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In honor of Dilip B. Madan on the occasion of his 60th birthday



ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with sig-
nificant developments in harmonic analysis, ranging from abstract harmonic
analysis to basic applications. The title of the series reflects the importance
of applications and numerical implementation, but richness and relevance of
applications and implementation depend fundamentally on the structure and
depth of theoretical underpinnings. Thus, from our point of view, the inter-
leaving of theory and applications and their creative symbiotic evolution is
axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by
means of creative cross-fertilization with diverse areas. The intricate and fun-
damental relationship between harmonic analysis and fields such as signal
processing, partial differential equations (PDEs), and image processing is re-
flected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such
as wavelet theory, Banach algebras, classical Fourier analysis, time-frequency
analysis, and fractal geometry, as well as the diverse topics that impinge on
them.

For example, wavelet theory can be considered an appropriate tool to
deal with some basic problems in digital signal processing, speech and image
processing, geophysics, pattern recognition, biomedical engineering, and tur-
bulence. These areas implement the latest technology from sampling methods
on surfaces to fast algorithms and computer vision methods. The underlying
mathematics of wavelet theory depends not only on classical Fourier analysis,
but also on ideas from abstract harmonic analysis, including von Neumann
algebras and the affine group. This leads to a study of the Heisenberg group
and its relationship to Gabor systems, and of the metaplectic group for a
meaningful interaction of signal decomposition methods. The unifying influ-
ence of wavelet theory in the aforementioned topics illustrates the justification
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for providing a means for centralizing and disseminating information from the
broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a
host of issues demands.

Along with our commitment to publish mathematically significant works at
the frontiers of harmonic analysis, we have a comparably strong commitment
to publish major advances in the following applicable topics in which harmonic
analysis plays a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory

Fast algorithms Spectral estimation
Gabor theory and applications Speech processing

Image processing Time-frequency and
Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the
history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important prob-
lems in mathematics and the sciences. Historically, Fourier series were devel-
oped in the analysis of some of the classical PDEs of mathematical physics;
these series were used to solve such equations. In order to understand Fourier
series and the kinds of solutions they could represent, some of the most basic
notions of analysis were defined, e.g., the concept of “function.” Since the
coefficients of Fourier series are integrals, it is no surprise that Riemann inte-
grals were conceived to deal with uniqueness properties of trigonometric series.
Cantor’s set theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenom-
ena, such as sound waves, can be described in terms of elementary harmonics.
There are two aspects of this problem: first, to find, or even define properly,
the harmonics or spectrum of a given phenomenon, e.g., the spectroscopy
problem in optics; second, to determine which phenomena can be constructed
from given classes of harmonics, as done, for example, by the mechanical syn-
thesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in
engineering, mathematics, and the sciences. For example, Wiener’s Tauberian
theorem in Fourier analysis not only characterizes the behavior of the prime
numbers, but also provides the proper notion of spectrum for phenomena such
as white light; this latter process leads to the Fourier analysis associated with
correlation functions in filtering and prediction problems, and these problems,
in turn, deal naturally with Hardy spaces in the theory of complex variables.
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Nowadays, some of the theory of PDEs has given way to the study of
Fourier integral operators. Problems in antenna theory are studied in terms
of unimodular trigonometric polynomials. Applications of Fourier analysis
abound in signal processing, whether with the fast Fourier transform (FFT),
or filter design, or the adaptive modeling inherent in time-frequency-scale
methods such as wavelet theory. The coherent states of mathematical physics
are translated and modulated Fourier transforms, and these are used, in con-
junction with the uncertainty principle, for dealing with signal reconstruction
in communications theory. We are back to the raison d’être of the ANHA
series!

John J. Benedetto
Series Editor

University of Maryland
College Park



Preface

The “Mathematical Finance Conference in Honor of the 60th Birthday of
Dilip B. Madan” was held at the Norbert Wiener Center of the University
of Maryland, College Park, from September 29 – October 1, 2006, and this
volume is a Festschrift in honor of Dilip that includes articles from most of the
conference’s speakers. Among his former students contributing to this volume
are Ju-Yi Yen as one of the co-editors, along with Ali Hirsa and Xing Jin as
co-authors of three of the articles.

Dilip Balkrishna Madan was born on December 12, 1946, in Washington,
DC, but was raised in Bombay, India, and received his bachelor’s degree in
Commerce at the University of Bombay. He received two Ph.D.s at the Uni-
versity of Maryland, one in economics and the other in pure mathematics.
What is all the more amazing is that prior to entering graduate school he had
never had a formal university-level mathematics course! The first section of
the book summarizes Dilip’s career highlights, including distinguished awards
and editorial appointments, followed by his list of publications.

The technical contributions in the book are divided into three parts. The
first part deals with stochastic processes used in mathematical finance, pri-
marily the Lévy processes most associated with Dilip, who has been a fervent
advocate of this class of processes for addressing the well-known flaws of geo-
metric Brownian motion for asset price modeling. The primary focus is on the
Variance-Gamma (VG) process that Dilip and Eugene Seneta introduced to
the finance community, and the lead article provides an historical review from
the unique vantage point of Dilip’s co-author, starting from the initiation of
the collaboration at the University of Sydney. Techniques for simulating the
Variance-Gamma process are surveyed in the article by Michael Fu, Dilip’s
longtime colleague at Maryland, moving from a review of basic Monte Carlo
simulation for the VG process to more advanced topics in variation reduction
and efficient estimation of the “Greeks” such as the option delta. The next
two pieces by Marc Yor, a longtime close collaborator and the keynote speaker
at the birthday conference, provide some mathematical properties and iden-
tities for gamma processes and beta and gamma random variables. The final
article in the first part of the volume, written by frequent collaborator Robert
Elliott and his co-author John van der Hoek, reviews the theory of fractional
Brownian motion in the white noise framework and provides a new approach
for deriving the associated Itô-type stochastic calculus formulas.
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The second part of the volume treats various aspects of mathematical fi-
nance related to asset pricing and the valuation and hedging of derivatives.
The article by Bob Jarrow, a longtime collaborator and colleague of Dilip in
the mathematical finance community, provides a tutorial on zero volatility
spreads and option adjusted spreads for fixed income securities – specifically
bonds with embedded options – using the framework of the Heath-Jarrow-
Morton model for the term structure of interest rates, and highlights the
characteristics of zero volatility spreads capturing both embedded options and
mispricings due to model or market errors, whereas option adjusted spreads
measure only the mispricings. The phenomenon of market bubbles is addressed
in the piece by Bob Jarrow, Phillip Protter, and Kazuhiro Shimbo, who pro-
vide new results on characterizing asset price bubbles in terms of their martin-
gale properties under the standard no-arbitrage complete market framework.
General equilibrium asset pricing models in incomplete markets that result
from taxation and transaction costs are treated in the article by Xing Jin –
who received his Ph.D. from Maryland’s Business School co-supervised by
Dilip – and Frank Milne – one of Dilip’s early collaborators on the VG model.
Recent work on applying Lévy processes to interest rate modeling, with a
focus on real-world calibration issues, is reviewed in the article by Wolfgang
Kluge and Ernst Eberlein, who nominated Dilip for the prestigious Humboldt
Research Award in Mathematics. The next two articles, both co-authored by
Ali Hirsa, who received his Ph.D. from the math department at Maryland co-
supervised by Dilip, focus on derivatives pricing; the sole article in the volume
on which Dilip is a co-author, with Massoud Heidari as the other co-author,
prices swaptions using the fast Fourier transform under an affine term struc-
ture of interest rates incorporating stochastic volatility, whereas the article
co-authored by Peter Carr – another of Dilip’s most frequent collaborators –
derives forward partial integro-differential equations for pricing knock-out call
options when the underlying asset price follows a jump-diffusion model. The
final article in the second part of the volume is by Hélyette Geman, Dilip’s
longtime collaborator from France who was responsible for introducing him
to Marc Yor, and she treats energy commodity price modeling using real his-
torical data, testing the hypothesis of mean reversion for oil and natural gas
prices.

The third part of the volume includes several contributions in one of the
most rapidly growing fields in mathematical finance and financial engineering:
credit risk. A new class of reduced-form credit risk models that associates
default events directly with market information processes driving cash flows is
introduced in the piece by Dorje Brody, Lane Hughston, and Andrea Macrina.
A generic one-factor Lévy model for pricing collateralized debt obligations
that unifies a number of recently proposed one-factor models is presented in
the article by Hansjörg Albrecher, Sophie Ladoucette, and Wim Schoutens.
An intensity-based default model that prices credit derivatives using utility
functions rather than arbitrage-free measures is proposed in the article by
Ronnie Sircar and Thaleia Zariphopoulou. Also using the utility-based pricing
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approach is the final article in the volume by Marek Musiela and Thaleia
Zariphopoulou, and they address the integrated portfolio management optimal
investment problem in incomplete markets stemming from stochastic factors
in the underlying risky securities.

Besides being a distinguished researcher, Dilip is a dear friend, an esteemed
colleague, and a caring mentor and teacher. During his professional career,
Dilip was one of the early pioneers in mathematical finance, so it is only
fitting that the title of this Festschrift documents his past and continuing love
for the field that he helped develop.

Michael Fu
Bob Jarrow
Ju-Yi Yen

Robert Elliott
December 2006
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Conference poster (designed by Jonathan Sears).



Preface xv

Photo Highlights (September 29, 2006)

Dilip delivering his lecture.

Dilip with many of his Ph.D. students.
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Norbert Wiener Center director John Benedetto and Robert Elliott.

Left to right: CGMY (Carr, Geman, Madan, Yor).
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VG inventors (Dilip and Eugene Seneta) with the Madan family.

Dilip’s wife Vimla cutting the birthday cake.



Career Highlights and List of Publications

Dilip B. Madan

Robert H. Smith School of Business
Department of Finance
University of Maryland
College Park, MD 20742, USA
dmadan@rhsmith.umd.edu

Career Highlights

1971 Ph.D. Economics, University of Maryland
1975 Ph.D. Mathematics, University of Maryland

2006 recipient of Humboldt Research Award in Mathematics
President of Bachelier Finance Society 2002–2003
Managing Editor of Mathematic Finance, Review of Derivatives Research
Series Editor on Financial Mathematics for CRC, Chapman and Hall
Associate Editor for Quantitative Finance, Journal of Credit Risk

1971–1975: Assistant Professor of Economics, University of Maryland
1976–1979: Lecturer in Economic Statistics, University of Sydney
1980–1988: Senior Lecturer in Econometrics, University of Sydney
1981–1982: Acting Head, Department of Econometrics, Sydney
1989–1992: Assistant Professor of Finance, University of Maryland
1992–1997: Associate Professor of Finance, University of Maryland
1997–present: Professor of Finance, University of Maryland

Visiting Positions:
La Trobe University, Cambridge University (Isaac Newton Institute),
Cornell University, University Paris,VI, University of Paris IX at Dauphine

Consulting:
Morgan Stanley, Bloomberg, Wachovia Securities, Caspian Capital, FDIC
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Publications (as of December 2006 (60th birthday))

1. The relevance of a probabilistic form of invertibility. Biometrika, 67(3):704–
5, 1980 (with G. Babich).

2. Monotone and 1-1 sets. Journal of the Australian Mathematical Society,
Series A, 33:62–75, 1982 (with R.W. Robinson).

3. Resurrecting the discounted cash equivalent flow. Abacus, 18-1:83–90,
1982.

4. Differentiating a determinant. The American Statistician, 36(3):178–179,
1982.

5. Measures of risk aversion with many commodities. Economics Letters,
11:93–100, 1983.

6. Inconsistent theories as scientific objectives. Journal of the Philosophy of
Science, 50(3):453–470, 1983.

7. Testing for random pairing. Journal of the American Statistical Associa-
tion, 78(382):332–336, 1983 (with Piet de Jong and Malcolm Greig).

8. Compound Poisson models for economic variable movements. Sankhya
Series B, 46(2):174–187, 1984 (with E. Seneta).

9. The measurement of capital utilization rates. Communications in Statis-
tics: Theory and Methods, A14(6):1301–1314, 1985.

10. Project evaluations and accounting income forecasts. Abacus, 21(2):197–
202, 1985.

11. Utility correlations in probabilistic choice modeling. Economics Letters,
20:241–245, 1986.

12. Mode choice for urban travelers in Sydney. Proceedings of the 13th ARRB
and 5th REAAA Conference, 13(8):52–62, 1986 (with R. Groenhout and
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national Statistical Review, 55(2):153–161, 1987 (with E. Seneta).
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tion. Journal of the Royal Statistical Society, Series B, 49(2):163–169,
1987 (with E. Seneta).

15. Modeling Sydney work trip travel mode choices. Journal of Transportation
Economics and Policy, XXI(2):135–150, 1987 (with R. Groenhout).

16. Optimal duration and speed in the long run. Review of Economic Studies,
54a(4a):695–700, 1987.

17. Decision theory with complex uncertainties. Synthese, 75:25–44, 1988
(with J.C. Owings).

18. Risk measurement in semimartingale models with multiple consumption
goods. Journal of Economic Theory, 44(2):398–412, 1988.

19. Stochastic stability in a rational expectations model of a small open econ-
omy. Economica, 56(221):97–108, 1989 (with E. Kiernan).

20. Dynamic factor demands with some immediately productive quasi fixed
factors. Journal of Econometrics, 42:275–283, 1989 (with I. Prucha).
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21. Characteristic function estimation using maximum likelihood on trans-
formed variables. Journal of the Royal Statistical Society, Series B,
51(2):281–285, 1989 (with E. Seneta).

22. The multinomial option pricing model and its Brownian and Poisson lim-
its. Review of Financial Studies, 2(2):251–265, 1989 (with F. Milne and
H. Shefrin).
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of Economics, 51(1):101–107, 1989 (with E. Seneta).
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Business, 63(4):511–52,1990 (with E. Seneta).
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1(4):39–56, 1991 (with F. Milne).
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nomics and Statistics, 75(4):695–699, 1993 (with R.O. Edmister).
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sensitivities are time varying. Mathematical Finance, 3(2):85–99, 1993
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Mathematical Finance, 4(3):223–245, 1994 (with F. Milne).

31. Option pricing using the term structure of interest rates to hedge system-
atic discontinuities in asset returns. Mathematical Finance, 5(4):311–336,
1995 (with R.A. Jarrow).

32. Approaches to the solution of stochastic intertemporal consumption mod-
els. Australian Economic Papers, 34:86–103, 1995 (with R.J. Cooper and
K. McLaren).

33. Pricing via multiplicative price decomposition. Journal of Financial Engi-
neering, 4:247–262, 1995 (with R.J. Elliott, W. Hunter, and P. Ekkehard
Kopp).

34. Filtering derivative security valuations from market prices. Mathematics of
Derivative Securities, eds. M.A.H. Dempster and S.R. Pliska, Cambridge
University Press, 1997 (with R.J. Elliott and C. Lahaie)

35. Is mean-variance theory vacuous: Or was beta stillborn. European Finance
Review, 1:15–30, 1997 (with R.A. Jarrow).

36. Default risk. Statistics in Finance, eds. D. Hand and S.D. Jacka, Arnold
Applications in Statistics, 239–260, 1998.

37. Pricing the risks of default. Review of Derivatives Research, 2:121–160,
1998 (with H. Unal).

38. The discrete time equivalent martingale measure. Mathematical Finance,
8(2):127–152, 1998 (with R.J. Elliott).

39. The variance gamma process and option pricing. European Finance Re-
view, 2:79–105, 1998 (with P. Carr and E. Chang).
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40. Towards a theory of volatility trading. Volatility, ed. R.A. Jarrow, Risk
Books, 417–427, 1998 (with P. Carr).

41. Valuing and hedging contingent claims on semimartingales. Finance and
Stochastics, 3:111–134, 1999 (with R.A. Jarrow).
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51. Optimal investment in derivative securities. Finance and Stochastics,
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97. Multiple prior asset pricing models, 2003 (with R.J. Elliott).
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The Early Years of the Variance-Gamma
Process

Eugene Seneta

School of Mathematics and Statistics FO7
University of Sydney
Sydney, New South Wales 2006, Australia
eseneta@maths.usyd.edu.au

Summary. Dilip Madan and I worked on stochastic process models with stationary
independent increments for the movement of log-prices at the University of Sydney
in the period 1980–1990, and completed the 1990 paper [21] while respectively at the
University of Maryland and the University of Virginia. The (symmetric) Variance-
Gamma (VG) distribution for log-price increments and the VG stochastic process
first appear in an Econometrics Discussion Paper in 1985 and two journal papers
of 1987. The theme of the pre-1990 papers is estimation of parameters of log-price
increment distributions that have real simple closed-form characteristic function,
using this characteristic function directly on simulated data and Sydney Stock Ex-
change data. The present paper reviews the evolution of this theme, leading to the
definitive theoretical study of the symmetric VG process in the 1990 paper.

Key words: Log-price increments; independent stationary increments; Brownian
motion; characteristic function estimation; normal law; symmetric stable law; com-
pound Poisson; Variance-Gamma; Praetz t .

1 Qualitative History of the Collaboration

Our collaboration began shortly after my arrival at the University of Sydney in
June 1979, after a long spell (from 1965) at the Australian National University,
Canberra. After arrival I was in the Department of Mathematical Statistics,
and Dilip a young lecturer in the Department of Economic Statistics (later
renamed the Department of Econometrics). These two sister departments,
neither of which now exists as a distinct entity, were in different Faculties
(Colleges) and in buildings separated by City Road, which divides the main
campus.

Having heard that I was an applied probabilist with focus on stochastic
processes, and wanting someone to talk with on such topics, he simply walked
into my office one day, and our collaboration began. We used to meet about
once a week in my office in the Carslaw Building at around midday, and our
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meetings were accompanied by lunch and a long walk around the campus.
This routine at Sydney continued until he left the University in 1988 for the
University of Maryland at College Park, his alma mater. I remember telling
him on several of these walks that Sydney was too small a pond for his talents.

I was to be on study leave and teaching stochastic processes and time
series analysis at the Mathematics Department of the University of Virginia,
Charlottesville, during the 1988–1989 academic year. This came about through
the efforts of Steve Evans, whom Dilip and I had taught in a joint course,
partly on the Poisson process and its variants, at the University of Sydney.
The collaboration on what became the foundation paper on the Variance-
Gamma (VG) process (sometimes now called the Madan–Seneta process) and
distribution [21] was thus able to continue, through several of my visits to his
new home. The VG process had appeared in minor roles in two earlier joint
papers [16] and [18].

There was a last-to-be published joint paper from the 1988 and 1989 years,
[22], which, however, did not have the same econometric theme as all the
others, being related to my interest in the theory of nonnegative matrices.

After 1989 there was sporadic contact, mainly by e-mail, between Dilip
and myself, some of which is mentioned in the sequel, until I became aware of
work by another long-term friend and colleague, Chris Heyde, who divides his
time between the Australian National University and Columbia University.
His seminal paper [8] was about to appear when he presented his work at a
seminar at Sydney University in March 1999. Among his various themes, he
advocates the t distribution for returns (increments in log-price) for financial
asset movements. This idea, as shown in the sequel, had been one of the
motivations for the work on the VG by Dilip and myself, on account of a 1972
paper of Praetz [25].

I was to spend the fall semester of the 1999–2000 academic year again at
the University of Virginia, where Wake (T.W.) Epps asked me to be present
at the thesis defence of one of his students, and surprised me by saying to
one of the other committee members that as one of the creators of the VG
process, I “was there to defend my turf.” Wake had learned about the VG
process during my 1988–1989 sojourn, and a footnote in [21] acknowledges his
help, and that of Steve Evans amongst others. Wake’s book [2] was the first
to give prominence to VG structure. More recently, the books of Schoutens
[27] and Applebaum [1] give it exposure.

At about this time I had also had several e-mail inquiries from outside
Australia about the fitting of the VG model from financial data, and there
was demand for supervision of mathematical statistics students at Sydney
University on financial topics. I was supervising one student by early 2002, so
I asked Dilip for some offprints of his VG work since our collaboration, and
then turned to him by e-mail about the problem of statistical estimation of
parameters of the VG. I still have his response of May 20, 2002, generously
telling me something of what he had been doing on this.
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My personal VG story restarts with the paper [28], produced for a
Festschrift to celebrate Chris Heyde’s 65th birthday. In this I tried to syn-
thesize the various ideas of Dilip and his colleagues on the VG process with
those of Chris and his students on the t process. The themes are: subordinated
Brownian motion, skewness of the distribution of returns, returns over unit
time forming a strictly stationary time series, statistical estimation, long-range
dependence and self-similarity, and duality between the VG and t processes.
Some of the joint work with M.Sc. dissertation graduate students [30; 5; 6]
stemming from that paper has been, or is about to be, published.

I now pass on to the history of the technical development of my collabo-
ration with Dilip.

2 The First Discussion Paper

The classical model (Bachelier) in continuous time t ≥ 0 for movement of
prices {P (t)}, modified to allow for drift, is

Z(t) = log{P (t)/P (0)} = μt+ θ1/2b(t), (1)

where {b(t)} is standard Brownian motion (the Wiener process); μ is a real
number, the drift parameter; and θ is a positive scale constant, the diffusion
parameter. Thus the process {Z(t)} has stationary independent increments
in continuous time, which over unit time are:

X(t) = log{P (t)/P (t− 1)} ∼ N (μ, θ), (2)

where N (μ, θ) represents the normal (Gaussian) distribution with mean μ and
variance θ. When we began our collaboration, it had been observed for some
time that although the assumed common distribution of the {X(t)} given by
the left-hand side of (2) for historical data indeed seemed symmetric about
some mean μ, the tails of the distribution were heavier than the normal. The
assumption of independently and identically distributed (i.i.d.) increments
was pervasive, making the process {Z(t), t = 1, 2, . . .} a random walk.

Having made these points, our first working paper [12], which has never
been published, retained all the assumptions of the classical Bachelier model,
with drift parameter given by μ = r − θ/2. This arose out of a model in con-
tinuous time, in which the instantaneous rate of return on a stock is assumed
normally distributed, with mean r and variance θ. Consequently, {e−rtP (t)} is
seen to be a martingale, consistent with option pricing measure for European
options under the Merton–Black–Scholes assumptions, where r is the interest
rate. The abstract to [12] reads:

Formulae are developed for computing the expected profitability of
market strategies that involve the purchase or sale of a stock on the
same day, with the transaction to be reversed when the price reaches
either of two prespecified limits or a fixed time has elapsed.
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This paper already displayed Dilip’s computational skills (not to mention
his analytical skills) by including many tables with the headings: Probabilities
of hitting the upper [resp., lower] barrier. The profit rate r is characteristically
taken as 0.002.

Dilip had had a number of items presented in the Economic Statistics
Papers series before number 45 appeared in February 1981. These were of
both individual and joint authorship. Several, from their titles, seem of a
philosophical nature, for example:

• No. 34. D. Madan. Economics: Its Questions and Answers
• No. 37. D. Madan. A New View of Science or at Least Social Science
• No. 38. D. Madan. An Alternative to Econometrics in Economic Data

Analyses

There were also technical papers foreshadowing things to come on his return
to the University of Maryland, for example:

• No. 23. P. de Jong and D. Madan. The Fast Fourier Transform in Applied
Spectral Inference

Dilip was clearly interested in, and very capable in, an extraordinarily wide
range of topics. Our collaboration seems to have marked a narrowing of focus,
and continued production on more specific themes. The incoming Head of the
Department of Econometrics, Professor Alan Woodland, also encouraged him
in this.

3 The Normal Compound Poisson (NCP) Process

Our first published paper [14], based on the the Economics Discussion Paper
[13] dated February 1982, focuses on modelling the second differences in log-
price: log{P (t)/P (0)} by the first difference of the continuous-time stochastic
process {Z(t), t ≥ 0}, where

Z(t) = μt +
N(t)∑

i=1

ξi + θ1/2b(t). (3)

Here {N(t)} is the ordinary Poisson process with arrival rate λ, and {b(t)}
is standard Brownian motion (the Wiener process), μ is a real constant, and
θ > 0 is a scale parameter. The ξi, i = 1, 2, . . . , form a sequence of i.i.d.
N (0, σ2) rv’s, probabilistically independent of the process {b(t)}. The process
{Z(t), t ≥ 0}, called in [14] the Normal Compound Poisson (NCP) process,
is therefore a process with independent stationary increments, whose distri-
bution (the NCP distribution) over unit time interval, is given by:

X |V ∼ N (μ, θ + σ2V ),whereV ∼ Poisson(λ). (4)
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Hence the cumulative distribution function (c.d.f.) and the characteristic func-
tion (c.f.) of X are given by

F (x) =
∞∑

n=0

λne−λ

n!
Φ

(
x− μ

θ + σ2n

)
, (5)

φX(u) = exp
(
iμu− u2θ/2 + λ(e−u

2σ2/2 − 1)
)
. (6)

Here Φ(·) is the c.d.f. of a standard normal distribution.
The distribution of X is thus a normal with mixing on the variance, is

symmetric about μ, and has the same form irrespective of the size of time
increment t. It is long-tailed relative to the normal in the sense that its kurtosis
value

3 +
3λσ4

(θ + σ2λ)2

exceeds that of the normal (whose kurtosis value is 3). When the NCP distri-
bution is symmetrized about the origin by putting μ = 0, it has a simple real
characteristic function of closed form.

The NCP process from the structure (3) clearly has jump components
(the ξis are regarded as “shocks” arriving at Poisson rate), and through the
Brownian process add-on θ1/2b(t) in (3), has obviously a Gaussian component.
The NCP distribution and NCP process, and the above formulae, are due to
Press [26]; in fact, our NCP structure is a simplification of his model (where
ξi ∼ N (ν, σ2)) to symmetry by taking ν = 0. Note that the nonsimplified
model of Press is normal with mixing on both the mean and variance:

X |V ∼ N (μ + νV, θ + σ2V ),

where as before V ∼ Poisson(λ). Normal variance–mean mixture models have
been studied more recently; see [30] for some cases and earlier references.

The c.f.s of the symmetric stable laws,

eiuμ−γ|u|
β

, γ > 0, 0 < β < 2, (7)

where γ is a scale parameter, were also fitted in this way, as was the c.f. of
the normal (the case β = 2). The distributions fitted were thus symmetric
about a central point μ, and the c.f.s, apart from allowing for the shift to
μ, were consequently real-valued, and of simple closed form. Like the NCP,
the process of independent stable increments has both continuous and jump
components.

The continuous-time strictly stationary process of i.i.d. increments with
stable law also has the advantage of having laws of the same form for an
increment over a time interval of any length, and heavy tails, but such laws
have infinite variance.

The data for the statistical analysis consisted of five series of share prices
and six series on economic variables. The share prices taken were daily last
prices on the Sydney Stock Exchange.
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Estimation in [14] was undertaken by Press’s minimum distance method,
which amounts to minimizing the L1-norm of the difference of the empirical
and actual log c.f. evaluated at a set of arguments u1, u2, . . . , un. Each fitted
c.f. was then inverted using the fast Fourier transform, and comparison made
between the fitted and empirical c.f.s, using Kolmogorov’s test. A variant of
this estimation procedure was to be investigated in the next two papers [16],
[18]. This is anticipated in [14] by mentioning the paper [4].

It was remarked that the estimate of θ for the NCP was generally small,
thus arguing for a purely compound Poisson process, and against the stable
laws.

The VG distribution and process were yet to make their appearance. The
VG was to share equal standing with the NCP in the next two papers [16] and
[18]. An important difference between the VG and NCP models, however, is
that the VG turns out to be a pure jump process, and the limit of compound
Poisson processes.

The paper [14] displays to a remarkable degree Dilip’s knowledge and
proficiency in statistical computing methodology, and his to-be-ongoing focus
on the c.f.

4 The Praetz t and VG Distributions

The symmetric VG distribution (and corresponding VG process) first occur
in our writings in [15] as the fourth of five parametric classes of distribu-
tion with real c.f. of simple closed form. The first three of these, including the
origin-centered NCP, had been considered in [14]. The fifth parametric class is
related to the NCP but was constructed to generate continuous sample paths.
A revised version of [15] was eventually published, two years later, in the Inter-
national Statistical Review [ISR] [16] after trials and tribulations with another
journal. It was received by ISR in May 1986 and revised November 1986.

Because a random variable X with real c.f. is symmetrically distributed
about zero, c.f. E[eiuX ] = E[cosuX ], so for a set of i.i.d. observations
X1, X2, . . . , Xn, with characteristic function φ(u;α), where α denotes an m-
dimensional vector of parameters, the empirical c.f. is

φ̂(u) =
∑n
i=1cos(uXi)

n
.

Selecting a set of p values u1, u2, . . . , up of u for p ≥ m, construct the p-
dimensional vector z(α) = {zj(α)} where zj(α) =

√
n(φ̂(uj) − φ(uj ;α)). The

vector z(α) is asymptotically normally distributed with covariance matrix
Σ(α) = {σjk(α)}, where the individual covariances may be expressed explic-
itly in terms of φ(·;α) evaluated at various combinations of the uj , uk. In
the simulation study, specific true values α∗ in the five distributions studied
were used to construct Σ(α∗), and then estimates of α were obtained by min-
imizing zT (α)Σ+z(α), where Σ+ is a certain generalized inverse of Σ(α∗).
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There is obviously some motivation from the estimation procedure of Press
[26], inasmuch as what is being minimized is a generalized distance, but the
main motivation was the work of Feuerverger and McDunnough [4]. The es-
timation was successful for just the first two classes, the normal (m = 1), the
symmetric stable (m = 2), and the fourth class, the VG (with m = 2). The
remaining classes, including the NCP, each had three parameters.

On the whole, the paper motivated further consideration of more effective
c.f. estimation methods.

But the main feature of this paper, as regards history, was the appearance
of the c.f. of the symmetric VG and the associated stochastic process. This
introduction of the VG material is expressed, verbatim, as follows in both [15]
and [16]:

The fourth parametric class is motivated by the derivation of the
t distribution proposed by Praetz (1972). Praetz took the variance of
the normal to be uncertain with reciprocal of the variance distributed
as a gamma variable. The characteristic function of this distribution
is not known in closed form, nor is it known what continuous time
stochastic process gives rise to such a period-one distribution. We
will, in contrast, take the variance itself to be distributed as a gamma
variable. Letting Y (t) be the continuous time process of independent
gamma increments with mean mτ and variance vτ over nonoverlap-
ping increments of length τ and X(t) = b(Y (t)), where b is again
standard Brownian motion, yields a continuous time stochastic pro-
cess X(t) with X(1) being a normal variable with a gamma variance.
Furthermore, the characteristic function of X(1) is easily evaluated
by conditioning on Y (1) as

φ4(u;m, v) = [(m/v)/(m/v + u2/2)]m
2/v.

Thus the distribution of an increment over unit time is specified by mixing
a normal variable on the variance:

X |V ∼ N (0, V ), (8)

where V ∼ Γ (γ, c). By this notation we mean that the probability density
function (p.d.f.) of V is

gV (w) = cγwγ−1e−cw/Γ (γ), w > 0; 0 otherwise. (9)

Praetz’s paper [25], published in 1972 and in the Journal of Business as was
that of Press [26], had come to our attention sometime after February 1982, the
date of [13]. He focuses on the issue that although evidence of independence of
returns (log-price increments of shares) had been widely accepted, the actual
distribution of returns seemed to be highly nonnormal.

He describes this distribution as typically symmetric, with fat tails, a high
peaked center, and hollow in between, and proposes a general mixing distri-
bution on the variance of the normal.
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Then he settles on the inverse gamma distribution for the variance V ,
described by the p.d.f.:

gI(w) = σ2m
0 (m− 1)mw−(m+1)e(m−1)σ2

0/w/Γ (m), w > 0; 0 otherwise, (10)

so that
E[V ] = σ2

0 , Var V = σ4
0/(m− 2).

The reason for the choice is doubtless because this p.d.f. for V produces for
the p.d.f. of X :

fT (x; ν, δ) =
Γ (ν+1

2 )
δ
√
πΓ (ν2 )

· 1
(1 + (xδ )

2)(ν+1)/2
, (11)

where −∞ < x < ∞, ν = 2m, δ = σ0(ν − 2)1/2. This expression (11) corre-
sponds to (6) in [25], which is misprinted there. Equation (11) is the p.d.f. of
a t distribution with scaling parameter δ. The classical form Student-t distri-
bution with n degrees of freedom has δ =

√
n, with n a positive integer.

An appealing feature of the t p.d.f. is that it has at least fatter tails than
the normal, actually of Pareto (power-law) type, and that it has a well-known
closed form. Whether it is sufficiently peaked at the origin and hollow in the
intermediate range, however, is still a matter of debate [6].

The simple form of the p.d.f. (11) makes estimation from i.i.d. readings
straightforward. Praetz notes that there had been difficulties in estimating the
parameters of the symmetric stable laws (for which the p.d.f. was not known,
although the form of c.f. is simple, (7)), and the parameters of the compound
events distribution of Press [26].

In his Section 4, Praetz fits the scaled t, the normal, the compound events
distribution, and the symmetric stable laws (he calls these stable Paretian) to
17 share-price index series from weekly observations from the Sydney Stock
Exchange for the nine years 1958–1966: a total of 462 observations. He says of
an earlier paper of his [24] that none of the series gave normally distributed
increments.

Using a χ2 statistic for goodness of fit, he concludes that the scaled t
distribution gives superior fit in all cases. The compound events model causes
larger χ2 values through inability as in the past to provide suitable estimates
of the parameters.

He also makes the interesting comparison that the symmetric stable laws
(c.f.s given by (7) with 1 < β < 2) used by Mandelbrot to represent share
price changes are intermediate between a Cauchy and a normal distribution
(the respective cases with β = 1, 2), and that the scaled t distribution also
lies between these two extremes (resp., ν = 1, ν → ∞).

These various issues served as stimulus for the creation of the VG distri-
bution and empirical characteristic function estimation methods in [15] and
[16]. Praetz [25] had shifted the argument into p.d.f. domain, whereas in [14]
we had stayed with simple closed-form c.f.s, and persisted with this.
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My recollection is that Dilip began by attempting to find the c.f. for mix-
ing on the variance V as in (8), and thus integrating out the conditional
expectation expression:

E
[
E[eiXu|V ]

]
, (12)

taking V to have the p.d.f. of an inverse gamma distribution, and trying to
find the c.f. corresponding to t. I think that when I looked at the calculation,
he had in fact calculated the c.f. of X , where

X |V ∼ N (0, 1/V ),

so that in effect
X |V ∼ N (0, V ),

where V has an ordinary gamma distribution. There was in any case some
interaction at this point, and the result was the beautifully simple c.f. of the
VG distribution.

At the time, the corresponding c.f. of the t distribution was not known.
It may be interesting to Dilip and other readers if I break in the technical

history of our collaboration to reflect on background concerning Praetz and
myself.

5 The Praetz Confluence

The VG distribution is a direct competitor to the Praetz t, and is in fact dual
to it [28, Section 6]; [7]. Our paper [21] was deliberately published in the same
journal.

Praetz was an Australian econometrician, and focused on Sydney Stock
Exchange data, as did all our collaborative papers on the VG before [21].

Peter David Praetz was born February 7, 1940. His university training
was B.A. (Hons) 1961, M.A. 1963, both at University of Melbourne. His Ph.D
from the University of Adelaide, South Australia, in 1971, was titled A Sta-
tistical Study of Australian Share Prices. From 1966 to 1970 he was Lecturer
then Senior Lecturer in the Faculty of Commerce, University of Adelaide.
For 1971–1975 he was Senior Lecturer, Faculty of Economics and Politics at
Monash University in Melbourne, and in 1975–1989 Associate Professor (this
was equivalent to full Professor in the U.S. system) jointly in the Department
of Econometrics and Operations Research and in the Department of Account-
ing and Finance, Monash University. He took early retirement in 1989 on
account of his health, and died October 6, 1997.

As a young academic at the Australian National University, Canberra,
from the beginning of 1965, and interested primarily in stochastic processes, I
had noticed in the Australian Journal of Statistics the well-documented paper
of Praetz [24] investigating thoroughly the adequacy of various properties of
the simple Brownian model for returns (Bachelier), in particular independence
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of nonoverlapping increments and the tail weight of the common distribution.
Praetz’s address is given as the University of Adelaide. The paper was received
August 20, 1968 and revised December 11, 1968. There are no earlier papers
of Praetz cited in it, although he did have several papers published earlier in
Transactions of the Institute of Actuaries of Australia, so it is likely associated
with work for his Ph.D. dissertation in a somewhat new direction.

In the paper [25] there is a footnote which reads:

Department of Economics, University of Adelaide, Adelaide, South
Australia. I am grateful to Professor J. N. Darroch, who suggested
the possibility of this approach to me.

John N. Darroch is a mathematical statistician who was a Senior Lecturer at
the University of Adelaide’s then-Department of Mathematics, from about Au-
gust 1962 to August 1964. In 1963 I took his courses in Mathematical Statistics
(with Hogg and Craig’s first edition as back-up text), and in Markov chains
(with Kemeny and Snell’s 1960 edition of Finite Markov Chains as back-up
text). These courses largely determined my future research and teaching di-
rections. In 1964 until his departure he supervised my work on absorbing
Markov chains and nonnegative matrices for my M.Sc. dissertation. After his
departure from Adelaide, he spent two years at the University of Michigan,
Ann Arbor, and then returned to Adelaide as Professor and Head of Statistics
at the newly created Flinders University of South Australia. One of his pre-
vailing interests was in contingency tables, and he was on friendly terms with
Professor H. O. Lancaster, another leader in that area who was at the Univer-
sity of Sydney, and at the time editor of the Australian Journal of Statistics,
which Lancaster had founded. It is possible Darroch refereed [24]. In any case,
the contact mentioned by Praetz in 1972 took place on Darroch’s return to
Adelaide. Regrettably in retrospect, I never had any contact with Praetz.

The step in Praetz’s paper for computing the p.d.f. of X , where

X |V ∼ N (μ, V ),

where V has inverse gamma distribution described by (10), with its Bayesian
and decision-theoretic interpretation, leading to a t distribution, which is of
fundamental importance in elementary statistical inference theory and prac-
tice, has strong resonance with my memory of John Darroch’s teaching, and
Hogg and Craig’s book.

John Darroch is now happily retired in Adelaide, still in very good health,
and pursuing interests largely other than in mathematical statistics, not the
least of which are the works of Shakespeare, and just a little in option pricing.
We have kept in touch over the years, and last met in Adelaide in January
of this year (2006). I wrote to him a few weeks later relating to the Praetz
footnote, but his memory of the contact is very vague. But, albeit in an
indirect way through Praetz, he nevertheless influenced the genesis of the VG
distribution.
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6 Chebyshev Polynomial Approximations and
Characteristic Function Estimation

6.1 The Theme

The work leading to [18] (in its first incarnation [17]) overlapped with that
leading to [16]. The paper [18] was received August 1986 and revised December
1986. It had very similar motivation, and very similar introduction, and was
partly a result of our dissatisfaction with the effectiveness of empirical charac-
teristic estimation procedures in [16], and the delays in getting that material
published. The paper [18] cites only [15] as motivation, and focuses again on
the simple c.f. structure of the symmetric stable laws, the VG and NCP, using
the same parametrization for the VG as in [15] and [16]. Much is made of the
point that the VG and NCP distributions for i.i.d. returns are consistent with
an underlying continuous-time stochastic process for log-prices, in contrast to
the Praetz t distribution.

The essential idea is that if one has a random variable with real c.f. φX(u)
of simple closed form, it is possible to express the p.d.f. of a transformed
variable T in terms of φX(u). The transforming function ψ(·) is taken as
a simple bounded periodic function of period 2π, which maps the interval
[−π, π) onto the interval [−b, b), for fixed b. The transformation of the whole
sample space of X to that of T is in general not one-to-one, thus involving
some loss of information. A sample X1, X2, . . . , Xn of i.i.d. random variables
is transformed via

Ti = ψ(ωXi), i = 1, 2, . . . , n,

where ω > 0 is a parameter chosen at will to control the loss of information in
going to the transformed sample. The random variable T = ψ(ωX) is bounded
on the interval (−b/ω, b/ω], and because the original random variable is sym-
metrically distributed about 0 (it has real c.f.), if the function ψ is an even
(or odd) function, the random variable T will be symmetrically distributed
on (−b/ω, b/ω].

Because the random variable T is bounded and its p.d.f. depends on the
same parameters as the distribution of X , if it is explicitly available, these
parameters may be estimated by maximum likelihood procedures from the
transformed observations T1, T2, . . . , Tn.

In Madan and Seneta [18] the choice ψ(v) = cos v, −∞ < v < ∞ is
made, so Ti = cosωXi, i = 1, . . . , n. There is an intimate relation between
trigonometric functions and Chebyshev polynomials, and in fact the p.d.f. of
T is given by

g(t) =
∞∑

n=0

2nφX(nω)qn(t)(π(1 − t2)1/2)−1, (13)

where q0(y) = 1 and qn(y), n ≥ 1, is the nth Chebyshev polynomial. Here
(π(1 − y2)1/2)−1 is the weight function with respect to which the Chebyshev
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polynomials form an orthogonal family. There is a simple recurrence relation
between Chebyshev polynomials by which the successive polynomials may be
calculated. The value ω = 1 was used in [18]. After some simulation investi-
gation, parameters were estimated for daily returns from 19 large company
stocks on the Sydney Stock Exchange, after standardizing the returns to unit
sample mean and unit sample variance, using the symmetric stable law (two
parameters, γ, β); the VG (two parameters, m, v); the NCP (three parame-
ters θ, λ, σ2); and the normal (one parameter, σ2). The χ2 goodness-of-fit test
indicated that the VG and NCP models for returns were superior to the sym-
metric stable law model. The following passage from [17; 18, p.167] verbatim,
indicates that the deeper quantitative structure of the VG stochastic process
in continuous time had already been explored in preparation for [21]:

We observe . . . that the shares with low β’s . . . also have large
estimates for v and this is consistent as high v’s and low β’s generate
long tailedness, the Kurtosis of the v.g. being 3+(3v/m2), . . .. The low
values of θ in the n.c.p. model are suggestive of the most appropriate
model being a pure jump process. The v.g. model can be shown to be a
pure jump process while the process of independent stable increments
has both continuous and jump components. Judging on the basis of the
chi-squared statistics, it would appear that the stable model generally
overstates the longtailedness.

6.2 Variations on the Theme

There was one last Econometric Discussion Paper [19] in our collaboration.
The paper following on from it, [20], was received December 1987, and revised
October 1988. It was thus completed in revised form in the Fall of 1988, when
Dilip was already at Maryland and I at Virginia. It addresses a number of
practical numerical issues relating to the implementation of the procedure of
[18], including the truncation point of the expansion (13) of the p.d.f., and
the choice of ω.

The paper also addresses the possibility of using the simpler transforma-
tion ψ(v) = v, mod 2π; and also problems of parameter estimation by this
method for a nonsymmetrically distributed random variable. Section 4 of [19]
on simulation results was never published. It relates to applying the estimation
procedure to an asymmetric stable law with c.f. of general form; and conse-
quently there are still occasional requests for the Discussion Paper, because
the p.d.f. for the stable case is unavailable.

However, inasmuch as the p.d.f. of the symmetric VG distribution was
explicitly stated in [21], there was no need for estimation methodology using
the c.f. as soon as MATLAB became available because that could handle the
special function that the p.d.f. involves; and likewise for the asymmetric VG
distribution, given later in [10].
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7 The VG paper of 1990

The Journal of Business does not show received/revised dates for [21], but the
original submission, printed on a dot-matrix printer, carries the date February
1988, and I have handwritten notes dated 23 March 1988 relating to things
that need to be addressed in a possible revision.

To give an idea of the evolution to [21], the following presents some of the
flow of the original submission, which begins by taking the distribution of the
return R to be given by

R|V ∼ N (μ, σ2V ),

where V ∼ Γ (γ, c). Taking X = R− μ for the centered return, the c.f. is

φX(u) = [1 + (σ2v/m)(u2/2)]−m
2/v, (14)

where m = γ/c is the mean of the gamma distribution and v = γ/c2 is
its variance. Taking m = E[V ] = 1 to correspond to unit time change in
the gamma process {Y (t)}, t ≥ 0, by which the Brownian motion process is
subordinated to give the VG process {Z(t)}, where

Z(t) = μt+ b(Y (t)), (15)

the c.f. (14) becomes

φX(u) = [1 + (σ2vu2/2)]−1/v. (16)

From the c.f. (13), it is observed that X may be written as

X = Y − Z, (17)

where Y, Z are i.i.d. gamma random variables because (1 + a2u2) = (1 −
iau)(1 + iau). Kullback [9] had investigated the p.d.f. of such an X, and this
gives the p.d.f. symmetric about the origin corresponding to (16) for x > 0 as

f(x) =

√
2/v
σ

(x
√

2/v/σ)(2/v−1)/2

2(2/v−1)/2Γ (1/v)
√
π
K(2/v−1)/2(x

√
2/v/σ), (18)

where Kη(x) is a Bessel function of the second kind of order η and of imaginary
argument. At the time it was thought of as a power series.

Usage of (17) leads to the process {X(t)}, t ≥ 0, where

X(t) = Z(t) − μt = b(Y (t)), (19)

to be written in terms of

X(t) = U(t) −W (t), (20)

where {U(t), t ≥ 0} and {W (t), t ≥ 0} are i.i.d. gamma processes.
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The preceding more or less persists in the published version [21], along
with the possibility of estimation by using the p.d.f. of Θ = ωX, mod 2π, the
submission citing [19]. The published paper replaces this with the by-then
published [20]. (See our Section 6.2.)

In the original submission, the fact that {Z(t), t ≥ 0} is a pure-jump
process is argued in a similar way to how Dilip had first obtained the result in
early 1986 ([17], in which the fact is first mentioned, actually carries the date
July 1986). I still see him walking into my office one day and saying, “The
VG process is pure-jump!”

I still think that this is one of the most striking features arguing for use
of the VG as a feasible financial model. Another is that the VG distribution
of an increment over a time interval of any length is still VG, so the form
persists over any time interval. This is a feature in common with the NCP
and stable forms, is aesthetically pleasing, and not shared by the t process.
Other positive attributes are examined in [6].

Here, verbatim, is the leadin to Dilip’s argument in the original submission:

We now show that the process of i.i.d. gamma increments is purely
discontinuous and so X(t) is a pure jump process. Let Y (t) be the
process with i.i.d. gamma increments. Consider any interval of time,
[t, t + h], and define ΔY to be Y (t + h) − Y (t). Also define yk to be
the k-th largest jump of process Y (t) in the time interval [t, t+h]. We
shall derive the exact density of yk and show that

E[ΔY ] = E
[
Σ∞
k=1y

k
]
. (3.3)

Equation 3.3 then implies that

H = ΔY −Σ∞
k=1y

k

has zero expectation.

The derivation (over pp. 7–10) of the p.d.f. of the size of the kth jump
in a gamma process {Y (t)}, which allows E[yk] to be calculated, is followed
on pp. 11–13 by an argument which shows that the gamma process can be
approximated by a nondecreasing compound Poisson process {Y n(t)} with
mean Poisson arrival rate of jumps βn/ν and density of jumps given by

β−1
n [e−x/ν/x]1{x>1/n}, x > 0,

where the normalization constant is given by

βn =
∫ ∞

0

[e−x/ν/x]1{x>1/n}dx.

Because in this approach nonnegative random variables are being considered,
it is possible to work with Laplace transforms of real nonnegative argument
s rather than c.f.s; this is done using a spectral approach extracted from
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[29], Theorem A, which gives the representation of a Laplace transform of a
nonnegative random variable as

Ψ(s) = exp
{
−
∫ ∞

0−

1 − e−sx

1 − e−x
μ(dx)
}
, s > 0,

for a measure μ(·) on the positive half line.
Thus the VG process as the difference of two i.i.d. gamma processes can be

approximated by the difference of two i.i.d. nondecreasing compound Poisson
processes. This conclusion is obtained more compactly in the published version
[21].

That the subordinated process is a pure jump process is argued there
directly from the Lévy representation of the log-c.f. of Z(t), which shows that
there is no Gaussian component. This argument is in a short Appendix in line
with the editor’s instruction to compress and then move any mathematical
proofs to the back of the paper, to accord with the requirement that papers
in the Journal of Business should be accessible to a wide audience. In the
discussion of the Lévy representation, it is shown that the process {Z(t)} can
be viewed as the limit of compound Poisson processes.

A direct approach through the c.f. of this kind is obviously more appro-
priate when considering the VG process allowing for skewness, as is done in
what in my perception is the next major breakthrough paper for VG theory
[10], where a commensurate form of the VG p.d.f. generalizing (18) is also
given.

However, the fact that the skewed VG process is a difference of two inde-
pendent gamma processes is still a key player in that exposition, even though
the processes are no longer identically distributed.

I remember an e-mail from Dilip, telling me he had achieved such more
general results during a conference at the Newton Institute, Cambridge, U.K.
I believe [10] also took much too long to find a publisher. It now enjoys a
well-deserved status.

The photograph shown in Figure 1 taken in my Sydney office shows Dilip
and me finalizing a first revision of what became [21] just before he left Sydney
for the University of Maryland, and so dates to about July 1988. There were
to be several further revisions during the 1988–1989 U.S. academic year, and
I recall last touches on a brief conference visit which I made to the United
States in January 1990.
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Fig. 1. Dilip Madan (left) in my Sydney office circa July 1988, finalizing a first
revision of what became the original VG paper [21].
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Summary. The Variance-Gamma (VG) process was introduced by Dilip B. Madan
and Eugene Seneta as a model for asset returns in a paper that appeared in 1990,
and subsequently used for option pricing in a 1991 paper by Dilip and Frank Milne.
This paper serves as a tutorial overview of VG and Monte Carlo, including three
methods for sequential simulation of the process, two bridge sampling methods,
variance reduction via importance sampling, and estimation of the Greeks.

Key words: Variance-Gamma process; Lévy processes; Monte Carlo simulation;
bridge sampling; variance reduction; importance sampling; Greeks; perturbation
analysis; gradient estimation.

1 Introduction

1.1 Reflections on Dilip

Dilip and I have been colleagues since 1989, when I joined the faculty of
the Business School at the University of Maryland, and just one year after
Dilip himself had returned to his (Ph.D.) alma mater after twelve years on the
faculty at the University of Sydney, Australia, following the earning of his two
Ph.D.s in pure math (1975) and economics (1971). However, because we were
in different departments—he in the Finance Department and I in what was
then called the Management Science & Statistics Department—we did not re-
ally start collaborating until the mid-1990s when I first became interested in fi-
nancial applications. Since then, Dilip and I have co-chaired five Ph.D. student
dissertations (Tong Wang, Rongwen Wu, Xing Jin, Yi Su, Sunhee Kim), and
each of us serves regularly on dissertation committees of the other’s Ph.D. stu-
dents. We team-taught a course on computational finance twice (1997, 1999).
We have led a research group on computational/mathematical finance since
the late 1990s, which became known as the Mathematical Finance Research
Interactions Team (RIT) under the interdisciplinary Applied Mathematics and
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Scientific Computing program at the University of Maryland. From this group
have graduated scores of Ph.D. students (mostly supervised by Dilip; see the
photo in the preface) who have almost all gone on to high-octane “quant”
positions at financial institutions on Wall Street and in the Washington, D.C.
area. Dilip has always been an inspiration to us all and an ideal academic
colleague, always energetic and enthusiastic and full of ideas, whether it be
at the research meetings with students or during our regular lunch strolls to
downtown College Park.

As Dilip has told me numerous times in our discussions, on Wall Street
there are really two main numerical models/techniques employed for pricing
derivative securities: Monte Carlo simulation or numerical solution of partial
differential equations. The former depends on the first fundamental theorem
of asset pricing: the existence of a martingale measure so that the price can
be expressed as the expectation of an appropriately discounted payoff func-
tion. For exotic, hybrid, and complicated path-dependent derivatives, how-
ever, simulation is often the only method available. Of course, Dilip’s main
research interests do not lie in simulation, but he is a regular consumer of the
method, and as a result, we collaborated on two papers in the area, on control
variates for pricing continuous arithmetic Asian options [12] and on pricing
American-style options [11]. Furthermore, many of his recent papers address
simulation of processes, for example, [21]. This brief tutorial is intended to
be my small tribute to Dilip and also to provide a bridge or segue between
the historical perspective on the VG process provided in the opening article
by Eugene Seneta [27] and the remarkable properties of the gamma process
described in the subsequent piece by Marc Yor [28], who provides a far more
advanced and sophisticated view of gamma processes than the rudimentary
presentation here.

1.2 The Variance-Gamma Process

The Variance-Gamma (VG) process was introduced to the finance commu-
nity as a model for asset returns (log-price increments) and options pricing
in Madan and Seneta [20], with further significant developments in Madan
and Milne [19] and Madan et al. [18]. More recently, it has been applied to
American-style options pricing in [15] and [17], the latter using the fast Fourier
transform introduced in [6]. For more history on the earlier pioneering years,
see the paper in this volume by Eugene Seneta [27], which also discusses distri-
butions similar to VG proposed earlier as a possible alternative to the normal
distribution (see also [22], [23, p. 166]).

The VG process is a Lévy process, that is, it is a process of independent and
stationary increments (see the appendix for a review of basic definitions). A
Lévy process can be represented as the sum of three independent components
(cf. [26]): a deterministic drift, a continuous Wiener process, and a pure-
jump process. Brownian motion is a special case where the latter is zero,
and the Poisson process is a special case on the other end where the first



Variance-Gamma and Monte Carlo 23

two components are zero. Like the Poisson process, the VG process is pure
jump; that is, there is no continuous (Brownian motion and deterministic)
component, and thus it can be expressed in terms of its Lévy density, the
simplest version with no parameters being

k(x) =
1
|x|e

−
√

2|x|.

For the VG process with the usual (θ, σ, ν) parameterization, the Lévy density
is given by

k(x) =
1

ν|x| exp

(
θ

σ2
x− 1

σ

√
2
ν

+
θ2

σ2
|x|
)
, (1)

where ν, σ > 0.
The VG is a special case of the CGMY model of [4, 5], whose Lévy density

is given by

k(x) =

{
C exp(−G|x|)/|x|1+Y x < 0,

C exp(−M |x|)/|x|1+Y x > 0,

where VG is obtained by taking Y = 0, C = 1/ν,G = 2μ+/σ
2, and

M = 2μ−/σ
2, where μ± are defined below in (4). Unlike the Poisson pro-

cess, the VG process may have an infinite number of (infinitesimally small)
jumps in any interval, making it a process of infinite activity. Unlike Brownian
motion, the VG process has finite variation, so it is in some sense less erratic
in its behavior.

The representation of the VG process presented above hides its roots,
which come from the following well-known alternative representations:

1. Time-changed (subordinated) Brownian motion, where the subordinator
is a gamma process.

2. Difference of two gamma processes.

As described in detail in [27], these are the original ways in which the process
was introduced and proposed as a model for asset returns. The CGMY process
can also be expressed as time-changed Brownian motion (see Madan and Yor
[21]), but it seems that there is no simple representation as the difference
of two increasing processes, although in principle such a representation does
exist, because all processes with finite variation can be so expressed.

To express the process in terms of the two representations above, let {Wt}
denote standard Brownian motion (Wiener process), B(μ,σ)

t ≡ μt+σWt denote
Brownian motion with constant drift rate μ and volatility σ, γ(μ,ν)

t the gamma
process with drift parameter μ and variance parameter ν, and γ

(ν)
t the gamma

process with unit drift (μ = 1) and variance parameter ν. Letting φX(u) =
E[eiuX ] denote the characteristic function (c.f.) of random variable X , the c.f.
for the VG process is given simply by

φXt(u) = (1 − iuθν + σ2u2ν/2)−t/ν ,
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which can be expressed in two forms

φXt(u) = [(1 − iuνμ+)(1 + iuνμ−)]−t/ν ,
φXt(u) = [1 − iν(uθ + iσ2u2/2)]−t/ν ,

reflecting the two representations above. In particular, using the notation in-
troduced above, the representation of the VG process as time-changed Brow-
nian motion is given by

Xt = B
(θ,σ)

γ
(ν)
t

= θγ
(ν)
t + σW

γ
(ν)
t
, (2)

whereas the difference-of-gammas representation is given by

Xt = γ
(μ+,ν+)
t − γ

(μ−,ν−)
t , (3)

where the two gamma processes are independent (but defined on a common
probability space) with parameters

μ± = (
√
θ2 + 2σ2/ν ± θ)/2, (4)

ν± = μ2
±ν.

In general, there is no unique martingale measure for a Lévy process,
due to the jumps, and thus this is the case for the (pure jump) VG process.
Assume the asset price dynamics for a Lévy process {Xt} (with no dividends
and constant risk-free interest rate) are given by

St = S0exp((r + ω)t+Xt) , (5)

where the constant ω is such that the discounted asset price is a martingale;
that is, it must satisfy

E[e−rtSt] = S0,

which leads to the condition

e−ω = φ(−i),

where φ denotes the characteristic function of the Lévy process. In the case
of VG, we have

ω = ln(1 − θν − σ2ν/2)/ν. (6)

2 Monte Carlo Simulation

General books on Monte Carlo (MC) simulation for financial applications
include [16], [14] and [23]; see also [2]. Monte Carlo simulation is most fruit-
ful for “high-dimensional” problems, which in finance are prevalent in path-
dependent options, such as Asian, lookback, and barrier options, all of which
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are considered in [1], from which most of our discussion on bridge sampling for
simulating VG is taken. The importance sampling discussion following that is
based on [29]. Efficiently estimating the Greeks from simulation is included in
[10], [16], [14], and [23]. Although extensions such as the CGMY process [4]
are not treated explicitly here, comments are occasionally made on how the
methods extend to that more general setting.

We begin by presenting sequential sampling and bridge sampling tech-
niques for constructing sample paths of a VG process. Sequential sampling
is called incremental path construction in [16], which also includes another
technique for the Wiener process based on a spectral decomposition using an
orthogonal Hilbert basis.

2.1 Sequential Sampling

There are three main methods to simulate VG (cf. [1, 29]). The first two are
based on the two representations presented in the previous section and are
“exact” in the sense of having the correct distribution. The third method for
simulating VG is to approximate it by a compound Poisson process. The main
advantage of the third method is its generality, in that it can be used for any
Lévy process, in particular in those settings where a representation as sub-
ordinated Brownian motion or as the difference of two other easily simulated
processes is not readily available. Representation of the CGMY process as
time-changed Brownian motion is treated in [21], which also includes proce-
dures for simulating using that representation; see also [29].

Figure 1 presents the three different algorithms for sequentially generating
VG sample paths on [0, T ] at time points 0 = t0 < t1 < · · · < tN−1 < tN = T ,
where the time spacings Δti, i = 1, . . . , N are given as inputs, along with VG
parameters. In the compound Poisson process approximation, the positive and
negative jumps are separated, and there is a cutoff of ε for the magnitude of
the jumps. The Poisson rates are calculated by integrating the Lévy density
over the appropriate range, and the jump sizes are then sampled from the cor-
responding renormalized Lévy density. Smaller jumps (which occur infinitely
often) are incorporated into a diffusion process with zero drift and volatility
estimated by the second moment of the Lévy density integrated over the range
[−ε,+ε].

2.2 Bridge Sampling

In [25], bridge sampling for the time-changed Brownian motion representation
is introduced, along with stratified sampling and quasi-Monte Carlo to further
reduce variance. In [1], bridge sampling for the difference-of-gammas represen-
tation is introduced and combined with randomized quasi-Monte Carlo, and
bounds (upper and lower) on the discretization error for pricing certain forms
of path-dependent options are derived. Here, we present these two bridge sam-
pling approaches, but without the additional variance reduction techniques,
to make the exposition easy to follow.
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Simulating VG as Gamma Time-Changed Brownian Motion

Input: VG parameters θ, σ, ν; time spacing Δt1, ..., ΔtN s.t.
∑N

i=1 Δti = T .

Initialization: Set X0 = 0.

Loop from i = 1 to N :
1. Generate ΔGi ∼ Γ (Δti/ν, ν), Zi ∼ N (0, 1)

independently and independent of past r.v.s.
2. Return Xti = Xti−1 + θΔGi + σ

√
ΔGiZi.

Simulating VG as Difference of Gammas

Input: VG parameters θ, σ, ν; time spacing Δt1, ..., ΔtN s.t.
∑N

i=1 Δti = T .

Initialization: Set X0 = 0.

Loop from i = 1 to N :
1. Generate Δγ−

i ∼ Γ (Δti/ν, νμ−), Δγ+
i ∼ Γ (Δti/ν, νμ+)

independently and independent of past r.v.s.
2. Return Xti = Xti−1 + Δγ+

i −Δγ−
i .

Simulating VG as (Approximate) Compound Poisson Process

Input: VG parameters θ, σ, ν; time spacing Δt1, ..., ΔtN s.t.
∑N

i=1 Δti = T .

Initialization: Set X0 = 0;

σ2
ε =

∫ +ε

−ε

x2k(x)dx, λ+
ε =

∫ ∞

+ε

k(x)dx, λ−
ε =

∫ −ε

−∞
k(x)dx,

k+
ε (x) = k(x)1{x≥ε}/λ+

ε , k−
ε (x) = k(x)1{x≤−ε}/λ−

ε .

Loop from i = 1 to N :
1. Generate number of positive and negative jumps in Δti (N+

i and N−
i ,

respectively) and corresponding size of jumps using Lévy density
(everything independent of each other and of past generated samples):

N+
i ∼ Poisson(λ+

ε Δti), N−
i ∼ Poisson(λ−

ε Δti),

X+
i,j ∼ {k+

ε }, j = 1, ..., N+
i , X−

i,j ∼ {k−
ε }, j = 1, ..., N−

i ,

Zi ∼ N (0, 1).

2. Return Xti = Xti−1 + Ziσε

√
Δti +

∑N+
i

j=1 X+
i,j +
∑N−

i
j=1 X−

i,j .

Fig. 1. Algorithms for sequentially simulating VG process on [0, T ].
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Instead of sequential sampling, which progresses chronologically forward
in time, an alternative method for simulating asset price paths is to use bridge
sampling, which samples the end of the path first, and then “fills in” the rest
of the path as needed. This can lead to a more efficient simulation. In bridge
sampling, fixed times are chosen, and the value of the process at such an arbi-
trary fixed time is a random variable with known (conditional) distribution.
It is particularly effective in combination with quasi-Monte Carlo methods,
because the sampling sequence usually means that the first samples are more
critical than the latter ones, leading to a lower “effective dimension” than
in the usual sequential sampling. It is in this setting that quasi-Monte Carlo
methods show the greatest improvement over traditional MC methods, and
gamma bridge sampling coupled with quasi-Monte Carlo is treated in [25]
and [1].

The main idea of bridge sampling is that the conditional distribution of a
stochastic process Xt at time t ∈ (T1, T2), given XT1 and XT2 can be easily
obtained; that is, for T1 ≤ t ≤ T2, one can apply Bayes’ rule to get the
necessary conditional distribution:

P (Xt|XT1 , XT2) =
P (XT2 |XT1 , Xt)P (Xt|XT1)

P (XT2 |XT1)
.

The following are the most well-known examples.

Poisson process {Nt}: Conditional on NT1 and NT2 ,

Nt ∼ NT1 + bin(NT2 −NT1 , (t− T1)/(T2 − T1)),

where bin(n, p) denotes the binomial distribution with parameters n and p
(mean np and variance np(1− p)). Note that the conditional distribution has
no dependence on the arrival rate.

Brownian motion {B(μ,σ)
t }: Conditional on BT1 and BT2 ,

Bt ∼ N (αBT1 + (1 − α)BT2 , α(t− T1)σ2),

where α = (T2 − t)/(T2 − T1), and there is dependence on σ, but not on the
drift μ.

Gamma process {γ(μ,ν)
t }: Conditional on γT1 and γT2 ,

γt ∼ γT1 + (γT2 − γT1)Y,

where Y ∼ β((t−T1)/ν, (T2 − t)/ν), which only depends on the parameter ν,
where β(α1, α2) denotes the beta distribution with mean α1/(α1 + α2), vari-
ance α1α2/[(α1 +α2)2(α1 +α2 +1)], and density xα1−1(1−x)α2−1/B(α1, α2)
on [0, 1], where

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1dt =
Γ (x)Γ (y)
Γ (x+ y)

, Γ (x) =
∫ ∞

0

tx−1e−tdt.
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Simulating VG via Brownian (Gamma Time-Changed) Bridge

Input: VG parameters θ, σ, ν; number of bridges N = 2M (T = tN).

Initialization: Set X0 = 0, γ0 = 0.
Generate γtN ∼ Γ (tN/ν, ν),XtN ∼ N (θγtN , σ2γtN ) independently.

Loop from k = 1 to M : n← 2M−k;
Loop from j = 1 to 2k−1:
1. i← (2j − 1)n;
2. Generate Yi ∼ β((ti − ti−n)/ν, (ti+n − ti)/ν) independent of past r.v.s;
3. γti = γti−n + [γti+n − γti−n ]Yi;
4. Generate Zi ∼ N (0, [γti+n − γti ]σ

2Yi) independent of past r.v.s;
5. Return Xti = YiXti+n + (1− Yi)Xti−n + Zi.

Simulating VG via Difference-of-Gammas Bridge

Input: VG parameters θ, σ, ν; number of bridges N = 2M (T = tN).

Initialization: Set γ+
0 = γ−

0 = 0.
Generate γ+

tN
∼ Γ (tN/ν, νμ+), γ−

tN
∼ Γ (tN/ν, νμ−) independently.

Loop from k = 1 to M : n← 2M−k;
Loop from j = 1 to 2k−1:
1. i← (2j − 1)n;
2. Generate Y +

i , Y −
i ∼ β((ti − ti−n)/ν, (ti+n − ti)/ν) independently;

3. γ+
ti

= γ+
ti−n

+ [γ+
ti+n
− γ+

ti−n
]Y +

i , γ−
ti

= γ−
ti−n

+ [γ−
ti+n
− γ+

ti−n
]Y −

i ;

4. Return Xti = γ+
ti
− γ−

ti
.

Fig. 2. Algorithms for simulating VG process on [0, T ] via bridge sampling.

As with the gamma distribution, there is no analytical closed form for the
c.d.f.; also β(1, 1) = U(0, 1). If either of the parameters is equal to 1, then the
inverse transform method can be easily applied. Otherwise, the main methods
to generate variates are acceptance–rejection, numerical inversion, or a special
algorithm using the following known relationship with the gamma distribu-
tion: if Yi ∼ Γ (αi, ψ) independently generated, then Y1/(Y1+Y2) ∼ β(α1, α2).
For more information on efficiently generating samples from the gamma and
beta distributions, see [7]. MATLAB and other commercial software generally
have built-in functions/subroutines to handle these distributions.

The two algorithms given in Figure 2, adapted from [1] and corresponding
to the time-changed Brownian motion representation of (2) and the difference-
of-gammas representation of (3), respectively, generate VG sample paths of
progressively finer resolution by adding bisecting bridge points, so the number
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of simulated points on the path should be a power of 2, called the dyadic
partition in [1], where it is noted this allows the simulation efficiency to be
further improved by using “a fast beta random-variate generator that exploits
the symmetry.” This partition also makes the methods easier to present in
algorithmic form; however, the method is clearly just as easily applicable to
general time steps as in the previous sequential versions.

For pricing path-dependent options that depend on the entire continuous
sample path—such as continuous Asian, barrier, and lookback options—the
advantage of the bridge sampling is that the first samples often capture most
of the contribution to the expected payoff that is being estimated. In either
case, Richardson extrapolation is one method that can be used to go from
the discrete to the continuous case. This is discussed for the difference-of-
gammas bridge sampling in [1]; it was also used in [12] in sequential Monte
Carlo simulation.

2.3 Variance Reduction

Variance reduction techniques can lead to orders of magnitude of improve-
ment in simulation efficiency, and thus are of practical importance. A simple
example where it would be critical is a deep out-of-the-money barrier option,
in which the payoff on most sample paths generated by simulation would be
zero, so being in the money is essentially a “rare event” in simulation lingo. In
this section, we briefly discuss the variance reduction technique of importance
sampling, whereby simulation is carried out under a different measure than
the one of interest, and then an adjustment is made to the payoff function
by way of the Radon–Nikodym derivative (change of measure). In the barrier
option example, the resulting measure change would lead to a great increase
in the number of generated paths that are in the money. Other useful variance
reduction techniques not discussed here that are effective in financial simu-
lations include common random numbers (called “variate recycling” in [16]),
conditional Monte Carlo, stratified sampling, and control variates; see [14] for
more details. As mentioned earlier, quasi-Monte Carlo combined with gamma
bridge sampling for the VG process is described in [25] and [1].

The general form for the Radon–Nikodym derivative of a Lévy process
can be found in [26]; see also [28] for gamma processes. For pure-jump Lévy
processes, it turns out that sufficient conditions for ensuring equivalence in
the measure change are that the corresponding Lévy measures be equivalent
plus a constraint relating the drifts and corresponding Lévy measures. For
the VG process, under the difference-of-gammas representation, it turns out
that the measure change in which the ν parameter is kept the same can be
computed based on just the terminal values; that is, the intermediate values
on the path are not needed (cf. [29, Propositions 2 and 3 in Chapter 2]).
The Radon–Nikodym derivative needed to adjust for going from VG with
parameters (θ, σ, ν) to the measure change of VG with parameters (θ

′
, σ

′
, ν)

is given by the following exponential twisting:
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exp(−t
∫ +∞

−∞
(k(x) − k′(x))dx)φ+(γ̃+

t )φ−(−γ̃−t ),

φ±(x) = e2(μ
′
∓/(σ

′
)2−μ∓/σ2|x|),

where γ̃±t are the independent processes generated in the difference-of-gammas
representation of VG with (VG) parameters (θ

′
, σ

′
, ν), and μ± is given by (4).

2.4 The Greeks

In many cases, it is possible to estimate sensitivities of derivatives prices with
respect to various parameters directly using the same sample path that was
used to estimate the price itself, that is, without resorting to resimulation.
This was first demonstrated in [9] and [3]. In this section, we discuss only
infinitesimal perturbation analysis (IPA), or what is called pathwise differ-
entiation in [16] and [14]. We do not treat the likelihood ratio method (also
known as the score function method or measure-valued differentiation); see
the previous two referenced books [16, 14], or [8] for further discussion of
this approach, which is also related to the Malliavin calculus approach pro-
posed by some researchers (see [14]). An extension of IPA based on conditional
Monte Carlo, which can handle discontinuous payoff functions, is treated in
[10]. None of the previous references treat the estimation of Greeks explicitly
in the VG (or general Lévy process) context.

The basis of IPA is quite simple: one differentiates the sample quantities of
interest with respect to the parameter of interest. Specifically, one is usually
interested in some payoff function h that may depend on the entire path of
{St}. For simplicity of illustration here, we assume the payoff depends only
on a single point in time, such as a call option with h(x) = (x−K)+, where
K is the strike price. Then, the price to be estimated by simulation is given
by

E[e−rTh(ST )],

for maturity T (European option), whereas the sensitivity to be estimated is
given by

dE[e−rTh(ST )]
dχ

,

where χ is the parameter of interest. The IPA estimator is given by

d(e−rTh(ST ))
dχ

= h(ST )
d(e−rT )
dχ

+ e−rT
(
∂h

∂χ
+ h′(ST )

dST
dχ

)
,

so the applicability of the IPA estimator comes down to a question of whether
exchanging the operations of expectation (integration) and differentiation
(limit) is justified (according to the dominated convergence theorem); that
is, whether
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E

[
d(e−rTh(ST ))

dχ

]
=

dE[e−rTh(ST )]
dχ

,

which clearly depends both on the payoff function h and the representation
of the VG process {Xt}, which enters {St} through (5).

As an example, it can be easily seen from (5) that the current asset price
is a scale parameter for a future stock price, so that we have

dSt
dS0

=
St
S0

.

Thus, for example, a call option with the usual payoff (ST −K)+, which would
be estimated in simulation by

e−rT (ST −K)+,

would have its delta estimated by

e−rT
ST
S0

1{ST>K},

because h′(x) = 1{x>K}. However, a digital option with payoff 1{ST>K} would
lead to a biased estimator (identically zero). Thus, the IPA estimator for the
gamma would be biased. Roughly speaking, if h is almost surely continuous
with respect to the parameter of interest, then the IPA estimator will be
unbiased. The call payoff function is continuous, with a “kink” at K, which
leads to a discontinuity in its first derivative at K, just as for the digital
option.

The example above was in some sense the simplest, because S0 doesn’t
appear anywhere else in the expression for St given by (5) except as a scale
factor. Other parameters of interest include time t, the interest rate r, and the
VG parameters (θ, σ, ν), and these all make more complicated appearances in
St, both directly through (5) and indirectly through Xt, where in the latter
case the chain rule would be applied. The resulting quantity dXt/dχ may
depend on the representation of {Xt}, that is, in how the stochastic process
{Xt} is constructed, and we saw there are at least three different ways a
VG process can be generated. Thus, for the simple call option, we have the
following IPA estimators (for any exercise point t).

dSt
dr

= tSt,

dSt
dt

= St

(
r + ω +

dXt

dt

)
,

dSt
dθ

= St

(
t
dω

dθ
+
dXt

dθ

)
,

dSt
dσ

= St

(
t
dω

dσ
+
dXt

dσ

)
,

dSt
dν

= St

(
t
dω

dν
+
dXt

dν

)
,
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with (from differentiating (6))

dω

dθ
= −1/(1 − θν − σ2ν/2),

dω

dσ
= −σ/(1 − θν − σ2ν/2),

dω

dν
= −[(θ + σ2/2)/(1 − θν − σ2ν/2) + ω]/ν,

but the dXt/dχ term in the IPA estimators for dSt/dχ above undetermined
without specifying a particular representation of {Xt}. For example, if we
chose the parameter of interest χ to be the θ parameter defining the VG
process, then using the time-changed Brownian motion representation given
by (2) leads to a very simple

dXt

dθ
= γ

(ν)
t ,

whereas for the difference-of-gammas representation given by (3),

dXt

dθ
=

dγ
(μ+,ν+)
t

dθ
− dγ

(μ−,ν−)
t

dθ
,

which is more complicated to compute. In this case, it is likely that both lead
to unbiased IPA estimators, but the resulting estimators would have very
different variance properties.

3 Conclusions

In the context of Monte Carlo simulation, there is a large body of work on
variance reduction techniques and gradient estimation techniques for the usual
Gaussian/diffusion setting in finance, but with the exception of a few recent
results such as [25] and [1], the more general Lévy process setting is relatively
untouched. After reviewing the three main methods for simulating a VG pro-
cess and presenting two recently developed bridge sampling approaches, we
just scratched the surface here in presenting the importance sampling change
of measure and introducing IPA sensitivity estimators for the Greeks in the
VG setting. In the latter case, the choice of representation plays a key role in
determining the applicability of IPA; see [13] and [10] for more on this theme.
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Appendix: Review of Basic Definitions

Here we provide the elementary characterizations of the Wiener, Poisson,
and gamma processes. (For further properties on the gamma process, see
Marc Yor’s contribution [28] in this volume.) Each of these is a Lévy process,
that is, a process of independent and stationary increments. We consider only
homogeneous Lévy processes, in which case the increments are i.i.d. Thus,
one way to differentiate among them is to specify the distribution of the
increments. For standard Brownian motion {Wt}, also known as the Wiener
process, the increments are normally distributed with zero mean and variance
equal to the size of the increment; that is, for any t,

Wt+δ −Wt ∼ N (0, δ),

where N (μ, σ2) denotes the normal (Gaussian) distribution with mean μ and
variance σ2. Similarly, the gamma process {γt} has gamma distributed in-
crements; that is, for any t, γt+δ − γt ∼ Γ (δ, 1), where Γ (α, β) denotes the
gamma distribution with mean αβ and variance αβ2. Unlike the Wiener pro-
cess, the gamma process is discontinuous, and like the Poisson process, it is
nondecreasing (since the gamma distribution has support on the positive real
line). For the two-parameter gamma process {γ(μ,ν)

t }, increments are gamma
distributed with the mean μ and variance ν both multiplied by the size of the
increment; that is, for any t,

γ
(μ,ν)
t+δ − γ

(μ,ν)
t ∼ Γ (δμ2/ν, ν/μ).

The nondecreasing property makes the gamma distribution suitable as a sub-
ordinator (time change). Although the difference-of-gammas representation of
VG uses the two-parameter gamma distribution, the time-changed representa-
tion of VG uses the one-parameter version (taking μ = 1 in the two-parameter
version), denoted here {γ(ν)

t }, where for any t,

γ
(ν)
t+δ − γ

(ν)
t ∼ Γ (δ/ν, ν),
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with a mean equal to the size of the increment, making it most suitable for
a time change. This is also the version of the gamma process that is used in
the following paper by Marc Yor [28] in this volume.

By the Lévy–Khintchine theorem (cf. [24, 26]), a Lévy process {Xt}, with
finite-variation jump component can be specified by its unique characteristic
function

φXt(u) = E[eiuXt ] = exp
(
iuat− u2b2t/2 + t

∫ +∞

−∞
(eiux − 1)k(x)dx

)
,

where k(x) is the Lévy density, a is the drift rate, and b is the diffusion coeffi-
cient. The three components correspond to a deterministic drift, a continuous
Wiener process, and a pure-jump process, where intuitively the Lévy density
is a measure on the arrival rate of different jump sizes. Note that because a
Lévy process is infinitely divisible, a single time point (e.g., t = 1) suffices to
characterize the process, in terms of its marginal distribution at any time. In
the VG process, the drift rate (a) and diffusion coefficient (b) are both zero,
and the process is characterized by three parameters (θ, σ, ν) that appear in
the Lévy density according to (1). The symmetric version of the VG process
given by (θ = 0),

Xt = σW
γ
(ν)
t
,

has mean 0, variance σ2t, skewness 0, and kurtosis 3(1+ν), so the parameter ν
gives the excess kurtosis over Brownian motion (which has a kurtosis of 3). In
the symmetric version, the difference-of-gammas representation involves two
(independent) gamma processes with the same distribution. In the asymmetric
VG process, the parameter θ controls skewness, with a negative value giving a
fatter (heavier) left tail. Brownian motion can be obtained as a limiting case
of the VG process, because limν→0 γ

(ν)
t = t.
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Summary. A number of remarkable properties of gamma processes are gathered in
this paper, including realisation of their bridges, absolute continuity relationships,
realisation of a gamma process as an inverse local time, and the effect of a gamma
process as a time change. Some of them are put in perspective with their Brownian
counterparts.

Key words: Gamma process; bridges; absolute continuity; inverse local time; time
changes.

1 Acknowledging a Debt

1.1 A Good Fairy

Hélyette Geman played the role of a ‘good fairy’ in two instances of my re-
search activities:

• The first instance was when Hélyette kept asking me, at the end of 1988,
about the price of Asian options, that is, finding a closed-form formula for

E

⎡

⎣
(∫ T

0

ds exp(Bs + νs) −K

)+
⎤

⎦ , (1)

where (Bs, s ≥ 0) is a Brownian motion, ν ∈ R, T > 0 is the maturity
of the option, and K its strike. It took us some time to introduce what
now seem to be the ‘right’ tools to deal with this question, namely the use
of Lamperti’s representation of {exp(Bs + νs), s ≥ 0} as a time-changed
Bessel process, together with the Laplace transform in T . See [21] for a
compendium of a number of papers on this subject.
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• The second instance was when Hélyette introduced me to Dilip Madan,
around January 1996, when Dilip was visiting Hélyette at the University
of Dauphine. This was the beginning of multiple collaborations among
the three of us, and sometimes other coauthors; these joint works mostly
originated from a constant stream of questions by Dilip, formulated while
drinking coffees on rue Soufflot, or at the Hotel Senlis nearby, or . . . .

I have been deeply impressed with the ease with which Dilip, starting from
a finance question that arises as he is trying to develop a new model, is
able to raise quite challenging related mathematical questions, involving Lévy
processes, semimartingales, and so on.

1.2 Propaganda for Gamma Processes

As is well known, Dilip has been an ardent propagandist, over the years,
of the gamma processes, that is, the one-parameter family of subordinators
(γ(m)
t , t ≥ 0), with Lévy measure

dx

x
exp(−mx), x > 0,

whose Lévy–Khintchine representation is given by

E[exp(−λγ(m)
t )] =

(
1 +

λ

m

)−t
(2)

= exp
(
−t
∫ ∞

0

dx

x
e−mx(1 − e−λx)

)
. (3)

Clearly, from Equation (2), we obtain

(γ(m)
t , t ≥ 0)

(law)
=
(

1
m

γt, t ≥ 0
)
,

with γt = γ
(1)
t ; hence, there is no loss of generality in assuming m = 1,

although it may be convenient sometimes to avail oneself of the parameter m.
In fact, Dilip even prefers the Variance-Gamma (VG) processes [11] and

[12], which may be presented either as

(γ(m)
t − γ̃

(m)
t , t ≥ 0),

or as
(β
γ
(m)
t

, t ≥ 0),

where (βu, u ≥ 0) is a Brownian motion independent of (γ(m)
t , t ≥ 0) and

(γ̃(m)
t , t ≥ 0) is an independent copy of (γ(m)

t , t ≥ 0).
This festschrift for Dilip’s 60th birthday seems to be a good opportunity

to gather a few remarkable properties of the gamma processes, which make
them worthy companions of Brownian motion.
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2 Brownian Bridges and Gamma Bridges

I begin with a somewhat informal statement. Among Lévy processes, I only
know of two processes for which one can present an explicit construction of
their bridges in terms of the original Lévy process: Brownian motions (with
or without drift) and gamma processes.

2.1 Brownian Bridges

Letting (Bu, u ≥ 0) denote a standard Brownian motion, then the process
(Bu − (u/t)Bt, u ≤ t) is independent of Bt, hence of (Bv, v ≥ t). Conse-
quently, as is well known, a Brownian bridge of length t, starting at 0, and
ending at y at time t, may be obtained:

b(t)y (u) =
(
Bu −

u

t
Bt

)
+
u

t
y , u ≤ t.

2.2 Gamma Bridges

It follows from the beta-gamma algebra (see, e.g., Dufresne [6] and Chaumont
and Yor [3]) that if (γ(m)

t , t ≥ 0) denotes a gamma process with parameter
m, then (γ(m)

u /γ
(m)
t , u ≤ t) is independent of γ(m)

t , hence of (γ(m)
v , v ≥ t).

Moreover, it is obvious that the law of (γ(m)
u /γ

(m)
t , u ≤ t) does not depend on

m. Hence, a gamma bridge of length t, starting at 0, and ending at a > 0,
may be obtained by taking (a γu/γt, u ≤ t). The process D(t)

u
def= γu/γt, u ≤ t,

is often called the Dirichlet process with parameter t, and a number of studies
have been devoted to the laws of means of Dirichlet processes; that is, the

laws of
∫ t

0

h(u)dD(t)
u , for deterministic functions h (see, e.g., [1] and [2]).

2.3 The Filtration of Brownian Bridges

Denote by (Bt, t ≥ 0) the natural filtration of (Bt, t ≥ 0), and let

Gt = σ{b(t)y (u), u ≤ t} ≡ σ{b(t)o (u), u ≤ t} .

It is easily shown that (Gt, t ≥ 0) is an increasing family of σ-fields, which
deserves to be called the filtration of Brownian bridges. It has been proven
(Jeulin and Yor [8], Yor [20] Chapter 1) that its natural filtration is that of
a Brownian motion; more precisely, the process (Bt −

∫ t
0
(ds/s)Bs, t ≥ 0) is a

Brownian motion, whose natural filtration is {Gt}.
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2.4 The Filtration of Gamma Bridges

Inspired by the result just recalled for the filtration of Brownian bridges {Gt},
it is natural to ask whether the filtration

Ht = σ

{
γu
γt
, u ≤ t

}
, t ≥ 0 ,

of gamma bridges is also the natural filtration of a gamma process. This
question has been solved by Emery and Yor [7].

Theorem 1. For each s > 0, the formula
∫ ∞

us(x)

e−zdz

z
=
∫ ∞

x

dy

y(1 + y)s
(< +∞, for x > 0),

defines a bijection us : R
+ → R

+. The sum γ∗t =
∑
s≤t us (Δγs/γs−), t ≥ 0 is

a.s. convergent and defines a gamma process γ∗ which generates the filtration
(Ht, t ≥ 0).

2.5 Absolute Continuity Relationships

Closely related to the bridges constructions recalled in Sections 2.3 and 2.4
are the following absolute continuity relationships.

Proposition 1. (i) For every measurable functional F , and every a > 0,

E[F (aγu, u ≤ t)] = E

[
F (γu, u ≤ t)

exp
(
−
(

1
a − 1
)
γt
)

at

]
.

(ii) For every measurable functional F , for every ν ∈ R,

E[F (Bu + uν;u ≤ t)] = E

[
F (Bu, u ≤ t) exp

(
νBt −

ν2t

2

)]
.

Proof. We only give it for the gamma process, as the proof for Brownian
motion is well known.

E[F (aγu, u ≤ t)] = E

[
F

(
a
γu
γt

γt;u ≤ t

)]

=
1

Γ (t)

∫ ∞

0

dxxt−1e−xE

[
F

(
a
γu
γt

x;u ≤ t

)]

=
1

Γ (t)

∫ ∞

0

dy yt−1

at
e−y/aE

[
F

(
γu
γt
y;u ≤ t

)]

=
1

Γ (t)

∫ ∞

0

dy yt−1 e−y
(
e−y(1/a−1)

at

)
E

[
F

(
γu
γt
y;u ≤ t

)]

= E

[
F (γu;u ≤ t)

e−γt(1/a−1)

at

]
.


�
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2.6 Brownian Motion and the Gamma Process as Special
Harnesses

Let X = (Xt, t ≥ 0) be a Lévy process such that E(|Xt|) < ∞ for every t ≥ 0.
It is known that the following conditional expectation result holds,

E

[
Xc −Xb

c− b

∣∣∣∣F
X
a,d

]
=

Xd −Xa

d− a
, a < b < c < d, (4)

where FX
a,d denotes the σ-field generated by (Xu, u ≤ a) and (Xv, v ≥ d).

A process that satisfies the property (4) is called a harness, following Ham-
mersley’s terminology (see e.g., [3] and [13]). The Brownian motion B = (Bt)
and the gamma process γ = (γt) are special harnesses in the following sense.

(i) For X = B ,
Xc −Xb

c− b
− Xd −Xa

d− a
is independent of FX

a,d,

(ii) For X = γ ,
Xc −Xb

Xd −Xa
is independent of FX

a,d.

It is quite plausible that these properties characterize, respectively, Brown-
ian motion and the gamma process, say, for example, among Lévy processes.
Indeed, in the same spirit, we may recall D. Williams ([19] and unpublished
manuscript), who asserts that the only continuous harnesses are (essentially)
Brownian motion with drift.

3 Space–Time Harmonic Functions for Brownian Motion
and the Gamma Process

If X = (Xt, t ≥ 0) is a real-valued stochastic process, we say that f : R × R
+

is a space–time harmonic function if

{f(Xt, t), t ≥ 0}

is a martingale (with respect to the filtration of X). For now, let X denote
either Brownian motion or the gamma process (or the VG process). In this
section, we describe the following.

1. Polynomials P (x, t) in both variables x and t, which are space–time har-
monic functions of X

2. All positive space–time harmonic functions for X , a Brownian motion, or
a gamma process

3.1 Polynomial Space–Time Harmonic Functions

We start, for Brownian motion (Bt) and the gamma process (γt), with the
exponential martingales
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exp
(
λβt −

λ2t

2

)
and (1 + λ)texp(−λγt),

which have appeared naturally in the expressions of the Radon–Nikodym den-
sities in Proposition 1. From the classical series expansions

exp
(
λx− λ2t

2

)
=

∞∑

n=0

λn

n!
Hn(x, t),

(1 + λ)uexp(−λg) =
∞∑

n=0

λn

n!
C̃n(u, g),

where

Hn(x, t) = tn/2hn

(
x√
t

)
,

with (hn) the classical Hermite polynomials, and where C̃n(u, g) are the so-
called monic Charlier polynomials (see, e.g., Schoutens [15, p. 66]), we obtain
the following martingales,

(Hn(Bt, t), t ≥ 0) and (C̃n(u, γu), u ≥ 0).

It is noteworthy that the latter gamma martingales admit counterparts for
the standard Poisson process (Nt, t ≥ 0), with the roles of time and space
interchanged. Thus, ((1 + λ)Ntexp(−λt), t ≥ 0) and (C̃n(Nt, t), t ≥ 0) are
Poisson martingales. That this results from the corresponding ones for the
gamma process may be (partly) understood from the fact that the sequence
Tn ≡ inf{t : Nt = n}, n = 1, 2, . . . , is the trace of a gamma process (γu, u ≥ 0)
on the integers; that is, the sequences (Tn)n≥1 and (γn)n≥1 are identical in
law.

3.2 On Positive Space–Time Harmonic Functions

We now show the following.

Theorem 2. (i) Every R
+-valued space–time harmonic function of (Bt, t ≥ 0)

such that f(0, 0) = 1, may be written as

f(x, t) =
∫ ∞

−∞
dμ(λ) exp

(
λx− λ2t

2

)
, (5)

for some probability measure dμ(λ) on R.
(ii) Every R

+-valued space–time harmonic function of (γt, t ≥ 0) may be writ-
ten as

f(g, t) =
∫ ∞

0

dν(a)
1
at

exp
(
−
(

1
a
− 1
)
g

)
, (6)

for some probability measure dν(a) on R
+.
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Proof. We consider the new probabilities induced by the Radon–Nikodym
densities f(Xt, t), with respect to the law of Brownian motion (respectively,
gamma process), which we denote P 0. Thus, we have

E[F (Xs, s ≤ t)] = E(0)[F (Xs, s ≤ t)f(Xt, t)]. (7)

To prove the desired result, we show that under P , (Xs, s ≥ 0) may be written
as

(i) Xs = sΛ+Bs , s ≥ 0 ,
where Λ is a real-valued r.v. independent of the Brownian motion (Bt, t ≥ 0);
(ii) Xs = Aγs , s ≥ 0 ,
where A is a R

+-valued r.v. independent of the gamma process (γs, s ≥ 0).

Then, denoting μ (respectively, ν) the law of Λ (respectively, A), we deduce
from Proposition 1 in the Brownian case that

E[F (Xs, s ≤ t)] =
∫

dμ(λ)E
[
F (Bs, s ≤ t) exp

(
λBt −

λ2t

2

)]
. (8)

It now remains to use Fubini’s theorem on the RHS, and to compare the
expression thus obtained with the RHS of (7). A similar argument holds in
the gamma case.

It now remains to prove (i) and (ii). This follows easily enough from the
facts that

• In the Brownian case, the two-parameter process
(
Xu

u
− Xv

v
; 0 < u < v ≤ t

)

is distributed under P as under P 0, and is independent of Xt,
• In the gamma case, the two-parameter process

(
Xu

Xv
; 0 < u < v ≤ t

)

is distributed under P as under P 0, and is independent of Xt. 
�

4 The Gamma Process as Inverse Local Time of a
Diffusion

Roughly, it is a consequence of Krein’s theory of strings that any subordinator
without drift, and whose Lévy measure ν(dx) is of the form

ν(dx) = dx

(∫
μ(dy) exp(−yx)

)
, (9)
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for μ(dy) a suitable Radon measure on R
+, may be obtained as the inverse

local time of a diffusion (see, e.g., Kotani–Watanabe [10] and Knight [9] for
precise statements). The Lévy measure (dx/x) exp(−mx) of the gamma pro-
cess with parameter m is a particular instance of (9), with

μ(dy) = dy 1{y≥m}.

Hence, it is natural to ask for the description of a diffusion whose inverse
local time at zero is the gamma process γ(m). This question was solved by
Donati-Martin and Yor [4]; see also [5] for further examples.

Theorem 3. Let m > 0. The diffusion on [0,∞), with 0 instantaneously re-
flecting, and infinitesimal generator

Lm↓ =
1
2

d2

dx2
+
(

1
2x

+
√

2m
K ′

0

K0

(√
2mx
)) d

dx
,

where K0 denotes the Bessel–McDonald function with index 0, admits (γ(m)
t , t ≥

0) as inverse local time at 0.

5 The Gamma Process Time Changes Many ‘Erratic’
Processes into Processes with Bounded Variation

5.1 Why Does the VG Process Have Bounded Variation?

The following statement gives a partial answer to a more general question of
D. Madan.

Proposition 2. Consider a process (Xu, u ≥ 0) such that there exist two
constants C and α > 0 for which

E[|Xu −Xv|] ≤ C|u− v|α for all u, v ≥ 0. (10)

Then the process (Yt = Xγt , t ≥ 0), where (γt, t ≥ 0) is a gamma process
independent of (Xu, u ≥ 0), has bounded variation on any finite interval [0, T ].
More precisely,

E

[∫ T

0

|dYs|
]
≤ CΓ (α)T < ∞.

Proof. It follows from our hypothesis (10) that for any pair (s, t), with s < t,

E[|Yt − Ys|] ≤ CE[(γt − γs)α].

Now, the gamma process satisfies

E[(γt − γs)α] = E[(γt−s)α] =
Γ (α+ t− s)
Γ (t− s)

.
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Thus,

E[(γs+h − γs)α] =
Γ (α+ h)h
Γ (1 + h)

∼
(h→0)

Γ (α)h.

As a consequence of these estimates, if (τn)n∈N is a refining sequence of sub-
divisions of [0, T ], then the increasing sequence

E

[
∑

τn

∣∣∣Ytk+1 − Ytk

∣∣∣

]
, n ≥ 1,

is majorized by CΓ (α)T , which implies the desired result. 
�

In fact, the property that was crucial in the proof of Proposition 2 is that
for every α > 0, the gamma process is of α-bounded variation on compact
sets (in time).

The statement of Proposition 2 deserves a number of further comments.

(i) The condition (10) is not sufficient to yield the existence of a continuous
version of (Xt), unless α > 1, in which case Kolmogorov’s continuity crite-
rion applies. However, if (Xt) is a centred Gaussian process, then for any
p > 1, there exist universal constants 0 < cp < Cp < ∞ such that

cp(E[|Xu −Xv|p])1/p ≤ E[|Xu −Xv|] ≤ CpE[|Xu −Xv|p]1/p.

Thus, if α > 0 is given such that (10) is satisfied, then there exists p > 1
sufficiently large such that pα > 1; hence,

E[|Xu −Xv|p] ≤ Kp|u− v|pα,

and (Xu) admits a continuous version, which is locally Hölder with expo-
nent β, for any β < α.

(ii) In the same vein as in (i), note that if (BH
u , u ≥ 0) is a fractional Brownian

motion with Hurst index H , that is,

E[(BH
u −BH

v )2] = C(u− v)2H ,

then Proposition 2 applies, and (BH
γt
, t ≥ 0) has bounded variation.

(iii)In the particular case when H = 1/2, then {B1/2 ≡ (Bu, u ≥ 0)} is a
Brownian motion, and there is the identity in law

(γt − γ′t; t ≥ 0)
(law)
= (

√
2Bγ′

t
; t ≥ 0),

where γ and γ′ are two independent copies, and B is independent of γ′.
(iv)Another interesting question is whether for any H ∈ (0, 1), there exist two

independent copies (γHt ) and (γ̃Ht ) such that

(BH
γt
, t ≥ 0)

(law)
= (γHt − γ̃Ht , t ≥ 0) ?
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5.2 Some Occurrences of Gamma Time Changes with Brownian
Motion and Markov Processes

Here we consider (Xt, t ≥ 0) a real-valued diffusion such that 0 is regular for
itself; we denote (Lt, t ≥ 0) a choice of the local time at 0, and τ� = inf{t ≥ 0 :
Lt > �} the inverse local time. We assume that L∞ = ∞ a.s. It is well known

that if At =
∫ t

0

ds f(Xs), for f ≥ 0, Borel, then (Aτ�
, � ≥ 0) is a subordinator.

We note here, following Salminen et al. [14], that if (ψ(θ), θ ≥ 0) denotes the
Bernstein function associated with (τ�, � ≥ 0), then for eθ an exponential
variable with parameter θ independent of (Xt, t ≥ 0), the following hold,

(i) Leθ

(law)
= eψ(θ);

(ii) P (Ageθ
∈ du|Leθ

= �) = P (Aτ�
∈ du; exp(−θτ� + ψ(θ)�)),

where gt = sup{s < t : Xs = 0}. As a consequence, if (γt, t ≥ 0) denotes a
gamma process independent of (Xu, u ≥ 0), then (Agγt

, t ≥ 0) is a subordi-
nator time changed by an independent gamma process.

6 Conclusion

Although I have tried hard to present the main remarkable properties of
gamma processes, I still feel that – due perhaps to the richness of the subject –
I have not quite succeeded, and would like to refer the reader to the papers by
N. Tsilevich and A. Vershik ([16–18]) which may complete the picture some-
what. In one sentence, these papers interpret gamma processes as ‘0-stable’
processes, which may be obtained as the limit, when α → 0, of tilted α-stable
subordinators; links with Poisson-Dirichlet measures are also established.
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9. F. Knight. Characterization of the Lévy measure of inverse local times of gap
diffusion. Seminar on Stochastic Processes, eds. E. Cinlar, K. Chung, and R.
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13. R. Mansuy and M.Yor. Harnesses, Lévy bridges and Monsieur Jourdain. Stoch.
Proc. and Applications, 115(2):329–338, February 2005.

14. P. Salminen, P. Vallois, and M. Yor. On the excursion theory for linear diffusions.
Jap. J. Maths, in honor of K. Itô, 2(1)97–127, 2007.
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Summary. To prove their formulae for the moments of the characteristic polyno-
mial of the generic matrix of U(N), Keating and Snaith [8] (see also Keating [7]) use
Selberg’s integrals as a ‘black box.’ In this note, we point out some identities in law
which are equivalent to the expressions of Selberg’s integrals and which involve beta,
gamma, and normal variables. However, this is a mere probabilistic translation of
Selberg’s results, and does not provide an independent proof of them. An outcome
of some of these translations is that certain logarithms of (Vandermonde) random
discriminants are self-decomposable, which hinges on the self-decomposability of the
logarithms of the beta (a, b) (2a + b ≥ 1) and gamma (a > 0) variables. Such self-
decomposability properties have been of interest in some joint papers with D. Madan.

Key words: Selberg’s integrals; beta-gamma algebra; self-decomposable distribu-
tions; Vandermonde determinant; characteristic polynomial.

1 Introduction and Statement of Results

Recall that for a, b > 0, a beta random variable βa,b with parameters a and b
is distributed as

P (βa,b ∈ dx) =
dxxa−1(1 − x)b−1

B(a, b)
, 0 < x < 1, (1)

whereas a gamma random variable γa with parameter a > 0 is distributed as

P (γa ∈ dt) =
dt

Γ (a)
ta−1exp(−t), t > 0. (2)

The beta-gamma algebra mentioned in the title of this paper may be sum-
marized as follows. If γa and γb are two independent gamma variables, then
there is the identity in law:

(γa, γb)
(law)
= (βa,b, (1 − βa,b))γa+b, (3)
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where on the RHS, the variables βa,b and γa+b are independent. For various
extensions of this fact, see Dufresne [4].

In the following, we also need to use the Mellin transforms of the laws of
βa,b and γa, which are given by, for any m ≥ 0:

E[(γa)m] =
Γ (a +m)
Γ (a)

,

E[(βa,b)m] =
Γ (a +m)
Γ (a)

/
Γ (a+ b+m)
Γ (a+ b)

.

The second identity follows from the first one, together with (3).
The celebrated Selberg integrals (see, e.g., [1, Theorem 8.1.1]) may be

expressed partly in probabilistic terms as follows. For any integer n ≥ 2 and
any γ > 0,

E[(Δ(β(i)
a,b; 1 ≤ i ≤ n))2γ ]

n∏

j=1

(
Γ (a+ b+ (n + j − 2)γ)Γ (1 + γ)

Γ (a+ b)

)

=
n∏

j=1

(
Γ (a+ (j − 1)γ)

Γ (a)
Γ (b+ (j − 1)γ)

Γ (b)

)
Γ (1 + jγ), (4)

where Δ(x(i); 1 ≤ i ≤ n) =
∏
i<j(x

(i) − x(j)) is the value of the Vandermonde
determinant associated with the x(i)s.

In order to present below an identity in law involving (and characterizing
the law of) (Δ(β(i)

a,b; 1 ≤ i ≤ n))2, we need the following.

Lemma 1. Let e be a standard exponential variable (with expectation 1), so

that e
(law)
= γ1. Then, for any μ ∈ (0, 1),

e1/μ (law)
=

e
Tμ

, (5)

where Tμ denotes the one-sided stable variable with index μ, whose law is
characterized by

E[exp(−λTμ)] = exp(−λμ), λ ≥ 0.

Moreover, in (5), Tμ is assumed to be independent of e.

A proof and extensions of this lemma are presented in Chaumont and Yor
[3, Exercise 4.19]. The identity in law (5) goes back at least to Shanbhag and
Sreehari [10].

Comment about notation for identities in law. Throughout this note,
it should be understood that when an identity in law such as

Φ(X,Y )
(law)
= Ψ(Z, T )
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is presented, with Φ and Ψ two functions, then the r.v.’s X and Y on one
hand, and Z and T , are assumed to be independent. Moreover, these vari-
ables are often multidimensional; then their components are assumed to be
independent.

We now present three identities in law, which involve, respectively,

Δ(β(i)
a,b; 1 ≤ i ≤ n), Δ(γ(i)

a ; 1 ≤ i ≤ n), Δ(N (i); 1 ≤ i ≤ n),

where N (i), i = 1, . . . , n, are independent standard Gaussian variables.

Proposition 1. The following identity in law holds,

(Δ(β(i)
a,b; 1 ≤ i ≤ n))2

n∏

j=1

(γ(j)
a+b)

n+j−2

(law)
=

n∏

j=2

{
(β(j)
a,b(1 − β

(j)
a,b))

j−1(γ(j)
a+b)

2(j−1) 1
T1/j

}
. (6)

Proposition 2. The following identity in law holds,

(Δ(γ(i)
a ; 1 ≤ i ≤ n))2

(law)
=

n∏

j=2

(γ(j)
a )j−1 1

T1/j
. (7)

Proposition 3. The following identity in law holds,

(Δ(N (i); 1 ≤ i ≤ n))2
(law)
=

n∏

j=2

(
1

T1/j

)
. (8)

Consequently,

E[(Δ(N (i); 1 ≤ i ≤ n))2] =
n∏

j=2

(j!). (9)

The two following identities in law are immediate consequences of (7) and (8).

Corollary 1. For any a, b > 0,

(Δ(γ(i)
a ; 1 ≤ i ≤ n))2

(law)
=

⎛

⎝
n∏

j=2

(β(j)
a,b)

j−1

⎞

⎠ (Δ(γ(i)
a+b; 1 ≤ i ≤ n))2, (10)

(Δ(γ(i)
a ; 1 ≤ i ≤ n))2

(law)
=

⎛

⎝
n∏

j=2

(γ(j)
a )j−1

⎞

⎠ (Δ(N (i); 1 ≤ i ≤ n))2. (11)

One may note the parenthood between (10) and the identity in law,

γa
(law)
= βa,bγa+b,

which is the main ingredient of the beta-gamma algebra, already presented in
a slightly different manner in (3).
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2 Proofs of the Three Propositions

Proof (of Proposition 1). In order to prove the identity in law (6), we first
show the following,

(Δ(β(i)
a,b; 1 ≤ i ≤ n))2

n∏

j=1

(γ(j)
a+b)

n+j−2e(j)

(law)
=

n∏

j=1

{
(β(j)
a,b(1 − β

(j)
a,b))

j−1(γ(j)
a+b)

2(j−1)(e(j))j
}
. (12)

Indeed, assuming that (12) holds, we then use the identity (5) to write

(e(j))j
(law)
=

e(j)

T1/j
,

and we then proceed to the simplification on both sides of (12) of all the
variables e(j). Thus, it now remains to prove (12), or the equivalent identity
in law (i.e., (12)) with its RHS written as

n∏

j=1

{(γ(j)
a γ

(j)
b )j−1(e(j))j}. (13)

Now, in order to prove the identity in law between the LHS of (12) and (13),
it suffices to show the equality of the Mellin transforms of both sides, which
boils down to (4). 
�

We now indicate that Proposition 2 may be deduced from Proposition 1,
thanks to an application of the law of large numbers, whereas Proposition
3 follows from Proposition 2, thanks to an application of the central limit
theorem.

Proof (of Proposition 2). On the LHS of (6), we multiply every β(i)
a,b by b, and

divide every γ(j)
a+b by b (or a+b). Then, letting b → ∞, we obtain that the LHS

of (6) converges in law towards the LHS of (7). The operation we have just
effected on the LHS of (6) translates, on the RHS of (6), into the replacement
of β(j)

a,b(1 − β
(j)
a,b) by bβ

(j)
a,b(1 − β

(j)
a,b) and of γ(j)

a+b by (γ(j)
a+b)/b. Letting b → ∞,

this RHS of (6), so modified, converges in law towards the RHS of (7). 
�

Proof (of Proposition 3). We start from (7), where, on the LHS, we replace
γ

(i)
a by (γ(i)

a − a)/
√
a, whereas on the right-hand side, we may replace γ(i)

a by
(γ(i)
a )/a. Then, letting a → ∞, and applying the central limit theorem on the

LHS, and the law of large numbers on the RHS, we obtain (8). The identity
in law (9) follows from (8) and (5). (I only added it here because it is easy to
memorize, and it has been given a combinatorial proof in [5].) 
�
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3 Comments and Further References

Some of the results reported above are closely related with those of Lu and
Richards [9], as already mentioned in the Comments about Exercise 4.19 in
Chaumont and Yor [3].

If we compare the identities in law (6), (7), and (8), we find that in the
first case of (6), the term (Δ(β(i)

a,b; 1 ≤ i ≤ n))2 needs to be multiplied by

a certain independent r.v., say X
(n)
a,b , to obtain an identity in law with the

RHS of (6), which we denote Y
(n)
a,b , whereas for the two other cases (7) and

(8), the square of the Vandermonde determinant stands alone on the RHS of
these identities in law. Thus, coming back to (6), it seems reasonable to ask
whether one might find Z

(n)
a,b such that

Y
(n)
a,b

(law)
= X

(n)
a,b Z

(n)
a,b ,

in which case we could conclude with the identity in law between (Δ(β(i)
a,b; i ≤

n))2 and Z
(n)
a,b . I have not been able to solve this question so far, but it is

clearly closely related to the self-decomposability of the variables log(γa) and
log(1/βa,b), which we discuss below, before attempting to simplify the identity
in law (6).

As a consequence of Propositions 2 and 3, it may be pointed out that the
variables

log |Δ(γ(i)
a ; 1 ≤ i ≤ n)|, log |Δ(N (i); 1 ≤ i ≤ n)|, (14)

are infinitely divisible, and even self-decomposable, which follows from the
well-known results.

Proposition 4. (a) For any a > 0, the characteristic function of (− log γa)
admits the Lévy–Khintchine representation:

E[exp iv(− log γa)] = exp
{
iv(−ψ(a)) +

∫ ∞

0

ds e−as

s(1 − e−s)
(eivs − 1 − ivs)

}
,

v ∈ R, where ψ(a) = Γ ′(a)/Γ (a).
(b) For any a, b > 0, the Laplace transform of log(1/βa,b) admits the Lévy–
Khintchine representation:

E[exp(−λ log(1/βa,b))] = exp
{
−
∫ ∞

0

ds
e−as(1 − e−bs)
s(1 − e−s)

(1 − e−λs)
}
.

Proof (of Proposition 4).
(a) is a well-known result; see, for example, Carmona et al. [2] and Gordon
[6].
(b) follows from (a), thanks to the identity

− log(γa)
(law)
= log(1/βa,b) − log(γa+b). 
�
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Corollary 2. (a) For any a > 0, log γa is self-decomposable.
(b) For any a, b > 0, log(1/βa,b) is self-decomposable if and only if 2a+ b ≥ 1.

Proof. In both cases, the self-decomposability property boils down to the
property that, if (h(s))/s denotes the Lévy density of the variable in question,
then h is decreasing on R+. Now, with obvious notation, we have

ha(s) =
e−as

1 − e−s
≡ ka(e−s),

ha,b(s) =
e−as(1 − e−bs)

1 − e−s
≡ ka,b(e−s).

Thus, the result follows from the elementary facts that ka is increasing,
whereas ka,b is increasing if and only if 2a+ b ≥ 1. 
�
Comment and reference. The results for Corollary 2 may be found, for
example, in Steutel and van Harn’s book [11], respectively, in Example 9.18,
p. 322 and Example 12.21, p. 422.

To prove the result concerning (14), we also need the self-decomposability
property of log(1/Tμ) (see, e.g., (5)).

Proposition 5. Let 0 < μ < 1. The Lévy–Khintchine representation of
log(Tμ) is given by

E

((
1
Tμ

)k)
≡ E[e−k log Tμ ]

= exp
{
k

μ
(1 − μ)ψ(1) +

∫ ∞

0

du

u
(ϕ(μu) − ϕ(u))(e−ku − 1 + ku)

}
,

where ϕ(u) = 1/(eu − 1), and ψ(1) = Γ ′(1) is Euler’s constant. Consequently,
log(Tμ) is self-decomposable.

Proof. The Lévy–Khintchine representation is easily deduced from that of
(log e), thanks to (5). 
�
Comment and reference. As for Corollary 2, the results of Proposition 5
may be found in [11, p. 321, Example 9.17].

Corollary 3. log |Δ(γ(i)
a ; 1 ≤ i ≤ n)| and log |Δ(N (i); 1 ≤ i ≤ n)| are self-

decomposable.

4 On the Joint Distribution of the Vandermonde
Determinant and the Characteristic Polynomial
Associated to a Uniform Unitary Matrix

My starting point here is formula (110) in [8]. If θN = (θ1, . . . , θN ) denotes
the random vector consisting of N independent, uniform variables on [0, 2π],
then
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E[|Δ(eiθN )|2β |ZN (eiθN )|s] =

⎧
⎨

⎩

N−1∏

j=0

Γ (1 + jβ)Γ (1 + s+ jβ)
(Γ (1 + s

2 + jβ))2

⎫
⎬

⎭
Γ (1 +Nβ)
(Γ (1 + β))N

,

(15)
where we assume that β, s ≥ 0 (for simplicity). On the LHS of (15), I have
adopted the shorthand notation Δ(xN) and ZN (xN ) for, respectively, the
Vandermonde determinant

∏

i<j≤N
(xi − xj),

and the ‘characteristic polynomial’
∏

j≤N
(1 − xj)

associated with the vector xN = (xj)1≤j≤N .
In this section, I provide some probabilistic interpretations – in the form

of identities in law – of the general formula (15). To give some flavor of these
interpretations, let us consider the case s = 0 in (15); in this case, (15) reduces
to

Γ (1 +Nβ) = E[|Δ(eiθN )|2β ](Γ (1 + β))N , (16)

which, by injectivity of the Mellin transform, may be written as

eN
(law)
= |Δ(eiθN )|2e1...eN , (17)

where e on the LHS, and e1, . . . , eN on the RHS denote standard exponential
variables (with mean 1), with Δ(eiθN ) and (e1, . . . , eN) independent on the
RHS of (17). Also, note that on the RHS of (17), it is the ordinary product
of the variables e1, . . . , eN which occurs. In the sequel, without mentioning it
anymore, we always understand that, in identities in law such as (17) algebraic
quantities f(X1, . . . , XN) concern independent random variables.

Taking logarithms on both sides of (17), we obtain

log e
(law)
=

1
N

(
N∑

i=1

log ei

)
+

2
N

log|Δ(eiθN )|. (18)

The identity (18) suggests introducing the notion of an arithmetically de-
composable random variable (AD for short), that is, a r.v. X such that for any
integer N ,

X
(law)
=

1
N

(
N∑

i=1

Xi

)
+ YN ,

where on the RHS the Xi’s are independent copies of X , and YN is indepen-
dent from the Xi’s. Note the parenthood between an AD random variable and
the notion of a self-decomposable random variable, which satisfies
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X
(law)
= cX +X(c),

for every c ∈ (0, 1), with X(c) independent of X . Thus, from (18), log e is AD
and, in Section 4.1, we discuss further the notion of AD variables, and exploit
formula (15) to provide other examples.

In random matrix theory, it is not so much random vectors such as θN ,
with uniform components, which are of interest, but rather the probabilities

P
(β)
N (dθN ) ≡

{
|Δ(eiθN )|2β

Cβ

}
• P

(o)
N (dθN ),

where Cβ = (Γ (1 +Nβ))/((Γ (1 + β))N ) and under P (o)
N the θis are indepen-

dent and uniform. In fact, it is the particular cases β = 1, 2, 4, which are
relevant (see [8]). It is, of course, immediate to rewrite formula (15) so as to
give the joint Mellin transform of |Δ(eiθN )|2 and |ZN(eiθN )| under P (β)

N . As
an example, we write

E
(β)
N (|ZN (eiθN )|s) =

N−1∏

j=0

Γ (1 + jβ)Γ (1 + s + jβ)
(Γ (1 + s

2 + jβ))2
,

which, when written in the equivalent form

N−1∏

j=0

Γ (1 + jβ + s)
Γ (1 + jβ)

= E
(β)
N (|ZN (eiθN )|s)

N−1∏

j=0

(
Γ (1 + s

2 + jβ)
Γ (1 + jβ)

)2

,

may be translated as

N−1∏

j=0

γ(1+jβ)
(law)
= |Z(β)

N (eiθN )|

√√√√
N−1∏

j=0

γ(1+jβ)γ
′
(1+jβ), (19)

where Z(β)
N (eiθN ) denotes ZN (eiθN ) under P (β)

N . Clearly, the identities in law
(18) and (19) are two instances of consequences of the general formula (15),
which we exploit more systematically later on. In the case β = 1, formula (19)
has been the starting point of the discussion in [12] of the understanding of
the factor ((G(1 + λ))2)/(G(1 + 2λ)) in the expression of the Keating–Snaith
conjecture for the asymptotics of the moments of |ζ (1/2 + it) |; see [12] for
details.

The remainder of this section consists of a discussion of the arithmetic
decomposability of log(γa), for any a ≥ 1, in the light of, for example, formula
(16). This is done below in Section 4.1. In Section 4.2, an identity in law
equivalent to the general formula (15) is presented and briefly discussed.

Notation. Unfortunately, I use the Greek letters beta and gamma for two
altogether different items: the beta and gamma random variables; and, on the
other hand, the parameters in the usual random matrix models. Nevertheless,
this should not lead to any confusion.
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4.1 The Arithmetic Decomposability of log(γa), a ≥ 1, and the
Distribution of |Δ(β)(eiθN )|
The aim of this section is to understand better the identities in law (17)
and (18), where exponential random variables are featured; moreover, some
adequate extensions to gamma variables are proposed.

We first discuss the arithmetic decomposability of log(γa), a ≥ 1. It has
been shown in [12], as a consequence of the beta-gamma algebra, that

γa
(law)
= (γ(1)

a . . . γ(N)
a )1/N N

(
N−1∏

k=0

β((a+k)/N,a−((a+k)/N))

)1/N

, (20)

which clearly implies the AD property of log(γa). Comparing formulae (20)
and (17), we obtain

|Δ(eiθN )|2 (law)
= (NN )

N∏

k=1

β(k/N,1−(k/N)).

In order to obtain an adequate extension of this formula, we consider formula
(16), in which we change β in (β + γ); thus, we obtain

Γ (1 +Nβ +Nγ)
Γ (1 +Nβ)

= E[|Δ(β)(eiθN )|2γ ]
(
Γ (1 + β + γ)
Γ (1 + β)

)N
,

which translates as

(γ1+Nβ)N
(law)
= |Δ(β)(eiθN )|2 γ(1)

1+β ...γ
(N)
1+β . (21)

From the beta-gamma algebra, we can write

γ
(i)
1+β

(law)
= β

(i)
1+β,(N−1)β γ

(i)
1+Nβ .

We first plug these in (21), and then compare (21), thus modified, with (20).
We then obtain, with a = 1 +Nβ:

NN
N−1∏

k=0

β(((a+k)/N),a−((a+k)/N))
(law)
= |Δ(β)(eiθN )|2

{
N∏

i=1

β
(i)
1+β,(N−1)β

}
.

Note in particular how this formula simplifies for β = 0:

|Δ(0)(eiθN )|2 (law)
= NN

N∏

j=1

β(j/N,1−(j/N)),

as discussed earlier.
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4.2 An Interpretation of Formula (15)

As we did in (16) and (17), bringing the denominator in (15) on the LHS, it
is not difficult to see that this identity may be interpreted as the following
(complicated!) identity in law between two 2-dimensional random variables.⎛

⎝
N−1∏

j=0

(eje′j)jeN ,
N−1∏

j=0

e′j

⎞

⎠

(law)
=

⎧
⎨

⎩

N−1∏

j=0

(eje′j)j |Δ(eiθN )|2
N−1∏

j=0

e′′j ; |ZN(eiθN )|
N−1∏

j=0

√
eje′j

⎫
⎬

⎭ . (22)

We note in particular that the identity in law between the two first components
of (22) reduces to the identity (17), whereas the identity in law between the
two second components of (22) is the particular case β = 0 of (19).

Finally, we leave to the interested reader the task of interpreting the law
of {|Δ(eiθN )|2, |ZN (eiθN )|} under the probability

P
(β,s)
N =

|Δ(eiθN )|2β |ZN (eiθN )|s
CN (β, s)

• P.
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Summary. This article reviews the theory of fractional Brownian motion (fBm) in
the white noise framework, and we present a new approach to the proof of Itô-type
formulas for the stochastic calculus of fractional Brownian motion.

Key words: Itô formulas; fractional Brownian motion; white noise analysis.

1 Introduction

There are various approaches to this topic. We adopt the white noise analysis
(WNA) approach, whose origins go back to the work of Hida [8]. Literature
closest to this approach includes Holden, et al. [11], Hu and Øksendal [12],
Huang and Yan [13], Hida et al. [9], Kuo [17], and papers of Lee [19–21].
The Malliavin-style approach is represented by Nualart [23; 24]. The WNA
approach was used by Elliott and van der Hoek [6].

We present an introduction to white noise analysis in Section 2, a con-
struction of fractional Brownian motion in Sections 3 through 5, and a new
approach to the study of Itô-type formulas in Section 6. Only the outlines of
proofs have been provided.

2 White Noise Analysis

We first want to construct a probability space (Ω,F , P ) with Ω = S′(R) such
that for all f ∈ S(R), we have
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E
[
e〈f,·〉
]

= e1/2‖f‖
2
, (1)

where S(R) is the usual space of rapidly decreasing C∞ functions on R and
S′(R) its dual space of tempered distributions. It is important to note that
S(R) is what is called a nuclear space. The pairing 〈f, g〉 represents a dual
pairing, with f ∈ S(R) and g ∈ S′(R). The basic theory of these objects can
be found in Gel’fand and Vilenkin [7] and in Reed and Simon [26]. We cannot
replace S′(R) by a separable Hilbert space H , say. Let {en} be a complete
orthonormal system for H . Then we would have

E
[
e〈en,·〉
]

= e1/2 �= 1,

but the left-hand side converges to 1 as n → ∞, giving a contradiction. This
should suggest that the construction of such a probability space is nontrivial.
The existence of such a probability is due to the Böchner–Minlos theorem.
For the basic ideas, see Kuo [17] and Holden et al. [11].

We have the Gel’fand triple:

S(R) ⊂ L2(R) ⊂ S′(R).

Here ‖f‖2 =
∫
R
|f(t)|2dt and 〈f, 〉 : S′(R) → R with 〈f, ω〉 ∈ R for all ω ∈ Ω.

It is called a Gaussian space, because the random variable 〈f, 〉 is N (0, ‖f‖2)
for any f ∈ S(R). Indeed, later 〈f, 〉 is defined for all f ∈ L2(R).

We can also consider 〈f, 〉 : S′(R) → Rm when f ∈ S(R)m and ‖f‖2 =∑m
i=1 ‖fi‖2, where f = (f1, f2, . . . , fm). We concentrate in this paper on the

case m = 1. For any real t, we have

E
[
e〈tf,·〉
]

= e1/2t
2‖f‖2

,

or
∞∑

n=0

tn

n!
E [〈f, ·〉n] =

∞∑

k=0

t2k

2kk!
‖f‖2k, (2)

and we can obtain various identities by comparing powers in t on the left- and
right-hand sides of Equation (2). So

E [〈f, ·〉] = 0,

E
[
〈f, ·〉2
]

= ‖f‖2,

E
[
〈f, ·〉2k

]
= (2k − 1)!!‖f‖2k,

where (2k − 1)!! = 1.3.5...(2k − 1). Likewise, we can show

E [〈f1, ·〉〈f2, ·〉] = 〈f1, f2〉,
E [〈f1, ·〉〈f2, ·〉〈f3, ·〉〈f4, ·〉] = 〈f1, f2〉〈f3, f4〉 + 〈f1, f3〉〈f2, f4〉 + 〈f2, f3〉〈f1, f4〉,
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by taking f = t1f1 + t2f2 + t3f3 + t4f4 in Equation (1). Clearly,

E
[
(〈f, ·〉 − 〈g, ·〉)2

]
= ‖f − g‖2, (3)

for f, g ∈ S(R). We can now extend the definition of 〈f, ·〉 from f ∈ S(R) to
f ∈ L2(R), for if f ∈ L2(R), there exists a sequence {fn} ⊂ S(R) such that
‖fn − f‖ → 0 as n → ∞. Then by (3), 〈fn, ·〉 converges in mean-square. We
define (using this meaning of limit)

〈f, ·〉 = lim
n→∞

〈fn, ·〉,

and, of course, by standard theorems, 〈f, ·〉 is also Gaussian for f ∈ L2(R),
with

E [〈f, ·〉] = 0,

E
[
〈f, ·〉2
]

= ‖f‖2.

We write L2 for the space of square integrable random variables on Ω. Thus
〈f, ·〉 ∈ L2 for each f ∈ L2(R). These results are classical and are discussed
by various authors, for example, in Janson [15], Neveu [22], and Kuo [16].

2.1 Brownian Motion

We can now give the WNA definition of Brownian motion. Let 1(0, t](x) = 1
if x ∈ (0, t] and 1(0, t](x) = 0 if x �∈ (0, t]. Then Brownian motion B can be
defined by

B(t)(ω) = 〈1(0, t], ω〉.

Technically speaking, we can consider a continuous (in t) version of this defi-
nition. We then have the standard properties:

B(0)(ω) = 0,
E [B(t)B(s)] = E [〈1(0, t], ·〉〈1(0, s], ·〉] = min{t, s},
B(t) −B(s) = 〈1(s, t], ·〉 ∼ N (0, t− s) for t > s.

Remark. If we wish to construct m-dimensional Brownian motion, we pro-
ceed in a similar way, but with S(R) replaced by S(R)m and S′(R) by S′(R)m,
and we require a probability measure space (Ω,F , P ) satisfying Equation (1),
where 〈f, ω〉 = 〈f1, ω1〉 + · · · + 〈fm, ωm〉, and ‖f‖2 = ‖f1‖2 + · · · + ‖fm‖2.
Then

B(t)(ω) = (B1(t)(ω), . . . , Bm(t)(ω)) = (〈1(0, t], ω1〉, . . . , 〈1(0, t], ωm〉).

See Holden et al. [11] for more discussion.
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2.2 Hermite Polynomials and Functions

We define Hermite polynomials {hn} on R by

hn(x) = (−1)nex
2/2 dn

dxn
e−(x2/2),

for n = 0, 1, 2, . . . . The first few are

h0(x) = 1,
h1(x) = x,

h2(x) = x21,

h3(x) = x3 − 3x,

and so on. In fact, we can establish the following useful properties:

hn+1(x) = xhn(x) − nhn−1(x),

and we have the generating function

ext−(1/2)t2 =
∞∑

n=0

tn

n!
hn(x). (4)

Expanding the left-hand side of (4) in powers of t

hn(x) =
[n/2]∑

l=0

(−1)l
n!

2ll!(n− 2l)!
xn−2l =

[n/2]∑

l=0

(−1)l
(
n

2l

)
(2l − 1)!! xn−2l,

where [y] is the integer part of y, and starting with

ext = e(1/2)t
2

∞∑

n=0

tn

n!
hn(x),

we obtain

xn =
[n/2]∑

l=0

(
n

2l

)
(2l − 1)!! hn−2l(x).

Also

hn(x) =
∫

R

(x± iy)n
1√
2π

e−(1/2)y2
dy,

and

xn =
∫

R

hn(x+ y)
1√
2π

e−(1/2)y2
dy.
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We also use

hn(x)hm(x) =
m∧n∑

p=0

p!
(
n

p

) (
m

p

)
hn+m−2p(x) (5)

and many other nice identities. An important orthogonality identity is the
following,

∫

R

hn(x)hm(x) e−(x2/2)dx =
√

2π n! δn,m.

The Hermite functions {ξn|n = 1, 2, 3, . . .} are defined by

ξn(x) = π−(1/4) [(n− 1)!]−(1/2)
hn−1(

√
2 x)e−(x2/2),

and constitute a complete orthonormal sequence for L2(R). These properties
are discussed in various places, for example, in Lebedev [18]. The completeness
is established in Hille and Phillips [10].

2.3 Chaos Expansions in L2

We also talk about the Wiener–Itô chaos expansion. Any Φ ∈ L2 has the
unique representation:

Φ(ω) =
∑

α∈I
cαHα(ω),

where I is the collection of all multi-indices α = (α1, α2, . . .), where αi ∈
{0, 1, 2, 3, . . .} and only a finite number of these indices are nonzero. We write
for |α| = α1 + α2 + · · · < ∞,

Hα(ω) =
∞∏

i=1

hαi(〈ξi, ω〉).

For each α, Hα ∈ L2 and for α, β ∈ 1,

E [HαHβ ] = α! δα,β ,

where

α! =
∞∏

i=1

αi!,

δα,β =
∞∏

i=1

δαi,βi .
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In fact,

E [HαHβ ] =
∞∏

i=1

E [hαi(〈ξi, ·〉)hβi(〈ξi, ·〉)]

=
∞∏

i=1

∫

R

hαi(z)hβi(z)
1√
2π

e−(z2/2)dz

=
∞∏

i=1

αi! δαi,βi = α! δα,β.

We also have

cα =
1
α!
E [ΦHα] ,

E
[
Φ2
]

=
∑

α

α! c2α < ∞.

Before concluding this section, we also mention that an alternative chaos
expansion can be given in terms of multiple integrals with respect to Brownian
motion. We do not use this form of the chaos expansion in this paper, but
refer readers to the beautiful paper of Itô [14] or to Holden et al. [11].

2.4 Hida Test Functions and Distributions

If f ∈ L2(R), then f =
∑
n cnξn, where cn =

∫
R f(x)ξn(x)dx and

∑
n c

2
n =

‖f‖2 < ∞. It can be shown (see Reed and Simon [26]) that f ∈ S(R) iff
f =
∑

n cnξn and for all integers p ≥ 0, |f |2p ≡
∑

n n
2pc2n < ∞. In a similar

way, we can express f ∈ S′(R) in the form f =
∑

n cnξn, where |f |2−q ≡∑
n n

−2qc2n < ∞ for some q ≥ 0. To illustrate this latter representation, if
f ∈ S′(R), then cn = 〈ξn, f〉. For the Dirac-delta function δ, we write

δ =
∑

n

ξn(0) ξn.

By the estimate

sup
x

| ξn(x)| ≤ Cn−(1/4), (6)

then
∑

n

n−2qξn(0)2 ≤ C2
∑

n

n−2qn−(1/2) < ∞,

for q > 1
4 . If f =

∑
n cnξn ∈ S(R) and g =

∑
n dnξn ∈ S′(R), then

〈f, g〉 =
∑

n

cndn (7)
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is always a finite sum. These ideas are now generalized to the Hida test func-
tions (S) and distributions (S)∗. Just as

S(R) ⊂ L2(R) ⊂ S′(R),

so we have

(S) ⊂ L2 ⊂ (S)∗.

In fact, Φ ∈ (S) iff Φ =
∑
α cαHα and

‖Φ‖2
p =
∑

α∈I
α! c2α(2N)pα < ∞,

for all p ∈ {0, 1, 2, . . .}, where

(2N)pα =
∞∏

i=1

(2i)pαi .

Likewise, we can represent Ψ ∈ (S)∗ as Ψ =
∑
α dαHα, and for some integer

q ≥ 0,

‖Ψ‖2
−q =
∑

α∈I
α! c2α(2N)−qα < ∞,

and then

〈〈Φ, Ψ〉〉 =
∑

α

α! cαdα.

We show that (S)∗ is a very large class of objects that is closed under many
different operations. One of these is the Wick product. If Φ =

∑
cαHα and

Ψ =
∑

dαHα are elements of (S)∗, then their Wick product Φ � Ψ ∈ (S)∗ is
defined by

Φ � Ψ =
∑

α,β

cαdβHα+β .

A useful operator is the S-transform. If Φ ∈ (S)∗, then the S-transform SΦ is
defined for h ∈ S(R) by

(SΦ) (h) = 〈〈Φ, Eh〉〉 =
∑

α

cα〈ξ, h〉α,

where

Eh(ω) = exp�(〈h, ω〉) = exp(〈h, ω〉 − 1
2
‖h‖2) ∈ (S),

〈ξ, h〉α =
∞∏

i=1

〈ξi, h〉αi .
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The characterization of T such that T = SΨ for some Ψ ∈ (S)∗ is given
in Chapter 8 of Kuo [17]. We can define the Wick product of Ψ, Φ ∈ (S)∗ as
the unique Hida distribution T ∈ (S)∗ such that ST = SΨSΦ. In WNA, the
S-transform plays a role analogous to a Fourier transform. Other transforms
are also used (see Kuo [17] and Holden et al. [11]).

We now give some examples.

(1) Brownian motion

B(t)(ω) =
∞∑

i=1

〈1(0, t], ξi〉〈ξi, ω〉 =
∞∑

i=1

[∫ t

0

ξi(u)du
]
Hεi(ω),

and

∞∑

i=1

[∫ t

0

ξi(u)du
]2

= t < ∞.

(2) Brownian white noise

W (t)(ω) =
∞∑

i=1

ξi(t)Hεi(ω),

which is the “derivative” of B with respect to t, and we have (using (6))

‖W (t)‖2
−q =

∞∑

i=1

(ξi(t))2(2i)−q ≤ C2
∞∑

i=1

i−(1/2)(2i)−q < ∞,

for q > 1
2 , and so W (t) ∈ (S)∗ for all t ≥ 0. Of course W (t) �∈ L2.

In both examples we usedHεi(ω) = 〈ξi, ω〉, where εi = (0, 0, . . . , 0, 1, 0, . . .),
with the 1 in the ith place.

(3) A Wick product

B(t) �W (t) =
∞∑

i,j=1

[
ξi(t)
∫ t

0

ξj(u)du
]
Hεi+εj

= B(t)W (t) −
∞∑

i=1

ξi(t)
∫ t

0

ξi(u)du, (8)

because

Hεi+εj =

{
HεiHεj if i �= j,

H2
εi
− 1 if i = j.
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So by (8),
∫ T

0

B(t) �W (t) dt =
∞∑

i,j=1

[∫ T

0

ξi(t)
∫ t

0

ξj(u)dudt

]
Hεi+εj

=
1
2

∞∑

i,j=1

[∫ T

0

ξi(u)du
∫ T

0

ξj(u)du

]
Hεi+εj

=
1
2

[ ∞∑

i=1

(∫ T

0

ξi(u)du

)
Hεi

]2
− 1

2

∞∑

i=1

[∫ T

0

ξi(u)du

]2

=
1
2
B(T )2 − 1

2
T.

So (as we show),
∫ T

0

B(t)dB(t) =
∫ T

0

B(t) �W (t) dt =
1
2
B(T )2 − 1

2
T.

(4) Wick exponential

We define X�n = X �X � · · · �X (n times) and

exp�(X) =
∞∑

n=0

1
n!
X�n.

Then we have

exp�(〈f, ω〉) = exp
(
〈f, ω〉 − 1

2
‖f‖2

)
.

2.5 Wiener Integrals

When f ∈ L2(R), we can define∫

R

f(t)dB(t)(ω) = 〈f, ω〉.

We now exploit this observation to define fractional Brownian motion (fBm).
We also note that the chaos expansion of

∫
R
f(t)dB(t) is

∫

R

f(t)dB(t) =
∞∑

i=1

[∫

R

f(u)ξi(u)du
]
Hεi .

We make a comment about the important role played by the Wick product.
For f, g ∈ L2(R), we define

I2(f ⊗̂ g) =
∫

R2
f(s)g(t)dB(s)dB(t) = 2

∫

R

g(t)
[∫ t

−∞
f(s)dB(s)

]
dB(t).
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The left-hand side is not equal to
(∫

R

f(s)dB(s)
)(∫

R

g(t)dB(t)
)
,

but rather to (∫

R

f(s)dB(s)
)
�
(∫

R

g(t)dB(t)
)
.

Likewise, it can be shown for any multi-index α with |α| = n, we have the
formula for the multiple Wiener integral

∫

Rn

ξ⊗̂αdB⊗n = Hα,

where we have used tensor product and symmetric tensor product notation.
If we consider symmetric functions fn =

∑
|α|=n cαξ

⊗̂α, then

Φ =
∑

α

cαHα =
∞∑

n=0

∑

|α|=n
cαHα =

∞∑

n=0

In(fn)

gives the alternate chaos expansion of Φ in terms of multiple Wiener integrals.
This is another classical starting point for WNA when Φ ∈ L2. The mapping
Φ → (f0, f1, f2, . . .) establishes

L2 �
∞⊕

n=0

L̂2(Rn).

2.6 Convergence of Distributions

Many of the results that we discuss below can be proved by approximation
and taking limits in (S) or (S)∗.

We can let (S)p = {Φ ∈ L2 | ||Φ||p < ∞} and then (S) =
⋂
p>0(S)p, and

Φn → Φ in (S) as n → ∞ if for all p > 0, {Φ,Φn n = 1, 2, 3, . . .} ⊆ (Sp) and
||Φn − Φ||p → 0 as n → ∞.

In a similar way, we define (S)∗−q = {Φ ∈ (S)∗ | ||Φ||−q < ∞} and then
(S)∗ =

⋃
q≥0(S)∗−q, and Φn → Φ in (S)∗ as n → ∞ if for some q ≥ 0,

{Φ,Φn n = 1, 2, 3, . . .} ⊆ (S)∗−q and ||Φn − Φ||−q → 0 as n → ∞.
Convergence is often demonstrated using S-transforms (see Kuo [17]). The

following two results from this reference are used.
Let Φ ∈ (S)∗. Then the S-transform F = SΦ satisfies:

(a) For any ξ, η ∈ Sc(R) (the complexification of S(R)), F (zξ+η) is an entire
function of complex variable z,

(b) There exist nonnegative K, a, and p such that for all ξ ∈ Sc(R),

|F (ξ)| ≤ K exp
(
a|ξ|2p
)
.
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Conversely, if F is defined on Sc(R) and satisfies (a) and (b) above, then
there is a unique Φ ∈ (S)∗ with F = SΦ. This is one of the characterization
theorems for (S)∗.

Now for n = 1, 2, 3, . . . , let Φn ∈ (S)∗ and Fn = SΦn. Then {Φn} converges
in (S)∗ if and only if the following conditions are satisfied.

(a) limn→∞ Fn(ξ) exists for each ξ ∈ S(R),
(b) There exist nonnegative K, a, and p independent of n such that for all

n = 1, 2, 3, . . . , and ξ ∈ S(R),

|Fn(ξ)| ≤ K exp
(
a|ξ|2p
)
.

3 Fractional Brownian Motion

There are several constructions of fractional Brownian motion. See Samorod-
nitsky and Taqqu [27] (Chapter 7), for several approaches. In [6], we intro-
duced an alternative approach for all Hurst indices 0 < H < 1, and this is the
approach that is reviewed here.

A fBm with Hurst parameter H (0 < H < 1) is a zero mean Gaussian
process BH = {BH(t) | t ∈ R} with covariance

E
[
BH(t)BH(s)

]
=

1
2
{
| t|2H + | s|2H − | t− s|2H

}
.

We take BH(0) = 0. For H = 1
2 , B1/2 is standard Brownian motion.

We define the operator MH on S(R) by

(MHf) (x) = − d

dx
CH

∫

R

(t− x)| t− x|H−(3/2)f(t)dt,

for each 0 < H < 1. We should remark that M1−H is the inverse operator to
MH (up to a constant multiple); see [6]. This operator also makes sense when
f = 1(0, t], and then we write MH(0, t) for the resultant function which lies
in L2(R). In fact,

MH(0, t)(x) = CH

[
(t− x)| t− x|H−(3/2) + x| x|H−(3/2)

]
.

The constant CH is chosen such that
∫

R

[MH(0, t)(x)]2dx = t2H , (9)

because it is easy to show that the right-hand side of (9) is a multiple of t2H .
We can then define BH by

BH(t)(ω) = 〈MH(0, t), ω〉. (10)
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Technically, we take the continuous version of the process defined in (10). It
is a technical exercise to show that this definition does verify the conditions
for the definition of fBm with Hurst index H .

We can define multiple fBms in various ways, either in the way we have
just described based on a number of independent standard Brownian mo-
tions, or we can define various fBms with different Hurst parameters based
on a common standard Brownian motion, or we can adopt a combination of
both approaches. For this paper we focus on a single fBm process with Hurst
parameter 0 < H < 1.

A second-order stationary process X = {X(t), t ≥ 0} has Hurst index
defined by

H = inf{h : lim sup
t→∞

t−2h var (X(t) −X(0)) < ∞} .

BH has Hurst index H, but so does BH+BK when H > K. This indicates
that using fBm to model long-range dependence is not a trivial issue. We do
not digress into this area, except to say that our machinery can deal with
multiple fBm models. However, as we said before, we focus on the stochastic
calculus with a simple fBm with a fixed Hurst parameter 0 < H < 1.

The chaos expansion for BH is

BH(t)(ω) =
∞∑

i=1

[∫ t

0

(MHξi) (u)du
]
Hεi(ω),

and leads to a definition of fractional white noise WH : R → (S)∗ by

WH(t)(ω) =
∞∑

i=1

[(MHξi) (t)]Hεi(ω).

In fact, because

sup
t

|MHξn(t)| ≤ C n(2/3)−(H/2),

so

‖WH(t)‖2
−q =

∞∑

i=1

|MHξi(t)|2 (2i)−q ≤ C22−q
∞∑

i=1

i(2/3)−(H/2)−q < ∞,

for q > (5/3)− (H/2).
With these definitions, we can now generalize the Wiener integral. For

f ∈ S(R) we can define
∫

R

f(t)dBH(t)(ω) = 〈MHf, ω〉,

for ω ∈ Ω. This definition can readily be extended to functions f for which∫
R

[(MHf)(x)]2 dx < ∞.
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4 Integrals with Respect to fBm

If Z : R → (S)∗ is such that
〈
〈Z(t), F 〉

〉
∈ L1(R) for all F ∈ (S), then∫

R Z(t)dt is defined to be that unique element of (S)∗ such that

〈
〈
∫

R

Z(t)dt, F 〉
〉

=
∫

R

〈
〈Z(t), F 〉

〉
dt for all F ∈ (S).

We then say that Z(t) is integrable in (S)∗.
If Y : R → (S)∗ is such that Y (t)�WH(t) is integrable in (S)∗, then define

∫

R

Y (t)dBH(t) �
∫

R

Y (t) �WH(t)dt.

We note that (with limits in (S)∗),

∫ t

0

Y (s)dBH(s) = lim
n→∞

n−1∑

i=0

Y (ti) �
(
BH(ti+1) −BH(ti)

)
,

using suitable partitions. Furthermore,

E
[
Y (ti) �

(
BH(ti+1) − BH(ti)

)]
= 0,

because

E [Hα � 〈MH(ti, ti+1), ·〉] = E

[ ∞∑

i=1

(∫ ti+1

ti

(MHξi)(u)du
)
Hα �Hεi

]

=
∞∑

i=1

(∫ ti+1

ti

(MHξi)(u)du
)
E [Hα �Hεi ]

=
∞∑

i=1

(∫ ti+1

ti

(MHξi)(u)du
)
E [Hα+εi ]

=
∞∑

i=1

(∫ ti+1

ti

(MHξi)(u)du
)
E [Hα+εiH0] = 0,

and so having displayed the crucial steps,

E

[∫ t

0

Y (s)dBH(s)
]

= 0.

From now on, we write this Hitsuda–Skorohod integral as
∫

R

Y (t) � dBH(t),

to distinguish it from some other stochastic integrals. When H = 1
2 , this

integral is more general than the Itô integral, because we did not require that
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Y be adapted. However, in this case when Y is adapted to Brownian motion,
the Hitsuda–Skorohod integral is the same as the classical Itô integral.

Path integrals are based on approximations

n−1∑

i=0

Y (ti)
(
BH(ti+1) −BH(ti)

)
,

and a satisfactory theory exists for H > 1
2 . We refer readers to Chapter 5 of

the forthcoming book by Biagini et al. [4] for details and references. However,
in this case

E

[∫

R

Y (t)dBH(t)
]
�= 0.

In fact, if Y (t) = BH(t), then

E
[
BH(ti)

(
BH(ti+1) −BH(ti)

)]
�= 0,

by a direct computation. For H > 1
2 , using these path integrals

∫ t

0

BH(s)dBH(s) =
1
2
[
BH(t)

]2
,

and so

E

[∫ t

0

BH(s)dBH(s)
]

=
1
2
t2H �= 0.

When H = 1
2 , the path integral and the Itô integral agree for suitably adapted

integrands.
To show how this all works we provide the following example,

∫ t

0

BH(s) � dBH(s) =
1
2
[
BH(t)

]2 − 1
2
t2H .

To show this, recall the chaos expansions for BH and WH :

BH(s)(ω) =
∞∑

i=1

(∫ s

0

MHξi(u)du
)
Hεi(ω),

WH(s)(ω) =
∞∑

j=1

MHξj(s)Hεj (ω).
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Then
∫ t

0

BH(s) � dBH(s) =
∞∑

i,j

∫ t

0

(∫ s

0

MHξi(u)du
)
MHξj(s)dsHεi+εj (ω)

=
1
2

∞∑

i,j

∫ t

0

MHξi(u)du
∫ t

0

MHξj(s)dsHεi+εj (ω)

=
1
2

∞∑

i,j

∫ t

0

MHξi(u)du
∫ t

0

MHξj(s)ds
[
Hεi(ω)Hεj (ω) − δi,j

]

=
1
2
[
BH(t)

]2 − 1
2

∞∑

i=1

(∫ t

0

MHξi(u)du
)2

=
1
2
[
BH(t)

]2 − 1
2
t2H .

The same proof works with H = 1
2 . 
�

Under weak conditions,
∫
R
Y (t) � dBH(t) ∈ (S)∗, and under stronger con-

ditions, it is in L2.

5 Hida Derivatives

A good reference for this topic is Kuo [17]. For Φ ∈ (S)∗ and y ∈ S′(R), define

(DyΦ) (ω) = lim
ε→0

Φ(ω + εy) − Φ(ω)
ε

.

This can be computed in terms of the chaos expansion of Φ:

Φ(ω) =
∑

α

cαHα(ω),

for which we have

(DyΦ) (ω) =
∞∑

i=1

∑

α

cααiHα−εi(ω)〈ξi, y〉.

For y = δt, we then write Dy = ∂t:

(∂tΦ) (ω) =
∞∑

i=1

∑

α

cααiHα−εi(ω)ξi(t).

We always apply the Hida derivative to the chaos expansion. Kuo [17] points
out the following example where the left-hand sides are formally different, but
the right-hand sides are equal,

〈1(0, t], ω〉 =
∞∑

i=1

(∫ t

0

ξi(u)du
)
Hεi(ω)
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and

〈1(0, t), ω〉 =
∞∑

i=1

(∫ t

0

ξi(u)du
)
Hεi(ω).

Using the left-hand sides,

∂t〈1(0, t], ω〉 = 1,
∂t〈1(0, t), ω〉 = 0,

but using the right-hand sides,

∂tB(t)(ω) =
∞∑

i=1

(∫ t

0

ξi(u)du
)
ξi(t).

A basic identity is the following,

Φ(ω) [Ψ(ω) � 〈h, ω〉] = (Φ(ω)Ψ(ω)) � 〈h, ω〉 + Ψ(ω)DhΦ(ω), (11)

which is proved first by taking Φ = Hα, Ψ = Hβ , and h = ξi and then using
linearity and limits in (S)∗. We also use

Hα(ω)Hβ(ω) =
∑

γ≤α∧β
γ!
(
α

γ

)(
β

γ

)
Hα+β−2γ(ω),

which generalizes (5).
We now define the generalized Hida derivatives. It is easy to check that

〈MHφ, ψ〉 = 〈φ,MHψ〉,

for all φ, ψ ∈ S(R). By analogy to what was done above, we define

(
DH
y Φ
)
(ω) = lim

ε→0

Φ(ω + εMHy) − Φ(ω)
ε

.

Define for each φ ∈ S(R),

〈MHy, φ〉 � 〈y,MHφ〉 = 〈y,
∞∑

i=1

〈MHφ, ξi〉ξi〉

=
∞∑

i=1

〈MHφ, ξi〉〈y, ξi〉 =
∞∑

i=1

〈φ,MHξi〉〈y, ξi〉.

This all makes sense when y has compact support. We write ∂Ht for DH
y when

y = δt, and if Φ =
∑
α cαHα, then
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(
∂Ht Φ
)
(ω) =

∞∑

i=1

∑

α

cααiHα−εi(ω)MHξi(t).

Here are some examples:

(1) We have (for H > 1
2 )

∂Ht B
H(u) =

{
H ·
(
t2H−1 − (t− u)2H−1

)
if t ≥ u,

H ·
(
t2H−1 + (u− t)2H−1

)
if t ≤ u.

(12)

This follows from two observations,

∂Ht B
H(u) = M2

H(0, u)(t),
∫ s

0

M2
H(0, t)(x)dx =

∫

R

MH(0, t)(x)MH(0, s)(x)dx

=
1
2
[
|t|2H + |s|2H − |s− t|2H

]
,

and from differentiating both sides of this identity with respect to s.

(2) (MHδt) (x) ≡ γHt (x) = CH ·
(
H − 1

2

)
|t−x|H−(2/3) ∈ S′(R) for all 0 < H <

1. For H > 1
2 , γHt ∈ L1

loc(R) ⊂ S′(R), and for H < 1
2 , it is the distributional

derivative of such a function.

(3) Let X(t) =
∫ t
0 v(s)dB

H(s) for some deterministic function v. Then

∂Ht X(t) = H(2H − 1)
∫ t

0

v(z)(t− z)2H−2dz,

for H > 1
2 . In fact, for such H ,

(M2
Hf)(x) = H(2H − 2)

∫

R

|x− z|2H−2f(z)dz, (13)

which follows from
∫

R

(MHf)(x)(MHg)(x)dx = H(2H − 2)
∫ ∞

−∞

∫ ∞

−∞
|x− z|2H−2f(x)g(z)dxdz.

So

∂Ht X(t) = 〈MH(1(0, t)v),MHδt〉 = 〈1(0, t)v,M2
Hδt〉

=
∫ t

0

v(z)(M2
Hδt)(z)dz

= H(2H − 1)
∫ t

0

v(z)(t− z)2H−2dz.

On the other hand, when H < 1
2 , we first write
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X(t) = v(t)BH(t) −
∫ t

0

v′(s)BH(s)ds,

so

∂Ht X(t) = Hv(t)t2H−1 −
∫ t

0

v′(s)∂Ht B
H(s)ds,

and by (12),

∂Ht X(t) = Hv(t)t2H−1 −H

∫ t

0

v′(s)
[
t2H−1 − (t− s)2H−1

]
ds.

We formally define the adjoint of ∂Ht , written (∂Ht )∗, by
〈
〈(∂Ht )∗Ψ, Φ〉

〉
=
〈
〈Ψ, ∂Ht Φ〉

〉
.

By (7) we can find a formula for the (∂Ht )∗Ψ ,

(∂Ht )∗Ψ =
∑

α,i

cαMHξi(t)Hα+εi = Ψ �WH(t).

We obtain the generalization
∫

R

Y (t) � dBH(t) =
∫

R

Y (t) �WH(t)dt =
∫

R

(∂Ht )∗Y (t)dt,

which is known as a representation of the Hitsuda–Skorohod integral when
H = 1

2 ; see Kuo [17].

(4) If S(t) = S(0)exp
[
BH(t) − 1

2 t
2H
]
, then ∂Ht S(t) = H · t2H−1S(t), which

follows from an obvious chain rule.

(5) ∂Ht W
H(r) = H(2H − 1)|t− r|2H−2 ∈ S′(R) for t �= r.

(6) By the identity (11) with h = δt, we can deduce the following two identities.

Ψ(ω)
[
Φ(ω) �WH

t (ω)
]

= [Ψ(ω)Φ(ω)] �WH
t (ω) + Ψ(ω)∂Ht Φ(ω),

Ψ

∫

R

Φ(t) � dBH
t =
∫

R

[ΨΦ(t)] � dBH
t +
∫

R

Φ(t)∂Ht Ψdt, (14)

so
∫

R

Y (t)dBH(t) =
∫

R

Y (t) � dBH(t) +
∫

R

∂Ht Y (t)dt, (15)

where Equation (14) leads to (15) as follows. If Ψ = Y (ti) and Φ = 1(ti, ti+1]
in (14), then

Y (ti)
[
BH(ti+1) −BH(ti)

]
=
∫ ti+1

ti

Y (ti) � dBH(t) +
∫ ti+1

ti

∂Ht Y (ti)dt.
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One then does some approximations and limits in (S)∗. Equation (15) can
be regarded as an alternative formulation of the path integral, which may
exist as an object in (S)∗ for all 0 < H < 1. Sottinen and Valkeila [28] and
Øksendal [25] give alternative equivalent formulations of (14), but we think
the one presented here is more transparent.

We note that our generalized Hida derivative is the compositionM2
H◦D(H)

t ,
where D(H)

t is a Malliavin derivative (see Biagini and Øksendal [3]), and this
can be compressed by writing Γ = M2

H in (13), an operator used by several
authors for H > 1

2 .

6 Itô-Type Formulas

We now present some new ideas on how to prove Itô-type formulas based on
the identity (14). If

X(t) = X(0) +
∫ t

0

a(u)du+
∫ t

0

b(u) � dBH(u),

and F ≡ F (t, x) is sufficiently smooth, then we wish to obtain an expression
for F (t,X(t)). For simplicity of presentation, we set a(u) ≡ 0 and F ≡ F (x).
To adapt this to the more general case is not difficult.

The idea is as follows. Let 0 = t0 < t1 < · · · < tn = t. Then

F (X(t)) − F (X(0)) =
n−1∑

j=0

F (X(tj+1)) − F (X(tj))

=
n−1∑

j=0

∫ 1

0

d

dθ
F (X(tj) + θ(X(tj+1) −X(tj)))dθ

=
n−1∑

j=0

Φj [X(tj+1) −X(tj)]

=
n−1∑

j=0

Φj

∫ tj+1

tj

b(u) � dBH(u)

=
n−1∑

j=0

∫ tj+1

tj

[Φjb(u)] � dBH(u) +
n−1∑

j=0

∫ tj+1

tj

b(u)∂Hu Φjdu

= T1 + T2,

where

Φj =
∫ 1

0

F ′(X(tj) + θ(X(tj+1) −X(tj)))dθ.
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Now,

T1 →
∫ t

0

[b(u)F ′(X(u))] � dBH(u),

where the convergence is in (S)∗ as the mesh{tj} → 0. We now consider T2.

∂Hu Φj =
∫ 1

0

F ′′(X(tj) + θ(X(tj+1)−X(tj)))
[
(1 − θ)∂Hu X(tj) + θ∂Hu X(tj+1)

]
dθ.

Now,

X(t) = X(0) +
∫ t

0

b(u) � dBH(u),

and for H > 1
2 and b deterministic,

∂Hu X(t) = H(2H − 1)
∫ t

0

b(r)|u − r|2H−2dr,

and so

∂Hu Φj = H(2H − 1)
∫ 1

0

F ′′(X(tj) + θ(X(tj+1) −X(tj)))·
[
(1 − θ)

∫ tj

0

b(r)|u − r|2H−2dr + θ

∫ tj+1

0

b(r)|u − r|2H−2dr

]
dθ

→ H(2H − 1)b(u)F ′′(X(u))
[∫ u

0

b(r)|u − r|2H−2dr

]
,

so

F (X(t)) = F (X(0)) +
∫ t

0

[b(u)F ′(X(u))] � dBH(u)

+H(2H − 1)
∫ t

0

b(u)F ′′(X(u))
[∫ u

0

b(r)|u − r|2H−2dr

]
du. (16)

This agrees with the results of Sottinen and Valkeila [28] and Øksendal [25].
Sottinen and Valkeila also write the Itô-type formula when b is not determin-
istic, but by different methods. Writing X(t) as a chaos expansion, we are
able to compute ∂Ht X(t) and compare the resulting Itô-type formula with the
one obtained by Sottinen and Valkeila; see also the paper by Bender [2].

We could also note that

F (X(t)) = F (X(0)) +
∫ t

0

[b(u)F ′(X(u))] � dBH(u)

+
∫ t

0

b(u)F ′′(X(u))∂Hu X(u) du,
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and if H > 1
2 , then

X(t) =
∫ t

0

b(r) � dBH(r) =
∫ t

0

b(r) �WH(r) dr

implies

∂Ht X(t) =
∫ t

0

∂Ht b(r) �WH(r) dr +
∫ t

0

b(r) � ∂Ht WH(r) dr

=
∫ t

0

∂Ht b(r) � dBH(r) +H(2H − 1)
∫ t

0

b(r)(t− r)2H−2dr.

This leads to a result that agrees with the results of Alos and Nualart [1,
(Theorem 8)].

For H < 1
2 , and b deterministic, we could proceed as follows. From

X(t) = b(t)BH(t) −
∫ t

0

b′(u)BH(u)du,

we have

∂Ht X(t) = b(t)∂Ht B
H(t) −

∫ t

0

b′(u)∂Ht B
H(u)du

= Hb(t)t2H−1 −H

∫ t

0

b′(u)
[
t2H−1 − (t− u)2H−1

]
du,

so

F (X(t)) = F (X(0)) +
∫ t

0

[F ′(X(u))b(u)] � dBH(u)

+
∫ t

0

b(u)F ′′(X(u))∂Hu X(u)du

= F (X(0)) +
∫ t

0

[F ′(X(u))b(u)] � dBH(u)

+H

∫ t

0

b(u)2F ′′(X(u))u2H−1du

−H

∫ t

0

b(u)F ′′(X(u))
∫ u

0

b′(r)
[
u2H−1 − (u− r)2H−1

]
drdu,

(17)

which is the usual Itô formula when H = 1
2 , where we used Equation (12)

for t ≥ u. Note that the case H = 1
2 follows from taking limit at H → 1

2−
in (17) but not from taking limits as H → 1

2+ in (16). This makes intuitive
sense, because Brownian motion can be obtained (in some sense) from BH by
fractional integration if H < 1

2 , but by fractional differentiation if H > 1
2 .
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The case when b is not deterministic is not treated here but will be dis-
cussed along with other details in a future paper.

Various Itô-type formulas are presented in Biagini et al. [4], where an
extensive bibliography is provided, and we mention also a paper of Decreuse-
fond [5], which used the Malliavin calculus approach to obtain Itô-type for-
mulas for 0 < H < 1.
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Asset and Option Pricing



A Tutorial on Zero Volatility and Option
Adjusted Spreads

Robert Jarrow
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Summary. This paper provides a brief tutorial on the notions of a zero volatility
(ZV) spread and an option adjusted spread (OAS), as applied to fixed income se-
curities. Using the standard definitions, it is shown that the zero volatility spread
measures the percentage of a security’s spread due to any embedded options and
any mispricings. The mispricings could be due to either market or model error. In
contrast, the OAS only measures the percentage of the security’s spread due to mis-
pricings. Refinements and alternative measures of a bond’s embedded optionality
and mispricings are also provided.

Key words: Option adjusted spreads; zero volatility spreads; HJM model; arbitrage
opportunities.

1 Introduction

Zero volatility (ZV) and option adjusted spreads (OAS) apply to bonds with
embedded options. The embedded options could be call provisions, prepay-
ment provisions, or even credit risk (viewed as the option to default). ZV
spreads and OAS were first used in the residential mortgage-backed securities
market to adjust for prepayment risk.

The purpose of this paper is to provide a brief tutorial on the notions of
a ZV spread and OAS, using as a frame of reference the HJM [4] arbitrage-
free term structure models. The HJM model, as applied to bonds, provides
an objective method for valuing embedded options and determining market
mispricings. Using these objective measures, we can more easily define and
characterize both ZV spreads and OAS. We show that ZV spreads measure
the excess spread on a bond due to both the embedded options and any
mispricings. The mispricings could be due to either model or market errors.
A market error represents an arbitrage opportunity. A model error represents
a misspecified model perhaps due to the selection of an incorrect stochastic
process, omitted risk premia, omitted risks (e.g., liquidity risk), or market
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imperfections (e.g., transaction costs). In contrast, we show that OAS is a
measure of the residual spread in a bond due to only mispricings (after the
removal of all embedded options and interest rate risk); see [2; 3], and [8]
for background material. Refinements and alternative measures of a bond’s
embedded optionality and mispricings are provided.

An outline for this paper is as follows. Section 2 presents the theory, Sec-
tion 3 discusses ZV spreads, and Section 4 studies OAS. Section 5 provides a
numerical example to illustrate the previous concepts. Section 6 concludes.

2 The Theory

Assume a typical Heath–Jarrow–Morton (HJM [4]) economy. Given is a fil-
tered probability space (Ω, Fτ , P, (Ft)t∈[0,τ ]) satisfying the usual conditions
(see [7]), where Ω is the state space with generic element ω, Fτ is a set of
events, P the statistical probability measure, and (Ft)t∈[0,τ ] is the filtration.
The state ω can be thought of as a possible interest rate scenario. Traded are
a collection of default-free zero coupon bonds and various other (as needed)
fixed income securities with embedded options. The spot rate of interest is
denoted by rs(ω), time 0 forward rates of maturity T by f(0, T ), and time 0
default-free zero coupon bond prices of maturity T by p(0, T ).

We assume that the market for interest rate risk is arbitrage-free and
complete; hence, this implies the existence and uniqueness of an equivalent
martingale probability Q, with expectation denoted by E[·], that can be used
for valuation. This is the standard model used for valuing interest rate risk.
For simplicity, we only investigate securities that reflect interest rate risk. The
analysis, however, readily extends for the inclusion of credit risk; see [1] for a
good review of this extension.

Let us consider a traded fixed income security, called a bond, that has an
embedded option(s). The bond is, otherwise, default-free. For concreteness,
we can think of the embedded option as a prepayment provision (the bond
is short this option), although as evidenced below, the analysis applies in
complete generality.

Let the bond have a maturity T , with discrete cash flows given by
(Ct)t=1,2,...,T if no embedded options are exercised. For these bonds, we impose
the condition that Ct ≥ 0 for all t and Ct > 0 for some t. Let (ct(ω))t=1,2,...,T

be the bond’s cash flows in state ω given embedded options are possibly ex-
ercised where ct(ω) ≥ 0 with probability one for all t and for some t there
is a set of positive probability where ct(ω) > 0. This excludes interest rate
swaps from consideration. (In fact, we argue below that the notion of an OAS
is not useful for comparing fixed income securities that violate this nonnega-
tive cash flow condition due to nonuniqueness of computed OAS.) The cash
flows with embedded options (ct(ω))t=1,2,...,T will differ from the cash flows
without (Ct)t=1,2,...,T . For example, for a bond with a prepayment provision,
the two cash flows are the same except if prepayment occurs, and afterwards.
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On the prepayment date (assuming it occurs on a coupon payment date), the
cash flow with embedded options includes the coupon and remaining principal
(the prepayment). There are no further cash flows if prepayment occurs. In
contrast, on the prepayment date, the cash flow without embedded options
is just the coupon payment. The remaining cash flows without the embedded
option consist of the coupons on the coupon payment dates and the principal
on the maturity date.

Given this structure, the time 0 price of the bond with embedded options,
denoted V0, is given by

V0 = E

[
T∑

t=1

ct(ω)e−
∫ t
0 rs(ω)ds

]
> 0. (1)

This represents the present value of the discounted cash flows from holding
the bond. The expectation is taken under the martingale measure Q, which
implies that the formula adjusts for interest rate risk premia. An intuitive way
to understand this is to note that instead of increasing the discount rate in
computing the present value, the probabilities are adjusted to reflect interest
rate risk. Note that the price of the bond is positive due to the nonnegativ-
ity conditions imposed on the bond’s cash flows. This is called the fair or
arbitrage-free price of the bond.

It is convenient to consider an otherwise identical bond that has no em-
bedded options. This bond also has a maturity T , and its cash flows (across
all states) are given by (Ct)t=1,2,...,T . Its time 0 value, denoted B0, is given
by

B0 = E

[
T∑

t=1

Cte
−
∫

t
0 rs(ω)ds

]
> 0. (2)

Again, this value is strictly positive. Using the properties of the martingale
measure, some algebra yields the following equivalent expressions for B0,

T∑

t=1

CtE
[
e−
∫

t
0 rs(ω)ds

]
=

T∑

t=1

Ctp(0, t) =
T∑

t=1

Cte
−
∫

t
0 f(0,s)ds. (3)

These alternative expressions prove useful below.
Given expressions (1)–(3), the dollar value of the bond’s embedded options

can be computed as
V0 −B0.

If the bond holder is long an embedded option, then V0 −B0 ≥ 0. Conversely,
as in the case of a prepayment provision, if the bondholder is short an em-
bedded option, then V0 −B0 ≤ 0.

In the above structure, both V0 and B0 represent the fair or arbitrage-free
value of the bonds given a particular cash flow pattern. These are the bond
prices in markets with no mispricings. To complete the setup for the discussion
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of ZV spreads and OAS, we need to introduce some notation for the market
price of the bonds, denoted V mkt

0 and Bmkt
0 , respectively. These prices could

differ from the fair values.
From the interest rate derivatives literature, standard measures of mispric-

ings are readily available including the dollar mispricing, represented by

V mkt
0 − V0 = V mkt

0 − E

[
T∑

t=1

ct(ω)e−
∫

t
0 rs(ω)ds

]
,

and the percentage dollar mispricing, represented by

V mkt
0 − V0

V mkt
0

=
Vmkt0 − E

[∑T
t=1 ct(ω)e−

∫
t
0 rs(ω)ds

]

V mkt
0

.

The mispricings characterized by these measures could be due to either model
or market errors. A market error represents an arbitrage opportunity. A model
error represents a misspecified model perhaps due to the selection of an incor-
rect stochastic process, omitted risk premia, omitted risks (e.g., liquidity risk),
or market imperfections (e.g., transaction costs). To obtain a spread mispric-
ing measure, we next discuss zero volatility and option-adjusted spreads.

3 ZV Spread

This section defines a ZV spread (sometimes called a static spread); see [3,
p. 340]. Here, we show that the ZV spread captures both mispricings and the
value of any embedded options.

Definition 1 (ZV spread). The static or ZV spread zv(mkt) is the solution
to the following expression,

V mkt
0 =

T∑

t=1

Cte
−
∫ t
0 [f(0,s)+zv(mkt)]ds

=
T∑

t=1

e−zv(mkt)·tCtp(0, t). (4)

zv(mkt) is that spread such that the discounted cash flows to the bond Ct
(excluding any embedded options) equal the market price. Note that because
the market price (the left side) includes both the value of the embedded op-
tions and any possible mispricings, zv(mkt) is a joint measure of the excess
spread in the bond due to both the embedded options and mispricings.

The first question to ask with respect to ZV spreads concerns their ex-
istence and uniqueness. Using Sturm’s Theorem [5, p. 298], it can be easily
shown that there is always one relevant real root to this equation (the proof
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is in the appendix). This is due to the fact that both the bond’s cash flows
and market price are nonnegative.

To obtain a spread measure of the bond’s mispricing alone, using ZV
spreads, we need to define another quantity, zv(fair), as the solution to the
following expression,

V0 =
T∑

t=1

Cte
−
∫

t
0 [f(0,s)+zv(fair)]ds.

Note that the computation of zv(fair) uses the bond’s fair price V0, and not
the market price on the left side of the expression. (This zv(fair) exists and is
unique by the same argument used previously.) This computation, therefore,
requires the use of a model for the evolution of the term structure of interest
rates.

Then, a spread mispricing measure is defined by

spread mispricing = zv(market) − zv(fair).

If this quantity is positive, then the bond is earning too large a spread and it is
undervalued. If it is negative, the converse is true. As a spread, this mispricing
measure can be compared across bonds with different maturities, coupons, or
embedded options. This spread measure of mispricing is an alternative to an
OAS, discussed in the next section.

4 OAS

This section defines OAS and explains its meaning. We show that OAS is a
spread measure of mispricing. OAS is defined in the literature in the following
fashion (cf. [2, p. 2; 3, p. 359], and [8, p. 253]).

Definition 2 (OAS). OAS, ϕ, is the solution to the following expression,

V mkt
0 = E

[
T∑

t=1

ct(ω)e−
∫ t
0 [rs(ω)+ϕ]ds

]

=
T∑

t=1

e−ϕtE
[
ct(ω)e−

∫ t
0 rs(ω)ds

]
. (5)

OAS is that spread ϕ that equates the expected value of the bond’s cash
flows (including any embedded options) to the market price. The probabilities
are computed under the martingale measure so that they are adjusted to
reflect any relevant risk premia. As before, it can be shown that there is
always one relevant real root to this equation (the proof is in the appendix).
This is due to the fact that both the bond’s cash flows and market price are
nonnegative.
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As defined, OAS is a measure of mispricings. This can be easily proven by
referring back to expression (1). If the bond is properly priced (i.e., V mkt

0 = V0)
then we get

V mkt
0 =

T∑

t=1

E
[
ct(ω)e−

∫ t
0 rs(ω)ds

]
. (6)

This is similar in appearance to expression (5) in the definition of an OAS. In
expression (6), a zero spread equates the expected discounted cash flows to the
market price. Hence, any nonzero spread added to expression (6) represents
a mispricing. As before, the mispricing reflects both market error and model
error. Market errors represent arbitrage opportunities, whereas model errors
represent a misspecified model.

The notion of an OAS cannot be extended to swaps or futures. The reason
is that if the cash flows ct(ω) can be nonpositive, then multiple relevant real
roots are possible to expression (6). For this more general situation, OAS is
no longer a useful measure of the security’s mispricing. Indeed, given multiple
roots, which one to use for relative comparisons is indeterminate. This problem
is similar to the well-known difficulties with using the internal rate of return
for comparing different (capital budgeting) investment projects.

5 An Example

This section presents a numerical example to illustrate the previous points
with respect to ZV spreads and OAS. The example represents a discrete time
version of an HJM model. For a complete discussion of these discrete time
models see [6]. Because the example is in discrete time, we use discrete instead
on continuously compounded interest rates. Otherwise, the notation follows
the theory section above.

5.1 The Economy

Consider a three-period economy with time periods 0,1,2. Trading are zero-
coupon bonds that mature at times 1 and 2. The bond prices are given in the
following tree.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bond prices
1

↗
0.98725 ↘

↗ 1 1
0.96117 1
0.98039 ↘ 0.97353 ↗

1 ↘
1

time 0 time 1 time 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The first column represents time 0. The bond price at the top of the first
vector at time 0 represents the price of the two-period zero coupon bond,
0.96117. The bond price at the bottom of the first vector at time 0 represents
the one-period zero coupon bond’s price, 0.98039. At time 1 these bond prices
move randomly to the two possible states of the economy (up and down). The
prices for both bonds in these two states are given in the column labeled time
1. In the up state, the price of the two-period bond is 0.98725 and the price of
the one-period bond is 1. After time 1 only one bond remains, the two-period
bond. Its price is unity for all possible movements of the tree.

The time 0 forward rates (discrete) implied by the bond prices are f(0, 0) =
0.02 and f(0, 1) = 0.02.

These bond prices imply the following spot interest rate tree.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

spot rates
.01291

↗
.02

↘
.02719

time 0 time 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to show that this term structure evolution is arbitrage-free and
complete. The easiest way is to identify the unique martingale probabilities
at time 0. They are equal to 0.5. One can check that the time 0 price of the
two-period bond equals its discounted expected value:

0.96117 = .5(0.98725 + 0.97353)/1.02,

making the tree arbitrage-free.
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5.2 The Bonds and the Prepayment Option

Next, consider a coupon bond with coupon rate 0.015, principal 100, maturity
time 2. Its value plus cash flow tree is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Coupon Bond
cash flow 101.5

↗
cash flow 1.5

value 100.2064 ↘

↗ cash flow 101.5
B0 = 99.0292 cash flow 101.5

↘ ↗
cash flow 1.5
value 98.8132 ↘

cash flow 101.5

time 0 time 1 time 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Consider a prepayment option with maturity time 1 and strike price K =
100. Its value tree is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

option
max(100.2064−K, 0) = 0.2064

↗
C0 = 0.101105

↘
max(98.8132−K, 0) = 0

time 0 time 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C0 = .5(max(100.2064−K, 0)+max(98.8132−K, 0))/1.02 = 0.101105.
Next, consider a bond with an embedded prepayment option. Its value is

V0 = B0 − C0 = 98.928074. One subtracts the prepayment option, because
it is exercised by the issuer of the bond. The cash flow to the bond with the
prepayment option is:
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bond with
embedded cash flow 0

option ↗

cash flow
101.5

prepaid ↘
↗ value 0 cash flow 0

V0

= 98.928074 cash flow 101.5

↘ ↗
cash flow 1.5 ↘
value 98.8132 cash flow 101.5

time 0 time 1 time 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This cash flow tree is needed for the computation of OAS below.

5.3 The ZV Spread Computation

Using the arbitrage-free price for the bond 98.928074, the zv(fair) is obtained
by solving the following equation,

98.928074 =
1

(1 + zv(fair))
(1.5)(.98039) +

1
(1 + zv(fair))2

(101.5)(.96117).

There are two solutions to this expression: zv(fair) = 0.0005155,−1.9856503.
There is only one root that keeps the discount factor nonnegative. This is the
relevant root (0.0005155).

Supposing the market value of the bond is 99, we can compute the zv(mkt)
by solving a similar equation,

99.00 =
1

(1 + zv(mkt))
(1.5)(.98039) +

1
(1 + zv(mkt))2

(101.5)(.96117).

There are two solutions to this expression: zv(mkt) = 0.0001493,−1.9852949.
There is only one root that keeps the discount factor nonnegative. This is the
relevant root (0.0001493).

The mispricing measure based on ZV spreads is zv(market) − zv(fair)
= 0.0001493− 0.0005155 = −.0003662. The bond is overvalued by −3.7 basis
points.

5.4 The OAS Computation

Using the arbitrage-free price for the bond, 98.928074, the OAS is obtained
by solving the following equation,
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98.928074 =
.5

(1 + ϕ)

[
1.5

1 + .02
+

101.5
1 + .02

]

+
.5

(1 + ϕ)2

[
101.5

(1 + .02)(1 + .02719)

]
1

(1 + ϕ)2
.

There are two solutions to this expression: ϕ = 0 and −1.48963. There is only
one root that keeps the discount factor nonnegative. This is the proper root
(ϕ = 0). This example shows that OAS reflects the fact that there are no
mispricings in this economy.

Next, let us suppose that the bond trades for 99.00 dollars; that is, it is
overvalued. OAS is then the solution to:

99.00 =
.5

(1 + ϕ)

[
1.5

1 + .02
+

101.5
1 + .02

]

+
.5

(1 + ϕ)2

[
101.5

(1 + .02)(1 + .02719)

]
1

(1 + ϕ)2
.

The solutions are −.0004878 and −1.48951. Ignoring the second root again,
the OAS of −4.9 basis points shows the bond is overvalued.

Note that the mispricing measure based on ZV spreads versus OAS differs,
although both show an overvaluation.

6 Conclusion

This paper provides a tutorial on two commonly used measures: a zero volatil-
ity spread and an option adjusted spread. The Heath–Jarrow–Morton model
is used as a frame of reference for understanding these two quantities. We show
that the ZV spread is a measure of the excess spread due to both a bond’s
embedded options and any mispricings, whereas the OAS provides only a valid
measure of a bond’s mispricings.

If mispricings exist, they are due to either market error or model error. If it
is market error, then it represents an arbitrage opportunity. If it is model error,
then it represents either an incorrect stochastic process, omitted risk premia,
omitted risks (e.g., liquidity risk), or market imperfections (e.g., transaction
costs). To distinguish between these two alternatives, one can backtest the
model with the arbitrage trading strategies implied by the mispricing (nec-
essarily including all market imperfections). If it is market error, then the
trading strategy will earn abnormal returns. If not, then it is model error.
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Appendix: Real Root Solution to Equations (4) and (5)

Both Equations (4) and (5) take the form

T∑

t=1

e−β·tαt − α0 = 0, (7)

where αt ≥ 0 for all t and α0 > 0. Let us write x = e−β. Then the relevant
range for x is (0,∞). We seek a real root of the polynomial equation

f(x) =
T∑

t=1

xtαt − α0

on [0,M ] for M chosen large enough so that f(M) > 0. Using Sturm’s theorem
(see [5, p. 298]), we note that because f(0) = −α0 < 0, f(M) > 0, and all
derivatives of f(x) up to degree T are nonnegative for all x, we get that
the number of variations in the sign of {f(0), f ′(0), . . . , fT (0)} is 1, where
fT (0) denotes the T th derivative, and the number of variations in the sign of
{f(M), f ′(M), . . . , fT (M)} is 0. Sturm’s theorem then tells us the number of
distinct real roots of f(x) in (0,M) is 1.

Inasmuch as this is true for all x > M , we see that there is one distinct
real root of f(x) for x ∈ (0,∞).

Finally, because x = e−β, this gives us one real root β of (7).
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Summary. This paper reviews and extends the mathematical finance literature on
bubbles in complete markets. We provide a new characterization theorem for bub-
bles under the standard no-arbitrage framework, showing that bubbles can be of
three types. Type 1 bubbles are uniformly integrable martingales, and these can ex-
ist with an infinite lifetime. Type 2 bubbles are nonuniformly integrable martingales,
and these can exist for a finite, but unbounded, lifetime. Last, Type 3 bubbles are
strict local martingales, and these can exist for a finite lifetime only. When one adds
a no-dominance assumption (from Merton [24]), only Type 1 bubbles remain. In
addition, under Merton’s no-dominance hypothesis, put–call parity holds and there
are no bubbles in standard call and put options. Our analysis implies that if one
believes asset price bubbles exist and are an important economic phenomena, then
asset markets must be incomplete.

Key words: Bubbles; no free lunch with vanishing risk (NFLVR); complete markets;
local martingale; put–call parity; derivative pricing.

1 Introduction

Although asset price bubbles, their existence and characterization, have en-
thralled the imagination of economists for many years, only recently has this
topic been studied using the tools of mathematical finance; see in particular
Loewenstein and Willard [22], Cox and Hobson [7], Jarrow and Madan [20],
Gilles [15], Gilles and Leroy [16], and Huang and Werner [17]. The purpose
of this paper is to review and to extend this mathematical finance literature
in order to increase our understanding of asset price bubbles. In this paper,
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we restrict our attention to arbitrage-free economies that satisfy both the no-
free-lunch-with-vanishing-risk (NFLVR) and complete markets hypotheses, in
order that both the first and second fundamental theorems of asset pricing
apply. Equivalently, there exists a unique equivalent local martingale measure.
We exclude the study of incomplete markets. (We study incomplete market
asset price bubbles in a companion paper, see Jarrow et al. [21].) We also
exclude the study of charges, because charges require a stronger notion of no-
arbitrage (see Jarrow and Madan [20], Gilles [15], and Gilles and Leroy [16]).

We make two contributions to the bubbles literature. First, we provide a
new characterization theorem for asset price bubbles. Second, we study the
effect of additionally imposing Merton’s [24] no-dominance assumption on the
existence of bubbles in an economy. Our new results in this regard are:

(i) Bubbles can be of three types: an asset price process that is (1) a
uniformly integrable martingale, (2) a martingale that is not a uniformly
integrable martingale, or (3) a strict local martingale that is not a martingale.
Bubbles of Type 1 can be viewed as the asset price process containing a
component analogous to fiat money (see Example 2). Type 2 bubbles are
generated by the fact that all trading strategies must terminate in finite time,
and Type 3 bubbles are caused by the standard admissibility condition used
to exclude doubling strategies.

(ii) Bubbles cannot be started—“born”—in a complete market. (In con-
trast, they can be born in incomplete markets.) They either exist at the start
or not, and if they do exist, they may disappear as the economy evolves.

(iii) Bubbles in standard European call and put options can only be of
Type 3, because standard options have finite maturities. Under NFLVR, any
assets and contingent claims can have bubbles and put–call parity does not
hold in general.

(iv) Under NFLVR and no-dominance, in complete markets, there can be
no Type 2 or Type 3 asset price bubbles. Consequently, standard options have
no bubbles and put–call parity holds.

The economic conclusions from this paper are threefold. First, bubbles of
Type 1 are uninteresting from an economic perspective because they represent
a permanent but stochastic wedge between an asset’s fundamental value and
its market price, generated by a perceived residual value at time infinity.

Second, Type 2 bubbles are the result of trading strategies being of finite
time duration, although possibly unbounded. To try to profit from a bubble
of Type 2 or Type 3, one would short the asset in anticipation of the bubble
bursting. Because a Type 2 bubble can exist, with positive probability, be-
yond any trading strategy, these bubbles can persist as they do not violate
the NFLVR assumption. Type 3 bubbles occur in assets with finite maturities.
For these asset price bubbles, unprotected shorting is not feasible, because due
to the admissibility condition, if the short’s value gets low enough, the trad-
ing strategy must be terminated with positive probability before the bubble
bursts. This admissibility condition removes downward selling pressure on the
asset’s price, and hence enables these bubbles to exist.
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Third, modulo Type 1 bubbles, under both the NFLVR and no-dominance
hypotheses, there can be no asset pricing bubbles in complete markets. This
implies that if one believes asset pricing bubbles exist and are an important
economic phenomenon, and if one accepts Merton’s “no-dominance” assump-
tion, then asset markets must be incomplete.

An outline of this paper is as follows. Section 2 presents our model struc-
ture and defines an asset price bubble. Section 3 characterizes the properties of
asset price bubbles. Section 4 provides the economic intuition underlying the
mathematics, and Section 5 extends the analysis to contingent claims bubbles.
Finally, Section 6 concludes.

2 Model Description

This section presents the details of our economic model.

2.1 No Free Lunch with Vanishing Risk (NFLVR)

Traded in our economy is a risky asset and a money market account. For
simplicity, and without loss of generality, we assume that the spot interest
rate is 0 in our economy, so that the money market account has constant
unit value. Let τ be a maturity (life) of the risky asset. Let (Dt)0≤t<τ be
a càdlàg semimartingale representing the cumulative dividend process of the
risky asset, with Xτ its terminal payoff or liquidation value at time τ . We
assume that Xτ , Dt ≥ 0 for each t ∈ (0, τ). The market price of the risky
asset is given by a nonnegative càdlàg semimartingale S = (St)t≥0 defined
on a filtered complete probability space (Ω,F ,F, P ) where F = (Ft)t≥0. We
assume that the filtration F satisfies the usual hypotheses (cf. [25]). Note that
for t such that �Dt > 0, St denotes a price ex-dividend, because S is càdlàg.
Let W = (Wt)t≥0 be a wealth process from owning the asset, given by

Wt = St +
∫ t∧τ

0

dDu +Xτ1{τ≤t}.

A key notion in our economy is an equivalent local martingale measure.

Definition 1 (Equivalent Local Martingale Measure). Let Q be a prob-
ability measure equivalent to P such that the wealth process W is a Q-local
martingale. We call Q an Equivalent Local Martingale Measure (ELMM). We
denote the set of ELMMs by Me

loc(W ).

A trading strategy is defined to be a pair of processes (π, η) = (πt, ηt)t≥0

representing the number of units of the risky asset and money market account
held at time t with π ∈ L(W ) (see [25] for the definition of the space of
integrable processes L(W )). The wealth process of the trading strategy (π, η)



100 Robert A. Jarrow, Philip Protter, and Kazuhiro Shimbo

is given by V π,η = (V π,η
t )t≥0, where V π,η

t = πtSt + ηt. Assume temporarily
that π is a semimartingale. Then a self-financing trading strategy with V π,η

0 =
0 is a trading strategy (π, η) such that the associated wealth process V π,η is
given by

V π,η
t =

∫ t

0

πudWu =
∫ t

0

πudSu +
∫ t∧τ

0

πudDu + πτXτ1{τ≤t}

=
(
πtSt −

∫ t

0

Su−dπu − [πc, Sc]t

)
+
∫ t∧τ

0

πudDu + πτXτ1{τ≤t}

= πtSt + ηt, (1)

where we have used integration by parts, and where

ηt =
∫ t∧τ

0

πudDu + πτXτ1{τ≤t} −
∫ t

0

Su−dπu − [πc, Sc]t. (2)

If we now discard the temporary assumption that π is a semimartingale, we
simply define a self-financing trading strategy (π, η) to be a pair of processes,
with π predictable and η optional and such that:

V π,η
t = πtSt + ηt =

∫ t

0

πudWu.

As noted, a self-financing trading strategy starts with zero units of the money
market account η0 = 0, and it reflects proceeds from purchases/sales of a risky
asset that accumulate holdings in the money market account as the cash flows
from the risky asset are deposited. In particular, Equation (2) shows that η
is uniquely determined by π if a trading strategy is self-financing. Therefore
without loss of generality, we represent (π, η) by π.

To avoid doubling strategies, we further restrict the class of self-financing
trading strategies.

Definition 2 (Admissibility). Let V π,η be the wealth process given by (1).
We say that the trading strategy π is a−admissible if it is self-financing and
V π,η
t ≥ −a a.s. for all t ≥ 0. We say a trading strategy is admissible if it is

self-financing and V π,η
t ≥ −a for all t ≥ 0 for some a ∈ R

+.

The notion of admissibility corresponds to a lower bound on the wealth
process, an implicit inability to borrow if one’s debt becomes too large. (For
example, see Loewenstein and Willard [22, Equation (5), p. 23].) There are
several alternative definitions of admissibility that could be employed and
these are discussed in Section 4.3. However, all of our results are robust to
these alternative formulations.

We want to explore the existence of bubbles in arbitrage-free markets,
hence, we need to define the NFLVR hypothesis. Let

K = {Wπ
∞ = (π ·W )∞ : π is admissible},

C = (K − L0
+) ∩ L∞.
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Definition 3 (NFLVR). We say that a semimartingale S satisfies the no
free lunch with vanishing risk (NFLVR) condition with respect to admissible
integrands, if

C̄ ∩ L∞
+ = {0},

where C denotes the closure of C in the sup-norm topology of L∞.

Given NFLVR, we impose the following assumption.

Assumption 1 The market satisfies NFLVR hypothesis.

By the first fundamental theorem of asset pricing [9], this implies that the
market admits an equivalent σ-martingale measure. By Proposition 3.3 and
Corollary 3.5 [1, pp. 307, 309], a σ-martingale bounded from below is a local
martingale. (For the definition and properties of σ-martingales, see [25; 14; 9;
19, Section III.6e].) Thus we have the following theorem.

Theorem 1 (First Fundamental Theorem). A market satisfies the NFLVR
condition if and only if there exists an ELMM.

Theorem 1 holds even if the price process is not locally bounded, due to
the assumption that W is nonnegative. (In [9], the driving semimartingale
(price process) takes values in R

d and is not locally bounded from below.)
We are interested in studying the existence and characterization of bubbles

in complete markets. A market is complete if for all X∞ ∈ L2(Ω,F∞, P ), there
exists a self-financing trading strategy (π, η) and c ∈ R such that

X∞ = c+
∫ ∞

0

πudWu.

For the subsequent analysis, we also assume that the market is complete,
hence by the second fundamental theorem of asset pricing (cf. [18]), the ELMM
is unique.

Assumption 2 Given the market satisfies NFLVR, the ELMM is unique.

This assumption is key to a number of the subsequent results. For the
remainder of the paper we assume that both Assumptions 1 and 2 hold, that
is, that the markets are arbitrage-free and complete.

2.2 No-Dominance

In addition to Assumption 1, we also study the imposition of Merton’s [24] no-
dominance assumption. To state this assumption in our setting, assume that
there are two assets or contingent claims characterized by the pair of cash
flows ({D1

t }t≥0, X
1
τ ), ({D2

t }t≥0, X
2
τ ). Let V 1

t , V
2
t denote their market prices at

time t.
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Assumption 3 (No-Dominance) For any stopping time τ0 ≤ τ a.s., if

D2
τ0+u−D

2
τ0 ≥ D1

τ0+u−D
1
τ0 and X2

τ1{τ>τ0} ≥ X1
τ1{τ>τ0} for u > 0, (3)

then V 2
τ0 ≥ V 1

τ0 . Furthermore, if for some stopping time τ0,

E
[
1({D2∞−D2

τ0
>D1∞−D1

τ0
}∪{X2

τ1{τ>τ0}>X1
τ1{τ>τ0}})

∣∣∣Fτ0
]
> 0

with positive probability, then V 2
τ0 > V 1

τ0 .

Note that (3) implies that X2
τ1{τ>τ0} ≥ X1

τ1{τ>τ0} for any stopping time τ0
such that τ0 ≤ τ .

This assumption rephrases Assumption 1 of [24] in modern mathematical
terms, we believe for the first time. In essence, it codifies the intuitively ob-
vious idea that, all things being equal, financial agents prefer more to less.
Assumption 3 is violated only if there is an agent who is willing to buy a
dominated security at the higher price.

Assumption 3 is related to Assumption 1, but they are not equivalent.

Lemma 1. Assumption 3 implies Assumption 1. However, the converse is not
true.

Proof. Assume that W allows for a free lunch with vanishing risk. There is
f ∈ L∞

+ (P )\{0} and sequence {fn}∞n=0 = {(Hn · W )∞}∞n=0 where Hn is a
sequence of admissible integrands and {gn} satisfying gn ≤ fn such that

lim
n

‖f − gn‖∞ = 0.

In particular, the negative part {(fn)−} tends to zero uniformly. (See [10,
p. 131]). Applying Assumption 3 to two terminal payoffs f and 0, we have
0 = V0(f) > 0, a contradiction. Therefore Assumption 3 implies Assumption
1. For the converse, see Example 1. 
�

The domain of Assumption 3 contains a domain of Assumption 3, C̄∩L∞
+ (P ).

This explains why Assumption 3 implies Assumption 1.
The following is an example consistent with Assumption 1 but excluded

by Assumption 3.

Example 1. Consider two assets maturing at τ with payoffs Xτ and Yτ , re-
spectively. Suppose that Xτ ≥ Yτ a.s. Then,

X∗
t = EQ[Xτ |Ft]1{t<τ} ≥ EQ[Yτ |Ft]1{t<τ} = Y ∗

t .

Let β be a nonnegative local martingale such that βτ = 0 and βt > X∗
t − Y ∗

t

for some t ∈ (0, τ). (The existence of such a process follows, for example,
from Example 3.) Suppose further that the prices of asset Xt = X∗

t and
Yt = βt + Y ∗

t . Then, Assumption 3 is violated because Yt > Xt.
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To see that this is not an NFLVR, consider a strategy that would attempt
to take advantage of this mispricing. One would want to sell Y and to buy
X , say at time t. Then, if held until maturity, this would generate a cash
flow equal to βt − (X∗

t − Y ∗
t ) > 0 at time t and Xτ − Yτ ≥ 0 at time τ .

However, for any u with t < u ≤ τ , the market value of this trading strategy
is −Yu + Xu = −βu + (X∗

u − Y ∗
u ). Because −β is negative and unbounded,

this strategy is inadmissible and not a FLVR. We discuss issues related to
admissibility further in Section 4.3.

One situation Assumption 3 is meant to exclude is often called a suicide
strategy (see Harrison and Pliska [18] for the notion of a suicide strategy).
An alternative approach for dealing with suicide strategies is to restrict the
analysis to the set of maximal assets. An outcome (π · S)∞ of an admissible
strategy π is called maximal if for any admissible strategy π′ such that (π′ ·
S)∞ ≥ (π · S)∞, then π′ = π.

2.3 Bubbles

This section provides the definition of an asset pricing bubble in our economy.
To do this, we must first define the asset’s fundamental price.

The Fundamental Price

We define the fundamental price as the expected value of the asset’s future
payoffs with respect to the ELMM Q ∈ Me

loc(W ). (Recall that we assume
that the market is complete, Assumption 2.)

Definition 4 (Fundamental Price). The fundamental price S∗
t of an asset

with market price St is defined by

S∗
t = EQ

[∫ τ

t

dDu +Xτ1{τ<∞}|Ft
]
1{t<τ}. (4)

Note that the fundamental price is just the conditional expected value of
the asset’s cash flows, under the valuation measure Q. (Note that because
the random variable is positive, the conditional expectation is always defined;
however, in Lemma 2 that follows, we show that it is actually in L1 and thus
is classically defined.) Also, note that if the asset has a payoff at τ = ∞, then
this payoff Xτ1{τ=∞} does not contribute to the fundamental price S∗

t . We do
this because an agent cannot consume the payoff Xτ1{τ=∞} by employing an
admissible trading strategy. Indeed, although unbounded in time, for a given
ω ∈ Ω, all such admissible trading strategies must terminate in finite time.

Lemma 2. The fundamental price in (4) is well defined. Furthermore, (St)t≥0

converges to S∞ ∈ L1(Q) a.s. and (S∗
t )t≥0 converges to 0 a.s.
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Proof. Fix Q ∈ Me
loc(W ). To show that S∗

t is well defined, it suffices to show
that
∫ τ
0 dDu +Xτ1{τ<∞} ∈ L1(Q) because for all t,

0 ≤
∫ τ

t

dDu +Xτ1{t<τ} ≤
∫ τ

0

dDu +Xτ1{t<τ}.

By hypothesis, W is a nonnegative supermartingale. By the martingale con-
vergence theorem (see [11, VI.6, p. 72]), there exists W∞ ∈ L1(Q) such that
W converges to W∞ a.s. To show the convergence of S, observe that

W∞ = lim
t→∞

Wt = lim
t→∞

(
St +
∫ t∧τ

0

dDu +Xτ1{τ≤t}

)

= lim
t→∞

St +
∫ τ

0

dDu +Xτ1{τ<∞} a.s.

It follows that there exist S∞ ∈ L1(Q) and
∫ τ
0 dDu + Xτ1{τ<∞} ∈ L1(Q)

because S ≥ 0. Therefore S∗
t is well defined for all t ≥ 0. Observe that

EQ

[∫ τ

t

dDu +Xτ1{τ<∞}|Ft
]

= −
∫ t

0

dDu + EQ

[(∫ τ

0

dDu +Xτ1{τ<∞}

)
|Ft
] (5)

and

EQ

[(∫ τ

0

dDu +Xτ1{τ<∞}

)
|Ft
]
1{t<τ}

=
(
EQ

[(∫ τ

0

dDu +Xτ

)
1{τ<∞}|Ft

]
+ EQ

[
1{τ=∞}

∫ ∞

0

dDu|Ft
])

1{t<τ}.

(6)

Substituting (6) into (5) and then into (4),

lim
t→∞

S∗
t = −

∫ ∞

0

dDu1{τ=∞} + 1{τ=∞}EQ

[∫ τ

0

dDu +Xτ1{τ<∞}|F∞

]

= −
∫ ∞

0

dDu1{τ=∞} + 1{τ=∞}EQ{
∫ ∞

0

dDu|F∞} = 0.


�
Note that, in general,

∫∞
0 dDu + Xτ1{τ<∞} need not be P -integrable. In

this regard, Lemma 2 shows that the existence of Q implies that
∫∞
0 dDu +

Xτ1{τ<∞} is Q-integrable.

Lemma 3. The fundamental wealth process W ∗ = (Wt)t≥0 given by W ∗
t =

S∗
t +
∫ τ∧t
0 dDu + Xτ1{τ≤t} is a uniformly integrable martingale under Q ∈

Me
loc(W ) closed by

W ∗
∞ =
∫ τ

0

dDu +Xτ1{τ<∞}.
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Proof. By Lemma 2,

W ∗
∞ := lim

t→∞
W ∗
t = lim

t→∞

(
S∗
t +
∫ t∧τ

0

dDu +Xτ1{τ≤t}

)

=
∫ τ

0

dDu +Xτ1{τ<∞} a.s.

W ∗
∞ is in L1(Q) because S∞ ≥ 0, W∞ ∈ L1, and W ∗

∞ + S∞ = W∞. Observe
that

EQ [W ∗
∞|Ft] = EQ

[(∫ τ

t

dDu +Xτ

)
|Ft
]
1{t<τ}

+
(
−
∫ t

τ

dDu +Xτ

)
1{τ≤t} +

(∫ t

0

dDu

)
1{t<τ}

= S∗
t +
∫ t∧τ

0

dDu +Xτ1{τ≤t} = W ∗
t .

It follows that W ∗ is a closable and hence uniformly integrable martingale. 
�

The Asset Price Bubble

Definition 5 (Bubble). The asset price bubble βt for St is given by

βt = St − S∗
t .

As indicated, the asset price bubble is the asset’s market price less the
asset’s fundamental price.

3 Properties of Bubbles

In this section, we analyze the properties of asset price bubbles, applying
semimartingale theory and potential theory. We begin with a nonstandard
definition.

Definition 6 (Strict Local Martingale). A strict local martingale is a
local martingale that is not a martingale.

The term “strict local martingale” is not common in the literature, but it
can be found in the recent book of Delbaen and Schachermayer [10], who in
turn refer to a paper of Elworthy et al. [13]. We hasten to remark that their
definition of a strict local martingale is different from our definition. Indeed,
Delbaen and Schachermayer refer to a strict local martingale as being a local
martingale that is not a uniformly integrable martingale. They allow a strict
local martingale to be actually a martingale, as long as the martingale itself
is not uniformly integrable. Our definition is more appropriate for the study
of bubbles, as is made clear shortly.
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3.1 Characterization of Bubbles

Theorem 2. If there exists a nontrivial bubble β := (β)t≥0 �≡ 0 in an asset’s
price, then we have three and only three possibilities:

1. β is a local martingale (which could be a uniformly integrable martingale)
if P (τ = ∞) > 0.

2. β is a local martingale but not a uniformly integrable martingale if it is
unbounded, but with P (τ < ∞) = 1.

3. β is a strict Q-local martingale, if τ is a bounded stopping time.

Proof. Fix Q ∈ Me
loc(W ). Because W is a closable supermartingale (see proof

of Lemma 2), there exists W∞ ∈ L1(Q) such that W converges to W∞ a.s.
Let

β′
t = Wt − EQ[W∞|Ft]. (7)

Then (β′
t)t≥0 is a (nonnegative) local martingale, because it is a difference of

a local martingale and a uniformly integrable martingale. By Lemma 3,

EQ[W∞|Ft] = EQ[W ∗
∞|Ft] + EQ[S∞|Ft] = W ∗

t + EQ[S∞|Ft]. (8)

By the definition of wealth processes, and applying Equations (7) and (8),

βt = St − S∗
t = Wt −W ∗

t

=
(
EQ[W∞|Ft] + β1

t

)
− (EQ[W∞|Ft] − EQ[S∞|Ft]) = β′

t + EQ[S∞|Ft].

If τ < T for T ∈ R
+, then S∞ = 0. A bubble βt = β′

t = 0 for t ≥ τ and in
particular βT = 0. If βt is a martingale,

βt = EQ[βT |Ft] = 0 ∀t ≤ T.

It follows that β is a strict local martingale. This proves Part 1. For Part 2,
assume that β is a uniformly integrable martingale. Then by Doob’s optional
sampling theorem, for any stopping time τ0 ≤ τ ,

βτ0 = EQ[βτ |Fτ0 ] = 0, (9)

and because β is optional, it follows from (for example) the section theorems
of P.A. Meyer that β = 0 on [0, τ ]. Therefore the bubble does not exist. For
Part 3, (EQ[S∞|Ft])t≥0 is a uniformly integrable martingale. 
�

As indicated, there are three types of bubbles that can be present in an
asset’s price. Type 1 bubbles occur when the asset has infinite life with a
payoff at {τ = ∞}. Type 2 bubbles occur when the asset’s life is finite,
but unbounded. Type 3 bubbles are for assets whose lives are bounded. In
a subsequent section, we provide an intuitive economic explanation for why
these bubbles exist. Before that, however, we provide some examples.
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3.2 Examples

This section presents simple examples of bubbles of Types 1, 2, and 3.

A Uniformly Integrable Martingale Bubble: Fiat Money (Type 1)

Example 2. Let S be fiat money given by St = 1 for all t ≥ 0. Fiat money
is money that the government declares to be legal tender, although it cannot
be converted into standard specie. Because money never matures, τ = ∞ and
X∞ = 1. Money pays no dividend and hence D ≡ 0. Therefore S∗ ≡ 0 and

βt = St − S∗
t = 1 ∀t ≥ 0.

The entire value of money comes from the bubble, its payoff X∞ = 1, and
it is a trivial uniformly integrable martingale. Note that in our setting, fiat
money is equivalent to our money market account (paying zero interest for all
time).

A Martingale Bubble (Type 2)

Example 3. Let the asset’s maturity τ be a positive random time with P (τ >
t) > 0 for all t ≥ 0. Let the fundamental price process be (S∗

t )t≥0 =
(1{t<τ})t≥0, with payoff 1 at time τ . Set a process β by

βt =
1 − 1{τ≤t}
Q(τ > t)

.

Lemma 4 shows that β is a martingale that is not a uniformly integrable
martingale, with β∞ = 0. Then

S = S∗ + β

is a price process with a nonuniformly integrable bubble.

Lemma 4. Let τ0 be a positive finite random variable such that P (τ0 > t) > 0
for all t ≥ 0. Let D = (Dt)t≥0 = (1{τ0≤t})t≥0 and D = (Dt)t≥0 be a natural
filtration generated by D. Then a process N defined by

Nt =
1 −Dt

P (τ0 > t)

is a martingale that is not a uniformly integrable martingale, and N∞ = 0.

Proof. By the structure of D (e.g., see Protter [25, Lemma on p. 121]) for
s < t,

P (τ0 > t|Ds) = 1{τ0>t}P (τ0 > t|τ0 > s) = 1{τ0>s}
P (τ0 > t)
P (τ0 > s)

.
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Therefore,

E [1 −Dt|Ds] = (1 −Ds)
P (τ0 > t)
P (τ0 > s)

.

This shows that N is a martingale. Observe that Nt = 0 on {t > τ0} and
hence N converges to 0 a.s., because τ0 < ∞ a.s. If N is a uniformly integrable
martingale, then N is closable by N∞ and Nt = E[N∞|Dt] ≡ 0, which is not
true. Therefore N is not uniformly integrable. 
�

This example has the asset’s maturity τ having a positive probability of
continuing past any given future time t. Although finite with probability one,
the asset’s life is unbounded.

A Strict Local Martingale Bubble (Type 3)

The following example is essentially that contained in Cox and Hobson [7,
Example 3.5, p. 9 and 2.2.1, p. 4]. In this example, although the asset has
finite maturity T , a bubble still exists, as the following lemma shows.

Example 4. Let D = (Dt)t≥0 ≡ 0 τ = T and Xτ = XT = 1. Then the
fundamental price at t ≥ 0 is S∗

t = 1{t<T}. Define a process β by

βt = 1 +
∫ t

0

βu√
T − u

dBu, (10)

where B = (Bt)t≥0 is a standard Q-Brownian motion. Lemma 5 shows that
β is a strict local martingale with βT = 0. Then

S = S∗ + β

is a price process with a strict local martingale bubble.

Lemma 5. A process β defined by Equation (10) is a continuous local mar-
tingale on [0, T ].

Proof. The stochastic integral (
∫ t
0
dBs/

√
T − s)t≥0 is a local martingale but

not a martingale on [0, T ) (because it is a stochastic integral of a predictable
integrand w.r.t Brownian motion), such that

[∫ ·

0

dBs/
√
T − s,

∫ ·

0

dBs/
√
T − s

]

u

= − ln
[
1 − u− t

T

]
:= Au

and continuous on [0, T ). By the Dubins–Schwartz theorem, there exists a
Brownian motion B̃ such that

dβu = βudB̃Au

and

βu = β0E
(
B̃
)

Au

= β0exp
(
B̃Au − 1

2
Au

)
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for all u < T . By the law of the iterated logarithm, we can show that
limt→∞ E(B)t = 0. Inasmuch as Au is monotonic and limu→∞ Au = ∞,

lim
u→T

βu = 0 a.s.

Because we set βT = 0, βT− = ST and β is continuous on [0, T ], EQ[βT ] =
0 < EQ[β0] implies that β is not a martingale. 
�

3.3 A Bubble Decomposition

In this section, we refine Theorem 2 to obtain a unique decomposition of an
asset price bubble that yields some additional insights. The key tool is the
decomposition of a positive supermartingale.

Theorem 3 (Riesz Decomposition I). Let X be a right-continuous su-
permartingale such that E[X−

t ] = limt→∞E[X−
t ] < ∞. Then the limit

X∞ = limt→∞Xt a.s. exists and E [|X∞|] < ∞. X has the decomposition
X = U +V , where U is a right-continuous version of the uniformly integrable
martingale E[X∞|Ft] and V is a right-continuous supermartingale that is zero
a.s. at infinity. V is positive if (X−)t≥0 are uniformly integrable.

Proof. See Dellacherie and Meyer [11, V.34, 35 and VI.8, p. 73]. 
�

Definition 7 (Potential). A positive right-continuous supermartingale such
that limt→∞ E[Zt] = 0 is called a potential.

Theorem 4 (Riesz Decomposition II). Every right-continuous positive
supermartingale X can be decomposed as a sum of X = Y + Z, where Y
is a right-continuous martingale and Z is a potential. This decomposition is
unique, except on an evanescent set, and Y is the greatest right-continuous
martingale bounded above by X.

Proof. See Dellacherie and Meyer [11, VI.9, p. 73]. 
�

Theorem 5. S admits a unique (up to an evanescent set) decomposition

S = S∗ + β = S∗ + (β1 + β2 + β3), (11)

where β = (βt)t≥0 is a càdlàg local martingale and

• β1 is a càdlàg nonnegative uniformly integrable martingale with β1
t → X∞

a.s.
• β2 is a càdlàg nonnegative nonuniformly integrable martingale with β2

t → 0
a.s.

• β3 is a càdlàg nonnegative supermartingale (and strict local martingale)
such that E[β3

t ] → 0 and β3
t → 0 a.s. That is, β3

t is a potential.
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Furthermore, (S∗ + β1 + β2) is the greatest submartingale bounded above by
W .

Proof. Let β be a càdlàg process defined by β1
t = EQ[S∞|Ft]. Define

Kt = Wt − (W ∗
t + β1

t ) = Wt − EQ[Wt|Ft].

By Theorem 3, K = (Kt)t≥0 is a nonnegative supermartingale and K con-
verges to 0 a.s. Let M be a uniformly integrable martingale such that

0 ≤ Mt ≤ Wt −Kt ∀t ≥ 0.

Because W − K converges to 0 a.s., M converges to 0 a.s. Then M ≡ 0.
Therefore K is unique up to an evanescent set. By Theorem 4, K has a
unique decomposition:

K = β2 + β3,

where β2 is a martingale, β3 is a nonnegative supermartingale such that
E[β3

t ] → 0, which implies β3 converges to 0 a.s. Because K converges to
0 a.s., β2 = K − β3 converges to 0 a.s. Because β2 is a càdlàg process defined
as

β2
t = lim

u→∞
EQ[Kt+u|Ft],

and Ks ≥ 0 for all s ∈ [0,∞), β2 ≥ 0. This completes the proof. 
�

As in the previous Theorem 2, β1, β2, β3 give the Type 1, 2, and 3 bubbles,
respectively. First, for Type 1 bubbles with infinite maturity, we see that the
Type 1 bubble component converges to the asset’s value at time ∞, X∞. This
time ∞ value X∞ can be thought of as analogous to fiat money, embedded
as part of the asset’s price process. Indeed, it is a residual value that pays
zero dividends for all finite times. Second, this decomposition also shows that
for finite maturity assets τ < ∞, the critical threshold is that of uniform
integrability. This is due to the fact that when τ < ∞, the Type 2 and 3
bubble components of β = (βt)t≥0 have to converge to 0 a.s., whereas they
need not converge in L1.

As a direct consequence of this theorem, we obtain the following corollary.

Corollary 1. Any asset price bubble β has the following properties.

1. β ≥ 0.
2. βτ1{τ<∞} = 0.
3. If βt = 0 then βu = 0 for all u ≥ t.

Proof. Parts 1 and 2 hold by Theorem 5. A nonnegative supermartingale stays
at 0 once it hits 0, which implies Part 3. 
�
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This is a key result. Condition 1 states that bubbles are always nonnega-
tive; that is, the market price can never be less than the fundamental value.
Condition 2 states that if the bubble’s maturity is finite τ < ∞, then the bub-
ble must burst on or before τ . Finally, Condition 3 states that if the bubble
ever bursts before the asset’s maturity, then it can never start again. Alter-
natively stated, Condition 3 states that in the context of our model, bubbles
must either exist at the start of the model, or they never will exist. And, if
they exist and burst, then they cannot start again. The fact that this model
does not include bubble birth is a weakness of the theory, due in part to the
fact that the markets are complete and there is a unique martingale measure.

3.4 No-Dominance

In this section, we add Assumption 3 (the assumption of no-dominance) to
the previous structure to see what additional insights can be obtained. We
only consider assets whose maturities are finite (i.e., τ < ∞ a.s). This means
that we only consider bubbles of Types 2 and 3.

Let W be the wealth process generated by the asset with price S. Now, by
our complete markets Assumption 2, we know that there exist π1, π2 ∈ L(W )
such that

W ∗
t = W ∗

0 +
∫ t

0

π1
udWu, βt = β0 +

∫ t

0

π2
udWu,

where W ∗ is the fundamental wealth process and β is the asset price bubble.
Let ηi = (ηit)t≥0 be holdings in the money market account given by Equation
(2) so that the trading strategies (πi, ηi) are self-financing. Because β∞ = 0,
two portfolios represented by W and W ∗ have the same cash flows. Because
W ∗

∞ ≥ 0, πi represents an admissible trading strategy. This observation im-
plies that there are two alternative ways of obtaining the asset’s cash flows.
The first is to buy and hold the asset, obtaining the wealth process W. The
second is to hold the admissible trading strategy π1, obtaining the wealth
process W ∗ instead. The cost of obtaining the first position is W0 ≥ W ∗

0 ,
with strict inequality if a bubble exists. This implies that if there is a bubble,
then the second method for buying the asset dominates the first, yielding the
following proposition.

Proposition 1. Under Assumption 3, Type 2 and Type 3 bubbles do not exist.

Proof. For any admissible payoff function, there is an admissible trading strat-
egy to replicate S∗. Under Assumption 3, V0(S∗

0 ) ≥ V0(S0) and V0(S0) ≥
V0(S∗

0 ). Hence V0(S0) = V0(S∗
0 ), because the cash flow of a synthetic asset S∗

and an asset St are the same. It follows that β ≡ 0 and Type 2 or Type 3
bubbles do not exist. 
�

This proposition implies that given both the NFLVR assumption 1 and the
no-dominance assumption 3, the only possible asset price bubbles are those
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of Type 1. Essentially, under these two weak no-arbitrage assumptions, only
infinite horizon assets can have bubbles in complete markets.

4 The Economic Intuition

This section provides the economic intuition underlying the existence of asset
price bubbles of Types 1, 2, and 3.

4.1 Type 1 Bubbles

Type 1 bubbles are for assets with infinite lives, with positive probability.
As argued after Theorem 5, Type 1 bubbles are due to a component of an
asset’s price process X∞ that is obtained at time ∞. This component of the
asset’s price is analogous to fiat money, a residual value received at time ∞.
As such, bubbles of Type 1 are uninteresting from an economic perspective
because they represent a permanent (but stochastic) wedge between an asset’s
fundamental value and its market price, generated by an exogenously given
value at time ∞.

4.2 Type 2 Bubbles

Type 2 bubbles are for assets with finite, but unbounded, lives. In a Type 2
bubble, the market price of the asset exceeds its fundamental value. To take
advantage of this discrepancy, one would form a trading strategy that is long
the fundamental value, and short the asset’s price. This is possible because the
market is complete. If held until the asset’s maturity, when β2

τ1{τ<∞} = 0, this
would (if possible) create an arbitrage opportunity (FLVR). Unfortunately, for
any sample path of the asset price process, the trading strategy must terminate
at some finite time. And, there is a positive probability that the bubble exceeds
this termination time, ruining the trading strategy, and making it “risky” and
not an arbitrage. This situation enables asset price bubbles of Type 2 to exist
in our economy.

4.3 Type 3 Bubbles

Type 3 bubbles are for assets with finite and bounded lives. In a Type 3
bubble, the market price of the asset exceeds its fundamental value. Just
as for a Type 2 bubble, to take advantage of this discrepancy, one would
form a trading strategy that is long the fundamental value, and short the
asset’s price. This is possible because the market is complete. If held until
the asset’s maturity, when β3

τ1{τ<∞} = 0, this would (if possible) create an
arbitrage opportunity (FLVR). Unfortunately, to be a FLVR trading strategy,
the trading strategy must be admissible. Shorting the asset is an inadmissible
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trading strategy, because if the price of the asset becomes large enough, the
value of the trading strategy will fall below any given lower bound. Hence,
there are NFLVR with Type 3 bubbles.

Alternatively stated, the first fundamental theorem of asset pricing is for-
mulated for admissible trading strategies. And, admissible trading strategies
are used to exclude doubling strategies, which would be possible otherwise.
Restricting the class of trading strategies to be admissible (to exclude dou-
bling strategies) implies that it also excludes shorting the asset for a fixed
time horizon (short and hold) as an admissible trading strategy. This removes
downward selling pressure on the asset price process, allowing bubbles to exist
in an arbitrage-free setting.

The question naturally arises, therefore, whether the class of admissible
trading strategies can be relaxed further, to exclude both doubling strategies,
but still allow shorting the stock over a fixed investment horizon. Unfortu-
nately, the answer is no. To justify this statement, we briefly explore the
concept of admissibility. The standard definition of admissibility, the one we
adopted, yields the following set of possible trading strategy values,

W =
⋃

a

{Wu : Wu ≥ −a, ∀u ∈ [0, T ]} .

As usual, W is the wealth process generated by a risky asset with price process
S. The weakest notion of admissibility consistent with NFLVR (see Strasser
[29]) yields the following set of trading strategy values,

W∗ =
{
X = H ·W : H ∈ L(W ) ∧ lim

n→∞
EQ[(H ·W )−σn

1{σn<∞}] = 0
}
, (12)

where the notation Z− for a random variable Z means Z− = −(Z ∧ 0), and

σn = inf{t ∈ [0, T ] : Xt ≤ −n}.

Clearly W ⊂ W∗. Replacing our definition by this weaker notion of admissi-
bility does not affect our analysis for Type 3 bubbles. Short-selling an asset
with a Type 3 bubble is not admissible even in the sense of (12) as follows
from Lemma 6.

Lemma 6. Assume that S has a Type 3 bubble β. Then a trading strategy
H = (Ht)t≥0 = (−1{t≤T})t≥0 is not an admissible strategy, and W0 −WT /∈
W∗.

Proof. It suffices to show that if W0 −WT ∈ W∗ then a Type 3 bubble does
not exist. Observe that

(H ·W )−σn
= (W0 −Wσn∧T )− = (Wσn∧T −W0)+ ≥ Wσn∧T −W0. (13)

By definition, σn takes a value in [0, T ] ∪ {∞} and (σn ∧ T )1{σn<∞} = σn.
By (13) and hypothesis,
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lim
n→∞

EQ[Wσn1{σn<∞}] = lim
n→∞

EQ[(Wσn −W0)1{σn<∞}]

≤ lim
n→∞

EQ[(H ·W )−σn
1{σn<∞}] = 0.

Because W ≥ 0, limn→∞ EQ[Wσn1{σn<∞}] = 0. Because W is a supermartin-
gale and W0 ≥ 0,

EQ[(H ·W )−T ] = EQ[(WT −W0)+] ≤ EQ[WT ] ≤ EQ[W0] < ∞.

By [29, Theorem 1.4], {(H · W )t}t≥0 = (W0 − Wt)t≥0 is a supermartin-
gale. Then by [1, Theorem 3.3], there exists a martingale M such that
(W0 −Wt)− ≤ Mt for 0 ≤ t ≤ T . Then Wt ≤ Mt + W0 for 0 ≤ t ≤ T .
Because W is a local martingale and (Mt + W0)t≥0 is a martingale, W is a
martingale. Because 0 ≤ β ≤ W , β is also a martingale and a Type 3 bubble
does not exist. 
�

This motivation for the existence of stock price bubbles is consistent with
the rich literature on the question, “If stocks are overpriced, why aren’t prices
corrected by short sales?” To answer this question, two types of short-sales
constraints were used. The first constraint is a structural limitation in the
economy caused by a limited ability and/or costs to borrow an asset for a
shortsale (see, e.g., [23; 12; 6; 8]). The second constraint is indirect and is
caused by the risk associated with short sales (see, e.g., [3; 28]). Using Internet
stock data from the alleged bubble period (1999 to 2000), Battalio and Schultz
[2] argue that put–call parity holds and the constraint on shortsales was not
the reason for the alleged Internet stock bubble.

5 Bubbles and Contingent Claims Pricing

This section studies the pricing of contingent claims in markets where the
underlying asset price process has a bubble. Bubbles can have two impacts
on a contingent claim’s value. The first is that a bubble in the underlying
asset price process influences the contingent claim’s price. The second is that
the contingent claim itself can have a bubble. This section explores these
possibilities in our market setting. For the remainder of this section we assume
that the risky asset S does not pay dividends, so that Wt = St. We restrict
our attention to European contingent claims in this paper because under the
NFLVR and no-dominance assumptions, American contingent claims provide
no additional insights. However, this is not true for the incomplete market
setting (cf. [21]). Following our analysis for the underlying asset price process,
the first topic to discuss is the fundamental price for a contingent claim.

5.1 The Fundamental Price of a Contingent Claim

Definition 8. The fundamental price V (H)t of a European contingent claim
with payoff function H at maturity T is given by
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V ∗
t (H) = EQ[H(S)T |Ft],

where H(S)T denotes a functional of the path of S on the time interval [0, T ].
That is, H(S)T = H(Sr; 0 ≤ r ≤ T ).

Note that in this definition, the market price of the asset S = (St)0≤t≤T ,
and not its fundamental value, is used in the payoff function. This makes
sense because the contingent claim is written on the market price of the asset,
and not its fundamental value. As seen in Theorem 6 below, this definition
is equivalent to the fair price as defined by Cox and Hobson [7]. We believe
Definition 8 is more natural inasmuch as it is valid in an incomplete market
setting as well.

Theorem 6 (Cox and Hobson Theorem 3.3). If the market is complete,
the fundamental price is equivalent to the smallest initial cost to finance a
replicating portfolio of a contingent claim.

Proof. Let θ = (θu)0≤u≤T be an admissible trading strategy and v = (vt)t≥0

be a wealth process associated with θ with initial value v0:

vt = v0 +
∫ t

0

θudSu. (14)

Let V be a subcollection of wealth processes defined by (14) such that

V = {v : vT ≥ H(S)T , admissible, self-financing} .

Fix v ∈ V . By the definition of risk-neutral measure, v is a local martingale.
Because H(S)T ≥ 0, v is nonnegative and hence v is a supermartingale. Then
there exists a decomposition on [0, T ]:

v = M + C,

where M is a uniformly integrable martingale and C is a potential (a nonnega-
tive supermartingale converging to 0). This decomposition is unique (up to an
evanescent set). In addition, M is the greatest martingale dominated by v (see
[11, V.34, 35 and VI.8, 9 on page 73] for a discussion of this decomposition).
At option maturity date T ,

vT = H(S)T = MT + CT ,

and vt = Mt = Ct = 0 on t > T , CT = 0 and hence MT = H(S)T . Recall
that M is a uniformly integrable martingale, whence:

Mt = EQ[H(S)T |Ft] a.s.

Because we assume a complete market, there exists a predictable process θ
such that

Mt = M0 +
∫ T

0

θudSu.
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Because H is positive, M ≥ 0 and hence this strategy is admissible. Therefore
for any potential C, v = M + C is a superreplicating portfolio. (M is a
replicating portfolio. Adding C makes it superreplicating except for the case
C ≡ 0). The fair price is the infimum of such vts:

V ∗
t (H) = inf

v∈V
vt = Mt + inf

Ct:potential with CT =0
Ct = Mt + 0 = EQ[H(S)T |Ft],

which completes the proof. 
�

Because contingent claims discussed here have a fixed maturity T , by The-
orem 2, contingent claims cannot have Type 1 or Type 2 bubbles. The only
possible bubbles in the contingent claim’s price are of Type 3. We explore
these bubbles below. However, this does not imply that the existence of Type
1 or 2 bubbles in the underlying asset’s price does not affect the price of
the contingent claim. Indeed, it appears within the payoff function H as a
component of the asset price ST .

5.2 A Contingent Claim’s Price Bubble

Analogous to the underlying asset, a contingent claim’s price bubble is defined
by

δt = Vt(H) − V ∗
t (H),

where Vt(H) is the market price of the contingent claim at time t.

5.3 Bubbles Under NFLVR

This section studies a contingent claim’s price bubble under NFLVR. Assume
that St is a nondividend-paying asset with τ > T a.s. for some T ∈ R

+.
Let Ct(K)∗, Pt(K)∗, Ft(K)∗ be the fundamental prices of a call option, put
option, and forward contract on S.

Lemma 7 (Put–Call Parity for Fundamental Prices). The fundamental
prices satisfy put–call parity:

C∗(K) − P ∗(K) = F ∗(K).

Proof. At maturity of an option with terminal time T ,

(ST −K)+ − (K − ST )+ = ST −K ∀K ≥ 0.

Because a fundamental price of a contingent claim with payoff function H is
EQ[H(S)T |Ft],

C∗
t (K) − P ∗

t (K) = EQ[(ST −K)+|Ft] − EQ[(K − ST )+|Ft]
= EQ[ST −K|Ft] = F ∗

t (K).


�
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However, the market prices of the call, put, and forward need not satisfy
put–call parity.

Example 5. LetBi, i = {1, 2, 3, 4, 5} be independent Brownian motions. Define
processes M i by

M1
t = exp

(
B1
t −

t

2

)
, M i

t = 1 +
∫ t

0

M i
s√

T − s
dBi

s, 2 ≤ i ≤ 5.

Consider a market with a finite time horizon [0, T ]. The market is complete
with respect to the filtration generated by {(M i

t )t≥ 0}5
i=1. M

1 is a uniformly
integrable martingale on [0, T ]. By Lemma 5, (M i

t )5i=2 are nonnegative strict
local martingales that converge to 0 a.s. as t → T . Let S∗

t = sups≤tM
1
s .

Suppose the market prices in this model are given by

• S = S∗ +M2.
• C(K) = C∗(K) + M3.
• P (K) = P ∗(K) +M4.
• F (K) = F ∗(K) +M5.

All of the traded securities in this example have bubbles. To take advantage
of any of these bubbles {M i}4

i=2 based on the time T convergence, an agent
must short-sell at least one asset. However, as shown in Lemma 6, shorting an
asset with a Type 3 bubble is not admissible. Therefore, such strategies are
not a free lunch with vanishing risk.

In summary, this example shows that Assumption 1 is not strong enough
to exclude bubbles in contingent claims. And, given the existence of bubbles
in calls and puts, we get various possibilities for put–call parity in market
prices.

• Ct(K) − Pt(K) = Ft(K) if and only if δFt = δct − δpt .
• Ct(K) − Pt(K) = St −K if and only if δSt = δct − δpt .

This example validates the following important observation. In the well-
studied Black–Scholes economy (a complete market under the standard NFLVR
structure), contrary to common belief, the Black–Scholes formula need not
hold! Indeed, if there is a bubble in the market price of the option M3, then
the market price C(K) can differ from the option’s fundamental price C∗(K),
the Black–Scholes formula. This insight has numerous ramifications; for ex-
ample, it implies that the implied volatility (from the Black–Scholes formula)
does not have to equal the historical volatility. In fact, if there is a bubble,
then the implied volatility should exceed the historical volatility, and there
exist no arbitrage opportunities! (Note that this is with the market still being
complete.) This possibility, at present, is not commonly understood. However,
all is not lost. One additional assumption returns the Black–Scholes economy
to normalcy, but an additional assumption is required. This is the assumption
of no-dominance, which we discuss in the next section.
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5.4 Bubbles Under No-Dominance

This section analyzes the behavior of the market prices of call and put options
under Assumption 3. We start with a useful lemma.

Lemma 8. Let H ′ be a payoff function of a contingent claim such that
Vt(H ′) = V ∗

t (H ′). Then for every contingent claim with payoff H such that
H(S)T ≤ H ′(ST ), Vt(H) = V ∗

t (H).

Proof. Because contingent claims have bounded maturity, we only need to
consider Type 3 bubbles. Let L be a collection of stopping times on [0, T ].
Then for all L ∈ L, VL(H) ≤ VL(H ′) by Assumption 3. Because V (H ′) is
a martingale on [0, T ] it is a uniformly integrable martingale and in class
(D) on [0, T ]. Then V (H) is also in class (D) and it is a uniformly integrable
martingale on [0, T ]. (See Jacod and Shiryaev [19, Definition 1.46, Proposition
1.47, p. 11]). Therefore Type 3 bubbles do not exist for this contingent claim.


�

This lemma states that if we have a contingent claim with no bubbles, and
this contingent claim dominates another contingent claim’s payoff, then the
dominated contingent claim will not have a bubble as well. Immediately, we
get the following corollary.

Corollary 2. If H(S)T is bounded, then V (H) ≡ V (H∗). In particular, a put
option does not have a bubble.

Proof. Assume that H(S)T < α for some α ∈ R
+. Then applying Lemma 8

for H(x) = α, we have the desired result. 
�

Theorem 7. Ct(K) − C∗
t (K) = St − EQ[ST |Ft] for all K ≥ 0. This implies

calls and forwards (with K = 0) can only have Type 3 bubbles and that they
must be equal to the asset price Type 3 bubble.

Proof. Let Ct(K), Pt, and Ft(K) denote market prices of call, put options
with strike K and a forward contract with delivery price K. Then

F ∗
t (K) = EQ[ST |Ft] −K ≤ St −K.

By Assumption 3, the price of two admissible portfolios with the same cash
flow are the same. Thus,

Ft = St −K = F ∗
t (K) + (St − EQ[ST |Ft]), (15)

implying a forward contract has a Type 3 bubble of size β3
t = St−EQ[ST |Ft].

To investigate put–call parity, take the conditional expectation on the identity:
(ST −K)+ − (K − ST )+ = ST −K.

C∗
t (K) − P ∗

t (K) = F ∗
t (K) ≤ St −K. (16)
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By Assumption 3 and Equation (15),

Ct(K) − Pt(K) = Ft(K) = St −K.

By subtracting Equation (16) from Equation (15),

[Ct(K) − C∗
t (K)] − [Pt(K) − Pt(K)∗] = β3

t .

By Corollary 2, Pt(K) − Pt(K)∗ = 0, so Ct(K) − C∗
t (K) = β3

t . 
�

This theorem states that a call option’s bubble, if it exists, must equal the
stock price’s Type 3 bubble. But, we know from Proposition 1 that under the
no-dominance assumption, asset prices have no Type 3 bubbles. Thus, call
options have no bubbles under the no-dominance assumption, as well.

Inasmuch as both European calls and puts have no bubbles under the no-
dominance assumption, put–call parity (as in [24]) holds, as well.

6 Conclusion

This paper reviews and extends the mathematical finance literature on bub-
bles in complete markets. We provide a new characterization theorem for
bubbles under the standard no-arbitrage (NFLVR) framework, showing that
bubbles can be of three types. Type 1 bubbles are uniformly integrable mar-
tingales, and these can exist for assets with infinite lifetimes. Type 2 bubbles
are nonuniformly integrable martingales, and these can exist for assets with
finite, but unbounded, lives. Last, Type 3 bubbles are strict local martingales,
and these can exist for assets with finite lives. In addition, we show that bub-
bles can only be nonnegative, and must exist at the start of the model. Bubble
birth cannot occur in the standard NFLVR, complete markets structure.

When one adds a no-dominance assumption (from [24]), we show that
only Type 1 bubbles are possible. In addition, under Merton’s no-dominance
hypothesis, put–call parity holds and there are no bubbles in standard call
and put options. Our analysis implies that if one believes asset price bubbles
exist and are an important economic phenomenon, then asset markets must
be incomplete. Incomplete market bubbles are studied in a companion paper,
which is in preparation.
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Summary. Most financial asset-pricing models assume frictionless competitive
markets that imply the absence of arbitrage opportunities. Given the absence of ar-
bitrage opportunities and complete asset markets, there exists a unique martingale
measure that implies martingale pricing formulae and replicating asset portfolios.
In incomplete markets, or markets with transaction costs, these results must be
modified to admit nonunique measures and the possibility of imperfectly replicat-
ing portfolios. Similar difficulties arise in markets with taxation. Some theoretical
research has argued that some taxation functions will imply arbitrage opportunities
and the nonexistence of a competitive asset economy. In this paper we construct
a multiperiod, discrete time/state general equilibrium model of asset markets with
transaction costs and taxes. The transaction cost technology and the tax system are
quite general, so that we can include most discrete time/state models with transac-
tion costs and taxation. We show that a competitive equilibrium exists. Our results
require careful modeling of the government budget constraints to rule out tax arbi-
trage possibilities.

Key words: Taxation; transaction costs; general equilibrium; asset economy.

1 Introduction

There is an extensive literature addressing the role of taxation and transaction
costs in competitive financial markets. In an earlier paper [15], we proposed a
general competitive asset economy with very general transaction technologies
and provided sufficient conditions for the existence of a competitive equilib-
rium. This model allowed us to consider economies with brokers, dealers, and
a wide range of market constraints on trade (e.g., short-sale constraints). We
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considered economies with convex and nonconvex transaction technologies. In
a complementary paper, Milne and Neave [18] provide characterizations of
agent and competitive equilibria in such an economy and demonstrate that
most known discrete time/state models can be accommodated as special cases.

In this paper we address another major imperfection in asset markets: tax-
ation. As pointed out by Schaefer [20] and Dammon and Green [6], there are
difficulties in dealing with taxes in a general equilibrium one-period setting.
To clear markets, when there are no restrictions on asset trading, relative
prices must reflect the after-tax marginal rates of substitution of all agents
simultaneously. When tax rates differ across investors, however, this condi-
tion can be impossible to achieve. Schaefer [20] and Dammon and Green [6]
give examples showing that when tax rates between investors are sufficiently
different, there may exist arbitrage opportunities for at least one investor:
this is inconsistent with the existence of general competitive equilibrium. The
main reason that investors can exploit tax arbitrage opportunities is that they
can infinitely short sell assets, and exploit unlimited tax rebates on capital
losses. An alternative and more realistic view, which can accommodate as-
set short selling and individuals in different tax brackets, is where potential
tax arbitrage opportunities exist, but there are realistic restrictions on their
exploitation.

Unlike Schaefer [20] and Dammon and Green [6], we investigate a closed
model where the government is modeled explicitly, and tax rebates are limited
(ultimately) by the government budget constraint. Long before government
revenues and wealth are exhausted, sections of the tax code limit the ability
of private agents or organizations to exploit unbounded loopholes in the tax
law. For example, our modeling captures the essential features of the current
U.S. tax code. The Tax Reform Act of 1986 has eliminated the net capital
gains deduction. Prior to this date, individuals could deduct 60 percent of net
long-term capital gains from income. A $3000 loss limitation was applied to
net long-term capital losses. Under the new rules, the capital gains deduction
is eliminated, but the $3000 loss limitation is retained. More generally, the
government can always make contingent provisions in the application of tax
laws to avoid large revenue losses from implausible (unbounded) claims. More
realistically, its revenues from wages and salaries dwarf any revenue or drains
from financial taxes: in other words, the government cannot, and will not,
promise infeasible tax rebates to consumers and firms. We call this a No Ponzi
Game (NPG) condition. We stress that this constraint is a weak bound and
that more restrictive conditions could be introduced by appealing to detailed
tax laws or financial regulations. These tighter constraints would not destroy
our equilibrium existence result.

Conceptually, the forms of tax on capital gains and losses are very com-
plicated to analyze because the investment strategies depend on the whole
history of the investment (e.g., see Dammon and Spatt [7] and Dammon et al.
[8]). Instead of giving concrete examples of capital gains and tax rebate rules,
we impose an upper bound on rebates for each investor. The bound can be
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regarded as being exogenously determined by government and legal consider-
ations. Realistically, it is far less than the bound that would exhaust govern-
ment resources.

Rather than considering bounds on short positions, the upper bound on
rebates is the first friction in the present paper and is an asymmetric treat-
ment of taxes on long and short positions. If the asymmetry is sufficiently
pronounced to eliminate arbitrage opportunities, the only motivation for in-
dividuals to take short positions is to construct a profile of portfolio cash flows
that is not feasible with entirely nonnegative portfolio weights. However, when
there are a large number of securities, and tax asymmetries have eliminated
arbitrage opportunities, individuals may have little motivation to take short
positions. Consequently, prices may be similar to those that would result if
short-sales were explicitly disallowed.

The second friction considered in this paper is transaction costs. Effec-
tively, we have extended our earlier paper [15] on transaction costs to include
taxation. This means short sales have additional costs over and above taxation
asymmetries, and are consistent with the discussion of Allen and Gale [1]. In
this paper, we do not impose any constraints on short selling, and short-sales
are determined endogenously. Limited tax rebates on capital losses and trans-
action costs are suggested as possible explanations for the lack of apparent
arbitrage and why a general competitive equilibrium can exist.

Another difficult issue is to construct a model that is sufficiently general
to deal with the complexities of the tax law and yet remain tractable. There
are many papers that consider the implications for asset prices or asset al-
locations in specialized models (for a small sample, see Constantinides [4],
Dammon and Green [6], Dammon and Spatt [7], Dammon et al. [8], Dybvig
and Ross [12], Ross [19], Green [14], and Zechner [22]). Before discussing the
properties of an equilibrium, it is important to note that there are sufficient
restrictions imposed on the economy to imply the existence of an equilibrium.
As we indicated above, if agents face agent-specific tax functions that allow
tax arbitrage possibilities, then an equilibrium may not exist. This issue has
been addressed in a two-period exchange economy by Dammon and Green [6]
and Jones and Milne [16]. Dammon and Green [6] consider restrictions on tax
functions to eliminate arbitrage and define a set of arbitrage-free asset prices.
Their paper considered tax functions of considerable generality and exploited
the theory of recession (asymptotic) cones to determine arbitrage-free prices.
Jones and Milne [16] argued that Dammon and Green [6] did not include
the government sector explicitly, ignoring the feasibility constraints implicit
in the government budget constraint. Once these constraints were introduced
and recognized by the agents, there were natural bounds on the possible asset
trades consistent with tax arbitrage. These restrictions allowed more general
and complex tax functions to be consistent with equilibrium. Of course the
differences in the two models could be resolved by assuming that Dammon and
Green’s tax functions included the implicit tax rules that come into play as
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soon as large tax arbitrages were claimed from the government by consumers.
In that sense the two models could be made consistent.

The models in Dammon and Green [6] and Jones and Milne [16] were two-
period exchange economies. In this paper, we extend the two-period model
to a more general multiperiod economy with an explicit government sector,
productive firms, brokers/dealers who operate the costly transaction technol-
ogy, and spot commodity markets. The aim of the paper is to show how the
ideas of earlier simpler models can be extended in a number of realistic di-
rections. In particular, the introduction of firms allows us to accommodate
models (see Zechner [22], Swoboda and Zechner [21], and Graham [13] for a
sample) that discuss the interaction of personal and corporate taxation, the
trade-off between corporate equity and debt taxation, and their impact on
corporate financial structure. The introduction of government is more general
than the modeling in Jones and Milne [16], in that we allow the government
to choose commodity trades optimally, given its net tax revenues. We show
that the introduction of spot commodity markets is easily accommodated,
although we exclude commodity and wage income taxation for simplicity. We
allow general tax functions on asset capital gains and dividends that can ac-
commodate most properties of tax codes on financial assets. For example, the
tax functions can be nonlinear, convex, or piecewise linear; they can depend
upon dynamic asset strategies, so that capital gains or other complex tax sys-
tems can be incorporated; the tax functions can include financial subsidies as
well as taxes; and the state contingent taxation functions can be interpreted to
include (random) legal interpretations of the tax code where a dynamic asset
position is deemed to violate the code and subsequent income or capital gains
are taxed at a higher rate with possible penalties. In the body of the paper,
we rule out nonconvex tax functions due to subsidy/tax thresholds. Later in
the paper, we discuss how this (and other extensions) could be incorporated
in a more extensive model.

The model can be used as a basic structure to discuss incomplete asset
markets and government policies to use the tax code and subsidies to complete
asset markets, or at least improve the welfare of some agents.

The remainder of the paper is organized as follows. In Section 2 we set out
the model and present fundamental assumptions. Section 3 is devoted to the
proof of the main theorem. In Section 4 we discuss extensions or variations
of the model and how they could be incorporated in an extended or modified
version of the model. Also we discuss equilibrium efficiency properties and the
complexity of general characterizations of an equilibrium.

2 The Economic Setting

Consider an economy with uncertainty characterized by a event tree such as
that depicted in Figure 1 of Duffie [11]. This tree consists of a finite set of
nodes E and directed arcs A ⊂ E × E such that (E,A) forms a tree with
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a distinguished root e0. The number of immediate successor nodes of any
e ∈ E is denoted #e. A node e ∈ E is terminal if it has no successor node.
Let T denote the set of all terminal nodes. The immediate successor nodes
of any nonterminal node e ∈ E are labeled e+1, . . . , e+K , where K = #e.
The subtree with root e is denoted E(e). In particular, E = E(e0). Suppose
there are N securities and M commodities at any node e ∈ E′ = E−T. This
assumption can be relaxed by assuming that the numbers of securities can
vary across nodes, because we do not require every asset to be held by agents
at node e0. This relaxation covers the case where some securities are issued
and some mature in interim periods. For the sake of simplicity, we assume
that there is only one commodity at each terminal node (this is largely for
expositional convenience and avoids some minor technical issues). At each
node, all securities first distribute dividends, and then are available for trading;
that is, all security prices are ex-dividend.

Let pC(e) = (pC1 (e), . . . , pCM (e)) denote the spot price of commodities at
node e ∈ E′. At each node e ∈ E′, asset n (n = 1, . . . , N) has a buying price
pBn (e) and a selling price pSn(e) and a dividend pC1 (e)Dn(e), where we take the
first commodity as numeraire. Moreover, let Dn(e) be the dividend of asset n
at the terminal node e′ ∈ T. We denote pB(e) = (pB1 (e), . . . , pBN (e)), pS(e) =
(pS1 (e), . . . , pSN (e)) and p(e) = (pB(e), pS(e)) and D(e) = (D1(e), . . . , DN (e)).
And it is assumed that dividends are always nonnegative.

2.1 Intermediaries

Suppose that there are H brokers or intermediaries (indexed by h) with an
objective (utility) function UBh (·) defined over the nonnegative orthant, and
commodity endowment vector ωBh (e) at each node e. They are intermediaries
specializing in the transaction technology that transforms bought and sold
assets. Let φBh,n(e)(φ

S
h,n(e)) be the number of bought (sold) asset n supplied

by intermediary h at node e ∈ E′ (denote φBh (e) = (φBh,1(e), . . . , φ
B
h,N (e))T

and φSh (e) = (φSh,1(e), . . . , φ
S
h,N (e))T , where T is the transpose transforma-

tion) and zh(e) = (zh,1(e), . . . , zh,M (e))T be the vector of contingent com-
modities used up in the activity of intermediation at node e ∈ E′. Then
the broker pays tax on capital gains via a general tax function TBCh (e) =
TBCh (e)((pB(e′), pS(e′), φh(e′))e′∈PA(e)), where PA(e) is a path from e0 to e;
and pays tax on dividends via a general tax function

TBDh (e) = TBDh (e)
(
D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh(e′)

) ])
.

At any terminal node e ∈ T, the broker receives dividends

D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh (e′)

) ]
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and pays tax via a general tax function

TBDh (e) = TBDh (e)
(
D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh(e′)

) ])
.

Denote zh = (. . . , zh(e), . . . )e∈E′ ∈ R
|E′|×M
+ , where |E′| denotes the number

of nodes in the set E′, and the portfolio plan by

φh = (φh(e))e∈E′ = (φBh (e), φSh (e))e∈E′ ∈ R
2(|E′|×N)
+ .

And set

γh =
(
pB(e0)φSh (e0) − pS(e0)φBh (e0) − TBCh (e0)

+ p(e0)
(
ωBh (e0) − zh(e0)

)
,
(
pB(e)φSh(e) − pS(e)φBh (e)

+ pC1 (e)D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh(e′)

) ]

− TBCh (e) − TBDh (e) + p(e)
(
ωBh (e) − zh(e)

) )

e∈E′−{e0}
,

(
D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh(e′)

)]
− TBDh (e)

)

e∈T

)
.

For intermediary h, let T(h, e) ⊆ RN+ ×RN+ ×RM denote his or her technology
at node e.

The maximization problem of broker h can be stated as

sup
(φh,zh)∈ΓB

h (p̃)

UBh (γh),

where ΓBh (p̃) is the space of feasible trade-production plans (φh, zh) =
(φBh , φ

S
h , zh) given p̃ = (pB, pS , pC), which satisfies:

(2.1)
(
φBh (e), φSh (e), zh(e)

)
∈ T(h, e) and zh(e) ≥ 0,

(2.2) pB(e0)φSh (e0)− pS(e0)φBh (e0) + p(e0)
(
ωBh (e0) − zh(e0)

)
− TBCh (e0) ≥ 0,

and pBφSh(e) − pS(e)φBh (e) + pC(e)
(
ωBh (e) − zh(e)

)
+

pC1 (e)D(e)
[∑

e′∈PA(e)−{e}
(
φBh (e′) − φSh (e′)

)]
− TBCh (e) − TBDh (e) ≥ 0,

∀e ∈ E′ − {e0},
(2.3) D(e)

[∑
e′∈PA(e)−{e}

(
φBh (e′) − φSh (e′)

)]
− TBDh (e) ≥ 0, ∀e ∈ T,

(2.4) γh ≥ 0.

Remark 1. The intermediary formulation allows the agent to trade on his own
account; or by interpreting the transaction technology more narrowly, it can
be restricted to a pure broker with direct pass-through of assets bought and
sold (see Milne and Neave [18] for further discussion). Note: our tax functions
are sufficiently general in formulation that our capital gains tax function could
incorporate dividend taxes as well (apart from the final date).
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2.2 Firms

Suppose there are J firms. At node e0, the firm j ∈ J = {1, . . . , J} has
an initial endowment ωFj (e0), which gives the firm a positive cash flow. The
firm chooses an input plan y−j (e0) ∈ RM+ and a trading strategy βj(e0) =
(βBj (e0), βSj (e0))T = (βBj,1(e0), . . . , β

B
j,N (e0), βSj,1(e0), . . . , β

S
j,N (e0))T ∈ R2N

+ ,
where βBj,n(e0)(β

S
j,n(e0)) represents the purchase (sale) of asset n by firm j

at node e0. Then, the firm pays tax according to the tax function TFj (e0).
At every node e(∈ E′) other than node e0, the firm produces an output
y+
j (e) ∈ RM+ and receives a net dividend

pC1 (e)D(e)
[ ∑

e′∈PA(e)−{e}

(
βBj (e′) − βSj (e′)

) ]
,

then chooses an input plan y−j (e) ∈ RM+ and a trading strategy βj(e) =
(βBj (e), βSj (e))T = (βBj,1(e), . . . , β

B
j,N (e), βSj,1(e), . . . , β

S
j,N (e))T ∈ R2N

+ and pays
tax TFCj (e) and TFDj (e) on capital gains and ordinary income. It is assumed
(y+
j (e) − yj(e)) ∈ Yj(e) ⊆ RM , where Yj(e) is a production set. At each

terminal node e, the firm j produces y+
j (e) ∈ RM+ , gets its dividend, and then

pays tax TFDj (e). Set

δ(e0) = pC(e0)
(
ωFj (e0) − y−j (e0)

)
+ pS(e0)βSj (e0) − pB(e0)βBj (e0) − TFCj (e0),

δ(e) = pC(e)
(
y+
j (e) − y−j (e)

)
+ pS(e)βSj (e) − pB(e)βBj (e)

+ pC1 (e)D(e)
[ ∑

e′∈PA(e)−{e}

(
βBi (e′) − βSi (e′)

) ]
− TFDj (e) − TFCj (e),

e ∈ E′ − {e0},

δ(e) = pC(e)y+
j (e) + pC1 (e)D(e)

[ ∑

e′∈PA(e)−{e}

(
βBi (e′) − βSi (e′)

) ]
− TFDj (e),

e ∈ T.

Therefore, the problem of the firm j can be stated as

max
(yj,βj)∈ΓF

j (p̃)
Uj

((
δj(e)
)
e∈E

)
,

where ΓFj (p̃) is the feasible set of production-portfolio plans of firm j given
p̃, which satisfies:

δj(e) ≥ 0, e ∈ E.

Remark 2. The modeling of the objective of the firm avoids the failure of
profit to be well defined, and the nonapplicability of the Fisher separation
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theorem. We can think of the firm being either a sole proprietorship or that
the utility function is derived from some group preference arrangement (for
a more detailed discussion of these issues see Kelsey and Milne [17]). The
utility function can incorporate a number of interpretations (e.g., it could in-
clude job perquisite consumption by a manager, where her optimal perquisite
consumption is endogenously determined in equilibrium).

2.3 Consumers

In addition to brokers/intermediaries and firms, there are I consumers, in-
dexed by i ∈ I = {1, . . . , I}. The consumer i has endowment ωCi (e) of com-
modity at any node e ∈ E. At any node e ∈ E′, the consumer i has a con-
sumption xi(e) = (xi,1(e), . . . , xi,M (e))T ∈ RM+ and chooses an asset portfolio
αi(e) = (αBi (e), αSi (e))T = (αBi,1(e), . . . , α

B
i,N (e), αSi,1(e), . . . , α

S
i,N (e))T ∈ R2N

+ ,
where αBi,n(e)(αSi,n(e)) represents the purchase (sale) of asset n by consumer
i at node e. The consumer pays capital gains tax via a tax function

TCCi (e)
((
pB(e′), pS(e′), αi(e′)

)
e′∈PA(e)

)

and dividend taxes via a function defined similarly to the broker tax function,
TCDi (e). At any terminal node e ∈ T, the consumer receives dividends

D(e)
[ ∑

e′∈PA(e)−{e}

(
αBi (e′) − αSi (e′)

) ]

and pays tax via a general tax function TCDi (e), and then consumes. We
denote the consumption plan xi = (. . . , xi(e), . . . )e∈E′ ∈ R

|E′|×M
+ , and the

portfolio plan αi = (αi(e))e∈E′ = (αBi (e), αSi (e))e∈E′ ∈ R
2(|E′|×N)
+ .

The consumer i has a consumption set Xi ⊆ RE′×M
+ and a utility function

UCi (·) over the consumption plan xi and the consumption

D(e)
[ ∑

e′∈PA(e)−{e}

(
αBi (e′) − αSi (e′)

) ]
− TCDi (e)

at terminal nodes. Denote

x̃i =

(
xi,

(
D(e)
[ ∑

e′∈PA(e)

(
αBi (e′) − αSi (e′)

) ]
− TCDi (e)

)

e∈T

)
.

So the problem of consumer i can be expressed as

max
(xi,αi)∈ΓC

i (p̃,γ,δ)
UCi (x̃i),

where ΓCi (p̃, γ, δ) is the feasible set of portfolio consumption plans of consumer
i, given (p̃, γ, δ), which satisfies
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pC(e)xi(e) + pB(e)αBi (e) − pS(e)αSi (e) + TCCi (e) + TCDi (e)

≤ pC(e)ωi(e) + pC1 (e)D(e)
[ ∑

e′∈PA(e)−{e}

(
αBi (e′) − αSi (e′)

) ]

+
∑

j

ηi,jδj(e) +
∑

h

θi,hγh(e) ∀e ∈ E′,

D(e)
[ ∑

e′∈pa(e)

(
αBi (e′) − αSi (e′)

) ]
− TCDi (e) ≥ 0 ∀e ∈ T,

where ηi,j is the share of the profit of the jth producer owned by the ith
consumer. The numbers ηi,j are positive or zero, and for every j,

∑I
i=1 ηi,j = 1.

The numbers θi,h have the same explanation.

2.4 Government

The government is also included as part of the economy. Rather than provid-
ing a detailed analysis of the operations of the government, we place weak
restrictions on government activity. For simplicity, assume that the govern-
ment has net resources ωG(e) ∈ RM+ at node e, sets tax rates ex ante, and then
consumes xG(e) at node e. The government can always propose precommit-
ted tax laws that avoid government bankruptcy due to errors or subtle legal
interpretations; and its revenues from taxes on wages and salaries dwarf any
revenue or drains from financial taxes. In other words, the government can-
not promise infeasible tax rebates to consumers and firms. We call this a No
Ponzi Game (NPG) condition, which has been introduced in macroeconomic
models to eliminate unbounded borrowing positions by consumers and/or gov-
ernments (cf. [3]). We stress that this constraint is a weak bound, and that
more restrictive conditions could be introduced by appealing to detailed tax
laws or financial regulations.

Suppose that the government has preferences over its consumption set
XG = R

|E′|×M
+ , represented by a utility function UG (this is simplistic but

avoids more complex issues of government decision making). At node e ∈ E′,
it spends its income, which comes from its endowment ωG(e) and tax revenue

T (e) =
∑

h

(
TBCh (e) + TBDh (e)

)
+
∑

j

(
TFCj (e) + TFDj (e)

)

+
∑

i

(
TCCi (e) + TCDi (e)

)
.

The government’s problem can be stated as

max
xG∈ΓG

UG(xG),

where ΓG denote the set of government’s consumption xG, which satisfies

pC(e)xG(e) ≤ pC(e)ωG(e) + T (e).
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2.5 Competitive Equilibrium and Assumptions

To conclude the section, we give the definition of a competitive equilibrium
and assumptions made throughout the remainder of this paper.

Definition 1. A competitive equilibrium with asset taxation and transaction
costs is a nonnegative vector of prices p̃∗ = (p∗C , p∗B, p∗S) and allocations
(x∗i , α

∗
i ) for all i ∈ I; (z∗h, φ

∗
h) for all h ∈ H; (y∗j , β

∗
j ), for all j ∈ J;x∗G such

that:

(i) (z∗h, φ
∗
h) solves the broker problem for each h ∈ H,

(ii) (y∗j , β
∗
j ) solves the firm’s problem for each j ∈ J,

(iii) (x∗i , α
∗
i ) solves the consumer problem for each i ∈ J,

(iv) x∗G solves government’s problem,
(v)
∑

i x
∗
i +
∑
h z

∗
h+
∑
j y

∗−
j +x∗G = ωG+

∑
j y

∗+
j +
∑
i ω

C
i +
∑
j ω

F
j +
∑
h ω

B
h ;

(vi)
∑

i α
∗B
i,n +
∑

j β
∗B
j,n =
∑

h φ
∗S
h,n and

∑
i α

∗S
i,n +
∑
j β

∗S
j,n =
∑

h φ
∗B
h,n if

p∗Bn > p∗Sn ;
∑

i α
∗B
i,n +
∑

j β
∗B
j,n +
∑

h φ
∗B
h,n =

∑
h φ

∗S
h,n +
∑

i α
∗S
i,n +
∑

j β
∗S
j,n

if p∗Bn = p∗Sn .

Notice that condition (vi) allows for the extreme case where the transaction
technology is costless.

The following assumptions are made in the remainder of this paper.
For consumer i:

(A1) Xi = R
|E′|×M
+ ,

(A2) UCi is a continuous, concave, and strictly increasing function,
(A3) TCCi and TCDi are continuous convex functions, and there exist posi-

tive constants cCCi (e) < 1, cCDi (e) < 1 such that TCCi (e)[x] ≤ cCCi (e)x,
TCDi (e)[x] ≤ cCDi (e)x, for any x ≥ 0; that is, the taxes can never be larger
than revenues,

(A4) We assume that the tax rebates on capital losses and ordinary income
on long and short positions have lower bounds; that is, TCCi (e)+TCDi (e) >
αCi (e), where αCi is determined by the government,

(A5) ωCi (e) > 0 ∀e ∈ E′, where for x = (x1, . . . , xn) ∈ Rn, x � 0 means
xi > 0, i = 1, . . . , n; x > 0 means xi ≥ 0, i = 1, . . . , n but xi0 > 0 for at
least one i0.

For broker h:

(A6) For each e, T(h, e) is a closed and convex set with 0 ∈ T(h, e),
(A7) For any e and given x = (x1, . . . , x2N , z1, . . . , zM ) ∈ T(h, e), if y =∑2N

n=1 xn −→ ∞, then |(z1, . . . , zM )| =
∑M

m=1 zm −→ ∞,
(A8) For each e, if (ψ, z) ∈ T(h, e) and z′ ≥ z, then (ψ, z′) ∈ T(h, e) (free

disposal),
(A9) UBh (·) is a continuous, concave, and strictly increasing function,
(A10) ωBh (e) > 0, ∀e ∈ E′,
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(A11) TBCh and TBDh satisfy Assumptions (A3) and (A4) for some cBCh (e),
cBDh (e), and αBh (e).

For firm j:

(A12) For each e ∈ E′, Yj(e) is a closed and convex set ,
(A13) For each e ∈ E′, Yj(e) ∩ R 2M

+ = {0},
(A14) For each e ∈ E′, (

∑
j Yj(e)) ∩ (−

∑
j Yj(e)) = {0},

(A15) UFj (·) is a continuous, concave, and strictly increasing function,
(A16) ωFj (e0) > 0,
(A17) TFCj and TFDj satisfies Assumptions (A3) and (A4) for some cFCj (e),

cFDj (e), and αFj (e).

For government:

(A18) UG is a continuous, concave, and strictly increasing function,
(A19) ωG(e) > 0,
(A20) For each security and any e ∈ E′ there exists a terminal node e′ ∈ E(e)

such that the dividend of this security is positive at this node,
(A21)

∑
i α

C
i (e) +

∑
j α

F
j (e) +

∑
h α

B
h (e) ≥ 0, ∀e ∈ E′.

All assumptions except (A7), (A15), (A4), (A11), (A17), and (A21) are
standard. (A7) says that transactions must consume resources. Assumptions
(A4), (A11), (A17), and (A21) say that the government has designed into the
tax code, and in the application of tax laws, measures that avoid large revenue
losses from implausible (unbounded) claims. In other words, the government
cannot/will not promise infeasible tax rebates to consumers and firms, pre-
venting consumers from exploiting unlimited arbitrage opportunities through
tax rebates on capital losses. According to the Federal Tax Code, the govern-
ment often recognizes realized capital gains and does not recognize realized
capital losses. Observe that the tax functions and trading restrictions are
sufficiently general to allow the government to levy taxes on capital gains,
interest, and dividends, and delay paying tax rebates on capital losses. Also
the tax functions are state contingent allowing for random audits or (random
from the point of view of agents and the government) legal interpretations.
Strictly speaking, a fully rational system would model the intricacies of the
legal tax system; here we simply assume that is an exogenous mechanism that
is precommitted by the government.

3 The Competitive Equilibrium Existence Theorem

The main theorem of this paper is the following.

Theorem 1. Suppose that Assumptions (A1)–(A21) hold. Then there exists
an equilibrium (ξ∗, p̃∗); that is, (ξ∗, p̃∗) satisfies (i)–(vi) of Definition 1, where
ξ∗ = ((x∗i , α

∗
i )i∈I, (z∗h, φ

∗
h)h∈H, (y∗j , β

∗
j )j∈J, x

∗
G).
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3.1 The Modified Economy

To show the existence of equilibrium, as in Arrow and Debreu [2], or De-
breu [9], we construct a bounded commodity spot market. Unfortunately, this
method does not apply directly because of the possible emptiness of the bud-
get correspondence of agents in a multiperiod assets market. To overcome
this problem, we approximate the original economy with a sequence of new
economies with positive commodity prices, which has the property that the
limit of the equilibria of the new economies is an equilibrium of the original
economy. In the following, we first truncate the commodity spot market as in
Arrow and Debreu [2] and then truncate the asset space.

First of all, we truncate the commodity space. For broker h, define

Zh = {zh : there exists (φBh , φ
S
h ) � 0 such that (φBh (e), φSh (e), zh(e)) ∈

T(h, e), ∀e ∈ E′};
Ẑh = {zh ∈ Zh : there exist xi ∈ Xi, i = 1, . . . , I, yj ∈ Yj , j = 1, . . . , J,

zh′ ∈ Zh′ , h′ �=h, and xG ∈ XG such that
∑
i xi(e)+

∑
j y

−
j (e)+

∑
h zh(e)+

xG(e) − ωG(e) −
∑

j y
+
j (e) −

∑
i ω

C
i (e) −

∑
j ω

F
j (e) −

∑
h ω

B
h (e) � 0,

∀e ∈ E′}.
For consumer i, define

X̂i = {xi ∈ Xi : there exist xi′ ∈ Xi′ , i
′ �= i, yj ∈ Yj , j = 1, . . . , J,

zh ∈ Zh, h = 1, . . . , H, and xG ∈ XG such that
∑

i xi(e) +
∑

j y
−
j (e) +∑

h zh(e)+xG(e)−ωG(e)−
∑

j y
+
j (e)−

∑
i ω

C
i (e)−

∑
j ω

F
j (e)−

∑
h ω

B
h (e)

� 0, ∀e ∈ E′}.
For firm j, set

Ŷj = {yj ∈ Yj : there exist xi ∈ Xi, i = 1, . . . , I, yj′ ∈ Yj′ , j
′ �= j,

zh ∈ Zh, h = 1, . . . , H, and xG ∈ XG such that
∑

i xi(e) +
∑

j y
−
j (e) +∑

h zh(e)+xG(e)−ωG(e)−
∑

j y
+
j (e)−

∑
i ω

C
i (e)−

∑
j ω

F
j (e)−

∑
h ω

B
h (e)

� 0, ∀e ∈ E′}.
For the government, set

X̂G = {xG ∈ XG : there exist xi ∈ Xi, i = 1, . . . , I, yj ∈ Yj , j = 1, . . . , J,
zh ∈ Zh, h = 1, . . . , H, such that

∑
i xi(e)+

∑
j y

−
j (e)+

∑
h zh(e)+xG(e)−

ωG(e) −
∑

j y
+
j (e) −

∑
i ω

C
i (e) −

∑
j ω

F
j (e) −

∑
h ω

B
h (e) � 0, ∀e ∈ E′}.

As in Arrow and Debreu [2], we have the boundedness of sets X̂i, Ŷj ,Ẑh, and
X̂G, which is stated in the following lemma. The proof is omitted, because it
is standard.

Lemma 1. The sets X̂i, Ŷj,Ẑh, and X̂G are all convex and compact.

Now we turn to truncating trading sets of asset. For broker h, define Φh =
{φh = (φBh , φ

S
h) : there exists zh ∈ Ẑh such that (φh(e), zh(e)) ∈ T(h, e), ∀e ∈

E′}.
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In the following lemma, Φh is shown to be bounded, which plays an im-
portant role in proving the existence of the general equilibrium.

Lemma 2. The set Φh is a compact and convex subset of R|E′|×N , h =
1, . . . , H.

Proof. If Assumption (A6) holds, then the set Φh is a closed convex set. The
convexity of Φh is obvious. It remains to show its closedness. To this end, sup-
pose that for each k, there exist φ(k)

h ∈ Φh and zkh ∈ Ẑh such that (φ(k)
h , zkh) ∈

T(h, e), ∀e ∈ E′, and, in particular, by (A8), (φ(k)
h , zkh) ∈ T(h, e), ∀e ∈ E′,

where zkh = (maxk zkh,1, . . . ,maxk zkh,M ). If {φ(k)
h } is unbounded, we may sup-

pose (φ(k))Bh,1 −→ ∞ without loss of generality. But by Assumption (A7),

lim
k−→∞

|z|kh = ∞,

which provides a contradiction, because Ẑh is bounded by Lemma 1, and
proves the boundedness of {φ(k)

h }. Hence, we can choose a subsequence {φ(kn)
h }

from {φ(k)
h } such that

lim
n−→∞

φ
(kn)
h = φh;

this implies, inasmuch as T(h, e) is closed, that Φh is compact. 
�

By Lemma 2, there exists a positive constant M0 such that for any
(φBh , φ

S
h) ∈ Φh, φBh,n(e) ≤ M0 and φSh,n(e) ≤ M0, n = 1, . . . , N, h = 1, . . . , H,

∀e ∈ E′. For consumer i, define

Ψ̂i =
{
αi = (αBi , α

S
i ) : αBi,n(e) ≤ HM0, n = 1, . . . , N, ∀e ∈ E′

}
.

For firm j, define

Θ̂j =
{
βj = (βBj , β

S
j ) : βBj,n(e) ≤ HM0, n = 1, . . . , N, ∀e ∈ E′

}
.

Define

C1 =
{(
c1, . . . , c2(|E′|×N)

)
: |ci| ≤ M1, i = 1, . . . , 2

(
|E′| ×N

)}(
⊆ R

2(|E′|×N)
+

)
,

where M1 > HM0. Let X̂′
i be the set of xi ∈ Xi with property that

∑

i

xi(e) +
∑

j

y−j (e) +
∑

h

zh(e) + xG(e)

− ωG(e) −
∑

j

y+
j (e) −

∑

i

ωCi (e) −
∑

j

ωFj (e) −
∑

h

ωBh (e)

� D(e)
[ ∑

e′∈PA(e)−{e}
M1(e′)

]
, ∀e ∈ E′,
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for some xi′ ∈ Xi′ , i
′ �= i, yj ∈ Yj , j = 1, . . . , J, zh ∈ Zh, h = 1, . . . , H, and

xG ∈ XG. Here

M1(e′) = (3M1, . . . , 3M1).

Likewise, we can define Ŷ′
j , Ẑ′

h, and X̂′
G. As in Lemma 1, it can be shown

that X̂′
i, Ŷ′

j , Ẑ′
h, and X̂′

G are compact and convex, and therefore, there exists
a cube C2 = {(c1, . . . , c|E′|×M ) : |ci| ≤ M2, i = 1, . . . , |E′| ×M} (⊆ R|E′|×M )
such that C2 contains in its interior for all sets X̂′

i, Ŷ′
j , Ẑ′

h, and X̂′
G. Define

X̃i = C2 ∩ Xi, X̃G = C2 ∩ XG, Ỹj = C2 ∩ Yj , Z̃h = C2 ∩ Zh, and Φ̃h =
Ψ̃i = Θ̃j = C1. And let Γ̃Ci (p̃, γ, δ), Γ̃Fj (p̃), Γ̃Bh (p̃), and Γ̃G be the resultant
modification of ΓCi (p̃, γ, δ), ΓFj (p̃), ΓBh (p̃), and ΓG, respectively. Define

� =
{
p̃ =
(
pC , pB, pS

)
:
N∑

n=1

(
pBn (e) + pSn(e)

)
+

M∑

m=1

pCm(e) = 1,

pBn (e) ≥ pSn(e) ≥ 0, pCm(e) ≥ 0,m = 1, . . . ,M, n = 1, . . . , N, ∀e ∈ E′
}
,

�k =
{
p̃ =
(
pC , pB, pS

)
∈ � : pCm(e) ≥ 1/k,

m = 1, . . . ,M,∀e ∈ E′
}
,

where k ≥ M. In this model, excess demand is not necessarily homogeneous
of degree zero in prices; thus the equilibrium prices may depend on the nor-
malization chosen. For example, this will be the case for specific taxes.

In the next section, we prove the existence of the modified economy, and
then prove the existence of equilibrium of the original economy.

3.2 The Proof of Existence of General Equilibrium

We adopt the Arrow–Debreu technique to prove existence in the modified
economy. Given p̃ ∈ �k, let

μCi = μCi (p̃, γ, δ) =
{

(ψi, xi) : UCi (xi) = sup
(ψ̄i,x̄i)∈Γ̃C

i (p̃,γ,δ)

UCi (x̄i)
}
.

μFj = μFj (p̃) =
{

(βj , yj) : UFj (δj) = sup
(β′

j ,y
′
j)∈Γ̃F

i (τ)

UFj (δ′j)
}
.

μBh = μBh (p̃) =
{

(φh, zh) : UBh (γh) = sup
(φ̄h,z̄h)∈Γ̃B

h (γh)

UBh (γ̄h)
}
.

υG = υG(p̃) =
{
xG : UG(xG) = sup

x̄G∈Γ̃G

UG(x̄G)
}
.
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μM (e) =
{
p ∈ �k|pB(e)

(∑

i

αBi (e) +
∑

j

βBj (e) −
∑

h

φSh (e)
)

− pS(e)
(∑

i

αSi (e) +
∑

j

βSj (e) −
∑

h

φBh (e)
)

+
M∑

m=2

pCm(e)
[∑

i

xi,m(e) +
∑

j

y−j,m(e) +
∑

h

zh,m(e) + xG,m(e)

−
(
ωG,m(e) +

∑

j

y+
j,m(e) +

∑

i

ωCi,m(e)

+
∑

j

ωFj,m(e) +
∑

h

ωBh,m(e)
)]

+ pC1 (e)
{
D(e)
[ ∑

e′∈PA(e)−{e}

(
αBi (e′) − αSi (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
βBi (e′) − βSi (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
φBh (e′) − φSh(e′)

) ]}
is maximum

}
.

Now we make the last assumption, the boundary condition for government.

(A22) If p̃(k) = (pC(k), pB(k), pS(k)), pCm(k) → 0 as k goes to infinity, then
xG,m(p̃(k)) → ∞, where xG,m(p̃(k)) is the government’s optimal consump-
tion of commodity m corresponding to price p̃(k).

This assumption makes the plausible condition that the government can in-
crease its consumption of a commodity to infinity when the price of that
commodity declines to zero. A sufficient condition to imply this would be
to assume that the government utility function has the property that the
marginal utility of its consumption goes to infinity as consumption goes to
zero. Here we merely assume the condition directly.

Now we turn to the proof of the lower hemi-continuity of Γ̃Ci (p, γ, δ),
Γ̃Fj (p), Γ̃Bh (γh), and Γ̃G .

Lemma 3. Γ̃Ci (p, γ, δ), Γ̃Fj (p), Γ̃Bh (γh), and Γ̃G are lower hemi-continuous on
�k for each k, and therefore, μCi (p, γ, δ), μFj (p̃), μBh (p̃), and υG(p̃) are upper
hemi-continuous on �k for each k.

Proof. It suffices to show that the correspondences Γ̃Ci (p, γ, δ), Γ̃Fj (p), Γ̃Bh (γh),
and Γ̃G(τ) all have interior points for the given price p̃ ∈ �k. From (A5),
Γ̃Ci (p, γ, δ) has an interior point; from (A10), Γ̃Bh (γh) has an interior point;
from (A16), Γ̃Fj (p) has an interior point, because the firm can buy some se-
curity at the initial node and sell it gradually afterwards; and from (A19)
and (A20), Γ̃G(τ) has an interior point. By Berge’s maximum theorem and
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standard methods, we can prove that the correspondences μCi , μFj , μBh , and
υG are upper hemi-continuous and convex-valued. 
�

Define

Ψ(ξ, p̃) =
I∏

i=1

μCi
⊗ J∏

j=1

μFj
⊗ H∏

h=1

μBh
⊗

υG
⊗∏

e∈E′
μM .

Ψ is also upper hemi-continuous and convex-valued. Under these conditions,
Ψ satisfies all the conditions of the Kakutani fixed point theorem. Thus there
exist (x∗i (k), α

∗
i (k)) for all i ∈ I; (z∗h(k), φ

∗
h(k)) for all h ∈ H; (y∗j (k), β

∗
j (k)) for

all j ∈ J; x∗G(k) and p̃∗(k) such that (ξ∗(k), p̃∗(k)) ∈ Ψ(ξ∗(k), p̃∗(k)), where
ξ∗(k) = ((x∗i (k), α

∗
i (k))i∈I, (z∗h(k), φ

∗
h(k))h∈H,(y∗j (k), β

∗
j (k))j∈J, x∗G(k)). In

particular, for all p̃ ∈ �k

pB(e)
(∑

i

αB∗
i (k, e) +

∑

j

βB∗
j (k, e) −

∑

h

φS∗h (k, e)
)

− pS(e)
(∑

i

αS∗i (k, e) +
∑

j

βS∗j (k, e) −
∑

h

φB∗
h (k, e)

)

+
M∑

m=2

pCm(e)
[∑

i

x∗i,m(k, e) +
∑

j

y−∗
j,m(k, e) +

∑

h

z∗h,m(k, e) + x∗G,m(k, e)

−
(
ωG,m(e) +

∑

j

y+∗
j,m(k, e) +

∑

i

ωCi,m(e) +
∑

j

ωFj,m(e) +
∑

h

ωBh,m(e)
)]

+ pC1 (e)
{
D(e)
[ ∑

e′∈PA(e)−{e}

(
αB∗
i (k, e′) − αS∗i (k, e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
βB∗
i (k, e′) − βS∗i (k, e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
φB∗
h (k, e′) − φS∗h (k, e′)

) ]}

≤ 0, e ∈ E′, (1)

where (αB∗
i (k, e))e∈E′ = αB∗

i (k), and the other variables are defined in exactly
the same manner.

Because (ξ∗(k), p̃∗(k)) are bounded, we may assume that the sequence
(ξ∗(k), p̃∗(k)) converges, say to (ξ∗, p̃∗). By Lemma 3, in order to prove that
(ξ∗, p̃∗) is an equilibrium of the modified economy, we should show that
pC∗
m (e) > 0,m = 1, . . . ,M, e ∈ E′, and ξ∗ satisfies market clearance.

Lemma 4. pC∗(e) � 0, pB∗(e) � 0, e ∈ E′.

Proof. First of all, we prove that pC∗ � 0. It is obvious that for all p̃ ∈ �,
ξ∗ satisfies (1), and in particular,
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∑

i

αB∗
i (e) +

∑

j

βB∗
j (e) −

∑

h

φS∗h (e)

−
(∑

i

αS∗i (e) +
∑

j

βS∗j (e) −
∑

h

φB∗
h (e)
)
� 0; (2)

∑

i

αB∗
i (e) +

∑

j

βB∗
j (e) −

∑

h

φS∗h (e) � 0; (3)

∑

i

x∗i,m(e) +
∑

j

y−∗
j,m(e) +

∑

h

z∗h,m(e) + x∗G,m(e)

−
(
ωG,m(e) +

∑

j

y+∗
j,m(e) +

∑

i

ωCi,m(e)

+
∑

j

ωFj,m(e) +
∑

h

ωBh,m(e)
)

≤ 0, m = 2, . . . ,M, (4)
∑

i

x∗i,1(e) +
∑

j

y−∗
j,1 (e) +

∑

h

z∗h,1(e) + x∗G,1(e)

−
(
ωG,1(e) +

∑

j

y+∗
j,1 (e) +

∑

i

ωCi,1(e)

+
∑

j

ωFj,1(e) +
∑

h

ωBh,1(e)
)

≤ D(e)
[ ∑

e′∈PA(e)−{e}

(
αB∗
i (e′) − αS∗i (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
βB∗
i (e′) − βS∗i (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
φB∗
h (e′) − φS∗h (e′)

) ]
≤ 0, (5)

where the last inequality follows from (2). This means that x∗i ∈ X̂i, y∗j ∈
Ŷj , z∗h ∈ Ẑh, and x∗G ∈ X̂G and therefore, (φBh , φ

S
h ) ∈ Φh, h = 1, . . . , H,

(αB∗
i , αS∗i ) ∈ Ψ̂i, and (βB∗

i , βS∗i ) ∈ Θ̂j . Thus, by Assumption (A22), pC∗
m (e) >

0,m = 1, . . . ,M,∀e ∈ E′, otherwise, x∗G /∈ X̂G.
Now we turn to proving pB∗(e) � 0, ∀e ∈ E′. To the contrary, suppose

pB∗
n (e0) = 0 for some n and some ẽ ∈ E′. By considering the consumer i and

noticing that pC∗(e) � 0, ∀e ∈ E′, (αB∗
i , αS∗i ) �= Ψ̂i, because, by Assumption

(A20), the consumer can unlimitedly increase his wealth at one of the terminal
nodes by buying asset n at the node ẽ. Consequently, pB∗(e) � 0, ∀e ∈ E′. 
�

Lemma 5. ξ∗ satisfies market clearance.

Proof. Note that from the proof of Lemma 4, x∗i ∈ X̂i, y∗j ∈ Ŷj , z∗h ∈ Ẑh, and
x∗G ∈ X̂G. Hence,



140 Xing Jin and Frank Milne

pB∗(e)
(∑

i

αB∗
i (e) +

∑

j

βB∗
j (e) −

∑

h

φS∗h (e)
)

− pS∗(e)
(∑

i

αS∗i (e) +
∑

j

βS∗j (e) −
∑

h

φB∗
h (e)
)

+
M∑

m=2

pC∗
m (e)
[∑

i

x∗i,m(e) +
∑

j

y−∗
j,m(e) +

∑

h

z∗h,m(e) + x∗G,m(e)

−
(
ωG,m(e) +

∑

j

y+∗
j,m(e) +

∑

i

ωCi,m(e) +
∑

j

ωFj,m(e) +
∑

h

ωBh,m(e)
)]

+ pC∗
1 (e)
{
D(e)
[ ∑

e′∈PA(e)−{e}

(
αB∗
i (e′) − αS∗i (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
βB∗
i (e′) − βS∗i (e′)

) ]

+ D(e)
[ ∑

e′∈PA(e)−{e}

(
φB∗
h (e′) − φS∗h (e′)

) ]}
= 0, e ∈ E′.

Suppose pB∗
n (e) > pS∗n (e). Define pSn(e) = pS∗n (e) + ε, pCM (e) = pC∗

M (e) − ε
for ε sufficiently small, pSl (e) = pS∗l (e), l �= n, pBl (e) = pB∗

l (e), l = 1, . . . , N ,
pCm(e) = pC∗

m (e), m = 1, . . . ,M − 1. Plugging this price into (1) and by the
above equality and (5),

ε
(∑

h

φB∗
h,n(e) −

∑

i

αS∗i,n(e) −
∑

j

βS∗j,n(e)
)

≤ ε
[∑

i

x∗i,M (e) +
∑

j

y−∗
j,M (e) +

∑

h

z∗h,M (e) + x∗G,M (e)

−
(
ωG,M (e) +

∑

j

y+∗
j,M (e) +

∑

i

ωCi,M (e) +
∑

j

ωFj,M (e) +
∑

h

ωBh,M (e)
)]

≤ 0, e ∈ E′,

implying
∑

h

φB∗
h,n(e) −

∑

i

αS∗i,n(e) −
∑

j

βS∗j,n(e) ≤ 0, e ∈ E′. (6)

On the other hand, as in the proof of pB∗(e) � 0, we can show that
if pS∗m (e0) = 0 for some m and some e0 ∈ E′, then, by Assumption (A20),
αS∗i,n(e0) = βS∗j,n(e

0) = 0, ∀i, j, and therefore, by (6), φB∗
h,n(e

0) = 0. Conse-
quently, by noticing that pC∗(e) � 0, pB∗(e) � 0, e ∈ E′, and combining (2),
(3), (4), (5), and (6),
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∑

i

x∗i (e) +
∑

j

y−∗
j (e) +

∑

h

z∗h(e) + x∗G(e)

−
(
ωG(e) +

∑

j

y+∗
j (e) +

∑

i

ωCi (e) +
∑

j

ωFj (e) +
∑

h

ωBh (e)
)

= 0;

∑

i

αB∗
i,n(e) +

∑

j

βB∗
j,n(e) −

∑

h

φS∗h,n(e)

−
(∑

i

αS∗i,n(e) +
∑

j

βS∗j,n(e) −
∑

h

φB∗
h,n(e)
)

= 0

if pB∗
n (e) = pS∗n (e); if pB∗

n (e) > pS∗n (e),
∑

i

αB∗
i,n(e) +

∑

j

βB∗
j,n(e) −

∑

h

φS∗h,n(e) = 0

and ∑

i

αS∗i,n(e) +
∑

j

βS∗j,n(e) −
∑

h

φB∗
h,n(e) = 0

finishing the proof of Lemma 5. 
�

Combining the above three lemmas, we have proved the existence of gen-
eral equilibrium in the modified economy. Consequently, in exactly the same
manner as in Arrow and Debreu [2], it can be shown that (ξ∗, p̃∗) is an equi-
librium of the original economy, completing the proof of Theorem 1. 
�

4 Discussion

We have provided sufficient conditions for the existence of a competitive equi-
librium for a multiperiod asset economy with taxes and transaction costs.
The point of the paper is to show how common assumptions on taxes and
transaction costs can be incorporated into a competitive asset economy in a
consistent manner. For expositional reasons, we have introduced a number of
assumptions to simplify the analysis and proofs. Below we sketch how one
could relax these assumptions in a more general model and how one could
modify the strategy of proof to deal with this added complexity.

Having proved the existence of a competitive equilibrium in this model, we
should be interested in the efficiency properties of the equilibrium, uniqueness
of the equilibria, and characterizations of the equilibrium. We argue that ef-
ficiency and uniqueness are problematic except under very strong conditions.
The characterization of the asset prices and portfolios can be very complex;
simple arbitrage pricing relations will occur under certain restrictive condi-
tions, but one must be careful to check that the taxation functions and trans-
action costs are consistent with the standard results. Dynamic portfolios with
transaction costs, trading constraints, and taxes will be highly sensitive to
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the specification of those functions. There are numerous simple models in the
literature, but most rely on strong assumptions to obtain analytic results, or
require numerical simulation.

4.1 Extensions and Generalizations of the Model

First, one could introduce multiple physical commodities in the final period.
We assumed a single commodity in the last period to simplify the technical
analysis. Apart from some additional technical restrictions, the addition of
multiple commodities in the last period is a straightforward generalization.

Second, the brokers and firms have utility functions. We assumed this type
of objective because profit maximization is no longer the unanimous objective
for shareholders with incomplete markets or transaction costs. Similar prob-
lems arise with differing taxation across firms and shareholders in multiperiod
economies. Rather than attempt to address this difficult issue here, we have
avoided it by assuming utility functions for brokers and firms. There have
been attempts to discuss more abstract firm objectives (see Kelsey and Milne
[17] and their references), but we do not pursue that line of argument here.
Similar arguments can be applied to the government utility function. Clearly,
assuming a utility function is a gross simplification of government decision
making, but it suffices to provide sufficiently regular responses in the govern-
ment demands for goods and services for our existence proof, and it closes
our economy. It would be possible to introduce less regular preferences for
government; see the techniques on voting outcomes for firm decision making
in Kelsey and Milne [17] for some possible ideas that could apply to firms and
governments. If the economy has a single physical commodity and the gov-
ernment cannot trade securities, then government consumption is specified
by the budget constraint, and we can dispense with the government utility
function.

Third, we have assumed that the transaction technology is convex. It is
well known that transactions involve setup costs, or nonconvex technologies. In
[15], we address that issue by considering approximate equilibria in economies
with nonconvex transaction technologies. Clearly, these ideas could be in-
troduced here for our transaction technologies. Similar arguments could be
applied to nonconvex tax functions that arise from tax/subsidy thresholds
that induce sharp nonconvexities in tax schedules. As long as the nonconvex-
ities in these functions are not large in comparison to the overall economy, an
approximate equilibrium could be obtained.

Fourth, we assumed that taxation over dividends and capital gains are
additively separable. This is assumed for expositional convenience. We could
have assumed that the capital gains tax function included dividend taxation
and suppressed the dividend tax function. Notice that agent’s asset demands
and supplies will depend upon buying and selling prices, their utility functions,
endowments, technology, and their tax functions. This allows considerable
generality in taxation law. For example, our model allows for tax timing in
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buying or selling assets (for more discussion and examples of this type of
behavior, see Dammon et al. [8]).

Fifth, although we consider the simple case of brokers/intermediaries, the
model can be adapted quite easily to accommodate restrictions on consumer
and/or firm asset positions that are imposed by regulation (see Milne and
Neave [18] for either a reinterpretation of our model, or a more straightforward
modification of the consumer model). Thus our model could be adapted to
include discrete versions of Detemple and Murthy [10] and Cuoco and Liu [5]
on trading restrictions.

Sixth, one can consider the government precommitting to a general tax-
ation system of laws that specify contingent rates and rules depending upon
the behavior of the agents. Given that the government could compute the
equilibrium given the competitive actions of all other agents, then the gov-
ernment could simulate different tax codes and choose among the equilibria.
The equilibria we have discussed here is merely one of that set.

Seventh, we have omitted taxation on commodities and services at each
event. It is not difficult to add those taxation functions to accommodate the
interaction of financial and income taxation and subsidies. This modification
would be necessary to include standard economic discussions of the interaction
of the taxation and social security systems.

4.2 Efficiency and Uniqueness

It is well known in the economics and finance literature that an equilibrium
in incomplete asset markets is generically inefficient. This result carries over
to the economy with transaction costs, because the incomplete market model
is simply an economy with zero or infinite transaction costs on disjoint sets of
assets. There are special cases where the economy is efficient; the representa-
tive agent model is a standard example. Another case is where the agents have
identical hyperbolic absolute risk averse (HARA) von Neumann–Morgenstern
preferences. Related to the efficiency property is the derivation of an objec-
tive function for the firm. With transaction costs and taxation, there are many
cases where the objective function cannot be obtained by the Fisher separa-
tion theorem. We have assumed the existence of a firm utility function, but
a more serious construction would introduce a welfare function that weighted
the utility of the controlling agents. Or more abstractly, we could allow for
an efficient outcome where a social-welfare function does not exist (see Kelsey
and Milne [17]).

One strand of literature in public economics discusses incomplete markets
and taxation with respect to the social security system. It suggests that the
taxation system can help overcome asset market incompleteness. As the tax-
ation and asset return functions enter in the budget constraints, it is possible
to construct tax functions that would mimic the missing asset returns and
prices. It is clear that altering the taxation system will also alter the actions
of agents in equilibrium and the relative prices of assets, so that the design of



144 Xing Jin and Frank Milne

the taxation system would require very detailed information about economic
agents.

In general, the equilibria for the economy will not be unique. This is well
known in the general equilibrium literature. Often in simple models with
transaction costs and taxes, the modeler assumes HARA utilities (or identical
risk-neutral preferences) to avoid the difficulties of nonuniqueness of equilib-
ria. These restrictive assumptions greatly simplify the model, and in extreme
cases imply a representative agent.

4.3 Characterizations of Equilibria

Our model includes the well-studied case where there are no transaction costs
and taxes. This model implies martingale pricing results and the generalized
Modigliani–Miller theorems for derivative or redundant assets. With complete
markets, any equilibrium is efficient.

With transaction costs, or incomplete markets, it is well known that one
can still derive martingale pricing results, but the martingale measure may
not be unique. This type of model is consistent with a subcase of our model.
Similar characterizations with bounds on martingale measures can be derived
with the version of the model with different buying and selling prices for assets.
A number of papers use this characterization to bound derivative prices in an
equilibrium (see Milne and Neave [18] for a synthesis and discussion of the
literature).

A more difficult issue arises with the introduction of a new derivative secu-
rity that cannot be priced by arbitrage, and the derivation of pricing bounds.
In a two-period setting, this model is identical to an industrial organization
model with the introduction of a new commodity. The pricing of the com-
modity, and related commodities, will be very sensitive to the structure of the
model and assumptions on strategic behavior by the agents. Clearly this type
of model is not nested in our model, as we are restricted to an equilibrium
model and do not consider comparative equilibria or strategic behavior.

Turning to the economy with taxation, there are a number of results that
can be nested in our model. First, the introduction of taxation introduces
distortions that destroy efficiency. But the purpose of government taxation
is to raise revenue to provide public goods and redistribute wealth (we could
have modified our model to allow for this extension). Second, the existence of
transaction costs, or incomplete asset markets, raises the possibility of gov-
ernment taxation acting as a proxy for the missing or inactive asset markets.
This type of argument is often used to justify social security systems to redis-
tribute wealth and to act as an implied insurance market for the poor. Third,
restricting our attention to asset pricing, it is easy to show that if taxation
does not discriminate across assets and falls only on net income after asset
trading, then the standard arbitrage pricing results continue to hold. As these
results rely on zero arbitrage profits, and there is no profit in trading dy-
namic portfolios, the martingale pricing results follow. Fourth, when taxation
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discriminates across assets or dynamic asset portfolios, then arbitrage asset
pricing must include taxes in the marginal conditions. These results are well
known in corporate finance when dealing with corporate leverage, or dividend
policy. In the case of capital gains taxation, characterizations will involve op-
timal stopping rules that will be very sensitive to the specification of the tax
rules, asset price movements, and the preferences and income of the agent (for
an example, see Dammon et al. [8]). Fifth, although we have only one govern-
ment, it is easy to introduce other governments and their taxation systems.
This modification would allow the model to deal with international taxation
and tax arbitrage through financial markets.

5 Conclusion

We have constructed a model that is sufficiently general to include most known
models of competitive asset economies with “frictions” in asset markets. We
have omitted two important classes of frictions. The first is price-making be-
havior where agents’ asset trades have an impact on prices. Clearly, this would
violate our competitive assumption. The second friction involves asymmetric
information between agents. Nearly all of the latter literature is restricted to
partial equilibrium frameworks with strategic behavior, and is not consistent
with our competitive assumptions.
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Summary. We review the Lévy-driven interest rate theory that has been devel-
oped in recent years. The intimate relations between the various approaches, as well
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calibration in the real world as well as in the risk-neutral setting.
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1 Introduction

Although the mathematical theory of Lévy processes in general originated in
the first half of the last century, its use in finance started only in the last
decade of that century. Because Brownian motion, itself a Lévy process, is so
well understood, and also because a broad community is familiar with diffu-
sion techniques, it is not surprising that this technology became the basis for
the classical models in finance. On the other hand, it has been known for a
long time that the normal distribution, which generates the Brownian motion
and which is reproduced on any time horizon by this process, is only a poor
approximation of the empirical return distributions observed in financial data.
Of course, diffusion processes with random coefficients produce distributions
different from the normal one; however, the resulting distribution on a given
time horizon is not even known in general, and can only be determined ap-
proximately and visualized by Monte Carlo simulation. This remark holds for
most of the extensions of the classical geometric Brownian motion model such
as models with stochastic volatility or stochastic interest rates.

In [21] and [20], a genuine Lévy model for the pricing of derivatives was
introduced by Madan and Seneta and Madan and Milne. Based on a three-
parameter Variance-Gamma (VG) process as the driving process, they derived
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a pricing formula for standard call options. This approach was extended and
refined in a series of papers by Madan and coauthors. We only mention the
extension to the four-parameter CGMY-model in [4], which added more flexi-
bility to the initial VG model. Based on an extensive empirical study of stock
price data, in an independent line of research Eberlein and Keller introduced
the hyperbolic Lévy model in [7]. Both processes, the VG as well as the hyper-
bolic Lévy process, are purely discontinuous and, therefore, in a sense opposite
to the Brownian motion. Starting from empirical results, the basic concern in
[7] was to develop a model which produces distributions that fit the observed
empirical return distributions as closely as possible. This led to exponential
Lévy models

St = S0exp(Lt), t ≥ 0, (1)

to describe stock prices or indices. The log returns logSt − logSt−1 derived
from model (1) are the increments of length 1 of the driving Lévy process
L. Therefore, by feeding in the Lévy process L which is generated by an
(infinitely divisible) empirical return distribution, at least on the time horizon
1, this model reproduces exactly the distribution that one sees in the data.
This is not the case if one starts with a model for prices given by the stochastic
differential equation

dSt = St−dL̃t, (2)

or equivalently by the stochastic exponential

St = E(L̃)t (3)

of a Lévy process L̃ = (L̃t)t≥0.
A model based on normal inverse Gaussian (NIG) distributions was added

by Barndorff-Nielsen in [2]. Normal inverse Gaussian Lévy processes have nice
analytic properties. As the class of hyperbolic distributions, NIG distributions
constitute a subclass of the class of generalized hyperbolic distributions. The
stock price model based on this five-parameter class was developed in [13] and
[5]. VG distributions turned out to be another subclass. A further interesting
class of Lévy models based on Meixner processes was introduced by Schoutens
(see [23; 24]).

Calibration of the exponential Lévy model (1), at least with respect to the
real-world (or historical) measure, is conceptually straightforward, because—
as pointed out above—the return distribution is the one that generates the
driving Lévy process. See [7] for calibration results in the case of the hyperbolic
model. In this paper we study calibration of Lévy interest rate models. The
corresponding theory has been developed in a series of papers starting with
[14] and continuing with [11; 6; 12; 8; 18; 10]. During the extensions of the
initial model, it turned out that the natural driving processes for interest
rate models are time-inhomogeneous Lévy processes. They are described in
the next section. Section 3 is a brief review of the three basic approaches: the
Lévy forward rate model (HJM-type model), the Lévy forward process model,
and the Lévy LIBOR (London Interbank Offered Rate) model.



Calibration of Lévy Term Structure Models 149

In each of these approaches, a different quantity is modeled: the instan-
taneous forward rate f(t, T ), the forward process F (t, T, U) corresponding to
time points T and U , and the δ-(forward) LIBOR rate L(t, T ). The relation
between the latter quantities is obvious, because 1+ δL(t, T ) = F (t, T, T + δ).
Although L(t, T ) and F (t, T, T + δ) differ only by an additive and multiplica-
tive constant, the two specifications lead to models that behave quite differ-
ently. The reason is that the changes of the driving process have a different
impact on the forward LIBOR rates. In the Lévy LIBOR model, forward LI-
BOR rates change by an amount that is relative to their current level whereas
the change in the Lévy forward process model does not depend on the actual
level. Let us note that by construction the forward process model is easier to
handle and implement. On the other hand, this model—as does the classi-
cal HJM and therefore also the Lévy forward rate model—produces negative
rates with some (small) probability. Negative rates are excluded in the Lévy
LIBOR model.

It is shown in Section 4 that there is also a close relation to the forward
rate model. We prove that the forward process model can be seen as a special
case of the forward rate model. In Section 5 we describe how the Lévy forward
rate model can be calibrated with respect to the real-world measure as well as
with respect to the risk-neutral martingale measure. Some explicit calibration
results for driving generalized hyperbolic Lévy processes are given.

In Section 6 calibration of the Lévy forward process and the Lévy LIBOR
model is discussed. Again, generalized hyperbolic Lévy processes, in particular
NIG processes, are considered in the explicit results.

2 The Driving Process

Let (Ω,F ,F, P ) be a complete stochastic basis, where F = (Ft)t∈[0,T∗], the
filtration, satisfies the usual conditions, T ∗ ∈ R

+ is a finite time horizon,
and F = FT∗ . The driving process L = (Lt)t∈[0,T∗] is a time-inhomogeneous
Lévy process, that is, an adapted process with independent increments and
absolutely continuous characteristics, which is abbreviated by PIIAC in [16].
We can assume that the paths of the process are right-continuous with left-
hand limits. We also assume that the process starts in 0. The law of Lt is
given by its characteristic function

E[ei〈u,Lt〉] = exp
∫ t

0

[
i〈u, bs〉 −

1
2
〈u, csu〉

+
∫

Rd

(
ei〈u,x〉 − 1 − i〈u, x〉1{|x|≤1}

)
Fs(dx)

]
ds. (4)

Here, bs ∈ R
d, cs is a symmetric nonnegative-definite d× d-matrix, and Fs is

a Lévy measure, that is, a measure on R
d that integrates (|x|2∧1) and satisfies
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Fs({0}) = 0. By 〈·, ·〉, we denote the Euclidean scalar product on R
d, and | · |

is the corresponding norm. We assume that
∫ T∗

0

(
|bs| + ‖cs‖ +

∫

Rd

(|x|2 ∧ 1)Fs(dx)
)
ds < ∞, (5)

where ‖ · ‖ denotes any norm on the d× d-matrices. The triplet (b, c, F ) =
(bs, cs, Fs)s∈[0,T∗] represents the local characteristics of the process L. We
impose a further moment assumption.

Assumption EM: There are constants M , ε > 0, such that for every u ∈
[−(1 + ε)M, (1 + ε)M ]d,

∫ T∗

0

∫

{|x|>1}
exp〈u, x〉Fs(dx)ds < ∞. (6)

EM is a very natural assumption. It is equivalent to E[exp〈u, Lt〉] < ∞
for all t ∈ [0, T ∗] and all u as above. In the interest rate models that we con-
sider, the underlying processes are always exponentials of stochastic integrals
with respect to the driving processes L. In order to allow pricing of derivatives,
these underlying processes have to be martingales under the risk-neutral mea-
sure and, therefore, a priori have to have finite expectations, which is exactly
assumption EM.

In particular, under EM the random variable Lt itself has finite expecta-
tion, and consequently we do not need a truncation function. The represen-
tation (4) simplifies to

E[ei〈u,Lt〉] = exp
∫ t

0

[
i〈u, bs〉 −

1
2
〈u, csu〉

+
∫

Rd

(
ei〈u,x〉 − 1 − i〈u, x〉

)
Fs(dx)

]
ds, (4′)

where the characteristic bs is now different from the one in (4). We always use
the local characteristics (b, c, F ) derived from (4′).

Another consequence of assumption EM is that L is a special semimartin-
gale, and thus its canonical representation has the simple form

Lt =
∫ t

0

bsds +
∫ t

0

√
csdWs +

∫ t

0

∫

Rd

x(μL − ν)(ds, dx), (7)

where W = (Ws)s≥0 is a standard d-dimensional Brownian motion,
√
cs is a

measurable version of the square root of cs, and μL is the random measure of
jumps of L with compensator ν(ds, dx) = Fs(dx)ds.

Assumption EM, which is assumed throughout the following sections,
holds for all processes we are interested in, in particular for processes gen-
erated by generalized hyperbolic distributions. It excludes processes gener-
ated by stable distributions in general, but these processes are a priori not
appropriate for developing a martingale theory to price derivative products.
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We denote θs the cumulant associated with a process L as given in (7)
with local characteristics (bs, cs, Fs); that is,

θs(z) = 〈z, bs〉 +
1
2
〈z, csz〉 +

∫

Rd

(e〈z,x〉 − 1 − 〈z, x〉)Fs(dx). (8)

3 Lévy Term Structure Models

We give a short review of the three basic interest rate models that are driven
by time-inhomogeneous Lévy processes. Although the focus is on different
rates in these three approaches, the models are closely related. All three of
them are appropriate for pricing standard interest rate derivatives.

3.1 The Lévy Forward Rate Model

Modeling the dynamics of instantaneous forward rates is the starting point
in the Heath–Jarrow–Morton approach ([15]). The forward rate model driven
by Lévy processes was introduced in [14] and developed further in [11], where
in particular a risk-neutral version was identified. The model was extended
to driving time-inhomogeneous Lévy processes in [6] and [8]. In the former
reference, a complete classification of all equivalent martingale measures was
achieved. As an unexpected consequence of this analysis, it turned out that un-
der the standard assumption of deterministic coefficients for one-dimensional
driving processes there is a single martingale measure, and thus—as in the
Black–Scholes option pricing theory—there is a unique way to price inter-
est rate derivatives. Explicit pricing formulae for caps, floors, swaptions, and
other derivatives, as well as efficient algorithms to evaluate these formulae,
are given in [8] and [9].

Denote B(t, T ) the price at time t of a zero coupon bond with maturity
T . Obviously B(T, T ) = 1 for any maturity date T ∈ [0, T ∗]. Because zero
coupon bond prices can be deduced from instantaneous forward rates f(t, T )
via B(t, T ) = exp

(
−
∫ T
t
f(t, u)du

)
and vice versa, the term structure can be

modeled by specifying either of them. Here we specify the forward rates. Its
dynamics is given for any T ∈ [0, T ∗] by

f(t, T ) = f(0, T ) +
∫ t

0

α(s, T )ds−
∫ t

0

σ(s, T )dLs, (9)

where L = (Lt)t∈[0,T∗] is a PIIAC with local characteristics (b, c, F ). For de-
tails concerning assumptions on the coefficients α(t, T ) and σ(s, T ), we refer to
[6] and [8]. The simplest case and at the same time the most important one for
the implementation of the model is the case where α and σ are deterministic
functions. Defining

A(s, T ) :=
∫ T

s∧T
α(s, u)du and Σ(s, T ) =

∫ T

s∧T
σ(s, u)du, (10)
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one can derive the corresponding zero coupon bond prices in the form

B(t, T ) = B(0, T ) exp
(∫ t

0

(r(s) −A(s, T ))ds +
∫ t

0

Σ(s, T )dLs

)
, (11)

where r(s) := f(s, s) denotes the short rate. Choosing T = t in (11), the
risk-free savings account Bt = exp

( ∫ t
0 r(s)ds

)
can be written as

Bt =
1

B(0, t)
exp
(∫ t

0

A(s, t)ds −
∫ t

0

Σ(s, t)dLs

)
. (12)

Now assume that Σ(s, T ) is deterministic and

0 ≤ σi(s, T ) ≤ M, i ∈ {1, . . . , d}, (13)

whereM is the constant from assumption EM. From (11) one sees immediately
that discounted bond prices B(t, T )/Bt are martingales for all T ∈ [0, T ∗] if
we choose

A(s, T ) := θs(Σ(s, T )), (14)

because
∫ t
0
θs(Σ(s, T ))ds is the exponential compensator of

∫ t
0
Σ(s, T )dLs.

Thus we are in an arbitrage-free market. Another useful representation of
zero coupon bond prices that follows from (11) and (12) is

B(t, T ) =
B(0, T )
B(0, t)

exp
(
−
∫ t

0

A(s, t, T )ds+
∫ t

0

Σ(s, t, T )dLs

)
, (15)

where we used the abbreviations

A(s, t, T ) := A(s, T ) −A(s, t) and Σ(s, t, T ) = Σ(s, T )−Σ(s, t). (16)

3.2 The Lévy Forward Process Model

This model was introduced in [12]. The advantage of this approach is that
the driving process remains a time-inhomogeneous Lévy process during the
backward induction that is done to get the rates in uniform form. Thus one
can avoid any approximation, and the model is easy to implement.

Let 0 = T0 < T1 < · · · < TN < TN+1 = T ∗ denote a discrete tenor
structure and set δk = Tk+1 − Tk. For zero coupon bond prices B(t, Tk) and
B(t, Tk+1), the forward process is defined by

F (t, Tk, Tk+1) =
B(t, Tk)
B(t, Tk+1)

. (17)

Therefore, modeling forward processes means specifying the dynamics of ratios
of successive bond prices.
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Let LT
∗

be a time-inhomogeneous Lévy process on a complete stochastic
basis (Ω,FT∗ ,F, PT∗). The probability measure PT∗ can be interpreted as the
forward measure associated with the settlement date T ∗. The moment con-
dition EM is assumed as before. The local characteristics of LT

∗
are denoted

(bT
∗
, c, FT

∗
). Two parameters, c and FT

∗
, are free parameters, whereas the

drift characteristic bT
∗

is chosen to guarantee that the forward process is a
martingale. Because we proceed by backward induction, let us use the nota-
tion T ∗

i := TN+1−i and δ∗i = δN+1−i for i ∈ {0, . . . , N + 1}. The following
ingredients are needed.

(FP.1) For any maturity Ti there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → R

d that represents the volatility of the
forward process F (·, Ti, Ti+1). We require for all k ∈ {1, . . . , N},

∣∣∣
k∑

i=1

λj(s, Ti)
∣∣∣ ≤ M (s ∈ [0, T ∗], j ∈ {1, . . . , d}), (18)

where M is the constant in assumption EM and λ(s, Ti) = 0 for
s > Ti.

(FP.2) The initial term structure of zero coupon bond prices B(0, Ti), 1 ≤
i ≤ N + 1, is strictly positive. Consequently, the initial values of the
forward processes are given by

F (0, Ti, Ti+1) =
B(0, Ti)
B(0, Ti+1)

. (19)

We begin to construct the forward process with the longest maturity and
postulate

F (t, T ∗
1 , T

∗) = F (0, T ∗
1 , T

∗) exp
(∫ t

0

λ(s, T ∗
1 )dLT

∗
s

)
. (20)

Now we choose bT
∗

such that F (·, T ∗
1 , T

∗) becomes a PT∗ -martingale. This is
achieved via the following equation,
∫ t

0

〈λ(s, T ∗
1 ), bT

∗
s 〉ds = −1

2

∫ t

0

〈λ(s, T ∗
1 ), csλ(s, T ∗

1 )〉ds (21)

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

1 ),x〉 − 1 − 〈λ(s, T ∗
1 ), x〉
)
νT

∗
(ds, dx),

where νT
∗
(ds, dx) = FT

∗
s (dx)ds is the PT∗ -compensator of the random mea-

sure of jumps μL given by the process LT
∗
. Using Lemma 2.6 in [17], one can

express the ordinary exponential (20) as a stochastic exponential, namely,

F (t, T ∗
1 , T

∗) = F (0, T ∗
1 , T

∗)Et(H(·, T ∗
1 )),
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where

H(t, T ∗
1 ) =
∫ t

0

√
csλ(s, T ∗

1 )dWT∗
s

+
∫ t

0

∫

Rd

(
e〈λ(s,T∗

1 ),x〉 − 1
)
(μL − νT

∗
)(ds, dx). (22)

Because F (·, T ∗
1 , T

∗) is a martingale, we can define the forward martingale
measure associated with the date T ∗

1 by setting

dPT∗
1

dPT∗
=

F (T ∗
1 , T

∗
1 , T

∗)
F (0, T ∗

1 , T
∗)

= ET∗
1
(H(·, T ∗

1 )). (23)

Using Girsanov’s theorem for semimartingales (see [16, Theorem III.3.24]),
we can identify from (22) the predictable processes β and Y that describe the
measure change, namely,

β(s) = λ(s, T ∗
1 ) and Y (s, x) = exp〈λ(s, T ∗

1 ), x〉.

Consequently W
T∗
1

t := WT∗
t −
∫ t
0

√
csλ(s, T ∗

1 )ds is a standard Brownian mo-
tion under PT∗

1
, and νT

∗
1 (dt, dx) := exp〈λ(s, T ∗

1 ), x〉νT∗
(dt, dx) is the PT∗

1
-

compensator of μL.
Now we construct the forward process F (·, T ∗

2 , T
∗
1 ) by postulating

F (t, T ∗
2 , T

∗
1 ) = F (0, T ∗

2 , T
∗
1 ) exp

(∫ t

0

λ(s, T ∗
2 )dLT

∗
1
s

)
,

where

L
T∗
1
t =
∫ t

0

b
T∗
1
s ds+

∫ t

0

√
csdW

T∗
1

s +
∫ t

0

∫

Rd

x(μL − νT
∗
1 )(ds, dx).

The drift characteristic bT
∗
1 can be chosen in an analogous way as in (21), and

we define the next measure change from the resulting equation. Proceeding
this way, we get all forward processes in the form

F (t, T ∗
i , T

∗
i−1) = F (0, T ∗

i , T
∗
i−1) exp

(∫ t

0

λ(s, T ∗
i )dL

T∗
i−1
s

)
, (24)

with

L
T∗

i−1
t =

∫ t

0

b
T∗

i−1
s ds +

∫ t

0

√
csdW

T∗
i−1

s +
∫ t

0

∫

Rd

x(μL − νT
∗
i−1)(ds, dx). (25)

WT∗
i−1 is here a PT∗

i−1
-standard Brownian motion, and νT

∗
i−1 is the PT∗

i−1
-com-

pensator of μL given by

νT
∗
i−1(dt, dx) = exp

( i−1∑

j=1

〈λ(t, T ∗
j ), x〉
)
FT

∗
t (dx)dt. (26)
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The drift characteristic bT
∗
i−1 satisfies

∫ t

0

〈λ(s, T ∗
i ), b

T∗
i−1
s 〉ds = −1

2

∫ t

0

〈λ(s, T ∗
i ), csλ(s, T ∗

i )〉ds (27)

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

i ),x〉 − 1 − 〈λ(s, T ∗
i ), x〉
)
νT

∗
i−1(ds, dx).

All driving processes LT
∗
i remain time-inhomogeneous Lévy processes under

the corresponding forward measures, because they differ only by deterministic
drift terms.

3.3 The Lévy LIBOR Model

This approach has been described in full detail in [12]; therefore, we just
list some of the properties. As in Section 3.2 the model is constructed by
backward induction along the discrete tenor structure and is driven by a time-
inhomogeneous Lévy process LT

∗
, which is given on a complete stochastic

basis (Ω,FT∗ ,F, PT∗). As in the Lévy forward process model, PT∗ should be
regarded as the forward measure associated with the settlement day T ∗. LT

∗

is required to satisfy assumption EM and can be written in the form

LT
∗

t =
∫ t

0

bT
∗

s ds +
∫ t

0

√
csdW

T∗
s +
∫ t

0

∫

Rd

x(μL − νT
∗
)(ds, dx), (28)

where νT
∗
(dt, dx) = FT

∗
s (dx)dt is the compensator of μL. The ingredients

needed for the model are as follows.

(LR.1) For any maturity Ti, there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → R

d that represents the volatility of the
forward LIBOR rate process L(·, Ti). In addition,

N∑

i=1

|λj(s, Ti)| ≤ M, s ∈ [0, T ∗], j ∈ {1, . . . , d},

where M is the constant from assumption EM and λ(s, Ti) = 0 for
s > Ti.

(LR.2) The initial term structure B(0, Ti), 1 ≤ i ≤ N + 1, is strictly positive
and strictly decreasing (in i). Consequently, the initial term structure
L(0, Ti) of forward LIBOR rates is given by

L(0, Ti) =
1
δi

(
B(0, Ti)
B(0, Ti+1)

− 1
)
> 0.

Now we can start the induction by postulating that

L(t, T ∗
1 ) = L(0, T ∗

1 ) exp
(∫ t

0

λ(s, T ∗
1 )dLT

∗
s

)
. (29)
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The drift characteristic bT
∗

is chosen as in (21) to make this process a mar-
tingale. Writing (29) as a stochastic exponential and exploiting the relation
F (t, T ∗

1 , T
∗) = 1 + δ∗1L(t, T ∗

1 ), one gets the dynamics in terms of the forward
process F (·, T ∗

1 , T
∗). From this, the measure change can be done as in Section

3.2. As a result of the backward induction, one gets for each tenor time point
the forward LIBOR rates in the form

L(t, T ∗
j ) = L(0, T ∗

j ) exp
(∫ t

0

λ(s, T ∗
j )dL

T∗
j−1
s

)
(30)

under the corresponding forward martingale measure PT∗
j−1

. The successive
forward measures are related by the following equation,

dPT∗
j

dPT∗
j−1

=
1 + δjL(T ∗

j , T
∗
j )

1 + δjL(0, T ∗
j )

. (31)

The driving process LT
∗
j−1 in (30) has the canonical representation

L
T∗

j−1
t =

∫ t

0

b
T∗

j−1
s ds +

∫ t

0

√
csdW

T∗
j−1

s +
∫ t

0

∫

Rd

x(μL − νT
∗
j−1)(ds, dx). (32)

WT∗
j−1 is a PT∗

j−1
-Brownian motion via

W
T∗

j−1
t = W

T∗
j−2

t −
∫ t

0

√
csα(s, T ∗

j−1, T
∗
j−2)ds,

where

α(t, T ∗
k , T

∗
k−1) =

δ∗kL(t−, T ∗
k )

1 + δ∗kL(t−, T ∗
k )
λ(t, T ∗

k ). (33)

Similarly νT
∗
j−1 is the PT∗

j−1
-compensator of μL which is related to the PT∗

j−2
-

compensator via

νT
∗
j−1 (ds, dx) = β(s, x, T ∗

j−1, T
∗
j−2)ν

T∗
j−2 (ds, dx),

where

β(t, x, T ∗
k , T

∗
k−1) =

δ∗kL(t−, T ∗
k )

1 + δ∗kL(t−, T ∗
k )

(
e〈λ(t,T∗

k ),x〉 − 1
)

+ 1. (34)

The backward induction guarantees that zero coupon bond prices B(·, Tj)
discounted by B(·, Tk) (i.e., ratios B(·, Tj)/B(·, Tk)) are PTk

-martingales for
all j, k ∈ {1, . . . , N + 1}, and thus we have an arbitrage-free market. This fol-
lows directly for successive tenor time points from the relation 1+ δL(t, Tj) =
B(t, Tj)/B(t, Tj+1), because L(t, Tj) is by construction a PTj+1 -martingale.
Expanding ratios with arbitrary tenor time points Tj and Tk into products
of ratios with successive time points, one gets the result from this special
case. To see this, one has to use Proposition 3.8 in [16, p. 168], which is a
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fundamental result for the analysis of all interest rate models where forward
martingale measures are used.

Note that the driving processes L
T∗

j−1
t that are derived during the backward

induction are no longer time-inhomogeneous Lévy processes. This is clear from
(34), because due to the random term β(s, x, T ∗

j−1, T
∗
j−2), the compensator

νT
∗
j−1 is no longer deterministic. One can force the process β(·, x, T ∗

j−1, T
∗
j−2) to

become deterministic by replacing L(t−, T ∗
k )/(1+δ∗kL(t−, T ∗

k )) by its starting
value L(0, T ∗

k )/(1 + δ∗kL(0, T ∗
k )) in (34). This approximation is convenient for

the implementation of the model, because then all driving processes are time-
inhomogeneous Lévy processes. Because the process Y (·, x), which is used in
the change from one compensator to the next in the forward process approach,
is nonrandom, one can implement the model from Section 3.2 without any
approximation.

4 Embedding of the Forward Process Model

In this section we show that the Lévy forward process model can be seen as a
special case of the Lévy forward rate model. We choose the parameters of the
latter in such a way that we get the forward process specification as shown in
(24)–(27). In the martingale case, which is defined by (14), according to (15),
zero coupon bond prices can be represented in the form

B(t, T ) =
B(0, T )
B(0, t)

exp
(∫ t

0

(
θ̃s(Σ(s, t)) − θ̃s(Σ(s, T ))

)
ds+
∫ t

0

Σ(s, t, T )dL̃s

)
,

(35)
where L̃ is a time-inhomogeneous Lévy process with characteristics (̃b, c̃, F̃ )
under the (spot martingale) measure P . L̃ satisfies assumption EM and
θ̃s denotes the cumulant associated with the triplet (̃bs, c̃s, F̃s). Recall that
Σ(s, T ) =

∫ T
s∧T σ(s, u)du.

The forward martingale measure PT∗
i

associated with the settlement date
T ∗
i is related to the spot martingale measure P via the Radon–Nikodym

derivative
dPT∗

i

dP
=

1
BT∗

i
B(0, T ∗

i )
P -a.s.

Choosing T = t = T ∗
i in (11), one gets immediately the representation

dPT∗
i

dP
= exp

(
−
∫ T∗

i

0

θ̃s(Σ(s, T ∗
i ))ds +

∫ T∗
i

0

Σ(s, T ∗
i )dL̃s

)
. (36)

Because σ and, therefore, Σ are deterministic functions, L̃ is also a time-
inhomogeneous Lévy process with respect to PT∗

i
, and its PT∗

i
-characteristics

(̃bT
∗
i , c̃T

∗
i , F̃T

∗
i ) are given by
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b̃
T∗

i
s = b̃s + c̃sΣ(s, T ∗

i ) +
∫

Rd

(
e〈Σ(s,T∗

i ),x〉 − 1
)
x F̃s(dx),

c̃
T∗

i
s = c̃s, (37)

F̃
T∗

i
s (dx) = e〈Σ(s,T∗

i ),x〉F̃s(dx).

Because L̃ is also a PT∗
i
-special semimartingale, it can be written in its PT∗

i
-

canonical representation as

L̃t =
∫ t

0

b̃
T∗

i
s ds +

∫ t

0

√
c̃sdW

T∗
i

s +
∫ t

0

∫

Rd

x(μL̃ − ν̃ T
∗
i )(ds, dx), (38)

where WT∗
i is a PT∗

i
-standard Brownian motion and where ν̃ T

∗
i (ds, dx) :=

F̃
T∗

i
s (dx)ds is the PT∗

i
-compensator of μL̃, the random measure associated

with the jumps of the process L̃.
Using this representation in (35), we derive the forward process

F (t, T ∗
i+1, T

∗
i ) =

B(t, T ∗
i+1)

B(t, T ∗
i )

=
B(0, T ∗

i+1)
B(0, T ∗

i )
exp
(∫ t

0

(
θ̃s(Σ(s, T ∗

i )) − θ̃s(Σ(s, T ∗
i+1))
)
ds

+
∫ t

0

Σ(s, T ∗
i , T

∗
i+1)dL̃s

)

= F (0, T ∗
i+1, T

∗
i ) exp

(
I1
t + I2

t +
∫ t

0

√
c̃sΣ(s, T ∗

i , T
∗
i+1)dW

T∗
i

s

+
∫ t

0

∫

Rd

〈Σ(s, T ∗
i , T

∗
i+1), x〉

(
μL̃ − ν̃ T

∗
i
)
(ds, dx)

)
.

Here

I1
t :=
∫ t

0

(
θ̃s(Σ(s, T ∗

i )) − θ̃s(Σ(s, T ∗
i+1))
)
ds

=
∫ t

0

[
− 〈Σ(s, T ∗

i , T
∗
i+1), b̃s〉

+
1
2
〈Σ(s, T ∗

i ), c̃sΣ(s, T ∗
i )〉 − 1

2
〈Σ(s, T ∗

i+1), c̃sΣ(s, T ∗
i+1)〉

+
∫

Rd

(
e〈Σ(s,T∗

i ),x〉− e〈Σ(s,T∗
i+1),x〉+〈Σ(s, T ∗

i , T
∗
i+1), x〉

)
F̃s(dx)

]
ds,

and making use of the first equation in (37),
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I2
t :=
∫ t

0

〈Σ(s, T ∗
i , T

∗
i+1), b̃

T∗
i

s 〉ds

=
∫ t

0

[
〈Σ(s, T ∗

i , T
∗
i+1), b̃s〉 + 〈Σ(s, T ∗

i , T
∗
i+1), c̃sΣ(s, T ∗

i )〉

+
∫

Rd

〈Σ(s, T ∗
i , T

∗
i+1), x〉

(
e〈Σ(s,T∗

i ),x〉 − 1
)
F̃s(dx)

]
ds.

Summing up I1 and I2 yields

I1
t + I2

t = −1
2

∫ t

0

〈Σ(s, T ∗
i , T

∗
i+1), c̃sΣ(s, T ∗

i , T
∗
i+1)〉ds

−
∫ t

0

∫

Rd

(
e〈Σ(s,T∗

i ,T
∗
i+1),x〉 − 1 − 〈Σ(s, T ∗

i , T
∗
i+1), x〉

)
F̃
T∗

i
s (dx)ds.

Hence, the forward process is given by

F (t, T ∗
i+1, T

∗
i )

= F (0, T ∗
i+1, T

∗
i ) exp

(
− 1

2

∫ t

0

〈Σ(s, T ∗
i , T

∗
i+1), c̃sΣ(s, T ∗

i , T
∗
i+1)〉ds

−
∫ t

0

∫

Rd

(
e〈Σ(s,T∗

i ,T
∗
i+1),x〉 − 1 − 〈Σ(s, T ∗

i , T
∗
i+1), x〉

)
F̃
T∗

i
s (dx)ds

+
∫ t

0

√
c̃sΣ(s, T ∗

i , T
∗
i+1)dW

T∗
i

s

+
∫ t

0

∫

Rd

〈Σ(s, T ∗
i , T

∗
i+1), x〉

(
μL̃ − ν̃ T

∗
i
)
(ds, dx)

)
.

Now we shall specify the model parameters, that is, the volatility σ and the
characteristics (̃b, c̃, F̃ ) of L̃, in such a way that the forward process dynamics
match the dynamics given in (24)–(27). First, we choose

Σ(s, T ∗
i , T

∗
i+1) = λ(s, T ∗

i+1).

This can be reached by setting

σ(s, u) := −
N∑

i=0

1
δ∗i+1

λ(s, T ∗
i+1)1[T∗

i+1,T
∗
i )(u),

because

Σ(s, T ∗
i , T

∗
i+1) = −

∫ T∗
i

T∗
i+1

σ(s, u)du = λ(s, T ∗
i+1).

Of course there are many other possibilities to specify σ. It could also be
chosen to be continuous or smooth in the second variable.

Next, we specify the triplet (̃b, c̃, F̃ ). b̃s can be chosen arbitrary. We set
c̃s = cs and
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F̃s(dx) = exp〈−Σ(s, T ∗), x〉FT∗
s (dx), (39)

where FT
∗

is the third characteristic of the driving process LT
∗

in the Lévy
forward process model. Then using the third equation in (37),

F̃
T∗

i
s (dx) = exp〈Σ(s, T ∗

i ) −Σ(s, T ∗), x〉FT∗
s (dx)

= exp
( i∑

j=1

〈Σ(s, T ∗
j ) −Σ(s, T ∗

j−1), x〉
)
FT

∗
s (dx)

= exp
( i∑

j=1

〈λ(s, T ∗
j ), x〉
)
FT

∗
s (dx),

and we arrive at the forward process

F (t, T ∗
i+1, T

∗
i ) = F (0, T ∗

i+1, T
∗
i ) exp

(∫ t

0

λ(s, T ∗
i+1)dL̃

T∗
i

s

)
,

where

L̃
T∗

i
t =
∫ t

0

b
T∗

i
s ds+

∫ t

0

√
csdW

T∗
i

s +
∫ t

0

∫

Rd

x(μL̃ − ν̃ T
∗
i )(ds, dx).

The PT∗
i
-compensator ν̃ T

∗
i of μL̃ is given by

ν̃ T
∗
i (dt, dx) = exp

( i∑

j=1

〈λ(t, T ∗
j ), x〉
)
FT

∗
t (dx)dt,

and finally (bT
∗
i
s ) satisfies

∫ t

0

〈λ(s, T ∗
i+1), b

T∗
i
s 〉ds

= −1
2

∫ t

0

〈λ(s, T ∗
i+1), c̃sλ(s, T ∗

i+1)〉ds

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

i+1),x〉 − 1 − 〈λ(s, T ∗
i+1), x〉

)
ν̃ T

∗
i (ds, dx).

Remark 1. This embedding works only for driving processes that are time-
inhomogeneous Lévy processes. If both models are driven by a process with
stationary increments (i.e., FT

∗
s and F̃s do not depend on s), in general we

cannot embed the forward process model in the forward rate model.

5 Calibration of the Lévy Forward Rate Model

5.1 The Real-World Measure

In this section we consider the Lévy forward rate model with a time-
homogeneous driving process L; that is, L has stationary increments. The
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goal is to estimate the parameters of the driving process under the real-world
measure. For this purpose, we use market data of discount factors (zero coupon
bond prices) for one year up to ten years, quoted between September 17, 1999,
and September 17, 2001 (i.e., for 522 trading days).

The parameter estimation in the forward rate model is substantially more
difficult than in a stock price model. The reason is that we have a number
of different assets, namely ten bonds in the case of our data set (in theory of
course an infinite number), but only one driving process. Therefore, we have
to find a way to extract the parameters of the driving process from the log
returns of all ten bond prices.

Let us start by considering the logarithm of the ratio between the bond
price and its forward price on the day before; that is,

LR(t, T ) := log
B(t + 1, t+ T )
B(t, t + 1, t+ T )

.

Here, B(t, t+1, t+T ) is the forward price of B(t+1, t+T ) at time t; that is,

B(t, t + 1, t+ T ) :=
B(t, t + T )
B(t, t + 1)

.

We call LR the daily log return. Using (15), we get

LR(t, T ) = logB(t + 1, t+ T ) − logB(t, t+ T ) + logB(t, t + 1)

= −
∫ t+1

t

A(s, t + 1, t+ T )ds+
∫ t+1

t

Σ(s, t+ 1, t+ T )dLs. (40)

In what follows, we consider for simplicity the Ho–Lee volatility structure,
that is, Σ(s, T ) = σ̂(T−s) for a constant σ̂, which we set equal to one without
loss of generality. Similar arguments can be carried out for other stationary
volatility structures, such as the Vasiček volatility function. By stationary, we
mean that Σ(s, T ) depends only on (T −s). We assume that the drift term
also satisfies some stationarity condition, namely,

A(s, T ) = A(0, T−s) for s ≤ t.

In the risk-neutral case given by (14), this stationarity follows from the sta-
tionarity of the volatility function Σ(s, T ). We get

−
∫ t+1

t

A(s, t + 1, t+ T )ds = −
∫ 1

0

A(s, 1, T )ds =: d(T ), (41)

independent of t and
∫ t+1

t

Σ(s, t+ 1, t+ T )dLs = (T−1)(Lt+1 − Lt).
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Fig. 1. Negative logarithms of bond prices on September 17, 1999 and interpolating
cubic spline.

Consequently,
LR(t, T ) = d(T ) + c(T )Yt+1, (42)

where c(T ) := (T−1) is deterministic and

Yt+1 := Lt+1 − Lt ∼ L1

is Ft+1-measurable and does not depend on T .
To estimate the parameters of the driving process, we first determine the

daily log returns; that is, for k ∈ {0, 1, . . . , 520}, n ∈ {1, . . . , 10},

LR(k, k + (n years)) = logB(k + 1, k + (n years)) + log
B(k, k + 1)

B(k, k + (n years))
.

Unfortunately, we can only get B(k, k+(n years)) directly from our data set.
To determine B(k+1, k+(n years)) and B(k, k+1), we use an idea developed
in [22, Section 5.3] and interpolate the negative of the logarithm of the bond
prices with a cubic spline. We do this procedure separately for each day of the
data set. Figure 1 shows the interpolation for the first day (even for maturities
up to 30 years).
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Table 1. Estimated parameters of the distribution L1 under the measure P .

α β δ μ λ Method

1474224 -34659 1.1892e-12 7.5642e-08 2.37028 Max-Likelihood (GH)

590033 -14 1.3783e-06 3.2426e-11 -0.5 Max-Likelihood (NIG)

1195475 -114855 2.5614e-06 2.4723e-07 -0.5 Moments (NIG)

Because E[L1] = 0, we know that

LR(t, T ) − E[LR(t, T )] = (T−1)Yt+1; (43)

that is, the centered log returns are affine linear in T . Moreover, Y1, Y2,
. . . , Y521 are independent and equal to L1 in distribution. The corresponding
samples y1, y2, . . . , y521 could be calculated for a fixed n ∈ {1, 2, . . . , 10} via

yk+1 :=
LR(k, k + (n years)) − x̄n

(n years) − 1
, with (44)

x̄n :=
1

521

520∑

k=0

LR(k, k + (n years)). (45)

However, inasmuch as the centered empirical log returns LR(k, k+(n years))−
x̄n are not exactly affine linear in n (compare Figure 2), the yk+1 in (44) would
then depend on n. Remember that the distribution of L1 in the Lévy forward
rate model does not depend on the time to maturity of the bonds. Therefore,
we take a different approach and use the points

((1 year)−1, LR(k, k+(1 year))−x̄1), . . . , ((10 years)−1, LR(k, k+(10 years))−x̄10)

for a linear regression through the origin. The gradient of the straight line
yields the value for yk+1. Figure 2 shows the centered empirical log returns and
the regression line for the first day of the data set. Repeating this procedure for
each day provides us with the samples y1, y2, . . . , y521, which can now be used
to estimate the parameters of L1 by using maximum likelihood estimation.

The parametric class of distributions we use here are generalized hyper-
bolic distributions (see, e.g., [5]) or subclasses such as hyperbolic [7] or normal
inverse Gaussian (NIG) distributions [2]. The resulting densities for our data
set are shown in Figure 3. Figure 4 shows the same densities on a log-scale,
which allows us to see the fit in the tails. The estimated distribution param-
eters corresponding to the densities in Figure 3 are given in Table 1.

One of the densities in Figures 3 and 4 was estimated using the method
of moments. This is a somewhat simpler approach where one exploits the
relation between moments of order i and the ith cumulant (see [1, 26.1.13 and
26.1.14]). Because for generalized hyperbolic distributions the cumulants are
explicitly known, one can express the moments (up to order 4) as functions of
the distribution parameters λ, α, β, δ, and μ. Applying the usual estimators
for moments, one obtains the parameters.
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Fig. 2. Centered empirical log returns and regression line for the first day of the
data set.

5.2 The Risk-Neutral Measure

There are very liquid markets for the basic interest rate derivatives such as
caps, floors, and swaptions. Therefore, market prices for these instruments—
typically quoted in terms of their (implied) volatilities with respect to the
standard Gaussian model—contain a maximum of information. A cap is a
series of call options on subsequent variable interest rates, namely LIBOR
rates. Each option is called a caplet. It is easy to see that the payoff of a
caplet can be expressed as the payoff of a put option on a zero coupon bond.
In the same way a floor is a series of floorlets, and each floorlet is equivalent
to a call option on a bond. Thus to price a floorlet one has to price a call
on a bond. According to the general no-arbitrage valuation theory, the time-
0-value of a call with strike K and maturity t on a bond with maturity T
is

C0(t, T,K) := E

[
1
Bt

(B(t, T ) −K)+
]
, (46)

where the expectation is taken with respect to the risk-neutral measure (spot
martingale measure). Because one would need the joint distribution of Bt
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Fig. 3. Densities of empirical and estimated distributions.

and B(t, T ) to evaluate this expectation, it is more efficient to express this
expectation with respect to the forward measure associated with time t. One
then gets

C0(t, T,K) = B(0, t)EPt [(B(t, T ) −K)+]. (47)

Once one has numerically efficient algorithms to compute these expectations,
one can calibrate the model by minimizing the differences between model
prices and market quotes simultaneously across all available option maturities
and strikes. This has been described in detail in [8].

Let us mention that in the stationary case, one can derive risk-neutral
parameters from the real-world parameters, which we estimated in Section
5.1. Because of the martingale drift condition (14), we get from (41)

d(T ) =
∫ 1

0

(A(s, 1) −A(s, T ))ds =
∫ 1

0

(θ(Σ(σ, 1)) − θ(Σ(s, T )))ds, (48)

where θ is the logarithm of the moment generating function of L(L1) under
the risk-neutral measure. By stationarity L(Yn+1) = L(L1) and E[L1] = 0,
therefore, (42) implies

E[LR(t, T )] = d(T ). (49)

The arithmetic mean of the empirical log returns (45) is an estimator for the
expectation on the left side. By a minimization procedure, one can now extract
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Fig. 4. Log-densities of empirical and estimated distributions.

the distribution parameters of L(L1), which are implicit on the right-hand side
of (48) from this equation.

In the case of generalized hyperbolic Lévy processes as driving processes,
it is known from [22] that the parameters μ and δ do not change when one
switches from the real-world to the risk-neutral distribution. Therefore, one
has only to extract the remaining parameters λ, α, β via minimization of the
distance between average log returns and the integral on the right side in (48).

It is clear that due to the highly liquid market in interest rate derivatives,
the direct fit to market quotes as described at the beginning of this section
provides more reliable calibration results than the derivation from real-world
parameters. It will, therefore, be preferred by practitioners.

6 Calibration of Forward Process and LIBOR Models

Recall that a cap is a sequence of call options on subsequent LIBOR rates.
Each single option is called a caplet. Let a discrete tenor structure 0 = T0 <
T1 < · · · < Tn+1 = T ∗ be given as before. The time-Tj payoff of a caplet that
is settled in arrears is

Nδj−1(L(Tj−1, Tj−1) −K)+, (50)
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where K is the strike and N the notional amount, which we assume to be 1.
The corresponding payoff of a floorlet settled in arrears is

Nδj−1(K − L(Tj−1, Tj−1))+. (51)

The time-t price of the cap is then

Ct(K) =
N+1∑

j=1

B(t, Tj)EPTj

[
δj−1(L(Tj−1, Tj−1) −K)+|Ft

]
. (52)

Given this formula, the LIBOR model is the natural approach to price caps,
because then the LIBOR rates L(Tj−1, Tj−1) are given in the simple form (30)
with respect to the forward martingale measure PTj .

Numerically efficient ways based on bilateral Laplace transforms to eval-
uate the expectations in (52) are described in [12]. For numerical purposes,
the nondeterministic compensators that arise during the backward induction
in the Lévy LIBOR model can be approximated by deterministic ones. Con-
cretely, the stochastic ratios δjL(s−, Tj)/(1 + δjL(s−, Tj)) are replaced by
their deterministic initial values δjL(0, Tj)/(1 + δjL(0, Tj)). An alternative
approximation method, which is numerically much faster, is described in [18,
Section 3.2.1].

Instead of basing the pricing on the LIBOR model, one can use the forward
process approach outlined in Section 3.2. It is then more natural to write the
caplet payoff (50) in the form

(
1 + δj−1L(Tj−1, Tj−1) − K̃j−1

)+
, (53)

where K̃j−1 = 1+δj−1K. Because 1+δj−1L(Tj−1, Tj−1) = F (Tj−1, Tj−1, Tj),
the pricing formula is then instead of (52)

Ct(K) =
N+1∑

j=1

B(t, Tj)EPTj

[
(F (Tj−1, Tj−1, Tj) − K̃j−1)+|Ft

]
. (54)

The implementation of this approach leads to a much faster algorithm,
inasmuch as the backward induction is more direct in the case of the forward
process model. Also, any approximation can be avoided here.

In the implementations, we use mildly time-inhomogeneous Lévy pro-
cesses, namely those that are piecewise homogeneous Lévy processes. In order
to catch the term structure of smiles, which one sees in implied volatility
surfaces (see [8, Figure 1]), with sufficient accuracy, typically three Lévy pa-
rameter sets are needed: one Lévy process corresponding to short maturities
up to one year roughly, a second one for maturities between one and five years,
and a third Lévy process corresponding to long maturities from five to ten
years. Instead of predetermining the breakpoints where the Lévy parameters
change, one can actually include the choice of the breakpoints in the estimation
procedure. These random breakpoints improve the calibration results further.
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Fig. 5. A variety of shapes for the instantaneous volatility curve produced by (55)
with a = 1, b ∈ [0.1, 2.1], c = 0.1 (source: [19]).

According to (FP.1) and (LR.1), a volatility structure has to be chosen
in both models. In [3], a broad spectrum of suitable volatility structures is
discussed, which can be used in the forward process or the LIBOR model.
A sufficiently flexible structure is given by

λ(t, Tj) = a(Tj − t) exp(−b(Tj − t)) + c, (55)

with three parameters a, b, c. Note that we consider one-dimensional processes
and consequently also scalar volatility functions in all calibrations. Figure 5
shows a variety of shapes produced by formula (55).

Without loss of generality one can set a = 1, because this parameter
can be included in the specification of the Lévy process. To see this, take
for example a Lévy process L generated by a normal inverse Gaussian dis-
tribution; that is, L(L1) = NIG(α, β, δ, μ) and a �= 1. Define L̃ = aL and
λ̃(t, T ) = λ(t, T )/a; then (cf., e.g., [5]) L(L̃1) = NIG(α/|a|, β/|a|, |a|δ, aμ) and∫ t
0
λ(s, T )dLs =

∫ t
0
λ̃(s, T )dL̃s. Thus, the model (λ̃, L̃) is exactly of the same

type with parameter a = 1.
For the driving process L, we consider one-dimensional processes generated

by generalized hyperbolic distributions GH(λ, α, β, δ, μ), or subclasses such as
the hyperbolic, where λ = 1, or normal inverse Gaussian distributions, where
λ = − 1

2 . The generalized hyperbolic distribution is given by its characteristic
function
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Fig. 6. Data set I. Absolute errors of EUR caplet calibration: forward process model
(source: [19]).

ΦGH(u) = eiμu
(

α2 − β2

α2 − (β + iu)2

)λ/2
Kλ(δ
√
α2 − (β + iu)2)

Kλ(δ
√
α2 − β2)

, (56)

where Kλ denotes the modified Bessel function of the third kind with index
λ. For normal inverse Gaussian distributions, this simplifies to

ΦNIG(μ) = eiμu
exp(δ
√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

. (57)

The class of generalized hyperbolic distributions is so flexible that one
does not have to consider higher-dimensional driving processes. Note that it
would not be appropriate to classify a model driven by a one-dimensional Lévy
process as a one-factor model, because the driving Lévy process itself is already
a high-dimensional object. The notion of an x-factor model (x = 1, 2, . . . , n)
should be reserved for the world of classical Gaussian models.

To extract the model parameters from market quotes, one considers for
each caplet the (possibly squared) difference between the market and model
price. The objective function to be minimized is then the weighted sum over
all strikes and over all caplets along the tenor structure. A possible choice of
weights would be the at-the-money prices for the respective maturity. Figure
6 shows how close one gets to the empirical volatility surface on the basis of
the forward process model. The figure shows the absolute difference between
model and market prices expressed in volatilities. For the relevant part of the
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Fig. 7. Data set I. Absolute errors of EUR caplet calibration: LIBOR rate model
(source: [19]).

moneyness–maturity plane the differences are below 1%. The large deviations
at the short end are of no importance, because the one-year caplet prices are of
the order of magnitude 10−9 for the strike rates 8, 9, and 10%. The underlying
data set consists of cap prices in the Euro market on February 19, 2002. The
differences one gets for the same data set on the basis of the Lévy LIBOR
model are shown in Figure 7.

Comparing the two calibration results, one sees that the forward process
approach yields a more accurate fit than the LIBOR approach. In [10], both
the Lévy LIBOR as well as the Lévy forward process approach have been
extended to a multicurrency setting, which takes the interplay between inter-
est rates and foreign exchange rates into account. This model is also driven
by a single time-inhomogeneous Lévy process, namely the process that drives
the most distant forward LIBOR rate (or forward process) in the domestic
market. Implementation of this sophisticated model was tested for up to three
currencies (EUR, USD, and GBP).
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ture models. Mathematical Finance, 16:237–254, 2006.

10. E. Eberlein and N. Koval. A cross-currency Lévy market model. Quantitative
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Summary. In an affine term structure framework with stochastic volatility, we
derive the characteristic function of the log swap rate. Having the characteristic
function, we employ the fast Fourier transform (FFT) to price swaptions. Using ten
years of swap rates and swaption premiums, model parameters are estimated us-
ing a square-root unscented Kalman filter. We investigate the relationship between
model premiums and interest rate factors, as well as between market premiums and
interest factors, to conclude that long-dated swaptions are highly correlated to the
shape of the curve.

Key words: Affine term structure models; characteristic function; fast Fourier
transform (FFT); swaptions; straddles.

1 Introduction

Although there exist closed-form and/or efficient approximate solutions for
pricing swaptions in Heath–Jarrow–Morton (HJM [8]) and market (e.g., BGM
[2]) models, these models have the following shortcomings: (a) the yield curve
is exogenous to the model and the volatility structure constrains the shape of
the yield curve, and (b) they are generally overparameterized. These classes
of models are typically used for marking and risk management, and are great
tools for interpolation–extrapolation purposes. In current application, these
models are calibrated on a daily or a weekly basis.

In contrast to HJM or BGM models, affine term structure models (ATSMs)
[6] are parsimonious, and the yield curve is endogenous to the model. Affine
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parameters can be estimated via filtering methods, and the need for updating
is infrequent. This makes ATSMs ideal for analyzing the cross-properties of
swap rates and swaptions.

Pricing swaptions in an affine framework with constant volatility dates
back to the work by Munk [9], based on the assumption that the price of a
European option on a coupon bond (European swaption) is approximately
proportional to the price of a European option on a zero coupon bond with
maturity equal to the stochastic duration of the coupon bond. In [5], the
authors perform an approximation based on an Edgeworth expansion of the
density of the coupon bond price. This requires the calculation of the moments
of the coupon bond through the joint moments of the individual zero coupon
bonds. Singleton and Umanstev [11] price swaptions based on approximation
of the exercise region in the space of the underlying factors by line segments.
Finally, Schrager and Pelsser’s approximation [10] is based on the derivation
of approximate dynamics in which the volatility of the forward swap rate is
itself an affine function of the factors.

To check the approximation method for swaption premiums in [10] for
constant volatility, we implemented the methodology and compared the ap-
proximate premiums against simulated ones for 12 different swaptions (1× 2,
1× 5, 1× 10, 2× 2, 2× 5, 2× 10, 5× 2, 5× 5, 5× 10, 10× 2, 10× 5, 10× 10).
For 1,000,000 simulated paths, the absolute value of the largest relative error
was less than 0.35%.

Our focus in this paper is on pricing swaptions in an affine term structure
setting with stochastic volatility. Using the Schrager and Pelsser approxima-
tion [10], we derive the characteristic function of the log swap rate under the
swap measure, and then employ the fast Fourier transform (FFT) to price
swaptions. This efficient method enables us to price ATSM swaps and swap-
tions simultaneously and consistently. We use ten years of swap rates and
swaption premiums to estimate model parameters via a square-root unscented
Kalman filter. Time series of the interest rate factors are a byproduct of the
estimation procedure. We then look more closely at the relationship between
model premiums and interest rate factors, as well as between market premi-
ums and interest factors, to conclude that long-dated swaptions are highly
correlated with the slope of the yield curve.

2 Affine Term Structure Models with Stochastic
Volatility

We are interested in a stochastic interest rate model with stochastic volatility.
Using an affine structure for interest rates, the short rate is specified as

rt = ar + b�r xt,

where rt and xt are n-dimensional vectors, with n the number of factors in
the model, and xt follows the matrix Ornstein–Uhlenbeck equation driven by
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Brownian noise, that is,

dxt = (−bγ −Bxt)dt +ΣdWt,

where {Wt} is an n-dimensional vector of independent standard Brownian
motion and Σ is the (constant) n× n volatility matrix. In general, the n× n
matrix B may be full, with all eigenvalues having positive real part.

To incorporate stochastic volatility, we introduce the square root equation
for (scalar) variance vt, and write

dvt = κ(θ − vt)dt + λ
√
vtdZt,

where {Zt} is a standard Brownian motion, with the correlation between {Wt}
and {Zt} denoted by the vector ρ. We now reformulate the equation for xt as

dxt = (−bγ −Bxt)dt +Σ
√
vtdWt.

3 Swaption Problem Formulation

Let S denote the start time of the interest rate swap, T the end time of the
swap, and t denote a time between the present time 0 and S, so t < S < T.
Suppose fixed payments occur at times Tj, n < j ≤ N, where TN = T . Define
Tn = S, and let Δj = Tj − Tj−1 be the interval between swap times. For
simplicity, assume that the Δs are constant; that is, Δj = Δ for all j.

The forward swap rate at time t is

kS,Tt =
P (t, S) − P (t, T )

Δ
∑N

j=n+1 P (t, Tj)
. (1)

The present value of a swaption struck at the rate K is

V (K) =

⎛

⎝Δ
N∑

j=n+1

P (0, Tj)

⎞

⎠E[(kS,TS −K)+],

under the swap measure. The swaption pricing problem is to evaluate the
expectation under the given interest rate model.

4 The Characteristic Function Pricing Method

The characteristic function pricing method values options using the charac-
teristic function of the underlying process. For ease of notation, define the
constant c = Δ

∑N
j=n+1 P (0, Tj), let X denote the random variable ln kS,TS ,

let f be the probability density function of X under the swap measure, and
k = lnK. With this new notation,
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V (k) = cE[(eX − ek)+].

Denote the Fourier transform of eαkV (k) by Ψ(·), where the term α > 0 is a
damping factor, which is included so that the Fourier integral is well defined.
Thus,

Ψ(ν) =
∫ ∞

−∞
V (k)e(α+iν)kdk

= c

∫ ∞

−∞

∫ ∞

k

(ex − ek)e(α+iν)kf(x)dxdk

= c

∫ ∞

−∞

∫ x

−∞
(ex − ek)e(α+iν)kdkf(x)dx

=
c

(α + iν)(α + 1 + iν)

∫ ∞

−∞
ei(ν−i(α+1))xf(x)dx.

Let c2 = c/[(α+ iν)(α + 1 + iν)] and u = ν − i(α + 1) to get

Ψ(ν) = c2E[eiuX ] = c2E
[
eiu ln kS,T

S

]
,

where E[eiu ln kS,T
S ] is the characteristic function of ln kS,TS . If the characteristic

function is known, then so is Ψ(ν), and the price of the swaption can be
obtained by taking the inverse Fourier transform

V (K) = e−α lnK 1
2π

∫ ∞

−∞
Ψ(ν)e−iν lnKdν.

(Note that we have interchangeably denoted the argument of V as k and K.)

4.1 Fast Fourier Transform

The inverse transform can be evaluated numerically using the FFT, where the
resulting integral can be discretized using Simpson’s rule. Choose B >> 1, fix
the number of time steps m, and let h = B/m. Then

ψ(t) ≡ 1
2π

∫ ∞

−∞
Ψ(ν)e−iνkdν ≈ Re

{
1
π

∫ B

0

Ψ(ν)e−iνkdν

}

≈ Re

{
h

3π

m∑

l=1

Ψ((l − 1)h)e−i(l−1)hk(3 + (−1)l − δl−1)

}
.

Next, consider the discrete times tj , 0 ≤ j ≤ m− 1, where

tj = (j − 1)λ+A.

The parameter λ is chosen so that λh = 2π/m, and A is chosen so that
tm−1 = t = lnK, namely A = lnK − (m− 1)λ. Then
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ψ(tj) = Re

{
m∑

k=1

e−i(2π/m)(j−1)(k−1)X(k)

}
,

where we have let

X(k) =
h

3π
Ψ((k − 1)h)e−i(k−1)hA(3 + (−1)k − δk−1).

Thus, {ψ(tj)} (which includes ψ(t)) can be obtained by taking the real part
of the FFT of {X(k)}.

5 Computing the Characteristic Function

One of the main contributions of this paper is the derivation of the character-
istic function E[eiu ln kS,T

S ] under the swap measure. The paper proceeds in two
major steps. First, the bond prices {P (t, Tj)} are derived. This is necessary
because kS,Tt is a function of the bond prices. Then the main task of finding
the characteristic function is undertaken.

5.1 Bond Prices

First, define two new variables, yt and wt, in terms of xt and vt:

yt =
∫ t

0

xsds,

wt =
∫ t

0

vsds.

Next, define the joint characteristic function of (x, v, y, w) at time 0 for fixed
time T as

φ(0, ξ, ζ, ω, ϕ) = E
[
exp
(
iξ�xT + iζ�yT + iωvT + iϕwT

) ∣∣ x0 = x, v0 = v
]
,

where (ξ, ζ, ω, ϕ) are the transform variables. More generally, define the char-
acteristic function at time t, 0 < t < T , as

φ(t, ξ, ζ, ω, ϕ) = E

[
exp

(
iξ�xt + iζ�

∫ T

t

xsds+ iωvt + iϕ

∫ T

t

vsds

)

∣∣∣∣∣ xt = x, vt = v

]
. (2)

It is conjectured that the characteristic function at time 0 has a solution of
the form

φ(0, ξ, ζ, ω, ϕ) = exp
(
−a(T )− b(T )�x− c(T )v

)
.
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Therefore, by the Markov property, it must be the case that

φ(t, ξ, ζ, ω, ϕ) = exp
(
−a(T − t) − b(T − t)�x− c(T − t)v

)
. (3)

In the next subsection, it is shown how to compute this characteristic function,
or a(·), b(·), and c(·).

To compute bond prices, note that the bond price P (t, T ) is

P (t, T ) = E

[
exp

(
−
∫ T

t

rsds

)]
= E

[
exp

(
−ar(T − t) − bTr

∫ T

t

xsds

)]

= e−ar(T−t)E

[
exp

(
−bTr
∫ T

t

xsds

)]
= e−ar(T−t)φ(t, 0, ibr, 0, 0).

This corresponds to Equation (2) with (ξ, ζ, ω, ϕ) = (0, ibr, 0, 0). Thus,

P (t, T ) = e−ar(T−t) exp
(
− a(T − t, 0, ibr, 0, 0) − b(T − t, 0, ibr, 0, 0)�x

− c(T − t, 0, ibr, 0, 0)v
)
. (4)

Here we are explicitly showing the dependence of a(·), b(·), and c(·) on
(ξ, ζ, ω, ϕ); that is, a(t) = a(t, ξ, ζ, ω, ϕ) and so on.

Computing a(·), b(·), and c(·)
The first thing to note is that evaluating Equation (3) at t = T gives the
following boundary conditions,

a(0) = 0,

b(0) = −iξ,
c(0) = −iω.

The second is that the function G(t) defined as

G(t) = exp
(
iζT
∫ t

0

xsds + iϕ

∫ t

0

vsds

)
φ(t, ξ, ζ, ω, ϕ),

is equal to
E[H(T )|Ft],

with

H(T ) = exp

(
iξTxt + iζT

∫ T

0

xsds + iωvt + iϕ

∫ T

0

wsds

)
.
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Thus, for any t1 < t2,

E [G(t2)|Ft1 ] = E [E(H(T )|Ft2)|Ft1 ] = E [H(T )|Ft1 ] = G(t1);

that is, G(t) is a martingale.
Because G(t) is a martingale, its derivative with respect to time (the dt

term) must be identically 0. This leads to the expression

0 = (iζTx+ iϕv)φ + φt + φx(−bγ −Bx) + φv(κ(θ − v))

+
1
2
Trace(φxxΣΣT v) +

1
2
φvvλ

2v + λρTΣTφvxv.

We can use Equation (2) to solve for the derivatives of φ to get

0 = φ
{
iζTx+ iϕv + a′(T − t) + b′(T − t)Tx+ c′(T − t)v

− bT (T − t)(−bγ −Bx) − (κ(θ − v))c(T − t)

+
1
2
bT (T − t)ΣΣT b(T − t)v +

1
2
λ2vc(T − t)2 + λρTΣT b(T − t)c(T − t)v

}
.

Because this equation must hold for all (x, v), we get three simpler equations
by grouping the x terms, the v terms, and the remaining terms:

a′(τ) = −bT (τ)bγ + κθc(τ), (5)
b′(τ) = −iζ −BT b(τ), (6)

c′(τ) = −iϕ− (κ+ λρTΣT b(τ))c(τ) − 1
2
bT (τ)ΣΣT b(τ) − λ2

2
c2(τ), (7)

where τ = T − t.
We now have a set of equations, which are satisfied by a(·), b(·), and

c(·). These ordinary differential equations (ODEs) are referred to as Riccati
equations. The Riccati equations together with the boundary conditions com-
pletely characterize a(·), b(·), and c(·). Note that the ODE for b(·) is linear
and has a known analytical solution. In stock models, b′ = 0 and b is a con-
stant, as there is no dependence of log stock on the state variable of log stock.
Here we have a dependence of state variable drifts on the state variables, and
this introduces −BT b and the associated additional structure to the equation.
Also in stock, we have integrated vol but no interest in integrated log stock,
but now we are interested in the integral of xt, and this introduces iζ.

b(τ) = − exp(−BT τ)iξ − (BT )−1(I − exp(−BT τ))iζ,

where we employ a matrix exponential of the full matrix BT .
We next have to solve the following ODEs for c and a.

c′(τ) = −iϕ−
(
κ + λρ�Σ�b(τ)

)
c(τ) − 1

2
b�(τ)ΣΣ�b(τ) − λ2

2
c2(τ),

a′(τ) = −b�(τ)bγ + κθc(τ).

The two ODEs can be solved numerically.
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5.2 The Characteristic Function of the Log Swap Rate

The derivation of the characteristic function of ln kS,TS is done in multiple
steps. First, the dynamics of kS,Tt are derived with respect to the Q-measure
Brownian processes {Wt} and {Zt}. Second, the change of measure to the swap
measure results in two new Brownian processes {W̃t} and {Z̃t}. In Section 5.2,
we show how these processes are derived. Third, the dynamics of xt, vt, and
then kt with respect to W̃t and Z̃t are derived. With these results in place,
ln kS,TS and its characteristic function can be computed.

Dynamics of kt

Applying the chain rule to Equation (1) gives

ΔdkS,Tt
∑

P (t, Ti)+ΔkS,Tt
∑

dP (t, Ti)+ΔdkS,Tt
∑

dP (t, Ti)

= dP (t, S) − dP (t, T ).

Because kS,Tt is a martingale under the swap measure, we can ignore the “dt”
terms to get

ΔdkS,Tt
∑

P (t, Ti) +ΔkS,Tt
∑

dP (t, Ti) = dP (t, S) − dP (t, T ).

Rearranging terms and substituting for kS,Tt gives

dkS,Tt =
dP (t, S) − dP (t, T ) − P (t,S)−P (t,T )∑

P (t,Ti)

∑
dP (t, Ti)

Δ
∑

P (t, Ti)
,

or
dkS,Tt

kS,Tt
=

dP (t, S) − dP (t, T )
P (t, S) − P (t, T )

−
∑

dP (t, Ti)∑
P (t, Ti)

.

Differentiating Equation (4) and ignoring the “dt” terms gives

dP (t, T )
P (t, T )

= −b�(T − t)dx− c(T − t)dv.

Thus

dkS,Tt

kS,Tt
=

P (t, S)
P (t, S) − P (t, T )

[−b�(S − t)dx− c(S − t)dv]

− P (t, T )
P (t, S) − P (t, T )

[−b�(T − t)dx − c(T − t)dv]

−
∑ P (t, Ti)∑

P (t, Tj)
[−b�(Ti − t)dx− c(Ti − t)dv].
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At this point, we make use of an approximation. It is argued in [1], that
the (P (t, Tj))/(

∑
P (t, Tj)) terms are low-variance martingales in the context

of the market models (e.g., BGM). In [10], it is conjectured that this is also
true in ATSMs.

As mentioned earlier, to check the approximation in [10], for the constant
volatility case, we implemented the methodology and compared the approx-
imated premiums against simulated ones for 12 different swaptions (1 × 2,
1× 5, 1× 10, 2× 2, 2× 5, 2× 10, 5× 2, 5× 5, 5× 10, 10× 2, 10× 5, 10× 10).
For 1,000,000 simulated paths, the absolute value of the largest relative error
was less than 0.35%.

Making use of the same approximation in the stochastic volatility case, we
replace the (P (t, Tj))/(

∑
P (t, Tj)) terms by their conditional expected values,

under the swap measure (P (0, Tj))/(
∑

P (0, Tj)). This approximation yields
the following.

dkS,Tt

kS,Tt
≈ P (0, S)

P (0, S)− P (0, T )
[−bT (S − t)dx − c(S − t)dv]

− P (0, T )
P (0, S) − P (0, T )

[−bT (T − t)dx− c(T − t)dv]

−
∑ P (0, Ti)∑

P (0, Tj)
[−bT (Ti − t)dx− c(Ti − t)dv].

Letting

ηt = −P (0, S)b(S − t) − P (0, T )b(T − t)
P (0, S) − P (0, T )

+
∑ P (0, Ti)∑

P (0, Tj)
b(Ti − t),

δt = −P (0, S)c(S − t) − P (0, T )c(T − t)
P (0, S) − P (0, T )

+
∑ P (0, Ti)∑

P (0, Tj)
c(Ti − t),

we have
dkS,Tt

kS,Tt
= ηTt dx+ δtdv.

Change of Measure

The random variable, which changes the Q measure to the swap measure is
z = zT , where zt = Λt/Λ0 and

Λt = e−
∫

t
0 rsdsΔ

∑
P (t, Ti). (8)

The process Λt is a martingale under the Q measure, thus

dΛt
Λt

= ΦT1,tdW + Φ2,tdZ, (9)

= (ΦT1,t + Φ2,tρ
T )dW +

√
1 − ‖ρ‖2

2Φ2,tdY,
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for some Φ1,t, Φ2,t, and univariate Brownian process Y that is independent of
W . Letting

Φ̂1,t = Φ1,t + Φ2,tρ,

Φ̂2,t =
√

1 − ‖ρ‖2
2Φ2,t,

gives
dΛt
Λt

= Φ̂T1,tdW + Φ̂2,tdY. (10)

Solving this SDE gives

Λt
Λ0

= exp
(∫ t

0

Φ̂T1,tdW + Φ̂2,tdY − 1
2

∫ t

0

‖Φ̂1,t‖2
2 + Φ̂2

2,tdt

)
.

Thus the processes W̃ and Ỹ , which are given by

dW̃ = −Φ̂1,t + dW,

dỸ = −Φ̂2,t + dY,

are independent univariate Brownian processes under the swap measure. De-
fine the Brownian process Z̃ by

dZ̃ = ρTdW̃ +
√

1 − ‖ρ‖2
2dỸ

= −(Φ̂T1,tρ+
√

1 − ‖ρ‖2
2Φ̂2,t) + dZ

= −(ΦT1,tρ+ Φ2,t) + dZ.

Note that the correlation between W̃ and Z̃ is the vector ρ. Furthermore, it
follows from Equations (9) and (10) that

dW = dW̃+ < dW,
dΛt
Λt

>,

dZ = dZ̃+ < dZ,
dΛt
Λt

> .

Dynamics of x and v Under the Swap Measure

From Equation (8)

dΛt
Λt

= (· · · )dt +
∑ P (t, Ti)∑

P (t, Tj)
[−b�(T − t)dx − c(T − t)dv]

≈ (· · · )dt +
∑ P (0, Ti)∑

P (0, Tj)
[−b�(T − t)dx− c(T − t)dv]

= (· · · )dt +
∑ P (0, Ti)∑

P (0, Tj)
(−b�(Ti − t)Σ

√
vdW − c(Ti − t)λ

√
vdZ),



Pricing of Swaptions in Affine Term Structures 183

so

< dW,
dΛt
Λt

> = −
∑ P (0, Ti)∑

P (0, Tj)
[Σ�b(Ti − t)

√
v + c(Ti − t)λ

√
vρ]dt,

< dZ,
dΛt
Λt

> = −
∑ P (0, Ti)∑

P (0, Tj)
[
√
vb�(Ti − t)Σρ+ c(Ti − t)λ

√
v]dt.

So now we have

dx = (−bγ −Bx+ μtv)dt +Σ
√
vdW̃ ,

dv = κ̃t(θ̃t − v)dt + λ
√
vdZ̃,

where

μt = −
∑ P (0, Ti)∑

P (0, Tj)
[ΣΣ�b(Ti − t) + c(Ti − t)λΣρ],

πt = −
∑ P (0, Ti)∑

P (0, Tj)
[λb�(Ti − t)Σρ+ c(Ti − t)λ2],

κ̃t = κ− πt,

θ̃t =
κθ

κ̃t
.

Dynamics of kS,T
t Revisited

Plugging into the expression for dkt using the latest expressions for dx and dv
and noting that kt is a martingale under the swap measure and eliminating
the “dt” terms gives

dkt
kt

= ηTt Σ
√
vdW̃ + δtλ

√
vdZ̃.

Solving for ln kS,T
S

We have that

d ln kS,Tt =
dkS,Tt

kS,Tt
− 1

2

(
dkS,Tt

kS,Tt

)2

= ηTt Σ
√
vdW̃ + δtλ

√
vdZ̃ − 1

2
(
ηTt ΣΣ

T ηt + δ2
t λ

2 + 2δtληTt Σρ
)
vdt

= ηTt (dx+ (bγ +Bx− μtv)dt) + δt(dv + (−κθ + κ̃tv)dt)

− 1
2
(
ηTt ΣΣ

Tηt + δ2
t λ

2 + 2δtληTt Σρ
)
vdt.
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Integrating and collecting terms gives

ln kS,TS = ln kS,T0 +
∫ S

0

ηTt bγdt−
∫ S

0

δtκθdt

+
∫ S

0

ηTt dxt +
∫ S

0

δtdvt +
∫ S

0

ηTt Bxtdt

+
∫ S

0

(
−ηTt μt + δtκ̃t −

1
2
(
ηTt ΣΣ

T ηt + δ2
t λ

2 + 2δtληTt Σρ
))

vtdt.

Noting that
∫ S

0

ηTt dxt = ηTS xS − ηT0 x0 −
∫ S

0

∂ηTt
∂t

xtdt,

∫ S

0

δtdvt = δSvS − δ0v0 −
∫ S

0

∂δt
∂t

vtdt,

we have

ln kS,TS = ln kS,T0 − η�0 x0 − δ0v0 +
∫ S

0

η�t bγdt−
∫ S

0

δtκθdt

+ ηTSxS + δSvS +
∫ S

0

(η�t B − ∂η�t
∂t

)xtdt

+
∫ S

0

(
−η�t μt + δtκ̃t −

1
2
(
ηTt ΣΣ

�ηt + δ2
t λ

2 + 2δtλη�t Σρ
)
− ∂δt

∂t

)
vtdt.

Letting

pt = BT ηt −
∂ηt
∂t

,

qt = −η�t μt + δtκ̃t −
1
2
(
η�t ΣΣ

�ηt + δ2
t λ

2 + 2δtλη�t Σρ
)
− ∂δt

∂t
,

gives

ln kS,TS = ln kS,T0 − η�0 x0 − δ0v0 +
∫ S

0

η�t bγdt−
∫ S

0

δtκθdt

+ η�S xS +
∫ S

0

p�t xtdt+ δSvS +
∫ S

0

qtvtdt.

Note that pt = 0. We can see this as follows. From Equation (6) (and the fact
that ζ = ibr),

B�b(τ) − ∂b(τ)
∂t

= BT b(τ) + b′(τ) = br,

where τ = S − t, τ = T − t, or τ = Ti − t. It now follows from the definition
of ηt that

pt = −P (0, S)− P (0, T )
P (0, S)− P (0, T )

br +
∑ P (0, Ti)∑

P (0, Tj)
br = 0.
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Characteristic Function of lnkS,T
S

The approach is similar to that used in Section 5.1 to price bonds. Define the
function

φ(t, ξ̂, ζ̂ , ω̂, ϕ̂) = E

[
exp

(
iξ̂TxS + iζ̂

∫ S

t

pTuxudu+ iω̂vS + iϕ̂

∫ S

t

quvudu

)

∣∣∣∣∣ xt = x, vt = v

]
, (11)

where the expectation is taken under the swap measure, and (ξ̂, ζ̂, ω̂, ϕ̂) are
transform variables. Note that the characteristic function of ln kS,TS is

Ψ(u) = E
[
eiu ln kS,T

S

]

= exp

[
iu

(
ln k0 − ηT0 x0 − δ0v0 +

∫ S

0

ηTt bγdt−
∫ S

0

δtκθdt

)]

×E
[
exp

(
iuηTSxS + iuδSvS + iu

∫ S

0

qtvtdt

)]

= exp

[
iu

(
ln k0 − ηT0 x0 − δ0v0 +

∫ S

0

ηTt bγdt−
∫ S

0

δtκθdt

)]

× φ(0, ξ̂, ζ̂, ω̂, ϕ̂),

where (ξ̂, ζ̂ , ω̂, ϕ̂) = (uηS , 0, uδS, u). To solve for the characteristic function of
ln kS,TS , we must solve for φ(0, ξ̂, ζ̂, ω̂, ϕ̂) and φ(t, ξ̂, ζ̂, ω̂, ϕ̂). As before, it is
conjectured that φ(t, ξ̂, ζ̂, ω̂, ϕ̂) has a solution of the form

φ(t, ξ̂, ζ̂, ω̂, ϕ̂) = exp
(
â(S − t) + b̂T (S − t)x+ ĉ(S − t)v

)
. (12)

The problem is then to solve for â(·), b̂(·), and ĉ(·).
Define the function

Ĝ(t) = exp
(
iζ̂

∫ t

0

pTuxudu+ iϕ̂

∫ t

0

quvudu

)
φ(t, ξ̂, ζ̂, ω̂, ϕ̂).

This function is a martingale under the swap measure (same type of argument
as employed in Section 5.1), and so its derivative with respect to time (the
“dt” term) must be identically 0 leading to the expression

0 =
(
iζ̂p�t x+ iϕ̂qtv

)
φ+ φt + φx (−bγ −Bx+ μtv) + φv

(
κ̃t(θ̃t − v)

)

+
1
2
Trace

(
φxxΣΣ

�v
)

+
1
2
φvvλ

2v + λvφ�
vxΣρ.
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We can use Equation (12) to solve for the derivatives of φ to get

0 = φ
{(

iζ̂p�t x+ iϕ̂qtv
)
−
(
â′(S − t) + b̂′(S − t)�x+ ĉ′(S − t)v

)}

+ b̂�(S − t)(−bγ −Bx+ μtv) + ĉ(S − t)κ̃t(θ̃t − v)

+
1
2
b̂�(S − t)ΣΣ�b̂(S − t)v +

1
2
ĉ(S − t)2λ2v + λĉ(S − t)vb̂(S − t)�Σρ.

Because this has to hold for all (x, v), we get the following three equations by
grouping the x terms, v terms, and the remaining terms.

â′(τ) = −b̂�(τ)bγ + ĉ(τ)κθ,

b̂′(τ) = −B�b̂(τ),

ĉ′(τ) = iϕ̂qt + b̂�(τ)μt +
1
2
b̂�(τ)ΣΣ�b̂(τ) −

[
κ̃t − λb̂�(τ)Σρ

]
ĉ(τ) +

λ2

2
ĉ2(τ),

where τ = S − t. The boundary conditions follow from Equations (11) and
(12) at t = S, and are given by

â(0) = 0,

b̂(0) = iξ̂,

ĉ(0) = iω̂.

As before, the above ODEs are Riccati equations, and there is an explicit
solution for b̂(τ) given by

b̂(τ) = exp(−B�τ)iξ̂.

The remaining two ODEs must be solved numerically, as before.

6 Data and Estimation

Having the characteristic function of the log swap rate, we can employ the
techniques in [3] or [4] to price swaptions. The data consist of (i) constant
maturity forward 6 months/12 months, (ii) swap rates at maturities 2, 3, 5, 10,
15, and 30 years, and (iii) at-the-money swaption premiums with maturities
of 1, 2, 5, and 10 years. At each option maturity, we have three contracts with
different underlying swap maturities: 2, 5, and 10 years. All interest rates and
interest rate options are on U.S. dollars. The data are daily closing mid-quotes
from March 7, 1997, through October 16, 2006 (2399 observations).

For parameter and state estimation of our two-factor ATSM, we employ
a square-root unscented Kalman filter [7]. Figure 1 illustrates the estimated
factors for both constant volatility and stochastic volatility. Figures 2 through
4 display market premiums versus model premiums for both constant volatility
and stochastic volatility models for at-the-money straddles 2 × 5, 5 × 5, and
10×5. The figures clearly indicate that the stochastic volatility model provides
a superior match to market premiums; however, the longer the maturity, the
closer the constant volatility model comes to the stochastic volatility model.
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Fig. 1. Top: time series of the factors estimated for the constant volatility case.
Bottom: time series of the factors estimated for the stochastic volatility case.
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Fig. 2. Market premiums versus model premiums for both constant volatility and
stochastic volatility; at-the-money straddle 2× 5.
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Fig. 3. Market premiums versus model premiums for both constant volatility and
stochastic volatility: at-the-money straddle 5× 5.
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Fig. 4. Market premiums versus model premiums for both constant volatility and
stochastic volatility; at-the-money straddle 10× 5.
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7 Findings and Observations

Having model premiums and time series of the factors, we regress the log of
model premiums against the factors as follows,

Regressed Premiumst = exp(α + β�xt),

where α and β are obtained from regression, and xt is the time series of the
factors from estimation. For the same three at-the-money straddles—2 × 5,
5 × 5, and 10 × 5—we plot model premiums versus regressed premiums for
both constant volatility and stochastic volatility models, as shown in Figures
5, 6, and 7, respectively. In the constant volatility model, model premiums
are log-linear with respect to interest rate factors, but in stochastic volatility
that is not the case.

We repeat the same procedure, but this time we regress the log of market
premiums against the factors. The results are shown in Figures 8 through 10.

To establish a relationship between market premiums and the curve, we
regress the difference of the ten-year swap rate and the five-year swap rate
against the at-the-money straddle 5×5, and as before construct the regressed
premiums. Figure 11 gives plots of regressed premiums versus market premi-
ums and the z-score of the residual.

Our conclusions from the regressions are as follows. (a) Volatility is ap-
proximately log-linear in the factors, and (b) long-dated swaptions (straddles)
are highly correlated to the slope of the yield curve. This makes logical sense,
inasmuch swaption premiums are related to risk premiums, and the risk pre-
mium is approximated by the slope of the yield curve.
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Fig. 5. Regressed premiums versus model premiums for at-the-money straddle 2×5:
Constant volatility model at the top, and stochastic volatility model at the bottom.
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Constant volatility model at the top, and stochastic volatility model at the bottom.
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Fig. 7. Regressed premiums versus model premiums for at-the-money straddle
10 × 5: Constant volatility model at the top, and stochastic volatility model at
the bottom.
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Fig. 8. Regressed premiums versus market premiums for at-the-money straddle
2 × 5: Constant volatility model at the top, and stochastic volatility model at the
bottom.
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Fig. 9. Regressed premiums versus market premiums for at-the-money straddle
5 × 5: Constant volatility model at the top, and stochastic volatility model at the
bottom.
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Fig. 10. Regressed premiums versus market premiums for at-the-money straddle
10× 5: Constant volatility model at the top, and stochastic volatility model at the
bottom.
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Summary. We derive forward partial integrodifferential equations (PIDEs) for
pricing up-and-out and down-and-out call options when the underlying is a jump
diffusion. We assume that the jump part of the returns process is an additive pro-
cess. This framework includes the Variance-Gamma, finite moment logstable, Merton
jump diffusion, Kou jump diffusion, Dupire, CEV, arcsinh normal, displaced diffu-
sion, and Black–Scholes models as special cases.
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1 Introduction

Pricing and hedging derivatives consistent with the volatility smile has been a
major research focus for over a decade. A breakthrough occurred in the mid-
nineties with the recognition that in certain models, European option prices
satisfied forward evolution equations in which the independent variables are
the option’s strike and maturity. More specifically, [12] showed that under
deterministic carrying costs and a diffusion process for the underlying asset
price, no-arbitrage implies that European option prices satisfy a certain par-
tial differential equation (PDE), now called the Dupire equation. Assuming
that one could observe European option prices of all strikes and maturities,
then this forward PDE can be used to explicitly determine the underlier’s in-
stantaneous volatility as a function of the underlier’s price and time. Once this
volatility function is known, the value function for European, American, and
many exotic options can be determined by a wide array of standard methods.
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As this value function relates theoretical prices of these instruments to the
underlier’s price and time, it can also be used to determine many Greeks of
interest as well.

Aside from their use in determining the volatility function, forward equa-
tions also serve a second useful purpose. Once one knows the volatility function
either by an explicit specification or by a prior calibration, the forward PDE
can be solved via finite differences to efficiently price a collection of European
options of different strikes and maturities all written on the same underlying
asset. Furthermore, as pointed out in [4], all the Greeks of interest satisfy the
same forward PDE and hence can also be efficiently determined in the same
way.

Since the original development of forward equations for European options
in continuous models, several extensions have been proposed. For example,
Esser and Schlag [14] developed forward equations for European options writ-
ten on the forward price rather than the spot price. Forward equations for
European options in jump diffusion models were developed in Andersen and
Andreasen [1] and extended by Andreasen and Carr [3]. It is straightforward
to develop the relevant forward equations for European binary options or for
European power options by differentiating or integrating the forward equa-
tion for standard European options. Buraschi and Dumas [6] develop forward
equations for compound options. In contrast to the PDEs determined by oth-
ers, their evolution equation is an ordinary differential equation whose sole
independent variable is the intermediate maturity date.

Given the close relationship between compound options and American op-
tions, it seems plausible that there might be a forward equation for American
options. The development of such an equation has important practical impli-
cations, because all listed options on individual stocks are American-style. The
Dupire equation cannot be used to infer the volatility function from market
prices of American options, nor can it be used to efficiently value a collection
of American options of differing strikes and maturities.

This problem is addressed for American calls on stocks paying discrete
dividends in Buraschi and Dumas [6], and it is also considered in a lattice
setting in Chriss [10]. In [8], we address the more difficult problem of pricing
continuously exercisable American puts in continuous-time models. To do so,
we depart from the diffusive models that characterize most of the previous
research on forward equations in continuous time. To capture the smile, we
assume that prices jump rather than assuming that the instantaneous volatil-
ity is a function of stock price and time. Dumas et al. [11] find little empirical
support for the Dupire model, whereas there is a long history of empirical
support for jump-diffusion models; three recent papers documenting support
for such models are [2; 7; 9]. In particular, we assume that the returns on the
underlying asset have stationary independent increments, or in other words
that the log price is a Lévy process. Besides the [5] model, our framework
includes as special cases the Variance-Gamma (VG) model of Madan et al.
[18], the CGMY model of Carr et al. [7], the finite moment logstable model of
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Carr and Wu [9], the Merton [19] and Kou [17] jump diffusion models, and the
hyperbolic models of Eberlein et al. [13]. In all of these models except Black–
Scholes, the existence of a jump component implies that the backward and
forward equations contain an integral in addition to the usual partial deriva-
tives. Despite the computational complications introduced by this term, we
use finite differences to solve both of these fundamental partial integrodif-
ferential equations (PIDEs). To illustrate that our forward PIDE is a viable
alternative to the traditional backward approach, we calculate American op-
tion values in the diffusion-extended VG option pricing model and find very
close agreement. For details on the application of finite differences to valuing
American options in the VG model, see [16].

The approach to determining the forward equation for American options
in [8] is to start with the well-known backward equation and then exploit the
symmetries that essentially define Lévy processes. In the process of developing
the forward equation, we also determine two hybrid equations of independent
interest. The advantage of these hybrid equations over the forward equation
is that they hold in greater generality. Depending on the problem at hand,
these hybrid equations can also have large computational advantages over the
backward or forward equations when the model has already been calibrated.
In particular, the advantage of these hybrid equations over the backward
equation is that they are more computationally efficient when one is interested
in the variation of prices or Greeks across strike or maturity at a fixed time,
for example, market close.

The first of these hybrid equations has the stock price and maturity as
independent variables. The numerical solution of this hybrid equation is an
alternative to the backward equation in producing a spot slide, which shows
how American option prices vary with the initial spot price of the underlier.
If one is interested in understanding how this spot slide varies with maturity,
then our hybrid equation is much more efficient than the backward equation.
This hybrid equation also has important implications for path-dependent op-
tions such as cliquets whose payoff directly depends on the particular level
reached by an intermediate stock price.

Their second hybrid equation has the strike price and calendar time as
independent variables. The numerical solution of this hybrid equation is an
alternative to the forward equation in producing an implied volatility smile
at a fixed maturity. If one is interested in understanding how the model pre-
dicts that this smile will change over time, then our hybrid equation is much
more computationally efficient than the forward equation. This second hybrid
equation also allows parameters to have a term structure, whereas our forward
equation does not. Note, however, that implied volatility can have a term or
strike structure in our Lévy setting. Hence, if one needs to efficiently value
a collection of American options of different strikes in the time-dependent
Black–Scholes model, then it is far more efficient to solve our hybrid equation
than to use the standard backward equation.
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In this paper, we focus on forward evolution equations for knock-out op-
tions. We derive forward partial integrodifferential equations for up-and-out
and down-and-out call options when the model dynamics are jump diffusion,
where jumps are additive in the log of the price. This framework includes VG,
finite moment logstable, Merton and Kou jump diffusions, Dupire, CEV, arc-
sinh normal, displaced diffusion, and Black–Scholes models as special cases.
The remainder of this paper is structured as follows. The next section in-
troduces our assumptions for down-and-out calls and derives the forward
PIDE for down-and-out calls. The following section introduces our setting
and reviews the backward PIDE that governs up-and-out call values in this
setting and then develops the forward equation for up-and-out call options.
We present some numerical results afterwards, and the final section suggests
further research.

2 Down-and-Out Calls

2.1 Assumptions and Notations

Throughout this paper, we assume the standard model of perfect capital mar-
kets, continuous trading, and no-arbitrage opportunities.

When a pure discount bond is used as numeraire, then it is well known
that no-arbitrage implies that there exists a probability measure Q under
which all nondividend-paying asset prices are martingales. Under this measure
we assume that a stock price St obeys the following stochastic differential
equation,

dSt = [r(t)−q(t)]St−dt+a(St−, t)dWt+
∫ ∞

−∞
St−(ex−1)[μ(dx, dt)−ν(x, t)dxdt],

(1)
for all t ∈ [0, T̄ ], where the initial stock price S0 > 0 is known, and T̄ is some
arbitrarily distant horizon. The process is Markov in itself because the coef-
ficients of the stock price process at time t depend on the path only through
St−, which is the prejump price at t. Thus, the dynamics are fully deter-
mined by the drift function b(S, t) ≡ [r(t) − q(t)]S, the (normal) volatility
function a(S, t), and the jump compensation function ν(x, t). The term dWt

denotes increments of a standard Brownian motion Wt defined on the time
set [0, T̄ ] and on a complete probability space (Ω,F , Q). The random measure
μ(dx, dt) counts the number of jumps of size x in the log price at time t. The
function {ν(x, t), x ∈ R, t ∈ [0, T̄ ]} is used to compensate the jump process
Jt ≡

∫ t
0

∫∞
−∞ St−(ex − 1)μ(dx, ds), so that the last term in Equation (1) is

the increment of a Q jump martingale. The function ν(x, t) must have the
following properties.

1. ν(0, t) = 0.
2.
∫∞
−∞(x2 ∧ 1)ν(x, t)dx < ∞, t ∈ [0, T̄ ].
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Thus, each price change is the sum of the increment in a general diffusion
process with proportional drift and the increment in a pure jump martingale,
where the latter is an additive process in the log price. We restrict the function
a(S, t) so that the spot price is always nonnegative and absorbing at the origin.
A sufficient condition for keeping the stock price away from the origin is to
bound the lognormal volatility. In particular, we set

a(0, t) = 0. (2)

Hence, Equation (1) describes a continuous-time Markov model for the spot
price dynamics, which is both arbitrage-free and consistent with limited liabil-
ity. Aside from the Markov property, the main restrictions inherent in Equa-
tion (1) are the standard assumptions that interest rates, dividend yields, and
the compensator do not depend on the spot price.

2.2 Analysis

Let time t = 0 denote the valuation date for a European down-and-out call
option with strike price K, barrier L ≤ K, initial spot S0 > L, and maturity
T ≥ 0. Let Dc

0(K,T ) denote an initial price of the down-and-out call which is
implied by the absence of arbitrage. Consider the product e

∫ T
t
r(u)du(St−K)+.

By the Tanaka–Meyer formula,

(ST −K)+ = e
∫ T
0 r(u)du(S0 −K)+ +

∫ T

0

e
∫ T

t
r(u)du1{St−>K}dSt

+
∫ T

0

e
∫ T

t
r(u)du

{
a2(St−, t)

2
δ(St− −K) − r(t)(St− −K)+

}
dt

+
∫ T

0

e
∫ T

t
r(u)du

∫ ∞

−∞

[
(St−ex −K)+ − (St− −K)+

− 1{St−>K}St−(ex − 1)
]
μ(dx, dt),

where μ(·, ·) denotes the integer-valued counting measure and δ(·) denotes the
Dirac delta function, a generalized function characterized by two properties:

1. δ(x) =
{

0 if x �= 0,
∞ if x = 0;

2.
∫∞
−∞ δ(x)dx = 1.

Multiplying by e−
∫

T
0 r(u)du1{τL>T} and taking expectations on both sides un-

der an equivalent martingale measure Q, we have
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Dc
0(K,T ) = (S0 −K)+EQ0 [1{τL>T}]

+
∫ T

0

e−
∫

t
0 r(u)duEQ0

[
1{τL>T}1{St−>K}[r(t) − q(t)]St−

]
dt

+
∫ T

0

e−
∫

t
0 r(u)du

{a2(K, t)
2

EQ0 [1{τL>T}δ(St− −K)]

− r(t)EQ0 [1{τL>T}(St− −K)+]
}
dt

+

T∫

0

e
−

t∫
0
r(u)du

EQ0 [1{τL>T}]

∞∫

−∞

[
(St−ex −K)+ − (St− −K)+

− 1{St−>K}St−(ex − 1)
]
ν(x, t)dxdt.

Differentiating w.r.t. T implies

∂

∂T
Dc

0(K,T ) = −e−
∫ T
0 r(u)duEQ0

[
δ(τL − T )(ST −K)+

]

+ e−
∫ T
0 r(u)duEQ0

[
1{τL>T}1{ST−>K}[r(T ) − q(T )]ST−

]

+
a2(K,T )

2
e−
∫

T
0 r(u)duEQ0 [1{τL>T}δ(ST− −K)]

− r(T )e−
∫

T
0 r(u)duEQ0 [1{τL>T}(ST− −K)+]

+ e
−

T∫
0
r(u)du

EQ0

[
1{τL>T}

∞∫

−∞

(
(ST−e

x −K)+ − (ST− −K)+

− 1{ST−>K}ST−(ex − 1)
)
ν(x, T )dx

]
.

The payoff in the first term vanishes. Subtracting and adding

e−
∫ T
0 r(u)duEQ0

[
1{τL>T}[r(T ) − q(T )]K1{ST−>K}

]

to the second term on the right-hand side (RHS) gives

∂

∂T
Dc

0(K,T ) = e−
∫

T
0 r(u)duEQQ

0

[
1{τL>T}1{ST−>K}[r(T ) − q(T )](ST− −K)

]

+ e−
∫ T
0 r(u)duEQ0

[
1{τL>T}[r(T ) − q(T )]K1{ST−>K}

]

+
a2(K,T )

2
∂2

∂K2
Dc

0(K,T ) − r(T )Dc
0(K,T ) + e

−
T∫
0
r(u)du

EQ0

[
1{τL>T}

∞∫

−∞

(
ex(ST− −Ke−x)+− 1{ST−>K}(ST− −K + ST−e

x − ST−)
)
ν(x, T )dx

]
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= [r(T ) − q(T )]Dc
0(K,T ) − [r(T ) − q(T )]K

∂

∂K
Dc

0(K,T )

+
a2(K,T )

2
∂2

∂K2
Dc

0(K,T )− r(T )Dc
0(K,T ) + e−

∫ T
0 r(u)duEQ0

[
1{τL>T}

∫ ∞

−∞
ex
(
(ST− −Ke−x)+ − 1{ST−>K}(ST− −Ke−x +K −K)

)
ν(x, T )dx

]

= −q(T )Dc
0(K,T )− [r(T )−q(T )]K

∂

∂K
Dc

0(K,T ) +
a2(K,T )

2
∂2

∂K2
Dc

0(K,T )

+ e−
∫

T
0 r(u)duEQ0

[
1{τL>T}

∞∫

−∞

(
(ST− −Ke−x)+ − (ST− −K)+

− ∂

∂K
(ST− −K)+K(e−x − 1)

)
exν(x, T )dx

]

= −q(T )Dc
0(K,T )− [r(T ) − q(T )]K

∂

∂K
Dc

0(K,T ) +
a2(K,T )

2
∂2

∂K2
Dc

0(K,T )

+
∫ ∞

−∞

[
Dc

0(Ke−x, T ) −Dc
0(K,T )− ∂

∂K
Dc

0(K,T )K(e−x− 1)
]
exν(x, T )dx.

(3)

This PIDE holds on the domain K ≥ L, T ∈ [0, T̄ ].
For a down-and-out call, the initial condition is

Dc
0(K, 0) = (S0 −K)+, K ≥ L.

Because a down-and-out call behaves as a standard call as its strike approaches
infinity, we have

lim
K↑∞

Dc
0(K,T ) = lim

K↑∞

∂

∂K
Dc

0(K,T ) = lim
K↑∞

∂2

∂K2
Dc

0(K,T ) = 0, T ∈ [0, T̄ ].

For a lower boundary condition, we note that a down-and-out call on a stock
with the dynamics in Equation (1) has the same value prior to knocking out
as a down-and-out call on a stock that absorbs at L. The second derivative
of this latter call gives the r-discounted risk-neutral probability density for
the event that the stock price has survived to at least T and is in the interval
(K,K + dK). Now it is well known that the appropriate boundary condition
for an absorbing process is that this PDF vanishes on the boundary. Hence,

lim
K↓L

∂2

∂K2
Dc

0(K,T ) = 0, T ∈ [0, T̄ ]. (4)

Evaluating Equation (3) at K = L and substituting in (4) implies

∂Dc
0(L, T )
∂T

=
∫ ∞

−∞

[
Dc

0(Le
−x, T ) −Dc

0(L, T )− ∂

∂K
Dc

0(L, T )L(e−x − 1)
]

exν(x, T )dx− [r(T ) − q(T )]L
∂

∂K
Dc

0(L, T ) − q(T )Dc
0(K,T ), T ∈ [0, T̄ ].
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This is a Robin condition, as it involves the value and both its first partial
derivatives along the boundary.

3 Up-and-Out Calls

3.1 The Backward Boundary Value Problem

Consider an up-and-out European call on a stock with a fixed maturity date
T ∈ [0, T̄ ]. At the first time that the stock price crosses an upper barrier H ,
the call knocks out. If the upper barrier is not touched prior to T , the call
matures and pays (ST −K)+ at T , where K ∈ [0, H) is the strike price.

We let τH denote the first passage time to H . We adopt the usual con-
vention of setting this first passage time to infinity if the barrier is never
hit. For t ≥ τ , the call has knocked out and is defined to be worthless
at t. If t < τ , then the stock price St must be in the continuation region
C ≡ (S, t) ∈ (0, H) × [0, T ). While the call is alive, its value is given by a
function, denoted U(S, t), mapping C into the real line. In the interior of the
continuation region, the partial derivatives, ∂U/∂t, ∂U/∂S, and ∂2U/∂S2 all
exist as classical functions. No-arbitrage implies that the up-and-out call value
function U(S, t) satisfies the following deterministic PIDE in the continuation
region C; that is,

∞∫

−∞

[
U(Sex, t) − U(S, t) − ∂

∂S
U(S, t)S(ex − 1)

]
ν(x, t)dx +

a2(S, t)
2

∂2U(S, t)
∂S2

+ [r(t) − q(t)]S
∂U(S, t)

∂S
− r(t)U(S, t) +

∂U(S, t)
∂t

= 0, for (S, t) ∈ C. (5)

A fortiori, the up-and-out call value function U(S, t) solves a backward bound-
ary value problem (BVP), consisting of the backward PIDE given by Equation
(5) subject to the following boundary conditions.

U(S, T ) = (S −K)+, S ∈ [0, H ], (6)
lim
S↓0

U(S, t) = 0, t ∈ [0, T ], (7)

lim
S↑H

U(S, t) = 0, t ∈ [0, T ]. (8)

Equation (6) states that the up-and-out call is worth its intrinsic value at
expiration. The value matching conditions given by Equations (7) and (8)
show that at each t ∈ [0, T ), the up-and-out call’s value tends to zero as the
stock price approaches the origin or the barrier. For each t, the up-and-out
call value is not in general differentiable in S at H .

Partial derivatives or integrals of the up-and-out call value with respect
to K or T also satisfy a backward BVP. In particular, the second partial
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derivative of the up-and-out call value with respect to K, denoted Ukk(S, t),
solves the same PIDE as U(S, t) in the continuation region C; that is,
∫ ∞

−∞

[
Ukk(Sex, t) − Ukk(S, t) −

∂

∂S
Ukk(S, t)S(ex − 1)

]
ν(x, t)dx

+
a2(S, t)

2
∂2Ukk(S, t)

∂S2
+ [r(t) − q(t)]S

∂Ukk(S, t)
∂S

− r(t)Ukk(S, t)

+
∂Ukk(S, t)

∂t
= 0, for (S, t) ∈ C. (9)

The partial derivative Ukk(S, t) is subject to the following boundary condi-
tions.

Ukk(S, T ) = δ(S −K), S ∈ [0, H ],
lim
S↓0

Ukk(S, t) = 0, t ∈ [0, T ],

lim
S↑H

Ukk(S, t) = 0, t ∈ [0, T ].

3.2 Forward Propagation of Up-and-Out Call Values

Until now, we have been thinking of K and T as constants. In this section, we
vary K and T , which will induce variation in the up-and-out call value. We
also hold S and t constant at S0 ∈ (0, H) and 0, respectively. We let u(K,T )
denote the function relating the up-and-out call value to the strike price K
and the maturity T when (S, t) = (S0, 0). Although we are interested in u for
all T ∈ [0, T̄ ], we are only interested in u for all real K ∈ [0, H ].

Let ukk(K,T ) ≡ Ukk(S0, 0) be the function emphasizing the dependence
of the second strike derivative of the up-and-out call value on K and T . The
appendix shows that the adjoint of the backward PIDE given by Equation (9)
governing ukk is
∫ ∞

−∞

[
e−xukk(Ke−x, T ) + (ex−2)ukk(K,T ) +

∂

∂K
ukk(K,T )K(ex−1)

]
ν(x, T )dx

+
∂2

∂K2

[
a2(K,T )

2
ukk(K,T )

]
− ∂

∂K
{[r(T ) − q(T )]Kukk(K,T )}

− r(T )ukk(K,T )− ∂ukk(K,T )
∂T

= 0, (10)

for K ∈ [0, H ], T ∈ [0, T̄ ]. Note that

∂2

∂K2
{−[r(T ) − q(T )]Kvk(K,T ) − q(T )v(K,T )}

=
∂

∂K
{−[r(T ) − q(T )]vk(K,T ) − [r(T ) − q(T )]Kvkk(K,T ) − q(T )vk(K,T )}

= − ∂

∂K
{[r(T ) − q(T )]Kvkk(K,T )} − r(T )vkk(K,T ). (11)
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Also note that

ex
∂2

∂K2

{
u(Ke−x, T )− u(K,T ) − uk(K,T )K(e−x − 1)

}

= ex
∂

∂K

{
e−xuk(Ke−x, T ) − uk(K,T ) − ukk(K,T )K(e−x − 1)

− uk(K,T )(e−x − 1)
}

=
∂

∂K

{
uk(Ke−x, T ) − uk(K,T ) − ukk(K,T )K(1 − ex)

}

= e−xukk(Ke−x, T )− ukk(K,T )− ukkk(K,T )K(1− ex) − ukk(K,T )(1− ex)
= e−xukk(Ke−x, T ) + (ex − 2)ukk(K,T ) + ukkk(K,T )K(ex − 1). (12)

Substituting Equations (11) and (12) into (10) implies

∂2

∂K2

{∫ ∞

−∞
[u(Ke−x, T ) − u(K,T )− uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T )−[r(T )− q(T )]Kuk(K,T )−q(T )u(K,T )−∂u(K,T )

∂T

}

= 0, K ∈ [0, H ], T ∈ [0, T̄ ].

Integrating on K twice implies
∫ ∞

−∞
[u(Ke−x, T )− u(K,T ) − uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T ) − [r(T ) − q(T )]Kuk(K,T ) − q(T )u(K,T )− ∂u(K,T )

∂T
= A(T )K +B(T ), (13)

for K ∈ [0, H ], T ∈ [0, T̄ ], and where A(T ) and B(T ) are independent of K.
The forward PIDE is solved subject to an initial condition:

u(K, 0) = (S0 −K)+. (14)

Suppose we regard the Lévy density ν(x, T ) and volatility function a(S, t) as
given, and use Equation (13) subject to the initial condition given by Equation
(14) to determine u(K,T ). Then the solution of the inhomogeneous PIDE
given by Equation (13) subject to the initial condition given by (14) is not
unique. As we don’t know A(T ) and B(T ), we need two conditions just to
determine the operator. For uniqueness, we may need two more independent
boundary conditions as well. If both the origin and the upper barrier are
accessible, then we will definitely need two additional independent boundary
conditions to obtain uniqueness. However, if the origin is inaccessible (e.g.,
for geometric Brownian motion), then we can uniquely determine up-and-out
call values without specifying a lower boundary condition.
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We may alternatively suppose that all up-and-out call values are already
known from the marketplace, and that the objective is to uniquely determine
the Lévy density ν(x, t) and the volatility function a(S, t). Under this perspec-
tive, one needs to supplement (13) subject to (14) with only two boundary
conditions in order to determine A(T ) and B(T ). If one somehow knows the
Lévy density, then it is straightforward to solve the algebraic equation (13)
for a(S, t).

We now assume that the objective is to determine u(K,T ) given ν(x, t)
and a(S, t). Differentiating Equation (13) with respect to K implies

A(T ) =
∫ ∞

−∞

[
e−xuk(Ke−x, T )−uk(K,T )− ∂uk

∂K
(K,T )K(e−x−1)

− uk(K,T )(e−x−1)
]
exν(x, T )dx+

∂

∂K

{a2(K,T )
2

ukk(K,T )

− [r(T ) − q(T )]Kuk(K,T )− q(T )u(K,T )− ∂u(K,T )
∂T

}

=
∫ ∞

−∞
[uk(Ke−x, T )− uk(K,T )− ∂uk

∂K
(K,T )K(1 − e−x)]ν(x, T )dx

+
a2(K,T )

2
∂2

∂K2
uk(K,T )

−
{

[r(T ) − q(T )]K − a(K,T )
∂a

∂S
(K,T )

}
∂

∂K
uk(K,T )

− r(T )uk(K,T ) − ∂uk(K,T )
∂T

. (15)

As the left-hand side (LHS) is invariant to K, the RHS is as well, and so
we are free to determine A(T ) by evaluating the RHS at either K = 0 or at
K = H .

Once A(T ) is known, then from Equation (13),

B(T ) =
∫ ∞

−∞
[u(Ke−x, T )− u(K,T ) − uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T )− [r(T ) − q(T )]Kuk(K,T ) − q(T )u(K,T )

−∂u(K,T )
∂T

−A(T )K. (16)

Once again, the LHS is invariant to K, and so we are free to determine B(T )
by evaluating the RHS at either K = 0 or at K = H .

Appealing to the Feynman–Kac theorem, the solution to the backward
BVP given by Equations (5) to (8) can be represented as

u(K,T ) = e−
∫ T
0 r(u)duEQ[1{τH>T}(ST −K)+], (17)

where the expectation is conditional on the known initial stock price S0. The
stock price process used to calculate these so-called risk-neutral expectations
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is the one solving the SDE given by Equation (1). At K = H , the function u
gives the value of a call whose underlying must cross a knock-out barrier to
finish above the strike:

u(H,T ) = 0. (18)

Differentiating Equation (17) w.r.t. K implies that

uk(K,T ) = −e−
∫

T
0 r(u)duEQ[1{τH>T}1{ST>K}]. (19)

At K = H , the function uk gives the value of a short binary call whose
underlying must cross a knock-out barrier to finish above the strike:

uk(H,T ) = 0. (20)

Differentiating Equation (19) w.r.t. K implies that

ukk(K,T ) = e−
∫ T
0 r(u)duEQ[1{τH>T}δ(ST −K)],

where δ(·) denotes the Dirac delta function. Hence, the function ukk(K,T )
gives the r-discounted risk-neutral probability density for the event that the
stock price process survives to T and that the time T stock price is in (K,K+
dK):

ukk(K,T ) = e−
∫ T
0 r(u)duQ(τH > T, ST ∈ (K,K + dK))

dK
. (21)

Hence, as the strike price K approaches the knock-out barrier H , the proba-
bility of surviving beyond T goes to zero:

lim
K↑H

ukk(K,T ) = 0. (22)

Differentiating Equation (21) w.r.t. K implies that the slope of the discounted
survival probability in K is given by

ukkk(K,T ) = e−
∫

T
0 r(u)duEQ[1{τH>T}δ

(1)(ST −K)],

where δ(1)(·) denotes the first derivative of a delta function. When evaluated
at K = H , ukkk does not appear to simplify. We later show how the infor-
mation at K = 0 allows us to relate ukkk to the PDF for the first passage
time τH .

Differentiating Equation (17) w.r.t. T implies that

∂

∂T
u(K,T ) = −r(T )u(K,T ) + e−

∫ T
0 r(u)duEQ[δ(τH − T )(ST −K)+]. (23)

One may interpret the second term as the value of a call whose notional is
contingent on the first passage time to H being the call’s maturity T . For
any H ≤ K, this term vanishes. Hence, evaluating Equation (23) at K = H
implies
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∂

∂T
u(H,T ) = 0, (24)

applying Equation (18). Differentiating Equation (19) w.r.t. T implies that

∂

∂T
uk(K,T ) = −r(T )uk(K,T ) + e−

∫
T
0 r(u)duEQ[δ(τH − T )1{ST>K}]. (25)

The only difference between Equations (23) and (25) is that the second term
now represents the value of a binary call with contingent notional. Hence,

∂2

∂T∂K
u(H,T ) = 0, (26)

applying Equation (20).
We have less in the way of additional boundary conditions as K ↓ 0.

Because an up-and-out call has less value than a standard call, we have an
upper bound on the value at K = 0:

u(0, T ) ≤ S0e
−
∫

T
0 q(u)du.

Similarly, because an up-and-out binary call has less value than a standard
binary, we have a lower bound on the absolute slope in K at K = 0:

uk(0, T ) ≥ −e−
∫ T
0 r(u)du.

As an up-and-out butterfly spread has the same or lower value than a standard
butterfly spread, we have

ukk(0, T ) = 0. (27)

Similarly, as an up-and-out vertical spread of butterfly spreads has the same
or lower value than a vertical spread of butterfly spreads, we have

ukkk(0, T ) = 0. (28)

Evaluating Equation (23) at K = 0 implies

∂

∂T
u(0, T ) = −r(T )u(0, T ) + e−

∫ T
0 r(u)duEQ[δ(τH − T )ST ]. (29)

As the stock price must be worth H in order for the call holder to receive
anything, Equation (29) yields a simple expression for the discounted first
passage time density:

φ(H,T ) ≡ e−
∫ T
0 r(u)duQ(τH ∈ (T, T + dT ))

dT
=

1
H

[
r(T )u(0, T ) +

∂

∂T
u(0, T )

]
.

When ν(x, t) and a(S, t) are known and u(K,T ) is to be determined, the
RHS is not known exante. However, when ν(x, t) and a(S, t) are not known
and when one can observe market prices of up-and-out calls with zero strikes
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(which are up-and-out shares with no dividends received prior to T ), then the
RHS is observable. Evaluating Equation (25) at K = 0 implies

∂

∂T
uk(0, T ) = −r(T )uk(0, T ) + e−

∫
T
0 r(u)duEQ[δ(τH − T )].

Hence, we have another simple expression for the discounted first passage time
density:

φ(H,T ) = r(T )uk(0, T ) +
∂

∂T
uk(0, T ). (30)

Evaluating Equation (15) at K = H and substituting in Equations (20),
(22), and (26) implies that for an up-and-out call,

A(T ) =
∫ ∞

0

uk(He−x, T )ν(x, T )dx+
a2(H,T )

2
∂2

∂K2
uk(H,T ). (31)

Evaluating Equation (16) at K = H and substituting in Equations (18), (20),
(22), (24), and (31) implies that for an up-and-out call,

B(T ) =
∫ ∞

0

u(He−x, T )exν(x, T )dx

−
[∫ ∞

0

uk(He−x, T )ν(x, T )dx+
a2(H,T )

2
∂2

∂K2
uk(H,T )

]
H. (32)

We can alternatively try to determine A(T ) and B(T ) using boundary
conditions for K = 0. Evaluating Equation (15) at K = 0 and substituting in
Equations (2), (27), and (28) implies that for an up-and-out call,

A(T ) = −r(T )uk(0, T )− ∂uk(0, T )
∂T

= −φ(H,T ), (33)

applying Equation (30). Evaluating Equation (16) at K = 0 and substituting
in Equations (2), (27), (28), and (33) implies that for an up-and-out call,

B(T ) = −q(T )u(0, T )− ∂u(0, T )
∂T

. (34)

Using A(T ) and B(T ) determined by Equations (31) and (32), respectively,
(13) becomes
∫ ∞

−∞
[u(Ke−x, T ) − u(K,T )− uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T ) − [r(T )−q(T )]Kuk(K,T ) − q(T )u(K,T )− ∂u(K,T )

∂T

=
[∫ ∞

0

uk(He−x, T )ν(x, T )dx+
a2(H,T )

2
ukkk(H,T )

]
(K −H)

+
∫ ∞

0

u(He−x, T )exν(x, T )dx, (35)
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for K ∈ (0, H), T ∈ [0, T̄ ] and for H > S0. Recall that for an up-and-out call,
the initial condition is

u(K, 0) = (S0 −K)+, K ∈ [0, H), (36)

and for H > S0. For boundary conditions, Equations (18), (20), (22), (27),
and (28) are all available. As a result, we have more than enough independent
boundary conditions to uniquely determine u(K,T ). Note that the forward
operator is not local as it acts on the function u(K,T ) and its derivatives at
both K < H and at K = H .

As Equations (31) and (33) both yield expressions for A(T ), it follows that
∫ ∞

0

uk(He−x, T )ν(x, T )dx+
a2(H,T )

2
∂2

∂K2
uk(H,T ) = −φ(H,T ). (37)

Substituting Equation (37) in (35) implies that the forward PIDE for an up-
and-out call can also be written as

∂u(K,T )
∂T

=
∫ ∞

−∞
[u(Ke−x, T ) − u(K,T )− uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T ) − [r(T ) − q(T )]Kuk(K,T ) − q(T )u(K,T )

−φ(H,T )(H −K) −
∫ ∞

0

u(He−x, T )exν(x, T )dx. (38)

To interpret this PIDE financially, first note that if an investor buys a calendar
spread of up-and-out calls, then the initial cost is given by the LHS. The first
term on the RHS arises only from paths that survive to T and cross K then.
It can be shown that this first term is the initial value of a path-dependent
claim that pays the overshoots of the strike at T . The second term on the RHS
arises only from paths that survive to T and finish at K. Consider the infinite
position in the later maturing call at time t = T if the option survives until
then. This position will have infinite time value when ST = K and zero value
otherwise. The greater is the local variance rate at ST = K, the greater is this
conditional time value and the more valuable is this position initially. The next
two terms arise only from paths that survive to T and finish above K. They
capture the additional carrying costs of stock and bond that are embedded in
the time value of the later maturing call. The operator given by the first four
terms on the RHS also represents the present value of benefits obtained at T
when an investor buys a calendar spread of standard or down-and-out calls. In
contrast, the last two terms in Equation (38) have no counterpart for calendar
spreads in standard or down-and-out calls. To interpret them financially, note
that
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φ(H,T )(H −K) +
∫ ∞

0

u(He−x, T )exν(x, T )dx

= e−
∫

T
0 r(u)duEQ0 [δ(τH − T )(H −K)]

+ e−
∫

T
0 r(u)duEQ0

[ ∫ ∞

0

(ST− −He−x)+exν(x, T )dx
]

= e−
∫

T
0 r(u)duEQ0 [δ(τH − T )1{ST≥H}(H −K)]

+ e−
∫

T
0 r(u)duEQ0

[ ∫ ∞

0

(ST−e
x −H)+1{τH≥T}e

xν(x, T )dx
]

= e−
∫ T
0 r(u)duEQ0

[
δ(τH − T )(ST −H)+

]
.

Thus, the last two terms in Equation (38) represent the discounted expected
value of the payoff from a call struck at H if the first passage time to H is T .
Note that the possibility of this loss can cause the calendar spread value to
be negative.

If we take the up-and-out call prices as given by the market, and even
supposing that we know the Lévy density ν(x, t), then solving Equation (13) or
(38) for the local volatility function a(S, t) is problematic, unless we somehow
know a(H,T ) or φ(H,T ) ex ante. Fortunately, this problem is solved by using
A(T ) and B(T ) determined by Equations (33) and (34), respectively, instead.
In this case, Equation (13) becomes:
∫ ∞

−∞
[u(Ke−x, T ) − u(K,T )− uk(K,T )K(e−x − 1)]exν(x, T )dx

+
a2(K,T )

2
ukk(K,T )− [r(T )−q(T )]Kuk(K,T ) − q(T )u(K,T )− ∂u(K,T )

∂T

=
[
−r(T )uk(0, T )− ∂uk(0, T )

∂T

]
K − q(T )u(0, T )− ∂u(0, T )

∂T
. (39)

When the up-and-out call prices are given by the market and the Lévy density
ν(x, t) is known, then solving Equation (39) for the local volatility function
a(S, t) is straightforward. Note that our assumption that the origin is inac-
cessible was crucial for achieving this result.

If the Lévy density ν(x, t) and volatility function a(S, t) are instead given,
then one must try to solve Equation (39) for the up-and-out call value func-
tion u(K,T ) on the domain K ∈ (0, H), T ∈ [0, T̄ ]. Once again, this forward
operator is not local. The PIDE (39) is also solved subject to the initial
condition given by Equation (36). Once again, we have the five boundary
conditions (18), (20), (22), (27), and (28) available. As usual, we need at
least one boundary condition to uniquely determine u(K,T ) once the oper-
ator is determined. In this specification, we also need to solve for the four
functions u(0, T ), uk(0, T ), (∂uk(0, T ))/∂T , and (∂u(0, T ))/∂T to determine
the operator. Hence, it appears that u(K,T ) is not determined uniquely by
the forward BVP involving (39). Fortunately, it is determined by the forward
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BVP involving (35), and so we are able to solve for either a(S, t) or u(K,T )
through use of the appropriate forward BVP.

4 Numerical Examples

We employ the same methodology used in [8] and [16] to numerically solve
the backward and forward PIDEs for both down-and-out and up-and-out calls.
For our numerical examples, we take ν(x)dx to be the Lévy density for the
VG process in the following form.

ν(x) =
e−λpx

νx
for x > 0 and ν(x) =

e−λn|x|

ν|x| for x < 0

and

λp =
(
θ2

σ4
+

2
σ2ν

)1/2

− θ

σ2
λn =
(
θ2

σ4
+

2
σ2ν

)1/2

+
θ

σ2
,

where σ, ν, and θ are VG parameters.
We consider the following local volatility surface,

σ(K,T ) = 0.3e−T (100/K)0.2 ,

which is plotted in Figure 1. Other parameter values for our numerical ex-
periments are as follows: spot S0 = 100, risk-free rate r = 6%, dividend rate
q = 2, and VG parameters σ = 0.3, ν = 0.25, θ = −0.3.

Numerical Results on Up-and-Out Calls

In the case of up-and-out calls, the up-barrier is taken to be H = 140. In
the backward case, for each maturity and each strike, we solve the backward
PIDE and extract the value for time 0 and spot 100 as shown in Figures 2
through 4. In Figure 2, the left graph illustrates the value for up-and-out
calls for 3-month maturity and strike 90, and the right graph displays the
value for up-and-out calls for 3-month maturity and strike 110. In Figure 3,
the left graph illustrates the value for up-and-out calls for 6-month maturity
and strike 90, and the right graph displays the value for up-and-out calls for
6-month maturity and strike 110. In Figure 4, the left graph illustrates the
value for up-and-out calls for 12-month maturity and strike 90, and the right
graph displays the value for up-and-out calls for 12-month maturity and strike
110. In the forward case, however, we just solve the forward PIDE once and
extract the values at these maturities and strikes as shown in Figure 5. Table 1
summarizes the results for up-and-out calls from both backward and forward
PIDEs, where as expected, the two prices match pretty closely.
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Fig. 1. Local volatility surface.

Fig. 2. On the left, up-and-out call prices for 3-month maturity and strike 90; on
the right, up-and-out call prices for 3-month maturity and strike 110.

Numerical Results on Down-and-Out Calls

Table 2 illustrates the numerical results for down-and-out calls for both back-
ward and forward PIDEs for maturities: 3, 6, and 12 months, strikes: 90 and
110. For down-and-out calls, the down-barrier is assumed to be L = 60. As
before, in the backward case, for each maturity and each strike, we solve the
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Fig. 3. On the left, up-and-out call prices for 6-month maturity and strike 90; on
the right, up-and-out call prices for 6-month maturity and strike 110.

Fig. 4. On the left, up-and-out call prices for 12-month maturity and strike 90; on
the right, up-and-out call prices for 12-month maturity and strike 110.

Table 1. Up-and-out call prices for three maturities and two strikes (up-barrier
H = 140).

Maturity T1 = 0.25 T2 = 0.5 T3 = 1.0

Barrier Strike Bwd Fwd Bwd Fwd Bwd Fwd

140 90 11.9869 11.98901 9.56714 9.56918 5.33683 5.33786
110 2.38287 2.38951 2.32168 2.32895 1.28613 1.28012

backward PIDE and extract the value for time 0 and spot at 100. In the for-
ward case, we solve it once and extract the values at (Ki, Tj). As we expected,
the prices are nearly identical.
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Fig. 5. Up-and-out call prices for maturities 3, 6, and 12 months and strikes 90 and
110.

Table 2. Down-and-out call prices for three maturities and and two strikes (down-
barrier L = 60).

Maturity T1 = 0.25 T2 = 0.5 T3 = 1.0

Barrier Strike Bwd Fwd Bwd Fwd Bwd Fwd

60 90 13.8837 13.8798 16.8732 16.8801 21.3305 21.3345
110 3.57784 3.57891 6.99384 6.98564 12.1307 12.1295

5 Future Research

We would like to extend this work to other kind of barrier options such
as no-touches and double-barrier options. One can also attempt to extend
the dynamics assumption to stochastic volatility and stock jump arrival
rates.
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Appendix: Adjoint of Backward PIDE

From Gihman and Skorohod [15, p. 297],

∂

∂T
e−
∫ T

t
r(u)duEtf(ST ) =

−r(T )Ete−
∫

T
t
r(u)duf(ST ) + e−

∫
T
t
r(u)duEt[(LT f)(ST )], (40)

where

LT f(S) ≡
∞∫

−∞

[f(Sex) − f(S) − f ′(S)S(ex − 1)] ν(x, T )dx

+
a2(S, T )

2
f ′′(S) + [r(T ) − q(T )]Sf ′(S).

Taking f(S) = δ(S −K), Equation (40) becomes

∂

∂T
e−
∫ T

t
r(u)duEtδ(ST −K) + r(T )e−

∫ T
t
r(u)duEtδ(ST −K)

= e−
∫ T

t
r(u)duEt[(LT δ(S −K))(ST )]. (41)

The LHS of Equation (41) equals

∂

∂T
ukk(K,T ) + r(T )ukk(K,T ),

whereas the RHS of Equation (41) equals

∫ ∞

0

ukk(L, T )
{ ∞∫

−∞

[
δ(Lex −K) − δ(L−K) − δ(1)(L −K)L(ex − 1)

]
ν(x, T )dx

+
a2(L, T )

2
δ(2)(L−K)+[r(T )−q(T )]Lδ(1)(L−K)

}
dL

=

∞∫

−∞

[
e−xukk(Ke−x, T )− ukk(K,T ) +

[
∂ukk
∂K

(K,T )K + ukk(K,T )
]

(ex − 1)
]
ν(x, T )dx

+
∂2

∂K2

[
a2(K,T )

2
ukk(K,T )

]
− ∂

∂K
{[r(T ) − q(T )]Kukk(K,T )}

=

∞∫

−∞

[
e−xukk(Ke−x, T )+(ex− 2)ukk(K,T )+

∂ukk
∂K

(K,T )K(ex− 1)
]
ν(x, T )dx

+
∂2

∂K2

[
a2(K,T )

2
ukk(K,T )

]
− ∂

∂K
{[r(T ) − q(T )]Kukk(K,T )} .
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Thus, the adjoint is

∂

∂T
ukk(K,T ) (42)

=

∞∫

−∞

[
e−xukk(Ke−x, T )+(ex− 2)ukk(K,T )+

∂ukk
∂K

(K,T )K(ex− 1)
]
ν(x, T )dx

+
∂2

∂K2

[
a2(K,T )

2
ukk(K,T )

]

− ∂

∂K
{[r(T ) − q(T )]Kukk(K,T )} − r(T )ukk(K,T ).
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Summary. The goals of the paper are as follows: (i) review some qualitative prop-
erties of oil and gas prices in the last 15 years; (ii) propose some mathematical
elements towards a definition of mean reversion that would not be reduced to the
form of the drift in a stochastic differential equation; (iii) conduct econometric tests
in order to conclude whether mean reversion still exists in the energy commodity
price behavior. Regarding the third point, a clear “break” in the properties of oil
and natural gas prices and volatility can be exhibited in the period 2000–2001.

Key words: Oil and gas markets; mean reversion; invariant measure.

1 Introduction

Energy commodity prices have been rising at an unprecedented pace over
the last five years. As depicted in Figure 1, an investment of $100 made in
January 2002 in the global Dow Jones–AIG Commodity Index had more than
doubled by July 2006, whereas Figure 2 indicates that an investment of $100
in the Dow Jones–AIG Energy subindex had turned into $500 in July 2005.
Among the numerous explanations for this phenomenon, we may identify the
severe tensions on oil and their implications for other fossil fuels that may be
substitutes. The increase of oil prices is driven by demand growth, particularly
in Asia where Chinese consumption rose by 900,000 barrels per day, mostly
accounted for by imports.

At the world level, the issue of “peak oil”—the date at which half of
the reserves existing at the beginning of time are (will be) consumed—is the
subject of intense debates. Matthew Simmons asks in his book, Twilight in
the Desert, whether there is a significant amount of oil left in the soil of Saudi
Arabia. The concern of depleting reserves in the context of an exhaustive
commodity such as oil is certainly present on market participants’ minds, and
in turn, on the trajectory depicted in Figure 2.
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Fig. 1. Dow Jones–AIG Total Return Index over the period January 2002–July
2006.

Fig. 2. Dow Jones–AIG Energy Sub-Index over the period January 2000–July 2005.
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Fig. 3. Goldman Sachs Commodity Index Total Return and Dow Jones–AIG Com-
modity Index total return over the period February 1991–December 1999.

The financial literature on commodity price modeling started with the pi-
oneering paper by Gibson and Schwartz [7]. In the spirit of the Black–Scholes–
Merton [2] formula, they use a geometric Brownian motion for oil spot prices.
Given the behavior of commodity prices during the 1990s depicted in Figure 3
by the two major commodity indexes, [10] introduces a mean-reverting drift in
the stochastic differential equation driving oil price dynamics; [14; 4; 12] keep
this mean-reversion representation for oil, electricity, and bituminous coal.

The goal of this paper is to revisit the modeling of oil and natural gas prices
in the light of the trajectories observed in the recent past (see Figure 2), as well
as the definition of mean reversion from a general mathematical perspective.
Note that this issue matters also for key quantities in finance such as stochastic
volatility. Fouque et al. [5] are interested in the property of clustering exhibited
by the volatility of asset prices. Their view is that volatility is “bursty” in
nature, and burstiness is closely related to mean reversion, because a bursty
process is returning to its mean (at a speed that depends on the length of the
burst period).
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2 Some Elements on Mean Reversion in Diffusion from a
Mathematical Perspective

The long-term behavior of continuous-time Markov processes has been the
subject of much attention, starting with the work of Has’minskii [8]. Accord-
ingly, the long-term evolution of the price of an exhaustible commodity, such
as oil or copper, is a topic of major concern in finance, given the world geopolit-
ical and economic consequences of this issue. In what follows, (Xt) essentially
has the economic interpretation of a log-price. We start with a process (Xt)
defined as the solution of a stochastic differential equation

dXt = b (Xt) dt + σ (Xt) dWt,

where (Wt) is a standard Brownian motion on a probability space (Ω,F ,P)
describing the randomness of the economy. We know from Itô that if b and
σ are Lipschitz, there exists a unique solution to the equation. If only b is
Lipschitz and σ Holder of coefficient 1

2 , we still have existence and uniqueness
of the solution. In both cases, the process (Xt) will be Markov and the drift
b (Xt) will contain the representation of the trend perceived at date t for future
spot prices.

Given a process (Xt), we are in finance particularly interested in the pos-
sible existence of a distribution for X0 such that, for any positive t, Xt has
the same distribution. This distribution, if it exists, may be viewed as an
equilibrium state for the process. We now recall the definition of an invari-
ant probability measure for a Markov process (Xt)t≥0, whose semi-group is
denoted (Pt)t≥0 and satisfies the property that, for any bounded measurable
function, Ptf (x) = E [f (Xt)].

Definition 1. (i) A measure μ is said to be invariant for the process (Xt) if
and only if ∫

μ (dx)Ptf (x) =
∫

μ (dx) f (x) ,

for any bounded function f . (ii) μ is invariant for (Xt) if and only if μPt = μ.
Equivalently, the law of (Xt+u)u≥0 is independent of t if we start at date 0
with the measure μ.

Proposition 1. The existence of an invariant measure implies that the pro-
cess (Xt) is stationary. If (Xt) admits a limit law independent of its initial
state, then this limit law is an invariant measure.

Proof. The first part of the proposition is nothing but one of the two forms
of the definition above. Now suppose E [f (Xt)] →t→∞

∫
μ (dy) f (y), for any

bounded function f . Then

EX [f (Xt+s)] = EX [PSf (Xt)] →t→∞

∫
μ (dy) f (y) .

Hence, μPS = μ, and μ is invariant. 
�
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Proposition 2. 1. The Ornstein–Uhlenbeck process admits a finite invariant
measure, and this measure is Gaussian.

2. The Cox–Ingersoll–Ross (or square-root) process also has a finite invariant
measure.

3. The arithmetic Brownian motion (as do all Lévy processes) admits the
Lebesgue measure as an invariant measure, hence, not finite.

4. A (squared) Bessel process exhibits the same property, namely an infinite
invariant measure.

Proof. 1. For φ : R → R in C2, consider the Smoluchowski equation

dXt = φ′ (Xt) dt+ dWt,

where Wt is a standard Brownian motion. Then the measure μ (dx) =
e2φ(x)dx is invariant for the process (Xt). If we consider now an Ornstein–
Uhlenbeck process (with a standard deviation equal to 1 for implicity),
then dXt = (a− bXt) dt+dWt, a, b > 0, φ′ (x) = a−bx, φ (x) = c+ax−
bx2/2, and μ (dx) = e−bx

2+2ax+cdx is an invariant measure (normalized
to 1 through c), and we recognize the Gaussian density. In the general
case of an Ornstein–Uhlenbeck process reverting to the mean m, and with
a standard deviation equal to σ, the invariant measure will be N

(
m,σ2
)
.

2. We recall the definition of the squared-root (or CIR) process introduced
in finance by Cox et al. [3]:

dXt = (δ − bXt) dt + σ
√
XtdWt.

We remember that a CIR process is the square of the norm of a δ-
dimensional Ornstein–Uhlenbeck process, where δ is the drift of the CIR
process at 0. The semi-group of a CIR process is the radial projection of
the semi-group of an Ornstein–Uhlenbeck. If we note v, the image of μ,
by the radial projection
∫
v (dr)φ (r)=

∫
μ (dx)Pt (φ |·|) (x)=

∫
μ (dx)Ptφ (|x|)=

∫
v (dr)Ptφ (r) .

Hence v, the image of μ by the norm application, is invariant for Pt.
3. Consider a Lévy process (Lt) and Pt its semi-group. Then

Pt (x, f) = E0 [f (x+ Lt)] ,
∫

dxPt (x, f) =Fubini E0

[∫
f (x+ Lt) dx

]
=
∫

f (y) dy.

Consequently, the Lebesque measure is invariant for the process (Lt).
4. We use the well-known relationship between a Bessel process and the

norm of Brownian motion and also obtain an infinite invariant measure
for Bessel processes. 
�
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Having covered the fundamental types of Markovian diffusions used in
finance, we are led to propose the following definition.

Definition 2. Given a Markov diffusion (Xt), we say that the process (Xt)
exhibits mean reversion if and only if it admits a finite invariant measure.

Remarks.

1. The definition does not necessarily involve the drift of a stochastic differ-
ential equation satisfied by (Xt), as also suggested in [11].

2. It allows inclusion of high-dimensional non-Markovian processes driving
energy commodity prices or volatility levels.

3. Following [13], we can define the set

TP ={probability measure μ such that μPt = μ ∀t ≥ 0}.
Then the set TP is convex and closed for the tight convergence topology
(through Feller’s property) and possibly empty. If TP is not the empty set
and compact (for the tight convergence topology), there is at least one
extremal probability μ∗ in TP . Then the process (Xt) is ergodic for this
measure μ∗: for any set A ∈ FX

∞ that is invariant by the time translators
(θt)t≥0, then Pμ∗ (A) = 0 or 1, where we classically denote FX

∞ the natural
filtration of the process (Xt). The time-translation operator θt is defined
on the space Ω by (θt (X))s = Xt+s. It follows by Birkhoff’s theorem that,
for any function F ∈ L1 (Pμ∗),

1
t

∫ t

0

F (Xs) ds → EPμ∗ [F (X)] Pμ∗ − a.s.

when t → ∞. The interpretation of this result is the following: the long-
run time average of a bounded function of the ergodic process (Xt) is
close to its statistical average with respect to its invariant distribution.
This property is crucial in finance, as the former quantity is the only one
we can hope to compute using an historical database of the process (Xt).

3 An Econometric Approach to Mean Reversion in
Energy Commodity Prices

We recall the classical steps in testing mean reversion in a series of prices
(Xt). The objective is to check whether in the representation

Xt+1 = ρXt + εt,

the coefficient ρ is significantly different from 1. The H0 hypothesis is the
existence of a unit root (i.e., ρ = 1). A p-value smaller than 0.05 allows one to
reject the H0 hypothesis with a confidence level higher than 0.95, in which case
the process is of the mean-reverting type. Otherwise, a unit root is uncovered,
and the process is of the “random walk” type. The higher the p-value, the
more the random walk model is validated.
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3.1 Mean-Reversion Tests

They are fundamentally of two types:

(i) The Augmented Dickey–Fuller (ADF) consists in estimating the regression
coefficient of p (t) on p (t− 1). If this coefficient is significantly below 1, it
means that the process is mean reverting; if it is close to 1, the process is
a random walk.

(ii) The Phillips–Perron test consists in searching for a unit root in the equa-
tion linking Xt and Xt+1. Again, a high p-value reinforces the hypothesis
of a unit root.

3.2 Statistical Properties Observed on Oil and Natural Gas Prices

For crude oil,

• A mean-reversion pattern prevails over the period 1994–2000,
• It changes into a random walk (arithmetic Brownian motion) as of 2000.

Whereas for natural gas,

• There is a mean-reversion pattern until 1999,
• Since 2000, a change into a random walk occurs, but with a lag compared

to oil prices,
• During both periods, seasonality of gas prices tends to blur the signals.

For U.S. natural gas prices over the period January 1994–October 2004,
spot prices are proxied by the New York Mercantile Exchange (NYMEX) one-
month futures contract. Over the entire period January 1994–October 2004,
the ADF p-value is 0.712 and the Phillips–Perron p-value is 0.1402, whereas
over the period January 1999–October 2004, the ADF p-value is 0.3567 and
the Phillips–Perron p-value is 0.3899. Taking instead log-prices, the numbers
become

Jan 94–Oct 04 Jan 99–Oct 04
ADF p-value = 0.0863 ADF p-value = 0.4452
Phillips–Perron p-value = 0.0888 Phillips–Perron p-value = 0.4498

Over the last five years of the period, the arithmetic Brownian motion as-
sumption clearly prevails and mean reversion seems to have receded.

For West Texas Intermediate (WTI) oil spot prices over the same period
January 1994–October 2004, again spot prices are proxied by NYMEX one-
month futures prices, and the tests are conducted for log-prices.

1994–2004 Jan 1999–Oct 2004
ADF p-value 0.651 ADF p-value 0.7196
Phillips–Perron 0.5048 Phillips–Perron 0.5641

The mean-reversion assumption is strongly rejected over the whole period
and even more so over the recent one. Because of absence of seasonality, the
behavior of a random walk is more pronounced in the case of oil log-prices
than in the case of natural gas.
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4 The Economic Literature on Mean Reversion in
Commodity Prices

In [1], the term structure of futures prices is tested over the period January
1982 to December 1991, for which mean reversion is found in the 11 markets
examined, and it is also concluded that the magnitude of mean reversion is
large for agricultural commodities and crude oil, and substantially less for
metals. Rather than examining evidence of ex-post reversion using time series
of asset prices, [1] uses price data from futures contracts with various hori-
zons to test whether investors expect prices to revert. The “price discovery”
element in forward and futures prices is related to the famous “rational expec-
tations hypothesis” long tested by economics, for interest rates in particular
(cf. [9]), and stating that forward rates are unbiased predictors of future spot
rates. The paper [1] analyzes the relation between price levels and the slope of
the futures term structure defined by the difference between a long maturity
future contract and the first nearby. Assuming that futures prices are unbiased
expectations (under the real probability measure) of future spot prices, an in-
verse relation between prices and this slope constitutes evidence that investors
expect mean reversion in spot prices, as it implies a lower expected future spot
when prices rise. The authors conclude the existence of mean reversion for oil
prices over the period 1982–1999; however, the same computations conducted
over the period 2000–2005 lead to inconclusive results.

Pindyck [12] analyzes 127 years (1870–1996) of data on crude oil and
bituminous coal, obtained from the U.S. Department of Commerce. Using a
unit root test, he shows that prices mean revert to stochastically fluctuating
trend lines that represent long-run total marginal costs but are themselves
unobservable. He also finds that during the time period of analysis, the random
walk distribution for log-prices (i.e., the geometric Brownian motion for spot
prices) is a much better approximation for coal and gas than oil. As suggested
by Figure 4, the recent period (2000–2006) has been quite different.

One way to reconcile the findings in [12] and the properties we observed
in the recent period described in this paper, is to “mix” mean reversion for
the spot price towards a long-term value of oil prices driven by a geometric
Brownian motion. The following three-state variable model also incorporates
stochastic volatility.

dSt = a (Lt − St)St dt+ σt St dW
1
t ,

dyt = α (b− yt) dt+ η
√
yt d W

2
t , where yt = σ2

t ,

dLt = μLt dt+ ξLt dW
3
t ,

where the Brownian motions are positively correlated. The positive correlation
between W 1and W 2 accounts for the “inverse leverage” effect that prevails for
commodity prices (in contrast to the “leverage effect” observed in the equity
markets), whereas the positive correlation between W 1 and W 3 translates
the fact that news of depleted reserves will generate a rise in both spot and
long-term oil prices.
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Fig. 4. NYMEX Crude Oil Front: month daily prices over the period January 2003–
August 2005.

5 Conclusion

From the methodological standpoint, more work remains to be done in order
to analyze in a unified setting (i) the mathematical properties of existence of
an invariant measure and ergodicity for a stochastic process, and (ii) the mean-
reversion behavior as it is intuitively perceived in the field of finance. From
an economic standpoint, the modeling of oil and natural gas prices should
incorporate the recent perception by market participants of the importance
of reserves uncertainty and exhaustion of these reserves.
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Summary. A new approach to credit risk modelling is introduced that avoids the
use of inaccessible stopping times. Default events are associated directly with the
failure of obligors to make contractually agreed payments. Noisy information about
impending cash flows is available to market participants. In this framework, the
market filtration is modelled explicitly, and is assumed to be generated by one or
more independent market information processes. Each such information process car-
ries partial information about the values of the market factors that determine future
cash flows. For each market factor, the rate at which true information is provided to
market participants concerning the eventual value of the factor is a parameter of the
model. Analytical expressions that can be readily used for simulation are presented
for the price processes of defaultable bonds with stochastic recovery. Similar expres-
sions can be formulated for other debt instruments, including multi-name products.
An explicit formula is derived for the value of an option on a defaultable discount
bond. It is shown that the value of such an option is an increasing function of the
rate at which true information is provided about the terminal payoff of the bond.
One notable feature of the framework is that it satisfies an overall dynamic consis-
tency condition that makes it suitable as a basis for practical modelling situations
where frequent recalibration may be necessary.

Key words: Credit risk; credit derivatives; incomplete information; information-
based asset pricing; market filtration; Bayesian inference; Brownian bridge process.

1 Introduction and Summary

Models for credit risk management and, in particular, for the pricing of credit
derivatives are usually classified into two types: structural and reduced-form.
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For general overviews of these approaches, see, for example, Jeanblanc and
Rutkowski [25], Hughston and Turnbull [18], Bielecki and Rutkowski [4],
Duffie and Singleton [12], Schönbucher [35], Bielecki et al. [3], Lando [29],
and Elizalde [13].

There is a divergence of opinion in the literature as to the relative mer-
its of the structural and reduced-form methodologies. Both approaches have
strengths, but there are also shortcomings. Structural models attempt to ac-
count at some level of detail for the events leading to default (see, e.g., Merton
[33], Black and Cox [5], Leland and Toft [30], Hilberink and Rogers [17], Jarrow
et al. [23], and Hull and White [19]). One general problem of the structural
approach is that it is difficult in a structural model to deal systematically with
the multiplicity of situations that can lead to default. For this reason, struc-
tural models are sometimes viewed as unsatisfactory as a basis for a practical
modelling framework, particularly when multi-name products such as nth-to-
default swaps and collateralised debt obligations (CDOs) are involved.

Reduced-form models are more commonly used in practice, on account
of their tractability and because fewer assumptions are required about the
nature of the debt obligations involved and the circumstances that might lead
to default (see, e.g., Flesaker et al. [14], Jarrow and Turnbull [22], Duffie et
al. [10], Jarrow et al. [20], Lando [28], Madan and Unal [31], [32], Duffie and
Singleton [11], and Jarrow and Yu [24]). Most reduced-form models are based
on the introduction of a random time of default, modelled as the time at which
the integral of a random intensity process first hits a certain critical level, this
level itself being an independent random variable. An unsatisfactory feature
of such intensity models is that they do not adequately take into account the
fact that defaults are typically associated directly with a failure in the delivery
of a contractually agreed cash flow—for example, a missed coupon payment.
Another drawback of the intensity approach is that it is not well adapted to the
situation where one wants to model the rise and fall of credit spreads, which
can in reality be due in part to changes in the level of investor confidence.

The purpose of this paper is to introduce a new class of reduced-form credit
models in which these problems are addressed. The modelling framework that
we develop is broadly in the spirit of the incomplete-information approaches
of Kusuoka [27], Duffie and Lando [9], Cetin et al. [6], Gieseke [15], Gieseke
and Goldberg [16], Jarrow and Protter [21], and others. In our approach,
no attempt is made as such to bridge the gap between the structural and
the intensity-based models; rather, by abandoning the need for the intensity-
based approach, we are able to formulate a class of reduced-form models that
exhibit a high degree of intuitively natural behaviour and analytic tractability.
Our approach is to build an economic model for the information that market
participants have about future cash flows.

For simplicity, we assume that the underlying default-free interest rate
system is deterministic. The cash flows of the debt obligation—in the case
of a coupon bond, the coupon payments and the principal repayment—are
modelled by a collection of random variables, and default is identified as the
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event of the first such payment that fails to achieve the terms specified in the
contract. We assume that partial information about each such cash flow is
available at earlier times to market participants; however, the information of
the actual value of the payout is obscured by a Gaussian noise process that is
conditioned to vanish once the time of the required cash flow is reached. We
proceed under these assumptions to derive an exact expression for the bond
price process.

In the case of a defaultable discount bond admitting two possible payouts
(either the full principal, or some partial recovery payment), we derive an
exact expression for the value of an option on the bond. Remarkably, this
turns out to be a formula of the Black–Scholes–Merton type. In particular,
the parameter σ that governs the rate at which the true value of the impending
cash flow is revealed to market participants, against the background of the
obscuring noise process, turns out to play the role of a volatility parameter in
the associated option pricing formula; this interpretation is reinforced with the
observation that the option price is an increasing function of this parameter.

The structure of the paper is as follows. In Section 2, we introduce the
notion of an ‘information process’ as a mechanism for modelling the market
filtration. In the case of a credit-risky discount bond, the information process
carries partial information about the terminal payoff, and it is assumed that
the market filtration is generated by this process. The price process of the
bond is obtained by taking the conditional expectation of the payout, and
the properties of the resulting formula are analysed in the case of a binary
payout. In Section 3, these results are extended to the situation of a defaultable
discount bond with stochastic recovery, and a proof is given for the Markov
property of the information process. In Section 4, we work out the dynamics
of the price of a defaultable bond, and we show that the bond price process
satisfies a diffusion equation. An explicit construction is presented for the
Brownian motion that drives this process. This is given in Equation (20).
We also work out an expression for the volatility of the bond price, given in
Equation (28). In Section 5, we simulate the resulting price processes and show
that for suitable values of the information flow-rate parameter introduced in
Equation (4) the default of a credit-risky discount bond occurs in effect as a
‘surprise.’ In Section 6, we establish a decomposition formula similar to that
obtained by Lando [28] in the case of a bond with partial recovery. In Section 7,
we show that the framework has a general ‘dynamical consistency’ property.
This has important implications for applications of the resulting models. In
deriving these results we make use of special orthogonality properties of the
Brownian bridge process (see, e.g., Yor [36; 37]). In Sections 8 and 9, we
consider options on defaultable bonds and work out explicit formulae for the
price processes of such options. In doing so, we introduce a novel change-of-
measure technique that enables us to calculate explicitly various expectations
involving Brownian bridge processes. This technique is of some interest in its
own right. One of the consequences of the fact that the bond price process is a
diffusion in this framework is that explicit formulae can be worked out for the
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delta-hedging of option positions. In Section 10, we extend the general theory
to the situation where there are multiple cash flows. We look in particular
at the case of a coupon bond and derive an explicit formula for the price
process of such a bond. In Sections 11, 12 and 13, we consider complex debt
instruments, and construct appropriate information-based valuation formulae
for credit default swaps (CDSs) and portfolios of credit-risky instruments.

2 The Information-Based Approach

The object of this paper is to build an elementary modelling framework in
which matters related to credit are brought to the forefront. Accordingly, we
assume that the background default-free interest-rate system is deterministic:
this assumption allows us to focus attention on credit-related issues; it also
permits us to derive explicit expressions for certain types of credit derivative
prices. The general philosophy is that we should try to sort out credit-related
matters first, before attempting to incorporate a stochastic default-free system
of interest rates.

As a further simplifying feature we take the view that default events are
directly linked with anomalous cash flows. Thus default is not something that
happens ‘in the abstract,’ but rather is associated with the failure of an agreed
cash flow to materialise at the required time. In this way we improve the theory
by eradicating the superfluous use of inaccessible stopping times.

Our theory is based on modelling the flow of partial information to market
participants about impending debt payments. As usual, we model the financial
markets with the specification of a probability space (Ω,F , Q) with filtration
{Ft}0≤t<∞. The probability measure Q is understood to be the risk-neutral
measure, and {Ft} is understood to be the market filtration. All asset-price
processes and other information-providing processes accessible to market par-
ticipants are adapted to {Ft}. Contrary to the usual practice, we shall model
{Ft} explicitly, rather than simply regarding it as being given.

The real probability measure does not enter into the present investigation.
We assume the absence of arbitrage and the existence of a pricing kernel
(cf. Cochrane [8], and references cited therein). With these conditions the
existence of a unique risk-neutral measure is ensured, even though the market
may be incomplete. We assume further that the default-free discount-bond
system, denoted {PtT }0≤t≤T<∞, can be written in the form PtT = P0T /P0t,
where the function {P0t}0≤t<∞ is differentiable and strictly decreasing, and
satisfies 0 < P0t ≤ 1 and limt→∞ P0t = 0. Under these assumptions it follows
that if the integrable random variable HT represents a cash flow occurring at
T , then its value Ht at any earlier time t is given by

Ht = PtTE [HT |Ft] . (1)

Now let us consider, as a first example, the case of a simple credit-risky
discount bond that matures at time T to pay a principal of h1 dollars, if there
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is no default. In the event of default, the bond pays h0 dollars, where h0 < h1.
When two such payoffs are possible we call the resulting structure a ‘binary’
discount bond. In the case given by h1 = 1 and h0 = 0 we call the resulting
defaultable debt obligation a ‘digital’ bond.

Let us write p0 for the probability that the bond will pay h0, and p1 for
the probability that the bond will pay h1. The probabilities are risk-neutral,
and hence build in any risk adjustments required in expectations needed in
order to deduce prices. Thus if we write B0T for the price at time 0 of the
credit-risky discount bond we have

B0T = P0T (p0h0 + p1h1). (2)

It follows that, providing we know the market data B0T and P0T , we can infer
the a priori probabilities p0 and p1:

p0 =
1

h1 − h0

(
h1 −

B0T

P0T

)
, p1 =

1
h1 − h0

(
B0T

P0T
− h0

)
. (3)

Given this setup we proceed to model the bond-price process {BtT }0≤t≤T .
We suppose that the true value of HT is not fully accessible until time T ;
that is, we assume HT is FT -measurable, but not Ft-measurable for t < T .
We assume, nevertheless, that partial information regarding the value of the
principal repayment HT is available at earlier times. This information will
in general be imperfect; one is looking into a crystal ball, so to speak, but
the image is cloudy. Our model for such cloudy information is of a simple
type that allows for analytic tractability. More precisely, we assume that the
following {Ft}-adapted process is accessible to market participants:

ξt = σHT t + βtT . (4)

We call {ξt} a market information process. The process {βtT }0≤t≤T appearing
here is a standard Brownian bridge on the time interval [0, T ]. Thus {βtT } is
a Gaussian process satisfying β0T = 0 and βTT = 0, such that E[βtT ] = 0 and
E [βsTβtT ] = s(T − t)/T for all s, t satisfying 0 ≤ s ≤ t ≤ T . We assume that
{βtT } is independent of HT , and thus represents pure noise. Market partici-
pants do not have direct access to {βtT }; that is to say, {βtT } is not assumed
to be adapted to {Ft}. We can think of {βtT } as representing the rumour,
speculation, misrepresentation, overreaction, and general disinformation often
occurring, in one form or another, in connection with financial activity.

Clearly the choice (4) can be generalised to include a wider class of models
enjoying similar qualitative features. The present analysis sticks with (4) for
the sake of definiteness and tractability. Indeed, the choice of {ξt} defined by
(4) has many attractive features, and can be regarded as a convenient ‘stan-
dard’ model for an information process. The motivation for the use of a bridge
process to represent the noise is intuitively as follows. We assume that initially
all available market information is taken into account in the determination of
the price; in the case of a credit-risky discount bond, the relevant information
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is embodied in the a priori probabilities. After the passage of time, new ru-
mours and stories start circulating, and we model this by taking into account
that the variance of the Brownian bridge steadily increases for the first half of
its trajectory. Eventually, however, the variance falls to zero at the maturity
of the bond, when the ‘moment of truth’ arrives.

The parameter σ in this model represents the rate at which the true value
of HT is ‘revealed’ as time progresses. Thus, if σ is low, then the value of HT

is effectively hidden until very near the maturity date of the bond; on the
other hand, if σ is high, then we can think of HT as being revealed quickly.
The parameter σ has the units σ ∼ [time]−1/2[price]−1. A rough measure for
the timescale τD over which information is revealed is τD = 1/σ2(h1 − h0)2.
In particular, if τD � T , then the value of HT will be revealed rather early in
the history of the bond, for example, after the passage of a few multiples of
τD. In this situation, if default is ‘destined’ to occur, even though the initial
value of the bond is high, then this will be signalled by a rapid decline in the
bond price. On the other hand, if τD � T , then HT will only be revealed at
the last minute, so to speak, and the default will come as a surprise. It is by
virtue of this feature of the framework that the use of inaccessible stopping
times can be avoided.

To make a closer inspection of the default timescale, we proceed as follows.
For simplicity, we assume that the only market information available about
HT at times earlier than T comes from observations of {ξt}. Specifically, if we
denote Fξ

t the subalgebra of Ft generated by {ξs}0≤s≤t, then our simplifying
assumption is that {Ft} = {Fξ

t }. That is to say, we assume that the market
filtration is generated by the information process.

Now we are in a position to determine the price-process {BtT }0≤t≤T for a
credit-risky bond with payout HT . In particular, the bond price is given by

BtT = PtTHtT , (5)

where HtT denotes the conditional expectation of the bond payout:

HtT = E
[
HT

∣∣∣Fξ
t

]
. (6)

It turns out that this conditional expectation can be worked out explicitly.
The result is given by the following expression:

HtT =
p0h0exp

[
T
T−t
(
σh0ξt− 1

2σ
2h2

0t
)]

+ p1h1exp
[

T
T−t
(
σh1ξt− 1

2σ
2h2

1t
)]

p0exp
[

T
T−t
(
σh0ξt− 1

2σ
2h2

0t
)]

+ p1exp
[

T
T−t
(
σh1ξt− 1

2σ
2h2

1t
)] . (7)

Thus we see that there exists a function H(x, y) of two variables such that
HtT = H(ξt, t), and as a consequence that the bond price can be expressed
as a function of the market information.

Because {ξt} is given by a combination of the random bond payout and
an independent Brownian bridge, it is straightforward to simulate trajectories
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for {BtT}. The bond price trajectories rise and fall randomly in line with
the fluctuating information about the likely final payoff: in this respect, the
resulting model is more satisfactory than an intensity-based model, where
the only basis for shifts in credit spreads is through a random change in the
default intensity.

The details of the derivation of the formula presented above are given
in the next section. First, however, let us verify that the expression in (7)
converges, as t approaches T , to the ‘actual’ value of HT . The proof is as
follows. Suppose that the actual value of the payout is HT = h0. In that case
the information process takes the form

ξt = σh0t+ βtT (8)

Inserting this expression into (7), we divide the numerator and the denomi-
nator by the coefficient of p0h0. As a consequence we obtain

HtT =
p0h0 + p1h1exp

[
− T
T−t
(

1
2σ

2(h1 − h0)2t− σ(h1 − h0)βtT
)]

p0 + p1exp
[
− T
T−t
(

1
2σ

2(h1 − h0)2t− σ(h1 − h0)βtT
)] . (9)

We observe that as t approaches T the bond price converges to h0, as required.
A similar argument shows that if HT = h1, then the bond price converges to
h1. We note, in line with our heuristic arguments concerning the characteristic
timescale τD, that the parameter σ2(h1−h0)2 governs the speed at which HtT

converges to its terminal value. In particular, if the a priori probability of no
default is high (say, p1 ≈ 1), and if σ is very small, and if in fact HT = h0,
then it will only be when t is near T that serious decay in the bond price will
set in.

3 Defaultable Discount Bond Price Processes

Let us now consider the more general situation where the discount bond pays
the value HT = hi (i = 0, 1, . . . , n) with a priori probability Q(HT = hi) = pi.
For convenience we assume hn > hn−1 > · · · > h1 > h0. The case n =
1 corresponds to the binary bond we have just considered. In the general
situation we think of HT = hn as the case of no default, and the other cases
as various possible degrees of recovery.

Although for simplicity we work with a discrete payout spectrum for HT ,
the continuous case can be formulated analogously. In that situation we assign
a fixed a priori probability p1 to the case of no default, and a continuous
probability distribution function p0(x) = Q(HT < x) for values of x less than
or equal to h, satisfying p1 + p0(h) = 1.

Now defining the information process {ξt} as before, we want to find the
conditional expectation (6). It follows from the Markovian property of {ξt},
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which is established below, that to compute (6), it suffices to take the con-
ditional expectation of HT with respect to the subalgebra generated by the
random variable ξt alone. Therefore, writing HtT = E[HT |ξt] we have

HtT =
∑

i

hiπit, (10)

where πit = Q(HT = hi|ξt) is the conditional probability that the credit-risky
bond pays out hi. That is to say, πit = E[1{HT =hi}|ξt].

To show that the information process satisfies the Markov property, we
need to verify that

Q(ξt ≤ x|Fξ
s ) = Q(ξt ≤ x|ξs) (11)

for all x ∈ R and all s, t such that 0 ≤ s ≤ t ≤ T . It suffices to show that

Q (ξt ≤ x|ξs, ξs1 , ξs2 , . . . , ξsk
) = Q (ξt ≤ x|ξs) (12)

for any collection of times t, s, s1, s2, . . . , sk such that T ≥ t > s > s1 > s2 >
· · · > sk > 0. First, we remark that for any times t, s, s1 satisfying t > s >
s1 the Gaussian random variables βtT and βsT /s − βs1T /s1 have vanishing
covariance, and thus are independent. More generally, for s > s1 > s2 > s3
the random variables βsT /s−βs1T /s1 and βs2T /s2−βs3T /s3 are independent.
Next, we note that ξs/s− ξs1/s1 = βsT /s− βs1T /s1. It follows that

Q (ξt ≤ x|ξs, ξs1 , ξs2 , . . . , ξsk
)

= Q

(
ξt ≤ x

∣∣∣ξs,
ξs
s

− ξs1
s1

,
ξs1
s1

− ξs2
s2

, . . . ,
ξsk−1

sk−1
− ξsk

sk

)

= Q

(
ξt ≤ x

∣∣∣ξs,
βsT
s

− βs1T
s1

,
βs1T
s1

− βs2T
s2

, . . . ,
βsk−1T

sk−1
− βskT

sk

)
. (13)

However, because ξs and ξt are independent of the remaining random variables
βsT /s− βs1T /s1, βs1T /s1 − βs2T /s2, . . . , βsk−1T /sk−1 − βskT /sk, the desired
Markov property follows immediately.

Next we observe that the a priori probability pi and the a posteriori prob-
ability πit are related by the following version of the Bayes formula:

Q(HT = hi|ξt) =
piρ(ξt|HT = hi)∑
i piρ(ξt|HT = hi)

. (14)

Here the conditional density function ρ(ξ|HT = hi), ξ ∈ R, for the random
variable ξt is defined by the relation

Q (ξt ≤ x|HT = hi) =
∫ x

−∞
ρ(ξ|HT = hi) dξ, (15)
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and is given explicitly by

ρ(ξ|HT = hi) =
1√

2πt(T − t)/T
exp
(
− 1

2

(ξ − σhit)2

t(T − t)/T

)
. (16)

This expression can be deduced from the fact that conditional on HT = hi
the random variable ξt is normally distributed with mean σhit and variance
t(T − t)/T . As a consequence of (14) and (16), we see that

πit =
piexp
[
T
T−t (σhiξt −

1
2σ

2h2
i t)
]

∑
i piexp

[
T
T−t (σhiξt −

1
2σ

2h2
i t)
] . (17)

It follows then, on account of (10), that

HtT =

∑
i pihiexp

[
T
T−t
(
σhiξt − 1

2σ
2h2
i t
)]

∑
i piexp

[
T
T−t
(
σhiξt − 1

2σ
2h2
i t
)] . (18)

This is the desired expression for the conditional expectation of the bond
payoff. In particular, for the binary case i = 0, 1 we recover formula (7). The
discount-bond price BtT is then given by (5), with HtT defined as in (18).

4 Defaultable Discount Bond Dynamics

In this section we analyse the dynamics of the defaultable bond price process
{BtT } determined in Section 3. The key relation we need for working out the
dynamics of the bond price is that the conditional probability {πit} satisfies
a diffusion equation of the form

dπit =
σT

T − t
(hi −HtT )πit dWt. (19)

In particular, we can show that the process {Wt}0≤t<T arising here, defined
by the expression

Wt = ξt +
∫ t

0

1
T − s

ξs ds− σT

∫ t

0

1
T − s

HsT ds, (20)

is an {Ft}-Brownian motion. The fact that {πit} satisfies (19) with {Wt}
defined as in (20) can be obtained directly from (17) by an application of
Itô’s lemma. We need to use the relation (dξt)2 = dt, which follows from
the relation (dβtT )2 = dt. The fact that {Wt} is an {Ft}-Brownian motion
can then be verified by showing that {Wt} is an {Ft}-martingale and that
(dWt)2 = dt. We proceed as follows.

To prove that {Wt} is an {Ft}-martingale, we need to show that E[Wu|Ft] =
Wt for 0 ≤ t ≤ u < T . First we note that it follows from (20) and the Markov
property of {ξt} that
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E[Wu|Ft] = Wt + E [(ξu − ξt)|ξt] + E

[∫ u

t

1
T − s

ξs ds

∣∣∣∣ξt
]

− σT E

[∫ u

t

1
T − s

HsT ds

∣∣∣∣ξt
]
. (21)

Formula (21) can be simplified if we recall that HsT = E[HT |ξs] and use the
tower property in the last term on the right. Inserting the definition (4) into
the second and third terms on the right in (21), we then have:

E[Wu|Ft] = Wt + E[σHTu+ βuT |ξt] − E[σHT t+ βtT |ξt]

+ σE[HT |ξt]
∫ u

t

s

T − s
ds + E

[∫ u

t

1
T − s

βsT ds

∣∣∣∣ξt
]

− σE[HT |ξt]
∫ u

t

T

T − s
ds. (22)

It follows immediately that all of the terms involving the random variable HT

cancel each other in (22). This leads us to the following relation:

E[Wu|Ft] = Wt + E[βuT |ξt] − E[βtT |ξt] +
∫ u

t

1
T − s

E[βsT |ξt] ds. (23)

Next we use the tower property and the independence of {βtT } and HT to
deduce that

E[βuT |ξt] = E[E[βuT |HT , βtT ]|ξt] = E[E [βuT |βtT ]|ξt] . (24)

To calculate the inner expectation E[βuT |βtT ], we use the fact that the random
variable βuT /(T −u)−βtT /(T − t) is independent of the random variable βtT .
This can be established by calculating their covariance, and using the relation
E[βuTβtT ] = t(T − u)/T . We conclude after a short calculation that

E[βuT |βtT ] =
T − u

T − t
βtT . (25)

Inserting this result into (24), we obtain the following formula:

E[βuT |ξt] =
T − u

T − t
E[βtT |ξt]. (26)

Applying this formula to the second and fourth terms on the right side of (23),
we immediately deduce that E[Wu|Ft] = Wt. That establishes that {Wt} is
an {Ft}-martingale. Now we need to show that (dWt)2 = dt. This follows if
we insert (4) into the definition of {Wt} above and use again the fact that
(dβtT )2 = dt. Hence, by virtue of Lévy’s criterion (see, e.g., Karatzas and
Shreve [26]), we conclude that {Wt} is an {Ft}-Brownian motion.

The Brownian motion {Wt}, the existence of which we have just estab-
lished, can be regarded as part of the information accessible to market par-
ticipants. Unlike βtT , the value of Wt contains ‘real’ information relevant to
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the bond payoff. It follows from (10) and (19) that for the discount bond
dynamics, we have

dBtT = rtBtT dt +ΣtT dWt. (27)

Here rt = −∂ lnP0t/∂t is the short rate, and the absolute bond volatility ΣtT
is given by

ΣtT =
σT

T − t
PtTVtT , (28)

where VtT is the conditional variance of the terminal payoff HT , defined by

VtT =
∑

i

(hi −HtT )2πit. (29)

We observe that as the maturity date is approached the absolute discount
bond volatility will be high unless the conditional probability has most of its
mass concentrated around the ‘true’ outcome; this ensures that the correct
level can be eventually reached.

It follows as a consequence of (20) that {ξt} satisfies the following stochas-
tic differential equation:

dξt =
1

T − t

(
σTH(ξt, t) − ξt

)
dt + dWt. (30)

We see that {ξt} is a diffusion process; and because H(ξt, t) is monotonic in
its dependence on ξt, we deduce that {BtT } is also a diffusion process. To
establish that BtT is increasing in ξt, we note that PtTH ′(ξt, t) = ΣtT , where
H ′(ξ, t) = ∂H(ξ, t)/∂ξ. It is interesting to observe that, in principle, instead
of ‘deducing’ the dynamics of {BtT} from the information-based arguments of
the previous sections, we might have simply ‘proposed’ on an ad hoc basis the
one-factor diffusion process (30), noting that it leads to the correct default
dynamics. This reasoning shows that our framework can be viewed, if desired,
as leading to purely ‘classical’ financial models, based on observable price
processes.

5 Simulation of Bond Price Processes

The present framework allows for a highly efficient simulation methodology
for the dynamics of defaultable bonds. In the case of a defaultable discount
bond, all we need to do is to simulate the dynamics of {ξt}. For each run of
the simulation, we choose at random a value for HT (in accordance with the
a priori probabilities), and a sample path for the Brownian bridge. That is
to say, each simulation corresponds to a choice of ω ∈ Ω, and for each such
choice we simulate the path ξt(ω) = σtHT (ω)+βtT (ω) for t ∈ [0, T ]. One way
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to simulate a Brownian bridge is to write βtT = Bt − (t/T )BT , where {Bt}
is a standard Brownian motion. It is straightforward to verify that if {βtT } is
defined in this way then it has the correct mean and covariance. Because the
bond price at t is expressed directly as a function of the random variable ξt,
this means that pathwise simulation of the bond price trajectory is feasible
for any number of recovery levels.

In Figure 1 we present some sample trajectories of the defaultable bond
price process for various values of σ. These illustrations are fascinating inas-
much as they show that for small values of σ the default comes almost as a
‘surprise’ near the maturity date of the bond; whereas for large values of σ
the default, if it occurs, effectively takes place early in the life of bond.

6 Digital Bonds and Binary Bonds with Partial Recovery

It is interesting to ask whether in the case of a binary bond with partial
recovery, with possible payoffs {h0, h1}, the bond-price process admits the
representation

BtT = PtTh0 +DtT (h1 − h0). (31)

Here DtT denotes the value of a digital credit-risky bond that at maturity pays
a unit of currency with probability p1 and zero with probability p0 = 1 − p1.
Thus h0 is the amount that is guaranteed, whereas h1 − h0 is the part that
is ‘at risk.’ It is well known that such a relation can be deduced in intensity-
based models. The problem now is to find a process {DtT} consistent with
our scheme such that (31) holds. It turns out that this can be achieved.

Suppose we consider a digital payoff structure DT ∈ {0, 1} for which the
information-flow parameter σ is replaced by σ̄ = σ(h1 − h0). In other words,
in establishing the appropriate dynamics for {DtT } we ‘renormalise’ σ by
replacing it with σ̄. The information available to market participants in the
case of the digital bond is represented by the process {ξ̄t} defined by

ξ̄t = σ̄DT t + βtT . (32)

It follows from (18) that the corresponding digital bond price is given by

DtT = PtT
p1exp
[

T
T−t
(
σ̄ξ̄t − 1

2 σ̄
2t
)]

p0 + p1exp
[
T
T−t
(
σ̄ξ̄t − 1

2 σ̄
2t
)] . (33)

A calculation making use of (7) then allows us to confirm that (31) holds,
where DtT is given by (33). Thus even though prima facie the general bi-
nary bond process (7) does not appear to admit a decomposition of the form
(31), we see that it does, once a suitably renormalised value for the market
information flow-rate parameter has been introduced.
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Fig. 1. Bond price processes for various information flow rates. The parameter σ
governs the rate at which information is released to market participants concerning
the payout of a defaultable discount bond. Four values of σ are illustrated, given by
.04, .2, 1, and 5. The bond has a maturity of five years, and the default-free interest-
rate system has a constant short rate given by r = 5%. The a priori probability
of default is taken to be 20%. For low values of σ, collapse of the bond price, if it
occurs, takes place only ‘at the last minute.’

More generally, if the bond has a number of recovery levels, so the random
variable HT can take the values {h0, h1, . . . , hn}, then h0 can be regarded
as the ‘risk-free’ component of the bond. The bond price process admits an
additive decomposition into two parts, namely, a default-free discount bond
that pays h0, and a credit-risky discount bond that pays h̄i = hi − h0 with a
priori probability pi. This decomposition is given by

BtT = PtTh0 + PtT

n∑
i=1

pih̄iexp
[

T
T−t
(
σh̄iξ̄t − 1

2σ
2h̄2
i t
)]

p0 +
n∑
i=1

piexp
[

T
T−t
(
σh̄iξ̄t − 1

2σ
2h̄2
i t
)] , (34)

where ξ̄t = σ(HT − h0)t + βtT is the resulting price-shifted information
process. Note that h̄0 = 0, which makes the summation in the numerator
begin from i = 1; thus the second term in the right-hand side of (34) is the
multiple-recovery-level analogue of formula (33) above.
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7 Dynamic Consistency and Model Calibration

The technique of renormalising the information flow rate has another useful
application. It turns out that the information-based framework exhibits a
property that might appropriately be called ‘dynamic consistency.’ Loosely
speaking, the question is: if the information process is given as described, but
then we reinitialise the model at some specified intermediate time, is it still the
case that the dynamics of the model moving forward from that intermediate
time can be consistently represented by an information process?

To answer this question we proceed as follows. First we define a standard
Brownian bridge over the interval [t, T ] to be a Gaussian process {γuT }t≤u≤T
satisfying γtT = 0, γTT = 0, E[γuT ] = 0 for all u ∈ [t, T ], and E[γuTγvT ] =
(u − t)(T − v)/(T − t) for all u, v such that t ≤ u ≤ v ≤ T . We make note of
the following observation.

Let {βtT }0≤t≤T be a standard Brownian bridge over the interval [0, T ], and
define the process {γuT }t≤u≤T by

γuT = βuT − T − u

T − t
βtT . (35)

Then {γuT }t≤u≤T is a standard Brownian bridge over the interval [t, T ], and
is independent of {βsT }0≤s≤t.

The result is easily proved by use of the covariance relation E[βtTβuT ] =
t(T −u)/T . We need to recall also that a necessary and sufficient condition for
a pair of Gaussian random variables to be independent is that their covariance
should vanish. Now let the information process {ξs}0≤s≤T be given, and fix
an intermediate time t ∈ (0, T ). Then for all u ∈ [t, T ], let us define a process
{ηu} by

ηu = ξu −
T − u

T − t
ξt. (36)

We claim that {ηu} is an information process over the time interval [t, T ]. In
fact, a short calculation establishes that

ηu = σ̃HT (u− t) + γuT , (37)

where {γuT }t≤u≤T is a standard Brownian bridge over the interval [t, T ], inde-
pendent of HT , and the new information flow rate is given by σ̃ = σT/(T − t).
The interpretation of these results is as follows. The ‘original’ information pro-
cess proceeds from time 0 up to time t. At that time we can recalibrate the
model by taking note of the value of the random variable ξt, and introducing
the reinitialised information process {ηu}. The new information process de-
pends on HT ; but because the value of ξt is supplied, the a priori probability
distribution for HT now changes to the appropriate a posteriori distribution
consistent with the information gained from the knowledge of ξt at time t.
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These interpretive remarks can be put into a more precise form as follows.
Let 0 ≤ t ≤ u < T . What we want is a formula for the conditional probability
πiu expressed in terms of the information ηu and the ‘new’ a priori probability
πit. Such a formula exists, and is given as follows:

πiu =
πitexp

[
T−t
T−u
(
σ̃hiηu − 1

2 σ̃
2h2
i (u− t)

)]

∑
i πitexp

[
T−t
T−u
(
σ̃hiηu − 1

2 σ̃
2h2
i (u − t)

)] . (38)

This remarkable relation can be verified by substituting the given expressions
for πit, ηu, and σ̃ into the right-hand side of (38). But (38) has the same
structure as the original formula (17) for πit, and thus we see that the model
exhibits manifest dynamic consistency.

8 Options on Credit-Risky Bonds

We now turn to consider the pricing of options on credit-risky bonds. As we
demonstrate shortly, in the case of a binary bond there is an exact solution
for the valuation of European-style vanilla options. The resulting expression
for the option price exhibits a structure that is strikingly analogous to that
of the Black–Scholes–Merton option pricing formula.

We consider the value at time 0 of an option that is exercisable at a fixed
time t > 0 on a credit-risky discount bond that matures at time T > t. The
value C0 of a call option is

C0 = P0tE
[
(BtT −K)+

]
, (39)

where K is the strike price. Inserting formula (5) for BtT into the valuation
formula (39) for the option, we obtain

C0 = P0tE
[
(PtTHtT −K)+

]

= P0tE

⎡

⎣
(

n∑

i=0

PtTπithi −K

)+
⎤

⎦

= P0tE

⎡

⎣
(

1
Φt

n∑

i=0

PtT pithi −K

)+
⎤

⎦

= P0tE

⎡

⎣ 1
Φt

(
n∑

i=0

(
PtThi −K

)
pit

)+
⎤

⎦ . (40)

Here the random variables pit, i = 0, 1, . . . , n, are the ‘unnormalised’ condi-
tional probabilities, defined by

pit = piexp
[

T

T − t

(
σhiξt − 1

2σ
2h2
i t
)]

. (41)
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Then πit = pit/Φt where Φt =
∑

i pit, or, more explicitly,

Φt =
n∑

i=0

piexp
[

T

T − t

(
σhiξt − 1

2σ
2h2
i t
)]

. (42)

Our plan now is to use the factor 1/Φt appearing in (40) to make a change
of probability measure on (Ω,Ft). To this end, we fix a time horizon u at or
beyond the option expiration but before the bond maturity, so t ≤ u < T . We
define a process {Φt}0≤t≤u by use of the expression (42), where now we let t
vary in the range [0, u]. It is a straightforward exercise in Itô calculus, making
use of (30), to verify that

dΦt = σ2

(
T

T − t

)2

H2
tTΦt dt + σ

T

T − t
HtTΦt dWt. (43)

It follows then that

dΦ−1
t = −σ T

T − t
HtTΦ

−1
t dWt, (44)

and hence that

Φ−1
t = exp

(
−σ
∫ t

0

T

T − s
HsT dWs − 1

2σ
2

∫ t

0

T 2

(T − s)2
H2
sT ds

)
. (45)

Because {HsT } is bounded, and s ≤ u < T , we see that the process
{Φ−1

s }0≤s≤u is a martingale. In particular, because Φ0 = 1, we deduce that
EQ[Φ−1

t ] = 1, where t is the option maturity date, and hence that the factor
1/Φt in (40) can be used to effect a change of measure on (Ω,Ft). Writing B
for the new probability measure thus defined, we have

C0 = P0t E
B

⎡

⎣
(

n∑

i=0

(
PtThi −K

)
pit

)+
⎤

⎦ . (46)

We call B the ‘bridge’ measure because it has the special property that
it makes {ξs}0≤s≤t a B-Gaussian process with mean zero and covariance
EB[ξrξs] = r(T − s)/T for 0 ≤ r ≤ s ≤ t. In other words, with respect
to the measure B, and over the interval [0, t], the information process has the
law of a standard Brownian bridge over the interval [0, T ]. Armed with this
fact, we proceed to calculate the expectation in (46).

The proof that {ξs}0≤s≤t has the claimed properties under the measure
B is as follows. For convenience we introduce a process {W ∗

t }0≤t≤u which we
define as the following Brownian motion with drift in the Q-measure:

W ∗
t = Wt + σ

∫ t

0

T

T − s
HsT ds. (47)
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It is straightforward to check that on (Ω,Ft) the process {W ∗
t }0≤t≤u is a

Brownian motion with respect to the measure defined by use of the density
martingale {Φ−1

t }0≤t≤u given by (45). It then follows from the definition of
{Wt}, given in (20), that

W ∗
t = ξt +

∫ t

0

1
T − s

ξs ds. (48)

Taking the stochastic differential of each side of this relation, we deduce that

dξt = − 1
T − t

ξt dt+ dW ∗
t . (49)

We note, however, that (49) is the stochastic differential equation satisfied by
a Brownian bridge (see, e.g., Karatzas and Shreve [26], Yor [37], and Protter
[34]) over the interval [0, T ]. Thus we see that in the measure B defined on
(Ω,Ft), the process {ξs}0≤s≤t has the properties of a standard Brownian
bridge over [0, T ], albeit restricted to the interval [0, t].

For the transformation back from B to Q on (Ω,Ft), the appropriate
density martingale {Φt}0≤t≤u with respect to B is given by

Φt = exp
(
σ

∫ t

0

T

T − s
HsT dW

∗
s − 1

2σ
2

∫ t

0

T 2

(T − s)2
H2
sT ds

)
. (50)

The crucial point that follows from this analysis is that the random variable
ξt is B-Gaussian. In the case of a binary discount bond, therefore, the relevant
expectation for determining the option price can be carried out by standard
techniques, and we are led to a formula of the Black–Scholes–Merton type. In
particular, for a binary bond, (46) reads

C0 = P0tE
B

[(
(PtTh1 −K)p1t + (PtTh0 −K)p0t

)+]
, (51)

where p0t and p1t are given by

p0t = p0exp
[

T
T−t
(
σh0ξt − 1

2σ
2h2

0t
)]
,

p1t = p1exp
[

T
T−t
(
σh1ξt − 1

2σ
2h2

1t
)]
.

(52)

To compute the value of (51), there are essentially three different cases that
have to be considered: (i) PtTh1 > PtTh0 > K, (ii) K > PtTh1 > PtTh0, and
(iii) PtTh1 > K > PtTh0. In case (i) the option is certain to expire in the
money. Thus, making use of the fact that ξt is B-Gaussian with mean zero
and variance t(T − t)/T , we see that EB[pit] = pi; hence in case (i) we have
C0 = B0T − P0tK. In case (ii) the option expires out of the money, and thus
C0 = 0. In case (iii) the option can expire in or out of the money, and there
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is a ‘critical’ value of ξt above which the argument of (51) is positive. This is
obtained by setting the argument of (51) to zero and solving for ξt. Writing
ξ̄t for the critical value, we find that ξ̄t is determined by the relation

T

T − t
σ(h1 − h0)ξ̄t = ln

[
p0(PtTh0 −K)
p1(K − PtTh1)

]
+ 1

2σ
2(h2

1 − h2
0)τ, (53)

where τ = tT/(T − t). Next we note that inasmuch as ξt is B-Gaussian
with mean zero and variance t(T − t)/T , for the purpose of computing the
expectation in (51) we can set ξt = Z

√
t(T − t)/T , where Z is B-Gaussian

with zero mean and unit variance. Then writing Z̄ for the corresponding
critical value of Z, we obtain

Z̄ =
ln
[
p0(PtTh0−K)
p1(K−PtTh1)

]
+ 1

2σ
2(h2

1 − h2
0)τ

σ
√
τ (h1 − h0)

. (54)

With this expression at hand, we can work out the expectation in (51). We
are thus led to the following option pricing formula:

C0 = P0t

[
p1(PtTh1 −K)N(d+) − p0(K − PtTh0)N(d−)

]
. (55)

Here d+ and d− are defined by

d± =
ln
[
p1(PtT h1−K)
p0(K−PtT h0)

]
± 1

2σ
2(h1 − h0)2τ

σ
√
τ (h1 − h0)

. (56)

A short calculation shows that the corresponding option delta, defined by
Δ = ∂C0/∂B0T , is given by

Δ =
(PtTh1 −K)N(d+) + (K − PtTh0)N(d−)

PtT (h1 − h0)
. (57)

This can be verified by using (3) to determine the dependency of the option
price C0 on the initial bond price B0T .

It is interesting to note that the parameter σ plays a role like that of the
volatility parameter in the Black–Scholes–Merton model. The more rapidly
information is ‘leaked out’ about the true value of the bond repayment, the
higher the volatility. It is straightforward to verify that the option price has
a positive vega, that is, C0 is an increasing function of σ. This means that we
can use bond option prices (or, equivalently, caps and floors) to back out an
implied value for σ, and hence to calibrate the model. Writing V = ∂C0/∂σ
for the corresponding option vega, we obtain the following positive expression:

V =
1√
2π

e−rt−(1/2)A(h1 − h0)
√
τp0p1(PtTh1 −K)(K − PtTh0), (58)
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where

A =
1

σ2τ(h1 − h0)2

(
ln
[
p1(PtTh1 −K)
p0(K − PtTh0)

])2

+ 1
4σ

2τ(h1 − h0)2. (59)

We remark that in the more general case of a stochastic recovery, a semi-
analytic option pricing formula can be obtained that, for practical purposes,
can be regarded as fully tractable. In particular, starting from (46), we con-
sider the case where the strike price K lies in the range PtThk+1 > K > PtThk
for some value of k ∈ {0, 1, . . . , n}. It is an exercise to verify that there exists a
unique critical value of ξt such that the summation appearing in the argument
of the max(x, 0) function in (46) vanishes. Writing ξ̄t for the critical value,
which can be obtained by numerical methods, we define the scaled critical
value Z̄ as before, by setting ξ̄t = Z̄

√
t(T − t)/T . A calculation then shows

that the option price is given by the following expression:

C0 = P0t

n∑

i=0

pi (PtThi −K) N(σhi
√
τ − Z̄). (60)

9 Bond Option Price Processes

In the previous section we obtained the initial value C0 of an option on a
binary credit-risky bond. In the present section we determine the price process
{Cs}0≤s≤t of such an option. We fix the bond maturity T and the option
maturity t. Then the price Cs of a call option at time s ≤ t is given by

Cs = Pst E
[
(BtT −K)+|Fs

]

=
Pst
Φs

EB
[
Φt(BtT −K)+|Fs

]

=
Pst
Φs

EB

⎡

⎣
(

n∑

i=0

(
PtThi −K

)
pit

)+
∣∣∣∣∣∣
Fs

⎤

⎦ . (61)

We recall that pit, defined in (41), is a function of ξt. The calculation can thus
be simplified by use of the fact that {ξt} is a B-Brownian bridge. To determine
the conditional expectation (61) we note that the B-Gaussian random variable
Zst defined by

Zst =
ξt

T − t
− ξs
T − s

(62)

is independent of {ξu}0≤u≤s. We can then express {pit} in terms of ξs and
Zst by writing

pit = piexp
[

T

T − s
σhiTξs − 1

2

T

T − t
σ2h2

i t + σhiZstT

]
. (63)
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Substituting (63) into (61), we find that Cs can be calculated by taking an
expectation involving the random variable Zst, which has mean zero and vari-
ance v2

st, given by

v2
st =

t− s

(T − t)(T − s)
. (64)

In the case of a call option on a binary discount bond that pays h0 or h1,
we can obtain a closed-form expression for (61). In that case the option price
is given as follows:

Cs =
Pst
Φs

EB
[(

(PtTh0 −K)p0t + (PtTh1 −K)p1t

)+∣∣∣∣Ft
]
. (65)

Substituting (63) in (65) we find that the expression in the expectation is
positive only if the inequality Zst > Z̄ is satisfied, where

Z̄ =
ln
[
π0s(K−PtT h0)
π1s(PtT h1−K)

]
+ 1

2σ
2(h2

1 − h2
0)v2

stT

σvstT (h1 − h0)
. (66)

It is convenient to set Zst = vstZ, where Z is a B-Gaussian random variable
with zero mean and unit variance. The computation of the expectation in (65)
then reduces to a pair of Gaussian integrals, and we obtain

Cs = Pst

[
π1s (PtTh1 −K)N(d+

s ) − π0s (K − PtTh0)N(d−s )
]
, (67)

where the conditional probabilities {πis} are as defined in (17), and

d±s =
ln
[
π1s(PtT h1−K)
π0s(K−PtT h0)

]
± 1

2σ
2v2
stT

2(h1 − h0)2

σvstT (h1 − h0)
. (68)

We note that d+
s = d−s + σvstT (h1 − h0), and that d±0 = d±.

One important feature of the model worth pointing out in the present
context is that a position in a bond option can be hedged with a position
in the underlying bond. This is because the option price process and the
underlying bond price process are one-dimensional diffusions driven by the
same Brownian motion. Because Ct and BtT are both monotonic in their
dependence on ξt, it follows that Ct can be expressed as a function of BtT ;
the delta of the option can then be obtained in the conventional way as the
derivative of the option price with respect to the underlying. In the case of a
binary bond, the resulting hedge ratio process {Δs}0≤s≤t is given by

Δs =
(PtTh1 −K)N(d+

s ) + (K − PtTh0)N(d−s )
PtT (h1 − h0)

. (69)

This brings us to another interesting point. For certain types of instru-
ments, it may be desirable to model the occurrence of credit events (e.g.,
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credit-rating downgrades) taking place at some time preceding a cash-flow
date. In particular, we may wish to consider contingent claims based on such
events. In the present framework we can regard such contingent claims as
derivative structures for which the payoff is triggered by the level of {ξt}.
For example, it may be that a credit event is established if BtT drops below
some specific level, or if the credit spread widens beyond some threshold. As
a consequence, a number of different types of contingent claims can be valued
by use of barrier option methods in this framework (cf. Albanese et al. [1],
Chen and Filipović [7], and Albanese and Chen [2]).

10 Coupon Bonds: The X-Factor Approach

The discussion so far has focused on simple structures, such as discount bonds
and options on discount bonds. One of the advantages of the present approach,
however, is that its tractability extends to situations of a more complex nature.
In this section we consider the case of a credit-risky coupon bond. One should
regard a coupon bond as being a rather complicated instrument from the
point of view of credit risk management, because default can occur at any
of the coupon dates. The market will in general possess partial information
concerning all of the future coupon payments, as well as the principal payment.

As an illustration, we consider a bond with two payments remaining: a
coupon HT1 at time T1, and a coupon plus the principal totalling HT2 at time
T2. We assume that if default occurs at T1, then no further payment is made
at T2. On the other hand, if the T1-coupon is paid, default may still occur at
T2. We model this by setting

HT1 = cXT1 and HT2 = (c + p)XT1XT2 , (70)

where XT1 and XT2 are independent random variables each taking the values
{0, 1}, and the constants c and p denote the coupon and principal. Let us write
{p(1)

0 , p
(1)
1 } for the a priori probabilities that XT1 = {0, 1}, and {p(2)

0 , p
(2)
1 } for

the a priori probabilities that XT2 = {0, 1}. We introduce a pair of information
processes

ξ
(1)
t = σ1XT1t + β

(1)
tT1

and ξ
(2)
t = σ2XT2t + β

(2)
tT2

, (71)

where {β(1)
tT1

} and {β(2)
tT2

} are independent Brownian bridges, and σ1 and σ2

are parameters. Then for the credit-risky coupon-bond price process we have

St = cPtT1E
[
XT1

∣∣ξ(1)
t

]
+ (c + p)PtT2E

[
XT1

∣∣ξ(1)
t

]
E
[
XT2

∣∣ξ(2)
t

]
. (72)

The two conditional expectations appearing in this formula can be worked
out explicitly using the techniques already described. The result is
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E
[
XTi

∣∣ξ(i)
t

]
=

p
(i)
1 exp
[
Ti

Ti−t

(
σiξ

(i)
t − 1

2σ
2
i t
)]

p
(i)
0 + p

(i)
1 exp
[

Ti

Ti−t

(
σiξ

(i)
t − 1

2σ
2
i t
)] , (73)

for i = 1, 2. It should be evident that in the case of a bond with two payments
remaining we obtain a natural ‘two-factor’ model, the factors being the two
independent Brownian motions arising in connection with the information pro-
cesses {ξ(i)

t }i=1,2. Similarly, if there are n outstanding coupons, we model the
payments by HTk

= cXT1 · · ·XTk
for k ≤ n−1 and HTn = (c+p)XT1 · · ·XTn ,

and introduce the information processes

ξ
(i)
t = σiXTit+ β

(i)
tTi

(i = 1, 2, . . . , n). (74)

The case of n outstanding payments leads to an n-factor model. The inde-
pendence of the random variables {XTi}i=1,2,...,n implies that the price of a
credit-risky coupon bond admits a closed-form expression analogous to (72).

With a slight modification of these expressions, we can consider the case
when there is partial recovery in the event of default. In the two-coupon
example discussed above, for instance, we can extend the model by saying
that in the event of default on the first coupon the effective recovery rate (as
a percentage of coupon plus principal) is R1, whereas in the case of default on
the final payment, the recovery rate is R2. Then HT1 = cXT1 +R1(c+p)(1−
XT1) and HT2 = c+ pXT1XT2 +R2(c +p)XT1(1−XT2). A further extension
of this reasoning allows for the introduction of a stochastic recovery rate.

11 Credit Default Swaps

Swap-like structures can also be readily treated. For example, in the case of a
basic credit default swap (CDS), we have a series of premium payments, each
of the amount g, made to the seller of protection. The payments continue
until the failure of a coupon payment in the reference bond, at which point a
payment n is made to the buyer of protection.

As an illustration, we consider two reference coupons, letting XT1 and XT2

be the associated independent market factors, following the pattern of the
previous example. We assume for simplicity that the default-swap premium
payments are made immediately after the coupon dates. Then the value of
the default swap, from the point of view of the seller of protection, is

Vt = gPtT1E
[
XT1

∣∣ξ(1)
t

]
− nPtT1E

[
1 −XT1

∣∣ξ(1)
t

]

+ gPtT2E
[
XT1

∣∣ξ(1)
t

]
E
[
XT2

∣∣ξ(2)
t

]

−nPtT2E
[
XT1

∣∣ξ(1)
t

]
E
[
1 −XT2

∣∣ξ(2)
t

]
. (75)

After some rearrangement of terms, this can be expressed more compactly as
follows:
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Vt = −nPtT1 + [(g + n)PtT1 − nPtT2 ]E
[
XT1

∣∣ξ(1)
t

]

+ (g + n)PtT2E
[
XT1

∣∣ξ(1)
t

]
E
[
XT2

∣∣ξ(2)
t

]
, (76)

which can then be written explicitly in terms of the expressions given in (73).
A similar approach can be adapted in the multi-name credit situation. The
point that we would like to emphasise is that there is a good deal of flexibility
available in the manner in which the various cash flows can be modelled to
depend on one another, and in many situations tractable expressions emerge
that can be used as the basis for the modelling of complex credit instruments.

12 Baskets of Credit-Risky Bonds

We consider now the valuation problem for a basket of bonds where there are
correlations in the payoffs. We shall obtain a closed-form expression for the
value of a basket of defaultable bonds with various maturities.

For definiteness we consider a set of digital bonds. It is convenient to label
the bonds in chronological order with respect to maturity. We let HT1 denote
the payoff of the bond that expires first; we letHT2 (T2 ≥ T1) denote the payoff
of the first bond that matures after T1; and so on. In general, the various bond
payouts will not be independent. We propose to model this set of dependent
random variables in terms of an underlying set of independent market factors.
To achieve this, we let X denote the random variable associated with the
payoff of the first bond: HT1 = X . The random variable X takes on the values
{1, 0} with a priori probabilities {p, 1 − p}. The payoff of the second bond
HT2 can then be represented in terms of three independent random variables:
HT2 = XX1+(1−X)X0. Here X0 takes the values {1, 0} with the probabilities
{p0, 1−p0}, and X1 takes the values {1, 0} with the probabilities {p1, 1−p1}.
Clearly, the payoff of the second bond is unity if and only if the random
variables (X,X0, X1) take the values (0, 1, 0), (0, 1, 1), (1, 0, 1), or (1, 1, 1).
Because these random variables are independent, the a priori probability that
the second bond does not default is p0 + p(p1 − p0), where p is the a priori
probability that the first bond does not default. To represent the payoff of the
third bond, we introduce four additional independent random variables:

HT3 = XX1X11 +X(1 −X1)X10 + (1 −X)X0X01

+ (1 −X)(1 −X0)X00. (77)

The market factors {Xij}i,j=0,1 here take the values {1, 0} with probabilities
{pij , 1 − pij}. It is a matter of elementary combinatorics to determine the a
priori probability that HT3 = 1 in terms of p, {pi}, and {pij}.

The scheme above can be extended to represent the payoff of a generic
bond in the basket, with an expression of the following form:
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HTn+1 =
∑

{kj}=1,0

Xω(k1)X
ω(k2)
k1

X
ω(k3)
k1k2

· · ·Xω(kn)
k1k2···kn−1

Xk1k2···kn−1kn . (78)

Here, for any random variableX we define Xω(0) = 1−X and Xω(1) = X . The
point to observe is that if we have a basket of N digital bonds with arbitrary
a priori default probabilities and correlations, then we can introduce 2N − 1
independent digital random variables to represent the N correlated random
variables associated with the bond payoffs.

One advantage of the decomposition into independent market factors is
that we retain analytical tractability for the pricing of the basket. In partic-
ular, because the random variables {Xk1k2···kn} are independent, it is natural
to introduce 2N −1 independent Brownian bridges to represent the noise that
veils the values of the independent market factors:

ξk1k2···kn
t = σk1k2···knXk1k2···knt + βk1k2···kn

tTn+1
. (79)

The number of independent factors grows rapidly with the number of bonds in
the portfolio. As a consequence, a market that consists of correlated bonds is in
general highly incomplete. This fact provides an economic justification for the
creation of products such as CDSs and CDOs that enhance the ‘hedgeability’
of such portfolios.

13 Homogeneous Baskets

In the case of a ‘homogeneous’ basket, the number of independent factors
determining the payoff of the portfolio can be reduced. We assume now that
the basket contains n defaultable discount bonds, each maturing at time T ,
and each paying 0 or 1, with the same a priori probability of default. This
situation is of interest as a first step in the analysis of the more general setup.
Our goal is to model default correlations in the portfolio, and in particular to
model the flow of market information concerning default correlation. Let us
write HT for the payoff at time T of the homogeneous portfolio, and set

HT = n−X1 −X1X2 −X1X2X3 − · · · −X1X2 . . . Xn, (80)

where the random variables {Xj}j=1,2,...,n, each taking the values {0, 1}, are
assumed to be independent. Thus if X1 = 0, then HT = n; if X1 = 1 and
X2 = 0, then HT = n − 1; if X1 = 1, X2 = 1, and X3 = 0, then HT = n − 2;
and so on. Now suppose we write pj = Q(Xj = 1) and qj = Q(Xj = 0) for
j = 1, 2, . . . , n. Then Q(HT = n) = q1, Q(HT = n − 1) = p1q2, Q(HT =
n − 2) = p1p2q3, and so on. More generally, we have Q(HT = n − k) =
p1p2 . . . pkqk+1. Thus, for example, if p1 � 1 but p2, p3, . . . , pk are large, then
we are in a situation of low default probability and high default correlation;
that is to say, the probability of a default occurring in the portfolio is small,
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but conditional on at least one default occurring, the probability of several
defaults is high.

The market will take a view on the likelihood of various numbers of defaults
occurring in the portfolio. We model this by introducing a set of independent
information processes {ηjt } defined by

ηjt = σjXjt+ βjtT , (81)

where {σj}j=1,2,...,n are parameters, and {βjtT }j=1,2,...,n are independent
Brownian bridges. The market filtration {Ft} is generated collectively by
{ηjt }j=1,2,...,n, and for the portfolio value Ht = PtTE [HT |Ft], we have

Ht = PtT

[
n− Et[X1] − Et[X1]Et[X2] − · · · −Et[X1]Et[X2] . . . Et[Xn]

]
. (82)

The conditional expectations appearing here can be calculated by means of
formulae established earlier in the paper. The resulting dynamics for {Ht}
can then be used to describe the evolution of correlations in the portfolio. For
example, if Et[X1] is low and Et[X2] is high, then the conditional probability
at time t of a default at time T is small, whereas if Et[X1] were to increase
suddenly, then the conditional probability of two or more defaults at T would
rise as a consequence. Thus, the model is sufficiently rich to admit a detailed
account of the correlation dynamics of the portfolio. The losses associated
with individual tranches can be identified, and derivative structures associ-
ated with such tranches can be defined. For example, a digital option that
pays out in the event that there are three or more defaults has the payoff
structure H

(3)
T = X1X2X3. The homogeneous portfolio model has the prop-

erty that the dynamics of equity-level and mezzanine-level tranches involve a
relatively small number of factors. The market prices of tranches can be used
to determine the a priori probabilities, and the market prices of options on
tranches can be used to fix the information-flow parameters.
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Summary. The one-factor Gaussian model is well known not to fit the prices of the
different tranches of a collateralized debt obligation (CDO) simultaneously, leading
to the implied correlation smile. Recently, other one-factor models based on differ-
ent distributions have been proposed. Moosbrucker [12] used a one-factor Variance-
Gamma (VG) model, Kalemanova et al. [7] and Guégan and Houdain [6] worked
with a normal inverse Gaussian (NIG) factor model, and Baxter [3] introduced the
Brownian Variance-Gamma (BVG) model. These models bring more flexibility into
the dependence structure and allow tail dependence. We unify these approaches,
describe a generic one-factor Lévy model, and work out the large homogeneous
portfolio (LHP) approximation. Then we discuss several examples and calibrate a
battery of models to market data.

Key words: Lévy processes; collateralized debt obligation (CDO); credit risk; credit
default; large homogeneous portfolio approximation.

1 Introduction

A collateralized debt obligation (CDO) can be defined as a transaction that
transfers the credit risk on a reference portfolio of assets. A standard feature
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of a CDO structure is the tranching of credit risk. Credit tranching refers to
creating multiple tranches of securities that have varying degrees of seniority
and risk exposure. The risk of loss on the reference portfolio is then divided
into tranches of increasing seniority in the following way. The equity tranche
is the first to be affected by losses in the event of one or more defaults in
the portfolio. If losses exceed the value of this tranche, they are absorbed by
the mezzanine tranche(s). Losses that have not been absorbed by the other
tranches are sustained by the senior tranche and finally by the super-senior
tranche. Each tranche then protects the ones senior to it from the risk of loss
on the underlying portfolio. When tranches are issued, they usually receive
a rating by rating agencies. The CDO issuer typically determines the size of
the senior tranche so that it is AAA-rated. Likewise, the CDO issuer gener-
ally designs the other tranches so that they achieve successively lower ratings.
The CDO investors take on exposure to a particular tranche, effectively sell-
ing credit protection to the CDO issuer, and in turn collecting premiums
(spreads).

We are interested in pricing tranches of synthetic CDOs. A synthetic CDO
is a CDO backed by credit default swaps (CDSs) rather than bonds or loans;
that is, the reference portfolio is composed of CDSs. Recall that a CDS offers
protection against default of an underlying entity over some time horizon. The
term synthetic is used because CDSs permit synthetic exposure to credit risk.
By contrast, a CDO backed by ordinary bonds or loans is called a cash CDO.
Synthetic CDOs recently have become very popular.

It turns out that the pricing of synthetic CDO tranches only involves loss
distributions over different time horizons (see Section 4). Then, we may think
of using the large homogeneous portfolio (LHP) approximation to compute
the premiums of these tranches. This convenient method is well known in
the credit portfolio field and permits us to approximate the loss distribution
which is computationally intensive.

Assuming a one-factor model approach for modeling correlated defaults
of the different names in the reference portfolio together with the condi-
tional independence of these defaults on a common market factor leads to
a simplification of the calculation of the loss distribution (see Section 2). The
one-factor Gaussian model is well known not to fit the prices of the different
tranches of a CDO simultaneously, leading to the implied correlation smile.
Recently, other one-factor models based on different distributions have been
proposed. Moosbrucker [12] used a one-factor Variance-Gamma (VG) model,
Kalemanova et al. [7] and Guégan and Houdain [6] worked with a normal in-
verse Gaussian (NIG) factor model, and Baxter [3] introduced the Brownian
Variance-Gamma (BVG) model. These models bring more flexibility into the
dependence structure and allow tail dependence. We unify these approaches
in Section 2, describe a generic one-factor Lévy model, and work out the LHP
approximation. With such a model, the distribution function of any name’s as-
set value is analytically known, bringing significant improvement with respect
to computation times. In Section 3, we discuss several examples, including the
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Table 1. Standard synthetic CDO structure on the DJ iTraxx Europe index.

Reference Portfolio Tranche Name K1(%) K2(%)

Equity 0 3
125 Junior mezzanine 3 6
CDS Senior mezzanine 6 9
names Senior 9 12

Super-senior 12 22

Gaussian, shifted gamma, shifted inverse Gaussian, VG, NIG, and Meixner
cases. Finally, we calibrate a battery of one-factor LHP Lévy models to market
quotes of a tranched iTraxx and give the prices generated by these models.

In 2004, the main traded CDS indices were merged into a single family
under the names DJ iTraxx (Europe and Asia) and DJ CDX (North Amer-
ica and emerging markets). These indices provide established portfolios upon
which standardized tranches can be structured, allowing a more transparent
and liquid market for CDO tranches.

Take the example of the DJ iTraxx Europe index. It consists of a portfolio
composed of 125 actively traded names in terms of CDS volume, with an equal
weighting given to each, and remains static over its lifetime of six months,
except for entities defaulting which are then eliminated from the index. It is
possible to invest in standardized tranches of the index via the tranched iTraxx
which is nothing else but a synthetic CDO on a static portfolio. In other words,
a tranched CDS index is a synthetic CDO based on a CDS index, where each
tranche references a different segment of the loss distribution of the underlying
CDS index. The main advantage of such a synthetic CDO relative to other
CDOs is that it is standardized. In Table 1, we give the standard synthetic
CDO structure on the DJ iTraxx Europe index.

We end with some notation. By f [−1], we mean the inverse function of
f . The indicator function of any set or event A is denoted 1A. We use the
abbreviation a.s. for almost surely, and the symbol a.s.−→ stands for almost sure
convergence. The gamma function is denoted Γ(x) :=

∫ +∞
0 tx−1e−t dt, x > 0.

The modified Bessel function of the third kind with real index ζ is denoted
Kζ(x) := 1

2

∫ +∞
0 tζ−1 exp

(
−x(t + t−1)/2

)
dt, x > 0. The notation X ∼ F

means that the random variable X follows the distribution F .

2 Generic One-Factor Lévy Model

2.1 Lévy Process

Suppose φ is the characteristic function of a distribution. If for every positive
integer n, φ is also the nth power of a characteristic function, we say that the
distribution is infinitely divisible. One can define for any infinitely divisible
distribution a stochastic process, X = {Xt, t ≥ 0}, called a Lévy process,
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which starts at zero, has stationary independent increments, and such that
the distribution of an increment over [s, s + t], s, t ≥ 0 (i.e., Xt+s −Xs) has
φt as characteristic function.

The function ψ := logφ is called the characteristic exponent, and it satisfies
the following Lévy–Khintchine formula (see Bertoin [4]),

ψ(z) = iγz − ς2

2
z2 +
∫ +∞

−∞

(
exp(izx) − 1 − izx1{|x|<1}

)
ν(dx), z ∈ R,

where γ ∈ R, ς2 ≥ 0, and ν is a measure on R\{0}with
∫ +∞
−∞ min

(
1, x2
)
ν(dx) <

∞. From the Lévy–Khintchine formula, one sees that, in general, a Lévy pro-
cess consists of three independent parts: a linear deterministic part, a Brown-
ian part, and a pure jump part. We say that our infinitely divisible distribution
has a triplet of Lévy characteristics [γ, ς2, ν(dx)]. The measure ν(dx) is called
the Lévy measure of X , and it dictates how the jumps occur. Jumps of sizes
in the set A occur according to a Poisson process with parameter

∫
A
ν(dx). If

ς2 = 0 and
∫ +1

−1 |x| ν(dx) < ∞, it follows from standard Lévy process theory
(e.g., Bertoin [4] and Sato [16]) that the process is of finite variation. For
more details about the applications of Lévy processes in finance, we refer to
Schoutens [20].

2.2 Generic One-Factor Lévy Model

Next, we model a portfolio of n obligors; each obligor has the same weight
in the portfolio. Later on we focus on a homogeneous portfolio, but we start
with the general situation where each obligor has some recovery value Ri in
case of default and some individual default probability term structure pi(t),
t ≥ 0, which is the probability that obligor i will default before time t.

Fix a time horizon T . For the modeling, let us start with a mother infinitely
divisible distribution L. Let X = {Xt, t ∈ [0, 1]} be a Lévy process based on
that infinitely divisible distribution, such that X1 follows the law L. Note that
we only work with Lévy processes with time running over the unit interval.
Denote the distribution function of Xt by Ht, t ∈ [0, 1], and assume it is
continuous. Assume further that the distribution is standardized in the sense
that E[X1] = 0 and Var[X1] = 1. In terms of ψ, this means that ψ′(0) = 0
and ψ′′(0) = −1. Then, it is not that hard to prove that Var[Xt] = t.

Let X = {Xt, t ∈ [0, 1]} and X(i) = {X(i)
t , t ∈ [0, 1]}, i = 1, . . . , n be

independent and identically distributed Lévy processes (so all processes are
independent of each other and are based on the same mother infinitely divisible
distribution L).

Next, we propose the generic one-factor Lévy model. Let ρ ∈ (0, 1). We
assume that the asset value of obligor i = 1, . . . , n at time T is of the form:

Ai(T ) = Xρ +X
(i)
1−ρ. (1)
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Each Ai(T ) has by the stationary and independent increments property the
same distribution as the mother distribution L with distribution function H1.
Indeed, the sum of an increment of the process over a time interval of length ρ
and an independent increment over a time interval of length 1− ρ follows the
distribution of an increment over an interval of unit length, that is, follows
the law L. As a consequence, E[Ai(T )] = 0 and Var[Ai(T )] = 1. Furthermore,
the asset values of any two obligors i and j (i �= j) are correlated with linear
correlation coefficient ρ. Indeed, one readily computes

Corr[Ai(T ), Aj(T )] =
E[Ai(T )Aj(T )] − E[Ai(T )]E[Aj(T )]√

Var[Ai(T )]
√

Var[Aj(T )]

= E[Ai(T )Aj(T )] = E[X2
ρ ] = ρ.

So, starting from any mother standardized infinitely divisible law, we can set
up a one-factor model with the required correlation.

We say that the ith obligor defaults at time T if its firm value Ai(T ) falls
below some preset barrier Ki(T ), that is, if Ai(T ) ≤ Ki(T ). In order to match
default probabilities under this model with default probabilities pi(T ) ob-
served in the market, we have to set Ki(T ) = H

[−1]
1 (pi(T )). Indeed, it follows

that P (Ai(T ) ≤ Ki(T )) = P (Ai(T ) ≤ H
[−1]
1 (pi(T ))) = H1(H

[−1]
1 (pi(T ))) =

pi(T ).
Notice that conditional on the common factor Xρ, the firm values and the

defaults are independent.
From now on, we assume that the portfolio is homogeneous ; that is,

• All obligors have the same default barrier (Ki(T ) = K(T ), i = 1, . . . , n),
and hence the same marginal default distribution (pi(T ) = p(T )).

• All obligors have the same recovery rate (Ri = R, i = 1, . . . , n).
• All obligors have the same notional amount: denoting the total portfolio

notional by N , we then set Ni = N/n for all i = 1, . . . , n.

Let us denote the number of defaults in the portfolio until time T by DT,n.
The probability of having exactly k defaults equals

P (DT,n = k) =
∫ +∞

−∞
P (DT,n = k|Xρ = y) dHρ(y), k = 0, . . . , n.

Conditional on Xρ = y, the probability of having k defaults is (because of
independence)

P (DT,n = k|Xρ = y) =
(
n

k

)
p(y;T )k (1 − p(y;T ))n−k,

where p(y;T ) denotes the probability that the firm’s value Ai(T ) is below the
barrier K(T ), given that the systematic factor Xρ takes the value y; that is,



264 Hansjörg Albrecher, Sophie A. Ladoucette, and Wim Schoutens

p(y;T ) := P (Ai(T ) ≤ K(T )|Xρ = y)

= P (Xρ +X
(i)
1−ρ ≤ K(T )|Xρ = y)

= P (X(i)
1−ρ ≤ K(T )− y)

= H1−ρ(K(T ) − y).

Substituting then yields

P (DT,n = k) =
(
n

k

)∫ +∞

−∞
(H1−ρ(K(T ) − y))k

(1 −H1−ρ(K(T ) − y))n−k dHρ(y).

The loss fraction on the portfolio notional at time T given by

LHP
T,n :=

1 −R

n

n∑

i=1

1{Ai(T )≤K(T )} (2)

is clearly one-to-one related with the number of defaults. We then obtain the
following distribution function for the portfolio loss fraction,

P

(
LHP
T,n ≤ k(1 −R)

n

)
=

k∑

i=0

P (DT,n = i), k = 0, . . . , n.

In the next subsection, we consider a method to approximate the latter dis-
tribution that turns out to be of prime interest in the CDO pricing (see Sec-
tion 4).

Now, denote for small x by λij(x) := P (Aj(T ) ≤ x|Ai(T ) ≤ x), i �= j,
a measure for the dependence in the tail. Using (conditional) independence
arguments yields

λij(x) =
P (Xρ +X

(j)
1−ρ ≤ x, Xρ +X

(i)
1−ρ ≤ x)

P (Xρ +X
(i)
1−ρ ≤ x)

=
E
[
P
(
Xρ +X

(j)
1−ρ ≤ x, Xρ +X

(i)
1−ρ ≤ x

∣∣∣Xρ

)]

H1(x)

=
∫ +∞

−∞

P (X(j)
1−ρ ≤ x− y, X

(i)
1−ρ ≤ x− y)

H1(x)
dHρ(y)

=
∫ +∞

−∞

H2
1−ρ(x− y)
H1(x)

dHρ(y).

The limit λij := limx→−∞ λij(x) is then the well-known lower tail dependence
coefficient of Ai(T ) and Aj(T ). Lower tail dependence exactly captures the
probability of concordant down movements of the underlying asset values. The
formula being stated in terms of the distribution Ht, the quantity λij(x) and
its limit can be evaluated for any one-factor Lévy model.
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2.3 The Large Homogeneous Portfolio Approximation

We are interested in approximating the distribution function of the portfolio
loss fraction LHP

T,n. This proves to be possible if the homogeneous portfolio gets
very large (i.e., n → ∞).

When conditioned on the systematic factor Xρ, the default variables
1{Ai(T )≤K(T )}, i = 1, . . . , n become independent. Hence, by the strong law
of large numbers, we obtain

P
(

lim
n→∞

LHP
T,n = (1 −R) p(Xρ;T )

∣∣∣Xρ

)
= 1 a.s.,

and taking expectations on both sides gives

LHP
T,n

a.s.−→ (1 −R) p(Xρ;T ) as n→ ∞.

For large homogeneous portfolios, we then make the approximation

FHP
T,n(x) := P (LHP

T,n ≤ x) = FHP
T

(
x

1 −R

)
, x ∈ [0, 1 −R], (3)

where FHP
T denotes the distribution function of p(Xρ;T ), that turns out to

be the loss fraction with a zero recovery rate (or equivalently the fraction of
defaults) on the limiting portfolio at time T . We easily compute

FHP
T (x) = P (H1−ρ(K(T )−Xρ) ≤ x)

= P (Xρ ≥ K(T ) −H
[−1]
1−ρ (x))

= 1 −Hρ

(
H

[−1]
1 (p(T )) −H

[−1]
1−ρ (x)

)
, x ∈ [0, 1], (4)

so that we obtain an explicit handy expression for the distribution FHP
T,n of the

portfolio fractional loss.
Note that if the portfolio contains a moderately large number of credits,

the approximation (3) turns out to be remarkably good.

3 Examples of One-Factor Lévy Models for Correlated
Defaults

3.1 Based on the Normal Distribution—Brownian Motion

The Vasicek [22] one-factor model assumes the following dynamics.

• Ai(T ) =
√
ρ Y +

√
1 − ρXi, i = 1, . . . , n,

• Y , Xi, i = 1, . . . , n are i.i.d. standard normal random variables with com-
mon distribution function Φ.
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Table 2. Mean, variance, skewness, and kurtosis of the Gamma(a, b) distribution.

Gamma(a, b)

Mean a/b
Variance a/b2

Skewness 2/
√

a
Kurtosis 3(1 + 2/a)

This model can be cast in the above general Lévy framework. The mother
infinitely divisible distribution is here the standard normal distribution and
the associated Lévy process is the standard Brownian motion W = {Wt, t ∈
[0, 1]}. Indeed, note that Wρ follows an N (0, ρ) distribution as does

√
ρ Y ;

similarly W
(i)
1−ρ follows an N (0, 1− ρ) distribution as does

√
1 − ρXi. Adding

these independent random variables leads to a standard normally distributed
random variable.

Using the classical properties of normal random variables, the distribution
function (4) of the fraction of defaulted securities in the limiting portfolio at
time T transforms into

FHP
T (x) = 1 − Φ

(
Φ[−1](p(T )) −

√
1 − ρΦ[−1](x)

√
ρ

)

= Φ
(√

1 − ρΦ[−1](x) − Φ[−1](p(T ))
√
ρ

)
, x ∈ [0, 1].

3.2 Based on the Shifted Gamma Process

The density function of the gamma distribution Gamma(a, b) with parameters
a > 0 and b > 0 is given by

fGamma(x; a, b) =
ba

Γ(a)
xa−1 e−xb, x > 0.

The distribution function of the Gamma(a, b) distribution is denoted HG(x; a, b)
and has the following characteristic function,

φGamma(u; a, b) = (1 − iu/b)−a, u ∈ R.

Clearly, this characteristic function is infinitely divisible. The gamma process
X(G) = {X(G)

t , t ≥ 0} with parameters a, b > 0 is defined as the stochastic
process that starts at zero and has stationary independent gamma-distributed
increments such that X(G)

t follows a Gamma(at, b) distribution.
The properties of the Gamma(a, b) distribution given in Table 2 can be

easily derived from its characteristic function. Now, if X is Gamma(a, b)-
distributed and c > 0, then cX is Gamma(a, b/c)-distributed. Furthermore,
if X ∼ Gamma(a1, b) is independent of Y ∼ Gamma(a2, b), then X + Y ∼
Gamma(a1 + a2, b).
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Let us start with a gamma process G = {Gt, t ∈ [0, 1]} with parameters
a > 0 and b =

√
a, so that E[G1] =

√
a and Var[G1] = 1. As driving Lévy

process, we take the shifted gamma process X = {Xt, t ∈ [0, 1]} defined as

Xt =
√
at−Gt, t ∈ [0, 1].

The interpretation in terms of firm value is that there is a deterministic up
trend (

√
at) with random downward shocks (Gt).

The one-factor shifted gamma–Lévy model is then in the form of (1),

Ai(T ) = Xρ +X
(i)
1−ρ, i = 1, . . . , n,

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent shifted gamma random vari-

ables defined as Xρ =
√
aρ−Gρ and X

(i)
1−ρ =

√
a(1− ρ)−G1−ρ. By construc-

tion, each Ai(T ) follows the same distribution as X1 and as such has zero
mean and unit variance.

As derived in general, we have that the distribution of the limiting portfolio
fractional loss with a zero recovery rate at time T is as in (4). The distribution
function Ht(x; a) of Xt, t ∈ [0, 1], can be easily obtained from the gamma
distribution function. Indeed,

Ht(x; a) = P (
√
at−Gt ≤ x)

= 1 − P (Gt <
√
at− x)

= 1 −HG(
√
at− x; at,

√
a), x ∈ (−∞,

√
at).

For the inverse function, we have the following relation for each t ∈ [0, 1]:

H
[−1]
t (y; a) =

√
at−H[−1]

G (1 − y; at,
√
a), y ∈ [0, 1].

3.3 Based on the Shifted IG Process

The inverse Gaussian IG(a, b) law with parameters a > 0 and b > 0 has
characteristic function

φIG(u; a, b) = exp
(
−a(
√
−2iu+ b2 − b)

)
, u ∈ R.

The IG distribution is infinitely divisible and we define the IG processX(IG) =
{X(IG)

t , t ≥ 0} with parameters a, b > 0 as the process that starts at zero and
has stationary independent IG-distributed increments such that

E[exp(iuX(IG)
t )] = φIG(u; at, b) = exp

(
−at(
√
−2iu+ b2 − b)

)
, u ∈ R

meaning that X(IG)
t follows an IG(at, b) distribution.
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Table 3. Mean, variance, skewness, and kurtosis of the IG(a, b) distribution.

IG(a, b)

Mean a/b
Variance a/b3

Skewness 3/
√

ab
Kurtosis 3(1 + 5(ab)−1)

The density function of the IG(a, b) law is given by

fIG(x; a, b) =
a eab√

2π
x−3/2exp

(
−(a2x−1 + b2x)/2

)
, x > 0,

and we denote its distribution function HIG(x; a, b). The characteristics of
the IG distribution given in Table 3 can be easily obtained. Now, if X is
IG(a, b)-distributed, then cX is IG(a

√
c, b/

√
c)-distributed for any positive c.

Furthermore, if X ∼ IG(a1, b) is independent of Y ∼ IG(a2, b), then X +Y ∼
IG(a1 + a2, b).

Let us start with an IG process I = {It, t ∈ [0, 1]} with parameters a > 0
and b = a1/3, so that E[I1] = a2/3 and Var[I1] = 1. As driving Lévy process,
we take the shifted IG process X = {Xt, t ∈ [0, 1]} defined as

Xt = a2/3t− It, t ∈ [0, 1].

The interpretation in terms of firm value is that there is a deterministic up
trend (a2/3t) with random downward shocks (It).

The one-factor shifted IG-Lévy model is then

Ai(T ) = Xρ +X
(i)
1−ρ, i = 1, . . . , n,

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent shifted IG random variables

defined as Xρ = a2/3ρ−Iρ and X
(i)
1−ρ = a2/3(1−ρ)−I1−ρ. Each Ai(T ) follows

the same distribution as X1 and as such has zero mean and unit variance.
The distribution of the fraction of defaulted securities in the limiting port-

folio at time T is therefore as in (4). The distribution function Ht(x; a) of Xt,
t ∈ [0, 1], can be easily obtained from the IG distribution function as follows.

Ht(x; a) = P (a2/3t− It ≤ x)
= 1 − P (It < a2/3t− x)
= 1 −HIG(a2/3t− x; at, a1/3), x ∈ (−∞, a2/3t).

For the inverse function, we have the following relation for each t ∈ [0, 1],

H
[−1]
t (y; a) = a2/3t−H[−1]

IG (1 − y; at, a1/3), y ∈ [0, 1].
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Table 4. Mean, variance, skewness, and kurtosis of the VG(σ, ν, θ, μ) distribution.

VG(σ, ν, θ, μ) VG(σ, ν, 0, μ)

Mean θ + μ μ
Variance σ2 + νθ2 σ2

Skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2 0
Kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2) 3(1 + ν)

3.4 Based on the VG Process

The Variance-Gamma (VG) distribution with parameters σ > 0, ν > 0, θ ∈ R,
and μ ∈ R, denoted VG(σ, ν, θ, μ), is infinitely divisible with characteristic
function

φV G(u;σ, ν, θ, μ) = eiuμ
(
1 − iuθν + u2σ2ν/2

)−1/ν
, u ∈ R.

We can then define the VG process X(VG) = {X(VG)
t , t ≥ 0} with param-

eters σ, ν > 0 and θ, μ ∈ R as the process that starts at zero and has sta-
tionary independent VG-distributed increments such that X

(V G)
t follows a

VG(σ
√
t, ν/t, θt, μt) distribution. Note that a VG process may also be defined

as a Brownian motion with drift time-changed by a gamma process (e.g.,
Schoutens [20]).

The density function of the VG(σ, ν, θ, μ) distribution is given by

fV G(x;σ, ν, θ, μ) =
(GM)C√
π Γ(C)

exp
(

(G−M)(x− μ)
2

)

×
(
|x− μ|
G+M

)C−1/2

KC−1/2 ((G+M) |x− μ|/2) , x ∈ R,

where C, G, M are positive constants given by

C = 1/ν,

G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

,

M =

(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

.

In Table 4, we give the values of the mean, variance, skewness, and kurtosis
of the VG(σ, ν, θ, μ) distribution (the case θ = 0 is also included). This distri-
bution is symmetric around μ if θ = 0, whereas negative values of θ result in
negative skewness. Also, the parameter ν primarily controls the kurtosis.

The VG(σ, ν, θ, μ) distribution satisfies the following scaling property. If
X ∼ VG(σ, ν, θ, μ), then cX ∼ VG(cσ, ν, cθ, cμ) for all c > 0. Also, we have the
following convolution property. If X ∼ VG(σ

√
ρ, ν/ρ, θρ, μρ) is independent
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of Y ∼ VG(σ
√

1 − ρ, ν/(1−ρ), θ(1−ρ), μ(1−ρ)), then X+Y ∼ VG(σ, ν, θ, μ)
under the constraint ρ ∈ (0, 1).

The class of VG distributions was introduced by Madan and Seneta [9].
A number of papers have developed the VG model for asset returns and its
implications for option pricing. In Madan and Seneta [9; 10] and Madan and
Milne [8], the symmetric case (θ = 0) is considered. In Madan et al. [11], the
general case with skewness is treated. In equity and interest rate modeling,
the VG process has already proven its capabilities (see, e.g., Schoutens [20]).

Moosbrucker assumes in [12] a one-factor VG model where the asset value
of obligor i = 1, . . . , n is of the form

Ai(T ) = c Y +
√

1 − c2 Xi,

where Y , Xi, i = 1, . . . , n are independently VG-distributed random vari-
ables with Xi ∼ VG(

√
1 − νθ2, ν/(1 − c2), θ

√
1 − c2,−θ

√
1 − c2) for all i and

Y ∼ VG
(√

1 − νθ2, ν/c2, θc,−θc
)
. In this setting, the random variable Ai(T )

is VG(
√

1 − νθ2, ν, θ,−θ)-distributed. All these random variables have indeed
zero mean and unit variance but there is a constraint on the parameters,
namely νθ2 < 1. Furthermore, we point out that the fractional loss distri-
bution obtained by Moosbrucker [12, p. 19, Eq.(13)] with the LHP method
under the above one-factor model approach is not correct. It should be in his
notation:

Fportfolio loss(x) = 1 − FM

(
C −

√
1 − c2F−1

Zi
(x)

c

)
,

because the VG distribution function is not an even function if (θ, μ) �= (0, 0).
For a variant of the VG model, extended with an additional normal factor,

we refer to Baxter [3].
Many variations are possible. For example, one could start with a zero

mean VG(κσ, ν, κθ,−κθ) distribution for Ai(T ), with κ = 1/
√
σ2 + νθ2 in

order to force unit variance. The one-factor VG-Lévy model is then in the
form of (1)

Ai(T ) = Xρ +X
(i)
1−ρ, i = 1, . . . , n,

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent VG random variables with the

following parameters. The common factor Xρ follows a distribution VG(κ
√
ρσ,

ν/ρ, κρθ,−κρθ) and the idiosyncratic risks X
(i)
1−ρ all follow a distribution

VG(κ
√

1 − ρσ, ν/(1 − ρ), κ(1 − ρ)θ,−κ(1 − ρ)θ).

3.5 Based on the NIG Process

The normal inverse Gaussian (NIG) distribution with parameters α > 0,
β ∈ (−α, α), δ > 0, and μ ∈ R, denoted NIG(α, β, δ, μ), has a characteristic
function given by
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Table 5. Mean, variance, skewness, and kurtosis of the NIG(α, β, δ, μ) distribution.

NIG(α,β, δ, μ) NIG(α, 0, δ, μ)

Mean μ + δβ/
√

α2 − β2 μ

Variance α2δ(α2 − β2)−3/2 δ/α

Skewness 3βα−1δ−1/2(α2 − β2)−1/4 0

Kurtosis 3

(
1 + α2+4β2

δα2
√

α2−β2

)
3(1 + δ−1α−1)

φNIG(u;α, β, δ, μ) = exp
(
iuμ− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
, u ∈ R.

We clearly see that this characteristic function is infinitely divisible. Hence,
we can define the NIG process X(NIG) = {X(NIG)

t , t ≥ 0} with parameters
α > 0, β ∈ (−α, α), δ > 0, and μ ∈ R as the process that starts at zero and
has stationary independent NIG-distributed increments such that X(NIG)

t is
NIG(α, β, δt, μt)-distributed.

The NIG distribution was introduced by Barndorff-Nielsen [1]; see also
Barndorff-Nielsen [2] and Rydberg [13–15]. Note that the density function of
the NIG(α, β, δ, μ) distribution is given for any x ∈ R by

fNIG(x;α, β, δ, μ) =
αδ

π
exp
(
δ
√
α2 − β2 + β(x − μ)

) K1(α
√
δ2 + (x− μ)2)√

δ2 + (x − μ)2
.

If a random variable X is NIG(α, β, δ, μ)-distributed and c > 0, then cX
is NIG(α/c, β/c, cδ, cμ)-distributed. If β = 0, the distribution is symmetric
around μ. This can be seen from the characteristics of the NIG distribution
given in Table 5. Furthermore, if X ∼ NIG(α, β, δ1, μ1) is independent of
Y ∼ NIG(α, β, δ2, μ2), then X + Y ∼ NIG(α, β, δ1 + δ2, μ1 + μ2).

Guégan and Houdain propose in [6] a factor model based on a NIG-
distributed common factor but with standard normal idiosyncratic risks.

Kalemanova et al. [7] define a one-factor NIG model in the following way,

Ai(T ) = aY +
√

1 − a2Xi, i = 1, . . . , n,

where Y , Xi, i = 1, . . . , n are independent NIG random variables with
the following parameters. The common factor Y follows a NIG(α, β, α,−
(αβ/
√
α2 − β2)) distribution and the idiosyncratic risks Xi all follow a

NIG(α
√

1 − a2/a, β
√

1 − a2/a, α
√

1 − a2/a,−(αβ/
√
α2 − β2)

√
1 − a2/a) dis-

tribution. This leads to a NIG(α/a, β/a, α/a,−(αβ/(a
√
α2 − β2))) distribu-

tion for Ai(T ). Note that this distribution does not have unit variance whereas
the parameters δ and μ are fixed to obtain a zero mean distribution. Inciden-
tally, we point out that the distribution of the fractional loss obtained by
Kalemanova et al. [7, p.10] with the LHP approximation under the above
one-factor model approach is not correct. It should be in their notation:
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F∞(x) = 1 − FNIG(1)

⎛

⎝
C −

√
1 − a2F−1

NIG
√

1−a2/a
(x)

a

⎞

⎠ ,

because the NIG distribution function is not an even function if (β, μ) �= (0, 0).
Using our methodology, one can set up similar NIG models. For example,

let X = {Xt, t ∈ [0, 1]} be a NIG process, where X1 follows a distribution
NIG(α, β, (α2 − β2)3/2/α2,−(α2 − β2)β/α2). Note that the parameters δ and
μ are chosen such that X1 has zero mean and unit variance. The one-factor
NIG–Lévy model is then

Ai(T ) = Xρ +X
(i)
1−ρ, i = 1, . . . , n,

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independently NIG-distributed random vari-

ables with X
(i)
1−ρ ∼ NIG(α, β, (1− ρ)(α2 − β2)3/2/α2,−(1− ρ)(α2 − β2)β/α2)

for all i and Xρ ∼ NIG(α, β, ρ(α2 − β2)3/2/α2,−ρ(α2 − β2)β/α2). By con-
struction, each Ai(T ) follows the same distribution as X1.

3.6 Based on the Meixner Process

The density function of the Meixner distribution (Meixner(α, β, δ, μ)) is given
for any x ∈ R by

fMeixner(x;α, β, δ, μ) =
(2 cos(β/2))2δ

2απ Γ(2δ)
exp
(
β(x − μ)

α

) ∣∣∣∣Γ
(
δ +

i(x− μ)
α

)∣∣∣∣
2

,

where α > 0, β ∈ (−π, π), δ > 0, and μ ∈ R.
The characteristic function of the Meixner(α, β, δ, μ) distribution is

φMeixner(u;α, β, δ, μ) = eiuμ
(

cos(β/2)
cosh((αu − iβ)/2)

)2δ

, u ∈ R.

The Meixner(α, β, δ, μ) distribution being infinitely divisible, we can then as-
sociate with it a Lévy process which we call the Meixner process. More pre-
cisely, a Meixner process X(Meixner) = {X(Meixner)

t , t ≥ 0} with parameters
α > 0, β ∈ (−π, π), δ > 0, and μ ∈ R is a stochastic process that starts
at zero and has stationary independent Meixner-distributed increments such
that X(Meixner)

t is Meixner(α, β, δt, μt)-distributed.
The Meixner process was introduced in Schoutens and Teugels [21]; see also

Schoutens [17]. It was suggested to serve for fitting stock returns in Grigelio-
nis [5]. This application in finance was worked out in Schoutens [18; 19].

In Table 6, we give some relevant quantities for the general case and the
symmetric case around μ, that is, with β = 0. Note that the kurtosis of any
Meixner distribution is greater than that of the normal distribution. Now, if X
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Table 6. Mean, variance, skewness, and kurtosis of the Meixner(α, β, δ, μ) distribu-
tion.

Meixner(α, β, δ, μ) Meixner(α, 0, δ, μ)

Mean μ + αδ tan(β/2) μ
Variance (cos−2(β/2))α2δ/2 α2δ/2

Skewness sin(β/2)
√

2/δ 0
Kurtosis 3 + (2− cos(β))/δ 3 + 1/δ

is Meixner(α, β, δ, μ)-distributed and c > 0, then cX is Meixner(cα, β, δ, cμ)-
distributed. Furthermore, if X ∼ Meixner(α, β, δ1, μ1) is independent of Y ∼
Meixner(α, β, δ2, μ2), then X + Y ∼ Meixner(α, β, δ1 + δ2, μ1 + μ2).

Using our methodology, one can easily set up a Meixner model. For ex-
ample, let X = {Xt, t ∈ [0, 1]} be a Meixner process, where X1 follows a
distribution Meixner(α, β, 2 cos2(β/2)/α2,− sin(β)/α). Note that again the
parameters δ and μ are chosen such that X1 has zero mean and unit variance.
The one-factor Meixner–Lévy model is then

Ai(T ) = Xρ +X
(i)
1−ρ, i = 1, . . . , n,

where Xρ, X
(i)
1−ρ, i = 1, . . . , n are independent Meixner random variables

with the following parameters. The common factor Xρ follows a Meixner(α, β,
2ρ cos2(β/2)/α2,−ρ sin(β)/α) distribution and the idiosyncratic risksX(i)

1−ρ all
follow a Meixner(α, β, 2(1 − ρ) cos2(β/2)/α2,−(1 − ρ)sin(β)/α) distribution.
By construction, each Ai(T ) follows the same distribution as X1.

3.7 Other Candidate Models

We hope the idea is clear and invite the reader to set up the CGMY, Gener-
alized Hyperbolic (GH), Generalized z (GZ), and other Lévy-based models in
a similar way. For definitions, we refer to Schoutens [20].

4 Fair Pricing of a Synthetic CDO Tranche

In this section, we explain the procedure for valuing the tranches of synthetic
CDOs. Consider a synthetic CDO tranche on a given reference portfolio of n
names defined by an interval [K1,K2] of loss fractions on the total portfolio
notionalN for which the tranche investor is responsible. The endpointsK1 and
K2 of the interval are called attachment and detachment points, respectively.
The tranche investor receives periodic spread payments from the CDO issuer
(the premium leg) and makes payments to the CDO issuer when defaults affect
the tranche (the protection leg). Note that for a synthetic CDO, any default
corresponds to a credit event under a CDS in the reference portfolio. It turns
out that the fair price of the tranche [K1,K2] can be calculated using the
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same idea as for the pricing of a CDS, that is, by setting the fair premium s
such that the expected present values of the premium leg and the protection
leg are equal.

The loss fraction on the portfolio notional at time t is given by

Lt,n :=
1
N

n∑

i=1

1{τi≤t}(1 −Ri)Ni,

where τi, Ri, and Ni denote the default time, the recovery rate, and the no-
tional amount of name i, respectively, i = 1, . . . , n. Under the factor model (1),
we have {τi ≤ t} = {Ai(t) ≤ Ki(t)} with Ki(t) = H

[−1]
1 (pi(t)), i = 1, . . . , n.

The loss fraction on the CDO tranche [K1,K2] at time t is simply expressed
by means of Lt,n as

Lt,n(K1,K2) :=
max{min(Lt,n,K2) −K1, 0}

K2 −K1
.

We assume that the payments (premium and protection legs) occur on pe-
riodic payment dates t1, . . . , tm. Furthermore, we assume that the CDO issuer
receives compensation at the next scheduled payment date after a default has
occurred. Note that payments are only made as long as the effective notional
of the tranche at time ti is positive. Denote τ(1), . . . , τ(n) the order statistics,
arranged in increasing order, of the random sample τ1, . . . , τn of default times.
Put t0 := 0, τ(0) := 0, and L0,n := 0. In what follows, expectations are taken
under a risk-neutral measure, that is, risk-adjusted expectations.

The expected present value of the premium leg of the tranche is the present
value of all spread payments the tranche investor expects to receive

PL(s) = sE

⎡

⎣
m∑

j=1

{
(tj − tj−1)D(0, tj)

(
1 − Ltj ,n(K1,K2)

)

+
n∑

i=1

1{tj−1<τ(i)<tj}
(
τ(i) − tj−1

)
D
(
0, τ(i)
)

×
(
Lτ(i),n(K1,K2) − Lτ(i−1),n(K1,K2)

)
}]

,

where D(0, tj) is the risk-free discount factor for payment date tj and s is the
spread per annum paid to the tranche investor. The term 1 − Ltj ,n(K1,K2)
is the fraction of the tranche notional outstanding on payment date tj and
reflects the decline in notional as defaults affect the tranche. The second term
in the sum over j corresponds to the discounted sum of accrual payments the
tranche investor receives when defaults occur between payment dates. They
are paid at the next payment date and are based on the previous effective
tranche notional.
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The expected present value of the protection leg of the tranche is the
discounted sum of the expected payments the tranche investor must make
when defaults affect the tranche:

LL = E

⎡

⎣
m∑

j=1

D(0, tj)
n∑

i=1

1{tj−1<τ(i)<tj}
(
Lτ(i),n(K1,K2) − Lτ(i−1),n(K1,K2)

)
⎤

⎦.

The fair tranche premium spar is then the spread s solving PL(s) = LL. As a
consequence, the periodic payment received by the tranche investor from the
CDO issuer in return for bearing the risk of losses is equal to spar times the
effective outstanding notional of the tranche.

Now, assume a homogeneous portfolio. Recall that all obligors have the
same default barrier Ki(t) = K(t), the same recovery rate Ri = R, and the
same notional amount Ni = N/n. Each of the n obligors either takes no
loss or a loss of (1 − R)(N/n) so that multiplying the number of defaults
by (1 − R)(N/n) gives losses. Clearly, Lt,n reduces to the loss fraction LHP

t,n

defined in (2). It follows that the expected loss fraction on the portfolio at
time t is

E[LHP
t,n ] =

1 −R

n

n∑

k=0

k P

(
LHP
t,n =

k(1 −R)
n

)
,

and, denoting LHP
t,n (K1,K2) := Lt,n(K1,K2), that the expected loss fraction

on the CDO tranche [K1,K2] at time t is

E[LHP
t,n (K1,K2)]

=
1

K2 −K1

n∑

k=0

P

(
LHP
t,n =

k(1 −R)
n

)
max
{

min
(
k(1 −R)

n
,K2

)
−K1, 0

}
,

where P
(
LHP
t,n = (k(1 −R))/n

)
is the probability that exactly k defaults occur

by time t, k = 0, . . . , n.
As soon as the expected loss fraction on the tranche is calculated, the com-

putation of the tranche premium becomes easy. Unfortunately, the derivation
of the fractional loss distribution on the reference portfolio is not trivial. How-
ever, under the above homogeneity assumptions, we know from Subsection 2.3
that this distribution can be approximated using the LHP approximation
method. As a consequence, this method provides an easy tool to compute
both the fractional loss distribution and the expected loss fraction on the
tranche over different time horizons.

With the LHP approximation given in (3), that is, FHP
t,n (x) = FHP

t (x/(1−
R)) for x ∈ [0, 1 − R], we compute the expected loss fraction on the CDO
tranche [K1,K2] at time t as

E[LHP
t,n (K1,K2)]

= E

[
max
{
min
(
LHP
t,n ,K2

)
−K1, 0

}

K2 −K1

]
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Table 7. Pricing of iTraxx tranches of May 4, 2006 with LHP Lévy models.

0–3% 3–6% 6–9% 9–12% 12–22% Absolute
Model/Quotes (bp) (bp) (bp) (bp) (bp) Error (bp)

Market 17 44.0 12.8 6.0 2.0
Gaussian 17 105.7 22.4 5.7 0.7 73.7
Shifted Gamma 17 44.0 19.7 11.9 6.0 16.8
Shifted IG 17 44.0 19.8 12.2 6.5 17.7
VG 17 43.9 21.8 14.1 7.8 23.0
NIG 17 44.0 24.1 17.1 11.7 32.1

= E

[
max
(
LHP
t,n −K1, 0

)
− max

(
LHP
t,n −K2, 0

)

K2 −K1

]

=
1

K2 −K1

(∫ 1−R

K1

(x−K1) dFHP
t,n (x) −

∫ 1−R

K2

(x−K2) dFHP
t,n (x)

)

=
1 −R

K2 −K1

(∫ 1

K1/(1−R)

(
x− K1

1 −R

)
dFHP

t (x)

−
∫ 1

K2/(1−R)

(
x− K2

1 −R

)
dFHP

t (x)

)
.

Similarly, the expected loss fraction on the last tranche [K, 1] at time t is
given by

E[LHP
t,n (K, 1)] = E

[
max
(
LHP
t,n −K, 0

)

1 −K

]

=
1

1 −K

∫ 1−R

K

(x−K)dFHP
t,n (x)

=
1 −R

1 −K

∫ 1

K/(1−R)

(
x− K

1 −R

)
dFHP

t (x).

Finally, we report on a small calibration exercise of the Gaussian, shifted
gamma, shifted IG, VG, and NIG cases. We calibrate the model to the iTraxx
of the 4th of May 2006. In Table 7, one finds the market quotes together with
the calibrated model quotes for the different tranches. Note that for the 0–3%
tranche, the upfront is quoted with a 500 bp running.
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Summary. We study the effect of risk aversion on the valuation of credit deriva-
tives. Using the technology of utility-indifference valuation in intensity-based models
of default risk, we analyze resulting yield spreads for single-name defaultable bonds
and a simple representative two-name credit derivative. The impact of risk averse
valuation on prices and yield spreads is expressed in terms of “effective correlation.”

Key words: Credit derivatives; indifference pricing; reaction–diffusion equations.

1 Introduction

In this article, we analyze the impact of risk aversion on the valuation of de-
faultable bonds and a simple multiname credit derivative. Our approach is to
work within intensity-based models, as initiated by, among others, Artzner
and Delbaen [1], Madan and Unal [26], Lando [23], and Jarrow and Turnbull
[19]. In these models, a firm’s default time is modeled directly by a totally
inaccessible stopping time, typically the first jump of a Cox process. However,
rather than pricing using no-arbitrage arguments, we apply the utility-based
valuation methodology, which entails analysis of portfolio optimization prob-
lems under default risk.

A major limitation of many traditional approaches is the inability to cap-
ture and explain high premiums observed in credit derivatives markets for
unlikely events, for example, the spreads quoted for senior tranches of col-
laterized debt obligations (CDOs) written on investment grade firms. The
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approach explored here, and in our related work [29], aims to explain such
phenomena as a consequence of tranche holders’ risk aversion, and to quan-
tify this through the mechanism of utility-indifference valuation. For a gen-
eral introduction to credit risk, including other approaches to default, such as
structural models, we refer, for example, to the books [5; 13; 24; 27].

1.1 Valuation Mechanisms

In complete financial market environments, such as in the classical Black–
Scholes model, the payoffs of derivative securities can be replicated by trading
strategies in the underlying securities, and their prices are naturally deduced
from the value of these associated portfolios. However, once nontraded risks,
such as unpredictable defaults, are considered, the possibility of replication
and, therefore, risk elimination breaks down and alternative ways are needed
for the quantification of risk and assignation of price. One approach is to
use market derivatives data, when available, to identify which of the many
feasible arbitrage-free pricing measures is consistent with market prices. In
a different direction, valuation of claims involving nontradable risks can be
based on optimality of decisions once this claim is incorporated in the in-
vestor’s portfolio. Naturally, the risk attitude of the individual needs to be
taken into account, and this is typically modeled by a concave and increasing
utility function U . In a static framework, prices are determined through the
certainty equivalent, otherwise known as the principle of equivalent utility [6;
17]. The utility-based value of the claim, written on the risk Y and yielding
payoff C (Y ), is ν (C) = U−1 {EP [U (C(Y ))]}. Note that the arbitrage-free
price and the certainty-equivalent price are very different. The first is linear
and uses the risk-neutral measure. The certainty-equivalent price is nonlinear
and uses the historical assessment of risks.

Prompted by the ever-increasing number of applications (event risk-
sensitive claims, insurance plans, mortgages, weather derivatives, etc.), con-
siderable effort has been put into analyzing the utility-based valuation mech-
anism. Due to the prevalence of instruments dependent on nonmarket risks
(such as default), there is a great need for building new dynamic pricing rules.
These rules should identify and price unhedgeable risks and, at the same time,
build optimal risk-monitoring policies. In this direction, a dynamic utility-
based pricing theory has been developed producing the so-called indifference
prices. The approach is based on finding the amount at which the buyer of the
claim is indifferent, in terms of maximum expected utility, between holding
or not holding the derivative. Specification of the indifference price requires
understanding how investors act optimally with or without the derivative at
hand. These issues are naturally addressed through stochastic optimization
problems of expected utility maximization. We refer to [21; 22] and [8] as
classical references in this area. The indifference approach was initiated for
European claims by Hodges and Neuberger [18] and further extended by Davis
et al. [10].
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1.2 Credit Derivatives

As well as single-name securities, such as credit default swaps (CDSs), in
which there is a relatively liquid market, basket, or multiname, products have
generated considerable over-the-counter activity. Popular cases are collateral-
ized debt obligations, whose payoffs depend on the default events of a basket
portfolio of up to 300 firms, over a five-year period. As long as there are no
defaults, investors in CDO tranches enjoy high yields, but, as defaults start
occurring, they affect first the high-yield equity tranche, then the mezzanine
tranches, and, perhaps, the senior and super-senior tranches. See Davis and
Lo [9] or Elizalde [15] for a concise introduction to these products.

The focus of modeling in the credit derivatives industry has been on cor-
relation between default times. Partly, this is due to the adoption of the one-
factor Gaussian copula model as industry standard and the practice (up until
recently) of analyzing tranche prices through implied correlation. This re-
vealed that traded prices of senior tranches could only be realized through
these models with an implausibly high correlation parameter, the so-called
correlation smile.

Rather than focusing on models with “enough correlation” to reproduce
market observations via traditional no-arbitrage pricing, our goal is to under-
stand the effects of risk aversion on valuation of single- and two-name credit
derivatives. Questions of interest are (i) how does risk aversion affect the value
of portfolios that are sensitive to the potential default of a number of firms,
and so to correlation between these events, and (ii) does the nonlinearity
of the indifference pricing mechanism enhance the impact of correlation. It
seems natural that some of the prices, or spreads, seen in credit markets are
due mainly to “crash-o-phobia” in a relatively illiquid market, with the effect
enhanced nonlinearly in baskets. When super-senior tranches offer nontriv-
ial spreads (albeit a few basis points) for protection against the default risk
of 15–30% of investment grade U.S. firms over the next five years, they are
ascribing a seemingly large probability to “the end of the world as we know
it.” We seek to capture this directly as an effect of risk aversion leading to
effective or perceived correlation, in contrast to a mechanism of high direct
correlation.

Taking the opposite angle, the method of indifference valuation should be
attractive to participants in this still quite illiquid over-the-counter (OTC)
market. It is a direct way for them to quantify the default risks they face in
a portfolio of complex instruments, when calibration data are scarce. Unlike
well-developed equity and fixed-income derivatives markets, where the case
for traditional arbitrage-free valuation is more compelling, the potential for
utility valuation to account for high dimensionality in a way that is consistent
with investors’ fears of a cascade of defaults is a case for its application here.

For applications of indifference valuation to credit risk, see also Collin-
Dufresne and Hugonnier [7], Bielecki et al. [4; 3], and Shouda [28].
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1.3 Outline

In Section 2, we introduce the model used to value a single-name defaultable
bond. We study there the two utility optimization problems that lead to the
indifference price. The first is the usual Merton optimal investment problem,
and the second is the portfolio problem where the investor also holds the
corporate bond. We present the analysis under stochastic default intensity,
and give bounds on the indifference value. In the case of constant intensity,
we give the explicit formula and study the implied term structure of yield
spreads.

In Section 3, we take a first step towards extending the analysis to multi-
name credit derivatives, by looking at a simple two-name example. This high-
lights the key role of a diversity coefficient in indifference valuation. In the case
of constant intensities, we study the indifference value as a function of the ma-
turity, and describe the correlating effect of the utility valuation mechanism.
We conclude in Section 4.

2 Indifference Valuation: Single Name

We start with single-name defaultable bonds to illustrate the approach. We
work within models incorporating information from the firm’s stock price S,
but unlike in a traditional structural approach, default occurs at a nonpre-
dictable stopping time τ with stochastic intensity process λ, which is corre-
lated with the firm’s stock price. These are sometimes called hybrid models
(see, e.g., [25]). The process S could alternatively be taken as the price of
another firm or index used to hedge the default risk. Of course, the choice of
the investment opportunity set affects the ensuing indifference price.

The stock price S is taken to be a geometric Brownian motion. The inten-
sity process is λ(Yt), where λ(·) is a nonnegative, locally Lipschitz, smooth,
and bounded function, and Y is a correlated diffusion. The dynamics of S and
Y are

dSt = μSt dt + σSt dW
(1)
t , S0 = S > 0,

dYt = b(Yt) dt+ a(Yt)
(
ρ dW

(1)
t +
√

1 − ρ2 dW
(2)
t

)
, Y0 = y ∈ R.

The coefficients a and b are taken to be Lipschitz functions with sublinear
growth. The processes W 1 = (W (1)

t ) and W 2 = (W (2)
t ) are independent stan-

dard Brownian motions defined on a probability space (Ω,F , P ), and we de-
note Ft the augmented σ-algebra generated by ((W (1)

u ,W
(2)
u ); 0 ≤ u ≤ t). The

parameter ρ ∈ (−1, 1) measures the instantaneous correlation between shocks
to the stock price S and shocks to the intensity-driving process Y . In applica-
tions, it is natural to expect that λ(·) and ρ are specified in a way such that
the intensity tends to rise when the stock price falls. Random fluctuations
in the default intensity may be due to economywide factors, as well as firm-
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or industry-specific issues that cause yield spreads to change. They may also
incorporate the effects of ratings changes. We refer to [13, Chapter 3] for a
detailed discussion.

The default time τ of the firm is defined by

τ = inf
{
t ≥ 0 :

∫ t

0

λ(Ys) ds = ξ

}
,

the first time the cumulated intensity reaches the standard exponentially dis-
tributed random variable ξ, which is independent of the Brownian motions.

2.1 Maximal Expected Utility Problem

Let T < ∞ denote our finite fixed horizon, chosen later to coincide with the
expiration date of the derivative contract of interest. We consider the portfolio
problem of an investor who can trade the stock S and has access to a riskless
money market account that pays interest at rate r. The investor’s control
process is πt, representing the dollar amount held in the stock at time t, until
τ ∧ T . For t < τ ∧ T , her wealth process X = (Xt) follows

dXt = πt
dSt
St

+ r(Xt − πt) dt

= (rXt + πt(μ− r)) dt + σπt dW
(1)
t .

The control π = (πt) is called admissible if it is Ft-measurable and satisfies
the integrability constraint E[

∫ T
0 π2

s ds] < ∞. The set of admissible policies is
denoted A.

If the default event occurs before T , the investor can no longer trade the
firm’s stock. She has to liquidate holdings in the stock and deposit in the
bank account, so the effect is to reduce her investment opportunities. For
simplicity, we assume she receives full predefault market value on her stock
holdings on liquidation, although one might extend to consider some loss, or
jump downwards in the stock price at the default time (see, e.g., [25] for such
a model). Therefore, given that τ < T , for τ ≤ t ≤ T , we have

Xt = Xτe
r(t−τ),

as the bank account is the only remaining investment.
We work with exponential utility of discounted (to time zero) wealth. We

are first interested in the optimal investment problem up to time T of the
investor who does not hold any derivative security. At time zero, the maximum
expected utility payoff then takes the form

sup
π∈A

E
[
−e−γ(e−rTXT )1{τ>T} + (−e−γ(e−rτXτ ))1{τ≤T}

]
.
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We switch to the discounted variable Xt  → e−rtXt and excess growth rate
μ  → μ− r; with a slight abuse, we use the same notation.

Next, we consider the stochastic control problem initiated at time t ≤ T ,
and define the default time τt by

τt = inf
{
s ≥ t :

∫ s

t

λ(Yu) du = ξ

}
,

where ξ is an independent standard exponential random variable.
In the absence of the defaultable claim, the investor’s value function is

given by

M(t, x, y) = sup
π∈A

Et,x,y
[
−e−γXT 1{τt>T} + (−e−γXτt )1{τt≤T}

]
, (1)

where Et,x,y[·] = E[· | Xt = x, Yt = y].

Proposition 1. The value function M : [0, T ] × R × R → R
− is the unique

viscosity solution in the class of functions that are concave and increasing in x,
and uniformly bounded in y of the Hamilton–Jacobi–Bellman (HJB) equation

Mt + LyM + max
π

{
1
2
σ2π2Mxx + π(ρσa(y)Mxy + μMx)

}

+ λ(y)(−e−γx −M) = 0, (2)

with M(T, x, y) = −e−γx and

Ly =
1
2
a(y)2

∂2

∂y2
+ b(y)

∂

∂y
.

Proof. The proof follows by extension of the arguments used in Theorem 4.1
of Duffie and Zariphopoulou [14] and is omitted. 
�

2.2 Bondholder’s Problem and Indifference Price

We now consider the same problem from the point of view of an investor who
owns a defaultable bond of the firm. The bond pays $1 on date T if the firm
has survived until then. Defining c = e−rT , we have the bondholder’s value
function

H(t, x, y) = sup
π∈A

Et,x,y

[
−e−γ(XT +c)1{τt>T} + (−e−γXτt )1{τt≤T}

]
. (3)

As in Proposition 1 for the plain investor’s value function M , we have the
following HJB characterization.
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Proposition 2. The value function H : [0, T ] × R × R → R
− is the unique

viscosity solution in the class of functions that are concave and increasing in
x, and uniformly bounded in y of the HJB equation

Ht+LyH+max
π

{
1
2
σ2π2Hxx + π(ρσa(y)Hxy + μHx)

}
+λ(y)(−e−γx−H) = 0,

(4)
with H(T, x, y) = −e−γ(x+c).

The indifference value of the defaultable bond, from the point of view of the
bondholder, is the reduction in his initial wealth level such that his maximum
expected utility H is the same as the plain investor’s value function M .

Definition 1. The buyer’s indifference price p0(T ) (at time zero) of a de-
faultable bond with expiration date T is defined by

M(0, x, y) = H(0, x− p0, y). (5)

The indifference price at times 0 < t < T can be defined similarly, with
minor modifications to the previous calculations (in particular, with quantities
discounted to time t dollars.)

2.3 Variational Results

In this section, we present some simple bounds for the value functions and
the indifference price introduced above.

Proposition 3. The value functions M and H satisfy, respectively,

−e−γx ≤ M(t, x, y) ≤ −e−γx−(μ2/2σ2)(T−t), (6)

and

−e−γx + (e−γx − e−γ(x+c))P (τt > T | Yt = y) ≤ H(t, x, y)

≤ −e−γ(x+c)−(μ2/2σ2)(T−t).(7)

Proof. We start with establishing (6). We first observe that the function
M̃(t, x, y) = −e−γx is a subsolution of the HJB equation (2). Moreover,
M̃(T, x, y) = M(T, x, y). The lower bound then follows from the compari-
son principle. 
�

Similarly, testing the function

M̃(t, x, y) = −e−γx−(μ2/2σ2)(T−t)
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yields

M̃t +LyM̃ + max
π

{
1
2
σ2π2M̃xx + π(ρσa(y)M̃xy + μM̃x)

}

+ λ(y)
(
−e−γx + e−γx−(μ2/2σ2)(T−t)

)

= λ(y)e−γx
(
e−(μ2/2σ2)(T−t) − 1

)
≤ 0.

Therefore, M̃ is a supersolution, with M̃(T, x, y) = M(T, x, y), and the upper
bound follows.

Next, we establish (7). To obtain the lower bound, we follow the sub-
optimal policy of investing exclusively in the default-free bank account (i.e.,
taking π ≡ 0). Then

H(t, x, y) ≥ Et,x,y

[
−e−γ(x+c)1{τt>T} + (−e−γx)1{τt≤T}

]

= −e−γ(x+c)P (τt > T | Yt = y) + (−e−γx)P (τt ≤ T | Yt = y)
= −e−γx + (e−γx − e−γ(x+c))P (τt > T | Yt = y),

and the lower bound follows. The upper bound is established by testing the
function

H̃(t, x, y) = −e−γ(x+c)−(μ2/2σ2)(T−t)

in the HJB equation (4) for H , and showing that H̃ is a supersolution. �

Remark 1. The bounds given above reflect that, in the presence of default, the
value functions are bounded between the solutions of two extreme cases. For
example, the lower bounds correspond to a degenerate market (only the bank
account available for trading in [0, T ]), and the upper bounds correspond to
the standard Merton case with no default risk.

2.4 Reduction to Reaction–Diffusion Equations

The HJB equation (2) can be simplified by the familiar distortion scaling

M(t, x, y) = −e−γxu(t, y)1/(1−ρ
2), (8)

with u : [0, T ]× R → R
+ solving the reaction–diffusion equation

ut + L̃yu− (1 − ρ2)
(
μ2

2σ2
+ λ(y)

)
u+ (1 − ρ2)λ(y)u−θ = 0, (9)

u(T, y) = 1,

where

θ =
ρ2

1 − ρ2
,
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and
L̃y = Ly −

ρμ

σ
a(y)

∂

∂y
. (10)

Similar equations arise in other utility problems in incomplete markets, for
example, in portfolio choice with recursive utility [30], valuation of mortgage-
backed securities [31], and life-insurance problems [2]. One might work first
with (9) and then provide the verification results for the HJB equation (2),
because the solutions of (2) and (9) are related through (8). It is worth noting,
however, that the reaction–diffusion equation (9) does not belong to the class
of such equations with Lipschitz reaction term. Therefore, more detailed anal-
ysis is needed for directly establishing existence, uniqueness, and regularity
results. In the context of a portfolio choice problem with stochastic differential
utilities, the analysis can be found in [30]. The equation at hand is slightly
more complicated than the one analyzed there, in that the reaction term has
the multiplicative intensity factor. Because λ(·) is taken to be bounded and
Lipschitz, an adaptation of the arguments in [30] can be used to show that
the reaction–diffusion problem (9) has a unique bounded and smooth solution.
Furthermore, using (8) and the bounds obtained for M in Proposition 3, we
have

e−(1−ρ2)(μ2/2σ2)(T−t) ≤ u(t, y) ≤ 1.

For the bondholder’s value function, the transformation

H(t, x, y) = −e−γ(x+c)w(t, y)1/(1−ρ
2)

reduces to

wt + L̃yw − (1 − ρ2)
(
μ2

2σ2
+ λ(y)

)
w + (1 − ρ2)eγcλ(y)w−θ = 0, (11)

w(T, y) = 1,

which is a similar reaction–diffusion equation as (9). The only difference is the
coefficient eγc > 1 in front of the reaction term. Existence of a unique smooth
and bounded solution follows similarly.

The following lemma gives a relationship between u and w.

Lemma 1. Let u and w be solutions of the reaction–diffusion problems (9)
and (11). Then

u(t, y) ≤ w(t, y) for (t, y) ∈ [0, T ]× R.

Proof. We have u(T, y) = w(T, y) = 1. Moreover, because eγc > 1 and λ > 0,

(1 − ρ2)eγcλ(y)w−θ > (1 − ρ2)λ(y)w−θ ,

which yields

wt + L̃yw − (1 − ρ2)
(
μ2

2σ2
+ λ(y)

)
w + (1 − ρ2)λ(y)w−θ < 0.

Therefore, w is a supersolution of (9), and the result follows. 
�
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From this, we easily obtain the following sensible bounds on the indiffer-
ence value of the defaultable bond, and the yield spread.

Proposition 4. The indifference bond price p0 in (5) is given by

p0(T ) = e−rT − 1
γ(1 − ρ2)

log
(
w(0, y)
u(0, y)

)
, (12)

and satisfies p0(T ) ≤ e−rT . The yield spread defined by

Y0(T ) = − 1
T

log(p0(T )) − r

is nonnegative for all T > 0.

Remark 2. We denote the seller’s indifference price by p̃0(T ). In order to con-
struct it, we replace c by −c in the definition (3) of the value function H and
in the ensuing transformations. If w̃ is the solution of

w̃t + L̃yw̃ − (1 − ρ2)
(
μ2

2σ2
+ λ(y)

)
w̃ + (1 − ρ2)e−γcλ(y)w̃−θ = 0, (13)

with w̃(T, y) = 1, then

p̃0(T ) = e−rT − 1
γ(1 − ρ2)

log
( u
w̃

)
.

Using comparison results, we obtain u > w̃ as e−γc < 1. Therefore p̃0(T ) ≤
e−rT , and the seller’s yield spread is nonnegative for all T > 0.

2.5 Connection with Relative Entropy Minimization

For completeness, we connect the HJB equations characterizing the primal
optimal investment problem that we study with the dual problem of relative
entropy minimization. The reader can skip this section without affecting the
understanding of the rest of the paper.

Let G be the bounded FT -measurable payoff of a credit derivative, and let
P denote the primal problem’s value (for simplicity, at time zero):

P = sup
π∈A

E
[
−e−γ(Xτ∧T +G1{τ>T})

]
.

In our problem (3), we have G = c.
As is well known, under quite general conditions, we have the duality

relation
P = −e−γx−γD,

where x is the initial wealth and D is the value of the dual optimization
problem:
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D = inf
Q∈Pf

(
EQ[G] +

1
γ
H(Q|P )

)
. (14)

Here H(Q|P ) is the relative entropy between Q and P , namely,

H(Q|P ) =

{
E
[
dQ
dP log

(
dQ
dP

)]
, Q� P ,

∞, otherwise.
(15)

In (14), Pf denotes the set of absolutely continuous local martingale measures
with finite relative entropy with respect to P . We refer the reader to [11; 20]
for full details.

We now derive the related HJB equation for the dual problem. This ap-
proach is taken in [3]. Under Q ∈ Pf , the stock price S is a local martingale,
but the intensity-driving process Y need not be. Under mild regularity condi-
tions, the measure change from P to Q is parameterized by a pair of adapted
processes, ψt and φt ≥ 0, with

EQ

[∫ T

0

ψ2
t dt

]
< ∞, and

∫ T

0

φtλ(Yt) dt < ∞ a.s.,

such that

dSt = σSt dW
Q(1)
t ,

dYt =
(
b(Yt) −

ρμ

σ
a(Yt) − ψtρ

′a(Yt)
)
dt+ a(Yt)

(
ρ dW

Q(1)
t + ρ′ dW

Q(2)
t

)
,

and the intensity is
λQt = φtλ(Yt).

Here, WQ(1) and WQ(2) are independent Q-Brownian motions, and ρ′ =√
1 − ρ2. The control ψ can be interpreted as a risk premium for the non-

traded component of Y , whereas φ directly affects the stochastic intensity.
The Radon–Nikodym derivative is given by (cf., e.g., [12, Appendix E])

log
dQ

dP
= 1{τ<T}logφτ −

1
2

∫ τ∧T

0

(
μ2

σ2
+ ψ2

t

)
dt−
∫ τ∧T

0

μ

σ
dW

(1)
t

−
∫ τ∧T

0

ψt dW
(2)
t +
∫ τ∧T

0

(1 − φt)λ(Yt) dt.

Therefore, we have the expression

H(Q|P ) = EQ
[
1{τ<T}logφτ

]
+
∫ τ∧T

0

(
μ2

2σ2
+

1
2
ψ2
t + (1 − φt)λ(Yt)

)
dt.

In passing to the associated HJB equation, we use the fact that if φ is
bounded and adapted to the filtration generated by the two Brownian motions,
then τ retains the so-called “doubly stochastic” property under Q. This means
that, conditioned on the path of Y , the distribution of τ under Q is given by
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PQ (τ > t | (Ys)0≤s≤t) = e−
∫

t
0 φsλ(Ys) ds.

We henceforth assume G is bounded and of European-type, in the sense that
G = G(YT ) (note that the payoff does not depend on the stock). In the
defaultable bond case of interest, G is a constant.

We are thus led to define the stochastic optimization problem

J(t, y) = inf
ψ;φ≥0

EQt,y

[
γEt,TG

+
∫ T

t

(
μ2

2σ2
+

1
2
ψ2
s + (1 − φs)λ(Ys) + φsλ(Ys) logφs

)
Et,s ds

]
,

where
Et,s = e−

∫ s
t
φuλ(Yu) du.

The associated HJB equation is

Jt + L̃yJ +
μ2

2σ2
+ λ(y) + inf

ψ

(
1
2
ψ2 − ψρ′a(y)Jy

)

+ inf
φ≥0

(
φλ(y) log φ− (J + 1)φλ(y)

)
= 0,

with J(T, y) = γG(y), and L̃ as in (10). In turn, the optimizing φ is given by
φ∗ = eJ , so we have

Jt + L̃yJ +
μ2

2σ2
− 1

2
(1 − ρ2)a(y)2J2

y + λ(y)(1 − eJ) = 0.

Finally, setting G = c = e−rT and making the transformation

J = γc− 1
(1 − ρ2)

logw

recovers the reaction–diffusion equation (11).

2.6 Intensity Bounds

We next investigate the behavior of the prices with respect to the intensity
process. Specifically, we assume that, for y ∈ R,

0 < λ ≤ λ(y) ≤ λ̄ < ∞. (16)

Proposition 5. Let

ᾱ =
μ2

2σ2
+ λ̄, and α =

μ2

2σ2
+ λ.

Then, under assumption (16), the value functions M and H satisfy for x, y ∈
R,
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−
[(

1 − λ̄

ᾱ

)
e−ᾱ(T−t) +

λ̄

ᾱ

]
≤ eγxM(t, x, y) ≤ −

[(
1 − λ

α

)
e−α(T−t) +

λ

α

]
,

(17)
and

−
[(

1 − λ̄eγc

ᾱ

)
e−ᾱ(T−t) +

λ̄eγc

ᾱ

]
≤ eγ(x+c)H(t, x, y)

≤ −
[(

1 − λeγc

α

)
e−α(T−t) +

λeγc

α

]
.

(18)

Proof. To show (17), we introduce the function

M̄(t, x, y) = −e−γx
[(

1 − λ̄

ᾱ

)
e−ᾱ(T−t) +

λ̄

ᾱ

]
.

Direct calculations show that, for x ∈ R, t ∈ [0, T ],

M̄(t, x, y) ≥ −e−γx,

and that

M̄t+LyM̄+max
π

{
1
2
σ2π2M̄xx+π(ρσa(y)M̄xy+μM̄x)

}
+λ(y)(−e−γx−M̄) ≥ 0.

M̄t + LyM̄ + max
π

{
1
2
σ2π2M̄xx + π(ρσa(y)M̄xy + μM̄x)

}

+ λ(y)(−e−γx − M̄) ≥ 0.

Moreover, M̄(T, x, y) = −e−γx. We easily conclude using the comparison prin-
ciple. The other bounds are obtained similarly. 
�

Proposition 6. The indifference price satisfies

− 1
γ

log

⎛

⎝

(
1 − λ̄eγc

ᾱ

)
e−ᾱ(T−t) + λ̄eγc

ᾱ(
1 − λ

α

)
e−α(T−t) + λ

α

⎞

⎠ ≤ (p0 − e−rT )

≤ − 1
γ

log

⎛

⎝

(
1 − λeγc

α

)
e−α(T−t) + λeγc

α(
1 − λ̄

ᾱ

)
e−ᾱ(T−t) + λ̄

ᾱ

⎞

⎠ .

Proof. The assertion follows from the definition of the indifference price and
the inequalities (17) and (18). 
�
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2.7 Constant Intensity Case

We study explicitly the case of constant intensity, when the default time τ is
independent of the level of the firm’s stock price S, and is simply an exponen-
tial random variable with parameter λ. This simplified structure is employed
in the multiname models that we analyze for CDO valuation in [29].

Proposition 7. When λ is constant, the indifference price p0(T ) (at time
zero) of the defaultable bond expiring on date T is given by

p0(T ) = e−rT − 1
γ

log

(
e−αT + λ

αe
γc
(
1 − e−αT

)

e−αT + λ
α (1 − e−αT )

)
, (19)

where

α =
μ2

2σ2
+ λ.

Proof. We construct the explicit solutions of the HJB equations solved by the
two value functions M and H . When λ is constant, the value functions M
and H do not depend on y, and the HJB equation (2) reduces to

Mt −
μ2

2σ2

M2
x

Mxx
+ λ(−e−γx −M) = 0, (20)

with M(T, x) = −e−γx. Substituting M(t, x) = −e−γxm(t), we obtain

m′ − αm + λ = 0,

with m(T ) = 1, and α as above. The unique solution is

m(t) = e−α(T−t) +
λ

α

(
1 − e−α(T−t)

)
.

Similarly, the defaultable bondholder’s value function H(t, x) satisfies the
same equation as M , but with terminal condition H(T, x) = −e−γ(x+c). Sub-
stituting H(t, x) = −e−γ(x+c)h(t), we obtain h′−αh+λeγc = 0,with h(T ) = 1.
The unique solution is

h(t) = e−α(T−t) +
λeγc

α

(
1 − e−α(T−t)

)
.

We easily deduce that the indifference price of the defaultable bond at
time zero is given by

p0(T ) = e−rT − 1
γ

log
(
h(0)
m(0)

)
,

leading to formula (19). 
�
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Fig. 1. Single-name buyer’s and seller’s indifference yield spreads. The parameters
are λ = 0.1, along with μ = 0.09, r = 0.03, and σ = 0.15. The curves correspond to
different risk aversion parameters γ and the arrows show the direction of increasing
γ over the values (0.01, 0.1, 0.25, 0.5, 0.75, 1).

Remark 3. The seller’s indifference price is given by

p̃0(T ) = e−rT +
1
γ

log

(
e−αT + λ

αe
−γc (1 − e−αT

)

e−αT + λ
α (1 − e−αT )

)
.

A plot of the yield spreads Y0(T ) = −(1/T ) log(p0(T )/e−rT ) for the buyer,
and similarly Ỹ0(T ) for the seller, for various risk aversion coefficients, is
shown in Figure 1. Observe that both spread curves are, in general, sloping,
so the spreads are not flat even though we started with a constant intensity
model. Although the seller’s curve is upward sloping, the buyer’s may become
downward sloping when the risk aversion is large enough. Upward sloping
yield spreads are commonly observed in market data; see, for example, [13,
Figure 6.8] and [16, Figures 7, 8]. The short-term limit of the yield spread is
nonzero, as we would expect in the presence of nonpredictable defaults. For
the buyer’s yield spread, we have

lim
T↓0

Y0(T ) =
(eγ − 1)

γ
λ,
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which is larger than λ because γ > 0. This is amplified as γ becomes larger.
In other words, the buyer values the claim as though the intensity were larger
than the historically estimated value λ. The seller, on the other hand, values
short-term claims as though the intensity were lower, because

lim
T↓0

Ỹ0(T ) =
(1 − e−γ)

γ
λ ≤ λ.

The long-term limit for both buyer’s and seller’s spread is simply α,

lim
T→∞

Y0(T ) = lim
T→∞

Ỹ0(T ) =
μ2

2σ2
+ λ,

which is always larger than λ. Both long-term yield spreads converge to the
intensity plus a term proportional to the square of the Sharpe ratio of the
firm’s stock.

3 A Two-Name Credit Derivative

To illustrate how the nonlinearity of the utility indifference valuation mecha-
nism affects basket or multiname claims, we look at the case of two (N = 2)
firms. The more realistic application to CDOs, where N might be on the order
of a hundred, is studied in [29]. As with other approaches to these problems,
particularly copula models, it becomes necessary to make substantial simplifi-
cations, typically involving some sort of symmetry assumption, in order to be
able to handle the high-dimensional computational challenge. For example, in
the one-factor copula model, the default times have the same pairwise correla-
tion. Often, the single-name default probabilities and the losses-given-default
are assumed to be identical, so the basket is homogeneous, or exchangeable:
it does not specify which names default, just how many of them.

We assume throughout this section that intensities are constant or, equiv-
alently, that the default times of the firms are independent.

The firms’ stock prices processes (S(i)) follow geometric Brownian motions:

dS
(i)
t

S
(i)
t

= (r + μi) dt+ σi dW
(i)
t , i = 1, 2,

where (W (i)) are Brownian motions with instantaneous correlation coefficient
ρ ∈ (−1, 1) and volatilities σi > 0. The two firms have independent exponen-
tially distributed default times τ1 and τ2, with intensities λ1 and λ2, respec-
tively. We let τ = min(τ1, τ2), and value a claim that pays $1 if both firms
survive until time T , and zero otherwise.

While both firms are alive, investors can trade the two stocks and the
risk-free money market. When one defaults, its stock can no longer be traded,
and if the second also subsequently defaults, the portfolio is invested entirely
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in the bank account. As in the single-name case, we work with discounted
wealth X , and μi denotes the excess growth rate of the ith stock. The control
processes π(i) are the dollar amount held in each stock, and the discounted
wealth process X evolves according to

dXt =
2∑

i=1

π
(i)
t 1{τi>t}μi dt+

2∑

i=1

π
(i)
t 1{τi>t}σi dW

(i)
t .

When both firms are alive, the investor’s objective is to maximize her expected
utility from terminal wealth,

sup
π(1), π(2)

E
[
−e−γXT

]
.

To solve the problem, we need to recursively deal with the cases when
there are no firms left, when there is one firm left, and, finally, when both
firms are present. Let M (j)(t, x) denote the value function of the investor who
starts at time t ≤ T , with wealth x, when there are j ∈ {0, 1, 2} firms available
to invest in. In the case j = 1, we denote by M

(j)
i (t, x) the subcases when it

is the firm i ∈ {1, 2} that is alive.
When there are no firms left, we have the value function

M (0)(t, x) = −e−γx. (21)

When only firm i is alive, we have the single-name value functions computed
in the proof of Proposition 7, namely,

M
(1)
i (t, x) = −e−γxv(1)

i (t),

where
v
(1)
i (t) = e−αi(T−t) +

λi
αi

(
1 − e−αi(T−t)

)
, (22)

and

αi =
μ2
i

2σ2
i

+ λi.

When both firms are alive, the value function M (2)(t, x) solves

M
(2)
t − 1

2
D2

(M (2)
x )2

M
(2)
xx

+
2∑

i=1

λi(M
(1)
i −M (2)) = 0, (23)

with M (2)(T, x) = −e−γx. Here, the diversity coefficient D2 is given by

D2 = μTA−1μ,

where

μ =
(
μ1

μ2

)
and A =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.
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Evaluating D2 yields

D2 =
μ2

1

σ2
1

+
1

(1 − ρ2)

(
ρ
μ1

σ1
+
μ2

σ2

)2

. (24)

Remark 4. In the single-name case (with constant intensity), the analogue of
(23) is (20). It is clear that the analogue of D2 would be D1 = μ2

1/σ
2
1 (if

it is firm 1, e.g., in question), the square of the Sharpe ratio of the stock
S(1). The formula (24) implies D2 ≥ μ2

1/σ
2
1 , and, by interchanging subscripts,

D2 ≥ μ2
2/σ

2
2 . Therefore, it is natural to think of D2 as a measure of the

improved investment opportunity set offered by the diversity of having two
stocks in which to invest. This idea may be naturally extended to N > 2
dimensions (see [29]).

Proposition 8. The value function M (2)(t, x), solving (23), is given by

M (2)(t, x) = −e−γxv(2)(t), (25)

where

v(2)(t) = e−α1,2(T−t) +
2∑

i=1

λi

[(
1 − λ1

α1

)
1

(α1,2 − αi)
(
e−αi(T−t) − e−α1,2(T−t)

)
+

λi
αiα1,2

(
1 − e−α1,2(T−t)

)]
, (26)

and α1,2 = D2 + λ1 + λ2.

Proof. Inserting (25) into (23) gives the following ODE for v(2)(t),

d

dt
v(2) − α1,2v +

2∑

i=1

λiv
(1)
i (t) = 0,

with v(2)(T ) = 1. Using the formula (22) for v(1)
i and solving the ODE leads

to (26). 
�
We next consider the investment problem for the holder of the basket claim

that pays $1 if both firms survive up to time T . With c = e−rT as before, the
value function H(2)(t, x) for the claimholder, starting with wealth x at time
t ≤ T when both firms are still alive, solves

H
(2)
t − 1

2
D2

(H(2)
x )2

H
(2)
xx

+
2∑

i=1

λi(M
(1)
i −H(2)) = 0, (27)

with H(2)(T, x) = −e−γ(x+c). Notice that in the case of this simple claim, we
do not have to consider separately the case of one or no firm left because the
claim pays nothing in these cases. Once one firm defaults, the bond holder’s
problem reduces to the previous case of no claim. In general, however, for a
more complicated claim, there will be a chain of value functions H(j).

Working as above, we can show the following.
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Proposition 9. The value function H(2)(t, x), solution of (27), is given by

H(2)(t, x) = −e−γ(x+c)w(2)(t), (28)

where

w(2)(t) = e−α1,2(T−t) +
2∑

i=1

λie
γc

[(
1 − λ1

α1

)
1

(α1,2 − αi)
(29)

(
e−αi(T−t) − e−α1,2(T−t)

)
+

λi
αiα1,2

(
1 − e−α1,2(T−t)

)]
.

Finally, the buyer’s indifference price at time zero of the claim with ma-
turity T is given by

p0(T ) = c+
1
γ

log
(
v(2)(0)
w(2)(0)

)
.

Next, we collect the analogous formulas for the seller of the claim, which
are found by straightforward calculations, in the following proposition.

Proposition 10. The value function of the seller is given by

H̃(2)(t, x) = −e−γ(x−c)w̃(2)(t),

where

w̃(2)(t) = e−α1,2(T−t) +
2∑

i=1

λie
−γc
[(

1 − λ1

α1

)
1

(α1,2 − αi)
(
e−αi(T−t) − e−α1,2(T−t)

)
+

λi
αiα1,2

(
1 − e−α1,2(T−t)

)]
.

The seller’s indifference price of the claim with maturity T at time zero is
given by

p0(T ) = c− 1
γ

log
(
v(2)(0)
w̃(2)(0)

)
.

A plot of the yield spreads,

Y0(T ) = − 1
T

log(p0(T )/e−rT )

for the buyer, and similarly for the seller, for various risk aversion coefficients,
is shown in Figure 2. As in the single-name case, both spread curves are, in
general, sloping, so the spreads are not flat even though we started with a
constant intensity model. Although the seller’s curve is upward sloping, the
buyer’s may become downward sloping when the risk aversion is large enough.
The long-term limit of both buyer’s and seller’s yield spread is simply α1,2:
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Fig. 2. Buyer’s and seller’s indifference yield spreads for two-name survival claim.
The curves correspond to different risk aversion parameters γ and the arrows show
the direction of increasing γ over the values (0.01, 0.1, 0.25, 0.5, 0.75, 1). The other
parameters are: excess growth rates (0.04, 0.06), volatilities (0.2, 0.15), correlation
ρ = 0.2, and intensities (0.05, 0.1).

lim
T→∞

Y0(T ) = D2 + λ1 + λ2,

which dominates the actual joint survival probability’s hazard rate λ1 + λ2.
Another way to express the correlating effect of utility indifference valua-

tion is through the linear correlation coefficient. Let p1(T ) and p2(T ) denote
the indifference prices of the (single-name) defaultable bonds for firms 1 and
2, respectively, computed as in Section 2.7. Let p12(T ) denote the value of
the two-name survival claim, as in Proposition 9. Then we define the linear
correlation coefficient (see [27, Section 10.1]):

#(T ) =
p12(T ) − p1(T )p2(T )√

p1(T )(1 − p1(T ))p2(T )(1 − p2(T ))
.

This is plotted for different maturities, risk aversions, and for buyer and seller
in Figure 3. We observe that the correlating effect is enhanced by the more
risk averse buyer, and reduced by the risk averse seller. For both, the effect
increases over short to medium maturities, before plateauing, or dropping off
slightly.
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Fig. 3. Linear correlation coefficient �(T ) from buyer’s and seller’s indifference val-
ues for single-name and two-name survival claims. The curves correspond to different
risk aversion parameters γ and the arrows show the direction of increasing γ over
the values (0.01, 0.1, 0.25, 0.5, 0.75, 1). The other parameters are as in Figure 2.

4 Conclusions

The preceding analysis demonstrates that utility valuation produces nontrivial
yield spreads and “effective correlations” within even the simplest of intensity-
based models of default. They are able to incorporate equity market informa-
tion (growth rates, volatilities of the nondefaulted firms) as well as investor
risk aversion to provide a relative value mechanism for credit derivatives.

Here we have studied single-name defaultable bonds, whose valuation un-
der a stochastic (diffusion) intensity process leads naturally to the study of
reaction–diffusion equations. However, even with constant intensity, the yield
spreads due to risk aversion are striking. The subsequent analysis of the sim-
ple two-name claim demonstrates how nonlinear pricing can be interpreted as
high “effective correlation.” The impact on more realistic multiname basket
derivatives, such as CDOs, is investigated in detail in [29].
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Summary. We introduce a new class of dynamic utilities that are generated for-
ward in time. We discuss the associated value functions, optimal investments, and
indifference prices and we compare them with their traditional counterparts, implied
by backward dynamic utilities.

Key words: Forward dynamic utilities; time invariance; indifference valuation; min-
imal martingale measure; minimal entropy measure; incomplete markets.

1 Introduction

This paper is a contribution to integrated portfolio management in incomplete
markets. Incompleteness stems from a correlated stochastic factor affecting the
dynamics of the traded risky security (stock). The investor trades between
a riskless bond and the stock, and may incorporate in his or her portfolio
derivatives and liabilities. The optimal investment problem is embedded into
a partial equilibrium one that can be solved by the so-called utility-based
pricing approach. The optimal portfolios can be, in turn, constructed as the
sum of the policy of the plain investment problem and the indifference hedging
strategy of the associated claim.

In a variety of applications, the investment horizon and the maturities
of the claims do not coincide. This misalignment might cause price discrep-
ancies if the current optimal expected utility is not correctly specified. The
focus herein is in exploring which classes of utilities preclude such pathological
situations.
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In the traditional framework of expected utility from terminal wealth, the
correct dynamic utility is easily identified, namely, it is given by the implied
value function. Such a utility is, then, called self-generating in that it is indis-
tinguishable from the value function it produces. This is an intuitively clear
consequence of the dynamic programming principle. There are, however, two
important underlying ingredients. Firstly, the risk preferences are a priori
specified at a future time, say T, and, secondly, the utility, denoted UBt (x;T ),
is generated at previous times (0 ≤ t ≤ T ). Herein, T denotes the end of the
investment horizon and x represents the wealth argument. Due to the back-
ward in time generation, T is called the backward normalization point and
UBt (x;T ) the backward dynamic utility.

Despite their popularity, the traditional backward dynamic utilities con-
siderably constrain the set of claims that can be priced to the ones that expire
before the normalization point T . Moreover, even in the absence of payoffs and
liabilities, utilities of terminal wealth do not seem to capture very accurately
changes in the risk attitude as the market environment evolves. In many as-
pects, in the familiar utility framework utilities “move” backwards in time
and market shocks are revealed forward in time.

Motivated by such considerations, the authors recently introduced the no-
tion of forward dynamic utilities (see Musiela and Zariphopoulou [23; 24]) in
a simple multiperiod incomplete binomial model. These utilities, as with their
backward counterparts, are created via an expected criterion, but in contrast,
they evolve forward in time. Specifically, they are determined today, say at
s, and they are generated for future times, via a self-generating criterion. In
other words, the forward dynamic utility UFt (x; s) is normalized at the present
time and not at the end of the generic investment horizon.

In this paper, we extend the notion of forward dynamic utilities in a dif-
fusion model with a correlated stochastic factor. For simplicity, we assume
that the utility data, at both backward and forward normalization points, are
taken to be of exponential type with constant risk aversion. This assumption
can be relaxed without losing the fundamental properties of the dynamic util-
ities. We also concentrate our analysis on European-type liabilities so that
closed-form variational results can be obtained.

The two classes of dynamic utilities, as well as the emerging prices and
investment strategies, have similarities but also striking differences. As men-
tioned above, both utilities are self-generating and, therefore, price discrepan-
cies are precluded in the associated backward and forward indifference pricing
systems. A consequence of self-generation is that an investor endowed with
backward and forward utilities receives the same dynamic utility across dif-
ferent investment horizons. It is worth noting that although the backward
dynamic utility is unique, the forward one might not be.

The associated indifference prices have very distinct characteristics. Back-
ward indifference prices depend on the backward normalization point (and,
thus, implicitly on the trading horizon) even if the claim matures before
T . However, forward indifference prices are not affected by the choice of
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the forward normalization point. For the class of European claims exam-
ined herein, backward prices are represented as nonlinear expectations as-
sociated with the minimal relative entropy measure. On the other hand, for-
ward prices are also represented as nonlinear expectations but with respect
to the minimal martingale measure. The two prices coincide when the market
is complete. This is a direct consequence of the fact that the internal mar-
ket incompleteness—coming from the stochastic factor—is processed by the
backward and forward dynamic utilities in a very distinct manner.

The portfolio strategies related to the backward and forward utilities also
have very different characteristics. The optimal backward investments consist
of the myopic portfolio, the backward indifference deltas, and the excess risky
demand. The latter policy reflects, in contrast to the myopic portfolio, the
incremental changes in the optimal behavior due to the movement of the
stochastic factor. The forward optimal investments have the same structure
as their backward counterparts but do not include the excess risky demand.

The paper is organized as follows. In Section 2, we introduce the invest-
ment model and its dynamic utilities. In Section 3, we provide some auxil-
iary technical results related to the minimal martingale and minimal entropy
measures. In Sections 4 and 5, respectively, we construct the backward and
forward dynamic utilities, the associated prices, and the optimal investments.
We conclude in Section 6, where we provide a comparative study for integrated
portfolio problems under the two classes of dynamic risk preferences.

2 The Model and Its Dynamic Utilities

Two securities are available for trading, a riskless bond and a risky stock
whose price solves

dSs = μ (Ys)Ssds + σ (Ys)SsdW 1
s , (1)

for s ≥ 0 and S0 = S > 0. The bond offers zero interest rate. The case
of (deterministic) nonzero interest rate may be handled by straightforward
scaling arguments and is not discussed.

The process Y, referred to as the stochastic factor, is assumed to satisfy

dYs = b (Ys) ds+ a (Ys) dWs, (2)

for s ≥ 0 and Y0 = y ∈ R.
The processes W 1 and W are standard Brownian motions defined on a

probability space (Ω,F , (Fs) , P ) with Fs being the augmented σ-algebra. We
assume that the correlation coefficient ρ ∈ (−1, 1) and, thus, we may write

dWs = ρdW 1
s +
√

1 − ρ2dW 1,⊥
s , (3)

with W 1,⊥ being a standard Brownian motion on (Ω,F , (Fs) , P ) orthogo-
nal to W 1. For simplicity, we assume that the dynamics in (1) and (2) are
autonomous. We denote the stock’s Sharpe ratio process by
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λs = λ (Ys) =
μ (Ys)
σ (Ys)

. (4)

The following assumption is assumed to hold throughout.

Assumption 4 The market coefficients μ, σ, a, and b are assumed to be
C2 (R) functions that satisfy |f (y)| ≤ C (1 + |y|) for y ∈ R and f = μ, σ, a
and b, and are such that (1) and (2) have a unique strong solution satisfying
Ss > 0 a.e. for s ≥ 0. There also exists ε > 0 such that g(y) > ε, for y ∈ R
and g = σ and a.

Next, we consider an arbitrary trading horizon [0, T ], and an investor who
starts, at time t0 ∈ [0, T ] , with initial wealth x ∈ R and trades between
the two securities. His or her current wealth Xs, t0 ≤ s ≤ T , satisfies the
budget constraint Xs = π0

s + πs where π0
s and πs are self-financing strategies

representing the amounts invested in the bond and the stock accounts. Direct
calculations, in the absence of intermediate consumption, yield the evolution
of the wealth process

dXs = μ (Ys)πsds+ σ (Ys)πsdWs, (5)

with Xt0 = x ∈ R. The set A of admissible strategies is defined as
A =
{
π : π is Fs-measurable, self-financing, and EP

[∫ T
0 σ2 (Ys)π2

sds
]
< ∞
}

.

Further constraints might be binding due to the specific application and/or
the form of the involved utility payoffs. In order, however, to keep the expo-
sition simple and to concentrate on the new notions and insights, we choose
to abstract from such constraints. We denote D the generic spatial solvency
domain for (x, y) .

We start with an informal motivational discussion for the upcoming no-
tions of backward and forward dynamic utilities. In the traditional economic
model of expected utility from terminal wealth, a utility datum is assigned at
a given time, representing the end of the investment horizon. We denote the
utility datum u (x) and the time at which it is assigned T . At t0 ≥ 0, the in-
vestor starts trading between the available securities until T . At intermediate
times t ∈ [t0, T ], the associated value function v : D × [0, T ] → R is defined
as the maximal expected (conditional on Ft) utility that the agent achieves
from investment. For the model at hand, v takes the form

v (x, y, t) = sup
A

EP [u (XT )|Xt = x, Yt = y] , t ∈ [t0, T ] , (6)

with the wealth and stochastic factor processes X , Y solving (5) and (2).
The scope is to specify v and to construct the optimal control policies. The

duality approach can be applied to general market models and provides char-
acterization results for the value function, but limited results for the optimal
portfolios. The latter can be constructed via variational methods for certain
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classes of diffusion models. To date, although there is a rich body of work for
the value function, very little is understood about how investors adjust their
portfolios in terms of their risk preferences, trading horizon, and the market
environment.

2.1 Integrated Models of Portfolio Choice

In a more realistic setting, the investor might be interested in incorporating in
his or her portfolio derivative securities, liabilities, proceeds from additional
assets, labor income, and so on. Given that such situations arise frequently in
practice, it is important to develop an approach that accommodates integrated
investment problems and yields quantitative and qualitative results for the
optimal portfolios. This is the aim of the study below.

To simplify the presentation, we assume, for the moment, that the investor
faces a liability at T , represented by a random variable CT ∈ FT . We recall
that FT is generated by both the traded stock and the stochastic factor, and
that the investor uses only self-financing strategies.

In a complete market setup (e.g., when the processes S and Y are perfectly
correlated) the optimal strategy for this generalized portfolio choice model is
as follows. At initiation t0, the investor splits the initial wealth, say x, into
the amounts EQ [CT | Ft0 ] and x̃ = x−EQ [CT | Ft0 ], with EQ [CT | Ft0 ] being
the arbitrage-free price of CT . The residual amount x̃ is used for investment
as if there were no liability. The dynamic optimal strategy is, then, the sum of
the optimal portfolio, corresponding to initial endowment x̃ and the hedging
strategy, denoted δs (CT ) , of a European-type contingent claim written on
the traded stock, maturing at T and yielding CT . Using ∗ to denote optimal
policies, we may write

πx,∗s = πx̃,∗s + δs (CT ) with x̃ = x− EQ [CT | Ft0 ] . (7)

This can be established either by variational methods or duality. This re-
markable additive structure, arising in the highly nonlinear utility setting, is
a direct consequence of the ability to replicate the liability. Note that for a
fixed choice of wealth units, the second portfolio component is not affected by
the risk preferences.

When the market is incomplete, similar argumentation can be developed
by formulating the problem as a partial equilibrium one and, in turn, using
results from the utility-based valuation approach. The liability may be, then,
viewed as a derivative security and the optimal portfolio choice problem is em-
bedded into an indifference valuation one. Using payoff decomposition results
(see, e.g., Musiela and Zariphopoulou [20] and [21], Stoikov and Zariphopoulou
[32], and Monoyios [19]), we associate to the liability an indifference hedg-
ing strategy, say Δs (CT ) , that is the incomplete market counterpart of its
arbitrage-free replicating portfolio. Denoting the relevant indifference price by
νt (CT ), we obtain an analogous to (7) decomposition of the optimal invest-
ment strategy in the stock account, namely,
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πx,∗s = πx̃,∗s +Δs (CT ) with x̃ = x− νt0 (CT ) . (8)

Because the indifference valuation approach incorporates the investor’s risk
preferences, the choice of utility will influence—in contrast to the complete
market case—both components of the emerging optimal investment strategy.
Note, however, that due to the dynamic nature of the problem, utility effects
evolve both with time and market information. In order to correctly quantify
these effects, it is imperative to be able to specify the dynamic value of our
investment strategies across horizons, maturities, and units. As the analysis
below indicates, the cornerstone of this endeavor is the specification of a dy-
namic utility structure that yields consistent valuation results and investment
behavior across optimally chosen self-financing strategies.

Before we introduce the dynamic utilities, we first recall the auxiliary
concept of indifference value. To preserve simplicity, we consider the afore-
mentioned single liability CT . To calculate its indifference price νt (CT ) for
t ∈ [0, T ] , we look at the investor’s modified utility,

vCT (x, y, t) = sup
A

EP [u (XT − CT )|Xt = x, Yt = y] , (9)

and, subsequently, impose the equilibrium condition

v (x− νt (CT ) , y, t) = vCT (x, y, t) . (10)

The optimal policy is given by (8) and can be retrieved in closed form
for special cases. For example, when the utility is exponential, u (x) = −e−γx
with γ > 0, the stock’s Sharpe ratio is constant and CT = G (YT ) , for some
bounded function G, variational arguments yield the optimal investment rep-
resentation

πx,∗s = πx̃,∗s + ρ
a (Ys)
σ (Ys)

(
∂g (y, t)
∂y

∣∣∣∣
y=Ys,t=s

)
,

with x̃ = x − g (y, t0) , and g : R × [0, T ] → R solving a quasilinear PDE, of
quadratic gradient nonlinearities, with terminal condition g (y, T ) = G (y) .

2.2 Liabilities and Payoffs of Shorter Maturities

Consider a liability to be paid before the fixed horizon T , say at T0 < T . There
are two ways to proceed. The first alternative is to work with portfolio choice
in the initial investment horizon [t0, T ]. In this case, the utility (9) becomes

vCT0 (x, y, t) = sup
A

EP [u (XT − CT0)|Xt = x, Yt = y] , (11)

where we took into consideration that the riskless interest rate is zero. The
indifference value is, then, calculated by the pricing condition (10), for t ∈
[t0, T0]. However, such arguments might not be easily implemented, if at all,
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as it is the case of liabilities and payoffs of random maturity and/or various
exotic characteristics.

The second alternative is to derive the indifference value by considering
the investment opportunities, with and without the liability, up to the claim’s
maturity T0. For this, we first need to correctly specify the value functions,
denoted, respectively, v̄ and v̄CT0 , that correspond to optimality of invest-
ments in the shorter investment horizon [t0, T0]. Working along the lines that
their long-horizon counterparts v and vCT were defined, let us, hypothetically,
assume that we are given a utility datum for the point T0. We denote this
datum ū (x, y, T0). We henceforth use the − notation for all quantities, that
is, utilities, investments, and indifference values, associated with the shorter
horizon. For t ∈ [t0, T0],

v̄ (x, y, t) = sup
A

EP [ ū (XT0 , YT0 , T0)|Xt = x, Yt = y] ,

and

v̄CT0 (x, y, t) = sup
A

EP [ ū (XT0 − CT0 , YT0 , T0)|Xt = x, Yt = y] .

The associated indifference value ν̄t (CT0) is then, given by

v̄ (x− ν̄t (CT0) , y, t) = v̄CT0 (x, y, t) .

Clearly, in order to have a well-specified valuation system, we must have, for
all CT0 ∈ FT0 and t ∈ [t0, T0] ,

νt (CT0) = ν̄t (CT0) ,

which strongly suggests that the utility datum ū (x, y, T0) cannot be exoge-
nously assigned in an arbitrary manner.

Such issues, related to the correct specification and alignment of interme-
diate utilities, and their value functions, with the claims’ possibly different
and/or random maturities, were first discussed in Davis and Zariphopoulou
[7] in the context of utility-based valuation of American claims in markets
with transaction costs. Recall that when early exercise is allowed, the first
alternative computational step (cf. (11)) cannot be implemented because T0

is not a priori known. For the same class of early exercise claims, but when in-
completeness comes exclusively from a nontraded asset (which does not affect
the dynamics of the stock), and the claim is written on both the traded and
nontraded assets, further analysis on the specification of preferences across
exercise times, was provided in Kallsen and Kuehn [15], Oberman and Za-
riphopoulou [25], and Musiela and Zariphopoulou [22]. In the latter papers,
the related intermediate utilities and valuation condition took, respectively,
the forms

ū (x, S, t) = v (x, S, t) and v̄ (x, S, t) = ū (x, S, t) ,
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v̄Cτ (x, S, z, t) = sup
A×T

EP [v (Xτ − C (Sτ , Zτ ) , Sτ , τ)|Xt = x, St = S,Zt = z] ,

where T is the set of stopping times in [t0, T ] . The processes S and Z rep-
resent the traded and nontraded assets and X the wealth process. The early
exercise indifference price of Cτ is, then, given by

v̄ (x, S, t) = v̄Cτ (x+ ν̄t (C (Sτ , Zτ )) , S, z, t) .

Although the above calculations might look pedantic when a single exoge-
nous cash flow (liability or payoff) is incorporated, the arguments get much
more involved when a family of claims is considered and arbitrary, or stochas-
tic, maturities are allowed. Naturally, the related difficulties disappear when
the market is complete. However, when perfect replication is not viable and
a utility-based approach is implemented for valuation, discrepancies leading
to arbitrage might arise if we fail to properly incorporate in our model dy-
namic risk preferences that process and price the market incompleteness in
a consistent manner. This issue was exposed by the authors in Musiela and
Zariphopoulou [23] and [24], who initiated the construction of indifference
pricing systems based on the so-called backward and forward dynamic ex-
ponential utilities. In these papers, indifference valuation of arbitrary claims
and specification of integrated optimal policies were studied in an incomplete
binomial case. Even though this model setup was rather simple, it offered a
starting point in exploring the effects of the evolution of risk preferences to
prices and investments. What follows is, to a great extent, a generalization of
the theory developed therein.

2.3 Utility Measurement Across Investment Times

Let us now see how a dynamic utility can be introduced and incorporated
in the stochastic factor model in which we are interested. We recall that the
standing assumptions are: (i) the trading horizon [0, T ] is preassigned, (ii) a
utility datum is given for T , and (iii) T dominates the maturities of all claims
and liabilities in consideration.

We next assume that instead of having the single static measurement
of utility u at expiration, the investor is endowed with a dynamic utility
ut (x, y;T ) , t ∈ [0, T ]. Being vague, for the moment, we view this utility as a
functional, at each intermediate time t, of his current wealth and the level of
the stochastic factor. Obviously, we must have

uT (x, y;T ) = u (x) ,

in which case, we say that ut (x, y;T ) is normalized at T . As a consequence,
we refer to T as the normalization point. For reasons that are apparent in the
sequel, we choose to carry T in our notation.

If a maximal expected criterion is involved, the associated value function,
denoted with a slight abuse of notation by vt, will naturally take the form
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vt
(
x, y, T̄

)
= sup

A
EP [uT (XT̄ , YT̄ ;T )|Xt = x, Yt = y] ,

in an arbitrary subhorizon
[
t, T̄
]
∈ [t0, T ] and with X , Y solving (5) and (2).

Let us now see how the generic liability CT0 ∈ FT0 would be valued un-
der such a utility structure. For t ∈ [t0, T0], the relevant maximal expected
dynamic utility will be

v
CT0
t (x, y, T0) = sup

A
EP [uT0 (XT0 − CT0 , YT0 ;T )|Xt = x, Yt = y] .

Respectively, the indifference value νt (CT0 ;T ) must satisfy, for t ∈ [t0, T0],

vt (x− νt (CT0 ;T ) , y, T0) = v
CT0
t (x, y, T0) .

Observe that because ut is normalized at T , the associated value functions will
depend on the normalization point. The latter will also affect the indifference
price νt (CT0 ;T ), even though the claim matures at an earlier time.

So far, the above formulation seems convenient and flexible enough for the
valuation of claims with arbitrary maturities, as long as these maturities are
shorter than the time at which risk preferences are normalized. However, as
the next two examples show, it is wrong to assume that a dynamic utility can
be introduced in an ad hoc way.

In both examples, it is assumed that the terminal utility datum is of ex-
ponential type, and independent of the level of the stochastic factor,

uT (x, y;T ) = −e−γx (12)

with (x, y) ∈ D and γ being a given positive constant. It is also assumed
that there is a single claim to be priced. Its payoff is taken to be of the form
CT0 = G (YT0) , for some bounded function G : R → R+. Albeit the fact that
in the model considered herein such a payoff is, to a certain extent, artificial,
we, nevertheless, choose to work with it because explicit formulae can be
obtained and the exposition is, thus, considerably facilitated.

Example 1. Consider a dynamic utility of the form

ut (x, y;T ) =

⎧
⎨

⎩

−e−γx, T̄ < t ≤ T,

−e−γ̄x, 0 < t ≤ T̄ ,

with T̄ > T0, γ as in (12) and γ̄ �= γ.

Let us now see how CT0 will be valued under the above choice of dynamic
utility. If the investor chooses to trade in the original horizon [t0, T ] , the
associated intermediate utilities are

v
0,CT0
t (x, y, T ) = sup

A
EP [uT (XT − CT0 , YT ;T )|Xt = x, Yt = y]
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= sup
A

EP

[
−e−γ(XT −CT0)

∣∣∣Xt = x, Yt = y
]
.

Obviously, the discontinuity, with regard to the risk aversion coefficient of ut
will not alter the above value functions. Following the results of Sircar and
Zariphopoulou [31] yields

νt (CT0) =
1

γ (1 − ρ2)
lnEQme

[
eγ(1−ρ

2)G(YT0)
∣∣∣Yt = y

]
, (13)

with Qme being the minimal relative entropy martingale measure (see the
next section for the relevant technical arguments).

If, however, the investor chooses to trade solely in the shorter horizon[
t0, T̄
]
, analogous argumentation yields

v̄
0,CT0
t

(
x, y, T̄

)
= sup

A
EP

[
−e−γ̄(XT̄ −G(YT0))

∣∣∣Xt = x, Yt = y
]
,

where we used the − notation to denote the shorter horizon choice. The as-
sociated indifference price is

ν̄t (CT0) =
1

γ̄ (1 − ρ2)
lnEQme

[
eγ̄(1−ρ

2)G(YT0)
∣∣∣Yt = y

]
,

and we easily deduce that, in general,

νt (CT0) �= ν̄t (CT0) ,

an obviously wrong result.
Note that even if we, naively, allow γ = γ̄ price discrepancies will still

emerge.

Example 2. Consider the dynamic utility

ut (x, y;T ) = −e−γx−F (y,t;T ),

with γ as in (12) and

F (y, t;T ) = EP

[∫ T

t

1
2
λ2 (Ys) ds

∣∣∣∣∣Yt = y

]
,

where P is the historical measure. If the agent chooses to invest in the longer
horizon [t0, T ], the indifference value remains the same as in (13). How-
ever, if she chooses to invest exclusively till the liability is met, we have, for
t ∈ [t0, T0],

v̄
0,CT0
t (x, y, T0) = sup

A
EP [uT0 (XT0 −G (YT0) , YT0 ;T )|Xt = x, Yt = y]

= sup
A

EP

[
−e−γ(XT0−G(YT0))−F(YT0 ,T0;T)

∣∣∣Xt = x, Yt = y
]
.
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Setting

ZT0 =
1
γ
F (YT0 , T0;T ) ,

we deduce that, in the absence of the liability, the current utility is

v̄0
t (x, y, T0) = sup

A
EP

[
−e−γ(XT0+ZT0)

∣∣∣Xt = x, Yt = y
]
.

Note that, by definition, ZT0 ∈ FT0 . Therefore, we may interpret v̄0
t as a

buyer’s value function for the claim ZT0 , in a traditional (nondynamic) ex-
ponential utility setting of constant risk aversion γ and investment horizon
[0, T0]. Then,

v̄0
t (x, y, T0) = −e−γ(x+μ̄t(ZT0))−H̃(y,t;T0),

with H̃ being the aggregate entropy function (see Equation (24) in the next
section) and

μ̄t (ZT0) = − 1
γ (1 − ρ2)

lnEQme

[
e−γ(1−ρ

2)ZT0

∣∣∣Yt = y
]
.

Proceeding similarly, we deduce

v̄
CT0
t (x, y, T0) = sup

A
EP

[
−e−γ(XT0+(ZT0−G(YT0)))

∣∣∣Xt = x, Yt = y
]

= −e−γ(x+μ̄t(ZT0−G(YT0)))−H̃(y,t;T0),

with

μ̄t (ZT0 −G (YT0)) = − 1
γ (1 − ρ2)

lnEQme

[
e−γ(1−ρ

2)(ZT0−G(YT0))
∣∣∣Yt = y

]
.

Applying the definition of the indifference value, we deduce that, with regard
to the shorter horizon,

ν̄t (G (YT0)) = μ̄t (ZT0) − μ̄t (ZT0 −G (YT0))

=
1

γ (1 − ρ2)
ln
EQme

[
e−γ(1−ρ

2)(ZT0−G(YT0))
∣∣∣Yt = y

]

EQme

[
e−γ(1−ρ2)(ZT0)

∣∣∣Yt = y
] ,

which, in general, does not coincide with νt (G (YT0)), given in (13).
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2.4 Backward and Forward Dynamic Exponential Utilities

The above examples expose that an ad hoc choice of dynamic utility might
lead to price discrepancies. This, in view of the structural form of the optimal
policy for the integrated model (cf. (8)) would, in turn, yield wrongly speci-
fied investment policies. It is, thus, important to investigate which classes of
dynamic utilities preclude such pathological situations.

For the simple examples above, the correct choice of the dynamic utility
is essentially obvious, namely,

ut (x, y;T ) =

⎧
⎨

⎩

u (x) , t = T,

v (x, y, t) , t ∈ [t0, T ] ,

with v as in (6).
This simple observation indicates the following. First, observe that if ut is

the candidate dynamic utility, then, in all trading subhorizons, say
[
t, t̃
]
, the

associated dynamic value function vt will be

vt (x, y;T ) = sup
A

EP [ut̃ (Xt̃, Yt̃;T )|Xt = x, Yt = y] .

Discrepancies in prices will be, then, precluded if at all intermediate times the
dynamic utility coincides with the dynamic value function it generates,

ut (x, y;T ) = vt (x, y;T ) .

We then say that the dynamic utility is self-generating.
Building on this concept, we are led to two classes of dynamic utilities,

the backward and forward ones. Their definitions are given below. Because
the applications herein are concentrated on exponential preferences, we work
with such utility data. Throughout, we take the risk aversion coefficient to be
a positive constant γ.

Although the backward dynamic utility is essentially the traditional value
function, the concept of forward utility is, to the best of our knowledge, new.
As mentioned earlier, it was recently introduced by the authors in an incom-
plete binomial setting (see Musiela and Zariphopoulou [23] and [24]) and it is
extended herein to the diffusion case.

We continue with the definition of the backward dynamic utility. This util-
ity takes the name backward because it is first specified at the normalization
point T and is then generated at previous times.

Definition 1. Let T > 0. An Ft-measurable stochastic process UBt (x;T ) is
called a backward dynamic utility (BDU), normalized at T , if for all t, T̄ it
satisfies the stochastic optimality criterion

UBt (x;T ) =

⎧
⎨

⎩

−e−γx, t = T,

supA EP
[
UB
T̄

(XT̄ ;T )
∣∣Ft
]
, 0 ≤ t ≤ T̄ ≤ T,

(14)

with X given by (5) and Xt = x ∈ R.
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The above equation provides the dynamic law for the backward dynamic
utility. Note that even though this dynamic utility coincides with the fa-
miliar value function, its notion was created from a very different point of
view and scope. Under mild regularity assumptions on the coefficients of the
state processes, it is easy to deduce that the above problem has a solution
that is unique. There is ample literature on the value function and, thus, on
the backward dynamic utility (see, e.g., Kramkov and Schachermayer [17],
Rouge and El Karoui [28], Delbaen et al. [8], and Kabanov and Stricker
[14]).

The fact that UBt is self-generating is immediate. Indeed, in an arbitrary
subhorizon

[
t, T̄
]
, the associated value function V B

t , given by

V B
t

(
x, T̄ ;T

)
= sup

A
EP
[
UBT̄ (XT̄ ;T )

∣∣Ft
]
,

coincides with its associated dynamic utility

UBt (x;T ) = V B
t

(
x, T̄ ;T

)

by Definition 1.
A consequence of self-generation is that the investor receives the same

dynamic utility across different investment horizons. This is seen by the fact
that, for T̄ ≤ T̄

′
, self-generation yields

V Bt
(
x, T̄ ;T

)
= UBt (x;T ) ,

and
V B
t

(
x, T̄

′
;T
)

= UBt (x;T ) ,

and the horizon invariance

V B
t

(
x, T̄ ;T

)
= V B

t

(
x, T̄

′
;T
)

follows.
In most of the existing utility models, the dynamic utility (or, equivalently,

its associated value function) is generated backwards in time. The form of
the utility might be more complex, as it is in the case of recursive utilities
where dynamic risk preferences are generated by an aggregator. Nevertheless,
the features of utility prespecification at a future fixed point in time and
generation at previous times are still prevailing.

One might argue that an ad hoc specification of utility at a future time
is, to a certain extent, nonintuitive, given that our risk attitude might change
with the way the market environment enfolds from one time period to the
next. Note that changes in the investment opportunities and losses/gains are
revealed forward in time and the traditional value function appears to pro-
cess this information backwards in time. Such issues have been considered in
prospect theory where, however, utility normalization at a given future point
is still present.
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From the valuation perspective, working with utilities normalized in the
future severely constrains the class of claims that can be priced. Indeed, their
maturities must be always dominated by the time at which the backward
utility is normalized. This precludes opportunities related to claims arriving
at a later time and/or maturing beyond the normalization point.

In order to be able to accommodate claims of arbitrary maturities, one
might propose to work in an infinite horizon framework and to employ either
discounted at optimal growth utility functionals or utilities allowing for in-
termediate consumption. The perpetual nature of these problems, however,
might not be appropriate for a variety of applications in which the agent
faces defaults, constraints due to reporting periods, and other “real-time”
issues.

Motivated by these considerations, the authors recently introduced the
concept of forward dynamic utilities. Their main characteristic is that they
are determined at present time and, as their name indicates, are generated,
via their constitutive equation, forward in time.

Definition 2. Let s ≥ 0. An Ft-measurable stochastic process UFt (x; s) is
called a forward dynamic exponential utility (FDU), normalized at s, if, for
all t, T, with s ≤ t ≤ T , it satisfies the stochastic optimization criterion

UFt (x; s) =

⎧
⎨

⎩

−e−γx, t = s,

supAEP
[
UFT (XT ; s)

∣∣Ft
]
, t ≥ s.

(15)

Observe that by construction, there is no constraint on the length of the
trading horizon.

As with its backward dynamic counterpart, the forward dynamic utility is
self-generating and makes the investor indifferent across distinct investment
horizons. Indeed, self-generation, that is,

V F
t (x, T ; s) = UFt (x; s) ,

with
V F
t (x, T ; s) = sup

A
EP
[
UFT (XT ; s)

∣∣Ft
]
,

is an immediate consequence of the above definition. For the horizon invari-
ance, it is enough to observe that in distinct investment subhorizons, say [t, T ]
and
[
t, T̄
]
,

V F
t (x, T ; s) = sup

A
EP
[
UFT (XT ; s)

∣∣Ft
]
,

and
V F
t

(
x, T̄ ; s

)
= sup

A
EP
[
UFT̄ (XT̄ ; s)

∣∣Ft
]
,
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and, therefore,
V Ft (x, T ; s) = V F

t

(
x, T̄ ; s

)
.

We stress that, in contrast to their backward dynamic counterparts, for-
ward dynamic utilities might not be unique. In general, the problem of ex-
istence and uniqueness is an open one. This issue is discussed in Section 5.
Determining a natural class of forward utilities in which uniqueness is estab-
lished is a challenging and, in our view, interesting question.

3 Auxiliary Technical Results

In the upcoming sections, two equivalent martingale measures are used,
namely, the minimal martingale and the minimal entropy ones. They are de-
noted, respectively, Qmm and Qme and are defined as the minimizers of the
entropic functionals

H0 (Qmm|P ) = min
Q∈Qe

EP

[
− ln

dQ

dP

]
,

and

H (Qme|P ) = min
Q∈Qe

EP

[
dQ

dP
ln
dQ

dP

]
,

where Qe stands for the set of equivalent martingale measures. There is ample
literature on these measures and on their role in valuation and optimal portfo-
lio choice in the traditional framework of exponential utility; see, respectively,
Foellmer and Schweizer [10], Schweizer [29] and [30], Bellini and Frittelli [2]
and Frittelli [11], Rouge and El Karoui [28], Arai [1], Delbaen et al. [8], and
Kabanov and Stricker [14].

For arbitrary T > 0, the restrictions of Qmm and Qme on the σ-algebra
FT = σ

{(
W 1
u ,Wu

)
: 0 ≤ u ≤ T

}
, can be explicitly constructed as discussed

next. We remark that, with a slight abuse of notation, the restrictions of the
two measures are denoted as their original counterparts.

The density of the minimal martingale measure is given by

dQmm

dP
= exp

(
−
∫ T

0

λsdW
1
s −
∫ T

0

1
2
λ2
sds

)
, (16)

with λ being the Sharpe ratio process (4).
Calculating the density of the minimal relative entropy measure is more

involved and we refer the reader to Rheinlander [27] (see, also, Grandits and
Rheinlander [12]) for a concise treatment. For the diffusion case considered
herein, the density can be found through variational arguments and is repre-
sented by

dQme

dP
= exp

(
−
∫ T

0

λsdW
1
s −
∫ T

0

λ̂sdW
1,⊥
s −

∫ T

0

1
2

(
λ2
s + λ̂2

s

)
ds

)
, (17)
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with W 1,⊥ as in (3). The process λ̂ is given by

λ̂s = λ̂ (Ys, s;T ) , (18)

with Y solving (2) and λ̂ : R× [0, T ] → R+ defined as

λ̂ (y, t;T ) = − 1√
1 − ρ2

a (y)
fy (y, t;T )
f (y, t;T )

, (19)

where f : R × [0, T ] → R+ is the unique C1,2 (R× [0, T ]) solution of the
terminal value problem
⎧
⎨

⎩

ft + 1
2a

2 (y) fyy + (b (y) − ρλ (y)a (y)) fy = 1
2

(
1 − ρ2

)
λ2 (y) f,

f(y, T ) = 1.
(20)

The proof can be found in Benth and Karslen [3] (see, also, Stoikov and
Zariphopoulou [32] and Monoyios [19]).

The dependence of f and λ̂ on the end of the horizon T is highlighted due
to the role that it will play in the upcoming dynamic utilities.

It easily follows that the aggregate, relative to the historical measure,
entropies of Qmm and Qme are, respectively,

H (Qmm|P ) = EP

[
dQmm

dP
ln
dQmm

dP

]
= EQmm

[∫ T

0

1
2
λ2
sds

]
,

and

H (Qme|P ) = EP

[
dQme

dP
ln
dQme

dP

]
= EQme

[∫ T

0

1
2

(
λ2
s + λ̂2

s

)
ds

]
.

When the market becomes complete, the two measures Qmm and Qme coin-
cide with the unique risk neutral measure. In general, they differ and their
respective relative entropies are related in a nonlinear manner. This was ex-
plored in Stoikov and Zariphopoulou [32, Corollary 3.1], where it was shown
that

H (Qme|P ) = EQmm

[∫ T

0

1
2
λ2
sds |F0

]
. (21)

The conditional nonlinear expectation EQ of a generic random variable Z ∈ FT
and measure Q on (Ω,FT ) is defined, for t ∈ [0, T ] and γ ∈ R+, by

EQ [Z| Ft; γ] = − 1
γ (1 − ρ2)

lnEQ
[
e−γ(1−ρ

2)Z |Ft
]
. (22)

The aggregate entropy H (Qme|P ) is then the nonlinear expectation of the
random variable ZT =

∫ T
0

1
2λ

2
sds, for Q = Qme and γ = 1.
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Next, we introduce two quantities that facilitate our analysis. Namely, for
0 ≤ t ≤ T̃ ≤ T , we define the aggregate relative entropy process

H
(
t, T̃
)

= EQme

[∫ T̃

t

1
2

(
λ2 (Ys) + λ̂2 (Ys, s;T )

)
ds

∣∣∣∣∣Ft

]
, (23)

and the function H̃ : R×
[
0, T̃
]
→ R+,

H̃
(
y, t; T̃
)

= EQme

[∫ T̃

t

1
2

(
λ2 (Ys) + λ̂2 (Ys, s;T )

)
ds

∣∣∣∣∣Yt = y

]
, (24)

for λ, λ̂ defined in (4) and (18). We also introduce the linear operators

LY =
1
2
a2 (y)

∂2

∂y2
+ b (y)

∂

∂y
, (25)

LY,mm =
1
2
a2 (y)

∂2

∂y2
+ (b (y) − ρλ (y)a (y))

∂

∂y
, (26)

and

LY,me =
1
2
a2 (y)

∂2

∂y2
+ (b (y) − ρλ (y) a (y))

∂

∂y
(27)

+ a2 (y)
fy (y, t;T )
f (y, t;T )

∂

∂y
,

with f solving (20).
The following results follow directly from the definition of H̃, and (19) and

(20).

Lemma 1. For T̃ ≤ T , the function H̃ : R× [0, T̃ ] → R+ solves the quasilin-
ear equation

H̃t + LY,mmH̃ − 1
2
(1 − ρ2)a (y)2 H̃2

y +
λ2(y)

2
= 0,

or, equivalently, the linear equation

H̃t + LY,meH̃ +
λ2(y) + λ̂2 (y, t;T )

2
= 0,

with H̃
(
y, T̃ ;T

)
= 0, and LY,mm, LY,me as in (26) and (27).
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4 Investment and Valuation Under Backward Dynamic
Exponential Utilities

In this section, we provide an analytic representation of the backward dy-
namic exponential utility (cf. Definition 1) and construct the agent’s optimal
investment in an integrated portfolio choice problem. We recall that the in-
vestment horizon is fixed, the utility is normalized at this horizon’s end, and
that no liabilities, or cash flows, are allowed beyond the normalization point.
For convenience, we occasionally rewrite some of the quantities introduced in
earlier sections.

Proposition 1. Let Qme be the minimal relative entropy martingale measure
and H (t, T ) the aggregate relative entropy process (cf. (23)),

H
(
t, T̃
)

= EQme

[∫ T̃

t

1
2

(
λ2 (Ys) + λ̂2 (Ys, s;T )

)
ds

∣∣∣∣∣Ft

]
,

with λ and λ̂ as in (4) and (18). Then, for x ∈ R, t ∈ [0, T ] , the process
UBt ∈ Ft, given by

UBt (x;T ) = −e−γx−H(t,T ), (28)

is the backward dynamic exponential utility.

The proof is, essentially, a direct consequence of the dynamic programming
principle and the results of Rouge and El Karoui [28]. For the specific technical
arguments, related to the stochastic factor model we examine herein, we refer
the reader to Stoikov and Zariphopoulou [32]. We easily deduce the following
result.

Corollary 1. The backward dynamic utility is given by

UBt (x;T ) = u (x, Yt, t;T ) ,

with u : R×R+ × [0, T ] → R− defined as

u (x, y, t;T ) = −e−γx−H̃(y,t;T ),

with

H̃
(
y, t; T̃
)

= EQme

[∫ T̃

t

1
2

(
λ2 (Ys) + λ̂2 (Ys, s;T )

)
ds

∣∣∣∣∣Yt = y

]
.

4.1 Backward Indifference Values

Next, we revisit the classical definition of indifference values but in the frame-
work of backward dynamic utility. This framework allows for a concise val-
uation of claims and liabilities of arbitrary maturities, provided that these
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maturities occur before the normalization point. Due to self-generation, the
notion of dynamic value function becomes redundant. Herein we concentrate
on the indifference treatment of a liability, or, equivalently, on the optimal
portfolio choice of the writer of a claim, yielding payoff equal to the liability
at hand.

Definition 3. Let T be the backward normalization point and consider a claim
CT̄ ∈ FT̄ , written at t0 ≥ 0 and maturing at T̄ ≤ T. For t ∈

[
t0, T̄
]
, the

backward indifference value process (BIV) νBt (CT̄ ;T ) is defined as the amount
that satisfies the pricing condition

UBt
(
x− νBt (CT̄ ;T ) ;T

)
= sup

A
EP
[
UBT̄ (XT̄ − CT̄ ;T )

∣∣Ft
]
, (29)

for all x ∈ R and Xt = x.

We note that the backward indifference value coincides with the classical
one, but it is constructed from a quite different point of view. The focus herein
is not on rederiving previously known quantities, but, rather, in exploring how
the backward indifference values are affected by the normalization point and
the changes in the market environment, as well as how they differ from their
forward dynamic counterparts.

We address these questions for the class of bounded European claims and
liabilities, for which we can deduce closed-form variational expressions.

Proposition 2. Let T be the backward normalization point and consider a
European claim written at t0 ≥ 0 and maturing at T̄ ≤ T, yielding payoff
CT̄ = C (ST̄ , YT̄ ). For t ∈

[
t0, T̄
]
, its backward indifference value process

νBt (CT̄ ;T ) is given by

νBt (CT̄ ;T ) = pB (St, Yt, t) ,

where S and Y solve (1) and (2), and pF : R+ ×R× [0, T̄ ] → R satisfies
⎧
⎨

⎩

pBt + L(S,Y ),mepB + 1
2γ
(
1 − ρ2

)
a2 (y)

(
pBy
)2 = 0,

pB
(
S, y, T̄

)
= C (S, y) .

(30)

Herein,

L(S,Y ),me =
1
2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1
2
a2 (y)

∂2

∂y2
(31)

+
(
b (y) − ρλ (y) a (y) + a2 (y)

fy (y, t;T )
f (y, t;T )

)
∂

∂y
,

and f solves (cf. (20))
⎧
⎨

⎩

ft + 1
2a

2 (y) fyy + (b (y) − ρλ (y) a (y)) fy = 1
2

(
1 − ρ2

)
λ2 (y) f,

f(y, T ) = 1.
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Proof. For convenience, we recall the entropic quantities

H
(
t, t

′)
= EQme

[∫ t
′

t

1
2

(
λ2 (Ys) + λ̂2 (Ys, s;T )

)
ds

∣∣∣∣∣Ft

]
,

and

H̃
(
y, t; t

′)
= EQme

[∫ t
′

t

1
2

(
λ2 (Yu) + λ̂2 (Yu, u;T )

)
du

∣∣∣∣∣Yt = y

]
,

for 0 ≤ t ≤ t
′ ≤ T̄ ≤ T . We first calculate the right-hand side of (29), which,

in view of Proposition 1, becomes

sup
A

EP

[
−e−γ(XT̄ −CT̄ )−H(T̄ ;T)

∣∣∣Ft
]

= sup
A

EP

[
−e−γ(XT̄ −GT̄ )

∣∣∣Ft
]
,

with
GT̄ = C (ST̄ , YT̄ ) − 1

γ
H
(
T̄ ;T
)
.

One may, then, view this problem as a traditional indifference valuation one in
which the trading horizon is

[
t, T̄
]

and the utility is the exponential function
at T̄ . For the stochastic factor model we consider herein, we obtain (see Sircar
and Zariphopoulou [31] and Grasselli and Hurd [13])

sup
A

EP

[
−e−γ(XT̄ −GT̄ )

∣∣∣Ft
]

= −e−γ(x−h(St,Yt,t))−H(t;T̄),

with h : R+ ×R× [0, T̄ ] → R solving
⎧
⎨

⎩

ht + L(S,Y ),meh+ 1
2γ
(
1 − ρ2

)
a2 (y)h2

y = 0,

h
(
S, y, T̄

)
= C (S, y) − 1

γ H̃
(
y, T̄ ;T

)
.

Next, we introduce the function pB : R+ ×R× [0, T̄ ] → R,

pB (S, y, t) = h (S, y, t) +
1
γ

(
H̃ (y, t;T )− H̃

(
y, t; T̄
))

.

Using the equation satisfied by h, we deduce that pB solves (30). On the other
hand, Corollary 1 and the above equalities yield

sup
A

EP

[
−e−γ(XT̄ −GT̄ )

∣∣∣Xt = x, St = S, Yt = y
]

= −e−γ(x−p
B(S,y,t))−(H̃(y,t;T̄)+H̃(y,T̄ ;T)) = −e−γ(x−p

B(S,y,t))−H̃(y,t;T ),

and the assertion follows from Definition 3 and Proposition 1. 
�
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4.2 Optimal Portfolios Under Backward Dynamic Utility

Next, we construct the optimal portfolio strategies in the integrated portfolio
problem. We start with the agent’s optimal behavior in the absence of the
liability/payoff. We concentrate our attention on optimal behavior in a shorter
horizon. For simplicity, its end is taken to coincide with T̄ , the point at which
the liability is met.

Proposition 3. Let T be the backward normalization point and [t, T̄ ] ∈ [t, T ]
be the trading horizon of an investor endowed with the backward exponential
dynamic utility UB. The processes πB,∗s and πB,0,∗s , representing the optimal
investments in the risky and riskless asset, are given, for s ∈ [t, T̄ ], by

πB,∗s = πB,∗
(
XB,∗
s , Ys, s

)
=

μ (Ys)
γσ2 (Ys)

− ρ
a (Ys)
σ (Ys)

H̃y (Ys, s;T ) (32)

and
πB,0,∗s = πB,0,∗ (X∗

s , Ys, s) = XB,∗
s − πB,∗s .

Herein, XB,∗
s solves (5) with πB,∗s being used, and H̃ : R × [0, T ] → R+

satisfies

H̃t + LY,meH̃ +
λ2(y) + λ̂2 (y, t;T )

2
= 0,

with terminal condition

H̃
(
y, T̄ ;T

)
= EQme

[∫ T

T̄

1
2

(
λ (Ys)

2 + λ̂ (Ys, s;T )2
)
ds

∣∣∣∣∣YT̄ = y

]
. (33)

Given the diffusion nature of the model, the form of the utility data and
the regularity assumptions on the market coefficients, optimality follows from
classical verification results (see, among others, Duffie and Zariphopoulou [9],
Zariphopoulou [35], Pham [26], and Touzi [33]).

Due to the stochasticity of the investment opportunity set, the optimal
investment strategy in the stock account consists of two components, namely,
the myopic portfolio and the so-called excess risky demand, given, respec-
tively, by μ (Ys)/γσ2 (Ys) and −ρ((a (Ys))/(σ (Ys)))H̃y (Ys, s;T ). The myopic
component is what the investor would follow if the coefficients of the risky
security remained constant across trading periods. The excess risky demand
is the required investment that emerges from the local in time changes in
the Sharpe ratio (see, among others, Kim and Omberg [16], Liu [18], Camp-
bell and Viceira [4], Chacko and Viceira [6], Wachter [34], and Campell
et al. [5]).

Note that even though the trading horizon [t, T̄ ] is shorter than the origi-
nal one [t, T ], the optimal policies depend on the longer horizon because the
dynamic risk preferences are normalized at T and not at T̄ .
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Remark 1. The reader familiar with the representation of indifference prices
might try to interpret the excess risky demand as the indifference hedging
strategy of an appropriately chosen claim. Such questions were studied in
Stoikov and Zariphopoulou [32] where the relevant claim was identified and
priced.

We continue with the optimal strategies in the presence of a European-type
liability CT̄ , which, we recall, is taken to be bounded.

Proposition 4. Let T be the backward normalization point and consider an
investor endowed with the backward dynamic exponential utility UB and facing
a liability CT̄ = C (ST̄ , YT̄ ). The processes πB,∗s and πB,0,∗s , representing the
optimal investments in the risky and riskless asset, are given, for s ∈ [t, T̄ ],
by

πB,∗s = πB,∗
(
XB,∗
s , Ss, Ys, s

)
=

μ (Ys)
γσ2 (Ys)

− ρ
a (Ys)
σ (Ys)

H̃y (Ys, s;T ) (34)

+ Ssp
B
S (Ss, Ys, s) + ρ

a (Ys)
σ (Ys)

pBy (Ss, Ys, s)

and
πB,0,∗s = πB,0,∗ (X∗

s , Ss, Ys, s) = XB,∗
s − πB,∗s .

Herein, XB,∗
s solves (5) with πB,∗s being used, H̃ as in Proposition 1, and pB

solves (30).

Proof. In the presence of the liability, we observe

sup
A

EP
[
UBT̄ (XT̄ − CT̄ ;T )

∣∣Ft
]

= uC (x, St, Yt, t) ,

where uC : R×R+ ×R×
[
0, T̄
]
→ R− solves the Hamilton–Jacobi–Bellman

equation

uCt + max
π

{
1
2
σ2 (y)π2uCxx + π

(
σ2 (y)SuCxS + ρa(y)σ (y)uCxy + μ (y)uCx

)}

+ L(S,Y )uC = 0,

with
uC
(
x, S, y, T̄

)
= −e−γ(x−C(S,y))−H̃(y,T̄ ;T)

and

L(S,Y ) =
1
2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1
2
a2 (y)

∂2

∂y2
(35)

+ μ (y)
∂

∂S
+ b (y)

∂

∂y
.
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Verification results yield that the optimal policy πB,∗s is given in the feedback
form

πB,∗s = πB,∗
(
XB,∗
s , Ss, Ys, s

)
,

with

πB,∗ (x, S, y, t) = −
σ2 (y)SuCxS + ρa(y)σ (y)uCxy + μ (y)uCx

σ2 (y)uCxx
.

On the other hand, from Proposition 1,

uC (x, S, y, t) = −e−γ(x−p
B(S,y,t))−H̃(y,t;T ).

Combining the above and the feedback form of πB,∗ (x, S, y, t) we conclude.

�

5 Investment and Valuation Under Forward Dynamic
Exponential Utilities

We now revert our attention to portfolio choice and pricing under the newly
introduced class of forward dynamic utilities. We start with the analytic con-
struction of such a utility. As mentioned in Section 2, general existence and
uniqueness results for forward dynamic utilities are lacking. As a matter of
fact, an alternative solution to (15) is presented in Example 3.

Proposition 5. Let s ≥ 0 be the forward normalization point. Define, for
t ≥ s, the process

h (s, t) =
∫ t

s

1
2
λ2
udu, (36)

with λ being the Sharpe ratio (4). Then, the process UFt (x; s) given, for x ∈ R
and t ≥ s, by

UFt (x; s) = −e−γx+h(s,t), (37)

is a forward dynamic exponential utility, normalized at s.

Proof. The fact that UFt (x; s) is Ft-measurable and normalized at s is imme-
diate. It remains to show (15), namely, that for arbitrary T ≥ t,

−e−γx+h(s,t) = sup
A

EP

[
−e−γXT +h(s,T )

∣∣∣Ft
]
.

Using (36), the above reduces to

−e−γx = sup
A

EP

[
−e−γXT +h(t,T )

∣∣∣Ft
]
. (38)
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Next, we introduce the function u : R×R×[0, T ] → R−,

u (x, y, t) = sup
A

EP

[
−e−γXT +

∫ T
t

(1/2)λ2(Ys)ds
∣∣∣Xt = x, Yt = y

]
.

Classical arguments imply that u solves the Hamilton–Jacobi–Bellman equa-
tion

ut + LY u+
λ2 (y)

2
u

+ max
π

{
1
2
σ2 (y)π2uxx + π (ρa(y)σ (y)uxy + μ (y)ux)

}
= 0,

with
u (x, y, T ) = −e−γx,

and LY as in (15). We deduce (see, e.g., Duffie and Zariphopoulou [9] and
Pham [26]) that the above equation has a unique solution in the class of
functions that are concave and increasing in x, and are uniformly bounded in
y. We, then, see that the function ǔ (x, y, t) = −e−γx is such a solution and,
by uniqueness, it coincides with u. The rest of the proof follows easily. 
�

We next present an alternative forward dynamic utility.

Example 3. Consider, for x ∈ R and t ≥ s, the process

UFt (x; s) = −e−γx−Z(s,t),

with

Z (s, t) =
∫ t

s

1
2
λ2
sds+

∫ t

s

λsdW
1
s . (39)

Observe that, for Xt = x, the forward stochastic criterion (cf. (15)),

−e−γx−Z(s,t) = sup
A

EP

[
−e−γXT−Z(s,T )

∣∣∣Ft
]
,

will hold if we establish

−e−γx = sup
A

EP

[
−e−γXT−Z(t,T )

∣∣∣Ft
]
,

or, equivalently,

−e−γx = sup
A

EP

[
−e−γXT−Z(t,T )

∣∣∣Xt = x, Yt = y, Ẑt = 0
]
,

with Ẑt′ = z + Z(t, t′). Defining v : R×R×R× [0, T ] → R− by

v (x, y, z, t) = sup
A

EP

[
−e−γXT−ẐT

∣∣∣Xt = x, Yt = y, Ẑt = z
]
,
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we see that it solves the Hamilton–Jacobi–Bellman equation

vt + max
π

{
1
2
σ2 (y)π2uxx + π (λ (y)σ (y)uxz + ρa(y)σ (y)uxy + μ (y)ux)

}

+
1
2
λ2 (y) vzz + ρλ (y) a (y) vzy +

1
2
a2 (y) vyy + b (y) vy +

1
2
λ2 (y) vz,

with
v (x, y, z, T ) = −e−γx−z.

Substituting above the function v̂ (x, y, z, t) = −e−γx−z, and after some cal-
culations, yields

− (λ (y)σ (y) v̂xz + μ (y) v̂x)
2

2σ2 (y) v̂xx
+

1
2
λ2 (y) (v̂zz + v̂z) = 0.

We easily conclude that v̂ ≡ v, and the assertion follows.

5.1 Forward Indifference Values

Next, we introduce the concept of forward indifference value. As is its back-
ward counterpart, it is defined as the amount that generates the same level of
(forward) dynamic utility with and without incorporating the liability. Note,
also, that in the definition below, it is only the forward dynamic utility that en-
ters, eliminating the need to incorporate in the definition the forward dynamic
value function. This allows for a concise treatment of payoffs and liabilities
of arbitrary maturities. Finally, we remark, that the nomenclature “forward”
does not refer to the terminology used in derivative valuation pertinent to
wealth expressed in forward units. Rather, it refers to the forward in time
manner that the dynamic utility evolves.

Although the concept of forward indifference value appears to be a
straightforward extension of the backward one, it is important to observe
that the maturities of the claims in consideration need not be bounded by
any prespecified horizon. This is one of the striking differences between the
classes of claims that can be priced by the two distinct dynamic utilities we
consider herein.

Definition 4. Let s ≥ 0 be the forward normalization point and consider a
claim CT ∈ FT , written at t0 ≥ s and maturing at T. For t ∈ [t0, T ], the
forward indifference value process (FIP) νFt (CT ; s) is defined as the amount
that satisfies the pricing condition

UFt
(
x− νFt (CT ; s) ; s

)
= sup

A
EP
[
UFT (XT − CT ; s)

∣∣Ft
]
, (40)

for all x ∈ R and Xt = x.
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We continue with the valuation of a bounded European-type liability and
we examine how its forward indifference value is affected by the choice of the
normalization point. We show that even though both forward dynamic utili-
ties, entering in (40) above, depend on the normalization point, the emerging
forward price does not. This is another important difference between the back-
ward and the forward indifference values.

Proposition 6. Let s ≥ 0 be the forward normalization point and consider
a European claim written at t0 ≥ s and maturing at T yielding payoff CT =
C (ST , YT ). For t ∈ [t0, T ], its forward indifference value νFt (CT ; s) is given
by

νFt (CT ; s) = pF (St, Yt, t) ,

where S and Y solve (1) and (2), and pF : R+ ×R× [0, T ] → R satisfies
⎧
⎨

⎩

pFt + L(S,Y ),mmpF + 1
2γ
(
1 − ρ2

)
a2 (y)

(
pFy
)2 = 0,

pF (S, y, T ) = C (S, y) ,
(41)

with

L(S,Y ),mm =
1
2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1
2
a2 (y)

∂2

∂y2

+ (b (y) − ρλ (y) a (y))
∂

∂y
.

Proof. We first note that

sup
A

EP
[
UFT (XT − CT ; s)

∣∣Ft
]

= sup
A

EP

[
−e−γ(XT −CT )+

∫
T
s

(1/2)λ2(Yu)du
∣∣∣Ft
]

= e
∫

t
s
(1/2)λ2(Yu)du sup

A
EP

[
−e−γ(XT −CT )+

∫
T
t

(1/2)λ2(Yu)du
∣∣∣Ft
]
,

where we used Proposition 5 and the measurability of the process h (cf. (36)).
Define uC : R×R+ ×R× [0, T ]→ R−,

uC (x, S, y, t) = sup
A

EP

[
−e−γ(XT −CT )+

∫ T
t

(1/2)λ2(Yu)du
∣∣∣Xt=x, St=S, Yt=y

]
,

and observe that it solves the Hamilton–Jacobi–Bellman equation

uCt + max
π

{
1
2
σ2 (y)π2uCyy + π

(
σ2 (y)SuCxS + ρa(y)σ (y)uCxy + μ (y)uCx

)}

+ L(S,Y )uC +
λ2 (y)

2
uC = 0,

with
uC (x, S, y, T ) = −e−γ(x−C(S,y)),
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and L(S,Y ) as in (35). Using the transformation
uC (x, S, y, t) = −e−γ(x−p

F (S,y,t)),

we deduce, after tedious but straightforward calculations, that the term
pF (S, y, t) solves (41). We, then, easily, see that

sup
A

EP
[
UFT (XT − CT ; s)

∣∣Ft
]

= −e
∫ t

s
(1/2)λ2(Yu)duuC (x, St, Yt, t) ,

and applying Proposition 5 and Definition 4 completes the proof. 
�

5.2 Optimal Portfolios Under Forward Dynamic Utilities

We continue with the optimal investment policies under the forward dynamic
risk preferences.

Proposition 7. Let s ≥ 0 be the forward normalization point and [t, T ] the
trading horizon, with s ≤ t. The processes πF,∗ and πF,0,∗, representing the
optimal investments in the risky and riskless asset, are given, respectively, for
u ∈ [t, T ], by

πF,∗u = πF,∗
(
XF,∗
u , Yu, u

)
=

μ (Yu)
γσ2 (Yu)

(42)

and
πF,0,∗u = πF,0,∗ (X∗

u, Yu, u) = XF,∗
u − πF,∗u ,

with XF,∗
u solving (5) with πF,∗u being used.

Two important facts emerge. Firstly, both optimal investment policies πF,∗

and πF,0,∗ are independent of the spot normalization point. Secondly, the in-
vestment in the risky asset consists entirely of the myopic component. Indeed,
the excess hedging demand, which emerges due to the presence of the stochas-
tic factor, has vanished. The investor has processed the stochasticity of the
(incomplete) market environment into her preferences, that are dynamically
updated, following, forward in time, the market movements.

Proposition 8. Let s ≥ 0 be the forward normalization point and consider an
investor endowed with the forward exponential dynamic utility UF and facing
a liability CT = C (ST , YT ). The processes πF,∗s and πF,0,∗s , representing the
optimal investments in the risky and riskless asset in the integrated portfolio
choice problem, are given, for u ∈ [t, T ], by

πF,∗u = πF,∗
(
XF,∗
u , Su, Yu, u

)
=

μ (Yu)
γσ2 (Yu)

+SupFS (Su, Yu, u) + ρ
a (Yu)
σ (Yu)

pFy (Su, Yu, u) (43)
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and
πF,0,∗u = πF,0,∗ (X∗

u, Su, Yu, u) = XF,∗
u − πF,∗u .

Herein, XF,∗
s solves (5) with πF,∗s being used, and pF satisfies (41).

6 Concluding Remarks: Forward Versus Backward
Utilities and Their Associated Indifference Prices

In the previous two sections, we analyzed the investment and pricing problems
of investors endowed with backward (BDU) and forward (FDU) dynamic ex-
ponential utilities. These utilities have similarities but also striking differences.
These features are, in turn, inherited by the associated optimal policies, indif-
ference prices, and risk monitoring strategies. Below, we provide a discussion
on these issues.

We first observe that the backward and forward utilities are produced
via a conditional expected criterion. They are both self-generating, in that
they coincide with their implied value functions. Moreover, in the absence of
exogenous cash flows, investors endowed with such utilities are indifferent to
the investment horizons.

Backward and forward dynamic utilities are constructed in entirely differ-
ent ways. Backward utilities are first specified at a given future time T and,
they are, subsequently, generated at previous to T times. Forward utilities are
defined at present s and are, in turn, generated forward in time. The times
T and s, at which the backward and forward utility data are determined, are
the backward and forward normalization points. We recall, from Equations
(28) and (37), that the BDU and FDU processes UBt and UFt are Ft-adapted
and given, respectively, by

UBt (x;T ) = −e−γx−H(t,T )

and
UFt (x; s) = −e−γx−h(s,t),

with

H (t, T ) = EQme

[∫ T

t

1
2

(
λ2
u + λ̂2

u

)
du

∣∣∣∣∣Ft

]

and

h(s, t) =
∫ t

s

1
2
λ2
udu.

Herein, λ and λ̂ are given in (4) and (18), and Qme is the minimal relative
entropy measure.

Both BDU and FDU have an exponential, affine in wealth, structure. How-
ever, the backward utility compiles changes in the market environment in an
aggregate manner, whereas the forward utility does so in a much finer way.
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This is seen by the nature of the processes H (t, T ) and h (s, t) . It is worth
observing that

H (t, T ) �= EQme [h (t, T )| Ft] ,

and that UFt is not affected by λ̂ (cf. (18) and (19)) that represent the “or-
thogonal” component of the market price of risk.

Backward and forward utilities generate different optimal investment
strategies (see, respectively, Propositions 3 and 7). Under backward dynamic
preferences, the investor invests in the risky asset an amount equal to the sum
of the myopic portfolio and the excess risky demand. The former investment
strategy depends on the risk aversion coefficient γ, but not on the backward
normalization point T . The excess risky demand, however, is not affected by
γ but depends on the choice of the normalization point, even if investment
takes place in a shorter horizons.

Under forward preferences, the investor invests in the risk asset solely
within the myopic portfolio. The myopic strategy does not depend on the
forward normalization point or the investment horizon.

As a consequence of the above differences, the emerging backward (BIV)
and forward (FIV) indifference values νBt (CT̄ ;T ) and νFt (CT̄ ; s) , 0 ≤ s ≤
t ≤ T̄ ≤ T have very distinct characteristics. Concentrating on the class of
bounded European claims, we see that νBt (CT̄ ;T ) and νFt (CT̄ ; s) are con-
structed via solutions of similar quasilinear PDEs. The nonlinearities in the
pricing PDEs are of the same type, however, the associated linear operators
L(S,y),me and L(S,y),mm differ (see, respectively, (30) and (41)). The former,
appearing in the BIV equation, corresponds to the minimal relative entropy
measure and the latter, appearing in the FIV equation, to the minimal martin-
gale measure. Denoting the solutions of these PDEs as nonlinear expectations,
we may formally represent (with a slight abuse of notation) the two indiffer-
ence values as

νBt (CT̄ ;T ) = EQme [CT̄ ;T ]

and
νFt (CT̄ ; s) = EQmm [CT̄ ; s] .

The FIV is independent on the forward normalization point. The BIV
depends, however, on the backward normalization point, even if the claim
matures in a shorter horizon.

As the investor becomes risk neutral, γ → 0, we obtain

lim
γ→0

νBt (CT̄ ;T ) = EQme [CT̄ |Ft ]

and
lim
γ→0

νFt (CT̄ ; s) = EQmm [CT̄ |Ft ] .

However, as the investor becomes infinitely risk averse, γ → ∞, both BIV and
FIV converge to the same limit given by the super replication value,
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lim
γ→∞

νBt (CT̄ ;T ) = lim
γ→∞

νFt (CT̄ ; s) = ‖CT̄ ‖L∞{ .|Ft} .

In the presence of the liability and under backward dynamic utility, the
investment in the risky asset consists of the myopic portfolio, the excess risky
demand, and the backward indifference risk monitoring strategies (see Propo-
sition 4). With the exception of the myopic portfolio, all other three portfolio
components depend on the normalization point T . When, however, the in-
vestor uses forward dynamic utility, his optimal integrated policy does not
include the excess risky demand (see Proposition 8). The entire policy is in-
dependent of the forward normalization point s, and depends exclusively on
the maturity of the claim and the changes in the market environment.

When the market becomes complete, the backward and forward pricing
measures Qme and Qmm coincide with the unique risk-neutral measure Q∗,
and (BIV) and (FIV) reduce to the arbitrage free price.

In general, the backward and forward indifference values do not coincide.
The underlying reason is that they are defined via the backward and forward
dynamic utilities that process the internal model incompleteness, generated
by the stochastic factor Y , in a very different manner. Characterizing the
market environments as well as the claims for which the two prices coincide
is an open question.
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