
A selection of bounds of the standard normal distribution 
and of the X2 distribution (1 OF) for the one sided and 
for the two sided test 

x2 

z For one degree of freedom 
P 

One sided Two sided One sided Two sided 

0.001 3.090 3.291 9.550 10.828 
0.01 2.326 2.576 5.412 6.635 
0.05 1.645 1.960 2.706 3.841 
0.10 1.282 1.645 1.642 2.706 
0.20 0.842 1.282 0.708 1.642 
0.50 0 0.674 0 0.455 
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PREFACE TO THE SECOND ENGLISH 
EDITION 

This new edition aims, as did the first edition, to give an impression, an 
account, and a survey of the very different aspects of applied statistics-a vast 
field, rapidly developing away from the perfection the user expects. The text 
has been improved with insertions and corrections, the subject index 
enlarged, and the references updated and expanded. I have tried to help the 
newcomer to the field of statistical methods by citing books and older papers, 
often easily accessible, less mathematical, and more readable for the non
statistician than newer papers. Some of the latter are, however, included and 
are attached in a concise form to the cited papers by a short" [see also ... J". 

I am grateful to the many readers who helped me with this revision by 
asking questions and offering advice. I took suggestions for changes seriously 
but did not always follow them. Any further comments are heartily welcome. 
I am particularly grateful to the staff of Springer-Verlag New York. 

Klausdorf/Schwentine LOTHAR SACHS 



PREFACE TO THE FIRST ENGLISH 
EDITION 

An English translation now joins the Russian and Spanish versions. It is 
based on the newly revised fifth edition of the German version of the book. 
The original edition has become very popular as a learning and reference 
source with easy to follow recipes and cross references for scientists in fields 
such as engineering, chemistry and the life sciences. Little mathematical 
background is required of the reader and some important topics, like the 
logarithm, are dealt with in the preliminaries preceding chapter one. The 
usefulness of the book as a reference is enhanced by a number of convenient 
tables and by references to other tables and methods, both in the text and in 
the bibliography. The English edition contains more material than the 
German original. I am most grateful to all who have in conversations, letters 
or reviews suggested improvements in or criticized earlier editions. Comments 
and suggestions will continue to be welcome. We are especially grateful to 
Mrs. Dorothy Aeppli of St. Paul, Minnesota, for providing numerous 
valuable comments during the preparation of the English manuscript. The 
author and the translator are responsible for any remaining faults and 
imperfections. I welcome any suggestions for improvement. 

My greatest personal gratitude goes to the translator, Mr. Zenon Reynaro
wych, whose skills have done much to clarify the text, and to Springer-Verlag. 

Klausdorf LOTHAR SACHS 



FROM THE PREFACES TO PREVIOUS 
EDITIONS 

FIRST EDITION (November, 1967) 

"This cannot be due merely to chance," thought the London physician 
Arbuthnott some 250 years ago when he observed that in birth registers 
issued annually over an 80 year period, male births always outnumbered 
female births. Based on a sample of this size, his inference was quite reliable. 
He could in each case write a plus sign after the number of male births (which 
was greater than the number offemale births) and thus set up a sign test. With 
large samples, a two-thirds majority of one particular sign is sufficient. When 
samples are small, a ! or even a fo majority is needed to reliably detect a 
difference. 

Our own time is characterized by the rapid development of probability 
and mathematical statistics and their application in science, technology, 
economics and politics. 

This book was written at the suggestion of Prof. Dr. H. J. Staemmler, 
presently the medical superintendent of the municipal women's hospital 
in Ludwigshafen am Rhein. I am greatly indebted to him for his generous 
assistance. Professor W. Wetzel, director of the Statistics Seminar at the 
University of Kiel; Brunhilde Memmer of the Economics Seminar library 
at the University of Kiel; Dr. E. Weber of the Department of Agriculture 
Variations Statistics Section at the University of Kiel; and Dr. J. Neumann 
and Dr. M. Reichel of the local University Library, all helped me in finding 
the appropriate literature. Let me not fail to thank for their valuable assist
ance those who helped to compose the manuscript, especially Mrs. W. 
Schroder, Kiel, and Miss Christa Diercks, Kiel, as well as the medical 
laboratory technician F. Niklewitz, who prepared the diagrams. I am 
indebted to Prof. S. Koller, director of the Institute of Medical Statistics 
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and Documentation at Mainz University, and especially to Professor E. 
Walter, director of the Institute of Medical Statistics and Documentation 
at the University of Freiburg im Breisgau, for many stimulating discussions. 

Mr. J. Schimmler and Dr. K. Fuchs assisted in reading the proofs. I thank 
them sincerely. 

I also wish to thank the many authors, editors, and publishers who 
permitted reproduction of the various tables and figures without reservation. 
I am particularly indebted to the executor of the literary estate of the late 
Sir Ronald A. Fisher, F.R.S., Cambridge, Professor Frank Yates 
(Rothamsted), and to Oliver and Boyd, Ltd., Edinburgh, for permission to 
reproduce Table II 1, Table III, Table IV, Table V, and Table VII 1 from 
their book "Statistical Tables for Biological, Agricultural and Medical 
Research"; Professor o. L. Davies, Alderley Park, and the publisher, 
Oliver and Boyd, Ltd., Edinburgh, for permission to reproduce a part of 
Table H from the book "The Design and Analysis of Industrial Experi
ments;" the publisher, C. Griffin and Co., Ltd. London, as well as the authors, 
Professor M. G. Kendall and Professor M. H. Quenouille, for permission to 
reproduce Tables 4a and 4b from the book "The Advanced Theory of 
Statistics," Vol. II, by Kendall and Stuart, and the figures on pp. 28 and 29 
as well as Table 6 from the booklet "Rapid Statistical Calculations" by 
Quenouille; Professors E. S. Pearson and H. O. Hartley, editors of the 
"Biometrika Tables for Staticians, Vol. 1, 2nd ed., Cambridge 1958, for 
permission to adopt concise versions of Tables 18, 24, and 31. I also wish to 
thank Mrs. Marjorie Mitchell, the McGraw-Hill Book Company, New York, 
and Professor W. J. Dixon for permission to reproduce Tables A-12c and 
A-29 (Copyright April 13, 1965, March 1, 1966, and April 21, 1966) from 
the book "Introduction to Statistical Analysis" by W. J. Dixon and F. J. 
Massey Jr., as well as Professor C. Eisenhart for permission to use the table 
of tolerance factors for the normal distribution from "Techniques of 
Statistical Analysis," edited by C. Eisenhart, W. M. Hastay, and W. A. 
Wallis. I am grateful to Professor F. Wilcoxon, Lederle Laboratories (a 
division of American Cyanamid Company), Pearl River, for permission to 
reproduce Tables 2, 3, and 5 from "Some Rapid Approximate Statistical 
Procedures" by F. Wilcoxon and Roberta A. Wilcox. Professor W. Wetzel, 
Berlin-Dahlem, and the people at de Gruyter-Verlag, Berlin W 35, I thank for 
the permission to use the table on p. 31 in "Elementary Statistical Tables" 
by W. Wetzel. Special thanks are due Professor K. Diem of the editorial 
staff of Documenta Geigy, Basel, for his kind permission to use an improved 
table of the upper significance bounds of the Studentized range, which was 
prepared for the 7th edition of the" Scientific Tables." I am grateful to the 
people at Springer-Verlag for their kind cooperation. 
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SECOND AND THIRD EDITIONS 

Some sections have been expanded and revised and others completely re
written, in particular the sections on the fundamental operations of arithmetic 
extraction of roots, the basic tasks of statistics, computation of the standard 
deviation and variance, risk I and II, tests of (J = (J ° with Ii known and 
unknown, tests of 1(1 = 1(2' use of the arc since transformation and of 
1(1 - 1(2 = do, the fourfold x2-test, sample sizes required for this test when 
risk I and risk II are given, the U-test, the H-test, the confidence interval of 
the median, the Sperman rank correlation, point bivariate and multiple 
correlation, linear regression on two independent variables, multivariate 
methods, experimental design and models for the analysis of variance. The 
following tables were supplemented or completely revised: the critical values 
for the standard normal distribution, the t- and the x2-distribution, Hartley's 
Fmax , Wilcoxon's R for pairwise differences, the values of e-;' and arc sin 
Jp, the table for the .i-transformation of the coefficient of correlation and 
the bounds for the test of p = 0 in the one and two sided problem. The 
bibliography was completely overhauled. Besides corrections, numerous sim
plifications, and improved formulations, the third edition also incorporates 
updated material. Moreover, some ofthe statistical tables have been expanded 
(Tables 69a, 80, 84, 98, and 99, and unnumbered tables in Sections 4.5.1 
and 5.3.3). The bibliographical references have been completely revised. 
The author index is a newly added feature. Almost all suggestions resulting 
from the first and second editions are thereby realized. 

FOURTH EDITION (June, 1973) 

This revised edition, with a more appropriate title, is written both as an 
introductory and follow-up text for reading and study and as a reference 
book with a collection of formulas and tables, numerous cross-references, an 
extensive bibliography, an author index, and a detailed subject index. More
over, it contains a wealth of refinements, primarily simplifications, and 
statements made more precise. Large portions of the text and bibliography 
have been altered in accordance with the latest findings, replaced by a revised 
expanded version, or newly inserted; this is also true of the tables (the index 
facing the title page, as well as Tables 13, 14, 28, 43, 48, 56, 65, 75, 84, 183, 
and 185, and the unnumbered tables in Sections l.2.3, l.6.4, and 3.9.l, and 
on the reverse side of the next to last sheet). Further changes appear in the 
second, newly revised edition of my book" Statistical Methods. A Primer 
for Practitioners in Science, Medicine, Engineering, Economics, Psychology, 
and Sociology," which can serve as a handy companion volume for quick 
orientation. Both volumes benefited from the suggestions of the many who 
offered constructive criticisms-engineers in particular. It will be of interest 
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to medical students that I have covered the material necessary for medical 
school exams in biomathematics, medical statistics and documentation. I 
wish to thank Professor Erna Weber and Akademie-Verlag, Berlin, as well 
as the author, Dr. J. Michaelis, for permission to reproduce Tables 2 and 3 
from the paper "Threshold value of the Friedman test," Biometrische 
Zeitschrift 13 (1971), 122. Special thanks are due to the people at Springer
Verlag for their complying with the author's every request. I am also grateful 
for all comments and suggestions. 

FIFTH EDITION (July, 1978) 

This new edition gave me the opportunity to introduce simplifications and 
supplementary material and to formulate the problems and solutions more 
precisely. I am grateful to Professor Clyde Y. Kramer for permission to 
reproduce from his book (A First Course in Methods of Multivariate 
Analysis, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia, 1972) the upper bounds of the Bonferroni x2-statistics (Appendix 
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SELECTED SYMBOLS* 

> is greater than 7 

~ is greater than or equal to 7 

~ or ~ , is approximately equal to 7 

# is not equal to 7 

L (Sigma) Summation sign; LX means" add up all the x's" 9 

e Base of the natural logarithms, the constant 2.71828 19 

P Probability 26 

E Event 28 

X Random variable, a quantity which may take anyone of a 
specified set of values ; any special or particular value or realiza
tion is termed x (e.g. X = height and xRalph = 173 cm); if for 
every real number x the probability P(X ::; x) exists, then X is 
called a random variable [thus X, Y, Z, denote random variables 
and x, y, Z, particular values taken on by them]; in this book 
we nearly always use only x 43 

CIJ Infinity 45 

(Pi) Relative frequency in a population 48 

(mu) Arithmetic mean of a population 48 
(J (sigma) Standard deviation of a population 48 

Relative frequency in the sample [n is estimated by p; estimated 
values are often written with a caret C)] 48 

(x bar or overbar) Arithmetic mean (of the variable X) in a 
sample 48 

* Explanation of selected symbols in the order in which they appear. 
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s Standard deviation of the sample: the square of the standard 
deviation, S2, is called the sample variance; (12 is the variance 
of a population 48 

n Sample size 50 

N Size of the population 50 

k Number of classes (or groups) 53 

z Standard normal variable, test statistic of the z-test; the z-test 
is the application of the standardized normal distribution to test 
hypotheses on large samples. For the standard normal distri
bution, that is, a normal distribution with mean 0 and variance 
I [N(O; 1) for short], we use the following notation: 
1. For the ordinates :/(z), e.g.,f(2.0) = 0.054 or 0.0539910. 
2. For the cumulative distribution function: F(z), e.g., F(2.0) = 

P(Z ~ 2.0) = 0.977 or 0.9772499; F(2.0) is the cumulative 
probability, or the integral, ofthe normal probability function 
from - 00 up to z = 2.0. 61 

/ Frequency, cell entry 73 

V Coefficient of variation 77 

x (x-tilde) Median (of the variable X) in a sample 91 

Sx (s sub x-bar) Standard error of the arithmetic mean in a sample 
94 

s;; (s sub x-tilde) Standard error of the median in a sample 95 

R Range = distance between extreme sample values 97 

S Confidence coefficient (S = 1 - a) 112 

a (alpha) Level of significance, Risk I, the small probability of 
rejecting a valid null hypothesis 112, 115, 118 

P (beta) Risk II, the probability of retaining an invalid null 
hypothesis 118 

Ho Null hypothesis 116 

HA Alternative hypothesis or alternate hypothesis 117 

Zll Critical value of a z-test: Zll is the upper a-percentile point (value 
of the abscissa) of the standard normal distribution. For such a 
test or tests using other critical values, the so-called P-value 
gives the probability of a sample result, provided the null 
hypothesis is true [thus this value, if it is very low, does not 
always denote the size of a real difference] 122 

t Test statistic of the I-test; the I-test, e.g., checks the equality of 
two means in terms of the I-distribution or Student distribution 
(the distribution law of not large samples from normal distri-
butions) 135 

v (nu) or OF, the degrees of freedom (ofa distribution) 135 

tV;1l Critical value for the I-test, subscripts denoting degrees of 
freedom (v) and percentile point (a) of the tv distribution 137 
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x2 (chi-square) Test statistic of the x2-test; the x2-test, e.g., checks 
the difference between an observed and a theoretical frequency 
distribution, X;;cx is the critical value for the x2-test 139 

P Variance ratio, the test statistic of the F-test; the F-test checks 
the difference between two variances in terms of the F-distribu
tion (a theoretical distribution of quotients of variances); 
FV,;V2;CX is the critical value for the F-test 143 

J.Pn or (~), Binomial coefficient: the number of combinations of n 
elements taken x at a time 155 

Factorial sign (n! is read" n factorial "); the number of arrange
ments of n objects in a sequence is n! = n(n - 1)(n - 2) x ... x 
3 x 2 x 1 155 

(lambda) Parameter, being both mean and variance of the 
Poisson distribution, a discrete distribution useful in studying 
failure data 175 

CI Confidence interval, range for an unknown parameter, a 
random interval having the property that the probability is 
I - ex (e.g., 1 - 0.05 = 0.95) that the random interval will 
contain the true unknown parameter; e.g., 95 % CI 248 

MD Mean deviation (of the mean) = (lin) Lix - xl 251 
i===n 

Q Sum of squares about the mean [e.g., Qx = :L (Xi - x)2 
i= 1 

:L(x - X)2] 264 

U Test statistic of the Wilcoxon-Mann-Whitney test: comparing 
two independent samples 293 

H Test statistic of the Kruskal-Wallis test: comparing several 

o 
E 

a,b,c,d 

p 

r 

P 

independent samples 303 

Observed frequency, occupancy number 321 

Expected frequency, expected number 321 

Frequencies (cell entries) ofa fourfold table 346 

(rho) Correlation coefficient of the population: -1 ~ p ~ 1 
383 

Correlation coefficient of a sample: - I ~ r ~ 1 384 

(beta) Regression coefficient of the population (e.g., PYx) 384 

b Regression coefficient or slope of a sample; gives the direction 
of the regression line; of the two subscripts commonly used, as 
for instance in byx , the second indicates the variable from which 
the first is predicted 386 

rs Spearman's rank correlation coefficient of a sample: 
-1 ~ rs ~ I 395 

Standard error in estimating Y from X (of a sample) 414 
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Standard error of the intercept 415 

Standard error of the slope 415 

z Normalizing transform of the correlation coefficient (note the 
dot above the z) 427 

Eyx Correlation ratio (of a sample) of y over x: important for testing 
the linearity of a regression 436 

'12.3 Partial correlation coefficient 456 

R1.23 Multiple correlation coefficient 458 

SS Sum of squares, e.g., L (x - X)2 561 

MS Mean square: the sample variance S2 = L(x - x)2/(n - 1) is a 
mean square, since a sum of squares is divided by its associated 
(n - 1) degrees of freedom 562 

MSE Mean square for error, error mean square; measures the un
explained variability of a set of data and serves as an estimate of 
the inherent random variation of the experiment; it is an 

LSD 

SSA 

MSA 

SSAB 

MSAB 

SSE 

xi 

unbiased estimate of the experimental error variance 503 

The least significant difference between two means 512 

Factor A sum of squares, that part of the total variation due to 
differences between the means of the a levels of factor A; a 
factor is a series of related treatments or related classifications 

522 

Factor A mean squares: MSA = SSA/(l - a), mean square due 
to the main effect offactor A 522 

AB-interaction sum of squares, measures the estimated inter
action for the ab treatments; there are ab interaction terms 

522 

AB-interaction mean squares: MSAB = SSAB/[(a - 1)(b - 1)] 
522 

Error sum of squares 522 

Test statistic of the Friedman rank analysis of variance 556 



INTRODUCTION 

This outline of statistics as an aid in decision making will introduce a reader 
with limited mathematical background to the most important modern 
statistical methods. This is a revised and enlarged version, with major 
extensions and additions, of my "Angewandte Statistik" (5th ed.), which 
has proved useful for research workers and for consulting statisticians. 

Applied statistics is at the same time a collection of applicable statistical 
methods and the application of these methods to measured and/or counted 
observations. Abstract mathematical concepts and derivations are avoided. 
Special emphasis is placed on the basic principles of statistical formulation, 
and on the explanation of the conditions under which a certain formula or a 
certain test is valid. Preference is given to consideration of the analysis of 
small sized samples and of distribution-free methods. As a text and reference 
this book is written for non-mathematicians, in particular for technicians, 
engineers, executives, students, physicians as well as researchers in other 
disciplines. It gives any mathematician interested in the practical uses of 
statistics a general account of the subject. 

Practical application is the main theme; thus an essential part of the book 
consists in the 440 fully worked-out numerical examples, some of which are 
very simple; the 57 exercises with solutions; a number of different compu
tational aids; and an extensive bibliography and a very detailed index. In 
particular, a collection of 232 mathematical and mathematical-statistical 
tables serves to enable and to simplify the computations. 

Now a few words as to its structure: After some preliminary mathematical 
remarks, techniques of statistical decision are considered in Chapter 1. 
Chapter 2 gives an introduction to the fields of medical statistics, sequential 
analysis, bioassay, statistics in industry, and operations research. Data 
samples and frequency samples are compared in Chapters 3 and 4. The three 
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subsequent chapters deal with more advanced schemes: analysis of associa
tions: correlation and regression, analysis of contingency tables, and analysis 
of variance. A comprehensive general and specialized bibliography, a collec
tion of exercises, and a subject and author index make up the remainder of 
the book. 

A survey of the most important statistical techniques is furnished by 
sections marked by an arrow~: 1.1, 1.2.1-3, 1.2.5, 1.3.1-7, 1.4, 1.5, 1.6.1-2, 
1.6.4-6, 3.1.1-2, 3.1.4, 3.2-3, 3.5, 3.6, 3.9.4-5, 4.1, 4.2.1-2, 4.3, 4.3.1-3, 
4.5.1-3,4.6.1,4.6.7, 5.1-2, 5.3.1, 5.4.1-3, 5.4.5, 5.5.1, 5.5.3-4,5.5.8-9,5.8, 
6.1.1,6.1.4,6.2.1,6.2.5,7.1, 7.2.3, 7.3-4, 7.6-7. 

A more casual approach consists in first examining the material on the 
inner sides of the front and back covers, and then going over the Introduction 
to Statistics and Sections 1.1, 1.2.1, 1.3.2-4, 1.3.6.2-3, 1.3.6.6, 1.3.8.3-4, 
1.3.9, 1.4.1-8, 1.5, 3 (introduction), 3.1.1, 3.2, 3.6, 3.8, 3.9 (introduction), 
3.9.4,4.1,4.2.1-2,4.5.1,4.6.1 (through Table 83), 5.1-2, 5.3 (introduction 
and 5.3.1), 6.2.1 [through (6.4)], 7.1, 7.2.1, 7.3.1, and 7.7. 

As the author found some difficulty in deciding on the order of presenta
tion-in a few instances references to subsequent chapters could not be 
entirely avoided-and as the presentation had to be concise, the beginner 
is advised to read the book at least twice. It is only then that the various 
interrelationships will be grasped and thus the most important prerequisite 
for the comprehension of statistics acquired. Numerous examples-some 
very simple-have been included in the text for better comprehension of the 
material and as applications of the methods presented. The use of such 
examples-which, in a certain sense, amounts to playing with numbers-is 
frequently more instructive and a greater stimulus to a playful, experimental 
follow-up than treating actual data (frequently involving excessive numerical 
computation), which is usually of interest only to specialists. It is recom
mended that the reader independently work out some of the examples as an 
exercise and also solve some of the problems. 

The numerous cross references appearing throughout the text point out 
various interconnections. A serendipitous experience is possible, i.e., on 
setting out in search of something, one finds something else of even greater 
consequence. 

My greatest personal gratitude goes to the translator, Mr. Z. Reynarowych, 
whose skill has done much to clarify the text. 



INTRODUCTION TO STATISTICS 

Scientists and artists have in common their desire to 
comprehend the external world and to reduce its apparent 
complexity, even chaos, to some kind of ordered represen
tation: Scientific work involves the representation of 
disorder in an orderly manner. 

Statistics is the art and science of data: of generating or gathering, describing, 
analyzing, summarizing, and interpreting data to discover new knowledge. 

Basic tasks of statistics: To describe, assess, and pass judgement. To 
draw inferences concerning the underlying population. 

Each of us, like a hypochondriac or like one who only imagines himself to be 
well, has at some time failed to recognize existing relationships or distinctions 
or else has imagined relationships or distributions where none existed. In 
everyday life we recognize a similarity or a difference with the help of factual 
knowledge and what is called instinctive understanding. The scientist dis
covers certain new phenomena, dependences, trends, or a variety of effects 
upon which he bases a working hypothesis; he then must check them against 
the simpler hypothesis that the effects observed are conditioned solely by 
chance. The problem of whether observed phenomena can be regarded as 
strictly random or as typical is resolved by analytical statistics, which thus 
becomes a method characteristic of modern science. 

With the help of statistical methods one can respond to questions and 
examine the validity of statements. For example, on the one hand: How many 
persons should one poll before an election to get a rough idea of the outcome? 
Does a weekly two-hour period at school devoted to sports contribute to the 
strengthening of the heart and circulatory system? Which of several tooth
pastes is to be recommended as a decay preventative? How does the quality 
of steel depend on its composition? Or on the other hand: The new saleslady 
has increased the daily turnover by $1000. The 60 % characteristic survival 
rate for a certain disease is raised to 90% by treatment A. The effects of 
fertilizers K 1 , K 2 , and K3 on oats are indistinguishable. 

3 
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When observations are made to obtain numerical values that are typical 
(representative) of the situation under study, the values so obtained are 
called data. They are important in evaluating hypotheses and in discovering 
new knowledge. 

Statistical methods are concerned with data from our environment, with 
its gathering and processing: describing, evaluating, and interpreting; the 
aim is to prepare for decision making. "Statistics" was in the 18th century the 
"science of diagnosing the condition of various nations," where data were 
also gathered on the overall population, the military, business, and industry. 
This led to the development of descriptive statistics, whose task is to describe 
conditions and events in terms of observed data; use is made of tables, 
graphs, ratios, indices, and typical parameters such as location statistics 
(e.g. the arithmetic mean) and dispersion statistics (e.g. the variance). 

ANALYTICAL STATISTICS deduces from the data general laws, whose 
validity extends beyond the field of observation. It developed from" political 
arithmetic" whose primary function is to estimate the sex ratio, fertility, 
age structure, and mortality of the population from baptismal, marriage, and 
death registers. Analytical statistics, also termed mathematical or inductive 
statistics, is based on probability theory, which builds mathematical models 
that encompass random or stochastic experiments. Examples of stochastic 
experiments are: rolling a die, the various games of chance and lotteries, 
the sex of a newborn, daytime temperatures, the yield of a harvest, the 
operating lifetime of a light bulb, the position of the dial of a measuring 
instrument during a trial-in a word, every observation and every trial in 
which the results are affected by random variation or measurement error. 
The data themselves are here, as a rule, of lesser interest than the primary 
population in which the data originated. For instance, the probability of 
rolling a 6 with a fair die or of guessing correctly six numbers in a lottery or 
the proportion of male births in the United States in 1978 is more interesting 
than the particular outcomes of some trial. In many problems involving 
replicable experiences, one cannot observe the set of all possible experiences 
or observations-the so-called population-but only an appropriately 
selected portion of it. In order to rate a wine, the wine taster siphons off a 
small sample from a large barrel. This sample then provides information on 
the frequency and composition of the relevant properties of the population 
considered, which cannot be studied as a whole, either for fundamental 
reasons or because of the cost or amount of time required. 

We assume we are dealing with RANDOM SAMPLES in which every 
element of the population has the same chance of being included. If the pop
ulation contains distinct subpopulations, then a stratified random sample is 
chosen. A meaningful and representative portion of a cake shipment would 
be neither a layer nor the filling nor the trimmings but rather a piece of cake. 
Better yet would be layer, filling and trimmings samples taken from several 
cakes. 

In bingo, random samples are obtained with the help of a mechanical de
vice. More usually, random samples are obtained by employing a table of 
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random numbers: the elements are numbered and an element is regarded as 
chosen as soon as its number appears in the table. Samples taken by a 
random procedure have the advantage that the statistical parameters derived 
from them, when compared with those of the population, generally exhibit 
only the unavoidable statistical errors. These can be estimated, since they do 
not distort the result-with multiple replications, random errors cancel out 
on the average. On the other hand, in procedures without random choice 
there can also arise methodical or systematic errors, regarding whose 
magnitude nothing can be said as a rule. We place particular emphasis on 
estimating the random error and on testing whether observed phenomena are 
also characteristic for the populations rather than being chance results. This 
is the so-called testing of hypotheses on the population. 

On translating a problem into hypotheses that can be statistically tested, 
care must be taken to choose and define characteristics that are significant 
and appropriate to the problem and readily measurable, to specify and keep 
constant the test conditions, and also to employ cost-optimal sample or test 
plans. We focus our attention on those parts of the setup which seem to us 
important and, using them, try to construct as a model a new, easy to survey, 
compound with an appropriate degree of [concreteness and] abstractness. 
Models are important aids in decision making. 

The scientific approach is to devise a strategy aimed at finding general 
laws which, with the help of assertions that are open to testing and rejection 
(falsification), are developed into a logicomathematically structured theory. 
An approximate description of ascertainable reality is thereby obtained. 
This approximate description can be revised and refined further. 

Problem: preliminary information and questions 

ression of a 
n which is 

A model is a formalized exp 
theory or the causal situatio 
regarded as having generate d observed data I 

Test plan and statistical model 

t t 
Preliminary test: check of 
test plan and model 
with pilot data 

Obtaining the data 

Model 
I 

Processing the data and testing the hypotheses 

Interpretatiolt : Inferences 
Decisions 
New Problems 

I New 

I problems 

I 

I 

J 



6 Introduction to Statistics 

Typical of the scientific method is the cycle process or iteration cycle: 
conjectures (ideas) --+ plan (see also" Scientific Investigation" end of Sec
tion 7.7) --+ observations --+ analysis --+ results --+ new conjectures (new ideas) 
--+ ••• ; contradictions and incompatibilities are eliminated in the process (cf. 
also above) and the models and theories improved. That theory is better which 
allows us to say more and make better predictions. 

It is important to keep the following in mind: Assumptions regarding the 
structure of the underlying model and the corresponding statistical model 
are made on the basis of the question particular to the problem. After testing 
the compatibility of the observations with the statistical model, characteristic 
quantities for the statistical description of a population, the so-called param
eters, are established with a given confidence coefficient, and hypotheses on 
the parameters are tested. Probabilistic statements result in both cases. The 
task of statistics is thus to find and develop models appropriate to the 
question and the data, and using them, to extract any pertinent information 
concealed in the data-i.e., statistics provides models for information reduc
tion. 

These as well as other methods form the nucleus of a data analysis designed 
for the skillful gathering and critical evaluation of data, as is necessary in 
many branches of industry, politics, science and technology. Data analysis 
is the systematic search for fruitful information specific to phenomena, 
structures, and processes, utilizing data and employing graphical, mathemati
cal, and especially statistical techniques with or without the concept of 
probability: to display and summarize the data to make them more com
prehensible to the human mind, thus uncovering structures and detecting 
new features. 

There is less concern here with reducing data to probabilities and ob
taining significant results, which could in fact be meaningless or unimportant. 
What counts is the practical relevance rather than the statistical significance. 
An evaluation of results, only possible by a person with a thorough know
ledge of the specific field and the observations under consideration, depends 
on many factors, such as the significance ofthe particular problem in question, 
compatibility with other results, or the predictions which they allow to be 
made. This evidence can hardly be evaluated statistically. Moreover, the 
data affect us in many ways that go beyond an evaluation. They give us 
comprehension, insight, suggestions, and surprising ideas. 

Especially useful are the books written by Tukey (1977, cited in [1] on p. 570), 
Chambers and coworkers (1983, cited in [8: 1] on page 579) and Hoaglin and coworkers 
(1983, cited on p. 582) as well as books and papers on diagrams and graphical techniques 
(e.g., Bachi 1968, Bertin 1967, Cox 1978, Dickinson 1974, Ehrenberg 1978, Fienberg 
1979, Fisher 1983, King 1971, Lockwood 1969, Sachs 1977, Schmid and Schmid 1979, 
Spear 1969, and Wainer and Thissen 1981, all cited in [8: 1]. 



o PRELIMINARIES 

The following is a review of some elementary mathematical concepts which, 
with few exceptions, are an indispensable part of the background at the 
intermediate level. These concepts are more than adequate for the under
standing of the problems considered in the text. 

0.1 MATHEMATICAL ABBREVIATIONS 

The language of mathematics employs symbols, e.g., letters or other marks, 
in order to present the content of a given statement precisely and concisely. 
Numbers are generally represented by lowercase Latin letters (a, b, c, d, ... ) 

Table 1 Some mathematical relations 

Relation Meaning Example 

a = b a is equal to b 8= 12- 4 
a < b a is less than b 4<5 
a > b a is greater than b 6>5 
a ~ b a is less than or equal to b profit a is at most »b 
a 2': b a is greater than or equal to b profit a is at least ~b 

a'" b} a is roughly equal to, 109.8 '" 110 
a f';:l b approximately equal to b 109.8 f';:l 110 
a i= b a is not equal to b 4 i= 6 

For" x greater than a and less than or equal to b" we write a < x ~ b. 

For "x is much greater than a" we write x p a. 

Theinequalitya > b implies that -a < -b and (forb> 0) 1/a < 1 lb. 

7 
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or, if a large collection of distinct numbers is involved, by aI' a2, a3' ... , an' 
Some other important symbols are listed in Table 1. 

0.2 ARITHMETICAL OPERATIONS 

A working knowledge of the 4 basic arithmetical operations-addition, 
subtraction, multiplication, and division-is assumed. An arithmetical 
operation is a prescription whereby to every pair of numbers a unique new 
number, e.g. the sum, is assigned. 

1. Addition: Summand + summand = sum [5 + 8 = 13]. 

A survey of the relations among the four basic arithmetical 
operations 

Computation means determining a new number from two or more 
given numbers. Each of the four standard arithmetical symbols 
(+, -, " :) represents an operation: 

+ plus, addition sign 
minus, subtraction sign 
times, multiplication sign 
divided by, division sign 

The result of each computation should first be estimated, then worked 
out twice by performing the inverse operation and checked. For 
example 4.8 + 16.1 equals approximately 21, exactly 20.9; check 
20.9-4.8 = 16.1; and 15.6:3 equals approximately 5, exactly 5.2; 
check 5.2·3 = 15.6. The four basic arithmetical operations are 
subject to two rules: 

1. Dot operations (multiplication and division) precede dash operations 
(addition and subtraction). 

Examples 2 + 3 . 8 = 2 + 24 = 26, 

6 . 2 + 8 : 4 = 12 + 2 = 14. 

The positive integers ( + 1, + 2, + 3, + ... ), zero, and the negative 
integers (-1, -2, -3, - ... ) together form the integers, which 
have the collective property that every subtraction problem has an 
integer solution, (e.g., 8 - 12 = -4). The following somewhat 
loosely formulated sign rules apply to "dot" operations: 



0.2 Arithmetical Operations 

+. + = + Like signs 
+: + = + yield plus 
-. - = + (-8): (-2) = +4 = 4 

- - =+ \ 
operation symbol 

+.- Unlike signs 
+:- yield minus 
-.+ = (-8): (+2) = -4 

-:+ .\~ 
SIgnS 

The size of a real number a (see Section 1.2.5 below) is independent 
of the sign, is called its absolute value, and is written lal, e.g., 
1-41 = 1+41 = 4. 

2. Expressions enclosed in parentheses like (3 + 4) are worked out first. 
If curly brackets { } enclose brackets [ J and parentheses {[( )]}, 
one begins with the innermost. In front of parentheses or brackets 
the multiplication sign is usually omitted, e.g., 

4(3 + 9) = 4(12) = 4 . 12 = 48. 

Division is often represented by a fraction, e.g., 

3 
4 = 3/4 = 3: 4 = 0.75, 

4[12 - (8 ·2 + 18)] = 4[12 - (16 + 18)J = 4( -22) = -88, 

12[(9 ~ 3) _ IJ = 12[~ - IJ = 12(3 - 1) = 12(2) = 24. 

The symbol 

9 

is introduced to indicate the sum of all the values Xl' X 2 , ••• , X n • L is an 
oversize Greek capital letter sigma, the sign for "sum of." This operation is 
to be read: z is the sum of all the numbers Xi from i = 1 to i = n. The sub
script, or index, of the first quantity to be added is written below the sum
mation sign, while the index of the last quantity goes above it. Generally 
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the summation will run from the index 1 to the index n. The following ways 
of writing the sum from Xl to Xn are equivalent: 

i=n n 

XI +x2 +x3 + ... +Xn= I X;= I X;= Ix;= Ix. 
i = 1 i::;;: 1 i 

In evaluating expressions like D= I (3 + 2Xi + xf) = 3n + 2 D= I Xi + D= I xf in
volving constant values (k), here 3 and 2, the following three properties of the sum 
are used: 

n 

1. I (Xi + Yi) = (Xl + Yl) + (X2 + Y2) + ... = (Xl + X2 + .. -) + (Yl + Y2 + ... ) 
i=l 

i= 1 i= 1 
n n 

2. Ikxi = kXl + kX2 + ... = kIxi 
i= 1 i=1 

n n 

3. I(k + Xi) = (k + Xl) + (k + X2) + ... = nk + IXi· 
i=1 i=l 

2. Subtraction: Minuend - subtrahend = resulting difference [13 - 8 = 5]. 

3. Multiplication: Factor x factor = resulting product [2 x 3 = 6]. 

In this book the product of two numbers will seldom be denoted by the 
symbol x between the two factors, since there could be confusion with the 
letter x. Multiplication will generally be indicated by an elevated dot or 
else the factors will simply be written side by side, for example 5· 6 or pq. 
The expression (1.23)(4.56) or 1.23·4.56 is written in Germany as 1,23·4,56, 
in England and Canada as 1·23.4·56 or 1·23 x 4·56. A comma in Germany 
is used to represent the decimal point (e.g., 5837,43 instead of 5,837.43). 

4. Division: dividend/divisor = resulting quotient [~ = 2] (divisor "# 0). 

5. Raising to a power: A product of like factors a is a power an, read "a to 
the n" or "nth power of a." Here a is the base and n the exponent of the 
power (a l = a): 

base exponent = power 2 . 2 . 2 = 23 = 8. 

The second powers a2 are called squares, since a2 gives the area of a square of 
side a, so that a2 is also read" a squared." The third powers are called cubes; 
a3 gives the volume of a cube of edge a. Of particular importance are the 
powers of ten. They are used in estimation, to provide a means of checking 
the order of magnitude, and in writing very small and very large numbers 
clearly and concisely: 1,000 = 10· 10·10 = 103 , 1,000,000 = 106 • We will 
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return to this in Section 0.3 (103 - 102 does not equal 101 ; it equals 900 = 

9 . 102 instead). First several power laws with examples (m and n are natural 
numbers): 

d"'a"=d"+n I 
am:a"=am-" I 

I a"·b"=(ab)" I 

[ am:bm=(~r [ 

62 . 32 =6·6· 3·3=6·3· 6· 3=(6' 3)2 = 182 = 324, 

(the reader should construct an example), 

_ 3 1 1 
10 = 103 = 1000 = 0.001, , 
as 
5" = a5 - 5 = aO = 1 (cf. also: oa = o for a> 0). 
a 

These power laws also hold when m, n are not integers; that is, if a -=I- 0, the given power 
laws also hold for fractional exponents (m = plq, n = rls). 

6. Extraction ofroots: Another notation for a l /" is ::[if = ::;a. It is called 
the nth root of a. For n = 2 (square root) one writes ;;a for short. ::;a is the 
number which when raised to the nth power yields the radicand a: [~y = a. 
The following is the usual terminology: 

I iOdexJradicand = root. I 
One extracts roots (the symbol r is a stylized r from the latin radix = 

root) with the help of the electronic calculator. We give several formulas 
and examples for calculation with roots: 

y!{i.y!b=fa/J ~=;fi am/n=p [y!{iJm=p ff.=mfa 

j50=fiW=sj2, ~ = ft=J25=s, j3TI=3l2/4 =33 =27. 

7. Calculation with logarithms: Logarithms are exponents. If a is a positive 
number and y an arbitrary number (> 0), then there is a uniquely defined 
number x for which aX = y. This number x, called the logarithm of y to 
base a, is written 

x = alog y or loga y. Since aO = 1, we have loga 1 = O. 
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Table 2 Four place common logarithms 

log x Differences 
x 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

100 '1)001) [00n4 1)1)09 1)013 0017 0022 1)026 0030 0035 0039 0 1 1 2 2 3 3 3 4 
101 0043 0048 0052 nl)56 0061) 0065 0069 0073 0077 01)82 0 1 1 2 2 3 3 3 4 
102 0086 I)I)!)I) 0095 1)1199 0103 0107 0111 01H 0120 0124 0 1 1 2 2 3 3 3 4 
103 0128 0133 0137 0141 0145 0149 0154 0158 0162 0166 0 1 1 2 2 3 3 3 4 
104 0170 1)175 0179 0183 0187 0191 0195 0199 0204 0208 0 1 1 2 2 2 3 3 4 
105 0212 0216 1)220 0224 0228 0233 0237 0241 0245 0249 0 1 1 2 2 2 3 3 4 
106 0253 1)257 0261 0265 0269 0273 0278 0282 0286 0290 0 1 1 2 2 2 3 3 4 
107 0294 0298 0302 0306 031() 0314 0318 0322 0326 0330 0 1 1 2 2 2 3 3 4 
108 0334 0338 0342 0346 0350 0354 0358 0362 0366 0370 0 1 1 2 2 2 3 3 4 
109 0374 0378 0382 0386 0390 0394 0398 0402 0406 0410 0 1 1 2 2 2 3 3 4 

10 0000 0043 1)086 0128 0170 0212 0253 0294 0334 0374 4 8 12 17 21 25 29 33 37 
11 0414 0453 1)492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 
12 0792 1)828 0864 1)899 0934 0969 1004 1038 1072 1106 3 7 10 14 17 21 24 28 31 
13 1139 1173 1206 1239 1271 131)3 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 
15 1761 1791) 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25 
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2 5 7 10 12 15 17 20 22 
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 9 12 14 16 19 21 
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 4 7 9 11 13 16 18 20 
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19 
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18 
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17 
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16 
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15 
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 11 13 15 
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13 
U 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 

5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12 
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 6 6 8 9 10 12 
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10 
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 
47 6721 6730 6739 6149 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8 
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Example: log 1.234 = 0.0899 + 0.0014 = 0.0913. 
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Table 2 Four place common logarithms (continued) 

log x Differences 
x 9 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8 
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 2 3 3 4 5 6 7 7 7 
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7 

55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 1 2 2 3 4 5 5 6 7 
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 1 2 2 3 4 5 5 6 7 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 1 2 2 345 567 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 1 1 2 3 4 4 567 
59 7709 7716 7-723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 567 

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 1 1 2 3 4 4 566 
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 1 1 2 3 4 4 566 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 1 1 2 3 3 4 566 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 334 556 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 1 1 2 334 556 

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6 
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 5 6 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 344 5 6 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 1 1 2 2 344 5 6 

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 234 456 
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 234 455 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 234 455 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 1 1 2 234 455 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 1 1 2 233 455 

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5 
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 5 5 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 5 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5 

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 3 4 4 5 
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 3 3 4 4 5 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 3 3 4 4 5 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 3 3 4 4 5 
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 112 233 445 

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 112 233 445 
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 233 445 
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 011 223 344 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 011 223 344 
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 011 223 344 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0 1 1 2 2 3 344 
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 0 1 1 2 2 3 3 4 4 
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 0 1 1 2 2 3 344 
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0 1 1 2 2 3 344 
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 0 1 1 2 2 3 344 
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 0 1 1 2 2 3 3 4 4 
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 0 1 1 2 2 3 3 4 4 
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 0 1 1 2 2 3 3 4 4 
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 0 1 1 2 2 3 344 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 0 1 1 2 2 3 334 

0 1 2 3 4 5 6 7 8 9 1 2 3 456 789 

This table can be used to determine natural logarithms and values of eX: In x = 2.3026 log x; 
for x = 1.23 we have In 1.23 = 2.3026' 0.0899 = 0.207; eX = 10x109o = 100.4343x; for 
x = 0.207 we have eO 207 = 100.4343 0.207 = 10° 0899 = 1.23. 
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Table 3 Four place antilogarithms 

x Differences 
log x 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
.00 1000 1002 1005 1007 1009 1012 1014 1016 1019 1021 0 0 1 1 1 1 2 2 2 
.01 1023 1026 1028 1030 1033 1035 1038 1040 1042 1045 0 0 1 1 1 1 2 2 2 
.02 1047 1050 1052 1054 1057 1059 1062 1064 1067 1069 0 0 1 1 1 1 2 2 2 
.03 1072 1074 1076 1079 1081 1084 1086 1089 1091 1094 0 0 1 1 1 1 2 2 2 
.04 1096 1099 1102 1104 1107 1109 1112 1114 1117 1119 0 1 1 1 1 2 2 2 2 
.05 1122 1125 1126 1130 1132 1135 1138 1140 1143 1146 0 1 1 1 1 2 2 2 2 
.06 1148 1151 1153 1156 1159 1161 1164 1167 1169 1172 0 1 1 1 1 2 2 2 2 
.07 1175 1178 1180 1183 1186 1189 1191 1194 1197 1199 0 1 1 1 1 2 2 2 2 
.08 1202 1205 1208 1211 1213 1216 1219 1222 1225 1227 0 1 1 1 1 222 3 
.09 1230 1233 1236 1239 1242 1245 1247 1250 1253 1256 0 1 1 1 1 222 3 
.10 1259 1262 1265 1268 1271 1274 1276 1279 1282 1285 0 1 1 1 1 2 2 2 3 
.11 1288 1291 1294 1297 1300 1303 1306 1309 1312 1315 0 1 1 1 2 2 2 2 3 
.12 1318 1321 1324 1327 1330 1334 1337 1340 1343 1346 0 1 1 1 2 2 2 2 3 
.13 1349 1352 1355 1358 1361 1365 1368 1371 1374 1377 0 1 1 1 2 2 2 3 3 
.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 2 2 3 3 
.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 2 2 3 3 
.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 2 2 3 3 
.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 1 2 2 2 3 3 
.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 1 2 2 2 3 3 
.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 1 2 2 3 3 3 
.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 1 2 2 3 3 3 
.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 222 3 3 3 
.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 2 3 3 3 
.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 2 3 3 4 
.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 2 3 3 4 
.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 2 3 3 4 
.26 1820 1824 1828 1832 1837 1841 1845 1849 1454 1858 0 1 1 2 2 3 3 3 4 
.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 3 3 3 4 
.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 3 3 4 4 
.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 3 3 4 4 
.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2 3 3 4 4 
.31 2042 2046 2051 2056 2061 2065 2070 2075 2080 2084 0 1 1 2 2 3 3 4 4 
. 32 2089 2094 2099 . 2104 2109 2113 2118 2123 2128 2133 0 1 1 2 2 3 3 4 4 
.33 2138 2143 2148 2153 2158 2163 2168 2173 2178 2183 0 1 1 2 2 3 3 4 4 
.34 2188 2193 2198 2203 2208 2213 2218 2223 2228 2234 1 1 2 2 3 3 4 4 5 
.35 2239 2244 2249 2254 2259 2265 2270 2275 2280 2286 1 1 2 2 3 3 4 4 5 
.36 2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 1 1 2 2 3 3 4 4 5 
.37 n44 2350 2355 2360 2366 2371 2377 2382 2388 2393 1 1 2 2 3 3 4 4 5 
.38 2399 2404 2410 2415 2421 2427 2432 2438 2443 2449 1 1 2 2 3 3 4 4 5 
.39 2455 2460 2466 2472 2477 2483 2489 2495 2500 2506 1 1 2 2 3 3 4 5 5 
.40 2512 2518 2523 2529 2535 2541 2547 2553 2559 2564 1 1 2 2 3 4 4 5 5 
.41 2570 2576 2582 2588 2594 2600 2606 2612 2618 2624 1 1 2 2 3 4 4 5 5 
.42 2630 2636 2642 2649 2655 2661 2667 2673 2679 2685 1 1 2 2 3 4 4 5 6 
.43 2692 2698 2704 2710 2716 2723 2729 2735 2742 2748 1 1 2 3 3 4 4 5 6 
.44 2754 2761 2767 2773 2780 2786 2793 2799 2805 2812 1 1 2 3 3 4 4 5 6 

.45 2818 2825 2831 2838 2844 2851 2858 2864 2871 2877 1 1 2 3 3 4 5 5 6 
.46 2884 2891 2897 2904 2911 2917 2924 2931 2938 2944 1 1 2 3 3 4 5 5 6 
.47 2951 2958 2965 2972 2979 2985 2992 2999 3006 3013 1 1 2 3 3 4 5 5 6 
.48 3020 3027 3034 3041 3048 3055 3062 3069 3076 3083 1 1 2 3 4 4 5 6 6 
.49 3090 3097 3105 3112 3119 3126 3133 3141 3148 3155 1 1 2 3 4 4 5 6 6 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Example: antilog 0.0913 = 1.233 + 0.001 = 1.234. 
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Table 3 Four place antilogarithms (continued) 

x Differences 
logx 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

.50 3162 3170 3177 3184 3192 3199 3206 3214 3221 3228 1 1 2 3 4 4 5 6 7 

.51 3236 3243 3251 3258 3266 3273 3281 3289 3296 3304 1 2 2 3 4 5 5 6 7 

.52 3311 3319 3327 3334 3342 3350 3357 3365 3373 3381 1 2 2 3 4 5 5 6 7 

.53 3388 3396 3404 3412 3420 3428 3436 3443 3451 3459 1 2 2 3 4 5 6 6 7 

.54 3467 3475 3483 3491 3499 3508 3516 3524 3532 3540 1 2 2 3 4 5 6 6 7 

.55 3548 3556 3565 3573 3581 3589 3597 3606 3614 3622 1 2 2 3 4 5 6 7 7 
,56 3631 3639 3648 3656 3664 3673 3681 3690 3698 3707 1 2 3 3 4 5 6 7 8 
,57 3715 3724 3733 3741 3750 3758 3767 3776 3784 3793 1 2 3 3 4 5 6 7 8 
,58 3802 3811 3819 3828 3837 3846 3855 3864 3873 3882 1 2 3 4 4 5 6 7 8 
.59 3890 3899 3908 3917 3926 3936 3945 3954 3963 3972 1 2 3 4 5 5 6 7 8 

,60 3981 3990 3999 4009 4018 4027 4036 4046 4055 4064 1 2 3 4 5 6 6 7 8 
.61 4074 4083 4093 4102 4111 4121 4130 4140 4150 4159 1 2 3 4 5 6 7 8 9 
.62 4169 4178 4188 4198 4207 4217 4227 4236 4246 4256 1 2 3 4 5 6 7 8 9 
.63 4266 4276 4285 4295 4305 4315 4325 4335 4345 4355 1 2 3 4 5 6 7 8 9 
.64 4365 4375 4385 4395 4406 4416 4426 4436 4446 4457 1 2 3 4 5 6 7 8 9 

.65 4467 4477 4487 4498 4508 4519 4529 4539 4550 4560 1 2 3 4 5 6 7 8 9 

.66 4571 4581 4592 4603 4613 4624 4634 4645 4656 4667 1 2 3 4 5 6 7 9 10 

.67 4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 1 2 3 4 5 7 8 9 10 

.68 4786 4797 4808 4819 4831 4842 4853 4864 4875 4887 1 2 3 4 6 7 8 9 10 

.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 8 9 10 

.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 8 9 11 

.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 8 10 11 

.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5358 1 2 4 5 6 7 9 10 11 

.73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 8 9 10 11 

.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 

.75 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 9 10 12 

.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 9 11 12 

.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 10 11 12 
.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 10 11 13 
.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 9 10 11 13 

.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 10 12 13 

.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 11 12 14 

.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 11 12 14 

.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 11 13 14 

.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 10 11 13 15 

.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 12 13 15 

.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 p96 2 3 5 7 8 10 12 13 15 

.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 568 2 3 5 7 9 10 12 14 16 

.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 911 12 14 16 

.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 911 13 14 16 

.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 911 13 15 17 

.91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 6 8 911 13 15 17 

.92 8318 8337 8356 8375 8395 8414 8433 8453 8472 8492 2 4 6 8 10 12 14 15 17 

.93 8511 8531 8551 8570 8590 8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 18 

.94 8710 8730 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 18 

.95 8913 8933 8954 8974 8995 9016 9036 9057 9078 9099 2 4 6 8 10 12 15 17 19 

.96 9120 9141 9161 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 19 

.97 9333 9354 9376 9397 9419 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 20 

.98 9550 9572 9594 9616 9638 9661 9683 9705 9727 9750 2 4 7 9 11 13 16 18 20 

.99 9772 9795 9817 9840 9863 9886 9908 9931 9954 9977 2 5 7 9 11 14 16 18 20 

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 
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The number y is called the numerus of the logarithm to base a. Ordinarily 
logarithms to base 10, written 10log x or 10glo x or simply log x, are used. 
Other systems of logarithms will be mentioned at the end of this section. 
For a = 10 and y = 3 we have, using logarithms to base 10 (Briggs, decadic 
or common logarithms), x = 0.4771 and 10°·4771 = 3. Other examples 
involving four place logarithms: 

5 = 10°·6990 or log 5 = 0.6990, 
1 = 10° or log 1 = 0, 

10 = 101 or log 10 = 1, 
1000 = 103 or log 1000 = 3, 
0.01 = 10- 2 or log 0.01 = - 2. 

Since logarithms are exponents, the power laws apply, e.g., 

2.4= 10°.301°.10°.6021 = 10°·3010+0.6021 = 10°·9031 = 8. 

Taking the logarithm of a product of numbers reduces to the addition of 
the corresponding logarithms. Similarly taking the logarithm of a quotient 
becomes subtraction, taking the logarithm of a power becomes multiplica
tion, taking the logarithm of a root becomes division -in general, 

log(ab) 

a 
10g

b 

= log a + log b} 
(a> 0, b > 0), 

= log a - log b 

1 (a > 0, n = decimal), 
log an = n log a} 
log fa = log a1/n = n log a 

I 1 {= log 1 - log c = 0 - log c = } I og- - og c. 
c = log c - 1 = ( - 1 )Iog c = 

In the general statement a = 10108 a, a is the numerus or antilogarithm and 
log a is the common logarithm of a, which decomposes into two parts: 
common logarithm = mantissa ± characteristic, e.g., 

Numerus M C eM 

log 210.0 = log(2.1 . 102) = log 2.1 + log 102 = 0.3222 + 2 = 2.3222 

log 21.0 = log(2.1 . 101) = log 2.1 + log 101 = 0.3222 + 1 = 1.3222 

log 2.1 = log(2.1 . 10°) = log 2.1 + log 10° = 0.3222 + 0 = 0.3222 

log 0.21 = log(2.1·1O- 1) = log 2.1 + log 10- 1 = 0.3222 - 1. 
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The sequence of digits following the decimal point of the logarithm (namely 
3222) is called the mantissa (M). The mantissas are found in the logarithm 
table (Table 2), which could be more appropriately referred to as the mantissa 
table. We content ourselves with four place mantissas. Note that a mantissa 
is always nonnegative and less than 1. The largest integer which is less than 
or equal to the logarithm (in the examples, 2, 1,0, -1) is called the charac
teristic (C). As in the four examples, the numerus is written in the following 
power of ten form (usually called scientific notation): 

[
Sequence of digits in the numerus] 

Numerus = with a decimal point after the .1Oc. 
first nonzero digit 

EXAMPLE. Find the logarithm of: 

(a) 0.000021 = 2.1.10- 5; log(2.1·1O- 5) = 0.3222 - 5 [see Table 2]. 
(b) 987,000 = 9.87· 105; log(9.87· 105) = 0.9943 + 5 = 5.9943 [see Table 

2]. 
(c) 3.37 = 3.37· 10°; log(3.37 .10°) = 0.5276 + 0 = 0.5276. 

When working with logarithms the result must be written with M and C 
displayed. If in the process of finding a root a negative characteristic appears, 
this characteristic must always be brought into a form that is divisible by the 
index of the radical: 

EXAMPLE. Calculate ,.yO.643 

log 0.643 = 0.8082 - 1 = 2.8082 - 3, 

log JO.643 = log 0.643 1/ 3 = i(2.8082 - 3) = 0.93607 - 1'}[ b] 
JO.643 = 0.8631 see Ta Ie 3 . 

Now for the inverse operation of finding the antilogarithm. After the com
putations have been carried out in terms of logarithms the numerus cor
responding to the result has to be determined. This is done with the help of 
the antilogarithm table in exactly the same way as the logarithm of a given 
number is found in the logarithm table. The logarithm has to be written in 
the proper form, with a positive mantissa M and an integer characteristic C, 
e.g., 

log x = -5.7310 = (-5.7310 + 6) - 6 = 0.2690 - 6. 

So also, log 1/x = (1 - log x) - 1; e.g., log t = (1 - 0.4771) - 1 = 
0.5229 - 1. The mantissa without characteristic determines the sought
after sequence of digits of the antilog with a decimal point after the first 
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nonzero digit. The characteristic C, whether positive or negative, specifies 
the power: 

[
Sequence of digits in the numerus] 
with a decimal point after the . lOe = Numerus. 
first nonzero digit 

EXAMPLE. Find the antilog of: 

(a) log x = 0.2690 - 6; x = 1.858.10- 6 • 

(b) log x = 0.0899 - 1; x = 1.23.10- 1 . 

(c) log x = 0.5276; x = 3.37. 
(d) log x = 5.9943; x = 9.87.105. 

We summarize. Every calculation with logarithms involves five steps: 

1. Formulating the problem. 
2. Converting to logarithmic notation. 
3. Recording the characteristic and determining the mantissa from the 

logarithm table. 
4. Carrying out the logarithmic calculations. 
5. Determining the antilog with the help of the antilogarithm table-the 

characteristic fixing the location of the decimal point. 

If, as often happens, an antilogarithm table is unavailable, the numerus 
can of course be found with the help of the logarithm table. The procedure is 
simply the reverse of that used in determining the logarithms. 

EXAMPLE. Calculate 

89.493.5 . JO.006006 
6 0.0010092 . 3,601,0004 .2' 

We set 

(8.949·10)3.5. J6.006. 10- 3 

6 (1.009.10 3)2. (3.601 . 106t.2 = x, 

and using log x = l({log(numerator)} - {log(denominator)}), i.e., 

log x = i-. ({3.5 . log(8.949 . 10) + ! ·log(6.006 . 10- 3)} 
- {2 ·10g(1.009· 10- 3) + 4.2 ·10g(3.601 . 106 )}), 

we find from Table 4 that 

log x = i-' ({5.7206} - {21.5447}) = i-. ({23.7206 - 18} - {21.5447}), 

log x = i-. (2.1759 - 18) = 0.36265 - 3, and the desired value x = 
2.305. 10- 3. 
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Table 4 

Numerus Logarithm Factor Logarithm 

8.949'10' 0.9518 + 1 3.5 6.8313 
6.006' 10- 3 0.7786 - 3 0.5 0.8893 - 2 

=1.7786 - 4 

Numerator 5.7206 

1.009' 10- 3 0.0039 - 3 2 0.0078 - 6 
3.601 . 10 6 0.5564 + 6 4.2 27.5369 

Denominator 21.5447 

The so-called natural logarithms (In) (cf. Table 29 and Table 36) have as base the 
constant 

e ~ 2.718281828459· .. 

which is the limit of the sequence 

1 I 1 1 
e=I+-+-+--+ +"'. 

1 1·2 1·2·3 1·2·3·4 

The conversion formulas with rounded-off coefficients are 

In x = In 10 . log x ~ 2.302585 . log x, 

log x = log e . In x ~ 0.4342945 . In x. 

[Note that In 1 = 0, In e = 1, In 10k ~ k· 2.302585; note also that In eX = x, 
e1nx = x, and especially aX = ex1na (a > 0).] The symbols "elog x" and "loge x" 
are also used in place of "In x." 

The logarithm to base 2 (logarithmus dualis) written as Id or Ib [binary, con
sisting of two units]), can be obtained by the formulas 

log x 
Id x = -- ~ 3.321928 . log x, 

log 2 

In x 
Id x =-~ 1.442695 ·In x 

In 2 

or from a table, (e.g., Alluisi 1965). 

[e.g., Id 5 = 2.322 = 3.322·0.699 
= 1.443· 1.609]. 

0.3 COMPUTATIONAL AIDS 

It is convenient to employ an electronic pocket calculator, an electronic 
calculator with printout or, better yet, a programmable calculator. For 
extensive calculations-large amounts of data and/or multi-variate methods 
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-it becomes necessary to make use of a computer. Programs are available 
for nearly all routines [see pages 572 and 573]. For calculations arising in 
statistical analysis one needs, in addition, a collection of numerical tables 
[see pages xiii-xvi]. 

The following procedure is recommended for every calculation: 

1. Arranging a computational setup: Determine in full detail all steps 
involved in the computation. An extensive computation should be 
so well thought through and prepared for that a technician can 
carry it out. Clearly arranged computational schemes which include 
all the numerical computations and in which the computation pro
ceeds systematically also lessen the chances of error. 

2. Use paper on one side only; write all numbers clearly; leave wide 
margins for the rough work; avoid duplication; cross out any 
incorrect number and write the correct value above it. 

3. Use rough estimates to avoid misplacing the decimal point; check 
your computation! Each arithmetical operation should be preceded 
or followed by a rough estimate, so that at least the location of the 
decimal point in the result is determined with confidence. Scientific 
notation is recommended: 

0.00904 
0.167 

9.04· 10- 3 ~ 5.10- 2 • 

1.67 . 10 1 ' 

more precisely, to 3 decimal places: 5.413 . 10- 2 . 

4. To double check, the problem should, if possible, be solved by still 
another method. It is sometimes advantageous for two coworkers 
to carry out the computations independently and then to compare 
the results. 

5. The recommendations and the computational checks mentioned in 
the text should be replaced by optimal versions and adapted to the 
computational aids at one's disposal. 

Use formulas with care: make sure that you really understand what the 
formula is about, that it really does apply to your particular case, and 
finally that you really have not made an arithmetical error. 

0.4 ROUNDING OFF 

If the quantities 14.6, 13.8, 19.3, 83.5, and 14.5 are to be rounded off to the 
nearest integer, the first three present no difficulty; they become 15, 14, and 
19. For the last two quantities, one might choose the numbers 83 or 84 and 
14 or 15 respectively. It turns out to be expedient to round off to the nearest 
even number, so that 83.5 goes over into 84 and 14.5 into 14. Here zero is 
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Table 5 Significant digits 

Greatest error 
0.5e 

Number of Limits of the 
= - (100) 

R 
Result significant digits error range (±%) 

4 1 3.5-4.5 12.5 
4.4 2 4.35-4.45 1.14 
4.44 3 4.435-4.445 0.113 

treated as an even number. The more values rounded off in this way and 
then summed, the more the roundoff errors cancel out. 

Also important is the notion of significant digits. The significant digits 
of a number are the sequence of digits in the number without regard to a 
decimal point, if present, and, for numbers less than 1, without regard to the 
zeros preceding or immediately following the decimal. Table 5 compares 
three results of rounding off, the number of significant figures in the ex
pressions and the accuracy inherent in each: by the corresponding error 
bounds as well as by the maximum rounding error. This clearly implies the 
following: If a method is used with which there is associated an error of at 
least 8 % in the size, then it is misleading to state a result with more than two 
significant digits. If two numbers, each with x accurate or significant digits, 
are multiplied together, then at most x-I digits of the product can be 
regarded as reliable. A corresponding statement applies to division. 

EXAMPLE. Compute the area of a rectangle with sides of measured length 
38.22 cm and 16.49 cm. To write the result as 38.22 . 16.49 = 630.2478 cm2 

would be incorrect, since the area can take on any value between 38.216 . 
16.486 = 630.02898 and 38.224 . 16.494 = 630.4666. This range is charac
terized by 630.2 cm2 ± 0.3 cm2 • The result can be stated with only three 
significant figures (630 cm2). 

0.5 COMPUTATIONS WITH INACCURATE 
NUMBERS 

If inaccurate numbers are tied together by arithmetical operations, then the 
so-called propagation of error can be estimated. Two parallel calculations 
can be carried out, one with error bounds which lead to the minimum value 
for the result and the other with error bounds which lead to the maximum. 

EXAMPLE 

30 ± 3 
20 ± 1 

Range: from 27 to 33 
Range: from 19 to 21. 
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1. Addition: the actual sum of the two numbers lies between 27 + 19 = 46 
and 33 + 21 = 54. The relative error of the sum equals 

54-46 8 
54 + 46 = 100 = 0.08; 

it lies within the ± 8 % limits. 
2. Subtraction: The actual difference lies between 27 - 21 = 6 and 

33 - 19 = 14 (subtraction "crossover," i.e., the maximal value of one 
number is subtracted from the minimal value of the other number, the 
minimal value of one number is subtracted from the maximal value of 
the other number). The relative error of the difference equals 

14 - 6 = ~ = 040 40% 
14 + 6 20 ., ± o· 

3. Multiplication: The actual product lies somewhere between the limits 
27 . 19 = 513 and 33 ·21 = 693. The relative error of the product equals 

513 - 30·20 
30·20 

513 - 600 = -87 = -0145 = 1 % 
600 600 . - 4.5 0' 

693 - 30 . 20 = 693 - 600 = 93 = 0 155 
30 . 20 600 600 . 

= +15.5%. 

4. Division: The actual quotient lies between ~i = 1.286 and H = 1.737 
(division" crossover "). The relative error of the quotient is found to be 

1.286 - 30/20 = _ 0.214 = -0143 = -143% 
30/20 1.500' . 0' 

1.737 - 30/20 = 0.237 = 0158 
30/20 1.500' 

= +15.8%. 

Of all the basic arithmetic operations on inaccurate numbers subtraction 
is particularly risky, the final error being substantially higher than for the 
other arithmetic operations. 



1 STATISTICAL DECISION TECHNIQUES 

The beginner should on first reading confine himself to sections 
indicated by an arrow~, paying particular attention to the examples, 
disregarding for the time being whatever he finds difficult to grasp, the 
remarks, the fine print, and the bibliography. 

1.1 WHAT IS STATISTICS? STATISTICS AND 
THE SCIENTIFIC METHOD 

Empirical science does not consist of a series of nonrecurring isolated events 
or characteristics relating to a particular individual or entity, but rather 
of reproducible experiences, a collection of events-regarded as of the 
same kind-about which information is sought. 

In the year 1847, when Semmelweis introduced hygienic measures at the 
obstetrical clinic in Vienna in spite of opposition by his colleagues, he did 
not know of the bacteriological nature of childbed fever. He could also not 
prove directly that his experiments were successful, since even after the 
introduction of hygiene, women still died of childbed fever at his clinic. The 
maternal mortality decreased however from 10.7% (1840-1846) to 5.2% 
(1847) to 1.3% (1848) and since Semmelweis's calculations were based on a 
large number of women about to give birth (21,120; 3,375; 3,556) (Lesky 
1964), it was concluded that hygienic measures should continue to be applied. 

Statistical methods are necessary wherever results cannot be reproduced 
exactly and arbitrarily often. The sources of this nonreproducibility lie in 
uncontrolled and uncontrollable external influences, in the disparity among the 
test objects, in the variability of the material under observation, and in the 

23 
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test and observation conditions. In sequences of observations, these sources 
lead to "dispersion" of quantitatively recorded characteristics-(usually less 
for investigations in the natural sciences than for those in the social sciences). 
Since as a consequence of this dispersion any particular value will hardly ever 
be reproduced exactly, definite and unambiguous conclusions have to be 
deferred. The dispersion thus leads to an uncertainty, which frequently allows 
decisions but not exact inferences to be made. This is the starting point of a 
definition of statistics as an aid in decision making, which goes back to 
Abraham Wald (1902-1950): Statistics is a combination of methods which 
permit us to make reasonable optimal decisions in cases of uncertainty. 

Descriptive statistics contents itself with the investigation and description 
of a whole population. Modern inductive or analytic statistics studies, in 
contrast, only some portion, which should be characteristic or representative 
for the population or aggregate in whose properties we are interested. 
Conclusions about the population are thus drawn from observations carried 
out on some part of it, i.e., one proceeds inductively. In this situation it is 
essential that the part of the population to be tested-the sample-be 
chosen randomly, let us say according to a lottery procedure. We call a 
sampling random if every possible combination of sample elements from 
the population has the same chance of being chosen. Random samples are 
important because they alone permit us to draw conclusions about the popula
tion. Overall surveys are frequently either not possible at all or else possible 
only with great expenditure of time and money. 

Research means testing hypotheses and/or getting new insights (in particular 
the extension of factual knowledge; c.f., also the Introduction). Four levels 
can be distinguished: 

1. Description of the problem and definitions. Observations are made. 
2. Analysis: essential elements are abstracted to form the basis of a hy

pothesis or theory. 
3. Solution I of problem : The hypothesis or theory is developed to where new 

conclusions can be stated and/or results predicted. Formulation of new 
(partial) problems. 

4. New data are gathered to verify the predictions arrived at from the theory: 
observations II. 

The whole sequence of steps then starts all over again. If the hypothesis is 
confirmed, then the test conditions are sharpened by more precisely wording 
and generalizing the predictions until finally some deviation is found, making 
it necessary to refine the theory. If any results contradicting the hypothesis 
are found, a new hypothesis that agrees with a larger number of factual 
observations is formulated. The final truth is entirely unknown to a science 
based on empirical data. The failure of all attempts to disprove a certain 
hypothesis will increase our confidence in it; this, however, does not furnish 
a conclusive proof that the hypothesis is always valid: hypotheses can only 
be tested, they can never be proved. Empirical tests are attempts at negation. 
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Statistics can intervene at every step of the (iterated) sequence described 
above: 

1. In the choice of the observations (sampling theory). 
2. In the presentation and summary of observations (descriptive statistics). 
3. In the estimation of parameters (estimation theory). 
4. In the formulation and verification of the hypotheses (test theory). 

Statistical inference enables us to draw, from the sample, conclusions on the 
whole corresponding population (e.g. when we estimate election results from 
known particular results for a selected constituency)-general statements 
which are valid beyond the observed aggregate. In all empirical sciences, it 
makes possible the assessing of empirical data and the verification of scientific 
theories through confrontation of results derived from probability theoretical 
models-idealizations of special experimental situations-with empirical 
data; the probabilistic statements, which are of course the only kind here 
possible, then offer the practitioner indispensable information on which to 
base his decisions. 

In estimation theory one is faced with deciding how, from a given sample, 
the greatest amount of information regarding the characteristic features of 
the corresponding parent population can be extracted. In test theory the 
problem is one of deciding whether the sample was drawn from a certain 
(specified) population. Modern statistics is concerned with designing 
experiments which are capable of efficiently answering the question asked 
(cf. also Section 7.7), and then carrying out and evaluating experiments and 
surveys. 

STATISTICS is the science of obtaining, summarizing, analyzing 
and making inferences from both counted and measured observations, 
termed data. It deals with designing experiments and surveys in order 
to obtain main characteristics of the observations, especially kind and 
magnitude of variation and type of dependencies in both experimental 
and survey data. The defined total set of all possible observations, 
about which information is desired, is termed population. Commonly 
available is at best a representative part of the population, termed a 
sample, which may give us a tentative incomplete view of the unknown 
popUlation. 

Accordingly the science of statistics deals with: 

1. presenting and summarizing data in tabular and graphic form to 
understand the nature of the data and to facilitate the detection of 
unexpected characteristics, 

2. estimating unknown constants associated with the population, 
termed parameters, providing various measures of the accuracy and 
precision of these estimates, 

3. testing hypotheses about populations. 
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Detecting different sources of error, giving estimates of uncertainty and, 
sometimes, trying to salvage experimental results are other activities of the 
statistician. 

A discussion of the philosophical roots of statistics and of its position 
among the sciences is provided by Hotelling (1958) (cf. also Gini 1958; 
Tukey 1960, 1962, 1972; Popper 1963, 1966; Stegmiiller 1972 and Bradley 
1982 [8: 7]; common fallacies (cf., Hamblin 1970) are pointed out by 
Campbell (1974) (cf. also Koller 1964 [8 :2a] and Sachs 1977 [8 :2a]). On 
statistical evidence [and the law] see Fienberg and Straf (1982 [8 :2a]). 

1.2 ELEMENTS OF COMPUTATIONAL 
PROBABILITY 

The uncertainty of the decisions can be quantitatively expressed through the 
theory of probability. In other words: probability theoretic notions lead to the 
realization of optimal decision procedures. Hence we turn our attention for 
the present to the notion of" probability." 

~ 1.2.1 Statistical probability 

We know in everyday life of various sorts of statements in which the word 
"probably" (range of significance: presumably to certainly) appears: 

1. George probably has a successful marriage. 
2. The president's handling of the crisis was probably correct. 
3. The probability of rolling a " 1 " is !. 
4. The probability of a twin birth is l6' 
The last two statements are closely related to the notion ofrelative frequency. 
It is assumed that in tossing the die each side turns up equally often on 
the average, so we expect that with frequent repetition the relative fre
quency with which I comes up will tend to t. The fourth statement originated 
from some relative frequency. It had been observed during the last few years 
that the relative frequency of twin births is 1: 86; hence it can be assumed 
that a future birth will be a twin birth with probability equal to this relative 
frequency. In the first two statements however, no such relation to relative 
frequency exists. We wish, in the following, to consider only probabilities 
which can be interpreted as relative frequencies. With frequent repetition, 
these relative frequencies generally exhibit remarkable stability. This notion 
of probability is based historically on the well-known ratio 

number of favorable events 
number of possible events 

(1.1) 
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-the definition of probability due to Jakob Bernoulli (1654-1705) and 
Laplace (1749-1827). It is here tacitly assumed that all possible events are, 
as with the tossing of a die, equally probable. Every probability P is thus a 
number between zero and one: 

O~P~l. (1.2) 

An impossible outcome has probability zero, while a sure outcome proba
bility one. In everyday life these probabilities are multiplied by 100 and 
expressed as percentages (0% :;; P :;; 100%). The probability of rolling a 4 
with a perfect die is i because all six faces have the same chance of coming up. 
The six faces of a perfect die are assigned the same probabilities. 

The definition of probability according to Bernoulli and Laplace obviously 
makes sense only when all possible cases are equally probable, statistically 
symmetric. It proves to be correct for the usual implements of games of 
chance (coins, dice, playing cards, and roulette wheels). They possess a 
certain physical symmetry which implies statistical symmetry. Statistical 
symmetry is however an unconditional requirement of this definition of 
probability. The question here is of an a priori probability, which can also 
be referred to as mathematical probability. An unfair die is not physically 
symmetric; therefore statistical symmetry can no longer be assumed, and the 
probability of a specified outcome in a toss of a die cannot be computed. 
The only way to determine the probability of a particular outcome consists 
in a very large number of tosses. Taking into account the information gained 
from the trial, we get in this case the a posteriori probability or the statistical 
probability. The distinction between mathematical and statistical probability 
concerns only the way the probability values are obtained. Probabilities are 
also stated in terms of odds, as in the following examples: 

1. Buffon's experiments with coins. Here the odds are 2048 to 1996, whence 
P = 2048/(2048 + 1996) = 0.5064 (subjective probability). These num
bers were obtained by Buffon (1787) in 4044 tosses of a coin. The value of 
P compares well with the probability of p = 0.500 for a fair coin to land 
heads up. 

2. Wolf's experiments with dice. Here the odds are 3407 to 16,593, whence 
P = 3407/(3407 + 16,593) = 0.17035 (subjective probability). R. Wolf 
(1851) conducted an experiment in which a die was tossed 20,000 times. 
In 3407 tosses the face with one dot was up (in 2916 tosses four dots 
showed: P = 0.146). The mathematical probability of this outcome (for a 
fair die) is p = i = 0.167. 

Another example of such a probability has 9 to 12 as odds, i.e., P = 9/(9 + 12) = 0.429 
(subjective probability); this P approximates the probability that out of 12 fencing 
matches, three consecutive matches are won (P = 1815/4096 = 0.443; Hamlet: Y, 2 
[cf., Spinchorn 1970]). 
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The particularly important axiomatic definition of probability (Section 
1.2.2) originated with A. N. Kolmogorov (1933), who connected the notion 
of probability with modern set theory, measure theory, and functional 
analysis (cf. Van der Waerden 1951) and thereby created the theoretical 
counterpart to empirical relative frequency (cf. also Hemelrijk 1968, Rasch 
1969, and Barnett 1982). 

~ 1.2.2 The addition theorem of probability 
theory 

The collection of possible outcomes of a surveyor an experiment forms the 
so-called space of elementary events, S. One can now pose the question 
whether or not the outcome of an experiment falls in a particular region of 
the space of elementary events. The random outcomes can thus be charac
terized by subsets of the space of elementary events. 

The space of elementary events which corresponds to a single tossing of a 
die consists of 6 points, which we number from 1 to 6. The space is thus 
finite. On the other hand, assume that in a game of Monopoly you land injail. 
According to the rules you cannot move unless you toss a 6. Let an event 
consist of the number of times the die has to be tossed before a 6 comes up. 
Then, even in this simple situation, the space of elementary events is infinite, 
because every positive integer is a possible outcome (Walter 1966). If we are 
dealing with a characteristic of a continuous nature, such as the size of an 
object or the amount of rainfall, we can represent the events (outcomes) by 
points on the real axis. The space of elementary events then includes, for 
example, all the points in some interval. 

Any subset of the space of elementary events is called an event and is 
denoted by a Latin capital letter, usually E or A. Let us emphasize that the 
whole space of elementary events, S, is also an event, called the sure or 
certain event. In the example involving the single toss of a die, S = 
{I, 2, 3, 4, 5, 6} is the event that any number comes up. 

If E1 and E2 are events, it is frequently of interest to know whether a 
measurement lies either in E1 or in E2 (or possibly in both). This event is 
characterized by the subset E 1 U E2 of the space of elementary events that 
consists of all points lying in E1 or E2 (or in both). The "or conjunction," 
the logical sum E1 u E2 (also written E1 + E2)-read "E1 union E2" -is 
realized when at least one of the events E1 or E2 occurs. The symbol u is 
reminiscent of the letter u (for Latin vel = or, in a nonexclusive sense). 

EXAMPLE.E 1 = {2, 4}, E2 = {t, 2}, E1 u E2 = {l, 2, 4}. This set character
izes the event "E1 or E2 or both." 

Analogously one could ask whether a measurement lies in both Eland 
E 2' This event is characterized by the set of points in the space of elementary 
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events, each of which lies in E 1 as wen as in E 2. This set is denoted by E 1 (\ E 2. 

The "as-wen-as conjunction"-the logical product E1 (\ E, (also written 
E1E2), read: "E1 intersction E2" -is realized when E1 as wen as E2 occurs. 

EXAMPLE. E1 (\ E2 = {2,4} (\ {I, 2} = {2}. 

If it so happens that E1 and E2 have no points in common, we say that the 
events E1 and E2 are mutually exclusive. The operation E1 (\ E2 then yields 
the so-caned empty set, which contains no points. To the empty set 0 there 
corresponds the impossible event. Since no measured values can possibly lie 
in the empty set, no measurement can fan in 0. For any event E there is an 
event E, consisting of those points in the sample space that do not lie in E. 
The set E, read" not E", is caned the event complementary to E or the logical 
complement. 

If, for example, E is the event that in a toss of a die an even number comes 
up, then E = {2, 4, 6} and E = {I, 3, 5}. We have (1.3) and (1.4). 

E u E = S (sure or certain event) (1.3) 

(1.4) E (\ E = 0 (impossible event) 

The diagrams in Figure lA inustrate these relations. By (1.2) the probability 
P(E) that as a result of a measurement the measured value x lies in E, is a 
number between zero and one. We shan assume that to every event E some 
probability P(E) is assigned which win enable us to make statistical asser
tions. This assignment however is not arbitrary, but must adhere to the 
following rules (the axioms of probability theory): 

I. Every event carries a probability, a number between zero and one: 

I O~ P(E)~ 1 non-negativity. (1.5) 

II. The certain event has probability one: 

I P(S)= 1 standardization. (1.6) 

III. The probability that out of a collection of pairwise disjoint events 
(Ej (\ Ej = 0 for i i= j; i.e., every two distinct events exclude each 
other) one of the events occurs ("either or probability"), equals 
the sum of the probabilities of the events in the collection (addition 
rule for mutually exclusive events): 

additivity. (1. 7) 
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E shaded 

EuE=S (1.3) 

EnE=0 (1.4) 

Figure lA Euler's circles or Venn diagrams. 

Axiom II could be written Li P(Ei) = 1. 
Simple version of III: peEl U E2) = peEl) + P(E2) if El n E2 = 0. 

On combining this with (1.3) we get 1 = peS) = peE u E) = peE) + peE), 
i.e., 

I P(E)= l-p(E)·1 (1.8) 

EXAMPLE (Illustrating axiom III). The probability that on a single toss of an 
unbiased die either a 3 or 4 occurs, comes to i + i = t. Thus, in a series of 
tosses, we can expect a 3 or 4 to come up in 33 % of the cases. 

The probability that out of two events El and E2 that are not mutually 
exclusive, at least one occurs, is given by 

(1.9) 

The Venn diagram (Fig.lA) shows that if we simply add peEl) and P(E2)' the 
"as well as probability" peEl n E2) is counted twice. This is the addition 
rule or addition theorem for arbitrary evellts which are not mutually exclusive. 
(For three arbitrary events (1.9) extends (see Figure lB) to 

peA u B u C) = peA) + PCB) + P(C) - peA n B) - peA n C) 

- PCB n C) + peA n B n C). 

EXAMPLES 

1. A card is drawn from a deck of 52 cards and one wishes to know the 
probability that the card was either an ace or a diamond. These conditions 
are not mutually exclusive. The probability of drawing an ace is peEl) = 542' 

of drawing a diamond is P(E2 ) = g and of drawing an ace of diamonds is 
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Addition theorem for three events 

A 8 

A"ij"t A"8,,t 

A"fj"C 

C A"fj"t 

Area of A + 8 + C = 3 "circles" - 3 "ellipses" + "triangle" 

peA u 8 u C) = peA) + P(8) + P(C) - peA " 8) - peA "C) 
- P(8 " C) + peA " 8 " C) 

31 

s 

Figure lB Venn diagram. Comment: Combining all elementary events in A, B, C 
(" circles "), the pairwise common events (" ellipses") have been counted twice, so we 
remove them once; but in doing this we removed the elementary events of A n B n C 
(" triangle" in the middle) once too often, and so we have to add it. 

peEl n Ez) = lz; thus we have peEl u Ez) = peEl) + P(Ez) - peEl n 
Ez) = 54Z + n - 5~ = ~~ = 0.308. 

2. Suppose the probability that it will rain is peEl) = 0.70, that it will 
snow is P(Ez) = 0.35, and that both events occur simultaneously is 
peEl n Ez) = 0.15. Then the probability that it will rain, snow, or both is 
peEl u Ez) = peEl or Ez or both) = 0.70 + 0.35 - 0.15 = 0.90 (cr. also 
Table 7, example 4). 

~ 1.2.3 Conditional probability and statistical 
independence 

Two companies manufacture 70 % and 30 % respectively of the light bulbs on 
the market. On the average, 83 out of every 100 bulbs from the first company 
last the standard number of hours, while only 63 out of every 100 bulbs from 
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the second company do so. Thus, out of every 100 light bulbs that reach the 
consumer, an average of 77 = [(0.83)(70) + (0.63)(30)] will have standard 
lifetimes; in other words the probability of buying a lightbulb with standard 
lifetime is 0.77. Now let us assume we have learned that the light bulbs a 
certain store carries were all manufactured by the first company. Then the 
probability of purchasing a light bulb which has a standard lifetime will be 
-fo3o = 0.83. The unconditional probability of buying a standard bulb is 
0.77, while the conditional probability-conditioned on the knowledge that 
it was made by the first company-equals 0.83. 

Two dice, when thrown in two separate places, lead to independent results. 
That events are independent means they do not mutually interact and are not 
jointly influenced by other events. 

Assuming we toss a number of consecutive sixes with an unbiased die, 
the chance of getting any more sixes does not become negligible. It remains a 
constant i for every toss. There is no need for the results of later tosses to 
balance off the preceding ones. An unbiased die, as well as the independence 
of individual tosses, is of course assumed, i.e., no preceding toss influences a 
subsequent one-the die is, for example, not deformed by the previous toss. 

1. The probability of the event E2 , given the condition or assumption 
that the event E1 has already occurred, [written P(EtlE2 )], is called the 
conditional probability (see Figure 2A) 

(1.10) 

Conditional probability and multiplication theorem 

E, 

Conditional probability: 

n nn 
P(E2IE,) ~ ~ or n,. 

peE, n E2) 
P(E2IE,) = peE,) and 

peE, n E2) = P(E,)P(E2IE,) 

II 

Since E2 is 
contained in 
E, we have 
a new sample 
space E,. 

.--E,
• • 

• • 

• • 

• • 

• 

• 

peE, n E2) 4 
P(E2IE,) = P(E,) = 6 

s Example 

peE, nE2) =P(E,)P(E2IE,) =P(E2)P(E,IE2) 

(,;) = (~)(~) = (1~)(~) 
Figure 2A Venn diagrams. 
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which is of course defined only for peEl) ¥- 0; we have analogously 

(1.10a) 

for P(E2 ) ¥- O. This leads to the multiplication rule or mUltiplication theorem 
for the simultaneous occurrence of El and E2 : 

(1.11) 

(1.11) gives the joint probability of Eland E2 , whether they are inde
pendent or not. 

2. Two events are called stochastically independent (" stochastic" means: 
associated with random experiments and probabilities [cr., Sections 1.4.5, 
3.2]) if 

(1.12) 

In this case we have also 

P(E 1 IE2)=P(EJ] (1.12a) 

3. If El and E2 are stochastically independent, then so are (1) £1 and E2, 
(2) El and £2, or P(E2IEl ) = P(E21£1) = P(E2) and P(E1 IE2) = 
P(E1 1£2) = peEl)' Since there are more men (M) suffering from gout 

Stochastical independence and total probabilities theorem 

Unit 
,...--_E.:...., ---. __ --.., square 

_1_ 
Stochastically 
independent 

events 

peE, n E,) _ peE,) 
peE,) --1-

peE, n E,) = P(E,)P(E,) 

II 

A, A2 

IA.olOEI 
Total probabilities 

If event E intersects the events A'; 

I~~J 
[with A, vA 2 v'" v An = S and A; n Ai = 0 fori +1]. 

then P(El = L peA; n El 
[and with the multiplication theorem] 

P(El = L P(A)P(EIA) 

Figure 2B Venn diagrams. 
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than women (W), we have P(GIM) > P(GI W). The definition of sto
chastic independence (see Figure 2BI) is a consequence of (1.11) and 
(1.12) : 

(1.13) 

EXAMPLE. Experiment: One die tossed twice or die I and die II tossed 
together; all tosses are stochastically independent. Sample space {I-I, 
1-2, ... , 1-6; 2-1, ... ,5-6, 6-6}. 

With 

E I = {first toss [or die I] even} 

= {2, 4, 6} or three out of six {I, ... , 6} possible events, and 

E 2 = {second toss [or die II] 2 or less} 

= {I, 2} or two out of six {I, ... , 6} possible events, 

we have P(E1 n E2) = P(E I )P(E2) = (i)(i) = i or {2-1, 2-2; 4-1, 4-2; 6-1, 
6-2} six of the 36 possible pairs. 

For a composite event resulting from n mutually stochastically inde
pendent experiments with the outcomes Ei , i = 1,2, ... , n, we find' 

Writing this another way: 

P(E I n E2 n··· n En) 
= P(El)P(E2IEI)P(E3IEI n E2)··· P(EnIEI n E2 n ... n En-I). 

EXAMPLES 

1. How large is the probability of getting three sixes simultaneously when 
three unbiased dice are tossed? P = (i)(i)(i) = 2~6. In a long sequence 
of trials all three dice would show a six simultaneously in only one out of 
216 tosses on the average (cf. also Table 7, Examples 1 and 2). 

2. An unbiased die is tossed four times. What is the probability of 
getting a six at least once? Replace "a six at least once" by "no sixes." The 
probability of not getting a six with a single toss is i, with four tosses, it 
equals (i)4. Thus the probability of obtaining at least one six with four 
tosses is 1 - (i)4 = 0.518, or a little larger than t. This predicts a profitable 
outcome for anyone who has patience, money, and an honest die and bets 
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on the appearance of a six in four tosses. In the same way, for the case where 
a pair of dice is being tossed, one can ask the question of how many tosses 
are needed to render betting on a double six worthwhile. The probability 
of not getting a double six with one roll of the two dice is ~~, since 36 equals 
the number of possible outcomes 1-1, 1-2, ... ,6-6 of the roll. The probability 
of obtaining a double six at least once in a sequence of n tosses is again 
given by P = 1 - (~~t. P should be > 0.5, that is, G~t < 0.5, so n log ~~ < 
log 0.5 and hence n > 24.6. This last inequality follows from setting n log ~~ = 

log 0.5 and solving for n: 

n = log 0.5 = 0.6990 -I = 9.6990 - 10 = -0.3010 = 24.6. 
10gG~) log 35 - log 36 1.5441 - 1.5563 -0.0122 

One would thus bet on the appearance of a double six if at least 25 tosses 
were allowed; the probability of tossing a double six is then greater than 
50%. 

The Chevalier de Mere acquired a substantial amount of money by 
betting that he would get at least one six in a sequence of four tosses of a die, 
and then lost it by betting that he would get at least one double six in a 
sequence of 24 tosses with two dice: 1 - G~)24 = 0.491 < 0.5. 

The exchange of letters between Pierre de Fermat (1601-1665) and 
Blaise Pascal (1623-1662), which had been requested by Chevalier 
de Mere in order to solve the problem mentioned above, established 
in 1654 a foundation for probability theory which was later developed 
by Jakob Bernoulli (1654-1705) into a mathematical theory of pro
bability (Westergaard 1932, David 1963, King and Read 1963, 
Freudenthal and Steiner 1966, Pearson and Kendall 1970, Kruskal 
and Tanur 1978 (cited on p. 570), Pearson 1978; cf. end of Section 7.7) 
(cf. also pages 27, 59,64, 123, and 567). 

3. A certain bachelor insists that the girl of his dreams have a Grecian 
nose, Titian red hair, and a thorough knowledge of statistics. The cor
responding probabilities are taken to be 0.01, 0.01 and 0.00001. Then the 
probability that the first young lady met (or any that is randomly chosen) 
exhibits the aforementioned properties is P = (0.01)(0.01)(0.00001) = 
0.000000001 or exactly one in a billion. It is of course assumed that the 
three characteristics are independent of each other. 

4. Three guns can shoot at the same airplane independently of one 
another. Each gun has a 'probability of /0 to score a hit under the given 
conditions. What is the probability that an airplane is hit? In other words, 
the probability of at least one resulting hit is sought. Now the probability 
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Table 6 

P 0.01 0.02 0.05 

n 1 5 10 15 30 50 2 5 10 15 30 50 2 5 10 15 

P 0.010 0.049 0.096 0.140 0.260 0.395 0.040 0.096 0.18:1 0.261 0.455 0.636 0.098 0.226 0.401 0.537 

P 0.10 0.20 0.30 0.50 0.75 0.90 

n 2 5 10 15 5 10 15 30 5 10 5 10 2 5 2 3 

P 0.190 0.410 0.651 0.794 0.672 0.893 0.965 0.999 0.832 0.972 0.969 0.999 0.937 0.999 0.990 0.999 

that no airplane is hit is ao)3. Thus the probability of at least one resulting 
hit is given by 

p = 1 - (~) 3 = 1 _ 729 = 271 = 0 271 = 27 1 % 
10 1,000 1,000' . 0 

(Cf.P = 1 - [~Or8 = 94.77% or P = 1 - [~r = 96.88%)

Rule: The probability P of at least one successful result (hit) in n independent 
trials, given probability p for success in each trial, is given by 

I P = 1 - (1 - p)ft ~ np 

(cf. also p. 218). We list several examples in Table 6. 

5. Four cards are drawn from a deck. What is the probability (a) that 
four aces turn up, and (b) that they all exhibit the same value? The prob
ability of drawing an ace from a deck of cards is n = -b. If the drawn card 
is replaced before the next card is picked, then the probability of obtaining 
two aces in two consecutive draws equals (3)U3) = 1~9' If the card drawn 
is not replaced, the probability comes to (3)(ll) = 2~1' With replacement, 
the probability of a particular outcome is constant; without replacement 
it varies from draw to draw. Thus we have 

4 3 2 1 24 
for (a): P = 52 . 51 . 50' 49 = 6,497,400 

1 '" 3 . 1 -6 
270,725 - .7 0 , 

4 3 2 1 312 1 5 

for (b): P = 13· 52 . 51 . 50 . 49 = 6,497,400 = 20,825 ~ 4.8 ·10- . 

6. 24 persons are chosen at random. How large is the probability that at 
least two persons have their birthday on the same day? It equals P = 0.538. 
It is assumed that the 365 days in a year are all equally likely as birthdays. 
We are interested in the event E, "no 2 (from among n) persons have their 
birthday on the same day." For E there are then 365ft possible and 

(365)(364)··· (365 - n + 1) 
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favorable cases; i.e., the probability that in a group of 24 persons at least 2 
persons have their birthday on the same day is equal to 

P = P(E) = 1 - P(E) = 1 _ (365)(364);~ . (342) = 0.5383. 
365 

In other words, a wager that out of 24 persons at least 2 celebrate their birthday 
on the same day would be profitable if repeated a large number of times, since out of 
100 such wagers only 46 would be lost whereas 54 would be won. We have here 
ignored February 29; moreover we have not allowed for the fact that births are 
more frequent in certain months. The first lowers the probability while the last 
raises it. 

For n = 23 we find P = 0.507; for n = 30, P = 0.706; and for n = 50, P = 0.970. 
Naus (1968) gives a table for the probability that two out of n persons (n ~ 35) have 
their birthdays within d days of each other (d ~ 30) [example: (1) n = 7, d = 7, 
P = 0.550; (2) n = 7, d = 21, P = 0.950; (3) n = 15, d = 10, P = 0.999] (cf. also 
Gehan 1968, Faulkner 1969, and Glick 1970). 

Examples of conditional probability 

1. An urn contains 15 red and 5 black balls. We let El represent the 
drawing of a red ball, E2 the drawing of a black ball. How large is the prob
ability of obtaining first a red and then a black ball in two consecutive 
draws? The probability of drawing the red ball is P(E1) = ~g = !. Without 
replacing the ball, another drawing is made. The probability of drawing a 
black ball, a red ball having been removed, is P(E 2 IE 1) = 159 ~ 0.26. The 
probability of drawing a red and a black ball in two drawings without 
replacement is P(E 1)P(E2 IE1) = (i)U9) = ~~ ~ 0.20. 

2. On the average ten percent of a population is, in a giv.en period of 
time, stricken by a certain illness [P(E 1 ) = 0.10]. Of those stricken, 8 % die 
as a rule [P(E 2 IE 1) = 0.08]. The probability for this to occur, P = 0.08, is a 
conditional probability (condition: falling ill). The probability that a member 
of the population in question, in a given interval of time, contracts the 
illness and thereafter dies from this illness is thus 

P(E 1 (') E 2 ) = P(E 1)P(E2 IE 1) = (0.1)(0.08) = 0.008 = 0.8 %. 
In medical terms, this would be stated: the morbidity of this illness is 10%, 
the lethality 8 %, and the mortality rate 0.8 %; that is, mortality = (morbidity) 
(lethality). 0 

Let us go even further. Suppose another disease infects 20 % of the population 
(E I ); of these, 30% succumb to this disease in a certain interval of time (E2); finally, 
5 % of those who have fallen ill die. The mortality is then given by peE I n E2 n E) 
= P(EI)P(E2IEI)P(E3IE2) = (0.20)(0.30)(0.05) = 0.003 = 0.3%. No information 
about morbidity conditions (or about their age gradation) can be gained from 
clinical statistics without making reference to the population, since in the region 
served by the clinic, the group of people that could also have been afflicted by this 
illness (persons endangered) is usually unknown. 
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Table 7 This short survey table lists several probability formulas 
involving the independent events E1 and E2 with probabilities P(E1) and 
P(E2 ) 

Example 
Event Probability P(Ed = 0.10; P(E 2 ) • 0.01 

Both P(E!)·P(E 2 ) P = 0.001-
I 

Not both I - P(Ej}·P(E 2 ) P = 0.999 ..... 
Either E, or P(Ed + P(E 2 ) - 2 P(Ed·P(E 2 ) P = 0.108 

E2 , not both 

Either f, or 
E2, or both 

P(Ed + P(E 2 ) - P(Ed .P(E 2 ) P = 0.109 

Neither E, nor E 2 I - PtE!) - P(E 2 ) P • 0.891 -

+ P(Ed .P(E 2 ) 

Both or neither (I - P(E!))'(I - P(E 2 )) P = 0.892~ 
+ P(Ed ·P(E 2 ) 

E, but not E2 P(Ed·(1 - P(E 2 )) P = 0.099 

Since one can speak of the probability of any event only under precisely 
specified conditions, every probability is, strictly speaking, a conditional 
probability. An unconditional probability cannot exist in the true sense of 
the word. 

1.2.4 Bayes's theorem 

Suppose AI' A 2 , ••• , An are mutually exclusive events. Let the union of all 
Ai be the certain event. Bayes's theorem is then as follows (see Figure 3): 
Assume that a random event E with peE) > 0, which can occur only in 
combination with an event A;, has already occurred. Then the probability 
that an event Ak occurs [Thomas Bayes: 1702-1761] is given by 

P(AkIE) = :(Ak)P(EIAk) . (1.15) 

L P(Ai)P(EIAi) 
i= I 

Proof. The denominator equals P(E), multiplication of (1.15) with P(E) gives (1.11) 
P(E)P(AkIE) = P(Ak)P(EIAd = peAk n E). The theorem of total probabilities is 
given in Figure 2B, in Figure 31, and in the summary at the end of this section. 
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Start 

A, A. An 

/' ~ /'jP(EIA.) 

P(EIA,)~ P(EIAn) 

E 

I. The probability of arriving at E is P(E) = D =, P(A)P(EI A) 
II. Assume I arrives at E by way of A •• then this probability is 

P(A.)P(EIA.) 
P(A.IE) = L7=, P(A)P(EIA;) 

Path probabilities: 

(1) The probability of a 
path is computed by 
multiplying the probabilities 
along the path. 

(2) To find the probability 
of n paths terminating 
at E add the corresponding 
probabilities. 

Figure 3 Theorem of total probabilities (I) and Bayes's theorem (II). 

Examples (see Table 8) 

39 

1. Two machines at some firm generate 10 % and 90 % respectively of 
the total production of a certain item. Assume the probability that the 
first machine (M 1) produces a reject is 0.01 and the probability that the 
second machine (M 2) does so is 0.05. What is the probability that an item 
randomly chosen from a day's output of daily production originated at 
M 10 given that the item is a reject? Let E be the event that an item is a reject, 
A 1 the event that it was produced by M 1, and A 2, that it can be traced to 
M 2 , i.e., P(MII a reject) = P(AIIE): 

0.10·0.01 1 
P(AIIE) = 0.10.0.01 + 0.90.0.05 = 46 ~ 0.022. 

2. We assume there are two urns available. The probability of choosing 
urn I is /0; for urn II it is then (0' We suppose further that the urns contain 
black and white balls: in urn I 70 % of the balls are black, in urn II 40 % are 
black. What is the probability that a black ball drawn blindfolded came 
from urn I? Let E be the event that the ball is black, Al be the event that it 
is drawn from urn I, and A2 be the event that it comes from urn II. 

0.10·0.70 
P(from urn I I black) = 0.10.0.70 + 0.90.0.40 = 0.163. 
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This. means that after many trials it is justified to conclude that in 16.3 % of 
all cases in which a black ball is drawn, urn I was the source. 

3. Let us assume that a chest x-ray, meant to uncover tuberculosis, 
properly diagnoses 90 % of those afflicted with tuberculosis, i.e., 10 % of 
those suffering from tuberculosis remain undetected in the process; for 
tuberculosis-free persons, the diagnosis is accurate in 99 % of the cases, 
i.e., 1 % of the tuberculosis-free persons are improperly diagnosed as being 
carriers of tuberculosis. Suppose, out of a large population within which 
the incidence of tuberculosis is 0.1 %, a person is x-rayed and alleged to be 
afflicted with tuberculosis. What is the probability that this person has 
tuberculosis? Let E = the event that the x-ray gave a positive result, A 1 = 
the event that the person is afflicted with tuberculosis, and A2 = the event 
that he is free of tuberculosis: 

ffl · d . h T . d' . ) 0.001 ·0.9 
P(a Icte WIt Blpos. x-ray In IcatlOn = 0.001.0.9 + 0.999: 0.01 

= 0.0826, 

i.e., we find that of those diagnosed by x-ray as suffering from tuberculosis, 
only slightly over 8 % are indeed so afflicted. 

In a sequence of x-ray examinations one has to allow on the average for 
30 % incorrect negative results and 2 % incorrect positive results (Garland 
1959). 

4. Four secretaries employed by an office file 40, 10, 30, and 20 % of the 
documents. The probabilities that errors will be made in the process are 
0.01,0.04, 0.06, and 0.10. What is the probability that a misfiled document 
was misfiled by the third secretary? 

P(secretary No. 31 document misfiled) 

0.30· 0.06 
0.40·0.01 + 0.10·0.04 + 0.30·0.06 + 0.20·0.10 

O.ot8 0 

= 0.046 = 0.391 ~ 39 %. 

Slightly over 39 % of all misfiled documents! As an exercise, this computa
tion should be carried out for each secretary, and the total result presented 
as a graph of the sort appearing as Table 8. 

Bayesian methods require a prior distribution for the parameters. They then offer 
the possibility of incorporating prior information about the parameters and also of 
adding further information when it arrives. This is very important if optimal decision 
making is at stake. The choice of the prior distribution may cause trouble. 



1.2 Elements of Computational Probability 

Table 8 Summary of the first three examples illustrating Bayes's 
theorem: tree diagram with the associated" path weights" on the 
right 

Example 1 

Machine 
(M) 

Example 2 

Ouality (0) 
of the production 

<:Reiect (R) 

o . no R < HI 

.0 <Reiect 
HI I 

O. no R 

Portion (P) 

<::black balls (B) 

UI 
~ • whiteB 

Urn (U)~ ~black B 

UII~ 

Example 3 

• white B 

X-ray indication (X) 

O¥Positive 

withTB ~ £ negative 
/,.001 

Population (P) \ 0 
\.999 0yPositive 

without TB~negative 

Product of the 
two probabilities 

0,001] 

0.099 

0.045 

0.855 

1.000 

0.07 J 
0.03 

0.36 

0.54 

1.00 

0.00090] 
0.00010 

0.00999 

0.98901 

1.00000 

On the right we have P(E, n E2) = P(E, )P(E21 E,) in all three cases. For Example 1, 

0.001 = (0.10) (0.01) etc. The products joined by an arrow bracket enter Bayes's 
formula [Example 1: 0.001/(0.001 + 0.045) = 1/46]. 

41 

More particulars on the Bayes theorem and on Bayesian methods can 
be found in Barnard (1967), Cornfield (1967,1969), Schmitt (1969), de Groot 
(1970), Maritz (1970), Winkler (1972), Barnett (1982), Box and Tiao (1973), 
and Novik (1975) (cf. also Isaacs et al. [1974] in Section [2], and Martz and 
Waller [1982], and Tillman et al. [1982], both in Section [8:2d] of the bibli
ography). 
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The following list provides a summary of important formulas. 

1. Axioms: 

I. P(E) ~ 0 

II. P(S) = 1 

Probability 

III. If E1 n E2 = 0, then P(E1 u Ez) = P(E1) + P(Ez). 

2. Complement (Co) and Partition (Pa): 

Co: If E u E = Sand EnE = 0, then P(E) = 1 - P(E) 

Pa: If subsets Ei form a partition of S, then L P(Ei) = 1. 
i 

3. Addition theorems: 

I. P(E1 U Ez) = P(E1) + P(Ez) - P(E1 n E z) 

II. P(A u B u C) = P(A) + P(B) + P(C) - P(A n B) 

- P(A n C) - P(B n C) + P(A n B n C). 

4. Definition of conditional probability. If P(E1) > 0, then 

P(E1 n Ez) P(Ez n E1) 
P(EzIE1) = P(E1) = P(E1) . 

Rewritten as multiplication theorem for arbitrary events 

P(E1 n Ez) = P(E1)P(E2IE1) 

P(A n B n C) = P(A)P(BIA)P(ClA n B), 

and so on. 

S. Definitions of stochastical independence. If E1 and E2 are sto
chastically independent, then 

I. P(EzIE1) = P(EzIE1) = P(E2) with P(E1) > 0 and 

P(E1IEz) = P(E1IEz) = P(E1) with P(Ez) > 0 

II. P(E1 n E2) = P(E1)P(Ez) > O. 

The 3 events A, B, C are (mutually) stochastically independent, if 

P(A 'I' B n C) = P(A)P(B)P(C), P(A n B) = P(A)P(B), 

P(A n C) = P(A)P(C), and P(B n C) = P(B)P(C). 

6. Theorem on total probabilities: If an arbitrary event E intersects 
the mutually exclusive and collectively exhaustive events A;, then 

P(E) = L P(A i n E) = L P(Ai)P(E I A;). 
i i 
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7. Bayes's theorem: If n events Ai form a partition of the sample space 
and if event E can only occur in combination with one of the n 
events Ai' then for any event Ak> where k is an integer between 1 
andn, 

~ 1.2.5 The random variable 
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An event depending on random influences is called a stochastic event. A 
random variable maps the sample space into the real line. A random variable 
is a rule that associates to each possible outcome of an experiment a cor
responding real number. In some cases the elementary outcomes are real 
numbers and hence are themselves random variables (e.g., the lifetime of a 
light bulb). In others, the outcomes have to be coded: e.g., for a toss of a 
coin the elementary outcomes are heads up (H), tails up (T). Then X(T) = 
-1, X(H) = + 1 is a random variable; and X(T) = a, X(H) = b, a, b real 
numbers, a #- b, is a random variable for the same sample space. If an 
experiment is performed in which the random variable X takes On a value x, 
then x is called a realization of X. The range of X is the set of all possible 
realizations of the randoll} variable; the sample is an n-fold realization. The 
values of X are real numbers. By this we mean values which can be represented 
by integer (2, -4), rational (n, - ~D, or irrational (j2, log 3, n, e) num
bers. The probability of the event that X takes on any value in the interval 
from a to b is written P(a < X < b). Accordingly P( - 00 < X < 00) is the 
certain event, because all the realizations of Xlie on the real line. What is the 
probability that X assumes any value greater than c, P(X> c)? Since 
P(X> c) + P(X ::;; c) = I, it follows that for arbitrary real c 

I P(X>c) = 1 - P(X~ c). I (1.16) 

EXAMPLE. If X is the number that comes up when a fair die is rolled, then 
P(X = 6) equals -t, and 

P(5 < X < 6) = 0, P(5 ::;; X < 6) = -t, 
P(1 ::;; X ::;; 6) = 1, P(5 < X ::;; 6) = -t, 
P(X > 1) = 1 - P(X ::;; 1) = 1 - -t = i. 

Section 1.2.6 can be omitted in the first reading, since the material 
discussed is somewhat more complex and will not be assumed in the 
sequel. 
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1.2.6 The distribution function and the 
probability function 

The probability distribution of a random variable specifies the probability 
with which the values of the variable will be realized. The probability distri
bution of the random variable X is uniquely defined by the distribution 
function [alternative terms: cumulative distribution function, cumulative 
frequency function, cumulative probability function] 

I F(x)=P(X~x). (1.17) 

It specifies the probability that the random variable X assumes a value less 
than or equal to x. F is thus defined for all real numbers x and increases 
monotonically from 0 to 1. F(x) is also referred to as the cumulative frequency 
distribution. The sequence Xl, X 2, ... ,Xn is a random sample of size n if each 
X has the same distribution and the n X's are stochastically independent. 

EXAMPLE. The distribution function of the die experiment will serve as an 
example. The random variable is the number that comes up. The probability 
of each particular number that can turn up is i. F(x) takes on the following 
values: 

x x < 1 l:::;;x<2 2:::;;x<3 
F(x) 0 1 i+i=t 6" 

4:::;; x < 5 

i+!=i 

3:::;;x<4 

i+t=1-

5:::;;x<6 

i+i=% 
x ;?: 6 

i+%=1 

A so-called step function is obtained. It is constant over intervals which do not 
contain any values the random variable X can assume and jumps at the 
values x the random variable does assume. The size of the jump corresponds 
to the probability with which this value is realized. In our example this is }. 
One can plot this directly [Abscissa: x, the integers from 0 to 7; ordinate: 
P(X:::;; x), divided up in sixths from 0 to 1]. 

A random variable which assumes only finitely or countably many values 
as in the experiment with dice, is called a discrete random variable. 

There is another way of describing the probability distribution of a 
random variable. As an example, it suffices in the die experiment to 
specify the probabilities with which the numbers that come up are rolled 
[P(X = Xi) = i]. In the case of discrete random variables we may consider 
the probability!(xi) associated with a value Xi a function of the point Xi. 

This function is called the probability function or frequency function. For 
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discrete random variables the distribution function is found by simply 
summing up the probabilities J(x;). For continuous random variables, e.g. 
those whose values come about from measurements of length, weight, or 
velocity, one obtains the distribution function by integrating the co-called 
probability density function. In this way one likewise determines uniquely the 
distribution function. The probability function (or the probability density) 
and the distribution function are related in the following way: 

1. For a discrete random variable 

X: F(x) = L J(x;); 
Xi~X 

J(x;) is the probability function. 
2. For a continuous random variable 

X: F(x) = {ooJ(t)dt; 

J(t) is the probability density (00 = infinity). 

(U8) 

(1.19) 

Note that F(x) is a non-decreasing function with F( - 00) = 0 and F( 00) = l. 
As to the graphical meaning of the probability density function, one can 

say that for very small intervals dt the probability that X falls in the interval 
(t, t + dt) is given approximately by the differential J(t) dt, which is also 
called a probability element: 

J(t) dt ~ pet < X :s; t + dt). (1.20) 

We have 

f+<Xl 

_ 00 J(t) dt = 1 (1.21) 

and, in particular, 

pea < X :s; b) = F(b) - F(a) = f J(t) dt. (1.22) 

The probability of the event a < X :s; b is equal to the area under the 
probability density curve between x = a and x = b when the total area is 
equal to 1 [and the random variable is continuous]. 

We can now also define the discrete and the continuous random variable: 

1. A random variable which can assume only finitely or countably many 
values is called discrete. We have called these values jump points. The 
distribution function associated with the random variable X has at most 
countably many jump points (points of discontinuity of the distribution 
function). 
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2. A random variable X is called continuous if the associated distribution 
function (1.17) can be written in the integral form (1.19). The values which 
the continuous variable X can assume form a continuum. 

While the probability P of a particular event is usually meaningful in 
the case of a discrete distribution, the same cannot be said in the case of a 
continuous distribution (e.g., the probability that an egg weighs 50.00123 g); 
here probabilities of the sort where we say a variable X is < a or 2:=. a are of 
interest. For a continuous random variable, P(X :s; x) = P(X < x) for all 
x. This is equivalent to stating that for every x the event {X = x} has prob
ability zero and that P(a :s; X :s; b) = P(a < X < b). Since this book is 
aimed at practical application, we shall henceforth usually cease to dis
tinguish between the (name of the) random variable X and their realizations 
x, the values that the random variable can assume [real numbers x assigned 
by the random variable X], and use x throughout. 

Five important remarks 

1. The mean 11 or expected value E(X) = 11 is given, for (a) discrete and 
(b) continuous random variables, by (a) E(X) = Li XiP(Xi), (b) E(X) = 

J~ 00 xf(x) dx, assuming the sum or integral is absolutely convergent 
(Ixlf(x) dx < 00). 

2. For random variables with finite expected values, E(X 1 + X 2) = 

E(X 1) + E(X 2) holds and, if the random variables are independent, then 
E(X t X 2 ) = E(X t )E(X2 ) and E(cX + k) = cE(X) + k = Cllx + k with c 
and k constant. 

3. The expected value of the square of the deviation, E[(X - 1l)2] = 

E(X2) - 112 , is called the variance of X and is written Var(X) or u2 ; u 
is called the standard deviation. Note that Var(cX + k) = c2 Var(X). 

4. For independent random variables: (1) The variance is additive: 
Var(X1 + X 2 ) = Var(X1) + Var(X2). (2) Given n independent, iden
tically distributed random variables and the mean X = (1/n)Lf= 1 Xi' 
the variance of the sum is Var(Lf= 1 X;) = n Var(X) and the variance 
of the mean Var(X) = (1/n 2 ) Lf= 1 Var(X i ) = (l/n 2 )n Var(X) = (lin) 
Var(X) = (u2 /n) = u1, which tends to zel:O with increasing n (cf. u; = 

E{[X - E(X)]2}). 
5. For n independent, identically distributed random variables, with mean 11 

and finite variance u2, (X - Il)Jn/u = (X - Il)/J u2/n = (X - Il)/Uji 
tends with increasing n to the standard normal distribution (central 
limit theorem). 

The question of "stochastic independence of random variables" cannot 
be delved into further without presenting the accompanying theory; thus, 
a mere mention of the notion of independence in probabilistic calculations 
(Section 1.2.3) and a reference to theoretically oriented texts (cf. [1]) must 
suffice. 
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1.3 THE PATH TO THE NORMAL DISTRIBUTION 

~ 1.3.1 The population and the sample 

Coins, dice, and cards are the implements of games of chance. Since 
every experiment which is affected by random influences and every 
random measurement can be represented approximately by an urn 
model, one can, instead of flipping an ideal coin, draw balls from an 
urn which contains exactly two completely identical balls, one of which 
is marked with an H and the other with a T (heads and tails). Instead 
of rolling a fair die we can draw balls from an urn containing exactly 
six balls, each ball distinguished by being marked with a 1, 2, 3, 4, 5, 
or 6. Instead of drawing a card from a deck we can draw balls from an 
urn containing exactly 52 numbered balls. 

Several elementary observations are made in the following with 
regard to the urn model. We call the numbers 0, 1,2, ... which index 
the balls attributes, and the attributes drawn from the urn events. 
Attributes can thus also be thought of as possible events" stored" in the 
urn. Attributes are fixed properties of statistical elements; these are 
also referred to as bearers of attributes, units of observation, or 
experimental units. It is the task of mathematical statistics to make 
inferences based on one or more samples from an urn, regarding the 
composition of the contents (the population) of this urn. These 
inferences are probabilistic in nature. Basic to statistical inference is the 
replicability of the sample (cf. Introduction). 

The 52 balls form the population (cf., pages 5, 25). If the contents 
of the urn are thoroughly mixed, then every element of the population, 
that is, every ball, has the same chance of being drawn. We are 
referring to the random character of the sample, or random sample for 
short. The number of elements drawn-from 1 to a maximum of 51 
balls-is called the sample size. The totality of possible samples forms 
the sample space. The relative frequen.cy of the playing card attributes 
in the population is the probability of these attributes being drawn: for 
a ball corresponding to a single card it equals l2' for the balls cor
responding to the four kings it is 542 = l3' for the balls corresponding 
to the spades it is H = 1, and for the balls corresponding to the all 
black cards it comes to ~ = !. 

In contrast to this, the relative frequency of the attributes in the 
sample is an estimate of the probability of these attributes. The more 
pronounced the "randomness" of the sample and the larger the sample, 
the better is the estimate. The observations are assumed to be indepen
dent. In finite populations, independence is obtained if after every 
single drawing the drawn element is returned to the population, which 
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is then mixed again: this is the um model of sampling with replacement. 
The number of samples can thus be regarded as infinitely large, an 
important concept in mathematical statistics. 

If the element drawn from a finite population is not replaced, we have an urn 
model without replacement: the composition of the residual population changes 
constantly. Every observation thus depends on the preceding ones. We are 
speaking of transmission of probability or probability linkage. Some models of 
this sort are presented in terms of so-called Markov chains (A. A. Markov, 
1856-1922): Every observation depends only on one or on a finite number of 
observations directly preceding it. More detailed discussion of these and other 
classes of sequences of random variables in time which are not assumed indepen
dent can be found in the references in [8: la] ofthe bibliography. Such stochastic 
processes are of considerable mathematical interest. Stochastic processes are at 
the foundation of many processes, theories, and models of the physics of small 
and elementary particles (Brownian motion of molecules, diffusion, quantum 
jumps of atoms, radioactive disintegration), of demographic evolution (the 
birth, death, and migration processes); of carcinogenesis and the development 
of cancer; of the spreading of epidemics; of the behavior of complex electronic 
equipment (while in operation, breakdown, repair); of queuing problems 
(theater ticket booths); and of the prognosis models for managerial problems. 
The theory of queues is also referred to as service theory: arriving units pass a 
service location where queues appear due to random fluctuations. Customers 
and sellers, ships and docks, patients and physicians exemplify the multitude 
of real life situations that can be treated as service systems (Saaty 1966). 

We again tum to the urn model of sampling with replacement. 
The distribution of probabilities among the different attributes will 
be called the probability distribution or simply the distribution. Charac
teristic quantities of distributions will be called characteristics. 
Characteristics such as relative frequency, mean, or standard deviation, 
which refer to the population, are called parameters. Numerical values 
computed from samples are called estimates or statistics. Parameters 
will usually be denoted by Greek letters (Table 9 with the Greek 
alphabet is on the inner side of the front cover), and estimates 
by Latin letters. Thus the symbols for relative frequency, mean, and 
standard deviation relative to the popUlation are 1t (pi), J.l (mu), and 
(J (sigma); relative to the sample, they are p, x, and s. An object on 
which a measurement or observation may be made is termed a unit or 
element. The elements that form a population are almost always 
distinct from one another. Even if the differences are not initially 
"real," they are nevertheless introduced by the measurement. This 
difference within the population leads to the variation between 
samples, groups which have been chosen from the population (cf., 
also what was said in the Introduction and Section 1.1). In order to 
be able to make statements concerning the population, a sample is 
needed that is as similar as possible to the population, i.e., that is 
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representative of the population. In such a sample every element of the 
population has the same chance of appearing in the sample. 

By the law of large numbers, for a given population, the difference 
between the whole population and a sample (independent random 
variable assumed) decreases with increasing sample size; more pre
cisely: Xn tends stochastically to J.t as n ~ 00. This is called the weak 
law of large numbers, and states that I Xn - J.t I is usually small lor n 
large, though for certain n it might be large; according to the so-called 
strong law of large numbers, however, the probability of this event is 
extremely small (cf., Section 1.3.6.1). 

Beyond a certain sample size the sampling error becomes so small that 
a further increase in the size of the sample would no longer justify the 
additional expenditure. 

Random samples are portions of a population from which they are 
drawn by a random process; they are representative of the population. 
A portion of a population can also be regarded as a representative 
sample if the partitioning or selection principle which determines the 
portion is in fact not random but is independent of the attributes under 
study. 

Samples selected by some chance mechanism are known as prob
ability samples if every item in the population has a known probability 
of being in the sample. In particular, if each item in the population has 
an equal chance of occurring in the sample, then the sample is known 
as a random sample. A representative sample is a probability sample 
arising ideally from perfect mixing in a population like a thimbleful 
of a mixture of miscible fluids or by some form of probability sampling 
(cf. Example A of the following section) to get (in enforced absence of 
selective forces) a mirror or miniature of the population. 

One must be very cautious when generalizing on the basis of "samples 
which are obtained directly" and which cannot be regarded as random 
samples. Occasionally a generalization is possible through arbitrary 
augmentation of the available sample to an assum~d imaginary 
population which will differ more or less from the population of 
interest, depending on the problem we are interested in. 

~ 1.3.2 The generation of random samples 
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The lottery procedure provides a method of generating authentic random 
samples. Suppose, for example, that from a population of 652 persons, two 
samples (I and II) of 16 elements each are to be chosen. Take 652 slips of 
paper, of which 16 are each marked with a I, and another 16 are each marked 
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with a II; the other 620 slips remain blank. Now letting the 652 persons draw 
lots, we obtain the samples called for. 

Tasks of this sort can be carried out more simply with the help of a table 
of random numbers; in Table 10 such numbers are recorded in groups of 
five digits. Suppose 16 random numbers less than 653 are needed. One 
reads the numbers from left to right in groups of three and records o~ly 
those three digit numbers which are less than 653. As starting point for 
our search we might choose a point in the table that we mark blindfolded; 
assume it is the first digit of the third column of the sixth row from the 
bottom (first group of five digits is 17893). Then the sixteen numbers we seek 
will be 178,317,607,436,147,601,578 etc. 

If from a population consisting of N elements a sample of n elements 
is to be chosen, the following procedure can be followed: 

1. Assign to the N elements of the population the integers 1 through N. 
If N = 600, the individual elements are numbered from 001 to 600, each 
element being represented by a single three digit number. 

2. Choose an arbitrary digit in the table as the starting point and read off the 
following digits, in groups ofthree ifthe population is a three digit number. 
(If the population is a z digit number, then groups are formed of z digits.) 

3. If the number read off from the table is less than or equal to N, the popula
tion element so marked gets included in the random sample consisting 
of n elements. If the number read off is larger than N or ifthe corresponding 
element is already included in the sample, then this number will be 
disregarded and the process repeated until the n elements of the random 
sample are chosen. 

Here are two further examples of using random digit tables to get special 
random samples. 

(A) We require samples from the categories A, B, C, D with probabilities 
0.60; 0.20; 0.16; 0.04 respectively, their sum being 1, and consider two 
successive digits as one of the 100 two-digit numbers 00,01, ... ,99. Each has 
probability lAo of occurring. Using the following correspondence 

Random Number I 00-59 60-79 80-95 96-99 

B C D 

and obtaining the random digits 14,93,03,65, ... from a table, for instance, 
we get the sample A, C, A, B, .... 

(B) A doctor designing the comparison of a new treatment with the 
standard or old one has 2n patients available, grouped into n pairs, each con
sisting of two patients who have the disease in a similar state of advancement 
and who are similar in certain important factors such as age, sex, etc. One 
patient in each matched pair receives the new treatment, the other receives the 
old treatment. According to the "randomly selected" random digits the 
patient in the first column (I) is allocated to the new treatment if the digit is 
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Table 9 

Names of Random digit New treatment 
matched pairs 

0,1,2,3,4 Patient I 
No. I II 5,6,7,8,9 Patient II 

1 K.H. E.R. No. 1 2 3 . .. 
2 M.J. l.S. 
3 U.S. R.H. New treatment E.R. M.J. R.H. . .. 

Old treatment K.H. l.S. U.S. . .. 

0, 1,2, 3,4; otherwise it goes to the patient from II. The random digits are 
6,2,9, .... Therefore in the first three pairs the patients E.R., M.J. and R. H. 
are to be given the new treatment. 

One of the oldest methods of generating random numbers, more correctly 
termed pseudorandom numbers, which goes back to von Neumann, is the 
"middle-square" method. An s-digit number (s even) is squared, and the 
middle s digits of the 2s-digit square are chosen [in case of a (2s - I)-digit 
square, write it as a 2s-digit square by putting a zero in front of it]. This 
number is in turn squared, etc. ; the s-digit numbers then form sequences of 
pseudorandom numbers. As good random numbers there are also the 
nonperiodic decimal expansions of particular irrational numbers like 
,J2, ,J3, 1t = 3.141592653589793238462643 ... , and most of the logar
ithms. 

More on the meaning, generation, and examination of random numbers 
(cr., also Section 2.5.3) can be found in the survey article by Teichroew 
(1965); cf., also Good (1969), and the papers and books cited in [8: 2g], e.g., 
Sowey (1978). The equally important random permutations (Moses and 
Oakford 1963, Plackett 1968) are here mentioned only briefly, (e.g., Sachs 
1984). 

Predictions 

Unreliable forecasts of variables needed for long range plans, say in forestry 
or politics, are familiar to everyone. Since the future seems more uncertain 
than ever these days, its study (futurology)-questions of what could be, 
what is likely to be, and what shall be-is of increasing interest. Let us look 
briefly into several aspects of prediction. 

There is a well-known and frequently used method of deducing facts about 
the population based on samples, as applied during elections, in official 
statistics, and in market and opinion studies, wherein the portion ni/n of 
the elements with the attribute Ai' as determined from the sample, when 
multiplied by the total number of elements N in the popUlation, yields the 
estimated value !Vi = (nJn)· N. This is about the way a computer, being fed 
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Table 10 Random numbers (cf. Section 1.3.7) 

44983 33834 54280 67850 96025 96117 00768 14821 69029 25453 48798 15486 
89494 34431 44890 59892 79682 20308 82510 53609 13258 89&31 80497 49167 
54430 52632 94126 95597 48338 67645 44676 14730 22642 21919 21050 87791 
96999 42104 34377 63309 82181 00278 28209 95629 75818 09043 48564 87355 
87947 09427 32380 43636 58578 07761 28456 46570 ll623 50417 37763 30136 
30238 46126 85306 37114 22718 50584 92291 56575 24075 43889 40909 18741 
22938 13073 32066 43098 75738 94910 15403 89151 73322 18370 90586 46115 
89182 27750 63314 87302 49472 24885 79506 60638 07132 00908 92035 75518 
16187 03303 40287 52435 23926 92544 54099 31497 06853 22864 72620 74169 
21526 07401 30925 46148 20138 33874 56715 38424 38273 ll361 15203 64912 
42907 95158 27146 37012 43361 03173 979ll 71313 44256 66609 42504 76799 
21479 48265 01674 47274 56350 37512 14883 99673 62298 33948 32456 28675 
90076 70233 76730 25043 16686 54737 57431 01786 20803 69465 37970 05673 
93202 25355 93941 84434 22384 13240 93617 51549 28532 57150 77261 62643 
46059 72208 90475 10341 39703 83224 37858 61657 04184 15597 29448 01922 
38220 13972 86115 17196 24569 26820 66299 39960 02489 53079 72789 22562 
82618 85756 51156 74037 12501 94162 42006 16135 82797 31296 93268 10104 
07896 74085 59886 03051 78702 13402 74318 10870 72107 11550 61175 33345 
95241 84360 13960 95736 43637 60399 19080 60261 11207 73065 48286 57057 
53849 26578 39954 86726 91039 13884 25376 36880 02564 96978 62332 77321 
72967 53031 47906 99501 27753 69946 66875 25601 30038 78786 65197 65283 
87910 89260 66444 15979 83469 76952 50065 72802 70630 87336 16385 32784 
10482 34277 40177 01081 57788 08612 39886 42234 04905 83274 22459 75032 
68034 98561 46747 30655 41878 93610 51745 41771 61398 98154 61644 12405 
80277 92450 60888 18689 45966 25837 70906 60733 11765 09293 70076 40751 
59896 78185 60268 03650 36814 88460 34049 09111 64205 77930 32391 69076 
78369 04163 77673 73342 78915 20537 06126 27222 17378 59359 00055 66780 
23015 54261 95020 77705 81682 96907 37411 93548 87546 07687 47338 12240 
55171 85448 12545 75992 08790 88992 ~9756 18960 85182 02245 ll566 52527 
58095 62204 69319 00672 96037 78680 98734 83719 40702 79038 68639 63329 
19700 98193 37600 70617 58959 45486 58338 84563 62071 17799 96994 41635 
12666 87597 23190 26243 36690 75829 71060 32257 15699 02654 83110 44278 
66685 05344 71633 68536 18786 28575 08455 79261 49705 31491 25318 52586 
72590 47283 45445 35611 98354 53680 45747 62026 13032 14048 16304 11959 
30286 06434 50229 09070 44848 09996 77753 05018 92605 10316 07351 78020 

87494 95585 25547 53500 45047 08406 66984 63390 48093 02366 05407 08325 
32301 25923 76556 13274 39776 97027 56919 17792 09214 53781 90102 25774 
70711 37921 54989 17828 60976 57662 61757 93272 09887 34196 98251 52453 
36086 05468 41631 95632 78154 38634 47463 37514 24437 01316 04770 06534 
37403 42231 17073 49097 54147 03656 14735 06370 18703 90858 55130 40869 

41022 76893 29200 82747 97297 74420 18783 93471 89055 56413 77817 10655 
70978 57385 70532 46978 87390 53319 90155 03154 20301 47831 86786 ll284 
19207 41684 20288 19783 82215 35810 39852 43795 21530 96315 55657 76473 
50172 23114 28745 12249 35844 63265 26451 06986 08707 99251 06260 74779 
43112 94833 72864 58785 53473 06308 56778 30474 57277 23425 27092 47759 
64031 41740 69680 69373 73674 97914 77989 47280 71804 74587 70563 77813 
92357 38870 73784 95662 83923 90790 49474 ll901 30322 80254 99608 17019 
79945 42580 86605 97758 08206 54199 41327 Oll70 21745 71318 07978 35440 
48030 05125 70866 72154 86385 39490 57482 32921 33795 43155 30432 48384 
80016 81500 48061 25583 74101 87573 01556 89184 64830 16779 35124 82103 

34265 65728 89776 04006 06089 84076 12445 47416. 83620 49151 97420 23689 
82534 76335 21108 42302 79496 21054 80132 67719 72662 58360 57384 65406 
72055 61146 82780 89411 53131 57879 39099 42715 24830 60045 23250 39847 
26999 96294 20431 30114 23035 30380 76272 60343 57573 42492 47962 21439 
01628 47335 17893 53176 07436 14799 78197 48601 97557 83918 20530 61565 

66322 27390 73834 73494 21527 93579 20949 85666 25102 64733 93872 72698 
96239 18521 67354 41883 58939 36222 43935 36272 47817 90287 91434 86453 
10497 83617 39176 45062 63903 33862 14903 38996 60027 41702 78189 28598 
69712 33438 85908 58620 50646 47857 96024 58568 67614 44370 40276 85964 
51375 42451 76889 68096 80657 91046 95340 70209 23825 46031 45306 64476 
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a few scattered results on the evening of election day, comes up with estimates 
of the election results (cf. Bruckmann 1966). 

Long range predictions, or rather estimates of demographic evolution, 
energy requirements, developments in the labor market, etc. are generally 
made by means of trend analyses, less frequently (and subject to sub
stantially greater bias and risk of false conclusions) by way of analogy 
(and intuition). Among the less well-known sources of error is the fact that a 
reasonable, generally acknowledged prediction can itself set events in motion 
which again influence the foretold events and thus the predicted trend 
("forecast feedback"). The fear in 1955, which was confined to the USA, 
that there would be too few scientists in the years 1965-1970, proved ground
less. The number of students increased by leaps and bounds (probably as a 
result of the gloomy prognosis). This example suggests the possible effect 
of predictions that are taken seriously (cf., Wold 1967, Polak 1970; also Theil 
1966, Wagle 1966, Montgomery 1968, Cetron 1969). 

If there is little or no reliable information at one's disposal, one can, after 
first viewing the potential developments, resort to interrogating a panel of 
experts. This is done by thinking the problem over thoroughly then sub
mitting a carefully planned questionnaire to the experts. Potential prejudices, 
very subjective and exceptional opinions, can be eliminated to a great extent 
by "feeding back" to each participant the answers provided by all the others, 
so that each can once again reconsider his views (" feedback "). After running 
through several clarifications of this sort a common opinion is formed which 
may outweigh the individual views ("Delphi technique" see Martino 1970, 
as well as Linstone and Turoff 1975). 

~ 1.3.3 A frequency distribution 

Statistics consist, in general, of measured or observed values of continuous 
(measurable) quantities (volume, time) or discrete (countable) quantities 
(number of children). In addition to these quantitative attributes there are 
also qualitative attributes (cf. also Section 1.4.8): alternative attributes 
(available, unavailable; gender), dichotomous attributes (synthetic alterna
tive, e.g., stature: :=s;; 175 cm, > 175 cm), categorically joined attributes 
(arbitrary sequences, e.g. occupations, eye colors, licence plate numbers [if 
several representations are possible at the same time, e.g., active hobbies, 
memberships, childhood illnesses, then we are dealing with coordinative 
attributes]), and orderable or ordinal attributes (natural sequences, e.g. rank 
sequences, gradings, pain intensities: 0, +, + + ). 

The many results obtained in a survey are best tabulated and graphed. 
As an example, the classification of 200 infants according to the lengths 
of their bodies (range: 41-60 cm) leads to Table 11 with 7 classes [by a 
rule of thumb due to Sturges (1926), one would have as class number the 
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Table 11 

Frequency 

Size class, in cm Absolute Relative, in % 

40 but less than 43 2 1.00 
43 but less than 46 7 3.50 
46 but less than 49 40 20.00 
49 but less than 52 87 43.50 
52 but less than 55 58 29.00 
55 but less than 58 5 2.50 
58 but less than 61 1 0.50 

Total 200 100 

number k ~ 1 + 3.32 log n, i.e., 1 + 3.32 log 200 = 1.3 + (3.32)(2.30) = 
8.6, so that k could be chosen to equal either 8 or 9]. 

In this example the measurements were partitioned into an odd number 
of classes, thus creating a middle class. To prevent ambiguity the lower 
class limit was included in the class, while the upper class limit was not. For 
example, a child 52 cm tall has been included in the class of at least 52 em 
but less than 55 cm. For the class interval "at least a but less than b" one 
writes a S x < b (cf., Table 1, Section 0.1). 

Compilation of data 

The problem of how the statistical source material (primary statistical 
survey) was gathered-by written questioning (questionnaire), oral question
ing (interview), or observation-will not be dealt with here. We only note 
that while it is almost impossible to eliminate deliberately or unwittingly 
false answers to questioning, in contrast errors in observations can usually 
be detected. Our material in the above example-the physical size of newborn 
infants-is compiled at every maternity clinic. Since these data were not 
compiled through a particular survey and serve statistical purpose only 
secondarily, they can be spoken of as secondary statistical material. To 
prepare statistical material, one uses listing procedures, point diagram 
procedures, or the filing procedures. For listing procedures a counting list is 
needed. Every measured child gets a (vertical) slash in the corresponding 
class on the list. More than four slashes per class are arranged in groups of 
five to facilitate counting. 

Instead of the counting list one can also use millimeter paper or other 
squared paper, laying out the scale on the horizontal and plotting the 
individual measurements as points above the corresponding values. When 
the elements are all plotted on the point diagram, the class limits can be 
marked off by vertical lines. In this graphical procedure of partitioning into 
classes, points that lie on the boundary line are distributed between the 
adjacent classes. 
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For punched card files and other files, especially in survey projects using 
raw data from interviews or questionnaires, Sonquist and Dunkelberg (1977) 
give an excellent overview with details for data collection and data manage
ment operations and provide examples and useful checklists. 

More on planning an investigation (I), survey sampling (2), errors (3), data pro
cessing (4), and writing the report (5) may be found on pages 565/566 (I); 197,245, 
246 and 614/615 [8: 3a] (2); 26 above, 67 above, 195/210,393/395 (3); 572/573 [4] (4); 
566 below (5). For experiments see Chapter 7 and especially Hahn (1977, cited in 
[8:7b] on page 640). For thinking with models see Saaty and Alexander (1981) 
[cf., also Box et al. 1978, cited in [8: I] on page 569]. 

Now back to our compilation on the newborn. On the right, beside the 
class decomposition in Table 11, it is indicated how many cases (the absolute 
frequency, the occupation number) or what fractions thereof (the relative 
frequency) fall into the individual classes. 

A set of all the various values that individual observations may have and 
the frequency of their occurrence is called a frequency distribution. If 
plotted in the form of rectangles whose bases are equal to the class 
width and whose areas are proportional to the absolute or relative 
frequencies we have a histogram (cf., also p. 107). It gives an idea 
of the shape of an empirical distribution. If the abscissa is used 
for time intervals, e.g., produced cars per 3 years, a histogram 
results. 
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Table 12 

Length in em below 
Cumulative frequency 

absolute per eent 

43 2 1.00 
46 9 4.50 
49 49 24.50 
52 136 68.00 
55 194 97.00 
58 199 99.50 
61 200 100 

The histogram is given in Figure 4. Here the percentage of the newborn 
is represented by the area of the rectangle drawn above the class width. 
Connecting the midpoints, we obtain a polygonal path. The finer the 
partition, the better the approximation by a curve. Not infrequently these 
curves are bellshaped and somewhat unsymmetric. 

If the number of newborn whose body length is less than 49 cm is of inter
est, then 2 + 7 + 40 = 49 infants or 1.00 % + 3.50 % + 20 % = 24.50 % can 
be read off from the table. If this calculation is carried out for different upper 
class limits, we get the cumulative table (Table 12) corresponding to the 
frequency distribution. The stepwise summation of frequencies yields the 
so-called cumulative frequency distribution; if we plot the cumulative fre
quency distribution (y-axis) against upper class limits (x-axis) and connect 
the points so determined by straight lines, we obtain a polygonal path. On 
refining the partitioning into classes, it can be well approximated by a 
monotonically nondecreasing, frequently S-shaped, curve (Figure 5) (cf., 
e.g., Sachs 1984, pp. 23-26). 

The cumulative frequency distribution allows us to estimate how many 
elements are less than x cm in length, or what percentage of elements is 
smaller than x. Cumulative frequency curves can be transformed into straight 
lines by a distortion of the ordinate scale. A straight equalization line is drawn 
through the 50% point of the S-curve; for certain percentage values the 
points of the S-curve are then projected vertically onto the equalization line 
and the projected points transferred horizontally to the new ordinate axis. 
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~ Figure 5 Percentage cumulative frequency 
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61. [em] function, ranging from 0 to 1. 
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Figure 6 Flattening out the cumula- 20t---~'_+_,t.-------1 5 
tive frequency curve into a straight 
line. 0,'-----

If the bell-shaped curve (and hence also the cumulative percentage curve 
derived from it) is symmetric, then all points (50 ± p)% are situated sym
metrically with respect to the 50 % point of the equalization line (Figure 6; 
cf., also Figure 15, Section 1.3.7). 

~ 1.3.4 Bell-shaped curves and the normal 
distribution 

Quantities which are essentially based on a counting process, which, by their 
very nature, can assume only integral values, form discrete frequency distri
butions, i.e., the associated stochastic variable can take on only integral 
values. The number of children born to a woman or the number of rejects in an 
output are examples for this situation. However, we wish in the following to 
study continuous random variables instead, that is, variables that are essen
tially based on a measuring process and that can take on every value, at 
least in a certain interval. Examples of this are the weight of a person, the 
size of his body (body length), and his age (time). Finely graduated discrete 
quantities like income can in practice be treated as continuous quantities. 
On the other hand, a continuous characteristic is often partitioned into 
classes, as when newborns are grouped according to length, which thereby 
becomes a discrete quantity. 

If we keep in mind that every measurement consists basically in a com
parison and that every measured value lies within some interval or on its 
boundary, then "ungrouped data" are in fact data that become classified 
in the course of measurement. The rougher the measuring process, the 
more evident this grouping effect becomes. "Grouped data" in the usual 
sense are actually classified twice; first when they are measured, second when 
they are prepared for evaluation. The classification induced by the" defective" 
measurement, not being due to the random variables, is generally neglected. 
There are thus no random variables that can assume, in the strong sense, 
every value in an interval, although in many cases such variables represent an 
appropriate idealization. 
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If one constructs a frequency distribution for a continuous quantity on 
the basis of observed values, it generally exhibits a more or less character
istic, frequently quite symmetric, bell-shaped form. In particular, the results 
of repeated measurements-say the length of a match or the girth of a child's 
head-often display this form. 

y 

.,' 
\ ..... ~--y'f 

-x~--~~--~------~----~~--~------4 -2 2 4 

Figure 7 Bell-shaped curves. 

A typical bell-shaped curve is given by the equation y = e- x2
• More 

generally such curves are represented by 

(1.23) 

(with a, b > 0). In Figure 7 curves are shown with a = b = 1 and with 
a = 5 and b = t: increasing a causes y to increase (for fixed x), and the 
curve rises proportionally; a reduction of b produces a flattening of the 
curve. 

Many frequency distributions can be represented approximately by 
curves of this sort with appropriately chosen a and b. In particular, the 
distribution of a random measuring error or random error for repeated 
measurements (n large) of physical quantities exhibits a particular symmetric 
bell shape, with the typical maximum, the curve falling off on both sides, 
and large deviations from the measured value being extraordinarily rare. 
This distribution will be referred to as the error law or normal distribution. 
(Here the word "normal" has no connotations of "ideal" or "frequently 
found.") Before we delve into it further, let us give a short outline of its 
general significance. Quetelet (1796-1874) found that the body lengths of 
soldiers of an age group apparently follow a normal distribution. To him it 
was the distribution of the error that nature made in the reproduction of 
the ideal average man. The Quetelet school, which regarded the error law 
of de Moivre (1667-1754), Laplace (1749-1827), and Gauss (1777-1855) as a 
kind of natural law, also spoke of" homme moyen" with his" mean inclina
tion toward suicide," "mean inclination toward crime," and so on. The 
number of rays in the tail fins of flounder is practically normally distributed. 
However, the majority of the unimodal distributions that we encounter in our 
environment deviate somewhat from a normal distribution or follow it only 
roughly. 



1.3 The Path to the Normal Distribution 59 

The normal distribution should properly be referred to as de Moivre's 
distribution. De Moivre discovered it and recognized its privileged position 
(Freudenthal and Steiner 1966 [see also Sheynin 1979]). 

The primary significance of the de Moivre distribution lies in the fact 
that a sum of many independent, arbitrarily distributed random variables is 
approximately normally distributed and that the larger their number, 
the better the approximation. This statement is called the central limit 
theorem. It is on the basis of this theorem that very many sampling distribu
tions can, for sufficiently large sample size, be approximated by this distribu
tion and that for the corresponding test procedures the tabulated limits of 
the normal distribution suffice. 

The normal distribution is a mathematical model with many favorable 
statistical properties and can be viewed as a basic tool of mathematical 
statistics. Its fundamental significance is based on the fact that random 
variables observed in nature can often be interpreted as superpositions of 
many individual, mutually more or less independent, influences, and thus 
as sums of many individual mutually independent random variables. One 
can easily produce an example: let dry sand run through a funnel into the 
space between two parallel vertically placed glass walls; an approximately 
normal distribution will appear on the glass panes. The occurrence of a 
de Moivre distribution is thus to be expected if the variables of the distribu
tion considered are determined by the simultaneous effects of many mutually 
independent and equally influential factors, if the observed elements were 
randomly chosen and if a very large number of measurements or observations 
are available. 

We now examine this distribution more closely (Figure 8). The ordinate y, 
which represents the height of the curve for every point on the x-scale, is the 
so-called probability density of the respective x-value. The probability 
density has its maximum at the mean, decreasing exponentially. 

The probability density of the normal distribution is given by 

1 
y = f(x) = f(xlJ.L, 0) = --e- t [(X-I')/ap 

a.j2n 
(1.24) 

( - 00 < x < 00, - 00 < J.L < 00, a > 0). 

The symbol 00 denotes infinity. 

Figure 8 A normal curve. 
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Figure 9 Normal distribution 
with standard deviation and 
inflection points. Relation be
tween X and Z (transforma
tion from the variable x to the 
standard normal variable Z) : 
Z = (X - J.I)/(J. 

Here x is an arbitrary value on the abscissa, y the corresponding ordinate 
value [y is a function of x: y = I(x)], a the standard deviation of the dis
tribution, and J1. the mean of the distribution; rr and e are mathematical 
constants with the approximate values rr = 3.141593 and e = 2.718282. The 
right side of this formula involves both parameters J1. and a, the variable x, 
and both constants. 

As indicated by the formula (1.24), the normal distribution is fully 
characterized by the parameters J1. and a. The mean J1. fixes the location of the 
distribution along the x-axis. The standard deviation a determines the 
shape of the curve (cf. Figure 9): the larger a is, the flatter is the curve (the 
wider is the curve and the lower is the maximum). 

Further properties of the normal distribution: 
1. The curve is symmetric about the line x = J1.: it is symmetric with respect 

to J1.. The values x' = J1. - a and x" = f..l + a have equal density and 
thus the same value y. 

2. The maximum of the curve is Ymax = 1/(a j2n), and for a = 1 it has 
the value 0.398942 ~ 0.4 (cf. Table 20). Y tends to zero for very large 
positive x (x ~ (0) and very large negative x (x ~ - (0): the x-axis plays 
the role of an asymptote. Very extreme deviations from the mean J1. exhibit 
so tiny a probability that the expression "almost impossible" seems 
appropriate. 

3. The standard deviation of the normal distribution is given by the abscissa 
of the inflection point (Figure 9). The ordinate of the inflection point lies 
at approximately 0.6Ymax. About ~ of all observations lie between J1. - a 
and J1. + a. 

4. For large samples, approximately 90% of all observations lie between 
-1.645a and + 1.645a. The limits -0.674a and +0.674a are referred 
to as probable deviations; 50% of all observations lie in this interval [cf. 
the remarks on page 325 above]. 

Since J1. and a in the formula for the probability density of the normal 
distribution can assume arbitrary values (the deviation being subject to the 
condition a > 0), infinitely many normally distributed collections with 
different distributions are possible. Setting (X - J1.)/a = Z in (1.24), where X 
depends on the scale, and Z is dimensionless, we obtain the unique stan
dardized normal distribution with mean zero and standard deviation one [i.e., 
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since f(x) dx = fez) dz, (1.24) goes over into (1.25a)]. This is plotted in 
Figure 10. 

The normal distribution is usually abbreviated to N(J1, 0) or N(J1, 0'2), 
and the standard normal distribution correspondingly to N(O, 1): 

Figure 10 The standard normal 
curve. 

The standardized normal distribution-y is here a function of the standard 
normal variable- Z-is then defined by the probability density (cf. Section 
1.3.6.7, Table 20, p. 79): 

1 
y = fez) = M::.e-z2/2 ~ 0.398ge- z2/2 ~ 0.4(0.6)z>, - 00 < z < 00, 

v' 2n 

(1.25abc) 
with the distribution function F(z) = P(Z ~ z) 

F(z) = -- e- v2/ 2 dv 1 fZ 
fo -00 

(1.26) 

[cf., Table 13, which lists P = 1 - F(z) for 0::;; z::;; 5.2 or P = P(Z ~ z) = 
1 - F(zJO; 1) = 1 - P(Z ::;; z) = 1 - P(Z ::;; (x - J1.)la) = 1 - P(X ::;; x) = 

1 - F(xlJ1; 0')]. 
For every value of z one can read off from Table 13 the probability cor

responding to the event that the random variable Z takes on values greater 
than z (examples in Section 1.3.6.7). 

Two facts are important: 

1. The total probability under the standard normal curve is one: this is 
why the equation for the normal distribution involves the constants 

a = lifo for b = ! (cf. y = ae- bZ2 ). 

2. The standard normal distribution is symmetric. 

Table 13 indicates the "right tail" probabilities, namely the proba
bilities for z to be exceeded [P(Z ~ z); see Figure 11J. For example, to the 
value z = 0.00 corresponds the probability P = 0.5, i.e., to the right of the 
mean lies half the area under the curve; for z = 1.53 we get P = 0.0630 = 
6.3 %, i.e., to the right of z = 1.53 there lies 6.3 % of the total area. The 
(cumulative) distribution function is P(Z::;; z) = F(z), e.g., F(1.53) = 
P(Z ::;; 1.53) = 1 - 0.0630 = 0.937. F(1.53) is the cumulative probability, 
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Table 13 Area under the standard normal distribution curve from z to 00 

for the values 0 ~ z ~ 5.2, i.e., the probability that the standard normal 
variable Z takes on values ~ z [symbolically P(Z ~ z)] (taken from 
Fisher and Yates (1963), p. 45). Example: P(Z ~ 1.96) = 0.025 

P-values 
for the one 
sided z-test 

z 0.00 

0.0 0.5000 
0.1 0.4602 
0.2 0.4207 
0.3 0.3821 
0.4 0.3446 
0.5 0.3085 
0.6 0.2743 
0.7 0.2420 
0.8 0.2119 
0.9 0.1841 
1.0 0.1587 
1.1 0.1357 
1.2 0.1151 
1.3 0.0968 
1.4 0.0808 
1.5 0.0668 
1.6 0.0548 
1.7 0.0446 
1.8 0.0359 
1.9 0.0287 
2.0 0.02275 
2.1 0.01786 
2.2 0.01390 
2.3 0.Q1072 
2.4 0.00820 
2.5 0.00621 
2.6 0.00466 
2.7 0.00347 
2.8 0.00256 
2.9 0.00187 

0.25 0.4012937 
0.5 0.3085375 
1.0 0.1586553 
1.5 0.0668072 
2.0 0.0227501 
2.5 0.0062097 

0.Q1 

0.4960 
0.4562 
0.4168 
0.3783 
0.3409 
0.3050 
0.2709 
0.2389 
0.2090 
0.1814 
0.1562 
0.1335 
0.1131 
0.0951 
0.0793 
0.0655 
0.0537 
0.0436 
0.0351 
0.0281 
0.02222 
0.01743 
0.01355 
0.01044 
0.00798 
0.00604 
0.00453 
0.00336 
0.00248 
0.00181 

2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

o z 

For the two sided z-test 
the tabulated P-values 
have to be doubled 

0.02 0.03 

0.4920 0.4880 
0.4522 0.4483 
0.4129 0.4090 
0.3745 0.3707 
0.3372 0.3336 
0.3015 0.2981 
0.2676 0.2643 
0.2358 0.2327 
0.2061 0.2033 
0.1788 0.1762 
0.1539 0.1515 
0.1314 0.1292 
0.1112 0.1093 
0.0934 0.0918 
0.0778 0.0764 
0.0643 0.0630 
0.0526 0.0516 
0.0427 0.0418 
0.0344 0.0336 
0.0274 0.0268 
0.02169 0.02118 
0.01700 0.01659 
0.01321 0.01287 
0.Q1017 0.00990 
0.00776 0.00755 
0.00587 0.00570 
0.00440 0.00427 
0.00326 0.00317 
0.00240 0.00233 
0.00175 0.00169 

0.0018658 
0.0013499 
0.0009676 
0.0006871 
0.0004834 
0.0003369 

0.04 0.05 0.06 0.07 008 0.09 

0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 
0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
0.3300 03264 0.3228 0.3192 0.3156 0.3121 
0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 
0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 
02005 0.1977 0.1949 0.1922 0.1894 0.1867 
0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 
0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 
0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 
0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 
0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 
0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 
0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 
0.02068 0.02018 0.01970 001923 0.01876 0.01831 
0.01618 0.01578 001539 0.01500 0.01463 0.01426 
0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 
0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 
0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 
0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 
0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 
0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 
0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 
0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 

3.5 0.0002326 4.1 207.10- 7 4.7 13.10- 7 

3.6 0.0001591 4.2 133.10- 7 4.8 8.10- 7 

3.7 0.0001078 4.3 82.10- 7 4.9 5'10- 7 

3.8 723· 10- 7 4.4 54.10- 7 5.0 3· 10- 7 

3.9 481 .10- 7 4.5 34.10- 7 5.1 2· 10- 7 

4.0. 317.10- 7 4.6 21 .10- 7 5.2 1 . 10- 7 

Figure 11 The portion A (shaded) 
of the area lying to the right of a 
certain value z. The portion of the 
area lying to the left of z is equal to 
1 - A, where A represents the values 
in Table 13 determined by z. 
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Table 14 Values of the standard normal distribution (cf., also Table 43, 
Section 2.1.6) two sided: P(IZI;?: z), one sided: P(Z;?: z) 

z P z P 
two sided one sided two sided one sided 

0.67448975 0.5 0.25 3.48075640 0.0005 0.00025 
0.84162123 0.4 0.2 3.71901649 0.0002 0.0001 
1.03643339 0.3 0.15 3.89059189 0.0001 0.00005 
1.28155157 0.2 0.1 4.26489079 0.00002 0.00001 
1.64485363 0.1 0.05 4.41717341 0.00001 0.000005 
1.95996398 0.05 0.025 4.75342431 2.10- 6 1 . 10-6 

2.32634787 0.02 0.01 4.89163848 1 . 10- 6 5.10- 7 

2.57582930 0.01 0.005 5.19933758 2.10- 7 1 .10- 7 

2.80703377 0.005 0.0025 5.32672389 1 . 10-7 5 . 10-8 

3.09023231 0.002 0.001 5.73072887 1 . 10-8 5· 10-" 
3.29052673 0.001 0.0005 6.10941020 1 . 10-" 5.10- 10 

or the integral, of the normal probability function from - 00 up to Z = 1.53. 
Table 13 is supplemented by Table 14 and by Table 43 (Section 2.1.6). 

The probability P(Z ~ z) is easily approximated by 

t[1 - J1 - e- 2z2/n]. 

EXAMPLE 

P(Z ~ 1) ~ t[1 - J1 - 2.7183 2(1)2/3 .142] 

~ t[1 - J1 - 0.529] 

~ 0.157 (exact value: 0.159). 

Better approximations to P(Z ~ z) are given in Page (1977). 

NORMAL DISTRIBUTION CURVE WITH THE SAME AREA AS A GIVEN HISTOGRAM 

Fitting a normal curve to a histogram of absolute frequencies is easily done with the 
help of Table 20, n, x and s of the sample and 

p = bn ~ e-«X-X)/S)2/2 ] = bn J(z) 
s 211: S 

with z = (x - x)/s and class width b;J(z) is found from the table and P is the height 
of the curve for a histogram of total area bn. 

In the analysis of sampling results, reference is frequently made to the 
following regions: 

Jl ± 1.960' or Z = 1.96 with 95% of the total area, 

Jl ± 2.580' or Z = 2.58 with 99% of the total area, 

Jl ± 3.290' or Z = 3.29 with 99.9 % of the total area, 

Jl ± 10' or Z= ±1 with 68.27 % of the total area 

Jl ± 20' or Z= ±2 with 95.45 % of the total area 

Jl ± 30' or Z= ±3 with 99.73 % of the total area. 
9 
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A deviation of more than u from the mean is to be expected about once in 
every three trials, a deviation of more than 2u only about once in every 
22 trials, and a deviation of more than 3u only about once in every 370 trials; 
in other words, the probability that a value of x differs in absolute value from 
the mean by more than 3u is substantially less than 0.01 (see Figure 12): 

P(IX - JlI > 3u) = 0.0027. 

Figure 12 Portions of area of the 
standard normal distribution. 

Because of this property of the normal distribution, the co-called three 
sigma rule used to be frequently applied; the probability that the absolute 
difference between an (at least approximately) normally distributed variable 
and its mean is greater than 3u, is less than 0.3 %. 

For arbitrary distributions, the inequality of Bienayme (1853) and 
Chebyshev (1874) holds: The probability that the absolute difference 
between the variable and its mean is greater than 3u (in general: :?ku), is 
less than 1/32 (in general, ~ l/k2) and hence less than 0.11 : 

in general, 

P(IX - JlI :? 3u) ~ ~ = 0.1111; 

1 
P(IX - JlI :? ku) ~ k 2 withk > 0, 

(1.27a) 

(1.27) 

i.e., in order to attain the 5 % threshold one must specify 4.47u, since 1/4.472 
is approximately equal to 0.05. 

For symmetric unimodal distributions, the sharper inequality due to Gauss 
(1821 [see, e.g., Sheynin 1979, pp. 41/42]) applies: 

4 
P(IX - JlI :? ku) ~ 9k 2 withk > 0, (1.28) 
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and thus the probability for 

4 
P(IX - III ~ 30) :::;; 9.9 = 0.0494 (1.28a) 

comes to about 5 %. More detailed discussions on inequalities of this sort 
can be found in Mallows (1956) and Savage (1961). 

~ 1.3.5 Deviations from the normal distribution 

Certain attributes of objects which originated under similar conditions are 
sometimes approximately normally distributed. On the other hand, many 
distributions exhibit strong deviations from the normal distribution. Our 
populations, in contrast with the normal distribution, are mostly finite, 
seldom consist of a continuum of values, and FREQUENTLY have 
asymmetric-sometimes even multimodal-frequency distributions. 

Deviations from the normal distribution may be caused by the use of an 
inappropriate scale. Surface areas and weights of organisms are ordinarily 
not normally distributed, but are rather instances of squares and cubes of 
normally distributed variables. In such cases the use of a transformation is 
indicated. For surface areas, volumes, and small frequencies, the square 
root and the cube root transformations respectively are appropriate; 
random variables witli distributions that are flat on the right and bounded 
by zero on the left are frequently transformed by the logarithm into approxi
mately normally distributed variables. Percentages are normalized by the 
angular transformation. More on this can be found in Sections 1.3.9, 3.6.1, 
and 7.3.3. 

If the deviation from a normal distribution cannot be accounted for by 
the scale used, the sampling technique should be more fully investigated. If a 
sample contains only the largest individual values, which are intentionally or 
unintentionally favored, no normal distribution can be expected. Sample 
heterogeneity, in terms of e.g., age or kind, manifests itself similarly: more 
than one peak is obtained. Several methods for verifying the homogeneity 
of a sample, in other words, for controlling the deviation from the normal 
distribution, will be discussed later (Section 1.3.7 as well as 3.8 and 4.3.3). 

If we suspect that a population exhibits considerable deviation from the 
normal distribution, particularly in the tails (Charles P. Winsor has pointed 
out that many empirical distributions are nearly normally distributed only 
in their central regions), then to improve the normality of the sample it can 
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be expedient to do without the smallest and largest observations, i.e., to 
neglect a certain number of extreme observations at both ends of the dis
tribution (~5% of all values). Through such cutting (cf., Section 3.8) the 
variance is greatly reduced but the estimate of the mean is improved 
(McLaughlin and Tukey 1961, Tukey 1962, Gebhardt 1966). More on 
ROBUST STATISTICS [see pages 123 and 253/254] is provided by Huber 
(1972, 1981), Wainer (1976), R. V. Hogg (1979, The American Statistician 
33, 108-115), Hampel (1980), David (1981 [8: Ib]), Box et al. (1983) and 
Hoaglin et al. (1983). 

Graphical methods for determining X, s, and S2 of a trimmed normal distribution 
are given by Nelson (1967) (cf., also Cohen 1957, 1961, as well as Sarhan and 
Greenberg 1962). 

~ 1.3.6 Parameters of unimodal distributions 

1.3.6.1 Estimates of parameters 

Observed values of a random variable X, e.g., height of 18-year old men, 
are denoted by Xl = 172 cm, X 2 = 175 cm, X3 = 169 cm, or generally by 
Xl' X 2 , ••• , xn; n denotes the sample size. The sample average x = (l/n)I X 

is an observed value of the random variable X = (l/n)I X. 
A summary value calculated from a sample of observations, usually but 

not necessarily to estimate some population parameter, is called a statistic. 
In short, a value computed entirely from the sample is called a statistic. 
The statistic being used as a strategy or recipe to estimate the parameter is 
called an estimator of the parameter. A specific value of the sample statistic, 
computed from a particular set of data, preferably from a random sample, is 
called an estimate of the parameter. So X is the estimator of the parameter 
J1. and x is a corresponding estimate, for instance x = 173 cm. 

Estimators such as X should, if possible, satisfy the four following con
ditions: 

1. They must be unbiased-i.e., if the experiment is repeated very often, the 
average of all possible values of X must converge to the true value. An 
estimator is said to be unbiased if its expected value is equal to the 
population quantity being estimated. 

If this is not the case, the estimator is biased (e.g., Section 1.3.6.3, 
Remark 3). A bias can be caused by the experiment, through contaminated 
or unstable solvent; unreliable equipment; poor calibration; through 
"instrument drift" errors in recording the data, in calculations, and in 
interpretation; or nonrandomness of a sample. Errors of this sort are 
referred to as systematic errors: They cause the estimate to be always too 
large or always too small. The size of systematic errors can be estimated 
only on the basis of specialized knowledge of the origin of the given 
values. They can be prevented only by careful planning of the experi-
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ments or surveys. If systematic errors are present, nothing can be said 
concerning the true value; this differs greatly from the situation when 
random errors are present (cr., also Sections 2.1.2, 2.1.4, and 3.1, Parrat 
1961, Anderson 1963, Sheynin 1969, Szameitat and Deininger 1969, 
Campbell 1974, Fraser 1980 and Strecker 1980 [8:3aJ). 

2. They must be in agreement or consistent-i.e., as the sample size tends to 
infinity the estimator approaches the parameter (limit property of 
consistency). 

3. They must be efficient-i.e., they must have the smallest possible deviation 
(or variance) for samples of equal size. Suppose an infinite number of 
samples of size n is drawn from a population and the variance is deter
mined for an eligible statistic, one which fulfills conditions 1 and 2. Then 
this condition means that the statistic is to be chosen whose variance 
about the mean or expected value of the statistic is least. As a rule, the 
standard deviation of an estimate decreases absolutely and relatively to the 
expected value with increasing sample size. It can be shown that the sample 
mean is the most efficient estimator of J.1.. As a result the sample mean is 
called a minimum variance unbiased estimator of J.1.. 

4. They must be sufficient-i.e., no statistic of the same kind may provide 
further information about the parameter to be estimated. This condition 
means that the statistic contains all the information that the sample 
furnishes with respect to the parameter in question. For a normal distribu
tion with known variance (12 and unknown mean J.1., the sample mean X is a 
sufficient estimator of the population mean J.1.. 

The notions consistent, efficient, and sufficient go back to R. A. Fisher 
(1925). 

An extensive methodology of estimation has been developed for esti
mating the parameters from sample values. Of particular importance is the 
maximum likelihood method (R. A. Fisher): It is the universal method for 
optimal estimation of unknown parameters. It is applicable only if the type 
of the distribution function of the variables is known; the maximum likeli
hood estimate of the unknown parameter is the. parameter value that 
maximizes the probability that the given sample would occur (see Norden 
1972, 1973). This method of constructing point estimates for parameters is 
closely related to the important method of least squares (C. F. Gauss; c.f., 
Section 5.1), concerning which Harter (1974,1975) provides a survey. 

Weak and strong law of large numbers 

Consider as given n measurements or observations, conceivable as n inde
pendent identically distributed random variables with parameter J.1., and the 
sample mean X. Then X is the estimator of J.1.. The weak law oflarge numbers 
states that with increasing measurements or observations n (n ~ (0) the 
absolute difference IX n - J.1.1 is ultimately small; but not every value is 
small; it might be that for some n it is large, although such cases will only 
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occur infrequently. The strong law of large numbers says that the prob
ability of such an event is extremely small. In other words: 

For n --+ 00 

1. Weak Law: IXn - 111-1 in probability r 0 

2. Strong Law: Xn -
almost surely or 

with probability one 

(1.29) 

If a sample of n independent values is available, the sample cumulative distribution 
function F.(x) is the proportion of the sample values which are less than or equal to x 

~ n<x 
F.(x) =-=-. (DF 1) 

n 

This empirical cumulative distribution function estimates the cumulative distribution 
function F(x) of the population. For n large (n --+ (0) and fixed x the absolute difference 

IF.(x) - F(x)1 I (DF 2) 

tends to zero, with probability one. This theorem of Glivenko and Cantelli indicates 
that for n great empirical distributions are practically identical with the pertinent 
theoretical distributions (cf. Sections 393 and 44). 

The laws of large number (qualitative convergence statements) (1) imply 
that parameters can be estimated to any degree of accuracy given a suffi
ciently large sample, and (2) justify the Monte Carlo method. 

1.3.6.2 The arithmetic mean and the standard deviation 

The mean and the standard deviation are characteristic values for the 
Gaussian (or normal) distribution. They give the position of the average 
(mean) value of a sequence of measurements and the deviation (variation, 
variance, dispersion) of the individual values about the mean value res
pectively. Moreover, Chebyshev's inequality (1.27) shows that, even for 
other distributions, the standard deviation can serve as a general measure of 
dispersion. Analogous remarks apply to the mean value. 
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Definitions 

The arithmetic mean x (x bar) is the sum of all the observations divided by 
the number of observations: 

(1.30) 

The standard deviation is practically equal to the square root of the mean 
value of the squared deviations: 

s = jzJx - X)2 
n - 1 

s is usually computed according to (1.31a,b) in Section 1.3.6.3. 

(1.31) 

The expression" practically" here refers to the fact that inside the square 
root the denominator is not n, as is the case for a mean value, but rather 
n - 1. The square of the standard deviation is called the variance: 

(1.32) 

S2 is usually computed according to (1.32a) in Section 1.3.6.3. 

If the mean value 11 of the population is known, the quantity 

(1.33) 

is used, in place of S2, as an estimate for (12 (cf., also end of section 1.2.6, item 
3). 

1.3.6.3 Computation of the mean value and standard deviation 
when the sample size is small 

If a small number of values is involved or if a calculator is available, the mean 
value is calculated according to (1.30), the standard deviation (the positive 
value of p) according to ( 1.31 a) or ( 1.31 b) : 

s= 
s= 

nIx2 - (IX)2 

n(n - 1) 
(1.31 a), (1.31 b) 
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EXAMPLE. Calculate x and s for the values 27, 22, 24 and 26 (n = 4). 

_ LX 99 . 
x = -;;- = 4 = 24.75, 

s= 

s= 

I:X2 _ (Lx)2 
n 

n - 1 

nLx2 - (LX)2 

n(n - 1) 

992 
2465 --

4 
---= J4.917 = 2.22, 

4 - 1 

4·2465 - 992 = J4.917 = 2.22. 
4(4 - 1) 

Applications of the arithmetic mean 

1. Tables of arithmetic means should list next to the sample size (n) the 
corresponding standard deviation (s), in accordance with the table 

headings I Group I n I s I x I· With random samples from 
normally distributed populations one presents in a fifth column the 95 % 
confidence interval (CI) for J.1. (cf., Sections 1.4.1 and 3.1.1; cf., also 
Sections 1.8.3 and 3.1.4: in general, either the mean x or the median x is 
chosen and with random samples the corresponding 95 % CI is stated). 
Occasionally the relative variation coefficient Vr = s/(x In) with 
o ~ Vr ~ 1 (Section 1.3.6.6) and the extreme values (Xmin,Xmax) (or else 
the range, Section 1.3.8.5) can also be found in these tables. 

2. For the comparison of two means according to Student (t-test; cf. Sections 
3.5.3 and 3.6.2) it is more expedient to calculate the variances than the 
standard deviation, since these are needed for testing the inequality of 
variances (Section 3.5) as well as for the t-test. One simply omits the taking 
of roots in the formulas (1.31a,b); for example: s = ")4.917 or S2 = 
4.917, i.e., 

(1.32a) 

Note that 

I (x - X)2 = I (x2 - 2xx + x 2) 

= I x 2 - 2x I x + nx2 (cf. Section 0.2) 

= I x 2 _ 2(I X)2 + n(I X)2 

n n2 

The use" n - 1" in (l.32a) gives us an unbiased estimator of (J2 and therefore an 
unbiased estimate of S2. 
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Remarks 

1. Instead of using (1.32a) one could also estimate the variance using the formula 
S2 = {l/[2n(n - I)]} Ii Ii (Xi - X)2. Other interesting measures of dispersion are: 
{1/[n(n - I)]} Ii Ii IXi - x;l, (lIn) Ii IXi - xl (cr., Sections 3.1.3 and 3.8), and (lin) 
Ii IXi - xl, where x is the median. 

2. In extensive samples the standard deviation can be quickly estimated as 
one-third the difference between the means of the largest sixth and the smallest 
sixth of the observations (Prescott 1968); cr., also D'Agostino 1970). 

3. While the estimate of (12 by S2 is unbiased, s is a biased estimate of (1. This bias 
is generally neglected. For a normally distributed population, a factor depending only 
on the sample size (e.g., Bolch 1968) turns s into an unbiased estimate of (1 (e.g., 
1.0854 for n = 4, i.e., (1 = 1.0854s). For sample sizes that are not too small (n ~ 10), 
this factor, which is approximately equal to {I + 1/[4(n - I)]}, tends rapidly to one 
(e.g., 1.00866 for n = 30). For further details see Brugger (1969) and Stephenson 
(1970). 

4. Taking an additional value X z into consideration, if x and S2 were computed 
for n observations, we have for the present n + 1 observations xn + 1 = (X, + 
nx)/(n + 1) and s;+ 1 = (n + l)(Xn+ 1 - X)2 + (n - l)s2 In. 

5. It is characteristic of x that I (Xi - x) = 0 and that I (Xi - X)2 S I (Xi - X)2 
for every X; the median x (cr., Section 1.3.8.3) has, on the other hand, the property 
that Ii IXi - xl S Ii IXi - xl for every X; i.e., Ii (Xi - X)2 and Ii IXi - xl are 
minima in the respective cases. 

With multidigit individual values: To simplify the computation a provisional 
mean value d is chosen so as to make the difference x - d as small as possible 
or positive throughout. Then we have 

I -=d l)x-d) 
x + n ' 

s = j'f}x - d)2 - n(x - d)2 
n - 1 

EXAMPLE. See Table 15. According to (1.34) and (1.35), 

x = d + L(Xn- d) = 11.26 + 0.~5 = 11.27, 

s = II (x - d)2 - n(x - d)2 
'-1- n - 1 ' 

0.0931 - 5(11.27 - 11.26)2 _ J 2 _ 
s = 5 _ 1 - 0.0 315 - 0.152. 

(1.34) 

(1.35) 

In problems of this sort the decimal point can be removed through multi
plication by an appropriate power of ten: In the present case we would 
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Table 15 

x x - 11. 26 (x - 11.26)2 
11. 27 0.01 0.0001 
11. 36 0.10 0.0100 
11.09 -0.17 0.0289 
11.16 -0.10 0.0100 
11. 47 0.21 0.0441 

0.05 0.0931 

form x* ("x star") = lOOx and, as described, using the x*-values, obtain 
i* = 1,127 and s* = 15.2. These results again yield 

i* s* 
i = 100 = 11.27 and s '= 100 = 0.152. 

The appearance of large numbers can be avoided in calculations of 
this sort by going a step further. By the encoding procedure the original 
values x are converted or transformed into the simplest possible numbers 
x* by appropriate choice of k 1 and k2' where k 1 introduces a change of 
scale and k2 produces a shift of the origin (thereby generating a linear trans
formation): 

(1.36) 

(1.36a) 

From the parameters x* and s* or S*2, calculated in the usual manner, 
the desired parameters are obtained directly: 

x = k1x* + k2' 

S2 = kis*2. 

(1.37) 

(1.38) 

It is recommended that the example be once again independently worked 
out with kl = 0.Q1, k2 = 11.26, i.e., with x* = lOO(x - 11.26). 

1.3.6.4 Computation of the mean value and standard deviation 
for large sample sizes: Grouping the individual values 
into classes [use perhaps the remark on page 81 as a 
control] 

The sum of the ten numbers {2, 2, 2, 2; 3; 4, 4, 4, 4, 4}, namely 31, can just 
as well be written (4)(2) + (1)(3) + (5)(4); the mean value of this sequence 
can then also be obtained according to 

- = (4)(2) + (1)(3) + (5)(4) = 3 1 
x 4+1+5 .. 

We have in this way partitioned the values of a sample into three classes 
(strata, groups). The frequencies 4, 1, and 5 assign different weights to the 
values 2, 3, and 4. Thus 3.1 can also be described as a weighted arithmetic 
mean. We shall return to this later (Section 1.3.6.5). 
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In order to better survey extensive collections of numbers and to be able 
to more easily determine their characteristic statistics such as the mean 
value and standard deviation, one frequently combines into classes the 
values ordered according to magnitude. It is here expedient to maintain a 
constant class width b; you may use b ~ .J Xmax - xmin . Moreover, numbers 
as simple as possible (numbers with few digits) should be chosen as the 
class midpoints. The number of classes lies generally between 6 (for around 
25-30 observations) and 25 (for around 10,000 or more values); cf., Sections 
1.3.3 and 1.3.8.6. 

The k classes are then occupied by the frequency values or frequencies 
Ii, 12, ... , h (n = I~ ~ 1 /; = If)· A preliminary average value d is chosen, 
which often falls in the class that contains the largest number of values. 

I The multiplication procedure 

The individual classes are then numbered: d receives the index z = 0, the 
classes with means smaller than d get the indices z = -1, - 2 ... in des
cending order, those larger get z = 1,2, ... in ascending order. Then we have 

s = b IIz2 - (IIz) 2 In 
n - 1 ' 

(1.39) 

( 1.40) 

with d = assumed average (midpoint of the class with index z = 0, 
b = class width [classes given by the intervals (d + b(z - t), d + 

b(z + t)) - left endpoint excluded, right endpoint included] 
n = number of values, 
I = frequency within a class, 
x = midpoint of a class (x = d + bz), 
z = normed distance or index of the class with midpoint x: 

Table 16 

CM f z 

13 1 -3 
17 4 -2 
21 6 -1 

d = 25 7 0 
29 5 1 
33 5 2 
37 2 3 

L 30 -

fz 

-3 
-8 
-6 
0 
5 

10 
6 

4 

z = (x - d)lb. 

fz 2 

9 
16 

6 
0 
5 

20 
18 
74 

CM = class midpoints 
b=4 
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An example is shown in Table 16, with b = 4, CM = class mean = x; we 
have 

b 4 x = d + ;; L Jz = 25 + 30.4 = 25.53 

s = b J(L JZ2 : ~LIJZ)2/n) = 4 C43~ ~2~30) = 6.37. 

Control: One makes use of the identities 

Lf(z+ 1)= Lrz+ Lr= Lrz+n, 

Lf(z+ 1)2= Lf(z2+2z+ 1), 
Lf(Z+ 1)2= LrZ2 + 2Lrz+ Lr, 

I Lf(z+1)2=Lrz2+2Lrz+n, 

Table 17 

z + 1 f f(z + 1) f(z + 1)2 
-2 1 -2 4 
-1 4 -4 4 
0 6 0 0 
1 7 7 7 
2 5 10 20 
3 5 15 45 
4 2 8 32 

n = If = 30 If(z + 1) = 34 Lf(z + 1)2 = 112 

(1.41 ) 

(1.42) 

and notes the corresponding distributions. An example is shown in Table 17. 
Control for the mean: 

L J(z + 1) = 34 (from Table 17), 

L Jz + n = 4 + 30 = 34 (from Table 16). 

Control for the standard deviation: 

L J(z + 1)2 = 112 (from Table 17), 

L JZ2 + 2 L Jz + n = 74 + (2)(4) + 30 = 112 (from Table 16). 

The multiplication procedure is particularly appropriate if a second com
putation based on data from which outliers have been removed (cf., Section 
3.8) or based on an augmented data set becomes necessary, or if moments 
of higher order (cf., Section 1.3.8.7) are to be computed. 

II The summation procedure (cf. Table 18) 

The summation procedure consists of a stepwise summation of the fre
quencies from the top and the bottom of the table toward the class con
taining the preassigned average value d (column 3). The values so obtained 
are again sequentially added, starting with the top and the bottom of column 
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3 and proceeding to classes adjacent to the class containing d (column 4). 
The resulting sums are denoted by (il and (i2 (Greek delta 1 and 2). The values 
obtained are once again added, starting with the top and the bottom of 
column 4 and working toward the classes adjacent to the class containing d 

Table 18 

eM f 51 52 53 

13 1 1 1 1 
17 4 5 6 7 
21 6 11 17 = °1 24 = £1 

d = 25 7 
29 5 12 21 = °2 32 = £2 
33 5 7 9 11 

37 2 2 2 2 
n = 30 

(column 5). We represent the sums so obtained by 81 and 82 (Greek epsilon 1 
and 2). Then on setting 

we have 

s=b 

n 

x=d+b·c, 

2(81 + 82) - «il + (i2) - ne2 

n - 1 

(1.43) 

(1.44) 

where d is the chosen average value; b is the class width; n is the number of 
values; and (it> (i2' 81, 82 denote the special sums defined above. We give a 
last example in Table 18 (eM = class mean): 

_ (i2 - (il 21 - 17 _ 0 
c - n 30 - .133, 

x = d + be = 25 + 4·0.133 = 25.53, 

s = b 2(81 + 82) - «il + (i2) - ne2 

n - 1 

s = 4 2(24 + 32) - (17 + 21) - 30.0.1332 

30 - 1 

s = 4J2.533, 

s = 6.37. 
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The standard deviation computed from grouped data is in general somewhat 
larger than when computed from ungrouped data, and in fact-within a 
small range-increases with the class width b; thus it is wise to choose b 
not too large (cr., Section 1.3.8.5): 

I b~s/2 I (1.45) 

if possible. In our examples we used a coarser partition into classes. More
over, Sheppard has proposed that the variance, when calculated from a 
frequency distribution partitioned into strata or classes, be corrected by 
subtracting b2 /12: 

(1.46) 

This correction need only be applied if n > 1,000 with a coarse partition 
into classes, i.e., if the number of classes k < 20. Corrected variances must 
not be used in statistical tests. 

1.3.6.5 The combined arithmetic mean, the combined variance, 
and the weighted arithmetic mean 

If several samples of sizes nb nz, ... , nb mean values Xb x2 , ••• , Xb and 
squares of standard deviations sf, s~, ... , s~ are combined to form a single 
sequence of size n = nl + nz + ... + nk> then the arithmetic mean of the 
combined sample is the combined arithmetic mean, .xcomb: 

n l . Xl + nl • Xl + ... + nk . Xk 
.xcomb = --=----------

n 

and the standard deviation Sin within the samples is 

EXAMPLE 

n l = 8, 

n2 = 10, 

n3 = 6, 

si(n l - 1) + s~(nl - 1) + ... s~(nk - 1 
n-k 

Xl = 9, (Sl = 2) si = 4, 

Xl = 7, (Sl = 1) s~ = 1, 

X3 = 8, (S3 = 2) s~ = 4, 

8·9+ 10·7+6·8 
X = 24 = 7.917, 

. = )4(8 - 1) + 1(10 - 1) + 4(6 - 1) = 1648 
SIR 24 - 3 . . 

(1.47) 

(1.48) 
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The variance of the x-variable in the combined sample is calculated by the 
formula 

(1.48a) 

in our example 

S;omb = A[(7· 4 + 9·1 + 5·4) + (8.1.0832 + 10.0.9172 + 6·0.08]2)] 

= 3.254. 

The weighted arithmetic mean: Unequal precision of individual mea
surements can be taken into account by the use of different weights 
Wi (i = 1, 2, ... ; Wi = 0.1 or 0.01, etc., with L Wi = 1). The weighted arith
metic mean is found according to x = (L WiXi)/L Wi or, more appropriately, 
by choosing a convenient auxiliary value a and working with the translated 
variable Zi = Xi - a. 

EXAMPLE 

Xi - a = Zi 

Xi Wi (a = 137.8) WiZi 

138.2 1 0.4 0.4 

137.9 2 0.1 0.2 

137.8 1 0.0 0.0 

LWiZi = 0.6, 

LW,Z, x = a +--'-', 
LWi 

(1.49) 

0.6 
x = 137.8 + 4 = 137.95. 

For index numbers, see Mudgett (1951), Snyder (1955), Crowe (1965), and 
Craig (1969). 

1.3.6.6 The coefficient of variation 

Suppose that X can assume positive values only. The ratio of the standard 
deviation to the mean value is called the coefficient of variation (K. Pearson 
1895): or, occasionally, the coefficient of variability, and denoted by V: 

S 
V = - for all x > O. x (150) 
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The coefficient of variation is equal to the standard deviation when the mean 
value equals one. In other words the coefficient of variation is a dimension
less relative measure of dispersion with the mean value as unit. Since its 
maximum is ..;n (Martin and Gray 1971), one can also readily specify the 
relative coefficient of variation Vr , expressed as a percentage, which can take 
on values between 0 % and 100 %: 

• 0 six 
V.[m %J = In 100 for all x >0. (1.50a) 

The coefficient of variation is useful in particular for comparison of samples 
of some population types (e.g., when mean and variance vary together). 

EXAMPLE. For n = 50, s = 4, and x = 20 we get from (1.50) and (1.50a) that 

V = ~ = 0.20 and V. = fi 100 = 2.83% or V. = 3%. 

1.3.6.7 Examples involving the normal distribution (for 
Section 1.3.4) 

1. With the help of the ordinates of the normal distribution (Table 20), 
the normal curve can readily be sketched. For a quick plotting of the normal 
curve the values in Table 19 can be utilized. To abscissa values of ± 3.5a 
corresponds the ordinate 4AoYmax. so for x-values larger than 3.5a or smaller 
than - 3.5a the curve practically coincides with the x-axis because, e.g., to a 
maximum ordinate of 40 cm, there correspond, at the points z = ± 3.5a, 
1 mm long ordinates. 

2. Let the lengths of a collection of objects be normally distributed 
with J.1 = 80 cm and a = 8 cm. (a) What percentage of the objects fall 
between 66 and 94 cm? (b) In what interval does the "middle" 95% of the 
lengths fall ? 

For (a): The interval 80 ± 14 cm can also be written 80 ± 184a = 80 ± 
1.75a. Table 13 gives for z = 1.75 a probability (P = 0.0401) of 4 %. The 
percentage of the objects lying between z = -1.75 and z = + 1.75 is to be 
determined. Since 4 % lie above z = 1.75 and another 4 % below z = 1.75 

Table 19 

Abscissa 0 ±0.5a ± 1.0a ± 2.0a ±3.0a 

Ordinate Ymax i Ymax ~ Ymax i Ymax io Ymax 
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Table 20 Ordinates of the standard normal curve: f(z) =(1 /..j2n) e-z2 / 2 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973 
0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918 
0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 ,0.3825 
0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3725 0.3712 0.3697 
0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538 
0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352 
0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144 
0.7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920 
0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685 
0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444 
1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203 
1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965 
1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736 
1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518 
1.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315 
1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127 
1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957 
1.7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804 
1.8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669 
1.9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551 
2.0 0.0540 0.0529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449 
2.1 0.0440 0.0431 0.0422 0.0413 0.0404 0.0396 0.0387 0.0379 0.0371 0.0363 
2.2 0.0355 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290 
2.3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229 
2.4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180 
2.5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139 
2.6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107 
2.7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081 
2.8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061 
2.9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046 
3.0 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034 
3.1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025 
3.2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018 
3.3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013 
3.4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 
3.5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006 
3.6 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 
3.7 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 
3.8 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 
~.9 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 
4.0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

Example: f(1.0) = 0.242 = f( -1.0). 
This table gives values of the standard normal density function. 
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Figure 13 Standard normal dis
tribution: The shaded portion of the 
area lies to the left of z 1 (negative 
value) and to the right of Z2 (positive 
value). In the figure we have IZ11 = 
1 z 21. Table 13 in Section 1.3.4 lists 
the portion of the area to the right 
of Z2 and, by symmetry, also to the 
left of the negative values z 1 = Z 2, 

where we use IZ21 in the table. 

(cr., Figure 13 with Zl = -1.75 and Zz = + 1.75), it follows that 100 -
(4 + 4) = 92 % of the objects lie between the two boundaries, i.e., between 
the 66 and 94 cm lengths. 

For (b): The text following Figure 11 and Table 14 in Section 1.3.4 indicate 
(for Z = 1.96) that 95 % of the objects lie in the interval 80 cm ± (1.96)(8) cm, 
i.e., between 64.32 cm and 95.68 cm. 

3. Let some quantity be normally distributed with Ji = 100 and a = 10. 
We are interested in determining the portion, in percent, (a) above x = 115, 
(b) between x = 90 and x = 115, and (c) below x = 90. First the values x 
are to be transformed to standard units: z = (x - Ji)/a. 

For (a): x = 115, Z = (115-110)/10 = 1.5. The portion sought is deter
mined from Table 13, for Z = 1.5, to be 0.0668 or 7 %. 

For (b): x = 90, Z = (90-100)/10 = -1.0; for x = 115 we just obtained 
Z = 1.5. We are to find the area A under the normal curve bounded by 
Z = -1.0 and Z = 1.5. Thus we must add the quantities: 

(Area betw. z = -1.0 and z = 0) + (Area betw. z = 0 and z = 1.5). 

Since the first area is by symmetry equal to the Al bounded by z = 0 and 
z = + 1.0, the area A is given by (AI betw. z = 0 and z = 1) + (AI betw. z = 
o and z = 1.5). Table 13 gives the probabilities of the right hand tail of the 
standard normal distribution. We know that the total probability is 1, that 
the distribution is symmetric with respect to z = 0, and that the probabi
lity integral (area) is additive. Thus the areas Al and A z can be written as 
differences: A I = P(z > 0) - P(z > 1), A z = P(z > 0) - P(z > 1.5) whence 
A = (0.5 - 0.1587) + (0.5 - 0.0668) = 0.7745 (cf., Figure 14). 

Figure 14 
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For (c) : For x = 90 a value of z = - 1.0 was just found. But by symmetry 
the area beyond Z = + 1.0 is the same as the area we want: 0.1587 or 16%. 

Let's check the computations (a), (b), (c): 0.0668 + 0.7745 + 0.1587 = 

1.000. 
4. For the normal distribution J1 = 150 and (J = 10 the value below 

which 6 % of the probability mass lies is to be specified; moreover P(130 < 
X < 160) = P(130 ~ X ~ 160) (cf., Section 1.2.6) is to be determined. The 
equation (x - 150)/10 = -1.555 implies x = 134.45. For P(130 < X < 
160) we can write 

( 130 - 150 x-ISO 160 - 150) ( 1) 
p. 10 < 10 < 10 = P -2 < Z < 

= 1 - (0.0228 + 0.1587) = 0.8185. 

5. In a normal distribution N(lI; 2) with J1 = 11 and (J = 2 find the 
probability for the interval, area under the curve, from x = 10 to x = 14 or 
P(10 ~ X ~ 14). By putting Zl = (Xl - J1)/(J = (10 - 11)/2 = -0.5 and 
Z2 = (X2 - J1)/(J = (14 - 11)/2 = 1.5 we have P{lO ~ X ~ 14) = P( -0.5 ~ 
Z ~ 1.5) and with P( -0.5 ~ Z ~ 0) = P(O ~ Z ~ 0.5), from symmetry, 

P(lO ~ X ~ 14) = [0.5 - P(Z 2:: 0.5)] + [0.5 - P(Z 2:: 1.5)] 
= [0.5 - 0.3085] + [0.5 - 0.0668] 
= 0.1915 + 0.4332 = 0.6247. 

Remark: Quick estimation of x and s by means of a random sample from a 
normally distributed population. Using two arbitrary values (WI; w,,) one 
detaches from a sample a lower and an upper end of the distribution con
taining ~ 20 values each, determines their relative frequencies PI and Pu, 
and reads off the corresponding Zl and Zu from Table 13. Then one has 
s ~ (Wu - Wl)/(zu + Zl) and x ~ WI + ZIS = Wu - ZuS' 

~ 1.3.7 The probability plot 

Graphical methods are useful in statistics: for description of data, for 
their screening, analysis, cross-examining, selection, reduction, presen
tation and their summary, and for uncovering distributional peculi
arities. Moreover probability plots provide insight into the possible 
inappropriateness of certain assumptions of the statistical model. 
More on this can be found in King (1971) [cf., Wilk and Gnanadesikan 
(1968), Sachs (1977), Cox (1978), Fienberg (1979), D. Stirling (1982) 
[The Statistician 31, 211-220] and Fisher (1983)]. 
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A plot on standard probability paper may be helpful in deciding whether the 
sample at hand might come from a population with a normal distribution. 
In addition, the mean and the standard deviation can be read from the graph. 
The scale of the ordinate is given by the cumulative distribution function 
of the normal distribution, the abscissa carries a linear scale [logarithmic 
scale, if we are interested not in a normally distributed variable but in a 
variable whose logarithm is normally distributed, Z = log X, Z ~ N(j1., 0"2)] 
(cf., Figure 15). The graph of the observed values against the corresponding 
cumulative empirical distribution will, in the case of a sample from a norm
ally distributed population, be approximately a straight line. 

The ordinate values 0% and 100% are not included in the probability 
plot. The percentage frequencies with these values are thus disregarded in 
the graphical presentation. 

Cumulative percentage 
line in the 

probability plot 

99.98 
":i. " , 9J,,1 L _ 

• / 
• 1/ 
a_ 

~ -
2 

, • 10 

x-scale 
[Upper limit of the classes] Figure 15 Probability chart. 

In x or log x-scale 

[Class mean] 

Write z = (x - JI.)/a = x/a - JI./a = ( - JI./a) + (l/a)x, a straight line, with the 
points F(JI.) = 0.5 and F(JI. + a) = 0.8413. The ordinate scale includes the cor-
responding percentages (50 %, 84.13 %) of the distribution function of the 
standard normal distribution (e.g., 15.87% of the distribution lies below z = -I): 

y 0% 10% 15.87% ... 50% . .. 84.13% 90% 100% 

z -00 -1.28 -1 ... 0 ... +1 +1.28 +00 

From the empirical frequency distribution one computes the cumulative 
sum distribution in percent and plots these values in the chart. It must here 
be kept in mind that class limits are specified on the abscissa. How straight 
the line is can be judged from the behavior of the curve between about 10 % 
and 90%. To obtain the parameters of the sample, the point of intersection 
of the straight line drawn with the horizontal line through the 50% point 



1.3 The Path to the Normal Distribution 83 

of the ordinate is marked on the abscissa. This x-coordinate of the point of 
intersection is the graphically estimated mean (xg). Furthermore, the 16% 
and 84 % horizontal lines are brought into intersection with the straight line 
drawn. These points of intersection are marked on the x-axis and one reads 
off Xg + Sg and Xg - Sg. By subtracting the second from the first one gets 
2sg and hence the standard deviation. This simple calculation frequently 
determines the mean (Xg) and standard deviation (Sg). The cumulative sum 
line of the normal distribution, also known as the Hazen line, can be obtained 
by proceeding in the opposite direction, starting with the following charac
teristic values: 

At x = Jl, 

x = Jl + 0', 

X = Jl - 0', 

y = 50%; 
y ~ 84%; 

y ~ 16%. 

While a probability plot gives us an idea of the normality of a distribution, 
it is an inadequate method for precise analysis, since the weights of the 
individual classes manifest themselves indistinctly; moreover, only a poor 
assessment can be made of whether or not the deviations from the theoretical 
straight line remain within the domain of randomness (see also Section 
4.3.3). The lower part of Figure 15 anticipates the important lognormal 
distribution (Section 1.3.9). Further discussion can be found in King (1971) 
(cf., also Mahalanobis 1960, and especially Wilk and Gnanadesikan 1968, 
as well as Sachs 1977). 

Many empirical distributions are mixtures of distributions. Even if a 
sample looks homogeneous and is e.g. nearly normally distributed, we 
cannot ascertain that it was drawn from a population with a pure distri
bution function. Not infrequently a distribution that seems to be normal 
proves to be a mixture. Decompositions are then possible (Preston 1953, 
Weichselberger 1961, Ageno and Frontali 1963, Bhattacharya 1967, Harris 
1968, Day 1969, Herold 1971). 

The homogeneity of the material studied cannot be ascertained in 
principle. Only the existence of inhomogeneities can be established. Inhomo
geneity does not indicate the material is useless; rather it requires con
sideration of the inhomogeneity in the estimate, mostly through the forma
tion of subgroups. 

Remark: Uniform or rectangular distributions 

When a fair die is thrown, anyone of the sides with 1,2,3,4,5, or 6 pips can come up. 
This gives a theoretical distribution in which the integers I through 6 have the same 
probability of i. i.e., P(x) = i for x = 1,2, ... ,6. If, as in the example, the possible 
events E can be assigned the numbers x, with the individual probabilities P(x) 
corresponding to the relative frequencies, then we have quite generally for the 
parameters of theoretical distributions the relations (cr., end of Section 1.2.6) 

I Jl= LXP(x) I (1.51 ) 
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and the so-called translation law 

(1.52) 

e.g., 11 = 1 . i + 2 . i + ... + 6· i = 3.5 and (12 = 1 . i + 4 . i + ... + 36· i - 3.52 

= 2.917. 

The discrete uniform distribution is defined by 

I P(x)=tjn for t;£x;£n (1.53) 

with mean 11 and variance (12: 

(1.54) 

(1.55) 

The values for our example are found directly (n = 6): 

6 + 1 62 - 1 
11 = -2- = 3.5 and (12 = -----u- = 2.917. 

The uniform distribution comes up, for example, when rounding errors are considered. 
Here we have 

P(x) = to for x = -0.4, ... , +0.5. 

The parameters are 11 = 0.05 and (12 = 0.287. The random numbers mentioned in the 
Introduction and Section 1.3.2 are realizations of a discrete uniform distribution of 
the numbers 0 to 9. By reading off three digits at a time (Table 10, Section 1.3.2) we 
get uniformly distributed random numbers from 0 to 999. 

The probability density of the continuous uniform or rectangular distribution over 
the interval [a, bJ is given by 

{
l/(b - a) 

y = f(x) = o 
for a ::; x ::; b, 

for x < a or x > b, 
(1.56) 

i.e., f(x) is constant on a ::; x ::; b and vanishes outside this interval. The mean and 
variance are given respectively by 

(1.57) 
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and 

(1.58) 

The continuous uniform distribution is useful to a certain extent in applied statistics: 
for example, when any arbitrary value in some class of values is equally probable; as 
another example, to approximate relatively small regions of arbitrary continuous 
distributions. Thus, for example, the normally distributed variable X is nearly uni
formly distributed in the region 

a a I 1l- 3 <X<Il+i (1.59) 

Rider (1951) gives a test for examining whether two samples from uniform popula
tions actually come from the same population. The test is based on the quotient of 
their ranges; the paper also contains critical bounds at the 5 % level. 

1.3.8 Additional statistics for the characterization 
of a one dimensional frequency distribution 

The tools for characterizing one dimensional frequency distributions are: 

1. Location statistics: statistics for the location of a distribution (arithmetic, 
geometric, and harmonic mean; mode [and relative modes]; median 
and other quantiles). 

2. Dispersion statistics: statistics that characterize the variability of the 
distribution (variance, standard deviation, range, coefficient of variation, 
interdecile region). 

3. Shape statistics: statistics that characterize the deviation of a distribution 
from the normal distribution (simple skewness and kurtosis statistics, 
as well as the moment coefficients a3 and a4 ). 

1.3.8.1 The geometric mean 

Let Xl' X 2 , ..• , Xn be positive numbers. The nth root of the product of all 
these numbers is called the geometric mean xG: 

with Xi> O. (1.60) 

It may be evaluated with the help of logarithms (1.61) [cr., also (1.66)]: 

lin 
log XG = -(log Xl + log X2 + log X3 + ... + log Xn) = - L log Xi' 

n ni=l 

(1.61) 
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We note that the logarithm of the geometric mean equals the arithmetic mean 
of the logarithms. The overall mean of several (say k), geometric means, 
based on sequences with nl, n2' ... ,nk terms, is a weighted geometric mean: 

I - nl log XGl + n2 log XG2 + ... + nk log xGk 
og XG = ----------------

n l + n2 + ... + nk 
(1.62) 

The geometric mean is used, first of all, when an average of rates is to be 
calculated in which the changes involved are given for time intervals of equal 
length (cf., Example 1). It is applied if a variable changes at a rate that is 
roughly proportional to the variable itself. This is the case with various kinds 
of growth. The average increase of population with time, and the number of 
patients or the costs of treatment in a clinic, are familiar examples. One can 
get a rough idea of whether one is dealing with a velocity that is changing 
proportionately by plotting the data on semilogarithmic graph paper 
(ordinate, scaled logarithmically in units of the variable under consideration; 
abscissa, scaled linearly in units of time). With a velocity varying pro
portionately, the resulting graph must be approximately a straight line. 
xG is then the mean growth rate (cf., Examples 2 and 3). 

The geometric mean is also used when a sample contains a few elements with 
x-values that are much larger than most. These influence the geometric mean less than 
the arithmetic mean, so that the geometric mean is more appropriate as a typical 
value. 

Examples 

1. An employee gets raises in his salary of 6 %, 10 %, and 12 % in three 
consecutive years. The percentage increase is in each case calculated with 
respect to the salary received the previous year. We wish to find the average 
raise in salary. 

The geometric mean of 1.06, 1.10 and 1.12 is to be determined: 

log 1.06 = 0.0253 

log 1.10 = 0.0414 

log 1.12 = 0.0492 

~)og Xi = 0.1159 

t L log Xi = 0.03863 = log xG 

xG = 1.093. 

Thus the salary is raised 9.3 % on the average. 

2. The number of bacteria in a certain culture grows in three days from 
100 to 500 per unit of culture. We are asked to find the average daily increase, 
expressed in percentages. 
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Denote this quantity by x; then the number of bacteria is after the 

1st day: 

2nd day: 

100 + 100x = 100(1 + x), 

100(1 + x) + 100(1 + x)x = 100(1 + X)2, 

3rd day: 100(1 + X)2 + 100(1 + X)2X = 100(1 + X)3. 

This last expression must equal 500, i.e., 

100(1 + X)3 = 500, (1 + X)3 = 5, 1 + x = 15. 

87 

With the help oflogarithms we find 15 = 1.710, so that x = 0.710 = 71.0 %. 
In general, beginning with a quantity M having a constant growth rate r 

per unit time, we have after n units of time the quantity 

I B=M(1+r)". I 

3. Suppose a sum of 4 million dollars (M) grows in n = 4 years to 5 
million dollars (B). We are asked to find the average annual growth. 

If an initial capital of M (dollars) grows after n years to B (dollars), the 
geometric mean r of the growth rates for the n years is given by 

B = M(1 + r)", or r = Jlt -1. 

Introducing the given values, n = 4, B = 5, M = 4, we find 

r -_ 4 5,000,000 _ 1, JS 
4,000,000 r = V 4 - 1, 

and setting ..y1 = x, so that log x = * log i = !<log 5 - log 4) = 0.0217, 
we thus get x = 1.052 and r = 1.052 - 1 = 0.052. Hence the average 
growth rate comes to 5.2 % annually. 

REMARK. The number of years required for an amount of capital to double can be well 
approximated by a formula due to Troughton (1968): n = (70/p) + 0.3, so that 
p = 70/(n - 0.3); e.g., if p = 5%, n = (70/5) + 0.3 = 14.3. [The exact calculation 
is (I + 0.05)" = 2; n = (log 2)/(Iog 1.05) = 14.2.] 

Exponential Growth Function. If d is the doubling period, r the relative 
growth rate per year, and the growth equation is y = kert with k constant 
[since In e = 1 it can be written In y = In k + rt (cf., Sections 5.6, 5.7)], 
then d = (In 2)/r = 0.693/r. If the relative growth rate is r = 0.07 per year 
or 7%, a doubling takes place in d = 0.693/0.07 ~ 10 years. 

The critical time ter in years that it takes for a quantity Q to increase from 
its present value Qo to a critical or limiting value Qen assuming exponential 
growth with constant rate r in % per year, is ter = (230/r)log(Qer/QO) = 
(100/r)(2.3)log(Qer/Qo). For instance: Qer/QO = 25; r = 7%; ter = 
(230/7)log 25 = (32.8571)1.3979 = 45.9 or 46 years. 
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1.3.8.2 The harmonic mean 

Let Xl' X 2 , •.• , Xn be all positive (or all negative) values. The reciprocal 
value of the arithmetic mean ofthe reciprocals of these quantities is called the 
harmonic mean i H : 

n 
iH = -1--1----1-

-+-+ ... +
Xl X 2 Xn 

n 
n 1 
I-
i=l Xi 

with 
(1.63) 

[cf., also (1.67)]. In applications it is frequently necessary to assign weights 
Wi to the individual quantities Xi' The weighted harmonic mean (cf., Example 
3) is given by 

( 1.64) 

The combined harmonic mean is 

( 1.65) 

The harmonic mean is called for if the observations of what we wish to 
express with the arithmetic mean are given in inverse proportion: if the 
observations involve some kind of reciprocality (for example, if velocities 
are stated in hours per kilometer instead of kilometers per hour). It is used, 
in particular, if the mean velocity is to be computed from different velocities 
over stated portions of a road (Example 2) or if the mean density of gases, 
liquids, particles, etc. is to be calculated from the corresponding densities 
under various conditions. It is also used as a mean lifetime. 

Examples 

1. In three different stores a certain item sells at the following prices: 
10 for $1,5 for $1, and 8 for $1. What is the average number of units ofthe 
item per dollar? 

3 3 120 
iH = 1 1 1 = 17 = -17 = 7.06 ~ 7.1. 

TO +"5 +"8 40 
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Check: 

1 unit 

1 unit 

1 unit 

3 units = $0.425: 

= $0.100 

= $0.200 

= $0.125 

$0.425 
1 unit = -3- = $0.l417, 
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so that 1.000/0.1417 = 7.06, which agrees with the above result of 7.1 units per 
dollar. 

2. The classical use for the harmonic mean is a determination of the 
average velocity. Suppose one travels from C to B with an average velocity 
of 30 km/hr. For the return trip from B to C one uses the same streets, travel
ing at an average velocity of 60 km/hr. The average velocity for the whole 
round trip (AR) is found to be 

2 
A R = 1 1 = 40 kmjhr. 

30 + 60 

Note: Assuming the distance CB is 60 km, the trip from C to B would take 
(60 km)/(30 kmjhr) = 2 hours and the trip from B to C (60 km)/(60 kmjhr) = 1 hr, 
so that AR = (total distance)/(total time) = (120 km)/(3 hr) = 40 kmjhr. 

3. For a certain manufacturing process, the so-called unit item time in 
minutes per item has been determined for n = 5 workers. The average time 
per unit item for the group of 5 workers is to be calculated, given that four 
of them work for 8 hours and the fifth for 4 hours. 

The data are displayed in Table 21. The average unit item time comes 
to 1.06 minutes/unit. 

Table 21 

Working time w; Unit item time x; Output w,/x; 
(in minutes) (in minutes/unit) (in units) 

480 0.8 480/0.8 = 600 
480 1.0 480/1.0 = 480 
480 1.2 480/1.2 = 400 
480 1.2 480/1.2 = 400 
240 1.5 240/1.5 = 160 

Iw; = 2,160 I(W,/Xi) = 2,040 

_ L Wi 2,160 
XH = L (Wi/Xi) = 2,040 = 1.059. 
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If observations are grouped into c classes, with class means Xi and fre
quencies h (where D= I h = n), we have 

1 c 

log xG = - L h log Xi with Xi > 0, 
ni=l 

(1.66) 

n 
XH = -- with Xi #- O. fh 

i=l Xi 

(1.67) 

The three mean values are related in the following way: 

(1.68) 

Equality holds only if the x's are identical, Xl = X2 = ... = x n • For n = 2 
the means satisfy the equation 

(1.69) 

1.3.8.3 Median and mode 

A unimodal distribution is said to be skewed if considerably more probability 
mass lies on one side of the mean than on the other. A frequently cited 
example of a distribution with skewness is the frequency distribution of 
incomes in a country. The bulk of those employed in the U.S. earn less than 
$1,700 a month; the rest have high to very high income. The arithmetic 
mean would be much too high to be taken as the average income, in other 
words, the mean value lies too far to the right. A more informative quantity 
is in this case the median (x), which is the value that divides the distribution 
into halves. An estimate of the median is that value in the sequence of 
individual values, ordered according to size, which divides the sequence in 
half. It is important to note that the median is not influenced by the extreme 
values, whereas the arithmetic mean is rather sensitive to them. Further 
details are given in Smith (1958) as well as in Rusch and Deixler (1962). 
Since most of those employed realize an income which is "below average," 
the median income is smaller than the arithmetic mean of the incomes. The 
peak of the curve near the left end of the distribution (the mode) gives a 
still more appropriate value if the bulk of those employed is the object of our 
studies. 
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Figure 16 Positive skewness with 
mode (M), median (x) and mean 
(x); the median divides the sample 
distribution into two equal parts. 
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In Figure 16 x lies to the right of X, so that the arithmetic mean is greater 
than the median, or x - x is positive; hence one also refers to the distribution 
as positively skewed. A simpler description is that distributions with positive 
skewness are" left steep" and exhibit an excessively large positive tail. 

For unimodal distributions the mode (cf., Figure 16), is the most frequent 
sample value (absolute mode, approximated by 3x - 2x), while for multi
modal distributions relative modes also appear, these being values which 
occur more frequently than do their neighboring values, in other words, the 
relative maxima of the probability density (cf., also Dalenius 1965). For 
multimodal distributions (cf., Figure 17) the modes are appropriate mean 
values. Examples of bi- and trimodal distributions are the colors of certain 
flowers and butterflies. 

Bimodal distribution 

Trimodal distribution 

Figure 17 Distributions with more than one mode. 

Estimation of the median 

If the sequence consists of an odd number of values, then the median is the 
middle value of the values ordered by magnitude, while if n is even, then 
there are two middle values, Xt and X2, in which case the median (or better, 
pseudomedian) is given by x = teXt + x2 ) (cf., also Remark 4 in Section 
1.3.6.3 [and the Remark at the end of Section 1.3.8.6J). 

If a sequence of specific values grouped into classes is given, the median 
is estimated by linear interpolation according to 

x = l + b(n/2 - (I !h,), 
!Median 

(1.70) 
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Table 22 

Class mean Frequency 
Class X; f; 

5 but less than 7 6 4 
7 but less than 9 8 8 
9 but less than 11 10 11 

11 but less than 13 12 7 
13 but less than 15 14 5 
15 but less than 17 16 3 
17 but less than 19 18 2 

n =40 

where L = lower class limit of the median class; b = class width; n = 

number of values; (IJ)r. = sum of the frequency values of all classes below 
the median class ;fMedian = number of values in the median class. 

In the example in Table 22, since the median must lie between the 20th 
and 21st values, and since 4 + 8 = 12, whereas 4 + 8 + 11 = 23, it is 
clear that the median must lie in the 3rd class. 

x = L + b(n/2 - (L f)r.) = 9 + 2(40/2 - 12) = 10.45. 
fMedian 11 

For the median fi of a population with random variable X (cf. Section 
1.2.6) we have the inequalities P(X < jl) :$; 0.5 and P(X > jl) :$; 0.5. For a 
continuous population the median is defined by F(jl) = 0.5. 

REMARK. A quantile ~p (Greek xi) (also called a fractile, percentile) is a location 
measure (or parameter) defined by P(X::::; ~p) ;?: p, P(X;?: ~p) ;?: 1 - p (cf., Section 
1.2.6). The value ~p of a continuous distribution thus has the property that the 
probability of a smaller value is precisely equal to p, and that of a larger value, to 
I - p. For a discrete distribution "precisely" is to be replaced by "at most". 
Particular cases of quantiles at p = t, t, !, q/IO (q = 1,2, ... ,9), r/100 (r = 1,2, 
... ,99) are referred to as the median, lower quartile or QI (cr., Section 1.3.8.7), upper 
quartile or Q3' or qth decile (in Sections 1.3.3.6-7 called DZ1, ..• ,DZ9 ), and rth 
percentile or rth centile, respectively. For ungrouped samples, e.g., the value with the 
order number (n + I)p/IOO is an estimate xp of the pth percentile ~p (xp is the sample 
pth percentile; e.g. the 80th percentile for n = 125 values in ascending order is the 
(125 + 1)80/100 = 100.8 = IOlst value. For grouped samples, the quantiles are 
computed according to (1.70) with n/2 replaced by in/4 (i = I, 2, 3; quartile), jn/IO 
U = I, 2, ... , 9 ; decile), kn/IO (k = 1, 2, ... , 99; percentile), and the median and 
median class by the desired quantile and its class. The corresponding parameters are 
~p. For discrete distributions a quantile cannot always be specified. Certain selected 
quantiles of the more important distribution functions, which playas upper tail 
probabilities a particular role in test theory, are tabulated in terms of I - P = IX (e.g., 
Tables 27 and 28, Section 1.5.2) or I - P = P (e.g., Table 30a, Section 1.5.3), rather 
than in terms of p as in the above definitions. 
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Rough estimate of the mode 

Strictly speaking, the mode is the value of the variable that corresponds to the 
maximum of the ideal curve that best fits the sample distribution. Its determination 
is therefore difficult. For most practical purposes a satisfactory estimate ofthe mode is 

M=L+b( fu-fu-1 ), 
2· fu - f.-I - f.+ 1 

(1.71) 

where L = lower class limit of the most heavily occupied class; b = class width; 
fu = number of values in the most heavily occupied class; fu-I> fu+ 1 = numbers of 
values in the two neighboring classes. 

EXAMPLE. We use the distribution of the last example: 

( fu-fu-l) (11-8) 
M = L + b 2 -fu _ fu-l _ fu+ 1 = 9 + 2 2. 11 _ 8 _ 7 = 9.86. 

Here M is the maximum of an approximating parabola that passes through 
the three points (XU-I, fu-l), (xu, fu), and (xu+ 1, fu+ 1)' The corresponding 
arithmetic mean lies somewhat higher (x = 10.90). For unimodal distribu
tions with positive skewness, as in the present case (cf., Fig. 18), the ine
quality x > x > M holds. This is easy to remember because the sequence 
mean, median, mode is in alphabetical order. 

Figure 18 Positively skewed left 
steep frequency distribution. 

x-scale expanded 

by a factor of 5 

II ,1I'j 

For continuous unimodal symmetric distributions the mode, median, 
and mean coincide. With skewed distributions the median and mean can 
still coincide. This of course holds also for V-shaped distributions, charac
terized by the two modes and a minimum (xmin) lying between them. Ex
amples of distributions of this type are influenza mortality as a function 
of age (since it is greatest for infants and for the elderly) and cloudiness in 
the northern latitudes (since days on which the sky is, on the average, half 
covered are rare, while clear days and days on which the sky is overcast 
are quite common); cr., Yasukawa (1926). 
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1.3.8.4 The standard error of the arithmetic mean and of the 
median 

Assuming independent random variables, we know that with increasing 
sample size suitable statistics of the sample tend to the parameters of the 
parent population; in particular the mean X determined from the sample 
tends to Jl (cf., end of Section 1.3.1). 

How much can x deviate from Jl? The smaller the standard deviation (J 

of the population and the larger the sample size n, the smaller will be the 
deviation. Since the mean X is again a random variable, it also has a prob
ability distribution. The (theoretical) standard deviation of the mean X 
of n random variables XI, ... , X n' all of which are independent and identi
cally distributed (cf., remark 4(2) at end of Section 1.2.6: (Jx = ~) is 
determined for N = 00 (i.e., for random samples with replacement or with 
N ~ n; cr., Section 3.1.1) by the formula 

(1.72) 

where (J is the standard deviation of the Xi' As an estimate for (Jx, the so-called 
standard error ofthe arithmetic mean, one has (N = 00, cf. Section 3.1.1) 

s JI. (x - X)2 
Sx = ~ = n(n _ 1) 

X2 - (I x)2/n 

n(n - 1) 

For observations with unequal weight w we have 

Sy = 
_ LWX 

with x = LW' 

(1.73) 

The physicist regards s as the mean error of a single measurement and Sx as 
the mean error of the mean. A halving of this error requires a quadrupling 
of the sample size: (sl.jn)/2 = sl J4ii. For a normal distribution the standard 
error of the median (see box on page 95) has the value 

IE." I with E -1 253' './2 ~ './2 -. , (1.74) 

thus x is a more precise mean than x (cr., also below). 
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The reliability of an estimate used to be indicated by the standard devia
tion; in the case of the mean and summarizing some data, the result is written 
in the form 

(1.75) 

provided the observations come from a normal distribution or the deviations 
from a normal distribution are not weighty and a low degree of generalization 
is intended. If a higher degree of generalization is intended, then the confidence 
interval for Jl is preferred, provided some requirements are met (cf. Sections 
1.4.1 and 3.1.1). In the case of x = 49.36, S:x = 0.1228, we would write 
(1.75) as 49.4 ± 0.1. (Carrying more decimals would not make sense, 
because an "error" of 0.12 renders the second decimal of the estimate 
questionable). Frequently the percentage error was also stated. For our 
example it comes to 

+_x __ _ + _ 0 ~_'100 0.2·100 
- x - - 49.4 - ±0.4%. (1.76) 

If the observations are not normally distributed and some data are 
summarized, then the median x with its standard error Sx is stated: 
x ± Sx' Arranging the observations in ascending order, the standard 
error of the median is estimated by [1/3.4641] {[the value of the 
(n12 + J3r!/2)th observation] - [the value of the (n12 - .J3n12)th 
observation]}, with both values rounded up to the next whole number. 
If the observations are a random sample, it is better to generalize in giv
ing the confidence interval for the median of the population (Sections 
3.1.4 and 4.2.4). 

EXAMPLE FOR X ± SX' Xi: 18,50, 10,39, 12 (n = 5). 
We arrange the observations in ascending order of size from smallest to 

largest: 10, 12, 18,39,50; x = 18; Sx = (a - b)/3.4641 with 

a = (~ + ~) = G + ~) = 2.5 + 1.9 = 5th observation 

b = (~ - ~) = G -~) = 2.5 - 1.9 = 1st observation 

Ss: = [(value of the 5th observation) - (value of the 1st 
observation)]/3.4641 

= (50 - 10)/3.4641 = 11.55 or 12. 

Result: 18 ± 12. 
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Sums, differences, and quotients, together with their corresponding 
standard errors of means of independent samples, have the form (Fenner 
1931): 

Addition: 

Subtraction: 

MUltiplication: 

Division: 

- - + /2 2 
Xl + X2 _ V SX! + SX2 

Xl + X2 + X3 ± JS~! + S~2 + S~3 (1.77) 

(1.78) 

(1.79) 

(1.80) 

With stochastic dependence (p i= O)-between, not within the samples, one 
has 

Addition: 
(1.77a) 

Subtraction: 
(1.78a) 

where r is an estimate of p. The corresponding relations for multiplication 
and division are quite complicated and hold only for large n. 

Let us mention here the frequently applied power product law of propaga
tion of errors. Suppose we are given the functional relation 

I h=kx"y"z< ... (1.81) 

(with known constants k, a, b, c, ... and variables X, y, z, ... ), and that we are 
interested in an estimate of the mean Ii and the mean relative error sr,lli. The 
observations Xi' Yi' Zi' .•. are assumed independent. We need the means 
X, y, z, ... and the corresponding standard deviations. Then the mean 
relative error is given by 

sr,lh = J(a. sxlx)2 + (b· syly)2 + (c· szlz)2 + ... (1.82) 

More on this may be found in Parratt (1961), Barry (1978, cited on page 200), 
and Strecker (1980, cited on page 615). 
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1.3.8.5 The range 

The simplest of all the elementary dispersion measures is the range R, which 
is the difference between the largest and the smallest value in a sample: 

I R=xmax-Xmin' (1.83) 

If the sample consists of only two values, specifying the range exhausts the 
information on the dispersion in the sample. As the size of the sample 
increases, the range becomes a less and less reliable measure for the dis
persion in the sample since the range, determined by the two extreme values 
only, contains no information about the location of the intermediate values 
(cf., also end of Section 7.3.1). 

Remarks concerning the range 

1. If you have to determine standard deviations often, it is worthwhile to familiar
ize yourself with a method presented by Huddleston (1956). The author proceeds 
from systematically trimmed ranges which, when divided by appropriate factors, 
represent good estimates of s; tables and examples can be found in the original work 
(cf., also Harter 1968). 

2. If n' mutually independent pairs of observations are given, then the ranges 
can be used in estimating the standard deviation 

(1.84) 

The caret on the s indicates it is an estimate. 
3. Ifseveral samples of size n, with n ::;; 13, are taken, then the standard deviation 

can be roughly estimated from the mean range (R): 

~ 
~ 

(1.85) 

This formula involves lid., a proportionality factor that depends on the size of the 
samples and that presupposes normal distribution. This factor can be found in 
Table 156. We will return to this later (end of Section 7.3.1). 

4. A rule of thumb, due to Sturges (1926), for determining a suitable class width b 
of a frequency distribution is based on the range and size of the sample: 

R 
b~-----

1 + 3.32 log n 
(1.86) 

For the distribution given in Section 1.3.3 (Table 11) we get b = 2.4; we had chosen 
b=3. 
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5. The formula 

(1.87) 

allows an estimate of the maximum standard deviation in terms of the range (Guter
man 1962). The deviation of an empirical standard deviation from the upper limit 
can serve as a measure of the accuracy of the estimate. For the three values 3, 1, 5 
with s = 2 we have 

4/3 
s < 2. 'I./~ =2.45. 

Equation (1.87) provides a means of obtaining a rough estimate of the standard 
deviation if only the range is known and nothing can be said concerning the shape of 
the distribution. 

6. Rough estimate of the standard deviation based on the extreme values of 
hypothetical samples of a very large size: Assume the underlying distribution of the 
values is approximately normal. Then a rough estimate of the standard deviation of 
the population is given by 

(1.88) 

because in a normal distribution the range 6(J is known to encompass 99.7% of all 
values. For the triangular distribution, we have R/4.9 ;5 S ;5 R/4.2 (l::::,.: S ~ R/4.2; 
!::"s: S ~ R/4.9;.<:d: s "'" R/4.2)-which can be thought of ~s the basic forms of the 
positively skewed, symmetric, and negatively skewed distributions. For the uniform 
or rectangular distribution (c::::=J) we have S ~ R/3.5, and for the V-shaped distribution 
S ~ R/2. As an example for the latter, we consider the sequence 3, 3, 3, 3, 10, 17, 17, 
17, 17, which has an approximately V-shaped distribution. The standard deviation is 

jg.72 17 - 3 
s = -- = 7 whereas s = --- = 7. 

9 - 1 2 

The reader should examine other samples. 
7. A certain peculiarity of the range is worth mentioning: Regardless of the 

distribution of the original population, the distributions of many statistics tend with 
increasing n to a normal distribution (by the central limit theorem, X. is asymptoti
cally normally distributed); this is not true for the distribution of the range. The 
distribution of the estimator S2, estimated by S2, does tend (very slowly) to a normal 
distribution as n increases. 

1.3.8.6 The interdecile range 

Suppose the data, ordered according to magnitude, are partitioned by nine 
values into ten groups of equal size. These values are called deciles and are 
denoted by DZ1, DZ2 , ••• , DZ9 • The first, second, ... , ninth decile is ob
tained by counting off n/lO, 2n/lO, ... , 9n/lO data points. The kth decile can 
be defined as the value that corresponds to a certain region on the scale of an 
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symmetric distribution 

left-steep distribution 

U-shaped distribution 

Figure 19 The interdecile region which encompas
ses 80 % of a distribution with mode M and median x 
(except for the U-shaped distribution at the bottom, 
which exhibits two modes). 
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interval-wise constructed frequency distribution in such a way that exactly 
10k % of the cases lie below this value. Let us note that in accordance with 
this the 5th decile, the point below which 5 tenths of the observations lie, 
is in fact the median. 

A dispersion statistic that, in contrast to the full range, depends very 
little on the extreme values, nevertheless involves the overwhelming majority 
of the cases, and exhibits very slight fluctuation from sample to sample is the 
interdecile range 180 , which encompasses 80 % of a sample distribution: 

(1.89) 

Deciles are interpolated linearly according to the formula (1.70) where, in 
place of n/2, O.ln or 0.9n appears, L is replaced by the lower class limit of the 
decile class, (I f)r by the sum of the frequency values of all the classes below 
the decile class (class containing the particular decile) and fMedian by the 
frequency value of the decile class. For the example in Section 1.3.8.3 one 
gets accordingly 

4-0 
DZ 1 = 5 + 2 -4- = 7, 

36 - 35 
DZ9 = 15 + 2 3 = 15.67, 

the interdecile range is 180 = 15.67 - 7 = 8.67. 
We can also get DZ1 directly as the lower class limit of the 2nd class by 

counting off n/1O = 40/10 = 4 values. DZ9 must follow the 9n/1O = 
(9)(40)/10 = 36th value. 35 values are distributed among classes 1-5. Thus 
we shall also need 36-35 = 1 value from class 6, which contains 3 values. 
We multiply the number i by the class width, obtaining thereby the correc
tion term, which, when added to the lower class limit or class 6, gives the 
decile. 
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Two other dispersion statIstics, the mean deviation of the mean and 
the median deviation will be introduced in Section 3.1.3. 

A rough estimate of the mean and standard deviation for nearly normally 
distributed values, based on the first, fifth, and ninth deciles, is given by 

(1.90) 

I s~0.39(DZ9-DZ)). I (1.91) 

For our example (cf., Section 1.3.8.3) we find according to (1.90) and (1.91) 
that x ~ 0.33(7 + 10.45 + 15.67) = 10.93, s ~ 0.39(15.67 - 7) = 3.38. On 
comparing with x = 10.90 and s = 3.24, we see that the quick estimates 
(cf., also the end of Section 1.3.6.7) are useful. For normally distributed 
samples the agreement is better (a good check on the method). If the samples 
are not normally distributed, quick estimates under circumstances similar 
to those given in the example can represent a better estimate of the para
meters of interest than the standard estimates x and s. 

REMARK. As a parameter of the central tendency or location of the distribu
tion, in addition to the interquartile range Iso = Q3 - Ql (for a normal 
distribution, the region x ± 150/2 includes the exact central 50 % of the 
observations; see Section 1.3.8.7), we also have the two sided quartile
weighted median -* = (Q) + 2x + Q3)/4; -* is yet remarkably robust and 
frequently more informative than x, especially with odd and skewed distri
butions. 

1.3.8.7 Skewness and kurtosis 

With regard to possible deviations from the normal distribution, one singles 
out two distinct types (cf., Figure 20): 

1. One of the two tails is lengthened, and the distribution becomes skewed: 
if the left part of the curve is lengthened, one speaks of negative skewness; 
if the right part is lengthened, positive skewness. In other words, if the 
principal part of a distribution is concentrated on the left side of the 
distribution (left-steep), it is said to have a positive skewness. 

Positive skewness 
Peaked, positive 

kurtosis 

Figure 20 Deviations from the 
symmetric bell-shaped curve (nor
mal distribution). 
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2. The maximum lies higher or lower than that of the normal distribution. 
If it is higher, with the variances equal, so that the shape of the curve 
(the bell) is more peaked, the coefficient of kurtosis will be positive (i.e., 
scantily occupied flanks, with a surplus of values near the mean and in 
the tails of the distribution). With a negative kurtosis the maximum is 
lower, the bell is more squat, and the distribution is flatter than the 
normal distribution. 

Skewness and kurtosis can be determined exactly from the moments. The 
following measures of skewness occasionally prove satisfactory: Of im
portance is 

Skewness I = _3(_x_-_x_) 
s 

(1.92) 

with the rarely attained limits - 3 and + 3. If the arithmetic mean lies above 
the median, as in Figure 18, a positive skewness index arises. Another useful 
measure of skewness, the 1-9 decile coefficient of skewness, is based on the 
median and interdecile range: 

(1.93) 

and varies between - 1 and + 1. 

Remark on the quartiles. There exist 3 values which partition a frequency distribution 
into 4 equal parts. The central value is the median; the other two are designated the 
lower or first quartile and the upper or third quartile, i.e., the first quartile Ql is the 
value that lies at the end of the first quarter of the sequence of measured values, ordered 
by size; Q3 is the value at the end ofthethird quarter of the sequence (cf., Section 1.3.8.3). 

If we replace DZ 1 and DZ9 by Ql and Q3 in (1.93), thus emphasizing the 
central part of the distribution, we find a third measure for the skewness 
(range -1 to + 1): 

(1.94) 

In a symmetric distribution, all three skewness coefficients vanish. 
A simple measure for the coefficient of kurtosis based on quartiles and 

deciles is 

(1.95) 
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For the normal distribution it has the value 0.263. 
If the difference between the mean and the mode is at least twice the 

corresponding standard error, 

I x-M;;:::2[~], I (1.96) 

then the underlying distribution cannot be considered symmetric. For the 
data of Table 22 we have 

[ p:3.24] 10.90 - 9.86 = 1.04 > 0.697 = 2 V2.40 ; 
thus the coefficient of skewness should be evaluated as a further charac
teristic of the underlying, unknown distribution. 

EXAMPLE. We use the values of the last example: 

cr., 

Sk I - 3(10.90 - 10.45) - 0417 
ewness - 3.24 -., 

Sk II = 15.67 + 7.00 - 2·10.45 = 0204 
ewness 15.67 - 7.00 ., 

13.00 + 8.50 - 2· 10.45 
Skewness III = 13.00 _ 8.50 = 0.133, 

( 10 - 4) Ql = 7 + 2 -8- = 8.5 ( 30 - 30) 
Q3 = 13 + 2 5 = 13 

(by (1.70) with n/4 or 3n/4 in place of n/2, etc.), so 

. 13.00 - 8.50 
KurtOSIS = 2(15.67 _ 7.00) = 0.260. 

This distribution exhibits the kurtosis of a normal distribution and positive 
skewness. 

Important measures of skewness and kurtosis in a population are the 
third and fourth moments about the mean, i.e., the average values of (x - Jl)3 
and (x - Jlt over the whole popUlation. To render these measures scale 
invariant they are divided by (13 and (14 respectively. The coefficient of 
skewness is OC3 = E(X - Jl)3/(13, and the coefficient of kurtosis 

(1.97) 
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a4 = L:J;(Xi -:- xt - 3. 
n·s 

(1.98) 

Note that s (1.31, 1.35, 1.40, 1.44) is here defined with the denominator 
"n," and not with "n - 1". For a symmetric distribution 0(3 = 0; for the 
normal distribution 0(4 = O. If 0(3 is positive, we have positive skewness; if 
negative, negative skewness. A distribution with a high peak-steeper than 
the normal distribution-exhibits a positive value of 0(4; a distribution 
that is flatter than the normal distribution exhibits a negative value of 0(4' 

The kurtosis measures peakedness combined with tailedness and corres
ponding depletion of the flanks, and hence is strongly negative for a bimodal 
curve (Finucan 1964, cf., also Chissom 1970 and Darlington 1970). The 
rectangular distribution with distinct flanks therefore also has a negative 
kurtosis (0(4 = - 1.2). This is true as well for every triangular distribution 
(0(4 = -0.6), which exhibits more fully developed flanks than a normal 
distribution with the same variance but has no tails. 

But first another remark on moments. Quantities of the form 

(1.99) 

are called therth sample moments (m,). For r = 2, (1.99) yields approximately 
the sample variance. Both moment coefficients can be written more con
ciselyas 

(1.97a) (1.98a) 

If the class width does not equal one (b # 1), our definition becomes 

(1.100) 

In order to facilitate the calculation it is customary to relate the power 
moments not to the arithmetic mean but rather to some arbitrary origin, 
say to the number d, which identifies the most populous class of a frequency 
distribution. We are already acquainted with this method (multiplication 
procedure, cf. Section 1.3.6.4). The moments so obtained are denoted by 
m; to distinguish them from the moments m,. Writing again (x - d)jb = z, 
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we get the first through fourth order moments of the sample (cf., Table 23) 
from the formulas: 

Lk z . 18 
1st order moment ' " = 40 = 0.45, (LlOl) ml=--

n 

L;;' z~ 110 
2nd order moment m' - I, = 40 = 2.75, (Ll02) 2 -

n 

3rd order moment 
L;;' z~ 

' " m3 = 
n 

216 
= 40 = 5.40, (1.103) 

L;;' z~ 914 
4th order moment ' " = 40 = 22.85. (1.104) m4 = 

n 

Table 23 includes an additional column with the products Hz; + It, 
which will be used to test the computations. The column sums can be 
readily checked with the help of the relation 

(1.l05) 

2550 = 40 + 72 + 660 + 864 + 914. The above also provides us with 
estimates of the following parameters: 

1. The mean 

(1.106) 

x=9.8+0.5-0.45= 10.025. 

Table 23 

x; f; I; f;l; f;l; 2 f;l; 3 f;l; 4 
f; (I; + 1)4 

8.8 4 - 2 - 8 16 - 32 64 4 
9.3 8 - 1 - 8 8 - 8 8 0 

d = 9.8 11 0 0 0 0 0 11 
10.3 7 1 7 7 7 7 112 
10.8 5 2 10 20 40 80 405 
11.3 3 3 9 27 81 243 768 
11.8 2 4 8 32 128 512 1,250 

40 18 110 216 914 2,550 



1.3 The Path to the Normal Distribution 105 

2. The variance 

(1.107) 

3. The skewness 

(1.108) 

0.5 3 • (5.40 - 3·0.45·2.75 + 2.0.45 3) = 0460 
a3 0.5082 . . 

4. The kurtosis 

(1.109) 

0.54 . (22.85 -4·0.45· 5.40+6 .0.452 .2.75 - 3 '0.454 ) 3 
a4= 0.4055 

a4= -0.480. 

The sums LJiZ;, 'L /;zr. 'L /;Zf, and 'L /;zt can also be determined with the help of 
the summation procedure introduced in Section 1.3.6.4. In addition to the quantities 
151 ,2 and 81,2 we determine, in terms of columns S4 and S5' the four sums '1 and '2 

(Greek zeta 1 and 2) as well as '11 and '12 (Greek eta I and 2) (see Table 24) and obtain 

Table 24 

fi SI s2 S3 S4 S5 

4 4 4 4 4 4 
8 12 16 = °1 20 = £1 24 = /;1 28 = "1 

11 
7 17 34 = °2 60 = £2 97 = /;2 147 = "2 
5 10 17 26 37 50 
3 5 7 9 11 13 
2 2 2 2 2 2 

'L/;Zi = 152 - 15 1 = 34 - 16 = 18, 

'LJ;zf = 282 + 281 - 152 - 151 = 2·60 + 2·20 - 34 -16 = 110, 

I,J;Zf = 6'2 - 6'1 - 6e2 + 6e1 + 152 - 151, 

'LJ;zt = 24'12 + 24'11 - 36'2 - 36'1 + 1482 + 1481 - 152 - 151, 

'L J;zt = 6·97 - 6·24 - 6·60 + 6·20 + 34 - 16 = 216, 

'L J;zt = 24·147 + 24·28 - 36·97 - 36·24 + 14·60 + 14·20 - 34 - 16 = 914. 

The statistics can then be found by the formulas (1.101) to (1.109). 
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When dealing with very extensive samples, and provided the sample distribution 
exhibits no asymmetry, you should use the moments modified according to Sheppard: 

I s!od=s2-b2/12, (1.46) 

m4.mod = m4 - (l/2)m2b2 +(7 /240)b4 • (1.110) 

The measures for the skewness and kurtosis arrived at by way of moments have the 
advantage that the standard errors are known. 

Summary 

If the data are grouped into classes of class width b, with class means Xi and 
frequencies/;, then the mean, variance, and moment coefficients for skewness 
and kurtosis can be estimated according to 

x=d+b(l{:), (1.111) 

s2=b2PZ2:~'f)2/n), (1.112) 

a3=~(~-3(~)(~) +2(r{:r), (1.113) 

a4=~(~-4(~Z~(~Z)+6(~)(~r -3(~) 4)_3, (1.114) 

where d = assumed mean, usually the mean of the most strongly occupied 
class; b = class width; f = class frequencies, more precisely /;; and z = 
deviations Zi = (Xi - d)jb: the class containing the mean d gets the number 
Z = 0, with classes below being assigned the numbers Z = -1, - 2, ... in 
descending order, while those in ascending order the numbers z = 1,2, ... . 

The method of moments was introduced by Karl Pearson (1857-1936). 
The notions of standard deviation and normal distribution also originated 
with him. 

We are now in a position to discuss at length a one dimensional frequency 
distribution along with the tabulated and graphical presentation in terms 
of the four parameter types: means, measures of variance, measures of 
skewness, and measures of kurtosis. 

The statistics Xmin , Q 1, x, Q 3 , Xmax , and other measures based on them are 
sufficient for a survey and appropriate for every distribution type. A good 
insight into the form of a distribution can generally be gained from quantiles 
(Section 1.3.8.3). Also measures based on them are often more informative 
than those based on the mean and standard deviation, the latter being 
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strongly influenced by extreme values. In the case of multi modal distribution, 
estimates of the modes have to be listed as well. 

The more obvious deviations from normal distribution (e.g., left-steepness 
(see pages 99, 100), right-steepness (seldom!) or/and multimodality) which 
are already apparent in a counting table, are tabulated or, better yet, 
graphed-for small sample size, as points on a line, (or, for a two dimensional 
distribution, as points in the plane; cf., e.g., Section 5.4.4, Fig. 51); for large 
sample size, as a histogram (see E. S. Pearson and N. W. Please 1975 [Bio
metrika 62, 223-241, D. W. Scott 1979 [Biometrika 66, 605-61OJ and 
Gawronski and Stadtmiiller 1981) or as a two dimensional frequency 
profile (cf., also Sachs 1977). 

Remarks 

1. To describe the problem and the data: As soon as a frequency distribution is 
characterized in the way described above, at least the following unavoidable questions 
arise (cf., also Sachs 1977 [8:2a]): (1) What are the occasion and purpose of the 
investigation? (2) Can the frequency distribution be interpreted as a representative 
random sample from the population being studied or from a hypothetical popula
tion (cf., Section 1.3.1), or is it merely a nonrepresentative sample? (3) What do we 
decide are the defining characteristics of the population and the units of analysis and 
observation? 

2. Significant figures (cf., Section 0.4-5) of characteristic values: Mean values 
and standard deviations are stated with one or at most two decimal places more pre
cision than the original data. The last is appropriate in particular when the sample 
size is large. Dimensionless constants like skewness and kurtosis, correlation and 
regression coefficient, etc., should be stated with two or at most four significant 
figures. In order to attain this precision it is frequently necessary to compute power 
moments or other intermediate results correctly to two or three additional decimal 
places. 

1.3.9 The log normal distribution 

Many distributions occurring in nature are left-steep [flat on the right]. 
Replacing each measurement by its logarithm will often result in distribu
tions looking more like a normal distribution, especially if the coefficient of 
variation V = s/x > 0.3. The logarithm transforms the positive axis 
(0, 00) into the real axis ( - 00, 00) and (0, 1) into ( - 00, 0). 

A logarithmic normal distribution, lognormal distribution for short, 
results (Aitchison and Brown 1957) when many random quantities cooperate 
multiplicatively so that the effect of a random change is in every case pro
portional to the previous value of the quantity. In contrast to this, the 
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normal distribution is generated by additive cooperation of many random 
quantities. Therefore it is not surprising that the lognormal distribution 
predominates, in particular, for economic and biological attributes. An 
example is the sensitivity to drugs of any given species ofliving beings-from 
bacteria to large mammals. Such characteristics in humans include body 
height (of children), size of heart, chest girth measurement, pulse frequency, 
systolic and diastolic blood pressure, sedimentation rate of the red blood 
corpuscles, and percentages of the individual white blood corpuscle types, 
in particular the eosinophiles and the stab neutrophiles as well as the 
proportions of the various components of the serum, as for example glucose, 
calcium and bilirubin. Other examples are survival times. Economic 
statistics with lognormal distributions include gross monthly earnings of 
employees, turnovers of businesses, and acreages of cultivation of various 
types of fruit in a county. The lognormal distribution is often approximated 
also by attributes that can assume integral values only, as e.g., the number 
of breeding sows in a census district and the number offruit trees in a region. 
In particular, lognormal distributions arise in the study of dimensions of 
particles under pulverization. 

Williams (1940) analyzed a collection of 600 sentences from G. B. Shaw's 
"An Intelligent Woman's Guide to Socialism" which consisted of the first 
15 sentences in each of sections 1 to 40, and found the distribution of the 
length of the sentences to be 

Y = 1 e-(x-1.4)2/(z'O.Z9 2 ) 

0.29.J2rr 

(y = frequency and x = logarithm of the number of words per sentence), 
a lognormal density. Generally, the number of letters (or of phonemes) per 
word in English colloquial speech follows a lognormal distribution re
markably well (Herdan 1958, 1966). Lognormal distributions also come up, 
as mentioned earlier, in studies of precipitation and survival time analyses
in reliability theory-as well as in analytic chemistry: in qualitative and 
quantitative analysis for a very wide range of concentrations (over several 
powers of ten), when one works in a neighborhood of zero or one hundred 
percent (e.g., in purity testing) and when the random error of a procedure 
is comparable to the measured values themselves. 

The true lognormal distribution is 

1 1 _ (In X-I')2j(Zrr') y=---·-e 
J27t(J2 x 

for x> O. (1.115) 

To test whether an attribute follows a lognormal distribution, one uses the 
logarithmic probability grid, which has a logarithmically scaled abscissa 
(cf., Section 1.3.7). The cumulative frequencies are always paired with the 
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upper (lower) class limit, the limit value of the attributes combined in that 
particular class. The class limit always lies to the right (left) if frequencies 
are added according to increasing (decreasing) size of the attributes. If the 
plotted values lie approximately on a straight line, we have at least an 
approximate lognormal distribution. If the line is bent upward (downward) 
in the lower region, then the cumulative percentages are taken as the ordi
nates paired with the abscissae log(g + F) [or log(g - F)] instead of the 
originally given limit value log g. The vanishing point F, the lower bound of 
the distribution, always lies on the steep side of the curve. It is determined by 
trial and error: if with two F-values one obtains left curvature once and 
right curvature the other time, the value of F sought is straddled and can be 
easily found by interpolation. Occasionally it is easy to recognize the 
physical meaning of F. To determine the parameters graphically, a straight 
line best fitting the points is drawn; the (median)/( dispersion factor), median, 
and (median)(dispersion factor) are the abscissae of the points of inter
section with the 16%, 50%, and 84% line respectively. Important for a 
lognormal distribution is the central 68 % of its mass, written 

(median)(dispersion factor)± 1, 

which involves an interval, reduced by the extreme values, of "still typical 
values." 

The dispersion factor is presented in greater detail in the formula (1.117). 
To estimate the parameters mathematically, the data are classified in the 
usual way with constant class width, the logarithms of the class means 
(log x) are determined, the productsfi log Xj andfi(1og X)2 (fi = frequency 
in classj) are formed, summed, and inserted in the following formulas: 

d· ·1 - ·1 (I fi log Xj) me lanL = antI og Xlogxj = antI og n ' 

dispersion factor = antilog Jsfogxj 

~~~--~--~~~--~~ 

fi(log x Y - (I fi log x )2/n 
= antilog 

n - 1 

meanL = antilog(xlogXj + 1.1513s~gx), 
modeL = antilog(xlogXj - 2.3026sfogx). 

(1.116) 

(1.117) 

(1.118) 

(1.119) 

For samples of small size, the logarithms of the individual values are used in 
place of the logarithms of the class means; the frequencies (fi) are then all 
equal to one (fi = 1). The dispersion factor is an estimate of antilog Slogxj. 

Thus with increasing dispersion factor the arithmetic mean is shifted to the 
right with respect to the median, and the mode about twice that amount to 
the left (cf., also the end of Section 7.3.2, Mann et aI., 1974 [8:2d], 
Thani 1969, King 1971, Hasselblad 1980, and Lee 1980). 
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EXAMPLE. The following table contains 20 measured values xi' ordered by 
magnitude, which are approximately lognormally distributed. Estimate the 
parameters. 

Xi log xi (log Xi) 2 

3 0.4771 0.2276 
4 0.6021 0.3625 
5 0.6990 0.4886 
5 0.6990 0.4886 
5 0.6990 0.4886 
5 0.6990 0.4886 
5 0.6990 0.4886 
6 0.7782 0.6056 
7 0.8451 0.7142 
7 0.8451 0.7142 
7 0.8451 0.7142 
7 0:8451 0.7142 
8 0.9031 0.8156 
8 0.9031 0.8156 
9 0.9542 0.9105 
9 0.9542 0.9105 

10 1.0000 1.0000 
11 1.0414 1.0845 
12 1.0792 1.1647 
14 1.1461 1. 3135 

L 16.7141 14.5104 

Mantissas rounded off to two decimal 
places (log 3 = 0.48) are almost always 
adequate. 

The coefficient of variation of the original data (x) is V = 2.83/7.35 = 

38.5 %, clearly above the 33 % bound. We have: 

d · '1 {16.7141} '1 083 me IanL = antI og 20 = antI og . 57 = 6.850, 

.. . 14.5104 - 16.7141 2/20 . J 
dIspersIOn factor = antIlog 1 = antIlog 0.02854, 

20 -

dispersion factor = antilog 0.1690 = 1.476. 

The central 68 % of the mass lies between 6.850/1.476 = 4.641 and 
(6.850)(1.476) = 10.111 [i.e., (6.850)(1.476)±1]. Five values lie outside this 
region, whereas (0.32)(20) = 6 values were to be expected. We have 

meanL = antilog(0.8357 + 1.1513·0.02854) = antilog 0.8686, 

meanL = 7.389, 

modeL = antilog(0.8357 - 2.3026·0.02854), 

modeL = antilog 0.7700 = 5.888. 
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Nonsymmetric 95%-confidence interval for f1 

Frequently a non symmetric confidence interval (e.g., a 95 % CI) is given for 
f1 (cr., Sections 141, 151, and 311). It is simply the symmetric confidence 
interval for f110 g x of the (approximately) normally distributed random 
variable log x transformed back into the original scale: 

For the example with the 20 observations and x = 7.35 there results (cf., 
Section 7.3.3) 

Remarks 

[] = 0.8357 ± 2.093JO.02854/20 = 0.7566, 0.9148 
95% CI: 5.71 :::; f1:::; 8.22. 

1. If you frequently have to compare empirical distributions with normal distribu
tions and/or lognormal distributions, use, e.g., the evaluation forms (AFW 172a and 
173a), issued by Beuth-Vertrieb (for address see References, Section 7). 

2. Moshman (1953) has provided tables for the comparison of the central 
tendency of empirical lognormal distributions (of approximately the same shape). 

3. The distribution of extreme values-the high water marks of rivers, annual 
temperatures, crop yields, etc.,-frequently approximates a lognormal distribu
tion. Since the standard work by Gumbel (1958) would be difficult for the beginner, 
the readily comprehensible graphical procedures by Botts (1957) and Weiss 
(1955, 1957) are given as references. Gumbel (1953, 1958; cr., also Weibull 
1961) illustrated the use of extreme-value probability paper (produced by Technical 
and Engineering Aids to Management; see References, Section 7) on which a certain 
distribution function of extreme values is stretched into a straight line (a more 
detailed discussion of probability grids can be found in King 1971). For an excellent 
bibliography of extreme-value theory see Harter (1978). 

4. Certain socioeconomic quantities such as personal incomes, the assets of 
businesses, the sizes of cities, and numbers of businesses in branches of industry 
follow distributions that are flat to the right, and which can be approximated over large 
intervals by the Pareto distribution (cf., Quandt 1966)-which exists only for values 
above a certain threshold (e.g., income> S800)-or other strongly right skewed 
distributions. If the lognormal distribution is truncated on the left of the mode 
(restricted to the interval right of the mode), then it is very similar to the Pareto 
distribution over a wide region. 

5. In typing a letter a secretary may make typographical errors each of which 
prolongs the task by the time necessary to correct it. Highly skewed and roughly 
L-shaped distributions tend to occur when time scores are recorded for a task subject 
to infrequent but time-consuming errors (vigilance task conditions). More on bizarre 
distribution shapes can be found in Bradley (1977). 

6. For the three-parameter lognormal distribution see Kubler (1979), Griffiths 
(1980) and Kane (1982). 

7. If some of the observed values we want to transform by xi = log Xj lie between 
o and 1, all the data are multiplied by an appropriate power of 10 so that all the x
values become larger than 1 and all the characteristic numbers are positive (cf., 
Section 7.3.3). 
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1.4 THE ROAD TO THE STATISTICAL TEST 

1.4.1 The confidence coefficient 

Inferences on a parameter from characteristic numbers. The characteristic 
numbers determined from different samples will in general differ. Hence the 
characteristic number (e.g., the mean x) determined from some sample is 
only an estimate for the mean f1 of the population from which the sample 
originated. In addition to the estimate there is specified an interval which 
includes neighboring larger and smaller values and which presumably in
cludes also the" unknown" parameter of the population. This interval around 
the characteristic number is called the confidence interval. By changing the size 
of the confidence interval with the help of an appropriate factor, the reliability 
of the statement that the confidence interval includes the parameter of the 
population can be preassigned. If we choose the factor in such a way that the 
statement is right in 95 % and wrong in 5 % of all similar cases, then we say: 
The confidence interval calculated from a sample contains the parameter of 
the population with the statement probability or confidence prQbability or 
confidence coefficient S of 95 %. Thus the assertion that the parameter lies 
in the confidence interval is false in 5 % of all cases. Hence we choose the 
factor so that the probability for this does not exceed a given small value rx 
(Greek alpha: (X .::;; 5 %, i.e., (X .::;; 0.05) and call (X the level of significance. 
For the case of a normally distributed population, Table 25 gives a survey 
of the confidence intervals for the mean f1 of the population: 

where ( - a - a ) p X - z In .::;; f1 X + z In = S = 1 - (x. 

(1.l20a,b) 

The value z is found in a table of the standard normal distribution [cr., 
Tables 13 and 14 (Section 1.3.4) and Table 44 (Section 2.1.6)]. Sigma (a) 
is the standard deviation, which is known or is estimated from a very large 
number of sample values. 

Equation (1.l20a,b) implies that with probability rx the parameter f1 in 
question fails to lie in the given confidence interval [that with probability rx 
the estimator X of f1 is off from the true value by more than the (additive) 
factor za/ jn], i.e., if we repeat the experiment m times, we can expect that 
the resulting confidence intervals do not contain the true value f1 in Inrx of the 
cases. By looking more closely at Table 25 we recognize that S (or rx, the two 
adding to 100% or to the value 1) determines the confidence in the statistical 
statement. The larger the confidence coefficient S, the larger will be the 
confidence interval for given standard deviation and given sample size. 
This implies that there exists a conflict between the precision of a statement 
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Table 25 

Confidence interval for Confidence probability 
the mean J1 of a normally or confidence Level of 
distributed population coefficient S significance ex 

(J 

X+ 2-- In 95.44% = 0.9544 4.56% = 0.0456 

(J 

X+ 3-- In 99.73% = 0.9973 0.27% = 0.0027 

(J 

X ± 1.645 Vn 90% = 0.9 10% = 0.10 

X ± 1.960 Jn 95% = 0.95 5% = 0.05 

_ (J 

X ± 2.576 In 99% = 0.99 1% = 0.01 

(J 

X ± 3.2905 In 99.9% = 0.999 0.1% = 0.001 

_ (J 

X ± 3.8906 In 99.99% = 0.9999 0.01 % = 0.0001 

and the certainty attached to this statement: precise statements are uncertain, 
while statements that are certain are imprecise. The usual significance levels 
are IX = 0.05, IX = 0.01, and IX = 0.001, depending on how much weight one 
wishes to attach to the decision based on the sample. In certain cases, 
especially when danger to human life is involved in the processes under 
study, a substantially smaller level of significance must be specified; in other 
cases a significance level of 5 % might be unrealistically small. The concept 
of the confidence interval will again be considered at some length in Chapter 3 
(Section 3.1.1). 

Inferences based on the parameters concerning their estimates. The param
eters of a population are known from theoretical considerations. What needs 
to be determined is the region in which the estimators (e.g., the means Xi) 
derived from the individual samples lie. Therefore a tolerance interval is 
defined, containing the theoretical value of the parameter, within which the 
estimators are to be expected with a specified probability. The limits of the 
interval are called tolerance limits. With a normal distribution (a known, or 
else estimated from a very large sample) they are given for the sample mean by 

where p(J.l - Z ~ ~ X ~ J.l + Z ~) = S = 1 - IX. 

(1.121a,b) 
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If the symbols Jl and X are interchanged in Table 25, then it is also valid in 
this context. An arbitrary sample mean X is covered by a tolerance interval 
with confidence coefficient S, i.e., in (S)(100) % of all cases it is expected that 
X will be within the specified tolerance limits. If the sample mean X falls 
within the tolerance interval, the deviation from the mean Jl ofthe population 
will be regarded as random. If however, X does not lie in the tolerance 
region, we shall consider the departure of X from Jl significant and conclude 
with a confidence of S% that the given sample was drawn from a different 
population. Occasionally only one tolerance limit is of interest; it is then 
tested whether a specific value ("theoretical value," e.g., the mean of an 
output) is not fallen short of or exceeded. 

1.4.2 Null hypotheses and alternative hypotheses 

The hypothesis that two populations agree with regard to some parameter 
is called the null hypothesis. It is assumed that the actual difference is zero. 
Since statistical tests cannot ascertain agreements, but only differences 
between the populations being compared (where one population might be 
fully known), the null hypothesis is, as a rule, brought in to be rejected. It is 
the aim of the experimental or alternative hypothesis to prove it "null and 
void." When can we, using only a statistical test, reject the null hypothesis 
and accept the alternative hypothesis? Only if an authentic difference exists 
between the two populations. Often, however, we have only the two samples 
at our disposal and not the populations from which they came. We must then 
consider the sampling variation, where we have varying statistics even for 
samples from a single population. This shows that we can practically always 
expect differences. To decide whether the difference is intrinsic or only 
random, we must state, or (better) agree upon, what we wish to regard as the 
limit (critical value) of the manifestation of chance "as a rule," as far as can 
be foreseen. 

We propose the null hypothesis and reject it precisely when a result 
that arises from a sample is improbable under the proposed null hypothesis. 
We must define what we will consider improbable. Assume we are dealing 
with a normal distribution. For the frequently used 5 % level, (± )1.9611 is 
the .critical value (S = 95 %). In earlier times the three sigma rule-i.e., 
with a level of significance ex = 0.0027 (or confidence coefficient S = 99.73 %), 
corresponding to the 311 limit-was used almost exclusively. 

We can require, e.g., that the probability of the observed outcome (the 
"worse" one in comparison with the null hypothesis) must be less than 5 % 
under the null hypothesis if this null hypothesis is to be rejected. This prob
ability requirement states that we will consider an outcome random if in 
four tosses of a fair coin it lands tail (head) up four times. If however the coin 
lands tail up in five out of five tosses the outcome is viewed as "beyond pure 
chance," i.e., as in contradiction to the null hypothesis. The probability 
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that a fair coin tossed four or five times respectively always lands on the 
same side is 

P 4x=(1/2)4= 1/16 =0.06250 

P5x= (1/2)5 = 1/32=0.03125, 

i.e., about 6.3 % or about 3.1 %. Thus if a factual statement is said to be 
assured of being beyond pure chance with a confidence coefficient of 95 %, 
this means that its random origin would be as improbable as the event that 
on tossing a coin five times one always gets tails. The probability that in n 
tosses of a coin tails come up every time can be found in Table 26 [2- n = 
(1/2rJ. 

Table 26 The probability P that a coin tossed n 
times always falls on the same side, as a proto
type for a random event. 

2" 2-" 
P level 

" 1 2 0.50000 
2 4 0.25000 
3 8 0.12500 
4 16 0.06250 < 10 % 
5 32 0.03125 < 5 % 
6 64 0.01562 
7 128 0.00781 < 1 % 
8 256 0.00391 < 0.5 % 
9 512 0.00195 

10 1024 0.00098 ~ 0.1 % 2'0~103 

11 2048 0.00049 ~ 0.05 % 
12 4096 0.00024 
13 8192 0.00012 
14 16384 0.00006 < 0.01 % 
15 32768 0.00003 

If a test with a level of significance of, for example, 5 % (significance level 
IX = 0.05) leads to the detection of a difference, the null hypothesis is rejected 
and the alternative hypothesis-the populations differ-accepted. The 
difference is said to be important or statistically significant at the 5% level, 
i.e., a valid null hypothesis is rejected in 5 % of all cases of differences as large 
as those observed in the given samples, and such differences are so rarely 
produced by random processes alone that: 

a. we will not be convinced that random processes alone give rise to the data 
or, formulated differently, 

b. it is assumed that the difference in question is not based solely on a random 
process but rather on a difference between the populations. 
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Sampling results lead to only two possible statements: 

1. The decision on retaining or rejecting the null hypothesis. 
2. The specification of the confidence intervals. 

A comparison of two or more confidence intervals leads to another method 
of testing whether the differences found are only random or are in fact 
statistically significant. 

Null hypotheses and alternate hypotheses form a net, which we toss out 
so as to seize "the world" - to rationalize it, to explain it, and to master it 
prognostically. Science makes the mesh of the net ever finer as it seeks, with 
all the tools in its logical-mathematical apparatus and in its technical
experimental apparatus, to reformulate new, more specific and more general 
null hypotheses-negations of the corresponding alternate hypotheses-of as 
simple a nature as possible (improved testability) and to disprove these null 
hypotheses. The conclusions drawn are never absolutely certain, but are 
rather provisional in principle and lead to new and more sharply formulated 
hypotheses and theories, which will undergo ever stricter testing and will 
facilitate scientific progress and make possible an improved perception of 
reality. It should be the aim of scientific inquiry to explain a maximum number 
of empirical facts using a minimum number of hypotheses and theories and 
then again to question these. What is really creative here is the formulation 
of the hypotheses. Initially simple assumptions, they become empirical 
generalizations verified to a greater or lesser degree. If the hypotheses are 
ordered by rank and if there are deductive relations among them (i.e., if 
from a general hypothesis particular hypotheses can be deduced), then what 
we have is a theory. To prove theorems within the framework of theories and 
to synthesize a scientific model of the world from individual isolated theories 
are further goals of scientific research. 

Remark: The randomly obtained statistically significant result 

It is in the nature of the significance level that in a large number of samples from a 
common population one or another could have deviated entirely at random. The 
probability of randomly obtaining a significant result by a finite number n of inquiries 
can be determined from an expansion of the binomial (IX + (1 - IX))". For a signifi
cance level of size IX = 0.01 for two independent and identical trials, we have, by the 
known binomial expansion (a + b)2 = a2 + 2ab + b2, the relation (0.01 + 0.99)2 
= (0.01)2 + 2(0.01)(0.99) + (0.99)2 = 0.0001 + 0.0198 + 0.9801 = 1.0000, i.e.,: 

1. The probability that under the null hypothesis both inquiries yield significant 
results, with PHD = 0.0001, is very small. 

2. The probability that under Ho one of the two trials proves significant is PHD 

= 0.0198, or nearly 2 %, about two hundred times as large. 
3. Of course with the largest probability under H 0' neither of the two inquiries will 

yield significant results (PHD = 0.9801). 
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Associated probabilities can be determined for other significance levels as well as 
for 3 or more trials. As an exercise, the probabilities for IX = 0.05 and 3 trials can be 
calculated: Recalling that 

we get 

(0.05 + 0.9W = 0.053 + 3 .0.052 ·0.95 + 3 .0.05.0.952 + 0.953 

= 0.000125 + 0.007125 + 0.135375 + 0.857375 = 1. 

The probability that, under the null hypothesis and with IX = 0.05, out of three trials: 
(a) one proves to be entirely randomly statistically significant, is 13.5 %; (b) at least 
one proves to be entirely randomly statistically significant is 14.3 % (0.142625 = 
0.000125 + 0.007125 + 0.135375 = 1 - 0.857375) [see Section 1.2.3, "Examples of 
the multiplication rule," No.4]: P = 1 - (1 - 0.05)3 = 0.142625. As an approxima
tion for arbitrary IX and n we have the Bonferroni inequality: the probability of 
falsely rejecting at least one of the n null hypotheses is not greater than the sum of the 
levels of significance, i.e., 0.143 < 0.15 = 0.05 + 0.05 + 0.05. 

1 .4.3 Risk I and risk II 

In the checking of hypotheses (by means of a test), two erroneous decisions 
are possible: 

I. The unwarranted rejection of the null hypothesis: error of Type I. 
2. The unwarranted retention of the null hypothesis: error of Type II. 

Since reality presents two possibilities: (1) the null hypothesis (H 0) is true 
and (2) the null hypothesis is false, the test can lead to two kinds of erroneous 
decisions: (I) to retain the null hypothesis or (2) to reject the null hypothesis, 
i.e., to accept the alternative hypothesis (H A). The four possibilities corre
spond to the following decisions: 

State of natu re 

Decision Ho true Ho false 

Ho rejected ERROR OF TYPE I Correct decision 
Ho retained Correct decision ERROR OF TYPE II 

If, e.g., it is found by a comparison that a new medicine is better when in 
fact the old was just as good, an error of Type I is committed; if it is found by a 
comparison that the two medicines are of equal value when actually the 
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new one is better, an error of Type II is committed. The two probabilities 
associated with the erroneous decisions are called risk I and II: 

The risk I, the small probability that a valid null hypothesis is rejected, 
obviously equals the significance level r:J.: 

r:J. = P(decision to reject HolHo is true) = P(HAIHo). 

The risk II, the probability that an invalid null hypothesis is retained, 
is noted by /3: 

/3 = P(decision not to reject HolHo is false) = P(HoIHA). 

Since r:J. must be greater than zero, if for r:J. = 0 the null hypothesis were 
always retained, a risk of error would always be present. If r:J. and the size n 
are given, /3 is determined; the smaller the given r:J., the larger will be the /3. 
The r:J. and /3 can be chosen arbitrary small only if n is allowed to grow without 
bounds, i.e., for very small r:J. and /3 one can reach a decision only with very 
large sample sizes. With small sample sizes and small r:J. the conclusion 
that there exists no significant difference must then be considered with 
caution. The nonrejection of a null hypothesis implies nothing about its 
validity as long as fJ is unknown. Wherever in this book we employ the term 
"significant," it means always and exclusively "statistically significant." 

Depending on which faulty decision has more serious consequences, 
the r:J. and /3 are so specified in a particular case that the critical pro
bability is ~0.Q1 and the other probability is ~0.10. In practice, r:J. is 
specified in such a way that, if serious consequences result from a 

Type I error, 

Type II error, 

r:J. = 0.01 or r:J. = 0.001; 

r:J. = 0.05 (or r:J. = 0.10). 

According to Wald (1950) one must take into account the gains and losses 
due to faulty decisions, including the costs of the test procedure, which can 
depend on the nature and size of the sample. Consider e.g., the production 
of the new vaccines. The different batches should practically be ~ndis

tinguishable. Unsound lots must in due time be recognized and eliminated. 
The unjustified retention of the null hypothesis" vaccine is sound" means a 
dangerous production error. Thus /3 is chosen as small as possible, since the 
rejection of good lots brings on expenses, to be sure, but generally has no 
serious consequences (then r:J. = 0.10 say). 

Suppose that on the basis of very many trials with a certain coin, we get to know 
the probability 11: of the event "tails"-but tell a friend only that 11: equals either 0.4 
or 0.5. Our friend decides on the following experimental design for testing the null 
hypothesis 11: = 0.5. The coin is to be tossed n = 1000 times. If 11: = 0.05, tails would 
presumably appear about 500 times. Under the alternative hypothesis 11: = 0.04, 
about 400 tails would be expected. The friend thus chooses the following decision 
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process: If the event tails comes up fewer than 450 times he then rejects the null 
hypothesis 11: = 0.05 and accepts the alternative hypothesis 11: = 0.4. If, on the con
trary, it comes up 450 or more times, he retains the null hypothesis. 

A Type I error-rejecting the valid null hypothesis-is made if 11: in fact equals 0.5 
and in spite of this fewer than 450 tails occur in some particular experiment. A Type II 
error is committed if in fact 11: = 0.4 and during the testing 450 or more tails show up. 
In this example, we chose risk I and risk II of about the same size (npq equals 250 
in one case, 240 in the other). The Type I error can however be reduced, even with the 
sample size n given, by enlarging the acceptance region for the null hypothesis. It 
can for example be agreed upon that the null hypothesis 11: = 0.5 is rejected only if 
fewer than 430 tails result. However, with constant sample size n, the Type II error
the retention of the false null hypothesis- then becomes that much more likely. 

If 0( = f3 is chosen, the probabilities for faulty decisions of the first and 
second type are equal. Frequently only a specific 0( is chosen and the H 0 is 
granted a special status, since the H A is in general not precisely specified. 
Thus several standard statistical procedures with preassigned 0( and uncertain 
f3 decide in favor of the H 0: they are therefore known as conservative tests. 

According to Neyman's rule, 0( is given a specific value and f3 should be 
kept as small as possible. It is assumed that an important property of the 
test is known, the so-called power function (cf., Section 1.4.7). 

Moreover let us point out the difference between statistical significance 
and "practical" significance, which is sometimes overlooked: differences 
significant in practice must already be discernible in samples of not very 
large size. 

In summing up, let us emphasize: A true H 0 is retained with the prob
ability (confidence coefficient) S = 1 - 0( and rejected with the prob
ability (level of significance) 0( = 1 - S; thus 0( = 5% = 0.05 and 
S = 95 % = 0.95 means a true H 0 is rejected in 5 % of all cases. 

Errors of Type III and IV are discussed by Marascuilo and Levin (1970). 
Birnbaum (1954), Moses (1956), and Lancaster (1967) consider the combi
nation of independent significance probabilities Pi (we give an approxi
mation to the solutions in Section 4.6.4). Advantages and limitations of 
nine methods of combining the probabilities of at least two independent 
studies are discussed in Rosenthal (1978). Here, in contrast with a specific 
preassigned level of significance 0(, P is the empirical level of significance 
under the null hypothesis for a given sample, called the descriptive or nominal 
significance level for short [cf., pages 120 and 266]. 

Two strategies can in principle be distinguished, that of the "discoverer" and 
that of the "critic." The discoverer wishes to reject a null hypothesis; thus he prefers 
a large risk I and a small risk II. The opposite is true of the critic: he prevents the 
acceptance of a false alternate hypothesis by adopting a small risk I and a large risk II, 
which allows the null hypothesis to be erroneously retained. 

Outside the realm of science one is generally content with a relatively large risk I, 
thus behaving as discoverer rather than as critic. 
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1.4.4 The significance level and the hypotheses are, 
if possible, to be specified before collecting 
the data 

Most people who deal with mathematical statIstIcs emphasize that the 
level of significance is to be specified before the data are gathered. This re
quirement sometimes leads to a number of puzzles for the practioner (cf. 
also McNemar 1969). 

If in some exceptional case a significance level cannot be fixed in 
advance, we can proceed in two ways: (1) Determine the P-value, the 
nominal level of significance, on the basis of the data. This has the 
advantage of a full description of the situation. Moreover it permits 
the experimenter to fix his own level of significance appropriate to 
the problem and to compare the two. The following procedure is, 
however, preferred because it prevents the reproach of prejudice: 
(2) Determine, in terms of the critical 5 % (or 10%), 1 %, and 0.1 % 
bounds, the limits between which P lies, and mark the result using a 
three level asterisk scheme: P > 0.05; [ * ] 0.05 ~ P > 0.01; [ ** ] 0.0 1 ~ 
P < 0.001; [***] P :5: 0.001. In general the first category (without 
asterisk) will be regarded as (statistically) not significant (ns); the 
last, [***], as unquestionably statistically significant. In other words: 
the evidence against Ho is (a) moderate [*], (b) strong [**], and (c) 
very strong [***]. 

It is expedient, before the statistical analysis of the data, to formulate all 
hypotheses that according to our knowledge, could be relevant, and choose 
the appropriate test methods. During the analysis the data are to be carefully 
examined to see whether they suggest still other hypotheses. Such hypotheses 
as are drawn from the material must be formulated and tested with greater 
care, since each group of numbers exhibits random extremes. The risk of 
Type I error is larger, but by an unknown amount, than if the hypotheses 
are formulated in advance. The hypotheses drawn from the material can 
become important as new hypotheses for subsequent studies. 

1 .4.5 The statistical test 

The following amusing story is due to R. A. Fisher (1960). At a party, 
Lady X maintained that if a cup of tea, to which milk had been added, were 
set before her, she could unerringly taste whether the tea or the milk was 
poured in first. How is such an assertion to be tested? Certainly not by 
placing before her only two cups, completely alike on the outside, into one 
of which first milk and then tea (sequence MT) was poured, and into the other 
first tea and then milk (sequence TM). If the lady were now asked to choose, 
she would have a 50% chance of givi)1g the right answer even if her assertion 
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were false. The following procedure is better: Take eight cups, completely 
alike on the outside. Four cups of the set of eight are filled in the sequence 
MT, four in the sequence TM. Then the cups are placed in random order in 
front of the lady. She is informed that four of the cups are of type TM and 
four MT, and that she is to find the four TM type cups. The probability of 
hitting without special talent on the right choice becomes greatly reduced. 
That is, from among 8 cups, (8)(7)(6)(5)/(4)(3)(2) = 70 types of choices of 4 
can be made; only one of these choices is correct. The probability of hitting 
without special talent, randomly, on the right choice, is lo = 0.0143 or 
about 1.4 %, hence very small. If indeed the lady now chooses the 4 correct 
cups, the null hypothesis-Lady X does not have these special talents-is 
dropped and her unusual ability recognized. A significance level of at least 
1.4 % is there assumed. We can of course reduce this significance level still 
further by increasing the number of cups (e.g., with 12, half of which are filled 
according to TM and half according to MT, the significance level is ex ~ 0.1 %). 
It is characteristic of our procedure that we first state the null hypothesis, 
then reject it if and only if a result occurs that is unlikely under the null hy
pothesis. If we state a null hypothesis that we wish to test using statistical 
methods, it will be interesting to know whether or not some existing sample 
supports the hypothesis. In the teacup example we would have rejected the 
null hypothesis if the lady had chosen the 4 correct cups. The null hypothesis 
is retained in all other cases. We must thus come to a decision with every 
possible sample. In the example, the decision of rejecting the null hypothesis 
if the lady chose at least 3 correct cups would also be defensible. More on the 
"tea test" problem can be found in Neyman (1950), Gridgeman (1959), and 
Fisher (1960). 

In order to avoid the difficulty of having to set down the decision for every 
possible outcome, we are interested in procedures that always bring about 
such a decision. One such procedure, which induces a decision on whether 
or not the sample outcome supports the hypothesis, is called a statistical test. 
Many tests require that the observations be INDEPENDENT, as is the case 
with the so-called random samples. Most statistical tests are carried out with 
the aid of a test statistic. Each such test statistic is a prescription, according 
to which a number is computed from a given sample. The test now consists 
of decision based on the value of the test statistic. 

For example, let X be a normally distributed random variable. With 
known standard deviation (J the H 0, J.1 = J.1o or J.1 - J.1o = 0, is proposed, i.e., 
the mean J.1 of the population, which is estimated from a random sample, 
coincides with a desired theoretical value J.1o. The H A is the negation of the 
H o, i.e., J.1 =I- J.1o or J.1 - J.1o =I- O. As a test statistic for the so-called one 
sample Gauss test we use (n = sample size) 

x - J.1o r.:. ~ vn = Z. 
(J 

(1.122) 
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Theoretically Z is, given H 0, standard normally distributed, i.e., with mean 
0, variance 1. The value of the test statistic Z, which depends on the particular 
observations, deviates more or less from zero. We take the absolute value 
I Z I as a measure of the deviation. A critical value z depending on the pre
viously chosen significance level IX can now be specified in such a way that we 
have under Ho 

P(JZI ~ z) = IX. (1.123) 

If our sample yields a value z of the test statistic which is smaller in absolute 
value than the critical value z~, (121 < z~-e.g., for IX = 0.01 there results 
z = 2.58), we conclude that this deviation from the value zero of the hypo
thesis is random. We then say Ho is not contradicted by the sample. Ho is 
retained pending additional tests and, so to speak, for lack of proof, not 
necessarily because it is true. The l001X % level will in the following stand 
for the percentage corresponding to the probability IX (e.g., for IX = 0.01, the 
corresponding 1001X% = (0.01)(100%) = 1 %). 

A deviation of I Z I > z~ (e.g., I Z I > 2.58 for the 1 % level) is, though not 
impossible under H 0, "improbably" large, the probability of a random 
occurrence of this situation being less than IX. It is more likely in this case 
that Ho is not correct, i.e., for IZI ~ z~ it is decided that the null hypothesis 
must be rejected at the lOOIX% level. 

We shall later come to know test statistics other than the one described 
above in (1.122) (cf., also Section 4.6.3). For all of them, however, the dis
tributions specified for the test statistics are strictly correct only if Ho is 
true (cr., also Zahlen 1966 and Calot 1967). 

EXAMPLE. Given: 

f.lo = 25.0; (10 = 6.0 and n = 36, x = 23.2, 

IX = 0.05 (S = 0.95), 

121 = 123.2 - 25.01 J36 = 1.80. 
6 

Since I z I = 1.80 < 1.96 = ZO.05' the Hoof equal population means cannot 
be rejected at the 5 % significance level, i.e., the H 0 is retained. A nonrejected 
H o, since it could be true and since it does not contradict the available data, 
is retained for the time being. More important however than the possible 
correctness of H 0 is the fact that we lack sufficient data to reject it. If the 
amount of data is enlarged, a new verification of H 0 is possible. It is often 
not easy to decide how many data should be collected to test H o, for, with 
sufficiently large sample sizes, almost all H 0 can be rejected. (In Section 3.1 
several formulas are given for the choice of appropriate sample sizes.) 
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EXAMPLE. Given: 

Jlo = 25.0; 0"0 = 6.0 and n = 49, x = 23.2, 

Ho: Jl = Jlo (HA : Jl =/; Jlo), IX = 0.05 (S = 0.95), 

121 = 123.2 - 25.01 J49 = 2.10. 
6 

Since 121 = 2.1 0 > 1.96 = ZO.05' the null hypothesis is rejected at the 5 % 
level (with a confidence coefficient of 95 %). 

Another simple test is contained in Remark 3 in Section 2.4.2. 

The test theory was developed in the years around 1930 by J. Neyman 
and E. S. Pearson (1928, 1933;cf., Neyman 1942, 1950 as well as Pearson 
and Kendall 1970, and Cox 1958, 1977). 

Types of statistical tests 

If only a single hypothesis, the null hypothesis, is proposed with the "tea 
test" and the trial carried out serves only to test whether this hypothesis is 
to be rejected, we speak of a significance test. Trials that serve to verify 
hypotheses on some parameter (e.g., Ho: Jl = Jlo) are called parameter tests. 
A goodness of fit test checks whether an observed distribution is compatible 
with a theoretical one. The question of whether a characteristic is normally 
distributed plays a special role, since many tests assume this. If a test makes 
no assumptions about the underlying distribution, it is called distribution
free. Goodness of fit tests are among the distribution-free procedures. 

We now also see that optimal tests would be insensitive or robust with 
respect to deviations from specific assumptions (e.g., normal distribution) 
but sensitive to the deviations from the null hypothesis. A test is robust 
relative to a certain assumption if it provides sufficiently accurate results 
even when this assumption is violated, i.e., if the real probability of error 
corresponds to the preassigned significance level. 

Generally a statistical procedure is described as robust if it is not very sensitive to 
departure from the assumptions on which it depends. 

Mathematical statistics 

Statistics can be defined as the method or art of gathering and analyzing 
data to attain new knowledge, with mathematical treatment of random 
occurrences (random samples from populations or processes) in the 
foreground. The branch of science that concerns itself with the mathe
matical treatment of random occurrences is called mathematical 
statistics and comprises probability theory, statistics and their applica
tions. 
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On the one hand conclusions about a population are drawn inductively 
from a relevant statistic of a random sample (which can be considered a 
representative of the population studied); the theory of probability, on the 
other hand, allows the deduction, based on a theoretical population, the 
model, of characteristics of a random sample from this theoretical popula
tion: 

.;----- relevant statistic ---------.. 
inductive 

STATISTICS 

deductive 
'------- probability ------/ 

The relevant statistic has two tasks: 

I. The estimation of unknown parameters of the population and the 
confidence limits (estimation procedure). 

2. The testing of hypotheses concerning the population (test procedure). 

The more properties of the population are known on the basis of plausible 
theories or from previous experience, at least in broad outline, the more 
precise will be the chosen probabilistic model and the more precisely can the 
results of the test and estimation procedures be grasped. The connection of 
inductive and deductive procedures is essential for the scientific method: 
Induction, which presupposes a more and more refined analysis, has the task 
of establishing a model based on empirical observations, of testing this model 
and of improving it. To deduction falls the task of pointing out latent con
sequences of the model chosen on the basis of hitherto existing familiarity 
with the material, selecting the best procedure for computing the estimates 
of the parameters of the model from the sample, and deriving the statistical 
distribution of these estimates for random samples. 

1.4.6 One sided and two sided tests 

If the objective of some experiment is to establish that a difference exists 
between two treatments or, better, between two populations created by 
different treatments, the sign of a presumable difference of the two param
eters-say the means of two sets of observations-will in general not be 
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known. H o, which we hope to disprove-the two means originate in the 
same population (111 = 112), is confronted with H A : the two means come 
from different populations (111 =I- 112), because we do not know which 
parameter has the larger value. Sometimes a substantiated hypothesis allows 
us to make certain predictions about the sign of the expected difference-say, 
the mean of population I is larger than the mean of population II (111 > 112) 
or the opposite assertion (111 < 112)' In both cases Ho consists of the antithesis 
of the alternative hypothesis, i.e., contains the situation that is not included in 
the alternative hypothesis. If H A reads 111 > 112, then the corresponding H 0 is 
111 S 112' The Ho: 111 ~ 112 corresponds to HA: 111 < 112' If HA reads 
111 =I- 112, we speak of a two sided alternative, because the rejection of 
Ho: 111 = 112 means either 111 > 112 or 111 < 112' We speak of two sided 
problems and of two sided tests. For the one sided problem-one parameter 
is larger than the other-HA : 111 > 112 is contrasted with Ho: 111 S 112 (or 
111 < 112 with 111 ~ 112)' 

If the sign of a presumable difference of the two parameters-for example 
means or medians-is known, then a one sided test is decided on before 
statistical analysis. Let Ho: 1t = 1to mean, e.g., that two treatments are of 
equal therapeutic value; 1t =I- 1to implies that the remedies are different, the 
new one being either better or not as good as the standard treatment. 
Assume that it is known from previous experiences or preliminary tests that 
the hypothesis of the new remedy being inferior to the standard treatment 
can in practice be rejected. Then the one sided test 1t - 1to > 0 is preferred 
to the two sided test because it has higher proof: it is more sensitive to 
(positive) differences. 

If it is not clear whether the problem is one or two sided, a two sided test 
must be used (cr., Section 1.4.7) because the alternative hypothesis must be 
the antithesis of the null hypothesis. 

1.4.7 The power of a test 

In decision problems, two types of error are to be taken into consideration: 
Errors of type I and II. The connection between them is shown in Figure 2l. 
The density functions of a statistic with respect to two different models 
are plotted as bell-shaped curves; the one on the left represents H o, 1S t , the 
one on the right the simple alternate hypothesis, TS2 ' We obtain a critical 
value for the test statistic by prescribing the size of the error of the first kind, 

Figure 21 Power as area under a 
sampling distribution. Critical value (threshold) of the test statistic T5 
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Ho is not rejected I H A is not rejected 
in this region : in this region 

--==::::"--r:m.;w.u.J.l.I!:.,"",""~",,,,",,, Ts 
TSt / Ts. 

Critical value of the test statistic Ts 

Figure 22 The critical value of the test statistic 
in its dependence on IX (and P). 

and compare it with the empirical test statistic, based on the sample. If this 
value of the test statistic equals or exceeds the critical value, H 0 is rejected. 
If the critical value is not attained by the test statistic, there is then no cause 
for rejecting H 0, i.e., it is retained. Figure 22 shows that, depending on the 
location of the critical value of the test statistic, the value of p (the risk II) 
increases as the level of significance a becomes smaller. 

The risk II, the small probability p of retaining a false H o, depends on: 

1. The size n ofthe sample: the larger the sample, the sooner will a difference 
between two populations be detected, given a significance level a (risk I). 

2. The degree of the difference b between the hypothetical and the true con-
dition, that is, the amount b, by which Ho is false. 

3. The property of the test referred to as the power. 

The power increases: (a) with n, (b) with b, 
(c) with the amount of information in the sample that is incorporated in the 

test statistic-it increases in the sequence: frequencies, ranks, and 
measurements (cf., sections 1.4.8 and 3.9); 

(d) with the number of assumptions on the distribution of the statistic: a 
test that requires the normal distribution and homogeneity of variance 
(homoscedasticity) is in general substantially more powerful than one 
that makes no assumptions. 

The power of a test is the probability of rejecting Ho under the simple 
alternate hypothesis H A. Thus it depends at least on b, a, n and on the type 
of the test (simple, two sided, or one sided): 

I Power = P (reject HolHA is true) = 1 - p. (1.124) 

The smaller the probability p, the more sharply does the test separate Ho 
and H A when a is fixed. A test is called powerful if compared to other tests 
of size smaller or equal to a, it exhibits a relatively high power. If Ho is true, 
the maximum power of a test equals oc. If a very small oc is given, statistical 
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Figure 23 Dependence of the power 
on the one or two sidedness. 
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Critical value of the test statistic Ts 

significance occurs only for large n or for large difference J. Therefore, the 
5 % level and a power of at least 70 % or, better yet, of about 80 % are often 
considered satisfactory. More on this can be found in Cohen (1977) (cf., also 
Lehmann 1958 as well as Cleary and Linn 1969). The power can be raised by 
an arbitrary amount only through an increase in sample size. We recall that 
random samples with independent observations were assumed (cr., also 
Section 4.7.1). Powers of tests are compared in terms of the asymptotic 
relative efficiency (Pitman efficiency; cr., Sections 1.4.8 and 3.9.4). The power 
is diminished when a one sided problem is replaced by a two sided problem. 
For Figure 23 this would mean: The "triangle" IX is halved; the critical 
value 1',. shifts to the right (increases); f3 becomes larger and the power 
smaller. With equal sample size, the one sided test is always more powerful 
than the two sided. The strongly schematized power curves drawn in Figure 
24 show the power as a function of the difference between the two means. 
The power of a test with given parameter difference increases with n and IX. 

For IX, the region of variation at our disposal is of course small, because in 
most cases we will only reluctantly allow the risk of rejecting a true H 0 to 
grow beyond 5 %: 
1. If there is no difference between the means of the populations we will, 

when working with the significance level IX, wrongly reject H 0 in IX % of 
the cases: rejection probability = risk 1. 

Figure 24 Sketch of power curves 
under different conditions for the two 
sided problems, the mean ordinate 
giving the level of significance for both 
curves (ex ~ 0.01) (resp. ex ~ 0.03). The 
bowl-shaped curves approach their 
symmetry axis, the ordinate, with 
increasing ex and n. 

Probability of rejecting 

the null hypothesis 
,-.....,,-""'"",-----1.0 ---..,...-...,...--, 

-4 -2 o 2 4 
Difference II - 110 in units of eTo 
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2. If there is a difference between the means of 1.5 units of 0'0, then the more 
powerful test, the narrower upside down bell-shaped curve in Figure 24, 
will point out the existence of a difference SO times in 100 samples 
(power = O.SO). On the other hand, the weaker test, the wider upside 
down curve, will pretty well fail; it reveals the difference in only 30 % of 
the cases (power = 0.30). 

3. If there exists a very large difference between the means, then both curves 
have power 1. 

Thus we see that, for the two sided test, the probability of rejecting Ho 
increases with increasing distance Jl. - Jl.o, and that a true alternate hy
pothesis is less likely to be adopted when the significance level becomes 
smaller as well as when the sample size becomes smaller. From this we see also 
that to realize a good power, the largest possible sample sizes are to be 
employed. IT the sample size is small, then the significance level must not be 
too small, because a small sample together with a small significance level 
manifests itself in an undesirable reduction in power. The one sided test is, 
as we saw, distinguished by a power larger than the two sided. Since the one 
sided test discloses existing differences sooner than the two sided one, the 
one sided test is preferred if certain alternatives are of no significance or 
interest. If, for example, a new therapy is compared with one generally 
practiced, the only interesting question is whether the new therapy is better. 
If the new method is less effective or as effective, there is no cause to relinquish 
the old method. If two new methods are to be compared, only the two sided 
question makes sense; the one sided test would not treat the therapies 
symmetrically. 

Distribution-free tests, in particular rapid tests, are characterized by an 
inferior power in comparison with the parametric tests. If data that indeed 
come from a normally distributed population, or any other homogeneous 
population with known distribution, are to be analyzed, higher Type II 
errors have to be put up with when distribution-free tests are used. The 
statistical decision is then conservative, i.e., Ho is not as quickly rejected and 
significant results show up somewhat less frequently-in other words, 
larger samples are needed to rejct Ho. IT small samples are used (n < 15), 
distribution-free tests are often more efficient than the otherwise optimal 
parametric tests, which are most efficient, and also simpler to manage for 
n~SO. 

If for some analysis there are several tests available, that test is generally 
preferred which most completely utilizes the information contained in the 
data. Of course the assumptions of the statistical model on which the test is 
based have to be satisfied by the data. If the assumptions of a test procedure 
are not or are only partially fulfilled, this must be taken into consideration in 
the appropriately cautious interpretation of the result. It is advisable to list 
all the assumptions that might have been violated. For example: "Under the 
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assumption that both samples originated in normally distributed populations, 
there is ... " (see also Sachs 1984, pp. 100-105). 

The following warning helps in avoiding mistakes (cr., Section 1.4.5) and 
false conclusions (cf., also Section 1.2.1). 

It is not permitted to work through several tests: The choice of a test on 
the basis of the results and the almost exclusive use of one sided tests 
might in practice lead to effective significance levels which are twice as 
large as the given significance level (Walter, 1964). 

The operating characteristic 

Figure 24 gives the power function-i.e., the power as a function of the mean 
difference in units of the standard deviation [(Jl- Jlo)/uo]. Its complement, 
the probability of retaining a false null hypothesis, i.e., making a Type II 
error, is called the operating characteristic OC, the OC-curve, or the accep
tance line; formulated somewhat loosely, 

Operating characteristic = 1 - power function. (1.125) 

OC curves are, with two sided questions, bell-shaped complements of the 
bowl-shaped power functions. 

We can now invoke one of these two functions to characterize a test and 
e.g., in terms of the OC for given risk I and n, read off the unavoidable risk II 
in distinguishing between the null and alternative hypothesis, in determining 
the difference!:!' (Greek delta). If for given risk I with small risk II the sample 
size needed to detect .:\ becomes too large, risk I must be increased (Table ~ 
52a gives the sample sizes for the comparison of two means from normal 
distributions with same but unknown variance, for given risk I, risk II, and 
difference .:\ [there termed d]). Indeed, one can sometimes also use a more 
powerful test. With equal sample size the OC would then vary more steeply 
and thus provide better detection of a difference. If an experiment is comple-
ted, the OC indicates what chance one has of detecting a difference of size !:!.. 
A small sample size, together with small risk I, will lead to a large risk II, 
and the retention of Ho is to be considered only with caution because, 
under these conditions, even a pronounced difference could hardly be 
detected. The OC is very important in setting up sampling schemes for 
quality control, in particular in acceptance inspection. Examples of the 
construction of OC curves are given by Yamane (1964). OC curves for the 
most important tests are given by Ferris et aI., (1946), Owen (1962), Natrella 
(1963), and Beyer (1968 [cited in Section 2 of the Bibliography: Tables]). (cr., 
also Guenther 1973, Hodges and Lehmann 1968 as well as Morice 1968). 
Comprehensive power tables are provided by Cohen (1977). 
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1.4.8 Distribution-free procedures 

The classical statistical procedures are usually based on normal distribu
tions. In nature, however, normal distributions do not occur. Therefore, 
application of normal theory imparts a feeling of uneasiness. For this reason 
the development of distribution-free or distribution-independent methods 
met with much interest. No assumptions are made on the underlying 
distribution. We only need to be assured that the random samples we want 
to compare belong to the same basic population (Walter, 1964), that they 
can be interpreted (Lubin 1962) as homomer. Since parameters hardly play 
a role (nonparametric hypotheses), the distribution-free methods can also 
be referred to as parameter-free or nonparametric methods. They are, for the 
most part, very easily dealt with numerically. Their advantage lies in the 
fact that one need have practically no knowledge whatsoever about the 
distribution function of the population. Moreover, these quite easily 
understood procedures can also be applied to rank data and qualitative 
information. 

~ A classical method of comparing means, Student's I-test, can only be 
~ applied under the following conditions: 

1. The data must be independent (random samples). 
2. The characteristic must be measurable in units of a metric scale. 
3. The populations must be (at least nearly) normally distributed. 
4. The variances must be equal (aI = a~). 
The distribution-free procedures for the same problem merely require in
dependent data. Whether the data readings are mutually independent must 
be deduced from the way they were gathered. Thus we need only assume that 
aU data or data pairs are drawn randomly and independently of one another 
from one and the same basic population of data, and this must be guaranteed 
by the structure and the realization of the experiment. A distribution-free 
test, when applied to data from a known family of distributions, is always 
weaker than the corresponding parametric test (cf., Section 1.4.7). Pitman 
(1949) defines the index 

E = n for the parametric test 
n n for the non parametric test 

(1.126) 

as the "efficiency" of the nonparametric test. Here n denotes the sample 
size needed to realize a given power. The concept "asymptotic efficiency" 
is defined as the efficiency of the test in the limiting case of a sample of nor
mally distributed data with size tending to infinity. It becomes apparent, in 
terms of this index, how effective or how efficient a distribution-free test is, 
if it is applied, in place of a classical test, to normally distributed data. An 
asymptotic efficiency of E = 0.95-which for example the U-test exhibits
means: If in applying the nonparametric test, a sample of n = 100 data read
ings is, on the average, required for a certain significance level, then with the 
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application of the corresponding parametric test, n = 95 measured values 
would suffice. The so-called rank tests (see Section 3.9) assume continuous 
distributions; the recurrence of some observations has little effect on the 
validity of the continuity assumption, emphasizing rather the inaccuracy of 
the method of measurement. Distribution-free procedures are indicated if 
(a) the parametric procedure is sensitive to certain deviations from the 
assumptions, or if (b) the forcing of these assumptions by an appropriate 
transformation (b l ) or by elimination of outliers (b2 ) creates difficulties; in 
general, therefore, such procedures are indicated (1) by nonnormality, (2) by 
data originating from a rank scale or a nominal scale (see below), (3) as a 
check of a parametric test, and (4) as a rapid test. 

Distribution-free tests, which distinguish themselves by computational 
brevity, are referred to as rapid tests. The peculiarity of these tests, besides 
their computational economy, is their wide assumption-free applicability. 
Their drawback is their small power, since only a part of the information 
contained in the data is utilized in the statistical decision. 

In comparison with the relevant optimal parametric or nonparametric 
test, the statistical decision of a rapid test is conservative; i.e., it retains the 
null hypothesis longer than necessary: larger samples of data (rank data or 
binary data) are required in order to reject the null hypothesis. More on this 
[and also on the so-called randomization test (permutation test), see Bio
metrics 38 [1982J, 864-867)J can be found in the books listed in [8: IbJ of 
the bibliography. We discuss the most important distribution-free tests in 
Sections 3.9, 4.4, 4.6-8, 5.3, 6.1-2, 7.5, and 7.6. For graphical methods, see 
Fisher (1983). 

Indications for distribution-free rapid tests, according to Lienert (1962), 
are as follows: 

1. The most important area in which rapid tests are employed is the approxi
mate assessment of the significance of parametric as well as nonparametric 
data sequences. The rapid test is used here to investigate whether it is 
really worthwhile to carry out a time-consuming optimal test. As to the 
outcome of a rapid test, there are three possibilities: 
a. The result can be clearly significant. Testing with a more powerful test 

is then unnecessary, because the goal of the testing is already realized 
by the weak test. 

b. The result can be absolutely insignificant, i.e., there is no chance at all 
of it being significant; a stronger test is likewise unnecessary in this 
case. 

c. The result can show borderline significance. A verification using the 
time-consuming optimal method is reasonable (cf. end of Section 1.4.7). 

2. An additional area in which distribution-free rapid tests are indicated is 
the assessment of significance of data obtained from preliminary trials. 
Results from preliminary surveys must be well founded if the subsequent 
experiment is to lead to reliable answers. 
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3. Finally, rapid tests can be used without hesitation to obtain a definitive 
assessment of significance whenever large samples of data are available, 
i.e., samples of size perhaps n > 100. 

Of the three possible applications, the first has undoubtedly the greatest 
practical importance. 

Remark: Systems of measurements 

The occupations of individuals being surveyed can in no way be used to arrange 
these individuals in a unique and objective sequence. Classifications of this sort-we 
are speaking of the nominal scales-are present in the listing of groups of races, 
occupations, languages, and nationalities. Frequently an order relevant to the objec
tive of the study presents itself: If, for example, the objects under study are arranged 
in an impartial sequence according to age or according to some other property where, 
however, the distances on the rank scale or ordinal scale represents no true distance 
(only the relative position). Thus, on a rank scale ordered by age, a twenty year old 
can be followed by a thirty year old, who is then followed by a thirty-two year old. 

If consecutive intervals are of equal length (here we have the conventional Celsius 
temperature scale in mind), the interval scale still permits no meaningful comparison: 
It is incorrect to assert that 10 degree Celsius is twice as warm as 5 degrees Celsius. 
Only an interval scale with absolute zero makes meaningful comparison possible. 
Properties for which such a zero can be specified are, for example, temperature 
measured in degrees Kelvin, length, weight, and time. Scales of this sort are the most 
useful and are called ratio scales. When one ratio scale is transformed into another 
under multiplication by a positive constant (for example, I U.S. mile = 1.609347 
kilometers), i.e., y = ax, the ratio of two numerical observations remains unchanged, 
whereas on an interval scale (e.g., conversion from x degrees Celsius to y degrees 
Fahrenheit: y = ax + b with a = ! and b = 32), the ratio will change. 

The admissible scale transformations (ST) are thus: (sequence-altering) permu
tations (nominal scale); all ST that do not change the order of the elements, e.g., 
raising a positive number to a power (ordinal scale); addition of a constant (interval 
scale); multiplication by a constant (ratio scale). 

With the four types of scales recognized by Stevens (1946) one can associ
ate the following statistical notions. 

1. Nominal scale: Licence plate numbers and zip codes (arbitrary number
ing); marital status; occupational and color classifications. Ideas: fre
quency data, X2 tests, the binomial and Poisson distributions, and, as a 
location parameter, the mode. 

2. Rank scale: School grades and other particulars that set up a ranking; 
ranking tests such as the sign test, the run test, the U-test, the H-test, 
the rank analysis of variance, and the rank correlation. Ideas: deciles 
such as the median. 

3. Interval scale: (zero point conventionally set, intervals with empirical 
meaning, direct construction of a ratio not allowed): Calendar date; 
intelligence quotient; temperature measurement in degrees Celsius or 
Fahrenheit. Ideas: typical parameters like the arithmetic mean, the 
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standard deviation, the correlation coefficient, and the regression co
efficient, as well as the usual statistical tests like the t-test and the F-test. 

4. Ratio scale: (with true zero point): Temperature measurement in degrees 
Kelvin; physical quantities in units such as m, kg, s. Ideas: in addition to 
the characteristics listed under 3, the geometric and harmonic mean as 
well as the coefficient of variation. 

It is important to realize that to data belonging to a nominal scale or a 
rank scale only distribution-free tests may be applied, while the values of an 
interval or ratio scale can be analyzed by parametric as well as by distribution
free tests. More on scaling can be found in Fraser (1980). 

1.4.9 Decision principles 

Many of our decisions can be interpreted in terms of the so-called minimax 
philosophy of Abraham Wald (1902-1950). According to the minimax 
principle (cf., von Neumann 1928), that decision is preferred which minimizes 
the maximum (the worst case) of the expected loss. The decision which causes 
the smallest possible risk (expected loss) will be adopted. It is optimal in the 
sense of insisting on the largest possible safeguards against risk; this leads, in 
many cases, to a scarcely tolerable disregard of important opportunities. 
Only a chronic pessimist would always act in this way. On the other hand, this 
principle minimizes the chances of a catastrophic loss. Thus a minimaxer is 
someone who decides in such a way as to defend himself as well as possible 
(maximally) against the worst conceivable situation (minimum). According to 
the minimax criterion, every judge will avoid sending innocent people to 
jail. Acquittal of not fully convicted criminals is the price of such a course of 
action. A "minimaxer" has a motive to insure: Let us assume that a workshop 
valued at $100,000 is insured against loss due to fire by payment of a $5,000 
premium. The probability of fire destroying the workshop is 1 %. If the loss 
is to be the smallest possible, one must keep in mind that on taking out 
insurance a definite loss of $5,000 is experienced, while without insurance 
one would be faced with an expected loss of one percent, which is only $1,000. 
The actual loss is however either zero or $100,000. The minimaxer thus 
prefers the certain loss of $5,000. 

If not one but rather many objects-say 80 ships belonging to a large 
shipping firm-are to be insured, it can then be expedient to have only 
particular ships insured or even to take out no insurance. Debt-free objects 
need not be insured. Nothing is insured by the government. 

The full-blown optimist-in our manner of speaking, a "maximaxer"
chooses the decision that yields the best results (maximum) under the most 
favorable conditions (maximum) and rejects the notion of taking insurance, 
since a workshop fire is "improbable." The maximax criterion promises 
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success whenever large gains are possible with relatively small losses. The 
"maximaxer" buys lottery tickets because the almost certain insignificant 
loss is more than made up for by the very improbable large gain. This 
decision principle in which the largest possible gain settles things-goes back 
to Bayes (1702-1761) and Laplace (1749-1827). Barnett (1982) provides a 
summary. 

We cannot here delve into the application of the two decision principles. 
The interested and to some extent mathematically versed reader is referred, 
with regard to these as well as other decision criteria, to Kramer (1966), who 
distinguishes a total of twelve different criteria; and to the specialized 
literature (Biihlmann et aI., 1967, Schneeweiss 1967, Bernard 1968, Chernoff 
and Moses 1959, and the bibliography of Wasserman and Silander 1964). 
Important particular aspects are treated by Raiffa and Schlaifer (1961), 
Ackoff (1962), Hall (1962), Fishburn (1964), Theil (1964) and de Groot (1970). 
An overview is provided by Keeney (1982). For risk and insurance, see 
Beard et al. (1984, cited in [8: 2d]). 

Science arrives at conclusions by way of decisions. Decisions are of the 
form" we decide now as if". By the restrictions" deal with as if" and" now" 
we do "our best" in the present situation without at the same time making a 
judgment as to the" truth" in the sense of 6 > 4. On the other hand, con
clusions-the maxims of science-are drawn while paying particular 
attention to evidence gathered from specific observations and experiments. 
Only the" truth" contained in the experiment is relevant. CONCLUSIONS 
ARE DEFERRED IF SUFFICIENT EVIDENCE IS NOT A V AILABLE. 
A conclusion is a statement that can be taken as applicable to the conditions 
of the experiment or to some observation, so long as there is not an unusually 
large amount of evidence to the contrary. This definition sets forth three 
crucial points: It emphasises "acceptance" in the strict sense of the word, 
speaks of "unusually strong evidence," and it includes the possibility of 
subsequent rejection (cf. Tukey, 1960). 

1.5 THREE IMPORTANT FAMILIES OF TEST 
DISTRIBUTIONS 

In this section the distribution of test statistics is examined. The value of the 
test statistic, a scalar, is calculated for a given sample. Thus the sample mean, 
the sample variance or the ratio of the variances of two samples, all of these 
being estimates or functions of sample functions, can be interpreted as test 
statistics. The test statistic is a random variable. The probability distributions 
of these test statistics are the foundations of the tests based on them. Because 
the normal distribution plays a special role, sample functions of normally 
distributed random variables (cf., end of Section l.5.3) are called test 
distributions. An important survey is due to Haight (1961). Extensive tables 
are provided, e.g., Pearson and Hartley (Vol. I, II; 1969, 1972 [cited on page 
571J). 
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1.5.1 Student's t-distribution 

W. S. Gosset (1876-1937), writing under the pseudonym" Student," proved 
in 1908 that for given n, the standardized difference (1.127)-the difference 
between the estimate x of the mean and the known mean }l, divided by the 
standard deviation ax of the mean (right side of (1.127)-has a standard 
normal distribution only when the x's are normally distributed and both para
meters (}l, a) are known. When a is unknown and replaced by the estimate s 
(standard deviation of a sample), the quotient (1.128) follows the "Student" 
distribution or t-distribution (it is assumed that the individual observations are 
independent and (approximately) normally distributed): 

difference between the estimate and the true mean 
standard deviation of the mean 

_X-}l In- x-}l_x-}l 
- --a- - a/Jn - ~' 

On page 155 above 
you find the correct 
estimator notation. 

(For definition of t see (1.131) below.) 

(1.127) 

(1.128) 

Remark: (1.127) tends, generally, with increasing n, more or less rapidly toward a 
normal distribution, in accordance with the type of population form which the samples 
are drawn; the right side of (1.128) is (a) for small n and for populations with distribu
tions not differing greatly from the normal, distributed approximately as t, (b) for 
large n and for almost all populations, distributed approximately standard normally. 

The t-distribution (cf., Figure 25) is very similar to the standard normal 
distribution [N(O, 1) distribution]. Like the normal distribution, it is 
continuous, symmetric, and bell-shaped with range from minus infinity to 
plus infinity. It is, however, independent of }l and a. The shape of the t
distribution is determined solely by the so-called degrees of freedom. 

Degrees of freedom. The number of degrees of freedom DF or v (Greek nu) 
of a random variable is defined as the number of "free" available observa
tions-the sample size n minus the number a of a parameters estimated from 
the sample: 

I DF = v = n - a. (1.129) 

Recall that S2 = n: (Xi - x)2/(n - 1)]. Since the mean value must be 
estimated from the sample, a = 1, so that the random variable (1.128) is 
distinguished by v = n - 1 degrees of freedom. Instructions on how the 
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number of degrees of freedom is to be determined for particular cases of 
this random variable (as well as for other test statistics) will be given later for 
the various cases as they arise. 

The smaller the number of degrees of freedom, the greater is the departure 
from the N(O, 1) distribution, and the flatter are the curves-i.e., in contrast 
with the N(O, I) distribution there is more probability concentrated in the 
tails and less in the central part (cf., Figure 25). With a large number of degrees 
of freedom the t-distribution turns into the N(O, 1) distribution. The primary 
application of the t-distribution is in the comparison of means. 

Standard normal distribution [OF = 00] 

Figure 25 The probability density of 
the N(O, 1) distribution and the Student 
distribution with 3 degrees of freedom 
(n = 4 observations). With a decreasing 
number of degrees of freedom, the 
maximum of the Student distribution 
drops and the shaded area grows. In 
comparison with the N(O, 1) distribution, 
more probability is concentrated in the 
tails and less in the central part. 

When the number of degrees of freedom is small the Student distribution 
has, in comparison with the N(O, 1) distribution, with little height a sub
stantially larger spread. Whereas for the normal curve 5 % and 1 % of the 
total area lies outside the critical values ± 1.96 and ± 2.58, the corresponding 
values for 5 degrees of freedom are ±2.57 and ±4.03. For 120 degrees of 
freedom, they are ± 1.98 and ± 2.62, and thus almost coincide with the 
critical values of the N(O, 1) distribution. 

Table 27 gives selected percentage points of the t-distribution. This t
table gives, over a large range of degrees of freedom, the probabilities of 
exceeding t-values entirely by chance at specific significance levels. One 
begins with v the number of degrees of freedom; the probabilities that a 
random variable with a t-distribution assumes an (absolute) value of at 
least t is indicated at the top of this table. Thus for 5 degrees of freedom 
(OF = 5 or v = 5) the crossing probability P for t = 2.571 is found to be 
0.05 or 5 %. P is that portion of the total area which lies under both tail 
ends of the t-distribution; it is the probability that the tabulated value 
t is exceeded by a random variable with at-distribution (t5;0.05 = 2.57); 
t60 ;0.05 = 2.000; too;a = z,,; (cr., also Sections 3.2,4.6.1,4.6.2). 

Table 27 lists percentage points for two-sided and one-sided problems. 
We can, for example, for the one-sided test, read off both of the following 
t-values: t30 ;0.05 = 1.697 and t 120;O.Ol = 2.358. The first index indicates 
the number of degrees of freedom; the second, the selected level of sig
nificance. Extensive tables of the Student distribution are given in Federighi 
(1959), Smirnov (1961), and Hill (1972). For approximations see page 137. 
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1.5.2 The x. 2 distribution 

If S2 is the variance of a random sample of size n taken from a population 
with variance (J2, then the random variable 

(1.130) 

(n independent observations assumed) follows a X2 distribution (chi square 
distribution) with the parameter v = n - 1, v degrees of freedom. The 
X2 distribution (cf., Figure 26) is a continuous nonsymmetric distribution. 
Its range extends from zero to infinity. With increasing number of degrees 
of freedom it (" slowly") approaches the normal distribution. The mean and 
variance of this asymptotic distribution are, respectively, v and 2v (cf., also 
the end of Section 1.5.3). We see that the shape of the X2 distribution depends 
only on the number of degrees of freedom, just as for the Student distribution. 
For v s; 2 the X2 distribution is L-shaped. 

Figure 26 Probability density of 
the x; distribution for v = 2 and 
v = 5. 16 X 

2 

As v increases the skewed, singly peaked (v > 2) curve becomes flatter 
and more symmetric. An essential property of the X2 distribution is its 
additivity: If two independent random variables have X2 distributions with 
Vl and V2 degrees of freedom, their sum has a X2 distribution with VI + V2 

degrees of freedom. The principal application of this distribution, which was 
discovered by I. J. Bienayme (1858), F. R. Helmert (1876), and K. Pearson 
(1900), is (cf. e.g., Section 4.5.5) in testing contingency tables. 

X2 with v degrees of freedom is defined as the sum of the squares of v 
independent standard normal variables [cf., also (1.187) in Section 1.6.6.2, 
as well as Section 1.5.3]: 

v 

X~ = L Zt (1.131) 
i~ 1 

(definition of t:tv = Z/~). When more than 30 degrees of freedom are 
present, the following approximations apply [v = DF; z = standard normal 
variable (see Table 43); one sided test, e.g., zO.05;onesided = 1.645: other 0 
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1.5 Three Important Families of Test Distributions 141 

Table 28a Selected percentage points (5%, 1%, and 0.1% levels) of the 
X2 distribution 

OF 5 S 1 S 0.1 S OF 5 S 1 S 0.1 S OF 5 S 1 S 0.1 S 

1 3.84 6.63 10.83 51 68.67 77 .39 87.97 101 125.46 136.97 150.67 
2 5.99 9.21 13.82 52 69.83 78.61 89.27 102 126.57 138.13 151.88 
3 7.81 11.34 16.27 53 70.99 79.84 90.57 103 127.69 139.30 153.10 
4 9.49 13.28 18.47 54 72.15 81.07 91.87 104 128.80 140.46 154.31 
5 11.07 15.09 20.52 55 73.31 82.29 93.17 105 129.92 141.62 155.53 
6 12.59 16.81 22.46 56 74.47 83.51 94.46 106 131.03 142.78 156.74 
7 14.07 18.48 24.32 57 75.62 84.73 95.75 107 132.15 143.94 157.95 
8 15.51 20.09 26.13 58 76.78 85.95 97.04 108 133.26 145.10 159.16 
9 16.92 21.67 27.88 59 77 .93 87.16 98.32 109 134.37 146.26 160.37 

10 18.31 23.21 29.59 60 79.08 88.38 99.61 110 135.48 147.41 161.58 

11 19.68 24.73 31.26 61 80.23 89.59 100.89 111 136.59 148.57 162.79 
12 21.03 26.22 32.91 62 81.38 90.80 102.17 112 137.70 149.73 163.99 
13 22.36 27.69 34.53 63 82.53 92.01 103.44 113 138.81 150.88 165.20 
14 23.68 29.14 36.12 64 83.68 93.22 104.72 114 139.92 152.04 166.41 
15 25.00 30.58 37.70 65 84.82 94.42 105.99 115 141.03 153.19 167.61 
16 26.30 32.00 39.25 66 85.97 95.62 107.26 116 142.14 154.34 168.81 
17 27.59 33.41 40.79 67 87.11 96.83 108.52 117 143.25 155.50 170.01 
18 28.87 34.81 42.31 68 88.25 98.03 109.79 118 144.35 156.65 171.22 
19 30.14 36.19 43.82 69 89.39 99.23 111.05 119 145.46 157.80 172.42 
20 31. 41 37.57 45.31 70 90.53 100.42 112.32 120 146.57 158.95 173.62 

21 32.67 38.93 46.80 71 91.67 101.62 113.58 121 147.67 160.10 174.82 
22 33.92 40.29 48.27 72 92.81 102.82 114.83 122 148.78 161.25 176.01 
23 35.17 41.64 49.73 73 93.95 104.01 116.09 123 149.89 162.40 177 .21 
24 36.42 42.98 51.18 74 95.08 105.20 117.35 124 150.99 163.55 178.41 
25 37.65 44.31 52.62 75 96.22 106.39 118.60 125 152.09 164.69 179.60 
26 38.89 45.64 54.05 76 97.35 107.58 119.85 126 153.20 165.84 180.80 
27 40.11 46.96 55.48 77 98.49 108.77 121.10 127 154.30 166.99 181.99 
28 41. 34 48.28 56.89 78 99.62 109.96 122.35 128 155.41 168.13 183.19 
29 42.56 49.59 58.30 79 100.75 111.14 123.59 129 156.51 169.28 184.38 
30 43.77 50.89 59.70 80 101.88 112.33 124.84 130 157.61 170.42 185.57 

31 44.99 52.19 61.10 81 103.01 113.51 126.08 131 158.71 171.57 186.76 
32 46.19 53.48 62.49 82 104.14 114.69 127.32 132 159.81 172.71 187.95 
33 47.40 54.77 63.87 83 105.27 115.88 128.56 133 160.92 173.85 189.14 
34 48.60 56.06 65.25 84 10·6.40 117.06 129.80 134 162.02 175.00 190.33 
35 49.80 57.34 66.62 85 107.52 118.23 131.04 135 163.12 176.14 191. 52 
36 51.00 58.62 67.98 86 108.65 119.41 132.28 136 164.22 177 .28 192.71 
37 52.19 59.89 69.34 87 109.77 120.59 133.51 137 165.32 178.42 193.89 
38 53.38 61.16 70.70 88 110.90 121.77 134.74 138 166.42 179.56 195.08 
39 54.57 62.43 72.05 89 112.02 122.94 135.98 139 167.52 180.70 196.27 
40 55.76 63.69 73.40 90 113.15 124.12 137.21 140 168.61 181.84 197.45 
41 56.94 64.95 74.74 91 114.27 125.29 138.44 141 169.71 182.98 198.63 
42 58.12 66.21 76.08 92 115.39 126.46 139.67 142 170.81 184.12 199.82 
43 59.30 67.46 77 .42 93 116.51 127.63 140.89 143 171.91 185.25 201.00 
44 60.48 68.71 78.75 94 117.63 128.80 142.12 144 173.00 186.39 202.18 
45 61.66 69.96 80.08 95 118.75 129.97 143.34 145 174.10 187.53 203.36 
46 62.83 71.20 81.40 96 119.87 131.14 144.57 146 175.20 188.67 204.55 
47 64.00 72.44 82.72 97 120.99 132.31 145.79 147 176.29 189.80 205.73 
48 65.17 73.68 84.04 98 122.11 133.47 147.01 148 177.39 190.94 206.91 
49 66.34 74.92 85.35 99 123.23 134.64 148.23 149 178.49 192.07 208.09 
50 67.50 76.15 86.66 100 124.34 135.81 149.45 150 179.58 193.21 209.26 

Examples: X~5;O.05 = 25.00 and d7;O.05 = 64.00. 
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sometimes necessary one sided bounds are ZO.095 = 1.3106, ZO.0975 = 1.2959, 
ZO.098 = 1.2930, and ZO.099 = 1.2873]. 

(1.132) 

(1.132a) 

(1.132a) is the better ofthe two [it was improved by Severo and Zelen (1960) 
through an additional corrective term; for more on x2-approximations 
see Zar (1978) and Ling (1978)]. 

One more remark on the manner of writing X2 • Indexing of the critical 
value at level or: is usually in the form X;;". If no misunderstanding can occur, 
a single index suffices or even the one can be omitted. 

Further discussion of the X2 distribution (cf., also Sections 4.3, 4.6.2, 
4.6.4) can be found in Lancaster (1969) (Harter 1964 and Vahle and Tews 
1969 give tables; Boyd 1965 provides a nomogram). Tables 28 and 28a list 
only selected values of the X2 value (cf., Table 83 in Section 4.6.1), one must 
carry out a logarithmic interpolation between the neighboring P-values. The 
necessary natural logarithms can be obtained from Table 29. 

Table 29 Selected three-place 
natural logarithms 

0 10 0 0 10 0 

0.001 - 6.908 0.50 - 0.693 
0.01 - 4.605 0.70 - 0.357 
0.025 - 3.689 0.80 - 0.223 
0.05 - 2.996 0.90 - 0.105 
0.10 - 2.303 0.95 - 0.051 
0.20 - 1.609 0.975 - 0.025 
0.30 - 1.204 0.99 - 0.010 

To find In n for n-values which are To = 
10- 1, ,.-60 = 10- 2, .,.-ioo = 10- 3 , etc., 
as large as the tabulated n-values, one 
subtracts from the tabulated In n the 
quantity In 10 = 2.303 (cf., Section 0.2) 
2 In 10 = 4.605, 3 In 10 = 6.908, etc. 
For example: In 0.02 = In 0.2 - In 10 = 

-1.609 -2.303 = -3.912. 
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EXAMPLE. Let us suppose we get, for DF = 10, a value XZ = 13.4. To this 
value there corresponds a P-value between 10% and 30 %. The corresponding 
XZ bounds are X~.10 = 16.0 and X~.30 = 11.8. The value P sought is then 
given by 

InP-InO.3 f- X6.30 
InO.l-lnO.3 XO.lO- X6.30 ' 

(1.133) 

I P (XZ - X6.30) (1n 0.1 -In 0.3) + I 0 3 n Z 2 n . , 
XO.I0- XO.30 

(1.133 a) 

InP= (13.4-11.8)( - 2.3~3 + 1.204) 1.204, 
16.0-11. 

In P = -1.623, log P = 0.4343(1n P) = 0.4343( - 1.623) 

log P = -0.7049 = 9.2951 - 10, or P = 0.197 ~ 0.20. 

A glance at ;Table 28 tells us that xi 0; o.zo = 13.4; the approximation is good. 

1.5.3 The F -distribution 

If si and s~ are the variances of independent random samples of sizes n l 

and nz from two normally distributed populations with the same variance, 
then the random variable 

(1.134) 

follows an F-distribution with the parameters VI = n l - 1 and Vz = nz - 1. 
The F-distribution (after R. A. Fisher; cf., Figure 27) is also a continuous, 
nonsymmetric distribution with a range from zero to infinity. The F-distribu
tion is L-shaped for V I ~ 2 and bell-shaped for v I > 2. Six tables (30a to 30f) 

[ fi ·· f X;'/V 1] De mtlOn 0 F:F = -2-
X,,!V2 

Figure 27 Probability densities of two Fdistributions: F(VI = 1;v2 = 5) 
and F(VI = 10; V2 = 10). 
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Table 30c Upper significance levels of the F-distribution for P = 0.025 
(5 = 97.5%); v1 = degrees of freedom of the numerator; v2 = degrees of 
freedom of the denominator 

I~ 1 2 3 4 5 6 7 8 9 10 

1 ~47.8 799.5 864.2 899,6 921.8 937.1 948,2 956.7 963.3 968.6 
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 
9 7.21 5.71 5.08 4.72 4.48 4.32 4:20 4.10 4.03 3.96 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 - 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 

Hald (1952; cf. Cochran 1940) gives for v 1 and v 2 greater than 30 the following approxima
tions, where g : 1 / v 1 - 1 / v 2' h = 2/ (1 / v 1 + 1 / v 2)' and Fa = F,,; ,." a : 

log F 05 

log F03 

log F 005 

= -0.290g, 

0.4555 29 -;::::== - 0.3 g, 
Vh - 0.55 

1.1131 
-;::::== - 0.527g, 
Vh - 0.77 

1.4287 
-;::::== - 0.681g, 
Vh -0.95 

1.7023 
log FO 025 = - 0.846g, 

. .Jh - 1.14 

log FO. 01 

2.0206 
-;::::== - 1.073g. 
.Jh - 1.40 



1.5 Three Important Families of Test Distributions 

Table 30e (continued) 

~ V2 12 15 

~ 976.7 984.9 
39.41 39.43 

3 14.34 14.25 
4 8.75 8.66 
5 6.52 6.43 
6 5.37 5.27 
7 4.67 4.57 
8 4.20 4.10 
9 3.87 3.77 

10 3.62 3.52 
11 3.43 3.33 
12 3.28 3.18 
13 3.15 3.05 
14 3.05 2.95 
15 2.96 2.86 
16 2.89 2.79 
17 2.82 2.72 
18 2.77 2.67 
19 2.72 2.62 
20 2.68 2.57 
21 2.64 2.53 
22 2.60 2.50 
23 2.57 2.47 
24 2.54 2.44 
25 2.51 2.41 
26 2.49 2.39 
27 2.47 2.36 
28 2.45 2.34 
29 2.43 2.32 
30 2.41 2.31 
40 2.29 2.18 
60 2.17 2.06 

120 2.05 1.94 . 1.94 1.83 

20 24 30 40 
993.1 997.2 1001 1006 

39.45 
14.17 
8.56 
6.33 
5.17 
4.47 
4.00 
3.67 
3.42 
3.23 
3.07 
2.95 
2.84 
2.76 
2.68 
2.62 
2.56 
2.51 
2.46 
2.42 
2.39 
2.36 
2.33 
2.30 
2.28 
2.25 
2.23 
2.21 
2.20 
2.07 
1.94 
1.82 
1.71 

log FO . 005 

log FO 001 

39.46 39.46 39.47 
14.12 14.08 14.04 
8.51 8.46 8.41 
6.28 6.23 6.18 
5.12 5.07 5.01 
4.42 4.36 4.31 
3.95 3.89 3.84 
3.61 3.56 3.51 
3.37 3.31 3.26 
3.17 3.12 3.06 
3.02 2.96 2.91 
2.89 2.84 2.78 
2.79 2.73 2.67 
2.70 2.64 2.59 
2.63 2.57 2.51 
2.56 2.50 2.44 
2.50 2.44 2.38 
2.45 2.39 2.33 
2.41 2.35 2.29 
2.37 2.31 2.25 
2.33 2.27 2.21 
2.30 2.24 2.18 
2.27 2.21 2.15 
2.24 2.18 2.12 
2.22 2.16 2.09 
2.19 2.13 2.07 
2.17 2.11 2.05 
2.15 2.09 2.03 
2.14 2.07 2.01 
2.01 1.94 1.88 
1.88 1.82 1. 74 
1.76 1.69 1.61 
1.64 1.57 1.48 

2.2373 
;==== - 1.250g, 

v'h - 1.61 

2.6841 = - 1.672g, 
.jh - 2.09 

2.8580 
log Fo 0005 = - 1.857g, 

. .jh - 2.30 

60 120 

1010 1014 
39.48 39.49 
13.99 13.95 
8.36 8.31 
6.12 6.07 
4.96 4.90 
4.25 4.20 
3.78 3.73 
3.45 3.39 
3.20 3.14 
3.00 2.94 
2.85 2.79 
2.72 2.66 
2.61 2.55 

2.52 2.46 
2.45 2.38 
2.38 2.32 
2.32 2.26 
2.27 2.20 
2.22 2.16 
2.18 2.11 
2.14 2.08 
2.11 2.04 
2.08 2.01 

2.05 1.98 
2.03 1.95 
2 ;00 1.93 
1.98 1.91 
1.96 1.89 

1.94 1.87 
1.80 1. 72 
1.67 1.58 
1.53 1.43 
1.39 1.27 

Example: F 200;100;0.05. 

g = 1/200 -1/100 = -0.005; h = 2/(1/200 + 1/100) = 133.333, 

1.4284 
log F2001000 05 = - 0.681 (-0.005) = 0.12755, 

. .' .)133.33 - 0.95 

F 200 ;100;005 = 1.34 (exact value). 

Better approximations are described by Johnson (1973) and by Ling (1978). 
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m 

1018 
39.50 
13.90 
8.26 
6.02 
4.85 
4.14 
3.67 
3.33 
3.08 
2.88 
2.72 
2.60 
2.49 
2.40 
2.32 
2.25 
2.19 
2.13 
2.09 
2.04 
2.00 
1.97 
1.94 
1.91 
1.88 
1.85 
1.83 
1.81 
1.79 
1.64 
1.48 
1.31 
1.00 



Table 30d Upper significance levels of the F-distribution for P = 0.01 
(S = 99%); v, = degrees of freedom of the numerator; v2 = degrees of 
freedom of the denominator 

l~ 1 2 3 4 5 6 7 8 9 10 

1 4052 4999.5 5403 5625 5764 5859 5928 59gt37 160~t39 16056 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.40 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 

5 16.26 13.27 12.06 11. 39 10.97 10.67 10.46 10.29 10.16 10.05 
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 
8 11. 26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 

120 6.85 4.79 1.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 . 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 

~ 12 15 20 24 30 40 60 120 . 
1 6106 6157 6209 6235 6261 287 6313 163~t49 63~t50 2 99.42 99.43 99.45 99.46 99.47 99.47 99.48 
3 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13 
4 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46 
5 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 
6 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 
7 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 
8 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86 
9 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 

10 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 
11 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60 
12 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 
13 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 
14 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00 

15 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 
16 3.55 3.41 3.26 3.18 3.10 3.02 2.93 3.84 2.75 
17 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 
18 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 
19 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 

20 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 
21 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 
22 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 
23 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 
24 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 

25 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17 
26 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13 
27 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10 
28 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06 
29 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03 

30 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01 
40 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 
60 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 

120 2.34 2.19 2.03 1.95 1.86 1. 76 1-66 1.53 1.38 . 2.18 2.04 1.88 1. 79 1.70 1. 59 1.47 1.32 1.00 
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Table 30e Upper significance levels of the F-distribution for 
P = 0.005 (S = 99.5%); v1 = degrees of freedom of the numerator; 
v2 = degrees of freedom of the denominator 

~ 1 2 3 4 S 6 7 8 9 10 

1 6211 20000 2161S 22S00 230S6 23437 2371S 23925 24091 24224 
2 198.5 199.0 199.2 199.2 199.3 199.4 199.4 199.4 199.4· 199.4 
3 55.55 49.80 47.47 46.19 4S.39 44.84 44.43 44.13 43.88 43.69 
4 31. 33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 

5 22.78 18.31 16.53 15. S6 14.94 14. SI 14.20 13.96 13.77 13.62 
6 18.63 14.S4 12.92 12.03 11.46 11,07 10.79 10. S7 10.39 10.2S 
7 16.24 12.40 10.88 10.0S 9.S2 9.16 8.89 8.68 8.51 8.38 
8 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.Zl 
9 13.61 10.11 8.n 7.96 7.47 7.13 6.88 6.69 6.54 6.42 

10 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 
11 12.23 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 
12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 
13 11. 37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 
14 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.n 4.60 

15 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 
16 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 
17 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 
18 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 
19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 

20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 

25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 
26 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60 3.49 
27 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56 3.45 
28 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52 3.41 
29 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.48 3.38 

30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 

120 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 - 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 

I~ 12 15 20 24 30 40 60 120 -
1 24426 24630 24836 24940 5044 25148 25253 25~~t5 25m.5 
2 199.4 199.4 199.4 199.5 199.5 199.5 199.5 
3 43.39 43.08 42.78 42.62 42.47 42.31 42.15 41.99 41.83 
4 20.70 20.44 20.17 20.03 19.89 19.75 19.61 19.47 19.32 

5 13.38 13.15 12.90 12.78 12.66 12.53 12.40 12.27 12 .14 
6 10.03 9.81 9.59 9.47 9.36 9.24 9.12 9.00 8.88 
7 8.18 7.97 7.75 7.65 7.53 7.42 7.31 7.19 7.08 
8 7.01 6.81 6.61 6.50 6.40 6.29 6.18 6.06 5.95 
9 6.23 6.03 5.83 5.73 5.62 5.52 5.41 5.30 5.19 

10 5.66 5.47 5.27 5.17 5.07 4.97 4.86 4.75 4.64 
11 5.24 5.05 4.86 4.76 4.65 4.55 4.44 4.34 4.23 
12 4.91 4.72 4.53 4.43 4.33 4.23 4.12 4.01 3.90 
13 4.64 4.46 4.27 4.17 4.07 3.97 3.87 3.76 3.65 
14 4.43 4.25 4.06 3:96 3.86 3.76 3.66 3.55 3.44 

15 4.25 4.07 3.88 3.79 3.69 3.58 3.48 3.37 3.26 
16 4.10 3.92 3.73 3.64 3.54 3.44 3.33 3.22 3.11 
17 3.97 3.79 3.61 3.51 3.41 3.31 3.21 3.10 2.98 
18 3.86 3.68 3.50 3.40 3.30 3.20 3.10 2.99 2.87 
19 3.76 3.59 3.40 3.31 3.21 3.11 3.00 2.89 2.78 

20 3.68 3.50 3.32 3.22 3.12 3.02 2.92 2.81 2.69 
21 3.60 3.43 3.24 3.15 3.05 2.95 2.84 2.73 2.61 
22 3.54 3.36 3.18 3.08 2.98 2.88 2.77 2.66 2.55 
23 3.47 3.30 3.12 3.02 2.92 2.82 2.71 2.60 2.48 
24 3.42 3.25 3.06 2.97 2.87 2.77 2.66 2.55 2.43 

25 3.37 3.20 3.01 2.92 2.82 2.72 2.61 2.50 2.38 
26 ~.33 3.15 2.97 2.87 2.77 2.67 2.56 2.45 2.33 
27 3.28 3.11 2.93 2.83 2.73 2.63 2.52 2.41 2.29 
28 3.25 3.07 2.89 2.79 2.69 2.59 2.48 2.37 2.25 
29 3.21 3.04 2.86 2.76 2.66 2.56 2.45 2.33 2.21 

30 3.18 3.01 2.82 2.73 2.63 2.52 2.42 2.30 2.18 
40 2.95 2.78 2.60 2.50 2.40 2.30 2.18 2.06 1.93 
60 2.74 2.57 2.39 2.29 2.19 2.08 1.96 1.83 1.69 

120 2.54 2.37 2.19 2.09 1.98 1.87 1. 75 1.61 1.43 - 2.36 2.19 2.00 1.90 1. 79 1.67 1.53 1. 36 1.00 
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with upper percentage points of the F-distribution for the one-sided test are 
given here. For example, suppose we wish to find upper percentiles for the 
ratio of two variances, the variance in the numerator having 12 degrees of 
freedom and the variance in the denominator having 6 degrees of freedom. 
For ex = 0.05 or P = 0.05 we enter Table 30b in the column headed Vi = 12, 
and moving down the left-hand side of the table to v2 = 6, we read F12;6;0.05 

= 4.00. Similarly with Table 30d we find F 12 ;6;0.01 = 7.72 and with Table 
30a F iO ;10;0.10 = 2.32. Two F-distribution curves are sketched in Figure 27. 
Intermediate values are obtained by means of harmonic interpolation. 
Consider, for example, the 1 % level for Vi = 24 and V2 = 60. The table ~ 
specifies the levels for 20 and 60 and also for 30 and 60 degrees of freedom 
as 2.20 and 2.03. If we denote the value sought for Vi = 24 and V2 = 60 by x, 
we obtain from (1.135) that x = 2.115 (exact value: 2.12): 

2.20-x 1/20-1/24 
2.20 - 2.03 1/20 -1/30 . (1.135) 

The 1 % level for Vi = 24; V2 = 200 is found [with 1.95 for (24; 120) and 
1.79 for (24; (0)] to be x = 1.79 + (1.95 - 1.79)120/200 = 1.886 (exact 
value: 1.89). 

F, as a ratio of two squares, can take on only values between zero and 
plus infinity, and thus, like the X2 distribution, can extend only to the right 
of the origin. In place of the mirror symmetry of the distribution function 
of e.g., the t-distribution, we have here to a certain extent a "reciprocal 
symmetry." As t and -t can be interchanged [ex replaced by (1 - ex)], so can 
F and l/F simultaneously with Vi and V2 be interchanged without affecting 
the corresponding probabilities. We have 

(1.136) 

With this relation we can, for example, readily determine F 0.95 from F 0.05' 

EXAMPLE. Given Vi = 12, v2 = 8, ex = 0.05, so that F = 3.28. To find Ffor 
Vi = 12, V2 = 8, ex = 0.95. From Vi = 8, v2 = 12, and ex = 0.05, whence 
F = 2.85, the Fvalue in question is found to beF12 •8 ;0.95 = 1/2.85 = 0.351. 

When the number of degrees of freedom is large, we have the approxima
tion (cf., also pages 146-147, below) 

(1.137) 
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where z is the standard normal value for the chosen level of significance of 
the one-sided question (cr., Table 43, Section 2.1.6). Thus, for example, the 
value of F(l20, 120; 0.05) is seen from 

[ 2(120 + 120)J 
log F = (0.4343)(1.64) (120)(120) = 0.13004 

to be F = 1.35 (Table 30b). 

Interpolation of intermediate values 

For the case where neither a particular vnumerator(Vl or vn) nor Vdenominator 
(V2 or vd) is listed in the table, the neighboring values v~, v; and v~, v; (v~ < 
Vn < v; and Vd < Vd < v;) for which the F distribution is tabulated are 
noted. Interpolation is carried out according to Laubscher (1965) [the 
formula (1.138) is also valid for nonintegral values of v]: 

F(vn , Vd) = (1 - A)· (1 - B)· F(v~, vd) 
+ A . (l - B) . F( v~, v;) 
+ (1 - A)· B . F(v;, v~) 
+ A . B . F( v;, v;) 

with 

EXAMPLE. Compute 

given 

with 

We get 

F(28,44; 0.01) 

F(20,40; 0.01) = 2.37 

F(20,50; 0.01) = 2.27 

F(30,40; 0.01) = 2.20 

F(30,50; 0.01) = 2.10 

50(44 - 40) 5 30(28 - 20) 6 
A = 44(50 _ 40) = 11 and B = 28(30 - 20) = 7· 

6 1 5 1 
F(28,44; 0.01) = 11.7. 2.37 + 11.7.2.27 

6 6 5 6 
+ 11.7. 2.20 + 11.7. 2.10 

= 2.178 ~ 2.18. 

(1.138) 
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The interpolated value equals the tabulated value found in more extensive 
tables. If the table lists Vn but not Vd , one interpolates according to the formula 

(1.139) 

For the reverse case (vn sought, Vd listed), one uses instead 

(1.140) 

Interpolation of probabilities 

We have available the upper significance levels for the 0.1 %,0.5 %,1 %, 2.5 %, 
5 %, and 10 % level. When it becomes necessary to interpolate the true level 
of an empirical F-value based on V1 and V2 degrees of freedom between the 
0.1 % and 10% bounds, the procedure suggested by Zinger (1964) is used: 

1. Enclose the empirically derived F -value between two tabulated F values 
(F l' F 2), with levels of significance a and am, so that F 1 < F < F 2. 

2. Determine the quotient k from 

(1.141) 

3. The interpolated probability is then 

P=rx.mk • (1.142) 

EXAMPLE. Given: F = 3.43, v1 = 12, v2 = 12. Approximate the probability 
that this F-value will be exceeded. 

Solution 

1. The observed F value lies between the 1 % and 2.5 % levels (i.e., a = 0.01, 
m = 2.5); F1 = 3.28 < F = 3.43 < F2 = 4.16. 

2. The quotient is k = (4.16 - 3.43)/(4.16 - 3.28) = 0.8295. 
3. The approximate probability is then found (using logarithms) to be 

P = (0.01)(2.5)°·8295 = 0.0214. The exact value is 0.0212. 
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@ If the significance of an arbitrary empirical F-value is to be determined, 
then according to an approximation for V2 ~ 3 proposed by Paulson (1942), 

(1 - ~)Fl/3 - (1 -~) 
A 9~ ~1 
Z = -'----;::::::=====---=..!... J 2 F2/3 + 2 

9V2 9Vl 

(1.143) 

If the lower levels of the F -distribution are of interest, we must also have 
Vi ~ 3. 

The cube roots of F and F2 can be extracted with the help of logarithms. 

The relationships of the F-distribution to the other test distributions and 
to the standard normal distribution are simple and clear. 

The F -distribution turns, 

for Vi = 1 and V2 = V, into the distribution of t2 ; 

for Vi = 1 and V2 = 00, into the distribution of Z2; 

for Vi = V and V2 = 00, into the distribution of X2/V. 

For example, we get for FlO; 10; 0.05 = 2.98 

(1.144) 

F 1 ;10;0.05 = 4.96, t 10;0.05 = 2.228, i.e. tiO;0.05 = 4.96, 

F 1 ;00;0.05 = 3.84, ZO.05 = 1.960, I.e. Z~.05 = 3.84, 

FlO; 00; 0.05 = 1.83, xio; 0.05/10 = 18.307/10 = 1.83. 

Thus the Student, standard normal and X2 distributions can be traced back 
to the F-DISTRIBUTION and its limiting cases: 

(1.145) 

or 

VFl:oo= too =Z= VXT· (1.146) 

For V ~ 00 (or Vi ~ 00 and V2 ~ 00): 

1. tv is asymptotically standard normally distributed 
2. x; is approximately normally distributed 
3. F v" V2 is asymptotically normally distributed. 
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Finally, we note that F a:>;v;a = V/X;;l-a and F a:>;a:>;a == 1 just as: 

ASSUMED The TEST STATISTIC computed from X and/or S (as well 
DISTRIBUTION as Jl and/or 0') based on n independent observations 

Arbitrary distribution X-Jl is asymptotically N (0;1) distributed, i.e., with n 
with mean Jl and --y'n large, the larger the n the more nearly it is standard 

0' 
variance 0'2 normally distributed (central limit theorem) 

Normal distribution 
X-Jl 
--yn is N(0;1) distributed 

N (Jl; 0'2) 
0' 

X -p 
--yn is distributed as t, with v = n - 1 

S 

S2 
is distributed as X ~ with v = n - 1 - (n - 1) 

0'2 

Sf is distributed as F'L '2 with v, = n, - 1, v2 = n2 - 1 
S~ (two independent samples) 

1.6 DISCRETE DISTRIBUTIONS 

1.6.1 The binomial coefficient 

We denote by nCx or (~) (read: n over x) the number of combinations of n 
elements in classes of x elements each (or x elements at a time). This is the 
number of x-element subsets in a set of n elements. The computation pro
ceeds according to (1.147). The numerator and denominator of G}involve x 
factors each, as we shall see below: 

C = (n) = n! with 1 :::; x :::; n. 
n X x x!(n-x)! (1.147) ~ 

Here n! (n factorial) represents the product of the natural numbers from 
1 to n, or n! = (n)(n - 1)(n - 2) ... I, e.g., 3! = (3)(2)(1) = 6 [cr., also 
(1.152)]. The number of combinations of 5 elements taken 3 at a time is 
accordingly 

5! 5·4·3·2·1 
sC3 = = = 10 

3!(5-3)! 3·2·1·2·1 ' 
or 

( 5) 5·4·3 
3 = ~ = 5·2 = 10, 

since 

(n) = n .. · (n - x + 1). 
x x(x - 1) .. ·1 
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For x > n we have obviously (~) = 0; for x < n, 

(n) n! (n) 
"Cx = x = (n _ x)!x! = n _ x = "C,,-x' 

For example, 

In particular "Co = "C" = 1, because out of n objects n can be chosen in 
exactly one way. This also follows from the definition of O! = 1. Other ways 
of writing "Cx are C: and C",x' A more detailed discussion is to be found in 
Riordan (1968). 

Further examples. How many possibilities are there of selecting a committee 
consisting of 5 persons from a group of 9? 

(9) . (9) 9·8 7 IS computed as 2 = 2.1 = 36 [see Table 31]. 

How many possibilities are there in lottery that involves choosing 6 numbers 
out of a collection of 49? The number of combinations of 49 elements taken 
6 at a time comes to 

( 49) 49! .. 6" = 6!43! ~ 14 mIllIon. 

Pascal's Triangle 

The binomial coefficients (~) can be read off from the triangular array of 
numbers given below, called Pascal's triangle (Pascal, 1623-1662): A number 
in this array is the sum of the two numbers to its right and its left in the 
next row above. The first and the last number in any row are ones. The 
defining law for Pascal's triangle is 

(1.148) 

for example, 

G) + G) = 3 + 3 = 6 = (~). 



1.6 Discrete Distributions 157 

Binomial coefficients for 

(g) 1 n=O (a+b)o= 1 

(6) G) 1 1 n=l (a+b)! =a+b 

(~) U) G) 1 2 1 n=2 (a+b)2 =a2 + 2ab+b2 

(6) G) G) G) 1 3 3 1 n=3 (a+b)3 =a3 + 3a2b+ 3ab2 +b3 

(6) (1) (i) (j) (:) 1 464 1 n=4 (a + b)4 = a4 + 4a3b + 6a2b2 

+4ab3+b4 
etc. 

This triangle immediately yields the values of the probabilities arising in a 
coin tossing problem. For example, the sum of the numbers in the fourth 
line is 1 + 3 + 3 + 1 = 8. By forming the fractions t, i, i, t, we get the 
probabilities for the various possible outcomes in tossing three coins, i.e., 
three heads (t), two heads and a tail (i), one head and two tails (i), and three 
tails (t). Correspondingly, the numbers in the fifth (nth) row, totaling 2n-l, 
give us the probabilities for head and tail combinations in tossing four 
(n - 1) coins. 

Pascal's triangle thus serves to identify the probability of combinations: 
The probability of a particular boy-girl combination in a family with, say, 
4 children, can be quickly determined when independence of the births and 
equal probabilities are assumed, i.e., a = b. First of all, since n = 4 is 
given, the numbers in the bottom row are added; this gives 16. At the ends 
of the row stand the least likely combinations, i.e., either all boys or all girls, 
each with the probability of 1 in 16. Going from the outside toward the 
center, one finds for the next possible combinations, namely 3 boys and 
1 girl or vice versa, the probability of 4 in 16 for each. The numbers 6 in the 
middle corresponds to two boys and two girls; the probability for this is 6 in 
16, i.e., nearly 38%. 

The coefficients in the expansion of (a + bt-sums of two terms are 
called binomials, so that this expression is referred to as the nth power of a 
binomial-can be obtained directly from Pascal's triangle. Note that the 
first and the last coefficient are always I; the second and the second to last 
coefficient always equal the exponent n of the binomial. The coefficient 1 
is not written explicitly [(a + b)l = la + Ib = a + b]. The generalization 



Table 31 Binomial coefficients {~} = n Cx = n !I [x! {n - x} !]. 
Since {~} = {n~x}' we get 6C4 = {!} = 6!/{4!2!} = 
{6 . 5 ·4·3·2·1 }/{4 . 3·2·1 ·2·1} with {~} = {6~4}' the 
value 15 [note also that {3} = {~} = I and {7} = (n~1) = n] 

Value of n 
1 2 3 4 5 6 7 8 9 10 11 12 13 ,x 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 
1 2 3 4 5 6 7 8 9 10 11 12 13 1 

1 3 6 10 15 21 28 36 45 55 66 78 2 
1 4 10 20 35 56 84 120 165 220 286 3 

1 5 15 35 70 126 210 330 495 715 4 
1 6 21 56 126 252 462 792 1287 5 

1 7 28 84 210 462 924 1716 6 
1 8 36 120 330 792 1716 7 

1 9 45 165 495 1287 8 
1 10 55 220 715 9 

1 11 66 286 10 
1 12 78 11 

1 13 12 
1 13 

x (1x4 ) (\5) (\6) (1]) (1~) (\9) (~o) x 

0 1 1 1 1 1 1 1 0 

1 14 15 16 17 18 19 20 1 
2 91 105 120 136 153 171 190 2 
3 364 455 560 680 816 969 1140 3 
4 1001 1365 1820 2380 3060 3876 4845 4 
5 2002 3003 4368 6188 8568 11628 15504 5 

6 3003 5005 8008 12376 18564 27132 38760 6 
7 3432 6435 11440 19448 31824 50388 77520 7 
8 3003 6435 12870 24310 43758 75582 125970 8 
9 2002 5005 11440 24310 48620 92378 167960 9 

10 1001 3003 8008 19448 43758 92378 184756 10 

11 364 1365 4368 12376 31824 75582 167960 11 
12 91 455 1820 6188 18564 50388 125970 12 
13 14 105 560 2380 8568 27132 77520 13 
14 1 15 120 680 3060 11628 38760 14 
15 1 16 136 816 3876 15504 15 

16 1 17 153 969 4845 16 
17 1 18 171 1140 17 
18 1 19 190 18 
19 1 20 19 
20 1 20 
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of the formula to the nth power of a binomial is given by the binomial 
expansion (Newton, 1643-1727): 

For a> >b we have (a + b)n ~ an + nan-lb. Note that 

2n = (1 + l)n = f (n); 
k=O k 

(1.149) 

Table 31 allows us to simply read off the binomial coefficients nC". In fact, 
the results of both examples can be read directly from Table 31. Miller 
(1954) presented an extensive table of binomial coefficients; their base ten 
logarithms, which are more manageable, can be found in (e.g.) the Docu
menta Geigy (1960 and 1968, pp. 70-77). Table 32 gives values of n! and log n! 
for 1 ~ n ~ 100. When tables of factorials and their logarithms to base ten 
are unavailable, one can approximate n! according to Stirling's formula 

nne -n.J2im. I (1.151) 

For large values of n the approximation is very good. Besides log n, the 
following logarithms will be needed: 

10g.j2n = 0.39909, 

log e = 0.4342945. 

Better than (1.151) is the formula (n + 0.5)"+o,se-(n+o.s).j2n, i.e., 

log n! ~ (n + 0.5)log(n + 0.5) - (n + 0.5)log e + 10g.j2n. 

We get, for example, for 1oo!, 

(1.152) 

log 1oo! ~ (100.5)(2.002166) - (loo.5X0.4342945) + 0.39909 = 157.97018 

i.e., 

1oo! ~ (9.336X101s7). 

The actual values as tabulated are 

log 1oo! = 157.97000, 

1oo! = 9.3326.10157• 

Better approximations are given by Abramowitz and Stegun (1968, p. 257 
[2]). 
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Table 32 Factorials and their base ten logarithms 

n n! log n! n n! log n! 

50 3.0414 x 10 64 64.48307 
1 1.0000 0.00000 51 1.5511 x 10 66 66.19065 
2 2.0000 0.30103 52 8.0658 x 10 67 67.90665 
3 6.0000 0.77815 53 4.2749 x 10 69 69.63092 
4 2.4000 x 10 1. 38021 54 2.3084 x 10 71 71. 36332 

5 1.2000 x 10 2 2.07918 55 1. 2696 x 10 73 73.10368 
6 7.2000 x 10 2 2.85733 56 7.1100 x 10 74 74.85187 
7 5.0400 x 10 3 3.70243 57 4.0527 x 10 76 76.60774 
8 4.0320 x 10 4 4.60552 58 2.3506 x 10 78 78.37117 
9 3.6288 x 105 5.55976 59 1. 3868 x 10 80 80.14202 

ro 3.6288 x 10 6 6.55976 60 8.3210 x 10 81 81.92017 
11 3.9917 x 10 7 7.60116 61 5.0758 x 10 83 83.70550 
12 4.7900 x 10 8 8.68034 62 3.1470 x 10 85 85.49790 
13 6.2270 x 10 9 9.79428 63 1.9'826 x 10 87 87.29724 
14 8.7178 x 10 10 10.94041 64 1. 2689 x 10 89 89.10342 

15 1.3077 x 10 12 12.11650 65 8.2477 x 10 90 90.91633 
16 2.0923 x 101 3 13.32062 66 5.4435 x 10 92 92.73587 
17 3.5569 x 10 14 14.55107 67 3.6471 x 10 94 94.56195 
18 6.4024 x 10 15 15.80634 68 2.4800 x 10 96 96.39446 
19 1.2165 x 10 17 17.08509 69 1.7112 x 10 98 98.23331 
20 2.4329 x 10 18 18.38612 70 1.1979 x 101 0 100.07841 
21 5.1091 x 10 19 19.70834 71 8.5048 x 10 101 101.92966 
22 1.1240 x 10 21 21.05077 72 6.1234 x 10 10 103.78700 
23 2.5852 x 10 22 22.41249 73 4.4701 x 10 10 105.65032 
24 6.2045 x 10 23 23.79271 74 3.3079 x 10 10 107.51955 

25 1.5511 x 10 25 25.19065 75 2.4809 x 10 109 109.39461 
26 4.0329 x 10 26 26.60562 76 1. 8855 x 101 1 1 111.27543 
27 1. 0889 x 10 28 28.03698 77 1.4518 x 101 1 113.16192 
28 3.0489 x 10 2 9 29.48414 78 1.1324 x 101 I 5 115.05401 
29 8.8418 x 10 30 30.94654 79 8.9462 x 10 116 116.95164 

30 2.6525 x 10 32 32.42366 80 7.1569 x 101 1 8 118.85473 
31 8.2228 x 10 33 33.91502 81 5.7971 x 101 2 0 120.76321 
32 2.6313 x 10 35 35.42017 82 4.7536 x 10 122 122.67703 
33 8.6833 x 10 36 36.93869 83 3.9455 x 10 124 124.59610 
34 2.9523 x 10 38 38.47016 84 3.3142 x 10 126 126.52038 

35 1. 0333 x 10 40 40.01423 85 2.8171 x 10 128 128.44980 
36 3.7199 x 10 41 41.57054 86 2.4227 x 101 30 130.38430 
37 1.3764 x 10 43 43.13874 87 2.1078 x 10 132 132.32382 
38 5.2302 x 10 44 44.71852 88 1.8548 x 10 134 134.26830 
39 2.0398 x 10 46 46.30959 89 1.6508 x 101 36 136.21769 

40 8.1592 x 10 47 47.91165 90 1.4857 x 101 38 138.17194 
41 3.3453 x 10 49 49.52443 91 1.3520 x 10 140 140.13098 
42 1.4050 x 10 51 51.14768 92 1.2438 x 10 14 142.09477 
43 6.0415 x 10 52 52.78115 93 1.1568 x 10 144 144.06325 
44 2.6583 x 10 54 54.42460 94 1.0874 x 10 146 146.03638 

45 1.1962 x 10 56 56.07781 95 1.0330 x 10 148 148.01410 
46 5.5026 x 10 57 57.74057 96 9.9168 x 10 14 , 149.99637 
47 2.5862 x 10 59 59.41267 97 9.6193 x 101 51 151.98314 
48 1.2414 x 10 61 61.09391 98 9.4269 x 101 53 153.97437 
49 6.0828 x 10 62 62.78410 99 9.3326 x 101 55 155.97000 

50 3.0414 x 10 64 64.48307 100 9.3326 x 101 5 157.97000 
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In applying Stirling's formula it is to be noted that with increasing n, the 
value of n! grows extraordinarily rapidly and the absolute error becomes very 
large, while the relative error (which is about lj[12nJ) tends to zero and for 
n = 9 it is already less than one percent. 

Let us also mention the rough approximation (n + a)! ~ n!n"e' with 
r = (a 2 + a)/(2n). 

Further elements of combinatorics 

Every listing of n elements in some arbitrary sequence is called a permutation 
of these n elements. With n elements there are n! different permutations (the 
factorial gives the number of possible sequences). Thus the 3 letters a, b, c, 
can be ordered in 3! = 6 ways: 

abc 

acb 

bac 

bca 

cab 

cba. 
If among n elements there are nl identical elements of a certain type, n2 of a 
second type, and in general nk of a kth type, then the number of all possible 
orderings, the number of permutations, equals 

(1.153) 

This quotient will be of interest to us later on, in connection with the multi
nomial distribution. 

A selection of k elements from a collection ofn elements (n ~ k) is called a 
combination of n elements k at a time, or more simply, a combination of 
kth order. Depending on whether some of the selected elements are allowed 
to be identical or have all to be different, we speak of combinations with or 
without replication, respectively. If two combinations that in fact consist of 
exactly the same elements but in different order are treated as distinct, they 
are called permutations of n elements k at a time; they are also called vari
ations of n elements of kth order, with or without replication. Accordingly, 
we can distinguish four models. 

The number of combinations of kth order (k at a time) of n different 
elements: 

1. without replication and without regard for order is given by the binomial 
coefficients 

(1.154) 

2. without replication but taking order into account equals 

n' (n)k' (n-k)! k ' 
(1.155) 
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3. with replication but without regard for order equals 

(1.156) 

4. with replication and taking order into account equals 

(1.157) 

EXAMPLE. The number of combinations of second order (in every case con
sisting of two elements) out of three elements, the letters a, b, c, (n = 3, 
k = 2) is as follows: 

Combinations 
Model Replication Regard to order Type Number 

1 without without ab ae be G)=3 

ab ae be 3! 
2 without with 

ba ea eb 
=6 

(3 - 2)! 

aa 
e+~-1)=6 3 without bb ab ae be 

ee 

aa ab ae be 
4 with with bb ba ea eb 3 2 = 9 

ee 

An introduction to combinations is given in Riordan (1958, 1968) and in 
Wellnitz (1971). 

~ 1.6.2 The binomial distribution 

If p represents the probability that a particular trial gives rise to a "success" 
and q = 1 - p stands for the probability of a "failure" in that trial, then the 
probability that in n trials there are exactly x successes - x successes and 
n - x failures occur - is given by the relation 

n! C x n-x x n-x = n x P q = I( _ ) I P q , x. n x. 

(1.158) 

where x = 0, 1, 2, ... , n. 
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The distribution function is given by 

F(x) = I (n)pkqn-k and F(n) = ±. (n)lqn-k = l. 
k=O k k=O k 

The term binominal distribution derives from the binomial expansion 

(1.159) 

Note: We write p (and q) rather than n (and 1 - n) as parameters and p 
(and q) as estimates of the relative frequencies. The binomial or Bernoulli 
distribution, which dates back to Jakob Bernoulli (1654-1705), is based on 
the following underlying assumptions: 

I. The trials and the results of these trials are independent of one another. 
2. The probability p of any particular event remains constant for all trials. 

This very important discrete distribution is applicable whenever repeated 
observations on some dichotomies are called for. Since x can take on only 
certain integral values, probabilities are defined only for positive integral 
x-values (Figure 28). The binomial distribution is symmetric when p = 0.5, 
is flat to the right when p < 0.5 and is flat to the left when p > 0.5. 
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Figure 28 Binomial distributions for n = 8 and various values of p. 

The parameters of the binomial distribution are nand p, the mean 

I p=np, (1.160) 

and the variance 

(J'2 =np(l-p)=npq. (1.161) 
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Equations (1.160), (1.161) are valid for absolute frequencies; for relative 
frequencies we have the relations: Jl = p and (12 = pq/n. The coefficient of 
skewness is 

Skewness = q - p = q ;:!-:., 
(1 v npq 

(1.162) 

so that for large n, i.e., for a large standard deviation, the skewness becomes 
very small and the asymmetry insignificant. 

If individual probabilities P(x) are to be calculated, one applies the 
so-called recursion formula 

n - xp 
P(x + 1) = --l-P(x). 

x + q 
(1.163) 

Since P(O) = q" can, for given q and n, be rapidly computed according to 
(1.158), it then follows that P(l) = (n/1)(p/q)P(0), P(2) = !(n - l)(P/q)P(1), 
etc. 

@ Tables are provided by the National Bureau of Standards (1950), Romig 
(1953), Harvard University Computation Laboratory (1955), and Weintraub 

~ (1963); Table 33 lists selected binomial probabilities (cf., Examples 1 and 2). 
~ Also of importance (cf., Example 2a) is the formula 

( q Xo ) P(X~xo)=P F 2(n- xo+l), 2xo>-' l' 
P n - Xo + 

(1.164) 

In the region 0.001 ::;; P ::;; 0.10 we interpolate according to (1.141), (1.142). 

In Chapters 4 and 6 probabilities are compared in terms of samples from 
binomial populations; from two binomial distributions with the help of the 
so-called fourfold test, and from several binomial distributions with the 
help of the so-called k x 2 X2 test. 

Approximation of the binomial distribution by the normal distribution 

For npq ~ 9 

A X - np 
Z=---

.j;;pq 
(1.165) 

has approximately the standard normal distribution (cf., Examples 4 and 5). 
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Modification with continuity correction 

The exact probability of the binomial variable x, taking integral values, is 
often approximated by the probability of a normal variable x - 0.5 or 
x + 0.5, referred to as corrected for continuity. Probabilities concerning 
open intervals P(xl < X < x2) or closed intervals P(Xl ~ X ~ x2) for 
any Xl and X2 with 0 ~ Xl < X2 ~ n are thus better approximated by: 

open P <Z<---=--~~---=-(
Xl + 0.5 - np X2 - 0.5 - np) 

Jnpq Jnpq 
(1.165a) 

closed p(Xl - 0.5 - np < Z < X2 + 0.5 - np) 
Jnpq - - Jnpq 

(1.165b) 

Note that (1.165b) is broader than (1.165a). 
As an example we evaluate P(16 < X ~ 26) for n = 100 and p = 0.25 

or np = 25 and Jnpq = 4.330. 

p(16 + 0.5 - 25 Z < 26 + 0.5 - 25) = P( _ 1.963 < Z < 0.346) 
4.330 < - 4.330 -

and with Table 13 and some interpolation we get for P(16 < X ~ 26) = 
P(17 ~ X ~ 26) the approximated value (0.5 - 0.0248) + (0.5 - 0.3647) = 
0.4752 + 0.1353 = 0.61050rO.61 (exact value 0.62063). 

The cumulative binomial probability 

P(X~klp;n)= i (~)piqn-j 
j=O ] 

can be better approximated with the help of the standardized value z given by 
Molenaar (1970): 

I z=IVq(4k+3.5)-Vp(4n-4k-0.5) I. I (1.166) 

Here (a) for 0.05 ~ P ~ 0.93,3.5 is to be replaced by 3 and 0.5 by 1; (b) for 
extreme P-values, 3.5 is to be replaced by 4 and 0.5 by o. 

EXAMPLE. P(X ~ 1310.6; 25) = 0.268; 

z = 1 J0.4(52 + 3.5) - JO.6(100 - 52 - 0.5) 1 = 0.627, 

i.e., P = 0.265; with 3 and 1 the result changes to z = 0.620, P = 0.268. 

The confidence limits of the binomial distribution will be examined more 
thoroughly in Section 4.5. A very useful nomogram of the distribution 
function on this distribution is given by Larson (1966). Approximations 
are compared by Gebhardt (1969) and Molenaar (1970). 
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Remarks 

1. With the help of (1.163) a graphical test to check whether a sample might 
come from a binomially distributed population can be carried out: One plots 
P(x + l)/P(x) where P(x) is the empirical distribution function, against 1/(x + 1), 
and if the points all lie on roughly a straight line (cf. Chapter 5), then the values 
follow a binomial distribution (Dubey 1966; cf. also Ord 1967). 

2. Mosteller and Tukey (1949), at the suggestion of R. A. Fisher, designed a 
binomial probability paper which, in addition to a graphical assessment of binomial 
probabilities-(in particular, estimation of the confidence interval of a relative 
frequency as well as comparison of two relative frequencies), allows also for evalu
ation of approximate X2 probabilities and the variance ratio of F. For suppliers of 
binomial paper see the References, Section 7. For particulars one must refer to 
Stange (1965), and also to the pertinent chapters in the book by Wallis and Roberts 
(1962). Further remarks are given by King (1971). 

3. Functional parameters and explicit parameters. Parameters that provide infor
mation on where the values of the random variables lie on the real line (II, ji) and 
how close together they are (0- 2 ) were called functional parameters by Pfanzagl (1966). 
They can be written as functions of the parameters that appear explicitly in the 
formula for the density of a distribution. Thus for the binomial distribution 

nand p are explicit parameters, 
II = np and 0-2 = np(l - p) are functional parameters, 

since they can be expressed in terms of the explicit parameters. The density function 
of the normal distribution also contains two explicit parameters: II and 0-, which are 
at the same time also functional parameters, as is indicated by the notation. 

4. Finally, the winning numbers in roulette are nearly normally distributed even 
when n is only moderately large. For large n (n -> w) the percentage of their occur
rence is the same. The frequencies of the individual winning numbers are then greatly 
scattered [they lie, according to (1.161), very far from one another]. Consequently, 
in cases of completely equal chance (roulette), there is no tendency toward absolute 
equalization (do equal chances necessarily lead to inequality in society as well?). 

5. A more detailed discussion of the binomial distribution can be found in Patil 
and Joshi (1968 [cited on p. 575J) as well as in Johnson and Kotz (1969 [cited on 
p. 570J). Two generalizations are given in Altham (1978). Tolerance intervals give 
Hahn and Chandra (1981). 

6. Change-point problem: Methods for testing a change of distribution in a 
sequence of observations when the initial distribution is unknown are given in Pettitt 
(1979) and (1980) for zero-one observations, binomial observations and continuous 
observations. 

Examples 
1. What is the probability that on tossing an ideal coin (p = !) three 

times, (a) three heads, (b) two heads [and a tail] are obtained? 

(a) P = 3C3(!)3(!)O = 1·!·1 =! = 0.125, 

(b) P = 3C2(!f(!)1 = 3 ·i·! = i = 0.375. 
Notethatforp = !wehaveP(X = xln;t) = (~)(!)x(!)n-x = (~)(!)n = (~)/2n. 
See Table 31 in Section 1.61 and Table 26in Section 1.4.2, as well as the remark 
below Table 33. 



Table 33 Binomial probabilities (~)px(1 - p)n-x for n:s; 10 and for 
various values of p [taken from Dixon and Massey (1969 [1]) copy
right © April 13, 1965, McGraw-Hili Inc.] 

,/\' 0.01 0.05 0.10 0.15 0.20 0.25 0.30 1/3 0.35 0.40 0.45 0.50 

2 

3 

4 

5 

6 

7 

8 

9 

10 

o 0.9801 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4444 0.4225 0.3600 0.3025 ~ .2500 1 0.0198 0.0950 0.1800 0.2550 0.3200 0.3750 0.4200 0.4444 0.4550 0.4800 0.4950 ~ .5000 2 0.0001 0.0025 0.0100 0.0225 0.0400 0.0625 0.0900 0.1111 0.1225 0.1600 0.2025 .2500 
o 0.9703 0.8S74 0.7290 0.6141 0.5120 0.4219 0.3430 0.2963 0.2746 0.2160 0.1664 ~ .1250 1 0.0294 0.1354 0.2430 0.3251 0.3840 0.4219 ~.4410 0.4444 0.4436 0.4320 0.4084 ~ .3750 2 0.0003 0.0071 0.0270 0.0574 0.0960 0.1406 .1890 0.2222 0.2389 0.2880 0.3341 .3750 
3 0.0000 0.0001 0.0010 0.0034 0.0080 0.0156 0.0270 0.0370 0.0429 0.0640 0.0911 ~ .1250 
o 0.9606 0.8145 0.6561 0.5220 0.4096 0.3164 ~ .2401 0.1975 0.1785 0.1296 0.0915 ~.0625 
1 ~ .0388 0.1715 ~.2916 ~.3685 0.4096 0.4219 .4116 ~ .3951 0.3845 0.3456 0.2995 P .2500 
2 .0006 0.0135 r 0486 .0975 0.1536 0.2109 ~.2646 ~.2963 0.3105 0.3456 0.3675 ~. 3750 
3 p.OOOO 0.0005 .0036 ~:0115 0.0256 0.0469 ~.0756 ~.0988 0.1115 0.1536 0.2005 0.2500 
4 0.0000 0.0000 0.0001 .0005 0.00160.0039 .0081 p.0123 0.0150 0.0256 0.0410 .0625 
a !).9510 0.7738 ~.5905 .4437 0.3277 0.2373 0.1681 ~.1317 0.1160 0.0778 0.0503 .0312 
1 0.0480 0.2036 .3280 .3915 0.4096 ~:39S5 ~.3602 0.3292 0.3124 0.2592 0.2059 0.1562 
2 0.0010 0.0214 ~.0729 .1382 0.2048 .2637 .3087 g .3292 0.3364 g.3456 0.3368 .3125 
3 0.0000 0.0011 .0081 .0244 o .0512 ~ :0879 .1323 .1646 0.1811 .2304 0.2157 .3125 
4 0.0000 0.0000 g.0004 .0022 

g:ggg; ii:mg 
0.0284 0.0412 0.0488 0.0768 g.1128 .1562 

5 .0000 0.0000 .0000 .0001 .0024 0.0041 0.0053 0.0102 .0185 .0312 

a 0.9415 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0878 0.0754 0.0467 0.0277 0.0156 
1 0.0571 0.2321 0.3543 ~:3993 0.3932 0.3560 0.3025 0.2634 0.2437 0.1866 0.1359 0.0938 
2 0.0014 0.0305 0.0984 ~: 1762 0.2458 0.2966 0.3241 0.3292 0.3280 0.3110 0.2780 g:2344 
3 0.0000 0.0021 0.0146 .0415 0.0819 0.1318 0.1852 0.2195 0.2355 0.2765 0.3032 .3125 
4 0.0000 0.0001 0.0012 0.0055 0.0154 0.0330 0.0595 0.0823 0.0951 0.1382 0.1861 0.2344 
5 0.0000 0.0000 0.0001 0.0004 0.0015 0.0044 0.0102 0.0165 0.0205 0.0369 0.0609 0.0938 
6 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0014 0.0018 0.0041 0.0083 0.0156 

o 0.9321 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0585 0.0490 0.0280 0.0152 0.0078 
1 0.0659 0.2573 0.3720 0.3960 0.3670 0.3115 0.2471 0.2048 0.1848 0.1306 0.0872 0.0547 
2 0.0020 0.0406 0.1240 0.2097 0.2753 0.3115 0.3177 0.3073 0.2985 0.2613 0.2140 0.1641 
3 0.0000 0.0036 0.0230 0.0617 0.1147 0.1730 0.2269 0.2561 0.2679 0.2903 0.2918 0.2734 
4 0.0000 0.0002 0.0026 0.0109 0.0287 0.0577 0.0972 0.1280 0.1442 0.1935 0.2388 0.2734 
5 0.0000 0.0000 0.0002 0.0012 0.0043 0.0115 0.0250 0.0384 0.0466 0.0774 0.1172 0.1641 
6 0.0000 0.0000 0.0000 0.0001 0.0004 0.0013 0.0036 0.0064 0.0084 0.0172 0.0320 0.0547 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0006 0.0016 0.0037 0.0078 

o 0.9227 0.6634 0.4305 ~.2725 0.1678 0.1001 0.0576 0.0390 0.0319 0.0168 0.0084 0.0039 
1 0.0746 0.2793 0.3826 ~.3847 0.3355 0.2670 0.1977 0.1561 0.1373 0.0896 0.0548 0.0312 
2 0.0026 0.0515 0.1488 .2376 0.2936 0.3115 0.2965 0.2731 0.2587 0.2090 0.1569 0.1094 
3 0.0001 0.0054 0.0331 0.0839 0.1468 0.2076 0.2541 0.2731 0.2786 0.2787 0.2568 0.2188 
4 0.0000 0.0004 0.0046 ~ .0185 0.0459 0.0865 0.1361 0.1707 0.1875 0.2322 0.2627 0.2734 
5 0.0000 0.0000 0.0004 ~.0026 0.0092 0.0231 0.0467 0.0683 0.0808 0.1239 0.1719 0.2188 
6 0.0000 0.0000 0.0000 .0002 0.0011 0.0038 0.0100 0.0171 0.0217 0.0413 0.0703 0.1094 
7 0.0000 0.0000 0.0000 p.OOOO 0.0001 0.0004 0.0012 0.0024 0.0033 0.0079 0.0164 0.0312 
8 0.0000 0.0000 0.0000 p.OOOO 0.0000 0.0000 0.0001 0.0002 0.0002 0.0007 0.0017 0.0039 

a 0.9135 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0260 0.0207 0.0101 0.0046 0.0020 
1 0.0830 0.2985 0.3874 0.3679 0.3020 0.2253 0.1556 0.1171 0.1004 0.0605 0.0339 0.0176 
2 0.0034 0.0629 0.1722 0.2597 0.3020 0.3003 0.2668 0.2341 0.2162 0.1612 0.UI0 0.0703 
3 0.0001 0.0077 0.0446 0.11169 0.1762 0.2336 0.2668 0.2731 0.2716 0.2508 0.2119 0.1641 
4 0.0000 0.0006 0.0074 0.0283 0.0661 0.1168 0.1715 0.2048 0.2194 0.2508 0.2600 0.2461 

5 0.0000 0.0000 0.0008 0.0050 0.0165 0.0389 0.0735 0.1024 0.1181 0.1672 0.2128 0.2461 
6 0.0000 0.0000 0.0001 0.0006 0.0028 0.0087 0.0210 0.0341 0.0424 0.0743 0.1160 0.1641 
7 0.0000 0.0000 0.0000 0.0000 0.0003 0.0012 0.0039 0.0073 0.0098 0.0212 0.0407 0.0703 
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0009 a .oon 0.0035 0.0083 0.0176 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0008 0.0020 

o 0.9044 0.5987 0.3487 0.1969 0.1074 g.0563 0.0282 0.0173 0.0135 0.0060 0.0025 0.0010 
1 0.0914 0.3151 0.3874 ~:~m 0.2684 .1877 0.1211 0.0867 0.0725 0.0403 0.0207 0.0098 
2 0.0042 0.0746 0.1937 0.3020 0.2816 0.2335 0.1951 0.1757 0.1209 0.0763 0.0439 
3 0.0001 0.0105 0.0574 0.1298 0.2013 0.2503 0.2668 0.2601 0.2522 0.2150 0.1665 0.1172 
4 0.0000 0.0010 0.0112 g:0401 0.0881 0.1460 0.2001 0.2276 0.2377 0.2508 o .~J84 0.2051 
5 0.0000 0.0001 0.0015 .0085 0.0264 0.0584 0.1029 0.1366 0.1536 0.2007 0.2340 0.2461 

6 0.0000 0.0000 0.0001 0.0012 0.0055 0.0162 0.0368 0.0569 0.0689 0.1115 0.1596 0.2051 
7 0.0000 0.0000 0.0000 0.0001 0.0008 0.0031 0.0090 0.0163 0.0212 0.0425 0.0746 0.1172 
8 0.0000 0.0000 0.0000 ~.OOOO 0.0001 ~ .0004 0.0014 0.0030 0.0043 0.0106 0.0229 0.0439 
9 0.0000 0.0000 0.0000 .0000 0.0000 .0000 0.0.001 0.0003 0.0005 0.0016 0.0042 0.0098 

10 0.0000 0.0000 0.0000 p.OOOO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010 

Table 33 has the three entries (n, x, p). For n = 3, x = 3, p = 0.5 the desired value is 
found to be 0.1250 and for n = 3, x = 2, p = 0.5 it is 0.3750. 

If p is small, there is a preference toward small values of x. For p = 0.5 the distribu
tion is symmetric. If p is large, there is a preference toward large values of x: For p > 0.5 
one therefore replaces (a) p by 1 - P and (b) x = 0, 1, ... , n by x = n, n - I, ... , O. 
Example: n = 7. p = 0.85, x = 6: see n = 7. P = 1 - 0.85 = 0.15. x = 1 (previously the 
second to last value in the column, now the second value from the top); i.e., P = 0.3960. 
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2. Suppose 20 % of the pencils produced by a machine are rejects. 
What is the probability that out of 4 randomly chosen pencils (a) no pencil, 
(b) one pencil, (c) at most two pencils are rejects? The probability that a 
reject is produced is p = 0.2, while the probability of not producing a reject 
comes to q = 1 - p = 0.8. 

(a) P(no rejects) = 4Co(0.2)0(0.8)4 = 0.4096, 
(b) P(one reject) = 4Cl(0.2)1(0.8)3 = 0.4096, 
(c) P(two rejects) = 4C2(0.2)2(0.8)2 = 0.1536. 

P(at most two rejects) = P(no rejects) + P(one reject) + P(two rejects) = 
0.4096 + 0.4096 + 0.1536 = 0.9728. By Table 33 with n = 4, x takes on 
the values 0, 1, 2 with p = 0.2 in every case. The corresponding probabilities 
can be read off directly. By the recursion formula, 

1 
p = 0.2 = 5" and n = 4; 

p t 1 
- = 4 = -4; 
q "5 

P(O) = 0.84 = 0.4096, 

4 1 
P( 1) = l' 4 . 0.4096 = 0.4096, 

3 1 
P(2) = "2 . 4 . 0.4096 = 0.1536, 

2 1 
P(3) = 3' 4.0.1536 = 0.0256, 

1 1 
P(4) = 4'4.0.0256 = 0.0016, 

Check: L P = 1.0000. 

2a. When the probability of getting at least 3 rejects is sought, we obtain, 
for n = 4 and p = 0.2, 

( Q8 3 ) 
P(X;::: 3) = P F2(4-3+1),2.3 > 0.2' 4 _ 3 + 1 = P(F4;6 > 6.00). 

The probability of this F-value (6.00) for VI = 4 and V2 = 6 degrees of 
freedom is found by interpolation (cf., Section 1.5.3): 

F 1 = 4.53 (a = 0.05),} m = 2,' 6.23 - 6.00 
F 2 = 6.23 (a = 0.025), k = 6.23 _ 4.53 = 0.1353, 

P = 0.025.2°.1353 = 0.0275. 

The approximation is seen to be good on comparing it with the exact value 
of 0.0272. 
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3. Which is more probable: that tossing (a) 6 ideal dice, at least one six 
is obtained or (b) 12 ideal dice, at least two sixes turn up? 

(a) Pnosi.esareobtained = 6Co(i)O(i)6 ~ 0.335 
Pone or more sixes are obtained = 1 - 6Co(1)O(i)6 ~ 0.665 

(b) Ptwoormoresixesareobtained = 1 - (12Co(i)O(i)12 + 12C1(i)1(i)11) 
~ 1 - (0.1122 + 0.2692) ~ 0.619. 

Thus (a) is more probable than (b). To have a coarse estimate of the prob
ability in (a) one can refer to Table 33, using p' = 0.15 in place of p = 
0.166 ~ 0.17. 

4. An ideal die is tossed 120 times. We are asked to find the probability 
that the number 4 appears eighteen times or less. The probability that the 4 
comes up from zero to eighteen times (p = i, q = i) equals exactly 
120C 1s(i)1S(i)102 + 120C 1 7(i) 17 (i)103 + ... + 12oCo(i)O(~)120. Since carry
ing out the computation is rather a waste of time, we resort to the normal 
distribution as an approximation (cf., npq = (120)· i· i = 16.667 > 9). If we 
treat the numbers as a continuum, the integers 0 to 18 fours are replaced 
by the interval -0.5 to 18.5 fours, i.e., 

x = np = 120(~) = 20 and s = JnM = J16.667 = 4.08. 

-0.5 and 18.5 are then transformed into standard units [z = (x - x)/s]; 
for -0.5weget( -0.5 - 20)/4.09 = -5.01,for 18.5 we get (18.5 - 20)/4.09= 
-0.37. The probability sought is then given by the area under the normal @ 
curve between z = -5.01 and z = -0.37: 

P = (area between z = 0 and z = -5.01) 
-(area between z = 0 and z = -0.37), 

P = 0.5000 - 0.1443 = 0.3557. 

Thus, if we repeatedly take samples of 120 tosses the 4 should appear 18 
times or less in about 36 % of the cases. 

5. It is suspected that a die might no longer be ideal. In 900 tosses a 4 
is observed 180 times. Is this consistent with the null hypothesis which says 
the die is regular? Under the null hypothesis the probability of tossing a 4 

is i. Then np = 900(i) = 150 and JnM = J900·i·i = 11.18; 

= 180 - 150 = ~ = 2.68. P 00037 
Z 11.18 11.18 ' =. . 

Since we have here a two sided question, P = 0.0074; hence the result is 
significant at the 1 % level. The die is not unbiased. Problems of this sort can 
be better analyzed according to Section 4.3.2. 

6. We are interested in the number of female offsprings in litters of 4 
mice (cf., David 1953, pp. 187 ff.). The results for 200 litters of this type are 
presented in Table 34. 
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Table 34 The number of female mice in litters of 4 mice 
each 

Number of female mice/litter 0 1 2 3 4 

Number of litters (200 total) 15 63 66 47 9 

We now assume that for the strain of mice considered, the probability 
of being born a female is constant, independent of the number of female 
animals already born, and in addition, that the litters are independent of 
each other, thus forming a random process, so that the percentage of female 
animals in the population can be estimated from the given sample of 200 
litters. 

The portion of young female animals is 

" number of female offsprings 
P = total number of offsprings ' 

= (0)(15) + (1)(63) + (2)(66) + (3)(47) + (4)(49) = 0465 
P (4)(200) . . 

We know that when the assumptions of the binomial distribution are satisfied, 
the probabilities of finding 0, 1, 2, 3, 4 females in litters of 4 animals each 
can be determined with the aid of the binomial expansion of(0.535 + 0.465)4. 
On the basis of this expansion, the expected numbers for 200 litters of quad
ruplets are then given by the terms of 

200 = 200(0.535 + 0.465)4 

= 200(0.0819 + 0.2848 + 0.3713 + 0.2152 + 0.0468) 

= 16.38 + 56.96 + 74.26 + 43.04 + 9.36. 

A comparison of the observed and the expected numbers is presented in 
Table 35. 

Table 35 Comparison of the expected numbers with the ob
served numbers of Table 34 

Number of female mice/litter 0 1 2 3 4 L 

Number of litters: 
observed 15 63 66 47 9 200 
expected 16.38 56.96 74.26 43.04 9.36 200 

In Section 1.6.7 we will consider a similar example in greater detail and 
test whether the assumptions of the Poisson distribution are fulfilled, i.e., 
whether the observations follow a true or compound Poisson distribution. 
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1.6.3 The hypergeometric distribution 

If samples are taken without replacement (cf., Section l.3.1), then the hyper
geometric distribution replaces the binomial distribution. This distribution 
is used frequently in problems relating to quality control. We consider, e.g., 
drawing 5 balls from an urn with W = 5 white and B = 10 black balls. We 
are asked for the probability that exactly w = 2 white and b = 3 black balls 
are taken. This probability is given by 

wCw' BCb (:)(!) 
P(woutofW,boutofB) = C = (W B) 

W+B w+b + 
W + b 

with 0 ~ w ~ Wand 0 ~ b ~ B. 

15!/10!·5! 

(5·4)· (10·9·8) . (5 ·4·3·2· 1) 
(2· 1)· (3 ·2· 1)· (15 . 14·13 . 12. 11) = 0.3996, 

a probability of around 40 %. 

(1.167) 

With sample sizes n1 + n2 = n and corresponding population sizes 
N 1 + N 2 = N, (1.167) can be generalized to 

N 
mean: /l = n ~ = np, 

N- n 
variance: (12 = np(1 - p) N _ l' 

(1.167a) 

(1.168) 

(1.169) 

If n/N is small, this distribution is practically identical to the binomial 
distribution. Correspondingly, the variance tends to the variance of the 
binomial distribution (N - n)/(N - 1) ~ 1 - (n/N) ~ 1 for N > >n). 

The generalized hypergeometric distribution (polyhypergeometric dis
tribution) 

(1.170) 
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gives the probability that in a sample of size n exactly n1, n2, ... , nk observa
tions with attributes A 1, A2 , ••• , Ak are obtained if in the population of 
size N the frequencies of these attributes are N 1, N 2, .•. , Nk with L~= 1 Ni = 
N and L~= 1 ni = n. The parameters (for the ni) are 

mean: (1.171) 

• 2 ( N-n 
vanance: (Ji = npi 1 - Pi) N _ l' (1.172) 

The inverse of the hypergeometric distribution, discussed by Guenther (1975), is 
used, among other things, in quality control and for estimating the unknown size N 
of a population (e.g., the state of a wild animal population): N 1 individuals are 
captured, marked, and then released; subsequently some n individuals are captured 
and the marked individuals counted, yielding n l ; then N ~ nN tlnl (cf. also Jolly 
1963, Southwood 1966, Roberts 1967, Manly and Parr 1968, as well as Robson 1969). 

EXAMPLES 

1. Assume we have 10 students, of which 6 study biochemistry and 4 
statistics. A sample of 5 students is chosen. What is the probability that 
among the 5 students 3 are biochemists and 2 are statisticians? 

P(3 f6B 2 f4S) _ 6 C3'4C2 _ (6!f[3!·3!])(4!f[2!·2!]) 
out 0 ., out 0 . - - --'---------'=--------=--

6+4C3+2 10!f[5! . 5!] 

(6·5·4) . (4·3) . (5·4·3·2·1) 
(3·2· 1) . (2· 1) . (10·9·8·7·6) 

20 
= 42 = 0.4762. 

The probability thus comes to nearly 50 %. 
2. The integers from 0 to 49 are given. Six of them are "special". Six are 

to be drawn. What is the probability of choosing four of the special numbers? 
In the game Lotto, the integers 

since 

P(4 out of 6,2 out of 43) = 
(:)(~) 
(~) 

15·903 
13,983,816' 

(~) = (~~~: :: ~~) = (49)(47)(46)(3}~44) = 13,983,816. 
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For problems of this sort one refers to Tables 31 and 30 (Sections 1.6 and 
1.5.3): 

P ~ 13.545· 103 ~ 0967.10-3 
13.984· 106 ' , 

i.e., not quite 0.001. Likewise, the probability that at least four specific numbers 
are chosen is still below 0.1 %. The probability of choosing six specific 
numbers equals 1/(4:) = 1/13,983,816 ~ 7.10- 8. 

3. A population of 100 elements includes 5% rejects. What is the prob
ability that in a sample consisting of 50 elements, (a) no, (b) one reject is 
found? 
Case (a) 

P(50 f95 0 f5) 9SCSO'SCo 95!·5!·50!·50! 
out 0 , out 0 = = ~:--,.-::-c-----=-:--:--:------=-"...,. 

95+SCSO+o 50!·45!·5!·0!·100! 

95!·50! 
45!· 100! 

(Table 32) 

1.0330.10148.3.0414.1064 
1.1962. 1Os6 . 9.3326. 101S7 = 0.02823. 

Case (b) 

9SC49' sC1 95!· 5!· 50!· 50! 
P(49 out of 95, 1 out of 5) = C =491.46'.41.11.100' 9S+S 49+1 . . .. . 

95!·50!·50! 
= 5· 49!. 46!. 100! = 0.1529. 

4. If in the course of a year out of W = 52 consecutive issues of a weekly 
publication A = 10 arbitrary issues carry a certain notice, then the prob
ability that someone reading w = 15 arbitrary issues does not run across 
a copy containing the notice (a = 0) is 

P(a out of A w out of W) = (;)(: = ;) 
, (:) 

or 

( 10)(52 - 10) 
o 15 - 0 

p(O out of to, 15 out of 42) ~ (;~) 

i.e., since 

(~) = 1, 
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we have 

p = (;~) = 42!·15!·37! 

G~) 15!· 27!· 52!" 

This can be calculated as follows: 

log42! = 51.14768 

log 15! = 12.11650 

log 37! = 43.13874 

106.40292 

log 15! = 12.11650 

log 27! = 28.03698 

log 52! = 67.90665 

= 108.06013 

log P 0.34279 - 2 

P 0.02202 ~ 2.2 %. 

Thus the probability of seeing at least one notice comes to nearly 98 %. 
Examples 2 and 3 should be worked out as exercises with the aid of the log
arithms to base ten of factorials (Table 32). Problems of this sort can be 
solved much more quickly by referring to tables (Lieberman and Owen 
1961). Nomograms with confidence limits were published by DeLury and 
Chung (1950). 

Approximations (cf., also the end of Section 1.6.5) 

1. For Nl and N2 large and n small in comparison (n/N < 0.1; N ~ 60) 
the hypergeometric distribution is approximated by the binomial dis
tribution p = N d(N 1 + N 2)' 

2. For np ~ 4 

z=(nl-np)/Vnpq(N-n)/(N-l) (1.173) 

can be regarded as having nearly the standard normal distribution. The 
cumulative probability of the hypergeometric distribution, 
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assuming n ::;; N 1 ::;; N 12, can be better approximated (Molenaar 1970) 
according to 

z = 12[j(k + 0.9)(N - Nl - n + k + 0.9) 

- j(n - k - O.I)(Nl - k - 0.1)]ljr:---cN-------:0-.51 . (1.173a) 

In this expression for 0.05 ::;; p ::;; 0.93, 0.9 is to be replaced by 0.75, 0.1 
by 0.25, and 0.5 by 0; for extreme P values 0.9 is replaced by 1,0.1 by 0, 
and 0.5 by 1. 

EXAMPLE. P(X::;; 1110; 5; 5) = 0.103; Z (by 1.173a) = 1.298, i.e., P = 
0.0971; with 0.75,0.25, and 0 we get z = 1.265, P = 0.103. 

3. For p small, n large, and N very large in comparison with n (n/N ::;; 0.05), 
the hypergeometric distribution can be approximated by the so-called 
Poisson distribution which is discussed in the next section (A = np). 

4. The binomial distribution and the Poisson distribution can, for (12 = 
npq ~ 9 and (12 = np = A ~ 9, be approximated with sufficient accuracy 
by the normal distribution. 

1.6.4 The Poisson distribution 

Setting the fairly small value np = A (Greek lambda) in (1.158) and, with 
A > 0 held constant, letting the number n increase to infinity, the binomial 
distribution with the mean np = A turns into the Poisson distribution with 
the parameter A.; A. is generally smaller than 10 and is also the mean of this 
distribution. This distribution was developed by the French mathematician 
S. D. Poisson (1781-1840). It comes up when the average number of occur
rences of an event is the result of a large collection of situations in which the 
event could occur and a very small probability for it to occur. A good example 
of this is radioactive disintegration: Out of many millions of radium atoms 
only a very small percentage disintegrates in a small interval of time. It is 
essential that the disintegration of an individual atom is independent of the 
number of atoms already disintegrated. 

The Poisson distribution is an important distribution. It is used-as was 
suggested-to solve problems which arise in the counting of relatively rare and 
mutually independent events in a unit interval of time, length, area or volume. 
One also speaks of isolated events in a continuum. Examples of this discrete 
distribution are the distribution of the number of raisins in raisin bread, of 
yeast cells in a suspension, of erythrocytes on the individual fields of a 
counting chamber, of misprints per page, of the flaws in the insulation on an 
extension cord, of the surface irregularities on a table top, and of airplane 
arrivals at an airport; similarly, it can be used for the frequency of sudden 
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storms in a certain region, the contamination of seeds by weed seeds or 
pebbles, the number of telephone calls occurring in a certain time interval, 
the number of electrons emitted by a heated cathode in a given time interval, 
the number of vehicle breakdowns at a large military installation, the number 
of rejects within a production batch, the number of vehicles per unit distance 
and unit time, or the number of breakdown points in complex mechanisms. 
All these quantities are per unit interval. If, however, the probability does 
not remain constant or the events become dependent, then we are no longer 
dealing with a proper Poisson distribution. If these possibilities are excluded 
-and this holds for the given examples-then true Poisson distributions 
are to be expected. Suicides and industrial accidents per unit of space or time 
do not follow the Poisson distribution even though they can be conceived 
of as rare events. In both cases one cannot speak of an "equal chance for 
each," as there are individual differences with regard to conditions for an 
accident and suicidal tendencies. 

Let us imagine a loaf of raisin bread that has been divided up into small 
samples of equal size. In view of the random distribution of the raisins it 
cannot be expected that all the samples contain exactly the same number of 
raisins. If the mean value A (lambda) ofthe number of raisins in these samples 
is known, the Poisson distribution gives the probability P(x) that a randomly 
chosen sample contains precisely x (x = 0, 1,2, 3, ... ) raisins. Another way 
of putting this: The Poisson distribution indicates the portion, in percent 
[100P(x) %], of a long sequence of consecutively chosen samples in which 
each sample contains exactly 0, 1, 2, ... raisins. It is given by 

AXe-;' 
P(X = xlA) = P(x) = -,-, 

x. 

A > 0, x = 0, 1,2, .... 

Here e = 2.718, ... , the base of natural logarithms, 

A = mean, 

(1.174) 

x = 0, 1, 2, 3, ... the precise number of raisins in a single sample; 
x may be very large, 

x! = (1)(2X3)· .. (x - 1)(x) [e.g.,4! = (1X2)(3)(4) = 24]. 

Remark: L~=o P(X = xlA-) = 1. 

The Poisson distribution is defined by the discrete probability function (1.174) 
This distribution is fully characterized by the parameter A; it expresses the 
density of random points in a given time interval or in a unit of length, area, 
or volume. A is simultaneously the mean and variance, i.e., f1. = A, (12 = A [cf. 
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also (1.161) (Section 1.6.2) with np = A and q = 1 - p = 1 - A/n: 
u2 = .1(1 - A/n), for large n u2 tends to A]. 

This parameter is approximated (for q ~ 1) by 

I ).=np. I (1.175) 

If for some discrete distributions the ratio of variance to mean is close to 
one-say between 190 and 190 -then they can be approximated by a Poisson 
distribution provided the variable X (~O) could assume large values. If 
S2 < X, then the sample could originate from a binomial distribution. In 
the opposite case, where S2 > X, it could originate from a so-called negative 
binomial distribution (cr., Bliss 1953). It is usually unnecessary to compute 
the values of e -.., since they are tabulated for a whole series of values A.. 

Since e-(x+y+z) = e-xe-Ye- z , with the help of Table 36 we find e.g., 

e- 5.23 = 0.006738·0.8187·0.9704 = 0.00535. 

Table 36 is at the same time a table of natural antilogarithms. If for example 
we set x = -3, then e- 3 = 1/e3 = 1/2.7182823 = 1/20.0855 = 0.049787, 
i.e., In 0.049787 = - 3.00. 

EXAMPLE. A radioactive preparation gives 10 impulses per minute, on the 
average. How large is the probability of obtaining 5 impulses in one minute? 

AX. e-J.. 
p=--

x! 
105 • e- 10 = 105 .4.54.10- 5 = 4.54 = 0.03783 ~ 0.04. 

5! 5·4·3·2·1 120 

Thus 5 impulses per minute will be counted in about 4 % of the cases. 

NOTE. Mathijssen and Goldzieher (1965) provide a nomogram for flow 
scintillation spectrometry that gives the counting duration for a counting 
rate with preassigned accuracy (cf., also Rigas 1968). 

Table 36 Values of e-J.. for the Poisson distribution 

>. e->' >. e->' >. e->' >. e->' >. e->' 

0.01 0.9901 0.1 0.9048 1 0.367879 10 0.0 4 4540 19 0.0 8 5603 
0.02 0.9802 0.2 0.8187 2 0.135335 11 0.0 4 1670 20 0.0 8 2061 
0.03 0.9704 0.3 0.7408 3 0.049787 12 0.0 56144 21 0.0 9 7583 
0.04 0.9608 0.4 0.6703 4 0.018316 13 0.0 5 2260 22 0.0 9 2789 
0.05 0.9512 0.5 0.6065 5 0.0 26738 14 0.06 8315 23 0.0 9 1026 
0.06 0.9418 0.6 0.5488 6 0.0 2 2479 15 0.0 6 3059 24 0.0 1°378 
0.07 0.9324 0.7 0.4966 7 0.0 3 9119 16 0.0 6 1125 25 0.01°139 
0.08 0.9231 0.8 0.4493 8 0.0 3 3355 17 0.0 7 4140 30 0.0 13936 
0.09 0.9139 0.9 0.4066 9 0.0 3 1234 18 0.0 7 1523 50 0.0 21 193 

e- 9 . 85 = e-9'e-0.8.e-0.05 = 0.0001234'0.4493'0.9512 = 0.0000527 
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Characteristics of the Poisson distribution 

1. It is a discrete nonsymmetric distribution. It has the positive skewness 
1/ jJ. which decreases to zero with increasing A., i.e., the distribution then 
becomes nearly symmetric (Figure 29). 

iI.= 6 

I I I I 
4 6 

I .. , 
10 12 

iI. = Z 

10 •• 12 
I 
4 

D.4 

0.2 

4 10 12 • Figure 29 Poisson distributions. 

2. For A. < 1 its individual probabilities decrease monotonically with 
increasing X, while for A. > 1 they first increase, then decrease. 

3. The distribution is maximum at the largest integer which is smaller than A.. 
When A. is a positive integer, the probability is maximum for two neigh
boring values, namely for X = A. and X = A. + 1. 

Table 37 Poisson distributions for small para
meters A. and no, one, or more than one event 

~ 0.1 0.2 1 2 

for x = 0 0.905 0.819 0.368 0.135 
for x = 1 0.090 0.164 0.368 0.271 
for x > 1 0.005 0.017 0.264 0.594 

For example, if the number of misprints per page of a periodical follows a 
Poisson distribution with A. = 0.2, then out of 100 pages about 82 pages 
should exhibit no, 16 one, and about 2 more than one misprint (Table 37). 
Table 38 shows further that out of 10,000 pages about one can be expected 
with 4 errors. 
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Table 38 Poisson distribution P(x) = A. x • e-A/x! for selected 
values of A.. As the parameter A. increases the Poisson distri
bution approaches the normal distribution 

~ 0.2 0.5 0.8 1 3 5 8 b{ 
0 0.8187 0.6065 0.4493 0.3679 0.0498 0.0067 0.0003 0 
1 0.1637 0.3033 0.3595 0.3679 0.1494 0.0337 0.0027 1 
2 0.0164 0.0758 0.1438 0.1839 0,2240 0.0842 0.0107 2 
3 0.0011 0.0126 0.0383 0.0613 0.2240 0.1404 0.0286 3 
4 0.0001 0.0016 0.0077 0.0153 0.1680 0.1755 0.0573 4 
5 0.0000 0.0002 0.0012 0.0031 0.1008 0.1755 0.0916 5 

6 0,0000 0.0002 0,0005 0.0504 0.1462 0.1221 6 
7 0.0000 0.0001 0.0216 0.1044 0.1396 7 
8 0.0000 0.0081 0.0653 0.1396 8 
9 0.0027 0.0363 0.1241 9 

10 0.0008 0.0181 0.0993 10 

11 0.0002 0.0082 0.0722 11 
12 0,0001 0.0034 0.0481 12 
13 0.0000 0.0013 0.0296 13 
14 0.0005 0,0169 14 
15 0.0002 0.0090 15 

16 0.0000 0,0045 16 
17 0.0021 17 
18 0,0009 18 
19 0.0004 19 
20 0.0002 20 
21 0.0001 21 
22 0.0000 22 
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For the case where (a) A is large and (b) X = A we have by Stirling's 
formula, 

(1.176) 

e.g., P(X = A = 8) ~ 0.4/)8 = 0.141; the value listed in Table 38 is 0.1396. 
A sequence of individual probabilities is obtained by means of the recursion 
formula 

A. 
P(x + 1) = --1 P(x). 

x+ 
(1.177) 

A more detailed discussion of this distribution can be found in the mono
graph by Haight (1967). Extensive tables are given by Molina (1945), 
Kitagawa (1952), and the Defense Systems Department (1962). 
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Examples 

1. How large is the probability that out of 1,000 persons (a) no one, (b) 
one person, (c) two, (d) three persons have their birthdays on a particular 
day? Since q = ~~~ ~ 1, we can estimate i = np = 1'000(3~5) = 2.7397. We 
simplify by setting i = 2.74: 

.1.0 -). 
P(X = 0) = e e-). = e- 2 .74 ----o! = = 0.06457 ~ 0.065, 

.1.1 -). 

P(X = 1) = + = k-). ~ 2.74·0.065 = 0.178, 

P(X = 2) = 
A.2e-). A.2e-). 2.742·0.065 

= 0.244, --=--~ 

2! 2 2 

P(X = 3) = 
A.3e-). A.3e-). 2.743.0.065 

= 0.223. --=--~ 

3! 6 6 
Thus for a given sample of 1,000 people the probability is about 7 % that no 
person has a birthday on a particular day; the probability that one, two, or 
three persons have their birthdays on a particular day is about 18 %, 24 %, 
or 22 %, respectively. With the recursion formula (1.177) one obtains the 
following simplification: 

P(O) = (cf., above) ~ 0.065, 

P(1) ~ 2.~4 0.065 = 0.178, 

P(2) ~ 2.~4 0.178 = 0.244, 

P(3) ~ 2.;4 0.244 = 0.223. 

Multiplying the probability P(X = k) by n, we get the average number among 
n samples of 1,000 persons each in which exactly k persons have their birthdays 
on a particular day. 

2. Suppose the probability that a patient does not tolerate the injection 
of a certain serum is 0.001. We are asked for the probability that out of 2,000 
patients (a) exactly three, (b) more than two patients do not tolerate the 
injection. Since q = 0.999 ~ 1, we get i = np = 2,000·0.001 = 2, and 

A.xe-). 2xe- 2 

P(x do not tolerate) = --,- = --,-. 
x. x. 

Thus 

(a) 
23e- 2 4 

P(3 do not tolerate) = ~ = 3e2 = 0.180; 
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(b) 
20e- 2 1 

P(O do not tolerate) = -0' = 2' 
. e 

21e- 2 2 
P(l does not tolerate} = -1-' - = 2' . e 

22e- 2 2 
P(2 do not tolerate) = -- = 2' 

2! e 

P(more than 2 do not tolerate) = 1 - P(O, 1, or 2 do not tolerate) = 
1 - (1/e2 + 2/e2 + 2/e2) = 1 - (5/e2) = 0.323. If a large number of samples 
of 2,000 patients each are available, then with a probability of about 18 %, 
three patients, and with a probability of about 32 %, more than two patients 
will not tolerate the injection. In (a) the computation itself would have been 
quite formidable if the binomial distribution had been used: 

P(3 do not tolerate) = 2.000C3 .0.0013.0.9991•997• 

Additional examples are given by G. Bergmann [Metrika 14 (1969), 
1-20]. For accidents in which two parties are involved see W. Widdra 
[Metrika 19 (1972), 68-71]. 

Note 

1. We can find out how large A, must be in order that the event occurs 
at least once with probability P by observing that 

e-).A,° 
P(X = 0) = -- = e-). 

O! 

so that 

(1.178) 

and 

e-). = 1 - P, In e-). = In(l - P) 

and using the table 

p ). 

0.999 6.908 
0.99 4.605 
0.95 2.996 
0.90 2.303 
0.80 1.609 
0.50 0.693 
0.20 0.223 
0.05 0.051 
0.01 0.010 
0.001 0.001 



182 I Statistical Decision Techniques 

calculated from 

A = - 2.3026 . 10g(1 - P). (1.179) 

For P = 0.95, e.g., we find A = 3. 

2. The following table tells (a) how big a sample should be in order that, 
with probability S = 0.95, at least k rare events (probability of occurrence 
P :s; 0.05) occur, and (b) given p and the sample size n, how many rare events 
k(p, n) at least can be expected with the same confidence S = 0.95 (cr., also 
Sections 1.2.3 and 2.1.6). 

I~ 0.05 0.04 0.03 0.02 0.01 0.008 0.006 0.004 0.002 0.001 

1 60 75 100 150 300 375 499 749 1498 2996 
3 126 157 210 315 630 787 1049 1574 3148 6296 
5 183 229 305 458 915 1144 1526 2289 4577 9154 

10 314 393 524 785 1571 1963 2618 3927 7853 15706 
20 558 697 929 1394 2788 3485 4647 6970 13940 27880 

IConly k1 < k(p, n) rare events are observed then the null hypothesis P1 = P 
will be rejected at the 5 % level and the alternate hypothesis P1 < P accepted. 
The testing of Al = A2 against Al =f. A2 is discussed in Section 1.6.6.1. 

Confidence intervals for the mean A 

For given values of x there are two kinds of confidence intervals [CIs] for A: 

(1) Non central (shortest) CIs following Crow and Gardner, given in Table 
80 on pages 344,345. Examples are given on page 343. 

(2) Central CIs: calculated according to (1.180), approximated according 
to (1.181) with the help of Tables 28 and 14 or 43, e.g., the 95 % CI, given 
x = 10: X~O;O.975 = 9.59 and XhO.025 = 36.78 so 95 % CI: 
4.80 ~ A ~ 18.39. 

Use (1) OR (2) but never both together. 

90 % CI: h~.95; 2x :s; A :s; h~.05; 2(x+ 1), (1.180) 

(1.181) 



1.6 Discrete Distributions 183 

On the right of both (1.180) and (1.181) are the (one sided) upper 95 % 
confidence limits: Thus for example for x = 50, by (1.180), 2(50 + 1) = 

102, X~.05; 102 = 126.57 (i.e., A ~ 63.3), and by (1.181), (1.645/2 + 
.)50+1)2 = 63.4 (i.e., A ~ 63.4). The upper 90 % confidence limits are 
obtained similarly [(1.180): with X~.10 in place of X~.05; see Tables 28, 
28a, Section 1.5.2; (1.181): with 1.282 in place of 1.645; see Table 43, 
Section 2.1.6]. 

Table 80 (Section 4.5.4) is also used in testing the null hypothesis: 
A = Ax. The null hypothesis is rejected if the confidence interval for Ax 
does not contain the parameter A. 

Tolerance intervals of the Poisson distribution are given in Hahn and Chandra (1981). 

~ 1.6.5 The Thorndike nomogram 

This nomogram (Figure 30) provides a means of graphically determining 
the consecutively added probabilities e-).Ax /x! of the Poisson distribution 
(Thorndike 1926). Values of A are marked on the abscissa, and a sequence 
of curves corresponding to the values c = 1, 2, 3, ... runs obliquely across 
the graph. For various values of A and c the probability that a variable X 
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Figure 30 The Thorndike nomogram. Ordinate: P(X~ C/A), the probability that an 
event occurs c or more times (at least c times). Note that in the nomogram P increases 
from top to bottom. Abscissa: The average frequency A of occurrence in a large number 
oftrials. The scale is logarithmic. Curves: For fixed cthe probability P = L"'+! e-).Akjk! 
(= c! S~ e-).X<dx) is a (uniquely determined) function of A; P increases with A; for given 
A, P with increasing c. 
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is greater than or equal to some c, P(X ;;:: Co I .10), can be read from the 
ordinate as follows: 

1. Draw the vertical line A = .10 (i.e., through the point A = .10 on the 
abscissa) to intersect the curve Co. 

2. The ordinate of this point of intersection indicates the probability P(X ;;:: 

Co 1.10)' 

Examples 

1. A machine produces about 1 % rejects. What is the probability that 
there are at least 6 rejects among 200 items produced? 

p = 0.01; n = 200; A = np = (200)(0.01) = 2. The ordinate of the point 
of intersection of the vertical line A = 2 and the curve C = 6 is P(X ;;:: 6) ~ 
O.OlS. Thus the probability of finding at least 6 rejects is about O.OlS or 1.5 %. 

2. An egg wholesaler wants to have not more than 0.5 % of all his egg 
cartons with four or more spoiled eggs. How low must the average percentage 
of bad eggs be for this quality to be assured? We assume a carton represents 
a random sample of 2S0 eggs. 

The Thorndike nomogram must be read in a manner "reverse" to that of 
Example 1. The probability of getting four or more spoiled eggs in a random 
sample of 2S0 eggs should not be greater than O.OOS. Thus we have P(X ;;:: 
4) = O.OOS. The average allowed number A of bad eggs per carton can now 
be found. The horizontal line extending to the left ofO.OOS intersects the curve 
C = 4. The vertical through the point of intersection passes through A ~ 
0.67. The desired percentage p of spoiled eggs which is not to be exceeded is 
then given by A = np or p = A/n ~ 0.67/2S0 = 0.00268 or 0.27 %, i.e., 
about 3 per thousand. 

3. A hundred light bulbs are delivered together in a carton. The average 
percentage of defective units is around p = 1 %. The probability that a 
shipment of 100 bulbs contains two or more defective bulbs is to be deter
mined. 

Table 39 

Light bulbs-number 
of rejects per 1 00 Poisson probability 

0 0.3679 
1 0.3679 
2 0.1840 
3 0.0613 
4 0.0153 
5 0.0031 

~6 0.0005 

1.0000 
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We find the point of intersection of the line A. = 1 with the curve c = 2 
and read on the left the ordinate 0.26. Thus out of 100 cartons with 100 bulbs 
in each, about 26 cartons will contain two or more defective light bulbs. 
The result by ordinary computation would be P(X ;;::: 2; A. = 1) = 1 -
(P(x = 01 A. = 1) + P(x = 11 A. = 1)) = 1 - (0.3679 + 0.3679) = 0.2642. The 
nomogram can also be used in a similar manner to determine other quantities 
as e.g., P(X = 21A. = 1) = P(X;;::: 21A. = 1) - P(X ;;::: 31A. = 1) ~ 0.26-
0.08 ~ 0.18 (see Table 39). 

When extensive calculations are involved tables of the Poisson distribu
tion are usually preferred to the nomogram (cf., Section 1.6.4). The prob
ability for the occurrence of at least Xo rare events is 

I P(X;;::: xo) = 1 - P(x~xo ~ 2np). I (1.182) 

We take the last example: Xo = 2, np = (100)(0.01) = 1: 

P(X ;;::: 211 = 1) = 1 - P(xi ~ 2). 

Table 28 in Section 1.5.2 gives P(xi = 2) = 0.73, i.e., 

P(X ;;::: 211 = 1) ~ 1 - 0.73 ~ 0.27. 

As an exercise, this quick estimate should also be worked out for the other 
examples. 

With the help of (1.177) a graphical test can again be carried out (cr., 
Section 1.6.2): P(x)/P(x + 1) is plotted against x, and if the points are found 
to lie on a straight line, then the quantities follow a Poisson distribution 
(Dubey 1966) (cr., also Ord 1967 and Grimm 1970). 

Approximations 

An excellent survey is given by Molenaar (1970). 

1 Approximating the Binomial Distribution by the Poisson 
Distribution 

Any binomial distribution with large sample size n and small event pro
bability p, so that q = 1 - p practically equals 1 (p < 0.05 and n > 10, say) 
can be approximated by the Poisson distribution with A. = np. 

EXAMPLE. In a certain region one house per year out of2,000 is, on the average, 
damaged by fire. Ifthere are 4,000 houses in this region, what is the probability 
that in the course of a year there will be a fire in exactly 5 houses? 

• 1 
A. = np = 4,000·-- = 2 

2,000 
~ 25 

P(X = 51 A. = 2) = e- 2 • 5! = 0.036. 

The probability comes to almost 4 %. 
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2 Approximating the Poisson Distribution by the Normal 
Distribution 

The cumulative Poisson distribution P(X ~ klA) = D=o e-AAi/j! can be 
approximated according to (1.183) and substantially better according to 

@ (U83a) (Molenaar 1970). 
For A ~ 9, 

z = I(k - A)/fil. (1.183) 

Examples 

1. For P(X ~ 319) with z = 1(3 - 9)1J91 = 2.000 we get P = 0.0228 
(exact value: 0.021226). 

2. ForP(X ~ 411O)withz = 1(4 - 10)/JiOI = 1.897 we get P = 0.0289 
(exact value: 0.029253). 

For A ~ 0.5, 

Example 2, above: 

t = (4 - 10 + 1/6)2 = 3.403 
10 

(U83a) 

A 1 [~J [J 4.597JI . z = 2 y4 + -g-9- - 2 10 - ~ = 1.892, I.e., P = 0.0293. 

1.6.6 Comparison of means of Poisson distributions 

1.6.6.1 Comparison of two Poisson distributions 

Two Poisson distributions can be compared without any computation with 
the help of Table 36, pp. (79, 80) 209 in Biometrika Tables by Pearson and 
Hartley (1966). Two Poisson variables, X 1 and X 2, (with X 1 > X 2) can be 
tested according to 

[ P~X:~I I 
(1.184) 

(DF = 2(X 2 + 1); 2X 1), and the null hypothesis (.11 = .12) can be confronted 
with the one sided (.11 > .12) or the two sided (.11 # .12) question. The null 
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hypothesis is rejected whenever F equals or exceeds the tabulated F-value. 
We note that the F-values are tabulated for the one sided question. 

EXAMPLE. Given Xl = 13 and X2 = 4, test whether the null hypothesis 
A1 = A2 can be defended against the alternate hypothesis A1 #- A2 (0( = 0.05). 

We have 

~ 13 
F = 4 + 1 = 2.60. 

~ 
~ 

Since 2.60 > 2.59 = F 10; 26; 0.025' the null hypothesis can still be rejected. 
[For the one sided question (cf., Section 1.4.6) A1 > A2 against A1 = A2 with 
FlO; 26; 0.05 = 2.22, the difference of the A.'s can be better guaranteed.] 

Comparisons of this sort also go through very well in terms of the standard @ 
normal variables for A not too small (X 1 + X 2 > 5): 

(1.185) 

For Xl + X 2 > 20, the following form is preferable: 

(1.185a) @ 

EXAMPLE. We use the last example: z = (13 - 4 - 1)/ J13 + 4 = 1.940 < 
1.960 = ZO.05; twos .• Thus Ho may not be rejected. 

Remark on the Comparison of Two Samples of Relatively Infrequent 
Events in Time 

If Xl and X 2 are the numbers of occurrences of rare events E1 and E2 in time 
intervals of length t1 and t2 respectively, then the null hypothesis (equality 
of relative frequencies or, better, of probabilities) can be approximately tested 
by 

F = t 1(X 2 + 0.5) 
t2(X 1 + 0.5) 

with (2X1 + 1,2x2 + 1) degrees of freedom (Cox 1953). 

EXAMPLE. Given: 

Xl = 4 events in t 1 = 205 hours, 

X 2 = 12 events in t2 = 180 hours. 

(1.186) 

~ 
~ 



188 I Statistical Decision Techniques 

Hypothesis to be tested: Equality of the probabilities (two sided question: 
IX = 0.05 [i.e., the upper 2.5 % bounds of the F -distribution are to be used]). 
We find 

p = 205{12 + 0.5) = 3.16. 
180(4 + 0.5) 

Since 3.16 > 2.68 = F 9; 25; O.oz5, the null hypothesis is rejected. 

For the comparison of two relative frequencies (xdnl = PI; Xzln2 = P2) 
that arise from a binomial (PI' P2 > 0.05), or a Poisson distribution (PI' 
P2 ::;; 0.05) a nomogram given by Johnson (1959) can be used, which allows 
for an elegant approximate answer to the question of whether PI and P2 
originate from a common population. 

1.6.6.2 Comparison of several Poisson distributions 

Comparison of the Expected Number of Events in Several Samples 
from Poisson Populations. The test of homogeneity on pages 
474. 477 is especially useful 

If Xi are stochastically independent observations from the same normally 
distributed population (11, 0), then the sum ofthe squared standard deviations, 

± (Xi - 11)2 = ±Zl = X;, 
i=l a i=l 

(1.187) 

is X2 distributed with v degrees of freedom. For the comparison of k samples 
(k ;;::: 2) from arbitrary unit intervals of observation ti (unit intervals of time, 
area or volume) in which the event occurs Xi times, one forms xjt i = At 
and (I xi)/{I tJ = ~, transforms the Xi according to 

Zi = 2{~ - jl;1) if At < t 
Zi = 2{~ - jl;1) if At > ~, 

and sums the squares of the resulting quantities I zf. Testing is done in 
accordance with 

k 

:?= I zf (1.188) 
i= 1 

@ for k - 1 degrees of freedom (one degree of freedom is "lost" in the estima
tion of the parameter A; if it is known, there are k degrees of freedom at our 
disposal). 
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EXAMPLE. In order to apply the test to the last example we calculate 

Ilt = 2~5 = 19.51.10- 3, 

Il* = ~ = 6667.10- 3 
2 180' , 

~ = 4 + 12 = 41.558.10- 3 

205 + 180 ' 

Zl = 2(J4+1 - J205. 41.558· 10 3) = -1.366, 

Z2 = 2(ji2 - J180. 41.558·10 3) = 1.458, 

zi + z~ = 1.866 + 2.126 = 3.992. 

Since 3.99 > 3.84 = xi; 0.05, the null hypothesis is rejected here also. 

189 

If the comparison involves only two means, the formula (1.184) is of 
course used. 

1.6.7 The dispersion index 

Let us emphasize again: if an empirical distribution is to be described by a 
Poisson distribution, then the data must satisfy the following conditions: 

1. The events under consideration are independent. 
2. The average number of events in an interval (of, e.g., time or space) is 

proportional to the length of the interval (and does not depend on the 
location of the interval). 

If these conditions are satisfied only partially or not at all, then the class 
zero is often larger than can be expected on the basis of the Poisson distribu
tion. If intervals from class zero are shifted to class one, the standard devi
ation of the distribution becomes smaller. Thus the quotient of the sample 
standard deviation and the (estimated) standard deviation of a presumable 
Poisson distribution, or more exactly the quotient (one sided question) of the 
two variances, 

sample variance sample variance S2 

theoretical Poisson variance theoretical Poisson mean ;:' 

(1.189) 

is likely to be larger than 1. When sample sizes are large, (1.189) equals the 
dispersion index. Since however the random samples considered have their 
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own variability, we must answer the following question: How much larger 
than 1 must this quotient be before we can conclude that the" overdispersed " 
distribution could not be of the Poisson type? If the quotient is approximately 
equal to 190 i.e., "underdispersed," a binomial distribution is more probable). 
approximated by a Poisson distribution (if the quotient is approximately 
equal to 190 i.e., "underdispersed," a binomial distribution is more probable). 
The next example will give us an opportunity to apply this rule of thumb. 

The dispersion index (cf. also Section 3.3) is used in testing whether the 
data (Xi) originated from a Poisson distribution (with mean Je) (cf., also Rao 
and Chakravarti 1956 as well as Gbur 1981): 

L(Xi - X)2 n Lxf - (LX;)2 
~2 .i ___ _ X =-

i i 

(1.190) 

with n - 1 degrees of freedom. If the empirically estimated value X2 

exceeds the value tabulated (i.e., if the variance is substantially greater 
than the mean), then we are dealing with a compound Poisson distribution: 
When a rare event occurs at all, it is often immediately followed by several 
more. One then speaks of positive probability contagion. Days on which 
thunderstorms occur are rare; they occur however in bunches. For this 
situation the negative binomial distribution is better suited. The number of 
ticks per sheep in a herd is a perfect example. The distributions of other 
biological characteristics are often better approximated by one of the 
Neyman distributions. Detailed discussions can be found in the works of 
Neyman (1939), Fisher (1941, 1953), Bliss (1953, 1958), Gurland (1959), 
Bartko (1966, 1967), and Weber (1972) (cf., also Section 1.6.9). Important 
tables are given by Grimm (1962, 1964) and also by Williamson and Brether
ton (1963). 

EXAMPLE. The following is a classic example of a Poisson distribution: 
Table 40 shows recorded fatalities caused by horses' kicks among the 
soldiers in 10 army corps during a 20 year period (altogether 200 "army 
corps years" in the Prussian army 1875-1894). We have 

Table 40 

Fatalities 0 1 2 3 4 <::5 L 
Observed 109 65 22 3 1 0 200 
Calculated 108.7 66.3 20.2 4.1 0.6 0.1 200 
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_ LXi /; 0 . 109 + 1 . 65 + 2 . 22 + 3 . 3 + 4· 1 + 5 ·0 122 
X = -n- = 200 = 200 = 0.61; 

2 L xl/;- (L xd)2/n 
S = =------'-----==-----

n - 1 

2 (02 ·109 + 12 ·65 + 22 ·22 + 32 .3 + 42 ·1) - 1222/200 
S = 200-1 

2 = 196 - 74.42 = 121.58 = 061 
S 199 199' . 

We get, by (1.189), 

S2 _ 0.61 _ 1 10 
..1. - 0.61 - < 9 

and by (1.190), 

X2 = [109(0 - 0.61)2 + 65(1 - 0.61)2 + ... + 0(5 - 0.61)2]/0.61 

X2 = 199.3 < 233 = Xi99; 0.05' 

The Poisson distribution, with..1. = 0.61, is thus appropriate in describing 
the distribution considered. Usually the estimates S2 and ..1.2 will differ (even 
when the data come from a Poisson population). We obtain 

0.610. e-O.61 

P(O) = O! = 0.5434; 200·0.5434 = 108.68 etc. 

The completion of Table 40 is recommended as an exercise. The relative 
frequencies of the probabilities of the Poisson distribution are given by the 
consecutive terms of the relation 

(1.191) 

The expected frequencies are obtained as products of the individual terms 
with the total sample size. For example, the expected frequency for the 
third term is thus found to be 

_ .. (..1.2) 0.3721 ne 2! = 200 . 0.54335 . -2- = 20.2 etc. 

If given empirical distributions exhibit similarity to Poisson distributions, 
then ..1. can be approximately estimated according to 

-In (occupation of class z~ro) = ~ = -In (no) 
total of all frequencIes n 

(1.192) 

provided class zero (no results) shows the greatest occupation. 
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Table 41 

0 1 2 3 4 5 6 L 
327 340 160 53 16 3 1 900 

EXAMPLE. Consider the data in Table 41. A straightforward calculation gives 

A 1 904 
A. = 900 (0·327 + 1·340 + ... + 6·1) = 900 = 1. 

More concisely, 

no = 327 = 0.363 In 0.363 = -1.013 so that X = 1.013 = 1. 
n 900 

In terms of the base 10 logarithms, this is 

log 0.363 = 9.5599 - 10 = -0.4401, 

2.3026 . log 0.363 = 2.3026( -0.4401) = -1.013. 

Applying the "quick" method to the example on horse's kicks, we get the 
estimate 

A (109) A. = -In 200 = -In 0.545 = 0.60697, 

an excellent result. 

A homogeneity test that lets one determine the deviations in the occupa
tion of class zero as well as of the other classes is discussed by Rao and 
Chakravarti (1956). Tables and examples can be found in the original work. 

1.6.8 The multinomial coefficient 

If n elements are arranged in k groups so that n1 + n2 + ... + nk = n, 
where n1, n2, ... , nk indicate the number of elements per group, then there are 

n! (1.193) 

~ different ways of grouping these elements into the k groups (multinomial 
coefficient). 

Examples 

1. Ten students are to be separated into two groups, each consisting of 
five basketball players. How many different teams can be formed? 

~ = 3,628,800 = 252. 
5!·5! 120·120 
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2. A deck of 52 playing cards is to be distributed among 4 players so 
that each gets 13 cards. How many different ways are there of dividing the 
cards? 

52! _ 8.0658· 1067 '" • 1 28 

13! . 13! . 13! . 13! - (6.2270. 109t - 5.36 0 . 

1.6.9 The multinomial distribution 

We know that if the probability of choosing a smoker is P while the pro
bability of choosing a nonsmoker is 1 - p, then the probability of choosing 
exactly x smokers in n attempts is given by 

I P(xln,p)= (~)]f(1_p)n-x. I (1.158) 

The rationale underlying (1.158) can be generalized to situations with more 
than two events, attributes, items, or classes. Denote by E1, E2, ... , Ek 
mutually exclusive and exhaustive events or classes with probabilities 
PI' P2' ... , Pk' where 0 < Pi < 1, I~= 1 Pi = 1. The number Pi is the pro
bability of any event being assigned to the ith class, it is the fraction of the 
total population belonging to the ith class. Then the probability that in a 
random sample of n independent observations, the event, attribute, or item 
Ei manifests itself exactly ni times, i = 1, 2, ... , k, I~= 1 ni = n, is given by 
the multinomial probability 

(1.194) 

Since the terms in the expansion of 

(PI + P2 + ... + Pk)" = 1 

are those given by formula (1.194), we call this distribution the multinomial 
distribution. We have 

JlE; = Jln; = npi' 

(11; = (1;; = npi(l - p;). 

(1.195) 

(1.196) 

For k = 2, formula (1.194) yields (1.158). (1.194) can also be derived from the 
generalized hypergeometric distribution (1.170) by fixing n and letting N 
grow. 
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Parameters of multinomial distributions are compared in Chapter 6 
(testing of two way tables for homogeneity or independence). 

Examples 

1. A box contains 100 pearls, 50 of which are colored red, 30 green, and 
20 black. What is the probability that of 6 arbitrarily chosen pearls, 3 are 
red, 2 green, and 1 black? 

Since choice is followed by replacement in every case, the probabilities 
of choosing 1 red, 1 green, and 1 black pearl are respectively Pl = 0.5, pz = 
0.3, and P3 = 0.2. The probability that a selection of 6 pearls has the afore
mentioned composition is given by 

6! 3 Z 1 
P = 3!. 2!.1! (0.5) (0.3) (0.2) = 0.135. 

2. A fair die is tossed twelve times. The probability of the 1, the 2 and 
the 3 turning up once each and the 4, the 5, and the 6 three times each (note 
that 1 + 1 + 1 + 3 + 3 + 3 = 12) is 

12! (1)1(1)1(1)1(1)3(1)3(1)3 
P = 1!. 1! . 1! . 3! . 3! ·3!"6 "6 "6 "6 "6 "6 = 0.001. 

3. Ten persons vote at random for one of three candidates (A, B, C). 
What is the probability of the choice: 8A, lB, and lC? 

P = 8!.11~!.1! GrGYGY = 90· 6,;61·~·~ = 0.00152. 

The most probable result would be 3A, 3B, 4C, (or 3A, 4B, 3C, or 4A, 3B, 
3C)with 

lOr (1)3(1)3(1)4 3,628,800 1 1 1 4,200 
P = 3! . 3! ·4!"3 "3 "3 = 6· 6· 24 . 27 . 27 ·81 = 59,049· 

Thus P = 0.07113, i.e., this result will occur nearly 47 times more frequently 
than PSA ; IB; le· 

A graphical method of determining the sample sizes for confidence 
intervals of parameters of the multinomial distribution is given by Angers 
(1974). 

More particulars on discrete distributions can be found in Patil and 
Joshi (1968 [cited on p. 575]) as well as in Johnson and Kotz (1969 
[cited on p. 570]). 



2 STATISTICAL METHODS IN MEDICINE 
AND TECHNOLOGY 

If in the analysis of survival times in medicine or technology some objects are still 
alive at the end of the study their exact survival times are incomplete. These 
are called censored observations or censored times. More on this and on the 
comparison of survival distributions-see also pages 206, 210 and 235-is 
provided in the book by Lee (1980) with computer programs for 5 two sample 
tests and a k sample test [Chapter 5 and Appendix B, with both Peto and 
Peto's tests: logrank test and generalized Wilcoxon test]. 

2.1 MEDICAL STATISTICS 

The number of hours of sleep gained by means of a soporific (sleep-inducing 
preparation) will generally vary from person to person. With the help of 
statistics we would like to make a statement on the average gain in the 
number of hours of sleep. We must also test whether the gain in the duration 
of sleep is statistically significant. Analyses of this type require not only 
knowledge of statistical methods but also a thorough familiarity with the field 
of study, because to determine the unique effects of specified causes we 
must be able to sort out the more important factors contributing to the 
phenomenon examined. These factors can be of a psychological or physical 
nature. In our example confidence in the medication and in the physician, 
as well as the physician's attitude, are factors in the first category; charges 
in the diet, and in the daily routine belong to the second. To eliminate two 
influences of the first type, neither the physician assessing the therapy result 
nor the patient must know whether a soporific or a placebo is administered. 
This type of study is called a double blind trial. 

Guidelines for medical doctors on the ethical aspects of clinical research are the 
internationally accepted Declarations of Helsinki 1964 and Tokyo 1975 [cf., World 
Medical lournal22 (1975), 87-90 and 25 (1978),58-59]. 

Another point concerns the following: Suppose the original problem is 
replaced by the question on the effects particular conditions produce in 
certain attributes of a given set of objects. The exact state of an attribute is 
replaced by the observed state; the observations are expressed by symbols. 
Errors of substitution can occur at each point of transition. For many 
important substitutions the attributes are not closely related to the problem, 
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and are accordingly not very informative. An attribute is informative if it is 
highly correlated with the parameter under study. 

All objects must come from the same, well-defined population by random 
selection. Measurements or the presence or absence of attributes, as well as 
complementary data (e.g., physical length if weight is of interest), are 
recorded (including the value or reading zero). All attributes have to be 
defined and recorded. Special circumstances like: not checked, doubtful 
whether checked, checked but not verified, not applicable also have to be 
recorded. 

During the last decades in particular, statistics has been recognized as a 
valuable tool in the gaining of knowledge in clinical medicine. Statistics 
provides not only in clinical medicine but in most sciences to a certain 
extent a filter through which new developments must pass before they are 
recognized and applied on a wider scale. 

The statistical and mathematical techniques tailored to problems in the 
biological sciences, the social sciences, economics, psychology, technology, 
the scientific literature, and the science of the sciences are called biometrics 
or biometry, sociometrics, econometrics, psychometrics, technometrics, 
bibliometry, and scientometry respectively. 

2.1.1 Critique of the source material 

Sampling errors are due to the fact that only samples are observed and not 
populations. Errors in sample estimates that cannot be attributed to sampling 
fluctuations are called nonsampling errors. Such errors may arise from 
different sources. We know the systematic error or bias, an effect that 
deprives a statistical result of representativeness by systematically distorting 
it, as distinct from a random error, which may distort on anyone occasion 
but balances out (is self-canceling) on the average. Nonsampling errors are 
not infrequent in surveys of human populations (e.g., interview bias, a 
dishonesty effect; cf. Section 2.1.3). 

If a given quantity is measured with an improperly calibrated instrument, the 
measurement carries a bias, i.e., a systematic error (cf., Section 1.3.5) in addition to a 
random error. In laboratory settings both errors are monitored by quality control 
[(cf., Section 2.1.2 and 2.4.1; also Clinical Chemistry 22 (1976), 532-540, 24 (1978), 
1213-1220,27 (1981),798-805, 1536-1545 and 29 (1983),581] and are reduced by 
improving the measuring techniques (cf., Section 2.1.2). 

Nonsampling errors in survey data may arise through defects in the 
selection of sample units; double, incomplete, or suppressed recording; 
contradictory, unqualified, or deliberately false statements; misunder
standings due to ambiguity in the phrasing of questions; informant fatigue, 
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resulting in yea-saying and in using noncommittal midscale ratings; order 
effects; gaps in memory; and clerical errors. Other pertinent errors may be 
traced to deficiencies in the formulation of the problem, the guidelines of the 
survey, the monitoring of the protocol and definitions [e.g., with regard to the 
population, or the experimental unit (cr., end of Section 1.3.8.7), as well as 
the identification and influence of target quantities and the possible sources 
of error in themJ, the questionnaires, the interviews, the consultant (cr., 
Section 1.2.4, (Example 3) and Section 2.1.5; also Landis and Koch 1975 [6J), 
and the processing and tabulating of data. The source material (cr., Section 
1.3.3) must in any event be tested for completeness, consistency, and re
liability [cr., also Sections 1.2.1, 1.3.2, 1.3.7 (Remark), and 1.3.8.7 (Remark 1), 
the end of Section 2.2, and the beginning of Chapter 3]. Some further com
ments are given in Section 2.1.3. This subject crops up continually in medical 
statistics. Sonquist and Dimkelberg (1977 [8 : 1 J) is indispensable for surveys. 

Detailed discussions of the automatic detection and correction of errors are given 
by Minton (1969,1970 [8: 3]) and by Szameitat and Deininger (1969, [8: 3]). For the 
analysis of surveys, see Yates (1973), Yates (1981 [8: 3a]), books on sampling (cited 
in [8: 3 a] and 8: 1]) and texts in population statistics: Benjamin (1968), Bogue (1969), 
Cox (1970), Pressat (1972) [8: 1], and Keyfitz and Beekman (1983). For other aspects 
of medical statistics see Cochran (1965, 1968), Burdette and Gehan (1970), Brown 
(1970/71); also Ryan and Fisher (1974). A survey on nonsampling errors is given by 
F. Mosteller [in Kruskal and Tanur I (1978) [8: 1]]. A bibliography on nonsampling 
errors in surveys is given by T. Dalenius [International Statistical Review 45 (1977), 
71-89,181-197,303-317] (see also Strecker 1980 [8: 3a], cited on page 615). Important 
warning signals for analytical chemists are provided by Youden (1959/67), and 
Caulcutt and Boddy (1983). 

2.1.2 The reliability of laboratory methods 

It is of great importance in medical sciences to know how reliable studies 
are carried out in the clinical laboratory. The determination of whether or not 
a result is pathological is based on a thorough knowledge ofthe reliability of 
the analytical methods used in the laboratory on the one hand and on a 
thorough knowledge of the reference values on the other [cf., also Clinical 
Chemistry 24 (1978), 640-651, 772-777 and 28 (1982), 259-265, 422-426, 
1432-1433; Castleman et al. 1970, Eilers 1970, Elveback et al. 1970, Williams 
et al. 1970, Reed et al. 1971, Riimke and Bezemer 1972]. 

Since the cUnically normal values of healthy individuals are usually not 
normally distributed, the distribution-free 90% confidence intervals for the 
quantiles ~0.025 and ~O.975 should be listed (cf., Sections 1.3.8.3 and 3.1.4). 
Tables are provided by Reed et al. (1971) as well as by Riimke and Bezemer 
(1972). For instance, the 90% CI for ~0.025 for n = 120 (150,300) lies 
between the values with ranks 1 and 7 (1 and 8, 3 and 13): those for ~O.975 
lie between the values with ranks 114 and 120 (143 and 150, 288 and 298). 
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Thus for the 90% CI, first value ~ ~0.Q25 ~ 7th value, 114th value ~ 
~O.975 ~ 120th value (for n = 150 and n = 300 respectively). 

The reliability of a method of investigation is hard to define, since it is 
determined by a number of factors the importance of which depends on the 
medical goal and the one diagnostic value of a particular method. The 
most important reliability criteria are: 
1. Specificity: characterization of a chemical substance to the exclusion of 

any other substance (qualitative description). 
2. Accuracy: determination of the precise amount of the chemical present 

in the material under study (with due regard for systematic errors). 
The accuracy can be checked by (x - J1)/J1 with J1 = known true value 
and x = sample mean, and by three simple procedures: 
a. Comparison tests: the result of the analysis is compared with the one 

obtained by another method, possibly one whose reliability is estab
lished, or with the results furnished by a series of interlaboratory 
comparisons or collaborative tests. 

b. Addition tests: known quantities of the chemical examined are added 
to the experimental material. 

c. Mixture tests: a serum or urine with a high concentration of the chemi
cal under study and another body fluid with a correspondingly low 
concentration are mixed in various ratios. 

3. Precision or reproducibility: The error inherent in the method of analysis 
due to, e.g., different reagents, different laboratory technicians, different 
laboratories, different days (e.g., weather, day of the week) [cf., also 
Clinical Chemistry 24 (1978),212-222, 1126-1130, 1895-1899,27 (1981), 
202] can be assessed by the standard deviation and the coefficient of 
variation. If the latter is greater than say 0.05, then double or even triple 
determinations are necessary. In the case of triple determinations values 
that seem to be out of line should in general not be discarded, because 
valuable information -accuracy-might be lost. Large differences between 
the readings are not at all rare (cf., also Section 3.8). Youden (1962) has 
described, for normally distributed data, how the true mean (J1) and the 
corresponding confidence intervals can be estimated from double deter
minations (let Xl denote the smaller reading, Xl ~ x 2 ) and triple deter
minations (Xl ~ X2 ~ X3): 

(1) J1 lies with 
(a) P = 50% in the interval: Xl ~ J1 ~ X2, and with 
(b) P = 75 % in the interval: Xl ~ J1 ~ X3' 

(2) The approximate confidence intervals are 
(a) 80% CI: Xl - (X2 - Xl) ~ J1 ~ X2 + (X2 - Xl) and 
(b) 95% CI: Xl - (X3 - xd ~ J1 ~ X3 + (X3 - Xl)' 

If the values are at least approximately normally distributed, then, 
according to McFarren et al. (1970), the overall error G (= random error + 
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systematic error) of the method of analysis can be given as a percentage 
of the mean by 

(2.la) 

(p = known true value; x and s are computed from not too small a 
sample ).If G > 50 % the procedure is hardly of any value; it is very good if 
G < 25%. 

Example: Jl = 0.52, x = 0.50, s = 0.05: 

G = [1 0.50 - 0.521 + 2.0.05JI00 = 23%. 
0.52 0 

4. Sensitivity: The smallest recognized departure or single result that is 
statistically significant on the chosen significance level and that can be 
distinguished from a suitable blank, can be used as a measure for the 
sensitivity of a method [a better approach might be to use the slope, 
the regression coefficient, of the standard line]. 

We assume that blank-sample results and results for samples with 
discernible values near the blank-sample range are approximately 
normally distributed with different means and the same variance (12, 

estimated by s;orr = s1 + si with s1 = variance of the discernible values 
and si = variance of the blanks, provided we have sample sizes nD :<: 25 
and nB ~ 25. Then the one-sided least significant difference or detection 
limit L of the method is approximated, in the case of (/. = 0.05 and 
f3 = 0.05 (risk I = risk II) and with the arithmetic mean of the blank 
results XB' by 

I L = XB + 2.1.645Js1 + si = xB + 3.3Js1 + si. I (2.lb) 

Another possibility is to choose the proper one sided statistical test with 
the appropriate significance level to determine the least significant 
difference L. More on this can be found as needed in Wilson (1961), Roos 
(1962), Svoboda and Gerbatsch (1968), Gabriels (1970). To compare two 
or more methods, the sensitivity ratio of Mandel and Stiehler (1954) (see 
Mandel 1964) can be employed (cf., also below). 

5. Practical long-range considerations. Among these are: difficulties in 
carrying out the experiments, equipment expenditures (e.g., for an auto
analyzer), amount of time required, and other costs. Accuracy and 
reproducibility are the most important notions in assessing the reliability 
of measurements. In addition to the standard deviation, which measures 
the reproducibility, a rough estimate of the systematic error (the bias) 
should be given. 



200 2 Statistical Methods in Medicine and Technology 

For this purpose experience is very important. In practice a method that leads to 
readings with small systematic deviation from the true value and higher precision is 
preferable to one that yields unbiased values with lower precision; in other words, a 
result with a small bias and little variability is unquestionably superior to one ob
tained by a method that furnishes the true value" on the average" but is subject to 
greater dispersions. We must after all usually content ourselves with few measure
ments (cr., also Cochran 1968). 

More on the reliability of measurements can be found in Eisenhart (1963) 
and in B. A. Barry: Errors in Practical Measurement in Science, Engineering 
and Technology. Wiley, New York, 1978. Discussing the importance of 
control serums [cf., Clinical Chemistry 22 (1976), 500-512] or the com
parison of precision and accuracy of a method in various laboratories is 
unfortunately beyond the scope of this book. Along with the work of Mandel 
and Lashof (1959), the publications by Youden (1959-1967) are strongly 
recommended (cf., also Chun 1966, Kramer 1967 and D. M. Rocke 1983 
[Biometrika 70, 421-431]). 

A comparison of quantitative methods can be made in accordance with 
Barnett and Youden (1970) [cf., also Mandel and Stiehler 1954 as well as 
Clinical Chemistry 20 (1974), 825-833] and with Lawton et al. (1979). 

The laboratory control chart 

The continuous monitoring of reliability, in particular of the precision of a 
method of analysis is carried out graphically by using a so-called control 
chart, a graphical chart with control limits and plotted values of some 
statistical measure, here the mean X, for a series of subgroups or samples. A 
central line is commonly shown. A standard sample, one of known content, 
is analyzed at least 40 times, and the frequency distribution of the resulting 
data is then drawn. If the graph resembles the Gaussian curve (normal 
distribution), one may then design a control chart based on the estimated 
values x and s. If there is no maximum or if several maxima occur, then the 
method is not yet under control. 

Following the pattern in Figure 31, limit lines are drawn on a sheet of 
graph paper (abscissa: days, ordinate: data) at distances ±s and ±2s from 
the mean X. Now we know that in the case of a normal distribution at least 

x 
Upper control or action limit 

f------------ x + 2s ~ 

______ ~~~~~_~~~~~~~_~~~t _____________ x + s I 
1------------ x 95.45% 

------~~:~;-:~:~:~~~~~~;i:~-I~:i~---- x - s j 
f------------ x - 2s ~ 

samples in time 

Figure 31 The mean control chart 
(X-chart). 
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68 % of all observations will lie between x ± s and at least 95 % of all values 
between x ± 2s. Thus we expect that with daily control analyses, out of 100 
exact determinations about 32 lie outside ± s and about 5 outside ± 2s 
(cf., Figure 32). If noticeably more than 32 % and 5 % of the observations fall 
outside the x ± s and x ± 2s bands, respectively, then every step of the 
method has to be scrutinized. If the plotted points are not scattered randomly 
about the mean line but rather form a systematic pattern (e.g., a rising or 
falling straight line, a sine curve), a time-dependent systematic error might 
be involved. Should 7 or more consecutive data points lie on the same side 
of the mean line (cf., also Reynolds 1971) then we may well suspect a sys
tematic error. 

Figure 32 Readings from control ex
periments carried out daily (or at other 
regular time intervals) on a potassium 
standard [schematic; potassium: 18 
mg/lOO ml (= 18 mg/dl = 180 mg/I) 
= 0.2557 (18) = 4.603 mval/I = 4.603 
mmol/I; for the nomenclature associ
ated with medicinal laboratory data 
see R. Dybkaer, Fed. Proc. 34 (1975), 
2116-2122]. 

19,2 i + 2 $ 

700'ml .. - - - - -. - - - - - - i + s 
• 

18 i . . . .--------------X-5 
16.8t---------- Y - 2 s 

~~--~---~-----
1. 5. 10. Day 

The three sigma limit (x ± 3s) is also considered. As a conservative 
control limit, it is not prone to cause a false alarm. 

In addition to this vital mean chart (X-chart; see Section 2.4.1.1 and 
Journal of Quality Technology 8 (1976), 183-188, 9 (1977), 166-171, 10 
(1978), 20-30 and 12 (1980), 75-87) for controlling accuracy, the range 
chart (R-chart) serves to control the precision by means of double determi
nations, and the so-called cumulative sum chart helps us to recognize syste
matic deviations early and reliably. The early recognition of a trend is exceed
ingly important for the control of continuous processes: One determines on 
i consecutive days (i = 1,2,3, ... ,r) the difference Xi of the analyzed values 
of a standard solution from the true concentration, the target value k, and 
plots the cumulatively summed amounts 

r 

Sr = L (Xi - k) (2.2) 
i= 1 

in a diagram like Figure 32: The days are marked on the abscissa and the Sr 
values on the ordinate-above the abscissa if Sr is positive, below if Sr is 
negative. In contrast with the usual control charts (e.g., Duncan 1974), the 
limit lines parallel to the abscissa are missing. 
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As long as the method of analysis is under control, the cumulative sums will 
lie on an approximately horizontal line. If the slope of the line becomes 
markedly different from zero, then the longer the slope does not decrease in 
absolute value, the more we suspect that the method of analysis is no longer 
in control. To test whether the slope of the curve exceeds a limiting value, 
one uses a V-mask whose construction is explained by J. M. Lucas (1976, 
Journal of Quality Technology 8, 1-12), Barnard (1959), Kemp (1961), 
Ewan (1963), and Johnson and Leone (1964) as well as by Woodward and 
Goldsmith (1964). Further interesting applications of this principle in the 
context of quality control are given by Page (1963) (cr., also Taylor 1968; 
Burr 1967, Vessereau 1970) and especially by Dobben de Bruyn (1968) and 
Bissell (1969), both with important remarks. 

Another important control chart for mean value control is described by 
Reynolds (1971). 

2.1.3 How to get unbiased information and how 
to investigate associations 

A sample survey is usually an examination of human beings to study human 
populations with regard to special variables. The objectives are 
DESCRIPTION, UNDERSTANDING, EXPLANATION, and PREDIC
TION. The population, the variables, their level of measurement (cf., end of 
Section 1.4.8), and the units of measurement must be defined. This holds true 
for instance for the methods of data collection by interview or questionnaire. 
Inaccurate answers may be attributable to defects of this data collection 
process: misunderstanding of a question (due to its wording, its length, em
barrassment, or difficulty) or dishonesty (due to the respondent's desire to 
raise his prestige or to please the interviewer; dishonesty on the part of the 
investigator is likewise possible). These response errors are nonsampling 
errors. In order to estimate this bias, it is necessary to have information from 
outside the survey. 

In medicine random samples are extremely hard to get. If the investigator 
is trying to make inferences from his sample he must be very careful to avoid 
common errors and fallacies (cf., Section 2.1.1 and Sachs 1977). Therefore 
statisticians are usually unwilling to generalize in medicine. 

2.1.3.1 Check points 

Results that can be confidently utilized and reliably analyzed are only 
available after careful consideration and reflection with appropriate attention 
to all aspects of the design of the research project, taking into account the 
subtleties and the realities of clinical science. It is useful to check certain 
features of the observations. 
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Avoiding nonrepresentativeness and selection bias 

Avoiding Nonrepresentativeness 

Are all cases with and without the disease representative samples of their 
respective populations? Did we succeed in avoiding under- and overrepresen
tation of special parts of the population? Several different control groups 
and/or control groups with different diseases should be used. Are the risks of 
developing the disease different? Do the volunteers differ in some ways from 
the nonvolunteers? In prospective studies the percentage of individuals lost 
to followup-withdrawals for any reason, death included-should not to be 
greater than 5 %. Some further important questions: Are there other differ
ences between the two groups? Are there perhaps different frequencies in the 
characteristics of interest? 

Consider a group of people who are being studied; their knowledge of 
this will change their behavior. Especially disturbing is noncooperation 
by individuals, called nonresponse: either the individuals are unable or un
willing to give the requested information, or they are hard to find (new 
address unknown). These individuals are sometimes a divergent part of the 
population. More intensive efforts are necessary to get at least a small sample 
of the nonrespondents to answer the question: in which relevant features do 
the nonrespondents differ from the respondents? Surveys with high non
response rates are particularly prone to systematic errors and are almost 
useless. Compared with sampling errors and response errors, nonresponse is 
very hard to overcome. 

Avoiding the Selection Bias 

Possible nonassociations or associations between diseases or between a 
characteristic and a disease are difficult to establish. Differences in hospital 
admission rates or probabilities may artificially build up a spurious associ
ation or may conceal an actually existing association in the population. Any 
characteristic that increases the probability that a diseased individual will be 
hospitalized may mistakenly be found to be associated with the disease. 
Elderly people, with a high death rate, by moving to a place renowned as 
healthy, may raise the local death rate, thus causing the place to appear 
unhealthy (migration effect). Concerning the sampling process (the selection 
of the sample unit), it is important that the pertinent actual selection prob
abilities: 

1. should not change as the survey progresses and 
2. should not be correlated with measurable characteristics of the units-with 

measurements on the units. 

The best way to seek out possible selection biases is to compare the sample 
with external data sources (e.g., true population sex ratio). 
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Available medical records are often nonrepresentative and afllicted with 
selection bias. Incomplete, and with time-linked shift of emphasis, they are 
seldom able to answer special scientific questions raised now, since the 
documents were not developed to solve the problem at hand. Which findings, 
facts, medical evidence, though important for the possible solution of the 
problem, had not been documented? 

2.1.3.2 Checking the quality of the data and the size of the 
sample (cf. Section 2.1.1) 

Why are the data wanted? Is there a reconciliation of population specifica
tions? What is known about the data: their source, reliability, methods of 
measurement, and units? Are the data independent? 

The Condition of Independence 

Variables that are unrelated in a probabilistic sense are called stochastically indepen
dent variables or independent variables. In this sense we may say two characteristics 
are independent (cr., Sections 1.3.1 [last parts] and 4.1). The tobacco companies 
claim this for smoking and lung cancer. Different observations of the same kind on 
the same person are not independent. Observations on parents and on their children 
may be independent for some characteristics and not independent for others, such 
as the sex-linked inheritance of X-chromosome-borne hemophilia, or longevity, 
which is partly determined by heredity. The susceptibility to hypertension and to 
coronary artery disease is genetically conditioned. 

Are the data perhaps from a random sample (cr., Sections 1.3.2 and 7.7)? 
Is the empirical distribution (histogram) unimodal, left-steep, symmetric, 
right-steep, or multimodal? 

The heterogeneity of a population should be taken into account. The 
use of only one property, such as the count of white blood cells, size of tumor, 
or survival time, should be avoided. Other clinically relevant variables may 
be important, such as pain, the treatment's side effects, and such aspects of 
the patient's quality oflife as relief of symptoms, return of appetite, and ability 
to work. 

2.1.3.3 Surveys to investigate associations 

Cohort studies 

In cohort studies, the effects of time on individuals are studied, such as weight 
gain after birth; other examples involve a disturbance such as exposure to a 
noxious agent or to risk factors, the onset of a disease, or the administration 
of a treatment, the observed effect or the occurrence of the alleged effect such 
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as the appearance of a disease, the disappearance of symptoms, or the ability 
to return to work. 

People assembled in a cohort should be representative of the group of 
individuals to whom the results will be extrapolated. This concerns e.g., age, 
sex, clinical condition, ethnical background, occupation, and other character
istics. 

Sometimes two cohorts are assembled, of which one is exposed to a certain 
risk (e.g., oflung cancer possibly resulting from asbestos dust and/or cigarette 
smoking, or of thrombophlebitis possibly resulting from oral contraceptive 
pills), and the other remains unexposed (no asbestos dust and/or no smoking; 
no pills). The aim is to determine whether a particular disease develops 
preferentially in the cohort at risk. Another technique is to subdivide one 
cohort consisting of prognostic ally homogeneous patients by random alloca
tion into groups that receive different treatments, the effects of which are 
compared. It should be clear that in both comparisons the conditions at the 
start and afterward must not differ, except that one cohort is subjected to a 
defined risk, or the two groups of patients to different treatments. That is: 

(1) At the onset of the trial the two groups must have equal susceptibility 
to the target event, (that is, getting the disease, or getting rid ofthe disease). 

(2) One must insist on equal handling and performance of all people during 
the trial and adherence to the preplanned schedule. 

(3) Any change in the detection rate for the target event during the inquiry 
must be the same for both groups. For instance, pill-takers or smokers 
should not be pressed harder while under surveillance than non-pill
takers or nonsmokers. 

Equal performance is very important. If there are patients with different 
clinical severity of a given illness, the patients are prognostically hetero
geneous. In that case, before dividing the patients into two groups according 
to the severity of clinical conditions, subgroups or strata are created. The 
purpose of stratification is to achieve similarity of patients. Each patient 
within a subgroup is then randomly assigned to one of the two treatments. 
The prognostically disparate strata are thus subdivided into similar (or the 
same) proportions. Now it is possible to compare the effects of both therapies 
within the strata (as well as between the strata). 

Case-control studies 

Case-control studies are also suitable for studying the etiology of a disease. 
One assembles a group of patients with disease D ("cases" or D-patients) 
and a group of control persons without disease D. The control persons 
should be drawn from a wide variety of diseases or admission diagnoses 
in hospitals and/or from the general population. Then the D group and 
the non-D group are compared with respect to past and existing features 
and characteristics judged to be of possible relevance to the etiology of D. 
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Therefore controls should be similar to the D-patients in all respects except 
for D and the associated unknown etiological factors. If possible, each 
D-patient is paired with a control individual who is deliberately chosen to 
be of the same sex, age, and other possibly relevant features. The procedure 
of selecting controls such that the control group has the same distribution 
as the D-group with respect to important characteristics is known as matching 
(cf., Section 1.3.2). It is, however, very difficult to select the appropriate 
control group and to avoid all sources of bias in case-control studies [see, e.g., 
J Chronic Diseases 32 (1979), 35-41, 51-63 and 139-144]. More on this is 
provided by Schlesselman (1982). 

Remarks 

1. Concerning survival time and survival probabilities see R. P. Anderson 
et aI., Journal of Surgical Research 16 (1974),224-230; D. R. Thomas and 
G. L. Grunkemeier, Journal of the American Statistical Association 70, 
(1975), 865-871: N. E. Breslow, International Statistical Review 43 (1975), 
45-57: R. E. Tarone and J. Ware, Biometrika 64 (1977),156-160. For two 
graphical procedures for analyzing distributions of survival time see D. R. Cox, 
Biometrika 66 (1979), 188-190. Four tests for equality of survival curves in 
the presence of stratification and censoring are given in L. Lininger et aI., 
Biometrika 66 (1979), 419-428. 

2. Measures of disease incidence are given in Morgenstern et aI. (1980). 
Important in epidemiological studies (see Lilienfeld and Lilienfeld 1980) are 
incidence probabilities, the relative risk [see Gart [8 :4], H. R. Bertell, 
Experientia 31 (1975), 1-10] and confidence intervals for both [see L. L. 
Kupper et aI., Journal of the American Statistical Association 70 (1975), 
524-528 as well as Fleiss 1981, and Hosmer and Hartz 1981]. 

3. Matching is a frequently used technique for controlling variation in 
medical as well as other investigations involving human populations. 
Sonja M. McKinlay discusses its advantages and disadvantages [Biometrics 
33 (1970), 725-735; see also 38 (1982), 801-812 and American Journal of 
Epidemiology 116 (1982),852-866]. 

2.1.4 Retrospective and prospective comparisons 

The most important techniques for etiological studies are retrospective and 
prospective comparisons (Koller 1963, Cochran 1965) as well as potentially 
interesting combinations of the two. In retrospective samples, using hindsight 
drawn from medical records with all their shortcomings (e.g. missing and 
incompatible data), a group of people with the particular illness is compared 
with a group of people not afflicted by it. We can employ the term" cause" 
for a limiting factor without which the illness does not occur and whose 
presence diminishes the effect of other factors. Let us however point out that 
instead of a causal relationship between factor and illness there can also be a 
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Figure 33 Standard error of the difference of two frequencies with different ratios of 
sample sizes. From S. Koller, Introduction to the methods of etiological research
statistics and documentation, Method. Inform. Med. 2 (1963), 1-13, Fig. I, p. 6 (in 
German). 

sequence of other relations (the factor could, e.g., be a symptom or a pre
disposition). 

The frequency of this factor in the two sequences is compared. The control 
sequence must be at least as large as the test sequence. In Figure 33 the upper 
curve I indicates the change in the standard error of the difference, if the 
control sequence n2 is larger or smaller than the test sequence n l . If the 
control sequence is made twice as large as the test sequence, the standard 
error is reduced by only 13 %. Further increases in the size of the control 
group cause even smaller additional reductions in the standard error. The 
expenditure is justified only in the case of a rare illness where the size of the 
test sequence is severely limited. If however the control sequence is smaller 
than the test sequence the standard error increases sharply, as seen from the 
left part of the upper curve (I). If sufficient funds are available the test and the 
control sequences should increase at the same rate. The dashed curve (II), 
with control and test sequences of equal size, gives the standard error of the 
difference as a function of the same total sample sizes as curve I. Note that 
curve II always does better than I, and the better the farther the ratio ndn2 
moves away from 1. Thus, if possible, the sizes of the control and test sequences 
should be the same. 

Two samples are comparable if they differ only with respect to the 
attributes we want to compare while being indistinguishable with respect to 
the other attributes, i.e., the probability distributions of these other attributes 
must be about the same in the two samples. Three conditions are essential 
(Koller 1964): structural homogeneity, uniformity (consistency) in observing 
and representative samples. 
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1. Structural homogeneity: The frequency distributions of the more impor
tant modifying attributes, such as age, sex, and severity of illness, should 
be the same in the groups we want to compare. For comparisons it is best 
to pair persons of similar modifying attributes; if there are several choices 
the pairing is done at random, e.g., with help of random numbers. 

2. Uniformity (or consistency) in observing: The method of observation and 
the conditions under which it is carried out must be the same. The factor 
in question has to be recognized and examined in the same way in all cases. 
A patient whose physician or who himself knows the hypothesis on the 
causality will, in general, be questioned differently, more extensively, 
than the controls; occasionally a patient will be too eager in confirming 
or concealing the factor. In fact, the results are useful only if both the one 
who questions and the questioned know neither the exact diagnosis nor 
the hypothesis on the etiology. The method of observing and measuring 
is crucial if psychological components are involved, as in retrospective 
interrogations, e.g., with respect to the set of problems caused by Thalido
mide or with respect to the comparison of the success of different therapies. 
The interviewer's bias, well known in relation to questionnaires in the 
social sciences, belongs to this item, as does the accuracy in diagnosis, 
which changes (usually increasing) with time, thus distorting studies on 
the change over time of the causes of death. 

3. Representative samples: The two groups, control and test group, must be 
random samples from the same basic population (regional origin, 
occupation). In the case of prospective etiological studies the two groups 
are usually drawn from the general population or from a representative 
portion thereof. It is often very difficult to find a suitable control group for 
a retrospective study. The control group should be representative for the 
people who are served by the same hospital and who are not carriers ofthe 
factor. Whether the result holds in general is then examined by a separate 
investigation. 

Well-planned studies carried out on prospective samples are less subject 
to error, but the sample sizes have to be much larger. In this scheme two 
groups of people are observed under the same conditions over equal time 
intervals. The relevant statistic for the risk caused by the factor studied is 
given by the ratio of the percentage of the sick persons in the carrier group 
(having the factor) to the percentage of sick persons in the groups of non
carriers. The risk due to the factor (cf. Remark 2 at the end of Section 2.1.3.3) 
is recognized and measured directly. The control sample must be representa
tive of all groups without the factor in the population to which the carriers of 
the factor belong. 

In the absence of a particular hypothesis on the etiology we must place 
special emphasis on systematic investigation and documentation of the results. 
Undirected retrospective analysis of the increased occurrence of deformed 
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limbs in infants led to the discovery of the effect of Thalidomide. A harmful 
factor such as smoking and the unknown set of illnesses with which it might 
interact are examined in a prospective study. In both types of investigation 
it is essential to provide a description of the experimental units (patient, 
hospital), as well as comprehensive observation and documentation, 
including a tabulated breakdown (cf., e.g., Sachs 1984, p. 3) according to the 
different combinations of the various attributes. As Lange (1965) in particular 
has pointed out, it is often rather pro blematical whether observed associations 
among illnesses are random phenomena, especially because on the one hand 
it is difficult to define appropriate control groups and to account for the 
course of an illness, while on the other hand selection and heterogeneity of 
the samples may distort the picture (cf., Koller 1963, 1964, 1971; Mainland 
1963; Cochran 1965, Riimke 1970, Feinstein 1977, Fleiss 1981, Fienberg 
and Straf 1982). 

Prospective studies are most suitable for investigations on associations of 
this sort. They are rather time consuming and organizationally demanding; 
however, the observations are more likely to be consistent, the sample has 
more the characteristics of a random sample, and it is possible to draw some 
conclusions about the prevalence of the factor. Retrospective studies, which 
can usually be carried out more quickly and which are also mandatory in the 
case of rare illnesses, serve quite often as starting points for prospective 
studies. Since many chronic diseases (e.g., various forms of cancer) are fairly 
rare and the latent periods are long, a retrospective approach is often un
avoidable, as it is with specific high-risk industrial agents like radiation and 
asbestos. 

Remarks on the patients of a clinic 

1. The percentages of patients with particular illnesses that are admitted 
to a clinic are pretty much unknown. 

p.205 
above 

2. Each patient has a different chance of being accepted by a clinic. The 
patients are not a random sample. Due to known and unknown selection 
factors, at each clinic a definite cluster is assembled (cluster sample; cf., 9 
Chapter 3). 

(a) In medicine an accessible group of patients is often used as a sample, 
rather than a random group of patients chosen from a well-defined 
finite population (the target population). 

(b) One needs a sample that is, to some degree, representative of the popu
lation. The essential attributes of the individuals of the target population 
from which a random sample will be drawn have to be listed. 

(c) It may be necessary to identify, in a qualified sense, the target population 
with the sample. 

3. The possible selection criteria are: the nature and severity of the 
affliction; other illnesses; age; sex; occupation; consultation with the 
physician (as affecting, e.g., the patient's awareness of health problems and of 
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the accessibility of the physician); diagnosis made by the physician; tendency 
of the physician to transfer the patient to a hospital; location, copdition, and 
number of beds available in the hospital; diagnostic and therapeutic facilities; 
and the reputation of the hospital. 

4. Therefore a generalization is difficult. 
5. Groups of patients at the same hospital cannot be compared if the 

chances of being admitted to the hospital differ. A comparison is possible if 
the characteristic considered was itself not a factor in determining .admission 
to the hospital. 

6. Relations between illnesses can best be detected by studying cohorts 
from delivery to death. Longitudinal studies in the population are a useful 
substitute. 

7. Generally it is of no use to collect and combine or pool available medical 
records from different hospitals, since the data are hardly ever comparable. 

2.1.5 The therapeutic comparison 

To test the therapeutic value of a medication, it is essential to have a basis of 
comparison which can be gathered either: 

I. from the outcome of an illness: good health or death [on morbidity 
statistics and mortality statistics see International Statistical Review 45 
(1977),39-50, Australian Journal of Statistics 20 (1978),1-42, as well as 
Armitage 1971 and Hill 1971], [for mortality see page 214 and Watson 
and Leadbetter 1980 [8: 2d]]. 

2. from its survival time (cf. Remark I at the end of Section 2.1.3.3; for the 
comparison of survival distributions see Peto et al. 1976, 1977, Burdette 
and Gehan 1970, Elandt-Johnson and Johnson 1980, Lee 1980 [8: 1], 
Lawless 1982, Cox and Oakes 1984 [8: 2d]) or duration of recovery, or 

3. from the course it takes or the extent of the recovery or the permanent 
injuries caused by the illness (cf., also Hinkelmann 1967). In this context 
the effect of drugs on healthy people (this is an important control group) 
will gain much importance. For side effects see pages 223, 224, 337. 

Criteria that can be measured are of course desirable in each case. One 
distinguishes hard and soft data. Soft data consist of details of the case history, 
in relation, e.g., to coughing and difficulty in breathing, which greatly depend 
on the judgement of the patient doing the reporting. Examples of hard data 
on the other hand are age, weight, height, most of the findings of the medical 
lab, etc. Evaluation of soft data by counting quantifiable qualitative outcomes 
does not in general lead to any results worth mentioning. 

A critical assessment of therapeutic results, based on comparative obser
vations, includes the task of distinguishing authentic effects (depending on 
the medication) from spontaneous fluctuations. The most important pre
requisites for the statistical methods used are: homogeneity of the groups, 
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random allocation of the individual patients to the various types of treatments, 
and reproducibility ofthe observations. The requirement that the experimental 
units, here the patients, be homogeneous in the case of the comparison of two 
therapies encounters the following difficulties: no two patients suffering 
from the same illness are entirely alike; no state of a disease repeats itself 
completely. Only in the course of the chronic illness of one particular patient 
are there time intervals during which the state of the illness is constant. 
Therefore the so-called within patient trial, usually limited to the early stages 
of drug testing, is preferred for these patients. The patient is treated by the two 
methods during consecutive time intervals in which the state of the illness 
does not change markedly. The patient is observed not only during the two 
intervals in which he receives therapy, but also during the periods preceding 
the first treatment, between treatments and following the second treatment. 
In the period preceding therapy the patient is given strictly symptomatic 
treatment or is only kept under observation. Each period continues until the 
state of the illness stabilizes under the particular treatment. 

Patients with acute infectious diseases resemble each other in their 
clinical picture. It is possible to combine the various patients into two 
groups with like illnesses. The groups are subjected to the two treatments 
we want to compare. This is called a between patients trial (cf., Martini 1953, 
1962). The second requirement, that of random allocation of patients to the 
treatments in the between patients trial or of the order in which the treatments 
are administered in the within patient trial, is guaranteed by a symmetrical 
distribution of all secondary causes that interfere with the decision-making 
process on both comparison groups. The effect error of the secondary causes 
is thereby neutralized to a great extent. A spontaneous tendency toward 
recovery is also an important secondary cause. 

Formerly an alternating pattern was preferred in which new and standard 
treatments were assigned alternately to patients and time intervals re
spectively. The alternating test sequence with equalization consists of a 
combination of two procedures. In the first, one assigns treatments at ran
dom to the patients (e.g., with the help of random digits or by treating the first 
patient who comes in for observation and treatment with one medication and 
the next with the other one). In the second, one orders the patients according 
to the importance for the course of the illness of some characteristic such as 
sex, age, or state of nutrition. The mixture is useful because in small samples 
purely random assignments might lead to very unbalanced groups. The 
characteristic that has the largest influence on the course and prognosis of the 
illness will be "equidistributed" first (for typhoid fever it is age, for diphtheria 
the time since infection). In the interest of objectivity the physician who 
carries out the equalization must, as a precaution, be excluded from any sub
sequent discussion of the results. This "equalizing alternation" is based on 
the assumption that the samples are essentially random. Differences due to 
biological (or physiological instead of biological) factors between the two 
test groups are removed during brief time intervals in order to get similar 
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groups, which can be better compared. If many patients are available for a 
comparison, it frequently suffices to arrange them in two groups according 
to the date of birth (even or odd day of the month). A proper random alloca
tion in a homogeneous group of patients is of course superior to any other 
scheme. More on this can be found in the book by Feinstein (1977). 

The third requirement, repeatability of the observations, encounters 
difficulties with time and timing: many important aspects of a disease cannot 
be observed and measured as often and in as quick a succession as one would 
like, because it would be too much for the patient. 

Another requirement that must be met to realize an uncontested thera
peutic assessment concerns the use of representative symptoms and charac
teristics of the disease, which permit a quantitative description of the main 
aspect of the state of the disease. The subjective symptoms can be influenced 
not only by a patient's self-deception based on his confidence in medical 
sciences and by an unintentional subconscious suggestive effect of the 
physician on the patient, but also by autosuggestion of the physician, whose 
diagnosis, observation and classification of the intensity of the symptoms 
might be biased because he knows which medications have been adminis
tered. 

These problems of unconscious and unintentional error can only be 
eliminated by a single or double blind trial (cf., Martini 1957, Schindel 
1962). The single blind trial simply consists of keeping the patient on whom 
a medicine is to be tested for effectiveness and usefulness ignorant of the 
substance and composition of the medicine for the duration of the test; and 
on top of that he should, if possible, even be kept in the dark about the fact 
that he will actually be involved in a therapeutic test. The patient is for 
example, supplied with a disguised medicine to eliminate any bias pro or 
con. Thus he either gets the medicine or a pseudo medicine called a placebo 
which is composed of pharmacologically inert substances and which looks, 
smells, and tastes like the active medicine (and, if possible, has the same side 
effects). 

A well-known example is due to lellinek (1946). Three headache remedies 
A, B, C and the placebo D were consecutively tested on 199 patients. During 
a 14 day period each patient was given a certain preparation as soon as he 
complained of a headache. The ratios of headaches treated successfully to 
the total numbers treated come to 0.84 for A, 0.80 for B, 0.80 for C, and 0.52 
for D. There is thus no significant difference in effectiveness among the three 
preparations A, B, and C. A more detailed study of the 79 persons whose 
headaches were not relieved by the placebo reveals success ratios of 0.88 
under A, 0.67 under B, and 0.77 under C, for this group of patients. These 
numbers differ considerably. The success ratios for the remaining 120 
patients, those that sometimes found relief from their headaches through 
preparation D, equal 0.82 for A, 0.87 for B, 0.82 for C and 0.86 for D. All four 
preparations seem to be equally effective in this group of patients. Thus, before 
comparing several headache remedies, a placebo is administered to all 
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patients and those responding to the placebo (placebo reactors) are not 
included in the actual experiment. 

About one third, on the average, of every group of patients reacts to a 
placebo; this reaction comes on quickly but is not long lasting. The dis
persion is large. The portion of placebo reactors extends from 0 to 67% for 
pain in general and from 43 to 73 % for headaches. At least 30% of dys
menorrhea cases respond to placebos. Placebos are ineffective with small 
children, for serious acute illnesses, and for organic diseases with specific 
causes. Strangely enough, the tests for suggestibility do not agree with 
the response to placebos (cf., Documenta Geigy 1965), although the 
medication type (syrup, tablet, colored gelatin capsule) exerts a lot of 
influence (cr., Schindel 1962). Certain placebo-dependent clinical and, in 
particular, biochemical results remain a mystery as well (cf., Schindel 1965). 
Some physicians have used the so-called" active placebo," which contains a 
small amount of effective substance (cf., Lasagna 1962), assuming that 
small amounts of the active substance cause no effects, either opposite or 
more or less weakened. For humanitarian and legal reasons the placebo must 
frequently be replaced by a standard medication. 

Going beyond the simple blind study, the double blind study makes even 
more extensive demands; Not only the patients but also the physician (or 
physicians) who observes and assesses the reactions of the patients must not 
know which treatments are tested and what specifically is administered to the 
patients, a medication or a placebo. The physician in charge may neither 
observe nor give the medication; his not being informed of something 
involving his patients would not be compatible with his responsibility as a 
physician. The medications are appropriately administered by nurses, from 
the same nursing staff that usually dispenses drugs; anything out of the 
ordinary must be avoided. It is however even more important that these 
people also not know the medication they give to the patients. It is clear that 
in this way the patients are also safeguarded to a great extent against un
conscious suggestions. The emphasis on such extensive safeguards stems 
from the belief that not only does prejudice or autosuggestion of the patient 
add to the effect of a true or pseudo drug, but there are also indirect, conscious 
or subconscious influences on the patient by the attending physician. 

A double blind test is mandatory if the physician is involved in the 
proper classification, according to subjective criteria, of the reaction to the 
therapy. 

The larger the number of relevant subjective criteria in a research project, 
the more important it is to apply a double blind test. The simple blind trial is, 
however, generally adequate if the patients can characterize the symptoms 
unassisted, without interference of the physician, e.g., in characterizing pain 
as "better," "unchanged," or "getting worse." 

Schindel (1965) commented as follows on a five way blind crossover trial that was 
once actually carried out: "The authors apparently have the idea that a sufficient 
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amount of blindness generates a kind of occult vision." Further discussion of the 
therapeutic comparison, see especially Section 2.l.6, can be found in Mainland 
(1960, 1963), Martini et al. (1968), Burdette and Gehan (1970), Hill (1971), Brown 
(1972), and Ryan and Fisher (1974) as well as in Lee (1980 [8: 1]) and Tygstrup et al. 
(1982) (cf., also Gehan and Freireich 1974). Mathematical models for clinical trials 
are given for instance by Canner (1977), Mendoza and Iglewicz (1977) and Glazebrook 
(1978). A check list for those planning clinical trials is furnished by the British Medical 
Journal 1977, I, pages 1323 and 1324. For sequential clinical trials (pp. 219-223) see 
Whitehead 1983 [8: 2b]. Other helpful hints can be found in The Statistician 31 
(1982), 1-142 and in: 

(I) Biometrics 35 (1979),183-197,503-512; 36 (1980),69-79,677-706. 
(2) Methods of Information in Medicine 18 (1979), 175-179; 19 (1980), 112-114; 

21 (1982),81-85,94-95. 
(3) New England Journal of Medicine 295 (1976), 74-80; 300 (1979), 73-75, 

1242-1245; 301 (1979), 1410-1412. 

The large scale multiclinic trial (e.g., Peto et al. 1976, 1977) as it has been 
requested, publicized and carried out for the past two decades in the U.S. by 
Mainland and in Great Britain by Hill, cannot be discussed here. Let us only 
mention that "Murphy's Law," as Mainland calls it (a law from the world 
of the theater: "If something can go wrong it will") applies when several 
clinics collaborate. How such difficulties can be prevented, especially in the 
planning, carrying out and evaluation of simple trials [see Controlled 
Clinical Trials, e.g., 3 (1982), 365-368] and of multiclinic trials has been 
described repeatedly and extensively by Mainland and Hill. 

Helpful hints can be found in Methods of Information in Medicine: e.g., a special 
number devoted to medical diagnosis, bibliography included: 17, No.1 (1978), 1-74. 
Other important aspects of medical statistics are considered in The Journal of the 
Royal Statistical Society, Series A, for example 138 (1975): 131-169 Familial Diseases, 
239-241 Children's Heights and Weights, 297-337 Ventilatory Function; 139 (1976): 
104-107 Diagnosis, 161-182 Multivariate Methods, 218-226 Mortality, 227-245 
Epidemiology and Mortality; 140 (1977): 469-491 Cohort Analyses, Asbestosis; 141 
(1978): 95-107 Smoking and Lung Cancer, 159-194 Operational Research in the 
Health Services, 224-235 Mortality Ratios, 323-347 Epidemic Theory, 437-477 
Smoking and Lung Cancer; 144 (1981): 94-103 Population Growth, 145-175 Dis
criminant Analysis, 298-331 Ionizing Radiation and Cancer; 145 (1982): 313-341 and 
479-480 Geographic Variation in Cardiovascular Mortality, 395-438 Legal 
Probability, Evidence, Lawyers and Statisticians. 

2.1.6 The choice of appropriate sample sizes for 
the clinical trial 

The answers to the following three questions will essentially determine the 
sample sizes of the two test groups in a clinical trial, in a comparison of two 
therapies: 

1. How big a risk of ascertaining a difference between two undistinguishable 
treatments (in other words, of inventing a difference) are we willing to put 
up with? This risk is known as the significance level oc. 



2.1 Medical Statistics 215 

2. For how big a risk do we allow of missing a substantial difference between 
two treatments (in other words, concluding that there is no significant 
difference when the two treatments do have different effects)? This risk 
is called p. We know it as risk II (cf. Section 1.4.3). The power of a statistical 
test is defined as 1 - p. The power of a test for a given alternative hy
pothesis is the probability of rejecting the null hypothesis when the 
alternative hypothesis is true. A test has a power of at least 0.95 if it is 
determined that only one decision out of 20 is wrong insofar as a signifi
cant difference is not discovered although it exists. 

3. How small a difference should still be recognized as significant? This dif
ference is called o. 

The usual answers to these questions are: (1) zero, (2) zero, (3) any real 
difference. 

The question as to sample size can now be readily answered: Both patient 
groups should include infinitely many patients. Thus we see that to obtain 
realistic sample sizes, we must allow for positive risks; moreover, the dif
ference must not be too small. Compare the discussion in Section 1.4.3. 

Problems involving the determination of an appropriate sample size are 
best solved approximately, using a method due to Schneiderman (1964) 
which assumes the binomial distribution (Sections 1.6.1-2). Figure 34 gives 
the results for the two sided test (2ac = 0.05)-whether the therapy under 
study is better or worse than the standard therapy-and for four levels of 
risk II (the curves for p = 0.05; 0.10; 0.20; 0.50) as well as for therapy dif
ferences (Pz - PI) of sizes 5 % and 10 % (on the left), 15 % and 20 % (on the 
right). The recovery percentage PI of the standard method is plotted on the 
abscissa and the required sample sizes on the ordinate; an example can be 
found in the legend. 

In this and in the following section we use the symbols oc and 20c (i.e., 
ac = aconeS. and 2ac = actwos) to distinguish between a one sided and a two 
sided question. 

For an arbitrary risk I, problems of this type are solved according to 
Table 42 (cf., also the method for the one sided question presented in Section 
4.6.1). 

To begin with we need some constants, which can be found in Table 43. 
We denote these constants according to Table 42 by z and zp. We use again 
the example in the top portion of Figure 34 to check our estimate with 
the help ofthe nomogram. From Table 43 for 2ac = 0.05 we get z = 1.9600. 

For risk II, p = 0.10 gives us zp = 1.2816. The recovery percentage of the 
standard therapy is PI = 0.20. Thus we have the first three items A, B, C. 
Since we wish to ,detect an increase of 10 % in therapy success, we obtain 
P2 = 0.20 + 0.10 = 0.30 (D) for the recovery rate of the new method. 
Following the scheme we arrive at U, the sample size n for each of the two 
groups. Note that counted values are discrete variables, while z and zp are 
based on the continuous normal distribution. The sample size Z is the value 
adjusted by the continuity correction. Adding a quickly calculated estimate 
of the continuity correction to the uncorrected estimate of the sample size, 
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Figure 34 Nomogram for determining the sample size of two differently treated 
groups of patients for a "success-failure situation." It is meant only to give a general 
idea; the scheme in Table 42 is preferable. The solid curves in the top figure are for 
differences of the order of 5 %; those in the bottom figure, for differences of the order of 
15 %. The dashed curves are for differences of the order of 10 % (top) and 20% (bottom). 
The significance level (21X = 0.05) holds for the two sided comparison. Four levels of 
risk II (13) as well as the corresponding" powers" are given in each case. The two dashed 
straight lines drawn in the lower left corner of the top figure (bottom left) illustrate how 
the sample sizes of interest are found for 21X = 0.05, 13 = 0.10 (power = 90%); the 
expected recovery rate PI for the standard treatment is 20%; a therapy difference of 
the order of 10 % is called for (P2 - PI = 0.10). The ordinate of the point of intersection 
of the curve 13 = 0.10 and the vertical through PI = 0.20 gives the sample sizes (nl = n2 
~ 410)(Table 42 calls for nl = n2 = 412). Taken from Schneiderman, M. A.: The proper 
size of a clinical trial: "Grandma's strudel" method. J. New Drugs 4 (1964), 3-11. 
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Table 42 Scheme due to Schneiderman for working out an estimate 
of the sample size, with example (see legend to Figure 34) 

Item 

A: Z 
B: Zs 
e: PI 
D: P2 
E: ji 

F: ql 
G: ~2 
H: q 

--J: pq 
K: PI q I 
L: P2q2 
M: 2jiij 

N: LPiqi 

Computation Example Item Computation Example . = 
2. = 
s = 

e + D 
--r-
I - e 
I - 0 

I - E 

E· H 

e· F 

D·G 
2·J 

K + L 

0.025 P: If.i 0.6124 
0.05 Q: IN 0.6083 0.10 
1. 9600 R: AP + BQ 1. 9 7990 
1. 2816 5 : Ie - D I 0.10 
0.20 T: R/5 19.7990 
0.30 without continuity correction 
0.25 U: " 

T2 392 .00 
0.80 

with quick estimate of cont. corr. 
0.70 V: "k' U + 2/5 
0.75 with full cont. corr. 
0.1875 W: R2 + 4·5 
0.1600 X: Ii 
0.2100 V: T·X 
0.3750 Z: 0v 

"k --r-0.3700 

Table 43 Selected bounds of the stan
dard normal distribution for the two and 
the one sided test (cf. also Table 13 and 
Table 14 in Section: 1.3.4; a shorter 
version of Table 43 can be found on the 
inside of the book cover) 

~ z /\.. 
p ·z z z 

Two·sided One·sided 

0.000001 4.891638 4.753424 
0.00001 4.417173 4.264891 
0.0001 3.890592 3.719016 
0.001 3.290527 3.090232 
0.005 2.807034 2.575829 
0.01 2.575829 2.326348 
0.02 2.326348 2,053749 
0.025 2.241400 1.959964 
0.03 2,170090 1.880794 
0,04 2.053749 1.750686 
0.05 1.959964 1.644854 
0.06 1.880794 1.554774 
0.07 1.811911 1.475791 
0,08 1.750686 1.405072 
0,09 1.695398 1.340755 
0,1 1.644854 1.281552 
0,2 1.281552 0.841621 
0.3 1.036433 0.524401 
0.4 0.841621 0.253347 
0.5 0.674490 0.000000 

412.00 

4.3200 
2.0785 

411.52 
411.76 

= 392 

= 412 

= 412 
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we get the estimated sample size V. More on sample sizes for clinical trials 
can be found on pages 350, 351 and in Lee (1980 [8: 1]), Tygstrup et ai. (1982), 
in the Journal of Chronic Diseases 21 (1968), 13-24; 25 (1972), 673-681; 
26 (1973),535-560; 27 (1974), 15-24; 34 (1981),533-544, and in Controlled 
Clinical Trials 2 (1981), 93-113. Jennie A. Freiman et aI., New England 
Journal of Medicine 299 (1978),690-694 after having surveyed 71 "negative" 
trials stress that concern for the probability of missing an important thera
peutic improvement because of small sample sizes deserves more attention 
in the planning of clinical trials. 

Remarks 

l. Testing in groups. During the Second World War a Wassermann test (an 
indirect test for syphilis) was performed on each American draftee. Positive cases 
were rare, in the range of 2 % of all tests. Since the method is sensitive, to reduce the 
great expense of the test project it was proposed that combined blood samples of 
several individuals be tested jointly. If the result were negative, it would mean that 
all participating individuals were free of syphilis. A positive reaction would mean that 
all individuals in the group had to be tested again. Now it can be shown (Dorfman 
1943) that with a frequency of2%, the optimal group size is 8; the number of Wasser
mann tests is thereby reduced by 73 %. Dorfman determined the following optimal 
conditions for other proportions (Table 44). Further discussion (in particular 
additional tables) can be found in Sobel and Groll (1959, 1966) as well as in Graff 
and Roeloffs (1972) and especially in Loyer (1983) (cf., Hwang 1976 and C G. 
Pfeifer and P. Enis, Journal of the American Statistical Association 73 (1978), 
588-592). The probability of finding at least one afflicted individual in a random 
sample of size n is equal to (again, cf., Table 6 in Section l.2.3) 

P = 1 - (1 _ p)", 

where p = relative frequency of the illness in the population (cf., also Section 1.6.4). 
Federer (1963) gives a survey and bibliography on screening [see also Goldberg and 
Wittes 1981]. 

Table 44 

Relative Optimal Percentage of tests 
frequency p group size n eliminated 

0.01 11 80 
0.02 8 73 
0.05 5 57 
0.10 4 41 
0.20 3 18 

For p < 0.11, nopt '" 0.5 + 1/v'P. 

2. The 37% rule, or the Secretary Problem (or Marriage Problem). Suppose the 
personnel director of a business is looking for a new secretary. A hundred applicants 
show up for the position in question. Suppose further that the personnel director must 
decide whether to hire a young lady right after she is introduced. Then the probability 
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that he would thereby choose the best secretary is only 1 %. An optimal strategy 
which increases this probability to almost 37%, consists in having the first 37 young 
ladies introduce themselves, then hiring the next applicant that surpasses all her pre
decessors. The number 37 (more precisely 36.7879) is obtained as the quotient of the 
number of applicants and the constant e, where e = 2.71828 ... is the base of the 
natural logarithms. If instead of 100 we say n secretaries apply, the personnel director 
would accordingly do best to let nle young ladies pass and offer the position to the 
next applicant that outshines her predecessors. The probability of having chosen 
the best from among the n applicants is again 37%. If the personnel director is 
familiar with the exact "distribution of applicants," then this probability increases 
to about 58%, as attested to by a study of Gilbert and Mosteller (1966). (See Chow 
1964.) Suppose 30 riders and their horses, take part in a tournament. For any par
ticular contest, horses are assigned to riders by lots. The probability that none of the 
riders gets his own horse, is likewise just under 37%. It is an interesting fact that this 
probability is around 36.8% for every sample size n ~ 6. For large n, it again 
approaches the value lie = 0.367879. To say it the other way around: if n ~ 6 
objects are rearranged at random, then with probability 1 - (lIe) = 0.632 at least 
one of the objects will occupy its original position. 

More on this can be found in Abdel-Hamid et al. (1982); a review is provided by 
P. R. Freeman (1983, Intern. Statist. Rev. 51, 189-206). 

2.2 SEQUENTIAL TEST PLANS 

One branch of statistics-sequential analysis-was developed by A. Wald 
during the Second World War. Sequential analysis remained a military 
secret until 1945, since it was immediately recognized as the most efficient 
means for continuous quality control in industry. A very readable elementary 
but thorough account with many examples was issued by the Statistical 
Research Group at Columbia University (Sequential Analysis of Statistical 
Data: Applications, New York: Columbia University Press, 1945). Davies 
(1956) and Weber (1972) likewise give very good introductions to sequential 
analysis. Bibliographies (cf., the references in [8: 2b]) are found in Jackson 
(1960), Johnson (1961), Wetherill (1975), and Armitage (1975). Assume that 
the effects of two treatments differ at least by a given amount. The risks 
of type I and type II errors are fixed at (l( and P respectively. The samples 
are supposed to be random samples from infinitely large populations. In 
sequential analysis the sample size is considered a random variable; as such 
it has a distribution and a mean value-the expected sample size. Instead of 
repeating the experiment a given number of times, we check after each 
additional trial whether we have by now sufficient information to reach a 
conclusion; i.e., we carry out exactly as many trials as are absolutely necessary 
to determine with risks (l( and P which of the two treatments is superior to the 
other. The advantages of this procedure are obvious when the single experi
ments are costly and time consuming, but it is also valuable when the 
number of observations is limited. On the basis of the results of each of the 
individual outcomes of one particular experiment, it is determined whether 
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the trial or sequence of trials (sequence of experiments) be continued or a 
decision can be reached. We distinguish between computational and graph
ical techniques, and among these between the so-called open and closed 
sequential test plans: the latter always lead to a decision. The closed 
sequential test plans will be discussed in greater detail. They permit us to 
compare two therapies, treatments, or medications, up to now considered 
interchangeable, without actual computation. If a new medicine A is to be 
compared with another medicine D, then patients are paired off in accor
dance with the equalizing alternation principle. The two patients are treated 
either simultaneously or one right after the other. A coin toss determines 
which patient gets medication A. The result is judged according to the scale: 

medicine A is better than D, 
medicine D is better than A, 
no difference. 

A sequential test plan developed by Bross (1952) and adapted to investiga
tions in medicine is shown in Figure 35. If in the first experiment A is better, 
the field above the black square is marked, ifB is better the field to the right of 
the black square is marked. If there is no difference, no entry is made but the 
outcome is recorded on a separate sheet. 

bo A>B 35 A>B 20::::0.05 
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B is better than A 

Figure 35 Two sequential test plans due to Bross (/1 ~ 0.05); [I. D. J. Bross, Sequential 
medical plans, Biometrics 8, 188-205 (1952)]. 

The result of the second trial is introduced in the same way as that of the 
first trial, the field corresponding to the first result now serving as the reference 
square, with the third trial, the field marked in the second trial, etc. As soon 
as a limit is crossed in the course of the test sequence we accept (Fig. 35: left 
square), with 21)( ~ 10% (two-sided test at the 10% level), one of the follow
ing conclusions: 

Upper limit: 
Lower limit: 
Middle limit: 

A > D, medicine A is better; 
D > A, medicine B is better; 
A = B, a significant difference is not apparent. 
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The question of what difference is for us "significant" must still be answered. 
It is clear that the larger the least significant difference is, the sooner a 
decision will be reached (given that there is a difference), i.e., the smaller will 
be the number of trials required; more precisely, the maximum size of the 
trial sequence depends on this difference. Only our experiment can decide 
how many trial pairs must be tested in a given case. If we almost always get 
the result "no difference," it will take us a long time to reach a decision. 
However, such cases are rather exceptional. Let PI and P2 denote the per
centages of patients cured by the standard and the new medication re
spectively. The outcome of any single trial is one of the possibilities listed in 
Table 45. 

Table 45 

No. Old medicine New medicine Probability 

1 Cured Cured P'P 2 
2 Not cured Not cured (1 - p,)(1 - P2 ) 

3 Cured Not cured P, (1 - P2 ) 

4 Not cured Cured (1 - p,)p 2 

Since we are only interested in cases 3 and 4, the portion of the time that 
case 4 occurs, written P + for short, is found to be 

(2.3) 

If PI = P2' then P + = t independently of the value assumed by Pl' If the new 
medicine is better, i.e., P2 > PI' then p+ becomes greater than t. Bross had 
assumed for the sequential test plan described above that if P2 is so much 
larger then PI as to yield p+ = 0.7, the difference between the two medicines 
can be considered "significant". That is, if 10 %,30 %,50 %, 70 %, or 90 % of 
the treated patients are cured by the old medicine, then the corresponding 
percentages for the new medicine are 21 %, 50 %, 70 %, 84 %, and 95 %. 
We see that the difference between the two methods of treatment is greatest, 
and thus the maximum sample size is smallest, if 30 %, to 50 % of the patients 
are cured by the standard mediciation. This is not surprising, for if the treat
ments are hardly ever or almost always successful, extensive experiments 
have to be run to get a clear distinction between two therapies. Sequential 
analysis requires in general only about i as many observations as the usual 
classical procedures. 

Let us now return to Figure 35 and investigate the efficiency of this 
sequential test that was developed for short to medium sized experiments 
and moderate differences. If there is no difference between the two treatments 
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(P+ = 0.5), a difference is (erroneously) asserted with probability 0.1 at 
least for either direction (Pt > P2, P2 > Pt), i.e., we would conclude correctly 
that there is no significant difference in not quite 80 % of the cases. If there is a 
significant difference between the two treatments (P+ = 0.7), and if P2 is 
"significantly" larger than Pt, then the total probability of reaching the wrong 
conclusion is only around 10%, so that the superiority of the new method is 
recognized in 90 % of the cases. The chance of coming up with a correct 
decision thus increases from not quite 80% (p+ = 0.5) to 90% (p+ = 0.7). If 
the difference between the two medications is slight (p + = 0.6), then the 
new treatment is recognized as superior in about 50 % of the cases. The 
probability that we (incorrectly) rate the standard treatment as better is 
then less than 1 %. 

If very small differences between two therapies have to be discovered, 
then other sequential test plans with much longer trial sequences must be 
employed. The symmetric plan for the two sided problem might have to be 
replaced by one for the one sided problem (Ho: A > D, H A : A :s; D), in 
which the middle region-in Figure 35 the region A = D-is combined with 
the region D > A. This is the case if the old treatment has proven itself and 
is well established and the new treatment will be widely used only if it is 
shown to be clearly superior. Spicer (1962) has developed a one sided se
quential test plan (Figure 36) for exactly this purpose. The new method is 
accepted when A > D; it is rejected when D > A. 
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B>A Figure 36 Sequential test plan due to Spicer 
(ex ~ 0.05, P ~ 0.05,p+ = 0.08); C. C. Spicer: 
Some new closed sequential designs for 
clinical trials, Biometrics 18 (1962), 203-211. 

The one sided test plan of Spicer (1962) (cf., Alling 1966) has the advantage 
that the maximum sample size is relatively small especially when the new 
treatment method is in fact not superior to the old one. This plan is therefore 
particularly well suited for survey trials, for example, in tests of several new 
drug combinations, most of which represent no real improvement. The use 
of a one sided test can hardly be considered a drawback in clinical experi
ments of this sort, since we are not interested in finding out whether the new 
treatment is about the same or worse than the therapy. 

A quick sequential test plan (Figure 37) devised by Cole (1962) for the 
purpose of the surveying the ecologically significant differences between 
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groups of organisms, can be used to detect larger differences. Overempha
sizing minimal differences is deliberately avoided. Here even a fairly large 
Type II error (accepting a false null hypothesis-the "false negative" in 
medical diagnosis) is not taken seriously. Thus, should a small difference be 
discovered, this rapid test, designed for survey trials, is to be replaced by a 
more sensitive plan. 

Figure 37 Sequential test plan due to Cole (2a ~ 
O.IO,p ~ O.lO,p+ = O.7);L. M. C. Cole: A closed 
sequential test design for toleration experiments, 
Ecology 43 (1962),749-753. 
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Assume that one ofthe three sequential test plans was given or some other 
one was adopted, that the samples were chosen on the basis of the equalizing 
alternation principle, and that after the large number of trials we still cannot 
reach a conclusion. Then it is appropriate and preferable from an ethical 
point of view to treat each patient with the same therapy as his predecessor 
if it proved successful; if however the treatment was not successful, then he 
will undergo the other therapy. The experiment is completed as soon as one 
of the limits of the sequential test plan is crossed or the number of patients 
treated by one therapy gets twice as large as the number of patients treated 
by the other therapy. 

Finally, let us emphasize that natural limits are imposed on sequential 
analyses employed in medicine, even when hard data are available. They are, 
after all, meaningful only if the individual treatment period is short in 
comparison with the duration of the whole experiment; moreover, a small 
sample can hardly give information on the secondary and side effects of the 
new therapy. The decisive advantage of sequential analysis over classical 
methods, namely that relatively small trial sequences during the experiment, 
can, without computation, lead to decisions during the experiment, must 
not lead to indiscriminate use of this method (cf., also Gross and Clark 1975 
[8: 2d]). J. Whitehead discusses the analysis of sequential clinical trials in 
Biometrika 66 (1979), 443-452 and design and analysis in his book, cited on 
page 596. 

On clinical testing of drugs for side effects 

Probabilistic statements gained in tests on animals cannot be carried over to 
humans. Harmful side effects (cf., Section 4.5.1) must be taken into account. 
Their undesirability is based on subjective criteria. The suspicion that a 
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substance produces harmful side effects in humans can be neither confirmed 
nor denied without a controlled trial involving random allocation; harmless
ness cannot be "proved." An important role is played by the problem of 
distinguishing between random connections, associations by way of a third 
variable, and possible causal relations. All statements have an inherent 
uncertainty, which can be narrowed down only through plausibility con
siderations. 

2.3 EVALUATION OF BIOLOGICALLY ACTIVE 
SUBSTANCES BASED ON DOSAGE
DICHOTOMOUS EFFECT CURVES 

Preparations that are destined for pharmaceutical use and that contain a 
pharmacologically active ingredient are tested on animals, plants, and/or 
microorganisms. The first step consists in determining the form of the 
dosage-effect curve. This curve represents the observed reactions as a function 
of the drug dosage. The abscissa carries the dosage scale, the ordinate the 
intensity or frequency of the reaction. We distinguish between a: dosage
dichotomous effect curve and dosage-quantitative effect curves according 
as the reaction is described by yes-no or by an exact measurement of some 
quantity, as in the following examples. 

Dosage-dichotomous effection relation: In a trial of toxicity, samples of 
mice are exposed to various concentrations of a toxin. After a certain time the 
mice that survived and those that died are counted. The test result is "yes" 
or "no" - that is, an alternative, a dichotomy. 

Dosag~uantitative effect relation: Each of several groups of capons 
receives a certain dose of differently modified testosterone derivatives. The 
effect is measured in terms of the increase in the length and height of the comb. 
In pharmacology and toxicology the notion of a mean effective dose (ED 50) 

is important. Precisely defined, it is the dose for which the probability that a 
test animal indicates an effect is 50%. It is estimated from dosage-dichoto
mous effect curves. 

The percentage of animals affected by a certain dose and higher doses and 
the percentage of animals not reacting to a certain dose or lower doses can 
be read off the cumulative percentage curve or the cumulative frequency 
distribution. Usually the abscissa (dose) carries a logarithmic scale. The 
symptom may consist in death or survival (for poisons the 50 % lethal dose 
LD 50 is the dose by which 50 % of the animals are killed). Other examples of 
symptoms are the impairment of driving ability caused by a certain dose of 
alcohol (per mille content of alcohol in the blood) and the onset of narcosis at 
a certain dose of a particular narcotic. 
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The value of EDso (LDso) is usually determined by probit analysis, which 
involves a considerable amount of calculation. Therefore simpler procedures, 
more suitable for routine tests, have been established that allow us to read 
the mean and deviation from dosage-effect curves. An adequate estimate of 
ED50 can be obtained provided the three following conditions are met 
(cr., references in [8:2c], especially Olechnowitz 1958): 

1. The doses are symmetrically grouped about the mean. Cumulative 
percentages of 0 and 100 are included. 

2. The spacing between doses, or else the logarithm of the ratio of each 
consecutive pair of doses, is held constant. 

3. Each dose is administered to the same numbers of individuals. 

Estimating the mean effective or lethal dose by the 
Spearman-Karber method 

The Spearman-Karber method (cf., Bross 1950, Cornfield and Mantel 1950, 
Brown 1961) is a rapid distribution-free method that provides a quick and 
very good estimate of the mean and standard deviation. If the distribution is 
symmetric, then the median is estimated. The median effective dose (the 
median lethal dose) is the dose level at which 50 % of the test animals show a 
reaction (are killed). The conditions stated above, together with the assump
tion that the distribution is normal rather than lognormal, imply 

I LD50 or EDso = m = X k - d(S1 - 1/2), I (2.4) 

where Xk is the smallest dose such that any equal or larger dose always 
produces 100% reactions, d is the distance between adjacent doses, and S1 
is the sum of the relative portions of reacting individuals (positive reagents; 
cf., Table 46) at each dose. The standard deviation Sm == sEDso associated 
with ED so , is estimated by 

where S2 is the sum of the cumulatively added relative portions of reacting 
individuals. 

EXAMPLE. Table 46 indicates the results of a trial for determining the mean 
lethal dose of an exceptionally efficient anesthetic. Each dose is used on 
6 mice. These values can be used to estimate the 90% confidence limits for 
the true value by m ± 1.645sm = 30 ± (1.645)(10.26) under an approxi
mately normal distribution, 

mupper} = 30 + 16.88 = {46.88 mg/kg 
m\ower - 13.12 mg/kg. 
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Table 46 

Dosage mg/kg 

10 
15 
20 
25 
30 
35 
40 
45 
50 = xk 

d = distance from 
dose to dose = 5 

m = xk - d(5 1 - -!), 

m = 50 - 5(4.5 - 0.5), 

m = 30, 

Number of mice 
that died 

0 
0 
1 
3 
3 
4 
5 
5 
6 

sm = d .J~25"""2----;5:;-1------;;5c;;f------O-1 /7;1=2, 

sm = 5J2 . 14.52 - 4.5 - 4.5 2 - 0.083, 

sm = 10.26. 

Relative Cumulative relative portion 
portions of mice that died 

0 0 
0 0 
0.17 0.17 
0.50 0.67 
0.50 1.17 
0.67 1.84 
0.83 2.67 
0.83 3.50 
1.00 4.50 

4.50 52 = 14.52 
=5 1 

We forego non-bioassay examples. The tests in question are actually 
sensitivity tests in which an object reacts only above a certain threshold in the 
way, for instance, that a land mine reacts to a jolt only if it is greater than or 
equal to a certain intensity (cf., Dixon 1965). Tables for computing LDso 
estimates for small samples with extreme value response distributions, and 
an example concerned with the sensitivity of explosives are given by 
Little (1974). Sometimes these distributions, distinguished by ranges that are 
small relative to their means, are easily approximated by a normal distribu
tion. 

It is characteristic of a bioassay that switching from the linear to the 
logarithmic dosage scale leads to a "symmetrization" of the distribution 
of the individual minimum effective doses. Given an approximately log
normal distribution, m and 8m can be determined from 

m = X k - d(S - 1/2), (2.6) 

(2.7) 



2.3 Evaluation of Biologically Active Substances 227 

where 

m is the estimate of the logarithm of EDso or LDso , 
Xk is the logarithm of the smallest dose such that all doses greater than or 

equal produce 100 % reactions (xo is the logarithm of the largest dose 
to which no test animal reacts), 

d is the logarithm of the ratio of each consecutive pair of doses, 
S is the sum of the relative portions of reacting individuals, 
Pi is the frequency, in percent, of reactions with the ith dose (i = 0, 1, 

2, ... , k)(thus Po = 0% and Pk = 100%), 
ni is the number of test animals tested with the ith dose (i = 1,2, ... , k). 

Of the three conditions listed near the beginning of this section, only the 
first two are necessary in this context. Nevertheless it is recommended that 
samples of approximately equal size ni be employed. It is sometimes difficult 
to fulfill requirement 1 in practice, namely to test, under all conditions, at 
least one dose with 0 % reactions and at least one dose with 100% reactions. 
Xo and/or Xk is estimated in these cases; the results are then correspondingly 
less reliable. 

EXAMPLE. Table 47 indicates the results of a trial for determining the mean 
lethal dose of a mildly effective anesthetic. The 95 % confidence limits can be 
estimated by m ± 1.96sm (normal distribution assumed): 

mupper} {2.0513; antilog 2.0513 = 112.54 mgjkg 
1.6556 ± 1.96·0.2019 = 12599. ·1 12599 1819 jk mlower . ,anti og. =. mg g. 

Table 47 

Proportion of test 
Dose mg/kg animals that died 

4 0/8 = 0 
16 4/8 = 0.50 
64 3/6 = 0.50 

256 6/8 = 0.75 
1024 8/8 = 1.00 

S = 2.75 

16 
log 4 = log 4 = 0.6021; log 1024 = 3.0103, 

m = log 1024 - log 4(2.75 - 0.5), 

= 3.0103 - 0.6021 . 2.25 = 1.6556, 

antilog 1.6556 = 45.25; LD50 = 45.25mg/kg, 

log 4 50·50 50·50 75·25 
s - --+--+--
m-100 8-16-18-1' 

= 0.2019. 
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Let us, for the sake of completeness, also indicate the procedure used for 
testing the difference between two ED50'S. For two mean effective doses ED;o 
and EDso with standard deviations Sf and s", the standard deviation of the 
difference ED;o-EDso is 

IIS-Di-rr -=-J-;'(S=')::::;2=+=(S="=)2;-.1 (2.8) 

There is a true difference at the 5 % level as soon as we have 

I IEDso-EDsol> 1. 96sDirr. I (2.9) 

To determine the specific biological activity of a preparation, the effect of this 
preparation on test animals is compared with the effect of a standard prepara
tion. The amount in international units or milligrams, of biologically active 
substance in the preparation is given by the ratio of the effect of the prepara
tion to that of the standard preparation, the activity of which is known. 
Confidence limits can then be specified, and the true value can, with a high 
degree of probability, be expected to lie between them, provided several 
conditions are fulfilled. 

A trimmed Spearman-Karber method for estimating median lethal con
centrations in toxicity bioassays is presented by M. A. Hamilton et aI., in 
Environmental Science and Technology 11 (1977), 714-719 and 12 (1978), 
417 (cf. Journal of the American Statistical Association 74 (1979),344-354). 

A detailed description of bioassay is given by Finney (1971) and Waud 
(1972) (cr., also Stammberger 1970, Davis 1971 as well as the special references 
in [8: 2c J). Important tables can be found in Vol. 2 of the Biometrika tables 
cited (Pearson and Hartley 1972 [2J, pp. 306-322 [discussed on pp. 89-97J). 
More on the logit transformation is contained in Ashton (1972) in particular 
The computation of results from radioimmunoassays is given by D. J. 
Finney in Methods of Information in Medicine 18 (1979), 164-171. For 
multivariate bioassay see Vl"rlund (1980). 

2.4 STATISTICS IN ENGINEERING 

Applied statistics as developed over the last 50 years has been instrumental in 
technological progress. There is by now a collection of statistical methods that 
is suited or was especially developed for the engineering sciences. 

2.4.1 Quality control in industry 

The use of statistical methods in the applied sciences is justified by the fact 
that certain characteristics of the output of a production line follow a 
probability distribution. The associated parameters Jl and (J are measures of 
the quality of the output, and (J is a measure of the uniformity of the output. 
The distribution may be viewed as a calling card of the output. 
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2.4.1.1 Control charts 

We know that control charts (cf., Section 2.1.2) are always necessary when 
the output is supposed to be of appropriate quality, where "quality" in the 
statistical context means only the "quality of conformance" between the 
prototype and the manufactured item (Stange 1965). That the prototype itself 
can and does admit features that can be deliberately varied in accordance 
with the changing demand of the buyer, is of no interest to us here. 

The standard technique of graphical quality control in industry is based 
on the mean. For continuous quality control of the output one takes small 
samples at regular intervals, computes the means and records them consecu
tively in a control chart (Shewhart control chart) in which the warning limits 
are indicated at ± 2u and the control or action limits at ± 3u. If a mean value 
falls outside the 3u-limits or if two consecutive means cross the 2u-limits, 
then it is assumed that the manufacturing process changed. The cause of the 
strong deviation is traced, the "fault" eliminated, and the process is once 
again correct. 

Instead of a mean value chart (X-chart), a median chart (X-chart) is 
sometimes used. The standard deviation chart (S-chart) or the range chart 
(R-chart) can serve to monitor the dispersion of a process. The cumulative 
'sum chart for early detection of a trend has already been referred to (Sec
tion 2.1.2). 

The range chart 

The range chart (R-chart) is used to localize and remove excessive dispersions. 
If the causes of a dispersion are found and eliminated, the R-chart can be 
replaced by the S-chart. The R-chart is ordinarily used in conjunction with the 
X-chart. While the X-chart controls the variability between samples, the 
R-chart monitors the variability within the samples. More on this can be 
found in Stange (1967), in Hillier (1967, 1969) and also in Yang and Hillier 
(1970) (see also Sections 7.2.1, 7.3.1). 

Preparation and use of the R-chart for the upper limits 

Preparation 

1. Repeatedly take samples of size n = 4 (or n = 10). A total of 80 to 100 sample 
values should be made available. 

2. Compute the range of each sample and then the mean range of all the samples. 
3. Multiply the mean range by the constant 1.855 (or 1.518 respectively). The result 

is the value of the upper 20" warning limit. 
4. Multiply this quantity by the constant 2.282 (or 1.777). The result is the value of 

the upper 30" control or action limit. 
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Use 
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Take a random sample of size n = 4 (or n = 10). Determine the range and record 
it on the control chart. If it equals or exceeds 

(a) the 20" warning limit, a new sample must be taken right after this is found 
to be the case; 

(b) the 30" action limit, then the process is out of control. 

Upper limits 

n 20" limit 30" limit 

2 2.512 3.267 
3 2.049 2.575 
4 1.855 2.282 
5 1.743 2.115 
6 1.670 2.004 
7 1.616 1.942 
8 1.576 1.864 
9 1.544 1.816 

10 1.518 1.777 
12 1.478 1.716 
15 1.435 1.652 
20 1.390 1.586 

In addition to those control charts for measurable properties, there is 
also a whole series of special control charts for control of countable proper
ties, i.e. of error numbers and of fractions defective. In the first case, the 
quality of the output is rated by the number of defects per test unit, e.g. by 
the number of flaws in the color or in the weave per 100 m length of cloth. 
Since these flaws are infrequent, the control limits are computed with the 
help of the Poisson distribution. If each single item of an output is simply 
rated as flawless or flawed, good or bad, and if the percentage of defective 
items is chosen as a measure of the quality of the output, then a special chart 
is used to monitor the number of defective items (or products). The limits are 
computed with the help of the binomial distribution. Let us call attention to 
the so-called binomial paper (cf. Section 1.6.2) and the Mosteller-Tukey
Kayser tester (MTK sample tester). A detailed description of the various 
types of control charts can be found in Rice (1955) and Stange (1975), as 
well as in the appropriate chapters of books on quality control (e.g., Duncan 
1974). Log-normally distributed data are controlled as described by Ferrell 
(1958) and Morrison (1958). An elegant sequential analytic method of 
quality control is presented by Beightler and Shamblin (1965). Knowler et al. 
(1969) give an outline. 
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2.4.1.2 Acceptance inspection 

Acceptance sampling is the process of evaluating a portion of the product in a 
shipment or lot for the purpose of accepting or rejecting the entire lot as 
either conforming or not conforming to a preset quality specification. There 
are two types of acceptance sampling plans: those using measurements of 
attributes (attributes plans), and those using measurements of variables 
(variables plans). In both cases it is assumed that the samples drawn are 
random samples and that the lot consists of a product of homogeneous 
quality. In single-sampling plans the decision to accept or reject a lot is based 
on the first sample. In multisampling plans the results of the first sample 
may not be decisive. Then a second or perhaps a third sample is necessary 
to reach a final decision. Increasing the number of possible samples may be 
accompanied by decreasing the size of each individual sample. In unit 
sequential sampling inspection each item or unit is inspected, and then the 
decision is made to accept the lot, to reject it, or to inspect another unit. 
The choice of a particular plan depends upon the amount of protection 
against sampling errors which both the producer and the consumer require: 
here IX (the rejection of good lots) is termed the producer's risk and {3 (the 
acceptance of bad lots) is termed the consumer's risk. The operating charac
teristic (OC) curve for a sampling plan quantifies these risks. The OC curve 
tells the chance of accepting lots that are defective before inspection. For 
some types of plans, such as chain sampling plans and continuous sampling 
plans, it is not the lot quality but the process quality that is concerned. 

In chain sampling plans apply the criteria for acceptance and rejection to the 
cumulative sampling results for the current lot and one or more immediately preceding 
lots. 

In continuous sampling plans, applied to a continuous flow of individual units of 
product, acceptance and rejection are decided on a unit-by-unit basis. Moreover, 
alternate periods of 100% inspection (all the units in the lot are inspected) and 
sampling are used. The relative amount of 100% inspection depends on the quality 
of submitted product. Each period of 100% inspection is continued until a specified 
number i of consecutively inspected units are found clear of defects. 

In skip-lot sampling plans some lots in a series are accepted without inspection 
when the sampling results for a stated number of immediately preceding lots meet 
stated criteria. 

In the simplest form of acceptance sampling a random sample of size n is 
selected from a lot of size N. The number of defectives in the sample is 
determined and compared with a predetermined value, termed the acceptance 
number c. If the number of defectives is less than or equal to c the lot is 
accepted; otherwise it is rejected. Tables exist that enable us to read off nand 
c for given risks. More on sampling plans can be found in Bowker and 
Lieberman (1961), Duncan (1974), and other books on quality control. 

Recent developments are covered in the Journal of Quality Technology: 8 (1976), 
24-33,37-48,81-85,225-231; 9 (1977),82-88,188-192; 10 (1978), 47-60, 99-130, 
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150-154, 159-163,228; 11 (1979), 36-43, 116-127, 139-148, 169-176, 199-204; 12 
(1980), 10-24, 36-46, 53-54, 88-93, 144-149, 187-190, 220-235; 13 (1981), 1-9, 
25-41, 131-138, 149-165, 195-200,221-227; 14 (1982), 34-39, 105-116, 162-171, 
211-219. Technical aids given by L. S. Nelson are, e.g., (1) minimum sample sizes for 
attribute superiority comparisons [9 (1977), 87-88], (2) a nomograph for samples 
having zero defectives [10 (1978), 42-43], (3) a table for testing" too many defectives 
in too short a time" [11 (1979), 160-161]. 

2.4.1.3 Improvement in quality 

The improvement of consistent or fluctuating quality is an engineering prob
lem as well as a problem of economics. Before tackling this problem we must 
determine the factors, sources, or causes to which the excessively large 
variance (J2 can be traced. Only then can one decide what has to be improved. 
The analysis ofvariance (see Chapter 7), with which one answers this question, 
subdivides the variance of observations into parts, each of which measures 
variability attributable to some specific factor, source, or cause. The partial 
variances indicate which factor contributes most to the large variance 
observed and therefore should be better controlled. Effort spent on im
proving the control over factors that do not playa big role is wasted. Only 
the results of analysis of variance carefully carried out provide the necessary 
tools for a meaningful solution to the technological-economic complex of 
questions connected with improvement in quality. 

Some basics about experimental design that engineers should know 
are summarized by G. J. Hahn (1977). A particularly interesting and im
portant special case of quality improvement is guidance toward more 
favorable working conditions (cf. Wilde 1964). In technological operations 
the target quantity (for example the yield, the degree of purity, or the pro
duction costs) generally depends on numerous influencing factors. The 
amount of material used, the type and concentration of solvent, the pressure, 
the temperature, and the reaction time, among other things, all playa role. 
The influencing factors are chosen (if possible) so that the target quantity is 
maximized or minimized. To determine the optimal solution experimentally 
is a difficult, time-consuming, and costly task (cf., Dean and Marks 1965). 
Methods for which the costs of necessary experimentation are as small as 
possible are exceptionally valuable in practice. In particular, the method of 
steepest ascent, discussed by Box and Wilson (1951), has proved extremely 
successful (cf., Brooks 1959). Davies (1956), Box et al. (1969), and Duncan 
(1974) give a good description, with examples, of the steepest ascent method. 

If this not entirely simple method is employed in the development of new 
procedures, one speaks of "response surface experimentation" (Hill and 
Hunter 1966, Burdick and Naylor 1969; cf. Biometrics 31 (1975), 803-851, 
Technometrics 18 (1976), 411-423 and Math. Scientist 8 (1983), 31-52). 
Unfortunately, it is difficult, if not impossible, to maintain exact laboratory 
conditions in a factory; the real conditions always deviate more 
or less from the ideal ones. If the manufacturing process created in a labora-
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tory is adopted for production and if a succession of small systematic 
changes of all influencing factors is carried out on methods that are already 
quite useful, with the result of each change taken into consideration and 
further adaptations subsequently introduced to gradually optimize the 
manufacturing process, then we have an optimal increase in performance 
through an evolutionary operation. More on this can be found in the publica
tions by Box et al. [pp. 569, 598J (for orthogonality see Box 1952) as well as 
in the survey article by Hunter and Kittrel (1966). Examples are given by 
Bingham (1963), Kenworthy (1967), and Peng (1967) (cf., also Ostle 1967, 
Lowe 1970, and Applied Statistics 23 (1974), 214-226). 

2.4.2 Life span and reliability of manufactured 
products 

The life span of manufactured products, in many cases measured not in 
units of time but in units of use (e.g., light bulbs in lighting hours) is an 
important gauge of quality. If one wishes to compute the annual replacement 
rate or to properly estimate the amount of warehousing of replacement parts 
for product types that are no longer manufactured, one must know their 
mean life span or, better yet, their durability curve or order of depletion. The 
depletion function [abscissa: time from to to tmax ; ordinate: relative percen
tage of elements still available, F(t) = n(t)100/no (%), F(to) = 100, F(tmaJ 
= OJ is usually \.. -shaped. 

In deciding to what extent new methods of production, other protective 
measures and means of preservation, new materials, or different economic 
conditions affect the life span of manufactured articles, a meaningful assertion 
cannot be made without a knowledge of the depletion function. While the 
order of dying in a biological population in general changes only gradually 
with time, the order of depletion of technical and economic populations 
depends substantially on the state of the art and the economic conditions 
prevailing at the time. Such depletion functions are thus much less stable. 
For accurate results they must be watched closely and continuously. 

An elegant graphical procedure is here worthy of note. If we let T denote 
the characteristic life span, t the time and (X the rate of depletion, the depletion 
function F(t) has the simple form 

I F(t) = e-(t/T)«. (2.10) 

On graph paper with appropriately distorted scales, the Stange life span chart 
(1955), this curve is mapped onto a straight line, so that the set of observed 
points {tIF(t) = n(t)/no}-a small number of points suffices-is approxi
mated by a straight line. The associated parameters T and (X as well as the 
life span ratio tiT are read off from this graph. The mean life span t is then 
t = (f/T)T. Considerations of accuracy as well as examples of depletion 
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functions for technical commodities and economic conditions as a whole 
from various fields can be found in the original paper. There also counter
examples are listed so as to avoid giving the impression that all depletion 
functions can be flattened into straight lines. The life span chart is especially 
valuable in the analysis of comparison experiments, as it provides the means 
whereby the question whether a new method prolongs the life span can be 
answered after a relatively brief period of observation. 

In many life span and failure time problems the exponential distribution 
is used to get a general idea. Examples of life spans with approximately 
exponential distribution-the probability density decreases as the variable 
increases-are the life span of vacuum tubes and the duration of telephone 
conversations through a certain telephone exchange on any given day. The 
probability densities and cumulative probability densities 

[!(x)=(Je- OX I F(x)= 1_e- ox (2.11,2.12) 

x ~ 0, 

of the exponential distribution are structurally simple. The parameter (J 

yields the mean and variance. 

(2.13,2.14) 

The coefficient of variation equals 1; the median is (In 2)/(J = 0.69315/(J. It 
can be shown that 63.2 % of the distribution lies below the mean, and 36.8 % 
lies above it. For large n, the 95 % confidence interval for (J is given approxi-

mately by (1 ± 1.96/}n)/x. 
A test for equality of two exponential distributions is given by S. K. 

Perng in Statistica Neerlandica 32 (1978), 93-102. Other important tests 
are given by Nelson (1968), Kabe (1970), Kumar and Patel (1971), Mann, 
Schafer, and Singpurwalla (1974), Gross and Clark (1975), and Lee (1980 
[8: IJ). 

EXAMPLE. It takes 3 hours on the average to repair a car. What is the proba
bility that the repair time is at most two hours? 

It is assumed that the time t, measured in hours, needed to repair a car 
follows the exponential distribution; the parameter is (J = 1/(average repair 
time) = 1/3. We get P(t ::::;; 2) = F(2) = 1 - e-2/3 = 1 - 0.513 = 0.487, 
a probability of barely 50%. 

Of considerably greater significance for lifetime and reliability problems 
is the Weibull distribution (Weibull 1951, 1961), which can be viewed as a 
generalized exponential distribution. It involves 3 parameters, which allow 
it to approximate the normal distribution and a variety of other, unsymmetric 
distributions (it also reveals sample heterogeneity and/or mixed distribu
tions). This very interesting distribution [see Mann et al. (1974), Gross and 
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Clark (1975), and Technometrics 18 (1976), 232-235,19 (1977),69-75,323-
331] has been tabulated (Plait 1962). For a comparison of two Weibull 
distributions see Thoman and Bain (1969) and Thoman et al. (1969). The 
probability density of the Weibull distribution with parameters for location 
(IX), scale (f3), and form (y) reads 

y (x - IX)Y-l [ (x - IX)YJ P(x) = 7J -f3- exp - -f3- (2.15) 

for x ~ IX, f3 > 0, y > 0, 

where exp(t) means et• 

It is generally better to work with the cumulative Weibull distribution: 

I F(x) ~ 1 - exp [ - (Tn I (2.16) 

A nomogram for estimating the three parameters is given by 1. Sen and 
V. Prabhashanker, Journal of Quality Technology 12 (1980), 138-143. A more 
detailed discussion of the interesting relationships between this distribution and the 
distributions in the study of life spans and failure times problems (e.g., lognormal 
in particular)] is presented in Freudenthal and Gumbel (1953) as well as in Lieblein 
and Zelen (1956). Examples are worked out in both papers. The significance of other 
distributions in the study of life spans and failure times problems (e.g. lognormal 
and even normal distributions) can be found in the surveys by Zaludova (1965), 
Morice (1966), Mann, et aI., (1974), and also Gross and Clark (1975). More on 
survival models with the pertinent distributions (see also pages 107, Ill) may be 
found in Elandt-Johnson and Johnson (1980 [8:2a]), Lee (1980 [8: I]), Sinha and 
Kale (1980), Lawless (1978, 1982 [8:2a]), Oakes (1983), and Cox and Oakes (1984) 
(see also Axtell 1963 and Kaufmann .1966, both cited in [8: 2c]). 

Remarks 

1. The mean life spans of several products can be easily computed with the help 
of the tables provided by Nelson (1963) [8: 2d]. 

2. Since electronic devices (like living beings) are particularly susceptible to 
breakdown at the beginning and toward the end of their life span, of special interest 
is the time interval ofleast susceptibility to breakdown, time oflow failure rate, which 
generally lies between about 100 and 3000 hours. Tables for determining confidence 
limits of the mean time between failures (MTBF) are provided by Simonds (1963), 
who also gives examples (cf., also Honeychurch 1965, Goldberg 1981, Durr 1982). 

Assume we have n objects with low and constant failure rate A. estimated by 
X = Iii; then the 95 % CI for A. is given by 

X 2 X 2 
2n X2n;O.975 :::;; A.:::;; 2n X2n;O.025 (2.17) 
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with X2 from Table 28 or from (1.132), (1.132a). Example: Life spans of 50 objects are 
given. We assume A.::::; constant and find from the data a mean survival time of 20 
years. Then we have i = 1/20 = 0.05/year and with XIOO;O.975 = 74.22, XIOO;O.025 = 

129.56, 95 % CI: (0.05/100)74.22 S A. S (0.05/100)129.56 or 95 % CI: 0.0371 S A. 
S 0.0648. 

3. It is of interest to compare two failure indices when the probability distribution 
is unknown [cf., also (1.185) in Section 1.6.6.1]. Let us call the number of failures 
over a fixed period of time in a piece of equipment the failure index. Then two failure 
indices Xl and X2 (with Xl > X2 and Xl + X2 ~ 10) can be compared approximately 
in terms of 

I d=fx; -Fz· I (2.18) 

If d > j2 = 1.41, the existence of a genuine difference may be taken as guaranteed at 
the 5% level. 

A more exact test, with Xl > X2 and Xl + X2 ~ 10, of whether all observations 
originated from the same population is based on the relation 

z = j2(Jxl - 0.5 - JX2 + 0.5) 

underlying (2.18). 

EXAMPLE. Two similar machines have Xl = 25 and X 2 = 16 breakdowns in a certain 
month. With regard to the failure indices, are the differences between machine 1 and 

machine 2 statistically significant at the 5 % level? Since d = V25 - Jl6 = 5 - 4 = 

1 < 1.41, the differences are only random; we have z = j2(j24.5 - ji6.5) = 
1.255 < 1.96 = ZO.05' 

Since the mean susceptibility to breakdown is seldom constant over a 
long period of time, as breaking in improves it and aging makes it worse, 
it should be checked regularly. Naturally these considerations are only 
completed by fitting Poisson distributions and by an analysis of the duration 
of the breakdowns by means of a frequency distribution. The mean total loss 
can be estimated from the product of the mean breakdown frequency and the 
mean breakdown time. 

Reliability 

The notion of the reliability of a device, in addition to the notion of life span 
is of great importance. By reliability we mean the probability of breakdown
free operation during a given time interval. Thus a component has a re
liability of 0.99 or 99% if on the basis of long experience (or long trial 
sequences) we know that such a component will work properly over the 
specified time interval with a probability of 0.99. Straightforward methods 
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and simple auxiliary tools are provided by Eagle (1964), Schmid (1965), Drnas 
(1966), Prairie (1967), and Brewerton (1970). Surveys are given by Roberts 
(1964), Barlow and Proschan (1965), Shooman (1968), Amstadter (1970), 
Stormer (1970), Mann et al. (1974) and in the other books cited on p. 238. 

Suppose a device is made up of 300 complicated component parts. If, e.g., 
284 of these components could not break down at all, and if 12 had a reliability 
of 99 % and 4 a reliability of 98 %, then, given that the reliabilities of the 
individual components are mutually independent, the reliability of the 
device would be 

1.002840.99120.984 = (1)(0.8864)(0.9224) = 0.8176, 

not quite 82 %. No one would buy this device. The manufacturer must there
fore see to it that almost all components have a reliability of practically 1. 
Suppose a device consists of three elements A, B, C, which work perfectly 
with probabilities PA' PB' Pc. The performance of each of these elements is 
always independent of the state of the other two. 

Model Reliability Example 
PA = PB • Pc • 0.98 

I -®--®--@--- PI = PA·PB·PC pi· 0.94119 

II 

~ 
PII,I-(I- PI) 2 PII • 0.99653 

ABC 

III 

~ 
PIli' (1-(I-PA)2 j .{l-(I-P8)2 j ·(l_(l-PC)2 j Pili' 0.99930 

ABC 

IV 

~ 
333 PIV • 0.99999 PIV • (l-(l-PA) j·(l-(l-PBr j.(l-(l-PC) 

ABC 

ABC 

* For large survival probabilities p the approximation with the help of the sum of the 
breakdown probabilities is satisfactory and easier to compute: P 1 '" 1 - (3) (0.02) = 0.94. 

The above reliability table for systems of types I to IV then results. By 
connecting in parallel a sufficient number of elements of each type-so that 
the system performs satisfactorily provided at least one of the components 
functions properly at all times-the system can be made as reliable as desired. 
However, this method of achieving high reliability is limited first by the costs 
involved, secondly by requirements of space, and thirdly by a strange 
phenomenon: each element has a certain probability of reacting spontaneously 
when it should not. 

It turns out that for very many systems it is optimal to parallel two or, 
even more frequently, three units of each element (cf., Kapur and Lamberson 
1977, Henley and Kumamoto 1980, Tillman et al. 1980, Dhillon and Singh 
1981, and Goldberg 1981). For example, the triplex instrument landing 
system permits fully automatic landing of jet aircraft with zero visibility. 
Each component of the system is present in triplicate; the failure rate should 
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be less than one failure per ten million landing. Guild and Chips (1977) 
discuss the reliability improvement in any parallel system by multiplexing. 
This is important for safety systems (e.g., reactor safety; see Henley and 
Kumamoto 1980, and Gheorghe 1983). 

More on reliability analysis is found in the following books and papers: 
Amstadter (1970), Mann et al. (1974), Proschan and Serfling (1974), Barlow 
et al. (1975), Fussell and Burdick (1977), Kapur and Lamberson (1977), 
Kaufman et al. (1977), Tsokos and Shimi (1977), Henley and Kumamoto 
(1980), Sinha and Kale (1980), Tillman et al. (1980), Dhillon and Singh (1981), 
Goldberg (1981), DUff (1982), Nelson (1982), Martz and Waller (1982), and 
Tillman et al. (1982). 

Maintainability 

By maintainability we mean the property of a device, a plant, or system, that 
it can be put back into working order in a certain period of time in the field 
with the help of repair and test equipment according to regulations. Beyond 
preventive maintenance, costly strategic weapons systems require a complex 
maintenance policy. Goldman and Slattery (1964) considered five possibili
ties for submarines: abandoning and scuttling, repair at a friendly or home 
port, repair at a dockyard, repair involving a repair boat, on-the-spot repair. 
A mathematical consideration of this decision problem requires the avail
ability of appropriate empirical data (reliability, repair time, type and 
number of periodic checks, etc.) and profitability studies (e.g., regarding a 
comparison between automatic control equipment and manual control). 
Lie et al. (1977) give a survey on availability, which is a combined measure 
of maintainability and reliability (see also Sherif and Smith 1981, Sherif 1982, 
Tillman et al. 1982, and Gheorghe 1983). 

2.5 OPERATIONS RESEARCH 

Operations research or management science, also called industrial planning 
or methods research, consists in a systematic study of contingencies. On the 
basis of a mathematical-statical model optimal solutions are developed for 
compound systems, organizations and processes with the help of an electronic 
computer. By writing a computer program in accordance with the model and 
running it with impartial data, the problem is simulated and results are 
obtained that suit the real system. This could be a traffic network, a chemical 
manufacturing process, or the flow of blood through the kidneys. As 
"simulation models" allow for an unrestricted choice of parameter values, 
complicated problems under various extraneous conditions can be solved 
without great expense and without the risk of failure. Simulation and linear 
programming play an important role in operations research (cf. Flagle et al. 
1960, Hertz 1964, Sasieni et al. 1965, Stoller 1965, Saaty 1972, and also 
Mtiller-Merbach 1973). More on operations research is found in Anderson 
(1982), Harper and Lim (1982), and Kohlas (1982). 
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2.5.1 Linear programming 

Linear programming (linear optimization) is an interesting method of 
production planning. It is capable of solving problems involved in the 
development of an optimal production program on the basis of linear 
inequalities. Nonlinear relations can sometimes be linearly approximated. 
By means of linear optimization one can e.g., regulate the manufacture of 
several products with various profit margins and with given production 
capacities of the machines so as to maximize the overall profit. Shipments 
can be so organized that costs or transit times are minimized. This is known 
as the problem of the traveling salesman, who must visit various cities and 
then return, and who must choose the shortest path for this trip. In the 
metal industry linear programming is of value in determining workshop 
loading, in minimizing stumpage and other material losses, and in deciding 
whether some single component is to be manufactured or purchased. This 
technique finds very important application in the optimization of the 
various means of transportation, in particular, the determination of air and 
sea routes and the arrangement of air and sea shipping plans with fixed as well 
as uncertain requirements. Models of this sort with unspecified requirements 
or with variable costs taken into account are of particular interest for the 
statistician. Here uncertainty appears that is caused by random events 
(number of tourists, inflationary tendency, employment quota, government 
policy, weather, accidents, etc.) about whose distribution little or nothing is 
known. A familiar example is the knapsack problem: The contents may weigh 
not more than 25 kg but must include all that is "necessary" for a long trip. 

Linear programming (cf., Dantzig 1966) is concerned with optimizing 
(maximizing or minimizing) a certain specific target function of several 
variables under certain restricting conditions, given as inequalities. The 
so-called simplex method, based on geometrical reasoning, is used to obtain 
a solution. The auxiliary conditions limit the target function to the interior 
and surface of a simplex, i.e., a multidimensional convex polyhedron. A 
certain comer of the polyhedron which a programmed digital computer that 
follows an interaction method systematically approaches in the course of 
successive iterations represents the desired optimum (see Kaplan 1982 
[8:2f] and Sakarovitch 1983). 

2.5.2 Game theory and the war game 

While probability theory concerns itself with games of pure chance, game 
theory considers strategic games (von Neumann 1928), games in which the 
participants have to make decisions during the play in accordance with 
certain rules and can partially influence the result. In some games played with 
dice, the players decide which pieces are to be moved, but in addition there 
is the chance associated with a throw of the die that determines how many 
places the chosen piece must be advanced. Most parlor games involve factors 
of chance, elements over which the players have no control: in card games, 
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e.g., which cards a player gets; in board games, who has the first move and 
thus in many cases the advantage of giving the game a certain tack right at 
the outset. 

Games and situations in economics and technology have much in 
common: chance, incomplete information, conflicts, coalitions, and 
rational decisions. Game theory thus provides ideas and methods to devise 
procedures for coping with conflicting business interests. It concerns itself 
with the question of optimal attitudes for "players" in a wide class of 
" games," or best" strategies" for resolving conflicting situations. It studies 
models of economic life as well as problems of military strategy, and deter
mines which behavior of individuals, groups, organizations, managers or 
military leaders-which comprehensive plan of action, which strategy, 
applicable in every conceivable situation-is rationally justifiable in terms 
of a "utility scale." Intrinsic to all of this is the appearance of subjects who 
have the power to decide and whose objectives differ, whose destinies are 
closely interwoven, and who, striving for maximal "utility," influence but 
cannot fully determine the outcome by their modes of behavior. Strategic 
planning games of an economic or military type-computers permit "ex
perimentation on the model" -show the consequences of various decisions 
and strategies. More on this can be found in Vogelsang (1963) and especially 
in Williams (1966) (cf., also Charnes and Cooper 1961, David 1963 [8: 1], 
Dresher et al. 1964, Brams 1979, Jones 1979, Packel 1981, Berlekamp et al. 
1982, and Kaplan 1982). 

At the beginning of the 19th century the Prussian military advisor von 
Reisswitz devised in Breslau the so-called "sandbox exercise" which, by 
introduction of rules, was expanded by his son and others into a war game 
and acquired permanent status shortly thereafter; it was, in particular, 
included in the curriculum of officer's training in Germany. Dice were later 
introduced to simulate random events; troops were no longer represented by 
figures but were drawn in with wax crayons on maps coated with plastic. 
With the help of advanced war games the military campaign of 1941 against 
the USSR (operation "Barbarossa "), the action "Sea Lion" against Great 
Britain, and the Ardennes offensives of 1940 and 1944 were" rehearsed from 
beginning to end" (Young 1959). Pursuit or evasion games, e.g., two 
"players": one trying to escape, the other trying to shoot him down, were 
considered by Isaacs (1965). Further discussion of war games is to be found 
in Wilson (1969) (cf., also Bauknecht 1967, Eckler 1969). After the Second 
World War, war games were employed in economics, they evolved from 
stockkeeping and supply games of the U.S. Air Force. Their function is to 
provide the means whereby management can run an experimental trial 
of business policies with restricting quantities: output, capacity, prices, 
capital investments, taxes, profit, ready money, depreciation, share of 
market, stock prices, etc. on the basis of mathematical models that corres
pond as closely as possible to reality, models with quick motion and com
petition effects: the groups of players are competing with each other; the 
decisions of the groups influence one another. Obviously such simulations 
can only be carried out with the help of a computer. 
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2.5.3 The Monte Carlo method and computer 
simulation 
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An important task of operations research is to analyze a given complex 
situation logically and construct an analogous mathematical model, to 
translate the model into a computer program, and to run it with realistic 
data: The original problem is simulated and is guided to an optimal solution. 

If sampling is too costly or not at all feasible, an approximate solution 
can frequently be obtained from a simulated sample, which sometimes 
yields additional valuable information as well. Simulated sampling ordinarily 
consists in replacing the actual population, which is characterized by a 
hypothetical probability distribution, with its theoretical representation, a 
stochastic "simulation model," and then drawing samples from the 
theoretical population with the help ofrandom numbers. A digital computer 
is usually employed, which then also generates pseudo random numbers 
having the same prescribed statistical distribution as authentic random 
numbers, e.g., uniform distribution, normal distribution, or Poisson 
distribution. 

Since by a theorem of probability theory every probability density can be 
transformed into a rectangular distribution between zero and one, a sample 
whose values follow an arbitrary preselected probability distribution can be 
obtained by drawing random numbers from the interval between ° and 1. The 
so-called Monte Carlo method is based on this fact (cf., Hammersley and 
Handscomb 1964, Buslenko and Schreider 1964, Schreider 1964, Lehmann 
1967, Halton 1970, Newman and Odell 1971, Kohlas 1972, Sowey 1972). 
Examples of applications of this method are simulation and analysis of 
stochastic processes, computation of critical bounds for test statistics (e.g. 
t-statistics), estimation of the goodness of a test, and investigation of the 
influence of different variances on the comparison of two means (Behrens
Fisher problem). This method was quickly extended to the broad field of 
simulation (cf., Shubik 1960, Guetzkow 1962, Tocher 1963, Teichroew 1965 
[8:1], Pritsker and Pegden 1979, Goldberg 1981 [8:2d], Maryanski 1981, 
Rubinstein 1981, Cellier 1982, Dutter and Ganster 1982, Payne 1982, and 
Bratley et al. 1983). 

Computer simulation is the solution of any mathematical problems by 
sampling methods. The procedure is to construct an artificial stochastic 
model (a model with random variables) of the mathematical processes and 
then to perform sampling experiments on it. 

Computer simulation examples 

1. Test characteristics of the sequential charts designed by Bross (cf., Section 2.2, 
Figure 35) (Page 1978). 

2. Robustness of both one sample and two sample t-tests (cf., Sections 3.1 and 3.6) 
and the chance of determining departure from normality (cf., Sections 4.3 and 4.4) 
[Pearson, E. S. and N. W. Please: Biometrika 62 (1975), 223-241]. 

3. Power of the U test (cf., Section 3.9.4) (Van der Laan and Oosterhoff 1965, 1967). 
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4. Sensitivity of the distribution of r against nonnormality (cr., Sections 5.1 and 5.3; 
normal correlations analyses should be limited to bivariate normal distributions) 
(Kowalski 1972). 

5. Error rates in multiple comparisons among means (cr., Sections 7.3.2 and 7.4.2) 
(Thomas 1974). 

It is common practice, especially in technology, to study a system by 
experimenting with a model. An aerodynamic model in a wind tunnel 
provides information about the properties of an aircraft in the planning 
stage. In contrast with physical models, abstract models, as simulated by a 
computer program, are much more flexible. They permit easy, quick, and low 
cost experimentation. The two principal aims of simulation are assessing the 
capability of a system before it is realized and ascertaining that the system 
chosen fulfills the desired criteria. The task of simulation is to provide 
sufficient data and statistical information on the dynamic operation and 
capability of a certain system. The system and/or model can be reconsidered 
in the light of these results, and appropriate modifications can then be intro
duced. By varying the parameters inherent in the proposed model, the 
simulated system can be optimally adapted to the desired properties. The 
simulation of businesses and industries, of traffic flows and nervous systems, 
of military operations and international crises provides insights into the 
behavior of a complex system. This is particularly useful when an exact 
treatment of a system is too costly or not feasible and a relatively quick 
approximate solution is called for. Analogue computers are also used for 
such problems. 

Examples of digital devices (operated" in final units ") are desk calculators, 
cash registers, bookkeeping machines, and mileage indicators in auto
mobiles. The result is obtained by "counting." In contrast with this, speed
ometers and other gauges, the needles of which move continuously
measuring-function as analogue devices. Also to be included here is the 
slide rule, scaled with a continuum of numbers: Each number is assigned an 
interval, the length of which is proportional to the logarithm of the number. 
Multiplication of two numbers, for example, is "translated" into adjoining 
the two corresponding intervals, so that their lengths are thereby added. The 
digital computer (cf., e.g., Richards 1966, and Klerer and Korn 1967) is not 
based on decimal numbers (0 to 9) but rather on the binary numbers or binary 
digits zero and one (0, 1) (frequently denoted by the letters 0 and L to 
distinguish them more easily) because 1, 0 adapt naturally to any electrical 
system; thus the construction is simplified and the machine operates more 
reliably. In writing 365, the following operation is carried out: 

365 = 300 + 60 + 5 = 3(102) + 6(101) + 5(10°). 

Our notation dispenses with the powers of ten, indicating only the factors, 
here 3, 6, and 5, in symbolic positions. If 45 is given in powers of 2 (cf., 
2° = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 etc) , , , , , ,. , 
45 = 32 + 8 + 4 + 1 = 1(25) + 0(24) + 1(23) + 1(22) + 0(21) + 1(2°), 

and the 2 with its powers from 0 to 5 is dispensed with, then the dual notation 
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for 45 is 101101 or preferably LOLLOL. The transformation from decimal 
to binary representation at the input and the inverse transformation at the 
output is ordinarily provided by the computer. 

The digital computer is indispensable whenever extensive and very 
complicated calculations requiring a high degree of accuracy are called for. 

Analogue computers generally work with a continuous electrical signal 
(cf., Karplus and Soroka 1959, Rogers and Connolly 1960, Fifer 1963, 
Ropke and Riemann 1969, Wilkins 1970, Adler and Neidhold 1974). A 
particular number is represented by a proportional voltage. We obtain a 
physical analogue of the given problem in which the varying physical 
quantities have the same mathematical interdependence as the quantities in 
the mathematical problem. Hence the name analogue computer. The pressure 
balance between two gas containers can thus be studied by analogy on two 
capacitors connected through a resistor. Analogue computers are "living" 
mathematical models. The immediate display of the solution on a TV screen 
puts the engineer in a position where he can directly alter the parameters (by 
turning some knobs) and thereby zero in very rapidly on an optimal solution 
to the problem. The accuracy that can be realized depends on the accuracy of 
the model, on the noise in the electronic components, on the measurement 
device and on the tolerances of the electrical and mechanical parts. Although 
a single computer element (amplifier) can attain an accuracy to at most 4 
decimal places or 99.99% (i.e., the computational error is ~0.01 % or so) the 
overall error of about 100 interconnected amplifiers is as large as that of a 
slide rule. The power of such a computer lies in its ability to handle problems 
whose solution requires repeated integration, i.e., differential equations. 
High speed computation, rapid parameter variation, and visual display of 
results distinguish analogue computers as "laboratory machines," which 
are usually less expensive than the hardly comparable digital computers. 
Random numbers with preassigned statistical distributions can be produced 
by a random number generator. Two classified bibliographies on random 
number generation and testing are given by Sowey (1972, 1978). 

Analogue computers can be used for approximating empirical functions 
(i.e., searching for mathematical relations in experimentally determined 
curves, solving algebraic equations, and integrating ordinary differential 
equations), for analyzing biological regulating systems, for designing, 
controlling and monitoring atomic reactors and particle accelerators, for 
monitoring chemical processes and electrical control loops in general, and 
for simulations. 

A fusion of the two original principles, digital and analogue, yields the 
hybrid computer. It is characterized by digital-analogue and analogue-digital 
converters, devices which transform a numerical digit into an analogous 
potential difference and conversely. A hybrid computer combines the advan
tages of continuous and discrete computational techniques: the speed of 
computation and the straightforward methods of altering an analogue com
puter program with the precision and flexibility of a stored program digital 
computer. Hybrid computers are used to solve differential equations and to 
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optimize processes: they regulate hot strip rolling-mill trains, traffic, satellites, 
and power plants as well as processes in the chemical industry, e.g., crude oil 
fractionation. We also speak of process automatization by a "process 
computer." Process computer technology represents one of the most radical 
changes in industrial production. Large hybrid computers with an analogue 
portion made up of more than 1 00 amplifiers are used in particular in the 
aviation and space flight industries, e.g., for the calculation of rocket and 
satellite trajectories. Consult e.g., Anke and Sartorius (1968), Bekey and 
Karplus (1969), Anke et al. (1970), Barney and Hambury (1970), and Adler 
and Neidhold (1974) for further discussion on the above. 



3 THE COMPARISON OF INDEPENDENT 
DATA SAMPLES 

Special sampling procedures 

If we know something about the heterogeneity that is to be expected within 
the population we wish to study, then there are more effective sampling 
schemes than total randomization. Of importance is the use of stratified 
samples; here the population is subdivided into relatively homogeneous 
partial populations (layers or strata), always in accordance with points of 
view that are meaningful in the study of the variables of interest. If a pre
diction of election results is called for, then the sample is chosen in such a 
way as to be a miniature model of the overall population. Thus age stratifica
tion, the relative proportion of men and women and the income gradation 
are taken into account. Also the work force in a modern industrialized 
nation can be classified according to occupational status as, for example, 
50% laborers, 35% white-collar workers, 8% self-employed, and 7% civil 
servants. Stratification for the most part increases the cost of the sample 
survey; nevertheless, it is an important device. 

In constrast to this, the procedure in a systematic sample is such that every 
qth individual of the population is chosen according to a list of a certain type 
(quota procedure). Here q is the quotient, rounded off to the nearest integer, 
which is obtained on dividing the total population by the sample size. 
Population censuses, candidate lists, or index files of the public health 
authority can be utilized in choosing a systematic sample. It is of course 
required that the underlying list be free of periodic variation. Indeed, an 
unobjectionable random selection is possible only if the units-e.g., index 
cards-are brought into random order by mixing, whereupon every qth 
card is systematically drawn. Using a systematic sample has the advantage 
that it is frequently easier to pick out every qth individual than to choose 
entirely at random. Moreover, the method itself produces indirect stratifica
tion in certain cases, for example when the original list is ordered according 
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to residences, occupations, or income groups. Selection procedures not 
based on the randomness principle, i.e., most of the quota procedures and in 
particular the choice of typical cases, do not, however, permit statements as 
to the reliability of results based on them. They are therefore to be avoided. 

Sampling in clusters is particularly suited for demographical problems. 
The population is here subdivided into small, relatively homogeneous groups 
or clusters which can with economic advantage be jointly studied. A random 
sample consisting of clusters (families, school grades, houses, villages, 
blocks of streets, city districts) is then analyzed. Multilevel random selec
tions are feasible (e.g., villages and within them houses, again chosen at 
random). 

Frames for clusters (municipalities, firms, clinics, households) are 
ordinarily available. Clusters are also more stable in time than the respective 
units (households, employees, patients, persons). That it is not easy to avoid 
false conclusions due to the selection used, is illustrated by the following 
example: Assume two illnesses are independent and the admission prob
abilities at the clinic differ for the two. The individual groups are differently 
selected in the process, so that artificial associations are created. This selec
tion correlation-which, as we said, is not true of the population (cf. also 
Sections 2.1.4, 5.2)-was recognized by J. Berkson as a source of false con
clusions. It results from not taking into account the difference between 
entrance and exit probabilities. 

Some other selection procedures are: 
1. Selection according to final digit on numbered file cards. If, e.g., a sample with a 

sampling fraction of 20%, is to be drawn, all cards with final digit 3 or 7 can be 
chosen. Quota procedures are open to non-random errors. 

2. Selection of persons by means of their birthdays. In this selection procedure all 
persons born on certain days of the year are included in the sample. If, e.g., all 
those born on the II th of any month are chosen, one gets a sample with a sampling 
fraction of about 12/365 = 0.033, i.e., approximately 3 %. This procedure can be 
used only when appropriate frames (e.g., lists, cards) are available for the given 
class of persons. 

Questions connected with the size and accuracy of samples and the expense and 
economy of sampling are considered by Szameitat et al. (1958, 1964). For the class 
of problems in error control (cf., Sections 2.4 and 2.1.3) and data processing see 
Szameitat and Deininger (1969) as well as Minton (1969, 1970). More on this can be 
found in books listed in the bibliography [8: 3a]. Ford and Totora (1978) provide a 
checklist for designing a survey. The uncertainties of opinion polls are discussed by 
R. Wilson in New Scientist 82 (1979), 251-253. 

3.1 THE CONFIDENCE INTERVAL OF THE 
MEAN AND OF THE MEDIAN 

The notion of confidence interval was introduced by J. Neyman and E. S. 
Pearson (cf., Neyman 1950). It is defined as an interval computed from 
sample values which includes the true but unknown parameter with a speci-
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fied probability, the confidence probability. The confidence probability is 
usually selected to be 0.95 (or 95%); this probability tells us that when the 
experiment is repeated again and again, the corresponding confidence 
interval, on the average, includes the parameter in 95 % of the cases and fails 
to include it in only 5 % of the cases. 

We continue (cf. pp. 46 and 66) to use the estimate notation and not the estimator 
notation. 

~ 3.1.1 Confidence interval for the mean 
Let Xl> X2, ••. , Xn be a random sample from a normally distributed popula
tion. Assume the mean of the population is unknown. We seek two values, 
I and u which are to be computed from the sample and which include with a 
given, not too small probability the unknown parameter Jl. between them: 
I :s; Jl. :s; u. These limits are called confidence limits, and they determine the 
so-called confidence interval. The parameter of interest Jl. then lies with 
confidence coefficient S (cf. Section 1.4.2) between the confidence limits 

I x ± ;.. I (3.1) 

with t = tn - 1;<> (the factor of Student's distribution: Table 27, Section 1.5.2), 
i.e., in 100S% of all samples, on the average, these limits will encompass the 
true value of the parameter: 

(3.1a) 

In an average of 100(1 - S) % of all samples these limits will not include the 
parameter, that is, in an average of 100(1 - S)/2 = 1OOIX/2 % of all samples 
it will1ie above, and in an average of 1 oo( 1 - S)/2 = loolX/2 % of all samples 
below, the confidence interval. Let us recall that for the two sided confidence 
interval in question we have 1X/2 + S + 1X/2 = 1. One sided confidence 
intervals (e.g., upper confidence limits Jl.up. = x + tones. s/Jn) 

(3.1b) 

with ( = (,,_ 1, <x. ones. do not include the parameter in an average of 1001X % 
of all cases, but do cover it in an average of 100S % of all cases (IX + S = 1). 
If u is known or if s is computed from a very large n (i.e., s ~ u), then (3.1) is 
replaced by (z = standard normal variable) 

~ 
~ 

(sampling with replacement) (3.2) 
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with z = 1.96 (S = 95 %), Z = 2.58 (S = 99 %), and z = 3.29 (S = 99.9 %). 
These results are all based on the assumption that we sampled from an infinite 
population or from a finite population with replacement. If the sample 
originates in a finite population of size N and after drawing and evaluation is 
not reintroduced into the population, then we have the confidence limits 

x+z- --a i2t-n - In N-l 
(sampling without replacement). (3.2a) 

The root J(N - n)/(N - 1) is referred to as the finite population correc
tion. The quotient a/Jn was introduced in Section 1.3.8.4, as the standard 
error of the mean (a j) The confidence interval (CI) for Jl can thus be written as 

x ± zax or X ± tsx; (3.2b,3.1c) 

if the distribution is not markedly different from a normal distribution, (3.1) 
through (3.1c) are still approximately valid (cf. also Section 2.1.2). 

EXAMPLE. Let a random sample with n = 200, x = 320, s = 20 from a large 
population [N(Jl, a), cf., Section 1.3.4] be given. Determine the 95 % confi
dence interval of the mean. 

t199;0.05 = 1.972, 
s 20 

t . Sx = 1.972· 1.414 = 2.79, Sx = In = J200 = 1.414, 

z = 1.96, 
z· ------' 

Sj' = 1.96 ·1.414 = 2.77, 
317 S Jl S 323. 

When needed, the seldom used percentage confidence interval is computed 
according to 

t 1.972 0 

i'sx = 320 . 1.414 = 0.0087 ~ 0.9 %, 

or 

z 1.96 
i'sx = 320 . 1.414 = 0.0087 ~ 0.9 %. 

The 95% CI for Jl is stated as "95% CI: x ± ts/' [cf., (3.1)-(3.1c) with 
t = tn- 1;0.05;twos. or better yet, as "95% CI: as Jl S b"; e.g. (95% CI: 
320 ± 3),95% CI: 317 S Jl S 323. The limits 300 ± 2.78 are called upper 
and lower 95 % confidence limits, and 100(1 - 0.05) = 95 % is the confidence 
coefficient. Statements of the type 317 S Jl S 322 are approximately true 
95% of the times the method is used, provided we have random samples of 
normal populations. The confidence interval is a random interval: if we 
draw samples under identical conditions and complete a 95 % confidence 
interval for each sample, then in the long run 95% of these confidence 
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intervals would include the true value of Jl. The confidence interval is neces
sary for reporting uncertainty in the value of the parameter. 

A useful collection of tables for determining the confidence limits in terms 
of estimated or known standard deviations is provided by Pierson (1963). 

Remark: Inverse and direct inference 

If we use the values of a sample and (3.1) to make a statement on the mean of the 
population, we have an inverse inference or, considering the sample as representing the 
population, a representative inference: 

s s 
X - t- < ,,< x+ t-In- r - In' (3.1d) 

On the other hand, the mean of the sample deduced from the parameters of the 
population, 

(J (J 

"-z-<x<"+z--. 
r In- -r yin (3.3) 

is a direct inference or, since the population includes the sample, an inclusion inference. 
If conclusions about a sample are drawn from the values of another sample originating 
in the same population, we have a transposition inference. 

Hahn (1970) gives vital "prediction intervals" for transposition inference in 
normally distributed populations: prediction intervals for future observations as well 
as for the mean of future observations. A survey with applications is given by G. J. 
Hahn and W. Nelson, Journal of Quality Technology 5 (1973), 178-188. Tables, and 
examples for the nonparametric case are given by Hall et al. (1975). 

~ 3.1.2 Estimation of sample sizes 

Minimal number of observations for estimating a standard 
deviation and a mean 

The following formulas give the minimal sizes (ns and nx) for the estimation 
of the standard deviation and the mean with specified accuracy d and given 
confidence coefficient S. The estimates ns and nx are approximations based 
on the normal distribution; for d = (s - (1)/(1 and d = x - Jl respectively, 

(3.4, 3.5) 

values of Za. are given in Table 43 in Section 2.1.6 for a two sided test, (l( = 
1 - S. For the examples we use Zo.os = 1.96 and ZO.Ol = 2.58. 
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Examples 

(ns) To estimate a standard deviation with a confidence coefficient of 95 % 
(0( = 0.05) and an accuracy of d = 0.2, about n. ~ 1 + 0.5(1.96/0.2)2 = 49 
observations are required. For the same confidence coefficient S = 95% or 
S = 0.95 (0( = 0.05) but an accuracy of d = 0.14, about ns ~ 1 + 0.5 
(1.96/0.14)2 = 99 observations are called for. 

Table 48 gives ns = 100. 
(n.i) To obtain an estimate of (12 one avails oneself of Remarks 5 and 6 in 
Section 1.3.8.5. Knowing the variance (12 = 3, to estimate a mean with a 
confidence coefficient of 99% (0( = 0.01) and with an accuracy of d = 0.5, 
about nx = (2.58/0.5)2(3) = 80 observations are needed; i.e., with about 80 
observations (2.58 .J3/80 ~ 0.5) the 99 % CI for Jl (x - 0.5 ;:5; Jl ;:5;. x + 0.5, 
or equivalently Jl = x ± 0.5) of length 2d is obtained. 
Remark on nx (n for short). If n is larger than 10 % of the population size N, 
(n > O.IN), then not n but fewer, namely n' = n/(1 + n/N) observations 
are sufficient (for the same confidence level and accuracy). For N = 750, not 
80 but only 80/(1 + (80/750» = 72 observations are thus needed. 

Other questions relating to the minimal size of samples will be dealt with 
again later on (Section 3.8; cf., also the remark at the end of the last section 
and the references to Hahn, Nelson and Hall). More on the choice of 
appropriate sample sizes can be found in Mace (1964), Odeh and Fox (1975), 
and Cohen (1977) (cf., also Goldman 1961, McHugh 1961, Guenther 1965 
[8: 1 ; see end of Section 1.4.7]), and Winne 1968, as well as Gross and Clark 
1975 [8:2d]). 

Table 48 Values of d, the half length of the confidence interval for the relative error 
of the standard deviation [d = (s - u)/u] of a normally distributed population for 
certain confidence coefficients S (S = 1 - IX) and sample sizes ns. Compare the 
second example with (3.4). (From Thompson, W. A., Jr. and Endriss, J.: The required 
sample size when estimating variances. American Statistician 15 (1961), 22-23, p. 22, 
Table 1). 

~ 0.99 0.95 0.90 0.80 

4 0.96 0.75 0.64 0.50 
6 0.77 0.60 0.50 0.40 
8 0.66 0.51 0.43 0.34 

10 0.59 0.45 0.38 0.30 
12 0.54 0.41 0.35 0.27 
15 0.48 0.37 0.31 0.24 
20 0.41 0.32 0.27 0.21 
25 0.37 0.28 0.24 0.18 
30 0.34 0.26 0.22 0.17 

100 0.18 0.14 0.12 0.09 
1000 0.06 0.04 0.04 0.03 
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Minimal number of observations for the comparison of two 
means 

If a considerable difference is expected between the means of two popula
tions-no overlap of the two data sets-then 3 to 4 (IX = 0.05) or 4 to 5 
(IX = 0.01) observations should suffice. 

To prove there is an actual difference {) (delta) between the means of two 
normally distributed populations with the same variance about 

(3.6) 

independent observations from each population (i.e., n1 = n2 = n) are 
required (cf. also Table 52, Section 3.6.2). The values of Za and zp-compare 
what is said at the end of Section 1.43 concerning Type I and Type II errors
are found in Table 43, Section 2.1.6. The value of Za depends on which type 
of test, one sided or two sided is planned; zp is always the value for the one 
sided test. A sufficiently precise estimate of the common variance (J2, 

should be available. 

EXAMPLE. {)=1.1, IX = 0.05 (two sided), i.e., ZO.05:twosided = 1.960; (J2 = 3.0, 

f3 = 0.10 (one sided), i.e., ZO.l 0; one sided = 1.282. 

n = 2(1.960 + 1.282)2[3.0/1.1 2] = 52.12. 

About 53 + 53 = 106 observations have to be taken. Then we can assume 
that in the case of a two sided problem a true difference of at least 1.1 can be 
recognized with a probability (power) of at least 90 %. Note that for the IX and 
f3 (or for the Type I and II errors) given in this example we have n ~ 21 
«(J2/{)2) or n ~ 21(3/1.12) = 52.1. 

3.1.3 The mean absolute deviation 

In distributions with at least one long tail the mean absolute deviation from the 
mean (MD) can also be used as a measure of dispersion. It is defined by 

MD = L:lx; -xl 
n 

, (3.7) 

for grouped observations, 

MD = L: Ix; - xl}; 
L}; , (3.8) 
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where Xi = class mean, L /; = n; but it can more quickly be estimated 
according to 

(nl values Xi > x). 

(3.8a) 

The MD of 1, 2, 3, 4, 5 is thus 

2 
MD = "5 [(4 - 3) + (5 - 3)] = 2[(4 + 5) - 2·3]/5 = 6/5 = 1.2. 

For small sample sizes (and when the extreme values are suspect) the MD is 
superior to the otherwise optimal standard deviation (cr., Tukey 1960): 
Values far from the mean are less influential than in the usual estimate, and 
this is particularly important for distributions that resemble the normal but 
have heavier tails. Thus the influence of a potential maverick (cf., Section 3.8) 
is also reduced, and deciding whether to still accept an extreme value or to 
reject it becomes less critical. 

A distribution-free substitute for sand MD is the median deviation (3.11). 

Three remarks 

(1) MD/u and kurtosis. The ratio MDju has for the uniform distribution the value 
fi/2 = 0.86603, for the triangular distribution (16/27)j2 = 0.83805, for the normal 

distribution .J2Fr. = 0.79788, and for the exponential distribution 2/e = 0.73576. 
For samples from approximately normally distributed populations we have 
1 [MD/s] - 0.79791 < O.4/Jn. Of course 1 [MD/s] - 0.79791 measures only the devia
tion from the kurtosis of a normal distribution. According to D'Agostino (1970), 

(a - 0.7979)Jn/0.2123 with a = 2(L.>xx; - n1xJn L: x 2 - (L: X)2, for n1 see 
(3.8a), is approximately standard normally distributed (critical limits are given by 
Geary 1936) even from small n (kurtosis-related quick test for nonnormality). A test 
for nonnormality involving kurtosis and skewness is likewise given by D'Agostino 
(1971, 1972). 

(2) 95 % confidence interval for J1 using the MD. The 95 % confidence interval for J.1 

in terms of the MD is found according to 

x ± (coefficient) MD. I (3.9) 

Coefficients of MD for the sample size n are found in Table 49. 

The equality of two or more MD's can be tested by means of tables (Cadwell 
1953, 1954). A table for the corresponding one and two sample t-test based on the 
MD is given by Herrey (1971). 
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Table 49 Coefficients for determining the 95 % confidence limits for the mean in 
terms of the mean absolute deviation. From Herrey E. M. J.: Confidence intervals 
based on the mean absolute deviation of a normal sample. J. Amer. Statist. Assoc. 
60 (1965), p. 267, part of Table 2. Factors for the other usual confidence limits are 
given by Krutchkoff (1966). 

n Factor n Factor 

2 12.71 12 0.82 
3 3.45 13 0.78 
4 2.16 14 0.75 
5 1.66 15 0.71 
6 1.40 20 0.60 
7 1.21 25 0.53 
8 1.09 30 0.48 
9 1.00 40 0.41 

10 0.93 60 0.33 
11 0.87 120 0.23 

EXAMPLE. Given the eight observations 8,9,3,8, 18,9,8,9 with x = 9. Determine the 
95 % confidence interval for J1.. First we compute I 1 Xi - xl: 

Ilxi-xl= 18-91+ 19-91+ 13-91+ 18-91 + 118-91+19-91+ 18-91+ 19-91, 

+ 0 + 6 + + 9 + 0 + + 0=18, 

and the mean absolute deviation is, according to (3.7), MD = 18/8 = 2.25, or, 
according to (3.8a), MD = 2[18 - 1(9)]/8 = 2.25. For n = 8 the factor is found 
from Table 49 to be 1.09. We then get by (3.9) for the 95% confidence interval the 
interval 9 ± (1.09)(2.25) = 9 ± 2.45. Thus we have the 95 % CI: 6.55 ::;; J1. ::;; 11.45. 

(3) 50% confidence interval for J1. after Peters. For n ;;:: 7, and for a normal distribution, 
the approximation (3.10) holds (Peters, 1856) 

(3.10) 

EXAMPLE. We use the data of the last example and find the 50% confidence interval to 

be 9 ± 0.84535 . 18/[8j8=1] = 9 ± 0.72. 50% CI: 8.28 ;S J.l;S 9.72. 

The median deviation: An especially robust estimate for dispersion is the 
median deviation jj 

jj = median{ IXi - xl} (3.11) 

with x = sample median [cf., F. R. Hampel, The influence curve and its role 
in robust estimation, Journal of the American Statistical Association 69 
(1974),383-393]. 
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EXAMPLE. Xi: 3, 9,16,25,60; X = 16; 13 -161 = 13,19 -161 = 7, ... ; 
from the deviations 7, 9, 13, 44 we have the median (9 + 13)/2 = 11, thus 
jj = 11. 

3.1.4 Confidence interval for the median 

The confidence interval for the median replaces (3.1) and (3.2) when popula
tions are not normally distributed. If the n observations, ordered by magni
tude, are written as x(1)' X(2)' x(3)" •• , x(n)' then the distribution-free con
fidence interval for the median, the 95 % CI, and the 99 % CI for ji are given by 
(3.12) and Tables 69 and 69a in Section 4.2.4 [see page 319]. 

(3.12) 

For n > 50 and the confidence probabilities 90 %, 95 %, and 99 %, h can be 
approximated by 

h = n - zJn - 1 
---'2:---- (3.13) 

with z = 1.64, 1.96, and 2.58 respectively. Thus for n = 300, the 95% 
confidence interval lies between the 133rd and the 168th value of the sample 
ordered by magnitude (h = [300 - 1.96 J300 - 1 J/2 ~ 133, n - h + 1 = 
300 - 133 + 1 = 168), e.g., the 95 % CI for ji is X(133) = 21.3 ::; ji ::; 95.4 
= X(l68), or 95 % CI: 21.3 ::; ji ::; 95.4. In giving the result, the last form, 
omitting x(left) and X (right) , is often preferred. Additional tables are found in 
Mackinnon (1964) and Van der Parren (1970). The procedure of this section 
also applies to the determination of a 95 % confidence interval for a median 
difference jid, useful either (I) for differences of paired observations or (II) 
for all possible differences between two independent (uncorrelated) samples 
(nl ~ n2)' Paired observations with independent pairs may refer to different 
observations on the same subject (Ia) or to similar observations made on 
matched subjects (lb) who have received different treatments at two different 
times (cf., Sections 2.1.3-2.1.5 and 4.1). 

Remark 

95 % and 99 % confidence intervals for 18 other quantiles (quartiles, deciles, 
and several percentiles [cf., also Section 2.1.2J) can be found in the Docu
menta Geigy (1968 [2J, p. 104 [cf., p. 162, left side, and p. 188, left sideJ). 
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~ 3.2 COMPARISON OF AN EMPIRICAL MEAN 
WITH THE MEAN OF A NORMALLY 
DISTRIBUTED POPULATION 

The question whether the mean x of a sample from a normal distribution 
differs only randomly or in fact significantly from a specified mean J1.0 can be 
reformulated: Does the confidence interval for J1. computed with x include 
the specified mean J1.0 or not, i.e., is the absolute difference I x - J1.0 I greater 
or less than half the confidence interval tslJn? 

Given a sample of size n having standard deviation s, the difference of its 
mean x from the specified mean J1.o is statistically significant if 

- s IX-J1.ol r:. I x - J1.o I > t r:. or . y' n > t, 
y'n s 

(3.14) 

where the quantity t for n - 1 degrees of freedom and the required con
fidence coefficient S = 1 - tX is taken from Table 27 in Section 1.5.2. The 
limit at and above which a difference is significant at the level tX and below 
which it is considered random thus lies at 

Ix - J1.ol r: 
t = 'v n, 

s 
DF = n - 1. (3. 14a) 

Thus for testing Ho: J1. = J1.o against HA : J1. i= J1.o (or HA : J1. > J1.o) reject 
Ho if t, given in (3. 14a), surpasses the critical value t,,-l;a;twosided (or 
til - 1; a; one sided), provided the sample comes from a normally distributed 
distribution or at least from a distribution with little kurtosis and less skew
ness, since the latter affects the distribution of t more than kurtosis. With 
large sample sizes, t can be replaced by a z-value appropriate for the required 
confidence coefficient. Since parameters are compared-J1.o with the J1. 
underlying the sample-what we have is a test of the parameter. This test is 
known as the one sample t test for difference in means. 

EXAMPLE. A sample of size n = 25 yields x = 9 and s = 2. We want to 
determine whether the null hypothesis J1. = J1.o = 10-two sided question
can be maintained with tX = 0.05 or 5 % [i.e., with a confidence coefficient 
of S = 95 %J. We have the special value (marked with a caret) 

A 19 - 101 Me 
t = 2 v 25 = 2.50 > 2.06 = t 24;0.05· 

Since 2.50 > 2.06 the hypothesis J1. = J1.o is rejected at the 5 % level. 

Something should perhaps be said at this point regarding the notion of 
function. A function is an allocation rule: In the same way as every seat in a 
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theater is assigned a certain ticket at each performance, a function assigns 
to every element of a set a certain element of another set. In the simplest 
case, a certain value of the dependent variable y is assigned to every value of 
the independent variable x: y = f(x) [read: y equals f(x) , short for y is a 
function of x]; the independent variable x is called the argument. For the 
function y = x3 , e.g., the argument x = 2 is associated with the function 
value y = 23 = 8. The symbol t in (3.14a) is defined as a function of J1.o, s, 
and x, but recalling that x and s are themselves functions of the sample 
values Xl' X2, ... , xn , we can consider t in (3.14a) as a function of the sample 
values and the parameter J1.o, t = f(Xl, X2' .•. ' Xn ; J1.o), while t in (3.14) 
is a function of the degrees of freedom v and the confidence level S = I - IX, 
(or IX). Since Xl' X2' ••. , Xn are the realized values of a random variable, 1 is 
itself a special realization of a random variable. Under the null hypothesis 
(J1. = J1.o) this random variable has a t-distribution with n - 1 degrees of 
freedom. If the null hypothesis does not hold (J1. "# J1.o), it has a noncentral 
t-distribution and 111 is most likely to be larger than the corresponding 
Itl-value. 

In (3.14a), left side, we might have written t, since this formula is used for 
the critical examination of realizations. 

Particular function values estimated by means of sample values (or in 
terms of sample values and one or more parameters) can be marked with a 
caret to distinguish them from the corresponding tabulated values (e.g. of the 
t, z, X2 , or F distribution). Some authors do not use these quantities. In their 
notation, e.g., (3.-14a) is stated as: Under the null hypothesis the test statistic 

(3.14b) 

has a t-distribution with n - 1 degrees offreedom (cf., Section 4.6.2). 
Another possible way of testing the null hypothesis (Ho: J1. = J1.o against 

HA : J1. "# J1.o) consists of establishing whether x lies within the so-called 
acceptance region or NON-REJECTION REGION of Ho 

(3.15) 

If this is the case, the null hypothesis cannot be rejected (is retained). Outside 
the two acceptance limits lies the critical region, the upper and lower re
jection region. If x falls in this region, the null hypothesis is rejected. For the 
one sided question (Ho: J1. ~ J1.o against HA : J1. > J1.o) the null hypothesis is 
retained as long as for the mean x of a sample of size n there obtains 

(3.15a) 
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where the t-value for the one sided test is given by Table 27 in Section 1.5.2. 
Regions of this sort are important for industrial quality control: they serve 
to check the stability of "theoretical values" (parameters) such as means or 
medians, standard deviations or ranges, and relative frequencies (e.g., per
missible reject percentages). 

This schematic outline of statistics given in Section 1.4.5 can now be 
provided with further details: 

~ 
THEORY OF CRITICAL VALUE OF THE 

PROBABILITY 

deductive 

I STATISTICS 

rang~ of realizations of possible sa~ples 
lower , upper 
rejection: NON·REJECTION REGION rejection 
region i for the null hypothesis region 

, 

TEST 

decision procedures 

STATISTIC 

inductive 

\ 
null 

-- hypothesis 

Starting with a null hypothesis and the accompanying representative sample 
-i.e., the sample must, up to random error, fully represent the population
the stochastic inductive inference enables us to make a statement about the 
population underlying the sample, about the stochastic model. A survey of 
the collection of samples compatible with the model can then be deduced by 
way of a second stochastic inference, with the help of probability theory in 
terms of a stochastic variable with a certain distribution (e.g., the t-distribu
tion): the combining of the least expected samples-say the most extreme 
5 %, 1 %, or 0.1 % of the cases-to form a rejection region (two sided question) 
fixes the NON-REJECTION or acceptance REGION of Ho (cf., Wei ling 
1965). The actual test of whether the null hypothesis can be rejected given a 
sample is carried out by means of a statistical test procedure which establishes 
the bounds for the acceptance or the rejection region. If the observed sample 
belongs to the acceptance region, then the null hypothesis holds insofar as it 
is not refuted by the sample (acquitted for lack of evidence). SUbject to further 
investigation, it is decided that the null hypothesis should be retained. If 
the sample belongs to the rejection region, it means that whenever the 
null hypothesis is true, we have the accidental occurrence of a possible but 
quite improbably large departure. In such a case it is considered more 
likely that the parameter value of the null hypothesis does not apply to the 
population under study, hence the deviation. The null hypothesis is then 
rejected at the preselected level. More on this may be found in Section 3.6.1. 
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Confidence intervals and tests for (j, (j2, and (ji!(j~ are more sensitive 
(less robust) to deviations from the normal distribution than are pro
cedures which concern the confidence intervals for Jl and Jll - Jl2 (t
distribution). Furthermore, one sided procedures are more sensitive 
than two sided. 

~ 3.3 COMPARISON OF AN EMPIRICAL 
VARIANCE WITH ITS PARAMETER 

For a normally distributed population, the null hypothesis (j = (jo or 
(j2 = (j~ (as against (j > (jo or (j2 > (j~) is rejected under the following 
conditions: 

Case 1 : Jl unknown. 

(3.16) 

o Case 2: Jl known. 

(3.16a) 

s~ [cr., (1.33)] can be computed by (3.23) as s~ = Q/n. Given extensive 
samples from a normally distributed population, Ho: (j = (jo is rejected and 
H A: (j 1= (10 accepted at the 5 % level when 

I ~ fill> 1.96 (3.16b) 

(1 % level: replace 1.96 by 2.58). 

EXAMPLE. Are the 8 observations 40, 60, 60, 70, 50, 40, 50, 30 (x = 50) com
patible with the null hypothesis (12 = (j~ = 60 as against (j2 > (j~ = 60 
(IX = 0.05)? 

A2 _ (40 - 50)2 (60 - 50)2 . . . (30 - 50)2 = 2000 
X - 60 + 60 + + 60 . . 

Since X2 = 20.00 > 14.07 = X~;O.05' HO:(12 = (j~ is rejected in favor of 
HA:(j2 < (j~. 

A table for testing the (two sided) null hypothesis (j2 = (j~ is given 
by Lindley et al. (1960) together with the tables of Rao et al. (1966 [2], p. 67, 
Table 5.1, middle); a X2 which lies outside the limits there given is regarded as 
significant. For our example with v = n - 1 = 7 and IX = 0.05, the limits, 
which turn out to be 1.90 and 17.39, do not include X2 = 20 between them, 
i.e., (j2 1= (1~. 
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3.4 CONFIDENCE INTERVAL FOR THE 
VARIANCE AND FOR THE COEFFICIENT 
OF VARIATION 

The confidence interval for (12 can be estimated in terms of the l distribution 
according to 

(3.17) 8 
For example the 95 % confidence interval (0( = 0.05) for n = 51 and S2 = 2, 
is determined as follows: 

X;O;O,025 = 71.42 and X;O;O.975 = 32.36: 

2·50 22.50 
--<(1 <--
71.42 - - 32.36 

1.40 S (12 S 3.09. 

Approximations for n 2 150 as well as tables for the 95 % CI and 

n = 1(1)150(10)200 

are contained in Sachs (1984). 

The estimate for (12 is obtained according to 

(3.17a) 8 

95% confidence interval for (1: yrt40 < (1 < )3.09; 1.18 < (1 < 1.76. 
Since the X2 distribution is unsymmetric, the estimated parameter «(1) does 
not lie in the middle of the confidence interval. 

The confidence limits for the coefficient of variation can be determined by 
the method described by Johnson and Welch (1940). For n ;::: 25 and V < 0.4 
the following approximation is adequate: 

V V 
---;=====:=:=:< < Y < ---;===:=:< 

1 + 2 V 2 '" '" 1 + 2 V 2 
1 - z 

2(n - 1) 2(n - 1) 
1 + z 

(3.18) 

90%CI:z = 1.64;95%CI:z = 1.96;99%CI:z = 2.58. 
For the (one sided) upper confidence limit (CLu) Yo [right side of (3.18)J, 

which is often of interest, the 90 % CLu corresponds to z = 1.28; the 95 % 
CLu to z = 1.64; the 99 % CLu to z = 2.33. 
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EXAMPLE. Compute the 90 % CI for y for n = 25 and V = 0.30. 

I.64J(1 + 2.0.32)/[2(25 - 1)] = 0.257 

0.3/1.257 = 0.239, 0.3/0.743 = 0.404, 90 %-CI: 0.24 $ Y $ 0.40. 

0.40 is at the same time the approximate upper 95 % CLu, i.e., 95 % CLu: 
Yo ~ 0.40; the coefficient of variation y lies below 0.40 with a confidence 
coefficient of S = 95 %. 

3.5 COMPARISON OF TWO EMPIRICALLY 
DETERMINED VARIANCES OF NORMALLY 
DISTRIBUTED POPULATIONS 

To investigate whether two independently drawn random samples (cr., also 
Section 2.7) of sizes n1 and n2 originated from a common normally distri
buted population, one first of all tests their variances (the larger sampling 
variance is denoted by sf) for equality or homogeneity. The null hypothesis 
H 0: eri = er~ is rejected as soon as the quantity F = sils~ computed from the 
two sample variances is larger than the corresponding tabulated quantity 
F n, -1; n2 - 1; <l (cf., also Section 4.6.2); the alternative hypothesis H A: eri -# er~ 
is then accepted (two sided problem). 

One sided problem: Let (1) denote the population which has under the 
alternate hypothesis the larger variance (i.e., H A: eri > er2 ). For ft > F the one 
sided alternative H A: eri > er~ is accepted (n1 should be at least as large as n2). 
If a test of this sort is utilized as a preliminary test for a comparison of means 
(the t-test assumes equality of population variances), then the 10% level is 
favored because the Type II error (Section 1.4.3) is here the more serious. 

In contrast with the two sided t-test, the F -test is very sensitive to devia
tions from the normal distribution. If normality is not ascertained, then the 
F -test is replaced by the distribution-free Siegel-Tukey test (Section 3.9.1). 

3.5.1 Small to medium sample size 

We form the quotient of the two variances si and s~, thereby obtaining the 
test statistic 

with DF 1 = n1 - 1 = v1, 

with DF 2 = n2 - 1 = v2. 
(3.19) 

If the computed F-value exceeds the tabulated F-value for the pre-selected 
level of significance and the degrees offreedom V1 = n1 - 1 and V2 = n2 - 1, 
then the hypothesis of homogeneity of population variances (H 0: eri = erD is 
abandoned. For P :s; F there is no reason to question this hypothesis. If the 
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hypothesis is rejected then the confidence interval (CI) for CTilCT~ is computed 
by 

(3.19a) 

For the 90% CI refer to Table 30b; for the 95% CI to Table 30c (Section 1.5.3). 
The tables in that section contain the upper significance levels of the F
distribution for the one sided problem usually considered in analysis of 
variance. In the present case we are interested in departures in both directions, 
and thus in a two sided test. If we test at the 10 % level, the table with the 5 % 
limits is to be used. Analogously the 0.5 % limits, Table 30e, apply for the 
two sided test at the 1 % level. 

EXAMPLE. Test H 0: CTi = CT~ against H A: CTi =1= CT~ at the 10 % level, given 

nl = 21, si = 25 

n2 = 31, s~ = 16 

~ 25 
F = 16 = 1.56. 

Since ft = 1.56 < 1.93 [=F2 0;30;0.10(twos.) = F20; 30;0.05 (ones.)], Ho cannot 
be rejected at the 10 % level. 

For equal sample sizes n, Ho can also be tested according to 

A In=l(si - s~) 
t=~--~---= 

2Jsis~ 
with v = n - 1 (3.20) 

(Cacoullos 1965). A quick test is presented in Section 3.7.1. 

EXAMPLE. Test Ho:u~ = u~ against HA:U~ =F u~ at the 10% level, given 

n1 = n2 = 20 = n, si = 8, s~ = 3, 

ft = ~ = 2.67 > 2.12, t = ~ - 3) = 2.22 > 1.729. 

Since Ho is rejected at the 10 % level, we specify the 90 % CI by (3.19a): 

F 19; 19; 0.05(one s.) = 2.17 ~:~~ = 1.23, 2.67 . 2.17 = 5.79; 

90%-CI: 1.23::s; CTilCT~ ::s; 5.79. 

Distribution-free procedures which replace the F-test 

Since the result of the F -rest can be strongly influenced even by small devia
tions from the normal distribution (Cochran 1947, Box, 1953, Box and 
Anderson 1955), Levene (1960) has proposed an approximate nonpara
metric procedure: In the individual data sequences that are to be compared, 
the respective absolute values Ix; - xl are formed and subjected to a rank 
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sum test: For two sample sequences, the U-test-see Section 3.9.1-and for 
more than two sequences, the H-test of Kruskal and Wallis. It is tested 
whether the absolute deviations I Xi - X I for the individual sequences can be 
regarded as samples from distributions with equal means. The homogeneity 
of several (k) variances can also be rejected, according to Levene (1960), 
with the aid of simple analysis of variance, as soon as P > Fk-l;n-k;~ for 
the n overall absolute deviations of the observations from their k respective 
means (cf., also Section 7.3.1). More on robust alternatives to the F -test can be 
found in Shorack (1969). 

Minimal sample sizes for the F-test 

With every statistical test there are, as we know, two risks to be estimated. 
An example is given byTable 50. Extensive tables can be found in Davies 
(1956) (cf., also Tiku 1967). 

Table 50 Number of observations needed to 
compare two variances using the F-test. F
values are tabulated: For r:x = 0.05, P = 0.01 and 
S2 numeratoJS 2 denominator = F = 4 the table indi
cates that in both samples the estimation of the 
variances is to be based on 30 to 40 degrees of 
freedom (corresponding to the F-values 4.392 
and 3.579) -on at least 35 degrees of freedom, 
let us say. (Taken from Davies, O. L.: The Design 
and Analysis of Industrial Experiments. Oliver and 
Boyd, London, 1956, p. 614, part of Table H.) 

a = 0.05 
DF 

S = 0.01 S = 0.05 S = 0.1 S = 0.5 
1 654,200 26,070 6,436 161.5 
2 1,881 361.0 171.0 19.00 
3 273.3 86.06 50.01 9.277 
4 102.1 40.81 26.24 6.388 
5 55.39 25.51 17.44 5.050 
6 36.27 18.35 13.09 4.284 
7 26.48 14.34 10.55 3.787 
8 20.73 11.82 8.902 3.438 
9 17.01 10.11 7.757 3.179 

10 14.44 8.870 6.917 2.978 
12 11.16 7.218 5.769 2.687 
15 8.466 5.777 4.740 2.404 
20 6.240 4.512 3.810 2.124 
24 5.275 3.935 3.376 1.984 
30 4.392 3.389 2.957 1.841 
40 3.579 2.866 2.549 1. 693 
60 2.817 2.354 2.141 1.534 

120 2.072 1.828 1. 710 1. 352 
DO 1.000 1.000 1.000 1.000 
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Minimal sample sizes for the comparison of two empirical variances for 
(independent) normally distributed populations can also be determined by 
means of nomograms by Reiter (1956) or by means of tables by Graybill 
and Connell (1963). 

3.5.2 Medium to large sample size 

Nontabulated F-values can be obtained by interpolation when the degrees 
of freedom are moderately large. When the degrees of freedom are large, the 
homogeneity of two variances can be tested by 

(3.21) 

which is approximately normally distributed. If tables of natural logarithms 
are not readily available, replace t In F with t (2.302585) log F to find 

(3.21a) 

and evaluate it with the help of a table of the standard normal distribution. @ 

EXAMPLE. We wish to check this formula by means of Table 30. For VI = V2 = 
60 and ex = 0.05 we get from thetablethevalueF= 1.53. Suppose now we had B 
found this value experimentally for VI = V2 = 60 and our table went only to 
VI = V2 = 40. Is the F-value found significant at the 5 % level in the one sided 
problem aI = a~ versus aI > a~? For F = 1.53, VI = 60, and V2 = 60 we 
obtain 

1.15129 log 1.53 + ~ (~ - ~) 
2 ~ H~ + ~) ~ 164705, 

i.e., Z = 1.64705 > 1,6449. The value z = 1.6449 corresponding to a level 
of significance of P = 0.05 (cr., Table 43, Section 2.1.6) is exceeded, so that the 
hypothesis of variance homogeneity must be rejected at the 5 % level. The 
approximation by the normal distribution is excellent. 
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3.5.3 Large to very large sample size (n, , n2 ~ 100) 

(3.22) 

If the statistic (3.22) exceeds the theoretical z-value in the table on the very 
first page of the book, or in Table 43, for various levels of significance, then 
the standard deviations (J 1 and (J 2 or the variances (Ji and (J~ are taken to be 
significantly different or heterogeneous at the level in question; otherwise they 
are equal or homogeneous. 

EXAMPLE. Given Sl = 14, S2 = 12, nl = n2 = 500; 
Null hypothesis: (Ji = (J~; alternative hypothesis: (Ji =1= (1~; IX = 0.05; 

we have 

14 - 12 
Z = ----r'==;:;====:=:=;:;== = 3.430 > 1.960 = zo 05, 142 122 . 

-2 ·-500- + -2 ·-500-

i.e., at the 5 % level H 0: (Ji = (J~ is rejected and H A: (Ji =1= (J~ accepted. 

~ 3.6 COMPARISON OF TWO EMPIRICAL 
MEANS OF NORMALLY DISTRIBUTED 
POPULATIONS 

3.6.1 Unknown but equal variances 

The sum of squares L (x - X)2 is denoted by Q in the following. It is computed 
according to 

I Q ~ L:X' - ¥ or Q ~ (n - 1)8'. I (3.23,3.24) 

For the comparison of the means of two samples of unequal sample sizes 
(nl =1= n2) one needs the test statistic (3.25, 3.26) with nl + n2 - 2 degrees 
of freedom for the so-called two sample t-test for independent random samples 
from normally distributed populations with equal variances. Fortunately, in 
the case of the two sided problem (Ho: J1.1 = J1.2 vs. HA: J1.1 =1= J1.2) and not 
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too small and not too different sample sizes, this test is remarkably robust 
against departures from the normal distribution (see, e.g., Sachs 1984, p. 51): 

(3.25, 3.26) 

We test the null hypothesis (Ill = 112) of equality of the means of the 
populations with unknown but equal variances underlying the two samples @ 
(cf., Sections 1.4.8 and 3.5). In the case of EQUAL SAMPLE SIZES 
(nl = n2 is generally preferable, since the Type II error gets minimized), 
(3.25) and (3.26) reduce to 

IXI - xzl 
Ql + Qz 
n(n - 1) 

(3.27) 

with 2n - 2 degrees of freedom, where n = n l = nz. If the test quotient 
exceeds the significance level, then III =f Ilz applies. If the test quotient is @ 
less than this level, then the null hypothesis III = Ilz cannot be rejected. 

For n l = nz :-:;; 20 the Lord test (Section 3.7.2) can replace the t-test. 
The comparison of several means is treated in Chapter 7 (cf., also Section 
3.7.3). To add variety to this section and make it more understandable, three 
comments are included after the example: on the test statistic t and the 
decision, on the tabulated value tZ8 ; 0.05 used for the example, and on the 
comparison of several means. 

EXAMPLE. Test Ho: III = Ilz against HA : III =f Ilz at the 5 % level, given n l , 

nz; Xl' Xz; si, s~; and (3.24), (3.25): 

nl = 16; 

nz = 14; 

Xl = 14.5; 

Xz = 13.0; 

si = 4; 

s~ = 3. 

We have Ql = (16 - 1)(4) = 60, Qz = (14 - 1)(3) = 39, which are then 
substituted together with the other values into (3.25): 

tA = 14.5 - 13.0 2180 
--;;:==:::;:;=======~ =. . 

[ 16 + 14] [ 60 + 39 ] 
16·14 16 + 14 - 2 
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There are v = nl + nZ - 2 = 28 degrees of freedom at our disposal, i.e., 
tz8 ; 0.05 = 2.048. Since i = 2.180 > 2.048, the null hypothesis, equality of 
means, is rejected and the alternative hypothesis III =f Ilz accepted at the 
5 % level. 

Three comments 

I. Comment on the two sample Student's t-test 

Comparison of two sample means when the samples are random and inde
pendent (or uncorrelated), that is, the observations are independent within 
and between both samples, from normal distributions whose variances are 
unknown, but assumed equal. Two sided test with H 0: III = Ilz and H A: 

III =f 112' 

1. We assume no difference between population means (Ho: III = 112)' 
2. This being the assumption, we calculate for the observations (with nl , n2; 

Xl' X2; sr, sD the test statistic i (3.26) without the absolute value bars in the 
numerator, the probability of getting a value greater than + t, and the 
probability of getting a value less than - i. The sum ofthe two probabilities 
"more extreme than ± t," P for short, is what emerges in the two sided 
test. 

3. We reject the assumption (Ho: III = 112) if this probability is low (e.g., 
<0.05) and decide there is a statistically significant difference (11\ =f 112)' 

In other words: With the help of the sampling distribution of the test 
statistic (3.26) and assuming that Ho: III = Ilz is true, the probability 
P of the test statistic taking a value equal to or more extreme than its 
numerical value computed from the sample is determined. If P is less 
than or equal to, say, 0.05, we hold Ho to be exceptional and hence 
reject it at the 5% level. A small value of P implies that we have ob
served something "relatively unlikely", provided Ho is true. Thus 
statistical significance is only a statement about conditional proba
bility. 

Since an assumption or hypothesis is different from a fact, whenever we 
decide about an assumption we are not proving anything. Moreover we have 
only two samples and not the population means. 

II. Comment on t 28 ;0.05 

The tabulated value of a two sided Student's t with v = 28 degrees of 
freedom at the 5 % level, that is tz8 ; 0.05 = 2.048, is given by 

P( - 2.048 ~ t ~ 2.048) = 0.95, 

or (a) 

P(ltl ~ 2.048) = 0.05, 
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or, with the density functionf(t) and v = 28, by 

f2 .048 

f(t)dt = 0.95 
- 2.048 

or (b) 

f-2 .048 foo 
_ 00 

f(t)dt = 0.025 and f(t)dt = 0.025. 
2.048 

The t-distribution is symmetrical about t = O. The integral S: f(t)dt is a 
numerical value equal to the proportion of the area under the graph of the 
function f(t) bounded by the curve, the t-axis, and the lines t = a and t = b 
to the whole area under the graph of the function. The symbol dt identifies t 
as a variable. 

As v increases the t-distribution tends to the standard normal distribution, 
for which we have to substitute in (a) and (b) z for t and 1.96 for 2.048. 

III. Comment on the comparison of several means for a single set 
of data with an overall significance level O! (cf. Chapter 7 and 
especially Section 7.4.2) 

If we have a large data set and if we plan to do k t-tests from this single set, 
we should not use the r:J.. (for instance 0.05) point of the t-distribution but the 
r:J../k (0.05/k) point, e.g., graphically interpolated (Table 27 gives the points 
0.02, ... , 0.0001), having then an overall 100r:J.. % (5 %) significance level. 
For r:J.. = 0.05 and k = 50 we use the 0.05/50 = 0.001 point of the t distribu
tion. 

Tables of this Bonferroni t-statistic are given by Bailey (1977): 100r:J../ k 
points for ex = 0.05, 0.01; v = 2(1)30(5)60(10)120, 250, 500, 1000, 00; and 
k = 1(1)20, 21 = G), 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190 = 
e20). Provided we have four samples of size 15 each and we plan to do all 
4(4 - 1)/2 = 6 t-tests with an overall significance level of 5 %, then we have 
by graphical interpolation the critical t-value 2.84, or from the Bailey table, 
2.8389 (and not 2.048) for all six tests. 

Important remarks (cf. also Sections 2.1.4.3.1.2.3.6.2. and 3.9.4) 

[AJ The confidence interval for the difference between the means of two 
samples from normally distributed populations with equal variance is given 
(e.g., for S = 0.95, i.e., r:J.. = 0.05, with tv; 0.05) by 

(Xt - x2 ) - tnt+nr2;a' sJl/n t + l/n2 ~ 111 - 112 

~ (X t - X2) + tnt+nr2;a' s Jl/n t + 1/n2, 

where s = 

(3.28) @ 



~ 
~ 

~ 
~ 

268 3 The Comparison of Independent Data Samples 

If (J is known, t is replaced by the standard normal variable z. If samples of 

equal size are present, sJl/n l + l/n2 is again replaced by J(si + sD/n. A 
difference between III and 112 is significant at the level employed, provided 
the confidence interval does not include the value III - 112 = O. Statistical 
test procedures and confidence intervals both lead to decisions: The con
fidence interval moreover offers additional information about the parameter or 
parameters. 

EXAMPLE. We use the last example and obtain the 95 % confidence limits for 
the difference III - 112 between the two means 

(Xl - X2) ± tn,+n2-2;a' sJl/n l + l/n2 

(14.5 - 13.0) ± 2.048·1.880· Jl/16 + 1/14 

1.5 ± 1.4 i.e., 95%-CI: 0.1 ~ III - 112 ~ 2.9. 

[ef., S = 0.95, ora = 1 - 0.95 = 0.05; t28; 0.05 = 2.048.] The null hypothesis 
(Ill - 112 = 0) must, on the basis of the available samples, be rejected at the 
5% level. 

@] A more elegant comparison of the means of two independent samples 

of different sizes, ft) #: ftl' with equal variance, is given by 

F (nl +n2 -2)(n2Lx I -nILx2)2 
(nl +n2)[ nln2 (Lxi+ LX~ )-n2 (LXI)2 -nl (LX2 )2]' 

(3.29) 

and for the case n) = n2 = n by 

F= (n-l)(Lxl-Lx2)2 
n[LxI+ LxD-[ (LxI )2+ (LX2)2]' 

(3.30) 

DF2 = 2n - 2. 

The expressions (3.29) and (3.30) are the rewritten squares of (3.26) and 
(3.27), and the relation t~F = F DF, = 1.DF2=DF is introduced. A comparison of 
the times needed to evaluate (3.26) and (3.29) for the same data shows that 
up to 30 % computing time can be saved by using the somewhat clumsy 
formulas (3.29) and (3.30). Simple practice problems, which the reader 
himself can formulate, will confirm this. 
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@] The comparison of relative frequencies is dealt with in Sections 4.5.1, 

4.6.1, and 6.1.1. The comparison of frequencies is dealt with in Sections 1.6.6, 
2.4.2 (Remark 3), 4.5.4 and 4.6 and in Chapter 6. 

Mean and variance are independent in samples from a normal population 
but they are proportional [and not independent] in samples from a binomial 
population [cf. (1.60), (1.61)]. If we here denote relative frequencies or 
proportions as x/n = p, written without the caret, then the variance of 
sin - 1 JP is independent of the mean of sin - 1 JP and for large samples the 
variance is equal to 820.7 /n degrees. 

Table 51 Angular transformation: the values x = sin-' v'P = arcsin 
v'P with x in degrees; e.g. arcsin v'0.25 = 30.00 ; arcsin v'1.00 = 90.00 

[Transformation to arc units (radians): divide the tabulated values by 
57.2958.] 

p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.000 5.739 8.130 9.974 11.537 12.921 14.179 15.342 16.430 17.457 
0.1 18.435 19.370 20.268 2!. 134 21.973 22.786 23.578 24.350 25.104 25.842 
0.2 26.565 27.275 27.972 28.658 29.334 30.000 30.657 31.306 31.948 32.583 
0.3 33.211 33.833 34.450 35.062 35.669 36.271 36.870 37.465 38.057 38.646 
0.4 39.231 39.815 40.397 40.976 41.554 42.130 42.706 43.280 43.854 44.427 

0.5 45.000 45.573 46.146 46.720 47.294 47.870 48.446 49 024 49.603 50.185 
0.6 50.769 51.354 51.943 52.535 53.130 53.729 54.331 54.938 55.550 56.167 
0.7 56.789 57.417 58.052 58.694 59.343 60.000 60.666 61.342 62.028 62.725 
0.8 63-435 64.158 64.896 65.650 66.422 67.214 68.027 68.866 69.732 70.630 
0.9 71.565 72.543 73. 5 70 74.658 75.821 77 .079 78.463 80.026 81.870 84.261 

sin - 1 is the real inverse sine; sin - 1 JP (written arcus sinus JP or 
arcsin JP), denotes the size (in degrees, as in our brief Table 51, or in 
radians) of the angle whose sine equals JP. 

If all sample groups (all binomial proportions x/n) have equal and not too 
small values n, then the variances of sin - 1 JP are equal. [The variance of 
x/n = pis p (1 - p)/n (cf., Section 1.6.2). For 2/100 and 50/100 we get, with 
0.02·0.98/100 = 2· 10- 4 as against 0.5 ·0.5/100 = 25 . 10-4, very differ
ent variances.] Therefore we should transform an observed proportion p to 
sin - 1 JP, thus stabilizing the variances, before computing and comparing 
means [(3.23 to 3.35)]. In the angular transformation x = sin -1 JP the 
values x will range from 0 degrees to 90 degrees as p ranges from 0 to 1. 

Two more transformations used for proportions and with similar effects 
are the logit transformation and the probit transformation. Extensive tables 
of all three transformations are given by Fisher and Yates (1963). 
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3.6.2 Unknown, possibly unequal variances 

We test null hypothesis (Ill = 112) of the equality of two means with possibly 
unequal variances (ui "# aD. This is the so-called Fisher-Behrens problem 
(cJ, Welch 1937, Breny 1955, Linnik 1966, and Mehta and Srinivasan 1970 as 
well as Scheffe 1970), for which there is no exact solution. For practical 
purposes it is appropriate to use 

with approximately 

A IXI -x21 
t 2 

/Sl + S~ 
V nl n2 

(3.31) 

(3.32) 

degrees of freedom, where v is rounded off to the nearest integer. The value 
of v always falls between the smaller of nl - 1 and n2 - 1 and their sum 
(nl + n2 - 2); v is computed only for i > ZI1. (about 1.96 = ZO.05; two sJ, 

since for t < ZI1. the hypothesis H 0: III = 112 cannot be rejected at the 100a% 
level. For nl = n2 = nand uI = u~, (3.32) yields v = 2n - 2. Other 
possible ways of solving the two sample problem are indicated by Trickett, 
Welch, and James (1956) as well as by Banerji (1960). Corresponding to 
(3.28) the approximate confidence interval for the difference of two means, for 
III - 112, in the case of possibly unequal variances, is given by (3.28a): 

(Xl - X2) - tV ;I1. B :$ III - 112 :$ (Xl - x2) + tV ;I1. B I (3.28a) 

with v from (3.32) and with B the square root in the denominator of (3.31). 
When the sample sizes are equal, v is taken from (3.34) and B is the square root 
in the denominator of (3.33). In the case of equal sample size (nl = n2 = n) 
the formulas (3.31), (3.32) simplify to 

(3.33) 

with 

Q is computed by (3.23) 
2n-2 2n-2 

v=n-l+ Q =n-l+ 2 2 
Ql 2 Sl S2 -+- -+-
Q2 Ql S~ si 

(3.34) 
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degrees of freedom, where Q is computed according to (3.23). With large 
sample sizes t can again be replaced by z. Selected values of the standard 
normal distribution can be taken from Table 14, Section 1.3.4 (or Table 43, 
Section 2.1.6). 

EXAMPLE. A simple numerical example should suffice. Given are the two 
samples (1) and (2). Test III ~ 112 against III > 112 with (X = 0.01: 

n l = 700, Xl = 18, sf = 34; n2 = 1,000, X2 = 12, s~ = 73. 

For the one sided problem we set (X = 0.01. Because of the large sample sizes 
we work with the standard normal distribution; therefore we replace the 
variable t, which follows Student's distribution, by the standard normal 
variable z 

18 - 12 
Z = --;===== = 17.21 > 2.33 = ZO.OI 

34 73 
(one sided). 

700 + 1,000 

The null hypothesis on homogeneity of the means is rejected at the 1 % 
level, i.e., III > 112 [we may write" P ~ 0.01," that has the meaning of 
" strong evidence against H 0 "]. 

Small sample sizes (n" n2 < 9) with heterogeneous variances can be very elegantly 
tested for equality of the means by a method derived by McCullough et al. (1960). 
The tables by Fisher and Yates (1963) offer other possibilities. A number of approxi
mations are available for comparing several means with the variances not necessarily 
equal (cr., Sachs 1984). A confidence interval for the ratio of two means of independent 
samples from normally distributed populations (no assumptions are made on the 
ratio of the two variances) is given by Chakravarti (1971). 

Weir (1960) proposed another way for solving the Behrens-Fisher 
problem. It is of interest to us that a difference in the means is statistically 
significant at the 5% level whenever the following relations hold: 

IXI -x21 ~2.0, 

j Ql +Q2 r.t + 1 ] 
nl +n2- 4Lnl n2 

(3.35) 

where it is required that n l ~ 3 and n2 ~ 3; if the quotient falls below the 
value 2, then the null hypothesis III = 112 cannot be rejected at the 5 % level. 

EXAMPLE. Comparison of two means at the 5 % level: 

nl = 3; 1.0 5.0 9.0; Xl = 5.0; Ql = 32; sf = 16; 

n2 = 3; 10.9 11.0 11.0; X2 = 11.0; Q2 = 0.02; s~ = 0.01. 
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Q can be quickly computed by Q = L (x - X)2: 

15.0 - 11.01 6 
----;:3::::2::::+=0.::::02~[::::!=+::::!~J = -3.2-7 < 2.0. 

3+3-4 3 3 

On the basis of the available samples H 0 is not rejected at the 5 % level. The 
standard procedure (3.33), (3.34), i.e., 

• 15.0 - 11.01 6 
t = = -2 1 < 4.303 = t 2 · 005 

32 + 0.02·3 .. 

3(3 - 1) 

2·3 - 2 
v = 3 - 1 + 32 0.02 ~ 2, 

0.02 + 32 

leads to the same decision. With (3.28a) we have 5 - 11 = - 6 and 
-6 ± (4.30)(2.31) or 95% CI: -15.9 3)11 -)12 3 +3.9, thus including 
zero [according to HoJ. 

Three further remarks on comparison of means 

W Samples which are not chosen entirely at random are, in com
parison with random samples, characterized by greater similarity 
among the sample elements and less similarity of the sample means. 
With nonrandom drawing of samples the standard deviations are thus 
decreased and the differences among the means increased. Both effects 
can therefore contribute to an apparent" significant difference among 
the means". Consequently great care must be taken in interpreting 
results which are barely significant if the samples are not properly 
random. 

o A comparison of two parameters is possible in terms of their con

fidence intervals: (l) If the confidence intervals intersect, it does not 
necessarily follow that the parameters do not differ significantly. (2) If 
the confidence intervals do not intersect, there is at the given significance 
level a genuine difference between the parameters: For n1 and n2 ;:;; 200 
and ai = a~ there corresponds to two nonintersecting 95 % CI (for )11 

and )12) a I-test difference at the I % level. 

o The number of sample values needed for the comparison of a 
sample mean with a hypothetical parameter ofthe population or for the 
comparison of two sample means is given in Table 52 for controlled 
errors-Type I error «(l = 0.005 and 0.025 or (l = 0.01 and 0.05) and 
Type II error (p = 0.2; 0.05; O.OI)-and given standardized deviations. 
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The use of Table 52 is illustrated by the examples presented in Table 52a 
(cr., also (3.6) in Section 3.1.2). 

Table 52 The approximate sample size n which is 
necessary in a one sided problem to recognize as 
significant, at a level r:x and with power 1 - p, a stan
dardized difference of d = (/1 - /10)/(1 between the 
hypothetical mean /10 and the actual mean of the 
population, or of d = (/1, - /12)/(1 between the means 
of two populations with the same variance (12. For the 
two sided problem, as an approximation, the signifi
cance levels must be doubled. For the two sample test, 
it is assumed that both samples have the same size, 
n, = n 2 = n. (Taken from W. J. Dixon and F. J. Massey: 
Introduction to Statistical Analysis, New York, 1957, 
Table A - 12c, p. 425, Copyright McGraw-Hili Book 
Company, April 21, 1966.) 

One sample test Two sample test 

!~8 0.20 0.05 0.01 0.20 0.05 0.01 
(J 

0.80 0.95 0.99 0.80 0.95 0.99 
0.005 0.1 1173 1785 2403 2337 3567 4806 

0.2 296 450 605 588 894 1206 
0.4 77 115 154 150 226 304 
0.7 28 40 53 50 75 100 
1.0 14 22 28 26 38 49 
2.0 7 8 10 8 11 14 

0.025 0.1 788 1302 1840 1574 2603 3680 
0.2 201 327 459 395 650 922 
0.4 52 85 117 100 164 231 
0.7 19 29 40 34 55 76 
1.0 10 16 21 17 28 38 
2.0 - 6 7 6 8 11 

Table 52a 

Test Problem ex fJ d Sample size 

One sample test one sided 0.005 0.20 0.7 n = 28 
two sided 0.01 0.01 1.0 n = 28 

Two sample test one sided 0.025 0.05 1.0 n, = 28, n 2 = 28 
two sided 0.05 0.05 0.1 n, = 2603, n 2 = 2603 

Remarks 

1. Further aids are given by Croarkin (1962), Winne (1963), Owen (1965, 1968), 
Hodges and Lehmann (1968), Krishnan (1968), Hsiao (1972), and especially Cohen 
(1977). 
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2. The nomographic presentation of the t-test (Thoni 1963, Dietze 1967) as well 
as other test procedures can be found in Wenger (1963), Stammberger (1966,1967), 
and Boyd (1969). 

3. The comparison of two coefficients of variation. The standard error of the 
coefficient of variation is 

The difference between two coefficients of variation with sample sizes not too small 
(n l , n2 ;:: 30) can thus be tested by 

(3.36) 

and judged in terms of the standard normal distribution. As an example, one gets for @ 
VI = 0.10, V2 = 0.13, and n l = n2 = 30 

Z= 10.10-0.131 =1.417. 
)0.102/60 + 0.132/60 

Since 1.42 < 1.96 = ZO.05, there is no reason to doubt the equality of the two co
efficients of variation (YI = Y2)' Lohraing (1975) gives an exact test and critical 
values for small n. 

4. One and two sample t-tests in the case of discrete random variables (success 
percentage) are considered by Weiler (1964). 

3.7 QUICK TESTS WHICH ASSUME NEARLY 
NORMALLY DISTRIBUTED DATA 

3.7.1 The comparison of the dispersions of two 
small samples according to Pillai and 
B uenaventu ra 

The dispersion of two independent data sets can be compared by means of the 
ranges, Rl and R 2: In analogy to the F-test the ratio Rd R2 is evaluated 
(assume Rl > R 2) and compared with the corresponding (nl' n2; IX) bound 
in Table 53. Homogeneity of the variances is rejected at the IX-level if this 
bound is surpassed. If for example the data set A with n1 = 9 and the data 
set Bwith n2 = 10 have the ranges Rl = 19 and R2 = 10, then RdR2 = 1.9 
is larger than the value 1.82 tabulated for IX = 5%. The null hypothesis is 
thus rejected. The bounds of Table 53 are set up for the one sided problem. 
If ui = u~ is tested against ui =f. u~, then the 5 % and 1 % bounds of this table 
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Table 53 Upper 5% and 1 % significance levels of the F' -distribution 
based on the ranges (from Pillai, K. C. S. and Buenaventura, A. R. 
Upper percentage points of a substitute F-ratio using ranges, Biometrika 
48 (1961), pp. 195 and 196) 

~ n 2 2 3 4 5 6 7 8 9 10 

(1=5% 
2 12.71 19.08 23:2 26.2 28.6 30.5 32.1 33.5 34.7 
3 3.19 4.37 5.13 5.72 6.16 6.53 6.85 7.12 7.33 
4 2.03 2.66 3.08 3.38 3.62 3.84 4.00 4.14 4.26 

5 1.60 2.05 2.35 2.57 2.75 2.89 3.00 3.11 3.19 
6 1.38 1.74 1.99 2.17 2.31 2.42 2.52 2.61 2.69 
7 1.24 1.57 1.77 1.92 2.04 2.13 2.21 2.28 2.34 

8 1.15 1.43 1.61 1.75 1.86 1.94 2.01 2.08 2.13 
9 1.09 1.33 1.49 1.62 1.72 1.79 1.86 1.92 1.96 

10 1.05 1.26 1.42 1.54 1.63 1.69 1.76 1.82 1.85 

(1=1% 
2 63.66 95.49 116.1 131 143 153 161 168 174 
3 7.37 10.00 11.64 12.97 13.96 14.79 15.52 16.13 16.60 
4 3.73 4.79 5.50 6.01 6.44 6.80 7.09 7.31 7.51 

5 2.66 3.33 3.75 4.09 4.36· 4.57 4.73 4.89 5.00 
6 2.17 2.66 2.98 3.23 3.42 3.58 3.71 3.81 3.88 
7 1.89 2.29 2.57 2.75 2.90 3.03 3.13 3.24 3.33 

8 1.70 2.05 2.27 2.44 2.55 2.67 2.76 2.84 2.91 
9 1.57 1.89 2.07 2.22 2.32 2.43 2.50 2.56 2.63 

10 1.47 1.77 1.92 2.06 2.16 2.26 2.33 2.38 2.44 

are interpreted as 10 % and 2 % levels of the two sided test. The efficiency 
of the test is adequate for small samples. 

3.7.2 The comparison of the means of two small 
samples according to Lord 

To compare the behavior in the central portion of two independent data 
sets of equal size (nl = n2 ~ 20), the difference of the arithmetic means 
(Xl' X2) is computed and divided by the arithmetic mean of the ranges 
(Rl' R2 ) 

(3.37) 

If the test statistic a analogous to the t-statistic equals or exceeds the respec
tive bound in Table 54, then the difference of the means is significant at the 
associated level (Lord 1947). The test assumes normal distribution and 
equality of variances. 
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Table 54 Bounds for the comparison according 
to Lord of two means from independent data 
sets of equal size (from Lord, E.: The use of 
range in place of the standard deviation in the 
t-test, Biometrika 34 (1947), 141-67, p. 66, 
Table 10) 

One sided test Two sided test 

"1 "' "2 Uo .05 uO•Ol uO•05 uO. Ol 

3 0.974 1. 715 1. 272 2.093 
4 0.644 1.047 0.831 1. 237 
5 0.493 0.772 0.613 0.896 
6 0.405 0.621 0.499 0.714 
7 0.347 0.525 0.426 0.600 
8 0.306 0.459 0.373 0.521 
9 0.275 0.409 0.334 0.464 

10 0.250 0.371 0.304 0.419 
11 0.233 0.340 0.280 0.384 
12 0.214 0.315 0.260 0.355 
13 0.201 0.294 0.243 0.331 
14 0.189 0.276 0.228 0.311 
15 0.179 0.261 0.216 0.293 
16 0.170 0.247 0.205 0.278 
17 0.162 0.236 0.195 0.264 
18 0.155 0.225 0.187 0.252 
19 0.149 0.216 0.179 0.242 
20 0.143 0.207 0.172 0.232 
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For the tabulated values n l and n2 the test is just as powerful as the t-test. 

EXAMPLE. For the data setsA: 2,4, 1, 5 and B: 7, 3,4,6 (RI = 5 - 1 = 4, 
R2 = 7 - 3 = 4), we have 

13 - 51 
u = (4 + 4)/2 = 0.5, 

a value which, with n l = n2 = 4 and the two sided problem, does not permit 
the rejection of H 0 at the 5 % level. Therefore we decide both samples 
originate in a common population with the mean /1. Moore (1957) also 
tabulated this test for unequal sample sizes nl + n2 :s; 39; an additional 
table provides estimates ofthe standard deviation common to both samples. 

3.7.3 Comparison of the means of several samples 
of equal size according to Dixon 

If we wish to find out whether the mean (Xl) of some data set differs sub
stantially from the k - 1 mutually different means of other data sets (all 
data sets of equal size with 3 :s; n :s; 25), we order them by magnitude-in 
increasing order if the mean in question is the smallest, in descending order 
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if it is the largest (the problem is not interesting if there are more extreme 
means). Then we compute (e.g., for 3 :s; n :s; 7) the test statistic 

(3.38) 

and decide in terms of the bounds given in Table 55 (Dixon 1950, 1953). 
For instance, among the four means 157,326,177, and 176 the mean Xl = 326 
stands out; we have x2 = 177, X3 = 176, and x4 = 157 (where x4 = xk), and 

Nt = I Xl - X21 = 326 - 177 = 0.882 
Xl - Xk 326 - 157 

is a value which exceeds 0.765 (the 5 % bound for n = 4). The null hypothesis, 

Table 55 Significance bounds for the testing 
of means and of extreme values in the one 
sided problem. Before the data are gathered 
it is agreed upon which end of the ordered 
sequence of means (or observations; cf. 
Section 3.8) will be tested. For the two 
sided problem the significance levels must 
be doubled. (Excerpted from Dixon, W. J.: 
Processing data for outliers, Biometrics 9 
(1953), 74-89, Appendix, p. 89.) 

n (J z 0.10 (J z 0.05 (J z 0.01 Test statistic· 
3 0.886 0.941 0.988 
4 0.679 0.765 0.889 
5 0.557 0.642 0.780 

I;~ ~ ::1 6 0.482 0.560 0.698 
7 0.434 0.507 0.637 
8 0.479 0.554 0.683 
9 0.441 0.512 0.635 

IX 1 - x2 I 10 0.409 0.477 0.597 
1'1 - xk_1 

11 0.517 0.576 0.679 
1:X1 - x3 I 12 0.490 0.546 0.642 

13 0.467 0.521 0.615 i1 - 'k-1 
14 0.492 0.546 0.641 
15 0.472 0.525 0.616 
16 0.454 0.507 0.595 
17 0.438 0.490 0.577 
18 0.424 0.475 0.561 

I;~ ~ :~-21 19 0.412 0.462 0.547 
20 0.401 0.450 0.535 
21 0.391 0.440 0.524 
22 0.382 0.430 0.514 
23 0.374 0.421 0.505 
24 0.367 0.413 0.497 
25 0.360 0.406 0.489 

a For the outlier test substitute x 1' x 2' x3; xn ' xn _ 1' xn _ 2 
forx1,x2,x3;xk,xk_1,xk_2· 
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according to which the four means originate in a common, at least approxi
mately normally distributed population, must be rejected at the 5 % level. 
(Table 55 also contains test statistics for 8 ::; n ::; 25.) This test is for
tunately rather insensitive to deviations from normality and variance 
homogeneity, since by the central limit theorem, means of nonnormally 
distributed data sets are themselves approximately normally distributed. 

3.8 THE PROBLEM OF OUTLIERS AND SOME 
TABLES USEFUL IN SETTING TOLERANCE 
LIMITS 

Extremely large or extremely small values, showing perhaps intrinsic 
variability, within a sequence of the usual moderately varying data may be 
neglected under certain conditions. Measurement errors, judgement errors, 
execution faults, computational errors, or a pathological case among sound 
data can lead to extreme values which, since they originate in populations 
other than the one from which the sample comes, must be deleted. A general 
rule says that if there are at least 10 individual values, then a value may be 
discarded as an outlier provided it lies outside the region x ± 4s, where the 
mean and standard deviation are computed without the value suspected of 
being an outlier. The "4-sigma region" (/1 ± 40') includes 99.99 % of the 
values for a normal distribution and 97 % for symmetric unimodal distri
butions, and even for arbitrary distributions it includes 94 % of the values (cf., 
Section 1.3.4). The presence of outliers may be an indication of natural 
variability, weaknesses in the model, the data, or both. 

Outlier tests are used to (1) routinely inspect the reliability of data, 
(2) be promptly advised of need to better control the gathering of data, 
and (3) recognize extreme data which may be important. 

The smaller the samples, the less probable are outliers. Table 55 allows 
the testing of extreme values of a random sample (n ::; 25) from a normally 
distributed population. It is tested whether an extreme value suspected of 
being an outlier belongs to a population other than the one to which the 
remaining values of the sample belong (Dixon 1950; cf., also the surveys of 
Anscombe 1960 and Grubbs 1969 as well as Thompson and Willke 1963). 

The individual values of the sample are ordered by magnitude. Let Xl 

denote the extreme value, the supposed outlier: 

The individual values of the sample are treated like the means in Section 3.7.3. 
Thus in the numerical sequence 157, 326, 177, 176 the value 326 proves to be 
an outlier at the 5 % level. 
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Given, for example, the data sequence 1,2, 3,4, 5,9, the value 9 is suspected 
of being an outlier. On the basis of Table 55 (n = 6), M = (9 - 5)/(9 - 1) = 

0.5 < 0.560; thus the null hypothesis of no outliers is not rejected at the 5 % 
level (normal distribution assumed). 

For sample sizes larger than n = 25 the extreme values can be tested with 
the help of Table 56 by means of the test statistic 

I 7; =/7/' I (3.39) 

where Xl is the supposed outlier, and where Jl. and (1 are replaced by x and s. 
If M or Tl equals or exceeds the bound corresponding to the required 
confidence coefficient S and to the sample size n in the two tables, then we 
assume that the tested extreme value originated in a population other than 
the one from which the rest of the sequence came. However, the extreme 
value, even if it is shown by this test to be an outlier, may be deleted only if it 
is probable that the values present are approximately normally distributed 
(cf., also Table 72 in Section 4.3.3). 

If outliers of this sort are "identified" and excluded from the sample, a 
remark to this effect must be included in the summary of the analysis of the 
data; at least their number is not to be concealed. If a sample contains 
suspected outliers, it is perhaps most expedient to carry out the statistical 
analysis once with the outliers retained and once with them removed. If 
the conclusions of the two analyses differ, an exceptionally cautious and 
guarded interpretation of the data is recommended. Thus it can happen that 
the outlier carries a lot of information on the typical variability in the popu
lation and therefore it can be the cause for some new investigation. More 
on seven common tests for outlying observations is given by Sheesley (1977). 
See also Applied Statistics 27 (1978), 10-25, Journal of the Royal Statistical 
Society B40 (1978), 85-93, 242-250, and Statistica Neerlandica 22 (1978), 
137-148 [and (all three cited in [8: IJ) Barnett and Lewis 1978, Hawkins 
1980, and Beckman and Cook 1983J. 

A procedure (Tukey 1962) recommended by Charles P. Winsor is also 
convenient: 
1. Order the sample values by magnitude. 
2. Replace the outlier by the adjacent value. This means, e.g., for 26, 18,21, 

78, 23, 17, and the ordered set 17, 18, 21, 23, 26, 78, we get the values 17, 
18, 21, 23, 26, 26. The extreme value is here regarded as unreliable; a 
certain importance is however ascribed to the direction of the deviation. 

If this appears inappropriate, the" Winsorization " is abandoned, perhaps in 
favor of a careful two sided trimming of the rank statistic, i.e., from the upper 
and lower end of the rank statistic a total of ::;; 3 %, and in the case of strong 
inhomogeneity up to 6 %, of the sample values are discarded, the same number 
from each side (cf., Section 1.3.5; see also Dixon and Tukey 1968). 

For small samples with values of a high degree of scatter, dispersion, or 
variation (viewed as inhomogeneous), the mean absolute deviation (or the 
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mean deviation, cr., Section 3.1.3) is a frequently employed measure of 
dispersion, since it reduces the influence of the extreme values. Analogously 
to the standard deviation, which is smallest when the deviations are measured 
from the arithmetic mean, MD is minimal when the deviations are measured 
from the median. As a rule, in the case of symmetric and weakly skewed 
distributions the MD amounts to about ~ of the standard deviation 
(MD/s ~ 0.8). 

For problems related to quality control (cr., Section 2.4.1.3), Table 56 is particu
larly valuable. Assume samples of size n = 10 each are drawn from a population 
with x = 888 and s = 44. On the average, in at most one out of one hundred samples 
should the smallest sample value fall below 888 - 44 ·3.089 = 752.1 and the largest 
exceed 888 + 44 . 3.089 = 1023.9. If extreme values of this sort come up more often, 
the production of the population referred to must be examined. 

Tolerance limits 

Table 56 Upper significance 
bounds of the standardized extreme 
deviation (taken from Pearson and 
Hartley, E. S. and Hartley, H. 0.: 
Biometrika Tables for Statisticians, 
Cambridge University Press, 1954, 
Table 24) 

n 5=95% 5=99% n 5=95% 5=99% 

1 1.645 2.326 55 3.111 3.564 
2 1.955 2.575 60 3.137 3.587 
3 2.121 2.712 65 3.160 3.607 
4 2.234 2.806 70 3.182 3.627 
5 2.319 2.877 80 3.220 3661 
6 2.386 2.934 90 3.254 3.691 
8 2.490 3.022 100 3.283 3.718 

10 2.568 3.089 200 3.474 3.889 
15 2.705 3.207 300 3.581 3.987 
20 2.799 3.289 400 3.656 4.054 
25 2.870 3.351 500 3.713 4.106 
30 2.928 3.402 600 3.758 4.148 
35 2.975 3.444 700 3.797 4.183 
40 3.016 3.479 800 3.830 4.214 
45 3.051 3.511 900 3.859 4.240 
50 3.083 3.539 1000 3.884 4.264 

Confidence limits relate to a parameter. Limits for a percentage of the 
population are referred to as tolerance limits. Tolerance limits specify the 
limits within which a certain portion of the population can be expected with 
preassigned probability S = I - (x. For a normally distributed population, 
these limits are of the form x ± ks, where k is an appropriate constant. For 
example, to determine a tolerance region-within which the portion y = 0.90 
of the population lies in 95 % of all cases (S = 0.95, (X = 0.05) on the 
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Table 57 Tolerance factors for the normal distribution. 
Factors k for the two sided tolerance region for sample means 
from normally distributed populations: With probability S at 
least y. 100% of the elements in the population lie within 
the tolerance region x ± ks; here x and s are computed 
from a sample of size n. Selected, rounded values from 
Bowker, A. H.: Tolerance Factors for Normal Distributions, 
p. 102, in (Statistical Research Group, Columbia University), 
Techniques of Statistical Analysis (edited by Churchill 
Eisenhart, Millard W. Hastay, and W. Allen Wallis) New 
York and London 1947, McGraw-Hili Book Company Inc. 
(copyright March 1, 1966). 

S = 0.95 S = 0.99 

n,\!: 0.90 0.95 0.99 0.999 0.90 0.95 0.99 0.999 
3 8.38 9.92 12.86 16.21 18.93 22.4Q 29.06 36.62 
6 3.71 4.41 5.78 7.34 5.34 6.35 8.30 10.55 

12 2.66 3.16 4.15 5.29 3.25 3.87 5.08 6.48 
24 2.23 2.65 3.48 4.45 2.52 3.00 3.95 5.04 
30 2.14 2.55 3.35 4.28 2.39 2.84 3.73 4.77 
50 2.00 2.38 3.13 3.99 2.16 2.58 3.39 4.32 

100 1.87 2.23 2.93 3.75 1.98 2.36 3.10 3.95 
300 1.77 2.11 2.77 3.54 1.82 2.17 2.85 3.64 
500 1. 74 2.07 2.72 3.48 1. 78 2.12 2.78 3.56 

1000 1.71 2.04 2.68 3.42 1. 74 2.07 2.72 3.47 
'" 1.65 1.96 2.58 3.29 1.65 1.96 2.58 3.29 

Table 57 can be supplemented, e.g, by pp. 45-46 of the Documenta Geigy 
(1968 [2]). 

average-we read off from Table 57 for a sample size n = 50 the factor 
k = 2.00. The tolerance region of interest thus extends from x - 2.00s to 
x + 2.00s. Here s is the standard deviation estimated from the 50 sample 
values and x is the corresponding mean. Tables for computing k are provided 
by Weissberg and Beatty (1960) (cf., L. S. Nelson, Journal of Quality 
Technology 9 (1970), 198-199) as well as by Guttman (1970), who also 
includes a survey (cf., also Owen and Frawley 1971). Extensive tables of 
two-sided tolerance factors k for a normal distribution are given by R. E. 
Odeh in Communications in Statistics - Simulation and Computation B7 
(1978), 183-201. See also Odeh and Owen (1980, cited in [8: 1]). 

Factors for one sided tolerance limits (Lieberman 1958, Bowker and 
Lieberman 1959, Owen 1963, Burrows 1964) permit, e.g., the assertion that 
at least the portion y of the population is expected to be below x + ks or 
above x - ks in 95 % of all cases, on the average. 

For sufficiently large sample size n, x ± zs are approximate tolerance 
limits. Strictly speaking, this expression holds only for n = 00. For unknown 
distributions the determination of the value k is irrelevant. In this case the 
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sample size n is chosen so as to ascertain that with confidence probability S 
the portion y of the population lies between the smallest and the largest value 
of the sample (cf., also Weissberg and Beatty 1960, Owen 1968, and Faulken
berry and Daly 1970). R. L. Kirkpatrick gives tables for sample sizes to set 
tolerance limits, one-sided and two-sided, for a normal distribution and for 
the distribution-free case (Journal of Quality Technology 9 (1977), 6-12). 

Even for distributions which are only slightly different from the normal, 
the distribution-free procedure is preferred. 

G. L. Tietjen and M. E. Johnson (Technometrics 21 (1979), 107-110) derive exact 
tolerance limits for sample variances and standard deviations arising from a normal 
distribution. 

Distribution-free tolerance limits 

If we wish that with a confidence coefficient S = 1 - IX the fraction y of the 
elements of an arbitrary population lie between the largest and the smallest 
sample value, the required sample size n can be readily estimated by means of 
Table 58, which includes sample sizes n for two sided nonparametric tolerance 

Table 58 Sample sizes n for two sided non
parametric tolerance limits 

~ 0.50 0.90 0.95 0.99 0.999 0.9999 
0.50 3 17 34 168 1679 16783 
0.80 5 29 59 299 2994 29943 
0.90 7 38 77 388 3889 38896 
0.95 8 46 93 473 4742 47437 
0.99 11 64 130 662 6636 66381 
0.999 14 89 181 920 9230 92330 
0.9999 18 113 230 1171 11751 117559 

limits which satisfy the Wilks equation (Wilks 1941, 1942) nyn-l - (n - l)yn 
= 1 - S = IX. With the confidence coefficient S, on the average at least the 
portion y of an arbitrary population lies between the largest and the smallest 
value of a random sample drawn from it. That is, in about S . 100 % of the 
cases in which samples of size n are drawn from an arbitrary population, the 
extreme values of the sample bound at least y . 100 % of the population values. 
Thus if the values of a sample are ordered by magnitude, then with an average 
confidence coefficient of S = 1 - IX at least y . 100 % of the elements of the 
population lie within the interval determined by the largest and the smallest 
value of the sample. Table 59 gives values of y for various levels of significance 
IX and sample sizes n. 
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Table 59 Distribution-free tolerance limits (taken from Wetzel, W.: Elementare 
Statistische Tabellen, Kiel 1965, Berlin, De Gruyter 1966, p. 31) 

n '\. •• n,\ 0.200 0.150 0.100 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.005 0.001 

3 0.2871 0.2444 0.1958 0.1850 0.1737 0.1617 0.1490 0.1354 0.1204 0.1036 0.0840 0.0589 0.0414 0.0184 
4 0.41750.37350.32050.30820.29500.28090.26560.2486 0.2294 0.2071 0.1794 0.1409 0.1109 0.0640 
5 0.50980.46790.4161 0.40380.39060.37620.36030.34260.32220.2979 0.2671 0.2221 0.1851 0.1220 
6 0.57760.53870.48970.47790.4651 0.4512 0.4357 0.4182 0.3979 0.3734 0.3417 0.2943 0.2540 0.1814 
7 0.6291 0.59330.54740.53630.52420.51090.49610.4793 0.4596 0.4357 0.4044 0.3566 0.3151 0.2375 
8 0.66960.63650.59380.58330.57190.55940.5453 0.5293 0.5105 0.4875 0.4570 0.4101 0.3685 0.2887 
9 0.70220.67150.63160.62180.6111 0.59930.5861 0.57090.55300.53090.50170.45600.41500.3349 

10 0.72900.70040.66320.65400.64390.63280.62020.6058 0.5888 0.5678 0.5398 0.4956 0.4557 0.3763 

11 0.75140.72470.68980.6811 0.6716 0.6611 0.6493 0.6356 0.6195 0.5995 0.5727 0.5302 0.4914 0.4134 
12 0.77040.74540.71250.70430.69540.68550.6742 0.6613 0.6460 0.6269 0.6013 0.5605 0.5230 0.4466 
13 0.78670.76320.73220.72450.71600.70660.69590.6837 0.6691 0.6509 0.6264 0.5872 0.5510 0.4766 
14 0.80080.77870.74930.74200.73400.72500.71490.7033 0.6894 0.6720 0.6485 0.6109 0.5760 0.5037 
15 0.81320.79230.76440.75750.74990.74140.73170.7206 0.7073 0.6907 0.6683 0.6321 0.5984 0.5282 
16 0.82420.80430.77780.77120.76390.75580.74670.7360 0.7234 0.7075 0.6859 0.6512 0.6186 0.5505 
17 0.83390.81500.78980.78350.77650.76880.76000.7499 0.7377 0.7225 0.7018 0.6684 0.6370 0.5708 
18 0.84260.82460.8005 0.7945 0.7879 0.7805 0.7721 0.7623 0.7507 0.7361 0.7162 0.6840 0.6537 0.5895 
19 0.85050.8332 0.8102 0.8045 0.7981 0.7910 0.7830 0.7736 0.7624 0.7484 0.7293 0.6982 0.6689 0.6066 
20 0.85760.8411 0.8190 0.B135 0.8074 0.8006 0.7929 0.7839 0.7731 0.7596 0.7412 0.7112 0.6829 0.6224 

21 0.86400.84820.8271 0.8218 0.8159 0.80930.80190.79330.78290.76990.7521 0.7232 0.6957 0.6370 
22 0.86990.85470.83440.82930.82370.81740.8102 0.80190.79190.77930.76220.73420.70760.6506 
23 0.87530.86070.84120.83620.83080.82470.8178 0.8098 0.8002 0.7880 0.7715 0.7443 0.7186 0.6631 
24 0.88030.8663 0.8474 0.8426 0.83740.83150.82490.8171 0.80780.7961 0.7800 0.7538 0.7287 0.6748 
25 0.88490.87130.8531 0.8485 0.8435 0.8378 0.8314 0.8239 0.8149 0.8035 0.7880 0.7625 0.7382 0.6858 

26 0.6960 
27 0.7056 
28 0.7146 
29 0.7231 
30 0.7311 

31 0.7387 
32 0.7458 
33 0.7526 
34 0.7590 
35 0.7651 

36 0.9191 0.90940.89620.89290.8892 0.8851 0.8804 0.8749 0.8683 0.8599 0.8484 0.8290 0.8111 0.7709 
37 0.92120.91170.89890.89560.8921 0.8880 0.8834 0.8781 0.8716 0.8635 0.8522 0.8337 0.8158 0.7764 
38 0.92320.91400.90150.89830.89480.89090.88640.8811 0.8748 0.8669 0.8559 0.8377 0.8202 0.7817 
39 0.92520.91610.90390.90080.89740.89350.88920.8840 0.8779 0.8701 0.8594 0.8416 0.8244 0.7867 
40 0.92700.91820.90620.90320.89980.89610.89180.8868 0.8808 0.8732 0.8627 0.8453 0.8285 0.7915 

41 0.92870.9201 0.90840.90550.90220.89850.89430.88940.8836 0.8761 0.8658 0.8488 0.8323 0.7961 
42 0.93040.92190.91050.90760.90440.90080.8967 0.8920 0.8862 0.8789 0.86880.8521 0.8360 0.8005 
43 0.93200.92370.91250.90970.90660.90310.89900.8944 0.8887 0.8816 0.8717 0.8554 0.8396 0.8047 
44 0.93350.92540.91450.91170.90860.90520.90120.8967 0.8911 0.8841 0.8745 0.8584 0.8430 0.8087 
45 0.93490.9270 0.9163 0.9136 0.9106 0.9072 0.9034 0.8989 0.8934 0.8866 0.8771 0.8614 0.8462 0.8126 

46 0.9363 0.9286 0.9181 0.91540.91240.9091 0.9054 0.9010 0.8957 0.8889 0.8796 0.8642 0.8493 0.8163 
47 0.93760.93000.91970.91710.91420.91100.90730.9030 0.8978 0.8912 0.8821 0.8669 0.8523 0.8199 
48 0.93890.93150.92140.91880.91600.91280.9092 0.9049 0.8998 0.8934 0.8844 0.8695 0.8552 0.8233 
49 0.94010.93280.92290.92040.91760.91450.91100.9068 0.9018 0.8954 0.8866 0.8721 0.8579 0.8266 
50 0.94130.9341 0.9244 0.9220 0.9192 0.9162 0.9127 0.9086 0.9037 0.8974 0.8888 0.8745 0.8606 0.8298 

60 0.95090.94490.9367 0.93460.93230.92980.92680.9234 0.91920.91390.90660.89440.88260.8562 
70 0.95780.95260.94560.94380.94180.93960.9370 0.9340 0.9304 0.9258 0.9195 0.9089 0.8986 0.8756 
80 0.96300.95850.9522 0.9507 0.9489 0.9470 0.9447 0.9421 0.93890.93480.9292 0.9199 0.9108 0.8903 
90 0.9671 0.9630 0.9575 0.9561 0.9545 0.9527 0.9507 0.9484 0.9455 0.9419 0.9369 0.9285 0.9203 0.9020 

100 0.97040.9667 0.96170.96040.95900.95740.95560.95340.9509 0.9476 0.9431 0.9355 0.9280 0.9114 

200 0.98510.98320.98070.98000.97930.97850.9776 0.97650.97520.97350.97120.96730.96340.9548 
300 0.9901 0.9888 0.9871 0.98670.98620.9856 0.9850 0.9843 0.9834 0.9823 0.9807 0.9781 0.9755 0.9696 
400 0.99250.99160.99030.99000.98960.98920.9887 0.9882 0.9875 0.9867 0.'9855 0.9835 0.9816 0.9772 
500 0.99400.99330.99220.99200.99170.99140.9910 0.9905 0.9900 0.9893 0.9884 0.9868 0.9852 0.9817 
600 0.99500.99440.99350.99330.9931 0.99280.99260.99210.99170.9911 0.9903 0.9890 0.9877 0.9847 

700 0.99570.99520.99450.99430.99410.99380.9936 0.9932 0.9929 0.99240.99170.99060.98940.9869 
800 0.99630.99580.9951 0.9950 0.9948 0.9946 0.9944 0.9941 0.9937 0.9933 0.9927 0.9917 0.9907 0.9885 
9nO 0.99670.99630.99570.99550.99540.99520.9950 0.9947 0.9944 0.9941 0.9935 0.9926 0.9918 0.9898 

1000 0.99700.99660.9961 0.99600.99580.99570.99550.99530.9950 0.9947 0.9942 0.9934 0.9926 0.9908 
1500 0.99800.99780.99740.99730.9972 0.9971 0.99700.99680.99670.99640.9961 0.9956 0.9951 0.9939 

EXAMPLE 1. For S = 0.80 (a = 0.20) and y = 0.90 a sample of size n = 29 
is needed. The smallest and largest value of 80 % of all random samples of 
size n = 29 enclose at least 90 % of their respective populations. 

EXAMPLE 2. The smallest and the largest sample value will enclose at least 
85 % (y = 0.85) of the respective population values on the average in 95 out of 



3.9 Distribution-Free Procedures for the Comparison of Independent Samples 285 

100 (S = 0.95 or (J( = 0.05) samples of size n = 30. If both percentages are 
set at 70 % (90 %, 95 %, 99 %), a random sample of size n = 8 (38, 93, 662) 
is required. 

Nelson (1963) (cf., Journal of Quality Technology 6 (1974), 163-164) 
provides a nomogram for a quick determination of distribution-free tolerance 
limits. Important tables are given by Danziger and Davis (1964). An ex
tensive table and nomogram for determining one sided distribution-free 
tolerance limits was presented by Belson and Nakano (1965) (cr., also Har
mann 1967 and Guenther 1970). The prediction intervals presented in Section 
3.1.1 supplement these methods. 

3.9 DISTRIBUTION-FREE PROCEDURES FOR 
THE COMPARISON OF INDEPENDENT 
SAMPLES 

The simplest distribution-free test for the comparison of two independent 
samples is due to Mosteller (1948). The two sample sizes are assumed to be 
equal (nl = n2 = n). The null hypothesis that both samples originate in 
populations with the same distribution is for n > 5 rejected at a significance 
level of 5 % if for 

n :::; 25 the 5 largest or smallest values, 

n > 25 the 6 largest or smallest values 

come from the same sample. Conover (1968) and Neave (1972) give inter
esting further developments of this test. 

The Rosenbaum quick tests 

Both tests are distribution-free for independent samples. We assume the 
sample sizes are equal: n1 = n2 = n. 

Location test. If at least 5 (of n ~ 16; (J( = 0.05) [or at least 7 (of n ~ 20; 
(J( = 0.01)] values of one sample lie below or above the span of the other 
sample, (interval determined by the smallest and the largest sample value) 
then the null hypothesis (equality of medians) is rejected with the specified 
level of significance. It is assumed that the spans differ only randomly; the 
significance levels hold for the one sided problems, while for the two sided 
case they are to be doubled (Rosenbaum 1954). 

Variability test. If at least 7 (of n ~ 25; (J( = 0.05) [or at least 10 (of n ~ 51; 
(J( = 0.01)] values of one sample (the one with the greater span; one sided 
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problem) lie outside the span of the other sample, then the null hypothesis 
(equality of variability, equality of dispersion) is rejected at the specified level 
of significance. The means are assumed to differ only randomly. If it is not 
known whether both populations have the same location parameter, then 
this test checks the location and variability of both populations. For 7 S; 

n S; 24 the 7 may be replaced by 6 (ex = 0.05); for 21 S; n S; 50 (resp. for 
11 ::;; n S; 20), the 10 by 9 (by 8 respectively) (Rosenbaum 1953). 

Both papers include critical values for the case of unequal sample sizes. 

Rank tests 

If n sample values ordered by increasing magnitude are written as X(l)' 

X(2)" •• , X(n) , so that 
,---------------------------, 
I X(l)~X(2)~ ••• ~x(i)~ .•• ~x(n) 

holds, then each of the quantities x(i) is called an order statistic. The number 
assigned to each sample value is referred to as the rank. Thus the order 
statistic X(i) is associated with the rank i. Tests in which ranks are used in 
place of sample values form a particularly important group of distribution
free tests (cf., Section 1.4.8). Rank tests surprisingly exhibit a fairly high 
asymptotic efficiency. Moreover, they require no extensive computations. 
See, e.g., W. J. Conover and R. L. Iman, The American Statistician 35 (1981), 
124-133. 

3.9.1 The rank dispersion test of Siegel and Tukey 

Since the F -test is sensitive to deviations from the normal distribution, 
Siegel and Tukey (1960) developed a distribution-free procedure based on the 
Wilcoxon test. It allows to test H 0: both samples belong to the same popula
tion against H A: the two samples come from different populations, where the 
populations are only characterized by their variability. However, the 
probability ofrejecting Ho (the null hypothesis) when the variabilities of the 
two samples are markedly different decreases with increasing difference 
between the means, i.e., the larger the difference between the means, the 
larger is also the probability of making a Type II error. This is true in par
ticular when the dispersions are small. If the populations do not overlap, the 
power is zero. This test, which is thus very sensitive to differences in variability 
when the localization parameters are almost equal, was generalized to k 
samples by Meyer-Bahlburg (1970). 

To apply this test, the combined samples (nl + n2 with n1 S; n2) are 
indexed as follows: the observed extreme values are assigned low indices and 
the central observations high ones: namely, the smallest value gets rank 1, 
the largest two values are given the ranks 2 and 3; then 4 and 5 are assigned 
to the second and the third smallest value, 6 and 7 to the third and fourth 
largest, etc. If the number of observations is odd, the middle observation is 
assigned no index, so that the highest rank is always an even number. The 
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sum of the indices (II' I z) is determined for each sample. For n1 = nz, 
I 1 ~ I z holds under the null hypothesis (H 0); the more strongly the two 
samples differ in their variability, the more different the index sums should be. 
(3.40) serves as a control for the rank sums 

(3.40) 

The authors give, for small sample sizes (nl :-:; nz :-:; 20), exact critical values 
of 11 (sums of the ranks of the smaller sample, which enable us to assess the 
differences); some are shown in the following table: 

n, 4 5 6 7 8 9 10 

n2=n, 10-26 17-38 26--52 36--69 49- 87 62-109 78-132 
n2=n,+1 11-29 18-42 27-57 38-74 51- 93 65-115 81-139 
n2=n, +2 12-32 20-45 29-61 40-79 53- 99 68-121 84-146 
n2=n, +3 13-35 21-49 31-65 42-84 55-105 71-127 88-152 
n2=n, +4 14-38 22-53 32-70 44-89 58-110 73-134 91-159 
n2=n, +5 14-42 23-57 34-74 46--94 60-116 76--140 94-166 

Ho is rejected (IX = 0.05 for two sided test, IX = 0.025 for one sided) if I, for n, :$ n2 
attains or oversteps the bounds. 

For sample sizes not to small (nl > 9, nz > 9 or n1 > 2, nz > 20) the 
dispersion difference can be dealt with with sufficient accuracy in terms of the @ 
standard normal variable: 

(3.41) 

If 211 > nt (n 1 + nz + 1), then the last + 1 in the numerator of (3.41) above 
is replaced by - 1. 

Very different sample sizes. If the sample sizes differ greatly, (3.41) is too 
inaccurate. Then the following statistic, which is adjusted for sample sizes, 
is used: 

(3.41a) 

Many values equal. If more than one-fifth of a sample is involved in ties 
with values of the other sample-ties within a sample do not interfere-then 
the denominator in the test statistic (3.41) is to be replaced by 

(3.42) 
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Here Sl is the sum of the squares of the indices of tied observations, and S2 is 
the sum of the squares of the mean indices of tied observations. For example, 
for the sequence 9.7, 9.7, 9.7, 9.7 we obtain as usual the indices 1,2,3,4 or, 
if we assign mean indices 2.5, 2.5, 2.5, 2.5 (as 1 + 2 + 3 + 4 = 2.5 + 2.5 + 
2.5 + 2.5); correspondingly the sequence 9.7, 9.7, 9.7 supplies the ranks 
1, 2, 3 and the mean ranks 2, 2, 2. 

EXAMPLE. Given the two samples A and B: 

A 10.1 7.3 12.6 2.4 6.1 8.5 8.8 9.4 10.1 9.8 

B 15.3 3.6 16.5 2.9 3.3 4.2 4.9 7.3 11.7 13.1 

test possible dispersion differences at the 5 % level. Since it is unclear whether 
the samples come from a normally distributed population, we apply the 
Siegel-Tukey test. We order the values and bring them into a common rank 
order: 

A 2.4 6.1 7.3 8.5 8.8 9.4 9.8 10.1 10.1 12.6 

B 

Value 

Sample 

Index 

2.9 3.3 3.6 4.2 4.9 7.3 11.7 13.1 15.3 16.5 

2.4 2.9 3.3 3.6 4.2 4.9 6.1 7.3 7.3 8.5 8.8 

A B B B B B A A B A A 

14589 12 13 16 17 20 19 

Value 9.4 9.8 10.1 10.1 11.7 12.6 13.1 15.3 16.5 

Sample A A A A B A B B B 

Index 18 15 14 11 10 7 6 3 2 

The index sums are found to be 

1 ... = 1 + 13 + 16 + 20 + 19 + 18 + 15 + 14 + 11 + 7 = 134, 

1B = 4 + 5 + 8 + 9 + 12 + 17 + 10 + 6 + 3 + 2 = 76, 

and their control, 

134 + 76 = 210 = (10 + 10)(10 + 10 + 1) 
2 ' 

thus we have, since (2)(134) = 268 > 210 = 10(10 + 10 + 1), 

A 2·134 - 10(10 + 10 + 1) - 1 57 
z = = -- = 2.154 

J10(1O + 10 + 1)(10/3) J700 
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or 

Z = 2·76 - 10(10 + 10 + 1) + 1 = 152 - 210 + 1 = -2.154. 

j10(10 + 10 + 1)(10/3) J700 
The probability that a random variable with a standard normal distribution 
assumes a value which is not smaller than 2.154 is, by Table 13, P = 0.0156. @ 
In short: The probability of a z-value larger than z = 2.154 is, by Table 13, 
P = 0.0156. For the two sided problem We have with P ~ 0.03, a variability 
difference statistically significant at the 5 % level (cf., also the table below 
Equation (3.40): n 1 = n2 = 10; 76 < 78 and 134 > 132). For the samples in 
question a dispersion difference of the populations is assured at the 5 % 
level. Although only 10% of the observations are involved in ties between 
the samples (7.3, 7.3; the tie 10.1, 10.1 disturbs nothing, since it occurs within 
sample A), we demonstrate the use of the" long root" (3.42): Taking all ties 
into account, with 

and 

Sl = 112 + 142 + 162 + 172 = 862, 

S2 = 12.52 + 12.52 + 16.52 + 16.52 = 857, 

j10(1O + 10 + 1)(10/3) - 4[10·10/(10 + 10)(10 + 10 - 1)](862 - 857) 

= j700 - 100/19 = j694.74 = 26.36, 

we get 

z = - 2~.~6 = -2.162 as against z = - 2.154, 

and with P(Z > 2.162) = 0.0153 again P ~ 0.03. 

3.9.2 The comparison of two independent samples: 
Tukey's quick and compact test 

Two groups of data are the more distinct, the less their values overlap. If 
one group contains the highest and another the lowest value, theILone must 
count: 

1. the a values in one group which exceed all the values in the other group, 
2. the b values in the other group which fall below all values in the first group. 

The two frequencies (each must be greater than zero) are added. This leads 
to the value of the test statistic T = a + b. If the two sample sizes are nearly 
equal, then the critical values of the test statistics are 7, 10, and 13: 

7 for a two sided test at the 5 % level, 
10 for a two sided test at the 1 % level, 
13 for a two sided test at the 0.1 % level (Tukey 1959). 
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For two equal values, 0.5 is to be taken. If we denote the two sample sizes by 
n land n2, where n 1 ::::;; n2' then the test is valid for sample sizes not too 
different, in fact precisely for 

4nl 
nl < n2 < 3 +-. - - 3 (3.43) 

In all other cases a corrective term is subtracted from the computed test 
statistic T. The adjusted statistic is then compared with 7, 10, or 13. This 
correction (3.44, 3.45) equals: 

1, (3.44) 

. n2 - n + 1 
the largest mteger ::::;; 1 , (3.45) 

nl 

For example, the condition in (3.43) is not satisfied by nl = 7 and n2 = 13, 
since 3 + (4)(7)/3 = 37/3 < 13. The inequalities in (3.44) hold; thus the 
corrective term is 1. The sample sizes nl = 4 and n2 = 14 satisfy the condition 
of (3.45); thus (14 - 4 + 1)/4 = 11/4 = 2.75 furnishes the corrective term 2. 
If the difference between the sample sizes is at least 9 (n2 - nl ;::: 9), then 
the critical value 14 is to be used in place of the value 13 for the 0.1 % level. 
Critical values for the one sided test (cr., also the beginning of Section 3.9; 
only one distribution tail is of interest, and hence only a or b) are given by 
Westlake (1971): 4 for 10 ::::;; nl = n2 ::::;; 15 and 5 for nl = n2 ;::: 16 (a = 0.05), 
and 7 for nl = n2 ;::: 20 (a = 0.01). 

EXAMPLE. The following values are available: 

A: 14.7 15.3 16.1 14.9 15.1 14.8 16.7 17.3* 14.6* 15.0 
--

B: 13.9 14.6 14.2 15.0* 14.3 13.8* 14.7 14.4 

We distinguish the highest and the lowest value of each row with an asterisk. 
There are 5 values (underlined) larger than 15.0*, and the value 15.0 in 
sample A (points underneath) is counted as half a value. There are likewise 
5 +! values not larger than 14.6*. We get T = 5! + 5! = 11. A correction 
is unnecessary, since (nl ::::;; n2 ::::;; 3 + 4nd3) 8 < 10 < 41/3. Since T = 
11 > 10, the null hypothesis (equality ofthe distribution functions underlying 
the two samples) must be rejected at the 1 % level. 

Exact critical bounds for small sample sizes are given in the original 
paper. A further development of this test is described by Neave (1966), who 
likewise provides tables (cr., also Granger and Neave 1968, as well as Neave 
and Granger 1968). A similar test is due to Haga (1960). 

The graphical version of the Tukey test is described by Sandelius (1968). 
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3.9.3 The comparison of two independent samples 
according to Kolmogoroff and Smirnoff 

If two independent samples from populations with continuous or discrete 
distributions, but both of the same type, are to be compared as to whether 
they were drawn from the same population, then the test of Kolmogoroff 
(1933) and Smirnoff (1939) applies as the sharpest homogeneity test. It 
covers all sorts of differences in the shape of the distribution, in particular 
differences in the midrange behavior (mean, median), the dispersion, the 
skewness, and the excess, i.e., differences in the distribution function (cf., also 
Darling 1957 and Kim 1969). 

The greatest observed ordinate difference between the two empirical 
cumulative distribution functions serves as a test statistic. Here the cumula
tive frequencies F 1 and F 2 (with equal class limits for both samples) are 
divided by the corresponding sample sizes nl and n2 . Then the differences 
F tlnl - F 2/n2 are computed at regular intervals. The maximum of the 
absolute values of these differences (for the two sided problem of primary 
interest: see page 702) furnishes the test statistic D: 

(3.46) 

Some percentage points of the distribution of D are tabulated (Smirnoff 
1948; also Kim 1969, and in the tables of Harter and Owen (1970 [2] Vol. 1, @ 
pp. 77-170). The critical value D can be approximated, for medium to large 
sample sizes (nl + n2 > 35), by 

(3.47) 

where K(a) represents a constant depending on the level of significance 
0( (cf., the remark in Section 4.4) as shown in Table 60. If a value fj determined 
from two samples equals or exceeds the critical value D(a) , then a significant 
difference exists between the distributions of the two populations. Siegel 
(1956) and Lindgren (1960) give a table with the 5 % and 1 % limits for small 
sample sizes. For the case of equal sample sizes (nl = n2 = n), a number of 
critical values Dn(a) from a table by Massey (1951) are listed in Table 61. The 

Table 60 

ex 0.20 0.15 0.10 0.05 0.01 0.001 

K(o) 1.07 1.14 1.22 1.36 1.63 1.95 



292 3 The Comparison of Independent Data Samples 

Table 61 Several values of Dn(a) 

" (. "1 • "2) 10 15 20 25 30 

II • 0.05 . 7/10 8/15 9/20 10/25 11/30 
two sided 
problem 
II • 0.01 8/10 9/15 11/20 12/25 13/30 

denominator gives the sample size. The numerator for non tabulated values 
of Dn(a) is found according to 

K(a)j2ii, (increased) to the next integer; 

e.g., for tx = 0.05 and n = 10 with 1.36J(2)(10) = 6.08 we get 7, i.e., D10(o.05) 

= 7/10. If a value of fj determined from two samples equals or exceeds this 
critical value Dn(a) , then a statistically significant difference is present. 

EXAMPLE. Two data sets are to be compared. Nothing is known about any 
kind of possible differences. We test the null hypothesis (equality of the 
populations) against the alternative hypothesis that the two populations 
exhibit different distributions (tx = 0.05 for the two sided problem): 

Data set 1: 2.1 3.0 1.2 2.9 0.6 2.8 1.6 1.7 3.2 1.7 

Data set 2: 3.2 3.8 2.1 7.2 2.3 3.5 3.0 3.1 4.6 3.2 

The 10 data values of each row are ordered by magnitude: 

Data set 1: 0.6 1.2 1.6 1.7 1.7 2.1 2.8 2.9 3.0 3.2 

Data set 2: 2.1 2.3 3.0 3.1 3.2 3.2 3.5 3.8 4.6 7.2 

From the frequency distributions (f1 and 12) of the two samples we get the 
cumulative frequencies F 1 and F 2 and the quotients F tin 1 and F 2/n2 (cf., 
Table 62). The largest absolute difference is fj = 6/10, a value which does not 
attain the critical value D10(o.05) = 7/10, so that the homogeneity hypothesis 
is to be retained: In light ofthe available samples there is no reason to doubt 
a common population. 

Table 62 

Region 0.0 - 0.9 1.0 - 1.9 2.0 - 2.9 3.0 - 3.9 4.0 - 4.9 5.0 - 5.9 6.0 - 6.9 7.0 - 7.9 

fl 1 4 3 2 0 0 0 0 

f2 0 0 2 6 1 0 0 1 

F 1/"1 1/10 5110 8110 10110 10/10 10/10 10/10 10110 

F2/"2 0110 0110 2110 8110 9110 9110 9/10 10/10 

FI/"I - F2/"2 1110 5110 6/10 2/10 1110 1/10 1110 0 
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Here we shall not delve further into the one sided Kolmogoroff-Smirnoff 
test [(3.47) with Ko.os = 1.22 or KO.Ol = 1.52], since with distributions ofthe 
same form it is inferior to the one sided U -test of Wilcoxon, Mann, and 
Whitney. Critical bounds for the three sample test are provided by Birnbaum 
and Hall (1960), who also tabulated the two sample test for the one sided 
question. In Section 4.4, the Kolmogoroff-Smirnoff test is used to compare @ 
an observed and a theoretical distribution. 

~ 3.9.4 Comparison of two independent samples: 
The U -test of Wilcoxon, Mann, and 
Whitney 

The rank test of Mann and Whitney (1947), based on the so-called Wilcoxon 
test for independent samples, is the distribution-free (or better, nearly 
assumption-free) counterpart to the parametric t-test for the comparison 
of the means of two continuous distributions. This continuity assumption is, 
strictly speaking, never fulfilled in practice, since all results of measurements 
are rounded-off numbers. The asymptotic efficiency of the U-test is nearly 
100(3jn) ~ 95 %, i.e., this test based on 1,000 values has about the same power 
as the t-test based on 0.95(1,000) = 950 values, when a normal distribution is 
in fact present. It is therefore to our advantage, even in the case of normal 
distributions, to apply the U-test [e.g., as a rough computation or as a 
check of highly significant t-test results in which one does not have real 
confidence]. It is assumed that samples being compared exhibit the same form 
of distribution (Gibbons 1964, Pratt 1964, Edington 1965). If not, proceed 
according to Remark 6 below. [The asymptotic efficiency of the U-test, like 
that of the H-test, cannot fall below 86.4 % for any population distribution 
(Hodges and Lehmann 1956); for the more involved tests of Van der Waerden 
(X-test, cf., 1965) and of Terry-Hoeffding and Bell-Doksum (see, e.g., 
Bradley 1968) it is at least 100%. Worked-out examples and remarks con
cerning important tables are also given by Rytz (1967, 1968) as well as Penfield 
and McSweeney (1968)]. 

The U-test of Wilcoxon, Mann, and Whitney tests against the following 
alternative hypothesis: The probability that an observation from the first 
population is greater than an arbitrary observation from the second popula
tion, does not equall The test is sensitive to differences of the medians-only 
for nl = nz , Ho: ill = ilz is tested and remarkably robust against O"i #- O"~
less sensitive to differences in skewness, and insensitive to differences in 
variance (when needed, these are tested according to Siegel and Tukey; cf., 
Section 3.9.1). 

To compute the test statistic U the (m + n) elements of the combined 
sample are doubly indexed by their rank and the population to which they 
belong (cf., Section 3.9). Let Rl be the sum of the ranks falling to sample 1, 
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and R2 the sum of the ranks falling to sample 2. The expressions in (3.48) are 
then worked out, and the computation is checked by (3.49) 

V - +m(m+1) R I-mn 2 - I, 
n(n+ 1) 

V2=mn+ 2 -R2' (3.48) 

(3.49) 

The test statistic V is the smaller of the two quantities VI and V2 

[V = min(VI' V2)]. The null hypothesis is abandoned if the computed 
value of V is less than or equal to the critical value V(m, n; a) from Table 63; 
extensive tables can be found in Selected Tables cited in [2] (Harter and Owen 
1970, Vol. 1, pp. 177-236 [discussed on pp. 171-174]). For larger sizes 
(m + n > 60) the following excellent approximation holds: 

V( .) = nm _ . [jnm(n + m + I)J m, n, C( 2 z 12 (3.50) 

Appropriate values of z for the two and the one sided question are contained 
in Table 43 in Section 2.1.6. The following approximation is used in place of 
(3.50) if one cannot or does not wish to specify an a or if no tables of the 
critical value V(m, n; a) are available, provided the sample sizes are not too 
small (m ~ 8, n ~ 8; Mann and Whitney 1947): 

IV_~nl 
z = ---;=========:=: j mn(m+n+1) 

12 

(3.51 ) 

We may rewrite (3.51) without the absolute signs in the numerator as 

J(m + n)2(m + n + 1). 
12mn 

(3.51a) 

The value 2 is compared with the critical z~-values of the standard normal 
distribution (Table 14, Section 1.3.4, or Table 43, Section 2.1.6). A V-test 
with homogeneous sample subgroups (Wilcoxon: Case III, groups of 
replicates [randomized blocks]) is discussed in greater detail by Lienert and 
Schulz (1967) and in particular by Nelson (1970). 
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EXAMPLE. Test the two samples A and B with their values ordered by size 
for equality of means against H A : IlA > IlB (one sided problem with r:J. = 

0.05): 
A: 7 14 22 36 40 48 49 52 (m = 8) [sample 1] 

B: 3 5 6 10 17 18 20 39 (n = 8) [sample 2] 

Since normality is not presumed, the t-test is replaced by the U-test, which 
compares the distribution functions and for n1 = nz the medians 
(Ho:fiA = fiB): 

Rank 

Sample 
value 

Sample 

Rl =89 
Rz =47 

1 234 

3 5 6 7 

B B B A 

4 
1+2+3 

5 6 7 8 9 10 11 12 13 14 15 16 

10 14 17 18 20 22 36 39 40 48 49 52 

B A B B B A A B A A A A 

+6 + 10+ 11 +13+14+15+16 
+5 +7+8+9 +12 

U 1 = 8·8 + 8(8 ; 1) - 89 = 11, 

8(8 + 1) 
Uz = 8· 8 + - 47 = 53 

2 ' 

U 1 + U z = 64 = mn. 

Since 11 < 15 = U(8; 8; 0.05; one sided test), the null hypothesis ilA = ilB 
is rejected; the alternate hypothesis fi A > fiB is accepted at the 5 % level. 
(3.51) with 

/
11 8.8/ 

Z = 2 = 2.205 
) 8. 8(8 + 8 + 1) 

12 
and P = 0.014 < 0.05 leads to the same decision (ZO.05:onesided = 1.645). 

89 47 

Z=J[(8+8)2+ 1J[! !J[ 8+8 ] 
12 8 + 8 (8 + 8) - 1 

8 8 

11.125 - 5.875 = 2.205. 
(8 + 8)2(8 + 8 + 1) 

(12)(8)(8) 
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Table 63 Critical values of U for the Wilcoxon-Mann
Whitney test for the one sided problem (a = 0.10) or the two 
sided problem (a = 0.20). (Taken from Milton, R. C.: An 
extended table of critical values for the Mann-Whitney 
(Wilcoxon) two-sample statistic, J. Amer. Statist. Ass. 59 
(1964), 925-934.) 

n 
m I 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 

I -
2 - -
3 - 0 I 
4 - 0 I 3 
5- 1245 
6 - I 3 5 7 9 
7 - I 4 6 8 II 13 
8 - 2 5 7 10 13 16 19 
9 0 2 5 9 12 IS 18 22 25 

10 0 3 6 10 13 17 21 24 28 32 
11 0 3 7 11 15 19 23 27 31 36 40 
12 0 4 8 12 17 21 26 30 35 39 44 49 
13 0 4 9 13 18 23 28 33 38 43 48 53 58 
14 0 5 10 IS 20 25 31 36 41 47 52 58 63 69 
IS 0 5 10 16 22 27 33 39 45 51 57 63 68 74 80 
16 0 5 11 17 23 29 36 42 48 54 61 67 74 80 86 93 
17 0 6 12 18 25 31 38 45 52 58 65 72 79 85 92 99 106 
18 0 6 13 20 27 34 41 48 55 62 69 77 84 91 98 106 113 120 
19 I 7 14 21 28 36 43 51 58 66 73 81 89 97 104 112 120 128 135 
20 I 7 IS 22 30 38 46 54 62 70 78 86 94 102 110 119 127 135 143 lSI 
21 I 8 15 23 32 40 48 56 65 73 82 91 99 108 116 125 134 142 151 160 
22 I 8 16 25 33 42 51 59 68 77 86 95 104 113 122 131 141 ISO 159 168 
23 I 9 17 26 35 44 53 62 72 81 90 100 109 119 128 138 147 157 167 176 
24 I 9 18 27 36 46 56 65 75 85 95 lOS 114 124 134 144 154 164 174 184 
25 I 9 19 28 38 48 58 68 78 89 99 109 120 130 140 lSI 161 172 182 193 
26 I 10 20 30 40 50 61 71 82 92 103 114 125 136 146 157 168 179 190 201 
27 I 10 21 31 41 52 63 74 85 96 107 119 130 141 152 164 175 186 198 209 
28 I II 21 32 43 54 66 77 88 100 112 123 135 147 158 170 182 194 206 217 
29 2 II 22 33 45 56 68 80 92 104 116 128 140 152 164 177 189 201 213 226 
30 2 12 23 35 46 58 71 83 95 108 120 133 145 158 170 183 196 209 221 234 
31 2 12 24 36 48 61 73 86 99 III 124 137 ISO 163 177 190 203 216 229 242 
32 2 13 25 37 50 63 76 89 102 lIS 129 142 156 169 183 196 210 223 237 251 
33 2 13 26 38 51 65 78 92 105 119 133 147 161 175 189 203 217 131 245 259 
34 2 13 26 40 53 67 81 95 109 123 137 lSI 166 180 195 209 224 238 253 267 
35 2 14 27 41 55 69 83 98 112 127 141 156 171 186 201 216 230 245 260 275 
36 2 14 28 42 56 71 86 lOa lIS 131 146 161 176 191 207 222 237 253 268 284 
37 2 15 29 43 58 73 88 103 119 134 ISO 166 181 197 213 229 244 260 276 292 
38 2 IS 30 45 60 75 91 106 122 138 154 170 186 203 219 235 251 268 284 301+ 
39 3 16 31 46 61 77 93 109 126 142 158 175 192 208 225 242 258 275 292 309+ 
40 3 16 31 47 63 79 96 112 129 146 163 180 197 214 231 248 265 282 300+ 317+ 

The U-test with tied ranks 

If in a sample (or combined sample), the elements of which are ranked by 
size, two or more values coincide (we speak of a tie), then they are assigned 
the same averaged rank. For example, for the two sided problem with ex = 
0.05 and the following values: 

Sample 
value 3 3 4 5 5 5 5 8 8 9 10 13 13 13 15 16 

Sample B B B B B AAA B B A A A A A B 

Rank 1.5 1.5 3 5.5 5.5 5.5 5.5 8.5 8.5 10 11 13 13 13 15 16 

the first two B-values get the rank (1 + 2)/2 = 1.5; the 4 fives each get the 
rank 5.5 = (4 + 5 + 6 + 7)/4; both eights get the rank 8.5; the value 13 
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Table 63 (1st continuation). Critical values of U for the 
Wilcoxon-Mann-Whitney test for the one sided problem 
(a = 0.05) and the two sided problem (a = 0.10) 

n 
m 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 -
2 - -
3 - - 0 
4 - - 0 1 
5 - 0 1 2 4 
6 - 0 2 3 5 7 
7 - 0 2 4 6 8 11 
8 - 1 3 5 8 10 13 15 
9 - 1 4 6 9 12 15 18 21 

10 - 1 4 7 11 14 17 20 24 27 
11 - 1 5 8 12 16 19 23 27 31 34 
12 - 2 5 9 13 17 21 26 30 34 38 42 
13 - 2 6 10 15 19 24 28 33 37 42 47 51 
14 - 3 7 11 16 21 26 31 36 41 46 51 56 61 
15 - 3 7 12 18 23 28 33 39 44 50 55 61 66 72 
16 - 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 
17 - 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 
18 - 4 9 16 22 28 35 41 48 ~5 61 68 75 82 88 95 102 109 
19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 
20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138 
21 0 5 11 19 26 34 41 49 57 65 73 81 89 97 105 113 121 130 138 146 
22 0 5 12 20 28 36 44 52 60 68 77 85 94 102 111 119 128 136 145 154 
23 0 5 13 21 29 37 46 54 63 72 81 90 98 107 116 125 134 143 152 161 
24 0 6 13 22 30 39 48 57 66 75 85 94 103 113 122 131 141 150 160 169 
25 0 6 14 23 32 41 50 60 69 79 89 98 108 118 128 137 147 157 167 177 
26 0 6 15 24 33 43 53 62 72 82 92 103 113 123 133 143 154 164 174 185 
27 0 7 15 25 35 45 55 65 75 86 96 107 117 128 139 149 160 171 182 192 
28 0 7 16 26 36 46 57 68 78 89 100 111 122 133 144 156 167 178 189 200 
29 0 7 17 27 38 48 59 70 82 93 104 116 127 138 150 162 173 185 196 208 
30 0 7 17 28 39 50 61 73 85 96 108 120 132 144 156 168 180 192 204 216 
31 0 8 18 29 40 52 64 76 88 100 112 124 136 149 161 174 186 199 211 224 
32 0 8 19 30 42 54 66 78 91 103 116 128 141 154 167 180 193 206 218 231 
33 0 8 19 31 43 56 68 81 94 107 120 133 146 159 172 186 199 212 226 239 
34 0 9 20 32 45 57 70 84 97 110 124 137 151 164 178 192 206 219 233 247 
35 0 9 21 33 ~6 59 73 86 100 114 128 141 156 170 184 198 212 226 241 255 
36 0 9 21 34 48 61 75 89 103 117 131 146 160 175 189 204 219 233 248 263 
37 0 10 22 35 49 63 77 91 106 121 135 150 165 180 195 210 225 240 255 271 
38 0 10 23 36 50· 65 79 94 109 124 139 154 170 185 201 216 232 247 263 278 
39 1 10 23 38 52 67 82 97 112 128 143 159 175 190 206 222 238 254 270 286" 
40 1 11 24 39 53 68 84 99 115 131 147 163 179 196 212 228 245 261 278 294" 

a In terms of approximate values based on the normal distribution 

occurs three times and is assigned the rank (12 + 13 + 14)/3 = 13. Ties 
influence the value V only when they arise between the two samples, not if 
they are observed within one or within both samples. If there are ties between 
the two samples, then the correct formula for the V-test with rank allocation 
and the sum S = m + n reads 

(3.52) 

In the corrective term L~= 1 (tf - t;)/12 (Walter 1951, following a suggestion 
by Kendall 1945), r stands for the number of ties, while t; denotes the 
multiplicity of the ith tie. Thus for each group (i = 1, ... , r) of ties we 
determine the number t; of occurrences of that particular tied value and 
calculate (tl - t;)/12. The sum of these r quotients forms the corrective term. 
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Table 63 (2nd continuation). Critical values of U for the 
Wilcoxon-Mann-Whitney test for the one sided problem 
(iX = 0.025) and the two sided problem (iX = 0.05) 

n 
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 -
2 - -
3 - - -
4 - - - 0 
5 - - 0 1 2 
6 - - 1 2 3 5 
7 - - 1 3 5 6 8 
8 - 0 2 4 6 8 10 13 
9 - 0 2 4 7 10 12 15 17 

10 - 0 3 5 8 11 14 17 20 23 
11 - 0 3 6 9 13 16 19 23 26 30 
12 - 1 4 7 11 14 18 22 26 29 33 37 
13 - 1 4 8 12 16 20 24 28 33 37 41 45 
14 - 1 5 9 13 17 22 26 31 36 40 45 50 55 
15 - 1 5 10 14 19 24 29 34 39 44 49 54 59 64 
16 - 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 
17 - 2 6 11 17 22 28 34 39 45 51 57 63 69 75 81 87 
18 - 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 
19 - 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 
20 - 2 8 14 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127 
21 - 3 8 15 22 29 36 43 50 58 65 73 80 88 96 103 111 119 126 134 
22 - 3 9 16 23 30 38 45 53 61 69 77 85 93 101 109 117 125 133 141 
23 - 3 9 17 24 32 40 48 56 64 73 81 89 98 106 115 123 132 140 149 
24 - 3 10 17 25 33 42 50 59 67 76 85 94 102 111 120 129 138 147 156 
25 - 3 10 18 27 35 44 53 62 71 80 89 98 107 117 126 135 145 154 163 
26 - 4 11 19 28 37 46 55 64 74 83 93 102 112 122 132 141 151 161 171 
27 - 4 11 20 29 38 48 57 67 77 87 97 107 117 127 137 147 158 168 178 
28 - 4 12 21 30 40 50 60 70 80 90 101 111 122 132 143 154 164 175 186 
29 - 4 13 22 32 42 52 62 73 83 94 lOS 116 127 138 149 160 171 182 193 
30 - 5 13 23 33 43 54 65 76 87 98 109 120 131 143 154 166 177 189 200 
31 - 5 14 24 34 45 56 67 78 90 101 113 125 136 148 160 172 184 196 208 
32 - 5 14 24 35 46 58 69 81 93 lOS 117 129 141 153 166 178 190 203 215 
33 - 5 15 25 37 48 60 72 84 96 108 121 133 146 159 171 184 197 210 222 
34 - 5 15 26 38 50 62 74 87 99 112 125 138 151 164 177 19n 203 217 230 
35 - 6 16 27 39 51 64 77 89 103 116 129 142 156 169 183 196 210 224 237 
36 - 6 16 28 40 53 66 79 92 106 119 133 147 161 174 188 202 216 231 245 
37 - 6 17 29 41 55 68 81 95 109 123 137 151 165 180 194 209 223 238 252 
38 - 6 17 30 43 56 70 84 98 112 127 141 156 170 185 200 215 230 245 259 
39 o 7 18 31 44 58 72 86 101 115 130 145 160 175 190 206 221 236 252 267 
40 o 7 18 31 45 59 74 89 103 119 134 149 165 180 196 211 227 243 258 274 

For the above example, the corrective term results from r = 4 groups 
of ties as follows: 

Group 1: tl = 2: the value 3 twice with the rank 1.5. 
Group 2: tz = 4: the value 5 four times with the rank 5.5. 
Group 3: t3 = 2; the value 8 twice with the rank 8.5. 
Group 4: t4 = 3: the value 13 three times with the rank 13. 

i=4 t~ - ti 23 - 2 43 - 4 23 - 2 33 - 3 
i~l12 = 12 + 12 + 12 + 12 

6 60 6 24 
= 12 + 12 + 12 + 12 = 8.00 

A: m = 8, Rl = 83.5 

U 1 = 8.8 + 8(8 ; 1) - 83.5 = 16.5 

B: n = 8, Rz = 52.5 

8(8 + 1) 
U z = 8 . 8 + 2 - 52.5 

Uz = 47.5 
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Table 63 (3rd continuation). Critical values of U for the 
Wilcoxon-Mann-Whitney test for the one-sided problem 
(IX = 0.01 ) and the two sided problem (IX = 0.02) 

n 
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 -
2 - -
3 - - -
4 - - - -
5 - - - 0 1 
6 - - - 1 2 3 
7 - - .0 1 3 4 6 
8 - - 0 2 4 6 7 9 
9 - - 1 3 5 7 9 11 14 

10 - - 1 3 6 8 11 13 16 19 
11 - - 1 4 7 9 12 15 18 22 25 
12 - - 2 5 8 11141721 24 28 31 
13 - 0 2 5 9 12 16 20 23 27 31 35 39 
14 - 0 2 6 10 13 17 22 26 30 34 38 43 47 
15 - 0 3 7 11 15 19 24 28 33 37 4~ 47 51 56 
16 - 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 
17 - 0 4 8 13 18 23 28 33 38 44 49 55 61) 66 71 77 
18 - 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 
19 - 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 
20 - 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114 
21 - 1 5 11 17 23 30 36 43 50 57 64 71 78 85 92 99 106 113 121 
22 - 1 6 11 18 24 31 38 45 53 60 67 75 82 90 97 105 112 120 127 
23 - 1 6 12 19 26 33 40 48 55 63 71 79 87 94 102 110 118 126 134 
24 - 1 6 13 20 27 35 42 50 58 66 75 83 91 99 108 116 124 133 141 
25 - 1 7 13 21 29 36 45 53 61 70 78 87 95 104 113 122 130 139 148 
26 - 1 7 14 22 30 38 47 55 64 73 82 91 100 109 118 127 136 146 155 
27 - 2 7 15 23 31 40 49 58 67 76 85 95 104 114 123 133 142 152 162 
28 - 2 8 16 24 33 42 51 60 70 79 89 99 109 119 129 139 149 159 169 
29 - 2 8 16 25 34 43 53 63 73 83 93 103 113 123 134 144 155 165 176 
30 - 2 9 17 26 35 45 55 65 76 86 96 107 118 128 139 150 161 172 182 
31 - 2 9 18 27 37 47 57 68 78 89 100 111 122 133 144 156 167 178 189 
32 - 2 9 18 28 38 49 59 70 81 92 104 115 127 138 150 161 173 185 196 
33 - 2 10 19 29 40 50 61 73 84 96 107 119 131 143 155 167 179 191 203 
34 - 3 10 20 30 41 52 64 75 87 99 III 123 135 148 160 173 185 198 210 
35 - 3 11 20 31 42 54 66 78 90 102 115 127 140 153 165 178 191 204 217 
36 - 3 11 21 32 44 56 68 80 93 106 118 131 144 158 171 184 197 211 224 
37 - 3 11 22 33 45 57 70 83 96 109 122 135 149 162 176 190 203 217 231 
38 - 3 12 22 34 46 59 72 85 99 112 126 139 153 167 181 195 209 224 238 
39 - 3 12 23 35 48 61 74 88 101 115 129 144 158 172 187 201 216 230 245 
40 - 3 13 24 36 49 63 76 90 104 119 133 148 162 177 192 207 222 237 252 

U 1 + U 2 = 64 = mn and 

A /16.5 -y/ 
z = J[ 8·8 ] [163 

- 16 ] 
16(16 - 1)· 12 - 8.00 

1.647 or 1.65. 

Since 1.65 < 1.96, the null hypothesis (fiA = fiB) is retained in the two sided 
problem (IX = 0.05). 

The U-test is one of the most powerful nonparametric tests. Since the test 
statistic U is a rather complicated function of the mean, the kurtosis, and the 
skewness, it must be emphasized that the significance levels (regarding the 
hypothesis on the difference of two medians or means alone) become more 
unreliable with increasing difference in the form of the distribution function 
of the two populations. 
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Table 63 (4th continuation). Critical values of U for the 
Wilcoxon-Mann-Whitney test for the one sided problem 
(ex = 0.005) and the two sided problem (ex = 0.01 ) 

n 
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 -
2 - -
3 - - -
4 - - - -
5 - - - - 0 
6---012 
7 - - - 0 134 
8 - - - 1 2 467 
9 - - 0 1 3 5 7 9 11 

10 - - 0 2 4 6 9 11 13 16 
11 - - 0 2 5 7 10 13 16 18 21 
12 - - 1 3 6 9 12 15 18 21 24 27 
13 - - 1 3 7 10 13 17 20 24 27 31 34 
14 - - 1 4 7 11 15 18 22 26 30 34 38 42 
15 - - 2 5 8 12 16 20 24 29 33 37 42 46 51 
16 - - 2 5 9 13 18 22 27 31 36 41 45 50 55 60 
17 - - 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 
18 - - 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 
19 - 0 3 7 12 17 22 28 33 39 45 51 57 63 69 74 81 87 93 
20 - 0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105 
21 - 0 3 8 14 19 25 32 38 44 51 58 64 71 78 84 91 98 105 112 
22 - 0 4 9 14 21 27 34 40 47 54 61 68 75 82 89 96 104 III 118 
23 - 0 4 9 15 22 29 35 43 50 57 64 72 79 87 94 102 109 117 125 
24 - 0 4 10 16 23 30 37 45 52 60 68 75 83 91 99 107 115 123 131 
25 - 0 5 10 17 24 32 39 47 55 63 71 79 87 96 104 112 121 129 138 
26 - 0 5 11 18 25 33 41 49 58 66 74 83 92 100 109 118 127 135 144 
27 - 1 5 12 19 27 35 43 52 60 69 78 87 96 105 114 123 132 142 151 
28 - 1 5 12 20 28 36 45 54 63 72 81 91 100 109 119 128 138 148 157 
29 - 1 6 13 21 29 38 47 56 66 75 85 94 104 114 124 134 144 154 164 
30 - 1 6 13 22 30 40 49 58 68 78 88 98 108 119 129 139 150 160 170 
31 - 1 6 14 22 32 41 51 61 71 81 92 102 113 123 134 145 155 166 177 
32 - 1 7 14 23 33 43 53 63 74 84 95 106 117 128 139 150 161 172 184 
33 - 1 7 15 24 34 44 55 65 76 87 98 110 121 132 144 155 167 179 190 
34 - 1 7 16 25 35 46 57 68 79 90 102 113 125 137 149 161 173 185 197 
35 - 1 8 16 26 37 47 59 70 82 93 105 117 129 142 154 166 179 191 203 
36 - 1 8 17 27 38 49 60 72 84 96 109 121 134 146 159 172 184 197 210 
37 - 1 8 17 28 39 51 62 75 87 99 112 125 138 151 164 177 190 203 217 
38 - 1 9 18 29 40 52 64 77 90 102 116 129 142 155 169 182 196 210 223 
39 - 2 9 19 30 41 54 66 79 92 106 119 133 146 160 174 188 202 216 230 
40 - 2 9 19 31 43 55 68 81 95 109 122 136 150 165 179 193 208 222 237 

More than two independent samples may be compared, by comparing 
the samples pairwise. A simultaneous nonparametric comparison of several 
samples can be carried out with the H-test of Kruskal and Wallis (cf., 
Section 3.9.5). A one sample test corresponding to the U-test (cf., also 
Section 4.2.4) is due to Carnal and Riedwyl (1972) (cf., G. Rey, Biometrical 
Journal 21 (1979), 259-276). The comparison of two sets of data with 
dumpings at zero is possible by means ofaX2 approximation (Lachenbruch 
1976). 

Remarks 

1. The original two sample test of Wilcoxon (cf., Jacobson 1963) is now also 
completely tabulated (Wilcoxon et al. 1963; cf., also 1964). Approximations to the 
Wilcoxon-Mann-Whitney distribution are compared by H. K. Dry in Communica
tions in Statistics-Simulation and Computation B6 (1977),181-197. 

2. Since the assignment of the ranks to large sized samples of grouped data can 
be very time-consuming Raatz (1966) has proposed a substantially simpler procedure 
which is exact if all the data fall into few classes; if few or no equal data come up, this 
test offers a good approximation. The procedure can also be applied to the H -test of 
Kruskal and Wallis. 
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Table 63 (5th continuation). Critical values of U for the 
Wilcoxon-Mann-Whitney test for the one sided problem 
(a = 0.001) and the two sided problem (a = 0.002) 

n 
m 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 -
2 - -
3 - - -
4 - - - -
5 - - - - -
6 - - - - - -
7 - - - - - 0 1 
8 - - - - 0 1 2 4 
9 - - - - 1 2 3 5 7 

10 - - - 0 1 3 5 6 8 10 
11 - - - 0 2 4 6 8 10 12 15 
12 - - - 0 2 4 7 9 12 14 17 20 
13 - - - 1 3 5 8 11 14 17 20 23 26 
14 - - - 1 3 6 9 12 15 19 22 25 29 32 
15 - - - 1 4 7 10 14 17 21 24 28 32 36 40 
16 - - - 2 5 8 11 15 19 23 27 31 35 39 43 48 
17 - - 0 2 5 9 13 17 21 25 29 34 38 43 47 52 57 
18 - - 0 3 6 10 14 18 23 27 32 37 42 46 51 56 61 66 
19 - - 0 3 7 11 15 20 25 29 34 40 45 50 55 60 66 71 77 
20 - - 0 3 7 12 16 21 26 32 37 42 48 54 59 65 70 76 82 88 
21 - - 1 4 8 12 18 23 28 34 40 45 51 57 63 69 75 81 87 94 
22 - - 1 4 8 13 19 24 30 36 42 48 54 61 67 73 80 86 93 99 
23 - - 1 4 9 14 20 26 32 38 45 51 58 64 71 78 85 91 98 105 
24 - - 1 5 10 15 21 27 34 40 47 54 61 68 75 82 89 96 104 111 
25 - - 1 5 10 16 22 29 36 43 50 57 64 72 79 86 94 102 109 117 
26 - - 1 6 11 17 24 31 38 45 52 60 68 75 83 91 99 107 115 123 
27 - - 2 6 12 18 25 32 40 47 55 63 71 79 87 95 104 112 120 129 
28 - - 2 6 12 19 26 34 41 49 57 66 74 83 91 100 108 117 126 135 
29 - - 2 7 13 2~ 27 35 43 52 60 69 77 86 95 104 113 122 131 140 
30 - - 2 7 14 21 29 37 45 54 63 72 81 90 99 108 118 127 137 146 
31 - - 2 7 14 22 30 38 47 56 65 75 84 94 103 113 123 132 142 152 
32 - - 2 8 15 23 31 40 49 58 68 77 87 97 107 117 127 138 148 158 
33 - - 3 8 15 24 32 41 51 61 70 80 91 101 III 122 132 143 153 164 
34 - - 3 9 16 25 34 43 53 63 73 83 94 105 115 126 137 148 159 170 
35 - - 3 9 17 25 35 45 55 65 76 86 97 108 119 131 142 153 165 176 
36 - - 3 9 17 26 36 46 57 67 78 89 101 112 123 135 147 158 170 182 
37 - - 3 10 18 27 37 48 58 70 81 92 104 116 127 139 151 164 176 188 
38 - - 3 10 19 28 39 49 60 72 83 95 107 119 131 144 156 169 181 194 
39 - - 4 11 19 29 40 51 62 74 86 98 110 123 136 148 161 174 187 200 
40 - - 4 11 20 30 41 52 64 76 89 101 114 127 140 153 166 179 192 206 
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3. Further special modifications of the U -test are given by Halperin (1960) and 
Saw (1966). A Wilcoxon two sample" sequential test scheme" for the comparison of 
two therapies, which reduces the number of necessary observations considerably in 
certain cases, is described by Alling (1963, cf., also Chun 1965). A modified U -test 
with improved asymptotic relative efficiency is given by H. Berchtold, Biometrical 
Journal 21 (1979), 649-655. A modified U -test for samples of possibly different 
distributions is given by J. R. Green, Biometrika 66 (1979),645-653. 

4. Two interesting two sample rank-sequential tests have been presented (Wil
coxon et al. 1963, Bradley et al. 1965, 1966). 

5. Median tests. The median test is quite simple: The combined n1 + n2 values 
from samples I and II are ordered by increasing size, the median x is determined, and 
the values in each sample are then arranged according to whether they are larger or 
smaller than the common median in the following scheme (a, b, c, d are frequencies): 

Number of occurrences 
of the value 

<x >x 
Sample I a b 

Sample II c d 
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The computation for small sample sizes (compare the more detailed material in 
Section 4.6.1) are found in Section 4.6.7 (exact test according to Fisher); for large n, 
in Section 4.6.1 (X 2 test or G-test, with or without continuity correction respectively). 
If the result is significant, the null hypothesis ill = il2 is rejected at the level employed. 
The asymptotic efficiency of the median test is 2/n c::: 64%, i.e., this test applied to 
1,000 observations has about the same power as the t-test applied to 0.64 (1,000) = 640 
observations, if in fact a normal distribution is present. For other distributions the 
proportion can be entirely different. The median test is therefore used also for rough 
estimates; moreover it serves to examine highly significant results in which one has 
little confidence. If it leads to a different result, the computations must be verified. 

The main range of application of the median test is the comparison of two medians 
when the distributions differ considerably; then the U-test is of little value. 

EXAMPLE. We use the example for the U-test (without rank allocation) and obtain 
x = 19 as well as the following fourfold table: 

<x >x 

A 2 6 

B 6 2 

which by Section 4.6.7 with P = 0.066 does not permit the rejection of the null 
hypothesis at the 5 % level. 

The testing of k rather than 2 independent samples involves the generalized 
median test. The values of the k samples are ordered by magnitude, the common 
median is determined, and it is seen how many data points in each of the k samples 
lie above the median and how many lie below the median. The null hypothesis that the 
samples originated from a common population can be tested under the assumption 
that the resulting 2 x k table is sufficiently occupied (all expected frequencies must 
be > 1) by the methods given in Sections 6.1.1,6.1.2, or 6.2.5. The alternate hypothesis 
then says: Not all k samples originate from a common population (cf., also Sachs 
1982). The corresponding optimal distribution-free procedure is the H-test of Kruskal 
and Wallis. 

6. A so-called "median quartile test," for which the combined observed values of 
two independent samples are reduced by its three quartiles: (Qj, Q2 = X, and Q3) to 
the frequencies of a 2 x 4 table is discussed by Bauer (1962). Provided the table is 

~ ~Ql ~Q2 ~Q3 >Q3 

n l 

n2 

sufficiently occupied (all expected frequencies must be > 1), the null hypothesis 
(same underlying population) is tested against the alternate hypothesis (of different 
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underlying populations) according to Section 6.1.1,6.1.2, or 6.2.5. This very useful 
test examines not only differences in location, but also differences in dispersion and 
certain differences in the shape of distributions. For an ungrouped ranked sample 
of size n, Ql and Q3 are the sample values with ranks n/4 and 3n/4 rounded to the 
next larger integer. If, e.g., n = 13, then Ql = 0.25(13) = 3.25 is the sample value 
with rank 4. This test may be generalized to three or more samples by methods given 
in Section 6.2.1 or 6.2.5. 

7. Confidence intervals for differences between medians. A confidence interval for 
the difference of two medians can be determined with the help of the U-test (Pi - P2 
= L\, with ill > il2), kmin < L\ < kmax, as follows: (1) a constant k is added to all 
values of the second sample, and a U-test is carried out using this and the first 
sample; (2) the left and right bounds of the confidence interval for L\ are the smallest 
and largest values of k (kmin' k max) which do not permit the rejection of the null 
hypothesis of the U-test for the two sided problem at the chosen significance level; 
(3) appropriate extreme values of k which barely lead to an insignificant result are 
obtained by skillful trials (beginning, say, with k = 0.1, k = I, k = 10). A thorough 
survey is given by Laan (1970). 

~ 3.9.5 The comparison of several independent 
samples: The H -test of Kruskal and Wallis 

The H-test of Kruskal and Wallis (1952) is a generalization of the U-test. 
It tests against the alternate hypothesis that the k samples do not originate 
in a common population. Like the U-test, the H-test also has an asymptotic 
efficiency of 100(3/n) ~ 95 % when compared to the analysis of variance 
procedure, which is optimal for the normal distribution (Chapter 7). The 
n = L~= 1 nj observations, random samples of ordinal data (ranked data: 
e.g., marks, grades, points) or measured data, of sizes n1, n 2 , .•. , nk from large 
populations, identical in form, with continuous or discrete distribution are 
ranked (I to n) as in the U-test. Let R j be the sum of the ranks in the ith 
sample: Under the null hypothesis the test statistic 

(3.53) 

(fi is the variance of the sample rank sums R j) has, for large n (i.e., in practice 
for nj ~ 5 and k ~ 4), a X2 distribution with k - 1 degrees of freedom; Ho 
is rejected whenever fi > Xi-l;a (cr., Table 28a, Section 1.5.2). For nj ::;; 5 
and k = 3, Table 65 below lists the exact probabilities (H 0 is rejected with P 
if fi ~ H where P ::;; a). 

To test the computations of the R;'s the relation 

k 

L Rj=n(n+ 1)/2 (3.54) 
i= 1 
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can be used. If the samples are of equal size, so that ni = njk, the following 
simplified formula is more convenient: 

(3.53a) 

If more than 25% of all values are involved in ties (i.e., come in groups of 
equal ranks), then Ii must be corrected. The formula for it adjusted for ties 
reads 

II corr 
it 

(3.55) 

where Ii stands for the respective number of equal ranks in the tie i. Since the 
corrected it value is larger than the uncorrected value, it corr need not be 
evaluated when it is significant. 

EXAMPLE. Test the 4 samples in Table 64 with the H -test (0( = 0.05). 

Table 64 Right next to the observations are the ranks 

A B C 0 

12.1 10 18.3 15 12.7 11 7.3 3 
14.8 12 49.6 21 25.1 16 1.9 1 
15.3 13 10.1 6 '/2 47.0 20 5.8 2 
11.4 9 35.6 19 16.3 14 10.1 6 '/2 
10.8 8 26.2 17 30.4 18 9.4 5 

8.9 4 

Rj 52.0 82.5 79.0 17.5 
Rr 2704.00 6806.25 6241.00 306.25 
nj 5 6 5 5 

R?/nj 540.800+ 1134.375 + 1248.200+61.250 =2984.625 = ki:,4Rj2 
n· 

i=1 I 

Inspection of the computations: 

52.0 + 82.5 + 79.0 + 17.5 = 231 = 21(21 + 1)/2, 

~ [" 12 ] H = 21(21 + 1) . [2,984.625] - 3(21 + 1) = 11.523. 
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Table 65 Significance levels for the H -test after Kruskal and Wallis 
(from Kruskal, W. H. and W. A. Wallis 1952, 1953; cf. 1975 with H- and 
P-values for 6,2,2 through 6,6,6*) 

", "2 "3 H P ", "2 "3 H P ", "2 "3 H P ", "2 "3 H P 

2 1 1 2.7000 0.500 4 3 2 6.4444 0.008 5 2 2 6.5333 0.008 5 4 4 5.6571 0.049 
6.3000 0.011 6.1333 0.013 5.6176 0.050 

2 2 1 3.6000 0.200 5.4444 0.046 5.1600 0.034 4.6187 0.100 
5.4000 0.051 5.0400 0.056 4.5527 0.102 

2 2 2 4.5714 0.067 4.5111 0.098 4.3733 0.090 
3.7143 0.200 4.4444 0.102 4.2933 0.122 5 5 1 7.3091 0.009 

3 1 1 3.2000 0.300 6.8364 0.011 
4 3 3 6.7455 0.010 5 3 1 6.4000 0.012 5.1273 0.046 

3 2 1 4.2857 0.100 6.7091 0.013 4.9600 0.048 49091 0.053 
3.8571 0.133 5.7909 0.046 4.8711 0.052 4.1091 0.OS6 

5.7273 0.050 4.0178 0.095 4.0364 0.105 
3 2 2 5.3572 0.029 4.7091 0.092 3.6400 0.123 

4.7143 0.048 4.7000 0.101 5 5 2 7.3385 0.010 
4.5000 0.067 5 3 2 6.9091 0.009 7.2692 0.010 
4.4643 0.105 4 4 1 6.6667 0.010 6.8218 0.010 5.3385 0.047 

6.1667 0.022 5.2509 0.049 5.2462 0.051 
3 3 1 5.1429 0.043 4.9667 0.048 5.1055 0.052 4:6231 0.097 

4.5714 0.100 4.8667 0.054 4.6509 0.091 4.5077 0.100 
4.0000 0.129 4.1667 0.082 4.4945 0101 

4.0667 0.102 5 5 3 7.5780 0.010 
3 3 2 6.2500 0.011 5 3 3 7.0788 0.009 7.5429 0.010 

5.3611 0.032 6.9818 0.011 5.7055 0.046 
5.1389 0.061 4 4 2 7.0364 0.006 5.6485 0.049 5.6264 0.051 
4.5556 0.100 6.8727 0.011 5.5152 0.051 4.5451 0.100 
4.2500 0.121 5.4545 0.046 4.5333 0.097 4.5363 0.102 

5.2364 0.052 4.4121 0.109 
3 3 3 7.2000 0.004 4.5545 0.098 5 5 4 7.8229 0.010 

6.4889 0.011 4.4455 0.103 5 4 1 6.9545 0.008 7.7914 0.010 
5.6889 0.029 6.6400 0.011 5.6657 0.049 
5.6000 0.050 4 4 3 7.1439 0.010 4.9856 0.044 5.6429 0050 
5.0667 0.OS6 7.1364 0.011 4.8600 0.056 4.5229 0.099 
4.6222 0.100 5.5985 0049 3.9873 0.098 4.5200 0.101 

5.5758 0.051 3.9600 0.102 
4 1 1 3.5714 0.200 4.5455 0.099 5' 5 5 8.0000 0.009 

4.4773 0.102 5 4 2 7.2045 0.009 7.9800 0.010 
4 2 1 4.8214 0.057 7.1182 0.010 5.7600 0.049 

4.5000 0.076 4 4 4 7.6538 O.OOS 5.2727 0.049 5.6600 0.061 
4.0179 0.114 7.5385 0.011 5.2882 0.050 4.5600 0.100 

5.6923 0.049 4.5409 0.098 4.5000 0.102 
4 2 2 6.0000 0.014 5.6538 0.054 4.5182 0.101 

5.3333 0.033 4.6539 0.097 6 6 6' 82222 0.010 
5.1250 0.052 4.5001 0.104 5 4 3 7.4449 0.010 8.1871 0.010 
4.4583 0.100 7.3949 0.011 6.8889 0.025 
4.1667 0.105 5 1 1 3.8571 0.143 5.6564 0.049 6.8772 0.026 

5.6308 0.050 5.8011 0.049 
4 3 1 5.8333 0.021 5 2 1 5.2500 0.036 4.5487 0.099 5.7193 0.050 

5.2OS3 0.050 5.0000 0.048 4.5231 0.103 
5.0000 0.057 4.4500 0.071 
4.0556 0.093 4.2000 0.095 5 4 4 7.7604 0.009 
3.8889 0.129 4.0500 0.119 7.7440 0.011 

A table with additional P-Ievels is included in the book by Kraft and Van Eeden (1968 
[8:1b), pp. 241-261); Hollander and Wolfe (1973 [8:1b), pp. 294-310) incorporate 
these tables and also give tables (pp.328; 334) for multiple comparisons. More critical 
values are given by W. V. Gehrlein and E. M. Saniga in Journal of Quality Technology 10 
(1978), 73-75. 

Since fl = 11.523 > 7.815 = x~; 0.05' it is assumed that the 4 samples do not 
originate in a common population. In the case of a statistically significant 
.ii-value, pairwise comparisons of the mean ranks (Rj = RJnj) follow. The 
null hypothesis, equality of both expected mean ranks, is rejected at the 5 % 
level for the difference 

2 [n(n + 1)][1 1]. 
dXk-l;0.05 12 - + - , 

nj nj' 
(3.56) 

then this difference is statistically different from zero. The value d is usually 
equal to one. If there are many ties, then d is the denominator of (3.55), the 
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corrected value, and is smaller than one. For our example we get (nA.C,D = 5; 
nB = 6) 

RD = 3.50, RA = 10.40, RB = 13.75, Rc = 15.80, 

and for ni = ni , = 5, 

[ 21(21 + 1n[1 1J 
7.815 12 J:5 +:5 = 10.97, 

whereas for ni = 5, ni, = 6, 

7.815[21(2:2+ l)JG + ~J = 10.50. 

Only D and C are statistically different at the 5 % level (15.80 - 3.50 = 
12.30 > 10.97). 

For Fisher's least significant difference multiple comparisons, computed 
on the ranks, see Conover (1980, pp. 229-237 [8: 1b]). 

Remarks (cr., also Remark 2 in Section 2.9.4) 

1. More on pairwise and multiple comparisons is found in Section 7.5.2, Sachs 
(1984, pp. 95-96) and in J. H. Skillings (1983, Communications in Statistics-Simula
tion and Computation 12, 373-387). 

2. The power of the H -test can be increased if the null hypothesis, equality of the 
means (or of the distribution functions), can be confronted with a specific alternate 
hypothesis: the presence of a certain ranking, or the descent (falling off) of the medians 
(or of the distribution functions), provided the sample sizes are equal. For a generali
zation of a one sided test, Chacko (1963) gives a test statistic which is a modified 
version of (3.53a). 

3. An H-test for the case where k heterogeneous sample groups can each be 
subdivided into m homogeneous subgroups corresponding to one another and of n 
values each is described by Lienert and Schulz (1967). 

4. Tests competing with the H-test are analyzed by Bhapkar and Deshpande 
(1968). 

5. For the case where not individual observations, but rather data pairs are given, 
Glasser (1962) gives a modification of the H-test which permits the testing of paired 
observations for independence. 

6. Two correlated samples (paired data, matched pairs) are compared in the first 
few sections of Chapter 4. The non parametric comparison of several correlated 
samples (Friedman rank test) and the parametric comparison of several means 
(analysis of variance) come later (Chapter 7). Let us emphasize that there is, among 
other things, an intimate relation between the Wilcoxon test for paired data, the 
Friedman test, and the H-test. 

7. For dealing with distributions of different form, the H-test is replaced by the 
corresponding 4 x k median-quartile test (Remark 6 in Section 3.9.4 generalized to 
more than 2 samples; see also the Sections 6.2.1 and 6.2.5). 



4 FURTHER TEST PROCEDURES 

4.1 REDUCTION OF SAMPLING ERRORS BY 
PAIRING OBSERVATIONS: PAIRED SAMPLES 

When the two different methods of treatment are to be compared for effect
iveness, preliminary information is in many cases obtained by experiments 
on laboratory animals. Suppose we are interested in two ointment pre
parations. The question arises: Does there or does there not exist a difference 
in the effectiveness of the two preparations? There are test animals at our 
disposal on which we can produce the seat of a disease. Let the measure of 
effectiveness be the amount of time required for recovery: 

1. The simplest approach would be to divide a group of test animals ran
domly into two subgroups of equal size, treat one group by method one 
and the other by method two, and then compare the results of the thera
pies. 

2. The following approach is more effective: Test animals are paired in such 
a way that the individual pairs are as homogeneous as possible with 
regard to sex, age, weight, activity, etc. The partners are then assigned 
randomly (e.g., by tossing a coin) to the two treatments. The fact that the 
experimenter hardly ever has a completely homogeneous collection of 
animals at his disposal is taken into account in this procedure. 

3. The following procedure is considerably more effective: A group of test 
animals is chosen and a so-called right-left comparison carried out. That 
is, we produce on the right and left flank of each individual (or any such 
natural homogeneous subgroup of size two, like a pair of twins or the 
two hands of the same person) two mutually independent seats of a 
disease, and allot the two treatments to the two flanks, determining by a 
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random process which is to be treated by the one method and which by the 
other (cf., also Section 7.7). 

Where does the advantage of the pairwise comparison actually lie? The 
comparison is more precise, since the dispersion existing among the various 
experimental units is reduced or eliminated. Indeed, in pairwise compari
sons-we speak of paired observations and paired samples-the number of 
degrees of freedom is decreased and the accuracy reduced. For the com
parison of means there are in the case of homogeneous variances n1 + n2 - 2 
degrees of freedom at our disposal; in contrast to this, the number of degrees 
of freedom for the paired samples equals the number of pairs, or differences, 
minus one, i.e., (nl + n2)/2 - 1. If we set n1 + n2 = n, then the ratio of the 
number of degrees of freedom for independent samples to that for paired 
samples is given by (n - 2)/(n/2 - 1) = 2/1. The number of degrees of 
freedom in the paired groups is half as large as in independent groups 
(with the same number of experimental units). Loss of degrees of freedom 
means less accuracy, but on the other hand accuracy is gained by a de
crease in the within treatment error because the variance between test 
animals (blocks) is larger than between the flanks (units in a block) of the 
single animals. In general, the larger the ratio of the variance between the 
test animals to the variance between the two flanks, the more we gain by 
using paired samples. 

Assume now that the two flanks of each of the n animals were treated differently. 
Denote the variance between sums and differences of the pairs of animals by s; 
and s; respectively. The experiment with paired samples is superior to the experi
ment on independent samples if for the same total sample size (n pairs) the following 
inequality holds: 

n(2n + 1)[(n - 1)s; + nsD 
--------'-------;:-2 > 1. 
(n + 2)(2n - 1)(2n ~ 1)Sd 

(4.0) 

The values in Table 66 furnish an example: s; = [20.04 - (9.2)2/8]/7 = 1.35; for 
s; the sum of the two treatment effects, Xi + Yi' is needed, so 

2 I (Xi + y;)2 - (I (Xi + Yi»2/n 545.60 - 65.02/8 2 
s = = = 5 

s n-1 7·' 

whence the ratio 

8 . 17[7 . 2.5 + 8 . 1.35] = 1.27 > I 
10 . 15 . 15 . 1.35 

i.e., paired observations are to be preferred for future tests as well. 

Paired samples are obtained according to the two following principles. 
The setup of experiments with replication on one and the same experimental 
unit is known. Test persons are e.g., first examined under normal conditions 
and then under treatment. Note that factors such as exercise or fatigue must 
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be eliminated. The second principle consists in the organization of paired 
samples with the help of a preliminary test or a measurable or estimable 
characteristic which is correlated as strongly as possible with the charac
teristic under study. The individuals are brought into a rank sequence on 
the basis of the preliminary test. Two individuals with consecutive ranks 
form pair number i; it is decided by a random process-by a coin toss, 
say-which partner receives which treatment. We have used 

M,l S2 J2 2 
Sx,-x2=SDiff.= -+-= SX,+SX2 nl n2 

(4.1) 

as an estimate of the standard deviation of the difference between the means 
of two independent samples [see (3.31), Section 3.6.2]. If the samples are 
not independent but correlated in pairs as described, then the standard 
deviation of the difference is reduced (when the correlation is positive) and 
we get 

(4.2) 

The size of the subtracted term depends on the size of the correlation co
efficient r, which expresses the degree of connection (Chapter 5). When 
r = 0, i.e., when sequences are completely independent of each other, the 
subtracted term becomes zero; when r = 1, i.e., with maximal correlation or 
complete dependence, the subtracted term attains its maximum and the 
standard deviation of the difference its minimum. 

4.2 OBSERVATIONS ARRANGED IN PAIRS 

If each of two sleep-inducing preparations is tested on the same patients, 
then for the number of hours the duration of sleep is extended, we have 
paired data, i.e., paired samples, also called connected samples. 

4.2.1 The t-test for data arranged in pairs 

4.2.1.1 Testing the mean of pair differences for zero 

The data in the connected samples are the pairs (Xi' yJ We are interested 
in the difference Jid of the treatment effects. The null hypothesis is Jid = 0; the 
alternative hypothesis can be Jid > 0 or Jid < 0 in the one sided test and 
Jid =1= 0 in the two sided test. Then the test statistic is given by 

DF = n - 1. (4.3) ~ 



3lO 4 Further Test Procedures 

t is the quotient of the mean of the n differences and the associated standard 
error with n - 1 degrees of freedom. The differences are assumed to come 
from random samples from an (at least approximately) normally distributed 
population. The CI (4.4) is computed always after the test. 

Simpler to handle than (4.3) is the test statistic A = I d2/(I d)2 with tabulated 
critical values A (see also Runyon and Haber 1967), which is due to Sandler (1955). 

EXAMPLE. Table 66 contains data (Xi' Yi) for material that was handled in 
two ways, i.e., for untreated (Xi) and treated (Yi) material. The material num
bers correspond to different origins. Can the null hypothesis of no treatment 
difference (no treatment effect) be guaranteed at the 5 % level? 

Table 66 

d i 
d~ No. xi Yi (x i - Y i) 1 

1 4.0 3.0 1.0 1.00 
2 3.5 3.0 0.5 0.25 
3 4.1 3.8 0.3 0.09 
4 5.5 2.1 3.4 11. 56 
5 4.6 4.9 -0.3 0.09 
6 6.0 5.3 0.7 0.49 
7 5.1 3.1 2.0 4.00 
8 4.3 2.7 1.6 2.56 

/:d; = 9.2 2 n = 8 L d; = 20.04 

We have 

9.2/8 = ~ = 2.798 or 2.80 
20.04 - 9.22/8 0.4110 

8(8 - 1) 

and, since t = 2.798 > 2.365 = t 7;O.05;twosided, the treatment difference (treat
ment effect) is statistically significant at the 5 % level. 

By comparing the completely randomized procedure (3.25), (3.31) with 
the paired sample procedure, we see that often annoying dispersions within 
the treatment groups are eliminated by the second method. Moreover the 
assumptions are weakened: the data sets X and y might be far from normally 
distributed, but the distribution of the differences will be approximately 
normal. 

The confidence interval for the true mean difference of paired observations 
is given by 

(4.4) 
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with 

a = L,d and 
n 

dl - (L, d;)2 In 
n(n - 1) 
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and a t for the two sided test. For our example the 95 % confidence interval is 
1.15 ± (2.365)(0.411) or 1.15 ± 0.97, 95% CI: 0.18;£ f1d;£ 2.12. Corres
ponding to the result of the test the value 0 is not included. One sided con
fidence limits (CL) can of course be stated too. As the upper 95 % CL we find 
with t7 ;0.05;onesided = 1.895 the value 1.15 + (1.895)(0.411) = 1.93, thus 

f1d ;£ 1.93. 

Large paired (connected) samples are frequently analyzed by distribu
tion-free tests. 

4.2.1.2 Testing the equality of variances of paired 
observations 

If a comparison is to be made of the variability of a characteristic before 
(Xi) and after (Yi) an aging process or a treatment, then the variances of two 
paired sets have to be compared. The test statistic is 

i I(Qx-Q)/)'~1 
.jIQxQ)/_(QX)/)2 

(4.5) 

~ 
~ 

with n - 2 degrees of freedom. Qx and Qy are computed according to (3.23), ~ 
(3.24). Qxy is correspondingly obtained from 

As an example, we have for 

x;l21 18 20 211~> = 80 

y;l26 33 27 341L,Y = 120 

with Qx = 6, Qy = 50, and 

(4.6) 

QXY = [(21)(26) + (18)(33) + (20)(27) + (21)(34)J - (80)(120)/4 = -6; 

A 1(6 - 50)· j4-=21 
t = J = 1.91 < 4.30 = t2 · 005' two sided' 2 . 6 . 50 - ( - 6)2 . . . 
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For the two sided problem we conclude that the null hypothesis (equality 
of the two variances) must be retained. 

For the one sided problem with 11; = 11; versus 11; < 11;, and this example, 
the critical bound would be t2 ; 0.05 ;onesided = 2.92. 

4.2.2 The Wilcoxon matched pair signed-rank test 

Optimal tests for the comparison of paired observations (of matched pairs 
of two sets of matched observations) are the t-test for normally distributed 
differences (4.3) and the Wilcoxon matched pair signed-rank test with non
normally distributed differences. This test, known as the Wilcoxon test for 
pair differences, can also be applied to ranked data. It requires, in com
parison with the t-test, substantially less computation, and it tests normally 
distributed differences with just as much power; its efficiency is around 
95 % for large and small sizes. 

The test permits us to check whether the differences for pairwise arranged 
observations are symmetrically distributed with respect to the median 
equal to zero, i.e., under the null hypothesis the pair differences d; originate 
in a population with symmetric distribution function P(d) or symmetric 
density f(d): 

Ir---H- o-: P-(-+-d-) -+-P-( --d)-=-l -o-r-f-( +-d)-=-f-(---d-),-"I 

respectively. If H 0 is rejected, then either the population is not symmetric 
with respect to the median-i.e., the median of the differences does not equal 
zero (ild =F O)-or different distributions underlie the two differently treated 
samples. Pairs with equal individual values are discarded (however, cf., 
Cureton 1967), for the n remaining pairs the differences 

I d; = Xi! - X;2 I (4.7) 

are found, and the absolute values Idd are ordered in an increasing rank 
sequence: the smallest is given the rank 1, ... , and the largest the rank n. 
Mean ranks are assigned to equal absolute values. Every rank is associated 
with the sign of the corresponding difference. Then the sums of the positive 
and the negative ranks (Rp and Rn) are formed, and the computations are 
checked by 

(4.8) 

The smaller of the two rank sums, R = min(Rlo R2), is used as test statistic. 
The null hypothesis is abandoned if the computed R-value is less than or 
equal to the critical value R(n; (J() in Table 67. For n > 25 we have the 
approximation 

R(n;(J() n(n+ 1) z. 
4 

1 
24n(n+ 1)(2n+ 1). (4.9) 
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Table 67 Critical values for the Wilcoxon matched pair signed-rank 
test: (taken from McCornack, R. L.: Extended tables of the Wilcoxon 
matched pair signed rank statistic. J. Amer. Statist. Assoc. 60 (1965), 
864-871, pp. 866 + 867) 

Test Two sided One sided Test Two sided One sided 

n 5% 1% 0.1'* 5% 1% n 5% 1% 0.1% 5% 1% 

6 0 2 56 557 484 402 595 514 
7 2 3 0 57 579 504 420 618 535 
8 3 0 5 1 58 602 525 438 642 556 
9 5 1 8 3 59 625 546 457 666 578 

10 8 3 10 5 60 648 567 476 690 600 
11 10 5 0 13 7 61 672 589 495 715 623 
12 13 7 1 17 9 62 697 611 515 741 646 
13 17 9 2 21 12 63 721 634 535 767 669 
14 21 12 4 25 15 64 747 657 556 793 693 
15 25 15 6 30 19 65 772 681 577 820 718 

16 29 19 8 35 23 66 798 705 599 847 742 
17 34 23 11 41 27 67 825 729 621 875 768 
18 40 27 14 47 32 68 852 754 643 903 793 
19 46 32 18 53 37 69 879 779 666 931 819 
20 52 37 21 60 43 70 907 805 689 960 846 
21 58 42 25 67 49 71 936 831 712 990 873 
22 65 48 30 75 55 72 964 858 736 1020 901 
23 73 54 35 83 62 73 994 884 761 1050 928 
24 81 61 40 91 69 74 1023 912 786 1081 957 
25 89 68 45 100 76 75 1053 940 811 1112 986 

26 98 75 51 110 84 76 1084 968 836 1144 1015 
27 107 83 57 119 92 77 1115 997 862 1176 1044 
28 116 91 64 130 101 78 1147 1026 889 1209 1075 
29 126 100 71 140 110 79 1179 1056 916 1242 1105 
30 137 109 78 151 120 80 1211 1086 943 1276 1136 
31 147 118 86 163 130 81 1244 1116 971 1310 1168 
32 159 128 94 175 140 82 1277 1147 999 1345 1200 
33 170 138 102 187 151 83 1311 1178 1028 1380 1232 
34 182 148 111 200 162 84 1345 1210 1057 1415 1265 
35 195 159 120 213 173 85 1380 1242 1086 1451 1298 

36 208 171 130 227 185 86 1415 1275 1116 1487 1332 
37 221 182 140 241 198 87 1451 1308 1146 1524 1366 
38 235 194 150 256 211 88 1487 1342 1177 1561 1400 
39 249 207 161 271 224 89 1523 1376 1208 1599 1435 
40 264 220 172 286 238 90 1560 1410 1240 1638 1471 
41 279 233 183 302 252 91 1597 1445 1271 1676 1507 
42 294 247 195 319 266 92 1635 1480 1304 1715 1543 
43 310 261 207 336 281 93 1674 1516 1337 1755 1580 
44 327 276 220 353 296 94 1712 1552 1370 1795 1617 
45 343 291 233 371 312 95 1752 1589 1404 1836 1655 

46 361 307 246 389 328 96 1791 1626 1438 1877 1693 
47 378 322 260 407 345 97 1832 1664 1472 1918 1731 
48 396 339 274 426 362 98 1872 1702 1507 1960 1770 
49 415 355 289 446 379 99 1913 1740 1543 2003 1810 
50 434 373 304 466 397 100 1953 1779 1578 2445 1850 
51 453 390 319 486 416 
52 473 408 335 507 434 
53 494 427 351 529 454 
54 514 445 368 550 473 
55 536 465 385 573 493 
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Appropriate values of z for the one and the two sided test can be found in 
Table 43 in Section 2.1.6. If one cannot or does not wish to specify an 0( 

(and n > 25), the following equivalent form is used instead of (4.9): 

z= 
IR n(n:l)1 

n(n+l)(2n+l) 
24 

(4.10) 

The value z is compared with the critical z-value of the standard normal 
distribution (Table 14, Section 1.3.4). The Friedman test (Section 7.6.1) 
is a generalization of this test. 

EXAMPLE. A biochemist compares two methods A and B employed for the 
determination of testosterone (male sex hormone) in urine in 9 urine samples 
in a two sided test at the 5 % level. It is not known whether the values are 
normally distributed. The values in Table 68 are given in milligrams in the 
urine secreted over 24 hours. 

Since 13.5 > 3 = R(8; 0.05), the null hypothesis cannot be rejected at 
the 5 % level. 

When ties are present (cf., Section 3.9.4), the A in (4.9; 4.10) is replaced by 

J A - B/48, where B = L:::~ (tr - t j)/12 (r = number of ties, tj = multiplicity of 
the ith tie). A review of this test and some improvements in the presence of ties is 
given by W. Buck, Biometrical Journal 21 (1979), 501-526. An extended table 
(4 ~ n ~ 100; 17 significance levels between IX = 0.45 and IX = 0.00005) is provided 
by McCornack (1965; cf., [8:4]). 

Examples of quick distribution-free procedures for evaluating the differences of 
paired observations are the very convenient maximum test and the sign test of Dixon 
and Mood, which can also be applied to other questions. 

4.2.3 The maximum test for pair differences 

The maximum test is a very simple test for the comparison of two paired 
data sets. We have only to remember that the effects of two treatments differ 
at the 10% significance level if the five largest absolute differences come from 
differences with the same sign. For 6 differences of this sort the distinction is 
significant at the 5 % level, for 8 differences at the 1 % level, and for 11 
differences at the 0.1 % level. These numbers 5, 6, 8, 11 are the critical numbers 
for the two sided problem and sample size n ~ 6. For the one sided problem, 
of course, the 5%, 2.5%, 0.5%, and 0.05% levels correspond to these num
bers. If there should be two differences with opposite signs but the same abso
lute value, they are ordered in such a way as to break a possibly existing 
sequence of differences of the same sign (Walter 1951,1958). The maximum 
test serves to verify independently the result of a t-test but does not replace it 
(Walter, 1958). 
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EXAMPLE. The sequence of differences + 3.4; + 2.0; + 1.6; + 1.0; + 0.7; 
+0.5; -0.3; +0.3 - note the unfavorable location of -0.3 - leads, with 
6 typical differences in a two sided problem, to rejection of Ho: i1d = 0 at the 
5% level. 

Remarks 

1. Assume the paired observations in Tables 66 and 68 are not (continuously) 
measured data but rather integers used for grading or scoring; equal spacing (as 

1,2,3,4,5,6, say) is not necessary. The statistic z = 0= dJIJI d;, with which the null 
hypothesis H 0 : fid = 0 can be tested, is for n ~ 10 approximately normally distri
buted; thus reject Ho at the level100cx if z > z •. 

2. A special x2-test for testing the symmetry of a distribution was introduced by 
Walter (1954): If one is interested in whether medication M influences, e.g., the LDH 
(Iactatedehydrogenase) content in the blood, then the latter is measured before 
and after administering a dose of M. If M exerts no influence, the pairwise differences 
of the measurements (on individuals) are symmetrically distributed with respect 
to zero. 

3. A straightforward nonparametric test for testing the independence of paired 
observations is described by Glasser (1962). Two examples, fully worked out, and a 
table of critical bounds illustrate the application of the method. 

4.2.4 The sign test of Dixon and Mood 

The name" sign test" refers to the fact that only the signs of differences 
between observations are evaluated. It is assumed the random variables are 
continuous. The test serves, first of all, as a quick method to recognize the 
differences in the overall tendency between the two data sets which make up 
the paired samples (Dixon and Mood 1946). In contrast with the t-test and 
the Wilcoxon test, the individual pairs need not originate in a common popula
tion; they could for example belong to different populations with regard to 
age, sex, etc. It is essential that the outcomes of the individual pairs be 
independent of each other. The null hypothesis of the sign test is that the 
differences of paired observations are on the average equal to zero; one 
expects about half of the differences to be less than zero (negative signs) and 
the other half to be greater than zero (positive signs). The sign test thus tests 
the null hypothesis that the distribution of the differences has median zero. 
Bounds or confidence bounds for the median are found in Table 69. The null 
hypothesis is rejected if the number of differences of one sign is too large or 
too small, i.e., if this number falls short of or exceeds the respective bounds 
in Table 69. Possible zero differences are ingored. The effective sample size 
is the number of nonzero differences. The probability that a certain number 
of plus signs occurs is given by the binomial distribution with p = q = t. 
The table of binomial probabilities in Section 1.6.2 (Table 33, last column, 
p = 0.5) shows that at least 6 pairs of observations must be available if in a 
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Table 69 Bounds for the sign test (from Van der Waerden (1969) 
[8:4], p. 353, Table 9) 

Two sided 5% 2% U Two sided 5% 2% U 

n = 5 0 5 0 5 0 5 n = 53 19 34 18 35 17 36 
6 1 5 0 6 0 6 54 20 34 19 35 18 36 
7 1 6 1 6 0 7 55 20 35 19 36 18 37 
8 1 7 1 7 1 7 56 21 35 19 37 18 38 
9 2 7 1 8 1 8 57 21 36 20 37 19 38 

10 2 8 1 9 1 9 58 22 36 20 38 19 39 
11 2 9 2 9 1 10 59 22 37 21 38 20 39 
12 3 9 2 10 2 10 60 22 38 21 39 20 40 
13 3 10 2 11 2 11 61 23 38 21 40 21 40 
14 3 11 3 11 2 12 62 23 39 22 40 21 41 
15 4 11 3 12 3 12 63 24 39 22 41 21 42 
16 4 12 3 13 3 13 64 24 40 23 41 22 42 
17 5 12 4 13 3 14 65 25 40 23 42 22 43 
18 5 13 4 14 4 14 66 25 41 24 42 23 43 
19 5 14 5 14 4 15 67 26 41 24 43 23 44 
20 6 14 5 15 4 16 68 26 42 24 44 23 45 
21 6 15 5 16 5 16 69 26 43 25 44 24 45 
22 6 16 6 16 5 17 70 27 43 25 45 24 46 
23 7 16 6 17 5 18 71 27 44 2.6 45 25 46 
24 7 17 6 18 6 18 72 28 44 26 46 25 47 
25 8 17 7 18 6 19 73 28 45 27 46 26 47 
26 8 18 7 19 7 19 74 29 45 27 47 26 48 
27 8 19 8 19 7 20 75 29 46 27 48 26 49 
28 9 19 8 20 7 21 76 29 47 28 48 27 49 
29 9 20 8 21 8 21 77 30 47 28 49 27 50 
30 10 20 9 21 8 22 78 30 48 29 49 28 50 
31 10 21 9 22 8 23 79 31 48 29 50 28 51 
32 10 22 9 23 9 23 80 31 49 30 50 29 51 
33 11 22 10 23 9 24 81 32 49 30 51 29 52 
34 11 23 10 24 10 24 82 32 50 31 51 29 53 
35 12 23 11 24 10 25 83 33 50 31 52 30 53 
36 12 24 11 25 10 26 84 33 51 31 53 30 54 
37 13 24 11 26 11 26 85 33 52 32 53 31 54 
38 13 25 12 26 11 27 86 34 52 32 54 31 55 
39 13 26 12 27 12 27 87 34 53 33 54 32 55 
40 14 26 13 27 12 28 88 35 53 33 55 32 56 
41 14 27 13 28 12 29 89 35 54 34 55 32 57 
42 15 27 14 28 13 29 90 36 54 34 56 33 57 
43 15 28 14 29 13 30 91 36 55 34 57 33 58 
44 16 28 14 30 14 30 92 37 55 35 57 34 58 
45 16 29 15 30 14 31 93 37 56 35 58 34 59 
46 16 30 15 31 14 32 94 38 56 36 58 35 59 
47 17 30 16 31 15 32 95 38 57 36 59 35 60 
48 17 31 16 32 15 33 96 38 58 37 59 35 61 
49 18 31 16 33 16 33 97 39 58 37 60 36 61 
50 18 32 17 33 16 34 98 39 59 38 60 36 62 
51 19 32 17 34 16 35 99 40 59 38 61 37 62 
52 19 33 18 34 17 35 100 40 60 38 62 37 63 

One sided 2.5% 1% 0.5% One sided 2.5% 1% 0.5% 

If the number of positive (say) differences falls outside the bounds, an effect is guaranteed 
at the respective level. This table is supplemented by Table 69a. 
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Table 69a 

Left bounds for the two sided test 

n 5% 1% n 5% 1% n 5% 1% n 5% 1% n 5% 1% n 5% 1% 

101 41 38 121 50 46 141 59 55 161 68 64 181 77 73 210 91 86 
102 41 38 122 50 47 142 ·59 56 162 69 65 182 78 74 220 95 91 
103 42 38 123 51 47 143 60 56 163 69 65 183 78 74 230 100 96 
104 42 39 124 51 48 144 60 57 164 69 66 184 79 75 240 105 100 
105 42 39 125 52 48 145 61 57 165 70 66 185 79 75 250 110 105 
106 43 40 126 52 49 146 61 57 166 70 66 186 80 75 260 114 109 
107 43 40 127 52 49 147 62 58 167 71 67 187 80 76 270 119 114 
108 44 41 128 53 49 148 62 58 168 71 67 188 81 76 280 124 118 
109 44 41 129 53 50 149 63 59 169 72 68 189 81 77 290 128 123 
110 45 42 130 54 50 150 63 59 170 72 68 190 82 77 300 133 128 
111 45 42 131 54 51 151 63 60 171 73 69 191 82 78 350 157 151 
112 46 42 132 55 51 152 64 60 172 73 69 192 82 78 400 180 174 
113 46 43 133 55 52 153 64 61 173 74 70 193 83 79 450 204 198 
114 47 43 134 56 52 154 65 61 174 74 70 194 83 79 500 228 221 
115 47 44 135 56 53 155 65 62 175 75 71 195 84 80 550 252 245 
116 47 44 136 57 53 156 66 62 176 75 71 196 84 80 600 276 268 
117 48 45 137 57 53 157 66 62 177 75 71 197 85 80 700 324 316 
118 48 45 138 58 54 158 67 63 178 76 72 198 85 81 800 372 364 
119 49 46 139 58 54 159 67 63 179 76 72 199 86 81 900 421 411 
120 49 46 140 58 55 160 68 64 180 77 73 200 86 82 1000 469 459 

The value of the right bound (RB) is computed from this table in terms of n and the value 
of the left bound (LB), and equals n - LB + 1. 

two sided test a decision has to be reached at the 5 % level: n = 6, x = 0 or 6. 
The tabulated P-value is to be doubled for the two sided test: P = 2(0.0156} 
= 0.0312 < 0.05. The other bounds in Table 69 are found in a similar 
manner. The efficiency of the sign test drops with increasing sample size 
from 95 % for n = 6 to 64 % as n -+ 00. We shall return to this test in Section 
4.6.3. An extensive table for the sign test (n = 1(1)1000} is given by Mac
Kinnon (1964). 

EXAMPLE. Suppose we observe 15 matched pairs in a two sided problem 
at the 5 % level, obtaining two zero differences and 13 nonzero differences, 
of which 11 have the plus and 2 the minus sign. For n = 13, Table 69 gives 
the bounds 3 and 10. Our values lie outside the limits; i.e., Ho: jid = 0 is 
rejected at the 5 % level; the two samples originated in different populations, 
populations with different medians (jid =/: 0; P < 0.05). If Tables 69 and 
69a are not at hand or are insufficient, not too small samples (n ~ 30) of 
differences can be tested by the following statistic 2, which is approximately 

@ normally distributed: 

i 12x-nl-l 

In 
(4.11) 

where x is the observed frequency of the less frequent sign and n the number 
of pairs minus the number of zero differences. 
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A modification suggested by Duckworth and Wyatt (1958) can be used 
as a quick estimate. The test statistic T is the absolute value of the difference 
of the signs [i.e., I(number of plus signs) - (number of minus signs) I]. The 
5% level of this difference corresponds to the bound 2Jn, the 10% level to 
1.6Jn, where n is the number of nonzero differences. Then, in a two sided 
te'st, the null hypothesis is rejected at the given level if t> 2Jn or f> 
1.6Jn respectively. For the example just presented the statistic is T = 11 -
2 = 9 and 2Jn = 2Ji3 = 7.21; since 9> 7.21, the conclusion is the same as 
under the maximum test. 

Confidence interval (CI) for the median (ji): the 95 % CI and 99 % CI 
for ji (see Section 3.1.4) are found for 

n :::; 100 by means of Table 69 above, 5 % and 1 % columns, according 
to LB :::; ji :::; 1 + RB; 

e.g., n = 60, 95 % CI: (22nd value) :::; ji :::; (39th value). 

n> 100 by means of Table 69a, 5% and 1 % columns, by LB :::; ji :::; 
n - LB + 1; 
e.g., n = 300, 95% CI: (133rd value) :::; ji :::; (168th value). 

The ( ) are then replaced by the corresponding ordered data values. 

REMARK: The null hypothesis of the sign test can be written Ho: P(Y > X) = t (see 
Section 1.2.5 regarding Y, X). The test is also applicable if Ho concerns a certain 
difference between or a certain percentage of X and Y. We might perhaps allow Yto 
be 10% larger than X (both positive) on the average or let Y be 5 units smaller than 
X on the average; i.e., Ho: P(Y> 1.10X) = t or Ho: P(Y> [X - 5]) = t. The 
signs of the differences Y - 1.10X or Y - X + 5, respectively, are then counted. 

Further applications of the sign test for rapid orientation 

1. Comparison of two independent samples. Should we only be interested 
in comparing two populations with respect to their central tendency 
(location differences) then the computation of the means is not necessary. 
The values of the two samples are paired at random and then the methods 
pertinent to paired samples can be applied. 

2. Testing membership for a certain population. 

EXAMPLE 1. Could the twenty-one values 13, 12, 11, 9, 12, 8, 13, 12, 11, 11, 12, 
10, 13, 11, 10, 14, 10, 10,9, 11, 11 have come from a population with arith
metic mean flo = 10 (Ho: fl = flo; H A : fl i= flo; IX = 0.05)? We count the 
values that are less than 10 and those greater than 10, form the difference, 
and test it: 

T = 14 - 3 = 11 > 8.2 = 2ji7. 
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It thus cannot be assumed that the above sample originated in a population 
with Jl.o = 10 (Ho is rejected, HA is accepted; P < 0.05) (cf., also the single 
sample test mentioned in Section 3.9.4 just before the remarks in fine print). 

EXAMPLE 2. Do the twenty values obtained in the sequence 24, 27, 26, 28, 30, 
35,33,37,36,37,34,32, 32, 29, 28, 28, 31, 28, 26, 25 come from a stable or a 
time-dependent population? To answer this question Taylor (cf., Duckworth 
and Wyatt 1958) recommended another modification of the sign test, aimed at 
assessing the variability of the central tendency within a population. First the 
median of the sample is determined; then by counting it is found how many 
successive data pairs enclose the median. We call this number x*. If a trend 
is present, i.e., if the mean (median) of the population considered changes 
with time, then x* is small compared to the sample size n. The null hypothesis 
(the presence of a random sample from some population) is rejected at the 
5% level if 

Iln-2x*-11~2~. I (4.12) 

The median of the sample with size n = 20 is x = 29t. The trend changes 
at the x* = 4 underlined pairs of numbers. We obtain n - 2x* - 1 = 
20 - 8 -1 = 11and2~ = 2J2O=1 = 8.7. Since 11 > 8.7, we con
clude at the 5 % level that the observations come from a time-dependent 
population. 

4.3 THE '1.! GOODNESS OF FIT TEST 

A beginner should read Section 4.3.2 first. 

Reasons for fitting a distribution to a set of data are: the desire for 
objectivity (the need for automating the data analysis) and interest in 
the values of the distribution parameters for future prediction in the 
absence of major changes in the system. 

Assume we have a sample from a population with unknown distribution 
function F(x) on the one hand and a well-defined distribution function 
F o(x) on the other hand. A goodness of fit test assesses the null hypothesis 
Ho: F(x) = Fo(x) against the alternate hypothesis HA: F(x) =1= Fo(x). Even 
if the null hypothesis cannot be rejected on the basis of the test, we must 
be extremely cautious in interpreting the sample in terms of the distribution 
Fo(x). 
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The test statistic (4.13), written ~2 for short, 

i (OJ - Ej )2 = i 0; - n or 
j=1 E j j=1 E j 

k ( )2 1 k 2 
L nj - npj = _ L nj - n, 

j=1 npj n j=IPj 

(4.13) 

has under Ho asymptotically (n --+ (0) a X2-distribution with v degrees of 
freedom; thus for not too small n (cf., remark below) ~2 can be compared with 
the critical values of the X~-distribution; reject H 0 at the 1()()(X %-level when 
~2 > X~.~ (Table 28a, Section 1.5.2). Here 

k = number of classes in the sample of size n; 
OJ = nj = observed frequency (occupation number) of the class i, 

k 

"n. = n' L..., , 
j=1 

E j = npj = expected frequency under H 0 (in the case of a discrete dis
tribution and a null hypothesis which prescribes hypothetical or otherwise 
given cell probabilities pj > 0, i = 1, ... , k, L~= 1 pj = 1, the observed cell 
frequencies ni are compared with the expected cell frequencies npi); 

v = k - 1 (if a total of a unknown parameters is estimated from the 
sample-e.g., the pj as pj-then v is reduced to v = k - 1 - a; e.g., a = 1 
when the sample is compared to a Poisson distribution with single parameter 
A; a = 2 when it is compared to a normal distribution with parameters 
J.l and 0'). 

F or a goodness of fit test of this sort, the total sample size must not be too 
small, and the average expected frequency under the null hypothesis must not 
fall below 5. If they do, they are increased to the required level by combining 
adjacent classes. This however is necessary only if the number of classes is 
small. For the case v ;;::: 8 and not too small sample size (n ;;::: 40), the expected 
frequencies in isolated classes may drop below 1. For n large and (X = 0.05, 
choose 16 classes. 

When computing X2 note the signs of the differences 0 - E: + and -
should not exhibit any systematic patterns. We shall take up this subject 
again in Section 4.3.4. See also Remark 3 on page 493. 

4.3.1 Comparing observed frequencies with their 
expectations 

In an experiment in genetics planned as a preliminary experiment 3 pheno
types in the proportion 1:2: 1 are expected; the frequencies 14: 50: 16 are 
observed (Table 70). Does the proportion found correspond to the 1 :2: 1 
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Table 70 Experiment in genetics 

o E 

14 20 
50 40 
16 20 

80 80 

0- E (0 - E)2 

-6 36 
10 100 
-4 16 

A 2 = \' (0 - E) t. = 
X L E 

(0 - E) 2 
E 

1.80 
2.50 
0.80 

5.10 

splitting law H 0: The observed frequencies do not differ significantly from 
their expectations? No particular significance level is fixed, since the trial 
should give us the initial information. 

Table 28 tells us that 0.05 < P < 0.10 for k - 1 = 3 - 1 = 2 DF and 
X2 = 5.10. Ho is not rejected (cf., Table 70) at the 5% level, but would be at 
the 10 % level. 

4.3.2 Comparison of an empirical distribution 
with the uniform distribution 

A die being tested is tossed 60 times. The observed frequencies (0) of the 6 
faces are: 

Number of spots on face 1 2 3 4 5 6 

Frequency 7 16 8 17 3 9 

We are dealing with a "fair" die (the probability of each outcome will be 
very close to 1/6). Thus the null hypothesis predicts for each outcome a 
theoretical or [under HoJ expected frequency (E) of 10, a so-called uniform 
distribution. We test at the 5 % level and by (4.13) get 

2 _ ,,(0 - E)2 _ (7 - 10)2 (16 - 10)2 ... (9 - 10)2 
X - ~ E - 10 + 10 + + 10 . 

X2 = 14.8, a value larger than the tabulated X2 value (11.07 from Table 28a) 
for k - 1 = 6 - 1 = 5 degrees of freedom and IX = 0.05: H 0 is rejected (see 
also Sections 4.4 and 6.2.5) at the 5 % level. 

4.3.3 Comparison of an empirical distribution 
with the normal distribution 

Experience indicates that frequency distributions from scientific data, data 
sequences, or frequencies seldom resemble normal distributions very much. 
The following procedures are thus particularly useful in practice if the 
normal probability plot method is too inaccurate. If n independent observa-
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tions of a random variable are available we may wish to know whether this 
sample has been drawn from a normal population. It is impossible to con
clude this definitely. All we can hope for is to be in a position to determine 
when the population is probably not normal. Three tests for departure 
from normality are (1) the chi-square goodness of fit test, (2) the method 
based on the standardized 3rd and 4th moments, and especially (3) the 
Liliefors method with the Kolmogoroff-Smirnoff goodness of fit test (Sec
tion 4.4). 

We give a simple numerical example for (1): Column 1 of the following 
Table gives the class means x, the class width b being b = 1. The observed 
frequencies are listed in column 2. The 3rd, 4th, and 5th columns serve for 
computing x and s. Columns 6, 7, and 8 indicate the sequence of computa-
tions necessary to determine the probability density of the standard normal 
variable Z at Z = z (Table 20). The multiplication by the constant K in @ 
column 9 adjusts the overall number of expected frequencies. Classes with 
E < 1 are combined with adjacent classes. For the table on page 324 we have 
then k = 5 classes. From the classified data x and swe estimate a = 3 DF are 
necessary. [For x and s computed from the unclassified values we would 
need 2 DF; if J1 or (J is known, then we only need 1 DF.] So we have 
2 = k - 1 - a = 5 - 1 - 3 = 1 DF. With 2.376 < 2.701 = XtO.l0 there 
is no objection to the hypothesis of normality. This refers to our simple 
numerical example. We note the loss of sensitivity through grouping together 8 
small tail frequencies. 

In the practical case this test for nonnormality calls for 

1. n ~ 60, 
2. k ~ 7, 
3. rx = 0.10 or 0.05 or 0.01. 

A similar procedure for the comparison of an empirical distribution with a 
lognormal distribution is described by Croxton and Cowden (1955, pp. 
616-619). 

J. S. Ramberg et al. (Technometrics 21 (1973), 201-214) present a four-parameter 
probability function and a table facilitating parameter estimation using the first 
four sample moments. A wide variety of curve shapes is possible with this distri
bution. Moreover it gives good approximations to normal, lognormal, Wei bull, and 
other distributions. An example is given with the moments, calculated, e.g., by (1.106) 
through (1.109), the four lambda values, the histogram, the probability density curve 
corresponding to the lambda values, the observed and expected frequencies, and the 
l goodness of fit test. 

Rule of thumb. When 0.9 < (Xix) < 1.1 and 3s < x, a sample distribution 
is assumed to be approximately normally distributed. 

With the presented data and Equation (1.70) we have x = 2.5 + 1 {([ 40/2] -
5)/16} = 3.4375 or 3.44 and x/x = 3.44/3.60 = 0.956 or 0.96; 0.9 < 0.96 < 1.1 and 
3s = 3·1.127 = 3.381 < 3.60 = x. 
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Quantiles of the normal distribution. It is sometimes worthwhile to consider the 
deciles and other quantiles of a normal distribution (cf. Sections 1.3.4 and 1.3.8.3: 
DCs = Q2 = J1.): 

Deciles: DC 1;9 = J1. =+= 1.282..,., DC2 ;s = J1. =+= 0.842..,., 
DC3 ;? = J1. =+= 0.525..,., DC4 ;6 = J1. =+= 0.253..,.. 

Quartiles: Q1;3 = J1. =+= 0.674..,.. 

Nonnormality due to skewness and kurtosis 

A distribution may depart from a null hypothesis of normality by skewness 
or kurtosis or both (see Section 1.3.8.7). Table 71 contains percentiles for 
the tails of the distribution of the standardized third and fourth moments 
[cf., (1.97), (1.98)J: 

(4.14) 

(4. 14a) 

for a normal distribution. The expected values for a normal population are 

y1f; = a3 = 0, 

{32 = 3 [or a4 = {32 - 3 = 0]. 

(4.15) 

(4. 15a) 

Departure of .jb; from zero is an indication of skewness in the sample 
population, while departure of b2 from the value 3 is an indication of kur
tosis. Moments lying outside the values of Table 71 give evidence for non
normality due to skewness and nonnormality due to kurtosis. Table 71a 
gives 15 examples. 

A decision on whether to apply a parametric procedure (preliminary 
test, cf., Section 3.5.1) should be reached at the 10% significance level. 

A very simple method of rapidly testing a sample for nonnormality is due to 
David et al. (1954). These authors have studied the distribution of the ratios 

range R 

standard deviation s 
(4.16) 
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Table 71 Lower and upper percentiles of the standardized 3rd 
and 4th moments, ~ and b 2 , for tests for departure from 
normality. [From Pearson, E. S. and H. O. Hartley (Eds.): Bio
metrika Tables for Statisticians. Vol. I 3rd ed., Cambridge Univ. 
Press 1970, pp. 207-8, Table 34 Band C and from D'Agostino, 
R. B. and G. L. Tietjen (a): Approaches to the null distribution of 
V'b,. Biometrika 60 (1973), 169-173, p. 172, Table 2. (b) 
Simulation probability points of b 2 for small samples. Biometrika 
58 (1971), 669-672, p. 670, Table 1; and from F. Gebhardt: 
Verteilung und Signifikanzschranken des 3 und 4. Stichpro
benmomentes bei normalverteilten Variablen. Biom. Z. 8 (1966), 
219-241, p. 235, Table 4, pp. 238, 239, Table 6.] 

Skewness [Vb, 1 Kurtosis [b 2 l 

Size Upper percentiles Lower percentiles Upper percentiles 
of sample 

n 10% 5% 1% 1% 5% 10% 10% 5% 1% 

7 0.787 1.008 1.432 1.25 1.41 1.53 3.20 3.55 4.23 
10 0.722 0.950 1.397 1.39 1.56 1.68 3.53 3.95 5.00 
15 0.648 0.862 1.275 1.55 1.72 1.84 3.62 4.13 5.30 
20 0.593 0.777 1.152 1.65 1.82 1.95 3.68 4.17 5.36 
25 0.543 0.714 1.073 1.72 1.91 2.03 3.68 4.16 5.30 
30 0.510 0.664 0.985 1.79 1.98 2.10 3.68 4.11 5.21 
35 0.474 0.624 0.932 1.84 2.03 2.14 3.68 4.10 5.13 
40 0.45 0.587 0.870 1.89 2.07 2.19 3.67 4.06 5.04 

45 0.43 0.558 0.825 1.93 2.11 2.22 3.65 4.00 4.94 
50 0.41 0.534 0.787 1.95 2.15 2.25 3.62 3.99 4.88 
70 0.35 0.459 0.673 2.08 2.25 2.35 3.58 3.88 4.61 
75 0.34 - - 2.08 2.27 - - 3.87 4.59 

100 0.30 0.389 0.567 2.18 2.35 2.44 3.52 3.77 4.39 
125 - 0.350 0.508 2.24 2.40 2.50 3.48 3.71 4.24 
150 0.249 0.321 0.464 2.29 2.45 2.54 3.45 3.65 4.13 
175 - 0.298 0.430 2.33 2.48 2.57 3.42 3.61 4.05 

200 0.217 0.280 0.403 2.37 2.51 2.59 3.40 3.57 3.98 
250 - 0.251 0.360 2.42 2.55 2.63 3.36 3.52 3.87 
300 0.178 0.230 0.329 2.46 2.59 2.66 3.34 3.47 3.79 
400 - 0.200 0.285 2.52 2.64 2.70 3.30 3.41 3.67 
500 0.139 0.179 0.255 2.57 2.67 2.73 3.27 3.37 3.60 
700 - 0.151 0.215 2.62 2.72 2.77 3.23 3.31 3.50 

1000 0.099 0.127 0.180 2.68 2.76 2.81 3.19 3.26 3.41 
2000 0.070 0.090 0.127 2.77 2.83 2.86 3.14 3.18 3.28 

Since the sampling distribution of Vb, is symmetrical about zero, the same values, 
with negative sign, correspond to the lower percentiles. The dash (-) symbolizes 
yet unknown percentiles. 
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Table 72 Critical values for the quotient R/s. If in a sample the ratio of 
the range of the standard deviation, R/s, is less than the lower bound or 
greater than the upper bound, then we conclude at the given significance 
level that the sample does not come from a normally distributed popula
tion. If the upper critical bound is exceeded, mavericks are usually 
present. The 10% bounds are especially important. (From Pearson, 
E. S. and Stephens, M. A.: The ratio of range to standard deviation in 
the same normal sample. Biometrika 51 (1964) 484-487, p. 486, 
table 3.) 

Sample Lower bounds Upper bounds 
size Significance level IX 

=n 0.000 0.005 0.01 0.025 0.05 0.10 0.10 0.05 0.025 0.01 0.005 0.000 
3 1. 732 1. 735 1. 737 1. 745 1. 758 1. 782 1.997 1.999 2.000 2.000 2.000 2.~00 
4 1. 732 1.83 1.87 1. 93 1.98 2.04 2.409 2.429 2.439 2.445 2.447 2.449 
5 1.826 1.98 2.02 2.09 2.15 2.22 2.712 2.753 2.782 2.803 2.813 2.828 
6 1.826 2.11 2.15 2.22 2.28 2.37 2.949 3.012 3.056 3.095 3.115 3.162 
7 1.871 2.22 2.26 2.33 2.40 2.49 3.143 3.222 3.282 3.338 3.369 3.464 
8 1.871 2.31 2.35 2.43 2.50 2.59 3.308 3.399 3.471 3.543 3.585 3.742 
9 1.897 2.39 2.44 2.51 2.59 2.68 3.449 3.552 3.634 3.720 3.772 4.000 

10 1.897 2.46 2.51 2.59 2.67 2.76 3.57 3.685 3.777 3.875 3.935 4.243 
11 1. 915 2.53 2.58 2.66 2.74 2.84 3.68 3.80 3.903 4.012 4.079 4.472 
12 1.915 2.59 2.64 2.7Z 2.80 2.90 3.78 3.91 4.02 4.134 4.208 4.690 
13 1. 927 2.64 2.70 2.78 2.86 2.96 3.87 4.00 4.12 4.244 4.325 4.899 
14 1.927 2.70 2.75 2.83 2.92 3.02 3.95 4.09 4.21 4.34 4.431 5.099 
15 1.936 2.74 2.80 2.88 2.97 3.07 4.02 4.17 4.29 4.44 4.53 5.292 
16 1. 936 2.79 2.84 2.93 3.01 3.12 4.09 4.24 4.37 4.52 4.62 5.477 
17 1.944 2.83 2.88 2.97 3.06 3.17 4.15 4.31 4.44 4.60 4.70 5.657 
18 1.944 2.87 2.92 3.01 3.10 3.21 4.21 4.37 4.51 4.67 4.78 5.831 
19 1.949 2.90 2.96 3.05 3.14 3.25 4.27 4.43 4.57 4.74 4.85 6.000 
20 1.949 2.94 2.99 3.09 3.18 3.29 4.32 4.49 4.63 4.80 4.91 6.164 
25 1.961 3.09 3.15 3.24 3.34 3.45 4.53 4.71 4.87 5.06 5.19 6.93 
30 1.966 3.21 3.27 3.37 3.47 3.59 4.70 4.89 5.06 5.26 5.40 7.62 
35 1.972 3.32 3.38 3.48 3.58 3.70 4.84 5.04 5.21 5.42 5.57 8.25 
40 1.975 3.41 3.47 3.57 3.67 3.79 4.96 5.16 5.34 5.56 5.71 8.83 
45 1.978 3.49 3.55 3.66 3.75 3.88 5.06 5.26 5.45 5.67 5.83 9.38 
50 1.980 3.56 3.62 3.73 3.83 3.95 5.14 5.35 5.54 5.77 5.93 9.90 
55 1.982 3.62 3.69 3.80 3.90 4.02 5.22 5.43 5.63 5.86 6.02 10.39 
60 1.983 3.68 3.75 3.86 3.96 4.08 5.29 5.51 5.70 5.94 6.10 10.86 
65 1.985 1.74 3.80 3.91 4.01 4.14 5.35 S.57 5.77 6.01 6.17 11. 31 
70 1.986 3.79 3.85 3.96 4.06 4.19 5.41 5.63 5.83 6.07 6.24 11. 75 
75 1.987 3.83 3.90 4.01 4.11 4.24 5.46 5.68 5.88 6.13 6.30 12.17 
80 1.987 3.88 3.94 4.05 4.16 4.28 5.51 5.73 5.93 6.18 6.35 12.57 
85 1.988 3.92 3.99 4.09 4.20 4.33 5.56 5.78 5.98 6.23 6.40 12.96 
90 1. 989 3.96 4.02 4.13 4.24 4.36 5.60 5.82 6.03 6.27 6.45 13.34 
95 1.990 3.99 4.06 4.17 4.27 4.40 5.64 5.R6 6.07 6.32 6.49 13.71 

100 1.990 4.03 4.10 4.21 4.31 4.44 5.68 5.90 6.11 6.36 6.53 14.07 
150 1.993 4.32 4.38 4.48 4.59 4.72 5.96 6.18 6.39 6.64 6.82 17.26 
200 1.995 4.53 4.59 4.68 4.78 4.90 6.15 6.39 6.60 6.84 7.01 19.95 
500 1.998 5.06 5.13 5.25 5.37 5.49 6.72 6.94 7.15 7.42 7.60 31. 59 

1000 1.999 5.50 5.57 5.68 5.79 5.92 7.11 7.33 7.54 7.80 7.99 44.70 

in samples of size n from a normally distributed population with standard 
deviation (1. They give a table of critical bounds for these ratios. If the 
quotient does not lie between the tabulated critical values, then the hypo
thesis of normality is rejected at the respective significance level. Extensive 
tables for this procedure, which can also be interpreted as a homogeneity 
test, were presented by Pearson and Stephens (1964). 

Applying these methods to the example n = 40, R = 5, s = 1.127, we get 
the test ratio R/s = 5/1.127 = 4.44. 

For n = 40 Table 72 gives the bounds in Table 73. 
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Table 73 

rx Region 

0% 1.98-8.83 
1% 3.47-5.56 
5% 3.67-5.16 

10% 3.79-4.96 

Our ratio lies within even the smallest of these regions. The test allows, 
strictly speaking, only a statement on the range of the sample distribution. 
The present data are in fact approximately normally distributed. 

Let us emphasize that the lower bounds for a significance level IX = 0 % 
for n ~ 25 lie above 1.96 and below 2.00 (e.g., 1.990 for n = 100); the upper 
0% bounds can be readily estimated by J2(n - 1) (e.g., 4 for n = 9); these 
bounds (IX = 0.000) hold for arbitrary populations (Thomson 1955). 

In addition to the D'Agostino test for nonnormality referred to in Section 3.1.3, 
let us in particular mention the W-test of Shapiro and Wilk (1965, 1968, cr., also Wilk 
and Shapiro 1968); methodology and tables can also be found in Vol. 2 of the Bio
metrika Tables (Pearson and Hartley 1972 [2], pp. 36-40,218-221). 

4.3.4 Comparison of an empirical distribution with 
the Poisson distribution 

We take the example that deals with getting kicked by a horse (Table 40), 
combine the three weakly occupied end classes, and obtain Table 74. There 
are k = 4 classes; a = 1 parameter was estimated (A by A = x). Thus we 
have v = k - 1 - a = 4 - 1 - 1 = 2 DF at our disposal. The x2-value 
found, X2 = 0.319, is so low (X~;O.05 = 5.991) that the agreement must be 8 
regarded as good. 

Table 74 

0 E 0- E (0 - E)2 (0 - E)2/E 

109 10S.7 0.3 0.09 0.001 
65 66.3 -1.3 1.69 0.025 
22 20.2 1.S 3.24 0.160 

4 4.S -O.S 0.64 0.133 

200 200.0 0 ... 2 
x = 0.319 

The last examples are distinguished by the fact that a larger number of 
classes can arise. The run test allows us to determine whether the signs of 
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the differences 0 - E can be considered random or due to some nonrandom 
influences. There is of course a difference between the case where this sign 
is frequently or almost always positive or negative, and the case where both 
signs occur about equally often and at random. For given differences 0 - E, 
the more regular the change in sign, the better is the fit (cf., also the test due 
to David 1947). 

4.4 THE KOLMOGOROFF-SMIRNOFF 
GOODNESS OF FIT TEST 

The test of Kolmogoroff (1941) and Smirnoff (1948) (cr., Section 3.9.3) tests 
how well an observed distribution fits a theoretically expected one (cr., 
Massey 1951). This test is distribution-free; it corresponds to the X2 goodness 
of fit test. The Komogoroff-Smirnoff test (K-S test) is more likely to de
tect deviations from the normal distribution, particularly when sample 
sizes are small. The X2 test is better for detecting irregularities in the distribu
tion, while the K -S test is more sensitive to departures from the shape of 
the distribution function. This test is, strictly speaking, derived for con
tinuous distributions. It is nevertheless applicable to discrete distributions 
(cr., e.g. Conover 1972). The null hypothesis that the sample originated in a 
population with known distribution function F o(x) is tested against the 
alternate hypothesis that the population underlying the sample does not 
have F o(x) as its distribution function. One determines the absolute fre
quencies E expected under the null hypothesis, forms the cumulative fre
quencies of these values, namely FE, and of the observed absolute frequencies 
0, namely F 0, and then forms the differences F 0 - FE and divides the 
difference largest in absolute value by the sample size n. The test ratio 

I fj ~ maxlF: - FEI (4.17) 

(for relative frequencies D = max IF 0 - FE I) is, for sample sizes n > 35, 
assessed by means of the critical values in Table 75. 

Table 75 

Bounds for D Significance level IX 

1.073/vn 0.20 

1.138/..;ri 0.15 

1.224/v""il 0.10 

1.358/v""il 0.05 

1.628/..;ri 0.01 

1.949/v""il 0.001 



4.4 The Kolmogoroff-Smirnoff Goodness of Fit Test 

Table 76 Critical values of D for the Kolmogoroff-Smirnoff good
ness of fit test (from Miller, L. H.: Table of percentage points of 
Kolmogorov statistics. J. Amer. Statist. Assoc. 51 (1956), 
111-121,113-115, part of Table 1) 

n 00 . 10 00 . 05 n 00 . 10 00 •05 n 00 •10 00 •05 n ~o .10 00 . 05 

3 0.636 0.708 23 0.247 0.275 13 0.325 0.361 3 0.208 0.231 
4 0.565 0.624 24 0.242 0.269 14 0.314 0.349 34 0.205 0.227 
5 0.509 0.563 25 0.238 0.264 15 0.304 0.338 35 0.202 0.224 
6 0.468 0.519 26 0.233 0.259 16 0.295 0.327 36 0.199 0.221 
7 0.436 0.483 21 0.229 0.254 17 0.286 0.318 37 0.196 0.218 
8 0.410 0.454 ~~ 

0.225 0.250 18 0.278 0.309 38 0.194 0.215 
9 0.387 0.430 0.221 0.246 19 0.271 0.301 39 0.191 0.213 

10 0.369 0.409 i~ 0.218 0.242 20 0.265 0.294 40 0.189 0.210 
11 0.352 0.391 0.214 0.238 21 0.259 0.287 50 0.170 0.188 
12 0.338 0.375 32 0.211 0.234 22 0.253 0.281 100 0.121 0.134 

331 

Critical bounds for smaller sample sizes can be found in the tables by Massey 
(1951) and Birnbaum (1952). Miller (1956) gives exact critical values for 
n = 1 to 100 and tX = 0.20,0.10,0.05,0.02 and 0.01. The particularly impor
tant 10 % and 5 % bounds for small and moderate sample sizes are here 
reproduced with three decimals (Table 76). An observed V-value which 
equals or exceeds the tabulated value is significant at the corresponding 
level. For other values of tx, the numerator of the bound is obtained from 
J -0.51n(tX/2) (called K(a) in Section 3.9.3); e.g., tx = 0.10, In(0.10/2) = 
In 0.05 = - 2.996 (Section 1.5.2, Table 29; or Section 0.2), i.e., 

J ( - 0.5)( - 2.996) = 1.224. 

If the sample distribution is compared with a normal distribution, the para
meters of which have to be estimated from the sample values, then the 
results based on Table 75 are very conservative; exact bounds for this 
K - S test are presented by Lilliefors (1967). Some D-values: 

n 10% 5% 1% 

5 0.315 0.337 0.405 
8 0.261 0.285 0.331 

10 0.239 0.258 0.294 
12 0.223 0.242 0.275 
15 0.201 0.220 0.257 
18 0.184 0.200 0.239 
20 0.174 0.190 0.231 
25 0.158 0.173 0.200 
30 0.144 0.161 0.187 

For n > 30 we have accordingly 0.805/Jn (tx = 0.10), 0.866/J~ (tx = 0.05), 

and 1.031/Jn (tx = 0.01). The comparison ofthe sample distribution with an 
exponential distribution is considered by Finkelstein and Schafer (1971). 
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EXAMPLE 1. We use the example of Section 4.3.3. The computations are 
shown in Table 77. The test 2.55/40 = 0.063 < 0.127 = 0.805/.j40 leads to 
the same result: The null hypothesis cannot be rejected at the 10% level. 

Table 77 

0 1 4 16 10 7 2 
E 0.98 5.17 12.30 13.32 6.56 1.47 

Fa 1 5 21 31 38 40 
F 

E 
0.98 6.15 18.45 31.77 38.33 39.80 

1Fa - FEI 0.02 1.15 2.55 0.77 0.33 0.20 

EXAMPLE 2. A die is tossed 120 times for control. The frequencies for the 6 
faces are 18,23, 15,21,25, 18. Do the proportions found correspond to the 
null hypothesis of a fair die? In Table 78 we test with IX = 0.01 the frequencies 
arranged in order of increasing magnitude: 15, 18, 18, 21, 23, 25. Since 

9/120 = 0.075 < 0.1486 = 1.628/Ji20 = D120;O.Ol' the null hypothesis is 
not rejected. 

Table 78 

20 
15 

5 

40 
33 

7 

60 
51 

9 

80 
72 

8 

100 
95 

5 

120 
120 

o 

Let us note that-strictly speaking-the x2-test requires an infinitely 
large sample size n, and the K-S goodness of fit test requires infinitely 
many classes k. Still, both tests can be employed even for small samples with 
few classes (n ;::: 10, k ;::: 5) as was clearly shown by Slakter (1965); none
theless the X2 goodness of fit test or the corresponding likelihood ratio 
21 test (cf., Section 6.2.5) is preferred in these cases. All three goodness of 
fit tests assess only the closeness of the fit. The knowledge of the "randomness 
of the fit" is lost. There is of course a difference between the case where, for 
example for the x2-test, the differences 0 - E almost without exception 
have positive resp. negative values and where both signs appear randomly. 
The more regularly the signs change, the better is the fit with given deviations 
o - E. A simple means of testing the randomness of a fit is provided by the 
run test (cf., Section 4.7.2). 

Other important goodness of fit tests (cf., also Darling 1957) are due to 
David (1950; cf., also Nicholson 1961, as well as the one and the two sample 
empty field test with the tables and examples in Csorgo and Guttman 1962) 
and to Quandt (1964, 1966); cf., also Stephens (1970). 
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4.5 THE FREQUENCY OF EVENTS 

4.5.1 Confidence limits of an observed frequency 
for a binomially distributed population. The 
comparison of a relative frequency with the 
underlying parameter 

If x denotes the number of successes in n Bernoulli ("either- or," "success
failure") trials, then p = x/n is the relative frequency. The percentage fre
quency of hits in the sample is 

ft% = ~100 with n ;;::: 100, 
n 

(4.18) 

for n < 70 "x out of n" or x/n is given, (for n ;;::: 70 you may write, if needed 
for a comparison, "(p%)," e.g., 29/80 = 0.3625, written as "(36%)"), for 
percentage with 70 ;$ n < 150 places beyond the decimal point are ignored, 
the first two being included only from about n = 2,000 on. Example: p = 
20/149 = 13.42 % is stated as a relative frequency of 0.13 or as 13 %. 

Confidence intervals (cr., Sections 1.4.1, 3.1.1, 3.2, 3.6.2) of the binomial 
distribution are given by Crow (1956), Blyth and Hutchinson (1960), 
Documenta Geigy (1968, pp. 85-98), Pac hares (1960 [8: 1]) and especially 
Blyth and Still (1983). Figure 38 in Section 4.5.2 or the table on page 703 
frequently serves as an outline. 

Exact two sided limits, the upper and lower limits (1l:j , 1l:u), for the con
fidence interval (CI) of the parameter 1l: [cr., (4.19)] 

I CI: 1l: I ~ 1l: ~ 1l:u 

can be computed according to 

(x + I)F 
1l: = ---'----'---

u n - x + (x + I)F 

x 
1l:j=-----...,..-

X + (n - x + I)F 

with F{DF1=2(x+1), DF2=2(n-x)), 

with F(DF1=2(n-x+1), DF2=2x)' 

(4.19) 

(4.20) 

EXAMPLE. Compute the 95 % confidence interval for 1l: with p = x/n = 
7/20 = 0.35 (F -values are taken from.. Table 30c in Section 1.5.3). 

F-values: 

2(7 + 1) = 16, 2(20 - 7) = 26, F 16; 26; 0.025 = 2.36, 

2(20 - 7 + 1) = 28, 2(7) = 14, F28; 14;0.025 = 2.75; 
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CI bounds: 

(7 + 1)2.36 
1tu = 20 _ 7 + (7 + 1)2.36 = 0.592, 

7 
1t1 = 7 + (20 _ 7 + 1)2.75 = 0.154; 

95%CI: 

0.154 :s; 1t :s; 0.592 (15.4 % :s; 1t :s; 59.2 %). 

Remarks 

1. It is assumed that p = x/n was estimated from a random sample. 
2. The confidence limits are symmetric with respect to p only if P = 0.5 (cr., 

above example: 0.592 - 0.350 = 0.242 > 0.196 = 0.350 - 0.154). 

Approximations using the normal distributions: (4.21 to 4.23a) 

A good approximation for the 95 % confidence interval of not too extreme 
1t-values-O.3 :s; 1t :s; 0.7 when n ~ 10, 0.05 :s; 1t :s; 0.95 when n ~ 60-is 
given by [cf., Table 43, Section 2.1.6, with ZO.05 = 1.96; we have 1.95 = 
(1.962 + 2)/3 and 0.18 = (7 - 1.962)/18J 

x + 1.95 + 1.96J(x + 1 - 0.18)(n - x - 0.18)/(n + 11 ·0.18 - 4) 
1t = , 

U n + 2 . 1.95 - 1 

x-I + 1.95 - 1.96J(x - 0.18)(n + 1 - x - 0.18)/(n + 11 ·0.18 - 4) 
1t1 = n + 2 . 1.95 - 1 

(4.21) 

(Molenaar 1970). 

EXAMPLE. 95 % CI for 1t with p = x/n = 7/20 = 0.35: 

[7 + 1.95 + 1.96J(7 + 1 - 0.18)(20 - 7 - 0.18)/(20+ 11· 0.18 - 4)J 
1tu=~------~~--~(2~0~+~2~.I~.9~5---1~)--~--------~, 

[7 - 1 + 1.95 - 1.96J(7 - 0.18)(20 + 1 -7 - 0.18)/(20 + 11·0.18 - 4)J 
1t1 = (20 + 2·1.95 -1) 

95% CI: 

0.151 :s; 1t :s; 0.593 (15.1 % :s; 1t :s; 59.3 %). 
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For sample sizes n not too small and relative frequencies p not too extreme, 
i.e., for np> 5 and n(1 - p) > 5, formula (4.22) can be used for a rough 
survey [cf., (4.22a below]: 

1tu~~+iJ+Z.jP(l;jJ) , 

1t1 ~ ~-2~)-z. jP(1 ;P). 
(4.22) 

This approximation (drawing samples with replacement; cf., Remark 2 
below) serves for general orientation; if the conditions for Table 79 are 
fulfilled, (4.22) is still good though inferior to (4.21). 

The corresponding 95 % CI is 

(4.22a) 

(The value z = 1.96 comes from Table 43, Section 2.1.6; for the 90% CI 
1.96 is replaced by 1.645; for the 99 % CI, by 2.576). 

Examples 

1. 95 % CIfor 1t with p = x/n = 7/20 = 0.35 [check: (20)(0.35) = 7 > 5]; 
0.35 - 1/[2(20)] = 0.325; 1.96J(0.35)(0.65)/20 = 0.209; 

95 % CI: 0.325 ± 0.209 (0.116 ~ 1t ~ 0.534). 

(Compare the exact limits above). 

2. 99 % CIfor 1t with p = x/n = 70/200 = 0.35 or 35 % (check: conditions 
of Table 79 fulfilled): 0.35 - 1/[2(200)] = 0.3475; 2.576J(0.35)(0.65)/200 = 
0.0869; 

99 % CI: 0.3475 ± 0.0869 (0.261 ;$ 1t ;$0.434, 26.1 % ;$ 1t ;$ 43.4 %); 

(the exact limits are 26.51 % and 44.21 %). The corresponding 95 % CI, 
28.44 % .s; 1t .s; 42.06 %, can be found in the table on page 703. 

Remarks 

1. The quantity 1/2n is referred to as the continuity correction. It widens the 
confidence interval. The initial values are frequencies and thus discrete variables; for 
the confidence interval we use the standard normal variable, a continuous distribution. 
The error we make in going over from the discrete to the normal distribution is 
diminished by the continuity correction. 
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2. For finite populations of size N, (4.23) can be used for general orientation; 

J(N - n)/(N - 1) is the finite population correction, which tends to one as N -+ 00 

(since r = J(l - nIN)/(l - liN) -+ J1 = 1) and may then be neglected [cr., 
e.g., (4.22), (4.22a)]. This is also true for the case when N is sufficiently large in com
parison with n, i.e., when, e.g., n is less than 5% of N. The approximation (4.23) can 
be employed only if the requirements given in Table 79 are met. 

For finite populations (cf. Remark 2) 

Equations (4.23), (4.23a) and Table 79 describe sampling without replace
ment. 

Table 79 (from Cochran 1963, p. 57, Table 3.3) 

and np as well as 
n(1 - p) equal to with n greater 

For p equal to at least than or equal to 

0.5 15 30 
0.4 or 0.6 20 50 
0.3 or 0.7 24 80 
0.2 or 0.8 40 200 
0.1 or 0.9 60 600 
0.05 or 0.95 70 1400 

(4.23) may be applied 

{p(1 ;P)}{%=1} 
{P(l ;P)} {Z=;} 

Special cases: p = 0 resp. p = 1 (with 4 examples) 

(4.23) 

(4.23a) 

The one sided upper confidence limit (CL) for P = 0 (complete failure; cf., 
table below) is given by 

(4.24) 
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Compute the one sided upper 95 % confidence limit 1tu with P = 0 for n = 60. 

F 2; 120; 0.05 = 3.07 (Table 30b, Section 1.5.3) 

o 3.07 
95 % CL: 1tu = 60 + 3.07 = 0.0487 [i.e.,1t ::s; 0.049]. 

The one sided lower confidence limit for P = 1 (complete success, cf., 
the table below) is given by 

n 
1tl =--

n+F 
(4.25) 

Compute the one sided lower 99 % confidence limit 1t1 with P = 1 for n = 60. 

F2 ;120;0.01 = 4.79 (Table 3Od, Section 1.5.3) 

60 
99% CL: 1t[ = 60 + 4.79 = 0.9261 [i.e., 1t ~ 0.93]. 

For the one sided 95 % confidence limits (CL) with n > 50 and 

P = 0 we have approximately 1tu ~ ~, 
n 

P = 1 we have approximately 1t1 ~ 1 - ~. 
n 

P = 0, n = 100; 95% CL: 1tu ~ 3/100 = 0.03, 

P = 1, n = 100; 95 % CL: 1t1 ~ 1 - (3/100) = 0.97. 

In comparison: F 2 ;200;O.05 = 3.04 and hence by (4.24, 4.25) 

P = 0; 95 % CL: 1tu = 3.04/(100 + 3.04) = 0.0295, 

P = 1; 95 % CL: 1t1 = 100/(100 + 3.04) = 0.9705. 

(4.26) 

Thus, if no undesirable side effects (cf., end of Section 2.2) occur on 100 
patients treated with a certain medicine, then we may ascertain at the 5 % 
level that at most 3 % of the patients who will be treated with this medication 
will suffer undesirable side effects. 

One sided upper and lower 95 % and 99 % confidence limits for the special 
casesp = 0 respectively p = 1 (ex = 0.05; ex = 0.01), in percent, for certain 
sample sizes n are as follows: 

(1 n 10 30 50 80 100 150 200 300 500 1000 

5% 
7r:u 26 9.5 5.8 3.7 3.0 2.0 1.5 0.99 0.60 0.30 
7r:( 74 90.5 94.2 96.3 97.0 98.0 98.5 99.01 99.40 99.70 

1% 
7r:u 37 14 8.8 5.6 4.5 3.0 2.3 1.5 0.92 0.46 
7r:( 63 86 91.2 94.4 95.5 97.0 97.7 98.5 99.08 99.54 
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Comparison of two relative frequencies 

The comparison of two relative frequencies is a comparison of the proba
bilities of two binomial distributions. Exact methods (cf., Section 4.6.7) and 
good approximating procedures for such comparisons (cf., Section 4.6.1) are 
known. For not too small sample sizes [with np as well as n(l - p) > 5] 

@ an approximation with the help of the standard normal distribution is also 
possible: 

1. Comparison of a relative frequency P 1 with the underlying parameter n 
without or with a finite population correction (4.27 resp. 4.27a) (cf., the 
examples below): 

Ipl-nl-...l • 2n 
Z=-r=====' 

/n(l ;n) , 
(4.27) 

(4.27a) 

where Z has (approximately) a standard normal distribution. Null 
hypothesis: nl = n. The alternative hypothesis is n l =f. n (or in a one 
sided problem nl > nor nl < n) (cr., also Section 4.5.5). 

2. Comparing two relative frequencies P land P2 (comparing two percentages). 
It is assumed that (a) nl ~ 50, n2 ~ 50; (b) np > 5, n(l - p) > 5 (see 
also below) we have 

i (4.28) 

where Pl = xt/n l ,P2 = x2/n2,p = (Xl + x2)/(n l + n2). Null hypothesis: 
nl = n2; alternative hypothesis: n l =f. n2 (for one sided question n l > n2 or 
nl < n2)' Thus for n1 = n2 = 300, we have Pl = 54/300 = 0.18, P2 = 

30/300 = 0.10 [note that np2 = (300)(0.10) = 30> 5], P = (54 + 30)/ 
(300 + 300) = 0.14, Z = (0.18 - 0.10)/jO.14(O.86)(2/300) = 2.82, i.e., P ~ 
0.005. 

Note that computations can also be carried out in terms of percentages 

[2 = (18 - 10)/jI4(86)(2/300) = 2.82], and that (for nl = n2) differences 
greater than or equal to D (in %) are significant at the 5 % level. (Tables for 
nl = n2 ~ 50 and nl > n2 ~ 100 are included in my booklet, Sachs (1976), 
Appendix, Table C): 

nl 50 100 150 200 300 500 1000 5000 

D 20 14 11.5 10 8 6.3 4.5 2 
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If both percentages to be compared lie below 40 % or above 60 %, the cor
responding P-values are substantially smaller than 5 % (for our example 
above 18 % - 10% = 8 % with P ~ 0.005). 

Somewhat more precise than (4.28) and not subject to requirements as 
stringent [np and n(l - 13) ~ 1 for n1 and n2 ~ 25J is an approximation 
based on the arcsine transformation (Table 51, Section 3.6.1): 

2 = (larcsinjPt - arcsinJp2U/28.648JI/nl + l/n2; 

for the example we have 2 = (25.104 - 18.435)/28.648J2/300 = 2.85 (cr., 
also the Remarks in Section 4.6.1). 

To test H 0: n1 - n2 = do against the alternative hypothesis n1 - n2 :I do 

(n 1 - n2 < do or > do), use <PI = xdnl' 132 = X2/n2, fil = 1 - PI' (h = 

1 - 132) 

(4.28a) @ 

Examples 

1. In a certain large city n = 20 % of the families received a certain 
periodical. There are reasons for assuming that the number of subscribers 
is now below 20 %. To check this hypothesis, a random sample consisting 
of 100 families is chosen and evaluated, and PI = 0.16 (16%) is found. The 
null hypothesis n 1 = 20 % is tested against the alternative hypothesis 
n1 < 20% (significance level C( = 0.05). We can omit the finite population 
correction, since the population is very large in comparison with the sample. 
Since nPl > 5 and n(1 - PI) > 5, we use the approximation involving the @ 
normal distribution (4.27): 

1131 - nl - ; 10.16 - 0.201 __ 1_ 
2 = n = 2 ·100 = 0.875. In(l: n) JO.2~~.80 

The value z = 0.875 corresponds to a level of significance P {p 1 ~ 0.161n = 
0.20} = 0.19 > 0.05. Thus 19 out of 100 random samples from a population 
with n = 0.20 exhibit a subscriber portion PI ~ 0.16. We therefore retain the 
null hypothesis. 

2. Out of 2,000 dealers n = 40 % decide to increase their orders. A short 
time later there are indications that the percentage of dealers who increase 
their orders has risen again. 

A random sample of 400 dealers indicates that with PI = 46 % the per
centage is in fact higher. It is asked whether this increase can be deemed 
significant. The null hypothesis n1 = 0.40 is tested against the alternative 
hypothesis n1 > 0.40 with PI = 0.46 (significance level C( = 0.05). Since 



340 4 Further Test Procedures 

the sample includes 20 % of the population, the finite population correction 
and thus (4.27a) must be employed: 

All 
Ipl - nl - 2n 10046 - 00401 - 2.400 

2 ~ j-----r-[ n=(=l =:=n~) J~'==;:[==~===; J~ ~ J[O.40~.60] . [2:0-_ ~] ~ 2.68, 
P{Pl ::;; OA61n = OAO} = 0.0037 < 0.05. 

The null hypothesis is rejected at the 5 % level: There is an actual increase. 

4.5.2 Clopper and Pearson's quick estimation of 
the confidence intervals of a relative 
frequency 

A rapid method for drawing inferences on the population parameter from 
the portion or percentage in the sample (indirect inference) is offered by 
Figure 38, due to Clopper and Pearson. This diagram gives the confidence 

0,9 t----+---+---+---+----+-------v£...-,7""b""-7"-7f7"-7'7'71T/-;f+l 
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Observed relative frequency p in the sample 

Figure 38 95 % confidence interval for relative frequencies. The 
numbers on the curves indicate the sample size n. (From Clopper, C. J. 
and Pearson, E. S.: The use of confidence or fiducial limits illustrated 
in the case of the binomial. Biometrika 26 (1934) 404-413, p. 410.) 
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limits for a relative frequency fJ = x/n with a confidence coefficient of 95 %, 
i.e., the 95 % confidence interval for n. The numbers on the curves indicate 
the sample size. The confidence limits become tighter and more symmetric 
with increasing sample size n, since the binomial distribution goes over into 
a normal distribution; for fJ = 0.5 the confidence interval is symmetric even 
for small values of n. The graph also lets us read off the n required to attain a 
certain accuracy. 

For practical work, the table on page 703 or Table 41 (2 charts) of the 
Biometrika Tables, Vol. I (Pearson and Hartley 1966, 1970) is preferred. 

Examples 

1. In a sample of n = 10 values the event x was observed 7 times, i.e., 
p = x/n = 7/10 = 0.70. Fig. 38: The points of intersection of the vertical 
above 0.7 with the upper and the lower n = 10 curve then determine the 
limits of the 95 % confidence interval for the parameter n of the population: 
0.34 ~ n ~ 0.93. 

2. A percentage lying in the vicinity of 40 % is to be estimated in such a way 
that the resulting 95 % CI forms a 20 % region. By Figure 38, this condition 
is fulfilled about when n ~ 100. 

4.5.3 Estimation of the minimum size of a sample 
with counted data 

The expression fJ ± z J fJ(1 - M/n (based on the normal distribution; cf., 
(4.22)) for the confidence limits implies 

fJ + zJp(1 - fJ)/n - (fJ - zJfJ(l - fJ)/n) = 2a, 

i.e., zJfJ(l - fJ)/n = a, whence n = z2fJ(1 - fJ)/a2. 
For S = 95 % we have z = 1.96 ~ 2 and therefore n must be at least 

I . Jp·(I-p) I n- 2 . a 
(4.29) 

Since n attains its maximum when fJ(l - M is largest (which is the case for 
fJ = 50 %), if we set fJ = 50 %, then the sample size becomes larger than is 
generally necessary and 

• 4'0.52 
n=--2-

a 
~ 
~ 

(4.30) 
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If we write (4.23) with the simplified population correction 

IN;; n instead of 

and if we drop 1/2n, then we have 

N 

for the estimated minimum size. 

Examples 

[N=n 
~~ 

(4.31) 

1. Suppose we are interested in the percentage of families in a carefully 
delimited rural district that watches a certain television program. About 
1,000 families live there. Polling (cf. last sentence before Section 3.1) all the 
families appears too tedious. The investigators decide to draw a sample and 
estimate with a deviation a of ± 10 % and a confidence coefficient of 95 %. 
How large must the sample be? By (4.31) we have 

1,000 
ft = 1 + (0.10)2(1,000) c::: 91. 

Thus only 91 families need be polled. An estimate of n with an error of 
a = 0.10 and a confidence coefficient of95 % is obtained. By (4.30) we would 
have very roughly obtained n = 1/0.102 = 1/0.01 = 100. If we know that 
n = 0.30, our estimated sample size is of course too large, and we then need 
only about n' = 4nn(l - n) = 4(91)(0.3)(0.7) = 76 individual values: 

fI' = 4np{l - p). 

For fI > 0.05N, (4.29) is replaced by (4.29a) 

i.e., 

N(a2/4) + Np - Np2 
flcorr. = N(a2/4) + p _ p2 ' 

A _ 1,000(0.102/4) + 1,000·0.30 - 1,000.0.302 '" 74 
ncorr - 1,000(0.102/4) + 0.30 - 0.302 -. 

(4.32) 

(4.29a) 

If required, the" 4" in each of the formula is replaced by the appropriate 
value ofz2 : 

2.6896 (S = 90%), 3.8416 (S = 95%), 6.6564 (S = 99%). 
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2. We are asked for the percentage offamilies in a certain small town of 
3,000 residents that watched a certain television program. A confidence 
coefficient of 95 % with a deviation of ± 3 % is called for. Thus with (4.31) 

fj = N = 3,000 ~ 811. 
1 + a2 N 1 + 0.0009 . 3,000 

After taking a sample of 811 families it turns out that 243 families had 
watched the television program, i.e., p = 243/811 ~ 0.30. The 95% con
fidence interval is thus found to be 

0.30 - 0.03 ~ 11: ~ 0.30 + 0.03, 

95 % CI: 0.27 ~ 11: ~ 0.33. 

4.5.4 The confidence interval for rare events 

Here we tie in with the discussion in Section 1.6.4 on the confidence limits of 
the Poisson distribution and illustrate the application of Table 80: In an 
8 hour observation unit, 26 events were registered. The 95 % limits (x = 26) 
for (a) the observation unit are 16.77 ~ 17 and 37.67 ~ 38 events and for 
(b) one hour are 16.77/8 ~ 2 and 37.67/8 ~ 5 events. 

Examples 

1. In a certain district four floods were observed in the course of a 
century. If it is assumed that the number of floods in various centuries 
follows a Poisson distribution, it can be counted on that the number of 
floods lies outside the limits 1.366 ~ 1 and 9.598 ~ 10 in only one century 
out of 20 on the average; i.e., 95 % CI: 1 ~ A ~ 10. 

2. A telephone exchange handles 23 calls in one minute. We wish to 
find the 95 % confidence limits for the expected number of calls in 1 minute 
and in 1 hour. If we assume the number of calls in the time interval con
sidered is fairly constant and (since, let us say, 1,000 calls/minute can be dealt 
with) follow a Poisson distribution, then the 95% confidence limits for 1 
minute (according to Table 80) are 14.921 ~ 15 and 34.048 ~ 34. In one 
hour 60(14.921) ~ 895 to 60(34.048) ~ 2,043 calls are to be expected (S = 
0.95). Thus we have 95 % CI: 15 ~ ..1.1 min ~ 34 and 895 ~ ..1.1 h ~ 2,043. 

Table 80 can also be used to test the null hypothesis: A = Ax (A is given; 
x is the number of observed results, Ax is the associated parameter). If the 
CI for Ax does not include the parameter A, the null hypothesis is abandoned 
in favor of A #- Ax. 
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Table 80 Confidence intervals for the mean of a Poisson distribution (taken 
from Crow E. L. and Gardner, R. S.: Confidence intervals for the expectation 
of a Poisson variable, Biometrika 46 (1959),441-453). This table does not 
permit the assignment of one sided confidence limits. 

X 95 99 X 95 99 X 95 99 

0 0 3.285 0 4.771 100 80.25 120.36 76.61 127.31 200 172.38' 227.73 164.31 238.01 
1 0.051 5.323 0.010 6.914 101 81.61 121.06 76.61 128.70 201 173.79 228.99 165.33 239.46 
2 0.355 6.686 0.149 8.727 102 83.14 122.37 77.15 130.27' 202 175.48' 230.28 166.71 241.32 
3 0.818 8.102 0.436 10.473 103 84.57 123.77 78.71 131.50 203 176.23 231.65 168.29 241.32 
4 1.366 9.598 0.823 12.347 104 84.57 125.46 80.06 131.82 204 176.23 233.19 169.49 242.Q1 
5 1.970 11.177 1.279 13.793 105 84.67 126.26 80.06 133.21 205 176.23 234.53 169.49 243.31' 
6 2.613 12.817 1.785 15.277 106 86.01 126.48 80.65 134.79 206 177.48 234.53 169.64 244.69 
7 3.285 13.765 2.330 16.801 107 87.48 127.78 82.21 135.99 207 178.77 235.14' 170.98 246.24 
8 3.285 14.921 2906 18.362 108 89.23 129.14 83.56 136.30 208 180.14 236.39 172.41 247.54' 
9 4.460 16.768 3.507 19.462 109 89.23 130.68 83.56 137.68 209 181.67 237.67 174.36 247.54' 

10 5.323 17.633 4.130 20.676 110 89.23 132.03 84.12 139.24 210 183.05 239.00 174.36 248.62 
11 5323 19.050 4.771 22.042 111 90.37 132.03 85.65 140.54 211 183.05 240.45 174.36 249.94 
12 6.686 20.335 4.771 23.765 112 91.78 133.14' 87.12 140.76 212 183.05 242.27 175.25 251.35 
13 6.686 21.364 5.829 24.925 113 93.48 134.48 87.12 142.12 213 183.86 242.27 176.61 253.14 
14 8.102 22.945 6.668 25.992 114 94.23 135.92 87.55 143.64 214 185.13 242.53 178.11 253.65 
15 8.102 23.762 6.914 27.718 115 94.23 137.79 89.05 145.13 215 186.46 243.76 179.67 253.92 
16 9.598 25.400 7.756 28.852 116 94.70' 137.79 90.72 145.19 216 187.89 245.02 179.67 255.20 
17 9,598 26.306 8.727 29.900 117 96.06 138.49 90.72 146.54 217 189.83 246.32' 179.67 256.54 
18 11.177 27.735 8.727 31.839 118 97.54' 139.79 90.96 148.Q1 218 189.83 247.70 180.84 258.00 
19 11.177 28.966 10.009 32.547 119 99.17 141.16 92.42 149.76 219 189.83 249.28 182.22 259.78 
20 12.817 30.017 10.473 34.183 120 99.17 142.70 94.34' 149.76 220 190.21 250.43 183.81 259.78 
21 12.817 31.675 11.242 35.204 121 99.17 144.01 94.34' 150.93 221 191.46 250.43 184.97' 260.47 
22 13.765 32.277 12.347 36.544 122 100.32 144.01 94.35 152.35' 222 192.76 251.11 184.97' 261.77 
23 14.921 34.048 12.347 37.819 123 101.71 145.08 &5.76 154.18 223 194.11' 252.35 185.08 263.12' 
24 14.921 34.665 13.793 38.939 124 103.31' 146.39 97.42 154.60 224 195.63 253.63 186.40 264.63 
25 16.768 36.030 13.793 40.373 125 104.40 147.80 98.36 155.31 225 197.09 254.95 187.81 266.15 
26 16.77 37.67 15.28 41.39 126 104.40 149.53 98.36 156.69 226 197.09 256.37 189.50 266.15 
27 17.63 38.16' 15.28 42.85 127 104.58 150.19 99.09 158.25 227 197.09 258.34 190.28 267.01 
28 19.05 39.76 16.80 43.91 128 105.90' 150.36 100.61 159.53 228 197.78 258.34 190.28 268.31 
29 19.05 40.94 16.80 45.26 129 107.32 151.63 102.16' 159.67 229 199.04 258.45 190.61' 269.68 
30 20.33' 41.75 18.36 46.50 130 109.11 152.96 102.16' 161.01 230 200.35 259.67 191.94 271.22 
31 21.36 43.45 18.36 47.62 131 109.61 154.39 102.42 162.46 231 201.73 260.92 193.36 272.56 
32 21.36 44.26 19.46 49.13 132 109.61 156.32 103.84 164.31 232 203.35' 262.20 195.19 272.56 
33 22.94' 45.28 20.28' 49.96 133 110.11 156.32 105.66 164.31 233 204.36 263.54 195.59 273.53 
34 23.76 47.02' 20.68 51.78 134 111.44 156.87 106.12 165.33 234 204.36 265.00 195.59 274.83 
35 23.76 47.69 22.04 52.28 135 112.87 158.15 106.12 166.71 235 204.36 266.71 196.13 276.20' 
36 25.40 48.74 22.04 54.03 136 114.84 159.48 107.10 168.29 236 205.31' 266.71 197.46 277.77 
37 26.31 50.42 23.76' 54.74 137 114.84 160.920:> 108.615 169.49 237 206.58 266.97 198.88 279.01 5 

38 26.31 51.29 23.76' 56.14 138 114.84 162.79 110.16 169.64 238 207.90 268.19 200.84 279.01' 
39 27.73' 52.15 24.92' 57.61' 139 115.60' 162.79 110.16 170.98 239 209.30 269.44 200.94 280.02 
40 28.97 53.72 25.83 58.35 140 116.93 163.35 110.37 172.41 240 211.03 270.73 200.94 281.32 
41 28.97 54.99 25.99 60.39 141 118.35 164.63 111.78 174.36 241 211.69 272.08 201.62 282.70 
42 30.02 55.51 27.72 60.59 142 120.36 165.96 113.45 174.36 242 211.69 273.57 202.94 284.25 
33 31.67' 56.99 27.72 62.13 143 120.36 167.39 114.33 175.25 243 211.69 275.15 204.36 285.53 
44 31.67' 58.72 28.85 63.63' 144 120.36 169.33 114.33 176.61 244 212.82 275.15 206.19 285.53 
45 32.28 58.84 29.90 64.26 145 121.06 169.33 114.99 178.11 245 214.09 275.46 206.60 286.50 
46 34.05 60.24 29.90 65.96 146 122.37 169.80 116.44 179.67 246 215.40 276.69 206.60 287.79 
47 34.66' 61.90 31.84 66.81' 147 123.77 171.07 118.33 179.67 247 216.81 277.94 207.08 289.16 
48 34.66' 62.81 31.84 67.92 148 125.46 172.38' 118.33 180.84 248 218.56 279.22 208.40 290.68 
49 3603 63.49 32.55 69.83 149 126.26 173.79 118.33 182.22 249 219.16 280.57 209.81 292.10 
50 31.67 64.95 38.18 70.05 150 126.26 175.48' 119.59 183.81 250 219.16 282.05 211.50 292.10 
51 37.67 66.76 34.18 71.56 151 126.48 176.23 121.09 184.97' 251 219.16 283.67 212.29 292.95 
52 38.16' 66.76 35.20 73.20 152 127.78 176.23 122.69 185.08 252 220.29 283.67 212.29 294.24 
53 39.76 68.10 36.54 73.62 153 129.14 177.48 122.69 186.40 253 221.56 283.93 212.53 295.59 
54 40.94 69.62 36.54 75.16 154 130.68 178.77 122.78 187.81 254 222.86' 285.15 213.84 297.07 
55 40.94 71.09 37.82 76.61 155 132.03 180.14 124.16 189.50 255 224.26 286.40 215.22 298.71 
56 41.75 71.28 38.94 77.15 156 132.03 181.67 125.70 190.28 256 225.90' 287.68 216.80 298.71 
57 43.45 72.66 38.94 78.71 157 132.03 183.05 127.07 190.61' 257 226.81 289.01 217.98 299.39 
58 44.26 74.22 40.37 80.06 158 133.14' 183.05 127.07 191.94 258 226.81 290.46 217.98 300.67 
59 44.26 75.49 41.39 80.65 159 134.48 183.86 127.31 19336 259 226.81 292.26 217.98 302.00 
60 45.28 75.78' 41.39 82.21 160 135.92 185.13 128.70 195.19 260 227.73 292.26 219.25 303.43 
61 47.02' 77.16 42.85 83.56 161 137.79 186.46 130.27' 195.59 261 228.99 292.37 220.61 305.35 
62 47.69 78.73 43.91 84.12 162 137.79 187.89 131.50 196.13 262 230.28 293.59 222.10' 305.35 
63 47.69 79.98 43.91 85.65 163 137.79 189.83 131.50 197.46 263 231.65 294.82' 223.67' 305.81 
64 48.74 80.25 45.26 87.12 164 138.49 18983 131.82 198.88 264 233.19 296.09 223.67' 307.07 
65 50.42 81.61 46.50 87.55 165 139.79 190.21 133.21 200.84 265 234.53 297.41 223.67' 308.38 
66 51.29 83.14 46.50 89.05 166 141.16 191.46 134.79 200.94 266 234.53 298.81 224.65 309.77' 
67 51.29 84.57 47.62 90.72 167 142.70 192.76 135.99 201.62 267 234.53 300.56 225.98 311.41 
68 52.15 84.67 49.13 90.96 168 144.Q1 194.11' 135.99 202.94 268 235.14' 301.16 227.41 312.38 
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Table 80 (continued) 
x 95 99 x 95 99 x 95 99 

69 53.72 86.01 49.13 92.42 169 144.Q1 195.63 136.30 204.36 269 236.39 301.16 229.37 312.38 
70 54.99 87.48 49.96 94.34' 170 144.Q1 197.09 137.68 206.19 270 237.67 302.00 229.37 313.46 
71 54.99 89.23 51.78 94.35 171 145.08 197.09 139.24 206.60 271 239.00 303.22 229.37 314.75' 
72 55.51 89.23 51.78 95.76 172 146.39 197.78 140.54 207.08 272 240.45 304.48 230.03 316.11 
73 56.99 90.37 52.28 97.42 173 147.80 199.04 140.54 208.40 273 242.27 305.77 231.33 317.60 
74 58.72 91.78 54.03 98.36 174 149.53 200.35 140.76 209.81 274 242.27 307.13 232.71 319.19 
75 58.72 93.48 54.74 99.09 175 150.19 201.73 142.12 211.50 275 242.27 308.64' 234.28 319.19 
76 58.84 94.23 54.74 100.61 176 150.19 203.35' 143.64 212.29 276 242.53 310.07 235.50 319.84 
77 60.24 94.70' 56.14 102.16' 177 150.36. 204.36 145.13 212.53 277 243.76 310.07 235.50 321.11 
78 61.90 96.06 57.61' 102.42 178 151.63 204.36 145.13 213.84 278 245.02 310.38 235.50 322.43 
79 62.81 97.54' 57.61' 103.84 179 152.96 205.31' 145.19 215.22 279 246.32' 311.60 236.68 323.84 
80 61.81 99.17 58.35 105.66 180 154.39 206.58 146.54 216.80 280 247.70 312.83' 238.Q1 325.58 
81 63.49 99.17 60.39 106.12 181 156.32 207.90 148.Q1 217.98 281 249.28 314.10 239.46 326.21 
B2 64.95 100.32 60.39 107.10 182 156.32 209.30 149.76 217.98 282 250.43 315.42 241.32 326.21 
83 66.76 101.71 60.59 108.61' 183 156.32 211.03 149.76 219.25 283 250.43 316.83 241.32 327.46 
84 66.76 103.31' 62.13 11016 184 156.87 211.69 149.76 220.61 284 250.43 318.63 241.32 328.75 
85 66.76 104.40 63.63' 110.37 186 158.15 211.69 150.93 222.10' 285 251.11 319.09 242.Q1 330.10 
86 68.10 104.58 63.63' 111.78 186 159.48 212.82 152.35' 223.67' 286 252.35 319.09 243.31' 331.59 
87 69.62 105.90' 64.26 113.45 187 160.92' 214.09 154.18 223.67' 287 253.63 319.95 244.69 333.20 
88 71.09 107.32 65.96 114.33 188 162.79 215.40 154.60 224.65 288 254.95 321.17 246.24 333.20 
89 71.09 109.11 66.81' 114.99 189 162.79 216.81 154.60 225.98 289 256.37 322.42 247.54' 333.80 
90 71.28 109.61 66.81' 116.44 190 162.79 218.56 155.31 227.41 290 258.34 323.70 247.54' 335.06' 
91 72.66 110.11 67.92 118.33 191 163.35 219.16 156.69 229.37 291 258.34 325.04 247.54' 336.37 
92 74.22 111.44 69.83 118.33 192 164.63 219.16 158.25 229.37 292 258.34 326.50 248.62 337.76 
93 75.49 112.87 69.83 119.59 193 165.96 220.29 159.53 230.03 293 258.45 328.21 249.94 339.38 
94 75.49 114.84 70.05 121.09 194 167.39 221.56 159.53 231.33 294 259.67 328.21 251.35 340.41 
95 75.78' 114.84 71.56 122.69 196 169.33 222.86' 159.67 232.71 296 260.92 328.28' 253.14 340.41 
96 77.16 115.60' 73.20 122.78 196 169.33 224.26 161.01 234.28 296 262.20 329.49 253.65 341.38 
97 78.73 116.93 73.20 124.16 197 169.33 225.90' 162.46 235.50 297 263.54 330.72 253.65 342.65 
98 79.98 118.35 73.62 125.70 198 169.80 226.81 164.31 235.50 298 265.00 331.97 253.92 343.98 
99 79.98 120.36 75.16 127.07 199 171.07 226.81 164.31 236.68 299 266.71 333.26 255.20 345.41 

100 80.25 120.36 76.61 127.31 200 172.38' 227.73 164.31 238.Q1 300 266.71 334.62 256.54 347.37' 

The special case x = 0 

For x = 0 the one sided lower confidence limit is Al = 0, while the upper (one 
sided) confidence limit Au can be found in the little table computed by (1.179) 
in Section 1.6.4 (e.g. for S = 95%, Au = 2.996 ~ 3.00) or computed by the 
formula Au = hL [X~;O.05 = 5.99; Au = 0.5 (5.99) ~ 3.00]. 

4.5.5 Comparison of two frequencies; testing 
whether they stand in a certain ratio 

The question sometimes asked, whether two observed frequencies (a and b, 
where a ~ b [for a comparison of the two see e.g., (2.17)]) form a certain 
ratio P/rx = ~ (Greek xi), is settled approximately by the statistic X2 : 

for large values of a and b, without continuity correction, 

A2 (~a-W 
X = ~(a+b) 

(4.33a) 

(4.33) 

X2 has a X2 distribution with one degree offreedom. If the computed X2 is less 
than or equal to X2 = 3.841, then the null hypothesis (the observed fre
quencies form the ratio ~) cannot be rejected at the 5 % level. 
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EXAMPLE. Do the two frequencies a = 6 and b = 25 form the ratio e = P/rx = 

5/1 (rx = 0.05)? 

;')2 = {15· 6 - 251 - (5 + 1)/2}2 = ~ 3841 
/.. 5(6 + 25) 155 <. . 

The departure (25/6 = 4.17 as against 5.00) is of a random nature (P < 0.05): 
The ratio of the observed frequencies is compatible with the theoretical ratio 
5: 1. 

4.6 THE EVALUATION OF FOURFOLD TABLES 

4.6.1 The comparison of two percentages-the 
analysis of fourfold tables 

The comparison of two relative frequencies determined from frequencies is 
important particularly in medicine. A new medicine or a new surgical 
procedure is developed: 15 out of 100 patients died previously, but only 4 
out of 81 died under the new treatment. Does the new treatment promise 
greater success, or are we dealing with a spurious result? The classification 
of n objects according to two pairs of characteristics generally leads to four 
classes-the observed frequencies a, b, c, d-and thus to a so-called fourfold 
table (Table 81). Borderline cases, half of each being assigned to the two 
possible classes, can lead to half-integer values. 

Table 81 Fourfold table for the comparison of two samples or for 
testing the statistical or stochastical independence between two 
attributes. Table 89 is a simplified version; Table 82 gives an example. 

~ 
Events Complementary events Total 

(+) (-) 
Characteristic (pair) I 

First sample a b a + b = n, 
Second sample c d c + d = n2 

Total a + c b + d n, + n2 = n 

The two samples of data are then studied to determine whether they can 
be viewed as random samples from a popUlation represented by the marginal 
sums, i.e., whether the 4 occupancy numbers (e.g., from Table 82) are dis
tributed proportionally to the marginal sums, and whether the deviations 
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ofthe ratios a/n 1 and c/n2 from the ratio (a + c)/n [null hypothesis of equality 
or homogeneity: roughly a/nl = c/n2 = (a + c)/n] can be regarded as 
random deviations. 

Table 82 Fourfold table 

Patients 
Treatment Died Recovered Total 

Usual therapy 15 85 100 
New therapy 4 77 81 

Total 19 162 181 

The example above leads to the fourfold scheme (Table 82) and the 
question: Is the low relative frequency of deaths under the new treatment 
due to chance? . 

The null hypothesis reads: The percentage of cured patients is independent 
of the therapy employed, or: Both samples, the group of conventionally 
treated patients and the group of patients treated with the new therapy, 
originate in a common population with regard to the therapy effect, i.e., the 
therapy effect is the same with both treatments (cf., also Section 6.2.1). 

The two treatment groups are in fact samples from two binomial distribu
tions. Thus, the probabilities of binomial distributions are compared, i.e., 

Null hypothesis: 

Alternate hypothesis: 

Both samples originate in a common population 
with success probability TC 

The two samples originate in two different 
populations with success probabilities TC , and TC 2 

The null hypothesis on equality or homogeneity of the two parameters 0 
(1l:1, 1l:2) or independence between two attributes (cf., also Section 6.2.1) is 
rejected or not rejected on the basis of the APPROXIMATE CHI-SQUARE 
TEST (we discussed exact x2-tests in Sections 3.3 and 3.4). 

Turning from frequencies to relative frequencies and to probabilities we 
have: 

4b ~ a/n bin 

c d c/n din 
----'---+--

n 1 

n~N 

1 
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For the null hypothesis of independence we make use of the cross product 
of the probabilities [PaPdJ/[PbPJ: 

Fourfold table Null hypothesis 

4-
Independence of [PaPd]/[PbPC ] = 1 with 
two attributes: the proportions P a' 

C d P b' Pc' P d of the 
total population 

n 

a b a + b = n, Equality or E(a : b) = E(c ~ d) 
homogeneity of with the specified 

c d c + d = n2 two expectations: expected proportions 
of both populations 

Returning to Table 82: the following questions must be answered: Are 
the field frequencies distributed in proportion to the marginal sums? To 
resolve this question, we determine the frequencies (called expected fre
quencies-E for short) expected under the assumption that they are 
proportional. We multiply the row sum by the column sum of the field a 
[(100)(19) = 1,900J and divide the product by the size n of the combined 
sample (1,900/181 = 10.497; Ea = 10.50). We proceed analogously with 
the remaining fields, obtaining Eb = 89.50, E = 8.50, Ed = 72.50. To assess 
whether the observed values a, b, c, d agree with the expected values Ea , Eb , 

E,., E~ in the sense of the null hypothesis, we form the test statistic XZ : 

-'z (a - Ea)Z (b - Eb)2 (c - EY (d - Ed)2 
x= E + E + E + E' abc d 

which, after several transformations, becomes 

(4.34) 

'2 n(ad-bc)2 
X = (a+ b)(c+d)(a+ c)(b +d) 

(4.35) 

where n = a + b + c + d [Note the remarks under (4.35ab) and those 
following the example]. The fourfold XZ has only one degree of freedom, 
since with marginal sums given only one of the four frequencies can be freely 
chosen. For n small, n in (4.35) has to be replaced by (n - 1); the resulting 
formula is generally applicable, provided nl ~ 6, nz ~ 6; it is better if for 
small n we also have nl ~ nz or nz ~ Jnl for n1 > nz (Van der Waerden 
1965, Berchtold 1969, Sachs 1974 [see also Rhoades and Overall 1982 and 
Upton 1982 [8: 6JJ). With n still smaller, we have to use Fisher's exact test or 
Gart's F-test. 
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Instead of the X2 test we may use the version of the G-test presented in 
Section 4.6.7, in which the effective level of significance corresponds better 
to what is given, even for small n. However, the G-test and the X2 test are 
both approximations. 

For n1 = n2 (4.35) becomes (4.35ab) 

"2 n(a - C)2 "2 (n - l)(a - C)2 

X = (a + c)(b + d)' or for small n, X = * (a +c)(b+d) 

(4.35ab) 

The null hypothesis on independence or homogeneity is rejected as soon as 
the X2 computed according to (4.34), (4.35), or (4.35ab) [if n - 1 used in 
place of n in (4.35), one calls it X2] is greater than the critical value in the 
following table: * 

Level of significance a 0.05 0.01 0.001 

Two sided test (Ho: 7t, = 7t 2 , HA : 7t, "" 7t 2 ) 3.841 6.635 10.828 
One sided test (Ho: 7t, = 7t 2 , HA : 7t, > 7t2 or 7t2 > 7t,) 2.706 5.412 9.550 

8 
Testing is generally two sided (cf., the remarks in Section 1.4.7, at the begin
ning and in the box at the end). Table 84 shows that with small sample sizes 
and (J( = 0.05 in nearly all cases the power of the test is extremely low and 

Table 83 1,.2 table for one degree of freedom (taken from Kendall and 
Stuart (1973) [1], Vol. II, pp. 651, 652): two sided probabilities 

X2 P X2 P X2 P X2 P X2 P 

0 1.00000 2.1 0.14730 4.0 0.04550 6.0 0.01431 8.0 0.00468 
0.1 0.75183 2.2 0.13801 4.1 0.04288 6.1 0.01352 8.1 0.00443 
0.2 0.65472 2.3 0.12937 4.2 0,04042 6.2 0.Q1278 8.2 0.00419 
0.3 0.58388 2.4 0.12134 4.3 0.03811 6.2 0.Q1207 8.3 0.00396 
0.4 0.52709 2.5 0.11385 4.4 0.03594 6.4 0.01141 8.4 0.00375 
0.5 0.47950 2.6 0.10686 4.5 0.03389 6.5 0.Q1079 8.5 0.00355 
0.6 0.43858 2.7 0.10035 4.6 0.03197 6.6 0.Q1020 8.6 0.00336 
0.7 0.40278 2.8 0.09426 4.7 0.03016 6.7 0.00964 8.7 0.00318 
0.8 0.37109 2.9 0.08858 4.8 0,02846 6.8 0.00912 8,8 0.00301 
0.9 0,34278 3.0 0.08326 4.9 0,02686 6.9 0.00862 8,9 0,00285 
1.0 0,31731 3,1 0.07829 5,0 0.02535 7,0 0,00815 9.0 0.00270 
1.1 0.29427 3.2 0,07364 5.1 0,02393 7,1 0.00771 9,1 0,00256 
1.2 0.27332 3.3 0.06928 5,2 0,02259 7.2 0.00729 9,2 0.00242 
1.3 0.25421 3.3 0,06928 5,3 0.02133 7.3 0,00690 9.3 0.00229 
1.4 0.23672 3.4 0.06520 5.4 0,02014 7.4 0.00652 9.4 0,00217 
1,5 0.22067 3.5 0.06137 5.5 0,01902 7.5 0,00617 9.5 0,00205 
1.6 0,20590 3.6 0,05778 5,6 0.01796 7,6 0.00584 9,6 0,00195 
1,7 0,19229 3.7 0.05441 5.7 0,01697 7.7 0.00552 9.7 0,00184 
1.8 0.17971 3,8 0,05125 5.8 0.Q1603 7.8 0.00522 9.8 0,00174 
1.9 0.16808 3,9 0,04829 5,9 0.Q1514 7,9 0.00494 9.9 0,00165 
2.0 0.15730 4,0 0.04550 6.0 0,01431 8.0 0.00468 10,0 0.00157 
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Table 84 Sample size per group required to 
obtain a specific power when ex = 0.05 (one
tailed). Some values from J. K. Haseman: Exact 
sample sizes for use with the Fisher-Irwin test 
for 2 x 2 tables, Biometrics 34 (1978), 106-109, 
part ofTable 1, p. 107. Example: see remark 6. 

~ 7r2 
0.9 0.7 0.5 0.3 0.1 

0.8 232 upper figure: Power = 0.9 
173 lower figure: Power = 0.8 

0.6 39 408 
30 302 ex = 0.05 

0.4 17 53 445 (one sided test) 
13 41 321 

0.2 10 18 47 338 
8 15 36 249 

0.05 6 10 18 42 503 
5 9 14 34 371 

thus the test is of no use. Table 83 gives exact probabilities for X2 = 0.0 
through X2 = 10.0 in increments of 0.1. 

EXAMPLE. We test Table 82 at the 5 % significance level (one sided test; 
alternative: the new therapy is superior): 

2 181(15·77 - 4·85)2 
X = 100.81 . 19. 162 = 4.822. 

Since X2 = 4.822 > 2.706 = X~.05' the hypothesis of independence or homo
geneity is rejected at the 5 % level on the basis ofthe available data. There is a 
dependence between the new treatment and the reduction in the mortality. 

For a generalization ofthe fourfold X2 test see Section 6.2.1. 

Remarks 
1. In preliminary trials where significance levels 0( are not specified beforehand, 

the 22-value found is compared with that given in Table 83 (two sided question). 
2. We note that the numerical value of the quotient (4.35) does not change if the 

four inner field frequencies (a, b, c, d) and the four marginal frequencies (a + b, c + d, 
a + c, b + d) are all divided by a constant k (the sample size n is not to be divided 
by k), so that the amount of computation can be significantly reduced. In an approxi
mate calculation of X2 one can, moreover, round off the frequencies that are divided 
by k. For large n the computation in (4.34 or 4.35) is however too tedious, and the 
formula (4.28) or, even more (4.36a) is preferred. 

3. Since the fourfold X2 test represents an approximation, the corrected formulas 
(4.34a), (4.35c) (the quantities t and nl2 are called continuity corrections) were 
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recommended by Yates (1934, p. 30) if at least one of the four expected frequencies is 
smaller than 500: 

(4.34a) 

(a+ b)(c + d)(a + c)(b +d) 
(4.35c) 

Grizzle (1968) has shown that one can do without (4.34a), (4.35c). They are appro
priate only if the probabilities of the exact test of Fisher (cr., Sections 4.6.6.7), a 
conservative procedure, must be approximated (cf. Adler 1951, Cochran 1952, 
Vessereau 1958, Plackett 1964, 1974 [8: 6]). Then, however, the F-test due to Gart 
[formulas (4.37) and (4.38) given in Section 4.6.2] is more convenient. 

4. The standardization of fourfold tables (overall sum equals 1 and all 4 marginal 
sums equal 0.5) is obtained by way of astandardized = (v - Jv)/[2(v - 1)] with v = ad/bc. 
For Table 82 we find with v = 3.397 and astandardized = 0.324 the values dst . = ast. = 

0.324; bst. = Cst. = 0.176. 
To standardize square tables (all marginal sums equal 100) each row is multiplied 

by the associated value (IOO/row sum), the columns are dealt with accordingly, and 
the procedure is then iterated until, e.g., all marginal sums are equal to 100.00. 

5. Additional remarks are found in Sections 4.6.2, 4.6.7, 5.4.4, and 6.2.1; in 
[8: 6] we cite a work by Mantel and Haenszel (1959) which is very informative in 
particular for medical students [see also Fleiss 1981 and Schlesselman 1982, both in 
[8:2a]]. 

6. Sample sizes: According to Table 84 at least n1 = n2 = 53 observations are 
needed for the test Ho: 71:, = 71:2 vs. HA : 71:1 > 71:2 with 71:, = 0.7, 71:2 = 0.4, IX = 0.05, 
and a power of 0.9 or 90%, i.e., if there are for the test two random samples of such 
sizes from populations with 71:1 = 0.7 and 71:2 = 0.4 at our disposal, then the chance 
of detecting a difference tJ = 71:1 - 71:2 = 0.7 - 0.4 = 0.3 is 90 % in a one sided test 
with a significance level of5 %. More exact values for IX = 0.05 and IX = 0.01 are given 
by Haseman (1978) and by Casagrande et al. (1978). 

The Woolf G-test 

Our modified version of the Woolf G-test (1957) is superior to the fourfold 
X2 test (with" n" or "n - 1" in the numerator of (4.35». G is defined by (4.36). 

G = 2 L observed (In observed - In expected). (4.36) 

This ought not to be studied in greater detail. It is essential that the values 
2n In n needed in this test, called g-values for short, were made available in 
tabulated form by Woolf. Fourfold tables for n1 ~ 4, n2 ~ 4 can then be 
tested for independence or homogeneity as follows: 

1. For the frequencies a, b, c and d and for the frequencies a', b', c', d' corrected 
according to Yates [cf., Table 82a, that which is enclosed in ( )] the 0 
eight g-values in Tables 85 and 86 are written down and their sum, divided 
by 2, is called S 1 (cr., item 6). 
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@ 2. The tabulated value corresponding to the overall sample size n can be 
found in Table 85; we denote it by S2' 

3. The tabulated values corresponding to the four marginal sum frequencies 
are likewise obtained from Table 85, and their sum is S3' 

4. The test statistic G is then defined by 

G = SI + S2 - S3' I (4.36a) 

@ 5. The test statistic G is distributed like X2, with one degree of freedom, for 
not too weakly occupied fourfold tables. 

6. If all 4 expected frequencies E are larger than 30, then computations are 
carried out using the observed frequencies a, b, c, d; the corresponding 
g-values are taken from Table 85, and their sum is S l' 

Table 82a Fourfold table. The values adjusted according 
to Yates are in brackets. Values which are smaller than 
the corresponding expected frequencies (ct. Table 82) 
are increased by 1; values which are larger are decreased 
by1 

Treatment\Patients Died Recovered Total 

Usual therapy 15 (14 1/2) 85 (85 1/2) 100 
New therapy 4 (4 1/2) 77 (76 1/2) 81 

Total 19 162 181 

EXAMPLE. We take our last example (Table 82), as shown in Table 82a. We 
have 

r~ 
81.2415 

85 ~ 755.2507 

4~ 11.0904 
77~ 668.9460 

from Table 85: 

from Table 86: r~ 
77.5503 

85!~ 760.6963 

4!~ 13.5367 

76!~ 663.6055 

2S1 = 3,031.9174 

SI = 1,515.9587 
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from Table 85: 181 -+ S2 = 1,881.8559 

Sl + S2 = 3,397.8146 

from Table 85: {

100 -+ 921.0340 
81 -+ 711. 9008 
19 -+ 111.8887 

162 -+ 1648.3812 
Sl + S2 = 3,397.8146]_ 

S3 = 3,393.2047 

S3 = 3,393.2047 

Then G = Sl + S2 - S3 = 4.610 > 2.706. 

4.6099 

Woolf (1957) gives g-values for n = 1 to n = 2,009 (Table 85) and for 
n = ! to n = 2991 (Table 86). Kullback et aI., (1962) give tables for n = 1 
to n = 10,000. The tables provided by Woolf are generally adequate; more
over. Woolf gives auxiliary tables which, for n > 2,009, permit us to find 

Table 87 Auxiliary table for 
computing large values of 
21n p (from Woolf, B.: The log 
likelihood ratio test (the G
Test). Methods and tables for 
tests of heterogeneity in con
tingency tables, Ann. Human 
Genetics 21 397-409 (1957), 
Table 5, p. 408) 

p 2 In p 

2 1.386294361 
3 2.197224577 
4 2.772588722 
5 3.218875825 
6 3.583518938 
7 3.891820306 
8 4.1 58883083 
9 4.394449155 

10 4.605170186 
11 4.795790556 
13 5.129898725 
17 5.666426699 
19 4.888877971 
20 5.991464547 
40 7.377758908 
50 7.824046011 

100 9.210340372 

~ 
~ 
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without a great deal of computation any needed g-values up to n ~ 20,000 
accurate to 3 decimal places, and up to n ~ 200,000 accurate to 2 decimal 
places: n is divided by a number p so that nip = q falls within the range of 
Table 85. The desired function 9 of n is 

g(n) = 2n In n = p(2q) In q + n(2) In p = p . g(q) + n(2) In p. 

To minimize the rounding error, the integer p is chosen as small as possible. 
Table 87 gives, for integral values of p, the corresponding values of 21n p. 

EXAMPLE. Determine the value of 2n In n for n = 10,000 accurately to 3 deci
mal places. We choose p = 10 and obtain q = nip = 10,000/10 = 1,000: 

g(q) = 13,815.5106 

p . g(q) = 138,155.106 

21n p = 4.605170187 

n . 2 In p = 46,051.70187 

g(n) ~ 184,206.808 

The Kullback tables indicate that g(n) = 184,206.807. For the case where p 
is not a factor ofn, there are two other auxiliary tables given by Woolf (1957) 
which can be found in the original work. 

4.6.2 Repeated application of the fourfold 1. 2 test 

In this section we point out a frequently made error and show how it 
can easily be avoided. Then the Gart approximation to the exact Fisher 
test follows a remark on the most important test statistics as well as 
three remarks on the fourfold x2 test. 

The small table printed below (4.35ab) in Section 4.6.1 is appropriate, as 
are many others in this book (e.g., Tables 27, 28, 28a, 30a-f, 83) for the 
single" isolated" application of the test in question and not for a sequence 
of tests. The tabulated significance levels of the selected distribution refer to a 
single test carried out in isolation. 

Suppose we are given data which lead to ! (Greek tau) = 30 fourfold X2 

tests (two sided). When we consider the 30 tests with the bound 3.841 simul
taneously, the actual significance level is considerably higher. Therefore it 
would not be correct to use 3.841 as critical value for each of the 30 tests. 
By Bonferroni's inequality the proper bound (for CI. = 0.05, r = 30) is So.os = 
9.885 (cf., Table 88). More on this can be found in Section 6.2.1. 10 %, 5 %, 
and 1 % bounds for v = 1 and! ::; 12 are contained in Table 141 there, and 
its source is also the source of the bounds S for! > 12 given in Table 88. 
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Table 88 Supplements and is supplemented by Table 141 (Section 
6.2.1 ) 

r 13 14 15 16 18 20 22 24 26 28 

So 10 7.104 7.237 7.360 7.477 7.689 7.879 8.052 8.210 8.355 8.490 

So 05 8.355 8.490 8.615 8.733 8.948 9.141 9.316 9.475 9.622 9.758 

So 01 11.314 11.452 11.580 11.700 11.919 12.116 12.293 12.456 12.605 12.744 

Some important remarks: (1) F-test due to Gart and (2) 
exact and approximate test statistics 

30 

8.615 

9.885 

12.873 

A fourfold table such as Table 95a in Section 4.6.7 is arranged in such a 
way-through transposition if necessary-that the following inequalities 
hold (see Table 89): 

a + e ~ b + d and ain1 ~ ein2. (4.37) 

Table 89 
Dichotomy 

1 2 I 

Sample 1 a b n 1 

or 
dichotomy 2 c d n 2 

I a + c b + d n 

If aei(n1 + n2) < 1, then the following F-test due to Gart (1962, formula 
(11)) is a good approximation: Ho is rejected when 

F~ _ e(2n1 - a) 
- (a + 1)(2n2 _ e + 1) > F "t:V2;a with V1 = 2(a + 1), V2 = 2e. 

EXAMPLE (Section 4.6.7, Table 95a) 

2810 

10 4 14 

12 12 24 

2 ·10 
10 + 14 < 1; 

P = 10(2·10 - 2) = 3.158> 2.60 = F 6 ;20;0.05 

(2 + 1)(2· 14 - 10 + 1) < 3.87 = F 6; 20; 0.01. 

(4.38) 
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For n1 = n2 ~ 20 there is an exact quick test due to Ott and Free (1969), 
which I have included in my booklet (Sachs 1984, p. 66). 

Estimates of parameters are sometimes (cf., e.g., Sections 1.3.1 and 1.6.2) 
distinguished from the true value of the parameter by a caret, e.g., P for the 
estimate ofp. We use this notation (from Section 1.4.5 on) also to differentiate 
test statistics such as the F = 3.158 above (or e.g., 2, f, X2 ), estimated 
(computed) in terms of concrete sampled values, from the tabulated critical 
limits such as ZO.05; one sided = 1.645 (or tv; 11.' FV\;V2;11.' X;; 11.). Note that under 
H 0 the following are distributed exactly like the corresponding theoretical 
distributions: (1) 2, only for n -+ 00, (2) X2 , only for n -+ 00 [i.e., large expected 
frequencies under Ho; exceptions: (3.16) and (3.17)], (3) t andF, for arbitrary 
n. 

More Remarks 

1. Le Roy (1962) has proposed a simple X2 test for comparing two fourfold tables. 
Null hypothesis: two analogous samples which give rise to two fourfold tables 
originate in one and the same population (alternate hypothesis: they stem from 
different populations). 

Denote the two tables by I, II; 

II 

The equivalence of the two fourfold tables can be tested by means of 

(4.39) 

8 DF=3. 

Table 90 shows the computation of the product sums q and Q in terms of the quotients 
a, b, c, d (column 4) and the differences A, B, C, D (column 5) [(4.39) is identical to 
(6.1), (6.la) in Sections 6.1.1 and 6.1.3 for k = 4]. 

Table 90 

1 2 3 4 5 6 7 

a1 a2 a1 + a2 a1/(a1 + a2) = a A = 1 - a ala a2A 

b1 b2 b1 + b2 b1/(b1 + b2) = b B = 1 - b bIb b2B 

c1 c2 c1 + c2 c1/(c1 + c2) = c C = 1 - c c1c c2C 

d1 d2 d1 + d2 d1/(d1 + d2) = d 0 = 1 - d dId d2D 

n1 n2 n1 + n2 - - q Q 
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If none of the eight frequencies or occupation numbers is < 3, then this test may be 
carried out; it must however be regarded as only an approximate test statistic for 
weakly occupied tables. 

2. If the frequencies of a fourfold table can be subdivided by taking another 
variable into consideration, then a generalized sign test described by Bross (1964) 
(cf. also Ury 1966) is recommended. An instructive example is contained in Bross's 
article. 

3. Fourfold tables with specified probabilities were partitioned by Rao (1973) 
into three Xl components. 

4. More on fourfold tables may be found in the reviews cited on page 462. 

4.6.3 The sign test modified by McNemar 

Two trials on the same individuals: Significance of a change in the 
frequency ratio of two dependent distributions of binary data; 
McNemar's test for correlated proportions in a 2 x 2 table 

If a sample is studied twice-separated by a certain interval of time or under 
different conditions, say-with respect to the strength of some binary 
characteristic, then we are no longer dealing with independent but rather with 
dependent samples. Every experimental unit provides a pair of data. The 
frequency ratio of the two alternatives will change more or less from the first 
to the second study. The intensity of this change is tested by the sign test 
known as the McNemar X2 test (1947) which, more precisely, exhausts the 
information as to how many individuals are transferred into another 
category between the first and the second study. We have a fourfold table 
with one entry for the first study and with a second entry for the second 
study, as shown in Table 91. 

Table 91 

~ Study I + -

+ a b 

- c d 

The null hypothesis is that the frequencies in the population do not differ for 
the two studies, i.e., the frequencies band c indicate only random variations 
in the sample. Since these two frequencies represent the only possible fre
quencies which change from study I to study II, where b changes from + to 
- and c from - to +, McNemar, together with Bennett and Underwood 
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(1970) (cf., also Gart 1969, Maxwell 1970, and Bennett 1971), was able to 
show that changes of this sort can be tested for (b + c) ~ 30 by 

"2 (b-c)2 
X b+c+l' DF=1 

and for 8 ::; b + c < 30 with continuity correction by 

DF =1. 

(4.40) 

(4.40a) 

@ Thus the frequencies band c are compared and their ratio tested with respect 
to 1: 1 (cf., also Section 4.5.5). Under the null hypothesis both frequencies 
band c have the same expected value (b + c)j2. The more band c deviate 
from this expected value, the less confidence one has in the null hypothesis. 
If a sound assumption as to the direction of the change to be expected can be 
made even prior to the experiment, a one sided test may be made. A computa
tion of the associated confidence interval can be found in Sachs (1984, 
pp. 74, 75). 

EXAMPLE. A medication and a placebo are compared on a sample of 40 
patients. Half the patients begin with one preparation and half with the 
other. Between the two phases of the therapy a sufficiently long therapy-free 
phase is inserted. The physician grades the effect as "[at best] weak" or 
"strong" based on the statements of the patients. 

The null hypothesis (the two preparations have equal effect) is set (0( = 

0.05) against a one sided alternate hypothesis (the preparation is more 
effective than the neutral preparation). The fourfold scheme in Table 92 is 
obtained, and 

Table 92 
Placebo effect 
(effect of neutral prep.) 

strong weak 

strong 8 16 
Effect a b 
of the c d 
preparation weak 5 11 

2 (1 16-51-1)2 
X = 16 + 5 + 1 = 4.545. 

With help of the table in the middle of page 349: 

X2 = 4.545 > 2.706 = XtO.05;onesided. 

@ The value X2 = 4.545 corresponds, by Table 83 for the one sided test, to a 
probability P ~ 0.0165. 
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Let us consider the example in somewhat greater detail: In Table 92 the 
11 patients that reacted weakly to both preparations, and the 8 patients that 
experienced a strong effect in both cases told us nothing about the possible 
difference between the preparation and the placebo. The essential information 
is taken from fields band c: 

Weak placebo effect and strong preparation effect: 16 patients 

Weak preparation effect and strong placebo effect: 5 patients 

Altogether 21 patients 

If there was no real difference between the two preparations, then we should 
expect the frequencies band c to be related as 1: 1. Deviations from this 
ratio can also be tested with the aid of the binomial distribution. For the 
one sided question we obtain 

x= 5 (21)(1)X(1)21-X 
P(X ~ 51 n = 21, p = 0.5) = x~o x 2" 2" = 0.0133 

or by means of the approximation involving the normal distribution, 

Z= 15 + 0.5 - 21· 0.51 = 2.182, 
J21 ·0.5·0.5 

i.e., P(X ~ 5) = 0.0146. 

This sign test, known in psychology as the McNemar test, is based on the 
signs of the differences of paired observations. It is a frequently used form 
of the test introduced above. The plus signs and the minus signs are counted. 
The null hypothesis (the two signs are equally likely) is tested against the 
alternative hypothesis (the two signs occur with different probability) with 
the help ofaX2 test adjusted for continuity: 

x2 (Inplus- n Minusl-1)2 

nplus + nMinus + 1 

The null hypothesis is then 

1 

n p1us + nMinus 
2 or 

(4.40b) 

The alternate hypothesis is the negation of this statement. Thus we have to 
test Prob( + sign) = t (cf., Table 69). 

A generalization of this test for the comparison of several percentages 
in matched samples is the Q-test of Cochran (1950) which we give in Section 
6.2.4 (cf., also Seeger 1966, Bennett 1967, Marascuilo and McSweeney 1967, 
Seeger and Gabrielsson 1968, and Tate and Brown 1970). 



366 4 Further Test Procedures 

4.6.4 The additive property of X2 

A sequence of experiments carried out on heterogeneous material which 
cannot be jointly analyzed could yield the 2.2 values 2.i, 2.L 2.L ... with 
VI' V 2 , V 3 , .•. degrees of freedom. If there is a systematic tendency toward 
deviations in the same direction the overall result may then be combined 
into a single X2 statistic xi + X~ + ... with VI + V2 + ... degrees offreedom. 
When combining the x2-values from fourfold tables, make sure they are not 
adjusted by Yates's correction, as that leads to overcorrection. When com
bining X2 values from sixfold or larger tables (cf., Chapter 6) other methods 
are better (cf., Koziol and Perlman (1978». 

EXAMPLE. To test a null hypothesis (IX = 0.05) an experiment is carried out 
four times-in a different locale and on different material, let us say. The 
corresponding X2-values are 2.30, 1.94, 3.60, and 2.92, with one degree of 
freedom in each case. The null hypothesis cannot be rejected. On the basis 
of the additive property of X2 the results can be combined: 

X2 = 2.30 + 1.94 + 3.60 + 2.92 = 10.76 with 1 + 1 + 1 + 1 = 4 DE 

X2 > X~; 0.05 does not imply that the null hypothesis has to be rejected in all 4 
experiments, but H 0 does not hold simultaneously for all 4 experiments. 
Since for 4 DF we have X~;0.05 = 9.488 (Table 28, lower part), the null 
hypothesis must be rejected at the 5 % level for at least one experiment. 

Remark: Combining comparable test results, that is, combining exact probabilities 
from independent tests of significance with the same H,4. 

Occasionally several studies of certain connections (e.g., smoking and lung cancer) 
which have been evaluated by means of different statistical tests (e.g., U-test and I-test) 
are available. The comparable statistical statements with equal tendencies can be 
combined into a single statement. 

Small independent values of the attained significance level Pi with all 
deviations in the same direction may be combined to test the combined null 
hypothesis. Fisher's combination procedure rejects this combined null 
hypothesis if the product of the Pi is small, if 

n 

-2 L In Pi ~ X~n;"· 
i= I 

This is an approximation. 

EXAMPLE. Combine PI = 0.06, P2 = 0.07, P3 = 0.08; n = 3, 2n = 6; IX = 
0.05 

In 0.06 = - 2.8134 

In 0.07 = - 2.6593 

In 0.08 = - 2.5257 

-7.9984 
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Since (-2)( -7.9984) = 15.997 > 12.59 = X~;O.05 the combined null hypo
thesis is rejected at the 5 % level. 

Further methods for combining independent X2 tests are given in Koziol 
and Perlman (1978) [see also the end of Section 1.4.3, Good (1958), and 
Kincaid (1962)]. 

4.6.5 The combination of fourfold tables 

If several fourfold tables are available that cannot be regarded as replications 
because the conditions on samples 1 and 2 (with n1 + n2 = n), which make 
up one experiment, vary from table to table, then Cochran (1954) recom
mends both of the following procedures as sufficiently accurate approximate 
solutions (cf., also Radhakrishna 1965, Fleiss 1981 [8:2aJ, and Sachs 1984): 

I. The sample sizes nk of the i fourfold tables (k = I, ... , z) do not differ 
very greatly from one another (at most by a factor of 2); the ratiosa/(a + b) 
and c/(c + d) (Table 81) lie between about 20 % and 80 % in all the tables. 
Then the result can be tested on the basis of i combined fourfold tables in 
terms of the normal distribution according to 

A Lx 
Z=-

Ji 
or ALve 

Z=--

Ji 
(4.41ab) 

The test in detail: 

1. Take the square root of the ~2 or G values, determined for the i fourfold 
tables (cf., Section 4.6.1, second half) without the Yates correction. 

2. The signs of these values are given by the signs of the differences 

a/(a + b) - c/(c + d). 

3. Sum the ~ or Ja values (keeping track of signs). 
4. Take the square root of the number of combined fourfold tables. 
5. Construct the quotients ~ by the above formula. 
6. Test the significance of ~ by means of tables of standard normal variables ~ 

(Table 14 or Table 43). ~ 

II. No assumptions are made on the sample sizes nil and ni2 of the 2 x 2 
tables or the respective proportions a/(a + b) and c/(c + d). Here the ques-
tion regarding the significance of a result can be tested in terms of the normal @ 
distribution by 

(4.42) 
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where Wi is the weight of the ith sample [for the i-th 2 x 2 table] with fre
quencies ai' bi' Ci' and di (Table 81), defined as 

W = (nil)(ni2) 
I ni 

and Di is the difference between the ratios: 

We give the example cited by Cochran as an illustration. 

EXAMPLE. Erythroblastosis of the newborn is due to the incompatibility 
between the Rh-negative blood of the mother and the Rh-positive blood of 
the embryo that, among other things, leads to the destruction of embryonic 

Table 93 Mortality by sex of donor and severity of disease. The 
sample sizes vary only from 33 to 60; the portion of deaths 
however varies between 3% and 46%. so that the 4 tables are 
combined in accordance with the second procedure. 

Sex of Number 

Symptoms the donor Deaths Survivals Total % Deaths 

male 2 21 23 = n l1 8.7 = Pl1 
none 

female 0 10 10=n12 0.0 = P12 

total 2 31 33 = n1 6.1 = P1 

male 2 40 42 = n21 4.8 = P21 
slight 

female 0 18 18 = n22 0.0 = P22 

total 2 58 60 = n2 3.3 = P2 

male 6 33 39 = n31 15.4 = P31 
moderate 

female 0 10 10 = n32 0.0 = P32 

total 6 43 49 = n3 12.2=P3 

very male 17 16 33 = n41 51.5 = P41 
pronounced female 0 4 4 = n42 0.0 = P42 

total 17 20 37 = n4 45.9 = P4 
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erythrocytes, a process which, after birth, is treated by exchange transfusion: 
The blood of the infant is replaced with blood of Rh-negative donors of the 
same blood type. 

As was observed on 179 newborns at a Boston clinic (Allen, Diamond, 
and Watrous: The New Engl. J. Med. 241 [1949] pp. 799-806), the blood of 
female donors is more compatible with the infants than that of male donors. 
The question arises: Is there an association between the sex of the donor 
and the alternatives "survival" or "death"? The 179 cases cannot be con
sidered as a unit, because of the difference in severity of the condition. They 
are therefore divided, according to the severity of the symptoms as a possible 
intervening variable, into 4 internally more homogeneous groups. The results 
are summarized in Table 93. 

Table 94 

Symptoms 0, P, p,(H - p) 
n . n 

W ~_"_'2 
, n, W,D, W,p,(H - p) 

none 8.7 - 0.0 ~ 8.7 6.1 573 7.0 60.90 4011.0 
slight 4.8 - 0.0 ~ 4.8 3.3 319 12.6 60.48 4019.4 
moderate 15.4 - 0.0 ~ 15.4 122 1071 8.0 123.20 8568.0 
very pronounced 51.5 - 0.0 ~ 51.5 45.9 2483 3.6 185.40 8938.8 

429.98 25537.2 
IW,D, IW,p,(H - p) 

By means of an auxiliary table (Table 94) with Pi in % and H = 100, 

we obtain z = 429.98/J25,537.2 = 2.69. For the two sided question under 
consideration, there corresponds to this z-value a significance level of 0.0072. 
We may thus confirm that the blood of female donors constitutes a better 
replacement in the case of fetal erythroblastosis than that of males. The 
difference in compatibility is particularly pronounced in severe cases. 

Incidentally, this result is not confirmed by other authors: In fact the 
gender of the donor in no way influences the prognosis of fetal erythro
blastosis. 

Turning once again to the original table, we note that the relatively high 
proportion of male blood donors is conspicuous (> 76 %) and increases with 
increasing severity of symptoms implying that conditions are more favorable 
with female donors. Nevertheless, these findings are difficult to interpret. 

4.6.6 The Pearson contingency coefficient 

What characterizes the fourfold table viewed as a contingency table is that 
both entries are occupied by characteristic alternatives. In frequency com
parison one entry is occupied by a characteristic alternative, the other by 
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a sample dichotomy. X2 tests and the G test can show the existence of a 
connection. They will say nothing about the strength of the connection or 
association. A statistic for the degree of association- if a relation (a con
tingency) is ascertained between the two characteristics-is the Pearson 
contingency coefficient. It is a measure of the consistency of the association 
between the two characteristics of fourfold and manifold tables and is ob
tained from the X2 value by the formula 

I CC~~ (4.43) 

(For fourfold tables (4.35) with "n" in the numerator is used to compute 
X2). The maximal contingency coefficient of the fourfold table is 0.7071; it 
always occurs with perfect contingency, i.e., when the fields band c remain 
unoccupied. Square manifold tables with unoccupied diagonal fields from 
lower left to upper right exhibit a maximal contingency coefficient, given by 

I CCmax =J(r-1)/r, I 
where r is the number of rows or columns, i.e., for the fourfold table 

I CCmax =J(2-1)/2=Ji/2=0.7071. 

o Section 6.2.2 supplements these considerations. 

Remarks 

(4.44) 

(4.45) 

1. The exact computation of the correlation coefficients developed by Pearson 
(cf., Chapter 5) for fourfold tables is exceedingly involved; a straightforward and 
sufficiently accurate method for estimating fourfold correlations with the help of two 
diagrams is presented by Klemm (1964). More on this can be found, e.g., in the book 
by McNemar (1969 [8: 1]). 

2. A test for comparing the associations in two independent fourfold tables is 
given in G. A. Lienert et aI., Biometrical Journal 21 (1979), 473-491. 

4.6.7 The exact Fisher test of independence, as 
well as an approximation for the comparison 
of two binomially distributed populations 
(based on very small samples) 

For fourfold tables with very small n (cr., Section 4.6.1), begin with the 
field with (l) the smallest diagonal product and (2) the smallest frequency 
[Table 95: (2)(4) < (8)(10), thus 2] and, while holding constant the four 
marginal sums (a + b, c + d, a + c, b + d), construct all fourfold tables with an 
even smaller frequency in the field considered. Among all such fourfold tables, 
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those in which the field with the smallest observed frequency is even less 
occupied have probability P. In other words, if one takes the marginal sums 
of the fourfold table as given and looks for the probability that the observed 
occupancy of the table or one even less likely comes about entirely at random 
(one sided question), then this probability P turns out to be the sum of some 
terms of the hypergeometric distribution: 

p=(a+b)!(c+d)!(a+c)!(b+d)!L 1. (4.46) 
n! ; a;!b;!c;!d;! 

The index i indicates that the expression under the summation sign is com
puted for each of the above described tables, and then included in the sum. 
Significance tables obtained in this way or with help of recursion formulas 
are contained in a number of collections of tables (e.g., Documenta Geigy 
1968). Particularly extensive tables to n = 100 are given by Finney, Latscha, 
Bennett, and Hsu (1963, with supplement by Bennett and Horst 1966). The 
probabilities can be read off directly. Unfortunately, the tables allow no 
two sided tests at the 5 % and the 1 % level for sample sizes 31 ~ n ~ 100. 
More on the two sided test can be found in Johnson (1972) (cf., also below). 

EXAMPLE 

Table 95 

2 8 10 1 9 10 0 10 10 
10 4 14 11 3 14 12 2 14 
12 12 24 12 12 24 12 12 24 

a b c 

From Table 95 we obtain two tables with more extreme distributions. The 
probability that the observed table occurs is 

p=10!.14!.12!.12!. 1 

24! 2!·8!·10!·41" 

The total probability for both the observed and more extreme distributions 
is given by 

P _ 1O!14!12!12! (1 1 I) 
- 24! 2!8!10!4! + 1!9!11!3! + 0!1O!12!2! ' 

P = 0.0018 (one sided test; use, e.g. Table 32, Section 1.6.1). 

For a symmetric hypergeometric distribution (i.e., here, row or column 
sums are equal [a + b = c + d or a + c = b + d]) we can easily treat the 
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two sided problem; the significance level of the two sided test is twice that 
of the one sided, e.g., P = 0.036 in the example. The null hypothesis (1l: 1 = 1l:2 

or independence; see Section 4.6.1) is rejected at the 5 % level in both cases 
(because P < 0.05). More on the two sided Fisher test may be found in 
H. P. Kriiger, EDV in Medizin und Biologie 10 (1979), 19-21 and in T. W. 
Taub, Journal of Quality Technology 11 (1979),44-47. 

Computation tools [see Section 4.6.2, (4.37) and (4.38)] for 
n small or large 

1 Recursion formula 

The computations are carried out more rapidly with the help of a recursion 
formula (Feldman and Klinger 1963) 

a··d· P - I I P 
i+ I-b i' 

i+I'Ci+1 
(4.47) 

Identifying a, b, C above with 1,2,3, we compute the probabilities successively, 
starting with the observed table (Table 95a) and the above given expression 
for PI: 

10!·14!·12!·12!·1 
P I = 24!.2!.8!.1O!.4! =0.016659; 

for Table 95b, by (4.47), 

2·4 
PHI = P2 = 9.11 . PI = 0.0808·0.016659 = 0.001346; 

and for Table 95c, by (4.47), 

1·3 
P2+ I = P3 = 10.12' P2 = 0.0250·0.001346 = 0.000034. 

Altogether: P = PI + P 2 + P3 = 0.0167 + 0.0013 + 0.0000 = 0.018. 

2 Collections of tables 

The Finney tables for the one sided test use the fourfold scheme in Table 96, 

Table 96 

a A - a A 

b B - b B 

r N - r N 
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with A ~ B and a ~ b or A - a ~ B - b, in the last case writing A - a 
as a, B - b as b, and the two remaining fields of the table as differences. 
After performing the required change in notation of the 4 frequencies on 
page 14 of the tables, our example, as shown in Table 97, supplies the exact 
probability that b ~ 2 for a significance level of 5 % with P = 0.018. An 
important aid is also provided by the hypergeometric distribution tables of 
Lieberman and Owen, mentioned in Section 1.6.3. 

Table 97 

10 4 14 
2 8 10 

12 12 24 

3 Binomial coefficients 

Problems of this sort for sizes up to n = 20 can, with the help of Table 31 
(Section 1.6.1), be easily solved by 

P = (~O)G~) + CI
0)G;) + (~O)G~) = 001804 

(~~) .. 

Binomial coefficients for larger values of n (20 < n ~ 100), such as <ii) = 
2,704,156, are computed sufficiently accurately by means of Table 32 [Section 
1.6.1; cf., also (1.152)]. 

More on this test (cr., I. Clarke, Applied Statistics 28 (1979), p. 302) can 
be found in the books by Lancaster (1969, [8: 1], pp. 219-225, 348) as well 
as Kendall and Stuart (Vol. 2, 1973[IJ, pp. 567-575). 

A quick test is presented by Ott and Free (1969) (see, e.g., Sachs 1984, 
p. 66). Also of particular importance are the tables and nomograms given 
by Patnaik (1948) as well as Bennett and Hsu (1960), which supplement 
Table 84 in Section 4.6.1. 

4.7 TESTING THE RANDOMNESS OF A 
SEQUENCE OF DICHOTOMOUS DATA OR 
OF MEASURED DATA 

4.7.1 The mean square successive difference 

A straightforward trend test (von Neumann et al. 1941; cf., also Moore 
1955) in terms of the dispersion of sample values Xl' X2' ... , X;, ..• , Xn , 

consecutive in time, which originate in a normally distributed population, is 
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based on the variance, determined as usual, and the mean square of the 
n - I differences of consecutive values, called the mean square successive 
difference L12 (delta-square): 

L12 = [(Xl - X2)2 + (X2 - X3)2 + (X3 - X4)2 + ... + (Xi - Xi+ 1)2 
+ ... + (Xn - 1 - Xn)2]/(n - 1), 

i.e., 

(4.48) 

If the consecutive values are independent, then L12 ~ 2S2 or L12/S2 ~ 2. When
everatrendispresentL12 < 2S2, i.e., L12/S2 < 2, since adjacent values are then 
more similar than distant ones. The null hypothesis (consecutive values are 
independent) must be abandoned in favor of the alternative hypothesis 
(there exists a trend) if the quotient 

I L12/S2 = L(Xi-Xi+ d2/~)Xi-X)2 (4.49) 

@ drops to or below the critical bounds of Table 98. 
For example, for the sequence 2, 3, 5, 6 we find L (Xi - X)2 = 10 and 

L (Xi - X i + l )2 = (2 - 3)2 + (3 - 5)2 + (5 - 6)2 = 6; hence 

L12/S2 = 6/10 = 0.60 < 0.626, 

and the null hypothesis can be rejected at the 1 % level. For large sample 
sizes, approximate bounds can be computed with the help of the normal 
distribution by 

or by 

2-2z· I< n-2 
(n-1)(n+1) 

1 2-2z·--. 
In+1 

(4.50) 

(4.50a) 

where the standard normal variable z equals 1.645 for the 5 % bound, 2.326 
for the 1 % bound, and 3.090 for the 0.1 % bound. For example, we get as 
an approximate 5 % bound for n = 200 from (4.50, 4.50a) 

2 - 2·1.645· 
200 - 2 

(200 - 1)(200 + 1) = 1.77, 

1 
2 - 2 . 1.645 . = 1.77 

J200 + 1 
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Table 98 Critical bounds for the ratio of the mean square successive 
difference and the variance, extracted, and modified by the factor 
(n - 1 }/n, from the tables by Hart, B. I.: Significance levels for the 
ratio of the mean square successive difference to the variance. Ann. 
Math. Statist. 13 (1942), 445-447 

n 0.1% 1% 5% n 0.1% 1% 5% 
4 0.5898 0.6256 0.7805 33 1.0055 1.2283 1.4434 
5 0.4161 0.5379 0.8204 34 1.0180 1.2386 1.4511 
6 0.3634 0.5615 0.8902 35 1.0300 1.2485 1.4585 
7 0.3695 0.6140 0.9359 36 1.0416 1.2581 1.4656 
8 0.4036 0.6628 0.9825 37 1.0529 1.2673 1.4726 
9 0.4420 0.7088 1.0244 38 1.0639 1.2763 1.4793 

10 0.4816 0.7518 1.0623 39 1.0746 1.2850 1.4858 
11 0.5197 0.7915 1.0965 40 1.0850 1.2934 1.4921 
12 0.5557 0.8280 1.1276 41 1.0950 1.3017 1.4982 
13 0.5898 0.8618 1.1558 42 1.1048 1.3096 1.5041 
14 0.6223 0.8931 1.1816 43 1.1142 1.3172 1.5098 
15 0.6532 0.9221 1.2053 44 1.1233 1.3246 1.5154 
16 0.6826 0.9491 1.2272 45 1.1320 1.3317 1.5206 
17 0.7104 0.9743 1.2473 46 1.1404 1.3387 1.5257 
18 0.7368 0.9979 1.2660 47 1.1484 1.3453 1.5305 
19 0.7617 1.0199 1.2834 48 1.1561 1.3515 1.5351 
20 0.7852 1.0406 1.2996 49 1.1635 1.3573 1.5395 
21 0.8073 1.0601 1.3148 50 1.1705 1.3629 1.5437 
22 0.8283 1.0785 1.3290 51 1.1774 1.3683 1.5477 
23 0.8481 1.0958 1.3425 52 1.1843 1.3738 1.5518 
24 0.8668 1.1122 1.3552 53 1.1910 1.3792 1.5557 
25 0.8846 1.1278 1.3671 54 1.1976 1.3846 1.5596 
26 0.9017 1.1426 1.3785 55 1.2041 1.3899 1.5634 
27 0.9182 1.1567 1.3892 56 1.2104 1.3949 1.5670 
28 0.9341 1.1702 1.3994 57 1.2166 1.3999 1.5707 
29 0.9496 1.1830 1.409'- 58 1.2227 1.4048 1.5743 
30 0.9645 1.1951 1.4183 59 1.2288 1.4096 1.5779 
31 0.9789 1.2067 1.4270 60 1.2349 1.4144 1.5814 
32 0.9925 1.2177 1.4354 00 2.0000 2.0000 2.0000 

4.7.2 The run test for testing whether a sequence 
of dichotomous data or of measured data is 
random 

The run test, like the two subsequent tests (Sections 4.7.3 and 4.8), is dis
tribution-free. It serves to test the independence (the random order) of 
sampled values. A run is a sequence of identical symbols preceded or followed 
by other symbols. Thus the sequence (coin tossing with head [H] or tail [T]) 

T, T, T; H; T, T; H, H 
1 2 3 4 

consists of r = 4 runs (n = 8). Runs are obtained not only for dichotomous 
data but also for measured data that are divided into two groups by the 
median. For given n, a small r indicates clustering of similar observations, 
and a large r indicates regular change. The null hypothesis H 0 that the 
sequence is random (even though a random sequence can be ordered, it can 
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still be random as far as values go, though not in random sequence) is in 
a two sided problem opposed by the alternate hypothesis H A that the given 
sequence is not random. In the one sided question the Ho is opposed either 
by HAl ("cluster effect") or HA2 ("regular change"). The critical bounds 
rlower = r l and rupper = ru for nl , n2 ~ 20 and for 20 ~ nl = n2 ~ 100 are 
found in Table 99 (where nl and n2 are the numbers oftimes the two symbols 

Table 99 Critical values for the run test (from Swed, F. S. and Eisen
hart, C.: Tables for testing randomness of grouping in a sequence of 
alternatives, Ann. Math. Statist., 14, (1943), 66-87) 

P = 0.01 

5 2 lower 6 2 2 3 
5 11 
6 12 upper 

7 2 3 3 3 0.5%- bounds 
8 3 3 3 3 ~ 1~ 1~ 15 0.5%-bounds 
9 3 3 3 4 4 '1;0.5% 

10 3 3 4 4 5 5 1~ 1~ 1~ 1~ 17 'u;05% 
11 3 4 4 5 5 5 6 11 1516171819 
12 3 4 4 5 5 6 6 6 12 1718191920 
13 3 4 5 5 5 6 6 7 13 17 18 19 20 21 21 
14 4 4 5 5 6 6 7 7 7 14 17 18 19 20 21 22 23 
15 4 4 5 6 6 7 7 7 8 8 15 19 20 21 22 22 23 24 
16 4 5 5 6 6 7 7 8 8 9 9 16 19 20 21 22 23 24 24 25 
17 4 5 5 6 7 7 8 8 8 9 9 10 17 192022222324252626 
18 4 5 66 7 7 8 8 9 9 10 10 11 18 21 22 23 24 25 25 26 27 27 
19 4 5 6 6 7 8 8 9 9 10 10 10 11 11 19 21 22 23 24 25 26 27 27 28 29 
20 4 5 6 7 7 8 8 9 9 10 10 11 11 12 12 W ~22nMaava~~m 

[><6 n, 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >< 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

P = 0.05 

5 2 2 
lower 6 2 2 3 3 

7 2 2 3 3 3 2.5%-bounds 
8 233344 
9 2334455 '1;2.5% 

10 2334555 6 
11 2344556 6 7 
12 22344566 7 7 7 
13 22345566 7 7 8 8 
14 22345567 7 8 8 9 9 
15 23345667 7 8 8 9 9 10 
16 23445667 8 8 9 9 10 10 11 
17 23445677 8 9 9 10 10 11 11 11 
18 23455678 8 9 9101011 11 1212 
19 23456678 8 9101011 11 12121313 
20 23456678 9 9 10 10 11 12 12 13 13 13 14 

l/< 234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 9 10 
6 9 10 11 
7 11 12 13 
8 11 121314 
9 13141415 

10 1314151616 
11 131415161717 
12 13141616171819 

upper 
2.5%-bounds 

'u;2.5% 

13 15161718191920 
14 15 16 17 18 19 20 20 21 
15 15 16 18 18 19 20 21 22 22 
16 17 18 19 20 21 21 22 23 23 
17 17 18 19 20 21 22 23 23 24 25 
18 17 18 19 20 21 22 23 24 25 25 26 
19 17 18 20 21 22 23 23 24 25 26 26 27 
20 17 18 20 21 22 23 24 25 25 26 27 27 28 

X 4 5 6 7 8 91011 121314151617 18 19 20 

P = 0.10 

4 2 
lower 5 2 3 

6 3 3 3 5%-bounds 
7 3 3 4 4 
8 3 3 4 4 5 'I; 5% 
9 344556 

10 345566 6 
11 345566 7 7 
12 445667 7 8 8 
13 445667 8 8 9 9 
14 455677 8 8 9 9 10 
15 456678 8 9 9 10 10 11 
16 456678 8 9 10 10 11 11 11 
17 456778 9 9 10 10 11 11 12 12 
18 456788 9 10 10 11 11 12 12 13 13 
19 456788 9 10 10 11 12 12 13 13 14 14 
20 456789 9 10 11 11 12 12 13 13 14 14 15 

X4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 8 
5 9 9 
6 9 10 11 
7 91011 12 
811121313 
91112131414 

10111213141516 
11 131415151617 
12 13141516171718 
13 1314151617181819 

upper 
5%-bounds 

'u;5% 

14 131416171718192020 
15 15 16 17 18 19 19 20 21 21 
16 15 16 17 18 19 20 21 21 22 23 
17 15161718192021 22222324 
18 15 16 18 19 20 21 21 22 23 24 24 25 
19 15 16 18 19 20 21 22 23 23 24 25 25 26 
20 15 17 18 19 20 21 22 23 24 25 25 26 27 27 

Ix 4 5 6 7 8 91011 121314151617181920 
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Table 99 (continuation) 
n1 = n2 =n 

n P=0.10 P =0.05 P=0.02 P=O,Ol n P=0,10 P =0,05 P =0,02 P =0,01 

20 15-27 14-28 13-29 12-30 60 51- 71 49- 73 47- 75 46- 76 
21 16-28 15-29 14-30 13-31 61 52- 72 50- 74 48- 76 47- 77 
22 17-29 16-30 14-32 14-32 62 53- 73 51- 75 49- 77 48- 78 
23 17-31 16-32 15-33 14-34 63 54- 74 52- 76 50- 78 49- 79 
24 18-32 17-33 16-34 15-35 64 55- 75 53- 77 51- 79 49- 81 
25 19-33 18-34 17-35 16-36 65 56- 76 54- 78 52- 80 50- 82 
26 20-34 19-35 18-36 17-37 66 57- 77 55- 79 53- 81 51- 83 
27 21-35 20-36 19-37 18-38 67 58- 78 56- 80 54- 82 52- 84 
28 22-36 21-37 19-39 18-40 68 58- 80 57- 81 54- 84 53- 85 
29 23-37 22-38 20-40 19-41 69 59- 81 58- 82 55- 85 54- 86 
30 24-38 22-40 21-41 20-42 70 60- 82 58- 84 56- 86 55- 87 
31 25-39 23-41 22-42 21-43 71 61- 83 59- 85 57- 87 56- 88 
32 25-41 24-42 23-43 22-44 72 62- 84 60- 86 58- 88 57- 89 
33 26-42 25-43 24-44 23-45 73 63- 85 61- 87 59- 89 57- 91 
34 27-43 26-44 24-46 23-47 74 64- 86 62- 88 60- 90 58- 92 
35 28-44 27-45 25-47 24-48 75 65- 87 63- 89 61- 91 59- 93 
36 29-45 28-46 26-48 25-49 76 66-' 88 64- 90 62- 92 60- 94 
37 30-46 29-47 27-49 26-50 77 67- 89 65- 91 63- 93 61- 95 
38 31-47 30-48 28-50 27-51 78 68- 90 66- 92 64- 94 62- 96 
39 32-48 30-50 29-51 28-52 79 69- 91 67- 93 64- 96 63- 97 
40 33-49 31-51 30-52 29-53 80 70- 92 68- 94 65- 97 64- 98 
41 34-50 32-52 31-53 29-55 81 71- 93 69- 95 66- 98 65- 99 
42 35-51 33-53 31-54 30-56 82 71- 95 69- 97 67- 99 66-100 
43 35-53 34-54 32-56 31-57 83 72- 96 70- 98 68-100 66-102 
44 36-54 35-55 33-57 32-58 84 73- 97 71- 99 69-101 67-103 

45 37-55 36-56 34-58 33-59 85 74- 98 72-100 70-102 68-104 
46 38-56 37-57 35-59 34-60 86 75- 99 73-101 71-103 69-105 
47 39-57 38-58 36-60 35-61 87 76-100 74-102 72-104 70-106 
48 40-58 38-60 37-61 36-63 88 77-101 75-103 73-105 71-107 
49 41-59 39-61 38-62 36-64 89 78-102 76-104 74-106 72-108 

50 42-60 40-62 38-64 37-65 90 79-103 77-105 74-108 73-109 
51 43-61 41-63 39-65 38-66 91 80-104 78-106 75-109 74-110 
52 44-62 42-64 40-66 39-67 92 81-105 79-107 76-110 75-111 
53 45-63 43-65 41-67 40-68 93 82-106 80-108 77-111 75-113 
54 45-65 44-66 42-68 41-69 94 83-107 81-109 78-112 76-114 

55 46-66 45-67 43-69 42-70 95 84-108 82-110 79-113 77-115 
56 47-67 46-68 44-70 42-72 96 85-109 82-112 80-114 78-116 
57 48-68 47-69 45-71 43-73 97 86-110 83-113 81-115 79-117 
58 49-69 47-71 46-72 44-74 98 87-111 84-114 82-116 80-118 
59 50-70 48-72 46-74 45-75 99 87-113 85-115 83-117 81-119 

60 51-71 49-73 47-75 46-76 100 88-114 86-116 84-118 82-120 

appear); for n1 or nz > 20 one may use the approximation (4.51) or (4.51a) 
(cf., Table 14, Section 1.3.4, or Table 43, Section 2.1.6): 

Z= 11' - Ilrl 

2nlnZ(2nln2 - nl - n2) 

(nl + n2)Z(nl + n2 - 1) 

Z= 
n(n - 2) 

4(n - 1) 

(n = n1 + nz) 

In(r - 1) - 2n 1 nzl 

2nln2(2nln2 - n)' 
n - 1 

(4.51) 

(4.51a) 
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Two sided test: For rl < r < ru , Ho is retained; Ho is rejected if either 

One sided test: Ho is rejected against HAl (respectively HA2) as soon as 
? ::;; rl (respectively? ~ ru) or z ~ Zonesided' 

More on this can be found in the work of Stevens (1939), Bateman (1948), 
Kruskal (1952), Levene (1952), Wallis (1952), Ludwig (1956), Olmstead 
(1958), and Dunn (1969). 

The run test can also serve to test the null hypothesis that two samples of 
about the same size originate in the same population (nl + n2 observations 
ordered by magnitude; then the values are dropped and only the population 
labels retained, to which the run test is applied; H 0 is abandoned for small ?). 

Examples 

1. Testing data fornonrandomness (0( = 0.10). The 11 observations 18, 17, 
18, 19,20, 19, 19,21, 18,21,22, are obtained in sequence; let L denote a value 
larger or equal, S a value smaller than the median x = 19. For nl = 4(S), 
n2 = 7(L) with? = 4 the sequence SSSLLLLLSLL is compatible with the 
randomness hypothesis at the 10% level (Table 99; P = 0.10; r l;5% = 3 is 
not attained: 3 = rl' 50/ < ? < r u· 5% = 9). 

, 10 ' 0 

2. Testing observations for noncluster effect (0( = 0.05) (i.e., testing Ho 
against HAl at the 5 % level in terms of the lower 5 % bounds of Table 99 
or the standard normal distribution). Suppose two combined random 
samples of sizes nl = 20, n2 = 20 form ? = 15 runs. Since by Table 99 
r l; 5% = 15 and H 0 is rejected for ? ::;; rl; 5%, the cluster effect hypothesis 
(P = 0.05) is accepted. This result is also obtained from (4.51a) and (4.51): 

z = 115 - (20 + 1)1 = 1.922, 
J40(4O - 2)/[4(40 - 1)] 

A 140(15-1)-2·20·201 
Z = = 1.922, 

j[2. 20·20(2·20·20 - 40)]/(40 - 1) 

since by Table 43 (Section 2.1.6) Z 5%; one sided = 1.645 and H 0 is rejected for 
z ~ z5%;onesided' 

4.7.3 The phase frequency test of Wallis and Moore 

This test evaluates the deviation ofa sequence of measured data Xl' X2" .• , 

Xi' ..• , Xn (n > 10) from randomness. The indices I, 2, ... ,i, ... ,n denote a 
time sequence. If the sample is independent of time, then the signs of the 
differences (Xi + 1 - Xi) are random (null hypothesis). The alternative 
hypothesis would then be: The sequence of plus and minus signs deviates 
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significantly from random. The present test is thus to be regarded as a 
diiference-sign run test. 

A sequence of like signs is referred to as a phase according to Wallis and 
Moore (1941); the test is based on the frequency of the plus and minus 
phases. If the overall number of phases is denoted by h (small h is an indica
tion of trend persistence), where the initial and the final phase are omitted, 
then under the assumption of randomness of a data sequence the test statistic 
(4.52a) for n > 10 is approximately standard normally distributed; 

A_lh-2n371-0.5 
z- . 

j16n-29 
(4. 52a) 

90 

For n > 30 the continuity correction can be omitted: 

(4.52) 

EXAMPLE. Given the following sequence consisting of 22 values in Table 100. 

Table 100 

Data 5 6 2 3 5 6 4 3 789 7 534 7 3 5 6 789 
Signs + - + + + - - + + + - - - + + - + + + + + 

Phase number 1 2 3 4 5 6 7 

For h = 7, 

1 
2.22-71 

7 - 3 - 0.5 4.83 

J = 189 = 2.56 > 1.96 = ZO.05· 
16·22 - 29 . 

90 

Z= 

The result is significant at the 5 % level; the null hypothesis is rejected. 

4.8 THE S3 SIGN TEST OF COX AND STUART 
FOR DETECTION OF A MONOTONE TREND 

A time series is a chronological sequence of (historical) data, a set of observa
tions ordered according to time, for example the monthly unemployment 
figures in this country. To test a time series (cf., Bihn 1967, Harris 1967, 
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Jenkins 1968, Jenkins and Watts 1968, and the appropriate chapter in 
Suits 1963 or Yamane 1967) for monotonic (cf., Section 5.3.1) trend (Ho: 
no trend [randomness]; H A : monotonic trend) the n values of the sequence 
are partitioned into three groups so that the first and last, with n' = n/3, have 
an equal number of data values. The middle third is, for sample sizes n not 
divisible by 3, reduced by one or two values. Every kth observation in the 
first third of the data sequence is compared with the corresponding (in + k)th 
observation in the last third of the data sequence, and a "plus" is marked 
next to an ascending trend, a "minus" next to a descending trend, the mark 
thus depending on whether a positive or a negative difference appears (Cox 
and Stuart 1955). The sum S of the plus or the minus signs is approximately 
normally distributed with an expected value of n/6 and a standard deviation 

of J n/12, so that 

A IS - n/61 
z = '--------==-

In/12 . 
(4.53) 

@ For small samples (n < 30) this is corrected according to Yates: 

A IS - n/61 - 0.5 
z=----==--

In/12 . 
(4.53a) 

EXAMPLE. We use the values ofthe last example. Since 22 is not divisible by 3, 
we measure off both thirds as if n were equal to 24 (see Table 101). We find 
that 7 of 8 signs are positive. The test for ascending trend yields 

Z= 
1 221 7 - - - 0.5 

6 = 2.83 = 2.10. 
J22/12 1.35 

@ To Z = 2.10 there corresponds, by Table 13 for a two sided question, a random 
probability P ~ 0.0357. The increasing trend is ascertained at the 5 % level. 

Table 101 

Data values of 
the last third 4 7 3 5 6 7 8 9 

Data values of 
the first third 5 6 2 3 5 6 4 3 

Sign of the 
difference - + + + + + + + 
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Remarks 

1. If the mean of a data sequence changes abruptly at a certain instant of time, 
after nl observation say, then the difference of the two means, Xl - Xl, where Xl 

is the mean of the subsequent n l observations, can be tested (with one degree of 
freedom) (Cochran 1954) by 

(4.54) 

with n = n l + nl and X the common mean of all data values. The difference between ~ 
the two portions of the time sequence can be assessed by a one sided test, provided a 
substantiated assumption on the direction of the change is available; otherwise the 
two sided question is chosen (cf., also Section 5.6 and the end of Section 7.4.3). 

2. Important partial aspects of trend analysis (cf., also the end of Section 5.2) are 
considered by Weichselberger (1964), Parzen (1967), Bredenkamp (1968), Nullau 
(1968), Sarris (1968), Bogartz (1968), Jesdinsky (1969), Rehse (1970), and Box and 
Jenkins (1976). 

3. A survey on time series is given by Makridakis (1976). An update and evalua
tion of time series analysis and forecasting is given by S. Makridakis in International 
Statistical Review 46 (1978), 255-278 [for time series analysis, see also 49 (1981), 
235-264 and 51 (1983), 111-163]. An empirical investigation on the accuracy of 
forecasting is given by S. Makridakis and M. Hibon, Journal of the Royal Statistical 
Society A 142 (1979), 97-145. D. R. Cox provides a selective review of the statistical 
analysis of time series, Scandinavian Journal of Statistics 8 (1981), 93-115. 

4. Analytical procedures for cross-sectional time series in which the sample size 
is large and the number of observations per case is relatively small are given by 
D. K. Simonton, Psychological Bulletin 84 (1977), 489-502. 



5 MEASURES OF ASSOCIATION: 
CORRELATION AND REGRESSION 

5.1 PRELIMINARY REMARKS AND SURVEY 

In many situations it is desirable to learn something about the association 
between two attributes of an individual, a material, a product, or a process. 
In some cases it can be ascertained by theoretical considerations that two 
attributes are related to each other. The problem then consists of determining 
the nature and degree of the relation. First the pairs of values (Xi' Yi) are 
plotted in a coordinate system in a two dimensional space. The resulting 
scatter diagram gives us an idea about the dispersion, the form and the 
direction of the point" cloud". 

1. The length and weight of each piece of wire in a collection of such pieces 
(of uniform material, constant diameter) is measured. The points lie on a 
straight line. With increasing length the weight increases proportionally: 
equal lengths always give the same weights and conversely. The weight Y 
of the piece of wire is a function of its length x. There exists a functional 
relation between X and y. Here it does not matter which variable is 
assigned values and which is measured. Likewise the area A of a circle is a 
function of the radius , and conversely (A = n,2, , = J A/n, with 
n ~ 3.1416): To every radius there corresponds a uniquely determined 
area and conversely. 

2. If errors in measurement occur, then to a given length there do not always 
correspond equal weights. The plot reveals a point cloud with a clear 
trend (cf., e.g., Figure 39): In general, the weight gets larger with in
creasing length. The so-called equalizing line, drawn through the point 
cloud for visual estimation, allows one to read off: (1) what y-value can be 
expected for a specified x-value and (2) what x-value can be expected for 

382 
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Linear Regression 

Figure 39 The sample correlation co
efficient r indicates the degree of associa
tion between sample values of the 
random variables X and Y[x and yare 
their realizations]; it is a measure of the 
linear relationship between X and Y. 
The plot in the middle of the top row 
implies a V-shaped relation. 

r Positive correlation Y Negative correlation r Total functional 

a specified y-value. In place of the functional relation there is here a more 
or less loose connection, which we refer to as a stochastic relation. 

3. In fields such as biology and sociology the considerable natural variation 
in the objects under study often contributes more to the error than in
accuracies in measurements and/or observations (in the example of the 
wire, this would be due to nonuniform material with varying diameter). 
The point cloud becomes larger and perhaps loses its clearly recognizable 
trend. In stochastic relations (cf. also Sections 4.6.1, 4.6.6, 4.7) one 
distinguishes correlation (does there exist a stochastic relation between 
x and y? how strong is it?) and regression (what kind of relation exists 
between x and y? can y be estimated from x?). Let us first give a survey. 

I. Correlation analysis 

Correlation analysis investigates stochastic relations between random 
variables of equal importance on the basis of a sample. A statistic 
for the strength of the LINEAR relationship between two variables is 
the product moment correlation coefficient of Bravais and Pearson, 
called correlation coefficient for short. It equals zero if there is no 
linear relation (cf., Figure 39). 

For the correlation coefficient p (the parameter is denoted by the 
Greek letter rho) ofthe two random variables (cf. Section 1.2.5) X and Y 
we have: 

(1) -I ~ p ~ I (p is a dimensionless quantity). 
(2) For p = ± 1 there exists a functional relationship between X and y, 

all [empirical] points (x, y) lie on a straight line (cf., II, 7). 
(3) If p = 0 then we say X and Yare uncorrelated (independent random 

variables are uncorrelated; two random variables are the more 
strongly correlated the closer I p I is to I). 

(4) For a bivariate (two-dimensional) normal distribution p is a 
MEASURE of LINEAR INTERDEPENDENCE; and p = 0 
implies the stochastic independence of X and Y. 
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The two-dimensional normal distribution is a bell shaped surface in 
space (cr., Figure 47 below; there p ~ 0) which is characterized by p 
(and four additional parameters: f.1x, f.1y, ax, a y). The cross section paral
lel to the X, Y plane is a circle for p = ° and ax = ay, and an ellipse for 
ax =ft a y or p =ft 0, which becomes narrower as p -+ 1. 

The parameter p is estimated by the sample correlation coefficient 
r (Section 5.4.1); r is, for nonnormally distributed random variables 
with approximately linear regression (cf., II, 2 below), a measure of the 
strength of the stochastic relation. 

We consider: 

1. The correlation coefficient (Section 5.4.1). 
2. The partial correlation coefficient (Section 5.8). 
3. The multiple correlation coefficient (Section 5.8). 
4. The rank correlation coefficient of Spearman (Sections 5.3 and 5.3.1). 
5. The quadrant correlation (Section 5.3.2) and the corner test (Section 

5.3.3). Both allow one to test the presence of correlation without 
computation but through the analysis of the point cloud alone. In 
the corner test points lying "furthest out" are decisive. The exact 
values need not be known for either procedure. 

Several remarks on avoiding incorrect interpretations in correlation 
analysis are made in Section 5.2. Contingency coefficients (cf., Section 
4.6.6) will be discussed in Section 6.2.2 of the next chapter. The last 
remark in Section 5.5.9 concerns bivariate normality. 

II. Regression analysis 

1. In regression analysis a regression equation is fitted to an observed 
point cloud. 

2. A straight line 

Y = IX + 13X (5.1) 

describes a linear relationship-a linear regression-between the 
dependent (random) variable Y (predictand, regress and or response 
variable) and the independent (not random) variable X (regressor~ 
predictor or explanatory variable). If Yand X are the components 
of a bivariate normally distributed vector, then the regression line 
(5.1) can be written as (Y - f.1y)/ay = p(X - f.1J/ax, or Y = f.1y + 
p(ay/ax)(X - f.1J. 
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3. The parameters [e.g., IX and P in (5.1)] are estimated from the sample 
values, usually by the method of least squares with the help of the 
so-called normal equations (Section 5.4.2), or else by the maximum 
likelihood method. 

4. Estimations and tests of parameters are discussed in Sections 5.4 
and 5.5. Often only the pairs (Xi' Yi) of data are known (but not the 
causal relationship nor the underlying bivariate distribution). 
Since by II, 2 the variable X is fully specified and Y is a random 
variable, it is to our advantage to get several measurements of Y at 
the same Xi and average these values to Yi' Then we investigate the 
changes in the target variable Yi as a function of the changes in the 
influence variable X (regression as "dependence in the mean"; cf., 
also Section 5.5.3). 

5. Frequently it is impossible to specify X without error (observation 
error, measurement error). The influence quantities and target 
quantities are then afflicted with error. Special methods (see below) 
deal with this situation. 

6. In addition to the straightforward linear regression, one distin
guishes nonlinear (curvilinear) regression (Section 5.6) and multiple 
regression, characterized by several influence quantities (Section 
5.8). 

7. Correlation and regression: If the two variables are the components 
of a two dimensional normally distributed random variable, then 
there exist two regression lines (see Figures 43 through 46 below and 
Section 5.4.2). The first infers Y (target quantity Y) from X, the 
second X (target quantity X) from Y (see below, and the example at 
the end of Section 5.4.4). The two regression lines intersect at the 
center of gravity (X, Y) and form a "pair of scissors" (cf., Figure 46 
below): the narrower they are, the tighter is the stochastic relation. 
For Ipi = 1 they close up, we have Y = X, and the two regression 
lines coincide: there exists a linear relation. Thus p is a measure ofthe 
linear relation between X and Y. For p = 0, the two regression lines 
are perpendicular to each other and run parallel to the coordinate 
axes (stochastic independence) (cf., Figure 45, below). 

It is the aim of regression analysis to find a functional relationship between 
Y and X by means of an empirical function Yi(X;), the graphical presentation 
ofthe conditional mean Yi(Xi) as a function of Xi' which allows us to estimate 
for preassigned values (arbitrary values) of the independent variable X the 
respective dependent variable y. 

If data pairs (Xi' Yi) are given, then the simplest relationship Yi(X;) be
tween Yi and Xi, i.e., Yi as a function of Xi> is described by the equation of a 
straight line (Figure 40). 
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-I"~~--~~--~~--~~--~ 
- 2 -1 0 23456 Figure 40 The line y = 4 + 2x. 

The general equation of a straight line (Figure 41) can be written as 
y = a + bx; a and b are the parameters: a stands for the segment of the 
y-axis extending from the origin 0 to the intersection of the line with the 
y-axis, and is referred to as the intercept (on the ordinate); b specifies how 
much y grows when x increases by one unit, and is called the slope. In the case 
of a regression line the slope is called the coefficient of regression. A negative 

y 

Equation of the line: 

-I'-~~------------------~ 

Figure 41 The equation of the straight 
line. 

value of the regression coefficient means that the predict and y decreases when 
the regressor x increases (Figure 42 with b < 0). 

y 

b>O 

Figure 42 The sign of the regression coefficient 
b determines whether with increasing x values 
the associated y values increase (b positive) or 
decrease (b negative). 

To estimate the parameters of the regression line, more precisely, the re
gression line of"y on x" (indicated by the double indexyx: y = ayx + byxx), 
we adopt the principle that the straight line should fit the empirical y-values 
as well as possible. The sum of the squares of the vertical deviations (d) 
(Figure 43) of the empirical y-values from the estimated straight line is to be 
smaller than from any other straight line. By this "method of least squares" 
(see Harter 1974, 1975 [8: 1]) one can determine both coefficients ayx and 
byx for the prediction of y from x. 
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If for a point cloud, as for example the one given in Fig. 39 (lower left), 
from specified or arbitrary values of the independent variable y, the various 
values of the dependent variable x are to be estimated (for example the 
dependence of the duration of the gestation period on the bodily length of 
the newborn)-i.e., if the parameters axy (here denoted by a') and bxy of the 
regression line of x on yare to be estimated (Figure 44): 

x = a' + bxyY, 

-then the sum of the squares of the horizontal deviations (d') is made a 
minimum. 

Regression line of Yon X: j. 3 + D.S I 

is minimized 

Assumptions 

11 X = independent variable, free of observational 
2) Y.dependent random variable,involves error 

error 

~ 

Regression line of Xon Y: x=1.5+0.5y 
here 

L(d')1 
is minimized 

Assumptions 
1) X, dependent random 

variable, involves error 

2) Y' independent variable, 
free of observational error 

Figures 43, 44 The two regression lines: interchange of the dependent and independent 
variables. The estimation of P from given x-values is not the inverse of the estimation of 
~ from y-values: If we estimate P from x with the help of the regression line of Yon X 
then we make the sum of the vertical squares d 2 a minimum; if we estimate ~ from y 
with the help of the regression of X on Y, then we make the sum of the horizontal squares 
(d')2 a minimum. 

It is sometimes difficult to decide which regression equation is appropriate. 
Of course it depends on whether x or y is to be predicted. In the natural 
sciences every equation connects only precise quantities, and the question 
of which variable is independent is often irrelevant. The measurement errors 
are usually small, the correlation is pronounced, and the difference between 
the regression lines is negligible. If the point cloud in Figure 39 (lower left) 
is made to condense into a straight line-perfect functional dependence 
(cf., Figure 39, lower right)-then the two regression lines coincide (Figure 
45). We thus obtain a correlation coefficient of r = 1. As r increases, the 
angle between the regression lines becomes smaller (Figure 46). 

(5.2) 

(5.3) 
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r<1 
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__ x=Y 

r = 1 

x 

Figure 45 With increasing dependence or correlation the two regression 
lines y = ayx + byxx and x = axy + bxyY approach each other. When r is near 
zero they are approximately at right angles to each other. As r increases, the 
regression lines come closer together until they coincide for r = 1. 

Regression line of X on Y: x = axv + bXY' where 

b, , .!....:.l 
, Y - i 

<I I (i\.,) Regression line of YonX: 

II y~ = a + b where 
yx yx 

I b , 1...:l. 
I I· I - i 

I 
I I mean of the ~ample 

Figure 46 The connection between 
correlation and regression: The 
absolute values of the correlation 
coefficient can be taken as a measure 
of the angle ex between the two re
gression lines. The smaller ex is, the 
larger r is. Moreover, tan ex = 
(1 - r2 )/2r, or r = J1+tan2 ex
tan ex. For r = 0 with ex = 90° both 

~-------'----------_, straight lines are orthogonal. 

It can further be shown that the correlation coefficient is the geometric 
mean ofthe two regression coefficients byx and bxy : 

(5.4) 

Since byxbxy = r2 ~ 1, one of the two regression coefficients must be less 
than unity and the other greater than unity or both will be unity (cf., examples 
in Section 5.4.2). 

The following formula emphasizes once again the close connection 
between the correlation and regression coefficients: 

(5.5) 

Since standard deviations are positive, this relation implies that rand b 
must have the same sign. If the two variables have the same dispersion, i.e., 
Sx = Sy, then the correlation coefficient is identi;:;al to the regression co
efficient byx . 
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The ratio 

(5.6) 

is called the coefficient of determination. The equivalent expressions empha
size two aspects: in the first the dispersion of the predicted values is compared 
with the dispersion of the observations. The second term in the expression on 
the right is a measure of how well the predicted values fit. The less the 
observed values depart from the fitted line, the smaller this ratio is and 
the closer r2 is to 1. Thus r2 can be considered a measure for how well the 
regression line explains the observed values. If r2 = 0.92 = 0.81, then 81 % 
of the variance of the target quantity y can be accounted for by the linear 
regression between y and the influence quantity x [cf., (5.6), middle]. For 
interesting remarks concerning r2, see D. Griffiths, The Statistician 31 (1982), 
268-270. 

Comments regarding the coefficient of determination 

If the random variables X and Y (cf., Section 1.2.S) have a bivariate normal distribu
tion with the variances a; and a;, and if we denote the variance of Ywith X given by 
O';,x and the variance of X with Y given by o';,y, then in terms of the coefficient of 
determination p2 we have 

and for: 

O';.x = 0';(1 - p2), 

o';.y = 0';(1 _ p2), 

1. p = 0 (points not on a straight line but widely dispersed), we have 

2. P = 1 (points on a straight line), we have 

O';.x = 0 and o';.y = O. 

(S.6a) 

We see that O';.x and o';.y are the variances of the estimation of Yand X, respectively, 
by linear regression (cf., Section S.4.3). 

For (S.6a) we may write 

(S.6b) 

Thus p2 is a measure of the linearity of the points that shows the relative reduction of 
the total error when a regression line is fitted. For example, if p2 = 0.8, it means that 
80 % of the variations in Yare" explained" by the variation in X. 

If the quantities x and yare measured for every element of a random sample, 
then the errors in measurement are disregarded in view of the much higher 
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variability between the individual x- and y-values. The classic example is the 
relationship between body size and body weight in men. Both quantities are 
random variables. Figure 47 gives an idealized frequency surface for dis
tributions of this sort. Only in this situation are there two regression lines: 
One for estimating .p when x is given, and another for estimating x from y. 

Figure 47 Ideal symmetric ("normal") 
frequency surface with extreme regions 
cut off: Truncated two dimensional normal 
distribution. 

Only in this case does the correlation coefficient r of the sample have a mean
ing as a measure of association between X and Y in the population. If the 
samples are not fully random in both variables, but one, x say, is deter
ministic (e.g., all men with heights x exactly 169.5 cm to 170.5 cm, 179.5 to 
180.5 cm, etc., are chosen and their body weights analyzed), then: 

1. no correlation coefficient can be computed, 
2. nor can a regression line for estimating x from y be determined; 
3. only the regression line for estimating y from x can be worked out: 

y = ayx + byxx. 

We repeat: this is the case if the values of the attribute y of sample elements 
with particular x-values are examined, in other words after a preselection 
from the sample on the basis of the value of the variable x. 

Estimates of the coefficient of correlation and of regression lines according 
to standard methods are given in Section 5.4. Bartlett and Kerrich's quick 
estimates of the regression line in the case where both x and yare subjected 
to error are described below. (Cf., Tukey 1951, Acton 1959, Madansky 
1959, Carlson et aI., 1966). For collinearity and robust regression, see Hocking 
and Pendleton (1983). 

5.1.1 The Bartlett procedure 

Partition the n points into 3 groups according to the magnitude of x, of the 
same size if possible, where the first and the third group contain exactly k 
points (with the k smallest and largest x-components, respectively). The 
regression coefficient is then estimated by 

b=Y3-YI 
X3- Xl' 

(5.7) 
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where Y3 = the mean of y in the third group, YI = the mean of y in the first 
group; X3 = the mean of x in the third group, and Xl = the mean of x in 
the first group. The y-intercept is determined by 

I a=y-bx, (5.8) 

where X and Y stand for the overall means. 
This method is surprisingly effective if the distance between consecutive 

values of x is held constant. Wendy M. Gibson and G. H. Jowett (1957) 
mention in an interesting study that the ratio of the sizes of the three groups 
should be roughly 1: 2 : 1. However, the result based on the ratio 1: 1 : 1 
does not differ critically: This ratio is optimal for U -shaped and rectangular 
distributions, while the 1 : 2 : 1 ratio is preferable for J -shaped and skewed 
distributions as well as for a normal distribution. 

For verification, the rapid estimate b ~ LYIL x can be used. If the line 
does not pass through the origin, then the parameters a and b are estimated 
from the upper 30% and the lower 30% of the values (Cureton 1966): 

b '" Lyu. - LYI. 
- Lxu . - LXI.' 

a ~ Lyl. - hLXI.' 

(5.9) 

(5.10) 

EXAMPLE. Estimating the regression line if both variables (x, y) are subjected 
to measurement errors: The comparison of two methods of measuring 
between which a linear relation is assumed. For the data in Table 102, the 

Table 102 

Sample Method I Method I I 
(No.) (x) (y) 

1 38.2 54.1 
2 43.3 62.0 
3 47.1 64.5 
4 47.9 66.6 
5 55.6 75.7 
6 64.0 83.3 
7 72.8 91.8 
8 78.9 100.6 
9 100.7 123.4 

10 116.3 138.3 
--
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fitted line goes through the point (x, y) with the values x = 66.48 and y = 86.03. 
We estimate the regression coefficients in terms of the means of the first and 
last thirds of the two sequences according to (5.7): 

b = Y3 - Yl = 120.767 - 60.200 = 1.0861. 
X3 - Xl 98.633 - 42.867 

The y-intercept is found by (5.8) in terms of the overall means: a = Y - bx = 
86.03 - (1.0861)(66.48) = 13.826. The fitted regression line is thus given by 
.p = 13.833 + 1.0861x. The graphical presentation of this problem and the 
computation according to Cureton of (5.9), (5.10) are recommended as 
exercises. 

The calculation of the confidence ellipses for the estimated parameters 
(cr., Mandel and Linning 1957) can be found in Bartlett (1949). 

5.1.2 The Kerrich procedure 

If both variables are subject to error, only positive values of Xi and Yi come 
up, and the point cloud hugs a line (y = bx) passing through the origin, 
then one can use the following elegant procedure (Kerrich 1966) for esti
mating b: For n independent data pairs (Xi' y) one forms the differences 
di = log Yi - log Xi' their mean a, and the standard deviation 

(5.11) 

Since each quotient yJxi represents an estimate of b, each di is an estimate of 
log b. A useful estimate of log b is a, particularly if the quantities Xi and 
Yi exhibit small coefficients of variation. It is assumed that log Yi and log Xi 

are at least approximately normally distributed. 
The 95 % confidence interval for f3 is given by 

(5.12) 

EXAMPLE. Given: n = 16 data pairs (the fitted line passes through the origin) 
withd = 9.55911 - 10 = log band Sd = 0.00555-i.e., t 15 ;0.05 = 2.131 and 
hencesd tn - 1;0.05IJn = 0.00555· 2.131/J16 = 0.00296. The 95 % confidence 
interval for log f3 is 9.55911 - 10 ± 0.00296; i.e., b = 0.362, 0.359 ~ f3 ~ 
0.365. 

Special considerations in fitting the no intercept model are discussed by 
G. J. Hahn, Journal of Quality Technology 9 (1977),56-61 and G. Casella, 
The American Statistician 37 (1983), 147-152. 
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One speaks of stochastic dependence, or of a stochastic relation, if the null 
hypothesis that there is stochastic independence is disproved. 

The factual interpretation of any statistical relations, and their 
testing for possible causal relations, lies outside the scope of statistical 
methodology. Even when stochastic dependence appears certain, one must 
bear in mind that the existence of a functional relation-for example the 
increase in the number of storks and newborns during a certain period of 
time in Sweden-says nothing about a causal relation. There can exist a 
pronounced positive correlation between the dosage of some medicine and 
the lethality of a disease although the lethality increases not because of the 
larger dosage but in spite of it. A correlation can be conditioned by direct 
causal relations between x and y, by a joint dependence on a third quantity, or 
by heterogeneity of the material-or it can be purely formal. Causal correla
tions exist, e.g., between ability and achievement, between dosage and 
effect of a remedy, between working time involved and the price of a product. 
Examples of simultaneous correlation are the relationships among bodily 
dimensions: e.g. between the length of the left and the right arm, or between 
height and body weight, as well as correlations between time series, such as 
the decrease in the number of stork nests in East Prussia and the decrease in 
the number of births, caused by the growing industrialization. 

If we combine three groups, say, each with r ~ 0, and if the 3 data point 
clouds happen to lie nearly on a straight line, then the resulting large value 
of r for all groups is meaningless. Thus inhomogeneity correlation can occur 
when the data space dissociates into several regions. The overall correlation 
might be completely different from the correlation within the single regions. 
Examples are given by J. N. Morgan and J. A. Sonquist, [Journal of the 
American Statistical Association 58, 1963, pp. 415-434]. The following 
example is particularly impressive: The hemoglobin content of the blood 
and the surface areas of the blood corpuscles show no correlation in the 
newborn or in men or in women. The coefficient values are -0.06, -0.03, 
and -0.07 respectively. If however one were to combine the data, one would 
find a correlation coefficient of -0.75. 

If for example x and yare percentages which add up to 100 %, then there 
must necessarily be a negative correlation between them, as for the protein 
and fat content of foodstuff, etc. The expression "spurious correlation" is 
normally used for these relationships; it should however be avoided, since 
in fact a "spurious correlation" between two such percentages is not an 
illusion but is quite real. Besides this formal correlation there is, as indicated 
above, a whole collection of additional noncausal correlations. 

For the interpretation of correlations in real life data Koller (1955, 1963) 
provides guidelines which enable us to recognize proper, or rather causal, 
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correlations by excluding other possibilities (cf., selection correlation, at 
the beginning of Chapter 3). In order to interpret a correlation we can ask 
first whether the correlation might be only formal. If this is not the case we 
proceed according to the scheme below: 

Formal correlation 

/~ 
yes no 

I 
inhomogeneity correlation 

/ ~ 
yes no 

\ 
joint correlation 

/ \ 
yes no 

\ 
causal correlation 

The recognition of a causal correlation thus follows from the exclusion of 
other possibilities. Because of the possible overlapping of types, the scheme 
cannot always be applied as strictly, in such well-defined steps, as presented 
in the model. Frequently one cannot really advance to the causal correlation 
type but must stop at a preceding type, not being able to disprove this type 
for the particular case. The size of the correlation coefficient will rarely 
make any difference in this context. 

Causal statements. A remark on statistical investigation of causes. A cause is any 
condition which cannot be conceptually traced further back-the fundamental 
component through which the effect enters in. One must test whether the available 
statistical information is sufficient for adopting a causation adequate to the effect. A 
more detailed discussion of the possible statements in statistical investigations of 
causes can be found in Koller (1971 [8: 2a]). A survey on causal interpretations of 
statistical relationships with comments on spurious correlation, a typology of causal 
relations, and a typology of three-variable analyses is given by Nowak (1975). 

Remark. Correlation among time series. Time series (for bibliography see Section 4.8 
as well as Brown 1962, Pfanzagl 1963, Ferguson 1965, and Kendall 1973) almost 
always exhibit a general trend, a rise or a fall. If one correlates two increasing series 
(e.g., the population, the energy production, the price index, and the number of traffic 
accidents) or two decreasing series (e.g., infant mortality and the proportion of agri
cultural workers in the population), one finds positive correlation, which may even 
be quite large (joint correlation). Misinterpretations are common here. One can guard 
against overrating time correlations by considering additional control variables with 
the same trend. If the correlation determined originally (e.g., the growth of a disease 
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and increase in the consumption of a certain luxury food) does not differ very sub
stantially from the control correlations (e.g., production of television sets), or if the 
partial correlation (cf., Section 5.8) with the control variables held constant is notice
ably smaller than the original correlation, then joint correlation can be ruled out. 

5.3 DISTRIBUTION-FREE MEASURES OF 
ASSOCIATION 

A test on the correlation between the two components of a set of data that 
is based on the product moment correlation r, as an estimate ofthe parameter 
p, presupposes a population with an approximately bivariate normal distribu
tion. But this assumption is often not satisfied or only partially satisfied. 

If the condition does not hold, the rank correlation coefficient of Spear
man (rs) is used in general, whereby transformations-otherwise perhaps 
necessary to achieve approximate normality-can be avoided and a sub
stantial amount of time can be saved. The test is exact also for small sample 
sizes and non normal data; moreover the effects of outliers, which greatly 
influence the size of the product moment correlation, are weakened. A 
further advantage lies in the invariance of rs under monotone transfor
mations Of x; the product moment correlation is not invariant when x is 
replaced by f(x). For large sized samples from bivariate normal populations 
with sufficiently small product moment correlation coefficients (I p I < 0.25), 
the test based on rs has the same power as a test based on r from a sample 
of size 0.91n. The rank correlation thus uses 91 % of the information on the 
correlation in the sample. Because the slight loss of accuracy is connected 
with a significant saving in time, rs frequency serves for rapid orientation 
and possibly as an estimate of the usual correlation coefficients in the 
population. In the case of data from a normal distribution I p I will be 
somewhat overestimated. With increasing sample size rs does not approach 
p as r does, but rather approaches Ps. The difference between p and Ps is 
however always less than 0.018 (cf., Walter 1963). 

There are considerable advantages in applying rs in nonlinear monotone 
regression: e.g., for attributes between which there exists a logarithmic or 
exponential relationship, so that when one variable increases the other 
either almost always increases or almost always decreases. If we want to use r 
as a correlation measure, the data have to be transformed so as to render 
the relationship linear. The use of rs leads to a significant saving in time. 

Also very handy is the medial or quadrant correlation of Quenouille, 
which is appropriate for survey purposes and which evolved from the corner 
test. If a normal distribution is present, then the quadrant correlation 
coefficient (rQ) can also be used for estimating the usual correlation co
efficient p, although in this case the test is not particularly powerful, since it 
utilizes only 41 % of the information in the sample. Like the rank correlation 
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coefficient, however, the quadrant correlation coefficient has the advantage 
of providing a valid test regardless of the underlying distribution function, 
decreasing the effects of outliers and being invariant under transformations. 

~ 5.3.1 The Spearman rank correlation coefficient 

If the bivariate sample (x, y), the relationship between whose components 
we wish to examine, originates in a population with continuous nonnormal 
distribution, then the mutual dependence of x and y can be assessed through 
the Spearman rank correlation coefficient rs: 

(5.13) 

where D is the difference of the pair of rankings, the rank difference for short. 
Note that -1 ~ rs ~ 1. [(5.13) is identical to (5.18) in Section 5.4.1 if in 
(5.18) the measured values are replaces by rank numbers]. To compute the 
rank correlation coefficient both the x-set and the y-set are ranked, and then 
the difference D; between the ranks of the components of each sample point 
is formed, squared, and summed as indicated by the above formula. Mean 
ranks are assigned to equal values within a set (" ties"); in either of the two 
sequences, at most about 1/5 of the observations are allowed to be of equal 
rank. With ties present it is best to use (5.16). 

If two rank orders are equal, the differences are zero, i.e., rs = 1. If 
one rank order is the reverse of the other, so that there is total discrepancy, 
we get rs = -1. This test thus allows one to answer the question whether a 
positive or a negative correlation is present. 

It is supposed that the following assumptions hold (concerning X and y, 
see Section 1.2.5): 

1. X and Yare continuous random variables. They are at least ranked 
(ordinal) data. 

2. The data are independent paired observations. 

Then we may test: 

H 0: X and Yare independent (or Ps = 0). 

Two sided cas e 

H A: X and Yare correlated (or there is a linear or at least monotonic re
lationship, or Ps =1= 0). [Monotonic: The sequence Xl ~ X z ~ X3 ~ .•. is 
called monotonic increasing; it is never decreasing. The sequence Xl ~ Xz ~ 

X3 ~ ... is called monotonic decreasing; it is never increasing]. 
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One sided case 

HAl: Small X and small Y tend to occur together, as do large X and large Y. 
In short: X and Yare positively correlated (or there is a positive linear or 
at least a positive monotonic relationship, or Ps > 0). 

H A2: Small X and large Y tend to occur together, as do large X and small Y. 
In short: X and Yare negatively correlated (or there is a negative linear or at 
least a negative monotonic relationship, or Ps < 0). 

Decision 

For the two sided and for the one sided test H 0 is rejected at the 1000c % level 
for 

Irs I ~ critical value rl n; "" 

from Table 103. 
For n > 100, Ho is rejected at the 100oc% level with the formula (5.15) 

and t ~ tn - 2 ;",. 

For n > 100 the significance of rs can be tested with sufficient accuracy 
according to (5.14) [cf., also (5.15)J on the basis of the standard normal @ 
distribution 

I z= Irsl·;,;=t. I (5.14) 

If, for example, for n = 30 and a one sided test a value of rs = 0.307 obtains, 
then I 0.3071·J3O=l = 1.653 > 1.645 = ZO.05: one-sided implies that one has a 
positive correlation, significant at the 5 % level (rs = 0.307 > 0.306 = r~ 
from Table 103). For the 7 observations x, y in Table 107 (Section 5.4.2) 
and the two sided test, H 0: Ps = 0 must be retained at the 5 % level (cf., 
Table 107a): @ 

rs = 1 - 6(15.5) = 0.7232 < 0.786 = rt 
7(49 - 1) 

(n = 7, ocO.025 ;onesided = OCO.05:twosided); there is no true correlation. Since ~ 
of the x-values here are involved in ties, formula (5.16) should have been 
applied. 

Remarks concerning Ps and P 
1. In comparison with r, rs estimates the parameter P with an asymptotic 

efficiency of 9/n2 or 91.2 % for very large n and a bivariate normal pop
ulation with p = O. 

2. For increasing nand binormally distributed random variables, 2 sin(inrs) 
is asymptotically like r. For n ~ 100 one may thus specify r in addition 
to rs. Hence one obtains for rs = 0.840, with in = 0.5236, 

r = 2 sin[(0.5236)(0.840)J = 2 sin 0.4398 = 2(0.426) = 0.852. 
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Table 103 Critical values of the Spearman rank correlation coefficient 
for sample sizes n and for one sided (O(one s.; above) and two sided 
(O(twos; below) tests. From Jerrold H. Zar, Biostatistical Analysis, 
© 1974, pp. 498-499. Reprinted by permission of Prentice- Hall, Inc., 
Englewood Cliffs, New Jersey. 

CX one s 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

n: 4 0.600 1.000 1.000 
5 0.500 0.800 0.900 1.000 1.000 

6 0.371 0.657 0.829 0.886 0.943 1.000 1.000 
7 0.321 0.571 0.714 0.786 0.893 0.929 0.964 1.000 1.000 
8 0.310 0.524 0.643 0.738 0.833 0.881 0.905 0.952 0.976 
9 0.267 0.483 0.600 0700 0.783 0.833 0.867 0.917 0.933 

10 0.248 0.455 0.564 0.648 0.745 0.794 0.830 0.879 0.903 

11 0.236 0.427 0.536 0.618 0.709 0.755 0.800 0.845 0.873 
12 0.217 0.406 0.503 0.587 0.678 0.727 0.769 0.818 0.846 
13 0.209 0.385 0.484 0.560 0.648 0.703 0.747 0.791 0.824 
14 0.200 0.367 0.464 0.538 0.626 0.679 0.723 0.771 0.802 
15 0.189 0.354 0.446 0.521 0.604 0.654 0.700 0.750 0.779 

16 0.182 0.341 0.429 0.503 0.582 0.635 0.679 0.729 0.762 
17 0.176 0.328 0.414 0.485 0.566 0.615 0.662 0.713 0.748 
18 0.170 0.317 0.401 0.472 0.550 0.600 0.643 0.695 0.728 
19 0.165 0.309 0.391 0.460 0.535 0.584 0.628 0.677 0.712 
20 0.161 0.299 0.380 0.447 0.520 0.570 0.612 0.662 0.696 

21 0.156 0.292 0.370 0.435 0.508 0.556 0.599 0.648 0.681 
22 0.152 0.284 0.361 0.425 0.496 0.544 0.586 0.634 0.667 
23 0.148 0.278 0.353 0.415 0.486 0.532 0.573 0.622 0.654 
24 0.144 0.271 0.344 0.406 0.476 0.521 0.562 0.610 0.642 
25 0.142 0.265 0.337 0.398 0.466 0.511 0.551 0.598 0.630 

26 0.138 0.259 0.331 0.390 0.457 0.501 0.541 0.587 0.619 
27 0.136 0.255 0.324 0.382 0.448 0.491 0.531 0.577 0.608 
28 0.133 0.250 0.317 0.375 0.440 0.483 0.522 0.567 0.598 
29 0.130 0.245 0.312 0.368 0.433 0.475 0.513 0.558 0.589 
30 0.128 0.240 0.306 0.362 0.425 0.467 0.504 0.549 0.580 

31 0.126 0.236 0.301 0.356 0.418 0.459 0.496 0.541 0.571 
32 0.124 0.232 0.296 0.350 0.412 0.452 0.489 0.533 0.563 
33 0.121 0.229 0.291 0.345 0.405 0.446 0.482 0.525 0.554 
34 0.120 0.225 0.287 0.340 0.399 0.439 0.475 0.517 0.547 
35 0.118 0.222 0.283 0.335 0.394 0.433 0.468 0.510 0.539 

36 0.116 0.219 0.279 0.330 0.388 0.427 0.462 0.504 0.533 
37 0.114 0.216 0.275 0.325 0.383 0.421 0.456 0.497 0.526 
38 0.113 0.212 0.271 0.321 0.378 0.415 0.450 0.491 0.519 
39 0.111 0.210 0.267 0.317 0.373 0.410 0.444 0.485 0.513 
40 0.110 0.207 0.264 0.313 0.368 0.405 0.439 0.479 0.507 

41 0.108 0.204 0.261 0.309 0.364 0.400 0.433 0.473 0.501 
42 0.107 0.202 0.257 0.305 0.359 0.395 0.428 0.468 0.495 
43 0.105 0.199 0.254 0.301 0.355 0.391 0.423 0.463 0.490 
44 0.104 0.197 0.251 0.298 0.351 0.386 0.419 0.458 0.484 
45 0.103 0.194 0.248 0.294 0.347 0.382 0.414 0.453 0.479 

46 0.102 0.192 0.246 0.291 0.343 0.378 0.410 0.448 0.474 
47 0.101 0.190 0.243 0.288 0.340 0.374 0.405 0.443 0.469 
48 0.100 0.188 0.240 0.285 0.336 0.370 0.401 0.439 0.465 
49 0.098 0.185 0.238 0.282 0.333 0.366 0.397 0.434 0.460 
50 0.097 0.184 0.235 0.279 0.329 0.363 0.393 0.430 0.456 

lltwo s 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 
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Table 103 (continued) Critical values of the Spearman rank correla
tion coefficient for sample sizes n and for one sided (ctone s.; above) and 
two sided (cttwo s ; below) tests 

iXone s 0.25 0.10 0.05 0.025 0.Q1 0.005 0.0025 0.001 0.0005 

n: 51 0.096 0.182 0.233 0.276 0.326 0.359 0.390 0.426 0.451 
52 0.095 0.180 0.231 0.274 0.323 0.356 0.386 0.422 0.447 
53 0.095 0.179 0.228 0.271 0.320 0.352 0.382 0.418 0.443 
54 0.094 0.177 0.226 0.268 0.317 0.349 0.379 0.414 0.439 
55 0.093 0.175 0.224 0.266 0.314 0.346 0.375 0.411 0.435 

56 0.092 0.174 0.222 0.264 0.311 0.343 0.372 0.407 0.432 
57 0.091 0.172 0.220 0.261 0.308 0.340 0.369 0.404 0.428 
58 0.090 0.171 0.218 0.259 0.306 0.337 0.366 0.400 0.424 
59 0.089 0.169 0.216 0.257 0.303 0.334 0.363 0.397 0.421 
60 0.089 0.168 0.214 0.255 0.300 0.331 0.360 0.394 0.418 

61 0.088 0.166 0.213 0.252 0.298 0.329 0.357 0.391 0.414 
62 0.087 0.165 0.211 0.250 0.296 0.326 0.354 0.388 0.411 
63 0.086 0.163 0.209 0.248 0.293 0.323 0.351 0.385 0.408 
64 0.086 0.162 0.207 0.246 0.291 0.321 0.348 0.382 0.405 
65 0.085 0.161 0.206 0.244 0.289 0.318 0.346 0.379 0.402 

66 0.084 0.160 0.204 0.243 0.287 0.316 0.343 0.376 0.399 
67 0.084 0.158 0.203 0.241 0.284 0.314 0.341 0.373 0.396 
68 0.083 0.157 0.201 0.239 0.282 0.311 0.338 0.370 0.393 
69 0.082 0.156 0.200 0.237 0.280 0.309 0.336 0.368 0'390 
70 0.082 0.155 0.198 0.235 0.278 0.307 0.333 0.365 0.388 

71 0.081 0.154 0.197 0.234 0.276 0.305 0.331 0.363 0.385 
72 0.081 0.153 0.195 0.232 0.274 0.303 0.329 0.360 0.382 
73 0.080 0.152 0.194 0.230 0.272 0.301 0.327 0.358 0.380 
74 0.080 0.151 0.193 0.229 0.271 0.299 0.324 0.355 0.377 
75 0.079 0.150 0.191 0.227 0.269 0.297 0.322 0.353 0.375 

76 0.078 0.149 0.190 0.226 0.267 0.295 0.320 0.351 0.372 
77 0.018 0.148 0.189 0.224 0.265 0.293 0.318 0.349 0.370 
78 0.077 0.147 0.188 0.223 0.264 0.291 0.316 0.346 0.368 
79 0.077 0.146 0.186 0.221 0.262 0.289 0.314 0.344 0.365 
80 0.076 0.145 0.185 0.220 0.260 0.287 0.312 0.342 0.363 

81 0.076 0.144 0.184 0.219 0.259 0.285 0.310 0.340 0.361 
82 0.075 0.143 0.183 0.217 0.257 0.284 0.308 0.338 0.359 
83 0.075 0.142 0.182 0.216 0.255 0.282 0.306 0.336 0.357 
84 0.074 0.141 0.181 0.215 0.254 0.280 0.305 0.334 0.355 
85 0.074 0.140 0.180 0.213 0.252 0.279 0.303 0.332 0.353 

86 0.074 0.139 0.179 0.212 0.251 0.277 0.301 0.330 0.351 
87 0.073 0.139 0.177 0.211 0.250 0.276 0.299 0.328 0.349 
88 0.073 0.138 0.176 0.210 0.248 0.274 0.298 0.327 0.347 
89 0.072 0.137 0.175 0.209 0.247 0.272 0.296 0.325 0.345 
90 0.072 0.136 0.174 0.207 0.245 0.271 0.294 0.323 0.343 

91 0.072 0.135 0.173 0.205 0.244 0.269 0.293 0.321 0.341 
92 0.071 0.135 0.173 0.205 0.243 0.268 0.291 0.319 0.339 
93 0.071 0.134 0.172 0.204 0.241 0.267 0.290 0.318 0.338 
94 0.070 0.133 0.171 0.203 0.240 0.265 0.288 0.316 0.336 
95 0.070 0.133 0.170 0.202 0.239 0.264 0.287 0.314 0.334 

96 0.070 0.132 0.169 0.201 0.238 0.262 0.285 0.313 0.332 
97 0.069 0.131 0.168 0.200 0.236 0.261 0.284 0.311 0.331 
98 0.069 0.130 0.167 0.199 0.235 0.260 0.282 0.310 0.329 
99 0.068 0.130 0.166 0.198 0.234 0.258 0.281 0.308 0.327 

100 0.068 0.129 0.165 0.197 0.233 0.257 0.279 0.307 0.326 

IX two s 0.50 0.20 0.10 0.05 0.02 0.Q1 0.005 0.002 0.001 
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EXAMPLE. Table 104 indicates how ten alphabetically aranged students are 
ordered according to rank on the basis of performances in a practical course 
and in a seminar. Can a positive correlation be ascertained at the 1 % level? 

Table 104 

Practical course 

Seminar 

7 6 3 8 2 10 4 5 9 
8 4 5 9 7 3 2 6 10 

Null hypothesis: Between the two performances there is no positive 
correlation, but rather independence. We determine the differences in rank, 
their squares, and the sum thereof in Table 100a. 

Table 104a 
,--

I 

Rank differences 0 -1 2 -2 -1 1 3 1 -1 -1 -1 0 

0 2 1 4 4 1 1 9 1 1 1 1 24 

Verification of the computations: The sum of the D-values must equal 
zero. We get 

= _ 6 L D2 = _ 6 . 24 = 4 
rs 1 n(n2 _ 1) 1 10(102 _ 1) 0.85 5. 

A rank correlation coefficient of this size, computed from a sample of n = 10, 
is, according to Table 103, statistically significant at the 1 % level (0.8545 > 
0.745 = rl 10;o.ol;onesided). There is an authentic correlation P < 0.01) between 
the two performances. 

Given at least 30 pairs of values (n ~ 30), the randomness of occurrence 
of a certain rs value can also be judged on the basis of Student's distribution, 
by 

(5.15) 

with (n - 2)DF. For the example, with n = 10 (note 10 < 30 and (5.15) is, 
strictly speaking, not applicable) 

t = 0.8545· 
10 - 2 

1 _ 0.85452 = 4.653, 
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and 4.653 > 2.896 = ts;O.Ol;onesided' we obtain a confirmation of our 
results. It is emphasized that (5.14) and (5.15) represent only approximations; 
(5.15) is the better one. 

Spearman's rank correlation with ties 

Only if ties (equal values) occur in aggregates is it worth while to employ the 
test statistic (cf., Kendall 1962, Yule and Kendall 1965) 

TIES M - (LD 2 + 1',., + Yy,) 
rS,ties = J(M - 2Tx ,)(M - 2Yy.) 

with M = i{n3 - n), 
Tx ' = /2 L (t;, - tx ,), 

Yy, = /2 L (t:, - ty')' 

(5.16) 

where tx' (the prime on the x indicates we are dealing with rank quantities) 
equals the number of ties in consecutive groups (equal rank quantities) of 
the x' series, and ty ' equals the number of ties in consecutive groups (equal 
rank quantities) of the y' series. Thus one counts how often the same value 
appears in the first group, cubes this frequency, and then subtracts the 
frequency. One proceeds analogously with all the groups, and then forms 
the sums 1',., and Yy,. 

EXAMPLE. Testing the independence of mathematical and linguistic aptitude 
of 8 students (S) on the basis of grades in Latin (L, [x]) and in mathematics 
(M, [y]) (two sided test with IX = 0.05; R are the rank quantities): 

s 0 B G A F E H C n=8 

L 1 2 2 2 3 3 4 4 
M 2 4 1 3 4 3 4 3 

RL 1 3 3 3 5.5 5.5 7.5 7.5 

~ 2 7 1 4 7 4 7 4 
0 -1 -4 2 -1 -1.5 1.5 0.5 3.5 LO = 01 
02 1 16 4 1 2.25 2.25 0.25 12.25 

L D2 = 39, M = i{83 - 8) = 84, 
TL = /2[(3 3 - 3) + (23 - 2) + (23 - 2)] = 3, 

1 3 3 84 - (39 + 3 + 4) = 04 3 
TM = 12-[(3 - 3) + (3 - 3)] = 4; rs, ties = . 9 5. J (84 - 6)(84 - 8) 
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Without regard for the ties, 

- 1 - (6)(39) - 0536 
rs - 83 _ 8 - . (0.536 > 0.494); 

the correlation is overestimated. Since 0.494 < 0.738, the independence 
hypothesis cannot be disproved at the 5 % level by means of the grades. 
[For the one sided test (0.494 < 0.643) the same decision would be reached]. 

Instead of (5.16) we can, with R(Xi) and R(Y;) [i = 1, 2, ... , n] repre
senting the ranks assigned to the ith value of Xi and Y; respectively, compute 
the usual product moment correlation coefficient of Bravais and Pearson 
on ranks and average ranks by (R): 

-
Our example: 8(8 + 1) 2/4 = 162 L 

R2(X;) 1 9 9 9 30.25 30.25 56.25 56.25 201 
R(X) 1 3 3 3 5.5 5.5 7.5 7.5 -
R(Y;l 2 7 1 4 7 4 7 4 -
R2(Y;) 4 49 1 16 49 16 49 16 201 
R(X)R(Y) 2 21 3 12 38.5 22 52.5 30 181 

r = 181 - 162 = 0.4935. 
s J[201 - 162][200 - 162] 

The rank correlation coefficient (Spearman 1904) can also be used: 
1. If a quick approximate estimate of the correlation coefficient is desired and 

the exact computation is very costly. 
2. If the agreement between two judges as to the chosen rank order of objects 

is to be examined, for example in a beauty contest. It can also be used to 
test the reasoning faculty by ordering a collection of objects and com
paring this rank order with a standardized rank order. The arrangements 
by children of building blocks of various sizes serves as an example. 

3. If a monotone trend is suspected: The n measured values, transformed to 
their ranks, are correlated with the natural number sequence from 1 to n, 
and the coefficient is tested for significance. 

4. If two independent samples of equal size are given, then Ho: PS 1 = PS2 

can be rejected with the help of the U-test applied to absolute rank 
differences. 
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5. From a bivariate frequency table one determines rs in accordance with 
Raatz (1971) [cr., also Stuart (1963)]. 

6. For the following situation T. P. Hutchinson [Applied Statistics 25 
(1976),21-25] proposes a test: Judges are presented with stimuli which 
are ordered along some dimension, such as large to small or pleasant to 
unpleasant, and are asked to rank them. There is reason to believe that 
some judges will tend to rank the stimuli in one order: 1,2, ... , n, while 
others will order them oppositely: n, n - 1, ... , 1. Hutchinson tests 
whether the judges can detect the ordered nature of the stimuli. Critical 
values, a normal approximation, and two examples of the combined 
two tailed Spearman rank-correlation statistics are given. In example 2 
eight models of cars are ordered in terms of their accident rates. They 
are also ordered in terms of certain of their design and handling param
eters, such as weight, ratio of height of center of gravity to track, under
steer and braking instability. The question to be answered by the test: 
is there evidence that these parameters affect the accident rate? 

The rank correlation coefficient T (Kendall's tau) proposed by Kendall 
(1938) is more difficult to calculate than rs. Griffin (1957) describes a graph
ical procedure for estimating T. A simplified computation of T is given by 
Lieberson (1961) as well as by Stilson and Campbell (1962). 

A discussion of certain advantages of T over p and Ps can be found in 
Schaeffer and Levitt (1956); however, the power of the test (testing for the 
condition non-null), for the same level of significance, is smaller for T than 
for Ps. 

For partial and multiple rank correlation coefficients see R. Lehmann, 
Biometrical Journal 19 (1977), 229-236. 

5.3.2 Quadrant correlation 

This quick test (Blomqvist 1950, 1951) checks whether two attributes x and 
y, known through data, are independent. First plot the pairs of values 
(Xi' y;) as a point cloud in a coordinate system which is partitioned by the 
two medians x and y into four quadrants, i.e., twice into halves, in such a 
way that each half contains the same number of pairs of values. If the number 
of pairs of observations is odd, then the horizontal median line passes 
through a point, which is subsequently ignored. A significant relationship 
between the attributes is ascertained as soon as the number of points in the 
single quadrants does not lie within the bounds given in Table 105. If we 
are dealing with samples from a two-dimensional normal distribution, 
then this test has an asymptotic efficiency of (2/n)2 = 0.405 or 41 % in 
comparison with the t-test of the product-moment correlation coefficient. 
More on this can be found in Konijn (1956) and Elandt (1962). 
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Table 105 Upper and lower critical bounds 
for a quadrant for the assessment of quad
rant correlation (taken from Quenouille, 
M. H.: Rapid Statistical Calculations, Griffin, 
London 1959, Table 6) 

n lower 
5% 1% 

8-9 
10-11 
12-13 
14-15 
16-17 
18-19 
20-21 
22-23 
24-25 
26-27 
28-29 
30-31 
32-33 
34-35 
36-37 
38-39 
40-41 
42-43 
44-45 
46-47 
48-49 
50-51 
52-53 
54-55 
56-57 
58-59 
60-61 
62-63 
64-65 
66-67 
68-69 
70-71 
72-73 

3 

/I 

• • 

0 
0 
0 
1 
1 
1 
2 
2 
3 
3 
3 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 
8 
9 
9 

10 
10 
11 
11 
12 
12 
12 
13 

xx • 

-
0 
0 
0 
0 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
5 
5 
5 
6 
6 
7 
7 
7 
8 
8 
9 
9 
9 

10 
10 
11 
11 
12 

Critical bound 

upper lower upper 
n 5% 1% 5% 1% 5% 1% 

4 - 74-75 13 12 24 25 
5 5 76-77 14 12 24 26 
6 6 78-79 14 13 25 26 
6 7 80-81 15 13 25 27 
7 8 82-83 15 14 26 27 
8 8 84-85 16 14 26 28 
8 9 86-87 16 15 27 28 
9 9 88-89 16 15 28 29 
9 10 90-91 17 15 28 30 

10 11 92-93 17 16 29 30 
11 11 94-95 18 16 29 31 
11 12 96-97 18 17 30 31 
12 13 98-99 19 17 30 32 
12 13 100-101 19 18 31 32 
13 14 110-111 21 20 34 35 
13 14 120-12 24 22 36 38 
14 15 130-13 26 24 39 41 
15 16 140~141 28 26 42 44 
15 16 150-151 31 29 44 46 
16 17 160-161 33 31 47 49 
16 17 170-171 35 33 50 52 
17 18 180-181 37 35 53 55 
18 19 200-201 42 40 58 60 
18 19 220-221 47 44 63 66 
19 20 240-241 51 49 69 71 
19 20 260-261 56 54 74 76 
20 21 280-281 61 58 79 82 
20 22 300-301 66 63 84 87 
21 22 320-321 70 67 90 93 
21 23 340-341 75 72 95 98 
22 23 360-361 80 77 100 103 
23 24 380- 381 84 81 106 109 
23 24 400-401 89 86 111 114 

Figure 48 Quadrant correlation (taken from 
Quenouille, M. H.: Rapid Statistical Calculations, 
Griffin, London 1959, p. 28). 
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EXAMPLE. The 28 pairs of observations in Fig. 48 are so distributed among the 
quadrants that the bounds of Table 105 are attained. The negative correlation 
is acertained at the 1 % level. 

This test is essentially the median test of independence, in which the 
pairs are classified according as the components of a pair are larger or 
smaller than the respective medians. 

Number of x-values 

< X > X 

Number of < y a b 

y-values > y c d 

The analysis of the fourfold table is carried out according to Section 4.6.1 
(cf., also the comments at the end of Section 3.9.4). 

5.3.3 The corner test of Olmstead and Tukey 

This test generally utilizes more information than the quadrant correlation. 
It is particularly suitable for proof of a correlation which is largely caused by 
pairs of extreme values (Olmstead and Tukey 1947). A test statistic of this 
important rapid test for independence (asymptotic efficiency: about 25 %) 
is the sum S of 4 "quadrant sums" (see below). For lSI ~ Sa, depending on 
the sign of S, a positive or a negative association is assumed. 

1. The n pairs of observations (Xi' Yi) are plotted in a scatter diagram as in 
the quadrant correlation discussed above, and are then successively split 
up by the horizontal and by the vertical median line into two groups of 
equal size. 

2. The points in the upper right and in the lower left quadrants are regarded 
as positive; those in the other two quadrants, as negative. 

3. Move along the abscissa until the first point on the other side of the Y 
(horizontal) median line is reached, count the points encountered, and 
affix the sign appropriate for the particular quadrant to this number. 
Repeat this counting procedure from below, from the left, and from above: 

ex 0.10 0.05 0.02 0.01 0.005 0.002 0.001 

S. 9 11 13 14-15 15-17 17-19 18-21 
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1. For Q( ::;; 0.01, the larger value of S" applies for smaller n, the smaller 
value for larger n. 

2. For I S I ;::: 2n - 6 one should forgo the test. 

EXAMPLE. The 28 pair of observations Fig. 48 are so distributed among the 
(-10) + (-11) + (-6) = -35; the negative correlation is clearly ascer
tained. 

If one denotes the absolute value of the sum of the four countings by k, 
then for large sample size the probability P can be estimated by 

P _ 9k3 + 9P + 168k + 208 
- 216·2k , 

k=ISI>O. (5.17) 
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Figure 49 Corner test of Olmstead 
and Tukey (taken from Quenouille, 
M. H.: Rapid Statistical Calculations, 
Griffin, London 1959, p. 29). Move 
along a median line toward the inter
section of the two median lines, and 
draw a dotted line through the first 
point which finds itself on the other 
side of the median line along which you 
are going. The number of points pre
ceding this dotted line forms a term in 
the "quadrant sum" (see text). 

5.4 ESTIMATION PROCEDURES 

5.4.1 Estimation of the correlation coefficient 

The correlation coefficient measures the strength of the linear relationship between 
two variables, say X and Y. We make the following assumptions on r, in addition to 
the one that X and Yare random variables from a bivariate frequency distribution 
with random selection of individuals: 

1. Equidistant units of measurement for both variables. 
2. Linearity of regression. 
3. Normality for both variables. 

(1) is very important [by the way: it holds also (cf., end of Section 1.4.8) for x and s]; 
if (2) is not true, then the value of r is an underestimate and the trouble is not great; 
some statisticians omit (3). 
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The correlation coefficient is estimated by the right side of (5.18) (for small 
n one sometimes prefers the first expression): 

~:<x-x)(y- y) 
( 5.18) 

Other formulas: 

r = n I xy - (I x)Q:» 

J[n I x 2 - (I x)2][n I i - (I y)2] , 

For small sample size n, r underestimates the parameter p. An improved 
estimate for p is obtained by (5.18a) (Olkin and Pratt 1958): 

Thus, e.g., the following r* values result: 

for n = 10 and r = 0.5, 

for n = 10 and r = 0.9, 
for n = 30 and r = 0.5, 

for n = 30 and r = 0.9, 

r* = 0.527, 

r* = 0.912, 
r* = 0.507, 

r* = 0.903. 

(5.18a) 

Tables for finding r* from r when 8 ::;; n ::;; 40 are given by R. Jager in 
Biometrische Zeitschrift 16 (1974), 115-124. 

Generally one will choose the sample size not too small and do without 
the correction (5.18a). 

Remark on point biserial correlation. If one of the two attributes is dichotomous, then 
(5.18) is replaced by (5.l8b). The relationship between a continuously distributed 
variable and a dichotomy is estimated by means of the point biserial correlation 
coefficient (the sample is subdivided according to the presence or absence of the 
attribute y, with resulting group sizes n1 and n2 [n! + n2 = n]; then the correspond
ing means i\ and X2 and the common standard deviation s of the x-attributes are 
determined) : 

(5.18 b) 
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The relationship is then tested for significance on the basis of Table 113 or (5.38), 
(5.38a, b)(Section 5.5.1). The rpbcan serve as an estimate of p, in particular if I rpb I < 1; 
for rpb > 1, p is estimated by 1; for rpb < -1, correspondingly p = -1. A more 
detailed discussion can be found in Tate (1954, 1955), Prince and Tate (1966), and 
Abbas (1967) (cf., also Meyer-Bahlburg 1969). 

~ 5.4.2 Estimation of the regression line 

The following two models of regression analysis are always to be dis
tinguished: 

Model I: The target quantity Y is a random variable; the values of the 
influence variable X are always given or Xfixed [see (5.3)]. 

Model II: Both the variable Y and the variable X are random 
variables. Two regressions are possible in this case: one 
of Y on X and one of X on Y [(5.3) and (5.2)]. 

Axis intercepts and regression coefficients (cf., also Sections 5.4.4, 5.5.3, 
5.5.9) are estimated by the following expressions: 

(5.3) 

(5.19) 

(5.20) 

(5.2) 

(5.21) 

(5.22) 

ayx and axy can be found directly from the sums 

(5.20a) 

(5.22a) 
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The computations can however be carried out more quickly according to 
(5.20), (5.22). Whenever n is large or multidigit Xi and Yi are involved, (5.19) 
and (5.21) are replaced by (5.19a) and (5.21a): 

(5.19a) 

(5.21 a) 

EXAMPLE 1 

Table 106 

x V xv x2 v2 y 

2 4 8 4 16 4.2 
4 5 20 16 25 5.4 
6 8 48 36 64 6.6 
8 7 56 64 49 7.8 

10 9 90 100 81 9.0 

30 33 222 220 235 33 

LX LY LXY Lx2 LV' LV 

(1) (2) 

8 8 

~fin.dbY 6 6 

4 4 
eye, drawn through 

2 Point cloud 2 the point cloud 

00 2 4 6 8 10 °0 2 4 6 8 10 

(3) (4) 

/f 1(:;. 8 8 , 
6 6 

4 'IO~ 4 
x y=3+0.6x 

fa '0.6'b x'-3.207+1.395Y 

4 6 8 10 00 2 4 6 8 10 
Equation of the regression 

line determined graphically 

in (2): y ~ 3 + O.6x 
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Computing the regression lines and the correlation coefficients 

(1) 

I 
222 --30' 33 

5 

I 2 220--30 
5 

Ly-hyxLX 33-0.6'30 
ayx = = = 3.000 

n 5 

0.600, 

p = 3 + 0.6x, estimated regression line for predicting P from x (Table 106, last 
column); also called regression of yon x (cf. ay", by,,). 

~ = - 3.207 + 1.395y estimated regression line for predicting ~ from y. 

(3) 

1 
222 --30' 33 

5 
r = = 0.915, 

J[ 220 _~302 ] [235 -~332 ] 

r = 0.915 estimated correlation coefficient, a measure of linear de
pendence between the two attributes. [r* = 0.952 cf. (5.lSa)] 

Checking r, byx and bxy : r = Jbyx ' bxy , JO.6. 1.395 = 0.915. 

EXAMPLE 2 

We now compute the axis intercept by (5.20a): 

_ (I y)(I X2) - (I x)(I xy) _ 98·1,593 - 103·1,475 = 7729 
ayx - n I x 2 - (I X)2 - 7·1,593 - 1032 ., 

and the regression coefficient by (5.19): 

b = n I xy - (I x)(I y) = 7·1,475 - 103·98 = 042 
yx n Ix2 - (IX)2 7.1,593 _ 1032 . 6. 
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Table 107 

x y X 2 y2 xy 

13 12 169 144 156 
17 17 289 289 289 
10 11 100 121 110 
17 13 289 169 221 
20 16 400 256 320 
11 14 121 196 154 
15 15 225 225 225 

103 98 1593 1400 1475 

The regression line of y on x then reads 

411 

Table 107a Belongs to Sec- @ 
tion 5.3.1, below formula 
(5.14): given are ranks for x, y 
of Table 107 and values 0 and 
0 2 . 

For the example in Section 5.3.1 

Ranks 
0 0 2 

X Y 

3 2 1 1 
5.5 7 -1.5 2.25 
1 1 0 0 
5.5 3 2.5 6.25 
7 6 1 1 
2 4 -2 4 
4 5 -1 1 

0 15.50 

y = ayx + byxx or p = 7.73 + 0.426x 

(see Figure 50). 

Figure 50 The two regression lines of 
Example 2. 

18 

12 

10 

x: -1.79. t179y __ 

x 

10 12 14 16 18 20 

This can also be done more quickly and in a more elegant manner: 
First find b yx according to the given relation, then determine the means 
X, ji, and finally use these values in the relation 

(5.23) 

103 
x = 7 = 14.714, 

_ 98 
y = 7 = 14; 

ayx = 14 - 0.426·14.714 = 7.729. 
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For the regression line of x on y we get, according to (5.22a) and (5.21), 

(I x)(I y2) - (I y)(I xy) 103 . 1,400 - 98· 1,475 
axy = n I y2 - (I y)2 = 7.1,400 _ 982 = -1.786 

b = n I xy - (I x)(I y) = 7· 1,475 - 103·98 = 1179 
xy n Iy2 - (Iy)2 7.1,400 - 982 . 

X = axy + bxyy or x = -1.79 + 1.179y. 

Without an electronic pocket computer transformed values may be used 
(PYX and PXyare unaffected by this) as shown in Table 108, with x = k1x* + k2 
[cr., (1.36) to (1.38)], y = k3Y* + k4 (x* and y* are small integers), 

Table 108 

x' y' x· 2 y.2 x'y' 
(= x - 15) (= y - 14) 

-2 -2 4 4 4 
2 3 4 9 6 

-5 -3 25 9 15 
2 -1 4 1 -2 
5 2 25 4 10 

-4 0 16 0 0 
0 1 0 1 0 

-2 0 78 28 33 

Y = k3Y* + k4' s; = k3S;2, and Sxy = klk3S:y and also r = s:y/(s:s;). By 
these transformations the computations may be simplified: 

b = n L x'y' - (I x")(I y") = 7·33 - (-2)(0) = 0.426 
yx n Ix'2 - (IX")2 7.78 - (_2)2 ' 

n L x'y' - (I x")(I y") 7 . 33 - ( - 2) . 0 
bxy = n Iy"2 - (IyY = 7.28 _ 02 = 1.179. 

Since x = 103/7 = 14.714 and Y = 98/7 = 14, the regression equations are 

or 

and 

or 

Y = 14 - 0.426·14.714 + byxx, 

y = 7.73 + 0.426x, 

x - x = bxy(Y - Y), i.e., x = x - bxyY + bxyY 

x = 14.71 - 1.179·14 + bxyY, 
x = -1.79 + 1.179y. 
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The location of the regression lines in the given system of coordinates is 
thus determined. We estimate the correlation coefficients from the regression 
coefficients by (5.4) and by (5.18a): 

r = Jbyx • bxy = J0.426 ·1.179 = 0.709 and r* = 0.753. 

5.4.3 The estimation of some standard deviations 

The standard deviations Sx and Sy are evaluated from the sums of squares 
of the deviations of x and y. We recall (cr., Chapter 3) 

Qx = ~:<x - X)2 = LX2 - (LX)2/n, 

Sx = In ~ l' 
Qy = L(Y - y)2 = Ly2 - (Ly)2/n, 

Sy = In ~ 1· 

Every observation of a bivariate or two-dimensional frequency distribution 
consists of a pair of observed values (x, y). The product of the two deviations 
from the respective means is thus an appropriate measure of the degree of 
common variation of the observations. The sum of products of deviations 
may be called the "codeviance": 

QXY = L (x - x)(y - ji). 

On dividing by n - lone gets a sort of an average codeviance: 

L(x-X)(y- ji) 
n-l 

(5.24) 

(5.24) is an estimate of the so-called covariance (J xy. The computation of the 
codeviance, QXY for short, can be facilitated by use of the following identities: 

I QXY = LXY - x~), (5.25 a) 

I QXY= LXY-YLx, I (5.25b) 

I 
QXY= LXy_LX~>. 

n I 
(5.25) 
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Equation (5.25) is usually the easiest for computations. In terms of QXY' 
one obtains the correlation coefficient r as well as both regression coefficients 
byx and bxy according to 

r= QXY , 
/Qx·Qy 

(5.26) 

S (cf., formulas (5.19a) and (5.21a» 

b =Qxv 
)'x Qx' 

(5.27) 

(5.28) 

The standard deviation of y, assuming x is deterministic, is 

(5.29) 

The symbol Sy.x for the standard deviation of the y-values for given x is to 
be read" S y dot x". The numerator under the square root sign consists of 
the sum of the squares of the deviations of observed y-values for the cor
responding values on the regression line. This sum is divided by n - 2 and 
not by n - 1, since we had estimated the two parameters ayx and byx . The 
value Sy.x could be obtained by determining for every x-value the correspond
ing y-value by means of the regression line, summing the squares of the 
individual differences, and dividing by the sample size reduced by two. 
The square root of this would then be Sy.x. The residual sum of squares 
(RSS), or error sum of squares, may be computed by 

" ( _ 0)2 = "( _ -)2 _ [L (x - x)(y - y)y = Q _ Q;y 
L. Y y L. Y y L(x _X)2X Qx: 

(RSS) 

The standard error for given values x is thus obtained more quickly according 
to 

(S.29a) 
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Since Sy.x is a measure of the inadequacy of fit for the fitted equation y = 
a + bx, or of the error which is made in the estimation or prediction of y 
from given values of x, this standard deviation will also be referred to as the 
standard error of estimate or as the standard error of prediction. If we now 
denote the standard deviation of the axis intercept a (on the ordinate) by Sa 

and the standard deviation ofthe regression coefficient byx = b by Sb, then we 
have 

f?i Say" =Sy.x n+Q' 
x 

(5.30) 

S -~ 
byX - vfQ:' (5.31) 

J? s =s --
Q yx h,yx n' (5.30a) 

Thus a verification of the computations for Sa and Sb is possible: 

(5.30b) 

The square of the standard error of estimation-the dispersion about the 
regression line-is called the residual variance s;.x [cf., (5.6a,b)], often 
called the residual mean ~quare or error mean square, and is the variance 
of y when the linear influence of x is accounted for. There is an interesting 
relation between the two measures.: 

2 (2 b2 2) n - 1 2 2 n - 1 
Sy.x = Sy - yxSx --2 = Sy(1 - r ) --2' 

n- n-
(5.29b) 

For large sample size, there obtains 

Sy.xc::=syJ1-r2 , (5.32) 

(5.33) 

Notice the following connection: 

~-.w s -
y.x - n - 2 ' (5.29) 

(5.31a) 

(S.30a) 
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EXAMPLE. Reexamine our last example with n = 7 and with the sums 

We first compute 

LX = 103, 

L x 2 = 1,593, 

LY = 98, 

Ly2 = 1,400, 

L xy = 1,475. 

Qx = 1,593 - (103)2/7 = 77.429, 

Qy = 1,400 - (98)2/7 = 28, 

QXY = 1,475 - (103)(98)/7 = 33, 

and, if the correlation coefficients are needed, use this in Equations (5.26) 
and (5.18a): 

r = --=Q==x=y = 

JQxQy 

33 
--r:.======~ = 0.709 and r* = 0.753. 
J77.429.28 

From Qx and Qy, the standard deviations of the variables X and yare readily 
obtained: 

and 

Sy.x = 

- )77.429 _ 3 92 
Sx - 6 -.5 , 

Sy = J¥- = 2.160, 

28 - 332/77.429 = 1.670, 
5 

and using this, the standard deviation of the axis intercept (say) and the 
standard deviation of the regression coefficient (Sb x ) are found: 

Verification 

1 14.7142 
sayX = 1.670· "7 + 77.429 = 2.862, 

1.670 
Sb = ~ = 0.190. 

yx v' 77.429 

~ = 2.862 ~ 15 ~ )1,593 = }X2. 
Sbyx 0.190 7 n 

Verification 
The following relations are used to verify the computations: 

(1) (5.34) 
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(2) (5.35) 

(3) S;.x (5.36) 

Computational scheme for regression and correlation 

Step 1: Computation of in terms of nand 

Check of the computations: 

L(x + y)2 = Lx 2 + Ly2 + 2Lxy 

L(X + y)2 - ~{L(x + y)}2 = Qx + Qy + 2Qxy 

x = ~ LX y = ~ h 

Qx LX 2 - ~(LX)2 

Qy Ly2 - ~(Ly)2 

Qxy LXY - ~(LX)(LY) 

Step 2: Computation of Qy.x· byx ' ayx ' r. sx' Sy' Sxy' Sy.x' 

ayx = Y - byxX 

Qxy 

r = VQxQy 

S band sa 
yx yx 

Qy.x = Qy - byxQxy 

ro;-
Sx ,~ 

Sy ~ 

Check of the computations: 

sayx = J1£:.n2 

Sb yx 

Sy.x = SyJ(l 

= ~i~ 
= itx 

-s Q - y. x~i; + it; 
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Scheme for variance analytic testing of regression 

MS MSR 
Source SSD DF (SSD/DF) (MSReg,/MSRe'id.) F(1, n-2,/X) 

Regression (0,,) 2/0, 1 F 
Residual 0, - (0,,) 2/0, n-2 - -

Total 0, n - 1 - - -

If MSRegr./MSResid. = P > F(l,n-2;a;j then Ho (/3 = 0) is rejected. More on 
variance analysis can be found in Chapter 7. 

EXAMPLE. We check the results of example 2 (Section 5.4.2) and, with the help 
of Table 109, evaluate I (x + y) and I (x + y)2. The values I x2 = 1,593, 
I y2 = 1,400, and I xy = 1,475 are known. If we had computed correctly, 
then, according to the first test equation (5.34), we must have 5,943 = 
1,593 + 1,400 + (2)(1,475) = 5,943. Now we check the 

Table 109 

x y x + y (x + y)2 
13 12 25 625 
17 17 34 1156 
10 11 21 441 
17 13 30 900 
20 16 36 1296 
11 14 25 625 
15 15 30 900 

103 98 201 5943 

sums of the squares of the deviations Qx = 77.429, Qy = 28, Qxy = 33 
according to the second control equation (5.35): 

5,943 - (1/7)(201)2 = 171.429 = 77.429 + 28 + (2)(33). 

For the last check we need the values predicted by the regression 
line ~ = 7.729 + 0.426x for the 7 given x-values (Table 110: note the Remark 

Table 110 

.. A (y _ y) 2 x y y y - Y 
13 12 13.267 - 1.267 1.6053 
17 17 14.971 2.029 4.1168 
10 11 11.989 - 0.989 0.9781 
17 13 14.971 - 1.971 3.8848 
20 16 16.249 - 0.249 0.0620 
11 14 12.415 1.585 2.5122 
15 15 14.119 0.881 0.7762 

+ 0.019 13.9354 

" 0 
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(1) concerning residuals in Section 5.6). For Sy.x we had obtained the value 8 
1.67, which we now substitute into the third test equation (5.36): 

2 13.9354 
1.67 = 2.79 = 5 

In tables summarizing the results one should specify both variables, and 
perhaps a third variable (say age in years) in k ~ 2 classes, r, a, b, s;.x, and 
confidence intervals, at least: 

First Second Third 
variable variable variable n r a b s ~.x 

(1) (2) (3) (4) (5) (6) (7) (8) 

~50 yr 
>50 yr 

5.4.4 Estimation of the correlation coefficients 
and the regression lines from a correlation 
table 

Candy boxes can be classified according to the length and width of the base, 
or human beings according to height and weight. In each case we are dealing 
with two random variables and the question as to a possible correlation 
between the two attributes is obvious. Correlation coefficients p = UXy/uxuy 

always exist when the variances exist and are different from zero. A clear 
presentation of a two-dimensional frequency distribution with certain 
attribute combinations can generally be made in the form of a comprehensive 
correlation table of I rows and k columns. For each of the two attributes, a 
constant class width b must here be chosen. Moreover, b should not be taken 
too large, since a subdivision into classes oflarger size will in general lead to 
an underestimation of r. The class means are, as usual, denoted by Xi and Y j. 
From the primary list, a tally chart or a counting table (Figure 51) with num
bered classes (rows and columns) is constructed. Every field of the table 

1 2 3 4 5 6 . .... .... . 
5 . . .. 5 

0- . ... :::- .... .. 
4 . 4 

CIl~ 

5~ .. ... ..... 
.0 co 3 3 
.-~ 

~co ... . . ... ..c: 2 2 «u 
1 

.. . 
1 

1 2 3 4 5 6 

Figure 51 Attribute or character I 
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exhibits a certain occupation number; the two regions, lying at the opposite 
corners of the table are ordinarily unoccupied or sparsely occupied. The 
occupation number of a field of the ith column (character or attribute I) 
and thejth row (character or attribute II) is denoted by nij' Then the 

k 

row sums = L nij = L nij = n.j , 
i= 1 i 

I 

column sums = L nij = L nij = n i ., 
j= 1 j 

k I 

and of course n = L L n ij = L n i . = L n.j' 
i=lj=l i j 

Table 111 Correlation table 

G Attribute or character I 

~ CI. No. I .. . i ... k Row 

CI. No. ~ XI . .. Xi . .. xk sum 

1 Yl "11 .. . nil ... "kl " • 1 --
Qi . .... 
u 
~ 

. 
ctI . 

.<:: 
u j Yj "Ij "ij "kj " 0 

.. . ... 
· j 

~ 
:::l 
.0 . 
~ 

I YI "11 ... nil . .. "kl " · I 
Column sum "1. .. . " . 1 • 

. .. "k • " 

With the class widths, bx and by, Xa the column and Yb the row belonging to 
the largest occupation number (or one of the largest occupation numbers), 
Xi the columns and Yj the rows, and the definitions 

_ Xi - Xa d _ Yi - Xb 
v· - an w· - ---
'b J b x y 

(Vi and Wj are then integers), the correlation coefficient is given by 

(5.37) 
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Table 112 Areas of the bases of 50 candy boxes with edge lengths 
Xj and widths Yj measured in em 

Xi 12 16 20 24 28 32 

~ 
-3 -2 -1 0 1 2 Row (j) 

sum 2 
Yj Wj " . " .jWj ".jwj .J 

21 1 1 5 7 1 14 14 14 

18 0 1 3 7 5 2 18 0 0 
15 -1 2 3 4 1 10 -10 10 
12 -2 3 1 1 5 -10 20 
9 -3 2 1 3 - 9 27 

Column 
(i) 2 7 8 17 13 3 50 -15 71 
sum 

L".jWj 
2 

" L" .w. 
"i. • J J 

"i.vi -6 -14 -8 0 13 6 -9 
L"· V· 1. 1 

2 18 28 8 0 13 12 79 "i. vi 2 
L"i.vi 

421 

EXAMPLE. Compute r for the length and width of the base of 50 candy boxes 
(Table 112; Xi and Yj are class means). 

The Vi and the Wj are computed first; we choose Xa = 24 and Yb = 18: 

. 12 - 24 _ -3 
Vi· 4 - , 

1, 

16 - 24 = -2 
4 ' 

18 - 18 

3 
0, 

etc. 

etc. 

Then the sums (cf., Table 112) of the rows and columns and the four sums 
of the products are worked out. To compute the sum Li Lj nijviwj, we set 
up a small auxiliary table. For every occupancy number we compute the 
product ViWj and multiply this product by the associated occupancy number 
nij: 

-1 0 7 2 
0 0 0 0 0 
4 3 0 -1 

12 2 0 
18 6 
18 +22 +4 +0 +6 +2 

H ".jv.w. 52 
1 J 1 1 J 

8 
0 
6 

14 
24 
52 
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@ By (5.37), we then have 

50·52 - (-9)(-15) 
r= =Q~n 

J[50.79 - (-9)2J[50. 71 - (-15)2J 

One could of course have carried out the computations directly by using the 
sums 

" n· x· = 2· 12 + 7· 16 + ... + 3·32 = 1,164, i..J L l 

i 

" n· x~ = 2 . 122 + 7 . 162 + ... + 3.322 = 28336 L... 1. 1 , , 

i "n .y. = 3·9 + 5·12 + ... + 14·21 = 855 L. .J J , 
j 

L n.jyJ = 3.92 + 5· 122 + ... + 14.212 = 15,219, 
j 

L xi(nijY) = 12(2·9) + 16(9 + 3·12 + 2· 15 + 18) + ... 
ij 

+ 32(2· 18 + 21) = 20,496. 

~ According to (5.18), 

20,496 - 5~ 1,164·855 
----r.:o==========::::;~====~ = 0.6872. 

[28,336 - 5~ 1,1642] [15,219 - 5~ 8552 ] 

If one of the two quantities under study can be interpreted as being 
dependent on the other, the computation of the correlation should be 
supplemented by an analysis of the regression. Letting bx and by be the 
class widths, one obtains both of the means, the standard deviations, the 
residual variances, and the regression lines as well as other interesting 
quantities (cf., also the scheme at the beginning of this section as well as 
Section 5.5.3) according to 

L ni.vi (-9) 
x = bx -'-- + xa = 4-- + 24 = 23.28, 

n 50 

~ n.jwj (-15) 
Y = by J n + Yb = 3 ---so + 18 = 17.10, 
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" n· Vf [" n· v·l 2 ~ I. I L.J I. , 

_i ____ i __ =4. 
n n 

79 _ [( -9)J2 = 4.976 
50 50 ' 

423 

"n .w~ [" n .W·l 2 L., .J J L.,.J J 

j - j =3· 
n n 

71 _ [( -15)J2 = 3460 
50 50 ., 

i.e., 

2 2 2 n - 1 2 2 49 
(Sy.J = sy(l - r ) n _ 2 = 3.46 (1 - 0.6872 ) 48 = 6.4497, 

2 2 2 n - 1 2 2 49 
(sx.y) = sAl - r ) n _ 2 = 4.976 (1 - 0.6872 ) 48 = 13.3398, 

Sy 3.460 
byx = r Sx = 0.6872 4.976 = 0.4778, 

Sx 4.976 
bxy = r - = 0.6872 -34 = 0.9883, 

Sy . 60 

ayx = Y - byxx = 17.10 - 0.4778·23.28 = 5.977, 

axy = X - bxyY = 23.28 - 0.9883· 17.10 = 6.380, 

y = 5.977 + 0.478x ~ = 6.380 + 0.988y. 

5.4.5 Confidence limits of correlation coefficients 

The 95 % confidence interval for P is given in Figure 52 as the interval on 
the vertical draw above r, between the two curves, corresponding to the n in 
question. Only when the confidence interval does not include the value 
P = 0 are we dealing with a proper (p =1= 0) correlation. The confidence 
limits for large n can be found by means of (5.41). 

Examples 

1. This may be illustrated by an extreme example with r = 0.5 and 
n = 3. We carry out the construction in the nomogram at r = +0.5 (the 
middle of the right half of the abscissa) and read from the ordinate the 
heights of the two n = 3 curves at r = 0.5: PI ~ -0.91 and P2 ~ +0.98. 
The confidence interval is huge (95% CI: -0.91 :!S p:!S +0.98) and practi
cally does not allow any conclusion. 

2. We obtain the 95 % CI for r = 0.68 and n = 50 (cf., Figure 52): 
0.50 :!S P :!S 0.80, and thus the confirmation of a proper formal correlation 
(P = 0.05). 
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, 
Correlation coefficient of the sample 

Figure 52 Confidence limits of the correlation coefficients: the 95 % confidence interval 
for p. The numbers on the curves indicate the sample size (from F. N. David: Tables of 
the Ordinates and Probability Integral of the Distribution ofthe Correlation Coefficient 
in Small Samples, The Biometrika Office, London 1938). 

5.5 TEST PROCEDURES 

5.5.1 Testing for the presence of correlation and 
some comparisons 

The null hypothesis that the correlation coefficient determined for a sample 
is a random deviation from the zero correlation in the population (p = 0) 

@ is tested according to R. A. Fisher by means of the t-distribution with n - 2 
degrees of freedom: 

A [ fn=2] t=lrl y~. (5.38) 

For t ~ t n - 2 ;", Ho: P = 0 is rejected [cr., 1(4), Section 5.1]. It is simpler to 
use Table 113. 



Table 113 Testing the correlation coefficient r for 
significance against zero. The null hypothesis (p = 0) 
is rejected in favor of the alternative hypothesis (two 
sided problem: p oF 0; one sided problem: p > 0 or 
p < 0) if I r I attains or exceeds the value tabulated for 
the appropriate problem, the chosen level of signifi
cance, and the number of degrees of freedom present 
(DF = n - 2) (then both regression coefficients PYX 
and PXy are also different from zero). The one sided test 
can be carried out only if the sign of the correlation 
coefficient is known prior to sampling. This table is 
based on (5.38), solved for r in terms of t 2 . Thus 
r = 0.25 with DF = 60 or n = 62 is statistically 
significant (p oF 0) at the 5% level. 

Two sided test One sided test 
OF 

5 , 1 , 0.1 , 5 S 

1 0.9969 A* 8* 0.9877 
2 0.9500 0.9900 0.9990 0.9000 
3 0.8783 0.9587 0.9911 0.805 
4 0.811 0.917 0.974 0.729 
5 0.754 0.875 0.951 0.669 
6 0.707 0.834 0.925 0.621 
7 0.666 0.798 0.898 0.582 
8 0.632 0.765 0.872 0.549 
9 0.602 0.735 0.847 0.521 

10 0.576 0.708 0.823 0.49~ 

11 0.553 0.684 0.801 0.476 
12 0.532 0.661 0.780 0.457 
13 0.514 0.641 0.760 0.441 
14 0.497 0.623 Q.742 0.426 
15 0.482 0.606 0.725 0.412 

16 0.468 0.590 0.708 0.400 
17 0.456 0.575 0.693 0.389 
18 0.444 0.561 0.679 0.378 
19 0.433 0.549 0.665 0.369 
20 0.423 0.537 0.652 0.360 

21 0.413 0.526 0.640 0.352 
22 0.404 0.515 0.629 0.344 
23 0.396 0.505 0.618 0.337 
24 0.388 0.496 0.607 0.330 
25 0.381 0.487 0.597 0.323 
26 0.374 0.478 0.588 0.317 
27 0.367 0.470 0.579 0.311 
28 0.361 0.463 0.570 0.306 
29 0.355 0.456 0.562 0.301 
30 0.349 0.449 0.554 0.296 
35 0.325 0.418 0.519 0.275 
40 0.304 0.393 0.490 0.257 
50 0.273 0.354 0.443 0.231 
60 0.250 0.325 0.408 0.211 
70 0.232 0.302 0.380 0.195 
80 0.217 0.283 0.357 0.183 
90 0.205 0.267 0.338 0.173 

100 0.195 0.254 0.321 0.164 
120 0.178 0.232 0.294 0.150 
150 0.159 0.208 0.263 0.134 

200 0.138 0.181 0.230 0.116 
250 0.124 0.162 0.206 0.104 
300 0.113 0.148 o .18S 0.095 
350 0.105 0.137 0.175 0.0878 
400 0.0978 o .12S 0.164 0.0822 

500 0.0875 0.115 0.146 0.0735 
700 0.0740 0.0972 0.124 0.0621 

1000 0.0619 0.0813 0.104 0.0520 
1500 0.0505 0.0664 0.0847 0.0424 
2000 0.0438 0.0575 0.0734 0.0368 

A* • 0.999877 S* • 0.99999877 

More critical values may be computed by 

tn _ 2 :.I.J{n - 2) + t;_2:a' 

1 S 0.1 I 

0.9995 c* 
0.9800 o .9980 
0.934 0.986 
0.882 0.963 
0.833 0.935 
0.789 0.905 
0.750 0.875 
0.715 0.847 
0.685 0.820 
0.658 0.795 
0.634 0.772 
0.612 0.750 
0.592 0.730 
0.574 0.711 
0.558 0.694 
0.543 0.678 
0.529 0.662 
0.516 0.648 
0.503 0.635 
0.492 0.622 
0.482 0.610 
0.472 0.599 
0.462 0.588 
0.453 0.578 
0.445 0.568 
0.437 0.559 
0.430 0.550 
0.423 0.541 
0.416 0.533 
0.409 0.526 
0.381 0.492 
0.358 0.463 
0.322 0.419 
0.295 0.385 
0.274 0.358 
0.257 0.336 
0.242 0.318 
0.230 0.302 
0.210 0.277 
0.189 0.249 
0.164 0.216 
0.146 0.194 
0.134 0.177 
0.124 0.164 
0.116 0.154 

0.104 0.138 
0.0878 0.116 
0.0735 0.0975 
0.0600 0.0795 
0.0519 0.0689 

c' • 0.9999951 

For instance: n = 30, IX = 0.05; two sided test: t 28Q,Q5 = 
2,048, 2,048/v'{30 - 2) + 2,0482 = 0,3609; one sided test: 

t 28 ;Q,Q5 onesided=1.701. 1,701/V(30-2) +1,701 2 =0,3060, 
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Examples 

1. Suppose ex = 0.01, r = 0.47. Then according to Table 113 there must 
be at least 29 (= DF + 2) observations available to allow the conclusion 
that the variables are mutually dependent. 

2. If from 27 observations an r = 0.50 is computed and ex = 0.01 agreed 
upon, then the null hypothesis (p = 0) must be rejected, since 0.50 is larger 
than the tabulated value (0.487). 

REMARKS 

1. The test for the null hypothesis can also be written in terms of the F -distri
bution (5.38a, 5.38b): 

- r2(n-2) 
F=---r=-;:r 

DFI=1, DF2=n-2 

[Note: (5.38) and (5.38a) are of equal value; cr., (1.145), leftmost part]; 

F=1+ r 
1-r 

DFI=DF2=n-2 

(Kymn 1968). 

(5.38a) 

(5.38b) 

2. The hypothesis Ho: P = Po can be tested according to Samiuddin (1970) by 

(5.39) 

3. Two estimated correlation coefficients 'I and r2 ('I = , AB, '2 = rBC , r 12 = 
'Ad from the same sample (with the three characteristics A, B, and C), can be tested 
for equality according to Hotelling (1940): 

F (rl-'2)2(n-3)(1 +r12) 
2(1- rt2 - d - d + 2r12rlr2)' (5.39a) 

DFI = 1, DF2 =n-3. 

Other tests for the equality of dependent correlation coefficients (e.g., Ho: PI2 = P13) 
are given by J. J. Neill and O. J. Dunn, Biometrics 31 (1975), 531-543, S. C. Choi, 
Biometrika 64 (1977), 645-647 and by B. M. Bennett, Statistische Hefte 19 (1978), 
71-76 (cf., Psychological Bulletin 87 (1980), 245-251). 

4. Multiple tests of correlations as well as one-stage and multistage Bonferroni 
procedures are compared by R. E. Larzelere and S. A. Mulaik, Psychological Bulletin 

84 (1977),557-569. 
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5. Pairwise comparisons among k independent correlations from samples with 
unequal sample sizes are given by K. J. Levy, British Journal of Mathematical and 
Statistical Psychology 30 (1977), 137-139 (cr., Psychological Bulletin 82 (1975), 
174-176 and 177-179). More on this is given by P. A. Games, Psychological Bulletin 
85 (1978),661-672. 

6. Nomograms for computing and assessing correlation and regression coefficients 
are given by Friedrich (1970) (cr., also Ludwig (1965». 

The r to z transformation 

If the correlation coefficient differs significantly from zero, then the smaller 
the number of observations and the larger the absolute value of the correla
tion coefficient, the more the distribution of r deviates from the normal. 
The distribution of the correlation coefficient is approximately normalized 
by the r to i transformation of R. A. Fisher, given by 

1 1 + r 1 + r 
i = -In-- = 1.1513log--

2 l-r l-r 
(F.l) 

with the standard deviation 

1 
(F.2) Sz = .,j'n=3. 

The goodness of this approximation increases with decreasing absolute value 
of p and with increasing sample size. The interval - 1 < r < 1 is mapped 
onto -00 < i < 00. 

From 

i = r + !r3 + !r5 + ir 7 + ... , (F.3) 

we see that for 

1. r = ± 1 we get i = ± 00, 

2. r < 0.3 we get i ~ r. 

This r to i transformation requires that x and y have bivariate normal 
distribution in the population. The larger the sample size, the less stringent 
is this assumption. The i of this transformation (r is the hyperbolic tangent 
of i: r = tanh i and i = tanh - 1 r) must not be confused with the standard 
normal variable z. One uses this transformation only for samples with n > 10 
from a bivariate normal population. For n < 50, Hotelling (1953) suggests 
replacing i by iH and Sz by SZH: 

1 
(FA) SZH = In-=-i. 
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We do without this correction in the examples. The conversion from r to i, 
and vice versa, is carried out with the help of Table 114: The first column 
of the Table lists the i-values with one place beyond the decimal, while 
the second place beyond the decimal can be found in the uppermost row. 

The significance of the correlation coefficients (cf., Table 113) can then be 
tested according to 

A:i ~ 
z = - = :i V n - 3. 

oS;; 

The 95 % confidence interval for p is given by 

I :i ± 1. 960s z . 

(5.40) 

(5.41 ) 

With the help of Table 114, we can transform the upper and lower i-values 
obtained back into r-values. The unknown correlation coefficient p of the 
population then lies with the required probability in the interval given by 
the two r-values. 

Two better approximations of confidence intervals for p are discussed 
by A. Boomsma, Statistica Neerlandica 31 (1977), 179-185. 

Table 114 Transformation of the correlation coefficient z = 1 In 
[(1 + r)/(1 - r)] (taken from Fisher, R. A. and Yates, F.: Statistical 
Tables for Biological, Agricultural, and Medical Research, Oliver and 
Boyd Ltd., Edinburgh 1963, p. 63) 

i 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0599 0.0699 0.0798 0.0898 
0.1 0.0997 0.1096 0.1194 0.1293 0.1391 0.1489 0.1586 0.1684 0.1781 0.1877 
0.2 0.1974 0.2070 0.2165 0.2260 0.2355 0.2449 0.2543 0.2636 0.2729 0.2821 
0.3 0.2913 0.3004 0.3095 0.3185 0.3275 0.3364 0.3452 0.3540 0.3627 0.3714 
0.4 0.3800 0.3885 0.3969 0.4053 0.4136 0.4219 0.4301 0.4382 0.4462 0.4542 
0.5 0.4621 0.4699 0.4777 0.4854 0.4930 0.5005 0.5080 0.5154 0.5227 0.5299 
0.6 0.5370 0.5441 0.5511 0.5580 0.5649 0.5717 0.5784 0.5850 0.5915 0.5980 
0.7 0.6044 0.6107 0.6169 0.6231 0.6291 0.6351 0.6411 0.6469 0.6527 0.6584 
0.8 0.6640 0.6696 0.6751 0.6805 0.6858 0.6911 0.6963 0.7014 0.7064 0.7114 
0.9 0.7163 0.7211 0.7259 0.7306 0.7352 0.7398 0.7443 0.7487 0.7531 0.7574 
1.0 0.7616 0.7658 0.7699 0.7739 0.7779 0.7818 0.7857 0.7895 0.7932 0.7969 
1.1 0.8005 0.8041 0.8076 0.8110 0.8144 0.8178 0.8210 0.8243 0.8275 0.8306 
1.2 0.8337 0.8367 0.8397 0.8426 0.8455 0.8483 0.8511 0.8538 0.8565 0.8591 
1.3 0.8617 0.8643 0.8668 0.8692 0.8717 0.8741 0.8764 0.8787 0.8810 0.8832 
1.4 0.8854 0.8875 0.8896 0.8917 0.8937 0.8957 0.8977 0.8996 0.9015 0.9033 
1.5 0.9051 0.9069 0.9087 0.9104 0.9121 0.9138 0.9154 0.9170 0.9186 0.9201 
1.6 0.9217 0.9232 0.9246 0.9261 0.9275 0.9289 0.9302 0.9316 0.9329 0.9341 
1.7 0.9354 0.9366 0.9379 0.9391 0.9402 0.9414 0.9425 0.9436 0.9447 0.9458 
1.8 0.94681 0.94783 0.94884 0.94983 0.95080 0.95175 0.95268 0.95359 0.95449 0.95537 
1.9 0.95624 0.95709 0.95792 0.95873 0.95953 0.96032 0.96109 0.96185 0.96259 0.96331 
2.0 0.96403 0.96473 0.96541 0.96609 0.96675 0.96739 0.96803 0.96865 0.96926 0.96986 
2.1 0.97045 0.97103 0.97159 0.97215 0.97269 0.97323 0.97375 0.97426 0.97477 0.97526 
2.2 0.97574 0.97622 0.97668 0.97714 0.97759 0.97803 0.97846 0.97888 0.97929 0.97970 
2.3 0.98010 0.98049 0.98087 0.98124 0.98161 0.98197 0.98233 0.98267 0.98301 0.98335 
2.4 0.98367 0.98399 0.98431 0.98462 0.98492 0.98522 0.98551 0.98579 0.98607 0.98635 
2.5 0.98661 0.98688 0.98714 0.98739 0.98764 0.98788 0.98812 0.98835 0.98858 0.98881 
2.6 0.98903 0.98924 0.98945 0.98966 0.98987 0.99007 0.99026 0.99045 0.99064 0.99083 
2.7 0.99101 0.99118 0.99136 0.99153 0.99170 0.99186 0.99202 0.99218 0.99233 0.99248 
2.8 0.99263 0.99278 0.99292 0.99306 0.99320 0.99333 0.99346 0.99359 0.99372 0.99384 
2.9 0.99396 0.99408 0.99420 0.99431 0.99443 0.99454 0.99464 0.99475 0.99485 0.99495 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
3 0.99505 0.99595 0.99668 0.99728 0.99777 0.99818 0.99851 0.99878 0.99900 0.99918 
4 0.99933 0.99945 0.99955 0.99963 0.99970 0.99975 0.99980 0.99983 0.99986 0.99989 
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EXAMPLE. In the example of Section 5.4.4 we obtained a correlation coefficient 
of r = 0.6872 ~ 0.687 for 50 data points. Does this value differ significantly 
from zero? 

For 48 OF, a correlation coefficient of this size is, according to Table 113, 
clearly different from zero. Thus the question is answered. We nevertheless 
wish to determine the 95% confidence interval. From Table 114, Z = 0.842; 

hence z = z~ = 0.842)47 = 5.772. To this z-value there corresponds 
a p ~ 0.001. The 95 % confidence interval is obtained from 

and 

1 1 
Sz = = = 0.146 

vin=3 ~ 

Z ± 1.96·0.146 = Z ± 0.286, 

0.556 :::; Z :::; 1.128 

so that we have 

95 %-CI: 0.505 :::; Q :::; 0.810. 

The transformation of small values of r (0 < r < 0.20) into Z = tanh -1 r 
can be carried out with sufficient accuracy according to z = r + (r 3/3) 
(e.g., z = 0.100 for r = 0.10); Values of z for r = 0.00(0.01)0.99 can be found 
in the following table (for r = 1, Z = (0): 

r 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.00000 0.01000 0.02000 0.03001 0.04002 0.05004 0.06007 0.07011 0.08017 0.09024 
0.1 0.10034 0.11045 0.12058 0.13074 0.14093 0.15114 0.16139 0.17167 0.18198 0.19234 
0.2 0.20273 0.21317 0.22366 0.23419 0.24477 0.25541 0.26611 0.27686 0.28768 0.29857 
0.3 0.30952 0.32055 0.33165 0.34283 0.35409 0.36544 0.37689 0.38842 0.40060 0.41180 
0.4 0.42365 0.43561 0.44769 0.45990 0.47223 0.48470 0.49731 0.51007 0.522g8 0.53606 
0.5 0.54931 0.56273 0.57634 0.59015 0.60416 0.61838 0.63283 0.64752 0.66246 0.67767 
0.6 0.69315 0.70892 0.72501 0.74142 0.75817 0.77530 0.79281 0.81074 0.82911 0.84796 
0.7 0.86730 0.88718 0.90764 0.92873 0.95048 0.97296 0.99622 1.02033 1.04537 1.07143 
0.8 1.09861 1.12703 1.15682 1.18814 1.22117 1.25615 1.29334 1.33308 1.37577 1.42193 
0.9 1.47222 1.52752 1.58903 1.65839 1.73805 1.83178 1.94591 2.09230 2.29756 2.64665 

5.5.2 Further applications of the z-transformation 

1. The two sided test of the hypothesis that PI (estimated by rd is equal to 
any value P proceeds on the basis of the standard normal variable z 
according to 

(5.42) 

If the test quantity is below the significance bound (Table 14, Section 1.3.4), @ 
then it can be assumed that PI = P (cr., also Section 5.5.1, Formula (5.3.9». 
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2. The two sided comparison of two estimated correlation coefficients P1 and 
P2 proceeds according to 

(5.43) 

The sizes of the two samples have to be greater than 20. If the test quotient 
falls below the significance bound, then it can be assumed that the under
lying parameters are equal (p1 = P2). Estimation of the common correla
tion coefficient r then proceeds by way of z: 

with 

Z=Zl(nl- 3)+Z2(n2- 3) 
n1+ n2- 6 

The significance of P [parameter of r] can be tested according to 

Examples 

(5.44) 

(5.45) 

(5.46) 

1. Given'l = 0.3, n1 = 40, P = 0.4. Can P1 = P be assumed (two sided 
test with IX = 0.05)? By (5.42)(Table 114), 

z = (10.30952 - 0.423651 )J 40 - 3 = 0.694 < 1.96. 

Since the test quantity is smaller than the significance bound, the null 
hypothesis P1 = P cannot be rejected at the 5 % level. 

2. Given'l = 0.6, n1 = 28, and '2 = 0.8; n2 = 23. Can it be assumed 
that P1 = P2 (two sided test with IX = 0.05)? By (5.43), 

Z = 10.6932 - 1.09861 = 1.35 < 1.96. 

)28 ~ 3 + 23 ~ 3 
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Since z = 1.35 < 1.96, the null hypothesis Pi = P2 cannot be rejected at 
the 5 % level. The 95 % confidence interval for P is found in terms of z (5.44) 
to be 

• = 17.330 + 21.972 = 08734 
z 28 + 23 - 6 . , 

1 
s! = = 0.1491, 

J28 + 23 - 6 

Z = 0.8734 ± 1.96·0.1491, 

Z = 0.8734 ± 0.2922, 

0.5812 ~ Z ~ 1.1656, 

95 % CI: 0.5235 ~ {! ~ 0.8223 or 0.52 ~ P ~ 0.82. 

We can test simultaneously whether the k samples come from populations 
with given hypothetical correlation coefficients. The case where the hypo
thetical coefficients are all the same is of particular interest (null hypothesis: 
Pi = P2 = ... = Pi = ... = Pk = Po, Po arbitrary but fixed theoretical 
value); the corresponding test statistic is given by 

k 

X2 = L (nj - 3)(zj - Z)2, (5.47) 
j= I 

where i = i-transform of the common correlation coefficient Po; X2 has an 
approximate X2-distribution with k degrees offreedom. E.g., we have for IX = 8 
0.05 and k = 4 the significance bound X~; 0.05 = 9.49. If the test statistic turns 
out to be smaller than or equal to the significance bound, then the null 
hypothesis that the k samples come from bivariate populations with the same 
correlation coefficient Po cannot be rejected. 

For a test for homogeneity among the coefficients of correlation-null 
hypothesis: PI = ... = Pk = P [the value of P is not known]-we estimate the 
z-transform of the common coefficient of correlation by 

k 

LZj(nj-3) 
i= I 

Z = ---;:Ck--- (5.48) 
L (nj-3) 
j= I 

The associated standard deviation is 

(5.49) 
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Then the test statistic for homogeneity is given by 

k 

X2 = L (ni - 3)(Zi - i)2 (5.50) 
i= 1 

~ but with DF = k - 1. If the test quantity is smaller orequalto the significance 
bound, the null hypothesis may be retained and the common correlation 
coefficient r estimated. The confidence limits for the common parameter p 
are obtained in a well-known manner in terms of the associated ~-value and 
standard deviation s~ : 

[For the 95 % CI] i ±1. 960s~, (5.51) 

[F or the 99 % CI] (5.52) 

by transforming the upper and lower limits into the corresponding r-values. 

EXAMPLE 

Table 115 

r i Zi "i "i - 3 zi("i - 3) zi - (zi _ 1)2 (" i - 3)(z; _ 1)2 - z 

0.60 0.6932 28 25 17 • 330 0.1777 0.03158 0.7895 
0.70 0.8673 33 30 26.019 0.0036 0.00001 0.0003 
0.80 1.0986 23 20 21.972 0.2277 0.05185 1.0369 

L (" i - 3) = 75 65.321 ,,2 
= 1. 8268 x 

Since X2 is substantially less than X~; 0.05 = 5.99, a common correlation 
coefficient may be estimated: 

Z = 65.321 = 0.8709; r = 0.702 
75 

s! = lifo = 0.115; Z ± 1.96·0.115 = Z ± 0.2254 

0.6455 :s; Z :s; 1.0963 

95 % CI: 0.5686 :s; p :s; 0.7992 or 0.57 :s; p :s; 0.80. 

The estimates of common correlation coefficients can in their turn be used 
for comparisons between two estimates r(1) and r(2)' or for comparisons 
between an estimate r(1) and a hypothetical correlation coefficient p. 
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~ 5.5.3 Testing the linearity of a regression 

It is possible to test the null hypothesis that a given regression is linear, if 
the total number n of y-values is larger than the number k of x-values: For 
every value Xi of the k x-values there are thus ni y-values present. [If the 
linearity or nonlinearity is clear from the aggregate of points, the linearity 
test can be dispensed with]. If we are dealing with a linear regression, then 
the group means Yi must lie on an approximately straight line, i.e., their 
deviation from the regression line (lack of fit) may not be too large in com
parison with the deviations among multiple observations (pure error). 
Hence if the ratio 

Deviation of the means from the regression l~ne lack of fit 
Deviation of the y-values from their group mean pure error 

-in other words, the test quantity 

V1 = k - 2, 
V2 = n - k 

(5.53) 

with (k - 2, n - k) degrees of freedom-attains or exceeds the significance @ 
bound, then the linearity hypothesis must be rejected. The numerator and 
denominator are each unbiased estimates of u;.x if the regression function 
is linear. The denominator is so even if the regression function is not linear, 
it being a weighted average of independent variance estimates at the indivi-
dual x values. 

A closer look: we denote the individual values found by Yij and the values 
found with the help of the empirical regression function by Pi and write 

Squaring and summing this over i and j gives 

k ni k "i 

I I (Yij - py = I I [(yij - Yi) + (Yi - Pi)]2, 
i=1 j=1 i=1 j=1 

and hence (5.54) 

(5.54) 

where the crossproduct term vanishes because I (Yij - }i;) = O. The first 
term on the right is a contribution to the variability of the observations 
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about the empirical regression line caused by variability of the observations 
about the means at the individual x-values. The second term is a contribution 
caused by variation of the means about the empirical regression line. 

EXAMPLE. Given Table 116: n = 8 observations were made at k = 4 different 
x's. To test the linearity at the 5 % level we first estimate the regression line 
and then compute for the four xi-values the corresponding Yi-values. The 
sums required for (5.53) can be read off from Tables 117 and 117a. 

Table 116 n = 8 observations were 
made at k = 4 different x's; the x's 
carry multiple observations 

Y;j 

Xj j = 1 j = 2 j=3 nj 

1 1 2 2 
5 2 3 3 3 
9 4 1 

13 5 6 2 

- _ L~= 1 nixi _ 52 _ 65 x- - -., 
n 8 

Qx = L nix; - - L nixi = 496 - - = 158, 
k 1 ( k)2 522 

i=1 n i=1 8 

Qy = L L Y~ - - L L Yij = 104 - - = 19.5, 
k ni 1 (k ni)2 262 

i=1j=1 n i=1j=1 8 

byx = ~: = ::8 = 0.335, 

ayx = Y - byxx = 3.25 - 0.335 . 6.5 = 1.07, 

y = 1.07 + 0.335x. 
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The test quantity becomes 

1 
~ 4 - 20.0533 
F = = 0.064. 

1 
8 - 41.67 

Since P = 0.064 < 6.94 = F(2; 4; 0.05), the linearity hypothesis is retained. 

Table 117 

.... 
1Yi - 9i 1 cY; " )2 "i cY i " ) 2 xi Yij "i Yi Yi - Yi - Yi 

1 1;2 2 1.50 1.41 0.09 0.0081 0.0162 
5 2;3;3 3 2.67 2.75 0.08 0.0064 0.0192 
9 4 1 4.00 4.09 0.09 0.0081 0.0081 

13 5;6 2 5.50 5.43 0.07 0.0049 0.0098 

I ~". (y. " 2 0.0533 - Y i) = 
1 1 1 

Table 117a 

X; Y;j Y; IY;j - Y·I 1 (Y; j - ) 2 - Y; 4(y··-y·)2 
J 1 J 1 

1 1;2 1. 50 0.5;0.5 0.25;0.25 0.50 
5 2;3;3 2.67 0.67;0.33;0.33 0.45;0.11;0.11 0.67 
9 4 4.00 0 0 0 

13 5;6 5.50 0.5;0.5 0.25;0.25 0.50 

I 
H (y .. - - )2 = 1.67 
1 J 1 J Y; 

Testing the linearity of a regression estimated from a 
correlation table 

If the data are based on a correlation table, then a different modification 
of the linearity test is common. The starting point is the so-called correlation 
ratio of y on x, written Eyx , which records the degree of deviation of the 
column frequencies from the column means: 

1>£2 > 2 = yx=r. (5.55) 
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If a regression in question is linear, then the correlation ratio and the cor
relation coefficient are approximately equal. The more strongly the column 
means deviate from a straight line, the more marked is the difference between 
Eyx and r. This difference between the two index numbers can be used in 
testing the linearity of regression: 

V1 = k - 2, 

V2 = n - k, 
(5.56) 

where k is the number of columns. On the basis of the test quantity (5.56), 
the null hypothesis Y/;y - p2 = 0 (i.e., there is a linear relation between 
x and y) is rejected for F > Fk - 2 ;n-k;ct at the 100cx% level; there is then a 
significant deviation from linearity. 

The square of the correlation ratio is estimated by 

(5.57) 

where the computation of Sl, S2, and R can be gathered from the following o example. We form with the data from Table 112 for each Xi the sum Lj nij W j, 

i.e., {2(-3)}, {1(-3) + 3(-2) + 2(-1) + 1(0)},{1(-2) + 3(-1) + 3(0) + 
1(1)}, {1( -2) + 4( -1) + 7(0) + 5(1)}, {1( -1) + 5(0) + 7(1)}, {2(0) + 
1(1)}, divide the squares of these sums by the associated ni. and sum the 
quotients over all i, thus obtaining S 1 : 

(_6)2 (_11)2 (_4)2 (_1)2 62 12 
Sl = -2- + 7 + -8- + ----u- + 13 + 3" = 40.447. 

S 2 is presented in Table 112 as ~j n.j wJ = 71; R can be computed from 
Lj n.jwj and n, E;x by (5.57), and F by (5.56): 

R = (L n.jwj)2 = (-15)2 = 4.5, 
n 50 

2 = Sl - R = 40:447 - 4.5 = 0.541 
Eyx S2 - R 71 - 4.5 ' 

_1_(E2 _ r2) _1_(0541 - 0472) 
~ k - 2 yx 6 - 2' . 
F = = 1.653. 

121 
n - k (l - Eyx) 50 _ 6 (l - 0.541). 

Since F = 1.65 < 2.55 = F 4; 54; 0.05, there is no cause to doubt the linearity 
hypothesis. 
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If the linearity test reveals significant deviations from linearity, it might 
be possible to achieve linearity by suitable transformation of the variables. 
We shall delve more deeply into the transformation problem during our 
discussion of the analysis of variance. If transformations are unsuccessful, 
a second order model might be tried (cf., Section 5.6). 

Assumptions of regression analysis 

We have discussed the testing of an important assumption of regression 
analysis-namely linearity. Other assumptions or suppositions are 
only briefly indicated, since we assumed them as approximately given 
in the discussion of the test procedures. Besides the existence of a linear 
regression in the population for the original or transformed data 
(correctness of the model), the values of the dependent random 
variables Yi for given controlled and/or observation-error-free values 
of the independent variables x must be mutually independent and 
normally distributed with the same residual variance a;.x (usually not 
known), whatever be the value of x. This homogeneity of the residual 
variance is called homoscedasticity. Slight deviations from homo
scedasticity or normality can be neglected. More particulars can be 
found in the specialized literature. For practical work, there are also the 
following essential points: The data really originate in the population 
about which information is desired, and there are no extraneous 
variables which degrade the importance of the relationship between x 
andy. 

Remark concerning Sections 5.5.4 through 5.5.S. Formulas (5.58) to (5.60) as well as 
(5.64) and (5.66) are given for the two-sided test. Hints concerning one-sided tests are 
given at the end of Sections 5.5.4 and 5.5.5. 

~ 5.5.4 Testing the regression coefficient 
against zero 

If the hypothesis of linearity is not rejected by the test described above, then 
one tests whether the estimate of the regression coefficient differs statis
tically from zero (Ho: PYX = 0, HA : PYX =f. 0). For given significance level, 
Student's t-distribution provides the significance bound: 0 

. Ibyxl 
t=--

Sbyx 

(5.58) 
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with DF = n - 2. If the value of the test statistic equals or exceeds the 
bound then PYX differs significantly from zero (cf., Section 5.4.4: scheme for 
variance analytic testing of regression and the caption of Table 113). 

EXAMPLE. Given byx = 0.426; Sbyx = 0.190; n = 80, S = 95 % (i.e., (X = 5 % = 
0.05) 

A 0.426 
t = 0.190 = 2.24 > 1.99 = t78 ;0.05· 

H 0: PYX = 0 is rejected at the 5 % level, i.e., the basic parameter PYX differs 
significantly from zero. 

If the sample correlation coefficient r was computed and tested (H 0: p = 0 
against HA : P i= 0), and Ho could not be rejected, then also PYX (and PXY) = o. 

One-sided tests concerning (5.58): 

Ho HA H 0 is rejected for 

fJyX :5: 0 fJyx> 0 by.lSbyX ~ tn - 2 ;.;oneo. 

fJyX ~ 0 fJ < 0 yx by.lSbyx:5: -tn- 2 ;.;oneo. 

5.5.5 Testing the difference between an estimated 
and a hypothetical regression coefficient 

To test whether an estimated regression coefficient is compatible with a 
theoretical parameter value Po. xy (null hypothesis H 0: Po. yx = PYX, alter
native hypothesis H A: Po. yx i= PYx), 

Compatibility here and in the following means that, provided the null hypo
thesis is correct, the parameter belonging to the estimate (e.g., byx) is identical 
to the theoretical parameter (i.e., here Po; yX>; i.e., for example, H 0: Po; yx = 
PYX [as well as HA : PO;yX #- PYx (incompatibility)]. 

we use the fact that, H 0 given, the test quantity 

byx - PYX 
Sbyx 

~ exhibits a t-distribution with DF = n - 2: 

1= Ib yx - Pyxl . .;,;=! = Ib yx - Pyxl. Sx .In-2= Ib yx - Pyxl. 
sy.xisx ~ Sy Sbyx 

(5.59) 
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EXAMPLE. Given byx = 0.426, PYX = 0.5, Sbyx = 0.190, n = 80, we have 

S=95%, i.e., t 78;0.05=1.99, 

t = 10.426 - 0.5001 = 039 1 
0.190 . < .99. 

The null hypothesis is not rejected on the 5 % level. 

One-sided tests concerning (5.59): 

Ho HA Ho is rejected for 

Po; yx ~ PYX 
... > ... (byX - Pyx)/sbyX ~ t n - 2 ;.;ones. 

Po; yx ~ PYX 
... < ... (byX - PYX)/SbyX ~ -tn- 2;7; ones. 
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5.5.6 Testing the difference between an estimated 
and a hypothetical axis intercept 

To test the null hypothesis: ayx is compatible with cxyx (H A: ayx is not com
patible with cxyJ, one uses for the two sided test 

t layx-cxyxl 
sayX 

with DF = n - 2. 

EXAMPLE. Given: ayx = 7.729; cxyx = 15.292; sayX = 2.862; n = 80 

S = 95%; 
thus the significance bound is 

t 78 ; 0.05 = 1.99, 

A = 17.729 - 15.2921 = 264 199 
t 2.862 . >. . 

(5.60) 

The hypothetical and the actual axis intercepts are not compatible at the 5 % 
level. 

5.5.7 Confidence limits for the regression 
coefficient, for the axis intercept, and for 
the residual variance 

The confidence intervals for regression coefficients and axis intercepts are 
given by (5.61) and (5.62); for both t, DF = n - 2: 

(5.61, 5.62) 
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EXAMPLES FOR 95% CONFIDENCE INTERVALS (S = 0.95, ex = 1 - 0.95 = 0.05) 

Given: byx = 0.426, Sbyx = 0.190, n = 80, S = 95%, we have 

t78 ; 0.05 = 1.99, 

1.99·0.19 = 0.378, 

byx ± tsbyx = 0.426 ± 0.378, 

95 % CI: 0.048:s; PYX :s; 0.804. 

Given: ayx = 7.729, sayX = 2.862, n = 80, S = 95 %, we have 

t78 ; 0.05 = 1.99, 

1.99 . 2.862 = 5.695, 

ayx ± tsayX = 7.729 ± 5.695, 

95 % CI: 2.034:s; exyx :s; 13.424. 

The confidence interval for the residual variance (1;.x is obtained from 

s;.X<n - 2) < 2 < s;.x(n - 2) 
2 _ (1y.x _ 2 . 

X(n- 2; a12) X(n- 2; i-aI2) 
(5.63) 

EXAMPLE. Given: s;.x = 0.138; n = 80; S = 95% (i.e., ex = 5% = 0.05; rJ./2 = 
0.025; 1 - 0.025 = 0.975), we have 

X~8;0.025 = 104.31, X~8;0.975 = 55.47. 

The 95 % confidence interval thus reads 

0.138·78 2 0.138·78 
---<(1 <---,-

104.31 - y.x - 55.47 ' 

95% CI: 0.103:s; (1;.x :s; 0.194. 

~ 5.5.8 Comparing two regression coefficients 
and testing the equality of more than 
two regression lines 

Two regression coefficients, b i and b2 , can be compared by means of 

(5.64) 



5.5 Test Procedures 441 

with n I + n2 - 4 degrees offreedom (null hypothesis: PI = P 2). The samples 
(nl' n2) from populations with the same residual variances «(1;,. x, = (1;2· X2) 
are assumed to be independent. 

Example 

Given 

ni = 40, 

n2 = 50, 

8;, . x, = 0.14, 

8;2· X2 = 0.16, 

Null hypothesis: (a) PI ~ P2; (b) PI = P2· 

Qx, = 163, 

QX2 = 104, 

bi = 0.40, 

b2 = 0.31. 

(a) One sided problem (tx = 0.05): Alternative hypothesis: PI > P2. 
(b) Two sided problem (tx = 0.05): Alternative hypothesis: PI "# P2. 
We have 

10.40 - 0.311 
t = """"[============;====;= = 1.85. 

0.14(40 - 2) + 0.16(50 - 2) (_1_ _1) 
40 + 50 - 4 163 + 104 

For a: Since t = 1.85> 1.66 = tS6 ;O.OS;onesided' the null hypothesis is 
rejected at the 5 % level. 

For b: Since t = 1.85 < 1.99 = ts 6 ;o.oS;twosided, the null hypothesis is not 
rejected. 

For the case of unequal residual variances, i.e., if 

(5.65) @ 

the comparison can be carried out approximately according to 

(5.66) @ 

provided both sample sizes are > 20. If a sample size is smaller, then the 
distribution of the test quantity can be approximated by the t-distribution 0 
with v degrees of freedom, where 

1 

(5.67) 

always lies between min(ni - 2, n2 - 2) [the smaller of the two] and ni + 
n2 - 4 (cf., also Potthoff 1965). 
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Testing the equality of more than two regression lines 

The null hypothesis H 0 = equality of k regression lines is rejected at the 
5% level for 

~ _ 2k ~ 2 [Qyox;T - JIQYOX;i] 
F - 1 k > F2k - 2;n-2k;Oo05 

-2k LQY-X;i n - i=1 

(R1) 

where 

k = numberoflinearregressionfunctionsy = ai + bixwithi = 1,2,0 .. ,k. 
n = total number of all pairs (x, y) necessary for the calculation of the 

total regression line T; this is done by summing the individual sums L x, 
LY, L x2, Ly2, L xy of the k regression lines, and computing YT = a + bx o and Qyox;T = L?=1 (Yi - YT)2 = S;ox;T(n - 2). 

Qyox;i = the value QyoX = L (y - y)2 = Qy(1 - r2) = Qy - (Q;y/Qx) for 
the ith regression line. 

If it is of interest whether or not the regression lines are parallel, the 
equality of the Pi is tested. If it is not possible to reject H 0: Pi = P then 
(especially in the case of unequal regression lines) Ho: lXi = IX is tested. 

H 0: Pi = P is rejected at the 5 % level for 

(R2) 

with 
k 

k L QXY;i 
A "Q i=1 = L., y; i - -=-"'::k --

i=1 "Q 0 

L... X;l 
i= 1 

If Pi = P holds, then it is possible to reject H 0: lXi = IX at the 5 % level for 

1 
~ k _ 1 [Qyox;T -A] 
F = 1 k > Fk- 1;n-2k;O.05. 

-2k LQyoX;i 
n - i=1 

(R3) 

For a comparison of three [two] regression lines with ordered alternative 
see Biometrics 38 (1982), 837-841 [827-836]. 
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~ 5.5.9 Confidence interval for the regression line 

We recall that a confidence interval is a random interval containing the un
known parameter. A prediction interval is a statement about the value to be 
taken by a random variable. Prediction intervals are wider than the 
corresponding confidence intervals. 

A change in ji causes a parallel translation, upwards or downwards, of 
the regression line; a change in the regression coefficient effects a rotation 
of the regression line about the center of gravity (x, ji) (cf., Figure 53). 

Figure 53 Confidence region for linear regression 

First we need two standard deviations: 

J Due to the 
variability of b 

Due to the 
variability of y 

1. The standard deviation for the predicted mean £ at the point X: 

(5.68) 

2. The standard deviation for a predicted observation p. at the point x: 

j 1 (x-xi 
Sji = Sy.x 1 +- + -'----"--

. n Qx 
(5.69) 

The following confidence limits and confidence intervals (el) hold for 
(Xmin < x < xmax): 

1. the whole regression line: 

I y ±J2F(2.n-2)SL· (5.70) 0 
2. the expected value of y at a point x=xo (say): 

(5.71) @ 



444 5 Measures of Association: Correlation and Regression 

A prediction interval for a future observation of y at a point x = Xo (cf., 
also Hahn 1972) is 

(S.72) 

For a prediction interval for a future sample mean at the point x, based on a 
sample of m further observations, with our estimated mean y = jim, we use 
(S.72) with jim instead of y and (S.69) with 11m instead of 1 under the square 
root. This makes the prediction interval shorter. 

These regions hold only for the data space. They are bounded by the 
branches of a hyperbola which depends on x. Figure S4 indicates the growing 

y 

j = y -B. 

Figure 54 Confidence interval scheme for 
linear regression with the boundary value Bx 
depending on x. 

uncertainty in any prediction made as x recedes from the center of gravity 
(x, y) of the regression line. The confidence interval (S.70) is the widest of 
the three regions, and (S.71) is the narrowest; as n -+ 00, (S.70) and (S.71) 
shrink to zero, and (S.72) shrinks to a strip of width z(Ty • x • Thus limits within 
which, at the point x, 9S % of the values of y lie, are estimated by a + bx ± 
1.96sy . x. A tolerance interval, covering a portion of the population, is 
approximated by a formula given in Dixon and Massey (1969, [1], pp. 
199-200) (cf., end of this section). When there is not one y-value for each 
value of x, but ni y-values, then we have not n - 2 but L ni - 2 degrees of 
freedom, and in (S.68) and (S.69) instead of lin we have to write IlL ni. 

For practical work it is important to note that, e.g., for the 9S % CI of 
(S.71) more than 1 in 20 points representing observations falls outside the 
CI, because the limits are not for individual values of y but for the expected 
value of y. Some users of (S.70) may find it disturbing that this CI is con
siderably wider than (S.71). This is the price that must be paid to be able to 
include conditional expected values of y for any value of x whatsoever with 
Xmin < X < Xmax • 

Keeping in mind the distinction between X and x (cf., Section 1.2.5), the formula 
(5.71) gives the CI for the expected value of Yat x = Xo [the mean of the Y-values for 
all individuals having a particular X-value]; (5.70) may be regarded as a set of CIs 
for the conditional expected values of Y given X = Xo for all Xo included in Xmin < 
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Xo < X max ' For modifications of (5.70) see Dunn (1968) and also Hahn and Hendrick
son (1971) (cf., Section 7.3.2). Equation (5.72) holds for a new observed value of Y 
with X = Xo. 

EXAMPLE. We again take the simple model of Example 2, Section 5.4.2, and @ 
pick four x-values at which the associated points of the confidence interval 
are to be determined (95 % CI: i.e., F(2; 5; 0.025) = 8.43). The x-values should 
lie within the data range and be equally spaced. In Table 118 these four 

Table 118 

x x - X A 1 (x - X1 2 

fn 
(x - X)2 Y Ii + + Bx 

(x = 14.714) Qx Qx 

12 -2.714 12.84 0.2380 0.488 3.35 
14 -0.714 13.69 0.1494 0.387 2.65 
16 1. 286 14.54 0.1642 0.405 2.78 
18 3.286 15.40 0.2823 0.531 3.64 

Table 119 

y - Bx Y + Bx 

9.49 16.19 
11.04 16.34 
11.76 17.32 
11.76 19.07 

x-values form column 1, while their deviations from the mean (x = 14.714) 
are listed in the following column. Column 3 contains the p-values estimated 
on the basis ofthe regression line p = 7.729 + 0.426x for the chosen x-values. 
The deviations of the x-values from their mean are squared, divided by 
Qx = 77.429 and augmented by l/n = 1/7. The square root of this inter
mediate result, when multiplied by foSy.x = J2. 8.43·1.67 = 6.857, 
yields the corresponding Bx-values (compare p ± Bx with 

Bx = J2F(2.n-2)S£), 

Connecting the upper (Y + BJ and the lower (P - Bx) bounds of the 
confidence region, we find the 95 % confidence region for the entire line of 
regression. Note that by symmetry the four Bx-values in our example 
represent in fact eight Bx-values, and only the four additional p-values re
main to be computed. For example Bx , depending on (x - x), has the same 
value for x = 14 [i.e., (x - 0.714)] as for x = 15.428 [i.e., (x + 0.714)]. 



446 5 Measures of Association: Correlation and Regression 

We determine below both of the other confidence regions (ts; 0.05 = 2.57) 
for the point x = 16, and start by computing Bx= 16 by (5.71) and subse
quently B~= 16 by (5.71): 

Bx=consl. = tsy·x 
1 (x - X)2 
-+ Q ' n x 

1 (16 - 14.714)2 
B 16 = 2.57·1.67 7 + 77.429 = 1.74. 

The 95 % confidence region for an estimate of the mean at the point 
x = 16 is given by the interval 14.54 ± 1.74. The bounds of the interval are 
12.80 and 16.28. 

, J 1 (x - X)2 
Bx=const. = tsy·x 1 + n + Qx ' 

B~6 = 2.57· 1.67· 1 ! (16 - 14.714)2 = 4.63 
+ 7 + 77.429 . 

The 95 % confidence region for a predicted observation p at the value x = 

16 is given by tile interval 14.54 ± 4.63. The bounds of the interval are 9.91 
and 19.17. The confidence interval for individual predictands is substantially 
larger than the one computed above for the predicted mean. 

Details for the construction of confidence and tolerance ellipses can be 
found in the Geigy tables (Documenta Geigy 1968 [2], 183-184 (cf., 
also p. 145». Plotting methods for probability ellipses of a bivariate 
normal distribution are described by M. J. R. Healy and D. G. Altman, 
Applied Statistics 21 (1972), 202-204 and 27 (1978),347-349. Tolerance 
regions can be given according to Weissberg and Beatty (1960) (cf., 
Sections 3.8 and 5.4.3). More particulars on linear regression (cf., also 
Anscombe (1967) [8: 5b]) can be found in Williams (1959), Draper and 
Smith (1981), Stange (1971) [I], Part II, 121-178, and Neter and 
Wasserman (1974). An excellent review on the estimation of various 
linear regressions appropriate to fifteen different situations especially 
in biology is given by W. E. Ricker, Journal of the Fisheries Research 
Board of Canada 30 (1973), 409-434. 

Remarks 

1. For an empirical regression curve, realizations of a continuous two-dimensional 
random variable, S. Schmerling and J. Peil, Biometrical Journal 21 (1979), 71-78 
give a belt, the local width of which varies depending on local frequency and variance 
of the measured points. 
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2. Tests for bivariate normality are compared by C. J. Kowalski, Technometrics 
12 (1970), 517-544. A goodness of fit test for the singly truncated bivariate normal 
distribution and the corresponding truncated 95 % probability ellipse is given by 
M. N. Brunden, Communications in Statistics-Theory and Methods A7 (1978), 
557-572. 

For robust regression see pages 390-392 and Hocking and Pendleton (1983) [cr., 
also Hogg 1979 and Huber 1981, both cited on p. 66]; for detecting a single outlier in 
linear regression see Barnett and Lewis (1978, Chap. 7, [8: 1]) and R. Doornbos 
(1981, Biometrics 37, 705-711 [cr., also Technometrics 15 (1973), 717-721, 17, 
(1975), 129-l32, 473-476, 23 (1981),21-26,59-63]). 

5.6 NONLINEAR REGRESSION 

It is in many cases evident from the graphical representation that the relation 
of interest cannot be described by a regression line. Very frequently there is a 
sufficiently accurate correspondence between a second degree equation and the 
actual relation. We shall in the following again avail ourselves of the method 
of least squares. 

The general second degree equation reads 

I Y = a + bx + cx2. (5.73) 

The constants a, b, and c for the second degree function sought can be 
determined from the following normal equations: 

I an +b~> +C~>2= LY, 

II aLx +bLx2+cLx3 = LXY, 
III aLx2 +bLx3 +cLx4 = Lx2y. 

Table 120 

x y xy x2 x2y x3 x4 

1 4 4 1 4 1 1 
2 1 2 4 4 8 16 
3 3 9 9 27 27 81 
4 5 20 16 80 64 256 
5 6 30 25 150 125 625 

15 19 65 55 265 225 979 

(5.74a,b,c) 

This is illustrated (cf., e.g., Sachs 1984, pages 92-94) by a simple example (see 
Table 120): These values are substituted in the normal equations 

I 5a + 15b + 55c = 19, 

II 15a + 55b + 225c = 65, 

III 55a + 225b + 979c = 265. 



448 5 Measures of Association: Correlation and Regression 

The unknown a is first eliminated from I and II as well as from II and III: 

5a + 15b + 55e = 19 ·3 15a + 55b + 225e = 65 

15a + 55b + 225e = 65 55a + 225b + 97ge = 265 

15a + 45b + 165e = 57 165a + 605b + 2475e = 715 

15a + 55b + 225e = 65 165a + 675b + 2937e = 795 

IV lOb + 60e = 8 V 

From IV and V we eliminate b and determine e: 

70b + 462e = 80 

lOb + 60e = 8 ·7 

70b + 462e = 80 

70b + 420e = 56 

42e = 24 

70b + 

24 12 4 
e = 42 = 21 = 7(= 0.571). 

By substituting e in IV we obtain b: 

lOb + 60e = 8, 

lOb + 607.4 = 8, 

462e = 80 

·11 
. 3 

70b + 240 = 56 and b = 56 ~0240 = _ ~~4 = - ~~ (= -2.629). 

By substituting band e in I we get a: 

5a + 15· ( -~~) + 55(~) = 19, 

15·92 55·4· 5 
5a --35 + = 19, 

7·5 

35· 5a - 15·92 + 55·20 = 19·35, 

175a - 1380 + 1100 = 665, 

175a - 280 
945 189 

= 665 and a = 175 = 35(= 5.400). 



5.6 Nonlinear Regression 449 

Check (of the computations): Substituting the values in the normal 
equation I: 

5·5.400 - 15·2.629 + 55·0.571 = 27.000 - 39.435 + 31.405 

= 18.970 ~ 19.0. 

The second order regression reads 

Table 121 indicates the goodness offit. The deviations y - ~,called residuals, ~ 
are considerable. It is sometimes more advantageous to fit y = a + 
bx + eJX (cf., Table 124). 0 

THREE REMARKS ON NONLINEAR REGRESSION: 

1. If the model applies, then for every regression model the residuals 
y - yare interpreted as observed random errors. Information in this 
regard is presented in graphical form: (a) as a histogram, (b) Yi - Yi 
(ordinate) against i, (c) against~j, (d) against Xi [(b) and (d) should 
give "horizontal bands "J, and (e) against a possibly important 
variable which has not as yet been taken into consideration (cf., 
Draper and Smith 1981, Chap. 3 as well as Cox and Snell 1968). A 
review of current literature on techniques for the examination of 
residuals in linear and nonlinear models, time serials included, with 
concentration on graphical techniques and statistical test procedures 
is given by S. R. Wilson, Australian Journal of Statistics 21 (1979), 
18-29 (cf., P. Hackl and W. Katzenbeisser, Statistische Hefte 19 
(1978),83-98). 

2. The nonlinear [nlJ coefficient of determination (Enl = r;l) is generally 
given by Enl = 1 - (A/Qv) [cr., Section 5.1, (5.6), and Section 5.4.3J 
with A = L (y - y)2; for (5.73) there is the elegant formula [cf., 
(5.74a, b, c), right hand side]. 

A = L y2 - a L Y - b L xy - e L x2y 

-i.e., for our example: A = 87 - (189/35)19 + (92/35)65 - 8 
(4/7)265 = 87 - 102.6000 + 170.8571 - 151.4286 = 3.8285 (cf., 
Table 121: A = 3.83); Qy = 87 - (19)2/5 = 14.8000 (cf., Section 
5.4.4); Enl = 1 - (3.8285/14.8000) = 0.7413; and the nonlinear 
correlation coefficient rnl = JO.7413 = 0.8610. 

3. One can, in summary, give for (5.73), as the average rate of change, 
the gradient b + 2ex of the curve at the point (Xl + x n)/2. 
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Table 121 

.... 189 92 +jx2 " (y _ 9)2 X Y Y = -,; - 1'5x Y - Y 

1 4 189 92 1 + ~.1 = ~ =3.343 0.657 0.432 -,; -1'5 

2 1 " - " 2 + II .4 = ~ =2.429 -1.429 2.042 

3 3 II - II 3 + II ·9 = 93 = 2.657 0.343 0.118 1'5 
4 5 II - II 4 + II ·16 = .!ii = 4.029 0.971 0.943 

5 6 " - II 5 + "·25 = ~ =6.543 ~0.543 0.295 

19 19.00 -0.001 3.830 

If the relation between y and x seems to be of exponential type, 

I y=abX, I (S.7S) 

then taking the logarithm of both sides leads to 

I log y = log a + x log b. (S.7Sa) 

The associated normal equations are 

In· log a + (L x) . log b = L log y, 

II (Lx).loga + (Lx 2).logb = L(x·logy). 
(S.76ab) 

Since the exponential function fitted in this way ordinarily yields somewhat distorted 
estimates of a and b, it is generally advantageous to replace (5.75) by y = abx + d 
and estimate a, b, d according to Hiorns (1965). 

EXAMPLE 

Table 122 

x Y logy x log Y x 2 

1 3 0.4771 0.4771 1 
2 7 0.8451 1.6902 4 
3 12 1.0792 3.2376 9 
4 26 1.4150 5.6600 16 
5 51 1. 7076 8,5380 25 

15 99 5.5240 19.6029 55 



5.6 Nonlinear Regression 

The sums from Table 122 are substituted in the equations 

Substituting in I: 

I 5 log a + 15 log b = 5.5240 ·3 

II 15 log a + 55 log b = 19.6029 

15 log a + 45 log b = 16.5720 

15 log a + 55 log b = 19.6029 

10 log b = 3.0309 

log b = 0.30309. 

5 log a + 15·0.30309 = 5.5240, 

5 log a + 4.54635 = 5.5240, 

5 log a = 0.9776, 

log a = 0.19554. 

The corresponding antilogarithms are a = 1.569 and b = 2.009. 
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The exponential regression based on the above values which estimates 
y given x thus reads y = (1.569)(2.009y (see Table 123). 

Table 123 

log .9 " x y y 

1 3 0.1955 + 1·0.3031 " 0.4986 3.15 
2 7 0.1955 + 2·0.3031 " 0.8017 6.33 
3 12 0.1955 + 3'0.3031 " 1.1048 12.73 
4 26 0.1955 + 4,0.3031 " 1.4079 25.58 
5 51 0.1955 + 5·0.3031 " 1.7110 51.40 

99 99.19 

Table 124 gives the normal equations for the functional equations dis
cussed, as well as for other functional relations. 

REMARK 

In the natural sciences one is quite frequently confronted with the task of comparing 
an empirical curve with another one, obtained by subjecting half of experimental 
material to a specified treatment. The means .vli and Y2i for given Xi> for example 
consecutive days, are available. First the deviation for n days of the sum of squares 
can be tested according to an approximation given by Gebelein and Ruhenstroth
Bauer (1952): 

----.2 ~2;---' D F = n. 
51 +52 

(5.77) 8 
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Table 124 Exact and approximate normal equations for the more 
important functional relations 

Functional relation Normal equations 

Y = a + bx a . n + b~::X = LY 
aLx + bLx2 = 2:(xy) 

log Y = a + bx a . n + b LX = Llog Y 
aLx + bLx2 = 2:(x log y) 

y = a + b log x a . n + bLlog x = LY 
aLlog x + b2:(log x) 2 = 2:(y log x) 

log y = a + b log x a . n + b Dog x = Llog y 
aLlog x + b2:(log X)2 = 2:(log x log y) 

y = a . b X, or n log a + log bLX = Llog y 
log y = log a + x log b log aLx + log bLx2 = 2:(x log y) 

y = a + bx + cx 2 a . n + bLX + cLx2 = LY 
aLx + bLx2 + CLx3 = LXY 
aLx2 + bLx 3 + CLx 4 = 2:(X2y) 

Y = a + bx + c.rx a . n + bLX + CL.rx = LY 
aLx + bLx2 + CL.rx 3 = LXY 
aL.rx + bL.rx3 + cLx = 2:(y.rx) 

y=a'b x'cx2,or n log a + log bLX + log CLx 2 = Llog Y 
log y = log a + x log b + X2 log C log aLx + log bLx2 + log CLx 3 = 2:(x log y) 

log aLx 2 + log bLx3 + log CLx 4 = 2:(X2 log y) 

y = bo + b,x + b2x2 + b3x3 bon + b,Lx + b~X2 + b3Lx 3 = LY 
boLx + b,Lx2 + b2Lx 3 + b3Lx4 = LXY 
boLx2 + b,Lx3 + b2Lx4 + b3Lx 5 = Lx2y 
boLx 3 + b,Lx4 + b~X5 + b3Lx 6 = Lx3y 

log y = bo + b,x + b 2x2 + b3X 3 as above with y = log y 

The observations of the first two days are initially considered together, then those of 
the first three, those of the first four, etc. Of course one can also carry out a test on the 
sum of the squares for an arbitrary interval, say from the 5th to the 12th day, if that 
seems justified by its relevance. 

This procedure permits us to test whether the deviations could be due to random 
variations. How the development had changed can be determined by testing the 
arithmetic mean of the deviations of several days. The arithmetic mean of the dif
ferences of the means for the first n days, n not too small, can be assessed in terms of 
the standard normal variable z (two sided problem): 

n 

i 
vn(sI+s~) . 

L (Jili-hi) 
i= 1 (5.78) 
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Both procedures assume independent normally distributed populations with stan
dard deviations (i 1 and (J 2 (cr., also Hoe11964 as well as Section 7.4.3, Remark 5). 

More particulars on nonlinear regression can be found in Box et aI., 
(1969 [8 :2d]), Chambers (1973), Gallant (1975), Ostle and Mensing 
(1976), the books by Snedecor and Cochran (1967 [1], pp. 447-471) 
and by Draper and Smith (1981, pp. 458-517), and the literature 
mentioned under "Simplest Multiple Linear Regression" near the 
end of Section 5.8. 

Several nonlinear functions are presented in Figures 55-58. 

y 2 
y: a + bx + ex 

I b c :j 
1 +1 +0.0 S 1 
1 + 1 -o.os 2 12 

10 - 1 + O.OS 3 
10 - 1 - 0.0 S 4 

12 16 
Figure 55 Curve forms I. 

,., Y 
Y4 

1 6 

Figure 56 Curve forms II. 

y 

Figure 57 Curve forms III. 

y 

Y=i+b·logx logy=a+bl 

~ .--b>O 
/,-b<O 

~;D 
/"b<O 

Figure 58 Curve forms IV. 

5.7 SOME LINEARIZING TRANSFORMATIONS 

x 

If the form of a nonlinear dependence between two variables is known, then 
it is sometimes possible by transforming one or both of the variables to 
obtain a linear relation, a straight line. In the equation y = abx just discussed, 
we took the logarithm of both sides to get log y = log a + x log b; this is 
the equation of a straight line with log a = ordinate intercept and log b
regression coefficient. 
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If the normal equations are not used in the computation, then the separate 
steps are: 

1. Transform all y-values into log y values and carry out necessary com
putations on the logarithms of the observed y-values (y" = log y). 

2. Estimate the regression line y" = a' + b'x as usual. 
3. By taking the antilogarithms of a' = log a, b' = log b, obtain estimates 

of the constants a and b of the original equation y = abx • 

It is recommended that the student carry out these computations using 
the numerical values of the last example. Table 125 exhibits a number of 
relations between x and y which can be easily linearized, points out the 
necessary transformations, and gives the formulas for going over from the 

Table 125 Modified and extended table of linearizing transformations 
according to Natrella, M. G.: Experimental Statistics, National Bureau 
of Standards Handbook 91, US Government Printing Office, Washing
ton 1963, 5-31 

I ntroduce the transformed 
If there is a relation variables into the Determine from a' and b' the 
of the form coordinate system constants a and b 

y' = x = a = b' = 

b 1 
Y = a + - Y - a b 

x x 

a 1 b 1 
y=-- - x - -

b+x y a a 

ax 1 1 1 b 
y=-- - - - -

b+x y x a a 

x x 
y=-- - x a b 

a + bx y 

y = ab' log y x log a log b 

y = axb log y log x log a b 

y = aeb' In y x In a b 

y = aeb/' In y 1 In a b 
-
x 

y = a + bxn, 
where n is known y xn a b 

and estimate y' = a' + b'x' 
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parameters of the straight line to the constants of the original relation. A 
fine comprehensive summary is provided by Hoed (1954). 

These linearizing transformations could also be used to determine the 
form of a relation by completely empirical means. We now read the table, 
going from the transformed values to the type of relation: 

1. Plot y against l/x in a rectangular coordinate system. If the points lie on 
a straight line, then the relation y = a + b/x holds. 

2. Plot l/y against x in a rectangular coordinate system. If the points lie 
on a straight line, then the relation y = a/(b + x) holds. 

3. Plot y (logarithmic scale) against x (arithmetic scale) on semi-logarithmic 
paper (exponential paper). If the points lie on a straight line, then the 
relation y = abx or y = aebx or al0bx holds. 

4. Plot y (logarithmic scale) against x (logarithmic scale) [double logarith
mic or log-log paper]. If the points lie on a straight line, then the relation 
y = axb [power function] holds. 

Graph paper with a coordinate lattice unlike the usual linear grid, that is, 
with coordinate axes scaled according to arbitrary functions, is referred to as 
function paper (for sources see the references in Section 8.7). Besides the 
exponential and power function graph paper, there are other important types 
of graph paper which linearize complicated nonlinear functions. We mention 
in particular sine paper, which has one axis linear and the other scaled 
according to a sine function, and on which functions of the form 

I ax + b sin y + c = 0 

can be represented by the straight line 

ax' + by' + c = 0 

[x' = xex, y' = (sin y)ey with ex = ey = 1]. 

Exponential paper is important for the study of radioactive and chemical 
disintegration processes as well as for the analysis of the growth in length of 
many living beings. In theoretical biology and in physics, exponential laws, 
and thus also various types of exponential graph paper, can be very useful 
(cf., also Batschelet 1975 [8: 1]). A more detailed discussion of GROWTH 
CURVES can be found in Hiorns (1965), Scharf (1974) and Batschelet (1975 
[8: 1]), [cf., also Biometrika 30 (1938), 16-28; 51 (1964), 313-326; 52 (1965), 
447-458, as well as Biometrics 18 (1962), 148-159; 25 (1969), 357-381; 29 
(1973),361-371,33 (1977),653-657; 35 (1979), 255-271, 835-848; Applied 
Statistics 26 (1977), 143-148; and Biometrical Journal 22 (1980), 23-39]. 
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~ 5.8 PARTIAL AND MULTIPLE CORRELATIONS 
AND REGRESSIONS 

We must in general allow for the possibility that the correlation between 
two particular variables might be influenced by additional (recognized or 
unknown) variables. The methods used in the examination of the dependence 
between more than two random variables are based on samples from 
multivariate normal populations. In this case the partial correlation coeffi
cients can be considered as measures of the linear dependence between pairs 
of variables. They specify the degree of dependence between two variables 
while the remaining variables are held constant. 

If x, y, and z are linearly correlated and if r xy , r yz , and rxz are the three 
pairwise computed correlation coefficients, then r xy . z is the partial correla
tion coefficient between x and y when z is held constant: 

(5.79) 

If in place of the letters x, y, z the numbers 1, 2, 3 are used then the partial 
correlation coefficient between x I and X2' with X3 remaining constant, is 

(5.79a) 

and by cyclic permutation 

(5.79b) 

(5.79c) 

A nomogram for determining the partial correlation coefficients is given 
by Koller (1953, 1969) as well as by Lees and Lord (1962). The computation 
of partial correlations can clarify the mutual significance of the variables in 
involved interdependence relations. If for example the correlation between 
Xl and X2 is based only on a common influence due to X3' then r12.3 ~ O. It 
can also happen that a correlation manifests itself only after the elimination 
of an interfering variable. 

If not just three but four variables are known, then the partial correlation 
between Xl and X2' if the influences of X3 and X4 are to be excluded, is com
puted according to 

(5.80) 
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The partial correlation coefficient is tested like the normal correlation 
coefficient. It is however to be noted that the number of degrees of freedom 
must be reduced by 1 for each excluded variable. If only one variable is 
excluded, then the number of degrees is n - 2 - 1 = n - 3. The computa- @ 
tion of partial correlation coefficients gives in general one way of eliminating 
the interference due to the factors which can be controlled very little or not 
at all during the trial. 

Methods for testing hypotheses concerning partial correlation are reviewed by 
K. L. Levy and S. C. Narula [International Statistical Review 46 (1978), 215-218]. 

Before giving an example, let us first call attention to a procedure that 
enables us to reduce the number of dependent attributes (or characteristics) 
observed (on the experimental material) to a smaller number of independent 
true influence quantities (" factors") by combining attributes which are 
highly correlated. A more detailed discussion of factor analysis can be found 
e.g., in the books by Lawley and Maxwell (1971 [8 : 5a]) and Rummel (1970 
[8 :5a]). 

EXAMPLE. A detailed analysis was carried out in Iowa and Nebraska on a 
random sample of 142 elderly women (Swanson et aI., 1955 [cf., Snedecor 
and Cochran 1967 [8: 1], p. 401]). Three of the variables were age A, blood 
pressure B, and cholesterol concentration C in the blood, with correlation 
coefficients 

r AB = 0.3332, r AC = 0.5029, r BC = 0.2495. 

Since a rise in blood pressure could be related to an increase of cholesterol 
deposits in the walls of the blood vessels, this appears to be an interesting 
question worthy of further investigation. Since Band C grow with age, the 
question arises whether the weak connection is entirely traceable to age or 
whether at every stage of life a real connection is present. The age effect is 
eliminated in the partial correlation r BC.A [cf., (5.79c)]: 

r BC - r AB . r AC 
r - --;====;;;=====::;== 

BC.A - J(1 - r~B)(1 - r~d' 

r = 0.2495 - 0.3332·0.5029 = 0.1005. 
BC.A J(1 - 0.33322)(1 - 0.50292) 

For 142 - 3 = 139 DF a true correlation cannot be ascertained at the 5 % 
level. 

Ifwe are interested in how the random variable Xl depends simultaneously 
on the variables X2 and X3' (i.e., if we consider one variable as target variable 
and at least two other variables as influence variables), then the multiple 
correlation coefficient R1.23 comes into play. It measures the dependence of 
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the target variable on the influence variable. This multiple correlation is 
given by 

ri2 + ri3 - 2'12'13'23. 
1 - d3 

(5.81) 

The multiple correlation describes the target quantity (the so called re
gressand)in terms of at least two influence quantities (the so called regressors). 
The dot in R1.23 separates the target quantity, indicated first, from the two 
influence quantities. There are analogous formulas for R 2.13 and R 3 .12 • 

The multiple correlation coefficients always lie between 0 and 1. Lord (1955) 
gives a nomogram for determining R1.23. The square of the multiple cor
relation coefficient is written as a multiple determination measure: B = R2 
(Model II, cr., Section 5.4.2). B = 1 means that the values of the target 
quantity are calculable exactly from the values of the influence quantities 
by a multiple linear regression function (e.g., y = a + b1x 1 + b2 x 2 ). In 
addition to 

let us also mention the more revealing relations 

1-RI.23 =(1-rI2)(1-rI3.2)' 

1- RI.234=(1-rI2)(1-rI3.2)(1-rI4.23). 

(5.82) 

(5.83) 

(5.84) 

Partial correlation coefficients of second order, e.g., , 14.23, are obtained from 

Compare also 

RI.234 - RI.23 
1-RI.23 

(5.85) 

(5.86) 

(5.87) 
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The null hypothesis, according to which the parameter corresponding to 
R equals zero (as against> 0), is tested by means of the F -test 

R2 n - k - 1 
P = 1 - R2 k (5.88) e 

V2 = n - k - 1 

(k = number of independent variables). Testing Ho: Pl = P2 = 0 in terms 
of R may be done by (5.88), since the population multiple correlation 
between Y(Xl' x2) [generally Y(Xl' X2,"" xk)] is zero if only every Pi = O. 

Frequently one would like to know whether an Rl with several influence 
quantities U 1 is significantly larger than an R2 with a smaller number U2' 
The corresponding F -test is 

(5.89) e 
In particular, if n is small and the number of variables k relatively large, 
then R2 must be replaced by the exact (unbiased) estimate uR2: 

(5.90) 

Simplest multiple linear regression 

Suppose we have three random variables: two influence quantities 
[Xl' X2], and one target quantity [y]. Then 

P = a + blXl + b2 X 2, 

(for the Q-symbols: c.f., (4.6) and 

as well as Section 5.4.4). 
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Check (of the computations): 

and 

b l QXl + bz QX1X2 = QYX1' 

a = y - bixi - bzxz, 

b l QX1X2 + b2Qx2 = QYX2' 

R;.X1X2 = By.12 = DIQy, 

D = blQYXl + bZ QYX2' 

Test of the regression (Ho: /31 = /32 = 0) and hence also whether the 
parameter corresponding to B differs significantly from zero: 

p = D(n - 2 - 1) 
(Qy - D)2 ' 

vz = n - 2 - 1. 

One can also test whether the estimate of y from Xl is improved sub
stantially by adding X2 to the regression: 

~ D-E 
F = -,----

Qy - D 

with 

V2 = n - 3. 

More detailed discussions of multiple regression analysis and related 
topics can be found in Neter and Wasserman (1974), Draper and Smith 
(1981), Daniel and Wood (1971), and Searle (1971), as well as in the books 
by Stange (1971 [1], Part II) and by Dunn and Clark (1974 [1]), (cf., also 
Hocking 1976, Hahn and Shapiro 1966, and Enderlein et aI., 1967, as well 
as Viiliaho (1969), Bliss 1970, Cramer 1972, and the other authors' works 
mentioned in [8: 5b ]). Recommendations for the selection of variables in 
multiple regression with examples are given by Thompson (1978). Cole 
(1959) provides a method of computation which summarizes the elementary 
approach to multiple correlation and regression for the benefit of workers 
inexperienced in statistics. 

Other techniques related to regression analysis have unfortunately to be 
foregone in this text, as e.g., orthogonal polynomials (Bancroft 1968, Emerson 
1968) for the elegant fitting of higher order polynomials (Robson 1959), 
particularly in the case where the x-values are equally spaced [by means of 
the tables of Anderson and Houseman (1942), Pearson and Hartley (1966), 
or Fisher and Yates (1963 [2])]; and discriminant analysis, whose task it is 
to allocate given data belonging to various populations, by means of a 
discriminant function of the observed characteristics, to the correct popula
tions, at a specified confidence level (cf., Radhakrishna 1964, Cornfield 
1967, and P. A. Lachenbruch and M. Goldstein, Biometrics 35 (1979), 



5.8 Partial and Multiple Correlations and Regressions 461 

69-85). For trend analysis (cf., Sections 4.8 and 5.3) the monograph by Gregg, 
Hossel, and Richardson (1964) is useful, as are the tables by Cowden and 
Rucker (1965) (cf., also Roos 1955, Salzer et al. 1958, Brown 1962, Ferguson 
1965, and also Hiorns 1965). For calibration see Biometrics 34 (1978), 
39-45,36 (1980), 729-734, Technometrics 24 (1982), 235-242, and J. Roy. 
Statist. Soc. B 44 (1982),287-321. 

Remarks 

1. Curve fitting by orthogonal polynomial regression when the independent variable 
occurs at unequal intervals and is observed with unequal frequency is discussed and 
described with a simple example by S. C. Narula, International Statistical Review 47 
(1979),31-36. 

2. Multicollinearity arises when the independent variables are correlated among 
themselves. When the independent variables are highly correlated with each other, 
then least squares estimation of the regression coefficients is biased. In this case a 
method called ridge regression may be useful. More on this may be found in a paper 
of B. Price, Psychological Bulletin 84 (1977), 759-766 [cf., also 86 (1979), 242-249 
and The American Statistician 29 (1975),3-20]. 

3. Canonical correlation analysis is the general procedure for investigating the 
relationships between two sets of variables; an interesting review is given by T. R. 
Knapp, Psychological Bulletin 85 (1978), 410-416 [cf., also M. Krzysko, Biometrical 
lournal24 (1982), 211-228]. 

Multivariate statistical procedures @ 
Figure 51 and Table 112 give two dimensional sampling distributions. The 0 
height and weight of each student in a dormitory represent such a distribu-
tion. Ifwe add also the age of each student, we have a three dimensional data 
vector in each case, and thus a three dimensional sampling distribution. The 
analysis of this and of other, more complicated, n-variate distributions-on 
a set of persons or objects, several variables are measured and jointly 
evaluated-forms the domain of multidimensional or multivariate analysis. 
In other words: multivariate analysis is concerned with the development of 
general mathematical models for analyzing a collection of dependent variables. 
Parameters are estimated, and relations among the variables are determined. 
These procedures have gained decisive importance in the analysis of complex 
questions. One should first master matrix algebra [e.g., start with Chapter 6 
in Neter and Wasserman (1974), cited at the end of Section 5.5J and then 
study, e.g., Kramer (1972) and Kramer and Jensen (1969-1972) as well as 
Roy (1957), Anderson (1958), Seal (1964), Miller (1966), Saxena and 
Surendran (1967), Dempster (1968), Krishnaiah (1966, 1969, 1973) Cooley 
and Lohnes (1971), Puri and Sen (1971), Searle (1971), Press (1972), Bishop 
et al. (1975 [8:6J), Kendall (1975), and Morrison (1979); Rao (1960, 1972) 
provides review articles. Important tables can be found in Volume 2 of the 
Biometrika Tables (Pearson and Hartley 1972 [2J, pp. 333-358 [discussed 
on pp. 98-117J) and in the Kres-Tables (1983 [2J), both cited on page 571. A 
fine bibliography (articles in periodicals until 1966, books until 1970) is 
provided by Anderson, Gupta, and Styan (1973). Saxena (1978) gives an 
annotated bibliography. 



6 THE ANALYSIS OF k x 2 AND 
OTHER TWO WAY TABLES 

The information content of frequencies is small. Nevertheless, analysis of 
~ fourfold tables (cf., Section 4.6), the simplest two way tables, offers a number 

of possibilities. We can test these 2 by 2 tables for independence, homo
geneity, correlation, and symmetry. These and other tests are discussed in this 
chapter for tables of size 3 by 2 or greater. Especially important is Section 

~ 6.2.1. 
The testing of a two way table for trend offers the possibility of estimating 

the linear regression portion of the total variation. Comparison of two way 
tables with respect to their regression coefficients supplements the com
parison with respect to the amount of correlation by means of the corrected 
contingency coefficients. Further on, the introduction of the information 
statistic for the testing of two way tables for independence or homogeneity 
is presented, and the importance of information analysis of three way and 
many way tables indicated. A bibliography is provided by Killion and 
Zahn (1976). The proper use of chi-square for the analysis of contingency 
tables is reviewed by K. L. Delucchi (1983, Psychological Bulletin 94, 
166-176). 

6.1 COMPARISON OF SEVERAL SAMPLES OF 
DICHOTOMOUS DATA AND THE ANALYSIS 
OF A k)( 2 TWO WAY TABLE 

6.1.1 k x 2 tables: The binomial homogeneity test 
The fourfold test allows us to investigate whether or not two samples of 
dichotomous data can be considered random samples from the same popula
tion. If we now compare several-let us say k-samples of dichotomous 

462 
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data, obviously only the two sided question makes sense, and we get for our 
initial scheme a k by 2 table of the following sort (see the Tables 126, 130 
below; cf., also Table 129). 

Table 126 If n elements of a 
random sample can be classi
fied according to two charac
teristics A and B with at least 
two levels each (see e.g. Section 
4.6.1, Table 82: 181 patients, 
A = treatment, B = course of 
the illness), then a table of this 
kind obtains. In this context 
(A with a dichotomous attribute 
[+, -]; B with k levels), we can 
reject the null hypothesis that 
A and B are independent when
ever X2, computed according to 
(6.1), is larger than X: -1 .~ (ct. 
also Sections 6.2.1, 6.2.2). 

1 st attribute 
Sample or level 
2nd attribute + L 

1 Xl nl - Xl nl 
2 x2 n2 - x2 n2 

· . . 
· . 

j Xj nj - Xj nj 
. . 

· 
k xk nk - xk nk 

L X n - x n 

For convenience's sake assume that x is less than n - x (Table 126, 
column 1, "sample"). The null hypothesis reads: The relative share of the 
character " + " is the same in all k populations. This is estimated in the k 
independent samples by x/no Under the null hypothesis, we expect 
that the k by 2 cells of the table show a frequency distribution which is 
proportional to the marginal sums. By means of the X2 test for k by 2 tables 
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it is thus checked whether the relative frequencies in the k classes deviate 
more than randomly from the average relative frequency computed over all k 
classes. We will assume n independent observations as well as mutually 
exclusive alternatives which exhaust the manifold under observation. 

We consider 

with k - 1 degrees offreedom (DF), and where (cf., Table 126) 

n = (" corner-n" or "corner-sum ") size of the combined samples, 
nj = size of sample j, 

(6.1) 

x = total number of sample elements at the + level of the first attribute, 
Xj = frequency of the + level of the first attribute [cr., also page 465, 

below:(6.1*)]. 

At this point we once again call attention to the difference between X2 

and X2. The test statistic X2 has an approximate X2-distribution only for 
large n and not too small expected cell frequencies. The tabulated x2-values 
are critical values for random variables with a X2 -distribution. The expecta
tion of the cell frequencies is calculated with respect to the null hypothesis of 
homogeneity of k independent samples from a common binomial population: 
Under homogeneity (independence) the expected cell frequencies of a k x 2 
(or, more generally, an r x c) table is computed as the product of the 
corresponding marginal sums divided by the total sample size [cf., Table 126: 
The expected frequency E for the field Xj equals E(x) = njx/nJ. For small 
k x 2 tables (k < 5) all expected frequencies must be at least equal to 2; 
if there are at least 4 degrees of freedom at our disposal (k ~ 5), then all 
expected frequencies must be ;::: I (Lewontin and Felsenstein 1965). If these 
requirements are not met, then the table must be simplified by combining 
"underoccupied" cells. Only then does the test statistic X2 computed by the 
above or by some other formula have an approximate X2 distribution. 

Remarks 

1. Ryan (1960) introduced a simple analysis of variance procedure for the 
multiple comparison of k relative frequencies [see M. Horn, Biometrical Journal 23 
(1981),343-355,350,351]. 

2. Assume that in a k x 2 table for the comparison of relative frequencies or of 
several means, the null hypothesis that the parameters are all equal is contrasted by 
the alternate hypothesis that the parameters follow a certain rank order. Bartholomew 
(1959) established a very efficient one sided test for this case. The alternative hypo
thesis corresponding to the two sided problem reads: the rank order of the parameters 
is given [see Remark 6 on page 541]. 

3. If weakly occupied contingency tables of type 3 x 2 are to be analyzed, one 
can use the tables prepared by Bennett and Nakamura (1963, cf., also 1964) (for 
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n1 = n2 = n3 :::; 20 and 0.05 ~ ex ~ 0.001). [For n1 ~ n2 ~ n3 with n1 + n2 + n3 = 
6(1)15 and P :::; 0.2 see EDV in Medizin und Biologie 5 (1974), pp. 73-82]. 

4. The combination of k x 2 contingency tables with k = constant is considered 
by Kincaid (1962). 

5. The power of tests of homogeneity of k independent samples from a common 
binomial population is examined by Wisniewski (1972) and by Bennett and Kaneshiro 
(1978). 

6. The Poisson homogeneity test is given in Section 1.6.7 by (1.190), there called 
the dispersion test (of Poisson frequencies). 

EXAMPLE (An extended version is given in Section 6.2.1, Example 2.) @ 
Problem: Comparison of two types of therapy. 
Design: During an epidemic, a total of 80 persons were treated. Forty 

patients were given a standard dose of a specific new drug. The other 40 
afflicted were treated only symptomatically (treatment only of symptoms 
but not of cause). (Source: Martini 1953, p. 83, Table 14.) The result of the 
treatment is presented in terms of cell entries for three classes: quickly 
recovered, slowly recovered, and not recovered (Table 127). 

Table 127 

Treatment 
Treatment Specific 
effect Symptomatic (standard dose) Total 

Recovery within 
a weeks 14 22 36 
Recovery between 
ath and (a + b)th 
week 18 16 34 
No recovery 8 2 10 

Total 40 40 80 

Null hypothesis: The therapeutic results are the same for both types of 
therapy. 

Alternative hypothesis: The therapeutic results are not the same for the two 
types of therapy. 

Significance level: IX = 0.05 (two sided). 
Choice of test: Only the k x 2 X2 test is suitable (cf., expectation fre

quencies forthe patients that didn't recover, Table 127:xk = 8,nk - X k = 2; 
E(8) = (10)(40)/80 = 5 and E(2) = (10)(40)/80 = 5 > 2). 

Results and evaluation: By formula (6.1) 

802 [( 142 182 82) 402J X2 = 40· 40 36 + 34 + 10 - 80 = 5.495. 

Remark: For x = n - x or x = n/2 (6.1) simplifies to (6.4) [po 478]: 

XZ = 2:1= 1 {(Xj - [nj - XJ)2/n) = (14 - 22)2/36 + (18 - 16)2/34 

+ (8 - 2)2/10 = 64/36 + 4/34 + 36/10 = 5.495. 
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Decision: Since X2 = 5.495 < 5.99 = X~; 0.05, we cannot reject the null 
hypothesis. 

Interpretation: On the basis of the given data, a difference between the 
two types of therapy cannot be guaranteed at the 5 % level. 

Remark: If a comparison of the mean therapeutic results of the two 
therapies is of interest, then testing should be carried out according to 
Cochran (1966, pp. 7-10). 

Table 128 (ct. Table 127) 

TREATMENT EFFECT TREATMENT 
Specific 

Computation of ~2 Symptomatic (standard dose) Total 

RECOVERED IN a WEEKS: 
Observed 0 14 22 36 
Expected E 18.00 18.00 36 
Difference 0- E -4.00 4.00 0.0 
(D ifference) 2 (0 - E) 2 16.00 16.00 
Chi-square (0 - E) 2 0.8889 0.8889 1.7778 

E 

RECOVERED BETWEEN 
ath AND (a + b)th WEEK: 
Observed 0 18 16 34 
Expected E 17.00 17.00 34 
Difference 0- E 1.00 -1.00 0.0 
(Difference) 2 (0 - E) 2 1.00 1.00 

Chi-square 
(0 - E) 2 

E 
0.0588 0.0588 0.1176 

NOT RECOVERED 
Observed 0 8 2 10 
Expected E 5.00 5.00 10 
Difference O-E 3.00 -3.00 0.0 
(D ifference) 2 (0 - E) 2 9.00 9.00 

Chi-square 
(0 - E) 2 

1.8000 1.8000 3.6000 
E 

Total: O=E 40 40 80 
p-column sums: 2.7477 2.7477 ~2 = 5.4954 

In particular, it should be mentioned that every contribution to the X2 -

value is relative to the expected frequency E: A large difference 0 - E with 
large E may contribute approximately the same amount to X2 as a small 
frequency with small E, e.g., 

(15 - 25)2 = 4 = (3 - 1)2 
25 1 
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This result could naturally have been obtained also by means of the 
general x2-formula (4.13) (Section 4.3). Under null hypothesis for homo- 0 
geneity or independence, the expected frequencies E will-as remarked 
previously-be determined as quotients of the products of the corresponding 
marginal sums of the table and the total sample size. Thus for example 
we have in the upper left hand corner of Tables 127 and 128 the observed 
frequency 0 = 14 and the associated expected frequency E = (36)(40)/80 = 
36/2 = 18. Computing 

(observed frequency - expected frequency)2 (0 - E)2 

expected frequency E 

for every cell of the k x 2 table and adding these values, we again find X2 • 

X2 tests the compatibility of observation and theory, of observed and 
expected frequencies. If the divergence is great and the observed value of X2 
exceeds the tabulated value X~.05 for k - 1 = 3 - 1 = 2 degrees offreedom, 
x~; 0.05 = 5.99 we say that the difference between observation and theory is 
statistically significant at the 5 % level. The procedure set out in Table 128 
displays the contribution to X2 of each single cell and shows that the differ
ence "not recovered" dominates. Since both groups of patients consisted of 40 
persons, the contributions to X2 are pairwise equal. 

6.1.2 Comparison of two independent empirical 
distributions of frequency data 

Given two frequency tables, we are faced with, among other things, the 
question of whether they originated in different populations. A test for 
nonequivalence of the underlying populations of the two samples rests on 
the formula (6.1) (cf., also Section 4.3). The levels of a classifying attribute 0 
are again assumed to be mutually exclusive and exhaustive. 

EXAMPLE. Do the distributions B1 and B2 in Table 129 come from the same 
population (a = 0.01)? 

~2 3872 [(602 522. 52) 2002 J 
X = 200.187 108 + 102 + ... + 13 - 387 = 5.734, 

3872 [(482 502 8 ~) 1872J 
or X2 = 200 . 187 108 + 102 + ... + 13 - 387 = 5.734. 

Since this X2-value is substantially smaller than X2 6; 0.01 = 16.81, the null 
hypothesis that both samples were drawn from the same population cannot 
be rejected at the 1 % level. 
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Table 129 

Frequencies 

Category Br BII r 
1 60 48 108 
2 52 50 102 
3 30 36 66 
4 31 20 51 
5 10 15 25 
6 12 10 22 
7 4}5 8}8 13 8 1 0 

L "1 • 200 "2 • 187 " = 387 

6.1.3 Partitioning the degrees of freedom of a 
k x 2 table 

For the k x 2 table we label the frequencies according to the following 
scheme (Table 130), an extension of Table 126. It allows the direct comparison 

Table 130 

Sample Attribute Total Level of p+ 

+ -
1 Xl "1 - Xl "1 Pl = xl/"l 
2 x2 "2 - x2 "2 P2 = x2/"2 

· 
· · . 

· · . 
j Xj "j - Xj "j Pj = x/"j 

· 
· · · 
· · 
k xk "k - xk "k Pk = Xk/"k 

Total x " - x " 1\ 
xl" P = 

of "success" percentages-the relative frequency of the + level-for all 
samples. The formula for the x2-test can then be written 

(6.1a) 

jJ(1-jJ} 

with k - 1 DF. 
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Here we have: 
x = the total number of sample elements at the + level, 
x j = the number of elements of sample j at the + level, 
P = x/n: the relative frequency of the + level in the total population .. 

469 

Under the null hypothesis that all samples originate in populations with 
1T. = const, estimated by p = x/n, we expect again in all samples a frequency 
distribution corresponding to this ratio. 

Formula (6.1a) is used not only for testing the homogeneity of 
the sample consisting of k sub-samples, but also of each set of two 
or more samples-let us say j (with DF = j - i)-which are chosen as 
a group from the k samples. We thus succeed in partitioning the k - 1 
degrees of freedom into components [1 + U - 1) + (k - j - 1) = k - 1] 
(Table 131). In other words, the total X2 is partitioned. This provides a 

Table 131 

Components of X2 Degrees of freedom 

Dispersion of the p's within 
the first j groups 1 

Dispersion of the p's within 
the last k - j groups j - 1 

Dispersion of the p's between 
the two groups of samples k - j - 1 

Total X2 k - 1 

test which reflects the change of the p-Ievel in a sequence of samples of 
dichotomous data. Let's consider a simple example (Table 132): 

EXAMPLE 

Table 132 

No. Xj ". -J Xj "j Pj = X/"j XjPj 

1 10 10 20 0.500 5.000 
2 8 12 20 0.400 3.200 
3 9 11 20 0.450 4.050 
4 5 15 20 0.250 1.250 
5 6 14 20 0.300 1.800 

I 38 62 100 15.300 

P = 38/100 = 0.380 

A2 • • A 15.300 - (38)(0.380) 
X (overall deViatIon of the p's from p) = ( )( 2) = 3.650, 

0.380 0.6 0 
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Table 133 

No. Group xi ni Pi xi Pi 

1+2+3 n1 27 60 0.450 12.150 
4 + 5 n2 11 40 0.275 3.025 

I n 38 100 15.175 

x2 (differences between mean p's of the sample groups nl (= numbers 

1, 2, 3) and n2 (= numbers 4, 5». 

REMARK: Pl for Gl (or n l ) is the arithmetic mean of the three p+-Ievels 
[nj = 20], (0.500 + 0.400 + 0.450)/3 = 0.450 = 27/60; the analogous state
ment holds for P2 of G 2 (or n2 ). 

X2 (difference between the p's of groups 1 and 2) 

= 15.175 - (38)(0.380) = 3 120 
(0.380)(0.620) ., 

X2 (variation of the p's within n 1 [group 1]) 

= 12.250 - (27)(0.450) = 0424 
(0.380)(0.620) ., 

X2 (variation of the p's within n2 [group 2]) 

= 3.050 - (11)(0.275) = 0.106. 
(0.380)(0.620) 

The components are collected in Table 134. 

Table 134 

Source X2 OF Significance level 

Variation between 
G, and G2 3.120 1 0.05 < P < 0.10 
Variation within G, 0.424 2 0.80 < P < 0.90 
Variation within G2 0.106 1 P ~ 0.30 

Total variation of the 
p's with respect to p 3.650 4 0.40 < P < 0.50 

As is indicated by the example, one sometimes succeeds in isolating 
homogeneous elements from heterogeneous samples. The decisive X2-
component is furnished by the difference between the mean success per
centages (Table 133: 0.450 as against 0.275) of the sample groups Gl and 
G2 • 
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With the given significance level of 0( = 0.05, the null hypothesis 1tGl = 1tG2 

is retained. If the direction of a possible difference can be established before 
the experiment is carried out, a one sided test for this component is justified. 
The value of X2 = 3.120 would then be significant at the 5 % level; the null 
hypothesis would have to be abandoned in favor ofthe alternative hypothesis 
1tGl > 1tG2 • 

Let us demonstrate another partitioning with the help of the same example. 
We will dispense with the general formulation, since the decomposition 
principle which splits X2 into independent components with one degree of 
freedom each is quite simple. Table 132a has been written somewhat differ
ently than Table 132. 

Table 132a 

Type A B C D E L 
I 10 8 9 5 6 38 

I I 10 12 11 15 14 62 

L 20 20 20 20 20 100 

Let us now consider fourfold tables; except for the first one considered 
they arise through successive combinations. The corresponding X2 are 
computed by a formula which resembles (4.35) in Section 4.6.1. First we 
examine the homogeneity of the samples A and B (with regard to I and II) 
within the total sample and denote it by A x B. We form the difference of 
the" diagonal products," square it, and then multiply it by the square of the 
total sample size (= 100 in Table 132a). The divisor consists of the product 
of 5 factors: the sum of row I, of row II, of column A, of column B, and of the 
sums A and B which we have enclosed in parentheses: 

1002(10. 12 - 8· 10)2 
A x B: X2 = 38.62.20.20(20 + 20) = 0.4244. 

The homogeneity of A + B, the sum of the columns A and B, in comparison 
with C, for which the symbol (A + B) x C is used, can correspondingly be 
determined by 

"2 1002{(10 + 8)11 - 9(10 + 12)}2 
(A + B) x C: X = 38.62(20 + 20)20(40 + 20) = 0, 

and by analogy for 

"2 l002{(10 + 8 + 9)15 - 5(10 + 12 + 11)}2 
(A + B + C) x D: X = 38.62(20 + 20 + 20)20(60 + 20) 

= 2.5467 
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and for 

(A + B + C + D) x E: 

A2 1002{(10 + 8 + 9 + 5)14 - 6(10 + 12 + 11 + 15)}2 
X = 38 . 62(20 + 20 + 20 + 20)20(80 + 20) = 0.679l. 

We collect our results in Table 135. 

Table 135 x2-partition for the 5 x 2 table 

Source OF x2 P 

( 1 ) AxB 1 0.4244 ".5. 
( 2 ) (A+B)xC 1 0.0000 ".5. 
(3) (A+B+C)xD 1 2.5467 <0.15 
(4) (A+B+C+D)xE 1 0.6791 ".5. 
Total 4 3.6502 ".5. 

The sum of the four x2-values is 3.650 (cr., Table 134). There are no apparent 
characteristic differences among the "sample pairs" (1), (2), (3), and (4). 
An exceptional status of D in the frequency ratio IjII is suggested by (3). To 
test the homogeneity of few" sample pairs" that are in some sense chosen in 
advance, the table can be rewritten with the columns interchanged. 

6.1.4 Testing a k x 2 table for trend: The share 
of linear regression in the overall variation 

@ We examine Table 127 (Section 6.1.1) again. The results of the therapy can 
be ordered in a natural way by the categories" no recovery," "slow recovery," 
and "quick recovery" (see Table 136). We notice immediately that the p
value of the specifically treated group increases as we move from the "no 
recovery" to the" quick recovery" class: 2/10 < 16/34 < 22/36. 

Table 136 

Zj Xj "j - Xj "j Pj = x/Oj XjZ j "jZj "jZj 
2 

(Score) 

+1 22 14 36 0.611 22 36 36 
0 16 18 34 0.471 0 0 0 

-1 2 8 10 0.200 -2 -10 10 
x = 40 40 " = 80 20 26 46 

A = xl" = 40/80 = 0.50 P 
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If the relative frequency increases with the order of the classes, then a test 
for linear regression is appropriate. The X2 can then be split up into two parts: 
one part decomposes into frequencies assumed linearly increasing, the 
remainder corresponds to the difference between the observed frequencies 
and the linearly increasing frequency component. One can thus dissociate 
the linear regression portion, with one degree of freedom, from the portion 
determined by the deviation from the regression line. This portion will be 
regarded as the difference between X2 and X2 linear regression. 

For the case of a k x 2 table, Cochran (1954) has provided a straight
forward method for computing the linear regression component. (For the 
remaining component DF = k - 2 holds.) First the "natural" order of the 
k levels (categories), in our case the therapeutic results, must be replaced by a 
sequence of numbers, by "scores". Most often sequences which are sym
metric with respect to zero, e.g., -2, -1,0, 1,2 or -4, -2,0, 1,2,3, are 
used, because they simplify the computation; this "scoring" should be 
made before data are gathered. The points need not be equally spaced. The 
sequence - 2, - 1, 0, 3, 6 emphasizes the last two categories on the basis of 
their exceptional properties. For example, we can employ in Table 136 the 
sequences - 2, 0, 1 or - 3, 0, 1 to distinguish the fundamental difference 
between no and slow recovery from the difference in degree between slower 
and more rapid recovery. The XI~nearregreSsion' according to Cochran (1954) 
[cf., also Armitage (1955), Bartholomew (1959), as well as Bennett and 
Hsu (1962)], is given by 

(6.2) 

with DF = l. 

One can also estimate b = SdS2 by Sl = I>ipj - p)(Zj - z) and 
S2 = L njzJ - (I njz)2/n, and test Ho: f3 = ° on the basis of the standard 
normal variable Z (Table 43, Section 2.1.6) by z = b/Sb with 

Sb = Jp(1 - ft)/S2; 

note that here the sum of the scores should be nonzero. 

EXAMPLE. Applying the formula (6.2) to the values in Table 136, we get 
for the linear regression portion 

( 20 _ 40.26)2 

~ W 2 
Xlin. regr. = ---'--------(----'-=-26-=-'2") = 5.220 > 3.84 = Xl; 0.05' 

0.50 . 0.50 46 - -
80 
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This value is statistically significant at the 5 % level. In the example in 
Section 6.1.1, the homogeneity hypothesis with a significance level of (X = 

0.05 was not rejected as against the general heterogeneity hypothesis for 
X2 = '5.495 and DF = 2. 

Table 137 shows the decisive part played by the linear regression in the 
total variation, which is already apparent in the column of Prvalues in Table 
136 and which points out the superiority of the specific therapy. 

Table 137 

Source p OF Significance level 

Linear regression 5.220 1 0.01 < P < 0.05 
Departure from linear 
regression 0.275 1 P = 0.60 

Total 5.495 2 0.05 < P < 0.10 

6.2 THE ANALYSIS OF r X c CONTINGENCY 
AND HOMOGENEITY TABLES 

~ 6.2.1 Testing for independence or homogeneity 

An extension of the fourfold table, as the simplest two way table, to the 
general case, leads to the r x c table having r rows and c columns (Table 
138). A sample of size n is randomly drawn from some population. Every 

Table 138 The levels (classes) of one of the two 
attributes can also represent different samples. The 
totals along the edge of the table are called marginal 
frequencies. 

~ . c columns 1 2 - j - c Row totals 1 st attribute 
r rows 

1 "11 "12 - "1j - "1c "1. 

2 "21 "22 - "2j - "2c "2. 

- - - - - - - -
i nil "i2 - "ij - "ic "i. 

- - - - - - - -
r "r1 "r2 - "rj - nrc "r. 

" .1 ".2 - ".j - ".c " .. D " Column totals Corner-n 
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element of this sample is then classified according to the two different 
attributes, each of which is subdivided into different categories, classes, or 
levels. The hypothesis of independence (characteristics I and II do not 
influence each other) is to be tested. In other words, one tests whether the 
distribution of the classes of an attribute is independent of the distribution 
of the classes of the other attribute (cf., Section 6.1.1), i.e., whether we are 
dealing with a frequency distribution which is to a great extent propor
tional to the marginal sums (cf., the example in Section 6.1.1). We observe 
that the comparison of difference samples of sizes nl.' n2 ., ••• , ni., ... , nr ., 

from r different discrete distributions as to similarity or homogeneity, leads 
to the same test procedure. Thus the test statistic is the same whether we 
examine a contingency table for independence or check a set of samples for a 
common underlying population (comparison of population probabilities of 
multinomial distributions). This is gratifying, since in many problems it is 
in no way clear which interpretation is more appropriate. The test statistic is 

[as follows from (4.13), Section 4.3, with k = rc, L B = L E = n, and 
Eij = (ni.n)/nJ with (r - I)(c - I) degrees of freedom. Here 

n = corner-n, overall sample size, 
nij = occupation number of the cell in the ith row and jth column, 
ni . = sum of cell entries of the ith row (row sum), 
n.j = sum of cell entries of the jth column (column sum), 

ni. n. j = product of marginal sums corresponding to cell (i, j). 

The expected frequencies are computed (under the null hypothesis) according 
to ni.n)n. The test may be applied when all expected frequencies are ~ l. 
If some expected frequencies are smaller, then the table is to be simplified by 
grouping the under-occupied cells. We note that one should apply the most 
objective scheme possible so as not to influence the result by a more or less 
deliberate arbitrariness in this grouping. A method of analyzing unusually 
weakly occupied contingency tables which are mostly independent or homo
geneous was proposed by Nass (1959). R. Heller presents a FORTRAN 
program which computes for these cases exact P-values by way of the 
Freeman-Halton test for r x c tables; this test coincides with the exact 
Fisher test for r = c = 2 (EDV in Medizin und Biologie 10 (1979), 62-63). 
See also J. Amer. Statist. Assoc. 76 (1981), 931-934 and 78 (1983), 427-434. 

Remarks pertaining to the analysis of square tables (r = c) can be found 
in Sections 4.6.1 (Remark 4), 4.6.6,6.2.1 (Formula 6.5»,6.2.2,6.2.4 as well 
as in Bishop, Fienberg, and Holland (1975). 
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Models for an r x c table 

Starting with the 2 x 2 table, we discern three models: 

I. Both sets of marginal frequencies, the totals for rows and columns, 
are specified in advance (are fixed): test of independence. 

II. One set of marginal frequencies, the totals for rows or for columns, 
is specified in advance: test of homogeneity. 

III. No set of marginal frequencies is specified in advance: neither 
totals for rows nor for columns are fixed: only n (corner-n) is 
specified in advance: test of bivariate independence. 

It should be stressed that for an r x c table, 12 defined in (6.3) is approxi
mately [better: asymptotically] distributed with (r - 1) (c - 1) 
degrees of freedom UNDER ALL THREE MODELS. A statistically 
significant large value of 12 is regarded as evidence of lack of indepen
dence or of homogeneity. The result must be approximate, since we 
apply the continuous X2 distribution, in the derivation of which nor
mality is assumed, to discrete variables and assume the expected fre
quencies E; are not too small, thus avoiding a greater degree of dis
continuity. Moreover, we assume independent observations from 
random samples. 

If one set of marginal frequencies is specified in advance, a test of 
homogeneity is made by testing whether the various rows or columns 
of the homogeneity table have the same proportions of individuals in 
the various categories. As mentioned, the procedure, is exactly the 
same as in the test of independence of a contingency table, whether or 
not both sets of marginal frequencies are fixed. 

EXAMPLE 1 (a = 0.01) 

Table 139 

24 7 7 38 
76 38 70 184 
69 32 82 183 
27 9 55 91 

196 86 214 496 

(4 - 1)(3 - 1) = 6 DF 
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According to (6.3): 

[ 
242 72 72 762 

~2 = 496 (38)(196) + (38)(86) + (38)(214) + (184)(196) + ... 

272 92 552 ] 
+ (91)(196) + (91)(86) + (91)(214) - 1 

~2 = 24.939. 

Since 24.94> 16.81 = X~;O.Ol' the null hypothesis of independence or 
homogeneity at the 1 % level must be rejected for the two way table in 
question. 

EXAMPLE 2 (See Sections 1.3.2,2.1.3 through 2.1.5, and 6.1.1.) 

Table 140 

Treatment 

Specific 
Standard 2x Standard 

Treatment effect Symptomatic dose dose Total 

Recovery within 
a weeks 14 22 32 68 
Recovery between ath 
and (a + b)th week 18 16 8 42 
No recovery 8 2 0 10 

Total 40 40 40 120 

Problem: Comparing three types of therapy. 
Design of experiment: Three groups of forty patients were treated. 

Two groups have been compared in SectIOn 6.1.1. The third group is sub- 0 
jected to the specific therapy with double the normal dose. (Source: Martini 
1953, p. 79, Table 13.) 

Null hypothesis: no difference among the three treatments; alternative 
hypothesis: the treatment effects are not all the same. 

Significance level: (J. = 0.05. 
Test choice: X2-test. Note: The Dunn test (1964) can be used to advantage, 

or one can compute rs according to Raatz (see example in Section 5.3.1). 

Results and evaluation: X2 = 120[(6;)~:0) + ... + (10~;40) - 1] 

= 21.576. 
Degrees offreedom: (3 - 1)(3 - 1) = 4. 
Decision: Since 21.576 > 9.49 = x~; 0.05, the null hypothesis is rejected. 



478 6 The Analysis of k x 2 and Other Two Way Tables 

Interpretation: The association between treatment and effect is ascer
tained at the 5 % level. In view of the previous result concerning symptomatic 
and specific treatments, we are fairly sure that the specific treatment with 
double the standard dose has a different effect, and, checking the respective 
cell entries, we conclude that it is superior to the other two treatments. 
However, a test of the double dose versus the standard dose should be 
carried out to substantiate the heuristic reasoning. 

There are special formulas for the cases n. = nz and n. = nz = n3: 

(6.4) 

[DF = k - 1], 

X2 = ± (n 1j - n 2Y + (n1j - n3)2 + (n2j - n 3Y 
j= 1 n1j + n 2j + n3j 

(6.4a) 

[DF = 2(k - 1)]. 

Repeated application of tests to the same body of data 

1. If a total of. tests at the respective significance levels lXi is run, the overall 
significance ofthe. tests is less than or equal to :D= 1 lXi [cr., Sections 1.4.2 
(example), 4.6.2]. The value lXi = lXI. is usually chosen for each test, and 
IX is then the nominal significance level for this sequence of tests (the 
Bonferroni procedure; cf., e.g., Dunn 1961, 1974 [8: 7a]). 

2. As part of a survey, • x2-tests are designed (type k x 1, k x 2 and k ~ 2, 
or r x c with r, c > 2) with Vi degrees of freedom respectively. The critical 
bounds of the Bonferroni x2-table (Table 141 as well as Table 88 [Section 
4.6.2]) are then applied. The probability of incorrectly rejecting at least 
one ofthe null hypotheses is then not greater than the nominal significance 
level IX. 

The following table gives an example for. = 12 tests (IX = 0.05): 

No. Page Table p I- X 2 (0.05/12) Decision 

1 468 129 5.734 6 18.998 Ho 
2 476 139 24.939 6 18.998 )K; 
3 477 140 21.576 4 15.273 X 

(9 more tables) 
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Table 141 Upper bounds of the Bonferroni X2 -statistics X2(rJ./7:, v). From 
Kramer, C. Y.: A First Course in Methods of Multivariate Analysis, Virginia 
Polytechnic Institute and State University, Blacksburg 1972, Appendix 0: 
Beus, G. B. and Jensen, D. R., Sept. 1967, pp. 327-351 [7::::; 120 (42 entries), 
7: :::; 30 (25 entries) and rJ. = 0.005; 0.01 ; 0.025; 0.05; 0.10]; with the permission 
of the author. 

rJ. = 0.10,0.05,0.10 

v T : 1 2 3 4 5 6 7 8 9 10 II 12 

1 2.706 3.841 4.529 5.024 5.412 5.731 6.002 6.239 6.447 6.635 6.805 6.960 
2 4.605 5.991 6.802 7.378 7.824 8.189 8.497 8.764 9.000 9.210 9.401 9.575 
3 6.251 7.815 8.715 9.348 9.837 10.236 10.571 10.861 11.117 11.345 11.551 11. 739 
4 7.779 9.488 10.461 11.143 11.668 12.094 12.452 12.762 13.034 13.277 13.496 13.695 
5 9.236 11.07012.108 12.833 13.388 13.839 14.217 14.544 14.831 15.086 15.317 15.527 
6 10.645 12.592 13.687 14.449 15.033 15.506 15.903 16.245 16.545 16.812 17.053 17.272 
8 13.362 15.507 16.705 17.535 18.168 18.680 19.109 19.478 19.802 20.090 20.350 20.586 
9 14.684 16.91918.163 19.023 19.679 20.209 20.653 21.034 21.368 21.666 21.934 22.177 

10 15.987 18.307 19.594 20.483 21.161 21.707 22.165 22.558 22.903 23.209 23.485 23.736 
12 18.549 21.026 22.394 23.337 24.054 24.632 25.115 25.530 25.894 26.217 26.508 26.772 
14 21.064 23.685 25.127 26.119 26.873 27.480 27.987 28.422 28.803 29.141 29.446 29.722 
15 22.307 24.996 26.473 27.488 28.259 28.880 29.398 29.843 30.232 30.578 30.889 31.171 
16 23.542 26.296 27.808 28.845 29.633 30.267 30.796 31.250 31.647 32.000 32.317 32.605 

1 3.841 5.024 5.731 6.239 6.635 6.960 7.237 7.477 7.689 7.879 8.052 8.210 
2 5.991 7.378 8.189 8.764 9.210 9.575 9.883 10.150 10.386 10.597 10.787 10.961 
3 7.815 9.348 10.236 10.861 11.345 11. 739 12.071 12.359 12.612 12.838 13.043 13.229 
4 9.488 11.143 12.094 12.762 13.277 13.695 14.048 14.358 14.621 14.860 15.076 15.273 
5 11.070 12.833 13.839 14.544 15.086 15.527 15.898 16.217 16.499 16.750 16.976 17.182 
6 12.592 14.449 15.506 16.245 16.812 17.272 17.659 17.993 18.286 18.548 18.783 18.998 
8 15.507 17.535 18.680 19.478 20.090 20.586 21.002 21.360 21.675 21.955 22.208 22.438 
9 16.919 19.023 20.209 21.034 21.666 22.177 22.607 22.976 23.301 23.589 23.850 24.086 

10 18.307 20.483 21.707 22.558 23.209 23.736 24.178 24.558 24.891 25.188 25.456 25.699 
12 21.026 23.337 24.632 25.530 26.217 26.772 27.237 27.637 27.987 28.300 28.581 28.836 
14 23.685 26.11927.480 28.422 29.141 29.722 30.209 30.627 30.993 31.319 31.613 31.880 
15 24.996 27.488 28.880 29.843 30.578 31.171 31.668 32.095 32.469 32.801 33.101 33.373 
16 26.296 28.845 30.267 31.250 32.000 32.605 B.lll 33.547 33.928 34.267 34.572 34.850 

1 6.635 7.879 8.615 9.141 9.550 9.885 10.169 10.415 10.633 10.828 11.004 11.165 
2 9.210 10.597 11.408 11.983 12.429 12.794 13.102 13.369 13.605 13.816 14.006 14.180 
3 11.345 12.838 13.706 14.320 14.796 15.183 15.510 15.794 16.043 16.266 16.468 16.652 
4 13.277 14.86015.777 16.424 16.924 17.331 17.67S 17.972 18.233 18.467 18.678 18.871 
5 15.086 16.750 17.710 18.386 18.907 19.332 19.690 20.000 20.272 20.515 20.735 20.935 
6 16.812 18.548 19.547 20.249 20.791 21.232 21.603 21.924 22.206 22.458 22.685 22.892 
8 20.090 21.955 23.024 23.774 24.352 24.821 25.216 25.557 25.857 26.124 26.366 26.586 
9 21.666 23.589 24.690 25.462 26.056 26.539 26.945 27.295 27.603 27.877 28.125 28.351 

10 23.209 25.188 26.320 27.ll2 27.122 28.216 28.633 28.991 29.307 29.588 29.842 30.073 
12 26.217 28.300 29.487 30.318 30.957 31.475 31.910 j2.286 32.615 32.909 33.175 33.416 
14 29.141 31.31932.559 33.426 34.091 34.631 35.084 35.475 35.818 36.123 36.399 36.650 
15 30.978 32.801 34.066 34.950 35.628 36.177 36.639 37.037 37.386 37.697 37.978 38.233 
16 32.000 34.267 35.556 36.456 37.146 37.706 38.175 38.580 38.936 39.252 39.538 39.798 

The test statistic X2 for independence in a rectangular table is bounded by 

X~ax = n[min(c - 1, r - 1)], i.e., 
A2 _ {n(c - 1) 
Xmax - n(r - 1) 

if c :::; r, 

if r ~ c. 

The maximum is assumed in the case of complete dependence. e.g., 

20 0 20 X2 = 4· 10 = 40 

o 20 20 
X~ax = 40(2 - 1) = 40. 

20 20 40 

(6.5) 
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A few additional remarks 

1. Several methods have been presented for testing homogeneity or inde
pendence or, generally proportionality in two way tables. Section 6.2.5 
presents yet another economical method of computation. Besides, 
experience suggests that it is a good (for the beginner an indispensable) 
habit to check the computations by one of the x2-formulas unless too 
much work is involved. If tables with many cells are to be evaluated, then 
the computational method would be verified on simple-or simplified
tables. 

2. If in the course of the analysis of rectangular tables the null hypothesis is 
rejected in favor of the alternative hypothesis for dependence or hetero
geneity, then sometimes there is interest in localizing the cause of the 
significance. This is done by repeating the test for a table from which all 
suspicious-looking rows or columns are removed one at a time (cf., also 
the text following (6.1) in Section 6.1.1). Other possibilities for testing 
interesting partial hypotheses (cf., also Gabriel 1966) are offered by the 
selection of 4 symmetrically arranged cells (each cell shares 2 rows, and a 
column, with one of the other three cells); then the resulting 2 x 2 table 
is analyzed. This should be regarded as "experimentation" (cf., Section 
1.4.4); the results can only serve as clues for future investigations. A proper 
(statistical) statement can be made only if associated partial hypotheses 
have been formulated before the data were collected. 

Let us here add another caution. When the dependence seems assured, 
one must bear in mind that the existence of a formal relation says nothing 
about the causal relation. It is entirely possible that indirect relations intro
duce part (or all) of the depi!ndence (cf., also Sections 5.1 and 5.2). 

3. The test statistic X2 for independence in an r x c table can always be 
decomposed into (r - 1)(c - 1) independent components of one degree of 
freedom each (cf., Kastenbaum 1960, Castellan 1965 as well as Bresnahan 
and Shapio 1966 [see also Shaffer 1973 and C. B. Read, Communications in 
Statistics-Theory and Methods A 6 (1977), 553-562]). With the notation 
of Table 138, we have, e.g., for a 3 x 3 table, with 2· 2 = 4 degrees of 
freedom, the following four components: 

n{n2.<n.2nll-n.11112)-ndl1.21121-11.11122)}2 

111. 11 211.111.2(111. +112.)(11 1 +11.2) , 

(2) x2 n 2 {1123(1111 +1112)-1113(1121 +1122W 

nl.n2.11.3(111. +112.)(n.1 +11.2) 

11{1133(1111 +1112+1121 +1122)-(nl3+n23)(1131 +1132)}2 

n3.11.3(111. +112.)(11.1 +11.2) 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 
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We consider Table 140 with the simplified categories (A, B, C versus 
I, II, III; cf., Table 140a). The following 4 comparisons are possible: 

Table 140a 

Type A B C L 
I 14 22 32 68 

I I 18 16 8 42 

III 8 2 0 10 

L 40 40 40 120 

1. The comparison of! against II with respect to A against B (in symbols I x 
II -;- A x B). 

2. The comparison of! against II with respect to (A + B) against C (I x II -;
{A + B} x C). 

3. The comparison of {I + II} against III with respect to A against B 
({I + II} x III -;- A x B). 

4. The comparison of {I + II} against III with respect to (A + B) against C 
({I + II} x III -;- {A + B} x C). 

See Table 142. 

Table 142 ~2-table: decomposition of the ~2-value of a 
3 x 3 table (Table 140a) into specific components with one 
degree of freedom each 

Mutually independent components OF X2 P 

(1) I x II 7 A x B 1 1.0637 n.s. 

(2) I x II 7 {A + B} x C 1 9.1673 <0.01 

(3) {I + II} x 1117 A x B 1 5.8909 <0.05 

(4) {I + II} x 1117 {A + B} x C 1 5.4545 <0.05 

Total 4 21.5764 <0.001 

(1) X2 120{42(40'14-40'22)-68(40'18-40'16)}2 = 1.0637 
68· 42· 40·40· (68 + 42)(40 + 40) , 

A 1202{8(14 + 22) - 32(18 + 16)}2 
(2) X2 = 68.42 . 40 . (68 + 42) (40 + 40) = 9.1673, 

(3) A2 = 1202{2(14 + 18) - 8(22 + 16)}2 = 5.8909 
X 10.40.40. (68 + 42) (40+40) , 

(4) A2 = 120{O(14 + 22 + 18 + 16) - (32 + 8)(8 + 2)}2 = 5.4545. 
X 10.40. (68 + 42)(40 + 40) 
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If other specific comparisons are to be tested, the associated rows or 
columns (or both) must be interchanged. 

Further remarks on the analysis of contingency tables (cf., also the 
end of this chapter) can be found especially in the following works: 
Goodman (1963-1971), Caussinus (1965), Gart (1966), Meng and 
Chapman (1966), Bhapkar (1968), Bhapkar and Koch (1968), Hamdan 
(1968), Ku and Kullback (1968), Lancaster (1969), Altham (1970), 
Odoroff (1970), Goodman and Kruskal (1972), Shaffer (1973), 
Kastenbaum (1974), NeIder (1974), Bishop et aI., (1975), Everitt (1977), 
Fienberg (1978), Gokhale and Kullback (1978), Upton (1978) and 
Plackett (1981). 

6.2.2 Testing the strength of the relation between 
two categorically itemized characteristics. 
The comparison of several contingency 
tables with respect to the strength of the 
relation by means of the corrected 
contingency coefficient of Pawlik 

The x2-value of a contingency table says nothing about the strength of the 
relation between two characteristics. This is easily seen because for given 
relative frequencies X2 is proportional to the total number of observations. 
If the null hypothesis of independence between the two attributes of a 
rectangular table is rejected, Pearson's contingency coefficient 

(6.7) 

furnishes a measure of the strength of the relation (cf., also Section 4.6.6). 
This measure of correlation has the value zero when there is total indepen
dence. In the case of total dependence of the two qualitative variables, CC 
does not, however, equall but rather a value less than 1 which varies with the 
number of cells of the contingency table. Thus different CC-values are 
comparable as to size only if they were computed on contingency tables of the 
same values of rand c. This drawback of the CC is compensated for by the 
fact that for ~ny rectangular table the largest possible contingency coefficient 
CCmax - is known; thus the observed relative contingency coefficient, 
CCfCCmax , can be given. CCmax is defined as that value which CC attaints 
for a table with total dependence among the attributes. For square con
tingency tables (number of rows = number of columns, i.e., r = c), Kendall 



6.2 The Analysis of r x c Contingency and Homogeneity Tables 483 

has shown that the value of CCmax depends only on the number of levels, in 
fact 

(6.8) 

The maximal contingency coefficient of nonsquare contingency tables is, 
according to Pawlik (1959), also given by (6.8), where the designation is to 
be so chosen that r < c. 

In order to compare CC-values which were computed for contingency 
tables of various sizes, it is recommended that the CC-value found be 
expressed as percentage of the corresponding CCmax ; this corrected con
tingency coefficient CCcorr reads 

CC CCcorr=CC 100 
max 

or CC 
CCcorr=cc-' 

max 
(6.9) 

It lies between 0 and 100%, or between 0 and 1, and is independent of the 
table size. To facilitate computation of CCcorr the values of CCmax for r = 2 
to r = 10, and based on (6.8), are provided in Table 143 together with each 
corrective factor I/CCmax by which the uncorrected CC-value is to be 
multiplied. 

Table 143 

1 
r = c CC max ~ 

2 0.7071 1.4142 
3 0.8165 1. 2247 
4 0.8660 1.1547 
5 0.8944 1.1l81 
6 0.9129 1.0954 
7 0.9258 1.0801 
8 0.9354 1.0691 
9 0.9428 1.0607 

10 0.9487 1.0541 

The relation r ~ c can be used to define, according to H. Cramer, a 
contingency coefficient K = J X2 /(n[r - 1]) with 0 ~ K ~ 1; in a fourfold 
table K = Jx2/n = Jf/(n - 1) (see Section 4.6.1). Examples are given in ~ 

Table 144. 

Table 144 

Table Table 
CC= j F CC 

CCcarr = cc- K = ';~2/(n[r - 1]) 
No. type n ~2 n + ~2 max 

139 3 X 4 496 24.932 0.21877 0.26793 0.12944 
140 3 X 3 120 20.844 0.38470 0.47114 0.24062 
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More on measures of association can be found in Mosteller (1968), and 
Goodman and Kruskal (1972; for the 3 lambda coefficients see Hartwig 
1973) as well as in Bishop, Fienberg, and Holland (1975). 

The equivalence of two r . c tables, each with r degrees of freedom, may 
be tested by R. B. D'Agostino and B. Rosman (1971, Psychometrika 36, 
251-252). 

6.2.3 Testing for trend: The component due to 
linear regression in the overall variation. 
The comparison of regression coefficients of 
corresponding two way tables 

Once the dependence between the distribution of the classes of the first 
attribute and the classes of the second attribute is established by a sufficiently 
large X2, the question arises whether the increase of the frequencies follows a 
(linear) pattern; in other words whether the frequencies of the levels of one 
attribute increase (decrease) linearly with the levels of the other attribute 
or whether they are related in a more complicated way. The x2-value can be 

@ split into two parts just as in the case of a k x 2 table, one part with a 
single DF due to the linear trend-the so-called regression line component
and the remaining part due to the difference between the observed frequencies 
and the estimated linear trend component of the frequencies. It will be com-

~ puted as the difference between X2 and X;egreSsion' 

The different levels of each attribute are assigned scores (x- and y-values) 
whereby both attributes of an r x c table are transformed into the simplest 
possible coordinate system. After this "quantification" of the data the 
bivariate frequency table will be examined for correlation of two variables. 
In practice, one proceeds according to Yates (1948) by testing the regression 
of one of these variables against the other: one determines the regression 
coefficients byx ([bxy] and the associated variance V(byx)[V(bxy)]), and tests 
the significance of the linear regression by means of 

(6.10) 

with 1 DF. The regression coefficient of yon x is defined by [see p. 485!] 

(6.11a) 

the one of x on y by 

(6.11b) 
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[Note the discussion following (6. 12b)]. The variances of the two regression 
coefficients are under the null hypothesis 

2 '\' 2 
~(b )=~=_L.._x_. 

xy U2 nu2 

(6.12a) 

(6.12b) 

In these equations the quantities x and y represent the departure from the 
mean of the respective variables, s; is an estimate of the variance of the 
variable y, and s~ is an estimate of the variance of the variable x. Three 
frequency distributions, those of the variables x, y, and x - y, will be 
required for the computation of (6.10)-(6.12b): one then obtains Lx2 , 

L y2, and L (x _ y)2. 

EXAMPLE. Consider Table 140. After assigning scores to the categories of 
both attributes (Table 145), we form the products of the marginal sums and 

Table 145 

I~ Score -1 0 1 n. 
1 0 

n. y 
1 0 

n. y 
1 0 

2 

1 14 22 32 68 68 68 
0 18 16 8 42 0 0 

-1 8 2 0 10 -10 10 

"oj 40 40 40 120 58 78 

"ojX -40 0 40 0 

n .x2 
oJ 

40 0 40 80 

the associated scores as well as of the marginal sums and the squares of the 
scores. The sums of these products are (cf., the symbols of Table 138) @ 

'\' n· y = 58 L... I. , 

'\' n ·x = 0 L...J ' 

'\' n. y2 = 78 L... I. , 

These product sums yield L x 2 and L y2 according to 

'\' y2 = '\' n. y2 _ (L ni.y)2 = 78 _ 582 = 49967 
L.. L.. I. L ni. 120" 

L x 2 = L n. j x 2 - (Li· jX)2 = 80 - ~ = 80. 
n. j 120 
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To calculate L (x - y)2, the associated frequency distribution (Table 146) 
is used. Column 2 of this table lists the "diagonal sums" of Table 145. The 
"diagonal sums" are taken from lower left to upper right. One thus obtains 
14, 18 + 22 = 40, 8 + 16 + 32 = 56,2 + 8 = 10, and O. 

Table 146 

x - y ndiag . ndiag. (x - y) ndiag. (x - y) 2 

-1-(+1) = -2 14 -28 56 
0-1 = -1 - 0 = -1 40 -40 40 
1 - 1 = 0 - 0 = -1 - (-1) = 0 56 0 0 
1-0=0-(-1) = +1 10 10 10 
1 - (-1) = +2 0 0 0 

Total 120 -58 106 

Column 1 lists the differences x - y for all the cells of Table 145; each time 
the "diagonal elements" are combined, because the (x - y)-values are 
constant along each diagonal. For example, one obtains the value zero for 
the difference x - y for all fields of the main diagonal from lower left to 
upper right, i.e., for the cells with the cell entries 8, 16,32: 

for cell 8 (lower left), x = -1, y = -1, 

x - y = -1 - (-1) = -1 + 1 = 0; 

for cell 16 (center of table), x = 0, y = 0, 
x - y = 0 - 0 = 0; 

for cell 32 (upper right), x = 1, y = 1, 
x - y = 1 - 1 = 0, 

i.e., x - y = 0 holds for 8 + 16 + 32 = 56, etc. The sums of the products 
lead to 

"( )2 _ " ( )2 (L: ndiag.(X - y»2 
L., x - y - L., ndiag. x - Y - " 

L., ndiag. 

= 106 _ (-58)2 
120 

= 77.967. 

Then we obtain by (6.10), (6.lla), (6.12a) 

A~ = (byx)2 = «80 + 49.967 - 77.967)/2 . 80)2 = 20293 
Xlm. regr. V(byX> 49.967/(120 . 80) . , 

or by (6.10), (6.l1b), (6.12b) 

A~ = (bXy)2 = «80 + 49.967 - 77,967)/2.49.967)2 = 20293 
Xlm. regr. V(bxy) 80/(120 . 49.967) . . 
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The significance of both regressioncoefficients (xt 0.001 = 10.828) can also 
be determined in terms of the standard normal distribution: @ 

z=b/VV{b) 

z= ~ 0.325000 4.505, 
V(b yx ) JO.005205 

z= ~ 0.520343 4.505. 
V(bxy ) JO.013342 

(6.13) 

Naturally the significance level is the same (ZO.OOI = 3.290). (Since z; = xL" 
we have 3.2902 = 10.828.) Summarizing the results in Table 147, we notice 

Table 147 

Source X2 OF Significance level 

Linear regression 20.293 1 P ~ 0.001 
Departure from 
linear regression 0.551 3 0.90 < P < 0.95 

Total 20.844 4 P < 0.001 

that the departure of the frequencies in Table 145 from proportionality is 
almost fully due to a linear regression; the treatment by a double standard 
dose increases the success (recovery) rate markedly. If this observation 
sounds trite, one must not overlook the fact that it is (statistically) substanti
ated only by the results listed in Table 147 (for" P much smaller than 0.001 " 
one writes P ~ 0.001). 

If the regression lines of two corresponding or matching tables have to be 
compared, one tests by means of (6.14) whether the regression coefficients 
differ (Fairfield Smith 1957). The significance of the difference is determined 
by means of the standard normal distribution. 0 

z= Ib i -b2 1 . 

JV(bt> + V(b2 ) 

(6.14) 

EXAMPLE. Assuming that the cell entries listed in Tables 140 and 145 were 
gathered from a sample of persons of the same race, the same age group, 
etc., and that we have at our disposal the result of a corresponding trial 
on people of a different age group: 

b1 = 0.325, 

V(b 1) = 0.00521, 
b2 = 0.079, 

V(b 2 ) = 0.00250. 

Then the null hypothesis of equality of regression coefficients is rejected 
at the 1 % level, with 

Z = 0.325 - 0.079 = 2.80 (P = 0.0051). 
jO.00521 + 0.00250 
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6.2.4 Testing square tables for symmetry 

The McNemar test gave us the means to test whether a 2 x 2 table is sym
metric with respect to its diagonal. An analogous tool to test the symmetry 
with respect to the diagonal in an r x r table is provided by Bowker (1948). 
This test probes the alternate hypothesis that the pairs of cells located 
symmetrically with respect to the main diagonal show different entries. The 
main diagonal is the one which displays the largest frequencies. Under the 
null hypothesis (symmetry) we expect that 

Bij = B ji , where 
Bij = observed frequency in the cell in the ith row and the jth column, 
Bji = observed frequency in the cell in the jth row and ith column. 

To resolve the question of whether the null hypothesis can be maintained, one 
computes 

-2 'I-1 I(B .. -B .. )2 X = 1/ II 
sym B B 

j = 1 i > j ij + ji 
(6.15) 

with DF = r(r - 1)/2. All r(r - 1)/2 differences of symmetrically located 
cell entries for which i > j are formed, squared, divided by the sum of the 
cell entries, and added. If not more than 1/5 of the r x r cells has expected 
frequencies E < 3, then X;ym is approximately X2-distributed and thus can 
be tested accordingly (cf. also Ireland, Ku, and Kullback 1969, Bennett 
1972, Hettmansperger and McKean 1973). Some very interesting extensions 
are given by Rebecca Zwick et a1., Psychological Bulletin 92 (1982), 258-271. 

EXAMPLE 

-2 
Xsym 

Table 148 Since 
(0 + 2 + 3 + 1) 
is less than (8 + 
4 + 10 + 15), the 
main diagonal runs 
from lower left to 
upper right 

0 10 16 15 41 
4 2 10 4 20 

12 4 3 6 25 
8 4 1 1 14 

24 20 30 26 100 
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Table 148 contains 4 rows and 4 columns; hence there are 4(4 - 1)/2 = 6 
degrees of freedom at our disposal. The corresponding X~;O.05 equals 12.59; 
the null hypothesis as to symmetry is thus rejected at the 5 % level. In a 
relatively large group of people the comparison of the perspiration intensity 
of hands and feet leads to typical symmetry problems in the same way as 
would a comparison of the visual acuity of the left and right eye or a com
parison of the education or hobbies of spouses. Beyond that, almost every 
square table which is tested for symmetry presents interesting aspects; thus 
Table 140 exhibits definite asymmetry: @ 

'2 (18 - 2)2 (14 - 0)2 (22 - 8)2 
Xsym = 18 + 2 + 14 + 0 + 22 + 8 

= 33.333 > 16.266 = X~;O.OOl' 
It is caused by the small number of not recuperating and slowly recuperating 
patients due to the standard and in particular to the double normal dose. 

For generalizations of the Bowker test see (three-way tables) C. B. Read, 
Psychometrika 43 (1978), 409-420 and (multi-way tables) K.-D. Wall, EDV 
in Medizin und Biologie 2 (1976), 57-64. 

Another test from the class of symmetry tests is the Q-test due to Cochran (see 
end of Section 4.6.3), which is a homogeneity test for s correlated samples (C.S.; ~ 
e.g., methods of treatment or instants of time) of dichotomous data ( +, -). 
HA (at least two of the C.S. originated in different populations); 
Ho (all of the C.S. originated in a common population) 
will, for large n (n . s ~ 30), be rejected at the 1001J( % level whenever 

i= 1 i= 1 

where 
L j = sum of the numbers of plus signs of the individual i over all C.S., 
Tj = sum of the numbers of plus signs of the n individuals for the treatment j. 

~ 
Correlated 

samples L I. t 2 . j . s 

1 : 
I/) 2 I 
iij I 
::J I '0 
'> I 
'C i ---+--- L j 

.= I 

n I 

L Tj 

This test extends the McNemar test to a multivariate distribution of dichotomous 
variables with H 0: The proportions of success ( + ) are the same for all treatments [or, 
there are no treatment effects]. 
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~ 6.2.5 Application of the minimum discrimination 
information statistic in testing two way 
tables for independence or homogeneity 

Procedures based on information statistics are quite manageable when the 
necessary auxiliary tables (Table 85) are available. Extensive contingency 
tables as well as three- or fourfold tables can be analyzed with the help of the 
minimum discrimination information statistic 21 (2/ is identical to the G-value 
described in Section 4.6.1); it is based on the measure of information which 
Kullback and Leibler (1951) introduced to measure the divergence between 
populations (cf., Gabriel 1966). It is derived and applied to several statistical 
problems in the book b~T Kullback (1959). For the two way table (cf., Table 
138 and the symbols employed there) it amounts to 

2i = (tl jtl2nij In nij + 2n In n) 

-(t
I
2ni' In ni. + jtl2n.j In n.j) 

(6.16) 

or simplified, 

21 = (sum I) - (sum II), 

where the sums are defined as follows. 

Sum I: For every nij-value, i.e., for every cell entry (for each cell of a k x 2 
or r x c table) the associated value is read off from Table 85. The 
values taken from the table are summed and then the value asso
ciated with the overall sample size is added. 

Sum II: For every field of the marginal sums (row and column sums) the 
corresponding tabulated values are determined. These values are 
summed. 

The difference between the two sums yields the value 21; the caret over the I 
indicates that one is dealing with a value "estimated" in terms of the observed 
occupation numbers. Under the null hypothesis of independence or homo
geneity, 21 is asymptotically distributed as X2 with (r - 1)(c - 1) degrees of 
freedom. For two way tables that are not too weakly occupied (k x 2 or 
r x c), the approximation of the x2-statistic by the minimum discrimination 
information statistic is excellent. If one or more cells of a table remain 
unoccupied, one should then apply the correction proposed by Ku (1963): 
For each zero, a 1 is to be subtracted from the computed minimum dis
crimination information statistic 21. For the computation of 21 there are 
(r + 1)(c + 1) individual tabulated values read off; this fact can provide a 
certain check in the case of large tables. 
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EXAMPLE. We use the cell entries of Table 140 (Section 6.2.1), and obtain 
the result shown in Table 149. This value is somewhat larger than the 

Table 149 

73.894
j 136.006 1st row 

221.807 

104.053j 
88.723 2nd row 

33.271 

33.27\ j 
2.773 3rd row 

0.000 

1,148.998 n = 120 

1,842.796 = Sum I 

1,842.796] _ 
1,819.199 

14 22 32 68 
18 16 8 42 
8 2 0 10 

40 40 40 120 

573.853j 
313.964 row sums 

46.052 

295.110 

295.110j column sums 

295.110 

1,819.199 = Sum II 

check (verification): we have read 

(3 + 1)(3 + 1) = 16 tabulated values 

23.597] _ 
1.000 (one zero taken into account) 

21 = 22.597 

corresponding x2-value (21.576), which however in no way influences the 
decision, since X~;O.OOl = 18.467 is obviously exceeded by both. 

Other problems which lend themselves to equally elegant solutions with 
the help of the minimum discrimination information statistic are the testing 
of two distributions of frequency data for homogeneity (cf., Sections 6.1.2 
and 4.3.1) and the testing of an empirical distribution for uniform distribution 
(cf., Section 4.3.2). To compare two frequency distributions we apply the 
homogeneity test for a k x 2 table. For the example in Section 6.1.2 we get 
21 = 5.7635 as against X2 = 5.734. For tables ofthis size 21 is almost always 
somewhat larger than X2. 
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Testing for nonuniform distribution 

EXAMPLE. Time is read off a watchmaker's 1000 watches. Time class 1 includes 
all watches which indicate between 1 : 00 and 1 : 59; the limits for the other k 
classes are chosen analogously. The frequency distribution is given in Table 
150 with k = 12 and n = 1,000. 

Table 150 

Time class 1 2 3 4 5 6 7 8 9 10 11 12 n= 

Frequency 81 95 86 98 90 73 70 77 82 84 87 77 1,000 

The null hypothesis (uniform distribution) is tested at the 5 % level: 

k 

2]= L 2};ln);-2nlnn+2nlnk DF =k-1 (6.16a) 
i= 1 

21 = [2· 811n 81 + ... J - 2·1,000 In 1,000 + 2(1,000 In 12). 

REMARK: The last summand 2(1,000 In 12), is not tabulated but must be computed. 
We require this value to be correct to one place beyond the decimal point, and 
accordingly round off the other values of 2n In n read off the table. If no table of 
natural logarithms is available, In 12 is determined by the conversion to base 10 
logarithms: 

In a = 2.302585 log a; 

thus In 12 = (2.30258)(1.07918) = 2.484898 ~ 2.48490, whence the last summand 
becomes (2)(1,000)(2.48490) = 4,969.80, and 

21 = [711.9 + ... + 668.9] - 13,815.5 + 4,969.8 = 9.4, 

21 = 9.4 < 19.68 = Xil;O.05' 

There is thus no reason to reject the null hypothesis of a uniform distribu
tion. 

The particular importance of the minimum discrimination information 
statistic of a three way or multiway table rests on the fact, demonstrated by 
Kullback (1959) (cf., also Kullback et aI., 1962; Ku, Varner, and Kullback 
1968, 1971), that it can be relatively easily decomposed into additive com
ponents (i.e., components with specific degrees of freedom) which can be 
individually tested and added, yielding 21 or partial sums of 21. These 
components refer to partial independence, conditional independence, and 
interaction (cf., also however the methods proposed by Bishop 1969, Grizzle 
et aI., 1969, Goodman 1969, 1970, 1971, Shaffer 1973, NeIder 1974, and 
Fienberg 1978). 
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Even for a simple 3 x 3 x 3 table-a contingency die-there are already 
a total of 16 hypotheses to be tested. Analyses of this sort are referred to as 
analyses of information-they can be regarded as distribution-free analyses 
of variance. For specifics consult Bishop, Fienberg, and Holland (1975), and 
Gokhale and Kullback (1978). 

Some remarks 

1. The analysis of incomplete two and three way contingency tables is discussed 
by Enke (1977, 1978). 

2. Benedetti and Brown (1978) examine and assess methods of model building 
for multi way contingency table analyses with respect to the final choice of model 
and with respect to intermediate information available to the data analyst. 

3. For testing the equality of two independent X~ variables see D'Agostino and 
Rosman (1971, cited on page 484). 

4. For graphical analysis and the identification of sources of significance in 
two-way contingency tables see M. B. Brown, Applied Statistics 23 (1974), 405-413 
and R. D. Snee, The American Statistician 28 (1974), 9-12 [cr., also Communications 
in Statistics-Theory and Methods A 6 (1977),1437-1451 and A 9 (1980),1025-1041]. 

5. Exact tests for trends in ordered contingency tables are given in W. M. 
Patefield, Applied Statistics 31 (1982), 32--43; a survey of strategies for modeling cross 
classifications having ordinal variables is given by A. Agresti, Journal of the American 
Statistical Association 78 (1983), 184-198. 



7 ANALYSIS OF VARIANCE TECHNIQUES 

~ 7.1 PRELIMINARY DISCUSSION AND 
SURVEY 

In Chapter 2 we mentioned, under the heading of Response Surface Experi
mentation, an experimental strategy for quality improvement in the widest 
sense. An essential part of this special theory of optimal design is based on 
regression analysis and on the so-called analysis of variance, introduced by 
R. A. Fisher for the planning and evaluation of experiments, in particular of 
field trials, which allows the detection of factors contributing to or con
trolling the variation found. The comparison of means plays a particular 
role. Since analysis of variance, like the t-test, presupposes normal distribu
tion and equality of variances, we wish to familiarize ourselves first with the 
procedures which are used for testing the equality or the homogeneity of a 
number of population variances. If they are equal, then the corresponding 
means may be compared by analysis of variance. This is the simplest form 
of variance. If the influence of each of several independent factors, at different 
levels, has to be sorted out properly, it is necessary that the observed values 
be obtained from special designs (cf., Section 7.7). 

The analysis of variance is a tool for the quantitative evaluation of the 
influence of the independent variables (factors: cf. Section 7.4.1, Model 
I) on the dependent variable: The total variation displayed by a set of 
observations, as measured by the sums of squares of deviations from 
the mean, may in certain circumstances be separated into components 
associated with defined sources of variation used as criteria of classifica
tion for the observations. Such an analysis is called an analysis of 
variance, although in the strict sense it is an analysis of sums of squares. 
Many standard situations can be reduced to the variance analysis form. 

One can gather information on the required sample sizes from the lit
erature cited at the end of Section 7.4.3 (Remark 3). The rapid tests of the 

494 
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analysis of variance are presented in Section 7.5. Ott (1967) gives a simple 
graphic method. Graphical analyses are often sufficient, for example multi
comparative plotting of means which demonstrates trends, curvilinearities, 
and configurations of interactions (see Enrick 1976). 

Independent sample groups with not necessarily equal variances (cr., 
Section 3.6.2) but nearly the same distribution type can be compared by 
means of the H-test (Section 3.9.5). For correlated groups of samples of ~ 
nearly the same distribution type, the Friedman test with its associated 
multiple comparisons is indicated. ~ 

The assumption of equal variances may be dropped: an exact analysis of variance 
with unequal variances is presented by Bishop and Dudewicz (1978); the 10%, 
5 %, and 1 % critical points of the null distribution and an example are given. Multiple 0 
comparison procedures of means with unequal variances are compared by A. C. 
Tamhane, Journal of the American Statistical Association 74 (1979), 471-480. For a 
survey on robust multiple comparisons see Games et al. (1983) and C. W. Dunnett, 
Communications in Statistics-Theory and methods 11 (1982), 2611-2629, for more 
tables see R. R. Wilcox, Technometrics 25 (1983), 201-204. 

7.2 TESTING THE EQUALITY OF SEVERAL 
VARIANCES 

In the sequel independent random samples from normally distributed 
populations will be assumed. 

7.2.1 Testing the equality of several variances of 
equally large groups of samples 

A relatively simple test for the rejection of the null hypothesis as to equality 
or homogeneity of the variances aI = a~ = ... = aT = ... = af = 172 has 
been proposed by Hartley. Under the condition of equal group sizes (no), 
this hypothesis can be tested by 

Pm x = greatest sample variance = s~ax. 
a smallest sample variance S~in 

(7.1) 

The distribution of the test statistic F max can be found in Table 151. The 
parameters of this distribution are the number k of groups and the number of 
degrees of freedom v = no - 1 for every group variance. If, for a given 
significance level 0(, F max exceeds the tabulated value, then the equality or 
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Table 151 Critical values for Hartley's test for testing several variances for 
homogeneity at the 5% and 1 % level of significance (from Pearson, E. S. and 
H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1 (3rd ed.), Cambridge, 
1966, Table 31). Values given are for the test statistic F max = s~a/s~in' where 
s~ax is the largest and s~in the smallest in a set of k independent values of S2, 

each based on v degrees of freedom . 
• • 0.05 

;z 2 3 4 5 6 7 8 9 10 11 12 

2 39.0 87.5 142 202 266 333 403 475 550 626 704 
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124 
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11. 7 12.2 12.7 
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

• = 0.01 

~ 2 3 4 5 6 7 8 9 10 11 12 

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605 
3 47.5 85 120 151 184 21 (6) 24(9) 28( 1) 31 (0) 33(7 ) 36( 1) 
4 23.2 37 49 59 69 79 89 97 106 113 120 
5 14.9 22 28 33 38 42 46 50 54 57 60 

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37 
7 8.89 12.1 14.5 16 .5 18.4 20 22 23 24 26 27 
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21 
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 - 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

The numbers in brackets (11 = 0.01 for v = 3. 7 .,:; k .,:; 12) are unreliable, e.g., F max for v = 3, k = 7 is 
about 216. Bounds for F max for 11 = 0.10 and 11 = 0.25 can be found in R. J. Beckman and G. L. Tietjen 
(1973, Biometrika 60, 213-214). 

homogeneity hypothesis is rejected and the alternative hypothesis a1 =1= a2 for 
fixed i is accepted (Hartley 1950). 

EXAMPLE. Test the homogeneity of three sample groups of size no = 8 with 
si = 6.21, s~ = 1.12, s~ = 4.34 (ex = 0.05). 

We have F max = 6.21/1.12 = 5.54 < 6.94 = F max (for k = 3, v = no - 1 = 
8 - 1 = 7 and ex = 0.05). On the basis of the samples in question it is not 
possible, at the 5 % level, to reject the null hypothesis of homogeneity of 
the variances. 

A rapid test based on the quotient of the largest and the smallest ranges 
was introduced by Leslie and Brown (1966). The upper critical limits for 4 
significance levels can be found in the original work. 
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7.2.2 Testing the equality of several variances 
according to Cochran 

If the variance s~ax of one group is substantially larger than that of the others, 
this test (Cochran 1941) is preferred. The test statistic is 

(7.2) 

The assessment of Gmax follows on the basis of Table 152: if Gmax is greater 
than the tabulated value for k, the chosen significance level, and v = no - 1 

Table 152 Critical values for Cochran's test for testing several variances for 
homogeneity at the 5% and 1 % level of significance (from Eisenhart, C., 
Hastay, M. W., and Wallis, W. A.: Techniques of Statistical Analysis, McGraw
Hill, New York 1947): values given are for the test statistic Gmax = s~aJL s~, 
where each of the k independent values of S2 has v degrees of freedom 

a = 0.05 

~ 1 2 3 4 5 6 7 8 9 10 16 36 144 ~ 

2 0.9985 0.9750 0.939~10.9057 0.8772 0.8534 0.8332 0.8159 0.8010 o .) 880 0.7341 0.6602 0.5813 0.5000 
3 0.9669 0.8709 0.7977 0.7457 0.7071 0.6771 0.6530 0.6333 0.6167 0.6025 0.5466 0.4748 0.4031 0.3333 
40.9065 0.7679 0.6841,0.6287 0.5895 0.5598 0.5365 0.5175 o . 5017 o .4884 0.4366 0.3720 0.3093 0.2500 

5 0.8412 0.6838 0.5981 0.5441 0.5065 0.4783 0.4564 0.4387 0.4241 0.4118 0.3645 0.3066 0.2513 0.2000 
60.7808 0.6161 0.5321 0.4803 0.4447 0.4184 0.3980 0.3817 0.3682 0.3568 0.3135 0.2612 0.2119 0.1667 
7 0.7271 0.5612 0.4800 0.4307 0.3974 0.3726 0.3535 0.3384 0.3259 0.3154 0.2756 0.2278 0.1833 0.1429 
80.6798 0.5157 0.4377 o .3910 0.3595 0.3362 0.3185 0.3043 0.2926 o .2829 0.2462 0.2022 0.1616 0.1250 
9 0.6385 0.4775 0.4027 0.3584 0.3286 0.3067 0.2901 0.2768 0.2659 0.2568 0.2226 0.1820 0.1446 0.1111 

10 0.6020 0.4450 0.3733 0.3311 0.3029 0.2823 0.2666 0.2541 0.2439 0.2353 0.2032 0.1655 0.1308 0.1000 
12 0.5410 0.3924 0.3264 0.2880 0.2624 0.2439 0.2299 0.2187 0.2098 0.2020 0.1737 0.1403 0.1100 0.0833 
15 0.4709 0.3346 0.2758 0.2419 0.2195 0.2034 0.1911 0.1815 0.1736 0.1671 0.1429 0.1144 0.0889 0.0667 
20 0.3894 0.2705 0.2205 0.1921 0.1735 0.1602 0.1501 0.1422 0.1357 0.1303 0.1108 0.0879 o %75 0.0500 
24 0.3434 0.2354 0.1907 0.1656 0.1493 0.1374 0.1286 0.1216 0.1160 0.1113 0.0942 0.0743 0.0567 0.0417 
30 0.2929 0.1980 0.1593 0.1377 0.1237 0.1137 0.1061 0.1002 0.0958 0.0921 0.0771 0.0604 0.0457 0.0333 
40 0.2370 0.1576 0.1259 o .10R2 0.0968 0.0887 0.0827 0.0780 0.0745 0.0713 o .0595 0.0462 0.0347 0.0250 
60 0.1737 0.1131 0.0895 0.0765 0.0682 0.0623 0.0583 0.0552 0.0520 0.0497 0.0411 0.0316 0.0234 o .01E7 

120 0.0998 0.0632 0.0495 0.0419 0.0371 0.0337 0.0312 o .0292 0.0279 0.0266 0.0218 0.0165 0.0120 0.00S3 
~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a • 0.01 

~ 1 2 3 4 5 6 7 8 9 10 16 36 144 ~ 

1~ ~ rr:rarr 0.9586 0.9373 0.9172 0.8988 0.8823 um ~Jm 0.7949 ~:m~ um U~~~ 0.9423 0.8335 0.7933 0.7606 0.7335 0.7107 0.6059 
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.6410 0.6129 0.5897 0.5702 0.5536 o .4884 o .4057 0.3251 o .2500 

5 0.9279 0.7885 0.6957 0.6329 0.5875 0.5531 0.5259 0.5037 0.4854 0.4697 0.4094 0.3351 0.2644 0.2000 
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4866 0.4608 0.440 I 0.4229 0.4084 0.3529 0.2858 0.2229 0.1667 
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.43470.4105 0.3911 0.3751 0.3616 0.3105 0.2494 0.1929 0.1429 

8 0.7945 0.6152 0.5209 0.4627 0.4226 0.3932 0.3704 0.3522 0.3373 0.3248 0.2779 0.2214 0.1700 0.1250 
9 0.7544 0.5721 0.4810 0.4251 0.3870 0.3592 0.3378 0.3207 0.3067 0.2950 0.2514 0.1992 0.1521 0.1111 

10 O~7175 0.5358 0.4469 0.3934 0.3572 0.3308 0.3106 0.2945 0.2813 0.2704 o .2297 0.1811 0.1376 0.1000 

12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2861 0.2680 0.2535 0.2419 0.2320 0.1961 0.1535 0.1157 0.0833 
15 0.5747 0.4069 0.3317 0.2882 0.2593 0.2386 0.2228 0.2104 0.2002 0.1918 0.1612 0.1251 0.0934 0.0667 
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1877 0.1748 0.1646 0.1567 0.1501 0.1248 0.0960 0.0709 0.0500 

24 0.4247 0.2871 0.2295 0.1970 0.1759 0.1608 0.1495 0.1406 0.1338 0.1283 0.1060 0.0810 0.0595 0.0417 
30 0.3632 0.2412 0.1913 0.1635 0.1454 0.1327 0.1232 0.1157 0.1100 0.1054 0.0867 0.0658 0.0480 0.0333 
40 0.2940 0.1915 0.1508 0.1281 0.1135 0.1033 0.0957 0.0898 0.0853 0.0816 0.0668 o .0503 0.0363 0.0250 

60 0.2151 0.1371 0.1069 0.0902 0.0796 0.0722 0.0668 0.0625 0.0594 0.0567 0.0461 0.0344 0.0245 0.0167 
120 0.1225 0.0759 0.0585 0.0489 0.0429 0.0387 0.0357 0.0334 0.0316 o .0302 0.0242 0.0178 0.0125 0.0083 

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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where no denotes the size of the individual groups, then the null hypothesis of 
equality of variances must be rejected and the alternative hypothesis (1;ax -# 
(12 accepted. 

When the sample sizes are not too different [cf., the remark on sample sizes 
on page 504J, one computes their harmonic mean X H and interpolates in 
Table 152 for v = xH - l. 

EXAMPLE. Suppose we are given the following.5 variances: sf = 26, s~ = 51, 
s~ = 40, s~ = 24, and s~ = 28, where every variance is based on 9 degrees 
offreedom. They are to be tested at the 5 % level. We have Gmax = 51/(26 + 
51 + 40 + 24 + 28) = 0.302. The tabulated value for ex = 0.05, k = 5, v = 9 
is 0.4241. Since 0.302 < 0.4241, the equality of the variances under con
sideration cannot be rejected at the 5 % level. 

A very similar test, which is however based on the ranges of the individual 
samples, is described by Bliss, Cochran and Tukey (1956); examples and the 
upper 5 % bounds can be found in the original paper. 

The tests of Hartley and Cochran lead to the same decisions in most cases. 
Since the Cochran test utilizes more information, it is somewhat more 
sensitive. Additional suggestions (cf., Section 7.2.3) are contained in the 
following outline: 

Population Test 

slightly skew distributed Cochran 
normally distributed N (P,u) k < 10: Hartley, Cochran 

k ~ 10: Bartlett 
less peaked than N (/l,u) Levene 
more peaked than N (/l,u) k < 10: Cochran 

k ~ 10: Levene 

~ 7.2.3 Testing the equality of the variances of 
several samples of the same or different 
sizes according to Bartlett 

The null hypothesis, homogeneity of the variances, can be tested according to 
Bartlett (1937) when the data come from normally distributed populations. 
The Bartlett test is a combination of a sensitive test of normality, more 
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precisely the "long-tailedness" of a distribution, with a less sensitive test 
of equality of the variances: 

where 

k 1 1 
I---

i= I Vi V 
C = 3(k _ 1) + 1 

k 

I ViS; 

S2 = ~ and DF = k - 1 
V 

V = n - k = total number of degrees offreedom = I~= I Vi' 

n = overall sample size, 

(7.3) 

k = number of groups: (each group must include at least 5 observations), 
S2 = estimate of the common variance = [I (ni - )sf]/[n - k], 
Vi = number of degrees of freedom in the ith sample = ni - 1, 
s; = estimate of the variance of the ith sample. 

The denominator c is always somewhat larger than 1, i.e., c need be computed 
only if the value in the brackets is expected to give a statistically significant X2 

Given k groups of samples of equal size no, where no ~ 5, the following 
simplifications apply: 

where 
k + 1 

c = 3k(no _ 1) + 1 (7.4) 

(DF = k - 1). 

If the test statistic X2 exceeds xl-I:Il' then the null hypothesis 
O'I = o'~ = ... = a; = ... = O'f = 0'2 is rejected (alternative hypothesis 
a; =I: 0'2 for some i) at the 10011 % significance level. 

Harsaae (1969) gives exact critical limits which supplement Table 32 of 
the Biometrika Tables (Pearson and Hartley 1966 [2], pp. 204, 205). Exact 



500 7 Analysis of Variance Techniques 

critical values for k = 3(1)10; Vi = 4(1)11, 14, 19, 24, 29, 49, 99; IX = 0.10, 
0.05,0.01 are given by Glasser (1976). For unequal sample sizes see M. T. 
Chao and R. E. Glasser, Journal of the American Statistical Association 73 
(1978),422-426. 

EXAMPLE. Given: Three groups of samples of sizes n1 = 9, n2 = 6, and 
n3 = 5 with the variances specified in Table 153. Test the equality of the 
variances (IX = 0.05). 

Table 153 

No. S2 
I 

n - 1 
I vjsF log Si2 Vi log S~ 

Vi 

1 8.00 8 64.00 0.9031 7.2248 
2 4.67 5 23.35 0.6693 3.3465 
3 4.00 4 16.00 0.6021 2.4084 

17 103.35 12.9797 

S2 = 103.35 = 6.079 
17 ' 

log S2 = 0.7838, 

x2 = ![2.3026(17.0.7838 - 12.9797)J = !.O.794. 
c c 

Since XtO.05 = 5.99 is substantially larger than 0.794, the null hypothesis 
is not rejected at the 5 % level. With 

[!+!+!J-~ 8 5 4 17 
c = 3(3 _ 1) + 1 = 1.086 

we have X2 = 0.794/1.086 = 0.731 < 5.99. 

If the number of variances to be tested for equality is large, one can 
employ a modification of the Bartlett test (cf., Barnett 1962) proposed 
by Hartley. Since the Bartlett test is very sensitive to deviations from the 
normal distribution (Box 1953, Box and Anderson 1955), apply in case 
of doubt the procedure suggested by Levene (cf., Section 3.5.1; also 
Section 3.9.1 and Meyer-Bahlburg 1970) or still better procedures 
(cf., Games 1972). Several variances can be simultaneously compared 
by an elegant method due to David (1956; Tietjen and Beckman 
1972 give additional tabulated values). See also page 495. 
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7.3 ONE WAY ANALYSIS OF VARIANCE 

~ 7.3.1 Comparison of several means by analysis 
of variance 

The comparison of the means of two normally distributed populations 
(Section 3.6) can be broadened into the comparison of an arbitrary number 
of means. Given are k samples of sizes n;, i = 1, ... , k, and combined sample 
size n, i.e., 

l.t:;~n I 
Each sample originates in a normally distributed population. 

Since (-test and analysis of variance are relatively robust against skewness but not 
against too many observations lying outside of the x ± 2s limits (normal distribution: 
4.45 % of the observations lie outside of J1 ± 2a), the Nemenyi test (Section 7.5.2) 8 
should be applied when the tails are too heavy. 

The k independently normally distributed populations have identical but 
unknown variances. The sample values Xu have two indices: Xu is the jth 
value in the ith sample (l ::; i ::; k; 1 ::; j ::; nJ 

The sample means Xi. 

_ t"i 
x· =- LX .. 

I. ni j= 1 I) 

The overall mean x: 

The dot indicates the index over 
which summation was carried out; 
thus, e.g., x .. = L7= 1 Lj~ 1 Xu is the 
sum of all x-values, the total of all 
response values. 

1 k". 1 k 

X = - L L ni xij = - L ni Xi. 
n i=1 j=1 n i=1 

or, in simplified notation: 

.~=1 'x .. =l'n..x. n? IJ n4 I I. 
l,l J 

(7.5) 

(7.6) 

(7.7) 

An essential aspect of the one way analysis of variance is the decomposition 
of the sum of squares of the deviations of the observed values from the overall 
mean, SStotal, into two components: 

1. The sum of squares of the deviations of the observed values from the 
corresponding sample (group) means, called "within sample sum of 
squares" (SSwithin) or error sum of squares, and 
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2. The sum of squares of the deviations of the sample (group) means from 
the overall mean, weighted by the number of elements in the respective 
samples (groups) (ni). This sum is called the "between samples (groups) 
sum of squares" (SSbetween). 

SStotal = SSwithin + SSbetween· 

REMARK. The deviation of any observation Xu from the overall mean x may be split 
up into two parts: Xij - x = (xij - x;.) + (Xi. - x) with the group means Xi.. 

Simplified notation: x for X .. and Xi for Xi .. 

Partition of the total sum of squares: 

L (xij - X)2 = L (xij - Xi)2 + L(xi - X)2, 
i,j i,i i,j 

L (Xij - X)2 = L (xij - xY + L ntCxi - X)2, 
itj i,i i 

with the corresponding degrees of freedom 

k 

n - 1 = L (ni - 1) + k - 1 
i= 1 

= (n - k) + (k - 1). 

(7.8) 

(7.9) 

The sums of squares divided by the respective degrees of freedom 
SStotal/(n - 1), ... , i.e., the estimates of the variances are in analysis of 
variance called the mean sum of squares (MS). If all the groups originate in 
the same population, then the variances, that is, the mean squares 

and 

2 1 ~ - 2 
Swithin = MSwithin = --k L.. (Xij - x;) , n - .. 

'oJ 

(7.10) 

(7.11) 

should be of about the same size. If this is not so (i.e., if the quotient of 
MSbetween/MSwithin is larger than the critical value of the F-distribution 
determined from V1 = k - 1, V2 = n - k, and oc), then certain of the groups 
have different means Jli. The null hypothesis that the population means of 
the k treatment groups, classes, categories are all equal, or Jl1 = Jl2 = ... = 
Jli = ... = Jlk = Jl, is then rejected on the basis of the test statistic (7.12) 
[i.e., (7.13) or (7.14)] if P > F(k-1;n-k;a). In this case at least two Jl;'S are 
different, i.e., the alternative hypothesis that Jli ¥- Jl j for some (i, j) is accepted. 
If MSbetween < MSwithin, the null hypothesis may not be rejected; then (7.6) 
and (7.11) are estimates of Jl and (12 with n - k degrees of freedom. 



7.3 One Way Analysis of Variance 503 

MSbetween is also known as the mean square between treatments or 
categories, or as the "sampling error," and MSwithin = S;itbin = s;rror = 
Mean square error = MSE is also known as the within group variance, 
within group mean square, or "experimental error." 

By definition 

1 --L nlxi. - X)2 
P = MSbetween = _k_-_1-.:...i ____ _ 

MSwithin _1_" ( .. _ -.)2 
n _ k~ X,) X •. 

.,] 

P is computed according to 

1 [ x 2 X2] L I. .. 

A k-l· n· n 

1 ,,2 
--L...Si(ni - 1) 
n - k i 

F- I I 

- 1 [" 2 "xt]· -- L.,x - L.,-
n-k i,j ij i ni 

For sample groups of equal size (ni = no) the following is preferred: 

(7.12) 

(7.13) 

(7.14) 

For normally distributed observations it is remarkable that mean and variance 
are independently distributed. In our k samples S;ithin is independent of Xi' 
and consequently independent of S~etween' If we assume that the null hy
pothesis is true, then both the sample variances S~etween and S;ithin, that is, the 
numerator and denominator in (7.12) to (7.14), are independent, usually not 
too different, unbiased estimates of a. This holds true for the denominator, 
even if the population means are not equal. For departures from the null 
hypothesis the numerator will tend to be greater than the denominator, 
giving values of F greater than unity. Thus a one sided test is adequate. 
Upper tail values of the F distribution for just this situation are given in 
Tables 30a to 30f. The ASSUMPTIONS for this test are: 

1. Independence of observations within and between all random samples. 
2. Observations from normally distributed populations with equal population 

variances. 

A close look at and a comment on (7.8): We may write xij - x = (xij - Xi) + 
(Xi - X). Squaring and summing this over i and j gives 

k nj k ni 

I I (Xij - X)2 = I I [(Xij - Xi) + (Xi - x)Y 
i=!j=! i=lj=l 



504 7 Analysis of Variance Techniques 

The cross product term 2ab vanishes because I (Xii - x) = 0: 

k ni k ni k ni 

I I (Xii - X)2 = I I (Xij - Xi)2 + I I (Xi - X)2. 
i= 1 j= 1 i= 1 j= 1 i= 1 j= 1 

The latter term may be written 

k Ri k 

I I (Xi - X)2 = I ni(Xi - X)2, 
i= 1 j= 1 i= 1 

since the contribution (Xi - X)2 is the same for all ni observations in the ith group. 
Using this, and writing Xi instead of Xi., we have (7.8): 

k ni k ni k 

I I (Xii - X)2 = I I (Xij - X;)2 + I ni(Xi - X)2. 
i= 1 j= 1 i= 1 j= 1 i= 1 

The sum of squares about X is partitioned into "within samples" variation (first 
term) and "between samples" variation (second term). The second term will tend 
to be large if the means Pi are not identical, since then the sample means will tend to 
be more widely dispersed about X than if all population means were alike. 

The choice of samples of equal size offers several advantages: (1) Devi
ations from the hypothesis of equality of variances do not carry as much 
weight, and tests for the equality of the variances are easier. (2) The Type 2 
error which occurs with the F-test becomes minimal. (3) Other comparisons 
of means (see Sections 7.3.2, 7.4.2) are simpler to carry out. 

Method of computation 
The test statistic (7.13) is computed according to 

1 
MS k - 1 [SSbetween] p = between = ______ _ 

1 
--[B -K] 
k - 1 

MSwithin 1 [S ] 
--k S within n-

1 
n _ k [A - B] 

with a total of n observations from k 

sample groups or from k samples, and 

A = L (observations)2 = L x~, i,i 
B = L (sample sum)2 = L xl, 

sample size i ni 

where the sample sum is xi. = LXii' 
j 

(sum of all observations)2 (~Xi.) 2 

K = = --'---"--
number of all observations n n 

(7.15) 
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To verify the result, SStotal is computed indirectly: 

SStotal = [SSbetween] + [SSwitbin] = [B - K] + [A - B], (7.16) 

and directly: 

SStotal = ~ x~ - (~Xii)2jn = A - K. 
IJ IJ 

(7.17) 

Particularly simple examples 
1. Samples of unequal sizes ni (Table 154): By (7.13) and (7.15), 

Table 154 

Sample group 

~ 1 2 3 

1 3 4 8 
2 7 2 4 
3 7 6 
4 3 

x. 10 16 18 x = 44 1 • . . 
"i 2 4 3 " = 9 

xi 5 4 6 

_1_ [(102 + 162 + 182) _ 442J 
~ 3-1 2 4 3 9 
F=---;-;=--------'=--'-------...!.---=-.,..,..,..,...----,--".,.---=-=;-

_1_[(32+72+42+22+72+32+82+42+62)_(102 + 162 + 182)J 
9-3 2 4 3 

1 
~ 2. [6,89] 
F = 1 =0.689. 

"6 [30] 

Checks of (7.16), (7.17): 

[6.89] + [30] = 36.89, 
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Since F = 0.689 < 5.14 = F(2;6;0.05), the null hypothesis that all three 
means originated in the same population cannot be rejected at the 5 % level; 
the common mean is (7.6), 

x = [(2)(5) + (4)(4) + (3)(6)]/9 = 4.89, 

and the variance is (7.11), 

S;ithin = s;rror = MSE = 30/6 = 5. 

2. Samples of equal size (ni = const. = no) per group (Table 155): 
By (7.13), 

Table 155 

Sample group 

N 1 2 3 

1 6 5 7 
2 7 6 8 
3 6 4 5 
4 5 5 8 

xi. 24 20 28 x = 72 .. 
nj.= no 4 4 4 n = 12 

xi 6 5 7 x = 6 

Check: [8] + [10] = 18; (62 + 72 + ... + 52 + 82) - 722/12 = 18. 
By (7.14), 

~ [3(242 + 202 + 282) - 722]/(3 - 1) 96/2 
F = [4(62 + 72 + ... + 82) _ (242 + 202 + 282)]/(4 _ 1) = 40/3 = 3.60. 

Since F = 3.60 < 4.26 = F(2; 9; 0.05)' the null hypothesis, equality of the 
three means (x = 6, S;ithin = s;rror = MSE = 10/9 = 1.11), cannot be re
jected at the 5 % level. 

Critical bounds for the test H A : III ::;; 112 ::;; 113 (Ho:lll = 112 = 1l3) 
with ni = const. (2 through 240) and rt. = 0.005 through 0.10 are given by 
Nelson (1976). 
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Remarks 

I. Estimating the standard deviation from the range. If it is assumed that a sample 
of size n originated in an approximately normally distributed population, then the 
standard deviation can be estimated from the R: 

I s= R(1/d.). I (7.18) 

The factor I/d. can, for given n, be read off from Table 156. Usually it is expedient to 
split up the sample by means of a random process into k groups of 8 (or at least 6 to 
10) individual values, and for each group determine the corresponding R and compute 
the mean range R: 

(7.19) 

Using this in 

s=R(l/d.) (7.20) 

determines the standard deviation (" within the sample") based on the number of 
effective degrees of freedom, v, given on the right side of Table 156. For n ~ 5 and 
k > I, v < ken - I) is always true. S2 and SSwilhin should be of the same order of 
magnitude (cf., Table 155withR = (2 + 2 + 3)/3 = 2.33,s = (2.33)(0.486) = 1.13; 
S2 = 1.28 as against SSwilhin = 10/9 = 1.11). 

Table 156 Factors for estimating the standard deviation of the 
population from the range of the sample (taken from Patnaik, P. B.: 
The use of mean range as an estimator of variance in statistical tests, 
Biometrika 37, 78-87 (1950» 

Size of 
sample or Effective number of degrees 

group Factor of freedom v for k groups of size n 

n 1/dn k =1 k=2 k=3 k=4 k=5 

2 0.8862 1 
3 0.5908 2 
4 0.4857 3 
5 0.4299 4 7 11 15 18 
6 0.3946 5 9 14 18 23 
7 0.3698 5 11 16 21 27 
8 0.3512 6 12 18 24 30 
9 0.3367 7 14 21 27 34 

10 0.3249 8 15 23 30 38 
11 0.3152 9 
12 0.3069 10 
13 0.2998 11 
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This table has been extended by Nelson (1975) (n = 2-15, k = 1-15,20,30,50) and 
illustrated by additional examples (cf., also the Leslie-Brown test mentioned in 
Section 7.2.1). 

2. A simplified analysis of variance can be carried out with the help of Table 156. 
We give no example, but refer the reader to the test of Link and Wallace, presented in 
Section 7.5.1, which is also based on the range but which is much more economical 
thanks to Table 177 (cf., also the graphic procedure of Ott 1967). 

3. The confidence interval ofthe range can be estimated using Table 157. Suppose a 
number of samples of size n = 6 are drawn from a population which is at least 
approximately normally distributed. The mean range R equals 3.4 units. A useful 

Table 157 Factors for estimating a confidence 
interval of the range: The product of a standard 
deviation estimated from the range according to 
Table 156 and the factors given for the same or 
some arbitrarily chosen sample size and degree 
of significance furnishes the upper and lower 
limits and thus the confidence interval for the 
range from samples of the size chosen. Column 6 
lists a factor vn for estimating the standard 
deviation of the mean range. More on this can be 
found in the text. (Reprinted from Pearson 1941/42 
p. 308, Table 2, right part. The values corrected by 
Harter et al. 1959 have been taken into account.) 

n 1% bounds 5% bounds Factor 
lower upper lower upper vn 

2 0.018 3.643 0.089 2.772 0.853 
3 0.191 4.120 0.431 3.314 0.888 
4 0.434 4.403 0.760 3.633 0.880 
5 0.665 4.603 1.030 3.858 0.864 
6 0.870 4.757 1.253 4.030 0.848 
7 1.048 4.882 1.440 4.170 0.833 
8 1.205 4.987 1.600 4.286 0.820 
9 1.343 5.078 1.740 4.387 0.808 

10 1.467 5.157 1.863 4.474 0.797 
11 1.578 5.227 1.973 4.552 0.787 
12 1.679 5.290 2.071 4.622 0.778 

estimate of the standard deviation by (7.20) is then (3.4)(0.3946) = 1.34. If the size 
of future samples is scheduled to be fixed at n = 4, we get from Table 157, for the 
90 % confidence interval, the factors 0.760 and 3.633 and hence the bounds 
(1.34)(0.760) = 1.02 and (1.34)(3.633) = 4.87. Assuming we have a normally 
distributed population with (J = 1.34, this interval (for future random samples of 
size n = 4) is the exact 90 % confidence interval of the range. 
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The estimate of the standard deviation of the mean range, sji, is given by 

where 

v. = factor from Table 157, 

lid. = factor from Table 156, 

R = mean range, 

k = number of samples of size n from which ranges were computed. 

For example, for k = 5, n = 6, R = 7, lid. = 0.3946, and v. = 0.848, we get 

(0.848)(0.3946)2(7) 
sji = = 0.413. 

~5 
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(7.21) 

A remark on the factors lid. and v n: For samples of size n from a normally distri
buted population with standard deviation a, d. is the mean and v n the standard 
deviation of the standardized range w = Ria. 

~ 7.3.2 Assessment of linear contrasts according 
to Scheffe, and related topics 

If the one way analysis of variance leads to a significant result, an effort is 
then made to determine which of the parameters, 111, 112, ... , 11;, ... , 11k> 
or better yet, which two groups of parameters, A and B, with the means 
I1A and I1B, differ from each other. If we have, e.g., estimates of the five 
parameters 111' 112, 113, 114, 115, then we can, among other things, compare the 
following means: 

V1: 111 = 112 = I1A with 113 = 114 = 115 = I1B, 

1 . 1 
I1A = 2(111 + 112) WIth I1B = 3(113 + 114 + 115), 

1 
I1A = 111 with I1B = 4(112 + 113 + 114 + 115)' 

Comparisons of this sort (population contrasts), in the form 
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are called linear contrasts. They are linear functions of the k means J1.i (7.22) 
that are determined by the k known constants Ci for which the condition 
(7.23) holds: 

(7.22, 7.23) 

These constants are as follows: 

If 

with 

111 1 
1 - - - - - - - - = O. 

4 4 4 4 

k C~ 
2 ~ I 

Senor ~ -, 
i=1 ni 

(7.24) 

S;rror = S;ithin = MSwithin = MSerror = MSE, then the parameters under
lying the contrasts differ (Scheffe 1953). If we want to compare two means, 
say J1.3 and J1.s, after the data are collected, and if e.g., k = 6, then one sets 
CI = C2 = C4 = C6 = 0 and rejects Ho: J1.3 = J1.s as soon as 

~ IX3 - xsi J 
S = ( 1 1) > (k - l)F(k-l;n-k;lX) = SIX' 

s;rror - +-
n3 ns 

(7.25) 

In the case of groups of markedly unequal size, one forms weighted linear 
contrasts, so that, e.g., for VI we have 

estimated by 

nlJ.ll +n2J.l2 
ni +n2 

n3J.l3 + n4J.l4 + nsJ.ls 
n3+ n4+ nS 

n~1+n~2 n~3+~x4+n~S 
nl+n2 n3+ n4+ nS 
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EXAMPLE 

Table 158 

No. s .2 
n i 

( i ) xi 1 I I I 

1 10 10 10 15 
2 9 8 10 5 
3 14 12 10 15 
4 13 11 10 10 
5 14 7 10 5 

Ln I = Ln Il = 50 

Means computed according to (1.47): 
XI = 12.0, 
XII = 12.1. 

511 

Consider the data in Table 158. By (7.15) we have, for the case of equal (I) 
and unequal (II) sample sizes, 

~ 10[(10-12)2 +(9 -12)2 +(14-12)2 +(13 -32)2 +(14-12)2]/(5 -1) 
FI = 9.48/(50 - 5) , 

~ 55 
FI = 9.6 = 5.73, 

(15(10 - 12.1)2 + 5(9 - 12.1)2 + 15(14 - 12.1)2 
F _ + 10(13 - 12.1)2 + 5(14 - 12.1)2)/(5 - 1) 

II - (10. 14 + 8·4 + 12· 14 + 11 ·9 + 7·4)/(50 - 5) 

~ 48.75 
FII = 10.38 = 4.69. 

Since 5.73 and 4.69 > 3.77 = 1'(4;4S;0.01)' we test J.ll = J.l2 < J.l3 = J.l4 = 
J.ls by (7.24, 7.24a) and form: 

for I, 

1 1 
IXA - xBI = 2{x1 + X2) - 3{X3 + X4 + xs) 

1 1 
= 2(10 + 9) - 3(14 + 13 + 14) = 4.17, 

2 S 2 (1) [ 1 ( 1 1 ) 1 ( 1 1 1 )] Serrorj~ Cj ;;; = 9.6 22 10 + 10 + 32 10 + 10 + 10 

= fo = 0.894; 
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for II, 

Ix _ x I = 15·10 + 5·9 _ 15·14 + 10·13 + 5·14 = 3.92 
A B 15 + 5 15 + 10 + 5 ' 

and 

2 ~ 2(1) Serror ~ Ci -
;= 1 n; 

= 0.930 

[Since ~ = nt/(nl + n2) = 15/(15 + 5)], and get 

for I for II 

4.17 
0.894 = 4.66 

3.92 
0.930 = 4.21 

with F(4;4S;O.Ol) = 3.77 and J(5 - 1)3.77 = 3.88. These are significant 
differences in both cases: 

I: Sl = 4.66 > 3.88 = SO.Ol 

II: Sll = 4.21 > 3.88 = SO.Ol' 

Remark on the comparison of a large number of means 
@ The formula (7.49) in Section 7.4.2 is, for certain problems, more practical 

than (7.24), (7.24a) (VS~rror = n - k). Williams (1970) showed that the effort 
expended in a one-way analysis with not too small k can be reduced by 
computing (a) for the smallest n (nmin) the greatest nonsignificant difference 
between DI below and (b) for the largest n (nmax) the least significant difference 
D1,above; DI in (7.49) then needs to be determined only for the differences lying 

between D1,below and D1,above' One computes D1,below = JW/nmin and 

D1,above = JW/nmax , where W = 2s;rror(k - 1) F(k-l;n-k;~)' 

Remark: Forming homogeneous groups of means using the modified LSD 
test. Whenever the F-test permits the rejection of H 0 (Ill = 112 = ... = 11k) one 
orders the k means from sample groups of equal size (n; = const; n = L ni = 
k· ni) by decreasing magnitude (X(l) ~ X(2) ~ x(3) ~ ... ) and tests whether 
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adjacent means differ by a .::\ (delta) which is larger than the least significant 
difference (LSD) 

LSD = In-k;~ (7.26) 2 2 
- serrorF(l' n-k'~)' 
n· " • 

For unequal sample sizes (ni -=f. const., n = Li ni) we have 

(7.27) 

For.::\ :::;; LSD or .::\(a, b) :::;; LSD(a, b), Ho (equality of adjacent means) cannot be 
rejected; we mark such means with a common underline. 

EXAMPLE 

Xi d 

X(1) = 26.8 
0.5 

X(2) = 26.3 
1.1 

X(3) = 25.2 
5.4 

X(4) = 19.8 
5.5 

XIS) = 14.3 
2.5 

XIS) = 11.8 

n i = 8, k = 6, S: "or = 10.38, V = 48 - 6 = 42, 

t 42 ;OOS = 2.018, F(142.0.05) = 4.07, 

LSD = 2.018J~' 10.38 = 3.25, 

or 

LSD = J ~ . 10.38 . 4.07 = 3.25. 

At the 5 % level, three regions are apparent: X(1)X(2)X(3) X(4) X(5)X(6)' 

[Application of (7.27): nl = 7; n2 = 9; other values unchanged; 

7+9 
(7)(9) = 0.254; 

LSD(1,2) = 2.018J10.38. 0.254 = 3.28 or J10.38. 0.254·4.07 = 3.28; 

.::\(1,2) = 0.5 < 3.28 = LSD(1, 2), i.e., H 0: J.Ll = J.L2 cannot be rejected at the 
5% level.] 
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In the case of equal sample sizes (ni) one can, following Tukey (1949), do a 
further study on groups of 3 or more means each. Thus one finds for each 
group the group mean x and the largest deviation d = 1 Xi - X 1 within the 
group, and then tests whether dJni/s;rror exceeds the value in Table 26 (see 
below). If this is the case, Xi is isolated, and a new group mean is formed and 
tested further (with means split off, if necessary) until every group includes no 
more than 3 means. 

The table cited above is found on pp. 185-186 of the Biometrika Tables 
(Pearson and Hartley' 1966) (n = number of means in the group, v = number 
of degrees of freedom< belonging to s;rror). If this table is unavailable, one can 
compute for groups of: 

3 means 

Z = Id/serror - 0.51 
3(0.25 + l/v) 

>3 means 

A 1 d/serror - 1.2· log n'l 
Z = -'---'---=,:=-----~~ 

3(0.25 + l/v) 

v = number of degrees of freedom belonging to s;rror. 

n' = number of means in the group. 

For Z < 1.96 = ZO.05 the group can be taken as homogeneous at the 5 % 
level. Other bounds of the standard normal distribution can be read from 
Tables 14 (Section 1.3.4) and 43 (Section 2.1.6) as needed. For z > Z", Xi is 
to be isolated and a new group mean formed, for which d and z are again 
computed. 

Simultaneous confidence intervals to contain all k 
population means 

A set of exact two sided 95 % simultaneous confidence intervals (95 % SCI) to contain 
all of the fJi (i = I, 2, ... , k) is obtained as 

Xi ± 1 tk;r;p=O.O; 0.051 J S;rror/ni (95 %SCI) 

provided that Xi are independent sample means based upon ni independent observa

tions from k normal populations, s;rror = MSE = MSwithin = S!'thin' If the correla
tions between the sample means are not all zero, the formula (95 /~ SCI) still applies, 
but is conservative. Hahn and Hendrickson (1971, [8: 7a] p. 325, Table I) give 
percentage points Itlk;v;p=o.o;. of the maximum absolute value It I of the k-variate 
Student distribution with v degrees offreedom for IX = 0.01, 0.05, 0.10, for many values 
ofv ::;; 60, and for k = 1(1)6(2)12, IS, and 20. Some values of this STANDARDIZED 
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MAXIMUM MODULUS DISTRIBUTION for IX = 0.05 needed to compute several 
95 % SCIs are given below 

~ 4 5 6 8 

10 2.984 3.103 3.199 3.351 
15 2.805 2.910 2.994 3.126 
20 2.722 2.819 2.898 3.020 
30 2.641 2.732 2.805 2.918 
40 2.603 2.690 2.760 2.869 
60 2.564 2.649 2.716 2.821 

F or our example we have x(l) = 26.8, ... , X(6) = 11.8; 1 t 16; 42; p = 0.0; 0.05 = 2.760 -

0.004 = 2.756; 2.756)10.38/8 = 3.14 or Xi ± 3.1 and 95% SCI: 23.7:::; JI.(1) :::; 

29.9; ... ; 8.7 :::; JI.(6) :::; 14.9. 

Hahn and Hendrickson (1971) mention eight further applications of the four tables 
(p = 0.0; 0.2; 0.4; 0.5); e.g.: (1) multiple comparisons between k treatment means, 
and a control mean, and the corresponding SCI for Jl.i - Jl.contol, and (2) prediction 
intervals to contain all k further means when the estimate of (J2 is pooled from several 
samples. 

~ 7.3.3 Transformations 

7.3.3.1 Measured values 

Skewed distributions, samples with heterogeneous variances, and frequency 
data must undergo a transformation aimed at getting normally distributed 
values with homogeneous variances before an analysis of variance is carried 
out. As an example we compare the ranges of the 4 samples in Table 159, 
where 9.00 - 5.00 = 4.00; J9 - J5 = 3 - 2.236 = 0.764, log 9 - log 5 
= 0.954 - 0.699 = 0.255; ! - ! = 0.2 - 0.111 = 0.089, and the other 
values are correspondingly determined. The range heterogeneity of the 
original data is reduced somewhat by the root transformation, and even 
more by the logarithmic transformation. The reciprocal transformation is 

Table 159 

Sample Range of the samples 

Extreme Original Square Logarithms 
No. values data roots (base 10) Reciprocals 

1 5.00 and 9.00 4.00 0.764 0.255 0.089 
2 0.20 and 0.30 0.10 0.100 0.176 1.667 
3 1.10 and 1.30 0.20 0.091 0.072 0.140 
4 4.00 and 12.00 8.00 1.464 0.477 0.168 
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too powerful, as it enlarges tiny ranges too much. The ranges of the logar
ithms exhibit no larger heterogeneity than one is to expect on the basis of a 
random process. If it is assumed further that the standard deviation is 
proportional to the range, then the logarithmic transformation seems 
appropriate. Occupying a position midway between the logarithmic trans
formation and the reciprocal transformation is the transformation based 
on the reciprocal of the square root (1/ jX). Applying it to our four samples, 
we obtain 1/ J5 - 1/ J9 = 0.114 and correspondingly 0.410, 0.076, 0.211, 
a still better homogeneity of the variation spread. The difference from the 
values of the logarithmic transformation is, however, small, so that in the 
present case this transformation is preferred for its manageability among 
other things. Variables with unimodal skewed distributions are frequently 
mapped by the transformation x' = log(x ± a) into variables with (approxi
mately) normal distribution (cr., also Knese and Thews 1960); the constant a 
(called Fin Section 1.3.9) can be rapidly approximated as shown by Lehmann 
(1970). Other important types of transformations are x' = (x + ay with 
a = ! or a = 1 and x' = a + bxc with - 3 < c < 6. 

7.3.3.2 Counted values 

If the observations consist of counts, for example of the number of germs 
per unit volume of milk, the possible values are 0, 1,2,3, etc. In such a case, 
useful homogeneity is frequently obtained when, in place of 0, 1,2, 3, ... , 
the transformed values: 

i.e., 
Is, )1 + ~, )2 + ~, )3 + ~"'" 

0.61, 1.17, 1.54, 1.84, ... , 

are used. The same shift by i is advantageous when frequencies are subjected 
to a logarithmic transformation: log(x + i) rather than log x. One thereby 
avoids the logarithm of zero, which is undefined. For the square root trans
formation of frequencies (Poisson distribution) due to Freeman and Tukey 
(1950) (the function of g = Jx + F+1 maps the interval 0 ::;; x ::;; 50 
onto 1.00 ::;; g ::;; 14.21), a suitable table, which also includes the squares of 
the transformed values, is provided by Mdsteller and Youtz (1961). That 
article contains, moreover, a comprehensive table of the angular transforma
tion (cr., Section 3.6.1) for binomially distributed relative frequencies (ni ~ 
constant and not too small). The angular transformation is not needed if all 
values lie between 30% and 70%, since then (n ~ 0.5) the binomial distribu
tion is a sufficiently good approximation to a normal distribution. 

The angular transformation also serves to normalize right-steep distri
butions, which however are also subjected to the power transformation, 
x' = x a, where a = 1.5 for moderate and a = 2 for pronounced right-steepness. 
Tables are provided by Healy and Taylor (1962). 
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Transformation of data: percentages, frequencies and measured ob
servations in order to achieve normality and equality of variances. The 
type of relation between the parameters (e.g., (J and fl) is decisive. 

Data Suitable transformation 

Percentages (1~ = kJl(1 - Jl) Angular" transformation: 
0-100% 

x' = arcsin vxrn arcsin 
x + 3/8 

or ---
n + 3/4 

For percentages between 30% and 70% one 
can do without the transformation (see text). 

Frequencies (12 = kJl Square root transformation: 
and 
measured x' = Vi or ..jx + 3/8 
observations 

1. In particular for absolute frequencies of 
relatively rare events. 

2. With small absolute frequencies, including 

zero: x' = ..jx + 0.4. 

Measured (1 = kJl Logarithmic transformation: x' = log x 
observations 1. Also x' = log (x ± a); cf., Section 1.3.9. 
(frequencies) 2. With measured observations between 0 and 

1: x' = log (x + 1). 

(1 = kJl2 Reciprocal transformation: x' = 1/x 
In particular for many time-dependent vari-
ables. 

* Modifications are discussed by Chanter (1975). 
If the choice of an adequate transformation causes difficulties, one can explore visually by 
means of a diagram (according to appearance) whether in various subgroups of the data 
set there exist certain relations between the variances or standard deviations and the means, 
and then choose the logically and formally adequate transformation. If (1 is proportional 
to A, then the transformation B should be used in order to stabilize the variance: 

A const. vii Jl # Jl2 

B no transf. ..ji( log x 1/..ji( 1/x 

If on plotting the data, e.g., Si versus Xi' a scatter diagram or 
point cloud suggests a linear regression, then the logarithmic 
transformation x' = log x or x' = log(x ± a) should be used. 

Supplementary remarks concerning transformations (ct., also Bartlett 1947, Anscombe 
1948, Rives 1960, Box and Cox 1964, David 1981, Chap. 8 [8:1bj, and Hoaglin et al. 
1983 [8:1]) are contained in Remark 2 in Section 7.4.3. 

7.3.3.3 Ranks 

The normal rank transformation enables us to apply the analysis of variance 
to rank data. The n ranks are mapped onto the expected values of the 
corresponding rank order statistic of a sample of size n from a standard 



518 7 Analysis of Variance Techniques 

normal distribution. They are listed in the tables by Fisher and Yates (1963), 
Table Xx. Other tables are given by Teichroew (1956) and Harter (1961). 

The analysis ofvariance estimation and test procedures are then applied 
to the transformed values. Significance statements with respect to the 
transformed variables hold also for the original data. The means and 
variances obtained by the inverse transformation are however not 
always unbiased. More on this can be found in Neyman and Scott 
(1960). 

For the common rank transformation as a bridge between parametric 
and nonparametric statistics see Conover and Iman (1981, cited on p. 286). 

7.4 TWO WAY AND THREE WAY ANALYSIS OF 
VARIANCE 

7.4.1 Analysis of variance for 2ab observations 

If a classification of the data must be made according to more than one 
point of view, the use of double or, more generally, multiple indices is very 
expedient. Here, the first index indicates the row, the second the column, 
the third the stratum (block, subgroup, or depth). Thus X251 denotes the 
observed value in the second row, fifth column, and first stratum of a three 
dimensional frequency distribution. In the general formulation, Xijk denotes 
an observation lying in the ith row,jth column, and kth stratum (cf., Fig. 59). 

(3) 

(4,3,2) or: 

row 4 
column 3 

stratum 2 

rows 

xt ;bloCkS (strata) 

~columns 
",---------'-----

strata or blocks (Z) 

Figure 59 Geometric model of the 
three way classification: the num
bers for a three way analysis of 
variance are arranged in rows, 
columns and strata. 

The scheme of the three way classification with a groups of the A-classifica
tion, i = 1, 2, ... , a; b groups of the B-classification, j = 1, 2, ... , b; and 2 
groups of the C-classification would look as in Table 160, with a dot always 
indicating the running index (1, 2, ... , a; 1,2, ... , b; 1 and 2). 
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7.4.1.1 Analysis of variance for the three way classification 
with 2ab observations 

Experimental variables, here three, are called factors; the intensity setting 
of a factor is called a level. One observes the outcomes of a trial with the 
three factors A, B, C at a, b, c (c = 2) levels AI,···' Aa, B1> ... ' Bb , C1, C2 

(cf., Table 160 and 162). These levels are chosen systematically and are of 
particular importance (model I, cf., Section 7.4.1.2). For every possible 
combination (Ai, Bj , Ck) there is an observation Xijk . The model equation 
would read: 

Xijk = Jl + ai + pjj + Ylk + ~aP)ij. + (aY)i~ + (PY)jk + ~ijk. I 
mteractlOns expenmenta error 

[together with the 
stratum effect second order or 

three factor 
column effect interaction] 

row effect 

overall mean 

observed value 

(7.28) 

Here a i are the deviations of the row means from the overall mean Jl, the 
effect of the ith level of the factor A (i = 1, 2, ... , a); P j are the deviations 
of the column means from Jl, the effect of the jth level of the factor B U = I, 
2, ... , b); Yk are the deviations of the two means of the strata from Jl, the 
effect of the kth level of the factor C (k = I, 2) (say k = I is the observed 
value for the first trial at the instant t 1 ; k = 2 is the observed value for the 
second trial at the instant t2 ; (see below). An interaction effect is present if the 
sum of the isolated effects does not equal the combined effect, i.e., the effects 
are not independent and hence not additive; in comparison with the sum of the 
individual effects, there is either a diminished or an intensified overall 
effect. (ap)ij is the interaction effect between the ith level of the factor A and 
thejth level of the factor B (i = 1,2, ... , a;j = 1,2, ... , b); (aY)ik is the 
interaction effect between the ith level of the factor A and the kth level of the 
factor C (i = 1,2, ... , a; k = 1,2); (Py) jk is the interaction effect between the 
jth level of the factor B and the kth level of the factor C U = I, 2, ... , b; 
k = 1, 2). Let the experimental error eijk be independent and normally 
distributed with mean zero and variance (12 for i,j and k. 

Of the three assumptions: (1) equality of variance of the errors, (2) statistical 
independence of the errors and (3) normality of the errors, (1) is the most critical one 
for the power of the inference about means. 
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Table 160 

I~ Bl B2 Bj Bb L 
Al x111 x121 x1j1 x1b1 

51.. 
x112 x122 x Ij2 x1b2 

A2 x211 x221 x2j 1 x2b1 

x212 x222 x2j2 x2b2 
52 .. 

Ai xi 11 xi21 xij1 xi b 1 
5. 

xil2 xi22 xij2 Xib2 
1 •• 

Aa Xa11 Xa21 Xaj1 Xabl 

Xa12 Xa22 Xaj2 Xab2 
5a .. 

L 5 • 1. 5 .2. 5 . 
• J. 

5 • b . 5 

Here S. denotes the sum of all values in the ith 
row, S'j.· the sum of all values in the jth column, 
S.1 the sum of all values in the 1st subgroup, and 
S. 2 the sum of all values in the 2nd subgroup; S is 
the sum of all observations (i.e., S = S = 
Li Lj Lk Xijk [with k = 1,2]). .. 

The observations represent random samples from normally distributed 
populations with a common variance (T2 ; for the sample variables, a decom
posability of the form (7.28) is assumed. In this model IX;, Pj' YIc, (IXP);j' 
(IXY);k, (PY)jk are unknown constants which are compared as systematic 
portions of the random components 6;jk' In view of the experimental errors 
6;jk, hypotheses on the systematic components are tested. Of the following 
restrictions, those apply that are appropriate to the particular hypotheses to 
be tested: 

LIX; = 0, 
; 

L (1XP);j = 0 for j = 1, 2, ... , b 
; 

L (IXP)ij = 0 for i = 1,2, ... , a 

L(PY)jk = 0 for k = 1,2 
j 

L (lXyh = 0 for k = 1,2 
i 

L (IXY)ik = 0 for i = 1,2, ... , a 
k 

L (PY)jk = 0 for j = 1,2, ... , b. 
k 

(7.29-7.37) 
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We then have the estimates for the parameters 

ii= (LLLXijk )/2ab=S/2ab 

&i = iii .. - ii 
pj= ii. j. - ii 
Yk=ii .. k- ii 

i j k 

(rxA{3) .. = " .. - ". - " . + " Ij Jl.lj. Jl.1.. Jl.. j. Jl. 
(rrA )ik = iii.k - iii.. - ii .. k + ii 
( Y)jk=ii.jk-ii. j. -ii .. k+ii· 

(7.38) 

(7.39) (7.42) 
(7.40)(7.43) 
(7.41)(7.44) 

Null hypotheses: 

In words: 

HA:rxi =0 fori = 1,2, ... ,a 

HB :{3j =0 forj= 1,2, ... ,b 

Hc: Yk = 0 for k = 1,2 

HAB : (rx{3)ij = 0 for i = 1,2, ... , a;j = 1,2, ... , b 

HAC: (rxY)ik = 0 for i = 1,2, ... , a; k = 1,2 

HBc :({3Y)jk =0 forj=I,2, ... ,b;k=I,2. 

H A : There is no row effect of A, or IX; = 0 for all i levels; confronted by 
the alternate hypothesis: not all IX; equal zero, i.e., at least one IX; #- o. 

H B: The corresponding statement holds for the column effect (fJj = 0). 
Hc: The corresponding statement holds for the stratum effect (Yk = 0). 

H AB, HAC, H BC: There are no interactions. Alternative hypothesis: at least one 
{lXfJ)ij #- 0; at least one {IXY);k #- 0; at least one (f3Y)jk #- o. 

To reject these hypotheses, we need the associated variances. We recall that the 
variance, here referred to as the mean square (MS), the average variation per degree 
of freedom, 

variation sum of squares SS 
mean square = = = - = MS, 

degrees of freedom degrees of freedom DF 

(7.45) 

was estimated by the quotient of the sum of squares SS over the degrees offreedom v, 
in the case of the variance of a single sample, v = n - 1 and 

2 L: (x - X)2 SS 
S = n-1 n-1' 

when SS = L: x 2 - (L: X)2 jn was obtained by subtracting a corrective term from 
a sum of squares. For the three way classification with 2ab observations, the adjust
ment reads (lj2ab)S2. The sums of squares and the associated DF are found in 
Table 161. The MS ofthe 6 effects are then tested by the F -test against the MS of the 



T
ab

le
 1

61
 

A
n

a
ly

si
s 

o
f 

va
ri

an
ce

 f
o

r 
th

e
 t

hr
ee

 d
im

en
si

on
al

 c
la

ss
ifi

ca
tio

n
 w

it
h

 2
ab

 o
b

se
rv

a
tio

n
s 

(c
 ~
 2

) 

S
ou

rc
e 

o
f 

th
e

 
va

ri
a

tio
n

 

B
e

tw
e

e
n

 t
h

e
 l

ev
el

s 
o

f 
th

e
 f

a
ct

o
r 

A
 

<J>
 t5 Q
) 

B
e

tw
e

e
n

 t
h

e
 l

ev
el

s 
::::

 
lJ

.J
 

o
f 

th
e

 f
a

ct
o

r 
B

 
c ·ii
i :2
, 

B
e

tw
e

e
n

 t
h

e
 l

ev
el

s 
o

f 
th

e
 f

a
ct

o
r 

C
 

g I
 In

te
ra

ct
io

n
 A

B
 

.
~
 '" ! c 

In
te

ra
ct

io
n

 A
C

 
(5

 t5
 '" u... 0 

In
te

ra
ct

io
n

 B
C

 
3: I-

E
xp

er
im

en
ta

l 
er

ro
r 

T
o

ta
l 

va
ri

a
tio

n
 

S
um

 o
f 

sq
ua

re
s 

S
S

 

1 
a 

1 
S

S
A

 =
 -

L 
S

2 
-

-
S

2 
2

b
 ;

~1
 

,.
. 

2a
b 

1 
b 

1 
S

S
B

=
-

LS
2 

-
-
S

2
 

2a
 j

~1
 

.,
. 

2a
b 

1 
2 

1 
S

S
C

 =
 -

I 
S

2 
-

-
S

2 
a
b
k
~
1
 

..
 k 

2a
b 

1
a

b
 

l
'
 

1
b 

1 
S

S
A

B
 =

 -
L 

L 
S

2 
-

-
L 

S
2 

-
-

L 
S

2 
+

 -
S

2 
2
;
~
1
j
~
1
 

'J.
 

2
b
;
~
1
 

,.
 

2a
J=

1
·J

 
2a

b 

1
a

2
 

1
a

 
1

2
 

1 
S

S
A

C
 =

 -
L 

L 
S

2 
-

-
L 

S
2 

-
-

L 
S

2 
+

 -
S

2 
b;

~1
 
k~

1 
,.

k 
2b

;~
1 

, .
. 

a
b
k
~
1
 

..
 k

 
2a

b 

1 
b 

2 
1 

b 

S
S

B
C

 =
 -

L 
L 

S
2

 
X

 
-

L 
S

2 
aj

~1
k~

1 
.J

k 
2a

j~
1 

.J
. 

1 
2 

1 
-

-
L

 S
2 

+
 -

S
2

 
ab

 k
~1

 
.k

 
2a

b 

1 
1 

1 
S

S
E

 =
 L

 L
 L

 X~
k 

-
2 

L 
L 

S~
. 

-
b 

L 
L 

S;
2 

k 
-

11 
L 

L 
S

2j
k 

! 
j 

k 
I 

J 
I 

k 
J 

k 

1 
1 

1 
1 

+
_

"
S

.2
 
+

_
"
S

2
 
+

_
"
S

2
 
-
-
S

2
 

ab
 L

...
 

,.
. 

2a
 L

...
 

. J
 . 

ab
 L

...
 

..
 k

 
2a

b 
, 

, 
k 

a 
b 

2 

S
S

(T
) 

=
 
L 

L 
L 

i=
 1

 
j=

1
 

k
=

 1
 

1 
S

2 
2 

-
_ 

X
; 

Jk
 

2a
b 

D
eg

re
es

 o
f 

fr
ee

do
m

 
D

F 

D
F

A
=

a
-
1

 

D
FB

 =
 b

 -
1 

D
F

c 
=

 
2 

-
1 

=
 
1 

D
F

AB
=

(
a

-
1

)
(
b

-
1

)
 

D
 F

 AC
 =

 
(a

 -
1

) 
(2

 -
1

) 

D
F

BC
=

(
b

-
1

)
(
2

-
1

)
 

D
F

. 
=

 

(a
 -

1
) 

(b
 -

1
) 

(2
 -

1
) 

D
FT

 =
 

2a
b 

-
1 

M
e

a
n

 s
qu

ar
e 

M
S

 

M
S

A
 

S
S

A
 

D
FA

 

S
S

B
 

M
S

B
 

D
FB

 

S
S

C
 

M
S

C
 

D
FC

 

M
S

A
B

 =
 S

S
A

B
 

D
FA

B 

M
S

A
C

 =
 S

S
A

C
 

D
F

AC
 

M
S

B
C

 =
 S

S
B

C
 

D
F

BC
 

M
S

E
 

_ 
S

S
E

 
_ 

-
-

=
 

(J
2

 

D
FE

 

C
om

pu
te

d 
F

 
F

 

M
S

A
 

FA
 =

 M
S

E
 

M
S

B
 

FB
 =

 M
S

E
 

M
S

C
 

i\
 = 

M
S

E
 

M
S

A
B

 
FA

B 
=

 
M

S
E

 

M
S

A
C

 
FA

c 
=

 
M

S
E

 

M
S

B
C

 
FB

c 
=

 
M

S
E

 



7.4 Two Way and Three Way Analysis of Variance 523 

experimental error (f2, referred to as the residual mean square MS(R) or better as 
error mean square or mean square error MSE. The MSE measures the unexplained 
variability of a set of data and serves as an estimate of the inherent random variation 
of the experiment. 

These hypotheses Hx , together with the associated mean squares MSX 
[computed as quotients of the associated sums of squares SSX over the 
degrees of freedom DF x (cr., Table 161)] and the mean square of the experi
mental error MSE = SSE/[(a - 1)(b - 1)], can be rejected whenever 

p = MSX = SSX/DFx 

MSE SSE/[(a - 1)(b - 1)] 

> Fv ,;v2;a with V1 = DFx , V2 = (a - 1)(b - 1). 

Moreover, the following parameters can be estimated: 

the mean row effect 

the mean column effect 

( "') S-k S· Sk -cxy 'k = -'-' - --..b. - -'-' + 11 
'b 2bab' 

PA S'k S Sk _ 
( y). =~-~--'-' +11, 

Jk a 2a ab 

-2 'LPJ 
(1eol. =-b-' 

(7.46) @ 

(7.38) 

(7.39) 

(7.40) 

(7.41 ) 

(7.42) 

(7.43) 

(7.44) 

(7.39a) 

(7.40a) 
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and the mean stratum effect 

~)l 
=-2-· (7.41a) 

This is illustrated by a simple numerical example in Table 162. 

Table 162 

~ 8, 8 2 8 3 L: 

A, 6 6 7 
34 5 4 6 

A2 5 5 5 29 4 5 5 

A3 6 7 4 
34 6 7 4 

A4 8 6 5 
33 7 5 2 

L: 47 45 38 130 

Table 163 (ijk) 

c C, C2 

~ 8, 8 2 8 3 8, 8 2 8 3 L 
A, 6 6 7 5 4 6 34 
A2 5 5 5 4 5 5 29 
A3 6 7 4 6 7 4 34 
A4 8 6 5 7 5 2 33 

L: 25 24 21 22 21 17 130 

Table 163a (ij) Table 163b (ik) Table 163c (jk) 

~ 8, 1 8 2 1 8 3 L: I~ C, 1 C2 L: ~ c,1 C2 L: 
A, 11 10 13 34 A, 19 15 34 8, 25 22 47 
A2 9 10 10 29 A2 15 14 29 8 2 24 21 45 
A3 12 14 8 34 A3 17 17 34 8 3 21 17 38 
A4 15 11 7 33 A4 19 14 33 

L: 47 45 38 130 L: 70 60 130 L: 70 60 130 
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Table 162 (or Table 163) contains the rounded-off yields of a chemical 
reaction. Al _ 4 are concentration levels, B 1 _ 3 temperature levels; C 1 and 
C2 are instants of time at which the trials were run. Tables 163a, b, c, are 
auxiliary tables formed by summing. 

Table 161 first yields the residual term (I x)2/n for all sums of squares: 

1 2 1302 16,900 
2ab S = (2)(4)(3) = 24 = 704.167, 

and then, using Table 164 

Table 164 

(342 + 292 + 342 + 332)/6 = 707.000 
(472+452+382)/8 =709.750 
(702+602)/12 =708.333 
(112+102+ ... +72)/2 =735.000 
(192 + 152 + ... + 142)/3 = 714.000 
(252 + 222 + ... + 172)/4 = 714.000 
62 +62 + 72+ ... +52 +22 =744.000 

SSA = ~21 (342 + 292 + 342 + 332) - 704.167 = 2.833, 
·3 

1 
SSB = 2.4 (472 + 452 + 382) - 704.167 = 5.583, 

SSC = 4 ~ 3 (702 + 602) - 704.167 = 4.166, 

1 
SSAB = "2 (112 + 102 + 132 + 92 + ... + 72) [see Table 163a] 

1 1 
- 2.3(342 + 292 + 342 + 332) - 2.4(472 + 452 + 382) 

+ 704.167 = 22.417, 

1 
SSAC = -(192 + 152 + 152 + 142 + 172 + 172 + 192 + 142) 

3 
[see Table 163b] 

1 1 
- 2.3 (342 + 292 + 342 + 332) - 4.3 (702 + 602) + 704.167 

= 2.834, 

1 
SSBC = 4 (252 + 222 + 242 + 212 + 212 + 172) [see Table 163c] 

1 1 
- 2.4 (472 + 452 + 382) - 4.3 (702 + 602) + 704.167 = 0.084, 
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SSE = (62 + 62 + 72 + 52 + ... + 72 + 52 + 22) [see Table 163] 

122 2122 2 -"2(11 +10 + ... +7)-3(19 +15 +···+14) 

1 1 
_ -(252 + 222 + ... + 172) + -(342 + 292 + 342 + 332) 

4 2·3 

+ 2 ~ 4 (472 + 45 2 + 382) + 4 ~ 3 (702 + 602) - 704.167 = 1.916, 

SST = (62 + 62 + 72 + 52 + ... + 72 + 52 + 22) - 704.167 = 39.833. 

These results are summarized in Table 165, which also contains the values 
for the respective test statistics (7.46) and the critical values. Column 5 
compares computed F-values (F) with tabulated F-values FV1 ;V2;0.05 at a 
significance level of rx = 0.05. (If we wish to make all m = 6 tests with an 
overall significance level of rx = 0.05, we use rx/m = 0.05/6 ~ 0.0083 or 0.01 
as the significance level for each single F -test). 

Table 165 Analysis of variance for Table 163 using Table 161 

Source of Sum of squares 
variation SS DF MS F Fo.os 

( 1) (2) (3) (4) (5) 

Factor A SSA = 2.833 4 - 1 = 3 0.944 2.96 < 4.76 
Factor B SSB = 5.583 3 - 1 = 2 2.792 8.75> 5.14 
Factor C SSC = 4.166 1 4.166 13.06 > 5.99 
Interaction AB SSAB = 22.417 6 3.736 11.71 > 4.28 
Interaction AC SSAC = 2.834 3 0.948 2.97 < 4.76 
Interaction BC SSBC = 0.084 2 0.042 0.13 < 5.14 

Experimental error SSE = 1.916 6 0.319 = MSE = 0- 2 

Total variation T SST = 39.833 23 

The null hypotheses 

131 = 132 = 133 = 0, 

can, in accordance with 

')'1 = ')'2 = 0, (rxf3)l1 = ... = (rxf3)43 = 0 

~ 2.792 
FB = 0.319 = 8.75 > 5.14 = F2 ;6;0.05, 

~ 4.166 
Fe = -- = 13.06> 5.99 = F 1 · 6 · 0 05, 0.319 ... 

~ 3.736 
FAB = 0.319 = 11.71 > 4.28 = F6 ;6;0.05' 
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be rejected at the 5 % level. The corresponding estimates Pj' Yk, (ip)ij can be 
read from Table 166. The mean column effect and the mean stratum effect 
are 

~2 1 1 
O"columns = abc SSB = (4)(3)(2) 5.583 = 0.233, 

~2 1 1 
O"strata = abc sse = (4)(3)(2) 4.166 = 0.174. 

Table 166 Note the estimates of the effects of the different levels of a 
factor add up to zero. The strongest (in absolute value) interactions are 
positive and belong to the fields A,B3 {rt.f3)'3 and A4B, {~)4'; the 
strongest negative interactions occur in the combinations A3 B3 (ap) 33 
and A4B3 (ap)43' 

/'0 130 = 5.417 (.;'a) 11 11 34 47 + 5.42 = - 0.63 \J =~ =--:! - T.3 - 2-4 
/'0 34 - 5.42 = 0.25 (;8) 12 

10 34. 
- ~ + 5.42 = - 0.87 al = r.J =--:! - 2-3 

/' 13 34 
- ~ + /' 29 5.42 =-0.59 (a8)13 =--:! -~ 5.42 = 1. 50 

a2 = "2-3 -
'" 9 29 47 

A r. 0.25 (a8)21 = "2 - r.-3" - r.l" + 5.42 = - 0.79 a3 = a1 = 

'" 10 29 
- ~ + 0: 4 

33 5.42 0.08 (a8)22 =--:! -2-3" 5.42 = - 0.04 
=n - = 

1\ 10 29 - ~ + /'0 47 5.42 0.46 (a8)23 =--:! -w 5.42 = 0.84 81 = 2-4 - = 2·4 
A 12 34 _ 47 + 

/'0 45 5.42 0.21 (a8)31 =--:! - "2-3 5.42 = - 0.13 82 = 2-4 - = N 
A 14 34 

- ~ + B3 
38 5.42 =-0.67 (a8)32 =--:!-2-1 5.42 = 1.12 

= 2-4 -
A 8 34 38 

70 (a8)33 = "2 -273-2-1 + 5.42 = - 1.00 
/' - 5.42 = 0.42 Yl = M /\ 15 33 

- ~ + 60 (a8)41 =--:! -"2-3 5.42 = 1. 54 
/'0 5.42 =-0.42 Y2 = 4=J -

A 11 33 45 
(a8)42 =--:! -n - 2.4 + 5.42 = - 0.21 

/'0 7 33 38 
(a8)43 = "2 -n-z.q: + 5.42 = - 1. 33 

7.4.1.2 Analysis of variance for the two way classification 
with 2ab observations 

Disregarding the factor e could mean that we have two (c) observations 
(replications of the experiment) under identical conditions. The model is now 

Xijk = J1 + rt.j + f3 j + (rt.f3)ij + ejjk (7.47) 
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-where 'l'k, (IXY)ib (PY)jk are included in the experimental error-with the 
three constraints 

a a b 

L:ai=O, L L (IXP)ij=O (7.48) 
i=1 i=1 j=1 

and the appropriate null hypotheses (cf., Table 167). The experimental 
error now includes the sources of variation C, AC, BC, and ABC: 

(SSE from Table 167)=(SSC+SSAC+SSBC+SSE from Table 161), 

and (cf., Table 167a; SSC is computed using Table 165; SSE = 4.166 + 
2.834 + 0.084 + 1.916) only the interaction AB is significant at the 5 % level. 

Table 167 Two-way analysis of variance with interaction 

Sum of squares Degrees of freedom Mean sum of squares 
Source SS DF MS 

SSA 
Factor A SSA a - 1 MSA --

a-1 

Factor B 
SSB 

SSB b - 1 MSB ---
b - 1 

Interaction SSAB (a - 1) (b - 1) MSAB = SSAB 
(a - 1) (b - 1) 

Error SSE ab MSE 
SSE --
ab 

Total SST 2ab - 1 

Table 167a Analysis of variance for Table 162 using Table 167 

Source of the Sum of squares Mean square 
variation SS DF MS F Fo.os 

Factor A 2.833 3 0.944 1.26 < 3.49 
Factor B 5.583 2 2.792 3.72 < 3.89 
Interaction AB 22.417 6 3.736 4.98> 3.00 

Experimental error 9.000 12 0.750 

Total 39.833 23 
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The analysis of variance for the three way classification with 2ab observa
tions [Model (7.28); Table 161] can thus be simplified considerably by 
ignoring both of the less important interactions [Table 168 with the four 
constraints Li ai ~ Li Pi = Lk Yk = Li Li (ap)ij = 0] and the interaction 
effect of the factor C [Table 168a with (7.48)]. The sets of experiments at 
the two levels of the factor C (instants t 1 and t 2) are often called randomized 
blocks, C1 and C2 , in Table 161 and 168, since all the treatments AiBi are 
assigned randomly to the experimental units within each block. For Table 
168a (as for 167, 167a), a so-called completely randomized two variable 
classification with replication is in effect. 

Our example is based, as far as the formulation of the problem and 
collection of data are concerned, on a model with fixed effects; the syste
matically chosen levels of the factors are of primary interest. In the factors 
to be tested one can often take all levels (e.g., male and female animals) or 
only a portion of the possible levels into consideration. In the last case, we 
distinguish between: 

1. Systematic choice, e.g., deliberately chosen varieties, fertilizers, spacing, 
sowing times, amount of seed, or the levels of pressure, temperature, time 
and concentration in a chemical process; and 

2. Random choice, e.g., soils, localities, and years, test animals, or other 
test objects, which can be thought of as random samples from some 
imagined population. 

According to Eisenhart (1947), two models are distinguished in the 
analysis of variance: 

Model I with systematic components or fixed effects, referred to as the 
"fixed" model (Type 1): Special treatments, medicines, methods, levels 
of a factor, varieties, test animals, machines are chosen deliberately and 
employed in the trial, since it is precisely they (e.g., the pesticides A, B and C) 
that are of practical interest, and one would like to learn something about 
their mean effects and the significance of these effects. The comparisons of 
means are thus of primary concern. 

Model II, with random effects or random components, is referred to as the 
"random" model (Type II): the procedures, methods, test personnel or 
objects under study are random samples from a population about which 
we would like to make some statement. The variabilities of the individual 
factors as portions of the total variability are of interest. The variance 
components as well as confidence intervals are estimated, and hypotheses on 
the variance components are tested (" authentic analysis of variance"; cf., 
e.g., Blischke 1966, Endler 1966, Koch 1967, Wang 1967, Harvey 1970, 
Searle 1971, Dunn and Clark 1974 [1]). Model II is much more sensitive to 
nonnormality than Model I. 
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Table 169 .. Fixed" model 

Source DF MS Test F I Fo.os 

A 3 0.94 - FA 
0.944 

= 0.75 = 1.26 < 3.49 

B 2 2.79 FB 
2.79 

~ 
= - = 3.72 < 3.89 

0.75 

6 3.74 
- 3.74 

AB FAB = 0.75 = 4.99 > 3.00 

E 12 0.75 

Fixed effects are indicated by Greek letters, random ones by Latin letters. 

Only in the "fixed" model can the mean squares (MS) be tested 
against the MS of the experimental error. In the "random" model, the 
MS of the row and column effects are tested against the MS of the 
interaction, which is then tested against the MS of the experimental 
error. 

More on this can be found in Binder (1955), Hartley (1955), Wilk and 
Kempthorne (1955), Harter (1957), Le Roy (1957-1972), Scheffe (1959), 
Plackett (1960), Federer (1961), Ahrens (1967), and especially Searle (1971). 

Now back to our example. As in the Model I analysis, we obtain only one 
significant interaction (Table 170). It can also happen that the description 
"fixed effect" applies to the levels of one characteristic while levels of another 
characteristic are random (the" mixed" model or Model III). If we assume 
the levels of the factor A to be "random" and those of the factor B to be 

Table 170 The" random" model. This model is less 
suitable for the example. 

Source DF 

A 3 

S 2 

AS 6 

E 12 

MS Test 

0.94 

2.79 

3.74 

0.75 

I Fo.os 

0.944 
FA = -- = 0.25 < 4.76 

3.74 

p 2.79 
ra - - = 0.75 < 5.14 

3.74 

A 3.74 
FAB = 0.75 = 4.99> 3.00 
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"fixed" [the interaction effects (rxf3)ij are also random variables due to the 
random nature of the factor A levels], then the row (A) effect for our 
example is larger than under the pure model II but still below the 5 % level. 

Table 171 The" mixed" model 

Source DF MS Test F I Fo.o5 

3 0.94 FA 0.944 
A - = -- = 1.26 < 3 49 

0.75 . 

2 2.79 Fs 2.79 
B 

r 
-- = 0.75 < 5.14 

3.74 

AB 6 3.74 
~ 3.74 
F =- = 4.99> 3.00 AS 0.75 

E 12 0.75 

The analysis of mixed models is not simple (Wilk and Kempthorne 1955, Scheffe 
1959, Searle and Henderson 1961, Hays 1963, Bancroft 1964, Holland 1965, Blischke 
1966, Eisen 1966, Endler 1966, Spjl/ltvoll 1966, Cunningham 1968, Koch and Sen 
1968, Harvey 1970, Rasch 1971, Searle 1971). 

~ 7.4.2 Multiple comparison of means according 
to Scheffe, according to Student, 
Newman and Keuls, and according to 
Tukey 

Multiple comparison procedures like the Scheffe test should only be done after an 
analysis of variance rejects H 0; otherwise the overall significance level of the multiple 
comparisons may be much greater than the preselected rx. and be heavily dependent 
on the value of k. 

Given are k means, ordered by magnitude: x(1) ~ X(2) ~ ••• ~ X(k)' If in 
the multiple pairwise comparison of means a critical difference D cx is exceeded, 
then H 0: J1.(i) = J1.(j) is rejected and H A: J1.(i) > J1.(j)' accepted at the 100rx % 
level. The 5 % level is preferred. 

I. According to Scheffe (1953) we have for sample groups of equal or 
unequal size and arbitrary pairs of means (cf., also Section 7.3.2): 0 

DJ = JS;'ithin(l/n i + 1/nJ.)(k - 1)F(k-l'V 2 •• 'cx), 
, "wlthm' 

(7.49) 

where S;'ithin = MSE is the mean square of the experimental error, 
ni , nj are sample sizes of the compared means, and vSa.ithin is the 
number of degrees of freedom for S;'ithin' 
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II. According to Student (1927), Newman (1939), and Keuls (1952), 
we have for sample groups of equal size n: 

Dll = q (7.50) 

with the approximation for ni =f. nj: 

2 (1 1) D~I = q swithin 0.5 - + -
ni nj 

(7.50a) 

(cf., also Section 7.4.3, Remark 1). Here q is a factor from Table 172 
for P = 0.05 or P = 0.01, depending on the number k of means in the 
region considered (for X(4) - X(2) we thus have k = 3) and on the 
number V2 of degrees of freedom associated with MSE = S;ithin' 

A table for P = 0.10 is given by Pachares (1959). 
Compute d k = X(1) - X(k)' For d k ::; D II ,k,17. all means are taken to 

be equal. For dk > DII ,k,l7.' /1(1) and /1(2) are taken to be unequal 
and di-1 = x(1) - X(k-1) as well as d~-1 = X(2) - X(k) are computed. 
For di-1 ::; DII ,k-1,17. the means /1(1) to /1(k-1) are taken to be equal; 
for dk- 1 > D II ,k-1,17.' /1(1) = J-l(k-1) is rejected. Corresponding tests 
are carried out with d~ _ l' This procedure is repeated until the h means 
of a group lead to dh ::; D I I, h, 17. and are thus considered to be equal. 

III. The Tukey procedure: A DII which is based on q with k the total 
number of means is, according to Tukey· (cf., e.g., Scheffe 1953), 
suitable for testing two arbitrary means X(i) - x(j) or two arbitrary 
groups of means, (X(1) + x(2) + x(3»/3 - (X(4) + x(5»/2 say. For the 
k(k - 1)/2 differences of means, the 95 % confidence intervals can be 
specified: x(il - x(j) ± DII or D;I with P = 0.05. 

@ We use the example in Section 7.3.2: 0( = 0.05; X(1) to X(6): 26.8, 26.3, 
25.2, 19.8, 14.3, 11.8; ni = 8; S;ithin = 10.38; v = 48 - 6 = 42. Then 

D1;0.05 = JlO.38(1/8 + 1/8)(6 - 1)2.44 = 5.63, 

DII;6;0.05 = 4.22JI0.38/8 = 4.81, 

and correspondingly: 

DII ; 5; 0.05 = 4.59, 

DII; 3; 0.05 = 3.91, 

D II ;4;0.05 = 4.31, 

DII; 2; 0.05 = 3.25. 



T
a

b
le

 1
7

2
 

U
pp

er
 s

ig
n

ifi
ca

n
ce

 b
o

u
n

d
s 

o
f 

th
e

 S
tu

d
e

n
tiz

e
d

 r
an

ge
 d

is
tr

ib
u

ti
o

n
: 

P
 

G
e

ig
y 

1
9

6
8

 (
ct

.,
 B

ib
lio

g
ra

p
h

y:
 I

m
p

o
rt

a
n

t 
T

ab
le

s 
[2

])
 

I
~
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

~ 
1

6
:m

 IZ
U
~
 3

~.
~~
 

3
7

.0
8

 
4

0
.4

1
 

4
3

.1
2

 
4

5
.4

0
 

4
7

.3
6

 
4

9
.0

7
 

5
0

.5
9

 
5

1
. 9

6 
5

3
.2

0
 

5
4

.3
3

 
5

5
.3

6
 

9
.8

0
 

1
0

.8
8

 
1

1
. 7

4 
1

2
.4

4
 

1
3

.0
3

 
1

3
.5

4
 

1
3

.9
9

 
1

4
.3

9
 

1
4

.7
5

 
1

5
.0

8
 

1
5

.3
8

 
1

5
.6

5
 

3 
4

.5
0

1
 

5
.9

1
 

6
.8

2
 

7
.5

0
 

8
.0

4
 

8
.4

8
 

8
.8

5
 

9
.1

8
 

9
.4

6
 

9
.7

2
 

9
.9

5
 

1
0

.1
5

 
1

0
.3

5
 

1
0

.5
2

 
4 

3
.9

2
6

 
5

.0
4

 
5

.7
6

 
6

.2
9

 
6

.7
1

 
7

.0
5

 
7

.3
5

 
7

.6
0

 
7

.8
3

 
8

.0
3

 
8

.2
1

 
8

.3
7

 
8

.5
2

 
8

.6
6

 
5 

3
.6

3
5

 
4

.6
0

 
5

.2
2

 
5

.6
7

 
6

.0
3

 
6

.3
3

 
6

.5
8

 
6

.8
0

 
6

.9
9

 
7

.1
7

 
7

.3
2

 
7

. 
47

 
7

.6
0

 
7

.7
2

 
6 

3
.4

6
0

 
4

.3
4

 
4

.9
0

 
5

.3
0

 
5

.6
3

 
5

.9
0

 
6

.1
2

 
6

.3
2

 
6

.4
9

 
6

.6
5

 
6

.7
9

 
6

.9
2

 
7

.0
3

 
7

.1
4

 
7 

3
.3

4
4

 
4

.1
6

 
4

.6
8

 
5

.0
6

 
5

.3
6

 
5

.6
1

 
5

.8
2

 
6

.0
0

 
6

.1
6

 
6

.3
0

 
6

.4
3

 
6

.5
5

 
6

.6
6

 
6

.7
6

 
8 

3
.2

6
1

 
4

.0
4

 
4

.5
3

 
4

.8
9

 
5

.1
7

 
5

.4
0

 
5

.6
0

 
5

.7
7

 
5

.9
2

 
6

.0
5

 
6

.1
8

 
6

.2
9

 
6

.3
9

 
6

.4
8

 
9 

3
.1

9
9

 
3

.9
5

 
4

.4
1

 
4

.7
6

 
5

.0
2

 
5

.2
4

 
5

.4
3

 
5

.5
9

 
5

.7
4

 
5

.8
7

 
5

.9
8

 
6

.0
9

 
6

.1
9

 
6

.2
8

 
10

 
3

.1
5

1
 

3
.8

8
 

4
.3

3
 

4
.6

5
 

4
.9

1
 

5
.1

2
 

5
.3

0
 

5
.4

6
 

5
.6

0
 

5
.7

2
 

5
.8

3
 

5
.9

3
 

6
.0

3
 

6
.1

1
 

11
 

3
.1

1
3

 
3

.8
2

 
4

.2
6

 
4

.5
7

 
4

.8
2

 
5

.0
3

 
5

.2
0

 
5

.3
5

 
5

.4
9

 
5

.6
1

 
5

.7
1

 
5

.8
1

 
5

.9
0

 
5

.9
8

 
12

 
3

.0
8

1
 

3
.7

7
 

4
.2

0
 

4
.5

1
 

4
.7

5
 

4
.9

5
 

5
.1

2
 

5
.2

7
 

5
.3

9
 

5
.5

1
 

5
.6

1
 

5
.7

1
 

5
.8

0
 

5
.8

8
 

13
 

3
.0

5
5

 
3

.7
3

 
4

.1
5

 
4

.4
5

 
4

.6
9

 
4

.8
8

 
5

.0
5

 
5

.1
9

 
5

.3
2

 
5

.4
3

 
5

.5
3

 
5

.6
3

 
5

.7
1

 
5

.7
9

 
14

 
3

.0
3

3
 

3
.7

0
 

4
.1

1
 

4
.4

1
 

4
.6

4
 

4
.8

3
 

4
.9

9
 

5
.1

3
 

5
.2

5
 

5
.3

6
 

5
.4

6
 

5
.5

5
 

5
.6

4
 

5
.7

1
 

15
 

3
.0

1
4

 
3

.6
7

 
4

.0
8

 
4

.3
7

 
4

.5
9

 
4

.7
8

 
4

.9
4

 
5

.0
8

 
5

.2
0

 
5

.3
1

 
5

.4
0

 
5

.4
9

 
5

.5
7

 
5

.6
5

 
16

 
2

.9
9

8
 

3
.6

5
 

4
.0

5
 

4
.3

3
 

4
.5

6
 

4
.7

4
 

4
.9

0
 

5
.0

3
 

5
.1

5
 

5
.2

6
 

5
.3

5
 

5
.4

4
 

5
.5

2
 

5
.5

9
 

17
 

2
.9

8
4

 
3

.6
3

 
4

.0
2

 
4

.3
0

 
4

.5
2

 
4

.7
0

 
4

.8
6

 
4

.9
9

 
5

.1
1

 
5

.2
1

 
5

.3
1

 
5

.3
9

 
5

.4
7

 
5

.5
4

 
18

 
2

.9
7

1
 

3
.6

1
 

4
.0

0
 

4
.2

8
 

4
.4

9
 

4
.6

7
 

4
.8

2
 

4
.9

6
 

5
.0

7
 

5
.1

7
 

5
.2

7
 

5
.3

5
 

5
.4

1
 

5
.5

0
 

19
 

2
.9

6
0

 
3

.5
9

 
3

.9
8

 
4

.2
5

 
4

.4
7

 
4

.6
5

 
4

.7
9

 
4

.9
2

 
5

.0
4

 
5

.1
4

 
5

.2
3

 
5

.3
1

 
5

.3
9

 
5

.4
6

 
20

 
2

.9
5

0
 

3
.5

8
 

3
.9

6
 

4
.2

3
 

4
.4

5
 

4
.6

2
 

4
.7

7
 

4
.9

0
 

5
.0

1
 

5
.1

1
 

5
.2

0
 

5
.2

8
 

5
.3

6
 

5
.4

3
 

21
 

2
.9

4
1

 
3

.5
6

 
3

.9
4

 
4

.2
1

 
4

.4
3

 
4

.6
0

 
4

.7
4

 
4

.8
7

 
4

.9
8

 
5

.0
8

 
5

. 
17

 
5

.2
5

 
5

.3
3

 
5

.4
0

 
22

 
2

.9
3

3
 

3
.5

5
 

3
.9

3
 

4
.2

0
 

4
.4

1
 

4
.5

8
 

4
.7

2
 

4
.8

5
 

4
.9

6
 

5
.0

5
 

5
.1

5
 

5
.2

3
 

5
.3

0
 

5
.3

7
 

23
 

2
.9

2
6

 
3

.5
4

 
3

.9
1

 
4

.1
8

 
4

.3
9

 
4

.5
6

 
4

,7
0

 
4

.8
3

 
4

.9
4

 
5

.0
3

 
5

.1
2

 
5

.2
0

 
5

.2
7

 
5

.3
4

 
24

 
2

.9
1

9
 

3
.5

3
 

3
.9

0
 

4
.1

7
 

4
.3

7
 

4
.5

4
 

4
.6

8
 

4
.8

1
 

4
.9

2
 

5
.0

1
 

5
.1

0
 

5
.1

8
 

5
.2

5
 

5
.3

2
 

25
 

2
.9

1
3

 
3

.5
2

 
3

.8
9

 
4

.1
6

 
4

.3
6

 
4

.5
2

 
4

.6
6

 
4

.7
9

 
4

.9
0

 
4

.9
9

 
5

.0
8

 
5

.1
6

 
5

.2
3

 
5

.3
0

 
26

 
2

.9
0

7
 

3
.5

1
 

3
.8

8
 

4
.1

4
 

4
.3

4
 

4
.5

1
 

4
.6

5
 

4
.7

8
 

4
.8

9
 

4
.9

7
 

5
.0

6
 

5
.1

4
 

5
.2

1
 

5
.2

8
 

27
 

2
.9

0
2

 
3

.5
1

 
3

.8
7

 
4

.1
3

 
4

.3
3

 
4

.5
0

 
4

.6
3

 
4

.7
6

 
4

.8
7

 
4

.9
6

 
5

.0
4

 
5

.1
2

 
5

.1
9

 
5

.2
6

 
28

 
2

.8
9

7
 

3
.5

0
 

3
.8

6
 

4
.1

2
 

4
.3

2
 

4
.4

8
 

4
.6

2
 

4
.7

5
 

4
.8

6
 

4
.9

4
 

5
.0

3
 

5
.1

1
 

5
.1

8
 

5
.2

4
 

29
 

2
.8

9
2

 
3

.4
9

 
3

.8
5

 
4

.1
1

 
4

.3
1

 
4

.4
7

 
4

.6
1

 
4

.7
3

 
4

.8
4

 
4

.9
3

 
5

.0
1

 
5

.0
9

 
5

.1
6

 
5

.2
3

 
30

 
2

.8
8

8
 

3
.4

9
 

3
.8

5
 

4
.1

0
 

4
.3

0
 

4
.4

6
 

4
.6

0
 

4
.7

2
 

4
.8

2
 

4
.9

2
 

5
.0

0
 

5
.0

8
 

5
.1

5
 

5
.2

1
 

31
 

2
.8

8
4

 
3

.4
8

 
3

.8
3

 
4

.0
9

 
4

.2
9

 
4

.4
5

 
4

.5
9

 
4

.7
1

 
4

.8
2

 
4

.9
1

 
4

.9
9

 
5

.0
7

 
5

.1
4

 
5

.2
0

 
32

 
2

.8
8

1
 

3
.4

8
 

3
.8

3
 

4
.0

9
 

4
.2

8
 

4
.4

4
 

4
.5

8
 

4
.7

0
 

4
.8

1
 

4
.8

9
 

4
.9

8
 

5
.0

6
 

5
.1

3
 

5
.1

9
 

33
 

2
.8

7
7

 
3

.4
7

 
3

.8
2

 
4

.0
8

 
4

.2
7

 
4

.4
4

 
4

.5
7

 
4

.6
9

 
4

.8
0

 
4

.8
8

 
4

.9
7

 
5

.0
4

 
5

.1
1

 
5

.1
7

 
34

 
2

.8
7

4
 

3
.4

7
 

3
.8

2
 

4
.0

7
 

4
.2

7
 

4
.4

3
 

4
.5

6
 

4
.6

8
 

4
.7

9
 

4
.8

7
 

4
.9

6
 

5
.0

3
 

5
.1

0
 

5
.1

6
 

35
 

2
.8

7
1

 
3

.4
6

 
3

.8
1

 
4

.0
7

 
4

.2
6

 
4

.4
2

 
4

.5
5

 
4

.6
7

 
4

.7
8

 
4

.8
6

 
4

.9
5

 
5

.0
2

 
5

.0
9

 
5

.1
5

 
36

 
2

.8
6

8
 

3
.4

6
 

3
.8

1
 

4
.0

6
 

4
.2

5
 

4
.4

1
 

4
.5

5
 

4
.6

6
 

4
.7

7
 

4
.8

5
 

4
.9

4
 

5
.0

1
 

5
.0

8
 

5
.1

4
 

37
 

2
.8

6
5

 
3

.4
5

 
3

.8
0

 
4

.0
5

 
4

.2
5

 
4

.4
1

 
4

.5
4

 
4

.6
5

 
4

.7
6

 
4

.8
4

 
4

.9
3

 
5

.0
0

 
5

.0
8

 
5

.1
4

 
38

 
2

.8
6

3
 

3
.4

5
 

3
.8

0
 

4
.0

5
 

4
.2

4
 

4
.4

0
 

4
.5

3
 

4
.6

4
 

4
.7

5
 

4
.8

4
 

4
.9

2
 

5
.0

0
 

5
.0

7
 

5
.1

3
 

39
 

2
.8

6
1

 
3

.4
4

 
3

.7
9

 
4

.0
4

 
4

.2
4

 
4

.4
0

 
4

.5
3

 
4

.6
4

 
4

.7
5

 
4

.8
3

 
4

.9
2

 
4

.9
9

 
5

.0
6

 
5

.1
2

 
40

 
2

.8
5

8
 

3
.4

4
 

3
. 7

9 
4

.0
4

 
4

.2
3

 
4

.3
9

 
4

.5
2

 
4

.6
3

 
4

.7
3

 
4

.8
2

 
4

.9
0

 
4

.9
8

 
5

.0
4

 
5

.1
1

 
50

 
2

.8
4

1
 

3
.4

1
 

3
.7

6
 

4
.0

0
 

4
.1

9
 

4
.3

4
 

4
.4

7
 

4
.5

8
 

4
.6

9
 

4
.7

6
 

4
.8

5
 

4
.9

2
 

4
.9

9
 

5
.0

5
 

60
 

2
.8

2
9

 
3

.4
0

 
3

.7
4

 
3

.9
8

 
4

.1
6

 
4

.3
1

 
4

.4
4

 
4

.5
5

 
4

.6
5

 
4

.7
3

 
4

.8
1

 
4

·8
8

 
4

.9
4

 
5

.0
0

 
12

0 
2

.8
0

0
 

3
.3

6
 

3
.6

8
 

3
.9

2
 

4
.1

0
 

4
.2

4
 

4
.3

6
 

4
.4

7
 

4
.5

6
 

4
.6

4
 

4
.7

1
 

4
.7

8
 

4
.8

4
 

4
.9

0
 

-2
.7

7
2

 
3

.3
1

 
3

.6
3

 
3

.8
6

 
4

.0
3

 
4

.1
7

 
4

.2
9

 
4

.3
9

 
4

.4
7

 
4

.5
5

 
4

.6
2

 
4

.6
8

 
4

.7
4

 
4

.8
0

 

0
.0

5
 (

fr
o

m
 

D
o

cu
m

e
n

ta
 

16
 

17
 

18
 

19
 

20
 

5
6

.3
2

 
5

7
.2

2
 

5
8

.0
4

 
5

8
.8

3
 

5
9

.5
6

 
1

5
.9

1
 

1
6

.1
4

 
1

6
.3

7
 

1
6

.5
7

 
1

6
.7

7
 

1
0

.6
9

 
1

0
.8

4
 

1
0

.9
8

 
1

1
.1

1
 

1
1

.2
4

 
8

.7
9

 
8

.9
1

 
9

.0
3

 
9

.1
3

 
9

.2
3

 

7
.8

3
 

7
.9

3
 

8
.0

3
 

8
.1

2
 

8
.2

1
 

7
.2

4
 

7
.3

4
 

7
.4

3
 

7
.5

1
 

7
.5

9
 

6
.8

5
 

6
.9

4
 

7
.0

2
 

7
.1

0
 

7
.1

7
 

6
.5

7
 

6
.6

5
 

6
.7

3
 

6
.8

0
 

6
.8

7
 

6
.3

6
 

6
.4

4
 

6
.5

1
 

6
.5

8
 

6
.6

4
 

6
.1

9
 

6
.2

7
 

6
.3

4
 

6
.4

0
 

6
.4

7
 

6
.0

6
 

6
.1

3
 

6
.2

0
 

6
.2

7
 

6
.3

3
 

5
.9

5
 

6
.0

2
 

6
.0

9
 

6
.1

5
 

6
.2

1
 

5
.8

6
 

5
.9

3
 

5
.9

9
 

6
.0

5
 

6
.1

1
 

5
.7

9
 

5
.8

5
 

5
.9

1
 

5
.9

7
 

6
.0

3
 

5
.7

2
 

5
.7

8
 

5
.8

5
 

5
.9

0
 

5
.9

6
 

5
.6

6
 

5
.7

3
 

5
.7

9
 

5
.8

4
 

5
.9

0
 

5
.6

1
 

5
.6

7
 

5
.7

3
 

5
.7

9
 

5
.8

4
 

5
.5

7
 

5
.6

3
 

5
.6

9
 

5
.7

4
 

5
.7

9
 

5
.5

3
 

5
.5

9
 

5
.6

5
 

5
.7

0
 

5
.7

5
 

5
.4

9
 

5
.5

5
 

5
.6

1
 

5
.6

6
 

5
.7

1
 

5
.4

6
 

5
.5

2
 

5
.5

8
 

5
.6

2
 

5
.6

7
 

5
.4

3
 

5
.4

9
 

5
.5

5
 

5
.5

9
 

5
.6

4
 

5
.4

0
 

5
.4

6
 

5
.5

2
 

5
.5

7
 

5
.6

2
 

5
.3

8
 

5
.4

4
 

5
.4

9
 

5
.5

5
 

5
.5

9
 

5
.3

6
 

5
.4

2
 

5
.4

8
 

5
.5

2
 

5
.5

7
 

5
.3

4
 

5
.4

0
 

5
.4

6
 

5
.5

0
 

5
.5

5
 

5
.3

2
 

5
.3

8
 

5
.4

3
 

5
.4

8
 

5
.5

3
 

5
.3

0
 

5
.3

6
 

5
.4

2
 

5
.4

6
 

5
.5

1
 

5
.2

9
 

5
.3

5
 

5
.4

0
 

5
.4

4
 

5
.4

9
 

5
.2

7
 

5
.3

3
 

5
.3

8
 

5
.4

3
 

5
.4

7
 

5
.2

6
 

5
.3

2
 

5
.3

7
 

5
.4

1
 

5
.4

6
 

5
.2

4
 

5
.3

0
 

5
.3

5
 

5
.4

0
 

5
.4

5
 

5
.2

3
 

5
.2

9
 

5
.3

4
 

5
.3

9
 

5
.4

4
 

5
.2

2
 

5
.2

8
 

5
.3

3
 

5
.3

7
 

5
.4

2
 

5
.2

1
 

5
.2

7
 

5
.3

2
 

5
.3

6
 

5
.4

1
 

5
.2

0
 

5
.2

6
 

5
.3

1
 

5
.3

5
 

5
.4

0
 

5
.1

9
 

5
.2

5
 

5
.3

0
 

5
.3

4
 

5
.3

9
 

5
.1

8
 

5
.2

4
 

5
.2

9
 

5
.3

3
 

5
.3

8
 

5
.1

7
 

5
.2

3
 

5
.2

8
 

5
.3

2
 

5
.3

7
 

5
.1

6
 

5
.2

2
 

5
.2

7
 

5
.3

1
 

5
.3

6
 

5
.1

0
 

5
.1

5
 

5
.2

0
 

5
.2

4
 

5
.2

9
 

5
.0

6
 

5
.1

1
 

5
.1

5
 

5
.2

0
 

5
.2

4
 

4
.9

5
 

5
.0

0
 

5
.0

4
 

5
.0

9
 

5
.1

3
 

4
.8

5
 

4
.8

9
 

4
.9

3
 

4
.9

7
 

5
.0

1
 

R
em

ar
k 

co
n

ce
rn

in
g

 T
ab

le
 1

7
2

: 
C

om
pr

eh
en

si
ve

 t
ab

le
s 

ca
n 

be
 f

o
u

n
d

 i
n 

vo
lu

m
e

 1
 o

f 
H

ar
te

r 
(1

9
7

0
 [

2
].

 p
p.

 6
2

3
-6

6
1

 
[d

is
cu

ss
ed

 o
n 

pp
. 

2
1

-2
3

])
; 

b
o

u
n

d
s 

fo
r 

k 
>

 2
0,

 P
 =

 0
.0

5,
 a

nd
 P

 =
 0

.0
1 

ar
e 

g
iv

e
n

 t
h

e
re

 o
n 

pp
. 

6
5

3
 a

nd
 6

5
7

 [
se

e 
al

so
 A

p
p

lie
d

 S
ta

tis
tic

s 
3

2
 (

1
9

8
3

),
2

0
4

-2
1

0
].

 

-.
.J

 
~
 i o ~
 

~
 

'<
 § c..
 [ ~
 

~
 >
 

::s ~ « '" <n' o ..,
 

~
 ... j;;
' 

::s ~ V
I 

v.
> 

V
I 



T
ab

le
 1

7
2

 
(c

o
n

ti
n

u
e

d
).

 U
p

p
e

r 
si

gn
ifi

ca
nc

e 
bo

un
ds

 o
f 

th
e

 S
tu

de
nt

iz
ed

 r
an

ge
 d

is
tr

ib
u

tio
n

: 
P

 

I
~
 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

16
 

2
6

0
.0

 
2

6
6

.2
 

2
7

1
.8

 
27

7 
•. 0

 
2

8
1

.8
 

1
8

5
.6

 
2

0
2

.2
 

2
1

5
.8

 
2

2
7

.2
 

2
3

7
.0

 
24

5.
6 

2
5

3
.2

 
1 

9
0

.0
2

5
 

1
3

5
.0

 
1

6
4

.3
 

3
2

.5
9

 
3

3
.4

0
 

3
4

.1
3

 
3

4
.8

1
 

3
5

.4
3

 
3

6
.0

0
 

2 
1

4
.0

3
6

 
1

9
.0

2
 

2
2

.2
9

 
2

4
.7

2
 

2
6

.6
3

 
2

8
.2

0
 

2
9

.5
3

 
3

0
.6

8
 

3
1

.6
9

 
1

8
.2

2
 

1
8

.5
2

 
1

8
.8

1
 

1
4

.2
4

 
1

5
.0

0
 

1
5

.6
4

 
1

6
.2

0
 

1
6

.6
9

 
1

7
.1

3
 

17
 .

5
3

 
1

7
.8

9
 

3 
8

.2
6

0
 

1
0

.6
2

 
1

2
.1

7
 

1
3

.3
3

 
1

1
.9

3
 

1
2

.2
7

 
1

2
.5

7
 

1
2

.8
4

 
1

3
.0

9
 

1
3

.3
2

 
1

3
.5

3
 

1
3

.7
3

 
4 

6
.5

1
1

 
8

.1
2

 
9

.1
7

 
9

.9
6

 
1

0
.5

8
 

1
1

.1
0

 
1

1
. 5

5 
8

.4
2

 
8

.9
1

 
9.

32
 

9.
67

 
9

.9
7

 
10

.2
4 

1
0

.4
8

 
1

0
.7

0
 

1
0

.8
9

 
11

.0
8 

1
1

.2
4

 
1

1
.4

0
 

5 
5

,7
0

2
 

6
.9

8
 

7.
80

 
1

0
.0

8
 

7
.
5
~
 

7.
97

 
8.

32
 

8.
61

 
8

.8
7

 
9

.1
0

 
9

.3
0

 
9

.4
8

 
9

.6
5

 
9.

81
 

9
.9

5
 

6 
5

.2
4

3
 

6
.3

3
 

7.
03

 
9.

00
 

9
.1

2
 

9
.2

4
 

7
.0

1
 

7
.3

7
 

7
.
~
8
 

7,
94

 
8

.1
7

 
8

.3
7

 
8

.5
5

 
8

.7
1

 
8

.8
6

 
7 

4
.9

4
9

 
5

.9
2

 
6

.5
4

 
8

.6
6

 
6

.6
2

 
6

.9
6

 
7.

24
 

7.
47

 
7

.6
8

 
7

.8
6

 
8

.0
3

 
8

.1
8

 
8

.3
1

 
8

.4
4

 
8

.5
5

 
8 

4
.7

4
5

 
5

.6
4

 
6.

20
 

8
.2

3
 

9 
4

.5
9

6
 

5
.4

3
 

5
.9

6
 

6
.3

5
 

6
.6

6
 

6.
91

 
7.

13
 

7
.3

3
 

7
.4

9
 

7
.6

5
 

7
.7

8
 

7
.9

1
 

8
.0

3
 

8
.1

3
 

4
.4

8
2

 
5

.7
7

 
6

.1
4

 
6

.4
3

 
6

.6
7

 
6

.8
7

 
7

.0
5

 
7.

 2
1 

7
.3

6
 

7
.4

9
 

7
.6

0
 

7
.7

1
 

7
. 

81
 

7
.9

1
 

10
 

5
.2

7
 

7.
65

 
5

.9
7

 
6

.2
5

 
6.

48
 

6
.6

7
 

6
.8

4
 

6
.9

9
 

7
.1

3
 

7
.2

5
 

7
.3

6
 

7.
46

 
7

.5
6

 
11

 
4

.3
92

1 
5

.1
5

 
5

.6
2

 
7

.4
4

 
5

.8
4

 
6

.1
0

 
6.

32
 

6
.5

1
 

6
.6

7
 

6
.8

1
 

6
.9

4
 

7
.0

6
 

7
.1

7
 

7.
26

 
7

.3
6

 
12

 
4

.3
2

0
 

5
.0

5
 

5
.5

0
 

7
.0

1
 

7.
10

 
7

.1
9

 
7

.2
7

 
5

.7
3

 
5

.9
8

 
6.

19
 

6
.3

7
 

6.
53

 
6

.6
7

 
6

.7
9

 
6

.9
0

 
13

 
4.

26
Q

 
4

.9
6

 
5

.4
0

 
6

.2
6

 
6.

41
 

6
.5

4
 

6
.6

6
 

6
.7

7
 

6
.8

7
 

6.
96

 
7

.0
5

 
7

.1
3

 
14

 
4

.2
1

0
 

4
.8

9
 

5
.3

2
 

5
.6

3
 

5
.8

8
 

6.
08

 
5.

99
 

6
.1

6
 

6
.3

1
 

6
.4

4
 

6
.5

5
 

6
.6

6
 

6
.7

6
 

6
.8

4
 

6
.9

3
 

7
.0

0
 

15
 

4
.1

6
7

 
4

.8
4

 
5

.2
5

 
5

.5
6

 
5

.8
0

 
6

.4
6

 
6

.6
6

 
6,

74
 

6
.8

2
 

6
.9

0
 

5
.1

9
 

5
.4

9
 

5
.7

2
 

5.
92

 
6

.0
8

 
6

.2
2

 
6

.3
5

 
6

.5
6

 
16

 
4

.1
3

1
 

4
.7

9
 

6
.3

8
 

6
.4

8
 

6
.5

7
 

6.
66

 
6

.7
3

 
6

.8
1

 
5

.4
3

 
5

.6
6

 
5

.8
5

 
6

.0
1

 
6

.1
5

 
6

.2
7

 
17

 
4

.0
9

9
 

4
.7

4
 

5
.1

4
 

6
.3

1
 

6
.4

1
 

6
.5

0
 

6
.5

8
 

6
.6

5
 

6
.7

3
 

5
.0

9
 

5
.3

8
 

5
.6

0
 

5.
79

 
5

.9
4

 
6

.0
8

 
6

.2
0

 
18

 
4

.0
7

1
 

4
.7

0
 

6
.2

5
 

6
.3

4
 

6
.4

3
 

6.
51

 
6

.5
8

 
6

.6
5

 
19

 
4

.0
45

 
4

.6
7

 
5

.0
5

 
5

.3
3

 
5

.5
5

 
5

.7
3

 
5

,8
9

 
6

.0
2

 
6

.1
4

 
20

 
4

.0
2

4
 

4
.6

4
 

5
.0

2
 

5
.2

9
 

5
.5

1
 

5
.6

9
 

5
.8

4
 

5
.9

7
 

6
.0

9
 

6
.1

9
 

6
.2

8
 

6
.3

7
 

6.
45

 
6

.5
2

 
6

.5
9

 
21

 
4

.0
0

4
 

4
.6

1
 

4
.9

9
 

5
.2

6
 

5
,4

7
 

5
.6

5
 

5
.8

0
 

5
.9

2
 

6
.0

4
 

6
.1

4
 

6
.2

4
 

6
.3

2
 

6.
39

 
6

.4
7

 
6

.5
3

 
22

 
3

.9
8

6
 

4.
5E

\ 
4

.9
6

 
5

.2
2

 
5

.4
3

 
5

.6
1

 
5

.7
6

 
5

.8
8

 
6

.0
0

 
6

.1
0

 
6

.1
9

 
6

.2
7

 
6

.3
5

 
6

.4
2

 
6

.4
8

 
23

 
3

.9
7

0
 

4
.5

6
 

4
.9

3
 

5
.2

0
 

5
.4

0
 

5
.5

7
 

5
.7

2
 

5
.8

4
 

5.
~~

 
6

.0
6

 
6

.1
5

 
6

.2
3

 
6

.3
0

 
6

.3
7

 
6

.4
3

 
24

 
3

.9
5

5
 

4
.5

5
 

4
.9

1
 

5
.1

7
 

5
.3

7
 

5
.5

4
 

5
.6

9
 

5
.8

1
 

5
. 

6
.0

2
 

6
.

11
 

6
.1

9
 

6
.2

6 
6

.
33

 
6

.3
9

 
25

 
3

.9
4

2
 

4
.5

2
 

4
.8

9
 

5
.1

5
 

5
.3

4
 

5
.5

1
 

5
.6

6
 

5
.7

8
 

5
.8

9
 

5
.9

9
 

6
.0

7
 

6
.1

5
 

6
.2

2
 

6
.2

9
 

6 
35

 
26

 
3

.9
3

0
 

4
.5

0
 

4
.8

7
 

5
.1

2
 

5
.3

2
 

5
.4

9
 

5
.6

3
 

5
.7

5
 

5
.8

6
 

5
.9

5
 

6
.0

4
 

6
.1

2
 

6
.1

9
 

6
.2

6
 

6 
'3

2
 

27
 

3
.9

1
8

 
4

.4
9

 
4

.8
5

 
5

.1
0

 
5

.3
0

 
5

.4
6

 
5

.6
1

 
5

.7
2

 
5

.8
3

 
5

.9
3

 
6

.0
1

 
6

.0
9

 
6

.1
6

 
6

.2
2

 
6

:2
8 

28
 

3
.9

0
8

 
4

.4
7

 
4

.8
3

 
5

.0
8

 
5

.2
8

 
5

.4
4

 
5

.5
8

 
5

.7
0

 
5

.8
0

 
5

.9
0

 
5

.9
8

 
6

.0
6

 
6

.1
3

 
6

.1
9

 
6

.2
5 

29
 

3
.8

9
8

 
4

.4
6

 
4

.8
2

 
5

.0
7

 
5

. 
26

 
~
.
4
2
 

5
.5

6
 

5
.6

7
 

5.
 7

8 
5

.8
7

 
5

.9
5

 
6

.0
3

 
6

.1
0

 
6

.1
7

 
6

.2
3 

3Q
 

3
.8

8
9

 
4

.4
5

 
4

.8
0

 
5

.0
5

 
5

.2
4

 
5

.4
0

 
5

.5
4

 
5

.6
5

 
5

.7
6

 
5

.8
5

 
5

.9
3

 
6

.0
1

 
6

.0
8

 
6

.1
4

 
6

.2
0

 
31

 
3

.8
8

1
 

4
.4

4
 

4
.7

9
 

5
.0

3
 

5
.2

2
 

5
.3

8
 

5
.5

2
 

5
.6

3
 

5
.7

4
 

5
.8

3
 

5
.9

1
 

5
.9

9
 

6
.0

6
 

6
.1

2
 

6
.1

8
 

32
 

3
.8

7
3

 
4

.4
3

 
4

.7
8

 
5

.0
2

 
5

.2
1

 
5

.3
7

 
5

.5
0

 
5

.6
1

 
5

.7
2

 
5

.8
1

 
5

.8
9

 
5

.9
7

 
6

.0
3

 
6

.0
9

 
6

.1
6

 
33

 
3

.8
6

5
 

4
.4

2
 

4
.7

6
 

5
.0

1
 

5
. 

19
 

5
.3

5
 

5
.4

8
 

5
.5

9
 

5
.7

0
 

5
.7

9
 

5
.8

7
 

5
.9

5
 

6
.0

1
 

6
.0

7
 

6
.1

3
 

34
 

3
.8

5
9

 
4

.4
1

 
4

.7
5

 
4

.9
9

 
5

. 
18

 
5

.3
4

 
5

.4
7

 
5

.5
8

 
5

.6
8

 
5

.7
7

 
5

.8
6

 
5

.9
3

 
5

.9
9

 
6

.0
5

 
6

,1
2

 
35

 
3

.8
5

2
 

4
.4

1
 

4
.7

4
 

4
.9

8
 

5
. 

16
 

5.
 3

3 
'5

.4
5

 
5

.5
6

 
5

.6
7

 
5

.7
6

 
5

.8
4

 
5

.9
1

 
5

.9
8

 
6

.0
4

 
6

.1
0

 
36

 
3

.8
4

6
 

4
.4

0
 

4
.7

3
 

4
.9

7
 

5
. 

15
 

5
.3

1
 

5
.4

4
 

5
.5

5
 

5
.6

5
 

5
.7

4
 

5
.8

2
 

5
.9

0
 

5
.9

6
 

6
.0

2
 

6
.0

8
 

37
 

3
.8

4
1

 
4

.3
9

 
4

.7
2

 
4

.9
6

 
5

. 
14

 
5

.3
0

 
5

.4
3

 
5

.5
4

 
5

.6
4

 
5

.7
3

 
5

.8
1

 
5

.8
8

 
5

.9
4

 
6

.0
0

 
6

.0
6

 
38

 
3

.8
3

5
 

4
.3

8
 

4
.7

2
 

4
.9

5
 

5
.1

3
 

5
.2

9
 

5
.4

1
 

5
.5

2
 

5
.6

2
 

5
.7

2
 

5
.8

0
 

5
.8

7
 

5
.9

3
 

5
.9

9
 

6
.0

5
 

39
 

3
.8

3
0

 
4

.3
8

 
4

.7
1

 
4

.9
4

 
5

.1
2

 
5

.2
8

 
5

.4
0

 
5

.5
1

 
5

.6
1

 
5

.7
0

 
5

.7
8

 
5

.8
5

 
5

.9
1

 
5

.9
7

 
6

.0
3

 
40

 
3

.8
2

5
 

4
.3

7
 

4
.7

0
 

4
.9

3
 

5
.1

1
 

5
.2

6
 

5
.3

9
 

5
.5

0
 

5
.6

0
 

5
.6

9
 

5
.7

6
 

5
.8

3
 

5
.9

0
 

5
,9

6
 

6
.0

2
 

50
 

3
.7

87
 

4
.3

2 
4

.6
4

 
4

.8
6

 
5

.0
4

 
5

. 
19

 
5

.3
0

 
5

.4
1

 
5

.5
1

 
5

.5
9

 
5

.6
7

 
5

.7
4

 
5

.8
0

 
5

.8
6

 
5

.9
1

 
60

 
3

.7
6

2
 

4
.2

8
 

4
.5

9
 

4
.8

2
 

4
.H

 
5

. 
13

 
5

.2
5

 
5

.3
6

 
5

.4
5

 
5

.5
3

 
5.

60
 

5
.6

7
 

5
.7

3
 

5
.7

8
 

5
.8

4
 

12
0 

3
.7

0
2

 
4

.2
0

 
4

.5
0

 
4

.7
1

 
4

.8
7

 
5

.0
1

 
5

.1
2

 
5

.2
1

 
5.

30
 

5
. 

37
 

5
.4

4
 

5
.5

0
 

5
.5

6
 

5
.6

1
 

5
.6

6
 

~
 

3
.6

4
3

 
4

.1
2 

4
.4

0
 

4
.6

0
 

4
.7

6
 

4
.8

8
 

4
.9

9
 

5
.0

8
 

5.
16

 
5

.2
3

 
5.

29
 

5
.3

5
 

5
.4

0
 

5
.4

5
 

5
.4

9
 

0.
01

 

17
 

18
 

2
8

6
.3

 
2

9
0

.4
 

3
6

.5
3

 
3

7
.0

3
 

1
9

.0
7

 
1

9
.3

2
 

1
3

.9
1

 
14

 .
0

8
 

11
 .

55
 

1
1

.6
8

 
1

0
.2

1
 

1
0

.3
2

 
9

.3
5

 
9

.4
6

 
8

.7
6

 
8

.8
5

 
8

.3
3

 
8

.4
1

 
7

.9
9

 
8

.0
8

 
7

.7
3

 
7

.8
1

 
7

.5
2

 
7

.5
9

 
7

.3
5

 
7

.4
2

 
7

.2
0

 
7

.2
7

 
7

.0
7

 
7

.1
4

 
6

.9
7

 
7

.0
3

 
6

.8
7

 
6

.9
4

 
6

.7
9

 
6

.8
5

 
6

.7
2

 
6

,7
8

 
6

.6
5

 
6

.7
1

 
6

.5
9

 
6

.6
5

 
6

.5
4

 
6

.6
0

 
6

.4
9

 
6

.5
5

 
6

.4
5

 
6

.5
1

 
6

.
41

 
6

.
47

 
6

.3
8 

6
.

43
 

6
.3

4 
6

.
40

 
6

.3
1 

6
.

37
 

6
.2

9 
6

.
34

 
6

.2
6

 
6

.3
1

 
6

.2
3

 
6

.2
9

 
6

.2
1

 
6

.2
6

 
6

.1
9

 
6

.2
4

 
6

.1
7

 
6

.2
2

 
6

.1
5

 
6

.2
0

 
6

.1
3

 
6

.1
8

 
6

.1
2

 
6

.1
7

 
6

.1
0

 
6

.1
5

 
6

.0
8

 
6

.1
3

 
6

.0
7

 
6

.1
2

 
5

.9
6

 
6

,0
1

 
5

.8
9

 
5

.9
3

 
5,

71
 

5
,7

5
 

5.
54

 
5

.5
7

 

19
 

9
4

.3
 

3
7

.5
0

 
1

9
.5

5
 

1
4

.2
4

 
1

1
.8

1
 

1
0

.4
3

 
9

.5
5

 
8

.9
4

 
8

.4
9

 
8

.1
5

 
7

.8
8

 
7

.6
6

 
7

.4
8

 
7

.3
3

 
7

.2
0

 
7

.0
9

 
7

.0
0

 
6.

91
 

6
.8

4
 

6
.7

7
 

6
.7

0
 

6
.6

5
 

6
.6

0
 

6.
56

 
6

. 
52

 
6

.4
8

 
6

.4
5

 
6

.4
2

 
6

.3
9

 
6

.3
6

 
6

.3
4

 
6

.3
1

 
6

.2
9

 
6

.2
7

 
6.

25
 

6.
23

 
6.

22
 

6.
20

 
6.

18
 

6
.1

6
 

6
.0

6
 

5
.9

7
 

5
.7

9
 

5.
61

 
.
-

20
 

2
9

8
.0

 
3

7
.9

5
 

1
9

.7
7

 
1

4
.4

0
 

1
1

. 9
3 

1
0

.5
4

 
9

.6
5

 
9

.0
3

 
8

.5
7

 
8

.2
3

 
7

.9
5

 
7

.7
3

 
7

.5
5

 
7

.3
9

 
7

.2
6

 
7

.1
5

 
7

.0
5

 
6

.9
7

 
6

.8
9

 
6

.8
2

 
6

.7
6

 
6

.7
0

 
6

.6
5

 
6.

61
 

6
. 

57
 

6
. 

53
 

6
.5

0
 

6
.4

7
 

6
.

44
 

6
. 

41
 

6
.3

8
 

6
.

36
 

6
.

34
 

6
.

31
 

6
.

29
 

6
.

28
 

6
.2

6 
6

.2
4 

6
.2

3 
6

.2
1

 
6

.0
9

 
6

.0
1

 
5

.8
3

 
5

.6
5

 

V
l 

I,
,;

.)
 

a.
. 

....,
 >
 

::s ~ -<
 

'" 0;'
 

o ..., <:
 

~
 ... ~
'
 ~ ~ ::s .E
' ~ '" 



7.4 Two Way and Three Way Analysis of Variance 537 

Results: 

DJ Ji.(l) = Ji.(2) = Ji.(3)' Ji.(1) > Ji.(4H6), Ji.(2) > Ji.(5),(6)' Ji.(3) = Ji.(4)' 

Ji.(3) > Ji.(5).(6)' Ji.(4) = Ji.(5)' Ji.(4) > Ji.(6)' Ji.(5) = Ji.(6)' 

DII : Ji.(l) > Ji.(6)-(4)' Ji.(2) > Ji.(6)-(4)' Ji.(l) = Ji.(2) = Ji.(3)' 

Ji.(3) > Ji.(6);-(4), Ji.(4) > Ji.(6).(5)' Ji.(5) = 1l(6)' 

Tukey-DII : e.g., Ji.(l) = Ji.(2) = 1l(3) > Ji.(4) > 1l(5) = Ji.(6)· 

One uses DII with sample groups of equal size and DJ when sizes are unequal. 
DII is more sensitive, more selective, but the experimental type I error rate 
may be greater than a (in other words: DII is the more liberal approximation 
whereas DJ is the more conservative approximation); DJ is more robust and 
suitable in particular when one suspects that the variances are unequal. A 
very fine multiple comparison procedure for means with equal and unequal 
n's in the case of equal and unequal variance is presented by P. A. Games and 
J. F. Howell, Journal of Educational Statistics 1 (1976), 113-125 (cf., H. J. 
Keselman et aI., Journal of the American Statistical Association 74 (1979), 0 
626-627). More on other multiple comparisons of group means (cf., Miller 
1966, and Seeger 1966) with a control (Dunnett 1955, 1964) or with the 
overall mean (Enderle in 1972) can be found in fine survey articles by M. R. 
Stoline [The American Statisitician 35 (1981), 134-141] and Games et al. 
(1983). 

Simultaneous inference: In Section 6.2.1 we discussed the Bonferroni X2 procedure. 
Tables and charts for the Bonferroni t-statistics are provided by B. J. R. Bailey, 
Journal of the American Statistical Association 72 (1977), 469-478 and by L. E. Moses, 
Communications in Statistics-Simulation and Computation B7 (1978), 479-490, 
respectively, together with examples of multiple comparison problems (cf., also 
P. A. Games, Journal of the American Statistical Association 72 (1977), 531-534). 
An interesting sequentially rejective Bonferroni multiple test procedure with a 
prescribed level of significance protection against error of the first kind for any 
combination of true hypotheses and with applications is presented by S. Holm, 
Scandinavian Journal of Statistics 6 (1979), 65-70. 

~ 7.4.3 Two way analysis of variance with a 
single observation per cell. A model 
without interaction 

If it is known that no interaction is present, a single observation per cell 
suffices. The appropriate scheme involves r rows and c columns (Table 173). 
The associated model, termed additive model, reads 

observed overall row column experimental 

+ + + 
value mean effect effect error (7.51) 

xij Ji. + ai + Pj + Gij 
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Table 173 

~ 1 2 .. . j · .. c L 
1 Xu x12 .. . x1j · .. x1c S1. 
2 xli x22 . . . x2j · .. x2c 52. 

. . . . 
i xil xi2 .. . xij ... xic S1. . 

r xr1 xr2 .. . xrj · .. xrc Sr. 

L S .1 S .2 ... S .j . .. S . c S 

Let the experimental error [;ij be independent and normally distributed 
with mean zero and variance (12 for all i and j. The scheme of the analysis 
of variance can be found in Table 174. The variability of an observed value 
in this table is conditioned by three factors which are mutually independent 
and which act simultaneously: by the row effect, the column effect, and the 
experimental error. [Note: (7.51) is a noninteraction or additive model, 
(7.28) is the corresponding nonadditive or interaction model.] 

Table 174 Analysis of variance for a two way classification: 1 observa
tion per class, no interaction 

Source of 
variability Sum of squares OF 

r Rows r S2 S2 
SSR = L ~-- r - 1 

(row means) ;=1 cr· c 

c Columns c S2 S2 
(column SSC = L -.J. - - C - 1 

j=1 r r· c 
means) 

Experimental SSE = [SST - SSR - SSC} (c-1)(r-1) 
error 

Total r c S2 
SST = L L x 2 -- rc - 1 

variability 
i= 1 j=l 

IJ r· c 

1. Null hypotheses: 
H01 : The row effects are null (row homogeneity); 
H 02: The column effects are null (column homogeneity). 
The two null hypotheses are mutually independent. 

2. Choice of significance level: (J. = 0.05. 

Mean sum 
of squares 

SSR 
--
r - 1 

SSC 
--
c - 1 

SSE 

(c-1)(r-1) 
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3. Decision: Under the usual conditions (cf., Section 7.4.1.1), 
HOI is rejected if F > F(r-I);(r-l)(c-I);0.05; 

H 02 is rejected if F > F(c- I); (r- I)(c- I); 0.05· 
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EXAMPLE. Two way analysis of variance: 1 observation per class, no interac
tion. We take our old example and combine the respective double observa
tions (cf., Table 175). 

Table 175 

;z 81 82 83 L 

Al 11 10 13 34 

A2 9 10 10 29 

A3 12 14 8 34 

A4 15 11 7 33 

L 47 45 38 
1130 

Method of computation: cf., Table 174 

We have 
r = 4 rows and 
c = 3 columns 

r=4c=3 S2 1302 
SST = L: ~>G - - = 112 + 102 + 132 + ... + 72 - ~ = 61.667. 

i=lj=1 r·c 4·3 

r=4 S2 S2 342 292 342 332 1302 
~=~~--=-+-+-+--~ 

i= I cr· c 3 3 3 3 12 

= ~ (342 + 292 + 342 + 332) _ 1:~2 = 5.667. 

c=3S2 S2 472 452 382 1302 
sse = L: -'.l. - - = - + - + - - ~ 

j= I r r . c 4 4 4 12 

= l(47 2 + 452 + 382) - 1~~2 = 11.167 (cf., Table 176). 

Decision: Both null hypotheses are retained (P > 0.05). 

These results are due to the fact that the experimental error is over
estimated (blown up), and thus the F-ratio is underestimated, because of the 
strong interaction -an indication of the presence of nonlinear effects, which 
we may also call regression effects (compare the opposite trends of columns 1 
and 3). Cf., Remark 2 below. 
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Table 176 

Source of Sum of Mean sum 
variability squares DF of squares F Fo.o5 

Rows (row 
5.667 4 - 1 = 3 1.889 0.253 < 4.76 means) 

Columns 
(column means) 11.167 3 - 1 = 2 5.583 0.747 < 5.14 

Experimental 44.833 (4 - 1) (3 - 1) = 6 7.472 error 

Total 61.667 4·3-1=11 
variability 

Remarks 

1. More on two way analysis of variance can be found in the books presented in 
[8:7] and [8:7a] (as well as on pages in [I] and [Ia]), which also contain substan
tially more complicated models. The two way classification with unequal numbers of 
observations within the cells is considered by Kramer (1955), Rasch (1960), and 
Bancroft (1968). Five methods and programs are compared in D. G. Herr and 
J. Gaebelein, Psychological Bulletin 85 (1978), 207-216. M. B. Brown (1975) com
ments on interaction (J. V. Bradley presents a nonparametric test for interaction of 
any order, Journal of Quality Technology 11 (1979), 177-184). 

2. The Mandel test for nonadditivity. Additivity is an important assumption of the 
analysis of variance. When nonadditive effects appear, they are usually treated as 
interactions (see Weiling 1972 [8: 7; cf., the reference given there]). In the case of the 
two way analysis of variance with a single observed value per class, the nonadditive 
effects can be separated from the interaction (see Weiling 1972) and split up into two 
components by a method due to Mandel (1961). The first part, to which a single degree 
of freedom is assigned, can be interpreted as the dispersion of a regression; the second, 
with r - 2 degrees of freedom, as dispersion about the regression. Mandel also intro
duced the designations" concurrence" and "nonconcurrence" for these two parts. 
The well-known Tukey test [1949; cf. Journal of the American Statistical Association 
71 (1967), 945-948, and Biometrics 34 (1978), 505-513] for testing the" absence of 
additivity" covers only the first, the regression component. Weiling (1963) showed a 
possible case in which the nonadditive effects can, in accordance with Mandel, be 
neatly determined. The interested reader is referred to Weiling's works. The procedure 
is there demonstrated by means of an example. The testing for nonadditivity is recom
mended ifin the case ofa two way analysis of variance like the one in Section 7.4.1.2, 
either no or only weak significance was determined and there is suspicion that non
additive effects could be present. For, under these conditions, the computed experi
mental error which enters the test statistic is overestimated, since this quantity con
tains in addition to the actual experimental error the influence of nonadditive effects 
as well. Hence this test also yields information on the actual level of the random error. 
If possible, one should thus carry out the analysis of variance with at least two observa-
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tions under identical conditions. The nonadditivity test is useful in deciding whether 
a transformation is recommended, and if so, which transformation is appropriate and 
to what extent it can be regarded as successful. More on this is given by N. A. C. 
Cressie, Biometric 34 (1978), 505~ 513. Introductions to the especially interesting field 
of transformations (cr., Section 7.3.3) can be found in Grimm (1960) and Lienert 
(1962) (cr., also Tukey 1957 and Taylor 1961); on outliers see Barnett and Lewis 
(1978 [8: IJ), Hawkins (1980 [8: IJ), and Beckman and Cook (1983 [8: IJ). Martin 
(1962) discusses the particular significance of transformations in c1inical~therapeutic 
research (cr., also Snell 1964). 

3. If analyses of variance are planned and if well-founded assumptions on the 
orders of magnitude of the variances or on the expected mean differences can be 
made, then tables (Bechhofer 1954, Bratcher et al. 1970, Kastenbaum et al. 1970) 
permit estimation of the sample sizes required to achieve a specified power. 

4. The comparison of two similar independent experiments with regard to their 
sensitivity can be conveniently carried out following Bradley and Schumann (1957). 
It is assumed that the two trials agree in the number of the A and in that of the B 
classifications (model: two way classification with one observation per class, no 
interaction). More on this can be found in the original work, which also contains the 
method of computation, examples, and an important table. 

5. For testing the homogeneity of the profiles of independent samples of response 
curves measured at identical points of time, a generalization of the Friedman test is 
given by W. Lehmacher, Biometrical Journal 21 (1979), 123~130; this multivariate 
test is illustrated by an example (cf., Lehmacher and Wall (1978) as well as Cole and 
Grizzle (1966». A procedure for comparing groups of time-dependent measurements 
by fitting cubic spline functions is presented by H. Prestele et aI., Methods ofInforma
tion in Medicine 18 (1979), 84-88. 

6. In many studies the experimenter's goal is to select the best of several alternatives. 
For this problem ranking (ordering) and selection procedures were developed. An 
overview of how to select the best is given by E. J. Dudewicz, Technometrics 22 
(1980), 113~ 119. See also Gibbons et al. (1979), and Dudewicz and Koo (1982). 

Order restrictions: (Note Remark 2 in Section 3.9.5 and in Section 6.1.1, Barlow 
et al. (1972), Bartholomew (1961) (also Bechhofer 1954), and the Page test in Section 
7.6.1). A test on the order of magnitude of k means is given by Nelson (1977). Included 
are tables with critical values for testing order alternatives in a one way analysis of 
variance, HA : 111 :s; 112 :s; ... :s; 11k with not all l1i equal, that is, the k means, each of 
n observations, are set (on the basis of intuition and/or prior information) in a 
monotone increasing rank order for k = 3( 1) 10; n = 2( 1 )20, 24, 30, 40, 60; IJ( = 0.10, 
0.05, 0.025, 0.01, 0.001. Tables and examples for k = 3 are given by Nelson (1976). 
Tests for ordered means are compared by E. A. C. Shirley, Applied Statistics 28 
(1979), 144-151. 

7. Other important aspects of the analysis of variance are discussed by Anscombe 
and Tukey (1963; see also Cox and Snell 1968 [5J), Bancroft (1968), and Weiling 
(1972) (cr., also Dunn 1959, 1961, Green and Tukey 1960, "Gabriel 1963, Siotani 
1964, Searle 1971). 

8. The analysis of two-way layout data with interaction and one observation per 
cell is discussed by Hegemann and Johnson (1976). 
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7.5 RAPID TESTS OF ANALYSIS OF VARIANCE 

7.5.1 Rapid test of analysis of variance and 
multiple comparisons of means according to 
Link and Wallace 

We assume we are dealing with at least approximately normal distribution, 
identical variances and the same sizes n of the individual sample groups 
(Link and Wallace 1952, cf., also Kurtz et al. 1965). This rapid test may also 
be used in two way classification with a single observation per cell. 

The k ranges Ri of the individual groups and the range of the means 
R(Xil will be needed. The null hypothesis /ll = /l2 = ... = /li = ... = Ilk is 
rejected in favor of the alternative hypothesis, not all /li are equal, whenever 

nRCij) K 
" >. L.Rj 

(7.52) 

The critical value of K is taken from Table 177 for given n, k and CI. = 0.05 or 
CI. = 0.01. Multiple comparisons of means with the mean difference Dare 
significant at the given level if 

(7.52a) 

Examples 

1. Given three sets of measurements A, E, C with the values in Table 178. 
Since 1.47> 1.18 = K(8;3;O.05)' the null hypothesis /lA = /lB = /lc is re
jected. The corresponding analysis of variance with P = 6.05 > 3.47 = 
F(2;21;O.05) leads to the same decision. With 

~c - ~B = 3.125 > 2.51 = (1.18)(17), 
Xc - X A = 3.000 8 

the null hypotheses /lA = /lc and /lB = /lc can also be rejected; since 
xA - xB = 0.125 < 2.51, it follows that /lA = /lB * /lc· 

2. Given 4 samples with 10 observations each (Table 179). The "triangle" 
of differences D of means indicates (since X4 - Xl = 2 > 1.46) that the 
special hypothesis /ll = /l4 must be rejected at the 1 % level. 
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7.5 Rapid Tests of Analysis of Variance 

Table 178 

A B C 

3 4 6 
5 4 7 
2 3 8 
4 8 6 
8 7 7 
4 4 9 
3 2 10 
9 5 9 

xi 4.750 4.625 7.750 

Ri 7 6 4 

n=8 
k=3 

8(7.750 - 4.625) 
7 +6+4 1.47. 

Table 179 

Xi Ri 

xl = 10 R1 = 3 
x2 = 11 R2 = 3 

x3 = 11 R3 = 2 

x4 = 12 R4 = 4 

R(x.) = 2 IRi = 12 
1 

Xl x2 x3 

x4 2 1 1 

x3 1 

x2 1 

xl 

n= 10, k=4, a=0.01, 

nR(x.) 10·2 
~=12=1.67>1.22=K(lo;4;o.ol)' 

KLR; 1.22·12 
-n-= 10 1.46. 

545 
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7.5.2 Distribution-free multiple comparisons of 
independent samples according to Nemenyi: 
Pairwise comparisons of all possible pairs 
of treatments 

If several variously treated sample groups of equal size (for unequal sizes 
see (7.53) at the end of this section) are given and if all these groups or treat
ment effects are to be compared with each other and tested for possible 
differences, then a rank test proposed by Nemenyi (1963) is used as a method 
which is good for "nonnormalIy" distributed data. The samples come from k 
populations with continuous distributions of the same type. Two other 
distribution-free multiple comparison procedures may be found in my 
booklet (Sachs 1984). 

The test in detail: Given k treatment groups of n elements each. Ranks are 
assigned to the nk observed values of the combined sample; the smallest 
observation is given the rank 1, the largest the rank nk. Observed values of 
equal size are given average ranks. If one adds the ranks in the individual 

Table 180 Critical differences D for the one way classifica
tion: comparison of all possible pairs of treatments according 
to Nemenyi. P = 0.10 (two sided). (From Wilcoxon, F. and 
Wilcox, R. A.: Some Rapid App~oximate Statistical Pro
cedures, Lederle Laboratories, Pearl River, New York, 1964, 
29-31.) 

.!! k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 
1 2.9 4.2 5.5 6.8 8.2 9.6 11.1 12.5 
2 7.6 11.2 14.9 18.7 22.5 26.5 30.5 34.5 
3 13.8 20.2 26.9 33.9 40.9 48.1 55.5 63.0 
4 20.9 30.9 41.2 51.8 62.6 73.8 85.1 96.5 
5 29.0 42.9 57.2 72.1 87.3 102.8 118.6 134.6 
6 37.9 56.1 75.0 94.5 114.4 134.8 155.6 176.6 
7 47.6 70.5 94.3 118.8 144.0 169.6 195.8 222.3 
8 58.0 86.0 115.0 145.0 175.7 207.0 239.0 271.4 
9 69.1 102.4 137.0 172.8 209.4 246.8 284.9 323.6 

10 80.8 119.8 160.3 202.2 245.1 288.9 333.5 378.8 
11 93.1 138.0 184.8 233.1 282.6 333.1 384.6 436.8 
12 105.9 157.1 210.4 265.4 321.8 379.3 438.0 497.5 
13 119.3 177.0 237.1 299.1 362.7 427.6 493.7 560.8 
14 133.2 197.7 264.8 334.1 405.1 477.7 551.6 626.6 
15 147.6 219.1 293.6 370.4 449.2 529.6 611.6 694.8 
16 162.5 241.3 323.3 407.9 494.7 583.3 673.6 765.2 
17 177 .9 264.2 353.9 446.6 541.6 638.7 737.6 837.9 
18 193.7 287.7 385.5 486.5 590.0 695.7 803.4 912.8 
19 210.0 311.9 417.9 527.5 639.7 754.3 871.2 989.7 
20 226.7 336.7 451. 2 569.5 690.7 814.5 940.7 1068.8 
21 243.8 362.2 485.4 612.6 743.0 876.2 1012.0 1149.8 
22 261.3 388.2 520.4 656.8 796.6 939.4 1085.0 1232.7 
23 279.2 414.9 556.1 702.0 851.4 1004.1 1159.7 1317.6 
24 297.5 442.2 592.7 748.1 907.4 1070.2 1236.0 1404.3 
25 316.2 470.0 630.0 795.3 964.6 1137.6 1314.0 1492.9 
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Table 180 (continued): P = 0.05 (two sided) 

.!! k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

1 3.3 4.7 6.1 7.5 9.0 10.5 12.0 13.5 
2 8.8 12.6 16.5 20.5 24.7 28.9 33.1 37.4 
3 15.7 22.7 29.9 37.3 44.8 52.5 60.3 68.2 
4 23.9 34.6 45.6 57.0 68.6 80.4 92.4 104.6 
5 33.1 48.1 63.5 79.3 95.5 112.0 128.8 145.8 
6 43.3 62.9 83.2 104.0 125.3 147.0 169.1 191.4 
7 54.4 79.1 104.6 130.8 157.6 184.9 212.8 240.9 
8 66.3 96.4 127.6 159.6 192.4 225.7 259.7 294.1 
9 78.9 114.8 152.0 190.2 229.3 269.1 309.6 350.6 

10 92.3 134.3 177.8 222.6 268.4 315.0 362.4 410.5 
11 106.3 154.8 205.0 256.6 309.4 363.2 417.9 473.3 
12 120.9 176.2 233.4 292.2 352.4 413.6 476.0 539.1 
13 136.2 198.5 263.0 329.3 397.1 466.2 536.5 607.7 
14 152.1 221.7 293.8 367.8 443.6 520.8 599.4 679.0 
15 168.6 245.7 325.7 407.8 491. 9 577.4 664.6 752.8 
16 185.6 270.6 358.6 449.1 541. 7 635.9 732.0 829.2 
17 203.1 296.2 392.6 491. 7 593.1 696.3 801.5 907.9 
18 221. 2 322.6 427.6 535.5 646.1 758.5 873.1 989.0 
19 239.8 349.7 463.6 580.6 700.5 822.4 946.7 1072.4 
20 258.8 377 .6 500.5 626.9 756.4 888.1 1022.3 1158.1 
21 278.4 406.1 538.4 674.4 813.7 955.4 1099.8 1245.9 
22 298.4 435.3 577.2 723.0 872.3 1024.3 1179.1 1335.7 
23 318.9 465.2 616.9 772.7 932.4 1094.8 1260.3 1427.7 
24 339.8 495.8 657.4 823.5 993.7 1166.8 1343.2 1521. 7 
25 361.1 527.0 698.8 875.4 1056.3 1240.4 1427.9 1617.6 

Table 180 (continued): P = 0.01 (two sided) 

.n k = 3 L:i L=.2 k = 6 k = 7 k = 8 k = 9 k = 10 
1 4.1 5.7 7.3 8.9 10.5 12.2 13.9 15.6 
2 10.9 15.3 19.7 24.3 28.9 33.6 38.3 43.1 
3 19.5 27 .5 35.7 44.0 52.5 61.1 69.8 78.6 
4 29.7 41.9 54.5 67.3 80.3 93.6 107.0 120.6 
5 41.2 58.2 75.8 93.6 111. 9 130.4 149.1 168.1 
6 53.9 76.3 99.3 122.8 146.7 171.0 195.7 220.6 
7 67.f> 95.8 124.8 154.4 184.6 215.2 246.3 277.7 
8 82.4 116.8 152.2 188.4 225.2 262.6 300.6 339.0 
9 98.1 139.2 181. 4 224.5 268.5 313.1 358.4 404.2 

10 114.7 162.8 212.2 262.7 314.2 366.5 419.5 473.1 
11 132.1 187.6 244.6 302.9 362.2 422.6 483.7 545.6 
12 150.4 213.5 278.5 344.9 412.5 481. 2 551.0 621.4 
13 169.4 240.6 313.8 388.7 464.9 542.4 621.0 700.5 
14 189.1 268.7 350.5 434.2 519.4 606.0 fi93.8 782.6 
15 209.6 297.8 388.5 481. 3 575.8 671. 9 769.3 867.7 
16 230.7 327.9 427.9 530.1 634.2 740.0 847.3 955.7 
17 252.5 359.0 468.4 580.3 694.4 810.2 927.8 1046.5 
18 275.0 391.0 510.2 632.1 756.4 882.6 1010.6 1140.0 
19 298.1 423.8 553.1 685.4 820.1 957.0 1095.8 1236.2 
21) 321. 8 457.6 597.2 740.0 885.5 1033.3 1183.3 1334.9 
21 346.1 492.2 642.4 796.0 952.6 1111.6 1273.0 1436.0 
22 371.0 527.6 688.7 853.4 1021.3 1191.8 1364.8 1539.7 
23 396.4 563.8 736.0 912.1 1091.5 1273.8 1458.8 1645.7 
24 422.4 600.9 784.4 972.1 1163.4 1357.6 1554.8 1754.0 
25 449.0 63R.7 833.81033.3 1236.7 1443.2 1652.8 1864.6 
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treatment groups and forms all possible absolute differences of the sums, 
these can then be tested in terms of a critical value D. If the computed 
difference is equal to or greater than the critical value D, given in Table 180 
for a chosen significance level and the values nand k, then there is a genuine 
difference between the two treatments. If it is less, the two groups are 
equivalent at the given significance level. More on this can be found in the 
book by Miller (1966 [8:7aJ). 

EXAMPLE. In a pilot experiment, 20 rats are partitioned into 4 feeding 
groups. The weights after 70 days are listed in Table 181, with the ranks as 
well as their column sums given to the right of the weights (Table 181). The 

Table 181 

I II III IV 
203 12 213 16 171 5 207 13 
184 7 1/2 246 18 208 14 152 2 
169 4 184 7 1/2 260 19 176 6 
216 17 282 20 193 10 200 11 
209 15 190 9 160 3 145 1 

55 1/2 70 1/2 51 33 

absolute differences of the rank column sums (Table 182) are then compared 
with the critical difference D for n = 5 and k = 4 at the 10 % level. Table 180 
(P = 0.10; k = 4; n = 5) gives D = 42.9. All the differences are smaller than 
D. A difference between the feeding groups II and IV could perhaps be 
ascertained by larger sample size. 

Table 182 

II III IV 
(701) (51 ) (33) 

I (55~) 15 'Y: 221 
II (70~) 19~ 37~ 

III (51) 18 

When needed, additional values of D for k > 10 and n = 1(1)20 can be 

computed according to D = Wjn(nk)(nk + 1)/12, wherefor P = 0.05 (0.01), 
W is read from the bottom row of Table 172, and for other values of P it is 
interpolated in Table 23 of the Biometrika Tables (Pearson and Hartley 
1966, pp. 178-183). For example, in Table 180, P = 0.05, n = 25, k = 10: 
1,617.6; j25(25)(10)«25)(1O) + 1)/12 = r = 361.5649; (1) Table 172, 

k = 10: W = 4.47 and W r = 1,616.2; (2) Table 23, p. 180, column 10; 
pi = 0.95: W = 4.4745 and Wr = 1,617.8. 
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Nemenyi test for unequal sample sizes 

This test allows for multiple comparisons of k sample mean ranks. Let 
Ri = R;/ni denote the mean of the ranks corresponding to the ith sample, 
and let Ri' = Ri,/ni, be the analogous mean of the ranks for the i'th sample, 
The null hypothesis (the expected values of two among k independent sample 
rank means are equal) is rejected at the l001X % level if 

where 1. k ~ 4, 
2. ni , ni , ~ 6, and 
3. n = total number of observations in all samples; at least 

75 % of the n observations should be nonidentical, i.e:, less 
than 25 % of the observations may be involved in ties. 

(7.53) 

The samples come from k populations with continuous distributions of the 
same type. The test can be used to make all k(k - 1)/2 pairwise comparisons 
among the k populations with an experimental error rate less than IX. For 
k = 4 we have 4(4 - 0/2 = 6 comparisons, and with IX = 0.05 we get from 
Table 28a for k - 1 = 4 - 1 = 3 degrees offreedom the value X~; 0.05 = 7.81. 

7.6 RANK ANALYSIS OF VARIANCE FOR 
SEVERAL CORRELATED SAMPLES 

~ 7.6.1 The Friedman test: Double partitioning 
with a single observation per cell 

In Sections 3.9.5 and 7.5.2 we dealt with the distribution-free comparison of 
several independent samples. The rank analysis of variance developed by 
Friedman (1937), a two way analysis of variance on the ranks, allows a 
distribution-free comparison of several correlated samples of data with 
respect to their central tendency. n individuals, sample groups or blocks @ 
(cf., Section 7.7) are to be studied under k conditions. As an example, see 
Table 184 with four penicillin preparations on three agar plates, or k = 4 0 
conditions [treatments] and n = 3 individuals [blocks]. If the experimental 
units are partitioned into groups of k each, care must be taken that the k 
elements of a block are as homogeneous as possible with respect to a control 
characteristic which is correlated as strongly as possible with the character-
istic under study. The k individuals in each of the blocks are then assigned 
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randomly to the k conditions. The ranks are written in a scheme such that the 
columns represent the conditions and the rows the blocks. 

Under the hypothesis that the various conditions exert no influence, the 
ranks are assigned randomly to the k conditions within each of the n individuals 
or blocks. Under the null hypothesis the rank sums deviate from each other 
only randomly if at all. If however the individual conditions do exert a 
systematic influence, then the k columns originate in different populations 
and exhibit different rank sums. Friedman (1937) has provided a test 
statistic X~ for testing the null hypothesis that there is no treatment effect in a 
randomized block design with k treatments and n blocks, or to put it more 
simply, the k columns originate in the same population: 

where 

(7.54) 

n = number of rows (which are assumed independent of each other 
but not homogeneous among themselves): individuals, replica
tions, sample groups, blocks, 

k = number of columns (with random ordering of the): conditions, 
treatments, types, factors (to the test units), 

'2J= 1 Rf = sum of squares of the column rank sums for the k factors, treat-
ments, or conditions to be compared. 

When the samples are not too small, the test statistic X~ is distributed almost 
like X2 for k - 1 degrees of freedom. For small values of n, this approximation 
is inadequate. Table 183 contains 5 % and 1 % bounds. Thus a X~ = 9.000 
for k = 3 and n = 8 is significant at the 1 % level. For more tables see R. E. 
Odeh, Communications in Statistics-Simulation and Computation B6 
(1977),29-48. For good approximations see R. L. Iman and J. M. Davenport, 
Communications in Statistics-Theory and Methods A9 (1980), 571-595. 

Ties within a row (i.e., equal data or mean ranks) are, strictly speaking, not allowed; 
the computation then follows Victor (1972): 

(7.55) 

with rj the number of ties within the ith row of the ith block and tij the multiplicity 
(see also Section 3.9.4) ofthejth tie in the ith block. 

If we wish to know whether there are considerable differences among 
the individuals or groups under investigation, we set up ranks within the 
individual columns and sum the row ranks. Computationally we merely 
have to interchange the symbols k and n in the above formula. 
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Table 183 5% and 1 % bounds for the Friedman test (from Michaelis, J.: 
Threshold values ofthe Friedman test, Biometr. Zeitschr. 13 (1971), pp. 
118-129, p. 122 by permission of the author and Akademie-Verlag, 
Berlin) 
Threshold values of X~ for P = 0.05 approximated by the F-distribution; enclosed by line: 
exact values for P :0;; 0.05 

n/k 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 .~~"" 12.57 13.88 15.19 16.48 17.76 19.02 20.27 21.53 
4 6.500 7.8 8.8 10.24 11.63 12.99 14.34 15.67 16.98 18.3 19.6 20.9 22.1 
5 6.400 7.8 8.99 10.43 11.84 13.23 14.59 15.93 17.27 18.6 19.9 21.2 22.4 
6 7.000 7.6 9.08 10.54 11.97 13.38 14.76 16.12 17.4 18.8 20.1 21.4 22.7 
7 7.143 7.8 9.11 10.62 12.07 13.48 14.87 16.23 17.6 18.9 20.2 21.5 22.S 
8 6.250 7.65 9.19 10.68 12.14 13.56 14.95 16.32 17.7 19.0 20.3 21.6 22.9 
9 6.222 7.66 9.22 10.73 12.19 13.61 15.02 16.40 17.7 19.1 20.4 21.7 23.0 

10 6.200 7.67 9.25 10.76 12.23 13.66 15.07 16.44 178 19.2 20.5 21.8 23.1 
11 6.545 7.68 9.27 10.79 12.27 13.70 15.11 1648 17.9 19.2 20.5 21.8 23.1 
12 6.167 7.70 9.29 10.81 12.29 13.73 15.15 16.53 17.9 19.3 206 21.9 23.2 
13 6.000 7.70 9.30 10.83 12.32 13.76 15.17 16.56 17.9 19.3 20.6 21.9 23.2 
14 6.143 7.71 9.32 10.85 12.34 13.78 15.19 16.58 17.9 19.3 20.6 21.9 23.2 
15 ~ 7.72 9.33 10.87 12.35 13.80 15.20 16.6 18.0 19.3 20.6 21.9 23.2 
16 5.99 7.73 9.34 10.88 12.37 13.81 15.:23 16.6 la.O 19.3 20.7 22.0 23.2 
17 5.99 7.73 9.34 10.89 12.38 13.83 15.2 16.6 18.0 19.3 20.7 22.0 23.3 
18 5.99 7.73 9.36 10.90 12.39 13.83 15.2 16.6 18.0 19.4 20.7 22.0 23.3 
19 5.99 7.74 9.36 10.91 12.40 13.8 15.3 16.7 18.0 19.4 20.7 22.0 23.3 
20 5.99 7.74 9.37 10.92 12.41 13.8 15.3 16.7 18.0 19.4 20.7 22.0 233 
00 5.99 7.82 9.49 11.07 12.59 14.07 15.51 16.92 18.31 19.68 21.03 22.36 23.69 

Threshold values of X~ for P = 0.01 approximated by the F-distribution; enclosed by line: 
exact values for P :0;; 0.01 

n/k 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 -IH"" 14.78 16.28 17.74 19.19 20.61 22.00 23.38 24.76 
4 8.000 9.600 11.20 1259 14.19 15.75 17.28 18.77 20.24 21.7 23.1 24.5 25.9 
5 8.400 9.96 11.43 1311 14.74 16.32 17.86 19.37 20.86 22.3 23.7 25.2 26.6 
6 9.000 10.200 11.75 13.45 15.10 16.69 18.25 19.77 21.3 22.7 24.2 25.6 27.0 
7 8.857 10.371 11.97 13.69 15.35 16.95 1851 20.04 21.5 23.0 24.4 25.9 27.3 
8 9.000 10.35 12.14 13.87 15.53 17.15 18.71 20.24 21.8 23.2 24.7 26.1 27.5 
9 8.667 10.44 12.27 14.01 15.68 17.29 18.87 20.42 21.9 23.4 24.95 26.3 27.7 

10 9.600 10.53 12.38 14.12 15.79 17.41 19.00 20.53 22.0 23.5 25.0 26.4 27.9 
11 9.455 10.60 12.46 14.21 15.89 17.52 19.10 20.64 22.1 23.6 25.1 266 28.0 
12 9.500 10.68 12.53 14.28 15.96 17.59 19.19 20.73 22.2 23.7 25.2 26.7 28.0 
13 9.385 10.72 12.58 14.34 16.03 17.67 19.25 20.80 22.3 23.8 25.3 26.7 28.1 
14 9.000 10.76 12.64 14.40 16.09 17.72 19.31 20.86 22.4 23.9 25.3 26.8 28.2 
15 ~10.80 12.68 14.44 16.14 17.78 19.35 20.9 22.4 23.9 25.4 26.8 28.2 
16 . 10.84 12.72 14.48 16.18 17.81 19.40 20.9 22.5 24.0 25.4 26.9 28.3 
17 8.81 10.87 12.74 14.52 16.22 17.85 19.50 21.0 22.5 24.0 25.4 26.9 28.3 
18 8.84 10.90 12.78 14.56 16.25 17.87 19.5 21.1 22.6 24.1 25.5 26.9 28.3 
19 8.86 10.92 12.81 14.58 16.27 17.90 19.5 21.1 22.6 24.1 25.5 27.0 28.4 
20 8.87 10.94 12.83 14.60 16.30 18.00 19.5 21.1 22.6 24.1 25.5 27.0 28.4 
00 9.21 11.35 13.28 15.09 16.81 18.48 20.09 21.67 23.21 24.73 26.22 27.69 29.14 

If x~ equals or exceeds the tabulated values for k, n, and P, then, at the given level. not all 
k columns originated in a common population. 

Several additional bounds for testing at the 10% and 0.1 % level with small k and small n: 

k 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 
n 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 4 

6 
3 

P<O,10 6.000 5.200 5.333 5.429 5.250 5.556 5.000 5.091 5.167 6.600 6.300 6.360 6.400 6.429 6.450 7.600 8.714 
P < 0.001 - 10.000 12.000 12.286 12.250 12.667 12.600 13.273 12.667 - 11.100 12.600 12.800 13.457 13.800 13.200 13.286 
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The Friedman test is a homogeneity test for k matched samples if normality 
and common variance cannot be assumed. It is the natural extension of the 
sign test for k > 2. It checks whether the samples dealt with could originate 
in the same population: 

H 0: all k distributions are identical, 

H A: not all k distributions are equal. 

One can test which conditions or treatments exhibit significant differences 
among themselves by pairwise comparisons with (7.56). Statistical signifi
cance for 

(7.56) 

at the l00a% level [corresponding to (7.53)J or by following Wilcoxon and 
Wilcox (Section 7.6.2), Student, Newman, and Keuls (see below), or Page 
(see below); cf., also Miller (1966 [8: 7aJ as well as Hollander and Wolfe 
(1973 [8: IbJ). Reinach (1965) decomposed ~~ into orthogonal components. 

The method in detail: 

1. The observed values are entered in a two way table-horizontal: k treat
ments or conditions, vertical: n individuals, blocks, sample groups, or 
replications. 

2. The values in each row are ordered according to rank; thus each row 
exhibits the ranks 1 to k. 

3. For each column the rank sum Ri (for the ith column) is determined; 
all rank sums are checked by the equality Li Ri = !nk(k + 1). 

4. ~~ is computed according to (7.54) [with ties, ~~,T is computed according 
to (7.55)]. 

5. X~ (or X~,T) is assessed on the basis of Table 183, or for large n on the basis 
of the X2 table (Table 28a, Section 1.5.2). 

EXAMPLE. Comparing the effectiveness of k = 4 penicillin samples at the 5 % 
level (source: Weber 1964, p. 417). The test is carried out on r = 3 plates of 
agar. From 9 cm diameter agar plates inoculated with B. subtilis (hay 
bacillus) there are cut out 4 small discs, about 0.4 cm in diameter each. 
Into each cut-out space there is then introduced drop by drop the same 
amount of one of the several penicillin solutions, so that all 4 penicillin 
samples are represented on each dish. The penicillin solution diffuses into 
the layer of agar, inhibiting the growth of B. subtilis. This manifests itself 
by the formation of an apparent region of effectiveness around the cut-out 
space. The diameter of the inhibition zone is a measure of the concentration 
of the penicillin solution. The experimental units (cut -out spaces) are assigned 
randomly to the solutions. The question is raised whether there are differences 
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among the diameters of the inhibition zones; a possible agar plate effect 
should be taken into consideration. The sizes of the inhibition zones in mm 
are given in Table 184. A check of the computation of the column sums: 

± Ri = nk(k + 1) = 3·4(4 + 1) = 30, 
i=l 2 2 

Since X~ = 8.2 > 7.4 = X~ for k = 4, n = 3, and P = 0.05 (Table 183), Ho 
(equality of the four penicillin solutions) must be rejected at the 5 % level. 

Table184 Table 185 Ranks 

Dish Penicillin preparation 
No. 1 2 3 4 

Dish Penicillin preparation 
No. 1 2 3 4 
1 4 2 3 1 

1 27 23 26 21 2 4 2 3 1 
2 27 23 25 21 3 3 2 4 1 
3 25 21 26 20 

L 11 6 10 3 30 j 

If we wish to check whether there exist differences among the agar plates, 
we assign ranks to the columns and form row sums. We obtain 

2.5 2.5 2.5 2.5 10.0 
2.5 2.5 1 2.5 8.5 
1 1 2.5 1 5.5 

24.0 

and forgo the test due to the many ties (see above). 

Approximate multiple comparisons following Student, 
Newman, and Keuls (see Section 7.4.2. II) 

For n ~ 6, (7.50) can be replaced by qJk(k + 1)/(12n) with q obtained from ~ 
Table 172 (let the k of that table be referred to as h) and h equal to the number 
of ordered rank means in the comparison (ip which h ~ 2) and V2 = 00. 

Given appropriate prior knowledge, Ho: III = 112 = ... = Ilk can be tested 
against the one sided H A : III > 112 > '" > Ilk by a method due to Page 
(1963); H 0: III = 112 = ... = Ilk is rejected if the sum of the products of 
hypothetical rank and accompanying rank sum equals or exceeds the 



554 7 Analysis of Variance Techniques 

corresponding tabulated value at the preselected level. If, e.g., the identifica
tion numbers of the solutions were identical to the hypothetical ranks in 
Tables 184 and 185, then [since (1)(11) + (2)(6) + (3)(10) + (4)(3) = 65 < 
84; cf., Table 186, k = 4, n = 3, P = 0.05] Ho could not have been rejected 
at the 5% level. Page (1963) gives 5%, 1 %, and 0.1 % limits for 3 ~ k ~ 10 

Table 186 Some 5% and 1 % bounds for the Page test 

p 0.05 0.01 

~ 3 4 5 6 7 8 3 4 5 6 7 8 

3 41 84 150 244 370 532 42 87 155 252 382 549 
4 54 111 197 321 487 701 55 114 204 331 501 722 
5 66 137 244 397 603 869 68 141 251 409 620 893 
6 79 163 291 474 719 1,037 81 167 299 486 737 1,063 
7 91 189 338 550 835 1,204 93 193 346 563 855 1,232 

[called n there] and 2 ~ n ~ 50 [called m there]. Tables of exact proba
bilities and critical values for r:x = 0.2,0.1,0.05,0.025,0.01,0.005, and 0.001 
for k = 3,4, ... , 8 and n = 2,3, ... , 10 are given by R. E. Odeh, Com
munications in Statistics-Simulation and Computation B6 (1977), 49-61. 
Page (1963) also suggests for the Friedman test the relation (7.57) below, 
which is quite a bit simpler than (7.54) and which permits a clearer recog
nition of the X2 character of the test statistic: 

(7.57) 

where E = L Rdk represents the mean rank sum. For our first example we 
get E = 30/4 = 7.5: 

A2 6{(11 - 7.5)2 + (6 - 7.5)2 + (10 - 7.5)2 + (3 - 7.5)2} 
XR = 30 = 8.2. 

For n individuals and k = 2 conditions the statistic xi is, as was shown by 
B Friedman, connected to the Spearman rank correlation coefficient rs by 

way of the following relation: 

i~=(n-l)(l +rs) (7.58) 
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or 

-2 
rS=~-1. 

n-l 
(7.58a) 

Thus one can determine, in terms of x~, a statistic for the size of the difference 
between two data sets. 

Remarks 

I. If several rank sequences-obtained through arrangements by several judges or 
through transformations from data -are to be assessed as to their degree of agreement 
(a means, by the way, of objectivizing nonquantifiable biological characteristics), then 
the Friedman test is to be used. If three (n = 3) persons are asked to rank four (k = 4) 
movie stars as to their artistic performance, they could, e.g., end up with Table 185 
(with the result: no agreement [0( = 0.05]). 

2. If dichotomous data (but no measured observations or ranks) are available, 
then the Q-test (Section 6.2.4) replaces the Friedman test. 

3. If several products, let us say kinds of cheese, brands of tobacco, or carbon 
papers, are to be tested in a subjective comparison, then the technique of paired 
comparisons is appropriate: several different samples of a product (e.g., brands A, B, 
C, D), in every case grouped as pairs (A - B, A - C, A - D, B - C, B - D, C - D), 
are compared. More on this can be found in the monograph by David (1969) (cf., also 
Trawinski 1965 and Linhart 1966). The variance analytic pairwise comparison 
proposed by Scheffi': (1952) is illustrated by an example due to Mary Fleckenstein et al. 
(1958), which Starks and David (1961) analyze in great detail by means offurthertests. 
A simple procedure with auxiliary tables and an example is presented by Terry et al. 
(1952) (cf., also Bose 1956, Jackson and Fleckenstein 1957; Vessereau 1956, and Rao 
and Kupper 1967). For a survey and bibliography see R. A. Bradley, Biometrics 32 
(1976),213-252. 

7.6.2 Multiple comparisons of correlated samples 
according to Wilcoxon and Wilcox: 
Pairwise comparisons of several treatments 
which are repeated under a number of 
different conditions or in a number of 
different classes of subjects 

The Friedman test is a two way analysis of variance with ranks; the cor
responding multiple comparisons [cf. (7.56)] due to Wilcoxon and Wilcox 
(1964). The test resembles the procedure given by Nemenyi. 

The comparison in detail: again k treatments with n replications each are 
compared. Every treatment is assigned a rank from 1 to k, so that n rank 
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orders result. The ranks of the individual samples are added; their differences 
are compared with the value of the critical difference from Table 187. If the 
tabulated critical difference is attained or exceeded then the treatments 

Table 187 Critical differences for the two way classifica
tion: comparison of all possible pairs of treatments. P = 0.10 
(two sided) (taken from Wilcoxon, F. and Wilcox, R. A.: 
Some Rapid Approximate Statistical Procedures, Lederle 
Laboratories, Pearl River, New York 1964, 36-38). 

11 k = 3 ~ k = 5 ~ k = 7 k = 8 ~ k = 10 

1 2.9 4.2 5.5 6.8 8.2 9.6 11.1 12.5 
2 4.1 5.9 7.8 9.7 11.6 13.6 15.6 17.7 
3 5.0 7.2 9.5 11.9 14.2 16.7 19.1 21.7 
4 5.8 8.4 11.0 13.7 16.5 19.3 22.1 25.0 
5 6.5 9.4 12.3 15.3 18.4 21.5 24.7 28.0 
6 7.1 10.2 13.5 16.8 20.2 23.6 27.1 30.6 
7 7.7 11.1 14.5 18.1 21.8 25.5 29.3 33.1 
8 8.2 11.8 15.6 19.4 23.3 27.2 31.3 35.4 
9 8.7 12.5 16.5 20.5 24.7 28.9 33.2 37.5 

10 9.2 13.2 17.4 21.7 26.0 30.4 35.0 39.5 
11 9.6 13.9 18.2 22.7 27.3 31.9 36.7 41.5 
12 10.1 14.5 19.0 23.7 28.5 33.4 38.3 43.3 
13 10.5 15.1 19.8 24.7 29.7 34.7 39.9 45.1 
14 10.9 15.7 20.6 25.6 30.8 36.0 41.4 46.8 
15 11.2 16.2 21.3 26.5 31.9 37.3 42.8 48.4 
16 11.6 16.7 22.0 27.4 32.9 38.5 44.2 50.0 
17 12.0 17.2 22.7 28.2 33.9 39.7 45.6 51.5 
18 12.3 17.7 23.3 29.1 34.9 40.9 46.9 53.0 
19 12.6 18.2 24.0 29.9 35.9 42.0 48.2 54.5 
20 13.0 18.7 24.6 30.6 36.8 43.1 49.4 55.9 
21 13.3 19.2 25.2 31.4 37.7 44.1 50.7 57.3 
22 13.6 19.6 25.8 32.1 38.6 45.2 51.9 58.6 
23 13.9 20.1 26.4 32.8 39.5 46.2 53.0 60.0 
24 14.2 20.5 26.9 33.6 40.3 47.2 54.2 61.2 
25 14.5 20.9 27.5 34.2 41.1 48.1 55.3 62.5 

Values for k ~ 15 are given by McDonald and Thompson (1967). 

involved in the comparison come from different populations. If the com
puted difference falls below the tabulated D, then the difference can yet be 
regarded as accidental. 

Additional table values of D for k > 10 and n = I (I )20 can, when needed, 

be computed by using the formula D = W Jnk(k + 1)/12, where W for 
P = 0.05 or 0.01 is read from Table 172 (last line), and for other values of P 
is interpolated in Table 23 of the Biometrika Tables (Pearson and Hartley 
1966, pp. 178-183); e.g., D = 67.7 [Table 187; P = 0.05; n = 25; k = 10]: 
for P' = 0.95 we get (Biometrika Table 23, p. 180, column 10) W = 4.4745 and 

4.4745J(25)(IO)(10 + 1)/12 = 67.736; by Table 172, for k = 10; W = 4.47 
and D = 67.668. 
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Table 187-1 (continued): P = 0.05 (two sided) 

.!!. k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 ---- -- -- ---- -- --
I 3.3 4.7 6.1 7.5 9.0 10.5 12.0 13.5 
2 4.7 6.6 8.6 10.7 12.7 14.8 17.0 19.2 
3 5.7 8.1 10.6 13.1 15.6 18.2 20.8 23.5 
4 6.6 9.4 12.2 15.1 18.0 21.0 24.0 27.1 
5 7.4 10.5 13.6 16.9 20.1 23.5 26.9 30.3 
6 8.1 11.5 14.9 18.5 22.1 25.7 29.4 33.2 
7 8.8 12.4 16.1 19.9 23.9 27.8 31.8 35.8 
8 9.4 13.3 17.3 21.3 25.5 29.7 34.0 38.3 
9 9.9 14.1 18.3 22.6 27.0 31.5 36.0 40.6 

10 10,5 14.8 19.3 23.8 28.5 33.2 38.0 42.8 
11 11.0 15.6 20.2 25,0 29.9 34.8 39.8 44.9 
12 11.5 16.2 21.1 26.1 31.2 36.4 41.6 46.9 
13 11.9 16.9 22.0 27.2 32.5 37.9 43.3 48.8 
14 12.4 17.5 22.8 28,2 33.7 39.3 45.0 50.7 
15 12.8 18.2 23.6 29.2 34.9 40.7 46.5 52.5 
16 13.3 18..8 24.4 30.2 36.0 42.0 48.1 54.2 
17 13.7 19.3 25.2 31.1 37.1 43.3 49.5 55.9 
18 14.1 19.9 25.9 32.0 38.2 44.5 51.0 57.5 
19 14.4 20.4 26.6 32.9 39.3 45.8 52.4 59.0 
20 14.8 21.0 27.3 33.7 40.3 47.0 53.7 60.6 
21 15.2 21. 5 28.0 34.6 41.3 48.1 55.1 62.1 
22 15.5 22.0 28.6 35.4 42.3 49.2 56.4 63.5 
23 15.9 22.5 29.3 36.2 43.2 50.3 57.6 65.0 
24 16.2 23.0 29.9 36.9 44.1 51.4 58.9 66.4 
25 16.6 23.5 30.5 37.7 45.0 52.5 60.1 67.7 

Table 187-2 (continued): P = 0.01 (two sided) 

.!! k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 
1 4.1 5.7 7.3 8.9 10.5 12.2 13.9 15.6 
2 5.8 8.0 10.3 12.6 14.9 17.3 19.7 22.1 
3 7.1 9.8 12.6 15.4 18.3 21.2 24.1 27.0 
4 8.2 11.4 14.6 17 .8 21.1 24.4 27.8 31.2 
5 9.2 12.7 16.3 19.9 23.6 27.3 31.1 34.9 
6 10.1 13.9 17.8 21.8 25.8 29.9 34.1 38.2 
7 10.9 15.0 19.3 23.5 27.9 32.3 36.8 41.3 
8 11. 7 1 Ii. 1 20.6 25.2 29.8 34.6 39.3 44.2 
9 12.4 17.1 21.8 26.7 31. 6 36.6 41.7 46.8 

10 13.0 18.0 23.0 28.1 33.4 38.6 44.0 49.4 
11 13.7 18.9 24.1 29.5 35.0 40.5 46.1 51.8 
12 14.3 19.7 25.2 30.8 36.5 42.3 48.2 54.1 
13 14.9 20.5 26.2 32.1 38.0 44.0 50.1 56.3 
14 15.4 21.3 27.2 33.3 39.5 45.7 52.0 58.4 
15 16.0 22.0 28.2 34.5 40.8 47.3 53.9 60.5 
16 16.5 22.7 29.1 35.6 42.2 48.9 55.6 62.5 
17 17.0 23.4 30.0 36.7 43.5 50.4 57.3 64.4 
18 17 .5 24.1 30.9 37.8 44.7 51.8 59.0 66.2 
19 18.0 24.8 31. 7 38.8 46.0 53.2 60.6 68.1 
20 18.4 25.4 32.5 39.8 47.2 54.6 62.2 69.8 
21 18.9 26.0 33.4 40.9 48.3 56.0 63.7 71.6 
22 19.3 26.7 34.1 41.7 49.5 57.3 65.2 73.2 
23 19.8 27.3 34.9 42.7 50.6 58.6 66.7 74.9 
24 20.2 27.8 35.7 43.6 51.7 59.8 68.1 76.5 
25 20.6 28.4 36.4 44.5 52.7 61.1 69.5 78.1 
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EXAMPLE. Source: Wilcoxon and Wilcox (1964, pp. 11, 12). 

Table 188 

Person A B C 0 E F 

1 3.88 1 30.58 5 25.24 3 4.44 2 29.41 4 38.87 6 
2 5.64 1 30.14 3 33.52 6 7.94 2 30.72 4 33.12 5 
3 5.76 2 16.92 3 25.45 4 4.04 1 32.92 5 39.15 6 
4 4.25 1 23.19 4 18.85 3 4.40 2 28.23 6 28.06 5 
5 5.91 2 26.74 5 20.45 3 4.23 1 23.35 4 38.23 6 
6 4.33 1 10.91 3 26.67 6 4.36 2 12.00 4 26.65 5 

8 23 25 10 27 33 

Six persons receive 6 different diuretics each (drugs A to F). Two hours 
after the treatment the sodium excretion is determined. It is to be decided 
which diuretics differ from the others on the basis of the sodium excretion. 
Table 188 contains the data, with the corresponding ranks and the column 
rank sums on the right. The absolute differences are listed in Table 189. 

Table 189 

0 B C E F 
10 23 25 27 33 

A 8 2 15 17 19* 25** 
0 10 13 15 17 23** 
B 23 2 4 10 

C 25 2 8 
E 27 6 

The critical difference for k = 6 and n = 6 is 18.5 (cr., Table 187) at the 
5 % level, 21.8 at the 1 % level. Each difference significant at the 5 % level is 
marked with a single asterisk (*), while each difference significant at the 1 % 
level is marked with a double asterisk (**). It can thus be established that the 
preparation F distinguishes itself on the basis of a stronger sodium diuresis 
at the 1 % level from the diuretics A and D. The preparation E differs at the 
5 % level from the preparation A; other differences are not significant at the 
5 % level. 

~ 7.7 PRINCIPLES OF EXPERIMENTAL DESIGN 

In the design of experiments there are, according to Koller (1964), two 
opposing viewpoints to be reconciled with each other: The principle of 
comparability and the principle of generizability. 

Two experiments by which the effects of two types of treatment are to be 
compared are comparable if they differ only in the type of treatment but agree 
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in all other respects. Agreement should exist with respect to test conditions 
and sources of variation: 

1. the observation and measurement procedures, 
2. the performance of the experiment, 
3. the individual peculiarities of the objects being tested, 
4. the peculiarities of the time, location, equipment, and technicians. 

Comparability is seldom attainable with individuals but is attainable for 
groups of individuals. For a comparison, the specific individual factors 
of variation must have the same frequency distribution. 

If in order to achieve good comparability, e.g., only young male animals 
of a certain breed, with a certain weight, etc., are used for the test, then the 
comparability is indeed assured but generalizability is impaired. After all, 
then the tests give no clue to how older or female animals or those of other 
breeds would behave. This test sequence would furnish only a narrow in
ductive basis (cf., also Sections 2.1.4-5 and 4.1). 

Generalization means identification and description of the collectives 
and the distribution of their attributes from which the observed values 
can be viewed as representative samples. Only by examining such col
lectives of various animals (age, type, hereditary factors, disposition), 
various test times (time of day, season, weather), various kinds of experi
ments, various experimenters, various experimental techniques, etc., can we 
judge to what extent the results are independent of these variability and 
interference factors, i.e., whether the results may be generalized in this way. 
In the context of the experiment comparability and generalizability oppose 
each other, since comparability calls for homogeneous material while on the 
other hand generalizability requires heterogeneity to obtain a broad induc
tive basis: comparisons call for replication collectives, generalizations for 
variability collectives. Both principles must interlock in the experimental 
design. Particularly advantageous are comparisons of various procedures 
on the same animal. There the comparability is optimal, while at the same 
time an arbitrarily large extension of the sample range can be carried out. 

Herzberg and Cox (1969) give a fine survey of experimental design. 

The underlying principles of experimental design are: 

1. Replication: permits the estimation of the experimental error, at the same 
time providing for its diminution. 

2. Randomization: permits-by elimination of known and unknown syste
matic errors in particular of trends which are conditioned by time and 
space-an unbiased estimation of the effects of interest, at the same time 
bringing about independence of the test results. The randomization can be 
carried out with the help of a table of random numbers. 

3. Block division (planned grouping): Increases the precision of comparisons 
within blocks. 
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Some interesting comments on randomization-pro and con-are presented by 
H. Bunke and O. Bunke, Statistics, Mathematische Operationsforschung und 
Statistik 9 (197.8),607-623. 

The smallest subunit of the experimental material receiving a treatment 
is called an experimental unit; it is the object on which a measurement 
is made. The idea of randomly assigning the procedures to the experi
mental units, called randomization for short-it originated with 
R. A. Fisher-can be regarded as the foundation of every experimental 
design. Through it, one obtains (a) an unbiased estimate of the effects 
of interest, (b) an unbiased estimate of the experimental error, and (c) a 
more nearly normal distribution of the data. Unknown and undesirable 
correlation systems are removed (by randomization), so that we have 
uncorrelated and independent experimental errors and our standard 
significance tests may be applied. 

If the experimental units are very diverse then the isolation of the effects 
of interest becomes more difficult. In such cases, it is advisable to group the 
most similar units before the experiment is even started. Subgroups of 
comparable experimental units are formed which are internally more 
uniform than the overall material: homogeneous" blocks". Within a block, 
the randomization principle for the assigning of the treatments to the 
experimental units again applies. 

Examples of blocks are persons or animals or identical twins or paired 
organs or siblings or leaves from the same plant or the adjacent parcels of 
a field in an agricultural experiment or other groupings which describe 
natural or artificial blocks. Blocking criteria are characteristics associated 
with (1) the experimental units (for persons: sex, age, health condition, 
income, etc.) or, to maintain a constant experimental environment, (2) the 
experimental settings (batch of material, observer, measuring instrument, 
time, etc.). Several blocking criteria may be combined. The individual 
blocks should always have the same size. The comparisons which are 
important for the trial objective must be dealt with as fully as possible 
within the blocks. 

Nuisance quantities or nuisance factors (e.g., soil variations) are eliminated : 

I. By analysis of covariance when quantitatively measurable nuisance factors 
are known. Under a covariance model, classifying and influence factors 
(covariable, as, e.g., weight or blood pressure at the beginning of the test 
period) act linearly upon the dependent variables. Analysis of covariance 
helps to eliminate influences which otherwise interfere in the proper 
evaluation of the experiment through the analysis of variance, and serves 
to explore regression relations in categorized material (see Winer 1971, 
Huitema 1980, and Biometrics 38 (1982), 539-753; cr., also Cochran 
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1957, J. C. R. Li 1964, Enderlein 1965, Harte 1965, Peng 1967, Quade 1967, 
Rutherford and Stewart 1967, Bancroft 1968, Evans and Anastasio 1968, 
Reisch and Webster 1969, Sprott 1970). An alternative to the analysis of 
covariance is given by D. S6rbom, Psychometrika 43 (1978),381-396. 

2. When nonmeasurable perturbing factors are known, by the formation of 
blocks (groups of experimental units which agree as much as possible with 
respect to the perturbing factor), or by pairing; the experiment is carried 
out under special conditions (e.g., in a greenhouse). 

3. When the perturbing factors are unknown, by randomization and replica
tion as well as by consideration of additional characteristics which lead 
to a subsequent understanding of the perturbing quantities. 

Ambient conditions that can be only hazily identified or are hard to 
control should be overcome by proper blocking and randomization 
techniques. Sometimes-as in the case of changing external conditions 
or unplanned events-measurements or at least qualitative records on 
these conditions should be taken. Under blocking the effect of a badly 
controlled variable is removed from the experimental error, while 
under randomization it usually is not. If possible, block; otherwise 
randomize. Concerning replicate measurements it is important to 
obtain information about each component of repeatability (e.g., the 
same experimental unit, day, operator, equipment, etc.). It is always 
useful to include some standard test conditions known as controls. 

In comparing surveys and experiments, Kish (1975) gives more hints on 
the control of disturbing variables. 

In contrast with absolute experiments, for example, the determination 
of a natural constant such as the speed of light, the overwhelming majority 
of experiments belongs to the category of comparison experiments: We com
pare, e.g., the harvest yields realized under fixed conditions (on seeds, 
fertilizer etc.). The relative values in question are either known as theoretical 
values or are to be determined by control trials. Comparison experiments
which can be understood as processes affected by various conditions or 
"treatments", at the end of which the results are compared and interpreted 
as "consequences" of the treatments, as specific effects-aim at: (a) testing 
whether an effect exists and (b) measuring the size of this effect, where errors 
of Type I and II are avoided if possible, i.e., neither are nonexistent effects to 
be "detected" in the material, nor are genuine effects to be ignored. More
over, the smallest effect which will still be regarded as significant should be 
specified in advance. Genuine effects can be found only when it can be 
ascertained that (a) neither the heterogeneity of the trial units (e.g., soil 
differences in the harvest yield experiment) nor (b) random influences alone 
could be responsible for the effect. 
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Modern experimental design distinguishes itself from the classical or 
traditional procedure in that at least 2 factors are always considered simul
taneously. Previously, if the effect of several factors was to be analyzed, the 
factors were consecutively tested one factor with respect to its different levels 
at a time. It can be shown that this procedure is not only ineffective but can 
also yield incorrect results. The simultaneous (optimal) range of operation of 
all the factors cannot be found in this way. Moreover, interactions among the 
factors cannot be recognized with the classical procedure. The principle of 
modern statistical experimental design consists in combining the factors 
in such a way that their effects and interactions as well as the variability of 
these effects can be measured, compared and delimited against the random 
variability; more on this can be found, e.g., in Natrella 1963 (see c. Daniel 
there) (cf., also Section 2.4.1 and Table 190). To the three underlying 
principles of experimental design (replication, randomization, and block 
division) we add three more: (1) various controls and accompanying control 
experiments (2) diversity of treatments, any of which could even be encoded 
to avoid subjective influences and (3) the numbers of replications of a treat
ment should be proportional to the corresponding deviations [Ui # const.]: 
ndn2 = udu2' 

Remark: On experimental designs 

1. Arrangement of trials in blocks with random assignment of procedures to the trial 
units. The test material is partitioned into blocks of the greatest possible homo
geneity. Each block contains as many units as there are factors (methods of treatment, 
procedures) to be tested (completely randomized blocks) or an integral multiple of this 
number. The factors are associated with the experimental units of each block by 
means of a randomization procedure (e.g., a table of random numbers). The com
parison among the factors is made more precise through replication on very different 
blocks. The two way classification model without interaction is applied in the analysis 
of variance of these joint samples. Here the designations" block" and "factor" are 
appropriate in place of row and column. 

We should perhaps emphasize that the forming of blocks, just like the forming of 
paired observations, makes sense only if the dispersion between the trial units is 
clearly greater than that between the individual members of the pairs or between the 
block units; this is so because correlated samples (paired observations, blocks) exhibit 
fewer degrees offreedom than the corresponding independent samples. Ifthere exists 
a clear dispersion difference in the sense stated above, then the gain in accuracy 
through formation of correlated samples is greater than the loss in accuracy due to a 
decrease in the number of degrees of freedom. 

If the number of trial units per block is less than the number offactors to be tested, 
one speaks of incompletely randomized blocks. They are frequently used in case a 
natural block involves only a small number of elements (e.g., twins, right-left com
parisons), when there are technical or temporal limitations on the feasibility of 
parallel trials on the same day, etc. 

2. The Latin square. Whereas only one variation factor is eliminated by means of 
block division, the experimental design of a so-called Latin square serves to eliminate 
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two variation factors. It is frequently found that a field being tested clearly exhibits 
differences in soil conditions along two directions. Through a judicious parceling, 
the differences along two directions can be successfully eliminated with the help of 
this model. If k factors (e.g., the fertilizers A and B and the control C) are to be 
tested, then k 2 trials and hence k 2 (or 32 = 9) trial units (lots) are needed. A simple 
Latin square is, e.g., the following: 

ABC 
BCA 
CAB 

Each factor appears exactly once in each row and each column of this square. In 
general, with a single replication, only squares with k ~ 5 are used, since with 
smaller squares only a small number of degrees of freedom is available for evaluating 
the experimental error. With k = 5 there are 12. The corresponding experimental 
designs, which are of course used not only in agriculture but also wherever trial units 
can be randomly grouped along two directions or characters, are, e.g., found in the 
tables by Fisher and Yates (1963). With a Greco-Latin square the randomization 
works in three directions. More on this can be found in Jaech (1969). 

3. Factorial experiments. Factorial designs involve running all combinations of 
conditions or levels of the independent variables. If it is not possible or not practical 
to apply all combinations, a specially selected fraction is run (fractional factorial 
experiment). 

If n factors are to be compared simultaneously at 2, 3, or k levels each, then 
experimental designs which enable comparisons of combinations, known as 2"_, 3"_, 
or k"-designs or experiments, are called for (cf., Box et al. 1978, Chapters 7, 10-13; 
Davies 1971; also Plackett and Burman 1946, Baker 1957, Daniel 1959, Winer 1971, 
Addelman 1963, 1969, C. C. Li 1964, J. C. R. Li 1964, Cooper 1967). 

4. Hierarchic experimental designs. In hierarchic classification a sample group con
sists of sample subgroups of, e.g., type 1 and 2 (say: streets, buildings, and apart
ments). One speaks of "nested design": All levels of a factor always occur in con
junction with a level of some other factor (cf., Gates and Shiue 1962, Gower 1962, 
Bancroft 1964, Eisen 1966, Ahrens 1967, Kussmaul and Anderson 1967, Tietjen and 
Moore 1968). 

Several books on experimental design can be found at the end of the 
bibliography [8: 7b]. Let us in particular call attention to the com
prehensive introduction by Hahn (1977) and to Box and al. (1978, 
cited in [1] on p. 569), Scheffe (1959), Kempthorne (1960), Davies 
(1971), Johnson and Leone (1964), C. C. Li (1964), J. c. R. Li (1964), 
Kendall and Stuart (1968), Peng (1967), Bancroft (1968), Linder (1969), 
John (1971), Winer (1971), Blitz (1972), and Kirk (1982). Special 
reference is also made to the works mentioned at the end of Sections 
2.4.1.3 and 5.8 and to the survey by Herzberg and Cox (1969), as well 
as to the bibliography of Federer and Balaam (1973). Surveys of recent 
developments in the design of experiments are provided in the Inter
national Statistical Review by W. T. Federer [48 (1980),357-368,49 
(1981),95-109,185-197] and by A. C. Atkinson [SO (1982), l61-177]. 
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Scientific investigation: evaluating hypotheses and 
discovering new knowledge 
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1. Formulating the problem and stating the objectives: It is frequently 
expedient to subdivide the overall problem into component prob
lems and ask several questions: 
a. Why is the problem posed? 
b. Outlining the initial situation by means of standard questions: 

what? how? where? when? how much? what is not known? what 
will be assumed? 

c. Problem type: comparisons? finding optimal conditions? sig
nificance of change? association among variables? 

2. Checking all sources of information: Mainly researching the litera
ture. 

3. Choice of strategy: 
a. Developing the model appropriate to the problem. Number of 

variables to be taken into consideration. Introduction of simpli
fying assumptions. Examining whether it is possible to further 
simplify the problem by modification, e.g., to studies on guinea 
pigs instead of on men. 

b. Developing the technique of investigation. Defining the population 
(and/or sample units) about which inferences are to be made. 
Selection of the experimental (and/or sampling) design of the 
variables, ofthe auxiliary variables, of the number of replications, 
and of the form of randomization. Planning for the hypotheses 
to be tested, for the recording of results, and for the data analysis. 

c. Developing the statistical model. Defining the population (and/or 
sample units) about which inferences are to be made. Selection 
of the experimental (and/or sampling) design, the number of 
replications, the form of randomization, and the auxiliary 
variables. Recording the results and planning for an analysis of 
all the hypotheses to be tested. 

4. Testing the strategy by means of exploratory surveys and trials. 
Examining the method of inquiry and the compatibility of the ob
served values with the statistical model. 

5. Setting and realizing the strategy on the basis of the experience 
gained in items 3 and 4. 
a. Final specification of all essential points, e.g., the method of 

investigation, the objects being studied, the experimental units, 
the characteristic and influence factors, the controls, the basis of 
reference; the variables and auxiliary variables; avoiding or 
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recording uncontrollable variables; blocking and randomization; 
the sample size or number of replications, taking into account the 
expenditure of technicians, equipment, material, and time, among 
other things; setting up of tactical reserves to avoid major 
shortages; the extent of the overall program; definitive formula
tion of the statistical analysis model; preparation of special 
arrangements (computer used?) for recording, checking, and 
evaluating the data. 

b. Carrying out the study, if possible without modification. Analyz
ing the data, e.g., plotting, giving confidence intervals and testing 
the hypotheses. 

6. Decisions and conclusions: 
a. Result: Checking the computations. Stating the results in tabu

lated form and/or graphically. 
b. Interpretation: Indications as to the plausibility, practical signifi

cance, verifiability, and region of validity of the study. The results 
of the tests on the hypotheses are scrutinized critically with the 
simplifying assumptions taken into account; and when it is 
feasible and of value to do so, they are compared with the 
findings of other authors. Is a replication of the study necessary 
with fewer simplifying assumptions, with improved models, 
newer methods of investigation, etc. ? Do there arise new hypo
theses, derived from the data, which must be checked by new, 
independent investigation? 

c. Report: Description of the overall program, items 1 to 6b. 

Some useful hints for the writing and presentation of reports or papers are 
given in The American Statistician: (1) by A. S. C. Ehrenberg [36 (1982), 
326-329], and (2) by D. H. Freeman, Jr. and coworkers [37 (1983), 106-110]. 
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Five periods in the history of probability and statistics 

1654 The Chevalier de Mere asked Blaise Pascal (1623-1662) why it 
would be advantageous in a game of dice to bet on the occurrence of a 
six in 4 trials but not advantageous in a game involving two dice to bet 
on the occurrence of a double six in 24 trials. Pascal corresponded with 
Pierre de Fermat (1601-1665) on the subject. The two probabilities 
are 0.518 and 0.491. The problem of coming up with assertions which 
are based on the outcomes of a game and which are determined by 
underlying probability laws, i.e., the problem of coming up with the 
probability needed for correct models or hypotheses, was considered 
by Thomas Bayes (1702-1761). 

1713-1718 The texts on probability by Jakob Bernoulli (1654-1705; 
Ars Conjectandi, opus posthumum, 1713) and Abraham de Moivre 
(1667-1754; The Doctrine of Chances, 1718) were published. The first 
contains the notion of statistics, the binomial distribution, and the 
law of large numbers; the second, the transition from the binomial 
to the normal distribution. 

1812 Pierre Simon de Laplace (1749-1827): Theorie Analytique des 
Probabilites, the first comprehensive survey of probability. 

1901 Founding of the journal Biometrika, around which crystallized 
the Anglo-Saxon school of statistics, by Karl Pearson (1837-1936), who 
with Ronald Aylmer Fisher (1890-1962) developed most of the bio
metrical methods, later extended by Jerzy Neyman (1894-1981) and 
Egon S. Pearson (1895-1980) to include the confidence interval and 
general test theory. Fisher also was responsible for pioneering studies 
in experimental design (The Design of Experiments, 1935), the analysis 
of variance, and other important subjects. After the axiomatization of 
probability (1933), Andrei Nikolayevich Kolmogoroff developed the 
theory of stochastic processes, which originated with Russian mathe
maticians. 

1950 Statistical Decision Functions by Abraham Wald (1902-1950) 
appeared. Sequential analysis, which was developed during World 
War II and which can be interpreted as a stochastic process, is a special 
case of statistical decision theory. The text provides guidelines for 
procedures in uncertain situations: Statistical inference is understood 
as a decision problem. 

The future of statistics is discussed by Tukey (1962), Kendall (1968), 
Watts (1968) and Bradley (1982). 
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(McGraw-Hili, pp. 638) New York 1969 

Dunn, Olive J. and Clark, Virginia, A.: Applied Statistics. Analysis of Variance and 
Regression. (Wiley; pp. 387) New York 1974 
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3rd ed. (McGraw-Hill [Int. Stud. Ed.]; pp. 564) Dusseldorf 1974 
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Rao, C. R., Mitra, S. K. and Matthai, A. (Eds.): Formulae and Tables for Statistical 
Work. (Statistical Publishing Society, pp. 234) Calcutta 1966 (further there are 
references to additional tables) 

Statistical Tables and Formulas with Computer Applications. (Japanese Standards 
Association; pp. 750) Tokyo 1972 

Section [5: 1] contains references to a few further sources of statistical tables. 

[3] DICTIONARIES AND DIRECTORIES 

1. VEB Deutscher Landwirtschaftsverlag Berlin, H. G. Zschommler (Ed.): Biome
trisches Worterbuch. Erlauterndes biometrisches Worterbuch in 2 volumes (VEB 
Deutscher Landwirtschaftsverlag, a total of 1047 pages) Berlin 1968, contents: 1. 
Illustrated encyclopedia (2712 key words, 795 pages), 2. Foreign language index 
(French, English, Polish, Hungarian, Czechoslovakian, Russian; 240 pages), 3. 
Recommendations for standard symbols (9 pages) 

2. Miiller, P. H. (Ed.): Lexikon, Wahrscheinlichkeitsrechnung und Mathematische 
Statistik. (Akademie-Vlg., 445 pages) Berlin 1980 

3. Kendall, M. G., and Buckland, A.: A Dictionary of Statistical Terms. 4th ed., 
revised and enlarged (Longman Group, pp. 213) London and New York 1982 
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4. Freund, J. E., and Williams, F.: Dictionary/Outline of Basic Statistics. (McGraw
Hill, pp. 195) New York 1966 

5. Morice, E., and Bertrand, M.: Dictionnaire de statistique. (Dunod, pp. 208) Paris 
1968 

6. Paenson, I.: Systematic Glossary of the Terminology of Statistical Methods. English, 
French, Spanish, Russian. (Pergamon Press, pp. 517) Oxford, New York, Braun
schweig 1970 

7. Fremery, J. D. N., de: Glossary of Terms Used in Quality Control. 3rd ed. (Vol. XII, 
European Organization for Quality Control; pp. 479) Rotterdam 1972 (400 
definitions in 14 languages) 

The following directories contain the addresses of most of the authors in the 
bibliography: 

I. Mathematik. Institute, Lehrstiihle, Professoren, Dozenten mit Anschriften sowie 
Fernsprechanschliissen. Mathematisches Forschungsinstitut Oberwolfach, 762 
Oberwolfach-Walke, Lorenzenhof, 1978 Directory 

2. World Directory of Mathematicians 1982. International Mathematical Union. 
(7th ed.; pp. 725) Distrib. by Amer. Math. Soc., P.O. Box 6248, Providence, 
RI 02940, USA 

3. The Biometric Society, 1982 Membership Directory. Edited by Elsie E. Thull, The 
Biom. Soc., 806 15th Street, N.W., Suite 621, Washington, D.C. 20005, USA 

4. 1970 Directory of Statisticians and Others in Allied Professions. (pp. 171) American 
Statistical Association, 806 15th Street, N. W., Washington (D.C. 20005) 1971 

5. Membership Directory 1981-1982: The Institute of Mathematical Statistics. 
(pp. 219) 3401 Investment Blvd., Suite 6, Hayward, Calif. 94545, USA 

6. lSI's Who Is Publishing In Science 1975. International Directory of Research and 
Development Scientists, Institute for Scientific Information, 325 Chestnut Str., 
Philadelphia, Pa. 19106 

7. Williams, T. I. (Ed.): A Biographical Dictionary of Scientists. (Black, pp. 592), 
London 1969 

[4] COMPUTER PROGRAMS 

A few hints to orient the reader. For more details, check with computing 
centers. For desktop computers see Th. J. Boardman, The American 
Statistician 36 (1982), 49-58 and [same journal] H. Neffendorf 37 (1983), 
83-86. 

An introduction is 
Afifi, A. A. and Azen, S. P.: Statistical Analysis-A Computer Oriented Approach. 

2nd ed. (Academic Press; pp. 442) New York 1979 
Kennedy, W. J., Jr. and Gentle, J. E.: Statistical Computing. (M. Dekker; pp. 591) New 

York 1980 

More can be found in, e.g. : 
Baker, R. J. and Neider, J. A.: The GUM System Release 3 Manual (Numerical 

Algorithms Group; various paginations) Oxford 1978 
Dixon, W. J. and Brown, M. B. (Eds.): BMDP-79: Biomedical Computer Programs 

P-Series (University of California Press; pp. 880) Berkeley 1979. For more details 
see BMDP Communications 
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GENSTAT Manual. User's Reference Manual. (Rothampsted Experimental Station) 
Harpenden, Herts. 1977, supplemented by GENSTAT Newsletters 

Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H.: SPSS Statistical 
Package for the Social Sciences. 2nd ed. (McGraw-Hill) New York 1975, supple
mented by updates and newsletters 

Survey Research Center-Computer Support Group: OSIRIS IV -Statistical Analysis 
and Data Management Software System: User's Manual, 4th ed. (Institute for 
Social Research; pp. 254) Ann Arbor 1979 

A good survey is provided by 
Statistical Software Newsletter, edited by Hormann, A. and Victor, N., medis-Institute, 

z.H. Frau Eder, Arabellastr. 4/III, D-8000 Munchen 81 
See, for instance, 
Francis, I. and Wood, L.: Evaluating and improving statistical software. Statistical 

Software Newsletter 6 (1980), No. I, 12-16 and Francis, I.: Statistical Software. A 
Comparative Review. (Elsevier, North-Holland; pp. 556) Amsterdam 

Many journals now contain computer programs. We mention only four: 

Applied Statistics 28 (1979),94-100 [and 30 (1981),358-373] 
Computer Programs in Biomedicine 10 (1979), 43-47 
Journal of Quality Technology 11, (1979), 95-99 
The American Statistician 37 (1983), 169-175 

[5] BIBLIOGRAPHIES AND ABSTRACTS 

[5: 1] Mathematical-statistical tables 

Consult for specialized tables: 
Greenwood, J. A., and Hartley, H. 0.: Guide to Tables in Mathematical Statistics. 

(University Press, pp. 1014) Princeton, N.J. 1962 

For mathematical tables, consult: 

1. Fletcher, A., Miller, J. C. P., Rosenhaed, L., and Comrie, L. J.: An Index of Mathe
matical Tables. 2nd ed., Vol. I and II (Blackwell; pp. 608, pp. 386) Oxford 1962 

2. Lebedev, A. V., and Fedorova, R. M. (English edition prepared from the Russian by 
Fry, D. G.): A Guide to Mathematical Tables. Supplement No.1 by N. M. 
Buronova (D. G. Fry, pp. 190) (Pergamon Press, pp. 586) Oxford 1960 

3. Schutte, K.: Index mathematischer Tafelwerke und Tabellen aus allen Gebieten der 
Naturwissenschaften, 2nd edition (Oldenbourg, 239 pages) Munchen and Wien 
1966 

We specifically mention Mathematical Tables and other Aids to Computa
tion, published by the National Academy of Sciences (National Research 
Council, Baltimore, Md., 1 [1947] - 13 [1959]) and Mathematics of Com
putations, published by the American Mathematical Society (Providence, 
R.I., 14 [1960] - 34 [1980]) 
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These series contain important tables: 

1. Applied Mathematics Series. U.S. Govt. Printing Office, National Bureau of Stan
dards, U.S. Department of Commerce, Washington 

2. New Statistical Tables. Biometrika Office, University College, London 
3. Tracts for Computers. Cambridge University Press, London 

[5: 2] Articles 

1. Revue de I'institut de statistique (La Haye), Review of the International Statistical 
Institute (The Hague)(e.g., 34 [1966J, 93-110 and 40 [1972J, 73-81)(since 1972 as 
International Statistical Review) 

2. Allgemeines Statistisches Archiv (e.g., 56 [1972J, 276-302) 
3. Deming, Lola S., et al.: Selected Bibliography of Literature, 1930 to 1957: in Journal 

of Research of the National Bureau of Standards 
I Correlation and Regression Theory: 64B (1960), 55-68 

II Time Series: 64B (1960), 69-76 
III Limit Theorems: 64B (1960),175-192 
IV Markov Chains and Stochastic Processes: 65B (1961), 61-93 
V Frequency Functions, Moments and Graduation: 66B (1962),15-28 

VI Theory of Estimation and Testing of Hypotheses, Sampling Distribution and 
Theory of Sample Surveys: 66B (1962), 109-151 

Supplement, 1958-1960: 67B (1963), 91-133; likewise important 
Haight, F. A.: Index to the distributions of mathematical statistics 65B (1961), 
23-60 

[5: 3] Books 

1. Lancaster, H.: Bibliography of Statistical Bibliographies. (Oliver and Boyd, pp. 103) 
Edinburgh and London 1968 (with the main sections: personal bibliographies, 
pp. 1-29, and subject bibliographies, pp. 31-65, as well as the subject and author 
indexes) (cf.: a second list, Rev. Int. Stat. Inst. 37 [1969],57-67, ... ,15th list Int. 
Stat. Rev. 51 [19831,207-212) as well as Problems in the bibliography of statistics. 
With discussion. J. Roy. Statist. Soc. A 133 (1970), 409-441, 450-462 and Gani, J.: 
On coping with new information in probability and statistics. With discussion. J. 
Roy. Statist. Soc. A 133 (1970), 442-462 and Int. Stat. Rev. 40 (1972), 201-207 
as well as Rubin, E.: Developments in statistical bibliography, 1968-69. The 
American Statistician 24 (April 1970), 33 + 34 

2. Buckland, W. R., and Fox, R. A.: Bibliography of Basic Texts and Monographs on 
Statistical Methods 1945-1960. 2nd ed. (Oliver and Boyd; pp. 297) Edinburgh and 
London 1963 

3. Kendall, M. G., and Doig, A. G.: Bibliography of Statistical Literature, 3 vol. 
(Oliver and Boyd, pp. 356, 190,297) Edinburgh and London 1962/68 (1) Pre-1940, 
with supplements to (2) and (3), 1968; (2) 1940-49, 1965; (3) 1950-58, 1962. This 
bibliography, indexed unfortunately only by authors' names, comprises 34082 
papers which are characterized per volume by 4-digit numbers. Since 1959 it has 
been continued by Statistical Theory and Method Abstracts (12 sections with 
10-12 subsections) which contains 1000-12000 reviews annually. Publisher: 
International Statistical Institute, 2 Oostduinlaan, Den Haag, Holland. 
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4. Kellerer, H.: Bibliography of all foreign language books in statistics and its appli
cations that have been published since 1928 (Deutsche Statistische Gesellschaft. 143 
pages) (Nr. 7a) Wiesbaden 1969 

Specialized bibliographies: 

Menges, G. and Leiner, B. (Eds.): Bibliographie zur statischen Entscheidungstheorie 
1950-1967. (Westdeutscher Verlag, 41 pages) K61n and Opladen 1968 

Patil, G. P., and Joshi, S. W.: A Dictionary and Bibliography of Discrete Distributions. 
(Oliver and Boyd, pp. 268) Edinburgh 1968 

A bibliography on the foundations of statistics was compiled by L. J. Savage: Reading 
suggestions for the foundations of statistics. The American Statistician 24 (Oct. 
1970),23-27 

In addition to the bibliographies quoted in the text of the book we mention: 

Pritchard, A.: Statistical Bibliography. An Interim Bibliography. (North-Western 
Polytechnic, School of Librarianship, pp. 69) London 1969 

Wilkie, J.: Bibliographie Multivariate Statistik und mehrdimensionale Klassifikation. 
2 volumes (Akademie Verlag; 1123 pages) Berlin 1978 

A source of recent papers in the seven most important journals (up to 1969): 

Joiner, B. L., Laubscher, N. F., Brown, Eleanor S., and Levy, B.: An Author and Per
muted Title Index to Selected Statistical Journals. (Nat. Bur. Stds. Special Pub!. 
321, U.S. Government Printing Office, pp. 510) Washington Sept. 1970 

The following books and journals are useful in addition to those by Dolby, 
Tukey, and Ross (cf. end of Section [6]): 

Burrington, G. A.: How to Find out about Statistics. (Pergamon, pp. 153) Oxford 1972 
Moran, P. A. P.: How to find out in statistical and probability theory. Int. Stat. Rev. 

42 (1974), 299-303 

Other modern bibliographies are mentioned in the main text and referenced 
in [8]. 

[5:4] Abstract journals 

1. Statistical Theory and Method Abstracts. International Statistical Institute. Oliver 
and Boyd, Tweeddale Court, 14 High Street, Edinburgh I (cf. above) 

2. International Journal of Abstracts on Statistical Methods in Industry. International 
Statistical Institute. Oliver and Boyd, Tweeddale Court, 14 High Street, Edin
burgh I 

3. Quality Control and Applied Statistics. Executive Sciences Institute, Whippany, 
N.J., Interscience Pub!. Inc., 250 Fifth Avenue, New York, N. Y., USA 

Mathematical reviewing journals should also be considered: Zentralblatt 
fUr Mathematik, Mathematical Reviews and Bulletin Signaletique Mathe
matiques. 
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[5: 5] Proceedings 

Bulletin de I'Institut International de Statistique. Den Haag 
Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. 

Berkeley, California 

[6] SOME PERIODICALS 
Allgemeines Statistisches Archiv, Organ der Deutschen Statistischen Gesellschaft, 

Institut fUr Statistik und Mathematik, J. W. Goethe-Universitat, Mertonstr. 17-19, 
D-6000 Frankfurt am Main [64 (1980)] 

Applied Statistics, Journal of the Royal Statistical Society (Series C). Royal Statistical 
Society, 25 Enford Street, London WIH 2BH [29 (1980)] 

Biometrics, Journal of the Biometric Society, Department of Biomathematics, Univ. of 
Oxford, OX! 2JZ, Pusey Street, England. Biometrics Business Office: 806 15th 
Street NW, Suite 621, Washington, D.C. 20005, USA [36 (1980)] 

Biometrika, The Biometrika Office, University College London, Gower Street, London 
WCIE 6BT [67 (1980)] 

Biometrical Journal. Journal of Mathematical Methods in Biosciences. Institut fUr 
Mathematik der AdW, DDR-1080 Berlin, Mohrenstr. 39 [22 (1980)] 

Communications in Statistics: Part A - Theory and Methods. M. Dekker, New York, 
P.O. Box 11305, Church Street Station, N.Y. 10249 (and Basel); Dept. Statist., 
Southern Methodist Univ., Dallas, Texas 75275 [A9 (1980)] 

Communications in Statistics: Part B-Simulation and Computation. M. Dekker, New 
York, P.O. Box 11305, Church Street Station, N.Y. 10249 (and Basel); Dept. 
Statist., Virginia Polytechnic Institute and State University, Blacksburg, VA. 
24061 [B9 (1980)] 

International Statistical Review, A Journal of the International Statistical Institute, 
428 Prinses Beatrixlaan, Voorburg, The Netherlands [48 (1980)] 

Journal of Multivariate Analysis. Dept. Math. Statist, Univ. of Pittsburgh, Pittsburgh, 
Pa. 15260 [10 (1980)] 

Journal of Quality Technology. A Quarterly Journal of Methods, Applications, and 
Related Topics. American Society for Quality Control; Plankinton Building, 161 
West Wisconsin Avenue, Milwaukee, WI 53203 [12 (1980)] 

Journal of the American Statistical Association, 806 15th St. N. W., Suite 640, Washing
ton, D.C. 20005, USA [75 (1980)] 

Journal of the Royal Statistical Society, Series A (General), Series B (Methodological), 
Royal Statistical Society, 25 Enford Street, London WlH 2BH [A 143 (1980); 
B 42 (1980)] 

Metrika, International Journal for Theoretical and Applied Statistics. Seminar fUr 
Angewandte Stochastik an der Universitat Munchen, Akademiestr. IIIV, D-8000, 
Munchen 40 [27 (1980)] 

Psychometrika, A Journal devoted to the Development of Psychology as a Quantitative 
Rational Science, Journal of the Psychometric Society, Johns Hopkins University, 
Baltimore, Maryland 21218 [45 (1980)] 

Technometrics, A Journal of Statistics for the Physical, Chemical and Engineering 
Sciences; published quarterly by the American Society for Quality Control and the 
American Statistical Association. ASQC: 161 W.Wisconsin A venue, Milwaukee,Wis., 
53203; ASA: 80615th Street, N.W., Suite 640, Washington, D.C. 20005 [22 (1980)]. 

The Annals of Mathematical Statistics, Institute of Mathematical Statistics, Stanford 
University. Calif. 94305, USA. Since 1973 as The Annals of Probability and as The 
Annals of Statistics [both 8 (1980)]. 

For further periodicals see e.g., Journal of the Royal Statistical Society A 139 (1976), 
144-155,284-294. 
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Beginners and more advanced scientists will find many interesting ideas in 
Annual Technical Conference Transactions of the American Society for 
Quality Control and in Journal of Quality Technology (previously: Industrial 
Quality Control). 

Finally we mention the excellent series concerning recent papers up to now: 

Dolby, J. L. and 1. W. Tukey: The Statistics Cum Index. (The Rand D Press, pp. 498), 
Los Altos, Calif. 1973. Ross, I. C. and J. W. Tukey: Index to Statistics and Prob
ability. Permuted Titles. (pp. 1588); (1975). Locations and Authors. (pp. 1092; 
1974). 

CURRENT INDEX TO STATISTICS. Applications, Methods and Theory 1 
(1975), ... , ~ (1980), ... ,jointly published by the American Statistical Associa
tion and the Institute of Mathematical Statistics. Editors: B. L. Joiner and J. M. 
Gwynne. 

[7] SOURCES FOR TECHNICAL AIDS (E.G. 
FUNCTION AND PROBABILITY CHARTS) 

Schleicher und Schull, D-3352 Einbeck/Hannover 
Schiifers Feinpapiere, DDR Plauen (Sa.), BergstraBe 4 
Rudolf Haufe Verlag, D-7800 Freiburg i. Br. 
Keuffel und Esser-Paragon GmbH., D-2000 Hamburg 22, OsterbekstraBe 43 
Codex Book Company, Norwood, Mass. 02062, 74 Broadway, USA 
Technical and Engineering Aids for Management. 104 Belsore Avenue, Lowell, 

Mass., USA (also RFD, Box 25, Tamworth, New Hampshire 03886) 

Statistical work sheets, control cards and further aids: 

Arinc Research Corp., Washington D.C., 1700 K Street, USA 
Beuth-Vertrieb, D-lOOO Berlin 30, BurggrafenstraBe 4-7 (Koln and Frankfurt/M.) 
Arnold D. Moskowitz, Defense Industrial Supply Center, Philadelphia, Pa. USA 
Dyna-Slide Co., 600 S. Michigan Ave., Chicago, Ill., USA 
Recorder Charts Ltd., P.O. Box 774, Clyde Vale, London S.E. 23, England 
Technical and Engineering Aids for Management. 104 Belrose Avenue, Lowell, 

Mass., USA (also RFD, Tamworth, New Hampshire 03886) 
Howell Enterprizes, Ltd., 4140 West 63rd Street, Los Angeles, Cal. 90043, USA 

[8] REFERENCES FOR THE INDIVIDUAL 
CHAPTERS 

[8:1] Chapter 1 

Ackoff, R. L.: Scientific Method: Optimizing Applied Research Decisions. (Wiley; pp. 
462) New York 1962 

Ageno, M., and Frontali, c.: Analysis of frequency distribution curves in overlapping 
Gaussians. Nature 198 (1963), 1294-1295 
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Aitchison, J., and Brown, J. A, c.: The Lognormal Distribution. Cambridge 1957 [see 
Applied Statistics 29 (1980),58-68; Biometrics 36 (1980),707-719; and J. Amer. 
Statist. Assoc. 75 (1980), 399-404] 

Alluisi, E. A.: Tables of binary logarithms, uncertainty functions, and binary log func
tions. Percept. Motor Skills 20 (1965), 1005-1012 

Altham, P. M. E.: Two generalizations of the binomial distribution. Applied Statistics 
27 (1978), 162-167 

Anderson, 0.: Probleme der statistischen Methodenlehre in den Sozialwissenschaften, 
4th edition. (Physica-Vlg., 358 pages) Wiirzburg 1963, Chapter IV 

Angers, C.: A graphical method to evaluate sample sizes for the multinomial distribution. 
Technometrics 16 (1974), 469-471 

Bachi, R.: Graphical Rational Patterns. A New Approach to Graphical Presentation of 
Statistics. (Israel Universities Press; pp. 243) Jerusalem 1968 

Barnard G. A.: The Bayesian controversy in statistical inference. J. Institute Actuaries 
93 (1967), 229-269 [see also J. Amer. Statist. Assoc. 64 (1969),51-57] 

Barnett, V.: Comparative Statistical Inference. 2nd ed. (Wiley; pp. 325) London 1982 
-, and Lewis, T.: Outliers in Statistical Data. (Wiley; pp. 384) New York 1978 
Bartko, J. J.: (1) Notes approximating the negative binomial. Technometrics 8 (1966), 

345-350 (2) Letter to the Editor. Technometrics 9 (1967), 347 + 348 (see also 
p.498) 

Batschelet, E.: Introduction to Mathematics for Life Scientists. 2nd ed. (Springer; pp. 
643) Berlin, Heidelberg, New York 1975 

Beckman, R. J., and Cook, R. D.: Outlier .......... s. With discussion and 
response. Technometrics 25 (1983), 119-163 

Bernard, G.: Optimale Strategien unter UngewiBheit. Statistische Hefte 9 (1968), 82-100 
Bertin, J.: Semiology Graphique. Les Diagrammes - Les Reseau - Les Cartes. (Gautier 

Villars, pp. 431) Paris 1967 
Bhattacharya, C. G.: A simple method of resolution of a distribution into Gaussian 

components. Biometrics 23 (1967), 115-135 [see also 25 (1969), 79-93 and 29 
(1973), 781-790] 

Birnbaum, A.: Combining independent tests of significance. J. Amer. Statist. Assoc. 49 
(1954), 559-574 [see also 66 (1971), 802-806] 

Blind, A.: Das harmonische Mittel in der Statistik. Allgem. Statist. Arch. 36 (1952), 
231-236 

Bliss, C. I.: (1) Fitting the negative binomial distribution to biological data. Biometrics 9 
(1953), 176-196 and 199-200. (2) The analysis of insect counts as negative binomial 
distributions. With discussion. Proc. Tenth Internat. Congr. Entomology 1956, 2 
(1958), 1015-1032 

Blyth, C. R., and Hutchinson, D. W.: Table of Neyman-shortest unbiased confidence 
intervals for the binomial parameter. Biometrika 47 (1960), 381-391 

Bolch, B. W.: More on unbiased estimation of the standard deviation. The Americar 
Statistician 22 (June 1968), 27 (see also 25 [April 1971], 40, 41 and [Oct. 1971], 
30-32) 

Botts, R. R.: Extreme value methods simplified. Agric. Econom. Research 9 (1957), 
88-95 

Box, G. E. P. and Tiao, G. c.: Bayesian Inference in Statistical Analysis (Addison
Wesley) Reading, Mass. 1973 

-, Leonhard, T., and Wu, C.-F. (Eds.): Scientific Inference, Data Analysis, and 
Robustness. (Academic Press; pp. 320) New York 1983 

Boyd, W. c.: A nomogram for chi-square. J. Amer. Statist. Assoc. 60 (1965),344-346 
(cf. 61 [1966] 1246) 

Bradley, J. V.: A common situation conducive to bizarre distribution shapes. The 
American Statistician 31 (1977), 147-150 



[8] References for the Individual Chapters CHAPTER 1 579 

Bruckmann, G.: Schatzung von Wahlresultaten aus Teilergebnissen. (Physica-Vlg., 
148 pages) Wien and Wiirzburg 1966 [see also P. Mertens (ed.): Prognoserechnung. 
(Physica-Vlg., 196 pages.) Wiirzburg and Wien 1972] 

Brugger, R. M.: A note on unbiased estimation ofthe standard deviation. The American 
Statistician 23 (October 1969), 32 (see also 26 [Dec. 1972], 43) 

Biihlmann, H., Loeffel, H. and Nievergelt, E.: Einfiihrung in die Theorie und Praxis der 
Entscheidung bei Unsicherheit. Heft 1 der Reihe: Lecture Notes in Operations 
Research and Mathematical Economics. Berlin-Heidelberg-New York 1967 (122 
pages) (2nd edition 1969, 125 pages) 

Calot, G.: Signicatif ou non signicatif? Reftexions it propos de la theorie et de la pratique 
des tests statistiques. Revue de Statistique Appliquee 15 (No.1, 1967), 7-69 (see 
16 [No.3, 1968], 99-111 and Cox, D. R.: The role of significance tests. Scand. J. 
Statist. 4 [1977] 49-70) 

Campbell, S. K.: Flaws and Fallacies in Statistical Thinking. (Prentice-Hall; pp. 200) 
Englewood Cliffs, N.J. 1974 [see also I. J. Good, Technometrics 4 (1962),125-132 
and D. J. Ingle, Perspect. Bio!. Med. 15,2 (Winter 1972),254-281] 

Cetron, M. J.: Technological Forecasting: A Practical Approach. (Gordon and Breach, 
pp. 448) New York 1969 

Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P.: Graphical Methods for Data 
Analysis. (Wadsworth; pp. 330) Belmont, Calif. 1983 

Chernoff, H., and Moses, L. E.: Elementary Decision Theory. New York 1959 
Chissom, B. S.: Interpretation of the kurtosis statistic. The American Statistician 24 

(Oct. 1970), 19-22 
Cleary, T. A., and Linn, R. L.: Error of measurement and the power of a statistical test. 

Brit. J. Math. Statist. Psycho!. 22 (1969), 49-55 
Cochran, W. G.: Note on an approximate formula for the significance levels of z. Ann. 

Math. Statist. 11 (1940), 93-95 
Cohen, A. C. jr. : (1) On the solution of estimating equations for truncated and censored 

samples from normal populations. Biometrika 44 (1957), 225-236. (2) Simplified 
estimators for the normal distribution when samples are singly censored or trun
cated. Technometrics 1 (1959), 217-237. (3) Tables for maximum likelihood 
estimates: singly truncated and singly censored samples. Technometrics 3 (1961), 
535-541 [see also 18 (1976), 99-103 and Applied Statistics 25 (1976),8-11] 

Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. (Academic Press, pp. 
496) New York 1977 [see also, p. 581, Guenther 1973, and p. 611, Odeh and Fox 
1975] 

Cornfield, J.: (1) Bayes theorem. Rev. Internat. Statist. Inst. 35 (1967),34-49. (2) The 
Bayesian outlook and its application. With discussion. Biometrics 25 (1969),617-
642 and 643-657 [see also J. Roy. Statist. Soc. A 145 (1982), 250-258] 

Cox, D. R.: (1) Some simple approximate tests for Poisson variates. Biometrika 40 
(1953), 354-360. (2) Some problems connected with statistical inference. Ann. 
Math. Statist. 29 (1958), 357-372. (3) The role of significance tests. Scand. J. Statist. 
4 (1977), 49-70. (4) Some remarks on the role in statistics of graphical methods. 
Applied Statistics 27 (1978), 4--9 [cf. Biometrika 66 (1979),188-190] 

Craig, 1.: On the elementary treatment of index numbers. Applied Statistics 18 (1969), 
141-152 [see also Econometrica 41 (1973),1017-1025] 

Crowe, W. R.: Index Numbers, Theory and Applications. London 1965 
D'Agostino, R. B.: Linear estimation of the normal distribution standard deviation. 

The American Statistician 24 (June 1970), 14 + 15 [see also J. Amer. Statist. Assoc. 
68 (1973), 207-210] 

Dalenius, T.: The mode-a neglected statistical parameter. J. Roy. Statist. Soc. A 128 
(1965), 110-117 [see also Ann. Math. Statist. 36 (1965), 131-138 and 38 (1967), 
1446-1455] 
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Darlington, R. B.: Is kurtosis really "peakedness"? The American Statistician 24 
(April 1970), 19-22 (see also 24 [Dec. 1970],41,25 [Febr. 1971],42,43,60 and 30 
[1976], 8-12) 

David, Florence N.: (I) A Statistical Primer, Ch. Griffin, London 1953. (2) Games, 
Gods and Gambling. New York 1963 

Day, N. E. : Estimating the components of a mixture of normal distributions. Biometrika 
56 (1969), 463-474 (see also 59 [1972], 639-648 and Technometrics 12 [1970], 
823-833) 

Defense Systems Department, General Electric Company: Tables of the Individual and 
Cumulative Terms of Poisson Distribution. Princeton, N.J. 1962 

DeLury, D. B. and Chung, J. H.: Confidence Limits for the Hypergeometric Distri
bution. Toronto 1950 

Dickinson, G. c.: Statistical Mapping and the Presentation of Statistics. (E. Arnold, 
pp. 160) London 1963 

Dietz, K.: Epidemics and rumours: a survey. 1. Roy. Statist. Soc. A 130 (1967),505-528 
Documenta Geigy: Wissenschaftliche Tabellen. (6th and) 7th editions., Basel (1960 and) 
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EXERCISES 

CHAPTER 1 

Probability calculus 

1. Two dice are tossed. What is the probability that the sum of the dots 
on the faces is 7 or 11 ? 

2. Three guns are fired simultaneously. The probabilities of hitting the 
mark are 0.1, 0.2, and 0.3 respectively. What is the total probability 
that a hit is made? 

3. The sex ratio among newborn (male:female) drawn from observations 
taken over many years is 514:486. The relative frequency of individuals 
with blond hair is known to be 0.15. Both attributes, sex and hair color, 
are stochastically independent. What is the relative frequency of blond 
males? 

4. What is the probability of obtaining at least one 6 in four tosses of a die? 

5. How many tosses are needed for the probability of getting at least one 
6 to be 50%? 

6. What is the probability of getting (a), 5, (b) 6, (c) 7, (d) 10 heads in 5,6,7, 
10 tosses of a coin? 

Mean and standard deviation 

7. Compute the mean and standard deviation of the frequency distribution 

x 5 6 7 8 9 10 11 12 13 14 15 16 

n 10 9 94 318 253 153 92 40 26 4 0 1 

642 
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8. Compute the mean and standard deviation of the following 45 values: 

40, 43, 43, 46, 46, 46, 54, 56, 59, 

62, 64, 64, 66, 66, 67, 67, 68, 68, 

69, 69, 69, 71, 75, 75, 76, 76, 78, 

80, 82, 82, 82, 82, 82, 83, 84, 86, 

88, 90, 90, 91, 91, 92, 95, 102, 127. 

(a) directly, (b) by using the class limits 40 but less than 45, 45 but less 
than 50, etc., (c) by using the class limits 40 but less than 50, 50 but less 
than 60, etc. 

9. Compute the median, the mean, the standard deviation, the skewness 
II, and the coefficient of excess of the sampling distribution: 

62, 49, 63, 80, 48, 67, 53, 70, 57, 55, 39, 60, 65, 56, 61, 37, 

63, 58, 37, 74, 53, 27, 94, 61, 46, 63, 62, 58, 75, 69, 47, 71, 

38, 61, 74, 62, 58, 64, 76, 56, 67, 45, 41, 38, 35, 40. 

10. Sketch the frequency distribution and compute the mean, median, 
mode, first and third quartile, first and ninth decile, standard deviation, 
skewness I-III, and coefficient of excess. 

Class limits Frequencies 

72.0 - 73.9 7 
74.0 - 75.9 31 
76.0 - 77.9 42 
78.0 - 79.9 54 
80.0 - 81.9 33 
82.0 - 83.9 24 
84.0 - 85.9 22 
86.0 - 87.9 8 
88.0 - 89.9 4 

Total 225 

F-distribution 

11. Given F = 3.84 with VI = 4 and V2 = 8 degrees of freedom. Find the 
level of significance corresponding to the F-value. 

Binomial coefficients 

12. Suppose 8 insecticides are to be tested in pairs as to their effect on 
mosquitoes. How many tests must be run? 
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13. Of those afflicted with a certain disease, 10 % die on the average. What 
is the probability that out of 5 patients stricken with the disease (a) all 
get well, (b) exactly 3 fail to survive, (c) at least 3 fail to survive? 

14. What is the probability that 5 cards drawn from a well-shuffled deck 
(52 cards) all turn out to be diamonds? 

15. A die is tossed 12 times. What is the probability that the 4 shows up 
exactly twice? 

16. Of the students registered in a certain department, 13 are female and 
18 are male. How many possible ways are there of forming a committee 
consisting of 2 female and 3 male students? 

Binomial distribution 

17. What is the probability of getting heads five times in 10 flips of a coin? 

18. The probability that a thirty year old person will live another year is 
99 % according to life tables (p = 0.99). What is the probability that out 
of 10 thirty year olds, 9 survive for another year? 

19. What is the probability that among 100 tosses of a die the 6 comes up 
exactly 25 times? 

20. Twenty days are singled out at random. What is the probability that 
5 of them fall on a certain day ofthe week-say a Sunday? 

21. Suppose that on the average 33 % of the ships involved in battle are 
sunk. What is the probability that out of 6 ships (a) exactly 4, (b) at least 
4 manage to return? 

22. One hundred fair coins are flipped. What is the probability that exactly 
50 come up heads? Use Stirling's formula. 

23. An urn contains 2 white and 3 black balls. What is the probability that 
in 50 consecutive drawings with replacement a white ball is drawn 
exactly 20 times? Use Stirling's formula. 

Poisson distribution 

24. A hungry frog devours 3 flies per hour on the average. What is the 
probability that an hour passes without it devouring any flies? 

25. Suppose the probability of hitting the target is p = 0.002 for each shot. 
What is the probability of making exactly 5 hits when all together 
n = 1000 shots are fired? 

26. Assume the probability of a manufacturer producing a defective article 
is p = 0.005. The articles are packed in crates of 200 units each. What is 
the probability that a crate contains exactly 4 defective articles? 
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27. In a warehouse a certain article is seldom asked for, on the average 
only 5 times a week, let us say. What is the probability that in a given 
week the article is requested k times? 

28. Suppose 5 % of all schoolchildren wear glasses. What is the probability 
that in a class of 30 children (a) no, (b) one, (c) two, (d) three children 
wear glasses? 

CHAPTER 2 

Formulate and solve a few problems on the basis of Figures 33 through 37. 

CHAPTER 3 

1. By means of a random process 16 sample elements with x = 41.5 and 
s = 2.795 are drawn from a normally distributed population. Are there 
grounds for rejecting the hypothesis that the population mean is 43 
(IX = 0.05)? 

2. Test the equality of the variances of the two samples, A and B, at the 5 % 
level using the F -test: 

A: 2.33 4.64 3.59 3.45 3.64 3.00 3.41 2.03 2.80 3.04 

B: 2.08 1.72 0.71 1.65 2.56 3.27 1.21 1.58 2.13 2.92 

3. Test at the 5 % level the equality of the central tendency (H 0) of the two 
independent samples, A and B, using (a) the Tukey rapid test, (b) the 
U-test: 

A: 2.33 4.64 3.59 3.45 3.64 3.00 3.41 2.03 2.80 3.04 
B: 2.08 1.72 0.71 1.65 2.56 3.27 1.21 1.58 2.13 2.92 

CHAPTER 4 
1. Two sleep-inducing preparations, A and B, were tested on each of 10 

persons suffering from insomnia (Student 1908, Biometrika 6, p. 20). 
The resulting additional sleep, in hours, was as follows: 

Patient 1 2 3 4 5 6 7 8 9 10 

A 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4 
B 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0 

Ditt. 1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4 

Can A and B be distinguished at the 1 % level? Formulate the null hypo
thesis and apply (a) the t-test for paired observations and (b) the maximum 
test. 
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2. Test the equality of the central tendencies (H 0) of two dependent samples, 
A and B, at the 5 %-level by means of the following tests for paired observa
tions: (a) t-test, (b) Wilcoxon test, (c) maximum test. 

No. 1 2 3 4 5 6 7 8 9 

A 34 48 33 37 4 36 35 43 33 
B 47 57 28 37 18 48 38 36 42 

3. Gregor Mendel, as the result of an experiment involving peas, ended up 
with 315 round yellow peas, 108 round green ones, 101 with edges and 
yellow, and 32 with edges and green. Do these values agree with the 
theory according to which the four frequencies are related as 9 : 3 : 3 : 1 
(IX = 0.05;S = 95%)? 

4. Does the following frequency distribution represent a random sample 
which could have originated in a Poisson distributed population with 
parameter A. = 10.44? Test the fit at the 5 % level by means of the X2-test. 
Number of events, E: 0 1 2 3 4 5 6 7 8 
Observed frequency, 0: 0 5 14 24 57 111 197 278 378 
E: 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
0: 418 461 433 413 358 219 145 109 57 43 16 7 8 3 

5. The frequencies of a fourfold table are: a = 140, b = 60, c = 85, d = 90. 
Apply the test for independence at the 0.1% level. 

6. The frequencies of a fourfold table are: a = 605, b = 135, c = 195, d = 
65. Apply the test for independence at the 5% level. 

7. The frequencies of a fourfold table are: a = 620, b = 380, c = 550, d = 

450. Apply the test for independence at the 1 % level. 

CHAPTER 5 

1. Test the significance of r = 0.5 at the 5 % level (n = 16). 

2. How large at least must r be to be statistically significant at the 5 % level 
forn=16? 

3. Estimate the regression lines and the correlation coefficient for the 
following pairs of values: 

x: 22 24 26 26 27 27 28 28 29 30 30 30 31 32 33 34 35 35 36 37 

y: 10 20 20 24 22 24 27 24 21 25 29 32 27 27 30 27 30 31 30 32 

Should we reject the H 0 hypothesis that p = 0 at the 0.1 % level ? 
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4. Given the following two dimensional frequency distribution: 

I~ 42 47 52 57 62 67 72 77 82 Total 

52 3 9 19 4 35 
57 9 26 37 25 6 103 
62 10 38 74 45 19 6 192 
67 4 20 59 96 54 23 7 263 
72 4 30 54 74 43 9 214 
77 7 18 31 50 19 5 130 
82 2 5 13 15 8 3 46 
87 2 5 8 2 17 

Total 26 97 226 244 189 137 55 21 5 1000 

Estimate the correlation coefficient, the standard deviations SX, sY' 
the sample covariance SXY' the regression line of yon x, and the correlation 
ratio. Test the correlation and the linearity of the regression (0( = 0.05). 

5. A correlation based on 19 paired observations has the value 0.65. (a) 
Can this sample originate in a population with parameter p = 0.35 
(0( = 0.05)? (b) Estimate the 95 % confidence interval for p on the basis 
of the sample. (c) If a second sample, also consisting of 19 paired observa
tions, has a correlation coefficient r = 0.30, could both samples have 
originated in a common population (0( = 0.05)? 

6. Fit a function of the type y = abx to the following values: 

XIO 1 2 3456 

y 125 209 340 561 924 1525 2512 

7. Fit a function of the type y = abx to the following values: 

X I 273 283 288 293 313 333 353 373 

y 29.4 33.3 35.2 37.2 45.8 55.2 65.6 77.3 

8. Fit a function of the type y = axb to the following values: 

x 119 58 114 140 181 229 

y 3 7 13.2 17.9 24.5 33 

9. Fit a second degree parabola to the following values: 

x 7.5 10.0 12.5 15.0 17.5 20.0 22.5 

y 1.9 4.5 10.1 17.6 27.8 40.8 56.9 

10. Fit a second degree parabola to the following values: 
x 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

y 1.1 1.3 1.6 2.1 2.7 3.4 4.1 
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CHAPTER 6 

1. Test the 2 x 6 table 

13 10 10 5 7 0 

2 4 9 8 14 7 

for homogeneity (IX = 0.01). 

2. Test the independence and the symmetry of the 3 x 3 contingency table 

102 41 57 

126 38 36 

161 28 11 

at the 1 % level. 

3. Test whether both sampling distributions I and II could have originated 
in the same population (IX = 0.05). Use (a) the formula (6.1) to test the 
homogeneity of the two samples, and (b) the information statistic 21 to 
test the homogeneity of a two way table consisting of k x 2 cells. 

Frequencies 
Category I II Total 

1 160 150 310 
2 137 142 279 
3 106 125 231 
4 74 89 163 
5 35 39 74 
6 29 30 59 
7 28 35 63 
8 29 41 70 
9 19 22 41 

10 6 11 17 
11 8 11 19 
12 13 4 17 

Total 644 699 1343 

4. Test the homogeneity of this table at the 5 % level: 

23 5 12 

20 13 10 

22 20 17 

26 26 29 
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CHAPTER 7 

1. Test the homogeneity of the following three variances at the 5 % level: 

s~ = 76.84 (nA = 45), si = 58.57 (nB = 82), s,/; = 79.64 (nc = 14). 

2. Test the independent samples A, B, C for equality ofthe means (IX = 0.05) 
(a) by analysis of variance, (b) by means of the H-test: 

A: 40, 34, 84, 46, 47, 60 

B: 59, 92, 117, 86, 60, 67, 95, 40, 98, 108 

C: 92, 93, 40, 100, 92 

3. Given 

!~ B1 B2 B3 B4 Bs B6 L 

A1 9.5 11.5 11.0 12.0 9.3 11.5 64.8 
A2 9.6 12.0 11.1 10.8 9.7 11.4 64.6 
A3 12.4 12.5 11.4 13.2 10.4 13.1 73.0 
A4 11.5 14.0 12.3 14.0 9.5 14.0 75.3 
As 13.7 14.2 14.3 14.6 12.0 13.2 82.0 

L 56.7 64.2 60.1 64.6 50.9 63.2 359.7 

Test possible column and row effects at the 1 % level. 

4. Three methods of determination are compared on 10 samples. Test by 
means of the Friedman test (a) the equivalence of the methods (IX = 0.001), 
(b) the equivalence of the samples (Q( = 0.05). 

Method of 
determination 

Sample A B C 

1 15 18 9 
2 22 25 20 
3 44 43 25 
4 75 80 58 
5 34 33 31 
6 15 16 11 
7 66 64 45 
8 56 57 40 
9 39 40 27 

10 30 34 21 



SOLUTIONS TO THE EXERCISES 

CHAPTER 1 

Probability calculus 

1. There are six different ways to get the sum 7, and only two ways to get 
the sum 11, so that 

6 2 2 
P = 36 + 36 = "9 = 0.222. 

2. The total probability of hitting the target is not quite 50%: 

P(A + B + C) = P(A) + P(B) + P(C)- P(AB)- P(AC) - P(BC) + P(ABC) 

P(A + B + C) = 0.1 + 0.2 + 0.3 - 0.02 - 0.03 - 0.06 + 0.006 = 0.496. 

3. P = 0.514·0.15 = 0.0771: blond males can be expected in about 8 % of 
all births. 

4. 1 - (5/6)4 = 0.5177: in a long sequence of tosses one can count on 
getting this event in about 52 % of all cases. 

5. 

n = log 2 = 0.3010 ~ 4. 
log 6 - log 5 0.7782 - 0.6990 

6. The probabilities are (a) (!)S, (b) (!)6, (c) (!)7, (d) (!)1O, or approximately 
0.031,0.016,0.008,0.001. 

650 



Chapter I 

Mean and standard deviation 

7. x = 9.015, s = 1.543. 

8. For a: x = 73.2, s = 17.3. 

For b: x = 73.2, s = 17.5. 

For c: x = 73.2, s = 18.0. 

651 

With increasing class size the standard deviation also gets larger (cr., 
Sheppard's correction). 

9. Statistics Rough estimates 

x ~ 56.3 

10. 

11. 

x = 59.5 
x = 57.3 
s = 13.6 

s ~ 14.1 

Skewness II = -0.214, 

Coefficient of excess = 0.250. 

x = 79.608, 
s = 3.675, 
x = 79.15, 

Ql = 76.82, 
Q3 = 82.10, 

Mode = 78.68. 

first decile = 74.95, 
ninth decile = 84.99, 

Skewness I = - 2.07, 
Skewness II 0.163, 
Skewness III = 0.117. 

Coefficient of excess = 0.263. 

( 2) 1/3 ( 2 ) 1 - - 3.84 - 1 - -
9·8 9·4 

2 ~ J2_. 3.84'" + ~ ~ 1.644, i.e., P, ~ 0.05. 

9·8 9·4 

For VI = 4 and V2 = 8 the exact 5 % bound is 3.8378. 

Binomial coefficients 

8! 8·7 
12. P = se2 = 6!. 2! = 2 = 28. 
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13. For (a): P = 0.90s = 0.59049. 

For (b): sC3 = 5!/(3!·2!) = 5·4/2·1 = 10; thus 

P = 10.0.902.0.103 = 0.00810. 

For (c): sC3 = 10, sC4 = 5; thus 

P = 10.0.902.0.103 + 5.0.90.0.104 + 0.10s, 

P = 0.00810 + 0.00045 + 0.00001 = 0.00856. 

13CS 13!·47!·5! 13·12·11·10·9 
14. P = -- = = -::-::---::-c----::-:----:--:----:-:-

S2CS 8!·5!·52! 52·51·50·49·48' 

11 ·3 33 
P = 17.5.49. 16 = 66640 = 0.0004952, , 

P ~ 0.0005 or 1: 2,000. 

15. There are 12C2 = 12!/{10!· 2!) = 12·11/(2·1) ways of choosing two 
objects from a collection of twelve. The probability of tossing 2 fours and 
10 nonfours equals {1/6)2(5/6)10 = 510/612• The probability that four 
occurs exactly twice in 12 tosses is thus 

12.11 . 510 11 . 510 
P = 2. 1 . 612 = 6Tl = 0.296. 

In a long series of tosses in aggregates of twelve with a fair die, one can 
count on the double occurrence of a four in about 30 % of all cases. 

16. The answer is the product of the numbers of possible ways of choosing 
representatives for each of the two groups, i.e., 

13! 18! 13 . 12 18· 17· 16 
P=13C2·1sC3=11!.2!·15!.3!=T1· 3·2·1' 

P = 13· 18· 17· 16 = 63,648. 

Binomial distribution 

( l)S(l)S 10! 1 10·9·8·7·6 1 252 
17.P=10CS"2 "2 =5!·5!·210 = 5·4·3·2·1 ·1024=1024' 

P = 0.2461. 

In a long series of tosses in aggregates of ten, one can count on the 
occurrence of this event in almost 25 % of all cases. 

18. P = 10C9 .0.999 .0.01 1 = 10·0.9135·0.01 = 0.09135. 

19. P = e2°s0)(i)2S(ifS = 0.0098. In a large number of tosses, this event 
can be expected in about 1 % of all cases. 
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20. P(X = 5) = ~ (~)15(~)5 = 20 ·19 ·18 ·17 .16. 6::, 
15!·5! 7 7 5·4·3·2·1 7 

P = 0.0914. 

21. For a: P = 6C4 . 0.674 .0.332 = 15·0.2015·0.1089 = 0.3292. 

6 

For b: P = L 6C40.67xO.336-X = 0.3292 + 6·0.1350·0.33 + 0.0905, 
x=4 

P = 0.6870. 

22. P = 501!~5!0!· Gro Gro 
= 0.0796. 

23. P = 50C20Gr
o Gro 

= 20~~~0! Gr
o Gro

. 

Applying Stirling's formula, 

J2n50. 5050 . e- 50.220330 
P=~===-~~-----===~-------------

J2n20. 2020 . e- 20 • J2n30. 3030 . e- 30 . 520 .530 ' 

J5 . 550 . 1050 .220 . 330 J5 
P = = -- = 0.0364. 

fiJ2n30 . 220 . 1020 .330 . 1030 . 520 . 530 20fo 

Poisson distribution 

ilX·e- A 3°·e- 3 l·e- 3 1 1 
24. P = ~ = O! = --1- = e3 = 20.086 ~ 0.05. 

25. il = n . p = 1,000· 0.002 = 2, 

ilx - A 25 - 2 
P = _·_e_ = ·e = 0.0361. 

x! 5! 

26. il = n· p = 200·0.005 = 1, 

ilX·e- A 14 ·e- 1 0.3679 
P = -- = ~-- = -- = 0.0153. 

x! 4! 24 

27. P(k, S) = Ske -5jk!. 

28. A. = n . p = 30· O.OS = 1.5, 

(a) No children: 

A.X·e- A 
P=~-,-. 

x. 
1.So . e -1.5 

P = O! = 0.2231, 
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(b) One child: 
151 -1.5 

P = . . ~ = 0.3346, 
1. 

(c) Two children: 
1.52 • e-1.5 

p = 2! = 0.2509, 

(d) Three children: 
1.53 . e-1.5 

p = , = 0.1254. 
3. 

CHAPTER 3 

A 141.5 - 431 112 
1. Yes: t = 2.795 . v 16 = 2.15 > t I5 ;0.05 = 2.13. 

~ si 0.607 
2. F = s~ = 0.542 = 1.12 < F 9; 9; 0.05 = 3.18. 

3. For a: f = 10 > 7; H 0 is rejected at the 5 % level. 

For b: 0 = 12 < U lO .10;0.05 = 27; Ho is likewise rejected. 

CHAPTER 4 

1. For a: t = 4.06 > t9 ;0.01 = 3.25. 

The null hypothesis: both sleep-inducing medications A and B have the 
same effect is rejected; it must be assumed that A is more effective than B. 

For b: Same conclusion as in a. 

2. Fora: t = 2.03 < tS;0.05 = 2.31. 

Forb: Rp = 7 > RS;0.10 = 6. 

For c: The difference is assured at only the 10% level. 
The H 0 is retained in all three cases. 

3. Yes: X2 = 0.47 < X~;0.05 = 7.815. 

4. No: X2 = 43.43 > X~0;0.05 = 31.4. 

5. As X2 = 17.86 > xi: 0.001 = 10.83; the independence hypothesis is rejected. 

6. As X2 = 5.49 > xi: 0.05 = 3.84; the independence hypothesis is rejected. 

7. As X2 = 10.09 > xi: 0.01 = 6.635; the independence hypothesis is rejected. 
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CHAPTER 5 

1. t = 2.16 > t I4 ;0.05 = 2.14, 

P = 4.67 > F 1; 14; 0.05 = 4.60. 

16 - 2 
2. r2 '--2 = 4.60; Irl ;;:: 0.497. 

1 - r 

3. .p = 1.08x - 6.90, 

X = 0.654y + 13.26, 

r = 0.842, 

t = 6.62> t I8 ;0.001 = 3.92. 

4. r = 0.6805, 

Sx = 7.880; Sy = 7.595; Sxy = 40.725, 

E;x = 0.4705 ~ 0.47; Eyx = 0.686, 

655 

P Corr. = 860.5 > F 1; 998; 0.05 ~ F 1; 00; 0.05 = 3.84. The correlation co
efficient differs considerably from zero. 
F Lin. = 2.005 < F(7; 991; 0.05) ~ F 7; 00; 0.05 = 2.01. As F 7; 1,000; 0.05 = 
2.02, which is larger than 

P Lin. = 2.005, the deviations from linearity cannot be assured at the 
5 % level. 

5. For a: Z = 1.639 < 1.96; yes. 

For b: 0.278 ~ (! ~ 0.852. 

For c: Z = 1.159 < 1.96; yes. 

6 • .p = 125· 1.649x • 

7 • .p = 2.2043· 1.0097x• 

8 • .p = 0.1627. XO.9556. 

9. .p = 0.2093x2 - 2.633x + 10. 

10. Y = 0.950 - 0.098x + 0.224x2 . 

CHAPTER 6 

1. As X2 = 20.7082 (2icorr. = 23.4935) is larger than X;;O.OI = 15.086, the 
hypothesis of homogeneity is rejected. 

2. As Xfndep. = 48.8 > XI;O.OI = 13.3, the hypothesis of independence must 
be rejected. As X;ym. = 135.97 > X~;O.OI = 11.345, the hypothesis of 
symmetry is also to be rejected. 
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3. (a) 22 = 11.12. 

(b) 21 = 11.39. 

Solutions to the Exercises 

In neither case is X!1;0.05 = 19.675 attained. There is thus no reason to 
doubt the hypothesis of homogeneity. 

4. As 22 = 10.88 < X~; 0.05 = 12.59, the hypothesis of homogeneity is 
retained. 

CHAPTER 7 

1. 22 = 1.33 < xt 0.05 = 5.99 (c not yet taken into account). We can spare 
ourselves further computation; Ho is retained. 

2. Fora: P = 4.197> F2;18;0.05 = 3.55. 

3 
For b: fJ = 6.423 > X~;0.05 = 5.99. 

Source of 
variability Sum of squares OF Mean square F Fo.o1 

Among the A's 36.41 4 9.102 19.12> 4.43 
Among the 8's 28.55 5 5.710 12.00> 4.10 
Experimental error ·9.53 20 0.476 

Total variability 74.49 29 

Multiple comparisons of the row as well as the column means at the 
1 % level in accordance with Scheffe or Student, Newman, and Keuls is 
recommended (cf. D1, row means = 1.80 and D1,co!umnmeans = 1.84). 

4. For a: 2~ = 15.8> XtO.OOl = 13.82. 

For b: 2~ = 26.0 > X~;O.Ol = 21.67. 
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385, 390, 397, 447 
Bivariate normality, test for 447 
Blind studies 212, 213 
Block division (planned grouping) 559-

562 
as underlying principle of experimental 

design 562 
Block formation 561 
Blocking 559-562, 565 
Blocks 562, 563 

completely randomized 562 
homogeneous 562 

Bonferroni 
X2 procedure 537 
ineqUality 117, 267, 360, 426, 478-

479, 537 
multiple test procedure, sequentially 

rejective 537 
procedure 478 
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x2-table 478 
x2-statistics, upper bounds of 479 
one-stage and multistage 426 
t-Statistic 267, 537 

Bowker test 488, 489 
generalization of 489 

Bravais and Pearson product moment 
correlation coefficient 383, 384, 406, 

407 
Breakdown probability 237 
Bross 

sequential test plan 220-222, 241 
Brownian motion 48 

Calculators 19, 20, 572, 575 
Calibration 461 
Canonical correlation analysis 461 
Capture-recapture study 172 
Card playing 30,31,36,47 
Caret 362 
Carrying out study 565 
Case-control study 205, 206, 209 
Categorically itemized characteristics, 

testing strength of relation between 
482 

Causal correlation 393, 394 
Causal interpretations 394 
Causal relations 206, 224, 393 

topology of 394 
Causal relationships 206, 393, 394 
Causal statement 394 
Causation and experimental design 232, 

233, 558-564 
Causing and correlation analysis 206, 

207, 393-395 
Cell frequency, expected 321,348,464 
Censoring 66, 195 
Centile 92 
Central limit theorem 46, 59, 98, 155, 

279,704 
Central tendency of a distribution 100 
Central tendency of a population (sign 

test) 319 
Chain sampling plans 231 
Change point problem 166 
Characteristic 

and influence factors 565 
fixed levels of 532 
random levels of 532, 533 

Chebyshev, P.L. 64 
Chebyshev's inequality 64 
Checking sources of information 565 
Chi-square 139-143, 154, 155 
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X2 distribution (chi-square distribution) 
139-143,154,155,321,345, 
431,464,488 

X2 goodness of fit test 320-324, 329, 
330,332 

X2 statistic (Fisher's combination proce
dure) 366 

X2 table 140, 141, 349 
X2 test 320-324, 329, 330, 332, 346-

351, 462-482 
simple, for comparing two fourfold ta-

bles 362 
CI, confidence interval 248 
Classed data 53-57, 73 
Class frequency 54-56 
Class number 73, 76 
Class width 73, 76, 92, 97, 106, 420, 

422 
Clinical statistics 37, 195-224 
Clinical testing of drugs for side effects 

223, 224, 337 
Clinical trial (see also Therapeutic com-

parison) 209-218, 223 
Clinical trials, planning of 214, 218 
Clinically normal values 197 
Clopper and Pearson's quick estimation 

of confidence intervals of relative 
frequency 340-341 

Cluster 209, 246 
effect 376 

hypothesis 378 
sample 209, 246 

Cochran test, homogeneity of several var
iances 497, 498 

Codeviance 413 
Coefficient 

of correlation 309, 382-384, 388, 
390,406,407 

of determination 389, 449 
nonlinear 449 

of kurtosis 102-106, 325-327 
of skewness 102-106, 164,325-327 
of variability 77, 78 
of variation 77, 78, 85, 107, 110, 

133, 198,234, 259, 260, 275, 
392 

comparison of two 275 
Cohort studies 204, 205, 208-210 
Coin tossing 27,47, 115, 157, 166 

problem 157 
Cole sequential plan 223 
Collinearity 390 
Column effect 519, 521, 532, 538 

mean 523,527,538,540 

Subject Index 

Combination of kth order 161 
Combinations 

and permutations 155-162, 192, 193 
of means 

with corresponding standard errors 
of independent samples 96 

with corresponding standard errors 
of stochastically dependent 
samples 96 

with or without regard for order 161, 
162 

with or without replication 161, 162 
Combinatorics 155-162, 192, 193 
Combined two tailed rank correlation sta

tistics 403 
Combining comparable test results 119, 

366, 367 
Combining errors 21, 22, 96 
Combining evidence from fourfold tables 

367-369 
Comparability 207, 208, 558-561 

principle 558, 559 
Comparing groups of Time-dependent 

measurements 541 
Comparing surveys and experiments 

561 
Comparing therapies 210-224 
Comparing two 

fourfold tables 362 
r-c tables 484 

Comparison 
experiments 561 
groups 207-214 
of a mean with standard value 121-

123, 255, 256, 274 
of central tendency of empirical log

normal distributions 111 
of means 264, 494, 529 
of observed frequencies with expecta-

tion 321 
of regression lines 442 
of survival distributions 195, 210 
of two percentages 364 
tests 198-200 
two sided 124-129 
within blocks, increasing precision of 

560 
Complement 42 
Complementary date 196 
Complete association, functional depen

dence 383 
Completely randomized design 563 
Completely randomized two variable 



Subject Index 

classification with replication 
529 

Comparability principle 558, 559 
Computational 

aids 19, 20, 572, 573 
economy of tests 131 

Computer 241-244, 572 
Computer programs 572, 573 
Computer simulation 241 

examples 241,242 
Conclusion 24,25, 134, 246, 566 
Concurrence and nonconcurrence 540 
Conditional probability 31-43, 266 
Conditions of comparability 207, 208, 

558-561 
Confidence belt 443-446 
Confidence bounds for the median 254, 

319 
Confidence coefficient (S) 112-119, 

123, 220, 249, 250, 255, 260, 
280, 293, 341, 343 

Confidence ellipse for estimated parame
ters 392 

Confidence interval 70, 112, 113, 116, 
183, 198,234,246,247,249, 
250, 252, 253, 255, 258, 259, 
261,267,268,273,311,334, 
335,392,419,423,428-430, 
440, 443-446, 534, 567 

and test 116, 256, 257, 268, 273 
for difference between two means 

267,268,271 
distribution-free 254 
for axis intercept 439, 440 
for coefficient of correlation 423, 

424, 427, 429 
for coefficient of variation 259 
for difference between medians 303 
for difference between two means 

267, 268, 271 
for expectation of Poisson variable 

182, 183, 343-345 
for failure rate 235, 236 
for lambda (mean of Poisson distribu-

tions) 182, 183, 343-345 
for mean 198, 247, 248, 252, 253 
for mean (lognormal distribution) 111 
for mean difference of paired observa-

tions 310, 311 
for mean lethal dose 225-227 
for means (k means simultaneously) 

514 
for mean times between failures 235 
for median 95, 254, 319 
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for median differences 254 
for parameters of the binomial distribu-

tion 333-337 
for quantiles 197, 198,254 
for rare events 182, 183, 343-345 
for ratio of two means 272 
for regression coefficient 392, 439, 

440 
for regression line 443, 446 
for relative frequency 333-337, 340, 

341 
for residual variance 440 
for standard deviation 259 
for true mean difference of paired ob-

servations 310, 311 
for variance 440 
of binomial distribution 333 
of mean 246-248 
of median 254, 319 
of parameters of multinominal distribu

tion 194 
of range 508 
of relative frequency, estimation of 

166,333 
one sided 247 
simultaneous, to contain all k popula

tion means 514 
two sided 247 

Confidence level, confidence coefficient 
(S) 112-119, 123, 220, 249, 
255,260,280,293,341,343 

Confidence limits 247,248,268,281, 
334,341,432,443 

for the mean 253 
of correlation coefficients 423, 424 
of observed frequency 333 
of Poisson distribution 182, 183, 

343-345 
Confidence probability 247 
Confidence region 445, 446 
Configurations of interactions 495 
Conservative decision/test 131 
Conservative statistical decision 131 
Consistent estimator 67 
Constant growth rate 87 
Consumer risk 231 
Contingencies, systematic study of 238 
Contingency coefficients 369, 370, 384, 

482 
according to Cramer 483 
according to Pawlik 482,483 
according to Pearson 369, 370, 482, 

483 
analysis 384 
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Contingency coefficients (cont.) 
corrected 462, 483 
maximal, for nonsquare contingency 

table 483 
Contingency die 493 
Contingency table 370, 476, 482 

examining for independence 475 
square 475, 482, 488, 489 
weakly occupied 464, 475 

Contingency tables 139,462,482,490, 
492,493,627-630 

analysis of incomplete two and three 
way 493 

of type (r X c), testing for homogene
ity or independence 194,474-
493 

ordered categories in 472-474,484-
487,493 

Continuity assumption 131 
Continuity correction 165, 215, 217, 

302, 335, 345, 350-352, 364, 
365,379 

Continuous quantities 53 
Continuous random variable 45,46, 57 
Continuous sampling plans 231 

acceptance or rejection decided on 
unit-by-unit basis in 231 

Continuous uniform distribution 
mean of 84 
probability density of 84 
variance of 84, 85 

Contrasts 
population 509-512 
weighted linear 509-512 

Control charts 200-202, 229, 230 
for countable properties (error numbers 

and fractions defective) 230 
Control correlation 395 
Control group 203,205-209,562-565 

matching 50, 206 
Controlled error 4-6, 50-52, 58, 196-

198, 245, 246, 273, 558-562 
Controlled experiments 494-566 
Controlled trial involving random alloca

tion 49-51, 195-224 
Control limits 200, 230 
Controls (standard test conditions) 561 , 

565 
and accompanying control experiments, 

as underlying principle of experi
mental design 562 

Control sequence 207 
Control trials 561 
Control variable 349 

Subject Index 

Convergence statements 68 
Comer-n (or comer sum) 464, 474, 475 
Comer test 384, 395,405,406 

of Olmstead and Tukey 405, 406 
Correction according to Yates 351 

testing for independence or homogene
ity 351 

fourfold table 352 
Correlated samples 307-320,518-541, 

549-558, 562 
rank analysis of variance for 549-558 

Correlation 382-385, 387-389, 393-
436 

coefficient 383, 388, 390, 406, 407 
control 395 
multiple 457 -460 
partial 395, 456-458 
testing for 424-432 
true 393-395 

Correlation analysis 382-461 
canonical 461 
comer test 

(Olmstead-Tukey) 395-396, 405-
406 

multiple correlation 457-460 
normal 242 
partial correlation 456-458 
point biserial correlation 507, 508 
product-moment correlation 309, 

382-384, 388-390, 406, 407, 
419-432 

quadrant correlation 395, 396, 403-
405 

Spearman correlation 395-403, 554, 
555 

Correlation coefficient (p) 133, 383, 
402,406,407, 410, 414, 416, 
419,420,423-425,427-431, 
436,449 

common 430,432 
computing and assesing, nomograms 

for 427 
estimated 406-410 
for fourfold tables 

estimation of 370 
exact computation of developed by 

Pearson 370 
hypothetical 430, 432 
multiple 384,457-460 
nonlinear 449 
other tests for equality 426 
partial 384, 456-458 
point biserial 407, 408 
p 383, 389, 395 



Subject Index 

r, testing for significance against zero 
425 

significance of 425 
test of homogeneity among 431 
testing two estimated for equality ac-

cording to Hotelling 426 
two sided comparison of two estimated 

430 
Correlation ratio 435, 436 
Correlation table 419-423 
Correlations 

multiple tests of 426 
pairwise comparisons among k inde

pendent 427 
partial and multiple 456-460 

Counted observations 53, 57, 333, 516, 
517 

Counting process 57 
Covariance 413 
Cox and Stuart sign test 379-381 
Critical bounds, critical limits, critical 

values 112-155, 255-257, 362 
Critical difference 533, 556, 558 

for one way classification 547 
for two way classification 556 

Critical limit 112-155,255-257,362 
Critical probability 118 
Critical region of test 256, 257, 266 
Critical time 87 
Critical value 112-155, 255-257, 362 
Cross-sectional time series, analytical 

procedures for 381 
Cubes 10 
Cubic equation 447-453 
Cumulative binomial probability 165 
Cumulative distribution function (of the 

population) 44, 56, 68, 291-298 
empirical 68 
sample 68 

Cumulative empirical distribution 68, 
82 

Cumulative frequency 56 
Cumulatively added relative portions of 

reacting individuals 225 
Cumulative percentage curve 224 

frequency distribution 224 
Cumulative percentage line 82 
Cumulative percentages 56, 82 
Cumulative sampling results, criteria for 

acceptance or rejection applied to 
231 

Cumulative sum chart 201, 229 
Cumulative sum line of normal distribu

tion 83 
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Curve fitting 447-461 
by orthogonal polynomial regression 

460 
Curve forms 453 
Curvilinearities 495 

D' Agostino test for nonnormality 329 
Data 4-6, 25 

analyzing 5, 6, 565 
binary 363 
collection 55 
dichotomous 53, 463, 469, 489, 555 
disclosure 55 
evaluation 55 
grouped 53-57 

into two classes 72-76, 92, 106 
hard 210 
preparation 55 
preparation of arrangements for record

ing, checking and evaluation of 
566 

soft 210 
ungrouped 57, 72 

Data analysis 5, 6, 565 
Data compilation 54 
Data management 55 
Data pairs 307-320 
Data processing 55, 246, 572, 573 
David method for comparing several vari-

ances simultaneously 500 
Decile 92, 98-102, 132, 325 
Decimal numbers 242 
Decimal representation 242 
Decision 24, 134, 239, 566 
Decision criteria 133, 134 
Decision principles 133 
Decision problem 238 
Decisions 

and conclusions 566 
and strategies 240 
optimal 24 

Deduction 124 
Deductive inference 116, 124, 257 
Deductive procedure 124 
Defective units 230-232 
Definitions of statistics 3, 24, 25, 46, 

123 
Definitive assessment of significance 

132 
Degree of association, Pearson contin

gency coefficient statistic for 370 
Degree of connection 309 
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Degrees of freedom (DF) 135, 137-
140, 153,260,262,266,271, 
272, 303, 308, 310, 321, 323, 
345,348,349,352,366,381, 
424,425,431,433,441,444, 
457, 464, 467, 476, 477, 480, 
481,484,488-490,492,495-
499, 502, 523, 528, 533, 534, 
540,549,550,562,564 

of a k x 2 table, partitioning 468 
Delphi technique 53 
de Mere, C. 35, 567 
Demographic evolution 48 
de Moivre, A. 58, 59, 567 
de Moivre distribution (normal distribu

tion) 59 
Density function 45, 59, 79, 138, 139, 

143, 166, 267 
Departure from normality 65,66, 82, 

83,90-111,327 
Dependence 395-396 
Dependent samples 363 
Depletion function 233, 234 
Descriptive significance level 119, 120, 

266 
Descriptive statistics 4, 24-25 
Design, experimental 558-566 
Detection limit 199 
Developing model appropriate to problem 

565 
Developing statistical model 5, 6, 47-

49, 55, 81, 116, 124, 161, 238, 
240-242, 257 

Developing technique of investigation 
565 

Deviation (see also Dispersion, Variance, 
Variation) 

from normal distribution 65, 66, 82, 
83,90-111,261,327 

mean absolute (MD) 251, 252, 281 
measure of 122 
median 253,254 
of column means from overall mean 

519 
of ratios 345, 346 
of row means from overall mean 519 
of strata means from overall mean 

519 
probable 60 

Diagonal product 370 
Diagonal sum 486 
Dice 

games with 169, 566 

Subject Index 

tossing 27-35,43,44,47, 169-194, 
239,322,332,375,567 

Dichotomous attributes 53, 463 
Dichotomous data 333-373, 375, 462, 

463,555 
comparison of several samples of 462 

Dichotomous result 224 
Dichotomy 407 
Die game 47, 322, 332 
Difference between regression limits 

440-442 
Difference between sample means 246-

275,501-518 
Difference between sample medians 

293-306 
Difference-sign run test 379 
Diffusion 48 
Digital computers 242, 243 
Digital devices 242 
Direct inference 249 
Directories 572 
Discordant observations (see Outliers) 
Discoverer and critic 119 
Discrete distributions 162-194 
Discrete frequency distribution 44, 57 
Discrete quantities 53 
Discrete random variable 44-46, 57 
Discrete uniform distribution, definition 

of 84 
Discrete random 44-46, 155-194 
Discriminant analysis 460 
Disease 37, 40, 50, 195-218 
Dispersion 24, 286, 303, 388, 389 

about the regression 540 
between individual members 562 
between trial units 562 
between units 562 
difference 287-289, 562 
index 189-191 
interdecile range 98-10 1 
kurtosis 100-107, 252, 325-327 
measure of 251 
median deviation 253, 254, 281 
multiple correlation 457-459 
of a process 229 
of a regression, interpretation as 540 
of observations 389 
of placebo-reaction 213 
of predicted values 389 
parameters . 46 
partial correlation 456-458 
range 97-100, 507-509 
standard deviation 69-76, 97, 98 
standard error 



Subject Index 

of the mean 94 
of the median 95 

statistics 99, 100 
test (of Poisson frequencies) 190, 465 
within groups 310 

Distribution 44-48, 53-57 
arbitrary 64 
asymmetric 65 
bell-shaped 55-60 
Bernoulli 162-170 
bimodal 91 
binomial 162-170, 215, 230, 566, 

704 
bivariate normal 242, 383-385, 390 
bizarre III 
X2 (chi squared) 139-143, 154, 155, 

362, 366, 476, 704 
de Moivre 59 
discrete 162-194 
dispersion of 291 
exponential 234, 252 
extreme value response 226 
extreme values III 
F 143-155, 362, 704 
F' (Pillai-Buenaventura) 276 
frequency 53-66 
fUnction 44-46, 61, 68, 291, 295 
Gaussian (see Normal distribution, 

Standard normal distribution) 
hypergeometric 171-175,371,704 
inverse hypergeometric 172 
J-shaped 391 
left-steep 99, 100 
lognormal 83, 107-111, 225, 230, 

235,323,515,517 
L-shaped 111,139,143 
mixed distributions 83, 234 
multimodal 65, 91, 93, 107 
multinomial 193, 194, 475 
negative binomial 177, 190 
Neyman 190 
normal 57-66,78-83,94,95,98, 

111,155,225-227,234,235, 
241,252,322,329,331,391, 
566 (see also Distribution, stan
dard normal) 

odd 100 
of Cochran statistic for several vari

ances 497 
of confidence limits for the mean of a 

Poisson distribution 343-345 
of cumulative standard normal 62 
of differences 310 
of estimator 98 

of extreme values Ill, 235 
of failure indices 236 
of Friedman statistic 551 
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of Hart statistic (mean square succes
sive difference) 375 

of Hartley statistic, several variances 
496 

of life span 233-236 
of Link-Wallace statistic 544-547 
of Nemenyi statistic 546, 547 
of number of runs 376', 377 
of ordinate of standard normal curve 

79 
of r 242, 384, 395, 425 
of R/s (Pearson-Stephens) 325, 328, 

329 
of rank correlation coefficient 398, 

399 
of rank sum statistic H 305 
of rank sum statistic U 296-301 
of ratio 

largest variance/smallest variance 
495,496 

largest variance/sum of variances 
497,498 

range/standard deviation 325, 328, 
329 

of signed rank statistic (Wilcoxon) 
313 

of signed test statistic 317 
of standardized extreme deviation 281 
of standardized 3rd and 4th moments 

326 
of Studentized range 535. 536 
of tolerance factors for normal distribu

tion 282 
of Wilcoxon-Wilcox statistic 556, 

557 
overdispersed 190 
Pareto 111 
Poisson 175-192,230,236,241, 

329, 343-345, 516-517 
positively skewed 93, 100, 107 
rectangular 83-85, 98, 391 
right-steep 107 
sample 53-60 
Skewed (skew) 90-93, 100, 111, 391 
skewness of 91-93, 100-107,291, 

293,391 
special cases p = 1 336, 337 
standard Gaussian (see Distribution, 

standard normal) 
standard (standardized) normal 60-

64,78-81, 154, 155,217,704 
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Distribution (cont.) 
Student or t-distribution (see t) 
t 135-138, 154, 155,255-257,264-

275,309-312,424,426,437-
442, 704 

theoretical 61-63, 135-155, 362 
triangular 98, 190, 252 
trimodal 91 
two dimensional 107,383,384,390 
underdispersed 190 
uniform 83-85,98,241,252,322 
unimodal 64, 91, 99, 107 
unsymmetric 90,91,99,103, 107, 

234 
U-shaped 93, 94, 98, 99, 391 
Weibull (generalized exponential) 

234, 235, 323 
Distribution-free comparison of several 

correlated samples with respect to 
their central tendency 549-558 

Distribution-free comparison of several 
independent samples 303-306, 
546-549 

Distribution-free measures of association 
395-406 

Distribution-free methods 123, 130-
133,590 

Distribution-free multiple comparisons of 
correlated samples 553-558 

Distribution-free multiple comparisons of 
independent samples according to 
Nemenyi 546-549 

Distribution-free 90% confidence interval 
for quantiles 197 

Distribution-free procedures 130, 131, 
254,261,283-306,312-320, 
395-406, 546-558 

Distribution-free tests 123, 128, 130, 
131,133,285-306,312-320, 
395-406, 546-558 

Distribution function 44-46, 56, 61, 
68,291,299,396 

Diversity of treatments 
as underlying principle of experimental 

design 562 
encoding to avoid subjective influences 

562 
Dixon and Mood sign test 315, 316 
Dixon comparison 277, 278 
Documentation 55, 208, 209, 566 
Dosage 226 
Dosage-dichotomous effect curves 224 
Dosage-effect curve 224, 225 

mean and deviation from 225 

Dosage scale 
linear 226 
logarithmic 226 

Dose 224, 225, 227, 228 
bringing on narcosis 224 
causing impairment 224 
lethal 224, 225 

Subject Index 

mean effective 224, 225, 228 
mean lethal 225, 227 
median effective 225 
median lethal 225 
symmetrically grouped about mean 

225 
Double blind study 213 
Double blind trial 195, 213 
Double logarithmic paper 455 
Double partitioning with a single obser

vation per cell 549 
Doubling period 87 
Drawing inferences on population param

eter from portion in sample (indi
rect inference) 340, 341 

Drug side effects 223, 224, 337 
Duckworth and Wyatt modification 319 
Dunn test 477 
Durability curve 233 

Econometrics 196 
Economic statistics 108 
Effect 

additive 59, 108, 537, 538 
column 532 
fixed 532 
interaction 519, 538, 540, 541 
main 518-533 
multiplicative 107 
nonlinear 539 
random 532 
row 532 

Effect curve 
dosage-dichotomous 224 

Effect error secondary cause 211 
Effect relation 

dosage-dichotomous 224 
dosage-quantitative 224 

Effects between strata, comparison of 
205 

Effects within strata, comparison of 205 
Efficiency 

of asymptotic test 130 
of nonparametric test 130 

Efficient estimator 67 
Election 51, 53, 245 



Subject Index 

Elementary events, space of 28 
Empirical cumulative distribution function 

44,46,56,61,68,291,295 
Empirical data 53-58, 333, 346 
Empirical distribution 

comparison with 
normal distribution 322 
Poisson distribution 329 
uniform distribution 322 

left-steep 91, 100, 101, 107, 111 
multimodal 65, 91 
right-steep 516 
symmetric 58, 100 
unimodal 64, 91, 99, 107 

Empirical facts and scientific inquiry 
116 

Empirical frequency distribution and nor-
mal distribution 82 

Empirical generalizations 116 
Empirical mean in comparison 255, 264 
Empirical regression curve 446 
Empirical variance in comparison 258, 

260 
Empty set 29 
Engineering and industrial statistics 

107-111,175-189,228-238, 
241-244,343-345,382-461, 
494-566, 598-603 (see also 
Quality control) 

Engineering design 232 
Epidemiological studies 206 
Equality of variance of errors 519 
Equality of variance of several samples, 

testing according to Bartlett 498 
Equality or homogeneity hypothesis con

cerning variances 495-500 
Equalizing alternation 211 

principle 220, 222 
Equalizing line of point cloud 382 
Equivalence of two contingency tables 

362,484 
Error 3-6, 26, 53, 55, 66-68, 96, 

195-203 
mean relative 96 
of the first kind 112-113 
of the second kind 117-119,125-

129,504 
sources of 26,66-67,195-197 
systematic, bias 5, 66, 67, 196, 197, 

199,201-203,212,246,559 
Type I 117,118,119,120, 125, 

251,561 
Type II 117, 118, 119, 125, 128, 

251,504,564 

Type III 119 
Type IV 119 
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unconscious and unintentional 212 
Error law distribution 58 
Error numbers 230 

number of defects per test unit as 230 
Error of the first kind, prescribed level of 

significance protection against 
537 

Error rates in multiple comparisons 
among means 242 

Errors of substitution 195 
Error sum of squares 414 
Estimate 47 

biased 66, 67, 71 
of kurtosis 105 
of mean 104 
of parameter 66,67 
of skewness 105 
of variance 105 
unbiased 70 

Estimates in analysis of variance 527 
Estimating linear regression portion of to

tal variation 462, 472-474, 
484-487 

Estimating sample size, counted data 
342,350 

Estimation of the correlation coefficient 
406-407 

Estimation of minimum size of sample 
49, 214-218, 249-251, 274, 
341-343, 350, 351, 541 

Estimation of parameters 66-67 
Estimation of the regression line 408-

413 
Estimation of sample size 49, 214, 218, 

249-251, 274, 341-343, 350, 
351,541 

Estimation procedure 66-68, 124 
Estimation theory 25,66,67,124 
Estimator 66, 67, 98 

consistent 67 
efficient 67 
sufficient 67 
unbiased 66, 70 
Estimator of a parameter 66 
biased 66 
consistent 67 
efficient 67 
sufficient 67 
unbiased 66, 70 

Eta, correlation ratio 436 
Ethical aspects in clinical research 195 
Etiological studies 204-209 
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Etiology 205, 206, 208 
Euler's circles 30 
Evaluating hypotheses 565 
Evaluation forms I 11 
Evaluation of biologically active sub

stances 224 
Event 

arbitrary 30 
certain 28, 29 
complementary 29 
elementary 28 
impossible 29 
independent 5, 32, 38 
intersection of 29, 30 
mutually exclusive 5, 29, 30, 38 
mutually independent 33, 34, 42 
pairwise independent 42 
random 28 
stochastic 43 
union of 28 

Evidence 3-6, 134 
Evolutionary operation, optimal increase 

in performance through an 233 
Exact test according to Fisher 302, 

370-373 
Excess (see Kurtosis) 
Expected cell frequencies 320-330, 

348,351,464-466,475 
Expected value 46 
Experimental design 55, 559, 562, 564, 

567,640,641 
modem 562 
principles 558-564 
underlying principles of 559 

Experimental error 503, 519-523, 526, 
528,532,538-540,559,560-
563,564 

Experimental strategy for quality im-
provement 232, 494 

Experimental Type I error rate 537 
Experimental units 560, 563, 565 
Experimentation on the model 240 
Experimenting with a model 242 
Experiments, planning and evaluation of 

494-564 
Experiments without replicates 537-540 
Explanatory variable 384 
Explicit parameters 166 
Exponential distribution 234, 252 
Exponential growth 87 (see also Growth 

curves) 
Exponential regression 451 
Exposition and risk 205, 209 
Extension of sample range 559 

Subject Index 

Extreme value probability paper 111 
Extreme value response distribution 226 
Extreme value theory 111 

Factor 526-529 
Factor analysis 457, 625 
Factorial 155, 160 
Factorial design 563, 564 
Factorial experiments 563, 564 
Factorials 160 
Factor levels 533 
Factors (or experimental variables) 494, 

519, 558-564 
comparison among 562 
effects of 562 
interaction among 562 
systematically chosen levels of 529 
variability of 562 

Failure index 236 
Failure rate 234-236, 238 
Failure time 235, 236 
Fallacies in statistics 26 
False negative (see Beta error) 

in medical diagnosis 223 
False positive (see Alpha error) 
Faulty decisions 118 
F-distribution 143-155,261,426,502, 

503,551 
relationship to other test distribution 

154 
upper significance levels 144-149 

Fermat, P. de 35, 567 
Field trials 494 
Filter function of statistics 196 
Finite population correction 248, 336, 

340 
Finney tables for one sided test 372 
Fisher-Behrens problem 271 (see also 

Behrens-Fisher problem) 
Fisher-Irwin test for 2 x 2 tables 350, 

370-373 
Fisher, R.A. 143, 166,427,494, 567 
Fisher's combination procedure 366, 

367 
Fisher's exact test 348, 351, 370-373 
Fisher's r to z transformation 427-432 
Fisher test 

of independence, exact binomially dis
tributed populations, approxima
tion for comparison of two 370-
373 

two sided 372 



Subject Index 

Fitting distribution to set of data 320, 
382,383 

Fixed effects 532 
model of 501-541 

Fixed model 532 
Forecast feedback 53 
Forecasting, empirical investigation on 

accuracy of 381 
Fonnal correlation 393, 394 
Fonnulating problem and stating objec-

tives 565 
4 x k median quartile test 306 
Fourfold X2 test 346-351, 360 
Fourfold scheme 346-349 
Fourfold table 346-349, 361, 363, 

366-370,405,462,471,483, 
490 

analysis of 346-373 
combination of 367-369 
evaluation of 346-373 
regarded as simplest two way table 

474 
standardization 351 
test for comparing association in two 

independent 370 
to general case, extension of 474 
values, adjustment according to Yates 

352 
Fourfold test 346-373 
Four parameter probability function 323 
4-sigma region (64) 279 
Fractile 92 
Fractional factorial experiment 564 
Free hand line 409 
Freeman-Halton test for r x c tables 

475 
Frequency 

absolute 55 
comparison of two 236, 338-373 
cumulative 56 
infonnation content of 462 
inner field 350 
marginal 350 
relative 55 

Frequency data 515-517 
comparison of two independent empiri

cal distributions of 467-468 
Frequency distribution 53-66, 200, 

463, 469, 475, 486, 492 
cumulative 44 
three dimensional 518 

Frequency function 44 
Frequency profile 107 
Frequency, relative 26, 333 

Frequency table 467 
Friedman rank analysis of variance 

549-555 
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Friedman rank test 306, 549-555 
Friedman test 306, 315, 495, 549-555 

generalization 541 
F-test 133, 260-264, 501-506 

due to Gart 360, 361 
Function 

defined as allocation rule 255, 256 
distribution 44 
frequency 44 
probability 44 

Functional parameters 166 
Functional relation 382, 393 
Functional relationship 385 
Function value 256 
Futurology 51 
F-value 143-155 

Gain and loss 133, 134 
Games 

evasion 240 
pursuit 240 
supply 240 
war 239,240 

Game theory 239,240, 604, 605 (see 
also War games) 

Gart approximation 348, 351, 360, 361 
Gart's F-test 348, 351, 360, 361 
Gauss, C.F. 58, 64, 67 
Gaussian (or nonnal) distribution 57-

66, 68, 78-83 
Gauss test 121-123 
Generalizability principle 4, 47-49, 95, 

116, 202, 209, 210, 558, 559 
Generalized median test 302 
Generalized sign test 363 
Genetic ratio test 321, 322 
Glivenko and Cantelli theorem 68 
Goodness of a test, estimation of 241 
Goodness of fit test 123, 320-332, 449 

chi-square 320-324, 329, 330 
due to David 332 
due to Quandt 332 
for singly truncated bivariate nonnal 

distribution 447 
nonnonnality due to skewness and kur

tosis 325-327 
of Kolmogoroff and Smirnoff 330-

332 
Gosset, W.S. 135 
Grandma's strudel method 216 
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Graphical methods 6,55-57,78-81, 
83,86,200,201,229,230,383, 
409, 444, 449, 455, 493, 495, 
517 

Greco-Latin square 564 
Grouped data 53-57, 72, 73 
Group homogeneity 207-210 
Grouping into classes 72, 73 
Group means 501-515 
Groups of time-dependent measurements, 

comparing by fitting cubic spline 
functions 541 

Growth 86,87,214,455 
Growth curves 455 
G-test 302, 349, 351-360, 370 (see 

also Woolf's G-test, Log likeli
hood ratio test) 

g-values 351 

Hamlet 27 
Hard data 210 
Harmonic interpolation 151 
Harmonic mean 88, 498 
Hartley's test 495-498 
Hay bacillus 552 
Hazen line 83 
Heterogeneity 

hypothesis, general 474 
of population 204 
of sample units 65, 83, 196, 197, 

204, 209, 245, 273, 393-395, 
559-561 

of trial units 561 
Heterogeneous samples 65, 83, 234, 

470 
Hierarchic experimental designs 564 

classification 564 
Histogram 55,56,63, 107,204,449 
Historigram 55 
History of probability theory and statistic 

27,35,59,64, 123,567 
Homogeneity 

hypothesis 260, 348, 462, 476, 495 
obtaining of 516 
of sample 471 
table 348 
test 192, 291, 328, 346-363, 474-

482, 490, 491 
for a k X 2 table, applying, to com

pare two frequency distributions 
462-468 

for matched samples 552 

Subject Index 

for s correlated samples of dichoto
mous data 489 

of binomial samples 338, 339, 
346-362, 462-468 

of groups of time-dependent mea
surements 541 

of multinomial samples 474-478, 
490,491 

of Poisson samples 186-189, 236, 
474-477 

of profiles of independent samples of 
response curves 541 

of variances 260-263,311,312 
testing for 192, 291, 328, 346-363, 

431,432,462-468,474-482, 
490,491 

Homogeneous group 207-211 
using modified LSD test to form 512, 

513 
Homomer 130 
Homoscedasticity 126, 437 
H-test 132, 293, 303-306, 495 

for the comparison of variances 262 
modified to test paired observations for 

independence 306 
of Kruskal and Wallis 262, 300, 

302-306 
power of 306 

H-values 305 
Hybrid computer 243 
Hypergeometric distribution 171, 174, 

175,371 
cumulative probability of 174 
generalized (or polyhypergeometric 

distribution) 171, 193 
inverse 172 
symmetric 371 

Hypergeometric distribution tables of Lie
berman and Owen 373 

Hypotheses 
on causation 393 
testing partial 480 

Hypothesis 3-6, 23-26, 114-129, 256, 
257,266 

alternative (or alternate) 114, 115, 
116, 129 

deductive relations among 116 
null 114, 115, 116, 129, 131 
of independence (or homogeneity) 

350,475 
ordered by rank 116 
substantiated 125 
testing 24, 112-133, 255-257 

Hypothetical population 49, 107 



Subject Index 

Illness 37, 93, 209-214, 246 
Imperfections in implementations (see 

Bias, Error, and Fallacies) 
Incidence and relative risk 206 
Incidence probabilities 206 
Inclusion inference 249 
Incompletely randomized blocks 562 
Independence 32-37, 46, 204 
Independence 

lack of 476 
statistical 31 
stochastic 33, 34, 42, 46 
testing for 462, 474 
testing of 480 
test of 346-348, 476 

Independence condition 204 
Independence hypothesis 402 
Independence of attributes 347, 476 
Independence of observations within and 

between samples 503 
Independence of test results 559 
Independent data samples 245 
Independent observations 46, 47, 121, 

130,264 
Independent probabilities 366, 367 
Independent sample groups 495 
Independent (uncorrelated) samples 254, 

260, 266, 562 
events 32-34 
variables 46 

Independent unbiased estimate 503 
Indexing critical values of the X2 distribu-

tion 142 
Index number 77 
Indirect inference 340 
Induction 124 
Inductive basis 559 
Inductive inference 24, 124, 257, 559 
Inductive procedure 124 
Industrial planning 232, 238 
Inequalities 7, 64, 65 
Inequality 

Bienayme's 64 
Chebyschev 64 
Gauss' 64 

Inference 
deductive 124, 257 
inductive 124, 257 
nonparametric 130-133, 283-306, 

312-320, 546-558 
Inference about defined population 5, 

25,46-49,65, 107, 196,565 
Infinite population 46, 48, 248 
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Influence curve 253 
Influence factors 195, 494, 560 
Influence of different variances on com-

parison of two means 241 
Influence quantities (factors) 457 
Influence quantity (regressor) 389, 458, 

459 
Influence variable 385, 408, 457, 458 
Influencing factors 232, 233 
Information analysis 462, 492, 493 
Information content of frequencies 462 
Information loss in grouping 76 
Information statistic 462 

for testing two way tables for indepen
dence or homogeneity 462, 490-
493 

Inherent uncertainty 224, 239 
Inhibition zone 552, 553 
Inhomogeneities, existence of 65, 83, 

207, 208, 234 
Inhomogeneity correlation 393, 394 
Insurance 133, 134 
Interaction 492, 518-533, 539-541 

effect 519, 529, 538 
Interactions 519,521,538-540,563 

nonadditive effects separated from 
540 

Intercept 386 
confidence limits of 439 
determination of 391,408,417,419-

423 
standard deviation of 415 
testing the difference between an esti

mated and a hypothetical value of 
439 

Interdecile range 98, 99, 101 
Interdecile region 85 
Interpolation of intermediate values 152 
Interpolation of probabilities 153 
Interpretation 120,134, 195-197,393-

395,566 
Interquartile range 100 
Intersection 29 
Interval estimation 112, 113, 116, 246, 

247, 249, 254, 258, 268, 273 
Interval scale 132, 133 
Intervals (open and closed) 165 
Interview 55, 196, 197, 202, 208 
Interviewer's bias 196, 197, 208 
Inverse inference 249 
Inverse transformation 518 

means and variances are not always 
unbiased when obtained under 
518 
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Investigations 3-6, 55, 107, 565, 566 

Joint correlation 394, 395 
J-shaped distribution 391 

/(' designs or experiments 564 
k X 2 X2 test 164, 462-474 
k X 2 contingency table 465,467 
k X 2 table 463, 464, 468, 473 

two way analysis of 462 
Kendall's tau 403 
Kerrich procedure 392 
Knapsack problem 239 
Kolmogorov (Kolmogoroff), A.N. 28, 

567 
Kolmogoroff and Smirnoff 

comparison of two independent 
samples 291-293 

goodness of fit test 330-332 
Ku correction 490 
Kullback tables 360 
Kurtosis 85,100-107,252,255,299, 

325-327 
related quick test for nonnormality 

252 

Laboratory control chart 200-202, 229, 
230 

Laplace, P.S. de 27,58, 134,567 
Latin square 562-564 

experimental design of a 562 
Law of large numbers 49, 67, 68, 566 

strong 49, 67, 68 
weak 49,67,68 

Least significant difference (LSD) 512, 
513 

Least square estimation of regression 
coefficients 67, 385, 461 

Least square line 386, 387, 408-413 
Least square method 67, 385 
Leslie-Brown test 496, 508 
Lethality 37 
Level of significance 112, 123, 138, 

260,261,263,264,283,285, 
286,291,349,403,425,497 

Level (or intensity) setting of a factor 
519 

Levels of a factor 533, 563, 564 
Levels of risk II 117-119, 125-129 
Levene procedure 498, 500 
Levene test 498, 500 

Subject Index 

Life span 206, 210, 233-236 
Likelihood ratio test (see G- and 2l-test) 
Liliefors method with the Kolmogoroff-

Smirnoff goodness of fit test 331 
Limits 

action 200, 229 
warning 200,229 

Linear approximation of nonlinear prob-
lems 239 

Linear contrasts 509-51-2 
Linear correlation 456 
Linear inequalities 239 
Linearity hypothesis 435, 436 
Linearity test 435 
Linearizing transformations 453-455 
Linear programming (or linear optimiza-

tion) 238, 239 
and operations research 238, 239, 

603,604 
Linear regression 382-392, 408-423, 

433, 437-446, 462, 472-474, 
487,517 

X2 473,484 
departure from 433-437, 472, 487 
estimation of 408-423 
in overall variation 

component due to 484 
share of 472 

multiple 459, 460 
outlier and robust regression 447 
test for 433-437,472,487 
testing significance of 433-437, 472 

Linear trend 472,484 
Link and Wallace mUltiple comparisons 

of means 542-545 
Link and Wallace test 508, 542-545 
Location measures 85, 106 
Location parameter 132, 286 
Location test 285 
Logarithm 11-19 

binary (or logarithmus dualis) 19 
Briggs (or common) 11-19 
characteristic of 17 
common 11-19 
decadic (or common) 11-19 
mantissa of 16, 17 
table 12, 13 
to base e (or natural) 13, 19, 142, 

177 
to base 10 11-19 
to base 2 19 

Logarithmic interpolation 142 
Logarithmic probability grid 108 



Subject Index 

Logarithmic transfonnation 65, 107-
111,515-518 

Logarithms 
base ten factorials 160 
calculation with 11-19 

Logarithmus dualis 19 
Logit transfonnation 228, 269 
Log-likelihood ratio for contingency ta-

bles (see G- and 2I-Tests) 
Log likelihood ratio test (G-test) 353, 

359 
Lognonnal distribution 83, 107-111, 

225,230, 235, 323, 515-517 
comparison with empirical distribution 

323 
three parameter III 

Logrank test 195 
Longitudinal studies 210 (see also Co-

hort studies) 
Lord comparison 276, 277 
Lottery procedure 49 
Lower and upper percentiles of G, and b2 

326 
LSD test, forming homogeneous groups 

by means of modified 512 

Maintainability 238 
Mandel test for nonadditivity 540 
Mann and Whitney rank test 293-303 
Marginal (sum) frequencies 352, 474, 

476 
Marginal sums 346,348,351,463, 

464,466,475,485,490 
Mark-recapture estimation 172 
Markov, A.A. 48 
Markov chains 48 
Marriage problem 218, 219 
Matched pairs 50, 206, 254, 318, 550 
Matching 50, 206, 307, 308 (see also 

Blocking) 
Mathematical abbreviations 7 
Mathematical models for clinical trials 

214 
Mathematical preliminaries 7-22 
Mathematical statistics 123 
Matrix algebra 461 
Maverick, outlier 74, 131, 252, 279, 

280, 328,541 
Maximal contingency coefficient of four-

fold table 370 
Maximax criterion 133 
Maximaxer 133 
Maximum likelihood method 67, 385 

Maximum test 315, 316 
for pair differences 315 

McNemar X2 test 363-365 
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McNemar's test for correlated proportions 
in a 2 x 2 table 363-365 

McNemar test 363-365, 489 
extended to a multivariate distribution 

of dichotomous variables 489 
MD, mean absolute deviation from the 

mean 100, 251-253, 281 
Mean 48, 59, 60, 102, 106, 229, 234, 

392,407,503,517,518 
and standard deviation 68-77, 81 
arithmetic 46-49,68-77,86,88,90, 

91,93 
combined harmonic 90 
comparison of 251, 264 
estimation of sample sizes 249, 251 
for nearly nonnally distributed values, 

estimate based on deciles 100 
geometric 85, 86, 90, 133 
harmonic 85, 88-90, 133 
overall 519 
predicted 443, 444 
variance of 46 
weighted harmonic 88 

MeanL 109, 110 
Mean absolute deviation from the mean 

100, 251-253, 281 
Mean breakdown frequency 236 

time 236 
Mean chart 200, 201, 229 
Mean column effect 523, 527 
Mean deviation 100, 251, 252, 281 
Mean effective dose 224, 225 
Mean effects 523-529 
Mean growth rate 86 
Meaning of test results 119-123, 266 
Mean line 200, 201 
Mean loss, total 236 
Mean of pair differences, testing for zero 

309-311 
Mean range 509 

of all samples 229 
Means 

comparison of 121-123,255-257, 
264-279,494-545 

comparison of a large number of 512 
comparison of several by analysis of 

variance 494-545 
Mean square (MS) 502, 503, 521, 523 
Mean square error (MSE) 503, 523 
Mean square experimental error 533, 

534 
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Mean square of experimental error MSE 
523,533 

Mean square successive difference fl.2 
373,374 

Mean stratum effect 524, 527 
Mean sum of squares (MS) 502, 528 
Mean survival time 236 
Mean susceptibility to breakdown 236 
Mean time between failures 235 

confidence limits of 235 
Mean value 

chart (X-chart) 201, 229 
to control variability between 

samples 229 
computation for large sample sizes 

72-76 
computation for small sample sizes 

69-72 
Measurement scales 132, 133 
Measures of association 382, 472, 484 

distribution-free 395-406 
Median 70,71,85,90-95, 100, 106, 

132, 254, 293, 299, 319 
chart (X-chart) 229 
class 92 
deviation 253, 254, 281 
estimation of 91, 92 
lethal concentrations in toxicity bioas-

says 228 
quartile test 302 
test of independence 405 
tests 301, 302 

MedianL 109, 110 
Medical records 204, 209, 210 
Medical statistics 37, 40, 195-218, 

246, 590-594 
Method of least squares 67, 385, 386 
Method of steepest ascent 232 
Methods research 238 
Migration effect 203 
Minimal samples size (see Sample size) 
Minimax criterion 133 
Minimaxer 133 
Minimax principle for decisions 133 
Minimum discrimination information sta-

tistic 490, 491 
application of 490 
computed 490 
of a multiway table 492 
of a three way table 492 

Minimum effective doses, symmetrization 
of distribution 226 

Minimum sample size for attribute supe
riority comparisons 232 

Mixed model 533 

Subject Index 

analysis 533 
Mixtures of distributions 83, 234 
Mixture tests in clinical chemistry 198 
Mode 90-93, 102, 132 

estimate of 93 
Model 5,6,25,47-49,55,81, 116, 

124, 161,238,240-242,257, 
279,348,408,437,476,519, 
565 

in analysis of variance 519, 529, 
532, 533, 537, 538 

in contingency tables 476 
in experimental design 563 
in fourfold tables 348 
in regression analysis 408, 437 

ModelL 109, 110 
Model I analysis 532 
Model II 533 
Model III (or mixed model) 532 
Model building for multi way contingency 

table analyses 493 
with respect to final choice of model 

55,493 
with respect to intermediate informa

tion available 493 
Models 

linear 408, 437 
nonlinear 447-455 
with unspecified requirements 239 
with variable costs taken into account 

239 
Model without interaction 537, 538 
Moivre, A. de 58, 59 
Moment coefficients 85, 103-107 

for kurtosis 105, 106, 325, 326 
for skewness 105, 106, 325, 326 

Moments 
about mean 102-106, 325, 326 
Sheppard's modification of 106 

Monotone trend 402 
Monotonic decreasing sequence 396 
Monotonic increasing sequence 396 
Monotonic trend 380 
Monte Carlo method 68, 241 

and computer simulation 241-244, 
605-607 

Morbidity 37, 210, 214, 368 
Mosteller-Tukey-Kayser tester (MTK 

sample tester) 230,... 46, 48, 
49, 59, 60, 66-68, 94, 247-249 

Multiclinic trial 214 
Multicollinearity 461 
Multicomparative plotting of means 495 
Multidimensional analysis 461 
Multilevel random selections 246 



Subject Index 

Multimodal distribution 65, 91, 93, 107 
Multinomial coefficient 192 
Multinomial distributions 161, 193, 

194,475 
comparison of population probabilities 

of 475 
Multinomial probability 193 
Multiple comparison of correlated 

samples after Wilcoxon and Wil
cox 555-558 

Multiple comparison of group means 
537 

Multiple comparisons 242, 306, 533-
537,542-558,638-640 

of means 533-537 
Multiple correlation 457-460 

and regressions 456 
coefficient 457, 458 
population 459 

Multiple determination measure 458 
Multiple linear regression 459-460 
Multiple pairwise comparisons of means 

533 
Multiple regression 460 

analysis 459-461, 626, 627 
Multiple test of correlations 426 

Multiplication rule multiplication theorem 
33,42 

Multiplication theorem 32, 33, 42 
Multiplicative effects 107 
Multisampling plans 231 
Multivariate analysis 461 
Multivariate statistical procedures 461 
Multivariate statistics 461 
Multi-way tables 489, 493 
Murphy's law 214 
Mutually exclusive alternatives 464 
Mutually exclusive events 29 

addition rule for 29 

N(O,l) Distribution 61-63, 79, 138 
Natural logarithm 19 
Natural variability 23, 24, 85, 279 
Negative binomial distribution 177, 190 
Negative correlation 397, 406 
Nemenyi 

procedure 546-549, 555 
test 501, 546-549 

Nested design 564 
Newton, I. 159 
Neyman distribution 190 
Neyman's rule 119 
No intercept model, considerations in fit

ting 392 
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Nominal scale 132, 133 
Nominal significance level 119, 120, 

266 
Nomogram 183, 340, 424 

for comparison of two relative frequen
cies 188 

for computing and assessing correlation 
and regression coefficients 427 

for determining multiple correlation 
coefficient 458 

for determining partial correlation coef
ficient 456 

for flow scintillation spectrometry 
177 

for tolerance limits 285 
Nonadditive effects, suspicion of pres-

ence of 540 
Nonadditive model 538 
Nonadditivity test 541 
Noncausal correlation 393 
Noncentral t-distribution 256 
Noninteraction model 538 
Nonlinear coefficient of determination 

449 
Nonlinear correlation coefficient 449 
Nonlinear monotone regression 395 
Nonlinear regression 447, 449, 453 
Nonnormality 65,66, 131,242, 322-

329 
due to skewness and kurtosis 324 
sensitivity of distribution against 242 
test for 323 

Nonparametric 131, 518 
hypothesis (or parameter-free methods) 

130 
tests 130-133, 285-306, 312-320, 

546-558 
tolerance limits 283-285 

Nonrepresentativeness 203, 204, 208 
Nonresponse 203 
Nonsampling error 196, 197 

in surveys 197 
Nonuniform distribution, testing for 

322,492 
Normal distribution 47, 57-66, 78-83, 

85, 114, 130, 166, 169, 175, 179, 
186,200,225,227,252-255, 
258-260, 263-266, 279, 280, 
282, 283, 286, 293, 302, 303, 
322,323,325-328,330,331, 
334,341,365,367,374,391, 
395,427,437,494,516,538 

bivariate 242, 383, 384, 389, 395, 
397,427 

chi-square goodness of fit test for 323 
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Normal distribution (coni.) 
quantiles of 325 
two dimensional 383, 384, 390, 395, 

397,403,427 
Normal equations 447-452, 454 

exact and approximate 452 
Normality of errors 519 
Normal law of error 58 
Normally distributed data 58-60, 198, 

503 
Normally distributed experimental error 

519 
Normally distributed observations 58-

60, 198,503 
Normally distributed population 57-67, 

129, 250, 251, 267, 269, 281, 
282, 310, 328,453,495,499, 
501,509 

with equal variances, observations 
from 503 

Normally distributed values with homo
geneous variances 515 

Normal rank transformation 517 
Null hypothesis 114-129, 169, 183, 

186, 187,215,255-258,264-
266,268,271,272,277,280, 
285-287, 292, 294, 295, 302, 
303, 305, 306, 309, 310, 312, 
316, 319, 320-322, 330, 332, 
338-340,343,345,347,348, 
372, 374, 375, 378, 393, 400, 
424-426, 430-433, 436, 438, 
439,441,442,459,463,465, 
466,469,471,477,488,489, 
499,500,502,503,521,526, 
538, 539, 542 

for homogeneity or independence 
348, 476 

of equality of adjacent means 513 
of equality of population means 502 
of equality of regression coefficients 

438-442, 485-487 
of equality of three means 506 
of equality of variances 495-500 
of homogeneity of k independent 

samples from a common binomial 
population 462-467 

of homogeneity of variances 495-500 
of independence (or homogeneity) 

348, 476, 480 
on homogeneity of means 264-275 
on independence between two attri

butes 346-363 
on independence or homogeneity 349 

Subject Index 

on two regression coefficients 438-
442, 485-487 

Number of years for amount to double 
87 

Numbers 43 

Observation, predicted 51, 249, 443, 
446 

Observational study 55, 196-197, 202-
204, 207, 208, 214, 245-246, 
565,566 

Observations 47 
Observation unit 343 
Observed frequency 466, 467 
Occupancy numbers 346 
Occupation number 55,420,421,475 

observed 490 
of class 321 

Odds 27 
Olmstead and Tukey comer test 405, 

406 
One dimensional frequency distribution 

85 
One sample Gauss test 121-123 
One sample test of Carnal and Riedwyl 

300 
One sample I-test 255 
One sided confidence limits 311, 345 

lower 337, 345 
upper 345 

One sided problem 124, 127, 138, 222, 
260, 272, 274, 278, 285, 295, 
297-301, 312, 315, 338,425, 
441 

One sided procedures 258 
One sided question 186, 187, 215, 256, 

294, 371, 376 
One sided statistical test 199 
One sided test 124, 127, 128, 137-139, 

217,222,251,257,261,277, 
287,309,349,350,364,378, 
381,397-399,401,402,437, 
438,471,503 

generalization of 306 
1-9 decile coefficient of skewness 101 
Operating characteristic (OC) 129 

curve for sampling plan 231 
Operation "Sea Lion" 240 
Operations research (or management sci

ence) 238-240 
Opinion polls 246 
Optimal decision making 40, 133, 134 
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Optimal range of operation of all factors 
562 

Optimal solutions for compound systems, 
organizations and processes 238 

Optimal test 123 
for comparison of paired observations 

312 
parametric or nonparametric 131 

Optimization of processes using hybrid 
computer 244 

Ordered categories in contingency tables 
472-474,484-487,493 

Order of depletion 233 
Order of magnitude of k means, test on 

541 
Order restrictions 541 

in comparing means/medians 306, 
464,506, 541 

in comparing regression lines 442 
Order statistics (see also Median) 286 
Ordinates of a normal distribution 59, 

60 
Ordinates of the standard normal distribu-

tion 79 
Orthogonal polynomials 460, 461 
Ott and Free test 362, 373 
Ott procedure 495,508 
Outliers 74, 131, 279, 280, 395, 447, 

541 
Outlier test 278-280, 447 
Overall error 198, 199 
Overall mean 519 
Overall significance level 267 

Page method 553 
Page test 541, 554 
Paired comparison 555 
Paired data 307-309 
Paired measurements 307-319 
Paired observations 254, 307-320, 562 

testing equality of variance of 311 
Paired sample procedure 310 
Paired samples (or correlated samples) 

309 
Paired (connected) samples 307, 308, 

311 
distribution-free methods for 312-319 
t-tests 307-312 

Pairing 561 
by randomization 561 
by replication 561 

Pairwise comparisons 308, 548, 549 
among k independent correlations 427 
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of all possible pairs of treatments ac
cording to Nemenyi 546-549 

of mean ranks 305 
of means, multiple 533-537 

Pairwise differences 316 
Paper 

double logarithmic (log-log paper) 
455 

exponential 455 
function 455 
graph 455 
power function 455 
semi-logarithmic (exponential paper) 

455 
sine 455 

Parameters 25,48, 66-68, 112-116, 
120, 125, 166, 246-248, 268, 
273, 320, 362 

estimates for 521 
of normal distributions 60 
test 123 

Parametric methods 123-133, 255-278, 
494-545 

Partial correlation 395, 456-458 
and regression 456 
coefficient 457 

of second order 458 
Partial independence 492 
Partition 42 
Partitioning chi-square 468-474, 480, 

482,484-487,492 
Pascal, B. 35, 156, 567 
Pascal's triangle 156, 157 
Path 39 
Patients of a clinic 209, 210 
Peakedness (see Kurtosis) 
Pearson contingency coefficient 369, 

370,482 
Pearson, Karl 106, 567 
Pearson product moment coefficient of 

correlation 309, 382-384, 388-
390,406,407,419-432 

Pearson's contingency coefficient 369, 
370,482 

Penicillin 552, 553 
Percentage frequency 333, 335 
Percentile 92 
Periodicals 576 
Permutations and combinations 155-

162 
Permutation test 131 
Perturbing factors 560, 561 

nonmeasurable 561 
unknown 561 
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Perturbing quantities 561 
Phase 379 
Phase frequency test of Wallis and Moore 

378 
Phenotype 321 
Philosophical roots of statistics 26 
Pillai and Buenaventura comparison 

275,276 
Placebo 195, 212, 213, 364, 365 

-dependent results 213 
effect 365 
reactors 213 

Planned grouping (block division) 559, 
560 

Planning hypotheses to be tested 565, 
566 

Planning of investigations 4-6, 55, 
195-197, 202-213, 558-566 

Plausibility considerations 224 
Plotting 6,55-57,78-81,83,86,200, 

201,229,230,383,409,444, 
449,455,495, 517 

Point cloud 382-384, 387, 392, 403-
406,409,517 

Poisson distribution 132, 170, 175-192, 
230,235,236,241,329,330, 
343-345, 516-517 

comparison of several 188 
compound 170, 190 
confidence intervals for the mean 

182, 183, 343-345 
confidence limits of 343-345 
control limits computed with the help 

of 230 
mean and variance of 176 

Poisson homogeneity test 190, 465 
Poisson probability 183-185 
Poisson, S.D. 175 
Polling 342 
Polynomials, orthogonal 460 
Population 4,5,24,25,46,47,65, 

107, 196,203,209 
at risk 37, 205-208, 218 
checking a set of samples for a com-

mon underlying 475 
contrasts 509 
correction, simplified 342 
correlation coefficient 383, 384 
covariance 413 
error of the mean 46,94 
mean 46, 48, 49, 59, 60, 66-68, 94, 

247-249, 266 
median 254, 319 

multiple correlation 459 
multivariate normal 456 
size 51, 172 

Subject Index 

standard deviation 46, 48, 59, 60, 
71,94 

variance 46,67,70,71 
Positive correlation 397 
Positive probability contagion 190 
Positive reagents 225 
Positive skewness 91, 93 

index 101 
Power 10 
Power of a test 125-131, 215, 216, 

251, 350, 351, 519 
Power transformation for right-steep dis

tributions 516 
Practical long-range consideration regard-

ing a method 199 
Practical significance 119 
Precision in chemistry 198, 201 
Precision of data 198-201 
Precision (or reproducibility) of a method 

198 
Predictant 384, 386, 446 
Predicted mean 443,446 
Predicted observation 443, 446 
Prediction 3-6, 24, 51-53, 249, 443 
Prediction interval 249, 285, 443, 444, 

515 
for a future observation 444 
for a future sample mean 444 

Predictions 51 
Predictor 384 
Preliminary trial 131, 350 
Preparation 

specific biological activity of 228 
standard 228 

Principle of equalizing alternation 220 
Probabilistic statements 6 
Probabilities of two binomial distribu-

tions, comparison of 338-341, 
346-362 

Probability 4-6, 26-49 
and statistics, periods in history of 

567 
a posteriori 27 
a priori 27 
at least one hit 36, 218 
axioms of 29, 42 
computational 26 
conditional 31, 32, 42 
contagion 190 
cumulative 234 



Subject Index 

density 45, 59, 234 
function 45 
distribution 48, 228 

hypothetical 241 
element 45 
estimates 47 
function 44 
linkage 48 
mathematical 27 
of at least one success 36, 218 
of combinations 157 
path 39 
plot 81-83 
plotting 78-83, 108-111, 166,446 
sample 49, 50 
statistical 26, 27 
theory 26-46, 123, 257 

Probit analysis 225 
Probit transformation 269 
Problem of traveling salesman 239 
Problem solving 565, 566 
Process computer 244 

process automatization using 244 
technology 244 

Process control 197-202, 228-238, 
243,244 

Producer's risk 231 
Production planning 239 
Product moment correlation 395 

coefficient 383, 384, 388, 389, 406, 
407,419-432 

of Bravis and Pearson 383,402 
Profitability studies 238 
Prognosis models 48 
Programs, computer 572, 573 
Propagation of errors 21, 22, 96 

power product law of 96 
Proportionality in two way tables, testing 

of 480 
Proportions 269, 333 
Prospective etiological studies 204-209 
Prospective studies 204-209 
Prospective study (see also Cohort study) 

204-209 
Pseudorandom numbers 51, 241 
Psychometrics 196 
Pursuit or evasion games 240 
P-value 119-120, 266 

Quadrant correlation 384, 396, 403-
405 

of Quenouille (r Q) 395 
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Quality control 39, 172, 196-202, 204, 
219, 228-236, 281 

charts 200-202, 228-230 
in industry 228 

continuous 219, 229 
graphical 229 

Quality improvement 232 
experimental strategy for 494 
guidance toward more favorable work

ing conditions as special case of 
232 

technological economic complexity of 
questions connected with 232 

Quality of conformance 229 
Quality response 224-228 
Quantifiable qualitative outcomes, count

ing 210 
Quantiles 92, 100-102, 106, 197,254, 

325 
confidence interval 197, 198,254, 

319 
of the normal distribution 60, 325 
of the standard normal distribution 

62,63,217 
Quantitative methods, comparison of 

200 
Quantities 

continuous 53 
discrete 53 

Quartiles 101, 302, 325 
Quenouille quadrant correlation (r a) 

395, 403-405 
Questionnaire 55, 202 
Questions to put 3-6, 107, 204, 565-

566 
Quetelet, A. 58 
Queuing theory 48 
Quick distribution-free procedures for 

evaluating the differences of 
paired observations 315, 316 

Quick estimation 
differences between two samples 285, 

286 
mean 81, 100 
standard deviation 71,81,97-100 

Quick test of Ott and Free 362, 373 
Q-symbol 264,417,459 
Q-test 489, 555 

due to Cochran 489 
of Cochran for comparison of several 

percentages in matched samples 
365 
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Quota procedure 245 
in sampling 245, 246 

r, coefficient of correlation 383, 384, 
388,389,406,407,419-432, 
449 

r x c contingency table 474-491 
r x c table 476, 490 

test statistic X2 for independence or 
homogeneity in 475 

Raatz, computation according to 477 
Radioactive desintegration 48 
Radioimmunoassay 228 
Random 

allocation 4,5,49-51,211,212 
assignments of procedures to trial units 

558-562 
choice 529 
components model (or random effects 

model) (Modelll) 529, 532 
connections 224, 393-395 
effects 532 
error 5,58,67, 196, 198,560-562 
influences 561 
model 519, 532 
number generator 243 

generation and testing 243 
numbers 49-52,84,241,243,559 

drawing samples from theoretical 
population with the help of 241 

procedures (or processes) 5,49-51, 
123,170,230 

sample 4, 24, 44, 47-51, 70, 95, 
107, 121, 123, 124, 130, 204, 
209,218,219, 230, 231, 264, 
266, 273, 339, 389, 390, 529 

selection 50, 196, 203, 245 
statistically significant result 116 
variability 198, 273, 562 
variable 43-46, 57, 134, 139, 219, 

408,443,457,459,523,533 
continuous 45,46, 57 
discrete 44-48, 163, 175 
normally distributed 57-64 
standard normally distributed 61-

64 
variation of experiment, inherent 

523 
Randomization 559, 560, 565 

as underlying principle of experimental 
design 562 

procedure 562 
techniques 561 

Subject Index 

Randomized blocks 529, 562, 563 
Randomness 

of observations 373-381 
of the fit 332, 449-451 
principle 49-51, 246 

Range 85, 97-100, 198, 230, 328, 
507-509 

chart (R-chart) 201, 229 
in localizing and removing excessive 

dispersions in controlling variabil
ity within samples 229 

preparation of, for upper limits 229 
confidence interval of 508 
interdecile 98-10 1 
of a sample 97,229,515 

heterogeneity 515, 516 
of individual groups and means 542 
tables and/or tests 275-277, 328, 

507-509, 542-545 
Rank 286, 396, 517 
Rank analysis of variance 

for several correlated samples 549 
for several independent samples 303-

306, 546-549 
of Friedman 549-558 

Rank correlation 132, 395-403, 554 
coefficient 395, 396, 400 

multiple 403 
of Kendall 403 
of Spearman 395-403 
partial 403 
'T (Kendall's tau) 403 

statistics, combined two tailed 403 
Rank (or ranked) data 130-133, 286 
Rank differences 400 
Rank dispersion test of Siegel and Tukey 

286-289 
Ranking and selection procedures 541 
Ranking of medians/means 306,464, 

541 
Rank means, ordered 553 
Rank, normal rank transformation 517, 

518 
Rank order 464, 541 
Rank (or ordinal) scale 132, 133 
Rank sum 293-295 
Rank tests 131, 286-306, 312-315, 

546-558 
of Nemenyi 546-549 

Rank transformation 286, 518 
Rapid test 131, 132, 285, 286, 315-

320 
Rare events 175-192, 236, 241, 329, 

330, 343-345, 516-517 
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Ratio scale 132, 133 
Reaction threshold 226 
Reagents, positive 225 
Realization 43, 256 
Real numbers 43 
Reciprocal of the square root transforma-

tion 516 
Reciprocal transformation 515-517 
Recovery duration 210,465, 477 
Recovery percentage 215,347,465, 

477 
Rectangular distribution 83-85, 98, 391 

definition of probability 84 
density of 84 

Recursion formula (Feldman and Klinger) 
372 

References 568-641 
Reference value 197 
Regressand 384, 458 
Regression 382-388,408-413,417, 

419-423,437-446,459, 460, 
484 

analysis of multiple 460 
Bartlett and Kerrich's quick estimates 

of 390-392 
estimated from correlation table, test-

ing linearity of 435, 436 
exponential 451 
fitted 384, 389, 415, 449 
linear 382, 389, 408-423, 437-446, 

462 
multiple 385, 459, 460 
nonlinear (curvilinear) 385, 447 

monotone 395 
robust 390-392, 447 
testing linearity of 433-437 
variance analytic testing of 418 

Regression analysis 382-461, 484 
and variance aniuysis 418, 433, 442 
assumption of linearity in 437 
Bartlett procedure 390-392 
Model I, II 408 
models for 408 
multiple linear 459, 460 
no intercept model 392 
nonlinear models 447-455 

Regression coefficient 107, 133, 384-
390,392,408-423,425,437-
446,453,462,484,485 

comparing two 440-442 
comparing two way tables with respect 

to 462, 472-474, 484-487 
computing and assessing 408-423 
confidence interval for 439, 440 
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confidence limits for 439, 440 
least squares estimation of 67, 385, 

386 
of corresponding two way tables, com

parison of 484-487 
testing against zero 425, 437, 438 
testing difference between estimated 

and hypothetical 438, 439 
Regression equation 384 
Regression function 433, 458 
Regression line 386-391, 408-423, 

437-455 
component of the X2 value 484 
confidence interval for 443-446 
deviation from 472-474 
estimation of 408, 410, 437 
of two corresponding or matching ta

bles, comparing 487 
testing equality of 440-442 
total 442 

Regressions, partial and multiple 456 
Regressor 384, 386, 458 
Rejection of observations (see Outliers) 
Rejection probability 127 
Rejection region 256, 257 
Relation 

causal 393, 394, 480 
formal 393, 394,480 

Relationship (see Association, Correla
tion, Regression) 

Relative coefficient of variation 78 
Relative frequency 26, 48, 218, 269, 

330,333,338,340,469 
comparison with underlying parameter 

333,338 
in the k classes 464 

Relative modes 91 
Relative portion 226 

of reacting individuals, sum of 227 
Relative risk 206 
Relative variation coefficient 70, 78 
Relevant statistic 124 
Reliability 236-238 

analysis 238 
criteria for a method 198 
of a device 236-238 
of an estimate 95 
of data 196-202, 279 
of laboratory methods 197 
of measurements 96, 197-202, 279 
theory 108, 237, 238 

Repeatability 
component of 561 
of observations (23), 47, 212 
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Replacement 36,47,48,94,247,248 
Replicability of a sample 47 
Replicate measurements 559, 561 
Replication 559, 562, 565, 566 

as underlying principle of experimental 
design 562 

Replication collectives 559 
Replications 563, 564 

number of 565 
Report writing 566 
Reporting uncertainty 95 
Representative inference 3-6,47-51, 

245,246 
Representative random sample 4, 5, 

47-51 
Representative samples 49, 207, 208 
Representative symptoms and characteris

tics 212 
Reproducibility 23 

of a method 199 
of observations 211 

Research 24, 116, 565, 566 
Residual mean square (MSR) 523 
Residuals 418,419,449 

examination of 449 
Residual sum of squares 414 
Residual variance (or dispersion about 

regression line) 415, 418, 437, 
439,441,474,487 

confidence interval for 440 
Response error 196, 197, 202, 203 
Response surface experimentation 232, 

494 
Response variable 384 
Results 95, 128, 129, 566 

interpretation of 120, 134, 195-197, 
393-395, 566 

stating in tabulated form and/or graphi
cally 566 

Retrospective interrogation 202, 206, 
208 

Retrospective etiological studies (see also 
Case-control study) 202-210 

Rho 383,384 
Ridge regression 461 
Right-left comparison 307 
Right-steep distribution 107, 516 
Risk 134, 205-208, 233-238 

I 117-119, 127, 129, 199,215,565 
II 117-119, 126, 129, 199, 216, 

315, 565 
levels of 215, 216 

Risk exposition 37, 205-208, 233-238 
Risk, relative 206 

Subject Index 

Robust estimate for dispersion 253, 254 
Robust multiple comparisons 495 
Robustness 66, 100, 123, 131,241, 

253,258,262,279,501 
of intervals and tests 258 
of test 123, 265 
of the t-test 241, 265, 501 

Robust statistics (with robust estimation) 
66,81,90-95,97-102, 123, 
130-133, 251-254, 258, 280, 
390-392,395,447,495,501, 
537 

Root transformation 515, 516 
Rosenbaum tests 285, 286 
Roulette 27, 166 
Rounding off 20, 21 
Row effect 519,521,532,533,538 
Row homogeneity 538 
Row mean 538, 540 
rth sample moment 103 
Run 375 
Run test 132, 329, 332, 375-378 

critical values for 376 
for testing whether sequence of data is 

random 375 

S3 sign test of Cox and Stuart for mono
tone trend 379, 380 

S test (see Scheffe test) 
Sample 4, 24, 25, 43, 44, 51, 257 

random 43,44,47,49,70,95, 107, 
121, 123, 204, 218 

simulated 241 
Sample accuracy 246 
Sample correlation coefficient r 383, 

384,388,389,406,407,419-
432 

Sample cumulative distribution function 
68 

Sample function 134 
Sample heterogeneity 65, 209, 234 

selection 203, 209 
testing 469 

Sample mean 68-78, 134,266,269, 
273 

Sample moments 102-106, 325 
Samples 

correlated 307-309, 382-384, 549-
558 

in pairs 309 
having zero defectives, nomograph for 

232 
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independent 260, 266, 459, 501, 
503,562 

random 4, 24, 49, 95, 121, 130, 264 
Sample size 49,207,214-218,246, 

249-251, 262, 263, 274, 283-
285,341-343,350,351,466, 
504, 533, 541, 562, 565 

Sample sizes 
approximate choice of, for clinical trial 

214-218 
Sample space 47 
Sample survey 55, 202 
Samples with heterogeneous variances 

515 
Sample variance 68-78, 103, 134, 139, 

260, 283, 503 
Sampling 48, 203, 245, 246, 425 

without replacement 36, 48 
with replacement 36, 48 

Sampling distribution 266 
n-variate 461 
three dimensional 461 
two dimensional 461 

Sampling error 49, 196, 203, 502 
protecting against 231 

Sampling experiments 241, 242 
Sampling in clusters 246 
Sampling plans 231 
Sampling schemes for quality control 

129 
Sampling technique 48, 65, 245, 246 
Sampling theory 25,48-51, 196, 197, 

245, 246, 614, 615 
Sampling variation 114, 266, 273 
Sampling without/with replacement 47, 

48,94, 155-175,247,248,335, 
336 

Sandbox exercise 240 
Scales of measurement 132, 133 
Scatter diagram 382, 383, 405, 409, 

411,517 
Scheffe assessment of linear contrasts 

509-512 
Scheffe test 509-512, 533-537 
Shewhart control chart 200-201, 229 

determination of sample size 214-
217 

SCI (simultaneous confidence intervals) 
514,515 

Scientific inquiry 116, 565, 566 
Scientific investigation 3-6, 116, 565, 

566 
Scientific method 3-6, 23-26, 114-

116, 123, 124, 128, 129, 134, 
257, 565, 566 

Scientific model of the world 116 
Scientometry 196 
Scores 473 
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assigned to levels or categories of attri-
butes 484,485 

Scoring 472-474,484-487 
Screening 218 
Secondary cause, spontaneous tendency 

towards recovery as 211 
Second degree equation, correspondence 

between acutal relation and 447 
Second order partial correlation coeffi-

cient 458 
Second order regression 447-450 
Secretary problem 218, 219 
Selecting the best of several alternatives 

541 
Selection 

bias 203, 204, 246 
probabilities 203 

Selection correlation 246, 394 
Selection procedures 246, 541 
Semi-logarithmic plotting paper 455 
Sensitivity 

comparison of two similar independent 
experiments with regard to 541 

of a chemical determination method 
199 

of a method 199 
of experiments 541 

Sensitivity ratio of methods 199 
Sensitivity test 226 
Sequence of trials 220 
Sequential analysis 219-224, 567 
Sequential analytic method of quality 

control 230 
Sequential charts, test characteristics of 

241 
Sequential clinical trials, analysis of 

223 
Sequential medical plan 220-224 
Sequential test, efficiency of 221 
Sequential test plans 219-223, 595, 596 

closed 220 
design for toleration experiments 223 
due to Bross 220-222 
due to Cole 223 
due to Spicer 222 
maximum sample size for 222 
one sided 222 
open 220 
quick 222 
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Service theory 48 
Set 

complement of 29, 30, 42 
partition 42 

Setting and realizing strategy 565 
Shaw, G.B. 108 
Sheppard correction 76 
Shortcut statistics 285, 286 
Side effects 223, 224, 337 
Siegel and Tukey rank dispersion test 

286-289 
Siegel-Tukey test 260, 288, 293 
Sigma, ~ (see Summation sign) 
Sigma, CI (see Standard deviation) 46, 

48,59,60,71,94 
Sigma squared, CI2 (see Variance) 46, 

67,70,71 
Significance, localizing cause of 480 
Significance level 112, 120-123, 126, 

127-130, 136, 137, 153, 199, 
214, 273, 274, 299, 330, 339, 
350,437,465,470,471,474, 
477,478,487, 495, 497, 499, 
526,538 

nominal (or descriptive) 119, 120, 
266 

Significance probabilities, combination of 
independent 119, 366 

Significance test 123 
Significant, statistically 118, 266 
Significant difference 266, 273, 274, 

305,306 
Significant digits (figures) 20, 21, 107 

of characteristic values 107 
Sign test 132, 316-320, 365, 552 (see 

also McNemar test) 
applications for orientation 319 
efficiency of 318 
modified by McNemar 363 
of Dixon and Moot 315, 316 

Similarity of samples 273 
Simple blind trial 213 
Simplifying assumptions 565 
Simulated sample 241 
Simulation 238, 241-243 

analogue 242 
computers in 241 
studies 241-244 

Simultaneous confidence intervals (SCI) 
514 

Simultaneous correlation 393 
Simultaneous inference 514,515,537 

(see Bonferroui inequality) 
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Simultaneous nonparametric comparison 
300, 303-306, 546-558 

Single blind trial 212 
Single-sampling plans 231 
Size of population 51, 172 (see also 

Tolerance interval) 
Skewed distribution 90-93, 100, 111, 

291,293, 391, 515 
Skewness 85, 90, 100-107, 252, 255, 

293,299,325-327,501 
and kurtosis, measures for 106 
determination from moments 101 
negative 100 
I 101, 102 
positive 100 
III 101, 102 
II 101, 102 

Skip-lot sampling plans 231 
Slide rule 242 
Slope 386 
Smoking and lung cancer 204, 366 
Software 572, 573 
Spearman-Karber method 225-228 

a rapid distribution-free method 225 
for estimating mean and standard de

viation 225 
for estimating mean effective or lethal 

dose 225 
trimmed 228 

Spearman rank correlation 395-403, 
554 

coefficient 395, 396 
critical values of 398, 399 

with ties 396, 401, 402 
Specificity of a method 198 
Spicer sequential plan 222 
Spurious association 203, 393-395 
Spurious correlation 393, 394 
Square root transformation 517 

of frequencies 516 
Squares and square roots 10, 11 
Square tables 

analysis of 475 
testing for symmetry of 487 

Stabilizing variance 269 
Standard deviation 48,60,68-76, 85, 

97, 98, 133, 164, 166, 198, 199, 
225, 228, 264, 279, 281, 283, 
328, 388, 392, 407, 413-417, 
422,427,431,432,443,453, 
507-509, 516, 517 

chart (S-chart) 229 
computation for large sample sizes 

72-76 
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computation for small sample sizes 
69-72 

estimating from range 507 
estimation of 249, 250,413 
for nearly normally distributed values, 

estimate based on deciles 100 
from grouped data 72-75 
from ungrouped data 69 
of axis intercept 415-417 
of difference 309 
of mean range estimate of 509 
of regression coefficient 415-417 
of standardized range 509 
using range to estimate 97, 507-509 
using range to estimate maximum 98 
within samples 76 

Standard error 
of arithmetic mean 94-96 
of axis intercept 415-417 
of coefficient of variance 275 
of difference 207 
of difference in means 309 
of estimate 415 
of mean 94-96 

range 509 
of median 95 
of prediction 414, 415 

Standardization of fourfold tables 351 
Standardized deviation 273, 274 
Standardized extreme deviation 281 
Standardized maximum modulus distribu-

tion 514-515 
Standardized (or standard) normal distri

bution 60-64, 78-81, 217 
Standardized 3rd and 4th moments 325 

percentiles of 326 
Standard normal density function 79 
Standard normal distribution 60-64, 

78-81, 135, 174,217,267,272, 
275, 289, 294, 315, 338, 378, 
379,397,487,515,517,518 

bounds for 62, 63, 217 
Standard normal variable 61-63, 79-

82,139,187,247,335,374, 
427,429,452,473 

Standard preparation 228 
Standard treatment, expected recovery 

rate for 216 
Statistic 66, 85, 98, 106, 256, 257 
Statistical analysis model, definitive for

mulation of 565, 566 
Statistical decision 112-134 

functions 567 
theory 567 
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Statistical experimental design, principles 
of modern 562 

Statistical independence of errors 519 
Statistical inference 3-6, 23-26, 116, 

123, 124, 195, 196, 559-562 
future of 567 

Statistical investigation of causes 203, 
393, 394 

Statistically significant 115 
Statistical method 3-6, 23-26, 116, 

123, 124, 195, 196, 559-562 
Statistical model 5, 81, 257, 348, 408, 

437,476,519,565 
Statistical procedures, multivariate 461 
Statistical significance 112-119, 195, 

199, 236, 266, 289, 292, 310, 
400, 425, 467, 474, 552 

Statistical software 572, 573 
Statistical source material gathering 54, 

55 
Statistical symmetry 27 
Statistical test 112-132 
Statistics 3-6, 23-26, 46, 48, 53, 98, 

116, 123, 124, 195, 196, 559-
562, 566 

biometrical methods of 567 
descriptive 24 
dispersion 85 
future of 567 
inductive or analytic 24, 124, 257 
inference 25, 46, 257 
location 85 
methods 23-26 
robust 66, 95, 99, 100, 123, 130-

133, 253, 254, 280, 390, 395, 
447,495,501,537 

shape 85 
Steepest ascent method 232 
Stirling's formula 159, 161, 179 
Stochastic 

dependence 393 
event 43 
experiments 4, 43 
independence 31-34,42, 204, 383, 

385,393 
inductive inference 257 
model 241, 257 

artificial 241 
processes 48, 567, 589, 590 

simulation and analysis of 241 
relation 383-385, 393-395 

Stochastically independent 
events 33, 34 
observations 188 
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Stochastically independent (cont.) 
variables 204 

Straight line, equation of 385, 386, 
408-419 

Stratification 205, 206, 245 (see also 
Blocking) 

Stratified sample 205, 245 
Stratum 205 
Stratum effect 519, 521 

mean 524, 527 
Structural homogeneity 207, 208 
Student distribution 135-139 

k-variate 514 
Studentized range 534-537 
Student's comparison of two means 70, 

264-275 
Student's distribution 135-139, 266, 

267 
Student's t-test 

one sample 255-257 
two independent samples 264-275 
data arranged in pairs 309-312 

Subgroups, formation of 83 
Subjective criteria 213, 223 
Subjective symptoms 212-214 
Substitute F ratio 275, 276 
Substitute t ratio 276, 277 
Substitution error 195 
Success-failure situation 215, 216, 346 
Success ratio 212, 346 
Sufficient estimator 67 
Suggestibility 213 
Summation procedure 74, 75 
Summation sign 9, 10 
Summation symbol 9, 10 
Sum of squares (SS) 264,413,417, 

501-505,521,528,538,540 
between samples (groups) (SSbctwoe.) 

502 
mean 538-540 
within sample (SSw;tbin) 501 

Survey (50),55, 196, 197,202-204, 
207, 208, 214, 245, 246, 393-
395, 565, 566, 614, 615 

Surveys and experiment, comparing 561 
Survival distributions, equality of 195, 

206, 210, 235 
Survival model 107-111, 206-210, 

233-236 
Survival probabilities 206, 237 
Survival time 210, 236 

analysis 108-111, 233-238 
distribution of 206 

Symmetric distribution 58-64, 99, 100 

Subject Index 

Symmetry 27 
testing square tables for 363-365, 

462,488,489 
with respect to diagonal in an r X r 

table 488 
Bowker test for 488 

Systematic components 529 
Systematic error (or bias) 5,66,67, 

196,197,199,201-203,212, 
246,559 

Systematic sample 245 

Tables, sixfold or larger 366 
Tabulated breakdown 209 
Tactical reserves, setting up 565 
Target function 239 
Target population 209 
Target quantity (regressand) 232, 389, 

408, 458, 459 
Target variable 385, 457, 458 
Tasks of statistic 3-6, 23, 26, 116, 

123, 124, 558-562 
t-distribution 135-139, 154, 155, 256-

258,260,273,321,424,438, 
441 

Technometrics 196 
Terry-Hoeffding test 293 
Test 

and confidence interval 116, 256, 
257,268 

asymptotic efficiency 130, 293, 302 
based on standardized 3rd and 4th mo-

ments 323, 325-327 
conservative 131 
critical region 256, 257, 266, 267 
difference in means 264-275,494-

545 
dispersion difference 258, 260-264, 

286-289 
distribution 53-60 
distribution-free 130-133,261,262, 

285-306 
efficiency 130, 276, 293 

of paired samples 307, 308 
for a single mean 121-123, 255, 256 
for bivariate normality 447 
for departure from normality 322-

329 
for nonequivalence of underlying popu

lations of two samples 467, 468 
for ordered means, comparison of 

541 



Subject Index 

homogeneity 186-189, 236, 260-
263, 311, 312, 338, 339, 346-
362, 462-468, 474-478, 490 

independence in contingency tables 
346-362, 474-478 

nonparametric 130-133, 261, 262, 
285-306, 312-320, 546-558 

of dispersion differences 258, 260-
264, 286-289 

of equal means 264-275, 494-545 
of equal medians (n, = n2) 293-306 
of equal regression lines 440-442 
of equal slopes of regression lines 

440-442 
of goodness of fit 123, 320-332 
of location differences 121-123, 

264-275,494-545 
of nonnormality 322-329 
of randomness 373-381 
of significance 123 
of slope of regression line 437-439 
of symmetry in contingency tables 

363-365,488,489 
of the significance of a mean 121-

123, 255, 256 
on different levels 

of a factor 563 
of several factors 563 

power of 125-131,215,216,251, 
350, 351, 519 

procedure 124 
randomness 373-381 
theory 25, 123 

general 567 
trend 379-381 

in contingency tables 468-470, 
472-474, 484-487 

two sided and one sided 124-129 
Testing equality of variances after 

Cochran 497, 498 
Testing homogeneity of profiles of inde

pendent samples of response 
curves 541 

Testing hypotheses 114-131 
Testing in groups 218 
Testing k X 2 table for trend 472-474 
Testing of an empirical distribution for 

uniform distribution 492 
Testing of two distributions of frequency 

data for homogeneity 67, 468 
Testing order alternatives in a one way 

analysis of variance, critical val
ues for 541 

Testing randomness of sequence of di-

chotomous or measured data 
373-375 
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Testing sample for nonnormality, method 
due to David et al. 235 

Testing significance of linear regression 
425, 433-442, 472-474, 484-487 

Testing square tables for symmetry 
363-365, 488, 489 

Test on ranks 285-306, 395-403, 549-
558 

one sample 121-123, 255, 256 
one way layout (see Analysis of vari-

ance, one way) 
optimal 123 
ordered alternatives 306, 464, 541 
parameter 123 
parametric (see t-test or Analysis of 

variance) 
power of 125-129, 131,215,251, 

350, 351, 519 
randomness 373-379 
relative efficiency 130, 293 
robust 132,241, 262, 501 
sensitive 123, 258, 279, 500 
sequential 219 
significance 123 
statistic 121 
statistical 121 
"tea" 120, 121 
theory 25, 112-132 
two sample 260-275, 285-303 
two sided 125 

Tests (by author) 
Bartlett 498-500 
Bauer 302 
Behrens-Fisher 271-273 
Bowker 488,489 
Bross 220-222,241 
Cochran 497, 498 
Cox-Stuart 379-381 
Dixon 277-279 
Dixon-Mood 316-320 
Fisher 370-373 
Friedman 549-555 
Gart 361 
Gauss 121-123, 268 
Hartley 495,496 
Hutchinson 403 
Kolmogoroff-Smimoff 291-293, 

330-332 
Kruskal-Wallis 132, 303-306 
Kullback-Leibler 490-493 
Le Roy 362 
Levene 262 
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Tests (by author) (cont.) 
Link-Wallace 542-545 
Lord 276, 277 
Mandel 540 
McNemar 363-365 
Mosteller 285 
Nemenyi 546-549 
Pillai-Buenaventura 275, 276 
Rao-Chakravarti 192 
Rosenbaum 285, 286 
Scheffe 509-512, 533-537 
Shapiro-Wilk 329 
Siegel-Tukey 286-289 
Student 130, 255, 256, 264-275, 

309-312 
Student-Newman-Keuls 533-537 
Tukey 289-290, 514, 534, 537 
Wallis-Moore 378, 379 
Weir 272 
Welch 271 
Wilcoxon 293-302, 312-315,555-

558 
Wilcoxon-Mann-Whitney 132 
Wilcoxon-Wilcox 555-558 
Williams 512 
Woolf 351-360, 370 

Tests (by letter) 
Vbl 325-327 
b2 325-327 
X2(chi', chi-squared) 
approximate 320-324, 345-349, 

462-479 
exact 258, 259 
F 132, 260-264, 360, 361, 494, 

501-506 
F' 275,276 
G 351-360, 370 
H 132, 262, 303-306 
21 490-493 
Q 365, 489, 555 
S 509-512, 533-537 
t 130, 255, 256, 264-275, 309-312 
U 132,241,262,293-303 
U 276,277 
W (Shapiro-Wilk) 329 
X 293 
e.g. 121-123 

Test statistic 121, 122, 126, 134, 138, 
155, 256, 278, 280, 294, 309, 
311,312,430,437,475,495-
497, 502, 504, 526, 550, 554 

X2 139-143, 154, 155, 320-324, 329, 
330,332,346-351,462-482 

critical value of 125, 126 

Subject Index 

F 143-155, 260-264, 360, 361, 494, 
501-506 

for homogeneity 432 
for weakly occupied tables 363 
of Kruskal and Wallis 306 
t 135-138, 154, 155, 255-257, 264-

275,309-312,424,426,437-
442, 494, 501 

U 299 
Theorem of Bayes 38-43 
Theorem of Glivenko and Cantelli 68 
Theorem of total probabilities 39, 42 
Theoretical distributions 61-63, 135-

155,362 
Theoretical values 561 
Theory 5, 6, 24, 25, 116, 124 
Theory of optimal design 232, 233, 

494, 558-564 
Therapeutic assessment, uncontested 

212 
Therapeutic comparison 195-197, 205-

214, 220-224, 347 
Therapeutic results 210, 347 
Therapies, comparison of two 214, 347 
Therapy difference 216 
Thorndike nomogram 183, 184 
3 x 3 x 3 table (or contingency die) 

493 
Threefold tables 490 
Three sigma limit 201 
Three sigma rule 64, 114 
Three-variable analyses, topology of 

394 
Three way classification 518, 521 
Three-way tables 489 
Tied observations 288,296,297 
Ties 287, 396, 401, 550, 552 

in ranking 287, 288, 296-299, 304, 
550 

Time-dependent population 320 
Time sequence 381 
Time series 379-381, 394, 395,461 

analysis and forecasting 381 
correlation among 394 
testing of 379 

Tolerance factors 282 
Tolerance interval 113, 114,281,283-

285,444 
Tolerance limits 113, 114, 281-285 

for distribution-free case 283, 284 
Tolerance region 282, 446 
Total probabilities theorem 33, 38, 39, 

42 
Total variation 462, 474, 526 



Subject Index 

Toxicity bioassay 228 
Transformation 65, 107-111, 269, 395, 

437,515-518,541 
angular 65, 269 
logarithmic 65, 107, 515-518 
r to i 427-432 
square root or cube root 65, 515-518 

Transformations 515-518 
in clinical-therapeutic research, particu

lar significance of 541 
Translation law 84 
Transposition inference 249 

prediction intervals for 249 
Traveling salesman problem 239 
Treatment 

particular 211 
specific 465, 466, 478 
symptomatic 211,465,466,478 

Treatment means, multiple comparisons 
between a control mean, corre
sponding SCI and k 514 

Treatments, pairwise comparison of all 
pairs of 547 

Trend 374,379-381,394,395,461 
early detection of 201, 229 
testing for 472, 484 

Trend analysis 53,379-381,391-395, 
461 

Trend recognition 201,229,379-381, 
394, 395, 461 

Trend test in terms of dispersion of 
sample values 373, 374 

Trial (see Bernoulli trial, or Clinical trial) 
Trial in medicine 

between patients 211 
multiclinic 214 
sample sizes 214-218, 340-343, 

350,351 
sequential analysis 219-223 
simple blind 212 
single blind 212 
within patient 211 

Trials 558-564 
Trial units per block, number of 562 
Triangular distribution 98, 190, 252 
Truncated 95% probability ellipse 447 
I-statistics 135-138,154,155,241, 

255-257,264-275,309-312, 
424, 426, 437-442 

I-test (see also Student's t-test) 70, 133, 
255-257,309-312,424-426, 
437-442,494, 501 

based on the MD 252 
for data arranged in pairs 309 

for normally distributed differences 
309 

nomographic presentation of 275 
of the product-moment correlation 

coefficient 424, 426 
Tukey-Dn 534, 537 
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Tukey procedures 514, 534, 537 
Tukey's quick and compact test 289, 

290 
Tukey test 540 
27% rule (see also Secretary problem, 

Marriage problem) 218, 219 
Two by two table 346, 347, 462, 476, 

488 
Two way classification 538 
Two factor interaction 518-522 
Two sample rank-sequential test 301 
Two sample test of Wilcoxon, Mann, and 

Whitney 293-303 
Two sample I-test for independent ran-

dom samples 264-275 
Two sided alternative 125 
Two sided Fisher test 372 
Two sided problem 125, 127, 138, 222, 

260,274,277,285,289,292, 
296-301, 312, 316, 318, 376, 
425,441,452,464 

Two sided procedures 258 
Two-sided question 137, 169, 186, 188, 

215,255, 257, 294, 350, 380, 
381,463 

Two sided tests 124, 125, 127, 128, 
137,215,217,251,261,266, 
276,277,287,309,311,312, 
315,318,319,349,371,378, 
397-399,401,429,430,437, 
439 

bounds for 318 
Two way analysis of variance 

with a single observation per cell 
537-541 

with a single observed value per class 
537-541 

with ranks 549-558 
Two way classification 541 

analysis of variance for 527 
model without interaction 562 
with one observation per class, no in

teraction 541 
with unequal numbers of observations 

with cells 540 
Two way layout data with interaction and 

one observation per cell, analysis 
of 541 
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Two way table 462,474,484,490 
testing for independence or homogene

ity 490 
Type I error 112,123,219,251,273 

rate, experimental 537 
Type II error 117-119,125-129, 186, 

219,223,251,260,265,273, 
504 

Typical cases 246, 280 

Unbiased estimates 433 
Unbiased estimator 66 
Unbiased information 196, 197, 202-

204 
Uncertainty 23-26, 113, 224, 239, 246, 

249,561 
Unconscious and unintentional error 

212-214 
Undirected retrospective analysis 208 
Uniform distribution 83-85, 98, 241, 

252,322 
Uniformity (consistency) in observing 

207,208 
Union 28 
Unit of observation, experimental unit 

47, 560 
Unit sequential sampling inspection 231 
Universe (see Population) 
Upper confidence limit, one sided 259, 

337 
Upper significance bounds of Studentized 

range distribution 535, 536 
Urn 37,39,47,48 

model 47,48 
U-shaped distribution 93, 94, 98, 99, 

391 
U-test 130, 132, 262, 294, 295, 297, 

299, 303, 366 
asymptotic efficiency of 293 
for the comparison of 2 variances 262 
of Wilcoxon, Mann and Whitney, one 

sided 293 
power of 241 
with tied ranks 296 

V-mask 202 
Variability 5, 23-26, 68, 85, 559 
Variability collectives 559 
Variability difference 289 
Variability test 285, 286 
Variability of individual factors as com-

Subject Index 

ponents of total variability 519, 
529 

Variable, random 43-46, 134 
continuous 46 
discrete 44, 45 
range of 43 
realization of 43 

Variable plans 231 
Variance 46,68-77,85, 106, 139, 

232,234,251,264,266,267, 
269,271,293,308,389,495, 
497-499, 503, 517, 518, 521 

analysis of 232, 494-545 
between samples 502-504 
between two flanks of an individuum 

308 
combined 76, 77 
estimate of 68-77, 501, 502 
of measured points 446 
of sample rank sums 303 
of the mean 46 
partial 232 
within samples 501-504 

Variance analysis 232, 494-545 
Variance analysis in regression analysis 

418, 433, 442 
Variance analytic pairwise 

comparison 555 
Variance components 

estimation of 529 
testing hypotheses on 529 

Variance components model (Model II) 
529, 532 

Variances 
additivity of 46 
deviations from the hypothesis of 

equality of 504 
identical, of individual sample groups 

542 
testing equality or homogeneity of 

495-500 
tests for equality of 495-500 

Variation 
between levels of factor 522 
between sample groups 470 
between samples 502-504 
coefficient of 77, 78, 85, 107, 110, 

133, 198, 259, 260, 275 
per degree of freedom, average 521 
total 462, 474, 487, 502, 522, 526 
within sample 502-504 
within samples 501-504 

Venn diagram 30-33 



Subject Index 

Wald, A. 24, 133, 567 
Wallis and Moore phase frequency test 

378,379 
War game 240 
Warning limit 200, 230 
Wasserman test 218 
Weakly skewed distributions and MD 

281 
Weak significance determined by two 

way analysis of variance 540 
Weibull distribution 234, 235, 323 
Weighted 

arithmetic mean 77 
geometric mean 86, 90 
harmonic mean 88 
linear contrasts 510 

Wilcoxon and Wilcox multiple compari
son of correlated samples 555-
558 

Wilcoxon-Mann-Whitney 
test 293-303 

Wilcoxon matched pair signed rank test 
312-315 

Wilcoxon test 
for independent samples 293-303 
for pair differences 312-315 

for paired data 312-315 
Wilcoxon two sample sequential test 

scheme 301 
Wild animal population size 172 
Wilks equation 283 
Winsorization 280 

701 

Within group mean square 503 
With/without replacement 36, 47, 48, 

94, 161, 162, 171 
Woolf's G-test 351-360 
Work force 245 
Writing a report 566 
W-test of Shapiro and Wilk 329 

X-test of van der Waerden 293 

Yates correction 351,366,367,380 

Zero correlation, random deviation from 
424-426 

Zero-one observations 166 
i-transformation 427-432 
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Remarks and examples concerning the two sample 
Kolmogoroff-Smirnoff test for nonclassified data 

K -S tests use the maximum vertical distance between two empirical distri
bution functions F 1 and F 2 (the two sample test) or between an empirical 
distribution function Fe and a hypothesized distribution function F 0 (the 
goodness of fit test, p. 330). For the two sample K -S test with H 0 : F 1 = F 2 the 
assumptions are: Both samples are mutually independent random samples 
from continuous populations. If the random variables are not continuous 
but discrete, the test is still valid but becomes conservative. For the one sample 
goodness of fit test with H 0 : Fe = F 0 the assumption is: The sample is a 
random sample. 

For the two sample K-S test we use 

I fj = max IF I - F 21 

instead of (3.46) on page 291. 

Example 1 Two sided K-S test. IX = 0.05; n 1 = n 2 = 10 

X, X2 F, - F2 X, X2 F, - F2 

0.6 1/10 - 0/10 = 1/10 3.0 3.0 9/10 - 3/10 = 6/10 
1.2 2/10 - 0/10 = 2/10 3.1 9/10 - 4/10 = 5/10 
1.6 3/10 - 0/10 = 3/10 3.2 3.2 
1.7 3.2 1 - 6/10 = 4/10 
1.7 5/10 - 0/10 = 5/10 3.5 1 - 7/10 = 3/10 
2.1 2.1 6/10 - 1/10 = 5/10 3.8 1 - 8/10 = 2/10 

2.3 6/10 - 2/10 = 4/10 4.6 1 - 9/10 = 1/10 
2.8 7/10 - 2/10 = 5/10 7.2 1 - 1 =0 
2.9 8/10 - 2/10 = 6/10 

f) ~ 6/10. < 7/10 = D,O(O,OS): 

H 0 IS retained 

The value D10(o.05);twosided = 7/10 is from Table 61 on page 292. 

Example 2 Two sided K-S test, IX = 0.05; n 1 = 12, n 2 = 8 

X, X2 F, -F2 X, X2 F, - F2 

0.6 1/12 - 0/8 = 1/12 3.0 3.0 9/12 - 3/8 = 3/8 
1,2 2/12 - 0/8 = 2/12 3.1 9/12 - 4/8 = 2/8 
1.6 3/12 - 0/8 = 3/12 3.2 3.2 
1,7 3.2 10/12 - 6/8 = 1/12 
1.7 5/12 - 0/8 = 5/12 3.5 11/12 - 6/8 = 2/12 
2.1 2.1 6/12 - 1/8 = 3/8 3.8 1 - 6/8 = 2/8 

2.3 6/12 - 2/8 = 2/8 4.6 1 - 7/8 = 1/8 
2.8 7/12 - 2/8 = 1/8 7.2 1 - 1 =0 
2,9 8/12 - 2/8 = 5/12 

B = 5/12< 7/12 = Doos: 
H 0 is retained 
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For the two sided test at the 5 % level Ho is rejected if [) > Dnt;n2;O,05;twosided' 

Some values of this D from Massey (1952) for small sample sizes are given 
below. More values give Kim (1969) and nearly all books on non parametric 
statistics. 

Dn ,; n 2 ;O,05two sided 

n 2 n 1 °0,05 n 2 n 1 °0.05 n 2 n 1 °0.05 

6 7 29/42 7 8 5/8 8 9 5/8 
8 2/3 9 40/63 10 23/40 
9 2/3 10 43/70 12 7/12 

10 19/30 14 4/7 16 9/16 

9 10 26/45 10 15 1/2 12 15 1/2 
12 5/9 20 1/2 16 23/48 
15 8/15 15 20 13/30 18 17/36 
18 1/2 16 20 17/40 20 7/15 
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The standard techniques of statistics are given in the following table: they 
are employed in testing e.g.: 

1. The randomness of a sequence of data: run test, phase test of Wallis and 
Moore, trend test of Cox and Stuart, mean square successive difference 

2. Distribution type, the agreement of an empirical distribution with a theo
retical one so-called fit tests: the x2-test, the Kolmogoroff-Smirnoff test, 
and especially the tests for 
(a) log-normal distribution: logarithmic probability chart; 
(b) normal distribution: probability chart, Lilliefors test, A and b2 test 

for departure from normality; 
(c) simple and compound Poisson distribution: Poisson probability 

paper (or Thorndike nomogram). 

3. Equivalence of two or more independent populations: 
(a) Dispersion of two or several populations on the basis of two or several 

independent samples: Siegel-Tukey test, Pillai-Buenaventura test, 
F -test or Levene test, Cochran test, Hartley test, Bartlett test; 

(b) Central tendency: median or mean of two (or several) populations on 
the basis of two (or several) independent samples: Median test, 
Mosteller test, Tukey test; U-test of Wilcoxon, Mann·, and Whitney; 
Lord test, t-test and extended median tests, H-test of Kruskal and 
Wallis, Link-Wallace test, Nemenyi comparisons, analysis of 
variance, Scheffe test, Student-Newman-Keuls test. 

4. Equivalence of two or more correlated populations: Sign tests, maximum 
test, Wilcoxon test, t-test or Q-test, Friedman test, Wilcoxon-Wilcox 
comparisons, analysis of variance. 

5. Independence or cJependence of two characteristics: 
(a) Fourfold and other two way tables: Fisher test, x2-tests with 

McNemar test, G-test, 2I-test, coefficients of contingency; 
(b) Ranks or data sequences: quadrant correlation, corner test, Spearman 

rank correlation, product-moment correlation, linear regression. 
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