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PREFACE 

Remarkable progress has been made in both theory and applications of all impor- 
tant areas of control theory. Theory is rich and sophisticated. Some beautiful 
applications of control theory are presently being made in aerospace, biomedi- 
cal engineering, industrial engineering, robotics, economics, power systems, etc. 
Unfortunately, the same assessment of progress does not hold in general for 
computations in control theory. 

Many of the methods described in earlier control and systems theory text books 
were developed before the computer era and were based on approaches that are 
not numerically sound. Most of these methods, for example, require reduction of 
the system matrices to some condensed forms, such as a companion form or the 
Jordan canonical form, and it is well-known that these forms cannot, in general, 
be achieved in a numerically stable way. 

The situation is, however, changing quite fast. In the last 20 years or so, numeri- 
cally viable algorithms have been developed for many of the common linear control 
problems. Softwares based on these methods have been developed and are still 
being built. 

Unfortunately, these methods and softwares do not seem to be widely known 
and easily accessible to broad groups of applied mathematicians, control theo- 
rists, and practicing control engineers. They are still largely confined in reprints 
and preprints (in this context it is noted that a reprint book on "Numerical 
Linear Algebra Techniques for Systems and Control" edited by R.V. Patel, A. 
Laub, and E Vandooren containing a large number of important published papers 
in this area has recently been published by IEEE/CRC Press). The primary 
reason for the inaccessibility of these algorithms and the softwares, in my opin- 
ion, is that an understanding, efficient implementations, and making possible 
modifications of these methods needed for some applications of special inter- 
ests, require an interdisciplinary knowledge of linear algebra, numerical linear 
algebra, control theory, and computer science; and such a combined expertise is 
hard to find. 

What is, therefore, needed is a book that makes these algorithms accessible to 
a wide variety of users, researchers, and students. 
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For practicing users, it is important that the algorithms are described in a manner 
that is suitable for easy implementation on a wide range of computers, that impor- 
tant aspects of implementations are discussed, and a clear comparative study of 
one algorithm over the other for a given problem with respect to efficiency, storage, 
numerical stability, etc., is presented. The latter will help the users to choose the 
one most suitable for his or her applications. Furthermore, for the students and 
researchers, it is important that the mechanism of the development of the algo- 
rithms is clearly explained and aspects of perturbation analysis of the problems and 
round-off error analyses and convergence properties of the algorithms, whenever 
available, are included in some details. 

Of course, all these need to be accomplished requiring a minimal amount of 
background in the areas mentioned above. This is certainly a difficult and an 
ambitious task. But the present book aspires to do that and aims at reaching out to 
a broad spectrum of audience in a number of disciplines including mathematics, 
control and systems engineering, and other applications areas such as vibrations, 
aerospace, space-sciences, and structural and manufacturing engineering. 

The recent book on "Computational Methods for Linear Control Systems" by 
E H. Petkov, N.D. Christov, and M. M. Konstantinov also aims to fulfill that need 
to some extent. The scope of this book is, however, much more limited than that 
of the present book. 

The current book is an outgrowth of lecture notes compiled by the author over 
several years for a graduate course in numerical methods in control theory taught 
at Northern Illinois University (almost all students of this course have been math- 
ematics students with no prior background in control theory). The book has also 
been used in several short courses given by the author including the SIAM short 
course on Numerical Methods in Control, Signal, and Image Processing, Seattle, 
August 15, 1993 and, the short course on Numerical Methods for Linear Control 
and Systems at the International Conference on Mathematical Theory of Networks 
and Systems, St. Louis, 1996. The audience of these short courses had varying 
backgrounds. 

The book covers most important and relevant problems arising in control sys- 
tem design and analysis with a special emphasis on computational aspects. These 
include: 

�9 Numerical solutions of state equations and frequency response computations 
�9 Controllability, observability, and distance to controllability 
�9 Stability, inertia, robust stability, and distance to instability 
�9 Numerical solutions and conditioning of Lyapunov, Sylvester, and algebraic 

Riccati equations 
�9 Numerical algorithms for feedback stabilization, eigenvalue and robust 

eigenvalue assignment and conditioning of the eigenvalue assignment 
problem 
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�9 Numerical algorithms for full-order and reduced-order observer design and 
Kalman filtering 

�9 Realization and subspace algorithms for model identification 
�9 Algorithms for balanced realization and model reduction 
�9 Large-scale solutions of control problems 
�9 H2 and H~  control 

The numerical algorithms described in the book have the following desirable 
features: 

�9 Efficiency. Algorithms are of order O (n3). 
�9 Numerical Stability. Algorithms are either numerically stable or composed 

of numerically stable computations. 
�9 State-of-the-art Algorithms. The state-of-the-art algorithms for all prob- 

lems have been included. 
�9 Comparative Study and Recommendations. Whenever possible, a com- 

parison of various algorithms for the same problem with respect to effi- 
ciency, numerical stability, and accuracy has been given and based on this 
comparative study, recommendation for practicing engineers has been made. 

�9 Step by Step Explanation. All algorithms have been explained step by step 
with illustrative examples illustrating each step of the algorithm. 

�9 Software and Implementations. Important selected software for each topic 
has been included. 

�9 MATLAB Toolkit. There exists a MATLAB toolkit called MATCONTROL, 
implementing major algorithms in the book. 

�9 Algorithms for both Continuous-time and Discrete-time systems. 
Algorithms are described both for continuous-time and discrete-time 
systems. 

The discussions on theoretical aspects of control theory have been kept to a mini- 
mum, only the relevant facts have been mentioned. However, the importance and 
applications of the problems have been discussed to an extent to motivate the 
readers in mathematics and other areas of science and engineering who are not 
familiar with control problems. Numerical Linear Algebra techniques needed to 
understand and implement the algorithms have been developed in the book itself 
in a concise manner without going into too much details and attempts have been 
made to make the techniques understandable to the readers who do not have a 
prior background in numerical linear algebra and numerical analysis. Of course, 
people having a background in numerical analysis or numerical algebra and/or 
control theory will have a definite advantage. 

A special emphasis has been given to the clear understanding of the distinction 
between a "bad" algorithm and a "numerically effective" algorithm. 
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Some discussions on large-scale computing in control have been included 
too. The research in this area is still in its infancy, but some aspects of current 
research have been included to give the readers a flavor. There is an urgent need 
for an expanded research in this area as outlined in the 1988 NSF panel report: 
"Future Directions in Control Theory: A Mathematical Perspective" It is 
hoped our short coverage in this area will provide enough incentive and motivation 
to beginning researchers, both from control theory and applied and computational 
mathematics, to work in the area. 

The MATLAB toolkit MATCONTROL will help the students and the users under- 
stand the merits and drawbacks of one algorithm over the others and possibly help 
a user to make a right decision in choosing an ideal algorithm for a particular 
application. 

Organization of the Book: 
The book has fifteen chapters. These fifteen chapters have been organized into 
four parts; each part consisting of several chapters, grouped together (roughly) 
with a common theme. 

Part I. REVIEW OF LINEAR AND NUMERICAL LINEAR ALGEBRA 
Chapter 2. A Review of Some Basic Concepts and Results from 

Theoretical Linear Algebra 
Chapter 3. Some Fundamental Tools and Concepts from Numerical 

Linear Algebra 
Chapter 4. Canonical Forms Obtained via Orthogonal Transformations 

Part II. CONTROL SYSTEM ANALYSIS 
Chapter 5. Linear State Space Models and Solutions of the State Equations 
Chapter 6. Controllability, Observability and Distance to Uncontrollability 
Chapter 7. Stability, Inertia, and Robust Stability 
Chapter 8. Numerical Solutions and Conditioning of Lyapunov and 

Sylvester Equations 

Part III. CONTROL SYSTEMS DESIGN 
Chapter 9. 
Chapter 10. 

Chapter 11. 

Chapter 12. 
Chapter 13. 

Chapter 14. 

Realization and Subspace Identification 
Feedback Stabilization, Eigenvalue Assignment, and Optimal 
Control 
Numerical Methods and Conditioning of the Eigenvalue 
Assignment Problems 
State Estimation: Observer and the Kalman Filter 
Numerical Solutions and Conditioning of Algebraic Riccati 
Equations 
Internal Balancing and Model Reduction 
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Part IV. SPECIAL TOPICS 

Chapter 15. 

Heading: 

Large-scale Matrix Computations in Control: Krylov Subspace 
Methods 

Intended Audienee 

The book can be used as a textbook for an advanced graduate course in con- 
trol engineering such as Computational Methods for Control Systems Design and 
Analysis and Computer-aided Control System Design or for an advanced gradu- 
ate topic course on Numerical Linear Algebra Techniques in Control and Systems 
in applied mathematics and scientific computing. Far more material than can be 
covered in one semester has been included, so professors can tailor material to par- 
ticular courses and develop their own course syllabi out of the book. Above all, the 
book is intended to serve as a reference book for practicing engineers and applied 
scientists, researchers, and graduate students. The book is also very suitable for 
self-study. 
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C H A P T E R  1 

INTRODUCTION AND OVERVIEW 

A linear time-invariant continuous-time dynamical system in state-space is 
described by the matrix differential equations of the form: 

2(t)  -- Ax( t )  + Bu(t);  x(to) -- xo, t > to (1.0.1) 

y(t)  - Cx( t )  + Du(t) ,  (1.0.2) 

where A, B, C, and D are real time-invariant n x n state matrix, n x m(m <_ n) 
input matrix, r x n(r <_ n) output matrix, and r x m direct transmission matrix, 
respectively. The vectors u, x, and y are time-dependent vectors referred to as 
input, state, and output, respectively. The dot, "2," denotes ordinary differentiation 
with respect to t. If m = 1, then the matrix B is an n x 1 column vector, and is 
denoted by b. The control problem dealing with such an input vector is referred to 
as the single-input problem (because u is a scalar in this case). The single-output 
problem is analogously defined. 

Similarly, a linear time-invariant discrete-time dynamical system in state- 
space is represented by the vector-matrix difference equations of the form: 

x(k  + 1) - Ax(k )  + Bu(k);  x(0) = x0, k > 0 (1.0.3) 

y(k) = Cx(k)  + Du(k) .  (1.0.4) 

For notational convenience, the system (1.0.1)-(1.0.2) or its discrete counterpart 
(1.0.3)-(1.0.4) is sometimes denoted simply by (A, B, C, D). The matrix D will 
be assumed to be a zero matrix for most problems in this book. 

The transfer function matrix from u to y for the system (1.0.1)-(1.0.2) is 
defined as 

~(s)-G(s)~(s), 

where fi(s) and ~(s) are the Laplace transforms of u(t) and y(t)  with x(0) - 0. 
Thus, 

G(s) - C ( s I  - A ) - I B  + D. 
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Sometimes, the notation 

C D -- C(sl  - A) - IB  + D 

will be used for simplicity. 
The transfer function matrix for a discrete-time system is similarly defined. 
This book deals with computational methods for control problems modeled by 

the systems of the above types; and with numerical analysis aspects associated 
with these computational methods, such as conditioning of problems, numerical 
stability of algorithms, accuracy of solutions, etc. 

The following major topics, associated with the design and analysis of linear 
control system have been addressed in the book: (i) Linear and Numerical Lin- 
ear Algebra, (ii) System Responses, (iii) Controllability and Observability, (iv) 
Stability and Inertia, (v) Lyapunov, Sylvester and Riccati Equations, (vi) Realiza- 
tion and Identification, (vii) Feedback Stabilization and Eigenvalue Assignment, 
(viii) State Estimation, (ix) Internal Balancing and Model Reduction, (x) Nearness 
to Uncontrollability and Instability, (xi) Sensitivity and Conditioning for Eigen- 
value Assignment; Lyapunov, Sylvester, and Riccati equations, (xii) H2 and H~ 
Control, and (xiii) Selected Control Software. 

In what follows, we give an overview of each of these topics with references to the 
Chapter(s) and Sections(s) in which it is dealt with. For references of the papers 
cited in these sections, please consult the reference sections of the associated 
chapters. 

1.1 LINEAR AND NUMERICAL LINEAR ALGEBRA 
(CHAPTER 2 AND CHAPTERS 3 AND 4) 

The linear and numerical linear algebra background needed to understand the 
computational methods has been done in the book itself in Chapters 2--4. 

All major aspects of numerical matrix computations including solutions and 
least-squares solutions of algebraic linear systems, eigenvalue and singular value 
computations, computations of generalized eigenvalues and eigenvectors, along 
with the conditioning of these problems and numerically stability of the 
algorithms have been covered. 

Canonical Forms 

A common strategy for numerically solving control problems can be described in 
the following steps taken in the sequence: 

Step 1. The problem is transformed by reducing the matrices A, B, and C 
to some convenient "condensed" forms using transformations that preserve the 
desirable properties of the problem at hand. 
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Step 2. The transformed problem is solved by exploiting the structure of the 
condensed forms of the matrices A, B, and C obtained in Step 1. 

Step 3. The solution of the original problem is recovered from the solution of 
the transformed problem. 

Two condensed forms that have been used often in the past in control literature 
are: the Jordan Canonical Form (JCF) and the Frobenius (or Block Companion) 
Form (a variation of this is known as the Luenberger Canonical Form). Exploitation 
of rich structures of these forms often makes it much easier to solve a problem and 
these forms are very convenient for textbook illustrations. 

Unfortunately, determination of both these forms might require very ill- 
conditioned similarity transformations. 

Suggestions. Avoid the use of the JCF and companion canonical forms in 
numerical computations, and use only canonical forms that can be obtained using 
well-conditioned transforming matrices, such as orthogonal transformations. The 
Hessenberg form, the controller-Hessenberg and the observer-Hessenberg forms, 
the real Schur and the generalized real Schur forms, the Hessenberg-triangular 
form are examples of such canonical forms. These forms can be obtained via 
orthogonal transformations. The errors in numerical computations involving 
orthogonal matrix multiplications are not magnified by the process and the sen- 
sitivity of a computational problem remains unaffected by the use of orthogonal 
transformations. 

1.2 SYSTEM RESPONSES (CHAPTER 5) 

For the continuous-time system (1.0.1)-(1.0.2), the dynamical system responses 
x(t) and y(t) for t > to can be determined from the following formulas: 

f0 x(t) -- ea(t-t~ + ea(t-S)Bu(s) ds, (1.2.1) 

y(t) = Cx(t) + Du(t). (1.2.2) 

In order to study the behavior of a dynamical system, it is customary to determine 
the responses of the system due to different inputs. Two most common inputs are 
the unit step function and the unit impulse. 

Thus, the unit step response of a system is the output that occurs when the 
input is the unit step function (it is assumed that x(0) = 0). Similarly, the unit 
impulse response is the output that occurs when the input is the unit impulse. 

The impulse response matrix of the system (1.0.1) and (1.0.2) is defined by 

H(t) : ceAtB + D3(t), 

where 3(t) is the Dirac delta function. The impulse response is the response of the 
system to a Dirac input 3(t). 
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Thus, to obtain different responses, one needs to compute the matrix exponential 
e at -- I + At + (AZt2/2) + . . .  and the integrals involving this matrix. The 
computational challenge here is how to determine e at without explicitly computing 
the matrix powers. Finding higher powers of a matrix is computationally intensive 
and is a source of instability for the algorithm that requires such computations. 

An obvious way to compute e a is to use some simple canonical forms of A 
such as the JCF or a companion form of A. It is shown in Chapter 5 by simple 
examples how such computations can lead to inaccurate results. Computations 
using truncated Taylor series might also give erroneous result (see Example 5.3.3). 

The method of choice here is either Padd approximation with scaling and squar- 
ing (Algorithm 5.3.1) or the method based on reduction of A to real Schur form 
(Algorithm 5.3.2). 

A method (Algorithm 5.3.3) due to Van Loan (1978) for computing an integral 
involving an matrix exponentials is also described in Section 5.3.5. 

Frequency Response Computations 

The frequency response plot for many different values of the frequency co is 
important in the study of various important properties of linear systems. The fre- 
quency response curves indicate how the magnitude and angle of the sinusoidal 
steady-state response change as the frequency of the input is changed. For this, 
the frequency-response matrix G(jco) - C(jcol - A ) - l  B + D(co >_ O) needs to 
be computed. Computing G(j  co) using the LU decomposition of A would require 
O (n 3) operations per co and is, therefore, not practical when this computation has 
to be done for a large number of values of co. An efficient and practical method due 
to Laub (1981), based on reduction of A to a Hessenberg matrix, is presented in 
Algorithm 5.5.1, and short discussions on some other recent methods for efficient 
computations of the frequency-response matrix is included in Section 5.5.2. 

1.3 CONTROLLABILITY AND OBSERVABILITY PROBLEMS 
(CHAPTER 6) 

The system (1.0.1) is controllable or, equivalently, the pair (A, B) is controllable, 
if for any initial state x(0) - x0 and the final state xf, there exists an input u(t) 
such that the solution satisfies x(tf) - xf. Several mathematically equivalent 
criteria of controllability are stated and proved in Theorem 6.2.1. The most well- 
known of them being Criterion (ii). Unfortunately, this criterion does not yield to 
a numerically viable test for controllability (see Example 6.6.1). 

Similar remarks hold for other criteria. See Example 6.6.2 in Chapter 6 which 
demonstrates the pitfall of the eigenvalue criterion (popularly known as the 
Hautus-Popov-Belevieh criterion). 
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A numerically viable test of controllability, based on the reduction to (A, B) to 
the controller-Hessenberg form, is given in Section 6.7 (Staircase Algorithm). 

Observability is a dual concept to controllability. Thus, all that we have said 
above about controllability applies equally to observability. 

1.4 STABILITY A N D  INERTIA ( C H A P T E R  7) 

It is well known that the uncontrolled system 

Yc = Ax(t) (1.4.1) 

is asymptotically stable if and only if all the eigenvalues of A have negative real 
parts. 

Similarly, the discrete system 

x(k § 1) = Ax(k) (1.4.2) 

is asymptotically stable if and only if the eigenvalues of A have moduli less 
than 1. 

The common approaches for determining the stability of a system include 
(i) finding the characteristic polynomial of A followed by application of the Routh- 
Hurwitz test in case of continuous-time stability or the Schur-Cohn criterion in 
case of discrete-time stability (ii) solving and testing the positive definiteness of 
the solution matrix X of the associated Lyapunov equations: 

X A + AT X -- - M (for continuous-time stability) (1.4.3) 

or 
X - AT X A = M (for discrete-time stability). (1.4.4) 

Finding the characteristic polynomial of a matrix is potentially a numerically 
unstable process and, furthermore, the coefficients of the characteristic polynomial 
can be extremely sensitive to small perturbations (see Chapter  4). The Lyapunov 
equation approach is counterproductive in the sense that the most numerically 
viable method for solving a Lyapunov equation, namely, the Sehur method, is 
based on the reduction of A to a real Schur form, and the latter either explicitly 
displays the eigenvalues of A or they can be trivially computed. 

It is, therefore, commonly believed that the most viable way to test the stability 
of a dense system is to compute the eigenvalues of A using the universally used 
method, called the Q R iteration with double shift (see Chapter  4 (Section 4.3.3)). 

Having said this, let's note that with explicit computation of eigenvalues, one 
gets much more than what is needed for determining the stability, and moreover, 
as just said, the eigenvalues can be extremely ill-conditioned. An indirect method 
that neither explicitly solves a Lyapunov equation nor computes the eigenvalues, 
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is stated in Algorithm 7.5.1. This method was later modified by Datta and Datta 
(1981). According to theoretical operations-count, both these methods are 
about 3-4 times faster than the eigenvalue method and several times faster 
than the Lyapunov equation method. 

Two important inertia theorems (Theorem 7.4.1 and Theorem 7.4.2) are stated 
in Section 7.4. 

1.5 LYAPUNOV, SYLVESTER, AND ALGEBRAIC RICCATI 
EQUATIONS (CHAPTERS 8 AND 13) 

The Lyapunov equations (1.4.3) and (1.4.4) arise in (i) Stability and Robust Sta- 
bility Analyses (Chapter 7), (ii) Model Reduction (Chapter 14), (iii) Internal 
Balancing (Chapter 14), and (iv) Determining Hz-norm (Chapter 7). 

A variation of the Sylvester equation X A + BX  = M called the Sylvester- 
observer equation, arises in the design of observer (Chapter 12), and it can also 
be used to solve feedback stabilization and pole-placement problems (Chapters 10 
and 11). 

Solving these equations via reduction of A and/or B to a companion form or 
the JCF is numerically unreliable, because, as said before, these forms cannot be, 
in general, obtained in a numerically stable way. 

Experience with numerical experiments reveal that solving Lyapunov equations 
of order higher than 20 using a companion form of A yields solutions with errors 
as large as the solutions themselves. Example 8.5.1 in Chapter 8 illustrates the 
danger of solving a Lyapunov equation using the JCFs of A. With A and C as chosen 
in Example 8.5.1, the solution of (1.4.3) via diagonalization of A (available in 
MATLAB function lyap2) is very different from the exact solution. 

The methods of choice are: (i) The Schur method (Section 8.5.2)for the 
Lyapunov equation and (ii) The Hessenberg-Schur method (Algorithm 8.5.1) 
for the Sylvester equation. 

In several applications, all that is needed is the Cholesky factor L of the 
symmetric positive definite solution X of a Lyapunov equation, for example, 
the controllability and observability Grammians of a stable system needed for 
balanced realization in the context of model reduction (Chapter 14). 

It is numerically desirable that L is found without explicitly computing the 
matrix X and without forming the matrix c T c  or B B T. A method for obtaining 
such an L due to Hammarling both for the continuous-time and the discrete-time 
systems are described in Chapter 8 (Algorithms 8.6.1 and 8.6.2 ). 

The continuous-time algebraic Riccati equation (CARE): 

XA + A T x -  X B R - 1 B T X  + Q = 0 (1.5.1) 



Section 1.5: LYAPUNOV, SYLVESTER, AND ALGEBRAIC RICCATI EQUATIONS 7 

and the discrete-time algebraic Riccati equation (DARE). 

ATXA - X - ATXB(R + B T x B ) - I B T x A  + Q = 0 (1.5.2) 

and their variations arise in (i) LQR and LQG Design (Chapters 10 and 12), 
(ii) Kalman Filtering (Chapter 12), and (iii) H~  Control (Chapter 10). 

An algebraic Riccati equation may have many solutions. Of special interests, 
from applications viewpoints, is the unique stabilizing solution. Numerical  meth- 
ods for computing such a solution are described in Chapter 13. The stabilizing 
solution of the CARE may be obtained by constructing a basis of the invariant sub- 
space corresponding to the eigenvalues with negative real parts (stable invariant 
subspace) of the associated Hamiltonian matrix 

H -- --AT , where S = B R-  1BT. 

It is natural to construct such a basis by finding the eigendecomposition of H. 
However, the eigenvector matrix can be highly ill-conditioned if H has multiple or 
near multiple eigenvalues. The difficulty can be overcome by using an ordered real 
Schur decomposition of H. This gives rise to the Schur method for the CARE 
(Laub 1979). The Schur method for the CARE is described in Algorithm 13.5.1. 
Section 13.5.1 also contains some discussions on the Schur method for the DARE. 
The Schur method for the DARE is based on finding a stable invariant subspace 
of the associated symplectic matrix 

M -  (A  + S(A-1)TQ -S(A-1)T'~ 
( - a - l )  TQ ( a - l )  T }" 

The Schur methods, however, may not give an accurate solution in case R 
is nearly singular. This difficulty can be overcome by using an extended matrix 
pencil. The stabilizing solution of the CARE maybe computed by finding the 
ordered generalized Schur decomposition of this pencil using the Q Z iteration 
algorithm. Such a method is called an inverse-free generalized Schur method and is 
described in Algorithm 13.5.3 and Algorithm 13.5.4, respectively, for the CARE 
and DARE. 

The matrix sign-function methods has been developed in Section 13.5.3. The 
matrix sign-function method for the CARE is based on computing the matrix sign- 
function of the Hamiltonian matrix H (see Algorithm 13.5.6). For the DARE 

(Alg~ l3"5"7)' the matrix H~ - ( P + N ) - l  ( p - N) where P - ( A ~) , _ Q  , 

( I  0 S ) i s  computed first and then the matrix sign-function method and N -- AT 

for the CARE is applied. 
The matrix sign-function methods are not stable in general unless an iterative 

refinement technique is used. 
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Any Riccati equation solver should be followed by an iterative refinement 
method, such as Newton's method. For detailed descriptions of Newton's meth- 
ods, see Chapter 13 (Section 13.5.4). Newton's methods for the CARE and 
DARE are described, respectively, in Algorithms 13.5.8 and 13.5.10, while Algo- 
rithms 13.5.9 and 13.5.11, described Newton's methods with line search for the 
CARE and the DARE, respectively. 

In summary, in case R is robustly nonsingular, the Schur method or the matrix 
sign function method, followed by Newton's method, is recommended for the 
CARE. In case R is nearly singular, the inverse-free generalized Schur method 
(Algorithm 13.5.3) should be used. 

For the DARE, the inverse-free generalized Schur method (Algorithm 13.5.4) 
is the most general purpose method and is recommended to be used in practice. 
Again, the method should be followed by Newton's iterative refinement technique. 

1.6 REALIZATION AND IDENTIFICATION (CHAPTER 9) 

Given a set of a large number of Markov parameters, the problem of determining the 
system matrices A, B, C, and D from this set, is called a state-space realization 
problem. 

There are many realizations corresponding to a given set of Markov parameters 
and the one of the least possible dimension of A, called a Minimal Realization 
(MR), is of practical interest. A realization is an MR if and only if it is both 
controllable and observable (Theorem 9.2.1). 

The two MRs are related via a nonsingular transforming matrix (Theorem 9.2.2) 
and the degree of an MR is called the MeMillan degree, 

The existing algorithms for finding an MR are all based on factoring an 
associated block Hankel matrix of Markov parameters: 

Mk 

H1 H2 "'" Hk 

02  03  "'" Hk+l 

Hk Hk + l "'" H2k-1 

(k has to be greater than or equal to the McMillan degree), where Hi = C A  i-1 B 
is the ith Markov parameter. 

The block Hankel matrix M~ can be highly ill-conditioned and, therefore, care 
should be taken in obtaining its factorization. The singular value decomposi- 
tion (SVD) is certainly a numerically viable procedure for such a factorization. 
Two SVD-based algorithms (Algorithms 9.3.1 and 9.3.2) are presented in 
Chapter 9. 
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The Markov parameters are easily generated from a transfer function matrix in 
case they are of a discrete-time system; indeed in this case they are just the impulse 
responses. However, they are not readily available for a continuous-time system. 

Thus, it is more of a practical importance to identify the system matrices directly 
from the input-output sequence. 

Two subspace identification algorithms (Algorithms 9.4.1 and 9.4.2)from 
DeMoor et al. (1999), that do not require explicit computations of Markov 
parameters, is presented in Section 9.4. 

Also stated in this chapter is a subspace algorithm (Algorithm 9.4.3) for 
frequency-domain identification. The frequency-domain identification problem 
concerns finding the system matrices A, B, C, and D from a given set of measured 
frequency responses at a set of frequencies (not necessarily distinct). 

The subspace methods are numerically stable practical methods for systems 
identification. 

1.7 F E E D B A C K  STABILIZATION A N D  E I G E N V A L U E  

A S S I G N M E N T  ( C H A P T E R S  10 A N D  11) 

Suppose that the uncontrolled system (1.4.1) is not stable, then it is desirable to 
make it stable. If the state vector x(t) is measurable, then choosing 

u(t) : - K x ( t ) ,  

we obtain the dosed-loop system: 

~c(t) -- (a - BK)x(t). 

Mathematically, the problem is then to find matrix K such that A - BK is stable. 
The system (1.0.1) is said to be stabilizable if such a K exists. 
In many practical instances, just stabilizing a system is not enough. Certain 

design constraints require that all the eigenvalues be placed in certain specified 
regions of the complex plane. 

This gives rise to the well-known Eigenvalue Assignment (EVA) problem or 
the so-called pole-placement problem. 

Computing the feedbackvector f via controller canonical form orusing the well- 
known Ackermann formula for single-inputproblem does not yield to a numerically 
viable algorithm (see Example 11.2.1). 

Several numerically viable algorithms, based on the reduction of the pair (A, B) 
to the controller-Hessenbergform rather than the controller-Canonical form, or to 
the real Schurform of A have been developed in recent years and a few selected 
algorithms are presented in Chapter 11. These include (i) Recursive algorithms 
(Algorithms 11.2.1 and 11.3.1), based on evaluations of some simple recursive 
relations, (ii) Q R and R Q type algorithms (Algorithms 11.2.2, 11.2.3 and the 
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one described in Section 11.3.2), (iii) The Schur algorithm (Algorithm 11.3.3) 
based on reduction of A to a real Schur form, and (iv) The robust EVA algorithm 
(Algorithm 11.6.1). 

A parametric algorithm (Algorithm 11.3.4) for Partial eigenvalue assignment 
(PEVA) is described in Section 11.3.4. Lyapunov and Sylvester equations can 
also be used for feedback stabilization and EVA. Two Lyapunov based methods 
for feedback stabilization; one for the continuous-time system and the other for 
the discrete-time system, have been described in Chapter 10 (Section 10.2). A 
comparative study in tabular forms with respect to the efficiency and numerical 
stability of different algorithms for EVA is given in Chapter 11 (Sections 11.7 and 
11.8). Based on factors, such as ease of implementation, efficiency, and practical 
aspect of numerical stability, the author's favorites are: Algorithm 11.2.1 for 
the single-input problem and Algorithm l l .3.3 for the multi-input problem. Also, 
Algorithm 11.3.1 is extremely easy to use. 

1.8 STATE ESTIMATION (CHAPTER 12) 

In many practical situations, the states are not fully accessible, but the designer 
knows the input u(t) and the output y(t). However, for stabilization and EVA 
by state feedback, for L QR and L QG design, for Kalman filters, to solve H~ 
state-feedback control problems, and others, the knowledge of the complete state 
vector x (t) is required. Thus, the unavailable states, somehow, need to be estimated 
accurately from the knowledge of the matrices A, B, and C and the input and 
output vectors u(t) and y(t). Mathematically, the state estimation problem is 
the problem of finding an estimate :~(t) of x ( t )  such that the error vector 
e ( t )  = x ( t )  - ~ ( t )  approaches zero as fast as possible. 

It is shown (Theorem 12.2.1) that if the states x(t) of the system (1.0.1)-(1.0.2) 
are estimated by 

~(t) -- (A - KC) ~(t) § Ky(t)  + B u(t), (1.8.1) 

where the matrix K is constructed such that A - KC is a stable matrix, then the 
error vector e(t) has the property that e(t) --+ 0 as t --+ c~. The observability of 
the pair (A, C) ensures the existence of such a matrix K. 

It is clear from the above result that the state estimation problem can be solved 
by solving the feedback stabilization or the EVA problem for the pair (AT, cT). 

An alternative approach for state estimation is via solution of the Sylvester 
equation X A  - F X  = GC (see Theorem 12.3.1). 

Two numerically reliable algorithms (Algorithms 12.7.1 and 12.7.2) for the 
Sylvester-observer equation, both based on the reduction of the pair (A, C) to 
controller-Hessenberg forms, have been described in Chapter 12. Furthermore, 
necessary and sufficient conditions for the nonsingularity of the solution X of the 
Sylvester-observer equation have been given in Theorems 12.6.1 and 12.6.2. 
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Optimal State Estimation: The Kalman Filter 

The problem of finding the optimal steady-state estimation of the states of a stochas- 
tic system is considered in Section 12.9. An algorithm (Algorithm 12.9.1) for the 
state estimating using Kalman filter is described and the duality between Kalman 
filter and the LQR design is discussed. 

The Linear Quadratic Gaussian Problem 

The linear quadratic Gaussian problem (LQG) deals with optimization of a per- 
formance measure for a stochastic system. An algorithm (Algorithm 12.10.1) for 
LQG design is described in Section 12.10.1. 

1.9 INTERNAL BALANCING AND MODEL REDUCTION 
(CHAPTER 14) 

The model reduction is a procedure for obtaining a reduced-order model that 
preserves some important properties such as the stability, and is close to the orig- 
inal model, in some sense. One way to obtain such a model is via internally 
balanced realization. A continuous-time stable system given by (A, B, C) is 
internally balanced if there exists a nonsingular transforming matrix T such that 
T-1CGT -y  = T TOGT = }2 = diag(crl, ~2, "'" , crd, crd+l, " "  , ~n), where CG 
and OG are, respectively, controllability and observability Grammians. The diag- 
onal entries Crl, �9 .- , ~n are called the Hankel singular values. Once the system 
is internally balanced, the reduced-order model can be obtained by deleting the 
states corresponding to the negligible Hankel singular values. Let G(s) and GR (s) 
denote the transfer function matrices, respectively, of the original and the reduced- 
order models. Then a bound for the error E = IlG(s) - GR(S)Iloc is given in 
Theorem 14.4.1. 

An algorithm (Algorithm 14.2.1) for constructing a balanced realization, based 
T on the SVD of the matrix L o Lc, where Lo and Lr are, respectively, the Cholesky 

factors of observability and controllability Grammians, is given in Section 14.2. 
The difficulty with this method is that the transforming matrix T may be ill- 
conditioned(see Section 14.2.2). An algorithm, based on the Schur decomposition 
of the matrix CG OG, that overcomes this difficulty is the Schur algorithm, Algo- 
r i thm 14.4.2. The Schur algorithm was developed by Safonov and Chiang (1989). 
It produces a reduced-order model which has the same error property as the one 
obtained via internal balancing. 

This chapter also contains several other algorithms for balanced realization 
and model reduction, including the Square-root algorithm (Algorithm 14.2.2) 
for balanced realization and Hankel-norm approximation algorithm for model 
reduction (Algorithm 14.5.1). 
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1.10 NEARNESS TO UNCONTROLLABILITY AND INSTABILITY 
(CHAPTERS 6 AND 7) AND ROBUST STABILITY AND 
STABILITY RADIUS (CHAPTERS 7 AND 10) 

1.10.1 Nearness to Uncontrollability and Instability 

There are systems which are theoretically perfectly controllable, but may be very 
close to uncontrollable systems (see the Example in Section 6.9). 

Thus, what is important in practice is to know when a system is close to an 
uncontrollable system rather than asking if  it is controllable or not. 

A measure of distance to uncontrollability, denoted by #(A, B), is defined (Paige 
1980) as follows: 

#(A, B) = min{ll AA, AB 112 such that the system (A + AA, B + AB) 

is uncontrollable} 

It can be shown (Theorem 6.9.1) (Miminis 1981; Eising 1984; (Kenney and Laub 
1998) that 

#(A, B) -- min ~n(sI  - A, B), 

where ~n denotes the smallest singular value. Several algorithms (Miminis 198 l; 
Wicks and DeCarlo 1991; Elsner and He 1991) for computing #(A, B) have been 
developed in the last several years. A Newton-type algorithm (Algorithm 6.9.1) 
due to Elsner and He (199 l) and an SVD algorithm due to Wicks and DeCarlo 
(Algorithm 6.9.2) are described in Chapter 6. 

Similar remarks hold for the stability of a system. There are systems which are 
clearly stable theoretically, but in reality are very close to unstable systems. A well- 
known example of such a system is the system with a 20 • 20 upper bidiagonal 
matrix A having 10s along the subdiagonal and - 1 along the main diagonal. Since 
the eigenvalues of A are all - 1 ,  it is perfectly stable. However, if the (20, 1)th 
entry is perturbed to e = l0 -i8 from zero, then one of the eigenvalues becomes 
positive, making the matrix A unstable. 

A measure of the distance to instability is 

fl(A) = min{ll AA II such that A 4- AA is unstable}. 

Again, it can be shown (Van Loan 1985) that 

fl(A) = min tYmin(A - jcol) .  
coER 

A bisection algorithm (Algorithm 7.6.1) due to Byers (1988) for estimating fl(A) 
is described in Chapter  7. 

A bisection algorithm (Algorithm 7.6.2) for estimating the distance to a discrete 
unstable system is also described in this chapter. 
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1.10.2 Robust Stability and Stability Radius (Chapters 7 and 10) 

The robust stability concerns the stability of the perturbed system: 

2(t) = (A + E)x(t) ,  

where A is a stable matrix and E is an n x n perturbation matrix. Two robust 
stability results (Theorems 7.7.1 and 7.7.2) using Lyapunov equations are given 
in Chapter 7. 

The stability radius of the matrix triple (A, B, C) is defined as: 

rF(A, B, C) = inf{6-(A) : A E ~mxr and A + BAC is unstable}, 

where 6(M),  following the notation of Qiu et al. (1995), denotes the 
largest singular value of M (i.e., 6(M) = Omax(M)). For real matrices 
(A, B, C), rIR(A, B, C) is called the real stability radius and, for complex 
matrices (A, B, C), rc(A, B, C) is called the complex stability radius. 

The stability radius, thus, determines the magnitude of the smallest perturbation 
needed to destroy the stability of the system. 

"Stability" here is referred to as either continuous-stability (with respect to the 
left half-plane) or discrete-stability (with respect to the unit circle). 

Let OCg denote the boundary of either the half plane or the unit circle. Let A be 
stable or discrete-stable. 

Formulas for complex and real stability radii are given, respectively, in 
Theorems 7.8.1 and 7.8.2. 

Section 10.7 of Chapter 10 deals with the relationship between the complex 
stability radius and Riccati equation. A characterization of the complex stability 
radius is given in Theorem 10.7.2 using a parametric Hamiltonian matrix and the 
connection between complex stability radius and an algebraic Riccati equation is 
established in Theorem 10.7.3. 

A simple bisection algorithm (Algorithm 10.7.1) for computing the complex 
stability radius, based on Theorem 10.7.2, is then described at the conclusion of 
this section. 

1.11 SENSITIVITY AND CONDITION NUMBERS 
OF CONTROL PROBLEMS 

The sensitivity of a computational problem is determined by its condition number. 
If the condition number is too large, then the solution is too sensitive to small 
perturbations and the problem is called an ill-conditioned problem. 

The ill-conditioning has a direct effect on the accuracy of the solution. If a 
problem is ill-conditioned, then even with a numerically stable algorithm, the 
accuracy of the solution cannot be guaranteed. Thus, it is important to know if a 
computational problem is ill- or well-conditioned. 
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While the condition numbers for major problems in numerical linear algebra 
have been identified (Chapter 3), only a few studies on the sensitivities of compu- 
tational problems in control have been made so far. The sensitivity study is done 
by theoretical perturbation analysis. 

In this book, we have included perturbation analysis of the matrix expo- 
nential problem, (Section 5.3.2), of the Lyapunov and Sylvester equations 
(Section 8.3), of the algebraic Rieeati equations (Section 13.4) and of the state 
feedback and EVA problems (Sections 11.4 and 11.5). 

1.12 H~-CONTROL (CHAPTER 10) 

H~-control problems concern stabilizing perturbed versions of the original system 
with certain constraints on the size of the perturbations. Both state feedback and 
output feedback versions of H~-control have been considered in the literature and 
are stated in Chapter 10 of this book. A simplified version of the output feedback 
Hoe-control problem and a result on the existence of a solution have been stated 
in Section 10.6.3 of the chapter. 

Solution of H~ Control Problems Requires Computation of H~-Norm. 

Two numerical algorithms for computing Ha-norm of a stable transfer function 
matrix: the bisection algorithm (Algorithm 10.6.1) due to Boyd et al. (1989), 
and the two-step algorithm (Algorithm 10.6.2) due to Bruinsma et al. (1990) 
are described in Chapter 10. Both these algorithms are based on the following 
well-known result (Theorem 10.6.1): 

Let G(s) be the transfer function matrix of the system (1.0.1)-(1.0.2) and let 
?" > 0 be given, then II G II ~ < Y if and only if O'max (D) < ?" and the matrix My 
defined by 

( A + B R - 1 D T C  B R - 1 B  T ) 
My -- - -cT( I  + D R -1 D T)C  - ( A  + BR-1DTC)T  ' 

where R = ?'21 - D T D, has no imaginary eigenvalues. 
The implementation of the algorithms require a lower and an upper bound for 

the H~-norm. These bounds can be computed using the Enns-Glover formula: 

Ylb = max{o'max(D), o'H1)} 

)tub -- O'max(D) + 2 ~ o" Hi, 
i=1 

where oHi is the ith Hankel singular value. The Hankel singular value are the 
square-roots of the eigenvalues of the matrix C 6 0 6 ,  where C6 and OG are, 
respectively, the controllability and observability Grammian. 
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1.13 SOFTWARE FOR CONTROL PROBLEMS 

There now exist several high-quality numerically reliable softwares for control 
systems design and analysis. These include, among others: 

�9 MATLAB-based Control Systems Tool Box 
�9 MATHEMATICA-based Control System ProfessionalmAdvanced Numeri- 

cal Methods (CSP-ANM) 
�9 Fortran-based SLICOT (A Subroutine Library in Systems and Control 

Theory) 
�9 MATRIXx 
�9 The System Identification Toolbox 
�9 MATLAB-based Robust Control Toolbox 
�9 #-Analysis and Synthesis Toolbox 

A MATLAB-based tool-kit, called MATCONTROL, is provided with this 
book. 

A feature that distinguishes MATCONTROL and CSP-ANM from the other 
software is that both these software have implemented more than one (typically 
several) numerically viable algorithms for any given problem. This feature is 
specially attractive for control education in the classrooms, because, students, 
researchers, and teachers will have an opportunity to compare one algorithm over 
the others with respect to efficiency, accuracy, easiness for implementation, etc., 
without writing routines for each algorithm by themselves. 

There also exist some specialized software developed by individuals for special 
problems. These include polepack developed by George Miminis (1991 ), robpole 
developed by Tits and Yang (1996), Sylvplace developed by Varga (2000) for pole 
placement; ricpack developed by Arnold and Laub (1984). for Riccati equations, 
HTOOLS for H~  and/-/2 synthesis problems developed by Varga and Ionescu 
(1999), etc. 

A brief description of some of these tool boxes appear in Appendix A. 
Some of the software packages developed by individuals may be obtained from 
the authors themselves. An internet search might also be helpful in locating these 
softwares. 

References 

For references of the papers cited in this chapter, the readers are referred to the References 
section of each chapter. 
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C H A P T E R  2 

A REVIEW OF SOME BASIC 
CONCEPTS AND RESULTS 
FROM THEORETICAL LINEAR 
ALGEBRA 

2.1 I N T R O D U C T I O N  

Although a first course in linear algebra is a prerequisite for this book, for the 
sake of completeness, we establish some notations and quickly review the basic 
definitions and concepts on matrices and vectors in this chapter. Fundamental  
results on v e c t o r  a n d  m a t r i x  n o r m s  are described in some details. These results 

will be used frequently in the later chapters of the book. The students can review 

material  o f  this chapter, as needed. 

2.2 O R T H O G O N A L I T Y  O F  V E C T O R S  AND SUBSPACES 

Le tu  = (Ul, u2 . . . . .  Un) T and v = (Vl, v2 . . . . .  Vn) T be two n-dimensional  column 
vectors. The angle 0 between two nonzero vectors u and v is given by 

U*U 
cos(0) = 

Ilullllvll' 
n 

where u*v - Y'~i=I btiVi, is the inner product  of the vectors u and v. The vectors 
u and v are o r thogona l  if 0 = 90 ~ that is, if u*v = 0. The symbol 5_ is used 
to denote orthogonality. The set of vectors {xl, x2 . . . . .  x~} in C n are mu tua l ly  

19 
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orthogonal if X*Xj -- 0 for i r j ,  and orthonormal if x * x j  - ~ij, where ~ij is the 

Kronecker delta function; that is, ~ii --1 and ~ij - -0  for i ~ j ,  and " . "  denotes 
complex conjugate transpose. 

Let S be a nonempty subset of C n. Then S is called a subspace of C n if s l, s2 E S 

implies cl Sl +c2s2 6 S, where cl and c2 are arbitrary scalars. That is, S is a subspace 
if any linear combination of two vectors in S is also in S. 

For every subspace there is a unique smallest positive integer r such that every 
vector in the subspace can be expressed as a linear combination of at most r vectors 
in the subspace; r is called the dimension of the subspace and is denoted by dim[S]. 

Any set of r linearly independent vectors from S of dim[S] - r forms a basis 
of the subspace. 

The orthogonal complement of a subspace S is defined by S • = {y ~ C n I 
y*x = 0 for all x ~ S}. 

The set of vectors { Vl, v2 . . . . .  Vn } form an orthonormal basis of a subspace S 

if these vectors form a basis of S and are orthonormal. 
Two subspaces $1 and $2 of C n are said to be orthogonal if s~s2 - 0 for every 

Sl 6 S1 and every s2 6 $2. Two orthogonal subspaces S1 and $2 will be denoted by 

S1-1-$2. 

2.3 MATRICES 

In this section, we state some fundamental concepts and results involving the 
eigenvalues and eigenvectors: rank, range, nulspaces, and the inverse o f  a matrix. 

2.3.1 The Characteristic Polynomial, the Eigenvalues, and 
the Eigenvectors of a Matrix 

Let A be an n x n matrix. Then the polynomial PA ()~) -- det()~I - A) is called the 
characteristic polynomial. The zeros of the characteristic polynomial are called 
the eigenvalues of A. This is equivalent to the following: )~ 6 C is an eigenvalue 

of A if and only if there exists a nonzero vector x such that Ax  = )~x. 

The vector x is called a right eigenvector (or just an eigenvector) of A. A 
nonzero vector y is called a left eigenvector if y*A = )~y* for some )~ 6 C. 

If an eigenvalue of A is repeated s times, then it is called a multiple eigenvalue 

of multiplicity s. If s - 1, then the eigenvalue is a simple eigenvalue. 

Definition 2.3.1. I f  ~,l, )~2 . . . . .  kn are the n eigenvalues o f  A, then max I)~i[, 
i = 1 . . . . .  n is called the spectral radius of  A. It is denoted by p (A). 

Invariant Subspaces 

A subspace S of C n is called the invariant subspace or A-invariant if Ax  E S for 

every x 6 S. 
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Clearly, an eigenvector x of A defines a one-dimensional invariant subspace. 
An A-invariant subspace S __ C n is called a stable invariant subspace if the 

eigenvectors in S correspond to the eigenvalues of A with negative real parts. 

The Cayley-Hamilton Theorem 

The Cayley-Hamilton theorem states that the characteristic polynomial of A is 
an annihilating polynomial of A. That is, if PA ()~) -- )n + a l ) n - 1  _+_... _+_ an l ,  

then p A ( A )  -- A n + a l A  n-1 + . . .  + an l  -- O. 

Definition 2.3.2. An n x n matrix A having f ewer  than n linearly independent 

eigenvectors is called a defective matrix .  

Example 2.3.1. The matrix 
2) 

is  eeective It on,y one ei envector 

2.3.2 Range and Nullspaces 

For every m • n matrix A, there are two important associated subspaces: the range 
of A, denoted by R(A), and the null space of A, denoted by N(A), defined as 
follows: 

R (A) = {b I b = A x  for some x }, 

N ( A ) -  {x l A x -  0}. 

The dimension of N ( A )  is called the nullity of A and is denoted by null(A). 

2.3.3 Rank of a Matrix 

Let A be an m • n matrix. Then the subspace spanned by the row vectors of A is 
called the row space of A. The subspace spanned by the columns of A is called the 
column space of A. The range of A, R(A), is the same as the column space of A. 

The rank  of a matrix A is the dimension of the column space of A. It is denoted 
by rank (A). 

An m • n matrix is said to have full column rank if its columns are linearly 
independent. The full row rank is similarly defined. A matrix A is said to have 
full rank  if it has either full row rank or full column rank. If A does not have full 
rank, it is called rank  deficient. 

The best way to find the rank of a matrix in a computational setting is via the 
singular value decomposit ion (SVD) of a matrix (see Chapter  4). 
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2.3.4 The Inverse of a Matrix 

An n x n matrix A is said to be invertible if there exists an n x n matrix B such 
that A B  - B A  - I .  The inverse of A is denoted by A -1. An invertible matrix A 

is often called nonsingular. 
An interesting property of the inverse of the product of two invertible matrices 

is: (AB) -1 - B - 1 A  -1.  

Theorem 2.3.1. For an n x n matr ix  A, the fo l lowing  are equivalent:  

�9 A is nonsingular. 

�9 det(A) is nonzero. 

�9 rank(A) - n. 
�9 N(A)  -- {0}. 
�9 A - 1  exists. 

�9 A has linearly independent  rows and columns. 

�9 The eigenvalues o f  A are nonzero. 

�9 For all x ,  A x  - 0 implies that x - O. 

�9 The system A x  -- b has a unique solution. 

2.3.5 The Generalized Inverse of a Matrix 

Let A* be the complex conjugate transpose of A; that is, A* - (/~)T. 
The (Moore-Penrose) generalized inverse of a matrix A, denoted by 

A t, is a unique matrix satisfying the following properties: (i) A A * A - - A ,  

(ii) A t  AA*  -- A*, (iii) (AA*)*  -- A A * ,  and (iv) (A t A)* - A t A. 

Note:  If A is square and invertible, then At _ A-1.  

2.3.6 Similar Matrices 

Two matrices A and B are called similar if there exists a nonsingular matrix T 
such that 

T - 1 A T  -- B. 

An important property of similar matrices: Two similar matrices have the same 
eigenvalues. However, two matrices having the same eigenvalues need not be 
similar. 

2.3.7 Orthogonal Projection 

Let S be a subspace of C n. Then an n x n matrix P having the properties: 
(i) R ( P ) = S ,  (ii) P * =  P (P is Hermi t ian) ,  (iii) p2 = p (p  is idempotent) 
is called the orthogonal projection onto S or simply the projection matrix. We 
denote the orthogonal projection P onto S by Ps. The orthogonal projection 
onto a subspace is unique. 
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Let V = (Vl . . . . .  v~), where {Vl . . . . .  v~} is an orthonormal basis for a 
subspace S. Then, 

Ps = V V *  

is the unique orthogonal projection onto S. Note that V is not unique, but 
Ps is. 

A Relationship Between Ps and PS • 

If Ps is the orthogonal projection onto S, then I - Ps,  where I is the identity matrix 

of the same order as Ps,  is the orthogonal projection onto S • It is denoted by P ~ .  

The Orthogonal Projection onto R (A) 

It can be shown that if A is rn • n (m >_ n) and has full r ank ,  then the orthogonal 

projection PA onto R ( A )  is given by: 

PA : A ( A * A ) - I  A *. 

2.4 S O M E  S P E C I A L  M A T R I C E S  

2.4.1 Diagonal and Triangular Matrices 

An m • n matrix A = (ai j )  is a diagonal matrix if aij -- 0 for i ~: j .  We write 
A -- diag(al l  . . . . .  ass),  where s -- min(m, n). An n • n matrix A is a block 
diagonal matrix if it is a diagonal matrix whose each diagonal entry is a square 
matrix. It is written as: 

A = diag(All  . . . . .  A ~ ) ,  

where each Aii is a square matrix. The sum of the orders of Aii, i -- 1 . . . . .  k is n. 
An m • n matrix A = (aij) is an upper triangular matrix if aij : 0 for i > j .  
The transpose of an upper triangular matrix is lower triangular; that is, 

A = (aij) is lower triangular if aij - -  0 for i < j .  

2.4.2 Unitary (Orthogonal) Matrix 

A complex square matrix U is u n i t a r y  if U U* -- U * U  - I ,  where U* - (-ff)T. 

A real square matrix 0 is o r thogona l  if 0 0 T = O TO -- I. If U is an n • k 

matrix such that U * U  - I~:, then U is said to be o r t h o n o r m a l .  

Orthogonal matrices play a very important role in numerical matrix 
computations. 
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The following important properties of orthogonal (unitary) matrices are attrac- 
tive for numerical computations: (i) The inverse of an orthogonal (unitary) matrix O 
is just its transpose (conjugate transpose), (ii) The product of two orthogonal (uni- 
tary) matrices is an orthogonal (unitary) matrix, (iii) The 2-norm and the Frobenius 
norm are invariant under multiplication by an orthogonal (unitary) matrix (See 
Section 2.6), and (iv) The error in multiplying a matrix by an orthogonal matrix is 
not magnified by the process of numerical matrix multiplication (See Chapter  3). 

2.4.3 Permutation Matrix 

A nonzero square matrix P is called a permutation matrix if there is exactly one 
nonzero entry in each row and column which is 1 and the rest are all zero. 

Effects of Premultiplication and Postmultiplication by a permutation matrix 

When a matrix A is premultiplied by a permutation matrix P, the effect is a permu- 
tation of  the rows of  A. Similarly, if A is postmultiplied by a permutation matrix, 
the effect is a permutation of the columns of A. 

Some Important Properties of Permutation Matrices 

�9 A permutation matrix is an orthogonal matrix 
�9 The inverse of a permutation matrix P is its transpose and it is also a 

permutation matrix and 
�9 The product of two permutation matrices is a permutation matrix. 

2.4.4 Hessenberg (Almost Triangular) Matrix 

A square matrix A is upper Hessenberg if aij  = 0 for i > j + 1. The transpose of 
an upper Hessenberg matrix is a lower Hessenberg matrix, that is, a square matrix 
A = (a i j )  is a lower Hessenberg matrix if aij  = 0 for j > i + 1. A square matrix 
A that is both upper and lower Hessenberg is tridiagonal. 

Lower Hessenberg Upper Hessenberg 

An upper Hessenberg matrix A = (a i j )  is unreduced if ai,i-1 7/= 0 for 
i = 2 , 3  . . . . .  n. 

Similarly, a lower Hessenberg matrix A = (a i j )  is unredueed if ai,i+l ~: 0 
for/  = 1,2 . . . . .  n -  1. 
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2.4.5 Companion Matrix 

An unreduced upper Hessenberg matrix of the form 

C m 

0 0 . . . . . .  Cl 

0 . . . . . .  C2 
. . . . . .  

~  " , ,  ~ 1 4 9  

0 0 1 Cn 

is called an upper companion matrix. The transpose of an upper companion 
matrix is a lower companion matrix�9 

The character is t ic  polynomial  of the companion matrix C is" 

det()~I - C) - det0~l - C T) - ) n  _ c n ~ n - 1  _ C n _ l ) n - 2  . . . . .  c 2 ) ~  - e l .  

2.4.6 Nonderogatory Matrix 

A matrix A is nonde roga to ry  if and only if it is similar to a companion matrix of 

its characteristic polynomial. That is, A is a nonderogatory matrix if and only if 
there exists a nonsingular matrix T such that T -1A T is a companion matrix. 

Remark 

�9 An unreduced Hessenberg matrix is nonderogatory, but the converse is 
not true. 

2.4.7 The Jordan Canonical Form of a Matrix 

For an n x n complex matrix A, there exists a nonsingular matrix T such that 

T - 1 A T  - -  J - -  diag(J1 . . . . .  Jk ) ,  

where 

J /  m 

~i 1 0 

)~i 1 

�9 �9149 � 9 1 4 9 1 4 9  

0 ". 1 

~.i 

is m i  • m i  and m l + . . .  + m k  - -  n .  

The matrices Ji are called J o r d a n  matr ices  or J o r d a n  blocks and J is called 
the Jordan Canonical F o r m  (JCF) of A. For each j - 1, 2 . . . . .  k, )~j is the 
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eigenvalue of A with multiplicity m j. The same eigenvalue can appear  in more 
than one block. 

N o t e :  The matrix A is nonderogatory if its JCF has only one Jordan block 
associated with each distinct eigenvalue. 

If T = (tl, t2 . . . . .  tml ; tml+l  . . . . .  tm2; . . . .  tn).  
Then tl  . . . . .  tm~ must satisfy 

A t l  = ~. l tl 

and A t i + l  = )~lti+l + ti, i = 1, 2 . . . . .  m l  - 1. 

Similarly, relations hold for the other vectors in T. The vectors ti are cal!ed the 
generalized eigenvectors or principal vectors of A. 

2.4.8 Positive Definite Matrix 

A real symmetric matrix A is positive definite (positive semidefinite) if x TAx > 0 

(>_ 0) for every nonzero vector x. 
Similarly, a complex Hermitian matrix A is positive definite (positive semidef- 

inite) if x*  A x  > 0 (> 0) for every nonzero complex vector x. 
A commonly used notation for a symmetric positive definite (positive semidef- 

inite) matrix is A > 0 (_> 0). 
Unless otherwise mentioned, a real symmetric or a complex Hermitian positive 

definite matrix will be referred to as a positive definite matrix. 
A symmetric positive definite matrix A admits the Cholesky factorization 

A = H H T, where H is a lower triangular matrix with positive diagonal entries. 
The most numerically efficient and stable way to check if a real symmetric 
matrix is positive definite is to compute its Cholesky factorization and see 
if the diagonal entries of the Cholesky factor are all positive. See Chapter 3 
(Section 3.4.2) for details. 

2.4.9 Block Matrices 

A matrix whose each entry is a matrix is called a block matrix. A block diagonal 
matrix is a diagonal matrix whose each entry is a matrix. A block tr iangular 
matrix is similarly defined. 

The JCF is an example of a block diagonal matrix. 
Suppose A is partitioned in the form 

{ A l l  A12'] 
a -- l~a21 a 2 2 J '  

then A is nonsingular if and only if A s  - A22 - A 2 1 A l l l A 1 2 ,  called the Schur- 
Complement of A, is nonsingular (assuming that All is nonsingular) and in this 
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case, the inverse of A is given by: 

A - 1  
_ ( Alll + A111A12As1A21All 1 

-As1A21All 1 
-Alll A12As1) . 

A s  1 

2.5 VECTOR AND MATRIX NORMS 

2.5.1 Vector Norms 

Let 

Xl 
x2 

X-x  
be an n-vector in C n. Then, a vector norm, denoted by the symbol IIx II, is a real- 
valued con t inuous  function of the components x l, x2 . . . . .  Xn of x, satisfying the 

following properties: 

1. Ilx II > 0 for every nonzero x. Ilx II = 0 if and only if x is the zero vector. 

2. II~xll = I~lllxll for all x in C n and for all scalars or. 

3. IIx + Yll _ Ilxll + IlYil for all x and y in C n. 

The last property is known as the Triangle Inequality. 

Note: II - xll -- Iixll and ] Ilxll - IIYll I Iix - yll. it is simple to verify that the 
following are vector norms. 

Some Commonly Used Vector Norms 

1. Ilxlll = Ixll + Ix21 + " "  + Ixnl (sum norm or 1-norm) 

2. IIx 112 -- v/X 2 + x22 + " "  + Xn 2 (Euclidean norm or 2-norm) 

3. Ilxll~ = max/Ixi l  (maximum or oc-norm) 

The above three are special case of the p-norm or H f l d e r  n o r m  defined by 
IlXllp - ( ] X l ]  p _q t_ . . .  Jr_ Ixnlp)l /p for any p > 1. 

Unless otherwise stated, by IIx II we will mean IIx 112. 
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Example 2.5.1. Letx -- (1, 1 , - 2 )  T. Then Ixlll - 4, IIx 12 - v/12 -+- 12 + ( - 2 )  2 -- 

v/-6, and Ilxll~ - 2. 

An important  property of the H61der norm is the Hi i lder  inequality 

1 1 
Ix*yl ~ Ilxllp Ilyllq, - + -  - 1. 

P q 

A special case of the H61der inequality is the C a u e h y - S e h w a r t z  inequality: 

Ix*yl _< Ilxllzllyl12. 

Equivalence Property of the Vector norms 

All vector norms are equ iva len t  in the sense that there exist positive constants ot 

and fl such that ot IIx I1~ _< IIx I1~ _</3 IIx I1~, for all x, where # and v specify the 
nature of norms. 

For the 2, 1, or cx~ norms, we can compute  o~ and fl easily and have the following 
inequalities: 

Theorem 2.5.1. Let x be in C n. Then 

1. Ilxl12 ~ Iix111 ~ V/-~llx112 
2. Ilxll~ ~ Ilxll2 ~ ~/-~llxll~ 
3. Ilxll~ _< Ilxlll _< n l lx l l~  

2.5.2 Matrix Norms 

Let A be an m x n matrix. Then, analogous to the vector norm, we define the 
matrix norm for 11A II in C m xn with the following properties: 

1. II A II ~ 0; II A II -- 0 only if A is the zero matrix 

2. II~AII - I~IIIAII for any scalar ot 
3. II A + B II _< II A II + II n II, where B is also an m x n matrix. 

Subordinate Matrix Norms 

Given a matrix A and a vector norm ]]. ]] p on C n, a nonnegative number  defined by: 

[[Axllp 
1] a 11 p - -  max 

sTY0 [IX lip 

satisfies all the properties of a matrix norm. This norm is called the matrix norm 
subordinate to (or induced by) the p-norm.  
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A very useful and frequently used property of a subordinate matrix norm I] A l] p 

(we shall sometimes call it the p-norm of a matrix A) is 

I lAxl lp <_ IIAllpllxl lp.  

Two important  p -norms  of an m • n matrix are: (i) II A II1 - max ~ i m l  laijl 
l < j < n  

( m a x i m u m  column sum norm) and (ii) IIAII~ - max ~-~j=l laijl ( m a x i m u m  
l< i<m 

row sum norm) .  

The Frobenius Norm 

An important  matrix norm is the Frobenius norm: 

IIAIIF - laijl 2 �9 
i = l  " 

A matrix norm II" IIM and a vector norm II IIv are consistent if for all matrices A 
and vectors x, the following inequality holds: 

II A x  IIv ~ II A [IM IIx IIv. 

Consistency Property of the Matrix Norm 

A matrix norm is consistent  if, for any two matrices A and B compatible  for matrix 

multiplication, the following property is satisfied: 

[[ AB II _< I[ a [1 [1 B [I. 

The Frobenius norm and all subordinate norms are consistent. 

N o t e s  

. 

2. 
For the identity matrix I, IIlllF : ~/fi, whereas IIllll : [[I[[2 : I I l l l~ = 1. 
IIAll 2 - t r a ce (A 'A) ,  where trace (A) is defined as the sum of the diagonal 

entries of A, that is, if A = (a i j ) ,  then trace (A) = a l l  + a22 + " "  + ann. 
The trace of A will, somet imes,  be denoted by Tr(A) or tr(A).  

Equivalence Property of Matrix Norms 

As in the case of vector norms, the matrix norms are also related. There exist 

scalars ol and fl such that: ot 11A ]l u < 11A 11 v < fl II A[I u. In particular, the following 
inequalities relating various matrix norms are true and are used very frequently 
in practice. We state the theorem without proof. For a proof, see Datta (1995, 

pp. 28-30) .  
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Theorem 2.5.2. Let A be m • n. Then, 

1 < 113112 < vr~llAIl~. 1. ~ I I A I I ~  _ _ 

2. IIAII2 _< IIAIIF _< v/-ffllAII2. 
1 

3. ~ I IAII1  _< IIAII2 _ ~/-ffllAIl~. 

4. IIAII2_ ~/IIAII~IIAII~. 

2.6 N O R M  INVARIANT P R O P E R T I E S  U N D E R  UNITARY MATRIX 
M U L T I P L I C A T I O N  

We conclude the chapter by listing some very useful norm properties of unitary 
matrices that are often used in practice. 

Theorem 2.6.1. Let U be an unitary matrix. Then, 

I IUII2-  1. 

Proof. IIUII2-~/p(U*U)- ~ / p ( 1 ) -  1. (Recall that p ( A )  denotes the 
spectral radius of A.) 1 

The next two theorems show that 2-norm and the Frobenius norm are 
invariant under multiplication by a unitary matrix. 

Theorem 2.6.2. Let U be an unitary matrix and A U be defined. Then, 

1. IIAUll2-IIAII2 
2. IIAUIIF--IIAIIF 

Proof. 

1. IIAUII2 - ~ / p ( U * A * A U )  -- ~ / p ( A * A )  -- IIAII2 (Note that U* --  U - 1 ,  

and two similar matrices have the same eigenvalues). 
2. I IAUI IF- - t race (U*A*AU)  - trace(A'A) - IIAII~ (Note that the trace 

of a matrix remains invariant under similarity transformation). 

Thus IIAU I]F = II A IIF. 1 

Similarly, if U A  is defined, then we have 

Theorem 2.6.3. 

1. IIUAll2 = IIAll2 
2. IIUAIIF = IIAIIF 

Proot: The proof is similar to Theorem 2.6.2. 1 
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2.7 K R O N E C K E R  PRODUCT, K R O N E C K E R  SUM, 
AND VEC OPERATION 

Let A E C m• and B E C r •  then the m r  x ns matrix defined by: 

A |  

l a l l B  a l 2 B  . . .  a l n B ~  

a21. B a22B �9 �9 �9 a2n. B ] 

\ a m l B  am2B " ' "  a m n B J  

is called the Kronecker product of A and B. 
If A and B are invertible, then A | B is invertible and (A | B) -1 = A -1 | B -1 

The Eigenvalues of the Kronecker Product and Kronecker Sum 

Let Z 1 . . . . .  ~-n be the eigenvalues of A E C n •  and #1 . . . . .  ]A m be the eigenvalues 
of B E C m • Then it can be shown that the eigenvalues of A | B are the m n  

numbers ~,i]Aj, i = 1 . . . . .  n; j = 1 . . . . .  m,  and the eigenvalues of A @ B are the 
m n  numbers ~,i + ]A j ,  i = 1 . . . . .  n; j = 1 . . . . .  m. 

Vec Operation 

Let X E C m xn and X = (xij  ). 

Then the vector obtained by stacking the columns of X in one vector is denoted 
by vec(X): 

vec(X) = (Xll . . . . .  X m l ,  X12 . . . . .  Xm2 . . . . .  X l n  . . . . .  X m n )  T.  

If A E C mxm and B E C nxn, then it can be shown that vec(AX + X B )  = ((In | 

A) + (B y | Im))vec X. 
The Kronecker products and vec operations are useful in the study of the 

existence, uniqueness, sensitivity, and numerical solutions of the Lyapunov and 
Sylvester equations (see Chapter 8). 

2.8 C H A P T E R  NOTES AND F U R T H E R  READING 

Most of the material in this chapter can be found in standard linear algebra text 
books. Some such books are cited below. 

For further reading of material of Section 2.7, the readers are referred to Horn 
and Johnson (1985). 
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CHAPTER 3 

SOME FUNDAMENTAL TOOLS 
AND CONCEPTS FROM 
NUMERICAL LINEAR ALGEBRA 

3.1 INTRODUCTION 

In this chapter, we introduce some fundamental concepts and techniques of 
numerical linear algebra which, we believe, are essential for in-depth understand- 
ing of computational algorithms for control problems, discussed in this book. The 
basic concepts of floating point operations, numerical stability of an algorithm, 
conditioning of a computational problem, and their effects on the accuracy of a 
solution obtained by a certain algorithm are introduced first. 

Three important matrix factorizations: L U, QR, and the singular value decom- 
position (SVD), and their applications to solutions of algebraic linear systems, 
linear least-squares problems, and eigenvalue problems are next described in 
details. 

The method of choice for the linear system problem is the L U factor- 
ization technique obtained by Gaussian elimination with partial pivoting 
(Section 3.4). The method of choice for the symmetric positive definite system is 
the Cholesky factorization technique (Algorithm 3.4.1). 

33 
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The QR factorization of a matrix is introduced in the context of the least-squares 
solution of a linear system; however, it also forms the core of the QR iteration 
technique, which is the method of choice for eigenvalue computation. The QR 
iteration technique itself for eigenvalue computation is described in Chapter  4. 
Two numerically stable methods for the QR factorization, namely, Householder's 
and Givens' methods are described in Section 3.6. Householder's method is 
slightly cheaper than Givens' method for sequential computations, but the latter 
has computational advantages in parallel computation setting. 

The SVD has nowadays become an essential tool for determining the numerical 
rank, the distance of a matrix from a matrix of immediate lower rank, finding 
the orthonormal basis and projections, etc. This important matrix factorization 
is described in Section 3.9. The SVD is also a reliable tool for computing the 
least-squares solution to A x  = b. 

A reliable and widely used computational technique for computing the SVD of 
a matrix is described in Chapter  4. 

3.2 FLOATING POINT NUMBERS AND ERRORS 
IN COMPUTATIONS 

3.2.1 Floating Point Numbers 

Most scientific and engineering computations on a computer are performed using 
floating point arithmetic. Computers may have different bases, though base 2 is 
most common. 

A t-digit floating point number in base fi has the form: 

x - - m  .fie, 

where m is a t-digit fraction called mantissa and e is called exponent. 
If the first digit of the mantissa is different from zero, then the floating point 

number is called normalized. Thus, 0.3457 • 105 is a 4-digit normalized decimal 
floating number, whereas 0.03475 x 106 is a five-digit unnormalized decimal 
floating point number. 

The number of digits in the mantissa is called precision. On many computers, it is 
possible to manipulate floating point numbers so that a number can be represented 
with about twice the usual precision. Such a precision is called double precision. 

Most computers nowadays conform to the IEEE floating point standard 
(ANSI/IEEE standard 754-1985). For a single-precision, IEEE standard recom- 
mends about 24 binary digits and for a double precision, about 53 binary digits. 
Thus, IEEE standard for single precision provides approximately 7 decimal 
digits of accuracy, since 2 -23 ~ 1.2 x 10 -7, and double precision provides 
approximately 16 decimal digits of accuracy, since 2 -52 ~ 2.2 x 10 -16. 
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Note: Although computations with double precision increase accuracy, they 
require more computer time and storage. 

On each computer, there is an allowable range of the exponent e: L, the 
minimum; U, the maximum. L and U vary f rom computer to computer. 

If, during computations, the computer produces a number whose exponent is 
too large (too small), that is, it is outside the permissible range, then we say that 
an overflow (underflow) has occurred. 

Overflow is a serious problem; for most systems, the result of an over- 
flow is • Underflow is usually considered less serious. On most comput- 
ers, when an underflow occurs, the computed value is set to zero, and then 
computations proceed. Unless otherwise stated, we will use only decimal 
arithmetic. 

3.2.2 Rounding Errors 

If a computed result of a given real number is not machine representable, then 
there are two ways it can be represented in the machine. Consider the machine 
representation of the number 

+ " d l  " " d t d t + l  " " . 

Then the first method, chopping, is the method in which the digits from d t + l  on 

are simply chopped off. The second method is rounding,  in which the digits dt+l 
through the rest are not only chopped off, but the digit dt is also rounded up or 
down depending on whether dr+ 1 > 5 or dr+ 1 < 5. 

We will denote the floating point representation of a real number x by fl(x). 

Example 3.2.1. (Rounding) Let x -- 3.141596. 

t = 2: fl(x) -- 3.1, 

t = 3: fl(x) = 3.14, 

t = 4: fl(x) = 3.142. 

A useful measure of error in computation is the relative error. 

Definition 3.2.1. Let ~ denote an approximation o f  x. Then the relative error 

is I.~ - x l / I x l ,  x # O. 

We now give an expression for the relative error in representing a real number 
x by its floating point representation fl(x). Proof of Theorem 3.2.1 can be found 
in Datta (1995, p. 47). 
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Theorem 3.2.1. Let fl(x) denote the floating point representation of a real 
number x in base ~. Then, 

Ifl(x) - x l  

Ixl 

1 ~ 1-t for rounding, 

< tx -- ~ l - t  for chopping. 
(3.2.1) 

Definition 3.2.2. The number IX in the above theorem is called the machine 
precision, computer epsilon, o r  unit roundoff error. It is the smallest positive 
floating point number such that 

fl(1 + IX) > 1. 

The number Ix is usually of the order 10 -16 and 10 -7 (on most machines)for 
double and single precisions computations, respectively. For example, for the 
IBM 360 and 370, r = 16, t = 6, # = 4.77 x 10 -7. 

Definition 3.2.3. The significant digits in a number are the number of digits 
starting with the first nonzero digit. 

For example, the number 1.5211 has five significant digits, whereas the 
number 0.0231 has only three. 

3.2.3 Laws of Floating Point Arithmetic 

The formula (3.2.1) can be written as 

fl(x) = x(1 + ~), 

where I~1 ~ ~. 
Assuming that the IEEE standard holds, we can easily derive the following 

simple laws of floating point arithmetic. 

Theorem 3.2.2. Laws of Floating Point Arithmetic. Let x and y be two float- 
ing point numbers, and let fl(x + y), fl(x - y), fl(xy), and fl(x/y) denote, 
respectively, the computed sum, difference, product, and quotient. Then, 

1. fl(x 4- y) = (x + y)(1 + 3), where 131 < #. 
2. fl(xy) = (xy)(1 + 3), where 131 < #. 
3. if y ~ O, then fl(x/y) = (x/y)(1 + 3), where 131 < #. 

On computers that do not use the IEEE standard, the following floating point 
law of addition might hold: 

4. fl(x + y) = x(1 + 31) -4- y(1 + 32), where 1311 < IX and 1321 < IX. 
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Example 3.2.2. Let/3 -- 10, t = 4. 

x : 0.1112, y = 0.2245 x 105, 

x y -  0.24964 x 104, 

fl(xy) = 0.24960 x 104. 

Thus, Ifl(xy) - xyl -- 0.4000 and 181 - 1.7625 x 10 -4 < �89 x 10 -3. 

3.2.4 Catastrophic Cancellation 

A phenomenon,  called catastrophic cancellation, occurs when two numbers of 
approximately the same size are subtracted. Very often significant digits are lost 

in the process. 
Consider the example of computing f ( x )  = e x - 1 - x for x = 0.01. In five 

digit arithmetic a -- e x - 1 = 1.0101 - 1 - 0.0101. Then the computed value of 

f ( x )  = a - x = 0.0001, whereas the true answer is 0.000050167. 
Note that even though the subtraction was done accurately, the final result was 

wrong. Indeed, subtractions in most  cases can be done exactly, cancellation only 

signals that the error must have occurred in previous steps. Fortunately, often 
cancellation can be avoided by rearranging computations. For the example 
under consideration, if e x were computed using the convergent series e x = 1 + 
x + x2/2! + x3/3! + . . . ,  then the result would have been 0.000050167, which is 

correct up to five significant digits. 
For details and examples,  see Datta (1995, pp. 43-61) .  See also Stewart (1998, 

pp. 136-138) for an illuminating discussion on this topic. 

3.3 C O N D I T I O N I N G ,  E F F I C I E N C Y ,  STABILITY,  AND A C C U R A C Y  

3.3.1 Algorithms and Pseudocodes 

Definition 3.3.1. An algorithm is an ordered set o f  operations, logical and 

arithmetic, which when applied to a computational problem defined by a given 
set o f  data, called the input data, produces a solution to the problem. A solution 

comprises o f  a set o f  data called the output data. 

In this book, for the sake of convenience and simplicity, we will very often 

describe algorithms by means of pseudocodes, which can easily be translated into 

computer  codes. Here is an illustration. 

3.3.2 Solving an Upper Triangular System 

Consider  the system 
T y = b ,  
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where T - (tij) is anonsingular upper triangular matrix and y - (Yl, Y2 . . . . .  Yn) T 
and b = (bl . . . . .  bn) T. 

Algorithm 3.3.1. Back Substitution Method for  Upper Triangular System 
Input. T - - A n  n x n nonsingular upper triangular matrix, b m A n  n-vector. 
Output. The vector y = (Yl . . . . .  yn) T such that T y  -- b. 

bn 
Step 1. Compute Yn = 

tnn 
S tep  2. For i = n - 1, n - 2 . . . . .  2, 1 do 

Yi = ~ii b i -  t i jyj  
j = i + l  

End 

Note: When i - n, the summation (y~) is skipped. 

3.3.3 Solving a Lower Triangular System 

A lower triangular system L y = b can be solved in an analogous manner. 
The process is known as the forward substitution method. Let L = (lij), 
and b = (bl, b2 . . . . .  bn) T. Then starting with Yl, y2 through Yn are computed 
recursively. 

3.3.4 Efficiency of an Algorithm 

Two most desirable properties of an algorithm are" Efficiency and Stability. 
The efficiency o f  an algorithm is measured by the amount of computer time 

consumed in its implementation. 
A theoretical and very crude measure of efficiency is the number of floating 

point operations (flops) needed to implement the algorithm. Too much emphasis 
should not be placed on exact flop-count when comparing the efficiency of two 
algorithms. 

Definition 3.3.2. A floating point  operation o f  flop is a floating point  
operation: +, - , . ,  o r / .  

The Big O Notation 

An algorithm will be called an O(n p) algorithm if the dominant term in the opera- 
tions count of the algorithm is a multiple of nP. Thus, the solution of a triangular 
system is an O(n g) algorithm; because it requires n 2 flops. 
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Notation for Overwriting and Interchange 

We will use the notation: 

a = - b  

to denote that "b overwrites a". Similarly, if two computed quantities a and b are 
interchanged, they will be written symbolically 

a <--> b. 

3.3.5 The Concept of Numerical Stability 

The accuracy or the inaccuracy of the computed solution of a problem usually 
depends upon two important factors: the stability or the instability of the algo- 
rithm used to solve the problem and the conditioning of the problem (i.e., how 
sensitive the problem is to small perturbations). 

We first define the concept of stability of an algorithm. In the next section, we 
shall talk about the conditioning of a problem. 

The study of stability of an algorithm is done by means of roundoff error anal- 
ysis. There are two types: backward error analysis and forward error analysis. 

In forward analysis, an attempt is made to see how the computed solution 
obtained by the algorithm differs from the exact solution based on the same data. 

On the other hand, backward analysis relates the error to the data of the problem 
rather than to the problem's solution. 

Definition 3.3.3. An algorithm is called backward stable if  it produces an 
exact solution to a nearby problem; that is, a backward algorithm exactly solves 
a problem whose data are close to the original data. 

Backward error analysis, popularized in the literature by J.H. Wilkinson (1965), 
is now widely used in matrix computations and using this analysis, the stability (or 
instability) of many algorithms in numerical linear algebra has been established in 
recent years. In this book, by "stability" we will imply "backward stability" 
unless otherwise stated. 

As a simple example of backward stability, consider again the problem of 
computing the sum of two floating point numbers x and y. We have seen before that 

fl(x + y) -- (x + y)(1 + 3) = x(1 + 3) + y(1 + 3) = x' + y'. 

Thus, the computed sum of two floating point numbers x and y is the exact 
sum of another two floating point numbers x I and yl. Because [31 _< #, both x ~ 
and y~ are close to x and y, respectively. Thus, we conclude that the opera- 
tion of adding two floating-point numbers is stable. Similarly, floating-point 
subtraction, multiplication, and division are also backward stable. 
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Example 3.3.1. (A Stable Algorithm for Linear Systems) Solution of an upper triangu- 
lar system by Back substitution. 

The back-substitution method for solving an upper triangular system T x - b 
is backward stable. It can be shown that the computed solution ~ satisfies 

(T + E)~ = b, 

where leijl ~ ClZltij [, i, j = 1 . . . . .  n and c is a constant of order unity. Thus, the com- 
puted solution ~ solves exactly a nearby system. The back-substitution process is, 
therefore, backward stable. 

Remark 

The forward substitution method for solving a lower triangular system has 

the same numerical stability property as above. This  algorithm is also 
stable. 

Example 3.3.2. (An Unstable Algorithm for Linear Systems) Gaussian elimination 
without pivoting. 

It can be shown (see Section 3.5.2) that Gaussian elimination without pivoting 
applied to the linear system Ax - b produces a solution ~ such that 

(A + E)~ - b 

with [IEI[~ _< cn3pllAIl~#. The number p above, called the growth factor, can be 
arbitrarily very large. When it happens, the computed solution.f does not solve a nearby 
problem. 

Example 3.3.3. (An Unstable Algorithm for Eigenvalue Computations) Finding the 
eigenvalues of a matrix via its characteristic polynomial. The process is numerically 
unstable. 

There are two reasons: First, the characteristic polynomial of a matrix may not be 
obtained in a numerically stable way (see Chapter 4); second, the zeros of a polynomial 
can be extremely sensitive to small perturbations of the coefficients. 

A well-known example of zero-sensitivity is the Wilkinson polynomial Pn (x) = 
(x - 1)(x - 2 ) . . .  (x - 20). A small perturbation of 2 -23 to the coefficient of x 19 
changes some of the zeros significantly: some of them even become complex. See 
Datta (1995, pp. 81-82) for details. 

Remark 

�9 This example shows that the eigenvalues of a matrix should not be 
computed by finding the roots of its characteristic polynomial. 

3.3.6 Conditioning of the Problem and Perturbation Analysis 

From the preceding discussion, we should not form the opinion that if a stable 

algorithm is used to solve a problem, then the computed solution will be accurate. 
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As said before, a property of the problem called conditioning also contributes to 
the accuracy or inaccuracy of the computed result. 

The conditioning of  a problem is a property of  the problem itself It is concerned 
with how the solution of the problem will change if the input data contains some 
impurities. This concern arises from the fact that in practical applications, the data 
very often come from some experimental observations where the measurements 
can be subjected to disturbances (or "noises") in the data. There are other sources 
of error also, such as roundoff errors, discretization errors, and so on. Thus, 
when a numerical analyst has a problem in hand to solve, he or she must frequently 
solve the problem not with the original data, but with data that have been perturbed. 
The question naturally arises: What effects do these perturbations have on the 
solution? 

A theoretical study done by numerical analysts to investigate these effects, which 
is independent of the particular algorithm used to solve the problem, is called 
perturbation analysis. This study helps us detect whether a given problem is 
"bad" or "good" in the sense of whether small perturbations in the data will create 
a large or small change in the solution. Specifically we use the following standard 
definition. 

Definition 3.3.4. A problem (with respect to a given set of  data) is called an 
ill-conditioned o r  badly conditioned problem if a small relative error in data 
can cause a large relative error in the computed solution, regardless of  the 
method of  solution. Otherwise, it is called well-conditioned. 

Suppose a problem P is to be solved with an input c. Let P (c) denote the value of 
the problem with the input c. Let 3c denote the perturbation in c. Then P is said to be 
ill-conditioned for the input data c if the relative error IP(c + 6c) - P(c) l / lP(c) l  
is much larger than the relative error in the data 16c[/Icl 

Note: The definition of conditioning is data-dependent. Thus, a problem that is 
ill-conditioned for one set of data could be well-conditioned for another set. 

3.3.7 Conditioning of the Problem, Stability of the Algorithm, 
and Accuracy of the Solution 

As stated in the previous section, the conditioning of a problem is a property of 
the problem itself, and has nothing to do with the algorithm used to solve the 
problem. To a user, of course, the accuracy of the computed solution is of primary 
importance. However, the accuracy of a computed solution by a given algorithm 
is directly connected with both the stability of the algorithm and the condition- 
ing of the problem. If the problem is ill-conditioned, no matter how stable 
the algorithm is, the accuracy of the computed result cannot be guaranteed. 
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On the other hand, if a backward stable algorithm is applied to a well-conditioned 
problem, the computed result will be accurate. 

Backward Stability and Accuracy 

Stable Algorithm --+ Well-conditioned Problem = Accurate Result. 
Stable Algorithm --+ Ill-conditioned Problem = Possibly Inaccurate Result 
(inaccuracy depends upon how ill-conditioned the problem is). 

3.3.8 Conditioning of the Linear System and Eigenvalue Problems 

The Condition Number of a Problem 

Numerical analysts usually try to associate a number called the condition number 
with a problem. The condition number indicates whether the problem is ill- or well- 
conditioned. More specifically, the condition number gives a bound for the relative 
error in the solution when a small perturbation is applied to the input data. 

We will now give results on the conditions of the linear system and eigenvalue 
problems. 

Theorem 3.3.1. General Perturbation Theorem. Let A A  and 3b, be the per- 
turbations, respectively, of  the data A and b, and 3x be the error in x. Assume 
that A is nonsingular and II AA II < 1/II A-1 II. Then, 

II ~x II < II A II II A-1 II (II AA II 

Ilxll - ( 1 -  IIAAIIIIA -~ II) ~ IIAII 

+ I lab l l ) .  

IIb II 

Interpretation of the theorem: The above theorem says that if the relative 
perturbations in A and b are small, then the number II AII II A- l  i[ is the dominating 
factor in determining how large the relative error in the solution can be. 

Definition 3.3.5. The number II A II II A-1II is called the condition number of 
the linear system problem Ax : b or just the condition number of  A, and is 
denoted by Cond (A). 

From the theorem above, it follows that if Cond(A) is large, then the system 
Ax -- b is ill-conditioned; otherwise it is well-conditioned. 

The condition number of a matrix certainly depends upon the norm of the 
matrix. However, roughly, if a matrix is ill-conditioned in one type of norm, it 
is ill-conditioned in other types as well. This is because the condition numbers 
in different norms are related. For example, for an n • n real matrix A, one can 
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show that 

1 
-Cond2(A) < Condl (A) < nCond2(A), 
H 

1 
- C o n d o ( A )  < Condz(A) < nCond~(A) ,  
/7 

1 
n2 Condl(A) < Condo(A)  < n2Condl (A), 

where Condp(A), p = 1, 2, oo denotes the condition number in p-norm. 
Next, we present the proof of the above theorem in the case AA --- 0. For 

the proof in the general case, see Datta (1995, pp. 249-250). We first restate the 
theorem in this special case. 

Theorem 3.3.2. Right Perturbation Theorem. I f  6b and 6x, are, respectively, 
the perturbations o f  b and x in the linear system Ax  = b, and, A is assumed to 
be nonsingular and b ~ O, then 

II~xll II~bll 
< Cond(A) ~ .  

Ilxll - Ilbll 

Proof. We have 

Ax  = b and A(x  + 3x) = b + 3b. 

The last equation can be written as Ax  + A6x = b + 6b, or 

A 6 x = 6 b  ( s i n c e A x = b )  that is, 6 x = A  -16b. 

Taking a subordinate matrix-vector norm, we get 

II~xll _< IIa-lllll~bll. (3.3.1) 

Again, taking the same norm on both sides of Ax = b, we get IIAxll = Ilbll or 

I lb l l -  IIAxll _< IIAIIIIxll. (3.3.2) 

Combining (3.3.1) and (3.3.2), we have 

II~xll _< IIAIIIIA -11111~bll. 1 (3.3.3) 
Ilxll Ilbll 

Interpretation of Theorem 3.3.2: Theorem 3.3.2 says that a relative error in the 
solution can be as large as Cond(A) multiplied by the relative perturbation in the 
vector b. Thus, if the condition number is not too large, then a small perturbation 
in the vector b will have very little effect on the solution. On the other hand, 
if the condition n u m b e r  is large, then even a small perturbation in b might 
change the solution drastically. 
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Example 3.3.4. (An Ill-Conditioned Linear System Problem) 

( !  2 1 t (8;OO61) A - -  4.0001 2.002 , b -  . 
2.002 2.004] 

The exact solution x -- 1 . Change b to b' - .0020 . 
1 .0061 ] 

Then the relative perturbation in b: 

l i b ' -  bll II~bll = = 1.379 x 10 -5 (small). 
IIbll IIbl 

If we solve the system Ax' - b', we get 

[ 30850 
x' = x + 6x - [ - 0 . 0 4 3 6 ]  . 

\ 1.0022 ] 

(x' is completely different from x). 
Ilaxll _. 1.3461 (quite large!). Note that the relative error in x" 

It is easily verified that the inequality in the above theorem is satisfied: 

Cond(A) �9 13b[[ = 4.4434, Cond(A) - 3.221 x 105. 
Ilbll 

However, the predicted change is overly estimated. 

Conditioning of Eigenvalues 

Like the linear system problem, the eigenvalues and the eigenvectors of a matrix A 
can be ill-conditioned too. 

The following result gives an overall sensitivity of the eigenvalues due to per- 
turbations in the entries of A. For a proof, see Datta (1995) or Golub and Van Loan 
(1996). 

Theorem 3.3.3. Bauer-Fike. Let X - l A X  = D = diag()~l . . . . .  )~n). Then for  
any eigenvalue )~ of  A + E ~ C n xn, we have 

rain I)~i- )~l _< Condp(X)I I  E II, 

where II" IIp is a p-norm. 
The result says that the eigenvalues o f  A might be sensitive to small pertur- 

bations o f  the entries o f  A i f  the transforming matrix X is ill-conditioned. 

Analysis of the conditioning of the individual eigenvalues and eigenvectors 
are rather involved. We just state here the conditioning of simple eigenvalues of 
a matrix. 
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Let )~i be a simple eigenvalue of A. Then the condition number of ~.i, denoted by 
Cond(k/), is defined to be: Cond()~i) - 1/qyTxil, where Yi and xi are, respectively, 
the unit left and right eigenvectors associated with )~i. 

A well-known example of eigenvalue sensitivity is the Wilkinson bidiagonal 
matrix: 

A .__. 2f 
20 

19 20 0 

" .  " . ,  , 

' ' o  2 0  

The eigenvalues of A are 1, 2 . . . . .  20. 
A small perturbation E of the (20, 1)th entry of A (say E -- 10 - l~  changes 

some of the eigenvalues drastically: they even become complex (see Datta (1995, 
pp. 84-85)). 

The above matrix A is named after the famous British numerical analyst James 
H. Wilkinson, who computed the condition numbers of the above eigenvalues and 
found that some of the condition numbers were quite large, explaining the fact why 
they changed so much due to a small perturbation of just one entry of A. 

Note:  Though the eigenvalues of a nonsymmetric matrix can be ill-conditioned- 
the eigenvalues of a symmetric matrix are well-conditioned (see Datta (1995, 
pp. 455-456)) .  

3.4 LU FACTORIZATION 

In this section, we describe a well-known matrix factorization, called the LU 
faetorization of a matrix and in the next section, we will show how the 
LU factorization is used to solve an algebraic linear system. 

3.4.1 LU Factorization using Gaussian Elimination 

An n x n matrix A having nonsingular principal minors can be factored into LU: 

A -- L U, where L is a lower triangular matrix with l s along the diagonal (unit 
lower triangular) and U is an n x n upper triangular matrix. This factorization 
is known as an LU factorization of A. A classical elimination technique, called 
Gaussian elimination, is used to achieve this factorization. 

If an L U factorization exists and A is nonsingular, then the L U factorization is 
unique (see Golub and Van Loan (1996), pp. 97-98). 
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Gaussian Elimination 

There are (n - 1) steps in the process. Beginning with A (~ = A, the matrices 
A (1) . . . . .  A (n-l) are constructed such that A (k) has zeros below the diagonal in 

the kth column. The final matrix A (n- 1) will then be an upper triangular matrix U. 

Denote A(k) ~ (k) (k) = [ a i j  ). The matrix A is obtained from the previous matrix A (~-1) 

by multiplying the entries of the row k of A (k-l) with mik  - -(a{~ -1)) / ( a ~ - l ) ) ,  

i : k + 1 . . . . .  n and adding them to those of (k + 1) through n. In other words, 

a(k) _ a(k-1) m i k a ( k - 1 )  ij ij + kj ' i : k + 1 . . . . .  n; j --  k + 1 . . . . .  n.  (3.4.1) 

The entries m i k  are called multipliers.  The entries a! k - l )  kk are called the pivots. 
To see how an LU factorization, when it exists, can be obtained, we note (which 

is easy to see using the above relations) that 

A (k) : M k A  ( k - l ) ,  (3.4.2) 

where M k  is a unit lower triangular matrix formed out of the multipliers. The 
matrix M k  is known as the elementary lower triangular matrix�9 The matrix M k  

can be written as" 
T 

M k -  I + m k e  k , 

where ek is the kth unit vector, e T m k  --  0 f o r i  _< k, andmk  --  (0 . . . . .  0, 

m k + l , k ,  . . . , m n , k )  T .  

Furthermore, M~- 1 _ I - m k e T. 

Using (3.4.2), we see that 

U - -  A ( n - l )  - -  M n _ l  A ( n - 2 )  : m n - l m n - 2  A ( n - 3 )  

. . . . .  Mn - l Mn  - 2 " �9 " M2 M 1 A  

Thus, A -- ( M n - 1  m n - 2  " " " M 2 M 1 )  - 1 U  --  L U ,  

where L - -  ( m n - l m n - 2 " ' "  M 2 M 1 )  - 1  �9 

Since each of the matrices M1 through M n -  1 is a unit upper triangular matrix, so 
is L (Note :  The product of two unit upper triangular matrix is an upper triangular 
matrix and the inverse of a unit upper triangular matrix is an upper triangular 

matrix). 
C o n s t r u c t i n g  L: The matrix L can be formed just from the multipliers, as shown 

below. No explicit matrix inversion is needed. 

L m 

1 0 0 . . . . . .  0 
--m21 1 0 . . . . . .  0 
- - m 3 1  - - m 3 2  1 . . . . . .  

�9 ." o.  o " �9  �9 @ " 

�9 . . .  �9 
o �9 ~ 

- - m n l  - - m n 2  - - m n 3  . . . .  r a n , n - 1  
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Difficulties with Gaussian Elimination without Pivoting 

Gaussian elimination, as described above, fails if any of the pivots is zero, it is 
worse  yet if  any pivot  becomes  d o s e  to zero. In this case, the method can be 
carried to completion, but the obtained results may be totally wrong. 

Consider the following simple example: Let Gaussian elimination without 
pivoting be applied to A (00o01 1) 

1 ' 

using three decimal digit floating point arithmetic. 
There is only one step. The multiplier m21 - - 1 / 1 0  -4 - -104. Let L and 0 

be the computed versions of L and U. Then, 

(o.oool 1_11o ) - (O.Oo o, _;o4). 
(Note that (1 - 104) gives -104 in three-digit arithmetic). The matrix L formed 
out the multiplier m21 is 

( ,  0,1 L -- 10 4 . 

The product of the computed L, and U is" 

L 0 - (  0"0001 10) 
1 

which is different from A. 
Note that the pivot a 11) 1 -- 0.0001 is very close to zero (in three-digit arithmetic). 

This small pivot gave a large multiplier. This large multiplier, when used to update 
the entries of A, the number 1, which is much smaller compared to 104, got wiped 
out in the subtraction of 1 - 104 and the result was -104. 

Gaussian Elimination with Partial Pivoting 

The above example suggests that disaster in Gaussian elimination without pivoting 
in the presence of a small pivot can perhaps be avoided by identifying a "good 
pivot" (a pivot as large as possible) at each step, before the process of elimination 
is applied. The good pivot may be located among the entries in a column or among 
all the entries in a submatrix of the current matrix. In the former case, since the 
search is only partial, the method is called partial  pivoting; in the latter case, the 
method is called complete pivoting. It is important to note that the purpose of 
pivoting is to prevent large growth in the reduced matrices, which can wipe out the 
original data. One way to do this is to keep multipliers less than 1 in magnitude, 
and this is exactly what is accomplished by pivoting. 
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We will discuss here only Gaussian elimination with partial pivoting, which also 
consists of (n - 1) steps. 

In fact, the process is just a slight modification of Gaussian elimination in the 
following sense: At each step, the largest entry (in magnitude) is identified among 
all the entries in the pivot column. This entry is then brought to the diagonal 
position of the current matrix by interchange of suitable rows and then, using that 
entry as "pivot," the elimination process is performed. 

Thus, if we set A(~ _ A, at step k (k = 1, 2 . . . . .  n - 1), first, the largest entry 

(in magnitude) a(k-1) is identified among all the entries of the column k (below the rk,k 

row (k - 1)) of the matrix A (k- 1), this entry is then brought to the diagonal position 
by interchanging the rows k and rk, and then the elimination process proceeds with 
a(k-1) 
r~,k as the pivot. 

LU Factorization from Gaussian Elimination with Partial Pivoting 

Since the interchange of two rows of a matrix is equivalent to premultiplying 
the matrix by a permutation matrix, the matrix A (k) is related to A (k-l) by the 
following relation: 

A (k) - - M k P k A  (k-l) k -  1 2 n -  1 

where Pk is the permutation matrix obtained by interchanging the rows k and rk 
of the identity matrix, and Mk is an elementary lower triangular matrix resulting 
from the elimination process. So, 

U -  A ( n - l )  - -  M n _ l P n _ l  A ( n - 2 )  --  M n _ l P n _ l M n _ 2 P n _ 2  A ( n - 3 )  

. . . .  - -  m n - 1 P n - l  m n - z  P n - 2  " " M z  P 2 M 1 P 1 A .  

Setting M -- M n - 1 P n - l m n - z P n - 2 " ' "  MzPzM1P1,  we have the following 
factorization of A" 

U - - M A .  

The above factorization can be written in the form: P A -- L U, where P = 
P n - 1 P n - 2 " ' "  P2P1, U - A (n-l), and the matrix L is a unit lower triangular 
matrix formed out of the multipliers. For details, see Golub and Van Loan (1996, 
pp. 99). 

For n - 4, the reduction of A to the upper triangular matrix U can be 
schematically described as follows" 

X X X X 

1. A --~ P1A ~ M1P1A - i x x x • x x x x x = A (1) 
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X X X X 

2. A (1) --~ P2 A(1) --~ M2P2A (1) --M2P2M1P1A- 0 x 

0 x  

X X X X 

3. A (2) --~ P3 A(2) ~ M3P3 A(2) --M3P3M2P2M1P1A- 0 0  •  • • 

• 0 0 0  

= A (3) - U. 

The only difference between L here and the matrix L from Gaussian elimina- 
tion without pivoting is that the multipliers in the kth column are now permuted 

according to the permutat ion matrix Pk -- Pn-1Pn-2"" Pk+l. 
Thus, to construct L, again no explicit products or matrix inversions are 

needed. We illustrate this below. 

Consider  the case n - 4, and suppose P2 interchanges rows 2 and 3, and P3 
interchanges rows 3 and 4. 

The matrix L is then given by: 

o o !t L -- -m31 1 0 
- - m 2 1  - - m 4 2  1 " 

- - m 4 1  - - m 3 2  - - m 3 4  

Example 3.4.1. 

k - 1  

A - -  5 . 
8 

k - 2  

1. The pivot entry is 7: r l -- 3. 
2. Interchange rows 3 and 1. 

P1 -- 1 , PIA -- 5 . 
0 2 

4 
3. F o r m  t h e  m u l t i p l i e r s "  a21 = m21 - - 7 ,  a31 = m31 - -  

4. A ( 1 ) - M 1 P 1 A -  

1 
7" 

tl4 0!1(!8!)t!8 91 - ~ 1  5 = ~ 6 
- + 0  2 6 ~ ?  

1. The pivot entry is 6, r2 -- 3. 
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2. Interchange rows 2 and 3. 

(ioz) t! 86 P2 0 P2 A(1) ~ ~ 7 

3 1 7 

1 3. Form the multiplier: m32  - -  2 (! o 
A (2) -- M2P2 A(1) -- 1 

1 
2 

Form L = (' 0 i) t'1 --m31 1 -- 7 
--m21 --m32 

!) t! 86 7 
3 

~ 1 
1 

(ZOO) P -- P2P1 -- 0 . 
1 

99~ 
i) 

9 t (iS 19 6 19 
7 -- 7 -7- " 

6 0 -- 

Verify. P A -- 2 -- L U .  
5 

Flop-count.  Gaussian elimination with partial pivoting requires only ~ n 3 flops. 

Furthermore, the process with partial pivoting requires at most O (n 2) comparisons 
for identifying the pivots. 

Stability of Gaussian Elimination 

The stability of Gaussian elimination algorithms is better understood by measuring 
the growth of the elements in the reduced matrices A (~). (Note that although 
pivoting keeps the multipliers bounded by unity, the elements in the reduced 
matrices still can grow arbitrarily.) 

Definition 3.4.1. The growth factor p is the ratio o f  the largest e lement  (in 
magni tude)  o f  A,  A (1) . . . . .  A (n-l) to the largest e lement  (in magni tude)  o f  

A: p = (max(a, a l ,  a2 . . . . .  Otn-1))/ot, where c~ = maxi,j laijl, and uk = 
, (~) 

maxi,j laij 1. 

The growth factor p can be arbi t rar i ly  large for Gaussian elimination without 
pivoting. Note that p for the matrix 

Z - - (  0"00011 11) 

without pivoting is 104. 
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Thus, Gaussian elimination without pivoting is, in general, unstable. 

Note: Though Gaussian elimination without pivoting is unstable for arbitrary 
matrices, there are two classes of matrices, the diagonally dominant matrices and 
the symmetric positive definite matrices, for which the process can be shown to 
be stable. The growth factor of a diagonally dominant matrix is bounded by 2 and 
that of a symmetric positive definite matrix is 1. 

The next question is: How large can the growth factor be for Gaussian elimination 
with partial pivoting? 

The growth factor p for Gaussian elimination with partial pivoting can be 
as large as 2 n-l"/9 ~ 2 n-1. 

Though matrices for which this bound is attained can be constructed (see Datta 
1995), such matrices are rare in practice. Indeed, in many practical examples, 
the elements of the matrices A (~) very often continue to decrease in size. Thus, 
Gaussian elimination with partial pivoting is not unconditionally stable in 
theory; in practice, however, it can be considered as a stable algorithm. 

MATLAB note: The MATLAB command [L, U, P] -- lu (A) returns lower 
triangular matrix L, upper triangular matrix U, and permutation matrix P such 
that P A - L U. 

3.4.2 The Cholesky Factorization 

Every symmetric positive definite matrix A can be factored into 

A - -  H H  T, 

where H is a lower triangular matrix with positive diagonal entries. 
This factorization of A is known as the Cholesky factorization. Since, the 

growth factor for Gaussian elimination of a symmetric positive definite matrix 
is 1, Gaussian elimination can be safely used to compute the Cholesky factor- 
ization of a symmetric positive definite matrix. Unfortunately, no advantage of 
symmetry of the matrix A can be taken in the process. 

In practice, the entries of the lower triangular matrix H, called the Cholesky 
factor, are computed directly from the relation A = H H x. The matrix H is 
computed row by row. The algorithm is known as the Cholesky algorithm. See 
Datta (1995, pp. 222-223) for details. 

Algorithm 3.4.1. The Cholesky Algorithm 
Input. AreA symmetric positive definite matrix 
Output. H--The Cholesky factor 
Fork = 1,2 . . . . .  n do 

Fori = 1,2 . . . . .  k -  1 do 
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ij hki -- ~ aki - _ _  h h 
j=l 

End 
End 

Flop-count and numerical stability. Algorithm 3.4.1 requires only n3/3 flops. 
The algorithm is numerically stable. 

MATLAB and MATCOM notes: Algorithm 3.4.1 has been implemented in 
MATCOM program eholes. MATLAB function ehol also can be used to com- 
pute the Cholesky factor. However, note that L = ehol(A) computes an upper 
triangular matrix R such that A - RTR. 

3.4.3 LU Factorization of an Upper Hessenberg Matrix 

Recall that H --  ( h i j )  isan upperHessenbergmatr ix i fh i j  - 0 whenever i > j + 1. 
Thus, Gaussian elimination scheme applied to an n • n upper Hessenberg matrix 
requires zeroing of only the nonzero entries on the subdiagonal. This means at each 
step, after a possible interchange of rows, just a multiple of the row containing the 
pivot has to be added to the next row. 

Specifically, Gaussian elimination scheme with partial pivoting for an n • n 
upper Hessenberg matrix H - -  ( h i j )  is as follows: 

Algorithm 3.4.2. LU Factorization o f  an Upper Hessenberg Matrix 
Input. H - - A n  n • n upper Hessenberg matrix 
Output. U--The  upper triangular matrix U of  L U  factorization o f  H, stored 

over the upper part  o f  H. The subdiagonal entries o f  H contain the multipliers. 
F o r k -  1,2 . . . .  , n -  1 do 

1. Interchange hk,j and hk+l, j ,  i f  lhk,kl < Ihk+l,k[, j -- k . . . . .  n. 
hk+l,k 

2. Compute the multiplier and store it over hk+l,k " hk+l,k : - - .  
hk,k 

3. Update hk+l,j  " hk+l,j  =-- hk+l,j  -+- hk+l,k �9 hk,j ,  j -- k + 1 , . . . ,  n. 

End. 

Flop-count and stability. The above algorithm requires n 2 flops. 
It can be shown Wilkinson ( 1965, p. 218); Hi gham ( 1996, p. 182), that the growth 

factor p of a Hessenberg matrix for Gaussian elimination with partial pivoting is 
less than or equal to n. Thus, computing LU faetorization of a Hessenberg 
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matrix using Gaussian elimination with partial pivoting is an efficient and 
a numerically stable procedure. 

3.5 N U M E R I C A L  SOLUTION OF THE L I N E A R  SYSTEM A x  = b 

Given an n x n matrix A and the n-vector b, the algebraic linear system 
problem is the problem of finding an n-vector x such that A x  = b. 

The principal uses of the L U  factorization of a matrix A are: solving the alge- 
braic linear system A x  -- b, finding the determinant of a matrix, and finding 
the inverse of A. 

We will discuss first how A x  = b can be solved using the L U 

factorization of A. 
The following theorem gives results on the existence and uniqueness of the 

solution x of A x  = b. Proof can be found in any linear algebra text. 

Theorem 3.5.1. Exis tence and Uniqueness  Theorem. The system A x  = b has 

a solut ion i f a n d  only i f  rank (A)  = r a n k ( A ,  b). The solut ion is unique i f a n d  

only i f  A is invertible. 

3.5.1 Solving A x  = b using the Inverse of A 

The above theorem suggests that the unique solution x of A x  = b be computed as 
x - A - l b .  

Unfortunately, computationany this is not a practical idea. It generally 
involves more computations and gives less accurate answers. 

This can be illustrated by the following trivial example: 
Consider solving 3x = 27. 
The exact answer is: x = 27/3 = 9. Only one flop (one division) is needed in 

this process. On the other hand, if the problem is solved by writing it in terms of 
the inverse of A, we then have x -- �89 x 27 - 0.3333 x 27 - 8.9991 (in four digit 
arithmetic), a less accurate answer. Moreover, the process will need two flops: one 
division and one multiplication. 

3.5.2 Solving A x  - b using Gaussian Elimination with Partial Pivoting 

Since Gaussian elimination without pivoting does not always work and, even when 
it works, might give an unacceptable answer in certain instances, we only discuss 
solving A x  = b using Gaussian elimination with partial pivoting. 
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We have just seen that Gaussian elimination with partial pivoting, when used to 
triangularize A, yields a factorization PA = L U.  In this case, the system A x  --  b 

is equivalent to the two triangular systems: 

L y  = P b  = b ~ and U x  = y.  

Thus, to solve A x  = b using Gaussian elimination with partial pivoting, the 
following two steps need to be performed in the sequence. 

Step 1. Find the factorization PA = L U using Gaussian eliminating with partial 
pivoting. 

Step 2. Solve the lower triangular system: L y  = P b  = b ~ first, followed by the 
upper triangular system: U x  = y .  

F o r m i n g  the vec to r  b ~. The vector b ~ is just the permuted version of b. So, to 
obtain b ~, all that needs to be done is to permute the entries of b in the same way 
as the rows of the matrices A(k) have been interchanged. This is illustrated in the 

following example. 

Example 3.5.1. Solve the fo l lowing  sys tem using Gauss ian  el iminat ion with par t ia l  

pivot ing: 

X l + 2X2 + 4X3 = 7, 

4Xl + 5X2 + 6X3 = 15, 

7Xl + 8x2 + 9x3 = 24. 

Here 

A =  5 , b =  
8 

Using the results of Example 3.4.1, we have 

24] 

t14 ~ L - -  1 1 , U -  

�89 

7 8 9 

i 6 19 7 -7- 
_6 19 �9 
7 7 
0 _ 1  

Since rl = 3, and r2 -- 3, 

Note that to obtain b ~, first the 1 st and 3rd components of b were permuted, accord- 
ing to rl = 3 (which means the interchange of rows 1 and 3), followed by the 
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permutation of the components 2 and 3, according to r2 = 3 (which means the 
interchange of the rows 2 and 3). L y  = b t gives 

and U x = y gives 

y .~ .  

(24] 
3.5714 , 

\-0.5000! 

x (i) 
F l o p - c o u n t .  The factorization process requires about 2n3 flops. The solution 

of each of the triangular systems L y  = b'  and U x  - -  y requires n 2 flops. Thus, 
the solution of the linear system A x  = b using Gaussian elimination with partial 
pivoting requires about 2n3 + O(n 2) flops. Also, the process requires O(n 2) 
comparisons for pivot identifications. 

Stability of Gaussian Elimination Scheme for A x  = b 

We have seen that the growth factor p determines the stability of the triangular- 
ization procedure. Since solutions of triangular systems are numerically stable 
procedures, the growth factor is still the dominating factor for solving linear 
systems with Gaussian elimination. 

The large growth factor p for Gaussian elimination with partial pivoting is rare 
in practice. Thus, for all practical purposes, Gaussian elimination with partial 
pivoting for the linear system A x  - -  b is a numerically stable procedure. 

3.5.3 Solving a Hessenberg Linear System 

Certain control computations such as computing the frequency response of a 
matrix (see Chapter 5) require solution of a Hessenberg linear algebraic system. 
We have just seen that the LU factorization of a Hessenberg matrix requires only 
O(n 2) flops and Gaussian elimination with partial pivoting is safe, because, the 
growth factor in this case is at most n. Thus, a Hessenberg system can be solved 
using Gaussian elimination with partial pivoting using O(n 2) flops and in a 
numerically stable way. 

3.5.4 Solving A X  - -  B 

In many practical situations, one faces the problem of solving multiple linear 
systems: A X  = B .  Here A is n x n and nonsingular and B is n x p. Since each 
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of the systems here has the same coefficient matrix A, to solve A X  = B, we need 
to factor A just once. The following scheme, then, can be used. 

Partition B = (bl . . . . .  b p ) .  

Step 1. Factorize A using Gaussian elimination with partial pivoting: PA - -  L U 

Step 2. For k = 1 . . . . .  p do 
Solve L y = P b k  

Solve U x ~  = y 

End 

Step 3. Form X = (Xl . . . . .  Xp) .  

3.5.5 Finding the Inverse of A 

The inverse of an n x n nonsingular matrix A can be obtained as a special case of 

the above method. Just set B - In xn .  Then, X - A -1 . 

3.5.6 Computing the Determinant of A 

The determinant of matrix A can be immediately computed, once the L U factor- 
ization of A is available. Thus, if Gaussian elimination with partial pivoting is used 
giving PA - L U ,  then det(A) ( - 1 )  r '~ - -  I - I i = l  Uii, where r is the number of row 
interchanges in the partial pivoting process. 

3.5.7 Iterative Refinement 

Once the system A x  = b is solved using Gaussian elimination, it is suggested 
that the computed solution be refined iteratively to a desired accuracy using the 
following procedure. The procedure is fairly inexpensive and requires only O (n 2) 
flops for each iteration. 

Let x be the computed solution of A x  = b obtained by using Gaussian 
elimination with partial pivoting factorization: PA = L U .  

For k = 1, 2 . . . . .  do until desired accuracy. 

1. Compute the residual r = b - A x  (in double precision). 
2. S o l v e L y = P r f o r y .  

3. Solve U z = y forz.  
4. Update the solution x = x 4- z. 

3.6 THE QR FACTORIZATION 

Recall that a square matrix O is said to be an orthogonal matrix if o o T =  

o To -- I. Given an m x n matrix A there exist an m x m orthogonal matrix Q 
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and an m x n upper triangular matrix R such that A -- Q R. Such a factorization 
of A is called the QR factorization. If m > n, and if the matrix Q is partitioned 

as Q - [Q1, Q2], where Q1 is the matrix of the first n columns of Q, and if R1 
is defined by 

where R1 is n x n upper triangular, then A = Q1R1. This QR factorization is 
called the "economy size" or the " th in"  QR factorization of A. The following 
theorem gives condition for uniqueness of the "thin" QR factorization. For a proof 
of the theorem, see Golub and Van Loan (1996, p. 230). 

Theorem 3.6.1. 

factorization 

Let A c ~mxn,  m > n have full  rank. Then the thin QR 

A -- Q1R1 

is unique. Furthermore, the diagonal entries of  R1 are all positive. 

There are several ways to compute the QR factorization of a matrix. House- 
holder's and Givens' methods can be used to compute both types of QR 
factorizations. On the other hand, the classical Gram-Schmidt  (CGS) and the 
modified Gram-Schmidt  (MGS) compute Q E ~mxn and R ~ IR nxn such that 

A = Q R .  
The MGS has better numerical properties than the CGS. We will not discuss 

them here. The readers are referred to the book Datta (1995, pp. 339-343). We 
will discuss Householder's and Givens' methods in the sequel. 

3.6.1 Householder Matrices 

Definition 3.6.1. A matrix o f  the form H = I - 2uuT/uTu,  where u is a 
nonzero vector, is called a Householder  matrix, after the celebrated American 
numerical analyst Alston Householder. 

A Householder matrix is also known as an Elementary  Reflector or a House-  
holder transformation.  

It is easy to see that a Householder matrix H is symmetr ic  and orthogonal .  
A Househo lder  matrix  H is an important  tool to create zeros in a vector" 

Given x - -  ( X l ,  x 2  . . . . .  Xn) T, the Householder matrix H -  I - - 2 ( u u T / u T u ) ,  

where u -- x + sgn(xl) Ilx 112 el is such that H x  - (~, 0 . . . . .  0) T, 

where o- - - sgn(xl) II x [12. 

Schematical ly ,  x "-~ H x  -- (cr, 0 . . . . .  0) T. 
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Forming Matrix-Vector and Matrix-Matrix Products With a Householder Matrix 

A remarkable computational advantage involving Householder matrices is that 
neither a matrix-vector product with a Householder matrix H nor the matrix 
product H A  (or A H )  needs to be explicitly formed, as can be seen from the 
followings: 

1. H x  --  I - 2 - ~ u  x - x - f l u ( u Y x ) ,  where  fl - uT u .  

2. H A  = ( I  - f l u u ' r ) A  = A - f l u u T A  = A - f l u v  T, where v = A T u .  

3. A H  = A ( I  - f l u u  T )  = A - fll)U T, where v = Au .  

From above, we immediately see that the matrix product HA or A H 
requires only O(n 2) flops, a substantial saving compared to 2n 3 flops that 
are required to compute the product of two arbitrary matrices. 

3.6.2 The Householder QR Factorization 

Householder's method for the Q R  factorization of matrix A 6 ]t~ m x n  with m > n, 
consists of constructing Householder matrices HI, H2 . . . . .  Hn successively 
such that 

Hn H2 " " " H 1 A  = R 

is an m x n upper triangular matrix. If H 1 H 2 . . .  Hn -- Q, then Q is an orthogonal 
matrix (since each Hi is orthogonal) and from above, we have Q T A  = R or 
A -- Q R. Note that 

(ol) 
where R l 6 ] ~ n x n  and is upper triangular. The matrices Hi are constructed such 
that A (i) - Hi A( i -1 )  (with A (~ -- A) has zeros below the diagonal in the ith 
column (see Example  3.6.1). 

Flop-count .  The Householder QR factorization method requires approximately 
2nZ(m - (n/3))  flops just to compute the triangular matrix R. 

Note:  The matrix Q can be computed, if required, as Q = H1 . . .  Hn by forming 
the product implicitly, as shown in Section 3.6.1. 

It should be noted that in a majority of practical applications, it is sufficient 
to have Q in this factored form; in many applications, Q is not needed at all. If Q 
is needed explicitly, about another 4(mZn - m n  2 + (n3/3)) flops will be required. 

N u m e r i c a l  stabili ty: The Householder QR factorization method computes the 
QR factorization of a slightly perturbed matrix. Specifically, it can be shown 
Wilkinson (1965, p. 236) that, if R denotes the computed R, then there exists 
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an orthogonal Q such that 

A + E - - Q _ . R ,  where II E 112 ~ /~  II A 112 �9 

The algorithm is thus stable. 
MATLAB notes: [Q, R] - qr(A) computes the QR factorization of A, using 

Householder 's  method. 

Example 3.6.1. 

k = l  
Form Hi" 

A k 

1) 
O. O1 0 

O. 0001 

Ul m (1)  (i) 0.0001 + V/1 + (0.0001) 2 -- O. O1 . 
0 

( )  (1 
2uluT A -- 0 -0 .0001  . 

Update A - A (1) __ O l  A -- I uTu 1 0 0.0001 ,] 

k = 2  
Form/-/2" 

U 2 -  { - 0 . 0 0 0 1  
\ 0.0001 ) -  

(10) ( - 2 . 4 1 4 1 ~  
V/(--O'O001)2 + (0"0001)2 -- 10-41 k 0.1000 ,]" 

i~o ~) u2~: (o~o~, 
/-}2--  -- 2uTu2 -- 0 . 7 0 7 1  

(i 0 0) H2 -- -0 .7071  0.7071 . 
0.7071 0.7071 

o ~o~,) 
0.707 ' 

(o 1 ,) 
Update A = A (2) -- H2 A(1) -- 0.0001 . 

0 
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Form Q and R" 

R _ _  

--1 

Q - H1H2 - - 0 . 0 0 0 1  
0 

( O  1 - 1  ) ( 0 )  0.0001 --  1 , 

0 

0 .0001  - -0 .0001  

--0�9 0�9 ) . 
0.7071 0�9 

(o' 1 ) where R1 - -  0.0001 " 

Complex Q R  Factorization 

If x 6 C n and Xl - re iO, then it is easy to see that the Householder  matrix 

H -- I - f lvv*,  where v -- x + e iO 11X 112 el and fl - 2 ~ v ' v ,  is such that 
H x  - T v e  iO Ilx 112 el. 

Using the above formula, the Householder  QR factorization method for a real 
matrix A, described in the last section, can be easily adapted to a complex matrix�9 
The details are left to the readers�9 

The process of complex QR factorization of an m x n matrix, m > n, using 
Householder 's  method requires 8nZ(m - (n/3))  real flops�9 

3.6.3 Givens Matrices 

D e f i n i t i o n  3 .6 .2 .  

J ( i , j , c , s )  - 

A matrix  o f  the f o r m  

ith j t h  

I 1  0 0 . . . . . . . . . . . . . . .  0 ~ 
0 1 0 . . . . . . . . . . . . . . .  0 

0 0 0 . . -  c . . .  s - . .  0 

0 0 0 . . . .  s . . .  c . . .  0 
�9 . . . �9 

�9 . . �9 . 

k O  0 0 . . . . . . . . .  0 . . .  l j  

+-- ith 

+- j t h  

where C 2 --}- S 2 - -  1, is cal led a G i v e n s  matr ix ,  after the name o f  the numerical  

analys t  Wallace Givens. 
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Since one can choose c = cos0  and s = sin0 for some 0, the above 
Givens matrix can be conveniently denoted by J (i, j ,  0). Geometrically, the matrix 
J(i, j, O) rotates a pair of coordinate axes (ith unit vector as its x-axis and the j t h  
unit vector as its y-axis) through the given angle 0 in the (i, j )  plane. That is why, 
the Givens matrix J (i, j ,  0) is commonly known as a Givens Rotation or Plane 
Rotation in the (i, j )  plane. 

Thus, when an n-vector x -- (x l, x2 . . . . .  Xn) T is premultiplied by the Givens 
rotation J (i, j ,  0),  only the i th and j th components of x are affected; the other 
components remain unchanged. 

Also, note that since c 2 + s 2 -- 1; J (i, j ,  0) �9 J (i, j ,  0)T __ I .  So,  the Givens 
matrix J (i, j,  0) is orthogonal.  

Zeroing the Entries of a 2 x 2 Vector Using a Givens Matrix 

If 

is a vector, then it is a matter of simple verification that, with 

Xl x2 
c = and s = 

the Givens rotation 

is such that 

J ( 1 , 2 , 0 ) x - ( 0 ) "  

The preceding formula for computing c and s might cause some under f low 
or overflow. However, the following simple rearrangement of the formula might 
prevent that possibility. 

1. If Ix2l ~ IXll, compute t = Xl/X2, S = 1/~/1 + t 2, and take c = st. 
2. If Ix21 < Ixll, compute t = x2/xl, c = 1/~/1 + t 2, and take s = ct. 
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Implicit Construction of JA 

If A is ]t~ mxn and J( i ,  j ,  c, s) ~ ]~mxm, then the update A - J( i ,  j ,  c, s )A  can be 

computed implicitly as follows: 

Fo rk  = 1 , . . . ,  n do 

a - -  a i k  

b =--ajk 
aik = ac -Jr bs 

ajk =-- --as n t- bc 

End 

M A T C O M  note: The above computation has been implemented in MATCOM 

program PGIVMUL. 

3.6.4 The QR Factorization Using Givens Rotations 

Assume that A ~ R m xn, m >_ n. The basic idea is just like Householder's: Compute 
orthogonal matrices Q1, Qe . . . . .  Qn, using Givens rotations such that A (1) = 
Q1A has zeros below the (1, 1) entry in the first column, A (2) - Q2 A(1) has zeros 
below the (2, 2) entry in the second column, and so on. Each Qi is generated as a 
product of Givens rotations. One way to form { Q i  } is: 

Q1 - J(1, m, 0 ) J ( 1 ,  m - 1, 0 ) . . .  J(1, 2, 0), 

Q 2  - J (2 ,  m, 0 ) J (2 ,  m - 1, 0 ) . . .  J (2 ,  3, 0), 

and so on. 
Then, 

R -  A (n) = QnA (n-l) - Q n Q n _ I A  (n-2) . . . .  

-- Q n Q n - 1 . . .  Q 2 Q 1 A  = QTA,  where Q - Q T Q T . . .  QTn. 

Algorithm 3.6.1. Givens QR Factorization 

Input. A - - A n  m x n matrix 

Outputs. R - - A n  m x n upper triangular matrix stored over A. 

Q - - A n  m x m orthogonal matrix in fac tored  f o rm  defined by the Givens 

parameters  c, s, and the indices k and I. 
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Step 1. For k - 1, 2 . . . . .  n do 
F o r l - - k + l  . . . . .  m do 
1.1. Find c and s using the formulas given in Section 3.6.3 so that 

( c  ~) (akk~  = ( 0 ) "  
- s  \alkJ 

1.2. Save the indices k and I and the numbers c and s 
1.3. Update A using the implicit construction as shown above: 

A -- J(i, j, c, s)A 
End 

End 

Step 2. Set R -- A. 
Forming the matrix Q. If the orthogonal matrix Q is needed explicitly, then 

it can be computed from the product O - O~ Q T . . .  On T, where each Oi is the 
product o f m - i  Givens rotations: Qi = J(i, m, O)J(i, m - 1, 0 ) . . .  J(i, i + 1, 0). 

Flop-count. The algorithm requires 3n2(m - n/3) flops; m > n. This count, of 
course, does not include computation of Q. 

Numerical stability. The algorithm is stable. It can be shown Wilkinson (1965, 
p. 240) that for m = n, the computed 0 and/~ satisfy/~ - 0 T (A + E), where 

II E liE is small. 
MATCOM note: The above algorithm has been implemented in MATCOM 

program GIVQR. 
Q and R have been explicitly computed. 

3.6.5 The QR Factorization of a Hessenberg Matrix Using Givens Matrices 

From the structure of an upper Hessenberg matrix H, it is easy to see that the 
QR factorization of H takes only O(n 2) flops either by Householder's or 
Givens' method, compared to O(n 3) procedure for a full matrix. This is because 
only one entry from each column has to be made zero. Try this yourself using 
Algorithm 3.6.1. 

3.7 O R T H O N O R M A L  BASES AND O R T H O G O N A L  PROJECTIONS 
USING QR FACTORIZATION 

The QR factorization of A can be used to compute the orthonormal bases and 
orthogonal projections associated with the subspaces R(A) and N(AT). Let A be 
m x n, where m > n and have full rank. Suppose QTA = R -- (~l). Partition 
Q = (Q1, Q2), where Q1 has n columns. Then the columns of Q1 form an 
orthonormal basis for R (A). Similarly, the columns of Q 2 form an orthonormal 
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basis for the orthogonal complement of R(A). Thus, the matrix PA -- Q1Q T 

is the orthogonal projection onto R(A)  and the matrix P~- - Q2 Q~ is the 
projection onto the orthogonal complement of R(A).  The above projections 
can also be computed using the SVD (see Section 3.9.2). 

MATLAB note: MATLAB function orth(A) computes the orthonormal basis 
for R(A) .  

QR Factorization with Column Pivoting 

If A is rank-deficient, then QR factorization cannot be used to find a basis for R(A).  
In this case, one needs to use a modification of the QR factorization process, called 
QR factorization with column pivoting. 

We shall not discuss this here. The process finds a permutation matrix P, and 
the matrices Q and R such that A P = QR. The details are given in Golub and 
Van Loan (1996, pp. 248-250). 

MATLAB function [Q, R, P] = QR(A)  can be used to compute the QR 
factorization with column pivoting. 

Also, [Q, R, E] = QR(A,  0) produces an economy size QR factorization in 
which E is a permutation vector so that Q*R = A(:, E). 

3.8 THE LEAST-SQUARES PROBLEM 

One of the most important applications of the QR factorization of a matrix A is 
that it can be effectively used to solve the least-squares problem (LSP). 

The linear LSP is defined as follows: 

Given an m x n matrix A and a real vector b, find a real vector x such that 
the function: 

II r(x)1]2 = ]l a x  - b 112 

is minimized. 

If m > n, the problem is called an overdetermined LSP, if m < n, it is called 
an underde te rmined  problem. 

We will discuss here only the overdetermined problem. 

Theorem 3.8.1. Theorem on Existence and Uniqueness of  the LSP. The least- 
squares solution to Ax = b always exists. The solution is unique if and only if 
A has full  rank. Otherwise, it has infinitely many solutions. The unique solution 
x is obtained by solving A y Ax = ATb. 

Proof. See Datta (1995, p. 318). 1 
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3.8.1 Solving the Least-Squares Problem Using Normal Equations 

The expression of the unique solution in Theorem 3.8.1 immediately suggests the 
following procedure, called the Normal Equations method, for solving the LSP: 

1. Compute the symmetric positive definite matrix AT A (Note that if A has 
full rank, ATA is symmetric positive definite). 

2. Solve for x: ATAx = ATb. 

Computational remarks. The above procedure, though simple to understand and 
implement, has serious numerical difficulties. First, some significant figures may 
be lost during the explicit formation of the matrix AT A. Second, the matrix AT A 
will be more ill-conditioned, if A is ill-conditioned. In fact, it can be shown that 
Condz(A TA) = (Condz(A)) 2. The following simple example illustrates the point. 

Let 

A 

(1 1) 
10 -4 0 . 

0 10 -4 

Ifeight digit rithmetic is use  th n ATA = (11 which is singular thoug  

the columns of A are linearly independent. 
A computationally effective method via the QR factorization of A is now 

presented below. 

3.8.2 Solving the Least-Squares Problem Using QR Factorization 

Let QTA -- R = (~1) be the QR decomposition of the matrix A. Then, since the 
length of a vector is preserved by an orthogonal matrix multiplication, we have 

II Ax  - b II 2 _ II QTAx -- QTb I[ 2 

= l lR lX-Cl l~+l ld l l~ ,  where QTb-- ( d ) .  

Thus, I I A x -  b]l 2 will be minimized if x is chosen so that R l x - c -  O. The 
corresponding residual norm then is given by Ilrl12 = II A x  - b 112 = Ildl12. This 
observation immediately suggests the following QR algorithm for solving the LSP: 

Algorithm 3.8.1. Least Squares Solution Using QR Factorization o f  A 

Inputs. A - - A n  m • n matrix (m > n) 

b - -An  m-vector. 
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Output.  The least-squares solution x to the linear system A x  = b. 
Step 1. Decompose  A = Q R, where Q e ~ m x m  and R e IR mxn. 
Step 2. Form QTb -- (~), c e IR nx 1. 

Step 3. Obtain x by solving the upper triangular system: R lx  = c where 
e - -  (R1). 

Step 4. Obtain the residual norm: [I r 112=11 d 112. 

Example 3.8.1. Solve Ax = b for x with 

A -  , b -  . 

Step 1. Find the QR factorization of A : A = Q R 

-0.2673 0.8729 0.4082 

1 
0 

.8018 -0.4364 0.4082 ] 

( - 3 . 7 4 1 7 - 5 . 3 4 5 2  ) ( R )  
R -  0 0.6547 -- 1 . 

0 0 

Step 2. Form 

/ -10.6904~ 
: ,  

\ 0.8165 ,] 

{ 3.3532 
Step 3. Obtain x by solving Rlx  -- c" x = ~-0.3333] " 

Step 4. II r ll2 - ]l d 112 = 0.8165. 

Use of Householder Matrices 

Note that if the Householder's or Givens' method is used to compute the QR 
decomposition of A, then the product QYb can be formed from the factored form 
of Q without explicitly computing the matrix Q. 

M A T C O M  and M A T L A B  notes: MATCOM function lsfrqrh implements the QR 

factorization method for the full-rank least-squares problem using Householder's 
method. Alternatively, one can use the MATLAB operator: \. The command x = 
A \ b gives the least-squares solution to A x  = b. 
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Flop-count and numerical stability: The least-squares method, using 
Householder 's  QR factorization, requires about 2(mn 2 - (n 3/3)) flops. The algo- 
r i t hm is numerically stable in the sense that the computed solution satisfies a 
"nearby" LSE 

3.9 T H E  S I N G U L A R  VALUE DECOMPOSITION (SVD) 

We have seen two factorizations (decompositions) of A: LU and QR. 
In this section we shall study another important decomposition, called the singu- 

lar value decomposition or in short the SVD of A. Since m > n is the case mostly 
arising in applications, we will assume throughout this section that m _ n. 

Theorem 3.9.1. The SVD Theorem. Given A ~ ]~m xn, there exist orthogonal 
matrices U ~ ]~mxm and V ~ ]~nxn, and a diagonal matrix E ~ ]I~ mxn with 

nonnegative diagonal entries such that 

A -- U E V  T. 

Proof. See Datta (1995, pp. 552-554). 1 

The diagonal entries of E are called the singular values of A. 
The columns of U are called the left singular vectors, and those of V are called 

the right singular vectors. The singular values are unique, but U and V are 
not unique. 

The number of nonzero singular values is equal to the rank of the matrix A. 
A convention. The n singular values 0"1,02 . . . . .  0-n of A can be arranged in 

nondecreasing order: 0-1 > 0"2 >_ " ' "  _> On.  The largest singular value o1 is 
denoted by 0-max. Similarly, the smallest singular value 0-n is denoted by 0"min. 

The thin SVD. Let U -- (Ul . . . . .  Um). 
If A -- U E V  T be the SVD of A ~ ~mxn and if U1 -- (ul . . . . .  Un) e 

]~m xn,  ]~1 --  diag(0" . . . . .  o'n), then A -- U~ ~]1 v T .  

This factorization is known as the thin SVD of A. For obvious reasons, the thin 
SVD is also referred to as the economic SVD. 

Relationship between eigenvalues and singular values. It can be shown that (see 
Datta (1995, pp. 555-557)).  

1. The singular values o1 . . . . .  0"n of A are the nonnegative square roots of 
the eigenvalues of the symmetric positive semidefinite matrix AT A. 

2. The right singular vectors are the eigenvectors of the matrix ATA, and the 
left singular vectors are the eigenvectors of the matrix AAT. 

Sensitivity of the singular values. A remarkable property of the singular values 
is that they are insensitive to small perturbations. In other words, the singular 
values are well-conditioned. Specifically, the following result holds. 
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Theorem 3.9.2. Insensit ivi ty o f  the Singular  Values. Let  A be an m x n (m > 

n) matrix  with the s ingular  values 0"1 . . . . .  o"n, and  B = A + E be another  slightly 

per turbed  matrix  with the s ingular  values C?l . . . . .  C?n, then l oi -0"i I ~< II E 112, 
i - - 1  . . . . .  n. 

Proof.  See Datta (1995, pp. 560-561).  1 

Example 3.9.1. Let 

o o ) 
A =  4 , E -  0 

7 0 2 x  10 -4 

The singular values of A: 

0-1 = 14.5576, 0" 2 -- 1.0372, 0"3-  0. 

The singular values of A + E" 

6 1 -  14.5577, 6-2 = 1.0372, 63 = 2.6492 x 10 -5 

It is easily verified that the inequalities in the above theorem are satisfied. 

3.9.1 The Singular Value Decomposition and the Structure of a Matrix 

The SVD is an effective tool in handling several computationally sensitive compu- 
tations, such as the rank and rank-deficiency of matrix, the distance of a matrix 
from a matrix of immediate  lower rank, the orthogonormal  basis and pro- 
jections,  etc. It is also a reliable and numerically stable way of computing the 
least-squares solution to a linear system. Since these computations need to be per- 

formed routinely in control and systems theory, we now discuss them briefly in 

the following. The results of Theorem 3.9.3 can be easily proved. 

Theorem 3.9.3. Let  0"1 >_ 0"2 >_ "'" >_ 0"n be the n s ingular  values o f  an m x n 

matrix  A (m >_ n). Then, 

1. IIAII2 -- 0-1 -- 0-max, 
2. IIAIIF - ( o r  2 + ~r ff + " "  + 02) 1/2, 

1 
3. IIA-1112 - - - ,  when A is n x n and nonsingular, 

0"n 

0"1 0-max when A is n x n and 4. Cond2(A) - IIAII211A -~112 - = ~ ,  
0-n 0-min 

nonsingular. 



Section 3.9: THE SINGULAR VALUE D E C O M P O S I T I O N  (SVD) 69 

The Condition Number of a Rectangular Matrix 

The condition number (with respect to 2-norm) of a rectangular matrix A of order 
m x n (m >_ n) with full rank is defined to be 

O'max(A) 
Cond2 (A) : 

Crmin(A) ' 

where O'max(A) and O'min ( A )  denote, respectively, the largest and smallest singular 
value of A. 

Remark 

�9 When A is rank-deficient, O'min - -  0,  and we say that Cond(A) is infinite. 

3.9.2 Orthonormal Bases and Orthogonal Projections 

Let r be the rank of A, that is, 

0" 1 > 0 " 2  > ' ' '  > 0 "  r > O, 

Or+  1 . . . . .  O" n = 0 .  

Let u j and vj be the j th columns of U and V in the SVD of A. Then the set of 
columns { vj } corresponding to the zero singular values of A form an orthonor- 
mal basis for the null-space of A. This is because, when crj = 0, vj satisfies 
Av j  = 0 and is therefore in the null-space of A. Similarly, the set of columns 
{uj } corresponding to the nonzero singular values is an orthonormal basis for 
the range of A. The orthogonal projections now can be easily computed. 

Orthogonal Projections 

Partition U and V as 

U = (U1 ,  U2) ,  V ~- ( g l ,  g 2 ) ,  

where U1 and V1 consist of the first r columns of U and V, then 

1. Projection onto R (A) -- U1U~. 

2. Projection onto N (A) - V2 V~. 

3. Projection onto the orthogonal complement of R (A) -- U2 U~. 

4. Projection onto the orthogonal complement of N (A) - V1 V~. 

Example 3.9.2. 

A . .~  4 
7 
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a l -  14.5576, 0 2 -  1.0372, o 3 -  O. 

U 

0.2500 0.8371 0.4867~ 
0.4852 0.3267 -0 .8111] .  
0.8378 -0.4379 0.3244] 

V m 

0.4625 -0.7870 0.4082 '~ 
0.5706 -0.0882 -0.8165 / . 
0.6786 -0.6106 0.4082 ] 

An orthonormal basis for the null-space of A is" 

0.4082 } 
V2-- -0.8165 . 

0.4082 

An orthonormal basis for the range of A is: 

0.2500 0.8371 } 
U1  - -  0.4852 0.3267 . 

0.8370 -0.4379 

(Now compute the four orthogonal projections yourself.) 

3.9.3 The Rank and the Rank-Deficiency of a Matrix 

The most obvious and the least expensive way of determining the rank of a matrix 
is, of course, to triangularize the matrix using Gaussian elimination and then to 
find the rank of the reduced upper triangular matrix. Finding the rank of a trian- 
gular matrix is trivial; one can just read it off from the diagonal. Unfortunately, 
however, this is not a very reliable approach in floating point arithmetic. Gaussian 
elimination method which uses elementary transformations, may transform a rank- 
deficient matrix into one having full rank, due to numerical round-off errors. Thus, 
in practice, it is more important, to determine if the given matrix is near a matrix 
of a certain rank and in particular, to know if it is near a rank-deficient matrix. 

The most  reliable way to determine the rank and nearness to rank-deficiency 

is to use the SVD. 

Suppose that A has rank r, that is, O" 1 > o"2 >_ " "  > ar > 0 and 
ar+l . . . . .  an -- O. Then the question is: How f a r  is A f rom a matrix o f  

rank k < r. The following theorem can be used to answer the question. We state 
the theorem below, without proof. For proof, see Datta (1995, pp. 565-566). 

Theorem 3.9.4. Distance to Rank-Deficient  Matrices. Let  A - U E V T be 

the SVD o f  A, and let rank(A) - r > 0. Let k < r. Define Ak -- U ~ k  V T, 
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where 

0"1 

E~-- 0 , 
0 cr~ 

0 0 

(0"1 > 0"2" ' '  > O'k > 0). 

1. Then out o f  all the matrices o f  rank k(k < r), the matrix A~ is closest 

to A. 

2. Furthermore, the distance o f  A~ from A" IIA - Akll2 - -  O ' k + l .  

Corollary 3.9.1. The relative distance o f  a nonsingular matrix A to the nearest 

singular matrix B is 1 /Cond2(A) .  That is, lib - AII2/IIAII2 -- 1 /Cond2(A) .  

Implication of the Above Results 

Distance of a Matrix to the Nearest Matrix of Lower  Rank 

The above result  states that the smal les t  nonzero  s ingular  value of  A gives the 

2 -norm dis tance of  A to the nearest  matr ix  of lower  rank. In particular,  for a 

nons ingu la r  n x n matr ix  A, ~rn gives the measures  of  the dis tance of  A to the 

neares t  s ingular  matrix.  

Thus,  in order  to know if a matr ix  A of  rank r is close enough  to a matr ix  

of  lower  rank, look into the smal les t  nonzero  s ingular  value Or. If  this is very 

small ,  then the matr ix  is very close to a matr ix  of  rank r - 1, because  there 

exists a per turbat ion  of  size as smal l  as I~rrl which  will  p roduce  a matr ix  of  

rank r - 1. In fact, one such per turbat ion is UrCrrVTr . 

Example 3.9.3. Let 

A n 

0) 
2 0 , 
0 4 x  10 -7 

Rank(A) -- 3, cr3 - 0.0000004, 

(i ~ A t -- A - u 3 c r 3 v  T - -  2 
0 i) 

u3 - v3 - (0, 0, 1) T. 

rank(A')  - 2. 
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The required perturbation u3o3 v T to make A singular is: 

10 -7 0 . 
0 

3.9.4 Numerical Rank 

The above discussions prompt us to define the concept of " N u m e r i c a l  R a n k "  of a 
matrix. A has "numerical rank" r if the computed singular values 61,62 . . . . .  5n 

satisfy" 

o1 > o'2 > " '  > O'r > • > O'r+l > " "  > O'n, (3.9.1) 

where 8 is an error tolerance. 
Thus to determine the numerical  rank o f  a matrix A, count the "large" singular 

values only. I f  this number is r, then A has numerical  rank r. 

Remark 

Note that finding the numerical  rank of a matrix will be "tricky" if there is 

no suitable gap between a set of singular values. 

3.9.5 Solving the Least-Squares Problem Using the Singular 
Value Decomposition 

The SVD is also an effective tool to solve the LSP, both in the full rank and 

rank-deficient cases. 
Recall that the linear L S P  is: Find x such that IIrll2 - IIAx - bll2 is minimum. 
Let A = U E V T be the SVD of A. Then since U is orthogonal and a vector 

length is preserved by orthogonal multiplication, we have 

Ilrl12 - II(UF, VTx  - b)l12 - IIU(F~VTx -- uTb)II2 -- IIX~y - b'l12, 

where V T x  -- y and UTb - b ' .  Thus, the use of the SVD of A reduces the L S P  

for a full m a t r i x  A to one with a diagonal matrix E, which is almost trivial to 

solve, as shown in the following algorithm. 

Algorithm 3.9.1. Least Squares Solutions Using the SVD 

Inputs. A m A n  m x n matrix, 

b - - A n  m-vector  

Output. x m T h e  least-squares solution o f  the system A x  - b. 

Step 1. Find the SVD o f  A" A -- U ~ V T. 
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Step 2. Form b' - u T b  -- 

Step 3. Compute 

choosing 

y lyl I 
b~ when Cr i ~: 0 ] 

Yi = cr i ' 
arbitrary, when r - O. 

Step 4. Compute the fami ly  o f  least squares solutions: x = Vy .  (Note that in 
the fun-rank case, the family has just one number). 

Flop-count.  Using the SVD, it takes about 4mn 2 + 8n 3 flops to solve the LSP, 

w h e n A i s m  •  > n .  

An Expression for the Minimum Norm Least Squares Solution 

Since a rank-deficient LSP has an infinite number of solutions, it is practical to 
look for the one that has minimum norm. Such a solution is called the minimum 
norm least square solution. 

It is clear from Step 3 above that in the rank-deficient case, the minimum 
2-norm least squares solution is the one that is obtained by setting yi : 0, whenever 
tri = 0. Thus, from above, we have the following expression for the minimum 
2-norm solution: 

k T I 
b i 

X -- ~ ui l)i, (3.9.2) 
i=  1 ~  

where k is the numerical rank of A, and u i and vi, respectively, are the ith columns 
of U and V. 

Example 3.9.4. 

A =  3 , b -  . 
2 

Step 1. crl = 7.5358, ere = 0.4597, ~r3 = 0. 
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A is rank-deficient. 

U 

V ___ 

0.4956 0.5044 0.7071 ) 
0.7133 --0.7008 0.0000 , 
0.4956 0.5044 --0.7071 

( i .3208- -0 .8546  0 . 4 0 8 2 )  
.5470 --0.1847 --0.8165 . 
.7732 0.4853 0.4082 

Step 2. b' = uTb  = (12.3667, --0.2547, 0) T. 
Step 3. y = (1.6411, -0.5541, 0). 
The minimum 2-norm least-squares solution is V y = (1, 1, 1) T. 

Computing the SVD of A 

Since the singular values of a matrix A are the nonnegative square roots of the 
eigenvalues of AT A, it is natural to think of computing the singular values and the 
singular vectors, by finding the eigendecomposition of ATA. However, this is not 
a numerically effective procedure. 

Some vital information may be lost during the formation of the matrix AT A, as 
the following example shows. 

Example 3.9.5. 

A _ (1.0001 1.000 ) 
1.000 1.000! " 

The singular values of A are 2.0001 and 0.0001. 

(2.0002 2.0002~ 
ATA - I~2.0002 2.0002J " 

The eigenvalues of A TA are 0 and 4.0004 (in four-digit arithmetic). Thus, the 
singular values computed from the eigenvalues of ATA are 0 and 2.0002. 

A standard algorithm for computing the SVD of A is the Golub-Kahan- 
Reinsch algorithm. The algorithm will be described later in the book in 
Chapter 4. 

MATLAB and M A T C O M  notes: MATLAB function svd can be used to compute 
the SVD. [U, S, V] = s v d ( A )  produces a diagonal matrix S, of the same dimen- 
sion as A and with nonnegative diagonal entries in decreasing order, and unitary 
matrices U and V such that A = U S V * .  

Algorithm 3.9.1 has been implemented in MATCOM program lsqrsvd. Also, 
MATCOM has a program called minmsvd to compute the minimum 2-norm least- 
squares solution using the SVD. 
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3.10 SUMMARY AND REVIEW 

Floating Point Numbers and Errors 

1. Floating-point numbers. A t-digit floating point number has the form: 

x -- mil e, 

where e is called exponent, m is a t-digit fraction, and/~ is the base of the 
number system. 

2. Errors. The errors in a computation are measured either by absolute error 
or relative error. The relative errors make more sense than absolute 
errors. The relative error gives an indication of the number of significant 
digits in an approximate answer. The relative error in representing a real 
number x by its foating-point representation fl(x) is bounded by a number 
#, called the machine precision (Theorem 3.2.1). 

3. Laws o f  floating-point arithmetic: 

fl(x �9 y) -- (x �9 y)(1 + 6). 

Conditioning, Stability, and Accuracy 

1. Conditioning o f  the problem. The conditioning of the problem is a prop- 
erty of the problem. A problem is said to be ill-conditioned if a small 
change in the data can cause a large change in the solution, otherwise 
it is well-conditioned. The conditioning of a problem is data-dependent. 
A problem can be ill-conditioned with respect to one set of data but can be 
quite well-conditioned with respect to another set. 

The condition number of a nonsingular matrix, Cond(A)=]]A]] 
]]A -1 ]] is an indicator of the conditioning of the associated linear sys- 
tem problem: Ax -- b. If Cond(A) is large, then the linear system Ax  -- b 
is ill-conditioned. 

The well-known examples of ill-conditioned problems are the Wilkin- 
son polynomial for the root-finding problem, the Wilkinson bidiagonal 
matrix for the eigenvalue problem, the Hilbert matrix for the algebraic 
linear system problem, and so on. 

2. Stability o f  an algorithm. An algorithm is said to be a backward stable 
algorithm if it computes the exact solution of a nearby problem. Some 
examples of stable algorithms are the methods of back substitution and 
forward elimination for triangular systems, the QR factorization using 
Householder and Givens matrices transformations, and the QR iteration 
algorithm for eigenvalue computations. 
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The Gaussian elimination algorithm without row changes is unstable for 
arbitrary matrices. However, Gaussian elimination with partial pivoting 
can be considered as a stable algorithm in practice. 
Effects of conditioning and stability on the accuracy of the solution. The 
conditioning of the problem and the stability of the algorithm both have 
effects on accuracy of the solution computed by the algorithm. 

If a stable algorithm is applied to a well-conditioned problem, it should 
compute an accurate solution. On the other hand, if a stable algorithm is 
applied to an ill-conditioned problem, there is no guarantee that the com- 
puted solution will be accurate. However, if a stable algorithm is applied 
to an ill-conditioned problem, it should not introduce more errors than that 
which the data warrants. 

Matrix Factorizations 

There are three important matrix factorizations: L U, Q R, and SVD. 

LUfactorization. A factorization of a matrix A in the form A = LU, 
where L is unit lower triangular and U is upper triangular, is called an 
L U factorization of A. An L U factorization of A exists if all of its leading 
principal minors are nonsingular. 

A classical elimination scheme, called Gaussian elimination, is used 
to obtain an L U factorization of A (Section 3.4.1). 

The stability of Gaussian elimination is determined by the growth factor 

max(or, or1 . . . . .  Otn-1) 

where ot - maxi,j laij l and Otk -- maxi,j aij(k) I. 
If no pivoting is used in Gaussian elimination, p can be arbitrarily large. 

Thus, Gaussian elimination without pivoting is, in general, an unstable 
process. 

If partial pivoting is used, then Gaussian elimination yields the fac- 
torization of A in the form PA = L U, where P is a perturbation 
matrix. 

The growth factor p for Gaussian elimination with partial pivoting can 
be as large as 2n-l;  however, such a growth is extremely rare in practice. 
Thus, Gaussian elimination with partial pivoting is considered to be 
a stable process in practice. 
The QRfactorization. Given an m x n matrix A, there exists an orthogonal 
matrix Q and an upper triangular matrix R such that A = QR. 
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The QR factorization of A can be obtained using Householder's 
method, Givens' method, the Gram-Schmidt processes (the CGS and 
MGS). 

The Gram-Schmidt processes do not have favorable numerical proper- 
ties. Both Householder's and Givens' methods are numerically stable 
procedures for QR factorization. They are discussed, respectively, in Sec- 
tion 3.6.2 and Section 3.6.4 (Algorithm 3.6.1). Householder's method is 
slightly more efficient than Givens' method. 

The Algebraic Linear System Problem Ax = b 

The method of practical choice for the linear system problem Ax = b is Gaussian 
elimination with partial pivoting (Section 3.5.2) followed by iterative refinement 
procedure (Section 3.5.7). A symmetric positive definite system should be solved 
by computing its Cholesky factor (Algorithm 3.4.1) R followed by solving two 
triangular systems: Ry = b and RTx = y (Algorithm 3.3.1 and Section 3.3.3). 

The Least-Squares Problem 

Given an m x n matrix A, the LSP is the problem of finding a vector x such that 
II Ax - b 112 is minimized. The LSP can be solved using: 

�9 The normal equations method (Section 3.8.1): ATAx = A Tb 
�9 The QR factorization method (Algorithm 3.8.1) 
�9 The SVD method (Algorithm 3.9.1). 

The normal equations method might give numerical difficulties, and should 
not be used in practice without looking closely at the condition number. Both 
the QR and SVD methods for the LSP are numerically stable. Though the SVD is 
more expensive than the QR method, the SVD method is most reliable and can 
handle both rank-deficient and full-rank cases very effectively. 

The Singular Value Decomposition 

1. Existence and uniqueness of the SVD. The SVD of a matrix A always 
exists (Theorem 3.9.1): 

Let A e R TM. Then A = U E V T, where U e ~mxm,  V E ~nxn are 
orthogonal and E is an rn x n diagonal matrix. 

The singular values (the diagonal entries of E) are unique, but U and V 
are not unique. 

2. Relationship between the singular values and the eigenvalues. The sin- 
gular values of A are the nonnegative square roots of the eigenvalues of 
AT A (or of AAT). 
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, 

Sensitivity of the singular values. The singular values are insensitive to 
small perturbations (Theorem 3.9.2). 
Applications of the SVD. The singular values and the singular vectors of 
a matrix A are useful and are the most reliable tools for determining the 
(numerical) rank and the rank-deficiency of A; finding the orthonormal 
bases for range and the null space of A; finding the distance of A from 
another matrix of lower rank (in particular, the nearness to singularity of a 
nonsingular matrix); solving both full-rank and the rank-deficient LSPs. 

These remarkable abilities and the fact that the singular values are insen- 
sitive to small perturbations have made the SVD an indispensable tool for 
a wide variety of problems in control and systems theory, as we will see 
throughout the book. 

3.11 C H A P T E R  NOTES A N D  F U R T H E R  R E A D I N G  

Material of this chapter has been taken from the recent book of the author (Datta 
1995). For the advanced topics on numerical linear algebra, see Golub and Van 
Loan (1996). The details about stability of various algorithm and sensitivities of 
problems described in this chapter can be found in the book by Higham (1996). 
Stewart's (1998) recent book is also an excellent source of knowledge in this 
area. For details of various MATLAB functions, see MATLAB Users' Guide 
(1992). MATCOM is a MATLAB-based toolbox implementing all the major algo- 
rithms of the book "Numerical Linear Algebra and Applications" by Datta (1995). 
MATCOM can be obtained from the book's web page on the web site of MATH- 
WORKS: http://www.mathworks.com/support/books/book1329.jsp. The software 
(MATCOM) is linked at the bottom. 
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C H A P T E R  4 

CANONICAL FORMS OBTAINED 
VIA ORTHOGONAL 
TRANSFORMATIONS 

4.1 IMPORTANCE AND SIGNIFICANCE OF USING ORTHOGONAL 
TRANSFORMATIONS 

The Jordan and companion matrices have special structures that can be conve- 
niently exploited to solve many control problems. Unfortunately, however, these 
forms in general, cannot be obtained in a numerically stable way. 

We examine this fact here in some detail below. 
Suppose that X is a nonsingular matrix and consider the computation of X - 1 A X  

in floating point arithmetic. It can be shown that 

f I ( X - 1 A X )  -- X - l A X  + E, 

where IIEII2 ~ #Cond(X)llAll2, # is the machine precision. 
Thus, when X is ill-conditioned, there will be large errors in computing X -1AX. 
For the Jordan canonical form (JCF), the transforming matrix X is highly 

ill-conditioned, whenever A has defective or nearly defective eigenvalue. 

79 
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The reduction of a matrix A to an upper companion matrix C (Section 2.4.5) 
involves the following steps: 

Step 1. A is transformed to an upper Hessenberg matrix HI, -- (hi j )  by 
orthogonal similarity: p T A p  = Hu. 

Step 2. Assuming that Hu is unreduced, that is, hi+l, i  7/= O, i - 1, 2 . . . . .  n - 1, 

then Hu is further reduced to the companion matrix C by similarity. Thus, if 
Y - (el, Hue1 . . . . .  H n - l e l ) ,  it is easy to see that y - 1 H u Y  - C. 

A numerically stable algorithm to implement Step 1 is given in the next section; 
however, the matrix Y in Step 2 can be highly ill-conditioned if Hu has small 
subdiagonal entries. 

(Note that Y is a lower triangular matrix with 1, h21h32 . . . . .  h21h32.., hn,n-1 
as the diagonal entries). 

Thus, Step 2, in general, cannot be implemented in a numerically effective 
manner. 

The above discussions clearly show that it is important from a numerical com- 
putation viewpoint to have canonical forms which can be achieved using only 
well-conditioned transforming matrices, such as orthogonal matrices. 

Indeed, if a matrix A is transformed to a matrix B using an orthogonal sim- 
ilarity transformation, then a perturbation in A will result in a perturbation 
in B of the same magnitude. That is, if 

B = U T A U  and u T ( A  + A A ) U  -- B + A B ,  

then II An 112 ~ II AA 112. 
In this chapter, we show that two very important canonical forms: the 

Hessenberg form and the Real Schur Form (RSF) of a matrix A, can be obtained 
using orthogonal similarity transformations. (Another important canonical form, 
known as the generalized real Schur form, can be obtained using orthogonal 
equivalence.) 

We will see in the rest of the book that these canonical forms form impor- 
tant tools in the development of numerically effective algorithms for control 
problems. 

Applications of Hessenberg and real Schur forms include: 

1. Computation of frequency response matrix (Chapter 5) 
2. Solutions of Lyapunov and Sylvester equations (Chapter 8), Alge- 

braic Riccati equations (Chapter 13), Sylvester-observer equation 
(Chapter 12). 

3. Solutions of eigenvalue assignment (Chapter 11), feedback stabilization 
problems (Chapter 10), stability and inertia computations (Chapter 7). 
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Applications of generalized real Schur form include: 

1. Solutions of certain algebraic Riccati equations (Chapter  13). 
2. Solution of any descriptor control problem. 
3. Computations of frequencies and modes of vibrating systems. 

Besides these two forms, there are two other important canonical forms, namely, 
the controller-Hessenberg and observer-Hessenberg forms. These forms can 
also be obtained in a numerically effective way and will be used throughout the 
book. Methods for obtaining these two forms are described in Chapter  6. 

4.2 HESSENBERG REDUCTION OF A MATRIX 

Recall that a matrix H = (hi  j )  is said to be an upper Hessenberg matrix if hi j  - -  0 
fori  > j + l .  

An n • n matrix A can always be transformed to an upper Hessenberg matrix 
Hu by orthogonal similarity. That is, given an n • n matr ix  A, there exists an 
orthogonal matrix P such that P A p T _ Hu. 

Again, Householder and Givens matrices, being orthogonal, can be employed 
to obtain Hu from A. 

We will discuss only Householder's method here. 

Reduction to Hessenberg Form using Householder Matrices 

The idea is to extend the QR factorization process using Householder matrices 
described in Chapter 3 to obtain P and Hu, such that PA p T = Hu is an upper 
Hessenberg matrix and P is orthogonal. 

The matrix P is constructed as the product of (n - 2) Householder matrices P1 
through Pn-2. The matrix P1 is constructed to create zeros in the first column of 
A below the entry (2, 1); P2 is constructed to create zeros below the entry (3, 2) 
of the second column of the matrix P1A pT, and so on. 

The process consists of (n - 2) steps. (Note that an n • n Hessenberg matrix 
contains at least (n - 2)(n - 1)/2 zeros.) 

At the end of (n - 2)th step, the matrix A (n-2) is an upper Hessenberg matrix Hu. 
The Hessenberg matrix Hu is orthogonally similar to A. This is seen as follows: 

Hu -- A (n-2) -- Pn-2A(n-3)pT_ 2 -- Pn-2(Pn-3A(n-4)pT_3)PT_ 2 

. . . . .  (Pn-2Pn-3. . .  P 1 ) A ( p T p T . . .  PT_3 PT_2)- (4.2.1) 

Set 
P = P n - 2 P n - 3 . . .  P1. (4.2.2) 

We then have Hu = P A P  T. Since each Householder matrix Pi is orthogonal, the 
matrix P which is the product of (n - 2) Householder matrices, is also orthogonal. 
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For n - 4, schematically, we can represent the reduction as follow. Set A(~ = A. 
Then, 

i i - -  A ( 1 ) .  

- A (2) - Hu. 

Notes 

1. Multiplication by p/T to the fight does not destroy the zeros already present 
in Pi A(i-1). 

2. The product Pi A(i-1) pig can be implicitly formed as shown in Chapter 3 
(Section 3.6.1). 

Flop-count. The process requires ~ n  3 flops to compute Hu. This count does 
not include the explicit computation of P, which is stored in factored form. If P 
is computed explicitly, another 4n3 flops are required. However, when n is large, 
the storage required to form P is prohibitive. 

Roundoffproperty. The process is numerically stable. It can be shown (Wilkin- 
son (1965, p. 351) that the computed Hu is orthogonally similar to a nearby matrix 
A + E, where 

IIElIF _< cn2~ IIAlIF. 

Here c is a constant of order unity. 
MATLAB note: The MATLAB Command [P, H] = hess (A) computes an 

orthogonal matrix P and an upper Hessenberg matrix H such that PAP T - H. 

4.2.1 Uniqueness in Hessenberg Reduction: The Implicit Q Theorem 

We just described Householder's method for Hessenberg reduction. However, 
this form could also have been obtained using Givens matrices as well (see 
Datta (1995, pp. 163-165). The question, therefore, arises how unique is the 
Hessenberg form? 

The question is answered in the following theorem, known as the Implicit Q 
Theorem. The proof can be found in Golub and Van Loan (1996, p. 347). 

Theorem 4.2.1. The Implicit Q Theorem. Let P -- (Pl, P2 . . . . .  Pn) and 
Q -  (ql, q 2 , " "  , qn) be orthogonal matrices such that p T A p  -- H1 and 
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QT A Q - H2 are two unreduced upper Hessenberg matrices. Suppose that 

p l -  ql. Then H1 and H2 are essentially the same in the sense that H2 - 
D -1H1 D, where D -- diag(=t=l . . . . .  4-1). Furthermore, Pi - =l=qi, i = 
27 . . . ~ n .  

4.3 THE REAL SCHUR FORM OF A: THE QR 
ITERATION M E T H O D  

In this section, we describe how to obtain the RSF of a matrix. The RSF of a 
matrix A displays the eigenvalues of A. It is obtained by using the well-known Q R 
iteration method. This method is nowadays a standard method for computing 
the eigenvalues of a matrix. First, we state a well-known classical result on this 
subject. 

Theorem 4.3.1. The Schur Triangularization Theorem. Let A be an n x n 

complex matrix, then there exists an n x n unitary matrix U such that 

U*AU = T, 

where T is an n x n upper triangular matrix and the diagonal entries of  T are 

the eigenvalues o f  A. 

Proof. See Datta (1995, pp. 433-439).  
Since a real matrix can have complex eigenvalues (occurring in complex con- 

jugate pairs), even for a real matrix A, U and T in the above theorem can be 
complex. However, we can choose U to be real orthogonal if T is replaced by a 
quasi-triangular matrix R, known as the RSF of A, as the following theorem 
shows. The proof can be found in Datta (1995, p. 434) or in Golub and Van Loan 
(1996, pp. 341-342). I 

Theorem 4.3.2. 
real matrix. Then there exists an n x n orthogonal matrix Q such that 

The Real Schur Triangularization Theorem. Let A be an n x n 

Rll R12 . . .  R I ~  

i R22 �9 �9 �9 Rzk~ QTA Q - R - . . , (4.3.1) 
~ 

�9 . .  o R ~ ]  

where each Rii is either a scalar or a 2 x 2 matrix. The scalars diagonal entries 

correspond to real eigenvalues, and each 2 x 2 matrix on the diagonal has a 

pair o f  complex conjugate eigenvalues. 

Definition 4.3.1. The matrix R in Theorem 4.3.2 is known as the RSF of  A. 
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Remarks 

�9 The 2 • 2 matrices on the diagonal are usually referred to as "Schur  bumps." 
�9 The columns of Q are called the Schur vectors. For each k = 1, 2 . . . . .  n, 

the first k columns of Q form an orthonormal basis for the invariant 
subspace corresponding to the first k eigenvalues. 

We present below a method, known as the QR iteration method, for computing 
the RSF of A. A properly implemented QR method is widely used nowadays 
for computing the eigenvalues of an arbitrary matrix. As the name suggests, 
the method is based on the QR factorization and is iterative in nature. Since the 
roots of a polynomial equation of degree higher than four cannot be found in a 
finite number of steps, any numerical method to compute the eigenvalues of a 
matrix of order higher than four has to be iterative in nature. The QR iteration 
method was proposed in algorithmic form by J.G. Francis (1961), though its roots 
can be traced to a work of Rutishauser (1958). The method was also independently 
discovered by the Russian mathematician Kublanovskaya (1961). 

For references of these papers, see Datta (1995) or Golub and Van Loan (1996). 

4.3.1 The Basic QR Iteration 

We first present the basic QR iteration method. 

Set Ao ~ A. 
Compute now a sequence of matrices {A~ } as follows: 

For k = 1, 2 . . . .  do 
Find the QR factorization of A~-I :A~- I  -- Q~R~ 
Compute A~ = Rk Qk. 
End 

The matrices in the sequence [Ak } have a very interesting property: Each matrix 
in the sequence is orthogonally similar to the previous one and is, therefore, 
orthogonally similar to the original matrix. It is easy to see this. For example, 

A1 - R1Q1 - Q3~AoQ1 (since R1 = QTAo), 

A2 -- R 2 Q 2 -  QTA1Q2 (since R2 = QTA1). 

Thus, A1 is orthogonally similar to A and A2 is orthogonally similar to A1. 
Therefore, A2 is orthogonally similar to A, as the following computation shows: 

A2 QT A1Q2 - QT -- 2(QTAoQ1)Q2 - (Q1Q2)TAo(Q1Q2). 

Since each matrix A~ is orthogonally similar to the original matrix A, it has the 
same eigenvalues as A. It can then be shown (Wilkinson (1965, pp. 518-519) that 
under certain conditions, the sequence {A~ } converges to the RSF or to the Schur 
form of A. 
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4.3.2 The Hessenberg QR Iteration and Shift of Origin 

The QR iteration method as presented above is not practical if the matrix A 
is full and dense. This is because, as we have seen before, the QR factorization of 
a matrix A requires O(n 3) flops and thus n iterations will consume O(n 4) flops, 
making the method impractical. 

Fortunately, something simple can be done: 

Reduce the matrix A to a Hessenberg matrix by orthogonal similarity 
before starting the QR iterations. An interesting practical consequence of 
this is that if A = Ao is initially reduced to an upper Hessenberg matrix H and 
is assumed to be unreduced, then each member of the matrix sequence{H~ } 
obtained by applying Q R iteration to H is also upper Hessenberg. Since the 
QR factorization of a Hessenberg matrix requires O(n 2) flops, the whole 
iteration process then becomes O (n 3) method. 

However, the convergence of the subdiagonal entries of H, in the presence of two 
or more nearly equal (in magnitude) eigenvalues, can be painfully slow. 

Fortunately, the rate of convergence can be significantly improved by using a 
suitable shift. 

The idea is to apply the Q R iteration to the shifted matrix/4 - H - ~ i  I, where 
2i is an approximate eigenvalue. This is known as the single shift Q R iteration. 

However, since the complex eigenvalues of a real matrix occur in conjugate 
pairs, in practice, the Q R iteration is applied to the matrix H with double shifts. 
The process then is called the double shift Q R iteration method. 

4.3.3 The Double Shift QR Iteration 

The Hessenberg double shift Q R iteration scheme can be written as follows: 

For i = 1, 2 . . . .  do 
Choose the two shifts k l and k2 
Find the QR Factorization: H - k l I  = Q1 R1 
Form: H1 = R 1 Q 1 + kl I 
Find the Q R factorization: H1 - k21 = Q2 R2 
Form:  H2 -- R2 Q2 + k2 I 
End 

The shifts kl and k2 at each iteration are chosen as the eigenvalues of the 2 x 2 
trailing principal submatrix at that iteration. The process is called the explicit 
double-shift QR iteration process. 



86 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS 

The above explicit scheme requires complex arithmetic (since kl and k2 are 
complex) to implement, and furthermore, the matrices H - kl I and H1 - k2I 
need to be formed explicitly. In practice, an equivalent implicit version, known as 
the double shift implicit Q R i terat ion scheme, is used. We state one step of this 
process in the following. 

The Double Shift Implicit QR Step 

1. Compute the first column n l of the matrix N = (H - k l I ) ( H  - k2 I) = 
H 2 - (kl 4- k2) H + klk2I. 

2. Find a Householder matrix P0 such that Pon l is a multiple of el. 
3. Find Householder matrices P1 through Pn-2 such that H z - - ( P T _ 2 . . .  

pTpT)H(PoP1... Pn-2) is an upper Hessenberg matrix. 

It can be shown by using the Implicit Q Theorem (Theorem 4.2.1) that the upper 
Hessenberg matrix H2 obtained by the double shift implicit QR step is essen- 
tially the same as H2 obtained by one step of the explicit scheme. Furthermore, 
the first column n 1 of N can be computed without explicitly computing the matrix 
N and, the computation of H2 from H can be done only in O (n 2) flops. For details 
see Datta (1995, pp. 444-447) .  

4.3.4 Obtaining the Real Schur Form A 

1. Transform the matrix A to Hessenberg form. 
2. Iterate with the double shift implicit QR step. 

Typically, after two to three iteration steps of the double shift implicit QR method, 
one or two (and sometimes more) subdiagonal entries from the bottom of the 
Hessenberg matrix converge to zero. This then will give us a real or a pair of 
complex conjugate eigenvalues. 

Once a real or a pair of complex conjugate eigenvalues is computed, the last row 
and the last column in the first case, or the last two rows and the last two columns 
in the second case, are deleted and the computation of the other eigenvalues is 
continued with the submatrix. 

This process is known as deflation. 
Note that the eigenvalues of the deflated submatrix are also the eigenvalues of 

the original matrix. For, suppose, immediately before deflation, the matrix has the 
form: 

C ! 

where B t is the 2 x 2 trailing submatrix or a 1 x 1 matrix. Then the characteristic 
polynomial of ilk is: det(~.I - Hk) = det()~I - A') det()~l - B'). Thus, the eigen- 
values of Hk are the eigenvalues of A t together with those of B'. But Ilk is orthog- 
onally similar to the original matrix A and therefore has the same eigenvalues as A. 
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Example 4.3.1. Find the RSF of 

O 

I 0.2190 -0�9 0�9 -0.6391~ 
-0�9 0.9032 -0�9 0.8804 ] 

0 0 
-0.3822 0.4526 -0�9 " 

0 -0.1069 -0 �9  

Iteration h21 h32 h43 

1 0�9 -0.5084 
2 -0.0672 -0�9 
3 0.0089 -0�9 
4 -0.0011 -0�9 
5 0.0001 -0�9 

-0�9 
0.0001 
0 
0 
0 

The computed RSF is 

H m 

1.4095 
O 

0.1922 
The eigenvalues of -0.3905 

0.7632 -0.1996 
0�9 0�9 

-0�9 0�9 
0 0 

0.8394 
0�9 ] 

-0.4089~ " 
-0 .0763/  

0.5792] 
0.0243,] are 0�9 i 0.4681j. 

Balancing 

It is advisable to balance the entries of the original matrix A, if they vary widely, 
before starting the QR process. 

The balancing is equivalent to transforming the matrix A to D -1AD, where 
the diagonal matrix D is chosen so that the transformed matrix has approximately 
equal row and column norms. 

In general, preprocessing the matrix by balancing improves the accuracy of 
the QR iteration method�9 Note that no round-off  error is involved in this 
computat ion and it takes only O(n 2) flops. 

MATLAB note: The MATLAB command [T, B] = balance(A) finds a diagonal 
matrix T such that B : T -1AT has approximately the equal row and column 
norms. See MATLAB User's Guide (1992). 
Flop-count of the QR iteration method: Since the QR iteration method is an iter- 
ative method, it is hard to give an exact flop-count for this method. However, 
empirical observations have established that it takes about two QR iterations per 
eigenvalue. Thus, it will require about 12n 3 flops to compute all the eigenvalues. If 
the transforming matrix Q and the final quasitriangular matrix T are also needed, 
then the cost will be about 26n 3 flops. 
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Numerical stability property of the Q R iteration process: The QR iteration 
method is quite stable. An analysis of the round-off property of the algorithm 
shows that the computed RSF T is orthogonally similar to a nearby matrix A + E. 
Specifically, 

QT(A + E)Q -- q', wherellEllf _ 4~(n)/zllAllF, 

where ~b (n) is a slowly growing function of n and # is the machine precision. The 
computed orthogonal matrix Q can also be shown to be nearly orthogonal. 
MATLAB notes: The MATLAB function schur in the following format: 
[U, T] = schur(A) produces a Schur matrix T and an unitary matrix U such 
that A -- U T U*. 

By itself, scbur(A) returns T. If A is real, the RSF is returned. 
The RSF has the real eigenvalues on the diagonal and the complex eigenvalues 

in 2 • 2 blocks on the diagonal. 

4.3.5 The Real Schur Form and Invariant Subspaces 

The RSF of A displays information on the invariant subspaces. 

Basis of an Invariant Subspace from RSF 

Let 

Q T A Q -  R -  ( ~  1 R22R12) 

and let's assume that R11 and R22 do not have eigenvalues in common. Then 
the first p columns of Q, where p is the order of R 1 l ,  form a basis for the 
invariant subspace associated with the eigenvalues of R 1 lo 

In many applications, such as in the solution of algebraic Riccati equations (see 
Chapter 13), in constructing a reduced-order model, etc., one needs to compute an 
orthonormal basis of an invariant subspace associated with a selected number of 
eigenvalues. Unfortunately, the RSF obtained by QR iteration will not, in general, 
give the eigenvalues in some desired order. Thus, if the eigenvalues are not in a 
desired order, one wonders if some extra work can be done to bring them into that 
order. That this can indeed be done, is seen from the following simple discussion. 
Let A be 2 x 2. 

Let 

(O  1 r12~ QTA Q1 = ~.2 J '  )~1 ~ ~.2. 
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If )~1 and ~.2 are  not in right order, all we need to do to reverse the order is to form 
a Givens rotation J (1, 2, 0) such that 

{r12  ) _ ( ; )  
J ( l ,  2, 0)  i~,)~2 _ )~1 

Then Q = Q1J (1, 2, 0)T is such that 

QTAQ_(o  2 r ~ ; ) .  

The above simple process can be easily extended to achieve any desired ordering 
of the eigenvalues in the RSE For a Fortran program, see Stewart (1976). 

Example 4.3.1. 

A - ( 1 2  ~ ) ,  

( 0.8507 
Q 1 -  ~-0.5257 

_ (-0.2361 
QT a Q 1 ~ 0.0000 

0.5257) 
0.8507J ' 

0.0000~ 
4.2361]" 

Suppose we now want to reverse the orders of -0.2361, and 4.2361. 

(o 1) 
Form: J (1 ,2 ,0)  - 1 0 " 

(0 )  (4 
Then, J(1, 2, 0) 4.4722 -- 

( -0 .5257 -0.8507)  
Form: Q - Q1J(1, 2, 0) T - \ -0 .8507  0.5257 J " 

(4.2361 000 
Then, QTA Q = ~ 0.00 -0.2361J" 

Flop-count and numerical stability. The process is quite inexpensive. It 
requires only k(12n) flops, where k is the number of interchanges required to 
achieve the desired order. The process is also numerically stable. 

MATCONTROL note: The routine ordersch in MATCONTROL can be used to 
order the eigenvalues in the RSF of the matrix. 

Fortran Routine: The Fortran routine STRSYL in LAPACK (Anderson et al. 
(1999)) reorders the Schur decomposition of a matrix in order to find an orthonor- 
mal basis of a right invariant subspace corresponding to selected eigenvalues. 
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Invariant Subspace Sensitivity: Sep-Function 

Let Q * A Q  = (Tll  T12~ 0 T22] be the Schur decomposition of A. Let Q = (Q1, Q2). 

Define 

sep(T11, T22) -- min 
x#o IIXIIF 

I l Z l l X -  XT2211F 

Then it can be shown (Golub and Van Loan (1996, pp. 325)) that the reciprocal 
of sep(T11, T22) is a good measure of the sensitivity of the invariant subspace 
spanned by the columns of Q. 

4.3.6 Inverse Iteration 

The inverse iteration is a commonly used procedure to compute a selected 
number of eigenvectors of a matrix. 

Since A is initially reduced to a Hessenberg matrix H for the QR iteration 
process, then it is natural to take advantage of the structure of the Hessenberg 
matrix H in the process of inverse iteration. The Hessenberg inverse iteration 
can then be stated as follows: 

Step 1. Reduce the matrix A to an upper Hessenberg matrix H �9 P A P  T - H .  

Step 2. Compute an eigenvalue ~., whose eigenvector x is sought, using the 
implicit QR iteration method described in the previous section. 

Step 3. Choose a unit-length vector Y0 6 C n. 

For k = 1, 2 . . . .  do until convergence 
Solve for z (k) �9 ( H  - 1 . I ) z  (k) - -  y ( k - 1 )  

Compute y(k)  _ z(k~/llz(~ II 
End 

Step 4. Recover the eigenvector x of the matrix A �9 x - p T y ( k ) ,  where y(k)  is 
an approximation of the eigenvector y obtained at the end of Step 3. 

N o t e :  If y is an eigenvector of H, then x - p T y  is the corresponding eigen- 
vector of A. 

C o n v e r g e n c e  a n d  e f f i c i e n c y :  The Hessenberg inverse iteration is very inexpen- 
sive. Once an eigenvalue is computed, the whole process requires only O (n 2) flops. 
It typically requires only 1 to 2 iterations to obtain an approximate acceptable 
eigenvector. 
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4.4 COMPUTING THE SINGULAR VALUE DECOMPOSITION (SVD) 

The following algorithm known as the Golub-Kahan-Reinsch  algorithm is 
nowadays a standard computational algorithm for computing the SVD. The 
algorithm comes in two stages: 

Stage I. The m x n matrix A (m > n) is transformed to an upper m x n bidiagonal 
matrix by orthogonal equivalence: 

UTA V O - ( o  ) , (4.4.1) 

where B is the n x n upper bidiagonal matrix given by 

B 

�9 0 

~ 

" . ,  . .  

bn 

Stage II The transformed bidiagonal matrix B is further reduced by orthogo- 
nal equivalence to a diagonal matrix E using the QR iteration method; that is, 
orthogonal matrices U1 and V1 are constructed such that 

U T B V1 = E = diag(al . . . . .  an). (4.4.2) 

The matrix E is the matrix of singular values�9 The singular vector matrices U 
and V are given by U = UoU1, V = Vo V1. 

We will briefly describe Stage I here. For a description of Stage II, see Golub 
and Van Loan (1996, pp. 452-457). 

Reduction to Bidiagonal Form 

We show how Householder matrices can be employed to construct Uo and Vo in 
Stage I. 

The matrices Uo and Vo are constructed as the product of Householder matrices 
as follows: Uo = U1U2.. .  Un, and Vo = V1V2... Vn-2. Let's illustrate construc- 
tion of U1, V1 and U2, V2, and their role in the bidiagonalization process with 
m = 5 andn = 4. 
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First, a Householder matrix U1 is constructed such that 

A (1) = U 1 A  = ~ : * * . 

~ ; 
Next, a Householder matrix V1 is constructed such that 

�9 �9 0 0 �9 �9 0 0 

00 * * : 0 
A(2) -- A ( 1 ) V 1  - -  * * - -  0 A '  �9 

00 * * : 0 
�9 * 0 

The process is now repeated with A(2); that is, Householder matrices U2 and V2 
are constructed so that 

U2 A (2) V2 = 

�9 �9 0 0 

O0 * * 0 * 
0 �9 

O0 0 * : 
0 �9 

Of course, in this step, we will work with the 4 • 3 matrix A' rather than the matrix 
A (2). Thus, first the orthogonal matrices U~ and Vj will be constructed such that 

�9 �9 0 

, ' 

then U2 and V2 will be constructed from U~ and V~ in the usual way, that is, 
by embedding them in identity matrices of appropriate orders. The process is 
continued until the bidiagonal matrix B is obtained. 

Example 4.4.1. Let 

A 4 
7 
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Step 1. 

{-0.1474 -0.4423 -0.8847~ 
U1 = /-0.4423 0.8295 -0.34101,  

\ -0.8847 -0.3410 0.3180,// 

A (1) : U1A : ( -6 ' i823  
-8.2567 
0.0461 

-0.9077 

-9.7312~ 
0.0923 | .  

-1.8154] 

Step 2. 

(i ~ V1 = -0.6470 
-0.5571 0.6470] 

A(2)_ A(1)V1 - (-6"i823 
12.7620 
- 1.0002 
1.9716 -0.4824// 

Step 3. 

(i 0 0 / U2= -0.0508 0.9987 
0 . 9 9 8 7 0 . 0 5 0 8 ]  

-6.7823 
B = U2A (2) = U2A(1)V1 = U2UIAV1 = 0 

0 

12.7620 0 ) 
-1.0081 -1.8178 

0 0 

Note that from the above expression of  B, it immediately follows that zero is a singular 
value of  A. 

Flop-count: The Householder bidiagonalization algorithm requires 4mn 2 - 
4n 3/3 flops. 

Stage II, that is, the process of iterative reduction of the bidiagonal matrix 
to a diagonal matrix containing the singular values requires 30n flops and 2n 
square roots. The matrices U and V can be accumulated with 6mn and 6n 2 flops, 
respectively. 

Stability: The Golub-Kahan-Reinsch algorithm is numerically stable. It can 
be shown that the process will yield orthogonal matrices U and V and a diagonal 
matrix E such that u T A v  -- E + E,  where I]ElI2 ~/z][A]] 2. 
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4.5 THE GENERALIZED REAL SCHUR FORM: 
THE QZ ALGORITHM 

In this section, we describe two canonical forms for a pair of matrices (A, B): The 
Hessenberg-triangular and the Generalized RSF. The Generalized RSF displays 
the eigenvalues of the matrix pencil A - ~,B, as the RSF does for the matrix A. 

Given n • n matrices A and B, a scalar )~ and a nonzero vector x satisfying 

Ax - )~Bx 

are respectively called an eigenvalue and eigenvector for the pencil A - ~.B. The 
eigenvalue problem itself is called generalized eigenvalue problem. The eigen- 
values and eigenvectors of the generalized eigenvalue problem are often called 
generalized eigenvalues and generalized eigenvectors. The matrix pencil A-)~ B 
is often conveniently denoted by the pair (A, B). 

The pair (A, B) is called regular if det(A - )~B) is not identically zero. Other- 
wise, it is singular. We will consider only regular pencil here. If B is nonsingular, 
then the eigenvalues of the regular pair (A, B) are finite and are the same as those 
of AB -1 or B -1A. 

If B is singular, and ifthe degree o fde t (A-~B)  is r (<  n), then n - r  eigenvalues 
of (A, B) are cx~, and the remaining ones are the zeros of det(A - )~B). 

As we will see later, the generalized RSF is an important tool in the numerical 
solutions of the discrete algebraic Riccati equation and the Riccati equations 
with singular and ill-conditioned control weighting matrices (Chapter 13). 

The QZ algorithm 

Assume that B is nonsingular. Then the basic idea is to apply the QR iteration 
algorithm to the matrix C = B - 1 A  (or to AB-1) ,  without explicitly forming the 
matrix C. For if B is nearly singular, then it is not desirable to form B -  1. In this case 
the entries of C will be much larger than those of A and B, and the eigenvalues of 
C will be computed inaccurately. (Note that the eigenvalues of B-1A are the same 
as those of A B -  1, because A B -  1 _ B (B-  1 A) B -  1). If A B -  1 or B - 1A is not to 
be computed explicitly, then the next best alternative, of course, is to transform A 
and B simultaneously to some reduced forms such as the triangular forms and then 
extract the generalized eigenvalues from these reduced forms. The simultaneous 
reduction of A and B to triangular forms by equivalence is guaranteed by the 
following theorem: 

Theorem 4.5.1. The Generalized Real Schur Decomposition. Given two n x n 
real matrices A and B, there exist orthogonal matrices Q and Z such that QT A z  
is an upper real Schur matrix and QT B Z is upper triangular: 

QT A z  ---- A', an upper real Schur matrix, 

QT B Z -- B t, an upper triangular matrix. 
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The pair (A I, B I) is said to be in generalized RSF. 
The reduction to the generalized RSF is achieved in two stages. 
Stage I. The matrices A and B are reduced to an upper Hessenberg and an upper 

triangular matrix, respectively, by simultaneous orthogonal equivalence: 

A _= QTA Z, an upper Hessenberg matrix, 

B = QTB Z, an upper triangular matrix. 

Stage II. The Hessenberg-triangular pair (A, B) is further reduced to the 
generalized RSF by applying implicit QR iteration to A B -1 . 

This process is known as the QZ Algorithm. 

We will now briefly sketch these two stages in the sequel. 

4.5.1 Reduction to Hessenberg-Triangular Form 

Let A and B be two n x n matrices. Then, 
Step 1. Find an orthogonal matrix U such that 

B =_UTB 

is an upper triangular matrix by finding the QR factorization of B. 
F o r m  

A =_UTA 

(in general, A will be full). 
Step 2. Reduce A to Hessenberg form while preserving the triangular struc- 

ture of B. 
Step 2 is achieved as follows: 

To start with, we have 

A = ~ U T A  = 

B = _ U T B  = Oo . , .  

0 0 . . . 0  
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First, the (n, 1)th entry of A is made zero by applying a Givens rotation Q n - l , n  

in the (n - 1, n) plane: 

A =_ Q n - l , n A  = 

* * . . .  , 

* ~ ~ ~ 

, �9 o ~ 

, ~ , o 

This transformation, when applied to B from the left, will give a fill-in in the 
(n, n - 1) position: 

B = Q n - l , n B  = 

* * . . . . . .  , 

0 �9 . . .  . 

~  

0 . . .  0 �9 

The Givens rotation Z n - l , n  -- J (n - 1, n, 0) is now applied to the right of B to 
make the (n, n - 1) entry of B zero. Fortunately, this rotation, when applied to the 
right of A, does not destroy the zero produced earlier�9 Schematically, we have 

B =_ B Z n _ l , n  = 

* * * . . .  , 

* * . . .  

0 * � 9  

"o�9 Oo 

0 . . .  0 

A = A Z n - l , n  - "  

* * * . . .  , 

* * � 9 1 4 9 1 4 9  

* * � 9 1 4 9  

* * . � 9 1 4 9  

The entries (n - 1, 1), (n - 2, 1) . . . . .  (3, 1) of A are now successively made zero, 

each time applying an appropriate rotation to the left of A, followed by another 
appropriate Givens rotation to the right of B to zero out the undesirable fill-in in 
B. At the end of the first step, the matrix A is Hessenberg in its first column, while 
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B remains upper triangular: 

* * . . .  , * * . . . . . .  , 

, . . .  * . . . . . .  

A - -  * "'" , B -  "'. "'. . 

, �9 ..  ". ". 

* " ' "  ' ' '  0 * 

The zeros are now produced on the second column of A in the appropriate places 

while retaining the triangular structure of B in an analogous manner. 

The process is continued until the matrix A is an upper Hessenberg matrix while 

keeping B in upper triangular form. 

Example 4.5.1. 

A - -  1 3 , B - -  1 . 
1 3 0 

1. Form the Givens rotation Q 2 3  to make a 3 1  zero: 

(i 0 0) Q23 - 0.7071 0.707 

- 0 . 7 0 7 1  0.707 

1 2 
A =_ A ~l~ -- Q23A -- 1.4142 4.2426 

0 0 

3 
4.9497 

- 0 . 7 0 7 1  
I o 

2. Update B: 

B =--B ( 1 ) -  Q23B-  ( i  
1 

0.7071 

- 0 . 7 0 7 1  

1) 
2.8284 . 

0 

3. Form the Givens rotation Z 2 3  to make b 3 2  z e r o :  

Z 2 3  - -  0 1 , 

1 

(i 1 B - -  B (1) Z 2 3  - -  Q23BZ23 - 2 . 8 2 8 4  

0 

o o71] 
0.7071 / 
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4. Update A: 

A _-- A(1)Z23 -- Q z 3 A Z 2 3  - 1.4142 4.9497 - 4 .  426 . 
0 -0.7071 

Now A is an upper Hessenberg and B is in upper triangular form. 

4.5.2 Reduction to the Generalized Real Schur Form 

At the beginning of this process, we have A and B as an upper Hessenberg and 
an upper triangular matrix, respectively, obtained from Stage 1. We can assume 
without loss of generality that the matrix A is an unreduced upper Hessenberg 
matrix. The basic idea now is to apply an implicit Q R step to AB-1 without 
ever forming this matrix explicitly. We sketch just the basic ideas here. For 
details, see Datta (1995, pp. 500-504). 

Thus a QZ step, analogous to an implicit QR step, will be as follows: 

1. Compute the first column nl of N - (C - ot 1 1 ) ( C  - or2/), where C - 
A B  - 1  and or1 and 0t 2 are suitably chosen shifts, without explicitly forming 
the matrix A B -  1. 

(Note that  n l has only three nonzero entries and the rest are zero). 
2. Find a Householder matrix Q1, such that Q lnl is a multiple of el. 
3. F o r m Q 1 A a n d Q 1 B .  
4. Simultaneously transform Q1A to an upper Hessenberg matrix A1, and 

Q1B to an upper triangular matrix BI" 

A1  :-- Q T ( Q 1 A ) Z  " an upper Hessenberg; 

B1 - -  Q T ( Q 1 B ) Z  " an upper triangular. 

Using the implicit Q theorem (Theorem 4.2.1) we can show that the matrix A 1B 11 
is essentially the same as that would have been obtained by applying an implicit 
QR step directly to A B - 1  . 

Applications of a few QZ steps in sequence will then yield a quasi-triangular 
matrix R - -  Q T A z  and an upper triangular T -- QT B Z, from which the general- 
ized eigenvalues can be easily extracted. 

Choosing the Shifts 

The double shifts Ogl and Ot 2 at a QZ step can be taken as the eigenvalues of the 
lower 2 • 2 submatrix of C - A B - 1  . The 2 • 2 lower submatr ix of C again 
can be computed without explicitly forming B -1 (see Datta (1995, p. 501)). 
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Algori thm 4.5.1. The Complete Q Z Algorithm for Reduction to Generalized 
Schur Form 

Inputs: Real n • n matrices A and B. 
Outputs:  The pair (R, T) of the generalized RSF of the pencil A - )~B. The 

matrix R is Quasi-triangular and T is upper triangular. 

1. Transform (A, B) to a Hessenberg-triangular pair by orthogonal equiva- 
lence: 

A - Q T A z ,  an upper Hessenberg, 

B _= QTB Z, an upper triangular. 

2. Apply a sequence of the QZ steps to the Hessenberg-triangular pair (A, B) 
to produce {A~ } and { Bk }, with properly chosen shifts. 

3. Monitor the convergence of the sequences {Ak } and {Bk }: 

{Ak } > R, quasi-triangular (in RSF), 

{ Bk } > T, upper triangular. 

Flop-count: The implementation of (1)-(3) requires about 30n 3 flops. The for- 
mation of Q and Z, if required, needs, respectively, another 16n 3 and 20n 3 flops 
(from experience it is known that about two QZ steps per eigenvalue are adequate). 

Numerical Stability Properties: The QZ iteration algorithm is as stable as the 
QR iteration algorithm. It can be shown that the computed R and S satisfy 

Q~(A + E)Zo -- R, QT(B + F)Zo = ~S. 

Here Qo and Zo are orthogonal, IIEI[ -~/zllAlland [IFII ~/zllBll; /z is the machine 
precision. 

4.6 C O M P U T I N G  OF T H E  E I G E N V E C T O R S  OF T H E  P E N C I L  A - ~,B 

Once an approximate generalized eigenvalue X is computed, the corresponding 
eigenvector v of the pencil A - XB can be computed using the generalized inverse 
iteration as before. 

Step 1. Choose an initial eigenvector v0. 
Step 2. For k = 1, 2 . . . .  do until convergence 

Solve (A - 3. B) ~ = B vk- 1; 

ok - ~k /II ~k 112. (4.6.1) 

A Remark on Solving ( A  - )~ B )  f~k - -  B v k -  1 

In solving (A - )~ B)f~k -- B vk-1, substantial savings can be made by exploiting 
the Hessenberg-triangular structure to which the pair (A, B) is reduced as a part 
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of the QZ algorithm. Note that in this case for a given )~, the matrix A - ~.B is also 
a Hessenberg matrix. Thus, at each iteration, only a Hessenberg system needs to 
be solved, which requires only O(n 2) flops, compared to O(n 3) flops required for 
a system with a full matrix. 
Example 4.6.1. 

3 - 1 . 5 0  ) {200'~ 
A - 109 - 1 . 5 3  - 1.5 , B -- 1 0 3 / o 3 o  

0 - 1.51.5 \004 j  

Z] = a generalized eigenvalue of (A - ZB) = 1950800. 

k = 1: Solve for v]: 

v0 (i) 

Solve: ( A -  ZIB)~I -- Bvo 

{ 0.0170 
~1 - [ - 0 . 0 1 0 2  / , 

\ 0.0024 ] 

0.8507 
Vl - ~ /II ~1 II - - 0 . 5 1 1 4 ]  . 

0.1217 ] 

MATLAB and MATCOM notes: The MATLAB function qz in the form: 
[AA, B B, Q, Z, V] = qz(A,  B) produces upper triangular matrices AA and B B, 
and the orthogonal matrices Q and Z such that QAZ = AA, QBZ -- BB. 

The matrix V contains the eigenvectors. The generalized eigenvalues are 
obtained by taking the ratios of the corresponding diagonal entries of AA and 
BB. The MATLAB function eig (A, B) gives only the generalized eigenvalues of 
the pencil A - )~B from the generalized Schur decomposition. MATCOM func- 
tions HESSTRI and INVITRGN compute, respectively, the Hessenberg-triangular 
reduction of the pair (A, B) and the eigenvectors of the pencil A -  ~.B using inverse 
iteration. 

Deflating Subspace for the Pencil A - )~B 

A k-dimensional subspace S E ~n is a deflat ing subspace  of the pencil A - )~ B 
if the subspace {Ax + By I x, y c s} has dimension k or less. It can be easily seen 
that the c o l u m n s  of  Z in the genera l i zed  Schur  d e c o m p o s i t i o n  form a fami ly  of  

def lat ing subspaces .  Also, span{Azl . . . . .  Az~} and span{Bzl . . . . .  Bz~:} belong 
to span{ql . . . . .  q~ }, where Zi and qi are, respectively, the columns of Z and Q. 
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Remark 

�9 In solving algebraic Riccati equations, deflating subspaces with specified 
spectrum need to be computed. There exist Fortran routines for computing 
such deflating subspaces developed by Van Dooren (1982). 

4.7 SUMMARY AND REVIEW 

Numerical Instability in Obtaining Jordan and Companion Matrices 

The JCF and a companion form of a matrix, because of their rich structures, 
are important theoretical tools. Using these two decompositions, many important 
results in control theory have been established (see Kailath 1980). 

Unfortunately, however, these two forms cannot be obtained in a numerically 
stable way in general. Since it is necessary to use non-orthogonal transformations 
to achieve these forms, the transforming matrices can be highly ill-conditioned. 
Some discussions to this effect have been given in Section 4.1. Because of possible 
numerical instabilities in reduction of A to a companion matrix, and the fact that 
the zeros of a polynomial can be extremely sensitive to small perturbations, it is 
not advisable to compute the eigenvalues of a matrix by finding the zeros of 
its characteristic polynomial. 

Hessenberg and Real Schur Forms 

Both Hessenberg and RCFs can be obtained via orthogonal similarity trans- 
formations. These two forms, thus, are extremely valuable tools in numerical 
computations. In fact, many of the numerically effective algorithms for control 
problems described in this book, are based on these two forms. 

Reduction to Hessenbergform. A Hessenberg form, via orthogonal similarity 
transformation, is obtained using either Householder or Givens transformations. 
The Householder method for Hessenberg reduction is described in Section 4.2. 
For a description of Givens Hessenberg reduction, see Datta (1995) or Golub and 
Van Loan (1996). The implicit Q theorem (Theorem 4.2.1) guarantees that the 
Hessenberg forms obtained by two different methods are essentially the same, 
provided that the transforming matrices have the same first column. 

Real Schur form: Computing the eigenvalues, eigenvectors, and orthonormal 
bases for invariant subspaces. The RSF of a matrix is a quasi-triangular matrix 
whose diagonal entries are either scalars or 2 x 2 matrices. Every real matrix A can 
be transformed to RSF by an orthogonal similarity. Since the RSF of a matrix A 
displays the eigenvalues of A, any numerical method for obtaining the RSF of order 
higher than four X has to be iterative in nature. The standard method for obtaining 
the RSF is the QR iteration method with implicit double shift. This method is 
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described in some detail in Sections 4.3.1-4.3.4. The double shift implicit QR 
iteration method is nowadays the standard method for finding the eigenvalues 
of a matrix. 

An orthonormal basis for the invariant subspace associated with a given set of 
eigenvalues can also be found by reordering the eigenvalues in RSF in a suitable 
way. This is discussed in Section 4.3.5. 

Once the RSF is found, it can be employed to compute the eigenvectors of A. This 
is not discussed here. Interested readers are referred to Datta (1995, pp. 452-455). 
Instead, a commonly used procedure for computing selected eigenvectors, called 
the inverse iteration method, is described in Section 4.3. 

Computing the SVD of a Matrix 

The standard method for computing the SVD, called the Golub-Kahan-Reinsch 
algorithm, is described in Section 4.4. The method comes in two stages: 

Stage L Reduction of the matrix A to a bidiagonal form. 
Stage II. Further reduction of the bidiagonal matrix obtained in Stage I to a 

diagonal matrix using implicit QR iteration. 
The detailed discussion of Stage II is omitted here. The readers are referred to 

Golub and Van Loan (1996, pp. 452-456). 

The Generalized Real Schur Form 

The generalized RSF of a pair of matrices (A, B) is a matrix-pair (A', B'), 
where A ~ is an upper real Schur matrix and B' is an upper triangular matrix 
(Theorem 4.5.1). 
The standard method for computing the general RSF is the QZ iteration 
algorithm. The QZ algorithm also comes in two stages: 

Stage I. Reduction of (A, B) to Hessenberg-triangular form. 
Stage II. Further reduction of the Hessenberg-triangular form obtained in Stage I 

to the generalized RSE 
Stage I is a finite procedure. Again, the Householder or Givens transformations 

can be used. The Householder procedure is described in Section 4.5.1. Stage II is 
an iterative procedure. Only a brief sketch of the procedure is presented here in 
Section 4.5.2. For details, readers are referred to Datta (1995, pp. 500-504). 

The generalized RSF displays the eigenvalues (called generalized eigenvalues) 
of the linear pencil A - )~B. Once the eigenvalues are obtained, the selected 
eigenvectors can be computed using generalized inverse iteration (Section 4.6). 

4.8 CHAPTER NOTES AND FURTHER READING 

The material of this chapter has been taken from the recent book of the author (Datta 
1995). For advanced readings of the topics dealt with in this chapter, consult the 
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book by Golub and Van Loan (1996) and Stewart (2001). For a description of 
the toolbox MATCOM and how to obtain it, see the section on Chapter Notes 
and Further Reading of Chapter 3 (Section 3.11). For MATLAB functions and 
LAPACK routines, see the respective user's guides; Anderson et al. (1995) and 
MATLAB User'  s Guide (1992) 
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C H A P T E R  5 

LINEAR STATE-SPACE MODELS 
AND SOLUTIONS OF THE STATE 
EQUATIONS 

5.1 INTRODUCTION 

A finite-dimensional time-invariant linear continuous-time dynamical system 
may be described using the following system of first-order ordinary differential 
equations: 

2(t)  = Ax(t)  + Bu(t),  
y(t) = Cx(t) + Du(t). 

The input and the output of the system are defined in continuous-time over the 
interval [0, oo). The system is, therefore, known as a continuous-time system, 
The discrete-time analog of this system is the system of difference equations: 

x(k + 1) = Ax(k) + Bu(k), 
y(k) = Cx(k) + Du(k). 

We will consider in this book only time-invariant systems, that is, the matri- 
ces A, B, C, and D will be assumed constant matrices throughout the book. 

107 
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It is first shown in Section 5.2 how some simple familiar physical systems can 
be described in state-space forms. Very often the mathematical model of a system 
is not obtained in first-order form; it may be a system of nonlinear equations, a 
system of second-order differential equations or partial differential equations. 
It is shown how such systems can be reduced to the standard first-order state-space 
forms. The computational methods for the state equations are then considered both 
in time and frequency domain. 

The major computational component of the time-domain solution of a 
continuous-time system is the matrix exponential e at . Some results on the sensitiv- 
ity of this matrix and various well-known methods for its computation: the Taylor 
series method, the Pad6 approximation method, the methods based on decom- 
positions of A, the ordinary-differential equation methods, etc., are described in 
Section 5.3. A comparative study of these methods is also included. The Pad~ 
method (Algorithm 5.3.1) (with sealing and squaring) and the method, based 
on the Real Sehur decomposition of A (Algorithm 5.3.2), are recommended for 
practical use. This section concludes with an algorithm for numerically computing 
an integral with an matrix exponential (Algorithm 5.3.3). 

Section 5.4 describes the state-space solution of a diserete-tirne system. The 
major computational task here is computation of various powers of A. 

In Section 5.5, the problem of computing the frequency response matrix for 
many different values of the frequencies is considered. The computation of the 
frequency response matrix is necessary to study various system responses in fre- 
quency domain. A widely used method (Algorithm 5.5.1), based on the one-time 
reduction of the state matrix A to a Hessenberg matrix, is described in detail and 
the references to the other recent methods are given. 

Reader's Guide for Chapter 5 

The readers familiar with basic concepts and results of modeling and state- 
space systems can skip Sections 5.2, 5.4, and 5.5.1. 

5.2 STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 

5.2.1 Continuous-Time Systems 

Consider the dynamical system represented by means of the following system of 
ordinary first-order differential equations: 

~c(t) - -  A x ( t )  + B u ( t ) ,  x ( t o )  = xo,  (5.2.1) 

y ( t )  = C x ( t )  + D u ( t ) .  (5.2.2) 
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Input u(t) 
Linear system 

State x(t) 

Output y(t) 

F I G U R E  5.1: Representation of a continuous-time state-space model. 

In this description, 

x( t )  is an n-dimensional vector, called the system state, 
u(t)  is an m-dimensional vector (m < n), called the system input, 
y( t )  is an r-dimensional vector, called the system output. 

The vector x(to) is the initial condition of the system. The components of x( t )  
are called state variables.  

The matrices A, B, C, and D are t ime- invar iant  matr ices,  respectively, of 
dimensions n x n, n x m, r x n, and r x m. The above representation is known 
as a time-invariant continuous-time state-space model of a dynamical system. 

Schematically, the model is represented in Figure 5.1. 
Clearly, at a given time t, the variables arriving at the system would form the 

input, those internal to the system form the state, while the others that can be 
measured directly comprise the output. 

The space X c ]1~ n, where all the states lie for all t > 0 is called the state- 
space, the Eq. (5.2.1) is called the state equation and the Eq. (5.2.2) is called the 
output equation. If m -- r -- 1, the system is said to be a s ingle- input  single- 
ou tpu t  (SISO) system. A multi-input multi-output (MIMO)  system is similarly 
defined. If a system has more than one input or more than one output it is referred to 
be a multivariable system. The system represented by the Eqs. (5.2.1) and (5.2.2) 
is sometimes written compactly as (A, B, C, D) or as (A, B, C), in case D is not used 
in modeling. Sometimes ~c(t) and x ( t )  will be written just  as 2 and x for  the sake 
o f  convenience. Similarly, u(t)  and y( t )  will be written as u and y, respectively. 

We provide below a few examples to illustrate the state-space representations 
of some simple systems. 

Example 5.2.1 (A Parallel RLC Circuit). Consider a parallel RLC circuit excited by 
the current source u(t) and with output y(t) (Figure 5.2). 

The current and voltage equations governing the circuit are" 

dec diL 
u -- iR + iL + iC" ic -- C ~ "  ec -- L ~ RiR. 

dt dt 
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u(O 

iR iL ~ ic 

+ 

ec 

F I G U R E  5.2: A parallel RLC circuit. 

y(t) 

+ 

e ( t ) (  

R 1 

/VV  

) 

Z 1 

IL1 

+ 

L2 

IL2 

R2 

F I G U R E  5.3: An expanded RLC circuit. 

Defining the states by Xl "-- iL and x2 "-- ec, the state and output equations are, 
respectively: 

where x --  [Xl, x2] T, 

E ~ A = - 1 / C  

2 - - A x + b u  and y = c x ,  

ljL 1 
- 1 / R C  ' 1/C ' 

c = [ O  1]. 

Example 5.2.2. Consider again another electric circuit, as shown in Figure 5.3: 
The state variables here are taken as voltage across the capacitor and the current 

through the inductor. The state equations are 

L I ~  
diLl(t) 

dt 
= --RliL1 (t) -- ec( t )  + e(t), 

diLz(t) 
L2 d--------~ = --R2iL2 (t) + ec(t) ,  

dec(t) 
C d-----~ = iLl (t) -- iL2 (t). 
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\{ILL1),, 
Setting Xl = iLl, X2 --  /L2, X3 --  ec ,  b --  ~ 0 0 ,U -- e(t), the matrix form of the 

state-space representation of the above system is given by: 

k(t) = 
(.~1 (t)~ L1 Xl (t)' 

\.~3 ( t ) J  L 1 X 3 ( t ) /  

C C 

+bu(t). 

First-Order State-Space Representation of Second-Order Systems 

Mathematical models of several practical problems, especially those arising in 
vibrations of structures, are second-order differential equations. 

We show by means of a simple example of a spring-mass system how the 
equations of motion represented by a second-order differential equation can be 
converted to a first-order state-space representation. 

Example 5.2.3. (A Spring-Mass System). Consider the spring-mass system shown in 
Figure 5.4 with equal spring constants k and masses m 1 and m2. Let force u 1 be applied 
to mass m l and u2 be applied to mass m2. 

/ / / / / /  

m 2 

~ k 

/ / / / / / /  / / / / / / / / /  

FIGURE 5.4: A spring-mass system. 
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The equations of motion for the system are: 

m l Z l  n t- k ( z l  - z2)  -1- k z l  - U l ,  

m 2 z 2  --  k ( z l  - z2)  n t- k z 2  = u2 ,  

or in matrix form: 

(o 1 

Set 

Then, we have 

(5.2.3) 

- k  Ul 
m02) (~12)A-(2--kk 2 k ) ( : 1 2 ) - - ( u 2 ) "  (5.2.4) 

z 

M'i + K z  = u, (5.2.5) 

and 

where 

M - d i a g ( m l , m 2 ) ,  K = (2_~ k k ) ,  

Let us make a change of variables from z to x as follows: 
Set 

X l - Z  and x 2 - ~ .  

Then, in terms of the new variables, the equations of motion become 

o r  

where 

u m  u2  " 

-~1 =X2 ,  (5.2.6) 
M . c 2  = - K x l  n t- u ,  

(0 ,0) to) 2 =  - M  -1K x +  1 u, (5.2.7) 

X - -  (Xl ,  X2) T - -  (Z, ~)T.  

Equation (5.2.7) is a first-order representation of the second-order system (5.2.4). 

State-Space Representations of Nonlinear Systems 

Mathematical models of many real-life applications are nonlinear systems of dif- 
ferential equations. Very often it is possible to linearize a nonlinear system, and 
then after linearization, the first-order state-space representation of transformed 
linear system can be obtained. We will illustrate this by means of the following 
well-known examples (see Luenberger 1979; Chen 1984; Szidarovszky and Bahill 
1991; etc.). 
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I 
u 

x 
> M 

F I G U R E  5.5: Balancing of a stick. 

Example 5.2.4. (Balancing a Stick). Consider the simple problem of balancing a stick 
on your hand as shown in the Figure 5.5: 

Here L is the length of the stick, and M is the mass of the stick concentrated on 
the top. The input u(t) is the position of the hand. Then, the position of the top of the 
stick is 

x(t)  = L sin O(t) + u(t). 

The torque due to gravity acting on the mass is M g L  sin O(t). The rotational inertia of 
the mass on the stick is ML20"(t). The shift of the inertial term down to the pivot point 
is i i ( t )ML cos O(t). Thus, we have: 

M g L  sin O(t) -- ML20"(t) + i i ( t )ML cos O(t). 

The above equations are clearly nonlinear. We now linearize these equations by assum- 
ing that 0 is small. We then can take cos 0 = 1, sin 0 -- O. 
This gives us 

x(t)  --- LO(t) + u(t) 

and 
mgLO(t)  = mLZo( t )  + i i ( t )mL.  

Eliminating O(t) from these two equations, we obtain 

s = (g /L)  (x(t) - u( t ) ) .  

We can now write down the first-order state-space representation by setting v(t) = ~ (t). 
The first-order system is then: 

(~ ( t ) )  ( 0  10) (~( t )~  ( 0 ) 
- -  g + u ( t ) .  

~t) -{  ~ t ) /  - 

Example 5.2.5. (A Cart with an Inverted Pendulum). Next we consider a similar prob- 
lem (Figure 5.6), but this time with some more forces exerted (taken from Chen (1984, 
pp. 96-98)). 
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- M T v 
i 

0 q) 
/ / / / / / / / / / /  

y 

F I G U R E  5.6: A cart with an inverted pendulum. 

In Figure 5.6, a cart is carrying an inverted pendulum with mass m and length l. 
Let M be the mass of the cart. Let H and V be, respectively, the horizontal and 
vertical forces exerted by the cart on the pendulum. Newton's law applied to the linear 
movements gives: 

and 

M y ( t ) = u - H ,  

H = my + ml  cos 00 - ml sin 0(0) 2, 

V = ml  ( - s i n  0 0 " - c o s 0  (012]. mg 
k k ] ] 

Newton's law applied to the rotational movement of the pendulum gives: 

ml20 " = mg l  sin 0 + Vl  sin 0 - H1 cos O. 

These are nonlinear equations. We now linearize them by making the same assumptions 
as before; that is, we assume that 0 is small so that we can take sin 0 -- 0, cos 0 -- 1. 
Dropping the terms involving 02, 02, 00, and 00", and setting sin 0 - 0, and cos 0 = 1, 
we obtain, from above, by eliminating V and H 

~ 1 7 6  

( M  + m ) y  + mlO -- u 

and 

Solving for y and 0", we obtain 

~176 

210 - 2gO + y, = O. 

2gm 2 
- ~ 0  + ~ u ,  

= 2 M  + m  2 M  + m  

.. 2 g ( M  -t- m)O 1 
O =  - u .  

(2M + m) l  (2M + m)l  
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The state-space representations of these linear equations can now be written down by 
setting Xl - y, x2 - ~, x3 = 0, and x4 = 0, as follows: 

0 1 0 0 0 

21 - 2 g m  Xl 2 !0 2 +m ! x2 
- -  -t- u 

23 0 0 x3 0 ' 

24 0 2g (M + m) X4 1 

(2M + m)l - ( 2 M  + m)l 

y = (1,0,  0, 0)x. 

The nonlinear equations in Examples 5.2.4 and 5.2.5 are special cases of the general 
nonlinear equations of the form: 

2(t)  = f (2 ( t ) ,  fi(t), t), 

y(t)  = h(2(t) ,  ~(t), t), 

2(to) = 20, 

where f and h are vector functions. We will now show how these equations can be 
written in the standard first-order state-space form (Sayed 1994). 
Assume that the nonlinear differential equation: 

x(t)  - f (2(t),  fi(t), t), 2(to) = xo 

has a unique solution and this unique solution is also continuous with respect to the 
initial condition. 

Let Xnom (t) denote the unique solution corresponding to the given input/~nom (t) and 
the given initial condition )~nom (to). 

Let the nominal data {/~nom (t),)~nom (t) } be perturbed so that 

t~(t) =/~nom(t) + u(t) 

and .~(t0)=.~nom(t0) + x(to), 
Ilu(t)ll = sup Ilu(t)ll2. 

t 
Assume further that 

where Ilu(t)ll and IIx(t0)ll are small; 

2(t)  = Xnom(t) -+- x(t) ,  ~(t) = Ynom(t) q- y(t) ,  

where Ilxll and Ilyll are small. 
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These nonlinear equations can then be linearized (assuming that f and h are smooth 
enough) by expanding f and h around (finom(t), Xnom(t)), giving rise to a time- 
invariant linear state-space model of the form: 

)c(t) = a x ( t )  + Bu(t) ,  x(to) = xo, 

y(t)  = Cx( t )  + Ou(t) ,  

where 

Of 
A = ~ - f  

(-~nom (t), t~ nom (t)) 

Of B-~ 
(Xnom (t), u nom (t)) 

Oh C=~ Oh O-~ 
( -~nom (t), 5 nom ( t ) ) ( Xnom (t), 5 nom ( t ) ) 

Example 5.2.6. (The Motion of a Satellite (Sayed 1994)). Suppose that a satellite of 
unit mass orbits the earth at a distance d(t)  from its center (figure 5.7). Let O(t) be the 
angular position of the satellite at time t, and the three forces acting on the satellite are: 
a radial force ul (t), a tangential force u2(t), and an attraction force t~/d2(t), where ot 
is a constant. 

The equations of motion are given by 

d(t)--d(t)O2(t) 

-2d( t )O( t )  
O(t)  - -  

d ( t )  

d 2 ( t )  
- -  ~ - } -  U l ( t ) ,  

u 2 ( t )  
t 

d(t)  

Let's define the state variable as 

SOl (t) -- d(t),  .~2(t) = d(t),  x3(t) = O(t), x4(t) - O(t) 

and the output variables as 

Yl (t) = d(t),  y2(t) = O(t). 

F I G U R E  5.7: The motion of a satellite. 
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The state-space model is then given by: 

x2(t) 
o/ 

Xl (t) ~ (t)$~(t)  x~(t)  

i Xl Xl(t) .~1 (t) 

x2(t _ ~ + Ul(t) 

x3(t xa(t) ' 
xa(t --222(t)xa(t) + uz(t) 

0 0 
(t)J 1 

and the initial conditions are: 

{Xl(t) ~ 

Ix3(t) 
kX4(t)j 

~0 = ~ (0)  = 
"V2 (0) / _ 
x3 (0)/  ~0 (O)J Oo " 
 4(o,j k o) 

The above is still a nonlinear model of the form: 

Yc(t) = f (Yc(t), flU), t), 

y( t )  = h(Yc(t), ~(t),  t). 
~c ( to ) = ;,o, 

Linearizing this nonlinear model around the initial point (2 (0), fi (0)), where fi (0) = 
/ r , X  

( ~ ] ,  we obtain the linear model: 
ku/ 

2(t)  = Ax( t )  + Bu(t) ,  

y(t)  = C x ( t ) ,  

where 

a - ~  
(~(o), ,~(o)) 

0 1 0 0 

3w 2 0 0 2dowo 

- ~ 0  0 0 0 1 , 

-2~o~ 0 0 
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and 

Of 
B -- -~u 

Oh C=~ 

(~(o),~(o)) 

(~(o),~(o)) 

0 0 

i ~ 
- 0 , 

Yo 

0 0 
- - ( 0 1 0 1  00). 

State-Space Representation of Systems Modeled by Partial Differential Equations 

Mathematical models of many engineering problems such as those arising in fluid 
dynamics, mechanical systems, heat transfer, etc., are partial differential equations. 
The discretizations of these equations naturally lead to state-space models. We 
illustrate the idea by means of the following example. 

Example 5.2.7. Consider the partial differential equation 

04y P 02y 1 
Ox ----~ + EI Ot 2 = EI F(x '  t), 

which models the deflection of a prismatic beam (Soong (1990, pp. 180-181)). 
Let y(x ,  t) be the transverse displacement of a typical segment of the beam that is 
located at a distance x from the end, and F (x, t) be the applied force. EI is the flexural 
rigidity, and P is the density of the material of the beam per unit length. Let L be the 
length of the beam. 

Assume that the solution y(x ,  t) can be written as 

y(x ,  t) = ~_~ Vj(x)pj(t) 
j= l  

(n = oo in theory, but in practice it is large but finite). Also assume that 

F(x ,  t) - ~ ~(x - a j )u j ( t ) ,  
j= l  

where 8(.) is the Dirac delta function. 
That is, we assume that the force is point-wise and is exerted at r points of the beam. 
Substituting these expressions of y(x ,  t) and F(x ,  t) in the partial differential 

equation, it can be shown that the state equation for the beam in the standard 
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form is: 

~(t) = Az(t) + Bu(t) ,  

where z(t) = (Pl, [~1, P2, [~2 . . . . .  Pn, [~n) T is the 2n-dimensional state vector, 

A = diag (A1, A2 . . . . .  An) ,  B 
B2 , 

The matrices Bj and the vector u are defined by: 

1(0 0 0) 
Bj -- ~ v j (a l )  vj(a2) . . .  vj(ar) nxr 

and 

Ul 
t/2 

2r 
5.2.2 Discrete-Time Systems 

A linear time-invariant discrete-time system may be represented by means of a 

system of difference equations: 

x ( k  + 1) = A x ( k )  + Bu(k ) ,  (5.2.8) 

y(k)  = C x ( k )  + Du(k ) .  (5.2.9) 

As before, x (k )  is the n-dimensional state vector, u(k)  is the m-dimensional 
input  vector; and A, B, C and D are time-invariant matrices of dimensions n x 
n, n x m, r x n, and r x m, respectively. The inputs and outputs of a discrete-time 
system are defined only at discrete time instants. 

Sometimes we will write the above equations in the form: 

Xk+l = Ax~ + Buk,  

Yk -- Cxk + Duk.  

(5.2.1o) 
(5.2.11) 

5.2.3 Descriptor Systems 

The system represented by Eqs. (5.2.1) and (5.2.2) is a special case of a more 

general system, known as the descriptor system. 
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A continuous-time linear descriptor system has the form: 

EYe(t) -- ax( t )  4- Bu(t), 

y(t) -- Cx(t) 4- Du(t). 

Similarly, a discrete-time linear descriptor system has the form: 

Ex(k 4- 1) = Ax(k) 4- Bu(k), 

y(k) = Cx(k) 4- Du(k). 

(5.2.12) 

(5.2.13) 

(5.2.14) 

(5.2.15) 

If the matrix E is nonsingular, then, of course, the descriptor system represented 
by (5.2.12) and (5.2.13) is reduced to the standard form (5.2.1)-(5.2.2). Similarly, 
for the system (5.2.14)-(5.2.15). However, the case when E is singular or nearly 
singular is more interesting. A book devoted to singular systems of differential 
equations is by Campbell (1980). We will now give an example to show how a 
singular descriptor systems arises in practice. 

Example 5.2.8. (Simplified Samuelson's Model of Economics). Let NI(k), CS(k), 
IV(k), and GE(k), denote, respectively, the national income, consumption, investment, 
and government expenditure of a country at a given year k. 

The economist EA. Samuelson proposed a model of the national economy of a 
country, which is based on the following assumptions: 

1. National income NI(k) is equal to the sum of the consumption CS(k), investment 
IV(k), and the government expenditure GE(k) at a given year k. 

2. Consumption CS(k 4-1) at the year k 4- 1 is proportional to the national income 
NI(k) at the previous year k. 

3. Investment IV(k + 1) at the year k 4- 1 is proportional to the difference of the 
consumer spending CS(k + 1) at that year and that of the previous year CS(k). 

The state-space representation of Samuelson's model, then, can be written in the form: 

NI(k) = CS(k) 4- IV(k) 4- GE(k), 

CS(k + 1) = otNI(k), (5.2.16) 

IV(k 4- 1) - / 3  [CS(k 4- 1) -CS(k)] .  

These equations in matrix form are: 

(01 0 0 ) ) ( 0  O1 ) ( ~ )  

0 0 0 {IW(k + 1) 1 1 {IV(k) ~ 1 
1 /CS(k + 1) = 0 GE(k). 

-~  kNI(~ + 1) -/~ kNI(~)} 
o r  

Ex(k + 1) = Ax(k) + Bu(k), 

where x(k)= C S ( k )  , 

NI(k) 
B u(k) = GE(k). 
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+ 

v(t) ( 

ect 
+[ ( -  > 

I 
C1 t ic2 I + 

C2 - ec 2 
L 

iL 1 ~  RL R 

"7 

y(t )  

F I G U R E  5.8: An electric circuit for a descriptor system. 

(Note that E is singular). 
For details, see Luenberger (1979, pp. 122-123). 

Example 5.2.9. Consider another electric circuit given in Figure 5.8 driven by a 
voltage source v(t) .  

The state variables are taken as xl := ecl,  x2 := iL, and x3 := ec2. By applying 
Kirchhoff's current and voltage laws we have: 

dec~ dec2 
ic1 - iL + iC2, icl -- C1 d--T-' ic2 - C2 d--7--' 

diL 
v(t)  = ec1 + L ~ + RLiL = ecj + ec2 -k- Rcic2. 

Manipulating these equations we have the state equation: 

EYc -- A x  + bu, 

where u :-- v, E = diag (RcC1, L, RcC2) 

x = [x l, x2, x3]V 

11 A -- 1 --RL 0 , b -- 1 . 
1 0 - 1  1 

The output is defined by y( t )  = ec2 + Rcic2 ,  so the output equation becomes 

y -- cx + d u ,  

w h e r e c = ( - 1 0 0 ) ,  d =  1. 
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5.3 SOLUTIONS OF A CONTINUOUS-TIME SYSTEM: 
SYSTEM RESPONSES 

Theorem 5.3.1. Continuous-Time State-Space Solution. The solutions of the 
continuous-time dynamical equations 

Jc(t) -- Ax(t) + Bu(t), 
y(t) = Cx(t) + Du(t) 

x ( t o )  = xo.  (5.3.1) 
(5.3.2) 

are given by 

x(t) = eA(t-t~ -k- eA(t-S)Bu(s)ds, 

y(t) = cea(t-t~ + Ce a(t-s) Bu(s) ds + Du(t). 

(5.3.3) 

(5.3.4) 

R e m a r k  

�9 If u(t) - O, then x(t) = eA(t-tl)x(tl) for every t > to and any tl > to. 

Definition 5.3.1. The matrix e A ( t - q )  is called the state transition matrix. 

Since the state at any time can be obtained from that of any other time through 
the state transition matrix, it will be assumed, without any loss of generality, 
that to = 0, unless otherwise ment ioned.  

Assuming to = 0, the Eqs. (5.3.3) and (5.3.4) will, respectively, be reduced to 

and 

f0 t X ( t )  - -  e At xO -k- e A ( t - s )  Bu(s) d s  (5.3.5) 

f0 t y(t) = c e A t x o  -k- CeA(t-S)Bu(s)ds + Du(t). 

Definition 5.3.2. The matrix e At defined above has the form: 

(At)~ 
eAt = Z k! 

k=0 

and is called the matrix exponential. 

(5.3.6) 

Proof. Proof of (5.3.5) and (5.3.6): Noting that (d/dt)(e At) - A e  At (see 
Section 5.3.1), we first verify that the expression (5.3.5) satisfies (5.3.1) with 
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t -- 0. Differentiating (5.3.5), we have 

fo t d ea(t_s) 
k(t) -- AeAtxo 4- Bu(t) 4- -d-; Bu(s) ds, 

/o' = Aeatxo + Bu(t) + A ea(t-S)Bu(s)ds,  

Elot 1 = A eatxo + ea(t-S)Bu(s)ds + Bu(t),  

= a x ( t )  + Bu(t). 

Also, note that at t -- 0, 

x ( 0 )  - x0.  

Thus, the solution x(t) also satisfies the initial condition. 
The expression for y(t) in (5.3.6) follows immediately by substituting the 

expression for x(t) from (5.3.5) into y(t) - Cx(t) + Dx(t) .  I 

Free, Forced, and Steady-State Responses 

Given the initial condition x0 and the control input u(t), the vectors x(t) and 
y(t) determine the system time responses for t _> 0. The system time responses 
determine the behavior of the dynamical system for particular classes of inputs. 
System characteristics such as overshoot, rise-time, settling time, etc., can be 
determined from the time responses. 

In the expression (5.3.6), the first t e r m  ceatxo represents the response of the 
system due to the initial condition x0 with zero input (zero-input response). This 
is called the free response of the system. 

On the other hand, the second term in (5.3.6) determines, what is known, as the 
forced response of the system. It is due to the forcing function u(t) applied to the 
system with zero initial conditions. A special case of the forced response is known 
as the impulse response which is obtained from (5.3.6) by setting x0 -- 0 and 
u(t) - 8(t), where 8(t) is the unit impulse or Dirac delta function. Then, 

f0 t y ( t ) -  (CeA(t-S) B 4- DS(t - s))u(s) ds, 

/o t -- H ( t - s ) u ( s ) d s ,  (5.3.7) 

where the matrix H(t) ,  the impulse response matrix, is defined by 

H(t) "-- ceAtB + DS(t). (5 .3 .8 )  
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1 + (t) 

FIGURE 5.9: A unit step function. 

In fact, if x0 -- 0, then the (i, j ) th  element of the impulse response matrix H ( t )  
of the system (5.3.1)- (5.3.2) is the response at time t at the output i due to a unit 
impulse applied at time t = 0 at the input j of the system, while all other inputs 
are kept at zero. Similarly, the unit step response is defined to be the output using 
the input as the unit step function in the manner done for an impulse response, 
assuming again that the initial state is zero; that is, x0 - 0. 

A unit step function l+(t)  (Figure 5.9) is given by 

1, t > 0 ,  
l + ( t ) -  0, t < 0 .  

For any finite value of time t, the response y(t), that is, the right-hand side of 
(5.3.6), will contain terms consisting of e dite jwi t  if ~,i = oti -Jr j09 i ,  j = x/Z1, is 
a simple eigenvalue of A, and the other terms are governed by the nature of the 
input function u(t) .  

When t is finite, the part of the response in y( t )  which is governed by e dit e j~~ 
is called the transient response of the system. As t tends to infinity, this transient 
part of the response tends to zero if all otis are negative or it grows to become 
unbounded if at least one of otis is positive. Thus, yss(t) =- lim y( t )  will be called 

t~oo 
the steady-state response of the system. The speed with which the response y( t )  
will reach the steady-state value yss (t) will be determined by the largest value ofots. 

MATLAB note: MATLAB functions step, impulse, and initial in MATLAB 
CONTROL TOOLBOX can be used to generate plots for step, impulse, and initial 
condition responses, respectively. Their syntax are: 

step (sys), 
impulse (sys), 

initial (sys, x0). 

Example 5.3.1. (Baldwin (1961, pp. 29--44)). The dynamic behavior of a moving coil 
galvanometer, see Figure 5.10, 
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/s 
+ " ~ ]  ~/ Coil 

DC supply 

Key 

Damping 
resistor 
Rd 

\ 
Pole 

F I G U R E  5.10: Basic Circuit of a Moving Coil Galvanometer. 

is governed by 
d20 dO 

J - - ~  + D-d- [ + CO - G Is, (5.3.9) 

where 

J = the moment of inertia about the axis of rotation of moving parts of the 
instrument, 

D = the damping constant, 

C = stiffness of suspension, 

G =  galvanometer constant which represents the electromagnetic torque 
developed on the coil by 1 A of current flowing through it, 

0 = the deflection of the coil about its axis of rotation, 

Is = the steady-state current flowing through the galvanometer coil, and 

Rg = galvanometer resistance. 

It can be shown that D is given by 

G 2 

where 

Rg - resistance of galvanometer coil, 

Rd ----- damping resistor, 

Dair = damping to the coil due to air. 

If the key is opened interrupting supply current Is to the galvanometer, the response 
of the coil is determined by (5.3.9) with Is = 0 and is shown in Figure 5.11 where 00 
is the steady-state deflection with Is flowing through the coil. 

A galvanometer with a very low damping constant is known as a ballistic galvano- 
meter. If a charged capacitor is discharged through a ballistic galvanometer such that 

D = + Dair, 
Rg + Rd 
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Galvanometer l 
deflection 0 00 

I: Overdamped D 2 > 4JC 

~ IiIi :i :Unidt~cmlPlTdamp ed DD22 <~C C 

FIGURE 5.11: Step-response of the galvanometer. 

the whole charge should have passed before the coil has time to move appreciably, we 
have the torque impulse due to the whole charge equal to f Gi  d t  - G Q,  the integral 
being taken over the time of passage of the charge Q and i is the instantaneous current 
flowing through galvanometer coil. The subsequent time response of the galvanometer 
will be similar to that shown in Figure 5.11 but will differ in the fact that the response 
now starts from the origin. The responses in three cases: damped, undamped, and 
critically damped, are shown in Figure 5.11. 

Causa l i t y :  If the output of the system at time t does not depend upon the input applied 
to the system after time t, but depends only upon the present and the past inputs, the 
system is said to be causal. 

In this book, all systems will be assumed to be causal. 

5.3.1 Some Important Properties of the Matrix e At 

Since the matrix exponential e At plays a fundamental role in the solution of the 
state equations, we will now discuss the various methods for computing this matrix. 
Before doing that, we list some important properties of this matrix. These properties 
are easily verifiable and left as Exercises (5.8-5.10) for the readers. 

1. e A(t+s) - -  e At �9 e As 

2. d / d t ( e  A t )  - A e  At - e A t A  

3. e (a+B) t  = e a t .  e Bt ,  if and only if A and B commute; that is, if and only if 
A B - -  B A  

4. e a t  is nonsingular and ( e a t )  - 1  - -  e - A t  

5. ( e a / m )  m - -  e A,  where m is an integer 

6. e P - 1 A P t  - -  p - l e A t  p .  
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5.3.2 Sensitivity of e At  

We know that the accuracy of a solution obtained by an algorithm is greatly influ- 
enced by the sensitivity of the problem. We will, therefore, consider the sensitivity 
aspect of the problem of computing e At  first. We just state a result due to Van 
Loan (1977) without proof, which will help identify the condition number of the 
problem. 

Let E be a perturbation matrix. We are interested in knowing how large the 
relative error  

lie (A+E)t  - e A t  112 
p - i leat l l2 

can be. 
Differentiating e ( A + E ) s  e A ( t - s )  with respect to s, we obtain 

for e (A+E)  t _ e At _ e A ( t - S ) E e ( A + E ) S d s "  

It then follows that 

p ~ IIEII2 s  
ileAtll 2 IleA(t-s)ll21le(A+E)sll2ds 

Further simplification of this result is possible. 
Van Loan (1977) has shown that, for a given t, there exists a perturbation matrix 

E such that 

II e (A+E) t  - e a t  112 IIEll2 
-- ~ K(A t ) ~ ,  

P Ileat ll2 ' Ilall2 

where 

to(A, t) = max 
IIEII2~<l fo t e A ( t - s )  E e  As d s  IIAII2 

2 II eAt  112 

This result shows that K(A, t) is the condi t ion  n u m b e r  for the problem e A t .  If 
this  n u m b e r  is large, then a small change in A can cause a large change in 
e At ,  for a given t. 

Though determining x(A, t) involves computation of a matrix integral, it can 
be easily verified that 

to(A, t) > tllAII2, 

with equality holding for all nonnegative t if and only if A is a normal matrix, that 
is, if A f A = A A f. "When A is not  normal,  K (A, t) can grow like a high degree  

polynomial in t"  (Moler and Van Loan 1978). 
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Example 5.3.2. Consider computing e A ,  where 

A =  ( O  1 10_010 ) . 

Since IIAII2 - 103, the problem of computing the matrix exponential e A is expected 
to be ill-conditioned. 

Let's verify this as follows. The matrix e A computed by using the MATLAB function 
expm is 

e a  (0.3679 367.8794~ 
= 0.3679 ,]" 

Now change the (2, 1) entry of A to 10 -8 and call this perturbed matrix Anew. We now 
obtain 

e A . . . .  //0.3679 367.8801] 
\ o  0.3679 J"  

The relative error in the solution is 

lie A - -  eAnew 112 

IleAII2 
-- O(10-6). 

On the other hand, the relative error in the data is 

IIA - Anewl[2 

IIAII2 
-- O(10-11). 

(The matrix e Anew w a s  also computed by the MATLAB function expm). 

5.3.3 Computational Methods for e At  

There is a wide variety of methods to compute the matrix exponential. Several 
of these methods have been carefully analyzed, with respect to efficiency, and 
numerical stability, in an authoritative paper on the subject by Moler and Van 
Loan (1978). We discuss the following ones briefly. 

�9 The eigenvalue-eigenvector method 
�9 Series methods 
�9 Ordinary differential equations (ODE) Methods 
�9 Matrix decomposition methods. 
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The Eigenvalue-Eigenvector Method 

We have seen that the solution of the unforced system: 

Yc(t) = Ax ( t ) ,  x(0) = x0 (5.3.10) 

is given by 

x( t )  : eatxo. (5.3.11) 

Equation (5.3.11) shows that the ith column of the matrix e at is just the vector 
x( t )  with x(0) = ei, the ith unit vector. 

Again, x( t )  can be expressed in terms of the eigenvalues and eigenvectors of A: 

x( t )  = c1 e ;~lt Vl -+- C2 e~'2t V2 + ' ' "  + Cn eXnt Vn, (5.3.12) 

where X1, X2 . . . . .  X n are the simple eigenvalues of A and vl through Vn are a set 
of linearly independent eigenvectors associated with X1 through Xn. The scalar cs 
are computed from the given initial condition. 

Thus, when the eigenvalues of A are simple, the matrix e at is completely deter- 
mined by the eigenvalues and eigenvectors of the matrix A. The same can be shown 
to be true when A has multiple eigenvalues. 

A difficulty with this approach arises when A has some nearly equal eigen- 
values. This can be seen from the following theorem (Moler and Van Loan 
1978). 

Theorem 5.3.2. Let A be an n • n nondefective matrix; that is, it has a set o f  n 
linearly independent eigenvectors. Let X - 1 A X  -- diag(X1, X2 . . . . .  Xn), where 

)~1, ~.2 . . . . .  )~n are the eigenvalues o f  A. Then, 

]l f l(e At) - eat 112 < nlzeP(a)tCondz(X),  

where p ( A )  = max IXi] is the spectral radius o f  A. 

Interpretation o f  Theorem 5.3.2. Theorem 5.3.2 shows that there might be a 
large error in computing e a t  whenever there is a coalescence of eigenvalues 
of A, because, in this case, Condz(X) will be large. 

The following simple 2 x 2 example taken from Moler and Van Loan (1978) 
illustrates the difficulty. 

Let 

Then, 

A-(O :)" 
e te t) 

eat _ -X = -~ . 

e I~t 
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Clearly, the result will be inaccurate if )~ is close to #,  but not exactly equal to #. 
A large round-off error can be expected in this case. 

Series Method for Computing the Matrix Exponential 

In this section, we briefly state two series methods: The Taylor Series Method  and 
the Pad6 Approximat ion  Method.  When properly implemented, these methods 
become numerically effective for computing the matrix exponential. 

The Taylor Series Method 
An obvious way to approximate e A is to evaluate a finite-series sum by truncating 
the Taylor series: 

A 2 A 3 
eA -- l + A + --f- + ---~ + . . .  

after k terms. Thus, if 

k Aj  
T k ( a ) -  ~f ,  j~ 

j=O 

and if f l(Tk(A)) denotes the floating point evaluation of Tk(A), then it is natural 
to choose k so that fl (TI, (A)) = fl (Tk+ 1 (A)) .  The drawbacks  to this method 
are that a large number  of terms is needed for convergence,  and even when 
convergence occurs,  the answer can be totally wrong.  

Consider the following example from Moler and Van Loan (1978). 

Example 5.3.3. Consider computing e A using the Taylor series methods with the 
following 2 • 2 matrix A and a relative accuracy of about 10 -5. 

( 24) - 4 9  
A -- - 6 4  31 " 

A total of k --- 59 terms were required for convergence and the computed output was 

eA ,~ {--22.25880 
~--61.49931 

-1.432766]  
-3 .474280]  ' 

which is nowhere close to the true answer (to 6 decimal places) 

eA ,~ {--0.735759 
\--1.471518 

0.551819) 
1.103638]" 

The source of error here is the catastrophic cancellation that took place in the evaluation 
of (A16/16!) + (A17/17!), using finite-precision arithmetic (see Chapter 3). These 
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two terms have almost the same magnitude but are of opposite signs, as seen from the 
following expressions of (A16/16!) and (A 17j/17!): 

A 16 {6 -3.4886] = 106 .9773 
16! ~9.3030 - 4 . 6 5 1 5 ] '  

-- 106 .9772 3.4885 
17! .3030 4.6515 " 

For relative accuracy of 10 -5, "the elements of these intermediate results have absolute 
errors larger than the final result". 

The Pad~ Approximat ion Method  

Suppose that f (x) is a power series represented by 

f ( x )  - fo + f i x  + f2 x2 - ~ - ' " .  

Then the (p, q) Pad6 approximation to f ( x )  is defined as 

f ( x )  
c(x) Z p k=0 ck xk 

d(x)  y~q dk xk " k=0 

The coefficients c~, k - 0 . . . . .  p, and dk, k - 0 . . . . .  q are chosen such that the 
terms containing x ~ x 1 , x 2 . . . . .  x p+q are cancelled out in f ( x ) d ( x )  - c(x) .  The 
order of the Pad6 approximation is p + q. The ratio ( c ( x ) / d ( x ) )  is unique and 
the coefficients co, Cl . . . . .  Cp and do, dl . . . . .  dq always exist. The (p, q) Pad6 
approximation to e a is given by 

Rpq(A)  [Dpq(A)]  -1 -- Npq(A) ,  

where 
q (p § q -- j ) !q!  

Dpq(A) 
Z.., (p  + q ) ! j ! (q  _ j ) !  
j=0 

( - A )  j 

and 
P ( p _ + _ q _ j ) ! p !  

N p q ( A )  
Z.., (p  + q ) ! j ! ( p  _ j ) !  
j=0 

A j . 

It can be shown (Exercise 5.16) that if p and q are large, or if A is a matrix having 
all its eigenvalues with negative real parts, then Dpq(A)  is nonsingular. 

Round-off errors due to catastrophic cancellation is again a major concern 
for this method. It is less when ]] A ]] is not too large and the diagonal approximants 
(p = q) are used. 
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Scaling and Squaring in Taylor Series and Padd Approximations 
The difficulties with the round-off errors in Taylor series and Pad6 approximation 
methods can somehow be controlled by a technique known as Sealing and Squar- 
ing. Since e a : (ea/m) m, the idea here is to choose m to be a power of 2 so that 
e a /m  can  be computed rather efficiently and accurately using the method under 
consideration, and then to form the matrix ( e a / m )  m by repeated squaring. 

Moler and Van Loan (1978) have remarked "When properly implemented, 
the resulting algorithm is one of the most effective we know." The method may 
fail but it is reliable in the sense that it tells the user when it does. 

The method has favorable numerical properties when p - q. We will, therefore, 
describe the algorithm for this case only. 

Let m - 2 j be chosen such that IIAII~ _ 2 j - l ,  then Moler and Van Loan 
(1978) have shown that there exists an E such that 

m eA+E [ R p p ( A / 2 J ) ]  2j 

where ]l E II~ _< EII A II ~ ,  with 

~ - - 2 3 - 2 p  ( (p,)2 ) .  
(2p)!(2p + 1)! 

Given an error-tolerance 3, the above expression, therefore, gives a criterion to 
choose p such that II E JJ ~ < ~ [J A]l ~ .  

The above discussion leads to the following algorithm. 

Algorithm 5.3.1. Padg Approximation to e a using Scaling and Squaring. 
Input. A 6 ] ~ n x n ,  ~ > 0, an error-tolerance. 

Output. F : e A + E  with II E JJ ~ < 6 II a II ~.  
Step 1. Choose j such that [[AII~ < 2 j -1.  Set A =~ A/2J .  

Step 2. Find p such that p is the smallest nonnegative integer satisfying 

( 8 )  (p,)2 < 3  

(2p)!(2p + 1)! -- " 

Step 3. S e t D = I , N = I , Y = I , c = I .  

Step 4. For k - 1, 2 . . . . .  p do 

c = c(p - k + 1)/[(2p - k + 1)k] 

Y =_ AY, N =_ N + cY, D -- D + (-1)~cY. 

End 

Step 5. Solve for  F: D F - N. 
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Step 6. F o r k  - 1,2 . . . . .  j do 

F =  F 2. 

E n d  

Flop-count :  �9 The algorithm requires about 2(p + j + (1/3)n 3 flops. 
N u m e r i c a l  Stabi l i ty  Property:  The a lgor i thm is numer ica l ly  stable when  A 

is normal .  W h e n  A is non-normal, an analysis of the stability property becomes 
difficult, because, in this case e a may grow before it decays  dur ing  the squar ing  

process; which is known as "hump" phenomenon. For details, see Golub and Van 
Loan (1996, p. 576). 

M A T L A B  note: The MATLAB function expm computes the exponential of a 
matrix A, using Algorithm 5.3.1. 

M A T C O N T R O L  note: Algorithm 5.3.1 has been implemented in MATCON- 
TROL function expmpade. 

Example 5.3.4. Consider computing e A using Algorithm 5.3.1 with 

A--  2 . 
3 

Set ~ - 0.50. 
Step 1. Since IIAII~ = 7, choose j - 4. 

Then, 

A -- 
24A (0.30125 0 . 8 6 2 5 , ,  0 ) 

= 0.1750 . 
~0.1250 0.1875 0.6625 

Step 2. p = 1. 
Step 3. D = N = Y = I. 
Step 4. k = 1, c - 0.5. 

y 

0.1250 

0.0625 
0.1250 
0.7875 0 0 25) 

N m 

1.1563 0.0313 
1.0625 

\0.0625 0.09838 

0) 
0 

1.0313 
O 

-0.0625 

-0.0313 
0.9375 

-0.0938 0 9i38) 
F m 

1.3704 
0 
0 

0.0790 
1.1333 
0.2115 10 45) 
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(154"06705 49"0874 00 ) 
Step 5. F ---- F : - -  7.4084 . 

\ 75.9756 36.2667 2.7192 

The matrix e A given by F in Step 5 is different from what would have been obtained 
by using MATLAB function e x p m ( A ) ,  which is" 

148.4132 47.0080 0 ) 
e a -- 0 7.3891 0 . 

72.8474 35.1810 2.7183 

This is because MATLAB uses much smaller tolerance than what was prescribed 
for this example. 

ODE Methods 

Consider solving 

with 

~( t )  -- f (x,  t),  x(O) - xo 

f (x,  t) = A x ( t ) .  

Then the kth column of e A t  becomes equal to the solution x ( t )  by setting x(0) as the 
kth column of the identity matrix. Thus, any ODE solver can be used to compute e a t  . 

However, computing e at using a general-purpose ODE solver will be rather 
expensive, because such a method does not take advantage of the special form of 
f ( x ,  t) = A x ( t ) .  An ODE routine will treat Ax(t) as any function f ( x ,  t) and the 
computation will be carried on. 

However, a single-step ODE method such as the fourth order Taylor or Runge- 
Kutta method and a multistep solver such as the Adams formulas with variable step 
size, could be rather computationally practically feasible (and also reliable and stable) 
for the matrix vector problem of computing e a t x ( O ) ,  when such a problem is to be 
solved for many different values of t and also when A is large and sparse. 

Matrix Decomposition Methods 

The basic idea behind such a method is to first transform the matrix A to a suitable 
canonical form R so that e R can be easily computed, and then compute e a from 
e R. Thus, if P is the transforming matrix such that 

p - l A p  - R ,  

then e A - P e n  P -  1. 
The convenient choices for R include the Jordan canonical form (JCF), the 

companion form, the Hessenberg form, and the real Schur form (RSF) of a 
matrix. Because of the difficulties in using the JCF and the companion form, stated 
in Section 4.1, we will not discuss computing e A via these forms here. 
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Though the Hessenberg form can be obtained in a numerically stable way, com- 
putation of e t-/via an upper Hessenberg matrix H will involve divisions by the 
superdiagonal entries, and if the product of these entries is small, large round-off 
errors can contaminate the computation (see Exercise 5.12). Thus, our choice for 
R here is the RSE 

Comput ing  e A via the Real  Schur  Form 

Let A be transformed to a real Schur matrix R using an orthogonal similarity 
transformation" 

p T  A p  -- R,  

then e a -- P e R P T. 

The problem is now how to compute e R . Parlett (1976) has given an elegant for- 
mula to compute f (R) for an analytic function f (x), where R is upper triangular. 
The formula is derived from the commutativity property: R f ( R )  -- f ( R ) R .  

Adapting this formula for computing F -- e e, we have the following algorithm 
when R is an upper triangular matrix. The algorithm needs to be modified when 
R is a quasi-triangular matrix (Exercise 5.21). 

Algorithm 5.3.2. The Schur  A lgor i thm f o r  e a. 
Input. A 6 ]~n• 
Output. e a. 

Step 1. Transform A to R, an upper  t r iangu lar  matrix, using the QR iteration 

a lgor i thm (Chapter  4): 

p T A p  -- R.  

(Note that when  the eigenvalues o f  A are all real, the R S F  is upper  t r iangular)  

Step 2. Compute  e R - G --  (g i j  )" 

F o r i  -- 1 . . . . .  n do 
gii  m erii 

E n d  

F o r k - -  1,2 . . . . .  n -  1 do 

F o r i  -- 1,2 . . . . .  n - k d o  

Set  j - i + k 

1EJlrj   1 gi j  = r i j ( g i i  -- g j j )  + Z ( g i p r p j  --  r i p g p j )  . 
(rii  

p= i+ l  

E n d  

E n d  

Step 3. Compute  e A - P e  R PT. 
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F l o p - c o u n t :  Computation of e R in Step 2 requires about (2n 3/3) flops. 
M A T C O N T R O L  note:  Algorithm 5.3.2 has been implemented in MATCON- 

TROL function expmschr .  

Example 5.3.5. 
Example 5.3.3. 

Consider computing e A using Algorithm 5.3.2 with the matrix A of 

A 2 
3 

Using MATLAB function [P, R] = schur(A), we obtain 

P = 0 and R -- 5 
0 0 

!) 
gll -- erll = 2.7183, 

k = l , i = l , j = 2 :  

k = l , i = 2 ,  j = 3 :  

k = 2 ,  i = l , j = 3 :  

g22 -- e r22 -- 148.4132, 

1 
g12 -- 

(rll -- r22) 
1 

g23 -- 
(r22 -- r33) 

1 
g13 -- 

(rll -- r33) 

= 35.1810. 

g33 --er33 --7.3891, 

[r12(gll - g22)] - 72.8474, 

[r23 (g22 - g33)] - 47.0090, 

[rl3(gll - g33) + (g12r23 - r12g23)] 

So, 

2.7183 72.8474 
e R = 0 148.4132 

0 0 

35.1810~ 

4730080 ) �9 
7. 

Thus, 

148.4132 
e A _ p e  R P T  = 0 

\ 72.8474 

4 0080 ) 
7.3891 

35.1810 2.7183 

Note that e A obtained here is exactly the same (in four-digit arithmetic) as given 
by MATLAB function expm (A), which is based on Algorithm 5.3.1. 

N u m e r i c a l  s tabi l i ty  o f  the s c h u r  a lgor i t hm:  Numerical  difficulties clearly 
arise when A has equal or nearly equal confluent eigenvalues, even though the 

transformation matrix P is orthogonal. 
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5.3.4 Comparison of Different Methods for Computing 
the Exponential Matrix 

From our discussions in previous sections, it is clear that the Pad6 approximation 
method (with scaling and squaring) and the Schur method should, in general, be 
attractive from computational viewpoints. 

The Taylor series method and the methods based on reduction of A to a 
companion matrix or to the JCF should be avoided for the reason of numerical 
instability. The ODE techniques should be preferred when the matrix A is large 
and sparse. 

5.3.5 Evaluating an Integral with the Matrix Exponential 

We have discussed methods for computing the matrix exponential. We now present 
a method due to Van Loan (1978) to compute integrals involving exponential 
matrices. 

The method can be used, in particular, to compute the state-space solution (5.3.3) 
of the Eq. (5.3.1), and the controllability and observability Grammians,  which 
will be discussed in the next chapter. 

The method uses diagonal Pad6 approximation discussed in the last section. 
Let 

~o A H(A) -- eASBds, 

fo A earS ea s N(A) = Q ds, 

fo A e Ars M(A) -- QH(s)ds ,  

w(zx) - H ( s ) r  QH(s )  ds 

where A and B are matrices of order n and n • m, respectively, and Q is a symmetric 
positive semidefinite matrix. 

Algorithm 5.3.3. An Algorithm for Computing Integrals involving Matrix 
Exponential. 

Inputs. 

AmThe n • n state matrix 

BmAn n x m matrix 

QmA symmetric positive semidefinite matrix. 

Outputs. F, H, Q, M, and W which are, respectively, the approximations to 
e A/x, H(A),  N(A),  M(A),  and W(A). 
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Step 1. Form the (3n + m) • (3n + m) matrix 

~ 1 7 6  

_A T Q i C -  0 A " 

o o 

Find the smallest positive integer j such that (IICAIIF/2 j) < 1. Set to -- 

(A/2J). 
Step 2. For some q > 1, compute 

Y o - -  Nqq - - ~  , 

where Rqq is the (q, q) Padd approximant to e z" 

c~ z ~ (2q - k) !q ! 
Nqq (Z) -- Z"~ ~=0 k ' where c~ - . 

~:=o c ~ ( - z )  (2q)!k!(q - k)! 

Write 
F1 o) Gl (to) Hi(to) Kl (to) 

Yo-- F2(to) Gz(to) H2(to) 
0 F3 (to) G3 (to) 

0 0 F4 (to) 

and set 

F O -  F3(to) M O -  F3(to)TH2(to) 

H0 -- G3 (to) Wo - [B T F3 (to) T K1 (to)] + (B T F3 (t0) T K1 (to)] T. 

Q o -  F3(to)TG2(to). 

S t e p  3.  For k - 0,  1 . . . . .  j - 1 do 

T W~+I -- 2Wg + H~M~ + M~ H~ + H~ QkH~ 

M~+I - M~ + F~[Q~H~ + M~] 

Qk+l -- QI~ + F T Ok FI~ 

Hk+~ - H~ + F~H~ 

F/~+I-  F 2 

End 
Step 4. Set F -- Fj, H -- Hj ,  Q -- Q j,  M = Mj ,  and W = Wj. 
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Remark 

�9 It has been proved by Van Loan (1978) that the accuracy of the algorithm 
can be controlled by selecting q properly. For "how to choose q properly" 
and other computational details, see the paper of Van Loan (1978). 

MATCONTROL note: Algorithm 5.3.3 has been implemented in MATCON- 
TROL function intmexp. 

5.4 STATE-SPACE SOLUTION OF THE DISCRETE-TIME SYSTEM 

In this section, we state a discrete-analog of Theorem 5.3.1, and then discuss how 
to compute the discrete-time solution. 

Theorem 5.4.1. Discrete-Time State-Space Solution. The solutions to the 

linear time-invariant discrete-time system of  equations 

x (k  + 1) = Ax(k )  + Bu(k) ,  x(O) = xo (5.4.1) 

and 

are 

and 

y(k)  = Cx(k )  4- Du(k)  

k - 1  

x(k)  - Akxo + Z Ak-l-i Bu( i )  

i=0 

y(k)  = CAkxo 4- CA k-i-l Bu(i) 4- Du(k) .  

i=0 

(5.4.2) 

(5.4.3) 

(5.4.4) 

Proof. From 

we have 

x (k  4- 1) = Ax(k )  4- Bu(k) ,  

x (k )  - A [ A x ( k  - 2) + Bu(k  - 2)1 + Bu(k  - 1), 

= A 2 x ( k -  2) + A B u ( k -  2) + B u ( k -  1), 

-- AZ[Ax(k  - 3) + Bu(k  - 3)] + A B u ( k  - 2) + Bu(k  - 1), 

k - 1  

= Akxo + Z Ak-l-i Bu( i ) .  

i=0 

This proves (5.4.3). 

(5.4.5) 
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Equation (5.4.4) is now obtained by substituting the expression of x ( t )  from 
(5.4.3) into (5.4.2). 1 

Computing the Powers of a Matrix 

Theorem 5.4.1 shows that, to find the state-space solution of a discrete-time system, 
one needs to compute the various powers of A. The powers of a matrix A are more 
easily computed if A is first decomposed into a condensed form by similarity. 
Thus, if pTAp -- R,  where P is orthogonal, then A s = P R s pT .  For the sake 
of numerical stability, only those condensed forms such as the Hessenberg 
form or the RSF of a matrix should be considered. The matrix R s can be easily 
calculated by exploiting the Hessenberg or Schur structure of R. Furthermore, 
the reduction to R can be achieved using a numerically stable procedure such as 
Householder's or Givens' method (Chapter 4). 

5.5 TRANSFER FUNCTION AND FREQUENCY RESPONSE 

In this section, we introduce the important concepts of transfer function and 
frequency response matrices and describe a numerical algorithm for computing 
the frequency response matrix. 

5.5.1 Transfer Function 

Consider 
k ( t )  = A x ( t )  + B u ( t ) ,  x(O) = xo, (5.5.1) 

y ( t )  -- C x ( t )  + D u ( t ) .  (5.5.2) 

Let ~(s), ~(s), and fi(s), respectively, denote the Laplace transforms of x ( t ) ,  

y ( t ) ,  and u( t ) .  Then taking the Laplace transform of (5.5.1) and (5.5.2), we 
obtain 

s~ ( s )  - xo -- A.~(s) + B ~ ( s ) ,  (5.5.3) 

~(s)  -- C ~ ( s )  + Df i ( s ) .  (5.5.4) 

From (5.5.3) and (5.5.4), we have 

~(s )  = R( s ) x (O)  + R ( s ) B f i ( s )  (5.5.5) 

~(s)  -- C R ( s ) x ( O )  + G(s ) f i ( s ) ,  (5.5.6) 

where 

and 

R ( s )  -- ( s I  - A) -1 (5.5.7) 

G(s )  -- C ( s l  - A ) - I B  + D. (5.5.8) 
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If x(0) = 0, then (5.5.6) gives 

~(s) -- G(s)fi(s). 

Definition 5.5.1. The matrix R(s) is called the resolvent and G(s) is called 
the transfer function. 

The transfer function G(s) is a matrix transfer function of dimension r x m. 
Its (i, j ) th  entry denotes the transfer function from the j th  input to the ith output. 
That is why, it is also referred to as the transfer function matrix or simply the 
transfer matrix, 

Definition 5.5.2. The points p at which G(p) = cx~ are called the poles of 
the system. 

If  G(cx~) = O, then the transfer function is called strictly proper and is 
proper if G ( ~ )  is a constant matrix. 

State-Space Realization 

For computational convenience, the transfer function matrix G(s) will be written 
sometimes as 

C D " 

The state-space model (A, B, C, D) having G (s) as its transfer function matrix is 
called a realization of G(s). For more on this topic, see Chapter  9. In general, it 
will be assumed that G(s) is a real-rational transfer matrix that is proper. 

Operations with Transfer Function Matrices 
Let Gl(s)  and G2(s) be the transfer functions of the two systems $1 and $2. 
Then the transfer function matrix of the parallel connection of $1 and $2 is 
G1 (s) + Gz(s). Using our notation above, we obtain: 

I A1 0 E o G1 (s)+G2(s) - C1 D1 C2 D2 C1 C2 1 B2 �9 
D1 + D2 
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Similarly, the transfer function matrix of the series or cascade connection of S1 
and $2 (i.e., a system with the output of the second system as the input of the first 
system) is G1 (s)G2(s),  given by 

I A2 0 B1 ] 
[ A1 B1 1 [  A2 B2 ] _  B1C2 A1 B1D2 . 

G1 (s)G2(s) - C1 D1 C2 D2 D1 C2 C1 D1 D2 

The transpose of a transfer function matrix G(s) is defined as: 

or equivalently, 

GT(s) = BT(s I  - AT)-IcT + D T, 

AT B T ] 
G T (s) - -  C T  DT " 

The conjugate of G(s) is defined as: 

G~(s)  - GT(_s) = BT( - - s I  -- AT)-IcT + D T, 

or equivalently, 

[ c] 
G~(s)  - BT DT " 

The inverse of a transfer function matrix G(s), denoted by G(s) is such that 
G(s)G(s )  -- G(s )G(s)  = I. If G(s) is square and D is invertible, then, 

~(s )  = G - I ( s )  _ I A -  B D - 1 C  - B D - 1  ] 
D-1C D-1 �9 

MATLAB notes: MATLAB functions parallel, series, transpose, inv (ss/inv.m) 
can be used to compute parallel, series, transpose, and inverse, respectively. 

Transfer Function of Discrete-Time System 

The transfer function matrix of the discrete-time system (5.4.1)- (5.4.2) is 

G(z) = C ( z l  - A ) - I B  + D. 

It is obtained by taking the z-transform of the system. 

5.5.2 The Frequency Response Matrix and its Computation 

In this section, we describe a computationally viable approach for computing the 
frequency response matrix. 
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Definition 5.5.3. For the  con t inuous - t ime  s ta te -space  m o d e l  (5 .5 .1-5 .5 .2) ,  the 

matr i x  

G( j co )  : C ( j c o I  - A ) - I B  + D (5.5.9) 

is ca l led  the frequency response matrix; co E R is ca l led  f r e q u e n c y .  

The frequency response matrix of a discrete-time system is similarly defined by 
using the transformation: 

Z : e jc~ 

where T is the sample time. This transformation maps the frequencies co to points 
on the unit circle. The frequency response matrix is then evaluated at the resulting 
z values. 

Computing the Frequency Response Matrix 

In order to study the different responses of the system, it is necessary to compute 
G( jco )  for many different values of co. Furthermore, the singular values of the 
return difference matrix I + L ( j c o )  and of the inverse return difference matrix 
I + L -  1 ( j  co), where L (j  co) is square and of the form L = K G M for appropriate K 
and M, provide robustness measure of a linear system with respect to stability, 
noise, disturbance attenuation, sensitivity, etc. (Safonov et al. 1981). 

We therefore describe a numerical approach to compute G (j  co). For sirnplieity, 
since D does not have any computational role in computing G ( j t o ) ,  we will 
assume that D = 0. 

The computation of ( j coI  - A) -1B is equivalent to solving m systems: 

( j co I  - A ) X  = B,  

A usual scheme for computing the frequency response matrix is: 
Step 1. Solve the m systems for m columns x l, x2 . . . . .  Xm of X: 

( j co I  -- A ) x i  = bi, i --  1, 2 . . . . .  m,  

where bi is the ith column of B. 
Step 2. Compute CX. 
If A is n • n, B is n • m (m < n), and C is r • n (r < n), and if LU factorization 

(Chapter 3) is used to solve the systems ( j co I  - A ) x i  --  bi, i = 1, 2 . . . . .  m,  then 
the total flop-count (complex) for each to is about 2 n 3 _+_ 2 m n  e + 2 m n r .  Note that, 
since the matrix j co I  - A is the same for each linear system for a given co, the matrix 
jcol  - A has to be factored into LU only once, and the same factorization can be 
used to solve all the m systems. Since the matrix G( jco )  needs to be computed for 
many different values of co, the computation in this way will be fairly expensive. 

Laub (1981) noted that the computational cost can be reduced significantly 
when n > m (which is normally the case in practice), if the matrix A is initially 
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transformed to an upper Hessenberg matrix H by orthogonal similarity, before 
the frequency response computation begins. The basic observation here is that if 
p TA P - -  H,  an upper Hessenberg matrix, then 

G(jco)  = C ( j c o l  - A) -1B, 

= C ( j c o I  - p H p T )  -1 B, 

= C ( P ( j c o l  - H ) p T ) - I B ,  

= C P ( j c o l  - H ) - I p T B .  

Thus, if A is transformed initially to an upper Hessenberg matrix H, and C P - C I 
and pT B = B I are computed once for all, then for each co, we have the following 
algorithm. 

Algorithm 5.5.1. A Hessenberg Algori thm f o r  the Frequency Response 

Matrix. 

Input. AmThe  n • n state matrix 
co---Frequency, a real number  

B m T h e  n • m input matrix 

C ~ T h e  r • n output matrix. 

Output. The Frequency Response Matr ix  G ( j  co) - C ( j  co I - A)  - 1B. 

Step 1. Transform A to an upper Hessenberg matrix H (Section 3.5.3): 
p T  A p  -- H. 

Step 2. Compute B ~ -- p T  B and C ~ -- C P 

Step 3. Solve the m Hessenberg  systems: 

! 
( j co l  -- H)x i  -- b i, i - 1 . . . . .  m, 

where b~ is the i th column o f  B'. 

Step 4. Compute C 'X .  

Flop-Count:  Since the system matrices A, B, and C are real, Steps 1 and 2 can 
be done using real arithmetic and require approximately ~ n  3 + 2mn 2 § 2rn 2 

(real) flops. Steps 3 and 4 require complex arithmetic and require approximately 
2mn 2 + 2rnm complex flops. 

Comparison: For N values of w, the Hessenberg method require ~Qn 3 + 2(m § 

r)n 2 real +[2mn 2 + 2rnm ]N complex flops compared to [ 2 n 3 + 2mn 2 § § 2mnr  ]N 

complex flops, required by the non-Hessenberg scheme. 
Numerical  stability: It is possible to show (Laub and Linnemann 1986) that if the 

data is well-conditioned, then the frequency response of the computed Hessenberg 
form is (C + A C ) ( j c o l  - A - AA) -1 (B § AB), where AA, AB, and AC are 
small. Thus, the Hessenberg method is stable. 
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M A T C O N T R O L  note:  Algorithm 5.5.1 has been implemented in MATCON- 
TROL function freqresh. 

Example 5.5.1. Compute the frequency response matrix with 

A -  3 , B -  1 , C -  1 ' w - 1 .  
1 1 

Since A is already in upper Hessenberg form, Steps 1 and 2 are skipped. 
Step 3. Solve for Xl" ( j w l  - H ) x l  = b' 1 - bl ,  

Xl = 

-5 .000  - 0.0000i 
0.4000 - 0.8000i | . 

t 0 .1000  - 0.7000i t] 

Solve for x2: ( j w l  - H ) x 2  : b' 2 = b 2 ,  

{ -  0.5000 - 0.0000i 
X2 - -  / 0.4000 + 0.8000i ) . 

\ 0.1000 -- 0.7000i 

Step 4. Compute the frequency response matrix: 

G ( j w )  = C ' X  = C X ,  

_ { - 0 . 8 0 0 0  § O. 1000i -0 .8000  § O. 1000i 
- ~ -0 .8000  § O. 1000i - 0 .  SO00 § O. 1000i J" 

Other Methods for Frequency Response Computation 

A method based on a determinant identity for the computation of the fre- 
quency response matrix has been proposed by Misra and Patel (1988). 
The method seems to be considerably faster and at least as accurate as 
the Hessenberg method just described. The method uses the controller- 
Hessenberg and observer-Hessenberg forms which will be described in 
the next chapter. The Misra-Patel method for computing the frequency 
response matrix is based on the following interesting observation: 

det( jcoI - A + bkc~)  
g l k ( j w )  = -- 1, (5.5.10) 

d e t ( j w I  - A) 

. 

where bk and r denote, respectively, the kth and lth columns of the matrices 

B and C. 
An alternative method also based on the reduction to controller-Hessenberg 
form, has been given by Laub and Linnemann (1986). 
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3. Another method for the problem has been proposed by Kenney et al. (1993 ). 
The method uses matrix interpolation techniques and seems to have better 
efficiency than the Hessenberg method. 

4. The frequency response of a discrete time system is obtained by evaluating 
the transfer function H (z) in (5.5.8) on the unit circle. 

Bode Diagram and the Singular Value Plot 

Traditionally, Bode diagram is used to measure the magnitude and angle of fre- 
quency response of an SISO system. Thus expressing the frequency response 
function in polar coordinates, we have 

G(jco) -- M(co)e ja(c~ 

M (co) is the magnitude and cr (co) is the angle. It is customary to express M (co) 
in decibels (abbreviated by dB). Thus, 

M(co)IdB -- 20 log10 M(co). 

The angle is measured in degrees. 
The Singular Value Plot is the plot of singular values of H (jco) as a function 

of the frequency co. If the system is an SISO system, the singular value plot is the 
same as the Bode diagram. The singular value plot is a useful tool in robustness 
analysis. 

MATLAB note: MATLAB functions bode and sigma can be used to draw the 
Bode plot and the singular value plot, respectively. For the Bode plot of multi-input, 
multi-output (MIMO) system, the system is treated as arrays of SISO systems and 
the magnitudes and phases are computed for each SISO entry hij independently. 

MATLAB function freqresp can be used to compute frequency response at some 
specified individual frequencies or over a grid of frequencies. When numerically 
safe, the frequency response is computed by diagonalizing the matrix A; otherwise, 
Algorithm 5.5.1 is used. 

5.6 SOME SELECTED SOFTWARE 

5.6.1 Matlab Control System Toolbox 

Time response 

step 
impulse 
initial 

Step response 
Impulse response 
Response of state-space system with given initial state 
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lsim 
ltiview 
gensig 
stepfun 

Response to arbitrary inputs 
Response analysis GUI 
Generate input signal for LSIM 
Generate unit-step input. 

Frequency response 

bode 
sigma 
nyquist 
nichols 
ltiview 
evalfr 
freqresp 
margin 

Bode plot for the frequency response 
Singular value frequency plot 
Nyquist plot 
Nichols chart 
Response analysis GUI 
Evaluate frequency response at given frequency 
Frequency response over a frequency grid 
Gain and phase margins 

5.6.2 MATCONTROL 

EXPMPADE 
EXPMSCHR 

FREQRESH 

INTMEXP 

The Pad6 approximation to the exponential of a matrix 
Computing the exponential of a matrix using Schur 
decomposition 

Computing the frequency response matrix using 
Hessenberg decomposition 
Computing an integral involving a matrix exponentials. 

5.6.3 SLICOT 

MB05MD Matrix exponential for a real non-defective matrix 
MB05ND Matrix exponential and integral for a real matrix 
MB05OD Matrix exponential for a real matrix with accuracy estimate. 

State-space to rational matrix conversion 
TB04AD Transfer matrix of a state-space representation. 

State-space to frequency response 
TB05AD Frequency response matrix of a state-space representation 
TF Time response 
TF01MD Output response of a linear discrete-time system 
TF01ND Output response of a linear discrete-time system 

(Hessenberg matrix). 
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5.6.4 MATRIXx 

Purpose: Gain and phase plots of discrete-time systems. 

Syntax: 
[GAIN, DB, PHASE]=DBODE (SD, NS, OMEGANMIN, OMEGANMAX, 
NPTS, 'OPT') OR 
[GAIN, DB, PHASE]=DBODE (DNUM, DDEN, OMEGANMIN, OMEGAN- 
MAX, NPTS) OR 
[GIAN, DB, PHASE]=DBODE (SD, NS, OMEGAN) 

Purpose: Initial value response of discrete-time dynamic system. 

Syntax: [N, Y]=DINITIAL (SD, NS, XO, NPTS). 

Purpose: Step-response of discrete-time system. 

Syntax: [N, Y]=DSTEP (SD, NS, NPTS) OR 
[N, Y]=DSTEP (DNUM, DDEN, NPTS) 

Purpose: Frequency response of dynamic system. FREQ transforms the A matrix 
to Hessenberg form prior to finding the frequency response. 

Syntax: [OMEGA, H]=FREQ (S, NS, RANGE, option) OR 
H=FREQ (S, NS, OMEGA, 'options') 

Purpose: Compute the impulse response of a linear continuous-time system. 
Syntax: [T, Y]=IMPULSE (S, NS, TMAX, NPTS) OR 
[T, Y]=IMPULSE (NUM, DEN, TMAX, NPTS) 

Purpose: Initial value response of continuous-time dynamic system. 

Syntax: [T, Y]=INITIAL (S, NS, XO, TMAX, NPTS) 

Purpose: Response of continuous-time system to general inputs. 

Syntax: [T, Y]=LSIM (S, NS, U, DELTAT, X0) 

Purpose: Step response of continuous-time system. 

Syntax: [T, Y]=STEP (S, NS, TMAX, NPTS) OR 
[T, Y]=STEP (NUM, DEN, TMAX, NPTS) 
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Purpose: Gives transfer function form of a state-space system. 

Syntax: [NUM, DEN]=TFORM (S, NS) 

Purpose: Impulse response of continuous-time system. 

Syntax: [T, Y]=TIMR (S, NS, RANGE, 'MODE') 

5.7 SUMMARY AND REVIEW 

State-Space Representations 

A continuous-time linear time-invariant control system may be represented by 
systems of differential equations of the form (5.2.1)-(5.2.2) 

~c(t) = Ax(t)  4- Bu(t), 

y(t) -- Cx(t) 4- Du(t), 

where x (t) is the state vector, u (t) is the input vector, y (t) is the output vector. 
The matrices A, B, C, and D are time-invariant matrices known, respec- 

tively, as the state matrix, the input matrix, the output matrix, and the direct 
transmission matrix. 

A discrete-time linear time-invariant control system may analogously be 
represented by systems of difference equations (5.4.1)-(5.4.2). 

x(t + 1) = Ax(t)  + Bu(t), 

y(t) = Cx(t) 4- Du(t). 

where x(t), u(t), y(t), and A, B, C, and D have the same meaning as above. 

Solutions of the Dynamical Equations 

The solutions of the equations representing the continuous-time system in state- 
space form are given by (assuming to = 0): 

fo' x(t) - eatxo + ea(t-S)Bu(s) ds 

and 

fo 
t 

y(t) -- C e  AtXO + C e  A(t-s)  Bu(s) ds + Du(t). 

where x0 is the value of x(t) at t -- 0. The matrix e At is the state-transition 
matrix in this case. 
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The solutions of the equations representing the discrete-time system are 
given by: 

k-1 
x(k)  - A~x(O) 4- ~ A k - l - i  Bu( i )  

i=0 

and 
k-1 ] 

y(k) - CA~x(O) -t- ~ C A  k - i - l B u ( i )  4- Du(k) .  

i=0 

Computing e At 

There exist several methods for computing the state-transition matrix e At . 

These include: The Taylor series method, the Pad6 approximation method, ODE 
methods, the eigenvalue-eigenvector method, and the matrix decomposition 
methods. 

Among these, the Pad6 approximation method with scaling and squaring 
(Algorithm 5.3.1) and the method based on the Schur decomposition of A 
(Algorithm 5.3.2) are the ones that are recommended for use in practice. If 
the problem is ill-conditioned, these methods, however, might not give accurate 
results. The ODE methods (Section 5.3.3) should be preferred if A is large and 
sparse. 

Computing Integrals Involving Matrix Exponentials 

An algorithm (Algorithm 5.3.3) is presented for computing integrals involving 
matrix exponentials. 

Transfer Function Matrix 

If/~(s) and ~(s) are the Laplace transforms of u(t) and y(t), then assuming zero 
initial condition, we obtain" 

~(s) - G(s)fi(s),  

where 
G(s) - C ( s l  - A ) - I  B + D. 

The matrix G(s) is called the transfer function matrix and is conveniently 
written as" 

G(s) - C D " 
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The Frequency Response Matrix 

The matrix G (j co) = C (j c o I -  A)-  1B + D is called the frequency response 
matrix. 

The frequency response plot for different values of co is important in the study 
of different responses of a control system. For this the frequency response matrix 
needs to be computed. 

An efficient method (Algorithm 5.5.1), based on transformation of A to 
Hessenberg form, is described. The Hessenberg method is nowadays widely 
used in practice. 

5.8 CHAPTER NOTES AND FURTHER READING 

The examples on state-space model in Section 5.2.1 have been taken from various 
sources. These include the books by Brogan (1991), Chen (1984), Kailath (1980), 
Luenberger (1979), Szidarovszky and Bahill (1991), Zhou with Doyle (1998). 
Discussions on system responses can be found in any standard text books. The 
books mentioned above and also the books by DeCarlo (1989), Dorf and Bishop 
(2001), Friedland (1986), Patel and Munro (1982), etc., can be consulted. For 
various ways of computing the matrix exponential e At, the paper by Moler and 
Van Loan (1978) is an excellent source. Some computational aspects of the matrix 
exponential have also been discussed in DeCarlo (1989). 

The frequency response algorithm is due to Laub (1981). For discussions on 
applications of frequency response matrix, see Safonov et al. (1981). For alterna- 
tive algorithms for frequency response computation, see Misra and Patel (1988), 
Kenney e t  al. (1993). The algorithm for computing integrals (Algorithm 5.3.3) 
involving matrix exponential has been taken from the paper of Van Loan (1978). 
The sensitivity analysis of the matrix e At  is due to Van Loan (1977). See also 
Golub and Van Loan (1996). 

Exercises 

5.1 (a) Consider the electric circuit 

L R t 

u(t) 

~ i ( t )  ] R 2 
y(t) 
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i(t) 

(i) Show that the state-space representation of this circuit is given by 

di( t )  
L + (R 1 + R2)i( t)  = u(t), y(t)  = R2i(t) .  

dt 

(ii) Give an explicit expression for the solution of the state equation. 
Write the state equations for the following electric network: (b) 

L R2 
'x/x/~ 

+ 

e(t) 

5.2 (a) Write down the equations of motion of the following spring-mass system in 
state-space form: 

I 

ml ~ m2 
k: 

> u 2 

(b) Write down the state-space representation of the following spring-mass system: 

/ kl 
/ 

a2 
,2 

m 1 

k2 

u2 

m2 
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5.3 Consider the following diagram of a cart of mass M carrying two sticks of masses 

M1 and M2, and lengths ll and 12. 

u(t) :" I 

M1 M 2 y' 
t 

5.4 

5.5 

(a) Write down the equations of motion, in terms of the velocity v of the cart, u 

and 01,02, 01,6/2. 
(b) Assuming 01 and 02 are small, linearize the equations of motion and then write 

down a first-order state-space representation. 
(Saad 1988) Consider the differential equation 

Ou 02u 02u Ou 
at ax 2 -k- ~y2 + fl-~x + vu + F(x ,  y, t) 

on the unit square f2 = (0, 1) • (0, 1), that models a chemical reaction process, where 
u represents the concentration of a chemical component that diffuses and convects. 
Let the boundary conditions u(x, y, t) -- 0 for every t. Assume that F (x, y, t) has 
the form: 

F(x,  y, t) = F(x ,  y)g(t) .  

The term vu simulates a chemical reaction that results in an increase of the 
concentration that is proportional to u. 
(a) Discretize the region with n interior points in the x-direction and m interior 

points in the y-direction and show that this leads to the state-space represen- 
tation of the form: 

= Au + bg, 

where the dimension of A is nm. 
(b) Solve the above problem on a computer with/3 = 20, v = 180, n = 20, 

m = 1 0 .  
(Lanchester  War  Model) The following simple model of Warfare was developed 
by E Lanchester in 1916. 
Let Xl and x2 be the number of units in the two forces which are engaged in a war. 
Suppose that each unit of the first force has the "hitting" power h 1 and that of the 
second force has the "hitting" power h2. 

The "hitting" power is defined to be the number of casualties per unit time that 
one member can inflict on the other. 
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Suppose further that the hitting power of each force is directed uniformly against 
all units of the other force. 
(a) Develop a state-space representation of the model�9 
(b) Show that 

X 1 (t) -- Cl et~/-~lh2 --t- c2 e - t ~ l h 2 ,  

~ h l e _ t  h~~2 x2(t) = --Cl hl  etvChlh2 -k- c2 
Wh2 ~2 

5.6 

where c 1 and c 2 are constants to be determined from initial conditions�9 
(a) Find an explicit expression for the solution of the initial value problem 

5.7 
(b) Find the free response of the system. 
Find an explicit expression for the solution of the homogeneous discrete-time system 

5.8 

5.9 

Prove the following properties of e At. 
(a) e A(t+s) -- e At �9 e As 

(b) e (a+B)t = e at �9 e Bt  if and only if A and B commute, 
(c) e at is nonsingular and (e a t ) - I  __ e - a t ,  

(d) ( e A / m ) m  -- e A, wheremisaninteger,  

(e) e P - 1 A P t  = p - l e A t p .  

Prove that the infinite series 

o ~  

1 Aktk  e A t =  Z -k S. 
k=0 

converges uniformly and absolutely for t in any bounded interval. 
5.10 Prove that ( d / d t ) ( e  At) - Ae At 

( H i n t  Differentiate e At cx~ Ak t  k ) �9 = ~ k = 0  1/k! term by term . 

5.11 Illustrate the difficulty with the eigenvalue-eigenvector method for computing e At 
with the matrix: 

A = ( 0  ~ )  

by choosing )~, #, and o~ appropriately. 
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5.12 Let R = (rij)  be an unreduced lower Hessenberg matrix and let 

/  i= rii' 

\ f r /  

Then prove that 

and 

1 
f2 = ~ f l S ~  

r12 

( ) 1 f i B i  - r i j f j  , i = 2 ,3  . . . . .  n -  1. 
f i + l  = r i - l , i  j = l  

(Consult Datta and Datta (1976), if necessary.) What difficulties do you foresee in 
computing e R using these formulas? Give an illustrative example. 

5.13 Compute e A for 

A =  1 1 
1 1 

5.14 

using 
(a) a fifth-order variable-step Runge-Kutta method; 
(b) the Adams-Moulton predictor correct formulas of variable order and variable 

step; 
(c) a general purpose ODE solver. (Use e r ror  tolerance 10-6.) 

Compare the result in each case with that obtained by MATLAB function expm. 
(a) Write an algorithm based on the block diagonal decomposition of A to 

compute eAt: 

A = X diag(T1, T2 . . . . .  T p ) X  -1  �9 

(b) Determine the flop-count of this algorithm. 
(c) What numerical difficulty do you expect out of this algorithm? 

5.15 Prove that the matrix D p q ( A )  in the Pad6 approximation method is nonsingular if 
all the eigenvalues of A have negative real parts or if p and q are sufficiently large. 

5.16 Develop an algorithm to compute A s, where s is a positive integer, and A is 
an unreduced lower Hessenberg matrix. Apply your algorithm to compute A10, 
where A = (i2 0)/~176176 (110_3 0) 

(i) 1 0.0001 , (ii) 0 1 (iii) 1 1 10 -4  
1 1 0 0 ' " 

2 3 1 1 1 

(Consult Datta and Datta 1976.) 
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5.17 Let A = X A X  -1,  where A = diag (~.1 . . . . .  ~.n). Prove that A k -- x A k x  -1 ,  for 
each k. Under what conditions on ~.1 . . . . .  ~.n does the infinite series of matrices 

Z Ck Ak converge? 

5.18 Develop an algorithm to compute A s, where A is an upper real Schur matrix, and s 
is a positive integer. Apply your algorithm to compute A 5, where 

0.99 1 
A -  0 2 " 

0 0 1.99 

5.19 Prove that the Laplace transform of y(t)  = e At is y(s) = (sI - A) -1 . 
5.20 Modify Algorithm 5.3.2 to compute e A, where A is in RSF. 
5.21 Show that the transformation Y -- Tx,  where T is nonsingular, preserves the transfer 

function. 
5.22 Show that the transfer function of the system: 

(0 
y -- (1, 1)x. 

is H(s)  = 
s + c o  

s 2 _+.092" 
5.23 Modify the Hessenberg algorithm (Algorithm 5.5.1) for computation of the frequency 

response matrix that uses only real arithmetic. Give a flop-count of this modified 
algorithm. 

5.24 Develop an algorithm for computing the frequency response matrix using formula 
(5.5.10) and the fact that the determinant of a matrix A is just the product of the 
diagonal entries of the matrix U in its L U factorization. (Consult Misra and Patel 
1988.) 

5.25 Develop an algorithm for computing the frequency response matrix based on the 
reduction of A to RSE Compare the flop-count of this algorithm with that of the 
Hessenberg algorithm (Algorithm 5.5.1). 

5.26 Develop an algorithm for computing the frequency response matrix of the descriptor 
model: 

E~c = Ax + Bu 

based on the initial reduction of the pair (A, B) to Hessenberg-triangular form 
described in Chapter 4. (Consult Misra 1989.) 
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CHAPTER 6 

CONTROLLABILITY, 
OBSERVABILITY, AND 
DISTANCE TO 
UN C ONT ROLLAB ILITY 

6.1 INTRODUCTION 

This chapter deals with discussions on the two most fundamental notions, con- 
trollability and observability, and related concepts. The well-known criteria of 
controllability and observability are stated and proved in Theorem 6.2.1. 

These theoretically important criteria, unfortunately, do not yield numerically 
effective tests of controllability. This is demonstrated by means of some examples 
and discussions in Section 6.6. Numerically effective tests, based on reduc- 
tion of the pairs (A, B) and (A, C), respectively, to the controller-Hessenberg 
and observer-Hessenberg pairs, achieved by means of orthogonal similarly, are 
described in Sections 6.7 and 6.8. 

Controllability and observability are genetic concepts. What is more important in 
practice is to know when a controllable system is close to an uncontrollable one. To 
this end, a measure of the distance to uncontrollability is introduced in Section 6.9 
and a characterization (Theorem 6.9.1) in terms of the minimum singular value of 

159 
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a certain matrix is stated and proved. Finally, two algorithms (Algorithms 6.9.1 
and 6.9.2) are described to measure the distance to uncontrollability. 

The chapter concludes with a brief discussion (Section 6.10) on the relationship 
between the distance to uncontrollability and the singular values of the control- 
lability matrix. The important message here is that the singular values o f  the 
controllability matrix as such cannot be used to make a prediction o f  how close the 
system is to an uncontrollable system. It is the largest gap between two singular 
values that should be considered. 

Reader's Guide for Chapter 6 

The readers having knowledge of basic concepts and results on controllability 
and observability, can skip Sections 6.2-6.5. 

6.2 CONTROLLABILITY: DEFINITIONS AND BASIC RESULTS 

In this section, we introduce the basic concepts and some algebraic criteria of 
controllability. 

6.2.1 Controllability of a Continuous-Time System 

Definition 6.2.1. The system: 

s -- A x ( t )  + B u ( t ) ,  

y( t )  -- Cx( t )  + Du( t )  
(6.2.1) 

is said to be controllable, if  starting from any initial state x (0), the system can 
be driven to anyfinal  state Xl = x ( q )  in some finite time tl, choosing the input 
variable u(t), 0 <_ t <_ tl appropriately. 

Remark 

�9 The controllability of the system (6.2.1) is often referred to as the control- 
lability of the pair (A, B), the reason for which will be clear in the following 
theorem. 

Theorem 6.2.1. Criteria for  Continuous-Time Controllability. Let A ~ •n• 
and B ~ ]R nxm (m < n). 

The following are equivalent: 

(i) The system (6.2.1) is controllable. 
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(ii) The n x nm matrix 

CM = (B, AB ,  A2B . . . . .  A n- l  B) 

has full  rank n. 
(iii) The matrix 

fo tl Wc -- e At B B T e ATt dt 

is nonsingular for  any tl > O. 
(iv) I f  ()~, x) is an eigenpair o f  AT, that is, X T A  = ~.X T, then X T B 7/= 0 

(v) Rank (A - ~.I, B) = n for  every eigenvalue )~ o f  A. 
(vi) The eigenvalues o f  A - B K can be arbitrarily assigned (assuming 

that the complex eigenvalues occur in conjugate pairs) by a suitable 

choice o f  K. 

Proof .  Without loss of generality, we can assume that to = 0. Let x (0) = x0. 
(i) =:~ (ii). Suppose that the rank of CM is not n. From Chapter 5, we know that 

f0 tl X(tl) -- e Atl xo 4- e A(q-t) Bu( t )  dt.  (6.2.2) 

That is, 

101{ } X(tl) - -  e A t l x o  - -  I + A(t l  - t) + -~-. (tl - t) 2 + ' "  Bu( t )  dt  

fo tl fO tl fO tl (tl - t ) 2  = B u(t)  dt  4- A B  (tl - t ) u ( t ) d t  4- A2B 2 ~ u ( t )  dt 4 - . . .  

From the Cayley-Hamil ton  Theorem (see C h a p t e r  1), it then follows that the 
vector X(tl) is a linear combination of the columns of B, AB,  A2B . . . . .  A n-1B.  

Since CM does not have rank n, these columns vectors cannot form a basis of 
the state-space and therefore for some tl, x (tl) -- x l cannot be attained, implying 
that (6.2.1) is not controllable. 

(ii) =~ (iii). Suppose that the matrix CM has rank n, but the matrix: 

f0 tl WC -- e At B B T e ATt dt (6.2.3) 

is singular. 
Let v be a nonzero vector such that Wcv = 0. Then, 1 ) T W c  V = 0. That is, 

fot rYe At B B Y e a T t v d t  -- O. The integrand is always nonnegative, since it is of 

the form c T (t)c(t) ,  where c(t) - B T e aTt v. Thus, for the above integral to be equal 
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to zero, we must have: 

v TeAtB=O, f o r 0 < t < t l .  

From this we obtain (evaluating the successive derivatives with respect to t, at 

t - 0): 

vTAiB--O, i -  1,2 . . . . .  n - 1 .  

That is, v is orthogonal to all columns of the matrix CM. Since it has been 
assumed that the matrix CM has rank n, this means that v -- 0, which is a 
contradiction. 

(iii) =~ (i). We show that X(tl) - Xl. Let us now choose the vector u(t) as 

u(t) - BTeAT(tl-t)WcI(--eAtlxo d- Xl). 

Then from (6.2.2), it is easy to see that X(tl) - Xl. This implies that the system 

(6.2.1) is controllable. 
(ii) = ,  (iv). Let x be an eigenvector of A T corresponding to an eigenvalue )~; 

that is, x TA = )~x T. Suppose that x T B = 0. Then, 

xTCM -- (xTB, ~.xTB, ~.2xTB . . . . .  ~.n-lxTB) -- O. 

Since the matrix CM has full rank, x --- 0, which is a contradiction. 
(iv) =~ (ii). Assume that none of the eigenvectors of AT is orthogonal to the 

columns of B, but rank (CM) -- k < n. 
We will see later in this chapter (Theorem 6.4.1) that, in this case, there exists 

a nonsingular matrix T such that 

~__ TAT-1  _ ( ~ 1  A12~ / ~ _  TB : (B1)  
A22J'  0 ' (6.2.4) 

where A22 is of order (n - k), and k -- rank(CM). 
Let v2 be an eigenvector of (A22) T corresponding to an eigenvalue )~. Then, 

o ) (o) 
Furthermore, 

1) 0 

That is, there is an eigenvector, namely (02) of (/])T such that it is orthogonal to 

the columns o f / ) .  This means that the pair ( / ] , /~)  is not controllable. 
This is a contradiction because a similarity transformation does not change 

controllability. 
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(ii) :=~ (v). R a n k ( Z / -  A, B) < n if and only if there exists a nonzero vector v 
such that v x (~.I - A, B) = O. 

This equation is equivalent to: 

ATv = ~,v and vTB = O. 

This means that v is an eigenvector of AT corresponding to the eigenvalue ~, and it 
is orthogonal to the columns of B. The system (A, B) is, therefore, not controllable 
by (iv). 

(v) ==~ (ii). If (v) were not true, then from (iv), we would have had 

xT(B, AB . . . . .  An-IB)  = 0 ,  

meaning that rank(CM) is less than n. 
(vi) ==~ (i). Suppose that (vi) holds, but not (i). Then the system can be 

decomposed into (6.2.4) such that a subsystem corresponding to A22 is uncon- 
trollable, whose eigenvalues, therefore, cannot be changed by the control. This 
contradicts (vi). 

(i) ~ (vi). The proof of this part will be given in Chapter 10 (Theorem 10.4.1). It 
will be shown there that if (A, B) is controllable, then a matrix K can be constructed 
such that the eigenvalues of the matrix (A - B K) are in desired locations. I 

Def in i t i on  6.2.2. The matrix 

CM = (B, AB, A2B . . . . .  A n-l  B) 

is called the controllability matrix. 

(6.2.5) 

R e m a r k  

�9 The eigenvector criterion (iv) and the eigenvalue criterion (v) are popularly 
known as the Popov-Belevi tch-Hautus (PBH) criteria of controllability 
(see Hautus 1969). For a historical perspective of this title, see Kailath 
(1980, p. 135). 

Component controllability. The controllability, as defined in the Definition 6.2.1, 
is often referred to as the complete controllability implying that all the states are 
controllable. 

However, if only one input, say uj(t) ,  from u(t) - (Ul(t) . . . . .  urn(t)) T is 

used, then the rank of the corresponding n • n controllability matrix C~ = 
(bj, Abj . . . .  , An- lb j ) ,  where bj is the j th  column of B, determines the num- 
ber of states that are controllable using the input uj(t).  This is illustrated in the 
following example. 

Consider Example 5.2.6 on the motions of an orbiting satellite with do -- 1. 
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It is easy to see that CM has rank 4, so that all states are controllable using both 
inputs. However, if only the first input U l (t) is used, then 

C 1 - (bl, Abl ,  A2bl ,  A3bl) - 

0 1 0 --W2'~ 
0 --W 2 00 / 
0 -2o0 

-2o9 0 2oa 3 ,] 

which is singular. 
Thus, one of the states is not controllable by using only the radial force U l (t). 
However, it can be easily verified that all the states would be controllable if the 

tangential force u2(t) were used instead of ul (t). 

Controllable and Uncontrollable Modes 

From the eigenvalue and eigenvector criteria above, it is clear that the control- 
lability and uncontrollability of the pair (A, B) are tied with the eigenvalues and 
eigenvectors of the system matrix A. 

Definit ion 6.2.3. A mode o f  the system (6.2.1) or, equivalently, an eigenvalue X 
o f  A is controllable if  the associated left eigenvector (i.e., the eigenvector o f  AT 
associated with ~,) is not orthogonal to the columns o f  B. Otherwise, the mode 
is uncontrollable. 

6.2.2 Controllability of a Discrete-Time System 

Definit ion 6.2.4. The discrete-time system 

Xk+l -- Axk + Buk,  
(6.2.6) 

Yk = Cxk + Duk 

is said to be control lable i f  f o r  any initial state xo and any final state Xl, there 
exists a finite sequence o f  inputs { uo, u 1, �9 �9 �9 , u N -  1 } that transfers xo to x 1; that 
is, x ( N )  = X l .  

In particular, i f  xo = 0 and the system (6.2.6) is controllable, then it is called 
reachable (see Chen 1984). It is also known as controllability f rom the origin. 

Note: To avoid any confusion, we will assume (without any loss of generality) 
that x0 = 0. So, in our case, the notion of controllability and reachability are 
equivalent. 

Most of the criteria on controllability in the continuous-time case also hold in 
the discrete-time case. Here we will state and prove only one criterion analogous 
to (ii) of Theorem 6.2.1. 
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Theorem 6.2.2. The discrete-time system (6.2.6) or the pair (A, B) is 
controllable if  and only if the rank o f  the controllability matrix 

CM -- (B, A B  . . . . .  A n - l B )  

is Ft. 

Proof. From Theorem 5.4.1, we know that the general solution of the discrete- 
time systems is 

XN : A N-1Buo -+- AN-2Bu l  + " "  + BUN-1. 

Thus, x u can be expressed as a linear combination of A k-  1 B, k - N . . . . .  1. 

So, it is possible to choose u0 through u N-1 for arbitrary X N if and only if the 
sequence {AiB } has a finite number of columns that span Rn; and this is possible, 
if and only if the controllability matrix CM has rank n. 1 

6.3 OBSERVABILITY: DEFINITIONS AND BASIC RESULTS 

In this section we state definitions and basic results of observability. The results 
will not be proved here because they can be easily proved by duality of the results 
on controllability proved in the previous section. 

6.3.1 Observability of a Continuous-Time System 

The concept of observability is dual to the concept of controllability. 

Definition 6.3.1. The continuous-time system (6.2.1) is said to be observable 
if there exists tl > 0 such that the initial state x(0) can be uniquely determined 
from the knowledge o f  u(t)  and y( t )  for  all t, 0 < t < tl. 

Remark 

�9 The observability ofthe system (6.2.1) is often referred to as the observability 
of the pair (A, C). 

Analogous to the case of controllability, we state the following criteria of 
observability. 

Theorem 6.3.1. Criteria for Continuous-Time Observability. The follow- 
ing are equivalent: 

(i) The system (6.2.1) is observable. 
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(ii) 

(iii) 

The observability matrix 

OM --  I 
L 
CA. 2 

C ~ - I  

has full rank n. 
The matrix 

fo tl C T  C e A r WO --  e ATr dr 

is nonsingular for any tl > O. 
(iv) The matrix 

has rank n for every eigenvalue ~. of A. 
(v) None of the eigenvectors of A is orthogonal to the rows of C, that is, if 

(~., y) is an eigenpair of A, then Cy 7/= 0. 
(vi) There exists a matrix L such that the eigenvalues of A + LC can be 

assigned arbitrarily, provided that the complex eigenvalues occur in 
conjugate pairs. 

We only prove (iii) ~ (i) and leave the others as an exercise (Exercise 6.6). 

Theorem 6.3.2. The pair (A, C) is observable if and only if the matrix Wo is 
nonsingular for any tl > O. 

Proof. First suppose that the matrix Wo is nonsingular. Since y(t) and u(t) are 
known, we can assume, without any loss of generality, that u (t) = 0 for every t. 
Thus, 

y(t) -- ceatx(O). 

This gives 

Wox(O) = fo t~ 
e A T r C T y ( r ) d z .  

Thus, x (0) is uniquely determined and is given by x(0) -- W o  1 fo 1 e ATr CTy(r)dr.  
Conversely, if Wo is singular, then there exists a nonzero vector z such that 

Woz = 0, which in turn implies that Ce ar z = 0. So, y ( r )  = Ce ar (x(0) q- z) -- 
cearx(O). 

Thus, x(0) cannot be determined uniquely, implying that (A, C) is not 
observable. I 
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Component observability. As in the case of controllability, we can also speak of 
component observability when all the states are not observable by certain output. 
The rank of the observability matrix 

/ c, 
�9 c jA  

C ~ =  . , 

\ c j A  n-1 

where c j, the j th  row of the output matrix C, determines the number of states that 

are observable by the output yj (t). 

6.3.2 Observability of a Discrete-Time System 

Definition 6.3.2. The discrete-time system (6.2.6) is said to be observable if 
there exists an index N such that the initial state xo can be completely determined 
from the knowledge of  inputs u0, U l . . . . .  u N-1, and the outputs Y0, Yl . . . . .  YN. 

The criteria of observability in the discrete-time case are the same as in the 
continuous-time case, and therefore, will not be repeated here. 

6.4 DECOMPOSITIONS OF UNCONTROLLABLE AND 
UNOBSERVABLE SYSTEMS 

Suppose that the pair (A, B) is not controllable. Let the rank of the controllabil- 
ity matrix be k < n. Then the following theorem shows that the system can be 
decomposed into controllable and uncontrollable parts. 

Theorem 6.4.1. Decomposition of  Uncontrollable System. I f  the controlla- 
bility matrix CM has rank k, then there exists a nonsingular matrix T such 
that 

~ = T A T - I ( ~ I  ,'~12'~A22J, /) = TB = ( O 1 )  , (6.4.1) 

where ,411, A12, and/~22 are, respectively, of  order k x k, k x (n - k), and 
(n - k) • (n - k), and nl  has k rows. Furthermore, (/]11,/~1) is controllable. 

Proof. Let Vl . . . . .  Vk be the independent columns of the controllability 
matrix CM. We can always choose a set of n - k vectors Vk+l, . . . ,  Vn SO that 
the vectors (Vl, v2 . . . . .  Vk, l)k+l . . . . .  1)n) form a basis of ]~n. 

Then it is easy to see that the matrix T -1 -- (Vl . . . . .  Vn) is such that T A T  -1 
and T B will have the above forms. 
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To prove that (All, B1) is controllable, we note that the controllability matrix 
of the pair (A,/))  is 

01 A11B1 ' ' '  (A11)k-1/~1 ' ' '  (A11)n-1/~1) 
0 0 . . .  0 " 

Since, for each j >_ k, (.411) j is a linear combination of (/~11) i, i -- 0, 1 . . . . .  
( k -  1), by the Cayley-Hamilton Theorem (see Chapter 1), we then have 
rank(/~l, All/~1 . . . . .  A~1]-1/~1) - k, proving that (All,/~1) is controllable. II 

Note: If we define s - Tx, then the state vector s corresponding to the system 

defined by A and/3 is given by 2 - 22 

Remark (Choosing T Orthogonal) 

�9 Note that T in Theorem 6.4.1 can be chosen to be orthogonal by finding the 
QR factorization of the controllability matrix CM. Thus, if CM -- Q R, then 
T - -  QT. 

Using duality, we have the following decomposition for an unobservable pair. 
The proof is left as an exercise (Exercise 6.7). 

Theorem 6.4.2. Decomposition of Unobservable System. I f  the observability 
matrix OM has rank k t < n, then there exists a nonsingular matrix T such that 

A - - T A T - 1  = (A01 A22J'/~12~ r  CT-1 (0,~1) (6.4.2) 

with (All, r observable and All is of order k'. 

The Kalman Decomposition 

Combining Theorems 6.4.1 and 6.4.2, we obtain (after some reshuffling of the 
coordinates) the following decomposition, known as the Kalman Canonical 
Decomposition. The proof of the theorem is left as an exercise (Exercise 6.8), 
and can also be found in any standard text on linear systems theory. 

Theorem 6.4.3. The Kalman Canonical Decomposition Theorem. Given the 
system (6.2.1) there exists a nonsingular coordinate transformation Y - Tx 
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such that 

l 
XcS~ {,~c8 "~12 A13 A14~ {X_-cS~ {B~cs~ 

x~6~ 0 -'{~6 A34/ / x~6/ at- o , 
X~o/ 0 0 A~0 / \X~o/ 

/ > /  y - (0. ~co. 0. ~o~ | ~ / +  o . .  

\X~o/ 

2c6 -- states which are controllable but not observable. 
Xco - states which are both controllable and observable 
x~6 =- states which are both uncontrollable and unobservable 
2~o =- states which are uncontrollable but observable. 

Moreover, the transfer function matrix from u to y is given by 

G(s) - Cco(XI - aco) -~ i~co + D. 

(6.4.3) 

Remark 

�9 It is interesting to observe that the uncontrollable and/or unobservable parts 
of the system do not appear in the description of the transfer function matrix. 

6.5 CONTROLLER- AND OBSERVER-CANONICAL FORMS 

An important property of a linear system is that controllability and observability 
remain invariant under certain transformations. We will state the result for 
controllability without proof. A similar result, of course, holds for observability. 
Proof is left as an Exercise (6.9). 

Theorem 6.5.1. Let T be a nonsingular matrix such that T A T - 1  _ ~, and 
TB  -- B, then (A, B) is controllable if and only i f (A,  [~) is controllable. 

The question naturally arises if the matrix T can be chosen so that/~ and/} 
will have simple forms, from where conclusions about controllability or observ- 
ability can be easily drawn. Two such forms, controller-canonical form (or 
the controller-companion form) and the Jordan Canonical Form (JCF) are 
well known in control text books (Luenberger 1979; Kailath 1980; Chen 1984; 
Szidarovszky and Bahill 1991 etc.). Unfortunately, neither of these two forms, 
in general, can be obtained in a numerically stable way, because, T, not being 
an orthogonal matrix in general, can be highly ill-conditioned. 

The controller- and observer-canonical forms are, however, very valuable theo- 
retical tools in establishing many theoretical results in control and systems theory 
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(e.g., the proof of the eigenvalue assignment (EVA) theorem by state feedback 
(Theorem 10.4.1 in Chapter 10)). We just state these two forms here for later 
uses as theoretical tools. First consider the single-input case. 

Let (A, b) be controllable and let CM be the controllability matrix. 
Let Sn be the last row of CM 1 . Then the matrix T defined by 

I Sn 
snA 

T -- . (6.5.1) 

\Sn An-1 

is such that 

0 1 0 . . .  0 0 

..0 a 0 1 . . .  
-- T A T  - 1 -  , b - -  T b - -  . 

"Oo 

1 --a2 --a3 . . . .  an 

(6.5.2) 
Similarly, it is possible to show that if (A, b) is controllable, then there exists a 

nonsingular matrix P such that 

--1 n --an-1 . . . .  a2 --al 1 
0 . . .  0 0 

P A p - l =  I 0 1 . . .  0 0 , P b - -  . (6.5.3) 

. . . . . . . . . . . . . .  0 0 . . .  1 0 

The forms (6.5.1) and (6.5.3) are, respectively, known as lower and upper 
companion (or controller) canonical forms. By duality, the observer-canonical 
forms (in lower and upper companion forms) can be defined. Thus, the pair (,4, ?) 
given by 

0 0 . . .  0 --al 
0 . . .  0 --a2 

_ 1 . . .  0 --a3 , ~ = ( 0 , 0  . . . . .  0 ,1) .  

0 . . .  1 --an 

is an upper observer-canonical form. 
M A T C O N T R O L  note:  The MATCONTROL function cntrlc can be used to find 

a controller-canonical form. 
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The Luenberger Canonical Form 

In the multi-input case, the controllable pair (A, B) can be reduced to the pair 
(A,/3),  where A -- T A T  -1 is a block matrix, in which each diagonal block 

matrix is a companion matrix of the form given in (6.5.2), and B is also a block 
matrix with each block as a companion matrix of the form (6.5.2) having nonzero 
entries only on the last row. 

The number of diagonal blocks of A is equal to the rank of B. Such a form is 
known as the Luenberger controller-canonical form. Similarly, by duality, the 
Luenberger observer-canonical form can be written down. 

Numerical instability: In general, like a controller-companion form, the 
Luenberger canonical form also cannot be obtained in a numerically stable way. 

6.6 N U M E R I C A L  D I F F I C U L T I E S  W I T H  T H E O R E T I C A L  
C R I T E R I A  OF C O N T R O L L A B I L I T Y  AND OBSERVABILITY 

Each of the algebraic criterion of controllability (observability) described in 
Section 6.2 (Section 6.3) suggests a test of controllability (observability). Unfor- 
tunately, most of them do not lead to numerically viable tests as the follow- 
ing discussions show. First, let's look into the controllability criterion (ii) of 
Theorem 6.2.1. 

This criterion requires successive matrix multiplications and determination of 
the rank of an n • nm matrix. 

It is well known that matrix multiplications involving nonorthogonal matri- 
ces can lead to a severe loss of accuracy (see Chapter 3). The process may 
transform the problem to a more sensitive one. To illustrate this, consider the 
following illuminating example from Paige (1981). 

Example 6.6.1 

1 
2-1 

A =  . , B =  
o~ 

2-9 10• 

The pair (A, B ) is clearly controllable�9 The controllability matrix (B, A B . . . . .  A 9 B ) 
can be computed easily and stored accurately�9 Note that the (i, j)-th entry of this matrix 
is 2 ( - i + l ) ( j - 1 ) .  This matrix has three smallest singular values 0.613 x 10 -12, 0.364 x 
10 -9, and 0.712 x 10 -7. Thus, on a computer with machine precision no smaller 
than 10 -12, one will conclude that the numerical rank of  this matrix is less than 10, 
indicating that the system is uncontrollable�9 (Recall that matrix A is said to have 
a numerical rank r if the computed singular values 6i, i - 1 . . . . .  n satisfy 6"1 > 
62 >__ " '"  >__ 6r  >__ ~ >__ 6 r + l  >__ " '"  >__ 6n, where ~ is a tolerance)(Section 3.9.4). 
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Note that determining the rank of a matrix using the singular values is the most 
effective way from a numerical viewpoint. 

The criteria (iv)-(vi) in Theorem 6.2.1 are based on eigenvalues and eigenvectors 
computations. We know that the eigenvalues and eigenvectors of certain matrices 
can be very ill-conditioned and that the ill-conditioning of the computed eigenval- 
ues will again lead to inaccuracies in computations. For example, by criteria (vi) 
of controllability in Theorem 6.2.1, it is possible, when (A, B) is controllable, to 
find a matrix K such that A + B K and A have disjoint spectra. Computationally, 
it is indeed a difficult task to decide if two matrices have a common eigenvalue if 
that eigenvalue is ill-conditioned. This can be seen from the following discussion. 

Let )~ and 6 be the eigenvalues of A and A + B K, respectively. We know that a 
computed eigenvalue ~. of A is an eigenvalue of the perturbed matrix .4 - A + AA, 
where llAA]12 < /x]]A]]2. Similarly, a computed eigenvalue 6 of A + BK is an 
eigenvalue of A + B K  + A A  ~, where IIAA~]]2 < #[]A + BKI[2. Thus, even if 
)~ - 6, ~. can be very different from ~. and 6 very different from 6, implying that ~. 
and 6 are different. 

Example 6.6.2. Consider the following example due to Paige (1981) where the 
matrices A and B are taken as 

A = Q T ~ Q ,  B = QT[~ 

Here A is the well-known 20 x 20 Wilkinson bidiagonal matrix 

20 0 
19 20 

".. ".o 

' ' .  20 

/ } - - (1 ,1  . . . . .  1,0) T, 

and Q is the Q-matrix of the QR factorization of a randomly generated 20 x 20 
arbitrary matrix whose entries are uniform random numbers on ( -1 ,  1). 

Clearly, the pair (.J,,/}), and therefore, the pair (A, B), are uncontrollable. (Note 
that controllability or uncontrollability is preserved by nonsingular transformations 
(Theorem 6.5.1)). 

Now taking K as a 1 x 20 matrix with entries as random numbers uniformly dis- 
tributed on ( -1 ,  1), the eigenvalues ~i of A and//~i of A + B K were computed and 
tabulated. They are displayed in the following table. 

In this table, ,o(B, A - ~.i I)  denotes the ratio of the smallest to the largest singular 
value of the matrix (B, A - ~.i I). 
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Eigenvalues ~ i ( A )  Eigenvalues # i ( A  --[- BK) p(B, A - ~ i I )  

-0.32985 4- j 1.06242 0.99999 4- j0  0.002 
0.9219 4- j3.13716 -8.95872 4- j3.73260 0.004 
3.00339 4- j3.13716 -5.11682 4- j9.54329 0.007 
5.40114 4- j6.17864 -0.75203 + j14.148167 0.012 
8.43769 4- j7.24713 5.77659 4- j15.58436 0.018 

11.82747 4- j7.47463 11.42828 4- j 14.28694 0.026 
15.10917 4- j6.90721 13.30227 4- j12.90197 0.032 
18.06886 4- j5.66313 18.59961 4- j 14.34739 0.040 
20.497204- j3.81950 23.94877 4- j l  1.80677 0.052 
22.06287 4- j l .38948 28.45618 4- j8.45907 0.064 

The table shows that ~.i a r e  almost unrelated to ~i. One will, then, erroneously 
conclude that the pair (A, B) is controllable. 

The underlying problem, of course, is the ill-conditioning of tile eigenvalues of,4. 
Note that, because of ill-conditioning, the computed eigenvalues of A are different from 
those of ,4, which, in theory, should have been the same because A and ,4 are similar. 

The entries of the third column of the table can be used to illustrate the difficulty 
with the eigenvalue criterion (Criterion (v) of Theorem 6.2.1). 

Since the pair (A, B) is uncontrollable, by the eigenvalue criterion of controllability, 
rank(B, A - ~.i I), for s o m e  ~ i ,  should be less than n; consequently, one of the entries 
of the third column should be identically zero. But this is not the case; only there is 
an indication that some "modes" are less controllable than the others. 

To confirm the fact that ill-conditioning of the eigenvalues of A is indeed the cause 
of such failure, rank(B, A - I), which corresponds to the exact eigenvalue 1 of A was 
computed and seen to be 

rank(B, A -  I) -- 5 x 10 -8. 

Thus, this test would have done well if the exact eigenvalues of A were used in 
place of the computed eigenvalues of A, which are complex. 

6.7 A NUMERICALLY E F F E C T I V E  TEST OF 
C O N T R O L L A B I L I T Y  

A numerically effective test of controllability can be obtained through the reduc- 
tion of the pair (A, B) to a block Hessenberg form using orthogonal  similarity 
transformation.  The process constructs an orthogonal matrix P such that 

P A P  T - H, a block upper Hessenberg matrix 

(o P B - - B - -  
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The form (6.7.1) is called the controller-I-lessenberg form of (A, B), and the 
pair (H,/3) is called the controller-Hessenberg pair of (A, B) (see Rosenbrock 
1970). The reduction to this form can be done using Householder's or Givens' 
method. We describe the reduction here using Householder's transformations. The 
algorithmic procedure appears in Boley (1981), Van Dooren and Verhaegen (1985), 
and Paige (1981), Patel (1981), Miminis (1981) etc. The algorithm is usually known 
as the staircase algorithm. 

A l g o r i t h m  6.7.1. StaircaseAlgorithm. Let A ben • and B ben x m  (m < n). 
Step 0. Triangularize the matrix B using the QR factorization with column 

pivoting (Golub and Van Loan, 1996, pp. 248-250), that is, find an orthogonal 
matrix P1 and a permutation matrix E1 such that 

where B 1 is an n 1 • m upper triangular matrix and n 1 = rank (B) = rank (B 1). 
Step 1. Update A and B, that is, compute 

~k,(:,(n(:) n( : )~  B - - P i n :  ( 0 1 )  E T ~  ( 0 1 )  P1A P T - H = H(1) ] , 
l . ~  g . . t  - -  

- ~4(1) = O, stop. where "'lit4(1) is nl x nl and H. (1)21 is (n nl) x nl, nl _ < n. If"21 

Step 2. Triangularize H~2~ ) using the QR factorization with column pivoting, 

that is, find an orthogonal matrix 132 and a permutation matrix E2 such that 

t721E2--  

where H(21 ) is n2 x n l, n2 = rank(H~ll )) --rank(H~l)), and n2 < n l. 
I f  n l + n2 = n, stop. 
Form 

P2=diag( in l ,  f i 2 ) _ ( I o a  0 ) ' 

where ln l is a matrix consisting of the first n l rows and columns of the identity 
matrix. 

Compute 

H 2 =  P2H1Pf - . 1 "'22 ' 

(2) 
/4(2) H33 J "'32 

_ _ /_/(2) _ rj(* TII21)E2" where .r4(2).22 is n2 x n2 and "/4(2)'32 is (n n l n2) x n2. Note that "'21 
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Update P =- P2 P1. 
-- /4(1) does not change.) /4(2) O, stop. (Note that .-  11 I f  "*32 

The matrix/~ remains unchanged. 
- (2) Step 3. Triangularize t t~2 tO obtain its rank. That is, find ['3 and E3 such 

that 

/t33" ( 2 ) ( / ' - / ~ ~ )  ) H~2 E 3 -  

Let n3 = rankt/4(2) /4(3) ~"32 ) = rank( , ,32 ); n3 _< n2. 
I f  n l + n2 + n3 = n, stop. Otherwise, compute P3, H3, and update P as 

above. (Note that/~ remains unchanged.) 
Step 4. Continue the process until for some integer k < n, the algorithm 

produces 

ll H12 H13 �9 " H l k ~  

H22 H23 "'" H2k 

n ~  "'. "'. " , / ~ _  ( B 1 ) ,  (6.7.2) 
\ - - /  

�9 .,o ~ " ,  

�9 .. 0 H~,k-1 Hkk/ 

where, either Hk,k-1 has full rank nk, signifying that the pair (A, B) is 
controllable, or Hk,k-1 is a zero matrix signifying that the pair (A, B) is 
uncontrollable. 

(Note that in the above expressions for H and/~, the superscripts have 
been dropped, for convenience. However, H21 stands for/4(2) "'21 , H32 stands for  

H3 3) etc. that is, Hk,k-1 is established at step k). 2 '  
It is easy to see that 

(B, H[~, H211 . . . . .  H k-1 [~) = P(B,  AB . . . . .  A k-1 B) 

B1 . . . . . .  

H21B1 "'" 

-- H32 U21B1] 

",o 

[ Hk,k-1 . .H21nl 

That is, it is block triangular matrix with B1, H21 B1 . . . . .  H k , k - 1 ,  . . . , H21 B1 
on the diagonal. 

This implies that the matrix Hk,k-1 is of  full rank if  the system is controllable 
or is a zero matrix if  the system is uncontrollable. 

Theorem 6.7.1. Controller-Hessenberg Theorem. (i) Given the pair (A, B), 
the orthogonal matrix P constructed by the above procedure is such that 
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P A P  T = H and P B  = [~, where H and [~ are given by ( 6 7 2 )  (ii) I f  pair  

(A,  B)  is controllable, then Hk,k-1 has fu l l  rank  I f  it is uncontrollable, then 

Hk,k-1 -- O. 

Proof.  The proof of Theorem 6.7.1 follows from the above construction. 
However, we will prove here part (ii) using (v) of Theorem 6.2.1. 

Obviously, rank (B, A - k I ) -- n for all k if and only if rank (B, H - ~. I ) = n 
for all ~.. 

Now, 

([~, H - )~I ) = 

B1 H11 - )~I1 . . . . . .  Hlk 
0 H21 H22 - )~12 " -  H2k 

�9 0 " .  " .  . 

�9 . .  " .  

0 0 . . .  0 Hk,k-1 Hkk -- ~,Ik 

If the system is controllable, then the matrix (/}, H - ~.I) must have full rank 
and thus, the matrix Hk,k-1 has full r ank  On the other hand, if the system is not 
controllable, then the matrix (/}, H - )~I ) cannot have full rank implying that 
Hk,k-1 must be a zero matrix�9 II 

Notes 

1. The matrix/~ is not affected throughout the whole process�9 
2. At each step of computation, the rank of a matrix has to be determined. 

We have used QR factorization with column pivoting for this purpose. 
However, the best way to do this is to use s ingular  value decomposit ion 
(SVD) of that matrix�9 (See Golub and Van Loan (1996) or Datta (1995)). 

3. From the construction of the block Hessenberg pair (/-/,/}), it follows that 
as soon as we encounter a zero block on the subdiagonal of H or if the 
matrix B1 does not have full rank, we stop, concluding that (A, B) is not 
controllable. 

Example 6.7.1. An Uncontrollable Pair 

(1 
A =  1 , B =  1 . 

0 1 
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{-0.5774 
Step0 .  P I =  IO.8165 

- 0 . 5 7 7 4 - 0 . 5 7 7 4 ~  (0 01) 
-0.4082 -0 .4082] ,  E1 -- , 
-0.7071 0.7071 J 

-1.7321 
P1BE1 = 0 

0 

- 1.7321 
0 ) 
0 

Step 1. H1 = P1AP? = ( 

/3= (-1.732100 -1"i321 ) 

-(1) {-0.4714'~ 
Step 2. H~I = \ 0.8165 ,] 

2.3333 0.2357 -0.4082 
-0.4714 0.1667 -0.2887 ) , 
0.8165 -0.2887 0.5000 

{-0.5000 0.8660'~ 
/32 = k 0.8660 0.5000J ' 

2.3333 
H2 -- P2 H1 p~r = 0.9428 

0 

E2 - 1, P2 = diag(ll,/32) 

-0.4714 0 ) 
0.6667 0 . 

0 0 

Since/4(2) -- 0, we stop. **32 
The controller-Hessenberg form is given by (H - H2,/~) 

O 

23333 04714 i) (_1.7321 
0.9428 0.6667 , /} -- 0 

o 0 0 

, 
0 
0 

Clearly the pair (A, B) is not controllable. 

Example 6.7.2. A Controllable Pair 

A ~.. 

B m 

0.7665 0.1665 0.9047 
0.4777 0.4865 0.5045 
0.2378 0.8977 0.5163 
0.2749 0.9092 0.3190 
0.3593 0.0606 0.9866 

0.4644 0.8278~ 
0.9410 0.1254 / 
0.0501 0.0159 / . 
0.7615 0.6885~ 
0.7702 0.8682/ 

0.4540 
0.2661 
0.0907 
0.9478 
0.0737 

0.5007~ 
0.3841| 
0.2771 / , 
0.9138~ 
O.5297/ 
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Step 0. 

[-0.3078 -0.6236 -0.0332 -0.5047 -0.5104~ 
/0.5907 -0 .7058-0 .0263  0 .1485 0.3610[ (0 0) 

P1 = /-0-0080 -0.0451 0.9989 -0.0047 -0 .0004 / , E1 = . 
/-0.4561 -0.2970 -0.0132 0.8208 -0.1728 / 
\-0.5901 -0.1510 -0.0123 -0.2225 0.7611 / 

P1BE1 = 

1.5089 - - 1 . 1 2 4 1 ~  0 08i 7 / 0 
0 
0 

nl = rank(B) = 2 
Step 1. 

// 1.8549 
|-0.3467 

H1 = P I A P  T = /-0.7857 
| -0.5876 
\ 0.6325 

-0.3935 -1.2228 0.1796 -0.0198~ 
0.3934 0.5690 0 .0593  0.0470 / 

-0.4020 0.4421 -0.3453 -0.0848 / 
-0.3573 -0.4998 0.3311 0.2607 / 
-0.0777 0.0837 -0.1295 0.2253 ] 

(1) 

-1 .5089  -1 1241 
0 0.8157 

~=  o o . 

0 0 
0 0 

Step 2. 

/-0.6731 -0.5034 0.5418 
t;2 = 1-0.3545 -0.4233 -0 .8337 | ,  

\ 0.6490 -0.7533 0.1064 ] 

/32 " '(1)(/_/~~)) (1.1674 
_o21 -- -- 0 

0 

0.4084'~ 

n2 = rank(H2(~ )) = rank(H~ )) = 2. 
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P 2  

e .__ 

H 2 =  P2H1 PT = 

j~  m 

1 0 0 0 ~ \ 

/ 1 0 0 
0 -0.6731 -0.5034 0.5418 , 

0 0 -0.3545 -0.4233 -0.8337 / 
0 0 0.6490 -0.7533 0.1064/ 

-0.3078 -0.6236 
0.5907 -0.7058 

-0.0847 0.0980 
0.6879 0.2676 
0.2756 0.1784 

I 
1.8549 -0.3935 

-0.3467 0.3934 
1.1!74 0.4084 

0.3585 
0 

/-/12 

<,j. 1 / - /22  - (2) 

i4(2) - (2) 
**32 /-/33 J 

1.5089 - -1.1242'~ 

00 0" i57  / 

0 
0 

- (2) 
n3 = rank(H~2 ) =  1. 

-0.0332 -0.5047 -0.5104~ 
-0.0263 0.1485 0.3610 ] 
-0.6724 -0.5306 0.4996 | .  
-0.3383 -0.1602 -0.5613~ 
0.6570 -0.6450 0.2109 / 

0.7219 0.3740 -0.9310~ 
-0.3874 -0.2660 0.3297 ] 
0.0286 -0.0378 0.0080 | 

-0.1807 0.1907 -0.1062 / 
-0.3304 0.1575 0.7792 / 

Since nl + n2 + n3 = 2 + 2 + 1 = 5, we stop. 
The controller-Hessenberg form (A, B) is given by (H = H2,/~). 
The pair (A, B) is controllable, because "'21f4(2) and/-13 (2) have full rank. 

The next example (Example 6.7.3) shows the uses of non-identity premutation 
matrices in QR factorization with column pivoting. 

E x a m p l e  6 .7 .3 .  

A ~.. 

n ~_. 

0.7665 0.1665 0.9047 
0.4777 0.4865 0.5045 
0.2378 0.8977 0.5163 
0.2749 0.9092 0.3190 
0.3593 0.0606 0.9866 

I 
0.4644 0.8278'~ 
0.9410 0.1254| 
0.0501 1.0159 / . 
0.7615 0.6885 / 
0.7702 0.8682] 

0.4540 0.5007'~ 
0.2661 0.3841 / 
0.0907 0.2771 / , 
0.9478 0.9138] 
0.0737 0.5297,/ 
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Step 0. 

/ '-0.4811 -0.0729 -0.5904 -0.4001 -0.5046'~ 
| 0.0213 -0.7765 0.4917 -0.3183 -0 .2312]  

P1 = [ -0 .6160 0.4529 0.6231 -0.0783 -0.1450 / , 
[ - 0 . 3 8 2 9 - 0 . 3 4 2 9 - 0 . 0 6 4 6  0.8375 -0 .1739]  
\ -0 .4919  -0.2627 -0.1313 -0.1764 0.8004 / 

g l : ( ~  10). 

Step 1. 

H1 : P1A pT = 

/~ = P1B = l 
- 1.0149 - 1.7207'~ 
-1.1166 -0 .0000[  
-0.0000 0.0000 / ' 
0.0000 0.0000 ] 
0.0000 0.0000 / 

n l : 2  

2.1262 0.5717 -0.6203 0.3595 0.1402 '~ 
0.9516 0.2348 -0.0160 -0.0300 -0 .0472 |  
0.2778 -0.4685 0.3036 -0.2619 -0.0998 / . 
0.0115 -0.8294 0.0243 0.3571 0.2642 
0.3480 0.5377 0.0873 -0.0673 0.2250 ] 

Step 2. 

/(-0.4283 -0.7582 
/~2-  [ 0.6685 0.1002 

\ -0 .6080  0.6442 

1 o), 
n2 = 2, 

P2 

0.4916'~ 
0.7370] , 
0.4640] 

1.0000 0 0 0 
0 1.0000 0 0 
0 0 -0.4283 -0.7582 
0 0 0.6685 0.1002 
0 0 -0.6080 0.6442 

p 

P = P2P1, 

0.4916 , 
0.73701 
0.4640,/ 

-0.4811 -0.0729 -0.5904 -0.4001 -0.5046'~ 
0.0213 -0.7765 0.4917 -0.3183 -0.2312 / 
0.3124 -0.0631 -0.2824 -0.6881 0.5875 | ,  

-0.8127 0.0749 0.3133 -0.0985 0.4755 
-0.1004 -0.6182 -0.4813 0.5053 0.3475 ] 
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H 2  --- 

H 2 - -  P2 H1 PT, 

2.1262 0.5717 0.0619 -0.2753 0.6738 '~ 
0.9516 0.2348 0.0064 -0.0485 -o.o315 / 
0.0434 1.0938 0.1675 -0.1244 - 0 . 0 8 1 1 | ,  
0.4433 0.0000 0.0895 0.2539 -o.2275/ 

-0.0000 -0.0000 -0.0517 0.1971 0.4644 ,/ 

/ -1 .0149  - 1.7207'~ 
/ -1 .1166  -0 .0000/  

= | - o  oooo o oooo / 
/ o oooo o oooo ! 
\ 0.0000 0.0000 / 

Flop-count: Testing controllability using the constructive proof of Theo- 
rem 6.7.1 requires roughly 6n 3 + 2nZm flops. The count includes the construction 
of the transforming matrix P (see Van Dooren and Verhaegen 1985). 

Round-offerror analysis and stability: The procedure is numerically stable. It 
can be shown that the computed matrices/-) and B are such that/-) = H + A H 
and /~ - /3 + AB, where IIAHIIF ___ c#llHllF and IIABIIF < clzllllBllF for 
some small constant c. Thus, with the computed pair (H,/~),  we will compute the 
controllability of a system determined by the pair of matrices which are close to 
H and B. Since the controllability of the pair (H, B) is the same as that of the pair 
(A, B), this can be considered as a backward stable method for finding the 
controllability of the pair (A, B). 

MATCONTROL note: Algorithm 6.7.1 has been implemented in MATCON- 
TROL function cntrlhs. 

The function cntrlhst gives block Hessenberg form with triangular subdiagonal 
blocks. 

Controllability Index and Controller-Hessenberg Form 

Let B = (bl, b2 . . . . .  bm). Then the controllability matrix CM can  be written as 

CM= (bl, b 2 , . . . ,  bm; Abl, Ab2 . . . . .  Abm; . . .  ; An-lbl ,  An-lb2 . . . . .  An-Ibm). 

Suppose that the linearly independent columns of the matrix CM have been 
obtained in order from left to fight. Reorder these independent columns to obtain: 

C~ -- (bl, Abl . . . . .  A lzl-lbl;  b2, Ab2 , . . . ,  A #2-1 b2" " bm 

Abm, . . . ,  A #m-1 bm). 

The integers #1 . . . . .  /z m are called the controllability indices associated with 
bl, b2 . . . . .  bm, respectively if #1 >_ "'" > lZm. Note that/zi is the number of 
independent columns associated with bi. 
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Furthermore, /z = max(/zl . . . . .  /Zm) is called the controllability index. If 
/Zl +/z2 + . . .  +/zm = n, then the system is controllable. 

It is clear that determining the controllability index is a delicate problem from 
the numerical view point because it is basically a rank-determination problem. 

Fortunately, the block-Hessenberg pair (H, B) of (A, B) not only determines if 
the pair (A, B) is controllable, but it also gives us the controllability index. In the 
block-Hessenberg pair (H, B) in (6.7.2), k is the controllability index. Thus, for 
Example 6.7.2, the controllability index is 3. 

Controllability Test in the Single-Input Case 

In the single-input case, the controller-Hessenberg form of (A, b) becomes: 

P A P  T -  H = 
: . . . . . .  t ha2 . . . . . .  

Z h32 "" . . . .  h3n|  , Pb - b = . 

I . . O � 9  � 9 1 4 9 1 4 9  " 

�9 0 hn,n-1 hnn] 
(6.7.3) 

Theorem 6.7.2. (A ,b)  is controllable if the controller-Hessenberg pair 
(H,/~) is such that H is an unreduced upper Hessenberg, that is, hi,i-1 7/= 
0, i = 2 . . . . .  n, and bl ~= O; otherwise, it is uncontrollable. 

We will give an independent proof of this test using the controllability cri- 
teflon (ii) of Theorem 6.2.1�9 

Proofi Observe that Rank(b, Ab . . . . .  An- lb)  = rank(Pb, P A P  TPb . . . . .  
pAn-1  pT Pb) -- rank(/~, H[~ . . . . .  Hn-l[o.  

The last matrix is a lower triangular matrix with bl, h21bl, h21h32b1 . . . . .  
h21 . . . . .  hn,n-lbl as the diagonal entries. 

Since hi,i-1 5~ 0, i = 2 . . . . .  n and bl ~: 0, it follows that 
rank(b, Ab . . . . .  An- lb)  = n. 

On the other hand, if any of hi,i-1 or bl is zero, the matrix (b, Ab . . . . .  A n- lb)  
is rank deficient, and therefore, the system is uncontrollable. II 

Example 6.7.4 (Example 6.6.2 Revisited). Superiority of the algorithm over the other 
theoretical criteria. 

To demonstrate the superiority of the test of controllability given by Theorem 
6.7.2 over some of the theoretical criteria that we considered in the last section, 
Paige applied the controller-Hessenberg test to the same ill-conditioned problem 
as in Example 6.6.2. The computations gave bl = 4.35887, hal = 8.299699, 
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17 < Ilhi,i-lll < 22, i = 3, 4 . . . . .  9, and h20,19 -" 0�9149 Since h20,19 is 
computationally zero in a single-precision computation, the system is uncontrol- 
lable, according to the test based on Theorem 6.7.2�9 

6.8 A N U M E R I C A L L Y  E F F E C T I V E  TEST OF OBSERVABILITY 

Analogous to the procedure of obtaining the form (H, B) from (A, B), the pair 
(A, C) can be transformed to (H, t~), where 

Hll  H12 
" 

H - -  O A O  T -  I �9 

-- CO T : (O, Cl).  

�9 �9 �9 Hlk 

Hk,k-1 Hkk/ 

(6.8.1) 

(6.8.2) 

The pair (A, C) is observable if H is block unreduced (i.e., all the 
subdiagonal blocks have full rank) and the matrix C1 has full rank. 

The pair (H, C) is said to be an observer-Hessenberg pair. 
Flop-count: The construction of the observer-Hessenberg form this way requires 

roughly 6n 3 + 2n2r flops�9 
Single-output case: In the single-output case, that is, when C is a row vec- 

tor, the pair (A, C) is observable if H is an upper Hessenberg matrix and 

-- (0 . . . . .  0, c1); c1 # 0. 
MATCONTROL note: MATCONTROL function obserhs can be used to obtain 

the reduction (6.8.1). 

6.9 DISTANCE TO AN U N C O N T R O L L A B L E  SYSTEM 

The concepts of controllability and observability are generic ones. Since determin- 
ing if a system is controllable depends upon whether or not a certain matrix (or 
matrices) has full rank, it is immediately obvious from our discussion on numerical 
rank of a matrix in Chapter 4 that any uncontrollable system is arbitrary close to 
a controllable system. To illustrate this, let us consider the following well-known 
example (Eising 1984): 

-1 -1 -1 -1 
1 11 1 

1 0 i A -- , B -- . (6.9.1) 

o . .  -11 
1 
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The pair (A, b) is obviously controllable. However, it is easily verified that if we 
add ( -  2 l-n, _ 21-n . . . . .  - -  21 - n  ) t o  the last row of (B, A), we obtain an uncon- 
trollable system. Clearly, when n is large, the perturbation 21-n is small, implying 
that the original controllable system (A, B) is close to an uncontrollable system. 
Thus, what is important in practice is knowledge of how close a controllable 
system is to an uncontrollable one rather than determining if a system is con- 
trollable or not. To this end, we introduce, following Paige (1981), a measure of 
the distance to uncontrollability, denoted by # (A, B): 

#(A, B) - min{llAA, ABII2 such that the system 

defined by (A + AA, B + AB) is uncontrollable}. 

Here AA and AB are allowable perturbations over a field F. If the field F is R, 
then we will use the symbol #R(A, B) to distinguish it from #(A, B). 

The quantity #(A, B) gives us a measure of the distance of a controllable pair 
(A, B) to the nearest uncontrollable pair. If this distance is small, then the orig- 
inal controllable system is close to an uncontrollable system. If this distance 
is large, then the system is far from an uncontrollable system. 

Here is a well-known result on/x(A, B). See Miminis (1981), Eising (1984) 
and Kenney and Laub (1988). Unless otherwise stated, the perturbations are 
assumed to be over the field of complex numbers, that is, F = C. 

Theorem 6.9.1. Singular Value Characterization to Distance to Uncontrol- 

lability. /z(A, B) = mincrn(s l  - A,  B), where Crn(SI - A,  B) is the smallest  

singular value o f  (s I - A,  B) and s runs over all complex numbers. 

Proof. Suppose that (A + AA, B + AB) is an uncontrollable pair. Then 
according to (v) of Theorem 6.2.1, we have 

rank(A + AA - )~I, B + AB) < n, for some ~. 6 C. 

Since the smallest perturbation that can make rank(A - )~I, B) less than n is 
Crn(A - 1.1, B) (see Section 3.9.3 of Chapter 3), we have 

Crn(A - )~I, B) < limA, AB 112 

and the equality holds if 

(AA, AB) = -CrnUnV n, 

where an is the smallest singular value of (A - )~I, B), and Un and Vn are the 
corresponding left and fight singular vectors. Taking the minimum over all ~. 6 C, 
and using criterion (v) of Theorem 6.2.1, we obtain the result. II 
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Algorithms for Computing # (A, B) 

Based on Theorem 6.9.1, several algorithms (Miminis 1981; Eising 1984; Wicks 
and De Carlo 1991) have been developed in the last few years to compute #(A, B) 
and #R(A, B). 

We will briefly describe here a Newton algorithm due to Eisner and He (1991), 
and an algorithm due to Wicks and DeCarlo (1991). 

6.9.1 Newton's and the Bisection Methods for Computing the Distance to 
Uncontrollability 

Let' s denote an [s I - A, B ] by a (s). The problem of finding # (A, B) is then clearly 
the problem of minimizing a ( s )  over the complex plane. 

To this end, define 

f (s) -- v n 

where Un (s)and Vn (s) are the normalized nth columns of U and V in the SVD of 
(A - s l ,  B) ,  that is, (A - s I ,  B)  - U E V  T. The function f (s) plays an important 
role. The first and second derivatives of a ( s )  - a ( x  + j y )  -- a ( x ,  y)  can be 
calculated using this SVD. It can be shown that if s - x + j y ,  then 

Oa Oa(x + j y )  Oa Oa(x + j y )  
= = - R e f ( x + j y ) ,  and = = - I m f ( x + j y ) .  

Ox Ox Oy Oy 

Knowing the first derivatives, the second derivatives can be easily calculated. 
Hence the zeros o f f l s )  are the critical points of the function a (s). 
Thus, some well-established root-finding methods, such as Newton's method, 

or the Bisection method can be used to compute these critical points. 
An interesting observation about the critical points is: The critical points satisfy 

. s - -  U n ( S ) A U n ( S ) ,  and hence they lie in the field of values of A 
The result follows from the fact that a ( s ) f ( s )  = u * ( s ) ( A  - s l  )Un(S), since 

(A - s I ,  B )*un(S )  = a(S)Vn(S) .  (For the definition of field of values, see Horn 
and Johnson (1985).) 

To decide which critical points are local minima, one can use the following 
well-known criterion. 

A critical point s = Xc + JYc of a ( s )  is a local minimum of a(x ,  y) if 

Ox 2 ~ - OxOy > 0  and Ox ~ > 0 .  

Another sufficient condition is: If an-1 (A - s I ,  B)  > ~/-5an(A - s I ,  B) ,  where 
s - Xc + jYc  is a critical point, then (Xc, Yc) is a local minimum point of a (x, y). 

Newton's method needs a starting approximation. The local minima of a (x, y), 
generally, are simple. Since all critical points s satisfy u * A u n  - s, all minimum 
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points s = x + j y will lie in the field of values of A, and hence 

( A + A T )  ( A + A T )  ( A - A T  ) 
< X < ~-max and ).min < Y ~.min 2 - - 2 2j - 

( A - A T  ) 
_< ~,max 2j ' 

where Xmax(C) and Xmin(C) denote the largest and smallest eigenvalues of the 
matrix C. Furthermore, since Crn (A - s I, B) = an (A - g I, B), the search for all 
local minimum points can be restricted to 0 < y < ~max((A - AT)/2j) .  

Based on the above discussion, we now state Newton's algorithms for finding 

t x ( A ' B ) ' D e n ~  " y k  

Algorithm 6.9.1. Newton's Algorithm For Distance to Uncontrollability 
Inputs. The matrices A and B. 
Output. A local minimum of cr (s). 
Step 0. Choose (y~) using the above criterion. 
Step 1. For k = O, 1, 2 . . . .  do until convergence 

t Yk+ \Pk2 

Re Of Re O f  - 1  

where ( p t l ) =  Ox Oy ( R e f ( x , y ) )  
\Pk2/ Im Of Im Of I m f ( x , y )  ' 

0x Vyy 

choosing Ok such that cr(xk -- Okpkl, Yk -- Okpk2) = min a(xk -- Opkl, 
-1<0<1 

Yk -- Opk2). (see Eisner and He (1991)f  or formulas for computing Of /Ox and 
Of/Oy). 

End. 

Step 2. If sc = is the final point upon conclusion of Step 2, then 
YZ 

compute the smallest singular value ~n of the matrix (A - sc I, B), and take ~n 
as the local minimum of ~ (s). 

Choosing Ok: Ok can be chosen using Newton's algorithm, again as follows: 
Define g(O) - PklRe f (O) + p~:2Imf(O). Then g'(O) -- PklRe f'(O) + 

Pk2Im f'(0). 

Newton's Algorithm for Computing Ok 
Step 1. Choose O0 - 1 .  
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Step 2. For j = 1, 2 . . . .  do until convergence 

g(Oj) 
Oj+l  --~ Oj -- ~ j  g t ( O j )  , 

where 17j is chosen such that 

tY(Xk -- O j + l P k l ,  Yk -- O j + l P k 2 )  < tY(Xk -- O j P k l ,  Yk -- OjPk2)  

End. 

Remark 

Numerical  experiments suggest that it is necessary to compute  0~s only a 
few times to get a good initial point and then as soon as it becomes close 1, 
it can be set to 1. Newton ' s  m e t h o d  with Ok = 1 converges  quadra t i ca l ly .  

Example 6.9.1 Eisner and He 1991. Let 

A =  1 

(A+AT) 
~.max 2 = 3.9925, 

( A - A T  ) 
~.max 2j  = 3.0745, 

1 
3 

- 1  

l) 
5 , B =  1 . 

- 1  

( a ~ a ~ )  
).min 2 - -1 .85133,  

( A - A ~ )  
~.min 2j  "- -3 .0745.  

Thus all zero points lie in the rectangular region given by - 1 . 8 5 1 3  < x < 
3 . 9 9 2 5 , - 3 . 0 7 4 5  _< y < 3.0745. Choose x0 -- 1.5 and y0 -- 1. 

Then, so = 1.5 + j .  
00 -- 0.09935, 01 = 0.5641, 02 -- 1.0012. Starting from here, Ok was set to 1. 

(0.93708 ~ _ 0.93708 -t- The method converged in five steps, sc - (y55) -- ~,0.9985711 
0 .998571j .  

The min imum singular value of (A - s c I ,  B) - 0.0392. 
Thus , /x (A,  B) = 0.039238. 
MATLAB note: MATLAB codes for Algori thm 6.9.1 are available from the 

authors of the paper. 

The Bisection Method (Real Case) 

In the real case, the following bisection method can also be used to compute  the 

zeros of f (s ) .  
Step 1. Find an interval [a, b] such that f ( a ) f  (b) < 0. 

Step 2. 
2.1. Compute  c = (a + b)/2. 
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2.2. If f ( c ) f  (b) < 0, then set a = c and return to Step 2.1. 
If f ( a ) f ( c )  < 0, then set b = c and return to Step 2.1. 
Step 3. Repeat Step 2 until c is an acceptable zero point of f (s). 
Note: For Example 6.9.1, f ( s )  has only one real zero s - 1.027337, and 

#R(A, B) = 0.1725. 

6.9.2 The Wicks-DeCarlo Method for Distance to Uncontrollability 

Newton's algorithm, described in Section 6.9.1 is based on minimization of 
Crn (s I - A, B) over all complex numbers s. It requires an SVD computation at 
each iteration. 

In this section, we state an algorithm due to Wicks and DeCarlo (1991). The 
algorithm is also iterative in nature but "requires only two QR factorizations at 
each iteration without the need for searching or using a general minimization 
algorithm." 

The algorithm is based on the following observation: 

#(A, B) -- min [l(u*A(I - uu*)u*B[[, 
u c C  n 

(6.9.2) 

subject to u*u = 1. Based on this observation, they developed three algorithms 
for computing #R(A, B) and #(A,  B). 

We state here why one of the algorithms (Algorithm II in Wicks and DeCarlo 
(1991)) is used for computing #(A,  B). 

Definition 6.9.1. Let the distance measure dl (A, B) be defined by 

[d l (a  B)] 2 [[[e*n(a(l - ene*) B)][[ 2 , "-- 2 

n - 1  [2 m 2 
- 

j = l  j = l  

Using the above notation, it has been shown in Wicks and DeCarlo (1991) that 

#(A, B) = min dl(U*AU, U'B).  
u c c n x n  
U*U=I 

The algorithm proposed by them constructs a sequence of unitary matrices 
U1, U2 . . . . .  such that 

1. A k + l  - -  U~AkUk, B k + l  - -  U~B 
2. dl (Ak-~ 1, Bk+l) < dl (Ak, Bk) 
3. lim d] (Ak, Bk) is a local minimum of (6.9.2). 

k--+oe 
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Algorithm 6.9.2. An Algorithm for Computing/z(A, B) 
Inputs. The matrices A and B. 
Output. # (A, B). 
Step0. SetA1--A,  B 1 - - B .  

Step 1. For k = 1, 2 . . . .  until convergence. 
1.1. Form Mk -- (Ak -- (ann)kI Bk). 
1.2. Factor Mk = Lk Vk, where Lk is lower triangular and V~ is unitary. 
1.3. Find the Q R factorization of Lk = U~ R~. 
1.4. Set Ak+l = U~AkUk, Bk+l : U~Bk. 
1.5. If  dl (Ak+l, Bk+l) =dl  (Ak, Bk), stop. 

End. 

Proof. The proof amounts to showing that dl (Ak, Bk) > Irnnl, where 

Rk = 

r l l  . . . . . .  rln 

i r22 r2n 0 
" ' ,  

\ rnn 

and as such Irnnl = dl (U~AkUk, U[~ Bk). 1 

For details, the readers are referred to Wicks and DeCarlo (1991). 

Example 6.9.2. 

A .__ 

B ~_ 

0.950 0.891 0.821 0.922~ 
0.231 0.762 0.445 0.738] 
0.607 0.456 0.615 0.176~ ' 
0.486 0.019 0.792 0.406/ 

I 
0.9350 0.0580 0.1390'~ 
0.9170 0.3530 0.2030] 
0.4100 0.8130 0.1990~ " 
0.8940 0.0100 0.6040/ 

Let the tolerance for stopping the iteration be: Tol = 0.00001. 
Define #k = dl (Ak, Bk). 
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The algorithm produces the following converging sequence of/Zk: 

k /Zk k /Zk 

0 1.42406916966838 10 0.41450782001833 
1 0.80536738314449 11 0.41450781529413 
2 0.74734006994998 12 0.41450781480559 
3 0.52693889988172 13 0.41450781475487 
4 0.42241562062172 14 0.41450781474959 
5 0.41511102322896 15 0.41450781474904 
6 0.41456112538077 16 0.41450781474899 
7 0.41451290008455 17 0.41450781474898 
8 0.41450831981698 18 0.41450781474898 
9 0.41450786602577 19 0.41450781474898 

After 19 iterations the algorithm returns/z = 0.41450781474898. 

MATCONTROL note: Algorithm 6.9.2 has been implemented in MATCONTROL 
function discntrl. 

6.9.3 A Global Minimum Search Algorithm 

The algorithms by Eisner and He (1991) and Wicks and DeCarlo (1991) are guar- 
anteed only to converge to a local minimum rather than a global minimum. A global 
minimum search algorithm was given by Gao and Neumann (1993). Their algo- 
rithm is based on the observation that if rank(B) < n, then the minimization 
problem can be transformed to a minimization problem in the bounded region 
{(x, z)lx <_ IIAII2, Izl _< IIAII2} in the two-dimensional real plane. 

The algorithm then progressively partitions this region into simplexes and finds 
lower and upper bounds for/x(A, B) by determining if the vertices (xk, z~) satisfy 

Zk > min amin (A - (Xk + j Y) I, B). 
yeR 

These bounds are close to each other if lz(A, B) is small. "If l~(A, B) is not small 
then the algorithm produces a lower bound which is not small thus leading us to 
a safe conclusion that (A, B) is not controllable." 

For details of the algorithm, see Gao and Neumann (1993). See also 
Exercise 6.26. 

6.10 DISTANCE TO U N C O N T R O L L A B I L I T Y  AND THE 
S I N G U L A R  VALUES OF THE C O N T R O L L A B I L I T Y  MATRIX 

Since the rank of the controllability matrix CM determines whether a system is 
controllable or not, and the most numerically effective way to determine the rank 
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of a matrix is via the singular values of the matrix, it is natural to wonder, what 
roles do the singular values of the controllability matrix play in deciding if a given 
controllable system is near an uncontrollable system. (Note that Theorem 6.9.1 
and the associated algorithm for computing/z(A, B) use the singular values of 
( A - s I ,  B)).  

The following result due to Boley and Lu (1986) sheds some light in that 
direction. We state the result without proof. Proof can be found in Boley and 
Lu (1986). 

Theorem 6.10.1. Let (A, B) be a controllable pair. Then, 

lz(A B ) < I Z R ( A  B ) <  ( 1 +  IlCpll) 
, _ _  , m O ' n ~  

O 'n-1 

where Crl > cr2 > . . .  > an-1 > Crn are the singular values o f  the controllability 
matrix CM = (B, A B  . . . . .  A n-1 B) and Cp is a companion matrix for  A. 

Example 6.10.1. We consider Example 6.9.1 again. 
The singular values of the controllability matrix are 2.2221, 0.3971, 0.0227. 
The companion matrix Cp is calculated as follows: 

Xl "-  (1, 0, 0) z, X2 - -  A X l  - -  (1, 0.1, 0) T, 

Then the matrix X = (x l ,  x2,  x3)  is such that 

According to Theorem 6.10.1, we then have 

I~(A, B) 5 IzR(A, B) < (1 + 
\ 

x3  = A x 2  - -  (1 .1 ,  0 . 4 , - 0 . 1 )  T. 

02) 
01 -33"9 " 

5.3919~ x 0.02227 -- 0.3309. 
0.3971 / 

Remark 

�9 The above theorem can be used to predict the order of perturbations needed 
to transform a controllable system to an uncontrollable system. It is the 
largest gap between the consecutive singular values. (However, note that, 
in general, the singular values of the controllability matrix cannot be 
used directly to make a prediction of how close the system is to an 
uncontrollable system.) 

In other words, it is not true that one can obtain a nearly uncontrollable system 
by applying perturbations AA, AB, with norm bounded by the smallest nonzero 
singular value of the controllability matrix. 
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6.11 S O M E  S E L E C T E D  S O F T W A R E  

6.11.1 MATLAB Control System Toolbox 

canon--State-space canonical forms. 
ctrb, obsv--Controllability and observability matrices. 
gram--Controllability and observability gramians. 
ctrbf--Controllability staircase form. 
obsvf--observability staircase form. 

6.11.2 MATCONTROL 

CNTRLHS--Finding the controller-Hessenberg form. 
CNTRLHST--Finding the Controller-Hessenberg form with triangular 

subdiagonal blocks. 
OBSERHS--Finding the observer-Hessenberg form. 
CNTRLC--Find the controller-canonical form (Lower Companion). 
DISCNTRL--Distance to controllability using the Wicks-DeCarlo algorithm. 

6.11.3 CSP-ANM 

�9 Reduct ion  to control ler-Hessenberg  and observer-Hessenberg  forms 

- Block controller-Hessenberg forms are computed by controller- 
HessenbergForm [system] and LowercontrollerHessen- 
bergForm [system]. 

- Block observer-Hessenberg forms are computed by Observer- 
HessenbergForm [system] and UpperObserverHessen- 
bergForm [system]. 

�9 Control labi l i ty  and observabi l i ty  tests 

- Tests of con~ollability and observability using block controller- 
Hessenbergandblockobserve~Hessenberg ~rmsareper~rmedvia 
Controllable [system, ControllabilityTest-+ Full- 
RankcontrollerHessenbergBlocks] and Observable 
[system, ObservabilityTest -+ FullRankObserver- 
HessenbergBlocks]. 

- Testsofcontrollabilityandobservabilityofastablesystem viaposi- 
tive definiteness of Gramiansare performed via C o n t r o l l a b l e  
[system, ControllabilityTest-+ PositiveDiagonal- 
CholeskyFactorControllabilityGramian]and 
Observable [system, ObservabilityTest-+ Positive- 
DiagonalCholeskyFactorObservabilityGramian]. 
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6.11.4 SLICOT 

Canonical and quasi canonical forms: 

AB01MDmOrthogonal controllability form for single-input system 
AB01NDmOrthogonal controllability staircase form for multi-input system 
AB01OD~Staircase form for multi-input system using orthogonal 

transformations 
TB01MD--Upper/lower controller-Hessenberg form 
TB01ND~Upper/lower observer-Hessenberg form 
TB01PD~Minimal, controllable or observable block Hessenberg realization 
TB01UD~Controllable block Hessenberg realization for a state-space 

representation 
TB01ZDmControllable realization for single-input systems 

6.11.5 MATRIXx 

Purpose: Obtain controllable part of a dynamic system. 
Syntax: [SC, NSC, T]= CNTRLABLE (S, NS, TOL) 

Purpose: Compute observable part of a system. 
Syntax: [SOBS, NSOBS, T]= OBSERVABLE (S, NS, TOL) 

Purpose: Staircase form of a system matrix. 
Syntax: [SST, T, NCO]= STAIR (S, NS, TOL) 

6.12 S U M M A R Y  A N D  R E V I E W  

Algebraic Criteria of Controllability and Observability 

Controllability and observability are two most fundamental concepts in control 
theory. The algebraic criteria of controllability and observability are summarized 
in Theorems 6.2.1 and 6.3.1, respectively. 

Unfortunately, these algebraic criteria very often do not yield numerically viable 
tests for controllability and observability. The numerical difficulties with these cri- 
teria as practical tests of controllability are discussed and illustrated in Section 6.6. 
The pair (A, B) in Example 6.6.1 is a controllable pair; however, it is shown that 
the Example 6.6.1 is a controllable pair; however, it is shown that criterion (ii) of 
Theorem 6.2.1 leads to an erroneous conclusion due to a computationally small 
singular value of the controllability matrix. Similarly, in Example 6.6.2, it is shown 
how an obviously uncontrollable pair can be taken as a controllable pair by using 
the eigenvalue criterion of controllability (Criterion (v) of Theorem 6.2.1) as a 
numerical test, due to the ill-conditioning of the eigenvalues of the matrix A. 
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Numerically Effective Tests of Controllability and Observability 

Computationally viable tests of controllability and observability are given in Sec- 
tions 6.7 and 6.8. These tests are based on the reductions of the pairs (A, B) and 
(A, C), respectively, to controller-Hessenberg and observer-Hessenberg forms. 
These forms can be obtained by using orthogonal transformations and the tests can 
be shown to be numerically stable. 

Indeed, when controller-Hessenberg test is applied to Example 6.6.2, it was 
concluded correctly that, in spite of the ill-conditioning of the eigenvalues of A, 
the pair (A, B) is uncontrollable. 

Distance to Uncontrollability 

Since determining the rank of a matrix is numerically a delicate problem and the 
problem is sensitive to small perturbations, in practice, it is more important to 
find when a controllable system is close to an uncontrollable system. To this 
end, a practical measure of the distance to uncontrollability, denoted by/z(A, B), 
is introduced in Section 6.9:/z(A, B) = min{ll AA, ABII2 such that the pair (A + 
AA, B + AB) is controllable. 

A well-known characterization of/z(A, B) is given in Theorem 6.9.1. This 
theorem states:/z(A, B) = min a n ( s l - A ,  B), wherean(sI-A,  B)is the smallest 
singular value of the matrix (s I - A, B) and s runs over all complex numbers. 

Two algorithms (Algorithms 6.9.1 and 6.9.2), have been described to compute 
I.t(A, B). 

6.13 CHAPTER NOTES AND FURTHER READING 

Controllability and observability are two most basic concepts in control theory. 
The results related to controllability and observability can be found in any standard 
book on linear systems (e.g., Kalman et al. 1969; Brockett 1970; Rosenbrock 1970; 
Luenberger 1979; Kailath 1980; Chen 1984; DeCarlo 1989; Brogan 1991; etc.). 

For details on the staircase algorithms for finding the controller-Hessenberg 
and observer-Hessenberg forms, see Boley ( 1981), Paige (1981 ), Van Dooren and 
Verhaegen (1985), etc. For computation of the Kalman decomposition, see Boley 
(1980, 1991), etc. For more on the concept of the distance to uncontrollability and 
related algorithms, see Boley (1987), Boley and Lu (1986), Eising (1984), Wicks 
and DeCarlo (1991), Eisner and He (1991), Paige (1981), Miminis (1981), Kenney 
and Laub (1988), and Gao and Neumann (1993). For a test of controllability via 
real Schur form, see Varga (1979). 

Exercises 

6.1 Prove that (A, B) is controllable if and only if for a constant matrix F, the matrix 
(A + B F, B) is controllable, that is, the controllability of a system does not change 
under state feedback. (The concept of state feedback is defined in Chapter 10.) 
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6.2 

6.3 

6.4 

6.5 

Construct an example to show that the observability of a system may change under 
state feedback. 
A matrix A is called a cyclic matrix if in the JCF of A, there is only one Jordan box 
associated with each distinct eigenvalue. 
Let A be a cyclic matrix and let the pair (A, B) be controllable. Then prove that for 
almost all vectors v, the pair (A, By) is controllable. 
Give a 2 x 2 example to show that the cyclicity assumption is essential for the result 
of Problem 6.3 to hold. 
Show that (A, c) is observable if and only if there exists a vector k such that 

( ( k )  , A - bk) 

6.6 
6.7 
6.8 

is observable. 
Prove the parts (i), (ii), (iv)-(vi) of Theorem 6.3.1. 
Prove Theorem 6.4.2. 
Using Theorems 6.4.1 and 6.4.2, give a proof of Theorem 6.4.3 (The Kalman 
Canonical Decomposition Theorem). 

6.9 Prove that the change of variable s = T x, where T is nonsingular, preserves the 
controllability and observability of the system (A, B, C). 

6.10 Work out an algorithm to compute the nonsingular transforming matrix that trans- 
forms the pair (A, b) to the upper companion form. When can the matrix transforming 
T be highly ill-conditioned? Construct a numerical example to support your 
statement. 

6.11 Apply the test based on the eigenvalue criterion of controllability to Example 6.6.2 
and show that this test will do better than the one based on the criterion (ii) of 
Theorem 6.2.1. 

6.12 Applying the staircase algorithm to the pair (A, b) in Example 6.6.2, show that the 
pair (A, b) is uncontrollable. 

_ 

6.13 If the controller-Hessenberg pair (H, B) of the controllable system (A, B) is such 
that the subdiagonal blocks of H are nearly rank-deficient, then the system may be 
very near to an uncontrollable system. 
(a) Construct examples both in the single- and multi-input cases in support of the 

above statement. 
(b) Construct another example to show that the converse is not necessarily true, 

that is, even if the subdiagonal blocks of H have robust ranks, the system may 
be close to an uncontrollable system. 

6.14 Show that to check the controllability for the pair (A, B), where 

A = diag(1, 2-1 . . . . .  21 - n  ) and B = 

1 

i 
the eigenvalue-criterion for controllability (the PBH criterion) will do better than the 
criterion (ii) of Theorem 6.2.1. 
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6.15 Let (H - (n i j ) , /~)  be the controller-Hessenberg form of the pair (A, B). Then prove 
the following: 

(a) If Hi,i-1 = 0 for any i, then (A, B) is not controllable. 

(b) # (A,  B) < min Hi i-1112. 
l<i<k ' 

6.16 Prove that # (A,  B) remains invariant under an orthogonal transformation. 
6.17 Let (A,/~) be as in (6.5.2). Prove that #(/~,/~) < sin(re/n) (Kenney and Laub 1988). 
6.18 Develop an algorithm for the reduction of the pair (A, C) to the observer-Hessenberg 

form (6.8.1), without invoking the algorithm for the controller-Hessenberg reduction 
to the pair (AT, C T). How can one obtain the observability indices of the pair (A, C) 
from this form? 

6.19 Construct a simple example to show that the minimum which yields # (A,  B) is not 
achieved when s is an eigenvalue of A. 

6.20 Rework Example 6.9.1 with the initial point as one of the eigenvalues of F -- (A BD) ' 
where (C, D) is a random matrix such that F is square. 

6.21 Apply the bisection method to Example 6.9.1 to find an estimate of #R(A,  B). 
6.22 Find/x(A,  B) and #R(A,  B), where A and B are given by: 

0 1 0 
�9 o ~ 

0 " 
A = . . and B = 

�9 . ". @ 
o 1 

o lOxlO lOxl 

6.23 Derive Newton's algorithm for computing #R (A, B). 
6.24 (Laub and Linnemann 1986). Consider the controllable pair 

((i 0 0 i)(i)) (H,/~) -- - 3  0 
c~ - 2  ' ' 
0 ot - 

with 0 < ot < 1. Show (experimentally or mathematically) that the pair (H,/~) is 
close to an uncontrollable pair. 

6.25 Let (A, B) be controllable. Let B -- (B 1, B2), with B 1 consisting of minimum 
number of inputs such that (A, B) is controllable. Then prove that (A, B1) is closer 
to an uncontrollable system than (A, B) is; that is, prove that 

min O'n (B1, A - s I )  < min cr n (B, A - s I ), s c C 

6.26 (Gao and Neumann 1993). Let I. 0 6 C and let p 6 C be on the unit circle. Consider 
the straight line )~ - ,k 0 + tp, t ~ IR. Then prove that 

min ~ - (~.0 + tp)I,  B) < ot 
tE]R 

if and only if the matrix 

GCc~) = [ //SCA )~0 I)  
\ - p I  

[~( B B* _ f f 2 I ) )  

p(A* - )~0 I) ~] 

has a real eigenvalue. 
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Based on the above result, derive an algorithm for computing #R (A, B). 
(Hint: take )~0 = 0, p = 1.) 
Test your algorithm with Example 6.9.1. 

6.27 (a) Construct a state-space representation of the following second-order model. 

U 

I m m 

+ - k  
- k  

m //3 c 

ii; (00' 2k u2 = 

- k  u3 \Oj 

(b) Show that the system is not controllable for 

b -  , b -  , or b -  . 

6.28 ConsiderExample5 .2 .6onthemotionofanorbit ingsate l l i tewithd0-  1 . L e t x ( t ) -  
(Xl (t), x2(t), x3 (t), xa(t)) T, u(t) -- (Ul (t), u2(t)) T, and y(t) -- (Yl (t), y2 (t)) T. 
(a) Show that one of the states cannot be controlled by the radial force u 1 (t) alone, 

but all the states can be controlled using the tangential force u2(t). 
(b) Show that all the states are observable using both the outputs; however, one of 

the states cannot be observed by Yl (t) alone. 
6.29 (Boley 1985). Let (H,/~) be the controller-Hessenberg pair of the control- 

lable pair (A,b) such that ]]H]] 2 + 11/~]]2 < 41-- Then prove that the quantity 

[/~lh21h32 . . .  hn,n_l[ gives a lower bound on the perturbations needed to obtain 
an uncontrollable pair. Construct an example to support this. 

6.30 Does the result of the preceding exercise hold in the multi-input case? Prove or 
disprove. 

6.31 Consider the example of balancing a stick on your hand (Example 5.2.4). We know 
from our experience that a stick can be balanced. Verify this using a criterion of 
controllability. Take L -- 1. (0) 

A - -  , b =  g . 
---~ 
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+ 

FIGURE 6.1: 

Ra t 
C1 -21  

L  R21 t! 
iLl lL2 

VCI c 2 - -  l Vc2 

Uncontrollability of an electrical network. 

6.32 (An Uncontrollable System) (Szidarovszky and Bahill (1991, pp. 223-224)). Con- 
sider the electric network in Figure 6.1 with two identical circuits in parallel. 
Intuitively, it is clear that there cannot exist a single input that will bring one cir- 
cuit to one state and the other to a different state. Verify this using a criterion of 
controllability. Take L1 = L2 = 1, C1 = C2 = 1, and R1 = R2 : 1. 
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CHAPTER 7 

STABILITY, INERTIA, AND 
ROBUST STABILITY 

7.1 INTRODUCTION 

This chapter deals with stability of a linear time-invariant system and the asso- 
ciated aspects such as the inertia of a matrix, distance from an unstable system, 
robust stability, and stability radius and computing the H2-norm of a stable 
transfer function. A classical approach to determine the stability and inertia is 
to solve a Lyapunov equation or to find the characteristic polynomial of the 
state matrix A followed by application of the Routh-Hurwitz criterion in the 
continuous-time case and the Schur-Cohn criteria in the discrete-time case. These 
approaches are historically important and were developed at a time when numer- 
ically finding the eigenvalues of a matrix, even of a modest order, was a difficult 
problem. However, nowadays, with the availability of the QR iteration method 
for eigenvalue computation which is reliable, accurate, and fast, these approaches 
for stability and inertia, seem to have very little practical value. Furthermore, the 
Lyapunov equation approach is counterproductive in a practical computational 
setting in the sense that the most numerically viable method, currently available 
for solution of the Lyapunov equation, namely, the Schur method (described in 
Chapter 8), is based on transformation of the matrix A to a real Schur form (RSF) 

201 



202 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY 

and the latter either explicitly displays the eigenvalues of A or the eigenvalues can 
be trivially found once A is transformed into this form. Also, as mentioned before, 
finding the characteristic polynomial of a matrix, in general, is a numerically 
unstable process. In view of the above statements, it is clear that the best way to 
numerically check the stability and inertia is to explicitly compute all the eigen- 
values. However, by computing the eigenvalues, one gets more than stability and 
inertia. Furthermore, if the eigenvalues of A are very ill-conditioned, determining 
the stability and inertia using eigenvalues may be misleading (see Section 7.6). 
The question, therefore, arises if an approach can be developed that does not 
require explicit computation of the eigenvalues of the state matrix A nor solution 
of a Lyapunov equation. Such an implicit method (Algorithm 7.5.1) is developed 
in Section 7.5. This method is about three times faster than the eigenvalue 
method and, of course, many times faster than solving Lyapunov equation in 
a numerically effective way using the Schur method. 

An important practical problem "How nearly unstable is a stable system (or 
equivalently a stable matrix)?" is discussed in Section 7.6. A simple bisection 
algorithm (Algorithm 7.6.1) due to Byers (1988) to measure the distance of a 
stable matrix A from a set of unstable matrices is provided. A brief discussion of 
robust stability is the topic of Section 7.7. 

The concept of stability radius in the context of robust stability is introduced 
in Section 7.8 and a recent important formula for real stability radius due to Qiu 
et al. (1995) is stated. This concept will again be revisited in Chapter 10, where 
a connection of the complex stability radius with an algebraic Riccati equation 
(ARE) will be made. 

The relationships between the controllability and observability Grammians 
and the H2-norm of an asymptotically stable system with Lyapunov equations 
are discussed in Sections 7.2.3, 7.2.4, and 7.3, and a computational algorithm 
(Algorithm 7.2.1) for computing the H2-norm of a stable continuous-time system 
is described in Section 7.2.4. 

Reader's Guide to Chapter 7 

Readers familiar with the basic concepts of stability and Lyapunov stability 
theory can skip Sections 7.2 and 7.3. 

7.2 STABILITY OF A CONTINUOUS-TIME SYSTEM 

The stability of a system is defined with respect to an equilibrium state. 

Definition 7.2.1. An equilibrium state o f  the unforced system 

~c(t) - A x ( t ) ,  x(O) -- xo, (7.2.1) 
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is the vector Xe satisfying 

Axe : 0 .  

Clearly, X e  - -  0 is an equilibrium state and it is the unique equilibrium state 
if and only if A is nonsingular. 

Definition 7.2.2. An equilibrium state Xe is asymptotically stable if  for  any 
initial state, the state vector x ( t )  approaches Xe as time increases. 

The system (7.2.1) is asymptotically stable if and only if the equilibrium state 
Xe = 0 is asymptotically stable. Thus, the system (7.2.1) is asymptotically stable 
if and only if x (t) --~ 0 as t --~ c~. 

7.2.1 Eigenvalue Criterion of Continuous-Time Stability 

Below we state a well-known criterion of asymptotic stability of a continuous-time 
system. 

Theorem 7.2.1. The system (7.2.1) is asymptotically stable if  and only if all 
the eigenvalues o f  the matrix A have negative real parts. 

Proof. From Chapter 5, we know that the general solution of (7.2.1) is 

X (t) -- e at xo. 

Thus, x( t )  --+ 0 if and only if e At --~ 0 as t ~ cx:~. We will now show that this 
happens if and only if all the eigenvalues of A have negative real parts. 

Let X -1AX -- diag(J1, -/2 . . . . .  ark) be the Jordan canonical form (JCF) of A. 
Then, 

e At -- X diag(e Jlt, e J2t . . . . .  eJkt )x  -1 . 

Let ~,i be the eigenvalue of A associated with Ji. Then e Jit ~ 0 if and only if ~.i 
has a negative real part. Therefore, e At --+ 0 if and only if all the eigenvalues of A 
have negative real parts. I 

Definition 7.2.3. A matrix A is called a stable matrix if  all o f  the eigenvalues 

o f  A have negative real parts. 

A stable matrix is also known as a Hurwitz matrix in control literature. In analogy, 
an eigenvalue with negative real part is called a stable eigenvalue. 

Since the asymptotic stability of (7.2.1) implies that its zero-input response 
approaches zero exponentially, the asymptotic stability is also referred to as 
exponential stability. 

Definition 7.2.4. Let )~1 . . . . .  )~n be the eigenvalues o f  A. Then the distance 
min{-Re(Xi )"  i -- 1 . . . . .  n} to the imaginary axis is called the stability 
margin of A. 
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In this book, the "stability" of a system means "asymptotic stability," and the 
associated matrix A will be referred to as "stable matrix," not asymptotically 
stable matrix. 

Bounded-Input Bounded-Output Stability 

The continuous-time linear system: 

Jc(t) = Ax( t )  + Bu(t) ,  
y(t)  -- Cx(t)  (7.2.2) 

is said to be bounded-input bounded-output (BIBO) stable if for any bounded 
input, the output is also bounded. 

The BIBO stability is governed by the poles of the transfer function G(s) = 
C(s I  - A) -1B. Specifically, the following result can be proved: (Exercise 7.5). 

Theorem 7.2.2. The system (7.2.2) is BIBO stable if and only if every pole of 
G (s) has a negative real part. 
Since every pole of  G(s) is also an eigenvalue of  A, an asymptotically stable 
system is also BIBO stable. However,  the converse is not true. The following 
simple example illustrates this. 

Example 7.2.1. 

G(s) - C(sI - A ) - IB  - (1 1 ) ( s - 1  
' \ 0 

y -- (1, 1)x. 

0 1 

s + l  s + l  

Thus, the system is BIBO (note that the pole of G(s) is -1) ,  but not 
asymptotically stable. 

Bounded-Input Bounded-State (BIBS) Stability 

Definition 7.2.5. The system (7.2.2) is BIBS stable if for any bounded input, 
the state response is also bounded. 

The following characterization of BIBS can be given in terms of eigenvalues of 
A and the controllability of the modes. For a proof of Theorem 7.2.T, see DeCarlo 
(1989, pp. 416-417). 

Theorem 7.2.2'. BIBS. The system (7.2.2) is BIBS stable if and only if 

(i) All the eigenvalues of  A have nonnegative real parts. 
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(ii) I f  an eigenvalue )~i has a zero real part, then the order of  the associated 
factor in the minimal polynomial of A must be 1. 

(iii) The mode associated with an eigenvalue with zero real part must be 
uncontrollable. 

7.2.2 Continuous-Time Lyapunov Stability Theory 

In this section, we present the historical Lyapunov criterion of stability. Before 
the advent of computers, finding the eigenvalues of a matrix A was an extremely 
difficult task. The early research on stability, therefore, was directed toward find- 
ing the criteria that do not require explicit computation of the eigenvalues of a 
matrix. In 1892, the Russian mathematician A. Lyapunov (1857-1918) devel- 
oped a historical stability criterion for nonlinear systems of equations. In the 
linear case, this criterion may be formulated in terms of the solution of a matrix 
equation. 

Theorem 7.2.3. Lyapunov Stability Theorem. The system: 

)c(t) = Ax(t) ,  

is asymptotically stable if and only if for any symmetric positive definite matrix 
M, there exists a unique symmetric positive definite matrix X satisfying the 
equation: 

X A  + A T x  = - M .  (7.2.3) 

Proof. Let's define a matrix X by 

fo ~ 
X -- eATtMeAtdt. (7.2.4) 

Then, we show that when the system is asymptotic stable, X is a unique solution 
of the equation (7.2.3) and is symmetric positive definite. 

Using the expression of X in (7.2.3), we obtain 

f0 f0 X A  + A T x  -- eATtMeAtAdt  + ATeATtMeAtdt 

fo ~ d (eATt At [eATt MeAt oo = -d-; Me )d t  - ]o 

Since A is stable, e ATt ~ 0 as t -+ ~ .  Thus, X A  -+- AT x -- - M ,  showing that 
X defined by (7.2.4) satisfies the Eq. (7.2.3). 
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To show that X is positive definite, we have to show that U TXu > 0 for any 
nonzero vector u. Using (7.2.4) we can write 

f0 ~ 
u TXu  -" u Te ATt Me  At u dt .  

Since the exponential matrices e ATt and e At are both nonsingular and M is positive 

definite, we conclude that u TXu > O. 

To prove that X is unique, assume that there are two solutions X1 and X2 of 

(7.2.3). Then, 

AT(x1  - X2) q- (X1 - X 2 ) A  --O,  

which implies that 

eATt(AT(x1 -- X2) + (X1 - X2)A)e  At - 0 

or 

d [eATt ( x 1 -  X2)e At] - - 0 ,  
dt  

and hence e ATt (X1 - X2)e At is a constant matrix for all t. 

Evaluating at t = 0 and t - c~ we conclude that X1 - X2 = 0. 
We now prove the converse, that is, we prove that if X is a symmetric positive 

definite solution of the equation (7.2.3), then A is stable. 
Let (~., x) be an eigenpair of A. Then premultiplying the equation (7.2.3) by x* 

and postmultiplying it by x, we obtain: 

x * X A x  + x * A T X x  = ~.x*Xx + ~.x*Xx = (~. + ~.)x*Xx = - x * M x .  

Since M and X are both symmetric positive definite, we have ~. + ~. < 0 or 

Re()Q < 0. 1 

Note: The matrix X defined by (7.2.4) satisfies the Eq. (7.2.3) even when M is 
not positive definite. 

Definition 7.2.6. The matrix equation: 

X A  + A T x  -- - M  

and its dual 

A X  + X A  T = - M  

are called the Lyapunov equations. 
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Remark (Lyapunov Function) 

The Lyapunov stability theory was originally developed by Lyapunov 
(Liapunov (1892)) in the context of stability of a nonlinear system. The 
stability of a nonlinear system is determined by Lyapunov functions. See 
Luenberger (1979) for details. For the linear system: 

Y c ( t ) -  A x ( t ) ,  

the function V (x)  - x T X x ,  where X is symmetric is a Lyapunov function 
if the ~' (x), the derivative of V (x), is negative definite. This fact yields an 
alternative proof of Theorem 7.2.3. This can be seen as follows: 

P (X) -- .~Txx  i f  X TXX,  

: x T ( A T x  -+- X A )  x ,  

= x* ( - M ) x .  

Thus, l~" (x) is negative definite if and only if M is positive definite. 
We note the following from the proof of Theorem 7.2.3. 

Integral Representations of the Unique Solutions of Lyapunov 
Equations 

Let A be a stable matrix and let M be symmetric, positive definite, or 
semidefinite. Then, 

The unique solution X of the Lyapunov equation: 

X A  + A T x  -- - M  

is given by 

f0 ~ 
X = e ATt M e  Atdt.  (7.2.5) 

The unique solution X of the Lyapunov equation 

A X  + X A  T -- - M  

is given by 

X -- e At M e  aTt d t .  (7.2.6) 

As we will see later, the Lyapunov equations also arise in many other 
important control theoretic applications. In many of these applications, the 
right-hand side matrix M is positive semi-definite, rather than positive def- 
inite. The typical examples are M = B B T or M - C TC, where B and C 
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are, respectively, the input and output matrices. The Lyapunov equations 
of the above types arise in finding G r a m m i a n s  of a stable system (see 
Section 7.2.3). 

Theorem 7.2.4. Let A be a stable matrix. Then the Lyapunov equation: 

X A + AT X -- - C  T C (7.2.7) 

has a unique symmetric positive definite solution X i f  and only i f  (A, C) is 

observable. 

Proof. We first show that the observability of (A, C) and stability of A imply 
that X is positive definite. 

Since A is stable, by (7.2.5) the unique solution X of the equation (7.2.7) is 

given by 

fo ~ A TtC TCe At X - -  e dt .  

If X is not positive definite, then there exists a nonzero vector x such that X x  - O. 

In that case 

o ~ I[Ce At xll 2 dt -- 0; 

this means that C eAtx -- O. Evaluating C eAtx -- 0 and its successive derivatives 
at t - 0, we obtain C A i x  -- 0, i -- 0, 1 . . . . .  n - 1. This gives OMx = 0, where 
OM is the observability matrix. Since (C, A) is observable, OM has full rank, and 
this implies that x - 0, which is a contradiction. 

Hence C eAtx ~= O, for every t. So, X is positive definite. 
Next, we prove the converse. That is, we prove that the stability of A 

and definiteness of X imply that (A, C) is observable. The proof is again by 
contradiction. 

Suppose (A, C) is not observable. Then, according to criterion (v) of Theo- 
rem 6.3.1, there is an eigenvector x of A such that Cx  - O. Let ~. be the eigenvalue 
corresponding to the eigenvector x. Then from the equation: 

X A  + A T x  -- - c T c ,  

we have x * X A x  + x * A T X x  -- - x * C T C x  or (~. + f~)x*Xx -- - IICxll 2 

So, (~. + ~ ) x * X x  - O. 

Since A is stable, ~. + ~. < 0. Thus, 

x * X x  - 0 .  

But X is positive definite, so x must be a zero vector, which is a contradiction. I 

We next prove a necessary and sufficient condition of stability assuming that 
(A, C) is observable. 
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Theorem 7.2.5. Let (A, C) be observable. Then A is stable if and only if 
there exists a unique symmetric positive definite solution matrix X satisfying 
the Lyapunov equation (7.2.7). 

Proof. We have already proved the theorem in one direction, that is, we 
have proved that if A is stable and (A, C) is observable, then the Lyapunov 
equation (7.2.7) has a unique symmetric positive definite solution X given by: 

X - e a~t C f C e  at dt. 

We now prove the other direction. Let ()~, x) be an eigenpair of A. Then as before 
we have 

(~ + 2)x*Xx  - - IlCxll 2 . 

Since (A, C) is observable, Cx 4: 0, and since X is positive definite, x* Xx  > O. 
Hence X 4- ~, < 0, which means that A is stable. 1 

For the sake of convenience, we combine the results of Theorems 7.2.4 and 7.2.5 
in Theorem 7.2.6. 

In the rest of this chapter, for notational convenience, a symmetric positive 
definite (positive semidefinite) matrix X will be denoted by the symbol X > 0 
(>__ 0). 

Theorem 7.2.6. Let X be a solution of the Lyapunov equation (7.2.7). Then 
the followings hold." 

(i) I f  X > 0 and (A, C) is observable, then A is a stable matrix. 
(ii) I f  A is a stable matrix and (A, C) is observable, then X > O. 

(iii) I f  A is a stable matrix and X > O, then (A, C) is observable. 

Since observability is a dual concept of controllability, the following results can 
be immediately proved by duality of Theorems 7.2.4 and 7.2.5. 

Theorem 7.2.7. Let A be a stable matrix. Then the Lyapunov equation: 

A X  + X A  T -- - B B  T (7.2.8) 

has a unique symmetric positive definite solution X if and only if (A, B) is 
controllable. 

Theorem 7.2.8. Let (A, B) be controllable. Then A is stable if and only if 
there exists a unique symmetric positive definite X satisfying the Lyapunov 
equation (7.2.8). 
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Theorems 7.2.7 and 7.2.8 can also be combined, in a similar manner, as in 
Theorem 7.2.6, to obtain the following: 

Theorem 7.2.9. Let X be a solution of the Lyapunov equation (7.2.8). Then 
the followings hold: 

(i) 
(ii) 

(iii) 

If  X > 0 and (A, B) is controllable, then A is a stable matrix. 
If  A is a stable matrix and (A, B) is controllable, then X > O. 
If  A is a stable matrix and X > O, then (A, B) is controllable. 

7.2.3 Lyapunov Equations and Controllability and Observability Grammians 

Definition 7.2.7. Let A be a stable matrix. Then the matrix: 

fo ~176 
CG : e At B B T e ATt dt (7.2.9) 

is called the controllability Grammian, and the matrix: 

fo ~ 
OG = eATtcTceAtdt (7.2.10) 

is called the observability Grammian. 

In view of these definitions, Theorems 7.2.7 and 7.2.4 can be, respectively, restated 
as follows. 

Theorem 7.2.10. Controllability Grammian and the Lyapunov Equation. Let 
A be a stable matrix. Then the controllability Grammian CG satisfies the 
Lyapunov equation 

ACG + CGA T - - B B  T (7.2.11) 

and is symmetric positive definite if and only if (A, B) is controllable. 

Theorem 7.2.11. Observability Grammian and the Lyapunov Equation. Let A 
be a stable matrix. Then the observability Grammian OG satisfies the Lyapunov 
equation 

OGA + A TOG -- - c T c  (7.2.12) 

and is symmetric positive definite if and only if (A, C) is observable. 
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Example 7.2.2. Let 

(o 2 i) (1) A -  - 2  , B =  1 . 
0 1 

The controllability Grammian Cc obtained by solving the Lyapunov equation (using 
MATLAB command lyap) AX + XA T = - B B  T is 

{0.2917 0.0417 0.0417~ 
CG= /0.0417 0.1667 0.16671, 

\0.0417 0.1667 0.1667] 

which is clearly singular. So, (A, B) is not controllable. 
Verify: The singular values of the controllability matrix CM are 25.6766, 0.8425, 

and 0. 

7.2.4 Lyapunov Equations and the H2-Norm 

In this section, we show how the He-norm of the transfer matrix of an asymptoti- 
cally stable continuous-time system can be computed using Lyapunov equations. 

Definit ion 7.2.8. The He-norm of the transfer matrix G(s) of  an asymptoti- 
cally stable continuous-time system: 

2 = A x + B u ,  
y - C x ,  (7.2.13) 

denoted by II G II 2, is defined by 

(lf_  )1/2 -- Trace(G(jw)* G( jw))  do) (7.2.14) IIGII2 ~ -  ~ 

Thus, the H2-norm measures  the steady-state covariance of  the output  
response y -- G v to the white noise inputs  v. 

Computing the H2-Norm 

By Parseval's theorem in complex analysis (Rudin 1966, p. 191), (7.2.14) can be 
written as 

(foCX~ )1/2 IIa(s)ll2 - Trace (h T (t)h(t)) dt , 

where h(t) is the impulse response matrix: 

h(t) = Ce at B. 
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Thus, 

( (fo II a I1~ - Trace BT eATtcTceAtdt) B ) ,  

= Trace( B TOG B), 

where OG is the observability Grammian given by (7.2.10). 
Similarly, we can show that 

IIGII,~ = Trace(CCGCT), (7.2.15) 

where Cc is the controllability Grammian given by (7.2.9). 
Since A is stable, the controllability and observability Grammians satisfy, 

respectively, the Lyapunov equations (7.2.11) and (7.2.12). 
Thus, a straightforward method for computing the H2-norm is as follows: 

Algorithm 7.2.1. Computing the H2-Norm 
Input. The system matrices A, B, and C. 
Output. The H2-norm of the system (A, B, C). 
Assumption. A is stable. 
Step 1. Solve the Lyapunov equation (7.2.11) or (7.2.12) 
Step 2. Compute either Trace(CCGC T) or Trace(B T OGB), depending upon 

which of the two Lyapunov equations is solved, and take the square-root of either 
of these two values as the value of the H2-norm. 

Example 7.2.3. 

(o1  (i 1) tll A--  - 2  , B =  1 , C =  1 1 
0 1 

Step 1. The solution of the Lyapunov equation (7.2.11), CG, is 

{9.1833 2.5667 1.0167~ 
Co--  /2.5667 1.0333 0 .5333 | ,  

\1.0167 0.5333 0.3333] 

18.7833 
Ct - CCGCT = 18.7833 

18.7833~ 
18.7833,] " 

1 
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The solution of the Lyapunov equations (7.2.12), Oc, is 

1 1.3333 1.9167~ 
Oc -- 1.3333 1.8333 2.7000],  

1.9167 2.7000 4.0500/ 

8.7833 18.783 " 

Step 2. Hz-norm = ~/Trace(B') - ~/Trace(C') - ~/37.5667 - 6.1292. 

M A T C O N T R O L  note: Algorithm 7.2.1 has been implemented in MATCON- 
TROL function h2nrmeg and h2nrmog. 

MATLAB Note. MATLAB function norm(sys) computes the Hz-norm of a 
system. 

7.3 STABILITY OF A DISCRETE-TIME SYSTEM 

7.3.1 Stability of a Homogeneous Discrete-Time System 

Consider the discrete-time system: 

x~+l = Ax~ (7.3.1) 

with initial value x0. 
A well-known mathematical criterion for asymptotic stability of the homo- 

geneous discrete-time system now follows. The proof is analogous to that of 
Theorem 7.2.1 and can be found in Datta (1995). 

Theorem 7.3.1. The system (7.3.1) is asymptotically stable i f  and only i f  all 

the eigenvalues o f  A are inside the unit circle. 

Definition 7.3.1. A matrix A having all its eigenvalues inside the unit circle 

is called a discrete-stable matrix, or a convergent  matr ix  or a S c h u r  matrix.  

We shall use the terminology discrete-stable throughout the book. 

Discrete-Time Lyapunov Stability Theory 

Each of the theorems in Section 7.2 has a discrete counterpart. In the discrete case, 
the continuous-time Lyapunov equations X A  + A T x  -- - M  and A X  + X A  T = 

- M  are, respectively, replaced by their discrete-analogs X - ATXA - M and 
X -  A X A  T -- M.  

These discrete counterparts of the continuous-time Lyapunov equations are 
called the Stein equations. The Stein equations are also known as diserete- 
Lyapunov equations in control literature. 
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In the following, we state and prove a discrete analog of Theorem 7.2.3. The 
statements and proofs of the discrete counterparts of Theorems 7.2.4 through 7.2.9 
are analogous. In fact, the Lyapunov and Stein equations are related via the 
matrix analogs of the well-known bilinear transformation (known as the Cayley 
transformation)" 

l + s  z - 1  
z = ~ ,  s = (7.3.2) 

1 - s  z + l  

Note that Izl < 1 r Re(s) < 0 and Izl = 1 <, R e ( s ) =  0. 

Theorem 7.3.2. Discrete-Time Lyapunov Stability Theorem. The discrete- 
time system (7.3.1) is asymptotically stable if and only if for any positive definite 
matrix M, there exists a unique positive definite matrix X satisfying the discrete 
Lyapunov equation: 

X - AT X A - M. (7.3.3) 

Proof. We prove the theorem in one direction, that is, we prove that if A is 
discrete-stable, then Eq. (7.3.3) has a unique symmetric positive definite solution 
X. The proof of the other direction is left as an Exercise (7.10). 

Define the matrix 
oo  

X -  ~ ( A T ) k M A  k. (7.3.4) 
k=0 

Since A is discrete-stable, the infinite series on the fight-hand side converges. 
Furthermore, the matrix X is symmetric and positive definite. 

We now show that X is the unique solution of the Eq. (7.3.3). Indeed, 

oo  oo  

X -  A T X A  -- ~ ( A T ) k M A  k - ~-~(AT)kMA k -- M. (7.3.5) 
k = 0  k = l  

Thus, X defined by (7.3.4) satisfies the Eq. (7.3.3). 
To prove that X is unique, let's assume that there is another symmetric positive 

definite solution X1 of (7.3.3). 
Then, 

X1 -- A T x 1 A  - M, 

and 
C~3 O0 

X -- ~ ( A T ) k M A k  -- ~-~(AT)k(x1 -- ATX1A)A k, 

k=0 k=0 
oo  

= ~ ( A T ) k x 1 A k  -- ~ ( A T ) k x 1  Ak -- X1. II 

k=O k=l 
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Remark (BIBO and BIBS Stability of a Discrete-Time System) 

�9 Results on BIBO stability and BIBS stability, the discrete counter parts of 
Theorem 7.2.2 and Theorem 7.2.2 t can be obtained, for the discrete-time 
system: 

X k + l  - -  A x k  -a t- B u k .  

See Exercises 7.7 and 7.8 and the book by DeCarlo (1989). 

Definition 7.3.2. Let A be discrete-stable. Then the matrices: 

O0 

cD -- Z Ak B B T (A T)k (7.3.6) 

k=0 

and 
o o  

0 D -- Z ( A T ) k c T c A  ~ (7.3.7) 

k=0 

are, respectively, called the discrete-time controllability Grammian and 
discrete-time observability Grammians. 

The discrete counterparts of Theorems 7.2.10 and 7.2.11 are: 

Theorem 7.3.3. Discrete-Time Controllability Grammian and Lyapunov 
Equation. Let A be discrete-stable. Then the discrete-time controllability 
Grammian C~ satisfies the discrete Lyapunov equation 

C D - ACDA T = BB w (7.3.8) 

and is symmetric positive definite if and only if (A, B) is controllable. 

Theorem 7.3.4. Discrete-Time Observability Grammian and Lyapunov Equa- 
tion. Let A be discrete-stable. Then the discrete-time observability Grammian 
O~ satisfies the discrete Lyapunov equation: 

O~ - AT O DA = C TC (7.3.9) 

and is symmetric positive definite if and only if (A, C) is observable. 

7.4 SOME INERTIA THEOREMS 

Certain design specifications require that the eigenvalues lie in a certain region of 
the complex plane. Thus, finding if a matrix is stable is not enough in many practical 
instances. We consider the following problem, known as the inertia problem, which 
is concerned with counting the number of eigenvalues in a given region." 
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Definition 7.4.1. The inertia of a matrix A of order n, denoted by In(A), is the 
triplet (re(A), v(A), 3(A)), where 7r(A), v(A), and 3(A) are, respectively, the 
number of eigenvalues of A with positive, negative, and zero real parts, counting 
multiplicities. 

Note that :r (A) + v (A) + ~ (A) = n and A is a stable matrix if and only if 
In(A) = (0, n, 0). 

The inertia, as defined above, is the half-plane or the continuous-time inertia. 
The inertia with respect to the other regions of the complex plane can be defined 

similarly. 
The discrete-time inertia or the unit-circle inertia is defined by the triplet 

(no(A), vo(A), ~o(A)), where no(A), vo(A), 6o(A), are, respectively the num- 
ber of eigenvalues of A outside, inside, and on the unit circle. It will be denoted 
by Ino (A). 

Unless otherwise stated, by "inertia" we will mean the "half-plane inertia." 
Much work has been done on the inertia theory of matrices. We will just 

give here a glimpse of the existing inertia theory and then present a compu- 
tational algorithm for computing the inertia. For details, we refer the curious 
readers to the recent survey paper of the author (Datta 1999). This paper gives 
an overview of the state-of-the-art theory and applications of matrix inertia 
and stability. The applications include new matrix theoretic proofs of several 
classical stability tests, applications to D-stability and to continued functions, 
etc. (Datta 1978a, 1978b, 1979, 1980). For other control theoretic applications 
of the inertia of a matrix, see Glover (1984), and the book by Zhou et al. 
(1996). 

7.4.1 The Sylvester Law of Inertia 

A classical law on the inertia of a symmetric matrix A is the Sylvester Law of 
Inertia, stated as follows: 

Let A be a symmetric matrix and P be a nonsingular matrix. Then, 

In(A) - In(PApT). 

Proof. See Horn and Johnson (1985, pp. 223-229). 

Computing the Inertia of a Symmetric Matrix 

If A is symmetric, then Sylvester's law of inertia provides an inexpensive and 
numerically effective method for computing its inertia. 
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A symmetric matrix A admits a triangular factorization: 

A - UDU T, 

where U is a product of elementary unit upper triangular and permutation matrices, 
and D is a symmetric block diagonal with blocks of order 1 or 2. This is known 
as diagonal pivoting factorization. Thus, by Sylvester's law of inertia In(A) -- 
In(D). Once this diagonal pivoting factorization is obtained, the inertia of the 
symmetric matrix A can be obtained from the entries of D as follows: 

Let D have p blocks of order 1 and q blocks of order 2, with p + 2q - n. 
Assume that none of the 2 x 2 blocks of D is singular. Suppose that out of p 
blocks of order 1, pt of them are positive, p" of them are negative, and p'" of them 
are zero (i.e., p '  + p" + p'" = p). Then, 

:r(A) = p'  + q, 

v(A)  - p"  + q, 

6 (A) - -  p,1. 

The diagonal pivoting factorization can be achieved in a numerically stable 
way. It requires only n 3/3 flops. For details of the diagonal pivoting factorization, 
see Bunch (1971), Bunch and Parlett (1971), and Bunch and Kaufman (1977). 

LAPACK implementation: The diagonal pivoting method has been implemented 
in the LAPACK routine SSYTRF. 

7.4.2 The Lyapunov Inertia Theorems 

The Sylvester Law of Inertia and the matrix formulation of the Lyapunov cri- 
terion of stability seem to have made a significant impact on the development 
of nonsymmetric inertia theorems. Many inertia theorems for nonsymmetric 
matrices have been developed over the years. These theorems attempt to find a 
symmetric matrix X, given a nonsymmetric matrix A, as a solution of a cer- 
tain matrix equation, in such a way that, under certain conditions, the inertia 
of the nonsymmetric matrix A becomes equal to the inertia of the symmetric 
matrix X. Once the symmetric matrix X is obtained, its inertia can be com- 
puted rather cheaply by application of the Sylvester Law of Inertia to the L D L  T 

decomposition of X. 
Theorem 7.4.1 is the Fundamental Theorem on the inertia of a nonsymmetric 

matrix and is known as the Main Inertia Theorem (MIT) (Taussky (1961) , 
and Ostrowski and Schneider (1962)). This theroem is also known as Ostrowski- 
Schneider-Taussky (OST) Theorem. 
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Theorem 7.4.1. The Main Inertia Theorem. (i) There exists a unique symmet- 
ric matrix X such that 

X A  + A T x  = M > 0 (7.4.1) 

if and only if 3(A) = O. 
(ii) Whenever Eq. (7.4.1) has a symmetric solution X, In(A) = In(X). 

Recovery of the Lyapunov Stability Theorem 

As an immediate corollary of Theorem 7.4.1, we obtain the following. 

Corollary 7.4.1. A necessary and sufficient condition for A to be stable is that 
there exists a symmetric positive definite matrix X such that 

X A  + ATX = - M ,  M > O. 

The Lyapunov Stability Theorem (Theorem 7.2.3) now follows from Corol- 
lary 7.4.1 by noting the fact that the Lyapunov equation for any given positive 
definite matrix M, has a unique solution if and only if A(A) = I-Iinj=l (~,i + ~,j) :/: 
0, where )~1, )~2 . . . . .  ~.n are the eigenvalues of A, and A(A) ~ 0 implies that 
g(A) = 0 (see Chapter 8). 

Theorem 7.4.2. Continuous-Time Semidefinite Inertia Theorem. Assume that 
~(A) = 0 and let X be a nonsingular symmetric matrix such that 

X A  + AT x = M > O. 
D 

Then In(A) - In(X). 

Remarks 

�9 Theorem 7.4.2 is due to Carlson and Schneider (1963). 
�9 For a discrete version of Theorem 7.4.1, see Wimmer (1973), and Taussky 

(1964). 
�9 For a discrete version of Theorem 7.4.2, see Datta (1980). 
�9 The condition ~ (A) -- 0 in Theorem 7.4.2 can be shown to be equivalent 

to the controllability of the pair (A T, M); see Chen (1973) and Wimmer 
(1974). For discrete analogue, see Wimmer and Ziebur (1975). 

7.5 DETERMINING THE STABILITY AND INERTIA OF A 
NONSYMMETRIC MATRIX 

From our discussions in the two previous sections, it is clear that the stability and 
inertia of a nonsymmetric matrix can be determined by solving an appropriate 
Lyapunov equation. 
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Unfortunately this is computationally a counterproductive approach. The 
reason is that the most numerically effective (and widely used) method for solving 
a Lyapunov equation, the Schur method (see Chapter 8), is based on reduction of 
the matrix A to the RSE The RSF either displays the eigenvalues of A or can be 
trivially obtained from there. Of course, once the eigenvalues are computed, the 
stability and inertia are immediately known. 

An alternative classical approach (see Marden 1966) is to compute the charac- 
teristic polynomial of A, followed by application of the Routh-Hurwitz criterion 
in the continuous-time case and the Schur-Cohn Criterion in the discrete-time 
case. This is, unfortunately, also not a numerically viable approach. The 
reasons are that: (i) computing the characteristic polynomial may be a highly 
numerically unstable process and (ii) the coefficients of a polynomial may be 
extremely sensitive to small perturbations. See our discussions in Chapter 4 
(Section 4.1). 

In view of the above considerations, the numerical analysts believe that the 
most numerically effective way to compute the inertia and stability of a matrix A 
is to explicitly compute the eigenvalues of A. However, by explicitly computing 
the eigenvalues of A, one gets more than what is needed, and furthermore, since 
the eigenvalues of a matrix can be sensitive to small perturbations, computing the 
inertia and stability this way may be quite misleading sometimes (see the example 
in Section 7.6 which shows that a perfectly stable matrix may become unstable by 
a very small perturbation of  a single entry of  the matrix). 

It is, therefore, of interest to develop a method for inertia and stability that 
does not require solution of a Lyapunov equation, or explicit computation of the 
characteristic polynomial or the eigenvalues of A. We will now describe such a 
method. 

Algorithm 7.5.1 is based on the implicit solution of a matrix equation. The algo- 
rithm constructs a symmetric matrix F which satisfies a Lyapunov matrix equation 
with a positive semidefinite matrix on the right-hand side, but the Lyapunov 
matrix equation is not explicitly solved. The algorithm was developed by Carlson 
and Datta (1979b). 

Algorithm 7.5.1. An Implicit Matrix Equation Method for  Inertia and 
Stability 

Input. An n x n real matrix A 
Output. The inertia of  A. 
Step 1. Transform A to a lower Hessenberg matrix H using an orthogonal 

similarity. Assume that H is unreduced (Chapter  4). 
Step 2. Construct a nonsingular lower triangular matrix L such that 

LH HLR( ) 
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is a matrix whose first (n - 1) rows are zero, starting with the first row 11 of L 
asll  -- (1 ,0  . . . . .  0). 

Step 3. Having constructed L, compute the last row r of R. 
Step 4. Construct now a matrix S such that 

S H =  HTs,  

with the last row Sn of S as the last row r of R. 
Step 5. Compute F = L T S. 
Step 6. If F is nonsingular, compute the inertia of the symmetric matrix F, 

using the Sylvester law of inertia, as described in Section 7.4.1. 
Step 7. Obtain the inertia of A: In(A) = In(F).  

Theorem 7.5.1. (i) If F is nonsingular, then it is symmetric and In(A) = 
In(F).  (ii) A is stable if and only if F is negative definite. 

Proof. Proof of Part (i). 

FH + HTF = LTSH + H T L T s -  LTHTs  + HTLTs,  

= (LTH T + H T L T ) s -  R T s -  rTr > O. 

The nonsingularity of F implies the nonsingularity of S, and it can be shown (see 
Datta and Datta (1987)) that S is nonsingular if and only if H and - H do not have 
a common eigenvalue. Thus, F is a unique solution of the matrix equation (see 
Theorem 8.2.1): 

FH + HT F -- rTr >_0, 

and is, therefore, necessarily symmetric. Furthermore, since H and - H do not have 
a common eigenvalue, we have ~(H) -- 0. Theorem 7.4.2 now can be applied to 
the above matrix equation to obtain Part (i) of Theorem 7.5.1. 

Proof of Part (ii). First suppose that A is stable, then we prove that F is negative 
definite. Since A is stable, so is H, and therefore, ~(H) -- 0. Again ~(H) -- 0 
implies that H and - H  do not have an eigenvalue in common. Therefore, by 
Theorem 8.2.1 (see Chapter 8), the Lyapunov equation: 

FH + HT F - -  rTr > 0  
m 

has a unique solution F and therefore, must be symmetric F. By Theorem 7.4.2, 
we then have 

In(F)  -- In(A) -- (0, n, 0). 

Thus, F is negative definite. Conversely, let F be negative definite. Then F is 
nonsingular. By part (i), we then have that In(A) -- In(F)  -- (0, n, 0). So, A is 
stable. I 
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Computational remarks 

�9 Computation of  L. Once the first row of L = (lij) in step 2 is pre- 
scribed, the diagonal entries of L are immediately known. These are: 
1, - 1, 1 . . . . .  ( -  1)n- 1. Having known these diagonal entries, the n (n - 1)/2 
off-diagonal entries lij(i > j )  of L lying below the main diagonal can now 
be uniquely determined by solving a lower triangular system if these entries 
are computed in the following order: 121; 131,132; . . . .  lnl, ln2 . . . .  , ln,n-1. 

�9 Computation of  S. Similar remarks hold for computing S in Step 4. Knowing 
the last row of the matrix S, the rows Sn-1 through sl of S can be computed 
directly from the relation S H = H T S. 

Notes 

1. The above algorithm has been modified and made more efficient by Datta 
and Datta (1987). The modified algorithm uses the matrix-adaptation of the 
well-known Hyman method for computing the characteristic polynomial of 
a Hessenberg matrix (see Wilkinson 1965), which is numerically effective 
with proper scaling. 

2. The algorithm has been extended by Datta and Datta (1986) to obtain 
information on the number of eigenvalues of a matrix in several other 
regions of the complex plane including strips, ellipses, and parabolas. 

3. A method of this type for finding distribution of eigenvalues of a matrix 
with respect to the unit circle has been reported by L.Z. Lu (an unpublished 
manuscript (1987)). 

4. A comparison of various methods for inertia computation, and a compu- 
tationally more effective version of the algorithm reported in this section 
appeared in the M.Sc. Thesis of Daniel Pierce (1983). 

Flop-count of  Algorithm 7.5.1 and comparisons with other methods: 
Algorithm 7.5.1 requires about n 3 flops once the matrix A has been transformed 
to the lower Hessenberg matrix H. Since it requires ~ n  3 flops to transform A 

to H, a total of about ~ n  3 flops is needed to determine the inertia and stability 

of A using Algorithm 7.5.1. This count compares very favorable with about 12n 3 
flops needed to compute the eigenvalues of A using the QR iteration algorithm 
described in Chapter 4. Thus,  A l g o r i t h m  7.5.1 s eems  to be about  three t imes  

faster  than the e igenvalue  m e t h o d .  

We have not included the Lyapunov equation approach and the characteristic 
polynomial approach in our comparisons here because of the numerical difficulties 
with the characteristic polynomial approach and the counterproductivity of the 
Lyapunov equation approach, as mentioned in the beginning of this section. 
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Example 7.5.1. We compute In(A) using Algorithm 7.5.1 with 

A m 

1.997 -0.724 0.804 -1.244 -1.365 -2.014 
0.748 2.217 -0.305 1.002 -2.491 -0.660 

-1.133 -1.225 -0.395 -0.620 1.504 1.498 
-0.350 0.515 -0.063 2.564 0.627 0.422 " 
-0.057 -0.631 1.544 0.001 1.074 -1.750 
-1.425 -0.788 1.470 -1.515 0.552 -0.036 

Step 1. Reduction to Lower Hessenberg form: 

H M 

1.9970 2.9390 
0.6570 -1.0007 1.9519 
0.4272 1.5242 0.4502 0.8785 

-0.1321 1.2962 0.9555 1.4541 0.4940 
-0.0391 -1.5738 0.6601 0.2377 2.3530 -0.4801 
-1.8348 -0.5976 0.7595 0.1120 -3.3993 2.1673 

Step 2. Construction of the lower triangular L such that L H + HL -- R" 

L m 

1 
-1.3590 1 

/ 0.6937 1.0209 1 
| - 1 . 3 1 0 5  -1.6810 -3.2933 1 
~ 16846177 22.7729 19.3373 11.7433 1 

258.5635 229.9657 128.4966 21.8842 1 

Step 3. Last row of the matrix R is 

r = (1023.6330, 1293.0942, 1177.7393, 632.4162, 162.4031,-14.8420). 

Step 4. Construction of S such that S H  --  H TS:  

S 

2.1404 3.3084 2.7775 1.3224 -1.0912 0.4808 

~ .3084 5.0426 4.1691 2.0997 -1.2521 0.6073 
�9 7775 4.1691 3.6050 1.8169 -1.1757 0.5531 

i 
.3224 2.0996 1.8169 0.8899 -0.6070 0.2970 " 

- .0912 -1.2521 -1.1757 -0.6070 -0.3845 0.0763 
�9 4808 0.6073 0.5531 0.2970 0.0763 -0.0070 

Step 5. Computation of F -- LT S: 

F m 

75.4820 96.7596 87.8785 47.6385 9.4298 -0.4808 
96.7596 124.1984 112.7028 61.2339 12.0384 -0.6073 
87.8785 112.7028 102.0882 55.4523 10.9292 -0.5531 
47.6385 61.2339 55.4523 30.1476 5.8930 -0.2970 " 

9.4298 12.0384 10.9292 5.8930 1.2847 -0.0763 
-0.4808 -0.6073 -0.5531 -0.2970 -0.0763 0.0070 
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Step 6. Gaussian elimination with diagonal pivoting: P F pT = W D W T, gives 

W 

1 
0.9074 1 
0.7791 -0 .4084 1 
0.0969 -0 .0274 0.4082 1 
0.4930 0.6227 -0.8765 0.0102 1 

-0 .0049 0.0111 -0.0651 -0 .1454 0.0502 1 

p ~.. 

0 1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 

i 0 0 0 1 0 ' 
0 0 1 0 0 
0 0 0 0 1 

D 

124.1984 0 0 0 0 0 
0 -0.1831 0 0 0 0 
0 0 0.1298 0 0 0 
0 0 0 0.0964 0 0 " 
0 0 0 0 -0 .0715 0 
0 0 0 0 0 0.0016 

Step 7. In(A) = In(F) = In(D) = (4, 2, 0). 
Verification: The eigenvalues of A are: 

{-2.1502, 0.8553, 3.6006, 2.0971, 3.1305, -0.1123}, 

confirming that In(A) -- (4, 2, 0). 

MATCONTROL note: Algorithm 7.5.1 has been implemented in MATCON- 
TROL function inertia. 

7.6 DISTANCE TO AN U N S T A B L E  S Y S T E M  

Let A be an n x n complex stable matrix.  A natural question arises" 

How "nearly unstable" is the stable matrix A ? 

We consider the above question in this section. 

Definition 7.6.1. Let A ~ C n xn have no eigenvalue on the imaginary axis. Let 

U ~ C n • be the set ofmatrices having at least one eigenvalue on the imaginary 

axis. Then, with [[" [[ as the 2-norm or the Frobenius norm, the distance from A 
to U is defined by 

/3(A) = min{llEll IA + E 6 U}. 

I f  A is stable, then ~(A)  is the distance to the set o f  unstable matrices. 
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The concept of "distance to instability" is an important practical concept. 
Note that a theoretically perfect stable matrix may be very close to an unstable 
matrix. For example, consider the following matrix (Petkov et al. 1991): 

A 

-0 .5  1 1 1 1 1 
0 -0 .5  1 1 1 1 
0 0 -0 .5  1 1 1 
0 0 0 -O.5 1 1 " 
0 0 0 0 -0 .5  1 
0 0 0 0 0 -0 .5  

Since its eigenvalues are all -0.5,  it is perfectly stable. However, if the (6, 1)th 
entry is perturbed to E = 1/324 from zero, then the eigenvalues of this slightly 
perturbed matrix become: 

- 0 . 8 0 0 6 , - 0 . 7 2 2 2  + 0 .2485j , -0 .3775 -1-0.4120j, 0.000. 
Thus, the perturbed matrix is unstable, showing that the stable matrix A is 

very close to an unstable matrix. 

We now introduce a measure of 13 (A) in terms of singular values and describe 
a simple bisection algorithm to approximately measure it. 

Let crmin(A - jogI) be the smallest singular value of A - jogl. Then it can be 
shown (Exercise 7.14) that 

fl(A) = min trmin(A - jogI). (7.6.1) 

So, for any real o9, O'min (A - j col) is an upper bound on/~ (A), that is,/3 (A) < 
crmin(A - jogl). 

Based on this idea, Van Loan (1985) gave two estimates for/3 (A). One of them 
is a heuris t ic  est imate:  

/3(A) ~ min {crmin(A - jRe(~)I ) l~  6 A(A)},  (7.6.2) 

where A (A) denotes the spectrum of A. 
Thus, using this heuristic estimate,/3(A) may be estimated by finding the singu- 

lar values of the matrix (A - jRe0~) I), for every eigenvalue )~ of A. This approach 
was thought to give an upper bound within an order of magnitude of/~(A). How- 
ever, Demmel (1987) has provided examples to show this bound can be larger than 
/3 (A) by an arbitrary amount. 

The other approach of Van Loan requires application of a general nonlinear 
minimization algorithm to f(o9) = Crmin(A - jo91). We will not pursue these 
approaches here. Rather, we will describe a simple bisection method to estimate 
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/~ (A) due to Byers (1988). The bisection algorithm estimates f ( A )  within a factor 
of 10 or indicates that /3(A) is less than a small tolerance. This is sufficient in 
practice. The algorithm makes use of the crude estimate of the upper bound 13 (A) < 
1 , 
~IIA + A 112. 

To describe the algorithm, let's define a 2n • 2n Hamiitonian matrix H (or), 
given a > 0, by (a ) - - o ' l  

H ( o - ) =  crI - A *  " (7.6.3) 

The bisection method is based on the following interesting spectral property of the 
matrix H (cr). For more on Hamiltonian matrices, see Chapters 10 and 13. 

Theorem 7.6.1. cr > f (A)  if and only if H((r) defined by (7.6.3) has apurely 
imaginary eigenvalue. 

Proof. 
nonzero complex vectors u, v such that 

( A  - c r I ) ( u )  ( u )  
- -  O ) i  cr I -A*  v v 

This gives us 

and 

Let O)i be a purely imaginary eigenvalue of H(a). Then there exist 

(7.6.4) 

(A - (-oi I) u = cr v (7.6.5) 

(A - o)i I)* v = ~ru (7.6.6) 

This means that or is a singular value of the matrix A - COl I. Also, since/3(A) < 
~rmin(A - jwI)  for any real co, we obtain cr >_/~(A). 

Conversely, suppose that cr > 13 (A). Define 

f (ot) = Crmin ( a  - jot I).  

The function f is continuous and lim~__,~ f(ot)  = c~. Therefore, f has a 
minimum value f (ot) = fl (A) < a ,  for some real ot. 

By the Intermediate Value Theorem of Calculus, we have f (co) - a for some 

real o9. 
So, a is a singular value of A - jcol = A - ( . o i  I and there exist unit complex 

vectors u and v satisfying (7.6.5) and (7.6.6). This means that O) i is a purely 
imaginary eigenvalue of H ( a ) .  I 

Algorithm 7.6.1. The Bisection Algorithm for Estimating the Distance to an 
Unstable System 

Inputs. A--An n • n stable complex matrix 
rmTolerance (> 0). 
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Outputs.  Real  numbers  ot and  v such that ei ther v / l O  < ot < f l (A)  <_ v or 

0 - - o r  < f l (A )  <_ v <_ 10r. 
Step 1. Set ot - -O,  v - �89 + A*)II2 
Step 2. Do while v > 10 max (r, or) 

a = ~/v max(r ,  c~) 
I f -  H (a )  has a purely  imaginary  eigenvalue, then set v -- a" else ot - a 

Example 7.6.1. Consider finding f i (A)  for the matrix: 

A _ ( O  1 1 ) 
-0.0001 " 

Z = 0.001 O0 

I teration 1. 

Step 1. Initialization: a - 0, v - 1.2071. 
Step 2. 10 x max(r,  a)  - 0.0100.  

H ( a )  -- 

a -- 0.0347 

- 1  1 -0 .0347  0 
0 -0 .0001 0 -0 .0347  

0.0347 0 1 0 
0 0.0347 - 1  0.0001 

The eigenvalues of H ( a )  are + l ,  •  Since H ( a )  has an purely 
imaginary eigenvalue, we set 

v = a = 0.0347. 

v = 0.0347 > 10 max (r, or) = 0.0100, 

the iteration continues, until v = 0.0059 is reached, at which point, the iteration 
terminates with f l (A)  < 0.0059 < 10r. 

Conclusion:  f l (A)  <_ 0.0059 < 10r. 

Computat ional  remarks: 

The bulk of the work of the Algorithm 7.6.1 is in deciding whether H (a) 
has an imaginary eigenvalue. 
Also, the decision of whether H (a)  has an imaginary eigenvalue in a com- 
putational setting (in the presence of round-off errors) is a tricky one. Some 
sort of threshold has to be used. However, if that decision is made in a 
numerically effective way, then in the worst case, "fl(A) might lie outside 
the bound given by the a lgori thm by an amount  proportional  to the 
precision of the arithmetic" (Byers 1988). 
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Because of the significant computational cost involved in deciding if the 
matrix H (or) at each step has an imaginary eigenvalue, the algorithm may 
not be eomputationally feasible for large problems, 

Convergence. If r - �89 -p  II A + A* II, then at most log 2 p bisection steps are 

required; for example, if r - �89 • 10 -8 IIA + A* II, then at most three bisection 
steps are required. 

M A T C O N T R O L  note: Algorithm 7.6.1 has been implemented in MATCON- 
TROL function disstabc. 

Relation to Lyapunov Equation 

Since Lyapunov equations play a vital role in stability analysis of a linear system, 
it is natural to think that the distance to a set of unstable matrices fl(A) is also 
related to a solution of a Lyapunov equation. Indeed, the following result can be 
proved (See Malyshev and Sadkane (1999) and also Hewer and Kenney (1988)). 

Theorem 7.6.2. Distance to an Unstable System and Lyapunov Equation. Let 

A be complex  stable and let X be the unique positive Hermit ian definite solution 

o f  the Lyapunov equation: 

X A  + A * X  = - M ,  (7.6.7) 

where M is Hermit ian positive definite. Then 

Zmin(M) 
flCA) > 

- 2 IIXll2 

where )~min (M) denotes the smallest eigenvalue o f  M. 

Proof. Let co 6 R and u be a unit vector such that 

f l (A)  
-- max II(A - z I )  -111 --II(A - j o J I ) - l u l l .  

Re(z)=O 
(7.6.8) 

Let x -- (A - j c o I ) - l u .  Then, Ilxl]2 - 1/fi(A). 
Multiplying the Lyapunov equation (7.6.7) by x* to the left and x to the right, 

we have 

x * ( X A  + A * X ) x  -- - x * M x ,  

x * X A x  + x * A * X x  - - x * M x .  

Then, 

x - ( A -  jco l )  -1 u =~ (A - j co I )x  -- u =:~ A x  -- u + jcox 
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and 

x -- (A - j w l ) - l u  =~ x * ( A  - j w I ) *  -- u* :=~ x ' A *  + j w x *  

= u* ==~ x ' A *  -- u* - j w x * .  

Therefore, 

I x * X A x  -+- x * A * X x l  - I x*X(u  + j w x )  -+- (u* - j cox* )Xx l  

- 21u*Xxl <_ 211Xl1211xl12. (7.6.9a) 

Also, by the Rayleigh quotient (see Datta (1995) or Golub and Van Loan (1996)), 
we have, ~.min (M)  < x* M x  I x*x ,  that is, 

~.min(M)llxll 2 ~ x * M x  - I - x * M x l .  

Thus, combining (7.6.9a) and (7.6.9b) yields 

&min(M)lixll 2 < I x * M x l -  I x* (XA  + A * X ) x l  < 2llSll211xll2 
2 - -  

or 

~-min(M)llxll2 ~ 211X112. 

(7.6.9b) 

Since Ilxl12 - 1/fl(A), this means that )~min(M)(1//3(A)) < 211xii2 or fl(A) > 
Zmin/211Xll2. 1 

Example 7.6.2. Consider Example 7.6.1 again. 

A - - ( O  1 _0.10001) �9 

Take M -- 12. Then 

1 
fl(A) ~ 0.0059 > 211x112 

0.5 
9999 

= 5.0002 • 10 -5. 

Verify: The eigenvalues of A + 5.0002 x 10-51 are -0 .9999  and 0. 

Distance to a Discrete Unstable System 

The discrete analog of t3 (A) is defined to be 

y ( A )  - min{llEll I for some 0 ~ R; e iO E ~ ( A  + E)}. (7.6.10) 
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That is, y (A) measures the distance from A to the nearest matrix with an 
eigenvalue on the unit circle. If A is discrete-stable, then y (A) is a measure of 
how "nea r ly  d i sc re t e -uns tab le"  A is. In above, f2 (M) denotes the spectrum of M. 
A discrete-analog of Theorem 7.6.1 is: 

Theorem 7.6.3. Given an n x n complex matrix A, there exists a number 
F(A)  6 /~ such that F(A)  > y (A)  and for F(A)  > cr > y(A) ,  the 2n x 2n 
Hamiltonian matrix pencil 

( - c r l n  A )  ( 0  In ) 
HD(O') -- F(cr) - ZG(cr) -- In 0 - ~" A T -O'In 

has a generalized eigenvalue of magnitude 1. Furthermore, if  or < y(A) ,  then 
the above pencil has no generalized eigenvalue of  magnitude 1. 

Proof. See Byers (1988). 1 

Based on the above result, Byers (1988) described the following bisection 
algorithm to compute  y(A) ,  analogous to Algori thm 7.6.1. 

The algorithm estimates y (A) within a factor of 10 or indicates that y (A) 
is less than a tolerance. The algorithm uses a crude bound F (A) _> tYmin (A - I) .  

Algorithm 7.6.2. The Bisection Algorithm for Estimating the Distance to a 
Discrete-Unstable System 

Inputs. An n x n complex matrix A and a tolerance r > O. 
Outpu t s .  Real numbers t~ and ~ such that 3/10 _< ct _< v (A)  < 8 or 0 = 
< y (A)  < ~ < 10r. 

Step 1. Set ~ -- 0; 6 -- crmin(A - I). 
Step 2. Do while 6 > 10 max (r,  or) 

cr ---- ~/3 max( r ,  ct). 
I f  the pencil F (cr) - ~,G(cr), defined above, has a generalized eigenvalue 
of  magnitude 1, then set ~ -- ~r, else ot - cr. 

End. 

0.9999 1 ) 
Example 7.6.3. Let A = 0 0.5 , r - 10 -8. The matrix A is discrete- 

stable. 
Iteration 1: 

S t e p l "  o r - 0 ,  6 = 4 . 4 7 2 1  x 10 -5 . 
Step 2 : 3  > 10max(r,c~) is verified, we compute o r ' =  6.6874 x 10 -6. The 

eigenvalues of HD(cr) are 2, 1.0001, 0.9999, and 0.5000. Thus, ct ---- 6.6874 x 10 -6. 
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Iteration 2: Since 3 > 10 max(r, oe) is verified, we compute cr = 5.4687 x 10 -6. The 
eigenvalues of HD (~) are 2, 1.001, 0.999, 0.5000; we set o~ = a = 5.4687 x 10 -6. 
Iteration 3:3 < 10 max(r, o~), the iteration stops, and on exit we obtain 

ot = 5.4687 x 10 -6  S -- 4.4721 x 10 -5. 

MATCONTROL note: Algorithm 7.6.2 has been implemented in MATCON- 
TROL function disstabd. 

7.7 ROBUST STABILITY 

Even though a system is known to be stable, it is important to investigate if the 
system remains stable under certain perturbations. Note that in most physical 
systems, the system matrix A is not known exactly; what is known is A + E, 
where E is an n x n perturbation matrix. Thus, in this case the stability problem 
becomes the problem of finding if the system: 

2(t) = (A + E)x( t )  (7.7.1) 

remains stable, given that A is stable. 
The solution of the Lyapunov equations can be used again to obtain bounds 

on the perturbations that guarantee that the perturbed system (7.7.1) remains 
stable. 

In Theorem 7.7.1, O'max(M), as usual, stands for the largest singular value of M. 
We next state a general result on robust stability due to Keel et al. (1988). The 

proof can be found in Bhattacharyya et al. (1995, pp. 519-520). The result there is 
proved in the context of feedback stabilization, and we will revisit the result later 
in that context. The other earlier results include those of Patel and Toda (1980) 
and Yedavalli (1985). 

T h e o r e m  7.7.1. Let A be a stable matrix and let the perturbation matrix E 
be given by 

E -- ~ Pi Ei, 
i=1 

(7.7.2) 

where Ei, i = l  . . . . .  r are matrices determined by structure of the 
perturbations. 
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Let Q be a symmetric positive definite matrix and X be a unique symmetric 
positive definite solution of the Lyapunov equation: 

XA + ATx + Q = 0. (7.7.3) 

Then the system (7.7.1) remains stable for all Pi satisfying 

]Pi 12 < Crmin (Q) 
i--1 E~----1 . 2 '  

where O-min(Q) denotes the minimum singular value of  Q and I~i is given by 

lZi --IIET X -+- S E i  ]]2 . 

Example 7.7.1. Let r = 1, Pl = 1. Take 

//0.0668 0.0120 0.0262 
E -  E1 -- /0.0935 0.0202 0 .0298)  . 

\0.0412 0.0103 0.0313 

-4.1793 9.712 1.3649 ) 
Let A -- 0 - 1.0827 0.3796 

0 0 -9.4673 

Choose Q = 21. 
Then,/~1 --[[E TX + XEII[2 = 0.7199, and the right-hand side of (7.7.3) is 7.7185. 
Since [p2[ = 1 < 7.7185, the matrix A + E is stable. 

A result similar to that stated in Theorem 7.7.1 was also proved by Zhou and 
Khargonekar (1987). We state the result below. 

Theorem 7.7.2. Let A be a stable matrix and let E be given by (7.7.2). Let X 
be the unique symmetric positive definite solution of  (7.7.3). Define 

Xi - ( E T x  + XEi ) /2 ,  i -- 1, 2 . . . . .  r (7.7.4) 

and 
Xe  --  (X1, X2 . . . . .  X r ) .  

Then (7.7.1) remains stable if 

2 1 
Pk < 

k-1 0"2ax (Xe) 

or IPi [ < 

O'max 

r_:_. 
or ~ ]pi l tTmax(Xi)  < 1 

i=l 

1 
i = 1  . . . . .  r. (7.7.5) 
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Remark 

It should be noted that Theorems 7.7.1 and 7.7.2 and others in Patel and 
Toda (1980) and Yedavalli (1985) all give only sufficient conditions for 
robust stability. A number of other sufficient conditions can be found in the 
book by Boyd et al. (1994). 

7.8 THE STRUCTURED STABILITY RADIUS 

In Section 7.6, we introduced the concept of the distance of a stable matrix from the 
set of unstable matrices. Here we specialize this concept to "structured stability," 
meaning that we are now interested in finding the distance from a stable matrix to 
the set of unstable matrices, where the distance is measured by the size of the 
additive perturbations of the form B A C, with B and C fixed, and A variable. 

Let A, B, and C be, respectively, n • n, n • m, and r • n matrices over the field 
~' (~ can be C or R). Then the (structured) stability radius of the matrix triple 
(A, B, C) is defined as 

iT(A, B, C) = inf{6(a)  : A 6 ]~m• and A + B A C  is unstable }, (7.8.1) 

where 6 ( M )  following the notation of Qiu et al. (1995), denotes the 
largest singular value of M (i.e., c3(M) = O'max(M)). For real matrices 
(A, B, C), r~ (A, B, C) is called the real stability radius and, for complex matri- 
ces (A, B, C), r c ( A ,  B, C) is called the complex stability radius. The stability 
radius, thus, determines the magnitude of the smallest perturbation needed 
to destroy the stability of the system. 

"Stability" here is referred to as either continuous-stability (with respect to the 
left half-plane) or discrete-stability (with respect to the unit circle). 

Let OCg denote the boundary of either the half plane or the unit circle. Let A be 
stable or discrete-stable. 

Then, 

ty(A, B, C) = inf{6"(A)lA 6 ]~mxr and A + B A C  has an eigenvalue o n  OCg}. 

= inf inf{6(A)lA 6 ]~m• and det(sl  - A - B A C )  - 0} 
s~OCg 

= inf inf{6(A)lA 6 ]~mxr and d e t ( I -  a G ( s ) ) =  0}, 
s~OCg 

(7.8.2) 

where G(s)  = C ( s I  - A) -1B. 
Thus, given a complex r x m matrix M, the stability radius problem reduces to 

the problem of computing: 

/zF(M) -- [inf{6(a) �9 A ~ Fmxr and det(I - AM) --0}] -1. 
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The Complex Stability Radius 

It is easy to see that 

/zC ( g )  = 6(M). 

Thus, we have the following formula for the complex stability radius. 

Theorem 7.8.1. The Complex Stability Radius Formula 

{ I' sup 6(G(s)) 
rc(A, B, C) - seOCg (7.8.3) 

The Real Stability Radius 

If Y is R, then according to the above we have 

-1 

(7.8.5) 

where U2 and V2 are defined by the SVD of Im(M), that is, they satisfy 

I m ( M ) - - [ U 1 U 2 ] [  (r(Im(M)) 0 1 ' 0 0 [Vl, Vz] T. 

Note that since the function to be minimized is unimodular, any local minimum is 
also a global minimum. 

[ | 
rft(A, B, C) = { sup lZI~[C(sl - A)-IB]}  �9 (7.8.4) 

/ s~OCg I 
For the real stability radius, the major problem is then is the problem of computing 
/x~t(M), given M. 

The following important formula for computing /z•(M) has been recently 
obtained by Qiu et al. (1995). We quote the formula from this paper. The proof is 
involved and we refer the readers to the paper for the proof. Following the nota- 
tion of this paper, we denote the second largest singular value of M by az(M), 
and so on. 

Denote the real and imaginary parts of a complex matrix M by Re(M) and 
Im(M), respectively. That is, M = Re(M) + j im(M).  

Then the following result holds: 

([ IzR(M) = inf 0"2 1 
• --Im(M) Re(M) " 

Y 

The function to be minimized is a unimodular function on (0, 1 ]. 
Furthermore, if rank(Im(M)) = )~, then 

IxR(M) -- max{6(U~Re(M)), 6(Re(M) V2)}, 
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Notes 

(i) r ~ ( a ,  B, C) > r c ( a ,  B, C).  (7.8.6) 

(ii) The ratio rR(A ,  B, C ) / r c ( A ,  B, C) can be arbitrarily large. 

The following example taken from Hinrichsen and Pritchard (1990) 

illustrates (ii). 

Example 7.8.1. Let 

and 

(o 1) 
A = - 1  -E  ' 

C - (1,0).  

Then the transfer function: 

G(s) = C(jcol  - A ) - I B  - 

By (7.8.4), the real stability radius: 

Since 

1 - w 2 + jcoE" 

rR(A, B, C) - l ie .  

IG(jw)l 2 -- 
~2 

(1 - O92) 2 -~- ~52092' 

it is easy to see that IG(jw)l 2 is maximized when 092 = 1 - e2/2, if e < ~/-2. So, by 
(7.8.3) 

r2 (a ,  B, C) - 1 - (e2/4). 

Thus, if E is considered as a parameter, then re(A,  B, C) is always bounded by 1 
whereas r~(A, B, C) can be made arbitrarily large by choosing e small enough. 

Specialization of the Stability Radius to the Distance from Unstable Matrices 

From (7.8.3) we immediately have the following relation between the distance to 
an unstable system and the stability radius: 

fi = r c ( A ,  I, I )  = min O'min(A - j w I )  = f l (A) .  
wER 

Also, the following formula for/3 (A), when A is a real stable matrix, can be proved. 

Theorem 7.8.2. Let A be a real stable matrix. Then 

~(A) -- rR(A, I, I) -- min max Cr2n_ 1 1 . (7.8.7) 
SeOCg Fe(0,1] ~Im(sI)  A - Re(s/)  

Note: For each fixed s, the function in (7.8.7) to be maximized is quasiconcave. 
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7.9 SOME SELECTED SOFTWARE 

7.9.1 MATLAB Control System Toolbox 

normmComputes the H2-norm of the system. 
bode--Computes the magnitude and phase of the frequency response, which 
are used to analyze stability and robust stability. 
nyquistmCalculates the Nyquist frequency response. System properties such as 
gain margin, phase margin, and stability can be analyzed using Nyquist plots. 
(The gain margin and phase margin are widely used in classical control theory 
as measures of robust stability). 
gram controllability and observability grammrians. 

7.9.2 MATCONTROL 

INERTIA 

H2NRMCG 
H2NRMOG 
DISSTABC 
DISSTABD 

Determining the inertia and stability of a matrix without solving a 
matrix equation or computing eigenvalues 
Finding Hz-norm using the controllability Grammians 
Finding Hz-norm using the observability Grammian 
Determining the distance to the continuous-time stability 
Determining the distance to the discrete-time stability 

7.9.3 SLICOT 

AB13BD H2 or L2 norm of a system 
AB 13ED Complex stability radius using bisection 
AB 13FD Complex stability radius using bisection and SVD 

7.10 SUMMARY AND REVIEW 

The stability of the system: 

or that of 

~c(t) = Ax(t) 

x(k § 1) = Ax(k) 

is essentially governed by the eigenvalues of the matrix A. 

Mathematical Criteria of Stability 

The continuous-time system k(t) -- Ax(t) is asymptotically stable if and only if 
the eigenvalues of A are all in the left half plane (Theorem 7.2.1). Similarly, the 
discrete-time system x(k + 1) = Ax(k) is asymptotically stable if and only if all 
the eigenvalues of A are inside the unit circle. (Theorem 7.3.1). Various Lyapunov 
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stability theorems (Theorems 7.2.3-7.2.9, and Theorem 7.3.2) have been stated 
and proved. 

The Inertia of a Matrix 

Two important inertia theorems (Theorems 7.4.1 and 7.4.2) and the classical 
Sylvester Law of Inertia have been stated. These inertia theorems generalize the 
Lyapunov stability results. 

Methods for Determining Stability and Inertia 

The Characteristic Polynomial Approach and the Matrix Equation Approach 
are two classical approaches for determining the stability of a system and the inertia 
of a matrix. Both these approaches have some computational drawbacks. 

The zeros of a polynomial may be extremely sensitive to small perturbations. 
Furthermore, the numerical methods to compute the characteristic polynomial of 
a matrix are usually unstable. 

The most numerically effective method (The Schur method, described in Chap- 
ter 8), for solving a Lyapunov matrix equation is based on reduction of the matrix 
A to RSF, and the RSF displays the eigenvalues of A or the eigenvalues can be 
trivially computed out of this form. 

Thus, the characteristic equation approach is not numerically viable and 
the matrix equation approach for stability and inertia is counterproductive. 

Hence, the most numerically effective approach for stability and inertia is 
the eigenvalue approach- compute all the eigenvalues of A. 

By explicitly computing the eigenvalues, one, however, gets much more than 
what is needed for stability and inertia. Furthermore, since the eigenvalues of a 
matrix can be very sensitive to small perturbations, determining the inertia and 
stability by computing explicitly the eigenvalues can be misleading. 

An implicit matrix equation approach (Algorithm 7.5.1), which does not require 
computation of eigenvalues nor explicit solution of any matrix equation has been 
described. Algorithm 7.5.1 is about three times faster than the eigenvalue 
method (According to the flop-count). 

Distance to an Unstable System 

Given a stable matrix A, the quantity/~(A) defined by 

fl (A) = min {ll E II F such that A + E 6 U}, 

where U is the set of n x n matrices with at least one eigenvalue on the imaginary 
axis, is the distance to the set of unstable matrices. 
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A bisection algorithm (Algorithm 7.6.1) based on knowing if a certain 
Hamiltonian matrix (the matrix (7.6.3)) has a purely imaginary eigenvalue, is 
described. The algorithm is based on Theorem 7.6.1, which displays a relationship 
between a spectral property of the Hamiltonian matrix and the quantity/~(A). 

The discrete-analog of/~(A) is defined to be 

F(A) = min{llEII for some 0 ~ R; e i~ E f 2 ( A  -t- E)}. 

An analog of Theorem 7.6.1 (Theorem 7.6.3) is stated and a bisection algorithm 
(Algorithm 7.6.2) based on this theorem is described. 

Robust Stability 

Given a stable matrix A, one naturally wonders if the matrix A + E remains stable, 
where E is a certain perturbed matrix. Two bounds for E guaranteeing the stability 
of the perturbed matrix (A + E) are given, in terms of solutions of certain Lyapunov 
equations (Theorems 7.7.1 and 7.7.2). 

Stability Radius 

Section 7.8 deals with the structured stability radius. If the perturbations are of 
the form B AC, where a is an unknown perturbation matrix, then it is of interest 
to know the size of smallest A (measured using 2-norm) that will destabilize the 
perturbed matrix A + BAC. In this context, the concept of stability radius is 
introduced, and formulas both for the complex stability radius (Theorem 7.8.1) 
and the real stability radius are stated. 

H2-Norm 

The H2-norm of a stable transfer, transfer function measures the steady-state 
covariance of the output response y = G v to the white noise inputs v. An algo- 
rithm (Algorithm 7.2.1) for computing the H2-norm, based on computing the 
controllability or observability Grammian via Lyapunov equations is given. 

7.11 CHAPTER NOTES AND FURTHER READING 

A voluminous work has been published on Lyapunov stability theory since the 
historical monograph "Probl~me de la stabilit6 du Mouvement" was published 
by the Russian mathematician A.M. Liapunov in 1892. Some of the books that 
exclusively deal with Lyapunov stability are those by LaS alle and Lefschetz (1961), 
Lehnigk (1966), etc., and a good account of diagonal stability and diagonal-type 
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Lyapunov functions appears in the recent book by Kaszkurewicz and Bhaya (1999). 
For a good account of BIBO and BIBS stability, see the book by DeCarlo (1989). 

In Section 7.2, we have just given a very brief account of the Lyapunov stability 
adapted to the linear case. The matrix equation version in the linear case seems to 
have first appeared in the book by Gantmacher (1959, Vol. II). There exist many 
proofs of Lyapunov stability theorem (Theorem 7.2.3). The proof given here is 
along the line of Bellman (1960). See also Hahn (1955). The proofs of the other 
theorems in this section can be found in most linear systems books, including the 
books by Chen (1984), Kailath (1980), Wonham (1986), etc. 

The inertia theory has been mainly confined to the linear algebra literature. An 
excellent account of its control theoretic applications appear in Glover (1984) and 
in the book by Zhou et al. (1996). 

There are also a few papers on the inertia theory with respect to more general 
regions in the complex plane other than the half-planes and the unit circle given in 
Section 7.4. Inertia theory has been applied to obtain elementary proofs of several 
classical root-location problems in Datta (1978a, 1978b, 1979). For an account of 
this work, see the recent survey paper of the author (Datta 1999). The inertia and 
stability algorithm is due to Carlson and Datta (1979b). The algorithm has been 
modified by Datta and Datta (1987) and extended to other regions in the complex 
plane in Datta and Datta (1986). 

The concept of distance to instability was perhaps introduced by Van Loan 
(1985). The bisection algorithm (Algorithm 7.6.1) is due to Byers (1988). 

There are now several good books on robust control. These include the books by 
Dorato and Yedavalli (1989), Hinrichsen and Martensson (1990), Barmish (1994), 
Bhattacharyya et al. (1995), Green and Limebeer (1995), Zhou et al. (1996). The 
concept of complex stability radius as robustness measures for stable matrices (in 
the form given here) was introduced by Hinrichsen and Pritchard (1986). There are 
several good papers on this subject in the book "Control of uncertain systems," 
edited by Hinrichsen and Martensson (1990). Discussion of Section 7.8 has been 
taken from Qiu et al. (1995). 

Exercises 

7.1 

7.2 

7.3 

Verify that the spring-mass system of Example 5.2.3 is not asymptotically stable. 
What is the physical interpretation of the above statement? 
Consider the problem of a cart with two sticks considered in Exercise 5.3 of Chapter 5. 
Take M1 = M2 = M. 
(a) Show that at the equilibrium states, Yl and x2 are nonzero and x3 = x4 = 0. 

What is the physical significance of this? 
(b) Show that the system is not asymptotically stable. 
Consider the stick-balancing problem in Example 5.2.4. Give a mathematical expla- 
nation of the fact that without an input to the control system, if the stick is not upright 
with zero velocity, it will fall. 
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7.4 

7.5 

7.6 

Give a proof of Theorem 7.3.2 from that of Theorem 7.2.3 using the matrix version 
of the Cayley transformation. 
Prove that the system (7.2.2) is BIBO if and only if G ( s )  --- C ( s I  - A ) - I B  has 
every pole with negative real part. 
Prove that the discrete-time system: 

Xk+l  = A x k  -k- B u k  

7.7 

7.8 

is BIBO stable if and only if all the poles of the transfer functions lie inside the open 
unit circle of the z-plane. 
Prove that the discrete-time system in Exercise 7.6 is BIBS if and only if (i) all the 
eigenvalues of A lie in the closed unit disc, (ii) the eigenvalues on the unit disc have 
multiplicity 1 in the minimal polynomial of A, and (iii) the unit circle modes are 
uncontrollable (consult DeCarlo (1989, p. 422)). 
Let X and M be the symmetric positive definite matrices such that 

X A  + A T x  + 2XX = - M ,  

then prove that all eigenvalues of A have a real part that is less than -X. 
7.9 Prove that A is a stable matrix if and only if lie At I] < k, for some k > 0. 
7.10 Prove that if M is positive definite and the discrete Lyapunov equation: 

x - A T X A - -  M 

has a symmetric positive definite solution X, then A is discrete-stable. 
7.11 Prove the following results: 

(a) Suppose that A is discrete-stable. Then (A, B) is controllable if and only if the 
discrete Lyapunov equation: 

X -  A X A  T = BB T 

has a unique positive definite solution. 
(b) Suppose that (A, B) is controllable. Then A is discrete-stable if and only if the 

discrete Lyapunov equation: 

X - A X A  T = B B  T 

has a unique positive definite solution 
(c) Suppose that (A, C) is observable. Then A is discrete-stable if and only if there 

exists a unique positive definite solution X of the discrete Lyapunov equation: 

X - A T x A  = c T c .  
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7.12 (Glover 1984). 
Let 

with 8(X) = 0. Suppose that 

(o 

AX + XA T = - B B  T, 
A T x  + XA = - c T c .  

Partition 

A = ( A l l  A12] B = ( B 1 )  
~A21 A 2 2 ) '  B2 ' 

and C = (C 1 , C2), conformably with X. Then prove the following: 

(a) If Y(X1) -- 1, then 7r(All ) = 0. 
(b) If 3(A) = 0 and Zi(X 2) r ~,j(X 2) u j, then In(All)  = In ( -X1)  and 

In(A22) = In ( -X2) .  (Here ~,i (M) denotes the ith eigenvalue of M.) 

7.13 Prove that in Theorem 7.4.2, the assumption that (AT, M) is controllable implies 
that 6(X) = 0. 

7.14 Let A be a stable matrix. Prove that (i) fl(A) = min Crmin(A - j w l ) ,  (ii) fl(A) < 
og6R 

Io~(A)l, where c~(A) = max{Re001~, is an eigenvalue of A}. 
7.15 Give an example to show that the formula of fl(A) given by (7.6.2) can be arbitrary 

large (Consult the paper of Demmel (1987)). 
7.16 Construct an example to show that a matrix A can be very near to an unstable matrix 

without ot (A), defined in Exercise 7.14, being small. 
7.17 Let Arg(z) represent the argument of the complex number z. Let r > 0 and p 6 C, 

then prove that r - l y  (r (A + p I)) is the distance from A to the nearest matrix with an 
eigenvalue on the circle {z 6 C I Iz - Pl = r -1  }, where y(M) denotes the distance 
of a discrete-stable matrix M to instability, defined by (7.6.10). 
Use the result to develop an algorithm to estimate this quantity. 

7.18 Give proofs of Theorems 7.7.1 and 7.7.2 (consult the associated papers, as necessary). 
7.19 Consider the perturbed system: 

where 

.ic = (A + B K C ) x ,  

A = d iag( -  1, - 2 ,  - 3 ) ,  B =  

and kl and k2 are two uncertain parameters varying in the intervals around zero. Use 
each of the Theorems 7.7.1 and 7.7.2 to calculate and compare the allowable bounds 
on kl and k2 that guarantee the stability of A + B K C. 

0 
1 

K =  ( - l + k l  0 ) 
0 - 1  + k  2 ' 
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7.20 Construct an example to verify each of the followings: 

(a) The real stability radius is always greater than or equal to the complex stability 
radius. 

(b) The ratio of the real stability radius to the complex stability radius can be made 
arbitrarily large. 

7.21 Prove that the H2-norm of the discrete-time transfer matrix 

can be computed as 

IIG(z)ll22 = Trace(CC~ CT) = BT oDB'G 

where C D and O D are, respectively, the discrete-time controllability and observabil- 
ity Grammians given by (7.3.6) and (7.3.7), respectively. Write down a Lyapunov 
equation based algorithm to compute the H2-norm of a discrete-time system based 
on the above formula. 

7.22 Give a proof of Theorem 7.8.2. 
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CHAPTER 8 

NUMERICAL SOLUTIONS AND 
CONDITIONING OF LYAPUNOV 
AND SYLVESTER EQUATIONS 

8.1 INTRODUCTION 

In Chapter 7, we have seen that the Lyapunov equations arise in stability 
and robust stability analyses, in determining controllability and observability 
Grammians, and in computing He-norm. The solutions of Lyapunov equations 
are also needed for the implementation of some iterative methods for solving 
algebraic Riccati equations (AREs), such as Newton's methods (Chapter 13). 
The important role of Lyapunov equations in these practical applications warrants 
discussion of numerically viable techniques for their solutions. 

The continuous-time Lyapunov equation: 

X A  + A T x  -- C (8.1.1) 

is a special case of another classical matrix equation, known as the Sylvester 
equation: 

X A  + B X  = C. (8.1.2) 
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Similarly, the discrete-time Lyapunov equation: 

A T x A -  X = C 

is a special case of the discrete-time Sylvester equation: 

B X A  - X -- C. 

(Note that  the matr ices  A ,  B,  C in the above  equa t ions  are not  necessar i ly  the 

sys t em matr ices . )  

The Sylvester equations also arise in a wide variety of applications. For example, 
we will see in Chapter 12 that a variation of the Sylvester equation, known as 
the Sylvester-observer equation, arises in the construction of observers and in 
solutions of the eigenvalue assignment (EVA) (or pole-placement) problems. The 
Sylvester equation also arises in other areas of applied mathematics. For example, 
the numerical solution of elliptic boundary value problems can be formulated in 
terms of the solution of the Sylvester equation (Starke and Niethammer 1991). The 
solution of the Sylvester equation is also needed in the block diagonalization of a 
matrix by a similarity transformation (see Datta 1995) and Golub and Van Loan 
(1996). Once a matrix is transformed to a block diagonal form using a similarity 
transformation, the block diagonal form can then be conveniently used to compute 
the matrix exponential e At . 

In this chapter, we will first develop the basic theories on the existence and 
uniqueness of solutions of the Sylvester and Lyapunov equations (Section 8.2), 
next discuss perturbation theories (Section 8.3), and then finally describe 
computat ional  methods (Sections 8.5 and 8.6). 

The continuous-time Lyapunov equation (8.1.1) and the continuous-time 
Sylvester equation (8.1.2) will be referred to as just the Lyapunov and Sylvester 
equations, respectively. 

The following methods are discussed in this chapter. They have excellent 
numerical properties and are recommended for use in practice" 

�9 The Schur methods for the Lyapunov equations (Sections 8.5.2 and 8.5.4). 
�9 The Hessenberg-Schur Method for the Sylvester equations (Algo- 

rithm 8.5.1 and Section 8.5.7). 
�9 The modified Schur methods for the Cholesky factors of the Lyapunov 

equations (Algorithms 8.6.1 and 8.6.2). 

Besides, a Hessenberg method (method based on Hessenberg decomposition 
only) for the Sylvester equation A X + X  B = C has been described in Section 8.5.6. 
The method is more efficient than the Hessenberg-Schur method, but numerical 
stability of this method has not been investigated yet. At present, the method is 
mostly of theoretical interest only. 
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Because of possible numerical instabilities, solving the Lyapunov and 
Sylvester equations via the Jordan canonical form (JCF) or a companion form 
of the matrix A cannot be recommended for use in practice (see discussions 
in Section 8.5.1). 

8.2 THE EXISTENCE AND UNIQUENESS OF SOLUTIONS 

In most numerical methods for solving matrix equations, it is implicitly assumed 
that the equation to be solved has a unique solution, and the methods then construct 
the unique solution. Thus, the results on the existence and uniqueness of solutions 
of the Sylvester and Lyapunov equations are of importance. We present some of 
these results in this section. 

8.2.1 The Sylvester Equation: X A + B X --  C 

Assume that the matrices A, B, and C are of dimensions n x n, m x m, and m • n, 
respectively. Then the following is the fundamental result on the existence and 
uniqueness of the Sylvester equation solution. 

Theorem8.2.1.  Uniqueness of  the Sylvester Equation Solution. Let 

)~1 . . . . .  )~n be the eigenvalues of  A, and lz l . . . . .  lZm, be the eigenvalues of  B. 
Then the Sylvester equation (8.1.2) has a unique solution X if and only if  
)~i + ll~j ~ 0 for  all i = 1 , . . . ,  n and j = 1 , . . . ,  m. In other words, the 
Sylvester equation has a unique solution if and only if A and --B do not 
have a common eigenvalue. 

Proof, The Sylvester equation X A + B X  -- C is equivalent to the nm x nm 
linear system 

Px - c, (8.2.1) 

where P - (In @ B) + (AT @ Im), 

x - vec(X) - (xl l  . . . . .  X m l ,  X12,  X22 . . . . .  Xm2 . . . . .  X l n ,  X2n . . . . .  X m n )  T 

C - -  v e c ( C )  - -  ( C l l  . . . . .  r  c 1 2 ,  r  . . . . .  Cm2 . . . . .  Cln ,  CZn . . . . .  r  T.  

Thus, the Sylvester equation has a unique solution if and only if P is non- 
singular. 

Here W | Z is the Kronecker product of W and Z. Recall from Chapter 2 
that if W = (lloij) and Z = (7~ij) are two matrices of orders p x p and r x r, 
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respectively, then their Kronecker product W | Z is defined by 

I 
Wll Z 1/)12Z " ' "  WlpZ 
w 2 1 Z  l /)22Z "" �9 W2pZ 

W |  . . " Z  " (8.2.2) 

\ W p l  Z topZ Z "'" tOpp 

Thus, the Sylvester equation (8.1.2) has a unique solution if and only if the matrix 
P of the system (8.2.1) is nonsingular. 

Now, the eigenvalues of the matrix P are the nm numbers ~.i -+" /Z j ,  where 
i = 1 . . . . .  n and j = 1 . . . . .  m (Horn and Johnson 1991). Since the determinant 
of a matrix is equal to the product of its eigenvalues, this means that P is nonsingular 
if and only if )~i "[- ~ j  ~ 0, for i = 1 . . . . .  n, and j = 1 . . . . .  m. 1 

8.2.2 The Lyapunov Equation: XA + ATx = C 

Since the Lyapunov equation (8.1.1) is a special case of the Sylvester (8.1.2) 
equation, the following corollary is immediate. 

Corollary 8.2.1. Uniqueness of the Lyapunov Equation Solution. Let ~.1, 

~,2 . . . . .  )~n be the eigenvalues of A. Then the Lyapunov equation (8.1.1) has 
a unique solution X if and only if~,i -[- )~j 7 A 0,  i = 1 , . . . ,  n; j = 1 . . . .  , n. 

8.2.3 The Discrete Lyapunov Equation: ATxA - X = C 

The following result on the uniqueness of the solution X of the discrete Lyapunov 
equation 

AT X A -  X = C (8.2.3) 

can be established in the same way as in the proof of Theorem 8.2.1. 

Theorem 8.2.2. Uniqueness of the Discrete Lyapunov Equation Solution. 
Let )~1 . . . . .  )~n be the n eigenvalues of A. Then the discrete Lyapunov equation 
(8.2.3) has a unique solution X if and only if )~i)~j ~ 1, i = 1 . . . . .  n; j -- 
1 . . . . .  n. 

Remark 

In the above theorems, we have given results only for the uniqueness of solu- 
tions of the Sylvester and Lyapunov equations. However, there are certain 
control problems such as the construction of Luenberger observer and 
the EVA problems, etc., that require nonsingular or full-rank solutions 
of the Sylvester equations (see Chapter 12). 

The nonsingularity of the unique solution of the Sylvester equation has been 
completely characterized recently by Datta et al. (1997). Also, partial results 
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on nonsingularity of the Sylvester equation were obtained earlier by DeSouza 
and Bhattacharyya (1981), and Hearon (1977). We will state these results in 
Chapter  12. 

8.3 P E R T U R B A T I O N  ANALYSIS A N D  THE C O N D I T I O N  N U M B E R S  

8.3.1 Perturbation Analysis for the Sylvester Equation 

In this section, we study perturbation analyses of the Sylvester and Lyapunov 
equations and identify the condition numbers for these problems. The results are 
important in assessing the accuracy of the solution obtained by a numerical algo- 
rithm. We also present an algorithm (Algorithm 8.3.1) for estimating the sep 
function that arises in computing the condition number of the Sylvester equation. 

Let AA, AB, AC, and AX be the perturbations, respectively, in the matrices 
A, B, C, and X. Let )( be the solution of the perturbed problem. That is, X satisfies 

X(A + AA) + (B + AB))f -- C + AC. (8.3.1) 

Then, proceeding as in the case of perturbation analysis for the linear system 
problem applied to the system (8.2.1), the following result (see Higham 1996) can 
be proved. 

Theorem 8.3.1. Perturbation Theorem for the Sylvester Equation. Let the 
Sylvester equation X A 4- B X -- C have a unique solution X for C r O. 

Let 
{ IIAAIIF IIABIIF IIACIIF } 

E = max , , (8.3.2) 
/3 Z 

where or, fl, and 9/are tolerances such that IIAAIIF _< ~ ,  IIABIIF _< ~/3, and 
IIACIIF ~ EV. 

Then, 

where ~ - II P -  1 II 2 

IIAXIIF IIX - XIIF 

IIXIIF IlXllv 

(or +/~)IIXIIF + Z 

IlXllv 

<_ x/3~3, (8.3.3) 

Sep Function and its Role in Perturbation Results for the Sylvester Equation 

Definition 8.3.1. The separation of two matrices A and B, denoted by 
sep(A, B), is defined as: 

I I A X -  XBIIF 
sep(A, B) -- min 

xr IlXllv 
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Thus, in terms of  the sep function, we have 

1 1 
IIP-1I]2 -- = . (8.3.4) 

O'mi n (P)  sep(B, - A) 

Using sep function, the inequality (8.3.3) can be re-written as: 

llAXIIF 1 (~ 4- ~)IIXIIF + Y 
< ~/3e 

IIXllF sep(B, - J )  IIXlIF 

The perturbation result (8.3.3) clearly depends upon the norm of the solution X. 
However, if the relative perturbations in A, B, and C are only of the order of the 
machine epsilon, then the following result, independent of l] X II, due to Golub et al. 
(1979), can be established. 

Corol lary 8.3.1. Assume that the relative perturbations in A, B, and C are all 
o f  the order of  the machine precision #, that is, [IAA[[F < #[[AI[F, [[ABIIF < 
/zIIBiIF, and IlACllF </zllCllF. 

I f  X is a unique solution of  the Sylvester equation X A + B X = C, C is 
nonzero and 

II A liE + II B II F 1 
/z < - .  (8.3.5) 

s e p ( B , - A )  - 2 

Then, 

II x - X IIF II A IIF + II B IIF 
_< 4#  . (8.3.6) 

IIXIIF sep(B, - a )  

Example 8.3.1. Consider the Sylvester equation XA + BX = C with 

(i") (~ ~ ~ A -  1 1 , B -  -0.9777 . 
0 1 0 -0.9666 

Take X - 
(i,1) ,001121011220,12, 

1 1 . Then, C = /0.0223 1.0223 2.0223].  
1 1 \0.0334 1.0334 2.0334] 

Now, change the entry (1, 1) of A to 0.999999. Call this perturbed matrix A. 
The matrices B and C remain unperturbed. 
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The computed solution of the perturbed problem (computed by MATLAB 
function lyap) 

i.O001 0.9920 1.7039'~ 
3 ~ -  .0000 0.9980 1 . 0 8 8 2 | .  

.0000 0.9991 1.0259/ 

The relative error in the solution: 

IIX- XllF 
IlSllv 

= 0.2366. 

On the other hand, the relative error in the data: 

IIA - AIIF 

IIAIIF 
= 4.0825 x 10 -7. 

The phenomenon can be easily explained by noting that sep(B, - A )  is small: 
s e p ( B , - A ) -  1.4207 x 10 -6. 

Verification of the Bound 8.3.3 
Take c~ -- IIa liE, fl -- IIB liE, and y -- II c IIF 

Then, 

I IA-  AIIF = = 4.0825 x 10 -7 
IIAIIv 

(Note that II A B II - 0 and II AC II - 0).  

The right-hand side of (8.3.3) is 2.7133. 
Since 

I I X -  SllF 
IIXIIF 

= 0.2366, 

the inequality (8.3.3) is satisfied. 

8.3.2 The Condition Number of the Sylvester Equation 

The perturbation bound for the Sylvester equation given in Theorem 8.3.1 does not 
take into account the Kronecker structure of the coefficient matrix P. The bound 
(8.3.3) can sometimes overestimate the effects of perturbations when A and B are 
only perturbed. A much sharper perturbation bound that exploits the Kronecker 
structure of P has been given by Higham (1996, p. 318). 

Specifically, the following result has been proved. 
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Theorem 8.3.2. Let 

IIAAIIv IIABIIv IIACIIF} 
- max , , , 

a /~ y 

where or, fl, and y are tolerances given by IIAAIIF 5 Eo~, IIABII < ~/3, and 
I[ A C II < ~ V. Let A X  denote the perturbation in the solution X of the Sylvester 
equation (8.1.2). Let P be defined by (8.2.1). 

Then, 

IIAXllv < ~ p ~ ,  (8.3.7) 
I l X l l v  - -  

where 

qJ -IIp-I[/~(X T Q Ira), o~(I,, Q X),-ylm,,]IIZ/IIXIIF. (8.3.8) 

The bound (8.3.7) can be attained for any A, B, and C and we shall call the 
number �9 the condition number of the Sylvester equation. 

Remark 

�9 Examples can be constructed that show that the bounds (8.3.3) and (8.3.7) 

can differ by an arbitrary factor. For details, see Higham (1996). 

MATCONTROL note: The condition number given by (8.3.7)-(8.3.8) has been 
implemented in MATCONTROL function condsylve. 

Example 8.3.2. We verify the results of Theorem 8.3.2 with Example 8.3.1. Take 
ot = II A IIF = 2.4494. Then, ~ = 4.0825 • 10 -7. 

The condition number is tp -- 1.0039 • 106. 

IIAXllv 
IIXIIv 

= 0.2366 and x/3qJE = 0.7099. 

Thus, the inequality (8.3.7) is verified. 

8.3.3 Perturbation Analysis for the Lyapunov Equation 

Since the Lyapunov equation X A + A T x  -- C is a special case of the Sylvester 
equation, we immediately have the following Corollary of Theorem 8.3.1. 

Corollary 8.3.2. Perturbation Theorem for the Lyapunov Equation. Let X be 
the unique solution of the Lyapunov equation X A + AT X -- C; C ~= O. Let X be 
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the unique solution of the perturbed equation X(A + A A ) +  (A + AA)T3( -- C, 

where II AA IIF ~ ~ II A liE. (8.3.9) 

Assume that 

~IIAIIF I 
= ~ < - .  (8.3.10) 

sep(A T, - A )  4 

Then, 

II x - s IIF II A IIF 
< 8 #  

IIXIIF sepCA T, - A )  

8.3.4 The Condition Number of the Lyapunov Equation 

For the Lyapunov equation, the condition number is (Higham (1996, p. 319): 

- II(In Q AT -I- A T Q ln)-l[ot((X T Q In) -+ (In Q X)FIT),--Yln2]II2/IIXIIF, 

where H is the vec-permutation matrix given by 

FI -- ~ (eie T) | (ejeT), 

i,j=l 

and ot and F are as defined as: 

IIAAIIF ~ ~c~ and AC - -  A C  T with IIACIIF ~ ~y. 

8.3.5 Sensitivity of the Stable Lyapunov Equation 

While Corollary 8.3.2 shows that the sensitivity of the Lyapunov equation under 
the assumptions (8.3.9) and (8.3.10) depends upon sep(A T, -A) ,  Hewer and 
Kenney (1988) have shown that if A is a stable matrix, then the sensitivity can be 
determined by means of the 2-norm of the symmetric positive definite solution H 
of the equation 

HA + AT H -- - I .  

Specifically, the following result has been proved: 

Theorem 8.3.3. Perturbation Result for the Stable Lyapunov Equation. Let A 
be stable and let X satisfy X A + A T x  -- -C .  Let A X  and A C, respectively, 
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be the perturbations in X and C such that 

(A 4- AA)T(x 4- AX) 4- (X 4- AX)(A 4- AA) -- - ( C  4- AC). (8.3.11) 

Then, 

IIAAII 
II AX !1 < 2 II A 4- AA II II n II II A 4- AA II 

IIX + AXII - 
IIACII 1 '  (8.3.12) 

+ IIC + ACII 

where H satisfies the following Lyapunov equation and l I" I I represents the 
2-norm: 

H A  4- A T H - - I .  

Proof. Since A is stable, we may write H - f o  eATt eAt dt. Now from X A  4- 

ATx -- - C  and (8.3.11), we have 

A T A X  4- A X A  ---- - ( A C  4- AAT(X 4- AX) 4- (X 4- AX)AA).  (8.3.13) 

Since (8.3.13) is a Lyapunov equation in AX and A is stable, we may again write 

A X  -- eATt(AC + AAT(x  4- AX) 4- (X 4- A X ) A A ) e  At dt. 

Let u and v be the left and fight singular vectors of unit length of AX associated 
with the largest singular value. Then multiplying the above equation by u T to the 
left and by v to the right, we have 

fo l IIAXII = uTeATt(AC 4- AAT(X 4- AX) 

4- (X 4- A X ) A A ) e A t v l  dt, 
m 

_< IIAC + AAT(x 4- AX) 4- (X 4- AX)AA)II 

L ~II  ullll vii t, e At e At d 

_< (11A C II + 2 II A A II II x + A X II) II eAt u II II eAt V II dt. (8.3.14) 

Now, by the Cauchy-Schwarz inequality, we have 

fo Ef0 ]lj2[/0  ],j2 [I eAt U [[ [I eAt V II dt ~ [1 e At u [I 2 dt II eAt V [[ 2 dt 
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Again 

fo fo II eAt u II 2 dt - -  uT e AT t eAt U d t , 

- - u T [ f o ~ 1 7 6  

Loo 
= u T H u ,  where H -- e ATte At d t  

Since Ilu 112 - 1 and H is symmetric positive definite (because A is stable), we have 

uWHu < IIHII, 

and thus 

f0 ~ II eAt u II 2 dt < II H II. 

L 
oo 

Similarly IleZtvll 2 d t  <_ IIHII. 

Thus, from (8.3.14), we have 

IlaSll ~ (IIACII + 211AAIIIIX + AXII)IIHII. 

Again from (8.3.11), we have 

IIC + ACII ~ 211A + AAIIIIX + AXII. 

Combining (8.3.15) with (8.3.16), we obtain the desired result. II 

(8.3.15) 

(8.3.16) 

Remark 

�9 The results of Theorem 8.3.3 hold for any perturbation. 
In particular, if 

IIACII ~ zzllCll, IIAAII_ lzllAII, 

and 8/zllAl[ IIHII ~ (1 - / z ) / ( 1  -+-/z), then it can be shown that 

IIAXll 

IlXll 
8zzlIAIIIIHII(1 - ~) ~ 8zzlIAIIIIHII. (8.3.17) 
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Example 8.3.3. Consider the Lyapunov equation (8.1.1) with 

A 

(1 ( 09999 
0 -0.0001 and C = 0.9999 3.9998 4.9999 . 
0 0 3 2 4.9999 6 

A is stable. The exact solution X of the Lyapunov equation XA + Am X - C is 

X m (i1 1) 1 1 . 
1 1 

The solution H of the Lyapunov equation HA + AT H = - I  is 

i '0001 0.0001 0.0001 
H = 104 .0001 2.4998 2.4999 / . 

.0001 2.4999 2.5000] 

Since II H II -- 4.9998 • 104 and IIA II - 5.3744, according to Theorem 8.3.3, the 
Lyapunov equation with above A and C is expected to be ill-conditioned. We verify 
this as follows: 

Perturb the (1, 1) entry of A to -0.9999999 and keep the other entries of A and 
those of C unchanged. Then the computed solution )~ with this slightly perturbed A is ( , ,  1/ 

2 =  1 1.006 1.006 . 
1 1.006 1.006J 

Let A denote the perturbed A, then the relative perturbation in A" 

I I A -  All 
= 1.8607 • 10 -8. 

IIAII 

The relative error in the solution X: 

IIX- Xll 
= 0.0040. 

IXll 

Verification of the result of Theorem 8.3.3 

IIAXII 
= 0.0040, AC = 0, 

IIX + AXII 
IIAAII 

211A + AAII Ilnll = 0.0100. 
IIA + AAII 

Thus, the inequality (8.3.12) is satisfied. 

Verification of the inequality (8.3.17) 
Since IIAAII/IIAll- 1.8607 x 10 -8, we take # -  1.8607 x 10 -8. 
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Then 8zzlIAIIIIHII -- 0.04 < ( 1 - / z ) / ( 1  + /z )  -- 0.9999996. Thus, the 
hypothesis holds. 

Also, I I A X I I / I I X I I  - 0.004, 81zllAIIIIHII -- 0.04. Therefore, the inequality 
(8.3.17) is satisfied. 

8.3.6 Sensitivity of the Discrete Lyapunov Equation 

Consider now the discrete Lyapunov equation: 

A T X A - X - - C .  

This equation is equivalent to the linear system: Rx - c, where R -- AT ~) AT _ in 2 
(In2 is the n 2 • n 2 identity matrix). 

Applying the results of perturbation analysis to the linear system Rx -- c, the 
following result can be proved. 

Theorem 8.3.4. Perturbation Result for  the Discrete Lyapunov Equation. Let 
X be the unique solution of the discrete Lyapunov equation: 

A T X A  -- X -- C. 

Let X be the unique solution of the perturbed equation where the perturbation 
in A is of  order machine precision lz. 

Assume that 
2 

(2/z +/zz)IIAIIF _ 6 < 1, 
sePd(A T, A) 

where 

IIRxll2 I I A T X A -  XIIF 
sePd (AT, A) -- min = min 

x#O Ilxl12 x#o IlXllF 
= amin(A T | A T _ In2  ) .  

Then, 

112 - XllF Zz (3 + ~)IIAII 2 + 1 

IIXIIF -- 1 -- & sePd(A T, A) 
(8.3.18) 

8.3.7 Sensitivity of the Stable Discrete Lyapunov Equation 

As in the case of the stable Lyapunov equation, it can be shown (Gahinet et al. 
1990) that the sensitivity of the stable discrete Lyapunov equation can also be 
measured by the 2-norm of the unique solution of the discrete Lyapunov equation: 
A T X A  - X = - I .  Specifically, the following result has been proved by Gahinet 
et al. (1990). 
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T h e o r e m  8.3.5. Sensitivity of  the Stable Discrete Lyapunov Equation. Let A 
be discrete stable. Let H be the unique solution of  

A T H A  - H -- - I ,  

then sePd(A T, A) > V/-~/IIHII2, 

Example 8.3.4. Let 

Set 

0.9!90 1 ) 
A - 0.5000 11 . 

0 0.8999 

X -- 1 1 and take C = ATXA - X. 
1 1 

Then Ilnl12 -- 4.4752 x 105. 
By Theorem 8.3.5, the discrete Lyapunov equation ATXA - X = C is expected to 

be ill-conditioned. We verify this as follows. 
Let a(2, 2) be perturbed to 0.4990 and all other entries of A and of C remain 

unchanged. Let ,4 denote the perturbed A. Let X be the solution of the perturbed 
problem. Then ,~, computed by the MATLAB function dlyap, is 

1 1 1.0010~ 
.,Y- 1 1 1 0 0 1 9 ] .  

1.0010 1.0019 10304J 

The relative error in X: 
I I X -  Xl12 

= 0.0102. 
IIXII2 

The relative perturbation in A" 

I IA-  All2 = 4.8244 • 10 -5. 
IIAII2 

8.3.8 Determining Ill-Conditioning from the Eigenvalues 

Since lip-1112 - 1 / s e p ( B , - A )  is not easily computable, and s e p ( B , - A )  > 0 
if and only if B and - A  have no common eigenvalues, one may wonder if the 
ill-conditioning of P -1  (and therefore of the Sylvester or the Lyapunov equation) 
can be determined a priori from the eigenvalues of A and B. 

The following result can be easily proved to this effect (Ghavimi and Laub 
1995). 
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Theorem 8.3.6. The Sylvester equation X A + B X - C is ill-conditioned if 
both coefficient matrices A and B are ill-conditioned with respect to inversion. 

Example 8.3.5. Let 

(i 1 (i 2 3) A = 0 , B -- 0.0001 1 , 
1 0.001 0 0.0001 

and C -- 

The exact solution X -- 

88oOO111 
.0001 3.0001 
.0001 2.0001 2.0011,] 

1 
1 

Now change a(3, 1) to 0.99999 and keep the rest of the data unchanged. Then the 
solution of the perturbed problem is 

{ 908.1970 -905 .2944 -906 .2015~  
3 ) -  / - 4 5 2 . 6 7 2 2  454.2208 454.6745 1 ,  

\ 1.0476 0.9524 0.9524 ,/ 

which is completely different from the exact solution X. 
Note that the relative error in the solution: 

IIX - 211 

IIXII 
= 585.4190. 

However, the relative perturbation in the data: 

IIa - ~ill 

IIall 
= 4.5964 x 10 -6 (A is the perturbed matrix). 

This drastic change in the solution X can be explained by noting that A and B 
are both ill-conditioned: 

Cond(A) -- 6.1918 x 1016, Cond (B) -- 8.5602 x 108 . 

Remark  

The converse of the above theorem is, in general, not true. To see this, 
consider Example 8.3.1 once more. We have seen that the Sylvester equation 
with the data of this example is ill-conditioned. But note that Cond(A) = 
4.0489, Cond(B) = 1.0230. Thus, neither A nor B is ill-conditioned. 
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Near Singularity of A and the Ill-conditioning of the Lyapunov Equation 

From Theorem 8.3.6, we immediately obtain the following corollary: 

Corollary 8.3.3. If  A is nearly singular, then the Lyapunov equation XA + 
A T x  = C is ill-conditioned. 

Example 8.3.6. Let 

(i 1 i) (2 2.OOOl 4) 
A -  0.0001 , C =  2.0001 2.0002 4.0001 . 

0 4 4.0001 6 

The exact solution 

X =  1 . 
1 

Now perturb the (1, 1) entry of A to 0.9880. Call the perturbed matrix A. The computed 
solution of the perturbed problem 

{1.0121 
J? = /0.9999 

\ 1.000 

The relative error in X" 

112- Xll 
IIXII 

The relative perturbation in A" 

IIa - All  

Ilall 

0.9999 1.0000 
2.4750 -0.4747 / . 

-0 .4747 2.4747 j] 

=0.9832.  

= 0.0060. 

The ill-conditioning of the Lyapunov equation with the given data can be explained 
from the fact that A is nearly singular. Note that Cond(A) = 3.9999 x 104 and 
sep(A T, - A )  = 5.001 x 10 -5. 

8.3.9 A Condition Number Estimator for the Sylvester Equation: 
A T x - x B - C  

We have seen in Section 8.3.1 that 

s e p ( B , - A )  -- liP_ill2 = amin(P), 

where P is the coefficient matrix of the linear system (8.2.1). 
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However, finding sep(B, -A)  by computing the smallest singular value of P-1 
requires a major computational effort. Even for modest m and n, it might be compu- 
tationally prohibitive from the viewpoints of both the storage and the computational 
cost. It will require O(m3n 3) flops and O(m2n 2) storage. 

Byers (1984) has proposed an algorithm to estimate sep(A, B T) in the style 
of the LINPACK condition number estimator. The LINPACK condition number 
estimator for Cond (P) is based on estimating II P -  1 II 2 by II Y II/II z II, where y, z, 
and w satisfy 

PTz  = w and Py  = z; 

the components of the vector w are taken to be wi -- 4-1, where the signs are 
chosen such that the growth in z is maximized. 

Algorithm 8.3.1. Estimating sep(A, BT). 
Input. Am • , Bn •  upper triangular matrices. 

Output. S e p e s t ~ A n  estimate o f  sep(A,  BT). 
Step 1. 

For i  -- m , m  - 1 . . . . .  1 do 

F o r j  = n , n - 1  . . . . .  l do 

p= ( ~ aihZhj-- ~ Zihbjh) 
h=i+l h=j+l 

w = -sign(p) 
Zij ~ (110 -- P)/(aii -- bjj) 

End 

End 

Step 2. Compute Z - Z/lIZll, where Z = ( z i j ) .  

Step 3. Solve f o r  Y: A T y  -- Y B  = Z. 

Step 4. Sepest  = 1 /II Y II. 

Example 8.3.7. Consider estimating sep(B, -A)  with 

( O 1 2  3 1 )  ( O  1 2 ~ ) 
A = - 2  and B -  -2.5 . 

0 0.9990 0 1.9999 

The algorithm produces sepest (B , -A)  = O(10-5), whereas the actual value of 
sep(B,-A) = 3.0263 x 10 -5. 

Remarks 

�9 If p = 0, sign(p) can be taken arbitrarily. 
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The major work in the algorithm is in the solution of the Sylvester equation in 
Step 3. Thus, once this equation is solved, the remaining part of the algorithm 
requires only a little extra work. Efficient numerical methods for solving the 
Sylvester and Lyapunov equations are discussed in the next section. 

Flop-count: The algorithm requires 2(m2n § mn 2) flops. 

Remarks 

�9 The algorithm must be modified when A and B are in quasi-triangular forms 
(real Schur forms, RSFs), or one is in Hessenberg form and the other is 
in RSE 

�9 There exists a LAPACK-style (rich in Basic Linear Algebra Subroutine- 
Level 3 operators), estimator for sep(B, -A) .  For details, see K~gstrrm 
and Poromaa (1989, 1992, 1996). 

MATCONTROL notes: The sep function can be computed using the Kronecker 
product in MATCONTROL function sepkr. Algorithm 8.3.1 has been imple- 
mented in MATCONTROL function sepest, which calls the function sylvhutc 
for solving the upper triangular Sylvester equation in Step 3. 

8.4 ANALYTICAL METHODS FOR THE LYAPUNOV EQUATIONS: 
EXPLICIT EXPRESSIONS FOR SOLUTIONS 

There are numerous methods for solving Lyapunov and Sylvester equations. They 
can be broadly classified into two classes: Analytical and Numerical Methods. 

By an analytical method, we mean a method that attempts to give an explicit 
expression for the solution matrix (usually the unique solution). 

Recall from Chapter 7 that when A is a stable matrix, a unique solution X 
of the continuous-time Lyapunov equation requires computations of the matrix 
e x p o n e n t i a l  e At  and evaluation of a matrix integral. 

Similarly, when A is discrete-stable, a unique solution X of the discrete 
Lyapunov equation requires computations of various powers of A and many matrix 
multiplications. We have already seen that there are some obvious computational 
difficulties with these computations. 

The other analytical methods include finite and infinite series methods (see 
Barnett and Storey (1970)). 

These methods again have some severe computational difficulties. For example, 
consider the solution of the Lyapunov equation X A § AT X --  C,  using the finite 
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series method proposed by Jameson (1968). The method can be briefly described 
as follows: 

Let the characteristic polynomial of A be det()~l - A) = )n +Cl)~n-1 + . .  "+Cn. 

Define the sequence of matrices { Q~ } by 

Q-1 - -0 ,  Q0 = C  
QIr = A T Qk-1 - Qlc-IA + A T QI~-2A, k = 1,2 . . . . .  n. 

Then it has be shown that 

X -- p-1 (Qn - Cl Qn-1 -~-... + ( -  1)ncn Qo), 

(8.4.1) 

(8.4.2) 

where P - (AT) n - Cl (AT) n-1 + ' "  + ( - -1)ncnl .  

It can be seen from the description of the method that it is not numerically 
effective for practical computations. 

Note that for computation of the matrix P, various powers of A need to be 
computed and the matrix P can be ill-conditioned, which will affect the accuracy 
of X. This, together with the fact that the sensitivity of the characteristic polynomial 
of a matrix A (due to the small perturbations in the coefficients) grows as the 
order of the matrix grows (in general), lead us to believe that such methods will 
give unacceptable accuracy. Indeed, the numerical experiments show that for 
random matrices of size 14 x 14, the errors are almost as large as the solutions 
themselves. 

Thus, we will not pursue further with the analytic methods. However, for reader's 
convenience, to compare this method with other numerically viable methods, the 
finite series method has been implemented in MATCONTROL function lyapfns. 

8.5 NUMERICAL METHODS FOR THE LYAPUNOV AND 
SYLVESTER EQUATIONS 

An obvious way to solve the Sylvester equation XA + B X = C is to apply Gaussian 
elimination with partial pivoting to the system P x  = c given by (8.2.1). But, unless 
the special structure of P can be exploited, Gaussian elimination scheme for the 
Sylvester equation will be eornputationally prohibitive, since O (n3m 3) flops and 
O(n2m 2) storage will be required. One way to exploit the structure of P will be 
to transform A and B to some simple forms using similarity transformations. 

Thus, if U and V are nonsingular matrices such that 

U - 1 A U -  A, V - 1 B V  - / ~ ,  and V-1CU - -C,  

then XA + B X = C is transformed to 

(8.5.~) 

where Y = V-  1X U. 
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If ,4 and/3 are in simple forms, then the equation YA +/3  Y -- (7 can be easily 
solved, and the solution X can then be recovered from Y. The idea, therefore, is 
summarized in the following steps: 

Step 1. Transform A and B to "simple" forms (e.g., diagonal, Jordan and com- 
panion, Hessenberg, real-Schur, and Schur etc.) using similarity transformations: 

f ~ -  U-1AU, B -- V-1BV. 

Step 2. Update the fight-hand side matrix: C = V -1CU. 
Step 3. Solve the transformed equation for Y: YA +/~ Y - C'. 
Step 4. Recover X from Y by solving the system: X U = V Y. 

8.5.1 Numerical Instability of Diagonalization, Jordan Canonical Form, and 
Companion Form Techniques 

It is true that the rich structures of Jordan and companion matrices can be nicely 
exploited in solving the reduced Sylvester equation (8.5.1). However, as noted 
before, the companion, and JCFs, in general, cannot be obtained in a numerically 
stable way. (For more on numerically computing the JCF, see Golub and Wilkinson 
(1976).) The transforming matrices will be, in some cases, ill-conditioned and this 
ill-conditioning will affect the computations of ,4,/~, (7, and X (from Y), which 
require computations involving inverses of the transforming matrices. Indeed, 
numerical experiments performed by us show that solutions of the Sylvester 
equation using companion form of A with A of sizes larger than 15 have errors 
almost as large as the solutions themselves. We will illustrate below by a simple 
example how diagonalization technique yields an inaccurate solution. 

Example 8.5.1. Consider solving the Lyapunov equation: XA + AT X --  C = 0,  with 

A t 
2.4618 -1.5284 2.2096 -0.3503~ 
5.5854 -1.2161 2.3825 -1.2843] 
1.6935 2.5009 2.1131 -1.2186~ " 

-0.2686 -3.2594 7.9205 0.6412 / 

Choose 

X l 1 1 1 11 1 1 1 1 
1 1 1 1 
1 1 1 1 

and take C = XA + ATx. 

Let XDiag be the solution obtained by the diagonalization procedure (using MATLAB 
Function lyap2). 
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The relative residual �9 

[I XDiag A + AT XDiag -- C [[ 
= 1.6418 • 10 -7. 

IIXDiag II 

The solution X obtained by MATLAB function lyap (based on the numerically viable 
Schur method)" 

t l  i oooo 1 oooo 1.oooo 1.oooo\ 
= .oooo 1 oooo 1 oooo 1 oooo/  

�9 0000 1.0000 1.0000 1.0000/" 
�9 0000 1.0000 1.0000 1.0000/ 

The relative residual" 

IIXA + A T x -  cII 

11211 
= 9.5815 • 10 -15 

Solutions via Hessenberg and Schur Forms 

In view of the remarks made above, our "simple" forms of choice have to be 
Hessenberg forms and the (real) Schur  forms, since we know that the trans- 
forming matrices U and V in these cases can be chosen to be orthogonal, which 
are perfectly well-conditioned. Some such methods are discussed in the following 
sections. 

8.5.2 The Schur Method for the Lyapunov Equation: XA + ATx -- C 

The following method, proposed by Bartels and Stewart (1972), is now widely 
used as an effective computational method for the Lyapunov equation. The 
method is based on reduction of AT to RSE It is, therefore, known as the Schur  
method for the Lyapunov equation. The method is described as follows: 

Step 1. Reduc t ion  of the Problem.  Let R = U T A T U  be the RSF of the 
matrix AT. Then, employing this transformation, the Lyapunov matrix equation 
X A + A T x  : C is reduced to 

YR T + R Y -- (7, (8.5.2) 

where R -- U T A T U ,  C - u T c u ,  and Y - U T X U .  

Step 2. Solution of the Reduced Problem.  The reduced equation to be solved 
is: Y R  T + R Y  -- C. Let 

Y -- (Yl . . . . .  Yn), 6" -- (Cl . . . . .  Cn), and R - (rij) .  

Assume that the columns Yk+l through Yn have been computed, and consider 
the following two cases. 
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Case 1:rk,k-1 -- 0. Then Yk is determined by solving the quasi-triangular 
system 

(R +rkk I ) yk  -- Ck-- ~ rkjyj .  
j=k+l  

If, in particular, R is upper t r iangular ,  that is there are no "Schur  bumps"  (see 
Chapter 4) on the diagonal, then each yi, i - n, n - 1 . . . . .  2, 1 can be obtained 
by solving an n • n upper triangular system as follows: 

(R + rnn I) Yn = Cn, 
(R  + r n - l , n - 1  I ) y n - 1  -- Cn-1 - rn - l , nYn ,  

(R + rll l ) y l  = cl - r12Y2 . . . . .  rlnYn. 

(8.5.3) 

Remark 

If the complex Schur decomposition is used, that is, if Rc -- U~ ATUc is a 
complex triangular matrix, then the solution Yc of the reduced problem is 
computed by solving n complex n • n linear systems (8.5.3). The MATLAB 
function rsf2esf converts an RSF to a complex triangular matrix. However, 
the use of complex arithmetic is more expensive and not r e c o m m e n d e d  in 
practice. 

Case 2: rk,~- 1 ~ 0 for some k. This indicates that there is a " S c h u r  bump" on 
the diagonal. This enables us to compute yk-1 and Yk simultaneously, by solving 
the following 2n • 2n linear system: 

/ \ 
(Yk-1, Yk) + (Yk-1, Yk) l rk - l ,k -1  rk ,k - l ]  R 

\ r k - l , k  rkk / 
rl 

(Ck-1, Ck) -- ~ ( r k - l , j y j ,  rkjyj)  -- (dk-1, dk). 
j=k+l  

(8.5.4) 

Remark 

�9 To distinguish between Case 1 and Case 2 in a computational setting, it is 
recommended that some threshold, for example, Tol = IzlIAIIF be used, 
where # is the machine precision. 

�9 Thus, to see if rk,k-1 -- O, accept rk,k-1 -- O, if Irk,k_ll < Tol. 



Section 8.5: NUMERICAL METHODS--LYAPUNOV AND SYLVESTER EQUATIONS 267 

An Illustration 

We illustrate the above procedure with n = 3. 
Assume that r21 ~ 0, that is, 

rll  r12 r13) 
R - -  [r21 r22 r23 �9 

\o 0 r33 

Since r32 -- 0, by Case 1, y3 is computed by solving the system: 

(R + r331) Y3 = c3. 

Since r21 7 ~ 0, by Case 2, yl and y2 are computed by solving 

t r l  1 R ( y l ,  22) + (Yl, Y2) r12 
r21] 
r22/  -- (Cl -- r13Y3, c2 -- r23Y3). (8.5.5) 

Step 3. Recovery of the solution of the original problem from the solution 
of the reduced problem. Once Y is obtained by solving the reduced problem 
Y R T + R Y -- C, the solution X of the original problem X A + A T x  -- C, is 
recovered as 

X = U Y U  T. 

Example 8.5.2. Consider solving the Lyapunov equation: X A + ATx = C, with 

0 2 -1  2 
A -  - 3  - 2  and C -  - 6  , 

- 2  1 1 1 13 

Step 1. Reduction. Using MATLAB function [U, R] =schur(AT), we obtain 

-1.3776 3.8328 1.3064 
R =  -1.0470 0.8936 - 1 . 2 1 6 6 ] ,  

0 0 -2 .5160]  

{ 0.7052 0.4905 
U -  | 0.6628 -0.7124 

\ -0 .2518  -0.5019 

0.5120 
-0 .2304]  . 
0.8275 ,] 

Then C - U TCU is 

{-9.3174 1.9816 -7.5863~ 
= 1-2.1855 -1.0425 2.4422 | .  

\16.2351 -3.4886 0.3600 ] 
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Step 2. Solve R Y + Y R  T --  C.  Since r32 - 0, then by Case 1, y3 is computed by 
solving the system: 

-31.8936 3.8328 1.3064 ~ {-7 .5863~ 
.0470 -1.6224 -1 .2166]  Y3 -- [ 2.4422 ] .  
0 0 -5 .0320]  \ 0.3600 } 

Y3 -- ( o o o 
-1 .6472]  . 
-0 .0715]  

Since r21 5~ O, then by Case 2, yl and Y2 are computed by solving the system (8.5.5): 

( y [ ,  y f )  - (3.4969, 0.1669,-1.2379, 0.2345, 0.5746, 3.0027) T. 

Step 3. R e c o v e r y  o f  the solut ion.  

(2 0 - 2  
X -  U Y U  T - 2 . 

- 3  

Example 8.5.3. We now solve the previous example (Example 8.5.2) using the 
complex Schur form 

-0.2420 + 1.6503j 

Stepl. R = 0 

0 

-0.3227 + 3.5797j 

- 0 . 2 4 2 0 -  1.6503j 

0 

-0.0927 - 0.9538j~ 

1.2113 - 0.8883j | 
| 

-2 .5160 ,/ 

U 

-0.5814 + 0.5148j 

-0.0030 + 0.4839j 

0.3590 - 0.1838j 

0.0802 - 0.3581 j 

0.6649 + 0.5202j 

0.1355 + 0.3664j 

0.5120 

-0.2304 / , 

-0 .8275]  

{ -7.5894 + 1.4093j 

C ' =  [ 2 .1139-1 .1953 j  

\ - 6 .5401  + 11.8534j 

1.8383 + 4.252j 

- 2 . 7 7 0 6 -  1.4093j 

9.2728 + 2.5470j 

2.6799 + 5.5388j 

-4.7410 + 1 .783j /  

0.3600 ] 

Step 2. Since R is triangular (complex), the columns Yl, Y2, Y3 of y are successively 
computed by solving complex linear systems (8.5.3). This gives 

yl -- (-2.9633 + 0.000229j, -0.7772 + 0.8659j, -0.7690 - 0.9038j) T , 

y2 = (-0.7811 - 0.8163j, 1.1082 - 0.0229j, -2.0819 - 2.923j) T , 

Y3 = (0.6108 - 0.2212j, 0.9678 - 1.2026j, -0.0715) T . 
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Thus, with Y = (Yl, Y2, Y3), we have 

0 
X -  U Y U  T -  2 . 

- 3  

Note:  In practice, the system (8.5.4) is solved using Gaussian elimination with 
partial pivoting. The LAPACK and SLICOT routines (see Section 8.10.4) have 
used Gaussian elimination with complete pivoting (see Datta (1995) and Golub 
and Van Loan (1996)) and the structure of the RSF has been exploited there. For 
details of implementations, the readers may consult the book by Sima (1996). 
M A T C O N T R O L  note:  The Schur method for the Lyapunov equation has been 
implemented in MATCONTROL function lyaprsc. 
M A T L A B  note: MATLAB function lyap in the form 

X = lyap (A, C) 

solves the Lyapunov equation 

A X  + X A  T = - C  

using the complex Schur triangularization of A. 

Flop-count 

1. Transformation of A to RSF: 26n 3 (Assuming that the QR iteration algo- 
rithm requires about two iterations to make a subdiagonal entry negligible). 
(This count includes construction of U.) 

2. Solution of the reduced problem: 3n 3 
3. Recovery of the solution: 3n 3 (using the symmetry of X). 

Total flops: 32n 3 (Approximate).  

8.5.3 The Hessenberg-Schur Method for the Sylvester Equation 

The Schur method described above for the Lyapunov equation can also be used 
to solve the Sylvester equation X A + B X -- C. The matrices A and B are, 
respectively, transformed to the lower and upper RSFs, and then back-substitution 
is used to solve the reduced Schur problem. Note, that the special form of the Schur 
matrix S can be exploited only in the solution of the m x m linear systems with S. 
Some computational effort can be saved if B, the larger of the two matrices A and 
B, is left in Hessenberg form, while the smaller matrix A is transformed further 
to RSE The reason for this is that a matrix must be transformed to a Hessenberg 
matrix as an initial step in the reduction to RSF (see Chapter  4). The important 
outcome here is that back-substitution for the solution of the Hessenberg-Schur 
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problem is still possible. Noting this, Golub et al. (1979) developed the following 
Hessenberg-Schur method for the Sylvester equation problem. 

Step 1. Reduction to the Hessenberg-Schur Problem. Assume that m is larger 
than n. Let R = u T A T U  and H -- VTB V be, respectively, the upper RSF and 
the upper Hessenberg form of A and B. Then, 

X A  + B X  -- C becomes YR T + H Y  - C, 

where Y - vT X U, C - vT C U. 
(8.5.6) 

Step 2. Solution of  the Reduced Hessenberg-Schur Problem. In the reduced 
problem H Y  + YR T -- C, let Y -- (Yl, Y2 . . . . .  Yn) and C - (Cl . . . . .  Cn). Then, 
assuming that yk+l . . . . .  Yn have already been computed, Yk (or Yk and Yk+l) can 
be computed as in the case of the Lyapunov equation, by considering the following 
two cases. 

Case 1. If r~,k-1 = 0, yk is computed by solving the m • m Hessenberg system: 

(H  + rkk l )yk  -- ck -- ~_~ rk jy j .  

j=k+l 

Case 2. If rk,k-1 # O, then equating columns k - 1 and k in H Y  + YR T -- C, 
it is easy to see that Yk-1 and Yk are simultaneously computed by solving the 
2m x 2m linear system: 

H (Yk-1, Yk) + (Yk-1, Yk) (rk-l,k-1 rk,k-1)  
\ rk- l ,k  rkk 

H 

-- (Ck-1, Ck) -- Z ( r k - l , j y j ,  rk jy j )  -- (dk-1, dk) 
j=k+ l  

(8.5.7) 

Note: The matrix of the system can be made upper triangular with two nonzero 
subdiagonals, by reordering the variables suitably. The upper triangular system can 
then be solved using Gaussian elimination with partial pivoting. 

Step 3. Recovery of  the Original Solution. The solution X is recovered from Y 
as 

X -  V Y U  T. 

Algorithm 8.5.1. The Hessenberg-Schur Algorithm for  X A  + B X  -- C 
Input: The matrices A, B, and C, respectively, of  order n • n, m • m, and 
m •  _ < m .  
Output: The matrix X satisfying X A + B X -- C. 
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Step 1. Transform AT to a real Schur matrix R, and B to an upper Hessenberg 
matrix H by orthogonal similarity: 

u T A T u  : R, V T B v  = H. 

Form C - v T c u ,  and partition C - (Cl . . . .  , Cn) by columns. 

Step 2. Solve H Y  + YR T -- C: 

For k -- n . . . . .  1 do until the columns of  Y are computed 
I f  rk ,k-1--O,  then compute Yk by solving the Hessenberg system: 

(H + rkkI)yk -- ck -- ~ ,  rkjyj 
j--k+l 

(8.5.8) 

Else, compute Yk and Yk-1 by solving the system: 

where 

H + rk-l ,k-11 
rk,k- 11 

rk-l,kl ~ (Yk-1) _ (dk-l~ 
H + rkklJ  Yk ~ dk ) '  

(dk-1, dk) -- (Ck-1, Ck) -- ~ ( rk - l , j y j ,  rkjyj).  
j=k+l 

(8.5.9) 

(8.5.10) 

Step 3. Recover X: X = V Y U T. 

Example 8.5.4. 

and 

Consider solving XA + BX -- C using Algorithm 8.5.1 with 

(i 1!) I14234il A--  1 B - -  5 6 
' 8 9 

0 0 0 

C I 
12 10 121 
24 22 24 
27 25 27 " 
12 10 12 
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Step 1. Reduce AT to RSF and B to Hessenberg form H: 

('--0 l i) u T A T u -  R -  1 1 , 
0 

VTBV = H = 

1 -5.3766 -0.3709 
-12.8452 7.6545 5.3962 

0 10.6689 4.7871 
0 0 -5.3340 

-0.0886~ 
-0 .7695[  
-0 .2737]  " 
1.5584 ,/ 

U .__ 

Compute 

(i 0 i) 1 

0 
V .__ 

1 0 0 

i -3.114 -0.7398 
-5.449 -0.3752 

-0.7785 0.5585 

12 10 12 
_ -31.5292 -28.2595 -31.5292 / 

-21.1822 -20.0693 -21.1822 / " 
2.4949 2.7608 2.4949 / 

0 
-0.5965 
0 . 7 4 9 8 / '  

-0 .2863]  

Step 2. Solution of the reduced problem: H Y + Y R T = C. 
Case 1. Since r(3, 2) is 0, y3 is obtained by solving: (H + r33I)y3 = c3. 

y3 = (1, - 1.6348, -0.5564, -0.1329) T. 

Case 2. Since r21 5~ O, yl and y2 are simultaneously computed by solving the 
system: 

( H + F I I I  rl2I ) ( y l ) _  ( d l )  
r21I H+r221, ]  Y2 d2 ' 

where (dl, d2) = (Cl - r13y3, c2 - r23y3). 

( 1 t  -1.6348 
Y l -  / - 0 . 5 5 6 4 1 '  Y e -  

/ / 

\ - 0 . 1 3 2 9 J  I ,  348/ 
-0 .5564]  " 
-0 .1329]  

So, 

Y = (Yl, Y2, Y3) = 

1 1 1 t 
- 1 . 6 3 4 8  -1.6348 -1.6348 

/ -0 .5564  -0.5564 -0.55641" 
\ -0 .1329  -0.1329 -0 .1329]  
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Step 3. X - V Y U  T -- 

1 1 1 

1 1 " 
1 1 

Flop-count: 

1. Reduction to Hessenberg and RSFs" ~3Qm 3 + 26n 3. 

2. Computation of 6"" 2m2n + 2mn 2. 

3. Computation of Y: 6m2n 4- mn  2. 

(To obtain Y, it was assumed that S has n/2(2 • 2) bumps, which is the 
worst case.) 

4. Computation of X: 2m2n + 2mn 2. 

Total flops" Approximately (10m 3/3 4- 26n 3 + 10m2n 4- 5mn2). 

Numerical Stability of the Schur and Hessenberg-Schur Methods: The round- 
off error analysis of the Hessenberg-Schur algorithm for the Sylvester equation 
X A + B X = C performed by Golub et al. (1979) shows that "the errors no 
worse in magnitude than O(ll~p -1 II~) will contaminate the computed X, where 
II~ -~ II - 1/sep(B, -A) ,  and ~ is a small multiple of the machine precision #." 

Specifically, if 

e(2 + E)(IIAII2 + IIBll2) 1 

sep(B, - A )  2 

Then, 

IIX - Xlll: (9E 4- 2E2)(IIAIIF 4- IIBIIv) 
< 

IIXIIF -- sep(B, - A )  
(8.5.11) 

The above result shows that the quantity sep (B , -A)  will indeed influence the 
numerical accuracy of the computed solution obtained by the Hessenberg-Schur 
algorithm for the Sylvester equation. (Note that sep(B, - A )  also appears in the 
perturbation bound (8.3.6).) 

Similar remarks, of course, also hold for the Schur methods for the Lyapunov 
and Sylvester equations. We will have some more to say about the backward error 
of the computed solutions by these methods a little later in this chapter. 

M A T C O N T R O L  notes: Algorithm 8.5.1 has been implemented in MATCON- 
TROL function sylvhrsc. The function sylvhcsc solves the Sylvester equation 
using Hessenberg decomposition of B and complex-Schur decomposition of A. 
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MATLAB note: MATLAB function lyap in the form: 

X = lyap (A, B, C) 

solves the Sylvester equation 

A X  + X B = - C  

using complex-Schur decompositions of both A and B. 

8.5.4 The Schur Method for the Discrete Lyapunov Equation 

We now briefly outline the Schur method for the discrete Lyapunov equation: 

A T X A -  X = C. (8.5.12) 

The method is due to Barraud (1977). 
As before, we divide the process into three steps: 

Step 1. Reduction of the problem. Let R = U T AT U be the upper RSF of the 
matrix AT. Then the equation" 

A T x A  - X = C 

reduces to 

where Y -- U T X U  and C -- u T c u .  

(8.5.13) 

Step 2. Solution of the reduced equation. Let R 

(yl, y2 . . . . .  Yn), and C - (Cl, c2 . . . . .  Cn). 
Consider two cases as before. 

- -  ( r i j  ) , Y = 

Case 1. rk,k-1 -- 0, for some k. 
In this case, Yk can be determined by solving the quasi-triangular system: 

/,/ 

(rkk R -- l )  yk -- Ck -- R Z (8.5.14) rkj yj. 
j = k + l  

In particular, if R is an upper triangular matrix, then Yn through Yl can be computed 
successively by solving the triangular systems: 

( r k k R - - I ) y k - - C k - - R  ~ rkjyj ,  k - - n , n - 1  . . . . .  2,1. (8.5.15) 
j = k + l  

Case 2. rk,k-1 ~ O, for some k. In this case Yk and Yk-1 can be simultaneously 
computed, as before. 
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For example, if n - 3, and r2,1 7 & 0, then y2 and Yl can be computed simultane- 
ously by solving the system: 

( r l l R - I  r12R ) ( y l ) _ ( c 1 - r 1 3 R y 3 , )  (8.5.16) 
r21R r22 R - I Y2 c2 r23 Ry3 " 

Step  3. R e c o v e r y  o f  X f r o m  Y. Once  Y is computed, X is recovered from Y as 

X -  U Y U  T. (8.5.17) 

Example 8.5.5. Consider solving the discrete Lyapunov equation ATXA - X = C 
with 

(:i !) i) A -- - 2  and C - 8 - 6  . 
1 - 1 13 

Step 1. Reduction to: R Y R  T -  Y -- C. 

-2.5160 -2.7102 -1.6565~ 
R -  0 -0.2420 3.2825 | ,  

0 -0.8298 -0 .2420]  

/ - 0 . 1 9 7 2  0.9778 -0.0705~ 
U - [ -0 .6529  -0.1847 - 0 . 7 3 4 6 | ,  

\ 0.7313 0.0988 -0 .6749]  

{-9 .4514 1 1 . 1 8 9 6 - 1 2 . 1 5 0 3 ~  
- [ -4 .5736  -0.4260 -1.7470 / . 

\ 7.0475 -0.0252 0.1226] 

Step 2. Solution of the reduced equation: R Y R T - Y -- C" 

{ 2.2373 
Y -- (yl, Y2, Y3) -- [ 3.6415 

\ - 5 . 1 7 2 0  

-5.9557 
-0.3633 
-0.1677 

2.4409 
- 0 . 2 5 3 1 ] .  
1.5570 / 

Step  3. Recovery  of  X from Y" 

X - U Y U  T 
{ 0.1376 -2.1290 2.4409 

- / 3.6774 0.1419 - 1 . 3 9 3 5 ] .  
\ -5 .1721  -0.1678 1.5570// 

Verify: I IATXA -- X - C[[2 - 0(10-14). 
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Flop-Count :  The Schur method for the discrete Lyapunov equation requires 
about 34n 3 flops (26n 3 for the reduction of A to the RSF). 

Round-o f fproper t i es :  As in the case of the continuous-time Lyapunov equation, 
it can be shown (Exercise 8.26) that the computed solution X of the discrete 
Lyapunov equation ATXA - X = C satisfies the inequality 

IIX- XIIF c m t t  < (8.5.18) 
IIXIIF - sepd(A T, A)' 

where m = max(l, IIAII 2) and c is a small constant. 
Thus, the accuracy of the solution obtained by the Schur method for the discrete 

Lyapunov equation depends upon the quantity sePd(A T, A). (Note again that the 
sePd(A T, A) appears in the perturbation bound (8.3.18).) 

M A T L A B  note: X = d l y a p ( A ,  C) solves the discrete Lyapunov equation: 
A X A  T _ X -- - C ,  using complex-Schur decomposition of A. 

M A T C O N T R O L  notes: MATCONTROL functions lyaprsd and lyapcsd 
solve the discrete-time Lyapunov equation using real-Schur and complex-Schur 
decomposition of A, respectively. 

8.5.5 Residual and Backward Error in the Schur and 
Hessenberg-Schur Algorithms 

We consider here the following questions: How small are the relative residu- 
als obtained by the Schur and the Hessenberg-Schur algorithms? Does a small 
relative residual guarantee that the solution is accurate? 

To answer these questions, we note that there are two major computational tasks 
with these algorithms: 

First. The reduction of the matrices to the RSF and/or to the Hessenberg form. 
Second. Solutions of certain linear systems. 
We know that the reduction to the RSF of a matrix by the QR iteration method, 

and that to the Hessenberg form by Householder's or Givens' method, are backward 
stable (See Chapter 4). 

And, if the linear systems are solved using Gaussian elimination with partial 
pivoting, followed by the technique of iterative refinement (which is the most 
practical way to solve a dense linear system), then it can be shown (Golub et al. 

1979, Higham 1996) that the relative residual norm obtained by the Hessenberg- 
Schur algorithm for the Sylvester equation satisfies 

IIC- (XA + B.~)liE 
_< c# (IIAIIF 4- Ilnllf), (8.5.19) 

IIXIIF 

where X is the computed solution and c is a small constant depending upon m 
and n. 
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This means that the relative residual is guaranteed to be small. Note that 
this bound does not involve sep(B, - A ) .  

Does a small  relative residual imply a small b a c k w a r d  e r ro r ?  We will now 
consider this question. 

To this end, let's recall that by b a c k w a r d  e r ro r  we mean the amount of perturb- 
ations to be made to the data so that an approximate solution is the exact solution 
to the perturbed problem. If the perturbations are small, then the algorithm is 
backward stable. 

For the Sylvester equation problem, let's define (following Higham 1996) 
the backward error of an approximate solution Y of the Sylvester equation 
X A  + B X  = C by 

v ( Y )  - m i n { s  " Y ( A  + AA) + (B + A B ) Y  -- C + A C ,  

IIAAIIF ~ sc~, IIABIIF ~ s/~, IIACIIF ~ sy }, 

where or, fl, and 9/are tolerances. The most common choice is 

c~ - II A IIF, r - -  II B IIF, Y - -  II C IIF. 

This choice yields the normwise relative backward error .  
As earlier, we assume that A is n • n and B is m • m, and m >__ n. 
It has been shown by Higham (1996) that 

IIRes(Y)IIF 
v ( Y  ) < 6 , (8.5.20) 

(~ +/3)IIYIIF + Y 

where Res(Y ) - -  C - ( Y A  + B Y ) is the residual and 

(~ + ~)llYIIF + Y 
6 -- �9 (8.5.21) 

V/~2~m 2 + ~ 2 ~  + • 

Here o1 >_ 02 >_ . . .  >_ an >_ 0 are the singular values of Y, and O'n+l . . . . .  
O" m m 0 .  

The special case when m -- n is interesting. In this case 

(IIAIIF + IlnllF)IIYIIF + IIClIF 
a -- (8.5.22) 

((llZll2 _+_ ]lBll 2) O,l~in2 (y)at_ iiCll 2) 1/2 

Thus, ~ is large only when 

II Y liE >> Crmin (Y) and II Y liE >~ 
IICIIF 

II A IIF + II n liE 
(8.5.23) 

In other words, ~ is large when Y is ill-conditioned and II Y IIv is large. 
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In the general case (m 7~ n), 8 can also be large if II B II is large compared to the 
rest of the data. In these cases, the Sylvester equation is badly scaled. 

Also, note that if only A and B are perturbed, then ~ is large whenever Y 
is ill-conditioned. 

This is because in this case, 

~ IIYIIFIIY • 112 ~ Cond2(Y) 

(for any m and n); so, 8 is large whenever Y is ill-conditioned. 
From above discussions, we see that "the backward error of an approximate 

solution to the Sylvester equation can be arbitrarily larger than its relative 
residual" (Higham 1996). The same remark, of course, also holds for the Lyapunov 
equation, as we will see below. 

Backward Error for the Lyapunov Equation 

In case ofthe Lyapunov equation, B = A T (and thus fl = a), we have the following 
bound for the backward error for the Lyapunov equation. 

Let Y be an approximate solution of the Lyapunov equation XA + ATx = C, 
and let v (Y  ) denote the backward error. Assume that C is symmetric. Then 

v ( Y  ) = min{e : Y ( A  + AA) + (A + AA)Ty = C + AC, IIAAII _< ~ ,  

A C  -- ( A C )  T, IIACIIF _ E• 

Thus, 
IIRes(Y )liE 

v (Y  ) < 8 . (8.5.24) 
2o~llYIIv + Y 

The expression for 8 in (8.5.24) can now be easily written down by specializing 
(8.5.22) to this case. 

8.5.6 A Hessenberg Method for the Sylvester Equation: A X  + X B  = C 

Though the Schur and the Hessenberg-Schur methods are numerically effective for 
the Lyapunov and the Sylvester equations and are widely used in practice, it would 
be, however nice to have methods that would require reduction of the matrices A 
and B to Hessenberg forms only. Note that the reduction to a Hessenberg form 
is preliminary to that of the RSE Thus, such Hessenberg methods will be more 
efficient than the Hessenberg-Schur method. We show below how a Hessenberg 
method for the Sylvester equation can be developed. The method is an extension 
of a Hessenberg method for the Lyapunov equation by Datta and Datta (1976), 
and is an efficient implementation of an idea of Kreisselmeier (1972). It answers 

affirmatively a question raised by Charles Van Loan (1982) as to whether a method 
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can be developed to solve the Lyapunov equation just  by transforming A to a 
Hessenberg matrix. 

Step 1. Reduction o f  the problem to a Hessenberg problem. Transform A to a 
lower Hessenberg matrix H1, and B to another lower Hessenberg matrix H2: 

UT A U - H1, VT B V - H2. 

(Assume that both H1 and H2 are unredueed.) 
Then, A X + X B  -- C becomes 

H1Y + Y H2 -- C ~, where  Y -  g T X V ,  C f -  U T C V .  

Step 2. Solution o f  the reduced problem�9 H1Y + Y H2 -- C ~ Let Y = 

(Yl, Y2 . . . . .  Yn) and H2 - (hij). 
Then the equation H1Y + Y H2 -- C t is equivalent to 

H 1 Y n  + h n -  1,n Yn-  1 -3r- hnn Yn - Cln , 

H lYn -1  + h n - 2 , n - l Y n - 2  -t- h n - l , n - l Y n - 1  n t- hnn - lYn  - Cln_l , 

HlYl  + hllYl + h21Y2 + ' "  + hnlYn -- cI1 �9 

Eliminating Yl through Yn-1, we have, 

where 

Ryn - d, 

g - -  . 4 , ( - H 1 ) ,  
1-Ii=2 hi-l,i 

4~(x), being the characteristic polynomial of H1 and the vector d is defined in 
Step 4 below�9 

Thus, once Yn is obtained by solving the system Ryn = d, Yn-1 through Yl are 
computed recursively as follows: 

( ) 1 HlYi + h j i y j  - c I , i - n, n - 1 . . . . .  2. 
Yi-1 = h i - l , i  j=i 

Step 3. Computing the matrix R o f  Step 2. It is well known (see Datta and Datta 

(1976)) that by knowing only one row or a column of a polynomial matrix in an 

unreduced Hessenberg matrix, the other rows or columns of the matrix polynomial 
can be generated recursively. 
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Realizing that the matrix R is basically a polynomial matrix in the lower 
Hessenberg matrix H1, its computation is greatly facilitated. 

Thus, if R = (rl . . . . .  rn), then, knowing rn, rn-1 through rl can be generated 
recursively as follows: 

Fk_ i  --- 
1( ) 

"kI~I-1 Hlrk -- hikri , 
,k i=k 

where H1 -- (hlj); k - n, n - 1 . . . . .  2 
It therefore remains to know how to compute rn. This can be done as follows. 
Set On - en - (0, 0, 0 . . . . .  0, 1)T and then compute On- 1 through 00 recursively 

by using 

( ) 1 H l O i  -~- hjiOj , i -- n, n - 1 . . . . .  1. 
Oi -1  - -  h i - l , i  j = i  

Then, it can be shown (Datta and Datta 1976) that 

rn : 00, setting h01 - -  1. 

Step 4. Computing the vector d o f  Step 2. The vector d can also be generated 
from the above recursion. Thus, starting with Zn = 0 ( a zero vector), if Zn-1 
through z0 are generated recursively using 

( ,) i-. 1 H l z i  + h j i z j  - c i . . . .  
z i - 1  - -  h i - l , i  j = i  

then d = -z0 .  
Step 5. Recovery o f  the original solution X from Y. 

X = U Y V  T. 

Remarks 

It is to be noted that the method, as presented above, is of theoretical interest 
only at present. There are possible numerical difficulties. For example, if one 
or more of the entries of the subdiagonal of the Hessenberg matrix/-/2 are 
small, a large round-off error can be expected in computing Yi-1 in Step 2. 
A detailed study on the numerical behavior of the method is necessary, 
before recommending it for practical use. Probably, some modification will 
be necessary to make it a working numerical algorithm. The reason for 
including this method here is to show that a method for  the Sylvester equation 
can be developed just  by passing through the Hessenberg transformations 
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of  the matrices A and B only; no real Schur or Schur transformation is 
necessary. 

E x a m p l e  8 .5 .6 .  

following data 

A _._ 

Consider solving the Sylvester equation AX + X B = C with the 

t?o (: o) 1 2 3 4 1 - 1  0 24 22 
24 

5 6 B = 1 C = 27 25 ' ' 2 7  " 8 9 0 
0 0 12 10 12 

Step 1. Reduction of A and B to lower Hessenberg forms: 

{ 1.0000 -5.3852 
/ - 1 2 . 8 1 3 0  8.7241 

H 1 -  [ 0.8337 10.3127 
\ 0.3640 1.3595 

1 . 0 0 0 0  0 

U - 0 -0 .3714 
0 -0.5571 
0 -0.7428 

H2--  1 l i) 1 , V =  

0 

1 2 . 0 0 0 0  - 1 0 . 0 0 0 0  

-32.8681 29.5256 
-19.1978 18.3641 
-0 .3640 -0 .0000 

C ! _ _  

0 0 
5.1151 0 
4.6391 0.1586 ' 

-4 .8552 0.6368 

o o ] 
-0.6009 -0.7078 
-0.4657 0.6876 l "  
0.6497 - 0 . 1 6 1 8 ]  

(i 0 i) - 1  

0 

12.0000 '~ 
- 3 2 . 8 6 8 1 ] .  

- 19 ;19408 ) 

Step 2. Solution of the reduced problem: Since the matrix H2 is reduced (h23 -= 
0), instead of an algorithm breakdown, the set of equations for yl, y2, Y3 decouple 
and we obtain: 

! 
H 1  Y3 -t- h 33 Y3 - -  c 3 , 

! - h32Y3 - c2, Hly2 + hl2Yl + h22Y2 = c 2 
! - -  h31Y3  - -  ~'1 Hly l  + hllYl + helye = c 1 

The vector y3 is obtained as the solution of the first system, and once Y3 is known, 
~2 and ~3 can be easily computed. 

{ 1 oooo ~ { -  ~ o oooo 
_/-1.6713/ _ ] 29.5256 | 

Y3 [_0 .4169  / , d2 [ 18.3641 / '  Cl - -  

\ -o .  ~ 82o/ \ -o.oooo / 

12.0000 
-32.8681 / 
- 1 9 . 1 9 7 8 |  " 
-0 .3640 ] 
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We now proceed to compute Y2 and yl as follows: 
Step 3. Computat ion of the vector d" starting from Z2 -- (0 0 0 0) T, 

1 
Zl -- --~-~o (HlZ2 + h22z2 - c2) 

= ( - 1 0 . 0 0 0 0  29.5256 18.3641 - 0 . 0 0 0 0 )  T, 

1 
d - - z o  - -i-(HlZl + hllZl d- h21z2 - Cl) 

= ( - 1 9 1 . 0 0 0 0  542.0447 418.9050 - 5 2 . 2 9 8 5 )  T. 

Step 4. Computat ion of the matrix R. Starting from 02 - -  (0 0 0 1) T, 

1 
01 -- - ~ ( H 1 0 2  + h2202) - (0 0 - 0 . 1 5 8 6  - 1 . 6 3 6 8 )  T, 

h12 
1 

Oo - - - s  + h1101 + h2102) - (0 0.8112 1.1538 2.9092) T 

and now, starting from r4 = 00, we obtain 

1 
r3 - ~-7--(Hlr4 - h~4r4) 

h34 

= ( - 2 7 . 5 4 6 2  78.5858 84.7805 - 28.3717)T, 

1 ! ! 

r2 = ,_-7--(Hlr3 - h33r3 - h43r4) 
h23 

= ( - 6 3 . 1 3 6 4  217.3103 154.1618 - 36.5856)T, 

1 l l l 
rl -- ~_-T--(Hlr2 -- hz2r2 - h32r3 - h42r4) 

hi2 

= (74.0000 - 145.9565 - 125.7098 - 2 0 . 1 4 2 8 )  T, 

which gives 

R m 

7 4 . 0 0 0 0 - 6 3 . 1 3 6 4 - 2 7 . 5 4 6 2 0  / 
- 1 4 5 . 9 5 6 5 2 1 7 . 3 1 0 3 7 8 . 5 8 5 8 0 . 1 2  
- 1 2 5 . 7 0 9 8 1 5 4 . 1 6 1 8 8 4 . 7 8 0 5 1 . 1 5 3 8 ]  
- 2 0 . 1 4 2 8 - 3 6 . 5 8 5 6 - 2 8 . 3 7 1 7 2 . 9 0 9 2 ]  

and now R y2 -- d gives 

y 2 -  ( - 1 . 0 0 0 0  1.6713 0.4169 0.1820) T 

and finally we compute 

yl - (1.0000 - 1 . 6 7 1 3  - 0 . 4 1 6 9  - 0 . 1 8 2 0 )  T. 
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Therefore, the solution of the reduced problem is 

y 

1.0000 - 1.0000 1.0000 
-1.6713 1.6713 -1.6713 / 
-0.4169 0.4169 -0 .4169 / " 
-0 .1820 O. 1820 -0.1820,]  

The original solution X is then recovered via X - U Y V T" 

X m 

1.0000 1.0000 1.0000 
1.0000  .0000 1.0000| 
1.0000 1.0000 1.0000/" 
1.0000 1.0000 1.0000+1 

Verification: IIAX -+- X B  - C I I 2  - 5.6169 • 10 -14. 

M A T C O N T R O L  note: The Hessenberg methods for the Sylvester and Lya- 
punov equations have been implemented in MATCONTROL functions sylvhess 

and lyaphess, respectively. Both Hessenberg matrices are assumed to be unre- 
duced. The above example shows that the method, however, works if one of them 
is reduced, but in that case the codes need to be modified. 

8.5.7 The Hessenberg-Schur Method for the Discrete Sylvester Equation 

In some applications, one needs to solve a general discrete Sylvester equation: 

B X A + C = X .  

The Schur method for the discrete Lyapunov equation described in Section 8.5.4 
can be easily extended to solve this equation. 

Assume that the order of  A is smal ler  than that of  B. A ~ R n xn, B ~ ]~m xm. 
Let the matrices A T and B be transformed, respectively, to an upper real Schur 
matrix R and an upper Hessenberg matrix H by orthogonal similarity: 

u T A T u  -- R, 

V T B V  = H. 

Then, 
B X A  + C = X becomes H Y R  T + C = Y, 

where Y = v T x u ,  C - v T C U . L e t  Y - (Yl . . . . .  yn), and C - -  (C l ,  c2 . . . . .  r 
The reduced equation can now be solved in exactly the same way as in the 

Hessenberg-Schur algorithm for the Sylvester equation (Algorithm 8.5.1). This 
is left as an exercise (Exercise 8.27) for the readers. 

M A T C O N T R O L  note: MATCONTROL function sylvhcsd solves the discrete- 
time Sylvester equation, based on complex Schur decomposition of A. 
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8.6 DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS 
OF SYMMETRIC POSITIVE DEFINITE SOLUTIONS OF 
LYAPUNOV EQUATIONS 

In this section we describe methods for finding the Cholesky factors of the 
symmetric positive definite solutions of both continuous-time and discrete-time 
Lyapunov equations, without explicitly computing such solutions. 

8.6.1 Computing the Cholesky Factor of the Positive Definite Solution of 
the Lyapunov Equation 

Consider first the Lyapunov equation: 

XA + ATx = - c T c ,  (8.6.1) 

where A is an n • n stable matrix (i.e., all the eigenvalues )~ 1 . . . . .  ~,n have negative 
real parts), and C is an r • n matrix. 

The above equation admits a unique symmetric positive semidefinite solution X. 
Thus, such a solution matrix X has the Cholesky factorization X = yT y, where Y 
is upper triangular. 

In several applications, all that is needed is the matrix Y; X is not needed as 
such. One such application is model reduction problem via internal balancing 
and the Schur method for model reduction (Chapter 14), where the Cholesky 
factors of the controllability and observability Grammians are needed. 

In these applications, it might be computationally more attractive to obtain the 
matrix Y directly without solving the equation for X, because X can be consid- 
erably more ill-conditioned than Y. Note that Cond2(X) = (Cond2(Y)) 2. Also, it 
may not be computationally desirable to form the right-hand side matrix - c T c  
explicitly; there may be a significant loss of accuracy in this explicit formation. 

We describe below a procedure due to Hammarling (1982) for finding the 
Cholesky factor Y without explicitly computing X and without forming the matrix 
product C TC. 

Reduction of the Problem 

Substituting X = yT y in Eq. (8.6.1), we have 

(YTy)A + AT(yTy) = - c T c .  (8.6.2) 

The challenge is now to compute Y without explicitly forming the product C TC. 
Let S - uTA U, where S is in upper RSF and U is orthogonal. Let 

CU= OR 

be the QR factorization of C U. 
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Then Eq. (8.6.2) becomes 

where I ) - YU and RTR = ( c u ) T c u .  

(8.6.3) 

Solution of the Reduced Equation 

To obtain Y from (8.6.3) without explicitly forming R TR, we partition I?, R, and 
S as follows: 

-- , R - -  R 1 ) '  S - -  S1 ) '  (8.6.4) 
1~ ( ~ 1  Yy~) (r;1 r T (s;1 s T 

where Sll is a scalar (a real eigenvalue in RSF S) or a 2 x 2 matrix ("Schur bump," 
corresponding to a pair of complex conjugate eigenvalues in the matrix S); and 
~, r, and s are either column vectors or matrices with two columns. 

Since I 3 satisfies (8.6.3) we can show, after some algebraic manipulations, that 
Yll, Y, and Y1 satisfy the following equations: 

sT (yTlYll) -t-(yTlYll ) Sll "~ --rTlrll, 

STy-+-y(YllSllYH 1) : --rot --s);T1 , 

A T , ,  
S T (yTy1)-Jr-(yTy1)S1 : -R1  R1, 

(8.6.5) 

(8.6.6) 

(8.6.7) 

where ot -- r l l ~ H  1, /~T/~I -- R~R1 + uu T, and u -- r - ~ot T. 
Since R~R1 is positive definite, so is/~T/~I. 
Note that the matrix/~1 can be easily computed, once R1 and u are known, from 

the QR factorization: 

R1 -- 0R1. (8.6.8) 

Equation (8.6.7) is of the same form as the original reduced equation (8.6.2), but 

is of smaller order. This  is the key  observat ion .  

The matrices S1, Y1, and/~1 can now be partitioned further as in (8.6.4), and 
the whole process can be repeated. The process is continued until I ~ is completely 
determined. 

Recovery of the Solution 

Once I ~ is obtained, the "R-matrix" I? of the QR factorization (~ I? - I~U T will be 
an upper triangular matrix that will satisfy Eq. (8.6.7). Let I? - (yij). 
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Since Y is required to have positive diagonal entries, we will take 

Y -- diag(sign(~ll) . . . . .  sign(Ynn)) I ~. 

Algorithm 8.6.1. Algorithm for the Direct Cholesky Factor of the Symmetric 
Positive Definite Solution of the Lyapunov Equation 
Inputs. AmAn n • n matrix 
C--An r • n matrix. 

Output. Y--The Cholesky factor of  the symmetric positive definite solution of 
the Lyapunov equation: XA  + A T x  -- - C  T C. 

Assumption. A is stable. 
Step 1. Find the RSF S of A: uT A U = S. 
Step 2. Find the Q R factorization of the r x n matrix C U" C U = Q R. 

Step3. PartitionR- (rio1 r T )  S - sl(10 sT) 
R1 ' S1 " 

Step 4. Find ~" ( ~ 1  Y~) -- as follows: 

4.1 Compute ~l l from sTI(~TI~ll) + (~TI~ll)Sll -- --rTlrll. 

4.2 Compute t~ -- r l l~l  1. 
4.3 Solve for ~: sT~ + ~ ( ~ s ~ l ~ )  = --r~ -- s~T~. 

-- to 4.4 Compute u r - ~o~ T and then find the Q R factorization of R1 

find RI" 

O _ k l -  R I "  

Step 5. Set S = S1, R -- /~1 and return to Step 3 and continue until ~" is 
completely determined. 

Step 6. Compute Y from the QR factorization of I~uT:I~U T -- Q~'. Let 

-- (Yij). 

t s i g~  ~11) 0 1 Step 7.Compute Y - ".. ~'. 

sign(~nn) 

Example 8.6.1. Consider solving Eq. (8.6.1) for the Cholesky factor Y with 

{-0.9501 0.5996 0.2917 
A = /0.6964 -1.0899 -0.68641, 

\ o 0.0571 -6.6228] 
C =(1,1,1). 
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Step 1. Reduction of A to RSF: [U, S] - sehur  (A) gives 

U B 

S m 

- 0 . 7 2 1 1 - 0 . 6 9 2 9  0.0013 '~ 
-0 .6928  0.7210 -O.OLO5 / , 
-0 .0063  0.0084 0.9999 ] 

-0 .3714  0.0947 0.3040 
0 -1 .6762  -0.7388]. 
0 0 - 6 . 6 1 5 2 ]  

Step 2. The QR factorization of CU'[Q, R] - qr  (CU) gives 

R -- ( -1 .4202  0.0366 0.9908). 

Step 3. 

_ {0.0366]  
r \ 0 . 9 9 0 8 ]  ' 

rl 1 = -- 1.4202, 

--1.6762 
S1--  0 

Sll  ~ - - - - 0 . 3 7 1 4 ,  

- 0 . 7 3 8 8 ]  
- 6 . 6 1 5 2 ]  ' s = .3040]"  

Step 4. Compute Yll and or: 

^-2 -0 .8619  yll  "-- 1.6479, oe -- r l lYll  -- . 

Solve for ~ " 

(S T -k YllSllYl]ll  )y -- - ro t  - s~T1 

or  

- 2 .0476  
-0 .7388  

0 ) ( - 0 . 1 2 4 5 )  
-6 .9866  ~ = \ 0.3530 } '  

( 0.0608 '~ 
= \ - 0 . 0 5 6 9 } "  

(0.0890'~ 
u - r - ~aT = ~,0.9418] '  

/~1 = (0.0890, 0.9418). 

R1 = 0  
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Step 5. Solution of the reduced 2 • 2 problem: 

-1 .6762 
S =  S 1 -  0 

-0 .7388]  
-6 .6152]  

R _----/~1 = (0.0890, 0.9418) 

yll - 0.0486, - (0.2036), /~1 --  0 . 5 6 8 9 .  

Solution of the final 1 • 1 problem: 

S = -6.6152, R = 0.5689, Yll  - -  0 . 1 5 6 4 .  

Thus, 

1.6479 0.0608 -0 .0569~ 
I ~ -  0 0.0486 0.02036 / . 

0 0 0.1564 ] 

Step 6. Compute I?:[Q1, I?] = qr  (YU T) (Using QR factorization): 

1.2309 1.0960 0.0613 
/71 -- 0 -0 .0627 - o . 2 0 1 1  / . 

0 0 0.1623 ,/ 

1.2309 
Step 7. Y = 0 

0 

MATCONTROL note: 
TROL functions lyapehle. 

1.0960 0.0613 
0.0627 0 . 2 0 1 1 | .  

0 0.1623,/ 

Algorithm 8.6.1 has been implemented in MATCON- 

Remark 

�9 Note that it is possible to arrange the computation of Y with a different 
form of partitioning than as shown in (8.6.4). For example, let us partition 
matrices Y, R, and S as follows: 

yly) . rlr) ' siS) 
where yl, rl, and sl are scalars or 2 x 2 matrices and y, r, and s are either 
column vectors or matrices with two columns. 
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Then, similar to Eqs. (8.6.5)-(8.6.7), one will obtain three equations. For 
example, the first one will be just the deflated version of the original equation. 

sT  (Y~Y11)+  ( Y T y , 1 ) S l l -  --RT1Rll. (8.6.10) 

Suppose that the solution Yll of this deflated equation has been computed, 
then the second and third equations will give us the expressions for y and Yl. 

By using this new partitioning, the original algorithm of Hammarling 
(1982) can be slightly improved. 

In the following, we will use this partitioning to solve the discrete 
equation. 

8.6.2 Computing the Cholesky Factor of the Positive Definite Solution of 
the Discrete Lyapunov Equation 

Consider now the discrete Lyapunov equation: 

ATXA + cTc  = X, (8.6.11) 

where A is an n • n discrete-stable matrix (i.e., all the eigenvalues )~ 1 . . . . .  )~n are 
inside the unit circle) and C is an r • n matrix. 

Then Eq. (8.6.11) admits a unique symmetric positive semidefinite solution X. 
Such a solution matrix X has the Cholesky factorization: X = yV y, where Y is 
upper triangular. 

We would obtain the matrix Y directly without solving the equation (8.6.11) 
for X. Substituting X = yXy into the Eq. (8.6.11), we have 

AT(yTy )A + c T c  = yTy. (8.6.12) 

As in the case of the continuous-time Lyapunov equation (8.6.1), we now outline 
a method for finding Y of (8.6.12) without computing X and without forming the 
matrix C T C. 

Reduction of the Problem 

Let S = uTA U, where S is in upper RSF and U is an orthogonal matrix. Let 

Q1R =CU 

be the economy QR factorization of the matrix C U. 
Then Eq. (8.6.12) becomes 

S T (]~T~) S _1_ R T R _  ~,,T~, 

where l ~ - Y U and RT R -- (C U) T C U. 

(8.6.13) 
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Solution of the Reduced Equation 

To obtain 1~ from (8.6.13) without forming RTR explicitly, we partition l~, R, 
and S as 

yly) fir) s S) 
From (8.6.13), we see that Yll, Y, and yl satisfy the following equations: 

sT (yTyll)Sll- '1"-RT1Rll : ( y T y l l ) ,  (8.6.14) 

yT y _ (YllSll)T ysl - sT1Y~I YllS + RT1 r, (8.6.15) 

d- (rTrl -t-rTr -+-(YllS q- ysl) T(Ylls q- ysl) - yTy) : sTyTyls 1 yTyl. 

(8.6.16) 

Equation (8.6.14) is of the same form as the original reduced equation (8.6.12), 
but is of smaller order. 

Suppose that we have already computed the solution Yll of this equation. Then 
y can be obtained from (8.6.15) by solving a linear system and, finally, (8.6.16) 
gives us yl. 

Recovery of the Solution 

Once l~ is obtained, the "R-matrix" 1~ of the QR factorization of the matrix 1~ U T" 
l? - 1~ U T will be the upper triangular matrix that will solve the equation (8.6.12). 

Let Y = (Yij). 
Since Y has to have positive diagonal entries, we take 

Y - diag(sign(~ll) . . . . .  sign(~nn)) Y. 

Algorithm 8.6.2. Algorithm for the Direct Cholesky Factor of the Symmetric 
Positive Definite Solution of the Discrete Lyapunov Equation 
Inputs. AmAn n x n matrix 
C A n  r • n matrix. 
Output. Y~The Choleskyfactor Y of the symmetric positive definite solution X 
of the discrete Lyapunov Equation: AT X A + c T c  - X. 
Assumption. A is discrete-stable, that is all its eigenvalues have moduli less 
than 1. 

Step 1. Find the RSF S of A:U TA U = S. 
Step 2. Find the (economy size) Q R factorization of the r x n matrix C U: 

QR = c u .  
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Step 3. Partition 

where Sll is a scalar or 2 • 2 matrix (Schur bump). 
Compute Yll from sT (yT Yll)Sll + RT1Rll -- yT Yll. 
Step 4. Do while dimension of Yll < dimension of S 

4.1. Partition (Yllyi) ( lsi) ( lr Y = 0 Yl , S -  S1 , R = rl 
0 0 0 0 i) 

where S1 is 1 • 1 scalar or 2 • 2 Schur bump. 
4.2. Compute y from y T y _  (YllSll)Tysl = sT1YTyllS + RT1 r. 
4.3. Compute Yl from 

sTyTylsl + (rTrl + rTr + (YllS + ysl)T(YllS + ysl) -- yTy) = yTyl. 

4"4" G~ t~ Step 4 with Yll =- ( Y~I ylY )" 

Step 5. Compute ~" from the Q R factorization of Yll UT" Q ]~ -- Yll U T. 
Let Y = (Yi j  ). 

I s i g ~  ~11) 0 1 
Step 6. Compute Y = ".. ~'. 

sign(~nn) 

Example 8.6.2. Consider solving the equation (8.6.12) for the Cholesky factor Y with 

A 

-0.1973 -0.0382 0.0675 
-0.1790 -0.3042 -0.0544] 
0.0794 0.0890 -0.1488] 

and 
{0.0651 0 .1499  0.2917~ 

C=~0.1917 0.0132 0.4051}" 

Step 1. Reduction of A to the RSF: [U, S] = schur  (A) gives 

U 

-0.3864 -0.7790 0.4938~ 
-0.7877 0.5572 0.2627 / , 
0.4798 0.2875 0.8290] 

S __. 

-0.3589 -0.0490 0.1589 
0 -0.1595 -0.0963 / . 
0 0.0173 -0.1319] 
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Step 2. The economy size QR factorization of CU: [Q, R] = qr (CU, 0) gives 

R -- {0.1100 -0.0289 0.4245'~ 
0 0.1159 0.3260]" 

Step 3. Partitioning of R and S gives S l l  = (-0.3589), Rll = (0.1100), which 
enables us to compute Y11 = (0.1178). 

Step 4. Dimension of YI] = 1 < dimension of S - 3. So we do: 
4.1. 

( -0 .0490 ' ]  T 
s = ~ 0.1589 ,] ' 

{-0.0289'~ T 
r = ~, 0.4245 ] ' 

( -0 .1595  -0 .0963]  
Sl = ~ 0.0173 -0 .1319]  ' 

r l  = (0.1159 0.3260). 

-0.0291 ~ T 
4.2. y -- 0.4078 ,] " 

4.3. Solve for upper triangular Yl with positive diagonal: 

0.1167 0.3242~ 
Yl -- 0 0.1392]" 

4.4.  F o r m  Y11 : 

0.1178 -0.0291 0.4078~ 
Y11 = 0 0.1167 0.3242 / 

0 0 0.1392] 

and the loop in Step 4 ends. 
Step 5. Find the QR factorization of Yll uT: [ O l ,  }5] __ qr(Yll U T) to obtain I?: 

-0.2034 -0.0618 -0 .4807]  
I? - 0 -0.1417 -0.1355 / . 

0 0 -0 .0664]  

Step 6. Compute the solution: 

0.0034 0.0618 0.4807~ 
Y =  0.1417 0.1355 / . 

0 0.0664] 

MATCONTROL Note: Algorithm 8.6.2 has been implemented in MATCONTROL 
function lyapchld. 
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8.7 C O M P A R I S O N S  OF D I F F E R E N T  M E T H O D S  AND 
C O N C L U S I O N S  

The analytical methods such as the ones based on evaluating the integral 

X = e ATtCe At dt 

for the Lyapunov equation, evaluating the infinite sum ~-'~(Ak)TcAk for the 

discrete Lyapunov equation, and the finite series methods for the Sylvester and 
Lyapunov equations are not practical for numerical computations. 

The methods, based on the reduction to Jordan and companion forms, will 
give inaccurate solutions when the transforming matrices are ill-conditioned. The 
methods based on the reduction to Jordan and companion forms, therefore, in 
general should be avoided for  numerical computations. 

From numerical viewpoints, the methods of choice are: 

�9 The Sehur method (Section 8.5.2) for the Lyapunov equation: 
X A  + A T x  = C. 

�9 The Hessenberg-Schur method (Algorithm 8.5.1) for the Sylvester 
equation: X A + B X = C. 

�9 The Schur method (Section 8.5.4) for the discrete Lyapunov equation: 
AT X A  - X = C 

�9 The modified Schur methods (Algorithms 8.6.1 and 8.6.2) for the 
Cholesky factors of the Lyapunov equation: XA + ATx - -  - C  T C and 
the discrete Lyapunov equation: AT X A + C T C = X. 

8.8 SOME S E L E C T E D  SOFTWARE 

8.8.1 MATLAB Control System Toolbox 

Matrix equation solvers 

lyap Solve continuous Lyapunov equations 
dlyap Solve discrete Lyapunov equations. 

CONDSYLVC 
LYAPCHLC 

LYAPCHLD 

LYAPCSD 

8.8.2 MATCONTROL 

Finding the condition number of the Sylvester equation problem 
Finding the Cholesky factor of the positive definite solution 
of the continuous-time Lyapunov equation 
Find the Cholesky factor of the positive definite solution of the 
discrete-time Lyapunov equation 
Solving discrete-time Lyapunov equation using complex Schur 
decomposition of A 
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LYAPFNS 

LYAPHESS 

LYAPRSC 

LYAPRSD 

SEPEST 
SEPKR 
SYLVHCSC 

SYLVHCSD 

SYLVHESS 
SYLVHRSC 

SYLVHUTC 

Solving continuous-time Lyapunov equation via finite series 
method 
Solving continuous-time Lyapunov equation via Hessenberg 
decomposition 
Solving the continuous-time Lyapunov equation via real Schur 
decomposition 
Solving discrete-time Lyapunov equation via real Schur 
decompostion 
Estimating the sep function with triangular matrices 
Computing the sep function using Kronecker product 
Solving the Sylvester equation using Hessenberg and complex 
Schur decompositions 
Solving the discrete-time Sylvester equation using Hessenberg 
and complex Schur decompositions 
Solving the Sylvester equation via Hessenberg decomposition 
Solving the Sylvester equation using Hessenberg and real 
Schur decompositions 
Solving an upper triangular Sylvester equation. 

8.8.3 CSP-ANM 

Solutions of the Lyapunov and Sylvester matrix equations 

�9 The Schur method for the Lyapunov equations is implemented as 
LyapunovSolve [a,b] SolveMethod -+ SchurDecomposition] 
(continuous-timecase)andDiscreteLyapunovSolve [a, b, Solve- 
Method --+ SchurDecomposition] (discrete-time case). 

�9 The Hessenberg-Schur method for the Sylvester equations is implemented 
asLyapunovSolve [a, b, c, SolveMethod -+ HessenbergSchur] 
(continuous-time case) and Discrete LyapunovSolve [a, b, c, 
SolveMethod -+ HessenbergSchur] (discrete-time case). 

�9 The Cholesky factors of the controllability and observability Grammians of 
a stable system are computed using C h o l e s k y F a c t o r C o n t r o l l a b i -  
lityGramian [system] and 
Chol eskyFactorObservabi i ityGramian [system]. 

8.8.4 SLICOT 

Lyapunov equations 

SB03MD Solution of Lyapunov equations and separation estimation 
SB03OD Solution of stable Lyapunov equations (Cholesky factor) 
SB03PD Solution of discrete Lyapunov equations and separation estimation 
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SB03QD 
SB03RD 

SB03SD 
SB03TD 

SB03UD 

Condition and forward error for continuous Lyapunov equations 
Solution of continuous Lyapunov equations and separation 
estimation 
Condition and forward error for discrete Lyapunov equations 
Solution of continuous Lyapunov equations, condition and 
forward error estimation 
Solution of discrete Lyapunov equations, condition and forward 
error estimation 

Sylvester equations 

SB04MD 

SB04ND 
SB04OD 

SB04PD 
SB04QD 
SB04RD 

Solution of continuous Sylvester equations (Hessenberg-Schur 
method) 
Solution of continuous Sylvester equations (one matrix in Schur form) 
Solution of generalized Sylvester equations with separation 
estimation 
Solution of continuous or discrete Sylvester equations (Schur method) 
Solution of discrete Sylvester equations (Hessenberg-Schur method) 
Solution of discrete Sylvester equations (one matrix in Schur form) 

Generalized Lyapunov equations 

SG03AD Solution of generalized Lyapunov equations and separation 
estimation 

SG03BD Solution of stable generalized Lyapunov equations (Cholesky factor) 

8.8.5 MATRIXx 

Purpose: Solve a discrete Lyapunov equation. 

Syntax: P = DLYAP (A, Q) 

Purpose: Solve a continuous Lyapunov equation. 

Syntax: P = LYAP (A, Q) 

8.8.6 LAPACK 

The Schur method for the Sylvester equation, X A + BX = C, can be imple- 
mented in LAPACK by using the following routines in sequence: GEES to compute 
the Schur decomposition, GEMM to compute the transformed right-hand side, 
TRSY L to solve the (quasi-)triangular Sylvester equation, and GEMM to recover 
the solution X. 
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8.9 SUMMARY AND REVIEW 

Applications 

The applications of the Lyapunov equations include: 

�9 Stability and robust stability analyses (Chapter 7). 
�9 Computations of the controllability and observability Grammians for stable 

systems (needed for internal balancing and model reduction) (Chapter 14). 
�9 Computations of the H2 norm (Chapter 7). 
�9 Implementation of Newton's methods for Riccati equations (Chapter 13). 

The applications of the Sylvester equations include: 

�9 Design of Luenberger observer (Chapter 12) 
�9 Block-diagonalization of a matrix by similarity transformation. 

Existence and Uniqueness Results 

(1) 

(2) 

(3) 

The Sylvester equation X A + B X  = C has a unique solution if and only 
A and - B  do not have an eigenvalue in common (Theorem 8.2.1). 
The Lyapunov equation XA + AT X -- C has a unique solution if and only 
if A and - A  do not have an eigenvalue in common (Corollary 8.2.1). 
The discrete Lyapunov equation ATXA - X --- C has a unique solution if 
and only if the product of any two eigenvalues of A is not equal to 1 or A 
does not have an eigenvalue of modulus 1 (Theorem 8.2.2). 

Sensitivity Results 

(1) sep (B, - A )  defined by 

(2) 

(3) 

(4) 

IIXA + BXIIF 
sep(B, - A) -- min = Crmi n ( P ) ,  

xr IIXIIF 

where P - In | B + AT N Im, m and n are, respectively, the orders of B 
and A, plays an important role in the sensitivity analysis of the Sylvester 
equation X A + B X  -- C (Theorem 8.3.1). 
sep (A T, - A )  has an important role in the sensitivity analysis of the 
Lyapunov equation: X A  + A T x -  C (Corollary 8.3.2). 
sepa(A T, A) - O'min(A T | A T - In2 ) has an important role in the sen- 
sitivity analysis of the discrete Lyapunov equation A T X A  - X - C 

(Theorem 8.3.4). 
If A is stable, then the sensitivity of the Lyapunov equation can be deter- 
mined by solving the Lyapunov equation H A  + AT H = -I.]IHII2 is an 
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(5) 

indicator of the sensitivity of the stable Lyapunov equation X A + AT X : 

- C (Theorem 8.3.3). 
If A and B are ill-conditioned, then the Sylvester equation XA + B X = C 
is ill-conditioned (Theorem 8.3.6). Thus, if A is ill-conditioned, then the 
Lyapunov equation is also ill-conditioned. But the converse is not true in 

general. 

Sep-Estimation 

The LINPACK style algorithm (Algorithm 8.3.1) gives an estimate of sep (A, B) T 
without computing the Kronecker product sum P, which is computationally quite 
sensitive. 

Methods for Solving the Lyapunov and Sylvester Equations 

�9 The analytical methods such as the finite-series method or the method 
based on evaluation of the integral involving the matrix exponential are 
not practical for numerical computations (Section 8.4). 

�9 The methods based on reduction to the JCF and the companion form of a 
matrix should be avoided (Section 8.5.1). 

�9 The Schur methods for the Lyapunov equations (Sections 8.5.2 and 8.5.4) 
and the Hessenberg-Schur method (Algorithms 8.5.1 and Section 8.5.7) 
for the Sylvester equations are by far the best for numerical computations. 

�9 If only the Cholesky factors of stable Lyapunov equations are needed, the 
modified Schur methods (Algorithms 8.6.1 and 8.6.2) should be used. 
These algorithms compute the Cholesky factors of the solutions with- 
out explicitly computing the solutions themselves. The algorithms are 
numerically stable. 

8.10 CHAPTER NOTES AND FURTHER READING 

The results on the existence and uniqueness of the Lyapunov and Sylvester equa- 
tions are classical. For proofs of these results, see Horn and Johnson (1991), 
Lancaster and Rodman (1995). See also Barnett and Cameron (1985), and Barnett 
and Storey (1970). The sensitivity issues of these equations and the perturbation 
results given in Section 8.3 can be found in Golub et al. (1979) and in Higham 
(1996). 

The sensitivity result of the stable Lyapunov equation is due to Hewer and 
Kenney (1988). The sensitivity result of the stable discrete Lyapunov equation 
is due to Gahinet et al. (1990). The perturbation result of the discrete Lyapunov 
equation appears in Petkov et al. (1991). The results relating the ill-conditioning 
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of the Sylvester equation and eigenvalues can be found in Ghavimi and Laub 
(1995). The LINPACK-style sep-estimation algorithm is due to Byers (1984). See 
Kagstrrm and Poromaa (1996)) for LAPACK-style algorithms. For perturbation 
results on generalized Sylvester equation, see K~igstrrm (1994) and Edelman et al. 

(1997, 1999). For description of LAPACK, see Anderson et  al. (1999). A recent 
book by Konstantinov et al. (2003) Contains many results on perturbation theory 
for matrix equations. 

The Schur method for the Lyapunov equation is due to Bartels and Stew- 
art (1972). The Schur method for the discrete Lyapunov equation is due to 
Barraud (1977). Independently of Barraud, a similar algorithm was developed 
by Kitagawa (1977). The Hessenberg-Schur algorithms for the Sylvester and 
discrete Sylvester equations are due to Golub et  al. (1979). A good account of 
the algorithmic descriptions and implementational details of the methods for 
solving the discrete Lyapunov equations appears in the recent book of Sima 
(1996). 

The Cholesky-factor algorithms for the stable Lyapunov equations are due 
to Hammarling (1982). The Hessenberg algorithm for the Sylvester equation 
is due to Datta and Datta (1976) and Kreisselmeier (1972). For numerical 
solutions of the generalized Sylvester equation A X B  T + C X D  T - -  E ,  see 
Gardiner et  al. (1992a). For applications of generalized Sylvester equations 
of the above type including the computation of stable eigendecompositions of 
matrix pencils see Demmel and K~igstrrm (1987, 1993a, 1993b), Kagstrrm and 
Westin (1989), etc. See Kagstrrm and Poromaa (1989, 1992) for block algo- 
rithms for triangular Sylvester equation (with condition estimator). See Gardiner 
et  al. (1992b) for a software package for solving the generalized Sylvester 
equation. 

Exercises 

8.1 

8.2 

8.3 

Prove that the equation A* X B + B* X A = - C  has a unique solution X if and only if 
~i -k- ~ j  ~ 0, for all i and j, where ~.i is an eigenvalue of the generalized eigenvalue 
problem: A x  = ~.Bx. (Here A* = (.~)T and B* = (/~)T.) 
Let A be a normal matrix with ~. 1 . . . . .  ~.n as the eigenvalues. Then show that 
maxi I~ i l /m in i j  I~.i q- ~-j)l can be regarded as the condition number of the Lya- 
punov equation X A  + A * X  = - C, where A* = (,~)T. Using the result, construct 
an example of an ill-conditioned Lyapunov equation. 
If A = (aij) and B = (bij)  are upper triangular matrices of order m • m and 
n • n respectively, then show that X -  (xij) satisfying the Sylvester equation 
AX + X B = C can be found from 

xij  = 

_ y ~ m  n-1 
cij k=i+l aikXkj -- Y~k=l xikbkj  

aii Jr- b j j  

8.4 Prove Theorems 8.3.1 and 8.3.4. 
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8.5 

8.6 

8.7 

8.8 

8.9 

8.10 

8.11 

8.12 

8.13 

8.14 

Using the perturbation results in Section 8.3, construct an example to show that the 
Sylvester equation problem XA + B X = C can be very well-conditioned even when 
the eigenvector matrices for A and B are ill-conditioned. 
Prove or disprove that if A and - B have close eigenvalues, then the Sylvester equation 
XA + BX = C is ill-conditioned. 
Construct a 2 x 2 example to show that the bound (8.3.7) can be much smaller than 
the bound (8.3.3). 
Derive the expression 4, for the condition n u m b e r  of the Lyapunov equation given 
in Section 8.3.4. 
Using the definition of the sep function, prove that if X is a unique solution of the 
Sylvester equation XA + B X = C, then 

IIXIIF 
IIClIF 

sep(B, - A ) "  

Let 

u T A U = T =  

Tll T12 . . .  Tlp 

i T2 2 . . .  T2p 
i Oo, " 

\ 0 . . .  Tpp 

be the RSF of A, and assume that T11 . . . . .  Tpp have disjoint spectra. 
(a) Develop an algorithm to transform T to the block diagonal form: 

y -1  TY = diag(T11 . . . . .  Tpp), 

based on the solution of a Sylvester equation. 
(b) Show that if the spectra of the diagonal blocks of T are not distinctly separated, 

then there will be a substantial loss of accuracy (consult Bavely and Stewart 
(1979)). 

(c) Construct an example to support the statement in (b). 
(d) Develop an algorithm to compute e At based on the block diagonalization of A. 
Construct a simple example to show that the Cholesky factor L of the solution matrix 
X = L T L ofthe Lyapunov equation: X A + A  T X = BB T, where A is a stable matrix, 
is less sensitive (with respect to perturbations in A) than X. 
Construct your own example to show that the Lyapunov equation X A + AT X = - C  
is always ill-conditioned if A is ill-conditioned with respect to inversion, but the 
converse is not true. 
Repeat the last exercise with the Sylvester equation XA + B X -- C, that is, construct 
an example to show that the Sylvester equation XA + BX = C will be ill-conditioned 
if both A and B are ill-conditioned, but the converse is not true. 
(a) Let A be a stable matrix. Show that the Lyapunov equation XA + A T x  = - C  

can still be ill-conditioned if A has one or more eigenvalues close to the 
imaginary axes. 

(b) Construct an example to illustrate the result in (a). 
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8.15 Give an example to show that the backward error for the Sylvester equation 
XA + BX = C, where only A and B are perturbed, is large if an approximate 
solution Y of the equation is ill-conditioned. 

8.16 Give an example to illustrate that the backward error of an approximate solution to 
the Sylvester equation X A  + B X = C can be large, even though the relative residual 
is quite small. 

8.17 Prove that sep(A, - B )  > 0 if and only if A and - B do not have common eigenvalues. 
8.18 Let K = I | A T + AT | I and L = I | S T + S T | I be the Kronecker matrices, 

respectively, associated with the equations: 

X A  + A T x  = - C  

and 

X s + s T x  = - C ,  

where S = u T A  U is the RSF of A, and 

d = u T c v .  

(a) Prove that IlK -1112 - II L-1112 
(b) Using the result in (a), find a bound for the error, when A is only perturbed, in 

terms of the norm of the matrix A and the norm of L -1 .  
(c) Based on (a) and (b), develop an algorithm for estimating sep(A T, - A ) ,  

analogous to the Byers' algorithm (Byers 1984) for estimating sep(A, B). 
8.19 Relationship of the distance to instability and sep (A) (Van Loan 1985) 

Define sep (A) = min{l lax  + XA*I  FIX ~ C n• ]IXIIF = 1} 
Then prove that 
(a) sep (A) = 0, if and only if A has an eigenvalue on the imaginary axis. 
(b) l sep(A) _< fl(A) _< Crmin(A), where fi(A) is the distance to instability (see 

Chapter 7). 
(Hint: sep(A) = dmin(I  | A + A | I),  and lIB | e l  2 < lIB 21 CII2.) 

8.20 Construct an example of an ill-conditioned discrete Lyapunov equation based on 
Theorem 8.3.4. 

8.21 Prove that if p(x)  is a real polynomial of degree n having no pair of roots conjugate 
with respect to the unit circle, and T is the lower companion matrix of p(x),  then the 
unique solution X of the discrete-time equation: X - T T X T  = diag(1, 0 . . . . .  0) 
can be written explicitly as: X = (I - ~b(S) T~b(S)) -1 , where S is an unreduced 
lower Hessenberg matrix with 1 s along the superdiagonal and zeros elsewhere, and 
cb(x) = p ( x ) / ( x n p ( 1 / x ) ) .  

Discuss the numerical difficulties of using this method for solving the discrete 
Lyapunov equation. 

Work out an example to demonstrate the difficulties. 
8.22 Develop an algorithm, analogous to Algorithm 8.6.1, to find the Cholesky factor of the 

symmetric positive definite solution of the Lyapunov equation A X + X AT _ _ B BT, 
where B is n x m and has full rank. 

8.23 Compare the flop-count of the real Schur method and the complex Schur method for 
solving the Lyapunov equation" X A + A T x  = - C .  
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8.24 Work out the flop-count of the Schur method for the discrete Lyapunov equation 
described in Section 8.5.4. 

8.25 Develop a method to solve the Lyapunov equation ATxA - X = - C  based on the 
reduction of A to a companion form. Construct an example to show that the algorithm 
may not be numerically effective. 

8.26 Establish the round-off error bound (8.5.18): 

12 - xI F c m #  
< 

IIXIIF - sePd(A T, A) 

for the Schur method to solve the discrete Lyapunov equation (8.5.12). 
8.27 Develop a Hessenberg-Schur algorithm to solve the discrete Sylvester equation 

B X A  + C = X .  

8.28 Develop an algorithm to solve the Sylvester equation: XA + BX -- C, based on the 
reductions of both A and B to RSFs. 

Give a flop-count of this algorithm and compare this with that of Algorithm 8.5.1. 

Research problems 

8.1 Devise an algorithm for solving the equation: 

A T x B  + B T x A  = - C  

based on the generalized real Schur decomposition of the pair (A, B), described in 
Chapter 4. 

8.2 Devise an algorithm for solving the equation: 

A X B  + L X C  = D 

using the generalized real Schur decomposition of the pairs (A, L) and (C T, BT). 
8.3 Investigate if and how the norm of the solution of the discrete-stable Lyapunov 

equation: 
A T x A  - X -- - I  

provides information on the sensitivity of the discrete Lyapunov equation: 

A T x A - X  = C .  

8.4 H i g h a m ( 1 9 9 6 ) . D e r i v e c o n d i t i o n s f o r t h e S y l v e s t e r e q u a t i o n :  X A  + B X  -- C tohave 
a well-conditioned solution. 
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C H A P T E R  9 

REALIZATION AND SUBSPACE 
IDENTIFICATION 

9.1 INTRODUCTION 

In this chapter, we consider the problems of state-space realization and 
identification. 

The state-space realization problem is the problem to find the matrices A, B, C, 
and D of the transfer function G(s) in the continuous-time case or G(z) in the 
discrete-time case, given a set of large number of Markov parameters. 

In case of a discrete-time system, the Markov parameters can easily be computed 
from the input-output sequence of the systems (see Exercise 9.5). Finding Markov 
parameters in the case of a continuous-time system is not that straightforward. 

There may exist many realizations of the same transfer function matrix. Two 
such realizations, controllable and observable realizations, are obtained in 
Section 9.2.1. 

A realization with the smallest possible dimension of A is called a minimal 
realization (MR). A necessary and sufficient condition for a realization to be an 
MR is established in Theorem 9.2.1, and it is shown in Theorem 9.2.2 that two 
MRs are related via a nonsingular transformation. 

The existing algorithms for finding MRs are all based on factoring the associ- 
ated Hankel matrix (matrices) of Markov parameters. Some basic rank properties 
of these matrices, which are relevant to such factorizations, are established in 
Section 9.3. 

307 
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Two numerically viable algorithms (Algorithms 9.3.1 and 9.3.2) based on the 
singular value decomposition(s) (SVD) of these matrices are then described in 
Section 9.3. The algorithms are valid both for continuous-time and discrete-time 
state-space realizations, provided the Markov parameters are known. 

The identification problem is the problem of identifying system matrices 
A, B, C, and D from a given set of input-output data, rather than Markov 
parameters. 

Two time-domain subspace system identification algorithms (Algorithms 9.4.1 
and 9.4.2) are presented in Section 9.4. These algorithms are based on the SVD 
decompositions of Hankel matrices constructed directly from the input-output 
sequences. The algorithms are presented for discrete-time systems identification, 
but can be used for identifying the continuous-time systems also, provided the first 
and higher derivatives of the inputs and outputs can be computed. In the last section 
(Section 9.4.4), we state a frequency-domain subspace identification algorithm 
(Algorithm 9.4.3). A frequency-domain state-space identification is concerned 
with finding the system matrices, given a set of measured frequency responses. 
The algorithm is stated for identification of a continuous-time system; however, it 
can be used for discrete-time identification also, with trivial modifications. 

Reader's Guide 

The readers familiar with material on state-space realization can skip 
Sections 9.2 and 9.3.1. 

9.2 STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION 

In this section, we show, given a transfer matrix, how to construct state-space 
realizations in controllable and observable forms of this transfer matrix. 

We consider here only the continuous-time case. The results are also valid for 
the discrete-time case by replacing the variable s by the variable z. 

Definition 9.2.1. Let G(s) be the transfer matrix of order r • m which is 
proper. Then the quadruple (A, B, C, D) such that 

G(s) = C(sI  - A ) - I B  + D (9.2.1) 

is called a state-space realization of G(s). 

It can be shown (Exercise 9.1) that given a proper rational function G (s), there 
always exists a state-space realization of G(s). However, such a realization is not 
unique, that is, there may exist many state-space realizations of the same transfer 
matrix. 
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In the following sections we show the non-uniqueness of the state-space real- 
ization of a transfer matrix (for the single-input, single-output case (SISO)), by 
constructing two realizations of the same transfer matrix. 

9.2.1 Controllable and Observable Realizations 

The transfer matrix G(s) can be written in the form: 

P(s) 
G(s) - D + (9.2.2) 

d(s) ' 

where P (s) is a polynomial matrix in s of degree at most h - 1 given by 

P(s) -- Po + Pls + ' . .  + Ph-1 Sh-1, (9.2.3) 

and d(s) - s h + dh-1Sh-1 + ' '"  + dls + do is a monic polynomial of degree h 
(h is the least common multiple of the denominators of all the entries of G(s)). 

Let 0p and Ip denote, respectively, the zero and identity matrices of order p. 
Define now 

Om Im 

Om Im 

A -- i ".. ".. , (9.2.4) 

Om "'" Om Im 

-do  Im - d l  Im -d21m . . . .  dh-11m 

B m 

(0m~ 
0m 

o2 
~Im 

C -- (Po . . . . .  Ph-1), (9.2.5) 

D -  lim G(s), (9.2.6) 
s----~ o o  

Then it is easily verified that 

C ( s l  - A ) - I B  + D -- G(s) = D + 
P(s) 

d(s) 
(9.2.7) 

Since the matrix-pair (A, B) is controllable, the above realization of G(s) is called 
a controllable realization. This realization has dimension mh. 

We now construct a different realization of G(s). 
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Expand G(s) in Taylor series: 

1 1 
G(s) : D' + -H1 q-- H2 -+-... 

s -S 

The matrices {D', Hk} can be found as follows: 

D ' -  lim G(s) 
S---~ (X) 

H1 = lim s ( G ( s ) -  D') 
S---+ OO 

H2--s--->~lim s2 ( G(S) - DI - -s1H1) 

etc. 

(9.2.8) 

(9.2.9) 

Definition 9.2.2. 
p a r a m e t e r s  of G(s). 

Note: The Markov parameters {Hi } can be expressed as" 

Hi - -CAi - IB ,  i = l, 2 . . . .  

The matrices {Hi }, defined above, are called the M a r k o v  

(9.2.10) 

Define now the matrices A', B', and C I as follows: 

Or /r 
Or /r 

A I = " ".. ".. , (9.2.11) 

Or " ' "  Or ! r  

- do l r  - d l  #r - d 2  #r . . . .  dh- ~ Ir 

H1 
He 

B' = H3 , C' --" (Ir, Or . . . . .  Or). (9.2.12) 

Then it can be shown that with A ~, B ~, C I, and D ~ as defined above, we have 

C'(sI - A ' ) - IB  ' + D ' =  G(s). (9.2.13) 

That is, we have now another realization of G(s). Since (A ~, C ~) is observable, 
this realization is called an observable  real izat ion of G(s). This realization has 
dimension rh. 

9.2.2 Minimal Realization 

Since there may exist more than one realization of the same transfer function G(s),  
it is natural to look for a realization of minimal order�9 
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Definition 9.2.3. A state-space realization (A, B, C, D) of  G(s) is said to be 
an MR of G(s) if the matrix A has the smallest possible dimension, that is, if 
(A t, B t, C t, D t) is any other realization of G(s), then the order of  A t is greater 
than or equal to the order of A. The dimension of an MR is called the McMillan 
degree. 

Theorem 9.2.1. A state-space realization (A, B, C, D) of  G(s) is minimal if 
and only if (A, B) is controllable and (A, C) is observable. 

Proof. We first prove the necessity by contradiction. 
If (A, B) is not controllable and/or (A, C) is not observable, then from Kalman 

decomposition (see Chapter  6), it follows that there exists a realization of smaller 
dimension that is both controllable and observable. This contradicts the minimality 
assumption. 

Conversely, let (A, B, C, D) and (A t, B t, C t, D t) be two minimal realizations 
of G(s). Assume that the order of A t is n t < n. Since the two realizations have 
the same transfer function, then they should have the same Markov parameters, 
that is, 

CA i-1B = C t (At) i -1B t. (9.2.14) 

This implies that 

O M C M -  O ~ C ~ ,  (9.2.15) 

where OM and CM, respectively, denote the observability and controllability matri- 
ces of the realization (A, B, C, D) and, O~ and C~, respectively, denote the 
observability and controllability matrices of the realization (A t, B ~, C ~, D~). 

But, rank(OMCM) = n, and rank(OMCM)t t _ n t < n. This is a contradiction, 
since rank(OMCM) rank( t t -- OMCM), by (9.2.15). I 

The next question is how are two MRs of the same transfer matrices related? 
We answer the question in Theorem 9.2.2. 

Theorem 9.2.2. I f (A,  B, C, D) and (A t, B t, C t, D t) are two MRs of  the same 
transfer function G(s), then there exists a unique nonsingular matrix T such that 

A t = T -1AT,  (9.2.16) 

B t -- T -  1 B ,  C t = C T, D t = D. (9.2.17) 

Moreover, T is explicitly given by 

- (4o ) -1 �9 4 0 ; ,  

or 

T CM(C~) T ' t T - 1  = [CM (CM) ] 

(9.2.18) 

(9.2.19) 
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where CM and OM are, respectively, the controllability and observability matri- 
ces of the realization (A, B, C, D), and C~ and 0~I are, respectively, the 
controllability and observability matrices of the realization (A t, B t, C t, Dr). 

Proof. We just sketch a proof here and leave the details to the readers. 
Let T be the matrix relating the matrices OM and O~, that is, T satisfies the 

matrix equation: 

! 
OMT - -  O M .  (9.2.20) 

Since OM has full rank, such a matrix T always exists. In fact, it is unique and is 
given by 

T = (O~ OM)-10~  O~. (9.2.21) 

From the first block row of Eq. (9.2.20), we have C T = C t. 
Since both the realizations have the same transfer function, and hence the same 

Markov parameters, we obtain 

t t OMCM- O M C  M, (9.2.22) 

which gives 

CM -- (OT OM) -1 O~OhC h = TC h. (9.2.23) 

That is, T is a solution of the equation 

TC~ = CM. (9.2.24) 

Since C~ has full rank, we have 

T - CM(C~)T[ch(c~)T] -1, establishing (9.2.19). 

Again, from the first block column of Eq. (9.2.23), we have 

TB t -- B. (9.2.25) 

All that remains to be shown is that (9.2.16) holds. To show this, first note that 
the Markov parameters CA i-1B and C'(At) i-1B t, i >_ 1, are equal. 



Section 9.2: STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION 313 

We can then write 
! ! 

O M A C M -  O ~ A  CM, (9.2.26) 

which leads to 

O TOM A CM -- O T O~ A'C~. (9.2.27) 

From (9.2.27) we have 

ACM -- TA~C~ (where T is defined by (9.2.18)). (9.2.28) 

But again multiplying (9.2.19) by A to the left, we have 

ACM(C~) T (CgcI(C~vl)T) - 1  - AT.  (9.2.29) 

From (9.2.28) and (9.2.29), we obtain 

A T  = TAf  

That is, A ~ = T -1AT.  I 

Uniqueness: Suppose that there exists another similarity transformation given 
by T1 relating both the systems. Then we must have: 

OM(T -- T1) -- O. 

But OM has full rank, so, T = 7'1. 

E x a m p l e  9.2.1. Let 

Here 

G(s) = 
3s - 4 

S 2 - -  3s + 2 

P(s) = - 4  + 3s, 

d(s) = s 2 - 3s + 2. 

The Markov parameters are: 

D ~ = l i m  G(s) = 0,  
s - - +  o o  

H1 = lim s ( G ( s ) -  D') = 3, 
s---+ o o  

s  lim s2(  s O' sill1) 5 
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(I) 

(II) 

(III) 

Controllable realization 

A =  ( 0  2_ ~) ,  B =  (01), 

Verify: 

1 
C ( s l  - A) -1B = 

s 2 - 3s + 2 
3s - 4  

C = (-4,  3), D = 0 .  

( - 4 ,  3) ( s  - 3 
\ - 2  

(Ol) 
S 2 --  3s + 2" 

Since (A, B) is controllable and (A, C) is observable, the realization is 
an MR. 
Observable realization 

A' - (_02 - = ( 1 ,  0 ) .  

3s - 4  
- 3 s + 2  

Verify: C' (s I - A) -1B' = 
s 2 

Since (A', B') is controllable, and (A', C') is observable, this is also an 
MR of G(s) .  
Relationship. The two realizations are related by the nonsingular trans- 
forming matrix T given by 

' (-___235 125 ) T - -  ( 0  T O M )  - 1  0 T 0 M - -  

Verify: T - 1 A T  = ( ? 2  ~ ) A ' ,  T - 1 B  = (35) 

C T = (1, O) = C'. 

= B t 

9.3 C O M P U T I N G  M I N I M A L  R E A L I Z A T I O N S  F R O M  
M A R K O V  P A R A M E T E R S  

In the last section, we showed how to obtain an observable realization from a set 
of Markov parameters: 

Hk = CA  k - l  B, k = l, 2 . . . .  

Here we consider the problem of computing a MR using Markov parameters. 
Specifically, the following problem is considered�9 

Given a set of large number Markov parameters {Hk } of an unknown 
transfer function G(s) ,  find a minimal realization (A, B, C, D) whose 
transfer function G(s)  = C ( s I  - A ) - I  B + D. 
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Since the Markov parameters are much easier to obtain for a discrete-time sys- 
tem, unless otherwise stated, we assume that the given Markov parameters are of 
the discrete-time system: 

Xk+l - -  Axk + Buk, (9.3.1) 

Yk - -Cxk  + Duk. 

9.3.1 Some Basic Properties of the Hankel Matrix of Markov Parameters 

There exist many methods for finding a minimal realization (see DeJong (1978) for 
a survey). Most of these methods find a minimal realization from a decomposition 
or a factorization of the Hankel matrix of Markov parameters of the form: 

HI H2 "'" Hk 

H2 03 "'" Ok+l 
k ~ �9 �9 * 

H~ H~+I . . .  H2~-1 

(9.3.2) 

For example, a recursive method due to Rissanen (1971) obtains a minimal real- 
ization by recursively updating the decomposition of a smaller Hankel matrix to 
that of a larger Hankel matrix. 

The following basic results due to Kalman et al. (see, e.g., Kalman et al. (1969), 
play an important role in the developments of Rissanen's and other methods. 

Theorem 9.3.1. 

(i) Rank(Mk) < rank(Mk+l)for  all k. 
(ii) If  (A, B, C, D) is any realization of dimension n, then rank(Mk) -- 

rank(Mn) for all k > n. 
(iii) Let (A, B, C, D) and (A t, B t, C f, D ~) be two realizations of G(s) of 

order n and n t, respectively. Then, 

rank (Mn) -- rank (Mn t ). 

(iv) Let d be the McMillan degree, then max(rank(Mk)) -- d. 
k 

(v) Let (A, B, C, D) be any realization of dimension n, then 

d - rank (Mn) -- rank ( OM CM), 

where OM and CM are, respectively, the observability and controlla- 
bility matrices of the realization (A, B, C, D). 

Proof. 

(i) The proof of (i) follows from the fact that Mk is a submatrix of g k + l .  
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(ii) The proof of (ii) follows by observing that (Exercise 9.6) the Hankel 
matrix Mk can be decomposed as: 

( ) C A '  
Mk -- . C M I A  n B,  A n+l B . . . . .  A k-1 B )  , (9.3.3) 

~CA k-1 

for k >__ n and Mn = OMCM.  (9.3.4) 

Since the rows in ( C A  n . . . . .  C A  k - l )  and the columns in 
(An B . . . . .  A k-1 B )  are linear combination of the rows in OM and the 
columns in CM, respectively, we have 

rank (M~) = rank (Mn) -- rank ( ON CM ). 

(iii) Let (A t, B t, C t, D t) be another realization of G ( s )  of order n t and let 
r - max (n, nt). Then, since both these realization have the same Markov 
parameters, we must have 

! 
M r - Mr .  

Thus by (ii), rank(Mn) = rank(Mr) = rank(Mr') = rank(Ms 
(iv) The proof is by contradic t ion .  Suppose that there exists a minimal 

realization (A, B, C, D) of order d t < d. 
Then by the previous two results, we should have max((rank(Mk))) = 

dl < d t, a contradiction. 
(v) The proof follows from (iii) and (iv). I 

Finding the McMillan Degree 

The above result gives us several alternative procedures to obtain the McMillan 
degree of the transfer function matrix. 

A simple way to do so is to find any realization of G ( s )  and then find the rank 
of the product OMCM, using the SVD. 

Also, if the realization is stable and Ca and Oa are, respectively, the controlla- 
bility and observability Grammians obtained via solutions of respective Lyapunov 
equations (see Chapter 7), then it is well known (Glover 1984) that the McMillan 
degree is equal to the rank of Ca Oa. 

9.3.2 An SVD Method for Minimal Realization 

It was shown by DeJong (1978) that the Rissanen's method is numerically 
unstable. 
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Since the SVD provides a numerically reliable way to compute the rank of a 
matrix, a more numerically viable method for finding an MR should be based on 
the SVD of the associated Hankel matrix. We now describe below an SVD-based 
method for finding an MR (Ho and Kalman 1966; Zeiger and McEwen 1974; Kung 
1978). For the sake of convenience, we will assume that D = 0 in this section. 

Given the set {H1, H2 . . . . .  O 2 u + l }  of Markov parameters, consider the SVD 

of MN+I: 
MN+I  --- U S V  T = U S 1 / 2 s 1 / Z v  T = U t V  ~, 

where S - diag(sl, s2 . . . .  , Sp, 0 . . . . .  0), U ~ - US 1/2 and V t - S1/2V T 

Comparing this decomposition with the decomposition of MN+I in the form 
(9.3.2) in Section 9.3.1, it is easy to see that we can take C as the first block row 
and the first p columns of U I and similarly B can be taken as the first p rows and 
the first block column of V ~. 

The matrix A satisfies the relations: 

U1A = U2 and AV1 = V2, 

where 
U1 = The first N block rows and the first p columns of U I 
V1 - -The  first p rows and the first N block columns of V ~. 
U2 and V2 are similarly defined. Since U1 and V1 have full ranks, we immediately 
have from the above two equations, 

A - U t l U 2  or A - V 2 V ? ,  

where UI* and V1 t are the generalized inverses of U1 and V1, respectively. 
This discussion leads to the following SVD algorithm for finding an MR: 

Algorithm 9.3.1. An SVD Algorithm for Minimal Realization 
Inputs. The set of Markov parameters: {H1, H2 . . . . .  H2N+I} (N should be 

at least equal to the McMillan degree). 
Outputs. The matrices A, B, and C of  a minimal realization. 
Step 1. Find the SVD of the block Hankel matrix 

H1 H2 "'" HN + I 

H2 H3 "'" HN+2 i V T 
MN+I  -- -- U S  , 

HN+I HN+2 "'" H2N+I/ 
/ 

where  S = diag(sl, $2 . . . . .  Sp, 0 . . . . .  0), a n d  s1 >__ $2 >_ . . .  ~ Sp > 0 

Step 2. Form Ut= U S  1/2 and V t =  S 1 / 2 V  T, 
_ 1 1 1 / 2  where S 1/2 diag(sl/2, s2/2 . . . . .  Sp , 0 . . . . .  0). 
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Step 3. Define 
U 1  - -  The first N block rows and the first p columns of  U' 

U2 - The last N block rows and the first p columns of  U I 

U (1) - Thefirst block row and thefirst p columns o f U  ~ 

V (I) - Thefirst p rows and thefirst block column of  V t. 

Step 4. Compute A - UtlU2, Set B - V (1), C - U (1). 

Theorem 9.3.2 proved by Kung (1978) shows that the MR obtained by 
Algorithm 9.3.1 enjoys certain desirable properties. 

Theorem 9.3.2. Let Ei denote the error matrix, that is, 

E i -  C A i - I B -  Hi, i ~ 1. 

Assume that the given impulse response sequence {Ilk } is convergent. That is, 
H~ -+ O, when k -+ cx:). 

Then, 

~--,2N+l �9 L,i=I IIEi II 2 < E~/n + m + r, where ~ is a small positive number, and 
n, m and r are, respectively, the number of  states, inputs, and outputs. 

�9 The minimal realization obtained by Algorithm 9.3.1 is (i) discrete-stable 
and (ii) internally balanced, that is, the controllability and observability 
Grammians for  this realization are the same and are equal to a diagonal 
matrix (see Chapter 14). 

Example 9.3.1. Let N -- 2 and the given set of Markov parameters be: 

{HI, H2, H3, H4, H5} -- {3, 5, 9, 17, 33}. (0 4 40 0990  4 ) 
Stepl. M3= 5 9 17 .Then, U =  0.4479 -0.3956 -0.8018 , 

9 17 33 0.8609 0.4330 0.2673 

0.2414 0.4479 0.8609) 
S - diag(44.3689 0.6311 0), and V T - -0.8099 -0.3956 0.4330 . 

0.5345 -0.8018 0.2673 

1.6081 -0.64340 0 '~ 
Step 2. U ' -  2.9835 -0.31430 0 ) ,  

0 4400 0 

\ 0{1.6081 2.9835 5.7343) 
V ' =  1-0.6434 -0.3143 0.3440 . 

0 0 
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Step 3. 

Step 4. 

6081 - 0  
U1 -- .9835 -0 .3143]  ' 

U 2 -  .7343 0.3440 ,]" 

U (1) = (1.6081 -0.6434),  

V(1) = ( 1 . 6 0 8 1  "~ 
~ -0 .6434J  " 

(1.9458 0.2263"~ 
A - U t 1 U 2 - ~ 0 . 2 2 6 3  1.0542J ' 

B -  V (1) -- ( 1.6081 
~ -0 .6434J  ' 

C -- U (1) - ( 1 . 6 0 8 1  -0.6434).  

Ver i f y :  

E1  - -  C B  - H1 - -  - 8 . 8818  x 10 -16, 

E 2  - -  C A B  - H 2  - -  -8 .8818  x 10 -16, 

E 3  - -  C A 2 B  - H3 -- - 1 . 7 7 6 4  x 10 -15 

E 4  - -  C A 3 B  - H 4  - -  0, 

E 5  - -  C A 4 B  - H5  = 7.1054 x 10 -15 , 

5 

IEil 2 - 5.5220 x 10 -30. 

i=1 

It is also easy to check that the realization is both controllable and observable. So, 
it is minimal. The controllability and observability Grammians are the same and 
are given by: C g  -- O g  - diag(44.3689, 0.6311). 

Figure 9.1 shows a comparison between the graphs of the transfer functions 
G o ( s )  - ~ = 1  - ~ H i  and G ( s )  - C ( s I  - A ) - I B .  The plot shows an excellent 
agreement between the graphs for large values for s. 

M A T C O N T R O L  n o t e s :  Algorithm 9.3.1 has been implemented in 
MATCONTROL function minresvd. 

9.3.3 A Modified SVD Method for Minimal Realization 

We describe now a modification of the above algorithm (see Juang 1994). 
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F I G U R E  9.1: Comparison of transfer functions of an SVD method. 

This modified algorithm uses lower o rde r  block Hankel  matr ices  in computing 
the system matrices A, B, and C. 

Define the block Hankel matrices �9 

MR = 

H1 H2 "'" HR 

H2 H3 "'" H R + I 
" . 

R HR+I . . -  HZR-1 

and 

H2 H3 . . .  H R + l ~  

/43 H4 . . .  H R + 2 /  
M R 1  - -  . . ] , 

�9 

+1 HR+2 "'" H2R ] 

where R _> n (n is the order of the system). Denote the controllability and 
observability matrices by: 

C R -- (B ,  A B  . . . . .  A R - 1 B )  
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and 

Then, 

o -I Cz . 
\ C A  R-1 

M R 1 -  O R A C R, 

R R and MR -- OMCM. 
Consider now the SVD of MR: 

MR = U E V T --  U ]C 1/2 T_, 1/2 V T" 

This means that O~  is related to U and C R is related to V. 
Define now ~n by: 

(o 00) 
and Un and Vn as the matrices formed by the first n columns of U and V, 
respectively. Also, let the matrices Er ~ and U m be defined as" 

f T 
g r - - ( I r ,  O . . . . .  0) ,  

I T 
E m --  ( Im,  0 . . . . .  0) ,  

where Is stands for identity matrix of order s, and m and r denote, respectively, 
the number of inputs and the number of outputs. 

Then one can choose O~, I - Un En 1/2 and C~, I -- En 1/2 V T. 
From the equation: 

MR -- o R c  R -- UnEln/ZEln/2VTn 

it follows that B and C can be chosen as: 

1/2 T t 'T ]~1 n/2 
B -- .-.n V n E m and C -  E r Un �9 

Also, from the equation: 

1/2 1/2 
MR1--  O ~ A C ~ - -  UnEn AEn V T 

it follows that 

A -  5 2 n l / 2 U T  M R 1 V n  ]~n 1/2 

Thus, we have the following modified algorithm using the SVD of lower order 
Hankel matrices. 
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Algori thm 9.3.2. A Modified SVD Algorithm for Minimal Realization 
Inputs.  The Markov parameters { H1, H2 . . . . .  H2R }, R > n (the order of  the 

system to be identified). 
Outputs.  A, B, C of a Minimal Realization. 
Step 1. Form the Hankel matrices MR and MR1 as defined above. 
Step 2. Find the SVD of MR: 

Oo) 
where E n - - d i a g ( a l ,  a2 . . . . .  an); al > a2 > . . .  > an > O. 

Step 3. Compute 

A E n l / 2  T 1/2 -- UA MR1VnE n , 
~1/2 T t 

B--._,n Vn Em, 
tT 1/2 

C - E r Un En , 

where Un and Vn are the matrices of  the first n columns of U and V, respectively, 
and E~ and Efr are as defined above. 

Example 9.3.2. 
m = l , r = l .  

Then, 

We consider the previous example again. Take R -- n = 2. Let 

9) 
diag(l183 Oo 0.1690~ 
( 0.4927 -0.8702'~ 

U 2 -  -0.8702 0.4927 ,] 

( -0 .4927  -0.8702'~ 
V 2 -  -0.8702 0.4927 ] "  

A -  E2' /2U~MR1V2E21/2-  ( 1.8430 -0 .3638]  
-0.3638 1.1570 ] '  

vl/2~zW j 7 , (--  1.6947] 
B -- "2 '2 "~1 -- ~-0 .3578]  ' 

'T ~ 1/2 C - E 1 U2--2 -- (-1.6947 -0.3578). 
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Verif ication: 

Remarks 

E1 -- C B  - H1 = O(10 -15) 

E2 = C A B  - He = O(10 -15 ) 

E3 -- C A e B  - / / 3  = O(10 -15) 

E4 = C A 3 B  - H4 = O(10 -14 ) 

E5 = C A 4 B  - H5 = O(10-14). 

�9 Algorithm 9.3.2, when extended to reconstruct the Markov parameters of 
a reduced-order system obtained by eliminating "noisy modes," is called 
Eigensystem Realization Algorithm (ERA) because information from the 
eigensystem of the realized state matrix obtained in Algorithm 9.3.2 is actu- 
ally used to obtain the reduced-order model. The details can be found in 
Juang (1994, pp. 133-144). 

�9 The optimal choice of the number R requires engineering intuition. The 
choice has to be made based on measurement data to minimize the size of 
the Hankel matrix MR. See Juang (1994). 

Figure 9.2 shows a comparison between the graphs of the transfer function 
G o ( s )  - ~_.4_ 1 -~Hi  and G ( s )  - C ( s I  - A) -1B. The plot shows an excellent 
agreement between the graphs for large values of s. 

60 

50 

40 

,~ 30 

20 

10 

-10 

IGo(jw)ll --IG(jw)l 

-20 . . . . . . . . . . . . . . . . . . . . . . . . .  
10-2 10-1 10 o 101 

Frequency (rad/sec) 

F IGURE 9.2: Comparison of transfer functions of a modified SVD method. 
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M A T C O N T R O L  note:  Algorithm 9.3.2 has been implemented in MATCON- 
TROL function minremsvd. 

9.4 SUBSPACE IDENTIFICATION ALGORITHMS 

In this section we consider the problem of identifying the system matrices of an 
unknown system, given a large number of input and output measurements. 
The problem is important in practical applications because it avoids compu- 
tations of Markov parameters. 

We state two SVD-based subspace algorithms, one for the deterministic case 
and another for the stochastic case. First, we consider the deterministic case. 

Specifically, the deterministic identification problem is: 

Given a large number of input and output measurements, u k and Yk, 

respectively of the unknown system: 

Xk+l = A x k  + B u k ,  

Yk = C x k  + D u k ,  

determine the order n of the unknown system and the system matrices 
{A, B, C, D} up to within a similarity transformation; A 6 R n • 
B E ]I~ nxm, C E ~rxn, and D ~ ~rxm. 

9.4.1 A Subspace Deterministic Model Identification Algorithm 

The algorithm has two major steps: 
First, a state vector sequence is constructed as the intersection of the row spaces 

of two block Hankel matrices, constructed from the input/output data. 
Second, the system matrices A, B, C, and D are obtained from the least-squares 

solution of a set of linear equations. 
There exists different ways to compute the intersection (see Van Overschee and 

De Moor (1996a, 1996b for details and references). One way, presented in Moonen 
et  al. (1989) is via the SVD of a concatenated Hankel matrix composed of two 
Hankel matrices defined by the input and output data, as follows: 

( )  (Yklk+2i) 
Yklk+i nk+l lk+2i  - \Uk lk+2i  ak lk+i  = Uklk+i ' 

where 

Yklk+i --" 

Yk Yk+l �9 �9 �9 Y k + j - 1  
\ 

Yk+l Yk+2 "'" Yk+j  I 
| 

\ Y k + i - 1  Yk+i "'" Y k + j + i - 2 /  
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and 
Yk+i Yk+i+l �9 \ �9 " Yk+i+j-1 t 

| 

Yklk+2i : �9 . . . .  

\Yk+2i-1 Yk+2i "'" Yk+2i+j-2/ 

The matrices U~:lk+i and Uklk+2i are similarly defined from the input data. Let 
(X = (xk, xk+l  . . . . .  x k + j - 1 ) ) .  

The following assumptions are made: 

�9 rank(X) = n (n is the minimal system order) 

�9 spanrow(X) A spanrow(Uklk+i) = 0 
�9 rank(Uklk+i) = Number of rows in Uklk+i. 

Theorem 9.4.1. 

be 

Let the SVD of 

( Hklk+i ~ 
H -  ~Hk+lfk+ZiJ 

Then the state vector sequence X2 -- (Xk+i, Xk+i+l . . . . .  Xk+i+j_l) is given by 

x~ - u~ u~ H~l~+i , 

where Uq is defined by the SVD of U~2 UllSl l"  

u T 2 U l l S l l - - ( g q ,  gq 2-) ~)  ~ T  �9 

Proof. It can be shown (Exercise 9.12) that 

spanrow(X2) = spanrow(Hkl~+i) N spanrow(Hk+llk+2i). 

Thus, X2 can be realized as a basis for the row space of gTHklk+i . Then taking 

the SVD of U~zHklk+i, we have 

gT2gklk+i - uT2(Ull g 1 2 ) ( ~ l  00) vT, 

= (U~Ull  $1~ O) V T, 

= (UqSq v~ o~ v ~, 

= Uq(Sq O)(VVq) T. 

H 1 T 
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Noting that U~ Uq - ln xn, we obtain from above 

UTq UT12I-I I +i - (Sq O (VVq  T, 

which is a basis for the row space of  uT2nklk+i and therefore is a realization 
of X2. II 

Once X2 is determined, the system matrices A, B, C, and D are identified by 
solving (in the least-squares sense) the following overdetermined set of linear 
equations: 

xk+i+l  "'" Xk+i+ j -1  ) --  ( C  B ) ( X k + i  "'" X k + i + j - 2 ) .  

Yk+i "'" Y k + i + j - 2  \Uk+i  "'" Uk+i+ j -2  

It is, however, shown in De Moor et al. (1999) that the state vector sequence 
X2 does not need to be explicitly computed. The system matrices A, B, C, and D 
may be identified by making use of the already computed SVD of H. The above 
set of equations may then be replaced by an equivalent reduced set of equations 
(see Algorithm 9.4.1). 

This way of determining A, B, C, and D is computationally more efficient. 
To do this, it is useful to redefine the matrices H~l~+i and Ok+ilk+2i a s  follows: 

Hklk+i - -  

Hk+ilk+2i --  

/ Uk Uk+l �9 �9 �9 

yk y k + l  " ' "  

Uk+l Uk+2 �9 �9 �9 

Y k + l  Y~+2 " "  
�9 , 

Uk+i-1 Uk+i �9 �9 �9 

\ Y k + i - 1  Yk+i "" " 

(/ Uk+i Uk+i+l 

Yk+i Yk+i+l 

Uk+i+l Uk+i+2 

Yk+i+l Yk+i+2 

, . 

�9 o 

Uk+2i-1 Uk+2i 

~Yk+2i-1 Yk+2i 

The above theorem still remains valid�9 

u k + j - 1  '~ 

Y k + j - 1  
Uk+j 

Yk+j , 

Uk+i+ j -2  

Yk+i+j -2 , )  

Uk+i+j -1  '~ 

Y k + i + j - 1  
Uk+i+j 

Yk+i+j  

Uk+2i+j -2  

Y k + 2 i + j - 2 j  

The following notation will be needed to state the algorithm�9 
M (p �9 q, l �9 s) is the submatrix of M at the intersection of rows p, p + 1 . . . . .  q 

and columns l, l + 1 . . . . .  s; M(:, l �9 s) is the submatrix of M containing 
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columns 1, 1 + 1 . . . . .  s and M(p : q, :) is the submatrix of M containing rows 
p , p + l  . . . . .  q. 

Algorithm 9.4.1. A Deterministic Subspace Identification Algorithm. 
Inputs. The input and output sequence {uk} and {Yk}, respectively. The 

integers i > n, where n is the order of the system to be identified and j. 
Outputs. The identified system matrices A, B, C, and D. 
Assumptions. 

1. The system is observable. 
2. The integers i and j are sufficiently large, and in particular j > > 

max(m/, ri), where m and r are the number of inputs and outputs. 

Step 1. Calculate U and S from the SVD of H, where 

{ Hklk+i ~ 
H -  ~Hk+l[k+2iJ" 

U21 U22 7 

(Note that the dimensions of Ull, U12, and Sll are, respectively, (mi + ri) x 
(2mi + n), (mi + ri) x (2ri - n), and (2mi + n) x (2mi + n)). 

Step 2. Calculate the SVD of uT2 U11 S11" 

Step 3. Solve the following set of linear equations for A, B, C, and D (in the 
least-squares sense): 

uTuT2u(mi  + ri + l : (m + r)(i + l) :)S) 
U(mi + ri + m + l : ( m  + r)(i + 1), "~S ( / 
- ( C  B ) ( u T u T 2 u ( I : m i + r i  :)S ) 

~ U(mi + ri + l : mi + ri + m, :)S " 

Remark 

It is to be noted that the system matrices are determined from U and S only; 
the larger matrix V is never used in the computations. Since the matrix H 
whose S V D to be computed could be very large in practice, computing U 
and S only, without computing the full S V D of H, will be certainly very 
useful in practice. Also, as stated before, the state vector sequence X2 is 
not explicitly computed. 
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There exists also an on-line version of the above algorithm. See Moonen 
et al. (1989) for details. 

Example 9.4.1. Consider the following input-output data 

0.09130 0.1310 0.6275 0.1301 -0.2206 0.1984 0.4081 -0.0175~ T 

) u = 0.2766 0.7047 0.9173 0.9564 0.6631 0.7419 0.7479 1.2133 
1.2427 1.2942 1.3092 1.1574 1.5600 1.0913 0.7765 

0.6197 -0.4824 0.3221 0.2874 -0.4582 -0.1729 0.3162 0.0946 ~T { 
/ 

y -- /-0.3497 0.3925 0.2446 0.2815 0.05621 -0.2201 0.1397 -0.0880 I, 
\ 0.5250 -0.1021 0.2294 -0.0616 -0.0706 0.3982 -0.5695 / 

generated from the discrete-time system: 

(-01"2 003 ) (~ )  Xk+l  = Xk -4- t tk ,  

y ~ = ( 1 ,  -1)x~. 

Step 1. S - diag(9.1719, 1.9793, 1.8031, 1.6608, 1.4509, 1.3426, 1.2796, 1.0657, 
0.5012, 0.4554, 5.1287 • 10 -16, 3.5667 x 10 -16, 2.2847 • 10 -16, 1.3846 • 10 -16, 
9.8100 x 10 -17, 1.0412 x 10-18). 

U12 = 

Step 2. 

t 0.4392 
-0.1318 
-0.3277 
0.0544 

-0.2282 
0.4965 
0.4062 

\ 0.0012 

U l l  

-0.0372 -0.1039 0.2139 -0.0297 -0.3324 
0.01116 0.0312 -0.0642 0.0090 0.0997 
0.3783 0.1880 0.2071 0.3299 0.2790 

-0.1098 -0.0460 -0.0836 -0.0960 -0.0505 
-0.4853 -0.2806 0.1674 -0.3377 0.1086 
0.0743 -0.0282 0.1215 0.0416 -0.3597 

-0.0910 0.3218 -0.3029 0.1580 0.3608 
0.3828 0.0071 0.4531 0.2565 -0.1672 j 

0.2417 -0.2139 0.2202 0.3049 -0.4614 -0.1558 0.0638 0.0142 -0.2980 -0.2488 

0.0211 0.3581 0.1578 0.3546 -0.4804 -0.0503 -0.1130 0.2833 0.1475 0.5831 

0.2768 -0.3634 -0.2593 -0.0824 -0.3694 0.2078 0.0116 -0.0870 -0.1208 0.0008 

m 0.0383 -0.5002 0.1157 -0.0384 -0.1351 -0.0780 0.2107 -0.2894 0.7057 0.1893 

0.3109 0.0687 -0.5137 0.1861 -0.0370 0.0372 0.2759 -0.0140 -0.0267 -0.0101 ' 

0.0338 0.0580 -0.4635 -0.2733 -0.0251 0.3664 -0.1282 0.0417 0.0803 0.3867 

0.3402 0.0787 -0.0426 0.4406 0.2193 0.2340 -0.0493 -0.2103 0.0708 -0.0626 

0.0389 0.2704 -0.1147 0.3117 0.2969 -0.2668 0.3531 -0.0220 0.2897 -0.0315 

Step 3. 

Sq = diag(1.94468, 0.624567). 

(C B )  { 0.2635 0.1752 
- | 1.0153 -0.4635 

\ -0 .1780  1.6527 

-0.4644~ 
0.5503 / . 

1.4416 • 10 -16} 
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Verification: The first 10 Markov parameters (denoted by Hi, i = 1 . . . . .  10) 
of the original system and those of the identified system (denoted by H/~, i = 
1 . . . . .  10) are given below: 

H i  

H2 
/43 

H 1 0  

! 

-- 1, H 1 -- 0.9922, 
= - 1 . 2 ,  H~ = - 1 . 1 9 6 2 ,  
= 0.5400, H~ -- 0.5369, 

! m -- -0.0343,  H10 -0.0341.  

9.4.2 A Stochastic Subspace Model Identification Algorithm 

We now consider the stochastic case: 

Xk+l = Axk + Buk + Wk, 

Yk = Cxk + Duk + Vk, 

where Vk 6 II~ r x 1 and Wk 6 I~. n x 1 are unobserved vector signals; Vk is the 
measurement noise and Wk is the process noise�9 It is assumed that 

S )  (~pq > O, 

where the matrices Q, R, and S are covariance matrices of the noise sequences wk 
and vk. The problem is now to determine the system matrices A, B, C, and D up 
to within a similarity transformation and also the covariance matrices Q, S, and 
R, given a large number of input and output data U k and Yk, respectively. 

We state a subspace algorithm for the above problem taken from the recent paper 
of DeMoor et al. (1999). The algorithm, as in the deterministic case, determines 
the system matrices by first finding an estimate J~f of the state sequence Jq from 
the measurement data. 

The sequence Xf  is determined using certain oblique projections. 
Define the input Hankel matrix Uilt from the input data as: 

Ukll = 

Uk Uk+l  �9 �9 �9 U k + j - 1  

Uk+l  Uk+2 �9 �9 �9 Uk+j  

\ Ul Ul+l ' ' '  U l + j - 1  

Similarly, define the output Hankel matrix Ykll from the output data. 
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The matrices A, B, C, D are then determined by solving the least-squares 
problem: 

A,B,C,D ~, Yili 

Once the system matrices are obtained by solving above least-squares prob- 
lem, the noise covariances Q, S, and R can be estimated from the residuals (see 
Algorithm 9.4.2 below for details). 

The algorithm, in particular, can be used to solve the deterministic prob- 
lem. Thus, it can be called a combined deterministic stochastic identification 
algorithm. 

Definition 9.4.1. The oblique projection of A ~ Rpxj along the row space 
of B ~ ]~qxj on the row space of C ~ ]~r• denoted by A/BC is defined as: 

A/B C -  A(C T B T) ( G e T  C 
~BCT BB T C, 

first r columns 

where t denotes the Moore-Penrose pseudo-inverse of the matrix. 
For convenience, following the notations of the above paper, we write 

Up = V0li-1,  Uf = Vil2i-1, 

Yp = Y01i-1, Yf = Yi[2i-1, 

where the subscript p and f denote, respectively, the past and the future. The 
matrix containing the past inputs Up and outputs Yp will be called Wp: 

The matrices W01i-1 and Woli are defined in the same way as O0]i-1 and Uoli 
from Yp and Wp. 

The following assumptions are made: 

�9 The input u~ is uncorrelated with the noise w~ and v~. 
�9 The input covariance matrix (1/j)  (Oo12i_ 1 UoT[2i_ 1 ) is of  full rank, that is, 

the rank is 2mi (the sequence u~ is then called persistently exciting of order 
2i). 

�9 The number of available measurements is sufficiently large, so that j ---> r 
�9 The noise w~ and v~ are not identically zero. 

Algorithm 9.4.2. A Subspace Stochastic Identification Algorithm. 
Inputs. The input and output sequences {ulr } and {y~ }. 
Outputs.  The order of the system and the system matrices A, B, C, D. 
Assumptions. As above. 
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Step 1. Find the oblique projections: 

Oi "~ Yi[2i-1/Uil2i-1WOIi-1,  O i+ l  --  Y i+l l2 i -1 /Ui+l l2 i -1Wol i .  

Step 2. Compute the SVD of the oblique projection: 

(The order n of the system is equal to the order of S1). 
Step 3. Define ['i and Fi-1 as: 

~,1 /2  
17' i _ U1,_, 1 , 1- ' i_  1 - -  l - ' i ,  

where ['i is ['i without the last block row. 
Step 4. Determine the state sequences: 

Xi - SI V T, Xi+l - F]_lOi+l. 

Step 5. Solve the following linear equations (in the least-squares sense)for 
A, B, C, D and the residuals Pw and Pv: 

Step 6. Determine the noise covariances Q, S, and R from the residuals as: 

1 

where the index i denotes a "bias" induced for finite i, which vanishes as 
i - - + ~ .  

Implementational remarks: In practical implementation, Step 4 should not be 
computed as above, because explicit computation of the latter matrix V is time 
consuming. 

In fact, in a good software, the oblique projections in Step 1 are computed using 
a fast structure preserving Q R factorization method and SV D in Step 2 is applied 
to only a part of the R-factor from the Q R factorization. 

For details of the proofs and practical implementations of these and other related 
subspace algorithms for system identification and an account of the extensive up-to- 
date literature (including the software on identification) on the subject, the readers 
are referred to the book by Van Overschee and DeMoor (1996a) and the recent 
review paper by DeMoor et al. (1999). 

MATLAB note: M-files implementing Algorithm 9.4.2 (and others) come with 
the book by Van Overschee and DeMoor (1996b) and can also be obtained from 
ftp : l l w w w ,  esa  t . k u l  e u v e n .a  c. b e / p  u b / S  IS T A / v  an  o v e r s c  h e e l b o o  k l s u  b f u n /  
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9.4.3 Continuous-Time System Identification 

Subspace system identification algorithms, analogous to Algorithms 9.4.1 
and 9.4.2, can also be developed for a continuous-time system: 

Yc(t) : A x ( t )  + B u ( t ) ,  

y ( t )  - -  C x ( t )  + O u ( t ) .  

However, the input and output matrices have to be defined differently and they 
need computations of derivatives. Thus, define 

t u (to) u (/1) �9 �9 �9 u (t j _  1 ) u(1) (t~ u(1) (tl) . . .  u ( 1 ) ( t j _ l )  
U~li_ 1 --  . . . . . . . . .  , 

u ( i -1) ' ( to)  u ( i - 1 ) ( t l )  . . .  u ( i - 1 ) ( t j _ l )  

where u ~p~ ( t )  denotes the pth derivative of u(t), and "c" stands for "continuous." 

The matrices Y~Ii-I' U/~2i-l' and X c are similarly defined. 
The continuous-time system identification problem can be stated as follows: 
Given input and output measurements u(t), y(t), t : to, tl . . . . .  t j - 1  and the 

estimates of the derivatives u ~p) ( t )  and y ( P ) ( t )  up to order 2i - l, of the above 
unknown system, find the system matrices A, B, C, D, of the above continuous- 
time system up to within a similarity transformation. 

9.4.4 Frequency-Domain Identification 

The problem we consider here is the one of identifying a continuous-time 
model given a set of frequency responses. The problem can also be solved for 
a discrete-time system. For frequency-domain identification of discrete-time sys- 
tems, see McKelvey (1994a, 1994b, 1994c). Specifically, the frequency-domain 
identification problem for a continuous-time system is stated as follows: 

Given N frequency domain frequency responses G ( j c o ~ ) ,  measured 
at frequencies co~ (not necessarily distinct), k : 1, 2 . . . . .  N, find the 
system matrices A, B, C, and D. 

One indirect approach for solving the problem is to estimate the Markov param- 
eters via matrix-fraction descriptions of the frequency responses G (j co~) and then 
apply any of the Markov parameters based time-domain algorithms described in 
Section 9.3. (See Exercise 9.10). 

We will, however, not discuss this here. For details, the readers are referred to 
the book by Juang (1994). Rather, we state here a direct subspace identification 
algorithm from the paper of DeMoor et  al. (1999). 

Let ot > n be a user supplied index. Let Re(M) and Im(M) denote, respectively, 
the real and imaginary parts of a complex matrix M. Define the following matrices 
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from the given frequency responses: 

7-(- (Re(7-/c), Im(7-/c)), 
27 = (Re (27 c), Im (Z c)), 

where 

~ . _ [ C  _ _  

G(jcol) G(jco2) . . .  G(jcoN) 
( j  COl ) G ( j  COl ) ( j  0) 2) G ( j  o9 2) . . .  ( j  CON) G ( j  CON ) 

�9 . . 

�9 

(jCOl)~-IG(jCOl) (jCO2)~-IG(jCO2) . . .  (jCON)~-IG(jCON) 

and 

Im Im ' Im 

( j  col ) Im ( j  co2 ) Im "'" ( j  coN ) Im 
�9 , o �9 

(jcol) c~-llm ( jco2)a-l lm "'" (jcoN) c~-llm 

Algorithm 9.4.3. Continuous-Time Frequency-Domain Subspace Identifica- 
tion Algorithm. 

Inputs. The set of  measured frequencies G(jcol), G(jco2) . . . . .  G(jcoN), an 
integer ot and a weighting matrix W. 

Outputs. The system matrices A, B, C, and D. 
Step 1. Find the orthogonal projection of  the row space of  7-L into the row 

space of  Z -1-: 

O~ = 7-[ - 7-[Z*:2 

Step 2. Compute the SVD of  W Oa: 

WOot- u svT-  (Vl, g2) ( S1 Oot( :  
where W is a weighting matrix�9 

~?1/2 Step 3. Determine F~ - W -  1UI~,I 
Step4. Determine A and C as follows: 

C = the first r rows of  F~ 

where f'~ and I'u denote Fu without the first and last r rows. 
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Step 5. Determine B and D via the least-squares solution of the linear systems 
of equations: 

(IRme(L)~_ (Re(M) 
(L)J ~Im(M)) ( B )  ' 

where L and M are given by: 

t \G(j 'wN) \ C ( j w N  -- A) -1 Ir 

(Note that L and M are, respectively, of order rN  • m and rN • (n + r).) 

Remarks  

�9 The choice of the weighting matrix W is very important. If W is cho- 
sen appropriately, then the results are "unbiased"; otherwise, they will be 
"biased." For details of how the weighting should be chosen, the readers are 
referred to the paper by Van Overschee and De Moor (1996a). 

�9 The algorithm works well when n and i are small. 
However, when i grows larger, the block Hankel matrices ~ and 2- became 

very highly ill-conditioned. The paper of Van Overschee and De Moore 
(1996a) contains a more numerically effective algorithm. 

9.5 S O M E  S E L E C T E D  S O F T W A R E  

9.5.1 MATLAB Control System Toolbox 

State-space models 

minreal--Minimal realization and pole/zero cancellation 
augstate--Augment output by appending states. 

9.5.2 MATCONTROL 

MINRESVDmFinding minimal realization using SVD of Hankel matrix of 
Markov parameters (Algorithm 9.3.1) 
MINREMSVDmFinding minimal realization using SVD of Hankel matrix of 
lower order (Algorithm 9.3.2). 

9.5.3 CSP-ANM 

Model identification 

The system identification from its impulse responses is performed by 
Impul seResponseIdent i fy [response]. 
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�9 The system identification from its frequency responses is performed by 
FrequencyRe sponse I dent i fy [response]. 

�9 The system identification directly from input-output data is performed by 
OutputResponseIdentify [u, y]. 

9.5.4 SLICOT 

Identification 
IBwSubspace Identification 

Time invariant state-space systems 

IB01ADwlnput-output data preprocessing and finding the system order 
IB01BDmEstimating the system matrices, covariances, and Kalman gain 
IB01CDmEstimating the initial state and the system matrices B and D. 

TF~Time response 

TF01QD Markov parameters of a system from transfer function matrix 
TF01RD Markov parameters of a system from state-space representation 

In addition to the above-mentioned software, the following toolboxes, especially 
designed for system identification are available. 

�9 MATLAB System Identification Toolbox, developed by Prof. Lennart 
Ljung. (Website: http://www.mathworks.com) 

�9 ADAPTX, developed by W.E. Larimore. (Website: http://adaptics.com) 
�9 Xmath Interactive System Identification Module, described in the 

manual X-Math Interactive System Identification Module, Part 2, by 
P. VanOverschee, B. DeMoor, H. Aling, R. Kosut, and S. Boyd, Integrated 
Systems Inc., Santa Clara, California, USA, 1994 (website: http:// 
www. isi. com/products / MATRIXx / Techspec / MATRIXx-Xmath/xm36. 
html,-/MATRIXx XMATH/inline images/pg. 37 img.html and-/MATRIXx- 
XMath/inlineimages/pg. 38img.html). 

For more details on these software packages, see the paper by DeMoor et al. (1999). 

9.5.5 MATRIXx 

Purpose: Compute the minimal realization of a system. 

Syntax: [SMIN, NSMIN, T]=MINIMAL (S, NS, TOL) or 
[NUMMIN, DENMIN]=MINIMAL (NUM, DEN, TOL) 

9.6 SUMMARY AND REVIEW 

This chapter is concerned with state-space realization and model identification. 
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Realization 

Given a transfer function matrix G(s), the realization problem is the problem of 
finding the system matrices A, B, C, and D such that G (s) - C (s I - A)-  1B + D. 

For a given proper rational function G(s), there always exists a state-space 
realization. However, such a realization is not unique. In Section 9.2.1, the 
nonuniqueness of a realization is demonstrated by computing the two realiza- 
tions of the same transfer function matrix G(s): controllable and observable 
realizations. 

Minimal Realization 

A realization (A, B, C, D) of G(s) is an MR if A has the smallest possible dimen- 
sion. An important result on MR is that a realization is minimal if and only if 
(A, B) is controllable and (A, C) is observable (Theorem 9.2.1). 

Two MRs are related by a nonsingular transforming matrix T (Theorem 9.2.2). 
There are many methods for computing an MR, given a set of Markov param- 

eters H~ -- CA ~-IB, k - 1, 2, 3 . . . . .  assuming that these Markov parameters 
are easily obtainable from a given transfer function. Most of these methods find 
an MR by factoring the Hankel matrix of Markov parameters: 

gk 

H1 H2 "'" Ok i 
H2 143 ""  Hk+l . 

Hk Hk + l "'" H2k-  l J 

Some basic properties of this Hankel matrix Mk that play an important role in the 
development of these algorithms are stated and proved in Theorem 9.3.1. 

Two numerically viable SVD-based methods for computing an MR are given in 
Sections 9.3.2 and 9.3.3 (Algorithms 9.3.1 and 9.3.2). 

Time-Domain Subspace Identification 

Many times, the Markov parameters are not easily accessible. In these cases, the 
system matrices must be identified from a given set of input and output data. 

Two subspace algorithms for system identification: Algorithm 9.4.1 for deter- 
ministic identification and Algorithm 9.4.2 for combined deterministic and 
stochastic identification are described in Section 9.4. 

It is assumed that the number of input and output data are very large (goes to 
infinity) and that the data are ergodic. 

Each of these two subspace algorithms comes in two steps. The first step consists 
of finding (implicitly or explicitly) some estimate Xi of the state sequence, while 
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in the second step, the system matrices A, B, C, and D are obtained by solving an 
overdetermined system (in the least-squares sense) using this state sequence Xi.  

Frequency-Domain Subspace Identification 

Finally, frequency-domain subspace identification is considered in Section 9.4.4. 
The problem considered there is: 

Given N frequency domain responses G (j co~), measured at frequencies co~, k = 
1, 2 . . . . .  N; find the system matrices A, B, C, and D. 

A continuous-time frequency-domain subspace identification algorithm 
(Algorithm 9.4.3) is described in Section 9.4.4. 

9.7 C H A P T E R  NOTES AND F U R T H E R  READING 

Realization theory is a classical topic in system identification. Ho and Kalman 
(1966) first introduced the important principles and concepts of MR theory. There 
are now well-known books and papers in this area such as Kung (1978), Ljung 
(1987, 1991a, 1991b), Silverman (1971), Zeiger and McEwen (1974), Dickinson 
et al. (1974a, 1974b), Juang (1994), Norton (1986), Astr6m and Eykhoff (1971), 
Eykhoff (1974), Rissanen (1971), DeJong (1978), Brockett (1978), Datta (1980), 
Gragg and Lindquist (1983). These papers and books provide a good insight into the 
subject of system identification from Markov parameters. The paper by Gragg and 
Lindquist (1983) deals with partial realization problem. The subspace system iden- 
tification algorithms are the input-state-output generalizations of the realization 
theory and these algorithms are relatively modern. 

Material on subspace algorithms in this book has been taken mostly from the 
recent book by Van Overschee and De Moor (1996b) and the recent review paper 
by De Moor et al. (1999). Both references contain an up-to-date extensive 
list of papers and books on realization theory and subspace identification 
algorithms (see also the papers by Lindquist and Picci (1993, 1994)). Frequency- 
domain identification is dealt with in some depth in the book by Juang (1994) 
and a Newton-type algorithm for fitting transfer functions to frequency-response 
measurements appears in Spanos and Mingori (1993). 

There exists an intimate relation between subspace system identification and 
frequency weighted model reduction. The frequency weighted model reduction is 
discussed in Chaper 14 of this book. For details of the connection between these 
topics, see Chapter 5 of the book by Van Overschee and De Moor (1996b). 

Exercises 

9.1 Prove that there always exists a state-space realization for a proper rational function. 



338 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION 

9.2 

9.3 
9.4 

9.5 

Verify that the controllable realization (A, B, C, D) and the observable realization 
(A t, B t, C t, D t) described in Section 9.2.1 are state-space realizations of the same 

transfer matrix G(s ) .  

Give a complete proof of Theorem 9.2.2�9 
Let G ( s )  be the transfer matrix of a SISO system and let (A, b, c, d) be a state-space 
realization of G(s): 

b(s )  
G ( s )  -- d + c ( s I  - A ) - l b  -- d + ~ .  

a ( s )  

Prove that the realization is minimal if and only if a ( s )  and b(s )  are coprime. 

Genera t ing  the M a r k o v  Parame ter s  

(a) Show that for the discrete-time system (9.3.1) with initial condition x0 - 0, 
the Markov parameters HO = D,  Hi = C A  i -  1 B, i = 1, 2 . . . . .  l - 1 can be 
determined by solving the system: 

y = S U ,  

where y - (Y0, Yl, Y2 . . . . .  Y l - 1 ) r  x l  

S = ( H  O, U 1, H 2 . . . . .  H l _ l ) ,  

U ~__ 

Ul u2 �9  Ul_ 1 

uo uo ml• 

uo Ul U l -2  

where m is the number of inputs and r is the number of outputs; the matrix U 
is an m l  x I block upper triangular matrix. 

(b) Assume that A k ~ 0 for all time steps k > p, that is, A is discrete stable, then 
show that the above system can be reduced to 

y -- S t U  t, 

where y = (Y0, Y l . . . . .  Y I - 1 ) ,  

S t = ( H  O , H  1 , H  2 . . . . .  H p )  

and 

U t _.. 

tu 0 u 1 u 2 �9 �9 �9 Up �9 �9 �9 

uo Ul � 9  Up_  1 � 9  

Ul_ 1 

U l -2  

\ 0 U l _ p _ l j  

(Note that U t is of order m ( p  + l) • l and S t is of order r • m ( p  + 1).) 
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9.6 
9.7 

9.8 

9.9 

(c) Discuss the numerical difficulties in solving the above system and work out an 
example to illustrate the difficulties. 

Prove that the Hankel matrix Mk can be decomposed in the form (9.3.3). 
Assuming that Hk --+ 0 as k --+ ~ ,  prove that the realization obtained by 
Algorithm 9.3.1 is discrete-stable. (Hint: Show that S - 1 / 2 A S 1 / 2  112 is less than 
unity.) 
(a) Construct a discrete-time system: 

Xk+ 1 = Ax  k 4 - B u  k 

Yk -- Cxk 

with suitable randomly generated matrices A, B, and C. 
(b) Construct sufficient number of Markov parameters using the inputs u0 = 

1, u i = 0, i > 1, and assuming zero initial condition. 
(c) Apply Algorithms 9.3.1 and 9.3.2 to identify the system matrices A, B, and C. 
(d) In each case, plot the transfer function of the original and the identified model. 
A stable system is balanced if both controllability and observability Grammians are 
equal to a diagonal matrix (Chapter  14). 
Prove that if Algorithm 9.3.2 starts with the Hankel matrix: 

/-/1 /42 . . .  /4~ 
02 H3 . . .  n/3+l 

Hc~+l . . .  Hot +/3_ 1 

then the algorithm gives a balanced realization when the indices ot and /3 are 
sufficiently large. 

9.10 Frequency-Domain Realization using Markov Parameters (Juang (1994)). 
Consider the frequency response function G(zk)  = C ( z I  - A ) - l  B + D; Zk = 
eJ2rck/l, where 1 is the data length and zk, k -- O, 1 . . . . .  l correspond to the frequency 
points at 2zr k~ 1 At ,  with At being the sampling time interval. 
Write G(zk)  -- Q - 1  (zk)R(zk)  
where 

Q(zk) : Ir 4- Q l Z k  1 + " "  + QpZk  p 

R(Zk) = RO 4- R l Z k  1 + " "  4- RpZk  p 

are matrix polynomials and Ir is the identity matrix of order r. 
(a) Prove that knowing G(zk),  the coefficient matrices of Q(zk) and R(zk)  can be 

found by solving a least-squares problem. 
(b) How can the complex arithmetic be avoided in part (a)? 
(c) Show how to obtain the Markov parameters from the coefficient matrices found 

in (a). 
(Hint: ( ~ P o Q i z  - i )  ~ - i  p og i z  ). (T-,i=oHiz ) : ~2 = - i  

(d) Derive an algorithm for frequency-domain realization similar to Algorithm 9.3.2 
based on (a)-(c). 
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(e) (Juang 1994). Apply your algorithm to the discrete-time system model defined 
by the following data: 

( (0 .9859 
a = diag k \ -  1.500 

B ~_  

0.6736 
-0.725 

(-0.0407 
-0.5384 

0.0746 
0.9867 
0.0164 
0.0376 

-0.0460 
\-0.0711 

0.7257] {0.4033 
0.6736J ' k-0.9025 

-0.0454~ 
-0.6001 
-0.0669 
-0.8850 

0.0373 
O.O860 

-0.0421 
-0.0650j 

0.95009) (0.9859 0.1501~ 
' k-0.1501 0.9859J'  

0.9025'~ 
0.4033])" 

t0.8570 
0.0000 
1.5700 

, c T  = 0 . 0 0 0 0  
1.4030 
0.0000 
0.9016 

kO.O000 

1.80 
0.00 
-1 .2  
0.00 
1.42 ' 

0.00 
1.78 

0.00 j 

by calculating 200 frequency data points equally spaced in a data frequency 
ranging from 0 to 16.67 Hz, and assuming that the orders of Q(zk) and R(zk) 
are 10. Sketch the graphs of the true and estimated frequency response functions 
for the first input and first output and compare the results. 

9.11 Consider the following discrete-time model (of a rigid body of mass m with a force f 
acting along the direction of the motion (Juang 1994): 

Xk+ 1 = Ax k + Buk, 

Yk -- Cxk, 

whereA--  t , B =  , U k = - - ,  C = ( 1 ,  O). 
m 

At -- sampling time interval. 
(a) Construct the first five Markov parameters. 
(b) Apply Algorithm 9.3.2 to identify A, B, and C. 
(c) Show that the original and the identified models have the identical Markov 

parameters. 
9.12 Using the notation of Section 9.4.1, prove that spanrow(X2) = spanrow(Hklk+i) A 

spanrow (Hk+ 11k+2i ). 
9.13 Modify Algorithm 9.4.2 by incorporating weighting matrices W1 and W2 such that 

W1 is of full rank and W2 has the property that rank(W01i_l) = rank(W01i-1W2). 
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CHAPTER 10 

FEEDBACK STABILIZATION, 
EIGENVALUE ASSIGNMENT, 
AND OPTIMAL CONTROL 

10.1 INTRODUCTION 

In this chapter, we first consider the problem of stabilizing a linear control 
system by choosing the control vector appropriately. Mathematically, the problem 
is to find a feedback matrix K such that A -  BK is stable in the continuous- 
time case or is discrete-stable in the discrete-time case. Necessary and sufficient 
conditions are established for the existence of stabilizing feedback matrices, 
and Lyapunov-style methods for constructing such matrices are described in 

Section 10.2. 
A concept dual to stabilizability, called detectability, is then introduced and its 

connection with a Lyapunov matrix equation is established in Section 10.3. 
In certain practical situations, stabilizing a system is not enough; a designer 

should be able to control the eigenvalues of A - B K so that certain design con- 
straints are met. This gives rise to the eigenvalue assignment (EVA) problem 
or the so-called pole placement problem. Mathematically, the problem is to find 
a feedback matrix K such that A - B K has a preassigned spectrum. A well-known 

343 
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and a very important result on the solution of this problem is: Given a real pair 
of matrices (A, B) and A, an arbitrary set of n complex numbers, closed under 
complex conjugation, there exists a real matrix K such that the spectrum of A -  B K 
is the set A if and only if (A, B) is controllable. The matrix K is unique in the 
single-input case. 

This important result is established in Theorem 10.4.1. The proof of this result 
is constructive, and leads to several well-known formulas, the most important of 
which is the Aekermann formula. However, these formulas do not yield numeri- 
cally viable methods for pole placement. Numerical methods for pole placement 
are presented in Chapter 11. 

Since there are no set guidelines as to where the poles (the eigenvalues) need 
to be placed, very often, in practice, a compromise is made in which a feedback 
matrix is constructed in such a way that not only the system is stabilized, but 
a certain performance criterion is satisfied. This leads to the well-known Linear 
Quadratic Regulator (LQR) problem. Both continuous-time and discrete-time 
LQR problems are discussed in Section 10.5 of this chapter. The solutions of the 
LQR problems require the solutions of certain quadratic matrix equations, called 
the algebraic Rieeati equations (AREs). Numerical methods for the AREs are 
described in Chapter 13. 

The next topic in this chapter is the H~-control problems. Though a detailed 
discussion on the H~-control problems is beyond the scope of the book, some 
simplified versions of these problems are stated in Section 10.6 in this chapter. 
The He~-control problems are concerned with stabilization of perturbed versions 
of a system, when certain bounds of perturbations are known. The solutions of the 
H~-control problems also require solutions of certain AREs. Two algorithms 
(Algorithms 10.6.1 and 10.6.2) are given in Section 10.6 for computing the 
Hec-norm." 

The concept of stability radius introduced in Chapter 7 is revisited in the 
final section of this chapter (Section 10.7), where a relationship between the 
complex stability radius and an ARE (Theorem 10.7.3) is established, and a bisec- 
tion algorithm (Algorithm 10.7.1) for determining the complex stability radius is 
described. 

Reader's Guilde for Chapter 10 

The readers familiar with concepts and results of state-feedback stabilizations, 
pole-placement, LQR design, and Hoc control can skip Sections 10.2-10.6. 
However, two algorithms for computing the H~-norm (Algorithms 10.6.1 
and 10.6.2) and material on stability radius (Section 10.7) should be of 
interests to most readers. 
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10.2 STATE-FEEDBACK STABILIZATION 

In this section, we consider the problem of stabilizing the linear system: 

Yc(t) = A x ( t )  + Bu( t ) ,  

y ( t )  = C x ( t )  + D u ( t ) .  
(10.2.1) 

Suppose that the state vector x ( t )  is known and let's choose 

u(t )  = v( t )  - K x ( t ) ,  (10.2.2) 

where K is a constant matrix, and v( t )  is a reference input vector. 
Then feeding this input vector u( t )  back into the system, we obtain the system: 

~c(t) = (A - B K ) x ( t )  + B y ( t ) ,  

y = (C - D K ) x ( t )  + D r ( t ) .  
(10.2.3) 

The problem of stabilizing the system (10.2.1) then becomes the problem of finding 
K such that the system (10.2.3) becomes stable. The problem of state-feedback 
stabilization can, therefore, be stated as follows: 

Given a pair of matrices (A, B), find a matrix K such that A - B K  is stable. 

Graphically, the state-feedback problem can be represented as in Figure 10.1. 
In the next subsection we will investigate the conditions under which such 

a matrix K exists. The matrix K, when it exists, is called a stabilizing feedback 
matrix; and in this case, the pair (A, B) is called a stabilizable pair. The system 
(10.2.3) is called the dosed-loop system and the matrix A - BK is called the 
dosed-loop matrix. 

v + u ] 5c = Ax+Bu Y 
> 0 > y =  Cx+Du 

FIGURE 10.1: State feedback configuration. 
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Analogously, for the discrete-time system: 

X k + l  - -  A x k  n t- B u k ,  

Yk = Cxk + Duk, 

if there exists a matrix K such that A - B K is discrete-stable, that is, if it has all 
its eigenvalues inside the unit circle, then the pair (A, B) will be called a discrete- 
stabilizable pair, and the matrix K will be called a discrete-stabilizing feedback 
matrix. 

In what follows, we will present simple criteria of stabilizability and algorithms 
for constructing stabilizing feedback matrices via Lyapunov matrix equations. 

10.2.1 Stabilizability and Controllability 

In this section, we describe necessary and sufficient conditions for a given pair 
(A, B) to be a stabilizable pair. We start with the continuous-time case. 

Theorem 10.2.1. Characterization of Continuous-Time Stabilizability. The 
following, are equivalent: 

(i) (A, B) is stabilizable. 
(ii) Rank(A - ~I, B) = n for all Re(~.) > 0. In other words, the unstable 

modes of A are controllable. 
(iii) For all ~. and x ~ 0 such that x*A = ~.x* and Re()~) > 0, we have 

x*B :/=O. 

Proof. We prove the equivalence of (i) and (ii) and leave the equivalence of 
(i) and (iii) as an exercise (Exercise 10.1). 

Without any loss of generality we may assume (see Theorem 6.4.1) that the pair 
(A, B) is given in the form: 

P A p - I = A - ( ~  1 ( o  1 ) A22J' P B  = B - -  , 

where (A 11,/~ 1 ) is controllable. 
Since (All,/~1) is controllable, by the eigenvalue criterion of controllability 

(Theorem 6.2.1 (v)), we have r a n k ( X / -  All, /~l) -- P, where p is the order of 
A 11. Therefore, 

rank()v / - A /]) = rank ( )~ I - A 11 
' \ 0 

--/~12 /~1) 
~.I - A22  0 < n ,  

if and only if rank ()v I -/~22) < n -  p, that is, if and only if)v is an eigenvalue of A22. 
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The proof now follows from the fact that if (A, B) is a stabilizable pair, the 
matrix A22 must be a stable matrix. This can be seen as follows: 

The stabilizability of the pair (A, B) implies the stabilizability of the pair (A,/3). 
Since (A,/3) is a stabilizable pair, there exists a matrix k such that A - B K is 

stable. This means that if k = (K1, K2), then the matrix 

( /~11 - /~1/~1 A12 - B1/~2~ 
0 A22 ) 

is a stable matrix, which implies that A22 must be stable. 1 

Corollary 10.2.1. 
stabilizable. 

I f  the pair (A, B) is controllable, then it must be 

Proof. If (A, B) is controllable, then again by the eigenvalue criterion of 
controllability, r a n k ( A - k / ,  B) = n for every k. In particular, r a n k ( A - k / ,  B) = n 
for every k for which Re(k) > 0. Thus, (A, B) is stabilizable. I 

The above result tells us that the controllability implies stabilizability. 
However, the converse is not true. The stabilizability is guaranteed as long as 

the unstable modes are controllable. 
The following simple example illustrates the fact. 

Let A - 2 , b - 1 . 
0 3 

(A, b) is not controllable; rank(b, Ab, A2b) = 2. 
However, the row vector fT = (_  126.5, - 149.5, 0) is such that the eigenvalues 

of A -  b f  T are {-10-4- 11.4891j , -3}.  
So, A - b f  T is stable, that is, (A, b) is stabilizable. 

The Discrete Case 

A theorem, analogous to Theorem 10.2.1, can be proved for the discrete-time 
system as well. We state the result without proof. The proof is left as an exercise 
(Exercise 10.2). 

Theorem 10.2.2. Characterization of  Discrete-Stabilizability. The following 
conditions are equivalent: 

(i) The pair (A, B) is discrete-stabilizable. 
(ii) Rank(A - kI, B) = n for  every k such that [k[ >_ 1. 

(iii) For all k and x ~: O such that x*A = kx* and lkl >_ 1, we have 
x*B r 
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10.2.2 Stabilization via Lyapunov Equations 

From the discussions of the previous section, it is clear that for finding a feedback 
stabilizing matrix K for a given pair (A, B), we can assume that the pair (A, B) is 
controllable. For, if (A, B) is not controllable but stabilizable, then we can always 
put it in the form: 

T A T - I = f i ' - ( ~  1 A22]'A12) T B = / ~ _ ( O 1  ) ,  (10.2.4) 

where (,411, nl)  is controllable, and -~22 is stable. 
Once a stabilizing matrix K1 for the controllable pair (A 11, 1)1) is obtained, the 

stabilizing matrix K for the pair (A, B) can be obtained as" 

K = K T ,  

where 

/~ -- (/('1, /~2) (10.2.5) 

and K2 is arbitrary. 
We can therefore concentrate on stabilizing a controllable pair. Theorem 10.2.3 

shows how to stabilize a controllable pair using a Lyapunov equation. 

Theorem 10.2.3. Let (A, B) be controllable and let fl be a scalar such that 

/3 > I~-max(A)l, 

where Xmax(A) is the eigenvalue of A with the largest real part. Let K be 
defined by 

K -- B TZ -1, (10.2.6) 

where Z (necessarily symmetric positive definite) satisfies the Lyapunov 
equation: 

- ( a  + f l l )Z  + Z [ - ( A  + fli)]T = _2BB T, (10.2.7) 

then A - B K is stable, that is, (A, B) is stabilizable. 

Proof. Since 13 > I~,max(A)l, the matrix - ( A  + ill) is stable. 
Also, since (A, B) is controllable, the pair ( - (A + flI), B) is controllable. Thus, 

by Theorem 7.2.6, the Lyapunov equation (10.2.8) has a unique symmetric positive 
definite solution Z. 
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Again, Eq. (10.2.8) can be written as: 

(A - B B T z - 1 ) Z  + Z ( A  - BBTZ-1)  T = - 2 f l Z .  

Then, from (10.2.7) we have: 

( A -  B K ) Z  --t- Z ( A -  B K )  T = - 2 f l Z .  (10.2.8) 

Since Z is symmetric positive definite, A - B K is stable by Theorem 7.2.3. 
This can be seen as follows: 
Let/z be an eigenvalue of A - B K and y be the corresponding eigenvector. 
Then multiplying both sides of Eq. (10.2.9) first by y* to the left and then by y 

to the fight, we have 

2 Re(/z)y* Zy = -2fly* Zy.  

Since Z is positive definite, y*Zy  > 0. Thus, Re(/z) < 0. So, A - B K is 
stable. 1 

The above discussion leads to the following method for finding a stabilizing 
feedback matrix (see Armstrong 1975). 

A Lyapunov Equation Method For Stabilization 

Let (A, B) be a controllable pair. Then the following method computes a stabilizing 
feedback matrix K. 

Step 1. Choose a number fl such that fl > I)~max(A)l, where ~.max(A) denotes 
the eigenvalue of A with the largest real part. 

Step 2. Solve the Lyapunov equation (10.2.8) for Z: 

- ( A  + f l I ) Z  + Z [ - ( A  + fli)]T = _2BB T. 

Step 3. Obtain the stabilizing feedback matrix K" 

K = BTz -1. 

MATCONTROL note: The above method has been implemented in MATCON- 
TROL function stablyapc. 

A Remark on Numerical Effectiveness 

The Lyapunov equation in Step 2 can be highly ill-conditioned, even when 
the pair (A, B) is robustly controllable. In this case, the entries of the stabilizing 
feedback matrix K are expected to be very large, giving rise to practical difficulties 
in implementation. See the example below. 



350 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL 

Example 10.2.1 (Stabilizing the Motion of  the Inverted Pendulum Consider). Example 
5.2.5 (The problem of a cart with inverted pendulum) with the following data: 

m = l kg, M = 2 k g ,  1 = 0 . 5 m ,  a n d g = 9 . 1 8 m / s  2. 

Then, 

A 

/01 0 0Zl 
0 -3.6720 
0 0 " 
0 22.0320 

The eigenvalues of A are 0, 0, -+-4.6938. Thus, with no control input, there is an insta- 
bility in the motion and the pendulum will fall. We will now stabilize the motion by 
using the Lyapunov equation method with A as given above, and 

B .__ I 00~ -0.4/ 

Step 1. Let's choose/~ = 5. This will make - (A  +/31) stable. 
Step 2. 

{ 0.0009 -0.0044 -0.0018 0.0098 
[ -0 .0044 0.0378 0.0079 -0 .0593 |  

Z = | -0 .0018  0.0079 0.0054 -0.0270 / " 
\ 0.0098 -0.0593 -0.0270 0.1508 / 

(The computed Z is symmetric positive definite but highly ill-conditioned). 
Step 3. K = B TZ -1 = 103(-0.5308, -0.2423, -1.2808, -0.2923). 
Verify: The eigenvalues of A - B K  are {-5 4- 11.2865j, - 5  • 0.7632j}. 

Note that the entries of K are large. The pair (A, B) is, however, robustly control- 
lable, which is verified by the fact that the singular values of the controllability 
matrix are 8.9462, 8.9462, 0.3284, 0.3284. 

Remark 

�9 If the pair (A, B) is not controllable, but stabilizable, then after transforming 
the pair (A, B) to the form (A,/~) given by 

TAT-1 __~_ (~1 A12~ TB : / ~ _ _  (O1) 
A22J '  

we will apply the above method to the pair (/~11,/~1) (which is controllable) 
to find a stabilizing feedback matrix K1 for the pair (/~ 11, B1) and then obtain 
K that stabilizes the pair (A, B) as 

K = (/~1,/~2) T, 

choosing/~2 arbitrarily. 
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Example 10.2.2. Consider the uncontrollable, but the stabilizable pair (A, B)" 

(1) 
A -  2 , B =  1 . 

0 3 

Stepl.  A = A ,  B - / ~ . S o ,  T = I .  

A l l - - ( ~  ~ ) ,  A 2 2 : - 3 ,  /~1 : ( J 1 ) "  

Step 2. Choose f l l  - -  10. The unique symmetric positive definite solution Z1 of the 
Lyapunov equation: 

- (Al l  -+- f i l l )E1 -[- ZI[ - (Al l  -[- fll/)] T = -2/~lJ~ T 

{ 0.0991 -0.0906] 
E l  : \ -0 .0906  0.0833 ]"  

Step 3./~1 - -  / ~ T Z l l  - -  ( -126.5,-149.5) .  
Step 4. Choose K2 = 0. Then K = / ~  = (/~1,/~2) -- (-126.5, -149.5, 0). 
Verify: The eigenvalues of A - B K  are -10  :[: 11.489j, -3 .  

Discrete-Stabilization via Lyapunov Equation 

The following is a discrete-analog of Theorem 10.2.3. We state the theorem without 
proof. The proof is left as an exercise (Exercise 10.3). 

Theorem 10.2.4. Let the discrete-time system Xk+l - -  Axk  + Buk be control- 

lable. Let 0 < fl <_ 1 be such that IXl _/~ for any eigenvalue 3, o f  A. 
Define K = BT(z + BBT) -1 A, where Z satisfies the Lyapunov equation, 

A Z A  T - fl2Z - 2BB T, then A - B K  is discrete-stable. 

Theorem 10.2.4 leads to the following Lyapunov method of discrete- 
stabilization. The method is due to Armstrong and Rublein (1976). 

A Lyapunov Equation Method for Discrete-Stabilization 

Step 1. Find a number /3 such that 0 </3 < min(1, minl3-il), where 
3-1,3-2 . . . . .  3-n are the eigenvalues of (A). i 
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Step 2. Solve the discrete Lyapunov equation for Z: 

A Z A  T _ f l 2 Z  = 2 B B  T. 

Step 3. Compute the discrete-stabilizing feedback matrix K, 

K = B T (Z + BBT) -1A.  

Example 10.2.3. Consider the cohort population model in Luenberger (1979, 
pp. 170), with c~i = c~2 = a3 = 1, fll =/~2 =/~3 = / ~ 4  = 1, and 

Then, 

/l!l 
n - -  

111 t A =  0 0 
1 0 " 
0 1 

The eigenvalues of A are -1.9276,  -0.7748,  -0 .0764 4-0.8147j. The matrix A is not 
discrete-stable. 

Step 1. Choose 13 = 0.5 
Step 2. The solution Z to the discrete Lyapunov equation A Z A  T - f l 2 Z  = 2 B B  T is 

-0 .0398 0.0321 -0.0003 0.0161 '~ 
0.0321 -0 .1594 0.1294 - 0 . 0 0 1 1 ]  

Z = -  -0 .0003 0.1214 -0 .6376 6.5135 1 "  
0.0161 -0.0011 6.5135 - 2 . 5 5 0 4 /  

Step 3. K = (1.2167, 1.0342, 0.9886, 0.9696) 
Verify: The eigenvalues of A - B K are -0 .0742 4- 0.4259j, -0.4390,  and 0.3708. 
Thus, A -  B K is discrete-stable. 

N o t e :  If (A, B) is not a discrete-controllable pair, but is discrete-stabilizable, 
then we can proceed exactly in the same way as in the continuous-time case to 
stabilize the pair (A, B). 

The following example illustrates how to do this. 
M A T C O N T R O L  no te :  Discrete Lyapunov stabilization method as described 

above has been implemented in MATCONTROL function s tablyapd.  

Example 10.2.4. Let 

(i (i) A =  - 1  , B =  . 
0 -0 .9900 

The pair (A, B) is not discrete-controllable, but is discrete-stabilizable. 
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Using the notations of Section 10.2.2, we have A = A, /) = B. The eigenvalues of 
A are 

{ 1.7321, - 1.7321, -0.9900}. 

All = (11 __21), /~1----(0)" 

The pair (,~11, nl)  is controllable. 
We now apply the Lyapunov method of discrete-stabilization to the pair (,411,/~1 ). 

Step 1. Choose/3 = 1. 
Step 2. The solution Z1 of the discrete Lyapunov equation: ,~11 Z1 '~T - Z l = 

2/~1/~T is (0.50.25) 
Z I =  0.25 0.25 " 

Step 3. 
/("l : (0, 2.4000). 

Step 4. The matrix All - /~1/~1 is discrete-stable. To obtain k such that A - 
/)K is discrete-stable, we choose k = (/('1,0). The eigenvalue of ,4 - /)/(" are 
0.7746, -0.7746, -0.9900, showing that ,4 - / ~  k is discrete-stable, that is, A - B k 
is discrete-stable. 

Remark 

�9 For an efficient implementation of the Lyapunov method for feedback 
stabilization using the Schur method, see Sima (1981). 

10.3 DETECTABILITY 

As observability is a dual concept of controllability, a concept dual to stabilizability 
is called detectability. 

Definition 10.3.1. The pair (A, C) is detectable if there exists a matrix L 
such that A - LC is stable. 

By duality of Theorem 10.2.1, we can state the following result. The proof is 
left as an exercise (Exercise 10.8). 

Theorem 10.3.1. Characterization of Continuous-Time Detectability. The 
following conditions are equivalent: 

(i) 

(ii) 

(iii) 
(iv) 

(A, C) is detectable. 

The matrix ( A  c k I )  has full column rank for alI Re(~,) > O. 

Forallkandx ~ OsuchthatAx = kxandRe(k)  > O, we have Cx ~ 0 
(A T, C T) is stabilizable. 
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We have seen in Chapter 7 that the controllability and observability play impor- 
tant role in the existence of positive definite and semidefinite solutions of Lyapunov 
equations. 

Similar results, therefore, should be expected involving detectability. We prove 
one such result in the following. 

Theorem 10.3.2. Detectability and Stability. Let (A, C) be detectable and let 
the Lyapunov equation: 

X A  + A T x  = - c T c  (10.3.1) 

have a positive semidefinite solution X. Then A is a stable matrix. 

Proof. The proof is by contradiction. Suppose that A is unstable. Let )~ be an 
eigenvalue of A with Re(~.) > 0 and x be the corresponding eigenvector. Then 
premultiplying the equation (10.3.1) by x* and postmultiplying it by x, we obtain 
2Re()~)(x*Xx)  § x * C f C x  - O. Since X > 0 and Re()O > O, we must have that 
Cx -- O. This contradicts the fact that (A, C) is detectable. I 

Disc rete- Detectability 

Definition 10.3.2. The pair (A, C) is discrete-detectable if there exists 
a matrix L such that A - L C  is discrete-stable. 

Theorems analogous to Theorems 10.3.1 and 10.3.2 also hold in the discrete 
case. We state the discrete counterpart of Theorem 10.3.1 in Theorem 10.3.3 and 
leave the proof as an exercise (Exercise 10.10). 

Theorem 10.3.3. The following are equivalent: 

(i) (A, C) is discrete-detectable. 
(ii)  ankIA- ' 

for  every i, such that I,~1 >__ 1. 
(iii) For all ~, and x =/= 0 such that Ax  = 1,x and I,~1 >_ 1, we have Cx ~ O. 
(iv) (A T, C T) is discrete-stabilizable. 

10.4 THE EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT 
PROBLEMS 

We have just seen how an unstable system can be possibly stabilized using feedback 
control. However, in practical instances, stabilization alone may not be enough. 
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The stability of the system needs to be monitored and/or the system response 
needs to be altered. To meet certain design constraints, a designer should be able 
to choose the feedback matrix such that the closed-loop system has certain transient 
properties defined by the eigenvalues of the system. We illustrate this with the help 
of a second-order system. 

Consider the second-order system: 

5~(t) + 2~'COn~(t) + COZx(t) - u(t). 

The poles of this second-order system are of the form: K 1 , 2 -  -- ~Wn -+- 

jconV/1 _ ~-2. The quantity ~" is called the d a m p i n g  ra t io  and COn is called the 
undamped n a t u r a l  f requency.  The responses of the dynamical system depends 

upon ~" and con. In general, for a fixed value of con, the larger the value of ~ (~ > 1), 
the smoother but slower the responses become; on the contrary, the smaller the 
value of ~ (0 < ~" < 1), the faster but more oscillatory the response is. Figures 10.2 
and 10.3 illustrate the situations. 

For Figure 10.2, COn = 1 and ~" -- 3. It takes about eight time units to reach the 
steady-state value 1. 

For Figure 10.3, COn -- 1 and ~" -- 0.5. The response is much faster as it reaches 
the steady-state value 1 in about three units time. However, it does not maintain 
that value; it oscillates before it settles down to 1. 
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F I G U R E  10.2: Unit step response when ( - 3 and C O n  - -  1. 
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FIGURE 10.3: Unit step response when ( -- 0.5 and Wn - -  1. 

These quantities thus need to be chosen according to a desired transient response. 
If the poles are close to jw-axis in the left half s-plane, then the transient responses 
decay relatively slowly. On the other hand, the poles far away from the jw-axis 
cause rapidly decaying time responses. Normally, "The closed-loop poles for  a sys- 
tem can be chosen as a desired pair of  dominant second-order poles, with the rest 
of  the poles selected to have real parts corresponding to sufficiently damped modes 
so that the system will mimic a second-order response with a reasonable control 
effort" (Franklin et al. 1986). The dominant poles are the poles that have dominant 
effects on the transient response behavior. As far as transient response is concerned, 
the poles with magnitudes of real parts at least five times greater than the dom- 
inant poles may be considered as insignificant. We give below some illustrative 
examples. 

Case 1. Suppose that it is desired that the closed-loop system response have the 
minimum decay rate ct > 0, that is, Re()~) < -ct  for all eigenvalues ~.. Then the 
eigenvalues should lie in the shifted half plane as shown in Figure 10.4. 

Case 2. Suppose that it is desired that the system have the minimal damping 
ratio (min. Then the eigenvalues should lie in the sector as shown in Figure 10.5. 

Case 3. Suppose that it is desired that the closed-loop system have a mini- 
mal undamped frequency O)min. Then the eigenvalues of the closed-loop matrix 
should lie outside of the following half of the disk: 0 < 09min _< COn, as shown in 
Figure 10.6. 
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FIGURE 10.4: The minimum decay rate ot of the closed-loop system. 

j(_o 

Re(2) < -  ct < 0 

s-plane 

FIGURE 10.5: Minimal damping ratio ( of the closed-loop system: the poles 
lie in the sector {)~ ~ C" IIm(~,)l _< -Re()0v/(  - 2 -  1}. 

0 < OJmi n < o9 n 
s-plane 

FIGURE 10.6: The minimal undamped frequency O)mi n of the closed-loop 
system: the poles lie in the region {~. 6 C" I~1 >__ ~O~n}. 

Knowing that to obtain certain transient responses, the eigenvalues of the closed- 
loop system should be placed in certain specified regions of the complex plane, 
the question arises: where should these eigenvalues be placed? An excellent 
discussion to this effect is given in the books by Friedland (1986, pp. 243-246) 
and Kailath (1980, chapter 3). 
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If the eigenvalues of the closed-loop system are moved far from those of the 
open-loop system, then from the explicit expression of the feedback vector (to be 
given later) in the single-input case, it is easily seen that a large feedback f will 
be required. From the control law, 

u = v -  fTx( t ) ,  

it then follows that this would require large control inputs, and there are practical 
limitations on how large control inputs can be. 

Thus, although the eigenvalues have to be moved to stabilize a system, "the 
designer should not attempt to alter the dynamic behavior of the open-loop 
process more than is required" (Friedland 1986). 

10.4.1 Eigenvalue Assignment by State Feedback 

The problem of assigning the eigenvalues at certain desired locations in the 
complex plane using the control law (10.2.2) is called the EVA Problem by 
state feedback. In control theory literature, it is more commonly known as the 
pole-placement problem. 

Here is the precise mathematical statement of the problem. 

Given A E ]~n xn, B E R n xm (m < n), and A = {)~1 . . . . .  )~n }, where A is 
closed under complex conjugation, find K E N m • such that 

f 2 ( A -  BK)  = A. 

Here, f2 (R) stands for the spectrum of R. 

The matrix K is called the state-feedback matrix. 

Theorem 10.4.1 gives the conditions of existence and uniqueness of K. 

Theorem 10.4.1. The State-Feedback EVA Theorem. The EVA problem is 
solvable for all A if and only if (A, B) is controllable. The solution is unique 
if and only if the system is a single-input system (i.e., if B is a vector). In the 
multi-input case, if the problem is solvable, there are infinitely many solutions. 

Proof. We first prove the necessity. The proof is by contradiction. 
Suppose that the pair (A, B) is not controllable. Then according to the eigenvalue 

criteria of controllability, we have rank(A - )~I, B) < n for some ~.. Thus there 
exists a vector z r 0 such that z T (A - )~I) = 0, zTB = 0. This means that for 
any K, we have z T (A - )~I - B K) = 0, which implies that )~ is an eigenvalue of 
A - B K for every K, and thus )~ cannot be reassigned. 
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Next we prove the sufficiency. 
C a s e  1. Let's consider first the single-input case�9 That is, we prove that if (A, b) 

is controllable, then there exists a unique vector f such that the matrix A - b f  T 

has the desired spectrum. 
Consider the (lower) controller-companion form (C,/,) of the controllable pair 

(A, b) (see Chapter  6): 

0 1 0 . . .  0 
0 0 1 .-. 0 

T A T  - 1  - C -  " : : il" (10.4.1) 

0 0 0 -..  

- - a l  - -a2  - -a3  . . . .  an 

and 

'0 
0 

[ ~ - - r b =  0 . (10.4.2) 

i 

We now show that there exists a row vector f T such that the closed-loop matrix 
C - / ~ f T  has the desired spectrum. 

Let the characteristic polynomial of the desired closed-loop matrix be d()~) = 
)~n -t'- dn~. n - 1  q" " " -t- d l .  Let f r  _ (fl ,  f2 . . . . .  f n ) .  

Then 

0 1 0 .-. 0 
0 0 1 . . .  0 

c _ D f  w . . . . . . . . . . . . . . . .  . 

0 0 0 . . .  1 

- - a l  f l  - - a 2 - -  f 2  . . . .  a n - -  f n  

(10.4.3) 

The characteristic polynomial c' ()~) of C- /~  fAT, then, is ) n  + (an + f n ) ~ n - 1  -F-"""-~- 

al + f l .  Comparing the coefficients of c t ()~) with those of d(1.), we immediately 
have 

f i - -  di - a i ,  i - -  1, 2 . . . . .  n .  (10.4.4) 

Thus, the vector f is completely determined by the coefficients of the characteristic 
polynomial of the matrix C and the coefficients of the characteristic polynomial 
of the desired closed-loop matrix�9 Once the vector f is known, the vector f such 
that the original closed-loop matrix A - b f  T has the desired spectrum, can now 
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be found from the relation: 

fT__ f T T .  (10.4.5) 

(Note that t2(A - b f  T) = f I ( T A T  -1 - T b f T T  -1) = f2(C - / ~ f T ) . )  
Uniqueness: From the construction of f ,  it is clear that f is unique. We now 

show that the uniqueness of f implies that of f .  The proof is by contradiction. 
Suppose there exists g ~ f such that f l ( A  - bg T) = f l ( A  - b fT) .  Then 

f2(C - / ~ f T )  = f2(C - / ~  T), where ~T _. gTT-1  ~ f T ,  which contradicts the 
uniqueness of the vector f .  

Case 2. Now we turn to the multi-input case. Since (A, B) is controllable, 
there exists a matrix F and a vector g such that (A - B F, Bg) is controllable (see 
Chen (1984, p. 344)). Thus, by Case 1, there exists a vector h such that the matrix 
A - B F - BghT has the desired spectrum. 

Then with K = F + gh T, we have that A - B K has the desired spectrum. 
Uniqueness: Since the choice of the pair (F, g) is not unique, there exist 

infinitely many feedback matrices K in the multi-input case. 1 

The Bass-Gura Formula 

Note that using the expression of T from Chapter 6, the above expression for f in 
the single-input case can be written as (Exercise 10.13): 

f = T T f  = [ (CMW)T]-I (d  -- a), (10.4.6) 

where d is the vector of the coefficients of the desired characteristic polynomial, 
a is the vector of the coefficients of the characteristic polynomial of A, CM is the 
controllability matrix, and W is a certain Toeplitz matrix. 

The above formula for f is known as the Bass-Gura formula (see Kailath 
(1980, p. 199)). 

Ackermann's Formula (Ackermann 1972) 

A closely related formula for the single-input feedback vector f is the well-known 
Ackermann formula: 

f T -1 = e n C M d(A) ,  (10.4.7) 

where CM is the controllability matrix and d (A) is the characteristic polynomial 
of the desired closed-loop matrix. 

We also leave the derivation of Ackermann's formula as an exercise 
(Exercise 10.14). 

Notes: We remind the readers again that, since T = CM 1 can be very ill- 
conditioned, computing f using the constructive proof of Theorem 10.4.1 or by 
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the Ackermann or by the Bass-Gura formula can be highly numerically unsta- 
ble. We will give some numerical examples in Chapter 11 to demonstrate this. 

The MATLAB function acker has implemented Ackermann's formula and com- 
ments have been made about the numerical difficulty with this formula in the 
MATLAB user's manual. 

10.4.2 Eigenvalue Assignment by Output Feedback 

Solving the EVA problem using the feedback law (10.2.2) requires knowledge of 
the full state vector x( t ) .  Unfortunately, in certain situations, the full state is not 
measurable or it becomes expensive to feedback each state variable when the order 
of the system is large. In such situations, the feedback law using the output is more 
practical. Thus, if we define the output feedback law by 

u(t)  = - K y ( t ) ,  y( t )  -- Cx( t ) ,  (10.4.8) 

we have the closed-loop system 

Yc(t) -- ( A -  B K C ) x ( t ) .  

The output feedback EVA problem then can be defined as follows. 

Given the system (10.2.1), f ind a feedback matrix K such that the matrix 

A - B K C has a preassigned set o f  eigenvalues. 

The following is a well-known result by Kimura (1975) on the solution of the 
output feedback problem. 

Theorem 10.4.2. The Output Feedback EVA Theorem. Let (A, B) be control- 
lable and (A, C) be observable. Let rank(B) = m and rank(C) = r. Assume 
that n < r + m - 1. Then an almost arbitrary set o f  distinct eigenvalues can be 

assigned by the output feedback law (10.4.8). 

10.4.3 Eigenstructure Assignment 

So far, we have considered the problem of only assigning the eigenvalues. How- 
ever, if the system transient response needs to be altered, then the problem of 
assigning both eigenvalues and eigenvectors needs to be considered. This can 
be seen as follows. We have taken the discussion here from Andry et al. (1983). 

Suppose that the eigenvalues )~k,k = 1, . . . , n  of A are distinct. Let 
M = (Vl . . . . .  Vn) be the matrix of eigenvectors, which is necessarily nonsingular. 
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Then every solution x ( t )  of the system: 

So(t) -- A x ( t ) ,  x(O) = xo, 

representing a free response can be written as 

x ( t )  - -  ~ otie)~itvi,  

i=1 

where ot = (al, ~2 . . . . .  Otn) T = M - l x o .  

Thus, from above, we see that the eigenvalues determine the rate at which 
the system response decays or grows and the eigenveetors determine the shape 
of the response. 

The problem of assigning both eigenvalues and eigenvectors is called the 
eigenstrueture assignment problem. 

Formally, the problem is stated as follows: 

Given the sets S = {#1 . . . . .  #n } and M = {Vl . . . . .  Vn } of scalars and vectors, 
respectively, both closed under complex conjugation, find a feedback matrix 
K such that the matrix A + B K has the #is as the eigenvalues and the vis as 
the corresponding eigenvectors. 

The following result, due to Moore (1976), gives a necessary and sufficient 
condition for a solution of the eigenstructure assignment problem by state feedback 
(see Andry et al. (1983) for details and proof). 

Define 

R x =  Mx ' 

where the columns of Rx form a basis for the null space of the matrix (~,I - A, B). 

Theorem 10.4.3. The State-Feedback Eigenstructure Ass ignmen t  Theorem. 

As sume  that the numbers  {#i } in the set S are distinct and  self-conjugate. Then 

there exists a matr ix  K such that (A  + B K ) v i  "- lzi v i ,  i = 1 . . . . .  n i f  and only 

i f  the fo l lowing  condit ions are satisfied: 

(i) 
(ii) 

(iii) 

The vectors Vl, . . . ,  l)n are linearly independent  

* whenever  #i  * i - 1 2, n 1) i - -  Vj = l~j ,  , . . . ,  

vi ~ span{Nui }, i = 1, 2 . . . . .  n. 
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If  B has full rank and K exists, then it is unique. When lzi s are all real and 
distinct, an expression for K is 

K - -  ( - M / z l Z l , - M # 2 z  2 . . . . .  - M # n Z n ) ( V l ,  1)2 . . . . .  Vn) - 1 ,  

where the vector Zi is given by 

l)i - -  N#iz i ,  i : 1, 2 . . . . .  n. 

The following result on the eigenstructure assignment by output feedback is due 
to Srinathkumar (1978). 

Theorem 10.4.4. The Output Feedback Eigenstructure Assignment Theorem. 
Let (A, B) be controllable and (A, C) be observable. Assume thatrank(B) = m 
andrank(C) = r. Then max(m, r) eigenvalues andmax(m, r) eigenvectors with 
rain(m, r) entries in each eigenvector can be assigned by the output feedback 
law (10.4.8). 

Note: Numerically effective algorithms for the output feedback problem are 
rare. Perhaps, the first comprehensive work in this context is the paper by Misra 
and Patel (1989), where algorithms for both the single-input and the multi-output 
systems, using implicit shifts, have been given. We refer the readers to the above 
paper for a description of this algorithm. 

10.5 THE QUADRATIC OPTIMIZATION PROBLEMS 

We have just seen that if a system is controllable, then the closed-loop eigenvalues 
can be placed at arbitrarily chosen locations of the complex plane. But, the lack 
of the existence of a definite guideline of where to place these eigenvalues makes 
the design procedure a rather difficult one in practice. A designer has to use his or 
her own intuition of how to use the freedom of choosing the eigenvalues to achieve 
the design objective. 

It is, therefore, desirable to have a design method that can be used as an initial 
design process while the designer develops his or her insight. 

A "compromise" is often made in practice to obtain such an initial design pro- 
cess. Instead of trying to place the eigenvalues at desired locations, the system is 
stabilized while satisfying certain performance criterion. 

Specifically, the following problem, known as the Linear Quadrat ic  Opti- 
mization Problem, is solved. The problem is also commonly known as the LQR 
problem. 
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10.5.1 The Continuous-Time Linear Quadratic Regulator (LQR) Problem 

Given matrices Q and R, find a control signal u(t) such that the quadratic cost 
function Jc(x) -- f o  [x T (t) Qx(t) + U T (t) Ru(t)] dt is minimized, subject to 
Yc = Ax + B u, x(O) = xo. 

The matrices Q and R represent, respectively, weights for the states and the 
control vectors. 

The quadratic form x T Qx represents the deviation of the state x from the initial 
state, and the term u TRu represents the "cost" of control. The matrices Q and 
R need to be chosen according to the requirements of a specific design. Note 
that the magnitude of the control signal u can be properly controlled by choosing 
R appropriately. In fact, by selecting large R, u(t) can be made small (see the 
expression of the unique control law in Theorem 10.5.1), which is desirable. The 
choice of Q is related to which states are to be kept small. 

Unfortunately, again it is hard to set a specific guideline of how to choose Q and 
R. "The choice of these quantities is again more of an art than a science" (Kailath 
(1980, p. 219). For a meaningful optimization problem, however, it is assumed 
that Q is symmetric positive semidefinite and R is symmetric positive definite. 
Unless mentioned otherwise, we will make these assumptions throughout the 
rest of the chapter. 

The solution of the above problem can be obtained via the solution of a quadratic 
matrix equation called the ARE, as shown by the following result. See Anderson 
and Moore (1990) for details. 

Theorem 10.5.1. The Continuous-Time LQR Theorem. Suppose the pair 
(A, B) is stabilizable and the pair (A, Q) is detectable. Then there exists 
a unique optimal control u~ which minimizes Jf(x). The vector u~ is 
given by u~ = - K x ( t ) ,  where K = R -1BTx ,  and X is the unique positive 
semidefinite solution of the ARE: 

XA  + A T x  + Q - X B R - 1 B T X  = O. (10.5.1) 

Furthermore, the closed-loop matrix A - B K is stable and the minimum value 
of  Jc (x) is equal to x TXxo, where xo = x (0). 

The proof of the existence and uniqueness of the stabilizing solution (under the 
conditions that (A, B) is stabilizable and (A, Q) is detectable) will be deferred 
until Chapter 13. Here we give a proof of the optimal control part, assuming that 
such a solution exists. 
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or 

Proofi Proof of the Optimal Control Part of Theorem 10.5.1 

d ( x T X x )  = .it T Xx + x T Xx,  

= (Ax + Bu)TXx + xTX(Ax + Bu), 
= ( u T B  T + xTAT)Xx + xTX(Ax  + Bu), 
--xT(ATx -4- XA)x + uTBTXx -4- xTXBu, 
= x T ( X B R - I B T x -  Q)x + uTBTXx 

+xTXBu (using (10.5.1) 
=xTXBR-1BTXx + uTBTXx + xTXBu + uTRu 

--uTRu --xTQx, 
= ( U  T + xTXBR-1)R(u + R-1BTXx)_  (xTQx + uTRu) 

d (xTXx) + (u T + xTXBR_I)R( u + R_IBTXx)" x T Q x + u  T R u -  dt 

Integrating with respect to t from 0 to T, we obtain 

fo T(x T Qx + Ru) gT dt 

= - xT (T )Xx (T )+  xTXxo + (u + R-1BTXx)TR(u + R-1BTXx)dt. 

(Note that X - X T >_ 0 and R -- R T > 0.) 

Letting T --> c~ and noting that x(T) ~ 0 as T ~ oo, we obtain 

/o Jc(x)  = xTXxo + (u + R -1 B TXx) TR(u + R -1 B TXx) dt 

Since R is symmetric and positive definite, it follows that Jc(x)  >_ xTXxo for 

all x0 and for all controls u. Since the first term xTXxo is independent of u, the 
minimum value of Jc (x) occurs at 

u~ = - R  -1BTXx(t) -- -Kx( t ) .  

The minimum value of Jc(x)  is therefore x~Xxo. I 

Definition 10.5.1. The ARE: 

XA + ATx + Q - XSX -O,  (10.5.2) 

where S - B R-  1BT is called the Continuous- Time Algebraic Riccati Equation 
or in short CARE. 
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Definition 10.5.2. The matrix H defined by 

(A 
H -- _A T (10.5.3) 

is the Hamiltonian matrix associated with the CARE (10.5.2). 

Definition 10.5.3. A symmetric solution X of the CARE such that A - SX is 
stable is called a stabilizing solution, 

Relationship between Hamiltonian Matrix and Riccati Equations 

The following theorem shows that there exists a very important relationship 
between the Hamiltonian matrix (10.5.3) and the CARE (10.5.2). The proof will 
be deferred until Chapter 13. 

Theorem 10.5.2. Let (A, B) be stabilizable and (A, Q) be detectable. Then 
the Hamiltonian matrix H in (10.5.3) has n eigenvalues with negative real parts, 
no eigenvalues on the imaginary axis and n eigenvalues with positive real parts. 
In this case the CARE (10.5.2) has a unique stabilizing solution X. Furthermore, 
the closed-loop eigenvalues, that is, the eigenvalues of A - B K, are the stable 
eigenvalues of H. 

A note on the solution of the CARE: It will be shown in Chapter 13 that the 
unique stabilizing solution to (10.5.2) can be obtained by constructing an invariant 
subspace associated with the stable eigenvalues of the Hamiltonian matrix H in 
(10.5.3). Specifically, if H does not have any imaginary eigenvalue and (x~) is 
the matrix with columns composed of the eigenvectors corresponding to the stable 
eigenvalues of H, then, assuming that X1 is nonsingular, the matrix X -- X2X11 
is a unique stabilizing solution of the CARE. For details, see Chapter 13. 

The MATLAB function care solves the CARE. The matrix S in CARE is 
assumed to be nonnegative definite. 

The Continuous-Time LQR Design Algorithm 

From Theorem 10.5.1, we immediately have the following LQR design algorithm. 

Algorithm 10.5.1. The Continuous-Time LQR Design Algorithm. 
Inputs. The matrices A, B, Q, R, and x (0) = xo. 
Outputs. X--The solution of the CARE. 

KmThe LQR feedback gain matrix. 
Jc minmThe minimum value of the cost function Jc (x). 

Assumptions. 

1. (A, B) is stabilizable and (A, Q) is detectable. 
2. Q is symmetric positive semidefinite and R is symmetric positive definite. 



S e c t i o n  10 .5:  T H E  Q U A D R A T I C  O P T I M I Z A T I O N  P R O B L E M S  3 6 7  

Step 1. Compute the stabilizing solution X of the CARE: 

X A  + A T x  -- X S X  + Q = O, S = B R - 1 B  T. 

Step 2. Compute the LQR feedback gain matrix: 

K = R -1BTX.  

Step 3. Compute the minimum value of J f (x)  �9 J C m i n  - -  xT  X x o  �9 

Example 10.5.1 (LQR Design for the Inverted Pendulum). We consider 
Example 10.2.1 again, with A and B, the same as there and Q -- 14, R = 1, and 

llil X0 - -  

Step 1. The unique positive definite solution X of the CARE (obtained by using 
MATLAB function care) is 

X - -  10 3 I 
0.0031 0.0042 0.0288 0.0067~ 
0.0042 0.0115 0.0818 0.0191 / 
0.0288 0.0818 1.8856 0.4138~ " 
0.0067 0.0191 0.4138 0.0911/ 

Step 2. The feedback gain matrix K is 

K = ( -  1, -3.0766, - 132.7953, -28.7861). 

Step 3. The minimum value of Jc(x) is 3100.3. 
The eigenvalues of A - BK are: -4.8994, -4.5020, -0.4412 4- 0.3718j. Thus, X 

is the unique positive definite stabilizing solution of the CARE. 
(Note that the entries of K in this case are smaller compared to those of K in 

Example 10.2.1 .) 

Comparison of Transient Responses with Lyapunov Stabilization 

Figures 10.7a and b show the transient responses of the closed-loop systems with: 
(i) K from Example 10.2.1 and (ii) K as obtained above. The initial condition 
x(0) = (5, 0, 0, 0) T. 

In Figure 10.7a, the transient solutions initially have large magnitudes and then 
they decay rapidly. In Figure 10.7b, the solutions have smaller magnitudes but the 
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FIGURE 10.7: Transient responses: (a) Lyapunov Method and (b) LQR design. 

decay rate is much slower. The largest magnitude in transient solution in (a) is 
roughly six times larger than the one in (b). In some dynamical systems, strong 
initial oscillations in the state components must be avoided, but sometimes a faster 
stabilization is desired; in other cases, a slow but smooth stabilization is required. 

Note that the transient solutions in (a), however, depend upon/3 and in (b) depend 
upon Q and R (discussed in the following sections). 

Stability and Robustness Properties of the LQR Design 

The LQR design has some very favorable stability and robustness properties. We 
will list some important ones here. 

Guaranteed Stability Properties 
Clearly, the closed-loop eigenvalues of the LQR design depend upon the matrices 
Q and R. We will show here how the choice of R affects the closed-loop poles. 
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Suppose R -- p I, where p is a positive scalar. Then, the associated Hamiltonian 
matrix: 

The closed-loop eigenvalues are the roots with negative real parts of the 
characteristic polynomial 

dc(s) = det(sl  - H). 

Let Q = C TC.  It can be shown that [1 ] 
dc(s) - ( - 1 ) n d ( s ) d ( - s ) d e t  I + - G ( s ) G T ( - s )  , 

P 

where d(s) = det(sI - A), and G(s) = C(s I  - A) - lB .  
Case 1. Low gain. When p ~ c~, u(t) = - ( 1 / p ) B T X x ( t )  --+ O. Thus, the 

LQR controller has low gain. In this case, from the above expression of dc(s), it 
follows that 

(-1)ndc(s) -'+ d(s)d(-s) .  

Since the roots with negative real parts of dc (s); that is, the closed-loop eigenvalues, 
are stable, this means that as p increases: 

�9 the stable open-loop eigenvalues remain stable. 
�9 the unstable ones get reflected across the imaginary axis. 
�9 if any open-loop eigenvalues are exactly on the jw-axis, the closed-loop 

eigenvalues start moving just left of them. 

Case 2. High gain. If p --+ 0, then u(t) becomes large; thus, the LQR controller 
has high gain. 

In this case, for finite s, the closed-loop eigenvalues approach the finite zeros of 
the system or their stable images. 

As s ~ cx~, the closed-loop eigenvalues will approach zeros at infinity in the 
so-called stable Butterworth patterns. (For a description of Butterworth patterns, 
see Friedland (1986).) An example is given in Figure 10.8. 

These properties, provide good insight into the stability property of LQR 
controllers and, thus, can be used by a designer as a guideline of where to 
place the poles. 

Robustness Properties of  the LQR Design 
As we have seen before, an important requirement of a control system design is 
that the closed-loop system be robust to uncertainties due to modeling errors, 
noise, and disturbances. It is shown below that the LQR design has some desirable 
robustness properties. 
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FIGURE 10.8- Illustration of Butterworth patterns. 

The classical robust stability measures are gain and phase margins, defined 
with respect to the Bode plot (see Chapter 5) of a single-input single-output 
(SISO) system. 

The gain margin is defined to be the amount of gain increase required to make 
the loop gain unity where the phase angle is 180 ~ That is, it is the reciprocal of 
the gain at the frequency where the phase angle is 180 ~ Thus, the gain margin 
is a measure by which the system gain needs to be increased for the closed-loop 
system to become just unstable. 

Similarly, the difference between the phase of the response and -180 ~ when the 
loop gain is unity is called the phase margin. That is, the phase margin is the 
minimum amount of phase lag that is needed to make the system unstable. 

The robustness properties of the LQR design for a multi-input multi-output 
(MIMO) system can be studied by considering the return difference matrix: 
I + GLQ(S), where GLQ(S) is the LQR loop transfer function matrix given by 

GLQ(S) = K (sl - A) -! B. 

The optimal return difference identity is: 

[ I + K ( - s I - A ) - I B ] T R [ I + K ( s I - A ) - I B ]  = R + B T ( - s I - A )  -T Q ( s I - A ) - I B .  

or  

( I+GTQ(-S))R(I+GLQ(S))  -- R + G T ( - s ) Q G ( s ) ,  where G(s) - ( s I - A ) - I B .  
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From the above equation, we have 

(I 4- G~Q(jW))R(I 4- GLQ(jco)) > R. 

It has been shown in Safonov and Athans (1977) that if R is a diagonal matrix 
so that 

(I + G~Q(jw))(I 4- GLQ(jw)) > I, 

then there is at least 60 ~ of phase margin in each input channel and the gain margin 
is infinity. This means that a phase shift of up to 60 ~ can be tolerated in each of 
the input channels simultaneously and the gain in each channel can be increased 
indefinitely without losing stability. It also follows from above (Exercise 10.20(b)) 
that for all co, 

O'min(I 4- GLQ(jw)) > 1. 

This means that the LQ design always results in decreased sensitivity. 
See Anderson and Moore (1990, pp. 122-135), the article "Optimal Control" 

by EL. Lewis in the Control Handbook (1996, pp. 759-778) edited by William 
Levine, IEEE/CRC Press, and Lewis (1986, 1992), and Maciejowski (1989) for 
further details. 
Example 10.5.2. Consider Example 10.5.1 again. Forw= 1, GLQ(jw)=-1.9700+ 
0.5345j, 

amin(1 n t- GLQ(jw))= 1.1076, 

Crmin(1 4- GZ~(jw))- 0.5426, 

The gain margin = 0.4907, 

The phase margin = 60.0998. 

LQR Stability with Multiplicative Uncertainty 

The inequality 

amin(I + GLQ(jco)) >_ 1 

also implies (Exercise 10.20(c)) that 

1 O'min(I 4- (GLQ(jo))) -1) >_ ~, 

which means that LQR design remains stable for all unmeasured multiplicative 
1 uncertainties A in the system for which O'mi n (A (j  o))) < ~. 
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MATLAB notes: The MATLAB command [K, S, E] = l q r (A ,  B, Q, R) solves 
the LQR problem. Here, Kmfeedback matrix, Smsteady-state solution of the 
CARE, Emthe vector containing the closed-loop eigenvalues. 

SA + A T s  - S B R - 1 B T S  + Q = O. 

The CARE is solved using the generalized Schur algorithm to be described in 
Chapter 13. 

MATLAB function margin can be used to compute the gain and phase margins 
of a system. 

10.5.2 The Discrete-Time Linear Quadratic Regulator Problem 

In the discrete-time case, the function to be minimized is: 

oo 

TRUk). J D ( x ) -  ~ ( x T  Qxk + U k 
k=0 

(10.5.4) 

and the associated ARE is: 

A T X A  - X + Q - A T X B ( R  + B T X B ) - I B T X A  - O. (10.5.5) 

The above equation is called the Discrete-time Algebraic Riccati Equation 
(DARE). 

A theorem on the existence and uniqueness of the optimal control u ~ similar to 
Theorem 10.5.1, is stated next. For a proof, see Sage and White (1977). 

Theorem 10.5.3. The Discrete-Time LQR Theorem. Let (A, B) be discrete- 
stabilizable and (A, Q) be discrete-detectable. Then the optimal control 

o k = O, 1 2 that minimizes JD(x) is given by u ~ = Kxk, where K = U k ,  , , �9 . . ,  

( R + B T X B ) - 1B T X A, and X is the unique positive semidefinite solution of  the 
DARE (10.5.5). Furthermore, the closed-loop discrete system: 

X k + l  = (A - B K) X k  

is discrete-stable (i.e., all the eigenvalues are strictly inside the unit circle), and 
the minimum value of  JD(x) is x~Xxo, where xo is the given initial state. 

Definition 10.5.4. A symmetric solution X of  the DARE that makes the matrix 
A -  B K, where K = (R + B T X B ) -  1 B T X A, discrete-stable is called a discrete- 
stabilizing solution of  the DARE. 
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Example 10.5.3. 

A (! 1 i) (!) (i~ - 2  , B - -  , Q -  1 , 
0 - 0 

R - - 1 .  

The solution X of the DARE (computed using MATLAB function dlqr) is: 

{0.0051 -0.0542 0.0421 
x -  103 [-0.542 1.0954 - 0 . 9 3 4 4 ] .  

\0.0421 -0.9344 0.8127 ] 

The discrete LQR gain matrix: 

K = (-0.0437, 2.5872, -3.4543). 

The eigenvalues of A - B K are: -0.4266, -0.2186, -0.1228. Thus, X is a discrete- 
stabilizing solution. 

MATLAB note: The MATLAB function lqrd computes the discrete-time 
feedback-gain matrix given in Theorem 10.5.3. 

10.6 H a - C O N T R O L  PROBLEMS 

So far we have considered the stabilization of a system ignoring any effect of 
disturbances in the system. But, we already know that in practice a system is 
always acted upon by some kind of disturbances. Thus, it is desirable to stabilize 
perturbed versions of a system, assuming certain bounds for perturbations. This 
situation gives rise to the well-known "Ha-cont ro l  problem." 

Ha-control theory has been the subject of intensive study for the last twenty 
years or so, since its introduction by Zames (1981). There are now excellent liter- 
ature in the area: the books by Francis (1987), Kimura (1996), Zhou et al. (1996), 
Green and Limebeer (1995), etc., and the original important papers by Francis and 
Doyle (1987), Doyle et al. (1989), etc. 

Let O'max ( g )  and O'min (M) denote, respectively, the largest and smallest singular 
value of M. 

Definition 10.6.1. The Ha-norm of the stable transferfunction G(s), denoted 
by II G II ~,  is defined by 

IIGII~ = sup amax(G(jog)). 

In the above definition, "sup" means the supremum or the least upper bound 
of the function O'max (G (jog)). 
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Physical Interpretation of the H~-norm 

Consider the system: 

y(s )  = G(s )u ( s ) .  

When the system is driven with a sinusoidal input of unit magnitude at a specific fre- 
quency, O'max (G (j o9) ) is the largest possible size of the output for the corresponding 
sinusoidal input. Thus, the Hoo-norm gives the largest possible amplification over 
all frequencies of a unit sinusoidal input. 

A detailed discussion of Hoo control problems is beyond the scope of this 
book. The original formulation was in an input/output setting. However, due to its 
computational attractiveness, the recent state-space formulation has become more 
popular. We only state two simplified versions of the state-space formulations of 
H~-control problems, and mention their connections with AREs. First, we prove 
the following well-known result that shows how the Hoo-norm of a stable transfer 
function matrix is related to an ARE or equivalently, to the associated Hamiltonian 
matrix. 

Define the Hamiltonian matrix out of the coefficients of the matrices of the 
system (10.2.1) 

A + B R - 1 D T C  
My -- _ c T (  I + DR_  1DT)C 

BR-1BT ) 
- ( A  + BR-1DTC)T  ' (10.6.1) 

where R = y2I  - D T D. 

Theorem 10.6.1. Let G(s) be a stable transfer function and let V > O. Then 
IIGII~ < y if and only if amax(D) < y and My defined by (10.6.1) has no 
imaginary eigenvalues. 

Proof. We sketch the proof in case D - 0. This proof can easily be extended 
to the case when D # 0, and is left as an exercise (Exercise 10.23). Without any 
loss of generality, assume that y - 1. Otherwise, we can scale G to y - 1 G  and 
B to y - l B  and work with scaled G and B (note that II G II~ < ~' if and only if 
I ly - lGI l~  < 1). 

Since F - 1 and D -- 0, we have R -- I. Using the notation: 

A,l,, 

an easy computation shows that if 

1-'(s) -- I -- G ( - s ) T G ( s ) ,  (10.6.2) 
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then 

1-'-l(s) -- - c T c  - - A T  --  . (10.6.3) 
0 B T B T 

Therefore, from above it follows that My does not have an eigenvalue on the 
imaginary axis if and only if F -1 (s) does not have any pole there. We now show 
that this is true if and only if II a I1~ is less than 1. 

If IIGII~ < 1, then I - G ( j  co) * G ( j  co) > 0 for every co, and hence 1-'-l(s) = 
( I  - G ( - s )  T G(s)) -1 does not have any pole on the imaginary axis. On the other 
hand, if Ilall~ ___ 1, then Crrnax(G(jco)) = 1 for some co, which means that 1 is an 
eigenvalue of G ( j c o ) * G ( j c o ) ,  implying that I - G ( j c o ) * G ( j c o )  is singular, i 

The following simple example from Kimura (1996, p. 41) illustrates 
Theorem 10.6.1. 

Example 10.6.1. Let 
1 

G ( s )  = ~ ,  ot > 0 .  
s + o t  

The associated Hamiltonian matrix 

(1 :) 
Then H does not have any imaginary eigenvalue if and only if c~ > 1. 

Since IIGll~ = sup~o 1/~Ao 2 + ~2 = 1/~,  we have, for ol > 1, IIGll~ < 1. 

10.6.1 Computing the Ha-Norm 

A straightforward way to compute the Ha-norm is: 

1. Compute the matrix G ( j c o )  using the Hessenberg method described in 
Chapter 5. 

2. Compute the largest singular value of G ( j c o ) .  

3. Repeat steps 1 and 2 for many values of co. 

Certainly the above approach is impractical and computationally 
infeasible. 

However, Theorem 10.6.1 gives us a more practically feasible method for com- 
puting the Ha-norm. The method, then, will be as follows: 

1. Choose y. 
2. Test if [[GI]~ < y, by computing the eigenvalues of My and seeing if the 

matrix My has an imaginary eigenvalue. 
3. Repeat, by increasing or decreasing V, accordingly as IIGI]~ < y or 

11611~ >__ • 
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The following bisection method of Boyd et al. (1989) is an efficient and 
systematic implementation of the above idea. 

Algorithm 10.6.1. The Bisection Algorithm for Computing the H~-Norm 
Inputs. The system matrices A, B, C, and D, of dimensions n x n, n x m, r x n, 

and r x m, respectively. 

Ylb--A lower bound of the Hoo-norm 
VubmAn upper bound of the Hoo-norm 
e (> O)mError tolerance. 

Output.  An approximation of the H~-norm with a relative accuracy of e. 
Assumption. A is stable. 
Step 1. Set YL - - - -  Ylb, and Yu = Yub 
Step 2. Repeat until Yu - YL <_ 2E YL 

Compute T = (YL + yU)/2 
Test if My defined by (10.6.1) has an imaginary eigenvalue 
If  not, set Y u = Y 
Else, set YL -- Y. 

Remark 

�9 After k iterations, we have yu  - YL = 2-k(Yub -- ~b). Thus, on exit, the 
algorithm is guaranteed to give an approximation of the H~-norm with 
a relative accuracy of E. 

Convergence: The convergence of the algorithm is linear and is independent of 
the data matrices A, B, C, and D. 

Note: An algorithm equivalent to the above bisection algorithm was also 
proposed by Robel (1989). 

Remark 

�9 The condition that My does not have an imaginary eigenvalue (in Step 2) 
can also be expressed in terms of the associated Riccati equation: 

X A  + A T x  + y - I X B R - 1 B T X  + y - I c T c  - 0  

(Assuming that D = 0.) 

Example 10.6.2. 

(O120) 
A =  - 2  , B =  , C = ( 1 ,  1, 1), D = 0 ,  e=0 .0014.  

0 
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Step 1. YL = 0.2887, 
Step 2. 

Iteration 1 

)tO = 1.7321. 

y -  1.0104. 

The eigenvalues of M• are {2, 4, -0.1429,  0.1429 - 2.0000, - 4 ,  0000}. Since 
M• does not have purely imaginary eigenvalues, we continue. 

YL - -  0.28867, Yu = 1.0103. 

Iteration 2 

y = 0.6495. 

The eigenvalues of M• are {2, 4, - 2 ,  - 4 ,  - 0  4- 1.1706j}. 
Since M• has a purely imaginary eigenvalue, we set 

YL = 0.6495, Yu = 1.0103, 

Iteration 3 

y = 0.8299. 

The eigenvalues of M• are {2, 4, - 2 ,  - 4 ,  0 4- 0.6722j}. Since M• has a purely 
imaginary eigenvalue, we set 

YL - -  0.8299, Yu = 1.0103. 

The values of y at successive iterations are found to be 0.9202, 0.9653, 0.9878, 
0.9991, 0.9998, and 1; and the iterations terminated at this point satisfying the stopping 
criterion. Thus, we take Hc~-norm -- 1. 

Computing Ylb and Yub: For practical implementation of the above algorithm, 
we need to know how to compute Y lb and Y ub. We will discuss this aspect now. 

Definition 10.6.2. The Hankel singular values are the square roots of the 
eigenvalues of the matrix CG OG, where CG and OG are the controllability and 
observability Grammians, respectively. 

The bounds Ylb and )tub may be computed using the Hankel singular values as 
follows: 

Ylb = max{o'max(D), o" HI}, 

Y ub - -  O'max ( D )  + 2 ~ o" Hi, 
i=1 

(10.6.4) 
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where cr H~ s are the ordered Hankel singular values, that is, cy Hi is the i th largest 
Hankel singular value. These bounds are due to Enns (1984) and Glover (1984) 
and the formula (10.6.4) is known as the Enns-Glover  formula. 

A scheme for computing ~qb and Yub will then be as follows: 

1. Solve the Lyapunov equations (7.2.11) and (7.2.12) to obtain CG and OG, 
respectively. 

2. Compute the eigenvalues of Cc Oc. 
3. Obtain the Hankel singular values by taking the square roots of the 

eigenvalues of Cc OG. 
4. Compute Y lb and Y ub using the above Enns-Glover formula. 

As an alternative to eigenvalue computations, one can also use the following 
formulas: 

Vlb -- max{o'max(D), v/Trace(CGOG)/n}, 

Yub : O'max(D) q- 2v/nTrace(CGOG). 

Remark 

�9 Numerical difficulties can be expected in forming the product CcOG 
explicitly. 

MATCONTROL note: Algorithm 10.6.1 has been implemented in MATCON- 
TROL function hinfnrm. 

The Two-Step Algorithm 

Recently, Bruinsma and Steinbuch (1990) have developed a "two-step" algorithm 
to compute H~-norm of G(s). Their algorithm is believed to be faster than the 
bisection algorithm just stated. The convergence is claimed to be quadratic. 

The algorithm is called a "two-step" algorithm, because, the algorithm starts 
with some lower bound of g < 11G II ~ ,  as the first step and then in the second step, 
this lower bound is iteratively improved and the procedure is continued until some 
"tolerance" is satisfied. 

A New Lower Bound of the H~-norm 

The two-step algorithm, like the bisection algorithm, requires a starting value for 
~b. The Enns-Glover formula can be used for this purpose. However, the authors 
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have proposed that the following starting value for ~b be used: 

Ylb : max{o'max(G(0)), O'max(G(jcop)), O'max(D)}, 

w h e r e  O)p : ])~i 1, )~i a pole of G(s) with )~i selected to maximize 

Im()~i) 1 

Re(L/) Iki l ' 

if G(s) has poles with Im(ki) # 0 or to minimize Iki l, if G(s) has only real poles. 

Algorithm 10.6.2. The Two-Step Algorithm for Computing the H~-norm 
Inputs. The system matrices A, B, C, and D, respectively, of  dimensions 

n x n, n x m, r x n, and r x m. e-error tolerance. 
Output. An approximate value of  the H~-norm. 
Assumption.  A is stable. 
Step 1. Compute a starting value for Nb, using the above criterion. 
Step 2. Repeat 

2.1 Compute Y = (1 + 2e ) )/lb. 
2.2 Compute the eigenvalues of  M• with the value of?/computed in Step 2.1. 

Label the purely imaginary eigenvalues of My as Ol . . . . .  co~. 
2.3 I f  My does not have a purely imaginary eigenvalue, set Yub : )/ and 

stop. 
2.4 For i = 1 . . . . .  k -  1 do 

(a) Compute mi - �89 + cOi+l). 
(b) Compute the singular values of  G( jmi) .  

Update ~ b  : max (Oma x ( G (j  m i )). 
l 

End 
Step 3. IlGlloc - l (~b -a t- Yub)- 

MATLAB note: Algorithm 10.6.2 has been implemented in MATLAB Control 
System tool box. The usage is: norm (sys, inf). 

In the above, "sys" stands for the linear time-invariant system in the matrices 
A, B, C, and D. "sys" can be generated as follows: 

a = [  ], B = [  ], C = [  ], D = [  ], s y s = s s ( a , B , C , D ) .  

Remark 

Boyd and Balakrishnan (1990) have also proposed an algorithm similar to 
the above "two-step" algorithm. Their algorithm converges quadratically. 
Algorithm 10.6.2 is also believed to converge quadratically, but no proof 
has been given. See also the paper by Lin et al. (1999) for other recent 
reliable and efficient methods for computing the H~-norms for both the 
state and output feedback problems. 
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Connection between H~-norm and the Distance to Unstable Matrices 

Here we point out a connection between the Hoo-norm of the resolvent of A and 
/3(A), the distance to the set of unstable matrices. The proof is easy and left as an 
[Exercise 10.27]. 

Theorem l0.6.2. Let A be a complex stable matrix, then / ~ (A)=  
]](sl - A) -1 I1-1 

O O "  

Computing the H~-Norm of a Discrete-Stable Transfer Function Matrix 

Let M(z) = C(zl  - A ) - I B  be the transfer function matrix of the asymptotically 
stable discrete-time system: 

Xk+l - -  Axk + Buk, 

Yk = Cxk. 

Then 

Definition 10.6.3. The Hoo-norm of M (z) is defined as 

IIM(z)ll~ - sup O'max(M(z)). 
Izl>__l 

The following is a discrete-analog of Theorem 10.6.1. We state the result here 
without proof. For proof, we refer the readers to the book by Zhou et al. (1996, 
pp. 547-548). 

Theorem 10.6.3. Let 

S - {A - B B T ( A T ) - I c T c  
- - (AT)- IcT  C 

BBT(AT) -1 )  
(AT) -1 

be the symplectic matrix associated with the above stable discrete-time 
system. Assume that A is nonsingular and that the system does not have any 
uncontrollable and unobservable modes on the unit circle. 

Then IlM(z)lloo < 1 if and only if S has no eigenvalues on the unit circle and 
IIC(I-  A)-IBII2 < 1. 

Computing H~-Norm of a Discrete-Stable System 

The above theorem can now be used as a basis to develop a bisection algorithm, 
analogous to Algorithm 10.6.1, for computing the H ~ - n o r m  of a discrete stable 
system. We leave this as an exercise (Exercise 10.24). 
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10.6.2 Hc~-Control Problem: A State-Feedback Case 

Consider the following linear control system: 

k(t)  = Ax( t )  4- Bu(t)  4- Ed(t) ,  

z(t) -- Cx( t )  4- Du(t) .  

x(0)  = 0 
(10.6.5) 

Here x(t) ,  u(t), and z(t), denote the state, the control input, and controlled output 
vectors. The vector d(t) is the disturbance vector. The matrices A, B, C, D, and E 
are matrices of appropriate dimensions. Suppose that a state-feedback control law 

u(t) = Kx( t )  

is applied to the system. Then the closed-loop system becomes: 

)c(t) -- (A 4- B K ) x ( t )  4- Ed(t )  
z(t) -- (C 4- DK)x ( t ) .  

(10.6.6) 

The transfer function from d to z is: 

Tzd(S ) = (C + D K ) ( s l  - A - B K ) - I E .  (10.6.7) 

Suppose that the influence of the disturbance vector d(t) on the output z(t) is 
measured by the H~-norm of Tzd(S). The goal of the state feedback H~ control 
problem is to find a constant feedback matrix K such that the dosed-loop 
system is stable and the H~-norm of the transfer matrix Tzd(S) is less than 
a prescribed tolerance. 

Specifically, the state feedback H~ problem is stated as follows: 

Given a positive real number V, find a real m • n matrix K such that the 
closed-loop system is stable and that l] Tzd (s)II~ < Y. 

Thus, by solving the above problem, one will stabilize perturbed versions of 
the original system, as long as the size of the perturbations does not exceed 
a certain given tolerance. 

The following theorem due to Doyle et al. (1989) states a solution of the above 
problem in terms of the solution of an ARE. 

Theorem 10.6.4. A State-Feedback H ~  Theorem. Let the pair (A, C) be 
observable and the pairs (A, B), and (A, E) be stabilizable. Assume that 
DT D = I, and D T c  = O. Then the H ~  control problem (as stated above) 
has a solution if and only if there exists a positive semi-definite solution X of  
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the ARE: 

A T x  4- X A -  X ( B B T 1 )  cT -~  E E T X 4- C - O ,  

such that (1 ) 
A 4- - T E E  T - BB T X 

is stable. In this case one such state feedback matrix K is given by 

K = - B  TX. 

(10.6.8) 

(10.6.9) 

Proof. The proof follows by noting the relationship between the ARE (10.6.8) 
and the associated Hamilton matrix: 

( z 1 Hy -- - ~  E E T  , 

- c T c  - A  T 
(10.6.10) 

as stated in Theorem 10.5.2, and then applying Theorem 10.6.1 to the transfer 
function matrix Tzd(S). I 

Notes 

1. The application of Theorem 10.6.1 to Tzd(S) amounts to replacing A, B, C, 
and R of Theorem 10.6.1 as follows: 

A ~ A 4 - B K  = A - B B T X ,  

C -+ C 4- DK = C -  DBTX, 

B--+ E, 

R --+ T21 - I = ( y 2 _  1)I, 

and using the assumptions D T D -- I and DTc  -- O. 
2. The Riccati equation (10.6.8) is not the standard LQ Riccati equation, 

the CARE (Eq. (10.5.2)), because the term (BB T - (1 / y2 )EE T) may be 
indefinite for certain values of y. 

However, when y --+ cxz, the Riccati equation (10.6.8) becomes the 
CARE with R = I: 

X A  + A T x  -- XBBTX + c T c  = O. 

It can be shown (Exercise 10.26) that if Hy has imaginary eigenvalues, 
then the H ~  problem as defined above does not have a solution. 
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In a more realistic situation when a dynamic measurement feedback is used, 
rather than the state feedback as used here, the solution of the corresponding 
H~-control problem is provided by a pair of AREs. Details can be found in the 
pioneering paper of Doyle et al. (1989), and in the recent books by Kimura (1996), 
Green and Limebeer (1995), Zhou et al. (1996). We only state the result from the 
paper of Doyle et al. (1989). 

10.6.3 The H~-Control Problem: Output Feedback Case 

Consider a system described by the state-space equations 

/c(t) = Ax(t )  + B1 w(t) + B2u(t), 

z(t) = Clx(t)  + D12u(t), 

y(t) = C2x(t) -+- D21 w(t), 

(10.6.11) 

where x ( t ) n t h e  state vector, w(t)mthe disturbance signal, u(t)mthe control 
input, z ( t ) ~  the controlled output, and y ( t )~ the  measured output. 

The transfer function from the inputs [u w] to the outputs [y] is given by 

G ( s ) _  ( 0  DI2)(CI)(sI_A)_I(BI B2)_ [GII GI2 l 
D21 0 + C2 ' G21 G22/" 

Define a feedback controller K(s) by u = K(s)y .  
Then the closed-loop transfer function matrix Tzw(s ) from the disturbance w to 

the output z is given by 

Tzw(S) -- Gll -a t- G12K(I - G22K)-lG21.  

Then the goal of the output feedback H~-contro l  problem in this case is to 
find a controller K(s) that IITz~(s)ll~ < •  for a given positive number y. 

Figure 10.9, P is the linear system described by 10.6.11. 

y 

FIGURE 10.9: Output feedback Hoo configuration. 
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A solution of the above H~-control problem is given in the following theorem. 
The following assumptions are made: 

(i) (A, B1) is stabilizable and (A, C1) is detectable. (10.6.12) 

(ii) (A, B2) is stabilizable and (A, C2) is detectable. (10.6.13) 

(iii) DT2(c1, D12) -- (0, I) (10.6.14) 

(iv) (DBll) DT1 -- (~) .  (10.6.15) 

Here I stands for an identity matrix of appropriate dimension. 

Theorem 10.6.5. An Output Feedback H~ Theorem. Under the assumptions 
(10.6.12-10.6.15), the output feedback H~-control problem as stated above 
has a solution if and only if there exist unique symmetric positive semidefinite 
stabilizing solutions X and Y, respectively, to the pair of AREs 

( 1 ) 
XA + A T x -  X B2B T - -~B1BT X + cTc1 --O, (10.6.16) 

( 1 c Y c 1 )  Y + B 1 B T O  ' (10.6 17) AY + YA T -  Y c T c 2 - - 7  

and p(XY)  < y2, where p(XY)  is the spectral radius of the matrix XY. 
Furthermore, in this case, one such controller is given by the transfer function 

K(s) -- - F ( s I  - / ] ) - I Z L ,  (10.6.18) 

where 
1 

-- A + -~B1BTX + B2F + ZLC2 (10.6.19) 

and 

F -  - B f  X, L -- - Y C  T, Z -  I -  - s Y X  (10.6.20) 

Proofi For a proof of Theorem 10.6.5, we refer the readers to the original 
paper of Doyle et al. (1989). I 

Notes 

1. The second Riccati equation is dual to the first one and is of the type that 
arises in the Kalman filter (Chapter 12). 

2. A general solution without the assumptions (10.6.14) and (10.6.15) can be 
found in Glover and Doyle (1988). 



Section 10.6: H~-CONTROL PROBLEMS 385 

MATLAB Note: To solve the Riccati equations (10.6.16) and (10.6.17) using 
care, these equations have to be rewritten in the usual care format. For example, 
Eq. (10.6.16) can be rewritten as: 

ATx-Jr-XA-X(B1B2) ( -p-2IO 0I)-1 {BT)~ cTc1 0 
' ~ B r  X + - -  . 

Example 10.6.3. Zhou et al. (1996, pp. 440-443). Let 

A = a, B1 = (1, 0), B2 = b2, 

Then 

and 

C1 - ( ~ ) ,  O12- ( 0 ) 

C2 = c2, D21 = (0, 1). 

DT2(C1,D12) -- (O, 1) (10 1) - (0, 1) 

(DB211) DT1 -- (~ 01tt01)--t0  ) 
Thus, the conditions (10.6.14) and (10.6.15) are satisfied. 

Leta = -1 ,  b2 = c2 - 1. Let y -- 2. 
Then it is easy to see that 

p(XY)  < y2, 

-1 .  321 1 - 0  321 / 
o ; 

\ -0 .7321 0 -0 .7321]  

and IITzmll~ --0.7321 < y = 2. 

Optimal Hc~ Control 

The output H~-control problem in this section is usually known as the 
Suboptimal H~-Cont ro l  problem. 

Ideally, we should have considered Optimal H~-Contro l  problem: 

Find all admissible controllers K (s) such that II Tz~ II~ is minimized. 

Finding an optimal Hoo controller is demanding both theoretically and compu- 
tationally and, in practice, very often a suboptimal controller is enough, because 
suboptimal controllers are close to the optimal ones. 
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The behavior of the suboptimal H ~  controller solution as V approaches the infi- 
mal achievable norm, denoted by )/opt ,  is discussed in the book by Zhou et al. (1996, 
pp. 438-443). It is shown there that for Example 10.6.3, )/opt - -  II Tzw ]lcxz = 0.7321. 

10.7 THE C O M P L E X  STABILITY RADIUS AND 
RICCATI EQUATION 

Assume in this section that A, B, and C are complex matrices. In Chapter 7, we 
introduced the concept of stability radius in the context of robust stabilization of 
the stable system k - Ax under structured perturbations of the form B A C. The 
system: 

)c = (A + B3xC)x (10.7.1) 

may be interpreted as a closed-loop system obtained by applying the output feed- 
back (with unknown feedback matrix A) to the system (10.7.3) given below. Thus, 
the stability radius is related to the output feedback stabilization, as well. 

In this section, we will discuss the role of the complex stability radius 
rc(A,  B, C) in certain parametric optimization problems. 

Consider the following parametric optimization problem: Minimize 

/o J p ( x )  -- [llu(t)ll 2 - Plly(t)ll 2] dt (10.7.2) 

subject to 

~c -- Ax + Bu, y -- Cx. (10.7.3) 

If p < 0, then we have the usual L Q R problem, which can be solved by solving 
the associated Riccati equation, as we have just seen. We will now show that for 
certain other values of p > 0, the above optimization problem is still solvable, 
by relating p to the stability radius. The key to that is to show the existence of 
a stabilizing solution of the associated Riccati equation for a given value of p. 

Before we state the main result, we note the following, that shows that for 
certain values of p, the minimization cost is finite. For simplicity, we will write 
r e ( A ,  B,  C) as r. 

Theorem 10.7.1. Let Jp(x) be defined by (10.7.2). Then 

(i) Inf  Jp(O) - 0 ,  if and only if p <_ r 2, if and only if I - pG*( iw)G(iw)  >_ 
O, for  all co E R. 

(ii) Suppose A is stable and r < c~. Then for  all p E(--cx~,r2), 
we have linf Jp (xo)l <, c~. 

Proof. See Hinrichsen and Pritchard (1986a). II 
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The ARE associated with the above minimization problem is 

X A  + A * X  - p C * C  - X B B * X  -- O. (10.7.4) 

Since this equation is dependent on p, we denote this Riccati equation by AREp. 
The parameterized Hamiltonian matrix associated with the AREp is 

- 8AB** " 
~ (~A c ) ~0~ 

The following theorems characterize r c (  = r) in terms of Hp. 

Theorem 10.7.2. Characterization o f  the Complex Stability Radius. Let lip 

be defined by (10.7.5). Then p < r i f  and only i f  Hp2 does not have an eigenvalue 

on the imaginary axis. 

Proof. See Hinrichsen and Pritchard (1986a). II 

Example 10.7.1. Consider Example 7.8.1. 

(o ~t "(o) c , 1 0 ,  A -  1 - 1  ' 1 ' " 

From Example 7.8.1, we know that r 2 - 3 4" 
Case 1. Let p - 0.5 < rc = r = 0.8660. Then, 

1Oo2 ~ 0 011 01 - 1 0 1 
T T  
/-/P2 m 5 0 0 o 

0 - 1  

The eigenvalues o f  Hp2 are --0.4278 4- 0.8264j, 0.4278 4- 0.8264j. Thus, Hp2 d o e s  

not have a purely imaginary eigenvalue. 
Case 2. Let p --- 1 > rc - r - 0.8660. Then, 

101 1 0 01 /-/Pr2r2 __ 1 - 1  0 1 
0 0 
0 - 1  

The eigenvalues of HD2 a re  0.0000 4- 1.0000j, 0, 0, which are purely imaginary. 
Therefore we obtain an upper and a lower bound for r" 0.5 < r _< 1. 

We have already mentioned the relationship between a Hamiltonian matrix and 

the associated ARE. In view of Theorem 10.7.2, therefore, the following result is 
not surprising. The proof of Theorem 10.7.3 has been taken from Hinrichsen and 

Pritchard (1986b). 
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Theorem 10.7.3. Stability Radius and ARE. Let A be a complex stable matrix 
and let r = rc (A ,  B, C) < cxz. Let p E ( - c ~ ,  r2). Then there exists a unique 

Hermitian stabilizing solution X of  the Riccati equation (10.7.4): 

X A  + A*X - pC*C - X B B * X  --O. 

Moreover, when p = r 2, there exists a unique solution X having the property 

that the matrix A - BB*X is unstable. 
Conversely, i f  A is stable and if  there exists a Hermitian solution X of  the 

above ARE, then necessarily p < r 2. 

Remark 

�9 Note that if the Riccati equation (10.7.4) has a stabilizing solution X, then 
the control law 

u(t) = - B * X x ( t )  

minimizes the performance index (10.7.2), and the minimum value of the 
performance index is x~Xxo.  

Note: There is no controllability assumption here on the pair (A, B). 

Proof. Considering the orthogonal decomposition of C n into the controllabil- 
ity subspace and its orthogonal complement, we can find a nonsingular matrix T 
such that 

TAT-1 = 1 
A3 ' 

and 

C T  - 1  - (C1, C2), 

where (A1, B1) is controllable. Multiplying the Riccati equation (10.7.4) on the 
left by T -1. and on the fight by T-1 and setting 

we have 

T I*XT-1  = X1 
X 3  X 4  ' 

X 2  A2 
z3)+ 

1 

(CtCl c~c2) (XlB~B~x~ XlS~B'~X2"~ 
- P t C~Cl c~c2 - X3BiB~X~ X3BIBfX2] - 0 ( 1 0 . 7 . 6 )  
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Eq. (10.7.6) breaks into the following four equations" 

X1A1 -4- A~X1 - pC~C1 - X I B I B ~ X 1  - O, 

n*v*~*X2 -+- X1A2 - pC~C2 - O, XzA3  + (A1 - B1,-,1 ~1J 

x 3 ( a l  - B1B~X1)  + A~X3 + A~X1 - pC~C1 - O, 

X4A3 -+- A~X4 + X3A2 -k- A~X2 - pC~C2 - X 3 B 1 B ~ X 2  -- O. 

(10.7.7) 

(10.7.8) 

(10.7.9) 

(10.7.10) 

Since (A1, B1) is controllable, there is a unique solution Xlp  of (10.7.7) with the 
property that A1 - B1B~Xlp is stable if p 6 ( - c ~ ,  r2), and if p - r 2, then 
A1 - B1B~Xlp  is not stable. (In fact it has one eigenvalue on the imaginary axis). 
Substituting this stabilizing solution Xlp  into the Sylvester equations (10.7.8) and 
(10.7.9), it can be shown that the solutions Xzp and X3p of (10.7.8) and (10.7.9) 
are unique and moreover X3p - X~p (note that the spectrum of A3 is in the 
open left-half plane). Substituting these Xzp and X3p in Eq. (10.7.10), similarly, 
we see that X4p is also unique and X4p - X4p. Finally, we note that the matrix 

TAT -1 - (TB.  B * T * X p ) ,  where 

_ ( X l p  X 2 p )  
Xp ~, ,X3p X4p ' 

is stable. Thus, A - BB*Xp is stable. 
To prove the converse, we note that if X - X* satisfies the Riccati 

equation (10.7.6), then 

(A - j c o l ) * X  + X ( A  - jcoI)  - p C * C -  X B B * X  --O,  

for all co 6 ll~. Thus, 

0 < ( B * X ( A  - j c o l ) - l B  - I ) * ( B * X ( A  - j c o I ) - l B  - I ) ,  

= I - pG* ( jco)G(jco) ,  for all co 6 R. 

Thus, p < r 2 by the first part of Theorem 10.7.1. 1 

Example  10.7.2. 

A (O ' l )  B - -  ( 0 , - 1 )  T, C - -  (1,  0) .  

Then we know from Example 7.8.1 that r 2 = 3 
4" 



390 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL 

Choose p - �89 Then the unique solution X p to the Riccati equation: 

XA q- A T x  - XBBTX - p c T c  = 0 

-0.5449 -0.2929~ 
Xp - -0.2929 -0 .3564 ] '  

which is symmetric. 
The eigenvalues of A - BB T Xp are -0.3218 4- 0.7769j. So, the matrix A - BB T Xp 

is stable. Thus, X p is a stabilizing solution. 
If p is chosen to be 3, then the solution 

(ol 
which is symmetric, but not stabilizing. The eigenvalues of A - B B  T X are 0 • 0.7071 j. 

A Bisection Method for Computing the Complex Stability Radius 

Theorem 10.7.2 suggests a bisection algorithm for computing the complex stability 
radius re. 

The idea is to determine rc as that value of p for which the Hamiltonian 
matrix Hp given by (10.7.5), associated with the Riccati equation (10.7.4), has 
an eigenvalue on the imaginary axis for the first time. 

If Po and p~- are some lower and upper estimates of re,  then the successive 
better estimates can be obtained by the following algorithm. 

Algorithm 10.7.1. A Bisection Method for  the Complex Stability Radius 
Inputs. 

1. The system matrices A, B, and C. 

2. Some upper and lower estimates p~  and Po o f  the complex stability 
radius p. 

Output. An approximate value o f  the complex stability radius p. 
For k -- O, 1, 2 . . . .  , do until convergence 

P ;  + P~ and compute Hp2. Step 1. Take Pk -- 2 

Step 2. I f  Hp2 has eigenvalues on the imaginary axis, set Pk-+l =- Pk and 

P~+ 1 =- Pk. 
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Otherwise set pk-+l =~ Pk and PLI.., :~ 'Ok+. ".. 
End 

Example 10.7.3. Consider Example 10.7.1. Take Po -- 0, p~- = 1. 

k = 0. Step 1. Po - �89 Hpg does not have an imaginary eigenvalue. 

Step 2. P l  -- 1, p+ _ 1. 

k = 1. Step 1. Pl - 3. Hp2 d o e s  not have an imaginary eigenvalue. 

Step 2. p~- = 4 3-, p+ = 1. 

k = 2. Step 1. p2 = 7. Hp~ has an imaginary eigenvalue. 
7 Step 2. p f  = 43--, p+ = g. 

13 k = 3. Step 1. P3 - N. Hp~ does not have an imaginary eigenvalue. 
13 ,o~ - -  7 Stn__el. 2. oY, v 4 - -  T ~ , . ,  - -  g "  

27 k = 4 .  p4-- ~ .  
The iteration is converging toward r = 0.8660. The readers are asked to verify this by 
carrying out some more iterations. 

MATCONTROL note: Algorithm 10.7.1 has been implemented in MATCON- 
TROL function stabradc. 

10.8 S O M E  S E L E C T E D  S O F T W A R E  

10.8.1 MATLAB Control System Toolbox 

LQG design tools include: 
lqr 
dlqr 
lqry 
lqrd 
care 
dare 
norm(sys, 2) 
norm(sys, inf) 

LQ-optimal gain for continuous systems 
LQ-optimal gain for discrete systems 
LQR with output weighting 
Discrete LQ regulator for continuous plant 
Solve CARE 
Solve DARE 
Hz-norm of the system 
He~-norm of the system 

10.8.2 MATCONTROL 

S TAB LYAPC 

STABLYAPD 

STAB RADC 
HINFNRM 

Feedback stabilization of continuous-time system using 
Lyapunov equation 
Feedback stabilization of discrete-time system using 
Lyupunov equation 
Finding the complex stability radius using the bisection method 
Computing Ha-norm using the bisection method. 
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10.8.3 CSP-ANM 

Feedback stabilization 

�9 Constrained feedback stabilization is computed by StateFeedback 
Gains [system, region], where the available regions are DampingFactor 
Region [~], SettlingTimeRegion [ts,6], DampingRatio- 
Region [[min] and NaturalFrequencyRegion [Wnmin], and their 
intersections. 

�9 The Lyapunov algorithms for the feedback stabilization is imple- 
mented as StateFeedbackGains [system, region, Method-+ 
LyapunovShift] and StateFeedbackGains [system, region, 
Method -+ PartialLyapunovShift]. 

10.8.4 SLICOT 

Optimal regulator problems, system norms, and complex stability radius 

SB10DD 
SB 10FD 

AB13BD 
AB 13CD 
AB 13 ED 
AB 13FD 

H~ (sub)optimal state controller for a discrete-time system 
H~ (sub)optimal state controller for a continuous-time system 
H2- or Lz-norm of a system 
H~-norm of a continuous-time stable system 
Complex stability radius using bisection 
Complex stability radius using bisection and SVD. 

10.8.5 MATRIXx 

Purpose: Computing Loo-norm of the transfer matrix of a discrete-time system. 

Syntax: [SIGMA, OMEGA] = DLINFNORM (S, NS, {TOL, { MAXITER} }) 

Purpose: Compute optimal state-feedback gain for discrete-time system. 

Syntax: [EVAL, KR] = DREGULATOR (A, B, RXX, RUU, RXU) OR 
[EVAL, KR, P] = DREGULATOR (A, B, RXX, RUU, RXU) 

Purpose: Computing Loo-norm of a transfer matrix. 

Syntax: [SIGMA, OMEGA] = LINFNORM (S, NS, { TOL, { MAXITER} } ) 

Purpose: Compute optimal state-feedback gain for continuous-time system. 
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Syntax: [EVAL, KR]=REGULATOR (A, B, RXX, RUU, RXU) OR 
[EVAL, KR, P] =REGULATOR (A, B, RXX, RUU, RXU) 

Purpose: Computes and plots the Singular Values of a continuous system. 

Syntax: [OMEGA, SVALS]=SVPLOT (S, NS, WMIN, WMAX, { NPTS} , 
{ OPTIONS } ) OR 
[SVALS]=SVPLOT (S, NS, OMEGA, { OPTIONS} ) 

10.9  S U M M A R Y  A N D  R E V I E W  

The following topics have been discussed in this chapter. 

�9 State-feedback stabilization 
�9 EVA and eigenstructure assignments by state and output feedback 
�9 The LQR design 
�9 H~-control problems 
�9 Stability radius. 

Feedback Stabilization 

The problem of stabilizing the continuous-time system 

~c(t) -- Ax(t)  + Bu(t), 
y(t) = Cx(t) + Du(t) 

by using the state-feedback law u ( t ) - - - K x ( t )  amounts to finding a feedback 
matrix K such that A - B K is stable. 

The state-feedback stabilization of a discrete-time system is similarly defined. 
The c h a r a c t e r i z a t i o n s  of the continuous-time and discrete-time state-feedback 

stabilizations are, respectively, given in Theorems 10.2.1 and 10.2.2. 
It is shown how a system can be stabilized using the solution of a Lyapunov 

equation. For the continuous-time system, the Lyapunov equation to be solved is 

- ( A  + [3I)X + X ( - ( A  +/31)) y = - 2 B B  T, 

where fl is chosen such that fl > [~.max(A)l. 
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The stabilizing feedback matrix K is given by 

K - B T x  - 1 .  

In the discrete-time case, the Lyapunov equation to be solved is 

A X A  T _ f l Z x  - 2 B B  T,  

where fl is chosen such that 0 < fi _< 1 and I~-I > fi for any eigenvalue )~ of A. 
The stabilizing feedback matrix in this case is 

K -- B T (X § BBT) -1A. 

Detectability 

The detectability of the pair (A, C) is a dual concept of the stabilizability of the pair 
(A, B). Characterizations of the continuous-time and discrete-time detectability 
are, respectively, stated in Theorems 10.3.1 and 10.3.3. 

The Eigenvalue Assignment 

For the transient responses to meet certain designer's constraints, it is required 
that the eigenvalues of the closed-loop matrix lie in certain specified regions of the 
complex plane. This consideration gives rise to the well-known EVA problem. 

The EVA problem by state feedback is defined as follows: 
Given the pair (A, B) and a set A of the complex numbers, closed under complex 

conjugations, find a feedback matrix K such that A - B K  has the spectrum A. 
The conditions of solvability for the EVA problem and the uniqueness of the 

matrix K are: 

There exists a matrix K such that the matrix A - B K  has the spectrum A 
for every complex-conjugated set A if and only if (A, B) is controllable. 
The feedback matrix K, when it exists, is unique if and only if the system is 
a single-input system (Theorem 10.4.1). 

The constructive proof of Theorem 10.4.1 and several related well-known formulas 
such as the Bass-Gura formula and the Ackermann formula suggest compu- 
tational methods for single-input EVA problem. Unfortunately, however, these 
methods are based on the reduction of the pair (A, b) to a controller-companion 
pair, and are not numerically effective. Numerically effective algorithms for EVA 
are based on the reduction of the pair (A, b) or the pair (A, B) (in the multi-output 
case) to the controller-Hessenberg pair. These methods will be described in 
Chapter 11. 
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The EVA problem by output feedback is discussed in Section 10.4.2 and a well- 
known result on this problem is stated in Theorem 10.4.2. 

The Eigenstructure Assignment 

The eigenvalues of the state matrix A determine the rate at which the system 
response decays or grows. On the other hand, the eigenvectors determine the shape 
of the response. Thus, in certain practical applications, it is important that both 
the eigenvalues and the eigenvectors are assigned. The problem is known as the 
eigenstrueture assignment problem. The conditions under which eigenstructure 
assignment is possible are stated in Theorem 10.4.3 for the state-feedback law and 
in Theorem 10.4.4 for the output feedback law. 

The Linear Quadratic Regulator (LQR) Problem 

The continuous-time LQR problem is the problem of finding a control vector u(t) 
that minimizes the performance index 

Jc(x) -- [xT(t)Qx(t)  + uT(t)Ru(t)]  dt 

subject to 

2( t )  -- Ax( t )  + Bu( t ) ,  

y(t) - C x ( t ) ,  

x(0) = x0, 

where Q and R are, respectively, the state-weight and the control-weight matrices. 
It is shown in Theorem 10.5.1 that the continuous-time LQR problem has 

a solution if (A, B) is stabilizable and (A, Q) is detectable. 
The solution is obtained by solving the CARE: 

XA + A T x  - XSX-]- Q = o, 

where S = BR-  1BT. 
The optimal control vector u ~ (t) is given by 

u~ -- _ R - 1 B T X x ( t ) ,  

where X is the unique symmetric positive semidefinite solution of the CARE. 
The matrix K -- - R  -1TBTX is such that A - BK is stable, that is, X is a 

stabilizing solution. 
The LQR design has the following guaranteed stability and robustness 

properties: 
Stability property. The stable open-loop eigenvalues remain stable and the 

unstable eigenvalues get reflected across the imaginary axis (when R = p I 
and p -+ cx~). 
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Robustness  properties.  Using the optimal return difference identity, it can be 
shown that 

O'min(I + GLQ(jw)) >_ 1 

and O'min(I + GLQ(jco) -1) > 1, where GLQ(S) - K(sl - A)-IB. 
These relations show that the upward and downward gain margins are, 

respectively, ee and 0.5. The phase margin is at least -t-60 ~ 
The discrete-time LQR problem is similarly defined. In this case, the perfor- 

mance index is given by 

0(2) 

T TRuk) .  JD(x) -- Z (xk Qxk +uk 
k=0 

The DARE is 

ATXA - X + Q - ATXB(R + BTXB) -1BTXA = O. 

If (A, B) is discrete-stabilizable and (A, Q) is discrete-detectable, then the above 
Riccati equation (DARE) has a unique symmetric positive semidefinite solution 
X and the optimal control is u ~ - Kx~, where 

K = (R + B T X B ) - I B T X A .  

Furthermore, X is a discrete-stabilizing solution, that is, (A-BK)  is discrete-stable. 

H~-Control  Problems 

The H~-control problems are concerned with robust stabilization for unstruc- 
tured perturbations in the frequency domain. The goal of a H~  control is to 
determine a controller that guarantees a closed-loop system with an Hc~-norm 
bounded by a certain specified quantity y when such a controller exists. Both the 
state feedback and the output feedback H~-control problems have been discussed 
briefly in Sections 10.6.2 and 10.6.3, respectively. Both problems require solu- 
tions of certain Riccati equations. Under the assumptions (10.6.12)-(10.6.15), the 
solution of the output feedback H~-control problem reduces to solving a pair of 
Riccati equations: 

( _l ) + A T x -  X 8~8~ - -~818~ X + CTCl -O, 

( 1 ) 
a t +  Ya T - r c ~ c ~ -  7 c ~ c ~  r + 818~ - o ,  

where A, B1, B2, C1, and C2 are defined by (10.6.11). The expression for 
a H~  controller is given in (10.6.18)-(10.6.20). Also, two computational algo- 
rithms: one, the well-known bisection algori thm by Boyd et al. and the other, 
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the two-step algorithm by Bruinsma et al. (1990),  for computing the H~-norm 
are given in Section 10.6.1. Algorithm 10.6.2 seems to be faster than Algorithm 
10.6.1. but the latter is easier to implement. 

Stability Radius 

The concept of stability radius has been defined in Chapter 7. Here a connection 
of the complex stability radius r is made with the ARE: 

XA + A * X  - p C * C  - X B B * X  -- 0 

via the parametrized Hamiltonian matrix 

(pcac 
It is shown in Theorem 10.7.3 that if p E (--cx~, r2), then the above Riccati 
equation has a unique stabilizing solution X. Conversely, if A is stable and if there 
exists a Hermitian solution X of the above equation, then p < r 2. 

In terms of the eigenvalues of the Hamiltonian matrix t ip ,  it means that 
p < r if and only if Op2 does not have an eigenvalue on the imaginary axis 
(Theorem 10.7.2). 

Based on the latter result, a bisection algorithm (Algorithm 10.7.1) for 
determining the complex stability radius is described. 

10.10 C H A P T E R  NOTES AND F U R T H E R  R E A D I N G  

Feedback stabilization and EVA (pole-placement) are two central problems in 
control theory. For detailed treatment of these problems, see Brockett (1970), 
Brogan (1991), Friedland (1986), Chen (1984), Kailath (1980), Wonham (1985), 
Kwakernaak and Sivan (1972), etc. Most of the books in linear systems theory, 
however, do not discuss feedback stabilization via Lyapunov equations. Discus- 
sions on feedback stabilization via Lyapunov equations in Section 10.2 have been 
taken from the papers of Armstrong (1975) and Armstrong and Rublein (1976). 
For a Schur method for feedback stabilization, see Sima (1981). For stabilization 
methods of descriptor systems, see Varga (1995). For more on the output feed- 
back problem, see Kimura (1975), Porter (1977), Sridhar and Lindorff (1973), 
Srinathkumar (1978), and Misra and Patel (1989). 

For a discussion on eigenstructure assignment problem, see Andry et al. (1983).  

The authoritative book by Anderson and Moore (1990) is an excellent source 
for a study on the LQR problem. The other excellent books on the subject include 
Athans and Falb (1966), Lewis (1986), Mehrmann (1991), Sima (1996), Kuc~ra 
(1979), etc. For a proof of the discrete-time LQR Theorem (Theorem 10.5.3), see 
Sage and White (1977). An excellent reference book on the theory of Riccati equa- 
tions is the recent book by Lancaster and Rodman (1995). There are also several 
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nice papers on Riccati equations in the books edited by B ittanti et al. (1991) and 
Bittanti (1989). H~-control problem has been dealt with in detail in the books by 
Kimura (1996), Zhou et al. (1996), Green and Limebeer (1995), Dorato et al. (1992, 
1995). The original papers by Francis and Doyle (1987) and by Doyle et al. (1989) 

are worth reading. A recent book by Kirsten Morris (2001) contains an excellent 
coverage on feedback control, in particular, H ~  feedback control. Algorithms 
10.6.1 and 10.6.2 for computing the H~-norm have been taken, respectively, from 
the papers of Boyd et al. (1989) and Bruinsma and Steinbuch (1990). A gradient 
method for computing the optimal H~-norm has been proposed in Pandey et al. 

(1991). Recently, Lin et al. (2000) have proposed numerically reliable algorithms 
for computing H~-norms of the discrete-time systems, both for the state and the 
output feedback problems. The discussion on the complex stability radius and 
Riccati equation in Section 10.7 has been taken from Hinrichsen and Pritchard 
(1986b). For an iterative algorithm for H~-control by state feedback, see Scherer 
(1989). Theorem 10.7.3 is an extension of the work of Brockett (1970) and Willems 
(1971). For an application of the ARE to compute Hoc optimization, see Zhou and 
Khargonekar (1988). 

For more on return difference matrix, phase and gain margins of the multivari- 
able LQR design, see Lewis (1986), Safonov et al. (1981), Safonov (1980), etc. 
For an excellent and very readable account of classical control design using H ~  
techniques, see Helton and Merino (1998). 

Exercises 

10.1 Prove the equivalence of (i) and (iii) in Theorem 10.2.1. 
10.2 Prove Theorem 10.2.2. 
10.3 Prove Theorem 10.2.4. 
10.4 Construct a state-space continuous-time system that is stabilizable, but not 

controllable. 
Apply the Lyapunov stabilization method (modify the method in the book as 
necessary) to stabilize this system. 

10.5 Repeat Problem 10.4 with a discrete-time system. 
10.6 Develop algorithms for feedback stabilization, both for the continuous-time and 

discrete-time systems, based on the reduction of A to the real Schur form (see Sima 
1981). 

Compare the efficiency of each of these Schur algorithms with the respective 
Lyapunov equation based algorithms given in the book. 

10.7 Using the real Schur decomposition of A, develop partial stabilization algorithms, 
both for the continuous-time and discrete-time systems in which only the unsta- 
ble eigenvalues of A are stabilized using feedback, leaving the stable eigenvalues 
unchanged. 

10.8 Prove Theorem 10.3.1. 
10.9 State and prove the discrete counterpart of Theorem 10.3.2. 
10.10 Prove Theorem 10.3.3. 
10.11 Give an alternative proof of the state-feedback EVA Theorem (Theorem 10.4.1). 
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10.12 

10.13 

10.14 

10.15 

10.16 

10.17 

10.18 

Construct an example to verify that if the eigenvalues of the closed-loop system are 
moved far from those of the open-loop system, a large feedback will be required to 
place the closed-loop eigenvalues. 
Using the expression of the transforming matrix T, which transforms the system 
(A, b) to a controller-companion form (10.4.1)-(10.4.2), and the expression for the 
feedback formula (10.4.5), derive the Bass-Gura formula (10.4.6). 
Derive the Ackermann formula (10.4.7). 
Work out an example to illustrate each of the following theorems: Theorems 10.5.1, 
10.5.2, 10.5.3, 10.6.1, 10.6.2, 10.6.3, 10.6.4, and 10.6.5. (Use MATLAB function 
care to solve the associated Riccati equation, whenever needed.) 
Design of  a regulator with prescribed degree of  stability. Consider the LQR problem 
of minimizing the cost function 

fo Jc~ - e 2~ (u T Ru + x T Qx) dt. 

(a) Show that the Riccati equation to be solved in this case is: 

( A 4- ot I ) T x 4- X ( A 4- ot I ) 4- Q - XBR - 1 B T x  = 0 

and the optimal control is given by the same feedback matrix K as in Theorem 
10.5.1. 

(b) Give a physical interpretation of the problem. 
Cross-weighted LQR. Consider the LQR problem with the quadratic cost function 
with a cross penalty on state and control: 

f0 E l JCW = x T Qx 4- 2x TNu 4- u T Ru dt 

subject to ~ = Ax 4- Bu, x(O) = xo, where Q, R, N are, respectively, the state- 
weighting matrix, the control-weighting matrix, and the cross-weighting matrix. 
Define A R = A - B R -  1N T. 
(a) Show that the Riccati equation to be solved in this case is: 

X A  R 4- A T x  4- ( Q -  N R - 1 N  T) - X B R - 1 B T x  --O, 

and the optimal control law is given by u ( t ) = - K x ( t ) ,  where 
K -- R - I ( N  y 4- B T x ) .  

(b) What are the assumptions needed for the existence of the unique, symmetric 
positive semidefinite solution X of the Riccati equation in (a)? 

Consider the LQR problem of minimizing the cost 

J -- [x2(t) 4- p2u2(t)] dt, 

with p > 0, subject to 
mi~ 4- kq(t)  = u(t). 

(a) 

(b) 

Find an expression for the feedback matrix K in terms of p, by solving an 
appropriate ARE. 
Plot the closed-loop poles as p varies over 0 < p < oc. 
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(c) Write down your observations about the behavior of the closed-loop poles 
with respect to stability. 

10.19 Using the MATLAB function lqr ,  design an LQR experiment with a single-input 
system to study the behavior of the closed-loop poles and the feedback vector with 
varying p in R = p I in the range [1,106], taking p = 1, 10, 102, 103, and 106. 
Plot the open loop poles, the closed loop poles, and the step responses. Make a table 
of the gain margins and phase margins with each feedback vector. 

10.20 (a) Using the return-difference identity, show that the ith singular value (9 i of the 
return-difference matrix with s = jco is: 

]1/2 
ai(I  + GLe(Jco))= 1 + l a 2 ( H ( j c o ) )  

where H(s) = C(sI  - A) -1 B, R -- pI ,  and Q = c T c .  
(b) Using the result in (a), prove that 

O'min(I + GLQ(jco)) > 1. 

(c) Using (b), prove that 

1 amin(I + (GLQ (jco))-l) > 7" 

10.21 In certain applications, the homogeneous ARE: 

XA + A T x  + X W X - - O  

is important. 
Prove that the above homogeneous Riccati equation has a stabilizing solution 

(i.e., A + WX is stable) if A has no eigenvalues on the imaginary axis. 
10.22 Computing the Ha-norm over an interval. Define the Ha-norm of G(s) over an 

interval 0 < ot </3 as: 

IIGII[~,~] = supamax(C(jco)), ot < co </3. 

(a) Develop an algorithm to compute IlGll[c~,~] by modifying the bisection 
algorithm (Algorithm 10.6.1) as follows: 
1. Take Ylb = max{amax(G(jot)), amax(G(jfl))} 
2. Modify the eigenvalue test in Step 2 as: if My has no imaginary eigenvalues 

between jot and j r .  
(b) Work out a numerical example to test your algorithm. 

10.23 Give a linear algebraic proof of Theorem 10.6.1 (consult the paper by Boyd et al. 
(1989)). 

10.24 Develop an algorithm to compute the Ha-norm of a discrete-stable transfer 
function, based on Theorem 10.6.3. 
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10.25 (Kimura 1996). For the second-order system: 

x" 1 = x2, 

-~2 = Wl -+-u l, 

gl --Xl,  

g2 = SUl, 

y = c2x 1 Jr- d2u 2, 

find the conditions under which the output feedback problem has a solution. Find 
the transfer function for Hoo controller. 

10.26 Prove that if the Hamiltonian matrix H z defined by (10.6.10) has an imaginary 
eigenvalue, then the state feedback Hc~-control problem does not have a solution. 

10.27 Prove Theorem 10.6.2: If A is a complex stable matrix, then the distance to 
instability 

-1 f l(a) = I](sI - A) - l l l ~ .  

10.28 (a) Let G(s) = C(sI  - A) - l B .  Then prove 

1 

max IIG(j~o)ll ' r = ooER 

c~, if G -  O. 

i f G  # 0 ,  

(Consult Hinrichsen and Pritchard (1986b)). 
(b) Give an example to show that r(A, I, I) can change substantially under 

similarity transformation on A. 
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CHAPTER 11 

NUMERICAL METHODS AND 
CONDITIONING OF THE 
EIGENVALUE ASSIGNMENT 
PROBLEMS 

11.1 INTRODUCTION 

We have introduced the eigenvalue assignment (EVA) problem (pole-placement 
problem) in Chapter 10 and given the results on existence and uniqueness of the 
solution. 

In this chapter, we study numerical methods and the perturbation analysis 
for this problem. 

There are many methods for the EVA problem. As stated in Chapter 10, some 
of the well-known theoretical formulas, such as the Ackermann formula, the 
Bass-Gura formula, etc., though important in their own rights, do not yield to com- 
putationally viable methods. The primary reason is that these methods are based on 
transformation of the controllable pair (A, B) to the controller-companion form, 
and the transforming matrix can be highly ill-conditioned in some cases. The com- 
putationally viable methods for EVA are based on transformation of the pair (A, B) 
to the controller-Hessenberg form or the matrix A to the real Schur form (RSF), 
which can be achieved using orthogonal transformations. Several methods of this 
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type have been developed in recent years and we have described a few of them in 
this chapter. The methods described here include: 

�9 A single-input recursive algorithm (Algorithm 11.2.1) (Datta 1987) and its 
RQ implementation (Algorithm 11.2.3) (Arnold and Datta 1998). 

�9 A multi-input generalization (Algorithm 11.3.1) of the single-input recur- 
sive algorithm (Arnold and Datta 1990). 

�9 A multi-input explicit QR algorithm (Section 11.3.2) (Miminis and Paige 
1988). 

�9 A multi-input Schur algorithm (Algorithm 11.3.3) (Varga 1981). 
�9 A Sylvester equation algorithm for partial eigenvalue assignment (PEVA) 

(Algorithm 11.3.4) (Datta and Sarkissian 2002). 

Algorithms 11.2.1 and 11.3.1 are the fastest algorithms, respectively, for the single- 
input and the multi-input EVA problems. 

Unfortunately, the numerical stability of these algorithms are not guaran- 
teed. However, many numerical experiments performed by the author and others 
(e.g., Varga 1996; Arnold and Datta 1998; Calvetti et al. 1999) show that 
Algorithm 11.2.1 works extremely well in practice, even with ill-conditioned prob- 
lems. Furthermore, there is an RQ implementation which is numerically stable 
(Arnold and Datta 1998). This stable version is described in Algorithm 11.2.3. 

The multi-input explicit QR algorithm in Section 11.3.2 is also numerically 
stable. However, it might give a complex feedback in some eases. 

The Sehur algorithm (Algorithm 11.3.3), based on the real Schur decompo- 
sition of the matrix A, is most expensive, but it has a distinguished feature that it 
can be used as a partial-pole placement algorithm in the sense that it lets the user 
reassign only a part of the spectrum leaving the rest unchanged. The algorithm is 
also believed to be numerically stable. 

Besides the above-mentioned algorithms, an algorithm (Algorithm 11.6.1) for 
robust eigenvalue assignment (REVA), which not only assigns a desired set 
of eigenvalues but also a set of well-conditioned eigenvectors as well, is also 
included in this chapter. The REVA is important because the conditioning of the 
closed-loop eigenvector matrix greatly influences the sensitivity of the closed-loop 
eigenvalues (see Section 11.5). Algorithm 11.6.1 is due to Kautsky et al. (1985) 
and is popularly known as the KNV a lgor i thm.  The MATLAB function place has 
implemented this algorithm. 

Sections 11.4 and 11.5 are devoted, respectively, to the condi t ion ing  of  the 

feedback m a t r i x  and that  of  the dosed-loop eigenvalues. The conditioning 
of the feedback matrix and the conditioning of the closed-loop eigenvalues are 
two different matters. It is easy to construct examples for which the feedback 
matrix can be computed rather very accurately by using a backward stable 
algorithm, but the resulting closed-loop eigenvalues might still be significantly 
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di f ferent  f r o m  those  to be ass igned.  These two problems are, therefore, treated 
separately. 

The chapter concludes with a table of comparison of different meth- 
ods (Sections 11.7 and 11.8) and recommendations are made based on this 
comparison (Section 11.9). 

11.2 NUMERICAL METHODS FOR THE SINGLE-INPUT 
EIGENVALUE ASSIGNMENT PROBLEM 

The constructive proof of Theorem 10.4.1 suggests the following method for find- 
ing the feedback vector f .  Let (A, b) be controllable and S be the set of eigenvalues 
to be assigned. 

Eigenvalue Assignment via Controller-Companion Form 

Step 1. Find the coefficients dl, d2 . . . . .  dn of the characteristic polynomial of 
the desired closed-loop matrix from the given set S. 

Step 2. Transform (A, b) to the controller-companion form (C,/~) : 

T A T  -1 = C, T b  = [~, 

where C is a lower companion matrix and/, - (0, 0 . . . . .  0, 1)T. 
Step 3. Compute f i --  di - ai,  i = 1, 2 . . . . .  n where ai,  i - 1 . . . . .  n are the 

entries of the last row of C. 
Step 4. Find fT _ j~T T, where j~T _ ( f  l ,  i 2  . . . . .  fn). 

Because of the difficulty of the implementation of Step 1 for large problems and 
of the instability of the algorithm due to possible ill-condition of T for finding the 
controller-canonical form in Step 2, as discussed in Chapter 6, the above method 
is clearly not numerically viable. It is of theoretical interest only. 

S imi lar  remarks  ho ld  f o r  A c k e r m a n n ' s  f o r m u l a .  The A c k e r m a n n  (1972)  for -  

mula,  though  impor tan t  in its own  right, is not  numer i ca l l y  effective.  Recall 
that the Ackermann formula for computing f to assign the spectrum S -- 

{)Vl, ~,2 . . . . .  )~n } is: 
fT T -1 

- -  e n C M o h ( a ) ,  

where CM = (b, A b  . . . . .  A n - l b )  and ~b(x) = (x - )vl)(x - X2)--. (x - )Vn). 
Thus, the implementation of Ackermann's formula requires: (i) computing ~p(A) 
which involves computing various powers of A and (ii) computing the last row 
of the inverse of the controllability matrix. The controllability matrix is usually 
ill-conditioned (see the relevant comments in Chapter  6). The following example 
illustrates the point. 
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Example 11.2.1. Consider EVA using Ackermann's formula with 

A 

t -4.0190 5.1200 0 0 
-0.3460 0.9860 0 0 
-7.9090 15.4070 -4.0690 0 

-21.8160 35.6060 -0.3390 -3.8700 
-60.1960 98.1880 -7.9070 0.3400 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

-147.2000 0 53.2000 
94.0000 -147.20000 0 
12.80000 0 -31.6000 

0 0 18.8000 

B __ 

t-0.1510'~ 
0 
0 
0 
0 
0 
0 
0 
0 i 

-2.0820 
-2.3400 
-6.4500 

-17.8000 
-53.0080 
94.0000 

0 
0 

12.8000 

0.8700 ~ 
0.9700 
2.6800 
7.3900 

20.4000 
0 
0 
0 

-31.6000 

S 

I-1.0000~ 
-1.5000 
-2.0000 
-2.5000 
-3.0000 
-3.5000 
-4.0000 
-4.5000 

~-5.0000) 

The closed-loop eigenvalues assigned by the Ackerrnann's formula are: 

t -0.8824 - 0.4891j'~ 
-0.8824 + 0.4891j 
-2.2850 - 1.0806j 
-2.2850 + 1.0806j 
-3.0575 
-3.8532 
-4.2637 - 0.7289j 
-4.2637 + 0.7289j/ 

Thus, the desired eigenvalues in S are completely different from those assigned 
by the Ackermann's formula. The same problem is then solved using the MAT- 
LAB function place, which uses the KNV algorithm. The spectrum assigned by 
MATLAB function place is: {-4.9999, -4.5001, -4.0006, -3.4999 -3.0003, 
-2.4984, -2.0007, -1.5004, -0.9998}. 
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Accurate results were also obtained by the recursive Algorithm (Algorithm 11.2.1) 
(see Example 11.2.3). 

A Template of Numerical Algorithms for EVA Problem 

A practical numerically effective algorithm has to be based upon the reduction of 
the controllable pair (A, B) to a canonical form pair that uses a well-conditioned 
transformation. As we have seen in Chapter 6, the controller-Hessenberg form is 
one such. 

Indeed, several numerically effective algorithms have been proposed both for the 
single-input and the multi-input problems in recent years, based on the reduction 
of (A, B) to a controller-Hessenberg pair. We will describe some such algorithms 
in the sequel. 

Most of these algorithms have a common basic structure which can be described 
as follows. In the following and elsewhere in this chapter, f2(A) denotes the 
spectrum of A. 

Step 1. The controllable pair (A, B) is first transformed to a controller- 
Hessenberg pair (H,/~),  that is, an orthogonal matrix P is constructed such 
that 

P A P  T -- H,  an unreduced block upper Hessenberg matrix, 

P B - - [ ~ - - (  B1)O , whereB1 isuppertriangular. 

Note: In the single-input case, the controller-Hessenberg pair is (H,/~), where 
H is an unreduced upper Hessenberg matrix and b - P b  - ~e l ,  ~ ~ O. 

Step 2. The EVA problem is now solved for the pair (H,/~),  by exploiting the 
special forms of H and B. This step involves finding a matrix F such that 

f 2 ( H - / 3 F )  -- {~.I . . . . .  kn}. 

Note: In the single-input case, this step amounts to finding a row vector fT  such 
that f2 (H - flel fT) _ {~.l . . . . .  ~n }. 

Step 3. A feedback matrix K of the original problem is retrieved from the 
feedback matrix F of the transformed Hessenberg problem by using an orthog- 
onal matrix multiplication: K -- F P .  (Note that f2 ( H - [~ F)  -- f2 (PAP T - 
P B F P P  T) -- f 2 ( P ( A -  B K ) P  T) -- f 2 ( A -  B K ) . )  

The different algorithms differ in the way Step 2 is implemented.  In describing 
the algorithms below, we will assume that Step 1 has already been imple- 
mented using the numerically stable Staircase Algorithm described in Chapter 6 
(Section 6.8). 
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11.2.1 A Recursive Algorithm for the Single-Input EVA Problem 

In this subsection, we present a simple recursive scheme (Datta 1987) for the 
single-input Hessenberg EVA problem. 

Let's first remind the readers of the statement of the single-input Hessenberg 
EVA problem: 

Given an unreduced upper Hessenberg matrix H, the number fi ~: 0, and the 
set S - {~.1 . . . . .  )~n }, closed under complex conjugation, find a row vector 
fT  such that 

f 2 ( H  - f l e l f  T) = {)~1 . . . . .  )~n}. 

We will assume temporarily,  without any loss of generality, that fi = 1 (recall 

that P b  = [~ = flel.)  

Formulation of the Algorithm 

The single-input EVA problem will have a solution if the closed-loop matrix (H - 
el fT)  can be made similar to a matrix whose eigenvalues are the same as the ones 
to be assigned. 

Thus, the basic idea here is to construct a nonsingular matrix X such that 

X (H - e l  f T ) x - 1  - -  A, (11.2.1) 

where f2(A) = {~.1, )~2 . . . . .  )~n}. 

From (11.2.1), we have 

X H  - A X  --  X e l  fT. (11.2.2) 

Taking the transpose, the above equation becomes 

H T X T - X T AT _ f e T X T. (11.2.3) 

Setting X T = L, Eq. (11.2.3) becomes 

H T L  _ LA T -- f e T L .  (11.2.4) 

The problem at hand now is to construct a nonsingular matrix L and a vector f 
such that Eq. (11.2.4) is satisfied. We show below how some special choices make 
it happen. 
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Let's choose 

A T -- -.. ... 

" . ~ . 
0 " " 

and let eTL be chosen such that all but the last column of the matrix on the 
fight-hand side of (11.2.4) are zero, that is, the matrix Eq. (11.2.4) becomes 

H T L - L A  T - ( 0 , 0  . . . . .  otf),  o r # 0 .  (11.2.5) 

The simple form of the fight-hand side of (11.2.5) allows us to compute recursively 
the second through nth column of L -- (l l, 12 . . . . .  ln), once the first column l l is 
known. The entries of the subdiagonal of A can be chosen as scaling factors for 
the computed columns of L. Once L is known, o~f can be computed by equating 
the last column of both sides of (11.2.5): 

off -- (H T - XnI)ln. (11.2.6) 

What now remains to be shown is that how to choose 11 such that the resulting 
matrix L in (11.2.5) is nonsingular. 

A theorem of K. Datta (1988) tells us that if 11 is chosen such that (H T , 11 ) is con- 
trollable, then L satisfying (11.2.5) will be nonsingular. Since H T is an unreduced 
upper Hessenberg matrix, the simplest choice is l l -- en -- (0, 0 . . . . .  0, 1)T. It is 
easy to see that this choice of 11 will yield ot = l ln, the first entry of ln. Then 
equating the last column of both sides of (11.2.5), we have 

f 

( H  T - Xn I )In ( H  T - Xn I )In 

ot l ln 

The above discussion immediately leads us to the following algorithm: 

Algorithm 11.2.1. 
EVA Problem 

The Recursive Algorithm for  the Single-input Hessenberg 

Inputs. H, an unreduced upper Hessenberg matrix, and S = 
{X1, X2 . . . . .  Xn }, a set o f  n numbers, closed under complex conjugation. 

Outpu t .  The feedback vector f such that f2 (H - e l f  T) -- S. 
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Step 1. Set 11 - en, the last column of  the n x n identity matrix 
Step 2. Construct a set o f  normalized vectors {s as follows: 

Fori  - 1,2 . . . . .  n -  1 do 
Compute ~i+1 -- ( HT - -  )~i l ) g . i  

~i+1 

e i+l  -- 11~i+1112 
End 

Step 3. Compute s - (H T - ~,nI)~n. 
~n+l Step 4. Compute f = ~ ,  where ol is the first entry of  s 

Ol 

Theorem 11.2.1. The vector f computed by Algorithm 11.2.1 is such that the 
eigenvalues of  the closed-loop matrix (H - e l f  T) a r e  ~.1 . . . . .  ~,n.  

Proof. Proof follows from the above discussions. I 

Flop-count: Since li contains only i nonzero entries and H is an unreduced 
Hessenberg matrix, computations of 12 through In in Algorithm 11.2.1 takes about 
n 3/3 flops. Furthermore, with these operations, one gets the transforming matrix L 
that transforms the closed-loop matrix to A by similarity. Also, it takes about ~Q n 3 
flops for the single-input controller-Hessenberg reduction. So, the flop-count for 
the EVA problem for the pair (A, b) using Algorithm 11.2.1 is about ~ n  3 flops. 

Avoiding complex arithmetic: When the eigenvalues to be assigned are complex, 
the use of complex arithmetic in Algorithm 11.2.1 can be avoided by setting A as a 
matrix in RSF, having a 2 x 2 block corresponding to each pair of complex conjugate 
eigenvalues to be assigned. Algorithm 11.2.1 needs to be modified accordingly 
[Exercise 11.1]. 

MATCONTROL note: The modified algorithm that avoids the use of complex 
arithmetic has been implemented in MATCONTROL function poleres. 

Example 11.2.2. Consider EVA using Algorithm 11.2.1 with 

H - -  1 , S - { 9 5 1 } .  
9 

Step1 
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Step 2. 
i = 1  

(9) /2 = 

0 
12 - 0 . 9 4 8 7 .  

-0 .3162J 

i = 2  

{ 2.8460 
z3 - 1-6.64081,  

\ 1.5811 j 

{ 0.3848 
1 3 -  [ - 0 . 8 9 7 9 ]  

\ 0.2138 j 

Step 3. 

{0.3848~ 
1 4 -  / 3 . 4 6 3 3 / .  

\1 .9668] 

Step 4. 

{1.0000 
/ - /9 .0000 / 

\5 1111j 

The closed-loop matrix: 

(8i 188i9 ) H - e l f  T -- 1.0 2 . 
9.0 6. 

Verify: The eigenvalues of the matrix (H - el fT) are 9, 5, and 1. 

Example 11.2.3. Let's apply Algorithm 11.2.1 to Example 11.2.1 again. The eigen- 
values of the closed-loop matrix H -  e l f  T with the vector f computed by 
Algorithm 11.2.1 are: 

-5.0001, -4.4996, -4.0009, -3.4981, -3.0034, -2.4958, -2.0031, - 1.4988, 
- 1.0002. 

The computed closed-loop eigenvalues, thus, have the similar accuracy as those 
obtained by the MATLAB function place. 

Example 11.2.4. Eigenvalue Assignment with Ill-Conditioned Eigenvalues. Since the 
matrix H and the closed-loop matrix H -  e l f  T differ only by the first row, 
Algorithm 11.2.1 amounts to finding a vector f such that, when the first row of the 
given Hessenberg matrix H is replaced by fT, the resulting new Hessenberg matrix 
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has the prescribed spectrum. Let H be the well-known Wilkinson bidiagonal matrix 
(see Datta (1995), Wilkinson (1965)) with highly ill-conditioned eigenvalues: 

O m 

/ 20 
19 

20 ". 0 

20 ". 

. .  " .  

\ 20 1 j 

First, the first row of H is replaced by the zero row vector and then Algorithm 11.2.1 
is run on this new H with S - {20, 19, 18 . . . . .  1 }, and f is computed. Since the 
eigenvalues of the original matrix H is the set S; in theory, fT  should be the same as 
the first row of H; namely, fT  = (20, 0 . . . . .  0). Indeed, the vector f x  computed by 
the algorithm is found to be f x  _ (20, 0 . . . . .  0) and the eigenvalues of the closed-loop 
matrix with this computed f are 1, 2, 3 . . . . .  20. 

A closed-form solution of the feedback vector in the single-input EVA problem: 
We now show that Algorithm 11.2.1 yields an explicit closed-form solution for the 

single-input problem. The recursion in Step 2 of the algorithm yields 

y li+l - (H T - )~1 I ) (  HT - )~2I) �9 �9 �9 (H T - ~,i I ) l l ,  (11.2.7) 

for some (nonzero) scalar V- Including Steps 1 and 4, (11.2.6) becomes 

otf -- (H T - )~I I ) (H T - )~2I)""" (H T - )~nI)en, (11.2.8) 

where ot - (h21h32 ' ' '  hn,n-1) -1. If cp(x) - (x - )~ l ) (X  - / ~ , 2 ) " " "  (x  - )~n), then 
this can be written as 

f T  _ aeTck(H). (11.2.9) 

Since this solution is unique, it represents the Hessenberg representation of the 
Ackermann formula for the single-input EVA prob lem.  

11.2.2 An Error Analysis of the Recursive Single-Input Method 

Knowing the above explicit expression for the feedback vector f ,  we can now 

carry out a forward error analysis of Algorithm 11.2.1. This is presented below. 
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By duality of (11.2.4), we see that the method computes a matrix L and a vector 
f such that 

H L  - L A  = o~f eTL. 

A careful look at the iteration reveals that the forward error has a special form. 
Define the polynomials ~bj,k for j < k by 

( / ) j , k ( X )  - -  (X  - -  • j ) ( X  - -  )~ j+ l ) " " "  (X -- )~k). 

Let {i be the computed value of the i th column of L. Define 6i by 

//+1 - -  ( H  - ) ~ i I ) { i  + 6 i .  (11.2.10) 

Then we have the following forward error formula, due to Arnold (1993) (See 
also Arnold and Datta (1998)). 

Theorem 11.2.2. Let 6t f be the computed feedback vector o f  the single-input 
EVA problem for  (H, el) using Algorithm 11.2.1. I f  otf is the exact solution, 
then 

n 

6~ f - o t f  -- Z dpj,n (H)~j ,  
j = l  

where 6 j  S are defined above. 

Unfortunately, not rnueh can be said about backward stability from a result 
like this. It is, however, possible to shed some light on the stability of this method 
by looking at 6j in a different way. See Arnold and Datta (1998) for details. 

Theorem 11.2.3. L e t  E - -  [El, 62 . . . . .  ~n] andlet  L - [{1, {2 . . . . .  {n]. Then 
_ 

6t f solves (exactly) the single-input EVA problem for  the perturbed system 
(H - E L  -1,  f lel,  S), where the 6i are the same as in the previous theorem, 
that is, the computed vector f is such that 

f2[(H -- E L  -1 ) -- f i e l f  T] -- {)~1 . . . . .  Ln}. 

Proof. Notice that as defined, L satisfies the matrix equation: 

- T H L  - L A  - E + 6~ f e n, 

where A -- diag(3.i). Since/~ is nonsingular by construction, we can solve the 
perturbed equation: 

(H + AH)L - L A  = E -+-6tfe n -  T 

for AH. This yields - A H  -- E L  -1, and ~j~ solves the EVA problem for (H + 
A H ,  flel,  S). II 
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Remarks on Stability and Reliability 

From the above result it cannot be said that the method is backward stable. 
The result simply provides an upper bound on the size of the ball around 
the initial data, inside which there exist (H + AH,/3 + 6/3) for which the 
computed solution is exact. If II A H II could be bounded above by a small 
quantity that was relatively independent of the initial data, then the method 
would be backward stable. However, Theorem 11.2.3 does allow one to say 
precisely when the results from the method are suspect. It is clear that IIE II 
is always small if the iterates are normalized every few steps, so that all of 
the backward error information is contained in ~-1. Thus, the stability of 
the algorithm can be monitored by monitoring the condition number 
of L. Furthermore, since L is triangular, it is possible to estimate II L-111 
rather cheaply, even as the iteration proceeds. (See Higham 1996). 

The matrix L gives us even more information about the EVA problem at 
hand. In case the eigenvalues to be assigned are distinct, an upper bound 
in the condition number of the matrix of eigenvectors that diagonalizes 
the closed loop matrix can be obtained from the condition number of the 
matrix L. 

This is important because, as said in the introduction, the condition num- 
ber of the matrix of eigenvectors of the closed-loop matrix is an important 
factor in the accuracy of the assigned eigenvalues (see Section 11.5 and the 
Example therein). 

Specifically, if X diagonalizes A, then it can be shown (Arnold and Datta 
1998), that P - ( L ) - I x  diagonalizes the closed-loop matrix H - el fT, 
furthermore, 

Cond2(P) < Condz(X)Condz(L). 

Computational experience has shown that if L is ill-conditioned, then 
so are the closed-loop eigenvalues. 

11.2.3 The QR and RQ Implementations of Algorithm 11.2.1 

Algorithm 11.2.1 is an extremely efficient way to solve the Hessenberg single- 
input EVA problem, but as we have just seen, the backward stability of this 
algorithm cannot be guaranteed. It, however, turns out that there is a numerically 
stable implementation of this algorithm via QR iterations. We will discuss this 
below. 

The QR Implementation of Algorithm 11.2.1 

The idea of using QR iterations in implementing Algorithm 11.2.1 comes from the 
fact that the matrix 4~ (H) in the explicit expression of f in (11.2.9) can be written 
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as (Stewart 1973, p. 353): 

~b(H) -- (H - ) ~ 2 I ) ( H  - L 2 I ) " "  ( H  - )~nl) -- Q1Q2 . . . Q n R n R n - 1 .  . . R1, 

where Qi and Ri are generated by n steps of QR iterations as follows: 

H l = H  

For i -- 1, 2 . . . . .  n do 

Qi Ri : Hi --  )~i I 

Hi+l -- Ri Qi -+-~il 
End. 

Remark 

�9 Note that since Hi is Hessenberg, so is H i + l ,  for each i (see Chapter  4). 

M A T C O N T R O L  note: The QR version of Algorithm 11.2.1 has been imple- 
mented in MATCONTROL function poleqrs. 

The RQ Implementation of Algorithm 11.2.1 

The difficulty of implementing the Q R strategy is that the Ri need to be 
accumulated; the process is both expensive and unstable. 

We now show how the method can be made computationally efficient by using 
RQ factorizations instead of QR factorizations, as follows: 
Set H1 : H 
For i : 1, 2 . . . . .  n compute the RQ step 

R i  Q i  = H i  --  Xi I 

H i + l  : Q i  R i  + )~i I 

This time 

~ ( H )  = R 1 R 2 . . .  R n Q n Q n _ I  . . .  Q1, (11.2.11) 

and by setting Q = Qn Q n -  1 " ' "  Q 1 and R = R1R2"'" Rn, we have from (11.2.9) 

T f T  _ o teTRQ _ otpe n Q. (11.2.12) 

Here p - FI n -(i) where rn~ denotes the (n n)th entry of Ri This is a much i = l  rnn , , �9 

nicer situation.t Thus, a straightforward RQ implementation of Algorithm 11.2.1 
will be as follows: 

Algorithm 11.2.2. An RQ Implementat ion o f  Algori thm 11.2.1 
Inputs. Same as in Algor i thm 11.2.1. 
Output.  Same as in Algor i thm 11.2.1. 
Step 0. Set H1 = H. 
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Step 1. Fori -- 1,2 . . . . .  n do 

Ri Qi - Hi -- ~,i I 

Hi+l - Qi Ri + )~i l 
End 

Step 2. Compute f - o~pe T Qn Qn-1 �9 " " Q1 , where p - I-Iin=l r(ni)n , rnn" (i) 

denotes the (n, n)th entry of  Ri. 

Algorithm 11.2.2 may be made storage-efficient by observing that it is possible to 
deflate the problem at each R Q step, as follows: 

H i + l  - -  Qi  Ri  + )~i l - 0 
H / + I  �9 

The matrix Hi+l can now be set as  H i + l  and the iteration can be continued 
with Hi+l =-- Hi+l after updating Qi and p appropriately. Thus, algorithmically 
we have the following storage-efficient version of Algorithm 11.2.2, which is 
recommended to he used in practice. 

Algorithm 11.2.3. A Storage-Efficient Version of  Algorithm 11.2.2 
Inputs, Same as in Algorithm 11.2.1 
Output. Same as in Algorithm 11.2.1. 

Step 0. Set H1 = H .  

Step 1. Compute the RQ factorization of  H1 - ,k 1 I ,  that is, compute Q 1 and 
R1 such that ( H -  XII)Q T - R1. Compute H2 - Q1R1 + )~1I. Set 

(1) where R (r{ 1)) Q - Q1 and p - rnn, l -- �9 

Step 2. For i -- 2 ,3 . . . . .  n do 
Compute the RQ factorization of  Hi - XiI �9 (Hi - X i I )Q  f = 

( * * ) . U p d a t e  Ri. Compute Hi+l, where Q i R i  + )~i1 - 0 H i + l  

( ' )  Q - Qi Q, where 1 is a matrix consisting of  the first 

(i - 2) rows and columns of  the identity matrix. Update p - 

. (i) {r (i) is the last element of Ri) .  P r n + 2 - i , n + 2 - i  �9 n + 2 - i , n + 2 - i  
End 

t T ott Step 3. Compute f T -- ot pe n Q, where - 1 / (h21- . .  hn,n-1). 

Flop-count and numerical stability: Algorithm 11.2.3 requires about ~-n 3 flops. 

Since reduction to the controller-Hessenberg form requires ~Qn 3 flops, the total 

count for EVA of the pair (A, b) using Algorithm 11.2.3 is about 5n 3. 
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The algorithm is numerically stable (see Arnold and Datta 1998). Specifically, 
the method computes, given a controllable pair (H, el), a vector f such that it 
solves exactly the EVA problem for the system with the matrix H + A H, where 

IIAHIIF ~ /zg(n)llHIIF, 

in which # is the machine precision and g (n) is a modest function of n. 

Remark 

It can be shown (Arnold 1993) that if an EVA algorithm for the single-input 
Hessenberg problem is backward stable, then the algorithm is also backward 
stable for the original problem. 

Thus, the R Q implementation of Algorithm 11.2.1 is backward stable for the 
original problem. That is, the feedback k, computed by Algorithm 11.2.3, for the 

_ 

problem (A, b) is exact for a nearby problem: k exactly solves the EVA problem 
for (A + AA, b + 3b), where AA and 6b are small. For a proof of this backward 
stability result, see Arnold and Datta (1998). 

Example 11.2.5. 

Step 0. 

Consider Example 11.2.2 again 

9 4 7 )  
H1 -- H - -  3 1 2 , 

0 9 6 
S = {)~1, )~2, ~,3 } - -  {9, 5, 1 }. 

Step 1. Compute R 1 and Q 1 such that H1 - )~ 11 -- R 1 Q 1 : [ R 1, Q 1 ] "-- r q (H1 - ~. 11 ). 

{ 10.5957 
Compute H2 -- Q1R l + )~ l I -- ~ 07.5693 

-0.6123 -6.5885~ 
7.2043 0.2269 | .  
2.9086 - 1.8000] 

{-0.2063 
Q = - Q 1 -  ~~.9785 

0.3094 
-0.0652 
0.9487 

0.9283 '~ 
-0.1957 / , 
-0 .3162]  

p = 9.4868 
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Step 2. i - 2 
Compute R2 and Q2 such that/42 - )~2I = R2Q2: [R2, Q2] = rq  (H2 - ,k2I). 

(12.9533 4.65613 { - 0 . 8 1 0 9 - 0 . 2 1 8 3  0.5430'~ 
/-/3- ~,-3.0909 -1 .541U ' Update Q" Q = [-0.4409 -0.3823 -0.8121 I. 

\0.3848 -0.8479 0.2138] 

Update p: p -- 70.1641 

i = 3  
Compute R3 and Q3 such that/-/3 - )~3I = R3 Q3: [R3, Q3] = rq(H3 - ~.3I). 

-3.9945 - 12.1904'~ 
R 3 -  0 4.0014 ,] '  

H4 = 7.8755, ( !  1o9 
Update Q: Q -- 5772 

0962 

Step 3. 

Verify: 

(-~.6351 0 .7725)  
Q 3 -  . 7 7 2 5 - 0 . 6 3 5 1 "  

-0.2183 0.5430~ 
-0.4508 0.6809 / , 

0.8655 0.4915] 

1.0000) 
f - 9.0000 . 

5.1111 

f T ( 8.0000 
H -- e 1 - -  3.0000 

\ 0 

The eigenvalues of H - el fT are {5, 1, 9}. 

-5.0000 1.8889 ) 
1.0000 2.0000 . 
9.0000 6.0000 

update p - 280.7526. 

M A T C O N T R O L  note: Algorithm 11.2.3 has been implemented in MATCON- 
TROL function polerqs. 

11.2.4 Explicit and Implicit RQ Algorithms 

We have just seen the QR and RQ versions of Algorithm 11.2.1. At least two more 
QR type methods were proposed earlier: An explicit QR algorithm by Miminis 
and Paige (1982) and an implicit QR algorithm by Patel and Misra (1984). 

The explicit QR algorithm, proposed by Miminis and Paige (1982), constructs 
an orthogonal matrix Q such that 

Q T ( H  -- ~ e l f T ) Q  = R,  

where R is an upper triangular matrix with the desired eigenvalues )~l . . . . .  )~n 

on the diagonal. The algorithm has a forward sweep and a backward sweep. The 
forward sweep determines Q and the backward sweep finds f and R, if needed. 
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The algorithm explicitly uses the eigenvalues to be assigned as shifts and that is 
why it is called an explicit QR algorithm. 

It should come as no surprise that an implicit RQ step is possible, and 
in order to handle complex pairs of  eigenvalues with real arithmetic ,  an 
implicit double step is needed. One such method has been proposed by Patel 
and Misra (1984). The Patel-Misra method is similar to the Miminis-Paige 
method, but it includes an alternative to the "backward sweep." There now 
exist RQ formulations of both these algorithms (Arnold 1993; Arnold and 
Datta 1998). These RQ formulations are easier to describe, understand, and 
implement. 

It should be mentioned here that there now exists a generalization of the implicit 
QR algorithm due to Varga (1996) that performs an implicit multistep in place of 
a double-step. The Varga algorithm is slightly more efficient than the Patel-Misra 
algorithm and like the latter, is believed to be numerically stable. 

Methods Not Discussed 

Besides the methods discussed above, there are many other methods for the single- 
input problem. These include the methods based on solutions of independent linear 
systems (Datta and Datta 1986; Bru et al. 1994a); the eigenvector method by Petkov 
et al. (1984), etc., parallel algorithms by Coutinho et al. (1995), and by Bru et al. 
(1994c), etc.; and the multishift algorithm by Varga (1996). See Exercises 11.2- 
11.4 and 11.8 for statements of some of these methods. 

11.3 N U M E R I C A L  M E T H O D S  F O R  T H E  M U L T I - I N P U T  

E I G E N V A L U E  A S S I G N M E N T  P R O B L E M  

Some of the single-input algorithms described in the last section have been gen- 
eralized in a straightforward fashion to the multi-input case or similar algorithms 
have been developed for the latter. 

We describe here: 

�9 A multi-input generalization of the single-input recursive algorithm (Arnold 
and Datta 1990). 

�9 An explicit QR algorithm (Miminis and Paige 1988). 
�9 A Schur method (Varga 1981). 
�9 A Sylvester equation algorithm for PEVA algorithm (Datta and Sarkissian 

2002). 

There are many more algorithms for this problem that are not described here. 
Some of them are: a multi-input generalization of the single-input eigenvec- 
tor algorithm by Petkov et al. (1986), a multi-input generalization of the 
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single-input algorithm using solutions of linear systems by Bru et al. (1994b) 
(Exercise 11.5), a matrix equation algorithm by Bhattacharyya and DeSouza 
(1982) (Exercise 11.14), and a multi-input version of the single-input implicit 
QR algorithm by Patel and Misra (1984), algorithms by Tsui (1986) and Shafai 
and Bhattacharyya (1988), and parallel algorithms by Baksi et al. (1994), Datta 
(1989), etc. 

11.3.1 A Recursive Multi-Input Eigenvalue Assignment Algorithm 

The following algorithm is a generalization of the single-input recursive algorithm 
(Algorithm 11.2.1) to the multi-input case. 

The development of this algorithm is along the same line as Algorithm 11.2.1. 
The version of the algorithm presented here is a little different than that originally 

proposed in Arnold and Datta (1990). 
Given a controller-Hessenberg pair (H,/3) and the set S = {~.1, )~2 . . . . .  )~n}, 

the algorithm, like its single-input version, constructs a nonsingular matrix L 
recursively from where the feedback matrix F can be easily computed. Since 
in the multi-input case the matrix H of the controller-Hessenberg form is a block- 
Hessenberg matrix, by taking advantage of the block form of H, this time the 
matrix L can be computed in blocks. The matrix L can be computed either block 
column-wise or block row-wise. We compute L block row-wise here starting with 
the last block row. 

Thus, setting 

A 

A l l  

A21 A22 0 

~ ".o 

0 A~,~-I A~:k 

where the eigenvalues )~1 . . . . .  ~-n are contained in the diagonal blocks of A, and 
considering the equation: 

0 F, 

it is easily seen that the matrices L and R can be found without knowing the matrix 
F. Indeed, the matrix 

L1 
L2 

t -- 
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can be computed recursively block row-wise starting with L k and if L~ is chosen 
as L~ = (0, 0 . . . .  0, ln~), then L will be nonsingular. Equating the corresponding 
block-rows of the equation: 

L H -  A H  -- ( o )  F' 

it is easy to see that 

A i + l , i L i  - -  L i + I H  - A i + l , i + l L i + l  - -  Li, i : k - 1, k - 2 . . . . .  2, 1, 

from where the matrices A i + I , i  and L i  c a n  be computed by using the QR factor- 
ization of/~i. Once L and R are found, the matrix F can be computed from the 
above equation by solving a block linear system. Overall, we have the following 
algorithm. 

Algorithm 11.3.1. The Recursive Algorithm for  the Multi-Input EVA Problem 
Inputs, 
A- -The  n x n state matrix. 
B - -The  n x m input matrix (m < n). 
S m T h e  set o f  numbers {~,1, )~2 . . . .  , )~n }, closed under complex conjugation. 
Assumption. (A, B) is controllable. 
Output. A feedback matrix K such that f2 (A - B K)  -- {~ 1, )~2 . . . .  , ~n }. 

Step 1. Using the Staircase Algorithm in Section 6.7, reduce the pair (A, B) 
N 

to the controller-Hessenberg pair (H, B), that is, f ind an orthogonal matrix P 
such that P A P  T -- H, an unreduced block upper Hessenberg matrix with k 
diagonal blocks and 

R is upper triangular and has full  rank. 

Step 2. Partition S in such a way that S = U~2 ( A / i ) ,  where each A i i  is an 
n i x n i diagonal matrix (Recall that n is are defined by the dimensions o f  the 
blocks in H -- (Hij); Hij ~ ~nixnj) .  

Step 3. Set  L k = (0 . . . .  , O, Ink). 

S t e p  4. For  i = k -  1 . . . . .  1 do 

4.1. Compute L i  ~ L i + I H  - A i + l , i + l L i + l  

4.2. Compute the QR decomposition of  ~T . L T _ Q R 

4.3. Define Li = QT, where Q1 are the first ni columns o f  the matrix 

Q : (Q1, Q2) 
End 
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Step 5. Solve the linear system (L 11 R) F = L 1H - A 11L 1 for  F, where L 11 
is the matrix of  the first n 1 columns of  L 1. 

Step 6. Compute the feedback matrix K of  the original problem: K =_ F P. 

T h e o r e m  11.3.1. 
is such that 

The feedback matrix K constructed by the above algorithm 

f2(A - B K )  -- {)~1, )~2 . . . . .  )~n}. 

Proof. Proof follows from the discussion preceding the algorithm. I 

Flop-count: Approximately ~2 n 3 + ~ n2m flops are required to implement the 
algorithm. 

It may be worth noting a few points regarding the complexity of this algorithm. 
First, the given operations count includes assigning complex eigenvalues using 
real arithmetic. Second, almost 95 % of the total flops required for this method are 
in the reduction to the controller-Hessenberg form in Step 1. Finally, within the 
above operations count (but with some obvious additional storage requirements), 
the matrix L that transforms the reduced closed-loop system to the block bidiagonal 
matrix A by similarly, can be obtained. 

Avoiding complex arithmetic: In order to assign a pair of complex conjugate 
eigenvalues using only real arithmetic, we set 2 • 2 "Schur bumps" on the 
otherwise diagonal Aii. For example, if we want to assign the eigenvalues x 4- iy 
to A - B K, we might set 

A 3 - - [  xy - Y ] ' x  

However, the algorithm might give a complex feedback matrix if all the complex 
conjugate pairs cannot be distributed as above along the diagonal blocks Aii. Some 
modifications of the algorithm in that case will be necessary. A block algorithm 
that avoids complex feedback has been recently proposed by Carvalho and Datta 
(2001). 

MATCONTROL note: The modified version of Algorithm 11.3.1, proposed in 
Carvalho and Datta (2001), that avoids the use of complex arithmetic and is guar- 
anteed to give a real feedback matrix has been implemented in MATCONTROL 
function polerex, while Algorithm 11.3.1 as it appears here has been implemented 
in MATCONTROL function polerem. 

Example 11.3.1. Consider EVA using Algorithm 11.3.1 with 

A = H =  

1 2 3 4 1 
1 1 1 1 1 
2 1 1 1 1 , 
0 0 1 1 2 
0 0 0 1 1 
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1 1 1 
0 1 2 

0 0 0 - 0 ' S - { 1 , 2 , 3 , 4 , 5 } .  

0 0 0 

Here k = 3, n l = 3, n2 -- 1, and n3 = 1. 

Step 1. The pair (H,/~) is already in controller-Hessenberg form 
Step 2. All -- diag(1, 2, 3), A22 = 4, A33 -- 5. 
Step 3. L3 = (0, 0, 0, 0, 1). 
Step 4. i = 2 

4.1: L 2 : (0 0 0 1 - 4 )  
4.2: (not shown) 
4.3:L2 = (0 0 0 -0 .2425  0.9701) 

i = 1  
4.1:L1 = (0 0 -0 .2425  1.6977 - 3.3955) 
4.2: (not shown) 
4.3: 

L1- -  
0 0 0.0638 -0.4463 0.8926 ) 
0 1.0000 0 0 0 . 

0.0638 0 0.9959 0.0285 -0.0569 

Step 5. 

F 

-2.3333 3.3333 78.2161 -212.4740 217.0333~ 
-0.3333 -1.6667 5.6667 -9.0000 9.6667 | . 
0.6667 0.3333 -2.3333 5.0000 -4.3333 ] 

V e r i f y :  The eigenvalues of H - / ~  F are: { 1.0000 2.0000 3.0000 4.0000 5.0000}. 

11.3.2 The Explicit QR Algorithm for the Multi-Input EVA Problem 

The following multi-input QR algorithm due to Miminis and Paige (1988) also 
follows the same "template" as that of the preceding algorithm. The algorithm 
consists of the following three major steps. 

Step 1. The controllable pair (A, B) is transformed to the controller-Hessenberg 
pair (H,/~)" 

H I  i 

P A P  T - H - H 2 1  ". H i j  and P B U  - -  [~ - -  1 . 

o 

~ ".. 

H~,~-I U~ 
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The matrix Bll and the subdiagonal blocks in H are of the form (0, R), where R 
is a nonsingular and upper triangular matrix. 

Step 2. An orthogonal matrix Q and a feedback matrix F are constructed such 
that ~ ( Q T ( H -  [ ~ F ) Q )  - {)~1 . . . . .  )~n}. 

Step 3. A feedback matrix K of the original problem is recovered from the 
feedback matrix F of the Hessenberg problem in Step 2 as follows: 

K - -  U F P .  

Step 1 can be implemented using the Staircase Algorithm for the controller- 
Hessenberg form described in Chapter 6. 

We therefore concentrate on Step 2, assuming that Step 1 has already been 
performed. 
Let n 1 = dimensions of H I  1 and ni = rank (Hi,i_ 1 ) ,  i = 2, 3 . . . . .  k. Assume also 
that B11 has n 1 columns. 

We consider two cases. The algorithm comprises of implementing these two 
cases as the situations warrant. The feedback matrix F is obtained by accumulating 
feedback matrices from the individual cases. 

Case 1. If m l = n l - n 2  > 0 ,  that is, if n l > n2, we can immediately allocate 
m 1 - -  n l - rt2 eigenvalues as follows" 
Write ( ll  21) .2) 
Then, we have 

H - [ ~ F - -  _ . . . .  

.11- ( o1 .,2) 
B22 " 

( 11 I  12)( 
-- 0 B22 Fll 

0 

H1) 
F 2  " 

That is, a feedback matrix Fll  for this allocation can be immediately found by 
solving 

( d i a g ( L 1  . . . .  ~ml) ) 
H10 -- BllF11 -- 0 " 

Because of the last equation, we have 

N 

H - B F - -  

diag (X 1 . . . . .  Am ) G1 - B l l  H1 
-B12F2 

H 2  - B z  F2  

B22) 
where B 2 -  0 " 
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Since B22 is a nonsingular upper triangular matrix and H2 is still an unre- 
duced upper Hessenberg matrix having the same form as H, (H2, B2) is a 
controllable pair. 

We then solve the problem of finding F2 such that H2 - B2 F2 has the remaining 
eigenvalues. 

However, this time note that the first two blocks on the diagonal are n2 • n2, thus, 
no more immediate assignment of eigenvalues is possible. The other eigenvalues 
have to be assigned using a different approach. If n2 = 1, we then have a single- 
input problem to solve. Otherwise, we solve the multi-input problem with n 1 = n2, 
using the approach below. 

Case 2. Let nl - n2 . . . . .  nr  > n r + l  "'" >_ nk  > 0, for 1 < r < k. 
Suppose we want to assign an eigenvalue )~1 to H - / 3  F. 
Then the idea is to find a unitary matrix Q1 such that 

Q ~ ( H - B F ) Q 1 -  �9 ) 
H2 -- B2 F2 " 

The unitary matrix Q 1 can be found as the product of the Givens rotations such that 

( H  - )~l l ) Q l e l  - ( o 1 )  . 

For example, if n - 4, m - 2, k - 2, and n l - n2 - 2, then r - 2. 

H - +Zll - -  

Then Q 1 is the product of two Givens rotations Q 11 and Q21, where Q 11 annihilates 
the entry h42 and Q21 annihilates the entry h31. Thus, 

( H  - ~ l l ) Q l l Q 2 1  - ( H  - L I ) Q 1  - 

0 �9 

Once Q1 is found, F can be obtained by solving B l l f l  = a l ,  where 

F Q l  - -  ( f l ,  F2) ,  a n d  B - -  ( ~ l )  . N o t e  t ha t  B l l  is n o n s i n g u l a r .  

It can now be shown that (H2, B2) is controllable and has the original form that 
we started with. The process can be continued to allocate the remaining eigenvalues 

with the pair (H2, B2). 
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To summarize, the allocation of eigenvalues is done using unitary transforma- 

tions when n 1 -- n2 or without unitary transformations when n 1 > n2. 
(Note that the Case 1 (nl > n z) is a special case of Case 2 with Q1 = 1, and 

r = l ) .  
Eventually, the process will end up with a single-input system which can be 

handled with a single-input algorithm described before. 
For details of the process, see Miminis and Paige (1988). 

Example 11.3.2. Let' s consider Example 11.3.1 again. The eigenvalues to be assigned 
are: )~1 - 1, )~2 - 2, )~3 - 3, )~4 --  4, and )~5 - 5. 
Then, 

H l l  - -  1 , 
1 

H21 - -  (0 0 0 1 ) ,  n l  - -  3, n2 - -  1. 

Since m l - n l - n2 - 2, the two eigenvalues 1 and 2, can be assigned immediately 
as in Case 1. 

(i i) (i 1 i) HlO -- , Bll  -- 1 . 
0 

Solving for F11 from 

HlO  11 11 (i i) 
{ -0 .3333  

we have Fl l  -- I - 0 . 3 3 3 3  
\ 0.6667 

Deflation 
1 

H _  12 

3.3333 '~ 
- 1 .6667].  
0.3333 ,/ 

2 3 4 
1 1 1 
1 1 1 
0 1 1 
0 0 1 

1 

( / - ~ 0  G 1 )  

H2  ' 

B -  

1 1 
1 

~o 
~o 

0 

1 1 

:~_~ 

~ ~ o 

1 

B12'~ 

B22]" 
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(3) 
Then, H 2 -  1 , B2 --: B 2 2 -  0 . 

1 0 
(H2, B2) is controllable. 

Now we find F2 such that H2 - B2 F2 has the eigenvalues (3, 4, 5). 
This is a single-input problem. Using any of the single-input algorithms 

discussed before, we obtain 

F2 -- ( -3 ,  9.6667, -13.6667). 

So, the required feedback matrix F is given by 

F - - (  Fll 
-0.3333 3.3333 

0 ) _ -0.3333 -1.6667 
F2 0.6667 0.33333 

0 0 0 ) 
0 0 0 . 

- 3  9.6667 -13.6667 

Verify: The eigenvalues of H - B F are 1, 2, 5, 4, and 3. 
Flop-count: The solution of the Hessenberg multi-input problem, using the 

above-described method requires about ~ n  3 flops. 

When combined with about 6n 3 flops required for the multi-input controller- 
Hessenberg reduction, the total count is about 9n 3 flops. 

Stability: The round-off error analysis performed by Miminis and Paige (1988) 
shows that the algorithm is numerically backward stable. Specifically, it can be 
shown that the computed feedback matrix K is such that 

~((A + AA) - (B + AB)K) -- f2(L), 

where II AA II and I[ AB II are small, and L is the matrix with eigenvalues 
~i -a t- ~ . i ,  i -- 1 , . . -  , n; where [3 ~.i[ ~ ]~.i I/z, /Z is the machine precision. 

Avoiding complex arithmetic: The method as described above might give a 
complex feedback matrix because it is an explicit shift algorithm. To avoid complex 
arithmetic to assign complex conjugate pairs, the idea of implicit shift and the 
double step needs to be used. 

MATCONTROL note: The explicit Q R algorithm described in this section has 
been implemented in MATCONTROL function poleqrm. 

11.3.3 The Schur Method for the Multi-Input Eigenvalue Assignment Problem 

As the title suggests, the following algorithm due to A. Varga (1981) for the multi- 
input EVA is based on the reduction of the matrix A to the RSF. So, unlike the other 
two methods just described, the Schur method does not follow the "Template." 
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Let 

R - Q A Q T = ( o 1  A32)A 

be the RSF of A and let/3 - Q B be the transformed control matrix. 

L e t ' s p a r t i t i ~  " T h e n ' s i n c e ( A B )  i s c ~ 1 7 6 1 7 6  

(A2, B2). 
Suppose that the RSF R of A has been ordered in such a way that A1 contains 

the "good" eigenvalues and A2 contains the "bad" ones. The "good" eigenvalues 
are the ones we want to retain and the "bad" ones are those we want to reassign. 

It is, therefore, natural to ask how the feedback matrix F can be determined such 
that after the application of feedback, the eigenvalues of A 1 will remain unchanged, 
while those in A2 will be changed to "desired" ones by feedback. 

The answer to this question is simple. If the feedback matrix F is taken in the 
form F = (0, F2), then after the application of the feedback matrix to the pair 
(R,/~) we have 

R _ [ ~ F _ ( o 1  A 3 - B 1 F 2 )  
A2 - B2F2 " 

This shows that the eigenvalues of R - / 3  F are the union of the eigenvalues of 
A 1 and of A2 - B2 F2. 

The problem thus reduces to finding F2 such that A2 - B2 F2 has a desired 
spectrum. 

The special structure of A2 can be exploited now. 
Since the diagonal blocks of A2 are either scalars (1 • 1) or 2 • 2 matrices, all 

we need is a procedure to assign eigenvalues to a p • p matrix where p = 1 or 2. 
The following is a simple procedure to do this. 

Algorithm 11.3.2. An Algorithm to Assign p (p = 1 or 2) Eigenvalues 
Inputs.  

MmThe state matrix of order p. 
GmThe control matrix of order p • m. 
F pmThe set of p complex numbers, closed under complex conjugation. 
r~Rank  of G. 

Output.  

Fp--The feedback matrix such that (M - G Fp) has the spectrum Fp. 

Assumption.  (M, G) is controllable. 
Step l .  Find the SVD of G, that is, find U and V such that G - U (CJ, O) V T, 

where G is r • r. 
Step 2. Update M: ~4 = U T MU. 
Step 3. If r - p, compute Fp -- (~)-1 (1(I - J), where J is p • p and the 

eigenvalues of J are the set I ~p. Go to Step 6. 
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Step 4. Let 1" 2 = {~-1, )~2} and 

Step 5. Compute [~p - (/~pl,/~p2) as follows: 

/~pl - (mll + m22 - ~,1 - ~,2)/fl, 

S t e p 6 .  C o m p u t e F p - V [ o P ] U T .  

Algorithm 11.3.2 can now be used in an iterative fashion to assign all the 
eigenvalues of A2, by shifting only 1 or 2 eigenvalues at a time. 

The process starts with the last p • p block of A2 and then after the assignment 
with this block is completed using the algorithm above, a new p • p diagonal 
block is moved, using orthogonal similarity, in the last diagonal position, and the 
assignment procedure is repeated on this new block. 

The required feedback matrix is the sum of component feedback matrices, each 
of which assigns 1 or 2 eigenvalues. 

The overall procedure then can be summarized as follows: 

Algori thm 11.3.3. The Schur Algorithm for  the Multi-Input EVA Problem 
Inputs.  
A- -The  n • n state matrix. 
B - -The  n • m input matrix. 
S - -The  set o f  numbers to be assigned, closed under complex conjugation.] 
Output ,  K m T h e  feedback matrix such that the numbers in the set F belong 

to the spectrum of  A - B K. 

Assumpt ion .  (A, B) is controllable. 
Step 1. Transform A to the ordered RSF: 

A ' 

where A1 is r • r, A2 is (n - r) • (n - r); A1 contains the "good" eigenvalues 
and A2 contains the "bad"  eigenvalues. 

^ 

Update B =- Q B and set Q = Q. 
Step 2. Set K =_ 0 (zero matrix), and i = r + 1. 

Step 3. I f  i > n, stop. 
Step 4. Set M equal to the last block in A o f  order p (p = 1 or 2) and set G 

equal to the last p rows o f  B. 
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Step 5. Compute Fp using Algorithm 11.3.2 to shift p eigenvalues from the 
set S. 

Step 6. Update K and A: K =_ K - (0, Fp)Q, A =_ A - B(O, Fp). 
Step 7. Move the last block of A in position (i, i) accumulating the 

transformations in Q, and update B - Q B, and Q - Q Q. 
Step 8. Set i : i + p and go to Step 3. 

Remarks  

�9 The ordering of the RSF in Step 1 has to be done according to the procedure 
described in Chapter 4. 

�9 It has been tacitly assumed that "the complex numbers in S are chosen and 
ordered so that the ordering agrees with the diagonal structure of the matrix 
A2." If this requirement is not satisfied, some interchange of the blocks 
of A2 need to be done so that the required condition is satisfied, using an 
appropriate orthogonal similarity (Exercise 11.9). 

�9 The final matrix K at the end of this algorithm is the sum of the component 
feedback matrices, each of them assigning 1 or 2 eigenvalues. 

�9 The algorithm has the additional flexibility to solve a "PEVA," which con- 
cerns reassigning only the "bad" eigenvalues, leaving the "good" ones 
unchanged. 

Example 11.3.3. Let's apply Algorithm 11.3.3 with data from Example 11.3.1. 
Step 1. 

A =  Q A Q T =  

-0.4543 1.0893 -0.2555 -0.7487 -0.5053 
-0.7717 -1.6068 0.3332 -1.2007 2.6840 
-0.0000 -0.0000 0.2805 -0.2065 0.2397 , 
-0.0000 -0.0000 -0.0000 1.8369 -3.1302 

0.0000 0.0000 0.0000 -0.0000 4.9437 

O 

-0.2128 0.0287 0.6509 -0.6606 0.3064 
0.8231 -0.1628 -0.2533 -0.3926 0.2786 | 
0.1612 -0.8203 0.4288 0.2094 -0 .2708]  . 

-0.4129 -0.4850 -0.3749 0.0539 0.6714 
0.2841 0.2539 0.4332 0.6023 0.5517 / 

Let the desired closed-loop eigenvalues be the same as in Example 11.3.1: S -- 
{ 5 4 3 2 1 } .  
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Update B = QB: 

B ~ _  

-0.2128 -0.1841 1.7974 
0.8231 0.6603 -0.2625 
0.1612 -0.6591 -0.1929 . 

-0.4129 -0.8979 -2.5077 
0.2841 0.5380 2.0916 

Step 2. 

K = 0 ,  i = 1 .  

Step 3. i = 1 < n : 5. Continue 
Step 4. 

p = l ,  

M = (4.9437), 

G = (0.2841, 0.5380, 2.0916), 

Step 5. 

1-'p = 5, the eigenvalue to be shifted. 

- 0 . 0 0 3 4 )  
F p  - -  -0.0064 . 

-0.0248 

Step 6. Updated K and A are: 

{-0.0010 -0.0009 -0.0015 -0.0020 -0.0019'~ 
K -  /-0.0018 -0.0016 -0.0028 -0.0038 -0.0035 / , 

\ -0 .0071 -0.0063 -0.0108 -0.0150 -0 .0137]  

/ '-0.4543 1.0893 -0.2555 -0.7487 -0.4626'~ 
[ -0 .7717 -1.6068 0.3332 -1.2007 2.6845 ] 

A = | - 0 . 0 0 0 0  -0.0000 0.2805 -0.2065 0.2313 1 .  
| - 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0  1.8369 -3 .1996]  

o.oooo o.oooo o.oooo -o.oooo 5.oooo / 

Step 7. Reorder A and update ~) and B" 

5.0000 3.2232 -0.3674 
0 1.8369 0.1125 

A -- 0 0 0.2805 
0 0 0 
0 0 0 

/0.7474 0.3745 0.5264 
|0.0568 -0.0551 -0.2840 

0 -  "/0.2416 -0.8972 0.2528 
/0.3829 0.1005 -0.6528 
\0.4828 -0.2040 -0.3902 

- 1.1307 -2.4841'~ 
-1.2452 -0.4711 / 
-0.0392 -0.4337 / , 
-0.5524 - 1.2822~ 
0.5749 -1 .5087]  

0.1504 0.0376 '~ 
0.6816 0.6696 | 
0.1953 -0.1859 / , 
0.2773 -0.5833~ 

-0.6307 0.4187,/ 
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0.7474 1.1219 3.0756~ 
0.0568 0.0017 -0.9056 / 
0.2416 -0.6556 - 0 . 7 9 4 5 | .  
0.3829 0.4834 -1.3744 / 
0.4828 0.2789 -1 .0956 /  

Step 8. i = 2 and return to Step 3. 

Step 3. i = 2 < n = 5. Continue. 
Step 4. 

0.5524 -1.2822 ) 
M = 0.5749 -1.5087 ' 

Step 5. 

Step 6. 

K = 

A 

p = 2 ,  

G = ( 0 . 3 8 2 9  0.4834 - 1 . 3 7 4 4 )  
0 . 4 8 2 8 0 . 2 7 8 9 - 1 . 0 9 5 6 '  

1-'p = {2, 1} 

7.0705 -6.3576 ) 
Fp = -5.1373 3.4356 . 

1.7303 0.7260 

-0.3630 2.0061 -2.1362 5.9678 -6.7883~ 
-0.3103 -1.2184 2.0102 -3.5949 4.4318 / , 

1.0061 0.0194 -1.4235 0.0069 -0 .7191]  

5.000 3.2232 -0.3674 -5.9733 -3.8198~ 
1.8369 0.1125 -0.0712 0.5417 / 

0 0.2805 -3.7408 3.9316|  . 
0 0 1.6016 0.4896~ 
0 0 0.4896 1.3984,/ 

Step 7. Reorder A and update ~) and B (Recorded A and updated B are shown below): 

A 

B 

5.0000 3.2232 -0.3674 -5.9733 -3.8198 
0 1.0000 0.3087 0.1527 -5.2208 
0 0 2.0000 0.2457 1.2394 , 
0 0.0000 0.0000 1.8369 -0.8889 
0 0 0 0 0.2805 

0.7474 1.1219 3.0756 
-0.2402 0.6483 0.5859 

0.4240 0.1944 - 1.8404 . 
0.4443 0.5319 -0.8823 
0.0804 -0.0193 0.1787 

Step 8. i = 4 and return to Step 3. 
Step 3. i = 4 < n = 5. Continue. 
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Step 4. 

p = l ,  

Step 5. 

Step 6. 

K _._ 

A 

M = 0.2805, G = (0.0804 - 0.0193 0.1787), Fp = 4. 

( -7.7091~ 
Vp -- 1.8532 / . 

-17 .1422]  

-0.9827 2.7748 -2.9014 11.1937 -12.3165~ 
-0.1613 -1.4032 2.1942 -4.8511 5.7607 | ,  
-0.3719 1.7286 -3.1250 11.6272 -13 .0117]  

5. 00 3.2232 -0.3674 -5.9733 5 ~ 5 ~ t _  
1.0000 0.3087 0.1527 

0 2.0000 0.2457 -27.40121 . 
0.0000 0.0000 1.8369 -13.5735 / 

| 

0 0 0 4.0000 / 

Step 7. Reorder A and update Q and B (Recorded A and updated B are shown below): 

5.0000 
0 

A - -  0 
0 
0 

0.7474 
-0.2402 

B -- 0.4240 
0.4261 
0.1493 

Step 8. i = 5. Return to Step 3. 
Step 3. i = n = 5. Continue 
Step 4. 

p = 1, M =  1.8369, 

3.2232 -0.3674 -5.9733 
1.0000 0.3087 0.1527 

0 2.0000 0.2457 
0.0000 0.0000 4.0000 

0 0 0 

1.1219 3.0756 
0.6483 0.5859 
0.1944 -1.8404 . 
0.5283 -0.8994 
0.0646 0.0377 

Step 5. 

Step 6. 

K ~._ 

-27.4012 / , 
-13.5735~ 

1.8369 / 

G = (0.1493 0.0646 0.0377), 1-'p = 3. 

{ -6 .2271~  
F p -  [ - 2 . 6 9 5 0 ] .  

\-1.571oj 

{-1.9124 3.3022 -3.0213 15.9029 -16.2462  
. 5 6 3 7 - 1 . 1 7 5 0 2 . 1 4 2 3 - 2 . 8 1 3 0  4.0599}, 
.60641.8617-3.155312.8153-14.0031] 
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A 

5. 00 3.2232 -0.3674 -5.9733 65.0948'~ 
1.0000 0.3087 0.1527 2.9415 / 

0 2.0000 0.2457 -27.1285 / . 
0.0000 0.0000 4.0000 - 10.9093 

0 0 0 3.0000/ 

All the eigenvalues are assigned, and the iteration terminates. 
Verification: The eigenvalues of A - BK are: {5.00000000000024, 

3.99999999999960, 1.00000000000000, 3.00000000000018, 1.99999999999999}. 
Flop-count and stability. The algorithm requires about 30n 3 flops, most of which 

is consumed in the reduction of A to the RSF and ordering of this RSE 
The algorithm is believed to be numerically stable (note that it is based on all 

numerically stable operations). However, no formal round-off error analysis of the 
algorithm has been performed yet. 

MATCONTROL function: Algorithm 11.3.3 has been implemented in MATCON- 
TROL function poleseh. 

11.3.4 Partial Eigenvalue Assignment Problem 

The PEVA problem is the one of reassigning by feedback only a few eigenvalues, 
say )~l . . . . .  Xp(p < n), of an n • n matrix A leaving the other eigenvalues 

~.p+ 1 . . . . .  )~n unchanged. 
Formally, PEVA is defined as follows: 
Given A ~ ~nxn ,  B ~ I[~ nxm, a part of the spectrum {~.1 . . . . .  )~p} of A, and a 

set of self-conjugate numbers {#1 . . . . .  #p}, find a feedback matrix F such that 
the spectrum of A - B F is the set {#1 . . . . .  #p; ~.p+l . . . . .  ~n }. 

A projection algorithm for this problem was proposed by Saad (1988). Here we 
describe a simple parametric algorithm via Sylvester equation. Note that Varga's 
algorithm described in the last section can be used for solving PEVA; however, 
that will require full knowledge of the eigenvalues of A and is thus not suitable 
for large problems. The algorithm described below requires the knowledge of 
only those small number of eigenvalues (and the corresponding eigenvectors) that 
are required to be reassigned. Furthermore, the algorithm is parametric in nature 
which can be exploited to devise a robust EVA algorithm (see Section 11.6). The 
discussion here has been taken from Datta and Sarkissian (2002). This paper also 
contains a result on the existence and uniqueness of the solution for PEVA in the 
multi-input case. 

Theorem 11.3.2. (Parametric Solution to PEVA Problem). Assume that (i) B 
has full rank, (ii) the sets {X1 . . . . .  )~p} and {/Zl . . . . .  lZp} are closed under 
complex conjunction and disjoint, and (iii) let the pair (A, B) be partially 
controllable with respect to {~,1 . . . . .  )~p}. Assume further that the closed- 
loop matrix has a complete set of eigenvectors. Let F = (?'1 . . . . .  ?'p) 
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be a matrix such that 

yj -- -V--~, whenever ]Z j  - -  ~ k ,  

Let Y1 be the matrix o f  left eigenvectors associated with {~.l . . . . .  )~p}. Set 

A 1 -  diag(X1 . . . . .  Xp) and A c l -  diag(/zl . . . . .  lZp). Let Z1 be a unique 
nonsingular solution o f  the Sylvester equation 

A1Z1 - Z1Acl -- y H B F .  

Let �9 be defined by ( I ) Z l  - -  I- ' ,  then 

F -- q~yH, 

solves the partial eigenvalue assignment problem for the pair (A, B). 
Conversely, if  there exists a real feedback matrix F of  the form that solves the 

PEVA problem for  the pair (A, B), then the matrix �9 can be constructed satisfying 
Steps 2-4  of A lgor i thm 11.3.4. 

Proof.  see Datta and Sarkissian (2002). I 

Algorithm 11.3.4. 
Inputs. 

Parametric Algorithm for  PEVA Problem 

(i) A - -The  n • n state matrix. 
(ii) B- -The  n • m control matrix. 

(iii) The set {#1 . . . . .  lZp}, closed under complex conjugation. 
(iv) The self-conjugate subset {~.1 . . . . .  Xp} of  the spectrum {)~1 . . . . .  Xn} 

of  the matrix A and the associated right eigenvector set {Yl . . . . .  Yp }. 

Outputs. The real feedback matrix F such that the spectrum of  the closed-loop 
matrix A - B F  is {/Zl . . . . .  /Zp; Xp+l . . . . .  Xn}. 

Assumptions. 

(i) 

(ii) 

The matrix pair (A, B) is partially controllable with respect to the 

eigenvalues )~ 1 . . . . .  )~p. 
The sets {)~1 . . . . .  ~.p}, {Lp+l . . . . .  )~n}, and {/Zl . . . . .  lZp} are dis- 
joint. 

Step 1. Form 

Al- -d iag(L1  . . . . .  ~.p), Y1 -- (Yl . . . . .  Yp), and Acl -- diag(/zl . . . . .  #p) .  

Step 2. Choose arbitrary m • 1 vectors Yl . . . . .  y p  in such a way that l Z j  - -  lZk 

implies Vj -- Vk and form I ~ -- (V1 . . . . .  Vp). 
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Step 3. Find the unique solution Z I o f  the Sylvester equation: 

A1Z~ - Z1Acl  = y~I B F. 

I f  Z1 is ill-conditioned, then return to Step 2 and select different V1 . . . . .  Yp. 

Step 4. Solve dpZ1 - F for  ~p. 

Step 5. Form F -- �9 y n .  

A Numerical Example 

In this section, we report results of our numerical experiments with 
Algorithm 11.3.4 on a 400 • 400 matrix obtained by discretization of the partial 
differential equation 

2 OU 02U 02U OU 
-- OX 2 + ~ + 20~-~ + 180U(X, y, t) -4- Z Fi(x,  y)gi( t )  

Ot U ,A, 

i = 1  

on the unit square f2 - (0, 1) • (0, 1) with the Dirichlet boundary conditions: 

u(x,  y, t) - O, for (x, y) 6 0f2 and t > 0 

and some initial condition which is of no importance for the PEVA problem. This 
problem was earlier considered by Saad (1988). Using finite difference scheme 
of order O(]]Ax]] 2, ]]Ayl]2), we discretize the equation in the region S2 with 20 
interior points in both the x and y directions, thus obtaining a 400 x 400 matrix 
A. The 400 • 2 matrix B, whose i th column discretizes the function Fi (x, y) is 
filled with random numbers between - 1  and 1. 

Using sparse MATLAB command eigs, the following 10 eigenvalues with the 
largest real parts are computed 

~.~ - 55.0660, )~2 - -  29.2717, ~.3 - 25.7324, )~4 - -  -0 .0618,  
)~5 - -13.0780,  )~6 = -22.4283,  )~7 - -42.4115,  
~8 - -48.2225,  )~9 = -71.0371,  )~10 -- -88.3402.  

The residual of each eigenpair ]Iy*(A - )~I)ll < 4-  10 -12 and each left eigen- 
vector is normalized. Algorithm 11.3.4 was used to reassign ~.1, ,k2, ~3, and )~4 
to - 7 ,  - 8 ,  - 9 ,  and - 1 0 ,  respectively, obtaining the 2 • 400 feedback matrix F 

with [IFI[2 < 127. Note that the IIAI[2 - 3.3 �9 103. The 10 eigenvalues of the 
closed-loop matrix A - B F with the largest real parts obtained by the algorithm 
are the following: 

# 1 - - 7.00000, #2 - -  - -  8 . 0 0 0 0 ,  / z  3 -- -- 9.0000, #4 - -  - -  10.0000, 
,~5 - -13.0780,  ) , 6  - -  -22 .4283,  ~,7  - -  -42.4115,  
)~8 - -48.2225,  )~9 - -  -71 .0371,  )~10 - -88.3402.  
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11.4 CONDITIONING OF THE FEEDBACK PROBLEM 

In this section, we will discuss the sensitivity of the feedback problem, that is, 
we are interested in determining a measure that describes how small pertur- 
bations in the data affect the computed feedback. We discuss the single-input 
case first. 

11.4.1 The Single-Input Case 

Arnold (1993) first discussed the perturbation analysis of the single-input 
Hessenberg feedback problem in his Ph.D. dissertation. Based on his analysis, 
he derived two condition numbers for the problem and identified several condition 
number estimators. For details, we refer the readers to the above dissertation. We 
simply state here one of the condition number estimators which has worked well in 
several meaningful numerical experiments. Recall that the single-input Hessenberg 
feedback problem is defined by the data (H, fl, S), where H is an unreduced upper 
Hessenberg matrix,/7 = (or, 0 . . . . .  0) T, ot 76 0 and S = {~1 . . . . .  )~n}- 

Estimating the Condition Numbers of the Feedback Problem 

Theorem 11.4.1. If  v(H, fl) is the condition number of  the single-input 
Hessenberg feedback problem, then an estimator of  this number is given by 

1r IleTr 
Vd~ -- IleT~(H) ii (11.4.1) 

where 

t ~  1 1 ) T 
w - -  ' h 2 1 '  hn,n-1 

and dp(H) -- (H - ~.1I) . . .  (H - )~n I). 

Defining the quantity digits off (as in Rice (1966)) by 

l ~  [(/z Uestimate)]err , (11.4.2) 

where # is the machine precision (# ~ 2 x 10 -16) and err stands for the error 
tolerance, it has be shown that the maximum digits off in estimating conditioning 
for 100 ill-conditioned problems are only 1.86, and minimum digits off are 0.51. 
Thus, it never underestimated the error and overestimated the error by less 
than two digits. 

The computation of this condition estimator requires only 2n3/3 flops once 
the system is in controller-Hessenberg form. For details of these experiments, see 
Arnold (1993). Note these bounds work only for the single-input Hessenberg 
feedback problem. 
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11.4.2 The Multi-Input Case 

Arnold (1993) considered a perturbation analysis of the single-input Hessenberg 
feedback problem by considering only the perturbation of the matrix H and the 
vector b. 

Sun (1996) has studied perturbation analysis of both single-input and the multi- 
input problems by allowing perturbations of all the data, namely A, B, and S -- 
{~, 1 . . . . .  ~,n }. Below, we state his result for the multi-input problem, without proof. 
For more general results on perturbation analyses of feedback matrices as well as 
those of conditioning of the closed-loop eigenvalues, see the recent papers of 
Mehrmann and Xu (1996, 1997). 

Let A ~ ]t~ n xn and B ~ ]I~ nxm 

Let ~.i ~ ~.j, for all i ~ j .  Let K -- (kl . . . . .  km) T and X = (Xl . . . . .  Xn) be 
such that 

A -4- B K  -- X A X  -1, (11.4.3) 

where A = diag()~l . . . . .  ~ , n ) .  

Also, let Yl . . . . .  Yn be the normalized left eigenvectors of A -4- B K, that is, 
Y -- X -T  -- (Yl . . . . .  Yn), which implies yTx j  -- 3ij for all i and j .  

Suppose that the data matrices A, B, and A and the feedback matrix K are so 
perturbed that the resulting closed-loop matrix has also the distinct eigenvalues. 

Let B -- (bl . . . .  bm). Define now 

Wk -- ( S 1 X T ,  $2 XT,  . . . ,  SmXT)nxmn,  

where Sj diag(yT bj T = , . . . .  Ynbj),  j -- 1,2 . . . . .  m. 
Also define 

(11.4.4) 

Wa - ( D I ( X ) X  - 1  D 2 ( X ) X  -1 D n ( X ) X - 1 ) n x n  2 (11.4.5) 

Wb = diag(T1X -1 , T2 X - l , . . . ,  TmX-1)n•  (11.4.6) 

and W~ = - I n ,  where 

Di(X)  -" diag(xil . . . . .  Xin), i -- 1 . . . . .  n (11.4.7) 

Tj - diag(kTxl . . . .  kTxn), j -- 1 . . . .  m, 

and xi - -  ( X i l  . . . . .  X i n ) .  

Also, l e t Z = W ; ,  ~ - - Z W a ,  and O~-- - -ZWb.  

Here W; denotes the generalized inverse of Wk. 

(11.4.8) 

(11.4.9) 
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T h e o r e m  11.4.2. Perturbation Bound f o r  a Multi-Input Feedback Matrix  

Suppose that the controllable pair (A, B) is slightly perturbed to another control- 
lable pair (A, B), and that the self-conjugate set S - {,k] . . . . .  )~n}, )~i ~- /~,j, i r j 

is slightly perturbed to the set S - {~.] . . . . .  2n }, ~-i r ~.j, i r j .  
Let K be the feedback matrix of the EVA problem with the data A, B, S. Then 

there is a solution /s to the problem with data A,/~, and S such that for any 
consistent norm [[ [[, we have 

a ) II 2) 
11 / (  - K !1 ~ ~K + o /~ - b 

(a) < A K + O  [~ - b 
x 

2) 
(11.4.10) 

where 

a -- vec(A), a = vec(A), 

b - vec(B), D - vec(/~), 

~ , - -  ()~1 . . . . .  )~n) T, ~ - -  (~1,~2 . . . . .  ~n) T, 

aK - IIq)(a - a )  + qJ(/~ - b) + Z(~.  - ;~)11, 

AK -- II (I)II Ila - a II + II qJ II II/~ - b II + II z II II ~ - )~ II, 

(11.4.11) 

Z, q~, and �9 are defined by (11.4.9). 

11.4.3  A b s o l u t e  and  Re la t ive  C o n d i t i o n  N u m b e r s  

The three groups of a b s o l u t e  c o n d i t i o n  n u m b e r s  that reflect the three different 
types of sensitivities of K with respect to the data A, B, and S, respectively, have 
been obtained by Sun (1996). These are" 

KA(K) --I1~11, K s ( K ) -  IlqJll, and K x ( K ) -  IlZll. (11.4.12) 

Furthermore, the scalar to(K) defined by 

(11.4.13) 

can be regarded as an a b s o l u t e  c o n d i t i o n  number of K. 
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If II" 112 is used, and if the matrix X = ( X l ,  x 2  . . . . .  Xn) is such that Ilxj 112 = 1 
for all j ,  then 

tea(K) = 11~112 _< IIZII211X-]II2, (11.4.14) 

KB(K)--IlqJll2 _< max Ilkjll211Zll211X-~ll2, (11.4.15) l<j<n 

K~(K) = IlZl12. (11.4.16) 

Thus, using the Frobenius norm, the respective relative condition numbers  are 
given by 

IIAIIF (11.4.17) K(Ar)(K) -- KA(K) ilK I1----- ~ ,  

IIBIIF (11.4.18) 
K(Br)(K) -- KB(K) IlK II----~' 

and 
ll•ll2 X - (~.1 . . . .  ~.~)T (11.4.19) K(r)(K) -- Kx(K) [Igll-----~' " " 

Furthermore, the relative condit ion number  of K is given by 

K(~) (K) - V/(K(r) (K))2 -]- (K(r) (K)) 2 -+-(K(r)(K)) 2, 

where X(A r) (K), x~ r) (K), and K (r) (K) a r e  evaluated using 2-norm. 

Remark 

(11.4.20) 

A variation of the above results appears in Mehrmann and Xu (1996, 1997), 
where it has been shown that the ill-conditioning of the feedback problem is 
also related to the ill-conditioning of the open-loop eigenvector matrix and 
the distance to uncontrollability (see next section for more on this). 

Example 11.4.1. (Laub and Linnemann 1986; Sun 1996). 

Consider the following single-input problem: 

- 4  0 0 0 0 \  1 
- 3  0 0 0 

A -  ot - 2  0 , B -  0 , 
o ~ 0 o _ ,  0 

0 0 ot 0 

and 
S = { - 2 . 9 9 9 2 , - 0 . 8 8 0 8 , - 2 , - 1 ,  7.0032 • 10-14}. 

Choose o~ = 0.0010. 
Then, K = (3.12,-1.67,  7 .45, -2 .98,  0.37). 
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The feedback problem with the above data is expected to be ill-conditioned, as 
K(Ar)(K) -- 3.2969 X 1012, tC(Br)(K) -- 1.01117 X 1012, tc(r)(K) -- 2.3134 x 1012, 

and tc~ ~ (K) -- 4.1527 x 1012. 
Indeed, if only the 1st entry of S is changed to - 3  and all other data remain 

unchanged, then the feedback vector for this perturbed problem becomes /~ - 
(3.1192, 0.0078, 7.8345, 0.0004, 0.3701). 

11.5 CONDITIONING OF THE CLOSED-LOOP EIGENVALUES 

Suppose that the feedback matrix K has been computed using a stable algorithm, 
that is, the computed feedback matrix/~ is the exact feedback matrix for a nearby 
EVA problem. The question now is: ̂ H~ far  are  the eigenvalues of the computed 
dosed-loop matr ix  Me = A - B K from the desired eigenvalues {)~l . . . . .  )~n } ? 
Unfortunately, the answer to this question is: Even though a feedback matrix has 
been computed using a numerically stable algorithm, there is no guarantee that the 
eigenvalues of  the closed-loop matrix will be near those which are to be assigned. 

The following interrelated factors, either individually, or in combination, can 
contribute to the conditioning of the closed-loop eigenvalues: 

�9 The conditioning of the problem of determining the feedback matrix K from 
the given data. 

�9 The condition number (with respect to a p-norm) of the eigenvector matrix 
of the closed-loop system. 

�9 The distance to uncontrollability, and the distance between the open-loop 
and closed-loop eigenvalues. 

�9 The norm of the feedback matrix. 

Regarding the first factor, we note that if the problem of computing the feedback 
matrix is ill-conditioned, then even with the use of a stable numerical algorithm, 
the computed feedback matrix cannot be guaranteed to be accurate, and, as a result, 
the computed closed-loop eigenvalues might differ significantly from those to be 
assigned. (Note that the eigenvalue problem of a nonsymmetric matrix can be very 
ill-conditioned.) 

The relation of the other two factors to the conditioning of the closed-loop 
eigenvalues can be explained by the following analysis using the B a u e r - F i k e  

T h e o r e m  (Chapter  3). 
Let Mc -- A - B K and let E -- ~Qc - Mc, where ~)/c -- Z - B/~, /~ being the 

computed value of K. 
Let X be the transforming matrix that diagonalizes the matrix Mc, that is, 

X - 1 M c X  -- diag()~l . . . . .  ~-n). Let # be an eigenvalue of Mc. Then, by the 
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Bauer-Fike Theorem (Theorem 3.3.3), we have 

min I1.i - / x l  < Cond2(X)llEll2. 
)-i 

Again, E = A - B I (  - (A - B K )  -- B ( K  - I()  = B A K .  

Thus, we see that the product of the spectral condition number of X and the 
II BAK 112 influences the distance between the desired poles and those obtained 
with a computed/( .  

This again is related to the factors" norm o f  the computed feedback  matrix ~2, 

distance to the uncontrollability o f  the pair  (A,  B), and the distance between 

closed-loop poles and the eigenvalues o f  A, etc. (See Mehrmann and Xu 1997.) 
Note that some of these observations also follow from the explicit formula of the 
feedback vector (11.2.9) in the single-input case, and the one in the multi-input 
case derived in Arnold (1993). 

Example 11.5.1. Consider EVA with the following data: 

- 4  0 0 0 0 1 
0.001 - 3  0 0 0 0 

A = 0 0.001 - 2  0 0 , B -  0 . 
0 0 0.001 - 1 0 0 
0 0 0 0.001 0 0 

S - -  {~.1, ~.2, )~3, ~.4, ~.5} - -  {10, 12, 24, 29, 30}. 

Then K = (-115, 4.887 x 106, -9.4578 x 10 l~ 8.1915 x 1014, -2.5056 x 1018) 

The eigenvalue assignment problem with the above data is very ill- 
conditioned as the following computation shows. 

Change the entry a51 of A to 10 -6 and keep all other data unchanged. The 
eigenvalues of the closed-loop matrix then become: {1.5830 x 106, -1 .5829 x 
106, --3, --2, --1}. 

The explanation of this drastic change in the closed-loop eigenvalues can be 
given in the light of the discussions we just had in the last section. 

�9 Ill-conditioning of the feedback vector: Le t / (  be obtained by changing the 
first entry of K to -114.999 and leaving the remaining entries unchanged. 
The eigenvalues of (A - B/f)  are {29.5386 + 0.4856j, 23.9189, 12.0045, 
9.9984}. 
So, the problem of computing the feedback vector K is ill-conditioned. 

�9 All the subdiagonal entries of A are small, indicating that  the system is 
near an uncontrollable system. 

�9 Distance between the open-loop and closed-loop eigenvalues: The open- 
loop eigenvalues are {0, - 1, - 2 ,  - 3 ,  -4}.  

Thus, the open-loop eigenvalues are well-separated from those of the 
closed-loop eigenvalues. 
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Ill-conditioning of the closed-loop eigenvector matrix: Cond2(X) = 
1.3511 x 1024. 
Thus, the spectral condition number of the dosed-loop matrix is large. 
The condition numbers of the individual eigenvalues are also large. 
Note: In Example 11.5.1, the feedback vector K was computed using 
Algorithm 11.2.3. The MATLAB function place cannot place the eigen- 
values. 

Concluding Remarks 

We have identified several factors that contribute to the ill-conditioning of the 
closed-loop eigenvalues. In general, the problem of assigning eigenvalues is an 
intrinsically ill-conditioned problem. Indeed, in Mehrmann and Xu (1996), it has 
been shown that in the single-input case, the feedback vector K (which is unique) 
depends upon the solution of a linear system whose matrix is a Cauehy matrix 
(Exercise 11.13), and a Cauchy matrix is well-known to be ill-conditioned for 
large order matrices. Thus, the distribution of eigenvalues is also an important 
factor for conditioning of the EVA problem, and the condition number of the 
problem can be reduced by choosing the eigenvalues judiciously in a prescribed 
compact set in the complex plane. For details, see (Mehrmann and Xu (1998)). 
See also Calvetti et al. (1999). 

11.6 ROBUST EIGENVALUE ASSIGNMENT 

In the last section we have discussed the aspect of the closed-loop eigenvalue 
sensitivity due to perturbations in the data A, B, and K. 

The problem of finding a feedback matrix K such that the closed-loop eigen- 
values are as insensitive as possible is called the robust eigenvalue assignment 
(REVA) problem. 

Several factors affecting the closed-loop eigenvalue sensitivity were identified 
in the last section, the principal of those factors being the conditioning of the 
closed-loop eigenvector matrix. 

In this section, we consider REVA with respect to minimizing the condition 
number of the eigenvector matrix of the closed-loop matrix. In the multi-input 
case, one can think of solving the problem by making use of the available freedom. 
One such method was proposed by Kautsky et al. (1985). For an excellent account 
of the REVA problem and discussion on this and other methods, see the paper by 
Byers and Nash (1989). See also Tits and Yang (1996). 

11.6.1 Measures of Sensitivity 

Let the matrix M = A - B K be diagonalizable, that is, assume that there exists a 
nonsingular matrix X such that 

X - I ( A -  BK)X  = A = diag(),.1,..., )~n). 
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Recall from Chapter 3 (see also Wilkinson (1965), Datta (1995), etc.) that a measure 
of sensitivity cj of an individual eigenvalue ~j due to perturbations in the data 
A, B, and K is given by 

1 IlYj 112 Ilxj 112 
C j - - ~ - -  T Sj [yjxj l  

where xj and yj are, respectively, the right and left eigenvectors of M correspond- 
ing to )~j. Furthermore, the overall sensitivity of all the eigenvalues of the matrix 
M is given by Condz(X) - IIXl[2 IlX -1 ]12. Note also that maxj cj <_ Condz(X). 

Thus, two natural measures of sensitivity are" 

191 - -  IICll~, and 192 - -  Cond2(X), 

where C - ( e l ,  r . . . . .  r T. 
One could also take (see Kautsky et al. 1985) 

19 3 - - I l X - 1 1 1 F n l / 2 =  I[Cll2 nl/2 a n d  19 4 - s i n  2 0 j  n 1/2 

as other measures. Here Oj are the angles between the eigenvectors Xj and certain 
corresponding orthonormal vectors ~j, j - 1, 2 . . . .  , n. 

11.6.2 Statement and Existence of Solution of the Robust EigenValue 
Assignment Problem 

In view of the above, the REVA problem with respect to minimizing the 
conditioning of the eigenvalue matrix X can be formulated as follows" 

Given A c: •nxn, B e_ ~nxm (m < n), having full rank, and 
A -diag(~.l  . . . . .  Xn), find a real matrix K and a nonsingular matrix X 
satisfying 

( A -  B K ) X  - X A  (11.6.1) 

such that some measures v of the sensitivity of the closed-loop eigenprob- 
lem is optimized. 

The following result, due to Kautsky et al. (1985), gives conditions under which a 
given nonsingular X can be assigned to (11.6.1). 
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Theorem 11.6.1. 
K satisfying (11.6.1) if and only if 

u T  ( x A  - A X )  -- O, 

where U1 is defined by 

Given a nonsingular X, and A as above, there exists a matrix 

B-  [Uo, U1] [ z] 
0 ' 

with U - [U0, U1] orthogonal and Z nonsingular. 
The matrix K is explicitly given by 

K -- Z - 1 U ~ ( A  - X A X - 1 ) .  

(11.6.2) 

(11.6.3) 

(11.6.4) 

Proof. 
with Z nonsingular. Again, from (11.6.1), we have 

B K  -- A - X A X  -1. 

Multiplying (11.6.5) by U z, we obtain 

Z K  -- u T ( A  - X A X - 1 ) ,  

0 -  U T ( A -  XAX-1). 

Since X and Z are invertible, we immediately have (11.6.2) and (11.6.4). 

Since B has full rank, the factorization of B given by (11.6.3) exists 

(11.6.5) 

(11.6.6) 

I1 

11.6.3 A Solution Technique for the Robust Eigenvalue Assignment Problem 

Theorem 11.6.1 suggests the following algorithm for a solution of the REVA 
problem. 

Algorithm 11.6.1. An REVA Algorithm (The KNV Algorithm) 

Input. 
A- -The  n x n state matrix. 
B -The  n x m input matrix with full  rank. 
A - - T h e  diagonal matrix containing the eigenvalues ~,1 . . . . .  )~n- 

Assumptions. (A, B) is controllable and ~-1 . . . . .  ~,n is a self-conjugate set. 
Output. K m T h e  feedback matrix such that the spectrum of  A - B K is the 

set {2.1 . . . . .  )~n }, and the condition number o f  the eigenvector matrix is as small 

as possible. 
Step 1. Decompose the matrix B to determine Uo, U1, and Z as in (11.6.3). 
Construct orthonormal bases, comprised o f  the columns o f  matrices Sj and 

Sj for  the space sj - N { U T (A - )~j I) } and its complement Jj, for  ~.j E s j, j - 

1,2 . . . . .  n. 
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Step 2. Select a set o f  n normalized vectors x l . . . . .  Xn from the space S j  such 
that X = (x l . . . . .  Xn ) is well-conditioned. 

Step 3. Compute M = A - B K  by solving the linear systems: M X  = X A .  
Step 4. Compute K �9 K -- Z -  1U~ ( A - M)  . 

Example 11.6.1. Consider the REVA with the following data: 

Step 1. 

A =  5 , B =  , 
8 

A = diag(9, 5, 1). 

- i .5970 0.7720 ~ {-0.2181~ 
UO .0995 -0.3410 / , U 1 -  / - 0 . 9 3 4 8 /  _ 

- .7960 -0 .5364]  \ 0.2804 J 

Z -  (-10.0499 -9.1543~ 
0 - 3  1934J " 

-0.0590 0.9859 -0.0111 ) 
Step 2. X - -0.7475 0.0215 -0.8993 . 

-0.6617 -0.1657 0.4371 

5.0427 0.0786 0.2640 ) 
Step 3. M = 0.9987 3.7999 5.7856 . 

0 . 1 3 9 9 2 . 0 0 5 1 6 . 1 5 7 5  

( 00 69 ) 
Step 4. K =  2.4501 0.5866 -0 .16 l l  " 

Verify: The eigenvalues of (A - B K) are 5, 9, 1. 
Cond2(K) = 6.3206. 

Some Implementational Details 

Implementation o f  Step 1: Decomposition of B in Step 1 of the algorithm amounts 
to the QR factorization of B. Once this decomposition is performed, constructions 
of the bases can be done either by QR factorization of ( u T ( A  - ~.j  I)) T or by 
computing its SVD. 

If QR factorization is used, then 

(UT (A - ~'J I ) )T  = ( ~Sj ' Sj)  ( Rj)O 

Thus, Sj and Sj are the matrices whose columns form the required orthonormal 
bases. 
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If SVD is used, then from 

u T ( A  -- )~j I)  -- Tj (Fj ,  0)(Sj,  Sj)  T, 

we see that the columns of Sj and  Sj form the required orthonormal bases. Here 
I"j is the diagonal matrix containing the singular values. 

Note: The QR decomposition, as we have seen, is more efficient than the SVD 
approach. 

Implementat ion o f  Step 2: Step 2 is the key step in the solution process.  
Kautsky et al. (1985) have proposed four methods to implement Step 2. Each of 
these four methods aims at minimizing a different measure v of the sensitivity. 

We present here only one (Method 0 in their paper), which is the simplest 
and most natural one. This method is designed to minimize the measure v2 = 
Cond2(X). 

First, we note that Cond2(X) will be minimized if each vector x j  E sj ,  j = 
1, 2 . . . . .  n is chosen such that the angle between x j and the space 

tj = <  Xi, i # j > 

is maximized for all j .  The symbol < Xk > denotes the space spanned by the 
vectors Xk. 

This can be done in an iterative fashion. Starting with an a r b i t r a r y  set of n 
independent vectors X = (Xl . . . . .  Xn), x j  E sj ,  j = 1 . . . . .  n, we replace each 
vector x j  by a new vector such that the angle to the current space tj is maximized 
for each j .  The QR method is again used to compute the new vectors as follows: 

Find yj by computing the QR decomposition of 

X j  = (Xl, x2 . . . . .  x j - 1 ,  X j§  . . . . .  Xn), 

- 

and then compute the new vector 

Sj T~ Sj y j  
X j =  T~ " 

II Sj yj 112 

Note that with this choice of x j ,  the condition cj - 1/I(vTxjI is minimized. The n 
steps of the process required to replace successively n vectors X l through Xn will 
constitute a sweep. 

At the end of each sweep, Cond2(X) is measured to see if it is acceptable; if 
not, a new iteration is started with the current X as the starting set. The iteration 
is continued until Cond2(X), after a full sweep of the powers (j  = 1, 2 . . . .  n) is 
less than some positive tolerance. 
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Implementations of Step 3 and Step 4: Implementations of Step 3 and Step 4 
are straightforward. M in Step 3 is computed by solving linear systems" X TM T = 
AT X T using Gaussian elimination with partial pivoting. 

K in Step 4 is computed by solving upper triangular systems" 

Z K  -- U~(A - M). 

Flop-count: Step 1" O(n3m) flops, Step 2" O(n 3) + O(n2m) flops per sweep, Step 
3" O(n 3) flops, and Step 4" O(mn 2) flops. 

MATCONTROL note: Algorithm 11.6.1 has been implemented in MATCON- 
TROL function polerob. It computes both the feedback matrix K and the 
transforming matrix X. 

Remarks on convergence of Algorithm 11.6.3 and the Tits-Yang Algorithm 

Each step of the above iteration amounts to rank-one updating of the matrix 
X such that the sensitivity of the eigenvalue ~,j is minimized. However, 
this does not necessarily mean that the overall conditioning is improved 
at each step. This is because the conditioning of the other eigenvalues 
(/~,i, i ~ j)  will be disturbed when the old vector Xj is replaced by the new 
vector. 
It was, thus, stated by Kautsky et al. (1985) that "the process does not 
necessarily converge to a fixed point." It, however, turned out to be the 
case of "slow convergence" only. Indeed, Tits and Yang (1996) later gave a 
proof of the convergence of the algorithm. Tits and Yang (1996) observed 
that this algorithm amounts to maximize, at each iteration, the determi- 
nant of the candidate eigenvector matrix X with respect to one of its 
column (subject to the constraints that it is still an eigenvector matrix of 
the closed-loop system). Based on this observation, Tits and Yang devel- 
oped a more efficient algorithm by maximizing det(X) with respect to two 
columns concurrently. The Tits-Yang algorithm can easily be extended 
to assign the eigenvalues with complex conjugate pairs. For details of 
these algorithms, we refer the readers to the paper by Tits and Yang 
(1996). There also exists software called robpole based on the Tits-Yang 
algorithm. 

MATLAB note: The MATLAB function place has implemented Algorithm 11.6.1. 
Given a controllable pair (A, B) and a vector p containing the eigenvalues to 

be assigned, K -- place(A, B, p) computes the feedback matrix K such that (A - 
B K) has the desired eigenvalues. The software robpole, based on the Tits-Yang 
algorithm, is available in SLICOT (see Section 11.10). 
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Some Properties of the Closed-Loop System 

The minimization of the condition number of the eigenvector matrix leads to some 
desirable robust properties of the closed-loop system. We state some of these 
properties below. The proofs can be found in Kautsky et al. (1985) or the readers 
can work out the proofs themselves. 

Theorem 11.6.2. 
(i) The gain matrix K obtained by Algorithm 11.6.1 satisfies the inequality 

IIKII2 __< (IIAl[2 + max I ) ~ j l C o n d 2 ( X ) ) / ( ~ m i n ( B ) )  - -  k' ,  
J 

where O'mi n (B) denotes the smallest singular value of  B. 
(ii) The transient response x(t)  satisfies 

IIx(t)ll2 ~ Cond2(X) ma.x{leXJtl}.llxoll2, 
J 

where x(O) - xo or in the discrete case 

IIx(k)ll2 ~ Cond2(X). m.ax{I)~jl ~. IIx0112}, 
J 

Example 11.6.2. For Example 11.6.1, we easily see that 

IIK[I2 = 3.2867, k ' =  12.8829. 

Thus, the result of part (i) of Theorem 11.6.2 is verified. 

Theorem 11.6.3. I f  the feedback matrix K assigns a set of  stable eigenvalues 
)~j, then the perturbed closed-loop matrix A - B K + A remains stable for  all 
perturbations A that satisfy 

][A][ 2 < min Crmin(SI -- n + B K )  = 3(K).  
s---jo) 

Furthermore, ]]6(K)[[ < min R e ( - X j ) / C o n d z ( X ) .  
J 

In the discrete-case, the closed-loop system remains stable for  perturbations 
A such that 

[[AI[2 5 min {sI - A + BK}  = A(F)  
s=exp(ico) 

and A(F)  > m!n(1 -I ;~jl) /Cond2(X).  
J 

Minimum-norm robust pole assignment: We stated in the previous section that 
the norm of the feedback matrix is another important factor that influences the 
sensitivity of closed-loop poles. Thus, it is important to consider this aspect of 
REVA as well. 
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The REVA with respect to minimizing the norm of the feedback matrix has been 
considered by Keel et al. (1985) and more recently by Varga (2000). 

Both algorithms are Sylvester equation based (see Exercise 11.11 for the state- 
ment of a Sylvester equation based EVA algorithm). The paper by Keel et al. 

(1985) addresses minimization of the performance index 

I - Trace (K x K ), 

whereas Varga (2000) considers the minimization of the performance index 

e~ 1-o~ 
J -- 2 (llxl12 + IIX-lllv) + 2 IIKII2 

Note that minimizing J as above for 0 < c~ < 1 amounts to simultaneous mini- 
mization of the norm of the feedback matrix K and of the condition number of the 
eigenvector matrix X (with respect to the Frobenius norm). 

For space limitations, we are not able to describe these algorithms here. The 
readers are referred to the papers by Keel et al. (1985) and Varga (2000). There 
also exists a software, based on the Varga algorithm, called "sylvplace" (available 
from Dr. Varga (E-mail: andras.varga@dlr.de). 

11.7 COMPARISON OF EFFICIENCY AND STABILITY: 
THE SINGLE-INPUT EVA PROBLEM 

Table 11.1: Comparison of efficiency and stability of a single-input EVA 
problem 

Method 

Efficiency: Flop-count (Approx- 
imate) This count includes 
transformation of (A, b) to the 
controller-Hessenberg form 

Numerical stability 
(backward stability 
and other features) 

The Recursive Algorithm 
(Algorithm 11.2.1) 

The RQ implementations of 
the recursive algorithm 
(Algorithms 11.2.2 and 
11.2.3) 
The explicit QR method 
(Miminis and Paige (1982)) 
The implicit QR method 
(Patel and Misra (1984)) 
The eigenvector method 
(Petkov et al. 1984; 
Exercise 11.8). 

~ n 3 

5n 3 

5n 3 

5n 3 

~3Qn 3 

Stability is not guaranteed, 
but the algorithm allows the 
users to monitor the stability. 
Reliable 

Stable 

Stable 

Stable 

Stable 
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11.8 C O M P A R I S O N  OF E F F I C I E N C Y  AND STABILITY: 
THE MULTI- INPUT EVA P R O B L E M  

Table 11.2: Comparison of efficiency and stability: the multi-input EVA problem 

Method 

Efficiency: Flop-count 
(approximate). These 
counts include transfor- 
mation of (A, B) to the 
controller-Hessenberg 
form 

Numerical stability 
(backward stability) and 
other features 

The recursive algorithm 
(Algorithm 11.3.1) 

The explicit QR algorithm 
(Section 11.3.2). 
The implicit QR algorithm 
(the multi-input version of 
the implicit single-input 
QR algorithm of Patel and 
Misra (1984)) 
The Schur method 
(Algorithm 11.3.3) 

19 3 
7 n 

9n 3 

9n 3 

30n 3 

The eigenvector method 43 Q n 3 
(Petkov et al. 1986; not 
described in the book) 

No formal round-off error 
analysis available. The 
algorithm is believed to be 
reliable 

Stable 

Stability not formally proven, 
but is believed to be stable 

Stability not formally proven, 
but is believed to be stable. 
The algorithm has an 
attractive feature that it can 
also be used for partial pole 
placement in the sense that it 
allows one to reassign only 
the "bad" eigenvalues, 
leaving the "good" ones 
unchanged 

Stable 

11.9 COMPARATIVE DISCUSSION OF VARIOUS M E T H O D S  
AND R E C O M M E N D A T I O N  

For the single-input problem: The recursive algorithm (Algori thm 11.2.1) is the 
fastest one proposed so far. It is also extremely simple to implement. Unfortunately, 
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the numerical stability of the algorithm cannot be guaranteed in all cases. The 
algorithm, however, allows the users to monitor the stability. Algorithm 11.2.1 is 
thus reliable. In a variety of test examples, this algorithm has done remarkably 
well, even for some ill-conditioned problems (e.g., see Example 11.2.3). The RQ 
implementation of the recursive algorithm (Algorithm 11.2.3), the explicit and 
implicit QR algorithms all have the same efficiency, and are numerically stable. 
The eigenvector algorithm (Exercise 11.8) if properly implemented, is also stable, 
but it is the most expensive one of all the single-input algorithms. 

One important thing to note here is that there exist RQ implementations of all the 
single-input algorithms mentioned in Table 11.1 (Arnold and Datta 1998). These 
RQ implementations are much easier to understand and implement on computers. 
We strongly recommend the use of RQ implementations of these algorithms. 

For the multi-input problem: The recursive algorithm (Algorithm 11.3.1) 
is again the fastest algorithm; however, no round-off stability analysis of this 
algorithm has been done yet. The explicit QR algorithm described in Section 
11.3.2 is stable. The properly implemented eigenvector algorithm due to Petkov 
et al. (1986), is also stable but is more expensive than the explicit QR algorithm. 
The Schur algorithm (Algorithm 11.3.3) is the most expensive one. It is 
believed to be numerically stable. An important feature of this algorithm is 
that it can be used for partial pole assignment in the sense that it offers a 
choice to the user to place only the "bad" eigenvalues, leaving the "good" ones 
unchanged. 

The REVA algorithm (Algorithm 11.6.1) exploits the freedom offered by 
the problem to minimize the conditioning of the eigenvector matrix which is a 
major factor for the sensitivity of the closed-loop poles. However, when a well- 
conditioned eigenvector matrix does not exist, the algorithm may give inaccurate 
results. When the eigenvector matrix is ill-conditioned, it may be possible to obtain 
more accurate results using other methods. 

Based on the above observations, it is recommended that for the single-input 
problem, the recursive algorithm (Algorithm 11.2.1) be tried first. In case of 
possible ill-conditioning of the matrix L, its RQ formulation (Algorithm 11.2.2) 
should be used. 

For the multi-input problem, the multi-input version of the recursive algorithm 
(Algorithm 11.3.1) should be tried first. If the algorithm appears to be unstable 
(as indicated by the condition number of the matrix L), the explicit QR algorithm 
(Section 11.3.1) is to be used. 

It should, however, be noted that Algorithm 11.3.1 and the explicit QR algorithm, 
as stated here, might give complex feedback matrix. There now exists a modified 
version of Algorithm 11.3.1 (Carvalho and Datta 2001) that avoids complex arith- 
metic and this modified version has been implemented in MATCONTROL function 
polerem. 
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For REVA, the choices are either Algorithm 11.6.1 or the Tits-Yang Algorithm. 
For PEVA, the choices are either the Schur algorithm (Algorithm 11.3.3), or the 
Sylvester equation algorithm (Algorithm 11.3.4). Algorithm 11.6.1 does not handle 
complex EVA as such, but its implementation in MATLAB function 'place' does in 
an ad hoc fashion. Numerical experimental results suggest the Tits-Yang algorithm 
"typically produce more robust design" than that constructed by Algorithm 11.6.1. 
For partial pole placement, Algorithm 11.3.4 seems to be very efficient and not 
computationally intensive. 

11.10 S O M E  S E L E C T E D  S O F T W A R E  

11.10.1 MATLAB Control System Toolbox 

Classical design tools 
acker SISO pole placement 

place MIMO pole placement. 

11.10.2 MATCONTROL 

POLERCS 
POLEQRS 

POLERQS 

POLERCM 
POLERCX 

POLEQRM 
POLESCH 
POLEROB 

Single-input pole placement using the recursive algorithm 
Single-input pole placement using the QR version of the recursive 
algorithm 
Single-input pole placement using RQ version of the recursive 
algorithm 
Multi-input pole placement using the recursive algorithm 
Multi-input pole placement using the modified recursive 
algorithm that avoids complex arithmetic and complex feedback 
Multi-input pole placement using the explicit QR algorithm 

Multi-input pole placement using the Schur decomposition 
Robust pole placement. 

11.10.3 CSP-ANM 

Pole assignment 

�9 The recursive algorithm is implemented as StateFeedbackGains 
[system, poles, Method -+ Recursive]. 

�9 The explicit QR algorithm is implemented as StateFeedbackGains 
[system, poles, Method -+ QRDecompos it ion]. 

�9 The Schur method is implemented as StateFeedbackGains [system, 
poles, Method -+ SchurDecomposition]. 
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�9 The RQ implementation of the recursive single-input algorithm is 
implemented as StateFeedbackGains [system, poles, Method -+ 

R e c u r s  iveRQDe compo s i t i on]. 
�9 The implicit single-input RQ algorithm is implemented as S t a t e F e e d -  

b a c k G a i n s  [system, poles, Method  -+ 
Imp 1 i c i t RQDe compo s i t i on]. 

11.10.4 SLICOT 

Eigenvalue/eigenvector assignment 

SB01BD Pole assignment for a given matrix pair (A, B) 
SB01DD Eigenstructure assignment for a controllable matrix pair (A, B) in 

orthogonal canonical form 
SB01MD State feedback matrix of a time-invariant single-input system 
ROBPOLE Robust Pole Assignment (Additional function added in 2003). 

11.10.5 MATRIXx 

Purpose: Calculate state feedback gains via pole placement for single-input 
continuous-time or discrete-time systems. 
Syntax: KC -- POLEPLACE (A, B, POLES) ...controller design 

KE -- POLEPLACE (A', B', POLES) ...estimator design 

11.10.6 POLEPACK 

A collection of MATLAB programs for EVA, developed by G.S. Miminis (1991). 
Available on NETLIB.  

11.11 S U M M A R Y  A N D  R E V I E W  

Statement of the EVA Problem 

Given a pair of matrices (A, B), and the set S = {)~1 . . . . .  )~n},  closed under 
complex conjugation, find a matrix K such that f2 (A - B K) - S. 

Here f2 (M) denotes the spectrum of M. 
In the single-input case, the problem reduces to that of finding a row vector f x  

such that 

(A - b f  T) -- S. 
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Existence and Uniqueness 

The EVA problem has a solution if and only if (A, B) is controllable. In the 
single-input case, the feedback vector, when it exists, is unique. In the multi-input 
case, when there exists a feedback matrix, there are many. Therefore, the existing 
freedom can be exploited to improve the conditioning of the solution and of the 
closed-loop eigenvectors. 

Numerical Methods 

There are many methods for the EVA problem. Only a few have been described 
here. These include: 

�9 Recursive algorithms (Algorithm 11.2.1 for the single-input problem and 
Algorithm 11.3.1 for the multi-input problem). 

�9 QR-type algorithms (Algorithms 11.2.2, 11.2.3, and those described in 
Miminis  and Paige (1982), and Patel and Misra (1984). For the single- 
input problem and the explicit QR method described in Section 11.3.2 for 
the multi-input problem). 

�9 The Schur algorithm (Algorithm 11.3.3) for the multi-input problem. 
�9 PEVA (Algorithm 11.3.4). 

Efficiency and Numerical Stability 

The recursive algorithms are the most efficient algorithms. The computer imple- 
mentations of these algorithms are extremely simple. The algorithms, however, do 
not have guaranteed numerical stability, except for the RQ version of the single- 
input recursive algorithm, which has been proved to be numerically stable (Arnold 
and Datta 1998). 

In the single-input case, it has been proved (see Arnold and Datta (1998)), 
by forward round-off error analysis, that the stability of the recursive algorithm 
(Algorithm 11.2.1) can be monitored and it is possible for the user to know exactly 
when the algorithm starts becoming problematic. It is thus reliable. Similar results 
are believed to hold for the multi-input recursive algorithm as well. But no formal 
analysis in the multi-input case has yet been done. 

The QR-type algorithms for single-input problems all have the same efficiency 
and are numerically stable. 

For the multi-input problem, the Schur Algorithm (Algorithm 11.3.3) is the 
most expensive one. However, it has an important feature, namely, it allows one 
to place only the "bad" eigenvalues, leaving the "good" ones unchanged. 

The explicit QR algorithm (Section 11.3.2) and the multi-input version of the 
single-input implicit QR algorithm (not described in this book) have the same 
efficiency. The explicit QR algorithm has been proven to be stable and the implicit 
QR algorithm is believed to be stable as well. 
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Explicit Solutions 

An explicit expression for the unique feedback vector for the single-input EVA 
problem has been given using the recursive algorithm (Algorithm 11.2.1). This 
formula is 

1 
f - - (  HT - )~1 I)(  HT - -  ) ~ 2 / ) ' ' '  (H T -- )~nI)en, 

13/ 

where H = (hi j) is the Hessenberg matrix of the controller-Hessenberg form of 

the pair (A, b) and ot - I-In~ hi+l,i. In the multi-input case, the expression is 
rather complicated (see Arnold (1993)). 

Conditioning of the Feedback Problem: From the explicit expression of the 
feedback vector f of the single-input EVA problem, it is clear that the Hessenberg 
single-input feedback problem is essentially a polynomial evaluation ~b (H) at an 
unreduced Hessenberg matrix, where 4)(x) = ()~ - ) ~ 1 ) ( ) ~  - ) ~ 2 )  �9 �9 �9 ( ) ~  - ~ , n )  is the 
characteristic polynomial of the closed-loop matrix. 

A result on the Frechet derivative D~b (H) is first given in Ph.D. dissertation of 
Arnold (1993) and the condition numbers for the feedback problem are then defined 
using this derivative. Next, a condition number estimator for the problem is stated. 
It worked well on test examples. This estimator never underestimated the error 
and overestimated the error by less than 2 digits, in all 100 test examples of sizes 
varying from 10 to 50, both for ill-conditioned and well-conditioned problems. 

In the multi-output case, Theorem 11.4.2 gives the perturbation bound for 
the feedback matrix from which the absolute and relative condition numbers are 
defined (Section 11.4.3). 

Conditioning of the Closed-Loop Eigenvalues 

The major factors responsible for the sensitivity of the closed-loop eigenvalues have 
been identified in Section 11.5. These factors are: the condition number of the 
eigenvector matrix of the closed-loop system, the distance to uncontrollability 
and the distance between the open-loop and the closed-loop eigenvalues, the 
conditioning of the feedback problem, and the norm of the feedback matrix. 
The most important of them is the condition number of the eigenvector matrix. 

Robust Eigenvalue Assignment 

Given the pair (A, B) and the matrix A = diag()~l . . . . .  )~n), the problem is to find 
a nonsingular matrix X, and a matrix K satisfying 

( A -  B K ) X  = X A  

such that Cond2(X) is minimum. In view of the last sentence of the preceding 
paragraph, the REVA problem with respect to minimizing the condition number 
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of the eigenvector matrix is a very important practical problem. An algorithm 
(Algorithm 11.6.1) due to Kautsky et al. (1985) is given in Section 11.6. The 
algorithm requires constructions of orthonormal bases for a certain space and for 
its complement. The QR factorization or the SVD can be used for this purpose. 
An analysis of convergence and a more improved version of this algorithm can be 
found in Tits and Yang (1996). 

Algorithm for Minimizing Feedback Norm 

Our discussions on the conditioning of the closed-loop eigenvalues (Section 11.5) 
show that it is also important to have algorithms that minimize the norm of the 
feedback matrix. 

For such algorithms, see Keel et al. (1985) and Varga (2000). 

11.12 C H A P T E R  N O T E S  A N D  F U R T H E R  R E A D I N G  

Many algorithms have been developed for solving the EVA by state feedback. A 
good account of these algorithms can be found in the recent book by Xu (1998). 

The earlier algorithms, based on reduction to controller-canonical forms, turn 
out to be numerically unstable. For a reference of some of these earlier algorithms, 
see Miminis and Paige (1982, 1988). 

For a comprehensive reference of the Hessenberg or controller-Hessenberg 
based algorithms, which are more numerically reliable, see the recent paper of 
Arnold and Datta (1998). For a matrix equation based algorithm for EVA, see 
Bhattacharyya and DeSouza (1982). For robust eigenvalue and eigenstructure 
assignment algorithms, see Cavin and Bhattacharyya (1983), Kautsky et al. (1985),  

Byers and Nash (1989), and Tits and Yang (1996). For REVA by output feedback, 
see Chu, et al. (1984) and references therein. The other algorithms include there 
is Tsui (1986), Valasek and Olgac (1995a, 1995b). 

For algorithms that minimize the norm of the feedback matrix, see Keel et al. 

(1985) and Varga (2000). The EVA problem by output feedback is a difficult prob- 
lem and only a few algorithms are available. See Misra and Patel (1989) for output 
feedback algorithms. For the EVA and eigenstructure algorithms for descriptor 
systems (not discussed in this chapter), see Fletcher et al. (1986), Chu (1988), and 
Kautsky et al. (1989),  Varga (2000). For partial pole-assignment algorithms, see 
Varga (1981), Saad (1988), and Datta and Saad (1991), Datta and Sarkissian (2000). 

For round-off error analysis of various algorithms for EVA, see Cox and Moss 
(1989, 1992), Arnold and Datta (1998), and Miminis and Paige (1988). 

The perturbation analysis for the single-input feedback problem was considered 
by Arnold (1993) and our discussion in the multi-input feedback problem has been 
taken from Sun (1996). 
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For discussions on conditioning of the EVA problem, see He e t  al .  (1995), 

Mehrmann and Xu (1996, 1997, 1998), Konstantinov and Petkov (1993), Calvetti 
e t  a l .  ( 1 9 9 9 ) .  

For an extension of the single-input recursive algorithm to assigning Jordan 

canonical form (JCF), companion and Hessenberg forms, etc., see Datta and Datta 

(1990). For parallel algorithms for the EVA problem, see Bru e t  al .  (1994c), 

Coutinho e t  al .  (1995), Datta and Datta (1986), Datta (1991), Baksi e t  al .  (1994). 

Now, there also exists a block algorithm (Carvalho and Datta 2001) for the multi- 

input EVA. This  block a lgor i thm,  besides being suitable for high-performance 
comput ing ,  is g u a r a n t e e d  to give a real  feedback  matrix. 

Exercises 

11.1 

11.2 

Modify both the single-input (Algorithm 11.2.1) so that the use of complex 
arithmetic can be avoided (consult Carvalho and Datta (2001)). 
S i n g l e - i n p u t  p o l e  p l a c e m e n t  via l inear  sys tems .  Consider the following algorithm 
(Datta and Datta (1986)) for the single-input Hessenberg problem (H,/~), where 
H is an unreduced upper Hessenberg matrix and/~ - (or, 0 , . . .  , 0)T, ot # 0. Let 
{#i }in=l be the eigenvalues to be assigned. 
Step 1. Solve the n • n Hessenberg systems: 

( H  - ~ i  I ) t i  = [~, i = 1, 2 . . . . .  n 

11.3 

Step 2. Solve for d: 

T T d  = r, 

where T = (tl, t 2 . . . . .  tn) and r = (or, ot . . . . .  or) T. 

Step 3. Compute fY = 1 dy" 
O/ 

(a) Give a proof of this algorithm, thatis, p rove tha t~ (H- /~ f  T) -- {#1 . . . . .  #n}; 
making necessary assumptions. Do an illustrative example. 
(Hint: Take A = diag(#l, #2 . . . . .  #n) in the proof of Algorithm 11.2.1 and 
follow the lines of the proof there.) 

(b) Prove that T in Step 2 is nonsingular if the entries in the set {# 1, #2 . . . . .  ~n } 
are pairwise distinct and none of them is an eigenvalue of H. 

Consider the following modification of Algorithm in Exercise 11.2, proposed by 
Bru  et al. (1994a): 

Step 1. For i = 1, 2 . . . . .  n do 
If #i i s  not in the spectrum of H, then solve the system 

( H  - # i  I ) t i  = [~. 

Else solve the system ( H  - ~ i  I ) t i  = O. 

Step 2. Define the vector u = (Ul . . . . .  Un) T as follows: 
u i - 1, if #i is an eigenvalue of H, 
u i = 0, otherwise. 
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11.4 

11.5 

11.6 

11.7 

11.8 

11.9 

Step 3. Solve for f :  
f T T  = u  T, 

where T -- (tl, t2 . . . . .  tn). 
(a) Give a proof of this algorithm assuming that the pair (H,/~) is controllable 

and that the numbers in the set {# 1, #2 . . . . .  #n } are closed under complex 
conjugation and pairwise distinct. Do an illustrative example. 

(b) Give an example to show that the assumption that #i ,  i = 1 . . . . .  n are pairwise 
distinct, cannot be relaxed. 

Note: Bru et al. (1994a) have given a more general algorithm which can assign 
multiple eigenvalues (algorithm III in that paper. 
Assigning canonical forms (Datta and Datta 1990). Extend Algorithm 11.2.1 to the 
problems of assigning the following canonical forms: a companion matrix, an unre- 
duced upper Hessenberg matrix, a Jordan matrix with no two Jordan blocks having 
the same eigenvalue. (Hint: Follow the line of the development of Algorithm 11.2.1 
replacing A by the appropriate canonical form to be assigned). Do illustrative 
examples. 
Multi-input pole-placement via Linear systems (Datta 1989). Develop a multi-input 
version of the Algorithm in Exercise 11.2, making necessary assumptions. (See Tsui 
(1986) and Bru et al. (1994b).) 
Give a proof of Algorithm 11.2.3 (the RQ formulation of Algorithm 11.2.1). Consult 
Arnold and Datta (1998), if necessary. 
Show that the explicit formula for the single-input pole assignment problem 
(Formula 11.2.9) is a Hessenberg-form of the Ackermann's formula. 
Eigenvector method for the pole-placement (Petkov et al. 1984) 
(a) Given the single-input controller-Hessenberg pair (H,/~), show that it is possi- 

ble to find an eigenvector ~, corresponding to an eigenvalue # to be assigned, 
for the closed-loop matrix H - b f  T, without knowing the feedback vector f .  

(b) Le tA = diag(#l ,  #2 . . . . .  #n)bethematr ixof theeigenvalues tobeass igned,  
and V be the eigenvector matrix and v (1) be the first row of V. Assume that 
#i ,  i - 1 . . . . .  n are all distinct. Prove that the feedback vector f can be 
computed from 

1 (1) V-1 f -  - ( h  1 - v  A ), 
Ol 

where h 1 is the first row of H, and o~ is the 1st entry of/~. 
(c) What are the possible numerical difficulties of the above method for computing 

f ?  Give an example to illustrate these difficulties. 
(d) Following the same procedure as in the RQ formulation of Algor i thm 11.2.1, 

work out an RQ version of the above eigenvector method. (Consult Arnold 
and Datta (1998), if necessary.) Compare this RQ version with the above 
formulation with respect to flop-count and numerical effectiveness. 

Modify the Schur algorithm (Algori thm 11.3.3) for the multi-input problem to 
handle the case when the complex numbers in the matrix F are not so ordered that 
the ordering agrees with the diagonal structure of the matrix A2. Work out a simple 
example with this modified Schur method. 



462 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS 

11.10 Write MATLAB codes to implement the Algorithms 11.2.1 and 11.2.3 and those in 
Exercises 11.2, 11.3 and 11.8, and then using these programs, make a comparative 
study with respect to CPU time, flop-count, the norm of the feedback vector and 
the largest error-norm between the closed-loop and open-loop eigenvalues. Use 
randomly generated matrices. 

11.11 EVA via Sylvester matrix equation. The following algorithm by Bhattacharyya and 
DeSouza (1982) solves the multi-input EVA problem: 

Step 1. Pick a matrix G arbitrarily. 

Step 2. Solve the Sylvester equation A X  - X f t  = - B G ,  where A is a matrix 
having the spectrum {)~1 . . . . .  ~n } to be assigned, for a full-rank solution X. 

If the solution matrix X does not have full rank, return to Step 1 and pick another G. 

Step 3. Compute the feedback matrix F by solving F X  = G. 

Give a proof of the algorithm and construct an example to illustrate the algorithm. 
(For the conditions on the existence of full-rank solution of the Sylvester equation, 
see Chapter 12 and the paper by DeSouza and Bhattacharyya (1981)). 

11.12 Construct an example to demonstrate that even if the feedback (vector) for the single- 
input problem is computed reasonably accurately, the closed-loop eigenvalues may 
still differ from those to be assigned. 

11.13 Sensitivity analysis of  the single-input pole-placement problem via Cauchy matrix 
(Mehmann and Xu 1998; Calvetti et al. 1999). Let A = diag(~,l, ~,2 . . . . .  )~n) with 
)~i ~= ~.j for i # j .  Define e -- (1, 1 . . . . .  1) T. Let S - {#1,/z2 . . . . .  /Zn}, the 
eigenvalue set to be assigned; # i ' s  are distinct and none of them is in the spectrum 
of A. 
(a) Prove that the vector fe  definedby fe  - C h T e i s s u c h  that f 2 ( A - e f  T) = S, 

where Ch = (cij) is the Cauchy matrix: cij = 1/(~. i - # j ) .  
(b) Show that Cond2(Ch) is the spectral condition number of the closed-loop 

matrix A - e f  T.  
(c) Using the result in (a) find an expression for the feedback vector f such that 

S2(A - b f  T) = S, assuming that A is diagonalizable. 
(d) Give a bound of the condition number of the eigenvector matrix of the closed- 

loop matrix A - b f  T in terms of the condition number of Ch, the condition 
number of the eigenvector matrix X of A, and the minimum and maximum 
entries of the vector X-1 b. 

(e) Give a bound of the feedback vector f in terms of the norm of fe  and the 
norm of the inverse of the matrix X R, where R = diag(/~l,/~2 . . . . .  /~n)T, and 
x - l b  -- (/~1,/~2 . . . . .  /~n) T. 

(f) From the bounds obtained in (d) and (e), verify the validity of some of the 
factors responsible for the ill-conditioning of the single-input EVA problem, 
established in Section 11.5. 

(g) Work out an example to illustrate (a)-(f). 
11.14 From the expression (11.6.4) of the feedback matrix K, prove that if the condition 

of the eigenvector matrix is minimized, then a bound of the norm of the feedback 
matrix K is also minimized. 
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Give an example to show that this does not necessarily mean that the resulting 
feedback matrix will have the minimal norm. 

11.15 (a) Perform a numerical experiment to demonstrate the slow convergence of 
Algorithm 11.6.1. 

(b) Using MATCONTROL function polerob and robpole (from SLICOT), make 
a comparative study between Algorithms 11.6.1, and the Tits-Yang algorithm 
with respect to number of iterations, Cond2(X), and [[Kll2. Use data of 
Example 11.6.1 and randomly generated matrices. 

11.16 D e a d b e a t  control�9 Given the discrete-system: 

x i +  1 - A x i  + B u i ,  

the problem of "deadbeat" control is the problem of finding a state feedback u i = 

- K x  i + v i such that the resulting system: 

x i +  1 : ( A -  B K ) x  i + v i 

has the property that (A - B K)P = 0 for some p < n and rank(B) > 1. 
The solution of the homogeneous part of the closed-loop system then "dies out" 

after p steps; and that is why the name deadbeat  control. 

A numerically reliable algorithm for the deadbeat control has been provided by 
Van Dooren (1984). The basic idea of the algorithm is as follows: 

B1 
0 

H = ( H i j  ), [~ --  . 

o 

is the controller-Hessenberg pair of (A, B), then the solution of the problem is 
equivalent to finding a feedback matrix K such that 

v T ( H - B K ) V  - 

t 0  

0 

~ 0  

H12 . . . . . . . . .  H l p  

H23 . . . . . .  HZp 

�9 . Hp_l ,  p 
0 

for some orthogonal matrix V. The form on the right-hand side is called the 
61; ~ deadbeat  form. 
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Note that in this case (H - B K)P = 0. Van Dooren's algorithm finds K recursively 
in p steps. At the end of the ith step, one obtains the matrices V y and K i such that 

,) vT  ( H - B Ki ) Vi : H~ ' 

where the matrix H~ is in "deadbeat" form again, and the pair (H~, /~)" V~ T/~ -- 

( ~ ! ) ,  is still in block-Hessenberg form. 

Develop a scheme for obtaining Vi and hence complete the algorithm for 
"deadbeat" control problem. (Consult Van Dooren's paper as necessary). 

Work out an illustrative example. 
11.17 Using random matrices A of order n = 5, 10, 15, 20, and 30, and appropriate 

input matrices B, make a comparative study between Algorithm 11.3.1, one in 
Section 11.3.2, and those in Exercises 11.5 and 11.10 with respect to CPU time, flop- 
count, accuracy of the closed-loop eigenvalues, and norms of feedback matrices. 

Research problems 

11.1 Carry out a round-off error analysis of the implicit QR algorithm of Patel and 
Misra (1984) to establish the numerical stability of the algorithm. 

11.2 Carry out a round-off error analysis of the recursive multi-input algorithm of 
Arnold and Datta (1990) (Algorithm 11.3.1). The algorithm is believed to be 
reliable in practice. Prove or disprove this using the results of your analysis. 

11.3 An explicit expression for the family of feedback matrices for the multi-input 
EVA problem has been given in Arnold (1993). Use this expression to establish 
the fact that the sensitivities of the closed-loop eigenvalues depend upon the 
nearness of the system to an uncontrollable system, the separation of the open- 
loop and the closed-loop eigenvalues, and the ill-conditioning of the closed- 
loop eigenvector matrix. 

11.4 Work out an RQ version of the recursive algorithm for the multi-input EVA 
problem by Arnold and Datta (1990) (Algorithm 11.3.1). 

11.5 Carry out a round-off error analysis of the Schur algorithm of Varga 
(Algorithm 11.3.3) to establish the numerical stability of the algorithm. 

11.6 In the QR algorithm of Miminis and Paige (1988) for the multi-input EVA 
problem, explicit shifting is used for the allocation of each eigenvalue. Work 
out an implicit version of this algorithm. 
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C H A P T E R  1 2  

STATE ESTIMATION: OBSERVER 
AND THE KALMAN FILTER 

12.1 INTRODUCTION 

We have seen in Chapter 10 that all the state-feedback problems, such as feedback 
stabilization, eigenvalue and eigenstructure assignment, the LQR and the state- 
feedback H~-control problems, etc., require that the state vector x(t) should be 
explicitly available. However, in most practical situations, the states are not fully 
accessible and but, however, the designer knows the output y(t) and the input 
u(t). The unavailable states, somehow, need to be estimated accurately from the 
knowledge of the matrices A, B, and C, the output vector y(t), and the input 
vector u (t). 

In this chapter, we discuss how the states of a continuous-time system can be 
estimated. The discussions here apply equally to the discrete-time systems, 
possibly with some minor changes. So we concentrate on the continuous-time 
case only. 

We describe two common procedures for state estimation: one, via eigen- 
value assignment (EVA) and the other, via solution of the Sylvester-observer 
equation. 

469 
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The Hessenberg-Schur method for the Sylvester equation, described in 
Chapter 8, can be used for numerical solution of the Sylvester-observer equation. 
We, however, describe two other numerical methods (Algorithms 12.7.1 and 
12.7.2), especially designed for this equation. Both are based on the reduction of 
the observable pair (A, C) to the observer-Hessenberg pair, described in Chapter 6 
and are recursive in nature. Algor i t hm  12.7.2 is a b lock-general i za t ion  o f  A lgor i t hm  

12.7.1 and  seems  to be a little more  efficient than the later. Algorithm 12.7.2 is 
also suitable for high performance computing. Both seem to have good numerical 
properties. 

The chapter concludes with a well-known procedure developed by Kalman 
(Kalman filtering) for optimal estimation of the states of a stochastic system, 
followed by a brief discussion on the Linear Quadratic Gaussian (LQG) problem 
that deals with optimization of a performance measure for a stochastic system. 

12.2 STATE ESTIMATION VIA EIGENVALUE ASSIGNMENT 

Consider the linear time-invariant continuous-time system: 

k ( t )  -- A x ( t )  § B u ( t ) ,  

y ( t )  -- C x ( t ) ,  (12.2.1) 

where A ~ IR nxn,  B ~ I[~ n x m ,  and C c ]t~ r xn. 

Let ~(t) be an estimate of the state vector x ( t ) .  Obviously, we would like to 
construct the vector ~(t) in such a way that the error e( t )  - x ( t )  - ~ ( t )  approaches 
zero as fast as possible, for all initial states x(0) and for every input u( t ) ) .  Suppose, 
we design a dynamical system using our available resources" the output variable 
y ( t ) ,  input variable u( t ) ,  and the matrices A, B, C, satisfying 

~( t )  - (A  - K C ) ~ ( t )  § K y ( t )  § B u ( t ) ,  (12.2.2) 

where the matrix K is to be constructed. Then, 

b(t)  - 2 ( t )  - . ~ ( t )  - A x ( t )  § B u ( t )  - A ~ ( t )  § K C ~ ( t )  - K y ( t )  - B u ( t ) ,  

-- (A  - K C ) x ( t )  - (A  - K C ) ~ ( t )  -- (A  - K C ) e ( t ) .  

The solution of this system of differential equations is e( t )  - e ( A - K C ) t  e(0) ,  

which shows that the rate at which the entries of the error vector e( t )  approach 
zero can be controlled by the eigenvalues of the matrix A - K C. For example, if 
all the eigenvalues of A - K C have negative real parts less than -or, then the error 
e( t )  will approach zero faster than e - a t  e (O) .  

The above discussion shows that the problem of state estimation can be 
solved by finding a matrix K such that the matrix A - KC has a suitable 
desired spectrum. 
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Note that if (A, C) is observable, then such K always exists because, the observ- 
ability of (A, C) implies the controllability of (A T, cT). Also, if (A T, C T) is 
controllable, then by the EVA Theorem (Theorem 10.4.1), there always exists a 
matrix L such that (AT + C T L) has an arbitrary spectrum. We can therefore choose 
K -- - L T  so that the eigenvalues of AT _ C T K T (which are the same as those of 
A - K C) will be arbitrarily assigned. 

T h e o r e m  12.2.1. I f  (A,  C) is observable, then the states x ( t )  o f  the system 
(12.2.1) can be estimated by 

~( t )  - (a  - K C ) ~ ( t )  + K y ( t )  + Bu( t ) ,  (12.2.3) 

where K is constructed such that A - K C is a stable matrix. The error e(t)  = 
x ( t )  - ~( t )  is governed by 

b(t) = ( A -  K C ) e ( t )  

and e(t ) --+ 0 as t --+ ~ .  

12.3 STATE ESTIMATION VIA SYLVESTER EQUATION 

We now present another approach for state estimation. Knowing A, B, C, u( t)  and 
y( t ) ,  let's construct the system 

~(t) = Fz ( t )  + Gy( t )  + Pu( t ) ,  (12.3.1) 

where F is n • n, G is n • r, and P is n • m, in such a way that for some constant 
n • n nonsingular matrix X, the error vector e(t)  = z( t )  - X x ( t )  --~ 0 for all 
x(0), z(0), and for every input u(t) .  The vector z( t )  will then be an estimate of 
X x ( t ) .  The system (12.3.1) is then said to be the state observer for the system 
(12.2.1). The idea originated with D. Luenberger (1964) and is hence referred to 
in control theory as the L u e n b e r g e r  observer.  

We now show that the system (12.3.1) will be a state observer if the matrices 
X, F, G, and P satisfy certain requirements. 

T h e o r e m  12.3.1. Observer Theorem. The system (12.3.1) is a state-observer 
o f  the system (12.2.1), that is, z ( t )  is an estimate o f  X x ( t )  in the sense that the 

error e(t)  = z( t )  - X x ( t )  --~ 0 as t --+ cx~ for  any initial conditions x(O), z(O), 
and u(t)  i f  

(i) X A -  F X  = GC, 
(ii) P = X B ,  

(iii) F is stable. 

Proof. We need to show that if the conditions (i)-(iii) are satisfied, then 
e(t)  ~ 0 as t --+ 0. 
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From e(t) -- z(t)  - Xx ( t ) ,  we have 

b(t) - ~(t) - XYc(t), 

-- Fz( t )  + Gy( t )  + Pu( t )  - X ( A x ( t )  + Bu( t ) ) .  (12.3.2) 

Substituting y(t)  - Cx( t )  while adding and subtracting F X x ( t )  in Eq. (12.3.2), 
we get 

b(t) - Fe( t )  + ( F X  - X A  + G C ) x ( t )  + (P - X B ) u ( t ) .  

If the conditions (i) and (ii) are satisfied, then we obtain 

b ( t ) -  Fe( t ) .  

If, in addition, the condition (iii) is satisfied, then clearly e(t) --+ 0 as t -+ oo, for 
any x(0), z(0), and u(t). 

Hence z(t)  is an estimate of X x ( t ) .  II 

The Sylvester-Observer Equation 

Definition 12.3.1. The matrix equation 

X A -  F X  -- GC, (12.3.3) 

where A and C are given and X, F, and G are to be found will be called the 
Sylvester-observer equation. 

The name "Sylvester-observer equation" is justified, because the equation 
arises in construction of an observer and it is a variation of the classical Sylvester 
equation (discussed in Chapter 8): 

X A  + T X  -- R, 

where A, T, and R are given and X is the only unknown matrix. 
Theorem 12.3.1 suggests the following method for the observer design. 

Algorithm 12.3.1. Full-Order Observer Design via Sylvester-Observer 

Equation 

Inputs. The system matrices A, B, and C of  order n x n, n • m, and r • n, 
respectively. 

Output.  An estimate ~(t)  o f  the state vector x(t) .  

Assumptions. (A, C) is observable. 

Step 1. Find a nonsingular solution X of  the Sylvester-observer equation 

(12.3.3) by choosing F as a stable matrix and choosing G in such a way that 

the resulting solution X is nonsingular. 

Step 2. Compute P = X B. 
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Step 3. Construct the observer z(t) by solving the system of differential 
equations: 

~(t) = Fz(t) + Gy(t)  + Pu(t),  z(O) = zo. 

Step 4. Find an estimate s of x(t): Sc(t) = x - l z ( t ) .  

Example 12.3.1. 

(11) 
A - -  1 ' B - -  , C - - ( 1  0). 

(A, C) is observable. 

Step 1. Choose G - ( ~ ) ,  F - diag(-1, -3) .  

Then a solution X of X A -  FX = GC is 

(~.6667 -0.3333] 
X = .8000 -0.2000] 

(computed by MATLAB function lyap). The matrix X is nonsingular. 
Step 2. 

P - X B _  "-(0.6667] 
\o .8oooj 

Step 3. An estimate ~(t) of x(t) is 

~ ( t ) = X - l z ( t ) - ( - 1 6  5 _  

where 

is given by 

2.5~ (Zl(t)~ _ (--1.5Zl-]-2.5Z2~ 
5 }  ~z2(t)J ~, --6Zl -+- 5Z2 ~]' 

z ( t ) - -  ~,z2(t)J 

('0 i(t) -- _ z(t) + y(t) + ko.8oooj u(t), z(O) = zo. 

Comparison of the state and estimate for Example 12.3.1: In Figure 12.1, we 
compare the estimate ~(t), obtained by Algorithm 12.3.1, with the state x(t),  
found by directly solving Eq. (12.2.1) with u(t) as the unit step function, and 
x(0) -- (6, 0) T. The differential equation in Step 3 was solved with z(0) = 0. 
The MATLAB function ode23 was used to solve both the equations. The solid line 
corresponds to the exact states and the dotted line corresponds to the estimated state. 
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F I G U R E  12.1: The (a) first and (b) second variables of the state x(t) and 

estimate } ( t )  for Example 12.3.1. 

12.4 R E D U C E D - O R D E R  STATE E S T I M A T I O N  

In this section, we show that if the r x n output matrix C has full rank r, then the 

problem of finding a full nth order state est imator for the system (12.2.1) can be 

reduced to the problem of finding an (n - r ) th  order estimator. 

Such an estimator is known as a r e d u c e d - o r d e r  e s t imator .  Once a reduced- 

order est imator of order n - r rather than n is constructed, the full states of 

the original system can be obtained from the (n - r) state variable of this 

observer together with the r variables available from measurements.  As in the 

ful l-dimensional  case, we will describe two approaches for finding a reduced-order  

estimator. We start with the E V A  a p p r o a c h .  

For the sake of convenience, in the next two sections, we will denote the vector 

x(t) and its derivative ~( t )  just  by x and :~. Similarly, for the other vectors. 

12.4.1 Reduced-Order State Estimation via Eigenvalue Assignment 

Assume as usual that A is an n x n matrix, B is an n x m matrix (m ___ n), C is an 

r x n matrix with full rank (r < n), and (A, C) is observable. 
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Since C has full rank, we can choose an (n - r) x n matrix R such that the 

matrix S -- ( C )  is nonsingular. 

Introducing the new variable 2 -- Sx ,  we can then transform the system 
(12.2.1) to 

x - -  S A S - 1 2  + S B u ,  

y -- C S - 1 2  -- (Ir, 0)2. 
(12.4.1) 

Let's now partition 

A - S A S - 1 -  (AllI~,/~21 /{22 ' /~12)  / ~ _ S B _  ( J~ l )  J~2 ' (12.4.2) 

21)  , where ,411 and 21 are, respectively, r x r and r x 1. Then we have and 2 - 22 

( ~ : )  _ (AA_-:: A12~ Xl 

( X l )  -- 21. 
y -- (/r, 0) 22 

That is, 

-- Xl -- AllXl n t- A1222 + J~lU, (12.4.3) 

x2 -- A21.~l -~-/~22X2 -~- /~2u, (12.4.4) 

y -- 21. (12.4.5) 

Since y -- 21, we only need to find an estimator for the vector 22 of this 
transformed system. 

The transformed system is not in standard state-space form. However, the system 
can be easily put in standard form by introducing the new variables 

/~ -- A21-~l -k-/~2u -- /~21Y + / ~ 2 u  (12.4.6) 

and 

v - y -  A l l Y  - [~lU. (12.4.7) 

From (12.4.4)-(12.4.7), we then have 

X2 -- A22.,~2 -t-/~, l) -- A12-~2, (12.4.8) 

which is in standard form. 
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Since (A, C) is observable, it can be shown (Exercise 12.3) that  (A22, A12) is 
also observable. Since -~2 has (n - r) elements, we have thus reduced the full n- 
dimensional estimation problem to an ( n -  r)-dimensional problem. We, therefore, 
now concentrate on finding an estimate of 22. 

By (12.2.2) an (n - r) dimensional estimate X2 o f  22 defined by (12.4.8) is of 
the form: 

x2 -- (A22 - LA12)x2  n t- Lv + (t, 

for any matrix L chosen such that A22 - L A I 2  is stable. 
Substituting the expressions for t~ and v from (12.4.6) and (12.4.7) into the last 

equation, we have 

9~2 --  (/{22 -- L A l z ) x 2  -a t- L ( y  - A l l Y  - / ~ l U )  n t- ( A z l y  n t - /}2u) .  

Defining another new variable 

2 
Z - - X 2 - -  Ly,  

we can then write 

= (A22 -- LA12)(Z n t- Ly)  + (A21 - L A l l ) Y  -~- (B2 - L B 1 ) u  

= (A22 - L A l z ) z  n t- [(A22 - L A 1 2 ) L  + (A21 - L A l l ) ] y  -Jr- (/~2 - L/~l )U 

(12.4.9) 

Comparing Eq. (12.4.9) with (12.2.2) and noting that A22 - LA12 is a stable 
matrix, we see that z + L y  is also an estimate of 22. 

Once an estimate of 22 is found, an estimate of the original n-dimensional state 
vector x from the estimate of X2 can  be easily constructed, as shown below. 

Since y -- 21 and X2 -- Z n t- Ly ,  we immediately have 

x -- -- L y T  (12.4.10) 

as an estimate of 2. 
Finally, since 2 -- Sx,  an estimate } of x can be constructed from an estimate 

of 2 as: 

. ~ - - S - I x  - (CR)-I (gyY_.l_.z) �9 

The above discussion can be summarized in the following algorithm: 

Algorithm 12.4.1. Reduced-Order  Observer Design via EVA 

Inputs .  The system matrices A,  B, C, respectively, o f  order n x n, n x m, 

and r x n. 

Output .  An estimate ~ o f  the state vector x. 
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Assumpt ions .  (i) (A, C) is observable. (ii) C is o f  fu l l  rank. 

S t e p l .  F i n d a n ( n - r )  x n m a t r i x R s u c h t h a t S - ( C ) i s n o n s i n g u l a r .  

Step 2. Compute A = S A S  -1 , [~ -- SB,  and partit ion them as 

~,, ~1~ ~_(~) 
A -  ~A21 ,~22~]' /~2 ' (12.4.11) 

where All ,  ,~12, A21,/~22 are, respectively, r x r, r x (n - r), (n - r) x r, and 
(n - r) • (n - r) matrices. 

Step 3. Find a matrix L such that ,422 - L,412 is stable. 

Step 4. Construct a reduced-order observer by solving the systems o f  

differential equations: 

--(,~22 - LA12)z + [(,~22 - LA12)L -Jr- (,421 - L ,~ l l ) ]y  

-+- (B2 - L[~l)u, z(O) -- zo. (12.4.12) 

Step 5. Find ~, an estimate o f  x : 

(12.4.13) 

Example 12.4.1. Consider the design of a reduced-order observer for the linearal- 
ized model of the Helicopter problem discussed in Doyle and Stein (1981), and also 
considered in Dorato et al. (1995), with the following data: 

l  o14 o8,:o:o o / _ o o ~  o oo~ ~ 4  o21 - - 3 0  /0 .36  A =  -0 .14  0.44 1.3 
00 0 .0180 -1.61 1 ' B =  ~0.035 9 )  

and (~ 1 o o )  
C - 0 0 57.3 " 

Since rank (C) - 2, r - 2. 

Step 1. Choose R -- (10 
111) 
1 1 1 " The matrix S = is nonsingular. 
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Step 2./~ = S A S  - 1  = 

l 1-57.3006"7400 -0.5009_1 -0. 01400 -57.16066000 ] _  

-0.0370 -1.0698 -0.1600 
2.3580 -0.4695 -0.1400 -1.7600,/ 

[~=SB= i 
o oo 6ooo] 
0.8500 -8.7191~ " 
0.7100 -8.5991,/ 

{1.7400 -0.5009) (-0(j14-1.16 '~ 
11 : ~-57.3006 - , A12 : 57.3 ,]' 

(-0.0370 - 1.0698~ ( 1600  0.6600 
/~21 = ~ 2.3580 --0.4695J' /~22 = -~i1400 -1.7600J' 

( 36 - : ) - ( 0 . 8 5 - 8 . 7 1 9 1 ]  
/}1 = O. O0 8. 000 B2 = 0.7100 -8.5991] 

Step 3. The matrix 

L--  (16 -0.1099 
0.0244 ~] 

is such that the eigenvalues of A22 - LA12  (the observer eigenvalues) are {-1,-2} 
(L is obtained using MATLAB function place). 

Step 4. The reduced-order 2-dimensional observer is given by: 

"-- ( A z z -  Lfl12)Z~-[(A22- L~IlZ)L-~-(A21- LAll)]Y-~-(Bz- LB1)u, Z(O) : ZO. 

with All, A12, A21, A22, /~1 ,  and/~2 as computed above. 
An estimate ~ of the state vector x is then 

10o 0 o11   yYz- 1-0o1  o 1  yYz, 
0.0175 0 0 

where z is determined from (12.4.12). 

Remark 

The explicit inversion of the matrix S - ( C ) ,  which could be a source of 

large round-off errors in case this matrix is ill-conditioned, can be avoided by 
taking the QR decomposition of the matrix C: C = R Q1 and then choosing 

(Q1)  is orthogonal. an orthogonal matrix Q2 such that the matrix Q - Q2 

The matrix Q can then be used in place of S. We leave the details for the 
readers as an exercise (Exercise 12.18). 
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F IGURE 12.2: The (a) first and (b) third variables of the state x(t)  and estimate 
~(t), for Example 12.4.1. 

Comparison of the state and estimate for example 12.4.1: In Figure 12.2, 
we compare the estimate ~(t), obtained by Algorithm 12.4.1 with the state x(t),  
found by directly solving Eq. (12.2.1) with u ( t )  = H (t)[ 1 1 IT, H (t) is the unit step 
function and x(0) = (6, 0, 0, 0) T. To solve Eqs. (12.2.1) and (12.4.12), MATLAB 
function ode23 was used. For Eq. (12.4.12), the initial condition was z(0) = 0. 
The first and the third components of the solutions are compared. The solid line 
corresponds to the exact state and the dotted line corresponds to the estimated 
state. 

12.4.2 Reduced-Order State Estimation via Sylvester-Observer Equation 

As in the case of a full-dimensional observer, a reduced-order observer can also 
be constructed via solution of a Sylvester-observer equation. The procedure is as 
follows: 

Algorithm 12.4.2. Reduced-order Observer Design via Sylvester-Observer 
Equation 

Inputs. The matrices A, B, and C of  ordern xn ,  n xm,  andr xn,  respectively. 
Output. An estimate 2c of  the state vector x. 
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Assumptions. (i) (A, C) is observable. (ii) C is of  full  rank. 
Step 1. Choose an (n - r) • (n - r) stable matrix F. 
Step 2. Solve the reduced-order Sylvester-observer equation for  a full  rank 

(n - r) • n solution matrix X: 

X A  - F X  -- GC, 

choosing the (n - r) • r matrix G appropriately. (Numerical methods fo r  
solving the Sylvester-observer equation will be described in Section 12.7). 

Step 3. Compute P = X B. 

Step 4. Find the (n - r) dimensional reduced-order observer z by solving the 

system of  differential equations: 

-- Fz + Gy + Pu, z(O) - zo. (12.4.14) 

Step 5. Find an estimate ~ of  x: 

.~ .--. ( C )  -1 ( Y) .  

N o t e : I f w e w r i t e ( C )  -1 

form: 

-- (S1, $2), then ~ can be written in the compact 

.~ -- Sly + S2z. (12.4.15) 

Example 12.4.2. Consider Example 12.4.1 again. 

Step 1" Ch~176 F = ( O  1 ?2)" 

Step 2. Choose G -  (~ ~). 

The solution X of the Sylvester-observer equation XA - FX  = GC is 

X--(__-011374 -0.0822 62.1322 37.2007 
-1.9296 428.2711 -173.4895]" 

21.7151 1.2672 
Step 3. P = XB = 149.1811 20.4653]" 

Step 4. The two-dimensional reduced-order observer is given by :~ = Fz + Gy + Pu, 
where F, G, and P are the matrices found in Step 1, Step 2, and Step 3, respectively. 



S e c t i o n  12 .4 :  R E D U C E D - O R D E R  S T A T E  E S T I M A T I O N  4 8 1  

An estimate } of  x is 

~-24 513 -135.1240 124.1400 -1800098 ~ (Y) 
-1 i 5 0 0 

( C )  ( y ) =  -0.0360 0.0395 " ~ =  ~ -0"0033 0.0175 0 -0.0034) 

(Note that if 

-~2 
= :~3 and 

-~4 

y -  
Y2 ' 

then -~2 -- Y], 3~4 --  0.0175y2, same as was obtained in Example 12.4.1 using the EVA 
method). 

Comparison of the states and estimates for Example 12.4.2: In Figure 12.3, 
we compare the actual state vector with the estimated one obtained by 
Algorithm 12.4.2 on the data of Example 12.4.1. The solid line corresponds to 
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F I G U R E  12.3:  The (a) first and (b) third variables of the state x(t) and the 
estimate ~(t), for Example 12.4.2. 
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the actual state and the dotted line corresponds to the estimated state. MATLAB 
function ode23 was used to solve the underlying differential equations with 
the same initial conditions as in Example 12.4.1. The third components are 
indistinguishable. 

12.5 C O M B I N E D  STATE F E E D B A C K  AND O B S E R V E R  D E S I G N  

When an estimate ~ of x is used in the feedback control law 

u -- s - K.~ (12.5.1) 

in place of x, one naturally wonders: what  effect will there be on the EVA? We 

consider only the reduced-order case, here. The same conclusion, of course, is true 
for a full-order observer. 

Using (12.5.1) in (12.2.1), we obtain 

2 = Ax + B ( s -  K.~), 

= Ax + B ( s -  K S l y -  KS2z),  (using (12.4.15)) 

= Ax + B ( s -  K S 1 C x -  K S2z), 

-- (A - B K S 1 C ) x  - B K S z z  + Bs. 

Also, Eq. (12.4.14), can be written as 

- Fz + Gy + Pu -- Fz -+- GCx  + P(s - K S l y  - KS2z),  

= ( G C -  P K S 1 C ) x  + ( F -  PKS2)z  + Ps 

(using (12.5.1) and (12.4.15)). 
Thus, the combined (feedback and observer) system (Figure 12.4) is given by 

( ~ )  ( A - B K S 1 C  - B K S 2  ) ( z ) ( B )  
-- G C -  P K S 1 C  F -  P K S 2 ]  + s, 

Y - ( C , O ) ( z  ) �9 

(12.5.2) 

Applying to this system the equivalence transformation, given by the nonsingular 
matrix 0) 
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u 

- - K  ~= 

3c =Ax  + Bu  

y -  Cx 

I obse erlJ 

y 

FIGURE 12.4" Observer-based state feedback. 

and noting that e = z - Xx ,  X A - F X = GC, and P = X B, we have, after 
some algebraic manipulations, 

(A (:) + (o) 
0 F 

(12.5.3) 
y - ( C , O ) ( ; ) .  

Thus, the eigenvalues of the combined system are the union of the eigenvalues of 
the closed-loop matrix A - B K and of the observer matrix F. 

Therefore, the observer design and feedback design can be carried out indepen- 
dently, and the calculation of  the feedback gain is not affected whether the true 
state x or the estimated state 2 is used. 

This property is known as the separation property. 

12.6 CHARACTERIZATION OF NONSINGULAR SOLUTIONS OF 
THE SYLVESTER EQUATION 

We have just seen that the design of an observer via the Sylvester-observer equation 
requires a nonsingular solution X for the full-order design (Algorithm 12.3.1) or a 
full rank solution X for the reduced-order design (Algorithm 12.4.2). In this sec- 
tion, we describe some necessary conditions for a unique solution of the Sylvester 
equation to have such properties. For the sake of convenience, we consider the 
full-order case (i.e., A and F are n x n) only. The results, however, hold for the 
reduced-order case also and the proofs given here can be easily modified to deal 
with the latter and are left as an exercise (Exercise 12.7). 

The following theorem was proved by Bhattacharyya and DeSouza ( 1981). T, 
proof here has been taken from Chen (1984). 
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Theorem 12.6.1. Necessary Conditions for  Nonsingularity of  the Sylvester 

Equation Solution�9 Let A, F, G, and C, respectively, be of  order n x n, n x n, 

n x r, and r x n. Let X be a unique solution o f  the Sylvester-observer equation 

X A  - F X  = GC. (12.6.1) 

Then, necessary conditions for  X to be nonsingular are that (A, C) is 
observable and (F, G) is controllable. 

Proof. From the given Eq. (12.6.1), we have 

X A  ~ - F o X  = 0, (Noting that A ~ = Inxn and F ~ = Inxn.) 
X A  - F X  -- GC, 
X A  2 - F Z X  = G C A  + F G C ,  

X A  n - F n x  - -  G C A  n - 1  n t- F G C A  n - 2  - J r - ' "  n t- F n - I G C  . 

Let a(1,) = i, n + a l ) f  -1 --t- . . .  --I-- an be the characteristic polynomial of A, 
and let's denote the controllability matrix of the pair (F, G) by CFG, and the 
observability matrix of the pair (A, C) by OAC. 

First of all, we note that the uniqueness of X implies that the matrix a(F)  

is nonsingular and vice versa. This is seen as follows: By Theorem 8.2.1, X is 
a unique solution of (12.6.1) if and only if A and F do not have a common 
eigenvalue. Again, A and F do not have a common eigenvalue if and only if the 
matrix a(F)  is non-singular because the eigenvalues of a(F)  are the n numbers 

1 (#i - ,k j), i -- 1 ., n; where, ~,is are the eigenvalues of A and #is are the 
eigenvalues of F. Thus, a (F) is nonsingular if and only if X is a unique solution 
of (12.6.1). 

Now, multiplying the above equations, respectively, by a n , a n - 1  . . . . .  1, 

and using the Cayley-Hamilton theorem, we obtain after some algebraic 
manipulations: 

X = - - [ a ( F ) ] - I C F G  ROAc,  (12.6.2) 

where 

R ~_  l 
an- l  I a n - 2 I  " ' "  a l  I I 

an -2 l  an-3I  . . .  I 
. �9 o �9 

�9 �9 

 al/ , 0  
0 . . .  0 

From (12.6.2), it then immediately follows that for X to be nonsingular, the rect- 
angular matrices CFG and OAC must have full rank; or, in other words, the pair 
(F, G) must be controllable and the pair (A, C) must be observable. II 
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Corollary 12.6.1. I f  G is n • 1 and C is 1 x n, then necessary and sufficient 
conditions f o r  the unique solution X o f  (12.6.1) to be nonsingular are that 
(F, G) is controllable and (A, C) is observable. 

Proof. In this case, both the matrices CFC and OAC are square matrices. Thus, 
from (12.6.2), it immediately follows that X is nonsingular if and only if (F, G) 
is controllable and (A, C) is observable. I 

Theorem 12.6.1 has recently been generalized by Datta et al. (1997) giving 
a necessary and sufficient condition for nonsingularity of X. We state the result 
below and refer the readers to the paper for the proof. 

Theorem 12.6.2. Characterization o f  the Nonsingularity o f  the Sylvester 
Equation Solution. Let A, F, and R be n x n matrices. Let a()O -- )~n + 
al )~ n-1 -k- . . .  Jr an be the characteristic polynomial o f  A. 

Define 

S -- (F n-1 + al F n-2 -+- . ' .  -+- an-11)R  -+- (F n-2 + al F n-3 -+- . . .  + an-2I )  

x R A  + . . .  + (F + a l I ) R A  n-2 + R A  n-1. 

Then a unique solution X of  the Sylvester equation 

F X -  X A  -- R 

is nonsingular if and only if S is nonsingular. Furthermore, the unique solution 

X is given by 
X - - ( a ( F ) ) - I s .  

(Note again that the uniqueness o f  X implies that a (F)  is nonsingular). 

Remark 

The results of Theorems 12.6.1 and 12.6.2 also hold in case the matrix X 
is not necessarily a square matrix. In fact, this general case has been dealt 
with in the papers by Bhattacharyya and DeSouza (1981), and Datta et al. 
(1997), and conditions for the unique solution to have full rank have been 
derived there. 

12.7 NUMERICAL SOLUTIONS OF THE SYLVESTER-OBSERVER 
EQUATION 

In this section, we discuss numerical methods for solving the Sylvester-observer 
equation. These methods are based on the reduction of the observable pair (A, C) 
to the observer-Hessenberg form (H, C), described in Chapter 6. 

The methods use the following template. 
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Step 1. Reduction of the problem. The pair (A, C) is transformed to observer- 
Hessenberg form by orthogonal similarity, that is, an orthogonal matrix O is 
constructed such that 

O A oT = H, an unreduced block upper-Hessenberg matrix, 

C O  T : C  --  (0, C l ) .  

The equation X A -  F X  = GC is then transformed to X O T OA 0 T - -  F X  0 T - -  

G C O  T 

OF 

Y H -  FY  = GC, (12.7.1) 

where Y -  X O T. 
Step 2. Solution of the reduced problem. The reduced Hessenberg Sylvester- 

observer equation (12.7.1) is solved. 
Step 3. Recovery of the Solution X of the Original Problem. The solution X of 

the original problem is recovered from the solution of the reduced problem: 

X - Y O. (12.7.2) 

We now discuss the implementation of Step 2. Step 3 is straightforward. 
Implementation of Step 1 has been described in Chapter 6. 

The simplest way to solve Eq. (12.7.1) is to choose the matrices F and G 
completely satisfying the controllability requirement of the pair (F, G). In that 
case, the Sylvester-observer equation reduces to an ordinary Sylvester equation, 
and, therefore, can be solved using the Hessenberg-Sehur method, described in 
Chapter 8. 

Indeed, F can be chosen in the lower real Schur form (RSF), as required by the 
method. Therefore, computations will be greatly reduced. We will not repeat the 
procedure here. Instead, we will present below two simple recursive procedures, 
designed specifically for solution of the reduced-order Sylvester-observer equation 
(12.7.1). 

12.7.1 A Recursive Method for the Hessenberg Sylvester-Observer Equation 

In the following, we describe a recursive procedure for solving the reduced multi- 
output Sylvester-observer equation 

Y H  - FY  -- GC. (12.7.3) 

The procedure is due to Van Dooren (1984). The procedure computes simulta- 
neously the matrices F, Y, and G, assuming that (H, C) is observable. 
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Set q -- n - r and assume that Y has the form: 

I 10 Y12 
y ~ " ,  

. . . . . .  " ' .  Yl 'n I 

1 yq ,q+l  "" " Y q , n /  

(12.7.4) 

and choose F in lower triangular form (for simplicity): 

I l l  0 . . . . . .  0 

f21 f22 0 --- 0 [ g ~ [  
F = . -. . , G - , (12.7.5) 

�9 

f q l  . . . . . . . . .  fqq  ~k / 

where the diagonal entries f/i, i = 1 . . . . .  q are known and the remaining entries 
of F are to be found. It has been shown in (Van Dooren 1984) that a solution Y in 
the above form always exists. The reduced Sylvester-observer equation can now 
be solved recursively for Y, F, and G, as follows. 

Let gT denote the ith row of G. Comparing the first row of Eq. (12.7.3), we 
obtain 

(1, y l ) H  - f l l  (1, Yl) -- gT(?. (12.7.6) 

Similarly, comparing the ith row of that equation, we have 

(0, 0 . . . . .  O, 1, y i ) n  -- ( f i ,  f i i ,  0 . . . . .  O) Y = gT~;, i -- 2, 3 . . . . .  q (12.7.7) 

In the above, Yi --  (Yi , i+l  . . . . .  Yi,n) and j~ -- (j~l, f i2  . . . . .  j~,i-1). 
The Eqs. (12.7.6) and (12.7.7) can be, respectively, written as 

(Yl, g T ) [ ( H -  fllI)bottom(n-1)]_C -- --[ lst  row o f  ( H -  f i l l ) ] ,  (12.7.8) 

and 

I -- Ytop(i-1) 1 
(f/, Yi, gT )  ( H  - fie I )bot tom(n- i )  -- - [ith row of (H - d~i 1)], 

- C  

(12.7.9) 

where Ytop(i-1) and (H  - f i i  l )bot tom(n- i )  denote, respectively, the top i - 1 rows of 
Y and the bottom n - i rows of H - fig I.  Because of the structure of the observer- 
Hessenberg form (H, C), the above systems are consistent and these systems can 
be solved recursively to compute the unknown entries of the matrices Y, F, and G. 



488 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER 

We illustrate how to solve these equations in the special case with n = 3, r = 1. 

The reduced equation to be solved in this case is: 

(~ Y121 Y23Y13 ) { h l l h l 2 h l 3 ) ( f l l O ) ( 1 0 \ , , [ h 2  1 h32h22 h33h 23 _ Ikf21 f22 Y121Y23JY13~ 

_ ( g l l  0 

C G 

Comparing the first row of the last equation, we have 

Y12h21 -- fll - h11, 
Y12(h22 - f11) + Y13h32 - -h12,  
Y13(h33 - f l l )  + Y12h23 - gllCl = - h i 3 .  

Similarly, comparing the second row, we have 

l 
- f21  = -h21,  

Y23h32- f21Y12- f22 -- -h22,  
yz3h33 - f21Y13 - f22Y23 - g21cl - -h23.  

The system (12.7.10) can be written as 

(12.7.10) 

(12.7.11) 

(h lh22 h23) hll) 
(Yl2, Yl3, gll) h32 h33-  fll  -- / -h12 

0 --Cl \ -h13 

Similarly, the system (12.7.11)can be written as 

(: ( ( fz l ,yz3,  g21) h32 h 3 3 -  f22 = f z z - h z 2  . 
0 -Cl  -h23 

Note that since the pair (A, C) is observable, h21, h32, and Cl are different from 
zero and, therefore, the matrices of the above two systems are nonsingular. 

Algorithm 12.7.1. A Recursive Algorithm for the Multi-Output Sylvester- 
Observer Equation 

Inputs. The matrices An xn, and Cr xn. 
Output. A full-rank solution X of the reduced-order Sylvester-observer 

equation: 
X A -  FX = GC. 

Assumption. (A, C) is observable. 
Step 0. S e t  n - r = q .  
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Step 1. Transform the pair (A, C) to the observer-Hessenberg pair (H, C): 

O A O  T -  H, CO T = C. 

Step 2. Choose F = ( f i j )  as a q x q lower triangular matrix, where the 
diagonal entries fii ,  i -- 1 . . . . .  q are arbitrarily given numbers, and the off- 
diagonal entries are to be computed. 

Step 3. Solve for  Y satisfying 

Y H -  FY  -- GC;, 

where Y has the form (12.7.4), as follows: 
Compute the first row of  Y and the first row of  G by solving the system (12.7.8). 

Compute the second through qth rows of  Y, the second through qth rows of  F, 
and the second through qth rows of  G simultaneously, by solving the system 
(12.7.9). 

Step 4. Recover X from Y: 

X = Y O .  

Example 12.7.1. Consider Example 12.4.1 again. 
Here n -- 4, r -- 2. 
Step 1. The observer-Hessenberg pair of (A, C) is given by: 

H __ 

-0 .0200 2.4000 0.0050 -32.0000'~ 
-1.6000 0.0180 1.2000 ] 

|  _0 400 0.44000 
(oo 1 o) 

C =  0 0 5 7 . 3 "  

The transforming matrix 

O 

ooo 1 
1 0 " 

0 0 

Step 2. Let's choose f l  1 - -  - -  1, f 2 2  ---- - - 2  

Step 3. The solution of the system (12.7.8) is (0, 7, 6.7, 10.085, -4.1065). 
Thus, yl -- (0, 7, 6.7), gl = (10.085, -4.1065). The firstrow ofY - (1, 0, 7, 6.7). 

The solution of the system (12.7.9) is (0.0007, -0.0053, -0.4068, 0, 0.0094). 
Thus, f 2 1  - "  0.0007 and Y2 = ( -0 .0053, -0 .4068) ,  g2 = (0, 0.0094). So, 

( 1 o)ilOO   4106   
F -- 0.0007 , G = 0 0.0094 ,] " 

The second row of Y -- (0, 1, -0.0053, -0.4068). 
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Therefore, 

y _ ( 1 0 0  7 6.7 ) 
1 -0.0053 -0.4068 " 

Step 4. Recover X from Y: 

(~ 7 0 6 . 7 )  
X = Y O =  -0.0053 1 -0.4068 " 

Flop-count: Solving for F, G, and Y (using the special structures of these 
matrices): 2(n - r)rn 2 flops. 

Obtaining the observer-Hessenberg form: 2(3n + r)n 2 flops (including the 
construction of O). 

Recovering X from Y: 2(n - r)n 
Total: (About) (6 + 2r)n 3. 
MATCONTROL note: Algorithm 12.7.1 has been implemented in MATCONTROL 

function sylvobsm. 

12.7.2 A Recursive Block-Triangular Algorithm for the Hessenberg 

Sylvester-Observer Equation 

A block version of Algorithm 12.7.1 has recently been obtained by Carvalho and 
Datta (2001). This block algorithm seems to be computationally slightly more 
efficient than Algorithm 12.7.1 and is suitable for high-performance computing. 
We describe this new block algorithm below. 

As in Algorithm 12.7.1, assume that the observable pair (A, C) has been trans- 
formed to an observer-Hessenberg pair (H, (7), that is, an orthogonal matrix O 
has been computed such that 

O A O T = H  and C - c o T - [ 0  . . .  0, C1], 

where H - ( n i j )  is block upper Hessenberg with diagonal blocks n i i  E ]~x rli • 
i - 1,2 . . . . .  p andnl - + - . . . + n p - n .  

Given the Observer-Hessenberg pair (H, C), we now show how to compute the 
matrices Y, F, and G in blocks such that 

Y H -  F Y  = GC. (12.7.12) 
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Partitioning the matrices F, Y, and G conformably with H allows us to write 
the above equation as 

Y11 Y12 . . .  Y l p l  F| H11 HI2 . . .  H i p  
Y22 . . .  Y2pl H21 H22 . . .  H2p 

Yq q Yq P J L 932 "'" Hap 
gp_  l, p Hpp 

r ll 1[ 11 1 - - I f 2 1  F22 Y22 . . .  Y2p 
L Fq l . Fq q rq q rq p 

= o 0 . . .  0 C1] �9 

We set Yii = Ir •  i -- 1, 2 . . . . .  q for simplicity. Since matrix F is required to 
have a preassigned spectrum S,  we distribute the elements of $ among the diagonal 
blocks of F in such a way that f2 (F)  -- $ ,  where f2 (M) denotes the spectrum of 
M. A complex conjugate pair is distributed as a 2 x 2 matrix and a real one as 
a 1 x 1 scalar on the diagonal of F. Note that, some compatibility between the 
structure of S and the parameters n i ,  i - 1 . . . . .  p is required to exist for this to 
be possible. 

Equating now the corresponding blocks on left- and right-hand sides, we obtain: 

j + l  min(i,j) 

YikHkj - ~ Fi~Ykj - -  0, j - -  1, 2 . . . . .  p - 1. ( 1 2 . 7 . 1 3 )  

k=i k=l 
p i 

YikHkp -- Z fikYkp -- a i c 1 .  ( 1 2 . 7 . 1 4 )  

k=i k=l 

From (12.7.13) and (12.7.14), we conclude Fi j  = 0 fo r  j - -  1, 2 . . . . .  i --  2, and 
Fij -- Hij fo r  j - -  i - 1. 

Thus, Eqs. (12.7.13) and (12.7.14) are reduced to 

j + l  i 

k=i k=max ( i -  1,1) 

Fi~ r~j --0, j - i ,  i + l  . . . . .  p - 1 .  ( 1 2 . 7 . 1 5 )  

p i 

k=i k=max(i- 1,1) 
Fik Ykp -- GiC1, for i - -  1, 2 . . . . .  q .  ( 1 2 . 7 . 1 6 )  
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For a computational purpose we rewrite Eq. (12.7.15) as 

j i 

Y~ YikgkJ+Yi'j+lgJ+l'J- Z FikYkj -- O, j -- i, i + l  . . . . .  p - l ,  
k=i k=max(i- 1,1) 

that is, for j = i, i + 1 . . . . .  p - 1, 

j i 

Yi,j+lgj+l, j  -- - Z Yikgkj -+- Z fikYkj. (12.7.17) 
k=i k=max(i- 1,1) 

Equations (12.7.16) and (12.7.17) allow us to compute the off-diagonal blocks 
Yij of Y and the blocks G i of G recursively. 

This is illustrated in the following, in the special case when p = 4, q = 3: 

First row: i = 1 

H l l  + Y12H21 - Fll  -- 0 (solve for Y12) 

HI2 -+- Y12H22 -+- Y13H32 - F l l  Y12 = 0 (solve for  Y13) 

H13 + Y12H23 -k- Y13H33 + Y14H43 - F l l  Y13 --  0 (solve for  Y14) 

H14 + Y12H24 -+- Y13H34 + Y14H44 - FllY14 = G1C1 (solve for G1). 

Second r o w : / =  2 

H22 q- Y23H32 - f21Y12 - F22 --  0 (solve for Y23) 
H23 + Y23H33 + Y24H43 - f21Y13 - F22 Y23 --  0 (solve for Y24) 
H24 q- Y23H34 -+- Y 2 4 H 4 4 -  f 2 1 Y 1 4 -  F22Y24 --  G2C1 (solve for G2) 

Third row: i = 3 

H33 -+- Y34H43 - F32 Y23 - F33 = 0 (solve for Y34) 
H34 + Y34H44 - F32Y24 - F33Y34 --  a3c1 (solve for a 3 )  

The above discussion leads to the following algorithm: 

Algor i thm 12.7.2. A Recursive Block Triangular Algorithm for  the Multi- 
Output Sylvester Observer Equation 

Input .  Matrices A ~ R n xn, C E ]~r xn o f  ful l-rank and the self-conjugate set 
E C n-r. 

Output .  Block matrices X, F, and G, such that f2 ( F) = 3 and X A - F X = 
GC. 

Step 1. Reduce (A, C) to observer-Hessenberg form (H, (7). Let ni, i = 
1 . . . . .  p be the dimension of the diagonal blocks Hii of the matrix H. 

Step 2. Partition matrices Y, F, and G in blocks according to the block 
structure of H. Let q = p - 1. 

Step 3. Distribute the elements of S along the diagonal blocks Fii, i = 
1, 2 . . . . .  q such that S2(F) = S; the complex conjugate pairs as 2 x 2 blocks 
and the real ones as 1 x 1 scalars along the diagonal of the matrix F. 
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Step 4. Set Yll - -  I t / 1  x r t  1 �9 

Step 5. For i = 2, 3 . . . . .  q, set 

Fi,i-1 --- Hi,i-l ,  Yii "--" l r t i X r t  i �9 

Step 6. For i -- 1, 2 . . . . .  q do 
6.1. For j = i, i + 1 . . . . .  p - 1, solve the upper triangular system for 

Yi,j+l : 
j i 

Yi,j+IHj+I,j -- - E Yi~:H~:j + ~ Fi~:Ykj. 
k=i k=max(i- 1,1) 

6.2. Solve the triangular system for G i: 

p i 

GiG1 -- E YikHkp -- E FikYkP" 
k=i k=max(i- 1,1) 

Step 7. Form the matrices Y, F,  and G from their computed blocks. 
Step 8. Recover X -- Y O. 

Return 

Remark 

�9 Recall that once the matrix X is obtained, the estimated state-vector :~ (t) 
can be computed from 

It is interesting to note that the matrix X does not need to be computed 
explicitly for this purpose because the above system is equivalent to: 

[~1 f Y(t) 1 T 
: ~ ( t ) -  l z ( t ) J  O . 

The matrix ( ~ )  is a nonsingular block upper Hessenberg by the construc- 

tion of Y. This structure is very important from the computational point of 
view since it can possibly be exploited in high-performance computations. 

Flop-count and comparison of efficiency 

Flop-count of Algorithm 12.7.2 

1. Reduction to observer-Hessenberg form using the staircase algorithm: 

6n 3 + 2rn 2 flops 
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2. Computation of Y using Steps 4-8 of the algorithm: 

p - 1  p 

E E [(J - i +  1)(2r 3) + 2(2r 3) + r 2] 
i=1 j=i 

p - 1  p 

= E E { [ 2 ( j -  i)-+- 7]r 
i=1 j=i 

p - 1  

i=1 

1 n3 rn2 ( p -  1 ) p ( 2 p -  1) + ( p - 1 ) p  r3 ~ ~ + _ _ f l o p s .  
6 2 3 2 

. Computation of X from Y: n 3 flops (note that the matrix Y is a unit block 
triangular matrix). 

Thus, total count is (19n3/3) + (5r/2)n 2 flops. 

Comparison of Efficiency. Algorithm 12.7.1 requires about (6 + 2r)n 3 flops. 
[Note: the flop count given in Van Dooren (1984) is nearly one half of that given 
here; this is because a "flop" is counted there as a multiplication/division coupled 
with an addition/subtraction.] 

Also, it can be shown that a recent block algorithm of Datta and Sarkissian 
(2000) requires about 52n3/3 flops. 

Thus Algorithm 12.7.2 is much faster than both Van Dooren's (Algorithm 
12.7.1) and the Datta-Sarkissian algorithms. 

Besides, this algorithm is suitable for implementations using the recently devel- 
oped and widely used scientific computing software package LAPACK (Anderson 
et al. (1999)), since it is composed of BLAS-3 (Basic Linear Algebra Subroutines 
Level 3) operations such as matrix-matrix multiplications, QR factorizations, and 
solutions of triangular systems with multiple right hand sides. 

Example 12.7.2. We consider Example 12.7.1 again, 
Step 1. The matrices H, t~, and O are given by: 

[_o  oo 4oooooo o 
-1.6000 0.0180 

H-L-~ 4~176176176176176176176 0 

Ili ~176 [1.oooo o ] 
o ~  

0 0 

-32.00007 
1.2000 | 

-300000 j ' 

00/7 , and C - -  (0, C1). 

Step 2. q - 1 .  
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Steps 3 and 4. 

[loo o I [1 ~ o] 
F = F 1 1  = 0 -2.00 ' Yll--  �9 

Step 5. Skipped (q = 1). 
Step 6. i = 1. 

6.1. j = 1. Solve the triangular system YlaH21 = -Y11H11 + Fll Yll for Y12: 

[7.0000 6.7000 ] 
Y12 -- 0 -0.4000 / " 

6.2: Solve triangular system G1C1 - YllH12 + Y12H22 - FllY12 for GI: 

[ 1 0 . 0 8 5 0 - 4 . 1 0 6 5 ]  
G1 = 0.0180 0.0070 " 

Step 7. Form matrices Y, F, and G from the computed blocks: 

y = I ~  0 7.0000 6.7000] 
1 0 -0.4000 ' 

F _ [ - 1 . 0 0 0  0 ] 
0 -2.000 ' 

Step 8. Recover X = Y O: 

1 7.0000 
x -  0 0 

10.0850 -4.10651 
G - 0.0180 0.0070 

0 6.7000 ] 
1 -0.4000 " 

Verify: IIXA - F X  - GCII2 = O(10 -13) and f2(F) = {-2 .0000,-1 .0000}.  
Thus, the residue is small and the spectrum of F has been assigned accurately. 

MATCONTROL note: Algorithm 12.7.2 has been implemented in MATCON- 
TROL function sylvobsmb. 

Comparison of  the state and estimate for  Example 12.7.2: Figure 12.5 shows 
the relative error between the exact state x( t )  and the estimate ~(t) satisfying 

r Iz(t) J o 

with the data above and u(t) as the unit step function. The underlying systems of 
ordinary differential equations were solved by using MATLAB procedure ode45 
with zero initial conditions. The relative error is defined by 

IIx(t) - ~(t)l12 

IIx(t)ll2 
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FIGURE 12.5: Relative error between the state and estimate. 

12.8 NUMERICAL SOLUTION OF A CONSTRAINED 
SYLVESTER-OBSERVER EQUATION 

In this section, we consider the problem of solving a constrained reduced-order 
Sylvester-observer equation. Specifically, the following problem is considered: 

Solve the reduced-order Sylvester-observer equation 

X A -  F X  -- G C  (12.8.1) 

such that 
X B  - - 0  (12.8.2) 

and 

has full rank. 
The importance of solving the constrained Sylvester equation lies in the 

fact that if the constraint (12.8.2) is satisfied, then the feedback system with 
the reduced-order observer has the same robustness properties as that of the 
direct feedback system (see Tsui (1988)). 
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We state a recent method of Barlow et al. (1992) to solve the above problem. 
A basic idea behind the method is to transform the given equation to a reduced- 

order unconstrained equation and then recover the solution of the constrained 
equation from that of the reduced unconstrained equation. We skip the details and 
present below just the algorithm. For details of the development of the algorithm, 
see the above paper by Barlow et al. (1992). 

Algorithm 12.8.1. An 

Equation 

Inputs. 

Algori thm for  Constrained Sylvester-observer 

(i) The system matrices A,  B, and C o f  order n • n, n • m, and r x n, 
respectively. 

(ii) A matrix F o f  order (n - r). 

Output. A n  (n  - r) x n matrix X and an (n - r) • r matrix G satisfying 

(12.8.1) s u c h t h a t ( c )  i s n o n s i n g u l a r a n d X B - 0 .  

Assumptions. (A, C) is observable, n > r > m, and rank(CB) = rank(B) = 
m. 

Step 1. Find the Q R factorization o f  B: 

where S is m • m, upper triangular and has ful l  rank, and W is n • n and 
orthogonal. 

Partition W = (Wl, W2), where W1 is n • m and W2 is n x (n - m). 
Step 2. Set 

A1 -- W T A W 1 ,  A2 -- W T A W 2 ,  C1 - -  C W 1 ,  C2  - -  C W 2  

Step 3. Find a Q R factorization o f  C1: 

where Q1 is r x m, Q2 is r • (r - m), and R is an m • m upper triangular 

matrix with ful l  rank. 

Step 4. Define E by 

( E 1 ) - - Q T c 2 ,  
E - -  E2 

where E1 is m • (n -- m),  Ee is (r - m) • (n - m), and Q = (Q1, Qe). 
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S t e p  5. Form A -- A2 - A 1 R - 1  E l .  Solve the Sylvester equation." 

Z A -  F Z  -- G2E2, 

c h o o s i n g  G2 randomly. (Use Algor i thm 8.5.1.) 
S t e p  6. Set G1 -- Z A 1 R  -1 --  Z J,  G - (G1, G2)Q T, and X - ZW~.  

(Note that Z is o f  order (n - r) x (n - m) and J = A1R -1 is computed by 
solving the upper triangular system J R = A 1). 

MATHCONTROL note: Algorithm 12.8.1 has been implemented in MATCON- 
TROL functions sylvobse. 

Example 12.8.1. Consider solving the Eq. (12.8.1) using Algorithm 12.8.1 with 

A 
1002000  24 t ill 0.14 0.44 -1 .3  1 

0 0 . 0 1 8 - 1 . 6  O 2 J  ' B =  1 ' 
0 0 1 1 

(OolO o I (1 o) 
C -  0 0 57.3 ' and F =  1 - " 

Then, n = 4 ,  r = 2 ,  m = l .  
Step  1. W1 -- ( - 0 . 5 , - 0 . 5 , - 0 . 5 , - 0 . 5 )  T . 

i 
-0 .5  -0 .5  -0 .5  t 

0.8333 -0.1667 -0.1667 
W2 S ~2.  -0.1667 0.8333 -0.1667 / ' 

-0.1667 -0.1667 0.8333 ,/ 

1.5144 
Step  2. a l --  WTAW1 = 1 - 0 . 2 9 4 6 ]  , 

\ - 0 . 9 8 5 6 ]  

{ 0.9015 -1.6430 0.5596~ 
a 2 -  w T A w 2  = / 0.1701 -2.5976 2.9907] , 

\--0.4185 --0.2230 1.5604] 
--0.5 

C 1 - C W 1 - ( _ 2 8 . 6 5 ) ,  

(0.8333 -0.1667 -0.1667~ 
C2 -- CW2 - \ u oo'-".== -9 .55 47.75 ""  / 

[/-0.0174 
Step  3. Q - ~-0.9998 

-0 .9998]  
0.0174 ] '  

R = 28.6544. 
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( 9.5340 9.5515 -47.7398) 
Step 4. E = Q T c 2 -  ~--0.9998 0 0.9998 J '  

E2 = (-0.9998 0 0.9998) 

{ 0.3976 -2.1478 1.96 
Step 5. A - -  A2 - A 1 R  -1E1 -- /-0.0721 -2.4944 2.4999 ] .  

\-0.0905 0.1056 -0.0817] 
Choose 

The solution Z of the Sylvester equation: ZA - F Z  = G2E2 

{-0.6715 0.9589 
Z -  ~-0.2603 -0.5957 

-0.0860) 
0.9979 ]"  

( 0 . 0 4 2 4 )  
Step 6. G1 -- ZA1R -1 -- --0.0420]" 

G--(G1 G2)Q T (-0.9991 0.0598) 
' = 0.0007 0.0419] ' 

[ - 0 . 1 0 0 7 - 0 . 7 0 5 0  0.9254 -0.1196~ 
X = ~-0.0709 -0.2839 -0.6199 0.9743 ]"  

Verify: 

(i) l i S A -  F X -  GCII = O(10-3), 
{0.1000 

(ii) XB -- 10 -3 ~ - 0 . 4 0 0 0 ]  ' and 

(iii) r ank(c  ) =4.  

N o t e : I f G 2 w e r e c h o s e n a s G 2 = ( 1 ) , t h e n t h e s o l u t i o n X w o u l d b e r a n k - d e f i c i e n t  

and consequently (X)  would be also rank-deficient. Indeed, in this case, 

(-0011006 -0.7044 0.9246 -0.1195~ 
X - 1006 -0.7044 0.9246 -0.1195}' 

which has rank 1. 

12.9 O P T I M A L  STATE E S T I M A T I O N :  T H E  K A L M A N  F I L T E R  

So far we have discussed the design of an observer ignoring the "noise" in the 
system, that is, we assumed that all the inputs were given exactly and all the out- 
puts were measured exactly without any errors. But in a practical situation, the 
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measurements are always corrupted with noise. Therefore, it is more practical to 
consider a system with noise. In this section, we consider the problem of finding the 
optimal steady-state estimation of the states of a stochastic system. Specifically, 
the following problem is addressed. 

Consider the stochastic system: 

)c(t) = A x ( t )  + Bu( t )  + F w ( t )  
y ( t )  -- C x ( t )  + v(t) ,  (12.9.1) 

where w(t)  and v(t)  represent"noise" in the input and the output, respectively. 
The problem is to find the linear estimate ~(t) of x ( t )  from all past and current 
output {y(s), s < t} that minimizes the mean square error: 

E[l lx( t )  - ~(t)]12], as t --+ c~, (12.9.2) 

where E[z] is the expected value of a vector z. 

The following assumptions are made: 

1. The system is controllable and observable. (12.9.3) 
Note that the controllability assumption implies that the noise w(t)  excites 

all modes of the system and the observability implies that the noiseless output 
y( t )  = C x ( t )  contains information about all states. 

2. Both w and v are white noise, zero-mean stochastic processes. 
That is, for all t and s, 

0 

0 

E[w( t ) ]  = O, E[v( t )]  = 0, (12.9.4) 

E [ w ( t ) w T ( s ) ]  = W3( t  - s), (12.9.5) 

E[v( t )vT(s ) ]  = V6( t  - s), (12.9.6) 

where W and V are symmetric and positive sernidefinite and positive 
definite covariance matrices,  respectively, and 6(t - s) is the Dirac delta 
function. 
The noise processes w and v are uncorre la ted  with one another, that is, 

E [ w ( t ) v  T(s)] -- 0. (12.9.7) 

The initial state x0 is a Gauss ian  zero-mean random variable with known 
covariance matrix, and uncorrelated with w and v. That is, 

E[x0] = 0, 
(12.9.8) 

E[xox T] - S, E[xow T (t)] = 0, E[xov T (t)] - 0, 

where S is the positive semidefinite covariance matrix. 
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The following is a well-known (almost classical) result on the solution of the 
above problem using an algebraic Riccati equation (ARE). For a proof, see Kalman 
and Bucy (1961). For more details on this topic, see Kailath et al. (2000). 

Theorem 12.9.1. Under the assumptions (12.9.3)-(12.9.8), the best estimate 
J( t)  (in the linear least-mean-square sense) can be generated by the Kalman 
filter (also known as the Kalman-Buey filter). 

~(t) - (a - KfC)~( t )  + Bu(t)  + Kfy( t ) ,  (12.9.9) 

where Kf = X f C  T V -1, and Xf  is the symmetric positive definite solution of  
the ARE: 

A X  + X A  T - x c T v - 1 c x  + F W F  T = 0. (12.9.10) 

Definition 12.9.1. The matrix Kf = X fC  y V -1 is called thefiltergain matrix. 

Note: The output estimate ~(t) is given by ~(t) - C~(t). 
The error between the measured output y(t)  and the predicted output C~(t) is 

given by the residual r(t): 

r(t) = y(t)  - C~(t).  

where ~ is generated by (12.9.9). 

Algorithm 12.9.1. The State Estimation of  the Stochastic System Using 
Kalman Filter 

Inputs. 
1. The matrices A, B, C, and F defining the system (12.9.1) 
2. The covariance matrices V and W (both symmetric and positive 

definite). 
Output. An estimate J( t)  of  x( t )  such that E[llx(t) - ~ ( t )  II 2] is minimized, 
as t --+ c~. 
Assumptions. (12.9.3)-(12.9.8). 
Step 1. Obtain the unique symmetric positive definite solution Xf  of  the ARE: 

A X f  + X f A  T - -  x f c T v - 1 c x f  q t- F W F  T = O. 

Step 2. Form the filter gain matrix Kf - -  x f c T v  - 1 .  

Step 3. Obtain the estimate ~(t) by solving (12.9.9). 

Duality Between Kalman Filter and the LQR Problems 

The ARE (12.9.10) in Theorem 12.9.1 is dual to the Continuous-time Algebraic 
Riccati Equation (CARE) that arises in the solution of the LQR problem. To 
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distinguish it from the CARE, it will be referred to as the Continuous-time Filter 
Algebraic Riccati Equation (CFARE). 

Using this duality, the following important properties of the Kalman filter, 
dual to those of  the LQR problem described in Chapter 10, can be established 
(Exercise 12.15). 

1. Guaranteed stability. The filter matrix A - K fC  is stable, that is, Re,k/(A - 
KfC)  < 0; i = 1, 2 . . . . .  n, where ~i, i = 1 . . . . .  n, are the eigenvalues 
of A - KfC.  

2. Guaranteed robustness. Let V be a diagonal matrix and let W -- I. Let 
GKy(s) and GFOL(S) denote, respectively, the Kalman-filter loop-transfer 
matrix and the filter open-loop transfer matrix (from w(t) to y(t)) ,  that is, 

GKF(S) =-- C( s I  - A) -1Kf (12.9.11) 

and 

GFOL(S) --= C(s I  - A) -1F.  

Then the following equality holds: 

(I  + GKF(S))V(I  + GKF(S))* -- V + GFOL(S)G~oL(s). 

Using the above equality, one obtains 

(I + GKF(S))(I + GKF(S))* > I. 

In terms of singular values, one can then deduce that 

O'min(I + GKF(S)) > 1 

(12.9.12) 

(12.9.13) 

(12.9.14) 

(12.9.15) 

or 

and 

O'max(/-k- GKF(S))  -1  < 1 

1 O'min(I + G ~ ( s ) )  > -~. (12.9.16) 

See the article by Athans on "Kalman filtering" in the Control Handbook 
(1996, pp. 589-594), edited by W.S. Levine, IEEE Press/CRC Press. 

Example 12.9.1. Consider the stochastic system: 

Yc(t) = Ax(t)  + Bu(t) + w(t), 
y ( t ) = C x ( t ) + v ( t )  

with A, B, and C as in Example 12.4.1. 
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W: BB T, V--(~ ~), f - 1 4 x 4 .  

Take 

Step 1. The symmetric positive definite solution Xf of the CFARE 

A X  + X A  T -- x c T v - 1 c x  -1- F W F  T = 0 

I 8.3615 0.0158 0.0187 -0.0042~ 
0.0158 9.0660 0.0091 -0 .0031[  
0.0187 0.0091 0.0250 0.0040 ~ " 

-0.0042 -0.0031 0.0040 0.0016 / 

Xf -- 

Step 2. The filter gain matrix K f  - -  x f c T v  -1 is 

I 0.0158 -0 .2405\  
9.0660 -0.1761 / 
0.0091 0.2289 ~" 

-0.0031 0.0893 ! 

gf = 

The optimal state estimator of ~(t) is given by 

~(t) - (A - KfC)~( t )  + Bu(t)  + Kfy( t ) .  

The filter eigenvalues, that is, the eigenvalues of A -  KfC, are {-0.0196, 
-8 .6168,-3.3643 • j2.9742}. 

MATLAB note: The MATLAB function kalman designs a Kalman state estima- 
tor given the state-space model and the process and noise covariance data. kalman 
is available in MATLAB Control System Toolbox. 

Comparison o f  the state and the estimate for  Example 12.9.1: In Figure 12.6 
we compare the actual state with the estimated state obtained in Example 12.9.1 
w i t h x ( 0 ) = . ~ ( 0 ) = ( - 6  - 1  1 2) T a n d u ( t ) = H ( t ) ( 1  1 1 1) T,where 
H ( t )  is the unit step function. Only the first and second variables are compared. 
The solid line corresponds to the exact state and the dotted line corresponds to the 
estimated state. The graphs o f  the second variables are indistinguishable. 

The Kalman Filter for the Discrete-Time System 

Consider now the discrete stochastic system: 

Xk+l -- Axk + Buk + Fwk,  
(12.9.17) 

yk = CXk + Vk, 

where w and v are the process and measurement noise. Then, under the same 
assumptions as was made in the continuous-time case, it can be shown that the 
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FIGURE 12.6: The (a) first and (b) second variables of the state x(t) and 
estimate .~ (t), obtained by Kalman filter. 

state error covariance is minimized in steady-state when the filter gain is given by 

Kd = AXdCT(CXdC T + V) -1, (12.9.18) 

where Xd is the symmetric positive semidefinite solution of the Riccati equation: 

X = A ( X -  x c T ( c x c  T + V ) - I C X ) A  T + F W F  T, (12.9.19) 

and V and W are the symmetric positive definite and positive semidefinite 
covariance matrices, that is, 

and 

T E[tvkW T] -- W~kj" (12.9.20) 

0 ifk # j, (12.9.21) 
~kj - -  1 if k -- j. 

For details, see Glad and Ljung (2000, pp. 137-138). 

Definition 12.9.2. In analogy with the continuous-time case, the discrete-time 
algebraic Riccati equation (DARE) (12.9.19), arising in discrete Kalman filter 
will be called the discrete filter algebraic Riccati equation or DFARE, for short. 
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12.10 THE LINEAR QUADRATIC GAUSSIAN P R O B L E M  

The linear quadratic regulator (LQR) problems deal with optimization of a per- 
formance measure for a deterministic system. The Linear Quadratic Gaussian 
(LQG) problems deal with optimization of a performance measure for a stochastic 
system. 

Specifically, the continuous-time LQG problem is defined as follows: 

Consider the controllable and observable stochastic system (12.9.1) and the 
quadratic objective function 

, l JOG -- lim ~ E (x T Qx + u TRu)dt 
T - ~  2T 

where the weighting matrices Q and R are, respectively, symmetric posi- 
tive semidefinite and positive definite. Suppose that the noise w(t) and v(t) 
are both Gaussian, white, zero-mean, and stationary processes with positive 
semidefinite and positive definite covariance matrices W and V. The problem 
is to find the optimal control u(t) that minimizes the average cost. 

Solution of the LQG Problem via Kalman Filter 

The solution of the LQG problem is obtained by combining the solutions of the 
deterministic LQR problem and the optimal state estimation problem using the 
Kalman filter (see the next subsection on the separation property of the LQG 
design). 

The control vector u(t) for the LQG problem is given by 

u(t) = -Kc~( t ) ,  (12.10.1) 

where 

(i) 

(ii) 

the matrix Kc is the feedback matrix of the associated LQR problem, that is, 

Kc = R-1BTXc, (12.10.2) 

Xc satisfying the CARE: XcA + A TXc + Q - XcB R -1B TXc --O. 
(12.10.3) 

the vector :~(t) is generated by the Kalman filter: 

~(t) - (A - KfC)Yc(t) + Bu(t) + Kfy(t).  (12.10.4) 

The filter gain matrix Kf = XfC f V -1 and Xf satisfies the CFARE 

AXf + XfA T -  x f c T v - 1 c x f  + F W F  T = 0. (12.10.5) 
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I Jr =Ax + Bu + Fw 
-Kc y = Cx + v 

Kalman 
filter 

FIGURE 12.7: The LQG design via Kalman filter. 

For a proof of the above, see Dorato et al. (1995). 

The LQG design via Kalman filter is illustrated in Figure 12.7. 

The LQG Separation Property 

In this section, we establish the LQG separation property. For the sake of conve- 
nience, we assume that F = I. By substituting (12.10.1) into (12.10.3), we obtain 
the compensator: 

~( t )  - ( a  - B K c  - K f C ) ~ ( t )  4- K f y ( t ) ,  
(12.10.6) 

u( t )  ----- -Kc~( t ) .  

The transfer function M ( s )  of this compensator (from y ( t )  to u( t ) )  can be easily 
written down: 

M ( s )  = - K c ( s l  - A + B K c  + K f C ) - I K f .  (12.10.7) 

From (12.10.6) and (12.9.1), it is easy to see that the closed-loop matrix satisfies 
the differential equation 

�9 (t ~ { x  ~ { I  0 ~c ~f~j ~~t)~ + ~o ~f - - (t) \ v ( t ) /  

(12.10.8) 

Define the error vector 
e( t )  = x ( t )  - } ( t ) .  (12.10.9) 

Then from (12.10.8) and (12.10.9), we obtain 

(~~)~ (A-~c ~c~)~)~  ~,)~ 
~,)~ o A ~f ,e~t)~+(', _of) - \ ~ ( t ) J "  

Thus, the 2n closed-loop eigenvalues are the union of the n eigenvalues of A - B Kc 
and the n eigenvalues of A - K f C .  
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Furthermore, if (A, B) is controllable and (A, C) is observable, then both the 
matrices A - B Kc and A - KfC are stable. However, the matrix A - B Kc - KfC 
is not necessarily stable. 

Algorithm 12.10.1. 
Inputs. 

The Continuous-time LQG Design Method 

(i) 
(ii) 

The matrices A, B, C, and F defining the system (12.9.1). 
The covariance matrices V and W. 

Output. The control vector u(t) generated by the LQG regulator. 
Assumptions. (12.9.3)-(12.9.8). 
Step 1. Obtain the symmetric positive definite stabilizing solution Xc of  the 

CARE: 

X A  + A T x -  X B R - 1 B T X  + Q = 0. (12.10.10) 

Step 2. Compute Kc = R -1B TXc 
Step 3. 

3.1. Solve the CFARE: 

A X  + X A  T -  x c T v - 1 c x  -Jr- F W F  T - - 0  (12.10.11) 

to obtain the symmetric positive definite stabilizing solution Xf. 
3.2. Compute filter gain matrix 

g f  -- x f c T v  -1. (12.10.12) 

Step 4. Solve for  ~(t)" 

~(t) -- (A - BKc - KfC)~( t )  + Kfy( t ) ,  ~(0) -- ~o. (12.10.13) 

Step 5. Determine the control law: 

u(t) -- -Kc,~(t). (12.10.14) 

Remarks 

Though the optimal closed-loop system will be asymptotically stable, the 
LQG design method described above does not have the same properties as 
the LQR design method; in fact, most of the nice properties of the LQR 
design are lost by the introduction of the Kalman filter. See Doyle (1978) 
and Zhou et al. (1996, pp. 398-399). 
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Overall, the LQG design has lower stability margins than the LQR 
design and its sensitivity properties are not as good as those of the LQR 
design. 
It might be possible to recover some of the desirable properties of the LQR 
design by choosing the weights appropriately. This is known as the Loop 
Transfer Recovery (LTR). The details are beyond the scope of this book. 
See Doyle and Stein (1979, 1981) and the book by Anderson and Moore 
(1990). 

Example 12.10.1. We consider the LQG design for the helicopter problem of 
Example 12.9.1, with 

Q = C  TC and R=12• 

and the same W and V. 
Step 1. The stabilizing solution Xc of the CARE (computed by MATLAB function 

care) is 
//0.0071 -0.0021 -0.0102 -0.0788'~ 

= |-0.0021 0 .1223  0.0099 -0.1941 / 
Xc [-0.0102 0 .0099 41.8284 ?174029 ) " 

\-0.0788 -0.1941 174.2 

Step 2. The control gain matrix Kc is 

{-0.0033 
Kc = R-1BTXc = ~ 0.0171 1464 1 60  4 :9 ) 

-1.0515 0.2927 . " 

Step 3. The filter gain matrix Kf computed in Example 12.9.1 is 

Kf = 

I 0.0158 -0.2405'~ 
9.0660 -0.1761 ] 
0.0091 0.2289 ~ " 

-0.0031 0.0893 ,/ 

The closed-loop eigenvalues: The closed-loop eigenvalues are the union of the 
eigenvalues of A - B Kc (the controller eigenvalues) and those of A - K fC  (the 
filter eigenvalues): 

{-3.3643 + 2.9742j, -0.0196, -8.6168} 

O {-0.0196, -8.6168, -3.3643 + 2.9742j}. 

MATLAB note: The MATLAB function (from the control system toolbox) 
lqgreg forms the LQG regulator by combining the Kalman estimator designed 
with Kalman and the optimal state feedback gain designed with lqr. In case of a 
discrete-time system, the command dlqr is used in place of lqr. 
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12.11 S O M E  S E L E C T E D  S O F T W A R E  

12.11.1 MATLAB Control System Toolbox 

LQG design tools 

kalman Kalman estimator 
kalmd Discrete Kalman estimator for continuous plant 
lqgreg Form LQG regulator given L Q gain and Kalman estimator. 

12.11.2 MATCONTROL 

SYLVOBSC 

SYLVOBSM 
SYLVOBSMB 

Solving the constrained multi-output Sylvester-observer 
equation 
Solving the multi-output Sylvester-observer equation 
Block triangular algorithm for the multi-output Sylvester- 
observer equation 

12.11.3 CSP-ANM 

Design of reduced-order state estimator (observer) 

�9 The reduced-order state estimator using pole assignment approach is 
computed by ReducedOrderEstimator [system, poles]. 

�9 The reduced-order state estimator via solution of the Sylvester- 
observer equation using recursive bidiagonal scheme (a variation 
of the triangular scheme of van Dooren (1984)) is computed by 
ReducedOrderEst imator [system, poles, Method -+ 
RecursiveBidiagonal] and ReducedOrderEstimator [system, 
poles, Method -+ RecursiveBlockBidiagonal] (block version of 
the recursive bidiagonal scheme). 

�9 The reduced-order state estimator via solution of the Sylvester- 
observer equation using recursive triangular scheme is computed by 
ReducedOrderEst imator [system, poles, Method -+ 
RecursiveTriangular] and ReducedOrderEstimator [system, 
poles, Method -+ RecursiveBlockTriangular] (block version 
of the recursive triangular scheme). 

12.11.4 SLICOT 

FB01RD Time-invariant square root covariance filter (Hessenberg form) 
FB01TD Time-invariant square root information filter (Hessenberg form) 
FB01VD One recursion of the conventional Kalman filter 
FD01AD Fast recursive least-squares filter. 
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12.11.5 MATRIXx 

Purpose: Calculate optimal state estimator gain matrix for a discrete time system. 

Syntax: [EVAL, KE]=DESTIMATOR (A, C, QXX, QYY, QXY) OR 
[EVAL, KE, P]=DESTIMATOR (A, C, QXX, QYY, QXY) 

Purpose: Calculate optimal state estimator gain matrix for a continuous time 
system. 

Syntax: [EVAL, KE]=ESTIMATOR (A, C, QXX, QYY, QXY) 
[EVAL, KE, P]=ESTIMATOR (A, C, QXX, QYY, QXY) 

Purpose: Given a plant and optimal regulator, this function designs an estimator 
which recovers loop transfer robustness via the design parameter RHO. Plots of 
singular value loop transfer response are made for the (regulator) and (estimator 
+ regulator) systems. 

Syntax: 
[SC, NSC, EVE, KE, SLTF, NSLTF]=LQELTR (S, NS, QXX, QYY, KR, RHO, 
WMIN, WMAX, 
{ NPTS }, { OPTION }); OR 
[SC, NSC, EVE, KR, SLTF, NSLTF]=LQRLTR (S, NS, RXX, RUU, KE, RHO, 
OMEGA, 
{ OPTION }); 

Purpose: Given a plant and optimal estimator, this function designs a regulator 
which recovers loop transfer robustness via the design parameter RHO. Plots of 
singular value loop transfer response are made for the (estimator) and (regulator + 
estimator) systems. 

Syntax: 
[SC, NSC, EVR, KR, SLTF, NSLTF]=LQRLTR (S, NS, RXX, RUU, KE, RHO, 
WMIN, WMAX, 
{ NPTS }, { OPTION }); OR 
[SC, NSC, EVR, KR, SLTF, NSLTF]=LQRLTR (S, NS, RXX, RUU, ICE, RHO, 
OMEGA, 
{OPTION}); 

12.12 S U M M A R Y  A N D  R E V I E W  

In Chapters 10 and 11 we have discussed feedback stabilization, EVA and related 
problems. Solutions of these problems require that the states are available for 
measurements. Unfortunately, in many practical situations, all the states are not 
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accessible. One therefore needs to estimate the states by knowing only input and 
output. This gives rise to state estimation problem, which is the subject matter of 
this chapter. 

Full State Estimation 

The states can be estimated using 

�9 EVA approach (Theorem 12.2.1) 
�9 Solving the associated Sylvester-like matrix equation, called the Sylvester- 

observer equation (Algorithm 12.3.1). 

In "the eigenvalue assignment approach," the states x can be estimated by 
constructing the observer 

~(t )  - (A - K C ) ~ ( t )  + K y ( t )  + B u ( t ) ,  

where the matrix K is constructed such that A - K C is a stable matrix, so that the 
error e(t)  = x ( t )  - ~( t )  ~ 0 as t --+ oc. 

Using "the Sylvester equation approach," the states are estimated by solving 
the Sylvester-observer equation 

X A -  F X  = GC,  

where the matrix F is chosen to be a stable matrix and G is chosen such that the 
solution X is nonsingular. The estimate }(t) is given by :~(t) = X - l z ( t ) ,  where 
z( t )  satisfies ~:(t) = F z ( t )  + G y ( t )  + X B u ( t ) .  

Reduced-Order State Estimation 

If the matrix C has full rank r, then the full state estimation problem can be reduced 
to the problem of estimating only the n - r states. 

Again, two approaches: the EVA approach and the Sylvester-observer matrix 
equation can be used for reduced-order state estimation. 

Reduced-order state estimation via EVA (Algorithm 12.4.1) is discussed in 
Section 12.4.1. Here the EVA problem to be solved is of order n - r. 

In the Sylvester equation approach for reduced-order state estimation, one solves 
a reduced-order equation 

X A -  F X  = G C  

by choosing F as an ( n - r )  • (n - r )  stable matrix and choosing G as an ( n - r )  • r 

matrix such that the solution matrix X has full rank. The procedure is described 
in Algorithm 12.4.2. 
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Two numerical methods for the multi-output equation, both based on reduction 
ofthe pair (A, C) to the observer-Hessenberg pair (H, C), are proposed to solve the 
above reduced-order Sylvester-observer equation. These methods are described in 
Section 12.7 (Algorithms 12.7.1 and 12.7.2). 

Optimal State Estimation: The Kalman Filter 

If there is "noise" in the system, then one has to consider the state estimation prob- 
lem for a stochastic system. The optimal steady-state estimation of a stochastic 
system is traditionally done by constructing the Kalman filter. 

For the continuous-time stochastic system (12.9.1), the Kalman filter is given by 

~(t) -- (A - K fC)~( t )  4- Bu( t )  4- Kfy ( t ) ,  

where Kf  --  X f C  T V -1, and Xf  the symmetric positive definite solution of the 
CFARE: A X  4- X A  T - x c T v - 1 c x  4- F W F  T = O. 

The matrices V and W are the covariance matrices associated with "noise" in 
the output and input, respectively. The matrix Kf is called the Kalman filter gain. 

It can be shown that under the assumptions (12.9.3)-(12.9.8), the above Riccati 
equation has a symmetric positive definite solution and the estimate ~(t) is such 
that 

E[Jlx ( t )  - ~(t) II 2] 

is minimized as t ~ c~. 
Like the LQR design, the Kalman filter also possesses guaranteed stability and 

robustness properties: 

�9 The matrix A - K f C  is stable. 
�9 amin(I  4 -GKF(S) )  > 1 

-1 (S)) > 1 �9 amin( l  + GKF _ ~, 

where G i ~ ( s )  = C ( s I  - A)  - 1 K .  

For the discrete-time system, the DFARE to be solved is 

X = A ( X -  x c T ( c x c  T + V ) - I C X ) A  T 4- F W F  T 

and the discrete Kalman filter gain is given by 

Kd -- XdCT(CXd CT + V) -1 

where X d is the stabilizing solution of the above discrete Riccati equation 
(DFARE). 
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The Linear Quadratic Gaussian (LQG) Problem 

The LQG problem is the problem of finding an optimal control that minimizes a 
performance measure given a stochastic system. Thus, it is the counterpart of 
the deterministic LQR problem for a stochastic system. 

Given the stochastic system (12.9.1) and the performance measure JQG defined 
in Section 12.10, the optimal control u( t )  for the LQG problem can be computed as 

u( t )  = -Kc~(t) ,  

where Kc = R -1B TXc, Xc being the solution of the CARE arising in the solution 
of the deterministic LQR problem. The estimate ~(t) is determined by using the 
Kalman filter. Specifically, ~ (t) satisfies 

~( t )  - (A - K fC) .~( t )  + B u ( t )  + Key ( t ) ,  

where Kf is the Kalman filter gain computed using the stabilizing solution of the 
CFARE. 

Thus, the LQG problem is solved by first solving the LQR problems followed 
by constructing a Kalman filter. 

Unfortunately, the LQG design described as above does not have some of the 
nice properties of the LQR problem that we have seen before in Chapter 10. They 
are lost by the introduction of the Kalman filter. 

12.13 C H A P T E R  NOTES AND F U R T H E R  R E A D I N G  

State estimation is one of the central topics in control systems design and has been 
discussed in many books (Kailath 1980; Chen 1984; Anderson and Moore 1990; 
etc.). The idea of reduced-order observers is well-known (Luenberger (1964, 1966, 
1971, 1979)). The treatment of Section 12.4 on the reduced-order estimation has 
been taken from Chen (1984). 

The term "Sylvester-observer equation" was first introduced by the author 
(Datta 1994). Algorithm 12.7.1 was developed by Van Dooren (1984), while 
Algorithm 12.7.2 was by Carvalho and Datta (2001). For large-scale solution of 
this equation, see Datta and Saad (1991); for computing an orthogonal solution 
to the Sylvester-observer equation, see Datta and Hetti (1997). For a discussion 
of the numerical properties of the method in Datta and Saad (1991), see Calvetti 
et al. (2001). A parallel algorithm for the multi-output Sylvester-observer equation 
appears in Bischof et al. (1996). For numerical solution of the Sylvester-observer 
equation with F as the JCF see Tsui (1993) and the references therein. For other 
algorithms for this problem see Datta (1989) and Datta and Sarkissian (2000). The 
last paper contains an algorithm for designing a "functional observer," which 
can be used to compute the feedback control law y - K ~ ( t )  without any matrix 
inversion. 
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The method for the constrained Sylvester-observer equation presented in 
Section 12.8 was developed by Barlow et al. (1992). For numerical methods deal- 
ing with nearly singular constrained Sylvester-observer equation, see Ghavimi and 
Laub (1996). 

The topic of Kalman filter is now a classical topic. Since the appearance of 
the pioneering papers by Kalman (1960), Kalman and Bucy (1961), and Kalman 
(1964), many books and papers have been written on the subject (see, e.g., 
Kwakernaak and Sivan 1972; Anderson and Moore 1979; Maybeck 1979; Lewis 
1986, 1992; etc.). 

A special issue of IEEE Transactions on Automat ic  Control, edited by Athans 
(197 lb) was published on the topic of LQG design, which contains many important 
earlier papers in this area and an extensive bibliography on this subject until 1971. 
See Dorato et al. (1995) for up-to-date references. For aerospace applications of 
LQG design see McLean (1990). Gangsaas (1986), Bernstein and Haddad (1989) 
have discussed LQG control with H ~  performance bound. 

We have not discussed in detail the stability and robustness properties of the 
LQG design. See the papers of Safonov and Athans (1977) and Doyle (1978) in 
this context. 

For discussions on the LQG loop transfer recovery, see the original paper of 
Doyle and Stein (1979) and the survey of Stein and Athans (1987), and Section 7.2 
of the recent book by Dorato et al. (1995). 

Exercises 

12.1 

12.2 
12.3 

12.4 

12.5 

Consider Example 5.2.5 with the following data: M -- 2, m = 1, g -- 0.18, and 
l = 1. Take C = (1, 1, 1, 1). 
(i) Find a feedback matrix K such that the closed-loop matrix A - B K has the 

eigenvalues - 1, -2 ,  -3 ,  -4 .  
(ii) Assuming now that the state x is not available for feedback, construct a full- 

dimensional observer using (a) the eigenvalue assignment method and (b) the 
Sylvester-observer equation. Compare the results by plotting the error between 
the true and observed states. 

(iii) Construct a three-dimensional reduced-order observer using (a) the eigen- 
value assignment method and (b) the Sylvester-observer equation. Compare 
the results by plotting the error between the true and observed states. 

In each case (ii) and (iii), choose the observer eigenvalues to be three times as those 
of the matrix A - B K. 
Are the conditions of Theorem 12.3.1 also necessary? Give reasons for your answer. 
Prove that the pair (A, C) is observable if and only if the pair (A22, ,412) is 
observable, where/]12 and A22 are given by (12.4.2). 
Establish the "separation property" stated in Section 12.5 for a full-dimensional 
observer. 
Prove that the transfer function matrix of the combined system (12.5.2) of the state 
feedback and observer can be computed from 

~c = ( A -  B K)x  + Br, y = Cx 
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and the transfer function matrix is 

G(s) - C ( s I  - A + B K )  - l B .  

How do you interpret this result? 
12.6 Construct an example to show that the necessary conditions for the unique solution 

X of the Sylvester equation stated in Theorem 12.6.1 are not sufficient, unless 
r - - 1 .  

12.7 Using the ideas from the proof of Theorem 12.6.1 prove that necessary conditions 
for the existence of a unique full rank solution X in X A  - F X  = GC such that 

T = ( C )  i s n o n s i n g u l a r a r e t h a t ( A , C ) i s o b s e r v a b l e a n d ( F , G ) i s c o n t r o l l a b l e .  

Prove further that for the single-output case (r = 1), the conditions are sufficient 
as well. 

12.8 Deduce Theorem 12.6.1 from Theorem 12.6.2. 
12.9 Workout a proof of Algorithm 12.8.1 (consult Barlow et al. (1992)). 
12.10 Prove that the EVA approach and the Sylvester-observer equation approach, 

both for full-dimensional and reduced-order state-estimation, are mathematically 
equivalent. 

12.11 Compare flop-count of Algorithm 12.4.1 with that of Algorithm 12.4.2. (To imple- 
ment Step 3 of Algorithm 12.4.1, assume that Algorithm 11.3.1 has been used, and 
to implement Step 2 of Algorithm 12.4.2, assume that Algorithm 12.7.2 has been 
used). 

12.12 Functional estimator (Chen (1984, p. 369)). Consider the problem of finding an 
estimator of the form: 

~(t) = Fz( t )  + Gy( t )  + Hu( t ) ,  
w(t)  = Mz( t )  + Ny( t ) ,  

where M and N are row vectors, so that w(t)  will approach kx( t )  for a constant 
row vector k, as t --+ ~ .  
(a) Show that if M and N are chosen so as to satisfy the equation: 

M T  + N C  -- [r 

with T given by 

T~-FT =C~, 
H = T B ,  

where A and/3 are the same as in (12.4.2), and C = CS -1 , # = kS -1 ,  and 
F is a stable matrix, then w(t)  will approach kx( t )  as t --+ cx~. 

(b) Based on the result in (a), formulate an algorithm for designing such an 
estimator and apply your algorithm to Example 12.4.1. 

12.13 Prove that if (A, C) is observable, then a state-estimator for the discrete-time system 

Xk+ 1 = Ax  k + Buk,  

Yk = Cxk 
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may be constructed as 

-~k+l : A~k + Buk + L(yk --C~k), 

where L is such that the eigenvalues of A - LC have moduli less than 1. 
12.14 Show that for a "deadbeat" observer, that is, for an observer with the "observer 

eigenvalues" equal to zero, the observer state equals the original state. 
12.15 Establish the "Guaranteed stability" and "Guaranteed robustness" properties 

of the Kalman Filter, stated in Section 12.9. 
12.16 Design an experiment for the Kalman filter estimation of the linearized state-space 

model of the motion of a satelite in Example 5.2.6, choosing the initial values of 
the variables and the covariance matrices appropriately. Show the error behavior 
by means of a graph. 

12.17 Design an experiment to show that the LQG design has lower stability margins than 
the LQR design. 

12.18 Rework Algorithm 12.4.1 using the QR decomposition of the matrix C, so that the 
explicit inversion of the matrix S can be avoided. 
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C H A P T E R  1 3  

NUMERICAL SOLUTIONS AND 
CONDITIONING OF ALGEBRAIC 
RICCATI EQUATIONS 

13.1 INTRODUCTION 

This chapter is devoted to the study of numerical solutions of the continuous-time 
algebraic Riccati equation (CARE): 

XA + A T x  4- Q -  XBR-1BTX - - 0  

and of its discrete counterpart (DARE) 

A T X A  - X + Q - ATXB(R + B T X B ) - I B T X A  = O. 

Equation (13.1.1) is very often written in the following compact form: 

XA + A T x  + Q -  XSX = 0, 

(13.1.1) 

(13.1.2) 

(13.1.3) 

519 
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where 
S = BR -1B y. (13.1.4) 

Equation (13.1.2) can also be written in the compact form: 

ATx(I  -t- S X ) - I A  - X + Q = 0, (13.1.5) 

where S is again as given by (13.1.4). 
These equations have long been subject of research in mathematics, physics, and 

engineering. They play major roles in many design problems in control and filter 
theory. As we have seen in Chapter 10, historically, AREs started as an important 
tool in the solution of Linear Quadratic Optimization problems. In recent years, 
they became a subject of intensive study, both from theoretical and computational 
viewpoints, because of their important roles in state-space solutions of H ~  and 
robust control problems. For a brief history of the importance, applications, and 
historical developments of the AREs, see B ittanti et al. (1991). 

The following computational methods for the CARE and DARE are widely 
known in the literature and most of them are discussed in Section 13.5 of this 
chapter. 

1. The Eigenveetor Methods (McFarlane 1963; Potter 1966). 
2. The Sehur Methods and tile Structure-Preserving Sehur Methods 

(Laub 1979; Byers 1983, 1986a, 1990; Bunse-Gerstner and Mehrmann 
1986; Mehrmann 1988; Benner et al. 1997c). 

3. The Generalized Eigenveetor, the Generalized Sehur, and Inverse-Free 
Generalized Methods (Pappas et al. 1980; Van Dooren 1981; Arnold and 
Laub 1984; Mehrmann 1991). 

4. The Matrix Sign Function Methods (Roberts 1980 [1971]; Denman 
and Beavers 1976; Bierman 1984; Gardiner and Laub 1986; Byers 1987; 
Kenney and Laub 1995). 

5. Newton'sMethods(Kleinman1968;Hewer1971;BennerandByers 1998; 
Guo and Lancaster 1998; Guo 1998). 

The eigenvector methods are well known to have numerical difficulties in 
case the Hamiltonian matrix associated with the CARE or the symplectic matrix 
associated with the DARE has some multiple or near-multiple eigenvalues (the 
corresponding eigenvectors will be ill-conditioned). 

In these cases, the Schur methods, based on the real Schur decompositions of 
the Hamiltonian matrix for the CARE and of the symplectic matrix for the DARE, 
should be preferred over the eigenvector methods. The Schur method is widely used 
in practice for the CARE. Unfortunately, it cannot be applied to the DARE when 
A is singular. Indeed, even if A is theoretically nonsingular, but is computationally 
close to a singular matrix, the Schur method for the DARE should be avoided. An 
alternative for the DARE then is to use the generalized Schur method which is based 
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on the Schur decomposition of a matrix pencil and does not involve computation 
of the inverse of A. Having said this, it should be noted that the Schur methods 
and the generalized Schur methods require explicit computation of the inverse of 
the matrix R both for the CARE and the DARE. So, when R is close to a singular 
matrix, the methods of choice are the inverse-free generalized Schur methods. 

Newton's methods are iterative in nature and are usually used as iterative refine- 
ment techniques for solutions obtained by the Schur methods or the matrix sign 
function methods. Table 13.1 presents a comparison of the different methods 
and recommendation based on this comparison. 

Sections 13.2 and 13.3 deal, respectively, with the results on the existence 
and uniqueness of the stabilizing solutions of the CARE and the DARE. The 
condition numbers and bounds of the condition numbers of the CARE and 
DARE are identified in Section 13.4. 

13.2 THE EXISTENCE AND UNIQUENESS OF THE STABILIZING 
SOLUTION OF THE CARE 

The goal of this section is to derive conditions under which the CARE admits a 
unique symmetric positive semidefinite stabilizing solution. 

For this we first need to develop an important relationship between the CARE 
and the associated Hamiltonian matrix and some spectral properties of this matrix. 

Recall from Chapter 10 that associated with the CARE is the 2n • 2n Hamiltonian 
matrix: 

H _ ( A  - S )  
_ Q  _A T . (13.2.1) 

The Hamiltonian matrix H has the following interesting spectral property. 

Theorem 13.2.1. For each eigenvalue i. of  H, - 2  is also an eigenvalue o f  H 
(with the same geometric and algebraic multiplicity as 1.). 

Proof. Define the 2n • 2n matrix: 

(o 'o) 
where I is the n x n identity matrix. Then it is easy to see that J - 1 H J  = - J H J  -- 
- H  T, which shows that H and - H  T are similar. Hence, 1. is also an eigenvalue 
o f -  H T. Since the eigenvalues of -/_/T are the negatives of the eigenvalues of/4,  
and the complex eigenvalues occur in conjugate pairs, the theorem is proved. I 

The following theorems show that a solution X of the CARE is determined by 
the associated Hamiltonian matrix. 
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T h e o r e m  13.2.2.  A matrix X is a solution of the CARE if and only if the 
columnsof(x) spanann-dimensionalinvariantsubspaceofthe Hamiltonian 

matrix H defined by (13.2.1). 

Proof. We first prove that if the columns of ( I ) s p a n  an n-dimensional 

invariant subspace of H, then X is a solution of the CARE. 
So, assume there exists an n • n matrix L such that: 

H ( I ) - - ( I ) L .  (13.2.3) 

Multiplying both sides of (13.2.3) by j - i ,  where J is defined by (13.2.2), 
we have 

j-1H(Ix)--J-I(x)L.. (13.2.4) 

Noting that J-1 - (01 I ) ,  we obtain from (13.2.4) 

(13.2.5) 

Premultiplying both sides of (13.2.5) by (I, X), we get 

XA + A Tx + Q -XSX = O, 

showing that X satisfies the CARE. 
To prove the converse, we note that if X is a solution of the CARE, then 

- S X  H ( I ) - ( _ Q  ATx)  - ( A - S X  ~ _  ~ X ( A -  SX)] ( I )  ( A -  SX)' (13.2.6) 

that is, the columns of ( / )  span an invariant subspace of H. II 

xl) an n-dimensional invariant Corollary 13.2.1. If the columns of x2 span 

subspace of the Hamiltonian matrix H associated with the CARE and X1 is 
invertible, then X - Xz X-{ 1 is a solution of the CARE. 
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Proof .  

The span ~ the c~ ~ ( X1)X2 

(Xl t Xll = the span of the columns of X2 

= the span of the columns of X2X1-1 " 

Therefore, by Theorem 13.2.2, we see that X -  X2X-~ 1 is a solution of 
the CARE. II 

The next theorem shows how the eigenvalues of the Hamiltonian matrix H are 
related to those of the optimal closed-loop matrix. 

T h e o r e m  13.2.3. Let X be a symmetric solution of  the CARE. Then the eigen- 
values o f  the Hamiltonian matrix H are the eigenvalues o f  A - BK together 
with those o f  - ( A  - BK) T, where K = R - 1 B  TX. 

Proof.  D e f i n e T - (  / ~ ) , w h e r e l a n d X a r e n •  Then, 

( / x  / 
- ( A T X  + X A  + Q - X S X )  - C A -  S X )  T ' 

( A - S X  - S  ) 
= 0 - ( A -  SX)  T " (13.2.7) 

Thus, the eigenvalues of H are the eigenvalues of A - SX together with those of 
- ( A -  S X )  T. 

The result now follows by noting that: 

A - SX : A - BR - 1 B T X  : A - BK. 

(Recall that S = B R -  1BT.) 1 

Symmetric Positive Semidefinite Stabilizing Solutions of the CARE 

As we have seen in Chapter 10, several applications require a symmetric positive 
semidefinite stabilizing solution of the associated Riccati equation. We derive in 
this subsection a necessary and sufficient condition for the existence of such a 
solution. 
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Recall that a symmetric solution X of (13.1.1) is a stabilizing solution if A - 
BK = A - B R - 1 B T x  = A -  S X  is stable. 

Proof of Theorem 13.2.4 below has been taken from Kimura (1997). 

Theorem 13.2.4. Existence and Uniqueness o f  the Stabilizing Solution. 
Assume that R > 0 and Q >_ 0, Q r 0. 

Then the following conditions are equivalent: 

1. The CARE: 

XA -4- A Tx  - XBR - 1 B T x  4- Q - - 0  (13.2.8) 

has a unique symmetric positive semidefinite stabilizing solution X. 
(A, B) is stabilizable and the associated Hamiltonian matrix H has no 
pure imaginary eigenvalues. 

Proof of necessity. First suppose that X is a stabilizing solution of the CARE. 
We then show that H does not have an imaginary eigenvalue. 

Since X is a stabilizing solution, A - SX is stable, that is A - B K is stable. From 
Theorem 13.2.3, we then have that n eigenvalues of H are stable and the other n 
have positive real parts. Thus, H does not have a purely imaginary eigenvalue. 

Proof of sufficiency. Next assume that H given in (13.2.1), with 
S = BR - 1 B  T, has no eigenvalues on the imaginary axis. We shall then show 
that under the assumption of the stabilizability of (A, B), there exists a unique 
stabilizing solution of the CARE. 

The proof will be divided in several parts. 
First of all we note that the stabilizability of (A, B) implies the stabilizability 

of (a ,  S). 
Since H has no pure imaginary eigenvalues, there are n stable eigenvalues of 

H (by Theorem 13.2.1). 
Then, 

H X2 -- X2 ' (13.2.9) 

X1) forn'l the eigenspace of H where E is a stable matrix and the columns of x2 

corresponding to these stable eigenvalues. 
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A~ xTx1 is symmetric. 
The relation (13.2.9) can be expressed as 

AX1 - S X 2  = X1E (13.2.10) 

and 

- Q X 1  - ATx2 -- X2E. (13.2.11) 

Multiplying (13.2.10) by X f on the left, we have 

XT A X 1 -  xT  s x2  -- xT  X1E. (13.2.12) 

Now taking the transpose of (13.2.11), we have 

X TA  -- - X  TQ - E T X  T. 

Multiplying the last equation by X1 to the right, we get 

E T X T X 1  -- - - x T A x 1  -- X T QX1. (13.2.13) 

Using (13.2.12) in (13.2.13), we then have 

E T x T x 1  -q- x T x 1 E  -- _ x T s x 2  _ xT  Qx1" (13.2.14) 

Since S and Q are symmetric, the right-hand side matrix is symmetric, 
and therefore the left-hand side matrix is also symmetric. This means that 

F~X~Xl + X~XlF~ -- XTX~E + E ~xTx~ 

or  

~,T~x~x~ - x T x 2 )  + ~x~x~  - x T x 2 ) E  - o. 

Since E is stable, this Lyapunov equation has a unique solution which 
implies that X2 TX1 - X TX2 - 0. That is, X2 TX1 - X1TX2, proving that 
X f X1 is symmetric. 
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B .  X1 is invertible.  

Suppose that X1 is not invertible. Then there exists a vector d ~ 0 
such that 

X l d  -- 0. (13.2.15) 

Now multiplying the transpose of (13.2.10) by d z to the left and by 
X2d to the fight, we have 

d T x T s x 2 d  -- _ d T E T x T x 2 d  + d T x T A T X 2 d ,  

-- - d  T E T X T X 1 d + d T X T AT X2d -- 0 

(because X TX2 - X TX1 and X ld - 0). 

Again, since S > 0, we must have 

SX2d  - 0 .  

The Eq. (13.2.10) therefore yields 

X 1 E d - - O .  

As this holds for all d 6 Ker(X1), this means that Ker(X1) is E-invariant, 
that is, there exists an eigenvalue/x of E such that 

Ed'  - izd', X l d '  - O, d' r O. (13.2.16) 

Again, multiplying (13.2.11) by d ~ and using the relation (13.2.16), we 
obtain 

( tzl  + A T ) x 2 d  ' = 0. (13.2.17) 

Also, from (13.2.10) and (13.2.16), we have 

SX2d '  - 0 .  (13.2.18) 

Since Re( / z )<0  and (A,S) is stabilizable, we conclude from 
(13.2.18) that 

Xed  t = 0. (13.2.19) 

( s l )  does not have the full Finally, Xad'  -- 0 and X ld t - 0 imply that x: 
\ / 

rank which contradicts (13.2.9). 

Thus, X1 is nonsingular. 
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C. 

D. 

E. 

F. 

X is symmetric. 
- 1  Since X1 is nonsingular, we have from Corollary 13.2.1 that X - X z X  1 

is a solution of the CARE and, since XfX1 is symmetric, so is X. This is 
seen as follows" 

X T -  X -- x 1 T x  T -- X 2 X 1 1  

= x ?  T (XTX1)X?  1 _ x 1  T ( X T X z ) X ?  1 

-- x 1 T ( x T x 1  - x T x 2 ) x 1 1  -- O. 

X is a stabilizing solution. 
Multiplying (13.2.10) by X 1 1  to the right, we obtain 

A - S X 2 X 1 1  - X1 E X 1 1  

Since E is stable, so is A - S X 2 X 1 1  - A - S X .  Thus, X is stabilizing a 

solution. 
X is unique. 
Let X1 and X2 be two stabilizing solutions. Then, 

A T x 1  + X 1 A  - X 1 S X 1  + Q - 0  

A T x 2  + X 2 A  - X 2 S X 2  -+- Q - 0  

Subtracting these two equations, we have 

A T ( x 1  - X2)  + (X1 - X 2 ) A  + X 2 S X 2  - X 1 S X 1  - 0 

or  

(A - S X 1 )  T(X1 - X2)  -+- (X1 - X 2 ) ( A  - S X 2 )  - O. 

Since the last equation is a homogeneous Sylvester equation and the 
coefficient matrices A - S X 1  and A - S X 2  are both stable, it follows that 
X1 - X2 -- 0, that is, X1 - X2. 
X is positive semidefinite. 
Since X is symmetric and satisfies (13.2.8), Eq. (13.2.8) can be written 
in the form of the following Lyapunov equation: 

( A  - B K ) T X  + X ( A  - B K )  - -  - Q  - x s x ,  

where K -- R -  1BTx. Furthermore, A - B K  - -  A - B R -  1 B T x  = 

A - S X  is stable. Thus, X can be expressed in the form (see Chapter 7): 

X - f o  e ( A - B K ) T t  ( Q  + X S X ) e ( A - B K ) t d t "  Since Q and S are positive 

semidefinite, it follows that X is positive semidefinite. II 
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Theorem l3.2.5. Let (A,B) be stabilizable and (A, Q) be 
detectable. Assume that Q > O, S > O. Then the Hamiltonian matrix: 

associated with the CARE does not have a purely imaginary eigenvalue. 

Proof. The proof is by contradiction. 
Suppose that H has a purely imaginary eigenvalue jot, where ot is a 

nonnegative real number, and let (~)be  the corresponding eigenvector. 

Then, 

Multiplying both sides of (13.2.20) by (s*, r*) to the left, we obtain 

s*Ar  - r* Qr - s*Ss - r*ATs -- jot(s*r + r ' s )  

or 

(s*Ar - r*ATs) -- r* Qr - s*Ss - jot(s*r + r ' s ) .  

Considering the real part of this equation, we get 

- r * Q r  - s * S s  - 0 .  

Since S > 0 and Q >_ O, we conclude that 

Ss - 0  (13.2.21) 

and 
Qr - O. (13.2.22) 

So, from (13.2.20), we have 

Ar  -- jotr (13.2.23) 

and 
- -ATs -- jots. (13.2.24) 

Thus, combining (13.2.23)and (13.2.22), we have (A o J a I )  r=  O. Since 
N 

(A, Q) is detectable, we have r - 0. Similarly, using (13.2.24) and 

(13.2.21), one can show that s -  0. This gives us a contradiction that (~) 

is an eigenvector. Thus, H cannot have a purly imaginary eigenvalue. I 
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An Expression for the Stabilizing Solution 

Combining Theorem 13.2.4, Corollary 13.2.1, and Theorem 13.2.5, we arrive at 
the following result: 

Theorem 13.2.6. An Expression for the Unique Stabilizing Solution of the 
CARE. Suppose that (A, B) is stabilizable and (A, Q) is detectable. Assume that 
Q > 0 and R > O. Then there exists a unique positive semidefinite stabilizing 
solution X of the CARE: X A + ATx  --XBR -1BTx  + Q = O. This solution 

is given by X - -  X2X11, where the columns of the matrix (X1)x2 span the 

invariant subspace of the Hamiltonian matrix (13.2.1) associated with its stable 
eigenvalues. 

Remark 

The following simple example shows that the detectability of (A, Q) is not 
necessary for the existence of a symmetric positive semidefinite stabilizing 
solution of the CARE. 

1 
A - - ( ; 1  ~ ) ,  B - - ( 1 ) '  Q -  (00 00)' R = I .  

Then (A, B) is stabilizable, but (A, Q) is not detectable. The matrix x = 

(~ 0 ~ is the stabilizing solution of the CARE and is positive semidefinite. 

13.3 THE EXISTENCE AND UNIQUENESS OF THE STABILIZING 
SOLUTION OF THE DARE 

The existence and uniqueness of the stabilizing solution of the DARE can be 
studied via a symplectic matrix which takes the role of the Hamiltonian matrix of 
the CARE. 

Definition 13.3.1. A matrix M is symplectic if 

j - 1 M T j  = j T M T j  = M-1 

where J is defined by (13.2.2). 

Assume A is invertible and consider the matrix: 

M -  (A  -t- S(A-1)T Q -S(A-1)T~ 
- ( A - l )  T Q (A-l) T /] '  

whereS=BR-1B T , Q =  Q T, a n d S = S  T . 

(13.3.1) 
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Then, it can be shown (Exercise 13.3) that 

1. M is symplectic. 
2. If ~. is a nonzero eigenvalue of M, so is 1/~.. 

We now state the discrete counterparts of Theorems 13.2.5 and 13.2.6. The proofs 
can be found in Lancaster and Rodman (1995). 

T h e o r e m  13.3.1. Let (A, B) be discrete-stabilizable and let (A, Q) be 
discrete-detectable. Assume that Q > 0 and S >_ O. Then the symplectic matrix 
(13.3.1) has no eigenvalues on the unit circle. 

Suppose that the symplectic matrix M has no eigenvalues on the unit circle. Then it 
must have n eigenvalues inside the unit circle and n outside it. As in the continuous- 

(Xl) form a basis time case, it can then be shown that if the columns of the matrix x2 

for the invariant subspace associated with the eigenvalues inside the unit circle, then 
X1 is nonsingular and X - XzX11 is a unique symmetric positive semidefinite 
stabilizing solution of the DARE. 

Thus, we have the following theorem as the discrete counterpart of Theo- 
rem 13.2.6. 

T h e o r e m  13.3.2. An Expression for the Unique Stabilizing Solution of the 
DARE. Suppose that (A, B) is discrete-stabilizable and (A, Q) is discrete- 
detectable. Assume that Q > O, R > O. Then the DARE: 

A T X A -  X + Q - ATXB(R + BTXB) -1BTXA - -0  

has a unique symmetric positive semidefinite discrete-stabilizing solution X. 
, (X1) span Furthermore, X is given by X - XzX11 where the columns of x2 

the n-dimensional invariant subspace of the symplectic matrix M associated 
with the eigenvalues inside the unit circle. 

13.4 CONDITIONING OF T H E  R I C C A T I  EQUATIONS 

Before we describe the solution methods for Riccati equations, we state some 
results on the perturbation theory of such equations that will help us identify the 
condition numbers of the equations. These condition numbers, as usual, will help 
us understand the sensitivity of the solutions of the Riccati equations when the 
entries of the data matrices are slightly perturbed. 
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13.4.1 Conditioning of the CARE 

Consider first the CARE: 

A T x  4- X A  + Q - X S X  - O, (13.4.1) 

where 

S - B R  - 1 B  T. (13.4.2) 

Let AA, AX, A Q, and AS be small perturbations in A, X, Q, and S, respectively. 
Suppose that X is the unique stabilizing solution of the CARE and that X + AX 
is the unique stabilizing solution of the perturbed Riccati equation: 

(A + AA) T(X + AX) + (X 4- AX)(A + AA) 

4- (Q 4- A Q) - (X 4- AX)(S 4-AS)(X 4- AX) -- 0. (13.4.3) 

We are interested in finding an upper bound for the relative error II AX II/II X II. 
Several results exist in literature. Byers (1985) and Kenney and Hewer (1990) 

obtained the first-order perturbation bounds and Chen (1988), Konstantinov et  al.  

(1990) gave global perturbation bound. Xu (.1996) has improved Chen's result and 
Konstantinov et  al.  (1995) have sharpened the results of Konstantinov et  al.  (1990). 
The most recent result in this area is due to Sun (1998), who has improved Xu's 
result. We present below Sun's result and the condition numbers derived on the 
basis of this result. 

Following the notations in Byers (1985), we define three operators: 

F2(Z) = ( A -  s x ) T z - } -  Z ( A  - SX) ,  

O ( Z )  -- ~ - I ( z T x  q-. X Z )  

r-I ( z )  = ~ - 1  ( X Z X ) .  

(13.4.4) 

(13.4.5) 

(13.4.6) 

N o t e :  Since the closed-loop matrix A c  - -  A - S X  is stable, f2-1 exists. In fact, 
if f2(Z) - W, then 

L o o  
Z -- ~ - I ( w )  -- -- eATctweActdt, 

and [[K2-1 [IF - 1 / s e p ( A ~ , - A c ) .  

Define I -- 11 f2-1l[-1, p _ [l| and q - 111-I 1[, where II �9 II is any unitarily 
invariant norm. 
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Then the following perturbation result due to Sun (1998) holds: 

Theorem 13.4.1. A Perturbation Bound for the CARE�9 Let X and X + AX 
be, respectively, the symmetric positive semidefinite stabilizing solutions of the 
CARE (13.4.1) and the perturbed CARE (13.4.3). 

Then, for sufficiently small [A Q, AA, AS], 

I I A X I I <  IIQII IIAQII IIAII IIAAII qllSII IIASII 
�9 ~ + p ~  �9 + �9 . (13.4.7) 

II x II ~ 111 x II II QII II x II II All II X II II s II 

Using the results of Theorem 13.4.1, Sun has defined a set of condition numbers 
of the CARE. 

The numbers: 

AB 1 AB (A) = p and AB 
K'CARE (Q) - l '  /r ' KCARE (S) - q 

are the absolute condition numbers of X with respect to Q, A, S, respectively. 
The numbers: 

REL II Q II, REL : P II All , and KCARE ( s ) R E L  = q II S II 
xCARE (Q) =/11XII KCA~ (A) II X II II X II 

are then the relative condition numbers. 
Moreover, the scalar: 

REL ~7(lIQll)2 
KCARE (X) --- + (PlIAII) 2 + (qllSII) 2 (13.4.8) 

can be regarded as the relative condition number of X. 
Using a local linear estimate, Byers (1985) has obtained an approximate 

condition number given by 

1 ( I I Q I I F  
KBARE = iIXIIF +PlIAIIF + qlISIIF), 

in which the operator norm II" I1 for defining l, p, and q is induced by the Frobenius 
norm II �9 liE. 
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The above is known as Byers' approximate condition number. Indeed, taking 
the Frobenius norm in (13.4.8), and comparing (13.4.8) with Byers' condition 
number, one obtains: 

Theorem 13.4.2. 

1 B REL (X) < K~ARE ~/-~KCARE _< KCARE _ 

Expressions for l, p, and q: If the operator norm [[ �9 [I for defining l, p, and q 
is induced by the Frobenius norm [[ �9 [IF, then it can be shown (Sun 1998) that 

1 - l i T  -11121, p -  lIT -1(In | X + (X T | In)E)[[2 

and 

q -  I IT- I (x  T Q X)ll2, 

where 

T = In | (A - SX)  T -Jr- (A - SX)  T | In, 

E is the vec-permutation matrix: 

g -- ~ (eief)  | (ejeT). 
i,j=l 

and A -  S X  is stable. 

Remark 

�9 A recent paper of Petkov et al. (1998) contains results on estimating the 
quantities 1, p, and q. 

Estimating Conditioning of the CARE using Lyapunov Equations 

Computing the quantities l, p, and q using the Kronecker products is compu- 
tationally intensive. On the other hand (using the 2-norm in the definition of  
Byers' condition number) Kenney and Hewer (1990) have obtained an upper and 
a lower bound of KCAREB by means of solutions of certain Lyapunov equations, 
which are certainly computationally much less demanding than computing Kro- 
necker products. Using these results, ill-conditioning of XCARE can be more easily 
detected. 

Assume that A - S X  is stable and let Ilk be the solution to the Lyapunov 
equation: 

( A -  s x ) T H k  + H k ( A -  SX)  -- - X  k, k = O, 1, 2. (13.4.9) 
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Furthermore, let's define H(1) as follows" 

Set Q - 2X and solve the successive Lyapunov equations for /-) and H, 
respectively: 

( A -  sX)TH + I 4 ( A -  SX) - Q (13.4.10) 

and 
( A -  SX)H + H ( A -  S X )  T - -  121. (13.4.11) 

Let 

Define 

W - 2XH and 
(w) 

H(1) -- ~ IlWll " 

II no II II Q II -+- 2 II no II ~/2 II H2 II 1/2 II A II -+- II H2 II II S II 
U = (13.4.12) 

IlXll 

and 

- ( 1 )  
II Ho II II Q II + II H1 II II A II + II H2 II II S II 

L = (13.4.13) 
IIXII 

Then it has been shown that: 

L _< tc~Ap, z _< U (13.4.14) 

From the relations (13.4.12)-(13.4.14), we see that KCAREB will be large (and 

consequently the CARE will be ill-conditioned) if H0, H(1), and H2 have 

large norms (relative to that of X). Conversely, if the norms of H0, H(1), and 
H2 are not large, then the CARE will be well-conditioned. 

If the norms vary widely in the sense that there is a mixture of large and 
small norms, then there will be selective sensitivity. More specifically, the 
ratios: 

II Ho 11 [I Q [] [[ H(1) II II A]l 11 H2 I111 s II 
r l  - -  , r2 = , a n d  r3 

IIXII IlXll IlXll 

measure, respectively, the sensitivity of X with respect to perturbations in the 
matrix Q, the matrix A, and the matrix S. 
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Example 13.4.1. An Ill-Conditioned CARE. 

2 

A - -  O. 10 4 
7 (11 ) 

Q -  1 5 . 
1 3 

n ~ , 

0 0.0003 0.0004 
X - 1 0 9  0.0003 4.5689 5.3815 / . 

\0.0004 5.3815 6.3387] 

R m 1 .  

The residual norm of the solution X: IIXA + A T x  - X S X  q- Q I = O(10-5). 

liB011- 5.6491 x 108, IIHll l-  1.8085 x 109, and IIn2l l -  4.8581 x 1018. 

U and L are both of order 10 8. 
Thus, the Riccati equation is expected to be ill-conditioned with the 

given data. 
Indeed, this is an example of mixed sensitivity. Note that the ratios re and r3 

are large, but rl is quite small. Thus, X should be sensitive with respect to 
perturbation in A and S. This is verified as follows. 

Let Mnew stand for a perturbed version of the matrix M and Xnew stands for the 
new solution of the ARE with the perturbed data. 

Case 1. Perturbation in A. Let A be perturbed to A + AA, where 

{ 3.169 
A A -  10 -8 [ - 1 . 2 5 9  

\ 2.798 

2.668 3.044 
-0.5211 -2 .364 / . 

3.791 - 3 . 1 7 9 ]  

The matrices B, Q, and R remain unperturbed. 
Then, 

Relative error in X: II Xnew - X II = 4.1063 x 10 -5, 
IlXll 

Relative perturbation in A: IIAnew - All = 4.9198 x 10 -9. 
IIAII 



536 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS 

Case 2. Perturbation in B. Let B be perturbed to B + A B, where 

/ -4 .939  ~ 
AB = 1 0 - 8 [  0.7715 / 

/ 

\ - 0 . 9 4 1 1 ]  

A, Q, R remain unperturbed. 

Relative error inX: II Xnew - X II = 7.5943 x 10 -5, 
IlSll 

Relative perturbation inB: IIBnew- B II = 5.086 x 10 -8. 
IIBII 

Case 3. Perturbation in Q. The matrix Q is perturbed such that the relative 
perturbation in Q 

II Onew - Oil = 4.048 x 10 -9. 
IIQII 

The matrices A, B, and R remain unperturbed. 

Then the relative error in X" II Xnew - X II 
IlSll 

-- 4.048 x 10 - 9 .  

Note: All the solutions to the CARE in this example were computed using 
the Schur method (Algori thm 13.5.1) followed by Newton's iterative refinement 
procedure (Algori thm 13.5.8). The residual norms of the solutions obtained by 
the Schur method alone were of order 105. On the other hand, the residual norm 
of the solution with the Schur method followed by Newton's iterative procedure 
was, in each case, of order 10 -5. 

Example 13.4.2. A Well-Conditioned CARE. 

(O1 O) A =  - 2  , B =  , 
0 

Q = 1 , and R -  1. 
0 

In this case Iln011 = 0.3247, IIHall = 0.1251, IIn211 = 0.0510, and U = 3.1095. 
The CARE is, therefore, expected to be well-conditioned. 
Indeed, if (1, 1) entry of A is perturbed to -0.9999999, and the other data remain 

unchanged, then we find 
Relative error in X: IlXnew - XII/IIXII = 5.6482 x 10 -8. 

Relative perturbation in A: II Anew - A II /II A II = 3.1097 x 10 -8, where Anew and 
Xnew, respectively, denote the perturbed A and the solution of the CARE with the 
perturbed data. 
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Conditioning and Accuracy 

Suppose that X is an approximate stabilizing solution of the CARE: 

XA + A T x  - - X S X  + Q = O, 

where S = BR -1B  T and let Res(X) -- JfA + ATx -- 3~SX + Q. 
Then the question arises: If Res(J() is small, does it guarantee that the error in 

the solution is also small (Exercise 13.8). In the case of linear system problem, it 
is well-known that the smallness of the residual does not guarantee that the error in 
the solution is small, if the linear system problem is ill-conditioned. Similar result 
can be proved in the case of the Riccati equations (see Kenney et al. 1990). The 
result basically says that even if the residual is small, the computed solution 
may be inaccurate, if the CARE is ill-conditioned. On the other hand, if Res(X) 
is small and the CARE is well-conditioned, then the solution is guaranteed to be 
accurate. Below, we quote a recent result of Sun (1997a) which is an improvement 
of the result of Kenney et al. (1990). 

Theorem 13.4.3. Residual Bound of  an Approximate Stabilizing Solution. Let 
~f > 0 approximate the positive semidefinite stabilizing solution X to the CARE. 
Define the linear operator T : 11~ n x n  __.+ ]l~n x n  by 

T ( Z )  -- (A - S ) f ) T z  + Z ( A  - SX), Z - -  Z T E ]l~x n x n .  

Assuming that 411T-1llllT-l(Ues(f())llllSII < 1 for  any unitarily invariant 
norm I1" II, then 

IIX- Xll 2 II T-1Res(~) II 
< 

- v/  11211 1 + 1-411T-1llllT-1Res(2)llllSII 11211 

13.4.2 Conditioning of the DARE 

Consider now the DARE: 

ATXA - X + Q - A T X B ( R  + B T X B ) - J B T X A  = O. 

The condition number of the DARE, denoted by KDARE, may be obtained by means 
of the Frechet derivative of the DARE (Gudmundsson et al. 1992). 

Define Ad = A - B(R  + B T X B ) - I B T X A ,  S = B R - 1 B  T. (13.4.15) 

Assume that X is the stabilizing solution of the DARE. Then the condition 
number of the DARE is given by: 

II[Z~, 22, 231112 
XDARE -- , (13.4.16) 

IlSllF 
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where 

El - - I I A I I F p - I ( I  Q A T x  + (ATX | I )E) ,  

Z2 --  - -IISIIFP-~(ATx(I  + S X )  -1  | A T x ( I  -Jr- S X ) - I ) ,  

(13.4.17) 

(13.4.18) 

and 

Z3 - I IQI IFP  -1. (13.4.19) 

In the above, E is the vec-permutation matrix: 

n 
T T E = eiej | eje i , (13.4.20) 

i,j=l 

and P is a matrix representation of the Stein operator: 

f2(Z) = Z -  ATZAd. (13.4.21) 

Note that, since Ad is discrete-stable, p-1  exists. 
The condition number (13.4.16) measures the sensitivity of the stabilizing 

solution X of the DARE with respect to first-order perturbations. 
Assume that the bounds for AA, AS, and A Q are sufficiently small. Then, using 

first-order perturbation only, it can be shown (Exercise 13.7) that the following 
quantity is an approximate condition number of the DARE: 

211AII211QIIF/IIXIIF + IAII211SIIFIIXIIF 
, (13.4.22) 

sePd(A T, Ad) 

where 

sepa(A S, Ad) -- min IIA~XAd - XIIF. (13.4.23) 
g~0 IlXllf 

Note: The quantity sep(A~, Ad) can be computed as the minimum singular value 
of the matrix: 

A T | A T _ In2. 

Remark 

�9 A perturbation theorem for the DARE, analogous to Theorem 13.4.1 (for the 
CARE), and the absolute and relative condition numbers using the results 
of that theorem can be obtained. For details see Sun (1998). 

Also, a recent paper of Sima et al. (2000) contains efficient and reliable condition 
number estimators both for the CARE and DARE. 
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Example 13.4.3. (An Ill-Conditioned DARE.) Let's take A, B, Q, and R the same 
as in Example 13.4.1. 

/ / 0 . 9 9 8 0 2 ! )  
Let Anew --  10.0010 4 . Let B, Q, and R remain unchanged. 

\ 10 -8 7 
The solution X of the DARE (computed by MATLAB function dare) is 

{o.oooo o.ooo5 o.ooo5 
X = 1010 /0.0005 5.4866 6.4624 / . 

\0.0005 6.4624 7.6118] 

The solution Xnew of the perturbed version of the DARE is 

[o.oooo o.ooo5 o.ooo5 
Xnew = 1010 / 0 . 0 0 0 5  5 .4806 6.4554].  

\0.0005 6.4554 7.6036,] 

Relative error in X: IIX - Xnewll/llSll - 0.0010, while the perturbations in A were 
of order O ( 10 -4). 

Example 13.4.4. (A Well-Conditioned DARE.) Let 

A ~ .  

(1 
2 3 . 

3.999 6 

Take B, Q, and R the same as in Example 13.4.1. 
Let (09990 

Anew -- 3 , 
6 

Bnew-" B, Q new = Q, and Rnew = R. 

Then both the relative error in X and the relative perturbation in A are of O (10-4). In 
this case, sep(A~, Ad) -- 0.0011. 

13.5 C O M P U T A T I O N A L  M E T H O D S  F O R  R I C C A T I  EQUATIONS 

The computational methods (listed in the Introduction) for the AREs can be 
broadly classified into three classes: 

�9 The Invariant Subspace Methods 
�9 The Deflating Subspace Methods 
�9 Newton's Methods. 

The eigenvector, Schur vector, and matrix sign function methods are examples 
of the invariant subspace methods. The generalized eigenvector and generalized 
Schur vector methods are examples of the deflating subspace methods. 



540 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS 

The following methods have been included in our discussions here. For the 
CARE: 

�9 The eigenvector method (Section 13.5.1) 
�9 The Schur method (Algorithm 13.5.1) 
�9 The Hamiltonian Schur method (Section 13.5.1) 
�9 The inverse-free generalized Schur method (Algorithm 13.5.3) 
�9 The matrix sign function method (Algorithm 13.5.6) 
�9 Newton's method (Algorithm 13.5.8) 
�9 Newton's method with line search (Algorithm 13.5.9). 

For the DARE: 

�9 The Schur method (Section 13.5.1) 
�9 The generalized Schur method (Algorithm 13.5.2) 
�9 The inverse-free generalized Schur method (Algorithm 13.5.4). 
�9 The matr ix  sign function method (Algorithm 13.5.7) 
�9 Newton's method (Algorithm 13.5.10) 
�9 Newton's method with line search (Algorithm 13.5.11). 

13.5.1 The Eigenvector and Schur Vector Methods 

An invariant subspace methods for solving the CARE (DARE) is based on comput- 
ing a stable invariant subspace of the associated Hamiltonian (symplectic) matrix; 
that is the subspace corresponding to the eigenvalues with the negative real parts 

the unit circle). If this subspace is spanned by (x'2) and X1 is invertible, (inside 

then X - XzX11 is a stabilizing solution. 
To guarantee the existence of such a solution, it will be assumed throughout 

this section that (A, B) is stabilizable (discrete-stabilizable) and the Hamilto- 
nian matrix H (symplectic matrix M) does not have an imaginary eigenvalue (an 
eigenvalue on the unit circle). Note that a sufficient condition for the existence of 
a unique positive semidefinite stabilizing solution of the CARE(DARE) was given 
Theorem 13.2.6 (Theorem 13.3.2). 

The Eigenvector Method for the CARE 

Let H be diagonalizble and have the eigendecomposition: 

o t 
where A = diag(~l . . . . .  )~n) and ~1 . . . . .  )~n are the n eigenvalues of H with 
positive real parts. 
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Let V be partitioned conformably: 

v -  v21 v22J 

such that (v11) is the matrix of eigenvectors corresponding to the stable 
,,  . V21 

eigenvalues. Then it is easy to see that 

H(Vll 1 V21) -- ( vl V l) (-x) �9 
Thus, X -- Vz] Vu 1 is the unique stabilizing solution. 

Remark 

�9 The eigenvector method, in general, cannot be recommended for prac- 
tical use. The method becomes highly unstable if the Hamiltonian matrix 
H is defective or nearly defective, that is, if there are some multiple or near 
multiple eigenvalues of H. In these cases, the matrix Vii will be poorly 
conditioned, making X - V21Vu 1 inaccurate; and this might happen even 
if the CARE itself is not ill-conditioned. 

The eigenvector method, in principle, is applicable even when H is not diago- 
nalizable by computing the principal vectors, but again is not recommended in 
practice. 

M A T C O N T R O L  note: The eigenvector method for the CARE has been imple- 
mented in MATCONTROL function riceigc. 

The Eigenvector Method for the DARE 

An analogous method for the DARE can be developed by taking the eigendecom- 
position of the associated symplectic matrix M. However, since forming the matrix 
M requires computation of A-1, the eigenvector method for the DARE works 
only when A is nonsingular. But even in this ease, the results will be inaccurate 
if A is ill-conditioned. Moreover, the method will have the same sort of difficul- 
ties as those mentioned above for the CARE. We, thus, skip the description of the 
eigenvector method for the DARE. 

The Schur Vector Method for the CARE 

The numerical difficulties of the eigenvector method for the CARE may somehow 
be reduced or eliminated if the Hamiltonian matrix H is transformed to an ordered 
Real Schur form (RSF) by using the QR iteration algorithm, rather than using its 
eigendecomposition. 
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Let UTHU be an ordered Real Schur matrix- 

UTHu _ (~1 T12"~ 
T22,]' 

where the eigenvalues of H with negative real parts have been stacked in Tll and 
those with positive real parts are stacked in -/'22. 

Let 
Ull U12'~ 

U-- U21 U22/ 

be a conformable partitioning of U. Then, 

(Ull H ~U21) -- ( Ull g21) rll" 

Thus, the matrix X - U21UH 1 is then the unique stabilizing solution of the CARE. 
The above discussion leads to the following algorithm, called the Schur 

algorithm, due to Laub (1979). 

Algorithm 13.5.1. The Schur Algorithm for  the CARE 
Inputs. 

A m A n  n • n matrix 
B A n  n • m (m < n) matrix 
Q ~ A n  n x n symmetric matrix 
R ~ A n  m • m symmetric matrix. 

Output. 
X m T h e  unique stabilizing solution of  the CARE. 

Step 1. Form the Hamiltonian matrix 

H -- _ A  T . 

Step 2. Transform H to the ordered RSF: 

UTHU._ (~1 T12~ 
T22/' 

where the n eigenvalues of  H with negative real parts are contained in T11. 
Step 3. Partition U conformably: 

(Ull U12) 
Um- U21 U22 " 

Step 4. Compute the solution X by solving the linear systems: 

XUll = U21. 
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Software for the ordered RSF 

The ordered RSF of H can be obtained by transforming H first to the RSF by 
orthogonal similarity, followed by another orthogonal similarity applied to the 
RSF to achieve the desired ordering of the eigenvalues (See Chapter 4). 

There exists an efficient algorithm and an associated software developed by 
Stewart (1976) for this purpose: Algorithm 506 of the Association for Computing 
Machinery Trans. Math Software (1976), pp. 275-280. See also the LAPACK 
routine STRSEN. 

The MATLAB program orderseh from MATCONTROL can also be used for 

this purpose. 
Flop-count: The Schur method is based on reduction to RSF, which is done 

by QR iterations algorithm; so, an exact flop-count cannot be given. However, 
assuming that the average number of iterations per eigenvalue is 2, about 200n 3 
flops will be necessary to execute the algorithm. (This count also takes into account 
of the ordering of RSF). 

Example 13.5.1. Consider solving the CARE with: 

(O 1 O) 
A ~ ~ 

0 (1) 
B =  1 , 

1 

Q = I3x3, 

R - -  1 ,  

S -  1 , 
1 

Step 1. Form the Hamiltonian matrix 

- 1  1 1 
- 2  0 

- S  '~ _ 0 - 3  
- A  T) ~ 0 0 

o 

- 1  0 
0 - 1  

- 1  
-1  
- 1  

1 
- 1  
- 1  

- 1  - 1  
- 1  - 1  
- 1  - 1  

0 0 " 
2 0 
0 3 

Step 2. Transform the Hamiltonian matrix to the ordered RSF: 

= 

-2 . i940  

T22 J ' 

-0.0216 
-2.1867 
-0.2573 

1.3275 
0.7312 

-1.9055 
2.9940 

0 
0 

1.3285 
1.9623 

-0.7207 

0.2134 " 
0.2434 / 
2.1298/ 
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The eigenvalues of T11 are: -2.9940, -2.0461 + 0.4104j, -2.0461 - 0.4104j. Thus, 
all the stable eigenvalues are contained in 7'11. 

Step 3. Extract Ull and U21 from U: 

{ 0.4417 0.3716 0.7350~ { 0.1106 0.0895 0.3260~ 
U l l -  [ 0.0053 -0.8829 0.3951 / , U21-  [ 0.0232 -0.1992 0.1552]. 

\-0.8807 0.1802 0.3986] \-0.1285 0.0466 0.1199] 

Step 4. Compute the stabilizing solution: 

/0.3732 0.0683 0.0620~ 
X--U21U{-11- /0.0683 0.2563 0.0095 / . 

\0.0620 0.0095 0.1770] 

The eigenvalues of A - S X  are: -2.0461 + 0.4104j, -2.0461 - 0.4104j, -2.9940. 
Thus, A - S X is stable, that is, X is a unique stabilizing solution. 

M A T C O N T R O L  note: The Schur method for the CARE (using ordered RSF) 
has been implemented in MATCONTROL function riesehe. 

Stability Analysis of the Schur Method and Scaling 

The round-off properties of the Schur method are quite involved. It can be shown 
(Petkov et al. 1991) that the relative error in the computed solution is proportional 
to ]]Ul l l l l / sep(T l l ,  T22). 

This means that the Schur method can be numerically unstable even if the 
CARE is not ill-conditioned. For example, the Schur method can be unstable if 
the Hamiltonian matrix H is nearly defective. 

However, the difficulty can be overcome by proper scaling (Kenney et al. 1989). 
Thus, for all practical purposes, the Schur method, when combined with an 
appropriate scaling, is numerically stable. For a discussion on scaling procedure, 
see Kenney et al. (1989), and Benner (1997). See also Pandey (1993). 

Benner (1997) has given an extensive discussion on scaling. Based on sev- 
eral existing scaling strategies and considering the practical difficulties with these 
strategies, he has proposed a mixture of these procedures for scaling the CARE. 
Benner's strategy is as follows: 

Write the CARE: 
XA + A T x  - -  X S X  -~- Q = 0 

in the form: 
+ A T X p  -- X p S p X p  + Q - O, X p A p  

where Ap - p A ,  ApT _ (pA)T, Xp -- X / p ,  and Sp - p2S,  p being a positive 
scalar. 



Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 545 

Choose p as 

115112 
I]QI-~2' if II Q 112 > II5112 

p - IIAll2 
I-~i~' if 110112 ~ 115112 and 110112115112 < IIAII 2 

1, otherwise. 

For a rationale of choosing p this way, see Benner (1997). 

Note: Note that the relative condition number of the CARE remains invariant 
under the above scaling. 

The Schur Method for the DARE 

The Schur method for the DARE: 

ATXA-  X -  ATXB(R + BTXB)-IBTXA + Q - 0  

is analogous. Form the symplectic matrix: 

M -  (A + S(A-1)TQ -S (A-1 )T~  
- ( A - l )  TQ (A-l )  T ~ '  

where S = BR -1B T. 
Let M be transformed to an ordered RSF such that the eigenvalues with mod- 

uli less than 1 appear in the first block, that is, an orthogonal matrix U can be 
constructed such that 

UTMU_ (S~I S12~ 
822J '  

where each eigenvalue of $11 is inside the unit circle. Partition U conformably: 

g l l  g12~ 
U - -  U21 U22J" 

Then X -- U21UH 1 is the unique stabilizing solution of the DARE. 

R e m a r k s  

�9 Since one needs to form A -1 explicitly to compute M, the Schur method 
for the DARE is not applicable if A is singular. Even if A is theoretically 
nonsingular, the m e t h o d  is expected  to give an inaccurate  a n s w e r  in ease  

A is i l l - condi t ioned  with respect  to inversion.  

�9 A slightly faster method (Sima (1996, p. 244)) forms the matrix M -1 and 
orders the RSF so that the eigenvalues with moduli less than 1 appear in the 
first block. 
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MATCONTROL note: The Schur method for the DARE has been implemented 
in MATCONTROL function riesehd. 

The Hamiltonian-Schur Methods for the CARE 

The Schur methods for the AREs are based on orthogonal similarity transfor- 
mations of the associated Hamiltonian and symplectic matrices to RSFs. The 
rich structures of these matrices are, however, not exploited in these methods. 
The Hamiltonian and the symplectic matrices are treated just as 2n x 2n general 
matrices in these methods. It would be useful if methods could be developed 
that could take advantage of Hamiltonian and Symplectic structures. Such 
structure-preserving methods, besides reflecting physical structures, are often 
faster. 

Theorem 13.5.1 below shows that developments of such structure-preserving 
methods are possible. 

Definition 13.5.1. If  a matrix U is both symplectic and unitary, it is called a 
symplectic-unitary matrix. A symplectic-orthogonal matrix can be similarly 
defined. 

From the above definition, it follows that a 2n x 2n symplectic-unitary matrix 
U can be written as: 

( g l l  g12'~ 
U -- ~,-U12 U l l J '  

where Ull and U12 are n x n. I f  U is n x n unitary, then 

U =  On• 

is symplectic-unitary. 

Theorem 13.5.1. The Hamiltonian-Schur Decomposition (HSD) Theorem. 
(Paige and Van Loan 1981). I f  the real parts of  all the eigenvalues of  a Hamil- 
tonian matrix H are nonzero, then there exists a symplectic-orthogonal matrix 
U and a Hamiltonian matrix T such that 

( T 1  TTT ) U T H u -  T -  O n x n  - ' 

where T1 is an n x n upper triangular, and T2 is an n x n symmetric matrix. 
Furthermore, U and T can be chosen so that the eigenvalues ofT1 have negative 
real parts. 

Definition 13.5.2. The Hamiltonian matrix T in Theorem 13.5.1 is called a 
Hamiltonian-Schur matrix and the decomposition itself is called the HSD. 
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Note: The first n columns of U in the above HSD span the invariant subspace 
corresponding to the stabilizing solution of the CARE. 

Symplectic-Schur Decomposition (SSD) 

For a symplectic matrix, we have the following theorem. 

Theorem 13.5.2. The SSD Theorem. I f  M is symplectic and has no eigenvalues 
on the unit circle, then there exists a symplectic-orthogonal matrix U such that 

( R 1  R 2 )  
U T M U  -- R -- Onxn R 1  T ' 

where R1 is n x n upper triangular Moreover, R2R1 is symmetric. 

Definition 13.5.3. The above decomposition is called an SSD. 

The existence of the HSD and the SSD naturally lead to the following prob- 
lem: How to obtain these decompositions in a numerically effective way by 
exploiting the structures of the Hamiltonian and the symplectic matrices? 

Byers (1983, 1986a) first developed such a structure-preserving method for the 
HSD in the case the matrix S in the Hamiltonian matrix: 

H -- _A T , 

has rank 1. (For example, a single-input problem). 

Definition 13.5.4. A Hamiltonian matrix H has Hamiltonian-Hessenberg 
form, if  it has the zero structure o f  a 2n • 2n upper Hessenberg matrix with the 
order o f  the last n rows and columns reversed. 

As in the standard QR iteration algorithm for the RSF of a matrix A, Byers' 
method also comes in two stages: 

Stage I. The matrix H is reduced to a Hamiltonian-Hessenberg matrix HH 
by an orthogonal-symplectic transformation. 

Stage II. The Hamiltonian-Hessenberg matrix HH is further reduced to 
Hamiltonian-Schur form using Hamiltonian QR iterations. 

Of course, once such a reduction is done, this can immediately be used to solve 
the CARE. 

For a complete description of the method and details of numerical implementa- 
tions, see Byers (1986a). 

Unfortunately, in spite of several attempts, such a reduction in the general case 
of a Hamiltonian matrix remained a difficult problem, until the recent paper of 
Benner et al. (1997c). 
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A Hamiltonian-Schur Method for the CARE (rank S >_ 1) 

We next outline briefly the Hamiltonian-Schur method of Benner et al. (1997c) 
for solving the CARE in the multi-input case. The method also uses symplectic- 
orthogonal transformations in the reduction to the Hamiltonian-Schur form of the 
matrix HE defined below. 

The method is based on an interesting relationship between the invariant 
subspaces of the Hamiltonian matrix H and the extended matrix 

(o o) 
It makes use of the sympleetie URV-like decomposit ion that was also introduced 
by the authors (Benner et al. 1999c). 

Theorem 13.5.3. Symplectic-URV Decomposition. Given a 2n • 2n Hamil- 
tonian matrix H, there exist symplectic-orthogonal matrices U1 and U2 
such that 

t 

where Hr is an n x n matrix, Ht is an n x n upper triangular matr& and Hb is 
an n x n real Schur matrix. 

Furthermore, the positive and negative square roots of  the eigenvalues of  
Ht Hb are the eigenvalues of  H. 

The basis of the Hamiltonian-Schur method is the following result. 

Theorem 13.5.4. 
matrix 

Extended HSD Theorem. Suppose that the Hamiltonian 

, 

- A  T ) 

has no purely imaginary eigenvalues. Define 

Then there exists an orthogonal matrix U of  order 4n such that 

(o  1 
is in Hamiltonian-Schur form and no eigenvalues ofT1 have negative real parts. 
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Remark 

Note that the transforming matrix U in Theorem 13.5.4 is not symplectic- 
orthogonal. But this non-symplectic transformation can be computed 
without rounding errors! 

Solution of the CARE using the Extended HSD 

Let H have no eigenvalue on the imaginary axis. Let the matrix U in Theorem 
13.5.4 be partitioned as 

(Ull  U12~ 
U -  ~U21 U22J' 

where each Uij is of order 2n • 2n. Define the matrix I~ as 

_ , / 2  { e l l  - e 2 1 ) .  
2 

Let Y be an orthogonal basis of Range(I)). Then it has been shown (Benner et al. 
1997c) that 

Range(Y) = Inv(H), 

where Inv(H) is the invariant subspace associated with the eigenvalues of H with 
negative real parts. 

Furthermore, if 

, 

where 1)1 and I)2 are of order n x 2n, then the stabilizing solution X of the CARE 
is given by 

X})I -- --Y2. 

Note that the above equations represent an overdetermined consistent 
set of linear equations. 

The symplectic-URV decomposition is used to compute the matrix U to achieve 
the Hamiltonian-Schur matrix T. Note also that it is not necessary to explicitly 
compute Y, if only the stabilizing solution of the CARE is sought. 

The details are rather involved and we refer the readers to the paper of Benner 
et al. 1997c). 

Efficiency and stability: The method based on the above discussion is more 
efficient than the Schur method. It has also been shown that the method computes 
the Hamiltonian-Schur form of a Hamiltonian matrix close to /tE, where /4E is 
permutationally similar to HE, that is, there exists a permutation matrix P such 
that PHE p T  _ ISIE" 
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13.5.2 The Generalized Eigenvector and Schur Vector Methods 

The deflating subspace methods are generalizations of the invariant subspace meth- 
ods in the sense that the solutions of the Riccati equations are now computed 
by finding the bases for the stable deflating subspaces of certain matrix pencils 
rather than finding those of the Hamiltonian and the symplectic matrices. As of 
the invariant subspace methods, it will be assumed that for solving the CARE 
(DARE) with deflating subspace methods, the pair (A, B) is stabilizable (discrete 
stabilizable) and the associated Hamiltonian (symplectic) matrix pencil does not 
have an imaginary eigenvalue (an eigenvalue on the unit circle). 

For the CARE, the pencil is/'CARE -- )~NCARE, where 

(A ' )  0) 
_ Q  _A T , NCARE -- �9 (13.5.1) 

For the DARE, the pencil is PDARE -- )~NDARE, where 

S 0) ('0 
Since no inversion of A is required to form the above pencils, this generalization 
is significant for the DARE, because, as we have seen, the eigenvector and the 
Schur methods cannot be applied to the DARE when A is singular. 

As in the case of an invariant subspace method, a basis for a deflating subspace 
of a pencil can be constructed either by using the generalized eigendecomposition 
or the generalized Schur decomposition of the pencil. As before, an eigenvec- 
tor method will have numerical difficulties in case the pencil has a multiple or 
near-multiple eigenvalue. We will thus skip the descriptions of the generalized 
eigenvector methods and describe here only the generalized Schur method 
for the DARE. We leave the description of the generalized Schur method for the 
CARE as an exercise (Exercise 13.18). 

The following results form a mathematical foundation for a deflating subspace 
method for the DARE. The results are due to Pappas et al. (1980). 

Theorem 13.5.5. Suppose that (A, B) is discrete-stabilizable and (A, Q) is 
discrete-detectable. Then the symplectic pencil PDARE -- ~.NDARE does not have 
any eigenvalue )~ with 1~1 = 1. 

Proof. The proof is by contradiction. 
Let I~,l = 1 be an eigenvalue of the pencil PDARE -- ~.NDARE with the eigenvector 

(Zl) 
z -  # 0 .  

z2 
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Then we can write: 

This means that 

(_AQ ~ ) ( ~ ; ) - X  ( I  0 A S ) ( ~ ; ) .  

Azl = ~,Zl 4- ~Sz2;  (13.5.3) 

- Q z l  4- z2 = ~.ATz2 . (13.5.4) 

Premultiplying the first equation by )~z~ and postmultiplying the conjugate 
transpose of the second by z l, we have 

- , 

~,z2Az 1 = l~,12Z~Zl 4- I)~12z~az2 (13.5.5) 

and 
- * (13.5.6) �9 * Qzl + ~,z2Azl Z2Zl --" Zl 

Substituting (13.5.5) into (13.5.6), we obtain 

�9 '2z*S (13.5.7) Z~Zl = zl Qs1 + l~.[2z~zl + I~.1 2 Z2 

or 

z~Sz2 + Z*l Qzl - 0 (since IXl 2 = 1). (13.5.8) 

Since S = BR-1B T, Eq. (13.5.8) can be written as: 

(z~B)R-I (BTz2)  4- z*QZll = 0. (13.5.9) 

Since R is positive definite, this implies that 

BTz2 = 0 and Qzl = 0. (13.5.10) 

Therefore, from (13.5.3) and (13.5.4), we have Azl = ~zl and ATz2 = (1/,k)z2. 
(Note that since IXl = 1, X r 0). 

�9 * B  - -  0 and z~A = Thus, from (13.5 10) and from the last equation, we have z 2 
(1/~.)z~. 

This means that for any F, z~ (A - B F )  = (1/~.)z~, that is, (1/~.) is an eigenvalue 
of A - B F  for every F. Since (A, B) is discrete-stabilizable, this means that z2 - 0. 
Similarly, since (A, Q) is detectable, it can be shown (Exercise 13.17) that Zl = 0. 
Therefore, 

Z - - (  zl )Z2 

is a zero vector, which is a contradiction. I 
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Theorem 13.5.5, together with the fact that if X r 0 is an eigenvalue with 
multiplicity r of the pencil P D A R E  - -  )~NDARE, SO is 1/~. with the same multiplicity, 
allows us to state the following theorem: 

Theorem 13.5.6. Suppose that (A, B) is discrete-stabilizable and (A, Q) is 
discrete-detectable. Let )~ -- 0 be an eigenvalue of  multiplicity r. Then the 
eigenvalues of the pencil PDARE -- ~NDARE can be arranged as follows (adopting 
the convention that the reciprocal of  a zero is infinity): 

1 1 
0 . . . . .  0 ;  ) ~ r + l  . . . . .  )~n; . . . . .  ~ ;  OO, 0<3 . . . . .  ~ .  

�9 ~ "~ )~n ~ , r + l  �9 -r �9 
- - c  

r n - - r  n - - r  r 

withO < I~il < 1, i - r + 1 . . . . .  n. 

MATCONTROL note: The generalized eigenvector method for the DARE has 
been implemented in MATCONTROL function riegeigd. 

The Generalized Schur-Vector Method for the DARE 

Assume that the generalized Schur form of the pencil PDARE -- 3.NDARE has been 
ordered such that the generalized eigenvalues of the pencil with moduli less than 
1 can be obtained from the first quarters of the matrices, that is, the orthogonal 
matrices Q' and Z have been computed such that: 

Qt(PDARE--)~NDARE)Z- P 1 -  (P~I P12~e22J 

and 

Q ( D A R E  - -  ) ~ N D A R E ) Z  - -  N 1  - -  N 2 2 J  

and the generalized eigenvalues of the pencil Pll - )~Nll have modulii less than 1 
(see below for details of how to do this). 

Let 

Z - -  \Z21 Z22 " 

Then the columns of 

form a basis for the discrete stable (deflating) subspace and the matrix X - Z 2 1 Z l l  1 
is a unique symmetric positive semidefinite stabilizing solution of the DARE. We 
leave the details as an exercise (Exercise 13.18). 
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Algori thm 13.5.2. The Generalized Schur Algorithm for the DARE 
Inputs. 

A--An n x n matrix 
BmAn n x m matrix 
QmAn n x n symmetric matrix 
R--An m x m symmetric matrix 

Output. X--The unique stabilizing solution of  the DARE: ATXA-+- 
Q - x -  ATXB(R + B T X B ) - l B T x A  -- O. Step 1. Form PDARE = 

Step 2. Transform the pencil PDARE --  ~.NDARE to  the generalized RSF using 
the QZ algorithm, that is, find orthogonal matrices Q1 and Z1 such that: 

Q1PDAREZ1--P1--  (P~ 1 P12) 
P22J 

and 

N22~] ' 

where P1 is quasi-upper triangular and N1 is upper triangular. 
Step 3. Reorder the above generalized RSF by using an orthogonal transfor- 

mation, so that the pencil Pl l - )~Nll has all its eigenvalues with moduli less 
than 1. That is, find orthogonal matrices Q2 and Z2 such that Q2 Q 1PDARE Z1Z2 
is quasi-upper triangular and Q2 Q 1NDARE Z1 Z2 is upper triangular, and more- 
over, the diagonal blocks corresponding to the eigenvalues with moduli less 
than 1 are in the upper left quarter of these matrices. 

Step 4. Form 

_ _  (Zll Z12~ 
Z -- Zl  Z2 ~kZ21 ZzzJ  " 

Step 5. Compute X - Z21Zl-1 l, that is, solve for X" X Z l l  -- Z21. 

Example 13.5.2. Consider solving the DARE with 

Step 1. PDARE = i, oil i,iOl oil 3 4 0 NDARE - -  1 0 
-1  0 1 ' 0 1 " 
0 - 1  0 0 2 
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Step 2. The generalized RSF ofthe pencil PDARE --)~ NDARE is given by: Q1 (PDARE -- 

~.NDARE)Z1 = Pa - ~.N1, where 

P1 -'- I 
-5.5038 0.3093 0.7060 0.0488'~ 

0 1.4308 0.1222 0.0903 / 
0 0 0.2665 0.2493~ ' 
0 0 0 0.9530] 

N1 "--- i 
- 0 . 9 9 1 2 - 0 . 3 5 4 0  0.2965 -0.8012'~ 

i -0.2842 0.8565 -0.5442 / 
0 - 1.3416 0.9885 ~" 
0 0 5.2920 ,/ 

Step 3. The eigenvalues with moduli less than 1 are: 

P1(3, 3) 

Nl(3, 3) 

Step 4. The matrix 

is given by 

P1 (4, 4) 
= -0.1986 and = 0.1801. 

N1 (4, 4) 

Zl l  
Z21) 

Step 5. 

[ 0.5518 
( Z l l )  __ / -0 .3942 
~Z21 [ 0.6400 

\ -0 .3614 

-0.1074'~ 
0.0847 ] 
0.4499 ~" 
0.8825 ] 

_(54.9092 756 22470 ) 
X -- Z22Zll  1 ~ 75.2247 

is the stabilizing solution. 

Implementational Details 

The reduction to the generalized RSF can be achieved using the QZ algorithm, as 
described in Chapter 4. 

Unfortunately, however, the eigenvalues might appear in any arbitrary order. 
Some reordering needs to be done. A systematic way to do this is as follows: 

First, check if the last eigenvalue in the upper left quarter has modulus less 
than 1, if not, move it to the last position in the lower fight quarter. Check the next 
eigenvalue now in the upper left quarter, if it does not have modulus less than 1, 
move it to the next position in the lower fight quarter. 

Note that each move is equivalent to finding a pair of orthogonal matrices such 
that pre- and postmultiplications by these matrices perform the necessary change. 
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The process can be continued until all the n eigenvalues with moduli greater 
than 1 have been moved to the lower right quarter and the upper left quarter contains 
only the eigenvalues with moduli less than 1. 

There is also a slightly more efficient algorithm (Sima 1996, pp. 262-264) for 
ordering the eigenvalues of the pencil PDARE -- ~. NDARE. 

There exists FORTRAN routines, developed by Van Dooren (1982) to com- 
pute deflating subspaces with specified spectrum. These subroutines are avail- 
able as Algorithm 590-DSUBSP and EXCHQZ in ACM software library. 
Also, the LAPACK package (Anderson et al. 1999) includes the routine 
STGSEN, which performs a specified reordering of the eigenvalues of the 
generalized RSF. 

Numerical stability and scaling: It can be shown (see Petkov et al. 1989) that 
the generalized Schur method may yield inaccurate results if the DARE is not 
properly scaled. For a scaling strategy that can be used to overcome this problem, 
see Gudmundsson et al. (1992) and Benner (1997). 

The Generalized Schur Methods Without Explicit Computation of 
the Inverse of the Control Weighting Matrix R 

All the methods we have considered so far require the explicit computation of 
the inverse of the control weighting matrix R. These methods, therefore, may 
not yield accurate solutions when R is severely ill-conditioned. 

For example, consider the following example from Arnold and Laub (1984): 

00) 0) 
A =  0 - 02 ' B - -  0.001 0.01 ' 

(lOOo  000 11) 
Q - 10,000J ' R - 1 " 

The pair (A, B) is controllable. The matrix R becomes progressively ill- 
conditioned as ~ ~ 0. The CARE with the above data was solved by Arnold 
and Laub, using RICPACK, a software package especially designed for solving 
Riccati equations. It was shown that the accuracy of the solution deteriorated as 
R became more and more ill-conditioned. For ~ - 10 -16, the relative accuracy 
was of order 10-1 only. 

In this case, an inverse-free generalized Schur method, that avoids computa- 
tions of R-1 is useful. 

The Continuous-Time Case 

First, we observe that the Hamiltonian eigenvalue problem H x  - Xx associ- 
ated with the CARE, can be replaced by the eigenvalue problem for the extended 
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(2n + m) x (2n + m) pencil: 

PgARE E -- )~ N~ARE , 

(_~Q _~AT ! )  ( i  where E SCARE PCARE , and E __ 0i) I 
0 

(Note that this pencil does not involve R -1 .) The solution of the CARE can now 
be obtained by constructing a basis of the stable deflating subspace of this pencil. 
It was further observed by Van Dooren (1981 ) that this (2n + m) • (2n + m) pencil 
can be compressed, using an orthogonal factorization of the matrix 

into a 2n • 2n pencil, without affecting the deflating subspaces. Thus, if 

then instead of considering the (2n + m) x (2n + m) pencil PCAREE _ )~NcARE,E 
we consider the 2n x 2n compressed pencil EC EC -- )~NcARE where PCARE 

EC _ (W22A W21BT~ NCAR EEC (W022 ~) PCARE -- Q - AT ] and -- . 

This leads to the following algorithm: 

A l g o r i t h m  13.5.3. Inverse-Free Generalized Schur Algorithm for the CARE. 
Inputs .  

A--An n x n matrix 
B--An n x m matrix (m < n) 
Q--An n x n symmetric matrix 
R--An m x m symmetric matrix 

Output .  

X--The  unique stabilizing solution of the CARE 
Step 1. Find the Q R factorization of  the matrix 

Partition 
Wll W12) 

W - - k W 2 1  W22 ' 

where W22 is an n x n matrix. 
Step 2. Form Ec EC PCARE and NCARE as shown above. 
Step 3. Find the ordered  genera l i zed  Schur  form of the pencil EC PCARE -- 
EC ~NcARE using the QZ algorithm, that is, find orthogonal matrices Q1 and Z 
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EC EC such that Q 1 (PcARE /~ )~ respectively, --XNcARE)Z -- -- /V; where ~/I and N are, 
quasi-upper and upper triangular matrices, and the n eigenvalues with negative 
real parts appear first. 

Step 4. Compute X - Z21Z-111, where 

Zll  Z12~ 
Z -  ~Z21 ZzzJ"  

Remark 

�9 In his paper, Van Dooren (1981) described the compression technique by 
using an orthogonal factorization of the matrix 

(i) 
Instead, here we have used (an equivalent)factorization of ( ~ ) i n  the form 

( ~ ) ,  so that a standard QR factorization algorithm can be used to achieve 

this factorization. 

E x a m p l e  1 3 . 5 . 3 .  

A - - ( 2 1  - ~ ) ,  B - - ( ~ ) ,  Q - ( 1 0  01) , R =  10 - ' ~  

Step 1. 

W m 

-0.0000 
- 1.0000 

0 

-- 1.0000 0 ) ( W l l  W12~ 
0.0000 -- W21 W22 J "  

0 1.0000 

Step 2. 

I 0 i 0 -1 EC 0 0 
PCARE = _ 0 --2 

- - 1  1 ~ 
o o  

EC 1 0 
N~ARE -- 0 | " 

0 0 

Step 3. 

Z = t 
- 1 . 0 0 0 0  - 0.0028i 

0. 0000 + 0. 0000i 
-0.0000 - 0 . 0 0 0 0 i  

0.0000 + 0.0000i 

0.0000 + 0.0000i 
0.7071 + 0.0025i 
0.0000 + 0.0000i 
0.7071 + 0.0025i 

-0.0000 + 0.0000i 
-0.7071 + 0.0044i 

0.0000 - 0.0000i 
0.7071 - 0.0044i 

-0.0000 + 0.0000i~ 
0.0000 - 0 . 0 0 0 0 i  [ 

1 . 0 0 0 0  - 0 . 0 0 0 0 i  | " 

-0.0000 + 0.0000i,/ 
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Step 4. 

{0.00001000030018 0.00000999990018~ 
X (in Long Format) - ~,0.00000999990018 1.00001000029721J " 

Verify: The residual norm= 7.357 • 10 -s. 

The Discrete-Time Case 

The discrete problem is analogous. Here we consider the (2n + m) • (2n + m) 
pencil E E -- )~NDARE where PDARE 

~ (i ~ i) PDEAm~ , and E _ A T _ _ NDARE �9 
0 0 B T 

This pencil is then compressed into the 2n • 2n pencil EC EC -- )~NDARE where PDARE 

EC _ (W22QA 0i) Nff)AREEC (W220 W A B T )  PI~ARE _ , and - , 

by taking the QR factorization of the matrix ( _  BR)" 

W - , where W -- W21 W22J " 

This leads to the following algorithm: 

Algorithm 13.5.4. Inverse-free Generalized Schur Method for  the DARE. 
Inputs. 

A m A n  n • n matrL~ 
B - - A n  n • m matrix (m < n) 
Q m A n  n • n symmetric matrix 

R m A n  m • m symmetric matrix. 

Output. 
X m T h e  unique stabilizing solution o f  the DARE. 

/ n x 

step,, e 
X ~  

W such that 

(o) 
Partition 

Step 2. Form EC (W22A PDARE -- _ Q  

Wll W12~ 
W -  ~W21 W22J" 

' NDARE -- 0 
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Step 3. Compute the ordered generalized Schur form of the pencil EC /~ D 
X EC NDARE, using the QZ algorithm followed by some ordering procedure so that 
the eigenvalues of moduli less than 1 appear in the first quarter, that is, find 

EC EC orthogonal matrices Q 1 and Z such that Q 1 (PDARE -- )~NDARE) Z --  /3 _ )~/~ 

and the n eigenvalues with moduli less than 1 appear first. 
Step 4. Form X - Z21ZI] 1, where 

Z l l  Z12"~ 
Z -  ~,Z21 Z 2 2 / "  

Example 13.5.4. Consider solving the DARE with a singular matrix A: 

A= (~ ~) ,  B= (~),  Q - ( ~  2),  R - 1 .  

Step 1. 

Step 2. 

W 

-0.7071 
0 

0.7071 

0 0.7071.) (Wl l  W12 ) 
1.0000 0 - W21 W22 " 

0 0.7071 

i o 1 o oil EC 0 0 0 
PI~ARE -- 1 -2  - 1 ' 

2 -4  0 - 

I1 i 0 0 0 1 EC 0.7071 0 0.7071 
N~)ARE -- 0 0 0 " 

0 1 0 

Step 3. 

Z .__ 

I 0.8615 -0.2781 0.3731 -0.2034'~ 
-0.3290 0.3256 0 .8231 -0.3290|  
0.2034 0.3731 0.2781 0.8615 ] "  
0.3290 0.8231 -0.3256 0.9329 / 

Step 4. 
{1.0000 2.0000 

X = k,2.0000 4.5000,]" 

Verify: The residual norm= 7.772 x 10 -16. 

MATLAB note: MATLAB functions care and dare solve the CARE and DARE, 
respectively, using generalized Schur methods, when R is well-conditioned and 
inverse free methods when R is ill-conditioned or singular. 
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13.5.3 The Matrix Sign Function Methods 

Let A be an n • n matrix with no zero or purely imaginary eigenvalues. Let 

J - - X - 1 A X - - D + N ,  

be the Jordan canonical form (JCF) of A, where D - diag(dl . . . . .  dn) and N is 
nilpotent and commutes with D. Then the matrix sign function of A is defined as: 
Sign(A) - X diag (sign(dl), sign(d2) . . . . .  sign(dn)) X -1, where 

1 if Re(d/) > 0, 

sign(d/) - - 1 if Re(d/) < 0. 

Some important properties of Sign(A) are (Exercise 13.16)" 

1. Sign(A) has the same stable invariant subspace as A. 
2. The eigenvalues of Sign(A) are +1, depending upon the sign of the 

corresponding eigenvalues of A. 
3. The range of Sign(A) - I is the stable invariant subspace of A. 
4. TheeigenvectorsofSign(A) are the eigenvectors and principal vectors of A. 
5. Sign(TAT -1) - TSign(A)T -1. 

We will now show how sign function can be used to solve the CARE and DARE. 
Before doing so, let's first describe an algorithm for computing Sign(A). 

The basic sign function algorithm is: 

Z o - -  A, 

Z k + l - - l ( z k + Z k l ) ,  k : 0 , 1  . . . .  

It can be shown that the sequence { Zk } converges to Sign(A) quadratically. 
The initial convergence can, however, be very slow. Byers (1987) has shown 

that the convergence can be accelerated if Zk is scaled by Idet(Zk)l 1In . For a 
discussion of scaling, see Kenney and Laub (1992). 

Thus, a practical algorithm for computing Sign(A) is" 

Algorithm 13.5.5. Computing Sign(A) 
Input. An n • n matrLr A. 
Output. Sign(A), the matrix sign function of A. 
Step 1. Set Zo - A. 
Step 2. For k - O, 1, 2 . . . . .  do until convergence 
Compute c - I det Zk[ 1In. 

Compute Zk+l = (1 / 2c ) (Z k  + C2Zkl).  

End 
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Stopping criteria: The algorithm can be terminated if 

�9 the norm of the difference between two successive iterates is small enough or 
�9 the number of iterations exceeds the maximum number prescribed. 

The Matrix Sign Function Method for the CARE 

The mathematical basis for the matrix sign function method for the CARE is the 
following theorem. 

Theorem 13.5.7. Roberts (1971). Let H be the Hamiltonian matrbc (13.2.1) 
associated with the CARE: X A  + A T x  + Q - X S X = O. 

Let (A, B) be stabilizable and let (A, Q) be detectable. 

Let 

Wll W12'~ 
S i g n ( H ) -  ~W21 W22J' 

where Wij  are n • n real matrices. 
Then a stabilizing solution X of  the CARE is a solution of  the following 

overdetermined consistent linear systems: 

W22+ I W21 " 

Proof. Define 

where Y satisfies 

( A -  SX)Y + Y ( A -  S X )  T --  - S .  

An easy computation then shows that 

T H T -  1 (Z 0 t 
0 - ( A -  S X )  T " 

Note that T -  1 
Y) 

I - X Y  " 
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Then, using Property 5 of the sign function matrix, we obtain 

0 ) 
0 - ( A -  SX)  T T, 

= T - I ( o I  Ol) T ( s i n c e A - S X i s a s y m p t o t i c a l l y s t a b l e  ), 

{ 2 Y X - I  - 2 Y  "~ 
~,2XYX 2X ' 2 X Y  

_ { 2 Y X  
Thus, Sign(H) + I2n ~ 2 X Y X  - 2X 

-2~ ) 
2I - 2 X Y  

Wll -~- I 
or\ w21 W22 q- I = 2 ( X Y  - I1 X , -  2 ( X Y  - I) " 

Now comparing both sides of the equation, we see that X must satisfy: 

W12 _ fWll -+- I) 
(w= + ,) x -  k w2~ �9 II 

Symmetric Version of the Matrix Sign Function Algorithm 

Theorem 13.5.7 yields a computational method to solve the CARE. However, the 
convergence can be painfully slow. The method can be made more efficient by 
using the following trick (Bierman 1984; Byers 1987) in which one works only 
with symmetric matrices. 

Define 

( o  '0)(Ao (Z 
The matrix W0 is symmetric. 

Now compute Sign(H) by performing the following iterations: 

1 j) ,  ~ + l -  ~ ( ~  + ~2,~-1 k = 0 , 1 , 2  . . . .  

Then each Wk is symmetric and limk-+oo Wk = Jsign(H). 
The parameter ck is chosen to enhance the rate of convergence, as before. 
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Let 

Then 

The equation: 

then becomes 

Yll 
J S i g n ( H ) -  Y -  ~Y21 

Y12"~ 
Y22J" 

Wll 
S i g n ( H ) -  l~W21 

W12"] _ jT 
W22J Y' 

W12 -Jr- I )  W22+I) X - - - (  Wll w21 

{ Y22 1 ~J X -  ( I -  Y21 
1 k -Yll  " ~,Y12 + ) 

This leads to the following symmetric version of the matrix sign function 
algorithm for the CARE: 

Algorithm 13.5.6. The Matrix  Sign Function Algori thm f o r  the CARE. 

Inputs. 
A m A n  n • n matrix 

B A n  n • m matrix 

Q ~ A n  n • n symmetric matrix 

R ~ A n  m • m symmetric matrix 

e ~ E r r o r  tolerance. 

Output. 
X ~ T h e  unique stabilizing solution o f  the CARE: 
A T x  + XA - XBR - 1 B T x  + Q = 0 

Step 1. 
1.1 Form S = B R  - 1 B  T 

(o 
1.2 Define J -- - I  " A " 

Step 2. For k = 1, 2 . . . .  do until convergence with the given tolerance e 

c = I det W l 1/2n 

1 W -- -~c(W -Jr- c2JW -1J), 

//|Wll W12),\ where each Wij is o f  order n. Step 3. Partition W - \W21 W22 
/ 

Step 4. Form M -- ~,W12 + In ' ~, -Wl l  " 

Step 5. Solve f o r  X : M X  = N.  
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Example 13.5.5. Consider solving the CARE using Algorithm 13.5.6 with 

A =  (00 ~) ,  B - - (01 ) ,  Q - ( 1 0  01), R - 1 .  

S t e p l - S - (  0 ~) ,  
00 1 0 0 1 0 0 -1  

H =  1 0 0 0 ' 
-1  -1  0 

lil o o o l W o - J H - -  - 1  - 1  
- 1  0 " 
0 0 

I O 0 0 
( ) -0.5 - 1 - 0 . 5  0.5 Step 2. W1=�89 W0+JWo 1J = 

-0.5 0 0 

i5) 
0.5 ! 

c = I det(W1)l 1/4 = 0.8660. 

-1.i547 0 0 
1 -1.1548 -0.5774 

W2 -- 9-7(W1 q- c 2 j W l  1 J) - 
~0.5774 0.5774 

\-0.5774 0 0 

-0"i774 ] . 

0.5774 / 

(Note that each Wi, i = 0, 1, 2 is symmetric.) 
Wll  W12'~ 

Step 3. J S i g n ( H ) -  W2 -- W -- W21 W92]" 

1 1.7321 " 
Verify: The residual norm = 9.9301 x 10 -16. 

Example 13.5.6. Now consider solving the CARE using Algorithm 13.5.6 with the 
following data: 

(l 1 i) (i) (i~ A-- 0 -2  , B -  , Q =  1 , R - 1 .  
0 0 - 0 

Step 1. 

W0 

-1 0 0 1 0 0 
0 0 - 1  0 - 1 2 0 3  

0 -1 -1  0 i 1111! 
2 0 1 1 
0 3 1 1 
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Step 2. After five iterations, IIW5 - Well/lIW411 - 6.4200 x 10 -15 (The readers are 
asked to verify this by carrying out 5 iterations). 

Step 3. 

W - W 5 .  

Step 5. 

X m 

0.3732 0.0683 0.0620~ 
0.0683 0.2563 0.0095 / . 
0.0620 0.0095 0.1770] 

Verify: The residual n o r m -  3.1602 x 10 -16. 

Flop-count and stability: It can be shown that Algorithm 13.5.6 requires about 
4n 3 flops per iteration. The algorithm is not stable in general (Byers 1986b), 
unless used with an iterative refinement technique such as Newton's method (see 
Section 13.5.4). 

MATCONTROL note: Algorithm 13.5.6 has been implemented in MATCON- 
TROL function ricsgnc. 

The Matrix Sign Function Method for the DARE 

The matrix sign function method for the CARE described in the previous section 
can now be applied to solve the DARE by converting the symplectic matrix M to 
the Hamiltonian matrix H using the bilinear transformation: 

H = ( M + I ) - I ( M - I ) .  

Because A needs to be nonsingular, the method is not applicable if A is singular, 
and is not numerically effective when A is ill-conditioned. 

Avoiding Explicit Inversion of A 

The explicit inversion of A, however, may be avoided, by using the following 
simple trick (Gardiner and Laub 1986). 

Write 

M - N - 1 p ,  

where 

('0 a n d ,  
Then it can be shown that even if A is singular, the matrix (P + N) is invertible 

and the matrix H can be expressed as H -- (P + N ) - I ( P  - N). 
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Algorithm 13.5.7. The MatrLr Sign Function Algorithm for  the DARE. 

I n p u t s .  

A m A n  n x n matrix 

B - - A n  n • m matrix 
Q m A n  n • n symmetric matrix 

R - - A n  m • m symmetric matrix 

Output. 
X ~ T h e  unique stabilizing solution X of  the DARE: 
A T X A  - X + Q - A T X B ( R  + B T X B ) - I B T X A  = O. 

Step 1. Form S -- B R - 1 B  T, 

N - ( I  0 AS) ,  P - ( A Q  ~) .  

Step 2. Form H - (P + N) -1 (P - N). 
Step 3. Apply the matrix sign function algorithm for  the CARE (Algo- 

rithm 13.5.6) with H in Step 2. 

Example 13.5.7. Consider solving the DARE using Algorithm 13.5.7 with 

A =  (00 1 0 ) ,  B- - (01) ,  Q :  (~ 01), 

(i 0 0 (00 ~) 1 0  , p _  S t e p  1. s = , N -  0 0 1 

0 1 
[-0.3333 0.6667 -0.6667 0.6667 
/-0.6667 0.3333 0.6667 -0.6667| 

Step 2. H -- | _  1.3333 0.6667 0 .3333  0.6667 ~" 
\ 0.6667 -1.3333 -0.6667 -0.3333] 

step3 (1 ~ o) 

R = I .  

l o  !) 
o o 
o 1 " 

-1 o 

Verify: The residual norm -- 6.7195 x 10 -16. 

MATCONTROL note: Algorithm 13.5.7 has been implemented in MATCON- 
TROL function riesgnd. 

13.5.4 Newton' s  M e t h o d s  

Recall that the classical Newton's method for finding a root x of f (x) - 0 can be 
stated as follows" 

�9 Choose x0, an initial approximation to x. 
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�9 Generate a sequence of approximations {Xi}  defined by 

f ( x i )  
X i + l  - -  Xi f I ( x i ) ,  i -- 0, 1, 2 , . . .  (13.5.11) 

Then, whenever xo is chosen close enough to x, the sequence {xi } converges to the 
root x and the convergence is quadratic if ff(x) ~: 0. Newton's methods for the 
CARE and DARE can similarly be developed. 

Newton's Method for the CARE 

Consider first the CARE: XA + A T x -  X B R - 1 B T X  + Q --O. 

Starting from an initial approximate solution X0, the computed solutions are 
iteratively refined until convergence occurs; this is done by solving a Lyapunov 
equation at each iteration. The way how the Lyapunov equations arise can be 
explained as follows. Write X -- X0 + (X - X0). Substituting this into the CARE, 
we have 

(A - B R - 1 B T X o ) T X  + X ( A  - B R - 1 B T X o )  

-- - X o B R  -1 BTXo -- Q + (X - Xo)BR -1 B T (X - Xo). 

Assuming that X - X0 is small (i.e., the initial approximate solution is good), we 
can neglect the last term on the right-hand side of the above equation. Thus we 
obtain the following Lyapunov equation for the next approximation X l" 

(A - B R - 1 B T X o ) T X 1  + X I ( A  - B R - 1 B T X o )  -- - X o B R - 1 B T X o  - Q. 

Assuming that X 1 is a better approximation than X0 (i.e., II X - X 1 ]l < 1] X - X0 I[), 
the process can be continued until the convergence occurs, if there is convergence. 

The above discussion immediately suggests the following Newton method for 
the CARE: (Kleinman 1968): 

Step 1. Choose an initial approximation X0. 
Step 2. Compute {Xk } iteratively by solving the Lyapunov equation: 

( A -  SXk)TXk+I + X k + I ( A -  SXk)  -- - - X k S X k  -- Q, k - 0 ,  1,2 . . . . .  

where S = B R - 1 B  y. 

Step 3. Continue until and if convergence occurs. 
Newton's method, as stated above, is not in the familiar form. However, the 

above steps can be easily reorganized to obtain Newton's method in the familiar 
form (see Benner (1997), Hammarling (1982) and Lancaster and Rodman (1995) 
for details). 

To do this, let's define 

Rc(X) -- XA + A T x  -- XSX + Q, 

where S = B R - 1 B  T. 
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Now, the FrEchet derivative of Rc(X) is given by 

R~x(Z) :=_ ( A -  s x ) T z  4- Z ( A -  SX) .  

Thus, Newton's method for Rc(X) = 0 is 

R ! Xi (Ai) -+- R c ( X i )  -- O, i = O, 1, 2 . . . .  

X i + l  = X i  -t- A i .  

The above observation leads to the following Newton algorithm for the CARE. 

Algorithm 13.5.8. Newton's Method for  the CARE 
Inputs. 

A- -An  n x n matrix 
B - - A n  n x m matrix 
Q--An n • n symmetric matrix 
R- -An  m x m symmetric matrix 

Output.  The set {Xk} converging to an approximate stabilizing solution 

matrix X of  the CARE. 
Assumptions. (A, B) is stabilizable, R > 0 and the CARE has a stabilizing 

solution X, and is unique. 
Step 1. Set S = B R - 1 B  T. 

Step 2. Choose an initial approximate solution Xo = X T such that A - SXo 
is stable. 

Step 3. Construct the sequence of  solutions {Xi } as follows: 
For i = 0, l, 2 . . . .  do until convergence occurs 

3.1. Compute Ai  : A - SXi 
3.2. Compute R c ( X i )  --  A T x i  -+- X i A  Jr Q - X i S X i  

3.3. Solve  the Lyapunov equation for  Ai" AT A i  n t- A i  Ai  n t- R c ( X i )  --  O. 

3.4. Compute Xi+l - Xi + Ai. 
End 

Remark 

The above form of Newton's method is usually known as Newton's Method 
in incremental form. This form has some computational advantages over 
that presented in the beginning of this section in the sense that, in general, 
more accurate answers can be expected. This is because, in the incremental 
form algorithm, we solve the Lyapunov equation for the increment Ai and 
not for the solution directly and therefore, the solution Xi will have more 
correct digits. 
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The proof of the following theorem can be found in Lancaster and Rodman 
(1995, pp. 232-233). It gives conditions under which the above iterates 
converge. 

T h e o r e m  13.5.8. Convergence of  Newton's Method for  the CARE. Let the 
assumptions for  Algorithm 13.5.8 hold. Let Xo be an approximate stabilizing 
solution and let X be a unique stabilizing solution X of  the CARE. Then the 
matrices Ai and Xi, i : 0, 1 . . . . .  constructed by the above algorithm are such 
that 

(i) All Ai are stable; that is, all iterates X i a r e  stabilizing. 
(ii) X < . . .  <_Xi+I < Xi < . . .  < X1. 

(iii) Limi~oo Xi -- X, where X is the unique symmetricpositive-semidefinite 
stabilizing solution of  the CARE. 

(iv) There exists a constant c > 0 such that ]]Xi+I - XI[ < cllXi - x l lZ , jbr  
i > 1; that is, the sequence {Xi} converges quadratically. 

Stopping criterion: The following can be used as a stopping criterion. 
Stop the iteration if 

I. for a certain value of k and the prescribed tolerance e 

IIXk+~ - XklIF 
_<6, 

IIX~lIF 

or  

II. the number of iterations k exceeds a prescribed number N. 

If a condition-number estimator for the CARE is available, then Criterion I can 
be replaced by the following more appropriate stopping criterion: Stop the iteration 
if 

E liX~+l X~IIF < #KCARE, 
IlX~llF 

where KCAREE denotes an estimate of the KCARE and # is the machine precision. 

Example 13.5.8. Consider solving the CARE using Newton's method (Algorithm 
13.5.8) with 

(i ' i) (i) (i~ A - -  - 2  , B =  , Q -  1 , R - 1 .  
0 - 0 (}, 1) 

Step 1. S = 1 1 
1 1 
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0.4 0.1 ) 0.1 
Step 2. X o =  0.1 0.3 0.0 

0.1 0 0.2 
Step 3. 

Relative Change: 

i = 0  
{-0.0248 -0.0302 

Ao = / -0 .0302 -0.0426 
\ -0 .0369 0.0103 

//0.3752 
X l = Xo + Ao = /0.0698 

\0.0631 

IIX~ - Xoll = 0.1465. 
IlXoll 

i = 1 .  

-0.0369~ 
0.0103]' 

-0.0224] 

0.0698 0.0631~ 
0.2574 0.0103] . 
0.0103 0.1776] 

Relative Change: 

(_ i .0020 -0.0015 -0.0010'~ 
A1 = .0015 -0.0011 - 0 . 0 0 0 8 | ,  

.0010 -0.0008 -0.0005] 

/0.3732 0.0683 0.0620~ 
X 2 - -  Xl  -[- A1 - /0.0683 0.2563 0.0095 / . 

\0.0620 0.0095 0.1770] 

IIX2 - Xa II 
IlXlll 

= 0.0086. 

i - 2  

{-0.4561 -0.3864 -0.2402'~ 
A 2 - -  10 -5 /--0.3864 --0.3311 --0.2034], 

\--0.2402 --0.2034 --0.1265,] 

{0.3732 0.0683 0.0620~ 
X3 = X: + A2 = /0.0683 0.2563 0.0095]. 

\0.0620 0.0095 o.177o] 

Relative Change: II X3 - X2 II = 2.1709 • 10 -5. 
IIX211 

MATHCONTROL note: Algorithm 13.5.8 has been implemented in MATCON- 
TROL function ricnwtnc. 

Convergence: We know that there exist infinitely many Xo for which A - SXo 
is stable. The choice of proper Xo is crucial. If the initial solution matrix Xo is 
not close enough to the exact solution X, then, as in the case of scalar Newton's 
method, the convergence can be painfully slow. The method might even converge 
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to a nonstabilizing solution in the presence of  round-off errors. Things might go 
wrong even at the first step. To see this, let's consider the following example from 
Kenney et al. (1990): 

A - O ,  B - Q - I ,  R - I .  

The exact solution is X - I. Let X0 -- E I, where E > 0 is a small positive number. 
Then, 

A -  BBTXo  - - e l  

is stable for all E > 0 and the initial error is IlX - x0l[ - 1 - E "~ 1 for small E. 
However, 

I + E  2 1 
X1- -  2 ~ I  and I I X - X I l I ~  2E' 

which is quite large. Thus, even though the errors at subsequent steps decrease, a 
large number of steps will be needed for the error made at the first step to damp out. 

Some conditions guaranteeing convergence from the first step on have been 
given by Kenney et al. (1990). This is stated in the following Theorem (assuming 
that R = Im x m ). 

Theorem 13.5.9. Let Xo be an initial approximation such that A - B B T XO 

is stable and assume that I I X -  X011 < 1/(311BII211~2-111), where f2(Z)  -- 
( A -  B B T x ) T z  + Z ( A  - BBTX) ,  then I IX-  Xlll _ I IX-  x011, withequality 
only when Xo = X. 

Flop-count: Newton's method is iterative; therefore, an exact flop count cannot 
be given. However, if the Schur method is used to solve the Lyapunov equations 
at each iteration, then about 40n 3 flops are needed per iteration. 

Stability: Since the principal computational task in Newton's method is the 
solution of a Lyapunov matrix equation at each iteration, the method can be 
shown to be stable if a numerically stable method such as the Schur method is 
used to solve the Lyapunov equation. Specifically, if X is the computed solution 
obtained by Newton's method, then it can be shown (Petkov et al. 1991) that 

I I X -  XllF 
< /ZXCARE, 

IIXIIF 

where Xcare is the condition number of the CARE. That is, the method does not 
introduce more errors than what is already inherent in the problem. 

Modified Newton's Methods 

Several modifications of Newton's methods for the AREs have been obtained in 
recent years (Benner 1990; Benner and Byers 1998; Guo 1998; Guo and Lancaster 
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1998; Guo and Laub 2000; etc.). We just state in the following the line search 
modification of Newton's method by Benner and Byers (1998). 

Newton's Method with Line Search 

The performance of Newton's method can be improved by using an optimization 
technique called line search. 

The idea is to take a Newton step at each iteration in the direction so that 
IlRc(Xi+l)ll  2 is minimized. Thus the iteration: 

Xi+l  = Xi -4- Ai  

in Step 3 of Newton's method will be replaced by 

Xi+l  = Xi  + ti A i ,  

where ti is a real scalar to be chosen so that [[Rc(Xi + ti Ai)[[ 2 will be minimized. 
This is equivalent to minimizing 

f i ( t )  - Trace(Rc(Xi  + t A i ) T R c ( X i  + tAi)) -- Trace(Rc(Xi  + tAi )2) ,  

= c~i(1 - t) 2 - 2fii(1 - t ) t  2 + vit 4, 

where 
txi -- Trace(Rc(Xi )2) ,  

vi - Trace(gi 2), 
fli -- Trace (Rc(X i )  Vi), 

Vi -- Ai  S A i .  

It can be shown (see Benner 1997; Benner and Byers 1998) that the function 
f/( t)  has a local minimum at some value ti E [0, 2]. 

We thus have the following modified Newton's algorithm. 

Algorithm 13.5.9. Newton's  Method with Line Search for  the CARE 
Inputs. Same as in Algorithm 13.5.8. 
Output. Same as in Algorithm 13.5.8. 
Assumptions. Same as in Algorithm 13.5.8. 
Step 1. Same as in Algorithm 13.5.8. 
Step 2. Same as in Algorithm 13.5.8. 
Step 3. For i = O, 1, 2 . . . .  do until convergence occurs 

3.1 Same as in Algorithm 13.5.8. 
3.2 Same as in Algorithm 13.5.8. 
3.3 Same as in Algorithm 13.5.8. 
3.4 Compute Vi = Ai S Ai 
3.5 Compute oti, ~i, and vi o f  f i as given above. 
Step3.6 Compute ti E [0, 2] such that ~ ( t i )  = mintc[0,2] f/( t) .  
Step 3.7 Compute Xi+l = Xi + ti Ai. 

End. 
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Example 13.5.9. The input matrices A, B, Q, and R are the same as in Example 
13.5.8. (,,,) 

S t e p  1. S --  1 1 1 . 
1 1 1 

(0.4 0.1 
S t e p  2. X o -  0.1 0.3 . 

0.1 0 0. 

{ - 0 . 0 2 4 8  
S t e p  3. i - 0" Ao -- / - 0 . 0 3 0 2  

\ - 0 . 0 3 6 9  

c~o = 0.1761, /~o = -0 .0049,  to = 1.0286. 

-0 .0302  -0 .0369~  
-0 .0426  0 .0103] .  

0.0103 - 0 . 0 2 2 4 J  

9/o = 2.1827 x 10 -4, 

i 3745 
X1 -- XO + t0A0 -- .0690 

.0620 

0.0690 0.0620~ 
0.2562 0 .0105] .  
0.0105 0.1770J 

Relative change: IIX1 - Soll/llSoll = 0.1507. 

i = 1 :  A 1 - -  
-0 .0012  -0 .0006  0.0000~ 
-0 .0006  0.0001 -0 .0011 | 

0 . 0 0 0 0  - 0 . 0 0 1 1  0 . 0 0 0 1 J  

c~1 -- 8.9482 x 10 -5 , 
tl -- 1.0005. 

/31 = -4 .2495  x 10 -8, V1 -- 4.9519 x 10 -11 , 

X2 --- X l -+-tl A1 = 

0.3732 0.0683 0.0620~ 
0.0683 0.2563 0.0095 / . 
0.0620 0.0095 0.1770J 

Relative change: IIX2 - X111/IIX1 II = 0 . 0 0 3 8 5 8 7 .  

{-0 
i = 2: A 2 - -  10 -6 / - 0 . 4 4 2 8  

\ - 0 . 4 0 6 2  

-0 .4428  - 0 . 4 0 6 2 ~  
-0 .7620  0 .1277] .  

0.1277 - 0 . 2 5 0 5 ]  

c~2 = -2 .9393 x 10 -1~ 
t2 = 1.0000. 

f12 = - 1 . 0 4 2 5  x 10 -17 ,  Y2 -- 6.1179 x 10 -24 ,  

{0.3732 
X3 = X2 + t2A2  = /0 .0683 

\0 .0620  

0.0683 0.0620]  
0.2563 0.0095 / . 
0.0095 0.1770] 
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Relative change: IlX3 - X211/llX211 - 2.4025 • 10 -6. 

{--0.1593 --0.0972 0.0319~ 
i = 3: A 3 -  10 -12 [--0.0972 --0.0286 --0.1791]. 

\ 0.00319 --0.1791 0.0308J 

or3 -- 2.4210 x 10 -24, 
t 3 -  1.0000. 

/33 - -1.4550 • 10 -37, F3 = 2.4612 • 10 -50 , 

/0.3732 
X4 -- X3 -+-t3A3 -- /0.0683 

\0.0620 

0.0683 0.0620~ 
0.2563 0.0095 / . 
0.0095 0.1770] 

Relative change: IlX4 - X3[l/l[X3[I - 5.5392 • 10 -13. 

Theorem 13.5.10. Convergence o f  Newton's Method with Line Search for  the 

CARE. I f  (A, B) is a controllable pair, and if  the step sizes ti are bounded 

away from zero, then Newton's method with the line search (Algorithm 13.5.9) 
converges to the stabilizing solution. 

Proof. See Benner and Byers (1998), Guo and Laub (2000). 1 

Flop-count: Algorithm 13.5.9 is slightly more expensive (about 8% to the cost of 
one Newton step) than Algorithm 13.5.8. However, one saves about one iteration 
step out of 15; often much more, but seldom less. 

MATCONTROL note: Algorithm 13.5.9 has been implemented in MATCON- 
TROL function ricnwlsc. 

Newton's method for the DARE 

Newton's method for the DARE: 

A T X A  - X + Q - A T X B ( R  + B T x B ) - I B T X A  -- 0 

is analogous. It is based on successive solutions of Stein equations (discrete- 
time Lyapunov equations) associated with the discrete-time system. We state 
the algorithm below without detailed discussions. The algorithm was originally 
developed by Hewer (1971). See also Kleinman (1974). 

Algorithm 13.5.10. Newton's Method for  the DARE 

Inputs. A - - A n  n x n matrix 

B m A n  n x m matrix 

Q m A n  n x n symmetric matrix 

R - - A n  m x m symmetric matrix 
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Output .  The set {X~ } converging to the unique stabilizing solution X of  the 
DARE: 

RD(X) -- A T X A -  X + Q -  ATXB(R  + B T x B ) - I B T x A  --O. 

Assumptions.  (i) (A, B) is discrete-stabilizable (ii) R > O, (iii) A stabilizing 
solution X exists and is unique, and (iv) R + B T X B  > O. 

Step 1. Choose Xo - X T such that A - B(R + BTXoB)  - 1 B T X o A  is a 
discrete-stable matrix, that is, it has all its eigenvalues inside the unit circle. 

Step 2. For i -- O, 1, 2 . . . .  do until convergence. 
2.1 Compute Ki -- (R -Jr- B T x i  B) - 1 B T x i  A 

2.2 Compute Ai - A -  B Ki 
2.3 Compute RD(Xi) -- ATx i  A - Xi + Q - A T X i B ( R  + 

B T X i B ) - I B T x i  A 

2.4 Solve the discrete-time Lyapunov equation (Stein equation)for Ai" 
A T A i  Ai - A i  a t- R D ( X i )  - 0 

2.5 Compute Xi+l - Xi + Ai. 
End 

The following theorem gives conditions under which the sequence {Xi } con- 
verges. The proof of this theorem can be found in Lancaster and Rodman (1995, 
pp. 308-310), in case R is nonsingular. See also Benner (1997), Mehrmann (1991). 

Theorem 13.5.11. Convergence of  Newton's Method for  the DARE. Let the 
assumptions of  Algorithm 13.5.10 hold. Let Xo be a stabilizing approximate 
solution of  the DARE. Then the matrices Ai and Xi, constructed by the above 
algorithm, are such that 

(i) All Ai are discrete-stable, 
(ii) l i m i ~  Xi - X, where X is the unique symmetric positive semidefinite 

discrete-stabilizing solution of the DARE. 
(iii) X < . . .  < Xi+ 1 < X i < . . .  ~ X 1 

(iv) There exists a constant c > 0 such that [IXi+I - Xll < cllXi - Xll 2, 
i > 1, that is, the sequence {Xi } converges quadratically. 

Stopping criterion: The same stopping criteria as in the case of Newton's method 
for the CARE can be used. 

Example 13.5.10. Consider solving the DARE using Algorithm 13.5.10 with 

(i 1 i) (i) (i~ A - -  - 2  , B - -  , R - l ,  Q -  1 . 
0 - 0 

1 - 5  10 / 
S t ep l .  32o-  - 5  1600 -2000  . 

10 -2000  2700] 
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Step  2. i = 0 
TheeigenvaluesofA-B(R+B T XoB) -1B T XoA are -0.8831 +j0.2910, -0.0222. 

Then Xo is a discrete-stabilizing approximate solution of the DARE. 

Relative change: 

K o -  (-0.0192 2.6154 -6.8077), 

/-0.9808 -1.6154 7.8077'~ 
A0 = / 0.0192 -4.6154 6.8077| ,  

\ 0.0192 -2.6154 3.8077] 

[ 0.0008 -0.0137 
X1 - 104 [-0.0137 0.6808 

\ 0.0165 -0.9486 

I l X l - S o i l  

IXoll 
= 3.7654. 

K1 -- (-0.0301 

-0.9699 
A1 -- 0.0301 

0.0301 

Relative change: 

0.0067 
x 2 - 1 0 3  -0.0893 

0.1029 

IlX2 - Xll 
IX~ll 

o.o16T~ 
-0 .9486] .  

1.3364] 

i - -  1. 

4.4699 -9.5368), 

-3.4699 10.5368~ 
-6.4699 9.5368] , 
-4.4699 6.5368] 

-0.0893 0.1029~ 
2.0297 -2 .5658] .  

-2.5658 3.3125] 

= 0.7364. 

i - - 2 .  

K 2 -  (-0.0826 5.1737 -10.2938), 

(-0.9174 -4.1737 11.293i) 
A2 -- 0.0826 -7.1737 10.293 , 

0.0826 -5.1737 7.293 

0.0054 
X3-103  -0.0670 

0.0767 

IIX3 - X2 II 
Relative change: = 0.1862. 

IX211 

-0.0670 0.0767~ 
1.6234 -2.0796] . 

-2.0796 2.7283] 

The relative changes continue to decrease from this step onwards. 

I 0.0053 -0.0658 0.07511 
X 7 -  103 -0.0658 1.5943 -2.0428 . 

0.0751 -2.0428 2.6817 

For i - 6, relative change" I[X7 - X61]/[IX6[ is 2.3723 x 10 -15. 
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MATCONTROL note: Algorithm 13.5.10 has been implemented in MATCON- 
TROL function rienwtnd. 

Newton's Method with Line Search for the DARE 

Algorithm 13.5.10 can be modified in a similar way as in case of the CARE to 
include the line search. 

The function fi  (t) to be minimized in this case is given by: 

f/(t)  - -  ot i(1 - t) 2 -- 2fli (1 -- t)t 2 § Yi t4, 

where Ol i - -  Trace(Rd(Xi)2) ,  fli -- Trace(Rd(Xi)Vi) ,  Vi -- Trace(V/Z), and 
Vi - ATAi  B ( R  § B TXi B) -1B TAi Ai 

For details, see Benner (1997). 

Algorithm 13.5.11. Newton's Method with Line Search for  the DARE 
Inputs. Same as in Algorithm 13.5.10. 
Output.  Same as in Algorithm 13.5.10. 
Assumptions.  Same as in Algorithm 13.5.10. 
Step 1. Same as in Algorithm 13.5.10. 
Step 2. For k = O, 1, 2 . . . .  do until convergence 

2.1 Same as in Algorithm 13.5.10 
2.2 Same as in Algorithm 13.5.10 
2.3 Same as in Algorithm 13.5.10 
2.4 Same as in Algorithm 13.5.10 
2.5 Compute Si = B ( R  + B T x i  B) -1B T 
2.6 Compute Vi -- A T A i  Si A i  A i  

2.7 Compute the coefficients c~i, ~i, and Vi o f  fi (t) as above 
2.8 Compute ti E [0, 2] such that f i ( t i )  = mint~[0,2] f/(t)  
2.9 X i + l  - Xi + ti A i .  

End 

Flop-count: The algorithm is again just slightly more expensive than 
Algorithm 13.5.10. The additional cost of forming Vi, the coefficients of f/, a 
local minimizer ti of f i  and scaling Ai  by ti is cheap as compared to O(n 3) flops 
required for other computations. 

Convergence: The line search procedure can sometimes significantly improve 
the convergence behavior of Newton's method. For details, see Benner (1997). 

Example 13.5.11. Consider solving the DARE using Algorithm 13.5.11 with 

(' ' i) (') (i~ A--  0 - 2  , B - -  1 , Q -  1 , 
0 0 - 1 0 

R = I .  
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1 - 5  10 / 
Step 1. X o =  - 5  1600 -2000 . 

10 -2000 2700] 

Step 2. i - 0, 
{ 0.0007 -0.0132 0.0157~ 

A o -- 104 [--0.0132 0.5208 --0.7486| ,  
\ 0.0157 --0.7486 1.0664,] 

c~o -- 9.7240 z 107 /3o = 5.5267 x 108 Yo = 3.1518 x 109 
to -- 0.3402. 

{ 0.0034 -0.0500 0.0635~ 
X1 = XO + toDo - 103 / - 0 . 0 5 0 0  3.3718 - 4 . 5 4 7 1 / .  

\ 0.0635 -4.5471 6.3283] 

Relative change: IIX1 - XolI/IIXo I - 1.2812. 
0.0029 -0.0405 

Step 3. i = 1, A 1 = 103 -0.0405 -1.1655 
0.0431 1.7233 

0.0431~ 
1.7233 / , 

-2 .6498]  

c~1 -- 1.1123 x 107, 
tl = 0.8750. 

131 - 1.7963 • 106, 71 = 3.0428 • 105 , 

0.0059 -0.0854 0.1012'~ 
X 2 -  X1 -~ tlA1 = 103 --0.0854 2.3520 --3.0392]. 

0.1012 --3.0392 4.0097,] 

Relative change: IlX2 - X111/llX1 II = 0.3438. 

i m~2, 
- i  0006 

A 2 - -  10 -3  . 0196  

- .0261 

0.0196 
-0.7570 

0.9955 

-0.0261~ 
0.9955 / , 

-1 .3267]  

o~2 m 

t 2 -  1.0008. 
1.9251 x 105, f12 = -157.2798, V2 0.1551, 

X3 - -  X2 -q-t2A2 - -  103 ( 
0.0053 

-0.0658 
0.0751 

-0.0658 
1.5944 

-2.0429 

0.0751'~ 
-2 .0429] .  

2.6819] 
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Relative change: ]]X3 - X2ll/llX211 --- 0.3283. 

{ -0 .0003  0.0024 -0.0011 
/X3 = [ 0.0024 -0.0481 0 .1094 | ,  

\ - 0 . 0 0 1 1  0.1094 - 0 . 2 2 0 2 ]  

or3 = 0.0912, f 1 3 - - 2 . 8 7 8 5  • 10 -5 , F 3 -  1.6525 x 10 -8 , t3 = 1.0003. 

{ 0.0053 
X4 -- X 3 - [ - t 3 A 3 -  103 [ - 0 . 0 6 5 8  

\ 0.0751 

-0.0658 0.0751~ 
1.5943 - 2 . 0 4 2 8 ] .  

-2 .0428 2.6817// 

Relative change: IlX4 - X311/llX311 : 6.4273 x 10 -5. 

The relative changes continue to decrease after each iteration. For example, for i - 5, 
we have 

Relative change: [IX6 - XsII/IIXsII = 1.0906 • 10 -13, and Relative Residual = 
3.2312 • 10 -11. 

MATCONTROL note: Algorithm 13.5.11 has been implemented in MATCON- 
TROL function ricnwlsd. 

Newton's Method as an Iterative Refinement Technique 

Newton's  method is often used as an iterative refinement technique. First, a 
direct robust method such as the Schur method or the matrix sign function method 
is applied to obtain an approximate solution and this approximate solution is 
then refined by using a few iterative steps of Newton's method. For higher effi- 
ciency, Newton's method with the line search (Algor i thm 13.5.9 for the C A R E  
and Algorithm 13.5.11 for the DARE)  should be preferred over Newton's 
method. 

13.6 THE SCHUR AND INVERSE-FREE GENERALIZED SCHUR 
METHODS FOR THE DESCRIPTOR RICCATI EQUATIONS 

We have seen in Chapter 5 that several practical applications give rise to the 
descriptor systems: 

E~c(t) - Ax( t )  + Bu(t)  (Continuous-time), (13.6.1) 

Ex~+l = Ax~ + Bu~ (Discrete-time). (13.6.2) 
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The AREs associated with the above systems, respectively, are: 

ATXE + E T X A -  ETXBR -1BTXE + Q -O ,  (13.6.3) 

and 

ETXE -- A T x A -  ATXB(BTXB 4- R)- IBTXA 4- Q. (13.6.4) 

The Riccati equations (13.6.3) and (13.6.4) will be, respectively, called as 
the descriptor continuous-time algebraic Rieeati equation (DCARE) and the 
descriptor discrete-time algebraic Rieeati equation (DDARE). 

Most of the methods, such as the Schur method, the matrix sign function method, 
and Newton's method, can be easily extended to solve DCARE and DDARE. 

Below we state how the generalized Schur methods and the inverse-free gener- 
alized Schur methods can be extended to solve these equations. The derivations 
of the others are left as Exercises. See Bender and Laub (1985, 1987), Benner 
(1997), Laub (1991), Mehrmann (1988), Benner et al. (1999a) etc. in this con- 
text. For descriptor discrete-time Lyapunov and Riccati equations, see Zhang et al. 
(1999). 

13.6.1 The Generalized Schur Method for the DCARE 

The matrix pencil associated with the DCARE is 

PDCARE -- ~. NDCARE -- ( _  

where S = BR -1B T. 
The Schur method for the DCARE, then, can be easily developed by trans- 

forming the above pencil to the Ordered RSF using the Q Z iteration algorithm 
(Chapter 4). Thus, if Q1 and Z1 are orthogonal matrices such that 

Q1PDCAREZ1-- (011 L12~ ( o i l  N12~ 
L22}' Q1NDCARE Z1 -- N22~] ' 

where Q 1 PDCARE Z 1 is upper quasi-triangular, Q 1NDCARE Z 1 is upper triangular, 

and Lll  - ~.Nll is stable, then the columns of (Zll]," where 
~,Z21 / 

_ (Z l l  Z12) 
Zl IkZ21 Z22~] ' 

the stable deflating subspace. So, the matrix X - Z21Z~I 1 is a solution of the span 
DCARE. 
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MATLAB note: MATLAB function care in the form: 

IX, L, G, rr] = care(A, B, Q, R, E) 

solves the DCARE. 
Here G = R -1 (B TXE);  the gain matrix, L = eig(A - BG, E), and rr = the 

Frobenius norm of the relative residual matrix. 

13.6.2 The Inverse-Free Generalized Schur Method for the DCARE 

In case R is singular or nearly singular, one needs to use the inverse-free generalized 
Schur method. The extended pencil to be considered in this case is 

0i) (i 0i) - Q  - A  T _ )~ E T . 

0 B T 0 

This extended pencil is then compressed into a 2n • 2n pencil in the same way 
as in Algorithm 13.5.3 and the rest of the procedure is the same as that algorithm. 

13.6.3 The Inverse-Free Generalized Schur Method for the DDARE 

The matrix pencil associated with the DDARE is 

- Q E - ~" AT , where S - BR-1BT.  

The extended pencil for the Inverse - f ree  g e n e r a l i z e d  S c h u r  m e t h o d  for the  

D D A R E  is 

(i 0 i) (i i) - E - L  A T . 

0 B T 

The pencil is now compressed into a 2n x 2n pencil as in Algorithm 13.5.4 and 
the rest of the steps of Algorithm 13.5.4 is then followed. 

MATLAB note: The MATLAB function dare  in the form [X, L, G, rr] = 
dare(A, B, Q , R , E )  solves the DDARE. Here G = (BTXB + R) - IBTXA,  
L -- eig(A - B G, E), and rr = the Frobenius norm of the relative residual 

matrix. 

13.7 C O N C L U S I O N S  A N D  T A B L E  OF C O M P A R I S O N S  

In this section, we present Table 13.1 which compares the different methods dis- 

cussed in this chapter and gives a guideline for practical uses of these methods, 

based on this comparative study. We only present data for the CARE. A similar 
table can be set up for the DARE as well. However, the comments made about the 
Schur method for the CARE are not valid for the DARE, because the Schur method 



Table 13.1: A table of comparisons of different methods for the CARE 

Efficiency, stability, and 
Method convergence properties Remarks 

The Eigenvector 
and the 
Generalized 
Eigenvector 
Methods 

The Schur Method 
The Symplectic 

Hamiltonian- 
Schur 
Method 

The Extended 
Hamiltonian- 
Schur 
Method 

Newton's Method 

The Matrix Sign 
Function 
Method 

The Generalized 
Schur Method 

The Inverse-Free 
Generalized 
Schur Method 

The methods are in general 
not numerically stable 
(they become unstable 
when the Hamiltonian 
matrix has nearly multiple 
eigenvalues). 

Stable in practice. 
Stable and 

structure-preserving. 
Requires less computations 
and storage for problems of 
size greater than 20. 

Stable and 
structure-preserving. 
More-efficient than the 
Schur-method. 

Convergence is ultimately 
quadratic if the initial 
approximation is close to 
the solution slow initial 
convergence can be 
improved by using 
Newton's methods with 
line search. 

Not stable in general. 
Though iterative in nature; 
unlike Newton's method, it 
does not require the 
knowledge of a stabilizing 
initial guess. 

Stable in practice. 

Stable in practice 

Not recommended to be 
used in practice. 

Widely used. 
Works in the single-input. 

Works in the multi-input 
case. 

Usually used as an iterative 
refinement procedure. 

Simple to use and is structure 
preserving. 
Recommended to be used 
in conjunction with 
Newton's method, with 
line search. 

Does not work if the control 
weighting matrix R is 
singular. Even if R is 
theoretically nonsingular, 
the method should not be 
used if it is ill-conditioned. 

The best way to solve the 
CARE is when R is 
nearly singular. 
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for the DARE does not work when A is singular and is expected to give inaccu- 
rate results when A is theoretically nonsingular, but is computationally nearly 
singular. 

Conclusions and Recommendations 

In conclusion, the following recommendations are made: For the CARE: The 
Schur method (Algorithm 13.5.1), the extended Hamiltonian-Schur method or 
the matrix sign function (Algorithm 13.5.6) method followed by Newton's iter- 
ation with line search (Algorithm 13.5.9) is recommended. If  R is singular 
or nearly singular, then the inverse-free generalized Schur method (Algorithm 
13.5.3) should be used in place of the Schur method or the matrix sign function 
method. 

For the DARE: The inverse-free generalized Schur method (Algorithm 13.5.4) 
or the matrix sign function method (Algorithm 13.5.7)followed by Newton's 
method with line search (Algorithm 13.5.11) is recommended. However, the matrix 
sign function method should be avoided if R is nearly singular. 

13.8 S O M E  S E L E C T E D  S O F T W A R E  

13.8.1 MATLAB Control System Toolbox 

Matrix equation solvers. 

care Solve continuous algebraic Riccati equations 
dare Solve discrete algebraic Riccati equations. 

RICEIGC 

RICSCHC 
RICSCHD 
RICGEIGD 

RICNWTNC 
RICNWTND 
RICSGNC 

RICSGND 

RICNWLSC 

RICNWLSD 

13.8.2 MATCONTROL 

The eigenvector method for the continuous-time Riccati 
equation 
The Schur method for the continuous-time Riccati equation 
The Schur method for the discrete-time Riccati equation 
The generalized eigenvector method for the discrete-time 
Riccati equation 
Newton's method for the continuous-time Riccati equation 
Newton's method for the discrete-time Riccati equation 
The matrix sign function method for the continuous-time 
Riccati equation 
The matrix sign function method for the discrete-time Riccati 
equation 
Newton's method with line search for the continuous-time 
Riccati equation 
Newton's method with line search for the discrete-time 
Riccati equation. 
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13.8.3 CSP-ANM 

Solutions of the AREs: 

�9 The Schur method is implemented as RiccatiSolve [a,b,q,r, 
S o l v e M e t h o d  --~ S c h u r D e c o m p o s i t i o n ]  (continuous-time case) 
and DiscreteRiccatiSolve [a, b, q, r, SolveMethod -~ 
SchurDecompos i t i on] (discrete-time case). 

�9 Newton's method is implemented as RiccatiSolve [a,b,q,r, 
S o l v e M e t h o d  -+ Newton ,  I n i t i a l G u e s s  ~ w0] (discrete-time 
case). 

�9 The matrix sign function method is implemented as R i c c a t i S o l v e  
[a, b, q, r, S o l v e M e t h o d  -+ M a t r i x S i g n ]  (continuous-time case) 
and DiscreteRiccatiSolve [a, b, q, r, SolveMethod -+ 
Mat r ixS i gn] (discrete-time case). 

�9 The inverse-free method based on generalized eigenvectors is 
implemented as R i c c a t i S o l v e  [a, b, q, r, S o l v e M e t h o d  --+ 
G e n e r a l i z e d  E i g e n d e c o m p o s i t i o n ]  (continuous-timecase) and 
DiscreteRiccatiSolve [a, b, q, r, SolveMethod --~ 
General i z edE igende compo s i t ion] (discrete-time case). 

�9 The inverse-free method based on generalized Schur decomposition 
is implemented as RiccatiSolve [a, b, q, r, SolveMethod -+ 
GeneralizedSchurDecomposition] (continuous-time case) and 
DiscreteRiccatiSolve [a, b, q, r, Solvemethod -+ 
General i zedSchurDecompos it ion] (discrete-time case). 

13.8.4 SLICOT 

Riccati equations 

SB02MD Solution of AREs (Schur vectors method) 
SB02MT Conversion of problems with coupling terms to standard 

problems 
SB02ND Optimal state feedback matrix for an optimal control problem 
SB02OD Solution of AREs (generalized Schur method) 
SB02PD Solution of continuous algebraic Riccati equations (matrix 

sign function method) with condition and forward error 
bound estimates 

SB02QD Condition and forward error for continuous Riccati equation 
solution 

SB02RD Solution of AREs (refined Schur vectors method) with 
condition and forward error bound estimates 

SB02SD Condition and forward error for discrete Riccati equation 
solution 



Section 13.9: SUMMARY AND REVIEW 585 

13.8.5 MATRIXx 

Purpose: Solve Riccati equation. Using the option "DISC" solves the discrete 
Riccati equation. 

Syntax: [EV, KC] = RICCATI (S, Q, NS, 'DISC') 
[EV, KC, P] = RICCATI (S, Q, NS, 'DISC') 

Purpose: Solves the indefinite ARE: A t P  + P A  - P R P  + Q = 0 

Syntax: [P, SOLSTAT] = SINGRICCATI (A, Q, R { ,TYPE} ) 

13.9 SUMMARY AND REVIEW 

As we have seen in Chapters 10 and 12 that the AREs (13.1.1) and (13.1.2.) 
and their variations arise in many areas of control systems design and analysis, 
such as: 

�9 The LQR and LQG designs 
�9 Optimal state estimation (Kalman filter) 
�9 H~-control 
�9 Spectral factorizations (not described in this book, see Van Dooren 1981). 

Existence and Uniqueness of Stabilizing Solution 

Let Q > 0 and R > 0. If (A, B) is stabilizable and (A, Q) is detectable, then 
the CARE admits a unique symmetric positive semidefinite stabilizing solution 
(Theorem 13.2.6). 

Conditioning of the Riccati Equations 

The absolute and the relative condition numbers of the CARE have been identified 
using a perturbation result (Theorem 13.4.1). 

An approximate condition number of the CARE, using a first-order estimate is 
Byers' condition number (in Frobenius norm): 

B 
K'CARE 

II ~-111 II Q II + II o II II A II + II ~ II II S II 
IIXII 

where X is the stabilizing solution of the CARE and ~ ,  I-l, and | are defined 
by (13.4.4)-(13.4.6), and IIS2-~IIF - 1 / s e p ( A ~ , - A c ) ,  where A c  - -  A - S X ,  

S = B R -1B T. 
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The quantities II ~2-111, II o II, and II H II are computationally intensive. Upper 
bounds of B tCCARE can be obtained by solving the following Lyapunov equations" 

( A -  SX)THk + H ~ ( A -  SX) = - X  ~, k =O, 1,2. 

The large norms of these matrices (relative to the stabilizing solution X), in 
general, indicate that the CARE is ill-conditioned. 

The condition number of the DARE is given by (13.4.16). 
A first-order estimator for the condition number of the DARE is 

K.EARE _ 211AII211011F/llXllF + IIAII211SIIFIIXIIF 
sep(A T, Zd) 

where Ad = A - B(R + B T X B ) - I B T X A ,  S = BR-1B  T. The quantity 
sep(A S, A0) can be determined as the minimum singular value of the matrix 
AT | AT--  I 2. 

Numerical Methods for the Riccati Equations 

The numerical methods for the Riccati equations discussed here can be broadly 
classified into the following three classes: 

�9 Invariant subspace methods 
�9 Deflating subspace methods 
�9 Newton's methods. 

A basic idea of finding a stabilizing solution of the CARE (DARE), using eigen- 
vector and Schur methods is to construct a basis for the stable invariant subspace of 
the Hamiltonian matrix H (symplectic matrix M). Such a basis can be constructed 
using the eigenvectors or the Schur vectors of the Hamiltonian matrix H (the sym- 
plectic matrix M). The eigenvector matrix can be ill-conditioned if the matrix H 
(the matrix M) is nearly defective and, therefore, the eigenvector approach is 
not recommended to be used in practice. The Schur method is preferable to the 
eigenvector method. If 

is the ordered RSF of H, and the eigenvalues with negative real parts are contained 
in Tll, then X - U21UH 1 is the unique stabilizing solution of the CARE, where 

Ull UI2'~ 
U - -  U21 U22J" 

The Schur method for the DARE can be similarly developed by finding an ordered 
RSF of the symplectic matrix M. However, since computation of the matrix M 
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requires the explicit inversion of A, the Schur method for the DARE does not 
work if A is singular or can be problematic if A is theoretically nonsingular, but 
is computationally singular. In such cases, a deflating subspace method should 
be used. 

The idea behind the generalized eigenvector and Schur vector methods is basi- 
cally the same as that of an invariant subspace method except that the solution of 
the Riccati equation is now found by computing a basis for the deflating subspace 
of a matrix pencil. For the CARE, the pencil is PCARE -- )~NCARE, where 

PCARE- ( AQ AS), NCAR E _ (I 0 ~). 

For the DARE, the matrices of the pencil are 

PDARE- ( AQ 0/), NDARE- (~ S AT) �9 

Again, for reasons stated above, the generalized Schur decomposition using the 
QZ algorithm should be used to compute such a basis. See Section 13.5.2 for 
details. The eigenvector approach should be avoided. 

Both the Schur methods and the generalized Schur methods require an explicit 
inversion of the matrix R. In case R is ill-conditioned with respect to matrix 
inversion, these methods may not give accurate solutions. The difficulties can be 
overcome by using an extended (2n + m) • (2n + m) pencil. 

For the CARE, the extended pencil is E E PCARE where -- ~NcARE , 

(0'' 0 !) PgARE -- , N~,AR E -- I . 
0 

This extended (2n + m) • (2n + m) pencil can then be compressed into a 2n • 2n 

pencil by finding the Q R factorization of (~) ,  without affecting the deflating 
N / 

subspace. The solution of the CARE can then be obtained by finding the ordered 
generalized Schur form of the compressed pencil. 

For the DARE, the extended pencil is E E /~ where -- XNDARE , 

00)' " (i 0 _P  RE = , 

0 B T 

This (2n + m) • (2n + m) can be compressed into a 2n • 2n pencil by using the 

QR factorization of (RB). For details, see Section 13.5.2. 

Again, the required basis should be constructed by finding the generalized RSF 
of the pencil using the QZ algorithm. 
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13.10 C H A P T E R  NOTES A N D  F U R T H E R  R E A D I N G  

The AREs have been very well studied in the literatures of mathematics and control 
and filter theory. 

For an excellent account of up-to-date theoretical developments, see the recent 
book of Lancaster and Rodman (1995). Some of the earlier theoretical devel- 
opments are contained in Ku~era (1972, 1979), Coppel (1974), and Singer and 
Hammarling (1983), Willems (1971), Wimmer (1984, 1994), Lancaster and 
Rodman (1980). The books by Anderson and Moore (1990), Ando (1988), Kwak- 
ernaak and Sivan (1972), Kimura (1997), Zhou et al. (1996) also contain a fair 
amount of theory of AREs. The existence of maximal solutions for generalized 
AREs arising in stochastic control has been discussed in DeSouza and Fragoso 
(1990). The paper by DeSouza et al. (1986) deals with Riccati equations arising in 
optimal filtering of nonstabilizable systems having singular state transition matri- 
ces. For some application of Riccati equations in general forms to dynamic games, 
see Basar (1991). 

Important numerical methods have been dealt with in details in the books by 
Sima (1996) and Mehrmann (1991). Benner (1999) has given an up-to-date review 
with special attention to structure-preserving methods. An extensive bibliography 
on numerical methods appear in Laub (1991) and Benner (1997). See Jamshidi 
(1980) for an earlier review. 

For a review of periodic Riccati equations see the article of Bittanti et al. and 
the references therein in the book "The Rieeati Equation" edited by Bittanti et al. 

(1991). The latter contains several important papers on Riccati equations and the 
paper by Bittanti gives a brief life history of Count Jacopo Riccati (1676-1754), 
which is certainly worth reading. 

The sensitivity of the continuous-time Riccati equations has been studied 
by several people: Byers (1985), Kenney and Hewer (1990), Chen (1988), 
Konstantinov et al. (1990), Xu (1996), Sun (1998), and Ghavimi and Laub 
(1995), etc. Theorem 13.4.1 is due to Sun (1998). The bound (13.4.14) is due 
to Kenney and Hewer (1990). The residual of an approximate stabilizing solution 
(Theorem 13.4.3) is due to Sun (1997a). The sensitivity of the DARE has been 
studied in Gudmundsson et al. (1992), Konstantinov et al. (1993), Sun (1998), 
and Gahinet et al. (1990).  The paper by Ghavimi and Laub (1995) relates back- 
ward error and sensitivity to accuracy and discusses techniques for refinement of 
computed solutions of the AREs. For recent results, see Petkov et al. (2000). For 
results on the upper and lower bounds of the solutions of CARE and DARE, see 
Lee (1997a, 1997b). 

The eigenvector methods for the Riccati equations were proposed by McFarlane 
(1963) and Potter (1966). The Schur method for the Riccati equations originally 
appeared in the celebrated paper by Laub (1979). Petkov et al. (1987) studied the 
numerical properties of the Schur method and concluded that the Schur method 
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can be unstable in some cases and the solutions may be inaccurate. A further 
analysis by Kenney et al. (1989) attributed such inaccuracy to poor scaling. For 
an excellent account of scaling of the Schur methods, see Benner (1997). The 
structure-preserving Hamiltonian-Schur method was first proposed by Byers in 
his Householder-prize winning Ph.D. thesis (1983) in the case of a single-input 
system (rank(B) = 1). See Byers (1986a) for details of the method. The theoreti- 
cal foundation of this method is contained in the well-known paper by Paige and 
Van Loan ( 1981). Their result was later extended to the case when the Hamiltonian 
matrix has eigenvalues on the imaginary axis by Lin and Ho (1990). Patel et al. 

(1994) have discussed computation of stable invariant subspaces of Hamiltonian 
matrices. Another method, called the multishift method to compute the invariant 
subspace of the Hamiltonian matrix corresponding to the stable eigenvalues was 
developed by Ammar and Mehrmann (1993). The algorithm is called the multishift 
algorithm because n stable eigenvalues of the Hamiltonian matrix are used as shifts 
to isolate the desired invariant subspace. The multishift method sometimes has 
convergence problems, particularly for large n. The Hamiltonian-Schur algorithm 
in the multi-input case is due to Benner et al. (1997c). For structure-preserving 
eigenvalue methods see Benner et al. (1999c) and Bunse-Gerstner et al. (1992). 
Mehrmann (1988) has given a structure-preserving method for the discrete-time 
Riccati equation with single-input and single-output. The non-orthogonal sym- 
plectic methods have been discussed by Bunse-Gerstner and Mehrmann (1986) 
and Bunse-Gerstner et al. (1989) for the CARE, and by Benner et al. (1999b), 

Fassbender and Benner (2001) for the DARE. The details of these methods and 
other references can be found in the recent book by Fassbender (2000). Interesting 
connection between structure-preserving HR and SR algorithms appears in Benner 
et al. (1997a). 

The generalized eigenvalue problem approach leading to deflating subspace 
method for the discrete-time Riccati equation was proposed by Pappas et al. (1980). 
See also Arnold and Laub (1984), Emami-Naeini and Franklin (1979, 1982). 
The inverse-free methods (the extended pencil approach (Algorithm 13.5.3 and 
Algorithm 13.5.4)) and the associated compressed techniques were proposed by 
Van Dooren (1981). 

The idea of using matrix sign function to solve the CARE was first introduced by 
Roberts (1980, [ 1971 ]). Byers (1986b, 1987) discussed numerical stability of the 
method and studied the computational aspects in details. See also Bierman (1984) 
and Bai and Demmel (1998). A generalization of the matrix sign function method 
to a matrix pencil and its application to the solutions of DCARE and DDARE was 
proposed by Gardiner and Laub (1986). For an account of the matrix sign function, 
see the recent paper of Kenney and Laub (1995). For a perturbation analysis of 
the matrix sign function, see Sun (1997c). Howland (1983) relates matrix sign 
function to separation of matrix eigenvalues. 
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For details of Newton's algorithm for the CARE (Algorithm 13.5.8) and that of 
the DARE (Algorithm 13.5.10), as presented here, see Benner (1997), Lancaster 
and Rodman (1995). The correct proof of convergence of Newton's method 
( T h e o r e m  13.5.8) seemed to appear for the first time in Lancaster and Rodman 
(1995). 

Kenney et al. (1990) gave results on error bounds for Newton' s method, where it 
was first pointed out that if the initial solution X0 is not chosen carefully, the error on 
the first step can be disastrous. They also gave conditions which guarantee mono- 
tone convergence from the first step on (Theorem 13.5.9). Several modifications 
of Newton's methods have appeared in recent years (Guo 1998; Guo and Lancaster 
1998; Guo and Laub 2000; etc.). The line search modification proposed by Benner 
and Byers (1998) is extremely useful in practice. In general, it improves the con- 
vergence behavior of Newton's method and avoids the problem of a disastrously 
large first step. For acceleration techniques of the DARE, see Benner (1998). 

Ghavimi et al. (1992) have discussed the local convergence analysis of conjugate 
gradient methods for solving the AREs. 

For an account of parallel algorithms for AREs, see Bai and Qian (1994), 
Gardiner and Laub (1991), and Laub (1991) and references therein, Quintana 
and Hermindez (1996a, 1996b, 1996c), etc. 

For large-scale solutions of the AREs see Ferng et al. (1997), Lu and Lin (1993), 
Jaimoukha and Kasenally (1994) and Benner and Fassbender (1997). The recent 
book by Ionescu et al. (1999) gives a nice treatment of AREs for the indefinite 
sign and singular cases. See also Campbell (1980). For least-squares solutions of 
stationary optimal control using the AREs, see Willems (1971). 

Some discussions on finding the Cholesky factor of the solution to an ARE with- 
out first computing the solution itself appears in Singer and Hammarling (1983). 
Lin (1987) has given a numerical method for computing the closed-loop eigen- 
values of a discrete-time Riccati equation. Patel (1993) has given a numerical 
method for computing the eigenvalues of a simplectic matrix. For numerical algo- 
rithms for descriptor Riccati equations, see Benner (1999), Mehrmann (1991), 
Bender and Laub (1985, 1987), Benner et al. (1999a), etc. A description of 
discrete-time descriptor Riccati equations also appears in Zhang et al. (1999). A 
comparative study with respect to efficiency and accuracy of most of the methods 
described in this chapter for the CARE (the eigenvector, Schur, inverse-free gen- 
eralized Schur, Hamiltonian-Schur and Newton's Methods) has been made 
in the recent M.Sc. Thesis of Ho (2000), using MATLAB and FORTRAN-77 
codes. (In particular, this thesis contains MATLAB codes for ordered Real Schur 
and Generalized Real Schur decompositions). Numerical experiments were per- 
formed on 12 benchmark examples taken from the collection of Benner et al. 

(1995a, 1997b). The conclusions drawn in this thesis are almost identical to those 
mentioned in Section 13.7. For a recent collection of benchmark examples for 
Riccati equations, see Abels and Benner (1999a, 1999b). 
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Exerc i ses  

13.1 Derive necessary and sufficient conditions for the CARE (13.1.1) to have a unique 
symmetric positive definite stabilizing solution X. 

13.2 Construct an example to show that the observability of (A, Q) is not necessary for 
the solution X of the CARE (13.1.1) to be positive definite. 

13.3 Prove that the matrix defined in (13.3.1) is symplectic, and that if I. is a nonzero 
eigenvalue of M, so is 1/~.. 

13.4 Establish the relation (13.2.16). 
13.5 (a) Prove the discrete counterpart of Theorem 13.2.4, that is, prove an analogous 

theorem for the DARE. 
(b) Using the results of Problem 13.3, and those of 13.5(a), prove Theorem 13.3.2. 

13.6 Prove that the homogeneous CARE: X A  + A T x  + X S X  = 0 has a stabilizing 
solution if A has no eigenvalues on the imaginary axis. Prove or disprove a discrete- 
counterpart of this result. 

13.7 Prove that the quantity (13.4.22) serves as an approximate condition number of 
the DARE (13.1.2). Construct an example of an ill-conditioned DARE using this 
quantity. 

13.8 Find an example to illustrate that a small relative residual in a computed solution 
of the CARE does not guarantee a small error in the solution. 

13.9 Prove that if f2 is singular, then sep((A - SX) ,  - ( A  - SX) T) is zero. 
13.10 Give a proof of Algorithm 13.5.1, making necessary assumptions. 
13.11 Construct an example to show that the solution of the CARE, obtained by 

Algorithm 13.5.1, might be inaccurate, even though the problem is not ill- 
conditioned. (Hint: Construct an example for which U11 is ill-conditioned, but 
the CARE is well-conditioned.) 

13.12 Give an example to demonstrate the superiority of the Schur algorithm for the 
CARE over the eigenvector algorithm, in case the associated Hamiltonian matrix 
is nearly defective. 

13.13 Using Theorem 13.5.1 and the transformation 

H = (M + I 2 n ) ( M -  I2n) -1 ,  

prove Theorem 13.5.2. 
13.14 Construct an example to demonstrate the numerical difficulties of the Schur 

algorithm for the DARE in case the matrix A is nearly singular. 
13.15 Write down an algorithm for solving the discrete algebraic Riccati equation, using 

the eigenvectors of the symplectic matrix. Discuss the computational drawbacks of 
the algorithm. Construct an example to illustrate the computational drawbacks. 

13.16 Prove the properties 1 through 5 of the matrix sign function Sign(A) stated in 
Section 13.5.3. 

13.17 Prove that if I)~1 - 1 is an eigenvalue of the pencil PDARE -- 1.NDARE with the 

(Z l ) ,  where PDARE and NDARE are the same as given in Theorem eigenvector z = z2 

13.5.5, then the detectability of (A, Q) implies that Z l = 0. 
13.18 Formulate the generalized Schur method for the CARE and develop that for the 

DARE in details. 
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13.19 Why is the generalized Schur method not preferable over the Schur method for the 
CARE if R is not nearly singular? 

13.20 Construct an example to demonstrate the poor accuracy of the generalized eigen- 
vector method for the DARE in case the pencil PDARE -- )~NDARE has near multiple 
eigenvalues. 

Apply the generalized Schur algorithm (Algorithm 13.5.2) to the same example 
and verify the improvement in the accuracy of the solution. 

13.21 Work out the details of how the pencil PEAR E -- ~,NgARE can be transformed to 
EC the compressed pencil pECcARE -- )~NcARE using the Q R factorization of the matrix 

13.22 Repeat the previous exercise for the DARE, that is, work out the details of the 
transformation to the pencil EC EC PDARE -- )~NI~ARE using the Q R factorization of the 

matrix (RB).  

13.23 Prove that the pencil PEcARE -- ~.NgARE and the pencil PCAREEC _ ~.NcAR EEC as 
defined in Section 13.5.2 for the CARE have the same deflating subspaces, and 
similarly for the DARE. 

13.24 Develop the following algorithms in detail for both the DCARE and DDARE 
(consult Laub (1991) and Benner (1997)): 

The Schur algorithms, the generalized Schur algorithms, the inverse-free gen- 
eralized Schur algorithms, the matrix sign function algorithms, and Newton's 
algorithms. 

Construct a simple example to illustrate each of the above algorithms. 
13.25 Perform numerical experiments to compare Newton's methods with Newton's meth- 

ods with line search, both for the CARE and DARE, by using several examples from 
the Benchmark collections in Benner et al. (1995a, 1995b, 1997b). Display your 
results on number of iterations and norms of the residual matrices using tables and 
graphs. 

13.26 Construct an example to demonstrate the superiority of the inverse-free general- 
ized Schur algorithm over the Schur algorithm for the CARE, in case the control 
weighting matrix R is positive definite but nearly singular. 

13.27 Carry out a numerical experiment with a 150 x 150 randomly generated problem 
to make a comparative study with respect to computer-time and accuracy of the 
solution to the CARE with the following methods: the eigenvector method, the 
Schur method, inverse-free generalized Schur method, the matrix sign function 
method, and the Hamiltonian structure-preserving Schur method. Write down your 
observations and conclusions with tables and graph. 

13.28 Repeat the previous exercise with the DARE using the following methods: The 
eigenvector method, the generalized eigenvector method, the Schur method, the 
generalized Schur method, inverse-free generalized Schur method, and the matrbc 
sign function method. 

13.29 (Kenney and Hewer 1990). Study the sensitivity of the solution of the CARE with 
the following data, for ~ = 100, 10 -1 , 10 -2, 10 -3. Present your results with tables 
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and graphs. 

t il~176 II l - - ~  0 B - -  
A - -  0 ~ ' ' 

0 - 1  

R - -  1, Q - - B B  T. 

Research Problems 

13.1 Develop a structure-preserving method to compute the symplectic Schur decom- 
position and apply the method to solve the DARE, thus obtaining a symplectic 
structure-preserving method for the DARE. 
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C H A P T E R  1 4  

INTERNAL BALANCING AND 
MODEL REDUCTION 

14.1 INTRODUCTION 

Several practical situations such as the design of large space structures (LSS), 
control of power systems, and others, give rise to very large-scale control problems. 
Typically, these come from the discretization of distributed parameter problems 
and have thousands of states in practice. Enormous computational complexities 
hinder the computationally feasible solutions of these problems. 

As a result, control theorists have always sought ways to construct reduced- 
order models of appropriate dimensions (depending upon the problem to be solved) 
which can then be used in practice in the design of control systems. This process is 
known as model reduction. The idea of model reduction is to construct a reduced- 
order model from the original full-order model such that the reduced-order model 
is close, in some sense, to the full-order model. The closeness is normally measured 
by the smallness of IlG(s) - GR(S) ]l, where G(s) and GR(S) are, respectively, the 
transfer function matrices of the original and the reduced-order model. Two norms, 
]] �9 ]] ~ norm and the Hankel-norm are considered here. The problem of construct- 
ing a reduced-order model such that the Hankel-norm error is minimized is called 
an Optimal Hankel-norm approximation problem. A widely used practice of 
model reduction is to first find a balanced realization (i.e., a realization with con- 
trollability and observability Grammians equal to a diagonal matrix) and then to 
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truncate the balanced realization in an appropriate manner to obtain a reduced- 
order model. The process is known as balanced truncation method. Balanced 
truncation does not minimize the/-/~ model reduction error, it only gives an upper 
bound. Balancing of a continuous-time system is discussed in Section 14.2, where 
two algorithms are described. Algorithm 14.2.1 (Laub 1980; Glover 1984) con- 
structs internal balancing of a stable, controllable and observable system, whereas 
Algorithm 14.2.2 (Tombs and Postlethwaite 1987) is designed to extract a bal- 
anced realization, if the original system is not minimal. Internal balancing of a 
discrete-time system is described in Section 14.3. 

In Section 14.4, it is shown (Theorem 14.4.1) that a reduced-order model con- 
structed by truncating a balanced realization (Algorithm 14.4.1) remains stable 
and the H~-norm error is bounded. 

A Schur method (Algorithm 14.4.2) for model reduction is then described. 
The Schur method due to Safonov and Chiang (1989) is designed to overcome 
the numerical difficulties in Algorithm 14.4.1 due to the possible ill-conditioning 
of the balancing transforming matrices. In Theorem 14.4.2, it is shown that the 
transfer function matrix of the reduced-order model obtained by the Schur method 
is the same as that of the model reduction procedure via internal balancing using 
Algorithm 14.2.1. The Schur method, however, has its own computational prob- 
lem. It requires computation of the product of the controllability and observability 
Grammians, which might be a source of round-off errors. The method, can be 
modified by using Cholesky factors of the Grammians which then leads to the 
square-root algorithm (Algorithm 14.2.2). 

The advantages of the Schur and the square-root methods can be combined into 
a balancing-free square-root algorithm (Varga 1991). This algorithm is briefly 
sketched in Section 14.4.3. 

Section 14.5 deals with Hankel-norm approximation. A state-space charac- 
terization of all solutions to optimal Hankel-norm approximation due to Glover 
(1984) is stated (Theorem 14.5.2) and then an algorithm to compute an optimal 
Hankel-norm approximation (Algorithm 14.5.1) is described. 

Section 14.6 shows how to obtain a reduced-order model of an unstable 
system. 

The frequency-weighted model reduction problem due to Enns(1984) is con- 
sidered in Section 14.7. The errors at the high frequencies can sometimes possibly 
be reduced by using suitable weights on the frequencies. 

Finally, in Section 14.8, a numerical comparison of different model reduction 
procedures is given. 

14.2 INTERNAL BALANCING OF CONTINUOUS-TIME SYSTEMS 

Let (A, B, C, D) be an n-th order stable system that is both controllable and 
observable. Then it is known (Glover 1984) that there exists a transformation 
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such that the transformed controllability and observability Grammians are equal 
to a diagonal matrix E. Such a realization is called a balanced realization (or 
internally balanced realization). 

Internal balancing of a given realization is a preliminary step to a class of meth- 
ods for model reduction, called Balance Truncation Methods. In this section, we 
describe two algorithms for internal balancing of a continuous-time system. The 
matrix D of the system (A, B, C, D) remains unchanged during the transforma- 
tion of the system to a balanced system. We, therefore, drop the matrix D from 
our discussions in this chapter. 

14.2.1 Internal Balancing of a Minimal Realization (MR) 

Suppose that the n-th order system (A, B, C) is stable and minimal. Thus, it is both 
controllable and observable. Therefore, the controllability Grammian Cc and the 
observability Grammian OG are symmetric and positive definite (see Chapter 7) 
and hence admit the Cholesky factorizations. 

Let CG --  L c L  T and Oc - L o L  T be the respective Cholesky factorizations. 
Let 

L X o L c -  U } ] V  T (14.2.1) 

be the singular value decomposition (SVD) of L T L c .  

Define now 

T --  L c V  E -1/2, (14.2.2) 

where E 1/2 denotes the square root of E. 
Then T is nonsingular, and furthermore using the expressions for C6 and 

Eq. (14.2.2), we see that the transformed controllability Grammian C6 is 

CG T-1CG T-T E1/2VTLc 1 T -T 1/2 --  - -  L c L  c L c V E --  E .  

Similarly, using the expression for O6 and the Eqs. (14.2.1) and (14.2.2), we see 
that the transformed observability Grammian Oc is 

OG --  T T O G T  -- ~2-1/2 VTLcTLoLTLcVE-1/2 

= ~ ] - I / 2 v T  V } ] U T U ~ ] V T V Z - 1 / 2 _  ~21/2. ~21/2_ ~. 

Thus, the particular choice of 

T --  L c V  ~2-1/2 (14.2.3) 

reduces both the controllability and observability Grammians to the same 
diagonal matrix E. The system (A,/3, C), where the system matrices are 
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defined by 

- T - 1 A T ,  [ ~ -  T -1B ,  C -  CT (14.2.4) 

is then a balanced realization of the system (A, B, C ). The decreasing positive 
numbers al _> a2 >_- . .  >_ an in E - d i a g ( a l ,  a2 . . . . .  an), are the Hankel 
singular values. 

The above discussion leads to the following algorithm for internal balancing. 

Algorithm 14.2.1. An Algorithm for Internal Balancing of a Continuous-Time 
MR 

Inputs. 
A--The n x n state matrix. 
B--The n x m input matrix. 
C--The r x n output matrix. 

Outputs. 
T--An n x n nonsingular balancing transforming matrix. 
A, [~, C--The matrices of internally balanced realization: 

fi = T - 1 A T ,  [~ -- T -1B ,  C = CT. 

Assumptions. (A, B) is controllable, (A, C) is observable, and A is stable. 
Result. T-1CG T-T  = T TOGT = E, a diagonal matrix with positive 

diagonal entries. 

Step 1. Compute the controllability and observability Grammians, CG and OG, 
by solving, respectively, the Lyapunov equations: 

ACG + CGA T + BB w = 0, (14.2.5) 

AT OG + OG A + C T C = 0. (14.2.6) 

(Note that since A is a stable matrix, the matrices C6 and OG can be obtained by 
solving the respective Lyapunov equations above (see Chapter 7).) 

Step 2. Find the Cholesky factors Lc and Lo of CG and OG" 

CG = LcLTc and OG -- LoLTo (14.2.7) 

T T V T" Step 3. Find the SVD of the matrix L o Lc" L o Lc -- UE 
( ,  1 

, �9 �9 �9 ~ Step 4. Compute E -1/2 - diag ~/~-1 ~ where 

E - diag(al, a2 . . . . .  a n).  (Note that ai, i - 1, 2 . . . . .  n are positive). 
Step 5. Form T -- Lc V E -  1/2 
Step 6. Compute the matrices of the balanced realization: 

f~--  T - 1 A T ,  [~-- T -1B, and 6 " - - C T .  
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Remark 

�9 The original method of Laub (1980) consisted in finding the transforming 
matrix T by diagonalizing the product L c TOG Lc or L T CG Lo, which is sym- 
metric and positive definite. The method described here is mathematically 
equivalent to Laub's method and is numerically more effective. 

Example 14.2.1. Consider finding the balanced realization using Algorithm 14.2.1 
of the system (A, B, C) given by: 

A--  0 - 2  , B - - (1 ,1 ,1 )  T, C - ( 1 , 1 , 1 ) .  
0 0 3 

Step 1. By solving the Lyapunov equation (14.2.5), we obtain 

{3.9250 0.9750 0.4917~ 
CG-- /0.9750 0.3667 0.2333]. 

\0.4917 0.2333 0.1667] 

Similarly, by solving the Lyapunov equation (14.2.6), we obtain 

{0.5000 0.6667 0.7917~ 
OG = /0.6667 0.9167 1.1000 / . 

\0.7917 1.1000 1.3250] 

Step 2. The Cholesky factors of CG and OG are: 

{ 1 . 9 8 1 2 0  /0.7071 0 ) o 
L c -  /0.4912 0.3528 , - /0.9428 0.1667 ,, 

\0.2482 0.3152 0.0757 \1.1196 0.2667 0.0204 

Step 3. From the SVD of LToLc (using MATLAB function svd): 

we have 

Step 4. 

[U, E, V] -- svd(LSLc), 

E = diag (2.2589 0.0917 0.0006), 

{-0.9507 0.3099 0.0085 
V--  [-0.3076 -0.9398 -0 .1488] .  

\ -0.0381 -0.1441 0.9888 ] 

]~ 1/2 __ diag(1.5030, 0.3028, 0.0248). 

Step 5. The transforming matrix T is: 

/ -1 .2532 
T -- Lc V E -1/2 -- [-0.3835 

\ -0 .2234 

2.0277 
-0.5914 
-0.7604 

0.6775 
-1.9487] . 
1.2131 ] 
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Step 6. The balanced matrices are: 

/(-0.7659 
?, - T - 1 A T  = /-0.5801 

\ 0.0478 

0.5801 -0.0478~ 
-2.4919 0.4253 1 .  
0.4253 -2.7422] 

{ -  1.8602~ 
[~ - T - 1 B  --  1-0.6759] , 

\ 0.0581 } 
= C T  - (-1.8602 0.6759 

Verify: 

-o.o58 ). 

T - 1 C G T  - T  --  T T O G T  -- E -- diag(2.2589, 0.0917, 0.0006). 

Computational  Remarks 

The explicit computation of the product Log Lc can be a source of round- 
off errors. The small singular values might be almost wiped out by the 
rounding errors in forming the explicit product LroLc .  It is suggested that 
the algorithm of Heath e t  al .  (1986), which computes the singular values of 
a product of two matrices without explicitly forming the product, be used 
in practical implementation of this algorithm. 

M A T L A B  n o t e s :  The MATLAB function in the form: 

SYSB -- balreal (sys) 

returns a balanced realization of the system (A, B, C). The use of the function 
balreal in the following format: 

[SYSB, G, T, TI] = balreal (sys) 

returns, in addition to A,/3, C" of the balanced system, a vector G containing the 
diagonal of the Grammian of the balanced realization. The matrix T is the matrix 
of the similarity transformation that transforms (A, B, C) to (A,/~, C) and TI is 
its inverse. 

M A T C O N T R O L  n o t e s :  Algorithm 14.2.1 has been implemented in MATCON- 
TROL function balsvd. 

14.2.2 Internal Balancing of a Nonminimal Realization 

In the previous section we showed how to compute the balanced realization of 
a stable minimal realization. Now we show how to obtain a balanced realization 
given a stable nonminimal continuous-time realization. The method is due to 
Tombs and Postlethwaite (1987) and is known as the square-root method. The 
algorithm is based on a partitioning of the SVD of the product LgoLc and the 
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balanced matrices ,4,/~, C" are found by applying two transforming matrices L 
and Z to the matrices A, B, and C. The matrices Lo and Lc are, respectively, 
the Cholesky factors of the positive semidefinite observability and controllability 
matrices OG and CG. 

The balanced realization in this case is of order k(k < n) in contrast with the 
previous one where the balanced matrices are of the same orders as of the original 
model. 

Let the SVD of LToLc be represented as 

LTLc - -  (U1, U2)d i ag (E1 ,  Ez)(V1, V2) T 

where  ~21 - diag(~rl . . . . .  cry) > 0, ~2 -- O n - k •  

The matrices U1, V~, and E1 are of order n x k, k x n, and k x k, respectively. 
Define now 

-1/2 -1/2 
L -- LoUIE 1 , Z -- Lc V1E 1 

Then it has been shown in Tombs and Postlethwaite (1987) that the realization 
(A,/~, C), where the matrices ,4,/~, and C" are defined by A - LT A Z, /~ -- LT B, 
and C - C Z is balanced, truncated to k states, of the system (A, B, C). 

Remark 

�9 Note that no assumption on the controllability of (A, B) orthe observability 
of (A, C ) is made. 

Algorithm 14.2.2. The Square-Root Algorithm for Balanced Realization of a 
Continuous-Time Nonminimal Realization 

Inputs. The system matrices A, B, and C of a nonminimal realization. 
Outputs. The transforming matrices L, Z, and the balanced matrices A, [~, 

and C. 
Assumption. A is stable. 
Step 1. Compute Lo and Lc, using the L DL T decomposition of OG and 

CG, respectively. (Note that Lo and Lc may be symmetric positive semidefinite, 
rather than positive definite.) 

Step 2. Compute the SVD of LTLc and partition it in the form: 

LTLc - -  (U1, U 2 ) d i a g ( E 1 ,  ~22)(Vl, V2) T 

where E 1 -- diag(al, o2 . . . .  o-~) > 0. 

Step 3. Define 

-1/2 -1/2 
L -- LoU1]E 1 and Z -- Lc V1]E 1 . 

Step 4. Compute the balanced matrices A, [~, and C" as: 

-- LTAZ,  [~ -- LTB, and C - CZ. 
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Example 14.2.2. Let A, C be the same as in Example 14.2.1, and let B = (1, 0, 0) T. 
Thus, (A, B) is not controllable. 

Step 1. 

L O = 

0 00) 
9428 0.1667 
1196 0.2667 0.0204 

Lc = diag(0.7071, 0, 0). 

Step 2 .  U1 : , V1 - , 

Step 3. 

121 - 0.5000, K : 1. 

-1 /2  
L = LoU1121 

-1 /2  
= 1.3333 , Z--LcV1121 -- . 

1.5833] 

Step 4. A = - 1 , / ~  = 1, C : 1. 
Thus, (.4,/~, C) is a balanced realization of order 1, since the realized system 

is both controllable and observable. Indeed both the controllability and observability 
Grammians for this realization are equal to 0.5. 

MATCONTROL note: Algorithm 14.2.2 has been implemented in MATCON- 
TROL function balsqt. 

Numerical difficulties of Algorithm 14.2.1 and 14.2.2: Algorithm 14.2.1 of the 
last section can be numerically unstable in the case when the matrix T is ill- 
conditioned. 

To see this, we borrow the following simple example from Safonov and Chiang 
(1989): 

t 1 t Let A B _ 0 1 1 
C 0 2 �9 

1 E 0 

The transforming matrix T of Algorithm 14.2.1 in this case is given by 

Thus, as ~ becomes smaller and smaller, T becomes more and more ill-conditioned. 
Indeed, when ~ ~ 0, Cond(T) becomes infinite. 

In such eases, the model reduction procedure via internal balancing 
becomes unstable. 

Similarly, the square-root algorithm (Algorithm 14.2.2) can be unstable if 
the matrices L and T are ill-conditioned. 
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14.3 I N T E R N A L  B A L A N C I N G  O F  D I S C R E T E - T I M E  S Y S T E M S  

In this section, we consider internal balancing of the stable discrete-time system: 

Xk+ 1 : Ax~ + Buk, 
(14.3.1) 

Yk - -  C x k .  

We assume that the system is controllable and observable, and give here a discrete 
analog of Algorithm 14.2.1. 

The discrete analog of Algor i thm 14.2.2 can be similarly developed and is left 
as an (Exercise 14.11 (b)). 

The controllability Grammian C~ and the observability Grammian ODG' defined 
by (Chapter 7): 

o o  

C~ -- Z z i  B B T (AT)i 

i=0 

and 
o o  

O~ -- Z ( A T ) i c T C A  i 

i=O 

satisfy, in this case, respectively, the discrete Lyapunov equations: 

ACDA T - C D + BB  T -- 0 (14.3.2) 

and 
AT O D a - O~ + C T C - 0. (14.3.3) 

It can then be shown that the transforming matrix T defined by 

T -- Lc V E -  1,/2, (14.3.4) 

where Lc, V, and E are defined in the same way as in the continuous-time case, 
will transform the system (14.3.1) to the internally balanced system: 

fC k + l - -  A . ~  k -Jr- B u k , 
(14.3.5) 

~ --  C ~ .  

The Grammians again are transformed to the same diagonal matrix E, the matrices 
,4,/3, and C are defined in the same way as in the continuous-time case. 

Example 14.3.1. 

(00010 1 , ) ( 1 )  
A -- 0 0.1200 1 , B - 1 , C - (1, 1, 1). 

0 0 -O. 1000 1 

(Note that the eigenvalues of A have moduli less than 1, so it is discrete-stable.) 
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Step 1. The discrete controllability and observability Grammians obtained, 
respectively, by solving (14.3.2) and (14.3.3) are: 

6.0507 3.2769 0.8101 ) 
C~ - 3.2769 2.2558 0.8883 , 

0.8101 0.8883 1.0101 

and 

1 1 .0011 1.0019 ) 
O~ - 1.0011 2.2730 3.2548 

1.0019 3.2548 5.4787 

and 

Step 2. The Cholesky factors of C~ and O~ are: 

2.4598 0 0 ) 
L y -- 1.3322 0.6936 0 

0.3293 0.6482 0.6939 

1 0 0 ) 
L D -  1.0011 1.1273 0 

1.0019 1.9975 0.6963 

Step 3. The SVD of (LD) TLeD: 

gives 

Step 4. 

[U, Z, V] - svd(L D)TLcD 

E -  diag( 5.3574, 1.4007, 0.1238 ), 

0.8598 -0.5055 0.0725 ) 
V = 0.4368 0.6545 -0.6171 . 

0.2645 0.5623 0.7835 

~1/2  _ diag(2.3146, 1.1835, 0.3519). 

Step 5. The transforming matrix T is: 

T - -  L D v  E -1/2,  

0.9137 -1.0506 0.5068 
= 0.6257 -0.1854 -0.9419 ) . 

0.3240 0.5475 0.4759 

Step 6. The balanced matrices are: 

0.5549 0.4098 
-0.4098 -0.1140 
0.0257 -0.2629 

f i  - -  T - 1 A T  - -  

0.0257 ) 
0.2629 , 

-0.4199 
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1 . 8 6 3 4 )  
/} -- T-1B -- 0.6885 , 

0.0408 
N 

C - C T  -- (1.8634, -0.6885, 0.0408). 

Verify: 

T - 1 C ~ T  - T -  T T O D T  -- E - - d i a g ( 5 . 3 5 7 4 ,  1.4007, 0.1238). 

14.4 MODEL REDUCTION 

Given an nth order realization (A, B, C) with the transfer function matrix G(~.) = 
c O ~ I  - A) -1 B, where ")~" is complex variable "s" for the continuous-time case 
and is the complex variable z = (1 + s)/(1 - s) in the discrete time, the ideal 
model reduction problem aims at finding a state-space system of order q < n 
such that the Hcc error-norm 

E = IIG0~) - GR001I~ 

is minimized over all state-space systems of order q, where GR 0~) is the transfer 
function of the reduced-order model. 

The exact minimization is a difficult computational task, and, in practice, a less 
strict requirement, such a guaranteed upper bound on E is sought to be achieved. 
We will discuss two such methods in this chapter: 

�9 Balanced Truncation Method 
�9 The Schur Method 

We shall also describe briefly an optimal Hankel -Norm Approximation 
(HNA) method in Section 14.5. This optimal HNA method minimizes the 
error in Hankel norm (defined in Section 14.5). Furthermore, we will state 
another model reduction approach, called Singular Perturbation (SP) Method 
in Exercise 14.23. For properties of SP method, see Anderson and Liu (1989). 
Finally, an idea of Frequency-Weighted Model  Reduction due to Enns (1984) 
will be discussed in Section 14.7. 

14.4.1 Model Reduction via Balanced Truncation 

As the title suggests, the idea behind model reduction via balanced truncation is 
to obtain a reduced-order model by deleting those states that are least control- 
lable and observable (as measured by the size of Hankel singular values). Thus, 
if ER = diag(~l IS1 . . . . .  O'g IsN), is the matrix of Hankel singular values (which 
are arranged in decreasing order), obtained by a balanced realization, where si 

is the multiplicity of ~i, and crd >> crd+l, then the balanced realization implies 
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that the states corresponding to the Hankel singular values o-d+l . . . .  O-N are less 
controllable and less observable than those corresponding to o1 . . . . .  o'd. Thus, 
the reduced-order model obtained by eliminating these less controllable and less 
observable states are likely to retain some desirable information about the original 
system. Indeed, to this end, the following result (Theorem 14.4.1) holds. The idea 
of obtaining such a reduced-order model is due to Moore (1981). Part (a) of the 
theorem is due to Pernebo and Silverman (1982), and Part (b) was proved by 
Enns (1984) and independently by Glover (1984). We shall discuss here only the 
continuous-time case; the discrete-time case in analogous. 

T h e o r e m  14.4.1. Stability and Error Bound o f  the Truncated Subsystem. Let 

G(s)  - A21 A22 B2 (14.4.1) 
CR C2 0 

be the transfer function matrix o f  an nth order internally balanced stable system 
with the Grammian E = diag(ER, E2), where 

ER -- diag(o'11s~ . . . . .  o'd lsd ) , d < N 

~]2 - -  diag(o-d+llsd+~ . . . . .  o'NIsN) (14.4.2) 

and 

o1 > 0"2 > " ' "  > o-d > o-d+l > o-d+2 > " ' "  > O-N. 

The multiplicity o f  o-i is S i ,  i = 1, 2 . . . . .  N and sl + S2 -+- " ' "  + S N  = n. 

(a) 

GR(S) -- CR 

is balanced and stable. 
(b) Furthermore, the error: 

Then the truncated system (AR, BR, CR) with the transfer function: 

BR ] (14.4.3) 
0 

IlG(s) - GR(s)llc~ ~ 2(o-d+1 + " "  + O-N)- (14.4.4) 

In particular, if d = N - 1, then IlG(s) - GN-1 (s)l]oo = 2o-N. 

Proof .  We leave the proof part (a) as an exercise (Exercise 14.1). We assume 
that the s i n g u l a r  va lues  cri are  d i s t inc t  and prove part (b) only in the case n = N .  

The proof in the general case can be easily done using the proof of this special 
case and is also left as an exercise (Exercise 14.1). The proof has been taken from 
Zhou et al. (1996, pp. 158-160). 
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Let 
c])(s) -- ( s l  - AR) -1, 

q/(s) -- s I  -- A22 - A21dp(s)A12, 

[~(s) -- A21dp(s)BR -ff B2, 

C(s )  -- CR~ ( s ) A12  -ff C2. 

Then, 

G(s)  - GR(s) -- C ( s I  - A ) - I  B - CRO(S)BR,  

s I - -  AR 
= (CR, C2) ~, - a 2 1  

= ~ ( s ) ~ - l  (s)[~(s). 

For s = jw, we have 

(14.4.5) 

(14.4.6) 

(14.4.7) 

(14.4.8) 

-A12 ,~-1 
s l - A 2 2 ]  ( B R 2 ) - - C R q b ( s ) B R '  

(14.4.9) 

amax [ G ( j  w) -- GR ( j  w) l -- ~.lm/2x [~-1 ( j  co) [~ ( j  w) [~* ( j  w) gt-* ( j  w) C;* (jco)C(jw)], 
(14.4.10) 

where ~.rnax (M)  denotes the largest eigenvalue of the matrix M. 
Since the singular values are distinct, we have ~2 - diag(ar+l . . . . .  an), and 

since E2 satisfies 

A2: 2 + r 2A 2 + = 0, 

we obtain 

[l(jo))[~*(jo9) = ~(jco)E2 q- E2~*(j(.o). 

Similarly, since 2~2 also satisfies 

E2A22 + AT E2 + CfC2 = 0, 

we obtain 

C*(jog)C( jog)  - I32O(jco) q- ~*(jco)]E 2. 

Substituting these expressions of/~ ( j  co)/~* (j  co) and C* (j  w) C" ( j  co) into (14.4.10), 
we obtain after some algebraic manipulations 

amax[G( jw)  - -  GR(jco)] -- L1/2x{[X2 q-- ~ - 1  (jco)]E2~*(jco)] 

x [E2 + ~P-*(jco)E2~(jw)]}.  

If d - n - 1, then ~2 = O'n, and we immediately have 

~1/2 -1 
amax[G( jw)  - G R ( j w ) ]  = an,~max{[1 4- (9 (jw)][1 4- O(jw)]} 

where | = O-*( j co )g t ( j co ) .  
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Note that 0 - *  = | is a scalar function. So, l| (jog) l = 1. 
Using the triangle inequality, we then have 

amax[G(jco) - GR(jw)] _< an[1 + IO(jco)l] = 2an 

Thus, we have proved the result for one-step, that is, we have proved the result 
assuming that the order of the truncated model is just one less than the original 
model. Using this "one-step" result, Theorem 14.4.1 can be proved for any order 
of the truncated model (Exercise 14.1). 1 

The above theorem shows that once a system is internally balanced, the balanced 
system can be truncated by eliminating the states corresponding to the less con- 
trollable and observable modes (as measured by the sizes of the Hankel singular 
values) to obtain a reduced-order model that still preserves certain desirable prop- 
erties of the original model (see Zhou et al. 1996). However, the reduced-order 
model obtained this way does not minimize the H ~  error. 

Choosing the order of the Reduced Model 

If the reduced-order model is obtained by truncating the states corresponding to the 
smaller Hankel singular values crd+l . . . . .  ~rU, then the order q of the reduced-order 
model is 

d 

q -- E S i ,  
i=1 

where Si is the multiplicity of cri. 
Computationally, the decision on choosing which Heinkel singular values are to 

be ignored, has to be made in a judicious way so that the matrix ~ which needs to 
be inverted to compute the balanced matrices does not become too ill-conditioned. 
Thus, the ratios of the largest Hankel singular value to the consecutive ones need 
to be monitored. See discussion in Tombs and Postlethwaite (1987). 

Algorithm 14.4.1. Model Reduction via Balanced Truncation 
Inputs. The system matrices A, B, and C. 
Outputs. The reduced-order model with the matrices AR, BR, and CR. 
Assumption. A is stable. 
Step 1. Find a balanced realization. 
Step 2. Choose q, the order of model reduction. 
Step 3. Partition the balanced realization in the form 

( A N  A12~ ( B R )  C-(CR,  C2) 
A - A21 A22~] ' B -- B2 ' 

where AR is of order q, and BR and CR are similarly defined. 
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The MATLAB function modred in the form 

RSYS = modred(SYS, ELIM) 

reduces the order of the model sys, by eliminating the states specified in the vector 
ELIM. 

Example 14.4.1. Consider Example 14.2.1 once more. Choose q = 2. Then AR = 
The 2 x 2 leading principal submatrix of A is 

( - 0 . 7 6 5 9 0 . 5 8 0 1 )  
-0.5801 -2.4919 " 

The eigenvalues of AR are: --0.9900 and - 2.2678. 
Therefore, AR is stable. 
The matrices BR and CR are: 

( -1 .8602~ 
BR = ~--0.6759] ' CR -- (--1.8602, 0.6759). 

Let GR (s) = CR (s I -- AR) -1 BR. 

Verification of the Error Bound: IlG(s) - GR(S)II~ = 0.0012. Since 20"3 = 
0.0012, the error bound given by (14.4.4) is satisfied. 

14.4.2 The Schur Method for Model Reduction 

The numerical difficulties of model reduction via balanced truncation using 
Algorithm 14.2.1 or Algorithm 14.2.2 (because of possible ill-conditioning of 
the transforming matrices) can be overcome if orthogonal matrices are used to 
transform the system to another equivalent system from which the reduced-order 
model is extracted. Safonov and Chiang (1989) have proposed a Schur method for 
this purpose. 

A key observation here is that in Algorithm 14.2.1, the rows { 1 . . . . .  d} and rows 
{d + 1 . . . . .  n} of T -1 form bases for the left eigenspaces of the matrix C 6 0 6  
associated with the eigenvalues {0-2 . . . . .  0-2} and {o'2+1 . . . . .  0"2}, respectively 
(Exercise 14.7). 

Thus the idea will be to replace the matrices T and T -1 (which can be very ill- 
conditioned) by the orthogonal matrices (which are perfectly conditioned) sharing 
the same properties. 

The Schur method, described below, constructs such matrices, using the RSF of 
the matrix CG OZ. 

Specifically, the orthonormal bases for the right and left invariant subspaces 
corresponding to the "large" eigenvalues of the matrix Ca OG will be computed 
by finding the ordered real Schur form of Cc Oz. 
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Once the "large" eigenvalues are isolated from the "small" ones, the reduced 
order model preserving the desired properties, can be easily extracted. 

We will now state the algorithm. 

Algorithm 14.4.2. The Schur Method for  Model Reduction (Continuous-time 
System). 

Inputs. 
A m T h e  n • n state matrix. 
B m T h e  n • m control matrix. 
C ~ T h e  r • n output matrix. 
q ~ T h e  dimension of  the desired reduced-order model. 

Outputs. 
A R ~ T h e  q • q reduced state matrix 
B R ~ T h e  q • m reduced control matrix 
Cp, mThe  r • q reduced output matrix. 
S1 and S2--Orthogonal transforming matrices such that fi, R - sT As2, 

BR -- S T B, and CR -- C $2 
Assumption. A is stable. 

Step 1. Compute the controllability Grammian CG and the observabil- 
ity Grammian OG by solving, respectively, the Lyapunov equations (14.2.5) 
and (14.2.6). 

Step 2. Transform the matrix CG OG to the RSF Y, that is, find an orthogonal 
matrix X such that X T CG OGX = Y. 

Note: The matrix CGOG does not have any complex eigenvalues. Thus, Y 
is actually an upper triangular matrix. Furthermore, the real eigenvalues are 
nonnegative. 

Step 3. Reorder the eigenvalues of  Y in ascending and descending order, that 
is, f ind orthogonal matrices U and V such that 

uTyu-- uTXTCGOGXU-- Uf CGOGUs -- t~l ... 

vTyv-- vTXTCGOGXV-- V~CGOGVs-- t~n ".. 

)~n 

)~1 

(14.4.11) 

(14.4.12) 

where ~1 <_ )~2 ~ "" ~ )~n. 
(Note that )~n - ~2, ~n-1 - or2 . . . . .  and so on; where or1 > or2 > . . .  > Crn 

are the Hankel singular values.) 
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Step 4. Partition the matrices Us, Vs as follows: 

US -- ( e l s ,  U2s),  Vs --  (V1s, V2s). 

Here Uls contains the first n - q columns of Us and Uzs contains the remaining 
q columns. On the other hand, Vls contains the first q columns of Vs and Vzs 
contains the remaining n - q columns. 

Note: Note that the columns of the Vls and those of the matrix U1S form, 
respectively, orthonormal bases for the right invariant subspace of CGOG 
associated with the large eigenvalues {(~2 . . . . .  (~2} and the small eigenval- 

(72 2 ues { q+l  . . . . .  O" n }. The columns of U2s and V2s, similarly, form orthonormal 
bases for the left invariant subspace of Ca OG, with the large and the small 
eigenvalues, respectively. 

Step 5. Find the SVD of UTs VlS" Q E R v - UTs VlS. 

Step 6. Compute the transforming matrices: S1 - U2s Q E -1/2, 
8 2 -  V1sR]~ -1/2 

Step 7. Form the reduced-order matrices: 

A R -  STAS2, B R -  STB, and C R -  CS2. (14.4.13) 

Flop-count: Since the reduction to the Schur form using the Q R iteration is an 
iterative process, an exact count cannot be given. The method just outlined requires 
approximately 100n 3 flops. 

Properties of the Reduced-Order Model by the Schur Method 

The Schur method for model reduction does not give balanced realization. But 
the essential properties of the original model are preserved in the reduced- 
order model, as shown in the following theorem. 

Theorem 14.4.2. The transfer function matrix (~R(S) -- CR(SI -- AR) -1/}R 
obtained by the Schur method (Algorithm 14.4.2) is exactly the same as that of 
the one obtained via balanced truncation (Algorithm 14.4.1). Furthermore, the 
controllability and observability Grammians of the reduced-order model are, 
respectively, given by: 

d ~ -  STCGS1, (9~ -" $20GS2. 

Proof. We prove the first part and leave the second part as an exercise 
(Exercise 14.9). 
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Let the transforming matrix T of the internal balancing algorithm and its inverse 
be partitioned as: 

T = (T1, T2), (14.4.14) 

and 

T - l - -  (T, / )  , (14.4.15) 

where T1 is n x q and T/is  of order q x n. 
Then the transfer function GR(S) of the reduced-order model obtained by 

Algorithm 14.2.1 is given by 

GR(S) = CR(SI -- AR)-IBR = C T I ( s I  - T IAT1) - IT I  B. (14.4.16) 

Again, the transfer function GR (s) of the reduced-order model obtained by the 
Schur algorithm (Algorithm 14.4.2) is given by: 

GR(S) -- CR(s l  -- AR) -1/~R -- CS2(s I  - sTAs2 )  -1STB.  (14.4.17) 

The proof now amounts to establishing a relationship between S1, $2 and T1 
and T/. 

Let's define 

VR -- (Vls Uls), and VL -- v T  / . (14.4.18) 

Then, since the first q and the last (n - q ) columns of T -1 , VR, and VL 1 span, 
respectively, the right eigenspaces associated with o -2 . . . . .  cr 2 and O "2q+l . . . . .  On'2 
it follows that there exist nonsingular matrices X1, and X2, such that 

V R _ T ( X o 1  0 ( 0 1  . X2)  -- VL 1 E02) (14.4.19) 

From (14.4.18) and (14.4.19) we have 

Vls = T1X~. (14.4.20) 

Thus, 

82 -- V1sR]~ -1/2 -- T 1 X 1 R ~  - l /2  (using (14.4.20)). 

Similarly, 

S T _ E - 1 / 2 Q T u T  S _ E1/2RT(RE-1QT)UTs ,  

El/2 T T 1 -- R (U2s Vls) -  UTs 
][]1/2 T T 1 = R (U2sT1X1)- UTs (using (14.4.20)) -- GI/2RTX-~ITI. 
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Thus, 

GR(S) -- CS2(s I  - STAS2) - 1 S T B  

= C T 1 X 1 R E  -1/2 ( s I  - E 1 / 2 R T X l l T I A T 1 X 1 R E - 1 / 2 )  -1 

X ( ~ I / 2 R T X l l T I B )  

= C T I ( s I  - T I A T 1 ) - I T I  B -- GR(S). II 

Note: Since GR(s) of Theorem 14.4.1 and 0R(S) of Theorem 14.4.2 are the 
same, from Theorem 14.4.1, we conclude that AR is stable and IlG(s) - 
GR(S)IIc ~ < 2 zin=q+l o'i, where Oq+l through an are the (q + 1)th through nth 
entries of the diagonal matrix E of the balancing algorithm, that is, as  are the 
Hankel singular values. 

Relation to the square-root method: There could be large round-off errors in 
explicit computation of the matrix product Cc Oc. The formation of the explicit 
product, however, can be avoided by computing the Cholesky factors Lc and Lo 
of the matrices Cc and Oc, using Algorithm 8.6.1 described in Chapter 8. This 
then leads to a square-root method for model reduction. We leave the derivation 
of the modified algorithm to the readers (Exercise 14.10). For details, see Safonov 
and Chiang (1989). 

Example 14.4.2. (12 3) (1) 
A -- 0 - 2  1 , b -  1 , C -- (1, 1, 1), q -- 2. 

0 0 - 3  1 

The system (A, B, C ) is stable, controllable, and observable. 

and 

Step 1. Solving the Lyapunov equations (14.2.5) and (14.2.6) we obtain 

3.9250 0.9750 0.4917 ) 
CG -- 0.9750 0.3667 0.2333 , 

0.4917 0.2333 0.1667 

0.5000 0.6667 0.7917 ) 
OG -- 0.6667 0.9167 1.1000 . 

0.7917 1.1000 1.3250 

Step 2. The Schur decomposition Y and the transforming matrix X obtained using 
the MATLAB function schur: 

[X, Y] = schur(CGOG) 
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are 

X _._ 

y 

-0.9426 -0.3249 0.0768 ) 
-0.2885 0.6768 -0.6773 , 
-0.1680 0.6606 0.7317 

5.1028 -5.2629 -1 .0848)  
0 0.0084 0.0027 . 
0 0 0 

Step 3. Since the eigenvalues of Y are in decreasing order of magnitude, we take 

VS r e X .  

Next, we compute Us such that the eigenvalues of U~ CG OcUs appear in increasing 
order of magnitude: 

0.2831 -0.8579 0.4289) 
Us - -0.8142 0.0214 0.5802 , 

0.5069 0.5134 0.6924 

0 -0.0026 0.8663 ) 
U~CGOcUs - 0 0.0084 -5.3035 o 

0 0 5.1030 

Step 4. Partitioning Us and Vs - X, we obtain 

(0 8 1) ( 08 79 
Uls -- -0.8142 , U2s -- 0.0214 

0.5069 0.5134 

0.4289 ) 
0.5802 . 
0.6924 

-0.9426 
VlS = -0.2885 

-0.1680 

-0.3249 ) 
0.6768 , 
0.6606 

0 .0768)  
Vzs = -0.6773 

0.7317 

Step 5. The SVD of the product U~s VlS is given by: 

[Q, E, R] - svd(UTsVlS) 

-0.4451 0.8955) 
Q - 0.8955 0.4451 ' 

E - diag(1, 0.9441). 

-0.9348 
R - 0.3550 

0.3550) 
0.9349 and 

Step 6. The transforming matrices are: 

0.7659 -0.5942 ) 
S1 -- 0.5100 0.2855 

0.3915 0.7903 
and 

0.7659 
$2 - 0.5099 

0.3916 

-0 .6570)  
0.5458 . 
0.5742 
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Step 7. The matrices of the reduced order model are: 

fi, R__STAS2__ ( 0.3139 1.7204 ) /~R__S1TB__(1.6674) 
--1.9567 --3.5717 ' 0.4817 ' and 

CR -- C $2 - (1.6674, 0.4631). 

Verification of the properties of the reduced-order model: We next verify that 
the reduced-order model has desirable properties such as stability and the error 
bound (14.4.4) is satisfied. 

1. The eigenvalues of -4R are: {--0.9900, --2.2678}. Thus, AR is stable. 
(Note that these eigenvalues are the same as those of AR of order 2 
obtained by Algorithm 14.4.1). 

2. The controllability Grammian C~ of the reduced order model is given by" 

^ ( 3.5732 - 1 . 4 6 0 1 )  
C ~ -  S~CGS1- -1.4601 0.8324 " 

The eigenvalues of (R are 4.2053, and 0.2003. Thus, (R is positive definite. 

It is easily verified by solving the Lyapunov equation ,4R ~,R + ~ ,~ ,~  = 

--/1R/~R T, that the ~R given above is indeed the controllability Grammian 
of the reduced order model. 

Similar results hold for the observability Grammian OaR. 

Verification of the error bound: ]]G(s) - GR(S)]]~ -- 0.0012. 
Since 2~3 = 0.0012, the error bound (14.4.4) is verified. 

Comparison of the reduced order models obtained by balanced truncation and 
the schur method with the original Model: Figure 14.1 compares the errors of the 
reduced-order models with the theoretical error bound given by (14.4.4). Figure 
14.2 compares the step response of the original model with the step responses of 
the reduced-order models obtained by balanced truncation and the Schur method. 

MATCONTROL note: The MATCONTROL function modreds implements the 
Schur Algorithm (Algorithm 14.4.2) in the following format: 

[AR, BR, CR, S, T] = modreds(A, B, C, d ). 

The matrices AR, BR, CR are the matrices of the reduced-order model of dimension 
d. The matrices S and T are the transforming matrices. 

14.4.3 A Balancing-Free Square-Root Method for Model Reduction 

By computing the matrices L and T a little differently than in the square-root 
method (Algorithm 14.2.2), the main advantages of the Schur method and the 
square-root method can be combined. The idea is due to Varga (1991). 
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Frequency (rad/sec) 

F I G U R E  14.1: Theoret ical  error bound  and errors of the reduced-order  models .  

Cons ider  the e c o n o m y  Q R factorizations of  the matr ices  Lc V1 and L S U1 " 

LcV~ - x w ,  LVoU~ - r z ,  

where  W and Z are nons ingular  upper  t r iangular  and X and Y are or thonormal  

matrices.  

Then  L and T defined by 

L -- ( y T x ) - I  yT,  Z -- X 

are such that the sys tem ( ,4, /~,  C) with ,4 - L A Z ,  [} - L B ,  and E" - C Z  form 

a m i n i m a l  r e a l i z a t i on  and therefore can be used to obtain a reduced-order  model .  

E x a m p l e  14 .4 .3 .  

Then, 
Let 's consider Example 14.2.2 once more. 

x (o 1) (o 1) , Y -- , W - - 0 .7071 ,  Z - - 0 .7071 .  
0 
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Step response 
45 . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Original model . . . .  " . . . . . . .  
4 Balanced trunc - I ' t " I ' -  

- - -  Schur /..j.....1 
3 5 / /  

3 / / 
/ 

/ 
/ 

/ 
15 / 

1 

/ 
o5 / 

/ 

O ;  I I I I 
1 2 4 5 

25 

.~. 
2 

< 

I 

3 
Time (sec) 

FIGURE 14.2" Step responses of the original and the reduced-order models. 

The matrices L and Z in this case are 

(o L - - ( - 1  0 0), Z2-- . 

The matrices .4,/3 and t~ are:/~ - -1 , /3  - -1 ,  C - -1 .  

14.5 HANKEL-NORM APPROXIMATIONS 

Let (A, B, C) be a stable realization of G ( s )  - C ( s I  - A) -1B. Then the Hankel- 
norm of G ( s )  is defined as 

1/2 
II G (s)ll n - )~max ( C G  O G ) ,  ( 1 4 . 5 . 1 )  

where CG and O G  a re  the controllability and observability Grammians, respec- 
tively, and Zmax(M) stands for the largest eigenvalue of M. 

The optimal Hankel-norm approximation problem is the problem of finding 
an approximation (~ (s) of McMillan degree k < n such that the norm of the error 

IIG(s) - G(s)lln is minimized. 
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The following theorem gives an achievable lower bound of the error of an approx- 
imation in Hankel-norm. Proof can be found in Glover (1984) or in Zhou et al. 
(1996, pp. 189-190). 

T h e o r e m  14.5.1. Let G(s) be a stable rational transfer function with Hankel 
singular values o-1 > o-2 > " "  > o'k > o'k+l' '"  > o'n > O. Then for  all stable 

^ 

G(s)  o f  McMillan degree < k 

II G ( s ) -  G(s) I I / ~  Ok+l, 

We now give a result on characterization of all solutions to optimal Hankel- 
norm approximations and then state an algorithm to find an optimal Hankel-norm 
approximation. 

The presentation here is based on Glover (1984). For proofs and other details, 
the readers are referred to the paper of Glover or the book by Zhou et al. (1996). 

14.5.1 A Characterization of All Solutions to the optional Hankel-Norm 

Approximation 

The following theorem gives necessary and sufficient conditions for (~(s) to be 
an optimal Hankel-norm approximation to G(s).  (For proof, see Glover (1984, 
lemma 8.1).) 

T h e o r e m  14.5.2. Let G(s)  -- C ( s I  - A ) - I  B be a stable, rational, m x m 
transfer function with singular values 

o-1 > o2 > o3 > - . .  > o-k > o-k+l --o-k+2 . . . . .  o-k+p > o'k+p+l >~' '"  

> o-n > 0. 

Let G(s) be of  McMillan degree k < n - p. Then G(s) is an optimal Hankel- 
norm approximation to G(s)  if  and only if  there exists (A, B, C), Pe, Qe such 
that 

(a) G(s) is the stable part o f  

C ( s l  - A) -1 [~. (14.5.2) 

(b) The matrices Pe and Qe satisfy 

(i) AePe + Pe AT + Be RT --O, (14.5.3) 

T (ii) ATe Qe -k- OeAe -k- r e Ce - 0 (14.5.4) 

( i i i)  Pe Oe - 0-s (14.5.5) 
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where Ae, Be and Ce are defined by 

A e - - ( A  0 ) ,  B e - - ( B ) ,  Ce- - (C,  -C;). (14.5.6) 

and 
If Pe and Qe are partitioned conformally with Ae in (14.5.6) as: 

P e -  ~pT P22J'  Q e -  QT 2 Q22J'  

(c) 

then 
In(P22) -- In(Q22) - (k, l, 0). (14.5.7) 

Further, dim(.,t) - k + l can be chosen < n + 2k - 1. 

We now give a construction of,4,/~, C that satisfy the Eqs. (14.5.3)-(14.5.7) for 
a balanced realization (A, B, C) of G(s), which will be the basis of an algorithm 
for Hankel-norm approximation. The construction, however, remains valid for a 
more general class of realization, and the details can be found in Glover (1984). 

Theorem 14.5.3. Let (A, B, C) be a balanced realization of G(s) with the 
matrix of the singular values 

E -- diag(crl, O" 2 . . . . .  On), 

O'1 > 0"2 > ' ' "  >_ O'k > O'k+l --O'k+2 . . . . .  tTk+p > O'k+p+ 1 > . . .  > o" n > 0. 

Partition E -- (]~1, Ok+llp), rYk+l r 0, and then partition A, B, C 
conformally: 

( A l l  A12~ ( O l )  C - ( C l ,  C2). (14.5.8)  
A -  ~,A21 A22~]' B -  B2 ' 

Define now 

- r - l ( c r i 2 1 A ~ l  + E1AllE1--crk+ICTUBT), 

-- I- '-I (~]1 B1 -]- O'k+l C~U), 

~' -- C1 ]~1 + Ok+l UB T, 

where 
f' -- ~21 -- ~7~211 

and U is such that 

where 't '  denotes generalized inverse. 

(14.5.9) 

(14.5.~0) 

(14.5.11) 

(14.5.12) 

(14.5.13) 
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Then Ae, Be, and Ce defined by (14.5.6) satisfy (14.5.3)-(14.5.5), with 

(o1 0 , )  
Pe -- Ok+l I 0 , 

0 E lF  -1 
(14.5.14) 

0 :)  
Qe -- Ok+l/ �9 

0 E lF  
(14.5.15) 

Based on Theorems 14.5.2 and 14.5.3, the following algorithm can be written 
down for finding a Hankel-norm approximation of a balanced realization (A, B, C) 
of G(s). 

Algorithm 14.5.1. An Algorithm for optimal Hankel-Norm Approximation of 
a Continuous-Time System 

Inputs. 

1. The matrices A, B, and C of a stable realization G(s). 
2. k--McMillan degreeof  Hankel-norm approximation 
Outputs. The matrices All, B1, and C1 of a Hankel-norm approximation 

G(s) of  McMillan degree k. 
Assumptions. 

1. A is stable. 
2. The Hankel singular values oi are such that Ol >_ o2 >_ . . .  >_ ok > 

O k+ 1 > Ok+  2 > . . -  >__ O n > 0 .  

Step 1. Find a balanced realization (A, [~, C) of G(s) using Algorithm 14.2.1 
or Algorithm 14.2.2, whichever is appropriate. 

Step 2. Partition E - diag(E 1, ok+ 1) and then order the balanced realization 
(ft, [~, C) conformally so that 

A -  \A21 A z z J '  B = B2 ' 

(Note that A 11 is (n - 1) • (n - 1)). 
Step 3. Compute the matrix U satisfying (14.5.13) and form the matrices 

F, A, B, and C using Eqs. (14.5.9)-(14.5.12). 
Step 4. Block diagonalize A to obtain Al1" 

(a) Transform A to an upper real Schur form and then order the real Schur 
form so that the eigenvalues with negative real parts appear first; that 
is, find an orthogonal matrix V1 such that V T A V1 is in upper real Schur 
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(b) 

form and then find another orthogonal matrix V2 such that 

vTv?~v1v2_(Ao 1 /~12~ -'~22,,] ' (14.5.16) 

where the eigenvalues of All have negative real parts and those of/~22 
have positive real parts. (Note that A 11 is k • k). 
Solve the Sylvester equation for X ~ ~:•  (using Algo- 
rithm 8.5.1): 

(c) Let 

A l l X -  X-'~22 -Jr- A12 - - 0  

Step 5. Form 

(14.5.17) 

(14.5.18) 

(14.5.19) 

/~1 -- $1/3, (14.5.20) 

6-'1 - 6-'T1. (14.5.21) 

Example 14.5.1. Consider Examplel4.2.1 once more. Then 
Step 1. The balanced matrices A, B, and C are the same as of Example 14.2.1. 
Step 2. 

E = diag(2.2589, 0.0917, 0.0006), E1 = diag(2.2589, 0.0917). 

k = 2 and 03 = 0.0006. 

/ - 0 . 7 6 5 9  0.5801 '~ { -  1.8602~ (0.0581) 
A l l -  ~--0.5801 - -2 .4919] '  B1 = \ - 0 . 6 7 5 9 / / '  B2 = 

C1 = (-1.8602,  0.6759), C2 = (-0.0581).  

Step 3. 
U - l ,  F = diag(5.1026, 0.0084), 

 _(0765914.296124919 ~176 ( 8235 0 /} - - /  (7 - ( - 4 . 2 0 2 0 , - 0 . 0 6 2 0 ) .  
- ' .3735} ' 

Step 4. 

(a) A is already in upper Schur form. Thus, V1 = I. 
The eigenvalues of/~ are -0.9900,  -2.2678.  Since both have negative real 

parts, no reordering is needed. 

Thus, V2 - I, All -- A, /~12 - 0 ,  A22 --0.  
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(b) X = O .  
(c) 

Step 5. 

, ('0 0) , , ,  

Bl-~ B, C1 - C .  

Obtaining an error bound: Next, we show how to construct a matrix/)1 such 
that with 

G(s) - l)1 + C;I(sl - Z~ll)-lB1, 

an error bound for the approximation IIG(s) - d ( s ) l l ~  can be obtained. 
Define 

/~2 -- 82/~, C2 - CT2, Ol - --O'k+l U. (14.5.22) 

Step 6. Update now/)1 as follows: 
6.1. Find a balanced realization of the system (-z~22,/~2, C2,/~)1), say 

(A3, B3, C3, D3). Compute the Hankel singular values of this balanced system 
and call them #1, #2 . . . . .  l~n-k - 1. 

6.2. Let q be an integer greater than or equal to r + m, where r and m are the 
number of outputs and inputs, respectively. Define Z, Y 6 ]t~ q x (n-k-1) by 

Denote the ith columns of Z and Y by zi and yi, respectively. 
6.3. Fori  = 1,2 . . . . .  n - k - l d o  

(i) Find Householder matrices H1 and H2 such that 

and 

(ii) Define 

H l Y i - - ( o t  0 . . .  0) T 

U 2 z i - - - ( f l  0 . . - 0 )  T. 

t 
- ~ / 3  o o o 

i 0 Ir-1 0 Ui -- H1 Im-1 0 0 H2. 

0 0 Iq-r-m+l 
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(iii) Ifi < n - k + l ,  t h e n f o r j - i + l t o ( n - k + l )  do 

2 -1 /2  y -- - ( y j ] z j  + Uzj lz i ) ( ] z  2 - ]zj)  

zj  -- ( z j # j  + UTyj lz i ) ( l  z2 -- /z~)  -1 /2 ,  

yj -- y 

(iv) Compute/~1 -- /~1 -~ ( - -1) i /z i  (Ir 

Theorem 14.5.4. 
"'"-Jr- ~ n - k - 1 .  

^ 

(An Error Bound). IIG(s)- G(s)ll~ ~ crk§ +/zl +/22--1- 

Example 14.5.2. Consider k - 2 and 

A __. 

-1  2 1 3 1 
- 2  2 
0 -3  , B--  1 ' 
0 0 

Step 1. The Hankel singular values: 

{4.7619 1.3650 0.3614 0.0575} 

Step 2. 

/ -1 .1663  1.7891 
/ -0 .0919  -2.5711 

'4 -- | 0.3114 2.6349 
\ -0 .3641  0.5281 

[ 3.3091 -0.3963~ 
- [-0.2903 2.6334 | 
B -  /_0.6094 _1.5409/ 

\ 0.4947 -0 .1967]  

-0.2132 
0.7863 

-3.7984 
-0.2582 

0.3266 
-1.0326 / 
1 . 5 9 6 0 / '  

-2 .4642]  

- ( -2 .4630 1.3077 0.9011 0.1600 
C - \ 2 . 2 4 5 2  -2.3041 1 . 3 9 0 5 - 0 . 5 0 7 8 ]  

The permutation matrix that does the reordering is: 

p m 

1 0 0 0 

ilOi 0 0 
0 1 

2 
- 2  13 ) 
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The reordered balanced realization gives 

(4 619 o a) 
E1 - 0 1.3650 

0 0 O.0575 
E2 -- 0.3614 -- o3. 

- 1.1663 1 .7891 0.3266 
Al l - -  -0.0919 -2.5711 -1 .0326/ ,  

-0.3641 0.5281 -2.4642] 
A12 - ( -0.2132~ 

0.7863 | ,  
-0.25821 

A21-- (0.3114 2.6349 1.5960), A22 = - 3 . 7 9 8 4 .  

{ 3.3091 -0.3963~ 
B 1 -  [-0.2903 2.6334 | ,  

\ 0.4947 -0.1967] 
B2 - -  (-0.6094 - 1.5409), 

-2.4630 1 .3077 0.1600 
C1 - 2.2452 -2.3041 -0.5078J '  

__ (0.9011'~ 
C2 \1.3905]" 

S t e p  3. 

002ooo 
U - .3086 

0.5057'~ 
0.7804//" 

2O2 
010000 

0.0000 
1.7326 
0.0000 

0.0000 
0.0000 1 ,  

-0.1273} 

//-1.1872 
= / 0.0063 

\ 0.3687 

0.4948 
-2.3615 
1.5211 

-0.0019~ 
0.0072 ] 
2.5932 ,/ 

-0.7022 
/} = 0.3225 

0.1306 

0.0756 '~ 
-1 .8376] ,  
0.9841 ,] 

{ 11.5617 
s  ~,-10.9487 

-2.2454 
2.4347 

0.0090 '] 
-0.0295]" 

S t e p  4. 

{-0.3754 -0.9222 
V1 = | 0.8936 -0.3335 

\-0.2462 0.1960 

-0.0930~ 
-0 .3006 | ,  
-0.9492]  2=(i 0!) 

1 

0 

-2.3661 0.4343 
All - 0 - 1 . 1 8 4 7  / ' 

Solution of (14.5.17) gives 

( 1.3682 '~ 
A12-  tv_0.7792], /~22 - -  2 . 5 9 5 3 .  

0.2577) 
X = -0.2061 
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and then 

are: 

//-0.3754 -0.9222~ 
T 1 -  [ 0.8936 -0.3335 / , 

\ -0 .2462 0.1960 / 

(-0.3515 0.9710 
$1 - 0.9413 -0.3954 

$2 - (-0.0930 -0.3006 

Step 5. Using (14.5.20)-(14.5.22), we obtain 

_ (0.5597 -1.8124'~ 
J~l ~ 0.5335 0.6558 ,] '  

/ }2-  (-0.1556 -0.3889), 

( 0.0723 -0.1828~ 
/~)1 -- ----0.1115 --0.2820/" 

S t e p  6. 

0.0003 
r2 - -o.oo151, 

-1 .0530/  

-0.0015~ 
0.0003/' 

-0.9492). 

(-6.3494 -9.9113~ 
C'I = \ 6.2934 9.2788 ,] '  

C2 -- 10 -1 {-0.0237~ 
\ 0.2383 J '  

6.1. The matrices ofthe balanced realization ofthe system (-A22,/~2, C2,/~)1 ) 

A 3 -  (-2.5953) , B 3 -  10 -1 (-0.3720 

C3 _ 10_1 [ -0 .0991)  (-~.0723 
\ 0.9966 ' D3 -- .1115 

-0.9298), 

-0.1828) 
-0.2820] " 

The system (A3, B3, C3, D3) has only one Hankel Singular value #1 -- 0.0019. 
6.2. Taking q = r + m -- 4, we obtain 

{-0.3720~ 
[ - 0 . 9 2 9 8 |  1 

z-lO-~ / ooooo/' Y- lo -  
\ o.oooo / I 

-0.0991~ 
0.9966 | 
0.0000 | 

o.oooo / 

6.3 .  i - -  1, ot = fl - -  0 . 1 0 0 1  

H I - -  

H 2  m 

I 
-0.0989 0.9951 0.0000 0.0000~ 
0.9951 0.0989 0.0000 0.0000| 
0.0000 0.0000 1. 0.0000| ' 

0.0000 0.0000 0.0000 1.0000,/ 

0.3714 0.9285 0.0000 0.0000 ~ 
0.9285 -0.3714 0.0000 0.0000 | 

~ oooo o oooo lOOOO o oooo j 
0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  - 1. 0 0 0 0 /  
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{ 0.0368 0.0919 
| - 0 . 3 6 9 6  -0 .9239 

U1 -- [ 0.9285 -0 .3714 
\ o.oooo o.oooo 

{-0 .0723 -0.1829']  
/)1 - ~-0 .1108 -0 .2803}"  

-0.9951 0.0000 
-0 .0989 0.0000 | 
0 . 0 0 0 0  0 . 0 0 0 0  ] ' 

o.oooo -1 .oooo /  

Ver i f i ca t ion:  Let (~(s) - C'1 ( s I  - All) -1/~1 +/~1.  Then, 

0 . 3 6 2 7  - -  IIG(s) - G(s ) l l~  ~ ~3 + ~1 = 0 . 3 6 3 3 .  

Also, IIG(s) - G(s)IIH - 0.3614 - or3. 
Figure 14.3 compares the step response of the original model with that of the 

Hankel-norm approximation model. 
M A T C O N T R O L  note:  Algorithm 14.5.1 has been implemented in Matcontrol 

function hnaprx. 

-2 

~5-4 [- 

-6 

~ -8  

8 
< 

6 

eq 4 

~5 2 

-2 

From: U(1) 
. . . .  

[ - -  Original Model] 

. . . . . . . . . . . . . . . . . . .  

Step response From: U(2) 

I I I I i I I 

. . . . . . .  

1 2 3 4 5 6 0 1 2 3 4 5 6 

Time (see) 

F I G U R E  14.3:  

models. 
Step responses of the original and Hankel-norm approximation 
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14.6 MODEL REDUCTION OF AN UNSTABLE SYSTEM 

We have so far considered model reduction of a stable system. 
However, model reduction of an unstable system can also be performed. Varga 

(2001) has proposed two approaches. The first approach consists of finding only 
the reduced-order model of the stable part and then including the unstable part in 
the resulting reduced model. The second approach is based on computing a stable 
rational coprime factorization of the transfer function matrix and then reducing the 
stable system. We describe just the first approach here. For details of the second 
approach, see Varga (2001). 

Step 1. Decompose the transfer function matrix G()0 additively as: 

G()Q = Gs()O + Gu()O 

such that Gs()0 is the stable part and Gu()~) is the unstable part. 
Step 2. Find a reduced-order model GRS()0 of the stable part Gs()0. 
Step 3. The reduced-order model GR (s of G()~) is then given by 

GR()0 = GRS()0 + G u ( ) O .  

C o m p u t a t i o n a l  remarks.  The decomposition in Step 1 can be performed 
by block-diagonalizing the matrix A using the procedure of Step 4 of Algo- 
rithm 14.5.1. 

14.7 FREQUENCY-WEIGHTED MODEL REDUCTION 

In this section, we consider the frequency-weighted model reduction, proposed by 
Enns (1984). Specifically, the following problem is considered. 

Given a stable transfer function matrix G ( s )  = C ( s I  - A ) - I B  and the two 
input and output weighting transfer function matrices Wi : Ci (s I - Ai )-  1 Bi, and 
Wo = Co(s I - Ao) -1Bo, find a reduced-order model (AR, BR, CR) with 

Gg(s) -- C g ( s l  - AR)-IBR 

such that [[ W o ( G  - GR)Wi [[~ is minimized and G ( s )  and G R ( s )  have the same 
number of unstable poles. 

The effect of weighting on the model reduction is the possible reduction of 
the errors at the high frequencies. 

The weighting model reduction problem can be solved in a similar way as the 
model reduction procedure by balanced truncation described in Section 14.4. 
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First, we note that the state space realization for the weighted transfer matrix is 
given by 

Wo G Wi = C ( s I - ,~)-1/~, 

where 

( A  0 0 BOCit ( ~ )  
A -  BoC Ao , [ ~ -  , 

0 A i ]  Bi 
6" -- (0, Co, 0). (14.7.1) 

Let CG and OG be the solutions to the Lyapunov equations" 

~idG + ~G(A) T + h k T  _ 0, 

(~G, ~ ~_ (~)T ()G -}- (~)T~ _ 0. 

Then the input weighted Grammian C6 and the output weighted Grammian O6 
are defined by 

~ :  ~,~ o ~  (~) and 

It can be shown (Exercise 14.21) that CG and OG satisfy: 

Ai ] ~CG12 CG22 "q- 

-if- (B0i)(0 B T ) - -  (~  ~) 

C'Gzz/CG12~( CA;T AO) 
(14.7.2) 

(o~:~ oo~~ A~ + (~~ 
+ (O),o ~o~ (~ Oo) 

cTBTo" ~ OG 
A T J(0TI20Gz20G12) 

(14.7.3) 

Consider now two special cases. 
Case 1. Wi - I. Then CG can be obtained from 

CG AT + ACG -+- BB T = O. 

Case 2. Wo - I. Then OG can be obtained from 

~)GA + AT OG + c T c  - O .  
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Now, let T be a nonsingular matrix such that 

TCG TT = ( T - l )  T0G T-1 = diag(~]l, ~22); 

that is, the matrix T makes the realization balanced. 
Let E1 = diag(allsl . . . . .  arlsr) and ~]2 = diag(ar+llsr+l" "anls,,). 
Partition the system ( T A T  -1 , TB,  CT -1) accordingly; that is 

TAT-1 (fiR "412) TB__ ([~R) 
A21 A22J '  /~2 ' 

(14.7.4) 

and 

C T-1 = (CR, C2). 

Then (-4R, /~R, CR) is a weighted reduced-order model. 
If the full-order original model is minimal, then E1 > 0. 
Unfortunately, the stability of the reduced-order model here cannot, in general, 

be guaranteed. 
However, there are some special cases of weightings for which the reduced- 

order models are stable (Exercise 14.22). Also, no a priori error found for the 
approximate is known. 

14.8 SUMMARY AND COMPARISONS OF MODEL REDUCTION 
PROCEDURES 

We have described the following techniques for model reduction of a stable system: 

(i) The balanced truncation procedure (Algorithm 14.4.1) 
(ii) The Schur method (Algorithm 14.4.2) 

(iii) The Hankel-norm approximation algorithm (Algorithm 14.5.1) 
(iv) Frequency-weighted model reduction (Section 14.7). 

For the first two methods (i)-(ii), the error satisfies 

IlG(s) - GR(S)II~ _% 2(ad+l + O'd+2 -+""""-+- O'N), 

In the method (i), GR (s) is obtained by truncating the balanced realization of G (s) 
to the first (Sl + s2 . . .  + Sd) states, where si is the multiplicity of ai. For the 
method (ii), GR (s) is obtained by Algorithm 14.4.2. For a similar error bound for 
the method (iii), see Theorem 14.5.4. Furthermore, for this method, the reduced- 
order model GR(S) has the property: inf l[ G - GR(S) IIn= ak+l, where GR(S) 
is of McMillan degree k. 



636 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION 

The weighted model reduction procedure in Section 14.7 does not enjoy any 
of the above properties. Even the stability in general cannot be guaranteed. Sta- 
bility, however, in some special cases can be proved. See Enns (1984) for details. 
Discussion of this section has been taken from Zhou et al. (1996). 

If the system is not stable, model reduction is still possible using the three simple 
steps of Section 14.6. 

The balanced truncation procedure for model reduction (Algorithm 14.4.1) 
and Algorithm 14.5.1 need computation of a balanced realization. Two algo- 
rithms (Algorithms 14.2.1 and 14.2.2) have been described for this purpose. 
Both these algorithms suffer from the danger of possible ill-conditioning of the 
transforming matrices. However, the methods usually work well in practice for 
wen-equilibrated systems. 

The Schur method has been designed to avoid such possible ill-conditioning. 
Unfortunately, because of the requirement of explicitly computing the product of 

the controllability and observability Grammians, the Schur method is usually less 
accurate for moderately ill-conditioned systems than the square-root method (see 
Varga 2001). The main advantages of the balanced truncation procedure and the 
Schur method have been combined in the balanced-free square-root method by 
Varga (1991). Numerical experiments performed by Varga (2001) show that the 
accuracy of this method is usually better than either of the Schur methods or the 
balanced truncation method using the square-root algorithm for balancing. 

Finally, we remark that it is very important that the system be sealed properly 
for the application of the balanced-truncation or the Hankel-norm approx- 
imation method. One way to do this is to attempt to reduce the 1-norm of the 
scaled system matrix 

Z - 1 A Z  
c z  

Z -1 B)  where Z is a positive definite matrix. 
0 J ' 

Note that the Hankel singular values are not affected by such a coordinate 
transformation; in particular, by coordinate scaling of diagonal matrices. 

For a comparative study of different model reduction algorithms and detailed 
description of available software, see Varga (2001). See also Varga (1994). 

14.9 SOME SELECTED SOFTWARE 

14.9.1 MATLAB Control System Toolbox 

State-space models 
balreal Grammian-based Balancing of state-space realization. 
modred Model state reduction. 
ssbal Balancing of state-space model using diagonal similarity. 
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14.9.2 MATCONTROL 

BALSVD Internal balancing using the SVD 
BALSQT Internal balancing using the square-root algorithm 
MODREDS Model reduction using the Schur method 
HNAPRX Hankel-norm approximation. 

14.9.3 CSP-ANM 

Model reduction 

�9 The Schur method for model reduction is implemented as D o m i n a n t S u b -  
system [system, Method-+ SchurDecompos it ion]. 

�9 The square-root method for model reduction is implemented as 
DominantSubsystem [system, Method-+ SquareRoot]. 

14.9.4 SLICOT 

Model reduction 

AB09AD Balance and truncate model reduction 
AB09BD Singular perturbation approximation based model reduction 
AB09CD Hankel-norm approximation based model reduction 
AB09DD Singular perturbation approximation formulas 
AB09ED Hankel-norm approximation based model reduction of unsta- 

ble systems 
AB09FD Balance and truncate model reduction of coprime factors 
AB09GD Singular perturbation approximation of coprime factors 
AB09ID Frequency-weighted model reduction based on balanced 

truncations 
AB09KD Frequency-weighted Hankel-norm approximation 
AB09MD Balance and truncate model reduction for the stable part 
AB09ND Singular perturbation approximation based model reduction 

for the stable part. 

State-space transformations 

TB01ID Balancing a system matrix for a given triplet. 

14.9.5 MATRIXx 

Purpose: Convert a discrete dynamic system into an internally balanced dynamic 
form. 
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Syntax: [SB, SIGMASQ, T] = DBALANCE (SD, NS) 

Purpose: Compute a reduced order form of a discrete-time system. 
Syntax: [SR, NSR] = DMREDUCE (SD, NS, KEEP) 

Purpose: Compute a reduced-order form of a continuous system. 
Syntax: [SR, NSR] = MREDUCE (S, NS, KEEP) 

Purpose: Perform model structure determination. 
Syntax: [THETA, COR, COV] = MSD (X, Y) 
The other software packages dealing with model reduction include: 

�9 MATRIXx Model Reduction Module (1998) by B.D.O. Anderson and 
B. James. 

�9 /z-Analysis and Synthesis Toolbox 1.0 by G. Balas, J. Doyle, K. Glover, 
A. Packard and R. Smith (1998). 

�9 Robust Control Toolbox 2.0 by R.Y. Chiang and M.G. Safonov. 

14.10 SUMMARY AND REVIEW 

The chapter covers the topics: 

�9 Internal balancing 
�9 Model reduction 
�9 Hankel-norm approximation. 

Internal Balancing 

Given an n • n stable minimal realization (A, B, C), there always exists a 
transformation T that simultaneously diagonalizes both the controllability and 
observability Grammians to the same diagonal matrix E = diag(cq . . . . .  Crn), 
where crl > or2 >__ . . .  > err > crr+l > crr+2 > "'" > an. The numbers 
cri, i = 1 . . . . .  n are the Hankel singular values. 

In this case, the transformed system (fi,,/~, 6"), is called internally balanced. 
Algorithms 14.2.1 and 14.2.2 compute balanced realization of a continuous- 
time system. The internal balancing of a discrete-time system is discussed in 
Section 14.3. 

Model Reduction 

The problem of model reduction is the problem of constructing a qth order model 
from a given nth order model (n > q) in such a way that the reduced qth order 
model is close to the original system in some sense. The precise mathematical 
definition of model reduction appears in Section 14.4. 
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Model reduction via internal balancing: Once a system is internally bal- 
anced, a desired reduced-order model can be obtained by eliminating the states 
corresponding to the less controllable and observable modes (Algorithm 14.4.1). 

Theorem 14.4.1 shows that a truncated model is also balanced and stable, and 
furthermore, if G(s) and GR (s) are the respective transfer functions of the original 
and the truncated model, then 

IIG(s) - GR(S)II~ ~ 2(crd+l . . . . .  O 'N) ,  

where the states corresponding to crd+l . . . . .  O" N are eliminated. 
The Schur method for model reduction: There are some numerical difficul- 

ties associated with the procedure of finding a reduced order model via internal 
balancing using Algorithms 14.2.1 and 14.2.2. The transforming matrix T in Algo- 
rithm 14.2.1 and the matrices L and Z in Algorithm 14.2.2 can be, in some cases, 
highly ill-conditioned. An alternative method (Algorithm 14.4.2) for model reduc- 
tion based on the real Schur decomposition of the product of the controllability 
and observability Grammians, is described in Section 14.4. The transforming 
matrix T in this ease is orthogonal ,  and, therefore, wel l -condit ioned.  The Schur 
method does not give an internally balanced system; however, the essential prop- 
erties of the original system are preserved. In fact, Theorem 14.4.2 shows that the 
transfer function matrix obtained by the Schur method is exactly the same as that 
of the one obtained via Algorithm 14.4.1. 

A possible numerically difficulty with Algorithm 14.4.2 is the explicit compu- 
tation of the product of the controllability and observability Grammians. In this 
case, instead of explicitly computing the controllability and observability Gram- 
mians, their Cholesky factors can be computed using the Hammarling algorithm 
(Algorithm 8.6.1) in Chapter 8. 

Combining the advantages of the Schur method and the square-root algorithm, 
a balancing-free square root method  has been developed. This is described in 
Section 14.4.3. 

Hankel-norm approximation: Given a stable G(s), the problem of finding a (~(s) 
of McMillan degree k such that II G(s) - ~J(s)IIH is minimized is called an optimal 
Hankel-norm approximation. 

A characterization of all solutions to Hankel-norm approximation is given in 
Section 14.5.1 (Theorem 14.5.2). An algorithm (Algorithm 14.5.1) for computing 
an optimal Hankel-norm approximation is then presented. 

Model Reduction of an Unstable System 

The model reduction of an unstable system can be achieved by decomposing the 
model into its stable and unstable part, followed by finding a model reduction of 
the stable part and finally adding the reduced-order model of the stable part with 
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the unstable part. This is descried in Section 14.6. For this and another approach, 
based on stable rational coprime factorization, see Varga (2001). 

Weighted Model Reduction 

Sometimes the errors at high frequencies in a reduced-order model can be reduced 
using weights on the model. This is discussed in Section 14.7. 

Comparison of the Model Reduction Procedures 

The model reduction procedures are summarized and a brief comparative discus- 
sion of different procedures is presented in Section 14.8. 

14.11 C H A P T E R  NOTES AND F U R T H E R  READING 

The internal balancing algorithms, Algorithms 14.2.1 and 14.2.2 are due to Laub 
(1980) and Tombs and Postlethwaite (1987), respectively. The idea of model 
reduction via balanced truncation was first introduced by Moore (1981). 

The stability property of the truncated subsystem (part (a) of Theorem 14.4.1) 
was obtained by Pernebo and Silverman (1982) and the error bound (part (b) of 
Theorem 14.4.1) is due to Glover (1984) and Enns (1984). 

The Schur algorithm for model reduction and Theorem 14.4.2 is due to Safonov 
and Chiang (1989). The balancing-free square-root method for model reduction is 
due to Varga ( 1991). 

The Hankel-norm approximation problem was introduced and solved by Glover 
in a celebrated paper (Glover 1984). Besides the topic of Hankel-norm approxi- 
mation of a transfer function, the paper contains many other beautiful results on 
systems theory and linear algebra. A good discussion of this topic can also be 
found in the book by Zhou et al. (1996). See also Glover (1989). 

For results on discrete-time balanced model reduction, see A1-Saggaf and 
Franklin (1987), and Hinrichsen and Pritchard (1990). 

The idea of frequency weighted model reduction is due to Enns (1984). Other 
subsequent results on this and related topics can be found in A1-Saggaf and Franklin 
(1988), Glover (1986, 1989), Glover et al. (1992), Hung and Glover (1986), Liu 
and Anderson (1990), Zhou (1993), etc. 

For a discussion on Balanced Stochastic Truncation (BST) method, see Zhou 
et al. (1996). 

The idea of singular perturbation approximation is due to Liu and Anderson 
(1989). 

For an optimal Hankel norm approximation procedure with stable weighting 
functions, see Hung and Glover (1986). 
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The other papers on Hankel norm approximation include Kung and Lin (1981) 
and Latham and Anderson (1986). 

A recent book by Obinata and Anderson (2000) deals exclusively with the topic 
of model reduction. 

The paper by Green (1988) deals with stochastic balanced realization. For more 
on this topic, see Zhou et al. (1996). 

Exercises 

14.1 

14.2 

Prove part (a) of Theorem 14.4.1 and fill in the missing details of part (b), whenever 
indicated in the book. 
Let 

C D " 

Suppose that there exists a symmetric matrix P = diag(P1,0), with P1 nonsingular, 
such that 

AP + PA T + BB T =O. 

14.3 

14.4 

14.5 

14.6 

Partition G(s) conformably with P as 

I AR A12 /~R 1 

d R C 2 O 

I AR /~R ] is also realization of if AR is Then prove that CR D a G(s). Moreover, 
l 

stable, then (-4R,/}R) is controllable. 
Based on the result of Exercise 14.2 develop a method for extracting a controllable 
subsystem from a stable noncontrollable system. 
(Zhou et al. (1996)) Let G(s) be the same as in Exercise 14.2. Suppose that there 
exists a symmetric matrix Q = diag(Q1,0), with Q1 is nonsingular, such that 
QA + A T Q + c T c  = 0. Partition the realization (A, B, C, D) conformably with 
Q as in Exercise 14.2. Then prove that 

I AR /~R ] 
CR D 

is also a realization of G(s). Prove further that (AR, CR) is observable if AR is 
stable. 
Based on Exercise 14.4, develop a method for extracting an observable subsystem 
from a stable nonobservable system. 
Construct your own example to illustrate the numerical difficulties of 
Algorithm 14.2.1. 
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14.7 Prove that the rows {1 . . . . .  d} and the rows {d + 1 . . . . .  n} of T -1 in 
Algorithm 14.2.1, form bases for the left eigenspaces of the matrix CGO G 
associated with the eigenvalues {o-2 . . . . .  o-2}, and {o2+1 . . . . .  o-2}, respectively. 

14.8 Prove that the columns of the matrix V1S and those of the matrix U2S in the Schur 
algorithm (Algorithm 14.4.2) for model reduction, form orthonormal bases for the 
fight and left invariant subspace of CG OG associated with the large eigenvalues 
o12 . . . . .  o -2 . 

14.9 Prove that the controllability and observability Grammians of the reduced-order 
model obtained by the Schur algorithm (Algorithm 14.4.2) are, respectively, given 
by C~ -- STCGS1 and 0 ~  = $20GS2, where CG and OG are the controllability 
and observability Grammians of the original model. 

14.10 (a) Modify the Schur algorithm for model reduction by making use of Hammar- 
ling's algorithm (Algorithm 8.6.1) so that the explicit formation of the product 
CG OG is avoided, and only the Cholesky factors Lc and Lo are computed. 
(Consult Safonov and Chiang (1989)). 

(b) Work out an example to demonstrate the superiority of this modified Schur 
algorithm over the Schur algorithm. 

14.11 (a) Prove that the matrix T defined by (14.3.4) transforms the discrete-time 
system (14.3.1) to the balanced system (14.3.5). 

(b) Work out a discrete analog of Algorithm 14.2.2. 
14.12 (Zhou et al. (1996)). Let 

[A 1 G(s) = C 0 

be the transfer function of a balanced realization. Then prove that 

N 

f0 z o-1 --% IIG ~ ~ lice At Blldt ~ 2 o-i. 
i=1 

14.13 Construct an example to show that if the diagonal entries of the matrix E of the 
balanced Grammian are all distinct, then every subsystem of the balanced system 
is asymptotically stable. Construct another example to show that this condition is 
only sufficient. 

14.14 Construct an example to show that the bound of Theorem 14.4.1 can be loose if the 
quantities o-i, i -- 1 . . . . .  n are close to each other. 
(Hint: Construct a stable realization G(s) such that G T ( - s )G(s )  = I and then 
construct a balanced realization of G(s). Now make a small perturbation to this 
balanced realization and work with this perturbed system.) 

14.15 (a) Develop a Schur method for model reduction of the discrete-time system. 
(b) Give a simple example to illustrate the method. 
(c) Give a flop-count of the method. 

14.16 Minimal realization using block diagonalization (Varga 1991). Consider the 
following algorithm: 

Step 1. Reduce A to block diagonal form and update B and C, that is, 
find a nonsingular matrix T such that T - 1 A T =  d i a g ( i l , i 2  . . . . .  Ar), T -1 
B = (/31, [~2 . . . . .  [~r), CT = (C1, C'2 . . . . .  6"r). (see Exercise 8.10). 
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Assume that the diagonal blocks in A have disjoint spectra. 
Step 2. Find an MR of each of the system (.4i,/~i, (7i), i -- 1 . . . . .  r using 

Algorithm 14.2.1 or 14.2.2, as appropriate. 
Let (Ai,/~i, ~7i), i = 1 . . . . .  r be the computed MR of (Ai,/~i, C'i) in Step 2. 
Then show that the system (.4,/~, C) defined by: 

r = diag(r z~ 2 . . . . .  Ar), /~__ /~2 , C = (C1, C 2 , . . . , C r ) ,  

;r 
is an MR of (A, B, C). 

14.17 Using the matrix version of bilinear transformation: 

z - 1  
S - -  

z + l '  

prove that the Hankel singular values of the discrete and continuous systems are 
identical. 
(Hint: Obtain the system matrices (A, B, C) for the continuous-time system from 
the system matrices (A,/~, C) of the discrete-time system and then show that the 
controllability Grammian (observability Grammian) of (A, B, C) is the same as 
the controllability Grammian (observability Grammian) of (A,/~, 6').) 

14.18 Using the bilinear transformation of Exercise 14.17 and Algorithm 14.5.1, find an 
optimal Hankel-norm approximation for the discrete-time system defined by the 
matrices in Example 14.3.1. 

14.19 Write down a discrete analog of Algorithm 14.2.2 and apply the algorithm to the 
system (A, B, C) defined by 

0.0001 1 i )  
A -- 0 0.1200 , B -- (1, 1, 0) T, C = (1, 1, 1). 

0 0 

14.20 (Safonov and Chiang 1989). Consider the system (A, B, C) given by 

A 

~-6 - 1  0 0 0 0 0 0 0 0 
1 - 8  0 0 0 0 0 0 0 0 
0 0 - 1 0  3 0 0 0 0 0 0 
0 0 1 - 8  0 0 0 0 0 0 
0 0 0 0 - 1 3  - 3  9 0 0 0 
0 0 0 0 1 - 8  0 0 0 0 
0 0 0 0 0 1 - 8  0 0 0 
0 0 0 0 0 0 0 - 1 4  - 9  0 
0 0 0 0 0 0 0 1 - 8  0 

~, 0 0 0 0 0 0 0 0 0 - 2  
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B =  0 0 0 1 0 0 0 0 1 
0 1 0 0 0 0 1 0 10 -3 

00 1 0 1 0 0 0 0 0 5 •  105'~ 
C = 0 0 0 0 0 - 6  1 - 2  5 x 105,] . 

Find a reduced-order model of order 4 using 
(a) Balanced truncation via Algorithms 14.2.1 and 14.2.2. 
(b) The Schur method (Algorithm 14.4.2). 

Compare the results with respect to the condition numbers of the transforming 
matrices and the II �9 Ile~ norm errors. 

14.21 Prove that the weighting Grammians CG and OG are given by the equations (14.7.2) 
and (14.7.3). 

14.22 Consider the two special cases of the frequency-weighted model reduction: 
Case 1. Wi(s) = 1 and Wo(s) (: 1, 
Case 2. Wi (s) ~: 1 and Wo(s) = 1. 
Prove that the reduced-order model (AR,/~R, CR) is stable provided that it is 
controllable in Case 1 and is observable in Case 2. 
(Hint: Write the balanced Grammian Y; - diag(I21, ~2)- Then show that 

AR]E 1 q t- ]El ~T 4-/~R/~ T --0,  and AT~ 1 q- Zl,4 R a t- c T c  R - 0 ) .  

Work out an example to illustrate the result. 
14.23 Singular perturbation approximations. Let (A,/~, C-') be a balanced realization of 

(A, B, C). Partition the matrices A,/~, C as: 

~ :  (411 412'~ ~ (B1 )  ~ , _ ( ~ 1 , ~ 2 ) .  
~,A21 A22J '  : /~2 ' 

Then the system (,4,/}, C) defined by 

: All a t- AlZ(Y I - AZz)-lA21, 

: C1 -k C2(?'I - AZz)-lA21 

/} : / } 1  -+- A12(Y I - A22) -1/~2, 

is called the balanced singular perturbation approximation of (A,/~, t~) (Liu 
and Anderson 1989). (y = 0 for a continuous-time system and y = 1 for a 
discrete-time system). 
(a) Compute singular perturbation approximations of the system in Exam- 

ple 14.2.1 
using Algorithms 14.2.1 and 14.2.2. 

(b) Show how the balancing-free square root method in Section 14.4.3 can be 
modified to compute singular perturbation approximation (Hint. Find the SVD 
of yT X and then compute L and Z from the matrices of the SVD). See Varga 
(1991). 

(c) Apply the modified balancing-free square-root method in (b) to the system in 
Example 14.2.1 and compare the results. 
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LARGE-SCALE MATRIX 
COMPUTATIONS IN CONTROL: 
KRYLOV SUBSPACE METHODS 

15.1 INTRODUCTION 

Numerically effective computational methods for various control problems 
discussed in preceding chapters are viable only for dense computations. Unfortu- 
nately, these methods are not suitable for solutions of many large practical problems 
such as those arising in the design of large sparse structures, power systems, etc. 
There are two main reasons for this. First, they destroy the sparsity, inherited in 
most large practical problems and second, they are O(n 3) methods and thus, are 
computationally prohibitive for large problems. The sparsity is lost by the use of 
canonical forms such as, triangular Hessenberg and real-Schur, which are obtained 
by using Gaussian eliminations, Householder and Givens transformations, and 
those techniques are well-known to destroy the sparsity. 

On the other hand, there have been some fine recent developments in the area 
of large-scale matrix computations. A class of classical methods known as the 
Krylov subspaee methods (Lanczos 1950; Arnoldi 1951) have been found to be 
suitable for sparse matrix computations. The reason is that these methods can be 
implemented using matrix-vector multiplications only; therefore, the sparsity in 
the original problem can be preserved. The examples are the Generalized Minimal 
Residual (GMRES) and the Quasi-Minimal Residual (QMR) methods for linear 
systems problem; the Arnoldi, Lanezos, and the Jaeobi-Davidson methods, and 
several variants of them such as the restarted and block Arnoldi methods and 
band Lanezos method for eigenvalue problems. 

It is only natural to develop algorithms for large-scale control problems using 
these effective large-scale techniques of matrix computations. Some work to this 
effect has been done in the last few years. 

In this chapter, we will briefly review some of these methods. In Section 15.2, 
we give a brief description of the basic Arnoldi and Lanczos methods to facilitate 
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the understanding of how these methods are applied to solve large-scale control 
problems. We stress that the descriptions of our Krylov subspace methods are basic. 
For practically implementable versions of these methods and associated software, 
we refer the readers to the books by Bai et al. (2000), and Saad (1992a, 1996). 
In particular, the homepage, ETHOME of the book by Bai et al. (2000) contains 
valuable information of available software. Our only goal of this chapter is to 
show the readers how these modem iterative numerical methods can be gainfully 
employed to solve some of the large and sparse matrix problems arising in control. 

15.2 THE ARNOLDI AND BLOCK ARNOLDI METHODS 

In this section, we summarize the essentials of the scalar Arnoldi and block Arnoldi 
methods. 

15.2.1 The Scalar Arnoldi Method 

Given an n • n matrix A, a vector v, and an integer m <_ n, the scalar Arnoldi 
method computes simultaneously a set of orthonormal vectors { vl . . . . .  Vm+l}, an 
(m + 1) • m matrix Hm such that 

AVm - Vm+l Hm, (15.2.1) 

where V m -  (Vl . . . . .  Vm) and V m + l -  (Vm, Vm+l). The vectors {Vl . . . .  , Vm} 
form an orthonormal basis of the Krylov subspace Km (A, Vl) - span{ Vl, A Vl . . . . .  
A m-1 Vl }. Furthermore, it is easy to establish that 

vT A v T -- Hm , (15.2.2) 

where Hm is an m x m upper Hessenberg matrix obtained from Hm by deleting its 
last row. The algorithm breaks down at step j ,  i.e., v j+l - O, if and only if the 
degree of the minimal polynomial of Vl is exactly j ,  that is, it is a combination 
of j eigenvectors. 

15.2.2 The Block Arnoldi Method 

The block Arnoldi method is a generalization of the scalar Arnoldi method. Starting 
with a block vector V1 of order n x p and norm unity, the block Arnoldi method con- 
structs a set of block vectors { V1 . . . . .  Vm+l } such that if Um -- (V1 . . . . .  Vm), then 
U TUm -- Imp xmp, and U~ A Um is an upper block Hessenberg matrix Hm -- (Hi j). 
Furthermore, A U m -  Um Hm = Vm+ l Hm+l,m E~, where Em is the last p columns 
of the mp x mp identity matrix. The block Arnoldi algorithm is particularly 
suitable for handling multivariable control problems.  
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Algorithm 15.2.1. The Block Arnoldi Algorithm (Modified Gram-Schmidt 
Version). 

Let V be an n • p matrix. 
Step 0. Compute the n • p orthogonal matrix V1 by finding the QR factor- 

ization of  V: V = V1R (Note that R is here p • p). (Use column pivoting if V 
does not have full rank). 

Step 1. For k = 1, 2 . . . . .  m do 
^ 

Compute V - A Vk. 
For j  = 1,2 . . . . .  kdo  
Hj, - 
f l  - f~ - Vj  Hj ,~  
End 

Compute Hk+l,k byfinding the QR factorization of(/" ~' --  Vk+l Hk+l,k 
End 

The block Arnoldi algorithm clearly breaks down if Hk+l,k becomes zero for 
some k. Such a breakdown has positive consequences in some applications. 
(See Section 4.1.1.) 

Remarks 

�9 Define the block mp • mp upper Hessenberg matrix Hm - (Hi j),  

Um - - ( E l ,  V2 . . . . .  Wm) 

and 

Um+l  --  (Um,  Wm+l). 

Then relations analogous to (15.2.1) and (15.2.2) hold: 

A U m  - Vm+~ t~m, 

where 

and 

Hm --  O. . . OHm+l ,m  ( m + l ) p x m p  

uT A Um -- Hm. 

15.2.3 The Lanczos and Block Lanczos Methods 

For a nonsymmetric matrix A, the Lanczos algorithm constructs, starting with two 
vectors vl, and Wl, a pair  of biorthogonal bases {Vl . . . . .  Vm} and {wl . . . . .  Wm} 
for the two Krylov subspaces: Km(A, Vl)-span{vl ,  Avl . . . . .  Am- lv l }  and 
Km(A T, W l ) -  span{wl, ATwl . . . . .  (AT)m-lwl} .  
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Algorithm 15.2.2. The Nonsymmetric Lanczos Algorithm 
Step 0. Scale the vectors v and w to get the vectors Vl and Wl such that 

wTvl -- 1. Set fll  :~ O, (~1 :~ O, WO --  1)0 :~ O. 

Step 1. For j = 1, 2 . . . . .  m do 

Olj - -  w T  A v j  

~ j + l  - -  A v j  - o l j v j  - f l j v j _  1 

" _ A  T t t ) j+ 1 w j  - o l j t v j  - ( ~ j w j - 1  

~ /  " T " 
8 j +  1 - -  [ t / ) j+l  V j + l  [ 

,,T 
f l j + l  - -  tVj+ l ~ j + l  / (~ j+l  

tV j+ l  - -  ~ j + l / f l j + l  

t~j+l  - -  ~ j + l / ( ~ j + l  

End. 

If the algorithm does not break down before completion of m steps, then, 
defining Vm = (Vl . . . . .  Vm) and Wm = (Wl . . . . .  Wm), we obtain (i) WTmAVm = Tm, 

T where (ii) A Vm --  Vm Tm n t- ~m+ l l)m+ l eT, and A T Wm - Wm T T  -k- f lm+ l tOm+ l e m, 

Tm is tridiagonal (c~ 1 . . . . .  O/m ; f12 . . . . .  ~m ; 32 . . . . .  ~m)- 
TI)j - -  0,  Breakdown of  the Lanczos method: If neither vj nor wj is zero, but wj 

then we have a breakdown (see Wilkinson (1965, p. 389)). In that case, the look- 
ahead  Lanezos idea has to be applied (see Bai et al. 2000), Parlett et al. (1985), 
and Freund et al. (1993). 

The Block Lanczos Method 

Starting with n x p block vectors P1 and Q1 such that PIT Q 1 -  I, the block 
Lanczos method generates right and left Lanczos block vectors { Qj } and { Pi } of 
dimension n x p, and a block tridiagonal matrix TB = Tridiagonal (T1 . . . . .  Tm; 
L2 . . . . .  Lm ; M2 . . . . .  Mm) such that defining 

P[m] - -  (P1 ,  P2 . . . . .  Pm) and Q[m] = ( Q 1 ,  Q2  . . . . .  Q m ) ,  

we have (i) Q(m]A Q[ml - TB, (ii) A Q[ml - Q[m]TB + Qm+I Mm+I ETm, and 

(iii) A T P[m] - P[m] T T  n t- Pm+ l L y Y m+ 1Em' where Em is an mp x m matrix of which 
bottom square is an identity matrix and zeros elsewhere. 

For details of the algorithm, see Bai et al. (2000) and Golub and Van Loan 
(1996). The block Lanczos method breaks down if Pf+l QJ +1 is singular. In such 
a situation, an adaptively blocked Lanczos method (Bai et al. 1999) can be used 
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to deal with the situation of breakdown. ABLE adaptively changes the block size 
and maintains the full or semi biorthogonality of the block Lanczos vectors. 

15.3 SCOPES OF USING THE KRYLOV SUBSPACE METHODS IN 
CONTROL 

Since the Krylov subspace methods (such as, the Arnoldi and Lanczos methods) 
are the projection methods onto Km, it is only natural to use these methods as the 
projection techniques to solve large-scale control problems, as has been done in 
numerical linear algebra for matrix problems. 

A template is then as follows: First, the original large control problem is pro- 
jected onto an m-dimensional Krylov subspace by constructing a basis of the 
subspace. The projected smaller problem is then solved using a standard well- 
established technique. Finally, an approximate solution of the original problem is 
obtained form the solution of the projected problem. The solution of the projected 
problem is constructed such that either a Galerkin property is satisfied, that is, 
the residual is orthogonal to the associated Krylov subspace, or the norm of the 
residual error is minimized (GMRES type). These projected methods usually give 
cheaply computed residual error norms, which, in turn can be used as a stopping 
criteria in case the methods need to be restarted. For a description of the GMRES 
method, see Saad and Schultz (1986). 

15.4 ARNOLDI METHODS FOR LYAPUNOV, SYLVESTER, AND 
ALGEBRAIC RICCATI EQUATIONS 

Numerical methods for solving the Lyapunov equations A X  + X AT + B B T = 0 
(Continuous-time), and A X A  T - X + B B T = 0 (Discrete-time) have been dis- 
cussed in Chapter 8. The standard Schur-method (Section 8.5.2, Section 8.5.4), 
and Algorithms 8.6.1 and 8.6.2, based on the Schur decomposition of A, is not suit- 
able for sparse problems. In the following subsections, we show the use of scalar 
Arnoldi to solve the single-input continuous-time and that of the block Arnoldi to 
solve the multi-input discrete-time problem. 

The matrix A is assumed to be stable in each case; that is, in the continuous-time 
case, A is assumed to have all eigenvalue negative real parts and in the discrete 
case, A is assumed to have all its eigenvalues within the unit circle. 

Algorithm 15.4.1. An Arnoldi Method for the Single-Input Stable Lyapunov 
Equation 

Step 1.Run m steps of the Arnoldi algorithm with Vl = b/[Ibll2 = b/ft. Obtain 
Vm and Hm. 

Step 2. Solve the projected m • m Lyapunov matrix equation: HmGm + 
Gm HT + fl2elef  - O, using the Schur-method (see Section 8.5.2). 

Step 3. Compute Xm, an approximation to X: Xm = Vm Gm V T. 
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Galerkin condition, residual error and re-start: (i) It is shown (Saad 1990; 
Jaimoukha and Kasenally 1994) that the residual Res(Xm) = AXm + Xm AT -q- 
bb T satisfies: V T Res(Xm)Vm = 0 and (ii) the residual error-norm for the 

T Gm IIF Using this cheaply corn- projected solution: IIRes(Gm)llF - ~/c211hm+l,mem 
puted residual error-norm as a stopping criterion, Algorithm 15.4.1 can be restarted 
at every fixed number (say m l) of iterations, wherever needed. 

Algorithm 15.4.2. A Block Arnoldi Algorithm for Stable Discrete-Time 
Lyapunov Equation 

Step 1. Find the QR factorization of  B to compute V1 of order n • p: 

B = V 1 R .  

Step 2. Run m steps of  the block Arnoldi algorithm to obtain Hm, Um, and 

Hm+l,m with V1 as obtained in Step 1. 
Step 3. Obtain an mp • mp matrix Gm by solving the projected discrete 

Lyapunov equation using the Schur-method (Section 8.5.4): 

gmGmgT-+- ( 0 )  (RTo)-- am. 

Step 4. Compute the approximate solution Xm = Um Gm UTm �9 

Galerkin condition, residual error norm, and Restart 

1. The residual R e s ( X m ) =  A X m A  T - Xm + BB  T satisfies the Galerkin 
property: UTRes(Xm)Um = O. 

Furthermore, the residual error norm for the solution of the projected 
problem is given by (Jaimoukha and Kasenally 1994): 

( ) [ IRes(am)l lF- -  gm+l,mEmam ~/-2H m EmUm+l, m �9 
F 

2. If Hm is also discrete-stable, then the error bound I I x  - Xm 112 converges 
to zero as m increases (Boley 1994). 

3. As in the continuous-time case, the cheaply computed residual can be used 
to restart the process if necessary. 

Arnoldi Methods for Sylvester Equation 

Let A, B, and C be the matrices of order n. (Note that the matrix B here is not the 
usual control matrix.) We have seen in Section 8.2.1 that the Sylvester equation: 
A X  - X B  -- C can be written as the linear systems of equations: (I | A - B T @ 
I )x --c,  where @ denotes the Kronecker product, and x and c are vectors with 
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n 2 components. Solving the Sylvester equation this way will require a formidable 
amount of storage and time for large and sparse problems. Hu and Reichel (1992) 
have proposed a method to solve this system requiring a considerable reduced 
amount of storage space. Their idea is to replace the Krylov subspace Km (I @ 
A - B T @ I, r0) with a subspace of the form Km(B T, g) | Km(A, f ) for certain 
vectors f and g. The vectors f and g are chosen so that the initial residual vector 
ro = b - Axo, where x0 is the initial approximate solution, lies in the Krylov 
subspace Km (BT, g) @ Km (A, f ). 

Algorithm 15.4.3. A Restarted Arnoldi Algorithm for the Sylvester Equation 
A X -  X B -- C (Galerkin type) 

Step 1. Choose xo and compute ro =- c - (I | A - B T | l)xo. 
Step 2. If  llroll2 < ~, then compute the approximate solution matrix Xo of  the 

equation A X  - X B -- C from the entries of  xo. 
Step 3. Choose f and g using the following scheme: 

T Roe~: -- e T ro 1 < j,  k < n. Then, if I] Ro [ll > Let Ro be defined by: ej j+n(k-1) . . . .  

[I RO I[ e~, determine g -- R T f~ I[ f I[ 2, taking f as a column of Ro of  the largest 

norm. Else, determine f - -Rog/ l lg l [  2, taking g as a row of Ro of the largest 
norm. 

Using the Arnoldi algorithm, compute the orthonormal bases of  Km+l (A, f )  
and Km+l (B T, g); that is, obtain HA, HB, I4A, I4B, Vm, Vm+l, Wm, Wm+l. 

Step 4. Compute ?o = (Wm | Vm) T ro. 
Step 5. Determine Q Z and R A from HA, and Q B and RB from HB by Schur 

factorizations. That is, find QA, RA; QB, RB such that HA--QARAQ*A and 
I HB = QBRBQ*B. Compute ro - - (QB @ Qz)*ro. 

Step 6. Solve the triangular or the quasi-triangular system: (I @ RA -- RB | 

I ) y~ -- r~ and compute Yo -- ( O B @ O A) YO. 
Step 7. Compute the correction vector: zo = (Wm | Vm)YO and update the 

solution: xo =- xo + zo. 
Step 8. Compute the updated residual vector: ro =- ro - (Wm @ Vm+ 114A)YO + 

(Wm+l ttB | Vm)YO and go to Step 2. 

A breakdown of the algorithm occurs when the matrix of the linear system 
in Step 6 becomes singular. In this case, one can either reduce m or restart the 
algorithm with different f and g, for example, random vectors. The same action 
should be taken when dim Km(A, f ) < m or dim Km(B T, g) < m. 

Block Arnoldi Methods for Sylvester Equation 

While the Hu-Reichel algorithm is a projection algorithm on the linear algebraic 
system associated with the Sylvester equation, projection algorithms on the actual 
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Sylvester equation have recently been developed (El Guennouni et al. 2003; Robb6 
and Sadkane 2002). Furthermore, the Hu-Reichel algorithm has been extended to 
the block form by Simoncini (1996). Let A ~ R n• B ~ ]~pxp. 

Algorithm 15.4.4. Block Arnoldi Methods for the Sylvester Equation AX + 
X B  - -C.  

Step 1. Choose Xo and compute the residual matrix Ro -- C - (AXo - XoB). 
Assume that rank (R0) -- q. 

Step 2. Obtain an upper triangular matrix A 1 by computing the full rank QR 
factorization of Ro" Ro -- 1/1 A1 and run m steps of the block Arnoldi algorithm 
with V1 to obtain Um, Hm, and I~ m (Algorithm 15.2.1). 

Step 3. (Galerkin-type): Compute the approximate solution: X G - X o  + 
Um Zm, obtaining Zm by solving the Sylvester equation using the Hessenberg- 
Schur method (Algorithm 8.5.1): 

w ere  

(GMRES-type): Compute the approximate solution: X GM - Xo + Um Zm, 
obtaining Zm by solving the minimization problem: 

minz6Rmq• llA - gm(Z)l[F, where A -- (01  ) E R (m+l)qxp 

and 

Residuals and restart: It can be shown (Robb6 and Sadkane (2002)) that the 
residuals R GM -- S(X GM) - C  and R G -- S(X G) - C  satisfy, respectively: 

IIRGMIIF = II/~- Sm(Zm)llF and IIRGIIF --IIHm+I,mZL]IF, 

where Z L is the last q x p block of Zm. Using these easily computed residu- 
GM als, the method should be periodically restarted with X0 - X G or Xo - X m , 

where XGm[X~mM is the last computed approximate solution with Galerkin/GMRES 
method. 

Convergence analysis (Robb6 and Sadkane 2002) 

1. The GMRES algorithm converges if the field of values of A and B are 
disjoint. If the Galerkin algorithm converges, then the GMRES algorithm 
also converges. However, if GMRES stagnates (i.e., il RmGM) IIF- II R0 IIF), 
then the Galerkin algorithm fails. 
Note: It is assumed that R0 and the parameter m are the same in both these 
algorithms. 
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(Breakdown). If the block Arnoldi algorithm breaks down at iteration m; 
that is, if Hm+l,m --  O, then the approximate solutions computed by 
GMRES and the Galerkin algorithm are exact; that is, Xm G -- X GM -- X. 

Arnoldi Method for Sylvester-Observer Equation (Single-Output Case) 

The Sylvester-observer equation ATx - -  X H = C T G arises in the construction of 
Luenberger observer (see Chapter 12; Datta 1994). For a full-rank solution X, it is 
necessary that (A, C) is observable and (H T, G) is controllable. If H is an upper 
Hessenberg matrix (as in the case of the scalar Arnoldi), then in the single-output 
case g can be chosen to be en -- (0, 0, . . . ,  0, 1) and the Sylvester-observer equa- 
tion in this case reduces to A T x  -- X H -- (0, 0 . . . . .  0, cT). An Arnoldi method 
was developed by Datta and Saad (1991) to solve this equation by observing the 
striking resemblance of this equation with the Arnoldi equation: A Vm - Vm Hm = 
(0, 0 . . . . .  O, hm+l ,mVm+l ) .  Naturally, the Arnoldi vector Vl should be chosen so 
that the last vector Vm+l becomes the vector c, given a priori. This is done by 
observing that, apart from a multiplicative scalar, the polynomial Pm (x) such that 
Vm+l = pm(A)v l ,  is the characteristic polynomial of Hm (see Saad 1992a). The 
matrix Hm is constructed to have a pre-assigned spectrum {# 1 . . . . .  #m } for which 
an eigenvalue assignment algorithm (e.g., Datta 1987) is invoked at the end of 
(m - 1) steps of the Arnoldi algorithm with the chosen vector Vl. 

Algorithm l5.4.5. An Arnoldi Algorithm for  Single-output Sylvester- 
Observer Equation 

Step 1. Solve the linear system: q ( A T ) x - - c  T, and compute V l - x / l l x l ] "  
where q(t)  = (t - lz l ) ( t  - / z 2 ) - . -  (t -/Xm). 

Step 2. Run m - 1 steps of  the Arnoldi method on AT with Vl as the initial 
vector to generate Vm and the first m - 1 columns of  Hm. Let t tm-  1 denote the 

matrix of  the first m - 1 columns of  Hm. 
Step 3. Find a column vector y such that f2([Hm-1, y ] ) - - ~ ( H m ) - -  

{/Zl . . . . .  lZm}, where f2(K)  denotes the spectrum of  the matrix K. 
Step 4. Compute o t -  (c')Yc'/llc[[ 2, where c' is the last column of  ATVm -- 

VmHm. 
Step 5. Set Xm = (1/~)  Vm. 

Solving the equation q (A T)x = r using the partial fraction approach." A partial 
fraction approach suggested in Datta and Saad (1991) to solve the above polyno- 
mial system of equations consists in decomposing the system into m linearly inde- 
pendent systems: (AT _ ll~i I)xi  --  c T, i - 1 . . . . .  m and then obtaining the solution 

1 
x as the linear combination: x - ~ n =  1 qt(iZi) xi'  w h e r e  q t ( l z j )  - -  l'-Ii= 1 . . . . .  m , i ~ = j .  

Each of these systems can be solved by applying k steps of the Arnoldi method, 
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constructing an orthonomial basis Vk of the span {c, A, c . . . . .  A k -1  c} and then 
solving k independent small m • m Hessenberg linear systems. The bulk of the 
work is in constructing Vk, and this is done only once. A detailed stability (numeri- 
cal) property of the approach studied in Calvetti et al. (1995), Calvetti and Reichel 
(1997), and Calvetti et al. (2001) shows that the performance of the scheme can 
be improved by choosing ll~i s as the equidistant points on a circle or on the zeros 
of a certain Chebyshev polynomial. 

Remarks 

Observe that the solution obtained by this algorithm has the nice additional 
property of being orthonormal. 
A full Arnoldi-type of method (m = n) for the construction of an orthogonal 
solution to the multi-output Sylvester-observer equation has been developed 
by Datta and Hetti (1997). Also, there now exists a singular value decom- 
position (SVD)-based algorithm (Datta and Sarkissian 2000) for solving 
the multi-output Sylvester-observer equation, which might be suitable for 
large-scale computing. 

Arnoldi Method for Continuous-Time Algebraic Riccati Equation (CARE) 

In Chapter 13, we have described numerical solutions of the algebraic Riccati 
equations. The Schur method, the generalized Schur method, or similar methods 
based on matrix decompositions are not practical for large problems. An idea 
to solve the CARE using the block Arnoldi method developed by Jaimoukha and 
Kasenally (1994) is as follows. For simplicity, we write the CARE as: XA + AT X -  
X B B T X  + LL T = 0 (i.e., R = I and Q = LLT). Assume that the associated 
Hamiltonian matrix does not have a purely imaginary eigenvalue. 

Algorithm 15.4.6. An Arnoldi Algorithm for CARE (Galerkin-type) 
Step 1. Compute Um, Hm, Hm+l,m by running m steps of the block Arnoldi 

method starting with V1 given by: L = V1R (QR factorization of L). Define 
B m by uTB = B m and t m  by  U m t  m --  t .  

Step 2. Solve the projected equation for Gm: 

GmHm + HTGm - GmBmBYGm -+- tm LT - 0 

Step 3. Compute approximation Xm of X: Xm = UmGmU T 

Galerkin condition and restart 

The residual norm satisfies Res(Xm) the Galerkin property: Vm T 
Res(Xm) Vm : O. 
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Algorithm 15.4.6 can be restarted by using the cheaply computed 
residual error norm: IlRes(Gm)liE = "/211 nm+l,m ETm Gm liE, as a stopping 
criterion. 

15.5 ARNOLDI METHOD FOR PARTIAL EIGENVALUE 
ASSIGNMENT 

Let the spectrum of an n x n matrix A be denoted by f2 ( A ) =  {1,1 . . . . .  X p, 
)~p+l . . . . .  ~.n }. Recall from Chapter 11 that the Partial Eigenvalue Assignment 
(PEVA) is defined as follows: Given an n x n large and sparse matrix A, with par- 
tial spectrum {)~1 . . . . .  )~p }, an n x m control matrix B, and a set of self-conjugate 
scalars {#1 . . . . .  /~p }, the problem is the one of finding a feedback matrix K such 
that f2(A - B K ) =  {/~1 . . . . .  /~p; )~p+l  . . . . .  ~.n). The problem naturally arises 
in feedback stabilization of large systems such as large space structures, power 
plants. 

We have described a Sylvester equation approach due to Datta and Sarkissian 
(2002) in Chapter 11. Here we describe a projection method due to Saad (1988), 
which can be implemented using the Arnoldi method. It is based on computing an 
orthonormal basis for the left invariant subspace associated with the p eigenvalues 
that are to be reassigned. 

Algorithm 15.5.1. A Projection Algorithm for Partial Pole-Placement 
Step 1. Compute the partial Schur decomposition: A T Q = Q R associated 

with the eigenvalues )~1, )~2 . . . . .  )~p. 
Step 2. Compute So= QT B and solve the projected p x p eigen- 

value assignment problem. That is, find a matrix G such that f2(R T - 
S0G T) = {#1, #2 . . . . .  #p}, using a standard multi-input EVA method 
(Algorithm 11.3.1). 

Step 3. Form the feedback matrix: K = (QG) T. 

15.6 LANCZOS AND ARNOLDI METHODS FOR MODEL 
REDUCTION 

In Chapter  14, we have described several techniques for model reduction. These 
include model reduction via balancing and the Schur method. Since these meth- 
ods require reduction of the state-matrix A to real-Schur form, they are not suitable 
for large and sparse computations. Here we describe some Krylov-subspace ideas. 
These Krylov methods are designed to construct a reduced-order model (ROM) 
such that the first few Markov parameters (see Chapter 9) of this model match 
with those of the original model. 
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Several Krylov subspace methods for model reduction have been developed in 
recent years. These include the Padd via Lanczos (PVL) approach, the interpola- 
tion approach, based on the rational Krylov method of Ruhe, implicitly restarted 
Lanczos method, and Arnoldi and implicitly restarted dual Arnoldi methods. The 
PVL technique has been proven to be effective in circuit simulation and the mul- 
tipoint rational interpolation approach has been successful in moment matching 
of the transfer function at selected frequencies. The machinery needed to describe 
these techniques has not been developed here and, therefore, we have to skip 
the descriptions of these techniques. For state-of-the-art survey on this topic, see 
Antoulas (2003) and Van Dooren (2000), and Datta (2003). 

We will describe here only a basic Lanczos and an Arnoldi method for model 
reduction in the single-input, single-output (SISO) case and just mention the 
existence of the block Lanczos and band Lanczos methods in the multi-input, 
multi-output (MIMO) case. 

15.6.1 Lanczos Methods for Model Reduction 

Algorithm 15.6.1. A Lanczos Algorithm for SISO Model Reduction 
Step 0. Scale the vectors b and c to obtain the vectors vl and Wl such that 

tO T 1)1 - -  1. 
Step 1. Run k steps of the Lanczos algorithm (Algorithm 15.2.2) to generate 

the matrices Wk and Vk and then compute ak : W~ A Vk, bk -- WTb, Ck : c  Vk. 
Step 2. Form the reduced-order model (Ak, bk, ck). 

It can be shown that the reduced-order model defined by (Ak, bk, Ck) preserves 
the first 2k Markov parameters of the original system. (See Gragg 1974; Gragg 

i -  and Lindquist 1983). That is, c A i - l b  -- ckA k lbk, i = 1, 2 . . . . .  2k. 

Numerical Disadvantages and Possible Cures 

There are several numerical difficulties with the above algorithm: first, there can 
be serious "breakdowns" in the Lanczos process due to the ill-conditioning of the 
submatrices in the system's Hankel matrix; second, the steady-state error can be 
large; third, the stability of the ROM is not guaranteed even though the original 
model is stable. An implicit restated Lanezos scheme due to Grimme et al. 
(1996), to stabilize the ROM is as follows: Suppose that the matrix Ak is not 
stable and assume that there are q unstable modes: #1 . . . . .  #q. Then the idea is to 
restart Algorithm 15.6.1 with the new starting vectors Vl = 15o (A - / Z q  I ) . . .  (A - 

#11)vl ,  and tbl - ~w(A T -  t z q l ) . . .  (A T -  ~1 I )wl ,  where/3o and fiw are certain 
scalars. The scheme is implemented implicitly using a technique similar to the one 
proposed in Sorensen (1992). There also exist relations between the modified 
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Markov parameters of the original system and the above restarted Lanczos model 
(see Grimme et al. 1996). 

15.6.2 Block Lanczos and Band Lanczos Methods for MIMO Model Reduction 

In the MIMO case, when m -  r, the block Lanczos method can be used. 
Specifically, the following result (see Boley 1994) can be proved. 

T h e o r e m  15.6.1. Let j steps of  the block Lanczos method be applied to the 
MIMO system (A, B, C), starting with block vectors generated from the Q R 

^ 

decompositions of  B and C, obtaining the matrices P[j] and Q[j]. Define A = 

Q~j1APtjj, B - Qt~B, C -CPtjl .  Then theROM (A, [~, C)hasthefol lowing 

properties: ~ i  ~ _ CA i B for  i - 0, 1 . . . . .  2(j  - 1). 

The band Lanczos method is an extension of the standard nonsymmetric Lanczos 
method for single vectors to blocks of starting vectors of different sizes. This 
method is thus ideal for the MIMO case when m ~ r. For space limitations, the 
detailed description of the algorithm cannot be given here. For description of the 
algorithm, we refer the readers to the paper by Aliga et al. (2000). For application 
of the band Lanczos algorithm to the MIMO model reduction, see Freund (1999) 
and the paper by Freund in Bai et al. (2000, pp. 205-216). See also, Bai et al. 
(1997), Bai and Freund (1999), and Freund (1997). 

15.6.3 An Arnoldi Method for SISO Model Reduction 

The idea is to use the Arnoldi method simultaneously on (A, b) and (AT, c T) and 
then combine the results to obtain ROMs. The ROMs have been shown to satisfy 
the Galerkin conditions (Jaimoukha and Kasenally 1997). 

A l g o r i t h m  15.6.2. An Arnoldi Algorithm for  SISO Model Reduction 
Step 1. Perform m steps of  the Arnoldi method with (A, b) to obtain Hm, 

~ - T and I4m, Vm, Vm and lm, with Vl - b/]lb[I2. (Vm -- Vm+l, Hm -- hm+l,me m 

lm = ][bllzel). 
Step 2. Perform m steps of  the Arnoldi method with (A T, c T) to produce 

T fVm-- Gm, Gm, Wm, lfVm and km, with Wl - cW/llcll2, ((Gm) T -- gm,m+le m, -- 

Wm+l and km --[Icll2elT). 

Step 3. Form Tm WTVm, l~m - T~n 1 T  1 T -- Wma Vm -- Hm -+- T m W m VmlSIm 

and Gm -- T 1 ~ Wm VmT~ n ~  T 1 WmAWmT~n - a m + a m  

Step 4. Form the ROM (l?-Im, lm, kmTm) or (Gm, Tmlm, km). 
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Galerkin conditions and residual errors: Let h m ( s ) - - ( s I  - I2Im)-llm and 
gm(S) -- km(s l  - -  G m )  - 1  . Then the Galerkin conditions W m ( ( s i _ A ) V m h m ( s  ) _ T  
b) = O, and (gm (s) W T (s I - A) - c) Vm -- O, 'v's are satisfied. 

Remarks  

�9 Jaimoukha and Kasenally (1997) have described a restarted Arnoldiframe- 
work which may be employed to make the ROMs stable and to remove 
redundant modes in the models. For space limitation, we skip the description 
of this implicit method here. 

�9 Antoulas et al. (2001) have recently proposed a restarted Arnoldi method, 
closely related to the one described above, based on the concept of the Cross 
Grammian.  For space limitation, we skip the description here and refer the 
readers to the above paper. 

15.7 C H A P T E R  NOTES A N D  F U R T H E R  R E A D I N G  

In this chapter, we have provided a very brief review of some of the existing 
Krylov subspace methods for a few large problems arising in design and analysis 
of control problems. These include Amoldi methods for Lyapunov and Sylvester 
equations by Saad (1990), Hu and Reichel (1992), Jaimoukha and Kasenally 
(1994); Arnoldi method for the single-output Sylvester-observer equation by Datta 
and Saad (1991); a projection algorithm (which can be implemented using Amoldi 
method) for PEVA problem by Saad (1988); and Lanczos and Amoldi methods 
for model reduction by Boley (1994), Grimme et al. (1996), and Jaimoukha and 
Kasenally (1995, 1997). See Boley and Golub (1984, 1991) for Krylov subspace 
methods for determining controllability. 

The Hu-Reichel algorithm was extended by Simoncini (1996) to block form. 
There have also been some recent developments on the Krylov subspace methods 
for Sylvester equation. E1Guennouni et al. (2001) have developed block Arnoldi 
and nonsymmetric block Lanczos algorithms for Sylvester equation. Robb6 and 
Sadkane (2002) have proposed new block Arnoldi and block GMRES methods for 
Sylvester equation and analyzed their convergence properties in details. 

In the context of model reduction, it is noted that there are other important meth- 
ods, such as the PVL, the interpolation methods, etc., which have not been included 
here. For details of these methods, the readers are referred to the associated papers 
cited in the reference section of this Chapter. In particular, for Lanczos methods 
of model reduction see, Feldman and Freund (1995a, 1995b, 1995c), Jaimoukha 
and Kasenally (1997), Grimme et al. (1996), Papakos and Jaimoukha (2001), 
Papakos (2001), Papakos and Jaimoukha (2002), Gallivan et al. (1996), etc. The 
paper by Papakos and Jaimoukha (2002) contains a procedure for model reduction 
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combining nonsymmetric Lanczos algorithm and Linear Fractional Transforma- 
tions (LFT). The delightful recent surveys by Freund (1999), the recent research 
monograph by Antoulas (2003), Ph.D. thesis by Grimme (1994), and short course 
lecture notes by Van Dooren (1995, 2000) and Feldman and Freund (1995b) are 
good sources of knowledge for model reduction. The paper by Freund (1999) 
includes 123 references on large-scale matrix computations using Krylov methods 
and their applications to model reduction. The earlier general surveys on Krylov 
subspace methods in control include the papers by Boley (1994), Datta (1997), 
Boley and Datta (1996), Van Dooren (1992), Bultheel and Van Barel (1986), and 
Fortuna et al. (1992). Some other papers of interest on Krylov subspace methods 
for model reduction include the papers by Villemagne and Skelton (1987), and Su 
and Craig, Jr. (1991). 

For recent algorithms on partial eigenvalue and eigenstructure assignments 
which are not Krylov subspace methods, but suitable for large-scale computa- 
tions, see Sarkissian (2001) and Datta and Sarkissian (2002). See also Calvetti 
et al. (2001 ). 

Research Problems 

1. Develop a block Arnoldi type algorithm to solve the multi-output Sylvester- 
observer equation A X  - X B  + GC, analogous to single-output algorithm 
( A l g o r i t h m  15.4.5) .  

2. Develop a block Arnoldi algorithm for the discrete-time Algebraic Riccati 
equation (DARE): A T X A  - X + Q - A T X B ( R  + B T X B ) - l B T X A  = 0, 
analogous to Algorithm 15.4.6 in the continuous-time case. 

3. Develop a block Amoldi algorithm for the generalized Sylvester equation: 
A X B - X - - C .  

4. Develop a block Arnoldi algorithm for MIMO model reduction that 
preserves stability of the original system. 
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A P P E N D I X  A 

SOME EXISTING SOFTWARE 
FOR CONTROL SYSTEMS 
DESIGN AND ANALYSIS 

In this appendix, we will give a brief description of some of the existing software 
for control systems design and analysis. 

A.1 MATLAB CONTROL SYSTEM TOOLBOX 

As the title suggests, MATLAB Control System Toolbox is based on the well- 
known matrix computations software "MATLAB." It is a collection of M-files 
which implement some of the numerically viable algorithms for control system 
design, analysis, and modeling. 

The control systems can be modeled either as transfer functions or in state-space 
form. Both continuous-time and discrete-time systems can be handled. The toolbox 
has excellent graphic capabilities and various time and frequency responses can 
be viewed on the screen and analyzed. 

The software can be obtained from The MathWorks, Inc., 24 Prime Park Way, 

Natick, MA 01760-1500 
Tel: (508) 647-7000, Fax: (508) 647-7001, URL: http://www.mathworks.com 
Newsgroup: Comp. soft. sys. matlab. 
See MATLAB Control System Toolbox: Users Guide (1996) for details. 

A.2 MATCONTROL 

MATCONTROL is also a collection of M-files implementing major algorithms 
of this book. MATCONTROL is primarily designed for classroom usemby using 
this toolbox, the students (and the instructors) will be able to compare different 
algorithms for the same problem with respect to efficiency, stability, accuracy, 
easiness-to-use, and specific design and analysis requirements. 

669 
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A.3 CONTROL SYSTEM PROFESSIONAL--ADVANCED 
NUMERICAL METHODS (CSP-ANM) 

Control System Professional (CSP) based on "Mathematica" is a collection of 
Mathematica programs (1996) to solve control systems problems. CSP-ANM 
extends the scope of CSP by adding new numerical methods for a wide class 
of control problems as well as for a number of matrix computations problems that 
have extensive uses in control systems design and analysis. 

ANM is compatible with, and requires, Control System Professional 2.0 or later. 
The software has been developed by Biswa Nath Datta and Daniil Sarkissian (with 
the help of Igor Bakshee from Wolfram Research Incorporation). 

"Typically, Advanced Numerical Methods provides several numerical methods 
to solve each problem enabling the user to choose from most appropriate tool for a 
particular task based on computational efficiency and accuracy." Users can select 
the most appropriate tool for a given task or have the package choose a suitable 
method automatically based on the size of data and the required accuracy. Thus, 
the package, though oriented mostly for professional users, is also an important 
tool for students, researchers, and educators alike. 

The algorithms implemented in the package have been taken mostly 
form the current book by the author. More details can be found from 
http ://www. wolfram, com/p roducts/applications/ann 

Software and manual: There is a User's Manual written by Biswa Nath Datta and 
Daniil Sarkissian (2003) with help from Igor Bakshee and published by Wolfram 
Research, Inc.. Both the software and the manual can be obtained from: 

Wolfram Research, Inc., 100 Trade Center Drive, Champaign, Illinois 61820-7237, 
USA 
Tel.: (217) 398-0700, Fax: (217) 398-0747 
E-mail: Info@wolfram.com, URL: www.wolfram.com 

A.4 SLICOT 

SLICOT is a Fortran 77 Subroutine Library in Control Theory. It is built on the 
well-established matrix software packages, the Basic Linear Algebra Subroutines 
(BLAS) and the Linear Algebra Package (LAPACK). The library also contains 
other mathematical tools such as discrete sine/cosine and Fourier transforma- 
tions. The routines can be embedded in MATLAB by an appropriate interface 
thus enhancing the applicability of the library. 

For a brief description of the library, see the paper "SLICOT--A Subroutine 
Library in Systems and Control Theory" by Peter Benner, Volker Mehrmann, 
Vasile Sima, Sabine Van Huffel, and Andras Varga in Applied and Computational 
Control, Signals, and Circuits (Biswa Nath Datta, Editor), B irkhauser, 2001. The 
official website for SLICOT is: http://www, win.tuc.nc/niconet 
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A.5 MATRIXx 

MATRIXx, as the title suggests, is built on functions that are most commonly used 
for matrix computations. It is broken into several modules. The principal ones are 
MATRIX x Core, Control, and System Build, Optimization, and Robust Control. 
The core module contains the core MATLAB commands with some modifications 
and extensions. The control module contains both classical and modem control 
commands. 

The MATRIXx core and control modules are command driven, while the system 
build module is menu driven. This module allows the users to simulate the systems 
by building the block diagrams of the systems on the screen. MATRIXx is a product 
of Integrated Systems, Inc. There exist a MATRIXx User's Guide (1991) and a book 
by Shahian and Hassul (1992) describing the functional details of the software. 

A.6 SYSTEM IDENTIFICATION SOFTWARE 

Each of the software packages MATLAB Control System Toolbox, Control 
System Professional, Control System ProfessionsmAdvanced Numerical 
Methods, SLICOT, MATRIXx, etc., has its own software module for system 
identification. See Chapter 9 of this book for details. 

There now also exist a few software packages, especially designed for system 
identification. We describe three of them in the following. 

A.6.1 MATLAB System Identification Toolbox 

This toolbox has been developed by Prof. Lennart Ljung of Link6ping University, 
Sweden. The toolbox can be used either in command mode or via a Graphical User 
Interface (GUI). The details can be found in the Users' manual (Ljung 1991) and 
MathWorks website: http://www.mathworks.eom 

A.6.2 Xmath Interactive System Identification Module, Part-2 

This is a product of Integrated System Inc., Santa Clara, USA, 1994. It is a GUI- 
based software for multivariable system identification. The details can be found in 
User's Manual (VanOverschee et al. 1994). 
Website: http ://www.isi.com/products/MATRIXx/Techspec/MATRIXx- Xmath/ 

xm36.html. 

A.6.3 ADAPTx 

This software package has been developed by W.E. Larimore. For details, see the 
Users Manual (Larimore 1997). Website: http://adaptics.com 
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Some further details on these softwares and subspace state-space system 
identification software can be found in the recent paper by DeMoor et al. (1999). 
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Limited Warranty 

The Publisher warrants the media on which the software is furnished to be 

free from defects in materials and workmanship under normal use for 30 

days from the date that you obtain the Product. The warranty set forth 

above is the exclusive warranty pertaining to the Product, and the Publisher 

disclaims all other warranties, express or implied, including, but not 

limited to, implied warranties of merchantability and fitness for a particu- 

lar purpose, even if the Publisher has been advised of the possibility of such 

purpose. Some jurisdictions do not allow limitations on an implied war- 

ranty's duration; therefore the above limitations may not apply to you. 

Limitation of Liability 

Your exclusive remedy for breach of this warranty will be the repair or 

replacement of the Product at no charge to you or the refund of the appli- 
cable purchase price paid upon the return of the Product, as determined 
by the Publisher in its discretion. In no event will the Publisher, and its 
directors, officers, employees, and agents, or anyone else who has been 

involved in the creation, production, or delivery of this software be liable 

for indirect, special, consequential, or exemplary damages, including, 

without limitation, for lost profits, business interruption, lost or damaged 

data, or loss of goodwill, even if the Publisher or an authorized dealer or 

distributor or supplier has been advised of the possibility of such damages. 

Some jurisdictions do not allow the exclusion or limitation of indirect, 

special, consequential, or exemplary damages or the limitation of liability 

to specified amounts; therefore the above limitations or exclusions may not 
apply to you. 
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