke possible

obtaining tne forces acting on the journal at zny moment of its
vivrationc. Liscussed here will e
hydrodyrnamic journal bearings, applicd

widely in machines. These vearings ab

sufficient oil supply, produce oil film
and generate oll pressure and separate

fully rotating Jjournal from the sleeve.

correscvonding to the radii difference
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0i" the siceve and the journal r = R—HC

The pressure distribution on the sleceve can be obtained from the
equations of oil flow in the bearing clearance.

The Navier-Stokes fluid flow equations together with the
continuity cquations, simplified for the bearing narrow clearance and
integrated across the oil film thickness reduce, for laminar flow and
corresponding Keynolds numbers, to the Heynolds equation. ‘That
cquation generalised for the unsteady state of journal plane

vitrations in the sleeve [1], [?2], [3], has the form

s miap . 8 w3 ep. 0, 3h
x (max) P (5 5o, ) b3x(wkh) + 1275 (1)

T

introduction of nondimersional co-ordinates

Z
1
b =% g=0—,; u:=1 (2)

and the pressure function
2
3. olx)
u=E? (3)

W

|

>

and denotation of the derivatives by corresponding indices gives for the

equation (1) the following nondimensional form
o2 \ "
u¢$ tizu,, ¥ d{¢,c,a)u = b\¢,c,a,Ct,ﬂ) (4)
Wwhere
-27 »

a(¢,c,a) = - %h w7, 2za(1-}1)1

Lo J

P (5)
b(¢,c,a,Ct,A) = 6H 3 K
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and
K= - 4c sin (¢ - a) + 2c, cos{¢ - a' (6)
Fquation (4) can be programmed for computer after previous replace-

ment of the derivatives by corresponding ratios of finite differences in
the whole area of the developed sleeve.

iknd conditions to te fulfilled are

and real area of pressurc generation on the sleceve is to be found.
This last is found directly in the computation process of successive
approximations if the conditions (7) are completed by the
requirement [1]

u>0 (8)
for incompressible fluid as oil is. Pressure distribution on a
considered slecve is computed in this way for journal positions
described by the eccentricity ratio ¢ = %—and the angle a. The

journal rotates at the same time with speed w and vibrates with a plane

motion having the velocity of the following radial and circumferential

components
o= 13 -
k/t = © 9t 5 n = 1—?&11 (9)

In the above conditions on the circumference ¢ = o and ¢ = ¢ give

the beginning and the cnd edge of the sleeve, z = #1 gives outer edges
of the sleeve and pz, pw-correspondingly denote the inlet and outlet oil
pressure, p - is the external (atmospheric pressure).

Components of the hydrodynamic force in theradial s and perpendicular
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to it direction n (¥ig.1)
generated by the described journal
motion are hence given by the

integrals

2
r
195 p(g) , .
fop = " 6£é - COS\@—JP)Q¢dZ
(10)
2
r
. Lo p(3) ., _
rnp = _ ééé o 51n\¢-ap)u@dz

The index p denotes the considered

Fig, 2

>

sleeve.

2 Static “haracteristics

for stability or antivibratory reasons modern journal bearings are
often built up from a few partial slceves, concentric or eccentric.
ig. (2) shows a three lobe bearing having threce independent oil
films, hence three stationary partial sleeves.

The components of hydrodynamic forces of a bearing of n partial
sleeves with independent supply and outflow of oil, (hence of
independent n oil films) are obtained as gecometric sums of those forces

on all the partial sleceves

&
7

n
- N o - = |8l (o o a)
= ;g(c,u,ht,n) = 2_ .cp\c,a,ut,A;
p=

(1)
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<

o

270°
A s

=

210"

350°
oo

The components ¥

of these forces in the

Girection opposite to the
load and normal to it
are

(¥*ig. 2)

s N
¥ = ® cos(a-B) - ¥ sin{a-B)
¥ s n

. o .. ,
o= ¥ ginf{a-8) + ¥ cosia=-8)
S n

(12)
Yor sieady state are

1 and tre

<+

comporent perpenidicular

Lo the load vanishes

: Ses e BE R cemE iy
Crroesronalng eceentriCiiy

and ursices a

ratios o .

sive the locus of the
rguillbrium vositions o

v spmigronc, Y orreoiLe
vo Yt lond sives Lhen

Lne o noniin
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number) of the bearing
S = 8{c) (14)
The bearing nondimensional load capacity (14) , defined for a given

direction as rordimensional load (corresponding to the load PO) at an

equilibrium position and at a given sperd w, is given by the formula

2
P(5)
g = = 1
? 2Rinw (15)
Relations (14) and (13) give hence the beari:.- -<:tic character-
istics. Computed results [U! are given in V¥igs. 3 i 4 for a

three lobe tearing with the partial slecve arcs of

011 = 150°; ¢y, = 65.59;  ¢y13 = L7°

% L _ 5 )
and il 0.83 and 0.5

Jorresponding curves [5] for a
tearing with eccentric sleeves -
lemon shaped- (¥ig. 5) are

given in the Fig. 6 and

7 a,b,c, for = = 0.851 and

three valiues of the sleeve

cceentricity parumeter

c = fl/(f“ + r.,)  Both types of

bearings are used in generators

of lolmel-Wroclaw productiorn.

Fig. 5
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3 _yramic haracteristics
cournal vitrations in a tearing generate additional hydrodynamic

Fo=F - € b = F (16)

These Tunctions may be linearised, i.e. develored in a power scries and

only linear terms with respect to the component displacements X, Y and

X xx"t Txy't
(17)
L= = (X XK THU A4 }

11 displacements and velocities are here nondimensional. llondimensional
stiffness K and damping = coefficients of the bearirr 0oil film arce hence

cxpressed in the form

5t L B
" _ S .2 S sin coS S .
4 = —= sin‘y + — + — + — sin ycos y +
XX 3c 3a c c gc
n Cos‘y o CO8TY | + o t1=4 4 sin y cos vy,
( h 9 | — :
Ja ¢ XX ¢ t xy{ 2 c t
35 g s 9 v .
. _ S oin v cos vy s sin‘y | Nos? nosin y cos y
I = = sin s - = —0s -
Xy Jc Jdou ¢ Jac Y Ja c

+ _r o (1-4 _ sin y cos y,. o ain2
X% ( 0 c 1 Cxy R

B ' E
¢ s oS n sin y cos
= =~ sin y cos y o+ = Y _ S § R Y S Y,
N4 Ja ¢ Ja c

S (]—f. + sin y cos y ’ 1
L ¥yl @ ¢ t)




Theory of Bearing Static and Dynamic Properties

an oF sin cos aFn aFn sin?
K = cogly - —= Swmy cos ¥y M U LA E LU G
Yy e o8 Ja c o St Y cos Y da c
. 202
_c 1-A _ sin cos C ] _c sin‘y (18)
yx| 2 c L Yy ¢ t
an an sin y cos y aFn aln cos?y
~ = -2 ] + — y - -
Cox 3 sin“y 23A - 3C sin y cos y 2 3% =
t t
an an sin? aFn aFn in y cos Y
= i + sin’y I 2y + 2 s
xy - 3¢, Simycos y +2mgm T 5c. COSTY Y R e
t t
an an coszY aFn o sin y cos vy
. _ . .2
Lyx = SE;-Sln Y cos y - 27;T-——E—— - Ct sin‘y + 2 3L -
an an sin y cos an an in?
A = ) N Y . sin‘y
Yy T -—=— CO¢ + 02— - — s - e
RASNE T Y c 5c_ siny cos y - 27 =
t t
wherc y = a - B

For journal vibrations round its equilibrium position, with small

velocity is

an aFs sin cos Ty EDr SFn cos?
K = —5 gin2y + — 20 Y €OS ¥, S, DL osp cos y 2 COS Y
XX ac ¥ Ja c c Jc Y ¥ e Lot c
aIs a‘s sin? aFr an sin y cos ¥y :
. in ¢ 17 MO ol
K =1—51nycosy——:———y+—4~coszY - =L 4 =
Xy ac Ja C Jc sa c ¢
ars BFS 0s? ’ > 9 in y cos ¥y
. . c n L2 n Sin
K = —/—— sin y cos y + — = Y = sin~y - — T—F——-L
¥Xx ac Ja c oC da c
I I . Y 3 .o
K _ S 052 s sin cos Lo Yy cos y + n sin
= c - = - sin S
Yy e Y 3a c Jc da c
3 9 . IF R 2
. S .2 s sin Y cos Y noo, A__IL COSTY
C = — sin‘¢y - 2—— —————— + —— sin cos Y -
XX 3 v dh c ac Y f ERY d

t t
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aF? an sinzl oF aFn sin y cos y
= —= si + 20— + — -—
Cxy 2C, sin y cos y + 2= = aC, 3A c
an Fs coszy oF aFn sin y cos y
Cyx ~ ac, ST Y oSS 5 "o T 3C, “3A e
an an sin y cos vy n aFn sin?
- _S 2, 4 oS 8lnycosy _ _n . _ o1 SIN7Y
ny act cos“y 2 n A act sin y cos ¥y 2 ah -

The stiffness matrix

and the damping matrix

Cxx cxy
(c]

C C
yx yy

(19)

(20)

as functions of parameters of the equilibrium state (i.e. of the

eccentricity ratio c) give hence together the bearing dynamic

characteristics.

The flow diagram for computation of the elements of these matrices for

any bearing is given in Fig. 8.

Computation results for the same two types of bearings, as described

in the previous point are presented graphically in the Figs. 9 and

10 for the three lobe bearing [7] and in Figs.

the eccentric (lemon) bearing [8].

11 and 12 for
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CHAPTER 2.2

STIFFNESS AND DAMPING CHARACTERISTICS OF TILTING-PAD
JOURNAL BEARINGS

H. Springer

1. INTRODUCTION

Lateral vibrations of large turborotors of steamturbines or hydro-
electric power plants are highly influenced by the stiffness and damping
characteristics of the bearings. Large turborotors are usually guided in
hydrodynamic journal bearings. Tilting-pad journal bearings are used
particularly for horizontal or vertical shafts of high diameters. If the
amplitude of the shaft vibration is small compared with the clearance of
the bearing, the characteristics of the hydrodynamic oil film can be
described, corresponding to a linear theory, by unsymmetrical stiffness
and damping matrices of dimension (2x2), containing four stiffness and
four damping coefficients, respectively. When assuming a rigid and im-
movable bearing house then the stiffness and damping coefficients of the
oil film depend only upon the static bearing load, the clearance and
speed of the shaft and the specifications of the lubricant, see Ref.l1,2.
They are not influenced by the frequency of lateral shaft oscillations.

However, when the bearing house is flexible or movable - for example,
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when a tilting-pad bearing with flexibly pivoted pads is used - then an
essential influence of lateral shaft vibrations upon the stiffness and

3,4,5

damping coefficients could occur This holds even for small ampli-

tudes of vibrations where a linear theory can be applied.

In this paper journal bearings of vertical turborotors for hydroelec-
. . . 6 . . .
tric power plants are investigated ~. Figure |. shows a schematic diagram
of a vertical turborotor guided

by four tilting-pad journal bea-

—ﬁ guide bearing

rings and carried by one thrust
Ponymotor

bearing which is balancing the
iq'Fkéh guide bearing weight of the rotor and axial

forces of the runner. Under

Generator transient operating conditions -

for example a pump or a turbine

guide bearing start up - the turborotor can be
exposed to severe hydraulically
excited vibrations. Then very
high radial forces are acting
upon the guide bearings causing

thrust bearing radial and tangential displace-

.guide bearing ments of the flexibly supported

Runner pads. When the flexibility of

the support of the pads is of
same order of magnitude as the
flexibility of the oil film one
Figure |. Schematic diagram of a can not neglect the movability
vertical turborotor for a of the pads. In other words, all
hydroelectric power plant degrees of freedom of the pads
have to be taken into account if
one is to determine correct stiffness and damping coefficients of such a
guide bearing. Let us assume a small lateral harmonic excitation force FX

acting upon the shaft with an angular frequency wys See Figure 2. Then
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the shaft as well as all pads of the bearing will oscillate with the same
frequency W, For small amplitudes of vibrations we can establish a set
of linear differential equations of motion for the bearing system. Now
the degrees of freedom of all pads can be eliminated from the equations
of motion and a condensed dynamic stiffness matrix, describing the motion
of the shaft center only, is set up. The resulting dynamic stiffness ma-
trix is of dimension (2x2) corresponding to the fact that two degrees of
freedom for the movement of the shaft center remain after the condensa-

tion.

The objective of this paper is the calculation of condensed dynamic
stiffness matrices and flexibility matrices for large tilting-pad bea-

rings that guide a vertical turborotor. Socalled local bearing systems

//////// ///_

foundat;on /i

Figure 2. Schematic cross-section of a tilting-pad bearing
with 12 pads. Radial excitation force Fx'

are assumed in this investigation, i.e., interactions between different

bearings through the foundation are neglected.
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2. HYDRODYNAMIC OIL FILM PRESSURE OF A FLEXIBLY SUPPORTED PAD

Figure 3 shows a detailed diagram of a pivoted pad for the radial

guide bearing as drawn in Figure 2. The support of the pad is assumed to

have a linear viscoelastic characteristic. Flexibility as well as mova-

bility of the foundation, carrying the pads, are not considered. The

symbols used in Figure 3 have the following meaning

X -y
x- 3
h +)
(o]
h(7,t)
U,v,u,v
u_,v_»0,
r
RS +)
AS +)
¢
m +)
IS +)
292 +)
kr,kt,k0l +)
Cr’ct’ca +)
K_,K_
Xy
Q
t

7,8,9.

coordinate system for the entire bearing
coordinate system for one pad (called subsystem)
radial clearance of the bearing (for Q = 0)
thickness function of the oil film of a pad

displacements of the shaft center in the x-y and §—§
system, resp.

radial, tangential and angular displacements of the pad,
resp.

radius of the shaft

radius of the curvature of the pad

thickness of the pad at the supporting point

angular position of the pad with respect to the x—axis
mass of a pad

moment of inertia of a pad with respect to the supporting
point

sector angle of a pad

stiffness-) coefficients of visco-elastic supporting in
radial, tangential and angular direction,
respectively

damping-

0oil film forces acting upon the pad
angular velocity of the shaft, assumed to be constant

time

+) indicated parameters are assumed to be equal for all pads of the

bearing
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Figure 3. Flexibly supported pad of a tilting-pad journal bearing

In the following we consider a guide bearing with n=3 equally
shaped pads which are flexibly supported to the foundation and symmetri-
cally mounted along the circumference of the shaft, see Figure 2. Using

References 7,8,9 the thickness function of the oil film for an out of

center pivoted pad is given by
H(n,t) = h(ﬁ,t)/ho =C ¢ C,(t)cos (29 7/L) + sl(c)sin(zyoﬁ/L) (2.1)
where the coefficients

C0 = (RS - r)/ho (2.2a)
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(@]
"

[0 (R*a ) /b + (v-v)/h ]Jsing - [c -1+ @-T ) /h Jeos® (2.2b)

w
]

“lagR+8 )/ + (-7 ) /h Jeosy, - [C_-1+(T-T,)/h ] sing, (2.2¢)

depend on time t since the displacements ﬁs, Vs, a of the pad and the
displacements 4, Vv of the shaft center depend on time t. The eccentricity
of the supporting point of the pad is given by the angle 9%, see Ref.7.°

In Figure 3 a centrally pivoted pad with yg = 0, 1s drawn.

The distribution of the non-steady-state pressure within the oil
film of a pad can be evaluated from the wellknown Reynolds differential

. 2
equation ,

3a 3

9

o

3Py o grglh 4 20 (2.3)
an dt

- |z
S
N
+
o
~~
= |=
Q|
~ifo

QL
31
31
Q
Y|

The simple boundary conditions are p(n,Z,t) = O at (n = tL/2,7,t) and
(",C = #B/2,t), where L is the length of the pad in circumferential
direction, B is the width in axial direction and p is the dynamic vis-

cosity of the lubricant.

An approximate solution of Equation (2.3) was given by the author 7,
applying the method of Galerkin 10 to the variational principle corres-
ponding to Equation (2.3). By using that method the non-steady-state pres-
sure distribution p(n,Z,t) within the oil film can be approximately de-

termined in the form

uLrQ

p(n,z,t) = 2 £(2n/L,t)g(27/B) (2.4)
o]
where
N
£(n,0) = ) {a () [141, (] + b (O[T,()-T,,, (M]) (2.5)
v=1]

is a Chebyshev-expansion - TV being the Chebyshev-polynomial H of order
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v< 2N+1 - which describes the pressure distribution in circumferential

direction, and

g(z) =1 -|¢|® (2.6)

is a parabolic function of order m=2 which determines the distribution

of pressure in the axial direction. The calculation of the vector

\T

z(t) = {al,az,...aN,b],bz,...bNJ

(2.7)
containing the Chebyshev coefficients of the above series and the calcula-
tion of the exponent m are shown in Ref.7,8. The solution as given by
Equation (2.4) to (2.6) is very useful for numerical computation since the
Chebyshev-series has a very high rate of convergence. Hence, a lot of
computer time can be saved in comparison with other numerical methods
established in the literature. If cavitation occurs within the oil film

2,4,7

of a pad then modified boundary conditions have to be applied The

components of the oil film forces acting upon the pad, see Figure 3, can

be calculated in matrix notation as follows 7’8,
T  2m 2
K, K§} = —7 Bur(Y /v)"A 2 (2.8)

where As is a (2x2N) dimensioned geometrical coefficient matrix which can
be evaluated from Ref.7,8. In Equation (2.8) gg is the sector angle,

Y = ho/r is the dimensionless clearance, and B is the width of a pad. The
moment of the oil film forces with respect to the supporting point of the

pad is given in the form

M = -K_(R_+5_) (2.9)
a y'is s
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3. DYNAMIC STIFFNESS AND FLEXIBILITY MATRIX OF THE TILTING-PAD BEARING

A guide bearing with n 23 equally shaped pads is considered. The
pads are assumed to be symmetrically mounted along the circumference of
the shaft, see Figure 2. Then, the angular positions of the pads are
given by ®j = 2r(j-1)/n where j = 1,2,3...n indicates the number of a

pad. The angular speed Q@ of the shaft is assumed to be constant.

In the general case an external static load is acting upon the shaft
in the radial direction. For that given load there exists an equilibrium

position for the shaft center at (u ,v ) and for the pads at (T ,v_ ,a ).
o’ o so’ "so’ s0’j

where j=1,2,...n. The equilibrium position of the bearing system can be
calculated by iteration using Equations (2.8) and (2.9). The iteration has
to be continued to the end that the nonlinear force exerted by the oil film
upon each pad is in balance with the linear force exerted by the visco-
elastic supporting of the pad,and further,the resulting nonlinear oil film
force acting upon the shaft is in equilibrium with the given external
static load. The nonlinear calculation is carried out through a computer

program.

In this paper the simple case of a vertical shaft is assumed and
there is no external static load acting in the radial direction of the
bearing system. Hence, for a symmetrical bearing the equilibrium position

of the shaft is given by uo=ao=o, vo=;o=o,and the equilibrium position of

h is gi i), =3 Vo)., =¥ .= i
each pad is given by (uso)J U, (VSO)J Veo? (aso)J ag, as drawn in
Figure 4. The values of ﬁso’ Gso’ @ are found by a nonlinear numerical
calculation.

If the equilibrium state of the bearing is disturbed by external per-
turbation forces acting upon the shaft then the bearing system is excited
to vibrations, see Figure 2. Assuming small amplitudes of oscillations
compared with the clearance of the bearing a linear calculation is made
possible. Then, in general,the bearing system is completely characterized
by its dynamic stiffness matrix which is of dimension (2x2) and contains

stiffness and damping of the oil film as well as inertia effects and visco-
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elastic supporting effects of the pads. Inertia effects of the rotor it-
self are not included into the bearing dynamics. Hence, the mass of the
shaft is assumed to be zero for this investigation. In order to calculate
the dynamic stiffness matrix of the whole bearing a subsystem is consi-
dered which contains the massless shaft and one pad only, being in the

above mentioned equilibrium state, see Figure 4.

x
Figure 4. Zero-load state of the vertical shaft at u_ = v, = 0 and of
the pad at @, ¥, o . External perturpation forces F_, F_,
so’ "so’ "so X’y
P_, P_, N .
XXy Ta

Now, the equilibrium state of the subsystem is disturbed by a small

harmonic perturbation force (using complex notation with i =Y -1)

F.(t) = {F., F=, P=, P_, N }| = F,elvet (3.1
=] A

where j indicates the number of the subsystem to be considered and
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w = 2Trfe stands for the angular frequency of excitation. The components
of the exciting force vector fﬁ are indicated in Figure 4. The number of
components of Eﬁ i1s equal to the number of degrees of freedom of the sub-
system. After transient vibrations have died out the bearing subsystem is

excited to steady-state oscillations as given by the displacement vector

- - - - T
Ej(t) = {u, v, U, Vo, as}. (3.2)
J
If the magnitude of Ej(t) is small compared with the bearing clearance
h, i.e., max[ Gz + V2 o+ ﬁz + 52 + (ro )%].<31h2 then the displacement
o s s s’ Jj o
vector is approximately a harmonic function

EJ(t) - /E\J elwet (3.3)

Then a linear relation

F. = s!(iuw )z, 3.4
PR HCERES (3.4)
between the amplitudes of the exciting forces fj and the amplitudes of

displacements Ej can be established. The complex valued matrix

S!(iu) = -w?M, + iu C, + K, (3.5)
=j e e-j e=j -j

is called the dynamic stiffness matrix of the bearing subsystem j, with
!j’ gj and Ej beinggthe mass, damping and stiffness matrix of the subsy-
stem, respectively . §j is of dimension (5x5). Considering the equili-
brium conditions for the massless oil film of a pad and using Equation
(2.2) the dynamic stiffness matrix can be written in the form of Equation
(3.6). In that Equation Ly = 21rfe is the angular frequency of external

excitation. Furthermore, the complex valued matrix
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S== S=— k==+iw c== k= +1i -
XX Xa XX e XX %o Wexa

[72]
1]
[}

s _ S . k =+iw Cc - k +iw c .

aX aaf j ax e aX ao e aal]

represents the constant stiffness and damping coefficients of the oil
film of the subsystem. It can be shown that four independent stiffness
coefficients kuv only and four independent damping coefficients <y only

exist for a pad .

A. H.
=] =]
" -s- S 7
S—— X | -S—— X -S.
XX — Xao
r | r
s s
|
|
-s S K* S - ~s K* S
ax aa - O | ax aa, o oo
r 2 r | r 2 r r
s r s s r s s
S | S
I
S % | Szx''z “%%a
S'(lw ) = —g—— 22 _Xx s
=3 e XX r 2 r Xa
S -m _ w S
| sV e
Saa - K:
S _ -s K* | -s - —_ — s
aX ax 0 | ax rZ rs al
r 2 r r s r
S rs S | S ) S
+t- - m
| y e
|
s | -s s + t
- Caa s - aa aa a
aX T | ax T -1 2
L | se | ]
V. B. (3.6)
| =]

The term K:/rs, where ro = RS + AS, depends upon the oil film force K:}O
which is acting between a pad and the shaft in the zero-load equilibrium

state of the bearing system. K: is a socalled "reactive force'" which, in
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general, does not vanish. As can be seen from the diagonal of the matrix
Equation (3.6) the term —K:/rs yields a destabilizing effect but in ge-
neral K: is very small compared with the term kaa/rs and no instability

appears.

Furthermore, in Equation (3.6) {t§, t;, tu}j = {kr, kt’
s Ca}j represents the stiffness and damping coefficients of

k }. +
&)

+ lwe{cr’ c,

the visco-elastic supporting of a pad, see Figure 3.

Inertia effects of the pad are described by the mass m and the mo-
ment of inertia IS, see Figure 3. éj’ Ej’ Yj’ gj are submatrices to be
needed later in Equation (3.8).

Under practical operating conditions of a rotor bearing system the

pads are not excited by external perturbation forces. Hence, the compo-

A

nents of the amplitude force vector in Equation (3.1) reduce to Fij # 0,

A A A A

F-. # 0, P-. P-. = 0, N . = 0. Using this, it is possible to eliminate
v3 CxiYi aj A A A

the amplitudes of the displacements of the pad as (GS, Gs’ as)j from

Equation (3.4) and a reduced system

A A2

{F_, §_}T - 5. (iw ){u, v}T (3.7)

y). =3 e .

J J

is obtained which no more contains the displacements of the pad but only
the displacements of the shaft. Excitation forces are acting upon the
massless shaft and correspond to the subsystem j. The new matrix §j(iwe)
is called the condensed dynamic stiffness matrix of the subsystem j and
is of dimension (2x2). Using the submatrices as indicated in Equation

(3.6) yields the condensation

. ’ -1
S.(iw ) = A, - H.B. V. 3.8
-] € -] -17) 7] ( )
which can be calculated by using numerical means. In order to determine
the dynamic stiffness matrix of the whole bearing system, including the
shaft and all pads,the force and displacement vector in Equation (3.7)

have to be transformed from the local X - y system of a pad into the
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bearing system x - y, see Figure 3. This is carried out by the orthogonal

transformation matrix

cos¢ sin¢
= . . 3.9
Ij -sin¢ cosd|] ( )

After superposing the forces of all subsystems j = 1,2,..n the resultant

dynamic stiffness matrix

S S n

S(iu,) = = I 85(y) I, (3.10)

{Fo B} = sty (33) (3.11)

holds. Equation (3.11) determines the force vector in terms of the dis-
placement vector for a harmonicaly excited massless shaft guided in a

tilting-pad journal bearing. The inverse of S
. -1,
g(lwe) =5 (1we) (3.12)

is called the dynamic flexibility or receptance matrix. The frequency re-
sponse of the bearing system is clearly characterized by drawing the ele-
ments of g(iwe) in a complex plane {Nyquist-plot). Furthermore,

k k

K(s,) = Re[sivy)] = | ** (3.13)
koK |
yx yy
and
| L[S S
Cluy) = o [stiw)] = (3.14)
Cc C
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respectively, are the stiffness and damping matrices of the tilting-pad

bearing system. In general they depend upon the frequency W of the shaft

excitation.

4. NUMERICAL EXAMPLE

A tilting-pad bearing for a large vertical turborotor is considered,
see Figure 2. From Figure 3 the following specifications are assumed:
Number of pads n = 12, centrally pivoted. Length and width of equally
shaped pads L = 0.25 m and B = 0.25 m, respectively. Thickness of a pad

/.S = 0.085 m, radius of curvature RS = 0.6515 m and sector angle 2‘[’0 = 220,

Mass and moment of inertia of a pad m, = 50 kg and Is = 0.26 kgmz, re-

4 E09

e e — e ———— pr——

|

kxx
|
[
!
I

Stiffness coefficient

-8E09 - - »
! 2 5 10 20 50 100 200 Hz 1000

Frequency |/,

e

Figure 5. Stiffness coefficient as a function of the frequency of lateral
shaft excitation. Specifications as assumed above.
---- value of the stiffness for zero frequency
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spectively. Radius of the shaft r = 0.650 m. Radial clearance of the bea-
ring h0 = 200 pm. Speed of the shafg n, = 375 rpm. Stiffne;s and damping
of the support of the pad kr = 7x10° N/m, kt = 0o, kOL = 107 Nm and c =
7.5x104 Ns/m, c, = 100 Nsm, respectively. Dynamic viscosity of the lubri-
cant 1. = 0.023 Ns/mz. Using the above specifications, the equilibrium
state of the bearing system 1is evaluated to Gso = 0.1038 ho, ;so = 0,

o T 1.1078 ho/r for each pad and u = 0, v, = 0 for the shaft.

From the above, four stiffness and four damping coefficients for the
oil film of each pad can be calculated and yields the matrix sj, see
Equation (3.6). The reactive force, acting between the shaft and each pad
at the equilibrium state, is evaluated to K: = 14520 N. As a result of

the symmetry of the bearing system we obtain Sex = 8 and Sey = 7S

yy y yx'
Neglecting the moment of inertia of a pad and setting kOl and c, to zero

1.00E 07

Ns/m

075

e e — - e o — ——

Ser Cay

050¢

az25

1
3]

xy ~—~— | ]
0 20 50 100 200 Hz 1000
Frequency [/,

Damping coefficients

N

|
[, 4 BN

Figure 6. Damping coefficients of a tilting-pad bearing as a function of
the frequency of shaft excitation.
---- damping value Cix for zero frequency
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an isotropic bearing system results, for which the cross-coupling terms
sxy = -syx vanish.

Figure 5 shows the coefficient of stiffness kxx of the bearing as a
function of the frequency fe of shaft excitation. For the example consi-
dered, the cross-coupling term kxy is negligible small compared with the
value of kxx' It can be seen from the diagram that for values of the fre-
quency less than about 20 Hz the stiffness remains nearly constant but
changes rapidly when the frequency is exceeding the value of 20 Hz. When
the frequency goes to infinity, the stiffness goes to negative infinity.
This results from the inertia effects of the pads. The value of the stiff-

ness for 2ero frequency (static case) is drawn in the diagram as a broken

line.
05E-09 ’ -
m/N | | Sox
!
0|
1000
—_— 8§00
x
5 |
LS
-05,
>
) |
x 2
o
-156-09| _
-05E-09 0 05 m/N 10 15E-09

Flexibility Re{“xx]

Figure 7. Nyquist plot of the dynamic flexibility of a tilting-pad bearing.
exact solution
---- approximation for constant stiffness and damping
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Figure 6 shows the coefficients of damping Cx and <y in terms
of frequency fe. Obviously the magnitude of ny is negligible compared
with the magnitude of Cx’ Only for a small frequency range up to 3 Hz
the damping values of the bearing can be assumed as nearly constant. If
the frequency increases, then the dynamic stiffness of the oil film grows
and the resulting damping coefficient of the bearing decreases to a value
which can be determined from the damping coefficient of the support of

the pads only.

Figure 7 shows a Nyquist-plot of the element a of the flexibility
or receptance matrix of the bearing system considered. The solid line re-
presents the correct solution, the broken line is an approximation where
stiffness and damping coefficients of the bearing are assumed to remain

at their static values. There is an acceptable agreement between the

15E-09
m/N

[Fxxl

10

o

9

x

QL ]

I 05 :

B t

5 \\_ :

©

: S

g‘ \\r\ |

] ~~i_

T oL .. o R S IR R ==
! 2 5 10 20 50 100 200 Hz 1000

Frequency |,

Figure 8. Frequency response for the magnitude of the dynamic flexibility
exact solution
---- approximation for constant stiffness and damping
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approximation and the exact solution only in a small frequency range up
to 5 Hz. The first circle in the diagram (solid line up to f = 200 Hz)
depends primarily upon the characteristics of the oil film and on the
stiffness and damping of the supports of the pads. The second circle is
mainly determined by the mass of the pads and the stiffness and damping
of the supports. Hence, the influence of inertia effects on the bearing
flexibility grows with increasing values of the frequency. Figure 8 shows
the frequency response for the magnitude of the point flexibility L
The broken line represents an approximation where constant values for
stiffness and damping coefficients are assumed. At f = 570 Hz a resonance
occurs corresponding to the mass-spring system of the elastically mounted
pad.

The frequency response of the phase angle € x is drawn in Figure 9.
For low values of the frequency up to 5 Hz a good agreement between the

exact solution and the approximation is obtained. For high values of the

0° e i e g e _ X I
"‘-\
\ L]
N
N /
-45° \:§<(7/
N
o ~
W \\\
@ \\\\
& -90° R
[
o
L1}
wn
le)
£
Q. -735°
"180%y s i6 0 S50 100 200  Hz 1000

Frequency [/,

Figure 9. Frequency response for the phase angle of the dynamic flexibility
exact solution
---- approximation for constant stiffness and damping
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frequency the phase angle € ex approaches -180° according to inertia ef-
fects of the pads. The coefficient of the dynamic cross-flexibility Gy =
'ny is drawn as a Nyquist plot in Figure 10. The magnitude of uxy is
very small compared with the magnitude of L. and decreases for increa-

sing values of the frequency.

5. CONCLUSION

A linear theory for small amplitudes of oscillations is developed
which makes it possible to calculate dynamic stiffness and flexibility
matrices of tilting-pad journal bearings. The investigation shows that

stiffness and damping coefficients of a bearing system with movable pads

m/N | | Xyy
A
\ o
T | | 2
2I ! | _|
| | |
> i I 15
= [ i —
x i | : 20/
2 : : |
. 0% wéojs —
! ' : z |
N
-1E-111 : I _
-5E-11 -4 -3 -2 -1 m/N O 1E-11

Flexibility Re[axy}

Figure 10. Nyquist plot of the cross—-flexibility of a tilitng-pad bearing



64 H. Springer

depend not only on the Sommerfeldnumber of the bearing but on the fre-
quency of lateral shaft oscillations also. This result has to be taken
into account if one is performing an eigenfrequency analysis or calcula-

ting critical speeds of a turborotor system.
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CHAPTER 2.3

PRINCIPLES OF ROTOR SYSTEM INSTABILITY

Z.A. Parszewski

1 Stability Threshold

Fquations of free transverse vibrations of a rotating shaft (11, (2],

[3] describing small vibrations

position at the speed «, are of the form
. '\?_ 2
1 5 X . M
+ = T + + 2h. (x+wy) =
x Ap?Ez(r dgz) 2hex 2nl(x wy)

- 1 3?,__32 . .
—_ oy _~%. Dl -r _
vy AD 322(“Iaz )+ “hed * th(y wx)

External he and internal h. damping coeffici
L

unit mass (Ao% of the shaft are
C c;

= —_— h.:

he™ 2(ap)o * 47 20

e and ¢, are equivalent viscous coefficient

damping and Ap and EI are respectively mass

of the shaft, both variable along the axial

of the shaft around its equilibrium

(1)

ents, reduced to the reference

(2)
s of external and internal
of unit length and stiffness

coordinate z.

The above is a set of partial differential ecguations, linear and

homogenous.

(oI PR
A ana o
< Y

" (z) corresponding to the characteristic

its solution can be represented as a series in functions

{eigen) functions

descriving the principal modes of vibrations of the shaft (in rotating

coordinates).
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In the case of rotary symmetry of the shaft and support these
functions are identical with the characteristic functions and are the

same for each axial plane

hence

X = £.(2z)x, (t); y = f,
] t(aix, i

L J(Z)yj(t) (3)

The characteristic functions are defined by the equation

2
2 d-f
2¢ = L 47 4
°f5 = o @2 (Plagd) (4)
Equations (1) give hence for each xj and yJ

i + o 2x, + 2he_i

i T gXy * gk revy) =0

J J

V. - wX ) =0

HECTR AR

§. + a.ly, +2h .y
yJ J yJ ejyj

The solution for free vibration can be sought in the form

X = Xjesjt vy = Yjesjt (6)

The following set of algebraic linear on homogenous equations is

obtained for the constants Xj and Y

J

2 2 =
[Sj + 2(h , + hij)sj + aJ]XJ + 2hi ij 0

eJ J
5 ( ) ) . (7)
- + + =

2hiijj [Sj + 2 hej + hij sj ajJYj

that gives for X, and YJ non zero solution and hence vibrations of the

J

form  (6) are possible only when the determinant vanishes giving the
characteristic equation
2 4 +h + a2]2 + 4 w2 =0
[Sj 2(h s )s aJ] hi‘ W

eJ ] J

2 3 2 4+ 42152 2 Lh 202
¥ + h(heJ + hij)sj + 2[2(hej + hij) + aj]sj + h(hej + hij)aJ + bn fw
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which has the form
sh + 53 + g 2
ah a 2s

3 3%] s, ta =0 (9)

+
37 %1% T %
The considered system is stable, hence the vibrations will die out

if the real parts of all the roots of the characteristic equations (8)

are negative. The necessary condition (of Hurwitz criterion) is ful-
filled (all coefficients are positive). The sufficent condition for the
Lth order equation  (9) is

2 2
ala2a3 - 8y8; - a8 >0 (10)

Generally Hurwitz criterion requires that all the subdeterminants of the
Hurwitz determinant built from the characteristic equation coefficients
are positive. Criterion (10) gives for the equation (8) after

re-arrangement

h . + h,
IR A N

Q

[
=

e

o

or (11)

o<
a,

[
[N
(Y

The stability threshold corresponds to the stability limit of the

lowest mode

¢ + C,
w < € c 2 Ql (12)
id

that will remain unstable at all higher speeds at which higher modes will
be becoming unstable.

The stability condition is hence

c
Woq 4 8L

@y 1 (13)
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Here a) 1s the first natural frequency of the system. The instability
will not occur for speeds lower than the first critical speed of the shaft
wcrl = a,. Over this speed instability onsets the lower the higher is the
ratio of internal to cxternal dampirg. The above did not consider the
mechanism of energy transfer to the vibration at instability. It is easy
however to name its source - it is the driving power of the shaft. Besides
the mentioned supply of energy to the vibrations there always exists its
dissipation.

1f the self excited vibration (instability) occurs in a li:ncir system
(when more energy is supplied than dissipated) they would grow sradually
unlimited. Or, when the dissipation is higher than supply, vibration
will gradually disappear.

The energy dissipated (supplied to)

‘ V)
>, | the dissipated oY, in each vibration cycle (Fig.1)
o energy e '
m~@ is a nonlinear function of vibration
R
N N ea amplitude. tven for viscotic
O v o |
~§ 8 SOQ [ (linear) damping is
)
35| W i = meah
8 Q I L = 7mCun
O |

0 A~ Amplitocle dissipated energy a square function

Pigs 1 of amplitude A. Limit cycle is
hence attained with an amplitude (Fig. 1) corresponding to the balance
of supplied and dissipated energy. This amplitude may not usually be
pp

allowed for the structure.
The mechanism of the energy transfer to the vibration relies on

forces depending on vibration velocities in the described dynamic instability.
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It is distinct from static instability depending on position forces

(tending to increase the displacement of the system from its

equilibriun

position). The static instability can be hence describved bty negative

stiffness (or natural frequency) whereas dynamic instability -
negative damping.
2 Free Vibration
In the complex notation
r = x + iy
the equations (3.2-5) give

., +2(h ., +h, )r, + (a2 - 2ih, ,u)r, = 0
J e i J 1377

Partial solution of the form

- ~53t
r, = eS
3 J

leads to the characteristic equation

s2+2(h , +h..)s, +a2 -2ih. ., w =20
g J ij

J eJ i34
hence
. _—
s =-(h . +h - h ., + )?-a% + 2ih, w ,
J ( ey lJ) //( €J 1) J
or
+
s, = =B - ix,
J J
where

™
1}

=
+

=
+1

-t,im
%] .(. x'

J
The general solution of the equation (15) representing the

vector r; of the shaft deflection in the stationaryco-ordinate

b v

(14)

(15)

(16)

(18)

(19)

(20)

.th
J eigen-

system is
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h,, h,
T T AR R D) -{h ., +*h -—llw)tix.
r. =D, e i 18 A e t+1p, e ej ij Aj e "jt
. ¥ 3
(21)

Here 2: and Ej are complex constants, Aj is a real constant - circular
frequency of damped vitrations (angular velocity of precession). The
vibratory motion of any point of the shaft axis, described by the formula
(21) gradually decreases only when the stability condition (11)

is fulfilled. This formula represents two spiral motions. The first
term in equation (21) describes a converging (decreasing) spiral motion
of the shaft cross-section centres with orbiting circular velocity Aj
opposite to the shaft speed w {(opposite-retrograde precession). The
second term corresponds to a sviral motion with anguwlar velocity Ay inw
direction (direct precession). This motion will be diverging

deflection will be increasing) when the rotor speed w exceeds ::. . imit
givern by the condition (11)

Second term is always dominant (direct precession) as in case of
stability it decreases slower than the first term and in case of
instability it increases whereas the first term always decrcases. The
deflcction of the shaft for both the terms of the formula (21) is

according to (3) represented by the jth pair of the modes. When

the shaft speed w attains the stability limit of its jth mode (11)

h . . h.,
w = _Edgi__ii a (22)
ij

the formula (20) gives
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The direct precession has then the angular velocity equal to the jth
circular frequency of the shaft. The damping of this term (the
second term in the formula (21) ) vanishes. The first term damped
effectively - vanishes gradually. Limit cycle is hence attained
) ia,t

r. =E, £ (z)e
J Jd J J

with constant amplitude, at the 1limit shaft speed w given by the
formula (22) ¥“or higher w values this component (second component
in formula 21) increases in time.

General solution representing any small vibration of the shaft is

represented in complex form as follows:

00

1~=£1 j(ﬂrﬁt) (24)

The vibrations gradually vanish and the shafts steady rotation and its
corresponding equilibrium postion are dynamically stable, only when the
condition (11) is fulfilled i.e. for speeds w not cxceeding the
stability limit of the shaft's first mode

~
(&

,
eL
w < (1 + = (25)
C. .
il
It next remains wistable for all higher srpeeds.
The stability protlem of higher modes is nence in this case usually
immaterial as corresponding speeds can not be generally attained.
At tne stability limit it is at the speed

i 1o}
M

_ el + i (26)

the motion tends to the 1limit cycle in the first mode and direct precess-
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jon (the other components are gradually damped out). At other speeds
w vibratory motion of the shaft is more compound. 411 modal components
exist with modal deflecction and precession angular velocities Aj all
depending on the shaft speed w.
3 Parametric Instabilities

Introduction. Variation of some parameters of machine systems may
be introducing dynamic phenomena, called parametric vibrations and

parametric effects.

Fig. 2 shows two examples of
|
=
- = h——=—y rotating machines with rotors of
4 g
= ) v
different principal stiffness in
the first case and different
principal moments of inertia in
Xq the second case. Time variation
Ao P
R 3 : .
; of corresponding system parameters
E A : :
(stiffness in the first casc and
Xy Xs
rmoment of inertia in the second)
Fig. 2 . . .
will occur during rotor rotation.

Theory of parametric vibrations is well developed and hence the
parametric effects are known qualitatively [1], [4], [5], [6]. It is
hence known that instability of equilibrium position or steady state
motion may occur in those systems at circular frequencies 8 of variation

of the paramecters (circular frequency of parametric excitation) close to

= ak__ (27)
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here: k,l,m =1, 2, 3, ......

o a) - any pair of the natural frequencies of the system for medium

k’
values of the variable parameters (zero coefficient of

parametric excitation € = 0).

The set of 6 values for which instability occurs at k = 1 gives
simple instability rcgion, and that at k # 1 gives compound instability
region. The formula (27) gives the positions of instability regions
but their number and width depend on the value of the parametric
excitation coefficient ¢ (it is generally a nondimensional measure of the
ratio of the paramcter variation amplitude to its average value) and on
the damping characteristics of the system.

In real machine systems instability regions may occur in the vicinity

of 6}({+i for small m numters (first order m = 1 and sccond order m = 2
k] ,m
instability regions) or may not occur at all. (¥ig. 3)
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Critical states corresponding to resonance are possible in stable
regions, leading to high amplitude of steady vibrations. These states

occur at circular frequencies 6 given by the formula  (28)

o) oo tve 3 m=0,1,2, 3, ..., (28)

k,m k
here vw 1s the circular frequency of the vth force harmonics.
The quantities describing steady vibration (eg. its spectrum or marked
trajectory) depend on: the exciting force amplitude, the value of
parametric excitation coefficient and on damping.

Answers to the following questions are of importance for practical
application:

1) Is the equilibrium stable for all working values of parametric
excitation frequency.

2) What are the steady state vibration characteristics for working
values of parametric excitation freguency.

Only quantitative analysis of a corresponding model of the system
may answer those questions. Inclusion of the influence of supporting
structure on machine dynamics is here of importance [6], [7], [8]. The
model contains hence two dynamically interacting subsystens. One (rotor)
being a parametric system, can be discretised and represented as having
finite number of degrecs of freedom {(Fig. 8 bold lines). The second
one nonparametric, contains the whole supporting structure (with the

foundation and ground included), usually very complicated. Receptance

2]

(impedence) matrix is hence used to describe its dynamic behaviour. It
elements can then be measured (if not calculated).

Mathematical Model. Transverse vibratior of paramectric rotor inter-
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acting with supporting structure, can be represented by a set of linear

differential equations with variable coefficients, .

[=+]

Mx + Cx + Kx + (yr + i*yu)x + € z [(m§ cos jOt + m? sin j6t)x +
J=1

+ (cg cos jot + cj sin jot)x + (k; cos jot + kj sin j6t)x]} = 0

here
A - is circular frequency of parametric excitation

€ - is coefficient (or depth) of parametric excitation ¢ = ié——~—x

M K C - are matrices of inertia, stiffness and of damping of the
discrete parametric system

m k ¢ - are matrices of parametric excitation

YO, - are real and imaginary parts of stiffness matrix of the supporting
structure, along the connecting co-ordinates.

The solution of the set of equations (29) may be sought in the

Floquet form

x = (ai sin i8t + bi cos i9%). (30)

0+ %)t E
i=0

here
V+ i¥p -~ is the Flogquet's complex exponent.
The sum in equation (30) represents the Fourier series of a periodic
function of the period
27

T =2

0

At the stability limit (on the boundary of stability region)} the real
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part ¥ of the Floquet's exponent is zero. Hence, for finding the
stability limits, the partial solutions of the system (29) can be

sought in the form

_ AT (31)

a. s5in i0t + b, cos i6t)
. i i
i=0

here

ai and b, are complex matrices.
i

Introduction of  (31) into (29) gives for the constants 8., bi
an infinite set of linear algebraic equations. It has non zero

solutions of the type (31) when its characteristic determinant is zero.
The determinant has the following form

[Woy (0,00 =

10 21 Y 372 b3
3 se?[8é+)) a(l(ﬁi_)) ee3(e§+>) Ey(si‘)) eeu(8£+)] efl(a§'>)
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Where
() _
E (8 ) =
[- ( (+))2M + ( (---)) 8 ) c (B *)) —I
\— B + K+ y (B - - Y, |
+ eﬁi)c + yu[ﬁlgi)] - (Bii)zM + K+ yr(B +)) (
_ VJ(BJQ)) . vj(gf*)ﬂ
() - ) (+)
SACORTACUIE
) *)
) + \lj (Bl ) - VJ ("J’l )
()Y
rj(si ) = g " (33)
L_+ "3 (31 )+ "3 (Di )_l,
- ) ()]
) - wgle ) e vl
€5\ - "
(+) 1
L_ vj(Bl ) +VJ(Bi ]".
and
s 2 gg ey,
1
oy (1) = H ey el ng,
o) <3 e ]
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i=0,1,2,... j=1, 2,

Hence the protlem of finding the boundaries of stability regions reduces

to finding tre zero points of the determinant (8,u)].

Wo1..

The function W = §w01 (e,u)i is a continuous function of two variables

and represents hence a surface over the coordinate plane p,6.

However, for real systems, the function W = [W (6,u)| is definite

0l..

non-negative. Hence the zero points may have the character shown in the
Fig. 3.
The solutions of the a type may be
1W%L”“1F)1 expected for damped systems
(C + Y, # 0), as in those cases
nonincreasing and nondecreasing

solutions are possible only on the

stability regions boundaries hence

gl’ 882

for discrete values 0
(Fig. 4a).

Unlimited number of solutions of

the type (31) may correspond

to each 6 value, for systems

s fqbi!f'fy reqicn

without damping (C + T, " 0).

Hence solutions giving continuous

A

Fig. 4 lines y = y {0) may be expected,

as in Fig. 4b.

Numerical Procedures.

Damped Systems (C + Y # 0). The determinant is non-
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negative in these cases, hence its minimum as function of two variables
6, u is sought and checked for zero value.

The minima were found with th: application of the following numeric
procedures.

Values of the determinant W are computed, with a step a, in the
distance R from a point Oo of the coordinate plane u, 6 (Fig. 5)
until smallest value is found, at a point Ol'
The procedure is repeated for
points in the distance R from Ol’
‘starting from the straight line

Oool'

This process is followed until

the determinant minimal value on

a circle is higher than in its

centre O .
n

Fig. 5

The whole procedure is next

repeated from On with the radius R halved. This is followed until
the radius R attains a value smaller than assumed error AR.

The procedure was programmed and executed on a computer for the
third order approximation of the determinant W = ;WOIZ(F’ O)!. The
receptance functions Yr(S) and Yu(S) were read into the form of a tatle,
which values were interpolated in the computing process.

The computation results, in the form of the determinant values

along the computing trajectory were used for firndirng the determinant

zero values (Fig. 8)-
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Flow Diagrams. The flow diagrams for computing the trajectory co-

ordinates and the determinant |W (u,8)| values are given in Fig. 6

01..
for damped systems and in Fig. 7 for undamped systems.

T and P represent the 6 and u coordinates respectively, with TO, and
PO being their initial values. R and DAL give steps and TD, TG, PD and
PG define the considered area.
Instability Regions
Undamped Systems, C + Y, T 0. Instability regions, in such a system,
are the sets ofVO values for which the periodic solutions of the type
(31) are lacking. These regions are shaded in the Fig. 3.
Damped Systems, C + Yu #0 Instability regions are sets of values

between the solutions of the type shown in Fig. 4a.

Those solutions are marked in the small bold circles in the Fig. 8.

The instability regions are shaded in this diagran. The continuous
lines in Fig. 8 are the univalue curves ( of the determinant
IwOl (u,8)]) and the broken line gives the solution for no damping

c + Y, T 0
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Instability regions as functions of the coefficient g value for

various damping coefficients ¢ are shown in Fig. 9,

First three instability regions for a rotor support system (an
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industrial ventilatcr) are shown in Fig. 10
amplitude of its first four harmonics in the ver

directions.

~

[7w.]  |eFw, | o,
]

®)_ 1 ale)
Wy 229121

together with the

tical x and horizontal y

) I
g
E?“’ﬂ Z T
I
(9 _ 1Lt
“oq1 =2 241
\\/A:\\ IQ-I
—-:—-——'"‘,‘““,'___' \‘"T__?-._S,.
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i

!
i
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! ) 1" 1 n " . oo
Ax,)Ay, - _Au,Ay, — A ,Ay: AXI, Ay:
Fig. 10

The instability region corresponding to two adjacent natural

frequencies as a function of the coefficient of
shown in Fig. 1llc¢
coefficients varying with rotor speed (Fig. 11a)
nydrodynamic journal bearings. Corresponding

are given in Fig. 12 A - J.

parametric excitation is

for nonconservative support with stiffness cross-

as is the case in

vibration-time diagrams
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Disbalance response in some speed range is shown in Fig.

dishalonce s E=572= 110™%m

0] — r i

13,
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Fig. 13 gives also comparison of some of the computed (various
lines) and experimental (black squares) results. The journal centre
loci in Fig. 13d were computer plotted and those in Fig. 13e

are experimental.
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CHAPTER 2.4

FLUID FILM AND INSTABILITY

Z.A. Parszewski

1 Journal Bearing Stability.

Hydrodynamic bearings effect is important in many machines. Besides
lowering critical speeds it may lead also to instability of rotor steady
motion and hence sel? excited vibrations.

A hydrodynamic journal bearing is characterised, for steady state
(see chapter 2.1 ) by the nondimensional bearing capacity (Sommerfield's

number) .

o
=
w|y
L

n

s
[
17
€

as function of journal eccentricity ratio ¢ = %-and by the locus (
1) of journal centre eguilitrium positions (in steady state). ALl
these give static cnaracteristics of the bearing (Fig. 2). Here P
is pearing load. The length of the bearing is L, diamater D and its
radial clearance is K - Rc =r, n - ocil viscosity, w - rotor argular

velocity.
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) Dynamic characteristics of the
20 8 bearing give oil film stiffness
Il 6 - . .
1.5 S=5(C) ‘g, ’ Kxx’ ey I(yy and damping Cox? s
10 AN QQ') Q 4 ny coefficients, describing
W oL Lo
W \) Q (1 inearized) nydrodynamic forces
05 e 0 2
> W\ . c
P . . s .
D P acting on the journal 1n case O
00 =1 | | ||
02 04 0.6 0.8 1 C its small Vibrations around its
Fig. 2 equilibrium position.
b7 = - (K x+K y+C %x+C_3)
X XX Xy XX Xy
(2)
F =-(X x+K y+C %x+°C_7)
Y yX Yy ¥yX Yy

Nondimensional valiues of those coefficients as functions of
eccentricity ratio (at equilibrium position) are given in Fig. 3 and

L
Fig. 4 for a tearing of three partial arcs and D= 0.83
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70
50

30
20

Fig. 3

\/ﬁ 7]

Fig. 4

characterised in Fig. 1 and
2 (11, [2], [%].

The lowest (first) of principal
modes of vibrations becomes unstable
first (at lowest speed) and it
remains unstable with increasing
sreed when the higher modes become
consecutively unstable. The
stability threshold or limit of a
system is hence equal to that for
its first principal mode as was

m

explained in previous point. To
characterise the bearing stabiiity
it is hence sufficient to consider
a symmetric single span rotor
supported in two identical bearings.
The first principal mode for this
system 1s a symmetric one. It
hence shaft deflection is disregarded
the problem reduces to the analysis
of small vibrations of the journal
(with half the rotor mass) in the
single bearing.

In nondimensional coordinants

and parameters:
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x=L§% o= ey (¢ = mg)
r by
7= Iy De o
q_\yJ O‘-I‘ 1 ru (4)

RS
n

}0 d|
€

>

]
19

rw o by
the equation of free vivrations has the form

(=] {4} + [e] {4} + [K] {q} =0

Here
- — — -
(=) o0 ’ c_ ¢
wo . Xy XX Xy
(2] = Y2 [e] = (3)
0 (=) K C c
— wo - __ Yy L yx Yy
With partial solutions of equations (4) {qg} = {Q} %% the character-
istic equation is
S()? 5% + C_ s + K C_s+K
W, XX XX Xy Xy
i =0 (6)
o s+ K S(-)2 52 +C s+ K
Dyt Tyx v, N

of the form

s +asl+asi+as+ta =0
2 1 J

Hurwitz's criterion of stability for the Lth order characteristic

equation reduces to the unequality

ensuring negative real parts of all roots of equation (6)
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The stability threshold (the limitng speed ratio) for the described
bearing with %-= 0.83 is given in Fig. 5 as function of journal
eccentricity ratio ¢ in steady rotation (equilibrium position}. This
diagram can be used for checking if, for the given bearing type and its
work parameters, the journal equilibrium position in steady rotation will
be stable.

Example: Consider the generator of 120 MW of Dolmel production. Its
bearings are of the type corresponding to Fig. 1, 2 witn the

following dimensions.

L=314.5mm , D= 013 s DC = 380.43 i g:gii iien
40 /r __I- ] n=2 16510'2 L n = 3000 RPM
20| oE i 2650 B L 0= 3000 2
20 ! n, = 32500 kg §= .83
Load per bearing P = 0.5 m g = 162500 i

Sommerfield's numbers for the tolerance

limits are
JESL
q =g - == =0, b
°1 T "max D Lnw 394
max
2r.\2
2 — -1 o - a _ P(jyg min _ 9.3396
' ! D = O . - '_\——v_- - .
' / Z min T . ILnw
i ‘ l[ Stable ! | in
B |
l [ d i l J, l Yence eccentricity ratios, taken from
I~z 04 06 08 ¢ , o
tne diagram S = f{c), Fig. 2  are
Fig. 5
c, = ¢ =0.38, ¢, =c . =0.346
1 max 2 min

For the working speed is nence
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This gives sufficient safety margin at the eccentricity ratios in

= 0,346 (Fig. 5) .

tolerance limits c, = 0.384 and cy

2 Fluid Film Influence on Critical Speeds.

For assessing oil film influence a syrmetric rotor in equal bearings
will be considered. Again it is sufficient to consider small vibrations
around equilibrium position. The end conditions characterising rotor-
bearing interaction reduce to the equality between rotor shear force T
and bearing reaction AF, [1], [3], [4].

AP o= 20 = 4m
“x x AFy y (8)

The reaction is given by formula (2) and rotor shear forces at

the supports for the symmetric case considered, can be expressed in the

form
2 2
m = o= oyl
R = Xl 7=y (9)
where
2
“Fk :
we / L E L — -
i=1,3... “i T Yorx ™y
N = { and
2 2 2
. (21c] .oy Z YFx io (10)
Fk 2 i=2,)4.. u)lz,- - L.);,K fT‘.Di
t

wWhere w, are natural circular frequencies of the rotor supported on rigid

supports, and
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;o n
t, == Imy. %, 3, = L my?,
io L j=1 J7i3 7% i =1 3713

in

J

the ith mode and distance ij from the support, £ is the rotor span.

a

X

Here my are masses of the rotor segments, their deflections ‘A

Symmetric rotor can be hence characterised by N given by the formula

10 as function of an argument w The characteristics of this type

Fk*
for the 120MW generator rotor is given in Fig. 6. The vertical

assimptotes correspond to the wg values giving the first three critical

speeds of the rotor supported rigidly.

1000 t
500
400
3004
200
100 t

-~ :

: .: 4 — ———¢ + — + i + \
200 400 600 800 1000 1200 1400 gy

cac,,:/% wU“:434 wcrm=/350
Fig. 6
The actual support conditions (8) with (2) (in non-

dimensional form) give the following frequency equation (with damping

neglected)
Kxx - N2

* =0 (11)
K K —N2

yx Yy
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This equation, for any I values gives thne bearing characteristics in
the form of an equivalent frequency, being a function of eccentricity
ratio ¢ = %—, as the stiffness coefficient of oil film are (Fig. 3).

This type of characteristics is represented in Fig. 7 for the
bearings considered in Chapter 2.1. For consecutive eccentricity ratio
¢ values tne values of stiffness coefficient were taken from Fig. 3
and corresponding I values computed from equation 11},

The interaction conditions are fulfilled for

: =N
IIRotor Bearing

(12)
It is sufficient hence to draw in the rotor characteristics
(Fig. 6) a horizontal line (Fig. 8) corresponding to the N
value obtained from the bearing characteristics (Fig. 7) for the
eccentricity ratio c at equilibrium.
This eccentricity ratio ¢ is obtained from Fig. 2 for the
Sommerfield's number S calculated for given rotor speed w.
Abscissas of the intersection points (Fig. 8) give the circular

natural frequencies w of the rotor-bearing system at the assumed speed

Fk
W

Critical speeds can be found by successive approximations ie. taking

an obtained Woy value for w and repeating till resulting w value is

Fk
sufficiently close to the preceeding one. In case of constant stiffness
coefficienis of support Fig. 8 gives directly the critical speeds.
Fig. 8 shows also directly oil film influence on rotor-bearing

natural frequencies and eventually critical speeds.
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CHAPTER 2.5

STABILITY OF ROTORS IN BEARINGS

N.F. Rieger

THE NATURE OF ROTOR INSTABILITY PROBLEMS

Introduction

A rotor is said to be unstable when the shaft orbit increases with
time, without apparent limit. Instability begins when the rotor speed
exceeds a so-called "threshold" speed. Stable operation usually resumes
when the speed is again decreased below this threshold speed. Unstable
whirl motions can cause mechanical problems such as rubbing between
journal and bearing, seal rubbina, and blade/stator rub contacts, and may
result in substantial machine damage. Unstable motions can also themselves
introduce additional dynamic forces within the bearing which stabilize the
whirling at a limiting whirl radius. Such whir! motions are called "bounded"
instabilities.

The most common types of unstable rotor conditions are listed in
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table 1. Each of these instabilities is listed with the type of rotor-bearing
system in which it has most frequently been observed. Typical threshold

speed conditions w,,  are also indicated, together with the whirl frequency v

th
at which the rotor tends to precess, once the unstable whirl condition has
been established.

Unstable whirling is distinguished from unbalance whirling by the

following features:
Unbalance whirling Unstable ¥hirling

a. Whirl frequency vV o= ow VoW

b. Threshold speed none “th ~ %1
(where u is the lowest critical speed of the rotor in its bearings). ,

The above comparison shows that unstable whirl motions are initiated
beyond a certain threshold speed, and occur at a frequency v, which differs
from the rotor speed w. The unbalance whirl frequency is the same as the
rotation speed, i.e., v = w. Unstable whirling is initiated at speeds above
a certain threshold speed which is never less than the lowest critical
frequency of the system. Unbalance whirling has no threshold speed: it
can occur at all rotor speeds, and may become resonant with some lateral
mode of the system to cause the so-called"bending critical speeds."

The rotor threshold speed is a major operating parameter of the
system. Beyond that speed, the rotor whirl orbit radius may grow rapidly
with time in an outward spiral until some stable whirl radius is found
(bounded instability) or until some constraining surface, such as bear-
ing or seal face, is struck. Unstable motions which are bounded by the

bearing or seal dynamic properties are often acceptable operating
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TYPE OF INSTABILITY

WHIRL FREQUENCY ¥V

MACHINE SYSTEMS SUBJECT

TO INSTABILITY

Hysteretic instability

Subharmonic shaft whirl

Fluid film instability
. Rigid rotor

. Flexible rotor

Parametric instability

Transverse-torsional

interaction instability

VaW_, lindependent of wabove w)

V< w/2

0.85w(V<0.50 w

0.38W<V< 04S w

V= W/, Wy, wys

Lightly-damped rotor with shrink or press-fitted parts

on a central shaft,

Rigid rotor in fluid film bearings

Rotor in fluid-film journal bearings

Machines with gas seals

Machines with asymmetric rotor or asymmetric

shaft or both,

Machines carrying bladed disks, e.g. steam turbine

V = whirl frequency We = first bending critical speed W = running speed

Table 1 Details of Various Instability Conditions

conditions, especially for a rigid rotor, but once the journal contacts a

bearing or seal surface, a violent counter-rotating whirl may be set up.

This second whirl motion can destroy the bearing surface and damage the

journal. Typical whirl orbits of common whirl motions are shown in

figure 1.

i

O

7y

N

(c) Hysteresis instability,

vew
“c

Figure 1

(d) Half frequency bearing
whirl, v < .

Whirl Orbits Caused by Various Exciting

(a) Stable whirl
unbalance only,
Ve

Forces and Unstable Conditions

(b) Dissimlar stiffness
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Types of Rotor Instability

Hysteretic Instability
Hysteretic instability may occur in built-up rotors consisting of disks

which have been shrink- or press-fitted upon a central shaft, or which are

assemblies of components bolted together. Rubbing between the compo-
nent parts produces a friction force which tends to suppress rotor whirling
at speeds below the first bending critical speed, and to sustain such rotor
whirl motions above the bending critical speed. Such whirl motions were
first observed by Newkirk [1] and by Kimball [2], and were further
investigated by Robertson [3]. In these tests, the frequency of the
hysteretic whirl motion was observed to be the same as the first bending
critical speed of the rotor. It was first thought that the hysteresis of the
material itself was the main cause of this whirling. But measurement of
these hysteresis forces by Kimball [4] showed that they were of very small
magnitude compared with other forces acting on the system (e.g., rotor
weight), and that the instability was more likely caused by rubbing between
shrink-fitted parts on the shaft. Above the first bending critical speed,
this type of whirling occurs at a frequency v equal to the first bending
critical speed, w. . Once started, the whirl orbit could grow to large de-
structive proportions, which may not diminish with further increase in
speed. Since Newkirk's studies in 1925, experimental investigations have
been outnumbered by analytical studies. Investigations by Kimball [1],
Robertson [2], Ku-shul (5], and Gunter [6] will be discussed in detail in
later chapters of this book. The general conclusion is that hysteretic

instability can be successfully suppressed by the addition of a suitable
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combination of external stiffness and damping to the rotor-bearing system.

Fluid Film Bearing Instability

This well- known form of rotor instability - variously and somewhat
loosely referred to as half-frequency whirl, fractional frequency whirl, oil
whip, and resonant whipping - is a self-excited whirl of the rotor in its
supports induced by cross-coupling effects within the journal bearing fluid
film. It was first investigated and reported by Newkirk [1] in 1924, who
found that it may begin at speeds above 1.5~2.0 times the first lateral
critical speed of the rotor system. Two distinct types of such instability
have been observed. The first type, known as "half-frequency whirl",
occurs mostly in systems in which the rotor is dynamically rigid and when
the whirl frequency is somewhat less than half the running speed. The
second type, known as "resonant whip", is more severe. It builds up with
a whirl frequency equal to the first bending critical speed of the system.
This whirl can appear at rotor speeds 1.5~2.0 times the first bending crit-
ical speed of the system. Once started, the whirling involved is strong,
and may persist over a wide range of higher speeds. The large rotor whirl
amplitudes involved may consequently be very harmful to the system.
Resonant whip, of which detailed investigations are presented in later
chapters, is more likely to occur in flexible rotors. Research by Newkirk
and Lewis [7], Pinkus [8], and Tondl [9] [10] has shown that plain
cylindrical bearings are the most likely to become unstable in resonant
whipping, and that the most stable bearing types are the tilting pad bear-
ing, the floating-ring bearing, and the three-lobe bearing.

The fundamental conclusion reached by Tond! [11], Lund [12] and
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others concerning the stability of rotors in fluid film bearings is that rotors
can be stabilized by addition of a suitable amount of damping, and by the
selection of a bearing type which minimizes the amount of cross-coupled
stiffness and damping involved in the system. This conclusion has led to

several designs of flexible, damped supports (employing spring-mounted

bearings and an oil-film damper) known as squeeze film damper bearings.

CGas Bearing Instability

One limiting factor in the use of high-speed gas journal bearings has
been the development of half-frequency whirl motion of the journal within
the bearing. The whirl threshold speed represents an upper limit for the
speed at which the rotor may be safely operated. Half-frequency whirl,
once established, commonly leads to rapid growth of the journal orbit, and
possibly to bearing seizure.

Data on dynamic bearing properties is needed to predict the onset of
half-frequency whirl. The compressible Reynolds equation with time-

dependent terms included for dynamic loading is:

LR RERA)m) o

where = ai

o X
1

central anqgle from the line of centers
= axial distance from the middle plane of the bearing
C(1 + € cos 9)

O > N
1

= radial clearance
¢ = eccentricity ratio

absolute pressure

o O
nou

density

= viscosity

c =
1

aw, peripheral speed of journal due to rotation
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Castelli and Elrod [15] developed an analysis in which the equations
of motion for the rigid rotor and the compressible Reynolds equation were
simultaneously integrated on a digital computer to determine the rotor
orbital path. The stability, or instability, of particular cases was
established from the growth, stabilization or decay of the orbit. With
assumed initial conditions for both the rotor motion and the fluid-film
pressure, the influence of incremental displacerients on the rotor equations
and then on the fluid-film properties was calculated. The calculation was
intended to provide data for the next incremental change.
Cheng and Pan [16] applied Galerkin's method to solve the Reynolds'
equation with time-dependent effects included, for the case of finite plain
cylindrical bearings and other geometries for which a representative (ph)
function could be deduced.
Several experimental programs have been conducted to determine the
effect of bearing geometry on the threshold of instability. The main
results of these investigations are:
®* There is a clearance which gives minimum onset speed for a given
bearing load, references [16] and {17];

®* For a given rotor mass and bearing clearance, the eccentricity
ratio at the onset of instability remains virtually constant, even
though the bearing load is varied significantly, reference [16];

®* As the bearing clearance increases, so does the eccentricity ratio of
the onset of instability, reference [17];

If a gas bearing is designed for high stiffness and large clear-

ance, the threshold speed will be increased, reference [18].
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¢ Increasing the gas pressure in the bearing will increase the onset
of instability as well, reference [19].

Kerr's detailed experiments [20], [21], show that by mounting the
bearings in O-ring supports,it is possible to proceed through the half-fre-
quency whirl region and operate at much higher speeds without unstable
vibration. Some oscillation may occur as, with the increase of speed, the
shaft support system passes through its own resonant or unstable regions.

Tondl [22] found that the onset of self-excited vilrations could be
efficiently raised by mounting the rotors on an elastically suspended founda-
tion mass with damping. He also determined that the nonlinear components
of foundation damping did not cause any additional instabilities.

In general, instability in gas-lubricated bearings closely resembles
that found in fluid film bearings.

An example of stabilization of a horizontal symmetrical rotor in a

plain cylindrical hydrodynamic gas journal bearing, using a flexible
damped foundation has been given by Rieger [23]. The rotor system had

the following properties:

Weight 12 Ib. Operating speed 12,000 rpm

Bearing Length 2.0 in. Dynamic load 14 Ib. (on each bearing)
Bearing Jiameter 2.0 in. Ambient pressure 14.7 psi

Radial clearance 0.001 in. Viscosity 2.8 x lo_glb.sec./in.2
Temperature 100°F

Using instability charts, the threshold speed for this rotor was found
to be 7320 rpm. It was therefore expected that the rotor would become

unstable before it reached its operating speed. A damped flexible
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foundation was subsequently added to the analytical model, with foundation
stiffness Kf = 600 Ib. /in. and foundation damping Bf = 0.1 Ib.sec. /in.
Using the same method, it was then found that the threshold speed was
still below the operating speed. The rotor would therefore still be unstable
at its operating speed.

The next step towards stabilization was to change some characteristics
of the bearing and to add more damping while the stiffness of the founda-

tion was decreased, thus:

Bearing length 1.0in.

Bearing diameter 2.0 in.

Bearing stiffness Kf 350 Ib. /in.
Bearing damping Bf 0.23 1b. /sec. /in.
L/D 0.5

These changes considerably improved the stability of the rotor which ran
up to 51,000 rpm without encountering any instability problem. That is,
the threshold speed was now well above the operating speed.

Gas Seal Induced Instability

Steam turbine stages, compressor rotors, and pump stages may all
experience seal-induced instability regions in which the seal dynamic forc-
es may overcome the system damping. Recognition of this has led to the
conclusion that a threshold power level may exist for a given operating
speed, beyond which speed the rotor may become unstable, even though it
operates in bearings which usually stabilize a rotor system. Shaft desta-
bilizing seal forces and blade seal forces are generated, respectively, by
shroud and shaft labyrinth seals and by flow action on the blades. Should

these forces, acting together in the whirl direction, exceed the damping
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forces, a high pressure rotor may experience self-excited whirling whose fre-
quency is equal to the lowest natural frequency of the rotor in its bearings.

Several analyses have been made concerning the effect of labyrinth
seal forces on a whirling rotor. Different basic assumptions have caused
these analyses to differ substantially in their predictions of the rotor
instability threshold conditions. Wright [24] conducted an experimental
analysis using an apparatus capable of measuring accurately the labyrinth
seal forces on a whirling rotor (see figure 2). Wright's model was designed
to provide a better understanding of the basic phenomena involved in seal-
excited whirling. He showed that the whirl excitation exponent may be
negative or positive depending on the type of seal (converging or diverging)
and on the type of whirl (forward or backward), and concluded that some
control of steam whirl is possible by stiffening the rotor or modifying the
bearing. He also suggested that the steam seals should be designed to
have negative (stabilizing) forward whirl excitation constants which tend
to cancel the positive (destabilizing) forward whirl excitation constants of
the blade rows.

Parametric Instabilities

This type of instability arises from the variation in some system para-
meter with respect to time, such as shaft lateral stiffness. It can occur
when an asymmetric rotor is mounted on a symmetric shaft, or when a sym-
metric rotor is mounted on an asymmetric shaft which has unequal lateral
stiffnesses in its two principal stiffness directions. An introduction to
this problem has been given by Den Hartog [25] who describes the "flat

shaft" problem, and shows that this leads to twice per-rev variation of the
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stiffness term in the rotor equation of motion:

MR + (K + K, cos 2ut)R = Maw2(iwt) (2)

1
where R is the rotor c.g. whirl radius, M is rotor mass, K0 is shaft lateral
stiffness, K1 is the stiffness asymmetry, w is angular velocity, and a is
mass eccentricity. This expression may be solved as a Van der Pol equation
[26]. Other studies of this problem by Taylor [27], Foote, Poritsky and
Slade [28], Kellenberger [29], Dimentberg [30], and Tondl [31] have indi-
cated regions of stability and instability in which the rotor amplitude will
grow with time. Several of these authors have also noted that such shafts
also have speed ranges w in which subharmonics of the dissimilar stiffness
effect also induce vibrations at w/4, w/8, w/16, etc.

Yamamoto and Ota [32] have contributed to the investigation of para-
metric instability of a rotor with dissimilar inertia properties. The exper-
imental apparatus shown in figure 3 was used. A vertical shaft of
diameter d = 11.55 mm, and length | = 601.9 mm was driven by a 45 hp
DC motor. It was supported at its upper end by two self-aligning double
row ball bearings placed at a distance Lo = 36.00 mm apart. By exchanging
two attached weights W of the rotor it was possible to vary the dissymmetry
parameter A. When a disk of diameter 180 mm and of thickness 3 mm was
added to the rotor, motions at the edge of the disk were recorded optically
in both directions x and y. The guard rings G1 and G2 were arranged to
check the increase of shaft deflection. Using various kinds of oil in the
damper vessel at the lower end of the shaft to restrain the whirl amplitude,
various damping coefficients were obtained.

These authors concluded that for a rotating shaft system carrying an

unsymmetrical rotor, instability occurs near the speed range where the sum
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of two natural frequencies of the system equals twice the rotating speed of
the shaft. It was also found that this unstable range may be diminished by
adding sufficient viscous damping. In a later experiment, Yamamoto [ 34]
studied the case where the sum of the two system natural frequencies is
equal to twice the rotating speed of the shaft. The test rigs used are
shown in figures 4 and 5. The unstable vibrations which appeared in these
regions were studied for a system consisting of a rotor with unsymmetrical
inertia, and a shaft with unequal stiffness. A theoretical investigation,
which was verified by this experiment, showed that such unstable vibrations
can be removed by selecting a suitable combination of the inequalities in

inertia and stiffness, as well as by external viscous damping.

Transverse-Torsional Interaction

Interaction between transverse motions and torsional shaft motions has
been shown to induce instability. This problem has been studied by Broniarek
[35], Tondl [31], and Smith [36]. Smith [36] investigated a specific problem
of synchronous whirl in a group of steam turbines in which the source of
the trouble was not excessive unbalance, but an uncommon type of instability.
Here, the whirl frequency developed below rotational frequency. A slow build-
up of vibrations occurred when the transverse whirl frequency coincided
with the running speed of the rotor.

The occurrence of this instability was erratic and unpredictable,
but always showed the same general pattern. Large vibrations developed
within a specific speed range. Vibration was at first particularly strong in

the low pressure turbine, at a frequency of 1-per-rev plus harmonics,
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especially the three per rev. No low frequency component below 1/rev was
present. The harmonics grew much more slowly than the synchronous
component, which was strongest in the high pressure turbine. When
speed could be varied, the synchronous whirl dropped rapidly in amplitude
outside a sensitive speed band between 5 and 15 percent of operating
speed, and sometimes even stabilized. Amplitude growth could be started
or restarted by a change in the generator load. The different stages of
the self-excited vibrations are shown in figures 6 and 7.

Smith concluded that this instability was due to the torsional-transverse
interaction. The principal mechanism was resonant vibration of the LP

turbine blades.

Causes of Instability

The purpose of this éection is to explain some of the most common
sources of instability. The approach follows that given by Lund [37] .
Consider the simple symmetric rotor model shown in figure 8, consisting
of a shaft with a stiffness of 2 k and a lumped central mass 2 m. The
shaft is supported at its ends in bearings with stiffness K, such that

the natural frequency of the system is:

_ k K
“’n-v KT (3)

The angular speed of rotation is Q. External damping is provided at
the rotor mass and at the bearings with damping coefficients 2b and B,
respectively. (See figure 8.) Although practical rotors are considerably
more complex, this simplified model contains the essential features of the

problem,and allows useful closed form solutions to be obtained.
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The system is assumed to be linear, with constant properties. Let
(x,y) and (xl, y1) be the coordinates of the rotor mass and of the shaft
at the supports respectively. Using this simple model, the following cases
may be considered:

Hysteretic Instability

Assuming that the energy dissipation is viscous, the shaft may be

assigned a damping coefficient c. The equations of motion then become:
mx+bx = —k(x—xl) —c(;(-il) —Oc(y—yl) = —KXX—B;(] (4)
my +by = -k(y-y,) -c(y-¥,) +0c(x-x)) = -Ky,-By, (5)
where X, y, X4, and y, are the amplitudes at the rotor disk and for the

journal in a fixed coordinate system.

Usually, c is small and assuming the external damping b and B to be
equally small, only first order terms in c, b and B need to be retained.
With solutions for the amplitude of the form eSt, the characteristic equation

is obtained as:

2 K 2 KK .o (K 12, -
ms? + [b+(gip)” B + (g els e 10 (egd €= 0 (o)

Separating this expression into real and imaginary parts, it is found
that the whirl frequency v is equal to W, and the condition which defines
the instability threshold speed is:

+k 2
a7 4B > (a-u ). (7)

In the absence of external damping, the rotor becomes unstable when
the first bending critical speed is reached. To operate in a stable manner at

higher speeds, external damping, as described in equation (2) is required.
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It is assumed in the above analysis that the shaft internal damping is
of a viscous nature. The dissipated energy then becomes proportional to
frequency. This characteristic, however, is not typical of most shaft
materials. Generally, the dissipation is of hysteretic nature, and is inde-
pendent of frequency. A more realistic model may be introduced by adopting
a material property y as the fixed angle by which the strain lags the stress,
such that the hysteresis loop in the stress-strain diagram becomes an
ellipse. The dissipated energy is then proportional to sin y, and hence to
the square of the stress amplitude. On this basis, the equations of motion
are:
mx +bX = —kcosy(x-xl)—ksiny (y-yl) = —le—}sf\;l (8)
my by = -kcos y(y-yy)+ksiny (x-x)) = -Ky,-BYy;. (9)
As v is small, cos vy and sin y may be replaced by 1 and vy respectively.
Assuming the external damping to be equally small and retaining only first
order terms in Y, b and B, an exponential solution for the amplitudes

leads to the following characteristic equation:
2 k |2 KK K 2
ms +tb+(ﬁ5) B]s+m :i(K—:I;) ky =0, (10)

With s = iv at the threshold of instability, it is found that v =« n and

the rotor is stable when:

2 2
(KKok) u,nb+(§—) wnB >vk. (1)

In contrast to the case of viscous internal damping, where instability
can occur only above the first critical speed, hysteretic damping causes

the rotor to be potentially unstable at all speeds. Once, however, the
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required external damping is provided, the rotor is always stable; whereas
with viscous damping,there is a finite threshold speed.

Whirl in Hydrodynamic Bearings

For small amplitudes of self-excited whirling induced by hydrodynam-

ically lubricated journal bearings, the equations of motion can be written as:

mx+bX = —k(x—xl) = -K, X -B, x —nyyl_B

17 By ¥y~ BXy (12)

xy

my+by = -k(y-y,) = KX By Xy Ky v -By ¥y-Byy . (13)

The eight dynamic bearing coefficients, Kxx’ ceen 'Bxx' ... depend on

the particular bearing geometry and, in addition, on the operating condi-

tions, expressed through the Sommerfeld number:

2
1 uQDL /R 14)
S = 3= 2 (

where L = bearing length C = radial clearance
= journal diameter W - bearing applied load and
R = journal radius u = lubricant viscosity .

Assuming a short (L/D < 1/1) plain cylindrical journal bearing,
operating at sufficiently high speed such that:

2
2 &S 1, 15)

then the dynamic bearing coefficients are approximately given by:

4w 16
Kxx_FC (16)
. 2, L2 w 1
K. =- = 1 w
Xy ny " (D) s C - ?nnxx (7

- 8 W (18)

Kyy= o T
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) 5. 2,L2_w 3

Prx ™ Byy =207 (5) S = 2ruLie) () (9
_ 8w

By *Byx =5 1iC - .

At the threshold of instability, the motion is purely harmonic with frequency

w, whereby the equations of motion can be written as:

(K HuB,  -2) (K, +iwB, ) [xl

K , "0 (21)
( yx“wByx) (KyyﬂwByy—Z) Yy )
2 . 2. 2 2 2
k(-muw“+iwb) k(k-muw“)mw -(wb) k
Where Z=- -iwB = -{w [————-2—2——'2 b#B].
K-muw+iwb (k-mw2)°+ (wb)? (k-mw®)* +(wb)
(22)

This value must equal the root of the determinant of equation 4 which

becomes:

21, 2
(wa},) —z(r\xx-xyy) (23)

21
Z._.Z(K *Kyy) +1JuB__ +K 1+ "

As w is equal to ¥ Q or less, the second term inside the square root is of

the order of (%),2 and can be ignored. With this condition Z is approximately

equal to:

z:K*i[ixx(wléﬂ) (24)

K=312(K 4K ) =

5w
X yy n

.. (25)
where ¢
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Equating real and imaginary parts of equations 5 and 6,and neglecting the

term (wbz),the whirl frequency is determined as:
“u <) /[ kK
Y75 TV WKy e (26)

The condition for stability becomes:

K4k 2 1 3.2
wnB +( K ) wnb>(~2— O-wn)Bn =(Q_2wn) nuL(%) (%) . (27)

The whirl motion is a forward precession.

It has been shown by Lund [21] and others that a more effective
method than external damping for stabilizing hydrodynamic bearing whirl
is to mount the bearing in a flexible damped support. By proper tuning,
the instability can be completely eliminated.

Equation 7 shows that in the absence of external dampinqg, this rotor
is unstable in cylindrical bearings when the speed exceeds twice the first
critical speed. This is true only for sufficiently large values of the
Sommerfeld numbers, i.e., for low bearing operatina eccentricity values.
It should also be noted that the inequality itself is based on several
assumptions, and consequently that it will be less valid where these

assumptions are violated.

Interaction with Fluid Flow Forces

Any whirl motion of the shaft in rotating machinery affects the flow
field of the working fluid and sets up additional forces and moments.
Coupling thereby exists between the motion of the shaft and the fluid-
dynamic reaction forces which could potentially be destabilizing. One

mechanism for such a coupling was sugaested by Alford [38]. This applies
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to axial flow machines where a radial displacement of the wheel center in a
stage generates a transverse force proportional to the displacement.

Here, the coefficient of proportionality becomes:

n
@) o
K= [+] o
h, 2rH ’ (28)
d(z)
where K - the stage efficiency H - the vane height
T - the stage torque h - the tip clearance
r the pitch radius

and the subscript o refers to the concentric condition.

Assuming the central rotor mass to be a turbine stage, the equations of
motion are:

mX 4bx+ny = -k(x-x;) = -Kx;~BX, (29)

my +by-xX = -k(y—yl) = -Kyl—BS'l. (30)
Neglecting second order terms in K, b and B, the characteristic equation

becomes:
2 k |2 kKK .
ms” + [b+(m B]5+m_+_xx=0 (31)

on substituting an exponential solution for the amplitudes x, vy.
Letting s = iv at the threshold of instability, the whirl frequency is

found to be equal to w while the stability condition becomes:
K .2 )
whb + (m) wnB > |xi. (32)

At the onset of instability, the whirl motion is a forward precession when «

is positive,and a backward precession when « is negative.
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Rotor Asymmetry

Practical cases of rotor parametric excitation arise from dissimilar lateral
stiffness properties of the shaft. Writing the principal lateral stiffnesses of
the shaft as K + AK and K - AK respectively gives the system equations of

motion as:

m(;-ﬂzx-Zﬂif) +b (x-ay) = - (k-8k) (x-x;)

-le—B(kl-Oyl) (33)

m(7-02y+20%) b (7+0x) = - (k +2k) (y-y,)

-Ky -B(y;+0x). (34)

Introducing the parameters:

K 8k

TR W (35)

st (kB (36)
2m Kd) 2m

An exponential form eSt is again assumed for the amplitudes.
As AK /K is normally small and assuming that 3 is also small and of the
same order, the above equations can be solved, retaining only first order

terms in o and 8. The characteristic determinant then has roots as follows:

2,2 2 2 4
(S+3)2 _ _(nzwhz_az)i \/}0 (wn-B ) +a . (37)

At the threshold of instability, the real part of s is zero. Hence, the
imaqginary part is also zero according to equation 8 because the right-hand

side is real for the assumptions used. This expression can then be solved

for the threshold speed, which is given by:

2 2 2 4 2.2 2 4
0" = w'-28 1\/43 e BTeaT (38)
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The rotor is unstable between the two speeds determined from equation 9.

The instability reqgion disappears when:

2

8> Jo2 1o\ f1-aB = huZe? (39)
or )

Bzzcu.o , (40)
or

S A R - S VI (41)

Thus the rotor can be stabilized with the required amount of damping either
at the rotor mass or at the supports. The instability threshold frequency is
equal to the first critical speed of the rotor, and the shaft whirls in the
same direction as the rotation.

Sample calculation:

Let 2m = 600 kg
k. Lux10°N m
K - 0.9x 108N m

8
0.9 x 0.7 x 10 .
“m 0.9 - 0.7) x 300 362.3 rad./sec/ = 3460 rpm (42)

In the first case, the shaft has internal dampina equivalent to a

lonarithmic decrement, §, of 3.16 percent for the free vibrations of the

simply supported rotor. Therefore:

k = -
~uJ—o--1932N sec/m . (43)

b
Cc = —
w

The required external damping is computed from equation 2 as:

b>Gll.4~(§-—1) N-sec/m (44)
n

B >3194- (- 1) N-sec/m . (45)
“n
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If, instead, the internal damping is hysteretic, the angle y by which the
strain lags the stress becomes

y = — =0.01 radians = 0.57 deg. (46)

alo

The stabilizing external damping is obtained by equation 3 as:
b 611.4N- sec'm (ll7)

B > 3194 N- sec/m. (48)

Next, consider the rotor to be supported in hydrodynamic journal bearings

with the following characteristics:

D 0.125m 1.5 x 10 ZN.sec.;'mz
C 6.25 x 10 °m W 2942 N
L 0.0625 m N 6000 rpm
therefore,
. W
K = 2 % =0.90-108 N/m, (49)

which yields from equation 7 the external damping required for stabilization

as:
Q 5
b>(2w—-1)-2.8187-10 N-sec/m (50)
n
B> (i - 1)-1.4726-10% N-sec/m . (51)
h

Next, consider the case of a rotor which may experience gas-seal induced whirl.
The rotor carries a single turbine stage with a power of 1000 kw at 3460 rpm,

and the parameters defined previously as:

To = 2760 N.m.
r = 0.15m
H = 0.05m
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which gives for the coupling coefficient:

€ = 10 s e = 1gu . 10°N/m o6
The damping required for stability is:
b > 507.9 N-sec/m
B > 2653 N-sec/m .
Finally, the variation in lateral stiffness is assumed to be * 1 percent, such
that 4K = 0.7 x 10% N/M.
In the absence of damping, the rotor is unstable from 3450 to 3469 rpm.

The instability zone is eliminated by adding external damping according

to equation 9:

2
b>(K—KJ<-) ‘;—k=611.4 N- sec/m
n
K2 sk
B> (—E) -w— = 3194 N-sec/m .
h

Out of five types of instability considered, hydrodynamic bearing
whirl is by far the strongest. Unless amplified or specifically aggravated
in a given design, the above calculation shows that the four other forms of
instability considered can only occur in very lightly damped systems. Such
light damping may result from system design (rolling element bearings), from
the environment (cryogenic systems), or in fluid-film bearing systems whose
operating conditions approach the hydrodynamic whirl threshold condition. In
this latter circumstance, the resulting whirl may be influenced by parametric

effects, or the other destabilizing influences referred to in this section.
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General Stability Analysis

A general form of the equations for forced damped motion of a multi-mass

linear elastic system (unbalanced rotor in fluid-film bearings) is:

H|).&| + Bl)k; + KX, - 0'5(@ - K.Xa - R (.y;(wt’ﬁt)

—B.)'(l - K|X| -~ M’l-s'(‘x + (6; *6'735(1 - (K'*K"-)Xi —61?‘("7 -KaXs = By Co,(cup?‘a)

[
1
[

L : | ,
- B""f(\"-l - K"'Jxr-l +M t‘kr * (0,._, + B'—)*" + (Kr-l I* Kr)XP - Br).(rﬂ = erru =P (m(wvd,)
1

| . ‘.
- Bull).(u-l‘ KXo + MUX, * (b~-1‘6~)kn + (Kml <k~)x., =P~("”(wt’¢n) ’

'
1
1

where P, cos (ut + ¢ n) represents the rotating unbalance of the system.

These equations may be written in matrix form as:

- - (o —_ — N
M, 0 -----------0 %, B -B,---------0 X,
O Mqg-------"7° 0 )Eq -B1 BaBy -B87 --.- O ).(7.
l| : My--- - -0 5&\ + ‘, T R ks
' ] N N [ . \\ '
| : : N o l- : N :
] { ' ‘\ “ ] . ~ . .
0] O O ----= M‘N LXN LO Ow-, B--I'B': XN
(K, -K, ------ o X, /p'€¢:\
K KKy ----- - 0 Ka Pa €_¢‘ .
+ ' hs "R { y twt
' T Xa| €1he ”f
1 . . '
0 Kna Kuat Ky >(N LPu €¢S~
iwt
or Mk + Bx + Kx= P cos ut = Re{Pe'“"}
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Considering now the homoceneous portion of this equation, and

introducing the trial solutions:

- pt
X1 = Xx,e
- pt
X2 = x2e
xn - xnept
gives:
(M.que,PQK.) ‘K&P"K-)""""""""' O 1 Xl
(B8P ~K)  (MPU(B+BIP(k4K1)) -BiPaky -0 X4
o :' ! e O
f ! . . >.<~
O------ _(BN..P‘ Kne) (M P+ (B~ BYPr(xM k.7)

+ [D] {X} = {0}
where [D] is the stability determinant. This equals zero for non-trivial solutions.
Expandina this determinant into the characteristic equation gives an
expression of the form:

P A O

N
> N

IN 1 2N 2 2r 1 v A p?

AP A PT ALP . © AP ! N 2P AN

which can be written:

2N

2N-r _
ZbArP "0
r=

The relations between the Ar coefficients in this polynomial and their
influence on the stability of the system have been studied by Routh (1877)
and Hurwitz (1895). The stability or instability of the dynamical system

depends on the nature of the roots of the polynomial. These roots are the
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roots of the algebraic equation D(p) = 0. In general, the 2N roots will be
complex numbers. Since the coefficients Ar are real numbers, the roots
of D(p) = 0 occur in complex conjugate pairs of the form:

Prz=efe v LVr ; Pradi-lVy . ror Fat2,.o,2n

’

If the real parts o, of all the roots are negative numbers, the solution to
this equation will contain decrement factors of the form ewt, a. = -ve. If
this occurs when the system is disturbed from its equilibrium position
(x =0), it will return to this (stable) position. Alternatively, if one or
more of the o, is positive, any displacement of the system will cause the
whirl amplitude to increase indefinitely with time (unstable system).

It is thus clear that for a linear system to be stable, all the roots
must have negative real parts. If the system also has on or more
of the o equal to zero while the other o, values are negative, then
any disturbance will eventually execute sustained oscillations of
constant, finite amplitude. Routh has shown that the stability or instabil-
ity of a system may be determined from a study of the Ar coefficients.
Routh's criterion provides a means for determining whether or not an

equation has real positive roots without solving it. For example, with an

eighth-order system, the procedure is to set up the following array:

T OMmMmo N>
NN NI
NP
O F o



128 N.F. Rieger

where c, = A AL - AGA P Cy = AGA - AgA,

Ay Ay

P = AR T A Cy = Ag
Ay

D, = ALC, - ALG D, = A,C,- AC,
< <

D, = AC- AG
<

E, = C,0,- D,C E, = D,
<

E, = C3D0y- €Dy
0,

2 = D,E - DyE, F, = D3Ey- DEy
& &

¢, = B Fy - EGF, G, = B
A

Hy = F6- K G
c

The necessary and sufficient condition of stability is that all of the

coefficients of the first column of the array must be positive, i.e.:

Ay Ay € Dy By Gy >0

1 1

The following calculation for the steam-excited whirling of a turbine rotor

illustrates this procedure:
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Consider the steam turbine rotor in fluid-film bearings shown in

figures 9 and 10. The rotor is acted on by a steam force G in the direction

DEFLECTION DUE TO

SHAFT FLEX!IBILITY CONCENTRATED MASS
OF JOURNAL CENTER

| JOURNAL
-t CENTER
- -
DEFLECTION BEARING
DUE TO BEARNG ¥ CENTERLINE
FLEXIBILITY __\_\

Figure 9 Model of Turbine Rotor System
with Steam-Excited Whirl.

Y &
Steam
Whirl Fglrl=6.r
Force L G
|
I
I
|
- |
Y |
]
1
-—— - —— |
Yo | {
i e | |
(¥ 1 1 -
To Xo | X
|

Figure 10 Coordinate System and Steam Forces
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of rotation.

the rotor c.g. are:

MX K_(X Xo)
S

Grosin

MY KS(Y Yo) + Gr cos

A force balance at either bearing gives:

i KS(X Xo)

b KS(Y Yo)

introducing solutions of the form:

st

K Xo+K Yo-B
yx Yy

K _Xo+K Yo+.B_ %o+B_ Yo
XX Xy X X xy

Y

st

Loe

st

yoe

Xo+8 Yo
x Yy

In the absence of rotor unbalance, the equations of motion of

leads to the following determinant of coefficients for system stability:

K G K
s s
G K MSZ 0
s
P K 0 Kux ' 1K
0 -1 K K + B
s yx yx

K
S
' B
xy Xy
v 3K
yy s

Expanding this expression gives the sixth-order stability polynomial:

8056 + a]ss + 82

y
s

y

3 2
+a,s ta,s ta,s+a
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where the constants a,, i=1,...,6 are given by:

3, Hz(éxxsyy—exyayx)
a, "Gz(gxx;(yy + *Exx* *Eyy* éyyixx—ﬁxyiyx--éyxixy
a -:qu(gxxkyy * izxx+ *;yy—nyRyx* i)
+ 2ﬁ(§xx§yy—§xy§yx)
a3 = ZEHExxEy)ﬁ -B’yyixx* *Exx+ *Eyy—
Exyiyx- nyﬁxy) -;E(Exxféyy)
a, = Zxd(fxxiyf- iixx’ iRyy_nyRyx)' 3) +
(G2 1)(Taxx§w-5xy5yx)— MK+ Eyy* )
a5 (—62 + ”(—éxxk_yy+ Eyyixxl' *—B—xx+ §§yy-- EXyny»

Bnyxy) - HBxx'r Byy) + iG(Bxy- B )
- (¢l * K ™ X -x x '

a6 = (C® + l)(KxxKyy+ *Kxx‘ iKyy nyny+ t)
. i(Kxx+ Kyy+ 1) + iC(ny— ny) + % .

The bar over the variables indicates that these quantities have been

normalized by the shaft stiffness, i.e.:

— — K — K
K X
Kxx__K_x"_ . ny__ x , Y"ziL_' yy-’RrxL
s H s s
T B = B B T B
B XX 8 X B . yx - XYY

Routh's criterion can now be used to investigate the stability of the turbine
rotor system. The H.P. steam turbine rotor in figure 9 has the following

properties :
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Rotor weight

First bending critical
speed

Bearing diameter
Bearing length
Bearing load

Radial clearance

Oil viscosity
Average temperature
Average speed

Steam force coefficient

W = 48,046 Ib
r f

.= 2349 rpm
= 12.0 in

= 8.0 in

= 18058 Ib,
= 0.008 in
~2.5x 1078
120° F
3600 rpm
8.16 X 10" Ib/in

o

b, sec/in2

O Z A O =T r oz

The Sommerfeld number is given by:

2
CMANLD R\ (25x10°) (60)(Bx12) ( 6 \>_ 0.
o: Ao (£ () O

\V.V] C

18058

The tilting pad bearing dynamic coefficients are obtained from Lund [39]:

CKxx

CKxy =CKyx = 0
CwBxx 4.3
CwByy = 1.3
CwBxy = CwByx = 0

The procedure now is to seek by trial and error that value of G which

will cause the rotor to become unstable at 3600 rpm operating speed. For

example, substituting values of G to form the coefficients of the stability

polynomial for G (assumed) = 1. 106 Ib/in gives:
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G= 1000000
A0= 9.66864E-16
Al= 1.16086E-12
A2= 4.58307E-10
A3= 1.03662E-07
Al= 2.44960E-05
A5= 2.09726E-03
A6= .28669

Bi1= 3.71968E-10
Ci= 3.26653E-08
D1= 9.05557E-06
El1= 1.68392E-04
Fi= .28669

The stability criterion is that the terms A0, A1, B1, C1, D1, E1, F1 in the
left column of the array must be of the same algebraic sign for stability.

Between G = 1.5 x 106 and G = 1.75 x 10? we observe:

G =1.50 x 10° Ib/in G =1.75 x 10% Ib/in
G- 1500000 G= 1750000
A0= 9.66864E-16 A0= 9.66864E-16
Al= 1.16086E-12 Al= 1.16086E-12
A2= 4.58307E-10 A2= 4,58307E-10
A3= 1.03662E-07 A3= 1.03662E-07
Aly= 2.45742E-05 Aly= 2.46250E-05
A5= 2.19112E-03 AS5= 2.25212E-03
Ab= . 324284 A6= . 332219
B1= 3.71968E-10 B1= 3.71968E -10
Ci= 3.26653E=08 Ci= 3.26653E-08
Di= 8.96745E-06 Di1= 8.91017E-06
Eil= 6.54560E-05 El= -2.62655E-06
Fl= . 314284 Fi= .332219 ,

i.e., the sign of E1 changes between these values. A cross plot of E1 vs C
establishes the critical value of the steam coefficient G as 1.72 x 106 Ib/in,
The stated value of the coefficient for this machine is G = 8.16 x 10“ Ib/in.

Thus the machine has ample margin against steam whirl for these conditions.
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Computer Calculation of Instability

Several computer programs have been written for the determination of
the stability threshold. In these programs, the following techniques have
been used to find the instability threshold speed of rotors operating in
linear bearings.

a. Modal growth factor analysis, based on sign of real part of
complex eigenvalue. Sign change, negative to positive,on any mode signals
the onset of instability

b. Orbit plots to determine conditions at which the rotor whirl will
begin to grow without bound :

c. Routh-Hurwitz criterion applied to the coefficients of the
characteristic polynomial for the system.

Table 2 gives details of some of these programs.

The programs MT| and WPAFB use the complex real part technique
and observe sign changes in the modal growth factors. The NASA oprogram
and LINK |l use the Routh-Hurwitz criterion. An analgous procedure for
obtaining whirl orbits is also described in the NASA program report.

The GIBERSON proaram is used to examine the stability of rotors
in nonlinear bearings. This program provides a stability analysis which
may include an extremely broad range of system parameters.

All the above calculations consider flexible rotors which operate in
damped, flexible bearings. The NASA rotor is a single disk rotor, whereas
the ROTDYN rotor may have up to 100 masses, and the CADENSE 25 rotor may

have up to 60 mass stations.
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Vendor

Address

Language

Storage, words

Author

Publication

Comment

CENERAL

Synchronous
Response Only?

Liquid Mass
Rotor?
Circular Orbit?

Orbital Response
Calculation?

BEARINCS
Maximum No.
Type
Linear/non-linesr
Eight-Coeff.
Representation
Source of Bearing
Coeff. Data
ROTOR

Max. No. Rotor
Rotor Stations

Rotor Formulation

Shear Effects
Conc. Disks
How Input?

Shaft Taper
Incluced

Table 2

ROTDYN CADENSE 21,27 MTI-WPAFB CIBERSON LINK 111
Franklin Inst. MTI-CAD 21,27 MTI-WPAFB Turboresearch Com/Code Corp.
Research Labs.

Ben|. Franklin 968 Albany 968 Albany 1340 Phoenix 2950 Hunt Ave. .
Pkwy., Phlla., PA Shaker Rd. Shaker Rd. Ave., West Alexandria, VA

Latham, NY Lathan, NY Chester, PA
Fortran |V Fortran IV Fortran IV Fortran Fortran IV
65,000 (package) 63,000 2782 Fortran 20K Fortran

Statements Statements
N. Redd| 4. Lung }. Lund M. Ciberson P. Y. Chang
Machine Design ASME 1967 WPAFB 65-TR-4$
1872
One Option of Specific Specific Advanced One Option of
Cen. Rotordynamics Program or Part Programs Comprehensive Ceneral Package
Program of Package Program
Package

No Yes (non-sync.

option] Yes No Option
Yes No, distributed Yes Yes Yes and

distributed

No, computed No, elliptical No, elliptical No, computed No
Yes No, optional No, axes Yes No

elliptical

display.
15 120 25 10 20
Optional Optlonal Optional Optionat Optional
Linear Linear Linear Non-linear Linear
Matrix of coeffs. Yes, options for Yes, 8 it Ne Yes

related to ail bearing
degrees of freedom

Other program or
package

100
300 D.O.F.

Lumped mass
finite element
Included

Yes

Mass, inertia

Yes

other bearing
degrees of freedom

Other program or
package

60

Dist. mass
elasticity
Yes

Yes

Mass, inertia

No

coeffs. also

Other than progiam

Lumped mass

No
Yes

Mass, inertia

No

of Instability Threshold

Routine In
program

199

Discrete mass

Mass, Inertia

Computer Programs for the Prediction

Other program

Untimited

Lumped and

dist. mass
elasticity
Yes

Yes

Mass, nertia

Yes
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ROTOYN CADENSE 21,27 MT1-WPAFB CIBERSON LINK {1t
Cyroscopic Effects:
Shaft No Yes, discrete “Yes, discrete Yes, discrete Yes
Disks Yes Yes Yes Yes Yes
Transiatory inertis
Shaft No Yes, discrete Yes, discrete Yes, discrete Yes
Oisks Yes Yes Yes Yes Yes
Axial Thrust No No No Yes
Internal Damping No No No Yes No
PEDESTAL
Stiffness Yes Yeos Yes Yes Yes
Oamping Yes Yes Yes Yes Yes
Mass Yes Yes Yes Yes Yes
Discrete/
distributed Discrete Both Discrete Oiscrete Discrete
Input Data Source Other than program Other than Other than program Other than Other than
program program program
FOUNDATION CAD N\, 27
Special
Stiffness - Yes Options :
Misalignment,
Damping - Yes Settiement,
Foundation Foundation etc. Foundation
Mass Corresponds to - Yes Corresponds to Corresponds to
Pedestal Pedestal Pedestal
Discrete/Dist
Input Data Source Other than
program
ENVIRONMENT
Cas Forces:
Static Yes No No Yes No
Dynamic Yes Yes, coeffls. Yes, coeffs. Yes Yes, coeffs.
GCravity Yes No No Yes No
Fleld Force Yes, linoar No No Yes No
Eccentric Cear Load  Yes No No Yes No
Arbitrary Rotating As function Speclal option No Yes, linear or No
Load /Moment of time non-linear
OUTPUT
Printout
-Orbit Details Yes Yes Yes Yes Yes
-Response Amp. Yes Yes Yes Yes Yes
-Transmitted
force Yes Yes Yes Yes Yes
-Stress Yes Option No No No
GCraphics Capability Yes Yes No Yes No
-with Prog. Option Option No Yes No
-Selected Orbit Yes No No Yes No
-Response Amp.
vs. Speed No Yes No No No
-Transmitted
Force No Yes No No No
Table 2 Computer Programs for the Prediction

of Instability Threshold
(continued)
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Conclusions

Several different types of rotor instability in bearings have been
identified. The experimental data on which these observations are based
has been described. Several rotor system models which predict the ob-
served behavior have been demonstrated. A number of computer proarams
for stability threshold prediction of general multi-mass rotor systems have
been detailed ,and the general literature of this subject has been specified.

It should be noted that wmuch of this chapter pertains to linear
systems, i.e. for systems involving equations with constant coefficients.
Good progress can be made using linear stability models, but the nredic:
tion of instability of large orbit bounded (or unbounded) whirl orbits is

a non-linear problem which must be solved by iterative or analog methods.
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CHAPTER 2.6

SUPRESSION OF ROTOR INSTABILITY

N.F. Rieger

Procedure for Suppressing Unstable \/hirling of Rotors

The following principles are effective for increasing the stable

operating speed range of a rotor:

a. raise the lowest critical speed of the system

b. increase the external system damping
The first requirement can be achieved by increasing the bearina radial
stiffness or the bending stiffness of the rotor, or both. The second require-
ment can be met by using a bearina or support type which inherently
contains more non-rotating velocity damping. It should be noted that the
increase of any damping which rotates with the shaft itself has a stabilizing
effect below the bending critical speed, and a destabilizing effect above the

bending critical speed.

Stabilization of Rotors in Fluid-Film Bearings

[iore-Stable Bearing Types

Several investigations have been carried out to assess the relative
stability of different bearing types. Pinkus [1] compared the bearing types
shown in figure 1. Hydraulically loaded bearings and tilting pad bearings
were found to be the most stable, i.e., to give rise to the highest instability

threshold speed for the rotor system. Plain cylindrical bearings were the
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least stable. The self-energizing bearing shown in figure 2 was designed

to increase bearing loading by transferring pressure from the lower half of
the bearing to the upper half. During testing, the top of the self-energizing
bearing was utilized to apply an additional external load to the journal.

By closing either valve 1 or valve 2, the bearing could be either self-

energized or externally loaded.

(s
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Fiqure 1 Bearings Tested by Pinkus to Compare Stability [1]
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Fiqure 2 Self-Energizing Bearing Pinkus [1])
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Tondl [2] also undertook an experimental investigation to compare
several basic types of bearing geometry for their ability to resist initiation
of unstable self-excited whirling. Tests were made on cylindrical and
elliptical bearings, and also on specific multi-lobe bearing desians, flexible-
element bearings, and on two loose-bushing bearing designs. Of these, one
design had a cylindrical bushing and the other had a flexible-element loose
bushing element.

Tondl!'s tests showed that self-excited whirling was always very inten-
sive for plain cylindrical bearings. Elliptical bearings exhibited better
resistance to initiation of self-excited whirling, i.e., the instability threshold
speed was higher than for plain bearings. Tond! found that the multi-lobe

bearings shown in figure 3 were also relatively stable. In such bearings

Figure 3 Multi-Lobe Bearings Tested by Tond! [2]

direct contact between the journal and the bushing surface appears to be
possible only in small areas. Following the machining of the original bush-
ing, wear was observed in both bushings after a short period of operation.
The three types of flexible element bearings shown in figure 4, were
tested by Tondl. These bearings had both three and four identically
oriented elements. One additional bearing had three differently oriented

elements. With such flexible element bearings, complete suppression of
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self-excited vibrations was successfully accomplished in certain cases for

speeds up to eight times the lowest bending critical speed of the rotor system.

Figure 4 Proportions of Flexible-Element Bearing, Tond! [2]

Tests showed that self-excited whirling of relatively low intensity appeared
within a limited rangé of rotor speeds, the limits of which depended slightly
upon the temperature of the outllet oil. Outside this unstable speed range,
self-excited whirling could not be induced even by striking the rotor.
Tondl [2] conducted similar tests on bearings with loose bushings.
Two differently-designed versions of these bearings were tested. The first
had a cylindrical bushing, the second a bushing with a flexible element.
Tests were conducted to determine whether this design could be further
stabilized by loosening the working bushing and supporting it in a cushion
of pressure oil. The objective was both to increase the damping of self-
excited vibration and to improve cooling of the working bushing with stream-

ing oil. The tests showed that both goals were attained, particularly in the
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case of the loose flexible-element bushina where self-excited vibrations
occurred only in rare cases, and only when their initiation speed was very
high. A picture of these bearings is shown in figure 5. The superior
stability of the floating rina (loose bush) bearing is attributed to the large

damping effect of the outside cylindrical oil film.

Figure 5 Loose-Bushing Bearing; Loose Bushinqg is of
the Flexible-Element Type, Tondl [2]

Two other bearing types are shown in fiaure 6. These are the three
land bearing and the stabilized bearing, respectively. These bearings also

have a practical record for hiah stability threshold: see Smith [3].

THREE LAND BEARING STABILIZED BEARING

Figure 6 Two Types of Bearings Proposed by Smith [3]

Bearing Groove Modifications
Since the first investigations on instability, it has been found that

various modifications to the bearing surfaces favor stable operations at
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speeds above twice the first critical speed of a rotor system. Newkirk [4]
presented the design of a "more stable" grooved bearing. This design is

shown in figure 7. The developed bearing surfaces show the system of

| — |

€
3 Depth 0.030in. (&

D s Fees ) t0 Q0707a. |8
—_— —_— -60™1
Rotation Rotation

T — T . T T T
o 90 180 210 360 0° 20° 180° 210° 360°

Figure 7 Groove Modifications by Newkirk [4]

grooves which proved most satisfactory during testing. Oil entering at the
horizontal joint on the downgoing side of the bearing surface is pumped by
action of the shaft through the central peripheral groove to the dam at the
end of the groove, whereva considerable hydrodynamic pressure builds up,
espegially if the peripheral speed of the journal is high. The upper half of
the bearinqg distributes this pressure, fiqure 7. If the load on the bearing
is sufficient to insure dowr;ward pressure under all circumstances, the
bands in the upper half may be omitted (see figure 7).

Fiaure 8 from reference [4] shows the development of hydrodynamic
pressure along the peripheral groove as a function of the anqular distance
from the point of entrance of oil. Figure 9 shows the variation in pressure
developed at the dam as a function of journal speed. The oil is supplied to
the bearing with a pressure of five or ten pounds per square inch to cause
it to enter in sufficient quantity. There is no passage provided for oil

exit, consequently end leakage carries away all the oil that passes through
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the bearing. It is essential that the bearing run full of oil. The amount of
oil which must be supplied therefore depends on end leakage, which in turn
depends on bearing diameter, clearance, pressure developed by the pumping
action of the journal, and viscosity of oil. Figure 10 from reference [4]
shows the amount of oil supplied, together with the pressure developed at
the dam in tests of a 2.0 in. journal at 30,000 rpm with a 5.5 mil diametral
clearance. The grooves must be able to carry enouqgh oil to supply the end
leakage, and to cause the bearings to run full.

Sherwood [5] examined the cylindrical bearing design shown in
fioure 11, and proposed some bearing modifications to increase the stability
of the rotor-bearina system. Increasina the bearing oil film pressure is
one way to raise the oil film whirl threshold speed. One method is to load
the top of the bearing, to increase downward pressure on the load-bearing
surface journal, as mentioned previously. The other method involves
reducing the load-carrying area of the bearing, i.e., by shortening the
bearing length, by decreasing the diameter, or by increasing the size
of the damper at the bearing split. Sherwood showed that reducing the
length of a bearing has more effect on increasing the bearing oil film pres-
sure than might initially be expected; see reference [5]. In bearings where
the L/D ratio is about 1.0, further reduction of length appreciably increases
bearing oil film pressure because the effective load carrying area is strongly
influenced by end leakage. Figure 11 shows a dammed groove bearing which
has also been shown to increase stability. Fiaure 12 from reference [5]
indicates a preference for using larger values of eccentricity ratio to

increase the instability threshold speed. Effects of a change in bearing
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diameter can be explored in several ways.

If other factors are constant,

decreasing diameter increases bearing pressure, which may be effective in

Fiqure 8

Fiqure 9

Figure 1
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conferrina stability. In considering the effect of changes in bearing clear-
ance, the stabilizing effect of an increase in C/D has already been noted.

Therefore, it appears that a decrease in diameter would have a stabilizing

Orlging!
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Decreosing Beoring Length

ntreosed
&\/lhol 4‘

fel b
Increasing Chomfer

(D) _Bearing cap for increasing bear-
iag pressure by means of special grooving

Figure 11 Methods of Eliminating Oil Whirl by
Reducing Load Carrying Area, Sherwood (5]
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Figure 12 Variations of Whirl Frequency Ratio with
Changes in Eccentricity Ratio, Sherwood [5]
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effect on the rotor. Most of these conclusions were also confirmed in sub-

sequent tests conducted by Hori [6].

Foundation Modifications

Later experiments and theoretical investigations have determined that
the significant factor in increasing the stability threshold is the addition of
external damping. Lund [7] has stated that improvement in stability for a
qiven design can only be achieved by some suitable revision of the support
damping. This conclusion led to several designs using flexible mountings

and film squeeze dampers.

Seal Modifications

An annular gas seal around a shaft can have a destabilizing effect
similar to the addition of a plain cylindrical journal bearing at that location.
In such cases it may be necessary to modify the seal surface by grooving to
achieve stable rotor operation. A common procedure consists in changing an

existing plain seal design to a labyrinth seal.

Hysteresis Whirl Stabilization

Fluid-Film Damping

From all the experiments that have been conducted on rotor hysteresis
instability it is clear that an increase in foundation flexibility and foundation
damping can significantly increase the stability threshold speeds of lightly
damped hysteretic roters. This fact was identified by Newkirk [8] as early
as 1925, and has been amply verified by subsequent experience. The
required external flexibility and damping in such cases can be efficiently

provided by the use of a squeeze film damper,
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Raising the System Critical Speed

As all rotor instabilities are associated with the lowest critical speed
of the rotor system, raising the first critical speed tends to increase the
instability threshold speed. This can be done by "stiffening” the system,
and also by decreasing the rotor mass. Increasing the bearing radial stiff-
ness and increasing the transverse stiffness of the rotor are also effective
in raising the system critical speed. Imposing a small amount of anqular

misalignment in the bearings exerts a similar stiffening effect on the system.

Rotor Structural Changes

Certain structural changes to the rotor have been shown to promote
increased stability in the case of hysteretic problems. It has been shown by
Newkirk [8], Kimball [9], Robertson [10] and others, that shrink fits may
cause whirl instability. However, these investigations raised the threshold
speed by increasing the shrink pressure and decreasing the shrink length

(see figure 13).

/

S A= A

Figure 13 Types of Hubs and Bosses Tested by
Robertson [10]

For long shrink fits such as compressor wheels and impeller spacers,

it is important that these components should be undercut along the central
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region of the inner bore so that the contact area is restricted to the ends

of the shrink fit.

Robertson [10] also suqggested several designs of hubs and bores
which have been effective in reducing internal friction effects. These are
shown in figure 13. The lenqgth of the hub on the shaft should be no longer
than necessary for secure fixing. If, for some reason, a greater length is
necessary, the hub should then be undercut as shown at position A in
figure 13. The construction shown at position C in figure 13, with bearing
strips at the ends only, should be avoided in rotors which are run above
their bending critical speed. With this pattern the central portion of the
shaft may bend more than the hub, thereby increasing the amount of
rubbing, or of "working" at the ends. If a long hub base is necessary on
the shaft, and if it is not convenient to fit the hub along its whole length,
it should have a bearing strip at the middle as well as at the ends, in order
to stiffen the shaft. This is shown at position D. The hub should be
carried on a base which is solid with the shaft, and has ample fillet radii in
the corners. The base stiffens the shaft locally and should have as large a
diameter as possible (see E in figure 13). Where possible the base should be
undercut, as at F, until the web left at the center is just thick enough to
meet the requirements of strength and stiffness. In one of his models,
Kimball [ 9] successfully employed this arrangement to eliminate hysteretic

effects from the fit of a flywheel on a shaft.

Squeeze Film Dampers

Many investigators have concluded that stability of rotors operating

above their critical speed can only be ensured by an adequate selection of
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support stiffness and support damping. Lund [11] and others have investi-
qgated certain designs of flexible bearing mountings with squeeze film dampers.
Figure 14 shows an example of a flexibly-mounted squeeze film damper. This

arrangement is called a damped flexible support. Slots have been cut into

Figure 14 Cross Section of Bearing Arrangement with
Damped Flexible Support

Figure 15 View of Flexible Support Structure for
Journal Bearing with Squeeze Film Damper

the bearing shell, leaving 16 axial spokes to support the bearing sleeve,

figure 15. The composite radial stiffness of the spoke in the design tested
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was 4, 107n/m. The clearance space between the bearing sleeve and the
force gage ring shown is used as a squeeze film damper. This damper is
fed with oil under pressure from eight equally spaced holes in the midplane,
and is sealed off at the ends by piston ring type seals. The damper oil is
the same as that used to lubricate the journal bearing. The damping
coefficient was calculated to be 5.10“ n.s/m. The damper bearing is
centered in the force qace ring by a vair of differential adjustment screws
to compensate for the static deflection caused by the load on the bearing.
Cunningham [12] has used the same kind of device with the same

principle, but applied to a ball bearing, as shown in figures 16 and 17.

DAMPING

QIL IN
BALL BEARING L]
HOUSING AND

DAMPER JOURNAL=,

20 mm BORE b
BALL BEARING ——.
L 3 £
P S e st N
A L e
Cr %:%_{—soumc FILW.
:
DAMPER / - CIRCUMFERENTIAL OIL
BEARING— SUPPLY GROOVE

Figure 16 Schematic of Oil Squeeze Film Damper
used in Experiments for the Steady-State
Response of a Three Disk Rotor

This design has been used to minimize the steady-state unbalance response
of a three-disk flexible rotor. During this investination, the oil squeeze-film

dampers of this design have been proven successful in reducing the ampli-

tudes of motion for nonsynchronous whirl.
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DeChoudhury and Sunter [13] reported on another squeeze film damper
bearina design. When operated on a rigid support system, the rotor was
unstable at an operating speed of 11,300 rpm. The whirling component had
an anqgular velocity of 4300 rpm. Placing the rotor on a squeeze film damper

support centered by rubber "O" rings effectively stabilized the rotor with a

8all Bearing Housing
and Damper Journal

20 mm Bore Deep-Croove
Radial Ball Bearing

Figure 17 Components of a Flexible Damped Support

small whirlinqg component. Fiqures 18 and 19 show rotor orbits for both
cases. After a comprehensive investigation, these investigators stated that
for a system to be stable there is an optimum support damping for any given
support stiffness.

Some other experiments have been conducted by Darlow and
Smalley [16] on the use of stabilizing dampers on super-critical power trans-
mission shafts (figure 20). The hollow test shaft was 3.66 m long and
7.62 cm in diameter with a 3.175 mm wall thickness and was supported at
both ends by disk-type flexible couplings. To minimize support damping
effects, the couplings were attached to hand-mounted spindles. When first
tested without such dampers, at speeds above the first critical, the shaft

became unstable at 1700 rpm with a whir! frequency equal to the first
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critical speed. These results are shown in figure 21.
Based on rotor dynamic analysis, a stiffness of 7. 103 n/m was adopted,

using an "O" ring as the spring member. The squeeze-film damper was

Rotor Orbits of Turbo Compressor Before and After
Stabilization N=11,300 RPM, First Critical N1 =4,300 RPM

<

Figure 18 Figure 19
Unstable Rotor Orbit, Discharge Stabilized Rotor Orbit, P,=650 PSIG,
Pressure P_.=175 PSIG, Large N Small N1 Component, De(,q\oudhury [13]

Component,” DeChoudhury [13] !
designed to be a sealed dan;per with no circulation of the oil. In this way,
the damper would require no support hardware (such as oil supply pumps)
which would prohibit its use in helicopter or other space- and weight-limited
applications. A picture of the test rig for this modern damper is shown in
figure 20. The damper is evacuated, filled and sealed, and pressurized by
the use of a bladder. The damper is predicted to generate less heat than
the bearings, so the dissipation of heat is not expected to be a serious

problem. The "O" rinqg retainers are radially adjustable, so that the damper
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may be centered manually, in order to compensate for static deflection of
the "O" rings. The damper was designed to achieve a level of damping in
the range of 8750 n-s/m for silicone oil with a viscosity of about 80 centi-
stokes, using the short bearing theory and assuming no cavitation. The
radial clearance is 0.635 mm and the length and diameter are 7.67 and
10.16 mm respectively. Althouah the damper was designed to allow for two

"O" rings, it was used initially with just one,in order to obtain a low parallel
9 Y 2

Figure 20 Squeeze Film Damper Installed in Super-
critical Power Transmission Shaft Test Rig

support stiffness of 7 x 103 n/m for a continuously supported "O" ring.
Testing of this device showed that instability was successfully eliminated

throughout the range of operating speeds to 7000 rpm.
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The conclusions reached by Darlow and Smalley during this investiga-

tion were that this damper was extremely effective in eliminating an incipient
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Figure 21 Frequency Spectrum Plot of Test Shaft Vibration

with No Damper Running above First Critical Speed

instability in the test shaft. With the damper installed, the test shaft,
which had been marginally balanced through one critical speed without the
damper, was easily balanced through three critical speeds.

JOURNAL BEARINGS
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Figure 22 Effect of Thrust Bearina on Instability

Earlier tests on similar systems consisting of long, thin shafts in

end bearings were conducted by Voorhees and Meechan [23]. These

investicators found it impossible to adequately balance such systems for
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smooth operation. They concluded that it was essential to provide a suit-

able damper in order to run their shafts through several critical speeds.

Other Stabilization Procedures

Misalignment of Bearings

Misalignment of bearings has been demonstrated to be an effective
method for rotor stabilization by Newkirk [14], Pinkus [1], Hori [6], and
Tondl [15]. Misalignment first increases the critical speed by stiffening
the bearing then raises the fluid pressure inside the bearing, giving bet-
ter squeeze-film effects. Misalignment will also cause the bearing to
operate at a greater eccentricity ratio, which is always consistent with
greater stability, and with smaller effective diametral clearance.

Gashed Shaft

Rotors cross-sections with different principal stiffness values are
another cause of rotor instability. An expedient frequently used to
improve the stability of such systems is to "gash" the shaft, i.e., to
machine a series of slots in the cross section. This reduces the higher
principal stiffness and serves to obtain the same shaft stiffness in all
transverse directions. For a shaft carrying a keyway, it is suitable to
have another keyway 90° apart from the first one in order to avoid the
dissimilar shaft stiffness instability

Thrust Bearing

Newkirk [14] recognized that thrust bearings are a very good way
of suppressing the conical mode of instability. This was later verified by
Cundiff [17]. Since a thrust bearing exhibits no radial stiffness or radial
damping properties, the other shaft dynamical properties of critical speed

in the later or radial modes will not be affected. The threshold speed is
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raised by increasing the system damping. The stabilizing effect of a thrust

bearing is shown in figure 22.

Computer Programs for Instability Threshold Prediction

General purpose computer programs for instability threshold predic-
tion have been written by Lund [18], Giberson [10], Gunter [20], Pan [21],
and others. A specific study of the effects of damping, seal effects and
shaft hysteresis on the stability of a sample two-mass rotor in end bearings
has been made by Rieger and Thomas [22].

Consider the two-mass flexible rotor in fluid-film bearings shown in
figure 23. The disks are rigid and have no rotary or polar inertia. The
shaft is massless and may be of any profile provided the transverse stiff-

ness, K, is known or may be found. Both bearing forces are identical and

¢
Disk Ec;entricity ‘ Gas Seal
Rotor Mass l Shaft Flexibiltrty
1 | 1
Fluid-Film I bﬂ Kxx B)(x
Bearing F—BL ___._{ K B
Xy Xy
K)’X Byx
Rigid Foundation K g
~ oo Ky 8y
— |

Figure 23 Two Mass Flexible Rotor in Fluid-Film Bearings

linear with rotor displacement and velocity from the equilibrium position

of the journal in each bearing. The eight-coefficient bearing force
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representation includes both direct and cross coupled effects, as follows:

F
X

1

K _X+K Y+B ).(+B Y
XX Xy XX xy

F =K X+K Y+B X+B Y
y ~ yx yy yx Yy

Gas seals are located at both disks. Forces arising from disk eccentricity

with ‘stator clearance are given by:
F_=iGr i= vy-1
s

where G is the gas seal coefficient and r is the whirl radius. Structural
hysteresis effects occur due to the shrink fit of the disk on the shaft, and
are given by:

Fh = H¢
where H is the hysteresis coefficient and £ is the whirl velocity in rotating
coordinates. The rotor is axisymmetric and system effects are symmetric

about mid-span. The equations of motion for either disk, including the

shaft, seal, and hysteresis effects, are:

MX, + HX | + K(X, - 8X) + (G + wH)Y, = Mad Cos wt
MY |+ HY + K(Y, - BY) - (G + wH)X, = Maw® Sin ut + Mg

A force balance at either bearing gives:

1

K(X,-8X)=K__X+K_Y+B_X+B Y
1 XX xy XX Xy

1

K(Y,-BY) =K X+K Y+B X+B Y
1 yXx YY yx

Yy
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To obtain a solution assume that:

X = Xq eSt
_ st
Y =Yy e
where s=a+iv

Substituting in the above expressions and simplifying gives:

2

2 * 2
(Ms +Hs+K)Axx+(Gs+Hm) Ayx-K B Ms

*
+ +(Gs+
HwtK) Axy (Gs Hw)Ayy

2 2 =0

* *
(Ms+Hs+K)Ayx-(Gs+Hm)Axx Ms +HS+K)Ayy-(GS+Hw)Axy-K 8

*
where = + BK + sB
AXX KXX 8 s XX

Axy = ny + SBxy

Ayx= ny+ SByx

*
+ BK + sB
Ay = Kyy * BK ¥ sBy

To obtain the roots of this determinant a convenient procedure is to
expand and form the corresponding polynomial in S, viz:
4 3 2 _
A1SG + A2SS + A3S + AQS + ASS + AGS + A7 =0
The coefficients Ai of this polynomial are complex algebraic expressions.
A computer program was written to solve the stability polynomial for

the lowest complex eigenvalue. Values of M, K, G, and H were held con-

stant for given cases. The program increments as explained earlier. Thus
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corresponding values of the speed-dependent bearing coefficients are
selected from an input table. Instability occurs when the real part of the

eigenvalue changes sign from neqative to positive.

Sample Calculation

The compressor rotor shown in figure 24 can be used to demonstrate
the use of this procedure. The rotor weighs 1000 Ib (M=1.39 Ib sec2/in per
bearing) and operates in two 4.0 diameter by 2.0 in. lona plain cylindrical
bearings of diametral clearance 0.004 in. Oil of viscosity 22 cP at 110 °F
and 4.84 cP at 200°F is supplied to each bearinq at a rate of 1.25 gal/min

at operating speed under 20 Ib/in2 qgage pressure at 120°F.

Shaft Dia. 7.50 in.
\_‘ lew 2.0 in.

- {— 4.0 Dfa.

1T

6 - 40 1b disks

Structural ll).l LJ

Rysterests b il 4
NI
J

Gas Seals

L

;it__

[ ~50.01n. j

Figure 24 Compressor Rotor in Bearings with Seat and
Structural Hysteresis Effects

Parametric studies of the relative significance of bearing, seal, and
structural hysteresis effects on the compressor rotor system stability were
made. The system threshold speed without seals or hysteresis (i.e., bear-
ina instability) was first determined to be 9200 rpm with the rotor whirling
in its translatory mode. The qas seal coefficient was then introduced and

increased in value. A decrease in threshold speed was observed. Lastly,
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the effect of increasing the structural hysteresis was studied, with gas
seal forces operating. For known threshold values, the value of H was
added and new threshold speeds were found. The results of these studies

are shown in figure 25 in which the system threshold speed NT is plotted
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Fiqure 25 Variation of Compressor Instability

Threshold Speed with Gas Seal Force
and Structural Hysteresis

aqainst qas seal coefficient G, with structural hysteresis coefficient H as
parameter. It is evident that the threshold of instability is depressed with
increase of gas seal coefficient. The effect of hysteresis is mixed: below

the system fundamental critical speed (5850 rpm) it raises the threshold
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speed, and above 5850 rpm it depresses the threshold speed, as anticipated
from previous experience. Structural hysteresis has a minor effect on
system instability threshold compared with gas seal effects where the rotor
system incorporates fluid film bearings.

An analog stability study of this compressor rotor system was also
undertaken. The analog circuit is shown in figure 26. Bearing coefficients

corresponding to each speed were introduced by hand adjustment of circuit

Figure 26 Linear Analog Circuit [22]

resistors. The gas seal coefficient G and the hysteresis coefficient H were

held constant for each condition and the corresponding threshold speed was
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found by observina orbit qrowth or decay at selected speeds.

The influence of gas seals G=1.50 x 105 Ib in and hysteresis H=200 |b in
are shown in figures 27 and 28 below and above the threshold speed. The
analog orbits show that the tendency towards instability is a steadily devel-
opina trend. Below the threshold speed the rotor takes increasingly longer
periods of time to establish a stable orbit. Above the threshold, orbit
growth becomes increasingly more rapid as speed is further increased.

A comparison of threshold speed results obtained by both the digital

and analog methods are given in table 1.
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Comparison of Analog and Digital Threshold Speed Yalues
Analog 1l 0igital

6 H Threshold Speed 6 ] Threshold Speed
1b/4n x 105 1b sec/in rpa, 1b/4n. x 105 1b sec/in rpa.

0 0 9100-9200 0 0 9100-5200

0 100 8700-8800 0 100 8800-8900

0 200 8500-8600 0 200 8500-8600
3.60-3.65 0 . 5000 3.60-3.65 0 5000
2.85-2.90 0 6000 2.85-2.90 0 6000
1.85-1.90 0 7000 1.85-1.90 0 7000
1.20-1.25 0 8000 1.25-1.30 0 8000
J15- .20 0 9000 L15- .20 0 $000
3.70-3.75 100 5000 3.70-3.75 100 5000
2.80-2.85 100 6000 2.85-2.90 100 6000
1.75-1.80 100 7000 1.70-1.75 100 7000
.90- .95 100 8000 .90- .95 100 8000
3.85-3.90 200 5000 3.85-3.90 200 5000
2.75-2.80 200 6000 2.80-2.85 200 6000
1.50-1.55 200 7000 1,501,565 200 7000
,60- .65 200 8000 .60- .65 200 8000

Table 1 Variation of Threshold Speed with Compressor
System Effects

Conclusions

Of the two procedures which are known to be effective in the suppres-
sion of instability, i.e., raising the critical speed and increasing the
negative real part of the whirl exponent, the second procedure is the
easiest to achieve in practice. This procedure can be instituted most
efficiently by simultaneously adding external flexibility and damping in such
a way that the damping properties of the system support are optimized.

The squeeze film damper is an effective solution for many rotor insta-
bility problems. When this device cannot be used, various other solutions
may be possible, such as using a more stable bearing type, by bearing

modifications, such as grooving, slight misalignment, small structural

changes, etc.
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As a general rule in the stability problem, every change which makes
the rotor support system undergo additional forcing motion (bearing mis-
alignment, larqer bearing eccentricity, etc.) is a step towards stabilizing
the rotor by raising the instability threshold speed.

Table 2 provides a summary listing of various kinds of rotor insta-

bility and methods which have been used effectively to overcome them,

INSTABILITY

DETAILS

SUPPRESSION PROCEDURES

Fluld Film

Hysteretic instability

Bearing whirl or whip

Cas seal whirl and

steam whirl

instability caused by -

shrink fit hysteresis

Instability caused by
material hysteresis

Ada support damping and flexibliity
Change bearing type. Stable bearings are

Tiling pad (most stable)
Floating ring

Pressure dam bearing
Axisl groove

Three lobe

Elliptical (less stable)

Pressurize the bearing upper half
Increase the journal operating eccentricity
Increase the critical bending speed of the rotor

Decrease the bearing length

Use labyrinth-type seal
increase bearing operating eccentricity

improve seal operating concentricily

Use small length,tight shrink fits

Use a rigid rotor construction

Increase external damping and support flexibility
Use squeeze film damper support

Use previous design that has been proven efficient
Undercut long disk contact surfaces

Add support damping and flexibility
Raise bending critical speed
Use squeeze-film support

Parametric Dissimilar shaft Increase bearing damping
Instabllity stiffness Relieve greater stiffness with circumferntial gashes
Stiffen shaft. Raise bending critical speed.
Shaft carrying an increase bearing damping
unsymmetrical Re—establish circumferential symmetry (e.g. two
rotor rotors 30° apart . 3-bladed propeller, etc.)
Table 2 Causes of Instability and Methods of Suppression
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CHAPTER 2.7

HYSTERETIC INSTABILITY

N.F. Rieger

Nature of Hysteretic Whirling

Hysteretic whirling is a self-excited instability usually associated
with built-up rotors in lightly damped bearings, in which the rotor whirl
amplitude increases with time. It is independent of the state of balance of
the rotor and it commences at speeds above a certain threshold speed. It
most frequently arises from rubbing between assemblies of shrink- or press-
fitted rotor components, e.qg., compressor wheels on a central shaft. It
can also arise from internal hysteresis of the shaft material. As many
modern rotors are complex assemblies of components, the conditions under
which assembly or material hysteresis may give rise to unstable whirling

are of great interest (see fiqure 1).

Experimental Observations of Hysteretic Whirling

The first recorded observation of hysteretic instability was made by
Newkirk [ 1]1 in 1924 while investigating the cause of a series of bearing

failures of blast furnace compressors. Newkirk constructed an experimental

1. Numbers in brackets designate references at the end of this section.
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rotor test rig to simulate a real compressor unit and extensive testinq led

him to the following conclusions:

®* Neither the threshold speed nor the whirl amplitude is affected

by the state of balance of the rotor.

®* The whirling always occurs above the first bending critical speed

of the rotor, and never below this speed.

®* The frequency of whirling is constant, regardless of the rotor
speed, and equal to the first bendinqg critical speed of the

system.
®* Whirling is encountered only with built-up rotors.

®* An increase of the foundation flexibility increases the

threshold speed at which the whirling commences.

* Distortions or misalignment of the bearings increases the

whirl threshold speed.

®* Introduction of damping into the foundation increases the

whirl threshold speed.

®* A small disturbance is sometimes required to initiate the whirl

motion in a well-balanced rotor.

Newkirk found that increased foundation flexibility would improve the
rotor stability, and that no bearing damping was needed to suppress whirl-
ing below the bending critical speed. Further,friction damping in the spring
mounted bearing was capable of suppressing unstable rotor whirl motion

above the bending critical speed.
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Kimball suggested that forces normal to the plane of the deflected
rotor could be produced by the hysteresis of the material undergoing
cycles of stress reversal [3]. He postulated that, above the rotor critical
speed, internal rotor friction would sustain the whirl. Newkirk concluded
that some type of friction forces could be developed by the rubbing of a
disk shrunk onto a shaft.

The presence of material hysteresis in a rotating deflected shaft as
it underqoes alternating stress cycles of compression and tension is shown
in figure 2. This action causes the shaft to deflect sideways. By measure-
ment of the shaft vertical inclination anqgle, Kimball determined that the
ratio of the internal friction forces to the elastic shaft forces for most
ferrous and non-ferrous materials was in the order of 2 x 10_3. The small
order of magnitude of the friction forces observed by Kimball led Newkirk
to conclude that the chief cause of the instability in his model was the

friction created by the shrink fits of the impellers and spaces on the shaft,
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Figure 1 Schematic of an Aircraft Engine Showing

Complex Rotor Assembly
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This conclusion was confirmed by an experiment conducted by
Kimball [4] on a special test rotor with rings on hubs on the shaft. When
all shrink fits were removed from the rotor no whirl instability would develop,
whereas, with the rings on the shaft, it became unstable above the first
bending critical speed. Kimball first demonstrated that with rotors operating

above their bending critical speed,long clamping fits commonly lead to insta-

bility problems.
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Figure 2 Whirl Orbits of a Balanced Horizontal
Rotor Below the Threshold Stability [ 5]

The explanation given by Kimball for this phenomenon can be demon-
strated using the hysteresis loop shown in figure 3. For the same strain
there are two different values of stress, corresponding to the upper
(loading), and to the lower (unloading) branches of the loop. Figure 3(c)
shows the cross section of a rotating shaft. We see that during the motion
of a surface fiber from position A, to position A2 ., the stress varies from

tension to compression. Consequently, the upper branch of the loop must
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Figure 3 Whirling of a Rotating Shaft Caused by
Hysteresis, Kimball [4]
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Figure 4 Model Used by Kimball [4]

Figure 5 Figure 6

Model Used by Robertson [5] Exaggerated Hysteresis Loop [ 5]
for Hysteretic Deflection of a
Rotating Shaft
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be used. In the same way, the lower branch of the loop must be used
during the motion from A, to A;. From this, it follows that the hysteresis
effect may be taken into account by superposing these strains on the
steady bending strains. This causes additional fiber stresses, which are
positive below the horizontal diameter A1A2,and negative above AIAZ'
This system of stresses is the same as would be generated by the bending
of the shaft in the yz plane, in addition to the bending about A3Au due to
rotation. The combined bending stresses thus produce a bending moment
in a plane which is inclined to the xz plane, i.e., with its neutral axis
n,n,. instead of nn in figure 3(c). This additional bending effect is then
equivalent to a force Q as shown in figure 3(c ), the effect of which is to
cause the rotor to whirl, under the forces shown in figure 4.

Robertson [5] later gave an explanation for shaft hysteretic whirling
which differs somewhat from that of Kimball and Newkirk. In figure 5, the
center line of the bearings passes through H, and the center of the shaft
is deflected to O by the weight of the rotor. The neutral axis of the
section is XOX, at right angles to HO; the lower half of the section is
tension and the upper half in compression. The stresses now consist of
those which would occur with perfect elasticity, plus the discrepancy
stresses arising from hysteresis. The former gives an elastic force along
OH, and the latter a hysteretic force along OZ at right angles to OH.
Figure 6, which shows an exaggerated hysteresis loop for a particular
fiber on the shaft, X, Y, X', Y', shows the point in the cycle correspond-
ing to the passage of the fiber across the axes similarly lettered in figure 5.

The discrepancy between the loop and the mean elastic line is a
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tensile stress striving to lengthen the fiber in the part Y X Y'. Thus

the discrepancy stresses are striving to elongate the right hand side of the
shaft and to shorten the left hand side. They try to bend the shaft to the
right, but as the weight prevents further movement in that direction, they
give a hysteretic force acting forwards along OZ, i.e., directly opposite to
the rotation of the shaft. With a deflection Y, the magnitude of the hyster-
etic force per unit mass of rotor may be written:

_ .2
Gh—yY

where Gh is the hysteretic force per unit mass of rotor and v is the hyster-
etic coefficient, which is not necessarily a constant. The resultant of this
force and the direct elastic force must be vertical, as it has to balance the
weight, therefore,

y 4.3 _
0+Y)Y‘9

(w
_ .2 2
Tan 0 = v /wo
where We is the critical speed, g is gravitational acceleration, and 0 is the

inclination of the deflection to the vertical. The horizontal deflection of the

center of the shaft is:
Y sin O = Yg/(mou + Yu) = (Yzlmou) g
Since the bearing forces act through H, whereas the weight acts through O,

there is a torque opposing the rotation of the shaft whose amount is:
1= MgY sin 0 = Mg®yZ/u, "
where T is the torque opposing the rotation of the shaft, due to hysteresis,

and M is the mass of the rotor. The work done against this torque
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is converted into heat by the hysteresis. The amount of hysteresis work
per cycle is:

W= anzMyzlwou
A measurement of the horizontal and vertical components of the deflection,
or of its inclination to the vertical determines yzlw 02.

Even short, highly stressed shrink fits are not entirely devoid of
problems [5]. Provided the rotor is given a sufficiently large initial dis-
turbance or displacement to initiate relative internal slippage in the fit,
even small, tight shrink fits may develop whirl instability.

Robertson, following Kimball [3], made a study of the hysteretic
transient shaft whirling. In the absence of hysteretic effects, the transient
whirl decays under the action of friction. When hysteretic effects exist,
there is an additional force normal to the radius whose amount per unit
mass has already been written as YZY. Adding this to the friction force

—Zounth, we now have:
. 2 . 2 2, 2 .
_,(ZawttY )Y = -][Za/wtty /uot )th, (j = Y -1)

where o is the friction factor, w, is the threshold speed for hysteretic

t
driving of the transient whirl, and the factor j denotes "turn 90 degrees
forward" (positive complex operator). The positive sign with this operator
applies for shaft speeds below Wy which is "practically identical" with the
critical speed W, and the negative sign applies above the critical speed.

If the shaft runs faster than the transient, i.e., where Yzlwf
exceeds 2a/w v the net force drives the transient rather than retarding

it. A net driving force speeds up the transient slightly and thereby

causes the centrifugal force to exceed the elastic force, causing an
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outward acceleration which soon produces an outward velocity whose
Coriolis force, combined with the whirl friction, balances the driving force.
If this continues, the outward velocity may lead to a large shaft whirl
radius. The ultimate result will depend upon the way in which a and Y2
ch\ange with the radius of the transient. When both these terms change at
the same rate as the whirl radius, their difference retains the same sign.
If the friction is the greater, the transient will decay and the rotor motion
will be stable. But if the hysteretic force is the greater, the transient
will grow and the shaft will become unstable. If they are equal at one
radius, they will be equal at any radius and the transient whirl radius
magnitude is then indefinite and intrinsically unstable.

If a is small but increases more rapidly than Yz, the whirl will grow,
up to that radius at which they become equal, and will continue at that
magnitude. But if Y2 grows more rapidly than o, the conditions are
reversed. Below the point at which friction and hysteretic forces are
equal, friction will be the greater and the whirl will decay. But beyond
that point, the forward hysteretic force will exceed the friction and the
excess will increase as the whirl grows. Thus the shaft is stable for small
disturbances,and unstable for large ones.

Robertson [5] reported that he frequently observed the sustained
transient, but was never able to control it with certainty. In reference [5]
he describes a simple method for experimentally producing it. An observa-
tion mark is placed on the rotating disk to follow the whirl orbit. When no
transient exists, the observation mark traces out a circle, whose radius is

the vector sum of its own eccentricity and the whirling radius of the disk.
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In the case of the sustained transient, the circle grows and decays with
the change of these vectors between the transient and the steady radius
of the spot. If the mark is then viewed under constant illumination while
the speed is a little above the critical value, the path of the spot is seen
as a waxing and waning circle. But when the speed is considerably
greater, two spirals are seen, a left-handed one for whirl growth and a
right-handed one for whir! decay. This double spiral has the form of a
trochoid.

Robertson [5] finally concluded that a similar effect can be pro-
duced by any friction which opposes a change of the deflection of the
shaft, such as the friction which exists at the connections of flexible
couplings, and even in rigid couplings. The friction of this shaft through
the bearing as it deflects can also lead to hysteretic whirling.

Practical instability caused by friction is rarely discussed in the
literature. In particular, there is very little information available on rotor
behavior in the unstable region. However, in 1964, a translation (from
the Russian) of Kushul's'work [6] on self-induced oscillations of rotors
became available. Kushul's experiments concerned the motion of some
high-speed textile spindles which presented instability problems. The
spindles were composed of a built-up structure of a long wooden spindle
inserted over a thin steel shaft. With such a continuous shrink fit,
troubles were encountered above the rotor's first critical speed. Some
typical rotor orbits obtained by Kushul above the stability threshold are
shown in figure 7. Unable to monitor rotor motion electronically, he used

an optical system: a fine needle was attached to the spindle end, and
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shaft orbit times were obtained by photographing the resulting end motion
under a microscope. Figure 8 shows a sketch of his device. The orbits
shown in figure 7 are of importance as they illustrate the conclusions that
the rotor precession rate is approximately equal to the rotor bending
critical speed, and also that the precession rate is constant over a large

speed range.

ISERIONNET

8000 rpm 8500 rpm 12800 rpm

O OO

13300 rpm 15300 rpm 18200 rpm

W || &3] | €9

17400 rpm 21000 rpm 22200 rpm

Figure 7 Typical Hysteretic Whirl Orbits, Kushul [6]

TEXTILE SPINDLE NEEDLE MICROSCOPE CAMERA WHIRL ORBIT

|
&

LICHT SOURCE

Figure 8 Experimental Device for Visualization of
Textile Spindle Motion [6]

The critical speed of the spindle was determined to be about 4300 rpm.
The fact that the rotor nonsynchronous precession rate remains constant can
be easily verified by inspection of the various whirl patterns of figure 7.

For example, at the speed range of 8000 to 8500 rpm, the rotor orbit forms
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one stationary internal loop. This indicates that the whirl ratio is one-half,

that is, the precession speed w_ is approximately 4700 rpm.

P

At 17,800 rpm, a stationary orbit with two internal loops is formed,
which indicates a whirl ratio of one-third wp = 4300 rpm. Also at 21,000 to
22,000 rpm, a stationary pattern is formed with four internal loops to
indicate a one-fifth ratio. Likewise, the rotor nonsynchronous precession
rate at 27,000 rpm is still approximately 4300 rpm.

Based on the analysis of various authors and the experimental observa-
tion of Kushul, it is clear that the assumption of wp =W, = constant has con-
siderable justification for lightly-damped systems. Some of the major con-
clusions that Kushul states on the rotor stability characteristics are:

® Self-excited rotor whirling occurs only above the first bending

critical speed.

* The whirl frequency remains almost constant at all speeds and

is close to the first natural frequency of the spindle. In certain
cases, well above the threshold, the whirl frequency can
abruptly change from the first to the second order spindle
natural frequency.

* The use of an elastic support by itself, without any increase in

damping force, does not reduce the self-excitation.

* External damping improves the rotor stability.

* The most effective means to control the instability consisted of a

spring-loaded bushing and damping sleeves. No dangerous self
induced vibrations were obseryed with any spindle with this type

of bushing.
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Later experiments conducted in 1969 by Gunter [7] and in 1975 by
Lund [8] using analog computer simulation led to the conclusion that, in the
absence of external damping, a symmetric flexible foundation will reduce the
rotor first bending critical speed and also increase the instability threshold
speed. Both investigators fully agreed with their predecessors on the fact
that the stability threshold can be greatly improved by adding external

non-rotating damping.

Theory of Hysteretic Whirling

Consider the single-disk horizontal rotor shown in figure 9 which
runs at constant speed under the influence of viscous damping, gravity,

and disk unbalance. The equation of motion for the disk c.g. is:

MF + BF + Kr = Mg + Maw?e'¥?

where M is the mass of the disk, B is the velocity damping coefficient of
the bearings and surroundings, assumed linear and viscous for convenience,
K is the shaft flexural stiffness, a is the disk .eccentricity, and r is the
whirl radius of the shaft center given by:
r=x+iy i= V-1

where x and y are the Cartesian coordinates of the shaft center at any
time t.

Now transform this expression into rotating coordinates using the
following expression:

= Qeiwt

where:

z=&+in
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This yields:
. . . ‘ . )
M(z + 2iwg —mzz;) +B(r +iwg) + Kg =Mge th+Maw

Internal friction Coulomb damping is also assumed to act at the shaft-

disk interface. This occurs as an inwardly directed force (-P), along the

Damping B

(B! -
W
f unbalance

Wa

W = Mg

Figure 9 Single Mass Unbalanced Rotor

Bearing center line

7 -

Rg ] shaft whirl orbit

Re G

Figure 10 Graphical Representation of Shaft Whirl Orbit
about Deflected Position
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rotating radius vector ¢. This force may now be included in the mechanics

of the rotor motion by adding it into the previous equation:

2

-iwt + Mau

M(z + 2wt - w2g) +B(g + iwg) + Kg - P = Mge

The true nature of this force is difficult to determine or specify for
any particular case. For the present analysis, it is convenient to assume
that P is a linear function of the rotating radial velocity z. Though the
results of this assumption describe certain observed rotor phenomena, the
mechanism is not strictly correct,as Robertson [5] and Tond! [9] have
observed. On writing P = hZ, the equation of motion with viscous and

coulomb damping becomes:

iwt 2

M(g+2iw5;—w2c)+B(i+iwr,)+Kc—hf,=Mge_ + Ma

introducing the quantitites: y = B/M, o= h/M, wcz = K/M, gives:
g+ 2int - o’ gt y(E+ing) + of + wczc = ge Wt 4 au?

Transforming back into non-rotating coordinates (X, Y) gives:

r+yr+o(r-ior) + mczr =g+ amze'wt

The complete solution to the above equation consists of a comple-

mentary function (damped transient) and a particular integral of the form:
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This corresponds to the unbalance term and the gravity deflection term of

the shaft. Solving for the coefficients ro and rg gives:

2 2 2 .
. awz i aw (wc w iyw) . e"¢’
€ ((.o,‘2 - wz) + ivw (wC2 - m2)2 + y2w2 €
2 .
. 29 =g(wc + iow) “R o
9 - jow wu+02w2 9
c c
where
awz Yw
Re=—73 37237 Tan ¢ =———
(w " - w7 " +vyw w. ot w
_ . _ ow
Rg = —u—+9027— ;, Tan Y = _'——w 7
% c

These results are illustrated in figure 10.

Stability of Whirl Motion

Stability of the rotor is determined by whether the transient term

grows or decays with time. The general form of the transient is:

_ iAt i
r=r.e 1 trae

Azt ,

where " and r,are constants of integration, and A1,

the characteristic equation, found by substitution of r in the equation of

>‘2 are the roots of

motion :

A2 - iy + o) —wc2+i0(u:0 ,
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hence:

Moo =%i(y +0) ¢+ /»Cz . %(y + )% - iow)

Writing: woz = wcz - % (y +0 )2 where W, is the natural frequency of the
damped vibration of the rotor, and observing that usually w02 >> ow we may

write the radical as:

2 : ~ ___1 3
, - ~ w 10w
w 10w (o) 2

This gives the following expressions for 11 and Az

1
l-l wo+-é-1(y+o-o-(-(;’-o)

bod
n

1.
2= U, tily+totol)

The complementary function thus has the form:

= 3 .l w < ] [1}]
r=r; expliv, - 2<Y + o(1 - ao)>}t + 1y expl-iu - —2~<y + o1 + Eo)>}t'
A study of the indices of this expression shows the conditions under which

the rotor will be stable. First notice that as long as:

Yy+o-o2 > 0
w
(o
i.e. < + X
w wo(] o)

both terms in the transient amplitude expression will go to zero with in-

creasing time, or

lim r = 0.
t + =
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However, if the inequality does not hold, but

w>wo(] +-})

then
. oy 1 w . s
lm: :,] = limr, exp{7(y +o0 - 053 + uuo}t =
. L 1 wy . _
]th :2 = limr, exp{-ﬁ(Y +o+ 053 - 1mo}t = 0

i.e., the first term tends to infinity while the second decays to zero; thus

limr = o
t +

It follows that, if the inequality

B
w<wo(l +g-) = wo(l *'h")

where y = B/M (Viscous damping factor), and
g = h/M (hysteretic damping factor)

is not satisfied, the hysteretic whir! will be unstable.

This leads to the following conclusions:

1. The criterion for stability of a rotor with viscous and
Coulomb damping is the inequality given above, which
determines the hysteretic whirl threshold speed.

2. Above the whirl threshold speed, the rotor will whirl at its
damped natural frequency w _ with radius increasing with
time. °

3. The threshold of hysteretic whirl is raised in proportion to

the amount of viscous damping present in the system.
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Hysteretic Whirling of a Rotor in Flexible Supports

A more complete study for hysteretic whirl of a simple rotor in a flexi-

ble foundation has been conducted by Gunter [7]. This study considers the

bearing mass, stiffness and damping of the foundation. A single mass rotor

on an elastic foundation, shown in figures 11, 12, and 13, was investigated.

The general equations of rotor motion are obtained by Lagrange's

method. The only quantity which presented some difficulties is the internal

damping due to friction forces. These forces cannot be derived from a

potential function (otherwise the system would be inherently stable} but can

be obtained from a dissipation function of the proper form.

The notations used by Gunter for this analysis are the following:

my

qr

=

rotor amplification factor = W.../D,,
{D1M)

foundation damping coefficient,
lb-sec/in.

rotor internal damping coefficient,
lb-sec/in.

foundation damping = Cl/mz: rad/sec
rotor internal damping = Cz/mz; rad/sec
damping ratio = D,/D,

dissipation function

displacement of rotor mass center fron
shaft elastic centerline, in.

polar moment of inertia

isotropic foundation stiffness, 1b/in.
rotor stiffness, 1lb/in.

foundation stiffness in horizontal di-
rection, 1b/in.

foundation stiffness in vertical direc-
tion, 1b/in.

Lagrangian = T - V

foundation mass, lb-secz/in.

rotor mass, 1b-sec2/1n.

generalized coordinate

flexibility ratio = KZ/Ky or Ky/K; for
symmetric support
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BB O

P2
qr

time
kinetic energy
rotor torque

potential energy

support horizontal displacement, in.
rotor horizontal displacement relative
to the support, in.

rotor absolute horizontal displacement
Xl + XZ

rotor absolute vertical displacement =
Yy + Yo in.

foundation flexibility ratio = xx/xy
(DIM)

mass ratio = my/mp, (DIM)

rotor angular velocity, rad/sec

rotor stability threshold, rad/sec
rotor critical speed on rigid supports
VKa/mp

system critical speed on flexible sup-
ports = wepo V1/1 + R

rotor critical speed in the horizontal
directién, rad/sec

rotor critical speed in the vertical
direction, rad/sec

angular rotor coordinate

K/m,, equation (21)

rotor attitude angle = tan~} Xo/Yo

rotor precession rate
|/X22 + YEZ

generalized force

The following assumptions apply to this analysis:

The gyroscopic forces are ignored;

The characteristics and displacements of each bearing housing

are identical ;

The relative shaft bearing displacements are negligible in

comparison to the absolute rotor and support displacements,

There is no acceleration of the rotor (constant velocity);

There is no gravitational force included.
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bearing % bearing

~r

Figure 11 Single Mass Rotor with Massive Bearings [7]

Figure 12 Front View of Bearing Showing the Vertical
and Horizontal Coefficients [7]

Figure 13 Ceometry of Rotor Whirl Motion [7]
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With these assumptions, the system will be fully described by four

coupled second order equations of motion. We have for the position vectors:

bearing mass:

v OM. =P, = X.n_ +Y,n
ector 1 =5 = 1 nx 1 ny
rotor mass:
= > N g
Vector OM2 = P2 = (X1 + X2 + e, cos wt) n_+ (Yl+ Y2+ e sin wt) n

Replacing wt by o gives five degrees of freedom to the system and

hence five equations of motion are required to completely describe the system.

This gives for the velocities:

bearing mass:

<+
H
x
Sy
+
<
34

rotor mass:

v = (X, +X.-e Osin0)n_+ (Y +Y.+e O o)R
2 = 1 2~ ¢,0 sin n_ 1+ Yp* e, 0 cos y
Therefore, the kinetic energy is given by:
1

1 . . - ) . . . . . 0
T = 3 {M2 [(X1+X2—eu0 sin ) +(Y]<Y2+eu0coso)2]+ ml[X]2+Y]2]+®J }

and the potential energy is:

1 2 2 1 2 2
V==]K X +K Y + <K
2[11 y afrtz% %
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The external damping is given by the dissipation function:

Applying Lagrange's equation:
4 (?Lr)_b_n_ L _ .
at \ 33 qu ], g

where L = T-V, yields the following five generalized equations of motion:

.. - - .2 :
X : - e -] C X 4K X =0
1 nl Zl+n2 [11+12 cue sin +e“(9) cos ]+ 1 5 %
X : m Y +m Y +¥ +°6°°‘9-e(é)2une 4C Y +K Y =0
1 11 212 2 u u 1 y 1
e ¢ ae . .« 2 -
X : - - Cc X_ 4+ Y +K_ X_=0
2 =, [xl+xz eue sin © eu(e) cos 9]+ 2[2 w 2] > %5
X,: m |¥Y ¢«Y +e8 5)° e c. (¥, - w K_Y_ =0
2 2[1 2 eue cos 6 —eu(e) sin + 2(2 12) +K Y,
9: $6+m_ |-(X +X)ostne + (Y ¢§)ecouo+c2§-r
2 1 2 " 1 2 @ u .

By neglecting the acceleration of the rotor, these equations can be reduced

to four equations:

.. . . 2 2
(1 +6m) X. + X_ + DX 4+ W X =e W cos wt where ém= "1
1 2 11 x 71 W m,

x
x

w?

3
~

(1 +8z) ¥ + Y +DY + o ¥ ©° sin wt
m - e sin
1 2 11 y 1 W
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. - . 2 2 K
X +X_ +DX_ +D wY_ + X, = 2
1 > 2% > > a.)z > cum cos wt w?- ayz
PP
Y +Y_+D_Y -D wx +w2Y -e w2 sin wt “27 m, Yero
1 2 2 2 2 2 2 2 "

If the rotor total damping forces are considered small in comparison
to the shaft elastic restoring forces, and if the bearing housing mass is
neglected, then one of the displacement variables may be eliminated to
obtain a single fourth order equation in either X or Y to represent the
system.

Eliminating vy yields:

where: ( C =i + v
X X X
j
v
! C =u + v
! y y y
and: Wy = natural system resonance frequency for the X direction
K_K
2 x a
VMoK +x " “erol/R + a
2 2 x
wcy = natural system resonance frequency for the Y direction

KZK . 1
M (K +K) crol/1 + R
2 2 Yy

Wepo = rotor natural resonance frequency on rigid supports.
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2
c K 2
y =2 [—X— 1 <p 1
x M. \K +K 2\a +R
2 x 2.
2
c X 2
2 v 1
uoo-— = D
y M. \K +K 211 + R
2 y 2
c <x 2 < 2
1 2 R
v e — - D
M. lK +K
X > < + > l1\a + R
2
c X
1 2 R\°
W n {xk +x “Pi1+r
y 2 y 2
c, c, X, K
B TR T TR TR
2 2 y y

Applying the Routh-Hurwitz stability criterion for 2N = 4, the rotor

threshold stability is obtained after some algebraic manipulations as follows:

where:

(!u >2 [R2+D] [R2+D 02] n2 (a+R)2 (14»;1)2 (1-a)2
F =
1

2
{a [(l +R)2 (RZ+D a2) + (a + R)2 (R2 + D)]}

(R2 + D) (R2 + D aEl a(R + a) (RZ +D) + (R+1) (R2 +D a2) ]

F

2 2
2 D2a2 (R+1)2(R2+Da2)+(R+a) (R™ + D)

Following this investigation, a digital computer program was devel-
oped to calculate the threshold of stability by the general Routh procedure
outlined previously. Since the coefficients of the characteristic equation are

speed dependent, an iterative approach was employed to obtain the
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Gunter used the results of his investigation to draw some charts
corresponding to various cases of rotor support properties. Figures 16
and 17 represent the stability characteristics of a rotor on a symmetric
foundation. The use of this chart is illustrated by an example. The rotor
characteristics are the following:

0.25 lb/secZ/in. (96.6 |b. rotor)

m, =
k2 = shaft stiffness = 250,000 Ib/in

K1 = support stiffness = 250,000 Ib/in

R = 1

D1

D1=D2 = 200 rad/sec; D = D2 = 1
w = k,/m_, = 1000 rad/sec - rotor natural frequency

cro 2 h -

(considered on rigid supports)

W = 706 rad/sec = system natural frequency
A = critical speed amplification factor = w /D, =5

cro 2

The rotor stability threshold speed on rigid supports is 1000 rad/sec.
Figure 14 shows that for D = 1 and R = 1; the stability threshold is raised
to 1414 rad/sec. |If the support damping D1 were zero, the stability
threshold would be thereby reduced.

For unsymmetric bearing support, figure 15 from [7] shows the
stability threshold for stiffness values of R = 0.1, 1.0, and 10.0 with zero
foundation damping. Examination of the stability curve for R = 10 shows
the influence of small changes in D on stability. At low values of R, the
vertical foundation stiffness is much stiffer than that of the rotor. Very
little increase in the stability threshold speed is obtained by varying the

horizontal foundation stiffness.
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threshold speed. In the computer program, F_ is determined by the dif-

1
ference between the Routh coefficients D22 and E2. Figure 14 gives plots
of these two functions for various values of external damping and over a

range of rotor speeds.
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Figure 17 represents the rotor stability characteristics for R = 1,

and A = 5 for various values of support damping.
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To more clearly illustrate the rotor stability characteristics in the
absence of foundation damping, a three-dimensional stability model was

developed by Gunter [7]. This is shown in figure 18.

Figure 18 Topographical Model of Rotor Stability
Characteristics with Zero Foundation Damping [7]

It clearly shows that reduction of horizontal bearing flexibility and
increase in foundation damping produce a rapid rise in the stability

threshold. This is illustrated by an example:

The characteristics of the system are the following -
0.25 lb-secZ/in (96.6 Ib rotor)

n"b =
_ D = D, = 200 rad/sec
m 0 1 2
Ky = K, = 250,000 Ib/in W, = 577 rad/sec
K. = 125,000 w = 707 rad/sec
x cy

This example is identical to the previous one, except the support

stiffness in the horizontal direction has been reduced to one-half of the
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previous case. This increases the rotor stability threshold from 1414 to
over 3200 rad/sec.

Figure 19 shows the variation of rotor stability for a range of
values of internal damping, in a system with no external damping. It
shows that large increases in rotor stability are possible by the intro-
duction of bearing asymmetry. It further shows the important conclusion
that the larger the internal friction of the rotor, the less effective the
bearing asymmetry on improving the stability. These results were later
verified by Rieger and Thomas [10] in an analog computer study of the
influence of hysteresis, viscous damping and seal effects on rotor stability

threshold.
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Conclusions

Internal friction between the press- or shrink-fitted parts of a
built-up rotor, and internal hysteresis of the material, are the two main
causes of hysteretic instability. Internal rotor damping tends to cause
unstable, nonsynchronous precession above the rotor bending critical
speed where no external damping acts on the system. The hysteresis
whirl frequency is approximately equal to the rotor bending critical speed.
This frequency remains constant over a wide speed range.

One important aspect of this phenomenon is the influence of founda-
tion flexibility and damping on the instability threshold speed. A sym-
metric flexible foundation will reduce the rotor critical speed, and will
also reduce the whirl threshold in the absence of external damping. If
external damping is added, the stability threshold can be greatly in-
creased. To introduce foundation damping, it is necessary to permit some
foundation motion. This lowers the system critical speed, and hence the
whirl threshold speed. However, the threshold speed is increased signif-
icantly through the introduction of foundation damping. Of these two
opposed effects, the influence of foundation damping is more significant

than the foundation stiffness decrease.
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CHAPTER 2.8

FLUID INSTABILITY

N.F. Rieger

Nature of Fluid Film Instability

Fluid-film instability may occur in high speed rotating machinery
whose rotor-bearing system includes fluid-film journal bearings. This in-
stability is independent of rotor unbalance. It occurs as a self-excited
whirl motion above a certain threshold speed, and is induced by the action of
hydrodynamic forces within the journal bearings. The rotor journals then
whirl in a circular or elliptical orbit within the bearing clearance, about the
steady-state equilibrium position. The speed beyond which the shaft be-
comes unstable and the whirl drbit begins to increase in diameter with time
is defined as the threshold speed. Fluid-film instability is strongly in-
fluenced by the type of bearings which support the rotor, and by the relative

flexibility of the rotor itself.

Types of Fluid Film Instability

Although Newkirk and Lewis [1], Pinkus [2], Hori [3], Tondl [4],

Sternlicht [5], and Smith [6] have all classified unstable whirling of rotor-

1. Numbers in brackets designate references at end of the section.
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bearing systems in various ways, it can be concluded that there are two

basic types of unstable rotor whirl:
® Subharmonic whirling (half-frequency, fractional-frequency,

low-speed whirl, light-load instability)

®* Resonant whipping.

It should be noted that there is general agreement that light-load
instability and fracti‘onal—frequency whirl are of the same general nature
as half-frequency whirl. In all these cases the whirl is usually bounded
and its frequency may vary from slightly less than half running speed to
one-third of running speed.

In resonant whipping the threshold speed occurs at around twice
the bending critical speed of the rotor system. The whirl frequency is
typically the lowest bending critical speed of the system,

The first class of whirling has been observed mostly with rigid rotors
in plain fluid-film bearings, while resonant whipping--a violent, dynamic
whirling of the rotor in its bearings--is more likely to occur with flexible
rotors in plain, fluid-film bearings.

Gas seals have also been known to contribute to instability in rotor
systems. They tend to further destabilize the rotor in its bearinas. The
same classification of whirling stated above still applies, and the same

threshold speed and whirl frequency properties apply.

Experimental Observations of Fluid-Film Whirl

Oil whip was first identified in 1924 by Newkirk [7] who first made an

experimental study of this problem. A parametric study of both rigid rotor
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instability and flexible rotor instability was later conducted by Newkirk
and Lewis [1]). The following properties of unstable motion were observed:

® Whirling occurred at a frequency close to half the running

frequency (usually below). It was sharply resonant in a narrow
speed range and built up only when the natural frequency of the
system (critical speed) was close to half the runnina speed. This
instability could occur for any running speed over twice the first

critical speed of the rotor.

® The second type of disturbance (resonant whipping) was

also observed at speeds above twice the first critical speed of the
rotor system. This disturbance was more severe, and it built up with

a frequency equal to the first critical frequency of the rotor. It
appeared only for speeds above twice the first critical speed. The
main characteristic of this disturbance was that,once started, it
persisted at all higher speeds. (These unstable whirl motions could
be of a large amplitude and consequently could be very harmful if
allowed to persist.) Whirling was independent of the state of balance
of the rotor, and the threshold speed was not influenced by external

disturbances such as shocks.

These tests (on three rotors and five types of bearings) were run
with oils of various viscosities to study the conditions associated with the
range for stable operation , usina cylindrical bearings at speeds above
twice the lowest critical speed of the system. It was concluded that short

bearings, rather than large clearance ratios and moderate unit bearing
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loads, tend to favor a range of stable operation. In certain instances, this
stable range may extend up to more than five times the lowest critical
speed. Slight bearing misalignment can also cause a significant increase
in the threshold speed. [n a subsequent paper, Newkirk [8] reviewed
results obtained earlier with a flexible rotor whose lowest critical speed
was 1210 rpm (see figure 1). Within the speed range 2300-5000 rpm, the
rotor whirled with a frequency around 1250 rpm (see figure 2). The

severity of the whirl increased with increasing speed. This result was
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compared with those obtained usina a very stiff rotor for which there was
no discernible (bending) critical speed up to 30,000 rpm. This shaft
whirled at low speeds with a frequency slightly less than one-half the
running speed. But the stiff rotor whirl died out at higher speeds, which
varied from 7000 to 18,000 rev/min. (Low viscosity oil gave the higher
limit.) Newkirk concluded that rotor bending flexibility was the key factor
in explaining why the performance of these two machines was so different.

A more extensive investigation was carried out in 1956 by Pinkus [2]
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on two rotors having relatively light bearing loads (23.4 and 8 lb/inz,
respectively) and reasonably high critical speeds (4000 and 6100 rev/min,
respectively). These two rotors are shown in fiqure 3. The objective of
this investigation was to compare the relative stability of several bearing

types. Plain cylindrical, axial groove, elliptical, "pressure-dam," three

lobe, tilting pad, and hydraulically loaded bearings were studied.

Cenerally, the testing procedure was to increase shaft speed while

recording data on:

¢ Inlet and outlet oil temperature
®* Frequency of shaft vibration
Frequency and amplitude of vibration
Inlet oil pressure
Pinkus observed that cylindrical bearings were the least stable and
hydraulically loaded bearings the most stable types. He also noted that,

with sufficiently high applied hydraulic pressure, all whipping could be

. . ;

A ——L_
=37 . 13—
: ———L—N, 173 ————-4 . 3 r

— a 23 A

~— 187.5 LB SHAFT — —64 LB SHAFT—

Fiqure 3 Dimensions of Test Shafts [2]

suppressed. Amplitude vs. speed results obtained in this investigation

are shown in figure 4. With the more flexible shaft, the initial amplitude
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peak corresponds to the rotor bendinqg critical speed. Resonant whipping
sets in at approximately 1.6 times the system bendingq critical speed. It
persists with a whirl frequency equal to this critical speed, and may tend
to disappear around 3.5 times this critical speed. The large amplitude
build-upin the same zone is the second system bending critical speed. The
stiffer shaft shows an unbalance whirl peak followed by a steady build-up
to full whipping amplitude at around three times the system bending
critical speed with no tendency for the whirl to diminish,in this case,

up to four times the bending critical speed. [n both instances the shaft
resonant whipping frequency was the system bending critical speed, as

shown in figures 4 and 5.

e ¢ e st
o tn 21n 3fn afn © 8
z 5 I | l I s TF
2 2 6l
: 4 | I | ’ 2
H e st
b | >
5 3 J l ! s 4
- st
22 I l 8ol
: l 5
E I I I ! 3 I
| of
£ ! | l €
g | §omd
2™ ' ‘ 2
° - l s l
> o00 OO0
5 I s |
> 000! I | S
z f,nw- L
H | l 2 T
f A L L
] | | 1 T e e e e =

° 7000 <000 6000 8000 WO000 17000 14000 1400C SHAFT SPEED, spm

SHAFT SPEED,rpm

Figure 4 Figure 3

Typical Whip Curves Typical Whip Curves
for 187 Ib. Shaft [2] for 64 Ib. Shaft [2]
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In 1959, Hori [3] made an independent investigation of rotor system
instability, including a theoretical analysis and some experimental studies.
tie examined the influence of different variables on the resonant whipping,
operating speed, bearing load, oil viscosity, and of design variables such as
rotor dimensions, journal eccentricity, flexibility of the rotor, bearing
misalignment and shape. He, too, reached the conclusion that it was pos-
sible to stabilize a rotor by increasing the eccentricity of the journal
within the bearing clearance; by using a shorter bearing; and by using a
less viscous lubricant. He also reported that it was possible to decrease
the amplitude of the whipping motion by making the oil force larger, by
using a longer bearing, and by usinq a more viscous lubricant. This
is the opposite of the preceding statement, but the difference can be
explained by the increased squeeze-film action of the bearing, once the
violent whipping motion is established. These conclusions were drawn
for rotors operating at speeds considerably higher than twice the first
bending critical speed.

An excellent discussion of most important test findings was given by
Tond! in several publications between 1961 and 1968, references [4],[9],
and [10], and in his book [11]. Tondl conducted a comprehensive test
program in which he examined the influence of many bearing types on the
stability of single-disk rotors. Tondl's experimental rig is shown in
fiqure 6, and the types of bearings tested by him are presented in table 1.

Tond! summarized by concluding that: to avoid unstable whirling,
cylindrical bearings cannot be used at rotor speeds higher than twice the

first bending critical speed of the system; elliptical bearings exhibited
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greater resistance against the initiation of self-excited vibrations than
cylindrical bearings; the threshold speed and the amplitude of whirling
became higher where the ratio of horizontal and vertical clearances was
greater. He recommended the use of elliptical bearings for machines
whose operational speed does not exceed three times the first critical speed
of the system. Higher whirl threshold speeds were obtained with flexible
element bearings. Tondl described several cases of complete suppression
of self-excited vibrations within the test speed range of up to eight times
the first bending critical speed of the rotor. His results (amplitude
versus frequency) for the various bearing types are shown in figures 7,
8, 9, and 10. Tondl also found that in addition to the lower stability
limit (threshold speed), there is also an upper limit of the speed interval

in which the self-excited vibrations were initiated. He observed both
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linear and non-linear unstable whirlinq. Under non-linear whirling
conditions the onset speed appeared to be affected to some degree by the
lack of refinement in the balancing of the rotor. This leads to bounded
instability amplitudes. Observations were made that, after having reached
a peak shortly above the threshold speed, the whirl amplitude actually
diminished with further increase in rotor speed, e.q., references (2] and
[9]. Due to the non-linear motion associated with the oil film at large
amplitudes, such rotors have been operated up to several times their
threshold speed. Concerning the effect of oil viscosity on threshold speed,
Tond! concluded that both low and high viscosity oils can be advantageous,

depending on the type of bearing used and the operating conditions. The

best result, i.e., the most stable operation, was obtained with the loose
flexible element bearing (fiqure 11), for which instability was observed

only occasionally.
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Figure 6 Experimental Rig Used by Tondl [9]
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Figure 7

Two Cylindrical Bearings and Two
Bearings with Flexible Elements,
Tondl! [10]
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Figure 8

Same Case as Figure 7 but Greater
Rotor Unbalance [10]

oL #RNAL V. X Py

D*‘ﬂl—*‘s’— . Figure 9

Two Cylindrical Bearings and Two
Bearings with Flexible Elements

with Opposite Direction of Rotation
(10]
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FREQUENCY | fepm)

OOUBLE AMPLITLDE ¥, ¥, b

afrpm)

Figure 10 Same Case as Figure 9, but with
Creater Rotor Unbalance [10]

Figure 11 Loose-Bushing Bearing; Loose Bushing is of the
Flexible Element Type [10]

Figure 12 General View of Test Rotor No. 2 [12]
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Most of the recent experiments on rotor stability have been performed
in connection with the validation of computer programs for stability
analysis. In these experiments separate parameters which influence the
onset of unstable whirling have been examined. Several studies have also
investiaated the influence of non linearity of the fluid-film on threshold
and whirl radius. One such experimental study was made by Lund and
Tonnesen [12]. Experiments were conducted on two rotor systems having

the following properties:

Rotor 1 Rotor 2
Weight 40 ka 187.5 kg
Length 1040 mm 1190 mm
Bearing span 880 mm 880 mm
Shaft diameter 80 mm 80 mm
Journal diameter 62.7 mm 62.7 mm

Rotor 2 is shown in figure 12. Two types of bearings and supports were

tested, (a) rigid bearings with axial grooves, and (b) cylindrical bearings

mounted on a flexible support with a squeeze film damper. These rotor

supports are shown in figures 13, 14, and 15.
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Y
Figure 13 Figure 14
Cross Section View of Bearing Ar- Cross Section View of Bearing
rangement with Rigid Support [12] Arrangement with Danped Flexible

Support [12]

Figure 15

View of Flexible Support Structure for Journal
Bearing with Squeeze Film Damper [12]
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Lund and Tonnesen calculated stability threshold and whirl frequency
ratio by a computer program and verified the predicted results experimen-
tally with the two rotors described above. For the heavier rotor, figure 13,
the stability threshold in rigid supports was found to be 12600 rpm. Use
of a flexible foundation with a squeeze film damper enabled this same rotor
to be operated at its maximum speed, 20,000 rpm without any indication of
instability.

Lund and Tonnesen [12] obtained the following conclusions from

their test program:

* The experiments confirmed the general validity of using an
analytical model to predict the threshold speed and whirl
frequency of a rotor-bearing system. The linear mode! predicted
instability threshold in aood agreement with the experimental
findings. Discrepancies can more readily be ascribed to causes

other than deficiencies in the analytical model.

b Unbalance vibrations were found to initiate self-excited whirt,

with the result that the instability threshold speed is lowered.

i Unstable whirling was itself found to excite a spectrum of
frequencies in the rotor system, but the whirl orbit is a station-
ary limit cycle, associated with a single whirl frequency. If a
large limit cycle amplitude can be accepted, it has been shown
to be feasible to operate the test rotors past the onset of
instability. In practice, however, the threshold speed should

be considered the maximum acceptable speed.
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* The addition of flexibility and viscous damping to the founda-

tion is the crucial point in the suppression of instability for a

rotor bearina system.

Theoretical Investigations

About the same time that oil whip was identified by Newkirk in 1924
[7] and [13], Stodola [14] undertook a theoretical investigation of the
influence of the journal bearings on the critical speeds of a rotor. In the
course of their investigation, he and Hummel [15] arrived at the conclusion
that the fluid-film forces in a bearing may induce rotor instability in cases
where the journal eccentricity in the bearing falls below 65 per cent of the
radial clearance.

Stodola's analysis is based on a linearization of the fluid-film forces
which allows the stability of the equilibrium position to be calculated.
This linearization procedure has subsequently been greatly developed.
Examples of such calculations appear later in this chapter. To illustrate,
assume the journal to have a mass M and let the journal center position be
defined by Cartesian coordinates (X,Y). The fluid-film force components
Fy and Fy, depend on the instantaneous position and velocity of the journal

center such that the linearized equations of motion become:

Mi:Fx(R,V,X,% :an)_(+§_Eii—(+an?+a_§x_ (1)
a X X Y Y

MY - Fy(X, ¥, X, ¥)- 2Fr g, 3fy g L 3Fy g, 3RY ¢
X X Y Y

where the partial derivatives are evaluated at the equilibrium position



218 N.F. Rieger

X = 0, Y = 0, dX /dt = 0, dY/dt= 0. There are two simultaneous, second-
order ordinary differential equations with constant coefficients which are
readily tested for stability once the eight bearing coefficients are known.

Althouqgh Stodola's method is correct and simple, it presents the
problem of obtaining accurate values for the bearing coefficients. Before
1950, the only available solution of Reynolds' equation was Sommerfeld's
solution {16], or modifications thereof, for the infinitely long 360-degree
journal bearing. Thus, Stodola was forced to neglect the four damping
coefficients and to arrive at the values for the four spring coefficients from
an estimate of the functional relationship between the statically imposed
bearing load and the journal center position.

The first attempt to investigate the motion of a rigid journal within
a bearing using hydrodynamic theory was made by Harrison [17], who
derived expressions for the radial and tanqential components of the fluid-
film forces due to the journal displacement. These expressions are based
on Reynolds' assumptions and apply to an infinitely long, full (no cavita-
tion) bearing using an incompressible lubricant.

Robertson [ 18] reconsidered Harrison's analysis and showed the
dependence of radial force effects on the tangential components of surface
velocity. In his analysis, he considered the damping coefficients
neqglected by Stodola, but ianored the subambient pressures in the fluid
film. This led to the incorrect conclusion that the journals are inherently
unstable, and will whirl with a frequency equal to one-half the speed of
rotation at all rotor speeds. This finding is only correct for a flooded

vertical bearing.
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Poritsky [19] showed that the inclusion of a radial force component
in the equations of motion for a rigid journal predicts stability at speeds
below the rotor first critical speed. It also predicts that, at speeds above
twice the first critical speed, the rotor will become unstable and whirl at the
rotor critical frequency. These predictions agreed with observed

performance and led to the well-known stability criterion:

) 1+1_‘
Muw K"K | <u {3)
ro_sj

where Kr and Ks are the rotor stiffness and bearing support stiffness

respectively, M is the mass of the rotor at the journal, and w is the rota-
tional speed in rad/sec. Poritsky's analysis neglected the influence of
fluid-film damping, and no attempt was made to determine the value of the
fluid film stiffnesses, except to postulate that these would be linear with
displacement for small amplitude motions. Later investigations into the
elastic and damping properties of the cavitated fluid-film [20], [21],
verified the existence of the radial force component, and also provided
values for four-spring and dampingq coefficients. When damping is included,
the predicted whirl frequency is less than 0.5 w. This agrees with
practical experience.

Flooded vertical bearings were investicated by Boecker and
Sternlicht [20], who found that plain bearings were inherently unstable at
all speeds, whereas grooved bearings had a small stability margin. Bowman,
Collingwood, and Midgley [22] also studied the performance of flooded
bearings under laboratory conditions.

To test the linearized equations for stability, most authors have used
Routh's stability criterion Inclusion of the flexibility of

the rotor in the equations of motion leads to a characteristic equation of
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sixth order. The problem, however, is easily reduced to one of fourth
order and a solution can be obtained directly in closed form in terms of the
eight bearing coefficients, as shown in references [23] and [24]. This
method makes it easy to recognize that the contribution of rotor flexibility
to the oil whip problem is to lower the instability threshold speed, and not
to influence the basic character of the onset of instability. This was first
shown in reference [25].

The interest in the problem of oil whip increased markedly after
World War |1, beginning with Hagg [26] in 1946, and has been growinq
since that time, primarily because of the trend towards high-speed machinery
and the use of low kinematic viscosity lubricants. A considerable amount of
additional work, both experimental and analytical, has been devoted to
determining the eight Taylor coefficients (the spring and damping coeffi-
cients) for a wide variety of bearinqg types [21], [27], [28], primarily to
determine the bearing's influence on the critical speeds of the rotor. This
work, however, has made it feasible to broaden the scope of the oil whip
investigation to cover other and more practical bearing types than the
plain cylindrical bearings. Hagqg [29] evaluated the damping capacity of a
tilting-pad bearing, and later gave curves for spring and damping constants
for 120 degree nartial-arc bearings, together with a simple stability chart.

Later work by Hagg and Sankey [30], [31] gave more complete data
on spring and damping constants for partial-arc and tilting-pad bearings
for small-amplitude whirl, determined experimentally. At both low and high
Sommerfeld numbers these curves are in error, as in these zones they had

been obtained by extrapolation. Accurate values for the cylindrical bearing
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have been obtained [21] for the 150 deqree partial bearing (23], and for
the tilting-pad bearing [32]. Each of these analyses was for incompres-
sible lubricants, but the results apply for compressible lubricants at

low A < 1.0 compressibility numbers. :Hagqg and Warner [25] further
examined the stability threshold speed, using an analog computer to
study the stability limit. This work gave good qualitative correlation with
both test results, and with data obtained from an industrial turbine set.
Typical oscillograms obtained are shown in figure 16. The upper curve
shows a well developed whirl,and the lower curve shows transition from
whirl to stable running, with decrease in speed.

Badgley and Booker [33] made a theoretical study of the rigid body
dynamics of rotors supported in plain cylindrical, cavitated, fluid-film
journal bearings. Expressions for journal force due to the fluid film are
developed using the short bearing (Ocvirk ), the long bearing (Sommerfeld),
and Warner's finite length bearing approximate solution to the Reynolds
equation. The nomenclature used by Badgley and Booker in reference [33]

is:

C = bearing radial clearance p = local fluid film pressure”
D = bearing diameter t = time
L = bearing length T = dimensionless time (radians)

¢ cc€ € = eccentricity ratio
F¥, % = fluid film force components ]

. . ¢ = journal center attitude angle
g = acceleration of gravity ) )
0 = fluid film orientation angle
in = integral notation " = local fluid film velocity
1
= rotor mass per journal wg = equal to (g/c)

w = rotor weight per journal wj = journal angular velocity

Forces acting on the journal e.g. from the fluid film are shown in figure 17.
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Figure 16 Whirl Oscillogram Showing (a) Well-developed Whirl
and (b) Transition from Whirl to Stable Running
with Decreasing Speed [25].

Figure 17 Geometry of Dynamically Loaded
Journal Bearing [33].

With the assumption that only plane journal motion occurs, this

motion (and thus that of the rigid rotor) may be described by two polar
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equilibrium equations. In polar coorcinates, with T = wjt

d'¢ Fe W . 2 (de)\ [dé (4)
T ™ T A o =sing ~ - | — -

dT*  e«wMC  e«w,'MC ¢ d'l‘) daT

dle Fe w dé\*

ars " oore Y oapee e e t e (E‘) (5)

The film-force components may be obtained from the expressions:

¢ - 6dA 6
F f,;”“" (6)

F* -f p sio 644 (7
A

which yields for the various configurations:

Short-Bearing (Ocvirk) Approximation

(ﬁ). [w'(’c‘:l/):)'][ ] [ ] [d(ﬁ te (:—: - ;) J:'] (8)
(w;;w). '[2w'(‘::l;fz)'][ ] [..,,]' [” S (g - ;) 7 ] (9)

Long-Bearing (Sommerfeld) Approximation
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Finite Length Bearing (Warner) Approximation

e I
w,'A(C/, wtMC/,

(), - ().
wMC/), ~ \asric/,

tanh (%) o
where MNMe}1 - ——>2 [ Inall cases the integrals s - - sio'6ooa= 6
’:_") o, (L+ ¢ cos 0)°
D
(14),(15)

are functions of 8,. 8,ande

The quantities dze /dT2 and dzcb/dT2 may be evaluated using the
equations 4 and 5 for given values of €, ¢, de/dT and d¢ /dT. If the latter
four quantities are specified initially, the resulting initial value problem may
be solved by standard numerical "marching" techniques. In this investiga-
tion, solutions to the equations of motion were obtained by fourth order
Runge-Kutta extrapolation techniques for a wide range of combinations of
the € and wi/ g parameters. Initial displacements of the journal from its
equilibrium position were simulated by specifying starting values of ¢ larger
than the value of €s with ¢ set equal to ¢, . Stability is determined
visually and the solution is represented as a stable point on the €, versus
wj/wg parameter plane. Fiqure 18 shows the results of several "experi-
mental" simulations. The fact that these points may be separated by a

single line indicates that the direction of the initial displacement does not
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sensibly affect stability. The stability boundary is drawn through points
estimated to represent neutral stability. Figure 19 shows a comparison of
three sets of inijtial conditions investigated using the short bearing
approximation. Solutions for the long and finite length bearing approxima-
tions are shown in figure 20.

Badgley and Booker concluded that the long-bearing solution appeared
to be most conservative (it predicts the onset of instability at lower angular
velocity ratios than the other solutions) for static eccentricity ratios
between 0 and 0.5,while the finite-bearina solution, with bearing length to
diameter ratio L/D equal to 1, appeared most conservative at higher static
eccentricity ratios. Variations in L/D between 0.5 and 7.0 did not affect
journal path shapes appreciably. Variations in initial journal center velocity
were found to be important, at least with the short-bearing solution; large
initial velocities were observed to produce instability for certain parameter
combinations which are stable under small initial positions or small velocity
disturbances. In all cases investigated, instability was not observed above
static eccentricity ratios of 0. 83,

In 1975 Myrick [ 34] developed an analytical method for the simulation
of the transient and steady state response of flexible rotors supported by
"realistic" incompressible film hydrodynamic journal bearings. His method
combines realistic fluid-film bearings and nonlinear flexible-rotor dynamics.
In this method the coupled nonlinear ordinary differential equation of
motion (which describes a flexible rotor similar to that of figure 19is
formulated as an initial-value problem, and is solved by direct integration

on a digital computer with the hydrodynamic bearing forces and moments
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obtained for each time increment from a finite-difference formulation of

the general Reynolds equation. This "realistic" bearing model includes:
® Finite-length hydrodynamic bearings

Wedge and squeeze films

Fluid-film cavitation

Oil inlet geometry and pressure

Eccentricity and tilt (gyroscopics) of the journal.

With the numerical extrapolation approach, the transient and steady-
state response of the rotor may be simulated, and the stability of the
nonlinear rotor-bearing system can be determined through inspection of the
generated rotor trajectories. The results given in ref. [34] were obtained
using this approach; the response of a symmetric flexible rotor system for
speeds up to the threshold of instability is demonstrated as a function of
disk unbalance (single plane), and of viscous damping (see figure 23). The
symmetric rotor parameter values for this study are listed in table 2,and the
hydrodynamic journal bearing parameter values are listed in table 3. Curves
for inlet oil supply pressure Pin and effective absolute oil viscosity Pg¢s
as functions of rotor speed are presented in figure 21.

The numerical simulations of the response of the symmetrical test rotor
were then compared with results obtained from experimental whirl data.
Speeds through the critical speed region to the onset of oil whip were
studied using an experimental test rig to obtain whirl and whip data for a
flexible, horizontal rotor bearing system. The rotor consisted of a disk and
two journals pressed onto a shaft, supported in two cylindrical hydro-

dynamic journal bearings. The shaft was comparatively long, and of
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Modulus of elasticity, € 20.2 x iU”N m

Shaft diameter, [)5 2.54 x 10 Im

Shaft moment of inertia, ! 2.04 x 10 8m

Shaft segment length, L 1.96 x 10 'm

Rigid journal width, z? 4.07 x 10 2m

Shaft length, Lto(al 5.81 x 10 Im

Oil inlet hole diameter, Dy, 6.35 x 10 3m

Lubricating oil number SAE 15

Rotor support length, Lspt 4.74 x 10 'm

Rotor specific weight, y (steel) 7.68 x 10 “N/m3

Total rotor weight 1.83 x 102N

Effective journal mass, m, 1.68 N-s2/m

Disk mass, m 14.0 N s2¢/m

Effective disk mass, m3 15.3 N s2/m

Effective journal polar mass

moment of inertia, |, 5.83 x 10 “N.m.s.?
1

Effective journal transverse mass 3 N

moment of inertia, |
32

Undamped fundamental natural
frequency, Cn

Rotor speed, ¢ 0

>

Disk mass-eccentricity, e

Disk damping ratio, ¢ v 0, 0.

Table 2

025,

1.63 x 10 "N. .s.

55.7 Hz (calculated)

110 Hz
1.54 x 10

5. e.09 x 10 6m

0.04; 0.05

Rotor Parameter Values for the Flexible

Rotor Simulations [34].

Bearing length, Lb

Journal radius, R =R
Radial bearing clearance, Cr
Bearing grid size, nxn,
SOR relaxation factorw b

Oil inlet hole location, Voh

Effective lubricant
absolute viscosity, v eff

Atmospheric pressure, Patm

Oil inlet supply pressure, Pin

Pressure distribution
error criterion, ¢

Table 3

2.54 x 10" %m
2.75 X 10 %m
7.62 x 10 °m
16 x 6
1.290

180 degrees

(see figure 5)
1.01 x 10 °N/m?

(see figure 5)

6.89 x 103 N/m2

Hydrodynamic Journal Bearing Parameter

Values for the Flexible Rotor Simulation [34].
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small diameter to insure reasonable flexibility. The test rotor bearing
system was identical, within reasonable tolerances, to that used for the
flexible rotor simulations presented above and shown in figure 22. Using

the notations:

w = unbalance of the system

3 = viscous dampinq ratio

W = rotor forward precession critical speed, Hz
w = running speed,

the most significant results of this analysis can be summarized as follows:
. Oil whip has been successfully simulated by this analytical

model of a flexible rotor /hydrodynamic journal bearing system;

* The oil whip could be suppressed by means of the addition of

external viscous damping;

b The analytical model (W = 4.24 x 10—14 N.M.; £ = 0.04) accurately
simulated the vertical response of the test rotor through the
forward whirl critical speed region (0.8 WS w £ 1,15 C for
this study)., The test rotor forward whirl critical speed was

predicted with an error of less than 1 percent;

* Using viscous damping ratio £ of 0.04 and 0.05, the analytical
mode! (W = 6.24 x 10—u) simulated the onset of unstable oil
whip (W = 105.5 Hz) of the test rotor with less than 3 percent

error in this system,
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Theory of Instability for a Rigid Rotor in Fluid Film Bearings

Consider the rigid rotor in fluid film bearings shown in figure 24,
For convenience, this rotor is taken as a simple cylinder of mass M, trans-
latory inertia lt and polar inertia Ip. Both bearings are identical and
share the rotor load (gravity) equally, so that they both have the same
operating eccentricity and bearing dynamic coefficients. At the instability
threshold speed w the whirl frequency v will be somewhat less than 0.5w,
as seen previously. Two possible modes of whirling exist, (a) translatory
whir!l (ends in in-phase),and (b) conical whirl (ends in anti-phase),
figure 25. The question of the mode in which the rotor instability will

occur is determined by the inequality

v
" b - EIE < 1.0, translatory whirl (16)
ML >

1.0, conical whirl,
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1 2 2
where |, = 1_2M(3R +L%) and |_ = %-MR2 for a solid cylindrical rotor.

p

Writing E = 0.5 and substituting gives:

2 2

L, [ M3y - 3By )

o ZMORT4LY) -05 IMRE 5 B 1
‘ L2 = 12ML (17)

w

This expression applies for a solid cylindrical rotor at all speeds.
In general, however, the ratio is u[lt—(\)/w)lp] /ML2 for a rotor

symmetrical about the mid-span plane. The above result indicates

Rigid !
T )
|
- — —-—O._ — -——
1
!
K K K. K Byx Bxy
Bxx Bxyj XX Xy ' XX xy dig B
8 K K X K yx yy
Byx Byy yx oy yx Yy
Fluid Film ui im

Figure 24 Riqid Rotor in Fluid Film Bearings
that the tendency is for a rigid rotor to whirl in its translatory mode.

To determine the half-frequency whirl threshold condition, consider
the rotor to be perfectly balanced, as in figure 26, and symmetrical in all
respects about the mid-span plane. Assuming that the rotor will whirl
first in its translatory mode, the threshold conditions may be obtained by

the procedure first given by Lund [35]. The equations of motion are
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(a) Translatory Whirl (b) Conical Whirl

Figure 25 Whirl Modes for Rigid Rotor in Flexible Bearings

D

K‘yy. B % ﬂly)'

i 1,
‘a) Clearsnce circle egutl- (b} Spring and damping (c) ‘Forces acting on
' yhraum position cffects in fluid film journal from fluid
film
Figure 26 Film Force Effects

,ov
! g Transient growth
-a Jransient deccay
5 +1v Positave whirl,
R "’"W"'m“c ¢irection of
conditrcn rotation

-iv Negative wharl,
oppositicn
direction of
shaft rotation -

Figure 27 Complex Plane Plot of Eigenvalue P Conditions
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first written for the rotor c.g. restrained by the bearing forces:

IMX = -K__X-K_Y-B__X-B_ Y (18)
XX xy XX Xy
IMY = -K__X-K _Y-B _X-B_ Y (19)
yX YY yXx YY
For a solution, set:
X = xePt; Y = yept (20)

where p = a + iv. In this expression v is the rotor whirl frequency and a
is the system damping coefficient. At the onset of whirl a = 0 and p = a +iv
occurs at the boundary of the real axis. In this condition o is chanaing
from neqative to positive, as w increases (see figure 27). Substituting
a=0and p =iv gives:

K -Mv?+iv2B 2K, +iv2B, X 0

‘ 5 = (21)

2ny +|\)ZByx 2Kyy-—Mv +i\)28yy Y 0

Expanding this yields:

(2K -MvZ2+4iv2B ) (2K -MvZ+iv2B  )-(2K__ +iv2B_ )
XX XX YY YY Xy Xy

-(2ny+i\)28yx) =0 (22)

2 2, 2 i
(2K, MV (2K -Mv)-vT2B, 28 -2

K_. 2K —\)228 2Byx+
x yy Xy yX xy

V2B (2K  -Mv2)+iv2B (2K -Mv?)-iv2K_ 2B -
xx' yy yy ©xx xy " yx

i\)2ny28xv =0 (23)

Equating the real and the imaginary expressions to zero gives:

K 2K +(MvHZ-MuZ(2K 42K )-2K 2K
xx"yy xx “yy! TxyTyx

2
-V (ZBXXZByy—ZBxyszx) -0 (24)

and
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\)IZBX 2K +2

2 .
(2K 2B 2K MVI(2B 2B )-(2K, 2B 2K 2B )] = 0 (25)

Xy y X Y X Xy

writing v = yw where Y is the whirl frequency ratio (v/w) gives:

v B . K B
(r\xxw yy+KywaXX)_«XYwByX+ yxw xy) _ lez 2 _ < (26)
WB_ 0B ) 2 Y
XX YY
1 2 ] 2
(K__ -2Mv?)(K__-2Mv?)-K__ K
XX ) yy Xy _yx _ (‘_’)2 = Y2 (27)
w

waxw Byy—w Bxyw Byx

The bearing stiffness and damping coefficients are now written in
terms of the speed of rotation. They may thus be selected directly for any
qgiven operating condition.

To determine the whirl threshold speed, the procedure is as follows:

. Select a trial threshold speed w
Determine the corresponding bearing coefficients Kxx, Bxx, etc.

Substitute in equation 26, determine MvzraK

Substitute in equation 27, determine YZ

hd Calculate w2 from 2K /MYZZ‘”é,[ hence Weal
d Compare W al with Wirial® When DR this is the threshold speed.

Several trial calculations may be necessary before agreement is
reached. The cross plot shown in figure 28 facilitates convergence.

These equations may be easily programmed for direct solutions.
Values of the bearing coefficients must be supplied for each trial speed
assumed.

Rigid-rotor conical whirl stability threshold speeds may also be found
by replacing the mass term in the above equations by the "effective mass" M

acting at the bearings. As indicated previously, this is aiven by:
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v M2
Me(-) = lt_G lp" It—0.5 Ip =35 (cylinder) (28)

M (29)

i.e., the effective mass is one-third of the actual mass, for a rigid cylin-

drical rotor. Thus the term M becomes Me in equations 28 and 29, the value

of which is
2

|
(a, -21)/ (3 = 4(l, - 0.51_) / L2 [General Rotor
towp 2 t P Symmetry ]
Me = (30)
1 [Cylindrical Rotor].
3M

Instability of a Flexible Rotor in Fluid-Film Bearings

The above analysis may be readily extended to the case of a flexible
rotor in fluid-film bearinas. Consider the flexible rotor shown in figure 29
which carries two disks each of mass %M a distance EL apart, where L is the

rotor span between bearings. The system has mid-span symmetry, as

previously. Two disks are used in this example so that either the

3200 \
2800 \
2400 \

~
2000 F__._ B e S
2000 2459 7800 < 3200 “assumed

f ™~

Figure 28 Plot of Walc. VS-

16C0

w
assumed
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(c) Second instability whirl mode.

Figure 29 Flexible Rotor and Whirl Modes

translatory instability whirl mode or the conical instability whirl mode may be
obtained directly from the following analysis given by Lund [35].
Shaft bending deflection between disk and bearing due to forces F:

First mode: (Xl- X) =F_ _a_ tF

ax aa bxaab (31)

= | =
(Yl Y) Fayaaa + byaab (32)
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as Fax = Fbx = Fx' (X1 - X) = Fx (aaa + aab) (33)(34)
and Fay = Fby = Fy, (Y- Y) = Fy (o, * %py  (35)(36)
Second mode: X] - EX = Faxaaa - Fbxaab (37)
Y,- &Y= FayOLaa h Fbyo‘ab (38)
i.e., as above, (X1 - EX) = Fx(o‘aa - aab) (39)
(711 - EY) = ry(aaa - aab) (40)
Introducing the conventions:
£ a
First mode 1 a_ +o
aa ab
Second mode £ +
%a ab

we may write the following expressions which are valid for both modes:

(X, - EX)=F .o (41)
(Y, - £Y) =F .a (42)

The equations of motion may now be formed by recognizing that:

R
FX =3 f\.X.I (43)
BRI
Fy = 7MY1 (44)
Hence, —%aM;(]: (X] - EX) (45)
: . ]
_faMY] = (Yl -EY) (46)

The force balance at the bearings is shown in figure 30.
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. 1 B . .
First mode, 3 (X1 - £X) = Kxxx + nyY + Bxxx + Bny (47)
(forces)
1 ) .
~(Y,-Y) =K X+K Y+B X+B Y
a Y yx” " Cyy yx* T Byy¥ (48)
Second mode, F .EL=(K_X+K_Y+B_X+B_ Y)-L-=
X XX Xy XX Xy
(moments)
EL v py
3 ()\1 £X) (49)
F .EL=(K_ X+K Y+B_X+B_ Y)-L-=
Y Xy Yy xy YY
gL _
S (Y, - EY) (50)

Again using the previous conventions, the above equations for both modes

may be written as:

e ) )
E(XmX) =K X 4K Y4B X B Y (51)
EY-Y)=K X+K Y+B X+B Y (52)
a1 yx Yy yx vy

It is now necessary to eliminate X1, Y1 from the above equations. To do

this, substitute

X vt X = xel\)t (53) (54)

il
X

ivt

Y1 y,e Y =vye (55) (56)

into equations (45) and (46) and solve for XY g This gives:

_Ex _&x
X, = 1_1@.‘1\)2 = L1y 2 (57)
2 2'wn
gy &ty
Y, =1 2 = (58)
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where wrz‘ = 1/aM. Substituting equations 53 through 58 into equations 51

and 52 and cancelling the e'\)t on both sides gives:

é{_ix_-- gx}: K X +K_Y +ivB_ X +ivB_ Y (59)
a XX Xy XX Xy
-1
27
EL_8Y o eylo Kk X+ K Y +ivB X +ivB_ Y (6)(60)
“li-g? yx Yy yx Yy
wn

Multiplying through by C/W and writing:

1.v .2 1.v 2 wth,2 1 2
coceto2un) ce? alen) fon) _cg? 2V
T Wo 1,v .2  Wa 11,2, wth,2  Wqo 1 2
2GR 2GR Gn?) '-2(v3)

allows equations 59 and 60 to be written in terms of dimensionless stiffness

and damping ratios, as follows:

K - k+ iyB Koo+
X Xy Xy ]YB&y X : ¢ (62)
K+ ivB . - x+ iYB
yx Y yx }‘yy K IYByy y 0
where CK V= CwB =
kK= XX = = v XX = YB (63)
XX " w " xx s W XX
= CK = -
Xy = _:;.X 5 Xy = 52;& = YBxy (64)
K CK
yx = 7 yx veg - VG = v (65
w W Byx w ——k,‘u(' YBYx )
- CK. v - _ v CwB - a
- yy- y = X = Y8 (66)
Yy W w yy w —_Hly- d

and v = v/w the whirl frequency ratio, usually somewhat less than 0.5,

th’
and s - (wth), the threshold speed ratio.

wn
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Figure 31 Compressor Rotor

To find the eigenvalues of these equations, multiply out the determi-

nant of the coefficients and separate into real and imaginary parts, to obtain:

yywéxx) - (T(x wéyx + K xwéx )

~ - J_ Y Y - g (67)
wB + K wB

XX yy Yy X

K

(K__wB +
S5

X
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(K. -x)(K_ -x)-K_XK
2
XX _ _yy _ xZ yx _ y (68)
wB _wB +wB wB
XX Yy xy YX

These equations are of the same form as equations 26 and 27. They
ray be solved the same way, remembering that (a) the bearing coefficients

Rxx' ..etc. are speed-dependent, and (b) that k is given by:

2 lsy?
R (69)
Wo 1 - %(SY)2

Notice that C/Wa acts as the dimensionless rotor stiffness in either
mode (K).

As an example of the use of this method, consider the rotor
system shown in figure 31. A horizontal compressor rotor weighs
1000 Ib. and operates in 2 - 4.00 in. diam. x 2.00 in. long plain cylindrical
bearings. Bearing clearance is 0.0040 in. on the diameter. Oil of viscosity
22 cp. at 110°F and 4.84 cp. at 200°F is supplied to each bearina at the
rate of 1.25 gal/min at operating speed under 20 lb/in2 gage inlet pressure,
at 120°F. For these operating conditions the variation of the bearing
dynamic coefficients is as shown in figure 32. What is the whirl threshold
speed for this rotor in its bearings? At 10,000 rpm the bearing coefficients

are, for S =2.2, € =10.17:

K = 0.33x 10%Ib/in. wB__ =2.89x 10% bsin. (700 (71)
XX XX

K = 1.49 x 10° Ib/in. wB__ =0.61x 1% Ib/in.  (72)(73)
Xy xy
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-1.120 x 10° IbJin. wB 0.58 x 10° Ib/in. (74) (75)

yXx yX

K

0.59 x 108 Ib/in. wB 2.52 x 10% Ib/in. (76) (77)

K
YY YY

By substitution in equation 67

6 (78)
K = 0.445 x 10° Ib/in.
From equation 68 v% = 0.25, v =0.506.
Now 1 2
§2 3 (SY) 1
K = o 1-% (sy) (BN a=p,2) (79)

A separate calculation for W fives Nn = 8600 rpm. Note that this is the

critical speed for the rotor in rigid bearings, wnz = 1/Ma. Then:
=1
a ={ g%g) X (900)2} = 0.955 x 107° in/1b (half-weight). (80)

1
1 2
k= 1.045 x 10° . 2 0'555 >, = 0.445 x 10° Tb/in. (81)
1 - {9.256)s
“th
Therefore s = —— = 1,165 (82)
o
n
9,55 wth = (1.165)(8600) = 10.100 rpm (83)
Nth = 10,100 rpm. (88)

This is the whirl threshold speed. It could be raised, if required, by
(a) increased clearance (0.004 to 0.006 in.), (b) decreased bearing length
(2.0in. to 1.5in.), (c) increased oil inlet temp (120° to 140°) or by chang-

inqg the bearing type (tilting pad).
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Comparisons of Theoretical and Experimental Values for Threshold

SEeed

A computer program by Rieger and Thomas [36] to calculate the

threshold speed associated with the lowest instability mode gave good
correlation with results of previous work, e.g., Newkirk [1], Pinkus [2],
and Tondl [9]. Variation of the eight bearing coefficients was incorporated
into the program by curve-fitting the bearing coefficient charts.

Table 4 gives details of several experimental rotor-bearing systems
used by previous investigators. Using the program mentioned above, the

threshold speed was calculated for each of these systems. Where details

G (ib/in)

oy 1
: ' i oy : b - SR
z ; ; | i ! . |
s \ . | L ! . 3 ' ’ '
oA HiM R
1.0 10 3.1 1.0 10

Sorverfleld fiumber S = L‘:L—D wo? Sererfield homser § ¢ hit (2r00f

Figure 32 Plain Cylindrical Bearing Coefficients

were insufficient, e.g., descriptions of the bearing surface, oil supply
pressure, outlet temperature, etc., reasonable assumed values were taken.
Correlation of predicted threshold speeds with the experimentally observed

values was quite close in most instances, and within the usual range of
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practical threshold speed variation. It can be concluded that,where valid
data on bearing geometry and operating conditions are available, the
threshold speed of smooth-running rotors in fluid bearings can be pre-
dicted to within design accuracy by using linear bearing theory., Common
sources of prediction errors are: (i) viscosity variation, (ii) bearing

clearance, (iii) misalignment, and (iv) inlet pressure effects on the fluid

ROTOR SYSTEM PARAVETERS TMRESKILD SPEED

0 L c R L M Q] 1 ] Experi-e~t Cal.

Source . i In. N ss s RN Iy 57 R
Pinkys-1956 H 1 .0028 1 ol 9.425 R 2508 2 §00g-7e0 €203

Pinkus-1956 2 2 0025 1 82 9.425 46 g1ca 2 12,000 13,29
Newkirk-1956 H 1 .002 1 96 3.45 36 1658 '2 3378 hl o)
Newkirk-1956 H 1 .004 ) 9§ 5.24 36 180 2 Lridy (A
Newkirk-1956 2 2 .004 1 43 2.57 4?2 1580 2 215 2582
Tond1-1964 . 1.55 1.5§ .008 15 62.7 3.28 49 102 1.38 el 2852
Tond1-1964 1.85 1.55 .008 15 30.3 .25 49 2800 1.38 4520 453
R20-1970 1 1 .002 .5 8 1.7 2] 1580 .5 2222.4272 Lloen

Table 4 Details of Experimental Rotor Systems

Comparison of Threshold Speeds Observed and Calculated

film. Similar conclusions were obtained by Lund and Tonnesen [12].
Other computer proqgrams have been written by Reddi, Lund, Giberson
and Chang to investigate the stability of rotors in fluid-film bearings.

These programs are discussed in more detail in Chapter 1 of this series.

Conclusions
a) The conditions under which fluid-film bearing and shaft gas seals
may lead to unstable whirling of a rotor in its bearings have been

identified.
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b) Rigid rotors have been observed to whirl at speeds above 1.5
2.0 times the lowest system critical speed. The whirl frequency
for this class of rotors occurs at approximately half rotational fre-

quency. Whirl frequency increases with increase in rotor speed.

c) Flexible rotors have been observed to whirl at speeds above 1.5
~ 2.0 times the lowest bending critical speed of the rotor in its
bearings. The whirl frequency for flexible rotors occurs at the
bending critical frequency of the rotor. This whirl frequency

remains constant with increase in rotor speed.

d) The whirl threshold speed depends on the type of journal bearing
used. References are included to several investigations which
have ranked the different bearing types in terms of their sus-
ceptibility to whirling.

e} A variety of techniques have been developed and demonstrated
for the calculation of whirl threshold speed, and whirl preces-
sion frequency. The features of several proven computer pro-

grams for stability analysis have been reviewed.

f) Small-amplitude instability in which the whirl motions occur
about the journal steady-state equilibrium position has been
found to be accurately predicted by analysis in which the
bearing first-order displacement and velocity terms of the

forces alone are used.

g) Large amplitude unstable whirling of the journal within and
around the bearing circumference has been found to require
some procedure in which the Reynolds equation is integrated
step-by-step around the jouranl orbit, or some similar non-

linear approach.

h) Small amplitude unstable whirl orbits cannot be predicted by
linear analysis. Orbit studies involve some form of non-

linear analysis.
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i)

The major problem in prediction of the actual whirl threshold speed
lies in accurately representing bearing conditions in analytical terms,
in obtaining reliable bearing dynamic coefficients for the acutual

bearing geometry and oil film conditions.
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CHAPTER 2.9

EFFECT OF SUPPORTING STRUCTURE ON ROTOR DYNAMICS

Z.A. Parszewski

1 Introduction
Receptance. It is advantageous in many scientific as well as
industrial situations to treat corsidered systems (mechanism, machine
or its subassemblies as parts (subsystems) of a larger system. It may
contain, besides tne considered assembly, also other assemblies of the
machine, bearings, supporting structure, floor and tuilding and thre
environment in genera:.

Two tyves of vrotlems are important:

> In the first type of problem - tne influence of tre rest of the
system on dynamics of the given subsystems, is considered. "rese are

in particular the rroviems of flexitle supprort influence on machine

dynamics, and also isolation rrobuliems

envirormental {xirematic) excitation.

2. In the second Lype of provlems spreading of dynamic elfects form a
subsysten (from machine or its sutassemtly) to another part of the
svstem is considered {tc another subassembly of the machine, to otner
)

rachine or structure, ete.)
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These are hence problems of dynamic isolation of active objects. In
both type of problems at least two subsystems interacting dynamically
always exist.

A method of subsystems composition will be presented for finding
dynamic characteristics and vibration of more complicated systems
composed of simpler subsystems [1], [L4], [T7], [8].

Receptance methods is advantageous in those problems. Responses
of the subsystem along connecting co-ordinates are hence necessary to
harmonic excitation. These can be found experimentally if necessary
and hence the method can be also applied to systems difficult for
sufficiently accurate analytical description.

The rececptance matrix of the rank equal to the number of
connecting co-ordinates is sufficient for the composition of the sub-
systems considered. Tt gives not however a complete dynamic charact-
gristicsof the systen. Yor some other problem another matrix may be
required but corresponding dynamic model may be different as well.

The advantage of this metnod is simple possibility of finding
(measuring) these quantities without any simplifications and omitments
for complicated systems (eg. for the whole turbo-generator supporting
subsystem including casings, supporting structure, foundation and
ground).

To introduce the receptance concept let us consider a mechanical
system. It may be any continuous or discrete however linear system.
It may represent a whole structure or machine or any of its elements or

assemblies (Fig. 1).
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Let numbers j, %, denote the x,, x. co-ordinates ie. directions of

o x

displacements linear or angular in given points of the system.
Let an harmonic complex force act in the direction of £ co-ordinate
(Fig. 1).
iwt

FQ = Pie (1)

Vibration excited (in steady state) along the j co-ordinate (ie.
dynamic displacement at a point and direction designed with number j) can

be represented in the form

a ei(wt - B'i) where !z, | = a
SRS ! Fiet T R (2)
is amplitude of the vibrations, and argument Bji is the phase lag of the

displaccment with respect to the force.

z a ., .
The ratio ¢, = —4£— = j&i e lBjQ (3)
Jk E i
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does not depend on time. This ratio is a function of circural
-

frequency w of exciting force rzdepending on the system parameters only.

Is nence characteristic for the system.

For a system on one degree of freedon (Fig. 1 b or c) is
o = a = 1
Jx T Tst ,
/ 2 2 4)
/- W2 + . he w (
( a2 / ‘*;2 3.2
hw
o4 a
tgﬁjﬂ = tgg = 2 _i___7
x 1 - W
«? (5)
where = E or X = !
"‘ “xt Tk st k_
and u = K or o = ‘.S_ = /E 2h = S
' m /B B2 4T

For any linear subsystem continuous or discrete interacting with
some otlier subsystem along n connecting co-ordinates, the displacement

z, can be expressed by the forces FE as follows

1 \ 11 ‘12 "7 Cin 1

7 ‘21 %22t Cop 7

c R J
n { nl ne nn n

Here
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C]_,L C12 PP C-_]_n
€21 22 7t Cop
- .y
[e] = Ley,] = 1.
Cnl Cn2 PN Cnl’l

is the dynamic flexibility matrix or

receptance matrix.

Solving (6) for forces Fi we have
F,o= le )7 b = [k, iz ) (9)
J J Je
here
B . 7
k PN k !
11 12 n |
X K e kg |
21 22 2n
) . |
(k] = [x..] = = (10)
Jx . t
: |
K k cee k
ol n? nn_J
L_
is tre dynamic stiffness matrix of “he system for its
interaction along J, co-ordirates oi number n.
A4S an exampie let us consider a rotating machine ¥Fig. 2¢
composed of a ro%tor { ig.2a) and casing with supporting struciure
inciuded (Fig. 2b).
The connecting co-ordirates are four; directions g., G.» 3., 4
L I'd b “4
perpendicuiar to the rotor axis in the middle of the bearings v and «x.

b ne hest +tal os oo spordi + T . )
They can be besi taken ortiogonai (corresponding to surport symmetry

and egually orientec at cacn end

(Fig.

2).
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Receptance matrices will be:

for the rotor

e )} = [e_.J= ! (11)

k1 Swi2 CNL3 Syl
r,s = 1,2,3,h
For the supporting structure.
[C ] = [C J b r, S = 1’ 2’ 3’ L‘ (12)

Examples of the matrices elements are defined in Fig. 2

The receptance matrix elements are functions of excitation freguency
(and rotor speed in some cases) and are complex quantities when damping
is introduced.

They can be easily measured if not calculated.

In the considered case of machine casing with all supporting
structures (Fig. 2b) a rotary exciter {Fig. 3) can for example be

installed consecutively in each bearing with the exciting force directed

once vertically and next horizontally. For each exciter position (eg.
Pp2' Fig. 2c) dynamic displacements are measured along all the
connecting co-ordinates. The receptances are then defined as in

Fig. 2.
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Coing it at varicus excitation circular frequencies w and measuring
amplitude and phase, diagrams of the type shown in Fig. 4 are
ottained. Rotor receptances (Fig.2)
should be computed or measured
for the rotor free in space.
In case of measurements the
rotor may be suspended eg. on
ropes, so that its vibrations

are practically uninfluenced

by this constraint of very low
frequency. This is necessary

for the following subsystem

160 composition with the receptance
| method.

80+
% Alternatively, rotor on rigid
L

supports can be considered.

10 30 50
This has the advantage that
28 C32 ﬁm/N first approximation for the real
P ! system is in this way at once
.i obtained (as compared with at
12 + first meaningless free rotor
04 ! parameters).  Subsystem
10 35“_“35'"3&;"'2&5“;j&;‘“” composition is however with

that method somewnat less

straightforward (called mixed
Fig. 4ab
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C. method).
Recepl"aﬂce C32
180° 80 9/ 0°

2 Receptance lethod.

Receptance matrices are used
for both subsystems being
composed. [10],[11]
Displacements of the sub-
systems a and b (Fig.5a.c)

connected (interacted) along

n co-ordinates (Fig. 5c¢)

are in the form

fq_} [ca] P
Fig. 4c (13)

( ;
1Q, !
b

1
o
as

Corresponding displacements (ie. at the same points in the same

directions) for the system ¢ composed of both subsystems (Fig.5) are

The system ¢ may as well be a part of a larger system inciuding sub-
system a4 etc.
Composition conditions are

1. Bquilivriun conditions for the forces acting on tne whole system

. . . . N N [~
along the co-ordinates 5 connecting the oboiln suktsystems (Fig. 5)

- + 5 = [t (14)
“a c
e Continulity conditlons
rqa‘ = C_%." = Jr\.ﬁ (15)
(%) -
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c a ¢ a
T l T
% q(:z: ayCrll 965: Gen Yu QCZI Cicr; ‘Ics: Gen
V ‘ ! | ’P ’P | e P I 'P
R, ’22} F&rJ IZ;{ R, G fe [or | s | |len
b b
a. a q a
—— ot T T T
SR IR AREEEE
ars ars ﬂ ; /7////6/ )//Jf ///1///ff7
i(wtB ) (o Hwt- ) tw
:a- P-Q -e =q - brs P =:Q-€
brs%rf ors } 1@ Oos brsczarse * 4 bs QD’
b b b. b
Fig. 5 Fig. 6
Conditions (14) and (15) with (13) give thic expression of the

displacements {qc} of the whole system by the forces i¥ : acting on it.

<

“his hence defines the receptance matrix for the whole system.

e ] 1 SN

o = +

cq le,] L[ I+ le,] lc&lJ (16)
In the case of a rotor, lct us repeat, the receptances [ijkJ have

to be in this method found for the rotor free in space (Fig. 2a)

This applies always to subsystems which have no external constraints (from
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outside of the system considered), which, for example, gives *he
foundation for the supporting structure.
3 Mixed Method.

In most practica. cases it is the influence of tre rest of the
system on the dynamics of ore distinguished sutsystem, tnat is
considered. In the example given previously this distinguished sub-
system iIs the rotor and the influence of the flexibility of supporting
structure on its dynamics is considered.

It is necessary already on design stage of that subsystem (rotor in
this example) to find its dynamic properties even if some idealisation
of the rest of the system is necessary, eg. assuming its rigidity.

These properties give dynamic characteristics of the subsystem and at

the same time an approximation of the characteristics of the actual whole
system. In many practical cases, this approximation is finally
sufficient, when support flexibility influence is negligible.

This approximation may be unavoidable because of no information at
that stage of the rest of the system, eg. bearings often and supporting
structures always are designed and manufactured by another producer. It
is hence necessar: tc¢ use this type of characteristics for the subsystem
composition (Fig.6).

At the same time there is no necessity for finding an additional
characteristic. o the subsystem as free in space.

The nixed metnod assumes the description of the considered subsystem
a (Fig.6) with idealisation (assumption cf rigidity) of the rest b of

the systen. Cf necessity hence not in receptance form but in modsl form.
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Trhis is an agreement with general method of dynamic model extension.
Cn the other hand this also corresponds to the practical
cycles of design and manufacture, using the characteristics of simplified
system for the system extension and if necessary for introduction of
further influences. [5], [6], [7], [8]), [9].

Lssessment 1s at the same time obtained of this influence on the
rasic dynamic quantitites i.e. principal modes and natural frequencies
of the main subsystem (the simplified system with rigid supports). Block
diagram is for this method shown in ¥ig. 6a,

Tne btlocxk diagram for the subsystem b is as before. It is vetter
now to give its dynamic description in the form of dynamic stiffness
rmatrix [k].

(] = (et o = obrs -iB
o D brs Qb (17)

S

The subsystem a distinguished in this consideration (Fig. 6a) , the
rotor for example, is described with its modal functions fj fulfilling
end conditions of the subsystem a (Fig. 6a) corresponding to ideal
rigid support and with corresponding natural circural frequencies aj.

Then the modal functions Fk of the same rotor supported flexibly are
found by superposition of motion of the shaft as rigid body on its
vibrations with rigid support.

I'or one span rotor is

-4 Z ke
3 —+ F =+ T 18
k kl 2 Kz & 321 Bkj j (18)

(B

The composition conditions are now
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Lo (R} = (T ) (19)

Where Ta are shearing forces for the subsystem a.
2. The continuity conditions requires again the same displacements.

An example of application of the mixed method is given in chapter
2.4 for fluid film influence on critical speeds. Direct method is
applied in following examples.

For multi-supported muiti-discs or cortinuous rotor systems with
flexible supports approximate methods are more effected than those based
on the solution of vibration equation. Rotor is divided into a number
of segments and the mass of each segment is concentrated at its ends
(Myklestad - Prohl's Method) or in its middle (Finite elements method).
Deflections and internal forces for the segments far-end are expressed
by their values at its other end and a numerical procedure is applied to
fulfil given end conditions.

4 Myklestad-Prohl's lethod.
A method based on Holzer's approacnh can be used for calculating

transverse natural frequencies and principal mcdes for arny snhaft or bean.
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TINI7.

X X2 X3 o] N ST TS O B

Fig. 7b
The shaft is divided into i segments each of possible constant
radius (Fig. 7) and concentrated masses are located at the ends of
the segments. Flexible supports are introduced at each of the masses,
only those actually existing wiil however have stiffness coefficient kn
different from zero. This gives the possibility of introducing any
number of flexible supports (tearings) and simplifies programming.

The deflections and forces at the n + 1 cross-section are expressed

by their values at the n section (Fig. 8)
2 3 L
v — . Xn+l e 1 Xn+1 - Kn+lYn+l
el Tt N e Mt EET L Th T 3R]
n “n+l n+l “n+l
2
o e ey L mtlg
= N 5
n+l n EJn+1 n EJn+l n
(20)
h = N + T
Mn+l Mn Xn+l ln
T =T +nm a2Y

n+l n n+l" “n+l Kn+lYn+1
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y Sending moments HO, *,, @nd shearing
-t
Mps S’"' . N
e - forces To’ T.. are xnown at the shaft

R

ends. Using eguations 8 ané
moving from segment to segnent,
everytning is expressed bty the

deflection Y and deflection angle
o

éo at the starting shaft end.

£ventuaily also TN and M.. are

N

expressed but these are vanishing,

Mn KneTner hence, the following equations are
<::; obtained.
7h T o= A5O + BYO =0
— s K
X (21)

]
«
o

+
&)
<

1}
O

Fig. 8
Two cycles of computations are required for finding the coefficients
A, B, C, D values corresponding to each frequency «

The end conditions for x = o are for the first cycle.

The coefficients are hence

A = (T::) at 60 =1 C = (:-::I) at 60 =1
Y =0 Y =0
o o (22)
= ) = N = h =0
B=(T.) at s =0 D (L.:) at 8
Yy =1 Yy =1
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The above coefficients are functions of frequency a. Equations
(21) can give for 50 and Yo non zero solutions only when their
determinant vanishes.
(23)

a(la) = AD - BC =0

—_ ‘W _Mn
DATA L= :g_;
READING & P/-?OCE.SS/NG;
comput for

]
Put W =e, Wosw oy,
' H, 'aCCuracy
puf L/=O)' L3=O H _‘sfep
1
Main comp. cycle
Y, §,M,T
! Interpolate
comp LZ new o " ‘
‘ value
L 4 L3:0M0
| NO
YES
Y, Put
11+12<0 £ L3L:12 YES
0 comp. modes
Put LI-L2 P
comp. reaction RJ-
Put NO i
w=w+H % "I Print
YES Dir , Rj
/8, - mode
Iy 9 s Moy T
Put
— w=wt+0IH ‘ NO w)wko
YES
STOP

Fig. 9
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Its roots ai give the natural circular frequencies of the rotor. Its
principal modes are described by corresponding deflection Y.

The method is convenient for programming for computer.

Flow diagram is given in Fig. 9.

An example showing support flexibility influence on consecutive
four modes and corresponding natural frequencies, for a shaft shown in
Fig. 10 is given in Fig. 11 for first mode, Fig. 12 for
second mode, Fig. 13 for third mode and in Fig. 14 for the

fourth mode.

!

p i - e —
rQ ol ) o S Sl T
Ry N 3 3 3 <
300_| . 500 300 | 300 500 300

10 21 22 2324 25

1234587 83 19 .5145161781920 227282930
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Fig. 14

The consecutive modes for the shaft supported rigidly are repeated
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in Fig. 15.
5 Rigid Finite Elements
Method.

Specially convenient for

programming and applications for

interconnected rotor systems

(with couplings) on flexible
supports is the following

- A approach developed by J.
A -7/%\/@-39/ T PP P y

Skoraczynski [11] and based on

st . .
o~ w=720 Kruszewski's considerations [12].
‘ 7 4 The given rotor is divided

into sufficient for necessary

. =~
A 2 Vi accuracy, number of segments of
constant cross-section (Fig.
(16a). Each section is then
Fig. 15

modelled as composed of two rigid
parts connected by spring elements modelling bending and shearing
contributions (stiffnesses) to deflection (Fig. 16b). Bending and
shearing connecting springs stiffnesses are defined in Fig. 17.
Equivalence of both actual element and its model requires equal
displacements at equal forces. This gives for the bending spring

(Fig. 17 a and b):
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li-1 [/ a'

[1"/

——
X
Fig. 16
Hili Mi EJi
§ . =————=6 . =%—= hence .= — (24)
ri QLJi zi kMi le Ri
and for the shear syring (Fig. 3.9.17 c, 4)
Tigi Ti GAi
= = = 1/ = —
Yri T GA, Ypi T g hemee Ky = e (25)
1 Ti 1

The rotor element between two connecting elastic elements is
considered rigid and its mass is represented as a disc of mass mi
and moment of inertia Bi with respect to its diameter. A system
presented in Fig. 16¢ is hence obtained.

Each of the rigid elements may be supported flexibly (Fig.16c)
at a given position, with only the actual supports having stiffness

KK different from zero. In this way complete syrmetry is obtained
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that gives simplest programming

li
M; M; for computer analysis.
Ml La ! i
4 e - grange's equations
CE=—=""1 S’i'm
M; & Gt gy T O
t - Ml vy yl
L - . - L
E Flkme | &z 2Kni .
S (5) v = 0
« *
2 a.b. at "9d, N
T K :I__ TL with the energy expressions for
= ) L 6 GA
T ¥ Yr; Tl the described system of rotor
L - — .. l,- ¢ bl
re e
. y Lt GA,_ elements,
Q
yz'
L — ] L -
T4 —f= A I ny° B6.°
yZL’k E = z 171 + 1 1
kr T oy 2 2
c.d. )
-1 M (8,,,-6,)
V= 1z +
Fig. 17 i=1 2
Kpi (y. o -x,. o 6., -y, - x_.6.)° K K (y +& %)
.\ i+ T X+l Ce1 T8 T Tricd . p xk K%
2 k=1 2
(27)
give the equations of motion in matrix form
Mz + Kz = 0 (28)

with the elements of the matrices of the form
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mjo o oo o]
O 0 O O
n:oo'Eo o 27| ¢
O 0 0 " O
O O O O'MI’,J g:
o o o o
o] O 0 O
K:| O O |k ulK.|k.O O
O 0 O o
O 0 0O O J

“Kpia “Kpio1 ¥pia1
Ki i1 =
-
- +
1-1%91 Mmicy T Fpio1¥rio¥u

-
fri * By Ky Kpioa¥es ¥ Kpi¥eg * Kpi%
=
Ki’i | + + + x2, + x2 + x?
Lle 1%01 r1 r:L K‘P1 i kMi-l kMi kTi—l i kTi ri KPi i

_[ Kpi o Xgie1
i+1 xri

Lle ri Kyg *Kpy %y

,i+2
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Vibrations in principai modes are harmonic
z = A sin at (30)
Hence principal modes and natural frequencies are given by the equation
(1a2 - M%) = 0 (31)
There are handy methods and computer programs for finding the eigen -
values (natural frequencies) of equation (31).
6 Interaction with Real Supporting Structure.

To introduce the influence of real casing and any supporting struct-
ure of any mass distribution (Fig. 18) dynamic stiffness kkp(w) is

nececsary.

a.

| Yxe
,Xp i Xk

ey r—]
Fig. 18

The stiffress matrix along the connecting co-ordinates (at the bearings)

is inverse with respect to the receptance matrix (see 1)
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The last one can always be measured if not computed as it was explained
in 1. The elements kkp(w) of the stiffness matrix are hence known
as function of circular frequency w.
Receptance for the rotor free in space (Fig. 18¢) can be
computed with all the Kk = 0.
With harmonic excitation

Pp applied to the element p at xp giving

will be the receptance

displacement ykp of element k at Xy
e = lkp
k P
P P
Then kkp is the kp element of the matrix [kkp] = [ckp]-l
Connecting equations are hence
gl ) * K] ) =0 (32)
r r s s
with {yy b, =ty )y
Equations (32) replace now previous equations (31) .  Their

dgenvdues depend however on the assumed frequency and/or rotor speed w.
Critical speed can hence be found by repetitions leading to w » a.
7 Water Feed Pumps Vibrations and Corrections Analysis.
Final element method, described in the point 5 was used for
follow-up analysis of water feed pumps vibrations elimination problem.
Not all the system parameters were known, hence it is the
effectiveness of the applied remedy that is the analysis object rather

than the actual speeds or frequencies.
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Fig. 19
The pumps, (eg. Yalourn W2 (Fig. 19) ), developed severe

vibrations of over 20mm/sec at working speed of around w = 630 rad/sec

and all went out of commission. External sealing were damaged. Second
critical was responsible. Exchange of the flexible coupling (Fig. 20)
between the pump and gear box, for another of about half the mass, lowered
the vibrations, ih all cases, to the level of 3.5mm/sec. This was
achieved however after long periods of test trials and errors by many

home and overseas experts.

The following shows how easily

o |7
¥ \} . . .
N the analysis applied in advance
ZN\ NN\
/422;;; could have saved corsiderable
T — numbers of menhours and could have
777778 o
: /? Z given increcased numbers of nmega-
A N
E AN A watts-hours.
%N\

The pump cross section is

g, 20 shown in Fig., 21 . Dimensions
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Fig. 2
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TABLE
ASSESSED ASSUMED
o| MoOss moment of ; 1108 Nm )

N? kg - |inertia kgm Stiffness of the |kn*!' m/rd

/ 60 05 coupling membranes |k, =1 /09N/m
pump 2 60 0.5 Bearing stiffness  \kkyk K, 210N /m

> 60 05 Working speed w6305

4 60 0.5 . -

5| 25 0.1 E 0206 10"°Njm?
wupling 2 100 0.4 6 081423,,0””/”’2

7 25 0/ - -
gear 8 | 40 0.2 L 775 10%kg/m

No | masskg TN e | S i imess wm
;137 | 00ns 01647107 01154 10'°
2 |289 04467 05446107 0247310'°
3 |8/.8 0. 6626 01264 108 05744-10'°
4 {731 05263 0.1264 108 05744-10'°
5 731 0.5273 01264 108 05744 109
¢ |87 ) 06798 05408107 02465109
7 (37.1 0.6062 03639 i07 0.1673-10'°
8 46 9 0.3972 1-10% 1109

g lioo 04 /106 1109

0 320 01413 03167 107 0.2219 109
1olir4.2 0.0804 03167107 0.2219-10'°
12 |54.2 0.2807 0.3167107 02219 10'°
13 |14 2 00845 03167107 02219 10'°
14 171 T Tooroo Z -

Fig. 23
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and masses assessed from that drawing are given in Fig. 22 and the
table. The table gives also assumed values.

The final rigid element model is shown in Fig. 23 together with
the table of values.
Results: Computed first three principal modes and natural frequencies,

for the system with heavy coupling (i.e. before correction) are shown in

Fig. 24 together with approximate mass distribution of the coupling.
\/\A\/ i ; x * A
Frequency =28705 rod/s 1216 48
| 205 [ 25 0/
D ‘§ 6 | 100 04
- = KN _ e e
© 17 | 25 0.1
662 69
Fig. 24
-_x A A K‘
- U [ S
Freguency = 288.53 rad/s 1228.61
f_'" O ] © No | 'ﬁqus lmoniW
N 5 12 I o005
. . 2 6 496 | 0.2
R N e —
NSNS [T 7 005
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106
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021
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1 »
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¥ + + ¥ -+ i + + + —— + + + o
A-108 o, 500 X2 1000 oy s
7— “
/\ —
Isin630t N
I !
/| /
71\ y
\—//
o, 1000 da s
Fig. 26
Second critical is close to working speed. Corresponding modes and

frequencies for the system with the light coupling (i.e. after correction)
are shown in Fig. 25 with the assumed mass distribution of the
coupling.

Second critical was increased by 30% and lies at a comfortable
distance over working speed. First and third criticals were hardly
changed. Resonance diagram for the coupling (element No.9 in Fig..J3)
before (diagram a) and after correction (diagram c) are given in Fig.

26. Kotor response to unit imbalance of the coupling at working speed
is shown in Fig. 26b ©vefore (continuous line} and after correction

(broken line).
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CHAPTER 2.10

DYNAMICS OF MACHINE FOUNDATIONS INTERACTING WITH SOIL

L. Gaul
O. Mahrenholtz

1 Introduction

A method for calculating the global three-dimensional dynamic re-
sponse of machine foundations interacting with subsoil and excited by
rotor unbalances is presented. Fig. 1 shows a low-tuned steel foundation
with a concrete raft. The light upper steel plate on flexible columns
has the advantage to minimize the amplitudes of shaft whirling relative

to the bearings.

Formerly, high-tuned concrete foundations were dominating. Now, all
foundations - except some special cases - are low-tuned. This development
is influenced by the need of space for auxiliary aggregates below the

foundation plate.
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Fig.

1

Low-tuned steel foundation with concrete raft ;1!
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Dynamic response results primarily from rotor unbalances, short
circuit moments, shaft misalignment and seismic excitation. A dynamic
analysis shall predict the amplitudes of vibration. The contents of the

present contribution on this subject is listed below:

‘0 Analysis by
- direct method

- substructure method

o Substructure behavior of
- frame foundation

- subsoil

o Lumped parameter model of soil

o Response of frame foundation
- on subsoil
- on piles and subsoil

- interaction between adjacent structures

2 Analysis

Soil-structure interaction analysis based on the direct method treats
structure and soil in a combined analysis. Discretization by finite ele-
ments is used throughout (Fig. 2). Due to the halfspace geometry of soil
the analysis is restricted to plane and axisymmetric problems. At the
lower rigid boundary undesired reflexions of waves generated by the struc-
tures occur trapping the enerqgy in the finite model domain. This leads
to errors in the response. The so-called geometrical damping due to three-
dimensional wave propagation can only be approximated by viscous dashpots

in a plane model.
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Fig. 2 Soil-structure model of direct methad

The substructure technique presented here provides solutions for
three-dimensional displacements of structures which are of importance
concerning machine foundations [3]. The substructures are machine foun-
dations and soil (Fig. 3). Dynamic stiffness matrices describing elastic,
damping and inertié properties of the substructures are evaluated sepa-
rately, thus reducing the number of degrees of freedom. In a second step
the substructure matrices are coupled at the interfaces between soil and
base plates shown in Fig. 3 by continuity conditions of displacements

and by the reaction principle of generalized forces.
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1]

////,f—"

Fig. 3 Soil-structure model of substructure method

3 Substructure behavior

To evaluate the global vibration behavior of a frame foundation a
simplified model (Fig. 4) is treated. This substructure consists of a
machine on the upper plate excited by inertia forces of the unbalanced
rotor. Upper plate and base plate are connected by viscoelastic columns.
The halfspace reactions are reduced to point B of the interface. The
motion can be described by six displacement coordinates Vis Uy and the
six angles describing small rotations ¢i and 05 of upper plate and base

plate, respectively.
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Fig. 4 frame foundation on halfspace

The linearized equations of motion for small rotations are formulated
by the Newton-Fuler approach (Table 1, egs. (1) to (5) ). For
example, tuler's law for the upper plate contains inertia terms on the
left-hand side. The coordinates of the inertia tensor I[i)j correspond to

point D. M is the mass of upper plate and machine. The right-hand side
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contains, as 1indicated in eq. (1) the moment of excitation and the
moments of the column reactions. Eq. (2) gives Newton's second law:
Mass times acceleration of the center of gravity equals the resultant of

the force of excitation and column reactions.

The column reactions are related to the generalized displacements

by the dynamic stiffness matrix [K]aof column @ , eq. (3)
Uppen plate
o . c .. 8 “ o F Sy D
Ii‘j CDJ + M ei_jk r\j v = —Ofl(eiJ.k rJ. Pk + Mi ) o+ T.l exp (1wt) (1
c B a r
M( v T %) = _a§1 P+ K exp (iut) (2)
- a -
Columns M S\ X P !\j"f
lS 71 o4
P. u,-e x %
i - ik -Jf) 1 “lmn "m  "n o (3)
il .
” rl
i )
P “17€1mn Tm n as /\ o a Q
O T\
[ ] []
Ae 3
LW
_ M.
Jase plate
. : . 3 83 4
mu.-e. ., x. ¢ =z = Z P.g-FvB (4)
gk gk =1 1
A c < X LI B 0 B.
> = -z , P+ M) . ; ) 5
i ™ Cigk X T Lo Tk P M- e xR )

fable 1 Frame foundation, equations of motion
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Analogous to the equations of motion of the upper plate, those of
the base plate are given in egs. 4) , (5) . The inertia, damping
and elastic forces are combined in a dynamic stiffness matrix correspon-
ding to time-harmonic motion. This describes the substructure behavior

of the frame foundation.

Now, the substructure soil is treated. First, rigid base plates are
modeled, later on the generalization for flexible plates is explained.
Fig. 5 shows the free body diagram of halfspace surface. The plane inter-
faces are excited by forces and moments generated by the superstructures.

Compared to the direct method, the halfspace is not discretized in depth.

Fig. 5 Mixed boundary value problem for soil

The interaction is formulated as a mixed boundary value problem of

continuum mechanics. The field equations of soil are integrated:

- displacement boundary conditions are prescribed at the interfaces
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- a stress-free surface 1s required elsewhere.

Rigorous formulations of mixed boundary value problems by dual integral
equations restricted to simple base geometricies can be given {2,3].
Here, a superposition method provides solutions for arbitrary shapes of

base plates and allows for taking flexible base plates into account.

4 Lumped parameter model of soil

Arbitrary shapes can be modeled by subdividing the interfaces into
rectangular surface elements. The continuous stress distribution in the
interface is discretized into constant pressures in one element, acting
harmonically in time (Fig. 6). Each loaded element defines a stress
boundary value problem of the halfspace. To bound the influence of shear

stresses in the interface
- a perfectly smooth contact where the shear stresses vanish
- a welded contact where the inplane displacements u, v vanish

are assumed.

Analytical solutions of both boundary value problems leading to dis-
placement influence matrices are obtained then. One element of this matrix
gives the displacement in the middle of element Kk due to the loading of
element £ (Fig. 6). The total displacements are found by superposition.
The displacement boundary condition is locally fullfilled in the center
of each element. It requires plane interfaces of both bases. This super-
position converges to the rigorous formulation with decreasing size of
elements. Additionally, the resultants of the interface stress distri-
butions must be equivalent to the halfspace reactions (forces Fz and

moments M , M ).
y' o x
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Fig. 6 Dynamic interaction of base I - halfspace - base II

The dynamic interface stress distribution as well as the relations
between halfspace reactions and generalized displacements at the inter-
faces are evaluated, leading to the dynamic stiffness matrices of the

substructure soil.

Flexibility of the base plate can be taken into account by subdividing
the plate into finite elements and coupling nodal forces and displacements

with the halfspace.

The solution of the stress boundary value problem of one surface
element of the interface is given below (Tables 2-4, eqs. (6) to
(20) ). Compared to elastic halfspace theories a better approximation
of the rheological properties of the soil is given by using the theory
of viscoelasticity. [ turns out that energy dissination in the soil by

material damping is of considerable influence when the geometrical damping
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by wave radiation is small, especially in the case of rocking motion.

The constitutive stress-strain relations of hereditary integral
type express the dependency of the stresses in viscoelastic media on
total history of strains with fadirng memory property of materizl (Table
2). The fading memory properties can be measured by relaxation functions
of shear G(t) and compression K(t) corresponding to the deviatoric and
the hydrostatic states of stresses and strains. Newton's and Boltzmann's
laws lead to the coupled viscoelastic eauations of motion in terms of
displacements u- These can be decoupled by a decomposition of the dis-
placement field into two wave equations describing dilatational and

rotational motion. A completeness theorem is given in [3].

Steady state harmonic motions lead to reduced wave equations descri-
bing complex amplitudes of cilatation and rotation with the frequency
dependent complex moduli of shear G* and plane dilatation EB instead of
the relaxation functions (Table 3). The solutions of the wave equations
describe dilatation and shear waves. The displacement field and the
stress field are superimposed by these solutions. The complex functions
of integration A, Bk have to be determined by introducing boundary

conditions.

The stress boundary value problem is solved by superposition of
basic harmonic solutions (Table 4). These basic solutions correspond to
an exciting stress wave at the halfspace surface. The halfspace response
is a vertical displacement wave. The amplitude and the phase behavior
are expressed in the complex wave compliance equating the complex dis-

placement amplitude to the complex stress amplitude.

ﬂS:ﬂD:U) as

far as welded contact at the surface is concerned has a pole when the phase

The compliance corresponding to the elastic halfspace (

velocity of the stress wave v equals the shear wave velocity Vg
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Constitutive equations

t de. (1) t dg , (1)
s;(t) = 2 Glt-1) 5= dt g, ()= 3_£}K(t—T) gékk dt (6)

Equations o4 motion Lor viscoefastic continuum

t 4 auJ ji t aum 1
:; (K(t-1)+ 3 G(t-1)] 377 4T - ® ik eklm_{)c(t—T) 37 dt +of (b) =
Ep(t-1)
aui(t)
= 0—7 (7)
3t

Comp’eteness theorem: Decomposition

ui(t) =@ i(t) + e, (t) (8)

, ik Y, j

decouples equations of motions in wave equations

tEp(t-1) 30 | (1) 37 p(t)

_i 5 = dt + F(t) = 5[7 , Dilatation e(t) = @,11(t) 9)
LG(t-1) 3y, (1) 3, ()

J ! dt + Lk(t) = > Rotation 2 u;k(t) = -y ll(t)
-® P at a1 ’

(10)

if constraint condition t'Jk k(t) = 0 is satisfied

Table 2 Field equations of halfspace
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Haxnmondc motion ui(xj,t) = Gi(xj) exp (iwt) (11)

Reduced wave equations

2

g R " pw =
ot Egr(w) © 7 0 © 1 Y e Ykt 0 (12)
Putd > n -
Solutions Re(aS,D) 20, w Kok © 0
(13)
€ = A expl Dz+i(8x+Yy)] u_)k = B, exp[—asz+i(8x+yy)
Displacement §4e’d
Gp=-8 +2e, B =0 A8 (14)

Strness fefd

G.. =1 iw) - i)l U 5. i u. . ... =0 )
OiJ _ED*(lw) 2 G*(iw)] U e . + G*(lu)(ui’J+ uJ’l) Oi\j(A’Bk’

Table 3 Integration of field equations
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w
Stress wave at surface z=0, v = 212
(B “+Yy7)
(16)
-0, 0ay,t) = plxy,t) = p(B,v) exp [i(Bx+yy+wt)]
excited d{splacement wave
wix,y,t) = H:’V(B,Y,m) p(B,Y) exp [1(Bx+yy+uwt)] (17)
weve compfionce (welded contact u=zv=0)
2 2
v v
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RyLE L L s D 18)
w 5 Gkg ) v 2 l 1/2
[(v_) T1+in ]
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Supenrposition: Fourier's integral
pOGY) = o S p(B,¥) exp LilBxeyy)] dB dy (19)
_ 1 ros,v T2 -
wix,y,t) = 7y o4 H (B,Y,w)¥ “Ip(x,y)] exp [i(Bx+yy+wt)] dR dy
(20)
y - p(x,y)exp(iwt)
Il‘\
X
w

Table 4  Solution of stress boundary value problem
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Smooth contact leads to a pole when the velocity equals the Rayleigh
wave speed Vg - In order to obtain the exciting stress distribution shown
in Table 4 on a rectangular element, stress waves are superimposed by
double Fourier integral. The corresponding displacement field contains
the fourier transform of the stress field and the wave compliance corre-

sponding to either smooth or welded contact.

As the elastic halfspace due to the poles leads to undetermined im-
proper integrals, it is complicated to perform a numerical contour in-
tegration in the complex plane after choosing Cauchy's principle values
of the integrals. Gaul {2, 3, 5, 6] had the idea to integrate the visco-
elastic field equations in a direct manner without using an elastic-

viscoelastic correspondence principle.

The reason is obvious: real and imaginary parts of the complex wave
compliances corresponding to smooth and welded contact show finite reso-
nant magnifications instead of poles (Fig. 7). The compliances are plotted
versus the ratio M of exciting stress wave velocity to shear wave velocity.
The integrals are no longer improper with respect to the inteqgrant and
can be integrated directly. Pointwise evaluation of the displacement field
w{x,y) gives the displacement influence matrix to be used for the super-
position method. It may be mentioned that welded contact leads to reso-
nance condition at the shear wave velocity, smooth contact at the slightly

slower Rayleigh wave.
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Fig. 7 Halfspace compliance. Excitation by a stress wave
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Fig. 8 Types of elastic waves



Dynamics of Machine Foundations . . . 299

Characteristic displacement fields of waves generated in homogeneous and

two-layer halfspace are shown in Fig. B.

*
X M,exp (iwt)
\g y €xp Halfspace

: reactions

Halfspace
mode

fFig. 9 Lumped parameter model

The results of the analysis can be used in practical problems with-
out detailed knowledge of the mathematical background. The dynamic stiff-
ness matrix of the substructure soil leads to simple lumped parameter
models of soil consisting of springs and dashpots in parellel correspon-
ding to each degree of freedom of base motion (Fig. 9). The equivalent
spring and damping coefficients . dZ of the soil model for vertical

vibration of a rigid square base versus a dimensionless frequency a, are
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olotted in Fig. 10:

- the frequency dependent spring describes restoring as well as inertia

forces,

- the damping coefficient describes geometrical damping.

8 T T T T T S T T
\--\\\\ /CW dz _——"———_-
d \\\ ”””
c =TT TN
C —— \\ z
/’/’ \\
6 - N -
|
| Smooth Contact \\\
i ~——— Welded Contact 3
~
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| v = O 4
Viscoelastic Halfspace b .,
Kelvin-Voigt Model ?
oL =01 B /E, =2 c -
b4
2b X
2a
y
1 1 i 1 1 1 1
0 05 10 15 d, 20

Fig. 10  Equivalent spring and damping coefficient; vertical motion of
a rigid base

Both parameters depend on material damping. The influence of the
contact boundary conditions (smooth and welded contact) leads only to a

small difference with respect to the parameters of the halfspace models.
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5 Response of frame foundation

Now, the substructure soil and frame foundation (Fig. 1) are coupled.
The dynamic response of a concrete frame foundation with very stiff
columns is shown in"a ‘imited frequency range (Fig. 11). It is excited
by an unbalanced rotor. The amplification functions describe the ampli-
tudes of horizontal displacements vy and u) and vertical displacements
Vs and Uy of the upper plate and base plate respectively. The coupled
rocking and sliding motions give raise to two resonant conditions indi-

cated by the horizontal displacements.

The corresponding eigenmodes are shown in Fig. 12. The horizontal
motion is strongly effected by material damping of the soil because the
dominating rocking mode causes only small geometrical damping. Contrary
to this, the vertical motion causes strong wave radiation shown by the
small resonance magnification. Hence, the influence of material damping

is negligible.

Fig. 13 displays results of the interaction between two adjacent
structures through the underlying soil. Foundation I is excited by rotor
unbalances. Foundation II is not loaded. The dimensionless amplitudes of
vertical displacements in the middle of the foundation are plotted. The
maximum amplitude of the nonexcited structure arrives at one third of the
amplitude of the excited structure. The influence of small and high mate-
rial damping is indicated comparing the full and dotted line correspon-
ding to different damping factors of the constant hysteretic model of

viscoelasticity.

Additional information about the dymamic loading of soil and base
plates is given by the stress distributions in the interfaces. Fig. 14
shows the adjacent bases loaded at a certain frequency by forces and by
moment s TX and Ty acting with a phase shift of a quarter of a period of

excltation. When the exciting forces reach their maximum the pressure
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Fig. 12 Vibration modes of frame foundation on soil
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distributions are governed by the real parts of complex pressure coeffi-
cients. A guarter of a period of excitation later, the moments reach
their maximum, Then, the imaginary parts govern the pressure distributions

with singularities at the boundaries of the loaded rigid areas.

Aboul-Ella and Novak [4] analyzed the dynamic response of turbo-
machinery frame foundations supported by piles or a foundation slab. They
investigated interaction of all components of the system, i.e. flexible
rotors, viscoleastic oil film, space frame, flexible mat, piles and soil
(Fig. 15). The mat is composed of rectangular finite plate elements. The
pile and soil resistance is included into the mat element stiffness matrix.

The complex soil stiffness matrix is obtained from Gaul [5].

SHAFT DISKS
} \
i | R | i e § i
IN JOURNAL
BEARING ' .

'}~ SPACE
FRAME
(]

OiL FILM — T[ JIlL? _ -% _

T g i

Fig. 15 Turbomachinery frame foundation and its model (4]

In the study of Aboul-Ella and Novak special attention is paid to
the effects of soil-structure interaction. It was found that this inter-
action markedly affects the response of the frame as well as the rotors
in the lowest resonant regions. The interaction reduces rotor and frame

amplitudes. This results from the increase in damping due to energy
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radiation in the soil and viscoelastic behavior of soil and mat. The

interaction reduces the frame vibration more than the shaft vibration.

E.g. Fig. 16 compares vertical response of frame under bearing
pedestal corresponding to a rotor on elastic frame and rigid foundation

with a rotor on elastic frame and elastic foundation.
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PART III

BALANCING OF FLEXIBLE ROTORS



CHAPTER 3.1

BALANCING OF FLEXIBLE ROTORS

J. Drechsler

1 Historical Background of Flexible Rotor Balancing Techniques

When discussing flexible rotor balancing from an historical point of view, we can make
out three classical development lines, mainly the modal theories developed by Bishop and
Federn in England and Germany and the influence coefficient method developed in the
USA. The classical papers on the modal balancing were published by Federn (1) in 1957 and
by Bishop (2) in 1959. Papers on the influence coefficient approach were published by
Goodman (3) in 1963, Rieger (4) in 1967 and Tessarzik, Badgley and Anderson (5) in 1971.

If we look at the modal theories first, we notice that the only important differance
between these two theories lies in the number of balancing planes, that the authors claim to
need in order to balance a flexible rotor correctly. Federn claimed to need (N + 2) planes,
N being the number of vibration modes that the rotor experiences on the run up to
operating speed. This approach is logical in an historical and practical sense, when applied to
heavy rotors which are relatively stiff compared to the stiffness of the bearings. Such rotors
had to be balanced in two planes even for running speeds long below the first critical speed.

For rigid rotor balancing rather sophisticated balancing machines were used. These
balancing machines had a well defined bearing stiffness, so that it was possible to calculate
the acting bearing forces from the measured vibration amplitudes due to the initial
unbalance. Now the objective of balancing was to cancel these dynamic bearing forces P,
and P, by the influence of balancing weights on these bearing forces according to the
equations (1)

"
o

P, + h”sz]rl + hlzﬂzm2 r,

"
o

2 2
P, + h), Q°m o + h,Q m,r,
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In these equations the complex bearing forces have been measured as well as the rotor speed
€ , and the influence coefficients h,, are functions of the rotor geometry only, thus the
complex balancing weights m, - r; can be calculated by merely solving the above equation
system. Electric circuits have been developed for the on line solution of this system.

As rotor constructions were reduced in weight and operating speeds increased, the
operating speeds gradually approached the first critical speed. This eventually called for an
additional balancing plane, because the rotors developed a new degree of freedom as they
approached this critical speed, see figure 1. The practical problem was, not to upset the
attained state of balance for the rigid body modes, and at the same time reduce the
vibrations caused by the first flexible mode.

]

Fig. 1: Weight groups for rigid body and first flexural mode

It is intuitively obvious, that the weight distribution (1 — 2 1) exerts neither symmetric nor
antisymmetric forces on the bearings at low speed. It can thus be termed a prebalanced
group of balancing weights. Gen'eralizinq this approach for N critical speeds within the
service speed range, this naturally leads to the N + 2 theory.

If on the other hand the unbalance response of a flexible rotor is to be studied on a
scientific scale, a light weight experimental rotor in relatively stiff bearings will be designed,
because this is the most economical, most practical and safest solution. Such a rotor does
not have large bearing vibrations at low speed, which necessitate rigid body balancing. Only
in the vicinity of the first rotor critical speed the system will display large vibration
amplitudes, which call for balancing. In this case one plane will be sufficient. As even higher
critical speeds are negotiated, one additional plane is necessary for each new critical speed,
which naturally leads to the N-theory. But as we even in this case eventually have to take
care, not to upset the state of balance attained for the low order criticals when trying to
balance higher order modes, we have to work with prebalanced groups of balancing weights
here as well.

As digital computers became available, the so called influence coefficient method was
developed in the USA. The basic concepts for this method can be developed from the
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equation system (1) . Supposing we do not know the stiffness of the bearings, we can
calibrate the relation between the vibration amplitudes at the bearings and the applied
balancing weights by applying test weights. The basic procedure is summarized in figure 2

Run 0 1 2
Testweight P, 0 1 0
P 0 0 1
2 wy» a3y u; complex
p: plane
Response L, Wi W, W,

_ L: bearing, measuring station
=8, Lz Wao Y Wi & J
Influence —wrwy =ay
Equation Wio . a, a, ul 0

20 a3 2 U, 0

Fig. 2: Basic procedure for influence coefficient balancing

This procedure can obviously be extended to an arbitrary number of balancing planes
and an arbitrary number of measuring locations. As the vibration responses are dependent
on the rotor speed, we can even increase the number of equations without increasing the
number of measuring stations, merely by increasing the number of balancing speeds, at
which the readings are taken. Thus we can wind up with a large number of surplus
equations. Nevertheless this equation system can be seriously ill conditioned or even
practically singular.

Yet this eventual singularity of the equation system for a large number of balancing
planes is not an unfortunate mathematical accident but can be physically explained and can
even be utilized to calculate an optimum weight set, if this singularity is evaluated
appropriately. For a physical understandina of this problem it is useful to review some basic
results of the modal theory in more detail.

2 Modal Balancing Theory and Orthogonal Balancing Weight Sets

Strictly speaking the so called modal balancing methods are nothing but a reduced
influence coefficient method. This becomes quite obvious, if we analyse the practical
balancing procedure in detail which is summarized in figure 3. Comparing figure 2 and figure
3 we notice, that the only difference lies in the number of unknowns, which have to be
calculated. In modal balancing we only deal with one (complex) unknown at a time.
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Run 0 1
Testweight 0 1
Response Wo w,
Q = Sll = w
Influence —wW, W, = a
Equation w, va u = 0

Fig. 3: Basic procedure for modal balancing

At each critical speed the rotor is balanced in the same manner, but for higher critical
speeds the test and balancing weights must be prebalanced groups of weights, which do not
upset the balance for the previous critical speeds. If the testweight consists of a weight
group the complex unknown u; determines, how this group has to be scaled and rotated in
order to obtain the desired balance.

We note, that it is not necessary to measure the responses in more than one measuring
station, because the vibration state in the vicinity of a critical speed is dominated by the
resonant mode shape. All the rotor responses that we might measure in different shaft
locations are proportional to the resonant mode shape and do not supply other useful
information.

Thus it is not the basic procedure as such which is unique for the modal balancing
technique, but it is the special weight sets, which are used, to reduce the problem to a step
by step procedure. These weight sets have to be discussed in more detail, because this will
shed some light on the problem of singular influence coefficient matrices, which has to be
discussed later.

The basic claim which is imposed on prebalanced groups of weights is as mentioned,
that each new group does not upset the state of balance attained with all the previously
attached groups. Denoting with ¢, the modal deflections of the i-th mode at the selected
balancing planes and with t, the weight set intended to balance this mode, these weight sets
can be calculated from the equation system

=0 for i<k

The number of individual weights in each group is equal to the order of the critical speed to
be balanced. These groups can be called backward orthogonal. They are practical as each
critical speed can thus be balanced with the least amount of effort and indeed, the time
which has to be invested to attach test and balancing weights to a rotor is by no means
negligible.
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The disadvantage connected with these groups is that they inevitably excite the next
modal component, as well as all other higher modal components. This makes it more and
more difficult to negotiate higher critical speeds. Moreover higher order modal components
with large generalized unbalance can have a very adverse effect on the running speed. The
generalized unbalance U, due to a weight set t; ((k > i) can be calculated from equation
(2).

This problem can be overcome by employing forward orthogonal groups of balancing
weights, each of which satisfying the orthogonality conditions

0 fori#k

ASY
=
n

(3)
=1 fori=k

The number of individual weights in these groups is equal to the number of planes available
for the particular rotor. Although it seems to be unnecessary to install weights in all available
planes in order to balance the first critical speed, the employment of such groups solves the
problem of an optimum distribution of balancing weights. While the number of weight
groups to be employed is naturally limited to the number of excited modes in the operating
speed range, the number of balancing planes can be arbitrarily large. The more planes there
are available, the better the final state of balance will be, because even the higher vibration
modes have some influence on the residual vibration amplitudes at lower speed.

Thus if N is the number of available balancing planes, the mode N + 1 is the first
mode, that will be adversely affected by the installed balancing weights, provided that the
above recommended forward orthogonality is observed. Figure 4 illustrates the discussed
backward and forward orthogonal weight groups.

1 1 1 1 1 1 1 1 1 A I 1

A A A A
I

l 1 I s

Fig. 4: Backward and forward orthogonal weight sets

The modal balancing being a step by step procedure, obviously no attempt will be
made, to balance vibration modes which do not show up in the vibration response. Thus the
balancing process is naturally terminated as soon as all relevant groups are installed, even if
lets say S more groups are available. In such a case the plane forward influence coefficient
approach yields an equation system, which is S times singular. But if suitable precautions are
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taken, when solving this singular equation system, even a forward orthogonal solution can be
calculated.

3 Modal Balancing Without Testruns

As flexible rotors usually display a behaviour, which aqrees very well with the modal
theory, it is in fact possible to exploit this theory more extensively than usually claimed.
While the so called modal theory merely supplies some information on suitable weight
groups, which allow a step by step balancing without much computational effort, it is even
possible to balance a flexible rotor without previous testruns (6).

According to the modal theory the rotor can be modelled by a single degree of
freedom system in the vicinity of a critical speed, which yields

mw. +cw +sw = 24 % (4)
1 1 1 Al 1 1 1

w;
represent the generalized mass, damping, stiffness and unbalance for the i-th vibration mode,
which is defined by the mode shape @, (x).

Measured deflections w( §2) however are not equal to one modal deflection w, (82)
alone but contain even components of other vibration modes. But if measurements are
taken at different speeds in the vicinity of the critical speed w, only, we can assume that
these contributions of other modes are constant, i.e. that they do not depend on .. This is

expressed by equation (5)

represents the modal deflection at the selected measuring points, m,, ¢, s, and ﬁi

it i

(W,(82) = W(R) — W} eI (3)
Substitutingeq. (5) intoeq. (4) we obtain

(-Q2%m, + jQc, + s;) (W) — W) = Q%4 (6)
w(£2) being the time independent complex amplitude of the synchronous vibration measured
at the selected measuring point and w, the complex contribution from other mode shapes.
This equation is valid for any rotor speed in the vicinity of w,. Thus we can measure at K
different speeds Q,,k = 1,2,...Kin order to obtain K equations

(- Q: m o+ 8 ¢ +s) (W, - W

o) = 8, U (7)

Calculations on the mode shapes and the generalized mass are quite reliable, while the
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damping and the exact critical speed cannot be calculated with sufficient accuracy to
identify the generalized unbalance in eq. (7) . Therefore they have to be considered as
unknown, as well as the generalized unbalance and the vibration amplitude w,, which
contains the contributions from other modes. Thus equation (7) contains products of
the type s, -leo and ¢, - ﬁo. But the problem can easily be linearized by introducing
estimated values for s, and ¢, to begin with. After rearranging the equation system (7)

we obtain:
k=1 [ 707 T
2 1
Dol —ow™ | e | Q2m— s, _Qc, 2 | o i
K k k ki o io k ~re )
- re
Wo | | Shom
~im | T 2 - im
. w Qim. W
k=1 kak v?lk"n -—Qcm Qimi =5 0 ’ —Qf( 0 ki Tk
Are
:
koL Lt

Apparently K, the number of measurements, has to be > = 3. If more than three
measurements are taken into account, the result can be computed from a least square
procedure and will be more reliable.

Test results show, that it is possible to start with almost any values S,y and ¢. ,and

io !
that one or two iterations are generally sufficient to solve the problem.

The generalized unbalance being identified, balancing weights can be calculated for any
suitable set of weights t, which has to be scaled and rotated by an appropriate complex

factor a_, in order to match the generalized unbalance u, according to the equation

which yields

. L) (9)

A word of caution is necessary when applying this method. It is assumed, that the phase
angle measurements are correct. If sensors or amplyfiers introduce phase shifts these have to
be accounted for appropriately.

The method has been tested both on experimental rotors and large ASEA generator
rotors and yields remarkably good results.
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Fig. 5: Modal balancing without test runs

4 Influence Cocfficient Techniques

The most crucial point in balancing of flexible rotors often lies in the assumed linearity
and reproducibility of unbalance excited vibration in rotating machinery. This linearity
often only exists in a statistical sense. This is especially so for large multispan shaft trains,
but even applies to large turbo generators in a balancing pit.

This means that each run of the rotor supplies us with new statistically relevant
information on the behaviour of the rotating system. Looking at the vibration response at
comparable conditions (same speed, same operating conditions, same balancing weights), we
might find, that the measured vibration amplitudes are spread out over a certain area
according to figure 6

x ’;
1700 RPM x ® 800 RPM
STATION 1 x STATION 2
x X X
> x x
® MEAN VALUE x

» *
» T x
Fig. 6: Mean value and variation in vibration response

Apparently it would be reasonable to use the mean value of all observations rather than
some individual value in balancing weight computations. But even in the more general case,
(same speed, same operating conditions but different balancing weights) similar averaging
methods can be employed.

4.1  Averaged influence coefficients
When determining influence coefficients it should always be kept in mind, that the
initial unbalance distribution can change with time, due to setting effects, wear, corrosion,
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repair, overhaul and various other reasons. The influence of this changing initial unbalance
on the influence coefficients is unwanted and most effectively eliminated by forming
differences between consecutive trial runs only, as unknown changes in the initial unbalance
are less likely, when the elapsed time interval between the considered trial runs is as small as
possible.

Considering now the relationship between an arbitrary applied change in the balance
weight distribution Au and the corresponding change in the vibration response Aw_, we
can write down the following equation

1 P
t
ﬁlm 21 é‘_Nm
t
1... N ay 1.... P (10)
Change in weight Influence Change in
o * . = qo
distribution coefficients vibration response

By establishing this equation for each observation available, we soon arrive at an
overdetermined equation system which can be solved by the least square method.

AU' A" - aw! (10)

As this information generally is at hand and becomes more and more comprehensive as
time goes on, it is just a matter of efficient data organisation to obtain really reliable
influence coefficient matrices. The equation system can readily be solved as soon as
M> = N, the resulting averaged influence coefficients being

A' = [(AU) (AU)]™! AU AW (11)
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4.2 Averaged trial runs

Likewise it is possible to average on the right hand side of the equation system for the
balancing weights, in other words to identify the actual state of balance by averaging over
the K latest representative runs available. This can even be done, if different balancing
weights have been applied. As every measured response in the trial run w, is composed of
the effect of the initial unbalance o  and the influence of the attached balancing weights

w, Za, + Au (12)

we can calculate an averaged response over K trial runs to

K K K
w, = I/KZw=1K Z (¢g+Ay) =a, + A 1K Zuy (13)
- - i=1

—~av i=1 i=1 0
In other words, the response averaged over the latest K trial runs is the expected response of
the averaged balancing weights which were on the rotor during the considered trial runs.

Of course it is not necessary to know the total weight installed in each plane. Often
previously attached unknown balancing weights are present at the first trial run. These
weights can be considered part of the initial unbalance distribution, so that the so called
total weight is merely the total weight change relative to the first considered trial run.

4.3  The Evaluation of Singular Influence Coefficient Matrices

The influence coefficient matrix A can be composed of an arbitrary combination of
columns o, which leaves it up to the distinction and intuition of the engineer, how many
and which planes he wants to use for the calculation of balancing weights.

With respect to balancing of large multispan shaft trains it seems to be an accepted
rule, to preferently use those planes, which are close to the measuring points displaying high
vibration amplitudes. Thus the occurrence of singular equation systems is automatically
avoided.

But as pointed out before, generally better balancing results are obtained, if all
available balancing planes are used. This approach even tends to reveal the location of the
unbalance and can be useful in field balancing of large shaft trains, because the calculated
over all balancing weights might give more reliable suggestions as to which planes to use,
than the above mentioned common sense approach.

A singular equation system can be detected during the solution process of the equation
system by studying the relative pivot element size. Figure 7 shows the situation which is
encountered at some step during the elimination process, if the equation system is singular

(7).
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1 B j
n-d| 4 ~ H <
. H
n A*A *lu|+farw] -0 = L1 Le|u|l+|d-0
d 0 0 9

Fig. 7: Singular equation system

All elements under the broken line are comparatively small compared with the
magnitude of the elements above it. Solving the upper part only yields a particular solution
u, and a set of d homogeneous solutions H, d being the number of rows under the broken
line, the deficiency of the matrix. The homogeneous solutions satisfy

BH =0 or H'B* =0 (14)

so that the general solution is

e
]
c

+ H a
u, M a

(15)

This equation calls for additional information to determine the arbitrary constants a.
Looking for a minimum solution satisfying

u*u = min (16)
we can calculate by plane least squares method

a = —(H*H)7' H* (17)

By substituting a fromeq. (17) intoeq. (15) we find

= (L - H*(H*H)"" H*)u, (18)

u_ .
— min

Premultiplying this equation with H* yields

H*u o = (H* = H*H(H*H)" ' H*)u =0 (19)

— —min -
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which means that the minimum weight distribution u_ . is orthogonal to the homogeneous
solutions H*.

This orthogonality relationship can be used directly to calculate a minimum weight set,
which because of (14) has to be some linear combination of the matrix B*.

u=B*x (20)

Substituting this into the original upper half equation (see figure 7) which reads

we finally turn out with

Upin =- BYBB*)T'c (22)
Comparing this with the usual least square solution of an overdetermined equation system
reveals an interesting duality between the solution of an overdetermined and an
underdetermined equation system.

Thus we can summarize that a singular equation system A*A with a deficiency d allows
to separate two groups of balancing weight sets, that are orthogonal to each other, the
(n — d) columns of B* containing those weight sets that have an important influence on the
rotor behaviour in the investigated speed range and the d columns of H which contain
homogeneous weight sets which only have a negligible influence in the investigated speed
range. Hence these groups in H must be linear combinations of the higher modal weight
groups, which are orthogonal to the dominating (n — d) mode shapes in the operating speed
range. By composing the final balancing weight set as a linear combination of the first group
only, we obtain a minimized balancing weight set, which is orthogonal to the homogeneous
weight groups. Figure 8 gives an overview of the matrix relationships and their dimensions.

nd d
_— =
B H |y Bz
n
——— e,
B BB o |¢| -Bu
H* 4 H'H {0 - Hy

Fig. 8: Orthogonality relationship between weight set B* and H
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However according to the modal theory this is not the appropriate orthogonality
condition yet, which states, that the modal unbalance u, (x) is orthogonal to the mode
shapes gpj(x) and not to the modal unbalances u, (x) and reads

Jui(x)‘pj(x) dx = m, l = .]. (23)
=0 i # ]
the continuous i-th generalized unit unbalance being
u(x) = p(x) () (24)

In analogy to the continuous case we obtain for the discrete case of N balancing planes the

orthogonality

5T TRy (25)
=0 1 # )

1ee
¥
6
n

the discrete i-th generalized unit unbalance being

N

where M, , is the lumped rotor mass associated with the balancing plane V. and @ the
deflection vector of the i-th mode shape ¢, at the N balancing planes. Thus we can even
calculate the discretized mode shape y, if the associated generalized unit unbalance u, is
known.

Applying this to the homogeneous solution H of a singular influence coefficient
matrix, which represent weight groups without influence on the rotor vibrations in the
considered speed range, we can calculate the mode shape combinations associated with these
groups H by premultiplying with the inverse of the lumped mass matrix

¢ = M'H (27)

This enables us to calculate low modal order weight groups which are orthogonal not to the
groups H but to their associated mode shapes ¢ . This can be done by simply introducing
the lumped mass matrix M, into the orthogonality condition (14)
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BM, M'H =BM ¢ =0 or ¢*M B* =0 (28)

Composing the actual balancing weights u as a linear combination of the weight set M, B*
only, we can write similar to eq. (20)

u =M B*x (29)
Substituting this equation into eq.  (21)  we finally get

W = - M B*(BM B*)' ¢ (30)
This is a balancing weight combination which balances the identified low order modal
unbalances and is orthogonal to all high order mode shapes identified by the homogeneous
weight groups H.

Thus we can summarize, that a singular equation system A*A with a deficiency d
allows to separate two groups of balancing weight sets, which are mutually orthogonal to
the set of deflections associated with the other weight set. According to figure 9 the (n — d)
columns of M, B contain those weight sets which have an important influence on the rotor
behaviour in the investigated speed range, and the d columns of H containing weight sets
with negligible influence in this speed range. The corresponding shape sets B and H* M| :
contain (n — d) modes shapes with important contribution to the actual rotor deflection in
the investigated speed range and d mode shapes with negligible contribution to this
deflection. By composing the final weight set as a linear combination of the first weight
group only we do not add unbalance to the d higher modal components, which could show
up in the actual deflection shape, if the exciting unbalance is getting too large.

WEIGHT SETS
12....4..n _‘
M],B' H uf = M[I_;‘f
n--d d
Pt Rt | ]
wll
—
w2 B BM, B* 0 c = Bu
« = ==1= = -=
w
a. b
<
2| H'M 0 | - 0 =HM

n

Fig. 9: Orthogonality between weight sets and shape sets
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Off course we can even introduce an arbitrary weighing matrix G instead of the mass
matrix M

— L

practical limitations, as there are restrictions in the magnitude of weight which can be

which makes it possible to minimize the balancing weight sets according to

installed. Balancing weights with small weighing factors will thus be minimized preferently.
This minimizing approach can also readily be applied to the total weight installed on

the rotor. The orthogonal weight distribution u , which is equivalent to an arbitrary

orth
weight distribution u  can be calculated to

M, B* (BM, B*)"' Bu

Yorth = Mt

0 (31)
Such a weight redistribution can sometimes result in a considerable weight reduction and in
a considerable reduction of the vibration level at operating speed.

The presented method of using all available balancing planes has been used in balancing
large ASEA generators since 1978. This resulted in a drastic improvement of both
production time and residual vibration level.

5 Rotors with Intial Bow in Single and Multispan Situations

If only the bearing forces are considered, the bent single span rotor will not behave
differently from a straight rotor. Hence a bent single span rotor can be balanced, so that the
dynamic bearing forces are entirely eliminated in the whole speed range. In this case the
residual deflection consists of the initial bow only and will not change form at any speed.

The problem is slightly more involved if shaft deflection measurements are considered.
In this case the measured shaft deflection, the total run out, contains a geometric run out
and a dynamic deflection due to unbalance. Only the dynamic deflection should be
compensated.

The geometric run out can easily be measured at low speed where the dynamic
deflection is negligible. Then the dynamic deflection at high speeds can be identified by
simply subtracting the geometric run out from the measured total run out.

When balancing a single span rotor with initial bent by assessing shaft deflections and
using the modal method without test runs, we do not even need low speed run out
measurements, because this method would automatically identify both the unbalance and
constant run out term.

If the bearing conditions for a single span rotor are modified, the modal components of
the residual unbalance change, due to changes in the mode shapes. But the total residual
unbalance, that is the sum of all modal components is constant.

The situation is more involved when dealing with multispan rotors. Usually the bow
will be different before and after mounting the rotor into its bearings due to the constraints
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on the rotor imposed by the bearing alignment. Let the initial bow before mounting be b(x).
After mounting there will be a state of equilibrium between the internal forces of the

constrained bow c(x) and the elastic forces of the deflected bearings.
Obviously the total elastic deflection r, (x,t) of the rotor due to the bearing
constraints and the dynamic deflection will be

r(x,t) = r(xt) + ry(x,t) — n(x,t) (32)

the total measurable deflection r(x, t) will be
r(x, t) = r.(x,t) + ry(x,t) (33)

and the deflection of the center of gravity will be
r (6t = )+ r(x) +ogx) eI (34)

Thus the principle of virtual work, which yields the equation of motion reads

fElr"cér"dx + fur 5rdx+§skr5r+EMkF5r:0 (35)

Introducing equations  (32) to (34) into (35) we find, that this equation contains
the static equilibrium between the constrained shaft and the deflected bearings

J Elemg 8rmdx — fEIr" 8rdx — Esk r.ér = 0 (36)
Splitting off the static equilibrium (36) we obtain from eq. (35)

JSELem, 8rmdx + {3 s, 1y Ot + f piy 6r dx + EM" ry &r =
(37)
= {92 [ (u(x) (e(x) + c(x)) brdx + Z M, c(x,) 8r(x, )} eI

Equation (37) shows that not only the system behaviour, that is the mode shapes and
critical speeds, are modified by the bearing conditions. Even the effective unbalance of the
multispan rotor is influenced by the bearing conditions, if the rotor has an initial bow. Both
the bearing mass and the bearing stiffness influence the new unbalance distribution.

An initial bow in a multispan rotor is usually due to coupling faults. It can introduce
considerable unbalance, no matter how well the individual rotors are balanced before the
final assembly.
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PART IV

MEASUREMENT AND IDENTIFICATION



CHAPTER 4.1

VIBRATION MEASUREMENT AND MONITORING

V. Schlegel

1. Introduction

Successful vibration measurement and analysis require an intimate
familiarity with types of measurement, transducer characteristics and
application, plus the capabilities and limitations of the diagnostic in-

strumentation.

Since mechanical malfunctions have a tendency to disquise themselves
with side effects and misleading disturbances, it is essential that the
acquired data are reviewed in every reasonable manner prior to forming a

conclusion.

The aim of this paper is to give a general review about methods and
effects in measuring rotor vibrations, but not to present some 1interest-

ing case histories.
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2. Yeasurement devices and instrumentation

The major types of transducers used in turbomachinery analysis are
displacement probes, veloclty transducers and accelerometer. The proximi-
tyv displacement probe can be contacting or non-contacting devices, where-
as the velocity transducers and the accelerometer have to be contacting
devices. The choice of proper transducers has to be done according to en-

vironmental conditions like:

- influence of 0il, pressure, temperature and accessibility

- influence of size and diameter of shaft

- electrical properties of transducers (e.g. range of frequency and am-
plitude, accuracy, calibration procedures)

- number of transducers in one plane.

In the following the transducers are described in sequence and com-
prehensiveness according to their frequency in rotor vibration measure-

ment .

2.1 Displacement transducers

2.1.1 The eddy-current probe. The probe (Fig. 1, radiates a radio

frequency field in the immediate area ahead of the probe tip. As conduc-

tive material intersects the field, eddy currents are generated in the

ARMORED SHEATHING

JAM NUT
\

PROBE TIP —— a '

Fig. 1 Typical eddy-current probe
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material, resulting in enerqy loss which is sensed by an oscillator cir-
cuit, which is modified to provide a linear elastical output signal. This
probe can be used for static gap measurement (axial or radial position)
or for dynamic motion (vibration). The essential part of the probe is a
small coil of wire that is in the tip of a fiberglass body. The fiber-
glass body can be mounted in several different metal case designs to aid
the installation. The range of the probe is a function of tip diameter,
in general 5 mm or 8 mm. The larger the tip, the longer the linear meas-
urina range. Usually the probes come with an inteqgral coaxial cable and
connector. Since the system operates according to inductive proximity
principles, the probe does not contact the observed surface and is not
affected by non-conducting materials such as air, oil, qgas, plastics, etce.

in the yap between the probe tip and the observed surface.

Due to the ability of the eccentricity position of the shaft in a
journal bearing to change under varying conditions of machinery load,
alionment, temperature of oil and shaft, it is important that the proximi-
typrobe transducer system has a long linear range sufficient to allow for
these eccentricily position changes to occur without having the shaft move

outside of the linear range ‘Fig. 2:.

LA SrIatetty (narge

a4 ‘rnesrity range
; 1
2 oy resid.al gap
2

ag measurirg cange
= Jvibration, maxi-
F4 mal ¢esplacement)
©

—_—, ——— ¢rspiaenent

Fig. 2 Displacement curve of o rotor vibration measuring device with
MeGsuUring ranGges
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A different aspect is necessary when measuring small vibration am-
plitudes, where not the linearity of the complete calibration curve is
the decisive factor, but the differential linearity. The typical devia-
tion of the calibration curve from the best possible straight line for a
typical eddy-current probe is depicted in fig. 3. Besides the properties
of the eddy-current probes at fixed environmental conditions, there are

deviations from the calibration curves caused by

differential
Inearity

error range according AP] 67C

t o (mm]

Fig. 3 Differential linearity of an eddy-current probe

- temperature influences on the ohmic and inductive resistance of the
probe coil,

- thermal elongation of the probe body resulting in a displacement of
the probe tip rglative to the transducer fixation,

- influence of temperature and supply voltage on the oscillator/demodu-

lator.

Each of these effects cause errors in the vibration measurement in

the range of some percent.

Consideration must also be given to the shaft materials. The vibra-
tion signal is similar for most common shaft steel alloys. However, some
materials have different surface areas which present varying values of
resistivity, thus influencing the eddy currents in the surface. Depending

on the frequency of the oscillator used the depth of the eddy currents
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amounts to 10 - 15 ym. But some shaft surface treatments (chrome plating,
metalizing, etc.) are thin enough to allow the eddy currents to penetrate

down to see two different materials.

The observed rotor surface must be free of all irreqularities like
scratches, rust and corrosion, out-of-roundness, chain marks etc. Such
irreqgularities cause a change in probe gap which is not vibration, thus
giving rise to a signal error. On the other hand it is not always advi-
seble to grind the shaft surface of the rotor, because this can produce

additional inhomogenities in conductivity.

2.1.2 The capsacitive displacement probe. A plate shaped electrode

in the transducer buillds a condensor with the shaft, whose capacity de-
pends on the distance between transducer and shaft. The capacity.is meas-
ured by an oscillator/demodulator at high frequency. This measurement
principle is applicable to all electrically conducting materials. The
cable between transducer and oscillator must be short, similar to the-
eddy-current principle. This type of displacement probe 1s restricted to
cases where the fluctuate permeability of o1l within a turbomachine does

not influence the gap between shaft and transducer.

2.2 Velocity transducers

The seismic transducers portion of the transducer system operates
according to the inertial mass/moving case principle. The inertial mass
is a copper-wire coil wound on a bushing and suspended by sensitive springs
inside the transducer case. A permanent magnet is riqgidly attached to the
transducer case and physically located inside the coil. When the trans-
ducer is properly installed the vibration of the coil induces a current
in the oil which provortional to the velocity of vibration, provided

sufficient frequency of motion is present.

This tvpe of transducer is mainly used for measuring bearing vibra-

tions.
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2.3 Acceleration transcucers

The purpose of an acceleration transducer system (Fig. 4) is to meas-
ure structural motion in terms of acceleration. Its output is a voltage
proportional to the accelerating along its sensitive axis of the surface
on which it is mounted. The accelerometer uses a piezoelectric crystal
situated between the accelerometer base and an inertial reference mass.
When the crystal is strained (compression or tension force), a displaced
electric charge is accumulated on the opposing major surface of the cry-
stal, which has to be amplified. The crystal element acts as a precision
spring to oppose the compression or tension force, and it supplies an elec-

trical signal proportional to the applied force.

Fig. 4 Typical acceleration transducer

2.4, Phase reference

In most cases a transducer is installed on a machine observing a
once-per-turn event (e.g. a gab, notch, etc.) on a rotating shaft providing
a signal that occurs once per revolution of the shaft. This pulse gives
a reference for vibration data. It is a reference mark and time signal

for speed, phase angle, frequency measurement and all data accuisition.
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In order to read phase angle accurately, instrumentation is required
which filters the input signal synchronous to speed, because due to the
irreqgularities of the shaft materials the vibration displacement signals
contain very high harmonic components. Most of the commercially available
phasemeters measure the zero crossings of the input signals by nhase de-

tecting, and without filtering they would produce an incorrect reading.

2.5. Vibration monitors

The monitor of a measurement system for rotor vibrations performs

several functions:

- requlation and distribution of power to the transducers

- conditioning of the signal according to the type of the selected
meter display

- conditioning vibration signals to proportional recorder compatible
signals

- self-check and check for proner transducer functioning

- continuous alarm monitoring for excessive or out-of-limits vibration

conditions.

3. Data presentation
3.1. Time domain

\ibration form can be seperated into two cateqgories: time base pre-
sentation and orbital presentation. Time base nresentation 1s provided by
displaying transducer inputs on the oscilloscope in the time base mode
showing the complete waveform. If a motion, which is an exact ratio of ro-
tative speed, is present a phase mark will appear to be locked onto the
waveform of the vibration as displayed on an oscilloscope. If a non-syn-
chronous waveform is present, this mark will appear to move over the wave-

form. This ability can be important in observation of whirl and whip phe-
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nomena as well as in many rotor rub situations, where the phase mark will

be unstable and jittery.

The orbit presentation is provided by displaying the output from two
separate probes at 90° angles to one another and generally 45° of f the

vertical axis in the upper part of the casing (Fig. 5).

o
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™

Fig. 5 Vibration measurement system for one measuring plane

In Fig. 6 the shaft orbit is depicted as an unfiltered motion. If a
phase marker 1s used which provides a pulse with a decaying tail it is
possible to identify the procession of the orbit if this pulse modulates

the brightness of an oscilloscope.

bs, lum]

Ch
\ sylum]

Fig. 6 Typical orbit
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The deviation of the measured vibration signal from the shaft motion
is due to the already mentioned mechanical and electrical irregularities
of the shaft surface. Thus, only in the case of high vibration amplitudes
the orbit seen on the oscilloscope resembles the elliptical or circular

orbit theoretically predicted.

Where the 'fictitious' vibrations are present and amount to a major
portion of the whole vibration signal, it is sometimes necessary to fil-
ter the high frequency components from the waveform before making phase
angle measurement. This can be done by utilizing two matched tunable fil-
ters with both of them being exactly tuned to the synchronous speed of
the rotor. Dual low pass or band pass filtering is a successful mean of
observing orbital patterns with relatively high levels of fictitious vi-
bration. However, it is necessary to proceed with caution since the phase
angle is usually shifted by low or band pass filtering depending on the
filter characteristics. But since phase measurement will usually not be

made on the vibration orbits, this 1s no great disadvantage.

Since the filter is tuned to the rotational frequency of the rotor,
the initial vector is eliminating that portion of shaft fictitious vibra-
tion which is coincident with the rotational frequency or to eliminate an
initial bow in the shaft. All higher orders of rotor fixed non-vibrational
components of the transducer signal are eliminated through the filter ac-
tion of device. But care should be taken that no slow motion of the rotor-
foundation system is present because according to the filter principle

signals with very low frequencies are not sufficiently suppressed.

Once the initial vector has been compensated the remaining signal

can be used to produce the true elliptical orbit.

The other equipment to smooth the vibration signal is the digital
compensator. It provides the capability to digitally memorize a slow-roll

waveform. Once a waveform is captured it will be subtracted from all fu-
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ture dynamic waveforms thus showing the whole vibration changes. Since no
filtering or pre-conditioning of waveforms was done prior to the memory
function, the digitel compensator processes the displacement signal in
its complex form. But devices of this kind demand that all the fictitious
vibration signals must not change as a function of time, shaft speed, ro-

tor axial position.

3.2. Frequency domain

Rotative machine response can be measured through the use of the
Bode diagram, where rotative speed amplitude of a given measurement ver-
sus rotor speed is depicted along with the phase lag angle of that ampli-
tude vector against rotational speed. This plot is most useful in showing
the speed of various resonances of the machine. The presence of any ini-
tial bow or fictitious vibration, however, adds a constant vector to the

vector of vibration which may severely alter the Bode plot.

Although sometimes the Bode diagram is an excellent way of portray-
ing amplitude and phase, there is another method available for presenting

the same information, the Nyquist plot.

On rotating machinery, the Nyquist (polar) plot is the amplitude and
phase reading from a transducer showing the response of the machine to its
residual or deliberate unbalance as a function of speed (Fig. 7). The polar
plots are usually made of shaft relative motion but may also be shaft ab-
solute displacement, casing velocity etc. They are much more descriptive
and useful in displaying parameters of machine response than the Bode
plots and therefore have been used in theoretical as well as in experimen-
tal studies. Their main advantage is the fact that the form of the polar
1s unchanged when an initial vector is encountered, while the amplitude
and phase of the Bode diaqram show major changes. In addition, the appear-
ance of minor support resonances, which are barely discernable on the Bode

diagram can be detected more easily.
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Fig. 7 Typical polar plot of rotor displacement during start-up

As a disadvantage the polar plot requires a manual identification of
speed at various positions along the graph. This may be accomplished dur-
ing the time the plot is generated or by comparing it to the standard

Bode plot.
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By simultaneously plotting two Nyquist diagrams of horizontal and ver-
tical transducers, or the right and left transducer, which is more common,
at one specific lateral location any variation in bearing damping and/or
stiffness will show up as a deviation between the two generated plots.

In the case of strongly nonisotropic stiffness and damping of the journal

bearings the two plots will always differ.

3.3. Signature analysis

A very comprehensive way of presenting vibration data is known as
'signature analysis', where the vibration signals at all speeds and loads
of the turbomachine are monitored and depicted in a graph containing the
amplitudes of all harmonics of the vibration signal at any speed. Thus,
the graph delivers a complete impression of the vibration levels of a

machine {fiqg. 8).

JeCcas OfF MAIN
SmaFT SPEED

Fig. 8 Typical graph of spectrum vs. speed of a turbomachine
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A second possibility of plotting the vibration spectrum is the cas-
cade spectrum analysis. It is based on a series of spectrum plots from a
single transducer depicting a change in one or more variables (e.g. vibra-
tion as a function of speed). The cascade plots provide a good deal of
information regarding spectral content of the vibration signals, but they

cannot be utilized to evaluate phase variations.

4. Interpretation and diagnosis of measuring results

The results of shaft vibration measurements can show a multitude of
phenomena. Depending on the number and type of the instruments used in the
measurement set-up certain characteristics of the shaft vibrations as well

as their dependance on both, time and operating data can be determined.

The vibration monitoring which involves the extraction of fault sig-
natures in most cases relies on the output produced by standard items of

equipment for noise and structural analysis.

Data analysis serves tuo main purposes; first, it concerns itself
with the extraction of fault signatures from background-wise and, second-
ly, it aims to predict which vibrations a defective machine 1s most likely

to produce.

Most of the predictive work rests on some key assumptions reqarding
how the system will detune itself upon arrival of the fault.Table 1 1.
contains several examples for nossible causes of shalt vibration. It can
help to interpret the results of measurement. Without any claim to com-
pleteness, this table was compiled as an aid for decisions and references
for the discussion and evaluation of simple problems. However, 1t should
be kept in mind that all the symptoms are judged on a global basis with-
out any connection to quantitative rotor parameters. This is left to the

field of narameter identification.
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5. Machinery surveillance and maintenance

A normal operating machine will generally have a stable amplitude
reading of an acceptable low level. Any change in this amplitude reading
indicates a change of the machine condition. But a simple investigation
of amplitude and frequency alone does not provide sufficient information
about machinery performance. Usually, a set of initial data is to be ac-
quired with the machinery in a good state, so that any future change or
deterioration in mechanical condition can be easily compared to the base-

line information.

Most preventive maintenance programs are established with periodic
inspection of machinery and permanent monitoring of machines. Generally,
the parameters being monitored were amplitudes of vibration on the shaft
velocity of bearings or acceleration of bearing house. Periodic checks
of frequency of vibration are often included as a part of a preventive

maintenance program.

A very difficult problem in vibration analysis is the establishment
of severity limits. machines have different sensitivities and resistances
to vibration forces. As an example a method of crack surveillance is de-

picted in Fig. 9 [2].
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Fig. 9 Schematic representation of a crack identification for turbo-
machinery (2]
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In order to interpret a certain range of changes in amplitudes dur-
ing normal operation it is necessary to average the measured values of a
given interval. So a regression line has to trip preset limits. This cri-
terion is robust enough not to shut down a machine when a small jump in
vibration amplitudesyoccurs and sensitive enough to identify a developing

crack.

The measurement of eccentricity position can be an excellent indica-
tor of bearing wear and unwanted conditions such as misalignment. Excen-
tricity position is the steady state position of the shaft in the journal
bearings. The measurement is accomplished by monitoring the slowly vary-
ing mean value of the vibration signal which should correspond to the
mean distance of the centrc of the shaft to the proximity probe. In prac-
tice this value is equated to the DC-output of the oscillator signal of

the transducer system.

6. Guidelines and standards

For a better understanding of the behaviour of rotating machinery
it 1s most desirable to standardize communication by means of a set of
recommendations. So, in some countries guidelines and standards have been

established.

1S0-standards exist on mechanical vibration of machines with opera-
ting speeds from 10 to 200 rev/s [3,4,5]. These standards deal with bea-
ring vibrations measured by velocity transducers and state specifications

in figures of vibration sensitivity.

In 1971 the first german guideline of the VDI appeared dealing with
evaluation of vibrations of flexible shafts. In the meantime this guide-
line has been revised and has appeared as draft in 1979 [1]. It contains

explanations of vibrations fundamentals and diagnosis samples to assist in
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operating turbomachinery in industry and power plants.

Besides guidelines for evaluation of vibration phenomena there is

a german standard on vibration measurement instrumentation (6]. A similar

paper has been issued by the API in the United States (7). An 150-stan-

dard on this subject is still to appear.

7.

11]
12]

3]
(4
5
6]
(7]
8]
(9]
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CHAPTER 4.2

IDENTIFICATION OF ROTOR PARAMETERS

V. Schlegel

1. Introduction

Turbomachines do not only possess the ability to convert fluid
energy into rotational enerqgy but also the undesirable attribute that
their rotors vibrate. Therefore the mechanical behaviour of the rotor
has to be analysed. Whereas the inertia distribution of the shaft can be
determined from its geometry, the stiffness distribution cannot be ob-
tained ecasily because of jumps in the diameter of the shaft. In modeling
the system consisting of a rotor on its bearings, the task which presents
most difficulty is the description of the dynamical properties of the oil
film used in the journal bearings. In most cases a linear model, the sim-
plest one, is chosen. The coefficients can either be obtained experimen-
tally from very simplified lest rigs with rigid rotors or by the solution
of the linearised bydrodynamic theory for oil film bearings. A second
uncertainty in calculating the vibrational behaviour of the rotor of a
turbomachine is due to the difficulty of specifying the true distribution

of the unbalance and the initial bow of a rotor.
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Thus, it 1s not surprising that large differences between calcula-
tion and measurement are encountered when the rotor is run for the first
time. A promising way of making calculation to approximate reality is the

use of system identification.

2. Error definition

To enable cone to compare the results of computation with those one
can get from the cvstem identification, the analytical model should have

the same form as the experimental one.

Hence a linear partial differential equation is chosen as the mathe-
matical description of the motion of a real rotor but with as yet unknown
coefficient functions. Besides the bow of the rotor caused by its weight
an initial bow will be taken into account. The assumed reference line
from which the displacement is measured is, however, the static line of
the unbent rotor, so that the motion r(x,t) is defined as the displace-

ment of the rotor from this line

. 3 - o7 . -
C {rix,t)] + T D {r(x,t)] +?2 2M ir(x,t)) = Fix,t) (1)
53t 3t
where
C -+ TA{x) R (2)
ax’ 3x2
and
n
Fos fix,t) + Fk (t) &(x - xk) {3)
k=1

The stiffness operator is of fourth order with the coefficient func-
tion A(x), which contains all the stiffness properties distributed in the

axial and radial directions. The damping operator D stands for all those
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terms which describe viscous or gyroscopic forces. It is by no means a
linear combination of the inertia and the stiffness operator and is not
restricted to modal damping. The operator M includes the inertial effects
of the mass distribution. The exciting forces F{x,t) of a rotor are com-
posed of distributed unbalance forces and of pointwise-acting bearing

forces.

The solution of this differential equation can only be examined by
the actual motion cof the real rotor points of measurement. Unfortunately
the vibration of a rotor installed in the casing of a turbomachine can
only be measured at very few, unevenly distributed locations, because of
the restricted accessibility and the possibly high temperature within the
machine. That is why it is impossible to find vibration modes by connec-
ting the radial displacements from measurement point to measurement point

by polygons or any method based thereon.

Thus, the vibrational behaviour of a rotor between measurement points
has to be determined by suitably chosen interpolating functions (Fig. 1).
For the purpose of parameter identification all complete, orthogonal

functions sets can, in principle, be used.

measuting planes

/ 1 (1(:[(]1‘1\4

1
shape .

l
|
] | -~ “~
N } /}r 1: S

\

interpolated

shape

Fig. 1 Shape of vibration for a particular speed
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However, 1t is appropriate and advisable to take the eigenfunctions
of the calculated analytical model. The better the computed eigenfunctions
approximate the motion of a real rotor, the smaller will be the differ-
ence betwesen the real motion and the interpolation in the interval be-
tueen two measurement locations. Depending on the expenditure spend on
the calculation of the analytical model two kinds of approximating func-
tions for the experimental model of a rotor are at our disposal. Either
the real, decoupled eigenfunctions of the associated conservative system
or the complex coupled eigenfunctions from 2 discretization with local
shape functions can be chosen. But both of these can only serve as
approximations, since the actual distribution of stiffness, damping and

inertia differs from that used in the calculation.

The points of measurement can now be reqarded as stations in a collo-
cation, at which we demand that the chosen functions must fit the diffe-
rential equation and the solution of the equation must agree with the
measured displacement of the rotor, apart from statistical measuring
errors. Let us now assume a solution in series form with shape functions
o(x)s

n

rLoOGt) = Loq.(t) o.(x) . (4)
J=

Here the weights qj are time variable generalized coordinates.
They contain the dynnmi&nl part of the solution and have to be determined
by collocation in such a way, that the difference between the approxima-
tion and the solution will be as small as possible at the points of meas-

urement .

Thus, we obtain:

LA, C:cj(xv)? v dj Div (x ).+ T IS I E R B Y O 5
]:l . N Nt \j:l. . N N S . N N
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In matrix notation we obtain the ordinary differential eaquation of

second order with generalized coordinates a,*
Mg+Dg+Caq= f(t) (6)

The displacement of the rotor r(xs,t) is then given by the solution

of this differential equation multiplied by the shape functions ©{(x):
r(x_,t) = o(x )" g(t) (7)
s’ s )

If we now express the error vector e by

(x) qlft)}

e | |t 910x) o - o (x| [a(t)

we can pose the identification problem the following way:

For given measurement values f(xs,t) the matrices M, D and C are to
be determined in such a way, that the error e with respect to all
points of measurement will become minimal in the sense of a given

criterion.

The identification problem has thus been converted by means of shane
functions into a problem of parameter estimation, where the values of the
shape functions are held constant during the estimation process. It is not
necessary to know the exact values of the operators M, D and C beforehand

because the error is defined after the discretization

3. Optimizetion method

Since the error vector depends on the parameters M, D and C in a non-
linear way, we have a special case of the general optimization problem of

finding the stationary value of a functional
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Jx) = fF(F(x)) , Vx¢€D (9)
where

F:D R"-R"
and

fF:0c R~ R

This functional consists of two successivec mappings. The inner map-
ping F renresents the model function and the other mapping the error
law. To formulate an iteration algorithm for a functional of this kind
with a nonlinear onerator F, we need an approximation. If the operator is
Frechét-differentiable, we can expand it in a Taylor series at the iter-

ation noint X\ and truncate the series after the linear term:

J(x) = f {bx + F'(x ) (x - x )} . (10)
If the outer operator is twice differentiable we obtain the gradient
of the functional at the iteration point €y using the rule for successive

onerators

* F'(Xk) (x - xk)f F'(xk) (11)

The symmetric Hessian matrix H can now be expressed by the operator

Fand 1ts derivatives:

e _ B AV ( ' o YE Frfy (
J'(x) = qu = F (x, ) Hf 1ka + t (Xk) {x X ) F (x, 0 - (12)
Hence we can write the Newton algorithm

- : y Ty (133
el T T ‘qu (xk}: 9 13

of the functional under consideration
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TE \.T o (3 \1-1 [aN \T VI T
X, 1 = X - LF (X J Hf(ka) F VX, gl f (Kk f \FX

k k

In the case when the operator f consists of a cuadratic form
f:ihh y (153
Vi

the Hessian matrix of the operator f simplifies to the unit matrix.
Thus, the algorithm reduces to the GauB-Newton relation

X .y =%

AU IO I AT CH LA (16)

k k' Kk

To adjust the unknown frequency function with matrices as arquments
to measured data the operators in the iteration alcorithm have to be re-
placed by their corresponding matrix expressions. The compact notation
for derivatives and differentials of matrix functions with matrices or
vectors as arguments, used by Vetterl, proves to be extremely clear and

useful for this purpose:

aa. .
D, A(B) - 2 k=1,...,p 2= 1,...,
bkg - abkf b 7 q
(175
D,A(B) - A k =1, ,s 3 2 =1 ,t
B i bkf ,

Further, two linear mappings of matrices onto vectors will be emplo-

yed 1n the following equations:

. 0. , . A

rs A= lap, wooay, @y -ee O, ceesaly eee ap ] (18)
and

cs A= 'a 1! (19)

...oQa Qip o0. 4 ey Ay ... oa ]
11 “nl’ “12 n2’ * “ln “nn-

Both, the row operator rs  os well as the column operator cs  map
any matrix onto a vector 1n an unique and reversible way. Here the ex-

ression 'matrix function A(B)' not only means a function, which 1s built
Yy ’
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from sums or products of nmatrices of the same order, but any mapping of
vectors or matrices. Function and argument need not necessarily have the

same dimension nor the same form.

We again exnand the nonlinear matrix operator in a Taylor series

and truncate the series after the linear term
A(Bb + dB) = A<Bk) -+ dA(Bb) +h . (20)

Jith the notation just introduced we can express the complete matrix
differential- dA by the derivative and the Kronecker product at d(rsB)

and the unit matrix

dA(Bk) =D A (d[rsBij x 1) . (21)

rsB

I
<

If we now express the linear approximation of the error £ , where

A contains the measured data, by

- _ A _ _ ( \
£ =A A(Bk) dA\Bk, , (22)

we can write the error functional J as the Euclidian norm
J=tr b - el - a1 (23)
IThe matrix | represents the difference between the measured dota
and the values of the function of the model at the iteration points. The
trace onerator can be replaced by the vector operators already mentioned

tr {73 [« = rs ) csiei , {24,

so0 that after o second substitution the functional J can be expressed

by the column operator
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J={cs" [... Jos ...} . (25)

Applying the column operator to the matrix differential, the Kron-
ecker product vanishes. If we now make use of the linearity of the column

operator, the functional can be written in its final form

J=[ecst -D tsA(d [ rsB ]T)]T . . (26)
rsBk k

The form of this functional is eauzl to the term of Ea. 15, so we can
write the GauB-Newton algorithm as
rsB = (rsB )T + {DT csA-D chl_l DT csA - csl (27)
k rsB rsB A N :

k+1 K K rsBk

4. Frequency response functions

The vibrational behaviour of mechanical structures excited by sinus-
oidal forces can be described by functions of the following form:
-1

r =N (N + N, +N2Q2)

2
oo No 1 (no + NN+ an ) +n . (28)

1 00

To fit such functions into the equations already derived we need the
derivatives of some particular types of function. Applying the derivative
operator and the column operator to inner products of matrices leads to

expressions which contain Kronecker products.

Here and in the following equations the differentiation arqument is
dropped for clearness. Besides the derivatives of products we need the de-
rivetive of the inverse of an alcebraic expression. Fortunately we can
find a relation which circumvents the need to differentiste the inverse
itself. The combination of both equations allows to evaluate the qgradient

and the Hessian matrix of the frequency response function:
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-1 T

Des(ag™le) =loe ¢l w M I x esB™H - {37 T x (aBTh) foess (29)
In estimating the matrices in this function by the pronosed iteration

process the dispiacement vectors of the rotor vibration have to be meas-

ured at several frequencies QJ to avoid a singular coefficient matrix

in the linear system of equations which yields the iteration step vector.

Therefore, the errors at each frequency Qj have to be summed to give an

overall error

Y

J = snur (E.TE.) (30)
ges ~ I i

"t

Making use of the linearity of the column operator, we have a linear

system of equations for calculating the iteration step vector

£
chsFJ- Dbst} d[rsB]T = _X

2
-
1= J:l

DTCSF.' csl . . (31)
] J J

1

The order of the coefficient matrix of this system is independent of
the number of neasurement freguencies and depends only on the number of

2lements in the function arcument.

Since the variables in the frequency response function can assune

complex values a linear, unique and reversible mapping RM
RM : D€ PX9 . R%P X 29 (32)
is introduced to convert complex values into their real form

rM(BX) = BN = .8 ,B eR . (33
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Thus, all the eoguations can be extended from reel natrix operstors
to complex matrices. This mapping is isomorphic from which follows that
all computation rules including differentiation and inversion remain va-
lid. This property is particularly importent in evalusting the derivative
of a complex function with respect to the real or imaginary nart of an ar-

gument.

Since the exciting forces of a rotor arc unknown ue have to take some
variable for ref:rence. Generally the mass matrix is chosen, because this
matrix can be calculated with the greatest accuracy. Denoting this refe-
rence by the subscript N we obtain the complex frequency response func-

tion of a rotor with unbalance and initial bouw:

+ T . 1345

r =7 (C,~jD,2 -12 (b, =

A(N JN VAN
The vector s represents all those narts of the vibration with

constant amnlitudes uhich are caused by Lhe measurement systen and which

have no statistical orien. Their source will be discussed later. The

matrix I contains the constant shape functions. Using the mapning RN
ue cen urite the conplex {recuency response function in its real fornm.
After having conposed these nsirices to hyoer-natrices we pericren the

differentiation needed in the Gaufl-\ewton iteralion.

5. Identification of eigenfunctions

tlhen the 1teration process has reached the minimun of the functional,
we have found the desired mass. damping and stiffness matrix. We nou solve
the associated quadratic eigenvaiue nroblen and obtain the eigenvalues of
the 1dentified systen. The elements of the matrix X of the complex
right eigenvecters of the discreie systen can be reecarded as ueichting
coefficients in the lirmear corbination of the initially chosen shape func-
tions to esvaluate the eilgenfunctiorn of ihe tested rotor. There are three

possibilities for this coordinete transiormation:
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- real shape Tunctions and modal damping in the identified system
V(x) = o(x) - X (35)

- reczl shape functions end arbitrary, viscous damping in the identi-

fied system
(W) 0 ()] = e(x) (X X (36)

- comnlex shape functions and arbitrary, viscous damping in the iden-

tified system

. * * '5;\ 0
L) v (0] = o) 0o (x)] . . (37)
0 X
6. Identification of unbalance distribution

While the eiaenfunctions can be evelueted, at least approximztely,
the distribution of unbalance and initial bow remains unknown. Hence at
the beginning of the iteration arbitrary vectors have to be chosen as
vaectors for the cencralized unbalance and initizl bow. The identification
can only furnish the generazlized vectors by anc¢ uy which ere refer-
enced to the mass matrix, as already mentioned. The only use we can make
of this is to coniine the distribution of unbalance, if we demancd that
the distribution e(x) should be expressed by a series of given func-

tions h(x)

e(x) = 1 a.h.(x) ) (38)

The required coefficients a; are obtained from the solution of a

linear system of equations:
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K.a = MR' uy (39}
where
4
| - « 0
5 g <oi(“) hj(X) dx (¢0)

The functioms are the shape functions and the matrix MR 1s the
mass matrix of the precalculation which serves as an approximestion for

the true mass matrix of the rotor.

7. Experimental investigations

In addition to testing an identification method by sinulated data it
is important to examine the behaviour of the alcorithm by using measured
data from an existing rotor. Thus, measurements viere made on a test rotor
vhich shows a2 greater resemblance to turbomachines than the usual small
test rig (Fig. 2). This rotor is built of three separate shafts. It
weighs 450 kg and has a length of 3 m. The displacement of the rotor was
measured in four planes with two proximity probes in each nlane positioned

at 45 degrees to the verticel and at 90 degrees to each other.

2tane ?tine ¢ Mlane 3 2lane 1

A1l dimensions in millimeters

Fig. 2 Rotor of the model turbomachine
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The electrical signals from the nrobes do not completely represent
the real vibration of the rotor but contain additional parts which should

'run

be called 'fictitious vibrations' to avoid the misleading expression
put'. They can be produced by changes of the displacement signal which are
not associated with vibrations, such as deviations of the cross-section
of the shaft from circularity or by the physical character of the trans-
ducer. Among minor influences, the inhomogeneous conductivity of the shaft

surface plays a major role when using proximity orobes of the eddy current

type.

The effects of these errors on the measured signals are depicted in

Figure 3.
G
@ 3
1 SR
: u“ J‘II I;
g Ilm BB
' L 80 120 160 2
‘.
Fig. 3 Vibration signals at measuring plane 3 at two different

speeds

Whereas the vibration amnlitudes of the rotor increase considerably
with increase of speed, the fictitious vibrations remain constant and can
still be recognized. Further,one can notice that characteristic neaks in

the signal maintain their phase relative to the reference pulse of the
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rotor, independently of rotor speed. On the right-hand side of Fig. 3 the
signals from the two probes in the same plane are combined to give a
closed orbit showing the shaft displacement during one revolution. The
characteristic loops are caused by the fictitious vibration signals. Be-
cause in all cases the fictitious vibration remains constant in amplitude
and phase it can be represented by complex and frequency invariant vec-
tors. As for the identification process, we only need to take into consi-

deration the first harmonic.

The most suitable procedure for extracting the first harmonic is to
use the orthogonal correlation technique on the vibration siqgnal and a re-
reference signal. This technique produces the real and imaginary part of
the rotor vibration. Depicting these values in a Nyquist diagram we have
the clearest presentation of the frequency response function, especially
because the influence of an arbitrarily oriented initial vector can be
seen more clearly in a Nyquist diagram than by separate plots of amplitu-

de and phase.

When dealing with rotors with non-conservative and anisotropic jour-
nal bearings the Nyquist diagrams of the two vibration transducers in the
same plane differ from each other. In order to show this difference the
plots are depicted together. The phase anagles of the two signals have been
arranged in such a way that the anqular position of the reference pulse

coincides with the positive real axis.

This temparature of the oil in the journal bearings of a turbomachine
influences the spring and damping constants of the bearina. The whole sy-
stem 'rotor on journal bearings' cannot be looked upon as a linear system.
But when we do so, the identification yields parameters belonging to that
linear system which approximates the real system best in the sense of the
quadratic mean . On the other hand the main advantage of this identifica-
tion method is the ease with which nonlinear effects can be included in

the error functional, as compared with the more popular modal method.
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In Fiqure 4 the result of the identification together with the meas-

ured frequency responses is shown. It should be pointed out that the fre-

quency responses of the two probes in this sample plane as well as the re-

sponses of all the other probes were simultaneously used to adjust the pa-

rameters of the model.

-270°

measured
—— 1dentified

P9 roc

&

transducer 8

t

transducer 7

i
&

Rpm at points a to t
a: 1000 b: 1600 c: 1870 d: 2000 e: 2300
f: 2400 g: 2460 h: 2480 i: 2500 j: 2510
k: 2530 1: 2570 m: 2670 n: 2880 o: 2950
p: 3200 q: 3530 r: 3640 s: 3800 t: 4000
Fig. 4 Comparison of the measured and identified Nyquist plots

of the measurement plane 4
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8. Summary

The method presented in this paper requires no assumptions about the
type of the damping matrix and is thus not restricted to modal damping.
The system matrices are found by an iterstive estimation process. The
iteration step is evaluated by a modified GauB-Newton alqorithm, which is
extended to matrix functions. By using the identified system matrices the
corresponding quadratic eigenvalue problem can be solved to yield the ei-
genfunctions of the rotor as a linear combination of the chosen shape
functions. Further the generalized vector of the unbalance can narrow the

possible distribution of the unbalance.

Finally a particular error which specifically appears in rotor vibra-
tion measurement and which is subsumed under the expression 'fictitious
vibration' can be included in the error function, thus separatina this

error from purely random errors.
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CHAPTER 4.3

IDENTIFICATION OF MODAL PARAMETERS OF ROTORS

R. Nordmann

1 Introduction

The occurence of instability in rotating machinery may be caused by
different effects: oil film in journal bearings, sealings, internal
damping etc.

A machine designer wants to know, whether a machine will run stable du-
ring operation and what size the stability threshold speed will have.
Furthermore he needs information about the parameters influencing the
instability of a rotor.

Important informations about stability of a linear rotor-system are
given by the complex eigenvalues, respectively the damping constants and
natural frequencies. Together with the natural modes (eigenvectors) a
valuation of the dynamic behaviour - free as well as forced vibrations -
is possible. Eigenvalues and natural modes are called the "modal para-
meters' of a system. The modal parameters normally are calculated in the
design stage of a rotating machine. Because of uncertain input data for

the calculation the results have to be considered critically. Therefore
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mechanical engineers also try to find out the modal parameters of built
rotating machines or test rotors by measurements during operation. Such
measurements indicate the real dynamic behaviour and possibly show in
what way the previously employed models for calculation have to be modi-
fied.

Some years ago a combined experimental and analytical method was devel-
oped identifying modal parameters of nonrotating structures. This method

is usually named '

'modal analysis™. One of the assumptions in the method
is the symmetry of matrices for the analytical model, which is not ad-
missable in the case of rotating systems (nonsymmetry caused by journal
bearings etc.). Therefore improvements are necessary for application of
the method in rotating machinery. Such improvements are treated in this
paper and an example is given investigating the eigenvalues of a Laval-

shaft.

2 Modal Parameters of Rotors, The dynamic characteristics of a

rotor in journal bearings - shown in Fig. 1 - can be described by the

modal parameters: eigenvalues and natural modes.

JOURNAL
BEARING

Fig. 1 Rotor in two journal bearings
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They can be calculated by the homogeneous equations of the rotor

et
et

ME+rcivku=o0 (1)

The solution of eq. (4.3-1) is of the form

M+ rCc+Kl o =0 (3)

with 2N eigenvalues Aj and corresponding natural modes ¢., if the order
of the matrices is N. The eigenvalues as well as the eigenvectors mainly
occur in conjugate complex pairs (real eigenvalues and eigenvectors are

not considered),

Eigenvalues: A, =a, + iw, ; A, = a., - iw. (4)
] ] J ] J ]

Eigenvectors: ¢. = s, + it. ; 6. = s, - it 5

& i3 5 25 78 -J (3)

The part of the solution, which belongs to such a conjugate complex pair

can be written as
a.t

. e {s. sin(w.t + v.) + t. cos(w.t + y.)} 6
iis (wJ YJ) t; “ YJ) (6)

E.(t) =B
| J J

vy ls the circular natural frequency of this part of the solution and

Qj the damping constant. The damping constant determines, whether the
solution gj decreases (ai < 0) or increases (x. > o).

The stiffness and dampiné coefficients of the oil {ilm are functions of
the running speed :i. Therefore the modal parameters depend on the running

speed, too.
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Fig. 2 Eigenvalues of the rotor (wo reference frequency)

In Fig. 2 the three lowest eigenvalues (circular natural frequencies mj
and damping constants aj) of the rotor (Fig. 1) are plotted versus the

o

angular velocity ©. The intersection between the damping constant o, and

I
the abscissa establishes the threshold of instability.

The expression in parantheses { } of eq. (6) was defined as
natural mode in chapter 1.' , representing a time dependent curve in
space. Fig. 3 shows the modal shapes corresponding to the three lowest
natural frequencies. For any point of the shaft the plane motion is an
elliptical orbit. These orbits are different in the individual natural
modes. The shaded planes contain the major axis of the ellipses.

The following chapter deals with the problem, how to identify the des-

cribed modal parameters.
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Fig. 3 Natural modes of the rotor in two journal bearings

3 Identification of Modal Parameters of Rotors., For some years

past a combined experimental and analytical method identifying modal
parameters of nonrotating elastic systems has been applied in air-
craft-industry and recently in automotive industry, machine-tool in-
dustry and others. The aim of the method is to analyze a structure in
its elementary modes and to determine their characteristics; hence the
name '"modal analysis'. It is an identification procedure working in the
frequency domain.

At first a number of measurement points with N measurement-coordinates
are chosen for an actual structure. Test forces are anplied sys-—
tematically upon the structure at various points and the system response

are measured.
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After transformation (FFT) of the input and output signals into the fre-
quency domain, frequency response functions can be determined.

It is also possible to represent analytical frequency response functions,
which depend on the modal parameters of the system. The corresponding
mathematical model normally assumes linearity, viscous damping and sym-

metric matrices etc.

The analytical functions are fitted to the measured functions by
variation of the modal parameters. Results of this iterative fitting
procedure are the modal parameters.

For application of the method three points are needed (Fig. 4)

- a mechanical and mathematical model with given structure
(linearity, viscous damping, symmetric matrices etc.) but
free parameters. Analytical frequency response functions

belong to the mathematical model.

- a measuring device for the determination of frequency
response functions. "Single point" excitation methods with
a broadband~excitation are preferred today (Impact-excita-

tion).

- a curve fitting procedure, which fits the analytical curves

to the measured curves and calculates the modal parameters.

Important differences have to be considered in applving the

method for rotating structures, for example

—~ nonsymmetry of matrices (change in the model-structure)
~ speed dependence of modal parameters

- excitation during operation of the rotor.

In consideration of the above differences '"modal analysis" is on prin-
ciple also available for rotating structures.

For representation of the method we subdivide into the main parts

- Mechanical and mathematical model

analytical frequency response
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-~ Measurement of frequency response functions

- Determination of modal parameters by curve fitting.

.
MCOEL
QA
I A
’/\ v
M\:j¢ CG+ Kg = E’
S ANALYTICAL FRTQ-RESPONSE MEASURED FREG-RESPONSE
B2 (W, MODAL PARAMETERS) HY (w)
\ TIENTICICATION OF MODAL PARAMETERS (CURVE FITTING)
-- CRITERION - IS AGREEMENT GF MODEL AND MTASUREMINT  f--
6053 ?
CALCULATION ©F hiw | NOLYES
9+~ N 2 ESUL
8T~ MOCAL PLRAMETERS RESULTS

Fig. 4 TIdentification of modal parameters

Mechanical and mathematical model - analytical frequency response.

Equations of motion. We start with the mechanical model (Fig. 5),

which can be represented by a linear system of N differential equations

+CE+ KT =F) (7)

e

M
expressing the equilibrium of inertia-, damping- and stiffness forces as
well as external forces. Damping and stiffness matrices are nonsymmetric

and elements of them depend on the speed of the rotor.

Frequency response functions. If one excites the linear rotor in a

certain point 2 by means of a harmonic force (input signal),oscillating

with a frequency w (Fig. 6),
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COORDINATES

EQUATIONS OF MOTION

ng s CIQIG + KIQ)G = [:(r)J

Fig. 5 Mechanical model

F'll

| - ~
l EXCITATION: F, = F sinwt

RESPONSE: G, = 4, sin(wt-g,)

Fig. 6 1Input and output signals at the rotor
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~ oA . _ A iwt
FE (t) = FZ sinwt = IM {Fl e }, (8)

further one measures the displacement (output signal) in another point k

uk(t) =4 31n(wt—ek2) = IM {uke

i(mt-ekg)} ’ (9)

the response behaviour of the rotor can be characterized by the ratio of
A

the amplitudes of the two signals ?Jk/F2 and the phase e between the

two signals.

Both are frequency dependent functions and named

=
~
TI>

{w} amplitude frequency characteristic

€1q {w} phase frequency characteristic
They are usually expressed in one complex frequency response function
defining the complex ratio of output-signal to input-signal

)

a el(wt_€k£

=
|C>
-

e 1°ks (10)

)]
o
7]
>
>

Hki (w) can be represented either by a polar diagram in the complex plane
(Nyquist-plot) or as amplitude ratio and phase angle in function of the
frequency (Bode-plot).

As mentioned above Hki («w) 1s a function of the frequency w, furthermore
it depends on the system parameters (mass, stiffness, damping). On the
o<'ier hand the frequency response is also representable by the modal pa-
rameters of the system. The next Fig. 7 shows an example of an amplitude
frequency characteristic Hkl in connection with the eigenvalues of the
system. For constant running speed 2 of the rotor, the corresponding
eigenvalues are found by the intersections between the curves wj(Q),

aj(Q) and the line . = constant.
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Ir the frequency of excitation w coincides with one of the natural fre-

quencies Wi a peak is expected in the amplitude frequency characteristic.

[_Ei_[itNVALUES A-a i [

ffsu\YRsv ST H (w)]

J

l
|
|

- corsiant
censicnt

5
-— -
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L

Fig. 7

eigenvalues of a rotor

In the case of high damping constants aj

will be very small or not occur at all.
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Amplitude frequency characteristic and

the corresponding peaks either

It is discernible that infor-

mations about modal parameters are contained in the frequency response.

In the following chapter

modal parameters.

we shall express the frequency response by the

Expansion of the frequency response in terms of modal parameters.

It is well known

in terms of the modal parameters (modal analysis).

cy response, we start with the equations of motion

servative rotor with N

=
e
+
1Q
1€
+
=

that the response of a linear system can be represented

Expressing the frequen-

(7)

for a noncon-

degrees of freedom

(11)
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They can be converted to 2N first order differential equations with the
dependent variables E constituting a 2N dimensional state vector (see

chapter 1.1)

M 0 & o M] [g@ 0
o x| (@] |m ¢ [&] |F (12)
A E- B r -k

The system response can be expressed by an expansion in terms of the

right eigenvectors Ej of the nonconservative system (see chapter 1.3)

N
"o~z

r(t) =
j

r.

RS RN (13)

0
]
| =
102

with the generalized coordinates aj and the modal matrix R.
Substituting in eq. (12) and premultiplying with the modal matrix of

. T . . .
the left eigenvectors L we obtain decoupled equations of motion

L'ARG-LBRG=LE, (142)
respectively
~ ~ T~
‘.q. - q. = -y.F 14b
59 79 v, F (14b)

. are the eigenvectors of the transposed eigenvalue problem.

In the case of harmonic excitation at point 2 of the shaft - written in

complex form

Fl = (0.0,....F,...0,0} " (15)

'
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the steady state solution of eq. ( 14b) 1is
Val
5 v .F )
3.(t) = - 21 2 elwt (16)
J A.-lw
J
and
. A
- u 2Ny, .F Ad. .
T(e) = | |- oz AL pnT)ut (17)
3 =l 1w-A. .
=) j ¢

Therefore with the response at point k

N ) N b . A
o (t) =G0 et oy KR Flut (18)
k k . . 2

j=1 lw—kj

the analytical frequency response H A can be formulated in terms of the

k&
modal parameters

A Y % wo GpiVey W A
T . (19)
©F F e 4" iw=A. # qw-A,
L L ] ]
The expression (19)  consists of the eigenvalues Aj and elements of

left-eigenvectors ng and right eigenvectors ¢kj'
For a rotor with N degrees of freedom NxN frequency response functions

exist | assembled in the matrix EA (Fig. 8).
T
k
eigenvectors gj and each column §2 contains all of the right eigen-

It is important to note, that each row Z contains all of the left

vectors ¢j

by e (20)
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v '
21 22
= ¢, + by * e (21)
- . 21 . 22
1w-A] 1w=-A
H]] H]Z" : Hlﬂ,’ * H]N
Hyy B2
Aw ——— . %! T
W (w) = H H H 1 Z = .
k4 :k2 :kz K j=1 (iu)—)j) =3
Ay / 1 By
A Yy
g =T %3
j=1 (iw-Aj)

Fig. 8 Matrix of frequency response functions

One row Z! and one column §2 of the frequency response matrix EA(w) need

-k

to be measured in order to identify all of the modal parameters Aj, ?j”ﬁ

of a rotor (Fig. 9).
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MEASUREMELT OF (CLUMN S . MEASLREMENT OF A RCW 27
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MEASUREENT OF DISPLACEMENTS MEASUREME ST GF CISPLACEMENT
AT ALL OTHER LCCATIONS AT LOCATION

Fig. 9 Measurement of frequency response functions

It is sufficient to measure only one column, if eigenvalues and
right eigenvectors will be determined. For determination of eigenvalues
A. without natural modes, the whole information is contained in one fre-

quency response H already. In the last case the structure has to be

ke
excited in one point and the response has to be measured in the same
point or another point.

There are exceptions 1if the points of excitation or response are identi-

cal with node points of the natural modes.

Measurements of the frequency response functions. The frequency

response functions can be determined by measurements, too.

In Fig. 10 the relationships between input and output of a linear system
are represented in the time domain and in the frequency domain. In the
time domain the unit impulse response is the connecting function, in the
frequency domain the frequency response.

For the determination of the frequency response we take advantage of the
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fact that the ratio of the Fourier transformed signals is equal to the
frequency response. The signals }’E(t) are measured in the time domain,

transformed to the frequency domain by means of the Fast-Fourier-Trans-
formation and the ratio is calculated. This procedure can be executed by

efficient two channel Fourier analyzers.

N
I

T EXCITATION | SYSTEM | REsPONSE |
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‘ | = | > . i, ! :
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Fig. 10 Input-output relationships

One could excite the system with harmonic forces (Fig. 11). In this case
the force signal as well as the response signal are sinusoidal signals
and therefore the frequency spectrum of both signals as well as the fre-

quency response have only one frequency line.
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Fig. 11 Harmonic and impulse excitation

Applying forces with broadband characteristic in the frequency domain
(impulse, random etc.) is more economical, because all frequencies of
excitation are contained at once in a desired frequency range.
1f the rotor is excited by an impulse, both the force and the system
response are broadband functions in the frequency domain and the measure-
ments can be carried out in a relative short time.

With a short impulse the energy is concentrated in higher frequencies
and with a long impulse in lower frequencies. The pulse duration, the
frequency content and the amplitude of force can be influenced by selec-
tion of a hammer mass, the flexibility of the impact cap and the impact

velocity.

Fig. 12 shows in principlethe measuring device. A special hammer
excites the rotating shaft and the force is measured. The displacements

of the shaft are picked up with inductive displacement pick-ups. Force
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and displacement signals are amplified and after analog-digital-conver-
sion and Fast-Fourier-Transformation the frequency response functions
can be calculated. For further treatment the functions are stored on a

magnetic tape.
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_

FAST FRECUENCY MAG-
FOURER RESPONSE  NETIC
TRANS- FURCTION  TAPE

FCRMATICN

CISBLACEMINT
PilK LP

Fig. 12 Measuring device

Determination of modal parameters by curve fitting. For each rotor

speed @ the necessary frequency response functions Hkl;j(w) are present
from measurements (Fig. 13). The corresponding functions of the mathe-

).

. A
matical model are sz (w, Aj’ ak?j

The goal of the curve fitting procedure is finding such modal pa-

rameters XJ., ak“. - respectively ¢., \v’;j - to get best agreement between

: M A
the functions HkQ and Hk!l .

A possible criterion is the minimization of the scalar function

M A 2
{Hkg (wp) - H (wp, xj, akﬁj)} (22)

L
P
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Fig. 13 Curve fitting

This can be interpreted as a least squares criterion for the error. The
condition of minimization of the function E leads to equations for the
unknowns Aj and aklj' These equations are solved by an iterative proce-
dure (linearization). After each step n the variation of the scalar func-
tion E is controlled. If the relative variation of E is less than a num-
ber ¢, the last values of Aj, akij - respectively fj’ yj are taken as
modal parameters for this speed.

At the beginning of the procedure a starting vector of the unknowns must

be chosen.

Critical remarks. Tne above described method finding all modal pa-

rameters of a nonconservative rotor is applicable, if all measurement
points are accessible - for example in test rotors. In this case eigen-
values Aj, as well as natural modes (eigenvectors) ¢j, vy. and possibly

the system parameters (mass, damping, stiffness) can be determined.
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In practise of rotating machinery there are only few points at the
rotor, which allow to excite the system and to measure the response du-
ring operation. The determination of all modal parameters, the natural
modes included, is not possible in this case.

If only the eigenvalues are needed (stability, resonances), one point for
excitation and one point for measuring the response are sufficient to
determine at least one frequency response and the corresponding eigen-

values.,

Difficulties may arise in large turbomachinery, where a hand hammer
normally will be to small. Other exciting mechanisms have been developed
e.g. magnetic hammers, pneumatic hammers, snapping a loaded strap etc.
Other difficulties may occur in the case of eigenvalues with high damp-
ing constants (overdamping), which may be equivalent with missing peaks

in the frequency response.

4 Example - Eigenvalues of a Test Rotor. For testing the method,

measurements were carried out at an excisting test rig: Laval-shaft in
two cylindrical journal bearings. This test rotor had only displacement
pick ups near the bearings. Therefore the measurement of one column of
the frequency response matrix EA and the following determination of the
natural modes ¢. was not possible. So this investigation was limited to

the identification of the eigenvalues and the stability threshold speed

of the rotor. The results were compared with theoretical results.

Rotor test rig. Fig. 14 shows the rotor test rig. It consists of a

cylindrical shaft (diameter 50 mm, length 1000 mm) with a disk (mass 53
kg, diameter 300 mm, width 100 mm) at the center of the shaft.

A d.c.-electric motor with speed control drives the shaft, which is run-
ning in two cylindrical journal bearings with a length-diameter ratio
B/D = 0.8.

The motor and the movable bearing pedestals are mounted on a concrete
foundation with elastic springs. The foundation mass is 6000 kg.

The hammer for pulse excitation has a mass of 1,2 kg. Each bearing has
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two displacement pick ups for measuring the displacements in horizontal

and vertical directions.

. e TS a2 05 072 2 S T P N AN
e 0iSK SLASND CC ELECTRC VITZR
B PZTESTAL

Fig. 14 Rotor test rig

Fig. 15 Measured quantities
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Measured quantities. The most important measured quantities are

the exciting force and the displacements of the shaft (Fig. 15). The

last ones contain besides the impulse response a residual synchronous
response caused by unbalance. This part of the signal, which disturbs
the signal processing, is eliminated by an electronic circuit.

Further measured quantities are the rotor speed and the oil temperature.

Some results. Fig. 16 shows the natural frequencies wj and the
damping constants aj versus the running speed Q. Without the oil film
(2 = o) the natural frequency is 42.5 Hz. Two speed dependent eigen-
values were measured for the rotating shaft in the considered frequency
range. The flexibility of the oil film reduces the natural frequencies
but the o0il film stiffness is relatively high compared with the shaft.
Contrary to the damping constant a

the damping constant a, changes

2 ]
strongly with the running speed ¢. The intersection between the damping
constant a, and the abscissa establishes the threshold of instability.
Instability occurs at a frequency of the rotating shaft 74 Hz with a
natural frequency of 32 Hz.

Besides the measured eigenvalues also calculated eigenvalues are plotted
in Fig. 16. A finite element program was used for calculation. All im-
portant effects were taken into account.

The comparison of measured and calculated values shcws a good agreement.
Further results are shown in Fig. 17 with other distarces between bear-

ings. There 1s again a good agreement between measurement and calcula-

tion.
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CHAPTER 4.4

IDENTIFICATION OF STIFFNESS AND DAMPING COEFFICIENTS
OF JOURNAL BEARINGS BY MEANS OF THE IMPACT METHOD

R. Nordmann

1 Introduction

It is well knownfrom the preceding chapters, that vibrations of
rotors with journal bearings are influenced by the dynamic behaviour of
the oil film. Therefore in rotor dynamics investigations oil film char-
acteristics have to be considered. In linear theory the dynamic behav-
iour of the journal bearings can be described by four stiffness and four
damping coefficients. These coefficients can be found either by calcula-

tions or by experimental methods.

A review about calculating and experimental methods for the deter-
mination of oil film coefficients is given by Lund [1]. For calculation
there exist several numerical methods to solve the Reynolds equations.
Concerning experimental methods generally input signals (forces) and
output signals (displacements) of the dynamic system are measured and
the unknown parameters of the system are calculated by means of input-

output-relationships.



396 R. Nordmann

Most test rigs have a single test bearing, which floats on a very stiff
rotating shaft [2,3]. The test bearing is excited by harmonic forces
and the displacements of the test rig are measured. The determination
of bearing coefficients is possible when there are at least two inde-
pendent sets of measurements, which can be obtained by two independent

sets of forces.

The here presented method is different in some essential points. It
was first of all approved at a small 'existing test rig. A rigid rotor,
running in journal bearings, 1s excited by a hammer (pulse testing).
Input signals (forces) and output signals (displacements of the rotor)
are transformed into the frequency domain and the complex frequency
response functions are calculated. Analytical frequency response func-
tions, which depend on the bearing coefficients, are fitted to the meas-
ured functions. Stiffness and damping coefficients are results of this

iterative fitting process.

2 Determination of Stiffness and Damping Coefficients. The new

method was approved at a rotor, which is very stiff compared with the
stiffness of the bearings. For this real system a linear mechanical sys-
tem can be modeled. The equations of motion for this mechanical system
represent the mathematical model. We suppose that the structure of the
mathematical model is known, whereas the parameters - the bearing co-
efficients - are to be determined. At first the frequency response func-
tions of the real system are measured. Then in an iterative procedure
the frequency response functions of the mathematical model are fitted to
the measured functions by variation of the bearing coefficients.

For representation of the method we subdivide in the main parts

~ Mechanical and mathematical model
-~ Measurements of the frequency response functions

- Curve fitting (Parameterdetermination),
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Mechanical and mathematical model. The mechanical model consists

of a symmetrical rigid rotor with mass m, running with angular velocity
Q in two equal journal bearings. The dynamic behaviour of the bearings

is characterized by the four stiffness coefficients kxx’ k ,k ,k

Xy yx yy
and the four damping coefficients ¢_ , ¢, ¢c _, ¢c__.
XX Xy yxo o yy
JOURNAL
RIGID ROTCR ¢ BEARING
MASS m / )
JOURNAL
BEARING ~
Fig. 1 Mechanical model of a rigid rotor in journal bearings

The motions of the rigid rotor can be described by the displacements

4(t) and V(t) of the centre of gravity. Because the exciting forces Fx(t)
and fy(t) are applied only in the centre of the rotor (Fig. 1), the
system responds only with translatory motions; rotations about the x-axis
and y-axis are omitted. The displacements of the journals are equal to
the displacements of the center of gravity.

The equations of motion for the mechanical model describe the equilibrium

of the forces of inertia, the oil film forces and exciting forces

3
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With the following definitions

W 2 g/Ar, T = wt, W= Q/wo (2)

o

Fstat = mg/2, Ho = Ar/ZFstat , d( )/dt = ()

the equations of motion can be written with the non-dimensional bearing

coefficients
v 8xx ~ Bx ~ ~ ~
gt 2 g e XY Gy Y u+y v=HF
w W XX Xy 0 X
(3)
. B8 B - -
v''o+ yx 3 o+ yy v+ y U+y V="~
w w yX yy oy
The nondimensional bearing coefficients are defined as
Ar A Q
Yxx - kxx F ; Bxx - Cxx Fr (4)
stat stat

For a given bearing these nondimensional coefficients are only dependent
on the Sommerfeld number So, respectively on the static equilibrium posi-
tion of the journal center. We can represent the coefficients in the

nondimensional matrices

Y Y ] B )
XX Xy XX Xy
Y:
- ; B =
- B 8
YYX YY{J Xy yy

If we introduce a Sommerfeld number Soo with angular velocity w e+ we are

able to describe the system by the parameters Soo and w.
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Frequency response of a rigid rotor in journal bearings. From the

equations of motion the unknowns G,V can be computed for different load
cases. Aoplying harmonic forces successively in the two directions,
four frequency response functions of the model can be determined. 1f the

exciting force is Fy (with the nondimensional frequency n = w/wo)

~ ~ . A LW
F (1) =F sinwt =F sin — w t
Yy y y o

Yo (6)
inT}

A

A
F_ sin nt = IM {F. e
y y

the following statement with the complex amplitude O%*
iExy

~ ~p 1 ~ i 7

(1) = 1M {0%e'"T} = 1M {Q e PRALLD! (7)

leads to the complex frequency response

A% INT - Xy Xy
H = ? = %— e =V e (8)
xy Foelnt F Xy
y y

which is the response in x-direction caused by a force in y-direction.

We obtain four frequency response functions

icxx 2 5Y}’
=y = - + 1) H /N(n
H o © (Yyy n " ni) H_/N(n)
iexy Qxy
Y = - (v + =2 ni . n
ey =V © Gy * % ni) H /1(n)
ic i (9)
- v Y o D 2. :
Ho =V, e = (ny + oo ni) CH /N
isyy 2 XX
= VU = - n _. H N 1
fyy T Vyy © Cex va b /NG
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with the denominator

N(n) = ( -0 e 22 iy - n s —Byy ni)
Yyex w Yyy w
(10)
Bxy Byx
- (ny + = ni) (ny * o i)

The four functions contain the ratios of the amplitudes Vxx’ ny, Vyx’
ny - the amplitude frequency characteristics - and the phase frequency

characteristics e, € , € , € .
xx' Txy' “yx’ Tyy

In the following the frequency response functions will be represented as

nondimensional functions, for example

=
<
-
™
=
™

H o= X o XY XY _F o XY (11)
Xy Ho

Fig. 2 shows as an example the four amplitude characteristics V;x, ng,
G;x' vyy for a rotor with cylindrical bearings B/D = 0.8 and constant
parameters Soo and w.

,
I
4

x

X

0

2 0 1 n— 2

0 1 n
Fig. 2 Amplitude frequency characteristics of a rigid rotor

in journal bearings
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Measurements of the frequency response functions. The frequency

response functions can be determined by measurements. Similar to the
calculation procedure, one could excite the system with harmonic forces
successively. Working with impulse forces instead of harmonic forces is
more economical, because an impulse force contains all exciter frequen-
cies at once in a determined frequency range.
For the determination of the frequency from measured input and output
signals we take advantage of the fact that the quotient of the Fourier
transformed signals is equal to the frequency response. The signals fx(t)
Ey(t), Z(t), v(t) are measured in the time domain, transformed to the
frequency domain by means of the Fast Fourier Transformation and the re-
spective quotient is calculated.

Fig.3 shows in principle the measuring equipments. A special hammer ex-
cites the rotating shaft and the acceleration of the hammer is measured.
Under certaln assumptions the acceleration is a measure of the impact

force.

With a short pulse the energy can be concentrated in higher frequen-
cies and with a long pulse in lower frequencies. The pulse duration, the
frequency content and the amplitude of force can be influenced by selec-
tion of the hammer mass. the flexibility of the impact cap and the impact
velocity.

Nt FOURIZR ANALYZER

ACCELERCMETER

FA.‘-’.-.‘!‘,ER\\:!L g ' L|\ e
IMPACT CAP\E/ My b €FT el Im
\\\Ej kL/) ! N

ROTOR.

FAST FREGUENCZY MAG-
FCUREER RESPONSE  NETIC
TRANS- FUNCTION  TAPE
FORMATION

TS A
SUURNAL ! —t

BEARING

Fig. 3 Equipment for frequency response measurements
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The pulse duration increases with hammer mass and flexibility of the

impact cap. Correspondingly the frequency content decreases with hammer
mass and the flexibility of the cap. The force amplitude increases with
the hammer mass and the impact velocity,but decreases with the flexibil-

ity of the cap.

With plastic material at the contact surface the friction force be-
tween hammer and shaft is powerfully reduced.
The displacements of the shaft are measured with inductive displacement
pick ups near the bearing location. Force and displacement signals are
amplified and after analog-digital-converting and Fast Fourier Trans-
formation the frequency response functions can be calculated. For further

treatment the functions are stored on a magnetic tape.

Curve fitting. For determination of the parameter matrices y and B
one does not need to work with the complete frequency response functions
(amplitude frequency and phase frequency characteristics), because all

f th k B8
o) e unknown parameters Yxx’ Yx . ny, Y and Bxx' Xy B , B are

y yy yx' Ty T

agready contained in the amplitude frequency characteristics vxx' ny. Vyx’
Vyy' Working only with these four functions the numerical effort in the
curve fitting procedure is reduced. It could be shown by a numerical sim-
ulation that this simplification gives good results for the unknown pa-

rameters.

For each rotor speed the four functions v M, v M, v M, v M, are
XX Xy yX vy
known from measurements (Fig. 4). The corresponding functions of the
mathematical model depend on the bearing coefficients. The goal of the
curve fitting procedure is finding such elements of the matrices y and
B to get best agreement between calculated and measured functions. A

possible criterion is the minimization of the scalar function

2

- ~ = M (12)
z R b i {Vik(”p'l’-s-) Vik (np)}
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Fig. 4 Determination of bearing coefficients

This can be interpreted as a least squares criterion for the error. The
condition of minimization of the function Z leads to nonlinear equations

for the unknowns y and . These equations are solved by an iterative

procedure (linearization). After each step n the variation of the scalar

function Z is controlled (Fig. 4). If the n-th step the relative variat-

tion of F is less than a number ~, the last values of v and ? are taken

as stiffness and damping coeificients for this case.

At the beginning of the procedure a starting vector of the unknowns

(0) (o)
Y and = must be chosen. It can be found from the measurement curves.
3 Measurements at a Rotor Test Rig

Rotor test rig. Fig. 5 shows the rotor test rig. The rotor in his

middle range (length 475 mm) has a diameter of 150 mm, the diameter of

the journals is 50 mm. A d-c¢ electric motor with speed control drives
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the shaft, which is running in two cylindrical bearings with B/D = 0.8.

HAMMER WITH DISPLACEMENT
ACCEL TER PICK UP

ACCELEROMN

JOURNAL
BEARING -

BEARING  RIGIDSHAFT BEARING COUPLING D.C.ELECTRIC MOTOR
PEDESTAL PEDESTAL WITH SPEED CONTROL

<Y
| R
14

CONCRETE FOUNDATION

ON ELASTIC SPRINGS

Fig. 5 Rotor test rig

The radial clearance of the bearings is 210 MM. The employed oil has a
lubricant viscosity of 9,5.10—2Ns/m2(200C). The average bearing load

is 1,75 bar. The oil temperature can be regulated in a range 15°-60°C.
The motor and the bearing pedestals are mounted on a concrete foundation

with elastic springs. The foundation mass 1is 6000 kg.

The hammer for pulse excitation has a mass of 1,2 kg. Each bearing
has two inductive displacement pick ups for measuring the displacements

in horizontal and vertical directions.

Measured quantities. The most important measured quantities are

the exciting force and the displacements of the shaft. The last ones
contain besides the pulse response a residual synchronous response
caused by unbalance. This part of the signal, which disturbes the signal
processing, is eliminated by an electronic circuit. Further measured
quantities are the rotor speed, the outlet temperature of oil and the

pressure of the oil at the bearing inlet.
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Some results of bearing coefficients. For the described rotor in

cylindrical bearings measurements were carried out in a speed range from

1500 to 5400 rev/min (maximum of motor speed).For each constant speed

M M M M

, V L, ‘, Vv and the other measured quan-
L ) Xy yx yy .
tities as speed, oil temperature etc. were determined.

the four functions V
XX

The values of Yxx’ Yx s Y and Bxx’ B, B Byy were fitted and

y’ Ty Tyy Xy’ Tyx’
the corresponding Sommerfeld number was calculated. In Fig. 6 and 7 the

nondimensional damping and stiffness coefficients are represented versus

the Sommerfeld number So.
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Fig. 6 Nondimensional stiffness coefficients of a cylindrical

bearing B/D = 0.8

Because of the speed limitation and in default of variation possibil-
itlies for other parameters, Sommerfeld numbers less than 0.75 could not
be realized at this rotor test rig.

Figures 6 and 7 show that the scatter is relatively small for the stiff-
ness coefficients and greater for the damping coefficients, especially
for Byx and Byy' Besides the measured bearing coefficients earlier re-

sults from Glienicke for the same type of bearing are represented with
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dashed lines. The agreement is relatively good, only some of the values

have greater deviations.

-5J_ ~_L“ i _ et

Fig. 7 Nondimensional damping coefficients of a cvlindrical

bearing B/D = 0.8

4 Control of the results. A possible testing of the results can

be realized by driving the real system and the mechanical model with
same system parameters by the same input and by studying the different
behaviour of the two systems.

In our case the amplitude frequency characteristics and the essential

cigenvalue of the two systems are compared.

Comparison of the amplitude frequency characteristics. For glven
system parameters So and w the four functions V.., v,V |V of the
0 XX XV yx vv

mechanical model are calculated, emploving the measured stiffness and

damping coefficients. Then at the rotor test rig the four functions are
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measured for the same parameters Soo and w. In Fig. 8 we compare the
measured and calculated functions for the parameters So0 = 1,65 and

w =1,75. There is a good agreement for all four functions. Certainly
we have to notice that such functions are compared, which were used to
determine the bearing coefficients in a fitting process with the cri-

terion to get best agreement between calculation and measurement.
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Fig. 8 Comparison of amplitude frequency characteristics

(Soo = 1,65, w =1,73)

Comparison of measured and calculated eigenvalues. 1f we replace

the dimensionless frequency ~«i in the denominator N(-)(eq. 10) by
the complex number », N(Aa) 1s the equation for determination of the
system eigenvalues. The elgenvalues are either real or complex. If they
are complex they appear in conjugate complex pairs: »., = a. % lwx. with
] J
the decay constant 11 and the circular natural frequency @i.
The rigid rotor in journal bearings has four eigenvalues, but two
of them have only little practical meaning. The corresponding eigen-

solution decays very rapidly. The remaining eigenvalues generally are
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conjugate complex, we call them AI =a) ¥ iwl and Al =a, - iw]. Their
corresponding eigensolution is a decreasing or increasing oscillatory

motion, which Is observable.

For a given system parameter SoO = 1,65 the eigenvalues Al’ Xl
first of all are calculated for different rotor speeds, employing again
the measured bearing coefficients. The experimental determination of the
elgenvalues A], X] can be realized in the time domain by measuring the
decay rate and the natural frequency directly from the natural vibrations.
On the other hand calculation of the eigenvalues from measured frequency

response curves in the frequency domain is possible.

Figures 9 and 10 show the measured and calculated (dashed line)
non-dimensional decay constant ul/wo and the non-dimensional natural
frequency ul/m) versus the rotor speed Q/uo. Again there is a good agree-

C

ment between measured and calculated values.
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glr——

o
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Fig. 9 Nondimensional decay constant of a rigid rotor in

cylindrical bearings B/D = 0,8; So = 1,65
o
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CHAPTER 4.5

EXPERIMENTAL DETERMINATION OF BEARING STATIC PROPERTIES

Z.A. Parszewski

As it was explained in chapter 2.1 the bearing static characteristics

is given by the relations

S = 5(c); ¢ = cla) (1)
giving Sommerfield's number S as function of the eccentricity ratio ¢ and
corresponding locus of equilibrium positions of the journal centre in the
bearing.

Following gives the results of computation as well as experimental
results obtained on a laboratory research stand (Fig. 1 ) used for
experimental measurement of static and dynamic characteristics of
bearings ([6], [T], [8]chapter 3.1 and [4] chapter 2.4 ). The bearing
casing 1 together with the sleeves (Fig. 2 ) is suspended on a
rigidly supported rotating shaft 2. Static load Po is applied by

means of the springs and screws and the static displacement components
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uo, Vo are measured at various
shaft speeds.

The displacement components

u, v are measured by two electro-

dynamic transducers, orientated at

L5° to the load direction (Figs.
qu=c5/nwt' g, =dsin(wt+13)

1 and 2 ). These displace-
ments give the following

Fig. 2 . . .
components in the x and y

directions
= =
Ve Ve o,
= re - v . o= = (s + v 2
XO > (uO O) Y JO e} \ o O) ( )

The eccentricity ratio c¢ and the angle 4 descriving the journa.

centre position in equilitrium are hence
e

. V4 +
a =2n - & - arctg =2 5 ¢ = (3)
0 ) S X r
o

sordimensiona’ load capacity S

\ . PERI . PR N . . - e

loacd (PO, corresponding to the esuilibrium posivicn o tne journa. al &

miven sreed is

The descrited measuremernts give rence the locus of journal cenire

nerdimensicnal

~ X Ead -~ - S - . \\
loacd cavracity {as Sfunciicn of eccceniricizy ratic)
- o/ A 0
c = C\;LA> M = o\C) (5)
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8 l This characteristics [T]
i |
6 —o—experimental resvits } | is given in the Figs. 3
——— computed resuvlts ! j
___«"____mi”' [' T 7T 71T /!l @ and 4 for a threce lobe
4 — 4 ot — — b - 4 i
- -T-' t-- 7 : bearing (Fig. 1 ), with
2 L 4
B o __ | the partial sleeves arcs of
— |
0 0.
0 02 6 8 ¢ ! 6y, = 150° 6, = 65.5°
615 = b7° and
L _L_
R-p - 0-83

Figures 3 and 4 give
also the comparison of

experimental (continuous

lines) and computed (broken

lines) results.

Corresponding curves [8], for

bearings with eccentric

—o— experimentalresults
- —— compu’ed results sleeves (Fig. 5 ) are given

Fig. 4

-

in Figs. 6 and 7
The parameter f = f_ (£ + r_) characterises the eccentricity of the
sleeves (Fig. 5

Bearincs as described are used Tor example, in the generators of

polmel-Wroclaw production.
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CHAPTER 4.6
EXPERIMENTAL DETERMINATION OF BEARING DYNAMIC PROPERTIES
Z.A. Parszewski

The bearing dynamic characteristics (chapter 2.1) is given by the

stiffness and damping matrices

[k K|
Xx Xy
(K] = (1)
K K
yX oYy
Yxx ny‘1
(c] = J (2)
c c
yx vy

The elements of both the matrices are functions of the steady
state (equilibrium) parameter (nence of eccentricity ratio).

These coefficients (elements) can te obtained experimertally in an
indirect way on the experimental stand (Fig. 1 ) described in the
preceeding chapter ([6],[7], [8] crapter 3.1 and |%] chapter 2.4.}.

Vivtrations are excited at the bearing casing around each ecuilibrium
positicn (eccentricity ratio ¢ at a given load L and speed w) ©ty use
of the electromagnetic exciters 3 and 4 (rFig. 1 ).

Tre exciting forces 4, and ¢ and corresponding dyramic displace-
ments u and v of the form

u=asin (wt +8&); v=>pb sin (Lt + &) (3)
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are measured for vibrations excited around consecutive journal centre
equilibrium positions, given by the static characteristics ¢ = c(ao)
of the bearing.

Elements of the stiffness and damping matrices are found from the

set of equations of vibrations of the bearing casing

-

%+ K + +C %+ y = 4
* - T Py Crx xyy I (4)

QY

—~

my + K x+K y+C %+ v =
YT Ryx vy T Vyx w T Y

af

written for two different sets of measured data, corresponding to two
different sets of exciting forces q.

m - is the mass of the bearing (the casing together with the sleeves) and

_L/._.?_( ). —_/é + )
L= gy -y §= ety

(5)
X = %? (u - v) y = é? (u + v)

wondimensional stiffness and damping coefficients of the bearing oil film

g = SL
p k]
(] (o]

€

c (6)

(]
H
jav) l(f)

are given ([7] chapter 2.1) in Fig. 1 and Fig. 2 for the three lobe

£

vearing (Fig. 1 Ch. 2.1) with tic partial sleeves arcs

o] ~
0, =150° 5 8y, = 65.5° ;5,3 = k7° and

“hese fifures give also the comparison of experimental (continuous
lines) and computed (nrcien lines) resuits.
Corresponding curves ([8] chapter 2.1) for bearingss with eccentric

sleeves (Fig. 5 Ch.4.5) are given in Figs. 3 and 4
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£ = fl/(f‘l + rl) characterises the eccentricity of

The parameter

the sleeves (Fig. 5Ch.4.5).
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MISCELLANEOUS TOPICS



CHAPTER 5.1

THE VIBRATIONAL BEHAVIOUR OF A ROTATING SHAFT CONTAINING
A TRANSVERSE CRACK

B. Grabowski

Part 1
Crack Models and the Vibration of a Rotor with Single Disk on Massless

Shaft Containing a Transverse Crack

1. Introduction

Frequently cracks in turbine rotors were found. Nevertheless, until now
it is not really known, how cracks can be recognized early enough so that
large consecutive damage can be prevented.

The latest greater damage in Germany occured in the nuclear power
plant Wirgassen. For one year the plant had to be put out of operation
because two new rotors had to be produced. Both the LP-rotors have had
a crack in the middle of the shaft. At running speed there was noticed

a higher level of vibration amplitudes and during rundown the resonance

*) Since 1981 companion of the "Ingenieurbiiro fiir Maschinendynamik,

MAHRENHOLTZ + PARTNER", 3000 Hannover 1, Freundallee 23, RF Germany
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amplitudes were very large, but these vibrations have not been connected
with a crack. The crack has been discovered accidentally. This makes clear,
how less known is the result of a crack on the vibrational behaviour of a
shaft. Certainly there has to be take into account, that in practice
cracks are comparatively rare. On the other hand in 1922 Stodola (1] has
already on principle shown the effect of a crack and these investigations
were continued by other authors [2,3,4].

As far as known the first measurement results for a rotating shaft
with a crack were published by Mayes and Davies [17] in September 1980.
Like in Wiurgassen an abnormal increase in shaft vibration was noticed at
many other cracked rotors. But in some cases the warning signs were too
small and some rotor broke, in some cases turbine plants virtually explo-
ded and fragments of the shafts flew away up to some hundred meters.

Henry and Okah-Avae [7] also present cases, in which deep cracks
have been found without any influence in vibration amplitudes.

The cause for shaft vibrations due to a crack is the asymmetric cross
section at the crack position in connexion with the self-weight of the
shaft.

Well known is the effect of an asymmetric cross section of shafts
of bioplar generators on the vibrational behaviour. Kellenberger [2] pro-
bably was the first who investigated such a system in 1958 a paper of
later date is published in January 1980 [16] by Inagaki et.al.

2. Crack Models

2.1 Gaping Crack. First of all the most simple assupmtion is an always

gaping crack so that the stiffness of the shaft in a body fixed coordi-
nate system does not change. On principle this is the same as with a
shaft of a bipolar generator.

Fig. 1 shows the static deflection of a shaft with gaping crack due
to the self-weight. Because of its dimension size the shaft can be
assumed as a simple model for a large turbine rotor. Refered to a mean
static deflection in the vertical direction the shaft lifts and goes
down two times per revolution according to the effective moment of
inertia resp. the stiffness. At each angle of rotation the shaft has a

horizontal deflection except at vertical or horizontal directions of the
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/d: 1000 mm
===
a a
be——10000 ——=
v () v ([
L] L
1w
1 -9 3
Al 1.0 1.0
1 1.2 .2
1 .3 13
4 »e e ° 0.0 .0 T R [

.0 e 7.0 0.0 1!
R (arse) i (RAD) 5t

Fig. 1 Self-weight deflection at shaft center for a gaping crack of

50 percent depth
main axes and this two times per revolution too. This causes a super-
position of the mean static deflection with a circular motion. The shaft
moves on the circular orbit twice per revolution. However, this is valid
only for slow rotations, at faster motions the effect of inertia of the
mass of the shaft has to be regarded.

2.2 Breathing Crack. A real crack will show another behaviour. Depending

on the self-weight of the shaft the crack area opens and closes [Fig. 2].

9:° ©:s°
@ :6° @98 9 :1s°

Fig. 2 Crack model cross-sections showing rotation angle-dependent
stressed regions (shaded areas). After Grabowski (15].

For a location above the
horizontal diameter, the crack
is subjected to only compression

and the entire cross-section is

supporting. At further rotation

a part of the crack area opens.
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crack 0:1000mm

N
_— | 1

[ - .- — —1000mmMm —— . . —

vertical amplityde 'mmi

C-ocx depth =

o=

0 %.0 180.0 2200 %0.0

ang-e of rotcton g . tegree ]

.24

Hotizor'a omp ituce (. mm
o

0 0.0 190.0 0.0 30.0
Ang.e o' rolcticr @ | deqree’

Fig. 3 Self-weight deflection at shaft center
for a '"breathing" crack of 50 percent
depth. After Grabowski [15].

In Fig. 3 the crack is closed at the angle of ¢ = 0°. When the shaft

is rotating the crack area opens only slowly. At the angle of ¢ = 90°

it is assumed that the crack is suddenly gaping completely. That is the
cause for the point of discontinuity at ¢ = 90° and ¢ = 270°. But this
assumption has praktically no influence on one vibrational behaviour
calculated later on. In this model a breathing crack between ¢ = 90°

and ¢ = 270° shows the same behaviour as the always gaping crack. During
one rotation the shaft moves on an onion-shaped orbit, only once per

revolution.
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P LLL)

Calculationcrack model)
—=== Measurement

-1.04

-1,14

-1.24

-1,34

.0 90.0 180.0 270.0 0.0 .0 30.0 180.0

" 270.0 360.0
WINKEL (GRRD) WINKEL [BRAD]

Fig. 4 Self-weight deflection at shaft center for a breathing crack of
50 percent depth

In Fig. 4 the results of this crack model are compared with experimental
results of Ziebarth et.al. [10]. The level of the amplitudes is adapted,
only the shape of the curves shall be compared. There is a good agreement.

2.3 Change of Stiffness due to a Crack. In the longitudinal direction

of the shaft the extension of a crack is very small and of a gaping crack
too. But the actual reduction of the stiffness at the crack position does
not jump, the change is continuous along the neighbouring range. For steps
in shafts the 45°-approximation is used with good results up to now. In
order to simplify the mathematical model the wedge-shaped cut-out is re-

placed by a square cut with L = T [Fig. 5].

the open crack. After
Grabowski [15]

Fig. 5 Simulation of the
L decreased-section of
) T
]

Lo — =]

/\&\
N
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In addition to the development of the theoretical crack model the
stiffness of a cracked shaft has been investigated. At a shaft of 46 mm
diameter and 300 mm length [Fig 6] the crack was simulated by a thin

milled transverse cut of 0,5 mm width. This shaft has been loaded in

such a kind, that in the neighourhood of the crack a constant bending

moment was produced.

F
‘Mcﬂstelle ‘ Waerkstotf: 42 CrMo4

Fig. 6 Shaft with milled cut

Parallel to these measurements the stiffness has been calculated.
At the crack position a square cut with L = T was assumed, but only for
crack depths until 50 percent. For deeper cracks L has to be reduced
analogically.

In Fig. 7 the results of measurement and calculation are compared.
The total compliance of the shaft depending on the crack depth is plotted.
The difference between measurement and calculation amounts less than 10
percent. except the crack depths of 20 and 70 percent. In consideration

of the simple crack model even with these differences the agreement is

remarkable good.
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kN

Compliance Xyt [E]
-3

Fig. 7 C i
ig ompliance o or

—e— Calculation {crack model )
@ Measurement of the shaft

depending on crack

*___J depth

o . N o

0 10 20 X [ 50 60 ” [

Crack aepth (%]

3. Vibration of a Rotor with Single Disk on Massless Shaft
of Unequal Stiffness (Gaping Crack)

3.1 Equations of Motion in Space-fixed System of Coordinates. The diffe-

rental equations of a rotor with single disk on massless shaft with symme-
tric cross-section in rigid bearings are very well known. With an asymme-
tric shaft the force FS changes depending on the angle of rotation Qt
[Fig. 8]. Because of this just the stiffness matrix changes. The coeffi-
cients are well known as the moments of inertia in rotated coordinate
system. It is essential, that in addition to a mean constant stiffness

a stiffness difference appears, which changes two times per revolution

and excites twice per revolution vibrations.

In publications often a simplified formulation is used with a mean
stiffness km. Than the factor p describes the normalized difference be-
tween the stiffness kE and kn and the mean stiffness.

However, the equations cannot be solved in this form with time

dependent periodical coefficients.
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1 1 1, . .
FFSx1 Z(In+15)+7(IH-IC)COSZQt ?(I Ig)s1n20t X
} |48
' b 3
Fod 5 gt -1 )sin2at RIS -xi)cossz y
FSx: !—lw cos2at o sin2at [ x]
== k| ¥
: mi Pt
Ee Suosin2nt 1-u cos2at||yi
sl scostRy [y
with -~ T
y e \\\
n .
a8E1_ a8E1, K4 ¢
k; = , K = /' \
3 3 n 3 \
L t 'f/ eNB
K, + Kk i
K = € n i
"o T ‘, . 6
A
¢/
- ke -k \ E
H = € n :
ZCm ) f FD
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> ke =k (1), kp=k (1) pE—.
m 0y[%1 [d o”i] [l+ucos2Qt usin2Qt [x] [ 0] ~ [cos(at+3) ]
: . P4 i . Cm: = .+ me“ :
o MLy |0 dJ[yJ lu sin2at i -ecosqt LYJ L-6] [sin(at+g) ]

Fig. 8 Rotor with single disk on massless asymmetric shaft (space fixed
system of coordinates)

3.2 Equations of Motion in Rotating System of Coordinates. If the equa-

tions of motion are formulated in rotating coordinates § and n the stiff-
ness will be time invariant. And if we use the main axes as coordinates
the deviation moment is not needed [Fig. 9]. For that the velocity and
acceleration must be formulated in rotating coordinates [Fig. 10]. The
equations of motion in Fig. 11 now contains exclusively constant coeffi-
cients. The equations are easy to solve and the stability of the system

can be investigated too.
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Fig. 9 Rotor with single disk on
massless asymmetric shaft

(rotating system of coordinates)
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Fig. 10 Rotor with single disk on
massless shaft (rotating
system of coordinates)

11 Rotor with single disk on
massless asymmetric shaft
(rotating system of coordi-

nates)
~ 1 7 . .
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The stability condition becomes

22 2
1 - “_2) - uz + 4 D 9—2 >0 (3.2-1)
w

w
with

Wt = K, (3.2-2)
m

3.3 Numerical Results. In Fig. 12 the stability map is plotted. For a

constant crack depth th unstable pange is located between the two
eigenfrequencies wﬁ = Eﬂ and wz = EE' In addition of the normalized stiff-
ness difference the corresponding crack depth of a bilateral gaping crack
is marked. Already at a crack depth of approx. 25 percent a viscous
damping ratio of D = 0.1 is needed, so that the system does not become

unstable.

1.0
0:05
Fig. 12

a D=0 Stability map for the
s = massless shaft with a
2 5] Z 0:03 single disk containing
8 g , a gaping crack, viscous
g 3 T - 502 damping; rigid support
T30S _
& 17° 28 i D=01

25 =005

20% D=0
20_ T - :' i -
.0 15 ~— 0 o o — =
.0 5 1.0 Q 1.5
w

g disk , 160000 kg

3

) crack massless shaft

°
‘ I Fig. 13 Rotor model

8000 mm

Eccentricity - 10um
Critical speed (uncracked ): 735 min~!
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To calculate the amplitude of the forced vibration due to unbalance,
only the stiffness matrix of the differential equation is nessessary.
This matrix completely contains the stability condition too.

To calculate some theoretical results, the simple model for the
rotor of a LP-turbine was choosen [Fig. 13]. The Figures 14, 15 and 16
show the vibration amplitudes as a result of unbalance and crack depen-
ding on the speed. At a crack depth of 10 percent the vibration is still
stable [Fig. 14]. As for a shaft without crack the maximum of the once
per revolution vibration amplitude (@) amounts to: R ® %5.

The amplitude does not change depending on crack depth until the
system becomes unstable. Furthermore there do not arise two resonance
points in the once per revolution vibration as could be assumed as a
result of the both different stiffnesses. Just if the system becomes

unstable the stationary solution delivers two resonance speeds.

. 100
Viscous damping ratio D
Crack depth T
Eccentricity ¢
,0754
_ 20
£ 050 o
3
2
a
E
< .025-J
.000 T T LY T T
.0 250.0 500.0 750.0 1000.0 1250.0 1500.0

Speed [min-1]

Fig. 14 Vibration amplitudes of a simple rotor
with gaping crack D = 0.1, T = 10 %, € = 10 um
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.6
.51
29
€-“ Fig. 15
£ Vibration amplitudes of
g 31 a simple rotor with
E gaping crack D = 0.1,
§.2~ T=20%, ¢ =10 um
1
Q
.0 — — T — =
.0 250.0 500.0 750.0 1000.0 1250.0 1500.0
Speed [min-']
2.5
2.0
— 9 Q
£1.59 Fig. 16
P Vibration amplitudes of
§1 0 a simple rotor with
a 1,V
£ gaping crack D = 0.1,
2 T =28%, ¢ =10 um
]
2
0 T 7 ; T 7
.0 250.0 500.0 750.0 1000.0 1250.0 1500.0
Speed [min-1]

Although the crack depth with 10 percent of the diameter is small,
the twice per revolution amplitudes are greater than the amplitudes due
to unbalance. As the once per revolution amplitudes, the twice per revo-
lution amplitudes are directly inversely proportional to the damping ratio.
And also the amplitude grows with crack depth. The resonance speed amounts
to one half the critical speed of the unbalance vibrations.

For a crack depth of 20 percent [Fig. 15] the vibration amplitudes
due to unbalance do not change, however, the twice per revolution reson-
ance amplitudes are approx. eight times greater than for the crack depth
of 10 percent. At a crack depth of 28 percent an unstable speed range

arises [Fig. 16] between the two eigenfrequencies, which belong to the



The Vibrational Behaviour of a Rotating Shaft . . . 435

greatest and the smallest stiffnes of the shaft.

Fig. 17 shows four calculated orbits from Tondl [3]. Transmitted to
the rotor in Fig. 14 the orbits a, b, ¢ and d are applicable approx. at
speeds of 250, 350, 600 an 700 rpm.

7 (e
l . r 2 . ? .
RN s Fig. 17
N4 ym  Vibration orbits.
: After Tondl [3]
f X P23 yimm;  FR0.232
TN,
TN\ Y
Yy FO 2126 ¥ Fro.2324

4. Some Comments on the Model for a Gaping Crack. In the crack model the

moments of inertia are proportional to the static deflection as a result
of the crack: In space fixed coordinates the moments of inertia change
depending on angle of rotation. The Fourier analysis of this function for
one rotation shows the harmonical components. These components correspond
to the factor p in the equations of motion. With a gaping crack only the
second harmonic excists [Fig. 18]. With a breathing crack [Fig. 19] the
first harmonic component dominates. It shows a progressive increase as

a function of the crack depth. The twice per revolution part has a defi-
nite maximum at approximately 35 percent crack depth and it is altogether
essential smaller than with the gaping crack. The higher harmonics are
small. At the other axis the difference is not important, here the twice
per revolution part even dominates for small crack depths. It is similar

for the deviation moment.
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.SIV,IZ,IYZ For a breathing crack it is
supposed in this model, that the
-81 crack area opens and closes only
71 due to self-weight bending as the
shaft rotates. Some other authors
-6 ) assume that the opening and
5 /,// closing of the crack in addition
/// to the deflection due to the
41 //’/ self-weight of the rotor also
3 Aﬁzl depends on the vibration ampli-
/,’ tudes. The mean static deflection
-2 /// of a shaft which can be assumed
;] /,// as a model for a large LP-turbine
//// amounts to 1 mm [Fig. 3]. At run-
-0_0/ 100 200 300 40.0 50.0 ning speed vibration amplitudes

ho (%)
Crack dept of approx. 50 pm can be assumed.

Fig. 18 Harmonic parts of normalized second
moments of area, gaping crack

1./1g 5 Iy/lc

.1 T T T
.0 10.0 20.0 30.0 40.0 $0.0

Crack Jeots (o)

Fig. 19 First harmonic components of the normalized second moments of area
1,/1, and 1 /1, for the crack model (10: uncracked shaft).
After Grabowski [15]
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In other words, a factor of approx. 20 is achieved. In this case, surely
no influence of the vibration on the opening and closing of the crack
will occur. Even at the critical speed, when amplitudes up to approx.
250 ym are assumed, such an influence will remain small. That means, how-
ever, that normally no relation exists between size and position of the
out-of -balance and the vibration caused by a crack.

Only at large crack depth, if due to the crack itself resonance
amplitudes in the magnitude of the static deflection appear - as a rule
the blades then touch the casing - the presented crack model will be no
more valid.

But in theory certainly this case with large amplitudes is inter-
esting too. Above all it can occur, that the crack is permanent open or
closed. For such a model some results of Meyer [12] shall be presented
here. Similar investigations on a massless shaft with single disk are
carried out by other authors.

5. Vibration of a Rotor with Single Disk on Massless Shaft Containing a

Breathing Crack (hinge). In recent years some authors have published in-

vestigations on the vibrational behaviour of cracked shafts [5,6,7,12].
They employ the rotor model with massless shaft and single disk. For
modelling a breathing crack a spring-mounted hinge is assumed [Fig. 20].
The opening and closing chracteristic of the hinge depends on the self-
weight deflection as well
‘ as on the bending vibra-

tion amplitude itself.

With closed hinge the

stiffness is symmetrical.

With open hinge the stiff-
ness changes only in one

Fig. 20 Crack-model. After Gasch [6] direction.

In rotating system of coordinates § and n the crack area is open at
positiv and closed at negativ deflection n [Fig. 21]. With small vibra-
tion amplitudes during one half revolution we have a symmetrical shaft

and during the next half revolution an asymmetrical shaft.
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With large amplitudes the moment of swit-
ching at n = 0 can be shifted, at the limit
it is possible that the crack area is con-
stantly open or closed.

With this assumptions for the behaviour
of a breathing crack on principle the equa-
tions of motion for the shaft with asymme-

trical cross section are valid. But the

stiffness ¢ is now depending on the sign

Bahnkurve des n
Weltendurchstolpunkies of the deflection n in rotating coordina-
tes. The equations can be solved on analog
Fig. 21 Vibration orbit and computer as well as on digital computer.

system of coordinates. With regard to the harmonic parts of

After Meyer [12] the moments of inertia in Fig. 19 it is
expected that with this crack model in addition to the twice per revolu-
tion excitation due to an asymmetrical shaft above all once per revolu-
tion vibration and the higher harmonics appear.

Fig. 22 shows one result of stationary-periodical vibrations. In this
calculations it is assumed, that the vibration amplitudes are small in
relation to the static deflection so that the moments of switching are
not depending on the vibration amplitudes. Moreover the calculations are
carried out without unbalance, this means, the vibrations are excited
only by the crack. There appear once per revolution vibrations and due
to the sudden change of stiffness in principle all higher harmonics too.

The stiffness asymmetry in this example is approximately equivalent
to a crack depth of the diameter. Additional unbalance vibrations have
to be added or subtracted depending on the phase relationship.

Similar to the asymmetric shaft unstable regions [Fig. 23] exist for
this crack model. In Fig. 23 it is also supposed that the opening and
closing of the crack area does not dep<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>