Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

NUMERICAL METHODS
FOR LINEAR CONTROL
SYSTEMS

Design and Analysis

BISWA NATH DATTA

Department of Mathematical Sciences
Northern [llinois University
DeKalb, IL 60115

Amsterdam e Boston ¢ Heidelberg ¢ London ¢ New York e Oxford
Paris ¢ San Diego ® San Francisco ¢ Singapore e Sydney e Tokyo

ELSEVIER

ACADEMIC
PRESS

Elsevier Academic Press
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the
publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions @elsevier.com.uk. You may also complete your request on-
line via the Elsevier homepage (http://elsevier.com), by selecting “Customer
Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Datta, Biswa Nath
Numerical methods for linear control systems design and analysis/B.N. Data.
p. cm.
Included bibliographical references and index.
ISBN 0-12-203590-9
1. Control theory. 2. System analysis. 3. Linear control systems. I. Title.
QA402.3D368 2003
629.8'32—dc22
2003058331

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 0-12-203590-9

For all information on all Academic Press publications
visit our website at www.academicpress.com

Printed in the United States of America
03 04 05 06 07 08 9 8 7 6 5 4 3 21

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

PREFACE

Remarkable progress has been made in both theory and applications of all impor-
tant areas of control theory. Theory is rich and sophisticated. Some beautiful
applications of control theory are presently being made in aerospace, biomedi-
cal engineering, industrial engineering, robotics, economics, power systems, etc.
Unfortunately, the same assessment of progress does not hold in general for
computations in control theory.

Many of the methods described in earlier control and systems theory text books
were developed before the computer era and were based on approaches that are
not numerically sound. Most of these methods, for example, require reduction of
the system matrices to some condensed forms, such as a companion form or the
Jordan canonical form, and it is well-known that these forms cannot, in general,
be achieved in a numerically stable way.

The situation is, however, changing quite fast. In the last 20 years or so, numeri-
callyviable algorithms have been developed for many of the common linear control
problems. Softwares based on these methods have been developed and are still
being built.

Unfortunately, these methods and softwares do not seem to be widely known
and easily accessible to broad groups of applied mathematicians, control theo-
rists, and practicing control engineers. They are still largely confined in reprints
and preprints (in this context it is noted that a reprint book on “Numerical
Linear Algebra Techniques for Systems and Control” edited by R.V. Patel, A.
Laub, and P. Vandooren containing a large number of important published papers
in this area has recently been published by IEEE/CRC Press). The primary
reason for the inaccessibility of these algorithms and the softwares, in my opin-
ion, is that an understanding, efficient implementations, and making possible
modifications of these methods needed for some applications of special inter-
ests, require an interdisciplinary knowledge of linear algebra, numerical linear
algebra, control theory, and computer science; and such a combined expertise is
hard to find.

What is, therefore, needed is a book that makes these algorithms accessible to
a wide variety of users, researchers, and students.

xxiii

xxiv PREFACE

For practicing users, it is important that the algorithms are described in a manner
that is suitable for easy implementation on a wide range of computers, that impor-
tant aspects of implementations are discussed, and a clear comparative study of
one algorithm over the other for a given problem with respect to efficiency, storage,
numerical stability, etc., is presented. The latter will help the users to choose the
one most suitable for his or her applications. Furthermore, for the students and
researchers, it is important that the mechanism of the development of the algo-
rithms is clearly explained and aspects of perturbation analysis of the problems and
round-off error analyses and convergence properties of the algorithms, whenever
available, are included in some details.

Of course, all these need to be accomplished requiring a minimal amount of
background in the areas mentioned above. This is certainly a difficult and an
ambitious task. But the present book aspires to do that and aims at reaching out to
a broad spectrum of audience in a number of disciplines including mathematics,
control and systems engineering, and other applications areas such as vibrations,
aerospace, space-sciences, and structural and manufacturing engineering.

The recent book on “Computational Methods for Linear Control Systems” by
P. H. Petkov, N.D. Christov, and M. M. Konstantinov also aims to fulfill that need
to some extent. The scope of this book is, however, much more limited than that
of the present book.

The current book is an outgrowth of lecture notes compiled by the author over
several years for a graduate course in numerical methods in control theory taught
at Northern Illinois University (almost all students of this course have been math-
ematics students with no prior background in control theory). The book has also
been used in several short courses given by the author including the SIAM short
course on Numerical Methods in Control, Signal, and Image Processing, Seattle,
August 15, 1993 and, the short course on Numerical Methods for Linear Control
and Systems at the International Conference on Mathematical Theory of Networks
and Systems, St. Louis, 1996. The audience of these short courses had varying
backgrounds.

The book covers most important and relevant problems arising in control sys-
tem design and analysis with a special emphasis on computational aspects. These
include:

Numerical solutions of state equations and frequency response computations
Controllability, observability, and distance to controllability

Stability, inertia, robust stability, and distance to instability

Numerical solutions and conditioning of Lyapunov, Sylvester, and algebraic
Riccati equations

e Numerical algorithms for feedback stabilization, eigenvalue and robust
eigenvalue assignment and conditioning of the eigenvalue assignment
problem

PREFACE XXV

e Numerical algorithms for full-order and reduced-order observer design and
Kalman filtering

Realization and subspace algorithms for model identification

Algorithms for balanced realization and model reduction

Large-scale solutions of control problems

H> and H control

The numerical algorithms described in the book have the following desirable
features:

Efficiency. Algorithms are of order O (n?).
Numerical Stability. Algorithms are either numerically stable or composed
of numerically stable computations.

o State-of-the-art Algorithms. The state-of-the-art algorithms for all prob-
lems have been included.

o Comparative Study and Recommendations. Whenever possible, a com-
parison of various algorithms for the same problem with respect to effi-
ciency, numerical stability, and accuracy has been given and based on this
comparative study, recommendation for practicing engineers has been made.

o Step by Step Explanation. All algorithms have been explained step by step
with illustrative examples illustrating each step of the algorithm.

¢ Software and Implementations. Important selected software for each topic
has been included.

o MATLAB Toolkit. There exists a MATLAB toolkit called MATCONTROL,
implementing major algorithms in the book.

e Algorithms for both Continuous-time and Discrete-time systems.
Algorithms are described both for continuous-time and discrete-time
systems.

The discussions on theoretical aspects of control theory have been kept to a mini-
mum, only the relevant facts have been mentioned. However, the importance and
applications of the problems have been discussed to an extent to motivate the
readers in mathematics and other areas of science and engineering who are not
familiar with control problems. Numerical Linear Algebra techniques needed to
understand and implement the algorithms have been developed in the book itself
in a concise manner without going into too much details and attempts have been
made to make the techniques understandable to the readers who do not have a
prior background in numerical linear algebra and numerical analysis. Of course,
people having a background in numerical analysis or numerical algebra and/or
control theory will have a definite advantage.

A special emphasis has been given to the clear understanding of the distinction
between a “bad” algorithm and a “numerically effective” algorithm.

XXVi PREFACE

Some discussions on large-scale computing in control have been included
too. The research in this area is still in its infancy, but some aspects of current
research have been included to give the readers a flavor. There is an urgent need
for an expanded research in this area as outlined in the 1988 NSF panel report:
“Future Directions in Control Theory: A Mathematical Perspective.” It is
hoped our short coverage in this area will provide enough incentive and motivation
to beginning researchers, both from control theory and applied and computational
mathematics, to work in the area.

The MATLARB toolkit MATCONTROL will help the students and the users under-
stand the merits and drawbacks of one algorithm over the others and possibly help
a user to make a right decision in choosing an ideal algorithm for a particular
application.

Organization of the Book:

The book has fifteen chapters. These fifteen chapters have been organized into
four parts; each part consisting of several chapters, grouped together (roughly)
with a common theme.

Part I. REVIEW OF LINEAR AND NUMERICAL LINEAR ALGEBRA

Chapter 2. A Review of Some Basic Concepts and Results from
Theoretical Linear Algebra

Chapter 3. Some Fundamental Tools and Concepts from Numerical
Linear Algebra

Chapter 4. Canonical Forms Obtained via Orthogonal Transformations

Part II. CONTROL SYSTEM ANALYSIS
Chapter 5. Linear State Space Models and Solutions of the State Equations
Chapter 6. Controllability, Observability and Distance to Uncontrollability
Chapter 7. Stability, Inertia, and Robust Stability
Chapter 8. Numerical Solutions and Conditioning of Lyapunov and
Sylvester Equations

Part III. CONTROL SYSTEMS DESIGN

Chapter 9. Realization and Subspace Identification
Chapter 10. Feedback Stabilization, Eigenvalue Assignment, and Optimal
Control

Chapter 11. Numerical Methods and Conditioning of the Eigenvalue
Assignment Problems

Chapter 12. State Estimation: Observer and the Kalman Filter

Chapter 13. Numerical Solutions and Conditioning of Algebraic Riccati
Equations

Chapter 14. Internal Balancing and Model Reduction

PREFACE XX vii

Part IV. SPECIAL TOPICS

Chapter 15. Large-scale Matrix Computations in Control: Krylov Subspace
Methods
Heading: Intended Audience

The book can be used as a textbook for an advanced graduate course in con-
trol engineering such as Computational Methods for Control Systems Design and
Analysis and Computer-aided Control System Design or for an advanced gradu-
ate topic course on Numerical Linear Algebra Techniques in Control and Systems
in applied mathematics and scientific computing. Far more material than can be
covered in one semester has been included, so professors can tailor material to par-
ticular courses and develop their own course syllabi out of the book. Above all, the
book is intended to serve as a reference book for practicing engineers and applied
scientists, researchers, and graduate students. The book is also very suitable for
self-study.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

LIST OF ALGORITHMS

331
34.1
342
3.6.1
38.1
301

45.1

5.3.1
532
533
5.5.1

6.7.1
6.9.1
6.9.2

7.2.1
7.5.1
7.6.1

7.6.2

8.3.1
8.5.1
8.6.1
8.6.2

9.3.1
9.3.2
9.4.1

Back Substitution Method for Upper Triangular System

The Cholesky Algorithm

LU Factorization of an Upper Hessenberg Matrix
Givens QR Factorization

Least Squares Solution Using QR Factorization
Least Squares Solutions Using the SVD

Complete QZ Algorithm for Reduction to Generalized
Schur Form

Padé Approximation to e” using Scaling and Squaring
Schur Algorithm for Matrix Exponential
Computing Integrals involving Matrix Exponential

Hessenberg Algorithm for the Frequency Response Matrix

Staircase Algorithm
Newton’s Algorithm for Distance to Uncontrollability
An Algorithm for Computing ;1 (A, B)

Computing the H>-Norm
Computing Inertia and Stability
Bisection Algorithm for Estimating Distance to
Continuous-time Instability
Bisection Algorithm for Estimating Distance to

a Discrete-Unstable System
sep Estimation
The Hessenberg—Schur Algorithm for XA + BX = C
Cholesky Factor for Continuous Lyapunov Equation
Cholesky Factor for Discrete Lyapunov Equation

An SVD Algorithm for Minimal Realization
A Modified SVD Algorithm for Minimal Realization
A Deterministic Subspace Identification Algorithm

38
51
52
62
65
72

99

132
135
137
144

174
186
189

212
219

225

229

261
270
286
290

317
322
327

xxxiii

XXXiv

942
943

10.5.1
10.6.1
10.6.2
10.7.1

11.2.1

11.2.2
11.2.3
11.3.1
11.3.2
11.33
11.34
11.6.1

12.3.1
12.4.1
12.4.2

12.7.1

12.7.2

12.8.1
12.9.1
12.10.1

13.5.1
13.5.2
13.5.3
13.54
13.5.5
13.5.6
13.5.7
13.5.8
13.5.9
13.5.10
13.5.11

14.2.1
14.2.2

LIST OF ALGORITHMS

A Subspace Stochastic Identification Algorithm
Continuous-Time Frequency-Domain Subspace Identification

The Algorithm Continuous-Time LQR Design
Bisection Algorithm for Hx,-Norm

Two-Step Algorithm for Hy-Norm

Bisection Method for Complex Stability Radius

The Recursive Algorithm for Singe-Input Hessenberg
EVA Problem

An RQ Implementation of the Recursive Algorithm

A Storage-Efficient Version of the RQ Implementation
The Recursive Algorithm for Multi-Input EVA Problem
An Algorithm to Assign p(p = 1 or 2) Eigen values
The Schur Algorithm for Multi-Input EVA Problem

A Parametric Sylvester Equation Algorithm for PEVA

Robust Eigenvalue Assignment Algorithm (The KNV Algorithm)

Full-Order Observer Design via Sylvester-Observer Equation
Reduced-Order Observer Design via EVA

Reduced-Order Observer Design via Sylvester-Observer
Equation

A Recursive Algorithm for the Multi-Output
Sylvester-Observer Equation

A Recursive Block Triangular Algorithm for the
Multi-Output Sylvester-Observer Equation

An Algorithm for Constrained Sylvester-Observer Equation
State Estimation using Kalman Filter

LQG Design for Continuous time System

Schur Algorithm for the CARE

Generalized Schur Algorithm for the DARE
Inverse-Free Generalized Schur Method for the CARE
Inverse-Free Generalized Schur Algorithm for the DARE
Computing Sign (A)

Matrix Sign-Function Algorithm for the CARE
Matrix Sign-Function Algorithm for the DARE
Newton’s Method for the CARE

Newton’s Method with Line Search for the CARE
Newton’s Method for the DARE

Newton’s Method with Line Search for the DARE

Internal Balancing of a Continuous-Time Minimal Realization
Square-Root Algorithm for Internal Balancing of a
Continuous-Time Nonminimal Realization

330
333

366
376
379
390

411
417
418
423
430
431
437
447

472
476

479

488

492
497
501
507

542
553
556
558
560
563
566
568
572
574
577

604

607

14.4.1
14.4.2
14.5.1

152.1
1522
154.1
1542

1543
1544
154.5

154.6
15.5.1
15.6.1
15.6.2

LIST OF ALGORITHMS

Model Reduction via Balanced Truncation
Schur Algorithm for Continuous-Time Model Reduction
Hankel-Norm Approximation of Continuous-Time System

Block Arnoldi Algorithm

Nonsymmetric Lanczos Algorithm

Arnoldi Algorithm for Single-input Lyapunov Equation
Block Arnoldi Algorithm for Stable Discrete-Time
Lyapunov Equation

Restarted Arnoldi Algorithm for Sylvester Equation
Block Arnoldi Algorithm for Sylvester Equation
Arnoldi Algorithm for Single-Output Sylvester-Observer
Equation

Arnoldi Algorithm for CARE

Projection Algorithm for Partial Pole-Placement
Lanczos Algorithm for SISO Model Reduction

Arnoldi Algorithm for SISO Model Reduction

XXXV

614
616
626

651
652
653

654
655
656

657
658
659
660
661

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

NOTATIONS AND SYMBOLS

Ker(A), N(A)
S_L

|

I

AT

A*

A—l
In(A)
B(A)
n(A, B)
Glloo
diag(dy, ..
SVD

QR

trace (A)

»dn)

field of real numbers

set of all real matrices of order m x n

set of complex matrices of order m x n

field of complex numbers

belongs to

positive definiteness (semi-definiteness)

real part of « € C

imaginary part of @ € C

unit impulse

spectrum of the matrix M

controllability matrix

observability matrix

controllability Grammian

observability Grammian

Kernel and nullspace of A

orthogonal subspace of S

end of proof

Idenity matrix of order s (Default for
an n x n identity matrix is /)

transpose of A

complex conjugate transpose of A

inverse of A

inertia of A

distance of A to a set of unstable matrices

distance of (A, B) to uncontrollability

Hy, - norm of the stable transfer function G (s)

an n x n diagonal matrix with dy, ..., d, on the diagonal

singular value decomposition
QR factorization
trace of the matrix A

XXxviil

A B
o o)
G(s)
A
AllF
Omin(A)
Omax(A)

R(A)
G (A)
o;(A)
>
CARE
DARE

NOTATIONS AND SYMBOLS

state space realization: C(S1 ~ A~ 'B+D

transfer function matrix

2-norm of A

Frobenius norm of A

smallest singular value of A

largest singular value of A

approximately equal to

range of A

largest singular value of A

ith singular value of A

diagonal matrix containing singular values
continuous-time algebraic Riccati equation
discrete-time algebraic Riccati equation

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CONTENTS

Preface
Acknowledgments
About the Author
List of Algorithms
Notations and Symbols
CHAPTER 1 INTRODUCTION AND OVERVIEW
1.1 Linear and Numerical Linear Algebra (Chapter 2 and
Chapters 3 and 4)
1.2 System Responses (Chapter 5)
1.3 Controllability and Observability problems
(Chapter 6) 4]
1.4 Stability and Inertia (Chapter 7) 5]
1.5 Lyapunov, Sylvester, and Algebraic Riccati
Equations (Chapters 8 and 13) 6]
1.6 Realization and Identification (Chapter 9) E
1.7 Feedback Stabilization and Eigenvalue Assignment
(Chapters 10 and 11) E
1.8 State Estimation (Chapter 12) 10)
1.9 Internal Balancing and Model Reduction (Chapter 14) [11]
1.10 Nearness to Uncontrollability and Instability
(Chapters 6 and 7) and Robust Stability and Stability
Radius (Chapters 7 and 10)
1.10.1 Nearness to Uncontrollability and
Instability
1.10.2 Robust Stability and Stability Radius
(Chapters 7 and 10)
1.11 Sensitivity and Condition Numbers of Control
Problems 13
1.12 Hy-Control (Chapter 10)

vii

viii

1.13

CONTENTS

Software for Control Problems
References

PART I REVIEW OF LINEAR AND NUMERICAL LINEAR
ALGEBRA

CHAPTER 2 AREVIEW OF SOMEBASIC CONCEPTS AND RESULTS

CHAPTER 3

FROM THEORETICAL LINEAR ALGEBRA

2.1
22
23

2.4

2.5

2.6

2.7

28

Introduction

Orthogonality of Vectors and Subspaces
Matrices

2.3.1 The Characteristic Polynomial, the

Eigenvalues, and the Eigenvectors of a Matrix

2.3.2 Range and Nullspaces

2.3.3 Rank of a Matrix

2.34 The Inverse of a Matrix

2.3.5 The Generalized Inverse of a Matrix
2.3.6 Similar Matrices

2377 Orthogonal Projection

Some Special Matrices

2.4.1 Diagonal and Triangular Matrices

2.4.2 Unitary (Orthogonal) Matrix

24.3 Permutation Matrix

24.4 Hessenberg (Almost Triangular) Matrix
24.5 Companion Matrix

2.4.6 Nonderogatory Matrix

247 The Jordan Canonical Form of a Matrix
2.4.8 Positive Definite Matrix

249 Block Matrices

Vector and Matrix Norms

2.5.1 Vector Norms

2.5.2 Matrix Norms

Norm I[nvariant Properties Under Unitary Matrix
Multiplication

Kronecker Product, Kronecker Sum, and

Vec Operation

Chapter Notes and Further Reading

References

SOME FUNDAMENTAL TOOLS AND CONCEPTS
FROM NUMERICAL LINEAR ALGEBRA

3.1

Introduction

||]
(91109,

—_
~J

W[o L) N | IS W11 1N0] [o] |[\] DI B[N RN DI | D) [N I I A [N | Loy | Lo
DI — =) o0|| =2 | k=2 | k%41 | 2 B[ff Do | 9| D) SIS S | fes] | N

QI 9
19

32

33

34

35

3.6

37

CONTENTS

Floating Point Numbers and Errors in Computations

3.2.1 Floating Point Numbers

3.22 Rounding Errors

323 Laws of Floating Point Arithmetic

3.2.4 Catastrophic Cancellation

Conditioning, Efficiency, Stability, and Accuracy

3.3.1 Algorithms and Pseudocodes

3.3.2 Solving an Upper Triangular System

3.3.3 Solving a Lower Triangular System

3.3.4 Efficiency of an Algorithm

3.3.5 The Concept of Numerical Stability

3.3.6 Conditioning of the Problem and
Perturbation Analysis

3.3.7 Conditioning of the Problem, Stability of the
Algorithm, and Accuracy of the Solution

3.3.8 Conditioning of the Linear System and
Eigenvalue Problems

LU Factorization

3.4.1 LU Factorization using Gaussian
Elimination

3.42 The Cholesky Factorization

3.43 LU Factorization of an Upper Hessenberg
Matrix

Numerical Solution of the Linear System Ax=b

3.5.1 Solving Ax = b using the Inverse of A

3.5.2 Solving Ax = b using Gaussian
Elimination with Partial Pivoting

3.5.3 Solving a Hessenberg Linear System

354 Solving AX =B

3.5.5 Finding the Inverse of A

3.5.6 Computing the Determinant of A

3.5.7 Iterative Refinement

The QR Factorization

3.6.1 Householder Matrices

3.6.2 The Householder QR Factorization

3.6.3 Givens Matrices

3.6.4 The QR Factorization Using Givens
Rotations

3.6.5 The QR Factorization of a Hessenberg
Matrix Using Givens Matrices

Orthonormal Bases and Orthogonal Projections

Using QR Factorization

ENEEEEEEEEEEE

=

(&S

AEEEEEEE EEE EE
~|[| SN[[N || A [[\ —| |

@ 2

CHAPTER 4

3.8

39

3.10
3.11

CONTENTS

The Least-Squares Problem

3.8.1 Solving the Least-Squares Problem Using
Normal Equations

3.8.2 Solving the Least-Squares Problem Using
OR Factorization

The Singular Value Decomposition (SVD)

39.1 The Singular Value Decomposition and the
Structure of a Matrix

3.9.2 Orthonormal Bases and Orthogonal
Projections

3.9.3 The Rank and the Rank-Deficiency of
a Matrix

3.94 Numerical Rank

395 Solving the Least-Squares Problem Using
the Singular Value Decomposition

Summary and Review

Chapter Notes and Further Reading

References

CANONICAL FORMS OBTAINED VIA ORTHOGONAL
TRANSFORMATIONS

4.1

4.2

43

4.4

4.5

Importance and Significance of Using Orthogonal

Transformations

Hessenberg Reduction of a Matrix

4.2.1 Uniqueness in Hessenberg Reduction:
The Implicit Q Theorem

The Real Schur Form of A: The QR Iteration

Method

43.1 The Basic QR Iteration

4.3.2 The Hessenberg QR Iteration and Shift of
Origin

4.3.3 The Double Shift QR Iteration

4.3.4 Obtaining the Real Schur Form A

4.3.5 The Real Schur Form and Invariant
Subspaces

4.3.6 Inverse Iteration

Computing the Singular Value

Decomposition (SVD)

The Generalized Real Schur Form:

The QZ algorithm

45.1 Reduction to Hessenberg-Triangular Form

452 Reduction to the Generalized Real Schur
Form

EE

~J|| 3|~ ~J||=3 N|@
ool oof| =] | = ~J

\D|| o0 ool oof oo ooljoo o0 o] | R ~J
(=]l | A [N |) —|\O O

<]
<

Nel| N
Bl [

4.6

4.7
4.8

CONTENTS

Computing of the Eigenvectors of the Pencil

A—AB

Summary and Review
Chapter Notes and Further Reading
References

PART II CONTROL SYSTEMS ANALYSIS

CHAPTER 5 LINEAR STATE-SPACE MODELS AND SOLUTIONS

CHAPTER 6

OF THE STATE EQUATIONS
5.1 Introduction
52 State-Space Representations of Control Systems
5.2.1 Continuous-Time Systems
5.2.2 Discrete-Time Systems
5.2.3 Descriptor Systems
53 Solutions of a Continuous-Time System: System
Responses
5.3.1 Some Important Properties of the Matrix e
532 Sensitivity of e
5.3.3 Computational Methods for e”’
5.34 Comparison of Different Methods for
Computing the Exponential Matrix
5.3.5 Evaluating an Integral with the Exponential
Matrix
54 State-Space Solution of the Discrete-Time System
5.5 Transfer Function and Frequency Response
5.5.1 Transfer Function
5.5.2 The Frequency Response Matrix and its
Computation
5.6 Some Selected Software
5.6.1 Matlab Control System Toolbox
5.6.2 MATCONTROL
5.63 SLICOT
564 MATRIXx
5.7 Summary and Review
5.8 Chapter Notes and Further Reading

Exercises
References

CONTROLLABILITY, OBSERVABILITY, AND
DISTANCE TO UNCONTROLLABILITY
Introduction

6.1

At

105

122
126]
127]
128

137

137
139
140
140

[142
146
146
147
[147]
148
149
151
151

159

159

xii

CHAPTER 7

CONTENTS

6.2 Controllability: Definitions and Basic Results
6.2.1 Controllability of a Continuous-Time
System
6.2.2 Controllability of a Discrete-Time System
6.3 Observability: Definitions and Basic Results

160
164
165

6.3.1 Observability of a Continuous-Time System [163]

6.3.2 Observability of a Discrete-Time System

6.4 Decompositions of Uncontrollable and Unobservable
Systems

6.5 Controller- and Observer-Canonical Forms

6.6 Numerical Difficulties with theoretical criteria of
controllability and observability

6.7 A Numerically Effective Test of Controllability

6.8 A Numerically Effective Test of Observability

6.9 Distance to an Uncontrollable System
6.9.1 Newton’s and the Bisection Methods for

Computing the Distance to Uncontrollability

6.9.2 The Wicks—DeCarlo Method for Distance to
Uncontrollability
6.9.3 A Global Minimum Search Algorithm
6.10 Distance to Uncontrollability and the Singular values
of the Controllability Matrix
6.11 Some Selected Software
6.11.1 MATLAB Control System Toolbox
6.11.2 MATCONTROL
6.11.3 CSP-ANM
6.11.4 SLICOT
6.11.5 MATRIXy
6.12 Summary and Review
6.13 Chapter Notes and Further Reading
Exercises
References

STABILITY, INERTIA, AND ROBUST STABILITY
7.1 Introduction
7.2 Stability of a Continuous-time System
7.2.1 Eigenvalue Criterion of Continuous-Time
Stability
7.2.2 Continuous-Time Lyapunov Stability
Theory
7.2.3 Lyapunov Equations and Controllability
and Observability Grammians
7.2.4 Lyapunov Equations and the H-Norm

(1671

—
N
~J

&

—
~J
—

o] | RN
[F8) | k98]

RSN |

185

EEEEEENEERENE

[| -
Q|| \O)
L] | L)

[| -
= | Ne
ES|EN

(& [\®) () =
ERCREREEENE
! I o — Qo

[\
—
—]

CHAPTER 8

7.3

7.4

7.5

7.6
7.7
7.8
7.9

7.10
7.11

CONTENTS

Stability of a Discrete-time System

7.3.1

Stability of a Homogeneous Discrete-Time
System

Some Inertia Theorems

7.4.1
74.2

The Sylvester Law of Inertia
The Lyapunov Inertia Theorems

Determining the Stability and Inertia of
a Nonsymmetric Matrix

Distance to an Unstable System

Robust Stability

The Structured Stability Radius

Some Selected Software

7.9.1
79.2
793

MATLAB Control System Toolbox
MATCONTROL
SLICOT

Summary and Review

Chapter Notes and Further Reading
Exercises

References

NUMERICAL SOLUTIONS AND CONDITIONING OF
LYAPUNOV AND SYLVESTER EQUATIONS
Introduction

The Existence and Uniqueness of Solutions

8.1
8.2

83

8.2.1
8.2.2

8.2.3

The Sylvester Equation: XA + BX =C
The Lyapunov Equation:

XA+ATX =C

The Discrete Lyapunov Equation: ATX A —
X=C

Perturbation Analysis and the Condition Numbers

8.3.1

8.3.2

8.33

834

8.3.5
8.3.6

8.3.7

Perturbation Analysis for the Sylvester
Equation

The Condition Number of the Sylvester
Equation

Perturbation Analysis for the Lyapunov
Equation

The Condition Number of the Lyapunov
Equation

Sensitivity of the Stable Lyapunov Equation
Sensitivity of the Discrete Lyapunov
Equation

Sensitivity of the Stable Discrete Lyapunov
Equation

25

w| wy W
~J LI | —_ el

xiv

8.4

8.5

8.6

8.7
8.8

8.9
8.10

CONTENTS

8.3.8 Determining IlI-Conditioning from the
Eigenvalues

83.9 A Condition Number Estimator for the
Sylvester Equation: ATX — XB = C

Analytical Methods for the Lyapunov Equations:

Explicit Expressions for Solutions

Numerical Methods for the Lyapunov and Sylvester

Equations

8.5.1 Numerical Instability of Diagonalization,
Jordan Canonical Form, and Companion
Form Techniques

8.5.2 The Schur Method for the Lyapunov
Equation: XA + ATX =C

8.5.3 The Hessenberg—-Schur Method for the
Sylvester Equation

8.5.4 The Schur Method for the Discrete
Lyapunov Equation

8.5.5 Residual and Backward Error in the Schur

and Hessenberg—Schur Algorithms

8.5.6 A Hessenberg Method for the Sylvester
Equation: AX + XB=C

8.5.7 The Hessenberg—Schur Method for the
Discrete Sylvester Equation

Direct Computations of the Cholesky Factors of

Symmetric Positive Definite Solutions of Lyapunov

Equations

8.6.1 Computing the Cholesky Factor of the
Positive Definite Solution of the
Lyapunov Equation

8.6.2 Computing the Cholesky Factor of the
Positive Definite Solution of the Discrete
Lyapunov Equation

Comparisions of Different Methods and Conclusions

Some Selected Software

8.8.1 MATLAB Control System Toolbox
8.8.2 MATCONTROL

8.8.3 CSP-ANM

8.84 SLICOT

8.8.5 MATRIXy

8.8.6 LAPACK

Summary and Review

Chapter Notes and Further Reading

[\l [\ b)) [b N
N [oa) N [N N N
N £ () [\ O o0

)
[oN
\O

[\ [\ N (o
oo} ~J ~J ~3
U OO (=2 R

£
0]
!

[\
o0
!

9

NSIRNINY
\O 0
L[| [N\O

N1 5%
H©
L[|

N
\O
B

[\
\O
=

[\
\O
w

N
\O
h

]
\O
|:|

=
N
~J

CONTENTS X

<

Exercises 298
References
PART III CONTROL SYSTEMS DESIGN
CHAPTER 9 REALIZATION AND SUBSPACE IDENTIFICATION 307
9.1 Introduction 307]
9.2 State-Space Realizations of a Transfer Function 308
9.2.1 Controllable and Observable Realizations [309
9.2.2 Minimal Realization 310
9.3 Computing Minimal Realizations from Markov

Parameters 314

9.3.1 Some Basic Properties of the Hankel Matrix
of Markov Parameters 315

932 An SVD Method for Minimal Realization [316]
933 A Modified SVD Method for Minimal

Realization 319
94 Subspace Identification Algorithms 324
9.4.1 A Subspace Deterministic Model
Identification Algorithm 324
9.4.2 A Stochastic Subspace Model Identification
Algorithm 329
943 Continuous-Time System Identification 332
944 Frequency-Domain Identification 332
9.5 Some Selected Software 334
9.5.1 MATLAB Control System Toolbox 334
952 MATCONTROL 334
953 CSP-ANM 334]
954 SLICOT 335
955 MATRIXx 339
9.6 Summary and Review 333
9.7 Chapter Notes and Further Reading 337
Exercises 337
References [340
CHAPTER 10 FEEDBACK STABILIZATION, EIGENVALUE
ASSIGNMENT, AND OPTIMAL CONTROL [343
10.1 Introduction [343
10.2 State-Feedback Stabilization
10.2.1 Stabilizability and Controllability
10.2.2 Stabilization via Lyapunov Equations 348

xvi

CHAPTER 11

10.3
104

10.5

10.6

10.7
10.8

10.9
10.10

CONTENTS

Detectability

Eigenvalue and Eigenstructure Assignment Problems

10.4.1 Eigenvalue Assignment by State Feedback

10.4.2 Eigenvalue Assignment by Output Feedback

10.4.3 Eigenstructure Assignment

The Quadratic Optimization Problems

10.5.1 The Continuous-Time Linear Quadratic
Regulator (LQR) Problem

10.5.2 The Discrete-Time Linear Quadratic
Regulator Problem

Hs,-Control Problems

10.6.1 Computing the Hoo-Norm

10.6.2 Hxo-Control Problem: A State-Feedback
Case

10.6.3 The Hx-Control Problem: Output
Feedback Case

The Complex Stability Radius and Riccati Equation

Some Selected Software

10.8.1 MATLAB Control System Toolbox

10.8.2 MATCONTROL

10.8.3 CSP-ANM

10.8.4 SLICOT

10.8.5 MATRIXx

Summary and Review

Chapter Notes and Further Reading

Exercises

References

NUMERICAL METHODS AND CONDITIONING OF
THE EIGENVALUE ASSIGNMENT PROBLEMS

11.1
11.2

11.3

Introduction

Numerical Methods for the Single-input Eigenvalue

Assignment Problem

11.2.1 A Recursive Algorithm for the Single-Input
Problem

11.2.2 An Error Analysis of the Recursive
Single-Input Method

11.2.3 The QR and RQ Implementations of
Algorithm 11.2.1

11.24 Explicit and Implicit RQ Algorithms

Numerical Methods for the Multi-input Eigenvalue

Assignment Problem

[S%]
W
[O%)

1[G [
;“51U|u

W)
N
W)

s
N
=~

[OS
~J
[\

8]
~J
W)

(U8
~J
)]

(9%
Q)
—|

(U8
o0
)

W)
]
N

(O8]
O
—

< [
Ne | Noj
] | —

W)
D)
[\

(U]
N=
N

W)
Q)|
[\

W)
Ne
%

3%
O
3

EE|

Ei
O
(9

FN
)
~J

ENE
— —_
& =)

EEN
—_—
N

ey
[\
[l

H
[\
—

CHAPTER 12

11.4

11.5
11.6

11.7

11.8

11.9

11.10

11.11
11.12

CONTENTS

11.3.1 A Recursive Multi-Input Eigenvalue
Assignment Algorithm

11.3.2 The Explicit QR Algorithm for the
Multi-Input EVA Problem

11.3.3 The Schur Method for the Multi-Input

Eigenvalue Assignment Problem

11.3.4 Partial Eigenvalue Assignment Problem

Conditioning of the Feedback Problem
11.4.1 The Single-Input Case
11.4.2 The Multi-Input Case

11.4.3 Absolute and Relative Condition Numbers

Conditioning of the Closed-loop Eigenvalues
Robust Eigenvalue Assignment
11.6.1 Measures of Sensitivity

11.6.2 Statement and Existence of Solution of the
Robust EigenValue Assignment Problem

11.6.3 A Solution Technique for the Robust
Eigenvalue Assignment Problem

Comparison of Efficiency and Stability:

the Single-input EVA Problem

Comparison of Efficiency and Stability:

the Multi-input EVA Problem

Comparative Discussion of Various Methods

and Recommendation

Some Selected Software

11.10.1 MATLAB Control System Toolbox

11.10.2 MATCONTROL

11.10.3 CSP-ANM

11.10.4 SLICOT

11.10.5 MATRIXx

11.10.6 POLEPACK

Summary and Review

Chapter Notes and Further Reading

Exercises

References
STATE ESTIMATION: OBSERVER AND
THE KALMAN FILTER
12.1 Introduction
12.2 State Estimation via Eigenvalue Assignment
12.3 State Estimation via Sylvester Equation
124 Reduced-order State Estimation

xviii

CHAPTER 13

12.5
12.6

12.7

12.8

129
12.10
12.11

12.12
12.13

CONTENTS

12.4.1 Reduced-Order State Estimation via
Eigenvalue Assignment

12.42 Reduced-Order State Estimation via
Sylvester-Observer Equation

Combined State Feedback and Observer Design

Characterization of Nonsingular Solutions of the

Sylvester Equation

Numerical Solutions of the Sylvester-Observer

Equation

12.7.1 A Recursive Method for the Hessenberg
Sylvester-Observer Equation

12.7.2 A Recursive Block-Triangular Algorithm
for the Hessenberg Sylvester-Observer
Equation

Numerical Solutions of a Constrained Sylvester-

observer Equation

Optimal State Estimation: The Kalman Filter

The Linear Quadratic Gaussian Problem

Some Selected Software

12.11.1 MATLAB Control System Toolbox

12.11.2 MATCONTROL

12.11.3 CSP-ANM

12.11.4 SLICOT

12.11.5 MATRIXy

Summary and Review

Chapter Notes and Further Reading

Exercises

References

NUMERICAL SOLUTIONS AND CONDITIONING OF
ALGEBRAIC RICCATI EQUATIONS

13.1
132

13.3

13.4

13.5

Introduction

The Existence and Uniqueness of the Stabilizing

Solution of the CARE

The Existence and Uniqueness of the Stabilizing

Solution of the DARE

Conditioning of the Riccati Equations

13.4.1 Conditioning of the CARE

13.4.2 Conditioning of the DARE
Computational Methods for Riccati Equations

13.5.1 The Eigenvector and Schur Vector Methods

E

N
~J
\O

N
joe]
[3S]

ENERE

N
=
o\ @

399]
505

“wumu
EE
\O||\O|

[l
2ElE
2|82

|
—
S

w
—
<

SEE

wn|
—
\O)

wny
—
\O

E
—

Uy
\®]
O

EEEEE

CHAPTER 14

CONTENTS xi

w

13.5.2 The Generalized Eigenvector and Schur
Vector Methods
13.5.3 The Matrix Sign Function Methods
13.5.4 Newton’s Methods
13.6 The Schur and Inverse-Free Generalized Schur
Methods for the Descriptor Riccati Equations 579
13.6.1 The Generalized Schur Method for
the DCARE
13.6.2 The Inverse-Free Generalized Schur Method
for the DCARE
13.6.3 Thelnverse-Free Generalized Schur Method
for the DDARE 1581
13.7 Conclusions and Table of Comparisons [581
13.8 Some Selected Software [383]
13.8.1 MATLAB Control System Toolbox [583]
13.82 MATCONTROL [583]
13.8.3 CSP-ANM [584]
13.8.4 SLICOT [584]
13.8.5 MATRIXy [585]
13.9 Summary and Review E
13.10 Chapter Notes and Further Reading [588]
Exercises [591]
References 593
INTERNAL BALANCING AND MODEL REDUCTION 601
14.1 Introduction 601 |
14.2 Internal Balancing for Continuous-time Systems [602]
14.2.1 Internal Balancing of a Minimal
Realization (MR) 603
14.2.2 Internal Balancing of a Nonminimal
Realization 1606
14.3 Internal Balancing for Discrete-time Systems [609]
144 Model Reduction [611]
144.1 Model Reduction via Balanced Truncation |611
14.4.2 The Schur Method for Model
Reduction 615
14.4.3 A Balancing-Free Square-Root Method for
Model Reduction 621
14.5 Hankel-Norm Approximations 623]
14.5.1 A Characterization of All Solutions to
the optional Hankel-Norm Approximation [624]
14.6 Model Reduction of an Unstable System [633]

XX

CONTENTS

14.7 Frequency-Weighted Model Reduction

14.8 Summary and Comparisons of Model Reduction
Procedures

149 Some Selected Software
14.9.1 MATLAB Control System Toolbox
149.2 MATCONTROL
14.9.3 CSP-ANM
1494 SLICOT
149.5 MATRIXy

14.10 Summary and Review

14.11 Chapter Notes and Further Reading
Exercises
References

PART IV SPECIAL TOPICS

CHAPTER 15

APPENDIX A

LARGE-SCALE MATRIX COMPUTATIONS IN
CONTROL: KRYLOV SUBSPACE METHODS
15.1 Introduction
15.2 The Arnoldi and Block Arnoldi Methods
15.2.1 The Scalar Arnoldi Method
15.2.2 The Block Arnoldi Method
15.2.3 The Lanczos and Block Lanczos Methods
153 Scopes of using the Krylov Subspace Methods in
Control
154 Arnoldi Methods for Lyapunov, Sylvester, and
Algebraic Riccati Equations
15.5 Amoldi Method for Partial Eigenvalue Assignment
15.6 Lanczos and Arnoldi Methods for Model Reduction
15.6.1 Lanczos Methods for Model Reduction
15.6.2 Block Lanczos and Band Lanczos Methods
for MIMO Model Reduction
15.6.3 An Arnoldi Method for SISO Model
Reduction
15.7 Chapter Notes and Further Reading
Research Problems
References

SOME EXISTING SOFTWARE FOR CONTROL
SYSTEMS DESIGN AND ANALYSIS
Al MATLAB CONTROL SYSTEM TOOLBOX

[=N|[=)
LI
[=)\ |19}

N
W)
N

N
(US]
~J

N
w9
~J

N O
G | W9
~J |

N
)
Q)

N
&
O

N
FiN
—

N
pN
wy

@)
R

649
649
650

650

650

651

N
wh
(98]

NS SN
| ajl W
\O|| \O|| w9

N
N
=

D
[@)}
—

|| S
=N k=N k=N | k=2
W]]| DI | =

I
D

69|

APPENDIX B

APPENDIX C

Index

A2
A3

A4
AS
A6

CONTENTS

MATCONTROL

Control System Professional—Advanced Numerical

Methods (CSP-ANM)

SLICOT

MATRIXy

System Identification Software

A.6.1 MATLAB System Identification Toolbox

A.6.2 Xmath Interactive System Identification
Module, Part-2

A.63 ADAPTy

References

MATCONTROL AND LISTING OF MATCONTROL

FILES

B.1 About Matcontrol

B.2 Chapterwise Listing of Matcontrol Files

CASE STUDY: CONTROL OF A 9-STATE AMMONIA

REACTOR

C.1 Introduction

C.2 Testing the controllability

C3 Testing the Observability

C4 Testing the Stability

C.5 Lyapunov Stabilization

C.6 Pole-Placement Design

C7 The LQR and LQG Designs

C.8 State-Estimation(observer): Kalman estimator versus
Sylvester Estimator

C.9 System Identification and Model Reduction

References

XXI

iﬁ
[
!o

N
~3
i

o)
~J
—

N
~J
—

N
~J
—

N
=

i
~J
|98

~J]
L)

N
~J
N

~J
\O)

N
~J
\O

N
Q!
o)

Q!
=l

0\"0\
A A
L | L

682
682

(o))
o0
W

o
o
N

(o))
jose]
o

(=]
o0
\O

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 1

INTRODUCTION AND OVERVIEW

A linear time-invariant continuous-time dynamical system in state-space is
described by the matrix differential equations of the form:

x(t) = Ax (1) + Bu(t); x(tg) =xg9, 1>1g (1.0.DH

y(t) = Cx(t) + Du(t), (1.0.2)

where A, B, C, and D are real time-invariant n x n state matrix, n X m(m < n)
input matrix, r X n(r < n) output matrix, and r x m direct transmission matrix,
respectively. The vectors u, x, and y are time-dependent vectors referred to as
input, state, and output, respectively. The dot, “x,” denotes ordinary differentiation
with respect to ¢. If m = 1, then the matrix B is an n x | column vector, and is
denoted by 4. The control problem dealing with such an input vector is referred to
as the single-input problem (because u is a scalar in this case). The single-output
problem is analogously defined.

Similarly, a linear time-invariant discrete-time dynamical system in state-
space is represented by the vector-matrix difference equations of the form:

x(k+1) = Ax(k) + Buk); x(0)=x9, k>0 (1.0.3)

y(k) = Cx(k) + Du(k). (1.0.4)

For notational convenience, the system (1.0.1)—(1.0.2) or its discrete counterpart
(1.0.3)—(1.0.4) is sometimes denoted simply by (A, B, C, D). The matrix D will
be assumed to be a zero matrix for most problems in this book.

The transfer function matrix from u to y for the system (1.0.1)—(1.0.2) is
defined as

y(s) = G(s)u(s),
where u(s) and y(s) are the Laplace transforms of u(¢) and y(¢) with x(0) = 0.
Thus,
G(s)=C(sI — A 'B+D.

2 Chapter 1: INTRODUCTION AND OVERVIEW

Sometimes, the notation

AlBY_ ., .

will be used for simplicity.

The transfer function matrix for a discrete-time system is similarly defined.

This book deals with computational methods for control problems modeled by
the systems of the above types; and with numerical analysis aspects associated
with these computational methods, such as conditioning of problems, numerical
stability of algorithms, accuracy of solutions, etc.

The following major topics, associated with the design and analysis of linear
control system have been addressed in the book: (i) Linear and Numerical Lin-
ear Algebra, (ii) System Responses, (iii) Controllability and Observability, (iv)
Stability and Inertia, (v) Lyapunov, Sylvester and Riccati Equations, (vi) Realiza-
tion and Identification, (vii) Feedback Stabilization and Eigenvalue Assignment,
(viii) State Estimation, (ix) Internal Balancing and Model Reduction, (x) Nearness
to Uncontrollability and Instability, (xi) Sensitivity and Conditioning for Eigen-
value Assignment; Lyapunov, Sylvester, and Riccati equations, (xii) H, and Hy,
Control, and (xiii) Selected Control Software.

In what follows, we give an overview of each of these topics with references to the
Chapter(s) and Sections(s) in which it is dealt with. For references of the papers
cited in these sections, please consult the reference sections of the associated
chapters.

1.1 LINEAR AND NUMERICAL LINEAR ALGEBRA
(CHAPTER 2 AND CHAPTERS 3 AND 4)

The linear and numerical linear algebra background needed to understand the
computational methods has been done in the book itself in Chapters 2—4.

All major aspects of numerical matrix computations including solutions and
least-squares solutions of algebraic linear systems, eigenvalue and singular value
computations, computations of generalized eigenvalues and eigenvectors, along
with the conditioning of these problems and numerically stability of the
algorithms have been covered.

Canonical Forms

A common strategy for numerically solving control problems can be described in
the following steps taken in the sequence:

Step 1. The problem is transformed by reducing the matrices A, B, and C
to some convenient “condensed” forms using transformations that preserve the
desirable properties of the problem at hand.

Section 1.2: SYSTEM RESPONSES (CHAPTER 5) 3

Step 2. The transformed problem is solved by exploiting the structure of the
condensed forms of the matrices A, B, and C obtained in Step 1.

Step 3. The solution of the original problem is recovered from the solution of
the transformed problem.

Two condensed forms that have been used often in the past in control literature
are: the Jordan Canonical Form (JCF) and the Frobenius (or Block Companion)
Form (a variation of this is known as the Luenberger Canonical Form). Exploitation
of rich structures of these forms often makes it much easier to solve a problem and
these forms are very convenient for textbook illustrations.

Unfortunately, determination of both these forms might require very ill-
conditioned similarity transformations.

Suggestions. Avoid the use of the JCF and companion canonical forms in
numerical computations, and use only canonical forms that can be obtained using
well-conditioned transforming matrices, such as orthogonal transformations. The
Hessenberg form, the controller-Hessenberg and the observer-Hessenberg forms,
the real Schur and the generalized real Schur forms, the Hessenberg-triangular
form are examples of such canonical forms. These forms can be obtained via
orthogonal transformations. The errors in numerical computations involving
orthogonal matrix multiplications are not magnified by the process and the sen-
sitivity of a computational problem remains unaffected by the use of orthogonal
transformations.

1.2 SYSTEM RESPONSES (CHAPTER 5)

For the continuous-time system (1.0.1)—(1.0.2), the dynamical system responses
x(¢) and y(z) for t > ty can be determined from the following formulas:

t
x(t):eA<'—'°)x(z0)+f A9 Bu(s) ds, (1.2.1)

fo
y(t) = Cx(t) + Du(t). (1.2.2)

In order to study the behavior of a dynamical system, it is customary to determine
the responses of the system due to different inputs. Two most common inputs are
the unit step function and the unit impulse.

Thus, the unit step response of a system is the output that occurs when the
input is the unit step function (it is assumed that x(0) = 0). Similarly, the unit
impulse response is the output that occurs when the input is the unit impulse.

The impulse response matrix of the system (1.0.1) and (1.0.2) is defined by

H(1) = Ce* B + D8 (1),

where §(¢) is the Dirac delta function. The impulse response is the response of the
system to a Dirac input 6(¢).

4 Chapter 1: INTRODUCTION AND OVERVIEW

Thus, to obtain different responses, one needs to compute the matrix exponential
e = I + Ar + (A%*/2) + --- and the integrals involving this matrix. The
computational challenge here is how to determine e! without explicitly computing
the matrix powers. Finding higher powers of a matrix is computationally intensive
and is a source of instability for the algorithm that requires such computations.

An obvious way to compute ¢4 is to use some simple canonical forms of A
such as the JCF or a companion form of A. It is shown in Chapter 5 by simple
examples how such computations can lead to inaccurate results. Computations
using truncated Taylor series might also give erroneous result (see Example 5.3.3).

The method of choice here is either Padé approximation with scaling and squar-
ing (Algorithm 5.3.1) or the method based on reduction of A to real Schur form
(Algorithm 5.3.2).

A method (Algorithm 5.3.3) due to Van Loan (1978) for computing an integral
involving an matrix exponentials is also described in Section 5.3.5.

Frequency Response Computations

The frequency response plot for many different values of the frequency w is
important in the study of various important properties of linear systems. The fre-
quency response curves indicate how the magnitude and angle of the sinusoidal
steady-state response change as the frequency of the input is changed. For this,
the frequency-response matrix G(jw) = C(jwl — A)~'B + D(w > 0) needs to
be computed. Computing G (jw) using the LU decomposition of A would require
O (n®) operations per w and is, therefore, not practical when this computation has
to be done for a large number of values of w. An efficient and practical method due
to Laub (1981), based on reduction of A to a Hessenberg matrix, is presented in
Algorithm 5.5.1, and short discussions on some other recent methods for efficient
computations of the frequency-response matrix is included in Section 5.5.2.

1.3 CONTROLLABILITY AND OBSERVABILITY PROBLEMS
(CHAPTER 6)

The system (1.0.1) is controllable or, equivalently, the pair (A, B) is controllable,
if for any initial state x(0) = x¢ and the final state xf, there exists an input u(¢)
such that the solution satisfies x(tf) = x;. Several mathematically equivalent
criteria of controllability are stated and proved in Theorem 6.2.1. The most well-
known of them being Criterion (ii). Unfortunately, this criterion does not yield to
a numerically viable test for controllability (see Example 6.6.1).

Similar remarks hold for other criteria. See Example 6.6.2 in Chapter 6 which
demonstrates the pitfall of the eigenvalue criterion (popularly known as the
Hautus—Popov-Belevich criterion).

Section 1.4: STABILITY AND INERTIA (CHAPTER 7) 5

A numerically viable test of controllability, based on the reduction to (A, B) to
the controller-Hessenberg form, is given in Section 6.7 (Staircase Algorithm).

Observability is a dual concept to controllability. Thus, all that we have said
above about controllability applies equally to observability.

1.4 STABILITY AND INERTIA (CHAPTER 7)
It is well known that the uncontrolled system
%= Ax(t) (1.4.1)

is asymptotically stable if and only if all the eigenvalues of A have negative real
parts.
Similarly, the discrete system

x(k + 1) = Ax(k) (1.4.2)

is asymptotically stable if and only if the eigenvalues of A have moduli less
than 1.

The common approaches for determining the stability of a system include
(1) finding the characteristic polynomial of A followed by application of the Routh—
Hurwitz test in case of continuous-time stability or the Schur—Cohn criterion in
case of discrete-time stability (ii) solving and testing the positive definiteness of
the solution matrix X of the associated Lyapunov equations:

XA+ ATX = —M (for continuous-time stability) (14.3)

or
X-ATXA=M (for discrete-time stability). (1.4.4)

Finding the characteristic polynomial of a matrix is potentially a numerically
unstable process and, furthermore, the coefficients of the characteristic polynomial
can be extremely sensitive to small perturbations (see Chapter 4). The Lyapunov
equation approach is counterproductive in the sense that the most numerically
viable method for solving a Lyapunov equation, namely, the Schur method, is
based on the reduction of A to a real Schur form, and the latter either explicitly
displays the eigenvalues of A or they can be trivially computed.

It is, therefore, commonly believed that the most viable way to test the stability
of a dense system is to compute the eigenvalues of A using the universally used
method, called the Q R iteration with double shift (see Chapter 4 (Section 4.3.3)).

Having said this, let’s note that with explicit computation of eigenvalues, one
gets much more than what is needed for determining the stability, and moreover,
as just said, the eigenvalues can be extremely ill-conditioned. An indirect method
that neither explicitly solves a Lyapunov equation nor computes the eigenvalues,

6 Chapter 1: INTRODUCTION AND OVERVIEW

is stated in Algorithm 7.5.1. This method was later modified by Datta and Datta
(1981). According to theoretical operations-count, both these methods are
about 3—4 times faster than the eigenvalue method and several times faster
than the Lyapunov equation method.

Two important inertia theorems (Theorem 7.4.1 and Theorem 7.4.2) are stated
in Section 7.4.

1.5 LYAPUNOY, SYLVESTER, AND ALGEBRAIC RICCATI
EQUATIONS (CHAPTERS 8 AND 13)

The Lyapunov equations (1.4.3) and (1.4.4) arise in (i) Stability and Robust Sta-
bility Analyses (Chapter 7), (i) Model Reduction (Chapter 14), (iii) Internal
Balancing (Chapter 14), and (iv) Determining H;-norm (Chapter 7).

A variation of the Sylvester equation XA + BX = M called the Sylvester-
observer equation, arises in the design of observer (Chapter 12), and it can also
be used to solve feedback stabilization and pole-placement problems (Chapters 10
and 11).

Solving these equations via reduction of A and/or B to a companion form or
the JCF is numerically unreliable, because, as said before, these forms cannot be,
in general, obtained in a numerically stable way.

Experience with numerical experiments reveal that solving Lyapunov equations
of order higher than 20 using a companion form of A vields solutions with errors
as large as the solutions themselves. Example 8.5.1 in Chapter 8 illustrates the
danger of solving a Lyapunov equation using the JCFs of A. With A and C as chosen
in Example 8.5.1, the solution of (1.4.3) via diagonalization of A (available in
MATLAB function lyap2) is very different from the exact solution.

The methods of choice are: (i) The Schur method (Section 8.5.2) for the
Lyapunov equation and (ii) The Hessenberg—Schur method (Algorithm 8.5.1)
for the Sylvester equation.

In several applications, all that is needed is the Cholesky factor L of the
symmetric positive definite solution X of a Lyapunov equation, for example,
the controllability and observability Grammians of a stable system needed for
balanced realization in the context of medel reduction (Chapter 14).

It is numerically desirable that L is found without explicitly computing the
matrix X and without forming the matrix CTC or BBT. A method for obtaining
such an L due to Hammarling both for the continuous-time and the discrete-time
systems are described in Chapter 8 (Algorithms 8.6.1 and 8.6.2).

The continuous-time algebraic Riccati equation (CARE):

XA+A"™X - XBR'BTX+0=0 (1.5.1)

Section 1.5: LYAPUNOYV, SYLVESTER, AND ALGEBRAIC RICCATI EQUATIONS 7

and the discrete-time algebraic Riccati equation (DARE).
ATXA - X - A"XB(R+B'XB)"'BTXA+ Q=0 (15.2)

and their variations arise in (i) LQR and LQG Design (Chapters 10 and 12),
(i1) Kalman Filtering (Chapter 12), and (iii) Hy, Control (Chapter 10).

An algebraic Riccati equation may have many solutions. Of special interests,
from applications viewpoints, is the unique stabilizing solution. Numerical meth-
ods for computing such a solution are described in Chapter 13. The stabilizing
solution of the CARE may be obtained by constructing a basis of the invariant sub-
space corresponding to the eigenvalues with negative real parts (stable invariant
subspace) of the associated Hamiltonian matrix

H= (_AQ :;T) , where S = BR™!BT.
It is natural to construct such a basis by finding the eigendecomposition of H.
However, the eigenvector matrix can be highly ill-conditioned if H has multiple or
near multiple eigenvalues. The difficulty can be overcome by using an ordered real
Schur decomposition of H. This gives rise to the Schur method for the CARE
(Laub 1979). The Schur method for the CARE is described in Algorithm 13.5.1.
Section 13.5.1 also contains some discussions on the Schur method for the DARE.
The Schur method for the DARE is based on finding a stable invariant subspace
of the associated symplectic matrix

M= (A +8(AHTQ —S(A‘l)T>
"\ =ahTe @aht)

The Schur methods, however, may not give an accurate solution in case R
is nearly singular. This difficulty can be overcome by using an extended matrix
pencil. The stabilizing solution of the CARE maybe computed by finding the
ordered generalized Schur decomposition of this pencil using the QZ iteration
algorithm. Such a method is called an inverse-free generalized Schur method and is
described in Algorithm 13.5.3 and Algorithm 13.5.4, respectively, for the CARE
and DARE.

The matrix sign-function methods has been developed in Section 13.5.3. The
matrix sign-function method for the CARE is based on computing the matrix sign-
function of the Hamiltonian matrix H (see Algorithm 13.5.6). For the DARE

(Algorithm 13.5.7), the matrix H' = (P+N)"Y(P—N),where P = <_AQ (I))’

and N = (I) IfT) is computed first and then the matrix sign-function method
for the CARE is applied.
The matrix sign-function methods are not stable in general, unless an iterative

refinement technique is used.

8 Chapter 1: INTRODUCTION AND OVERVIEW

Any Riccati equation solver should be followed by an iterative refinement
method, such as Newton’s method. For detailed descriptions of Newton’s meth-
ods, see Chapter 13 (Section 13.5.4). Newton’s methods for the CARE and
DARE are described, respectively, in Algorithms 13.5.8 and 13.5.10, while Algo-
rithms 13.5.9 and 13.5.11, described Newton’s methods with line search for the
CARE and the DARE, respectively.

In summary, in case R is robustly nonsingular, the Schur method or the matrix
sign function method, followed by Newton’s method, is recommended for the
CARE. In case R is nearly singular, the inverse-free generalized Schur method
(Algorithm 13.5.3) should be used.

For the DARE, the inverse-free generalized Schur method (Algorithm 13.5.4)
is the most general purpose method and is recommended to be used in practice.
Again, the method should be followed by Newton’s iterative refinement technique.

1.6 REALIZATION AND IDENTIFICATION (CHAPTER 9)

Given a set of a large number of Markov parameters, the problem of determining the
system matrices A, B, C, and D from this set, is called a state-space realization
problem.

There are many realizations corresponding to a given set of Markov parameters
and the one of the least possible dimension of A, called a Minimal Realization
(MR), is of practical interest. A realization is an MR if and only if it is both
controllable and observable (Theorem 9.2.1).

The two MRs are related via a nonsingular transforming matrix (Theorem 9.2.2)
and the degree of an MR is called the McMillan degree.

The existing algorithms for finding an MR are all based on factoring an
associated block Hankel matrix of Markov parameters:

H H - Hy

Hy Hy -+ Hy
M, =] .

Hy Hiyp -+ Hy

(k has to be greater than or equal to the McMillan degree), where H; = C ATlB
is the ith Markov parameter.

The block Hankel matrix M; can be highly ill-conditioned and, therefore, care
should be taken in obtaining its factorization. The singular value decomposi-
tion (SVD) is certainly a numerically viable procedure for such a factorization.
Two SVD-based algorithms (Algorithms 9.3.1 and 9.3.2) are presented in
Chapter 9.

Section 1.7: FEEDBACK STABILIZATION AND EIGENVALUE ASSIGNMENT 9

The Markov parameters are easily generated from a transfer function matrix in
case they are of a discrete-time system; indeed in this case they are just the impulse
responses. However, they are not readily available for a continuous-time system.

Thus, it is more of a practical importance to identify the system matrices directly
from the input—output sequence.

Two subspace identification algorithms (Algorithms 9.4.1 and 9.4.2) from
DeMoor et al. (1999), that do not require explicit computations of Markov
parameters, is presented in Section 9.4.

Also stated in this chapter is a subspace algorithm (Algorithm 9.4.3) for
frequency-domain identification. The frequency-domain identification problem
concerns finding the system matrices A, B, C, and D from a given set of measured
frequency responses at a set of frequencies (not necessarily distinct).

The subspace methods are numerically stable practical methods for systems
identification.

1.7 FEEDBACK STABILIZATION AND EIGENVALUE
ASSIGNMENT (CHAPTERS 10 AND 11)

Suppose that the uncontrolled system (1.4.1) is not stable, then it is desirable to
make it stable. If the state vector x (¢) is measurable, then choosing

u(t) = —Kx(t),
we obtain the closed-loop system:

x(t) = (A — BK)x(1).

Mathematically, the problem is then to find matrix K such that A — BK is stable.

The system (1.0.1) is said to be stabilizable if such a K exists.

In many practical instances, just stabilizing a system is not enough. Certain
design constraints require that all the eigenvalues be placed in certain specified
regions of the complex plane.

This gives rise to the well-known Eigenvalue Assignment (EVA) problem or
the so-called pole-placement problem.

Computing the feedback vector f via controller canonical form or using the well-
known Ackermann formula for single-input problem does not yield to a numerically
viable algorithm (see Example 11.2.1).

Several numerically viable algorithms, based on the reduction of the pair (A, B)
to the controller-Hessenberg form rather than the controller-Canonical form, or to
the real Schur form of A have been developed in recent years and a few selected
algorithms are presented in Chapter 11. These include (i) Recursive algorithms
(Algorithms 11.2.1 and 11.3.1), based on evaluations of some simple recursive
relations, (i) QR and RQ type algorithms (Algorithms 11.2.2, 11.2.3 and the

10 Chapter 1: INTRODUCTION AND OVERVIEW

one described in Section 11.3.2), (iii) The Schur algorithm (Algorithm 11.3.3)
based on reduction of A to a real Schur form, and (iv) The robust EVA algorithm
(Algorithm 11.6.1).

A parametric algorithm (Algorithm 11.3.4) for Partial eigenvalue assignment
(PEVA) is described in Section 11.3.4. Lyapunov and Sylvester equations can
also be used for feedback stabilization and EVA. Two Lyapunov based methods
for feedback stabilization; one for the continuous-time system and the other for
the discrete-time system, have been described in Chapter 10 (Section 10.2). A
comparative study in tabular forms with respect to the efficiency and numerical
stability of different algorithms for EVA is given in Chapter 11 (Sections 11.7 and
11.8). Based on factors, such as ease of implementation, efficiency, and practical
aspect of numerical stability, the author’s favorites are: Algorithm 11.2.1 for
the single-input problem and Algorithm 11.3.3 for the multi-input problem. Also,
Algorithm 11.3.1 is extremely easy to use.

1.8 STATE ESTIMATION (CHAPTER 12)

In many practical situations, the states are not fully accessible, but the designer
knows the input u(¢) and the output y(¢). However, for stabilization and EVA
by state feedback, for LOQR and L QG design, for Kalman filters, to solve Hy,
state-feedback control problems, and others, the knowledge of the complete state
vector x (¢) is required. Thus, the unavailable states, somehow, need to be estimated
accurately from the knowledge of the matrices A, B, and C and the input and
output vectors #(¢) and y(¢). Mathematically, the state estimation problem is
the problem of finding an estimate x(¢) of x(¢) such that the error vector
e(t) = x(t) — X(¢t) approaches zero as fast as possible.

It is shown (Theorem 12.2.1) that if the states x (¢) of the system (1.0.1)—(1.0.2)
are estimated by

)é(t) =(A—-KC)x(t) + Ky(t) + Bu(r), (1.8.1)

where the matrix K is constructed such that A — K C is a stable matrix, then the
error vector e(t) has the property that e(t) — 0 as r — oo. The observability of
the pair (A, C) ensures the existence of such a matrix K.

It is clear from the above result that the state estimation problem can be solved
by solving the feedback stabilization or the EVA problem for the pair (AT, CT).

An alternative approach for state estimation is via solution of the Sylvester
equation XA — FX = GC (see Theorem 12.3.1).

Two numerically reliable algorithms (Algorithms 12.7.1 and 12.7.2) for the
Sylvester-observer equation, both based on the reduction of the pair (A, C) to
controller-Hessenberg forms, have been described in Chapter 12. Furthermore,
necessary and sufficient conditions for the nonsingularity of the solution X of the
Sylvester-observer equation have been given in Theorems 12.6.1 and 12.6.2.

Section 1.9: INTERNAL BALANCING AND MODEL REDUCTION (CHAPTER 14) 11

Optimal State Estimation: The Kalman Filter

The problem of finding the optimal steady-state estimation of the states of a stochas-
tic system is considered in Section 12.9. An algorithm (Algorithm 12.9.1) for the
state estimating using Kalman filter is described and the duality between Kalman
filter and the LQR design is discussed.

The Linear Quadratic Gaussian Problem

The linear quadratic Gaussian problem (LQG) deals with optimization of a per-
formance measure for a stochastic system. An algorithm (Algorithm 12.10.1) for
L.QG design is described in Section 12.10.1.

1.9 INTERNAL BALANCING AND MODEL REDUCTION
(CHAPTER 14)

The model reduction is a procedure for obtaining a reduced-order model that
preserves some important properties such as the stability, and is close to the orig-
inal model, in some sense. One way to obtain such a model is via internally
balanced realization. A continuous-time stable system given by (A, B, C) is
internally balanced if there exists a nonsingular transforming matrix T such that
T-'CgT T = TTOgT = % = diag(o1, 02, -+ , 04,0441, -+ , 0n), where Cg
and Og are, respectively, controllability and observability Grammians. The diag-
onal entries oy, - - - , 0, are called the Hankel singular values. Once the system
is internally balanced, the reduced-order model can be obtained by deleting the
states corresponding to the negligible Hankel singular values. Let G(s) and Gr(s)
denote the transfer function matrices, respectively, of the original and the reduced-
order models. Then a bound for the error £ = ||G(s) — Gr(s)]« 1S given in
Theorem 14.4.1.

An algorithm (Algorithm 14.2.1) for constructing a balanced realization, based
on the SVD of the matrix LgLC, where L, and L are, respectively, the Cholesky
factors of observability and controllability Grammians, is given in Section 14.2.
The difficulty with this method is that the transforming matrix T may be ill-
conditioned(see Section 14.2.2). An algorithm, based on the Schur decomposition
of the matrix Cg Og, that overcomes this difficulty is the Schur algorithm, Algo-
rithm 14.4.2. The Schur algorithm was developed by Safonov and Chiang (1989).
It produces a reduced-order model which has the same error property as the one
obtained via internal balancing.

This chapter also contains several other algorithms for balanced realization
and model reduction, including the Square-root algorithm (Algorithm 14.2.2)
for balanced realization and Hankel-norm approximation algorithm for model
reduction (Algorithm 14.5.1).

12 Chapter 1: INTRODUCTION AND OVERVIEW

1.10 NEARNESS TO UNCONTROLLABILITY AND INSTABILITY
(CHAPTERS 6 AND 7) AND ROBUST STABILITY AND
STABILITY RADIUS (CHAPTERS 7 AND 10)

1.10.1 Nearness to Uncontrollability and Instability

There are systems which are theoretically perfectly controllable, but may be very
close to uncontrollable systems (see the Example in Section 6.9).

Thus, what is important in practice is to know when a system is close to an
uncontrollable system rather than asking if it is controllable or not.

A measure of distance to uncontrollability, denoted by (A, B), is defined (Paige
1980) as follows:

w(A, BY = min{|| AA, AB ||> such that the system (A + AA, B+ AB)

is uncontroliable}

It can be shown (Theorem 6.9.1) (Miminis 1981; Eising 1984; (Kenney and Laub
1998) that

Ww(A, B) = mino, (sl — A, B),

where o,, denotes the smallest singular value. Several algorithms (Miminis 1981;
Wicks and DeCarlo 1991; Elsner and He 1991) for computing (A, B) have been
developed in the last several years. A Newton-type algorithm (Algorithm 6.9.1)
due to Elsner and He (1991) and an SVD algorithm due to Wicks and DeCarlo
(Algorithm 6.9.2) are described in Chapter 6.

Similar remarks hold for the stability of a system. There are systems which are
clearly stable theoretically, but in reality are very close to unstable systems. A well-
known example of such a system is the system with a 20 x 20 upper bidiagonal
matrix A having 10s along the subdiagonal and —1 along the main diagonal. Since
the eigenvalues of A are all —1, it is perfectly stable. However, if the (20, 1)th
entry is perturbed to € = 107!3 from zero, then one of the eigenvalues becomes
positive, making the matrix A unstable.

A measure of the distance to instability is

B(A) = min{|| AA || suchthat A+ AA is unstable}.
Again, it can be shown (Van Loan 1985) that
B(A) = minonin(A — jol).
welR
A bisection algorithm (Algorithm 7.6.1) due to Byers (1988) for estimating S(A)
is described in Chapter 7.

A bisection algorithm (Algorithm 7.6.2) for estimating the distance to a discrete
unstable system is also described in this chapter.

Section 1.11: SENSITIVITY AND CONDITION NUMBERS 13

1.10.2 Robust Stability and Stability Radius (Chapters 7 and 10)
The robust stability concerns the stability of the perturbed system:
(1) =(A+ E)x(),

where A is a stable matrix and £ is an r x n perturbation matrix. Two robust
stability results (Theorems 7.7.1 and 7.7.2) using Lyapunov equations are given
in Chapter 7.

The stability radius of the matrix triple (A, B, C) is defined as:

rr(A, B, C) =inflo(A) : A € F"*" and A + BAC is unstable},

where o(M), following the notation of Qiu et al. (1995), denotes the
largest singular value of M (ie., (M) = onax(M)). For real matrices
(A, B,C), rr(A, B, C) is called the real stability radius and, for complex
matrices (A, B, C), rc(A, B, C) is called the complex stability radius.

The stability radius, thus, determines the magnitude of the smallest perturbation
needed to destroy the stability of the system.

“Stability” here is referred to as either continuous-stability (with respect to the
left half-plane) or discrete-stability (with respect to the unit circle).

Let 3C, denote the boundary of either the half plane or the unit circle. Let A be
stable or discrete-stable.

Formulas for complex and real stability radii are given, respectively, in
Theorems 7.8.1 and 7.8.2.

Section 10.7 of Chapter 10 deals with the relationship between the complex
stability radius and Riccati equation. A characterization of the complex stability
radius is given in Theorem 10.7.2 using a parametric Hamiltonian matrix and the
connection between complex stability radius and an algebraic Riccati equation is
established in Theorem 10.7.3.

A simple bisection algorithm (Algorithm 10.7.1) for computing the complex
stability radius, based on Theorem 10.7.2, is then described at the conclusion of
this section.

1.11 SENSITIVITY AND CONDITION NUMBERS
OF CONTROL PROBLEMS

The sensitivity of a computational problem is determined by its condition number.
If the condition number is too large, then the solution is too sensitive to small
perturbations and the problem is called an ill-conditioned problem.

The ill-conditioning has a direct effect on the accuracy of the solution. If a
problem is ill-conditioned, then even with a numerically stable algorithm, the
accuracy of the solution cannot be guaranteed. Thus, it is important to know if a
computational problem is ill- or well-conditioned.

14 Chapter 1: INTRODUCTION AND OVERVIEW

While the condition numbers for major problems in numerical linear algebra
have been identified (Chapter 3), only a few studies on the sensitivities of compu-
tational problems in control have been made so far. The sensitivity study is done
by theoretical perturbation analysis.

In this book, we have included perturbation analysis of the matrix expo-
nential problem, (Section 5.3.2), of the Lyapunov and Sylvester equations
(Section 8.3), of the algebraic Riccati equations (Section 13.4) and of the state
feedback and EVA problems (Sections 11.4 and 11.5).

1.12 H,-CONTROL (CHAPTER 10)

Hoo-control problems concern stabilizing perturbed versions of the original system
with certain constraints on the size of the perturbations. Both state feedback and
output feedback versions of Hn-control have been considered in the literature and
are stated in Chapter 10 of this book. A simplified version of the output feedback
Hyo-control problem and a result on the existence of a solution have been stated
in Section 10.6.3 of the chapter.

Solution of Hy, Control Problems Requires Computation of Hy,-Norm.

Two numerical algorithms for computing H.,-norm of a stable transfer function
matrix: the bisection algorithm (Algorithm 10.6.1) due to Boyd er al. (1989),
and the two-step algorithm (Algorithm 10.6.2) due to Bruinsma et al. (1990)
are described in Chapter 10. Both these algorithms are based on the following
well-known result (Theorem 10.6.1):

Let G(s) be the transfer function matrix of the system (1.0.1)-(1.0.2) and let
y > 0 be given, then || G |loo< y if and only if omax (D) < y and the matrix M,,
defined by

M. — A+ BR™'D'C BR™'BT
¥~ \=CTd +DR™'DT)C —(A+BR™'DTO)T)"
where R = y2I — DT D, has no imaginary eigenvalues.

The implementation of the algorithms require a lower and an upper bound for
the Hoo-norm. These bounds can be computed using the Enns—Glover formula:

Vib = max{omax (D), o Hy)}

n
Yub = Omax (D) + 2 Z o H;,
i=1
where o, is the ith Hankel singular value. The Hankel singular value are the
square-roots of the eigenvalues of the matrix CgOg, where Cg and Og are,
respectively, the controllability and observability Grammian.

Section 1.13: SOFTWARE FOR CONTROL PROBLEMS 15

1.13 SOFTWARE FOR CONTROL PROBLEMS

There now exist several high-quality numerically reliable softwares for control
systems design and analysis. These include, among others:

e MATLAB-based Control Systems Tool Box
MATHEMATICA-based Control System Professional—Advanced Numeri-
cal Methods (CSP-ANM)

e Fortran-based SLICOT (A Subroutine Library in Systems and Control

Theory)

MATRIX x

The System Identification Toolbox

MATLAB-based Robust Control Toolbox

-Analysis and Synthesis Toolbox

A MATLAB-based tool-kit, called MATCONTROL, is provided with this
book.

A feature that distinguishes MATCONTROL and CSP-ANM from the other
software is that both these software have implemented more than one (typically
several) numerically viable algorithms for any given problem. This feature is
specially attractive for control education in the classrooms, because, students,
researchers, and teachers will have an opportunity to compare one algorithm over
the others with respect to efficiency, accuracy, easiness for implementation, etc.,
without writing routines for each algorithm by themselves.

There also exist some specialized software developed by individuals for special
problems. These include polepack developed by George Miminis (1991), robpole
developed by Tits and Yang (1996), Sylvplace developed by Varga (2000) for pole
placement; ricpack developed by Arnold and Laub (1984). for Riccati equations,
HTOOLS for Hy and H; synthesis problems developed by Varga and Ionescu
(1999), etc.

A brief description of some of these tool boxes appear in Appendix A.
Some of the software packages developed by individuals may be obtained from
the authors themselves. An internet search might also be helpful in locating these
softwares.

References

For references of the papers cited in this chapter, the readers are referred to the References
section of each chapter.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

PART I

REVIEW OF LINEAR AND
NUMERICAL LINEAR
ALGEBRA

Chapter 2 A Review of Some Basic Concepts and Results from Theoretical
Linear Algebra

Chapter 3 Some Fundamental Tools and Concepts from Numerical Linear
Algebra

Chapter 4 Canonical Forms Obtained via Orthogonal Transformations

CHAPTER 2

A REVIEW OF SOME BASIC
CONCEPTS AND RESULTS
FROM THEORETICAL LINEAR
ALGEBRA

lopics covered

e Basic Concepts for Theoretical Linear Algebra

2.1 INTRODUCTION

Although a first course in linear algebra is a prerequisite for this book, for the
sake of completeness, we establish some notations and quickly review the basic
definitions and concepts on matrices and vectors in this chapter. Fundamental
results on vector and matrix norms are described in some details. These results
will be used frequently in the later chapters of the book. The students can review
material of this chapter, as needed.

2.2 ORTHOGONALITY OF VECTORS AND SUBSPACES

Letu = (uy, u2,...,u)Tandv=(vq, vy, ..., vy)T betwo n-dimensional column
vectors. The angle 6 between two nonzero vectors # and v is given by

u*v
fullllvll’

0s(9)

where u*v =) 7_, u;;, is the inner product of the vectors u and v. The vectors
u and v are orthogonal if 8 =90°, that is, if u*v =0. The symbol L is used
to denote orthogonality. The set of vectors {x}, x2, ..., x¢} in C" are mutually

19

20 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

orthogonal if x7x; =0 for i # j, and orthonormal if xx; = §;;, where §;; is the
Kronecker delta function; that is, §;; =1 and §;; =0 for i # j, and “x” denotes
complex conjugate transpose.

Let S be a nonempty subset of C*. Then § is called a subspace of C" if 51, s, € §
implies c1s1+c252 € S, where ¢ and ¢; are arbitrary scalars. That is, S is a subspace
if any linear combination of two vectors in § is also in S.

For every subspace there is a unique smallest positive integer r such that every
vector in the subspace can be expressed as a linear combination of at most r vectors
in the subspace; r is called the dimension of the subspace and is denoted by dim[S].

Any set of r linearly independent vectors from § of dim[S] = r forms a basis
of the subspace.

The orthogonal complement of a subspace S is defined by S* = {yeC" |
y*x =0 forall x € §}.

The set of vectors {vy, va, ..., v,} form an orthonormal basis of a subspace S
if these vectors form a basis of S and are orthonormal.

Two subspaces Si and S; of C" are said to be orthogonal if s{s; = O for every
s1 € 81 and every s; € S;. Two orthogonal subspaces S; and S, will be denoted by
Sy L S5,

2.3 MATRICES

In this section, we state some fundamental concepts and results involving the
eigenvalues and eigenvectors: rank, range, nulspaces, and the inverse of a matrix.

2.3.1 The Characteristic Polynomial, the Eigenvalues, and
the Eigenvectors of a Matrix

Let A be an n x n matrix. Then the polynomial p4 (1) = det(Al — A) is called the
characteristic polynomial. The zeros of the characteristic polynomial are called
the eigenvalues of A. This is equivalent to the following: A € C is an eigenvalue
of A if and only if there exists a nonzero vector x such that Ax = Ax.

The vector x is called a right eigenvector (or just an eigenvector) of A. A
nonzero vector y is called a left eigenvector if y*A = Ay* for some A € C.

If an eigenvalue of A is repeated s times, then it is called a multiple eigenvalue
of multiplicity s. If s = 1, then the eigenvalue is a simple eigenvalue.

Definition 2.3.1. If i, A2, ..., A, are the n eigenvalues of A, then max |A;|,
i =1,...,nis called the spectral radius of A. It is denoted by p(A).

Invariant Subspaces

A subspace S of C" is called the invariant subspace or A-invariant if Ax € S for
every x € S.

Section 2.3: MATRICES 21

Clearly, an eigenvector x of A defines a one-dimensional invariant subspace.
An A-invariant subspace S C C” is called a stable invariant subspace if the
eigenvectors in S correspond to the eigenvalues of A with negative real parts.

The Cayley—-Hamilton Theorem

The Cayley—Hamilton theorem states that the characteristic polynomial of A is
an annihilating polynomial of A. That is, if pg(A) = A" + a;A"~ ! + ... +a,l,
then pa(A) = A" + A" '+ ... 44, =0.

Definition 2.3.2. Ann x n matrix A having fewer than n linearly independent
eigenvectors is called a defective matrix .

()

is defective. It has only one eigenvector (é)

Example 2.3.1. The matrix

2.3.2 Range and Nullspaces

For every m x n matrix A, there are two important associated subspaces: the range
of A, denoted by R(A), and the null space of A, denoted by N(A), defined as
follows:

R(A) = {b | b = Ax for some x},
N(A) = {x | Ax =0}.

The dimension of N(A) is called the nullity of A and is denoted by null(A).

2.3.3 Rank of a Matrix

Let A be an m x n matrix. Then the subspace spanned by the row vectors of A is
called the row space of A. The subspace spanned by the columns of A is called the
column space of A. The range of A, R(A), is the same as the column space of A.

The rank of a matrix A is the dimension of the column space of A. It is denoted
by rank(A).

An m X n matrix is said to have full column rank if its columns are linearly
independent. The full row rank is similarly defined. A matrix A is said to have
full rank if it has either full row rank or full column rank. If A does not have full
rank, it is called rank deficient.

The best way to find the rank of a matrix in a computational setting is via the
singular value decomposition (SVD) of a matrix (see Chapter 4).

22 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

2.3.4 The Inverse of a Matrix

An n x n matrix A is said to be invertible if there exists an n x n mairix B such
that AB = BA = I. The inverse of A is denoted by A~!. An invertible matrix A
is often called nonsingular.

An interesting property of the inverse of the product of two invertible matrices
is: (AB)"} = B71A~L.

Theorem 2.3.1. For an n X n matrix A, the following are equivalent:

A is nonsingular.

det(A) is nonzero.

rank(A) = n.

N(A) = {0}

A~ exists.

A has linearly independent rows and columns.
The eigenvalues of A are nonzero.

For all x, Ax = 0 implies that x = (.

The system Ax = b has a unique solution.

2.3.5 The Generalized Inverse of a Matrix

Let A* be the complex conjugate transpose of A; thatis, A* = (A)T.

The (Moore—Penrose) generalized inverse of a matrix A, denoted by
A', is a unique matrix satisfying the following properties: (i) AATA=A,
(i) ATAAT = AT, (i) (AAT)* = AAT, and (iv) (ATA)* = ATA.

Note: If A is square and invertible, then AT = A~L,

2.3.6 Similar Matrices

Two matrices A and B are called similar if there exists a nonsingular matrix T
such that
T7'AT = B.

An important property of similar matrices: Two similar matrices have the same
eigenvalues. However, two matrices having the same eigenvalues need not be
similar.

2.3.7 Orthogonal Projection

Let S be a subspace of C". Then an n x n matrix P having the properties:
(i) R(P)=S, (ii) P*=P (P is Hermitian), (iii) P> = P (P is idempotent)
is called the orthogonal projection onto S or simply the projection matrix. We
denote the orthogonal projection P onto S by Ps. The orthogonal projection
onto a subspace is unique.

Section 2.4: SOME SPECIAL MATRICES 23

Let V = (vy,...,vt), where {v1,...,vr} is an orthonormal basis for a
subspace S. Then,
Ps=VV*

is the unique orthogonal projection onto S. Note that V is not unique, but
P S is.

A Relationship Between Ps and Pg.

If Py is the orthogonal projection onto S, then I — Pg, where I is the identity matrix
of the same order as Ps, is the orthogonal projection onto S*. It is denoted by PSL.

The Orthogonal Projection onto R(A)

It can be shown that if A is m x n (m > n) and has full rank, then the orthogonal
projection P4 onto R(A) is given by:

Py = A(A*A)"1A*.

24 SOME SPECIAL MATRICES
2.4.1 Diagonal and Triangular Matrices

Anm x n matrix A = (a;;) is a diagonal matrix if g;; = 0 fori # j. We write
A = diag(ajy, . .., ass), where s = min(m, n). An n x n matrix A is a block
diagonal matrix if it is a diagonal matrix whose each diagonal entry is a square
matrix. It is written as:

A =diag(A1, ..., Aw),

where each Ay; is a square matrix. The sum of the orders of A;;,i = 1,...,kisn.
Anm x n matrix A = (a;;) is an upper triangular matrix if ¢;; = O fori > j.
The transpose of an upper triangular matrix is lower triangular; that is,
A = (a;j) is lower triangular if @;; = 0 fori < j.

2.4.2 Unitary (Orthogonal) Matrix

A complex square matrix U is unitary if UU* = U*U = I, where U* = (ﬁ)T
A real square matrix O is orthogonal if 00T = 07O = I. f U isann x k
matrix such that U*U = I, then U is said to be orthonormal.

Orthogonal matrices play a very important role in numerical matrix
computations.

24 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

The following important properties of orthogonal (unitary) matrices are attrac-
tive for numerical computations: (i) The inverse of an orthogonal (unitary) matrix O
is just its transpose (conjugate transpose), (ii) The product of two orthogonal (uni-
tary) matrices is an orthogonal (unitary) matrix, (iii) The 2-norm and the Frobenius
norm are invariant under multiplication by an orthogonal (unitary) matrix (See
Section 2.6), and (iv) The error in multiplying a matrix by an orthogonal matrix is
not magnified by the process of numerical matrix multiplication (See Chapter 3).

2.4.3 Permutation Matrix

A nonzero square matrix P is called a permutation matrix if there is exactly one
nonzero entry in each row and column which is 1 and the rest are all zero.

Effects of Premultiplication and Postmultiplication by a permutation matrix

When a matrix A is premultiplied by a permutation matrix P, the effect is a permu-
tation of the rows of A. Similarly, if A is postmultiplied by a permutation matrix,
the effect is a permutation of the columns of A.

Some Important Properties of Permutation Matrices

e A permutation matrix is an orthogonal matrix

e The inverse of a permutation matrix P is its transpose and it is also a
permutation matrix and

e The product of two permutation matrices is a permutation matrix.

2.4.4 Hessenberg (Almost Triangular) Matrix

A square matrix A is upper Hessenbergifa;; = Ofori > j + 1. The transpose of
an upper Hessenberg matrix is a lower Hessenberg matrix, that is, a square matrix
A = (a;;) is alower Hessenberg matrix if a;; = O for j > i + 1. A square matrix
A that is both upper and lower Hessenberg is tridiagonal.

* %k 0 % - %

* * S

% % . % 0 * ok
Lower Hessenberg Upper Hessenberg

An upper Hessenberg matrix A = (a;;) is unreduced if a;; | #0 for
i=2,3,...,n.

Similarly, a lower Hessenberg matrix A = (a;;) is unreduced if a; ;1 # 0
fori=1,2,...,n— 1.

Section 2.4: SOME SPECIAL MATRICES 25

2.4.5 Companion Matrix

An unreduced upper Hessenberg matrix of the form

0 0 - - ¢
1 0 - -

c=1]0 1
0 0 0 1 ¢
is called an upper companion matrix. The transpose of an upper companion

matrix is a lower companion matrix.
The characteristic polynomial of the companion matrix C is:

det] —C) =det] —CH =2 —ch" ' — A2 — o — ok — .

2.4.6 Nonderogatory Matrix

A matrix A is nonderogatory if and only if it is similar to a companion matrix of
its characteristic polynomial. That is, A is a nonderogatory matrix if and only if
there exists a nonsingular matrix 7' such that 7~ AT is a companion matrix.

Remark

e An unreduced Hessenberg matrix is nonderogatory, but the converse is
not true.

2.4.7 The Jordan Canonical Form of a Matrix

For an n x n complex matrix A, there exists a nonsingular matrix 7' such that

TVAT = J =diag(J1, ..., Jp).
where
A1 0
A1
Ji =
0 |
A

ism; x my and my + --- +my = n.
The matrices J; are called Jordan matrices or Jordan blocks and J is called
the Jordan Canonical Form (JCF) of A. For each j =1,2,...,k, Aj is the

26 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

eigenvalue of A with multiplicity m ;. The same eigenvalue can appear in more
than one block.

Note: The matrix A is nonderogatory if its JCF has only one Jordan block
associated with each distinct eigenvalue.

ET = (1,0, g Iy ls s By oo B
Then ty, ..., t,,, must satisfy
At = Ay
and Aty = At +H45,i=12, 0. ,m — 1.

Similarly, relations hold for the other vectors in T. The vectors ¢; are called the
generalized eigenvectors or principal vectors of A.

2.4.8 Positive Definite Matrix

A real symmetric matrix A is positive definite (positive semidefinite) if xT Ax > 0
(= 0) for every nonzero vector x.

Similarly, a complex Hermitian matrix A is positive definite (positive semidef-
inite) if x*Ax > 0 (= 0) for every nonzero complex vector x.

A commonly used notation for a symmetric positive definite (positive semidef-
inite) matrix is A > 0 (> 0).

Unless otherwise mentioned, a real symmetric or a complex Hermitian positive
definite matrix will be referred to as a pesitive definite matrix.

A symmetric positive definite matrix A admits the Cholesky factorization
A=HHT", where H is a lower triangular matrix with positive diagonal entries.
The most numerically efficient and stable way to check if a real symmetric
matrix is positive definite is to compute its Cholesky factorization and see
if the diagonal entries of the Cholesky factor are all positive. See Chapter 3
(Section 3.4.2) for details.

2.4.9 Block Matrices

A matrix whose each entry is a matrix is called a block matrix. A block diagonal
matrix is a diagonal matrix whose each entry is a matrix. A block triangular
matrix is similarly defined.

The JCF is an example of a block diagonal matrix.

Suppose A is partitioned in the form

An Ap
A= :
(A21 An

then A is nonsingular if and only if Ay = Ay — A21A1_11A12, called the Schur-
Complement of A, is nonsingular (assuming that A is nonsingular) and in this

Section 2.5: VECTOR AND MATRIX NORMS 27

case, the inverse of A is given by:

A (An‘+ArfAnA§‘AzlAa’ —Aa‘Aleg‘>
-1 -1 -1 :
_As A21A“ AS

2.5 VECTOR AND MATRIX NORMS
2.5.1 Vector Norms

Let

be an n-vector in C". Then, a vector norm, denoted by the symbol ||x||, is a real-
valued continuous function of the components x, x3, . .., x, of x, satisfying the
following properties:

1. |lx}| > O for every nonzero x. ||x}| = O if and only if x is the zero vector.
2. Jlax| = |a|||lx|| for all x in C" and for all scalars «.
3. Jlx+yll < llxll + |yl for all x and y in C".

The last property is known as the Triangle Inequality.

Note: || — x|l = |lx|l and | lx]| — l¥]l | < Ix — y|. It is simple to verify that the
following are vector norms.

Some Commonly Used Vector Norms

1. lxlli = |xil + |x2] 4 - - - + |xn| (sum norm or 1-norm)

2. x|z = \/x? + X3 + - -+ + x2 (Euclidean norm or 2-norm)
3. |xlloc = max; |x;| (maximum or 0o-norm)

The above three are special case of the p-norm or Holder norm defined by
Ixllp = (x11P 4 -+ 4 |xa|?)!/P forany p > 1.
Unless otherwise stated, by || x|l we will mean ||x||>.

28 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

Example 2.5.1. Letx = (1,1, —2)T. Then ||x|l1 = 4, |||z = V12 + 124+ (=2)2 =
V6, and |[x s = 2.

An important property of the Holder norm is the Holder inequality
eyl < llxllp Iyl : + 1 1
= y 5 - - =1
PR b g

A special case of the Holder inequality is the Cauchy-Schwartz inequality:
*yl < lxl2llyl-

Equivalence Property of the Vector norms

All vector norms are equivalent in the sense that there exist positive constants «
and B such that a|x|l,, < [lx]lv < Bllx|ly, for all x, where p and v specify the
nature of norms.

For the 2, 1, or oo norms, we can compute « and § easily and have the following
inequalities:

Theorem 2.5.1. Let x be in C"*. Then

Lo lxllz < lxlly < Valixll2
2. lxlleo < lixllz = Vrllxllo

3. xllee = lxllt = nllxlleo

2.5.2 Matrix Norms

Let A be an m x n matrix. Then, analogous to the vector norm, we define the
matrix norm for ||A| in C™*" with the following properties:

1. J|All = 0; ||A]l = O only if A is the zero matrix
2. |JlaAl = |e|lA| for any scalar &
3. |A+ B| < |A|l + {|Bll, where B is also an m x n matrix.

Subordinate Matrix Norms

Given a matrix A and a vector norm || - || , on C", a nonnegative number defined by:

Axil
| All, = max 4
x20 fix|,

satisfies all the properties of a matrix norm. This norm is called the matrix norm
subordinate to (or induced by) the p-norm.

Section 2.5: VECTOR AND MATRIX NORMS 29

A very useful and frequently used property of a subordinate matrix norm || A || ,
(we shall sometimes call it the p-norm of a matrix A) is

IAxlp < AN p-
Two important p-norms of an m x n matrix are: (i) ||A]; = max Zf"zl ;]
l<j<n

(maximum column sum norm) and (ii) [|Alloc = max Z;l':l la;;| (maximum
row Sum norm). Isizm

The Frobenius Norm

An important matrix norm is the Frobenius norm:
W on 12
2
AlE = | D) layl
i=1 j=1

A matrix norm ||-||p and a vector norm ||-||y are consistent if for all matrices A
and vectors x, the following inequality holds:

lAx|lv < [[Allm llx]lv-

Consistency Property of the Matrix Norm

A matrix norm is consistent if, for any two matrices A and B compatible for matrix
multiplication, the following property is satisfied:

IAB| < [[All IBIl.

The Frobenius norm and all subordinate norms are consistent.

Notes

1. Fortheidentity matrix I, || I |g = /n, whereas ||I||{ = |[{|l2 = |{|loc = 1.
A ||12: = trace(A* A), where trace (A) is defined as the sum of the diagonal
entries of A, thatis, if A = (a;;), then trace (A) = a1y +axn + -+ ann.
The trace of A will, sometimes, be denoted by Tr(A) or tr(A).

Equivalence Property of Matrix Norms

As in the case of vector norms, the matrix norms are also related. There exist
scalars ¢ and B such that: «||A}},, < ||All, < BllAll.. In particular, the following
inequalities relating various matrix norms are true and are used very frequently
in practice. We state the theorem without proof. For a proof, see Datta (1995,
pp. 28-30).

30 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

Theorem 2.5.2. Let A be m x n. Then,

il Alloo < 1412 < V| Alloo.
1412 < Al < VAl All.
1Al < 14ll2 < vl All.
IAl2 < VTATTAT .

el S .

2.6 NORM INVARIANT PROPERTIES UNDER UNITARY MATRIX
MULTIPLICATION

We conclude the chapter by listing some very useful norm properties of unitary
matrices that are often used in practice.

Theorem 2.6.1. Let U be an unitary matrix. Then,

U2 =1.

Proof. | U|2=+/o(U*U) =./p(I)=1. (Recall that p(A) denotes the
spectral radius of A.) W

The next two theorems show that 2-norm and the Frobenius norm are
invariant under multiplication by a unitary matrix.

Theorem 2.6.2. Let U be an unitary matrix and AU be defined. Then,
L. AUz = lIAll;
2. J|AUlg = | Allp

Proof.

. AU, =+/p(U*A*AD) = /p(A*A) = ||All, (Note that U*=U"",
and two similar matrices have the same eigenvalues).

2. JAU|g=trace(U*A*AU) = trace(A*A) = ||A||12: (Note that the trace
of a matrix remains invariant under similarity transformation).

Thus [AUllg=|Allp. B
Similarly, if U A is defined, then we have
Theorem 2.6.3.
L [[UA]l2 = ||All2
2. ||UA|lr = ||Allg

Proof. The proof is similar to Theorem 2.6.2. W

Section 2.7: KRONECKER PRODUCT, KRONECKER SUM, AND VEC OPERATION 31

2.7 KRONECKER PRODUCT, KRONECKER SUM,
AND VEC OPERATION

Let A € C"*" and B € C™*°, then the mr x ns matrix defined by:

anB apB - a,B

anB anB -+ ayB
A® B = .

amB amyB - au.B

is called the Kronecker product of A and B.
If A and B are invertible, then A ® B is invertibleand (AQ B) ™' = A~ 1@ B~!.

The Eigenvalues of the Kronecker Product and Kronecker Sum

Letiy, ..., A, betheeigenvaluesof A € C"*" and uy, ..., un, be the eigenvalues
of B € C™*™. Then it can be shown that the eigenvalues of A ® B are the mn
numbers A;0;, i =1,...,n; j=1,...,m, and the eigenvalues of A @ B are the
mnnumbers A; + ;i =1,...,n; j=1,...,m.

Vec Operation

Let X € C"™*" and X = (x;;).
Then the vector obtained by stacking the columns of X in one vector is denoted
by vec(X):

T
VeC(X):(xllv---7xm17xl2s-~-,xm27---sx1n,---v-xmn) N

If A e C™™ and B € C"*", then it can be shown that vec(AX + XB) = (I, ®
A) + (BT ® I,))vec X.

The Kronecker products and vec operations are useful in the study of the
existence, uniqueness, sensitivity, and numerical solutions of the Lyapunov and
Sylvester equations (see Chapter 8).

2.8 CHAPTER NOTES AND FURTHER READING

Most of the material in this chapter can be found in standard linear algebra text
books. Some such books are cited below.

For further reading of material of Section 2.7, the readers are referred to Horn
and Johnson (1985).

32 Chapter 2: THEORETICAL LINEAR ALGEBRA: CONCEPTS AND RESULTS

References

Anton H. and Rorres C. Elementary Linear Algebra with Applications, John Wiley, New
York, 1987.

Dattta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, 1995 (Custom published by Brooks/Cole, 2003).

Horn R.A. and Johnson C.R. Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

Lay D.C. Linear Algebra and Its Applications, Addison-Wesley, Reading, MA, 1994.

Leon S.J. Linear Algebra with Applications, 4th edn, Macmillan, New York, 1994.

Noble B. and Daniel J.W. Applied Linear Algebra, Prentice-Hall, Englewood Cliffs,
NJ, 1977.

Strang G. Linear Algebra and Its Applications, 3rd edn, Academic Press, New York, 1988.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 3

SOME FUNDAMENTAL TOOLS
AND CONCEPTS FROM
NUMERICAL LINEAR ALGEBRA

Topics covered

e Floating Point Numbers and Errors in Computations

e LU Factorization Using Gaussian Elimination

e (R Factorization Using Householder and Givens Matrices

e Numerical Solution of the Algebraic Linear Systems and Least-Squares
Problems

e The Singular Value Decomposition (SVD)

3.1 INTRODUCTION

In this chapter, we introduce some fundamental concepts and techniques of
numerical linear algebra which, we believe, are essential for in-depth understand-
ing of computational algorithms for control problems, discussed in this book. The
basic concepts of floating point operations, numerical stability of an algorithm,
conditioning of a computational problem, and their effects on the accuracy of a
solution obtained by a certain algorithm are introduced first.

Three important matrix factorizations: LU, @R, and the singular value decom-
position (SVD), and their applications to solutions of algebraic linear systems,
linear least-squares problems, and eigenvalue problems are next described in
details.

The method of choice for the linear system problem is the LU factor-
ization technique obtained by Gaussian elimination with partial pivoting
(Section 3.4). The method of choice for the symmetric positive definite system is
the Cholesky factorization technique (Algorithm 3.4.1).

33

34 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

The QR factorization of a matrix is introduced in the context of the least-squares
solution of a linear system; however, it also forms the core of the QR iteration
technique, which is the method of choice for eigenvalue computation. The QR
iteration technique itself for eigenvalue computation is described in Chapter 4.
Two numerically stable methods for the QR factorization, namely, Householder’s
and Givens’ methods are described in Section 3.6. Householder’s method is
slightly cheaper than Givens’ method for sequential computations, but the latter
has computational advantages in parallel computation setting.

The SVD has nowadays become an essential tool for determining the numerical
rank, the distance of a matrix from a matrix of immediate lower rank, finding
the orthonormal basis and projections, etc. This important matrix factorization
is described in Section 3.9. The SVD is also a reliable tool for computing the
least-squares solution to Ax = b.

A reliable and widely used computational technique for computing the SVD of
a matrix is described in Chapter 4.

3.2 FLOATING POINT NUMBERS AND ERRORS
IN COMPUTATIONS

3.2.1 Floating Point Numbers

Most scientific and engineering computations on a computer are performed using
floating point arithmetic. Computers may have different bases, though base 2 is
most common.

A t-digit floating point number in base 8 has the form:

x=m-p,

where m is a r-digit fraction called mantissa and e is called exponent.

If the first digit of the mantissa is different from zero, then the floating point
number is called normalized. Thus, 0.3457 x 10° is a 4-digit normalized decimal
floating number, whereas 0.03475 x 10° is a five-digit unnormalized decimal
floating point number.

The number of digits in the mantissa is called precision. On many computers, it is
possible to manipulate floating point numbers so that a number can be represented
with about twice the usual precision. Such a precision is called double precision.

Most computers nowadays conform to the IEEE floating point standard
(ANSVIEEE standard 754-1985). For a single-precision, IEEE standard recom-
mends about 24 binary digits and for a double precision, about 53 binary digits.
Thus, IEEE standard for single precision provides approximately 7 decimal
digits of accuracy, since 272> = 1.2 x 1077, and double precision provides
approximately 16 decimal digits of accuracy, since 2752 &~ 2.2 x 10716,

Section 3.2: FLOATING POINT NUMBERS AND ERRORS IN COMPUTATIONS 35

Note: Although computations with double precision increase accuracy, they
require more computer time and storage.

On each computer, there is an allowable range of the exponent e: L, the
minimum; U, the maximum. L and U vary from computer to computer.

If, during computations, the computer produces a number whose exponent is
too large (too small), that is, it is outside the permissible range, then we say that
an overflow (underflow) has occurred.

Overflow is a serious problem; for most systems, the result of an over-
flow is +00. Underflow is usually considered less serious. On most comput-
ers, when an underflow occurs, the computed value is set to zero, and then
computations proceed. Unless otherwise stated, we will use only decimal
arithmetic.

3.2.2 Rounding Errors

If a computed result of a given real number is not machine representable, then
there are two ways it can be represented in the machine. Consider the machine
representation of the number

+-dy - ddpyy

Then the first method, chopping, is the method in which the digits from d;; on
are simply chopped off. The second method is rounding, in which the digits d; |
through the rest are not only chopped off, but the digit &, is also rounded up or
down depending on whether d; 11 > Sord,4) < 5.

We will denote the floating point representation of a real number x by fl(x).

Example 3.2.1. (Rounding) Letx = 3.141596.

t =2:fi(x) = 3.1,
t =3:fl(x) =3.14,
t =4:fi(x) = 3.142.

A useful measure of error in computation is the relative error.

Definition 3.2.1. Let X denote an approximation of x. Then the relative error
is |X — x|/|x|, x #£0.

We now give an expression for the relative error in representing a real number
x by its floating point representation fl(x). Proof of Theorem 3.2.1 can be found
in Datta (1995, p. 47).

36 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Theorem 3.2.1. Let fi(x) denote the floating point representation of a real
number x in base 8. Then,

1 pl— .
f(x) — x| - 7/31 ! for rounding,

= 3.2.1
B for chopping. ()

x|

Definition 3.2.2. The number p in the above theorem is called the machine
precision, computer epsilon, or unit roundoff error. It is the smallest positive
floating point number such that

Al +p) > 1.

The number . is usually of the order 10~1¢ and 10~7 (on most machines) for
double and single precisions computations, respectively. For example, for the
IBM 360 and 370, 8 = 16,1t =6, u = 4.77 x 107",

Definition 3.2.3. The significant digits in a number are the number of digits
starting with the first nonzero digit.

For example, the number 1.5211 has five significant digits, whereas the
number 0.0231 has only three.

3.2.3 Laws of Floating Point Arithmetic

The formula (3.2.1) can be written as
fi(x) = x(1 +6),

where |§] < u.
Assuming that the IEEE standard holds, we can easily derive the following
simple laws of floating point arithmetic.

Theorem 3.2.2. Laws of Floating Point Arithmetic. Let x and y be two float-
ing point numbers, and let fl(x + y), fi(x — y), fi(xy), and fl(x/y) denote,
respectively, the computed sum, difference, product, and quotient. Then,

I ikx £y) = (x £ y)(I + 8), where 5] < p.
2. fl(xy) = (xy)(1 4 8), where |5] < u.
3. ify #0, thenfi(x/y) = (x/y)}(1 + §), where |§| < p.

On computers that do not use the IEEE standard, the following floating point
law of addition might hold:

4. fi(x 4+ y) = x(1 4+ 81) + y(1 + 82), where || < u and |83] < u.

Section 3.3: CONDITIONING, EFFICIENCY, STABILITY, AND ACCURACY 37

Example 3.2.2. Let g =10,r =4.
x =0.1112, y = 0.2245 x 10°,
xy = 0.24964 x 10*,
fl(xy) = 0.24960 x 10%.

Thus, [fl(xy) — xy| = 0.4000 and [§] = 1.7625 x 107* < x 1072

3.2.4 Catastrophic Cancellation

A phenomenon, called catastrophic cancellation, occurs when two numbers of
approximately the same size are subtracted. Very often significant digits are lost
in the process.

Consider the example of computing f(x) = ¢* — 1 — x for x = 0.01. In five
digit arithmetic a = ¢* — 1 = 1.0101 — 1 = 0.0101. Then the computed value of
f(x) = a —x =0.0001, whereas the true answer is 0.000050167.

Note that even though the subtraction was done accurately, the final result was
wrong. Indeed, subtractions in most cases can be done exactly, cancellation only
signals that the error must have occurred in previous steps. Fortunately, often
cancellation can be avoided by rearranging computations. For the example
under consideration, if e* were computed using the convergent series e* = 1 +
X+ x2/2! + x3/3! + ..., then the result would have been 0.000050167, which is
correct up to five significant digits.

For details and examples, see Datta (1995, pp. 43-61). See also Stewart (1998,
pp. 136-138) for an illuminating discussion on this topic.

3.3 CONDITIONING, EFFICIENCY, STABILITY, AND ACCURACY
3.3.1 Algorithms and Pseudocodes

Definition 3.3.1. Anr algorithm is an ordered set of operations, logical and
arithmetic, which when applied to a computational problem defined by a given
set of data, called the input data, produces a solution to the problem. A solution
comprises of a set of data called the output data.

In this book, for the sake of convenience and simplicity, we will very often
describe algorithms by means of pseudocodes, which can easily be translated into
computer codes. Here is an illustration.

3.3.2 Solving an Upper Triangular System

Consider the system
Ty =b,

38 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

where T = (¢;;) is anonsingular upper triangular matrixand y = (y1, y2, ..., y,,)T
and b = (by,...,by)7T.

Algorithm 3.3.1. Back Substitution Method for Upper Triangular System
Input. T—An n x n nonsingular upper triangular matrix, b—An n-vector.
Output. The vector y = (y1, ..., yn)* such that Ty = b.

b

Step 1. Compute v, = t—"
Step 2. Fori =n — l,nnn—2,...,2,1d0

l n
yi=—|b — E lijyj
Lij =
j=i+t

End

Note: When i = n, the summation (") is skipped.

3.3.3 Solving a Lower Triangular System

A lower triangular system Ly = b can be solved in an analogous manner.
The process is known as the forward substitution method. Let L = (I;)),
and b = (b1, by, ..., b,,)T. Then starting with yj, y> through y, are computed
recursively.

3.3.4 Efficiency of an Algorithm

Two most desirable properties of an algorithm are: Efficiency and Stability.

The efficiency of an algorithm is measured by the amount of computer time
consumed in its implementation.

A theoretical and very crude measure of efficiency is the number of floating
point operations (flops) needed to implement the algorithm. Too much emphasis
should not be placed on exact flop-count when comparing the efficiency of two
algorithms.

Definition 3.3.2. A floating point operation of flop is a floating point
operation: +, —, *, or /.

The Big O Notation

An algorithm will be called an O (n”) algorithm if the dominant term in the opera-
tions count of the algorithm is a multiple of n”. Thus, the solution of a triangular
system is an O(n?) algorithm; because it requires n? flops.

Section 3.3: CONDITIONING, EFFICIENCY, STABILITY, AND ACCURACY 39

Notation for Overwriting and Interchange

We will use the notation:
a=b

to denote that b overwrites a”. Similarly, if two computed quantities ¢ and b are
interchanged, they will be written symbolically

a < b.

3.3.5 The Concept of Numerical Stability

The accuracy or the inaccuracy of the computed solution of a problem usually
depends upon two important factors: the stability or the instability of the algo-
rithm used to solve the problem and the conditioning of the problem (i.c., how
sensitive the problem is to small perturbations).

We first define the concept of stability of an algorithm. In the next section, we
shall talk about the conditioning of a problem.

The study of stability of an algorithm is done by means of roundoff error anal-
ysis. There are two types: backward error analysis and forward error analysis.

In forward analysis, an attempt is made to see how the computed solution
obtained by the algorithm differs from the exact solution based on the same data.

On the other hand, backward analysis relates the error to the data of the problem
rather than to the problem’s solution.

Definition 3.3.3. An algorithm is called backward stable if it produces an
exact solution to a nearby problem; that is, a backward algorithm exactly solves
a problem whose data are close to the original data.

Backward error analysis, popularized in the literature by J.H. Wilkinson (1965),
is now widely used in matrix computations and using this analysis, the stability (or
instability) of many algorithms in numerical linear algebra has been established in
recent years. In this book, by *‘stability” we will imply ‘“backward stability,”
unless otherwise stated.

As a simple example of backward stability, consider again the problem of
computing the sum of two floating point numbers x and y. We have seen before that

A+ =@ +NA+H=xA+)+yA+8 =x"+Y".

Thus, the computed sum of two floating point numbers x and y is the exact
sum of another two floating point numbers x’ and y’. Because |§| < u, both x’
and y’ are close to x and y, respectively. Thus, we conclude that the opera-
tion of adding two floating-point numbers is stable. Similarly, floating-point
subtraction, multiplication, and division are also backward stable.

40 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Example 3.3.1. (A Stable Algorithm for Linear Systems) Solution of an upper triangu-
lar system by Back substitution.

The back-substitution method for solving an upper triangular system 7x = b
is backward stable. It can be shown that the computed solution x satisfies

(T+ E)X=b,

where |e;;| <culti;l, i, j =1, ..., nand cis a constant of order unity. Thus, the com-
puted solution x solves exactly a nearby system. The back-substitution process is,
therefore, backward stable.

Remark

e The forward substitution method for solving a lower triangular system has
the same numerical stability property as above. This algorithm is also
stable.

Example 3.3.2. (An Unstable Algorithm for Linear Systems) Gaussian elimination
without pivoting.

It can be shown (see Section 3.5.2) that Gaussian elimination without pivoting
applied to the linear system Ax = b produces a solution X such that

(A+E)i=5b

with || E ||eo < ¢cn>p|lAllsoit. The number p above, called the growth factor, can be
arbitrarily very large. When it happens, the computed solution X does not solve a nearby
problem.

Example 3.3.3. (An Unstable Algorithm for Eigenvalue Computations) Finding the
eigenvalues of a matrix via its characteristic polynomial. The process is numerically
unstable.

There are two reasons: First, the characteristic polynomial of a matrix may not be
obtained in a numerically stable way (see Chapter 4); second, the zeros of a polynomial
can be extremely sensitive to small perturbations of the coefficients.

A well-known example of zero-sensitivity is the Wilkinson polynomial P, (x) =
(x—1)(x —=2)---(x —20). A small perturbation of 272 {0 the coefficient of x!°
changes some of the zeros significantly: some of them even become complex. See
Datta (1995, pp. 81-82) for details.

Remark

e This example shows that the eigenvalues of a matrix should not be
computed by finding the roots of its characteristic polynomial.

3.3.6 Conditioning of the Problem and Perturbation Analysis

From the preceding discussion, we should not form the opinion that if a stable
algorithm is used to solve a problem, then the computed solution will be accurate.

Section 3.3: CONDITIONING, EFFICIENCY, STABILITY, AND ACCURACY 41

As said before, a property of the problem called conditioning also contributes to
the accuracy or inaccuracy of the computed result.

The conditioning of a problem is a property of the problem itself. It is concerned
with how the solution of the problem will change if the input data contains some
impurities. This concern arises from the fact that in practical applications, the data
very often come from some experimental observations where the measurements
can be subjected to disturbances (or “noises”) in the data. There are other sources
of error also, such as roundoff errors, discretization errors, and so on. Thus,
when a numerical analyst has a problem in hand to solve, he or she must frequently
solve the problem not with the original data, but with data that have been perturbed.
The question naturally arises: What effects do these perturbations have on the
solution?

A theoretical study done by numerical analysts to investigate these effects, which
is independent of the particular algorithm used to solve the problem, is called
perturbation analysis. This study helps us detect whether a given problem is
“bad” or “good” in the sense of whether small perturbations in the data will create
a large or small change in the solution. Specifically we use the following standard
definition.

Definition 3.3.4. A problem (with respect to a given set of data) is called an
ill-conditioned or badly conditioned problem if a small relative error in data
can cause a large relative error in the computed solution, regardless of the
method of solution. Otherwise, it is called well-conditioned.

Suppose a problem P is to be solved with an input c. Let P(c) denote the value of
the problem with the input ¢. Let §, denote the perturbation in ¢. Then P is said to be
ill-conditioned for the input data c if the relative error | P(c + §.) — P(c)|/|P(c)|
is much larger than the relative error in the data |5.|/|c|

Note: The definition of conditioning is data-dependent. Thus, a problem that is
ill-conditioned for one set of data could be well-conditioned for another set.

3.3.7 Conditioning of the Problem, Stability of the Algorithm,
and Accuracy of the Solution

As stated in the previous section, the conditioning of a problem is a property of
the problem itself, and has nothing to do with the algorithm used to solve the
problem. To a user, of course, the accuracy of the computed solution is of primary
importance. However, the accuracy of a computed solution by a given algorithm
is directly connected with both the stability of the algorithm and the condition-
ing of the problem. If the problem is ill-conditioned, no matter how stable
the algorithm is, the accuracy of the computed result cannot be guaranteed.

42 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

On the other hand, if a backward stable algorithm is applied to a well-conditioned
problem, the computed result will be accurate.

Backward Stability and Accuracy

Stable Algorithm — Well-conditioned Problem = Accurate Result.
Stable Algorithm — Ill-conditioned Problem = Possibly Inaccurate Result
(inaccuracy depends upon how ill-conditioned the problem is).

3.3.8 Conditioning of the Linear System and Eigenvalue Problems
The Condition Number of a Problem

Numerical analysts usually try to associate a number called the condition number
with a problem. The condition number indicates whether the problem is ill- or well-
conditioned. More specifically, the condition number gives a bound for the relative
error in the solution when a small perturbation is applied to the input data.

We will now give results on the conditions of the linear system and eigenvalue
problems.

Theorem 3.3.1. General Perturbation Theorem. Let AA and 8b, be the per-
turbations, respectively, of the data A and b, and §x be the error in x. Assume
that A is nonsingular and | AA ||< 1/ || A7 ||. Then,

IIfSXIIS I|A||||A_1H (HAAII+II5bII).
lxl = A= aARTA=YD X HAL)2l

Interpretation of the theorem: The above theorem says that if the relative
perturbations in A and b are small, then the number || A||||A~"|| is the dominating
factor in determining how large the relative error in the solution can be.

Definition 3.3.5. The number ||A|||A™|| is called the condition number of
the linear system problem Ax = b or just the condition number of A, and is
denoted by Cond(A).

From the theorem above, it follows that if Cond(A) is large, then the system
Ax = b is ill-conditioned; otherwise it is well-conditioned.

The condition number of a matrix certainly depends upon the norm of the
matrix. However, roughly, if a matrix is ill-conditioned in one type of norm, it
is ill-conditioned in other types as well. This is because the condition numbers
in different norms are related. For example, for an » x n real matrix A, one can

Section 3.3: CONDITIONING, EFFICIENCY, STABILITY, AND ACCURACY 43

show that

1

—Cond;(A) < Cond;(A) < nCond;(A),
n

1

—Condy(A) < Condy(A) < nCondy(A),
n

1
— Cond, (A) < Condoo(A) < n*Cond; (A),
n

where Cond, (A), p = 1, 2, 0o denotes the condition number in p-norm.

Next, we present the proof of the above theorem in the case AA = 0. For
the proof in the general case, see Datta (1995, pp. 249-250). We first restate the
theorem in this special case.

Theorem 3.3.2. Right Perturbation Theorem. If 8b and 5x, are, respectively,
the perturbations of b and x in the linear system Ax = b, and, A is assumed to
be nonsingular and b # 0, then

Isxl _ 1861
T = oA

Proof. We have
Ax=b and A(x+6x)=>b+ 5b.
The last equation can be written as Ax + Adx = b + éb, or
ASx = 8b (since Ax = b) thatis, 5x = A~'8b.

Taking a subordinate matrix-vector norm, we get

I3xll < 1A= I8b 1. (3.3.1)
Again, taking the same norm on both sides of Ax = b, we get ||Ax| = [|b] or
ol = llAx] < [fAllx]. (3.3.2)

Combining (3.3.1) and (3.3.2), we have

”” ”“ < llAmA = 1) (3.3.3)

16l

Interpretation of Theorem 3.3.2: Theorem 3.3.2 says that a relative error in the
solution can be as large as Cond(A) multiplied by the relative perturbation in the
vector b. Thus, if the condition number is not too large, then a small perturbation
in the vector b will have very little effect on the solution. On the other hand,
if the condition number is large, then even a small perturbation in » might
change the solution drastically.

4 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Example 3.3.4. (An lll-Conditioned Linear System Problem)

2 1 4
4.0001 2.002). b= |8.0021
2.002 2.004 5.006

—

A=

—_ N

1 4
The exact solution x = { 1 |. Change b to b’ = | 8.0020
1 5.0061
Then the relative perturbation in b:
6" = bl |8b]l

=1 —1379 x 107> (small).
ol ol

If we solve the system Ax' = b’, we get

3.0850
¥ =x+6x=1{-00436
1.0022

(x" is completely different from x).

Note that the relative error in x: % = 1.3461 (quite large!).

It is easily verified that the inequality in the above theorem is satisfied:

8b
Cond(A) % =4.4434, Cond(A) = 3.221 x 10°.

However, the predicted change is overly estimated.

Conditioning of Eigenvalues

Like the linear system problem, the eigenvalues and the eigenvectors of a matrix A
can be ill-conditioned too.

The following result gives an overall sensitivity of the eigenvalues due to per-
turbations in the entries of A. For a proof, see Datta (1995) or Golub and Van Loan
(1996).

Theorem 3.3.3. Bauer-Fike. Let X "YAX = D = diag()1, ..., An). Then for
any eigenvalue A of A+ E € C"*", we have

min |4; — Al = Cond,(X) || E |,

where | || p is a p-norm.
The result says that the eigenvalues of A might be sensitive to small pertur-
bations of the entries of A if the transforming matrix X is ill-conditioned.

Analysis of the conditioning of the individual eigenvalues and eigenvectors
are rather involved. We just state here the conditioning of simple eigenvalues of
a matrix.

Section 3.4: LU FACTORIZATION 45

Let A; be a simple eigenvalue of A. Then the condition number of %;, denoted by
Cond(};), is defined to be: Cond(};) = 1/|yiTx,~ |, where y; and x; are, respectively,
the unit left and right eigenvectors associated with A;.

A well-known example of eigenvalue sensitivity is the Wilkinson bidiagonal
matrix:

20 20
19 20 0
A=]0
20
1

The eigenvalues of A are 1, 2, ..., 20.

A small perturbation E of the (20, 1)th entry of A (say E = 10~!9) changes
some of the eigenvalues drastically: they even become complex (see Datta (1995,
pp- 84-85)).

The above matrix A is named after the famous British numerical analyst James
H. Wilkinson, who computed the condition numbers of the above eigenvalues and
found that some of the condition numbers were quite large, explaining the fact why
they changed so much due to a small perturbation of just one entry of A.

Note: Though the eigenvalues of a nonsymmetric matrix can be ill-conditioned-
the eigenvalues of a symmetric matrix are well-conditioned (see Datta (1995,
pp. 455-456)).

3.4 LUFACTORIZATION

In this section, we describe a well-known matrix factorization, called the LU
factorization of a matrix and in the next section, we will show how the
LU factorization is used to solve an algebraic linear system.

3.4.1 LU Factorization using Gaussian Elimination

An n x n matrix A having nonsingular principal minors can be factored into LU:
A = LU, where L is a lower triangular matrix with 1s along the diagonal (unit
lower triangular) and U is an n x nr upper triangular matrix. This factorization
is known as an LU factorization of A. A classical elimination technique, called
Gaussian elimination, is used to achieve this factorization.

If an LU factorization exists and A is nonsingular, then the LU factorization is
unique (see Golub and Van Loan (1996), pp. 97-98).

46 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Gaussian Elimination

There are (n — 1) steps in the process. Beginning with A©® = A, the matrices
AD . A”=D are constructed such that A®) has zeros below the diagonal in
the kth column. The final matrix A®~D will then be an upper triangular matrix U.
Denote A® = (a,.(jl.()). The matrix A% is obtained from the previous matrix A%~

by multiplying the entries of the row k of A*~D with mj = — (alF,':_l)) / (a,il,‘(_l)),
i =k+1,...,r and adding them to those of (k + 1) through #. In other words,

k) _ (k=1)

(k—1)
ij = %j

+m,~kakj , i=k+1,...,n; j=k+1,...,n. 341

The entries m;; are called multipliers. The entries a,g,i_l) are called the pivots.

To see how an LU factorization, when it exists, can be obtained, we note (which
is easy to see using the above relations) that

AR = p AR (3.4.2)

where My is a unit lower triangular matrix formed out of the multipliers. The
matrix My is known as the elementary lower triangular matrix. The matrix M
can be written as:

My =1 +mkeg,
where ¢; is the kth unit vector, el.ka =0fori < k,and m;, = (0,...,0,
M tks - s M g) L
Furthermore, M,:l =71 — mkez.

Using (3.4.2), we see that
U=A"D =M, A" = M,_ 1 M,_,A"
=i =Mp_1My_3 - MM A

Thus, A = (My—1Mu_--- MoM)~'U = LU,

where L = (M, M, --- M2M1)_1.

Since each of the matrices M| through M,,_| is a unit upper triangular matrix, so
is L (Note: The product of two unit upper triangular matrix is an upper triangular
matrix and the inverse of a unit upper triangular matrix is an upper triangular
matrix).

Constructing L: The matrix L can be formed just from the multipliers, as shown
below. No explicit matrix inversion is needed.

1 0 0 0

—may 1 0 0

—m31 —m3; 1 0

L = .) .
—Muyl —Mpy M3 o —Mpp-1]

Section 3.4: LU FACTORIZATION 47

Difficulties with Gaussian Elimination without Pivoting

Gaussian elimination, as described above, fails if any of the pivots is zero, it is
worse yet if any pivot becomes close to zero. In this case, the method can be
carried to completion, but the obtained results may be totally wrong.

Consider the following simple example: Let Gaussian elimination without

pivoting be applied to
A 0.0001 1
o 1 1)

using three decimal digit floating point arithmetic. . .
There is only one step. The multiplier my; = —1/10~% = —10* Let L and U
be the computed versions of L and U. Then,

. 0.0001 1 0.0001 1
— A —
U=4 ”(0 1—1o4>_< 0 —1o4>'

(Note that (1 — 10%) gives —10* in three-digit arithmetic). The matrix L formed
out the multiplier my; is
- 1 0
L= (104 1) ‘
The product of the computed Land U is:
~ 0.0001 1
o= (" 0)
which is different from A.
Note that the pivot aill) = 0.0001 is very close to zero (in three-digit arithmetic).
This small pivot gave a large multiplier. This large multiplier, when used to update

the entries of A, the number 1, which is much smaller compared to 104, got wiped
out in the subtraction of 1 — 10* and the result was — 10%.

o

Gaussian Elimination with Partial Pivoting

The above example suggests that disaster in Gaussian elimination without pivoting
in the presence of a small pivot can perhaps be avoided by identifying a “good
pivot” (a pivot as large as possible) at each step, before the process of elimination
is applied. The good pivot may be located among the entries in a column or among
all the entries in a submatrix of the current matrix. In the former case, since the
search is only partial, the method is called partial pivoting; in the latter case, the
method is called complete pivoting. It is important to note that the purpose of
pivoting is to prevent large growth in the reduced matrices, which can wipe out the
original data. One way to do this is to keep multipliers less than 1 in magnitude,
and this is exactly what is accomplished by pivoting.

48 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

We will discuss here only Gaussian elimination with partial pivoting, which also
consists of (n — 1) steps.

In fact, the process is just a slight modification of Gaussian elimination in the
following sense: At each step, the largest entry (in magnitude) is identified among
all the entries in the pivot column. This entry is then brought to the diagonal
position of the current matrix by interchange of suitable rows and then, using that
entry as “pivot,” the elimination process is performed.

Thus, if we set AQ = A, at stepk (k=1,2,...,n—1), first, the largest entry
(in magnitude) aff; Y is identified among all the entries of the column k (below the
row (k — 1)) of the matrix A*~1), this entry is then brought to the diagonal position
by interchanging the rows k and ;, and then the elimination process proceeds with

&1 a5 the pivot.

ark,k

LU Factorization from Gaussian Elimination with Partial Pivoting

Since the interchange of two rows of a matrix is equivalent to premultiplying
the matrix by a permutation matrix, the matrix A% is related to A®~D by the
following relation:

AR = M P A%Y) k=1,2,... . n—1,

where Py is the permutation matrix obtained by interchanging the rows k and r¢
of the identity matrix, and M} is an elementary lower triangular matrix resulting
from the elimination process. So,

U=A""0 = My Pact A" = My Pt My 2 Paa AT
= =My Py My 2Py 3--- MaPyM1 P A

Setting M = M,_1P,_1M, 2P, _>--- M>P,M P, we have the following
factorization of A:
U=MA.

The above factorization can be written in the form: PA = LU, where P =
Py 1Py_p---PoP,U = A™ D and the matrix L is a unit lower triangular
matrix formed out of the multipliers. For details, see Golub and Van Loan (1996,
pp- 99).

For n = 4, the reduction of A to the upper triangular matrix U can be
schematically described as follows:

1. AR pa™ Mpa= = AD,

X X X X
X X X X
X X X X

S oo X

Section 3.4: LU FACTORIZATION

M
2. AD B p a0 pppA® — Py P A =

OO O X
O O X X

P
3. A9 B pa® B ppA® = MypsMy PM PA =

=A% =U.

oo o x X X X X

oo X X X X X X

S X X X

49

=A®,

X X X X

The only difference between L here and the matrix L from Gaussian elimina-
tion without pivoting is that the multipliers in the kth column are now permuted
according to the permutation matrix P =P, Py Pry.

Thus, to construct L, again no explicit products or matrix inversions are

needed. We illustrate this below.

Consider the case n = 4, and suppose P, interchanges rows 2 and 3, and P

interchanges rows 3 and 4.
The matrix L is then given by:

1 0 0 0
L = —ms3] 1 0 0
S e (¥ 1 0
—may1 —m3y —m3y 1
Example 3.4.1.
1 2 4
A=1{14 5 6]).
7 8 9
k=1
1. The pivotentry is 7: r; = 3.
2. Interchange rows 3 and 1.
0 0 1 7 8 9
PA=(0 1 0}, PIA=1[4 5 6].
1 00 1 2 4
3. Form the multipliers: ap; = my| = —%, azy =m3| = —
1 0 0\ /7 8 ¢ 7 8
4. AV =pmPA=|-2 1 0|4 5 6|= 2
1 0 1 1 2 4 6
7 7

1. The pivot entry is g, ra = 3.

~|—

<[g ~io o

50 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

2. Interchange rows 2 and 3.

1 00 7 8 9
p=[0 o0 1|, Pa®=|0 § ¥
306
010 02 §
3. Form the multiplier: m3, = — 4
1 0 o\ (7 & 9 78 9
A® = MpAV =0 10 s L1-lo ¢ 2
0 —= | ;3 00 =3
1 0 0 1 00
FoomL=|-my 1 0|=[3% 10
- - 4 1
my —m3 1 i1
0 0 1
P=PP=|1 0 0).
010
7 8 9
Verify. PA= (1 2 4)=LU.
4 5 6

Flop-count. Gaussian elimination with partial pivoting requires only §n3 flops.
Furthermore, the process with partial pivoting requires at most O (n?) comparisons
for identifying the pivots.

Stability of Gaussian Elimination

The stability of Gaussian elimination algorithms is better understood by measuring
the growth of the elements in the reduced matrices A®_ (Note that although
pivoting keeps the multipliers bounded by unity, the elements in the reduced
matrices still can grow arbitrarily.)

Definition 3.4.1. The growth factor p is the ratio of the largest element (in

magnitude) of A, AWV, ..., A"=D 1o the largest element (in magnitude) of

A: p = (max(a, 1,2, ...,0,—1))/c, where @ = max; ;j la;;|, and o =
k

max; ; |al.(j)|.

The growth factor p can be arbitrarily large for Gaussian elimination without
pivoting. Note that p for the matrix

0.0001 1
A=<1 1)

without pivoting is 10*.

Section 3.4: LU FACTORIZATION 51

Thus, Gaussian elimination without pivoting is, in general, unstable.

Note: Though Gaussian elimination without pivoting is unstable for arbitrary
matrices, there are two classes of matrices, the diagonally dominant matrices and
the symmetric positive definite matrices, for which the process can be shown to
be stable. The growth factor of a diagonally dominant matrix is bounded by 2 and
that of a symmetric positive definite matrix is 1.

The next question is: How large can the growth factor be for Gaussian elimination
with partial pivoting?

The growth factor p for Gaussian elimination with partial pivoting can be
aslargeas 2" p < 271,

Though matrices for which this bound is attained can be constructed (see Datta
1995), such matrices are rare in practice. Indeed, in many practical examples,
the elements of the matrices A%’ very often continue to decrease in size. Thus,
Gaussian elimination with partial pivoting is not unconditionally stable in
theory; in practice, however, it can be considered as a stable algorithm.

MATILAB note: The MATLAB command [L, U, P] = lu (A) returns lower
triangular matrix L, upper triangular matrix U, and permutation matrix P such
that PA = LU.

3.4.2 The Cholesky Factorization

Every symmetric positive definite matrix A can be factored into
A=HHT,

where H is a lower triangular matrix with positive diagonal entries.

This factorization of A is known as the Cholesky factorization. Since, the
growth factor for Gaussian elimination of a symmetric positive definite matrix
is 1, Gaussian elimination can be safely used to compute the Cholesky factor-
ization of a symmetric positive definite matrix. Unfortunately, no advantage of
symmetry of the matrix A can be taken in the process.

In practice, the entries of the lower triangular matrix H, called the Cholesky
factor, are computed directly from the relation A = HH'. The matrix H is
computed row by row. The algorithm is known as the Cholesky algorithm. See
Datta (1995, pp. 222-223) for details.

Algorithm 3.4.1. The Cholesky Algorithm
Input. A—A symmetric positive definite matrix
Output. H—The Cholesky factor
Fork=1,2,...,ndo

Fori=1,2,....,k—1do

52 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

1 i—1
hii = o= | @i = Zhijhkj
1 .
Jj=l1

hix =

End
End

Flop-count and numerical stability. Algorithm 3.4.1 requires only n°/3 flops.
The algorithm is numerically stable.

MATLAB and MATCOM notes: Algorithm 3.4.1 has been implemented in
MATCOM program choles. MATLAB function chol also can be used to com-
pute the Cholesky factor. However, note that L = chol(A) computes an upper
triangular matrix R such that A = RTR.

34.3 LU Factorization of an Upper Hessenberg Matrix

Recall that H = (k;;) is anupper Hessenberg matrix if ;; = O wheneveri > j+1.
Thus, Gaussian elimination scheme applied to an n x n upper Hessenberg matrix
requires zeroing of only the nonzero entries on the subdiagonal. This means at each
step, after a possible interchange of rows, just a multiple of the row containing the
pivot has to be added to the next row.

Specifically, Gaussian elimination scheme with partial pivoting for an n x n
upper Hessenberg matrix H = (4;) is as follows:

Algorithm 3.4.2. LU Factorization of an Upper Hessenberg Matrix
Input. H—An n x n upper Hessenberg matrix
Qutput. U—The upper triangular matrix U of LU factorization of H, stored
over the upper part of H. The subdiagonal entries of H contain the multipliers.
Fork=1,2,...,n—1do

1. Interchange hy ;j and hiy1,j, if |he i) < ekl j =k, ..., 1
Ri+1 .k

hek
3. Update hk+1,j : hk+1,j =hpyt,j etk hej, j = k+1,...,n

2. Compute the multiplier and store it over hyy1 i * hiy1h = —

End.

Flop-count and stability. The above algorithm requires n? flops.

It can be shown Wilkinson (1965, p. 218); Higham (1996, p. 182), that the growth
factor p of a Hessenberg matrix for Gaussian elimination with partial pivoting is
less than or equal to n. Thus, computing LU factorization of a Hessenberg

Section 3.5: NUMERICAL SOLUTION OF THE LINEAR SYSTEM Ax=b 53

matrix using Gaussian elimination with partial pivoting is an efficient and
a numerically stable procedure.

3.5 NUMERICAL SOLUTION OF THE LINEAR SYSTEM Ax=b

Given an n x n matrix A and the n-vector b, the algebraic linear system
problem is the problem of finding an n-vector x such that Ax = b.

The principal uses of the LU factorization of a matrix A are: solving the alge-
braic linear system Ax = b, finding the determinant of a matrix, and finding
the inverse of A.

We will discuss first how Ax = b can be solved using the LU
factorization of A.

The following theorem gives results on the existence and uniqueness of the
solution x of Ax = b. Proof can be found in any linear algebra text.

Theorem 3.5.1. Existence and Uniqueness Theorem. The system Ax = b has
a solution if and only if rank (A) = rank(A, b). The solution is unique if and
only if A is invertible.

3.5.1 Solving Ax = b using the Inverse of A

The above theorem suggests that the unique solution x of Ax = b be computed as
x=A"1b.

Unfortunately, computationally this is not a practical idea. It generally
involves more computations and gives less accurate answers.

This can be illustrated by the following trivial example:

Consider solving 3x = 27.

The exact answer is: x = 27/3 = 9. Only one flop (one division) is needed in
this process. On the other hand, if the problem is solved by writing it in terms of
the inverse of A, we then have x = % x 27 = 0.3333 x 27 = 8.9991 (in four digit
arithmetic), a less accurate answer. Moreover, the process will need two flops: one
division and one multiplication.

3.5.2 Solving Ax = b using Gaussian Elimination with Partial Pivoting

Since Gaussian elimination without pivoting does not always work and, even when
it works, might give an unacceptable answer in certain instances, we only discuss
solving Ax = b using Gaussian elimination with partial pivoting.

54 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

We have just seen that Gaussian elimination with partial pivoting, when used to
triangularize A, yields a factorization PA = LU. In this case, the system Ax = b
is equivalent to the two triangular systems:

Ly=Pb=0b and Ux=y.

Thus, to solve Ax = b using Gaussian elimination with partial pivoting, the
following two steps need to be performed in the sequence.

Step 1. Find the factorization PA = LU using Gaussian eliminating with partial
pivoting.

Step 2. Solve the lower triangular system: Ly = Pb = b’ first, followed by the
upper triangular system: Ux = y.

Forming the vector b'. The vector b’ is just the permuted version of b. So, to
obtain b, all that needs to be done is to permute the entries of b in the same way
as the rows of the matrices A® have been interchanged. This is illustrated in the
following example.

Example 3.5.1. Solve the following system using Gaussian elimination with partial
pivoting:

X1 +2x+4x3 =1,
4x1 + 5x2 + 6x3 = 15,
Txy1 + 8x2 + 9x3 = 24.

Here
1 2 4 7
A=1|4 5 6], b=115
7 8 9 24
Using the results of Example 3.4.1, we have
7 8 9
1 0 0 0 & L
L=|7 1 0f, U= 6 10
i1 07 7
T2 00 -1
Sincer; =3, and rp = 3,
24
=17
15

Note that to obtain b, first the 1st and 3rd components of b were permuted, accord-
ing to r; = 3 (which means the interchange of rows 1 and 3), followed by the

Section 3.5: NUMERICAL SOLUTION OF THE LINEAR SYSTEM Ax=b 55

permutation of the components 2 and 3, according to r, = 3 (which means the
interchange of the rows 2 and 3). Ly = b’ gives

24
y=1{ 35714 |,
—0.5000

and Ux = y gives

Flop-count. The factorization process requires about %n3 flops. The solution

of each of the triangular systems Ly = b’ and Ux = y requires n’ flops. Thus,
the solution of the linear system Ax = b using Gaussian elimination with partial
pivoting requires about %n3 + O(n?) flops. Also, the process requires O (n?)
comparisons for pivot identifications.

Stability of Gaussian Elimination Scheme for Ax = b

We have seen that the growth factor p determines the stability of the triangular-
ization procedure. Since solutions of triangular systems are numerically stable
procedures, the growth factor is still the dominating factor for solving linear
systems with Gaussian elimination.

The large growth factor p for Gaussian elimination with partial pivoting is rare
in practice. Thus, for all practical purposes, Gaussian elimination with partial
pivoting for the linear system Ax = b is a numerically stable procedure.

3.5.3 Solving a Hessenberg Linear System

Certain control computations such as computing the frequency response of a
matrix (see Chapter 5) require solution of a Hessenberg linear algebraic system.
We have just seen that the LU factorization of a Hessenberg matrix requires only
O (n?) flops and Gaussian elimination with partial pivoting is safe, because, the
growth factor in this case is at most n. Thus, a Hessenberg system can be solved
using Gaussian elimination with partial piveting using O (n?) flops and in a
numerically stable way.

3.54 Solving AX =B

In many practical situations, one faces the problem of solving multiple linear
systems: AX = B. Here A is n x n and nonsingular and B is n x p. Since each

56 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

of the systems here has the same coefficient matrix A, to solve AX = B, we need
to factor A just once. The following scheme, then, can be used.
Partition B = (b1, ..., bp).
Step 1. Factorize A using Gaussian elimination with partial pivoting: PA = LU
Step2.Fork=1,...,pdo
Solve Ly = Pby
Solve Uxy =y
End
Step 3. Form X = (x1,..., xp).

3.5.5 Finding the Inverse of A

The inverse of an n x n nonsingular matrix A can be obtained as a special case of
the above method. Just set B = I,«,. Then, X = A~ 1.

3.5.6 Computing the Determinant of A

The determinant of matrix A can be immediately computed, once the LU factor-
ization of A is available. Thus, if Gaussian elimination with partial pivoting is used
giving PA = LU, then det(A) = (—1)"]_[;’:l u;;, where r is the number of row
interchanges in the partial pivoting process.

3.5.7 Iterative Refinement

Once the system Ax = b is solved using Gaussian elimination, it is suggested
that the computed solution be refined iteratively to a desired accuracy using the
following procedure. The procedure is fairly inexpensive and requires only O (n?)
flops for each iteration.

Let x be the computed solution of Ax = b obtained by using Gaussian
elimination with partial pivoting factorization: PA = LU.
Fork =1,2,..., do until desired accuracy.
1. Compute the residual » = b — Ax (in double precision).
2. Solve Ly = Pr for y.
3. Solve Uz =y forz.
4. Update the solution x = x + z.

3.6 THE QR FACTORIZATION

Recall that a square matrix O is said to be an orthogonal matrix if 00T =
070 = I. Given an m x n matrix A there exist an m x m orthogonal matrix Q

Section 3.6: THE QR FACTORIZATION 57

and an m x n upper triangular matrix R such that A = QR. Such a factorization
of A is called the QR factorization. If m > n, and if the matrix Q is partitioned
as Q = [Q;, O2], where Q1 is the matrix of the first # columns of Q, and if R,

is defined by
_ (R
(%)

where Rq is n x n upper triangular, then A = Q) R;. This QR factorization is
called the “‘economy size” or the “thin” QR factorization of A. The following
theorem gives condition for uniqueness of the “thin” QR factorization. For a proof
of the theorem, see Golub and Van Loan (1996, p. 230).

Theorem 3.6.1. Let A € R™ ", m > n have full rank. Then the thin QR
Jactorization
A= Q1R

is unique. Furthermore, the diagonal entries of Ry are all positive.

There are several ways to compute the QR factorization of a matrix. House-
holder’s and Givens’ methods can be used to compute both types of QR
factorizations. On the other hand, the classical Gram—Schmidt (CGS) and the
modified Gram—Schmidt (MGS) compute Q € R™*" and R € R"*" such that
A= QR.

The MGS has better numerical properties than the CGS. We will not discuss
them here. The readers are referred to the book Datta (1995, pp. 339-343). We
will discuss Householder’s and Givens’ methods in the sequel.

3.6.1 Householder Matrices

Definition 3.6.1. A matrix of the form H = I — 2uu" JuTu, where u is a
nonzero vector, is called a Householder matrix, after the celebrated American
numerical analyst Alston Householder.

A Householder matrix is also known as an Elementary Reflector or a House-
holder transformation.

It is easy to see that a Householder matrix H is symmetric and orthogonal.

A Householder matrix H is an important tool to create zeros in a vector:

Given x = (x,x2, ..., x,)T, the Householder matrix H = I —2(uu" /u"u),
where u =x +sgn(x1) [xllz e is such that Hx = (a,0,....,0)7,
where o = — sgn(x)) [x 2.

Schematically, x A Hx=(0,0,...,0)7.

58 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Forming Matrix—Vector and Matrix—-Matrix Products With a Householder Matrix

A remarkable computational advantage involving Householder matrices is that
neither a matrix—vector product with a Householder matrix H nor the matrix
product HA (or AH) needs to be explicitly formed, as can be seen from the
followings:
T
1. Hx = (1 — 2%)x =x — Bu(u"x), where f = —3—
ulu utu
2. HA=(—Buu™)A =A - BuuTA = A — BuvT, where v = ATu.
3. AH = A(I — Buu") = A — BvuT, where v = Au.

From above, we immediately see that the matrix product HA or AH
requires only O(n?) flops, a substantial saving compared to 2n3 flops that
are required to compute the product of two arbitrary matrices.

3.6.2 The Householder QR Factorization

Householder’s method for the QR factorization of matrix A € R"*" withm > n,
consists of constructing Householder matrices H, Hz, ..., H, successively
such that

H,Hy---HIA=R

is an m X n upper triangular matrix. If H1 H, - - - H, = @, then Q is an orthogonal
matrix (since each H; is orthogonal) and from above, we have QTA = R or

A = QR. Note that
#=(5)

where Ry € R"*" and is upper triangular. The matrices H; are constructed such
that A = H;AU=D (with A®Q = A) has zeros below the diagonal in the ith
column (see Example 3.6.1).

Flop-count. The Householder QR factorization method requires approximately
2n%(m — (n/3)) flops just to compute the triangular matrix R.

Note: The matrix Q can be computed, if required, as Q = H; - - - H, by forming
the product implicitly, as shown in Section 3.6.1.

It should be noted that in a majority of practical applications, it is sufficient
to have Q in this factored form; in many applications, Q is not needed at all. If Q
is needed explicitly, about another 4(m?n — mn? + (n3/3)) flops will be required.

Numerical stability: The Householder QR factorization method computes the
QR factorization of a slightly perturbed matrix. Specifically, it can be shown
Wilkinson (1965, p. 236) that, if R denotes the computed R, then there exists

Section 3.6: THE QR FACTORIZATION 59

an orthogonal Q such that
A+E=0QR, where |[Elo~plAl>.

The algorithm is thus stable.

MATLAB notes: [Q, R] = gqr(A) computes the QR factorization of A, using
Householder’s method.

Example 3.6.1.
1 1
A = {0.0001 0
0 0.0001
k=
Form Hi:
1 1 2
up = | 0.0001] ++/1+(0.0001)2{0] = [0.0001
0 0 0
) 2u1uT -1 —1
Update A= A" = HA={I-— T A= 0 —0.0001
uypui 0 0.0001
k=2
Form H>:

_ (—0.0001\ 5 S {1\ _ s (—24141
u2_<0'0001) V(=0.0001)2 + (0.0001) (O)—IO (.

0.1000
g (1 O)_ 42y _ (=07071 07071
27\0 1 e, L 07071 0.7071)
U2
1 0 0

H,=1{0 -0.7071 0.7071
0 0.7071 0.7071

-1 -1
Update A = A® = H,b A" = | 0 0.0001
0 0

60 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Form Q and R:
-1 0.0001 —0.0001
Q=HH={-0.0001 -07071 0.7071
0 0.7071 0.7071
1 -1
_ (R (-1 -1
R= 8 0'0801 = (0) where Ry = (0 0.0001>'

Complex QR Factorization

If x € C" and x| = re'?, then it is easy to see that the Householder matrix
H =1— Bvv*, wherev =x ¢ |[x|2e and g = 2/v*v, is such that
Hx = xve’ | x|z e1.

Using the above formula, the Householder QR factorization method for a real
matrix A, described in the last section, can be easily adapted to a complex matrix.
The details are left to the readers.

The process of complex QR factorization of an m x n matrix, m > n, using
Householder’s method requires 8n2(m — (n/3)) real flops.

3.6.3 Givens Matrices

Definition 3.6.2. A matrix of the form

ith jth
\: 1
1 0 0O 0
1 0 0
JG, j,e,s)=1 0 0 O -~ ¢ - s - 0], <«ith
00 0 v v i 0 o1

where ¢? + s> = 1, is called a Givens matrix, after the name of the numerical
analyst Wallace Givens.

Section 3.6: THE QR FACTORIZATION 61

Since one can choose ¢ = cos@ and s = sinéd for some @, the above
Givens matrix can be conveniently denoted by J (i, j, 0). Geometrically, the matrix
J (i, j, 6) rotates a pair of coordinate axes (ith unit vector as its x-axis and the jth
unit vector as its y-axis) through the given angle 0 in the (i, j) plane. That is why,
the Givens matrix J (i, j,) is commonly known as a Givens Rotation or Plane
Rotation in the (i, j) plane.

Thus, when an n-vector x = (x1, X2, ..., X, is premultiplied by the Givens
rotation J (i, j, 6), only the ith and jth components of x are affected; the other
components remain unchanged.

Also, note that since ¢ + s> = 1; J(i, j, 0) - J(i, j, 0)T = I. So, the Givens
matrix J (i, j, 8) is orthogonal.

Zeroing the Entries of a 2 x 2 Vector Using a Givens Matrix

If
X
X2
is a vector, then it is a matter of simple verification that, with

X1 X2
C = ————— and s =

‘/xlz-i-x% ,/x12+x§
C S
J(l,2,9)=(_s C>
J(1,2,0)x = (3)

The preceding formula for computing ¢ and s might cause some underflow
or overflow. However, the following simple rearrangement of the formula might
prevent that possibility.

the Givens rotation

is such that

1. If |xz| > |x1|, compute = x1/x2, 5 = 1/+/1 + 12, and take ¢ = st.
2. If |xp] < |xy|,computet = x2/x1, ¢ = 1/4/1 42, andtake s = ct.

62 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Implicit Construction of JA
IfAisR™"and J(i, j, ¢, s) € R™*™ then the update A = J(i, j, c, s)A canbe
computed implicitly as follows:

Fork=1,...,ndo

a =4

b =aji

ajx = ac + bs
ajy = —as + bc
End

MATCOM note: The above computation has been implemented in MATCOM
program PGIVMUL.

3.64 The QR Factorization Using Givens Rotations

Assumethat A € R™*" m > n.Thebasicideais justlike Householder’s: Compute
orthogonal matrices Q1, 93, ..., Qx, using Givens rotations such that AL =
Q1 A has zeros below the (1, 1) entry in the first column, AD = 0,AM has zeros
below the (2, 2) entry in the second column, and so on. Each Q; is generated as a
product of Givens rotations. One way to form {Q;} is:

O1=J(1,mJ(1,.m—1,6)---J(1,2,0),
Q2=J(2,m0)J(2,m—1,6)---J(2,3,0),

and so on.
Then,

R=A" = 0,A"V = 0,0,14"7 = .
=0,0n1 - 0201A=QTA, where 0 = 0707 - 0OF.

Algorithm 3.6.1. Givens QR Factorization

Input. A—An m x n matrix

Outputs. R—An m x n upper triangular matrix stored over A.

Q—An m x m orthogonal matrix in factored form defined by the Givens
parameters c, s, and the indices k and [.

Section 3.7: ORTHONORMAL BASES AND ORTHOGONAL PROJECTIONS 63

Stepl.Fork=1,2,...,ndo
Fori=%k+1,...,m do
1.1. Find ¢ and s using the formulas given in Section 3.6.3 so that

c s\ (a) _ [*
—s cJ\ay) \0)°
1.2. Save the indices k and / and the numbers ¢ and s
1.3. Update A using the implicit construction as shown above:
A=J(3, j,c,5)A

End
End

Step 2. Set R = A.

Forming the matrix Q. If the orthogonal matrix Q is needed explicitly, then
it can be computed from the product Q = QlT Qg - QI, where each Q; is the
product of m —i Givensrotations: Q; = J(i,m,8)J(i,m—1,0)---J(i,i+1,0).

Flop-count. The algorithm requires 3n2(m — n/3) flops; m > n. This count, of
course, does not include computation of Q.

Numerical stability. The algorithm is stable. It can be shown Wilkinson (1965,
p. 240) that for m = n, the computed Q and R satisfy R = QT(A + E), where
| E|lg is small.

MATCOM note: The above algorithm has been implemented in MATCOM
program GIVQR.

@ and R have been explicitly computed.

3.6.5 The QR Factorization of a Hessenberg Matrix Using Givens Matrices

From the structure of an upper Hessenberg matrix H, it is easy to see that the
OR factorization of H takes only O(n?) flops either by Householder’s or
Givens’ method, compared to O (n3) procedure for a full matrix. This is because
only one entry from each column has to be made zero. Try this yourself using
Algorithm 3.6.1.

3.7 ORTHONORMAL BASES AND ORTHOGONAL PROJECTIONS
USING QR FACTORIZATION

The QR factorization of A can be used to compute the orthonormal bases and
orthogonal projections associated with the subspaces R(A) and N(AT). Let A be
m X n, where m > n and have full rank. Suppose QTA =R = (%‘). Partition
Q0 = (Q1, 02), where Q1 has n columns. Then the columns of @; form an
orthonormal basis for R(A). Similarly, the columns of 05 form an orthonormal

64 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

basis for the orthogonal complement of R(A). Thus, the matrix P4 = Q) QT
is the orthogonal projection onto R(A) and the matrix PAL = O Qg is the
projection onto the orthogonal complement of R(A). The above projections
can also be computed using the SVD (see Section 3.9.2).

MATILAB note: MATLAB function orth(A) computes the orthonormal basis
for R(A).

QR Factorization with Column Pivoting

If A is rank-deficient, then QR factorization cannot be used to find a basis for R(A).
In this case, one needs to use a modification of the QR factorization process, called
OR factorization with column pivoting.

We shall not discuss this here. The process finds a permutation matrix P, and
the matrices Q and R such that AP = QR. The details are given in Golub and
Van Loan (1996, pp. 248-250).

MATLAB function [Q, R, P] = QR(A) can be used to compute the QR
factorization with column pivoting.

Also, [Q, R, E] = QR(A,0) produces an economy size QR factorization in
which E is a permutation vector so that Q*R = A(:, E).

3.8 THE LEAST-SQUARES PROBLEM

One of the most important applications of the QR factorization of a matrix A is
that it can be effectively used to solve the least-squares problem (LSP).
The linear LSP is defined as follows:

Given an m x n matrix A and a real vector b, find a real vector x such that
the function:
hrx) 2 = 1Ax = bli2

1s minimized.

If m > n, the problem is called an overdetermined LSP, if m < n, it is called
an underdetermined problem.
We will discuss here only the overdetermined problem.

Theorem 3.8.1. Theorem on Existence and Uniqueness of the LSP. The least-
squares solution to Ax = b always exists. The solution is unique if and only if
A has full rank. Otherwise, it has infinitely many solutions. The unique solution
x is obtained by solving ATAx = ATb.

Proof. See Datta (1995,p.318). W

Section 3.8: THE LEAST-SQUARES PROBLEM 65

3.8.1 Solving the Least-Squares Problem Using Normal Equations

The expression of the unique solution in Theorem 3.8.1 immediately suggests the
following procedure, called the Normal Equations method, for solving the LSP:

1. Compute the symmetric positive definite matrix AT A (Note that if A has
full rank, AT A is symmetric positive definite).
2. Solve for x: ATAx = ATh.

Computational remarks. The above procedure, though simple to understand and
implement, has serious numerical difficulties. First, some significant figures may
be lost during the explicit formation of the matrix AT A. Second, the matrix AT A
will be more ill-conditioned, if A is ill-conditioned. In fact, it can be shown that
Cond>(ATA) = (Condy(A))2. The following simple example illustrates the point.

Let

1 1
A=1107% 0
0 10*

1

If eight-digit arithmetic isused, then ATA = <1

i) , which is singular, though

the columns of A are linearly independent.
A computationally effective method via the QR factorization of A is now
presented below.

3.8.2 Solving the Least-Squares Problem Using QR Factorization

Let QTA =R = (’f)‘) be the QR decomposition of the matrix A. Then, since the
length of a vector is preserved by an orthogonal matrix multiplication, we have

lAx — bl = QT Ax — QTh|3

C
=|Rix —c|3 + lld||3, where QTb = (d>-

Thus, ||Ax — b||% will be minimized if x is chosen so that Rjx — ¢ = 0. The
corresponding residual norm then is given by {|ir|l2 = | Ax — b|l2 =||d}>. This
observation immediately suggests the following QR algorithm for solving the LSP:

Algorithm 3.8.1. Least Squares Solution Using QR Factorization of A
Inputs. A—An m x n matrix (m > n)
b—An m-vector.

66 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Output. The least-squares solution x to the linear system Ax = b.

Step 1. Decompose A = QR, where Q € R™*"™ gnd R € R™*",

Step 2. Form QTb = () c e RPL

Step 3. Obtain x by solving the upper triangular system: Rix = c where
R=(3).

Step 4. Obtain the residual norm: || r ||2=|d |}

Example 3.8.1. Solve Ax = b for x with

Step 1. Find the QR factorizationof A : A = QR

—-0.2673 0.8729 0.4082
0=|-05345 02182 -0.8165],

—0.8018 —0.4364 0.4082

37417 -5.3452 R
R=| o0 0.6547 =<01>'

0 0

Step 2. Form
—10.6904
QTh = <2> =| -0.2182 |.
0.8165

3.3532)

Step 3. Obtain x by solving Rjx =c: x = (_0.3333

Step4. |Irfl2 = [|d 2 =0.8165.

Use of Householder Matrices

Note that if the Householder’s or Givens’ method is used to compute the QR
decomposition of A, then the product Qb can be formed from the factored form
of @ without explicitly computing the matrix Q.

MATCOM and MATLAB notes: MATCOM function Isfrqrh implements the OR
factorization method for the full-rank least-squares problem using Householder’s
method. Alternatively, one can use the MATLAB operator: \. The command x =
A\ b gives the least-squares solution to Ax = b.

Section 3.9: THE SINGULAR VALUE DECOMPOSITION (SVD) 67

Flop-count and numerical stability: The least-squares method, using
Householder’s QR factorization, requires about 2(mn* — (n3/3)) flops. The algo-
rithm is numerically stable in the sense that the computed solution satisfies a
“nearby”’ LSP.

3.9 THE SINGULAR VALUE DECOMPOSITION (SVD)

We have seen two factorizations (decompositions) of A: LU and QR.

In this section we shall study another important decomposition, called the singu-
lar value decomposition or in short the SVD of A. Since m > n is the case mostly
arising in applications, we will assume throughout this section that m > n.

Theorem 3.9.1. The SVD Theorem. Given A € R™*", there exist orthogonal
matrices U € R™*™ gnd V € R"™", and a diagonal matrix ¥ € R™*" with
nonnegative diagonal entries such that

A=UxvVT,

Proof. Sce Datta (1995, pp. 552-554). A

The diagonal entries of ¥ are called the singular values of A.

The columns of U are called the left singular vectors, and those of V are called
the right singular vectors. The singular values are unique, but U and V are
not unique.

The number of nonzero singular values is equal to the rank of the matrix A.

A convention. The n singular values o1, 07, ...,0, of A can be arranged in
nondecreasing order: g1 > o3 > --- > o0,. The largest singular value o is
denoted by omax- Similarly, the smallest singular value oy, is denoted by opiy.

The thin SVD. Let U = (uy, ..., um).

If A = UZVT be the SVD of A € R™*" and if Uy = (uy,...,un) €
R™*" 3, = diag(o, ..., 0,),then A = Uy, VT,

This factorization is known as the thin SVD of A. For obvious reasons, the thin
SVD is also referred to as the economic SVD.

Relationship between eigenvalues and singular values. It can be shown that (see
Datta (1995, pp. 555-557)).

1. The singular values o1, ..., 0, of A are the nonnegative square roots of
the eigenvalues of the symmetric positive semidefinite matrix AT A.

2. The right singular vectors are the eigenvectors of the matrix AT A, and the
left singular vectors are the eigenvectors of the matrix AAT.

Sensitivity of the singular values. A remarkable property of the singular values
is that they are insensitive to small perturbations. In other words, the singular
values are well-conditioned. Specifically, the following result holds.

68 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

Theorem 3.9.2. [Insensitivity of the Singular Values. Let A be anm x n (m >

n) matrixwith the singularvalues o1, . .., 0, and B = A+E be another slightly
perturbed matrix with the singular values oy, . .., a,, then| 6; —a; | < || E |2,
i=1,...,n

Proof. See Datta (1995, pp. 560-561). H

Example 3.9.1. Let

A=

O\ D =
~ B~

The singular values of A:
o1 = 14.5576, oy = 1.0372, o3 = 0.
The singular values of A + E:
o1 = 14.5577, gy = 1.0372, &3 = 2.6492 x 107°

It is easily verified that the inequalities in the above theorem are satisfied.

3.9.1 The Singular Value Decomposition and the Structure of a Matrix

The SVD is an effective tool in handling several computationally sensitive compu-
tations, such as the rank and rank-deficiency of matrix, the distance of a matrix
from a matrix of immediate lower rank, the orthogonormal basis and pro-
jections, etc. It is also a reliable and numerically stable way of computing the
least-squares solution to a linear system. Since these computations need to be per-
formed routinely in control and systems theory, we now discuss them briefly in
the following. The results of Theorem 3.9.3 can be easily proved.

Theorem 3.9.3. Letoy > 03 > -+ - > 0, be the n singular values of anm X n
matrix A(m > n). Then,

1. |lAll2 = 01 = Omax,
2. |lAllg= (02 + 07+ - +0})/?

1 . .
3. A Y2 = —, when Aisn x n and nonsingular,

n
4. Conda(A) = AILIA 2 = & = T hen A isn x n and

n Omin

nonsingular.

Section 3.9: THE SINGULAR VALUE DECOMPOSITION (SVD) 69

The Condition Number of a Rectangular Matrix

The condition number (with respect to 2-norm) of a rectangular matrix A of order
m x n{(m > n) with full rank is defined to be

Omax(A)

Omin(A) '

where omax (A) and oy (A) denote, respectively, the largest and smallest singular
value of A.

Condy(A) =

Remark

e When A is rank-deficient, o, = 0, and we say that Cond(A) is infinite.

3.9.2 Orthonormal Bases and Orthogonal Projections
Let r be the rank of A, that is,
o1>02> >0, >0,
Orpl1 =+ =0, =0.

Let u; and v; be the jth columns of U and V in the SVD of A. Then the set of
columns {v,} corresponding to the zero singular values of A form an orthonor-
mal basis for the null-space of A. This is because, when o; = 0, v; satisfies
Av; = 0 and is therefore in the null-space of A. Similarly, the set of columns
{uj} corresponding to the nonzero singular values is an orthonormal basis for
the range of A. The orthogonal projections now can be easily computed.

Orthogonal Projections
Partition U and V as
U = (U, Uz), V =(V1, V),

where Uy and V) consist of the first » columns of U and V, then

1. Projection onto R(A) = U U}

2. Projection onto N(A) =V, V2T .

3. Projection onto the orthogonal complement of R(A) = U» U2T .

4. Projection onto the orthogonal complement of N(A) = V; VlT .
Example 3.9.2.

>

fl
N W ==
~ RN
RV AN

70 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

o1 = 14.5576, oy = 1.0372, o3 =0.

0.2500 0.8371 0.4867
U=1]04852 03267 -0.8111].
0.8378 —0.4379 0.3244

0.4625 —0.7870 0.4082
vV =10.5706 —0.0882 —0.8165
0.6786 —0.6106 0.4082

An orthonormal basis for the null-space of A is:

0.4082
Vo, = 1—0.8165
0.4082

An orthonormal basis for the range of A is:

0.2500 0.8371
Uy = 4104852 0.3267
0.8370 —0.4379

(Now compute the four orthogonal projections yourself.)

3.9.3 The Rank and the Rank-Deficiency of a Matrix

The most obvious and the least expensive way of determining the rank of a matrix
is, of course, to triangularize the matrix using Gaussian elimination and then to
find the rank of the reduced upper triangular matrix. Finding the rank of a trian-
gular matrix is trivial; one can just read it off from the diagonal. Unfortunately,
however, this is not a very reliable approach in floating point arithmetic. Gaussian
elimination method which uses elementary transformations, may transform a rank-
deficient matrix into one having full rank, due to numerical round-off errors. Thus,
in practice, it is more important, to determine if the given matrix is near a matrix
of a certain rank and in particular, to know if it is near a rank-deficient matrix.
The most reliable way to determine the rank and nearness to rank-deficiency
is to use the SVD.

Suppose that A has rank r, that is, 6y > o3 > .-+ > 0, > 0 and
Ort+1 = -+ = g, = 0. Then the question is: How far is A from a matrix of
rank k < r. The following theorem can be used to answer the question. We state
the theorem below, without proof. For proof, see Datta (1995, pp. 565-566).

Theorem 3.9.4. Distance to Rank-Deficient Matrices. Let A = UZVT be
the SVD of A, and let rank(A) = r > 0. Let k < r. Define Ay, = Uz vT,

Section 3.9: THE SINGULAR VALUE DECOMPOSITION (SVD) 71

where
a1 0
Tk = 01, @zo 20 >0.
0 Ok
010

1. Then out of all the matrices of rank k(k < r), the matrix Ay is closest
to A.

2. Furthermore, the distance of Ay from A: | A — Agll2 = Oky1-
Corollary 3.9.1. The relative distance of a nonsingular matrix A to the nearest

singular matrix B is 1/Cond3(A). That is, |B — All2/||All2 = 1/Condy(A).

Implication of the Above Results

Distance of a Matrix to the Nearest Matrix of Lower Rank

The above result states that the smallest nonzero singular value of A gives the
2-norm distance of A to the nearest matrix of lower rank. In particular, for a
nonsingular n X n matrix A, o, gives the measures of the distance of A to the
nearest singular matrix.

Thus, in order to know if a matrix A of rank r is close enough to a matrix
of lower rank, look into the smallest nonzero singular value o,. If this is very
small, then the matrix is very close to a matrix of rank r — 1, because there
exists a perturbation of size as small as |0, | which will produce a matrix of
rank r — 1. In fact, one such perturbation is u, o, v,T.

Example 3.9.3. Let
1 0 0
A=1]0 2 0
0 0 4x1077

Rank(A) = 3, a3y = 0.0000004, uz = v3 = (0,0, NT.

A'=A— u3o3v3T = , rank(A’) = 2.

oo -
OO
oo O

72 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

The required perturbation w303 v3T to make A singular is:

0 0 0
10°7lo 0 o0
0 0 4

3.9.4 Numerical Rank

The above discussions prompt us to define the concept of “Numerical Rank” of a
matrix. A has “numerical rank” r if the computed singular values 01, 67, ..., o,
satisfy:

Gl >6p> >0, >8> 0,41 > > 0y, 3.9.1H)

where § is an error tolerance.
Thus to determine the numerical rank of a matrix A, count the “large” singular
values only. If this number is r, then A has numerical rank r.

Remark

e Note that finding the numerical rank of a matrix will be “tricky” if there is
no suitable gap between a set of singular values.

3.9.5 Solving the Least-Squares Problem Using the Singular
Value Decomposition

The SVD is also an effective tool to solve the LSP, both in the full rank and
rank-deficient cases.
Recall that the linear LSP is: Find x such that ||r{|> = ||Ax — b|}; is minimum.
Let A = UXVT be the SVD of A. Then since U is orthogonal and a vector
length is preserved by orthogonal multiplication, we have

Irlly = [WUEVTx = b2 = |UEVTx = UTh) |2 = |2y — Vll2,

where VTx = y and UTh = b'. Thus, the use of the SVD of A reduces the LSP
for a full matrix A to one with a diagonal matrix X, which is almost trivial to
solve, as shown in the following algorithm.

Algorithm 3.9.1. Least Squares Solutions Using the SVD
Inputs. A—An m x n matrix,

b—An m-vector
Output. x—The least-squares solution of the system Ax = b.
Step 1. Find the SVD of A: A =UXVT.

Section 3.9: THE SINGULAR VALUE DECOMPOSITION (SVD) 73

by
b
Step 2. Formb' = UTh = | .
b
Step 3. Compute
Y
y=1:
Yn
choosing
Y
—, whenao; #0
Yi = o;

14
arbitrary, when o; = Q.

Step 4. Compute the family of least squares solutions: x = Vy. (Note that in
the full-rank case, the family has just one number).

Flop-count. Using the SVD, it takes about 4mn? 4 8n> flops to solve the LSP,
when Aism x nandm > n.

An Expression for the Minimum Norm Least Squares Solution

Since a rank-deficient LSP has an infinite number of solutions, it is practical to
look for the one that has minimum norm. Such a solution is called the minimum
norm least square solution.

It is clear from Step 3 above that in the rank-deficient case, the minimum
2-norm least squares solution is the one that is obtained by setting y; = 0, whenever
o; = 0. Thus, from above, we have the following expression for the minimum
2-norm solution:

 ufb;

x=Y Lty (3.9.2)

Oj

i=l

where k 1s the numerical rank of A, and «; and v;, respectively, are the ith columns
of Uand V.

Example 3.9.4.
I 2 3 6
A=12 3 4], b=19
1 2 3 6

Step 1. 01 = 7.5358, 02 = 0.4597, 03 = 0.

74 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

A is rank-deficient.

0.4956 0.5044 0.7071
U={07133 —0.7008 0.0000 1},
0.4956 0.5044 —0.7071

0.3208 —0.8546 0.4082
V =]0.5470 —0.1847 —0.8165
0.7732 0.4853 0.4082

Step 2. b = UTh = (12.3667, —0.2547,0)T.
Step 3. y = (1.6411, —0.5541, 0).
The minimum 2-norm least-squares solution is Vy = (1, 1, DT.

Computing the SVD of A

Since the singular values of a matrix A are the nonnegative square roots of the
eigenvalues of AT A, it is natural to think of computing the singular values and the
singular vectors, by finding the eigendecomposition of AT A. However, this is not
a numerically effective procedure.

Some vital information may be lost during the formation of the matrix ATA, as
the following example shows.

Example 3.9.5.

4 (1:0001 1000
=\ 1.000 1.0001)

The singular values of A are 2.0001 and 0.0001.

ATA = 2.0002 2.0002
T \2.0002 2.0002/°

The eigenvalues of ATA are 0 and 4.0004 (in four-digit arithmetic). Thus, the
singular values computed from the eigenvalues of AT A are 0 and 2.0002.

A standard algorithm for computing the SVD of A is the Golub-Kahan-
Reinsch algorithm. The algorithm will be described later in the book in
Chapter 4.

MATLAB and MATCOM notes: MATLAB function svd can be used to compute
the SVD. [U, S, V] = svd(A) produces a diagonal matrix S, of the same dimen-
sion as A and with nonnegative diagonal entries in decreasing order, and unitary
matrices U and V such that A = USV*.

Algorithm 3.9.1 has been implemented in MATCOM program Isqrsvd. Also,
MATCOM has a program called minmsvd to compute the minimum 2-norm least-
squares solution using the SVD.

Section 3.10: SUMMARY AND REVIEW 75

3.10 SUMMARY AND REVIEW

Floating Point Numbers and Errors

1.

Floating-point numbers. A t-digit floating point number has the form:

x = mp°,

where e is called exponent, m is a f-digit fraction, and § is the base of the
number system.

Errors. The errors in a computation are measured either by absolute error
or relative error. The relative errors make more sense than absolute
errors. The relative error gives an indication of the number of significant
digits in an approximate answer. The relative error in representing a real
number x by its floating-point representation fl(x) is bounded by a number
u, called the machine precision (Theorem 3.2.1).

Laws of floating-point arithmetic:

fi(x x y) = (x x y)(1 +9).

Conditioning, Stability, and Accuracy

1.

Conditioning of the problem. The conditioning of the problem is a prop-
erty of the problem. A problem is said to be ill-conditioned if a small
change in the data can cause a large change in the solution, otherwise
it is well-conditioned. The conditioning of a problem is data-dependent.
A problem can be ill-conditioned with respect to one set of data but can be
quite well-conditioned with respect to another set.

The condition number of a nonsingular matrix, Cond(A)=|A}}
A~ is an indicator of the conditioning of the associated linear sys-
tem problem: Ax = b. If Cond(A) is large, then the linear system Ax = b
is ill-conditioned.

The well-known examples of ill-conditioned problems are the Wilkin-

son polynomial for the root-finding problem, the Wilkinson bidiagonal
matrix for the eigenvalue problem, the Hilbert matrix for the algebraic
linear system problem, and so on.
Stability of an algorithm. An algorithm is said to be a backward stable
algorithm if it computes the exact solution of a nearby problem. Some
examples of stable algorithms are the methods of back substitution and
forward elimination for triangular systems, the QR factorization using
Householder and Givens matrices transformations, and the QR iteration
algorithm for eigenvalue computations.

76 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

The Gaussian elimination algorithm without row changes is unstable for
arbitrary matrices. However, Gaussian elimination with partial pivoting
can be considered as a stable algorithm in practice.

3. Effects of conditioning and stability on the accuracy of the solution. The
conditioning of the problem and the stability of the algorithm both have
effects on accuracy of the solution computed by the algorithm.

If a stable algorithm is applied to a well-conditioned problem, it should
compute an accurate solution. On the other hand, if a stable algorithm is
applied to an ill-conditioned problem, there is no guarantee that the com-
puted solution will be accurate. However, if a stable algorithm is applied
to an ill-conditioned problem, it should not introduce more errors than that
which the data warrants.

Matrix Factorizations

There are three important matrix factorizations: LU, QR, and SVD.

1. LU factorization. A factorization of a matrix A in the form A = LU,
where L is unit lower triangular and U is upper triangular, is called an
LU factorization of A. An LU factorization of A exists if all of its leading
principal minors are nonsingular.

A classical elimination scheme, called Gaussian elimination, is used
to obtain an LU factorization of A (Section 3.4.1).
The stability of Gaussian elimination is determined by the growth factor

max (o, &, ..., 0y—1)
P = >
o

where @ = max; ; la;;| and oy = max; ; |ai(Jl'()|'

If no pivoting is used in Gaussian elimination, p can be arbitrarily large.
Thus, Gaussian elimination without pivoting is, in general, an unstable

process.

If partial pivoting is used, then Gaussian elimination yields the fac-
torization of A in the form PA = LU, where P is a perturbation
matrix.

The growth factor p for Gaussian elimination with partial pivoting can
be as large as 2"~'; however, such a growth is extremely rare in practice.
Thus, Gaussian elimination with partial pivoting is considered to be
a stable process in practice.

2. The QR factorization. Givenanm x n matrix A, there exists an orthogonal
matrix Q and an upper triangular matrix R such that A = OR.

Section 3.10: SUMMARY AND REVIEW 77

The QR factorization of A can be obtained using Householder’s
method, Givens’ method, the Gram-Schmidt processes (the CGS and
MGS).

The Gram-Schmidt processes do not have favorable numerical proper-
ties. Both Householder’s and Givens’ methods are numerically stable
procedures for OR factorization. They are discussed, respectively, in Sec-
tion 3.6.2 and Section 3.6.4 (Algorithm 3.6.1). Householder’s method is
slightly more efficient than Givens’ method.

The Algebraic Linear System Problem Ax = b

The method of practical choice for the linear system problem Ax = b is Gaussian
elimination with partial pivoting (Section 3.5.2) followed by iterative refinement
procedure (Section 3.5.7). A symmetric positive definite system should be solved
by computing its Cholesky factor (Algorithm 3.4.1) R followed by solving two
triangular systems: Ry = b and RTx = y (Algorithm 3.3.1 and Section 3.3.3).

The Least-Squares Problem

Given an m x n matrix A, the LSP is the problem of finding a vector x such that
| Ax — b |2 is minimized. The LSP can be solved using:

e The normal equations method (Section 3.8.1): ATAx = ATh
e The QR factorization method (Algorithm 3.8.1)
e The SVD method (Algorithm 3.9.1).

The normal equations method might give numerical difficulties, and should
not be used in practice without looking closely at the condition number. Both
the QR and SVD methods for the LSP are numerically stable. Though the SVD is
more expensive than the QR method, the SVD method is most reliable and can
handle both rank-deficient and full-rank cases very effectively.

The Singular Value Decomposition

1. Existence and uniqueness of the SVD. The SVD of a matrix A always
exists (Theorem 3.9.1):
Let A € R™*" Then A = UZVT, where U € R"*" V ¢ R" " are
orthogonal and ¥ is an m x n diagonal matrix.
The singular values (the diagonal entries of Z) are unique, but U and V
are not unique.
2. Relationship between the singular values and the eigenvalues. The sin-
gular values of A are the nonnegative square roots of the eigenvalues of
ATA (or of AAT).

78 Chapter 3: FUNDAMENTAL TOOLS AND CONCEPTS

3. Sensitivity of the singular values. The singular values are insensitive to
small perturbations (Theorem 3.9.2).

4. Applications of the SVD. The singular values and the singular vectors of
a matrix A are useful and are the most reliable tools for determining the
(numerical) rank and the rank-deficiency of A; finding the orthonormal
bases for range and the null space of A; finding the distance of A from
another matrix of lower rank (in particular, the nearness to singularity of a
nonsingular matrix); solving both full-rank and the rank-deficient LSPs.

These remarkable abilities and the fact that the singular values are insen-
sitive to small perturbations have made the SVD an indispensable tool for
a wide variety of problems in control and systems theory, as we will see
throughout the book.

3.11 CHAPTER NOTES AND FURTHER READING

Material of this chapter has been taken from the recent book of the author (Datta
1995). For the advanced topics on numerical linear algebra, see Golub and Van
Loan (1996). The details about stability of various algorithm and sensitivities of
problems described in this chapter can be found in the book by Higham (1996).
Stewart’s (1998) recent book is also an excellent source of knowledge in this
area. For details of various MATLAB functions, see MATLAB Users’ Guide
(1992). MATCOM is a MATLAB-based toolbox implementing all the major algo-
rithms of the book “Numerical Linear Algebra and Applications” by Datta (1995).
MATCOM can be obtained from the book’s web page on the web site of MATH-
WORKS: http://www.mathworks.com/support/books/book1329.jsp. The software
(MATCOM) is linked at the bottom.

References

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA, 1995 (Custom published by Brooks/Cole, 2003).

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University
Press, Baltimore, MD, 1996.

Higham N.J. Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

MATCOM web site: http://www.mathworks.com/support/books/book 1329 jsp.

MATLAB User’s Guide, The Math Works, Inc., Natick, MA, 1992.

Stewart G.W. Matrix Algorithms Volume 1 Basic Decompositions, SIAM, Philadelphia,
1998.

Wilkinson J.H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 4

CANONICAL FORMS OBTAINED
VIA ORTHOGONAL
TRANSFORMATIONS

Topics covered

e Numerical Instabilities in obtaining the Jordan and Companion Matrices
Hessenberg Reduction of a Matrix

e The Double-Shift Implicit QR Iteration for the Real Schur Form (RSF) of
a Matrix
Invariant Subspace Computation from the RSF
The QZ Algorithm for the Generalized RSF of the Matrix Pencil A — A B
The SVD Computation

4.1 IMPORTANCE AND SIGNIFICANCE OF USING ORTHOGONAL
TRANSFORMATIONS

The Jordan and companion matrices have special structures that can be conve-
niently exploited to solve many control problems. Unfortunately, however, these
forms in general, cannot be obtained in a numerically stable way.

We examine this fact here in some detail below.

Suppose that X is a nonsingular matrix and consider the computation of X "' AX
in floating point arithmetic. It can be shown that

fIXT'AX) = X 'AX + E,

where || E|l; ~ uCond(X)| Ali,, i is the machine precision.
Thus, when X is ill-conditioned, there will be large errors in computing X "' AX.
For the Jordan canonical form (JCF), the transforming matrix X is highly
ill-conditioned, whenever A has defective or nearly defective eigenvalue.

79

80 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

The reduction of a matrix A to an upper companion matrix C (Section 2.4.5)
involves the following steps:

Step 1. A is transformed to an upper Hessenberg matrix H, = (h;;) by
orthogonal similarity: PYAP = H,,.

Step 2. Assuming that H, is unreduced, thatis, ~;+1,; #0,i =1,2,...,n—1,
then H, is further reduced to the companion matrix C by similarity. Thus, if
Y = (ey, Hyey, ..., H,:’_lel), it is easy to see that Y“lHuY =C.

A numerically stable algorithm to implement Step 1 is given in the next section;
however, the matrix ¥ in Step 2 can be highly ill-conditioned if H, has small
subdiagonal entries.

(Note that Y is a lower triangular matrix with 1, hp1h3z, ..., hothsa .. hp g
as the diagonal entries).

Thus, Step 2, in general, cannot be implemented in a numerically effective
manner.

The above discussions clearly show that it is important from a numerical com-
putation viewpoint to have canonical forms which can be achieved using only
well-conditioned transforming matrices, such as orthogonal matrices.

Indeed, if a matrix A is transformed to a matrix B using an orthogonal sim-
ilarity transformation, then a perturbation in A will result in a perturbation
in B of the same magnitude. That is, if

B=UTAU and UT(A+ AAU = B+ AB,

then [AB|2 = |AA]2.

In this chapter, we show that two very important canonical forms: the
Hessenberg form and the Real Schur Form (RSF) of a matrix A, can be obtained
using orthogonal similarity transformations. (Another important canonical form,
known as the generalized real Schur form, can be obtained using orthogonal
equivalence.)

We will see in the rest of the book that these canonical forms form impor-
tant tools in the development of numerically effective algorithms for control
problems.

Applications of Hessenberg and real Schur forms include:

1. Computation of frequency response matrix (Chapter 5)

2. Solutions of Lyapunov and Sylvester equations (Chapter 8), Alge-
braic Riccati equations (Chapter 13), Sylvester-observer equation
(Chapter 12).

3. Solutions of eigenvalue assignment (Chapter 11), feedback stabilization
problems (Chapter 10), stability and inertia computations (Chapter 7).

Section 4.2: HESSENBERG REDUCTION OF A MATRIX 81

Applications of generalized real Schur form include:

1. Solutions of certain algebraic Riccati equations (Chapter 13).
2. Solution of any descriptor control problem.
3. Computations of frequencies and modes of vibrating systems.

Besides these two forms, there are two other important canonical forms, namely,
the controller-Hessenberg and observer-Hessenberg forms. These forms can
also be obtained in a numerically effective way and will be used throughout the
book. Methods for obtaining these two forms are described in Chapter 6.

4.2 HESSENBERG REDUCTION OF A MATRIX

Recall that a matrix H = (k;;) is said to be an upper Hessenberg matrix if #;; = 0
fori > j+ 1.

An n x n matrix A can always be transformed to an upper Hessenberg matrix
H, by orthogonal similarity. That is, given an n x n matrix A, there exists an
orthogonal matrix P such that PAPT = H,,.

Again, Householder and Givens matrices, being orthogonal, can be employed
to obtain H, from A.

We will discuss only Householder’s method here.

Reduction to Hessenberg Form using Householder Matrices

The idea is to extend the QR factorization process using Householder matrices
described in Chapter 3 to obtain P and H,, such that PAPT = H, is an upper
Hessenberg matrix and P is orthogonal.

The matrix P is constructed as the product of (n — 2) Householder matrices P;
through P, _». The matrix P is constructed to create zeros in the first column of
A below the entry (2, 1); P> 1s constructed to create zeros below the entry (3, 2)
of the second column of the matrix P; APlT , and so on.

The process consists of (n — 2) steps. (Note that an n x n Hessenberg matrix
contains at least (n — 2)(n — 1)/2 zeros.)

Atthe end of (n —2)th step, the matrix A”"~2) is an upper Hessenberg matrix H,,.
The Hessenberg matrix H, is orthogonally similar to A. This is seen as follows:

Hu = A(n—2) = Pn_2A(n_3) P,’,r,z = Pn72(Pn—3A(n‘4)Pr’:r—3)Prrtr—2
= = (Py2Puz... PDAPI P} ...PT PT). (42.1)

Set
P=P, »P,_3...P. 4.2.2)

We then have H, = PA PT. Since each Householder matrix P; is orthogonal, the
matrix P which is the product of (n — 2) Householder matrices, is also orthogonal.

82 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

Forn = 4, schematically, we can represent the reduction as follow. Set A = A.
Then,

* ok ok %k
P
AD pAPT= |2 " P M40
0 * * x
0 * * x
* ok ok %k
P * ok ok %
1 12 () pT _ Ay _
AD 2 papf = = AP = H,.
0 0 *x =x

Notes

1. Multiplication by PiT to the right does not destroy the zeros already present
in P,AGTD,

2. The product P; A¢—D PiT can be implicitly formed as shown in Chapter 3
(Section 3.6.1).

Flop-count. The process requires ¥n3 flops to compute H,. This count does
not include the explicit computation of P, which is stored in factored form. If P
is computed explicitly, another %n3 flops are required. However, when r is large,
the storage required to form P is prohibitive.

Roundoff property. The process is numerically stable. It can be shown (Wilkin-
son (1965, p. 351) that the computed H, is orthogonally similar to a nearby matrix
A + E, where

IElF <cn’ullAlg.

Here c is a constant of order unity.
MATLAB note: The MATLAB Command [P, H] = hess (A) computes an
orthogonal matrix P and an upper Hessenberg matrix H such that PAPT = H.

4.2.1 Uniqueness in Hessenberg Reduction: The Implicit O Theorem

We just described Householder’s method for Hessenberg reduction. However,
this form could also have been obtained using Givens matrices as well (see
Datta (1995, pp. 163-165). The question, therefore, arises how unique is the
Hessenberg form?

The question is answered in the following theorem, known as the Implicit Q
Theorem. The proof can be found in Golub and Van Loan (1996, p. 347).

Theorem 4.2.1. The Implicit Q Theorem. Let P = (py, p2,..., pn) and
Q=(q1,q92, - .qn) be orthogonal matrices such that PTAP = H, and

Section 4.3: THE REAL SCHUR FORM OF A: THE QR ITERATION METHOD 83

QTAQ = H, are two unreduced upper Hessenberg matrices. Suppose that
p1=q1. Then H| and H, are essentially the same in the sense that Hy =
D~YH\D, where D = diag(+1, ..., £1). Furthermore, p; = =£q;,i =
2,...,n.

4.3 THE REAL SCHUR FORM OF A: THE QR
ITERATION METHOD

In this section, we describe how to obtain the RSF of a matrix. The RSF of a
matrix A displays the eigenvalues of A. Itis obtained by using the well-known Q R
iteration method. This method is nowadays a standard method for computing
the eigenvalues of a matrix. First, we state a well-known classical result on this
subject.

Theorem 4.3.1. The Schur Triangularization Theorem. Let A be an n X n
complex matrix, then there exists an n x n unitary matrix U such that

U*AU =T,

where T is an n x n upper triangular matrix and the diagonal entries of T are
the eigenvalues of A.

Proof. See Datta (1995, pp. 433-439).

Since a real matrix can have complex eigenvalues (occurring in complex con-
jugate pairs), even for a real matrix A, U and T in the above theorem can be
complex. However, we can choose U to be real orthogonal if T is replaced by a
quasi-triangular matrix R, known as the RSF of A, as the following theorem
shows. The proof can be found in Datta (1995, p. 434) or in Golub and Van Loan
(1996, pp. 341-342). N

Theorem 4.3.2. The Real Schur Triangularization Theorem. Let Abeann xn
real matrix. Then there exists an n x n orthogonal matrix Q such that

Rit Rz -+ Ri

T 0 Ryp - Ry
Q' AQ=R= . . . , 4.3.1)

0 -~ 0 Ru

where each R;; is either a scalar or a 2 x 2 matrix. The scalars diagonal entries
correspond to real eigenvalues, and each 2 x 2 matrix on the diagonal has a
pair of complex conjugate eigenvalues.

Definition 4.3.1. The matrix R in Theorem 4.3.2 is known as the RSF of A.

84 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

Remarks

e The?2 x2 matrices on the diagonal are usually referred to as “Schur bumps.”

e The columns of Q are called the Schur vectors. Foreachk =1,2,...,n,
the first £ columns of O form an orthonormal basis for the invariant
subspace corresponding to the first k eigenvalues.

We present below a method, known as the QR iteration method, for computing
the RSF of A. A properly implemented QR method is widely used nowadays
for computing the eigenvalues of an arbitrary matrix. As the name suggests,
the method is based on the QR factorization and is iterative in nature. Since the
roots of a polynomial equation of degree higher than four cannot be found in a
finite number of steps, any numerical method to compute the eigenvalues of a
matrix of order higher than four has to be iterative in nature. The QR iteration
method was proposed in algorithmic form by J.G. Francis (1961), though its roots
can be traced to a work of Rutishauser (1958). The method was also independently
discovered by the Russian mathematician Kublanovskaya (1961).

For references of these papers, see Datta (1995) or Golub and Van Loan (1996).

4.3.1 The Basic QR Iteration
We first present the basic QR iteration method.

Set Ag = A.
Compute now a sequence of matrices {Ay} as follows:
Fork=1,2,... do
Find the QR factorization of Ay_1: Ax—1 = Qr Rk
Compute Ay = Ry Q.
End
The matrices in the sequence { A; } have a very interesting property: Each matrix
in the sequence is orthogonally similar to the previous one and is, therefore,
orthogonally similar to the original matrix. It is easy to see this. For example,

A1 = R1Q1 = 0] Ao Q; (since R| = Q7 Ay),
Ay = Ry0r = QY A1 Q; (since Ry = QT A)).

Thus, A; is orthogonally similar to A and A, is orthogonally similar to Aj.
Therefore, A; is orthogonally similar to A, as the following computation shows:

Ay = 07A102 = 01(QTA001) 02 = (0102)T A0(Q1 Q).

Since each matrix Ay is orthogonally similar to the original matrix A, it has the
same eigenvalues as A. It can then be shown (Wilkinson (1965, pp. 518-519) that
under certain conditions, the sequence {A;} converges to the RSF or to the Schur
form of A.

Section 4.3: THE REAL SCHUR FORM OF A: THE QR ITERATION METHOD 85

4.3.2 The Hessenberg QR Iteration and Shift of Origin

The QR iteration method as presented above is not practical if the matrix A
is full and dense. This is because, as we have seen before, the QR factorization of
a matrix A requires O (n%) flops and thus n iterations will consume O (n*) flops,
making the method impractical.

Fortunately, something simple can be done:

Reduce the matrix A to a Hessenberg matrix by orthogonal similarity
before starting the QR iterations. An interesting practical consequence of
thisis thatif A = Ay is initially reduced to an upper Hessenberg matrix H and
is assumed to be unreduced, then each member of the matrix sequence{ Hy}
obtained by applying QR iteration to H is also upper Hessenberg. Since the
QR factorization of a Hessenberg matrix requires O(n?) flops, the whole
iteration process then becomes O (n°) method.

However, the convergence of the subdiagonal entries of H, in the presence of two
or more nearly equal (in magnitude) eigenvalues, can be painfully slow.

Fortunately, the rate of convergence can be significantly improved by using a
suitable shift.

The idea is to apply the QR iteration to the shifted matrix H=H- A1, where
X; is an approximate eigenvalue. This is known as the single shift QR iteration.

However, since the complex eigenvalues of a real matrix occur in conjugate
pairs, in practice, the QR iteration is applied to the matrix H with double shifts.
The process then is called the double shift QR iteration method.

4.3.3 The Double Shift QR Iteration

The Hessenberg double shift QR iteration scheme can be written as follows:

Fori=1,2,...do
Choose the two shifts k| and &>
Find the QR Factorization: H — ki1 = Q1 R;
Form: Hy = R1 Q1 + k1]
Find the QR factorization: H; — k2l = Q2R>
Form: Hy = RyQ» + k»1
End

The shifts ky and k; at each iteration are chosen as the eigenvalues of the 2 x 2
trailing principal submatrix at that iteration. The process is called the explicit
double-shift QR iteration process.

86 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

The above explicit scheme requires complex arithmetic (since k) and k; are
complex) to implement, and furthermore, the matrices H — k1 and H; — kol
need to be formed explicitly. In practice, an equivalent implicit version, known as
the double shift implicit O R iteration scheme, is used. We state one step of this
process in the following.

The Double Shift Implicit QR Step

1. Compute the first column | of the matrix N = (H — ki I)(H — kyI) =
H? — (ki + k) H + kiko 1.

2. Find a Householder matrix Py such that Pyn| is a multiple of ey.

3. Find Householder matrices P; through P,_» such that H» =(PnT_2 e

PlT POT YH(PyPy ... P,_>) is an upper Hessenberg matrix.

It can be shown by using the Implicit @ Theorem (Theorem 4.2.1) that the upper
Hessenberg matrix H, obtained by the double shift implicit QR step is essen-
tially the same as H> obtained by one step of the explicit scheme. Furthermore,
the first column n; of N can be computed without explicitly computing the matrix
N and, the computation of H from H can be done only in O (n?) flops. For details
see Datta (1995, pp. 444 -447).

4.3.4 Obtaining the Real Schur Form A

1. Transform the matrix A to Hessenberg form.
2. TIterate with the double shift implicit QR step.

Typically, after two to three iteration steps of the double shift implicit QR method,
one or two (and sometimes more) subdiagonal entries from the bottom of the
Hessenberg matrix converge to zero. This then will give us a real or a pair of
complex conjugate eigenvalues.

Once areal or a pair of complex conjugate eigenvalues is computed, the last row
and the last column in the first case, or the last two rows and the last two columns
in the second case, are deleted and the computation of the other eigenvalues is
continued with the submatrix.

This process is known as deflation.

Note that the eigenvalues of the deflated submatrix are also the eigenvalues of
the original matrix. For, suppose, immediately before deflation, the matrix has the

form:))
A C
Hk - (O B/) £

where B’ is the 2 x 2 trailing submatrix or a 1 x 1 matrix. Then the characteristic
polynomial of Hy is: det(Al — Hy) = det(Al — A") det(A] — B'). Thus, the eigen-
values of Hy, are the eigenvalues of A’ together with those of B’. But Hy is orthog-
onally similar to the original matrix A and therefore has the same eigenvalues as A.

Section 4.3: THE REAL SCHUR FORM OF A: THE QR ITERATION METHOD 87
Example 4.3.1. Find the RSF of
0.2190 —0.0756 0.6787 —0.6391
H= —0.9615 09032 —0.4571 0.8804
B 0 —0.3822 04526 —0.0641
0 0 —0.1069 —0.0252
Iteration hy h3 ha3
1 0.3860 —0.5084 —0.0084
2 —0.0672 —-0.3773 0.0001
3 0.0089 —0.3673 0
4 —0.0011 -0.3590 0O
5 0.0001 —0.3905 0
The computed RSF is
1.4095 0.7632 —-0.1996 0.8394
H= 0.0001 0.1922 0.5792 0.0494
o 0 —0.3905 0.0243 —0.4089
0 0 0 —0.0763
. 0.1922 0.5792 .
The eigenvalues of (_0.3905 0.0243> are 0.1082 1+ 0.4681 .
Balancing

It is advisable to balance the entries of the original matrix A, if they vary widely,
before starting the QR process.

The balancing is equivalent to transforming the matrix A to D~'AD, where
the diagonal matrix D is chosen so that the transformed matrix has approximately
equal row and column norms.

In general, preprocessing the matrix by balancing improves the accuracy of
the QR iteration method. Note that no round-off error is involved in this
computation and it takes only O (n?) flops.

MATLAB note: The MATLAB command [T, B] = balance(A) finds a diagonal

matrix T such that B = T~'AT has approximately the equal row and column
norms. See MATLAB User’s Guide (1992).
Flop-count of the QR iteration method: Since the QR iteration method is an iter-
ative method, it is hard to give an exact flop-count for this method. However,
empirical observations have established that it takes about two QR iterations per
eigenvalue. Thus, it will require about 12n> flops to compute all the eigenvalues. If
the transforming matrix Q and the final quasitriangular matrix 7 are also needed,
then the cost will be about 26r3 flops.

88 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

Numerical stability property of the QR iteration process: The QR iteration
method is quite stable. An analysis of the round-off property of the algorithm
shows that the computed RSF Tis orthogonally similar to a nearby matrix A + E.
Specifically,

Q"A+E)Q =T, where|E|r < p(m)ulAllF,

where ¢ (n) is a slowly growing function of n and p is the machine precision. The
computed orthogonal matrix Q can also be shown to be nearly orthogonal.
MATILAB notes: The MATLAB function schur in the following format:
[U, T] = schur(A) produces a Schur matrix 7 and an unitary matrix U such
that A =UTU*.

By itself, schur(A) returns 7. If A is real, the RSF is returned.

The RSF has the real eigenvalues on the diagonal and the complex eigenvalues
in 2 x 2 blocks on the diagonal.

4.3.5 The Real Schur Form and Invariant Subspaces

The RSF of A displays information on the invariant subspaces.

Basis of an Invariant Subspace from RSF

Let

T _ »_[Ru Rn
QAQ—R—(0 Ry

and let’s assume that Ry and Ry, do not have eigenvalues in common. Then
the first p columns of Q, where p is the order of R, form a basis for the
invariant subspace associated with the eigenvalues of Ry;.

In many applications, such as in the solution of algebraic Riccati equations (see
Chapter 13), in constructing a reduced-order model, etc., one needs to compute an
orthonormal basis of an invariant subspace associated with a selected number of
eigenvalues. Unfortunately, the RSF obtained by QR iteration will not, in general,
give the eigenvalues in some desired order. Thus, if the eigenvalues are not in a
desired order, one wonders if some extra work can be done to bring them into that
order. That this can indeed be done, is seen from the following simple discussion.
Let Abe2 x 2.
Let

A
Q1TAQ1=<01 ;122) Al # A2,

Section 4.3: THE REAL SCHUR FORM OF A: THE QR ITERATION METHOD 89

If Ay and X, are not in right order, all we need to do to reverse the order is to form
a Givens rotation J (1, 2, 8) such that

ri2 _[*
J(1,2,6) <x2 - M) = (o)’

Then Q = Q1J(1,2,8)7 is such that
T A2 r2
Q AQ = (o M)'

The above simple process can be easily extended to achieve any desired ordering
of the eigenvalues in the RSF. For a Fortran program, see Stewart (1976).

1 2
2 3)
0, = 0.8507 0.5257
1=1-05257 0.8507)°

Example 4.3.1.

A

oo (=02361 0.0000
QIAQI—(O.oooo 4.2361)'

Suppose we now want to reverse the orders of —0.2361, and 4.2361.

Form: J(1,2,6) = (Ol ‘01).

Then, J(1,2,0) (4 40722> = (4'4522) .

—0.5257 —0.8507
. _ T _
Form: Q = Q1J(1,2,0)" = (—0,8507 0.5257) '

42361 0.00
T _ .
Then, Q°AQ = (0.00 —0.2361)'

Flop-count and numerical stability. The process is quite inexpensive. It
requires only k(12n) flops, where k is the number of interchanges required to
achieve the desired order. The process is also numerically stable.

MATCONTROL note: The routine ordersch in MATCONTROL can be used to
order the eigenvalues in the RSF of the matrix.

Fortran Routine: The Fortran routine STRSYL in LAPACK (Anderson et al.
(1999)) reorders the Schur decomposition of a matrix in order to find an orthonor-
mal basis of a right invariant subspace corresponding to selected eigenvalues.

90 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

Invariant Subspace Sensitivity: Sep-Function

Let Q*AQ = (7;;1 22) be the Schur decomposition of A. Let Q = (Q1, 02).

Define

. T X — XTpllg
sep(Ti1, Ip2) = min ——————.
X#0 | X1lg

Then it can be shown (Golub and Van Loan (1996, pp. 325)) that the reciprocal
of sep(T11, T22) is a good measure of the sensitivity of the invariant subspace
spanned by the columns of Q.

4.3.6 Inverse Iteration

The inverse iteration is a commonly used procedure to compute a selected
number of eigenvectors of a matrix.

Since A is initially reduced to a Hessenberg matrix H for the QR iteration
process, then it is natural to take advantage of the structure of the Hessenberg
matrix H in the process of inverse iteration. The Hessenberg inverse iteration
can then be stated as follows:

Step 1. Reduce the matrix A to an upper Hessenberg matrix H : PAPT = H.

Step 2. Compute an eigenvalue A, whose eigenvector x is sought, using the
implicit QR iteration method described in the previous section.

Step 3. Choose a unit-length vector yy € C".

Fork =1, 2, ... do until convergence
Solve for z® : (H — AD)z® = y&=b
Compute y® = 75 /)10

End

Step 4. Recover the eigenvector x of the matrix A : x = PTy® where y®) is
an approximation of the eigenvector y obtained at the end of Step 3.

Note: If y is an eigenvector of H, then x = P7Ty is the corresponding eigen-
vector of A.

Convergence and efficiency: The Hessenberg inverse iteration is very inexpen-
sive. Once an eigenvalue is computed, the whole process requires only O (n?) flops.
It typically requires only 1 to 2 iterations to obtain an approximate acceptable
eigenvector.

Section 4.4: COMPUTING THE SINGULAR VALUE DECOMPOSITION (SVD) n

44 COMPUTING THE SINGULAR VALUE DECOMPOSITION (SVD)

The following algorithm known as the Golub-Kahan-Reinsch algorithm is
nowadays a standard computational algorithm for computing the SVD. The
algorithm comes in two stages:

Stage I. The m x n matrix A (m > n) is transformed to an upper m x n bidiagonal
matrix by orthogonal equivalence:

B
USA Vo = (0), (4.4.1)

where B is the n x n upper bidiagonal matrix given by

b1 * 0
*
B =
*
0 by

Stage II. The transformed bidiagonal matrix B is further reduced by orthogo-
nal equivalence to a diagonal matrix X using the QR iteration method; that is,
orthogonal matrices Uy and V; are constructed such that

UIBV) = T = diag(o1. ..., 0n). (4.4.2)

The matrix X is the matrix of singular values. The singular vector matrices U
and V are given by U = UpUy, V = WV,

We will briefly describe Stage I here. For a description of Stage II, see Golub
and Van Loan (1996, pp. 452-457).

Reduction to Bidiagonal Form

We show how Householder matrices can be employed to construct Uy and V) in
Stage 1.

The matrices Uy and V} are constructed as the product of Householder matrices
as follows: Uy = U Uy ... Uy, and Vg = V1 Vs ... V,_5. Let’s illustrate construc-
tion of Uy, Vi and U,, V3, and their role in the bidiagonalization process with
m=35andn =4.

92 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

First, a Householder matrix U; is constructed such that

AV =04 =

OO OO ¥
* K K K ¥
* K K ¥ ¥
* K K ¥ ¥

Next, a Householder matrix V; is constructed such that

* %= 0 0 x| * 0 0
0 x x =% 0

AP =Dy =10 x x x|=]| o A
0 * * 0
0 x * % 0

The process is now repeated with A); that is, Householder matrices U, and V;
are constructed so that

* x 0 0
0 x % 0
UAPv, =0 0 = =
0 0 % =%
0 0 % =

Of course, in this step, we will work with the 4 x 3 matrix A’ rather than the matrix
A® . Thus, first the orthogonal matrices U} and V; will be constructed such that

UA'V] =

OO O *
* ¥ ¥ ¥
* % ¥x O

then U, and V, will be constructed from U, and V; in the usual way, that is,
by embedding them in identity matrices of appropriate orders. The process is
continued until the bidiagonal matrix B is obtained.

Example 4.4.1, Let

:S

Il
N W —
NN
oo h W

Section 4.4: COMPUTING THE SINGULAR VALUE DECOMPOSITION (SVD) 93

Step 1.
—0.1474 —0.4423 —0.8847
U =|-04423 0.8295 -03410],
—0.8847 —0.3410 0.3180,
—6.7823 —8.2567 —9.7312
AD =y A = 0 0.0461 0.0923
0 —0.9077 —1.8154
Step 2.
I 0 0
Vi=|0 -0.6470 0.7625],
0 —0.5571 0.6470
—6.7823 12.7620 0
A = ADy, = 0 —1.0002 0.0245
0 19716 —0.4824
Step 3.

[

0.9987 0.0508

s

0 0
—0.0508 0.9987

—6.7823 12.7620 0
B =UA? = U,AVV, = DU AV = 0 —1.0081 -1.8178
0 0 0

Note that from the above expression of B, it immediately follows that zero is a singular
value of A.

Flop-count: The Householder bidiagonalization algorithm requires 4mn* —
4n> /3 flops.

Stage II, that is, the process of iterative reduction of the bidiagonal matrix
to a diagonal matrix containing the singular values requires 30r flops and 2n
square roots. The matrices U and V can be accumulated with 6mn and 6n? flops,
respectively.

Stability: The Golub—Kahan—Reinsch algorithm is numerically stable. It can
be shown that the process will yield orthogonal matrices U and V and a diagonal
matrix ¥ such that UTAV = X + E, where IE, = wl|All,.

94 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

4.5 THE GENERALIZED REAL SCHUR FORM:
THE QZ ALGORITHM

In this section, we describe two canonical forms for a pair of matrices (A4, B): The

Hessenberg-triangular and the Generalized RSF. The Generalized RSF displays

the eigenvalues of the matrix pencil A — AB, as the RSF does for the matrix A.
Given n x n matrices A and B, a scalar A and a nonzero vector x satisfying

Ax = ABx

are respectively called an eigenvalue and eigenvector for the pencil A — AB. The
eigenvalue problem itself is called generalized eigenvalue problem. The eigen-
values and eigenvectors of the generalized eigenvalue problem are often called
generalized eigenvalues and generalized eigenvectors. The matrix pencil A—AB
is often conveniently denoted by the pair (A, B).

The pair (A, B) is called regular if det(A — A B) is not identically zero. Other-
wise, itis singular. We will consider only regular pencil here. If B is nonsingular,
then the eigenvalues of the regular pair (A, B) are finite and are the same as those
of AB~'or B! A.

If B is singular, and if the degree of det(A — A B) is r (< n), then n—r eigenvalues
of (A, B) are 0o, and the remaining ones are the zeros of det(A — A B).

As we will see later, the generalized RSF is an important tool in the numerical
solutions of the discrete algebraic Riccati equation and the Riccati equations
with singular and ill-conditioned control weighting matrices (Chapter 13).

The QZ algorithm

Assume that B is nonsingular. Then the basic idea is to apply the QR iteration
algorithm to the matrix C = B~ A (or to AB™!), without explicitly forming the
matrix C. Forif B is nearly singular, then it is not desirable to form B~!. In this case
the entries of C will be much larger than those of A and B, and the eigenvalues of
C will be computed inaccurately. (Note that the eigenvalues of B! A are the same
as those of AB~!, because AB~! = B(B~'A)B~1). If AB~! or B~ A is not to
be computed explicitly, then the next best alternative, of course, is to transform A
and B simultaneously to some reduced forms such as the triangular forms and then
extract the generalized eigenvalues from these reduced forms. The simultaneous
reduction of A and B to triangular forms by equivalence is guaranteed by the
following theorem:

Theorem 4.5.1. The Generalized Real Schur Decomposition. Giventwon x n
real matrices A and B, there exist orthogonal matrices Q and Z such that QTAZ
is an upper real Schur matrix and Q" BZ is upper triangular:

QTAZ =A',an upper real Schur matrix,

QTBZ = B', an upper triangular matrix.

Section 4.5: THE GENERALIZED REAL SCHUR FORM: THE QZ ALGORITHM 95

The pair (A’, B') is said to be in generalized RSF.

The reduction to the generalized RSF is achieved in two stages.

Stage I. The matrices A and B are reduced to an upper Hessenberg and an upper
triangular matrix, respectively, by simultaneous orthogonal equivalence:

A= QTAZ, an upper Hessenberg matrix,

B=Q'BZ, an upper triangular matrix.

Stage II. The Hessenberg-triangular pair (A, B) is further reduced to the
generalized RSF by applying implicit QR iteration to AB~!.
This process is known as the QZ Algorithm.

We will now briefly sketch these two stages in the sequel.

4.5.1 Reduction to Hessenberg-Triangular Form

Let A and B be two n x n matrices. Then,
Step 1. Find an orthogonal matrix U such that

B=U"B

is an upper triangular matrix by finding the QR factorization of B.
Form

A=UTA

(in general, A will be full).

Step 2. Reduce A to Hessenberg form while preserving the triangular struc-
ture of B.

Step 2 is achieved as follows:
To start with, we have

k% *
* * %
A=UTA = ,
* % *
* % *
* *
0 *
B=UTB=1]0 0 %

96 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

First, the (n, 1)th entry of A is made zero by applying a Givens rotation Q1,5
in the (n — 1, n) plane:

k% *

* ok %
A=Qp1pA=

k0 ok *

0 x* *

This transformation, when applied to B from the left, will give a fill-in in the
(n, n — 1) position:

* * *
0 * *
0 0 * *

B=Q,1nB=

The Givens rotation Z,_1 , = J(n — 1, n, 8) is now applied to the right of B to
make the (n, n — 1) entry of B zero. Fortunately, this rotation, when applied to the
right of A, does not destroy the zero produced earlier. Schematically, we have

0 % =x *

BEBZn—l,n: 0 0 * BRI ,
0 0 0 =
* % % *
* k% *
* k% *

A= AZn—l,n = .
* k% *
0 % x *

The entries (n — 1, 1), (n —2, 1), ..., (3, 1) of A are now successively made zero,

each time applying an appropriate rotation to the left of A, followed by another
appropriate Givens rotation to the right of B to zero out the undesirable fill-in in
B. At the end of the first step, the matrix A is Hessenberg in its first column, while

Section 4.5: THE GENERALIZED REAL SCHUR FORM: THE QZ ALGORITHM 97

B remains upper triangular:

- * * X *®

- * % *
A= 0 = * , B=10

o %

0 * 0 0 % =*

The zeros are now produced on the second column of A in the appropriate places
while retaining the triangular structure of B in an analogous manner.

The process is continued until the matrix A is an upper Hessenberg matrix while
keeping B in upper triangular form.

1 2 3 1 1 1
A=|1 3 4], B={10 1 2}.
I 3 3 0 0 2

1. Form the Givens rotation (073 to make a3; zero:

Example 4.5.1.

1 0 0
P»n=10 07071 0.7071],
0 —-0.7071 0.7071

1 2 3
A=AD = 034 = [1.4142 42426 4.9497
0 0 —0.7071
2. Update B:
1 1 1

B=BY =0xB=|0 07071 2.8284
0 —0.7071 0

3. Form the Givens rotation Zj3 to make b3, zero:

1 0 0
Zn=§{0 0 -1},
01 0
1 1 -1
B=BWZy = 01BZn =0 28284 —-0.7071
0 0 0.7071

98 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

4. Update A:
1 3 -2
A=ADZy = 034203 = | 1.4142 49497 —4.2426
0 —0.7071 0

Now A is an upper Hessenberg and B is in upper triangular form.

4.5.2 Reduction to the Generalized Real Schur Form

At the beginning of this process, we have A and B as an upper Hessenberg and
an upper triangular matrix, respectively, obtained from Stage 1. We can assume
without loss of generality that the matrix A is an unreduced upper Hessenberg
matrix. The basic idea now is to apply an implicit QR step to AB~! without
ever forming this matrix explicitly. We sketch just the basic ideas here. For
details, see Datta (1995, pp. 500-504).

Thus a QZ step, analogous to an implicit QR step, will be as follows:

1. Compute the first column n; of N = (C — a1 1)(C — apl), where C =
AB~! and a1 and a; are suitably chosen shifts, without explicitly forming
the matrix AB™1.

(Note that n; has only three nonzero entries and the rest are zero).

2. Find a Householder matrix Q1, such that Q17 is a multiple of e;.

Form QA and Q1 B.

4. Simultaneously transform Q1A to an upper Hessenberg matrix A;, and
(1 B to an upper triangular matrix Bj:

W

A= 0Y(QIA)Z: an upper Hessenberg;
B = Q0T(QiB)Z : an upper triangular.

Using the implicit Q theorem (Theorem 4.2.1) we can show that the matrix A1 B !
is essentially the same as that would have been obtained by applying an implicit
QR step directly to AB™L,

Applications of a few QZ steps in sequence will then yield a quasi-triangular
matrix R = QT AZ and an upper triangular T = QT BZ, from which the general-
ized eigenvalues can be easily extracted.

Choosing the Shifts

The double shifts oy and «; at a QZ step can be taken as the eigenvalues of the
lower 2 x 2 submatrix of C = AB~!. The 2 x 2 lower submatrix of C again
can be computed without explicitly forming B~! (see Datta (1995, p. 501)).

Section 4.6: COMPUTING OF THE EIGENVECTORS OF THE PENCIL A — AB 99

Algorithm 4.5.1. The Complete Q Z Algorithm for Reduction to Generalized
Schur Form

Inputs: Real n x n matrices A and B.
Outputs: The pair (R, T) of the generalized RSF of the pencil A — AB. The
matrix R is Quasi-triangular and T is upper triangular.

1. Transform (A, B) to a Hessenberg-triangular pair by orthogonal equiva-
lence:

A= QTAZ , an upper Hessenberg,
B=QTBZ, an upper triangular.

2. Apply a sequence of the QZ steps to the Hessenberg-triangular pair (A, B)
to produce {Ax} and { B}, with properly chosen shifts.
3. Monitor the convergence of the sequences { Ay} and {Bg}:

{Ax} — R, quasi-triangular (in RSF),
{Bx} — T, upper triangular.
Flop-count: The implementation of (1)~(3) requires about 30n flops. The for-
mation of Q and Z, if required, needs, respectively, another 16n> and 20n> flops
(from experience it is known that about two QZ steps per eigenvalue are adequate).

Numerical Stability Properties: The QZ iteration algorithm is as stable as the
QR iteration algorithm. It can be shown that the computed R and S satisfy

Qi(A+E)Zo=R, QiB+F)Zy=3.

Here Q¢ and Zy are orthogonal, || E|| = w||Alland || F|| = w|| B||; ¢ is the machine
precision.

4.6 COMPUTING OF THE EIGENVECTORS OF THE PENCIL A — \B

Once an approximate generalized eigenvalue X is computed, the corresponding
eigenvector v of the pencil A — A B can be computed using the generalized inverse
iteration as before.

Step 1. Choose an initial eigenvector vy.

Step 2. For k =1, 2, ... do until convergence

Solve (A — AB)V; = Bug_1;
vk = O/ k|l 4.6.1)
A Remark on Solving (A — AB)0, = Bvg_1

In solving (A — AB)0y = Buy_y, substantial savings can be made by exploiting
the Hessenberg-triangular structure to which the pair (A, B) is reduced as a part

100 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

of the QZ algorithm. Note that in this case for a given A, the matrix A — A B is also
a Hessenberg matrix. Thus, at each iteration, only a Hessenberg system needs to
be solved, which requires only O (n?) flops, compared to O (n?) flops required for
a system with a full matrix.

Example 4.6.1.
3-1.50 200
A=10"|-153-15], B =103{030
0-1515 004

A1 = a generalized eigenvalue of (A — AB) = 1950800.

k =1: Solve for v;:
Solve: (A — A1B)V; = By

0.0170 0.8507
vy = | -0.0102 |, v =01 /lloill = | —0.5114
0.0024 0.1217

MATLAB and MATCOM notes: The MATLAB function qz in the form:
[AA, BB, 0, Z, V] =qz(A, B) produces upper triangular matrices AA and BB,
and the orthogonal matrices Q and Z such that QAZ = AA, QBZ = BB.

The matrix V contains the eigenvectors. The generalized eigenvalues are
obtained by taking the ratios of the corresponding diagonal entries of AA and
BB. The MATLAB function eig (A, B) gives only the generalized eigenvalues of
the pencil A — AB from the generalized Schur decomposition. MATCOM func-
tions HESSTRI and INVITRGN compute, respectively, the Hessenberg-triangular
reduction of the pair (A, B) and the eigenvectors of the pencil A — A B using inverse
iteration.

Deflating Subspace for the Pencil A — AB

A k-dimensional subspace S € R” is a deflating subspace of the pencil A —AB
if the subspace {Ax + By | x, y € S} has dimension k or less. It can be easily seen
that the columns of Z in the generalized Schur decomposition form a family of
deflating subspaces. Also, span{Az,, ..., Az} and span{Bzj, ..., Bz} belong
to span{qi, ..., gx}, where z; and g; are, respectively, the columns of Z and Q.

Section 4.7: SUMMARY AND REVIEW 101

Remark

e In solving algebraic Riccati equations, deflating subspaces with specified
spectrum need to be computed. There exist Fortran routines for computing
such deflating subspaces developed by Van Dooren (1982).

4.7 SUMMARY AND REVIEW
Numerical Instability in Obtaining Jordan and Companion Matrices

The JCF and a companion form of a matrix, because of their rich structures,
are important theoretical tools. Using these two decompositions, many important
results in control theory have been established (see Kailath 1980).

Unfortunately, however, these two forms cannot be obtained in a numerically
stable way in general. Since it is necessary to use non-orthogonal transformations
to achieve these forms, the transforming matrices can be highly ill-conditioned.
Some discussions to this effect have been given in Section 4.1. Because of possible
numerical instabilities in reduction of A to a companion matrix, and the fact that
the zeros of a polynomial can be extremely sensitive to small perturbations, it is
not advisable to compute the eigenvalues of a matrix by finding the zeros of
its characteristic polynomial.

Hessenberg and Real Schur Forms

Both Hessenberg and RCFs can be obtained via orthogonal similarity trans-
formations. These two forms, thus, are extremely valuable tools in numerical
computations. In fact, many of the numerically effective algorithms for control
problems described in this book, are based on these two forms.

Reduction to Hessenberg form. A Hessenberg form, via orthogonal similarity
transformation, is obtained using either Householder or Givens transformations.
The Householder method for Hessenberg reduction is described in Section 4.2.
For a description of Givens Hessenberg reduction, see Datta (1995) or Golub and
Van Loan (1996). The implicit Q theorem (Theorem 4.2.1) guarantees that the
Hessenberg forms obtained by two different methods are essentially the same,
provided that the transforming matrices have the same first column.

Real Schur form: Computing the eigenvalues, eigenvectors, and orthonormal
bases for invariant subspaces. The RSF of a matrix is a quasi-triangular matrix
whose diagonal entries are either scalars or 2 x 2 matrices. Every real matrix A can
be transformed to RSF by an orthogonal similarity. Since the RSF of a matrix A
displays the eigenvalues of A, any numerical method for obtaining the RSF of order
higher than four X has to be iterative in nature. The standard method for obtaining
the RSF is the QR iteration method with implicit double shift. This method is

102 Chapter 4: CANONICAL FORMS VIA ORTHOGONAL TRANSFORMATIONS

described in some detail in Sections 4.3.1-4.3.4. The double shift implicit QR
iteration method is nowadays the standard method for finding the eigenvalues
of a matrix.

An orthonormal basis for the invariant subspace associated with a given set of
eigenvalues can also be found by reordering the eigenvalues in RSF in a suitable
way. This is discussed in Section 4.3.5.

Once the RSFis found, it can be employed to compute the eigenvectors of A. This
is not discussed here. Interested readers are referred to Datta (1995, pp. 452-455).
Instead, a commonly used procedure for computing selected eigenvectors, called
the inverse iteration method, is described in Section 4.3.

Computing the SVD of a Matrix

The standard method for computing the SVD, called the Golub-Kahan—Reinsch
algorithm, is described in Section 4.4. The method comes in two stages:

Stage I. Reduction of the matrix A to a bidiagonal form.

Stage 1I. Further reduction of the bidiagonal matrix obtained in Stage I to a
diagonal matrix using implicit QR iteration.

The detailed discussion of Stage II is omitted here. The readers are referred to
Golub and Van Loan (1996, pp. 452-456).

The Generalized Real Schur Form

The generalized RSF of a pair of matrices (A, B) is a matrix-pair (A’, B'),
where A’ is an upper real Schur matrix and B’ is an upper triangular matrix
(Theorem 4.5.1).

The standard method for computing the general RSF is the QZ iteration
algorithm. The QZ algorithm also comes in two stages:

Stage I. Reduction of (A, B) to Hessenberg-triangular form.

Stage 11. Further reduction of the Hessenberg-triangular form obtained in Stage I
to the generalized RSF.

Stage 1 is a finite procedure. Again, the Householder or Givens transformations
can be used. The Householder procedure is described in Section 4.5.1. Stage I is
an iterative procedure. Only a brief sketch of the procedure is presented here in
Section 4.5.2. For details, readers are referred to Datta (1995, pp. 500-504).

The generalized RSF displays the eigenvalues (called generalized eigenvalues)
of the linear pencil A — AB. Once the eigenvalues are obtained, the selected
eigenvectors can be computed using generalized inverse iteration (Section 4.6).

4.8 CHAPTER NOTES AND FURTHER READING

The material of this chapter has been taken from the recent book of the author (Datta
1995). For advanced readings of the topics deait with in this chapter, consult the

Section 4.8: CHAPTER NOTES AND FURTHER READING 103

book by Golub and Van Loan (1996) and Stewart (2001). For a description of
the toolbox MATCOM and how to obtain it, see the section on Chapter Notes
and Further Reading of Chapter 3 (Section 3.11). For MATLAB functions and
LAPACK routines, see the respective user’s guides; Anderson et al. (1995) and
MATLAB User’s Guide (1992)

References

Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz I,
Greenbaum A., Hammarling S., McKenney A., and Sorensen D. LAPACK Users’
Guide, 2nd edn, SIAM, Philadelphia, 1999.

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA. 1995.

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, The Johns Hopkins University
Press, Baltimore, MD, 1996.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, N.J, 1980.

MATLAB User’s Guide, The Math Works, Inc., Natick, MA, 1992.

Stewart G.W. “Algorithm 406. HWR3 and EXCHNG: FORTRAN programs for calculating
the eigensystems of a real upper Hessenberg matrix in a prescribed order,” ACM Trans.
Math. Soft. Vol. 2, pp. 275-280, 1976.

Stewart G.W. Matrix Algorithms, Vol. II: Eigen Systems, SIAM, Philadelphia, 2001.

Van Dooren P. “Algorithm 590-DSUBSP and EXCHQZ: Fortran subroutines for comput-
ing deflating subspaces with specified spectrum,” ACM Trans. Math. Soft., Vol. 8,
pp- 376-382, 1982.

Wilkinson JH. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford,
England, 1965.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

PART 1l

CONTROL SYSTEMS ANALYSIS

Chapter 5 Linear State-Space Models and Solutions of the State Equations

Chapter 6 Controllability, Observability, and Distance to Uncontrollability

Chapter 7 Stability, Inertia, and Robust Stability

Chapter 8 Numerical Solutions and Conditioning of Lyapunov and Sylvester
Equations

CHAPTER 5§

LINEAR STATE-SPACE MODELS
AND SOLUTIONS OF THE STATE
EQUATIONS

Topics covered

State-Space Models

Solutions of the State Equations

System Responses

Sensitivity Analysis of the Matrix Exponential Problem

Numerical Methods for Computing the Matrix Exponential and the
Integral involving an Matrix Exponential

e Computation of the Frequency Response Matrix

e @& & o @

5.1 INTRODUCTION

A finite-dimensional time-invariant linear continuous-time dynamical system
may be described using the following system of first-order ordinary differential
equations:

x(t) = Ax(t) + Bu(r),
y(t) = Cx(t) + Du(r).
The input and the output of the system are defined in continuous-time over the

interval [0, co). The system is, therefore, known as a continuous-time system.
The discrete-time analog of this systemn is the system of difference equations:

x(k +1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k).

We will consider in this book only time-invariant systems, that is, the matri-
ces A, B, C, and D will be assumed constant matrices throughout the book.

107

108 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

It is first shown in Section 5.2 how some simple familiar physical systems can
be described in state-space forms. Very often the mathematical model of a system
is not obtained in first-order form; it may be a system of nonlinear equations, a
system of second-order differential equations or partial differential equations.
It is shown how such systems can be reduced to the standard first-order state-space
forms. The computational methods for the state equations are then considered both
in time and frequency domain.

The major computational component of the time-domain solution of a
continuous-time system is the matrix exponential e’ Some results on the sensitiv-
ity of this matrix and various well-known methods for its computation: the Taylor
series method, the Padé approximation method, the methods based on decom-
positions of A, the ordinary-differential equation methods, etc., are described in
Section 5.3. A comparative study of these methods is also included. The Padé
method (Algorithm 5.3.1) (with scaling and squaring) and the method, based
on the Real Schur decomposition of A (Algorithm 5.3.2), are recommended for
practical use. This section concludes with an algorithm for numerically computing
an integral with an matrix exponential (Algorithm 5.3.3).

Section 5.4 describes the state-space solution of a discrete-time system. The
major computational task here is computation of various powers of A.

In Section 5.5, the problem of computing the frequency response matrix for
many different values of the frequencies is considered. The computation of the
frequency response matrix is necessary to study various system responses in fre-
quency domain. A widely used method (Algorithm 5.5.1), based on the one-time
reduction of the state matrix A to a Hessenberg matrix, is described in detail and
the references to the other recent methods are given.

Reader’s Guide for Chapter 5

The readers familiar with basic concepts and results of modeling and state-
space systems can skip Sections 5.2, 5.4, and 5.5.1.

5.2 STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS
5.2.1 Continuous-Time Systems

Consider the dynamical system represented by means of the following system of
ordinary first-order differential equations:

x(t) = Ax(¢t) + Bu(t). x(10) = xo, (5.2.1)

y(t) = Cx(t) + Du(r). (5.2.2)

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 109

Input u(t)) Output ¥(#)
Linear system

State x(¢)

FIGURE 5.1: Representation of a continuous-time state-space model.

In this description,

x(t) is an n-dimensional vector, called the system state,
u(t) is an m-dimensional vector (m < n), called the system input,
y(¢) is an r-dimensional vector, called the system output.

The vector x(#p) is the initial condition of the system. The components of x(¢)
are called state variables.

The matrices A, B, C, and D are time-invariant matrices, respectively, of
dimensions n x n,n x m,r x n, and r x m. The above representation is known
as a time-invariant continuous-time state-space model of a dynamical system.

Schematically, the model is represented in Figure 5.1.

Clearly, at a given time ¢, the variables arriving at the system would form the
input, those internal to the system form the state, while the others that can be
measured directly comprise the output.

The space X C R”, where all the states lie for all + > 0 is called the state-
space, the Eq. (5.2.1) is called the state equation and the Eq. (5.2.2) is called the
output equation. If m = r = 1, the system is said to be a single-input single-
output (SISO) system. A multi-input multi-output (MIMO) system is similarly
defined. If a system has more than one input or more than one output it is referred to
be a multivariable system. The system represented by the Egs. (5.2.1) and (5.2.2)
is sometimes written compactly as (A, B, C, D)oras (A, B, C), in case D is not used
in modeling. Sometimes x(t) and x(t) will be written just as x and x for the sake
of convenience. Similarly, u(¢) and y(¢) will be written as « and y, respectively.

We provide below a few examples to illustrate the state-space representations
of some simple systems.

Example 5.2.1 (A Parallel RLC Circuit). Consider a parallel RLC circuit excited by
the current source u(f) and with output y(¢) (Figure 5.2).
The current and voltage equations governing the circuit are:

in i +i . Cdec LdiL Ri
u=iIi i ic; ic=C—=; ec=L— = RiR.
R L C C dr C dt R

110 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

¢ i ¢ iL %iC

iy
"o SERRES

FIGURE 5.2: A parallel RLC circuit.

Rl Ll LZ
AT T
+ —_— _—
ip, ir,
e(t)
- 1
e
- R,
FIGURE 5.3: An expanded RLC circuit.
Defining the states by x; := i, and x := ec, the state and output equations are,
respectively:

Xx=Ax+bu and y=cx,

where x = [x1, x217,

[0 I } [: }
A= ., b= ., c=[01]
-1/C -1/RC 1/C

Example 5.2.2. Consider again another electric circuit, as shown in Figure 5.3:
The state variables here are taken as voltage across the capacitor and the current
through the inductor. The state equations are

i
Lll[;i_l(t) = —Ryir, (t) — ec(t) + e(1),
t
i
L, %’) = —Rair, (1) + ec(®),
d
C eC(t) — iL] (t) — le(t)

dt

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 111

1/L,
Setting x; = iL,, X2 = i1,,x3 =ec,b = 0 [, u = e(t), the matrix form of the
0
state-space representation of the above system is given by:

R, L
£1(t) Ly Lil /x4
i =|0o|=| o 52 %. o0 | +bu),
2
x3(t) |) : x3(t)
~ 2 0
cC C

First-Order State-Space Representation of Second-Order Systems

Mathematical models of several practical problems, especially those arising in
vibrations of structures, are second-order differential equations.

We show by means of a simple example of a spring-mass system how the
equations of motion represented by a second-order differential equation can be
converted to a first-order state-space representation.

Example 5.2.3. (A Spring-Mass System). Consider the spring-mass system shown in
Figure 5.4 with equal spring constants k and masses m and m>. Let force u; be applied
to mass m and u; be applied to mass mj.

my — 21

]

[11777777777777777

FIGURE 5.4: A spring-mass system.

112 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

The equations of motion for the system are:

miZ1 + k(z1 — 22) + k21 = uy,

N (5.2.3)
maZy — k(z1 — z2) +kz2 = uz,

or in matrix form:
m 0 71 2k —k\ {z1) _ (w1
5O DG e
)
7= .
22

Mi+Kz=u, (5.2.5)

Set

Then, we have

where

. (2% —k — ("
M—dlag(mlsm2)’ K—<_k k)q and u—<u2>.

Let us make a change of variables from z to x as follows:
Set

x1=z and x»=2.

Then, in terms of the new variables, the equations of motion become

Xy =x3, (5.2.6)
Mx>=—Kxi +u,
or
. 0 I 0
X = (_M_IK 0) X+ (M~1> u, (527)
where

x =) =T

Equation (5.2.7) is a first-order representation of the second-order system (5.2.4).

State-Space Representations of Nonlinear Systems

Mathematical models of many real-life applications are nonlinear systems of dif-
ferential equations. Very often it is possible to linearize a nonlinear system, and
then after linearization, the first-order state-space representation of transformed
linear system can be obtained. We will illustrate this by means of the following
well-known examples (see Luenberger 1979; Chen 1984; Szidarovszky and Bahill
1991; etc.).

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 113

>
u
FIGURE 5.5: Balancing of a stick.

Example 5.2.4. (Balancing a Stick). Consider the simple problem of balancing a stick
on your hand as shown in the Figure 5.5:

Here L is the length of the stick, and M is the mass of the stick concentrated on
the top. The input u(¢) is the position of the hand. Then, the position of the top of the
stick is

x(t) = Lsin6(t) + u(t).

The torque due to gravity acting on the mass is MgL sin 6(). The rotational inertia of
the mass on the stick is M L26(r). The shift of the inertial term down to the pivot point
is i (t)ML cos 8(z). Thus, we have:

MgLsin 6(1) = ML*§(t) + ii(r)M L cos 6(1).

The above equations are clearly nonlinear. We now linearize these equations by assum-
ing that 0 is small. We then can take cos § = 1, sin § = 6.
This gives us

x(1) = LO(t) +u(r)

and .
MgLO(t) = ML%6(r) + ii(r)ML.

Eliminating 6(¢) from these two equations, we obtain
X¥(0) = (8/L) (x(t) —u()).

We can now write down the first-order state-space representation by setting v(z) = x(z).

The first-order system is then:
(1) N\ /x@) 0
(1) = 0 o + g |u@).
v _s
v 2
Example 5.2.5. (A Cart with an Inverted Pendulum). Next we consider a similar prob-

lem (Figure 5.6), but this time with some more forces exerted (taken from Chen (1984,
pp. 96-98)).

M~ ©

114 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

")
—_— M T vV

STTT 777777
o]

FIGURE 5.6: A cart with an inverted pendulum.

In Figure 5.6, a cart is carrying an inverted pendulum with mass m and length /.
Let M be the mass of the cart. Let H and V be, respectively, the horizontal and
vertical forces exerted by the cart on the pendulum. Newton’s law applied to the linear
movements gives:

My(t) =u— H,
H = my + ml cos 06 — ml sin G(é)z,
and mg—V =ml (— sin 89 — cos 6 (9)2) .
Newton’s law applied to the rotational movement of the pendulum gives:
mi%6 = mglsin @ + Visin 8 — Hlcos 6.

These are nonlinear equations. We now linearize them by making the same assumptions
as before; that is, we assume that 9 is small so that we can take sin6 = 6,cos9 = 1.
Dropping the terms involving 2, 62, 99, and 64, and setting sin6 = 6, and cos 9 = 1,
we obtain, from above, by eliminating V and H

M+my+mld=u

and
206 —2g0 + ¥ = 0.

Solving for ¥ and 8, we obtain

. 2gm o+ 2
Y= oM m oM m”
. 2g(M +m)o 1

oM+ml M +mi

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 115

The state-space representations of these linear equations can now be written down by
setting x1 = y, xp = y, x3 = 6, and x4 = 0, as follows:

0 1 0 0 0
X1) X1 2
. 0o 0 "™ s
201 2M +m x2 + 2M+m u
sl |0 O 0 1 X3 0 ’
X4 0 0 2g(M +m) 0 X4 1

M +m)l _(2M+m)l
y=1(1,0,0,0)x.

The nonlinear equations in Examples 5.2.4 and 5.2.5 are special cases of the general
nonlinear equations of the form:

() = fGE@), @@, 1, E(o) = %o,
() = h(ZQ@), @(1), 1),

where f and & are vector functions. We will now show how these equations can be
written in the standard first-order state-space form (Sayed 1994).
Assume that the nonlinear differential equation:

i) = fGED, @@, 1, i) =xo

has a unique solution and this unique solution is also continuous with respect to the
initial condition.

Let Xnom (#) denote the unique solution corresponding to the given input i#nom (¢) and
the given initial condition Xyom (20).

Let the nominal data {inom (f), Xnom (£)} be perturbed so that

U(t) = pom(t) + u(t)
and X(f) = Xpom(to) + x(fp), where |lu(®)|| and |x(tp)| are small;

lu ()il = sup [lu(@)]]2.
t
Assume further that

X(t) = Xnom (2) + x(1), Y(t) = Ynom(t) + y(t),

where ||x|| and || y|| are small.

116 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

These nonlinear equations can then be linearized (assuming that f and h are smooth
enough) by expanding f and h around (#pom(f), Xnom(f)), giving rise to a time-
invariant linear state-space model of the form:

x(1) = Ax(t) + Bu(t), x(10) = xo,
y(1) = Cx(t) + Du(r),

where
d b
i s ,
T Rnom (1), Faom (1) | 5o ()-dimom (1)
oh oh
C = = , D=—
T Gaom (1), nom (1) du

(Xnom (), tnom (¢))

Example 5.2.6. (The Motion of a Satellite (Sayed 1994)). Suppose that a satellite of
unit mass orbits the earth at a distance d(¢) from its center (figure 5.7). Let 6 (¢) be the
angular position of the satellite at time ¢, and the three forces acting on the satellite are:
aradial force u;(¢), a tangential force u»(¢), and an attraction force «/ d?(t), where o
is a constant.

The equations of motion are given by

d(r) = d(0)62 () — df(t) +ur),
B —2¢Z(r)é(z) uz(t).
) d(t)

Let’s define the state variable as
X1(t) = d(2), () =d@), xX3(t) = 6(1), X4(1) = 0()

and the output variables as

yi) =d@), V2 (1) = 6(0).

FIGURE 5.7: The motion of a satellite.

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 117

The state-space model is then given by:

_ E10)
71(1) N ..
500) x1(0)x;(6))zlz(t)‘Ful(t)
£3(0) E4(t) ’
X4(1) —2x2()X4(t) ua()
xi() x1(1)
xi(1)
ywy (1 0 0 0 X2(t)
}2(1)>_(0 01 0/]|x@
Xa(t)
and the initial conditions are:
x1(0) d(0) do
- *%2(0) 0 0
o=x0=1z0 =l | = |4
i4(0) w(wQ

The above is still a nonlinear model of the form:

() = fE@), @@, 0, E(o) = o,
§(t) = h(E(@), @), 1).

Linearizing this nonlinear model around the initial point (x(0), #(0)), where #(0) =

(8) , we obtain the linear model:

x(t) = Ax(t) + Bu(r),

y() =Cx(1),
where
3
4=
9% | z(0), a0y
0 1 0 0
3w 0 0 2dowo
=| o o o 1 |
0o 2% o o

dy

118 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

0 0
1 0
3

B = 3—{ =0 01,

Heoaoy {01

dp

and

c- ah _ (1 0 0 0)
0% | zoaoy WO 0 10

State-Space Representation of Systems Modeled by Partial Differential Equations

Mathematical models of many engineering problems such as those arising in fluid
dynamics, mechanical systems, heat transfer, etc., are partial differential equations.
The discretizations of these equations naturally lead to state-space models. We
illustrate the idea by means of the following example.

Example 5.2.7. Consider the partial differential equation

1
n_ 4 = ==F) ’
ox% TElo2 ~ELE

which models the deflection of a prismatic beam (Soong (1990, pp. 180-181)).
Let y(x, t) be the transverse displacement of a typical segment of the beam that is
located at a distance x from the end, and F (x, r) be the applied force. El is the flexural
rigidity, and P is the density of the material of the beam per unit length. Let L be the
length of the beam.

Assume that the solution y(x, ¢) can be written as

Y, 1) =Y v;(x)p;(®)

j=1

(n = oo in theory, but in practice it is large but finite). Also assume that

F(x,t)= Zé(x —aju;lt),

j=1

where §(-) is the Dirac delta function.
That is, we assume that the force is point-wise and is exerted at » points of the beam.
Substituting these expressions of y(x,?) and F(x,t) in the partial differential
equation, it can be shown that the state equation for the beam in the standard

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 119

form is:
z(t) = Az(t) + Bu(r),
where z(t) = (p1, p1, P2, P2, -+ -+ Pn» 1'),,)T is the 2n-dimensional state vector,
B
By
A =diag (A1, A2, ..., Ap), B = s
By
The matrices B; and the vector u are defined by:
U]
1 0 0 0 us
B; = 5 and u=1 .
vilar) wvjla) - vjla)) :
Uy

5.2.2 Discrete-Time Systems

A linear time-invariant discrete-time system may be represented by means of a
system of difference equations:

x(k + 1) = Ax(k) + Bu(k), (5.2.8)
y(k) = Cx(k) + Du(k). (5.2.9)

As before, x(k) is the n-dimensional state vector, u(k) is the m-dimensional
input vector; and A, B, C and D are time-invariant matrices of dimensions n x
n,n x m,r xn, and r x m, respectively. The inputs and outputs of a discrete-time
system are defined only at discrete time instants.

Sometimes we will write the above equations in the form:

Xir1 = Axg + Buy, (5.2.10)
Yi = Cxg + Dug. (5.2.11)

5.2.3 Descriptor Systems

The system represented by Egs. (5.2.1) and (5.2.2) is a special case of a more
general system, known as the descriptor system.

120 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

A continuous-time linear descriptor system has the form:

Ex(t) = Ax(t) + Bu(t), (5.2.12)
y(t) = Cx(t) + Du(?). (5.2.13)
Similarly, a discrete-time linear descriptor system has the form:
Ex(k+ 1) = Ax(k) + Bu(k), (5.2.14)
y(k) = Cx(k) 4+ Du(k). (5.2.15)

If the matrix E is nonsingular, then, of course, the descriptor system represented
by (5.2.12) and (5.2.13) is reduced to the standard form (5.2.1) - (5.2.2). Similarly,
for the system (5.2.14) - (5.2.15). However, the case when E is singular or nearly
singular is more interesting. A book devoted to singular systems of differential
equations is by Campbell (1980). We will now give an example to show how a
singular descriptor systems arises in practice.

Example 5.2.8. (Simplified Samuelson’s Model of Economics). Let NI(k), CS(k),
IV(k), and GE(k), denote, respectively, the national income, consumption, investment,
and government expenditure of a country at a given year k.

The economist P.A. Samuelson proposed a model of the national economy of a
country, which is based on the following assumptions:

1. National income NI(k) is equal to the sum of the consumption CS(k), investment
IV(k), and the government expenditure GE(k) at a given year k.

2. Consumption CS(k + 1) at the year k + 1 is proportional to the national income
NI(k) at the previous year k.

3. Investment IV(k + 1) at the year k 4 | is proportional to the difference of the
consumer spending CS(k 4 1) at that year and that of the previous year CS(k).

The state-space representation of Samuelson’s model, then, can be written in the form:

NI(k) = CS(k) + IV (k) + GE(k),
CS(k + 1) = aNI(k), (5.2.16)
IVk+1) =B[CS(k+1) — CS(k)].

These equations in matrix form are:

0 0 O IVk+1) 1 1 -1 IV (k) 1
0 1 O]{CSk+D]|=]0 0O o CS(k) | + | 0| GE(k).
1 -8 0 NIk + 1) 0 -8 O NI(k) 0
or
Ex(k + 1) = Ax(k) + Bu(k),
1V (k) 1
where x(k)y=]CSk) |, B=]0}, u(k) = GE(k).
NI(k) 0

Section 5.2: STATE-SPACE REPRESENTATIONS OF CONTROL SYSTEMS 121

I \ X e +
4 C, I T
ec,

iCz
C. =
0 L ’ (0
. RC
i l R

FIGURE 5.8: An electric circuit for a descriptor system.

(Note that E is singular).
For details, see Luenberger (1979, pp. 122-123).

Example 5.2.9. Consider another electric circuit given in Figure 5.8 driven by a
voltage source v(z).

The state variables are taken as x| := ec,, x2 := iy, and x3 = ec,. By applying
Kirchhoff’s current and voltage laws we have:

dec, dec,

dt ’

ic, =iL +ic,, ic, =C

) ic, =
dr C 2
dip) .
v(t) =ec, + Lgt— + RLiL = ec, +ec, + Rcic,.
Manipulating these equations we have the state equation:
Ex = Ax + bu,

where u := v, E = diag (RcCy, L, RcC?)

T
x =[x, x2, x3]

-1 Rc -1
A=|—-1 —RL 0 |, b=11
—1 0 -1 1

The output is defined by y(t) = ec, + Rcic,, so the output equation becomes

y =cx +du,
wherec =(—100), d = 1.

122 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

5.3 SOLUTIONS OF A CONTINUOUS-TIME SYSTEM:
SYSTEM RESPONSES

Theorem 5.3.1. Continuous-Time State-Space Solution. The solutions of the
continuous-time dynamical equations

x(1) = Ax(t) + Bu(r), x(to) = xo. (5.3.1)
y(t) = Cx(t) + Du(z) (5.3.2)
are given by
t
x(t) = A0 gy 4 f e Bu(s) ds, (5.3.3)
Iy
t
y(t) = CeAt=0)yy + / Ce*""9) Bu(s) ds + Du(t). (5.3.4)
fo

Remark

o Ifu(r) =0, then x(r) = eA¢~"x(z) for every ¢ > to and any £; > #.
Definition 5.3.1. The matrix e~ is called the state transition matrix.

Since the state at any time can be obtained from that of any other time through
the state transition matrix, it will be assumed, without any loss of generality,
that 1y = 0, unless otherwise mentioned.

Assuming ty = 0, the Eqgs. (5.3.3) and (5.3.4) will, respectively, be reduced to

t
x(t) = eAlxg + / A9 Bu(s) ds (5.3.5)
0
and
t
y(1) = Ce*'xy + / Ce?'=9) Bu(s) ds + Du(r). (5.3.6)
0

Definition 5.3.2. The matrix e*' defined above has the form:

oA o (ANt
- 1
= k!

and is called the matrix exponential.

Proof. Proof of (5.3.5) and (5.3.6): Noting that (d/dr)(e4’) = Ae?' (see
Section 5.3.1), we first verify that the expression (5.3.5) satisfies (5.3.1) with

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 123

t = 0. Differentiating (5.3.5), we have

d
%(t) = Ae?xg + Bu(t) + / EeA<H>Bu(s)ars,
0
t
= Ae’'xy + Bu(r) + A/ A=) Bu(s) ds,
0

t
= A [eA’xo +f eA“—”Bu(s)ds] + Bu(1),
0

= Ax(t) + Bu(1).

Also, note that at 1 = 0,
x(0) = xop.

Thus, the solution x(¢) also satisfies the initial condition.
The expression for y(f) in (5.3.6) follows immediately by substituting the
expression for x(¢) from (5.3.5) into y(¢t) = Cx(¢t) + Dx(t). B

Free, Forced, and Steady-State Responses

Given the initial condition x¢ and the control input u#(¢), the vectors x(r) and
y(t) determine the system time responses for 1 > 0. The system time responses
determine the behavior of the dynamical system for particular classes of inputs.
System characteristics such as overshoot, rise-time, settling time, etc., can be
determined from the time responses.

In the expression (5.3.6), the first term Ce”' xq represents the response of the
system due to the initial condition x¢ with zero input (zero-input response). This
is called the free response of the system.

On the other hand, the second term in (5.3.6) determines, what is known, as the
forced response of the system. It is due to the forcing function u(¢) applied to the
system with zero initial conditions. A special case of the forced response is known
as the impulse response which is obtained from (5.3.6) by setting xop = 0 and
u(t) = §(t), where §(¢) is the unit impulse or Dirac delta function. Then,

t
y(t):/ (CeAU=9B + DS(t — 5))u(s) ds,
0

t
=/ H(t —s)u(s)ds, (5.3.7)
0

where the matrix H (¢), the impulse response matrix, is defined by

H(t) := Ce B + D5(1). (5.3.8)

124 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

1+()

t

FIGURE 5.9: A unit step function.

In fact, if xg = 0, then the (i, j)th element of the impulse response matrix H(t)
of the system (5.3.1)-(5.3.2) is the response at time ¢ at the output i due to a unit
impulse applied at time t = 0 at the input j of the system, while all other inputs
are kept at zero. Similarly, the unit step response is defined to be the output using
the input as the unit step function in the manner done for an impulse response,
assuming again that the initial state is zero; that is, xo = 0.

A unit step function 1. (¢) (Figure 5.9) is given by

1, t>0,
1+(’)={0 t<0.

For any finite value of time ¢, the response y(¢), that is, the right-hand side of
(5.3.6), will contain terms consisting of e%’e/“ if A; = o; + jw;, j = /—1, is
a simple eigenvalue of A, and the other terms are governed by the nature of the
input function u(t).

When ¢ is finite, the part of the response in y(t) which is governed by e%’e/®i!
is called the transient response of the system. As ¢ tends to infinity, this transient
part of the response tends to zero if all o;s are negative or it grows to become
unbounded if at least one of «;s is positive. Thus, y(2) = tl_l)ngo y(t) will be called

the steady-state response of the system. The speed with which the response y(¢)
will reach the steady-state value y () will be determined by the largest value of ¢s.

MATLAB note: MATLAB functions step, impulse, and initial in MATLAB
CONTROL TOOLBOX can be used to generate plots for step, impulse, and initial
condition responses, respectively. Their syntax are:

step (sys),
impulse (sys),
initial (sys, xg).

Example 5.3.1. (Baldwin (1961, pp. 29-44)). The dynamic behavior of a moving coil
galvanometer, see Figure 5.10,

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 125

IS

+o Koy _;] y Coil

Damping
DC supply resistor
N

Ry

Pole

FIGURE 5.10: Basic Circuit of a Moving Coil Galvanometer.

is governed by

Jd—29+Dd—0+C0=GI (5.3.9)
dr? dt . "
where
J = the moment of inertia about the axis of rotation of moving parts of the

instrument,
D = the damping constant,
C = stiffness of suspension,

G = galvanometer constant which represents the electromagnetic torque
developed on the coil by 1 A of current flowing through it,

6 = the deflection of the coil about its axis of rotation,
I; = the steady-state current flowing through the galvanometer coil, and
Ry = galvanometer resistance.
It can be shown that D is given by
G2

D= —— + Dy,
Rg+Rd ar

where
Ry = resistance of galvanometer coil,
R4 = damping resistor,
Dg;r = damping to the coil due to air.

If the key is opened interrupting supply current /g to the galvanometer, the response
of the coil is determined by (5.3.9) with I; = 0 and is shown in Figure 5.11 where 6
is the steady-state deflection with /; flowing through the coil.

A galvanometer with a very low damping constant is known as a ballistic galvano-
meter. If a charged capacitor is discharged through a ballistic galvanometer such that

126 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Galvanometer

. I: Overdamped D?>4]C
deflection 6 8,

1I: Undamped D*<4)C
III: Critically damped D?=4JC

RN

FIGURE 5.11: Step-response of the galvanometer.

the whole charge should have passed before the coil has time to move appreciably, we
have the torque impulse due to the whole charge equal to f Gidt = GQ, the integral
being taken over the time of passage of the charge O and i is the instantaneous current
flowing through galvanometer coil. The subsequent time response of the galvanometer
will be similar to that shown in Figure 5.11 but will differ in the fact that the response
now starts from the origin. The responses in three cases: damped, undamped, and
critically damped, are shown in Figure 5.11.

Causality: If the output of the system at time ¢ does not depend upon the input applied
to the system after time ¢, but depends only upon the present and the past inputs, the
system is said to be causal.

In this book, all systems will be assumed to be causal.

5.3.1 Some Important Properties of the Matrix et

Since the matrix exponential e4’ plays a fundamental role in the solution of the
state equations, we will now discuss the various methods for computing this matrix.
Before doing that, we list some important properties of this matrix. These properties
are easily verifiable and left as Exercises (5.8-5.10) for the readers.

1. eA(t+s) — eAt . eAs

. d/dt(et) = Aett = M A
3. AT = ¢Al B! if and only if A and B commute; that is, if and only if
AB = BA
4. ¢4 is nonsingular and (e
(eA/'")m = ¢4, where m is an integer
PlAPt _ p-l,Atp

Aty=1 _ A1

hd

4

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 127

5.3.2 Sensitivity of ¢!

We know that the accuracy of a solution obtained by an algorithm is greatly infiu-
enced by the sensitivity of the problem. We will, therefore, consider the sensitivity
aspect of the problem of computing e’ first. We just state a result due to Van
Loan (1977) without proof, which will help identify the condition number of the
problem.

Let E be a perturbation matrix. We are interested in knowing how large the

relative error
B ”e(A+E)t _ €At||2

lleAr]l2

can be.
Differentiating (AT E)s pAUI=S) Wwith respect to s, we obtain

t
SATEN _ Al :/ JAU=S) p (ATE)s g
0

It then follows that

NElz " aq— A+E
< sear,) e = e+ | ds

Further simplification of this result is possible.
Van Loan (1977) has shown that, for a given z, there exists a perturbation matrix
E such that

letATEN — el £z
=7 ~ k(A1))
le4 |2 1All2
where

! A

_ 2

k(A,1) = max f AU Eehsds I A[” .

IEN2<1 || Jo 2 lled iz

This result shows that (A, t) is the condition number for the problem ¢*‘. If
this number is large, then a small change in A can cause a large change in
¢4, for a given ¢.

Though determining « (A, #) involves computation of a matrix integral, it can
be easily verified that

k(A1) = t||All2,

with equality holding for all nonnegative ¢ if and only if A is a normal matrix, that
is,if ATA = AAT. “When A is not normal, « (A, t) can grow like a high degree
polynomial in £’ (Moler and Van Loan 1978).

128 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Example 5.3.2. Consider computing e#, where
—1 1000
A= (0 -l) :

Since ||All2 = 103, the problem of computing the matrix exponential e? is expected
to be ill-conditioned.

Let’s verify this as follows. The matrix ¢4 computed by using the MATLAB function
expm is

4 _ (03679 367.8794
€=\ o0 0.3679 |-

Now change the (2, 1) entry of A to 1078 and call this perturbed matrix Apey. We now
obtain

Ay _ (0-3679 367.8801
€= o 0.3679 |-

The relative error in the solution is

et — ety

= 0(107%).
lleAl2

On the other hand, the relative error in the data is

”A - Anew||2 - 0(10_11)'
lAll2

(The matrix e“m~ was also computed by the MATLAB function expm).

5.3.3 Computational Methods for ¢4’

There is a wide variety of methods to compute the matrix exponential. Several
of these methods have been carefully analyzed, with respect to efficiency, and
numerical stability, in an authoritative paper on the subject by Moler and Van
Loan (1978). We discuss the following ones briefly.

The eigenvalue—eigenvector method

Series methods

Ordinary differential equations (ODE) Methods
Matrix decomposition methods.

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 129

The Eigenvalue-Eigenvector Method

We have seen that the solution of the unforced system:
x(t) = Ax(1), x(0) = xg (5.3.10)

is given by
x(1) = e xo. (5.3.11)

Equation (5.3.11) shows that the ith column of the matrix e4’

x(t) with x(0) = ¢;, the ith unit vector.
Again, x(t) can be expressed in terms of the eigenvalues and eigenvectors of A:

is just the vector

x(2) = creM v + e vy + - + cpe™iuy, (5.3.12)

where A1, A2, ..., A, are the simple eigenvalues of A and v; through v,, are a set
of linearly independent eigenvectors associated with A| through A,,. The scalar cs
are computed from the given initial condition.

Thus, when the eigenvalues of A are simple, the matrix e is completely deter-
mined by the eigenvalues and eigenvectors of the matrix A. The same can be shown
to be true when A has multiple eigenvalues.

A difficulty with this approach arises when A has some nearly equal eigen-
values. This can be seen from the following theorem (Moler and Van Loan
1978).

Theorem 5.3.2. Let A be an n X n nondefective matrix; that is, it has a set of n
linearly independent eigenvectors. Let X TAX = diag(A1, A, ..., Ay), where
A1, A2, ..., Ay are the eigenvalues of A. Then,

If1e™) — e* |12 < npe?™ Condy(X),
where p(A) = max |A;| is the spectral radius of A.

Interpretation of Theorem 5.3.2. Theorem 5.3.2 shows that there might be a
large error in computing ¢4’ whenever there is a coalescence of eigenvalues
of A, because, in this case, Cond; (X) will be large.

The following simple 2 x 2 example taken from Moler and Van Loan (1978)
illustrates the difficulty.

Let
Ao
A= (i 7).
Then,
At Lt
e e
W M g
e’ = A—pu

0 et

130 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Clearly, the result will be inaccurate if A is close to x, but not exactly equal to u.
A large round-off error can be expected in this case.

Series Method for Computing the Matrix Exponential

In this section, we briefly state two series methods: The Taylor Series Method and
the Padé Approximation Method. When properly implemented, these methods
become numerically effective for computing the matrix exponential.

The Taylor Series Method
An obvious way to approximate e is to evaluate a finite-series sum by truncating
the Taylor series:
2 A3
r=T+A+ T+ +
2 6

after k terms. Thus, if
k .
AJ
T (A) = E 7
j=0

and if fi(T; (A)) denotes the floating point evaluation of T;(A), then it is natural
to choose k so that fi(Ty(A)) = fi(Ty+1(A)). The drawbacks to this method
are that a large number of terms is needed for convergence, and even when
convergence occurs, the answer can be totally wrong.

Consider the following example from Moler and Van Loan (1978).

Example 5.3.3. Consider computing ¢? using the Taylor series methods with the
following 2 x 2 matrix A and a relative accuracy of about 1073.

—49 24
A= (—64 31) '
A total of k£ = 59 terms were required for convergence and the computed output was

A . [—22.25880 —1.432766
T \—=61.49931 —3.474280)°

which is nowhere close to the true answer (to 6 decimal places)

4 (—0.735759 0.551819
€ 1471518 1.103638)

The source of error here is the catastrophic cancellation that took place in the evaluation
of (A'S /161 + (AV /17!), using finite-precision arithmetic (see Chapter 3). These

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 131
two terms have almost the same magnitude but are of opposite signs, as seen from the
following expressions of (A16/16!) and (A17/17!):

AT 6 (69773 —3.4886
160~ \9.3030 -4.6515)"

AT g6 (69772 3.4885
170~ 93030 4.6515)°

For relative accuracy of 107>, “the elements of these intermediate results have absolute
errors larger than the final result”.

The Padé Approximation Method
Suppose that f(x) is a power series represented by

f@) = fot+ fix+ x> +---.

Then the (p, q) Padé approximation to f(x) is defined as

p
cx) Yioaxt

fx)~ TS IR

The coefficients cx, k =0, ..., p,and dy, k = 0, ..., g are chosen such that the
terms containing X0, x!, %2, ..., xPT9 are cancelled out in f(x)d(x) — c¢(x). The
order of the Padé approximation is p + ¢. The ratio (c{x)/d{(x)) is unique and
the coefficients cg, ¢1,...,cp and dp, dy, ..., d,; always exist. The (p, q) Padé
approximation to e is given by

Rpg(A) = [Dpg(A)] " Npy(4),

where
q .
(p+4q—plq! ~
D,;(A) = —A)
pa(8) ;)<p+q>!j!<q—j>!(:

and

P N
Npg(d) = 3 —PELZIIP g
= P+l =)

It can be shown (Exercise 5.16) that if p and g are large, or if A is a matrix having

all its eigenvalues with negative real parts, then D, (A) is nonsingular.
Round-off errors due to catastrophic cancellation is again a major concern

for this method. It is less when || A || is not too large and the diagonal approximants

(p = q) are used.

132 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Scaling and Squaring in Taylor Series and Padé Approximations

The difficulties with the round-off errors in Taylor series and Padé approximation
methods can somehow be controlled by a technique known as Scaling and Squar-
ing. Since e = (e4/™)™ the idea here is to choose m to be a power of 2 so that
eA/™ can be computed rather efficiently and accurately using the method under
consideration, and then to form the matrix (e/™)™ by repeated squaring.

Moler and Van Loan (1978) have remarked ‘“When properly implemented,
the resulting algorithm is one of the most effective we know.” The method may
fail but it is reliable in the sense that it tells the user when it does.

The method has favorable numerical properties when p = ¢g. We will, therefore,
describe the algorithm for this case only.

Let m = 2/ be chosen such that |Alleec < 2/~!, then Moler and Van Loan
(1978) have shown that there exists an E such that

[R,,,,(A/zf)]zj = ATE,

where || Ellco < €]|Allco, With

€ = 23_217 ((p|)2)
ep'ep+)

Given an error-tolerance §, the above expression, therefore, gives a criterion to
choose p such that || E|lec < 0} Allco.

The above discussion leads to the following algorithm.

Algorithm 5.3.1. Padé Approximation to e using Scaling and Squaring.
Input. A € R"™" § > 0, an error-tolerance.
Output. F = eA1E with | E|loc < 8]|Allco-
Step 1. Choose j such that ||Alleo <2771, Set A = A/2/.
Step 2. Find p such that p is the smallest nonnegative integer satisfying

n2
8 () <s
220) 2p)'\Q2p+ 1!~
Step3.Set D=I,N=1Y=1,c=1.
Stepd. Fork =1,2,...,pdo

c=c(p—k+1)/[2p —k+ Dk]
Y=AY,N=N+cY,D =D+ (—)key.

End
Step 5. Solve for F: DF = N.

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 133

Step 6. Fork=1,2,...,jdo
F = F?,
End

Flop-count: - The algorithm requires about 2(p + j + (1/3)n> flops.

Numerical Stability Property: The algorithm is numerically stable when A
is normal. When A is non-normal, an analysis of the stability property becomes
difficult, because, in this case e4 may grow before it decays during the squaring
process; which is known as “hump” phenomenon. For details, see Golub and Van
Loan (1996, p. 576).

MATLAB note: The MATLAB function expm computes the exponential of a
matrix A, using Algorithm 5.3.1.

MATCONTROL note: Algorithm 5.3.1 has been implemented in MATCON-
TROL function expmpade.

Example 5.3.4. Consider computing ¢* using Algorithm 5.3.] with

510
A=]|0 2 0}.
2 31
Set § = 0.50.
Step 1. Since ||A||oc = 7, choose j = 4.
Then,
A 0.3125 0.8625 0
A=, = 0 0.1750 0 .
2 0.1250 0.1875 0.6625
Step2.p=1.

Step3.D=N=Y =1.
Step4.k=1,c=0.5.

0.3125 0.0625 0
Y = 0 0.1250 0 ,

0.1250 0.7875 0.0625

1.1563 0.0313 0 0.8438 —0.0313 0
N = 0 1.0625 0 , D= 0 0.9375 0 ,
0.0625 0.09838 1.0313 —0.0625 —0.0938 0.9638

1.3704 0.0790 0
F = 0 1.1333 0 .

0 0.2115 1.0645

134 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

154.6705 49.0874 0
Step5. F=F?= 0 7.4084 0
759756 36.2667 2.7192
The matrix e? given by F in Step 5 is different from what would have been obtained
by using MATLAB function expm(A), which is:

148.4132 47.0080 0
et = 0 7.3891 0
72.8474 35.1810 2.7183

This is because MATLAB uses much smaller tolerance than what was prescribed
for this example.

ODE Methods

Consider solving
x(@) = f(x, 1), x(0) = xo
with
f(x, 1) = Ax().

Then the kth column of e#’ becomes equal to the solution x(f) by setting x(0) as the
kth column of the identity matrix. Thus, any ODE solver can be used to compute e’

However, computing ¢4’ using a general-purpose ODE solver will be rather
expensive, because such a method does not take advantage of the special form of
f(x,1) = Ax(t). An ODE routine will treat Ax(z) as any function f(x,) and the
computation will be carried on.

However, a single-step ODE method such as the fourth order Taylor or Runge—
Kutta method and a multistep solver such as the Adams formulas with variable step
size, could be rather computationally practically feasible (and also reliable and stable)
for the matrix vector problem of computing ¢’ x(0), when such a problem is to be
solved for many different values of ¢ and also when A is large and sparse.

Matrix Decomposition Methods

The basic idea behind such a method is to first transform the matrix A to a suitable
canonical form R so that ¢® can be easily computed, and then compute e# from
e®. Thus, if P is the transforming matrix such that

P7'AP =R,

then e4 = PeR P~

The convenient choices for R include the Jordan canonical form (JCF), the
companion form, the Hessenberg form, and the real Schur form (RSF) of a
matrix. Because of the difficulties in using the JCF and the companion form, stated
in Section 4.1, we will not discuss computing e via these forms here.

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 135

Though the Hessenberg form can be obtained in a numerically stable way, com-
putation of e/’ via an upper Hessenberg matrix H will involve divisions by the
superdiagonal entries, and if the product of these entries is small, large round-off
errors can contaminate the computation (see Exercise 5.12). Thus, our choice for
R here is the RSFE.

Computing e* via the Real Schur Form
Let A be transformed to a real Schur matrix R using an orthogonal similarity
transformation:

PTAP =R,

then ¢4 = PeR PT,

The problem is now how to compute eX. Parlett (1976) has given an elegant for-
mula tocompute f (R) for an analytic function f (x), where R is upper triangular.
The formula is derived from the commutativity property: Rf(R) = f(R)R.

Adapting this formula for computing F = e, we have the following algorithm
when R is an upper triangular matrix. The algorithm needs to be modified when
R is a quasi-triangular matrix (Exercise 5.21).

Algorithm 5.3.2. The Schur Algorithm for e”.
Input. A € R™*
Output. e”.
Step 1. Transform A to R, an upper triangular matrix, using the QR iteration
algorithm (Chapter 4):
PTAP =R.

(Note that when the eigenvalues of A are all real, the RSF is upper triangular.)
Step 2. Compute e® = G = (gij):
Fori=1,...,ndo
gii=¢€"
End
Fork=1,2,....,n—1do
Fori=1,2,....,.n—kdo

Setj=i+k
1 =
8 = rij(gii — &jj) + Z (8iprpj — rip&pj)
wety p=i+1
End

End
Step 3. Compute e* = PeR PT,

136 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Flop-count: Computation of X in Step 2 requires about (2n3/3) flops.
MATCONTROL note: Algorithm 5.3.2 has been implemented in MATCON-
TROL function expmschr.

Example 5.3.5. Consider computing e# using Algorithm 5.3.2 with the matrix A of
Example 5.3.3.

A=

[\S R

1
2
3

- o O

Using MATLAB function [P, R] = schur(A), we obtain

P = and R =

— O O
oo~
o = O
SO -

2 3
5 1
0 2

g1 ="l =2.7183, g = €2 = 148.4132, g3z = €' =7.3891,

1
k=1i=1,j=2: g1z = ——[rialgu — g2)] = 72.8474,
(ri1 —r22)
1
k=1i=2,j=3: 823 = ———[r23(g22 — g33)1 = 47.0090,
(rao —133)
1
k=2i=1,j=3: 813 = ——[r13(g11 — &33) + (812723 — r12823)1
(r11 —r33)
= 35.1810.
So,
27183 72.8474 35.1810
eR = 0 148.4132 47.0080 | .
0 0 7.3891

Thus,
148.4132 47.0080 0
eA = peRpT = 0 7.3891 0
72.8474 35.1810 2.7183

Note that e# obtained here is exactly the same (in four-digit arithmetic) as given
by MATLAB function expm (A), which is based on Algorithm 5.3.1.

Numerical stability of the schur algorithm: Numerical difficulties clearly
arise when A has equal or nearly equal confluent eigenvalues, even though the
transformation matrix P is orthogonal.

Section 5.3: SOLUTIONS OF A CONTINUOUS-TIME SYSTEM 137

5.3.4 Comparison of Different Methods for Computing
the Exponential Matrix

From our discussions in previous sections, it is clear that the Padé approximation
method (with scaling and squaring) and the Schur method should, in general, be
attractive from computational viewpoints.

The Taylor series method and the methods based on reduction of A to a
companion matrix or to the JCF should be avoided for the reason of numerical
instability. The ODE techniques should be preferred when the matrix A is large
and sparse.

5.3.5 Evaluating an Integral with the Matrix Exponential

We have discussed methods for computing the matrix exponential. We now present
a method due to Van Loan (1978) to compute integrals involving exponential
matrices.

The method can be used, in particular, to compute the state-space solution (5.3.3)
of the Eq. (5.3.1), and the controllability and observability Grammians, which
will be discussed in the next chapter.

The method uses diagonal Padé approximation discussed in the last section.

Let

A A
H(A) =/ eMBds, M(A) =/ AT OH (s) ds,
0 0

A A
N(A) =/ A" Qe ds, W(A) =/ H(s)T QH(s)ds
0 0

where A and B are matrices of order n and n x m, respectively, and Q is a symmetric
positive semidefinite matrix.

Algorithm 5.3.3. An Algorithm for Computing Integrals involving Matrix
Exponential.
Inputs.

A—The n x n state matrix
B—Ann x m matrix

Q—A symmetric positive semidefinite matrix.

Outputs. F, H, Q, M, and W which are, respectively, the approximations to
e, H(A), N(A), M(A), and W(A).

138 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Step 1. Form the (3n + m) x (3n + m) matrix

-AT 1 0 0
R AT
e-| © AT 0 o
0 0 A B
0 0O 0 0

Find the smallest positive integer j such that (||C'A||p/2j) < % Setty =
(A/29).
Step 2. For some q > 1, compute

ca
Yo = Ryq BT

where Ry, is the (q, q) Padé approximant to €*:

Yo ez (2q — k)!q!
Fa@ =0 T M g —or
Write

Fi(tp) Gi(o) Hi(to) Kit)
Yo = 0 F(tg) Galto) Ha(t)
0 0 F3(r0) G3(t0)
0 0 0 Fa(to)

and set

Fo = F3(%) Mo = F3(10)" Ha (1)
Ho = Gi(to) Wo =[BT F3(t0)TK1(to)] + (BT F3(to) K1 (10)1".
Qo = F3(to) G2 (10).

Step3. Fork=0,1,...,j—1do

Wit1 = 2Wi + HI My + M H + H Qi H,
My = My + FL1QxHi + My]
Qi1 = Qk + F QrFi
Hyyy = Hy + FiHy
Fiy1 = sz
End
Stepd.Ser F=F;, H=H;,0=Q;, M=M;, and W = W;.

Section 5.4: STATE-SPACE SOLUTION OF THE DISCRETE-TIME SYSTEM 139

Remark

o It has been proved by Van Loan (1978) that the accuracy of the algorithm
can be controlled by selecting ¢ properly. For “how to choose g properly”
and other computational details, see the paper of Van Loan (1978).

MATCONTROL note: Algorithm 5.3.3 has been implemented in MATCON-
TROL function intmexp.

5.4 STATE-SPACE SOLUTION OF THE DISCRETE-TIME SYSTEM

In this section, we state a discrete-analog of Theorem 5.3.1, and then discuss how
to compute the discrete-time solution.

Theorem 5.4.1. Discrete-Time State-Space Solution. The solutions to the
linear time-invariant discrete-time system of equations

x(k+1) = Ax(k) + Bu(k), x(0)=x¢ 5.4.1)
and
y(k) = Cx(k) + Du(k) (5.4.2)
are
k—1
x(k) = AXxp + Z A1 By) (5.4.3)
i=0
and
k—1
y(k) = CA*xg + [Z CA"—f—lBu(i)} + Du(k). (5.4.4)
i=0
Proof. From
x(k + 1) = Ax(k) + Bu(k), (5.4.5)

we have
x(k) = A[Ax(k — 2) + Bu(k — 2)] + Bu(k — 1),
= A%x(k —2) + ABu(k — 2) + Bu(k — 1),
= A’[Ax(k — 3) + Bu(k — 3)] + ABu(k — 2) + Bu(k — 1),

k—1
= Ax0+) AT Bu).
i=0
This proves (5.4.3).

140 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Equation (5.4.4) is now obtained by substituting the expression of x(f) from
(5.4.3)into (5.4.2). A

Computing the Powers of a Matrix

Theorem 5.4.1 shows that, to find the state-space solution of a discrete-time system,
one needs to compute the various powers of A. The powers of a matrix A are more
easily computed if A is first decomposed into a condensed form by similarity.
Thus, if PYAP = R, where P is orthogonal, then A® = PR*® PT. For the sake
of numerical stability, only those condensed forms such as the Hessenberg
form or the RSF of a matrix should be considered. The matrix R* can be easily
calculated by exploiting the Hessenberg or Schur structure of R. Furthermore,
the reduction to R can be achieved using a numerically stable procedure such as
Householder’s or Givens’ method (Chapter 4).

5.5 TRANSFER FUNCTION AND FREQUENCY RESPONSE

In this section, we introduce the important concepts of transfer function and
frequency response matrices and describe a numerical algorithm for computing
the frequency response matrix.

5.5.1 Transfer Function

Consider
x(t) = Ax(t) + Bu(t), x(0) = xo, (5.5.1)
y(t) = Cx(t) + Du(t). (5.5.2)
Let x(s), y(s), and #(s), respectively, denote the Laplace transforms of x(z),

y(t), and u(z). Then taking the Laplace transform of (5.5.1) and (5.5.2), we
obtain

sX(s) — xg = AX(s) + Bi(s), (5.5.3)
$(s) = C2(s) + Dii(s). (5.5.4)
From (5.5.3) and (5.5.4), we have
x(s) = R(s)x(0) + R(s)Bii(s) (5.5.5)
¥(s) = CR(s)x(0) + G(s)u(s), (5.5.6)
where
R(s) = (s] — A)! (5.5.7)
and

G(s)=C(sI — A~ 'B+D. (5.5.8)

Section 5.5: TRANSFER FUNCTION AND FREQUENCY RESPONSE 141

If x(0) = 0, then (5.5.6) gives
¥(s) = G(s)i(s).

Definition 5.5.1. The matrix R(s) is called the resolvent and G(s) is called
the transfer function.

The transfer function G{s) is a matrix transfer function of dimension r x m.
Its (i, j)th entry denotes the transfer function from the jth input to the ith output.
That is why, it is also referred to as the transfer function matrix or simply the
transfer matrix.

Definition 5.5.2. The points p at which G(p) = oo are called the poles of
the system.

If G(00) = O, then the transfer function is called strictly proper and is
proper if G(00) is a constant matrix.

State-Space Realization

For computational convenience, the transfer function matrix G(s) will be written

sometimes as
Al|lB
G(S) B [T*i] '

The state-space model (A, B, C, D) having G (s) as its transfer function matrix is
called a realization of G(s). For more on this topic, see Chapter 9. In general, it
will be assumed that G(s) is a real-rational transfer matrix that is proper.

Operations with Transfer Function Matrices

Let G(s) and G1(s) be the transfer functions of the two systems S; and S;.
Then the transfer function matrix of the parallel connection of S; and 3 is
G1(s) + G2(s). Using our notation above, we obtain:

A 0 B
1|Bl:|+|:A2’BZ}= 0 A | B,
Cq CzT Dy + Dy

G1(5)+Ga(s) = [

142 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Similarly, the transfer function matrix of the series or cascade connection of S|
and S (i.e., a system with the output of the second system as the input of the first
system) is G1(s)G2(s), given by

0 B

A
G1(s)Ga(s) = Al | b £ | o]: B\Cy; | A\ B1D;
¢ 1D C2 [D2 DiC; | €1 DD,

The transpose of a transfer function matrix G(s) is defined as:

GY(s) = BT(s1 — ATy IcT + DT,

AT | BT
=[]

The conjugate of G (s) is defined as:

or equivalently,

G~ (s) = GY(~s) = BT(—sI — A" 'cT + DT,

AT | _T

The inverse of a transfer function matrix G(s), denoted by G(s) is such that
G(s)G(s) = G(s)G(s) = I.If G(s) is square and D is invertible, then,

or equivalently,

-1 ~1
é(s)EG—‘(s)=[A-BD"!'C | -BD }

DC | D

MATLAB notes: MATLAB functions parallel, series, transpose, inv (ss/inv.m)
can be used to compute parallel, series, transpose, and inverse, respectively.

Transfer Function of Discrete-Time System

The transfer function matrix of the discrete-time system (5.4.1) —(5.4.2) is
G(z) =C@zI — A 'B+D.

It is obtained by taking the z-transform of the system.

5.5.2 The Frequency Response Matrix and its Computation

In this section, we describe a computationally viable approach for computing the
frequency response matrix.

Section 5.5: TRANSFER FUNCTION AND FREQUENCY RESPONSE 143

Definition 5.5.3. For the continuous-time state-space model (5.5.1-5.5.2), the
matrix

G(jw)=C(jwl — A 'B+D (5.5.9)
is called the frequency response matrix; w € R is called frequency.

The frequency response matrix of a discrete-time system is similarly defined by

using the transformation:
7= eja)T

where T is the sample time. This transformation maps the frequencies w to points
on the unit circle. The frequency response matrix is then evaluated at the resulting
Z values.

Computing the Frequency Response Matrix

In order to study the different responses of the system, it is necessary to compute
G(jw) for many different values of w. Furthermore, the singular values of the
return difference matrix / + L(jw) and of the inverse return difference matrix
I+ L~ (jw), where L(jw) is square and of the form L = K G M for appropriate K
and M, provide robustness measure of a linear system with respect to stability,
noise, disturbance attenuation, sensitivity, etc. (Safonov er al. 1981).

We therefore describe a numerical approach to compute G (jw). For simplicity,
since D does not have any computational role in computing G(jw), we will
assume that D = 0.

The computation of (jwl — A)~! B is equivalent to solving m systems:

(joI — A)X = B,

A usual scheme for computing the frequency response matrix is:
Step 1. Solve the m systems for m columns x1, x2, ..., X, of X:

(Jwl — A)x; = b;, i=1,2,...,m,

where b; is the ith column of B.

Step 2. Compute CX.

IfAisnxn,Bisnxm (m <n),and Cisr xn (r < n), and if LU factorization
(Chapter 3) is used to solve the systems (jwl — A)x; = b;,i = 1,2,...,m, then
the total flop-count (complex) for each w is about %n3 +2mn? 4+ 2mnr. Note that,
since the matrix jwl — A is the same for each linear system for a given w, the matrix
Jjwl — A has to be factored into LU only once, and the same factorization can be
used to solve all the m systems. Since the matrix G (jw) needs to be computed for
many different values of w, the computation in this way will be fairly expensive.

Laub (1981) noted that the computational cost can be reduced significantly
when n > m (which is normally the case in practice), if the matrix A is initially

144 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

transformed to an upper Hessenberg matrix H by orthogonal similarity, before
the frequency response computation begins. The basic observation here is that if
PTAP = H, an upper Hessenberg matrix, then

G(jw) = C(jol — A)'B,
= C(jwl — PHPT)"!B,
= C(P(jwl — H)PH)7'B,
=CP(jwl — H) 'PTB.

Thus, if A is transformed initially to an upper Hessenberg matrix H,and CP = C’
and PTB = B’ are computed once for all, then for each , we have the following
algorithm.

Algorithm 5.5.1. A Hessenberg Algorithm for the Frequency Response
Matrix.

Input. A—The n x n state matrix
w—~Frequency, a real number
B—The n x m input matrix
C—The r X n output matrix.
Output. The Frequency Response Matrix G(jw) = C(jwl — A)"!B.
Step 1. Transform A to an upper Hessenberg matrix H (Section 3.5.3):
PTAP =H.
Step 2. Compute B’ = PTB and C' = CP
Step 3. Solve the m Hessenberg systems:

(jol —H)x; =b;, i=1,...,m,

where b is the ith column of B'.

Step 4. Compute C'X.

Flop-Count: Since the system matrices A, B, and C are real, Steps 1 and 2 can
be done using real arithmetic and require approximately 13—0n3 + 2mn?* + 2rn?
(real) flops. Steps 3 and 4 require complex arithmetic and require approximately
2mn? 4 2rnm complex flops.

Comparison: For N values of w, the Hessenberg method require %0n3 +2(m+
rn? real +[2mn? +2rnm|N complex flops compared to [%n3 +2mn?++2mnrlN
complex flops, required by the non-Hessenberg scheme.

Numerical stability: It is possible to show (Laub and Linnemann 1986) that if the
data is well-conditioned, then the frequency response of the computed Hessenberg
form is (C + AC)(jwl — A — AA)"Y(B + AB), where AA, AB, and AC are
small. Thus, the Hessenberg method is stable.

Section 5.5: TRANSFER FUNCTION AND FREQUENCY RESPONSE 145

MATCONTROL note: Algorithm 5.5.1 has been implemented in MATCON-
TROL function freqresh.

Example 5.5.1. Compute the frequency response matrix with

1 2 3 1 111
A=1|2 3 4], B=|1 1], C:<1 1 1), w=1
0 1 1 I 1

Since A is already in upper Hessenberg form, Steps 1 and 2 are skipped.
Step 3. Solve for x1: (jwl — H)x; = b} = by,

—5.000 — 0.0000:
x; = | 0.4000 — 0.8000i
+0.1000 — 0.7000i

Solve for x2: (jwl — H)xy = b, = ba,

—0.5000 — 0.0000i
xy = | 0.4000 + 0.8000i
0.1000 — 0.7000i

Step 4. Compute the frequency response matrix:

G(jw)=C'X =CX,

_ {—0.8000 + 0.1000; —0.8000 + 0.1000:
~ \—0.8000 + 0.1000; —0.8000 + 0.1000i /

Other Methods for Frequency Response Computation

1.

A method based on a determinant identity for the computation of the fre-
quency response matrix has been proposed by Misra and Patel (1988).
The method seems to be considerably faster and at least as accurate as
the Hessenberg method just described. The method uses the controller-
Hessenberg and observer-Hessenberg forms which will be described in
the next chapter. The Misra—Patel method for computing the frequency
response matrix is based on the following interesting observation:

det(jwl — A + bic])
det(jol — A)

gi(jo) = 1, (5.5.10)
where by and ¢; denote, respectively, the kth and /th columns of the matrices
B and C.

An alternative method also based on the reduction to controller-Hessenberg
form, has been given by Laub and Linnemann (1986).

146 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

3. Another method for the problem has been proposed by Kenney et al. (1993).
The method uses matrix interpolation techniques and seems to have better
efficiency than the Hessenberg method.

4. The frequency response of a discrete time system is obtained by evaluating
the transfer function H (z) in (5.5.8) on the unit circle.

Bode Diagram and the Singular Value Plot

Traditionally, Bode diagram is used to measure the magnitude and angle of fre-
quency response of an SISO system. Thus expressing the frequency response
function in polar coordinates, we have

G(jw) = M(w)e/®@.

M (w) is the magnitude and o () is the angle. It is customary to express M (w)
in decibels (abbreviated by dB). Thus,

M(w)|gp = 20log,q M (w).

The angle is measured in degrees.

The Singular Value Plot is the plot of singular values of H(jw) as a function
of the frequency w. If the system is an SISO system, the singular value plot is the
same as the Bode diagram. The singular value plot is a useful tool in robustness
analysis.

MATLAB note: MATLAB functions bode and sigma can be used to draw the
Bode plotand the singular value plot, respectively. For the Bode plot of multi-input,
multi-output (MIMO) system, the system is treated as arrays of SISO systems and
the magnitudes and phases are computed for each SISO entry h;; independently.

MATLAB function freqgresp can be used to compute frequency response at some
specified individual frequencies or over a grid of frequencies. When numerically
safe, the frequency response is computed by diagonalizing the matrix A; otherwise,
Algorithm 5.5.1 is used.

5.6 SOME SELECTED SOFTWARE
5.6.1 Matlab Control System Toolbox

Time response

step Step response
impulse Impulse response
initial Response of state-space system with given initial state

Section 5.6: SOME SELECTED SOFTWARE 147

Isim Response to arbitrary inputs
Itiview Response analysis GUI

gensig Generate input signal for LSIM
stepfun Generate unit-step input.

Frequency response

bode Bode plot for the frequency response

sigma Singular value frequency plot

nyquist ~ Nyquist plot

nichols Nichols chart

ltiview Response analysis GUI

evalfr Evaluate frequency response at given frequency
freqresp Frequency response over a frequency grid
margin Gain and phase margins

5.6.2 MATCONTROL

EXPMPADE The Padé approximation to the exponential of a matrix

EXPMSCHR Computing the exponential of a matrix using Schur
decomposition

FREQRESH Computing the frequency response matrix using
Hessenberg decomposition

INTMEXP Computing an integral involving a matrix exponentials.

5.6.3 SLICOT

MBOSMD Matrix exponential for a real non-defective matrix
MBOSND Matrix exponential and integral for a real matrix
MBO050OD Matrix exponential for a real matrix with accuracy estimate.

State-space to rational matrix conversion
TBO4AD Transfer matrix of a state-space representation.

State-space to frequency response
TBOSAD Frequency response matrix of a state-space representation
TF Time response
TFOIMD Output response of a linear discrete-time system
TFOIND Output response of a linear discrete-time system
(Hessenberg matrix).

148 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

5.64 MATRIXy

Purpose: Gain and phase plots of discrete-time systems.

Syntax:

[GAIN, DB, PHASE]=DBODE (SD, NS, OMEGANMIN, OMEGANMAX,
NPTS, "OPT’) OR

[GAIN, DB, PHASE]=DBODE (DNUM, DDEN, OMEGANMIN, OMEGAN-
MAX, NPTS) OR

[GIAN, DB, PHASE]=DBODE (SD, NS, OMEGAN)

Purpose: Initial value response of discrete-time dynamic system.
Syntax: [N, Y]=DINITIAL (SD, NS, XO, NPTS).
Purpose: Step-response of discrete-time system.

Syntax: [N, Y]=DSTEP (SD, NS, NPTS) OR
[N, Y]=DSTEP (DNUM, DDEN, NPTS)

Purpose: Frequency response of dynamic system. FREQ transforms the A matrix
to Hessenberg form prior to finding the frequency response.

Syntax: [OMEGA, H]=FREQ (S, NS, RANGE, option) OR
H=FREQ (S, NS, OMEGA, ‘options’)

Purpose: Compute the impulse response of a linear continuous-time system.
Syntax: [T, Y]I=IMPULSE (S, NS, TMAX, NPTS) OR

[T, Y]I=IMPULSE (NUM, DEN, TMAX, NPTS)

Purpose: Initial value response of continuous-time dynamic system.

Syntax: [T, YI=INITIAL (S, NS, XO, TMAX, NPTS)

Purpose: Response of continuous-time system to general inputs.

Syntax: [T, Y]=LSIM (S, NS, U, DELTAT, X0)

Purpose: Step response of continuous-time system.

Syntax: [T, Y]=STEP (S, NS, TMAX, NPTS) OR
[T, YI=STEP (NUM, DEN, TMAX, NPTS)

Section 5.7: SUMMARY AND REVIEW 149

Purpose: Gives transfer function form of a state-space system.
Syntax: [NUM, DEN]=TFORM (S, NS)
Purpose: Impulse response of continuous-time system.

Syntax: [T, Y]=TIMR (S, NS, RANGE, "MODE")

5.7 SUMMARY AND REVIEW
State-Space Representations

A continuous-time linear time-invariant control system may be represented by
systems of differential equations of the form (5.2.1)—(5.2.2)
x(1) = Ax(t) + Bu(?),
y(t) = Cx(t) + Du(t),
where x(¢) is the state vector, u(¢) is the input vector, y(¢) is the output vector.
The matrices A, B, C, and D are time-invariant matrices known, respec-
tively, as the state matrix, the input matrix, the output matrix, and the direct
transmission matrix.
A discrete-time linear time-invariant control system may analogously be
represented by systems of difference equations (5.4.1) - (5.4.2).
x(t+1) = Ax(®) + Bu(®),
y(t) = Cx(t) + Du(t).

where x(¢), u(t), y(t), and A, B, C, and D have the same meaning as above.

Solutions of the Dynamical Equations

The solutions of the equations representing the continuous-time system in state-
space form are given by (assuming ty = 0):

t
x(t) = eMxo + f AU Bu(s)ds
0

and

H
y(t) = Ce*'xo + / Ce"=9) Bu(s) ds + Du(t).
0

where xg is the value of x(f) at + = 0. The matrix ¢4’ is the state-transition
matrix in this case.

150 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

The solutions of the equations representing the discrete-time system are
given by:

k—1
x(k)y = A*x(©) + Y A Bu()
i=0
and
k—1
y(k) = CAx(0) + [Z CAk_i_lBu(i)} + Du(k).
i=0

Computing 4!

There exist several methods for computing the state-transition matrix e’
These include: The Taylor series method, the Padé approximation method, ODE
methods, the eigenvalue—eigenvector method, and the matrix decomposition
methods.

Among these, the Padé approximation method with scaling and squaring
(Algorithm 5.3.1) and the method based on the Schur decomposition of A
(Algorithm 5.3.2) are the ones that are recommended for use in practice. If
the problem is ill-conditioned, these methods, however, might not give accurate
results. The ODE methods (Section 5.3.3) should be preferred if A is large and
sparse.

Computing Integrals Involving Matrix Exponentials

An algorithm (Algorithm 5.3.3) is presented for computing integrals involving
matrix exponentials.

Transfer Function Matrix

If 7 (s) and y(s) are the Laplace transforms of u(¢) and y(r), then assuming zero
initial condition, we obtain:

¥(s) = G(9)i(s),

where
G(s) = C(sI — A)"'B+ D.

The matrix G(s) is called the transfer function matrix and is conveniently

written as:
A| B
Gls) = [%W] :

Section 5.8: CHAPTER NOTES AND FURTHER READING 151

The Frequency Response Matrix

The matrix G(jw) = C(jwl — A)~'B + D is called the frequency response
matrix.

The frequency response plot for different values of w is important in the study
of different responses of a control system. For this the frequency response matrix
needs to be computed.

An efficient method (Algorithm 5.5.1), based on transformation of A to
Hessenberg form, is described. The Hessenberg method is nowadays widely
used in practice.

5.8 CHAPTER NOTES AND FURTHER READING

The examples on state-space model in Section 5.2.1 have been taken from various
sources. These include the books by Brogan (1991), Chen (1984), Kailath (1980),
Luenberger (1979), Szidarovszky and Bahill (1991), Zhou with Doyle (1998).
Discussions on system responses can be found in any standard text books. The
books mentioned above and also the books by DeCarlo (1989), Dorf and Bishop
(2001), Friedland (1986), Patel and Munro (1982), etc., can be consulted. For
various ways of computing the matrix exponential ¢!, the paper by Moler and
Van Loan (1978) is an excellent source. Some computational aspects of the matrix
exponential have also been discussed in DeCarlo (1989).

The frequency response algorithm is due to Laub (1981). For discussions on
applications of frequency response matrix, see Safonov et al. (1981). For alterna-
tive algorithms for frequency response computation, see Misra and Patel (1988),
Kenney et al. (1993). The algorithm for computing integrals (Algorithm 5.3.3)
involving matrix exponential has been taken from the paper of Van Loan (1978).
The sensitivity analysis of the matrix e4’ is due to Van Loan (1977). See also
Golub and Van Loan (1996).

Exercises

5.1 (a) Consider the electric circuit

L R,
A%

- D " § g, Y0

u(t)

152 Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

(i) Show that the state-space representation of this circuit is given by

di(t)
dt

L + (R + Rp)i(t)y =u(t), y@)=Ryi(t).

(i) Give an explicit expression for the solution of the state equation.
(b) Write the state equations for the following electric network:

L R,

07000 VWV

() gn :

e(t)

5.2 (a) Write down the equations of motion of the following spring-mass system in
state-space form:

-

(b) Write down the state-space representation of the following spring-mass system:

i

—

Lot oS~

4
}_

ky ky

53

54

5.5

Section 5.8: CHAPTER NOTES AND FURTHER READING 153

Consider the following diagram of a cart of mass M carrying two sticks of masses
M, and M;, and lengths [and /5.

u(t)

(a) Write down the equations of motion, in terms of the velocity v of the cart, u
and 6y, 63, 61, 6.

(b) Assuming 6) and 9, are small, linearize the equations of motion and then write
down a first-order state-space representation.

(Saad 1988) Consider the differential equation

. 9u N 32u +ﬂ8u ot Gt
—=—+— — +vu .Y,
ar axZ ay? ax oY

on the unitsquare 2 = (0, 1) x (0, 1), that models a chemical reaction process, where
u represents the concentration of a chemical component that diffuses and convects.
Let the boundary conditions u(x, y, t) = 0 for every . Assume that F(x, y, t) has
the form:

Flx,y, 1) =F(x,y)g(®.

The term vu simulates a chemical reaction that results in an increase of the

concentration that is proportional to u.

(a) Discretize the region with n interior points in the x-direction and m interior
points in the y-direction and show that this leads to the state-space represen-
tation of the form:

u = Au + bg,

where the dimension of A is nm.
(b) Solve the above problem on a computer with § = 20,v = 180,n = 20,
m = 10.
(Lanchester War Model) The following simple model of Warfare was developed
by F. Lanchester in 1916.
Let xq and x, be the number of units in the two forces which are engaged in a war.
Suppose that each unit of the first force has the “hitting” power /1 and that of the
second force has the “hitting” power h5.
The “hitting” power is defined to be the number of casualties per unit time that
one member can inflict on the other.

154

5.6

5.7

58

5.9

5.10

5.11

Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Suppose further that the hitting power of each force is directed uniformly against
all units of the other force.
(a) Develop a state-space representation of the model.
(b) Show that

xl(t)—cle”h‘h +cpe”! Vhiky

h
Xz(t)—— , 1 t\/hlhz +C h]h

where ¢ and ¢; are constants to be determined from initial conditions.
(a) Find an explicit expression for the solution of the initial value problem

x(@) = (_OA g) x(t) + <(1)> , x(0) = (é) .

(b) Find the free response of the system.
Find an explicit expression for the solution of the homogeneous discrete-time system

x(t+1)=<(1) i)x(t), x(()):((l)).

Prove the following properties of eAl
(a) eA(t+s) — eAt . eAs’

(b) eAtB) = ¢Al . Bt if and only if A and B commute,
(c) eA! is nonsingular and (e4)~1 = =4,
m
(d) (eA/m> = ¢4, where m is an integer,
() ePT1APL _ p—l,Aip
Prove that the infinite series

1
At _ k k
= E _k!At
k=0

converges uniformly and absolutely for ¢ in any bounded interval.
Prove that (d/dt)(e??) = Ae™M

(Hint . Differentiate e = Y22 1/k!A¥1¥ term by term).

Illustrate the difficulty with the eigenvalue—eigenvector method for computing et
with the matrix:
A o
A= (0 u)

by choosing A, i, and « appropriately.

Section 5.8: CHAPTER NOTES AND FURTHER READING 155

5.12 Let R = (r;;) be an unreduced lower Hessenberg matrix and let

5.13

5.14

5.15

5.16

b
R 2
et =1 . and B; =R —rjl.
fr
Then prove that
1
fa=—riB;
2
and

i—1
1 . ,
f,'_+_1=r————. fiBi—Zrijfj , l=2,3,...,n—1.

i—1,i j=t

(Consult Datta and Datta (1976), if necessary.) What difficulties do you foresee in
computing eR using these formulas? Give an illustrative example.
Compute e for
0
A={1 11

%]

using
(a) a fifth-order variable-step Runge-Kutta method;
(b) the Adams—Moulton predictor correct formulas of variable order and variable
step;
(c) a general purpose ODE solver. (Use error tolerance 10_6.)
Compare the result in each case with that obtained by MATLAB function expm.
(a) Write an algorithm based on the block diagonal decomposition of A to
compute e

A= X diag(Ty, To, ..., Tp)X L.

(b) Determine the flop-count of this algorithm.

(¢) What numerical difficulty do you expect out of this algorithm?

Prove that the matrix Dp4(A) in the Padé approximation method is nonsingular if
all the eigenvalues of A have negative real parts or if p and g are sufficiently large.
Develop an algorithm to compute A, where s is a positive integer, and A is
an unreduced lower Hessenberg matrix. Apply your algorithm to compute Al0,
where A =

1 1073 0
, gt 1 1074
1 1

1 2 0
@f{1 1 0.0001}, (i)
1 1 1

-0 OO
DO O =
w o -0
-0 O

(Consult Datta and Datta 1976.)

156

5.17

5.18

5.19
5.20
5.21

5.22

5.23

5.24

5.25

5.26

Chapter 5: LINEAR STATE-SPACE MODELS AND STATE EQUATIONS

Let A = XAX™!, where A = diag (A1, ..., Ay). Prove that AR = XAkX“l, for
each k. Under what conditions on A1, ..., X, does the infinite series of matrices
Z Ck AX converge?

Develop an algorithm to compute A*, where A is an upper real Schur matrix, and s
is a positive integer. Apply your algorithm to compute A3, where

2 3 4
099 1 1

0 2 1

0 0 199

[= =R

Prove that the Laplace transform of y(t) = eAl s y(s) = (sI — A)_l.

Modify Algorithm 5.3.2 to compute e, where A is in RSF.

Show that the transformation ¥ = T x, where T is nonsingular, preserves the transfer
function.

Show that the transfer function of the system:

i) = <_Ow ‘(‘)’>x + (?) u, x(0) = (é)

y = (1, Dx.

. s+ ow
is H (S)= m
Modify the Hessenberg algorithm (Algorithm 5.5.1) for computation of the frequency
response matrix that uses only real arithmetic. Give a flop-count of this modified
algorithm.

Develop an algorithm for computing the frequency response matrix using formula
(5.5.10) and the fact that the determinant of a matrix A is just the product of the
diagonal entries of the matrix U in its LU factorization. (Consult Misra and Patel
1988.)

Develop an algorithm for computing the frequency response matrix based on the
reduction of A to RSF. Compare the flop-count of this algorithm with that of the
Hessenberg algorithm (Algorithm 5.5.1).

Develop an algorithm for computing the frequency response matrix of the descriptor
model:

Ex = Ax + Bu

based on the initial reduction of the pair (A, B) to Hessenberg-triangular form
described in Chapter 4. (Consult Misra 1989.)

References

Ali Sayed, Lecture Notes on Dynamical Systems, University of California, Los Angeles,

1994.

Baldwin C.T. Fundamentals of Electrical Measurements, George G. Harp and Co. Ltd.,

London, 1961.

Brogan W.L. Modern Control Theory, 3rd edn, Prentice Hall, Englewood Cliffs, NJ, 1991,

Section 5.8: CHAPTER NOTES AND FURTHER READING 157

Campbell S.L. Singular Systems of Differential Equations, Pitman, Marshfield, MA, 1980.

Chen C.-T. Linear System Theory and Design, CBS College Publishing, New York, 1984.

Datta B.N. and Datta, K. “An algorithm to compute the powers of a Hessenberg matrix and
applications,” Lin. Alg. Appl. Vol. 14, pp. 273-284, 1976.

DeCarlo R.A. Linear Systems: A State Variable Approach with Numerical Implementation,
Prentice Hall, Englewood Cliffs, NJ, 1989.

Dorf R.C. and Bishop R.H. Modern Control Systems, 9th ed, Prentice Hall, Upper Saddle
River, NJ, 2001

Friedland B. Control Systems Design: An Introduction to State-Space Methods, McGraw-
Hill, New York, 1986.

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University
Press, Baltimore, MD, 1996.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

Kenney C.S., Laub A.J,, and Stubberud, S.C. “Frequency response computation via rational
interpolation,” IEEFE Trans. Autom. Control, Vol. 38, pp. 1203-1213, 1993.

Laub A.J. “Efficient multivariable frequency response computations,” [EEE Trans. Autom.
Control, Vol. AC-26, pp. 407408, 1981.

Laub A.J. and Linnemann A. “Hessenberg and Hessenberg/triangular forms in linear
systems theory,” Int. J. Control, Vol. 44, pp. 1523-1547, 1986.

Luenberger D.G. Introduction to Dynamic Systems: Theory, Methods, & Applications, John
Wiley & Sons, New York, 1979.

Misra P. “Hessenberg-triangular reduction and transfer function matrices of singular
systems,” IEEE Trans. Circuits Syst., Vol. CAS-36, pp. 907-912, 1989.

Misra P. and Patel R.V. “A determinant identity and its application in evaluating frequency
response matrices,” SIAM J. Matrix Anal. Appl., Vol. 9, pp. 248-255, 1988.

Moler C.B. and Van Loan C.F. “Nineteen dubious ways to compute the exponential of a
matrix,” SIAM Rev., Vol. 20, pp. 801-836, 1978.

Parlett B.N. “A recurrence among the elements of functions of triangular matrices,” Lin.
Alg. Appl., Vol. 29, pp. 323-346, 1976.

Patel R.V. and Munro N. Multivariable Systems Theory and Design, Pergamon Press,
Oxford, UK, 1982.

Safonov M.G., Laub A.J. and Hartman, G.L. “Feedback properties of multivariable systems:
the role and use of the return difference matrix,” IEEE Trans. Autom. Control, Vol.
AC-26, pp. 47-65, 1981.

Saad Y. “Projection and deflation methods for partial pole assignment in state feedback,”
IEEE Trans. Automat. Control, Vol. 33, No. 3, pp. 290-297, 1988.

Soong T.T. Active Structural Control: Theory and Practice, Longman Scientific and
Technical, Essex, UK, 1990.

Szidarovszky F. and Terry Bahill, A. Linear Systems Theory, CRC Press, Boca Raton, 1991.

Van Loan C.F. “The sensitivity of the matrix exponential,” SIAM J. Numer. Anal., Vol. 14,
pp. 971-981, 1977.

Van Loan C.F. “Computing integrals involving the matrix exponential,” IEEE Trans. Autom.
Control, Vol. AC-23, pp. 395404, 1978.

Zhou K. (with Doyle 1.), Essentials of Robust Control, Prentice Hall, Upper Saddle River,
NJ, 1998.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 6

CONTROLLABILITY,
OBSERVABILITY, AND
DISTANCE TO
UNCONTROLLABILITY

Topics covered

Controllability and Observability Criteria
Controller- and Observer-Companion Forms
Kalman Decomposition

Controller and Observer Hessenberg Forms
Distance to Uncontrollability

e & @ 0 @

6.1 INTRODUCTION

This chapter deals with discussions on the two most fundamental notions, con-
trollability and observability, and related concepts. The well-known criteria of
controllability and observability are stated and proved in Theorem 6.2.1.

These theoretically important criteria, unfortunately, do not yield numerically
effective tests of controllability. This is demonstrated by means of some examples
and discussions in Section 6.6. Numerically effective tests, based on reduc-
tion of the pairs (A, B) and (A, C), respectively, to the controller-Hessenberg
and observer-Hessenberg pairs, achieved by means of orthogonal similarly, are
described in Sections 6.7 and 6.8.

Controllability and observability are generic concepts. What is more important in
practice is to know when a controllable system is close to an uncontrollable one. To
this end, a measure of the distance to uncontrollability is introduced in Section 6.9
and a characterization (Theorem 6.9.1) in terms of the minimum singular value of

159

160 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

a certain matrix is stated and proved. Finally, two algorithms (Algorithms 6.9.1
and 6.9.2) are described to measure the distance to uncontrollability.

The chapter concludes with a brief discussion (Section 6.10) on the relationship
between the distance to uncontrollability and the singular values of the control-
lability matrix. The important message here is that the singular values of the
controllability matrix as such cannot be used to make a prediction of how close the
system is to an uncontrollable system. It is the largest gap between two singular
values that should be considered.

Reader’s Guide for Chapter 6

The readers having knowledge of basic concepts and results on controllability
and observability, can skip Sections 6.2-6.5.

6.2 CONTROLLABILITY: DEFINITIONS AND BASIC RESULTS

In this section, we introduce the basic concepts and some algebraic criteria of
controllability.

6.2.1 Controllability of a Continuous-Time System

Definition 6.2.1. The system:

x(t) = Ax(t) + Bu(t),

6.2.1)
y(t) = Cx(t) + Du(?)

is said to be controllable, if starting from any initial state x(0), the system can
be driven to any final state x| = x (1) in some finite time t|, choosing the input
variable u(t), 0 <t < t| appropriately.

Remark

o The controllability of the system (6.2.1) is often referred to as the control-
lability of the pair (A, B), the reason for which will be clear in the following
theorem.

Theorem 6.2.1. Criteria for Continuous-Time Controllability. Let A € R"*"
and B € R (m < n).
The following are equivalent:

(i) The system (6.2.1) is controllable.

Section 6.2: CONTROLLABILITY: DEFINITIONS AND BASIC RESULTS 161

(i1) The n x nm matrix
Cm = (B, AB, A’B, ..., A" 'B)

has full rank n.
(i) The matrix

n
We = f e BBTeA dr
0

is nonsingular for any t; > 0.

(v) If (\, x) is an eigenpair of AY, that is, xTA = Ax", then xTB # 0

(v) Rank (A — MI, B) = n for every eigenvalue X of A.

(vi) The eigenvalues of A — BK can be arbitrarily assigned (assuming
that the complex eigenvalues occur in conjugate pairs) by a suitable
choice of K.

Proof. Without loss of generality, we can assume that 1o = 0. Let x(0) = xop.
(i) = (ii). Suppose that the rank of Cy is not n. From Chapter 5, we know that

n
x(t) = eMxg +] AN Bu(r) dt. (6.2.2)
0

That is,

VU RSP
x(t1) —e” xo= I+ A(h t)+2' =)+ Bu(t)dt
0 .

t _ 2
) !t) u(tyder + - -

111 f
=Bf u(t)dt+AB/ (1 —t)u(t)dt+A2B/
0 0 0 2

From the Cayley—Hamilton Theorem (see Chapter 1), it then follows that the
vector x(1) is a linear combination of the columns of B, AB, A%B,..., A" 1B.
Since Cp does not have rank n, these columns vectors cannot form a basis of
the state-space and therefore for some 1, x(#1) = x| cannot be attained, implying
that (6.2.1) is not controllable.
(ii) = (iii). Suppose that the matrix C has rank », but the matrix:

n
We = / A BBTeA™ dt (6.2.3)
0

is singular.
Let v be a nonzero vector such that Wev = 0. Then, vTWe v = 0. That is,
fot‘ vTeA’ BBTeA 'y dt = 0. The integrand is always nonnegative, since it is of

the form cT(¢)c(t), where c(r) = BTeATry, Thus, for the above integral to be equal

162 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

to zero, we must have:
vTeAr"B =0, for0<t<tp.

From this we obtain (evaluating the successive derivatives with respect to ¢, at
t =0
vIA'B=0, i=12,...,n—1

That is, v is orthogonal to all columns of the matrix Cyv. Since it has been
assumed that the matrix Cy has rank n, this means that v = 0, which is a
contradiction.

(iii) = (i). We show that x(#;) = x1. Let us now choose the vector u(¢) as

u(t) = BTed W (—eMxg + x).

Then from (6.2.2), it is easy to see that x(¢;) = x1. This implies that the system
(6.2.1) is controilable.

(i) = (iv). Let x be an eigenvector of AT corresponding to an eigenvalue A;
that is, xTA = AxT. Suppose that xT B = 0. Then,

xTCm = ("B, axTB, A% B, ..., A" 1xTB) = 0.

Since the matrix Cy has full rank, x = 0, which is a contradiction.

(iv) = (ii). Assume that none of the eigenvectors of AT is orthogonal to the
columns of B, but rank (Cv) = k < n.

We will see later in this chapter (Theorem 6.4.1) that, in this case, there exists
a nonsingular matrix T such that

A=TAT ' = (A(;l 2;) , B=TB= (%‘) , (6.2.4)

where Ay, is of order (n — k), apd k = rank(Cpm).
Let v; be an eigenvector of (A22)T corresponding to an eigenvalue A. Then,

()= i) ()= (a8a) =)
v AT, AL) \»n AL,v v/’

Furthermore, :
- B
(0,+7)B = (0, v]) (0‘> =0.

That is, there is an eigenvector, namely (1?2) of (A)T such that it is orthogonal to

the columns of B. This means that the pair (A, B) is not controllable.
This is a contradiction because a similarity transformation does not change
controllability.

Section 6.2: CONTROLLABILITY: DEFINITIONS AND BASIC RESULTS 163

(ii) = (v). Rank(Al — A, B) < n if and only if there exists a nonzero vector v
such that vT(AI — A, B) = 0.
This equation is equivalent to:

ATv=2v and v"B=0.

This means that v is an eigenvector of AT corresponding to the eigenvalue A and it
is orthogonal to the columns of B. The system (A, B) is, therefore, not controllable
by @v).

(v) = (ii). If (v) were not true, then from (iv), we would have had

xT(B, AB,..., A" 'B) =0,

meaning that rank(Cy,) is less than n.

(vi) = (i). Suppose that (vi) holds, but not (i). Then the system can be
decomposed into (6.2.4) such that a subsystem corresponding to Ay is uncon-
trollable, whose eigenvalues, therefore, cannot be changed by the control. This
contradicts (vi).

(i) — (vi). The proof of this part will be given in Chapter 10 (Theorem 10.4.1). It
will be shown there thatif (A, B) is controllable, then a matrix K can be constructed
such that the eigenvalues of the matrix (A — BK) are in desired locations. W

Definition 6.2.2. The matrix
Cm = (B, AB, A’B, ..., A" 'B) (6.2.5)

is called the controllability matrix.

Remark

e The eigenvector criterion (iv) and the eigenvalue criterion (v) are popularly
known as the Popov-Belevitch-Hautus (PBH) criteria of controllability
(see Hautus 1969). For a historical perspective of this title, see Kailath
(1980, p. 135).

Component controllability. The controllability, as defined in the Definition 6.2.1,
is often referred to as the complete controllability implying that all the states are
controllable.

However, if only one input, say u;(¢), from u(t) = (u1(t),..., Um ()T is
used, then the rank of the corresponding n x n controllability matrix CI(,I =
(bj, Abj, ..., A”"lbj), where b; is the jth column of B, determines the num-
ber of states that are controllable using the input « ;(¢). This is illustrated in the
following example.

Consider Example 5.2.6 on the motions of an orbiting satellite with dy = 1.

164 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

It is easy to see that Cy; has rank 4, so that all states are controllable using both
inputs. However, if only the first input u1(¢) is used, then

0 1 0 -

1 0 - 0
Cly = (b1, Aby, A%by, A%hy) = 0 0 —;)w U

0 20 0 20

which is singular.
Thus, one of the states is not controllable by using only the radial force i (¢).
However, it can be easily verified that all the states would be controllable if the
tangential force u,(¢) were used instead of u(1).

Controllable and Uncontrollable Modes

From the eigenvalue and eigenvector criteria above, it is clear that the control-
lability and uncontrollability of the pair (A, B) are tied with the eigenvalues and
eigenvectors of the system matrix A.

Definition 6.2.3. A mode of the system (6.2.1) or, equivalently, an eigenvalue
of A is controllable if the associated left eigenvector (i.e., the eigenvector of AT
associated with 1) is not orthogonal to the columns of B. Otherwise, the mode
is uncontrollable.

6.2.2 Controllability of a Discrete-Time System

Definition 6.2.4. The discrete-time system

Xk+1 = Axp + Bug,

(6.2.6)
Yk = Cxg + Duy

is said to be controllable if for any initial state xo and any final state x1, there
exists a finite sequence of inputs {ug, u1, - - - , un—_1} that transfers xo to x|, that
is, x(N) = x;.

In particular, if xo = 0 and the system (6.2.6) is controllable, then it is called
reachable (see Chen 1984). It is also known as controllability from the origin.

Note: To avoid any confusion, we will assume (without any loss of generality)
that xo = 0. So, in our case, the notion of controllability and reachability are
equivalent.

Most of the criteria on controllability in the continuous-time case also hold in
the discrete-time case. Here we will state and prove only one criterion analogous
to (i1) of Theorem 6.2.1.

Section 6.3: OBSERVABILITY: DEFINITIONS AND BASIC RESULTS 165

Theorem 6.2.2. The discrete-time system (6.2.6) or the pair (A, B) is
controllable if and only if the rank of the controllability matrix

Cm=(B,AB,...,A""'B)

is n.

Proof. From Theorem 5.4.1, we know that the general solution of the discrete-
time systems is

XN = AN_IBM() + AN_2Bu1 + -+ Buy_1.

Thus, xx can be expressed as a linear combination of A*1B k=N,... 1.

So, it is possible to choose uq through uy_; for arbitrary xu if and only if the
sequence {A’ B} has a finite number of columns that span R”; and this is possible,
if and only if the controllability matrix Cy has rank #n. W

6.3 OBSERVABILITY: DEFINITIONS AND BASIC RESULTS

In this section we state definitions and basic results of observability. The results
will not be proved here because they can be easily proved by duality of the results
on controllability proved in the previous section.

6.3.1 Observability of a Continuous-Time System

The concept of observability is dual to the concept of controllability.

Definition 6.3.1. The continuous-time system (6.2.1) is said to be observable
if there exists t| > 0 such that the initial state x (0) can be uniquely determined
from the knowledge of u(t) and y(¢t) forall t,0 <t < t.

Remark
o Theobservability of the system (6.2.1) is often referred to as the observability
of the pair (A, C).

Analogous to the case of controllability, we state the following criteria of
observability.

Theorem 6.3.1. Criteria for Continuous-Time Observability. The follow-
ing are equivalent:

(i) The system (6.2.1) is observable.

166 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

(i) The observability matrix

c
cA

2

om=] CA

CA'n—l

has full rank n.
(iii) The matrix

5] T
Wo =/ A TCTCe dr
0
is nonsingular for any t; > 0.

(iv) The matrix
A —A
C

has rank n for every eigenvalue A of A.

(v} None of the eigenvectors of A is orthogonal to the rows of C, that is, if
(A, y) is an eigenpair of A, then Cy # 0.

(vi) There exists a matrix L such that the eigenvalues of A + LC can be
assigned arbitrarily, provided that the complex eigenvalues occur in
conjugate pairs.

We only prove (iii) <= (i) and leave the others as an exercise (Exercise 6.6).

Theorem 6.3.2. The pair (A, C) is observable if and only if the matrix Wo is
nonsingular for any t; > 0.

Proof. First suppose that the matrix Wg is nonsingular. Since y(¢) and u(¢) are
known, we can assume, without any loss of generality, that u(¢) = O for every ¢.
Thus,

y(t) = Ce'x(0).

This gives
f
Wox(0) = f AT CTy (1) dr.
0

Thus, x (0) is uniquely determined and is given by x (0) = W ! fot‘ eAT’CTy(r)dr.
Conversely, if Wo is singular, then there exists a nonzero vector z such that
Woz = 0, which in turn implies that Ce47z = 0. So, y(1) = CeA"(x(0) 4+ 2) =
Ce"x(0).
Thus, x(0) cannot be determined uniquely, implying that (A, C) is not
observable. H

Section 6.4: DECOMPOSITIONS OF SYSTEMS 167

Component observability. As in the case of controllability, we can also speak of
component observability when all the states are not observable by certain output.
The rank of the observability matrix

Cj
, c;iA
J
J _
Cyu = : ,

o an—1
cjA

where c;, the jth row of the output matrix C, determines the number of states that
are observable by the output y; (¢).

6.3.2 Observability of a Discrete-Time System

Definition 6.3.2. The discrete-time system (6.2.6) is said to be observable if
there exists an index N such that the initial state xo can be completely determined
Jrom the knowledge of inputs ug, uy, ..., un—i, and the outputs yg, y1, ..., Y.

The criteria of observability in the discrete-time case are the same as in the
continuous-time case, and therefore, will not be repeated here.

6.4 DECOMPOSITIONS OF UNCONTROLLABLE AND
UNOBSERVABLE SYSTEMS

Suppose that the pair (A, B) is not controllabie. Let the rank of the controllabil-
ity matrix be k < n. Then the following theorem shows that the system can be
decomposed into controllable and uncontrollable parts.

Theorem 6.4.1. Decomposition of Uncontrollable System. If the controlla-
bility matrix Cy has rank k, then there exists a nonsingular matrix T such

that
T -1 _ Ay A s _ B
A=TAT = (0 Ay B=TB= 'k 6.4.1)

where A1y, Apa, and A22 are, respectively, of order k x k,k x (n — k), and
(n — k) x (n — k), and By has k rows. Furthermore, (A11, By) is controllable.

Proof. Let vi,..., v be the independent columns of the controllability
matrix Cpm. We can always choose a set of n — k vectors vgy1, ..., U, so that
the vectors (vy, v2, - .., Uk, Ug41, - - - » Uy) form a basis of R”.

Then it is easy to see that the matrix 7~ 1 = (v, ..., vy) is such that TAT™!
and T B will have the above forms.

168 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

To prove tpat_(All, El) is controllable, we note that the controllability matrix
of the pair (A, B) is

By AuBy -+ (AM'BL - (ADV'By
0 0 0 0)

Since, for each j > k, (A(1)/ is a linear combination of (A11)',i =0, 1, .
(k — 1), by the Cayley—Hamllton Theorem (see Chapter 1), we then have
rank(By, A By, ... Al 1Bl) = k, proving that (A11, By) is controllable. W

Note: If we define x = T x, then the state vector x corresponding to the system
defined by A and B is given by ¥ = (;;)
Remark (Choosing T Orthogonal)

e Note that T in Theorem 6.4.1 can be chosen to be orthogonal by finding the
QR factorization of the controllability matrix Cy. Thus, if Cyy = OR, then
T = QT.

Using duality, we have the following decomposition for an unobservable pair.
The proof is left as an exercise (Exercise 6.7).

Theorem 6.4.2. Decomposition of Unobservable System. If the observability
matrix Oy has rank k' < n, then there exists a nonsingular matrix T such that

A—TAT ! = (AO“ ;‘g) L C=CT'=(0.C) (642

with (A11, C1) observable and A1 is of order k'.

The Kalman Decomposition

Combining Theorems 6.4.1 and 6.4.2, we obtain (after some reshuffling of the
coordinates) the following decomposition, known as the Kalman Canonical
Decomposition. The proof of the theorem is left as an exercise (Exercise 6.8),
and can also be found in any standard text on linear systems theory.

Theorem 6.4.3. The Kalman Canonical Decomposition Theorem. Given the
system (6.2.1) there exists a nonsingular coordinate transformation x = Tx

Section 6.5: CONTROLLER- AND OBSERVER-CANONICAL FORMS 169

such that
%es Ao A Az Au) [%e Bes
)Eco 0 Aco 0 A24 ico Bco
= = - - + , 6.4.3
X&5 0 0 Asm Asn| | X 0 ()
Xzo 0 0 0 Az Xzo 0
ic()

y=(0, C_‘co, 0, ééo))f(_:(j + Du,
X¢o
)E(_ZO
X5 = states which are controllable but not observable.
Xco = states which are both controllable and observable
Xz5 = States which are both uncontrollable and unobservable
Xzo = states which are uncontrollable but observable.
Moreover, the transfer function matrix from u to y is given by

G(s) = Ceo(sT — Aco) ' Beo + D.

Remark

e Itisinteresting to observe that the uncontrollable and/or unobservable parts
of the system do not appear in the description of the transfer function matrix.

6.5 CONTROLLER- AND OBSERVER-CANONICAL FORMS

An important property of a linear system is that controllability and observability
remain invariant under certain transformations. We will state the result for
controllability without proof. A similar result, of course, holds for observability.
Proof is left as an Exercise (6.9).

Theoreln 6.5.1. Let T be a nonsingular matrix sugh t~hat TAT ' = 1&, and
T B = B, then (A, B) is controllable if and only if (A, B) is controllable.

The question naturally arises if the matrix T can be chosen so that A and B
will have simple forms, from where conclusions about controllability or observ-
ability can be easily drawn. Two such forms, controller-canonical form (or
the controller-companion form) and the Jordan Canonical Form (JCF) are
well known in control text books (Luenberger 1979; Kailath 1980; Chen 1984;
Szidarovszky and Bahill 1991 etc.). Unfortunately, neither of these two forms,
in general, can be obtained in a numerically stable way, because, 7', not being
an orthogonal matrix in general, can be highly ill-conditioned.

The controller- and observer-canonical forms are, however, very valuable theo-
retical tools in establishing many theoretical results in control and systems theory

170 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

(e.g., the proof of the eigenvalue assignment (EVA) theorem by state feedback
(Theorem 10.4.1 in Chapter 10)). We just state these two forms here for later
uses as theoretical tools. First consider the single-input case.

Let (A, b) be controllable and let Cp be the controllability matrix.

Let s, be the last row of Cl\',ll. Then the matrix T defined by

Sn
SnA
T = . 6.5.1)
snAn-—l
is such that
0 1 0 0 8
0 1 0 .
A=TAT '= . | , b=Tbh=
—ar —az —aj —Qn 1
(6.5.2)

Similarly, it is possible to show that if (A, b) is controllable, then there exists a
nonsingular matrix P such that

—ap, —ap-1 --- —az —ai 1
1 0 .- 0 0 0

PAP'=| 0 1 ... 0o o |, Ph=|0 (6.5.3)
0 0 -~ 1 0 0

The forms (6.5.1) and (6.5.3) are, respectively, known as lower and upper
companion (or controller) canonical forms. By duality, the observer-canonical
forms (in lower and upper companion forms) can be defined. Thus, the pair (A, ¢)
given by

0 0 0 —a
1 0 0 —a

iz]o 1 0 -asl 7=(0,0.....0,1)
00 --- 1 —a,

is an upper observer-canonical form.
MATCONTROL note: The MATCONTROL function entrle can be used to find
a controller-canonical form.

Section 6.6: NUMERICAL DIFFICULTIES 17

The Luenberger Canonical Form

In the multi-input case, the controllable pair (A, B) can be reduced to the pair
(A, B), where A = TAT ™! is a block matrix, in which each diagonal block
matrix is a companion matrix of the form given in (6.5.2), and B is also a block
matrix with each block as a companion matrix of the form (6.5.2) having nonzero
entries only on the last row.

The number of diagonal blocks of A is equal to the rank of B. Such a form is
known as the Luenberger controller-canonical form. Similarly, by duality, the
Luenberger observer-canonical form can be written down.

Numerical instability: In general, like a controller-companion form, the
Luenberger canonical form also cannot be obtained in a numerically stable way.

6.6 NUMERICAL DIFFICULTIES WITH THEORETICAL
CRITERIA OF CONTROLLABILITY AND OBSERVABILITY

Each of the algebraic criterion of controllability (observability) described in
Section 6.2 (Section 6.3) suggests a test of controllability (observability). Unfor-
tunately, most of them do not lead to numerically viable tests as the follow-
ing discussions show. First, let’s look into the controllability criterion (ii) of
Theorem 6.2.1.

This criterion requires successive matrix multiplications and determination of
the rank of an n x nm matrix.

It is well known that matrix multiplications involving nonorthogonal matri-
ces can lead to a severe loss of accuracy (see Chapter 3). The process may
transform the problem to a more sensitive one. To illustrate this, consider the
following illuminating example from Paige (1981).

Example 6.6.1

27 10x10 1

The pair (A, B)isclearly controllable. The controllability matrix (B, AB, ..., A%B)
can be computed easily and stored accurately. Note that the (i, j)-th entry of this matrix
is 2(-i+DU =D This matrix has three smallest singular values 0.613 x 10712, 0.364 x
1072, and 0.712 x 107, Thus, on a computer with machine precision no smaller
than 10~!2, one will conclude that the numerical rank of this matrix is less than 10,
indicating that the system is uncontrollable. (Recall that matrix A is said to have
a numerical rank r if the computed singular values 6;,i = 1,...,n satisfy o7 >
0y > o+ >0, >8 > 6,41 > - > 0y, Where § is a tolerance) (Section 3.9.4).

172 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

Note that determining the rank of a matrix using the singular values is the most
effective way from a numerical viewpoint.

The criteria (iv)—(vi) in Theorem 6.2.1 are based on eigenvalues and eigenvectors
computations. We know that the eigenvalues and eigenvectors of certain matrices
can be very ill-conditioned and that the ill-conditioning of the computed eigenval-
ues will again lead to inaccuracies in computations. For example, by criteria (vi)
of controllability in Theorem 6.2.1, it is possible, when (A, B) is controllable, to
find a matrix K such that A + BK and A have disjoint spectra. Computationally,
it is indeed a difficult task to decide if two matrices have a common eigenvalue if
that eigenvalue is ill-conditioned. This can be seen from the following discussion.

Let A and § be the eigenvalues of A and A + BK, respectively. We know that a
computed eigenvalue A of A is an eigenvalue of the perturbed matrix A = A+ AA,
where ||AAll> < uljAllz. Similarly, a computed eigenvalue 5 of A+ BK is an
elgenvalue of A+ BK + AA’, where IIAA l2 < ullA + BK|». Thus, even if

= 8, A can be very different from A and 8 very different from 8, implying that A
and 8 are different.

Example 6.6.2. Consider the following example due to Paige (1981) where the
matrices A and B are taken as

A=Q"AQ, B=0"B
Here A is the well-known 20 x 20 Wilkinson bidiagonal matrix

20 20 0
19 20

B=(,1,...,1,07,

and Q is the Q-matrix of the QR factorization of a randomly generated 20 x 20
arbitrary matrix whose entries are uniform random numbers on (-1, 1).

Clearly, the pair (A, 1§), and therefore, the pair (A, B), are uncontrollable. (Note
that controllability or uncontrollability is preserved by nonsingular transformations
(Theorem 6.5.1)).

Now taking K as a 1 x 20 matrix with entries as random numbers uniformly dis-
tributed on (—1, 1), the eigenvalues A of A and wi of A+ BK were computed and
tabulated. They are displayed in the following table.

In this table, p(B, A — ;) denotes the ratio of the smallest to the largest singular
value of the matrix (B, A —)2,-1).

Section 6.7: A NUMERICALLY EFFECTIVE TEST OFCONTROLLABILITY

Eigenvalues X (A) Eigenvalues u;(A + BK) p(B, A — XD
-0.32985 &+ j1.06242 0.99999 + ;O 0.002
0.9219 £ j3.13716 —8.95872 £ j3.73260 0.004
3.00339 £+ j3.13716 —5.11682 + j9.54329 0.007
5.40114 &+ j6.17864 —0.75203 £ j14.148167 0.012
8.43769 £+ j7.24713 5.77659 + j15.58436 0.018
11.82747 + j7.47463 11.42828 + j14.28694 0.026
15.10917 + j6.90721 13.30227 £ j12.90197 0.032
18.06886 + j5.66313 18.59961 + j14.34739 0.040
20.49720 + j3.81950 23.94877 £ j11.80677 0.052
22.06287 + j1.38948 28.45618 £ j8.45907 0.064

173

The table shows that 5»,‘ are almost unrelated to u;. One will, then, erroneously
conclude that the pair (A, B) is controllable.

The underlying problem, of course, is the ill-conditioning of the eigenvalues of A.
Note that, because of ill-conditioning, the computed eigenvalues of A are different from
those of A, which, in theory, should have been the same because A and A are similar.

The entries of the third column of the table can be used to illustrate the difficulty
with the eigenvalue criterion (Criterion (v) of Theorem 6.2.1).

Since the pair (A, B) is uncontrollable, by the eigenvalue criterion of controllability,
rank(B, A —):,- I), for some i, should be less than 7; consequently, one of the entries
of the third column should be identically zero. But this is not the case; only there is
an indication that some “modes” are less controllable than the others.

To confirm the fact that ill-conditioning of the eigenvalues of A is indeed the cause

of such failure, rank (B, A — I), which corresponds to the exact eigenvalue 1 of A was
computed and seen to be

rank(B,A— 1) =5 x 1078,

Thus, this test would have done well if the exact eigenvalues of A were used in
place of the computed eigenvalues of A, which are complex.

6.7 A NUMERICALLY EFFECTIVE TEST OF
CONTROLLABILITY

A numerically effective test of controllability can be obtained through the reduc-
tion of the pair (A, B) to a block Hessenberg form using orthogonal similarity
transformation. The process constructs an orthogonal matrix P such that

PAPT = H, ablock upper Hessenberg matrix

Bl) 6.7.1)

PB:B:(O

174 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

The form (6.7.1) is called the controller-Hessenberg form of (A, B), and the
pair (H, B) is called the controller-Hessenberg pair of (A, B) (see Rosenbrock
1970). The reduction to this form can be done using Householder’s or Givens’
method. We describe the reduction here using Householder’s transformations. The
algorithmic procedure appears in Boley (1981), Van Dooren and Verhaegen (1985),
and Paige (1981), Patel (1981), Miminis (1981) etc. The algorithm is usually known
as the staircase algorithm.

Algorithm 6.7.1. Staircase Algorithm. Let Abenxnand Bbenxm (m < n).

Step 0. Triangularize the matrix B using the QR factorization with column
pivoting (Golub and Van Loan, 1996, pp. 248-250), that is, find an orthogonal
matrix Py and a permutation matrix E| such that

PiBE; = (If)l> ,

where B1 is an ny X m upper triangular matrix and n| = rank(B) = rank(B).
Step 1. Update A and B, that is, compute

M (D

HY H _

PAPT=H=| ' 12, B=P1B=(Bl> ET= <31>.
HY HY 0 0

where Hﬁ) isny x ny and Hz(;) is(n—ny) xn,n <n IfH2(:) =0, stop.
Step 2. Triangularize HZ(P using the QR factorization with column pivoting,
that is, find an orthogonal matrix Pyanda permutation matrix Ey such that

(%)
R H
Psz(i)Ez = < (2)1)

where HZ(T) isny X ny,np = rank(Hgll)) = rank(H;)), andny < nj.
Ifny + ny = n, stop.
Form

. A I 0
Py = diag (I, Py) = (g‘ 5)

where 1,, is a matrix consisting of the first ny rows and columns of the identity
matrix.
Compute
(1)] 2
Hy Hyj Hj

Hy=PHP =Y HY HY |,

@ L@
0 H32 fq 33

where Hz(? isny X ny and Hﬁ) is (n —ny —ny) x ny. Note that Hz(f) = Hz(’lk) E2T

Section 6.7: A NUMERICALLY EFFECTIVE TEST OFCONTROLLABILITY 175

Update P = P> P,.

If H3(§) = 0, stop. (Note that Hl(}) does not change.)

The matrix B remains unchanged.

Step 3. Triangularize H3(§) to obtain its rank. That is, find P and Ex such

that -
133H3(§)E3 = <H(3)2) .

Let ny = rank(H\3)) = rank(H\3); n3 < na.

If n1 + ny 4+ n3 = n, stop. Otherwise, compute P3, H3, and update P as
above. (Note that B remains unchanged.)

Step 4. Continue the process until for some integer k < n, the algorithm
produces

Hyy Hip His Hy;
Hy; Hy Hp Hyy,

H=|o . . s BE(%‘), 6.72)
0 -+ 0 Hii1 Hua

where, either Hy r_1 has full rank ny, signifying that the pair (A, B) is
controllable, or Hy x—1 is a zero matrix signifying that the pair (A, B) is
uncontrollable.

(Note that in the above expressions for H and B, the superscripts have
been dropped, for convenience. However, H>| stands for Hz(f), Hjz stands for
HS), etc. that is, Hy x—1 is established at step k).

It is easy to see that

(B,HB,H?B,...,H"'B) = P(B, AB, ..., A*"'B)
B

Ha1 B ...
= | H32Hp1 By

Hy k—1...H21 By

That is, it is block triangular matrix with By, Hy1 By, ..., Hyk—1, - .., Hu1 By
on the diagonal.

This implies that the matrix Hy x—1 is of full rank if the system is controllable
or is a zero matrix if the system is uncontrollable.

Theorem 6.7.1. Controller-Hessenberg Theorem. (i) Given the pair (A, B),
the orthogonal matrix P constructed by the above procedure is such that

176 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

PAPT = H and PB = B, where H and B are given by (6.7.2). (ii) If pair
(A, B) is controllable, then Hy y—1 has full rank. If it is uncontrollable, then
Hp 1 =0.

Proof. The proof of Theorem 6.7.1 follows from the above construction.
However, we will prove here part (ii) using (v) of Theorem 6.2.1.

Obviously, rank (B, A — Al) = n for all & if and only if rank (B, H—-Al)Y=n
for all A.

Now,

By Hu-—-rlp - Hyk

0 Hy Hy — Al - Hy
(B,H-2)=]|: 0 :

o o --- 0 Her—1 Hge — Al

If the system is controllable, then the matrix (B, H — AI) must have full rank
and thus, the matrix Hj x—1 has full rank. On the other hand, if the system is not
controllable, then the matrix (B, H — A1) cannot have full rank implying that
Hy k-1 must be a zero matrix. W

Notes

1. The matrix B is not affected throughout the whole process.

2. At each step of computation, the rank of a matrix has to be determined.
We have used QR factorization with column pivoting for this purpose.
However, the best way to do this is to use singular value decomposition
(SVD) of that matrix. (See Golub and Van Loan (1996) or Datta (1995)).

3. From the construction of the block Hessenberg pair (H, B), it follows that
as soon as we encounter a zero block on the subdiagonal of H or if the
matrix Bj does not have full rank, we stop, concluding that (A, B) is not
controllable.

Example 6.7.1. An Uncontrollable Pair

1 1 1 1 1
A=4{1 1 1], B=|1 1].
0 0 1 11

Section 6.7: A NUMERICALLY EFFECTIVE TEST OFCONTROLLABILITY

-0.5774 -0.5774 —-0.5774 10
Step0. Py = | 0.8165 —-0.4082 —-0.4082}, E1:(0 1>,
0 -0.7071 0.7071
—1.7321 —1.7321
P\BE| = 0 0
0 0

23333 0.2357 —0.4082
Step 1. Hy = PLAPT = | —04714 0.1667 —0.2887
0.8165 —0.2887 0.5000

’

—1.7321 —-1.7321

B= 0 0
0 0

(1) —-0.4714

Step 2. ;) = (0.8165

Pr=1{ 08660 0.5000 =1 Py = diag(Iy, Pp)
23333 —04714 0
Hy= PH P =| 09428 0.6667 0
0 0 0

- (—0.5000 0.8660)
. E>

Since Hg) = 0, we stop.
The controller-Hessenberg form is given by (H = Ha, B)

0 0 0

2.3333 —-04714 O _ —-1.7321 —-1.7321
H=109428 0.6067 0], B = 0 0 .

0 0

Clearly the pair (A, B) is not controllable.

Example 6.7.2. A Controllable Pair

0.7665 0.1665 0.9047 0.4540 0.5007
0.4777 0.4865 0.5045 0.2661 0.3841
A=]0.2378 0.8977 05163 0.0907 0.2771],
0.2749 0.9092 0.3190 0.9478 0.9138
0.3593 0.0606 0.9866 0.0737 0.5297

0.4644 0.8278
0.9410 0.1254
B =]0.0501 0.0159
0.7615 0.6885
0.7702 0.8682

177

178 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

Step 0.

—0.3078 -0.6236 —0.0332 -0.5047 -0.5104

0.5907 -—0.7058 —0.0263 0.1485 0.3610 10
Py =} -0.0080 —0.0451 0.9989 —0.0047 -—-0.00041, El:(o 1)
—-0.4561 -—0.2970 -0.0132 0.8208 —0.1728
-0.5901 -0.1510 -0.0123 —-0.2225 0.7611
—1.5089 —1.1241
0 0.8157
PiBE; = 0 0
0 0
0 0
ny =rank(B) =2
Step 1.
1.8549 —0.3935 —1.2228 0.1796 —0.0198
—0.3467 0.3934 0.5690 0.0593 0.0470
H1=P1AP1T: —0.7857 —0.4020 0.4421 —-0.3453 —0.0848
—0.5876 —0.3573 —-0.4998 0.3311 0.2607
0.6325 —0.0777 0.0837 —0.1295 0.2253
1) (1
_ Hl(l le))
Tl g)
Hy" Hy
—1.5089 —1.1241
i 0 0.8157
B = 0 0
0 0
0 0
Step 2.
. —-0.6731 —-0.5034 0.5418 1 0
Py =1{-0.3545 -0.4233 -0.8337}, E2=(0 1).
0.6490 —0.7533 0.1064

(O 11674 0.4084
BHY = ()= o o03sss]).
0 0 0

ny = rank(Hz(%)) = rank(Hz(f)) =2.

Section 6.7: A NUMERICALLY EFFECTIVE TEST OFCONTROLLABILITY

)

H, = PH, P}

S

ny = rank(HS(?) =1.

Sinceny +ny+n3 =242+ 1=235, we stop.

179

1 0 0 0 0
0 1 0 0 0
0 0 —-06731 -0.5034 0.5418 |,
0 0 —03545 -0.4233 —-0.8337
0 0 0.6490 -0.7533 0.1064
-0.3078 -0.6236 —0.0332 —-0.5047 -0.5104
0.5907 —0.7058 —0.0263 0.1485 0.3610
—0.0847 0.0980 —0.6724 —-0.5306 0.4996
0.6879 0.2676 —0.3383 —0.1602 —0.5613
0.2756 0.1784 0.6570 —0.6450 0.2109
1.8549 03935 07219 03740 —-0.9310
—0.3467 0.3934 —0.3874 -0.2660 0.3297
1.1674 0.4084 0.0286 —0.0378 0.0080
0 0.3585 —0.1807 0.1907 —0.1062
0 0 —0.3304 0.1575 0.7792
Hy 2 nd
Wy u3 g
0 WY Hg
—1.5089 —1.1242
0 0.8157
0 0
0 0
0 0

The controller-Hessenberg form (A, B) is given by (H = H», B).
The pair (A, B) is controllable, because Hz(f) and Hég) have full rank.

The next example (Example 6.7.3) shows the uses of non-identity premutation
matrices in QR factorization with column pivoting.

Example 6.7.3.

0.7665
0.4777
0.2378
0.2749
0.3593

0.4644
0.9410
0.0501
0.7615
0.7702

0.1665
0.4865
0.8977
0.9092
0.0606

0.8278
0.1254
1.0159
0.6885
0.8682

0.9047
0.5045
0.5163
0.3190
0.9866

0.4540
0.2661
0.0907
0.9478
0.0737

0.5007
0.3841
02771 |,
0.9138
0.5297

180 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

Step 0.
—0.4811 -0.0729 —-0.5904 —0.4001 —0.5046
0.0213 -0.7765 0.4917 —0.3183 -0.2312

P =1]1-06160 04529 0.6231 —0.0783 —0.1450],
—0.3829 —0.3429 -0.0646 0.8375 —0.1739
—0.4919 -0.2627 -0.1313 -0.1764 0.8004
01
E| = <1 0) .
Step 1.

—1.0149 —-1.7207
—1.1166 —0.0000
B =P B=|-0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

n1=2

2.1262 0.5717 —-0.6203 0.3595 0.1402
0.9516 0.2348 —0.0160 —0.0300 —0.0472
H = P1AP1T =10.2778 —0.4685 0.3036 —-0.2619 —0.0998
0.0115 -0.8294 0.0243 0.3571 0.2642
0.3480 0.5377 0.0873 —0.0673 0.2250

)

Step 2.

) —0.4283 —0.7582 0.4916
P, ={ 0.6685 0.1002 0.7370)},
—0.6080 0.6442 0.4640

ny =2,
1.0000 0 0 0 0
0 1.0000 0 0 0
P = 0 0 —0.4283 —0.7582 0.49161},
0 0 0.6685 0.1002 0.7370
0 0 —0.6080 0.6442 0.4640

P=nhPh,

—0.4811 -0.0729 —-0.5904 -0.4001 —0.5046
0.0213 -0.7765 04917 —-0.3183 —-0.2312
P=] 03124 -0.0631 -—-0.2824 —0.6881 0.5875
—0.8127 0.0749 03133 —0.0985 0.4755
—0.1004 -0.6182 —0.4813 0.5053 0.3475

»

Section 6.7: A NUMERICALLY EFFECTIVE TEST OFCONTROLLABILITY 181

H, = P,H P},
2.1262 0.5717 0.0619 —0.2753 0.6738
0.9516 0.2348 0.0064 —0.0485 —0.0315
H, =] 0.0434 1.0938 0.1675 —0.1244 —-0.0811
0.4433 0.0000 0.0895 0.2539 —-0.2275
—0.0000 -0.0000 -0.0517 0.1971 0.4644

—-1.0149 —1.7207

—1.1166 —0.0000

—0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

]

[>T
il

Flop-count: Testing controllability using the constructive proof of Theo-
rem 6.7.1 requires roughly 613 4+ 2n?m flops. The count includes the construction
of the transforming matrix P (see Van Dooren and Verhaegen 1985).

Round-off error analysis and stability: The procedure is numerically stable. It
can be shown that the computed matrices H and B are such that H = H + AH
and B = B + AB, where |AH|lr < cul|H|lr and |AB|r < cullllB| for
some small constant c. Thus, with the computed pair (H , 13’), we will compute the
controllability of a system determined by the pair of matrices which are close to
H and B. Since the controllability of the pair (H, B) is the same as that of the pair
(A, B), this can be considered as a backward stable method for finding the
controllability of the pair (A, B).

MATCONTROL note: Algorithm 6.7.1 has been implemented in MATCON-
TROL function cntrihs.

The function cntrlhst gives block Hessenberg form with triangular subdiagonal
blocks.

Controllability Index and Controller-Hessenberg Form
Let B = (b1, b2, . .., bp). Then the controllability matrix Cy can be written as
Cm=(b1,b2, ..., by Aby, Aba, ..., Aby; ...; A by, A" b, o AP Dy,

Suppose that the linearly independent columns of the matrix Cyv have been
obtained in order from left to right. Reorder these independent columns to obtain:
Cig = (b1, Aby, ..., A% by by, Aba, ..., AP by s by,

Abpy, ..., A¥"=1by).
The integers i1, ..., im are called the controllability indices associated with

by, b, ..., by, respectively if u; > --- > u,,. Note that y&; is the number of
independent columns associated with b;.

182 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

Furthermore, 4 = max{(uy, ..., iby) is called the controllability index. If
u1 + w2 + -+ + wm = n, then the system is controllable.

It is clear that determining the controllability index is a delicate problem from
the numerical view point because it is basically a rank-determination problem.

Fortunately, the block-Hessenberg pair (H, B) of (A, B) not only determines if
the pair (A, B) is controllable, but it also gives us the controllability index. In the
block-Hessenberg pair (H, B) in (6.7.2), k is the controlilability index. Thus, for
Example 6.7.2, the controllability index is 3.

Controllability Test in the Single-Input Case

In the single-input case, the controller-Hessenberg form of (A, b) becomes:

hu hip - hin
h21 h22 . e) hzn b()l
PAPT=H=]|0 h3y "~ - hyul, Pb=b=
A 0
0 0 hn,n—l hnn
(6.7.3)

Theorem 6.7.2. (A, b) is controllable if the controller-Hessenberg pair
(H, b) is such that H is an unreduced upper Hessenberg, that is, h; -1 #
0,i =2,...,n, and by # 0, otherwise, it is uncontrollable.

We will give an independent proof of this test using the controllability cri-
terion (ii) of Theorem 6.2.1.

Proof. Observe that Rank(b, Ab, ..., A" 'b) = rank(Pb, PAPTPb, ...,
PA" 'PTPb) = rank(b, Hb, ..., H" 1b).

The last matrix is a lower triangular matrix with by, hi2161, h21h32b1, ...,
hai, ..., hyn—1b; as the diagonal entries.

Since hjj—y # 0, i = 2,....,n and by # 0, it follows that
rank(b, Ab, ..., A" \b) = n.

On the other hand, if any of 4; ;| or by is zero, the matrix (b, Ab, ..., A 1p)
is rank deficient, and therefore, the system is uncontroilable. W

Example 6.7.4 (Example 6.6.2 Revisited). Superiority of the algorithm over the other
theoretical criteria.

To demonstrate the superiority of the test of controllability given by Theorem
6.7.2 over some of the theoretical criteria that we considered in the last section,
Paige applied the controller-Hessenberg test to the same ill-conditioned problem
as in Example 6.6.2. The computations gave by = 4.35887, hy1 = 8.299699,

Section 6.9: DISTANCE TO AN UNCONTROLLABLE SYSTEM 183

17 < flhii—1ll < 22,i =3,4,...,9, and hyg 19 = 0.0000027. Since hy,19 is
computationally zero in a single-precision computation, the system is uncontrol-
lable, according to the test based on Theorem 6.7.2.

6.8 A NUMERICALLY EFFECTIVE TEST OF OBSERVABILITY

Analogous to the procedure of obtaining the form (H, B) from (A, B), the pair
(A, C) can be transformed to (H, C), where

Hy1 Hpip e Hy

Hyy . :
H=o040"=|" = | (68.1)

0 Hix—1 Hi
C=coT=,0C). (6.8.2)

The pair (A, C) is observable if H is block unreduced (i.e., all the
subdiagonal blocks have full rank) and the matrix C; has full rank.

The pair (H, C) is said to be an observer-Hessenberg pair.

Flop-count: The construction of the observer-Hessenberg form this way requires
roughly 6n3 + 2n?r flops.

Single-output case: In the single-output case, that is, when C is a row vec-
tor, the pair (A, C) is observable if H is an upper Hessenberg matrix and
C=0,...,0,c1);c1 #0.

MATCONTROL note: MATCONTROL function obserhs can be used to obtain
the reduction (6.8.1).

6.9 DISTANCE TO AN UNCONTROLLABLE SYSTEM

The concepts of controllability and observability are generic ones. Since determin-
ing if a system is controllable depends upon whether or not a certain matrix (or
matrices) has full rank, it is immediately obvious from our discussion on numerical
rank of a matrix in Chapter 4 that any uncontrollable system is arbitrary close to
a controllable system. To illustrate this, let us consider the following well-known
example (Eising 1984):
-1 -1 - - - - =1 -
1 . -1 1
) S -1 0

A= o 1. B=|]. (6.9.1)

184 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

The pair (A, b) is obviously controllable. However, it is easily verified that if we
add (—21_", —ol-n —21"”) to the last row of (B, A), we obtain an uncon-
trollable system. Clearly, when n is large, the perturbation 2!~ is small, implying
that the original controllable system (A, B) is close to an uncontrollable system.
Thus, what is important in practice is knowledge of how close a controllable
system is to an uncontrollable one rather than determining if a system is con-
trollable or not. To this end, we introduce, following Paige (1981), a measure of
the distance to uncontrollability, denoted by (A, B):

W(A, B) = min{||AA, ABj|> such that the system
defined by (A + AA, B + AB) is uncontrollable}.

Here AA and AB are allowable perturbations over a field F. If the field F is R,
then we will use the symbol ug (A, B) to distinguish it from (A, B).

The quantity (A, B) gives us a measure of the distance of a controllable pair
(A, B) to the nearest uncontrollable pair. If this distance is small, then the orig-
inal controllable system is close to an uncontrollable system. If this distance
is large, then the system is far from an uncontrollable system.

Here is a well-known result on (A, B). See Miminis (1981), Eising (1984)
and Kenney and Laub (1988). Unless otherwise stated, the perturbations are
assumed to be over the field of complex numbers, that is, F = C.

Theorem 6.9.1. Singular Value Characterization to Distance to Uncontrol-
lability. £(A, B) = mino,(sI — A, B), where 6,(sI — A, B) is the smallest
singular value of (sI — A, B) and s runs over all complex numbers.

Proof. Suppose that (A + AA, B + AB) is an uncontrollable pair. Then
according to (v) of Theorem 6.2.1, we have

rank(A 4+ AA —AI, B+ AB) <n, forsomei € C.

Since the smallest perturbation that can make rank(A — AI, B) less than n is
on(A — LI, B) (see Section 3.9.3 of Chapter 3), we have

on(A— Al B) < ||AA, AB ||z
and the equality holds if
(AA, AB) = —ouunvy,

where o, is the smallest singular value of (A — AI, B), and u, and v, are the
corresponding left and right singular vectors. Taking the minimum over all A € C,
and using criterion (v) of Theorem 6.2.1, we obtain the result. W

Section 6.9: DISTANCE TO AN UNCONTROLLABLE SYSTEM 185

Algorithms for Computing 1.(A, B)

Based on Theorem 6.9.1, several algorithms (Miminis 1981; Eising 1984; Wicks
and De Carlo 1991) have been developed in the last few years to compute u(A, B)
and ur(A, B).

We will briefly describe here a Newton algorithm due to Elsner and He (1991),
and an algorithm due to Wicks and DeCarlo (1991).

6.9.1 Newton’s and the Bisection Methods for Computing the Distance to
Uncontrollability

Let’sdenote o, [s/ — A, B] by o (s). The problem of finding (A, B) is then clearly
the problem of minimizing o (s) over the complex plane.

To this end, define
£5) = v5(5) (”"O(s)) ,

where 1, (s)and v, (s) are the normalized nth columns of U and V in the SVD of
(A —sl, B),thatis, (A —sI, B) = USVT. The function f(s) plays an important
role. The first and second derivatives of o(s) = o(x + jy) = o(x,y) can be
calculated using this SVD. It can be shown that if s = x + jy, then

do do(x+jy)

do dolx+jy)
ax ax N -

—Ref(x+jy), and — = ——F"— = -Im f(x+Jy).
dy dy

Knowing the first derivatives, the second derivatives can be easily calculated.

Hence the zeros of f{s) are the critical points of the function o (s).

Thus, some well-established root-finding methods, such as Newton’s method,
or the Bisection method can be used to compute these critical points.

Aninteresting observation about the critical points is: The critical points satisfy
s = u}(s)Au,(s), and hence they lie in the field of values of A.

The result follows from the fact that o (s) f(s) = u};(s)(A — sI)u,(s), since
(A — 51, B)*un(s) = o(s)v,(s). (For the definition of field of values, see Horn
and Johnson (1985).)

To decide which critical points are local minima, one can use the following
well-known criterion.

A critical point s = x. 4 jy. of o(s) is a local minimum of ¢ (x, y) if

30\ (0% 20\ 30
— | |l—) - >0 and — > 0.
ax2 J \ 9y? dxdy dx2
Another sufficient condition is: If 6,1 (A —s1I, B) > «/50,, (A —sl, B), where
5 = X¢ + jye is a critical point, then (x., y.) is a local minimum point of o (x,).

Newton’s method needs a starting approximation. The local minima of o (x, y),
generally, are simple. Since all critical points s satisfy u; Au, = s, all minimum

186 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

points s = x + jy will lie in the field of values of A, and hence

A+ AT A+ AT A-— AT
Am(E)sxsxm< 2) and Am(:)5y

2j
A—-AT
< Amax X ,

where Ayax(C) and Amin(C) denote the largest and smallest eigenvalues of the
matrix C. Furthermore, since 6,(A — sI, B) = o, (A — 51, B), the search for all
local minimum points can be restricted t0 0 < y < Amax ((A — AT)/2).

Based on the above discussion, we now state Newton’s algorithms for finding

u(A, B). Denote xi + jyx by (xk>~
Yk

Algorithm 6.9.1. Newrton’s Algorithm For Distance to Uncontrollability
Inputs. The matrices A and B.
Output. A local minimum of o (s).
Step 0. Choose (;g) using the above criterion.
Step 1. Fork =0, 1,2, ... do until convergence

(xk+l) — (xk) — (pkl)
Yi+1 Vi Pr)’

3 af\ !
Re a—f Re a—f Re f(x.y)
Pk X y ejfx,y
where = ,
(pkz) of of (Im fx, y))
Im — Im —
dax ay
choosing Oy such that o(xx — Ok pr1, Y& — OkpPr2) = {nien 1a(xk — Bpi1,
—1<6<

Yk — Opr2). (see Elsner and He (1991) for formulas for corﬁpﬁting af/ox and
af/9y).
End.
Step 2. If sc = (xf) is the final point upon conclusion of Step 2, then
Yy
compute the smallest singular value o, of the matrix (A — scl, B), and take o,
as the local minimum of o (s).
Choosing Oy 6 can be chosen using Newton’s algorithm, again as follows:
Define g(6) = pxiRe f(6) + prolmf(8). Then g'(8) = puRe f'(6) +
pizIm f'(6).

Newton’s Algorithm for Computing 6y
Step 1. Choose 6y = 1.

Section 6.9: DISTANCE TO AN UNCONTROLLABLE SYSTEM 187

Step 2. For j = 1,2, ... do until convergence

8(9))
61 =0 — 1525
R CR)
where 1); is chosen such that

o(xk — 011k, Yk —Ojx1pr2) < 0(xk — 6 pr1, Yk — 0 pr2)
End.

Remark

e Numerical experiments suggest that it is necessary to compute 6;s only a
few times to get a good initial point and then as soon as it becomes close 1,
it can be set to 1. Newton’s method with 8, = 1 converges quadratically.

Example 6.9.1 Elsner and He 1991. Let

11 1 1
A=l01 3 5], B=1]01].
0 -1 -1 0
A+ AT A+ AT
Amax(+2):3.9925, Am(z):—1.85133,

A—AT A—AT
Amax . = 3-0745,)xmin —] = —3.0745.
2j 2]

Thus all zero points lie in the rectangular region given by —1.8513 < x <
3.9925, —3.0745 < y < 3.0745. Choose xg = 1.5 and yg = 1.

Then, so = 1.5+ j.

6o = 0.09935, 6, = 0.5641, 6; = 1.0012. Starting frorr})l;ere, 6, was setto 1.

The method converged in five steps. sc = (}}) = Qo B) = 0.93708 +
0.998571;.

The minimum singular value of (A — sc/, B) = 0.0392.

Thus, (A, B) = 0.039238.

MATILAB note: MATLAB codes for Algorithm 6.9.1 are available from the
authors of the paper.

The Bisection Method (Real Case)

In the real case, the following bisection method can also be used to compute the
zeros of f(s).
Step 1. Find an interval [a, b] such that f(a) f(b) < O.
Step 2.
2.1. Compute ¢ = (a + b)/2.

188 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

2.2.1If f(c)f(b) < 0, then set a = ¢ and return to Step 2.1.
If f(a)f(c) <0, then set b = ¢ and return to Step 2.1.
Step 3. Repeat Step 2 until ¢ is an acceptable zero point of f(s).
Note: For Example 6.9.1, f(s) has only one real zero s = 1.027337, and
ur(A, B) =0.1725.

6.9.2 The Wicks—DeCarlo Method for Distance to Uncontrollability

Newton’s algorithm, described in Section 6.9.1 is based on minimization of
on(sI — A, B) over all complex numbers s. It requires an SVD computation at
each iteration.

In this section, we state an algorithm due to Wicks and DeCarlo (1991). The
algorithm is also iterative in nature but “requires only two QR factorizations at
each iteration without the need for searching or using a general minimization
algorithm.”

The algorithm is based on the following observation:

w(A, B) = m(iél [[(* AT — uu®)u*Bl|, (6.9.2)
ueCr

subject to u*u = 1. Based on this observation, they developed three algorithms
for computing ur(A, B) and (A, B).

We state here why one of the algorithms (Algorithm II in Wicks and DeCarlo
(1991)) is used for computing (A, B).

Definition 6.9.1. Let the distance measure d\(A, B) be defined by

[di(A, B)? = ||[e:(A(I — enel) B)III
n-1 m
= lanlP+) Ibyl
j:l j=1

Using the above notation, it has been shown in Wicks and DeCarlo (1991) that

“(A, By= min d(UAU,U*B).
=i
The algorithm proposed by them constructs a sequence of unitary matrices
Uy, Uy, ..., such that

1. Agy1 = Uf AUy, Bry1 = UPB

2. di(Agy 1, Brr1) < di(Ag, By)

3. klim di (A, By) is a local minimum of (6.9.2).
-0

Section 6.9: DISTANCE TO AN UNCONTROLLABLE SYSTEM 189

Algorithm 6.9.2. An Algorithm for Computing (A, B)

Inputs. The matrices A and B.
Output. 4 (A, B).
Step 0.Set Ay = A, B =B.

Step 1. Fork = 1,2, ... until convergence.
1.1. Form My = (Ay — (apn)x ! By).
1.2. Factor My = L Vi, where Ly is lower triangular and Vy, is unitary.

1.3. Find the QR factorization of Ly = U} Ry.

14, Set Ay = UZAkUk, Bry = U:Bk.
1.5. If d\ (Ag+1, Bry1) = d1(Ag, By), stop.

End.

Proof. The proof amounts to showing that d1 (A, Bx) > |runl, where

i

Ry

ra2

and as such |, | = di (U A Uy, U By).

Fin
2n

Vnn

For details, the readers are referred to Wicks and DeCarlo (1991).

Example 6.9.2.

0.950
0.231
0.607
0.486

0.9350
0.9170
0.4100
0.8940

0.891
0.762
0.456
0.019

0.0580
0.3530
0.8130
0.0100

0.821
0.445
0.615
0.792

0.922
0.738
0.176
0.406

0.1390
0.2030
0.1990
0.6040

Let the tolerance for stopping the iteration be: Tol = 0.00001.

Define uy = d1(Ag, By).

190 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

The algorithm produces the following converging sequence of pi:

Wk k Kk

1.42406916966838 10 0.41450782001833
0.80536738314449 11 0.41450781529413
0.74734006994998 12 0.41450781480559
0.52693889988172 13 0.41450781475487
0.42241562062172 14 0.41450781474959
0.41511102322896 15 0.41450781474904
0.41456112538077 16 0.41450781474899
0.41451290008455 17 0.41450781474898
0.41450831981698 18 0.41450781474898
0.41450786602577 19 0.41450781474898

O XTI N BN —=O Eal

After 19 iterations the algorithm returns u = 0.41450781474898.

MATCONTROL note: Algorithm 6.9.2 has been implemented in MATCONTROL
function discntrl.

6.9.3 A Global Minimum Search Algorithm

The algorithms by Elsner and He (1991) and Wicks and DeCarlo (1991) are guar-
anteed only to converge to alocal minimum rather than a global minimum. A global
minimum search aigorithm was given by Gao and Neumann (1993). Their algo-
rithm is based on the observation that if rank(B) < n, then the minimization
problem can be transformed to a minimization problem in the bounded region
{(x,2)|x < | All2, |z| < |Ali2} in the two-dimensional real plane.

The algorithm then progressively partitions this region into simplexes and finds
lower and upper bounds for ;£ (A, B) by determining if the vertices (xx, 7x) satisfy
zk > Min Omin(A — (xk + j0)1, B).

yeR
These bounds are close to each other if (A, B) is small. “If u(A, B) is not small,
then the algorithm produces a lower bound which is not small, thus leading us 1o
a safe conclusion that (A, B) is not controllable.”
For details of the algorithm, see Gao and Neumann (1993). See also
Exercise 6.26.

6.10 DISTANCE TO UNCONTROLLABILITY AND THE
SINGULAR VALUES OF THE CONTROLLABILITY MATRIX

Since the rank of the controllability matrix Cyv determines whether a system is
controllable or not, and the most numerically effective way to determine the rank

Section 6.10: UNCONTROLLABILITY AND CONTROLLABILITY MATRIX 191

of a matrix is via the singular values of the matrix, it is natural to wonder, what
roles do the singular values of the controllability matrix play in deciding if a given
controllable system is near an uncontrollable system. (Note that Theorem 6.9.1
and the associated algorithm for computing ©(A, B) use the singular values of
(A—sl,B)).

The following result due to Boley and Lu (1986) sheds some light in that
direction. We state the result without proof. Proof can be found in Boley and
Lu (1986).

Theorem 6.10.1. Let (A, B) be a controllable pair. Then,

C
w(A, B) < ugr(A, B) < (1 + ” ””)on,

On—1

where o1 > 03 > --- > 0,_1 > 0y, are the singular values of the controllability
matrix Cqy = (B, AB, ..., A"’IB) and Cp is a companion matrix for A.

Example 6.10.1. We consider Example 6.9.1 again.
The singular values of the controllability matrix are 2.2221, 0.3971, 0.0227.
The companion matrix C), is calculated as follows:

x1 = (1,0,0)T, x = Ax; = (1,0.1,0)T, x3 = Axy = (1.1,0.4, —0.)T.

Then the matrix X = (x1, x2, x3) is such that

00 2
X1'AX=Cp,=|1 0 -39
01 3
According to Theorem 6.10.1, we then have
(A, B) < ug(A,B) < 1+5'3919 0.02227 = 0.3309
5 —— | X U. = U. .
HAE B0 = HR = 0.3971

Remark

o The above theorem can be used to predict the order of perturbations needed
to transform a controllable system to an uncontrollable system. It is the
largest gap between the consecutive singular values. (However, note that,
in general, the singular values of the controllability matrix cannot be
used directly to make a prediction of how close the system is to an
uncontrollable system.)

In other words, it is not true that one can obtain a nearly uncontrollable system
by applying perturbations AA, A B, with norm bounded by the smallest nonzero
singular value of the controllability matrix.

192 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

6.11 SOME SELECTED SOFTWARE

6.11.1 MATLAB Control System Toolbox

canon—State-space canonical forms.

ctrb, obsv—Controllability and observability matrices.
gram—Controllability and observability gramians.
ctrbf—Controllability staircase form.
obsvf—observability staircase form.

6.11.2 MATCONTROL

CNTRLHS—Finding the controller-Hessenberg form.
CNTRLHST—Finding the Controller-Hessenberg form with triangular

subdiagonal blocks.

OBSERHS—Finding the observer-Hessenberg form.
CNTRLC—Find the controller-canonical form (Lower Companion).
DISCNTRL—Distance to controllability using the Wicks—DeCarlo algorithm.

6.11.3 CSP-ANM

e Reduction to controller-Hessenberg and observer-Hessenberg forms

Block controller-Hessenberg forms are computed by controller-
HessenbergForm [system] and LowercontrollerHessen-
bergForm [system].
Block observer-Hessenberg forms are computed by Observer-
HegsenbergForm [system] and UpperObserverHessen-
bergForm [system].

e Controllability and observability tests

Tests of controllability and observability using block controller-
Hessenberg and block observer-Hessenberg forms are performed via
Controllable [system, ControllabilityTest — Full-
RankcontrollerHessenbergBlocks] and Observable
[system, ObservabilityTest — FullRankObserver-
HessenbergBlocks].

Tests of controllability and observability of a stable system via posi-
tive definiteness of Gramians are performed via Controllable
[system, ControllabilityTest — PositiveDiagonal-
CholeskyFactorControllabilityGramian] and
Observable [system, ObservabilityTest — Positive-
DiagonalCholeskyFactorObservabilityGramian].

Section 6.12: SUMMARY AND REVIEW 193

6.11.4 SLICOT

Canonical and quasi canonical forms:

ABO1MD-—Orthogonal controllability form for single-input system

ABOIND—Orthogonal controllability staircase form for multi-input system

ABO1OD—Staircase form for multi-input system using orthogonal
transformations

TBO1MD—Upper/lower controller-Hessenberg form

TBO1ND—Upper/lower observer-Hessenberg form

TBO1PD—Minimal, controllable or observable block Hessenberg realization

TBO1UD—Controllable block Hessenberg realization for a state-space
representation

TB01ZD—Controllable realization for single-input systems

6.11.5 MATRIXy

Purpose: Obtain controllable part of a dynamic system.
Syntax: [SC, NSC, T]= CNTRLABLE (S, NS, TOL)

Purpose: Compute observable part of a system.
Syntax: [SOBS, NSOBS, T|= OBSERVABLE (S, NS, TOL)

Purpose: Staircase form of a system matrix.
Syntax: [SST, T, NCO]= STAIR (S, NS, TOL)

6.12 SUMMARY AND REVIEW
Algebraic Criteria of Controllability and Observability

Controllability and observability are two most fundamental concepts in control
theory. The algebraic criteria of controllability and observability are summarized
in Theorems 6.2.1 and 6.3.1, respectively.

Unfortunately, these algebraic criteria very often do not yield numerically viable
tests for controllability and observability. The numerical difficulties with these cri-
teria as practical tests of controllability are discussed and illustrated in Section 6.6.
The pair (A, B) in Example 6.6.1 is a controllable pair; however, it is shown that
the Example 6.6.1 is a controllable pair; however, it is shown that criterion (ii) of
Theorem 6.2.1 leads to an erroneous conclusion due to a computationally small
singular value of the controllability matrix. Similarly, in Example 6.6.2, itis shown
how an obviously uncontrollable pair can be taken as a controllable pair by using
the eigenvalue criterion of controllability (Criterion (v) of Theorem 6.2.1) as a
numerical test, due to the ill-conditioning of the eigenvalues of the matrix A.

194 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

Numerically Effective Tests of Controllability and Observability

Computationally viable tests of controllability and observability are given in Sec-
tions 6.7 and 6.8. These tests are based on the reductions of the pairs (A, B) and
(A, C), respectively, to controller-Hessenberg and observer-Hessenberg forms.
These forms can be obtained by using orthogonal transformations and the tests can
be shown to be numerically stable.

Indeed, when controller-Hessenberg test is applied to Example 6.6.2, it was
concluded correctly that, in spite of the ill-conditioning of the eigenvalues of A,
the pair (A, B) is uncontrollable.

Distance to Uncontrollability

Since determining the rank of a matrix is numerically a delicate problem and the
problem is sensitive to small perturbations, in practice, it is more important to
find when a controllable system is close to an uncontrollable system. To this
end, a practical measure of the distance to uncontrollability, denoted by (A, B),
is introduced in Section 6.9: £(A, B) = min{||AA, A B]||, such that the pair (A +
AA, B+ AB) is controllable.

A well-known characterization of (A, B) is given in Theorem 6.9.1. This
theorem states: (A, B) = minao,(s/—A, B), where g, (sI — A, B) is the smallest
singular value of the matrix (s/ — A, B) and s runs over all complex numbers.

Two algorithms (Algorithms 6.9.1 and 6.9.2), have been described to compute
(A, B).

6.13 CHAPTER NOTES AND FURTHER READING

Controllability and observability are two most basic concepts in control theory.
The results related to controllability and observability can be found in any standard
book on linear systems (e.g., Kalman ez al. 1969; Brockett 1970; Rosenbrock 1970;
Luenberger 1979; Kailath 1980; Chen 1984; DeCarlo 1989; Brogan 1991; etc.).

For details on the staircase algorithms for finding the controller-Hessenberg
and observer-Hessenberg forms, see Boley (1981), Paige (1981), Van Dooren and
Verhaegen (1985), etc. For computation of the Kalman decomposition, see Boley
(1980, 1991), etc. For more on the concept of the distance to uncontrollability and
related algorithms, see Boley (1987), Boley and Lu (1986), Eising (1984), Wicks
and DeCarlo (1991), Elsner and He (1991), Paige (1981), Miminis (1981), Kenney
and Laub (1988), and Gao and Neumann (1993). For a test of controllability via
real Schur form, see Varga (1979).

Exercises

6.1 Prove that (A, B) is controllable if and only if for a constant matrix F, the matrix
(A + BF, B) is controllable, that is, the controllability of a system does not change
under state feedback. (The concept of state feedback is defined in Chapter 10.)

6.2

6.3

6.4

6.5

6.6
6.7
6.8
6.9

6.10

6.11

6.12

6.13

6.14

Section 6.13: CHAPTER NOTES AND FURTHER READING 195

Construct an example to show that the observability of a system may change under
state feedback.

A matrix A is called a cyclic matrix if in the JCF of A, there is only one Jordan box
associated with each distinct eigenvalue.

Let A be a cyclic matrix and let the pair (A, B) be controllable. Then prove that for
almost all vectors v, the pair (A, Bv) is controllable.

Give a 2 x 2 example to show that the cyclicity assumption is essential for the result
of Problem 6.3 to hold.

Show that (A4, ¢) is observable if and only if there exists a vector k such that

C
() =)
is observable.

Prove the parts (i), (ii), (iv)—(vi) of Theorem 6.3.1.

Prove Theorem 6.4.2.

Using Theorems 6.4.1 and 6.4.2, give a proof of Theorem 6.4.3 (The Kalman

Canonical Decomposition Theorem).

Prove that the change of variable x = Tx, where T is nonsingular, preserves the

controllability and observability of the system (A, B, C).

Work out an algorithm to compute the nonsingular transforming matrix that trans-

forms the pair (A, b) to the upper companion form. When can the matrix transforming

T be highly ill-conditioned? Construct a numerical example to support your

statement.

Apply the test based on the eigenvalue criterion of controllability to Example 6.6.2

and show that this test will do better than the one based on the criterion (ii) of

Theorem 6.2.1.

Applying the staircase algorithm to the pair (A, b) in Example 6.6.2, show that the

pair (A, b) is uncontrollable.

If the controller-Hessenberg pair (H, B) of the controllable system (A, B) is such

that the subdiagonal blocks of H are nearly rank-deficient, then the system may be

very near to an uncontrollable system.

(a) Construct examples both in the single- and multi-input cases in support of the
above statement.

(b) Construct another example to show that the converse is not necessarily true,
that is, even if the subdiagonal blocks of H have robust ranks, the system may
be close to an uncontrollable system.

Show that to check the controllability for the pair (A, B), where

1
A=diag1,27!,...,21"" and B=| .|,

the eigenvalue-criterion for controllability (the PBH criterion) will do better than the
criterion (ii) of Theorem 6.2.1.

196 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

6.15

6.16
6.17
6.18

6.19

6.20

6.21
6.22

6.23
6.24

6.25

6.26

Let (H = (H;j), B)bethe controller-Hessenberg form of the pair (A, B). Then prove
the following:
(a) If H; ;_1 = 0forany i, then (A, B) is not controilable.
(b) w(A,B) < min ||H;; 1l
1<i<k

Prove that ;£1(A, B) remains invariant under an orthogonal transformation.

Let (A, b) be as in (6.5.2). Prove that p,(fi, by < sin(mr/n) (Kenney and Laub 1988).
Develop an algorithm for the reduction of the pair (4, C) to the observer-Hessenberg
form (6.8.1), without invoking the algorithm for the controller-Hessenberg reduction
to the pair (AT, C T). How can one obtain the observability indices of the pair (A, C)
from this form?

Construct a simple example to show that the minimum which yields (A, B) is not
achieved when s is an eigenvalue of A.

Rework Example 6.9.1 with the initial point as one of the eigenvalues of F = (é g),
where (C, D) is a random matrix such that F is square.

Apply the bisection method to Example 6.9.1 to find an estimate of iz (A, B).
Find (A, B) and pg(A, B), where A and B are given by:

o

0 10x10 1/ jox1

Derive Newton's algorithm for computing @ g (A, B).
(Laub and Linnemann 1986). Consider the controllable pair

-4 0 0 0 1
- a -3 0 0 0
(H.b) = o o« — olloll
0 0 « -t 0

with 0 < o < 1. Show (experimentally or mathematically) that the pair (H, b) is
close to an uncontrollable pair.

Let (A, B) be controllable. Let B = (By, By), with B consisting of minimum
number of inputs such that (A, B) is controllable. Then prove that (A, Bj) is closer
to an uncontrollable system than (A, B) is; that is, prove that

mino, (B, A —sI) <mino,(B,A—sI), seC

(Gao and Neumann 1993). Let Ay € C and let p € C be on the unit circle. Consider
the straight line A = Ag + tp, t € R. Then prove that

minopin(A — g +1tp)l,B) <«
teR

if and only if the matrix

_ (PA—xol) p(BB* —a?D)
Gm)‘(—pl p(A*—Xol)>

has a real eigenvalue.

6.27

6.28

6.29

6.30

6.31

Section 6.13: CHAPTER NOTES AND FURTHER READING 197

Based on the above result, derive an algorithm for computing ur (A, B).

(Hint: take 2g =0, p=1.)

Test your algorithm with Example 6.9.1.

(a) Construct a state-space representation of the following second-order model.

k
k k
k k
m M m
L —
[C

m i1 c i
m iip | + 0)
m | \ii3 c| \u3
3k —k —k| fu; 0
+ |-k 2k —k|{u}=10
-k -k 3k u3 0
(b) Show that the system is not controllable for
0 e B
b=(1}), b={B], or b= 0
0 o -

Consider Example 5.2.6 on the motion of an orbiting satellite withdg = 1. Letx(¢) =

e (0, x2(0), x3(0), xa(O) T, u®) = (1 (1), u2(0) T, and (1) = (y1 (), y2 ().

(a) Show that one of the states cannot be controlled by the radial force u 1 (¢) alone,
but all the states can be controlled using the tangential force u> (¢).

(b) Show that all the states are observable using both the outputs; however, one of
the states cannot be observed by y; (¢) alone.

(Boley 1985). Let (H,b) be the controller-Hessenberg pair of the control-

lable pair (A, b) such that ||H|, + ||I;||2 < z‘_t Then prove that the quantity

|b1ho1hsy - -hy n—11 gives a lower bound on the perturbations needed to obtain

an uncontrollable pair. Construct an example to support this.

Does the result of the preceding exercise hold in the multi-input case? Prove or

disprove.

Consider the example of balancing a stick on your hand (Example 5.2.4). We know

from our experience that a stick can be balanced. Verify this using a criterion of

controllability. Take L = 1.

S

Il
Sl ©

o>

1

og

198 Chapter 6: CONTROLLABILITY, OBSERVABILITY, AND UNCONTROLLABILITY

FIGURE 6.1: Uncontrollability of an electrical network.

6.32 (An Uncontrollable System) (Szidarovszky and Bahill (1991, pp. 223-224)). Con-
sider the electric network in Figure 6.1 with two identical circuits in parallel.
Intuitively, it is clear that there cannot exist a single input that will bring one cir-
cuit to one state and the other to a different state. Verify this using a criterion of
controllability. Take L1 = Ly =1,C; =Cy =1, and Ry = Ry = 1.

References

Boley D. “On Kalman’s procedure for the computation of the controllable/observable
canonical form,” SIAM J. Control Optimiz., Vol. 18, pp. 624-626, 1980.

Boley D. Computing the Controllability/Observability of a Linear Time-Invariant Dynamic
System: A Numerical Approach, Ph.D. thesis, Computer Science Department, Stanford
University, Stanford, CA, June 1981.

Boley D. and Lu W.-S. “Measuring how far a controllable system is from an uncontrollable
system,” IEEE Trans. Autom. Control, Vol. AC-31, pp. 249-251, 1986.

Boley D. A. “Perturbation result for linear control problems,” SIAM J. Alg. Discr. Methods,
Vol. 6, pp. 66-72, 1985.

Boley D. “Computing the Kalman decomposition, an optimal method,” IEEE Trans. Autom.
Control, Vol. AC-29, pp. 51-53, 1984; correction in Vol. 36, p. 1341, 1991.

Brockett R. Finite Dimensional Linear Systems, Wiley, New York, 1970.

Brogan W.L. Modern Control Theory, 31d edn, Prentice Hall, Englewood Cliffs, NJ, 1991.

Chen C.-T. Linear Systems Theory and Design, CBS College Publishing, New York, 1984.

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA, 1995.

DeCarlo R.A. Linear Systems: A State Variable Approach with Numerical Implementation,
Prentice Hall, Englewood Cliffs, NJ, 1989.

Eising R. “Between controllable and uncontrollable,” Syst. Control Lett., Vol. 4,
pp. 263-264, 1984.

Elsner L. and He C. “An algorithm for computing the distance to uncontrollability,” Syst.
Control Lett., Vol. 17, pp. 453-464, 1991.

Section 6.13: CHAPTER NOTES AND FURTHER READING 199

Gao M. and Neumann M. “A global minimum search algorithm for estimating the distance
to uncontrollability,” Lin. Alg. Appl., Vol. 188/189, pp. 305-350, 1993.

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University,
Baltimore, MD, 1996.

Hautus M.L.J. “Controllability and observability conditions of linear autonomous systems,”
Proc. Kon. Ned. Akad. Wetensh, Ser. A. Vol. 72, pp. 443448, 1969.

Horn R.A. and Johnson C. Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

Kalman R.E., Flab P.L., and Arbib M.A. Topics in Mathematical Systems Theory, McGraw
Hill, New York, 1969.

Kenney C.S. and Laub A.J. “Controllability and stability radii for companion form systems,”
Math. Control, Signals Syst., Vol. 1, pp. 239-256, 1988.

Laub AJ. and Linnemann A. “Hessenberg and Hessenberg/triangular forms in linear
systems theory,” Int. J. Control, Vol. 44, pp. 1523-1547, 1986b.

Luenberger D.G. Introduction to Dynamic Systems: Theory, Models & Applications, John
Wiley & Sons, New York, 1979.

Miminis G.S. Numerical Algorithms for Controllability and Eigenvalue Allocations, Master
Thesis, School of Computer Science, McGill University, Montreal, Canada, May, 1981.

Paige C.C. “Properties of numerical algorithms related to computing controllability,” IEEE
Trans. Autom. Control, Vol. AC-26, pp. 130-138, 1981.

Patel R. “Computation of Minimal order state-space realization and observability indices
using orthogonal transformation,” Int. J. Control., Vol. 33, pp. 227-246, 1981.

Rosenbrock M.M. State-Space and Multivariable Theory, John Wiley, New York, 1970.

Szidarovszky F. and Terry Bahill A. Linear Systems Theory, CRC Press, Boca Raton, 1991.

Van Dooren P.M. and Verhaegen M. “On the use of unitary state-space transformations,
Contemporary Mathematics,” in Contemporary Mathematics Series (BrualdiR. et al.,
eds.), Vol. 47, pp. 447-463, Amer. Math. Soc., Providence, RI, 1985.

Varga A. “Numerically reliable algorithm to test controllability,” Electronic Lett., Vol. 15,
pp- 452453, 1979.

Wicks M. and DeCarlo A. “Computing the distance to an uncontrollable system,” JEEE
Trans. Autom. Control, Vol. 36, pp. 3949, 1991.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 7

STABILITY, INERTIA, AND
ROBUST STABILITY

|n[='!\"- covered

7.1 INTRODUCTION

This chapter deals with stability of a linear time-invariant system and the asso-
ciated aspects such as the inertia of a matrix, distance from an unstable system,
robust stability, and stability radius and computing the H»-norm of a stable
transfer function. A classical approach to determine the stability and inertia is
to solve a Lyapunov equation or to find the characteristic polynomial of the
state matrix A followed by application of the Routh-Hurwitz criterion in the
continuous-time case and the Schur—Cohn criteria in the discrete-time case. These
approaches are historically important and were developed at a time when numer-
ically finding the eigenvalues of a matrix, even of a modest order, was a difficult
problem. However, nowadays, with the availability of the QR iteration method
for eigenvalue computation which is reliable, accurate, and fast, these approaches
for stability and inertia, seem to have very little practical value. Furthermore, the
Lyapunov equation approach is counterproductive in a practical computational
setting in the sense that the most numerically viable method, currently available
for solution of the Lyapunov equation, namely, the Schur method (described in
Chapter 8), is based on transformation of the matrix A to a real Schur form (RSF)

201

202 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

and the latter either explicitly displays the eigenvalues of A or the eigenvalues can
be trivially found once A is transformed into this form. Also, as mentioned before,
finding the characteristic polynomial of a matrix, in general, is a numerically
unstable process. In view of the above statements, it is clear that the best way to
numerically check the stability and inertia is to explicitly compute all the eigen-
values. However, by computing the eigenvalues, one gets more than stability and
inertia. Furthermore, if the eigenvalues of A are very ill-conditioned, determining
the stability and inertia using eigenvalues may be misleading (see Section 7.6).
The question, therefore, arises if an approach can be developed that does not
require explicit computation of the eigenvalues of the state matrix A nor solution
of a Lyapunov equation. Such an implicit method (Algorithm 7.5.1) is developed
in Section 7.5. This method is about three times faster than the eigenvalue
method and, of course, many times faster than solving Lyapunov equation in
a numerically effective way using the Schur method.

An important practical problem “How nearly unstable is a stable system (or
equivalently a stable matrix}?” is discussed in Section 7.6. A simple bisection
algorithm (Algorithm 7.6.1) due to Byers (1988) to measure the distance of a
stable matrix A from a set of unstable matrices is provided. A brief discussion of
robust stability is the topic of Section 7.7.

The concept of stability radius in the context of robust stability is introduced
in Section 7.8 and a recent important formula for real stability radius due to Qiu
et al. (1995) is stated. This concept will again be revisited in Chapter 10, where
a connection of the complex stability radius with an algebraic Riccati equation
(ARE) will be made.

The relationships between the controllability and observability Grammians
and the H>-norm of an asymptotically stable system with Lyapunov equations
are discussed in Sections 7.2.3, 7.2.4, and 7.3, and a computational algorithm
(Algorithm 7.2.1) for computing the H;-norm of a stable continuous-time system
is described in Section 7.2.4.

Reader’s Guide to Chapter 7

Readers familiar with the basic concepts of stability and Lyapunov stability
theory can skip Sections 7.2 and 7.3.

7.2 STABILITY OF A CONTINUOUS-TIME SYSTEM

The stability of a system is defined with respect to an equilibrium state.
Definition 7.2.1. An equilibrium state of the unforced system

i(t)y = Ax(1), x(0) = xo, (7.2.1)

Section 7.2: STABILITY OF A CONTINUOUS-TIME SYSTEM 203

is the vector x, satisfying
Ax, =0.

Clearly, x, = 0 is an equilibrium state and it is the unique equilibrium state
if and only if A is nonsingular.

Definition 7.2.2. An equilibrium state x, is asymptotically stable if for any
initial state, the state vector x(t) approaches x, as time increases.

The system (7.2.1) is asymptotically stable if and only if the equilibrium state
x. = 0 is asymptotically stable. Thus, the system (7.2.1) is asymptotically stable
if and only if x(t) - O ast — oo.

7.2.1 Eigenvalue Criterion of Continuous-Time Stability

Below we state a well-known criterion of asymptotic stability of a continuous-time
system.

Theorem 7.2.1. The system (1.2.1) is asymptotically stable if and only if all
the eigenvalues of the matrix A have negative real parts.

Proof. From Chapter 5, we know that the general solution of (7.2.1) is

x(t) = e* xg.

Thus, x(t) — 0 if and only if e > 0ast — o0o. We will now show that this

happens if and only if all the eigenvalues of A have negative real parts.
Let X~1AX = diag(Jy, J2, ..., Ji) be the Jordan canonical form (JCF) of A.
Then,
e = X diag(e, ™, ... eMHX L

Let A; be the eigenvalue of A associated with J;. Then e’" — 0if and only if A;
has a negative real part. Therefore, ¢4’ — 0 if and only if all the eigenvalues of A
have negative real parts. W

Definition 7.2.3. A matrix A is called a stable matrix if all of the eigenvalues
of A have negative real parts.

A stable matrix is also known as a Hurwitz matrix in control literature. In analogy,
an eigenvalue with negative real part is called a stable eigenvalue.

Since the asymptotic stability of (7.2.1) implies that its zero-input response
approaches zero exponentially, the asymptotic stability is also referred to as
exponential stability.

Definition 7.2.4. Let Ay, ..., A, be the eigenvalues of A. Then the distance
min{—Re(*;): i = 1,...,n} to the imaginary axis is called the stability
margin of A.

204 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

In this book, the “stability” of a system means “asymptotic stability,” and the
associated matrix A will be referred to as “stable matrix,” not asymptotically
stable matrix.

Bounded-Input Bounded-Output Stability
The continuous-time linear system:

x(t) = Ax(t) + Bu(1),
y() = Cx()

is said to be bounded-input bounded-output (BIBO) stable if for any bounded
input, the output is also bounded.

The BIBO stability is governed by the poles of the transfer function G(s) =
C(sI — A)~'B. Specifically, the following result can be proved: (Exercise 7.5).

Theorem 7.2.2. The system (7.2.2) is BIBO stable if and only if every pole of
G (s) has a negative real part.

Since every pole of G(s) is also an eigenvalue of A, an asymptotically stable
system is also BIBO stable. However, the converse is not true. The following
simple example illustrates this.

x:(é _()l)x+<(1))u, y=(1, Hax.

_ g s—1 0 \[oy_ 1
G(s) = C(sI — A) B_(l,l)(0 s+1) (J-m_

Thus, the system is BIBO (note that the pole of G(s) is —1), but not
asymptotically stable.

(7.2.2)

Example 7.2.1.

Bounded-Input Bounded-State (BIBS) Stability

Definition 7.2.5. The system (7.2.2) is BIBS stable if, for any bounded input,
the state response is also bounded.

The following characterization of BIBS can be given in terms of eigenvalues of
A and the controllability of the modes. For a proof of Theorem 7.2.2/, see DeCarlo
(1989, pp. 416-417).

Theorem 7.2.2". BIBS. The system (71.2.2) is BIBS stable if and only if

(1) All the eigenvalues of A have nonnegative real parts.

Section 7.2: STABILITY OF A CONTINUOUS-TIME SYSTEM 205

(i) If an eigenvalue A; has a zero real part, then the order of the associated
factor in the minimal polynomial of A must be 1.

(iii) The mode associated with an eigenvalue with zero real part must be
uncontrollable.

7.2.2 Continuous-Time Lyapunov Stability Theory

In this section, we present the historical Lyapunov criterion of stability. Before
the advent of computers, finding the eigenvalues of a matrix A was an extremely
difficult task. The early research on stability, therefore, was directed toward find-
ing the criteria that do not require explicit computation of the eigenvalues of a
matrix. In 1892, the Russian mathematician A. Lyapunov (1857-1918) devel-
oped a historical stability criterion for nonlinear systems of equations. In the
linear case, this criterion may be formulated in terms of the solution of a matrix
equation.

Theorem 7.2.3. Lyapunov Stability Theorem. The system:
x(1) = Ax(1),

is asymptotically stable if and only if, for any symmetric positive definite matrix
M, there exists a unique symmetric positive definite matrix X satisfying the
equation:

XA+ ATX =M. (7.2.3)

Proof. Let’s define a matrix X by
& T
X = / ed ' Merds. (7.2.4)
0

Then, we show that when the system is asymptotic stable, X is a unique solution
of the equation (7.2.3) and is symmetric positive definite.
Using the expression of X in (7.2.3), we obtain

o 0] o0
XA+ ATX = / A MM Adr + / ATeA " Mo gy
0 0

* d
= —(eAT’MeA')dt = [eAT’MeAt]oo
o dt 0

Since A is stable, At 5 0ast — oo. Thus, XA + ATX = —M, showing that
X defined by (7.2.4) satisfies the Eq. (7.2.3).

206 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

To show that X is positive definite, we have to show that «TXu > 0 for any
nonzero vector u. Using (7.2.4) we can write

00 T
ul Xu =f uTe? 'MeA u dt.
0

Since the exponential matrices ¢A™" and e are both nonsingular and M is positive
definite, we conclude that uTXu > 0.

To prove that X is unique, assume that there are two solutions X and X; of
(7.2.3). Then,

AT(X) = X2) + (X1 — X2)A =0,

which implies that
A AT(X) — X2) + (X1 — X2)A)eM =0

or

% [eAT'(Xl - Xz)eA'] =0,

and hence eAT’(Xl — X3)e™ is a constant matrix for all z.

Evaluating at # = 0 and ¢t = oo we conclude that X; — X = 0.

We now prove the converse, that is, we prove that if X is a symmetric positive
definite solution of the equation (7.2.3), then A is stable.

Let (X, x) be an eigenpair of A. Then premultiplying the equation (7.2.3) by x*
and postmultiplying it by x, we obtain:

*XAx + x*ATXx = Ax*Xx + Ax*Xx = (A + MD)x*Xx = —x*Mx.

Since M and X are both symmetric positive definite, we have A + A < Oor
Re(x) <0. N

Note: The matrix X defined by (7.2.4) satisfies the Eq. (7.2.3) even when M is
not positive definite.

Definition 7.2.6. The matrix equation:
XA+ATX=-M

and its dual
AX+XAT=—-M

are called the Lyapunov equations.

Section 7.2: STABILITY OF A CONTINUOUS-TIME SYSTEM 207

Remark (Lyapunov Function)

e The Lyapunov stability theory was originally developed by Lyapunov
(Liapunov (1892)) in the context of stability of a nonlinear system. The
stability of a nonlinear system is determined by Lyapunov functions. See
Luenberger (1979) for details. For the linear system:

x(t) = Ax(p),

the function V (x) = xT Xx, where X is symmetric is a Lyapunov function
if the V (x), the derivative of V (x), is negative definite. This fact yields an
alternative proof of Theorem 7.2.3. This can be seen as follows:

Vix) = £TXx +x'Xx,
=x1(ATX + XA) x,
=x*(—M)x.

Thus, V (x) is negative definite if and only if M is positive definite.
We note the following from the proof of Theorem 7.2.3.

Integral Representations of the Unique Solutions of Lyapunov
Equations

Let A be a stable matrix and let M be symmetric, positive definite, or
semidefinite. Then,

1. The unique solution X of the Lyapunov equation:
XA+ ATX =-M
is given by
oo T
X = / et 'Metdr. (7.2.5)
0
2. The unique solution X of the Lyapunov equation
AX + XAT = -M
is given by
o T
X= / eMMet dt. (1.2.6)
0

As we will see later, the Lyapunov equations also arise in many other
important control theoretic applications. In many of these applications, the
right-hand side matrix M is positive semi-definite, rather than positive def-
inite. The typical examples are M = BBT or M = CTC, where B and C

208 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

are, respectively, the input and output matrices. The Lyapunov equations
of the above types arise in finding Grammians of a stable system (see
Section 7.2.3).

Theorem 7.2.4. Let A be a stable matrix. Then the Lyapunov equation:
XA+ ATX = -CTc (1.2.7)

has a unique symmetric positive definite solution X if and only if (A, C) is
observable.

Proof. We first show that the observability of (A, C) and stability of A imply
that X is positive definite.

Since A is stable, by (7.2.5) the unique solution X of the equation (7.2.7) is
given by

T
X =/ ertcTceMdr.
0

If X is not positive definite, then there exists a nonzero vector x such that Xx = 0.
In that case

o0
/ ICe x||? dt = 0;
0

this means that Ce’x = 0. Evaluating Ce’x = 0 and its successive derivatives
att = 0, we obtain CA'x = 0,i =0,1,....n — 1. This gives Opx = 0, where
Ow is the observability matrix. Since (C, A) is observable, Oy has full rank, and
this implies that x = 0, which is a contradiction.

Hence Ce?'x # 0, for every 1. So, X is positive definite.

Next, we prove the converse. That is, we prove that the stability of A
and definiteness of X imply that (A, C) is observable. The proof is again by
contradiction.

Suppose (A, C) is not observable. Then, according to criterion (v) of Theo-
rem 6.3.1, there is an eigenvector x of A such that Cx = 0. Let A be the eigenvalue
corresponding to the eigenvector x. Then from the equation:

XA+ ATx = —C"c,

we have x* X Ax + x*ATXx = —x*CTCxor (A + M)x*Xx = — ||Cx|%
So, (L +A)x*Xx = 0.
Since A is stable, A + A < 0. Thus,

*Xx =0.
But X is positive definite, so x must be a zero vector, which is a contradiction. W

We next prove a necessary and sufficient condition of stability assuming that
(A, C) is observable.

Section 7.2: STABILITY OF A CONTINUOUS-TIME SYSTEM 209

Theorem 7.2.5. Let (A, C) be observable. Then A is stable if and only if
there exists a unique symmetric positive definite solution matrix X satisfying
the Lyapunov equation (7.2.7).

Proof. We have already proved the theorem in one direction, that is, we
have proved that if A is stable and (A, C) is observable, then the Lyapunov
equation (7.2.7) has a unique symmetric positive definite solution X given by:

e T
X =/ et 'CTCeMdr.
0

We now prove the other direction. Let (A, x) be an eigenpair of A. Then as before
we have

A+ Mx*Xx =— |Cx|? .

Since (A, 0) is observable, Cx # 0, and since X is positive definite, x*Xx > 0.
Hence A + A < 0, which means that A is stable. W

For the sake of convenience, we combine the results of Theorems 7.2.4 and 7.2.5
in Theorem 7.2.6.

In the rest of this chapter, for notational convenience, a symmetric positive
definite (positive semidefinite) matrix X will be denoted by the symbol X > 0
(= 0.

Theorem 7.2.6. Let X be a solution of the Lyapunov equation (7.2.7). Then
the followings hold:

(i) If X > 0and (A, C) is observable, then A is a stable matrix.
(i) If A is a stable matrix and (A, C) is observable, then X > 0.
(i) If A is a stable matrix and X > 0, then (A, C) is observable.

Since observability is a dual concept of controllability, the following results can
be immediately proved by duality of Theorems 7.2.4 and 7.2.5.

Theorem 7.2.77. Let A be a stable matrix. Then the Lyapunov equation:
AX + XAT = —BBT (7.2.8)

has a unique symmetric positive definite solution X if and only if (A, B) is
controllable.

Theorem 7.2.8. Let (A, B) be controllable. Then A is stable if and only if
there exists a unique symmetric positive definite X satisfving the Lyapunov
equation (7.2.8).

210 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Theorems 7.2.7 and 7.2.8 can also be combined, in a similar manner, as in
Theorem 7.2.6, to obtain the following:

Theorem 7.2.9. Let X be a solution of the Lyapunov equation (7.2.8). Then
the followings hold:

(1) IfX > Oand (A, B) is controllable, then A is a stable matrix.

(i) If A is a stable matrix and (A, B) is controllable, then X > 0.
(iii) If A is a stable matrix and X > 0, then (A, B) is controllable.

7.2.3 Lyapunov Equations and Controllability and Observability Grammians

Definition 7.2.7. Let A be a stable matrix. Then the matrix:
& T
Cg = / eA"BBTeA dt (7.2.9)
0
is called the controllability Grammian, and the matrix:
© 1
0g = / e 1CTCe?dr (7.2.10)
0

is called the observability Grammian.

In view of these definitions, Theorems 7.2.7 and 7.2.4 can be, respectively, restated
as follows.

Theorem 7.2.10. Controllability Grammian and the Lyapunov Equation. Let
A be a stable matrix. Then the controllability Grammian Cg satisfies the
Lyapunov equation

ACG + CGAT = —BBT (7.2.11)
and is symmetric positive definite if and only if (A, B) is controllable.
Theorem 7.2.11. Observability Grammian and the Lyapunov Equation. Let A

be a stable matrix. Then the observability Grammian QOg satisfies the Lyapunov
equation

0cA+ ATog = -CTC (7.2.12)

and is symmetric positive definite if and only if (A, C) is observable.

Section 7.2: STABILITY OF A CONTINUOUS-TIME SYSTEM 211

Example 7.2.2. Let

-1 -2 -3 1
A=} 0 =2 -1], B =
0 0 -3

The controllability Grammian Cg obtained by solving the Lyapunov equation (using
MATLAB command lyap) AX + XAT = —BBT is

0.2917 0.0417 0.0417
Cg = (0.0417 0.1667 0.1667 |,
0.0417 0.1667 0.1667

which is clearly singular. So, (A, B) is not controllable.
Verify: The singular values of the controllability matrix Cy are 25.6766, 0.8425,
and 0.

7.2.4 Lyapunov Equations and the Hy-Norm

In this section, we show how the H,-norm of the transfer matrix of an asymptoti-
cally stable continuous-time system can be computed using Lyapunov equations.

Definition 7.2.8. The H,-norm of the transfer matrix G(s) of an asymptoti-
cally stable continuous-time system:

’y‘zgi+3”’ (7.2.13)
denoted by ||G||2, is defined by
1 o) 1/2
G2 = (E/ Trace(G(jw)*G(jw)) dw) . (7.2.14)
-0

Thus, the H,-norm measures the steady-state covariance of the output
response y = Gv to the white noise inputs v.

Computing the H)-Norm

By Parseval’s theorem in complex analysis (Rudin 1966, p. 191), (7.2.14) can be

written as
1/2

1G(s) 2 = (/ ” Trace T (OR(1)) dt) ,
0

where h(t) is the impulse response matrix:

h(t) = Ce' B,

212 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Thus,

o
IG5 = Trace (BT (f eAT’CTCeA’dt) B) ,
0

= Trace(BT 0 B),

where Og is the observability Grammian given by (7.2.10).
Similarly, we can show that

IGl5 = Trace(CCGCM), (7.2.15)

where Cg is the controllability Grammian given by (7.2.9).

Since A is stable, the controllability and observability Grammians satisfy,
respectively, the Lyapunov equations (7.2.11) and (7.2.12).

Thus, a straightforward method for computing the H,-norm is as follows:

Algorithm 7.2.1. Computing the Hy-Norm

Input. The system matrices A, B, and C.

Output. The Hy-norm of the system (A, B, C).

Assumption. A is stable.

Step 1. Solve the Lyapunov equation (7.2.11) or (7.2.12)

Step 2. Compute either Trace(C CGCT) or Trace(BT Og B), depending upon
which of the two Lyapunov equations is solved, and take the square-root of either
of these two values as the value of the Hy-norm.

Example 7.2.3.

Step 1. The solution of the Lyapunov equation (7.2.11), Cg, is

9.1833 2.5667 1.0167
Cg = 125667 1.0333 0.5333},

1.0167 0.5333 0.3333

, 1 (187833 18.7833
¢ =CCeC = (18.7833 18.7833)’

Section 7.3: STABILITY OF A DISCRETE-TIME SYSTEM 213

The solution of the Lyapunov equations (7.2.12), Og, is

1 1.3333 1.9167
Oc = | 13333 1.8333 2.7000 |,

1.9167 2.7000 4.0500

'\ T o (187833 18.7833
B'=B 0cB = <18.7833 18.7833)'

Step 2. Hy-norm = /Trace(B’) = /Trace(C’) = /37.5667 = 6.1292.

MATCONTROL note: Algorithm 7.2.1 has been implemented in MATCON-
TROL function h2nrmcg and h2nrmog.

MATLAB Note. MATLAB function norm(sys) computes the H,-norm of a
system.

7.3 STABILITY OF A DISCRETE-TIME SYSTEM
7.3.1 Stability of a Homogeneous Discrete-Time System
Consider the discrete-time system:
Xp41 = Axg (7.3.1)

with initial value xg.

A well-known mathematical criterion for asymptotic stability of the homo-
geneous discrete-time system now follows. The proof is analogous to that of
Theorem 7.2.1 and can be found in Datta (1995).

Theorem 7.3.1. The system (7.3.1) is asymptotically stable if and only if all
the eigenvalues of A are inside the unit circle.

Definition 7.3.1. A matrix A having all its eigenvalues inside the unit circle
is called a discrete-stable matrix, or a convergent matrix or a Schur matrix.
We shall use the terminology discrete-stable throughout the book.

Discrete-Time Lyapunov Stability Theory

Each of the theorems in Section 7.2 has a discrete counterpart. In the discrete case,
the continuous-time Lyapunov equations XA + ATX = —M and AX + XAT =
—M are, respectively, replaced by their discrete-analogs X — ATXA = M and
X - AXAT =M.

These discrete counterparts of the continuous-time Lyapunov equations are
called the Stein equations. The Stein equations are also known as discrete-
Lyapunov equations in contro! literature.

214 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

In the following, we state and prove a discrete analog of Theorem 7.2.3. The
statements and proofs of the discrete counterparts of Theorems 7.2.4 through 7.2.9
are analogous. In fact, the Lyapunov and Stein equations are related via the
matrix analogs of the well-known bilinear transformation (known as the Cayley

transformation):
1+s z—1
= , = — 7.3.2
T : z+1 ()

Note that |z] < 1 & Re(s) <0and |z] =1 & Re(s) =0.

Theorem 7.3.2. Discrete-Time Lyapunov Stability Theorem. The discrete-
time system (7.3.1) is asymptotically stable if and only if, for any positive definite
matrix M, there exists a unique positive definite matrix X satisfying the discrete
Lyapunov equation:

X-ATXA=M. (1.3.3)

Proof. We prove the theorem in one direction, that is, we prove that if A is
discrete-stable, then Eq. (7.3.3) has a unique symmetric positive definite solution
X. The proof of the other direction is left as an Exercise (7.10).

Define the matrix

o0
X = Z(AT)"MA") (7.3.4)
k=0
Since A is discrete-stable, the infinite series on the right-hand side converges.

Furthermore, the matrix X is symmetric and positive definite.
We now show that X is the unique solution of the Eq. (7.3.3). Indeed,

o o0
X - ATXA = Z(AT)"MA" — Z(AT)"MA" =M. (7.3.5)
k=0 k=1
Thus, X defined by (7.3.4) satisfies the Eq. (7.3.3).
To prove that X is unique, let’s assume that there is another symmetric positive
definite solution X of (7.3.3).
Then,
X, - ATX1A =M,

and

oo o0
X =) (ATHMA* = D (AT (X1 - ATX 1 4) A%,
k=0 k=0

o o0
=Y (AN XA - aDHkx Ak =X =
k=0 k=1

Section 7.4: SOME INERTIA THEOREMS 215

Remark (BIBO and BIBS Stability of a Discrete-Time System)

e Results on BIBO stability and BIBS stability, the discrete counter parts of
Theorem 7.2.2 and Theorem 7.2.2' can be obtained, for the discrete-time
system:

Xk+1 = Axg + Bug.
See Exercises 7.7 and 7.8 and the book by DeCarlo (1989).

Definition 7.3.2. Let A be discrete-stable. Then the matrices:

e 0]
g =) A*BBT(AT)* (7.3.6)
k=0
and
o0
0g =Y (ANH*cTca* (7.3.7)
k=0

are, respectively, called the discrete-time controllability Grammian and
discrete-time observability Grammians.

The discrete counterparts of Theorems 7.2.10 and 7.2.11 are:

Theorem 7.3.3. Discrete-Time Controllability Grammian and Lyapunov
Equation. Let A be discrete-stable. Then the discrete-time controllability
Grammian C GD satisfies the discrete Lyapunov equation

Cc2 - Ac2AT = BBT (7.3.8)
and is symmetric positive definite if and only if (A, B) is controllable.

Theorem 7.3.4. Discrete-Time Observability Grammian and Lyapunov Equa-
tion. Let A be discrete-stable. Then the discrete-time observability Grammian
OGD satisfies the discrete Lyapunov equation:

02 - AToRa =C"c (7.3.9)

and is symmetric positive definite if and only if (A, C) is observable.

7.4 SOME INERTIA THEOREMS

Certain design specifications require that the eigenvalues lie in a certain region of
the complex plane. Thus, finding if a matrix is stable is not enough in many practical
instances. We consider the following problem, known as the inertia problem, which
is concerned with counting the number of eigenvalues in a given region.”

216 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Definition 7.4.1. The inertia of a matrix A of order n, denoted by In(A), is the
triplet (m(A), v(A), 6(A)), where m(A), v(A), and §(A) are, respectively, the
number of eigenvalues of A with positive, negative, and zero real parts, counting
multiplicities.

Note that w(A) + v(A) + §(A) = n and A is a stable matrix if and only if
In(A) = (0, n, 0).

The inertia, as defined above, is the half-plane or the continuous-time inertia.

The inertia with respect to the other regions of the complex plane can be defined
similarly.

The discrete-time inertia or the unit-circle inertia is defined by the triplet
(mo(A), vo(A), 8o(A)), where mg(A), vo(A), do(A), are, respectively the num-
ber of eigenvalues of A outside, inside, and on the unit circle. It will be denoted
by Ing(A).

Unless otherwise stated, by “inertia” we will mean the “half-plane inertia.”

Much work has been done on the inertia theory of matrices. We will just
give here a glimpse of the existing inertia theory and then present a compu-
tational algorithm for computing the inertia. For details, we refer the curious
readers to the recent survey paper of the author (Datta 1999). This paper gives
an overview of the state-of-the-art theory and applications of matrix inertia
and stability. The applications include new matrix theoretic proofs of several
classical stability tests, applications to D-stability and to continued functions,
etc. (Datta 1978a, 1978b, 1979, 1980). For other control theoretic applications
of the inertia of a matrix, see Glover (1984), and the book by Zhou et al.
(1996).

7.4.1 The Sylvester Law of Inertia

A classical law on the inertia of a symmetric matrix A is the Sylvester Law of
Inertia, stated as follows:
Let A be a symmetric matrix and P be a nonsingular matrix. Then,

In(A) = In(PAPT).

Proof. See Horn and Johnson (1985, pp. 223-229).

Computing the Inertia of a Symmetric Matrix

If A is symmetric, then Sylvester’s law of inertia provides an inexpensive and
numerically effective method for computing its inertia.

Section 7.4: SOME INERTIA THEOREMS 217

A symmetric matrix A admits a triangular factorization:
A=UDUT,

where U is a product of elementary unit upper triangular and permutation matrices,
and D is a symmetric block diagonal with blocks of order 1 or 2. This is known
as diagonal pivoting factorization. Thus, by Sylvester’s law of inertia In(A) =
In(D). Once this diagonal pivoting factorization is obtained, the inertia of the
symmetric matrix A can be obtained from the entries of D as follows:

Let D have p blocks of order 1 and g blocks of order 2, with p 4+ 2¢ = n.
Assume that none of the 2 x 2 blocks of D is singular. Suppose that out of p
blocks of order 1, p’ of them are positive, p” of them are negative, and p” of them
are zero (i.e., p' + p” + p” = p). Then,

7(A)=p' +gq,
v(A) =p" +q,
B(A) — p///.

The diagonal pivoting factorization can be achieved in a numerically stable
way. It requires only n3 /3 flops. For details of the diagonal pivoting factorization,
see Bunch (1971), Bunch and Parlett (1971), and Bunch and Kaufman (1977).

LAPACK implementation: The diagonal pivoting method has been implemented
in the LAPACK routine SSYTREF.

7.4.2 The Lyapunov Inertia Theorems

The Sylvester Law of Inertia and the matrix formulation of the Lyapunov cri-
terion of stability seem to have made a significant impact on the development
of nonsymmetric inertia theorems. Many inertia theorems for nonsymmetric
matrices have been developed over the years. These theorems attempt to find a
symmetric matrix X, given a nonsymmetric matrix A, as a solution of a cer-
tain matrix equation, in such a way that, under certain conditions, the inertia
of the nonsymmetric matrix A becomes equal to the inertia of the symmetric
matrix X. Once the symmetric matrix X is obtained, its inertia can be com-
puted rather cheaply by application of the Sylvester Law of Inertia to the LDLT
decomposition of X.

Theorem 7.4.1 is the Fundamental Theorem on the inertia of a nonsymmetric
matrix and is known as the Main Inertia Theorem (MIT) (Taussky (1961) ,
and Ostrowski and Schneider (1962)). This theroem is also known as Ostrowski-
Schneider-Taussky (OST) Theorem.

218 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Theorem 7.4.1. The Main Inertia Theorem. (i) There exists a unique symmet-
ric matrix X such that
XA+ATX=M>0 (7.4.1)

if and only if §(A) = 0.
(ii) Whenever Eq. (1.4.1) has a symmetric solution X, In(A) = In(X).

Recovery of the Lyapunov Stability Theorem
As an immediate corollary of Theorem 7.4.1, we obtain the following.

Corollary 7.4.1. A necessary and sufficient condition for A to be stable is that
there exists a symmetric positive definite matrix X such that

XA+ATX=-M, M>0.

The Lyapunov Stability Theorem (Theorem 7.2.3) now follows from Corol-
lary 7.4.1 by noting the fact that the Lyapunov equation for any given positive
definite matrix M, has a unique solution if and only if A(A) = [} jo1 i A #
0, where A1, Az, ..., A, are the eigenvalues of A, and A(A) # O implies that
8(A) = 0 (see Chapter 8).

Theorem 7.4.2. Continuous-Time Semidefinite Inertia Theorem. Assume that
8(A) = 0 and let X be a nonsingular symmetric matrix such that

XA+ATX =M >0.
Then In(A) = In(X).

Remarks

Theorem 7.4.2 is due to Carlson and Schneider (1963).
For a discrete version of Theorem 7.4.1, see Wimmer (1973), and Taussky
(1964).

e For a discrete version of Theorem 7.4.2, see Datta (1980).
The condition §(A) = 0 in Theorem 7.4.2 can be shown to be equivalent
to the controllability of the pair (AT, M); see Chen (1973) and Wimmer
(1974). For discrete analogue, see Wimmer and Ziebur (1975).

7.5 DETERMINING THE STABILITY AND INERTIA OF A
NONSYMMETRIC MATRIX

From our discussions in the two previous sections, it is clear that the stability and
inertia of a nonsymmetric matrix can be determined by solving an appropriate
Lyapunov equation.

Section 7.5: THE STABILITY AND INERTIA OF A NONSYMMETRIC MATRIX 219

Unfortunately this is computationally a counterproductive approach. The
reason is that the most numerically effective (and widely used) method for solving
a Lyapunov equation, the Schur method (see Chapter 8), is based on reduction of
the matrix A to the RSF. The RSF either displays the eigenvalues of A or can be
trivially obtained from there. Of course, once the eigenvalues are computed, the
stability and inertia are immediately known.

An alternative classical approach (see Marden 1966) is to compute the charac-
teristic polynomial of A, followed by application of the Routh-Hurwitz criterion
in the continuous-time case and the Schur—Cohn Criterion in the discrete-time
case. This is, unfortunately, also not a numerically viable approach. The
reasons are that: (i) computing the characteristic polynomial may be a highly
numerically unstable process and (ii) the coefficients of a polynomial may be
extremely sensitive to small perturbations. See our discussions in Chapter 4
(Section 4.1).

In view of the above considerations, the numerical analysts believe that the
most numerically effective way to compute the inertia and stability of a matrix A
is to explicitly compute the eigenvalues of A. However, by explicitly computing
the eigenvalues of A, one gets more than what is needed, and furthermore, since
the eigenvalues of a matrix can be sensitive to small perturbations, computing the
inertia and stability this way may be quite misleading sometimes (see the example
in Section 7.6 which shows that a perfectly stable matrix may become unstable by
a very small perturbation of a single entry of the matrix).

It is, therefore, of interest to develop a method for inertia and stability that
does not require solution of a Lyapunov equation, or explicit computation of the
characteristic polynomial or the eigenvalues of A. We will now describe such a
method.

Algorithm 7.5.1 is based on the implicit solution of a matrix equation. The algo-
rithm constructs a symmetric matrix F' which satisfies a Lyapunov matrix equation
with a positive semidefinite matrix on the right-hand side, but the Lyapunov
matrix equation is not explicitly solved. The algorithm was developed by Carlson
and Datta (1979b).

Algorithm 7.5.1. An Implicit Matrix Equation Method for Inertia and
Stability

Input. An n x n real matrix A

Output. The inertia of A.

Step 1. Transform A to a lower Hessenberg matrix H using an orthogonal
similarity. Assume that H is unreduced (Chapter 4).

Step 2. Construct a nonsingular lower triangular matrix L such that

0
LH+HL=R=<>
r

220 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

is a matrix whose first (n — 1) rows are zero, starting with the first row I of L
aslh =(1,0,...,0).

Step 3. Having constructed L, compute the last row r of R.

Step 4. Construct now a matrix S such that

SH =HTS,

with the last row s, of S as the last row r of R.

Step 5. Compute F = LS.

Step 6. If F is nonsingular, compute the inertia of the symmetric matrix F,
using the Sylvester law of inertia, as described in Section 7.4.1.

Step 7. Obtain the inertia of A: In(A) = In(F).

Theorem 7.5.1. (i) If F is nonsingular, then it is symmetric and In(A) =
In(F). (ii) A is stable if and only if F is negative definite.

Proof. Proof of Part (i).
FH+H'F=L"SH+H'L'S = LTHTS + HTLTS,
=(THY + HT'LT)S = RTS =rTr > 0.

The nonsingularity of F implies the nonsingularity of S, and it can be shown (see
Datta and Datta (1987)) that S is nonsingular if and only if H and — H do not have
a common eigenvalue. Thus, F is a unique solution of the matrix equation (see
Theorem 8.2.1):

FH+H'F=rTr>0,

and is, therefore, necessarily symmetric. Furthermore, since H and —H donot have
a common eigenvalue, we have §(H) = 0. Theorem 7.4.2 now can be applied to
the above matrix equation to obtain Part (i) of Theorem 7.5.1.

Proof of Part (ii). First suppose that A is stable, then we prove that F is negative
definite. Since A is stable, so is H, and therefore, §(H) = 0. Again §(H) = 0
implies that H and —H do not have an eigenvalue in common. Therefore, by
Theorem 8.2.1 (see Chapter 8), the Lyapunov equation:

FH+H'F=+Tr>0

has a unique solution F and therefore, must be symmetric F. By Theorem 7.4.2,
we then have

In(F) = In(4) = (0, n, 0).

Thus, F is negative definite. Conversely, let F' be negative definite. Then F is
nonsingular. By part (i), we then have that In(A) = In(F) = (0, n,0). So, A is
stable. W

Section 7.5: THE STABILITY AND INERTIA OF A NONSYMMETRIC MATRIX 221

Computational remarks

e Computation of L. Once the first row of L = (/;;) in step 2 is pre-
scribed, the diagonal entries of L are immediately known. These are:
1,—1,1,..., (=1)""!. Having known these diagonal entries, the n(n— 1) /2
off-diagonal entries /;; (i > j) of L lying below the main diagonal can now
be uniquely determined by solving a lower triangular system if these entries
are computed in the following order: lo1; 31, 1325 ..., In1, ln2s - - Iy n—1-

o Computation of S. Similar remarks hold for computing S in Step 4. Knowing
the last row of the matrix S, the rows s,_; through s; of S can be computed
directly from the relation SH = HTS.

Notes

1. The above algorithm has been modified and made more efficient by Datta
and Datta (1987). The modified algorithm uses the matrix-adaptation of the
well-known Hyman method for computing the characteristic polynomial of
a Hessenberg matrix (see Wilkinson 1965), which is numerically effective
with proper scaling.

2. The algorithm has been extended by Datta and Datta (1986) to obtain
information on the number of eigenvalues of a matrix in several other
regions of the complex plane including strips, ellipses, and parabolas.

3. A method of this type for finding distribution of eigenvalues of a matrix
with respect to the unit circle has been reported by L.Z. Lu (an unpublished
manuscript (1987)).

4. A comparison of various methods for inertia computation, and a compu-
tationally more effective version of the algorithm reported in this section
appeared in the M.Sc. Thesis of Daniel Pierce (1983).

Flop-count of Algorithm 7.5.1 and comparisons with other methods:
Algorithm 7.5.1 requires about n> flops once the matrix A has been transformed
to the lower Hessenberg matrix H. Since it requires 13—0n3 flops to transform A
to H, a total of about %rﬂ flops is needed to determine the inertia and stability
of A using Algorithm 7.5.1. This count compares very favorable with about 12n3
flops needed to compute the eigenvalues of A using the QR iteration algorithm
described in Chapter 4. Thus, Algorithm 7.5.1 seems to be about three times
faster than the eigenvalue method.

We have not included the Lyapunov equation approach and the characteristic
polynomial approach in our comparisons here because of the numerical difficulties
with the characteristic polynomial approach and the counterproductivity of the
Lyapunov equation approach, as mentioned in the beginning of this section.

222

Example 7.5.1.

1.997
0.748
—1.133
—0.350
—0.057
—1.425

A=

—0.724
2.217
—1.225
0.515
—0.631
—0.788

0.804
—0.305
—0.395
—0.063

1.544

1.470

—1.244
1.002
—0.620
2.564
0.001
—1.515

Step 1. Reduction to Lower Hessenberg form:

1.9970
0.6570
0.4272
—0.1321
—-0.0391
—1.8348

H =

2.9390
—1.0007
1.5242
1.2962
—1.5738
—0.5976

1.9519
0.4502
0.9555
0.6601
0.7595

0.8785
1.4541
0.2377
0.1120

We compute In(A) using Algorithm 7.5.1 with

—1.365
—2.491
1.504
0.627
1.074
0.552

0.4940
2.3530
—3.3993

Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

—2.014
—0.660
1.498
0.422
—1.750
—-0.036

—-0.4801
2.1673

Step 2. Construction of the lower triangular L such that LH + HL = R:

1

—1.3590 1
L= 0.6937 1.0209 1
| —1.3105 —1.6810 —3.2933 1
16.4617 227729 193373 11.7433 1

198.8687 258.5635 229.9657 128.4966 21.8842 1
Step 3. Last row of the matrix R is

r = (1023.6330, 1293.0942, 1177.7393, 632.4162, 162.4031, —14.8420).

Step 4. Construction of S such that SH = HTS:

2.1404
3.3084
27775
1.3224
—1.0912
0.4808

3.3084
5.0426
4.1691
2.0996
—1.2521
0.6073

277175
4.1691
3.6050
1.8169
—1.1757
0.5531

Step 5. Computation of F = LTS:

75.4820
96.7596
87.8785
47.6385

9.4298
—0.4808

96.7596
124.1984
112.7028
61.2339
12.0384
—0.6073

87.8785
112.7028
102.0882
55.4523
10.9292
—0.5531

1.3224
2.0997
1.8169
0.8899
—0.6070
0.2970

47.6385
61.2339
55.4523
30.1476
5.8930
—0.2970

—-1.0912
—1.2521
—1.1757
—0.6070
—0.3845

0.0763

9.4298
12.0384
10.9292

5.8930

1.2847

—0.0763

0.4808
0.6073
0.5531
0.2970
0.0763
—0.0070

—0.4808
—0.6073
—0.5531
—0.2970
—0.0763

0.0070

Section 7.6: DISTANCE TO AN UNSTABLE SYSTEM 223

Step 6. Gaussian elimination with diagonal pivoting: PFPT = WDWT, gives
1

0.9074 1
wo | 07791 —04084 1
] 0.0969 —0.0274 0.4082 1 :
04930 0.6227 —0.8765 0.0102 1
—0.0049 00111 —0.0651 —0.1454 00502 1
010000
001000
p_|1 00000
“loo o001 0]
000100
0000 0 1
124.1984 0 0 0 0 0
0 —0.1831 0 0 0 0
D 0 0 01298 0 0 0
= 0 0 0 00964 0 0
0 0 0 0 ~00715 0
0 0 0 0 0 00016

Step 7. In(A) = In(F) = In(D) = (4, 2,0).
Verification: The eigenvalues of A are:

{—2.1502, 0.8553, 3.6006, 2.0971, 3.1305, —0.1123},
confirming that In(A) = (4,2, 0).

MATCONTROL note: Algorithm 7.5.1 has been implemented in MATCON-
TROL function inertia.

7.6 DISTANCE TO AN UNSTABLE SYSTEM
Let A be an n x n complex stable matrix. A natural question arises:
How “nearly unstable” is the stable matrix A?

We consider the above question in this section.

Definition 7.6.1. Let A € C"*" have no eigenvalue on the imaginary axis. Let
U € C"*" be the set of matrices having at least one eigenvalue on the imaginary
axis. Then, with ||-|| as the 2-norm or the Frobenius norm, the distance from A
to U is defined by

B(A) = min{||E|| |A + E € U}.

If A is stable, then B(A) is the distance to the set of unstable matrices.

224 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

The concept of “distance to instability” is an important practical concept.
Note that a theoretically perfect stable matrix may be very close to an unstable
matrix. For example, consider the following matrix (Petkov et al. 1991):

.5
—-0.5
5

5

OO = = =
[R e e T

1 1

1 1
—0. 1

0 -05

0 0

0 0

coococoo
coocoo~

—0.5

Since its eigenvalues are all —0.5, it is perfectly stable. However, if the (6, 1)th
entry is perturbed to € = 1/324 from zero, then the eigenvalues of this slightly
perturbed matrix become:

—0.8006, —0.7222 + 0.2485j, —0.3775 £ 0.4120/, 0.000.
Thus, the perturbed matrix is unstable, showing that the stable matrix A is
very close to an unstable matrix.

We now introduce a measure of 8(A) in terms of singular values and describe
a simple bisection algorithm to approximately measure it.

Let omin(A — jowl) be the smallest singular value of A — jwI. Then it can be
shown (Exercise 7.14) that

B(A) = min oy (A — jwl). (7.6.1)
weR

So, for any real ®, omin(A — jwl) is an upper bound on B(A), that is, B(A) <
Omin(A — jol).

Based on this idea, Van Loan (1985) gave two estimates for 8(A). One of them
is a heuristic estimate:

B(A) ~ min {omin(A — jRe(V)D)|A € A(A)}, (7.6.2)

where A(A) denotes the spectrum of A.

Thus, using this heuristic estimate, 8(A) may be estimated by finding the singu-
lar values of the matrix (A — jRe(A)}), for every eigenvalue A of A. This approach
was thought to give an upper bound within an order of magnitude of 8(A). How-
ever, Demmel (1987) has provided examples to show this bound can be larger than
B(A) by an arbitrary amount.

The other approach of Van Loan requires application of a general nonlinear
minimization algorithm to f(w) = omin(A — jwl). We will not pursue these
approaches here. Rather, we will describe a simple bisection method to estimate

Section 7.6: DISTANCE TO AN UNSTABLE SYSTEM 225

B(A) due to Byers (1988). The bisection algorithm estimates 8(A) within a factor
of 10 or indicates that B(A) is less than a small tolerance. This is sufficient in
practice. The algorithm makes use of the crude estimate of the upper bound 8(A) <
311A + A%(]2.

To describe the algorithm, let’s define a 2n x 2n Hamiltonian matrix H(o),
giveno > 0, by

H(o) = (:1 :Zﬁ). (7.6.3)

The bisection method is based on the following interesting spectral property of the
matrix H (c). For more on Hamiltonian matrices, see Chapters 10 and 13.
Theorem 7.6.1. o > B(A) if and only if H (o) defined by (7.6.3) has a purely

imaginary eigenvalue.

Proof. Let w; be a purely imaginary eigenvalue of H{(o). Then there exist
nonzero complex vectors u, v such that

(?1 :Zf)(’;)=w(ﬁ) (7.6.4)

(A—wju=o0ov (7.6.5)

This gives us

and
(A—wiD*v=o0u (7.6.6)

This means that o is a singular value of the matrix A — w; I. Also, since B(A) <
omin(A — jwlI) for any real w, we obtain o > B(A).
Conversely, suppose that ¢ > B(A). Define

f(@) = omin(A — jal).

The function f is continuous and limy_, f(@) = oo. Therefore, f has a
minimum value f(a) = B(A) < o, for some real «.

By the Intermediate Value Theorem of Calculus, we have f(w) = o for some
real .

So, o is a singular value of A — jwl = A — w; I and there exist unit complex
vectors u and v satisfying (7.6.5) and (7.6.6). This means that w; is a purely
imaginary eigenvalue of H(c). W

Algorithm 7.6.1. The Bisection Algorithm for Estimating the Distance to an
Unstable System

Inputs. A—An n x n stable complex matrix
t—Tolerance (> 0).

226 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Outputs. Real numbers o and v such that either v/10 < a < B(A) < v or
O0=a <B(A) <v <101

Step 1. Set o =0, v = 3|[(A + A"

Step 2. Do while v > 10 max(rt, «)
o = /vmax(t, «)

If = H(o) has a purely imaginary eigenvalue, then setv = o, elsea = o

Example 7.6.1. Consider finding B(A) for the matrix:

1
A= < 0 —0.0001> '
7 =0.00100

Iteration 1.
Step 1. Initialization: ¢« = 0, v = 1.2071.
Step 2. 10 x max(z, o) = 0.0100.

o = 0.0347

-1 1 —0.0347 0

0 —0.0001 0 —0.0347
H) = | (0347 0 1 0

0 0.0347 -1 0.0001

The eigenvalues of H(c) are *1,+0.0491;. Since H(o) has an purely
imaginary eigenvalue, we set

v =0 = 0.0347.
v =0.0347 > 10 max (r, a) = 0.0100,

the iteration continues, until v = 0.0059 is reached, at which point, the iteration
terminates with B(A) < 0.0059 < 107.

Conclusion: B(A) < 0.0059 < 107.

Computational remarks:

e The bulk of the work of the Algorithm 7.6.1 is in deciding whether H(o)
has an imaginary eigenvalue.

e Also, the decision of whether H (o) has an imaginary eigenvalue in a com-
putational setting (in the presence of round-off errors) is a tricky one. Some
sort of threshold has to be used. However, if that decision is made in a
numerically effective way, then in the worst case, “8(A) might lie outside
the bound given by the algorithm by an amount proportional to the
precision of the arithmetic” (Byers 1988).

Section 7.6: DISTANCE TO AN UNSTABLE SYSTEM 227

e Because of the significant computational cost involved in deciding if the
matrix H (o) at each step has an imaginary eigenvalue, the algorithm may
not be computationally feasible for large problems.

Convergence. If 1 = %10_1’ |A + A*||, then at most log, p bisection steps are

required; for example, if T = % x 1078]|A + A*|, then at most three bisection
steps are required.

MATCONTROL note: Algorithm 7.6.1 has been implemented in MATCON-
TROL function disstabc.

Relation to Lyapunov Equation

Since Lyapunov equations play a vital role in stability analysis of a linear system,
it is natural to think that the distance to a set of unstable matrices S(A) is also
related to a solution of a Lyapunov equation. Indeed, the following result can be
proved (See Malyshev and Sadkane (1999) and also Hewer and Kenney (1988)).

Theorem 7.6.2. Distance to an Unstable System and Lyapunov Equation. Let
A be complex stable and let X be the unique positive Hermitian definite solution
of the Lyapunov equation:

XA+ A*X = —M, (7.6.7)

where M is Hermitian positive definite. Then

Amin (M)

A ,
PAY= 1

where Amin (M) denotes the smallest eigenvalue of M.

Proof. Letw € R and u be a unit vector such that

—— = max A—zD =114 - joD |l . 7.6.8)
BA) — X, ¢) I =HA = jol) " ul (
Let x = (A — jowI)™lu. Then, ||x]}2 = 1/B(A).
Multiplying the Lyapunov equation (7.6.7) by x™* to the left and x to the right,
we have
XM (XA + A*X)x = —x*Mx,
X*XAx + x*A*Xx = —x*Mx.

Then,

x:(A—ja)I)_lu:>(A—jwl)x=u:>Ax=u+ja)x

228 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

and

x=(A— jol) 'u= x*(A — jol)* =u* = x*A* + jox*

=u* = x*A" =u* — jox*.
Therefore,

X*XAx + x*A*Xx| = [x* X (u + jox) + (" — jox*)Xx|
= 2u* Xx| < 2||X[|2[lx]l2. (7.6.92)

Also, by the Rayleigh quotient (see Datta (1995) or Golub and Van Loan (1996)),
we have, Apin(M) < x*Mx/x*x, that is,

Amin(MD}Ix|3 < x*Mx = | — x*Mx|. (7.6.9b)
Thus, combining (7.6.9a) and (7.6.9b) yields
Amin(M)||x]13 < |x*Mx| = |x*(XA + A*X)x| < 2||X]l2]lx]]2

or
Amin (M) [1x1]2 < 2[1X1]2.

Since ||x]|2 = 1/B(A), this means that Amin (M)(1/B8(A)) < 2||X||2 or B(A) >
Amin/2|1X]2. W

Example 7.6.2. Consider Example 7.6.1 again.
-1 1
A= < 0 —0.0001)'
05 05
X= <0.5 9999.5)'

~ 1 -5
B(A) =~ 0.0059 > M = 5.0002 x 107,

Take M = I. Then

Verify: The eigenvalues of A + 5.0002 x 107] are —0.9999 and 0.

Distance to a Discrete Unstable System

The discrete analog of B(A) is defined to be

y(A) = min{||E|| | for some 8 € R, el e QA+ E)}. (7.6.10)

Section 7.6: DISTANCE TO AN UNSTABLE SYSTEM 229

That is, y (A) measures the distance from A to the nearest matrix with an
eigenvalue on the unit circle. If A is discrete-stable, then y (A) is a measure of
how “nearly discrete-unstable” A is. In above, €2 (M) denotes the spectrum of M.
A discrete-analog of Theorem 7.6.1 is:

Theorem 7.6.3. Given an n x n complex matrix A, there exists a number
I'(A) € R such that T(A) > y(A) and for T'(A) > o > y(A), the 2n X 2n
Hamiltonian matrix pencil

HD(a)zF(a)—xG(a)=<_zl" g)—x(/& In)

—ol,

has a generalized eigenvalue of magnitude 1. Furthermore, if o < y(A), then
the above pencil has no generalized eigenvalue of magnitude 1.

Proof. See Byers (1988). #

Based on the above result, Byers (1988) described the following bisection
algorithm to compute y (A), analogous to Algorithm 7.6.1.

The algorithm estimates y (A) within a factor of 10 or indicates that y (A)
is less than a tolerance. The algorithm uses a crude bound I'(A) > opin(A — I).

Algorithm 7.6.2. The Bisection Algorithm for Estimating the Distance to a
Discrete-Unstable System
Inputs. An n x n complex matrix A and a tolerance T > 0.
Outputs. Real numbers o and § such that §/10 < a < y(A) <dor0 =
a <y(A) <é <10t
Step 1. Set a« = 0; 8 = omin(A — I).
Step 2. Do while § > 10 max(t, o)
o = 4/é max(t, a).
If the pencil F(o) — AG(0), defined above, has a generalized eigenvalue

of magnitude 1, then set§ = 0, elsea = o.
End.

Example 7.6.3. Let A = (0_9399 0%5
stable.
Iteration 1:
Stepl: o =0, §=4.4721 x 1073,
Step 2: § > 10max(t,«) is verified, we compute 0" = 6.6874 x 1075. The
eigenvalues of Hp (o) are 2, 1.0001, 0.9999, and 0.5000. Thus, o = 6.6874 x 1076.

) ,T = 1078 The matrix A is discrete-

230 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Iteration 2: Since § > 10 max(t, «) is verified, we compute o = 5.4687 x 1076, The
eigenvalues of Hp(o) are 2, 1.001, 0.999, 0.5000; we set « = o = 5.4687 x 1076,
Iteration 3: § < 10 max(t, «), the iteration stops, and on exit we obtain

@ = 5.4687 x 1078 8 =4.4721 x 107°.

MATCONTROL note: Algorithm 7.6.2 has been implemented in MATCON-
TROL function disstabd.

7.7 ROBUST STABILITY

Even though a system is known to be stable, it is important to investigate if the
system remains stable under certain perturbations. Note that in most physical
systems, the system matrix A is not known exactly; what is known is A 4 E,
where E is an » X n perturbation matrix. Thus, in this case the stability problem
becomes the problem of finding if the system:

@) =A+Ex@®) 771

remains stable, given that A is stable.

The solution of the Lyapunov equations can be used again to obtain bounds
on the perturbations that guarantee that the perturbed system (7.7.1) remains
stable.

In Theorem 7.7.1, omax (M), as usual, stands for the largest singular value of M.

We next state a general result on robust stability due to Keel ef al. (1988). The
proof can be found in Bhattacharyya ez al. (1995, pp. 519-520). The result there is
proved in the context of feedback stabilization, and we will revisit the result later
in that context. The other earlier results include those of Patel and Toda (1980)
and Yedavalli (1985).

Theorem 7.7.1. Let A be a stable matrix and let the perturbation matrix E
be given by

-
E=) pkE, (1.7.2)

i=1
where E;,i=1,...,r are matrices determined by structure of the

perturbations.

Section 7.7: ROBUST STABILITY 231

Let Q be a symmetric positive definite matrix and X be a unique symmetric
positive definite solution of the Lyapunov equation:

XA+ ATX +0=0. (1.1.3)
Then the system (7.7.1) remains stable for all p; satisfying
Z Ip | mm(Q)
l
Zz 1 l’L
where oyin(Q) denotes the minimum singular value of Q and u; is given by

pi =IETX + XEi .

Example 7.7.1. Letr = 1, p; = 1. Take

0.0668 0.0120 0.0262
E =FE;=]0.0935 0.0202 0.0298
0.0412 0.0103 0.0313

—4.1793 9.712 1.3649

Let A = 0 —1.0827 0.3796
0 0 —9.4673
Choose Q = 21.

Then, uy =||E1TX + X E1]l2= 0.7199, and the right-hand side of (7.7.3) is 7.7185.
Since |p3| = 1 < 7.7185, the matrix A + E is stable.

A result similar to that stated in Theorem 7.7.1 was also proved by Zhou and
Khargonekar (1987). We state the result below.

Theorem 7.7.2. Let A be a stable matrix and let E be given by (7.7.2). Let X
be the unique symmetric positive definite solution of (7.7.3). Define

= (EfX+XE)/2, i=12,...,r (1.7.4)

and
Xe = (Xl, X2, ey Xr).

Then (1.7.1) remains stable if

r
Zpk or Z | Pilomax (X)) < 1
max(Xe) i=1

1
or |Pi|<'—r‘—‘—, i=1,...,r (7.7.5)

Omax (Z |X; |>
i=1

232 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Remark

e It should be noted that Theorems 7.7.1 and 7.7.2 and others in Patel and
Toda (1980) and Yedavalli (1985) all give only sufficient conditions for
robust stability. A number of other sufficient conditions can be found in the
book by Boyd et al. (1994).

7.8 THE STRUCTURED STABILITY RADIUS

In Section 7.6, we introduced the concept of the distance of a stable matrix from the
set of unstable matrices. Here we specialize this concept to “structured stability,”
meaning that we are now interested in finding the distance from a stable matrix to
the set of unstable matrices, where the distance is measured by the size of the
additive perturbations of the form B AC, with B and C fixed, and A variable.

Let A, B, and C be, respectively, n x n, n x m, and r x n matrices over the field
F (F can be C or R). Then the (structured) stability radius of the matrix triple
(A, B, C) is defined as

rr(A, B, C) =inf{o(A) : A € F"*" and A + BAC isunstable }, (7.8.1)

where o (M) following the notation of Qiu er al. (1995), denotes the
largest singular value of M (ie., 6(M) = onmax(M)). For real matrices
(A, B, C), rr(A, B, C) s called the real stability radius and, for complex matri-
ces (A, B, C), rc(A, B, C) is called the complex stability radius. The stability
radius, thus, determines the magnitude of the smallest perturbation needed
to destroy the stability of the system.

“Stability” here is referred to as either continuous-stability (with respect to the
left half-plane) or discrete-stability (with respect to the unit circle).

Let 9C, denote the boundary of either the half plane or the unit circle. Let A be
stable or discrete-stable.

Then,

rr(A, B, C) = inf{G (A)|A € F™*" and A + BAC has an eigenvalue on 3C,}.

il

ig{: inf{o (A)|A € F™*" and det(s] — A — BAC) = 0} (7.8.2)
5€3C,q

inf inf{G (A)|A € F™ and det(I — AG(s)) = 0},
s€dC,

where G(s) = C(s] — A)"!B.
Thus, given a complex r x m matrix M, the stability radius problem reduces to
the problem of computing:

up(M) = [inf{6(A) : A € F™ and det(I — AM) = 0}]7".

Section 7.8: THE STRUCTURED STABILITY RADIUS 233

The Complex Stability Radius

It is easy to see that
uc(M) = o (M).

Thus, we have the following formula for the complex stability radius.

Theorem 7.8.1. The Complex Stability Radius Formula

_ —1
re(A, B, C) = [sigggU(G(s))} : (7.8.3)

The Real Stability Radius

If F is R, then according to the above we have

-1
rr(A, B,C) = { sup ugrlC(sl — A)_IB]} . (7.8.4)
sedC,

For the real stability radius, the major problem is then is the problem of computing
URr(M), given M.

The following important formula for computing ur(M) has been recently
obtained by Qiu et al. (1995). We quote the formula from this paper. The proof is
involved and we refer the readers to the paper for the proof. Following the nota-
tion of this paper, we denote the second largest singular value of M by o> (M),
and so on.

Denote the real and imaginary parts of a complex matrix M by Re(M) and
Im(M), respectively. That is, M = Re(M) + jIm(M).

Then the following result holds:

Re(M) —yIm(M)

M) = _inf 1 785
(M) }1611(10,1]0’2 ;Im(M) Re(M) ()

The function to be minimized is a unimodular function on (0, 1].
Furthermore, if rank(Im(M)) = A, then

ur(M) = max{G (U; Re(M)), 5 (Re(M)V2),
where U, and V; are defined by the SVD of Im(M), that is, they satisfy

Im(M) = (U1, Uy} [oaman o } v, val'.

Note that since the function to be minimized is unimodular, any local minimum is
also a global minimum.

234 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Notes
@) rr(A, B, C) > rc(A, B, C). (7.8.6)
(i) The ratio rr(A, B, C)/rc(A, B, C) can be arbitrarily large.

The following example taken from Hinrichsen and Pritchard (1990)
illustrates (ii).

Example 7.8.1. Let

and
C =(1,0).

Then the transfer function:
—€
Gis)=C(jol —AY 'B= —————.
(®) (o) 1 —?+ jwe
By (7.8.4), the real stability radius:
rr(A, B,C) = 1/e.

Since

€2

Glw))f=—or———,
IG(jw)l =D + 2o

it is easy to see that IG(ja))I2 is maximized when w? = 1 — €2/2, if € < V2. So, by
(7.8.3)
r2(A, B,C) =1—(2/4).

Thus, if € is considered as a parameter, then rc(A, B, C) is always bounded by 1
whereas rr(A, B, C) can be made arbitrarily large by choosing € small enough.

Specialization of the Stability Radius to the Distance from Unstable Matrices

From (7.8.3) we immediately have the following relation between the distance to
an unstable system and the stability radius:

B=rc(A, ILI)=minonn(A — jowl) = B(A).
welR
Also, the following formula for 8(A), when A is a real stable matrix, can be proved.

Theorem 7.8.2. Let A be a real stable matrix. Then

B(A) (A 1D ' A —Re(sl) —yIm(sl) 787
=r , I, 1) = min max _ (78
R 5€dC, ye(0,1] 721 %Im(s[) A —Re(sI)

Note: For each fixed s, the function in (7.8.7) to be maximized is quasiconcave.

Section 7.9: SOME SELECTED SOFTWARE 235

7.9 SOME SELECTED SOFTWARE
7.9.1 MATLAB Control System Toolbox

norm—Computes the H>-norm of the system.

bode—Computes the magnitude and phase of the frequency response, which
are used to analyze stability and robust stability.

nyquist—Calculates the Nyquist frequency response. System properties such as
gain margin, phase margin, and stability can be analyzed using Nyquist plots.
(The gain margin and phase margin are widely used in classical control theory
as measures of robust stability).

gram controllability and observability grammrians.

7.9.2 MATCONTROL

INERTIA Determining the inertia and stability of a matrix without solving a
matrix equation or computing eigenvalues

H2NRMCG Finding H,-norm using the controllability Grammians

H2NRMOG Finding H>-norm using the observability Grammian

DISSTABC Determining the distance to the continuous-time stability

DISSTABD Determining the distance to the discrete-time stability

7.9.3 SLICOT

ABI3BD H; or L, norm of a system
ABI13ED Complex stability radius using bisection
ABI3FD Complex stability radius using bisection and SVD

7.10 SUMMARY AND REVIEW

The stability of the system:
x(t) = Ax(t)

or that of
x(k+ 1) = Ax(k)

is essentially governed by the eigenvalues of the matrix A.

Mathematical Criteria of Stability

The continuous-time system x(#) = Ax(z) is asymptotically stable if and only if
the eigenvalues of A are all in the left half plane (Theorem 7.2.1). Similarly, the
discrete-time system x(k + 1) = Ax(k) is asymptotically stable if and only if all
the eigenvalues of A are inside the unit circle. (Theorem 7.3.1). Various Lyapunov

236 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

stability theorems (Theorems 7.2.3-7.2.9, and Theorem 7.3.2) have been stated
and proved.

The Inertia of a Matrix

Two important inertia theorems (Theorems 7.4.1 and 7.4.2) and the classical
Sylvester Law of Inertia have been stated. These inertia theorems generalize the
Lyapunov stability results.

Methods for Determining Stability and Inertia

The Characteristic Polynomial Approach and the Matrix Equation Approach
are two classical approaches for determining the stability of a system and the inertia
of a matrix. Both these approaches have some computational drawbacks.

The zeros of a polynomial may be extremely sensitive to small perturbations.
Furthermore, the numerical methods to compute the characteristic polynomial of
a matrix are usually unstable.

The most numerically effective method (The Schur method, described in Chap-
ter 8), for solving a Lyapunov matrix equation is based on reduction of the matrix
A to RSF, and the RSF displays the eigenvalues of A or the eigenvalues can be
trivially computed out of this form.

Thus, the characteristic equation approach is not numerically viable and
the matrix equation approach for stability and inertia is counterproductive.

Hence, the most numerically effective approach for stability and inertia is
the eigenvalue approach: compute all the eigenvalues of A.

By explicitly computing the eigenvalues, one, however, gets much more than
what is needed for stability and inertia. Furthermore, since the eigenvalues of a
matrix can be very sensitive to small perturbations, determining the inertia and
stability by computing explicitly the eigenvalues can be misleading.

Animplicit matrix equation approach (Algorithm 7.5.1), which does not require
computation of eigenvalues nor explicit solution of any matrix equation has been
described. Algorithm 7.5.1 is about three times faster than the eigenvalue
method (According to the flop-count).

Distance to an Unstable System

Given a stable matrix A, the quantity S(A) defined by
B(A)Y =min{||E||r suchthat A+ E € U},

where U is the set of n x n matrices with at least one eigenvalue on the imaginary
axis, is the distance to the set of unstable matrices.

Section 7.11: CHAPTER NOTES AND FURTHER READING 237

A bisection algorithm (Algoerithm 7.6.1) based on knowing if a certain
Hamiltonian matrix (the matrix (7.6.3)) has a purely imaginary eigenvalue, is
described. The algorithm is based on Theorem 7.6.1, which displays a relationship
between a spectral property of the Hamiltonian matrix and the quantity g(A).

The discrete-analog of S(A) is defined to be

y(A) = min{||E|| for some 6 € R; ¢'® € Q(A + E)).

An analog of Theorem 7.6.1 (Theorem 7.6.3) is stated and a bisection algorithm
(Algorithm 7.6.2) based on this theorem is described.

Robust Stability

Given a stable matrix A, one naturally wonders if the matrix A + F remains stable,
where F is a certain perturbed matrix. Two bounds for E guaranteeing the stability
of the perturbed matrix (A4 E) are given, in terms of soluttons of certain Lyapunov
equations (Theorems 7.7.1 and 7.7.2).

Stability Radius

Section 7.8 deals with the structured stability radius. If the perturbations are of
the form BAC, where A is an unknown perturbation matrix, then it is of interest
to know the size of smallest A (measured using 2-norm) that will destabilize the
perturbed matrix A + BAC. In this context, the concept of stability radius is
introduced, and formulas both for the complex stability radius (Theorem 7.8.1)
and the real stability radius are stated.

Hj,-Norm

The H,-norm of a stable transfer, transfer function measures the steady-state
covariance of the output response y = Gv to the white noise inputs v. An algo-
rithm (Algorithm 7.2.1) for computing the Hz-norm, based on computing the
controllability or observability Grammian via Lyapunov equations is given.

7.11 CHAPTER NOTES AND FURTHER READING

A voluminous work has been published on Lyapunov stability theory since the
historical monograph ‘“Probléeme de la stabilité du Mouvement” was published
by the Russian mathematician A.M. Liapunov in 1892. Some of the books that
exclusively deal with Lyapunov stability are those by LaSalle and Lefschetz (1961),
Lehnigk (1966), etc., and a good account of diagonal stability and diagonal-type

238 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Lyapunov functions appears in the recent book by Kaszkurewicz and Bhaya (1999).
For a good account of BIBO and BIBS stability, see the book by DeCarlo (1989).

In Section 7.2, we have just given a very brief account of the Lyapunov stability
adapted to the linear case. The matrix equation version in the linear case seems to
have first appeared in the book by Gantmacher (1959, Vol. II). There exist many
proofs of Lyapunov stability theorem (Theorem 7.2.3). The proof given here is
along the line of Bellman (1960). See also Hahn (1955). The proofs of the other
theorems in this section can be found in most linear systems books, including the
books by Chen (1984), Kailath (1980), Wonham (1986), etc.

The inertia theory has been mainly confined to the linear algebra literature. An
excellent account of its control theoretic applications appear in Glover (1984) and
in the book by Zhou et al. (1996).

There are also a few papers on the inertia theory with respect to more general
regions in the complex plane other than the half-planes and the unit circle given in
Section 7.4. Inertia theory has been applied to obtain elementary proofs of several
classical root-location problems in Datta (1978a, 1978b, 1979). For an account of
this work, see the recent survey paper of the author (Datta 1999). The inertia and
stability algorithm is due to Carlson and Datta (1979b). The algorithm has been
modified by Datta and Datta (1987) and extended to other regions in the complex
plane in Datta and Datta (1986).

The concept of distance to instability was perhaps introduced by Van Loan
(1985). The bisection algorithm (Algorithm 7.6.1) is due to Byers (1988).

There are now several good books on robust control. These include the books by
Dorato and Yedavalli (1989), Hinrichsen and Martensson (1990), Barmish (1994),
Bhattacharyya et al. (1995), Green and Limebeer (1995), Zhou et al. (1996). The
concept of complex stability radius as robustness measures for stable matrices (in
the form given here) was introduced by Hinrichsen and Pritchard (1986). There are
several good papers on this subject in the book “Control of uncertain systems,”
edited by Hinrichsen and Martensson (1990). Discussion of Section 7.8 has been
taken from Qiu et al. (1995).

Exercises

7.1 Verify that the spring-mass system of Example 5.2.3 is not asymptotically stable.
What is the physical interpretation of the above statement?

7.2 Consider the problem of a cart with two sticks considered in Exercise 5.3 of Chapter 5.
Take My = My = M.
(a) Show that at the equilibrium states, X; and X, are nonzero and X3 = x4 = 0.

What is the physical significance of this?

(b) Show that the system is not asymptotically stable.

7.3 Consider the stick-balancing problem in Example 5.2.4. Give a mathematical expla-
nation of the fact that without an input to the control system, if the stick is not upright
with zero velocity, it will fall.

74

7.5

7.6

7.7

7.8

79
7.10

711

Section 7.11: CHAPTER NOTES AND FURTHER READING 239

Give a proof of Theorem 7.3.2 from that of Theorem 7.2.3 using the matrix version
of the Cayley transformation.

Prove that the system (7.2.2) is BIBO if and only if G(s) = C(s] — A)“1 B has
every pole with negative real part.

Prove that the discrete-time system:

Xk+1 = Axg + Buy

is BIBO stable if and only if all the poles of the transfer functions lie inside the open
unit circle of the z-plane.

Prove that the discrete-time system in Exercise 7.6 is BIBS if and only if (i) all the
eigenvalues of A lie in the closed unit disc, (ii) the eigenvalues on the unit disc have
multiplicity 1 in the minimal polynomial of A, and (iii) the unit circle modes are
uncontrollable (consult DeCarlo (1989, p. 422)).

Let X and M be the symmetric positive definite matrices such that

XA+ ATX +20X = - M,

then prove that all eigenvalues of A have a real part that is less than —A.
Prove that A is a stable matrix if and only if HeAt I| < k, for some k > 0.
Prove that if M is positive definite and the discrete Lyapunov equation:

X-ATXA=M

has a symmetric positive definite solution X, then A is discrete-stable.
Prove the following results:

(a) Suppose that A is discrete-stable. Then (A, B) is controllable if and only if the
discrete Lyapunov equation:

X - AxAT = BBT

has a unique positive definite solution.
(b) Suppose that (A, B) is controllable. Then A is discrete-stable if and only if the
discrete Lyapunov equation:

X — AXAY = BBT

has a unique positive definite solution
(c) Supposethat (A, C) is observable. Then A is discrete-stable if and only if there
exists a unique positive definite solution X of the discrete Lyapunov equation:

x-ATxa=CTc.

240

7.12

7.13

7.14

7.15

7.16

717

7.18
7.19

Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

(Glover 1984).
Let

yT{(X1 O
X=X _(O x2>

with 6 (X) = 0. Suppose that

AX + XAT = —BBT,
ATx + x4 = -CTc.

A A12) <Bl)
A = N B == y
(AZI A By

and C = (Cy, (), conformably with X. Then prove the following:

Partition

(@ IfyXy) =1,thenw(A1) =0.
(b) If5(A) = 0and A;(X?) # A;(X3) Vi, j, then In(Ay;) = In(—X;) and
In(A;) = In(—X3). (Here A; (M) denotes the ith eigenvalue of M.)

Prove that in Theorem 7.4.2, the assumption that (AT, M) is controllable implies

that §(X) = 0.

Let A be a stable matrix. Prove that (i) S(A) = rm% Omin(A — jol), (ii) B(A) <
we

la(A)|, where a(A) = max{Re())|X is an eigenvalue of A}.

Give an example to show that the formula of 8(A) given by (7.6.2) can be arbitrary
large (Consult the paper of Demmel (1987)).

Construct an example to show that a matrix A can be very near to an unstable matrix
without a(A), defined in Exercise 7.14, being small.

Let Arg(z) represent the argument of the complex number z. Let r > O and p € C,
then prove that r -1 y (r(A+ plI)) is the distance from A to the nearest matrix with an
eigenvalue on the circle {z € C ||z — p]| = r~1}, where y (M) denotes the distance
of a discrete-stable matrix M to instability, defined by (7.6.10).

Use the result to develop an algorithm to estimate this quantity.

Give proofs of Theorems 7.7.1 and 7.7.2 (consult the associated papers, as necessary).
Consider the perturbed system:

x=(A+ BKO)x,

where

A = diag(—1, -2, -3), B =

1
0
1
(1 0 1 1+ K 0
C‘(o 1 o)’ K‘(0 —1+k2)’
and k; and k, are two uncertain parameters varying in the intervals around zero. Use

each of the Theorems 7.7.1 and 7.7.2 to calculate and compare the allowable bounds
on k1 and k7 that guarantee the stability of A + BKC.

b O

Section 7.11: CHAPTER NOTES AND FURTHER READING 241

7.20 Construct an example to verify each of the followings:

(a) The real stability radius is always greater than or equal to the complex stability
radius.

(b) The ratio of the real stability radius to the complex stability radius can be made
arbitrarily large.

7.21 Prove that the Hy-norm of the discrete-time transfer matrix

G(2) = [2 (ﬂ

IG@)I3 = Trace(cc2cT) = BT0L B,
where C 8 and 08 are, respectively, the discrete-time controllability and observabil-
ity Grammians given by (7.3.6) and (7.3.7), respectively. Write down a Lyapunov
equation based algorithm to compute the H,-norm of a discrete-time system based

on the above formula.
7.22 Give a proof of Theorem 7.8.2.

can be computed as

References

Ackermann J. Robust Control: Systems with Uncertain Physical Parameters, Springer-
Verlag, New York, 1993.

Barmish B.R. New Tools for Robustness of Linear Systems, McMillan Publishing Co.,
New York, 1994.

Bellman R. Introduction to Matrix Analysis, McGraw Hill, New York, 1960.

Bhattacharyya S.P., Chapellat H., and Keel L.H. In Robust Control: the Parametric
Approach, (Thomas Kailath, ed.), Prentice Hall Information and Systems Sciences
Series, Prentice Hall, Upper Saddle River, NJ, 1995.

Boyd S., El Ghaoui L., Feron E., and Balakrishnan V. “Linear Matrix Inequalities in System
and Control Theory,” Studies Appl Math, SIAM, Vol. 15, Philadelphia, 1994.

Bunch J.R. and Parlett B.N. “Direct methods for solving symmetric indefinite systems of
linear equations,” SIAM J. Numer. Anal., Vol. §, pp. 639-655, 1971.

Bunch J.R. and Kaufman L. “Some stable methods for calculating inertia and solving
symmetric linear systems,” Math. Comp., Vol. 31, pp. 162-179, 1977.

Bunch J.R. “Analysis of the diagonal pivoting method,” SIAM J. Numer. Anal., Vol. 8,
pp. 656—680, 1971.

Byers R. “A bisection method for measuring the distance of a stable matrix to the unstable
matrices,” SIAM J. Sci. Stat. Comput., Vol. 9(5), pp. 875-881, 1988.

Carlson D. and Datta B.N. “The Lyapunov matrix equation SA + A*S = S*B*BS,” Lin.
Alg. Appl., Vol. 28, pp. 43-52, 1979a.

Carlson D. and Datta B.N. “On the effective computation of the inertia of a nonhermitian
matrix,” Numer. Math., Vol. 33, pp. 315-322, 1979b.

Carlson D. and Schneider H. “Inertia theorems for matrices: the semidefinite case,” J. Math.
Anal. Appl., Vol. 6, pp. 430446, 1963.

Chen C.-T. “A generalization of the inertia theorem,” SIAM J. Appl. Math., Vol. 25,
pp. 158-161, 1973.

242 Chapter 7: STABILITY, INERTIA, AND ROBUST STABILITY

Chen C.-T. Linear Systems Theory and Design, College Publishing, New York, 1984.

Datta B.N. “On the Routh-Hurwitz-Fujiwara and the Schur-Cohn-Fujiwara theorems for
the root-separation problems,” Lin. Alg. Appl., Vol. 22, pp. 135-141, 1978a.

Datta B.N. “An elementary proof of the stability criterion of Liénard and Chipart,” Lin. Alg.
Appl., Vol. 122, pp. 89-96, 1978b.

Datta B.N. “Applications of Hankel matrices of Markov parameters to the solutions of
the Routh-Hurwitz and the Schur-Cohn problems,” J. Math. Anal. Appl., Vol. 69,
pp. 276-290, 1979.

Datta B.N. “Matrix equations, matrix polynomial, and the number of zeros of a polynomial
inside the unit circle,” Lin. Multilin. Alg. Vol. 9, pp. 63-68, 1980.

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA, 1995.

Datta B.N. “Stability and Inertia,” Lin. Alg. Appl., Vol. 302/303, pp. 563-600, 1999.

Datta B.N. and Datta K. “ On finding eigenvalue distribution of a matrix in several regions
of the complex plane,” IEEE Trans. Autom. Control, Vol. AC-31, pp. 445447, 1986.

Datta B.N. and Datta K. “The matrix equation XA = AT X and an associated algorithm for
inertia and stability,” Lin. Alg. Appl., Vol. 97, pp. 103-109, 1987.

DeCarloR.A. Linear Systems—A State Variable Approach with Numerical Implementation,
Prentice Hall, Englewood Cliffs, NJ, 1989.

Demmel J.W. “A Counterexample for two conjectures about stability,” IEEE Trans. Autom.
Control, Vol. AC-32, pp. 340-342, 1987.

Dorato P. and Yedavalli R.K. (eds.), Recent Advances in Robust Control, IEEE Press,
New York, 1989.

Gantmacher F.R. The Theory of Matrices, Vol. 1 and Vol. I, Chelsea, New York, 1959.

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University
Press, Baltimore, MD, 1996.

Glover K. “All optimal Hankel-norm approximation of linear multivariable systems and
their Lo error bounds,” Int. J. Control, Vol. 39, pp. 1115-1193, 1984.

Green M. and Limebeer D.J. Linear Robust Control, (Thomas Kailath, ed.), Prentice Hall
Information and Systems Sciences Series, Prentice Hall, NJ, 1995.

Hahn W. “Eine Bemerkung zur zweiten methode von Lyapunov,” Math. Nachr., Vol. 14,
pp. 349-354, 1955.

Hewer G.A. and Kenney C.S. “The sensitivity of stable Lyapunov equations,” SIAM J.
Control Optimiz., Vol. 26, pp. 321-344, 1988.

Hinrichsen D. and Martensson B. (eds.), Control of Uncertain Systems, Birkhauser, Berlin,
1990.

Hinrichsen D. and Pritchard A.J. Stability radii of linear systems, Syst. Control Lett., Vol. 7,
pp. 1-10, 1986.

Hinrichsen D. and Pritchard A.J. Real and complex stability radii: a survey, Control of
Uncertain Systems, (D. Hinrichsen and Martensson B., eds.), Birkhauser, Berlin, 1990.

Horn R.A. and Johnson C.R. Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

Kaszkurewicz E. and Bhaya A. Matrix Diagonal Stability in Systems and Computations,
Birkhauser, Boston, 1999.

Keel L.H., Bhattacharyya S.P., and Howze J.W. “Robust control with structured perturba-
tions,” IEEE Trans. Automat. Control, Vol. 33, pp. 68-78, 1988.

Section 7.11: CHAPTER NOTES AND FURTHER READING 243

LaSalle J.P. and Lefschetz S. Stability by Lyapunov’s Direct Method with Applications,
Academic Press, New York, 1961.

Lehnigk S.H. Stability Theorems for Linear Motions with an Introduction to Lyapunov’s
Direct Method, Prentice Hall, Englewood Cliffs, NJ, 1966.

Lu L.Z. “A direct method for the solution of the unit circle problem,” 1987 (unpublished
manuscript).

Luenberger D.G. Introduction to Dynamic Systems: Theory, Models, and Applications, John
Wiley & Sons, New York, 1979.

Liapunov A.M. “Probléme général de la stabilité du mouvement,” Comm. Math. Soc.
Kharkov, 1892; Ann. Fac. Sci., Toulouse, Vol. 9, 1907; Ann. Math. Studies, Vol. 17,
1947; Princeton University Press, Princeton, NJ, 1949,

Malyshev A. and Sadkane M. “On the stability of large matrices,” J. Comput. Appl. Math.,
Vol. 102, pp. 303-313, 1999.

Marden M. Geometry of Polynomials, American Mathematical Society, Providence, RI,
1966.

Ostrowski A. and Schneider H. “Some theorems on the inertia of general matrices,” J. Math.
Anal. Appl., Vol. 4, pp. 72-84, 1962.

Patel R.V. and Toda M. “Quantitative measures of robustness for multivariable systems,”
Proc. Amer. Control Conf. , San Francisco, 1980.

Petkov P., Christov N.D., and Konstantinov M.M., Computational Methods for Linear
Control Systems, Prentice Hall, London, 1991,

Pierce D. A Computational Comparison of Four Methods which Compute the Inertia of a
General Matrix, M. Sc. Thesis, Northern Illinois University, DeKalb, IL, 1983.

Qiu L., Bernhardsson B., Rantzer B., Davison E.J., Young P.M., and Doyle J.C. “A formula
for computation of the real stability radius,” Automatica, Vol. 31, pp. 879-890, 1995.

Rudin W. Real and Complex Analysis, McGraw Hill, New York, 1966.

Taussky O. “A generalization of a theorem of Lyapunov,” J. Soc. Ind. Appl. Math., Vol. 9,
pp. 640643, 1961.

Taussky O. “Matrices C with C"* — 0,” J. Algebra, Vol. 1 pp. 5-10, 1964.

Van Loan C.F. “How near is a stable matrix to an unstable matrix,” in (Brualdi R, et al.,
eds.), Contemporary Math., American Mathematical Society, Providence, RI, Vol. 47,
pp. 465-477, 1985.

Wilkinson J.H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

Wimmer H.K. On the Ostrowski-Schneider inertia theorem, J. Math. Anal. Appl., Vol. 41,
pp- 164-169, 1973.

Wimmer H.K. “Inertia theorems for matrices, controllability, and linear vibrations,” Lin.
Alg. Appl., Vol. 8, pp. 337-343, 1974.

Wimmer H.K. and Ziebur A.D. “Remarks on inertia theorems for matrices,” Czech. Math.
J. Vol. 25, pp. 556-561, 1975.

Wonham W.M. Linear Multivariable Systems, Springer-Verlag, New York, 1986.

Yedavalli R.K. “Improved measures of stability robustness for linear state space models,”
IEEE Trans. Autom. Control, Vol. AC-30, pp. 577-579, 1985.

Zhou K., Doyle J.C., and Glover K. Robust Optimal Control, Prentice Hall, Upper Saddle
River, NJ, 1996.

Zhou K. and Khargonekar P.P. “Stability robustness for linear state-space models with
structured uncertainty,” IEEE Trans. Autom. Control, Vol. AC-32, pp. 621-623, 1987.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 8

NUMERICAL SOLUTIONS AND
CONDITIONING OF LYAPUNOV
AND SYLVESTER EQUATIONS

Topics covered

e Existence and Uniqueness Results for Solutions of Lyapunov and Sylvester
Equations
Perturbation Analyses and Condition Numbers
The Schur and the Hessenberg—Schur Methods (Both Continuous and
| Discrete-Time Cases)
Backward Error Analyses of the Schur and the Hessenberg—Schur Methods
Direct Computations of Cholesky Factors of Symmetric Positive Definite
Solutions of Lyapunov Equations

8.1 INTRODUCTION

In Chapter 7, we have seen that the Lyapunov equations arise in stability
and robust stability analyses, in determining controllability and observability
Grammians, and in computing H,-norm. The solutions of Lyapunov equations
are also needed for the implementation of some iterative methods for solving
algebraic Riccati equations (AREs), such as Newton’s methods (Chapter 13).
The important role of Lyapunov equations in these practical applications warrants
discussion of numerically viable techniques for their solutions.
The continuous-time Lyapunov equation:

XA+ATX=C (8.1.1)

is a special case of another classical matrix equation, known as the Sylvester
equation:
XA+BX=C. (8.1.2)

245

246 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Similarly, the discrete-time Lyapunov equation:
ATXA-X=cC

is a special case of the discrete-time Sylvester equation:
BXA-X=C.

(Note that the matrices A, B, C in the above equations are not necessarily the
system matrices.)

The Sylvester equations also arise in a wide variety of applications. For example,
we will see in Chapter 12 that a variation of the Sylvester equation, known as
the Sylvester-observer equation, arises in the construction of observers and in
solutions of the eigenvalue assignment (EVA) (or pole-placement) problems. The
Sylvester equation also arises in other areas of applied mathematics. For example,
the numerical solution of elliptic boundary value problems can be formulated in
terms of the solution of the Sylvester equation (Starke and Niethammer 1991). The
solution of the Sylvester equation is also needed in the block diagonalization of a
matrix by a similarity transformation (see Datta 1995) and Golub and Van Loan
(1996). Once a matrix is transformed to a block diagonal form using a similarity
transformation, the block diagonal form can then be conveniently used to compute
the matrix exponential e’

In this chapter, we will first develop the basic theories on the existence and
uniqueness of solutions of the Sylvester and Lyapunov equations (Section 8.2),
next discuss perturbation theories (Section 8.3), and then finally describe
computational methods (Sections 8.5 and 8.6).

The continuous-time Lyapunov equation (8.1.1) and the continuous-time
Sylvester equation (8.1.2) will be referred to as just the Lyapunov and Sylvester
equations, respectively.

The following methods are discussed in this chapter. They have excellent
numerical properties and are recommended for use in practice:

e The Schur methods for the Lyapunov equations (Sections 8.5.2 and 8.5.4).
The Hessenberg—Schur Method for the Sylvester equations (Algo-
rithm 8.5.1 and Section 8.5.7).

e The modified Schur methods for the Cholesky factors of the Lyapunov
equations (Algorithms 8.6.1 and 8.6.2).

Besides, a Hessenberg method (method based on Hessenberg decomposition
only) for the Sylvester equation AX+X B = C has been described in Section 8.5.6.
The method is more efficient than the Hessenberg—Schur method, but numerical
stability of this method has not been investigated yet. At present, the method is
mostly of theoretical interest only.

Section 8.2: THE EXISTENCE AND UNIQUENESS OF SOLUTIONS 247

Because of possible numerical instabilities, solving the Lyapunov and
Sylvester equations via the Jordan canonical form (JCF) or a companion form
of the matrix A cannot be recommended for use in practice (see discussions
in Section 8.5.1).

8.2 THE EXISTENCE AND UNIQUENESS OF SOLUTIONS

In most numerical methods for solving matrix equations, it is implicitly assumed
that the equation to be solved has a unique solution, and the methods then construct
the unique solution. Thus, the results on the existence and uniqueness of solutions
of the Sylvester and Lyapunov equations are of importance. We present some of
these results in this section.

8.2.1 The Sylvester Equation: XA + BX = C

Assume that the matrices A, B, and C are of dimensionsn x n, m xm,and m x n,
respectively. Then the following is the fundamental result on the existence and
uniqueness of the Sylvester equation solution.

Theorem 8.2.1. Uniqueness of the Sylvester Equation Solution. Let
Al, ..., Ap be the eigenvalues of A, and (1, . .., Ly, be the eigenvalues of B.
Then the Sylvester equation (8.1.2) has a unique solution X if and only if
Ai+pj #O0foralli =1,...,nand j = 1,...,m. In other words, the
Sylvester equation has a unique solution if and only if A and —B do not
have a common eigenvalue.

Proof. The Sylvester equation XA + BX = C is equivalent to the nm x nm
linear system

Px =c, (8.2.1)
where P = (I, ® B) + (AT ® I,,),
T
x=vec(X) = (X110, ..., Xm1, X12, X225+ 5 Xm2s -+ oy Xln> X2ms oo+ » Xmin) s
T
c=vec(C) =(C11, .-+ Cm1:C12,€225 -+ Cm2s -+ -+ Clns C2ns - - -+ C;an) -

Thus, the Sylvester equation has a unique solution if and only if P is non-
singular.

Here W ® Z is the Kronecker product of W and Z. Recall from Chapter 2
that if W = (w;;) and Z = (z;;) are two matrices of orders p x p and r x r,

248 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

respectively, then their Kronecker product W @ Z is defined by

wnZ wpZ - wpZ
wnZ wpZ - wypZ

W®Z= (8.2.2)
wp1Z wpZ e WppZ

Thus, the Sylvester equation (8.1.2) has a unique solution if and only if the matrix
P of the system (8.2.1) is nonsingular.

Now, the eigenvalues of the matrix P are the am numbers A; + u;, where
i=1,...,nand j =1,..., m (Horn and Johnson 1991). Since the determinant
of a matrix is equal to the product of its eigenvalues, this means that P is nonsingular
ifandonlyif A; + u; #0,fori =1,...,n,and j=1,....,m. A

8.2.2 The Lyapunov Equation: XA + ATx=cC

Since the Lyapunov equation (8.1.1) is a special case of the Sylvester (8.1.2)
equation, the following corollary is immediate.

Corollary 8.2.1. Uniqueness of the Lyapunov Equation Solution. Let A1,
A2, ..., Ay be the eigenvalues of A. Then the Lyapunov equation (8.1.1) has
a unique solution X ifand only if ,; +A; #0, i =1,...,n; j=1,...,n

8.2.3 The Discrete Lyapunov Equation: ATxa-Xx=cC

The following result on the uniqueness of the solution X of the discrete Lyapunov
equation
ATXA-X=cC (8.2.3)

can be established in the same way as in the proof of Theorem 8.2.1.

Theorem 8.2.2. Uniqueness of the Discrete Lyapunov Equation Solution.
Let)y, ..., A, be the n eigenvalues of A. Then the discrete Lyapunov equation
(8.2.3) has a unique solution X if and only if MiAj # L,i =1,...,n;j =
1,...,n.

Remark

e Inthe above theorems, we have given results only for the uniqueness of solu-
tions of the Sylvester and Lyapunov equations. However, there are certain
control problems such as the construction of Luenberger observer and
the EVA problems, etc., that require nonsingular or full-rank solutions
of the Sylvester equations (see Chapter 12).

The nonsingularity of the unique solution of the Sylvester equation has been
completely characterized recently by Datta er al. (1997). Also, partial results

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 249

on nonsingularity of the Sylvester equation were obtained earlier by DeSouza
and Bhattacharyya (1981), and Hearon (1977). We will state these results in
Chapter 12.

8.3 PERTURBATION ANALYSIS AND THE CONDITION NUMBERS
8.3.1 Perturbation Analysis for the Sylvester Equation

In this section, we study perturbation analyses of the Sylvester and Lyapunov
equations and identify the condition numbers for these problems. The results are
important in assessing the accuracy of the solution obtained by a numerical algo-
rithm. We also present an algorithm (Algorithm 8.3.1) for estimating the sep
function that arises in computing the condition number of the Sylvester equation.

Let AA, AB, AC, and AX be the perturbations, respectively, in the matrices
A, B,C,and X.Let X be the solution of the perturbed problem. That is, X satisfies

X(A+ AA)+ (B+AB)X =C + AC. (8.3.1)

Then, proceeding as in the case of perturbation analysis for the linear system
problem applied to the system (8.2.1), the following result (see Higham 1996) can
be proved.

Theorem 8.3.1. Perturbation Theorem for the Sylvester Equation. Let the
Sylvester equation X A + BX = C have a unique solution X for C # 0.
Ler

IAAlE 1AB|E IIACHF} (8.3.2)

e:max[5)
o B 4

where o, B, and y are tolerances such that ||AAlf < e«, ||AB|lr < €8, and

IACHF < ey.
Then,
IAX|F 11X — Xlg Ve
= < v 3€d, (8.3.3)
I X WF I XIIF
X
where 8 = | P, T AUXIE Ty
I Xl

Sep Function and its Role in Perturbation Results for the Sylvester Equation
Definition 8.3.1. The separation of two matrices A and B, denoted by
sep(A, B), is defined as:

. IAX — XB||p
sep(A, B) = min —————
x#0 [X|F

250

Thus, in terms of the sep function, we have

1
1P~ =

Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

1

(8.3.4)

omin(P) sep(B, —A)’
Using sep function, the inequality (8.3.3) can be re-written as:

JAX | . 1
1XIlF sep(B, —A)

(@+PIXIlE+y
1 Xlg

The perturbation result (8.3.3) clearly depends upon the norm of the solution X.
However, if the relative perturbations in A, B, and C are only of the order of the
machine epsilon, then the following result, independent of || X ||, due to Golub ez al.
(1979), can be established.

Corollary 8.3.1. Assume that the relative perturbationsin A, B, and C are all
of the order of the machine precision u, that is, |AA(r < u|Allg, |AB|F <
plBllg, and | ACIg < pl|CliE.

If X is a unique solution of the Sylvester equation XA + BX = C, C is
nonzero and

1
NAlle +1Ble _ 1 (8.3.5)
sep(B, —A) 2
Then,
X-x A B
I 13 " IAlE + 1 Blle (8.3.6)
1 X1l sep(B, —4)

Example 8.3.1. Consider the Sylvester equation XA + BX = C with

—0.9888 0 0
, B = 0 —-0.9777 0 .
0 0 —0.9666

1 1 1 0.0112
Take X =1 1 1].Then C={0.0223 1.0223 2.0223
1 1 1

1.0334 2.0334

10112 20112
0.0334 '

Now, change the entry (1, 1) of A to 0.999999. Call this perturbed matrix A.
The matrices B and C remain unperturbed.

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 251

The computed solution of the perturbed problem (computed by MATLAB
function lyap)

A 1.0001 0.9920 1.7039
X =1 1.0000 0.9980 1.0882
1.0000 0.9991 1.0259

The relative error in the solution:

IX — Xk
X Ie

= 0.2366.

On the other hand, the relative error in the data:

A—A
1A= Alle _ 4.0825 x 1077,
Al

The phenomenon can be easily explained by noting that sep(B, —A) is small:
sep(B, —A) = 1.4207 x 1079,

Verification of the Bound 8.3.3
Take o = [|Allg, B =|B|lr. andy = |CllF

Then,
_MA- Al _ .
= W = 4.0825 x 10 (Note that |[AB|| = 0 and |AC| = 0).
F
The right-hand side of (8.3.3) is 2.7133.
Since
X-x
X = Xlie = 0.2366,
X le

the inequality (8.3.3) is satisfied.

8.3.2 The Condition Number of the Sylvester Equation

The perturbation bound for the Sylvester equation given in Theorem 8.3.1 does not
take into account the Kronecker structure of the coefficient matrix P. The bound
(8.3.3) can sometimes overestimate the effects of perturbations when A and B are
only perturbed. A much sharper perturbation bound that exploits the Kronecker
structure of P has been given by Higham (1996, p. 318).

Specifically, the following result has been proved.

252 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Theorem 8.3.2. Let

{ [AAllr [[ABllr [[AC|F }
= max s

’ ’

o B 2

where a, B, and y are tolerances given by |AA|r < ea, ||AB| < €B, and
IACH < ey. Let AX denote the perturbation in the solution X of the Sylvester
equation (8.1.2). Let P be defined by (8.2.1).

Then,
AX
I1AXIE _ Ape, (8.3.7)
1 X |le
where
U= P BEXT® In), a(ly ® X), =¥ Imnlll2/ I X IIF. (8.3.8)

The bound (8.3.7) can be attained for any A, B, and C and we shall call the
number ¥ the condition number of the Sylvester equation.

Remark
e Examples can be constructed that show that the bounds (8.3.3) and (8.3.7)
can differ by an arbitrary factor. For details, see Higham (1996).

MATCONTROL note: The condition number given by (8.3.7)—(8.3.8) has been
implemented in MATCONTROL function condsylve.

Example 8.3.2. We verify the results of Theorem 8.3.2 with Example 8.3.1. Take
o = ||Allr = 2.4494. Then, € = 4.0825 x 1077,
The condition number is ¥ = 1.0039 x 10°.

lAX]g

=0.2366 and +/3We = 0.7099.
I XIle

Thaus, the inequality (8.3.7) is verified.

8.3.3 Perturbation Analysis for the Lyapunov Equation
Since the Lyapunov equation XA + ATX = C is a special case of the Sylvester

equation, we immediately have the following Corollary of Theorem 8.3.1.

Corollary 8.3.2. Perturbation Theorem for the Lyapunov Equation. Let X be
the unique solution of the Lyapunov equation XA+ ATX = C; C # 0. Let X be

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 253

the unique solution of the perturbed equation X(A+AA)+(A+0A)TX =C,

where [|AAJF < p|lAllr. (8.3.9)
Assume that
A 1
_HMAle o L (8.3.10)
sep(AT, —A) 4
Then,
IX - X|p I Allg
<8u - :
IXlg sep(A”, —A)

8.3.4 The Condition Number of the Lyapunov Equation
For the Lyapunov equation, the condition number is (Higham (1996, p. 319):

p=1U, ® A"+ AT® L) [((X" ® I,) + (I, ® X)ITT), =y L2]ll2/ I X IF,
where I1 is the vec-permutation matrix given by
n
M= Z (eie]) ® (eje}),
ij=1
and « and y are as defined as:

|AAF <ea and AC = ACT with J|AC|F < €y.

8.3.5 Sensitivity of the Stable Lyapunov Equation

While Corollary 8.3.2 shows that the sensitivity of the Lyapunov equation under
the assumptions (8.3.9) and (8.3.10) depends upon sep(AT, —A), Hewer and
Kenney (1988) have shown that if A is a stable matrix, then the sensitivity can be
determined by means of the 2-norm of the symmetric positive definite solution H
of the equation

HA+A™H =-1.
Specifically, the following result has been proved:

Theorem 8.3.3. Perturbation Result for the Stable Lyapunov Equation. Let A
be stable and let X satisfy XA + ATX = —C. Let AX and AC, respectively,

254 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

be the perturbations in X and C such that

(A+AATX + AX) + (X + AX)(A+ AA) = —(C + AC). (83.11)

Then,
AX AA AC
o <20+ aanan | A IEA] g
X+ AX| A+ AAl - [IC+AC|
where H satisfies the following Lyapunov equation and || - || represents the
2-norm:

HA+ ATH = —1.

Proof. Since A is stable, we may write H = fooo eAT 1A 4t Now from X A +
ATX = —C and (8.3.11), we have

ATAX + AXA = —(AC+ AAT(X + AX) + (X + AX)AA). (83.13)

Since (8.3.13) is a Lyapunov equation in AX and A is stable, we may again write
o0 T
AX = / eV IAC+ AAT(X + AX) + (X + AX)AA)e? dt.
0

Let u and v be the left and right singular vectors of unit length of AX associated
with the largest singular value. Then multiplying the above equation by uT to the
left and by v to the right, we have

o0
IAX] = f ‘uTeATt(AC + AAT(X + AX)
0

+(X + AX)AA)eMv| dt,

< |AC + AAT(X + AX) + (X + AX)AA)|
0
f leAulllle v) dr,
0

xX0
< (IAC| + 211 AANIX + AXII)/O leAulllle® vl de. (8.3.14)

Now, by the Cauchy—Schwarz inequality, we have

00 00 172 00 1/2
[leA ulllle? vl dr < [/ ueA'uuzdt} [/ ne""v||2dr] .
0 0 0

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 255

Again
% 2 % AT
/ NeAtul dt:/ uled teru ds,
0 0

T[/oo ATt At]
=u e’ et dt lu,
0
o0 T
=uTHu, WhereH:/ A e dt
0

Since ||u|l; = 1 and H is symmetric positive definite (because A is stable), we have
uTHu < ||HJ|,

and thus
X
/ leAu|?dt < ||H].
0

0
Similarly f leAv)|>dr < [|H||.

Thus, froom (8.3.14), we have
IAX] < (ACH+21AALIX + AXIDIH]. (8.3.15)
Again from (8.3.11), we have
IC +AC| <2J|A+ AAJlIX + AX]. (8.3.16)
Combining (8.3.15) with (8.3.16), we obtain the desired result. W

Remark

e The results of Theorem 8.3.3 hold for any perturbation.
In particular, if

1ACH < ullCl, IAAN < wll Al

and 8u||AIH|| < (1 — w)/(1 + w), then it can be shown that

AX
—””X““ < SullAIHN — w) ~ Sujl AN H | (8.3.17)

256 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Example 8.3.3. Consider the Lyapunov equation (8.1.1) with

-1 2 3 -2 0.9999 2
A=| 0 -0.0001 3 and C = [0.9999 3.9998 4.9999
0 0 -3 2 4.9999 6

A is stable. The exact solution X of the Lyapunov equation XA + ATX = C is

1 11
X=11 11
1 11

The solution H of the Lyapunov equation HA + ATH = —1I is

0.0001 0.0001 0.0001
H =10*]0.0001 2.4998 2.4999
0.0001 2.4999 2.5000

Since ||H|| = 4.9998 x 10* and ||A| = 5.3744, according to Theorem 8.3.3, the
Lyapunov equation with above A and C is expected to be ill-conditioned. We verify
this as follows:

Perturb the (1, 1) entry of A to —0.9999999 and keep the other entries of A and
those of C unchanged. Then the computed solution X with this slightly perturbed A is

. 1 1 1
X=11 1006 1.006].
1 1.006 1.006
Let A denote the perturbed A, then the relative perturbation in A:
A — A
Al
The relative error in the solution X:
IX = X|
X1
Verification of the result of Theorem 8.3.3

IAX|l
I1X + AX|

= 1.8607 x 1078,

= 0.0040.

= 0.0040, AC =0,

211A + AA|||[H||M = 0.0100.
1A+ AA]

Thus, the inequality (8.3.12) is satisfied.

Verification of the inequality (8.3.17)
Since |AA|/||A]l = 1.8607 x 1078, we take u = 1.8607 x 1078,

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 257

Then S8ujlAlll|H| = 004 < (1 —pw)/(+) = 0.9999996. Thus, the
hypothesis holds.

Also, [|AX]/IIX|| = 0.004, 8u||Alll|H|| = 0.04. Therefore, the inequality
(8.3.17) is satisfied.

8.3.6 Sensitivity of the Discrete Lyapunov Equation

Consider now the discrete Lyapunov equation:
ATXA-X =C.

This equation is equivalent to the linear system: Rx = ¢, where R = AT®AT—1 ,
(1,2 1s the n? x n? identity matrix).

Applying the results of perturbation analysis to the linear system Rx = c, the
following result can be proved.

Theorem 8.3.4. Perturbation Result for the Discrete Lyapunov Equation. Let
X be the unique solution of the discrete Lyapunov equation:

ATxA-Xx=cC.

Let X be the unique solution of the perturbed equation where the perturbation
in A is of order machine precision [L.
Assume that

QuA+p)IAIE _ o
sep (AT, A) ’

where

R ATxA - X
sepd(AT, A) = min IRxIl2 = min ——-———” e
<#0 flxllz X#0 1 Xle

= omn (AT @ AT — I2).

Then,
IX—Xlp _ u G+wlAlf+1
IXIF = 1-8 sepy(AT, A)

(8.3.18)

8.3.7 Sensitivity of the Stable Discrete Lyapunov Equation

As in the case of the stable Lyapunov equation, it can be shown (Gahinet et al.
1990) that the sensitivity of the stable discrete Lyapunov equation can also be
measured by the 2-norm of the unique solution of the discrete Lyapunov equation:
ATXA — X = —1. Specifically, the following result has been proved by Gahinet
et al. (1990).

258 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Theorem 8.3.5. Sensitivity of the Stable Discrete Lyapunov Equation. Let A
be discrete stable. Let H be the unique solution of

ATHA-H = -1,
then sep (AT, A) > /n/||H |2

Example 8.3.4. Let

0.9990 1 1
A= 0 0.5000 1
0 0 0.8999

Set

1
X=1{1 1 1| andtake C=ATXA-X.
1

Then || H|j2 = 4.4752 x 10°.

By Theorem 8.3.5, the discrete Lyapunov equation ATXA — X = C is expected to
be ill-conditioned. We verify this as follows.

Let a(2, 2) be perturbed to 0.4990 and all other entries of A and of C remain
unchanged. Let A denote the perturbed A. Let X be the solution of the perturbed
problem. Then X, computed by the MATLAB function dlyap, is

A 1 1 1.0010
X=| 1 1 1.0019
1.0010 1.0019 1.0304

The relative error in X:

X-x
1x = Xil2 = 0.0102.
1 X112
The relative perturbation in A:
A-—A
A~ All2 _ 4 8244 x 1075,
All2

8.3.8 Determining Ill-Conditioning from the Eigenvalues

Since | P~ = 1/sep(B, —A) is not easily computable, and sep(B, —A) > 0
if and only if B and —A have no common eigenvalues, one may wonder if the
ill-conditioning of P~! (and therefore of the Sylvester or the Lyapunov equation)
can be determined a priori from the eigenvalues of A and B.

The following result can be easily proved to this effect (Ghavimi and Laub
1995).

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 259

Theorem 8.3.6. The Sylvester equation XA + BX = C is ill-conditioned if
both coefficient matrices A and B are ill-conditioned with respect to inversion.

Example 8.3.5. Let

11 1 1 2 3
A=|0 0 1 , B =0 0.0001 1 ,
1 1 0.001 0 0 0.0001

8 8 8.001
and C = |3.0001 3.0001 3.0011].

2.0001 2.0001 2.0011

1
The exact solution X = (1 1 1).
1 1

Now change a(3, 1) to 0.99999 and keep the rest of the data unchanged. Then the
solution of the perturbed problem is

. 908.1970 —905.2944 -906.2015
X =1 —-452.6722 454.2208 454.6745 |,
1.0476 0.9524 0.9524

which is completely different from the exact solution X.
Note that the relative error in the solution:

IX — X||

= 585.4190.
X1

However, the relative perturbation in the data:

IA — Al

AT = 4.5964 x 107° (/i is the perturbed matrix).

This drastic change in the solution X can be explained by noting that A and B
are both ill-conditioned:

Cond(A) = 6.1918 x 106, Cond(B) = 8.5602 x 105.

Remark

e The converse of the above theorem is, in general, not true. To see this,
consider Example 8.3.1 once more. We have seen that the Sylvester equation
with the data of this example is ill-conditioned. But note that Cond(A) =
4.0489, Cond(B) = 1.0230. Thus, neither A nor B is ill-conditioned.

260 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Near Singularity of A and the Ill-conditioning of the Lyapunov Equation

From Theorem 8.3.6, we immediately obtain the following corollary:

Corollary 8.3.3. If A is nearly singular, then the Lyapunov equation X A +
ATX = C is ill-conditioned.

Example 8.3.6. Let

1 1 1 2 2.0001 4
A=]0 000601 1], C =]2.0001 2.0002 4.0001
0 0 1 4 4.0001 6

The exact solution

X =
1

Now perturb the (1, 1) entry of A to 0.9880. Call the perturbed matrix A.The computed
solution of the perturbed problem

. 1.0121 0.9999 1.0000
X=109999 24750 —0.4747
1.000 —-0.4747 2.4747

The relative error in X:
X — X||

= 0.9832.
X1

The relative perturbation in A:

A — Al

= 0.0060.
Al

The ill-conditioning of the Lyapunov equation with the given data can be explained
from the fact that A is nearly singular. Note that Cond(A) = 3.9999 x 10* and
sep(AT, —A) = 5.001 x 1072,

8.3.9 A Condition Number Estimator for the Sylvester Equation:
ATX -xB=cC

We have seen in Section 8.3.1 that

sep(B, —A) = = Omin(P),

P12

where P is the coefficient matrix of the linear system (8.2.1).

Section 8.3: PERTURBATION ANALYSIS AND THE CONDITION NUMBERS 261

However, finding sep(B, —A) by computing the smallest singular value of P!
requires a major computational effort. Even for modest m and n, it might be compu-
tationally prohibitive from the viewpoints of both the storage and the computational
cost. It will require O (m>n?) flops and O (m?n?) storage.

Byers (1984) has proposed an algorithm to estimate sep(A, B7) in the style
of the LINPACK condition number estimator. The LINPACK condition number
estimator for Cond(P) is based on estimating || P~!|[2 by [Iyll/lz]l, where y, z,
and w satisfy

Plz=w and Py =z

the components of the vector w are taken to be w; = X1, where the signs are
chosen such that the growth in z is maximized.

Algorithm 8.3.1. Estimating sep(A, BT).
Input. A, xm, Buxn—Both upper triangular matrices.
Output. Sepest—An estimate of sep(A, BT).

Step 1.
Fori=m,m—-1,..., 1do
Forj=n,n—1,...,1do
m n
p= Z AinZhj — Z Zinbjn
h=i+1 h=j+1
= —sign(p)
zij = (w — p)/(ai; — bjj)
End
End

Step 2. Compute Z = Z/|| Z||, where Z = (z;;).
Step 3. Solve for Y: ATY —YB = Z.
Step 4. Sepest = 1/||Y]|.

Example 8.3.7. Consider estimating sep(B, —A) with

-1 2 3 -1 2 3
A= 0 =2 1 and B=}| 0 =25 0
0 0 0.9990 0 0 1.9999

The algorithm produces sepest (B, —A) = 0(107?), whereas the actual value of
sep(B, —A) = 3.0263 x 107>,

Remarks

e If p =0, sign(p) can be taken arbitrarily.

262 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

e The major work in the algorithm is in the solution of the Sylvester equation in
Step 3. Thus, once this equation is solved, the remaining part of the algorithm
requires only a little extra work. Efficient numerical methods for solving the
Sylvester and Lyapunov equations are discussed in the next section.

Flop-count: The algorithm requires 2(m*n + mn?) flops.
Remarks

e The algorithm must be modified when A and B are in quasi-triangular forms
(real Schur forms, RSFs), or one is in Hessenberg form and the other is
in RSE

e There exists a LAPACK-style (rich in Basic Linear Algebra Subroutine-
Level 3 operators), estimator for sep(B, —A). For details, see Kagstrom
and Poromaa (1989, 1992, 1996).

MATCONTROL notes: The sep function can be computed using the Kronecker
product in MATCONTROL function sepkr. Algorithm 8.3.1 has been imple-
mented in MATCONTROL function sepest, which calls the function sylvhutc
for solving the upper triangular Sylvester equation in Step 3.

8.4 ANALYTICAL METHODS FOR THE LYAPUNOV EQUATIONS:
EXPLICIT EXPRESSIONS FOR SOLUTIONS

There are numerous methods for solving Lyapunov and Sylvester equations. They
can be broadly classified into two classes: Analytical and Numerical Methods.

By an analytical method, we mean a method that attempts to give an explicit
expression for the solution matrix (usually the unique solution).

Recall from Chapter 7 that when A is a stable matrix, a unique solution X
of the continuous-time Lyapunov equation requires computations of the matrix
exponential ¢4’ and evaluation of a matrix integral.

Similarly, when A is discrete-stable, a unique solution X of the discrete
Lyapunov equation requires computations of various powers of A and many matrix
multiplications. We have already seen that there are some obvious computational
difficulties with these computations.

The other analytical methods include finite and infinite series methods (see
Barnett and Storey (1970)).

These methods again have some severe computational difficulties. For example,
consider the solution of the Lyapunov equation XA + AT X = C, using the finite

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 263

series method proposed by Jameson (1968). The method can be briefly described
as follows:
Let the characteristic polynomial of A be det(A] — Ay = A" +¢; Ay Cn.
Define the sequence of matrices {Q} by

0-1=0, Qo=C
Ok =AT0k1 — Q1A+ ATQu2A, k=1,2,...,n

Then it has be shown that
X =P N Qn—c1Qnot+- -+ (=D"cy Qo), (8.4.2)

where P = (AT)" — c; (AT)" ™ - 4 (=1)cul.

It can be seen from the description of the method that it is not numerically
effective for practical computations.

Note that for computation of the matrix P, various powers of A need to be
computed and the matrix P can be ill-conditioned, which will affect the accuracy
of X. This, together with the fact that the sensitivity of the characteristic polynomial
of a matrix A (due to the small perturbations in the coefficients) grows as the
order of the matrix grows (in general), lead us to believe that such methods will
give unacceptable accuracy. Indeed, the numerical experiments show that for
random matrices of size 14 x 14, the errors are almost as large as the solutions
themselves.

Thus, we will not pursue further with the analytic methods. However, for reader’s
convenience, to compare this method with other numerically viable methods, the
finite series method has been implemented in MATCONTROL function lyapfns.

(8.4.1)

8.5 NUMERICAL METHODS FOR THE LYAPUNOV AND
SYLVESTER EQUATIONS

An obvious way to solve the Sylvester equation X A+ B X = C isto apply Gaussian

elimination with partial pivoting to the system Px = ¢ givenby (8.2.1). But, unless

the special structure of P can be exploited, Gaussian elimination scheme for the

Sylvester equation will be computationally prohibitive, since O (n3m?3) flops and

O (n*m?) storage will be required. One way to exploit the structure of P will be

to transform A and B to some simple forms using similarity transformations.
Thus, if U and V are nonsingular matrices such that

U'AU=4, Vv7'Bv=B, and Vicu=¢,
then XA 4+ BX = C is transformed to
YA+ BY =C, (8.5.1)
where Y = V-IXU.

264 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

If Aand B are in simple forms, then the equation Y A+ BY =C canbe easily
solved, and the solution X can then be recovered from Y. The idea, therefore, is
summarized in the following steps:

Step 1. Transform A and B to “simple” forms (e.g., diagonal, Jordan and com-
panion, Hessenberg, real-Schur, and Schur etc.) using similarity transformations:

A=U"TAU, B=v-lpv.

Step 2. Update the right-hand side matrix: € = vicy.
Step 3. Solve the transformed equation for Y: YA + BY = C.
Step 4. Recover X from Y by solving the system: XU = VY.

8.5.1 Numerical Instability of Diagonalization, Jordan Canonical Form, and
Companion Form Techniques

It is true that the rich structures of Jordan and companion matrices can be nicely
exploited in solving the reduced Sylvester equation (8.5.1). However, as noted
before, the companion, and JCFs, in general, cannot be obtained in a numerically
stable way. (For more on numerically computing the JCF, see Golub and Wilkinson
(1976).) The transforming matrices will be, in some cases, ill-conditioned and this
ill-conditioning will affect the computations of A, E, ¢ ,and X (from Y), which
require computations involving inverses of the transforming matrices. Indeed,
numerical experiments performed by us show that solutions of the Sylvester
equation using companion form of A with A of sizes larger than 15 have errors
almost as large as the solutions themselves. We will illustrate below by a simple
example how diagonalization technique yields an inaccurate solution.

Example 8.5.1. Consider solving the Lyapunov equation: XA + ATX — C = 0, with

24618 —1.5284 2.2096 —0.3503
5.5854 —1.2161 123825 —1.2843

A= 1.6935 2.5009 2.1131 -—1.2186
—0.2686 —3.2594 7.9205 0.6412
Choose
1 1
X = i i andtake C = XA+ ATX.
1 1

Pk ek et
— ki et

Let Xpiag be the solution obtained by the diagonalization procedure (using MATLAB
Function lyap2).

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 265

The relative residual:
”XDiagA + ATXDiag = CJ

=1.6418 x 1077,
”XDiag”

The solution X obtained by MATLAB function lyap (based on the numerically viable
Schur method):

1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000

Set>
il

The relative residual:
XA+ ATX —C|

_ =9.5815 x 10713,
1X1|

Solutions via Hessenberg and Schur Forms

In view of the remarks made above, our “simple” forms of choice have to be
Hessenberg forms and the (real) Schur forms, since we know that the trans-
forming matrices U and V in these cases can be chosen to be orthogonal, which
are perfectly well-conditioned. Some such methods are discussed in the following
sections.

8.5.2 The Schur Method for the Lyapunov Equation: XA + ATx=c

The following method, proposed by Bartels and Stewart (1972), is now widely
used as an effective computational method for the Lyapunov equation. The
method is based on reduction of AT to RSFE. Tt is, therefore, known as the Schur
method for the Lyapunov equation. The method is described as follows:

Step 1. Reduction of the Problem. Let R = UTATU be the RSF of the
matrix AT. Then, employing this transformation, the Lyapunov matrix equation
XA+ ATX = C is reduced to

YRT+RY =C, (8.5.2)

where R = UTATU, ¢ = UTCU,and Y = UTXU.
Step 2. Solution of the Reduced Problem. The reduced equation to be solved
is: YRT + RY = C. Let

Y =01, C=(1,....cn), and R= ().

Assume that the columns y,, through y, have been computed, and consider
the following two cases.

266 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Case 1: ry k-1 = 0. Then y; is determined by solving the quasi-triangular
system

n
(R+rixDyk = cx — Z Tkjyj-
j=k+1

If, in particular, R is upper triangular, that is there are no “Schur bumps” (see
Chapter 4) on the diagonal, then each y;,i =n,n —1,...,2, 1 can be obtained
by solving an n x n upper triangular system as follows:

(R+ run)yn=cn,

(R+ rn—l,n—ll)yn—l =Cp—1 — Tu—-1,nYn>
. (8.5.3)

(R+rul)yi=ci—riy2— -~ rnyn.

Remark

o If the complex Schur decomposition is used, that is, if R, = UC*ATUC isa
complex triangular matrix, then the solution Y, of the reduced problem is
computed by solving n complex » x n linear systems (8.5.3). The MATLAB
function rsf2csf converts an RSF to a complex triangular matrix. However,
the use of complex arithmetic is more expensive and not recommended in
practice.

Case2: 7y —1 # Oforsome k. This indicates that there is a “Schur bump” on
the diagonal. This enables us to compute y;_; and y; simultaneously, by solving
the following 2n x 2rn linear system:

F=1k=1 Fkk—1
R(yr_1, + (Ye—1, ' '
k=1, k) + (Ye—-1 yk)(_— ek)
n
= (Cr—1, k) ~ Z (rk—1,j¥j> e yj) = (di—1, di). (8.5.4)
j=k+1

Remark

e To distinguish between Case 1 and Case 2 in a computational setting, it is
recommended that some threshold, for example, Tol = u| A|r be used,
where p is the machine precision.

e Thus, toseeif ri k-1 = 0, accept rg 4~y = 0, if [rk,k_ll < Tol.

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 267

An Illustration

We illustrate the above procedure with n = 3.
Assume that rp; # 0, that is,

roriz i3
R=\|ry ro rxs
0 0 ri3

Since r3; = 0, by Case 1, y3 is computed by solving the system:
(R+r33l) y3 = c3.

Since rp; # 0, by Case 2, y; and y; are computed by solving

r I
Ry, y2) + (1, y2) <ri; r;) = (c{ — 7133, €2 — I23¥3). (8.5.5)

Step 3. Recovery of the solution of the original problem from the solution
of the reduced problem. Once Y is obtained by solving the reduced problem
YRT + RY = C, the solution X of the original problem XA + ATX = C, is
recovered as

X=UyU"T.

Example 8.5.2. Consider solving the Lyapunov equation: XA + ATX = C, with

0 2 -1 -2 2 =3
A=[-3 -2 2 and C={-8 -6 -5],
-2 1 -1 11 13 =2

Step 1. Reduction. Using MATLAB function [U, R] =schur(AT), we obtain

—1.3776 3.8328 1.3064 0.7052 0.4905 0.5120
R=[-1.0470 0.8936 —1.2166|, U =] 0.6628 —0.7124 —0.2304
0 0 —2.5160 —0.2518 —-0.5019 0.8275

Then € = UTCU is

. —9.3174 19816 —7.5863
C=|-2.1855 —1.0425 2.4422
16.2351 --3.4886 0.3600

268 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Step 2. Solve RY + YRT = C. Since r3; = 0, then by Case 1, y3 is computed by
solving the system:

-3.8936 3.8328 1.3064 —7.5863
—1.0470 —1.6224 —12166)y; = | 2.4422
0 0 —5.0320 0.3600

0.3030

y3 = | —1.6472

—0.0715

Since rz7 # 0, then by Case 2, y; and y, are computed by solving the system (8.5.5):
OT, y7) = (3.4969, 0.1669, —1.2379, 0.2345, 0.5746, 3.0027) .

Step 3. Recovery of the solution.

2 0 -2
x=vuvuT=1[2 2 1
0 -3 0

Example 8.5.3. We now solve the previous example (Example 8.5.2) using the
complex Schur form

0 —0.2420 — 1.6503j 1.2113 — 0.8883

—0.2420 4+ 1.6503; —0.3227 4+ 3.5797j —0.0927 —0.9538;
Stepl. R =)
0 0 —2.5160

—0.5814 4+ 0.5148; 0.0802 —0.3581j 0.5120
U= —-00030+04839; 0.6649 +0.5202; —0.2304],
0.3590 — 0.1838; 0.1355 4 0.3664; —0.8275

—7.5894 4+ 1.4093 1.8383 +4.252j 2.6799 + 5.5388j
2.1139 —1.1953j —=2.7706 — 1.4093; —4.7410 + 1.783;
—6.5401 + 11.8534; 9.2728 + 2.5470; 0.3600

o
I

Step 2. Since R is triangular (complex), the columns yy, y3, y3 of y are successively
computed by solving complex linear systems (8.5.3). This gives

y1 = (—=2.9633 + 0.000229, —0.7772 + 0.8659 j, —0.7690 — 0.9038 /)",
y2 = (—0.7811 — 0.8163, 1.1082 — 0.0229j, —2.0819 — 2.923 /)T,
y3 = (0.6108 — 0.2212, 0.9678 — 1.2026j, —0.0715)T .

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 269

Thus, with ¥ = (y1, y2, ¥3), we have

2 0 =2
Xx=uyuT=\2 2 1
0 -3 0

Note: In practice, the system (8.5.4) is solved using Gaussian elimination with
partial pivoting. The LAPACK and SLICOT routines (see Section 8.10.4) have
used Gaussian elimination with complete pivoting (see Datta (1995) and Golub
and Van Loan (1996)) and the structure of the RSF has been exploited there. For
details of implementations, the readers may consult the book by Sima (1996).
MATCONTROL note: The Schur method for the Lyapunov equation has been
implemented in MATCONTROL function lyaprsc.

MATLAB note: MATLAB function lyap in the form

X =lyap (4, C)
solves the Lyapunov equation
AX+XAT=-C

using the complex Schur triangularization of A.

Flop-count

1. Transformation of A to RSF: 26n> (Assuming that the QR iteration algo-
rithm requires about two iterations to make a subdiagonal entry negligible).
(This count includes construction of U.)

2. Solution of the reduced problem: 3n3

3. Recovery of the solution: 3n° (using the symmetry of X).

Total flops: 32n (Approximate).

8.5.3 The Hessenberg—-Schur Method for the Sylvester Equation

The Schur method described above for the Lyapunov equation can also be used
to solve the Sylvester equation XA + BX = C. The matrices A and B are,
respectively, transformed to the lower and upper RSFs, and then back-substitution
is used to solve the reduced Schur problem. Note, that the special form of the Schur
matrix S can be exploited only in the solution of the m x m linear systems with S.
Some computational effort can be saved if B, the larger of the two matrices A and
B, is left in Hessenberg form, while the smaller matrix A is transformed further
to RSF. The reason for this is that a matrix must be transformed to a Hessenberg
matrix as an initial step in the reduction to RSF (see Chapter 4). The important
outcome here is that back-substitution for the solution of the Hessenberg—Schur

270 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

problem is still possible. Noting this, Golub et al. (1979) developed the following
Hessenberg—Schur method for the Sylvester equation problem.

Step 1. Reduction to the Hessenberg-Schur Problem. Assume that m is larger
than n. Let R = UTATU and H = VTBV be, respectively, the upper RSF and
the upper Hessenberg form of A and B. Then,

XA+BX =C becomes YRT+HY =C,
T A T (8.5.6)
whereY = V' XU, C=V'CU.

Step 2. Solution of the Reduced Hessenberg—Schur Problem. In the reduced
problem HY + YRT =€ letY = (y1,y2,...,) and C = (c1, ..., ¢,). Then,
assuming that yg41, . .., y, have already been computed, yi (or y, and yx41) can
be computed as in the case of the Lyapunov equation, by considering the following
two cases.

Case 1. If ry 41 = 0O, yx is computed by solving the m x m Hessenberg system:

n
(H+)y = ck — Z Ykjyj-
j=k+1

Case 2. If i ;1 # 0, then equating columns k — 1 and k in HY + YRT = C,
it is easy to see that y;_; and y; are simultaneously computed by solving the
2m x 2m linear system:

Fe—1,k—1 Tkik-1
H (-1, y6) + et ’ ‘
(k=15 Y1) + (Vi1 yk)(ik I)

n

= (Ck—1,Ck) — Z (re—1,j¥j, rejyj) = (di—1, di) (8.5.7)
j=k+1

Note: The matrix of the system can be made upper triangular with two nonzero
subdiagonals, by reordering the variables suitably. The upper triangular system can
then be solved using Gaussian elimination with partial pivoting.

Step 3. Recovery of the Original Solution. The solution X is recovered from ¥
as

x=vyul.

Algorithm 8.5.1. The Hessenberg—Schur Algorithm for XA+ BX = C
Input: The matrices A, B, and C, respectively, of order n x n,m x m, and
mxn;n<m.

Output: The matrix X satisfying XA+ BX = C.

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 271

Step 1. Transform AT t0 a real Schur matrix R, and B to an upper Hessenberg
matrix H by orthogonal similarity:

UTATU =R, vIBY = H.

Form € = vTcu, and partition C = (c1, ..., cn) by columns.

Step 2. Solve HY + YRT = C:

Fork =n, ..., 1 dountil the columns of Y are computed
Ifrik—1 = 0, then compute y; by solving the Hessenberg system:
n
(H +rDyx = cx — Z rkjYj (8.5.8)
j=k+1

Else, compute yy and yi_1 by solving the system:

HAryo—1l rgd Vk—1 dy—1
’ ’ = s 8.5.9
(rkk—11 H+rkk1>(Yk) (di 8:5.9)
where
n
(de—1,d) = (ck1, c) — Z (T—1,jYj> Tkj¥;j)- (8.5.10)
j=kt1

Step 3. Recover X: X = VYUT.

Example 8.5.4. Consider solving XA + BX = C using Algorithm 8.5.1 with

1 2 3 4
-1 0
4 5 6 7
A:ll(z),B_7891
10 0 0 O
and

12 10 12

C__242224

127 25 27

12 10 12

272 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Step 1. Reduce AT to RSF and B to Hessenberg form H:

1 10
UTATU=r=|-1 1 0],
0 0 2
1 -5.3766 —0.3709 —0.0886
Tou g | —12.8452 7.6545 53962 —0.7695
VBV =H = 0 10.6689 4.7871 —0.2737
0 0 ~5.3340 1.5584
1 0 0 0
- (1) (1) 8 y_ |0 3114 -07398 —0.595
o o 1) “lo -—5449 -03752 0.7498 |°
0 —0.7785 0.5585 —0.2863
Compute
12 10 12
oo 315292 -282595 315292

—21.1822 —-20.0693 —21.1822
2.4949 2.7608 2.4949

Step 2. Solution of the reduced problem: HY + YRT = C.
Case 1. Since r(3, 2) is 0, y3 is obtained by solving: (H + r331)y; = c3.

y3 = (1, —1.6348, —0.5564, —0.1329)T.
Case 2. Since r3; # 0, y; and y; are simultaneously computed by solving the
system:
H+ril rial) _ (di
il H+ropl)\y) \d)’

where (dy, dy) = (c1 — r13y3, c2 — r3y3).

1 1
~1.6348 ~1.6348
M=V _oss64|” 727 | —0.5564
—~0.1329 ~0.1329
So,
1 1 1
~1.6348 —1.6348 —1.6348
Y = (y1,y2,y3) =

—0.5564 —0.5564 —0.5564
—-0.1329 -0.1329 -0.1329

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 273

Step3. X =VyYUT =

—_—
—
R

Flop-count:

1. Reduction to Hessenberg and RSFs: %m3 +26n°.

2. Computation of C: 2m*n + 2mn?.

3. Computation of Y: 6m%n + mn?.
(To obtain Y, it was assumed that S has n/2(2 x 2) bumps, which is the
worst case.)

4. Computation of X: 2m?n + 2mn?.
Total flops: Approximately (10m3/3 4+ 26n> + 10m?n + 5mn?).

Numerical Stability of the Schur and Hessenberg—Schur Methods: The round-
off error analysis of the Hessenberg—Schur algorithm for the Sylvester equation
XA 4+ BX = C performed by Golub et al. (1979) shows that “the errors no
worse in magnitude than O(||¢~!||¢) will contaminate the computed X , where
o=t =1/ sep(B, —A), and ¢ is a small multiple of the machine precision p.”

Specifically, if
€2+ e(Al2+IBll2) 1

< =
sep(B, —A) 2

Then,

X — Xl G 2¢2)(I1AllF + IIBllg)
I1Xfe — sep(B, —A)

(8.5.11)

The above result shows that the quantity sep(B, —A) will indeed influence the
numerical accuracy of the computed solution obtained by the Hessenberg—Schur
algorithm for the Sylvester equation. (Note that sep(B, —A) also appears in the
perturbation bound (8.3.6).)

Similar remarks, of course, also hold for the Schur methods for the Lyapunov
and Sylvester equations. We will have some more to say about the backward error
of the computed solutions by these methods a little later in this chapter.

MATCONTROL notes: Algorithm 8.5.1 has been implemented in MATCON-
TROL function sylvhrse. The function sylvhesc solves the Sylvester equation
using Hessenberg decomposition of B and complex-Schur decomposition of A.

274 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

MATLAB note: MATLAB function lyap in the form:
X =lyap (A, B, C)
solves the Sylvester equation
AX+XB=-C

using complex-Schur decompositions of both A and B.

8.5.4 The Schur Method for the Discrete Lyapunov Equation
We now briefly outline the Schur method for the discrete Lyapunov equation:
ATXA-X=C. (8.5.12)
The method is due to Barraud (1977).
As before, we divide the process into three steps:
Step 1. Reduction of the problem. Let R = UT ATU be the upper RSF of the
matrix AT. Then the equation:
ATXA-X=C

reduces to .
RYRT-v =0C, (8.5.13)

where Y = UTXU and ¢ = UTCU.

Step 2. Solution of the reduced equation. Let R = (r;;), ¥ =

(YIJ’Z» --'ayn)’ andC = (01,6’2, '-'7Crl)'
Consider two cases as before.

Case 1. ry—; = 0, for some k.
In this case, y; can be determined by solving the quasi-triangular system:

n
(rekR — Dyr =cx — R Z rkjYj- (8.5.14)
j=k+1

In particular, if R is an upper triangular matrix, then y, through y; can be computed
successively by solving the triangular systems:

n
(ruR—Dye=c—R Y rnyyj, k=nn-1,...21 (8515
j=k+1

Case 2. ry ;-1 # 0, for some k. In this case y; and yz—; can be simultaneously
computed, as before.

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 275

For example, if n =3, and 21 # 0, then y; and y; can be computed simultane-
ously by solving the system:

mR-1 raR n c1 — rizRys,
= . 8.5.16
(R rpR- 1) ()’2 c2 —rRy3 ()
Step 3. Recovery of X from Y. Once Y is computed, X is recovered from Y as
X=UyuT. (8.5.17)

Example 8.5.5. Consider solving the discrete Lyapunov equation ATXA — X = C

with
0 2 -1 -2 2 -3
A=]|-3 =2 2 and C=|-8 -6 -5].
-2 1 -1 11 13 =2

Step 1. Reductionto: RYRT —Y = C.
—-2.5160 —2.7102 —1.6565

R= 0 —0.2420 3.2825 |},
0 —-0.8298 —0.2420
—-0.1972 0.9778 —0.0705

U=1]-0.6529 -0.1847 -0.73461},

0.7313 0.0988 —-0.6749

—9.4514 11.1896 —12.1503
—-4.5736 —0.4260 —1.7470
7.0475 —0.0252 —-0.1226

oy
|

Step 2. Solution of the reduced equation: RYRT — Y = C:

2.2373 —5.9557 2.4409
Y = (i, y2, y3) = | 3.6415 —03633 —0.2531
~5.1720 —0.1677 1.5570

Step 3. Recovery of X from Y:

X=UyuT
0.1376 —2.1290 2.4409
={ 36774 0.1419 —1.3935
—5.1721 —0.1678 1.5570

Verify: |ATXA — X — Clla = 010714,

276 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Flop-Count: The Schur method for the discrete Lyapunov equation requires
about 3453 flops (26n3 for the reduction of A to the RSF).

Round-off properties: As in the case of the continuous-time Lyapunov equation,
it can be shown (Exercise 8.26) that the computed solution X of the discrete
Lyapunov equation ATXA — X = C satisfies the inequality

X —Xlle __ cmu
IXIg = sepy(AT, &)’

(8.5.18)

where m = max(1, ||A||12;) and c is a small constant.

Thus, the accuracy of the solution obtained by the Schur method for the discrete
Lyapunov equation depends upon the quantity sep, (AT, A). (Note again that the
sepy (AT, A) appears in the perturbation bound (8.3.18).)

MATLAB note: X =dlyap(A, C) solves the discrete Lyapunov equation:
AXAT — X = —C, using complex-Schur decomposition of A.

MATCONTROL notes: MATCONTROL functions lyaprsd and lyapesd
solve the discrete-time Lyapunov equation using real-Schur and complex-Schur
decomposition of A, respectively.

8.5.5 Residual and Backward Error in the Schur and
Hessenberg—Schur Algorithms

We consider here the following questions: How small are the relative residu-
als obtained by the Schur and the Hessenberg—Schur algorithms? Does a small
relative residual guarantee that the solution is accurate?

To answer these questions, we note that there are two major computational tasks
with these algorithms:

First. The reduction of the matrices to the RSF and/or to the Hessenberg form.

Second. Solutions of certain linear systems.

We know that the reduction to the RSF of a matrix by the QR iteration method,
and that to the Hessenberg form by Householder’s or Givens’ method, are backward
stable (See Chapter 4).

And, if the linear systems are solved using Gaussian elimination with partial
pivoting, followed by the technique of iterative refinement (which is the most
practical way to solve a dense linear system), then it can be shown (Golub et al.
1979, Higham 1996) that the relative residual norm obtained by the Hessenberg—
Schur algorithm for the Sylvester equation satisfies

Ic — ()?A + Bf() g
I1XlF

<cu(lAlle + IBlp) (8.5.19)

where X is the computed solution and c is a small constant depending upon m
and n.

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 277

This means that the relative residual is guaranteed to be small. Note that
this bound does not involve sep(B, —A).

Does a small relative residual imply a small backward error? We will now
consider this question.

To this end, let’s recall that by backward error we mean the amount of perturb-
ations to be made to the data so that an approximate solution is the exact solution
to the perturbed problem. If the perturbations are small, then the algorithm is
backward stable.

For the Sylvester equation problem, let’s define (following Higham 1996)
the backward error of an approximate solution Y of the Sylvester equation
XA+ BX =Cby

v(iY) =min{e : Y(A+ AA)+ (B+ AB)Y =C + AC,
|AAllg < ea, |ABllF < &8, |[AC|lx < ey },

where ¢, B, and y are tolerances. The most common choice is
a = [Alr, B = ||BllF, vy = |CllF.

This choice yields the normwise relative backward error.
As earlier, we assume that Aisn x nand Bism x m,and m > n.
It has been shown by Higham (1996) that

[Res(Y)lg

vY)<$é , (8.5.20)

@+ BIYF+y

where Res(Y) = C — (YA + BY) is the residual and

(a+ BIYIr+

= h 4 . (8.5.21)

V@?oZ + B0 + v
Here o1 > 03 > --- > 0, > 0 are the singular values of ¥, and 0,41 = -+ =

om =0.

The special case when m = n is interesting. In this case

5 — (IAlle + I Bllp) IY g + ICllr (8.5.22)

(1412 + 1BI2) 02, (¥) + ICI2) "

Thus, § is large only when

ICIF

IYllF > omin(Y) and Y [F>» ——-——.
e Al + I Bllg

(8.5.23)

In other words, & is large when Y is ill-conditioned and || Y || is large.

278 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

In the general case (m # n), § can also be large if || B|| is large compared to the
rest of the data. In these cases, the Sylvester equation is badly scaled.

Also, note that if only A and B are perturbed, then § is large whenever Y
is ill-conditioned.

This is because in this case,

§ > IV IIRlY |2 ~ Condy(Y)

(for any m and n); so, § is large whenever Y is ill-conditioned.

From above discussions, we see that “the backward error of an approximate
solution to the Sylvester equation can be arbitrarily larger than its relative
residual” (Higham 1996). The same remark, of course, also holds for the Lyapunov
equation, as we will see below.

Backward Error for the Lyapunov Equation

In case of the Lyapunov equation, B = AT (and thus 8 = «), we have the following
bound for the backward error for the Lyapunov equation.

Let Y be an approximate solution of the Lyapunov equation XA + ATX = C,
and let v(Y) denote the backward error. Assume that C is symmetric. Then

v(Y) =minfe : Y(A+ AA) + (A + AA)TY = C + AC, |AA| < ea,
AC = (AC)T, |AC|IF < ey).

Thus,
[Res(Y)llr
2al|Y|r+y

The expression for § in (8.5.24) can now be easily written down by specializing
(8.5.22) to this case.

v(¥) =34 (8.5.24)

8.5.6 A Hessenberg Method for the Sylvester Equation: AX + XB =C

Though the Schur and the Hessenberg—Schur methods are numerically effective for
the Lyapunov and the Sylvester equations and are widely used in practice, it would
be, however nice to have methods that would require reduction of the matrices A
and B to Hessenberg forms only. Note that the reduction to a Hessenberg form
is preliminary to that of the RSF. Thus, such Hessenberg methods will be more
efficient than the Hessenberg—Schur method. We show below how a Hessenberg
method for the Sylvester equation can be developed. The method is an extension
of a Hessenberg method for the Lyapunov equation by Datta and Datta (1976),
and is an efficient implementation of an idea of Kreisselmeier (1972). It answers
affirmatively a question raised by Charles Van Loan (1982) as to whether a method

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 279

can be developed to solve the Lyapunov equation just by transforming A to a
Hessenberg matrix.

Step 1. Reduction of the problem to a Hessenberg problem. Transform A to a
lower Hessenberg matrix Hj, and B to another lower Hessenberg matrix Hj:

UTAU = H,, vIBV = H,.

(Assume that both Hy and H; are unreduced.)
Then, AX + XB = C becomes

HY +YH, =C/, where Y = UTxv, ¢ =U"Cv.

Step 2. Solution of the reduced problem. HY + YH, = C' Let Y =

(1, ¥2, .-, yn) and Hy = (hyj).
Then the equation H Y + Y H, = C' is equivalent to

Hyy, + hn—l,nynvl + Nppyn = C;,’
Hiyn-1 4+ hn—2n-1Yn—-2 4+ Pn—t.n—1Yn—1 + Run—1¥n = C_1,

Hiyi +huyi +hayr + -+ hpiyn = ¢}
Eliminating y; through y,_1, we have,
Ry, = d,

where
1
R = 7¢(_H1)7
[Tizs i

¢(x), being the characteristic polynomial of H; and the vector d is defined in
Step 4 below.

Thus, once y, is obtained by solving the system Ry, = d, y,— through y; are
computed recursively as follows:

n
Hlyi+zhjiyj—c§ . i=nn—1,...,2.
j=i

1
Yi-1=—
l hi—1,

Step 3. Computing the matrix R of Step 2. It is well known (see Datta and Datta
(1976)) that by knowing only one row or a column of a polynomial matrix in an
unreduced Hessenberg matrix, the other rows or columns of the matrix polynomial
can be generated recursively.

280 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Realizing that the matrix R is basically a polynomial matrix in the lower
Hessenberg matrix Hj, its computation is greatly facilitated.

Thus, if R = (ry, ..., rp), then, knowing r,, r,..1 through r; can be generated
recursively as follows:

1 n
Tho1 = (lek -~ Zhﬁ'kh) ,
i=k

[
hk—l,k

where Hy = (h:.j);kzn,n—— 1,...,2
It therefore remains to know how to compute r,,. This can be done as follows.
Setb, =e, =(0,0,0,...,0, 1)T and then compute 6,, | through 8 recursively
by using

Oi—1 = —

n
H,6; + hii0;l, i=nn-—1,...,1.
i—1,i ' 12:; I
Then, it can be shown (Datta and Datta 1976) that
r, =6y, setting ho; = 1.

Step 4. Computing the vector d of Step 2. The vector d can also be generated
from the above recursion. Thus, starting with z, = 0 (a zero vector), if z,_1
through zg are generated recursively using

n
Zi-1 = — H11i+Zhjiz_;—c,/- , i=mn,---,2,1,

hi1 =

then d = —zy.
Step 5. Recovery of the original solution X from Y.

x=vyvT

Remarks

e Itis to be noted that the method, as presented above, is of theoretical interest
only at present. There are possible numerical difficulties. For example, if one
or more of the entries of the subdiagonal of the Hessenberg matrix H, are
small, a large round-off error can be expected in computing y;_; in Step 2.
A detailed study on the numerical behavior of the method is necessary,
before recommending it for practical use. Probably, some modification will
be necessary to make it a working numerical algorithm. The reason for
including this method here is to show that a method for the Sylvester equation
can be developed just by passing through the Hessenberg transformations

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 281

of the matrices A and B only; no real Schur or Schur transformation is
necessary.

Example 8.5.6. Consider solving the Sylvester equation AX + XB = C with the
following data

1 2 3 4 Lo 2 10 12
4 5 6 7 24 2 24
A=19 35 9 1| Bz((l) é g) C=127 25 27
1000 0 2 10 12

Step 1. Reduction of A and B to lower Hessenberg forms:

1.0000 —5.3852 0 0

o = —12.8130 8.7241 5.1151 0
1= 0.8337 10.3127 4.6391 0.1586 |’
0.3640 1.3595 —4.8552 0.6368
1.0000 0 0 0
U= 0 —-0.3714 -0.6009 —-0.7078
- 0 —0.5571 -0.4657 0.6876
0 —0.7428 0.6497 —-0.1618
1 1 0 1 0 O
H=|-11 0], V=0 -1 0],
0O 0 2 0 0 1
12.0000 —10.0000 12.0000
C - —32.8681 29.5256 —32.8681
T] -19.1978 18.3641 —19.1978

—0.3640 —0.0000 —0.3640

Step 2. Solution of the reduced problem: Since the matrix H is reduced (k23 =
0), instead of an algorithm breakdown, the set of equations for y;, y2, y3 decouple
and we obtain:

Hyys + h33ys = ci,
Hiy» + hioyt + hoayz = ¢ — haays = C2,
Hiyi + by + horyz = ¢ — ha1ys = Gi.

The vector ys3 is obtained as the solution of the first system, and once y3 is known,
¢, and ¢3 can be easily computed.

1.0000 —10.0000 12.0000
| -16713 .| 29.5256 .| -32.8681
B3=1_oa169|° 27| 183641 |© PT | -19.1978

—0.1820 —0.0000 —0.3640

282 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

We now proceed to compute y» and y; as follows:
Step 3. Computation of the vector d: starting from z; = (0 0 0 0)T,

7= —h——(H1zz + hpz —6)
12

= (—10.0000 29.5256 18.3641 —0.0000)T,

1 n
d =—z0= T(HIZI + h1121 + 2122 — C1)
= (—191.0000 542.0447 418.9050 —52.2985)T.

Step 4. Computation of the matrix R. Starting from 8, = (0 0 0 1)T,
1
61 = —3—(Hi6 + hnfh) = (0 0 ~0.1586 —1.6368)T,
12

1
60 = — (161 + h116) + h2162) = (0 0.8112 11538 2.9092)T

and now, starting from r4 = 6y, we obtain

r3 h, (le4_h44r4)
34

= (—27.5462 78.5858 84.7805 —28.3717)T,

—— (Hyr3 — hi3r3 — hysrs)
= (—63.1364 217.3103 154.1618 — 36.5856)T,

! ! /

hl
= (74.0000 — 145.9565 —125.7098 —20.1428)T,
which gives

74.0000 —63.1364 —27.5462 0
—145.9565 217.3103 78.5858 0.8112
—125.7098 154.1618 84.7805 1.1538
—20.1428 —36.5856 —28.3717 2.9092

and now Ry, = d gives

R =

y2 = (—1.0000 1.6713 0.4169 0.1820)T

and finally we compute

y1 = (1.0000 —1.6713 —0.4169 —0.1820)T.

Section 8.5: NUMERICAL METHODS—LYAPUNOV AND SYLVESTER EQUATIONS 283

Therefore, the solution of the reduced problem is

1.0000 —1.0000 1.0000
—-1.6713 16713 —1.6713
—-0.4169 04169 —0.4169
—0.1820 0.1820 —0.1820

Y=

The original solution X is then recovered via X = UY VT:

1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

X =

Verification: ||AX + XB — C| = 5.6169 x 10714,

MATCONTROL note: The Hessenberg methods for the Sylvester and Lya-
punov equations have been implemented in MATCONTROL functions sylvhess
and lyaphess, respectively. Both Hessenberg matrices are assumed to be unre-
duced. The above example shows that the method, however, works if one of them
is reduced, but in that case the codes need to be modified.

8.5.7 The Hessenberg—Schur Method for the Discrete Sylvester Equation
In some applications, one needs to solve a general discrete Sylvester equation:
BXA+C=X.

The Schur method for the discrete Lyapunov equation described in Section 8.5.4
can be easily extended to solve this equation.

Assume that the order of A is smaller than thatof B. A € R**" B ¢ R™*™,
Let the matrices AT and B be transformed, respectively, to an upper real Schur
matrix R and an upper Hessenberg matrix H by orthogonal similarity:

UTATU =R,
viBv = H.

Then, .
BXA+C =X becomes HYR'+C =y,

where ¥ = VIXU,C = VICU.LetY = (31, ..., yu),and € = (¢}, c2, ..., cn).

The reduced equation can now be solved in exactly the same way as in the
Hessenberg-Schur algorithm for the Sylvester equation (Algorithm 8.5.1). This
is left as an exercise (Exercise 8.27) for the readers.

MATCONTROL note: MATCONTROL function sylvhesd solves the discrete-
time Sylvester equation, based on complex Schur decomposition of A.

284 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

8.6 DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS
OF SYMMETRIC POSITIVE DEFINITE SOLUTIONS OF
LYAPUNOV EQUATIONS

In this section we describe methods for finding the Cholesky factors of the
symmetric positive definite solutions of both continuous-time and discrete-time
Lyapunov equations, without explicitly computing such solutions.

8.6.1 Computing the Cholesky Factor of the Positive Definite Solution of
the Lyapunov Equation

Consider first the Lyapunov equation:
XA+ATX =-C"c, (8.6.1)

where A is an n x n stable matrix (i.e., all the eigenvalues A1, .. ., A, have negative
real parts), and C is an r X r matrix.

The above equation admits a unique symmetric positive semidefinite solution X.
Thus, such a solution matrix X has the Cholesky factorization X = Y Ty, where Y
is upper triangular.

In several applications, all that is needed is the matrix Y; X is not needed as
such. One such application is model reduction problem via internal balancing
and the Schur method for model reduction (Chapter 14), where the Cholesky
factors of the controllability and observability Grammians are needed.

In these applications, it might be computationally more attractive to obtain the
matrix Y directly without solving the equation for X, because X can be consid-
erably more ill-conditioned than Y. Note that Cond,(X) = (Cond»(Y))2. Also, it
may not be computationally desirable to form the right-hand side matrix —CTC
explicitly; there may be a significant loss of accuracy in this explicit formation.

We describe below a procedure due to Hammarling (1982) for finding the
Cholesky factor Y without explicitly computing X and without forming the matrix
product CTC.

Reduction of the Problem
Substituting X = YTY in Eq. (8.6.1), we have
dTYHA+ATTy) = -CTc. (8.6.2)

The challenge is now to compute ¥ without explicitly forming the product CTC.
Let S = UTAU, where S is in upper RSF and U is orthogonal. Let

CU = QR
be the QR factorization of CU.

Section 8.6: DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS 285

Then Eq. (8.6.2) becomes
sT (?T?) + (?T?) S =—RTR, (8.6.3)

where ¥ = YU and RTR = (CU)"CU.

Solution of the Reduced Equation

To obtain ¥ from (8.6.3) without explicitly forming RT R, we partition Y, R, and
S as follows:

5 oT T T
o _ (Y11 Y _f{rur _[s11 s
Y_<0 Yl)’ R_(O R1>’ S_(O 51)’ (8.6.4)

where 511 is a scalar (a real eigenvalue in RSF §) or a 2 x 2 matrix (“Schur bump,”
corresponding to a pair of complex conjugate eigenvalues in the matrix §); and
¥, r,and s are either column vectors or matrices with two columns.

Since Y satisfies (8.6.3) we can show, after some algebraic manipulations, that
911, ¥, and Y; satisfy the following equations:

s (ﬁdu) + (5’1T1911) si = —riyr, (8.6.5)
NSRS (}711S11§1_11) = —ra — s, (8.6.6)

~T ~
ST(vTn) + (YTv) s = —Ri' Ry, (8.6.7)

where o = 119", IélTlél =R{R +uu,andu = r — $aT.

Since RlTRl is positive definite, so is IélTlél.

Note that the matrix ﬁl can be easily computed, once R and u are known, from
the QR factorization:

ul A A
(Rl) = OR,. (8.6.8)

Equation (8.6.7) is of the same form as the original reduced equation (8.6.2), but
is of smaller order. This is the key observation.

The matrices S, Yy, and Iél can now be partitioned further as in (8.6.4), and
the whole process can be repeated. The process is continued until Yis completely
determined.

Recovery of the Solution

Once Y is obtained, the “R-matrix” ¥ of the QR factorization QY = YUT will be
an upper triangular matrix that will satisfy Eq. (8.6.7). Let Y = (y;;).

286 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Since Y is required to have positive diagonal entries, we will take
Y = diag(sign(¥11), - . -, sign(¥pp)) Y.

Algorithm 8.6.1. Algorithm for the Direct Cholesky Factor of the Symmetric
Positive Definite Solution of the Lyapunov Equation

Inputs. A—An n x n matrix

C—Anr X n matrix.

Output. Y—The Cholesky factor of the symmetric positive definite solution of
the Lyapunov equation: XA + ATX = —CTC.

Assumption. A is stable.
Step 1. Find the RSF S of A: UTAU = §.
Step 2. Find the QR factorization of the r x n matrix CU: CU = QR.

T T
Step 3. Partition R = ("11 d), S = (Sll s)

0 R 0 5
. & oT
Step 4. FindY = (y(l)l);/) as follows:
1
4.1 Compute 311 from s|, 31,911 + G 910)s11 = —rfjrir.

4.2 Compute o = rllfll_l.
4.3 Solve for y: S1T)7 + j;(j;“s”f;l_ll) = —ro — s&irl.

T
4.4 Compute u = r — T and then find the QR factorization of (LI;) to
1

A A uT
OR; = (Rl)'

Step 5. Set S = §1,R = 1%1 and return to Step 3 and continue until Y is
completely determined. _
_ Step 6. Compute Y from the QR factorization of YUT:YUT = QY. Let
Y = (i)

find Ry:

sign(yi1) 0
Step 7.Compute Y = Y.

0 sign(Jnn)
Example 8.6.1. Consider solving Eq. (8.6.1) for the Cholesky factor Y with

—0.9501 0.5996 0.2917
A=1] 0.6964 —1.0899 -0.6864}|, C=(,1,1).

0 0.0571 —6.6228

Section 8.6: DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS

Step 1. Reduction of A to RSF: [U, §] = schur (A) gives

—0.7211 —-0.6929 0.0013
U=1|-0.6928 07210 -0.0105
—0.0063 0.0084 0.9999

’

S = 0 —1.6762 —0.7388

—-0.3714 0.0947 0.3040
0 0 —6.6152

Step 2. The QR factorization of CU:[Q, R] = qr (CU) gives
R = (—1.4202 0.0366 0.9908).

Step 3.

ri = —1.4202, s11 = —0.3714,

_ {0.0366 S — —-1.6762 —0.7388 _ (0.0947
"=10.9908)° =\ 0o -—e66152)° “T\03040)"
Step 4. Compute y;; and a:
Su=16479, a=ruj; =—0.8619.

Solve for y :

(ST + $usudy Dy = —ra — 53}
—2.0476 0 ~ _ (—0.1245
—0.7388 —6.9866 y= 0.3530 /°

. { 0.0608
Y= 1-0.0569/

.1 (0089 _
u=r-—ye _(0.9418 o Ri=0

or

R = (0.0890, 0.9418).

287

288

Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Step 5. Solution of the reduced 2 x 2 problem:

16762 —0.7388
§=51= (0 —6.6152)

R = R, = (0.0890, 0.9418)

$11 =0.0486, $=(0.2036), R; = 0.5689.

Solution of the final 1 x 1 problem:

Thus,

S =-6.6152, R =0.5689, y11 = 0.1564.

1.6479 0.0608 —0.0569
0 0.0486 0.02036
0 0 0.1564

>
I

Step 6. Compute)7:[Q1, Y= qr ()A’U Ty (Using QR factorization):

1.2309 1.0960 0.0613
Y1 = 0 —0.0627 -0.2011
0 0 0.1623

1.2309 1.0960 0.0613

Step7.Y = 0 0.0627 0.2011

0 0 0.1623

MATCONTROL note: Algorithm 8.6.1 has been implemented in MATCON-
TROL functions lyapchle.

Remark

Note that it is possible to arrange the computation of ¥ with a different
form of partitioning than as shown in (8.6.4). For example, let us partition
matrices Y, R, and S as follows:

5 (Yu _ (R r AT
oy) m(B) = (%) s

where yj, 1, and sy are scalars or 2 x 2 matrices and y, r, and s are either
column vectors or matrices with two columns.

Section 8.6: DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS 289

Then, similar to Egs. (8.6.5)~(8.6.7), one will obtain three equations. For
example, the first one will be just the deflated version of the original equation.

St (vl) + (Yhvn) su = —Rf R (8.6.10)

Suppose that the solution Y, of this deflated equation has been computed,
then the second and third equations will give us the expressions for y and y;.
By using this new partitioning, the original algorithm of Hammarling
(1982) can be slightly improved.
In the following, we will use this partitioning to solve the discrete
equation.

8.6.2 Computing the Cholesky Factor of the Positive Definite Solution of
the Discrete Lyapunov Equation

Consider now the discrete Lyapunov equation:
ATxA+CTc =x, (8.6.11)

where A is an n x n discrete—stable matrix (i.e., all the eigenvalues 1, ..., A, are
inside the unit circle) and C is an r x n matrix.

Then Eq. (8.6.11) admits a unique symmetric positive semidefinite solution X.
Such a solution matrix X has the Cholesky factorization: X = YTY, where Y is
upper triangular.

We would obtain the matrix Y directly without solving the equation (8.6.11)
for X. Substituting X = YTY into the Eq. (8.6.11), we have

ATYTy)A+CcTc =YTy. (8.6.12)

As in the case of the continuous-time Lyapunov equation (8.6.1), we now outline
a method for finding Y of (8.6.12) without computing X and without forming the
matrix CTC.

Reduction of the Problem
Let S = UTAU, where S is in upper RSF and U is an orthogonal matrix. Let
QIR=CU

be the economy QR factorization of the matrix CU.
Then Eq. (8.6.12) becomes

ST (?T?) S+ RTR = P77, (8.6.13)

where ¥ = YU and RTR = coHTcu.

290 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Solution of the Reduced Equation

To obtain ¥ from (8.6.13) without forming RTR explicitly, we partition Y, R,
and S as

5 (Y oy _(Ru r (S s
Y_<0 y1>’ R_<O rl)’ S_<0 51/

From (8.6.13), we see that Y71, y, and y; satisfy the following equations:

sT (YIT1 Y11> S11+ RN Ry = (YlT1 Y11> , (8.6.14)
Yhy — @St ysi = ST Y Yius + Rl r, (8.6.15)

S;r)’]T)ﬂSl + (r1Tr1 +rTr + (Vs + ys)T (Vs + ys1) — yT)’) = le)’1-
(8.6.16)

Equation (8.6.14) is of the same form as the original reduced equation (8.6.12),
but is of smaller order.

Suppose that we have already computed the solution Y11 of this equation. Then
y can be obtained from (8.6.15) by solving a linear system and, finally, (8.6.16)
gives us y;.

Recovery of the Solution

Qn_ce % js obtained, the “R-matrix” Y of the QR factorization of the matrix YUT:
QY =YU T will be the upper triangular matrix that will solve the equation (8.6.12).
Let Y = (3i)).

Since Y has to have positive diagonal entries, we take

Y = diag(sign(311), . . , sign(Fun)) Y.

Algorithm 8.6.2. Algorithm for the Direct Cholesky Factor of the Symmetric
Positive Definite Solution of the Discrete Lyapunov Equation
Inputs. A—An n x n matrix
C—Anr x n matrix .
Output. Y—The Cholesky factor Y of the symmetric positive definite solution X
of the discrete Lyapunov Equation: ATXA+CTC =X.
Assumption. A is discrete-stable, that is all its eigenvalues have moduli less
than 1.

Step 1. Find the RSF S of A:UTAU = 8.

Step 2. Find the (economy size) QR factorization of the r x n matrix CU:
QR=CU.

Section 8.6: DIRECT COMPUTATIONS OF THE CHOLESKY FACTORS 291

Step 3. Partition

(S * (R =* (Y =*
S—<O *)’ R_<0 *)’ Y_(O x)°
where S11 is a scalar or 2 x 2 matrix (Schur bump).
Compute Yy from ST, (YL Y11)S11 + R], Ry = Y Y11

Step 4. Do while dimension of Y11 < dimension of S
4.1. Partition

Yin y =« Sit s x Ry, r x
Y=10 y1], S=10 s x|, R=10 r =«
0 0 =« 0 0 = 0 0 =*

where s1 is 1 x 1 scalar or 2 x 2 Schur bump.

4.2. Compute y from Ylle - (Y11S11)Tys1 = STI YIT1 Yiis+ R}“lr.
4.3. Compute y; from

sEyFyist + rFri 4+ rTr + (s + ys)T (Vs + ys1) = yTy) = y w1

4.4. Goto Step 4 with Yy} = (Y“ y)_

0 »n
Step~5. Compute Y from the QR factorization of Y11 U T:Q? =y, UT.
Let Y = (3i5).
sign(y11) 0
Step 6. Compute Y = Y.
0 sign(Ynn)

Example 8.6.2. Consider solving the equation (8.6.12) for the Cholesky factor Y with
—0.1973 -—-0.0382 0.0675
A=} -0.1790 -0.3042 —-0.0544
0.0794 0.0890 —0.1488

and

C= 0.0651 0.1499 0.2917
T 10.1917 0.0132 0.4051)°

Step 1. Reduction of A to the RSF: {U, S] = schur (A) gives

—0.3864 —0.7790 0.4938
U=1]-0.7877 05572 0.2627
0.4798 0.2875 0.8290

9

0 —0.1595 —0.0963

—0.3589 —0.0490 0.1589
S =
0 0.0173 -0.1319

292 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Step 2. The economy size QR factorization of CU: [Q, R] = gr (CU, 0) gives

R— 0.1100 —0.0289 0.4245
- 0 0.1159 0.3260/°

Step 3. Partitioning of R and S gives S;; = (—0.3589), Ry; = (0.1100), which
enables us to compute Y1 = (0.1178).
Step 4. Dimension of Y1} = 1 < dimension of S = 3. So we do:
4.1.

0.1589 0.0173 -0.1319

_ (—0.0289
"=\ 04245

. (—0.0490)T . = (—0.1595 —0.0963)

T
) , 1 =(0.1159 0.3260).

42.y =1 04078

4.3. Solve for upper triangular y; with positive diagonal:

—0.0291)T

~ (0.1167 0.3242
=1 0 01392/

4.4. Form Y, :

0.1178 —0.0291 0.4078

Y1 = 0 0.1167 0.3242

0 0 0.1392
and the loop in Step 4 ends. _ _
Step 5. Find the QR factorization of Y11UT: [Q1, Y] = qr(Y1;UT) to obtain ¥:

~ -0.2034 -0.0618 —0.4807
Y = 0 —0.1417 —0.1355
0 0 —0.0664

Step 6. Compute the solution:

0.2034 0.0618 0.4807
0 0.1417 0.1355
0 0 0.0664

Y

MATCONTROL Note: Algorithm 8.6.2 has been implemented in MATCONTROL
function lyapchld.

Section 8.7: SOME SELECTED SOFTWARE 293

8.7 COMPARISONS OF DIFFERENT METHODS AND
CONCLUSIONS

The analytical methods such as the ones based on evaluating the integral
“ T
X = / et Ce dr
0

for the Lyapunov equation, evaluating the infinite sum Z(Ak)TCAk for the
discrete Lyapunov equation, and the finite series methods for the Sylvester and
Lyapunov equations are not practical for numerical computations.

The methods, based on the reduction to Jordan and companion forms, will
give inaccurate solutions when the transforming matrices are ill-conditioned. The
methods based on the reduction to Jordan and companion forms, therefore, in
general should be avoided for numerical computations.

From numerical viewpoints, the methods of choice are:

e The Schur method (Section 8.5.2) for the Lyapunov equation:
XA+ATX =C.

e The Hessenberg—Schur method (Algorithm 8.5.1) for the Sylvester
equation: XA + BX =C.

e The Schur method (Section 8.5.4) for the discrete Lyapunov equation:
ATXA-X=C

e The modified Schur methods (Algorithms 8.6.1 and 8.6.2) for the
Cholesky factors of the Lyapunov equation: XA + ATX = —CTC and
the discrete Lyapunov equation: ATXA + CTC = X.

8.8 SOME SELECTED SOFTWARE
8.8.1 MATLAB Control System Toolbox
Matrix equation solvers

lyap Solve continuous Lyapunov equations
dlyap Solve discrete Lyapunov equations.

8.8.2 MATCONTROL

CONDSYLVC Finding the condition number of the Sylvester equation problem

LYAPCHLC Finding the Cholesky factor of the positive definite solution
of the continuous-time Lyapunov equation

LYAPCHLD Find the Cholesky factor of the positive definite solution of the
discrete-time Lyapunov equation

LYAPCSD Solving discrete-time Lyapunov equation using complex Schur
decomposition of A

294

Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

LYAPENS Solving continuous-time Lyapunov equation via finite series

method

LYAPHESS Solving continuous-time Lyapunov equation via Hessenberg

decomposition

LYAPRSC Solving the continuous-time Lyapunov equation via real Schur

decomposition
LYAPRSD Solving discrete-time Lyapunov equation via real Schur
decompostion
SEPEST Estimating the sep function with triangular matrices
SEPKR Computing the sep function using Kronecker product

SYLVHCSC Solving the Sylvester equation using Hessenberg and complex

Schur decompositions

SYLVHCSD Solving the discrete-time Sylvester equation using Hessenberg

and complex Schur decompositions

SYLVHESS Solving the Sylvester equation via Hessenberg decomposition
SYLVHRSC Solving the Sylvester equation using Hessenberg and real

Schur decompositions

SYLVHUTC Solving an upper triangular Sylvester equation.

8.8.3 CSP-ANM

Solutions of the Lyapunov and Sylvester matrix equations

The Schur method for the Lyapunov equations is implemented as
LyapunovSolve [a,b] SolveMethod — SchurDecomposition]
(continuous-time case) and DiscreteLyapunovSolve [a,b, Solve-
Method — SchurDecomposition] (discrete-time case).

The Hessenberg-Schur method for the Sylvester equations is implemented
asLyapunovSolve [a,b,c, SolveMethod — HessenbergSchur]
(continuous-time case) and Discrete LyapunovSolve [a,b,c,
SolveMethod — HessenbergSchur] (discrete-time case).

The Cholesky factors of the controllability and observability Grammians of

a stable system are computed using CholeskyFactorControllabi-
lityGramian [system] and
CholeskyFactorObservabilityGramian [system].

8.84 SLICOT

Lyapunov equations

SBO3MD Solution of Lyapunov equations and separation estimation
SB030OD Solution of stable Lyapunov equations (Cholesky factor)
SBO3PD Solution of discrete Lyapunov equations and separation estimation

Section 8.8: SOME SELECTED SOFTWARE 295

SB0O3QD Condition and forward error for continuous Lyapunov equations

SBO3RD Solution of continuous Lyapunov equations and separation
estimation

SB0O3SD Condition and forward error for discrete Lyapunov equations

SBO3TD Solution of continuous Lyapunov equations, condition and
forward error estimation

SBO3UD Solution of discrete Lyapunov equations, condition and forward
error estimation

Sylvester equations

SBO4MD Solution of continuous Sylvester equations (Hessenberg—Schur
method)

SBO4ND Solution of continuous Sylvester equations (one matrix in Schur form)

SB040OD Solution of generalized Sylvester equations with separation
estimation

SB04PD Solution of continuous or discrete Sylvester equations (Schur method)

SB04QD Solution of discrete Sylvester equations (Hessenberg—Schur method)

SBO4RD Solution of discrete Sylvester equations (one matrix in Schur form)

Generalized Lyapunov equations

SGO3AD Solution of generalized Lyapunov equations and separation
estimation
SGO3BD Solution of stable generalized Lyapunov equations (Cholesky factor)

8.8.5 MATRIXy

Purpose: Solve a discrete Lyapunov equation.
Syntax: P = DLYAP (A, Q)

Purpose: Solve a continuous Lyapunov equation.
Syntax: P = LYAP (A, Q)

8.8.6 LAPACK

The Schur method for the Sylvester equation, XA + BX = C, can be imple-
mented in LAPACK by using the following routines in sequence: GEES to compute
the Schur decomposition, GEMM to compute the transformed right-hand side,
TRSY L to solve the (quasi-)triangular Sylvester equation, and GEMM to recover
the solution X.

296

Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

8.9 SUMMARY AND REVIEW

Applications

The applications of the Lyapunov equations include:

Stability and robust stability analyses (Chapter 7).

Computations of the controllability and observability Grammians for stable
systems (needed for internal balancing and model reduction) (Chapter 14).
Computations of the H> norm (Chapter 7).

Implementation of Newton’s methods for Riccati equations (Chapter 13).

The applications of the Sylvester equations include:

Design of Luenberger observer (Chapter 12)
Block-diagonalization of a matrix by similarity transformation.

Existence and Uniqueness Results

1)
2
€)

The Sylvester equation XA + BX = C has a unique solution if and only
A and — B do not have an eigenvalue in common (Theorem 8.2.1).

The Lyapunov equation XA + ATX = C has a unique solution if and only
if A and —A do not have an eigenvalue in common (Corollary 8.2.1).
The discrete Lyapunov equation ATX A — X = C has a unique solution if
and only if the product of any two eigenvalues of A is not equal to 1 or A
does not have an eigenvalue of modulus 1 (Theorem 8.2.2).

Sensitivity Results

D

)
3)

“4)

sep (B, —A) defined by

IXA+BX|g

sep(B, —A) = %ﬁn = Omin(P),

#0 1 XIle

where P=1,® B + AT I,,, m and n are, respectively, the orders of B
and A, plays an important role in the sensitivity analysis of the Sylvester
equation XA 4+ BX = C (Theorem 8.3.1).

sep (AT, —A) has an important role in the sensitivity analysis of the
Lyapunov equation: XA + ATX = C (Corollary 8.3.2).

sepd(AT, A) = omin(AT ® AT — ,2) has an important role in the sen-
sitivity analysis of the discrete Lyapunov equation ATXA — X = C
(Theorem 8.3.4).

If A is stable, then the sensitivity of the Lyapunov equation can be deter-
mined by solving the Lyapunov equation HA + ATH = —1.||H||3 is an

Section 8.10: CHAPTER NOTES AND FURTHER READING 297

indicator of the sensitivity of the stable Lyapunov equation XA + ATX =
—C (Theorem 8.3.3).

(5) If A and B are ill-conditioned, then the Sylvester equation XA+ BX = C
is ill-conditioned (Theorem 8.3.6). Thus, if A is ill-conditioned, then the
Lyapunov equation is also ill-conditioned. But the converse is not true in
general.

Sep-Estimation

The LINPACK style algorithm (Algorithm 8.3.1) gives an estimate of sep (A, B)T
without computing the Kronecker product sum P, which is computationally quite
sensitive.

Methods for Solving the Lyapunov and Sylvester Equations

e The analytical methods such as the finite-series method or the method
based on evaluation of the integral involving the matrix exponential are
not practical for numerical computations (Section 8.4).

e The methods based on reduction to the JCF and the companion form of a
matrix should be avoided (Section 8.5.1).

e The Schur methods for the Lyapunov equations (Sections 8.5.2 and 8.5.4)
and the Hessenberg—Schur method (Algorithms 8.5.1 and Section 8.5.7)
for the Sylvester equations are by far the best for numerical computations.

e If only the Cholesky factors of stable Lyapunov equations are needed, the
modified Schur methods (Algorithms 8.6.1 and 8.6.2) should be used.
These algorithms compute the Cholesky factors of the solutions with-
out explicitly computing the solutions themselves. The algorithms are
numerically stable.

8.10 CHAPTER NOTES AND FURTHER READING

The results on the existence and uniqueness of the Lyapunov and Sylvester equa-
tions are classical. For proofs of these results, see Horn and Johnson (1991),
Lancaster and Rodman (1995). See also Barnett and Cameron (1985), and Barnett
and Storey (1970). The sensitivity issues of these equations and the perturbation
results given in Section 8.3 can be found in Golub et al. (1979) and in Higham
(1996).

The sensitivity result of the stable Lyapunov equation is due to Hewer and
Kenney (1988). The sensitivity result of the stable discrete Lyapunov equation
is due to Gahinet ez al. (1990). The perturbation result of the discrete Lyapunov
equation appears in Petkov et al. (1991). The results relating the ill-conditioning

298 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

of the Sylvester equation and eigenvalues can be found in Ghavimi and Laub
(1995). The LINPACK-style sep-estimation algorithm is due to Byers (1984). See
Kagstrom and Poromaa (1996)) for LAPACK-style algorithms. For perturbation
results on generalized Sylvester equation, see Kagstrom (1994) and Edelman et al.
(1997, 1999). For description of LAPACK, see Anderson et al. (1999). A recent
book by Konstantinov et al. (2003) Contains many results on perturbation theory
for matrix equations.

The Schur method for the Lyapunov equation is due to Bartels and Stew-
art (1972). The Schur method for the discrete Lyapunov equation is due to
Barraud (1977). Independently of Barraud, a similar algorithm was developed
by Kitagawa (1977). The Hessenberg—Schur algorithms for the Sylvester and
discrete Sylvester equations are due to Golub et al. (1979). A good account of
the algorithmic descriptions and implementational details of the methods for
solving the discrete Lyapunov equations appears in the recent book of Sima
(1996).

The Cholesky-factor algorithms for the stable Lyapunov equations are due
to Hammarling (1982). The Hessenberg algorithm for the Sylvester equation
is due to Datta and Datta (1976) and Kreisselmeier (1972). For numerical
solutions of the generalized Sylvester equation AXBT + CXDT=E, see
Gardiner et al. (1992a). For applications of generalized Sylvester equations
of the above type including the computation of stable eigendecompositions of
matrix pencils see Demmel and Kagstrom (1987, 1993a, 1993b), Kagstrom and
Westin (1989), etc. See Kagstrém and Poromaa (1989, 1992) for block algo-
rithms for triangular Sylvester equation (with condition estimator). See Gardiner
et al. (1992b) for a software package for solving the generalized Sylvester
equation.

Exercises

8.1 Prove that the equation A*X B+ B*X A = —C has a unique solution X if and only if
YD j # 0, foralli and j, where A; is an eigenvalue of the generalized eigenvalue
problem: Ax = ABx. (Here A* = (A)T and B* = (B)T))

8.2 Let A be a normal matrix with Aq, ..., A, as the eigenvalues. Then show that
max; |A;]/ min;; [A; + A)| can be regarded as the condition number of the Lya-
punov equation XA + A*X = — C, where A* = AT, Using the result, construct
an example of an ill-conditioned Lyapunov equation.

83 If A=(a;j) and B=(bh;;) are upper triangular matrices of order m x m and
n x n respectively, then show that X = (x;;) satisfying the Sylvester equation
AX + X B = C can be found from

-1
Cij = Dhit1 Gik¥kj — 2p—q Xikbk;j
a;; +bjj

x,-j =

8.4 Prove Theorems 8.3.1 and 8.3.4.

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

Section 8.10: CHAPTER NOTES AND FURTHER READING 299

Using the perturbation results in Section 8.3, construct an example to show that the
Sylvester equation problem X A+ BX = C can be very well-conditioned even when
the eigenvector matrices for A and B are ill-conditioned.

Prove or disprove that if A and — B have close eigenvalues, then the Sylvester equation
XA + BX = C is ill-conditioned.

Construct a 2 x 2 example to show that the bound (8.3.7) can be much smaller than
the bound (8.3.3).

Derive the expression ¢ for the condition number of the Lyapunov equation given
in Section 8.3.4.

Using the definition of the sep function, prove that if X is a unique solution of the
Sylvester equation XA + BX = C, then

ICIF
1XllF < ———r—r.
sep(B, —A)
Let
Iy Tiy - Tip
0 Ty -+ D
vTau =7 = . !
0 0 - Tpp
be the RSF of A, and assume that T4, ..., Tpp have disjoint spectra.

(a) Develop an algorithm to transform 7' to the block diagonal form:
Y7ITY = diag(Tyy, ..., Tpp),

based on the solution of a Sylvester equation.

(b) Show that if the spectra of the diagonal blocks of T are not distinctly separated,
then there will be a substantial loss of accuracy (consult Bavely and Stewart
(1979)).

(c) Construct an example to support the statement in (b).

(d) Develop an algorithm to compute eA! based on the block diagonalization of A.

Construct a simple example to show that the Cholesky factor L of the solution matrix

X = LTL of the Lyapunov equation: X A +ATX = BBT, where A is a stable matrix,

is less sensitive (with respect to perturbations in A) than X.

Construct your own example to show that the Lyapunov equation X A + ATx =

is always ill-conditioned if A is ill-conditioned with respect to inversion, but the

converse is not true.

Repeat the last exercise with the Sylvester equation XA+ BX = C, that s, construct

an example to show that the Sylvester equation XA+ BX = C will beill-conditioned

if both A and B are ill-conditioned, but the converse is not true.

(a) Let A be a stable matrix. Show that the Lyapunov equation X A + ATX = —C
can still be ill-conditioned if A has one or more eigenvalues close to the
imaginary axes.

(b) Construct an example to illustrate the result in (a).

300

8.15

8.16

8.17
8.18

8.19

8.20

8.21

8.22

8.23

Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Give an example to show that the backward error for the Sylvester equation
XA + BX = C, where only A and B are perturbed, is large if an approximate
solution Y of the equation is ill-conditioned.

Give an example to illustrate that the backward error of an approximate solution to
the Sylvester equation XA + BX = C can be large, even though the relative residual
is quite small.

Provethatsep(A, —B) > Oifand onlyif A and — B do nothave common eigenvalues.
Let K =J QAT+ AT®@TIand L =1 ® ST + ST ® I be the Kronecker matrices,
respectively, associated with the equations:

XA+ ATX = —C

and

A

Xs+5Tk=-¢,
where S = UT AU is the RSF of A, and
¢=uvTcu.

(a) Prove that Kl = L7

(b) Using the result in (a), find a bound for the error, when A is only perturbed, in
terms of the norm of the matrix A and the norm of L=,

(¢) Based on (a) and (b), develop an algorithm for estimating sep(AT, —A),

analogous to the Byers’ algorithm (Byers 1984) for estimating sep(A, B).
Relationship of the distance to instability and sep (A) (Van Loan 1985)

Define sep (A) = min{|AX + XA*|[p|X € C"*", |X|F = 1}

Then prove that

(a) sep (A) =0, if and only if A has an eigenvalue on the imaginary axis.

(b) %sep(A) < B(A) < opin(A), where B(A) is the distance to instability (see

Chapter 7).

(Hint: sep(A) = 0yin(I @ A+ A®), and | B® Cll2 < [|B2[IC]2.)
Construct an example of an ill-conditioned discrete Lyapunov equation based on
Theorem 8.3.4.

Prove that if p(x) is a real polynomial of degree n having no pair of roots conjugate
with respect to the unit circle, and T is the lower companion matrix of p(x), then the
unique solution X of the discrete-time equation: X — TTXT = diag(1,0,...,0)
can be written explicitly as: X = (I — ¢(S)T¢(S))_1, where S is an unreduced
lower Hessenberg matrix with 1s along the superdiagonal and zeros elsewhere, and
¢ (x) = p(x)/(x" p(1/x)).

Discuss the numerical difficulties of using this method for solving the discrete
Lyapunov equation.

Work out an example to demonstrate the difficulties.
Develop an algorithm, analogous to Algorithm 8.6.1, to find the Cholesky factor of the
symmetric positive definite solution of the Lyapunov equation AX +X AT = —BBT,
where B is n x m and has full rank.
Compare the flop-count of the real Schur method and the complex Schur method for
solving the Lyapunov equation: X A + ATx = —C.

Section 8.10: CHAPTER NOTES AND FURTHER READING 301

8.24 Work out the flop-count of the Schur method for the discrete Lyapunov equation
described in Section 8.5.4.

8.25 Develop a method to solve the Lyapunov equation ATXA — X = —C based on the
reduction of A to acompanion form. Construct an example to show that the algorithm
may not be numerically effective.

8.26 Establish the round-off error bound (8.5.18):

IX—Xlg _ _ cmu
IXIE = sepg(AT, 4)

for the Schur method to solve the discrete Lyapunov equation (8.5.12).
8.27 Develop a Hessenberg—Schur algorithm to solve the discrete Sylvester equation
BXA+C=X.
8.28 Develop an algorithm to solve the Sylvester equation: XA + BX = C, based on the
reductions of both A and B to RSFs.
Give a flop-count of this algorithm and compare this with that of Algorithm 8.5.1.

Research problems

8.1 Devise an algorithm for solving the equation:
ATxB+BTxAa=—C

based on the generalized real Schur decomposition of the pair (A, B), described in
Chapter 4.
8.2 Devise an algorithm for solving the equation:

AXB+LXC=D

using the generalized real Schur decomposition of the pairs (A, L) and (CT, BT,
8.3 Investigate if and how the norm of the solution of the discrete-stable Lyapunov
equation:
ATXA-X=—1

provides information on the sensitivity of the discrete Lyapunov equation:
ATxa-x=cC.

8.4 Higham (1996). Derive conditions for the Sylvester equation: XA + BX = C to have
a well-conditioned solution.

References

Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J.,
Greenbaum A., Hammarling S., McKenney A., and Sorensen D. LAPACK Users’
Guide, 3rd edn, SIAM, Philadelphia, 1999.

Bamnett S. and Cameron R.G. Introduction to Mathematical Control Theory, 2nd edn,
Clarendon Press, Oxford, 1985.

Barnett S. and Storey C. Matrix Methods in Stability Theory, Nelson, London, 1970.

Barraud A.Y. “A numerical algorithm to solve ATXA — X = Q. IEEE Trans. Autom.
Control, Vol. AC-22, pp. 883-885, 1977.

302 Chapter 8: LYAPUNOV AND SYLVESTER EQUATIONS

Bartels R.H. and Stewart G.W. “Algorithm 432: solution of the matrix equation
AX + XB = C,” Comm. ACM, Vol. 15, pp. 820-826, 1972.

Bavely C.A. and Stewart G.W. “An algorithm for computing reducing subspaces by block
diagonalization,” SIAM J. Numer. Anal., Vol. 16, pp. 359-367, 1979.

Byers R. “A LINPACK-style condition estimator for the equation AX — X BT = C IEEE
Trans. Autom. Control, Vol. AC-29, pp. 926-928, 1984.

Datta B.N. and Datta K. “An algorithm to compute the powers of a Hessenberg matrix and
it’s applications,” Lin. Alg. Appl. Vol. 14, pp. 273-284, 1976.

Datta B.N., Numerical Linear Algebra and Applications, Brooks/Cole Publishing Co.,
Pacific Grove, CA, 1995.

Datta K., Hong Y.P, and Lee R.B. “Applications of linear transformation to matrix
equations,” Lin. Alg. Appl., Vol. 267, pp. 221-240, 1997.

DeSouza E. and Bhattacharyya S.P. “Controllability, observability and the solution of AX —
XB = C, Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981.

Demmel J. and Bo Kagstrom “Computing stable eigendecompositions of matrix pencils,”
Lin. Alg. Appl., Vol. 88/89, pp. 139-186, 1987.

Demmel J. and Kagstrom B. “The generalized Schur decomposition of an arbitrary pencil
A — AB: Robust software with error bounds and applications, Part I: Theory and
algorithms,” ACM Trans. Math. Soft., Vol. 19, no. 2, pp. 160-174, 1993a.

Demmel J. and Kagstrom B. “The generalized Schur decomposition of an arbitrary pen-
cil A — AB: Robust software with error bounds and algorithms, Part II: Theory and
algorithms,” ACM Trans. Math. Soft., Vol. 19, no. 2, pp. 175-201, 1993b.

Edelman A., Elmroth E., and Kagstrém B. “A geometric approach to perturbation theory of
matrices and matrix pencils, Part I: Versal deformations,” SIAM J. Matrix Anal. Appl.,
Vol. 18, no. 3, pp. 653-692, 1997.

Edelman A., Elmroth E., and Kagstrém B. “A geometric approach to perturbation theory
of matrices and matrix pencils, Part II: A stratification-enhanced staircase algorithm,”
SIAM J. Matrix Anal. Appl., Vol. 20, no. 3, pp. 667-699, 1999.

Gahinet PM., Laub A.J., Kenney C.S., and Hewer G. “Sensitivity of the stable discrete-time
Lyapunov equation,” IEEE Trans. Autom. Control, Vol. 35, pp. 1209-1217, 1990.
Gardiner J.D., Laub A.J., Amato J.J., and Moler C.B. “Solution of the Sylvester matrix

equation AXBT + CXDT = E ACM Trans Math. Soft., Vol. 8, pp. 223-231, 1992a.

Gardiner J.D., Wette M.R., Laub A.J., Amato J.J., and Moler C.B. “Algorithm 705:
A FORTRAN-77 Software package for solving the Sylvester matrix equation A X BT+
CXxDT = E” ACM Trans. Math. Soft., Vol. 18, pp. 232-238, 1992b.

Ghavimi A.R. and Laub A.J. “An implicit deflation method for ill-conditioned Sylvester
and Lyapunov equations,” Num. Lin. Alg. Appl., Vol. 2, pp. 29-49, 1995.

Golub G.H., Nash S., and Van Loan C.F. A Hessenberg—Schur method for the problem
AX + XB = C, IEEE Trans. Autom. Control, Vol. AC-24, pp. 909-913, 1979.
Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University,

Baltimore, MD, 1996.

Golub G.H. and Wilkinson J.H. “Ill-conditioned eigensystems and the computation of the
Jordan canonical form,” SIAM Rev., Vol. 18, pp. 578-619, 1976.

Hammarling S.J. “Numerical solution of the stable nonnegative definite Lyapunov equa-
tion,” IMA J. Numer. Anal., Vol. 2, pp. 303-323, 1982.

Section 8.10: CHAPTER NOTES AND FURTHER READING 303

Hearon J.Z. “Nonsingular solutions of TA — BT = C,” Lin. Alg. Appl., Vol. 16, pp.
57-63, 1977.

Hewer G. and Kenney C. “The sensitivity of the stable Lyapunov equation,” SIAM J. Contr.
Optimiz., Vol. 26, pp. 321-344, 1988.

Higham N.J. Accuracy and Stability of Numerical Algorithms, SIAM Philadelphia, 1996.

Horn R.A. and Johnson C.R. Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

Jameson A. “Solution of the equation AX + XB = C by the inversion of an M x M or
N x N matrix,” SIAM J. Appl. Math. Vol. 66, pp. 1020~1023, 1968.

Kagstrom B. “A perturbation analysis of the generalized Sylvester equation (AR — LB,
DR — LE) = (C, F),” SIAM J. Matrix Anal. Appl., Vol. 15, no. 4, pp. 1045-1060,
1994,

Kagstrom B. and Poromaa P., Distributed block algorithms for the triangular Sylvester
equation with condition estimator, Hypercube and Distributed Computers (F. Andre
and J.P. Verjus, Eds.), pp. 233-248, Elsevier Science Publishers, B.V. North Holland,
1989.

Kagstrom B. and Poromaa P. “Distributed and shared memory block algorithms for the
triangular Sylvester equation with sep™ ! estimators,” SIAM J. Matrix Anal. Appl.,
Vol. 13, no. 1, pp. 90-101, 1992.

Kagstrom B. and Poromaa P. “LAPACK-style algorithms and software for solving the
generalized Sylvester equation and estimating the separation between regular matrix
pairs,” ACM Trans. Math. Soft., Vol. 22, no. 1, pp. 78-103, 1996.

Kagstrom B. and Westin L. “Generalized Schur methods with condition estimators for
solving the generalized Sylvester equation,” IEEE Trans. Autom. Control, Vol. AC-34,
no. 7, pp. 745-751, 1989.

Kitagawa G. “An algorithm for solving the matrix equation X = FXFT + §” Int. J.
Control, Vol. 25, no. 5, pp. 745-753, 1977.

Konstantinov M., Gu, Da-Wei, Mehrmann Volker, Petkov Petko. Perturbation Theory for
Matrix Equations, Elsevier Press, Amsterdam, 2003.

Kreisselmeier G. “A Solution of the bilinear matrix equation AY + YB = —Q.,” SIAM
J. Appl. Marh., Vol. 23, pp. 334-338, 1972.

Lancaster P. and Rodman L., The Algebraic Riccati Equation, Oxford University Press,
Oxford, UK, 1995.

Petkov P., Christov N.D., and Konstantinov M.M. Computational Methods for Linear
Control Systems, Prentice Hall, London, 1991.

Sima V. Algorithms for Linear-Quadratic Optimization, Marcel Dekker, New York, 1996.

Starke G. and Niethammer W. “SOR for AX — XB = C,” Lin. Alg. Appl., Vol. 154-156,
pp. 355-375, 1991.

Van Loan C.F. “Using the Hessenberg decomposition in control theory,” in Algorithms and
Theory in Filtering and Control, Mathematical Programming Study (Sorensen D.C.
and Wets R.J., Eds.), pp. 102-111, no. §, North Holland, Amsterdam, 1982.

Van Loan C.F. “How near is a stable matrix to an unstable matrix,” Contemporary Mathe-
matics (BrualdiR. et al., Eds.), Vol. 47, pp. 465-477, American Mathematical Society,
Providence, RI, 1985.

PpART III

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CONTROL SYSTEMS DESIGN

Chapter 9
Chapter 10

Chapter 11

Chapter 12
Chapter 13

Chapter 14

Realization and Subspace Identification

Feedback Stabilization, Eigenvalue Assignment, and Optimal
Control

Numerical Methods and Conditioning of the Eigenvalue
Assignment Problems

State Estimation: Observer and the Kalman Filter

Numerical Solutions and Conditioning of Algebraic Riccati
Equations

Internal Balancing and Model Reduction

CHAPTER 9

REALIZATION AND SUBSPACE
IDENTIFICATION

Topics covered I

e State-Space Realization of Transfer Function .
e Minimal Realization (MR) J

e Subspace Identifications (Time and Frequency Domain)

9.1 INTRODUCTION

In this chapter, we consider the problems of state-space realization and
identification.

The state-space realization problem is the problem to find the matrices A, B, C,
and D of the transfer function G(s) in the continuous-time case or G(z) in the
discrete-time case, given a set of large number of Markov parameters.

In case of a discrete-time system, the Markov parameters can easily be computed
from the input—output sequence of the systems (see Exercise 9.5). Finding Markov
parameters in the case of a continuous-time system is not that straightforward.

There may exist many realizations of the same transfer function matrix. Two
such realizations, controllable and observable realizations, are obtained in
Section 9.2.1.

A realization with the smallest possible dimension of A is called a minimal
realization (MR). A necessary and sufficient condition for a realization to be an
MR is established in Theorem 9.2.1, and it is shown in Theorem 9.2.2 that two
MRs are related via a nonsingular transformation.

The existing algorithms for finding MRs are all based on factoring the associ-
ated Hankel matrix (matrices) of Markov parameters. Some basic rank properties
of these matrices, which are relevant to such factorizations, are established in
Section 9.3.

307

308 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Two numerically viable algorithms (Algorithms 9.3.1 and 9.3.2) based on the
singular value decomposition(s) (SVD) of these matrices are then described in
Section 9.3. The algorithms are valid both for continuous-time and discrete-time
state-space realizations, provided the Markov parameters are known.

The identification problem is the problem of identifying system matrices
A,B,C, and D from a given set of input—output data, rather than Markov
parameters.

Two time-domain subspace system identification algorithms (Algorithms 9.4.1
and 9.4.2) are presented in Section 9.4. These algorithms are based on the SVD
decompositions of Hankel matrices constructed directly from the input—output
sequences. The algorithms are presented for discrete-time systems identification,
but can be used for identifying the continuous-time systems also, provided the first
and higher derivatives of the inputs and outputs can be computed. In the last section
(Section 9.4.4), we state a frequency-domain subspace identification algorithm
(Algorithm 9.4.3). A frequency-domain state-space identification is concerned
with finding the system matrices, given a set of measured frequency responses.
The algorithm is stated for identification of a continuous-time system; however, it
can be used for discrete-time identification also, with trivial modifications.

Reader’s Guide

The readers familiar with material on state-space realization can skip
Sections 9.2 and 9.3.1.

9.2 STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION

In this section, we show, given a transfer matrix, how to construct state-space
realizations in controllable and observable forms of this transfer matrix.

We consider here only the continuous-time case. The results are also valid for
the discrete-time case by replacing the variable s by the variable z.

Definition 9.2.1. Ler G(s) be the transfer matrix of order r x m which is
proper. Then the quadruple (A, B, C, D) such that

G(s)=C(sI—A)"'B+D (9.2.1)
is called a state-space realization of G(s).

It can be shown (Exercise 9.1) that given a proper rational function G (s), there
always exists a state-space realization of G (s). However, such a realization is not
unique, that is, there may exist many state-space realizations of the same transfer
matrix.

Section 9.2: STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION 309

In the following sections we show the non-uniqueness of the state-space real-
ization of a transfer matrix (for the single-input, single-output case (SISO)), by
constructing two realizations of the same transfer matrix.

9.2.1 Controllable and Observable Realizations

The transfer matrix G(s) can be written in the form:

0!
G(s)=D+ 46)° (9.2.2)

where P(s) is a polynomial matrix in s of degree at most h — 1 given by
P(s) = P0+P1S+"'+Ph—lsh_lv 9.2.3)

and d(s) = s" + dp_1s"' + -+ + dis + dp is a monic polynomial of degree h

(h is the least common multiple of the denominators of all the entries of G(s)).
Let 0, and I, denote, respectively, the zero and identity matrices of order p.
Define now

0 In
O I
A= : , (9.2.4)
Om s O I
—dOIm _dl In _d21m Tt —dh—llm
O
O
B=]":1], C=(P,..., Pr-1), 9.2.5)
Om
I
D = lim G(s), (9.2.6)
S—>00
Then it is easily verified that
-1 P(s)
C(sI — A) B+D=G(s):D+m. 9.2.7)
S

Since the matrix-pair (4, B) is controllable, the above realization of G (s) is called
a controllable realization. This realization has dimension mh.
We now construct a different realization of G(s).

310 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Expand G (s) in Taylor series:
1 1
G@s)=D + ;Hl + s—2H2 +-- 9.2.8)
The matrices {D’, H;} can be found as follows:
D' = lim G(s)
S—>Q
H; = lim s(G(s) — D))
5> 00

1
H> = lim s? (G(s) ~-D — —H1> (9.2.9)
§—>00 s

etc.
Definition 9.2.2. The matrices {H;}, defined above, are called the Markov
parameters of G(s).

Note: The Markov parameters { H;} can be expressed as:

Hi=CA"'B, i=1,2,... (9.2.10)
Define now the matrices A’, B’, and C’ as follows:
0, I,
0, I
A= , 9.2.11)
Or T 0r Ir
_dOIr —d\l, —dbly, --- —dp 1l
H;
H,
=Ml c=u,o0,..,0). (9.2.12)
Hy,

Then it can be shown that with A’, B’, C’, and D’ as defined above, we have
C'(sI — AY"'B' + D' = G(s). (9.2.13)

That is, we have now another realization of G(s). Since (A’, C’) is observable,
this realization is called an observable realization of G(s). This realization has
dimension rh.

9.2.2 Minimal Realization

Since there may exist more than one realization of the same transfer function G(s),
it is natural to look for a realization of minimal order.

Section 9.2: STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION 311

Definition 9.2.3. A state-space realization (A, B, C, D) of G(s) is said to be
an MR of G(s) if the matrix A has the smallest possible dimension, that is, if
(A', B', C’, D) is any other realization of G(s), then the order of A’ is greater
than or equal to the order of A. The dimension of an MR is called the McMillan
degree.

Theorem 9.2.1. A state-space realization (A, B, C, D) of G(s) is minimal if
and only if (A, B) is controllable and (A, C) is observable.

Proof. We first prove the necessity by contradiction.

If (A, B) is not controllable and/or (A, C) is not observable, then from Kalman
decomposition (see Chapter 6), it follows that there exists a realization of smailer
dimension that is both controllable and observable. This contradicts the minimality
assumption.

Conversely, let (A, B, C, D) and (A’, B’, C’, D) be two minimal realizations
of G(s). Assume that the order of A’ is n’ < n. Since the two realizations have
the same transfer function, then they should have the same Markov parameters,
that is,

CA'"1B =C'(A)~'B. (9.2.14)
This implies that
OMCM = Oy Ciy» (9.2.15)

where Oy and Cyy, respectively, denote the observability and controllability matri-
ces of the realization (A, B, C, D) and, Oy, and Cy,, respectively, denote the
observability and controllability matrices of the realization (A’, B’, C’, D).

But, rank(OMCwm) = n, and rank(OyCy,) = n’ < n. This is a contradiction,
since rank(OMCwm) = rank(0y,Cy), by (9.2.15). W

The next question is how are two MRs of the same transfer matrices related?
We answer the question in Theorem 9.2.2.

Theorem 9.2.2. If(A, B,C, D)and(A’, B', C’, D) are two MRs of the same
transfer function G (s), then there exists a unique nonsingular matrix T such that

A =T AT, (9.2.16)
B =T7!B, C'=CT, D' = D. 9.2.17)

Moreover, T is explicitly given by
T -1 T
T =(0fiom) - OO} (9.2.18)

or
T = Cm(Cr) I (Cr 171, (9:2.19)

312 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

where Cy and Oy are, respectively, the controllability and observability matri-
ces of the realization (A, B, C, D), and Cy; and Oy, are, respectively, the
controllability and observability matrices of the realization (A’, B', C', D").

Proof. We just sketch a proof here and leave the details to the readers.
Let T be the matrix relating the matrices Oy and Oy, that is, T satisfies the
matrix equation:

OmT = O}y (9.2.20)

Since Oy has full rank, such a matrix T always exists. In fact, it is unique and is
given by

T = (0O Om)~' O Oy (9.2.21)

From the first block row of Eq. (9.2.20), we have CT = C'.
Since both the realizations have the same transfer function, and hence the same
Markov parameters, we obtain

OMCy = O3 Ciys (9.2.22)
which gives
Cm = (OI\TAOM)_I 0804 Cly = TCly. (9.2.23)
That is, T is a solution of the equation
TCy = Cm. (9.224)
Since Cy has full rank, we have
T = CM(Cpp) T[Cp(Cr)T17!, establishing (9.2.19).
Again, from the first block column of Eq. (9.2.23), we have
TB' =B. (9.2.25)

All that remains to be shqwn is that (9.2.16) holds. To show this, first note that
the Markov parameters CA'~1B and C'(A’)'~1B’, i > 1, are equal.

Section 9.2: STATE-SPACE REALIZATIONS OF A TRANSFER FUNCTION 313

We can then write

OMACM = Oy A'Cyy, (9.2.26)
which leads to
OfOMACY = O, 04, A'Cly. (9.2.27)
From (9.2.27) we have
ACym = T A'Cyy (where T is defined by (9.2.18)). (9.2.28)

But again multiplying (9.2.19) by A to the left, we have
ACM(Cr)T(Cl(Cr D™ = AT. (9.2.29)
From (9.2.28) and (9.2.29), we obtain
AT =TA’
Thatis, A’ = T~'AT. &

Uniqueness: Suppose that there exists another similarity transformation given
by T relating both the systems. Then we must have:

Oom(T —T1) =0.
But O has full rank, so, T = T}.

Example 9.2.1. Let

Here

P(s) = —4 + 3s,
d(s) =52 —3s+2.

The Markov parameters are:
D' = lim G(s) =0,
5—>0C
Hy = lim s(G(s) — D) =3,
S—=>00

1
H, = lim s? (G(s) -D - —H1> =5.
500 S

314

@

an

(I1)

9.3

Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Controllable realization

0 1 0
A=(_2 3>, B=<1), C =(-4,3), D =0.

Verify:
1 s—3 1} /0
Aylg= "
C(sl — A) B_s2_3s+2(4,3»)(_2 s)(l)
_ 3s —4
Cos2 35427

Since (A, B) is controllable and (A, C) is observable, the realization is
an MR.
Observable realization

r_ 0 1 r_ 3 r_
A_(_2 3>, B_(5>, C'=(1,0).

35—4
.. —lpr_
Vertfy. C/(SI - A) B = m

Since (A’, B’) is controllable, and (A’, C’) is observable, this is also an
MR of G(s).

Relationship. The two realizations are related by the nonsingular trans-
forming matrix T given by

_ -25 15
T =(0f0m) ' Of 04y = (i 2).

0 1 3

Fhe —1 1 —1 ’
Verify: TT'AT = (2 3)A, T7'B = (5> = B,
CT =(1,00=C".

COMPUTING MINIMAL REALIZATIONS FROM
MARKOV PARAMETERS

In the last section, we showed how to obtain an observable realization from a set
of Markov parameters:

Here

Hy=CA*'B, k=1,2,...

we consider the problem of computing a MR using Markov parameters.

Specifically, the following problem is considered.

Given a set of large number Markov parameters { H} of an unknown
transfer function G (s), find a minimal realization (A, B, C, D) whose
transfer function G(s) = C(sI — A)"!B + D.

Section 9.3: COMPUTING MINIMAL REALIZATIONS 315

Since the Markov parameters are much easier to obtain for a discrete-time sys-
temn, unless otherwise stated, we assume that the given Markov parameters are of
the discrete-time system:

X = Axy + Buy,
k+1 k k ©3.1)
vk = Cxg + Duy.

9.3.1 Some Basic Properties of the Hankel Matrix of Markov Parameters

There exist many methods for finding a minimal realization (see DeJong (1978) for
a survey). Most of these methods find a minimal realization from a decomposition
or a factorization of the Hankel matrix of Markov parameters of the form:

Hi Hp - H,
H, Hz; .-+ Hpy

M= . A (9.32)
Hy Hpy1 -+ Hy-

For example, a recursive method due to Rissanen (1971) obtains a minimal real-
ization by recursively updating the decomposition of a smaller Hankel matrix to
that of a larger Hankel matrix.

The following basic results due to Kalman ez al. (see, e.g., Kalman et al. (1969),
play an important role in the developments of Rissanen’s and other methods.

Theorem 9.3.1.

(i) Rank(M;) < rank(My41) for all k.
(i) If (A, B, C, D) is any realization of dimension n, then rank(My) =
rank (M) for all k > n.
(iii) Let (A, B,C, D) and (A’, B', C', D') be two realizations of G(s) of
order n and r/, respectively. Then,

rank (M,,) = rank(M,).

(iv) Let d be the McMillan degree, then m,?x(rank(Mk)) =d.
(v) Let (A, B, C, D) be any realization of dimension n, then

d = rank(M,,) = rank(OmCwnm),

where Oy and Cy are, respectively, the observability and controlla-
bility matrices of the realization (A, B, C, D).

Proof.

(i) The proof of (i) follows from the fact that My is a submatrix of My ;.

316 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

(ii) The proof of (ii) follows by observing that (Exercise 9.6) the Hankel
matrix My can be decomposed as:

Owm
CA"
Mo=| (CMIA”B, AR Ak—lB)) . (933)
CA.kvl
fork > nand M,, = OmCwm. 9.34)
Since the rows in (CA”",..., CAk_l) and the columns in
(A"B, ..., Ak_lB) are linear combination of the rows in Op and the

columns in Cy, respectively, we have
rank(My) = rank(M,,) = rank(OMCwm).

(i) Let (A’, B/, C’, D) be another realization of G(s) of order n’ and let
r = max(n, n’). Then, since both these realization have the same Markov
parameters, we must have

M =M,

Thus by (ii), rank(M,) = rank(M,) = rank(M}) = rank(M,,).
(iv) The proof is by contradiction. Suppose that there exists a minimal
realization (A, B, C, D) of order d’ < d.
Then by the previous two results, we should have max((rank(AMy))) =
di < d’, a contradiction.
(v) The proof follows from (iii) and (iv). W

Finding the McMillan Degree

The above result gives us several alternative procedures to obtain the McMillan
degree of the transfer function matrix.

A simple way to do so is to find any realization of G(s) and then find the rank
of the product OmCy, using the SVD.

Also, if the realization is stable and Cg and Og are, respectively, the controlla-
bility and observability Grammians obtained via solutions of respective Lyapunov
equations (see Chapter 7), then it is well known (Glover 1984) that the McMillan
degree is equal to the rank of Cg Og.

9.3.2 An SVD Method for Minimal Realization

It was shown by DeJong (1978) that the Rissanen’s method is numerically
unstable.

Section 9.3: COMPUTING MINIMAL REALIZATIONS 317

Since the SVD provides a numerically reliable way to compute the rank of a
matrix, a more numerically viable method for finding an MR should be based on
the SVD of the associated Hankel matrix. We now describe below an SVD-based
method for finding an MR (Ho and Kalman 1966; Zeiger and McEwen 1974; Kung
1978). For the sake of convenience, we will assume that D = 0 in this section.

Given the set {H{, Ha, ..., Hoy1} of Markov parameters, consider the SVD
of My+1:

My =USVT =Us'2812yT = y'v/,

where S = diag(s1, 52, ...,55,0,...,0,U' =US"?, and V' = §1/2yT.
Comparing this decomposition with the decomposition of My in the form
(9.3.2) in Section 9.3.1, it is easy to see that we can take C as the first block row
and the first p columns of U’ and similarly B can be taken as the first p rows and
the first block column of V',
The matrix A satisfies the relations:

UIA=U; and AV =V;,

where
= The first N block rows and the first p columns of U’
V1 = The first p rows and the first N block columns of V.
U, and V; are similarly defined. Since U) and V; have full ranks, we immediately
have from the above two equations,

A=UlU, o A=WV,

where U 17‘ and V;f are the generalized inverses of U; and V1, respectively.
This discussion leads to the following SVD algorithm for finding an MR:

Algorithm 9.3.1. An SVD Algorithm for Minimal Realization

Inputs. The set of Markov parameters: {H1, H, ..., Hyny1} (N should be
at least equal to the McMillan degree).

Qutputs. The matrices A, B, and C of a minimal realization.

Step 1. Find the SVD of the block Hankel matrix

H Hy -+ Hyyp
H, H3 -+ Hyp -
Myyy =) =USV',
Hyy1 Hyy2 -+ Hong
where S = diag(s(, 52,...,55,0,...,0),ands; 25> --- > 5, >0

Step 2. Form U' =US'? and V' = §'/2vT,

where S1/2 = dlag(sl/2 1/2, e sll,/z, 0,...,0).

318 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Step 3. Define
Uy = The first N block rows and the first p columns of U’

Uy = The last N block rows and the first p columns of U’

UMD = The first block row and the first p columns of U’

VD = The first p rows and the first block column of V'.
Step 4. Compute A = UITUz, Set B=vWD =y,

Theorem 9.3.2 proved by Kung (1978) shows that the MR obtained by
Algorithm 9.3.1 enjoys certain desirable properties.

Theorem 9.3.2. Let E; denote the error matrix, that is,
Ei=CA7'B—H;, i>1.

Assume that the given impulse response sequence {Hy) is convergent. That is,
H, — 0, when k — o0.

Then,
ZZNH |1 E; 1|}2: < e/n+m+r, where € is a small positive number, and

i=1

n, m and r are, respectively, the number of states, inputs, and outputs.
o The minimal realization obtained by Algorithm 9.3.1 is (i) discrete-stable
and (ii) internally balanced, that is, the controllability and observability
Grammians for this realization are the same and are equal to a diagonal

matrix (see Chapter 14).

Example 9.3.1. Let ¥ =2 and the given set of Markov parameters be:

{Hi, Hy, H3, Hs, Hs} = {3,5,9, 17, 33}.

359 0.2414 —0.8099 0.5345
Stepl. Mz =1|5 9 17 |. Then, U = | 0.4479 —-0.3956 —0.8018 |,
9 17 33 0.8609 0.4330 0.2673

§ = diag(44.3689 0.6311 0),and VT = | —0.8099 —0.3956 0.4330

02414 04479 0.8609
0.5345 —0.8018 02673 |

1.6081 —0.64340 0
Step 2. U' =1 29835 —0.31430 0 |,
5.7343 0.34400 O

1.6081 29835 5.7343
V' = 1-0.6434 —0.3143 0.3440
0 0 0

Section 9.3: COMPUTING MINIMAL REALIZATIONS 319

Step 3.
p, — (1.6081 ~0.6434
1=129835 —0.3143)°
[, — (29835 —0.3143
2= \5.7343 0.3440 /-
UD = (1.6081 —0.6434),
y _ (1.6081
—0.6434
Step 4.
4 (19458 0.2263
A=0 U2—<0.2263 1.0542)°
1.6081
_y) _
B=V"= <—0.6434> :
C=UW = (1.6081 —0.6434).
Verify:

E;1 =CB— H; = —8.8818 x 10716,
E, =CAB — H, = —8.8818 x 107!,
E3;=CA’B — H3 = —1.7764 x 107,
Es=CA’B— Hy =0,

Es = CA*B — Hs =7.1054 x 10713,

5
Y IEi* =5.5220 x 107
i=1
It is also easy to check that the realization is both controllable and observable. So,
it is minimal. The controllability and observability Grammians are the same and
are given by: Cg = Og = diag(44.3689, 0.6311).

Figure 9.1 shows a comparison between the graphs of the transfer functions
Go(s) = Zle S—l,.Hi and G(s) = C(sI — A)"'B. The plot shows an excellent
agreement between the graphs for large values for s.

MATCONTROL notes: Algorithm 9.3.1 has been implemented in
MATCONTROL function minresvd.

9.3.3 A Modified SYD Method for Minimal Realization

We describe now a modification of the above algorithm (see Juang 1994).

320 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

60

—|Go(iw)l
50F 1= 1GUW)

40 |

30 +

20 -

Magnitude (dB)

—~-10 +

,20 1 L \
102 107! 100 10! 102
Frequency (rad/sec)

FIGURE 9.1: Comparison of transfer functions of an SVD method.

This modified algorithm uses lower order block Hankel matrices in computing
the system matrices A, B, and C.
Define the block Hankel matrices:

H, Hy - Hg
Hy Hy; --- Hpy
Mgp=1] .) .
Hr Hpyr -+ Hap
and
H; H3 .-+ Hgyy
Hj Hy -+ Hgy2
M1 = : : .
Hgy1 Hpy2 -+ Hop

where R > n (n is the order of the system). Denote the controllability and
observability matrices by:

CR = (B, AB,..., AR 'B)

Section 9.3: COMPUTING MINIMAL REALIZATIONS 321

and
C
CA
of =
CA'R—I
Then,

Mg = Of A Ck,

and Mg = O CE.
Consider now the SVD of Mg:

Mp =USVT = ysl2gl/i2yT,

This means that 0151 is related to U and Cﬁ is related to V.

Define now X, by:
(X O
X = < 0 0) :

and U, and V,, as the matrices formed by the first » columns of U and V,
respectively. Also, let the matrices E; and E;n be defined as:

EY=(,.0,....,0), El=(,.0,...,0),

m

where [stands for identity matrix of order s, and m and r denote, respectively,
the number of inputs and the number of outputs.
Then one can choose 0151 =U, 2,1,/2 and Cﬁ =):,1/2\/,?.
From the equation:
Mg = OfCR = U, 5,/* 5, V]

n

it follows that B and C can be chosen as:

B==x,*VIE, and C=ETU,x}>

Also, from the equation:

Mgy = ORACR = U,z * Ax)* VT

it follows that

A=s"20" Mg v, 5

Thus, we have the following modified algorithm using the SVD of lower order
Hankel matrices.

322

Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Algorithm 9.3.2. A Modified SVD Algorithm for Minimal Realization

Inputs. The Markov parameters {Hy, Hp, ..

system to be identified).

., Har}, R > n (the order of the

Outputs. A, B, C of a Minimal Realization.
Step 1. Form the Hankel matrices Mg and Mg as defined above.

Step 2. Find the SVD of Mg:
_ S 0.7
Mp=U (0 O) v,
where ¥, = diag(o1,072,...,0,); 01 202> - >0, > 0.
Step 3. Compute
A=s"PUuTMp vz
B==x,*VIE,
¢ =ETU, 5?2

where U, and V,, are the matrices of the first n columns of U and V, respectively,

and E,, and E| are as defined above.

Example 9.3.2. We consider the previous example again. Take R = n = 2. Let
m=1,r=1.
Then,
_(H1 H\ (3 3
Mg = (Hz H3> - <5 9>’
_(Hy H3\ (5 9
M1 = <H3 H4> - <9 17)'
. (11.8310 0
% = diag (0 0.1690)
U, — (04927 —08702
2= 1-0.8702 0.4927
v, — (04927 —08702
27\ -0.8702 04927)
—-1/2,,T -1/2 1.8430 —0.3638
A=y T Muay, = (—0.3638 1.1570)°
1/2,T g —1.6947
B=%"VE= (—0.3578 :
C = ETU,%) = (~1.6947 —0.3578).

Section 9.3: COMPUTING MINIMAL REALIZATIONS 323

Verification:
Ei=CB—H; = 01071
E»=CAB — H, = 0(10°1%)
E3=CA’B — H3 = 0(10™1)
Es=CA®B—Hy =010
Es=CA*B — Hs = 0(107'%).
Remarks

e Algorithm 9.3.2, when extended to reconstruct the Markov parameters of
a reduced-order system obtained by eliminating “noisy modes,” is called
Eigensystem Realization Algorithm (ERA) because information from the
eigensystem of the realized state matrix obtained in Algorithm 9.3.2 is actu-
ally used to obtain the reduced-order model. The details can be found in
Juang (1994, pp. 133-144).

e The optimal choice of the number R requires engineering intuition. The
choice has to be made based on measurement data to minimize the size of
the Hankel matrix Mz. See Juang (1994).

Figure 9.2 shows a comparison between the graphs of the transfer function
Go(s) = Z?:] }lyHi and G(s) = C(sI — A)~1B. The plot shows an excellent
agreement between the graphs for large values of s.

60

— Gy (jw)!
50 L |G(jw)|

40 |

[N} (943
(=] (=2
T T

Magnitude (dB)

—_
<
T

~10 b

_20 1 1 1 A
1072 107! 10° 10! 10?
Frequency (rad/sec)

FIGURE 9.2: Comparison of transfer functions of a modified SVD method.

324 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

MATCONTROL note: Algorithm 9.3.2 has been implemented in MATCON-
TROL function minremsvd.

9.4 SUBSPACE IDENTIFICATION ALGORITHMS

In this section we consider the problem of identifying the system matrices of an
unknown system, given a large number of input and output measurements.
The problem is important in practical applications because it avoids compu-
tations of Markov parameters.
We state two SVD-based subspace algorithms, one for the deterministic case
and another for the stochastic case. First, we consider the deterministic case.
Specifically, the deterministic identification problem is:

Given a large number of input and output measurements, u; and y,
respectively of the unknown system:

Xky1 = Axg + Bug,
v = Cxp + Duy,

determine the order n of the unknown system and the system matrices
{A, B, C, D} up to within a similarity transformation; A € R"**",
BecR™" CcR™, and D e R,

9.4.1 A Subspace Deterministic Model Identification Algorithm

The algorithm has two major steps:

First, a state vector sequence is constructed as the intersection of the row spaces
of two block Hankel matrices, constructed from the input/output data.

Second, the system matrices A, B, C, and D are obtained from the least-squares
solution of a set of linear equations.

There exists different ways to compute the intersection (see Van Overschee and
De Moor (1996a, 1996b for details and references). One way, presented in Moonen
et al. (1989) is via the SVD of a concatenated Hankel matrix composed of two
Hankel matrices defined by the input and output data, as follows:

Yilkvi Yilk+2i
H iy y H ;] =)
K|k (Uk1k+i k+11k+2i Uniks2i
where
Yk Ye+1 o Yk+j-1
Y+t Y2 o Vi j
Yk|k+i = Yk42 Yi+3 yk+j+1

Ye+i—1 Yk+i 0 Yi+j+i-2

Section 9.4: SUBSPACE IDENTIFICATION ALGORITHMS 325

and
Yi+i Yiti+l ot YVe+itj-1
Yk+i+1 Yk+i+2 - Yk+i+j
Yijk+2i = . .)
Yk4+2i—1 Yk+2i 0 Yk+2i4j-2

The matrices Uyjx+; and U4 are similarly defined from the input data. Let

(X = (ks Xkt 15+ v s X j—1))-
The following assumptions are made:

e rank(X) = n (n is the minimal system order)
e span, (X) Nspan,, (Urpsi) =9
o rank(Ukk+i) = Number of rows in Ugj4.;.

Theorem 9.4.1. Let the SVD of
Hij+i)
H =
<Hk+uk+2i

(Ui U\ (St 0\ 1
H_<U21 Uzz)(o 0 v
Then the state vector sequence X» = (Xjvi, Xkyit1s--.» Xktit+j—1) LS given by
X = U;UszHk|k+i,

where U, is defined by the SVD of UL U1 S11:
S, O\ (VS
s~) (3 9)(F)
q

Proof. It can be shown (Exercise 9.12) that
span;,y, (X2) = spangg,, (Hkji+i) N span gy, (Hi1jk+2i).
Thus, X, can be realized as a basis for the row space of U sz Hyji+i. Then taking
the SVD of U, Hyji+i, we have
St 0
Ul Hupri = Ul (Uny Una) (él 0) VT,
= (U/[UNS1 O)VT,
= (U,S,V, OV,
= U, (S O(VVT.

326 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Noting that U ;r Uy = Lixn, we obtain from above
Uy U Hisi = (Sq O)(V V)T,

which is a basis for the row space of U ;‘;Hk\kﬂ- and therefore is a realization
of X,. N

Once X is determined, the system matrices A, B, C, and D are identified by
solving (in the least-squares sense) the following overdetermined set of linear
equations:

<xk+i+1 Co Xkgigj-1) _ (A B) (xk+i e Xk+i+j—z)
Vi+i v Yktivj-2) \C DJ\ukyi 0 ukyivj2)

It is, however, shown in De Moor et al. (1999) that the state vector sequence
X, does not need to be explicitly computed. The system matrices A, B, C, and D
may be identified by making use of the already computed SVD of H. The above
set of equations may then be replaced by an equivalent reduced set of equations
(see Algorithm 9.4.1).

This way of determining A, B, C, and D is computationally more efficient.

To do this, it is useful to redefine the matrices Hgx+; and Hyi;x+2i as follows:

Uk g R T
Yk Ye+1 Yik+j—-1
Ug+1 Ug+2 - U+
Hypqi = | Ykt Yir2 oo Vit j ,
Ugt+i—1 Uki - Ukyitj-—2
Vie+i—1 Yk+i 0 Yk+i+j-2
Uk+i Uk+it+1l - Uktitj-1
Yi+i Ye+i+1l 0 Yktitj-1
Uk+i+l Uk+i+2 - Uktitj
Ye+i+1 Yk+i+2 Yk+i+j
Hytifk+2i = : : :
Up4+2i—1 Uk42i - Uk2i+j-2
Vie+2i—1 Yk+2i 0 YkR2i+j-2

The above theorem still remains valid.

The following notation will be needed to state the algorithm.

M(p : q.1:s)is the submatrix of M at the intersectionof rows p, p+1, ..., ¢
and columns I,/ + 1,...,s; M(,1l : s) is the submatrix of M containing

Section 9.4: SUBSPACE IDENTIFICATION ALGORITHMS 327

columns [,/ +1,...,sand M(p : q,:) is the submatrix of M containing rows
p,p+1,....q.

Algorithm 9.4.1. A Deterministic Subspace Identification Algorithm.
Inputs. The input and output sequence {ur} and {yy}, respectively. The
integers i > n, where n is the order of the system to be identified and j.
Qutputs. The identified system matrices A, B, C, and D.
Assumptions.

1. The system is observable.
2. The integers i and j are sufficiently large, and in particular j >>
max(mi, ri), where m and r are the number of inputs and outputs.

Step 1. Calculate U and S from the SVD of H, where

Hyjivi
H = .
(Hk+1 k42

_ T_(Un Up){Su 0). 7
s (U0 V) (50 O

(Note that the dimensions of U11, U1z, and 811 are, respectively, (mi + ri) X
@mi +n), (mi +ri) x Qri —n), and 2mi + n) x 2mi + n)).

Step 2. Calculate the SVD of UIFZ UnSu:

S, O\ (Vi
ULUNLSu = (Ug, U) (0‘1 0) (VjT).
q

Step 3. Solve the following set of linear equations for A, B, C, and D (in the
least-squares sense):

UgULU@mi +ri4+1:(m+r)i+1),)S
Umi+ri+m+1:(m+r)i+1),)S

_ (A B\ (UIULUQ :mi+ris
T\NC DJ\Umi+ri+1l:mi+ri+m,:)S)’

Remark

o Itis to be noted that the system matrices are determined from U and S only;
the larger matrix V is never used in the computations. Since the matrix H
whose SV D to be computed could be very large in practice, computing U
and S only, without computing the full SV D of H, will be certainly very
useful in practice. Also, as stated before, the state vector sequence X is
not explicitly computed.

328 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

There exists also an on-line version of the above algorithm. See Moonen
et al. (1989) for details.

Example 9.4.1. Consider the following input—output data

»

0.09130 0.1310 0.6275 0.1301 —0.2206 0.1984 0.4081 —0.0175\"
u=1] 02766 0.7047 0.9173 0.9564 0.6631 0.7419 0.7479 1.2133
1.2427 1.2942 1.3092 1.1574 1.5600 1.0913 0.7765
T

0.6197 —0.4824 0.3221 0.2874 —-0.4582 —0.1729 0.3162 0.0946
y=1-0.3497 0.3925 0.2446 0.2815 0.05621 —-0.2201 0.1397 —-0.0880},
0.5250 —0.1021 0.2294 —0.0616 —0.0706 0.3982 —0.5695

generated from the discrete-time system:

-0.2 03 1
Xk+1 = 1 0 Xg + 0 Uk,

ye= (1, —Dx.

Step 1. S = diag(9.1719, 1.9793, 1.8031, 1.6608, 1.4509, 1.3426, 1.2796, 1.0657,
0.5012, 0.4554, 5.1287 x 10719,3.5667 x 10716, 2.2847 x 10716, 1.3846 x 1071°,
9.8100 x 10717, 1.0412 x 10718y,

Step 2.

0.4392 -0.0372 —-0.1039 0.2139 —-0.0297 -0.3324
—0.1318 0.01116 0.0312 —0.0642 0.0090 0.0997
-0.3277 0.3783 0.1880 0.2071 0.3299 0.2790
Uty — 0.0544 —0.1098 —0.0460 —0.0836 —0.0960 —0.0505
27102282 —0.4853 —0.2806 0.1674 —0.3377 0.108 |°
0.4965 0.0743 —-0.0282 0.1215 0.0416 —-0.3597
0.4062 —0.0910 0.3218 —0.3029 0.1580 0.3608
0.0012 0.3828 0.0071 0.4531 0.2565 —0.1672

Un
0.2417 -0.2139 0.2202 03049 —0.4614 —0.1558 0.0638 0.0142 —0.2980 —0.2488
0.0211 03581 0.1578 03546 —0.4804 -0.0503 —0.1130 0.2833 0.1475 0.5831
02768 -0.3634 -0.2593 -0.0824 -0.3694 0.2078 00116 —0.0870 —0.1208 0.0008
_ | 00383 -0.5002 0.1157 -0.0384 -0.1351 -0.0780 0.2107 —0.2894 0.7057 0.1893
| 03109 0.0687 -0.5137 0.1861 —0.0370 0.0372 02759 —0.0140 —0.0267 —0.0101
0.0338 0.0580 -04635 -0.2733 —0.0251 0.3664 —0.1282 0.0417 0.0803 0.3867
03402 0.0787 ~-0.0426 0.4406 0.2193 0.2340 —0.0493 —0.2103 0.0708 —0.0626
0.0389 0.2704 —0.1147 0.3117 0.2969 02668 03531 ~0.0220 0.2897 -0.0315
Sg = diag(1.94468, 0.624567).
Step 3.

A B 0.2635 0.1752 —0.4644

(c D) = 1.0153 -04635 0.5503

—0.1780 1.6527 | 1.4416 x 1076

Section 9.4: SUBSPACE IDENTIFICATION ALGORITHMS 329

Verification: The first 10 Markov parameters (denoted by H;,i = 1, ..., 10)
of the original system and those of the identified system (denoted by H/,i =
1,..., 10) are given below:

Hy =1, H| =09922,
H, =-12, Hj=-1.1962,
Hy =0.5400, H} = 0.5369,

Hip = —0.0343, Hj, = —0.0341,

9.4.2 A Stochastic Subspace Model Identification Algorithm

‘We now consider the stochastic case:

Xk+1 = Axp + Buy + wy,
Vi = Cxp + Duy + vy,

where v; € R and wy € R™*! are unobserved vector signals; vy is the
measurement noise and wy, is the process noise. It is assumed that

e[(2) 7 D)= (&)om=o

where the matrices Q, R, and § are covariance matrices of the noise sequences wy
and vi. The problem is now to determine the system matrices A, B, C, and D up
to within a similarity transformation and also the covariance matrices Q, S, and
R, given a large number of input and output data u; and yy, respectively.

We state a subspace algorithm for the above problem taken from the recent paper
of DeMoor et al. (1999). The algorithm, as in the deterministic case, determines
the system matrices by first finding an estimate X ¢ of the state sequence X from
the measurement data.

The sequence X 1 is determined using certain oblique projections.

Define the input Hankel matrix U;y; from the input data as:

Uk Uk+1 - Uk4j-1
Ukl Ugk42 - Up+j
Ui =
Ui Ui+l -0 U451

Similarly, define the output Hankel matrix Yy; from the output data.

330 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

The matrices A, B, C, D are then determined by solving the least-squares

problem:
- Xint _ (A B\ (Xi\ 2
ABC.D “ (Yiji) <C D \Uy; I

Once the system matrices are obtained by solving above least-squares prob-
lem, the noise covariances Q, S, and R can be estimated from the residuals (see
Algorithm 9.4.2 below for details).

The algorithm, in particular, can be used to solve the deterministic prob-
lem. Thus, it can be called a combined deterministic stochastic identification
algorithm.

Definition 9.4.1. The oblique projection of A € R? *J along the row space
of B € R7J on the row space of C € R"*/, denoted by A/pC is defined as:

cct cBT\'

_ T pT

A/pC=A(C" B)[(BCT BBT) C,
first r columns

where 1 denotes the Moore-Penrose pseudo-inverse of the matrix.
For convenience, following the notations of the above paper, we write

Up = Upji-1. Ur =Uipi,
Y, =Yoi-1, Yr=VYiio1,

where the subscript p and f denote, respectively, the past and the future. The
matrix containing the past inputs U, and outputs ¥, will be called W),:

Y
wo= (1)

The matrices Wo|; . and Woy; are defined in the same way as Ugj;—1 and Up;
from Y, and W,,.
The following assumptions are made:

e The input u; is uncorrelated with the noise wy and vy.
The input covariance matrix (1/7)(Uppi-1 U(')rm_l) is of full rank, that is,
the rank is 2mi (the sequence uy is then called persistently exciting of order
2i).

e The number of available measurements is sufficiently large, so that j — oc.
The noise wy and vy are not identically zero.

Algorithm 9.4.2. A Subspace Stochastic Identification Algorithm.
Inputs. The input and output sequences {u;} and {yi}.
Outputs. The order of the system and the system matrices A, B, C, D.
Assumptions. As above.

Section 9.4: SUBSPACE IDENTIFICATION ALGORITHMS 331

Step 1. Find the oblique projections:

Oi = Yipi-1/vip_, Woli-1. Oit1 = Yir12i-1/ Uiy Woli-

Step 2. Compute the SVD of the oblique projection:

o T_(U1y(S1 O 4
o=usv= () (5 0) (+3):

(The order n of the system is equal to the order of Sy).
Step 3. Define T'; and T as:

1/2
I =U151/ , Fioy =T,
where T; is T; without the last block row.
Step 4. Determine the state sequences:

Xi =S8 VIT, Xi—H = FlloiH-

Step 5. Solve the following linear equations (in the least-squares sense) for
A, B, C, D and the residuals p,, and py:

()= 5)()+ ()

Step 6. Determine the noise covariances Q, S, and R from the residuals as:

(& 2 =5[]

where the index i denotes a “bias” induced for finite i, which vanishes as
i — oo.

Implementational remarks: In practical implementation, Step 4 should not be
computed as above, because explicit computation of the latter matrix V is time
consuming.

In fact, in a good software, the oblique projections in Step 1 are computed using
a fast structure preserving Q R factorization method and SV D in Step 2 is applied
to only a part of the R-factor from the Q R factorization.

For details of the proofs and practical implementations of these and other related
subspace algorithms for system identification and an account of the extensive up-to-
date literature (including the software on identification) on the subject, the readers
are referred to the book by Van Overschee and DeMoor (1996a) and the recent
review paper by DeMoor et al. (1999).

MATLAB note: M-files implementing Algorithm 9.4.2 (and others) come with
the book by Van Overschee and DeMoor (1996b) and can also be obtained from
ftp://www.esat.kuleuven.ac.be/pub/SISTA/vanoverschee/book/subfun/

332 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

9.4.3 Continuous-Time System Identification

Subspace system identification algorithms, analogous to Algorithms 9.4.1
and 9.4.2, can also be developed for a continuous-time system:

x(t1) = Ax(t) + Bu(s),

y(t) = Cx(t) + Du(s).
However, the input and output matrices have to be defined differently and they
need computations of derivatives. Thus, define

u(ty) u(n) - u(tj—1)
UC‘ — u(l)([o) u(l)(t]) L. u(l)(lj—l)
Oll_l AR PEEEY e e Al
WD) wi D) e w D)

where u‘P)(t) denotes the pth derivative of u(t), and “c” stands for “continuous.”
The matrices Ygli_l, Uic|2i~1’ and X7 are similarly defined.
The continuous-time system identification problem can be stated as follows:
Given input and output measurements u(t), y(t),t = fo, t1,...,1j_1 and the
estimates of the derivatives ‘?(¢) and y‘P)(¢) up to order 2i — 1, of the above
unknown system, find the system matrices A, B, C, D, of the above continuous-
time system up to within a similarity transformation.

9.4.4 Frequency-Domain Identification

The problem we consider here is the one of identifying a continuous-time
model given a set of frequency responses. The problem can also be solved for
a discrete-time system. For frequency-domain identification of discrete-time sys-
tems, see McKelvey (1994a, 1994b, 1994c). Specifically, the frequency-domain
identification problem for a continuous-time system is stated as follows:

Given N frequency domain frequency responses G (jwy), measured
at frequencies wy (not necessarily distinct), k = 1,2, ..., N, find the
system matrices A, B, C, and D.

One indirect approach for solving the problem is to estimate the Markov param-
eters via matrix-fraction descriptions of the frequency responses G (jwy) and then
apply any of the Markov parameters based time-domain algorithms described in
Section 9.3. (See Exercise 9.10).

We will, however, not discuss this here. For details, the readers are referred to
the book by Juang (1994). Rather, we state here a direct subspace identification
algorithm from the paper of DeMoor et al. (1999).

Leta > n be auser supplied index. Let Re(M) and Im(M) denote, respectively,
the real and imaginary parts of a complex matrix M. Define the following matrices

Section 9.4: SUBSPACE IDENTIFICATION ALGORITHMS 333

from the given frequency responses:

H = (Re(H®), Im(H%)),
7 = (Re(Z%), Im(Z%),

where
G(jor) G(jwy) . G(jon)
e _ (jo)G(jwy) (jo)G(jw) - (jon)G(jwn)
(Jo)* 'G(jo1) (j)* 'G(jw) - (Jon)* 'G(jwn)
and
Ln In I
7o (ja).l)lm (jw.2)1m (]wN)]m
(o Uy (o)* 'Ly - (o) U,

Algorithm 9.4.3. Continuous-Time Frequency-Domain Subspace Identifica-
tion Algorithm.

Inputs. The set of measured frequencies G(jw1), G(jw), ..., G(jwoy), an
integer a and a weighting matrix W.

Outputs. The system matrices A, B, C, and D.

Step 1. Find the orthogonal projection of the row space of H into the row

space of T+:
Oq =H—HI'T.

Step 2. Compute the SVD of WOy

T
_ T St 0\ (Y

where W is a weighting matrix.
Step 3. Determine I'y = W_1U1S11/2.
Step4. Determine A and C as follows:
C = the first r rows of Ty,
A=TIT,,
where Ty and [y denote Ty without the first and last r rows.

334 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Step 5. Determine B and D via the least-squares solution of the linear systems

of equations:
Re(L)\ (Re(M)\ (B
Im(L)) ~ \Im(M))\D)"’

where L and M are given by:
G(jwr) Cjor — A~ I,
L= and M =
G(joy) Cloy — A I,
(Note that L and M are, respectively, of order rN x m andrN x (n +r).)

Remarks

e The choice of the weighting matrix W is very important. If W is cho-
sen appropriately, then the results are “unbiased”; otherwise, they will be
“biased.” For details of how the weighting should be chosen, the readers are
referred to the paper by Van Overschee and De Moor (1996a).

e The algorithm works well when # and i are small.

However, when i grows larger, the block Hankel matrices H and 7 became
very highly ill-conditioned. The paper of Van Overschee and De Moore
(1996a) contains a more numerically effective algorithm.

9.5 SOME SELECTED SOFTWARE
9.5.1 MATLAB Control System Toolbox
State-space models
minreal—Minimal realization and pole/zero cancellation
augstate—Augment output by appending states.
9.5.2 MATCONTROL

MINRESVD—Finding minimal realization using SVD of Hankel matrix of
Markov parameters (Algorithm 9.3.1)

MINREMSVD—Finding minimal realization using SVD of Hankel matrix of
lower order (Algorithm 9.3.2).

9.5.3 CSP-ANM
Model identification

e The system identification from its impulse responses is performed by
ImpulseResponseldentify [response].

Section 9.6: SUMMARY AND REVIEW 335

e The system identification from its frequency responses is performed by
FrequencyResponseldentify [response].

e The system identification directly from input—output data is performed by
OutputResponseldentify [u, y].

9.54 SLICOT

Identification
IB—Subspace Identification

Time invariant state-space systems

IBO1AD—Input—output data preprocessing and finding the system order
IBO1BD—Estimating the system matrices, covariances, and Kalman gain
IBO1CD—Estimating the initial state and the system matrices B and D.

TF—Time response

TFO1QD Markov parameters of a system from transfer function matrix
TFOIRD Markov parameters of a system from state-space representation

In addition to the above-mentioned software, the following toolboxes, especially
designed for system identification are available.

e MATLAB System Identification Toolbox, developed by Prof. Lennart
Ljung. (Website: http://www.mathworks.com)

e ADAPTX, developed by W.E. Larimore. (Website: http://adaptics.com)
Xmath Interactive System Identification Module, described in the
manual X-Math Interactive System Identification Module, Part 2, by
P. VanOverschee, B. DeMoor, H. Aling, R. Kosut, and S. Boyd, Integrated
Systems Inc., Santa Clara, California, USA, 1994 (website: http:/
www. isi.com/products/MATRIX y / Techspec / MATRIX y -Xmath /xm36.
html, -/MATRIX x XMATH/inline images/pg. 37 img.html and-/MATRIXy -
XMath/inlineimages/pg. 38img.html).

For more details on these software packages, see the paper by DeMoor et al. (1999).

955 MATRIXy
Purpose: Compute the minimal realization of a system.

Syntax: [SMIN, NSMIN, T]=MINIMAL (S, NS, TOL) or
[NUMMIN, DENMIN]=MINIMAL (NUM, DEN, TOL)

9.6 SUMMARY AND REVIEW

This chapter is concerned with state-space realization and model identification.

336 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Realization

Given a transfer function matrix G (s), the realization problem is the problem of
finding the system matrices A, B, C, and D such that G(s) = C(s/ —A) 1B+ D.

For a given proper rational function G(s), there always exists a state-space
realization. However, such a realization is not unique. In Section 9.2.1, the
nonuniqueness of a realization is demonstrated by computing the two realiza-
tions of the same transfer function matrix G(s): controllable and observable
realizations.

Minimal Realization

Arealization (A, B, C, D) of G(s) is an MR if A has the smallest possible dimen-
sion. An important result on MR is that a realization is minimal if and only if
(A, B) is controllable and (A, C) is observable (Theorem 9.2.1).

Two MRs are related by a nonsingular transforming matrix 7 (Theorem 9.2.2).

There are many methods for computing an MR, given a set of Markov param-
eters H, = CA* 1Bk =1,2,3,..., assuming that these Markov parameters
are easily obtainable from a given transfer function. Most of these methods find
an MR by factoring the Hankel matrix of Markov parameters:

H H, - H
H, Hy - Hpy
Mp=1.
Hy Hiyr -+ Hyo

Some basic properties of this Hankel matrix M} that play an important role in the
development of these algorithms are stated and proved in Theorem 9.3.1.

Two numerically viable SVD-based methods for computing an MR are given in
Sections 9.3.2 and 9.3.3 (Algorithms 9.3.1 and 9.3.2).

Time-Domain Subspace Identification

Many times, the Markov parameters are not easily accessible. In these cases, the
system matrices must be identified from a given set of input and output data.

Two subspace algorithms for system identification: Algorithm 9.4.1 for deter-
ministic identification and Algorithm 9.4.2 for combined deterministic and
stochastic identification are described in Section 9.4.

It is assumed that the number of input and output data are very large (goes to
infinity) and that the data are ergodic.

Each of these two subspace algorithms comes in two steps. The first step consists
of finding (implicitly or explicitly) some estimate X; of the state sequence, while

Section 9.7: CHAPTER NOTES AND FURTHER READING 337

in the second step, the system matrices A, B, C, and D are obtained by solving an
overdetermined system (in the least-squares sense) using this state sequence X;.

Frequency-Domain Subspace Identification

Finally, frequency-domain subspace identification is considered in Section 9.4.4.
The problem considered there is:

Given N frequency domain responses G (jwy), measured at frequencies wy, k =
1,2, ..., N; find the system matrices A, B, C, and D.

A continuous-time frequency-domain subspace identification algorithm
(Algorithm 9.4.3) is described in Section 9.4.4.

9.7 CHAPTER NOTES AND FURTHER READING

Realization theory is a classical topic in system identification. Ho and Kalman
(1966) first introduced the important principles and concepts of MR theory. There
are now well-known books and papers in this area such as Kung (1978), Ljung
(1987, 1991a, 1991b), Silverman (1971), Zeiger and McEwen (1974), Dickinson
et al. (1974a, 1974b), Juang (1994), Norton (1986), Astrdm and Eykhoff (1971),
Eykhoff (1974), Rissanen (1971), DeJong (1978), Brockett (1978), Datta (1980),
Gragg and Lindquist (1983). These papers and books provide a good insight into the
subject of system identification from Markov parameters. The paper by Gragg and
Lindquist (1983) deals with partial realization problem. The subspace system iden-
tification algorithms are the input-state-output generalizations of the realization
theory and these algorithms are relatively modern.

Material on subspace algorithms in this book has been taken mostly from the
recent book by Van Overschee and De Moor (1996b) and the recent review paper
by De Moor et al. (1999). Both references contain an up-to-date extensive
list of papers and books on realization theory and subspace identification
algorithms (see also the papers by Lindquist and Picci (1993, 1994)). Frequency-
domain identification is dealt with in some depth in the book by Juang (1994)
and a Newton-type algorithm for fitting transfer functions to frequency-response
measurements appears in Spanos and Mingori (1993).

There exists an intimate relation between subspace system identification and
frequency weighted model reduction. The frequency weighted model reduction is
discussed in Chaper 14 of this book. For details of the connection between these
topics, see Chapter 5 of the book by Van Overschee and De Moor (1996b).

Exercises

9.1 Prove that there always exists a state-space realization for a proper rational function.

338

9.2

9.3
94

9.5

Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Verify that the controllable realization (A, B, C, D) and the observable realization
(A, B, C’, D) described in Section 9.2.1 are state-space realizations of the same
transfer matrix G(s).
Give a complete proof of Theorem 9.2.2.
Let G (s) be the transfer matrix of a SISO system and let (A, b, ¢, d) be a state-space
realization of G(s):
Gis)=d+c(sI —A)'b=d+ b
a(s)

Prove that the realization is minimal if and only if a(s) and b(s) are coprime.
Generating the Markov Parameters
(a) Show that for the discrete-time system (9.3.1) with initial condition xg = 0,

the Markov parameters Hy = D, H; = CA-IB i =1,2,...., —1canbe

determined by solving the system:

y=35U,

where y = (yo, Y1, ¥2, - -+ Y= Drxi
S =(Hy, H,Hy, ..., Hi_1),

ug uy Uz e U

up Uy e U2

U= :
uo milxl,

where m is the number of inputs and r is the number of outputs; the matrix U
is an m! x I block upper triangular matrix.

(b) Assume that A¥ 2 0 for all time steps k > p, that is, A is discrete stable, then
show that the above system can be reduced to

y = S,U/,
where y = (o, y1. -+ -» ¥i-1)s
§' = (Hy, H, Ha, ..., Hp)

and
uO ul u2 > up .. ul_l
uO ul .- up_l e ul__z
U' =
0 o U_p1

(Note that U’ is of order m(p + 1) x ! and §' is of order r x m(p + 1).)

9.6
9.7

9.8

9.9

9.10

Section 9.7: CHAPTER NOTES AND FURTHER READING 339

(c) Discuss the numerical difficulties in solving the above system and work out an
example to illustrate the difficulties.

Prove that the Hankel matrix My can be decomposed in the form (9.3.3).

Assuming that H; — 0 as k — o0, prove that the realization obtained by

Algorithm 9.3.1 is discrete-stable. (Hint: Show that | S™1/2ZAS81/2 ||, is less than

unity.)

(a) Construct a discrete-time system:

Xg41 = Axg + Buy
Yk = Cuxg

with suitable randomly generated matrices A, B, and C.
(b) Construct sufficient number of Markov parameters using the inputs ug =
1,u; = 0,7 > 1, and assuming zero initial condition.
(c) Apply Algorithms 9.3.1 and 9.3.2 to identify the system matrices A, B, and C.
(d) Ineach case, plot the transfer function of the original and the identified model.
A stable system is balanced if both controllability and observability Grammians are
equal to a diagonal matrix (Chapter 14).
Prove that if Algorithm 9.3.2 starts with the Hankel matrix:

H Hy - Hg
Hy Hy -+ Hpy
Mﬁ,a = s
Hy Ha+l Ha+ﬁ—1

then the algorithm gives a balanced realization when the indices « and 8 are
sufficiently large.

Frequency-Domain Realization using Markov Parameters (Juang (1994)).
Consider the frequency response function G(zx) = C(zI — A)'B+ D; z; =
el 2mk/1 wherel is the data lengthand zx k =0, 1, ..., ! correspond to the frequency
points at 27k /I At, with At being the sampling time interval.

Write G (z¢) = Q™ @) R(zx)

where

Q@) =1Ir + Qrzp '+ + Qpz 7
Rz) =Ro+Rizp '+ + Rpz P

are matrix polynomials and I, is the identity matrix of order r.

(a) Prove that knowing G(z;), the coefficient matrices of Q(z;) and R(zx) can be
found by solving a least-squares problem.

(b) How can the complex arithmetic be avoided in part (a)?

(c) Show how to obtain the Markov parameters from the coefficient matrices found
in (a). '
(Hint: (57, 0iz7)(EX H;z™) = B2 Riz ™).

(d) Derive analgorithm for frequency-domain realization similar to Algorithm 9.3.2
based on (a)—(c).

340 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

(e) (Juang 1994). Apply your algorithm to the discrete-time system model defined
by the following data:

A= dia 0.9859 1.500 0.9859 0.1501
— @88 1500 0.9859)°\-0.1501 0.9859)°

(0.6736 0.7257) (0.4033 0.9025))

—0.725 0.6736 —0.9025 0.4033
—0.0407 —0.0454 0.8570 1.80
—0.5384 —0.6001 0.0000 0.00
0.0746 —0.0669 1.5700 -1.2
B= 0.9867 —0.8850 cT = 0.0000 0.00
0.0164 0.0373 | 1.4030 142 |’
0.0376 0.0860 0.0000 0.00
—0.0460 —0.0421 0.9016 1.78
-0.0711 —0.0650 0.0000 0.00

0. 0.
p=(o)
by calculating 200 frequency data points equally spaced in a data frequency
ranging from 0 to 16.67 Hz, and assuming that the orders of J(z;) and R(zy)
are 10. Sketch the graphs of the true and estimated frequency response functions
for the first input and first output and compare the results.

9.11 Consider the following discrete-time model (of a rigid body of mass m with a force f
acting along the direction of the motion (Juang 1994):

Xk+1 = Axg + Buy,

ik = Cxg,
1 At Lag2 f
= = 2 _ — g
where A (O |) B (A) e = C=(10).

At = sampling time interval.
(a) Construct the first five Markov parameters.
(b) Apply Algorithm 9.3.2 to identify A, B, and C.
(c) Show that the original and the identified models have the identical Markov
parameters.

9.12 Using the notation of Section 9.4.1, prove that span,qy, (X2} = spanqy, (Hy |t +i) N
spangy (He+11k+2i)-

9.13 Modify Algorithm 9.4.2 by incorporating weighting matrices Wy and W, such that
Wy is of full rank and W, has the property that rank(Wp); —1) = rank(Wp; _1 W7).

References

Astrém K. and Eykhoff P. “System identification—A survey,” Automatica, Vol. 7,
pp. 123-167, 1971.

Brockett R. “The geometry of the partial realization problem,” Proc. IEEE Conf. Dec.
Control, pp. 1048-1052, 1978.

Section 9.7: CHAPTER NOTES AND FURTHER READING 341

Datta K.B. “Minimal realization in companion forms,” J. Franklin Institute, Vol. 309(2),
pp. 103-123, 1980.

DeJong L.S. “Numerical aspects of recursive realization algorithms,” SIAM J. Control.
Optimiz., Vol. 16(4), pp. 646—660, 1978.

DeMoor B., Van Overschee P., and Favoreel W. “Algorithms for subspace state-
space systems identification: an overview,” Appl. Comput. Control, Signals, Circuits
(Datta B.N., et al., eds.), vol. 1, pp. 247-311, Birkhauser, Boston, MA, 1999.

Dickinson B., Morf M., and Kailath T. “A minimal realization algorithm for matrix
sequences,” IEEE Trans. Autom. Control, Vol. AC-19(1), pp. 31-38, 1974a.

Dickinson B., Kailath T., and Morf M. “Canonical matrix fraction and state space descrip-
tions for deterministic and stochastic linear systems,” IEEE Trans. Autom. Control,
Vol. AC-19, pp. 656-667, 1974b.

Eykhoff P. System Identification, Wiley, London, 1974.

Glover K. “All optimal Hankel-norm approximation of linear multivariable systems and
their L-error bounds,” Int. J. Control, Vol. 39, pp. 1115-1193, 1984,

Gragg W. and Lindquist A. “On the partial realization problem,” Lin. Alg. Appl., Vol. 50,
pp. 277-319, 1983.

Ho B.L. and Kalman R.E. “Efficient construction of linear state variable models from
input/output functions,” Regelungstechnik, Vol. 14, pp. 545-548, 1966.

Jer-Nan Juang, Applied System Identification, Prentice Hall, Englewood Cliffs, NJ, 1994,

Kalman R.E., Falb P.L., and Arbib M. A. Topics in Mathematical System Theory, McGraw
Hill, New York, 1969.

Kung S.Y. “A new identification method and model reduction algorithm via singular value
decomposition,” 12th Asilomar Conf. Circuits, Syst. Comp., pp. 705-714, Asilomar,
CA, 1978.

Lindquist A. and Picci G. “On subspace methods identification,” Proc. Math. Theory
Networks Syst., Vol. 2, pp. 315-320, 1993.

Lindquist A. and Picci G. “On subspace methods identification and stochastic model
reduction,” Proc. SYSID, Vol. 2, pp. 397-404, 1994.

Ljung L. System identification-Theory for the User, Prentice Hall, Englewood Cliffs, NJ,
1987.

Ljung L. Issues in system identification, IEEE Control Syst., Vol. 11(1), pp. 25-29, 1991a.

Ljung L. System Identification Toolbox For Use with Matlab, The Mathworks Inc., MA,
USA, 1991b.

McKelvey T. On State-Space Models in System Identification, Thesis no. 447, Department
of Electrical Engineering, Linkoping University, Sweden, 1994a.

McKelvey T. An efficient frequency domain state-space identification algorithm, Proc. 33rd
IEEE Conf. Dec. Control, pp. 3359-3364, 1994b.

McKelvey T. SSID-A MATLAB Toolbox for Multivariable State-Space Model Identifica-
tion, Department of Electrical Engineering, Linkoping University, Linkdping, Sweden,
1994c.

Moonen M., DeMoor B., Vandenberghe L., and Vandewalle J., “On and off-line iden-
tification of linear state space models,” Int. J. Control, Vol. 49(1), pp. 219-232,
1989.

Norton J.P. An Introduction to Identification, Academic Press, London, 1986.

Rissanen J. Recursive identification of linear sequences, SIAM J. Control, Vol. 9,
pp. 420430, 1971.

342 Chapter 9: REALIZATION AND SUBSPACE IDENTIFICATION

Silverman L. “Realization of linear dynamical systems,” IEEE Trans. Autom. Control,
Vol. AC-16, pp. 554-567, 1971.

Spanos J. T. and Mingori D. L. “Newton algorithm for filtering transfer functions to fre-
quency response measurements,” J. Guidance, Control, Dynam., Vol. 16, pp. 34-39,
1993.

Van Overschee P. and DeMoor B. Continuous-time frequency domain subspace system
identification, Signal Processing, Special Issue on Subspace Methods, Part I1: System
Identification, Vol. 52, pp. 179-194, 1996a.

Van Overschee P. and DeMoor B. Subspace Identification for Linear Systems: Theory,
Implementation and Applications, Kluwer Academic Publishers, Boston/London/
Dordrecht, 1996b.

Zeiger H. and McEwen A. “Approximate linear realizations of given dimension via Ho’s
algorithm,” IEEE Trans. Autom. Control, Vol. 19, pp. 153, 1974.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 10

FEEDBACK STABILIZATION,
EIGENVALUE ASSIGNMENT,
AND OPTIMAL CONTROL

Topics covered

° State-Feedback Stabilization

e Eigenvalue Assignment (EVA)

e Linear Quadratic Regulator Problems
e H-, Control

® \F;|5‘§|I[_\ Radius (Revisited)

10.1 INTRODUCTION

In this chapter, we first consider the problem of stabilizing a linear control
system by choosing the control vector appropriately. Mathematically, the problem
is to find a feedback matrix K such that A — BK is stable in the continuous-
time case or is discrete-stable in the discrete-time case. Necessary and sufficient
conditions are established for the existence of stabilizing feedback matrices,
and Lyapunov-style methods for constructing such matrices are described in
Section 10.2.

A concept dual to stabilizability, called detectability, is then introduced and its
connection with a Lyapunov matrix equation is established in Section 10.3.

In certain practical situations, stabilizing a system is not enough; a designer
should be able to control the eigenvalues of A — BK so that certain design con-
straints are met. This gives rise to the eigenvalue assignment (EVA) problem
or the so-called pole placement problem. Mathematically, the problem is to find
a feedback matrix K such that A — BK has a preassigned spectrum. A well-known

343

344 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

and a very important result on the solution of this problem is: Given a real pair
of matrices (A, B) and A, an arbitrary set of n complex numbers, closed under
complex conjugation, there exists a real matrix K such that the spectrum of A—BK
is the set A if and only if (A, B) is controllable. The matrix K is unique in the
single-input case.

This important result is established in Theorem 10.4.1. The proof of this result
is constructive, and leads to several well-known formulas, the most important of
which is the Ackermann formula. However, these formulas do not yield numeri-
cally viable methods for pole placement. Numerical methods for pole placement
are presented in Chapter 11.

Since there are no set guidelines as to where the poles (the eigenvalues) need
to be placed, very often, in practice, a compromise is made in which a feedback
matrix is constructed in such a way that not only the system is stabilized, but
a certain performance criterion is satisfied. This leads to the well-known Linear
Quadratic Regulator (LQR) problem. Both continuous-time and discrete-time
LQR problems are discussed in Section 10.5 of this chapter. The solutions of the
LQR problems require the solutions of certain quadratic matrix equations, called
the algebraic Riccati equations (AREs). Numerical methods for the AREs are
described in Chapter 13.

The next topic in this chapter is the Hy,-control problems. Though a detailed
discussion on the Hy,-control problems is beyond the scope of the book, some
simplified versions of these problems are stated in Section 10.6 in this chapter.
The Hso-control problems are concerned with stabilization of perturbed versions
of a system, when certain bounds of perturbations are known. The solutions of the
Hoso-control problems also require solutions of certain AREs. Two algorithms
(Algorithms 10.6.1 and 10.6.2) are given in Section 10.6 for computing the
Hyo-norm.”

The concept of stability radius introduced in Chapter 7 is revisited in the
final section of this chapter (Section 10.7), where a relationship between the
complex stability radius and an ARE (Theorem 10.7.3) is established, and a bisec-
tion algorithm (Algorithm 10.7.1) for determining the complex stability radius is
described.

Reader’s Guilde for Chapter 10

The readers familiar with concepts and results of state-feedback stabilizations,
pole-placement, LQR design, and H control can skip Sections 10.2-10.6.
However, two algorithms for computing the Hy-norm (Algorithms 10.6.1
and 10.6.2) and material on stability radius (Section 10.7) should be of
interests to most readers.

Section 10.2: STATE-FEEDBACK STABILIZATION 345

10.2 STATE-FEEDBACK STABILIZATION

In this section, we consider the problem of stabilizing the linear system:

x(t) = Ax(t) + Bu(1),

y(t) = Cx(t) + Du(z). 10.2.1)
Suppose that the state vector x(¢) is known and let’s choose
ut) =v(t) — Kx(@), (10.2.2)

where K is a constant matrix, and v(¢) is a reference input vector.
Then feeding this input vector u(¢) back into the system, we obtain the system:

x(1) = (A — BK)x(1) + Bv(1),

(10.2.3)
y=(C — DK)x(t) + Dv(z).
The problem of stabilizing the system (10.2.1) then becomes the problem of finding
K such that the system (10.2.3) becomes stable. The problem of state-feedback
stabilization can, therefore, be stated as follows:

Given a pair of matrices (A, B), find a matrix K such that A — BK is stable.

Graphically, the state-feedback problem can be represented as in Figure 10.1.

In the next subsection we will investigate the conditions under which such
a matrix K exists. The matrix K, when it exists, is called a stabilizing feedback
matrix; and in this case, the pair (A, B) is called a stabilizable pair. The system
(10.2.3) is called the closed-loop system and the matrix A — BK is called the
closed-loop matrix.

v + EB u X= Ax+Bu Y
y=Cx+Du
X
-K

FIGURE 10.1: State feedback configuration.

346 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Analogously, for the discrete-time system:

Xkl = Axg + Bug,
ik = Cxi + Dug,

if there exists a matrix K such that A — BK is discrete-stable, that is, if it has all
its eigenvalues inside the unit circle, then the pair (A, B) will be called a discrete-
stabilizable pair, and the matrix K will be called a discrete-stabilizing feedback
matrix.

In what follows, we will present simple criteria of stabilizability and algorithms
for constructing stabilizing feedback matrices via Lyapunov matrix equations.

10.2.1 Stabilizability and Controllability

In this section, we describe necessary and sufficient conditions for a given pair
(A, B) to be a stabilizable pair. We start with the continuous-time case.

Theorem 10.2.1. Characterization of Continuous-Time Stabilizability. The
Jfollowing, are equivalent:

(i) (A, B) is stabilizable.
(i) Rank(A — Al, B) = n for all Re(i) > 0. In other words, the unstable
modes of A are controllable.
(iii) For all » and x # O such that x*A = Ax* and Re()) >0, we have
x*B #£0.

Proof. We prove the equivalence of (i) and (ii) and leave the equivalence of
(i) and (iii) as an exercise (Exercise 10.1).

Without any loss of generality we may assume (see Theorem 6.4.1) that the pair
(A, B) is given in the form:

-1 _ 7_ An Ap - By
PAP _A_(O i) PBE=B=(7).

where (A; L, BQ is controllable.

Since (A11, B1) is controllable, by the eigenvalue criterion of controllability
(Theorem 6.2.1 (v)), we have rank(AI — Ay, By) = p, where p is the order of
Ayi. Therefore,

0 AM—A»n 0O

rank(Al — A, B) = rank <)"1 —An —Alg Bl) n,

ifand only if rank (A —Ap,) < n— p, thatis, if and only if A is an eigenvalue of A;.

Section 10.2: STATE-FEEDBACK STABILIZATION 347

The proof now follows from the fact that if (A, B) is a stabilizable pair, the
matrix A, must be a stable matrix. This can be seen as follows:
The stabilizability of the pair (A, B) implies the stabilizability of the pair (A, B).
Since (A, B) is a stabilizable pair, there exists a matrix K suchthat A — BK is
stable. This means that if K = (K1, K»), then the matrix
<A11 - BiKi An— Ble)

is a stable matrix, which implies that Azz must be stable. W

Corollary 10.2.1. If the pair (A, B) is controllable, then it must be
stabilizable.

Proof. If (A, B) is controllable, then again by the eigenvalue criterion of
controllability, rank(A —XI, B) = nforevery A. In particular, rank(A—AI, B) = n
for every A for which Re(}) > 0. Thus, (A, B) is stabilizable. 1

The above result tells us that the controllability implies stabilizability.

However, the converse is not true. The stabilizability is guaranteed as long as
the unstable modes are controllable.

The following simple example illustrates the fact.

1 1 1 1
LetA=1[0 2 1], b=1]-1
0 0 -3 0

(A, b) is not controllable; rank(b, Ab, A2b) = 2.

However, the row vector f T = (-1265,-149.5, 0) is such that the eigenvalues
of A—bfT are {—10 4+ 11.4891;, —3}.

So, A — bfT is stable, that is, (A, b) is stabilizable.

The Discrete Case

A theorem, analogous to Theorem 10.2.1, can be proved for the discrete-time
system as well. We state the result without proof. The proof is left as an exercise
(Exercise 10.2).

Theorem 10.2.2. Characterization of Discrete-Stabilizability. The following
conditions are equivalent:

(1) The pair (A, B) is discrete-stabilizable.
(i) Rank(A — A1, B) = n for every X such that |A| > 1.
(i) For all . and x # O such that x*A = Ax™* and |A| > 1, we have
x*B # 0.

348 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

10.2.2 Stabilization via Lyapunov Equations

From the discussions of the previous section, it is clear that for finding a feedback
stabilizing matrix K for a given pair (A, B), we can assume that the pair (A, B) is
controllable. For, if (A, B) is not controllable but stabilizable, then we can always
put it in the form:

TAT ! = A= (Ao” 212) , TB=B= (%‘) , (10.2.4)
22

where (A1, By) is controllable, and An is stable. L
Once a stabilizing matrix K for the controllable pair (A1;, By) is obtained, the
stabilizing matrix K for the pair (A, B) can be obtained as:

K=IZT,

where
K = (K1, K2) (10.2.5)
and K is arbitrary.

We can therefore concentrate on stabilizing a controllable pair. Theorem 10.2.3
shows how to stabilize a controllable pair using a Lyapunov equation.

Theorem 10.2.3. Let (A, B) be controllable and let 8 be a scalar such that
B > |Amax (A},
where Amax(A) is the eigenvalue of A with the largest real part. Let K be
defined by
K=8B"Z"", (10.2.6)
where Z (necessarily symmetric positive definite) satisfies the Lyapunov

equation:

—(A+BDZ+ Z[-(A + BDI" = —2BB7, (10.2.7)

then A — BK is stable, that is, (A, B) is stabilizable.

Proof. Since 8 > |Amax(A)|, the matrix —(A + B1) is stable.

Also, since (A, B) is controllable, the pair (—(A+ 1), B) is controllable. Thus,
by Theorem 7.2.6, the Lyapunov equation (10.2.8) has a unique symmetric positive
definite solution Z.

Section 10.2: STATE-FEEDBACK STABILIZATION 349

Again, Eq. (10.2.8) can be written as:
(A-BB'Z7YZ+2(A-BB"Z7)T = —282Z.
Then, from (10.2.7) we have:
(A— BK)Z+ Z(A - BK)T = —287Z. (10.2.8)

Since Z is symmetric positive definite, A — BK is stable by Theorem 7.2.3.
This can be seen as follows:
Let ¢ be an eigenvalue of A — BK and y be the corresponding eigenvector.
Then multiplying both sides of Eq. (10.2.9) first by y* to the left and then by y
to the right, we have

2Re(u)y*Zy = —2By* Zy.
Since Z is positive definite, y*Zy > 0. Thus, Re(u) < 0. So, A — BK is
stable. W

The above discussion leads to the following method for finding a stabilizing
feedback matrix (see Armstrong 1975).

A Lyapunov Equation Method For Stabilization

Let (A, B) be acontrollable pair. Then the following method computes a stabilizing
feedback matrix K.

Step 1. Choose a number § such that 8 > |Apax (A)|, where Amax (A) denotes
the eigenvalue of A with the largest real part.

Step 2. Solve the Lyapunov equation (10.2.8) for Z:

—(A+BDZ+ Z[—(A + BD)T = —2BBT.
Step 3. Obtain the stabilizing feedback matrix K:
K=8Tz"1

MATCONTROL note: The above method has been implemented in MATCON-
TROL function stablyapc.

A Remark on Numerical Effectiveness

The Lyapunov equation in Step 2 can be highly ill-conditioned, even when
the pair (A, B) is robustly controllable. In this case, the entries of the stabilizing
feedback matrix K are expected to be very large, giving rise to practical difficulties
in implementation. See the example below.

350 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Example 10.2.1 (Stabilizing the Motion of the Inverted Pendulum Consider). Example
5.2.5 (The problem of a cart with inverted pendulum) with the following data:

m=1kg, M=2kg, [=05m, andg=9.18m/s%.

Then,
0 1 0 0
4= 0 0 -3.6720 0
— 10 O 0 1
0 0 220320 O

The eigenvalues of A are 0, 0, £4.6938. Thus, with no control input, there is an insta-
bility in the motion and the pendulum will fall. We will now stabilize the motion by
using the Lyapunov equation method with A as given above, and

0

—0.4

Step 1. Let’s choose 8 = 5. This will make —(A + S81) stable.
Step 2.
0.0009 —0.0044 —-0.0018 0.0098
—0.0044 0.0378 0.0079 —-0.0593
—0.0018 0.0079 0.0054 —0.0270
0.0098 —0.0593 —0.0270 0.1508

Z =

(The computed Z is symmetric positive definite but highly ill-conditioned).
Step 3. K = BTZ~! = 103(—0.5308, —0.2423, —1.2808, —0.2923).
Verify: The eigenvalues of A — BK are {—5 £ 11.2865j, —5 +0.7632}.

Note that the entries of K are large. The pair (A, B) is, however, robustly control-
lable, which is verified by the fact that the singular values of the controllability
matrix are 8.9462, 8.9462, 0.3284, 0.3284.

Remark

e Ifthepair (A, B)isnot contro}lalzle, but stabilizable, then after transforming
the pair (A, B) to the form (A, B) given by

- (A A - (B
“1_1_{An A _5_ (B
TAT _A_<0 A22>’ TB_B_<O),

we will apply the above method to the pair (A1, B)_(Which is controllable)
to find a stabilizing feedback matrix K for the pair (A, B;) and then obtain
K that stabilizes the pair (A, B) as

K =(K1,K2) T,

choosing K arbitrarily.

Section 10.2: STATE-FEEDBACK STABILIZATION 351

Example 10.2.2. Consider the uncontrollable, but the stabilizable pair (A, B):

Stepl.A=A, B=B.So, T =1.

- 1 1 - = 1
A”Z(O 2>, Axp = -3, B1=<_1)-

Step 2. Choose 8; = 10. The unique symmetric positive definite solution Z; of the
Lyapunov equation:

—(An +/DZy + Zi[— (A + g D]T = —2B1B}

is
7. — (0-091 ~0.0906
1= 1-0.0006 0.0833

Step 3. K| = BT Z;! = (~126.5, —149.5).
Step 4. Choose K» = 0. Then K = K = (K1, K») = (—126.5, —149.5, 0).
Verify: The eigenvalues of A — BK are —10 + 11.489;, —3.

Discrete-Stabilization via Lyapunov Equation

The following is a discrete-analog of Theorem 10.2.3. We state the theorem without
proof. The proof is left as an exercise (Exercise 10.3).

Theorem 10.2.4. Let the discrete-time system x| = Axg + Buy be control-
lable. Let 0 < 8 <1 be such that |M| > B for any eigenvalue A of A.

Define K = BY(Z + BBY) 1A, where Z satisfies the Lyapunov equation,
AZAT — ,B2Z = 2BBT, then A — BK is discrete-stable.

Theorem 10.2.4 leads to the following Lyapunov method of discrete-
stabilization. The method is due to Armstrong and Rublein (1976).

A Lyapunov Equation Method for Discrete-Stabilization

Step 1. Find a number B such that 0 < 8 < min(i, m1n|A), where
A1, A2, ..., Ay are the eigenvalues of (A).

352 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Step 2. Solve the discrete Lyapunov equation for Z:
AZAT — p?Z = 2BBT.

Step 3. Compute the discrete-stabilizing feedback matrix K,
K = BY(Z + BB) "1 A.

Example 10.2.3. Consider the cohort population model in Luenberger (1979,
pp. 170), withay =y =3 = 1,81 = B2 = B3 = B4 = 1,and

B =

SO O~

Then,
1 1 1 1
1 0 0 0
A=lo 10 0
0 0 1 0
The eigenvalues of A are —1.9276, —0.7748, —0.0764 £ 0.8147 j. The matrix A is not
discrete-stable.
Step 1. Choose 8 = 0.5
Step 2. The solution Z to the discrete Lyapunov equation AZAT — 827 = 2BBT is

—0.0398 0.0321 —0.0003 0.0161
0.0321 —0.1594 0.1294 —0.0011
-0.0003 0.1214 —0.6376 6.5135
0.0161 —-0.00i11 6.5135 —2.5504

Step 3. K = (1.2167, 1.0342, 0.9886, 0.9696)
Verify: The eigenvalues of A — BK are —0.0742 £ 0.4259, —0.4390, and 0.3708.
Thus, A — BK is discrete-stable.

Z=-

Note: If (A, B) is not a discrete-controllable pair, but is discrete-stabilizable,
then we can proceed exactly in the same way as in the continuous-time case to
stabilize the pair (A, B).

The following example illustrates how to do this.

MATCONTROL note: Discrete Lyapunov stabilization method as described
above has been implemented in MATCONTROL function stablyapd.

Example 10.2.4. Let

1 2 3 1
A=]1 -1 1 , B=1]0
0 0 —0.9900 0

The pair (A, B) is not discrete-controllable, but is discrete-stabilizable.

Section 10.3: DETECTABILITY 353

_ Using the notations of Section /0.2.2, we have A = A, B = B. The eigenvalues of
A are
{1.7321, —1.7321, —0.9900}.

= 1 2 = 1
o= 2)-=()

The pair (A11, By) is controllable.
We now apply the Lyapunov method of discrete-stabilization to the pair (A1, BY).

Step 1. Choose 8 = 1.
Step 2. The solution Z; of the discrete Lyapunov equation: AnZ 1A -7 =

2BlBir is
7. (05 025
1=%025 025/

K1 = (0, 2.4000).

Step 4. The matrix Aj; — B K| is discrete-stable. To obtain K such that A —
BK is discrete-stable, we choose K = (K 1,0). The eigenvalue of A — BK are
0.7746, —0.7746, —0.9900, showing that A — BK is discrete-stable, that is, A — BK
is discrete-stable.

Step 3.

Remark

e For an efficient implementation of the Lyapunov method for feedback
stabilization using the Schur method, see Sima (1981).

10.3 DETECTABILITY

As observability is a dual concept of controllability, a concept dual to stabilizability
is called detectability.

Definition 10.3.1. The pair (A, C) is detectable if there exists a matrix L
such that A — LC is stable.

By duality of Theorem 10.2.1, we can state the following result. The proof is
left as an exercise (Exercise 10.8).

Theorem 10.3.1. Characterization of Continuous-Time Detectability. The
following conditions are equivalent:

(i) (A, C) is detectable.

(1) The matrix (A _C“) has full column rank for all Re()) > 0.
(iii) Forall)andx # Osuchthat Ax = Ax andRe(A) > 0, we have Cx # 0

iv) (AT, C") is stabilizable.

354 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

We have seen in Chapter 7 that the controllability and observability play impor-
tant role in the existence of positive definite and semidefinite solutions of Lyapunov
equations.

Similar resuits, therefore, should be expected involving detectability. We prove
one such result in the following.

Theorem 10.3.2. Detectability and Stability. Let (A, C) be detectable and let
the Lyapunov equation:

XA+ATx =-C"c (10.3.1)

have a positive semidefinite solution X. Then A is a stable matrix.

Proof. The proof is by contradiction. Suppose that A is unstable. Let A be an
eigenvalue of A with Re(A) > 0 and x be the corresponding eigenvector. Then
premultiplying the equation (10.3.1) by x* and postmultiplying it by x, we obtain
2Re(A)(x*Xx) + x*CTCx = 0. Since X > 0 and Re(1) > 0, we must have that
Cx = 0. This contradicts the fact that (A, C) is detectable. W

Discrete-Detectability

Definition 10.3.2. The pair (A, C) is discrete-detectable if there exists
a matrix L such that A — LC is discrete-stable.

Theorems analogous to Theorems 10.3.1 and 10.3.2 also hold in the discrete
case. We state the discrete counterpart of Theorem 10.3.1 in Theorem 10.3.3 and
leave the proof as an exercise (Exercise 10.10).

Theorem 10.3.3. The following are equivalent:

(1) (A, C) is discrete-detectable.
(i1)
A—Al
Rank(C > =n

Jor every A such that |A| > 1.
(iii) For all . and x # O such that Ax = Ax and |A| > 1, we have Cx # 0.
(iv) (AT, CT) is discrete-stabilizable.

104 THE EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT
PROBLEMS

We have just seen how an unstable system can be possibly stabilized using feedback
control. However, in practical instances, stabilization alone may not be enough.

Section 10.4: EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT PROBLEMS 355

The stability of the system needs to be monitored and/or the system response
needs to be altered. To meet certain design constraints, a designer should be able
to choose the feedback matrix such that the closed-loop system has certain transient
properties defined by the eigenvalues of the system. We illustrate this with the help
of a second-order system.

Consider the second-order system:

X(1) + 20w (1) + wlx(t) = u(t).

The poles of this second-order system are of the form: Aj 2= — {w, £

jway/1 — 2. The quantity ¢ is called the damping ratio and w, is called the
undamped natural frequency. The responses of the dynamical system depends
upon ¢ and wy. In general, for a fixed value of wy, the larger the value of £ (¢ > 1),
the smoother but slower the responses become; on the contrary, the smaller the
value of ¢ (0 < ¢ < 1), the faster but more oscillatory the response is. Figures 10.2
and 10.3 illustrate the situations.

For Figure 10.2, w, = 1 and ¢ = 3. It takes about eight time units to reach the
steady-state value 1.

For Figure 10.3, w, = 1 and ¢ = 0.5. The response is much faster as it reaches
the steady-state value 1 in about three units time. However, it does not maintain
that value; it oscillates before it settles down to 1.

1 : . — .
09 L .. S e, SR e
08 L. LS SO SRR NP TP e
07k . S RO SO FERRR SO e
= : : : : : :
3 06+ - 4o L TXERTERTRER P e S
o . : N N N X
a : : : : : :
2 0.5 S AT ILINS RTIIRRE P B
~ 5 5 z 5 5 z
0.4 _ ,,,,,,,,,,,, _{
03L...[... e s TR —]
02 k... I ,,,,,,,,,,, s L R
01k S
1] i 1 L i I 1
0 2 4 6 8 10 12 14

Time in sec

FIGURE 10.2: Unit step response when { = 3 and w, = 1.

356 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

14 1 j ; ; ;

S S R A N —

o
o0

Response x

g
o

o
P

02 b [

0 2 4 6 8 10 12
Time in sec

FIGURE 10.3: Unit step response when ¢ = 0.5 and w, = 1.

These quantities thus need to be chosen according to a desired transient response.
If the poles are close to jw-axis in the left half s-plane, then the transient responses
decay relatively slowly. On the other hand, the poles far away from the jw-axis
cause rapidly decaying time responses. Normally, “The closed-loop poles for a sys-
tem can be chosen as a desired pair of dominant second-order poles, with the rest
of the poles selected to have real parts corresponding to sufficiently damped modes
so that the system will mimic a second-order response with a reasonable control
effort” (Franklin et al. 1986). The dominant poles are the poles that have dominant
effects on the transient response behavior. As far as transient response is concerned,
the poles with magnitudes of real parts at least five times greater than the dom-
inant poles may be considered as insignificant. We give below some illustrative
examples.

Case 1. Suppose that it is desired that the closed-loop system response have the
minimum decay rate & > 0, that is, Re(X) < —« for all eigenvalues A. Then the
eigenvalues should lie in the shifted half plane as shown in Figure 10.4.

Case 2. Suppose that it is desired that the system have the minimal damping
ratio {min. Then the eigenvalues should lie in the sector as shown in Figure 10.5.

Case 3. Suppose that it is desired that the closed-loop system have a mini-
mal undamped frequency wrp;y. Then the eigenvalues of the closed-loop matrix
should lie outside of the following half of the disk: 0 < wpin < wy, as shown in
Figure 10.6.

Section 10.4: EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT PROBLEMS 357

Jjo
s-plane

Re(A)<—a<0

FIGURE 10.4: The minimum decay rate « of the closed-loop system.
jo
s-plane

0<pnS {1

FIGURE 10.5: Minimal damping ratio ¢ of the closed-loop system: the poles
lie in the sector {% € C: [Im(A)] < —Re(A)v/¢ 2 — 1}.

Jjo

s-plane
0 << o,

FIGURE 10.6: The minimal undamped frequency wpi, of the closed-loop
system: the poles lie in the region {A € C: |A| > wmin}.

Knowing that to obtain certain transient responses, the eigenvalues of the closed-
loop system should be placed in certain specified regions of the complex plane,
the question arises: where should these eigenvalues be placed? An excellent
discussion to this effect is given in the books by Friedland (1986, pp. 243-246)
and Kailath (1980, chapter 3).

358 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

If the eigenvalues of the closed-loop system are moved far from those of the
open-loop system, then from the explicit expression of the feedback vector (to be
given later) in the single-input case, it is easily seen that a large feedback f will
be required. From the control law,

u=v— fo(t),

it then follows that this would require large control inputs, and there are practical
limitations on how large control inputs can be.

Thus, although the eigenvalues have to be moved to stabilize a system, “the
designer should not attempt to alter the dynamic behavior of the open-loop
process more than is required” (Friedland 1986).

10.4.1 Eigenvalue Assignment by State Feedback

The problem of assigning the eigenvalues at certain desired locations in the
complex plane using the control law (10.2.2) is called the EVA Problem by
state feedback. In control theory literature, it is more commonly known as the
pole-placement problem.

Here is the precise mathematical statement of the problem.

Given A € R"*", B € R"™ (m < n),and A = {Aq, ..., A,}, where A is
closed under complex conjugation, find K € R™*" such that

Q(A — BK) = A.

Here, Q(R) stands for the spectrum of R.

The matrix K is called the state-feedback matrix.

Theorem 10.4.1 gives the conditions of existence and uniqueness of K.

Theorem 10.4.1. The State-Feedback EVA Theorem. The EVA problem is
solvable for all A if and only if (A, B) is controllable. The solution is unique
if and only if the system is a single-input system (i.e., if B is a vector). In the
multi-input case, if the problem is solvable, there are infinitely many solutions.

Proof. We first prove the necessity. The proof is by contradiction.

Suppose that the pair (A, B) is not controllable. Then according to the eigenvalue
criteria of controllability, we have rank(A — AI, B) < n for some A. Thus there
exists a vector z # 0 such that z'(A — Al) = 0, T B = 0. This means that for
any K, we have zT(A — Al — BK) = 0, which implies that X is an eigenvalue of
A — BK for every K, and thus A cannot be reassigned.

Section 10.4: EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT PROBLEMS 359

Next we prove the sufficiency.

Case 1. Let’s consider first the single-input case. That is, we prove that if (A, b)
is controllable, then there exists a unique vector f such that the matrix A — bf T
has the desired spectrum.

Consider the (lower) controller-companion form (C, b) of the controllable pair
(A, b) (see Chapter 6):

0 1 0 0
0o 0 1 0
TAT '=cCc= : : : : (10.4.1)
0 0 0 1
—a —ay _a3 PR —dp
and
0
0
hb=Tb=|0 (10.4.2)
1

We now show that there exists a row vector f FT such that the closed- -loop matrix
C—bf fT has the desired spectrum.

Let the characteristic polynomial of the desired closed-loop matrix be d(3) =
A+ d A" i et fT = (fL fo L f).

Then
0 1 0 0
) 0 0 1 .- 0
C—bhfT=) (10.4.3)
0 0 0 . 1
—ay—fi —ax—fo - —an — fn

The chflracteristic polynomial ¢/(1) of C — b fNT, then, is A"+ (a,, + fn)A”“l +-4
ay + f1. Comparing the coefficients of ¢’(A) with those of d(i), we immediately
have

fi=di—ai, i=12 ... n. (10.4.4)

Thus, the vector f is completely determined by the coefficients of the characteristic
polynomial of the matrix C and the coefficients of the characteristic polynomial
of the desired closed-loop matrix. Once the vector f is known, the vector f such
that the original closed-loop matrix A — bfT has the desired spectrum, can now

360 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

be found from the relation:
fT=fTT. (10.4.5)

(Note that Q(A — bfT) = Q(TAT ' = ThbfTT-\) = Q(C - bfT).)

Uniqueness: From the construction of f , it is clear that f is unique. We now
show that the uniqueness of f implies that of f. The proof is by contradiction.

Suppose there exists g # f such that Q(A — bgT) = Q(A — bfT). Then
QC—-bfT)y=Q(C —bg"), where T = gTT~! # £, which contradicts the
uniqueness of the vector f .

Case 2. Now we turn to the multi-input case. Since (A, B) is controllable,
there exists a matrix F and a vector g such that (A — BF, Bg) is controllable (see
Chen (1984, p. 344)). Thus, by Case 1, there exists a vector k such that the matrix
A — BF — Bgh" has the desired spectrum.

Thenwith K = F + ghT, we have that A — BK has the desired spectrum.

Uniqueness: Since the choice of the pair (F, g) is not unique, there exist
infinitely many feedback matrices K in the multi-input case. W

The Bass—Gura Formula

Note that using the expression of 7 from Chapter 6, the above expression for f in
the single-input case can be written as (Exercise 10.13):

=TT =117 (d -), (10.4.6)

where d is the vector of the coefficients of the desired characteristic polynomial,
a is the vector of the coefficients of the characteristic polynomial of A, Cy is the
controllability matrix, and W is a certain Toeplitz matrix.

The above formula for f is known as the Bass—Gura formula (see Kailath
(1980, p. 199)).

Ackermann’s Formula (Ackermann 1972)

A closely related formula for the single-input feedback vector f is the well-known
Ackermann formula:

f=erCyd(A), (10.4.7)

where Cy is the controllability matrix and d(A) is the characteristic polynomial
of the desired closed-loop matrix.

We also leave the derivation of Ackermann’s formula as an exercise
(Exercise 10.14).

Notes: We remind the readers again that, since 7 = C]_d1 can be very ill-
conditioned, computing f using the constructive proof of Theorem 10.4.1 or by

Section 10.4: EIGENVALUE AND EIGENSTRUCTURE ASSIGNMENT PROBLEMS 361

the Ackermann or by the Bass—Gura formula can be highly numerically unsta-
ble. We will give some numerical examples in Chapter 11 to demonstrate this.

The MATLAB function acker has implemented Ackermann’s formula and com-
ments have been made about the numerical difficulty with this formula in the
MATLAB user’s manual.

10.4.2 Eigenvalue Assighment by Output Feedback

Solving the EVA problem using the feedback law (10.2.2) requires knowledge of
the full state vector x(¢). Unfortunately, in certain situations, the full state is not
measurable or it becomes expensive to feedback each state variable when the order
of the system is large. In such situations, the feedback law using the output is more
practical. Thus, if we define the output feedback law by

u(t)y =—-Ky(@), y(t) = Cx(1), (10.4.8)
we have the closed-loop system
x(t) = (A— BKC)x(1).

The output feedback EVA problem then can be defined as follows.

Given the system (10.2.1), find a feedback matrix K such that the matrix
A — BKC has a preassigned set of eigenvalues.

The following is a well-known result by Kimura (1975) on the solution of the
output feedback problem.

Theorem 10.4.2, The Output Feedback EVA Theorem. Let (A, B) be control-
lable and (A, C) be observable. Let rank(B) = m and rank(C) = r. Assume
that n < r +m — 1. Then an almost arbitrary set of distinct eigenvalues can be
assigned by the output feedback law (10.4.8).

10.4.3 Eigenstructure Assignment

So far, we have considered the problem of only assigning the eigenvalues. How-
ever, if the system transient response needs to be altered, then the problem of
assigning both eigenvalues and eigenvectors needs to be considered. This can
be seen as follows. We have taken the discussion here from Andry et al. (1983).
Suppose that the eigenvalues Ax,k=1,...,n of A are distinct. Let
M = (vy, ..., v,) be the matrix of eigenvectors, which is necessarily nonsingular.

362 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Then every solution x(¢) of the system:
x(t) = Ax(1), x(0) = xo,

representing a free response can be written as
n
x(t) = Zaie)""vi,
i=1

where o = (a1, a2, ...,an)T = M x.

Thus, from above, we see that the eigenvalues determine the rate at which
the system response decays or grows and the eigenvectors determine the shape
of the response.

The problem of assigning both eigenvalues and eigenvectors is called the
eigenstructure assignment problem.

Formally, the problem is stated as follows:

Giventhesets S = {p1, ..., uptand M = {vq, ..., v,} of scalars and vectors,
respectively, both closed under complex conjugation, find a feedback matrix
K such that the matrix A + BK has the u;s as the eigenvalues and the v;s as
the corresponding eigenvectors.

The following result, due to Moore (1976), gives a necessary and sufficient
condition for a solution of the eigenstructure assignment problem by state feedback
(see Andry et al. (1983) for details and proof).

Define

where the columns of R; form a basis for the null space of the matrix (A7 — A, B).

Theorem 10.4.3. The State-Feedback Eigenstructure Assignment Theorem.
Assume that the numbers {11;} in the set S are distinct and self-conjugate. Then
there exists a matrix K such that (A + BK)v; = p;v;,i = 1,..., nifand only
if the following conditions are satisfied:

(i) The vectors vy, ..., v, are linearly independent
Gi) v = v;? whenever (; = u}f, i=1,2,...,n
(i) v; espan{N,},i=12,...,n

Section 10.5: THE QUADRATIC OPTIMIZATION PROBLEMS 363

If B has full rank and K exists, then it is unique. When ;s are all real and
distinct, an expression for K is

-1
K = (_MMIZIV —M}LzzZa Sy _M;L,,Zn)(v19 V2, ..., Un) o,

where the vector z; is given by
vi=Ny,z, i=12,...,n

The following result on the eigenstructure assignment by output feedback is due
to Srinathkumar (1978).

Theorem 10.4.4. The Output Feedback Eigenstructure Assignment Theorem.
Let (A, B) be controllable and (A, C) be observable. Assume thatrank(B) = m
andrank(C) = r. Then max(m, r) eigenvalues and max (m, r) eigenvectors with

min(m, r) entries in each eigenvector can be assigned by the output feedback
law (10.4.8).

Note: Numerically effective algorithms for the output feedback problem are
rare. Perhaps, the first comprehensive work in this context is the paper by Misra
and Patel (1989), where algorithms for both the single-input and the multi-output
systems, using implicit shifts, have been given. We refer the readers to the above
paper for a description of this algorithm.

10.5 THE QUADRATIC OPTIMIZATION PROBLEMS

We have just seen that if a system is controllable, then the closed-loop eigenvalues
can be placed at arbitrarily chosen locations of the complex plane. But, the lack
of the existence of a definite guideline of where to place these eigenvalues makes
the design procedure a rather difficult one in practice. A designer has to use his or
her own intuition of how to use the freedom of choosing the eigenvalues to achieve
the design objective.

It is, therefore, desirable to have a design method that can be used as an initial
design process while the designer develops his or her insight.

A “compromise” is often made in practice to obtain such an initial design pro-
cess. Instead of trying to place the eigenvalues at desired locations, the system is
stabilized while satisfying certain performance criterion.

Specifically, the following problem, known as the Linear Quadratic Opti-
mization Problem, is solved. The problem is also commonly known as the LQR
problem.

364 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

10.5.1 The Continuous-Time Linear Quadratic Regulator (LQR) Problem

Given matrices Q and R, find a control signal #(¢) such that the quadratic cost
function Jo(x) = fO°° IxT () Ox(t) + uT () Ru(r)} dt is minimized, subject to
x = Ax + Bu, x(0) = xg.

The matrices @ and R represent, respectively, weights for the states and the
control vectors.

The quadratic form xT Qx represents the deviation of the state x from the initial
state, and the term uT Ru represents the “cost” of control. The matrices Q and
R need to be chosen according to the requirements of a specific design. Note
that the magnitude of the control signal u can be properly controlled by choosing
R appropriately. In fact, by selecting large R, u(t) can be made small (see the
expression of the unique control law in Theorem 10.5.1), which is desirable. The
choice of Q is related to which states are to be kept small.

Unfortunately, again it is hard to set a specific guideline of how to choose Q and
R. “The choice of these quantities is again more of an art than a science” (Kailath
(1980, p. 219). For a meaningful optimization problem, however, it is assumed
that Q is symmetric positive semidefinite and R is symmetric positive definite.
Unless mentioned otherwise, we will make these assumptions throughout the
rest of the chapter.

The solution of the above problem can be obtained via the solution of a quadratic
matrix equation called the ARE, as shown by the following result. See Anderson
and Moore (1990) for details.

Theorem 10.5.1. The Continuous-Time LQR Theorem. Suppose the pair
(A, B) is stabilizable and the pair (A, Q) is detectable. Then there exists
a unique optimal control u%(t) which minimizes Jc(x). The vector u®(t) is
given by u®(t) = —Kx(t), where K = R™'BYX, and X is the unique positive
semidefinite solution of the ARE:

XA+ATX+Q-XBR'BTx =0. (10.5.1)

Furthermore, the closed-loop matrix A — BK is stable and the minimum value
of Jo(x) is equal to xg Xxg, where xg = x(0).

The proof of the existence and uniqueness of the stabilizing solution (under the
conditions that (A, B) is stabilizable and (A, Q) is detectable) will be deferred
until Chapter 13. Here we give a proof of the optimal control part, assuming that
such a solution exists.

Section 10.5: THE QUADRATIC OPTIMIZATION PROBLEMS 365

Proof. Proof of the Optimal Control Part of Theorem 10.5.1
d T =T Ty
7 (x Xx) =x Xx+x Xx,
= (Ax + Bu)TXx + xTX (Ax + Bu),
=BT +xTAT)Xx + xTX (Ax + Bu),
=xT(ATX + XA)x + u"BTXx + xTXBu,
=xT(XBR'BTX — Q)x + uTBTXx
+xT X Bu (using (10.5.1)
=xTXBR'BTXx + uTB"Xx + xTXBu + uTRu
—uTRu — xTQx,
=T +xTXBRHRu + R'BTXx) — (xTQx + uTRu)

or
d
xTQx +uTRu = —E(xTXx) + (uT —+—xTXBR—1)R(u + R_IBTXx).

Integrating with respect to ¢ from 0 to T, we obtain
T
/ (xT Ox + uTRu) dt
0
T
= —xT(T)Xx(T) + x{ Xxo +/ (u~+ R 'BTXx)TRu + R'BTXx) dt.
0

(Note that X = XT > 0and R = RT > 0.)
Letting T — oo and noting that x(T) — 0 as T — 00, we obtain

o
Jo(x) = x§ Xxo + / u+ R'BTXx)TR(u + R7'BTXx) dt
0

Since R is symmetric and positive definite, it follows that Jo(x) > xg Xxq for
all xg and for all controls u. Since the first term xg Xxg is independent of u, the
minimum value of Jc(x) occurs at

@) = —R'BTXx(t) = —Kx().

The minimum value of Jo(x) is therefore xg Xxg. R

Definition 10.5.1. The ARE:
XA+ATX+Q0-XSXx=0, (10.5.2)

where S = BR™! BT is called the Continuous-Time Algebraic Riccati Equation
or in short CARE.

366 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Definition 10.5.2. The matrix H defined by

H= (_AQ __:T> (10.5.3)

is the Hamiltonian matrix associated with the CARE (10.5.2).

Definition 10.5.3. A symmetric solution X of the CARE such that A — SX is
stable is called a stabilizing solution.

Relationship between Hamiltonian Matrix and Riccati Equations

The following theorem shows that there exists a very important relationship
between the Hamiltonian matrix (10.5.3) and the CARE (10.5.2). The proof will
be deferred until Chapter 13.

Theorem 10.5.2. Let (A, B) be stabilizable and (A, Q) be detectable. Then
the Hamiltonian matrix H in (10.5.3) has n eigenvalues with negative real parts,
no eigenvalues on the imaginary axis and n eigenvalues with positive real parts.
In this case the CARE (10.5.2) has a unique stabilizing solution X. Furthermore,
the closed-loop eigenvalues, that is, the eigenvalues of A — BK, are the stable
eigenvalues of H.

A note on the solution of the CARE: It will be shown in Chapter 13 that the
unique stabilizing solution to (10.5.2) can be obtained by constructing an invariant
subspace associated with the stable eigenvalues of the Hamiltonian matrix H in
(10.5.3). Specifically, if H does not have any imaginary eigenvalue and (g) is
the matrix with columns composed of the eigenvectors corresponding to the stable
eigenvalues of H, then, assuming that X is nonsingular, the matrix X = XX 1~1
is a unique stabilizing solution of the CARE. For details, see Chapter 13.

The MATLAB function care solves the CARE. The matrix S in CARE is
assumed to be nonnegative definite.

The Continuous-Time LQR Design Algorithm
From Theorem 10.5.1, we immediately have the following LQR design algorithm.

Algorithm 10.5.1. The Continuous-Time LQR Design Algorithm.
Inputs. The matrices A, B, Q, R, and x(0) = xg.
Outputs. X—The solution of the CARE.
K—The LQR feedback gain matrix.

Jc min—The minimum value of the cost function Jc(x).
Assumptions.

1. (A, B) is stabilizable and (A, Q) is detectable.
2. Q issymmetric positive semidefinite and R is symmetric positive definite.

Section 10.5: THE QUADRATIC OPTIMIZATION PROBLEMS

Step 1. Compute the stabilizing solution X of the CARE:

XA+ ATX —XSX+ 0 =0,

Step 2. Compute the LOR feedback gain matrix:

Step 3. Compute the minimum value of Jc(x): Jcmin = xg Xxp.

Example 10.5.1 (LQR Design for

1
1
X = 1
1

K =R'BTx.

S=BR'BT,

the Inverted Pendulum).
Example 10.2.1 again, with A and B, the same as there and Q = I4, R = 1, and

367

We consider

Step 1. The unique positive definite solution X of the CARE (obtained by using

MATLAB function care) is

0.0031
0.0042
0.0288
0.0067

X =10

0.0042
0.0115
0.0818
0.0191

Step 2. The feedback gain matrix K is

0.0288
0.0818
1.8856
0.4138

0.0067
0.0191
0.4138
0.0911

K = (-1, -3.0766, —132.7953, —28.7861).

Step 3. The minimum value of Jc(x) is 3100.3.
The eigenvalues of A — BK are: —4.8994, —4.5020, —0.4412 £ 0.3718. Thus, X
is the unique positive definite stabilizing solution of the CARE.
(Note that the entries of K in this case are smaller compared to those of K in

Example 10.2.1.)

Comparison of Transient Responses with Lyapunov Stabilization

Figures 10.7a and b show the transient responses of the closed-loop systems with:
(1) K from Example 10.2.1 and (ii) K as obtained above. The initial condition

x(0) = (5,0,0,0)T.

In Figure 10.7a, the transient solutions initially have large magnitudes and then
they decay rapidly. In Figure 10.7b, the solutions have smaller magnitudes but the

368 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

(a) Transient solutions for the problem of the inverted pendulum
T L T
= ,
2 A
2 : .
i
— 40 F N
1 1 1 1 1
60 0 1 2 3 4 5 6
Time ¢
(b) 8 T T T T T

LOR design

0 1 2 3 4 5 6
Time ¢

FIGURE 10.7: Transient responses: (a) Lyapunov Method and (b) LQR design.

decay rate is much slower. The largest magnitude in transient solution in (a) is
roughly six times larger than the one in (b). In some dynamical systems, strong
initial oscillations in the state components must be avoided, but sometimes a faster
stabilization is desired; in other cases, a slow but smooth stabilization is required.

Note that the transient solutions in (a), however, depend upon 8 and in (b) depend
upon Q and R (discussed in the following sections).

Stability and Robustness Properties of the LQR Design

The LQR design has some very favorable stability and robustness properties. We
will list some important ones here.

Guaranteed Stability Properties
Clearly, the closed-loop eigenvalues of the LQR design depend upon the matrices
Q and R. We will show here how the choice of R affects the closed-loop poles.

Section 10.5: THE QUADRATIC OPTIMIZATION PROBLEMS 369

Suppose R = pl, where p is a positive scalar. Then, the associated Hamiltonian
matrix:
4 —Lpgr
H= Jol
-0 =AT

The closed-loop eigenvalues are the roots with negative real parts of the
characteristic polynomial

d.(s) =det(s] — H).
Let Q0 = CTC. It can be shown that

de(s) = (—1)"d(s)d(—s)det [1 + %G(S)GT(—s)jl ,

where d(s) = det(s] — A), and G(s) = C(sI — A)"!B.

Case 1. Low gain. When p — oo, u(t) = —(1/p)BTXx(t) — 0. Thus, the
LQR controller has low gain. In this case, from the above expression of d.(s), it
follows that

(=D"d.(s) - d(s)d(—s).

Since the roots with negative real parts of d; (s }; that is, the closed-loop eigenvalues,
are stable, this means that as p increases:

the stable open-loop eigenvalues remain stable.

the unstable ones get reflected across the imaginary axis.

if any open-loop eigenvalues are exactly on the jw-axis, the closed-loop
eigenvalues start moving just left of them.

Case 2. High gain. If p — 0, then u(¢) becomes large; thus, the LQR controller
has high gain.

In this case, for finite s, the closed-loop eigenvalues approach the finite zeros of
the system or their stable images.

As s — o0, the closed-loop eigenvalues will approach zeros at infinity in the
so-called stable Butterworth patterns. (For a description of Butterworth patterns,
see Friedland (1986).) An example is given in Figure 10.8.

These properties, provide good insight into the stability property of LQR
controllers and, thus, can be used by a designer as a guideline of where to
place the poles.

Robustness Properties of the LOR Design

As we have seen before, an important requirement of a control system design is
that the closed-loop system be robust to uncertainties due to modeling errors,
noise, and disturbances. It is shown below that the LQR design has some desirable
robustness properties.

370 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

jo

w
T

—— —i- —- g

12 ~10 i 6 -4 2
poe

FIGURE 10.8: Ilustration of Butterworth patterns.

The classical robust stability measures are gain and phase margins, defined
with respect to the Bode plot (see Chapter 5) of a single-input single-output
(SISO) system.

The gain margin is defined to be the amount of gain increase required to make
the loop gain unity where the phase angle is 180°. That is, it is the reciprocal of
the gain at the frequency where the phase angle is 180°. Thus, the gain margin
is a measure by which the system gain needs to be increased for the closed-loop
system to become just unstable.

Similarly, the difference between the phase of the response and —180° when the
loop gain is unity is called the phase margin. That is, the phase margin is the
minimum amount of phase lag that is needed to make the system unstable.

The robustness properties of the LQR design for a multi-input multi-output
(MIMO) system can be studied by considering the return difference matrix:
I + Grq(s), where GLg(s) is the LQR loop transfer function matrix given by

GrLo(s) = K(sI — A)~!B.
The optimal return difference identity is:
U+K(—sI—A) " 'BITRII+K(sI1~A)"'B] = R+BT(—sI1-A)"TQ(sI-A)"'B.
or

(H—GEQ(—S))R(H-GLQ(S)) = R+GT(—S)QG(S), where G(s) = (sI—A)"'B.

Section 10.5: THE QUADRATIC OPTIMIZATION PROBLEMS 371

From the above equation, we have
(I + Gig(jo)RU + GLg(jw)) = R.
It has been shown in Safonov and Athans (1977) that if R is a diagonal matrix
so that
(I + G (@)U + Grolj) > I,

then there is at least 60° of phase margin in each input channel and the gain margin
is infinity. This means that a phase shift of up to 60° can be tolerated in each of
the input channels simultaneously and the gain in each channel can be increased

indefinitely without losing stability. It also follows from above (Exercise 10.20(b))
that for all w,

Omin(I + GLQ(ja))) > L
This means that the LQ design always results in decreased sensitivity.
See Anderson and Moore (1990, pp. 122-135), the article “Optimal Control”
by FL. Lewis in the Control Handbook (1996, pp. 759-778) edited by William
Levine, IEEE/CRC Press, and Lewis (1986, 1992), and Maciejowski (1989) for

further details.

Example 10.5.2. Consider Example 10.5.1 again. Forw =1, Gig(jw) =—1.9700 +
0.5345/,

Omin{l + Gro(jw)) = 1.1076,

omin(1 + G, (jw)) = 0.5426,

The gain margin = 0.4907,
The phase margin = 60.0998.

LQR Stability with Multiplicative Uncertainty
The inequality
Omin (I + GLQ(jw)) >1

also implies (Exercise 10.20(c)) that
omin(I + (GLo(jw)) ™) > 1,

which means that LOR design remains stable for all unmeasured multiplicative
uncertainties A in the system for which ogin(A(jw)) < %

372 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

MATLAB notes: The MATLAB command [K, §, E] = Iqr(A, B, Q, R) solves
the LQR problem. Here, K—feedback matrix, S—steady-state solution of the
CARE, E—the vector containing the closed-loop eigenvalues.

SA+ATS—SBR™'BTS+ Q0 =0.

The CARE is solved using the generalized Schur algoerithm to be described in
Chapter 13.

MATLAB function margin can be used to compute the gain and phase margins
of a system.

10.5.2 The Discrete-Time Linear Quadratic Regulator Problem

In the discrete-time case, the function to be minimized is:

Io(x) =) _(xf Oxi + uj Rug). (10.5.4)
k=0

and the associated ARE is:
ATXA—-X+Q—-ATXB(R+BTXB)"'BTXxA =0. (10.5.5)

The above equation is called the Discrete-time Algebraic Riccati Equation
(DARE).

A theorem on the existence and uniqueness of the optimal control ug, similar to
Theorem 10.5.1, is stated next. For a proof, see Sage and White (1977).

Theorem 10.5.3. The Discrete-Time LOR Theorem. Let (A, B) be discrete-
stabilizable and (A, Q) be discrete-detectable. Then the optimal control
ug, k=0,1,2,..., that minimizes Jp(x) is given by ug = Kx;, where K =
(R+BTXB)"'BTX A, and X is the unique positive semidefinite solution of the
DARE (10.5.5). Furthermore, the closed-loop discrete system:

X1 = (A — BK) x;

is discrete-stable (i.e., all the eigenvalues are strictly inside the unit circle), and
the minimum value of Jp(x) is xg Xxq, where xq is the given initial state.

Definition 10.5.4. A symmetric solution X of the DARE that makes the matrix
A—BK ,where K = (R+BTXB)~ BT X A, discrete-stable is called a discrete-
stabilizing solution of the DARE.

Section 10.6: Hoo-CONTROL PROBLEMS 373

Example 10.5.3.

-1 1 1 1 100
A= 0 -2 0}, B=1]2], o=\01 0], R=1
0 0 -3 3 001

The solution X of the DARE (computed using MATLAB function dlgr) is:

0.0051 —0.0542 0.0421
X =102[—=0.542 1.0954 —0.9344
0.0421 —0.9344 0.8127

The discrete LQR gain matrix:
K = (—0.0437, 2.5872, —3.4543).

The eigenvalues of A — BK are: —0.4266, —0.2186, —0.1228. Thus, X is a discrete-
stabilizing solution.

MATLAB note: The MATLAB function Iqrd computes the discrete-time
feedback-gain matrix given in Theorem 10.5.3.

10.6 H,-CONTROL PROBLEMS

So far we have considered the stabilization of a system ignoring any effect of
disturbances in the system. But, we already know that in practice a system is
always acted upon by some kind of disturbances. Thus, it is desirable to stabilize
perturbed versions of a system, assuming certain bounds for perturbations. This
situation gives rise to the well-known “H-control problem.”

Huo-control theory has been the subject of intensive study for the last twenty
years or so, since its introduction by Zames (1981). There are now excellent liter-
ature in the area: the books by Francis (1987), Kimura (1996), Zhou et al. (1996),
Green and Limebeer (1995), etc., and the original important papers by Francis and
Doyle (1987), Doyle et al. (1989), etc.

Let omax (M) and omin (M) denote, respectively, the largest and smallest singular
value of M.

Definition 10.6.1. The Hy,-norm of the stable transfer function G (s), denoted
by |G || oo, is defined by

1Glloo = SUP Omax (G (j).

weR

In the above definition, “sup” means the supremum or the least upper bound
of the function omax (G (jw)).

374 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Physical Interpretation of the Hy,-norm

Consider the system:

y(8) = G(s)u(s).

When the system is driven with a sinusoidal input of unit magnitude at a specific fre-
quency, omax (G (jw)) is the largest possible size of the output for the corresponding
sinusoidal input. Thus, the H,-norm gives the largest possible amplification over
all frequencies of a unit sinusoidal input.

A detailed discussion of H, control problems is beyond the scope of this
book. The original formulation was in an input /output setting. However, due to its
computational attractiveness, the recent state-space formulation has become more
popular. We only state two simplified versions of the state-space formulations of
Hy,-control problems, and mention their connections with AREs. First, we prove
the following well-known result that shows how the H,-norm of a stable transfer
function matrix is related to an ARE or equivalently, to the associated Hamiltonian
matrix.

Define the Hamiltonian matrix out of the coefficients of the matrices of the
system (10.2.1)

A+ BRIDTC BR™'BT
My = (—CT(I +DR'DNHYC -4+ BR“IDTC)T) ’ (106.)

where R = y2I — DTD.
Theorem 10.6.1. Let G(s) be a stable transfer function and let y > 0. Then
IGlleo < v if and only if omax(D) < y and M, defined by (10.6.1) has no
imaginary eigenvalues.

Proof. We sketch the proof in case D = 0. This proof can easily be extended
to the case when D # 0, and is left as an exercise (Exercise 10.23). Without any
loss of generality, assume that y = 1. Otherwise, we can scale G to y”lG and
B to y~! B and work with scaled G and B (note that ||G|| 0o < y if and only if
ly Gl < D.

Since y = 1 and D = 0, we have R = I. Using the notation:

G(s)=C(sI — A)7'B= [2 (ﬂ ,

an easy computation shows that if

T'(s) =1 — G(—)TG(s), (10.6.2)

Section 10.6: H,,-CONTROL PROBLEMS 375

then
A BB' |B M, B
r-lgs)y=|-cT'c -AT|0|= 0 |. (10.6.3)
0 BT | I 0 BT|I

Therefore, from above it follows that M, does not have an eigenvalue on the
imaginary axis if and only if ' ~!(s) does not have any pole there. We now show
that this is true if and only if |G|, is less than 1.

If |Glloo < 1, then I — G(jw)*G(jw) > O for every w, and hence I'"!(s) =
(I — G(—s)TG(s5))~! does not have any pole on the imaginary axis. On the other
hand, if ||Gl|,, = 1, then omax (G (jw)) = 1 for some w, which means that 1 is an

eigenvalue of G (jw)*G(jw), implying that I — G(jw)*G(jw) is singular. W

The following simple example from Kimura (1996, p. 41) illustrates
Theorem 10.6.1.

Example 10.6.1. Let

1
G(s) = , 0.
(s) P o >

The associated Hamiltonian matrix

H:<j‘ ;)

Then H does not have any imaginary eigenvalue if and only if ¢ > 1.
Since |G|l = sup,, 1/vw? + a? = 1/a, we have, for @ > 1, |Gl < 1.

10.6.1 Computing the Hs;-Norm
A straightforward way to compute the Ho-norm is:

1. Compute the matrix G(jw) using the Hessenberg method described in
Chapter 5.

2. Compute the largest singular value of G (jw).

3. Repeat steps 1 and 2 for many values of w.

Certainly the above approach is impractical and computationally
infeasible.

However, Theorem 10.6.1 gives us a more practically feasible method for com-
puting the Ho-norm. The method, then, will be as follows:

1. Choose y.

2. Testif |Gllo < ¥, by computing the eigenvalues of M, and seeing if the
matrix M, has an imaginary eigenvalue.

3. Repeat, by increasing or decreasing y, accordingly as ||G|loo < y or
1Glloo = ¥.

376 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

The following bisection method of Boyd er al. (1989) is an efficient and
systematic implementation of the above idea.

Algorithm 10.6.1. The Bisection Algorithm for Computing the Hx-Norm
Inputs. The systemmatrices A, B, C, and D, of dimensionsnxn, nxm, rxn,
and r x m, respectively.

yib—A lower bound of the Hyo-norm
Yub—An upper bound of the Hx,-norm
€(> 0)—Error tolerance.
Output. An approximation of the Hy-norm with a relative accuracy of €.
Assumption. A is stable.
Step 1. Set yL = y1b, and yu = yub
Step 2. Repeat until yy — yL < 2¢eyL
Compute y = (yL + yu)/2
Test if My, defined by (10.6.1) has an imaginary eigenvalue
Ifnot, setyy =y
Else, set y1, = vy.

Remark

e After k iterations, we have yu — yL = 2 %(yub — 7). Thus, on exit, the
algorithm is guaranteed to give an approximation of the Hy,-norm with
a relative accuracy of .

Convergence: The convergence of the algorithm is linear and is independent of
the data matrices A, B, C, and D.

Note: An algorithm equivalent to the above bisection algorithm was also
proposed by Robel (1989).

Remark

e The condition that M, does not have an imaginary eigenvalue (in Step 2)
can also be expressed in terms of the associated Riccati equation:

XA+ ATX +y7 'XBR'BTX +y~ICTC =0

(Assuming that D = 0.)

Example 10.6.2.

-1 2 3 1
A=10 -2 0|, B=|0], C=(, 1,1, D=0, €=0.0014.
0O 0 -4 0

Section 10.6: Hoo-CONTROL PROBLEMS 377

Step 1. yL. = 0.2887, yu = 1.7321.
Step 2.
Iteration 1

y = 1.0104.

The eigenvalues of M), are {2, 4, —0.1429, 0.1429 —2.0000, —4, 0000}. Since
M, does not have purely imaginary eigenvalues, we continue.

yL = 0.28867, yu = 1.0103.

Iteration 2
y = 0.6495.

The eigenvalues of M, are {2, 4, -2, —4, -0+ 1.1706/}.
Since M, has a purely imaginary eigenvalue, we set

yL = 0.6495, yu = 1.0103,

Iteration 3

y = 0.8299.

The eigenvalues of M, are {2, 4, —2, —4, 0£0.6722j}. Since M, has a purely
imaginary eigenvalue, we set

yL = 0.8299, yu = 1.0103.

The values of y at successive iterations are found to be 0.9202, 0.9653, 0.9878,
0.9991, 0.9998, and 1; and the iterations terminated at this point satisfying the stopping
criterion. Thus, we take Hyo-norm = 1.

Computing y1, and yyp: For practical implementation of the above algorithm,
we need to know how to compute y 1, and y . We will discuss this aspect now.

Definition 10.6.2. The Hankel singular values are the square roots of the
eigenvalues of the matrix Cg Og, where Cg and Og are the controllability and
observability Grammians, respectively.

The bounds y 1, and y,, may be computed using the Hankel singular values as
follows:
yib = max{omax (D), o Hi},

- (10.6.4)
Yub = Omax(D) +2) o Hj,

i=I1

378 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

where o Hys are the ordered Hankel singular values, that is, o H; is the ith largest
Hankel singular value. These bounds are due to Enns (1984) and Glover (1984)
and the formula (10.6.4) is known as the Enns—Glover formula.

A scheme for computing y1p and yp will then be as follows:

1. Solve the Lyapunov equations (7.2.11) and (7.2.12) to obtain Cg and Og,
respectively.

2. Compute the eigenvalues of CgOg.

3. Obtain the Hankel singular values by taking the square roots of the
eigenvalues of CgOg.

4. Compute y|p and y, using the above Enns—Glover formula.

As an alternative to eigenvalue computations, one can also use the following
formulas:

Y1b = max{omax (D), / Trace(Cg Og)/n},
Yub = Omax (D) + 2/nTrace(Cg Og).

Remark

e Numerical difficulties can be expected in forming the product CgOg
explicitly.

MATCONTROL note: Algorithm 10.6.1 has been implemented in MATCON-
TROL function hinfnrm.

The Two-Step Algorithm

Recently, Bruinsma and Steinbuch (1990) have developed a “two-step” algorithm
to compute Hyo-norm of G(s). Their algorithm is believed to be faster than the
bisection algorithm just stated. The convergence is claimed to be quadratic.

The algorithm is called a “two-step” algorithm, because, the algorithm starts
with some lower bound of y < ||G||,, as the first step and then in the second step,
this lower bound is iteratively improved and the procedure is continued until some
“tolerance” is satisfied.

A New Lower Bound of the Hyo-norm

The two-step algorithm, like the bisection algorithm, requires a starting value for
¥1b- The Enns—Glover formula can be used for this purpose. However, the authors

Section 10.6: Hoo-CONTROL PROBLEMS 379

have proposed that the following starting value for jy, be used:
Vb = max{omax (G(0)), Tmax (G (jwp)), Omax (D)},
where w, = |A;|, A; a pole of G(s) with A; selected to maximize

Im() 1
Re(1i) [A]

s

if G(s) has poles with Im(%;) 3 O or to minimize |A;|, if G (s) has only real poles.

Algorithm 10.6.2. The Two-Step Algorithm for Computing the Hoo-norm
Inputs. The system matrices A, B, C, and D, respectively, of dimensions
nxn,nxXm,rXn,andr X m. e~error tolerance.
Output. An approximate value of the Hoo-norm.
Assumption. A is stable.
Step 1. Compute a starting value for yy, using the above criterion.
Step 2. Repeat
2.1 Compute y = (1 + 2€) 1.
2.2 Compute the eigenvalues of M,, with the value of y computed in Step2.1.
Label the purely imaginary eigenvalues of My, as wi, .. ., wy.
2.3 If M, does not have a purely imaginary eigenvalue, set yy, = y and
stop.
24Fori=1,...,k—1do
(a) Compute m; = %(a),' + wiy1).
(b) Compute the singular values of G(jm;).
Update y, = miax(amax(G(jmi))-
End
Step 3. |G lico = 5 (Vb + Yub)-

MATLAB note: Algorithm 10.6.2 has been implemented in MATLAB Control
System tool box. The usage is: norm (sys, inf).

In the above, “sys” stands for the linear time-invariant system in the matrices
A, B, C,and D. “sys” can be generated as follows:

A=[1], B=11], C=11 D=[1], sys = ss(A, B, C, D).

Remark

e Boyd and Balakrishnan (1990) have also proposed an algorithm similar to
the above “two-step” algorithm. Their algorithm converges quadratically.
Algorithm 10.6.2 is also believed to converge quadratically, but no proof
has been given. See also the paper by Lin et al. (1999) for other recent
reliable and efficient methods for computing the Hyo-norms for both the
state and output feedback problems.

380 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Connection between Hs,-norm and the Distance to Unstable Matrices

Here we point out a connection between the Hyo-norm of the resolvent of A and
B(A), the distance to the set of unstable matrices. The proof is easy and left as an
[Exercise 10.27].
Theorem 10.6.2. Let A be a complex stable matrix, then B(A) =
st —)7

Computing the Hy,-Norm of a Discrete-Stable Transfer Function Matrix

Let M(z) = C(zI — A)~! B be the transfer function matrix of the asymptotically
stable discrete-time system:

Xk41 = Axg + Buy,
vk = Cxy.

Then
Definition 10.6.3. The Hoo-norm of M(z) is defined as

”M(Z)”oo = Sup Omax (M (2)).

lzi=1

The following is a discrete-analog of Theorem 10.6.1. We state the result here
without proof. For proof, we refer the readers to the book by Zhou er al. (1996,
pp. 547-548).

Theorem 10.6.3. Let

¢_ (A-BBT(ADIcTC BBT(AT)!
- _(AT)—lcTC (AT)—I

be the symplectic matrix associated with the above stable discrete-time
system. Assume that A is nonsingular and that the system does not have any
uncontrollable and unobservable modes on the unit circle.

Then |\ M (2o < 1 ifand only if S has no eigenvalues on the unit circle and
I —)~ 'Bl, < 1.

Computing Hy-Norm of a Discrete-Stable System

The above theorem can now be used as a basis to develop a bisection algorithm,
analogous to Algorithm 10.6.1, for computing the Ho-norm of a discrete stable
system. We leave this as an exercise (Exercise 10.24).

Section 10.6: Ho,-CONTROL PROBLEMS 381

10.6.2 Ho-Control Problem: A State-Feedback Case

Consider the following linear control system:

X(t) = Ax(t) + Bu(t) + Ed(t), x(0)=0

(10.6.5)
z(t) = Cx(t) + Du(r).

Here x(¢), u(¢), and z(¢), denote the state, the control input, and controlled output

vectors. The vector d(¢) is the disturbance vector. The matrices A, B, C, D, and E

are matrices of appropriate dimensions. Suppose that a state-feedback control law
u(t) = Kx(@)

is applied to the system. Then the closed-loop system becomes:

X(t) = (A+ BK)x(t) + Ed(1)

2(t) = (C + DK)x (). (10.6.6)
The transfer function from d to z is:
T,q(s) = (C + DK)(s — A— BK)"'E. (10.6.7)

Suppose that the influence of the disturbance vector d(¢) on the output z(¢) is
measured by the Hoo-norm of T,4(s). The goal of the state feedback H, control
problem is to find a constant feedback matrix K such that the closed-loop
system is stable and the H,-norm of the transfer matrix 7,,(s) is less than
a prescribed tolerance.

Specifically, the state feedback Hx problem is stated as follows:

Given a positive real number y, find a real m x n matrix K such that the
closed-loop system is stable and that || T,4(s){| < V.

Thus, by solving the above problem, one will stabilize perturbed versions of
the original system, as long as the size of the perturbations does not exceed
a certain given tolerance.
The following theorem due to Doyle ef al. (1989) states a solution of the above
problem in terms of the solution of an ARE.
Theorem 10.6.4. A State-Feedback Ho, Theorem. Let the pair (A, C) be
observable and the pairs (A, B), and (A, E) be stabilizable. Assume that
D™D = I, and DYC = 0. Then the Hy, control problem (as stated above)
has a solution if and only if there exists a positive semi-definite solution X of

382 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

the ARE:
1
ATX + XA - X (BBT - —2EET) X+CTc =0, (10.6.8)
12

such that
1
A+ (—2E1f5T - BBT> X
14

is stable. In this case one such state feedback matrix K is given by

K =-BTx. (10.6.9)

Proof. The proof follows by noting the relationship between the ARE (10.6.8)
and the associated Hamilton matrix:

A LEET — BBT
H, = y2 , (10.6.10)
-Cc'c —AT

as stated in Theorem 10.5.2, and then applying Theorem 10.6.1 to the transfer
function matrix T,4(s). W

Notes

1. The application of Theorem 10.6.1 to T;4(s) amounts to replacing A, B, C,
and R of Theorem 10.6.1 as follows:

A— A+ BK =A—BB'X,
C—> C+DK=C-DB'X,
B — E,

Ry —1=@u?-1l,

and using the assumptions DTD = I and DTC = 0.

2. The Riccati equation (10.6.8) is not the standard LQ Riccati equation,
the CARE (Eq. (10.5.2)), because the term (BBT — (1/y2)EET) may be
indefinite for certain values of y.

However, when y — o0, the Riccati equation (10.6.8) becomes the
CARE with R =I:

XA+ ATX —xBBTX +C"C =0.

3. It can be shown (Exercise 10.26) that if H, has imaginary eigenvalues,
then the Hy, problem as defined above does not have a solution.

Section 10.6: Hoo-CONTROL PROBLEMS 383

In a more realistic situation when a dynamic measurement feedback is used,
rather than the state feedback as used here, the solution of the corresponding
H-control problem is provided by a pair of AREs. Details can be found in the
pioneering paper of Doyle ef al. (1989), and in the recent books by Kimura (1996),
Green and Limebeer (1995), Zhou et al. (1996). We only state the result from the
paper of Doyle et al. (1989).

10.6.3 The Hy,-Control Problem: Output Feedback Case

Consider a system described by the state-space equations

x(1) = Ax(t) + Biw(r) + Bau(r),
z(t) = Cyx (1) + Diau(t), (10.6.11)
y(#) = Cax(t) + Dyw(t),

where x(f)—the state vector, w(t)—the disturbance signal, u(s#)—the control
input, z(t)— the controlled output, and y(#)—the measured output.

The transfer function from the inputs [f] to the outputs [;] is given by

0 Dp2 O —1 G Gn
= I - A By, By) = .
G(S) <D21 0 >+ <C2> (S) (1, 2) G21 G22

Define a feedback controller K (s) by u = K (s)y.
Then the closed-loop transfer function matrix T, (s) from the disturbance w to
the output z is given by

Tow(s) = G11 + G12K(I — GnK) 'Gay.

Then the goal of the output feedback H,,-control problem in this case is to
find a controller X (s) that || 7;,,(s)||,, < v, for a given positive number y.
Figure 10.9, P is the linear system described by 10.6.11.

K

FIGURE 10.9: Output feedback Hy, configuration.

384 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

A solution of the above H-control problem is given in the following theorem.
The following assumptions are made:

(i) (A, By) is stabilizable and (A, C1) is detectable. (10.6.12)
(i1) (A, By) is stabilizable and (A, C3) is detectable. (10.6.13)
(i) D, (C1, D12) = (0, 1) (10.6.14)

. B T _ (0
(iv) <021) Dl = (1) (10.6.15)

Here I stands for an identity matrix of appropriate dimension.

Theorem 10.6.5. An Output Feedback Hoo Theorem. Under the assumptions
(10.6.12-10.6.15), the output feedback H-control problem as stated above
has a solution if and only if there exist unique symmetric positive semidefinite
stabilizing solutions X and Y, respectively, to the pair of AREs

T T 1 T T
XA+ A X-X| BBy, — BB | X+C (=0, (10.6.16)
v
1
AY+YAT—Y<C2TC2— —2C1TC1) Y + BBl =0, (10.6.17)
14
and p(XY) < y?, where p(XY) is the spectral radius of the matrix XY.
Furthermore, in this case, one such controller is given by the transfer function
K(s)=—F(sI — A)~'ZL, (10.6.18)
where

. 1
A=A+ —B\B[X + ByF + ZLC, (10.6.19)
1

and

1 -1
F=-B)X, L=-YCI, Z= (1 - —2YX> (10.6.20)
y

Proof. For a proof of Theorem 10.6.5, we refer the readers to the original
paper of Doyle et al. (1989). B

Notes

1. The second Riccati equation is dual to the first one and is of the type that
arises in the Kalman filter (Chapter 12).

2. A general solution without the assumptions (10.6.14) and (10.6.15) can be
found in Glover and Doyle (1988).

Section 10.6: Hoo-CONTROL PROBLEMS 385

MATLAB Note: To solve the Riccati equations (10.6.16) and (10.6.17) using
care, these equations have to be rewritten in the usual care format. For example,
Eq. (10.6.16) can be rewritten as:

1
0 1 T

=2 —1 BT
ATX+XA—X(Bl,Bg)(v O) (B)X+C1TC1=O.
2

Example 10.6.3. Zhou et al. (1996, pp. 440-443). Let
A=a, B =(0), By=b,

0= m-()

Cr=c2, Dun=(01.
Then
1 0
Diy(C1, Di2) = (0, 1) (0 1) =(0.1)

(o)on=(o D)= ()

Thus, the conditions (10.6.14) and (10.6.15) are satisfied.
Lleta=—-1,bp=cp =1.Lety =2.
Then it is easy to see that

and

P(XY) < y?,
—1.7321 1 -0.7321
Ty = 1 0 0 :
—0.7321 0 -0.7321
and | Ty lloo = 0.7321 < y = 2.

Optimal Hy; Control

The output Hyo-control problem in this section is usually known as the
Suboptimal H;-Control problem.
Ideally, we should have considered Optimal H,,-Control problem:

Find all admissible controllers K (s) such that || 7%, || 5, is minimized.

Finding an optimal Hy, controller is demanding both theoretically and compu-
tationally and, in practice, very often a suboptimal controller is enough, because
suboptimal controllers are close to the optimal ones.

386 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

The behavior of the suboptimal H, controller solution as y approaches the infi-
mal achievable norm, denoted by yp, is discussed in the book by Zhou et al. (1996,
pp. 438—443). It is shown there that for Example 10.6.3, yop = [| Ty [l oo = 0.7321.

10.7 THE COMPLEX STABILITY RADIUS AND
RICCATI EQUATION

Assume in this section that A, B, and C are complex matrices. In Chapter 7, we
introduced the concept of stability radius in the context of robust stabilization of
the stable system x = Ax under structured perturbations of the form BAC. The
system:

x=(A+ BAO)x (10.7.1)

may be interpreted as a closed-loop system obtained by applying the output feed-
back (with unknown feedback matrix A) to the system (10.7.3) given below. Thus,
the stability radius is related to the output feedback stabilization, as well.

In this section, we will discuss the role of the complex stability radius
rc(A, B, C) in certain parametric optimization problems.

Consider the following parametric optimization problem: Minimize

Jp(x) =/O [le@®1* = plly@)*] dt (10.7.2)

subject to
x = Ax + Bu, y=Cx. (10.7.3)

If p < 0, then we have the usual L Q R problem, which can be solved by solving
the associated Riccati equation, as we have just seen. We will now show that for
certain other values of p > 0, the above optimization problem is still solvable,
by relating p to the stability radius. The key to that is to show the existence of
a stabilizing solution of the associated Riccati equation for a given value of p.

Before we state the main result, we note the following, that shows that for
certain values of p, the minimization cost is finite. For simplicity, we will write
rc(A,B,C)asr.

Theorem 10.7.1. Let J,(x) be defined by (10.7.2). Then

(i) InfJ,(0)=0, ifandonlyifp < r2, ifand only if I — pG*(iw)G (iw) >
0, forall w € R.

(iiy Suppose A is stable and r <oo. Then for all pe(—o0,r?),
we have | inf J,(x0)| <, 0o,

Proof. See Hinrichsen and Pritchard (1986a). W

Section 10.7: THE COMPLEX STABILITY RADIUS AND RICCATI EQUATION 387

The ARE associated with the above minimization problem is
XA+ A*X — pC*C —XBB*X = 0. (10.7.4)

Since this equation is dependent on p, we denote this Riccati equation by ARE,.
The parameterized Hamiltonian matrix associated with the ARE,, is

A —BB
H, = <,0C*C iy) (10.7.5)

The following theorems characterize rc(= r) in terms of H,.

Theorem 10.7.2. Characterization of the Complex Stability Radius. Let H,
be defined by (10.7.5). Then p < r ifand only if H ;> does not have an eigenvalue
on the imaginary axis.

Proof. See Hinrichsen and Pritchard (1986a). W

Example 10.7.1. Consider Example 7.8.1.

0 1 0
A=<_1 _1), B=(_1>, C =(1,0).

From Example 7.8.1, we know that r? = %.

Case 1. Let p = 0.5 < r¢ = r = 0.8660. Then,

0 1 0 0
-1 -1 0 -1
He=Ao2s 0 o 1
0o 0 -1 1

The eigenvalues of H 2 are —0.4278 & 0.8264j, 0.4278 £ 0.8264,. Thus, H > does
not have a purely imaginary eigenvalue.
Case 2. Let p = 1 > r¢ = r = 0.8660. Then,

0O 1 0 0
1210 -
He=11 o o 1
0 0 -1 1

The eigenvalues of H,> are 0.0000 £ 1.0000/, 0,0, which are purely imaginary.
Therefore we obtain an upper and a lower bound for 7:0.5 < r < 1.

We have already mentioned the relationship between a Hamiltonian matrix and
the associated ARE. In view of Theorem 10.7.2, therefore, the following result is
not surprising. The proof of Theorem 10.7.3 has been taken from Hinrichsen and
Pritchard (1986b).

388 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Theorem 10.7.3. Stability Radius and ARE. Let A be a complex stable matrix
and letr = rc(A, B,C) < oco. Let p € (—00, r2). Then there exists a unique
Hermitian stabilizing solution X of the Riccati equation (10.7.4):

XA+ A*X — pC*C — XBB*X =0.

Moreover, when p = r?, there exists a unique solution X having the property
that the matrix A — BB* X is unstable.

Conversely, if A is stable and if there exists a Hermitian solution X of the

above ARE, then necessarily p < r?.

Remark

e Note that if the Riccati equation (10.7.4) has a stabilizing solution X, then
the control law

u(t) = —B*Xx(r)

minimizes the performance index (10.7.2), and the minimum value of the
performance index is xOT Xxo.

Note: There is no controllability assumption here on the pair (A, B).

Proof. Considering the orthogonal decomposition of C” into the controllabil-
ity subspace and its orthogonal complement, we can find a nonsingular matrix T

such that
A A B
1 1 2 _ t
TAT- _(0 A3), TB_(O),

cT™! = (C1, C),

and

where (A1, B}) is controllable. Multiplying the Riccati equation (10.7.4) on the
left by T~1* and on the right by 7! and setting

eyl _ (X1 X2
T-7XT _<X3 X4>’

we have
X1 X2 Al A n AT 0 X1 X2
X3 X4 0 Aj A; A; X3 Xy

B (C{cl Ci“Cg)_(XlBlBi*Xl X1B1B} X2

C;Cl C;Cz X3B]BTX1 X3BlBTX2>:0 (10.7.6)

Section 10.7: THE COMPLEX STABILITY RADIUS AND RICCATI EQUATION 389

Eq. (10.7.6) breaks into the following four equations:

X1A1+ATX1—,0CTC1 —X1BlBTX1 =0, (10.7.7)

XrA3 + (A —BIBTXT)*Xz-l-XlAQ —pCTCz =0, (10.7.8)

X3(A —BlBTX1)+A§X3+A§X1 - pC5Cy =0, (10.7.9)

X4A3 + A§X4 + X3A) + A;X2 — pC;CQ — X3B]BTX2 =0. (10.7.10)

Since (A1, By) is controllable, there is a unique solution X, of (10.7.7) with the
property that A; — By B[X, is stable if p € (=00, r2), and if p = r2, then
Ay — By B X1, is not stable. (In fact it has one eigenvalue on the imaginary axis).
Substituting this stabilizing solution X, into the Sylvester equations (10.7.8) and
(10.7.9), it can be shown that the solutions X5, and X3, of (10.7.8) and (10.7.9)
are unique and moreover X3, = X3 Y (note that the spectrum of Aj3 is in the
open left-half plane). Substituting these X, and X3, in Eq. (10.7.10), similarly,
we see that X4, is also unique and X} b = X4p. Finally, we note that the matrix

TAT' — (TB- B*T*X), where
X1, X2
X, = 14 P ,
? (Xap X4p)
is stable. Thus, A — BB*X, is stable.
To prove the converse, we note that if X = X* satisfies the Riccati
equation (10.7.6), then
(A= jol)*X + X(A — jol) — pC*C — XBB*X =0,
for all w € R. Thus,

0<(B*X(A— jo)™'B—D*(B*X(A - joD)™'B-1),
=1 - pG*(jw)G(jw), forallw e R.

Thus, p < r? by the first part of Theorem 10.7.1. W

Example 10.7.2.

A=(_01 _11> B=(0,-1" C=(1,0).

Then we know from Example 7.8.1 that 2 = %.

390 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Choose p = % Then the unique solution X, to the Riccati equation:
XA+ ATX —XBBTX — pCTC =0
is

X = —0.5449 —0.2929
PTA-0.2929 —-0.3564)°

which is symmetric.
The eigenvalues of A — BBT X, are —0.3218 =+ 0.7769 j. So, the matrix A —BBTX ,
is stable. Thus, X, is a stabilizing solution.

If p is chosen to be %, then the solution

~1 -05
X= (-0.5 -1)

which is symmetric, but not stabilizing. The eigenvalues of A —BBTX are 0 £ 0.7071}.

A Bisection Method for Computing the Complex Stability Radius

Theorem 10.7.2 suggests a bisection algorithm for computing the complex stability
radius rg.

The idea is to determine r¢ as that value of p for which the Hamiltonian
matrix H, given by (10.7.5), associated with the Riccati equation (10.7.4), has
an eigenvalue on the imaginary axis for the first time.

If p; and pg are some lower and upper estimates of r¢, then the successive
better estimates can be obtained by the following algorithm.

Algorithm 10.7.1. A Bisection Method for the Complex Stability Radius
Inputs.

1. The system matrices A, B, and C.
2. Some upper and lower estimates paL and py of the complex stability
radius p.

Output. An approximate value of the complex stability radius p.

Fork =0,1,2, ..., dountil convergence
o+ pp

Step 1. Take py = and compute H 2

Step 2. If H P has eigenvalues on the imaginary axis, set p; | = p, and

Pt = Pre

Section 10.8: SOME SELECTED SOFTWARE 391

Otherwise set p, | = p and o = i

End

Example 10.7.3. Consider Example 10.7.1. Take p; = 0, py = 1.
k=0.Step 1. pp = % H) does not have an imaginary eigenvalue.
Step 2. p; = %, ,o1 =1

k=1 Stepl.p; = % H, 2 does not have an imaginary eigenvalue.
Step 2. p, = % p2 =1.

k=2 Stepl. pp = % H, 2 has an imaginary eigenvalue.
Step 2. p; = 2, ,o3+ =1

k=3.Stepl. p3 = —g ,2 does not have an imaginary eigenvalue.

Step2 ,04 :—g 0

k=4.p4—

The iteration is converging toward r = 0.8660. The readers are asked to verify this by
carrying out some more iterations.

MATCONTROL note: Algorithm 10.7.1 has been implemented in MATCON-
TROL. function stabradc.

10.8 SOME SELECTED SOFTWARE
10.8.1 MATLAB Control System Toolbox

LQG design tools include:

Igr

digr

Iqry

Igrd

care

dare
norm(sys, 2)

LQ-optimal gain for continuous systems
LLQ-optimal gain for discrete systems
LQR with output weighting

Discrete LQ regulator for continuous plant
Solve CARE

Solve DARE

Hj-norm of the system

norm(sys, inf) Heo-norm of the system

10.8.2 MATCONTROL

STABLYAPC

STABLYAPD

STABRADC
HINFNRM

Feedback stabilization of continuous-time system using
Lyapunov equation

Feedback stabilization of discrete-time system using
Lyupunov equation

Finding the complex stability radius using the bisection method
Computing H-norm using the bisection method.

392 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

10.8.3 CSP-ANM

Feedback stabilization

e Constrained feedback stabilization is computed by StateFeedback
Gains [system, region], where the available regions are DampingFactor
Region [¢], SettlingTimeRegion [f;,€], DampingRatio-
Region [{min] and NaturalFreguencyRegion [wyminl, and their
intersections.

e The Lyapunov algorithms for the feedback stabilization is imple-
mented as StateFeedbackGains [system, region, Method —
LyapunovShift] and StateFeedbackGains [system, region,
Method — PartialLyapunovShift].

10.8.4 SLICOT

Optimal regulator problems, system norms, and complex stability radius

SB10DD Hy (sub)optimal state controller for a discrete-time system
SB10FD H, (sub)optimal state controller for a continuous-time system
AB13BD H;- or Ly-norm of a system

AB13CD Hy-norm of a continuous-time stable system

ABI3ED Complex stability radius using bisection

ABI13FD Complex stability radius using bisection and SVD.

10.8.5 MATRIXy

Purpose: Computing Lso-norm of the transfer matrix of a discrete-time system.
Syntax: [SIGMA, OMEGA] = DLINFNORM (S, NS, {TOL, { MAXITER}})
Purpose: Compute optimal state-feedback gain for discrete-time system.

Syntax: [EVAL, KR] = DREGULATOR (A, B, RXX, RUU, RXU) OR
[EVAL, KR, P] = DREGULATOR (A, B, RXX, RUU, RXU)

Purpose: Computing Lso-norm of a transfer matrix .

Syntax: [SIGMA, OMEGA] = LINFNORM (S, NS, { TOL, { MAXITER}})

Purpose: Compute optimal state-feedback gain for continuous-time system.

Section 10.9: SUMMARY AND REVIEW 393

Syntax: [EVAL, KR]=REGULATOR (A, B, RXX, RUU, RXU) OR
[EVAL, KR, P[=REGULATOR (A, B, RXX, RUU, RXU)

Purpose: Computes and plots the Singular Values of a continuous system.

Syntax: [OMEGA, SVALS]=SVPLOT (S, NS, WMIN, WMAX, { NPTS} ,
{OPTIONS }) OR
[SVALS]=SVPLOT (S, NS, OMEGA, { OPTIONS})

10.9 SUMMARY AND REVIEW

The following topics have been discussed in this chapter.

State-feedback stabilization

EVA and eigenstructure assignments by state and output feedback
The LQR design

H-control problems

Stability radius.

Feedback Stabilization

The problem of stabilizing the continuous-time system

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(r)

by using the state-feedback law u(r) = —Kx(¢) amounts to finding a feedback
matrix K such that A — BK is stable.

The state-feedback stabilization of a discrete-time system is similarly defined.

The characterizations of the continuous-time and discrete-time state-feedback
stabilizations are, respectively, given in Theorems 10.2.1 and 10.2.2.

It is shown how a system can be stabilized using the solution of a Lyapunov
equation. For the continuous-time system, the Lyapunov equation to be solved is

—(A+BDX + X(—(A+ BT = —2BBT,

where f is chosen such that 8 > [Aqax (4)].

394 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

The stabilizing feedback matrix K is given by
K =8BTx""
In the discrete-time case, the Lyapunov equation to be solved is
AXAT — B*Xx = 2BBT,

where 8 is chosen such that 0 < 8 < 1 and |[A| > B for any eigenvalue A of A.
The stabilizing feedback matrix in this case is

K = BT (X + BB))"'A.

Detectability

The detectability of the pair (A, C) is a dual concept of the stabilizability of the pair
(A, B). Characterizations of the continuous-time and discrete-time detectability
are, respectively, stated in Theorems 10.3.1 and 10.3.3.

The Eigenvalue Assignment

For the transient responses to meet certain designer’s constraints, it is required
that the eigenvalues of the closed-loop matrix lie in certain specified regions of the
complex plane. This consideration gives rise to the well-known EVA problem.
The EVA problem by state feedback is defined as follows:
Given the pair (A, B)and a set A of the complex numbers, closed under complex
conjugations, find a feedback matrix K such that A — BK has the spectrum A.
The conditions of solvability for the EVA problem and the uniqueness of the
matrix K are:

There exists a matrix K such that the matrix A — BK has the spectrum A
for every complex-conjugated set A if and only if (A, B) is controllable.
The feedback matrix K, when it exists, is unique if and only if the system is
a single-input system (Theorem 10.4.1).

The constructive proof of Theorem 10.4.1 and several related well-known formulas
such as the Bass—Gura formula and the Ackermann formula suggest compu-
tational methods for single-input EVA problem. Unfortunately, however, these
methods are based on the reduction of the pair (A, b) to a controller—companion
pair, and are not numerically effective. Numerically effective algorithms for EVA
are based on the reduction of the pair (A, b) or the pair (A, B) (in the multi-output
case) to the controller—-Hessenberg pair. These methods will be described in
Chapter 11.

Section 10.9: SUMMARY AND REVIEW 395

The EVA problem by output feedback is discussed in Section 10.4.2 and a well-
known result on this problem is stated in Theorem 10.4.2.

The Eigenstructure Assignment

The eigenvalues of the state matrix A determine the rate at which the system
response decays or grows. On the other hand, the eigenvectors determine the shape
of the response. Thus, in certain practical applications, it is important that both
the eigenvalues and the eigenvectors are assigned. The problem is known as the
eigenstructure assignment problem. The conditions under which eigenstructure
assignment is possible are stated in Theorem 10.4.3 for the state-feedback law and
in Theorem 10.4.4 for the output feedback law.

The Linear Quadratic Regulator (LQR) Problem

The continuous-time LQR problem is the problem of finding a control vector u(t)
that minimizes the performance index

Jo(x) = /oo [xT(t)Qx(t) n uT(t)Ru(t)] dr
0

subject to
x(1) = Ax(t) + Bu(r), x(0) = xo,
y(@) = Cx(),

where Q and R are, respectively, the state-weight and the control-weight matrices.
It is shown in Theorem 10.5.1 that the continuous-time LQR problem has
a solution if (A, B) is stabilizable and (A, Q) is detectable.
The solution is obtained by solving the CARE:

XA+ ATX —XSX+ 0 =0,

where S = BR™'BT.
The optimal control vector u°(z) is given by

u°() = —R7'BTXx(1),

where X is the unique symmetric positive semidefinite solution of the CARE.
The matrix K = —R-1TBTX is such that A — BK is stable, that is, X is a
stabilizing solution.
The LQR design has the following guaranteed stability and robustness

properties:
Stability property. The stable open-loop eigenvalues remain stable and the
unstable eigenvalues get reflected across the imaginary axis (when R = pl

and p — o).

396 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Robustness properties. Using the optimal return difference identity, it can be
shown that

omin(l + GrLo(jw)) = 1

and omin(I + GLg(jw) ™) > 3, where GLo(s) = K(sI — A)"'B.

These relations show that the upward and downward gain margins are,
respectively, oo and 0.5. The phase margin is at least £60°.

The discrete-time LQR problem is similarly defined. In this case, the perfor-
mance index is given by

x>
Jp(x) = Z (x,?ka + quuk> .
k=0

The DARE is
ATXA - X+ Q0 — ATXB(R + B"XB)"'BTXA = 0.

If (A, B) is discrete-stabilizable and (A, Q) is discrete-detectable, then the above
Riccati equation (DARE) has a unique symmetric positive semidefinite solution
X and the optimal control is ug = Kxi, where

K =(R+B"XB) 'BTXxA.

Furthermore, X is a discrete-stabilizing solution, thatis, (A —BK) is discrete-stable.

H,-Control Problems

The Hxo-control problems are concerned with robust stabilization for unstruc-
tured perturbations in the frequency domain. The goal of a Hy control is to
determine a controller that guarantees a closed-loop system with an Hy-norm
bounded by a certain specified quantity y when such a controller exists. Both the
state feedback and the output feedback Huo-control problems have been discussed
briefly in Sections 10.6.2 and 10.6.3, respectively. Both problems require solu-
tions of certain Riccati equations. Under the assumptions (10.6.12)~(10.6.15), the
solution of the output feedback H,-control problem reduces to solving a pair of
Riccati equations:

1
XA+ATX - X (Bng - —2313?) X+Cfcr =0,
14
1
AY +YAT — ¥ <C2TC2 - —ZCFCI) Y + BB =0,
14
where A, By, By, Cy, and C, are defined by (10.6.11). The expression for

a Hy, controller is given in (10.6.18)-(10.6.20). Also, two computational algo-
rithms: one, the well-known bisection algorithm by Boyd et al. and the other,

Section 10.10: CHAPTER NOTES AND FURTHER READING 397

the two-step algorithm by Bruinsma et al. (1990), for computing the Hy,-norm
are given in Section 10.6.1. Algorithm 10.6.2 seems to be faster than Algorithm
10.6.1. but the latter is easier to implement.

Stability Radius

The concept of stability radius has been defined in Chapter 7. Here a connection
of the complex stability radius r is made with the ARE:

XA+ A*X — pC*C — XBB*X =0

via the parametrized Hamiltonian matrix
A —BB*

It is shown in Theorem 10.7.3 that if p € (—o0, r2), then the above Riccati
equation has a unique stabilizing solution X. Conversely, if A is stable and if there
exists a Hermitian solution X of the above equation, then p < rZ.

In terms of the eigenvalues of the Hamiltonian matrix H,, it means that
p < r if and only if H, does not have an eigenvalue on the imaginary axis
(Theorem 10.7.2).

Based on the latter result, a bisection algorithm (Algorithm 10.7.1) for
determining the complex stability radius is described.

10.10 CHAPTER NOTES AND FURTHER READING

Feedback stabilization and EVA (pole-placement) are two central problems in
control theory. For detailed treatment of these problems, see Brockett (1970),
Brogan (1991), Friedland (1986), Chen (1984), Kailath (1980), Wonham (1985),
Kwakernaak and Sivan (1972), etc. Most of the books in linear systems theory,
however, do not discuss feedback stabilization via Lyapunov equations. Discus-
sions on feedback stabilization via Lyapunov equations in Section 10.2 have been
taken from the papers of Armstrong (1975) and Armstrong and Rublein (1976).
For a Schur method for feedback stabilization, see Sima (1981). For stabilization
methods of descriptor systems, see Varga (1995). For more on the output feed-
back problem, see Kimura (1975), Porter (1977), Sridhar and Lindorff (1973),
Srinathkumar (1978), and Misra and Patel (1989).

For a discussion on eigenstructure assignment problem, see Andry et al. (1983).

The authoritative book by Anderson and Moore (1990) is an excellent source
for a study on the LQR problem. The other excellent books on the subject include
Athans and Falb (1966), Lewis (1986), Mehrmann (1991), Sima (1996), Kucéra
(1979), etc. For a proof of the discrete-time LQR Theorem (Theorem 10.5.3), see
Sage and White (1977). An excellent reference book on the theory of Riccati equa-
tions is the recent book by Lancaster and Rodman (1995). There are also several

398 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

nice papers on Riccati equations in the books edited by Bittanti ez al. (1991) and
Bittanti (1989). H,-control problem has been dealt with in detail in the books by
Kimura (1996), Zhou et al. (1996), Green and Limebeer (1995), Dorato et al. (1992,
1995). The original papers by Francis and Doyle (1987) and by Doyle et al. (1989)
are worth reading. A recent book by Kirsten Morris (2001) contains an excellent
coverage on feedback control, in particular, Hx feedback control. Algorithms
10.6.1 and 10.6.2 for computing the H,-norm have been taken, respectively, from
the papers of Boyd et al. (1989) and Bruinsma and Steinbuch (1990). A gradient
method for computing the optimal Hy-norm has been proposed in Pandey et al.
(1991). Recently, Lin et al. (2000) have proposed numerically reliable algorithms
for computing Heo-norms of the discrete-time systems, both for the state and the
output feedback problems. The discussion on the complex stability radius and
Riccati equation in Section 10.7 has been taken from Hinrichsen and Pritchard
(1986b). For an iterative algorithm for Hy,-control by state feedback, see Scherer
(1989). Theorem 10.7.3 is an extension of the work of Brockett (1970) and Willems
(1971). For an application of the ARE to compute H,, optimization, see Zhou and
Khargonekar (1988).

For more on return difference matrix, phase and gain margins of the multivari-
able LQR design, see Lewis (1986), Safonov et al. (1981), Safonov (1980), etc.
For an excellent and very readable account of classical control design using Hyo
techniques, see Helton and Merino (1998).

Exercises

10.1 Prove the equivalence of (i) and (iii) in Theorem 10.2.1.

10.2 Prove Theorem 10.2.2.

10.3 Prove Theorem 10.2.4.

10.4 Construct a state-space continuous-time system that is stabilizable, but not
controllable.

Apply the Lyapunov stabilization method (modify the method in the book as
necessary) to stabilize this system.

10.5 Repeat Problem 10.4 with a discrete-time system.

10.6 Develop algorithms for feedback stabilization, both for the continuous-time and
discrete-time systems, based on the reduction of A to the real Schur form (see Sima
1981).

Compare the efficiency of each of these Schur algorithms with the respective
Lyapunov equation based algorithms given in the book.

10.7 Using the real Schur decomposition of A, develop partial stabilization algorithms,
both for the continuous-time and discrete-time systems in which only the unsta-
ble eigenvalues of A are stabilized using feedback, leaving the stable eigenvalues
unchanged.

10.8 Prove Theorem 10.3.1.

10.9 State and prove the discrete counterpart of Theorem 10.3.2.

10.10 Prove Theorem 10.3.3.

10.11 Give an alternative proof of the state-feedback EVA Theorem (Theorem 10.4.1).

10.12

10.13

10.14
10.15

10.16

10.17

10.18

Section 10.10: CHAPTER NOTES AND FURTHER READING 399

Construct an example to verify that if the eigenvalues of the closed-loop system are
moved far from those of the open-loop system, a large feedback will be required to
place the closed-loop eigenvalues.

Using the expression of the transforming matrix 7', which transforms the system
(A, b) to a controller-companion form (10.4.1)—(10.4.2), and the expression for the
feedback formula (10.4.5), derive the Bass—Gura formula (10.4.6).

Derive the Ackermann formula (10.4.7).

Work out an example to illustrate each of the following theorems: Theorems 10.5.1,
10.5.2, 10.5.3, 10.6.1, 10.6.2, 10.6.3, 10.6.4, and 10.6.5. (Use MATL.AB function
care to solve the associated Riccati equation, whenever needed.)

Design of a regulator with prescribed degree of stability. Consider the LQR problem
of minimizing the cost function

0
Jo :/ 2 W Ru + xTQx) dt.
0

(a) Show that the Riccati equation to be solved in this case is:
(A+aDTX + X(A+al)+ Q- XBR'BTX =0

and the optimal control is given by the same feedback matrix K as in Theorem
10.5.1.
(b) Give a physical interpretation of the problem.
Cross-weighted LQR. Consider the LQR problem with the quadratic cost function
with a cross penalty on state and control:

00
Joew = / [xTQx +2xTNu + uTRu] dt
0

subject to x = Ax + Bu, x(0) = xo, where Q, R, N are, respectively, the state-
weighting matrix, the control-weighting matrix, and the cross-weighting matrix.
Define Ag = A — BR™INT.

(a) Show that the Riccati equation to be solved in this case is:

XAp + ARX +(Q - NR'NT) —xBR7!BTXx =0,

and the optimal control law is given by u(r) = —Kx(t), where
K = R-INT 4+ BT X).

(b) What are the assumptions needed for the existence of the unique, symmetric
positive semidefinite solution X of the Riccati equation in (a)?

Consider the LQR problem of minimizing the cost

o0
J =/ [x2() + p*u? (1)) d1,
0
with p > 0, subject to
mg + kq(t) = u(t).

(a) Find an expression for the feedback matrix K in terms of p, by solving an
appropriate ARE.
(b) Plot the closed-loop poles as p varies over 0 < p < oo.

400

10.19

10.20

10.21

10.22

10.23

10.24

Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

(c) Write down your observations about the behavior of the closed-loop poles
with respect to stability.

Using the MATLAB function Iqr, design an LQR experiment with a single-input

system to study the behavior of the closed-loop poles and the feedback vector with

varying p in R = pl in the range [1, 10, taking p = 1, 10, 102, 10%, and 10°.

Plot the open loop poles, the closed loop poles, and the step responses. Make a table

of the gain margins and phase margins with each feedback vector.

(a) Using the return-difference identity, show that the ith singular value o; of the
return-difference matrix with s = jw is:

1 1/2
oi(l + GLo(jw)) = [1 + ;a,-z(H(jw))] ,

where H(s) = C(s] — A)"!B, R=pl,and 0 = CTC.
(b) Using the result in (a), prove that

omin({ + Grg(w)) = 1.
(c) Using (b), prove that
Omin(I + (GLgUe) ™ = 1.
In certain applications, the homogeneous ARE:
XA+ ATX + XWX =0

is important.

Prove that the above homogeneous Riccati equation has a stabilizing solution
(i.e., A + WX is stable) if A has no eigenvalues on the imaginary axis.
Computing the Hoo-norm over an interval. Define the Hxo-norm of G(s) over an
interval 0 < o < B as:

1G e, 5y = supomax(C(jw)), @ <w =<}p.

(a) Develop an algorithm to compute |G|y g1 by modifying the bisection
algorithm (Algorithm 10.6.1) as follows:
1. Take y;; = max{omax(G(ja)), omax (G(jB))}
2. Modify the eigenvalue testin Step 2 as: if M), has noimaginary eigenvalues
between jo and j§.
(b) Work out a numerical example to test your algorithm.
Give a linear algebraic proof of Theorem 10.6.1 (consult the paper by Boyd ez al.
(1989)).
Develop an algorithm to compute the Hoo-norm of a discrete-stable transfer
function, based on Theorem 10.6.3.

Section 10.10: CHAPTER NOTES AND FURTHER READING 401

10.25 (Kimura 1996). For the second-order system:

X1 = x2,
Xy =wy +up,
71 = X1,
29 = 8uq,

y = cpx1 + dauy,

find the conditions under which the output feedback problem has a solution. Find
the transfer function for Hso controller.
10.26 Prove that if the Hamiltonian matrix H) defined by (10.6.10) has an imaginary
eigenvalue, then the state feedback Hso-control problem does not have a solution.
10.27 Prove Theorem 10.6.2: If A is a complex stable matrix, then the distance to
instability

BAY=i(sT — A) 1.

10.28 (a) LetG(s) = C(sI — A)_‘BA Then prove

—— if G #0,
max |G(jw
r = | maxiGGol

oo, if G =0.

(Consult Hinrichsen and Pritchard (1986b)).
(b) Give an example to show that r(A, I, I) can change substantially under
similarity transformation on A.

References

Ackermann J. “Der entwurf linear regelung systeme im zustandsraum,” Regulungestechnik
und prozessedatenverarbeitung, Vol. 7, pp. 297-300, 1972.

Anderson B. D. O. and Moore J. B. Optimal Control: Linear Quadratic Methods, Prentice
Hall, Englewood Cliffs, NJ, 1990.

Andry A. N., Jr., Shapiro E. Y., and Chung J. C. “Eigenstructure assignment for linear
systems,” IEEE Trans. Aerospace and Electronic Syst., Vol. AES-19(5), pp. 711-729,
1983.

Armstrong E. S. “An extension of Bass’ algorithm for stabilizing linear continuous constant
systems,” IEEE Trans. Autom. Control, Vol. AC-20, pp. 153-154, 1975.

Armstrong E. S. and Rublein G. T. “A stabilizing algorithm for linear discrete constant
systems,” IEEE Trans. Autom. Control, Vol. AC-21, pp. 629-631, 1976.

Athans M. and Falb P. Optimal Control, McGraw Hill, New York, 1966.

Bittanti S. (ed.). The Riccati Equation in Control, Systems, and Signals, Lecture Notes,
Pitagora Editrice, Bologna, 1989.

Bittanti S., Laub A.J., and Willems J.C. (eds.), The Riccati Equation, Springer-Verlag,
Berlin, 1991.

402 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Boyd S., Balakrishnan V., and Kabamba P. “A bisection method for computing the Heo-
norm of a transfer function matrix and related problems,” Math. Control Signals Syst.,
Vol. 2, pp. 207-219, 1989.

Boyd S. and Balakrishnan V. “A regularity result for the singular values of a transfer function
matrix and a quadratically convergenet algorithm for computing its Loo-norm,” Syst.
Control Lett., pp. 1-7, 1990.

Brockett R.-W. Finite Dimensional Linear Systems. Wiley, New York, 1970.

Brogan W.L. Modern Control Theory, 3rd edn, Prentice Hall, Englewood Cliffs, NJ,
1991.

Bruinsma N.A. and Steinbuch M. “A fast algorithm to compute the Hxo-norm of a transfer
function matrix,” Syst. Control Lett., Vol. 14, pp. 287-293, 1990.

Chen C.-T. Linear System Theory and Design, CBS College Publishing, New York, 1984.

Dorato P., Fortuna L., and Muscato G. Robust Control for Unstructured Perturbations — An
Introduction (Thoma M. and Wyner A, eds.) Springer-Verlag, Berlin, 1992.

Dorato P., Abdallah C., and Cerone V. Linear Quadratic Control, An Introduction, Prentice
Hall, Englewood Cliffs, NJ, 1995.

Doyle J., Glover K., Khargonekar P., and Francis B. “State-space solutions to standard H,
and Hyo control problems,” IEEE Trans. Autom. Control, Vol. AC-34, pp. 831-847,
1989.

Enns D.E. “Model reduction with balanced realizations: An error bound and a frequency
weighted generalization,” Proc. IEEE Conf. Dec. Control, Las Vegas, pp. 127-132,
1984.

Francis B.A. and Doyle J.C. “Linear control theory with an Hx, optimality criterion,” SIAM
J. Control Optimiz., Vol. 25, pp. 815-844, 1987.

Francis B.A. A Course in Hx, Control Theory, Lecture Notes in Control and Information
Sciences, Vol. 88, 1987.

Franklin G.F.,, Powell J.D., and Emami-Naeini A. Feedback Control of Dynamic Systems,
Addison-Wesley, New York, 1986.

Friedland B. Control System Design: An Introduction to State-Space Methods, McGraw-
Hill, New York, 1986.

Glover K. “All optimal Hankel-norm approximations of linear multivariable systems and
their Lo-error bounds,” Int. J. Control, Vol. 39, pp. 1115-1193, 1984.

Glover K. and Doyle J. “State-space formulae for all stabilizing controllers that satisfy
an Hso-norm bound and relations to risk sensitivity,” Syst. Control Lett., Vol. 11,
pp. 167-172, 1988.

Green M. and Limebeer D.J.N. Linear Robust Control, Prentice Hall Information and
System Sciences Series (Thomas Kailath, ed.), Prentice Hall, Englewood Cliffs, NJ,
1995.

Helton J. W. and Merino O., Classical control using H® Methods: Theory, optimization
and Design, SIAM, Philadelphia, 1998.

Hinrichsen D. and Pritchard A.J. “Stability radii of linear systems,” Syst. Control Let.,
Vol. 7, pp. 1-10, 1986a.

Hinrichsen D. and Pritchard A.J. “Stability radius for structured perturbations and the
algebraic Riccati equation,” Syst. Control Lett., Vol. 8, pp. 105-113, 1986b.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

Section 10.10: CHAPTER NOTES AND FURTHER READING 403

Kimura H. “Pole assignment by gain output feedback,” IEEE Trans. Autom. Control,
Vol. AC-20(4), pp. 509-516, 1975.

Kimura H. Chain-Scattering to H® Control, Birkhiuser, Boston, 1996.

Kucéra V. Discrete Linear Control, John Wiley & Sons, New York, 1979.

Kwakernaak H. and Silvan R. Linear Optimal Control Systems, Wiley-Interscience,
New York, 1972.

Lancaster P. and Rodman L. The Algebraic Riccati Equation, Oxford University Press,
Oxford, UK, 1995.

William S. Levine (ed.). The Control Handbook, CRC Press and IEEE Press, Boca Raton,
Fl., 1996.

Lewis EL. Optimal Control, John Wiley & Sons, New York, 1986.

Lewis FL. Applied Optimal Control and Estimation—Digital Design and Implementation,
Prentice Hall and Texas Instruments Digital Signal Processing Series, Prentice Hall,
Englewood Cliffs, NJ, 1992.

Lin W.-W., Wang J.-S., and Xu Q.-F. “On the Computation of the optimal H-norms for
two feedback control problems,” Lin. Alg. Appl., Vol. 287, pp. 233-255, 1999.

Lin W.-W., Wang J.-S., and Xu Q.-F. “Numerical computation of the minimal Hso-norms
of the discrete-time state and output feedback control problems,” SIAM. J. Num. Anal.,
Vol. 38(2), pp. 515-547, 2000.

Luenberger D. Introduction to Dynamic Systems: Theory, Model and Applications, John
Wiley, New York, 1979.

Maciejowski J.M. Multivariable Feedback Design, Addison-Wesley, Wokingham,
1989.

Mehrmann V. The Autonomous Linear Quadratic Control Problem, Theory and Numer-
ical Solution, Lecture Notes in Control and Information Sciences, Springer-Verlag,
Heidelberg, 1991.

Morris K. Introduction to Feedback Control, Academic Press, Boston, 2001.

Misra P. and Patel R.V. “Numerical algorithms for eigenvalue assignment by constant and
dynamic output feedback,” IEEE Trans. Autom. Control, Vol. 34, pp. 579-588, 1989.

Moore B.C. “On the flexibility offered by state feedback in multivariable systems beyond
closed loop eigenvalue assignment,” IEEE Trans. Autom. Control, Vol. AC-21, pp. 689-
692, 1976.

Pandey P., Kenney C.S., Packard A., and Laub A.J. “A gradient method for computing the
optimal Heo norm,” IEEE Trans. Autom. Control, Vol. 36, pp. 887-890, 1991.

Porter B. “Eigenvalue assignment in linear multivariable systems by output feedback,” Int.
J. Control, Vol. 25, pp. 483-490, 1977.

Robel G. “On computing the infinity norm,” IEEE Trans. Autom. Control, Vol. 34,
pp. 882-884, 1989.

Safonov M.G. and Athans M. “Gain and phase margins of multiloop L QG regulators,”
IEEE Trans. Autom. Control, Vol. AC-22, pp. 173-179, 1977.

Safonov M.G., Laub A.J., and Hartmann G.L. “Feedback properties of multivariable sys-
tems: The role and use of the return difference matrix,” IEEE Trans. Autom. Control,
Vol. AC-26, pp. 47-65, 1981.

Safonov M.G. Stability and Robustness of Multivariable Feedback Systems, MIT Press,
Boston, 1980.

404 Chapter 10: FEEDBACK STABILIZATION, EVA, AND OPTIMAL CONTROL

Sage A.P. and White C.C. Optimal Systems Control, 2nd edn, Prentice Hall, Englewood
Cliffs, NJ, 1977.

Scherer C. “Hx-control by state feedback: An iterative algorithm and characterization of
high-gain occurence,” Syst. Control Lett., Vol. 12, pp. 383-391, 1989.

Sima V. “An efficient Schur method to solve the stabilizing problem,” IEEE Trans. Autom.
Control, Vol. AC-26, pp. 724-725, 1981.

Sima V. Algorithms for Linear-Quadratic Optimization, Marcel Dekker, New York, 1996.

Sridhar B. and Lindorff D.P. “Pole placement with constant gain output feedback,” Int. J.
Control, Vol. 18, pp. 993-1003, 1973.

Srinathkumar S. “Eigenvalue/eigenvector assignment using output feedback,” IEEE Trans.
Autom. Control, Vol. AC-21, pp. 79-81, 1978.

Varga A. “On stabilization methods of descriptor systems,” Syst. Control Lett., Vol. 24,
pp. 133-138, 1995.

Willems J.C. “Least squares stationary optimal control and the algebraic Riccati equation,”
IEEE Trans. Autom. Control, Vol. AC-16, pp. 621-634, 1971.

Wonham W.H. Linear Multivariable Control: A Geometric Approach, Springer-Verlag,
Berlin, 1985.

Zames G. “Feedback and optimal sensitivity: Model reference transformations, multiplica-
tive seminorms, and approximate inverses,” [EEE Trans. Autom. Control, Vol. AC-26,
pp- 301-320, 1981.

Zhou K., Doyle J.C., and Glover K. Robust and Optimal Control, Prentice Hall, Upper
Saddle River, NJ, 1996.

Zhou K. and Khargonekar P. “An algebraic Riccati equation approach to Hoo optimization,”
Syst. Control Lett., Vol. 11(2), pp. 85-91, 1988.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 11

NUMERICAL METHODS AND
CONDITIONING OF THE
EIGENVALUE ASSIGNMENT
PROBLEMS

Topics covered

e Numerical Methods for the Single-Input and Multi-Input Eigenvalue
Assignment (EVA) Problems

e Sensitivity Analyses of the Feedback and EVA Problems and Conditioning
of the Closed-Loop Eigenvalues

L] Robust EVA

11.1 INTRODUCTION

We have introduced the eigenvalue assignment (EVA) problem (pole-placement
problem) in Chapter 10 and given the results on existence and uniqueness of the
solution.

In this chapter, we study numerical methods and the perturbation analysis
for this problem.

There are many methods for the EVA problem. As stated in Chapter 10, some
of the well-known theoretical formulas, such as the Ackermann formula, the
Bass—Gura formula, etc., though important in their own rights, do not yield to com-
putationally viable methods. The primary reason is that these methods are based on
transformation of the controllable pair (A, B) to the controller-companion form,
and the transforming matrix can be highly ill-conditioned in some cases. The com-
putationally viable methods for EVA are based on transformation of the pair (A, B)
to the controller-Hessenberg form or the matrix A to the real Schur form (RSF),
which can be achieved using orthogonal transformations. Several methods of this

405

406 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

type have been developed in recent years and we have described a few of them in
this chapter. The methods described here include:

e A single-input recursive algorithm (Algorithm 11.2.1) (Datta 1987) and its
RQ implementation (Algorithm 11.2.3) (Armold and Datta 1998).

e A multi-input generalization (Algorithm 11.3.1) of the single-input recur-
sive algorithm (Arnold and Datta 1990).

e A multi-input explicit QR algorithm (Section 11.3.2) (Miminis and Paige
1988).
A multi-input Schur algorithm (Algorithm 11.3.3) (Varga 1981).
A Sylvester equation algorithm for partial eigenvalue assignment (PEVA)
(Algorithm 11.3.4) (Datta and Sarkissian 2002).

Algorithms 11.2.1 and 11.3.1 are the fastest algorithms, respectively, for the single-
input and the multi-input EVA problems.

Unfortunately, the numerical stability of these algorithms are not guaran-
teed. However, many numerical experiments performed by the author and others
(e.g., Varga 1996; Amold and Datta 1998; Calvetti et al. 1999) show that
Algorithm 11.2.1 works extremely well in practice, even with ill-conditioned prob-
lems. Furthermore, there is an RQ implementation which is numerically stable
(Arnold and Datta 1998). This stable version is described in Algorithm 11.2.3.

The multi-input explicit QR algorithm in Section 11.3.2 is also numerically
stable. However, it might give a complex feedback in some cases.

The Schur algorithm (Algorithm 11.3.3), based on the real Schur decompo-
sition of the matrix A, is most expensive, but it has a distinguished feature that it
can be used as a partial-pole placement algorithm in the sense that it lets the user
reassign only a part of the spectrum leaving the rest unchanged. The algorithm is
also believed to be numerically stable.

Besides the above-mentioned algorithms, an algorithm (Algorithm 11.6.1) for
robust eigenvalue assignment (REVA), which not only assigns a desired set
of eigenvalues but also a set of well-conditioned eigenvectors as well, is also
included in this chapter. The REVA is important because the conditioning of the
closed-loop eigenvector matrix greatly influences the sensitivity of the closed-loop
eigenvalues (see Section 11.5). Algorithm 11.6.1 is due to Kautsky er al. (1985)
and is popularly known as the KNV algorithm. The MATLAB function place has
implemented this algorithm.

Sections 11.4 and 11.5 are devoted, respectively, to the conditioning of the
feedback matrix and that of the closed-loop eigenvalues. The conditioning
of the feedback matrix and the conditioning of the closed-loop eigenvalues are
two different matters. It is easy to construct examples for which the feedback
matrix can be computed rather very accurately by using a backward stable
algorithm, but the resulting closed-loop eigenvalues might still be significantly

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 407

different from those to be assigned. These two problems are, therefore, treated
separately.

The chapter concludes with a table of comparison of different meth-
ods (Sections 11.7 and 11.8) and recommendations are made based on this
comparison (Section 11.9).

11.2 NUMERICAL METHODS FOR THE SINGLE-INPUT
EIGENVALUE ASSIGNMENT PROBLEM

The constructive proof of Theorem 10.4.1 suggests the following method for find-
ing the feedback vector f.Let (A, b) be controllable and S be the set of eigenvalues
to be assigned.

Eigenvalue Assignment via Controller-Companion Form

Step 1. Find the coefficients di, da, . .., d, of the characteristic polynomial of
the desired closed-loop matrix from the given set S. }
Step 2. Transform (A, b) to the controller-companion form (C, b) :

TAT ' =C, Th = b,

where C is a lower companion matrix and b= 0,0,...,0, I)T.

Step3.C0mputef,~ =di—a;, i=1,2,...,nwherea;, i =1, ...,nare the
entries of the last row of C.

Step 4. Find fT = fIT, where fT = (f1, fa...., fn).

Because of the difficulty of the implementation of Step 1 for large problems and
of the instability of the algorithm due to possible ill-condition of T for finding the
controller-canonical form in Step 2, as discussed in Chapter 6, the above method
is clearly not numerically viable. It is of theoretical interest only.

Similar remarks hold for Ackermann’s formula. The Ackermann (1972) for-
mula, though important in its own right, is not numerically effective. Recall
that the Ackermann formula for computing f to assign the spectrum § =
{A1, A2, ..., Apltis:

fT=elCylo),

where Cmq = (b, Ab, ..., A”_lb) and p(x) = (x — Ap(x — A2) -+ (x — Ap).
Thus, the implementation of Ackermann’s formula requires: (i) computing ¢ (A)
which involves computing various powers of A and (ii) computing the last row
of the inverse of the controllability matrix. The controllability matrix is usually
ill-conditioned (see the relevant comments in Chapter 6). The following example
illustrates the point.

408 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Example 11.2.1. Consider EVA using Ackermann’s formula with

—4.0190 5.1200 0 0 —2.0820
—0.3460 0.9860 0 0 ~2.3400
~7.9090 154070 —4.0690 0 —6.4500
—21.8160 35.6060 —0.3390 —3.8700 —17.8000

A=|-60.1960 98.1880 —7.9070 0.3400 —53.0080

0 0 0 0 94.0000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 12.8000
0 0 0 0.8700
0 0 0 0.9700
0 0 0 2.6800
0 0 0 7.3900
0 0 0 20.4000
—147.2000 0 53.2000 0
94.0000 —147.20000 0 0
12.80000 0 —31.6000 0
0 0 18.8000 —31.6000
—0.1510 —1.0000
0 —1.5000
0 —2.0000
0 ~2.5000
B = o |. s=|-3.0000
0 ~3.5000
0 —4.0000
0 —4.5000
0 ~5.0000

The closed-loop eigenvalues assigned by the Ackermann’s formula are:

—0.8824 — 0.4891;
—0.8824 + 0.4891;
—2.2850 — 1.0806;
22850 + 1.0806;
~3.0575

~3.8532

—42637 — 0.7289;

—4.2637 + 0.7289;

Thus, the desired eigenvalues in S are completely different from those assigned
by the Ackermann’s formula. The same problem is then solved using the MAT-
LAB function place, which uses the KNV algorithm. The spectrum assigned by
MATLAB function place is: {—4.9999, —4.5001, —4.0006, —3.4999 —3.0003,
—2.4984, —2.0007, —1.5004, —0.9998}.

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 409

Accurate results were also obtained by the recursive Algorithm (Algorithm 11.2.1)
(see Example 11.2.3).

A Template of Numerical Algorithms for EVA Problem

A practical numerically effective algorithm has to be based upon the reduction of
the controllable pair (A, B) to a canonical form pair that uses a well-conditioned
transformation. As we have seen in Chapter 6, the controller-Hessenberg form is
one such.

Indeed, several numerically effective algorithms have been proposed both for the
single-input and the multi-input problems in recent years, based on the reduction
of (A, B) to a controller-Hessenberg pair. We will describe some such algorithms
in the sequel.

Most of these algorithms have a common basic structure which can be described
as follows. In the following and elsewhere in this chapter, Q(A) denotes the
spectrum of A.

Step 1. The controllable pair (A, B) is first transformed to a controller-
Hessenberg pair (H, B), that is, an orthogonal matrix P is constructed such
that

PAPT = H, an unreduced block upper Hessenberg matrix,

PB=RB= (%1> , where B is upper triangular.

Note: In the single-input case, the controller-Hessenberg pair is (H, b), where
H is an unreduced upper Hessenberg matrix and b = Pb = ey, B # 0.

Step 2. The EVA problem is now solved for the pair (H, B), by exploiting the
special forms of H and B. This step involves finding a matrix F such that

Q(H —BF)=1{A1,..., A}

Note: In the single-input case, this step amounts to finding a row vector fT such
that Q(H — Bei f1) = (A1, ..., An).

Step 3. A feedback matrix K of the original problem is retrieved from the
feedback matrix F of the transformed Hessenberg problem by using an orthog-
onal matrix multiplication: K = FP. (Note that Q(H — BF) = Q(PAPT —
PBFPPT) = Q(P(A — BK)PT) = Q(A — BK).)

The different algorithms differ in the way Step 2 is implemented. In describing
the algorithms below, we will assume that Step 1 has already been imple-
mented using the numerically stable Staircase Algorithm described in Chapter 6
(Section 6.8).

410 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

11.2.1 A Recursive Algorithm for the Single-Input EVA Problem

In this subsection, we present a simple recursive scheme (Datta 1987) for the
single-input Hessenberg EVA problem.

Let’s first remind the readers of the statement of the single-input Hessenberg
EVA problem:

Given an unreduced upper Hessenberg matrix H, the number 8 # 0, and the
set S = {A1,..., Ay}, closed under complex conjugation, find a row vector
fT such that

QH — Ber f1) = (A1, dn).

We will assume temporarily, without any loss of generality, that 8 = 1 (recall
that Pb = b = Be).)

Formulation of the Algorithm

The single-input EVA problem will have a solution if the closed-loop matrix (H —
erf T) can be made similar to a matrix whose eigenvalues are the same as the ones
to be assigned.

Thus, the basic idea here is to construct a nonsingular matrix X such that

X(H-e fHX 1= A, (11.2.1)

where Q(A) = {A1, A2, ..., Ax}.
From (11.2.1), we have

XH — AX = Xe fT. (11.2.2)
Taking the transpose, the above equation becomes
HTXT — XTAT = fel xT. (11.2.3)
Setting XT = L, Eq. (11.2.3) becomes
HTL — LAT = felL. (11.2.4)
The problem at hand now is to construct a nonsingular matrix L and a vector f

such that Eq. (11.2.4) is satisfied. We show below how some special choices make
it happen.

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 411

Let’s choose

* Ap

and let elTL be chosen such that all but the last column of the matrix on the
right-hand side of (11.2.4) are zero, that is, the matrix Eq. (11.2.4) becomes

HTL — LAT =(0,0,...,af), a#0. (11.2.5)

The simple form of the right-hand side of (11.2.5) allows us to compute recursively
the second through nth column of L = (Iy, /2, ..., I,), once the first column /] is
known. The entries of the subdiagonal of A can be chosen as scaling factors for
the computed columns of L. Once L is known, «f can be computed by equating
the last column of both sides of (11.2.5):

af = (H' — A Dly. (11.2.6)

What now remains to be shown is that how to choose /] such that the resulting
matrix L in (11.2.5) is nonsingular.

A theorem of K. Datta (1988) tells us that if /1 is chosen such that (HT, /1) is con-
trollable, then L satisfying (11.2.5) will be nonsingular. Since HT is an unreduced
upper Hessenberg matrix, the simplest choice is [} = ¢, = (0,0, ...,0, I)T. Itis
easy to see that this choice of /; will yield @« = I,, the first entry of /,,. Then
equating the last column of both sides of (11.2.5), we have

o (HT — 2Dl (HT = 0, D,

o lln

The above discussion immediately leads us to the following algorithm:

Algorithm 11.2.1. The Recursive Algorithm for the Single-input Hessenberg
EVA Problem

Inputs. H, an unreduced upper Hessenberg matrix, and S =
{A1, A2, ..., Au), a set of n numbers, closed under complex conjugation.
Output. The feedback vector f such that Q(H — e, fT) = §.

412 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step 1. Set || = e, the last column of the n X n identity matrix
Step 2. Construct a set of normalized vectors {€} as follows:
Fori=1,2,....,n—1do
Compute £i11 = (HT — A)Y
lit1

lipy =

1€i41l12
End

Step 3. Compute £, = (HT — A, D)€,
14
Step 4. Compute [= —TF—I, where a is the first entry of £,,.
o

Theorem 11.2.1. The vector f computed by Algorithm 11.2.1 is such that the
eigenvalues of the closed-loop matrix (H — elfT) arehy, ..., Anp.

Proof. Proof follows from the above discussions. W

Flop-count: Since [; contains only i nonzero entries and H is an unreduced
Hessenberg matrix, computations of /5 through /,, in Algorithm 11.2.1 takes about
n3 /3 flops. Furthermore, with these operations, one gets the transforming matrix L
that transforms the closed-loop matrix to A by similarity. Also, it takes about 13—0n3
flops for the single-input controller-Hessenberg reduction. So, the flop-count for
the EVA problem for the pair (A, b) using Algorithm 11.2.1 is about %n3 flops.

Avoiding complex arithmetic: When the eigenvalues to be assigned are complex,
the use of complex arithmetic in Algorithm 11.2.1 can be avoided by setting A as a
matrix in RSF, having a2 x2 block corresponding to each pair of complex conjugate
eigenvalues to be assigned. Algorithm 11.2.1 needs to be modified accordingly
[Exercise 11.1].

MATCONTROL note: The modified algorithm that avoids the use of complex
arithmetic has been implemented in MATCONTROL function polercs.

Example 11.2.2. Consider EVA using Algorithm 11.2.1 with

S={951).

X
I
o w o
O -
AN =

0
Stepl./; =0
1

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 413

Step 2.
i=1
. 0 0
hLh=191]}, I = 0.9487
-3 —0.3162
i=2
. 2.8460 0.3848
l3=1-6.6408 |, I3 =1-0.8979
1.5811 0.2138
Step 3.
0.3848
ly = | 3.4633
1.9668
Step 4.
1.0000
f =1 9.0000
5.1111

The closed-loop matrix:

8.0 —5.0 1.8889
H—e fT={30 10 20
0 90 60

Verify: The eigenvalues of the matrix (H — ¢ fT) are 9, 5, and 1.

Example 11.2.3. Let’s apply Algorithm 11.2.1 to Example 11.2.1 again. The eigen-
values of the closed-loop matrix H — e; fT with the vector f computed by
Algorithm 11.2.1 are:

—5.0001, —4.4996, —4.0009, —3.4981, —3.0034, —2.4958, —2.0031, —1.4988,
—1.0002.

The computed closed-loop eigenvalues, thus, have the similar accuracy as those
obtained by the MATLAB function place.

Example 11.2.4. Eigenvalue Assignment with Ili-Conditioned Eigenvalues. Since the
matrix H and the closed-loop matrix H — e;f! differ only by the first row,
Algorithm 11.2.1 amounts to finding a vector f such that, when the first row of the
given Hessenberg matrix H is replaced by f7T, the resulting new Hessenberg matrix

414 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

has the prescribed spectrum. Let H be the well-known Wilkinson bidiagonal matrix
(see Datta (1995), Wilkinson (1965)) with highly ill-conditioned eigenvalues:

20
19
20 0
H =
20
0 .
20 1

First, the first row of H is replaced by the zero row vector and then Algorithm 11.2.1
is run on this new H with § = {20,19,18,...,1}, and f is computed. Since the
eigenvalues of the original matrix H is the set S; in theory, fT should be the same as
the first row of H; namely, fT = (20,0, ...,0). Indeed, the vector fT computed by
the algorithm is found tobe fT = (20, 0, ..., 0) and the eigenvalues of the closed-loop
matrix with this computed f are 1,2, 3, ..., 20.

A closed-form solution of the feedback vector in the single-input EVA problem:
We now show that Algorithm 11.2.1 yields an explicit closed-form solution for the
single-input problem. The recursion in Step 2 of the algorithm yields

vigr = HY = DHT =) - (HT = 5D, (11.2.7)
for some (nonzero) scalar y. Including Steps 1 and 4, (11.2.6) becomes
af = H = DHT =D - (HT = A, Dey, (11.2.8)

where & = (h21h3y - hnn—1) "L IF@(x) = (x — A1) (x — A2) -+ (x — Ap), then
this can be written as
fT=ael¢(H). (11.2.9)

Since this solution is unique, it represents the Hessenberg representation of the
Ackermann formula for the single-input EVA problem.

11.2.2 An Error Analysis of the Recursive Single-Input Method

Knowing the above explicit expression for the feedback vector f, we can now
carry out a forward error analysis of Algorithm 11.2.1. This is presented below.

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 415

By duality of (11.2.4), we see that the method computes a matrix L and a vector
f such that
HL — LA = afe|L.

A careful look at the iteration reveals that the forward error has a special form.
Define the polynomials ¢; ; for j < k by

D k(x) = (x —Aj)x —Ajr1)- - (x — Ag).
Let [; be the computed value of the ith column of L. Define ¢; by
i = (H— 7D+ 6. (11.2.10)

Then we have the following forward error formula, due to Arnold (1993) (See
also Arnold and Datta (1998)).

Theorem 11.2.2. Let @ f be the computed feedback vector of the single-input
EVA problem for (H, e1) using Algorithm 11.2.1. If af is the exact solution,
then

n
af —af =) dja(He,
j=1
where € s are defined above.

Unfortunately, not much can be said about backward stability from a result
like this. It is, however, possible to shed some light on the stability of this method
by looking at €; in a different way. See Arnold and Datta (1998) for details.

Theorem 11.2.3. LetE = €|, €2, ..., €,]andlet L = [£y, 05, ..., £, Then

af solves (exactly) the single-input EVA problem for the perturbed system
(H — EL!, Bei, S), where_the €; are the same as in the previous theorem,
that is, the computed vector f is such that

QUH — EL™Y = Ber fT1= (A1, ..., An).

Proof. Notice that as defined, L satisfies the matrix equation:
HL - LA=E +afel,
where A = diag(};). Since L is nonsingular by construction, we can solve the
perturbed equation:
(H+AH)L —LA=E +afe!

for AH. This yields —AH = EL™!, and & f solves the EVA problem for (H +
AH,Be,S). A

416 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Remarks on Stability and Reliability

e From the above result it cannot be said that the method is backward stable.
The result simply provides an upper bound on the size of the ball around
the initial data, inside which there exist (H + AH, § + §8) for which the
computed solution is exact. If || AH | could be bounded above by a small
quantity that was relatively independent of the initial data, then the method
would be backward stable. However, Theorem 11.2.3 does allow one to say
precisely when the results from the method are suspect. It is clear that || E||
is always small if the iterates are normalized every few steps, so that all of
the backward error information is contained in L~!. Thus, the stability of
the algorithm can be monitored by monitoring the condition number
of L. Furthermore, since L is triangular, it is possible to estimate || L~ ||
rather cheaply, even as the iteration proceeds. (See Higham 1996).

The matrix L gives us even more information about the EVA problem at
hand. In case the eigenvalues to be assigned are distinct, an upper bound
in the condition number of the matrix of eigenvectors that diagonalizes
the closed loop matrix can be obtained from the condition number of the
matrix L.

This is important because, as said in the introduction, the condition num-
ber of the matrix of eigenvectors of the closed-loop matrix is an important
factor in the accuracy of the assigned eigenvalues (see Section 11.5 and the
Example therein).

Specifically, if X diagonalizes A, then it can be shown (Arnold and Datta
1998), that P = (L)"'X diagonalizes the closed-loop matrix H — e f T
furthermore,

Cond;(P) < Condy(X)Cond,(L).

o Computational experience has shown that if L is ill-conditioned, then
so are the closed-loop eigenvalues.

11.2.3 The QR and RQ Implementations of Algorithm 11.2.1

Algorithm 11.2.1 is an extremely efficient way to solve the Hessenberg single-
input EVA problem, but as we have just seen, the backward stability of this
algorithm cannot be guaranteed. It, however, turns out that there is a numerically
stable implementation of this algorithm via QR iterations. We will discuss this
below.

The QR Implementation of Algorithm 11.2.1

The idea of using QR iterations in implementing Algorithm 11.2.1 comes from the
fact that the matrix ¢ (H) in the explicit expression of f in (11.2.9) can be written

Section 11.2: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 417

as (Stewart 1973, p. 353):
d(H)=(H —I)H =2 0)---(H—2, 1) = 0102 QnRyRy—1--- Ry,

where Q; and R; are generated by n steps of QR iterations as follows:
H =H
Fori=1,2,...,ndo
QiR = H; — 31
Hip1 =RiQi + i1
End.

Remark

e Note that since H; is Hessenberg, so is H; 1, for each i (see Chapter 4).

MATCONTROL note: The QR version of Algorithm 11.2.1 has been imple-
mented in MATCONTROL function poleqrs.

The RQ Implementation of Algorithm 11.2.1

The difficulty of implementing the QR strategy is that the R; need to be
accumulated; the process is both expensive and unstable.

We now show how the method can be made computationally efficient by using
RQ factorizations instead of QR factorizations, as follows:
Set HH=H
Fori =1, 2,...,n compute the RQ step

RiQi=H; — M1
Hiy1 = QiR + ;1

This time
¢(H)=R1R2"'RnQnQn—l"'Q1, (11211)

and by setting Q = 0, 0,—1---Q1and R = Ry Ry - -- R,,, we have from (11.2.9)
fT=ael RQ = ape! 0. (11.2.12)

Here p = Hl’.’zlr,(,’;,), where r,(,'n) denotes the (n, n)th entry of R;. This is a much

nicer situation! Thus, a straightforward RQ implementation of Algorithm 11.2.1
will be as follows:

Algorithm 11.2.2. An RQ Implementation of Algorithm 11.2.1
Inputs. Same as in Algorithm 11.2.1.
Output. Same as in Algorithm 11.2.1.
Step 0. Ser H; = H.

418 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Stepl. Fori=1, 2 ,ndo

R; Ql =)\ I
Hip1= Q;R + Ail
End
Step 2. Compute f = o:peZQ,, Qn-1-+ Q1, where p = TI7_, r,(,',,) r,(,',,)

denotes the (n, n)th entry of R;.

Algorithm 11.2.2 may be made storage-efficient by observing that it is possible to
deflate the problem at each R Q step, as follows:

* *
Hiy = OiR; +}¥I—‘(O ﬁi+1>'

The matrix I’-Ivijl can now be set as H;yj and the iteration can be continued
with H; | = H;4 after updating Q; and p appropriately. Thus, algorithmically
we have the following storage-efficient version of Algorithm 11.2.2, which is
recommended to be used in practice.

Algorithm 11.2.3. A Storage-Efficient Version of Algorithm 11.2.2
Inputs. Same as in Algorithm 11.2.1
Output. Same as in Algorithm 11.2.1.

Step 0. Ser H = H.

Step 1. Compute the RQ factorization of Hy — A1, that is, compute Q| and
Ry such that (H —)\1I)QT = Ry. Compute Hy = Q1R + A1 1. Set
Q=0Q1andp = rnn , where R = (ri(jl)).

Step 2. Fori =2,3,...,ndo
Compute the RQ factorization of H; — A;1 : (H; —)\,-I)Q;F =

Ri. Compute H; 1, where Q;R; + X1 = <* *) Update
0 Hiy

0 = (1 Q') Q, where 1 is a matrix consisting of the first
i
(i — 2) rows and columns of the identity matrix. Update p =

0 r,(l’l:z imaai (T ,(l'_iz i.nya—i is the last element of R;).

End
Step 3. Compute fT = a'pel Q, where o' = 1/(ha1 - - hpn—1).

Flop-count and numerical stability: Algorithm 11.2.3 requires about 3 n3 flops.
Since reduction to the controller-Hessenberg form requires 12n> ﬂops the total
count for EVA of the pair (A, b) using Algorithm 11.2.3 is about 5n3.

Section 11.2;: NUMERICAL METHODS FOR THE SINGLE-INPUT EVA PROBLEM 419

The algorithm is numerically stable (see Arnold and Datta 1998). Specifically,
the method computes, given a controllable pair (H, e1), a vector f such that it
solves exactly the EVA problem for the system with the matrix H + AH, where

IAH|F < ng(n)| Hllr,

in which p is the machine precision and g(n) is a modest function of n.

Remark

e It can be shown (Arnold 1993) that if an EVA algorithm for the single-input
Hessenberg problem is backward stable, then the algorithm is also backward
stable for the original problem.

Thus, the R Q implementation of Algorithm 11.2.1 is backward stable for the
original problem. That is, the feedback k, computed by Algorithm 11.2.3, for the
problem (A, b) is exact for a nearby problem: k exactly solves the EVA problem
for (A+ AA, b+ 8b), where AA and b are small. For a proof of this backward
stability result, see Arnold and Datta (1998).

Example 11.2.5. Consider Example 11.2.2 again

H1=H:(

Stepl. Compute R; and Q; suchthat Hj—A1I = R1Q1:[R1, Q1] =rq (Hi—A11).

Step 0.

S W O
O — B
[30 NS EEN

), S ={r1, A2, A3} ={9,5, 1}.

10.5957 —0.6123 —6.5885
0 29086 —1.8000]

Compute H) = Q1R + A1l = (—7.5693 7.2043 0.2269

~0.2063 0.3094 0.9283
0=0,=| 0978 —00652 —0.1957], p=9.4868

0 0.9487 —0.3162

420 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step2.i =2
Compute R; and Q7 such that Hy — A2l = Ry Q2 [R2, Q2] =rq (Hy — A1)

> ~0.8109 —0.2183 0.5430

Update Q: Q = [-0.4409 —-0.3823 —0.8121].

H3—(12'9533 4.6561
0.3848 —0.8479 0.2138

—3.0909 -—-1.5411)"
Update p: p = 70.1641
i=3
Compute R3 and Q3 such that H3 — A3l = R3Q3: [R3, O3] = rq(H3 — A3l).

Ra = 39945 —12.1904 0 = —0.6351 0.7725
3= 0 4.0014) 3= 1-0.7725 —0.6351)

Hy =7.8755,

—0.8109 —0.2183 0.5430
Update Q: @ = | 0.5772 —0.4508 0.6809 1, update p = 280.7526.
0.0962 0.8655 0.4915

1.0000
£ =1 9.0000

5.1111

Step 3.

Verify:
8.0000 —5.0000 1.8889
H—e fT = 3.0000 10000 2.0000 |.
0 9.0000 6.0000
The eigenvalues of H — elfT are {5, 1,9].

MATCONTROL note: Algorithm 11.2.3 has been implemented in MATCON-
TROL function polergs.

11.2.4 Explicit and Implicit RQ Algorithms

We have just seen the QR and RQ versions of Algorithm 11.2.1. At least two more
QR type methods were proposed earlier: An explicit QR algorithm by Miminis
and Paige (1982) and an implicit QR algorithm by Patel and Misra (1984).

The explicit QR algorithm, proposed by Miminis and Paige (1982), constructs
an orthogonal matrix Q such that

Q"(H - e fTY0 =R,

where R is an upper triangular matrix with the desired eigenvalues Aj, ..., A,
on the diagonal. The algorithm has a forward sweep and a backward sweep. The
forward sweep determines Q and the backward sweep finds f and R, if needed.

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 421

The algorithm explicitly uses the eigenvalues to be assigned as shifts and that is
why it is called an explicit QR algorithm.

It should come as no surprise that an implicit RQ step is possible, and
in order to handle complex pairs of eigenvalues with real arithmetic, an
implicit double step is needed. One such method has been proposed by Patel
and Misra (1984). The Patel-Misra method is similar to the Miminis-Paige
method, but it includes an alternative to the “backward sweep.” There now
exist RQ formulations of both these algorithms (Arnold 1993; Arnold and
Datta 1998). These RQ formulations are easier to describe, understand, and
implement.

It should be mentioned here that there now exists a generalization of the implicit
QR algorithm due to Varga (1996) that performs an implicit multistep in place of
a double-step. The Varga algorithm is slightly more efficient than the Patel-Misra
algorithm and like the latter, is believed to be numerically stable.

Methods Not Discussed

Besides the methods discussed above, there are many other methods for the single-
input problem. These include the methods based on solutions of independent linear
systems (Datta and Datta 1986; Bru et al. 1994a); the eigenvector method by Petkov
et al. (1984), etc., parallel algorithms by Coutinho et al. (1995), and by Bru et al.
(1994c), etc.; and the multishift algorithm by Varga (1996). See Exercises 11.2—
11.4 and 11.8 for statements of some of these methods.

11.3 NUMERICAL METHODS FOR THE MULTI-INPUT
EIGENVALUE ASSIGNMENT PROBLEM

Some of the single-input algorithms described in the last section have been gen-
eralized in a straightforward fashion to the multi-input case or similar algorithms
have been developed for the latter.

We describe here:

e A multi-input generalization of the single-input recursive algorithm (Arnold
and Datta 1990).
An explicit QR algorithm (Miminis and Paige 1988).
A Schur method (Varga 1981).

e A Sylvester equation algorithm for PEVA algorithm (Datta and Sarkissian
2002).

There are many more algorithms for this problem that are not described here.
Some of them are: a multi-input generalization of the single-input eigenvec-
tor algorithm by Petkov er al. (1986), a multi-input generalization of the

422 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

single-input algorithm using solutions of linear systems by Bru et al. (1994b)
(Exercise 11.5), a matrix equation algorithm by Bhattacharyya and DeSouza
(1982) (Exercise 11.14), and a multi-input version of the single-input implicit
QR algorithm by Patel and Misra (1984), algorithms by Tsui (1986) and Shafai
and Bhattacharyya (1988), and parallel algorithms by Baksi et al. (1994), Datta
(1989), etc.

11.3.1 A Recursive Multi-Input Eigenvalue Assignment Algorithm

The following algorithm is a generalization of the single-input recursive algorithm
(Algorithm 11.2.1) to the multi-input case.

The development of this algorithm is along the same line as Algorithm 11.2.1.

The version of the algorithm presented here is a little different than that originally
proposed in Arnold and Datta (1990).

Given a controller-Hessenberg pair (H, f?) and the set S = {Aq, Ao, ..., An),
the algorithm, like its single-input version, constructs a nonsingular matrix L
recursively from where the feedback matrix F' can be easily computed. Since
in the multi-input case the matrix H of the controller-Hessenberg form is a block-
Hessenberg matrix, by taking advantage of the block form of H, this time the
matrix L can be computed in blocks. The matrix L can be computed either block
column-wise or block row-wise. We compute L block row-wise here starting with
the last block row.

Thus, setting

A
Ay Ax 0
A= ,
0 Apk-1 Ak
where the eigenvalues Aq, ..., A, are contained in the diagonal blocks of A, and

considering the equation:

LH—AL:L(§)F,
itis easily seen that the matrices L and R can be found without knowing the matrix
F . Indeed, the matrix
Ly
Ly
L= .

Ly

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 423

can be computed recursively block row-wise starting with Ly and if Ly is chosen
as Ly = (0,0,...0, 1,,,), then L will be nonsingular. Equating the corresponding
block-rows of the equation:

= ()7

it is easy to see that
Aip1ili = LigtH — AjpipLiyn = Li, i=k—1,k=2,...,2,1,

from where the matrices A; 4 ; and L; can be computed by using the QR factor-
ization of L;. Once L and R are found, the matrix F can be computed from the
above equation by solving a block linear system. Overall, we have the following
algorithm.

Algorithm 11.3.1. The Recursive Algorithm for the Multi-Input EVA Problem
Inputs.
A—The n X n state matrix.
B—The n x m input matrix (m < n).
S—The set of numbers {A1, A2, ..., Ap}, closed under complex conjugation.
Assumption. (A, B) is controllable.
Output. A feedback matrix K such that Q(A — BK) = {A1, A2, ..., An}.

Step 1. Using the Staircase Algorithm in Section 6.7, reduce the pair (A, B)
to the controller-Hessenberg pair (H, B), that is, find an orthogonal matrix P
such that PAPY = H, an unreduced block upper Hessenberg matrix with k
diagonal blocks and

PB=B= (g) . Ris upper triangular and has full rank.

Step 2. Partition S in such a way that S = UQL(A;), where each Aj; is an
n; x n; diagonal matrix (Recall that n;s are defined by the dimensions of the
blocks in H = (H;j); H;jj € R">*"),

Step 3. Set Ly = (0,...,0, I;).
Step 4. Fori ~_—k~— 1,...,1do
4.1. Compute L; = L; 1 H — Ajrrit1Lin
4.2. Compute the QR decomposition of I:l.T : I:l.T = QR
4.3. Define L; = QF, where Q) are the first n; columns of the matrix

Q= (01, 02)
End

424 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step 5. Solve the linear system (L11R)F = L1H — ALy for F, where Ly
is the matrix of the first ny columns of L.

Step 6. Compute the feedback matrix K of the original problem: K = FP.

Theorem 11.3.1. The feedback matrix K constructed by the above algorithm
is such that
QA — BK)=1{\1,A2, ..., An}.

Proof. Proof follows from the discussion preceding the algorithm. B
Flop-count: Approximately 19n3
algorithm.

It may be worth noting a few points regarding the complexity of this algorithm.
First, the given operations count includes assigning complex eigenvalues using
real arithmetic. Second, almost 95% of the total flops required for this method are
in the reduction to the controller-Hessenberg form in Step 1. Finally, within the
above operations count (but with some obvious additional storage requirements),
the matrix L that transforms the reduced closed-loop system to the block bidiagonal
matrix A by similarly, can be obtained.

Avoiding complex arithmetic: In order to assign a pair of complex conjugate
eigenvalues using only real arithmetic, we set 2 x 2 “Schur bumps” on the
otherwise diagonal A;;. For example, if we want to assign the eigenvalues x £ iy

to A — BK, we might set
_| X =¥
A3—|:y X]

However, the algorithm might give a complex feedback matrix if all the complex
conjugate pairs cannot be distributed as above along the diagonal blocks A;;. Some
modifications of the algorithm in that case will be necessary. A block algorithm
that avoids complex feedback has been recently proposed by Carvalho and Datta
(2001).

MATCONTROL note: The modified version of Algorithm 11.3.1, proposed in
Carvalho and Datta (2001), that avoids the use of complex arithmetic and is guar-
anteed to give a real feedback matrix has been implemented in MATCONTROL
function polercx, while Algorithm 11.3.1 as it appears here has been implemented
in MATCONTROL function polercm.

+ 2 3n2m flops are required to implement the

Example 11.3.1. Consider EVA using Algorithm 11.3.1 with
4

O == = W)

1
1
1|,
2
1

_— e

2
1
1
0
0

S O ==

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 425

B—B= (g), S=1{1,2.3,4,5).

S oo o —

SO O ==

OO WM -
Il

Herek =3, ny =3, np=1,andny = 1.

Step 1. The pair (H, B) is already in controller-Hessenberg form
Step 2. A1 = diag(1,2,3), App =4, Az =35.
Step 3. L3 =(0,0,0,0,1).
Step4.i =2
41: L, =0 001 —4)
4.2: (not shown)
43: L, =(0 0 0 —0.2425 0.9701)
i=1
41: Ly =(0 0 —0.2425 1.6977 — 3.3955)
4.2: (not shown)

4.3
0 0 0.0638 —0.4463 0.8926
L= 0 1.0000 0 0 0
0.0638 0 0.9959 0.0285 —0.0569
Step 5.

—0.3333 —1.6667 5.6667 —9.0000 9.6667

—2.3333 33333 782161 —212.4740 217.0333
F =
0.6667 0.3333 —2.3333 5.0000 —4.3333

Verify: The eigenvalues of H — BF are: {1.0000 2.0000 3.0000 4.0000 5.0000}.

11.3.2 The Explicit OR Algorithm for the Multi-Input EVA Problem

The following multi-input QR algorithm due to Miminis and Paige (1988) also
follows the same “template” as that of the preceding algorithm. The algorithm
consists of the following three major steps.

Step 1. The controllable pair (A, B) is transformed to the controller-Hessenberg
pair (H, B):

Hyy

pAPT — g = |2 Hij |l and PBU:1§=<30“>.

0 Hip-1 Hu

426 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

The matrix B); and the subdiagonal blocks in H are of the form (0, R), where R
is a nonsingular and upper triangular matrix.

Step 2. An orthogonal matrix Q and a feedback matrix F are constructed such
that Q(QT(H — BF)Q) = {A1, ..., An)

Step 3. A feedback matrix K of the original problem is recovered from the
feedback matrix F of the Hessenberg problem in Step 2 as follows:

K=UFP.

Step 1 can be implemented using the Staircase Algorithm for the controller-
Hessenberg form described in Chapter 6.

We therefore concentrate on Step 2, assuming that Step 1 has already been
performed.

Letny = dimensions of Hy; and n; = rank(H; ;—1),i = 2,3, ..., k. Assume also
that By has n; columns.

We consider two cases. The algorithm comprises of implementing these two
cases as the situations warrant. The feedback matrix F is obtained by accumulating
feedback matrices from the individual cases.

Case 1.If m| =n; —ny > 0, that is, if ny > ny, we can immediately allocate
m1 = n| — np eigenvalues as follows:

Write
Hip _ Hy | * Bl — Bi1 Bz
Hy 0 |[Ry)° "T\o B/

Then, we have
_H
12 ’

That is, a feedback matrix Fp; for this allocation can be immediately found by

solving
diag(Ay, ..., A
Hl()—-B”F“_—((10 1))

Because of the last equation, we have

) Hy: Gy B | Bpn
H— BF = l -{ 0 B (Fu

0 ' H 0

diag(M, ..., Am) | G1 — BuH
H — BF = —Buk ,

\ 0 | Ho— B,F,]

where By = (322) .

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 427

Since By is a nonsingular upper triangular matrix and H, is still an unre-
duced upper Hessenberg matrix having the same form as H, (Hp, By) is a
controllable pair.

We then solve the problem of finding /5 such that H; — B3 F> has the remaining
eigenvalues.

However, this time note that the first two blocks on the diagonal are n5 x ny, thus,
no more immediate assignment of eigenvalues is possible. The other eigenvalues
have to be assigned using a different approach. If ny = 1, we then have a single-
input problem to solve. Otherwise, we solve the multi-input problem withn; = nj,
using the approach below.

Case2. Letny=ny=---=n, >n,41--->n; >0,forl <r <k.
Suppose we want to assign an eigenvalue A; to H — BF.
Then the idea is to find a unitary matrix Q1 such that

~ A
Q}(H — BF)Q, =< 01 .I A —*B2F2)

The unitary matrix Q' can be found as the product of the Givens rotations such that

(H=nD)Qrer = (‘g)

For example, ifn =4,m =2,k =2,andny = np, =2, thenr = 2.

H— Al =

Then Q) is the product of two Givens rotations Q1 and Q7;, where Q11 annihilates
the entry A4 and (> annihilates the entry 43,. Thus,

(H—-—MDOnQ0un=H-A)0 =

O Ol ¥ ¥
O ¥ ¥ ¥
* %K K ¥
* ¥ ¥ ¥

Once @ is found, F can be obtained by solving Bj;fi =a;, where
FQ1=(fi, F2),and B = (B(;l) . Note that By is nonsingular.

It can now be shown that (H>, B>) is controllable and has the original form that
we started with. The process can be continued to allocate the remaining eigenvalues
with the pair (H3, By).

428 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

To surnmarize, the allocation of eigenvalues is done using unitary transforma-
tions when n| = ny or without unitary transformations when ny > nj.

(Note that the Case 1 (n| > nj) is a special case of Case 2 with @1 = 1, and
r=1).

Eventually, the process will end up with a single-input system which can be
handled with a single-input algorithm described before.

For details of the process, see Miminis and Paige (1988).

Example 11.3.2. Let’s consider Example 11.3.1 again. The eigenvalues to be assigned
are: A =1, =2,A3=3,24 =4, and A5 = 5.
Then,

1 2 3
Hi=|1 1 1], H=0001, np =3, ny =1.
2 11

Since m; = n; — np = 2, the two eigenvalues 1 and 2, can be assigned immediately
as in Case 1.

1 2 1 1 1
Hop=11 1], Bi=10 1 2
2 1 0 0 3

Solving for Fy; from

Hyg — By Fyy =

=Nl
(=3 \S I e]

-0.3333 3.3333
we have F1; = | —0.3333 —1.6667].
0.6667 0.3333

Deflation

1 2
11

H=|2 1 :(116021),
0 0 2
0 0

111 1 111

) 01 2 0 12 P

B=003=003—<0“Bl2)
0 0 0 0 00 22
0 0 0 0 0]0

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 429

1 1 1 3
Then, H = |1 1 2], B=B»=10
01 1 0

(H», By) is controllable.

Now we find F» such that Hy — B> F> has the eigenvalues (3, 4, 5).

This is a single-input problem. Using any of the single-input algorithms
discussed before, we obtain

Fy = (=3, 9.6667, —13.6667).

So, the required feedback matrix F is given by

Folo —0.3333 3.3333 | 0O 0 0
F:(1 F) =1 —-0.3333 —-1.6667| 0 0 0
2 0.6667 0.33333 | =3 9.6667 —13.6667

Verify: The eigenvalues of H — BF are 1,2,5, 4, and 3.

Flop-count: The solution of the Hessenberg multi-input problem, using the
above-described method requires about 27—3n3 flops.

When combined with about 6n3 flops required for the multi-input controller-
Hessenberg reduction, the total count is about 91> flops.

Stability: The round-off error analysis performed by Miminis and Paige (1988)
shows that the algorithm is numerically backward stable. Specifically, it can be
shown that the computed feedback matrix K is such that

QA+ AA)—(B+ AB)K) = Q(L),

where || AA || and || AB || are small, and L is the matrix with eigenvalues
A+ 8, i =1,---,n; where 8 A;| < |A;{u, w is the machine precision.

Avoiding complex arithmetic: The method as described above might give a
complex feedback matrix because it is an explicit shift algorithm. To avoid complex
arithmetic to assign complex conjugate pairs, the idea of implicit shift and the
double step needs to be used.

MATCONTROL note: The explicit QR algorithm described in this section has
been implemented in MATCONTROL function poleqrm.

11.3.3 The Schur Method for the Multi-Input Eigenvalue Assignment Problem

As the title suggests, the following algorithm due to A. Varga (1981) for the multi-
input EVA is based on the reduction of the matrix A to the RSE. So, unlike the other
two methods just described, the Schur method does not follow the “Template.”

430 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Let
_ T_ (A1 A3
R=0AQ0 = <0 A

be the RSF of A and let B = Q B be the transformed control matrix.
Let’s partition Bas B = (?) . Then, since (A, B) is controllable, so is
2

(A2, By).

Suppose that the RSF R of A has been ordered in such a way that A; contains
the “good” eigenvalues and A; contains the “bad” ones. The “good” eigenvalues
are the ones we want to retain and the “bad” ones are those we want to reassign.

It is, therefore, natural to ask how the feedback matrix F can be determined such
that after the application of feedback, the eigenvalues of A will remain unchanged,
while those in Ay will be changed to “desired” ones by feedback.

The answer to this question is simple. If the feedback matrix F is taken in the
form F = (0, F), then after the application of the feedback matrix to the pair

(R, 1§) we have
re (A1 As—B1F
R BF_(O A2—32F2>.

This shows that the eigenvalues of R — BF are the union of the eigenvalues of
A1 and of A2 — Bze.

The problem thus reduces to finding F; such that Ay — By F has a desired
spectrum.

The special structure of A; can be exploited now.

Since the diagonal blocks of A; are either scalars (1 x 1) or 2 x 2 matrices, all
we need is a procedure to assign eigenvalues to a p X p matrix where p = 1 or 2.

The following is a simple procedure to do this.

Algorithm 11.3.2. An Algorithm 1o Assign p (p = 1 or 2) Eigenvalues
Inputs.
M—The state matrix of order p.
G—The control matrix of order p x m.

I ,—The set of p complex numbers, closed under complex conjugation.
r—Rank of G.

Output.
Fp—The feedback matrix such that (M — G F};) has the spectrum T p,.

Assumption. (M, G) is controllable.

Step 1. Find the SVD of G, that is, find U and V such that G = UG,0vT,
where G isr x r.

Step 2. Update M: M = UTMU.

Step 3. If r = p, compute F,= (G)"UM —), where I is p X p and the
eigenvalues of J are the set T . Go to Step 6.

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 431

Stepd. Let Ty = {1, A2} and

<m11 mlz) é=<ﬂ
my my)’ 0/°

Step 5. Compute F,= (I:"pl, I:“pz) as follows:

M

ﬁp. = (mi1 +mp — A —A2)/B,

A

- ma
Fp, = —") Fp1 — (myumpn — mpmy; — Ar2)/(m218).
ma1

Step 6. Compute Fp, =V li};”:l uT.

Algorithm 11.3.2 can now be used in an iterative fashion to assign all the
eigenvalues of A, by shifting only 1 or 2 eigenvalues at a time.

The process starts with the last p x p block of A, and then after the assignment
with this block is completed using the algorithm above, a new p x p diagonal
block is moved, using orthogonal similarity, in the last diagonal position, and the
assignment procedure is repeated on this new block.

The required feedback matrix is the sum of component feedback matrices, each
of which assigns 1 or 2 eigenvalues.

The overall procedure then can be summarized as follows:

Algorithm 11.3.3. The Schur Algorithm for the Multi-Input EVA Problem
Inputs.
A—The n X n state matrix.
B—The n x m input matrix.
S—The set of numbers to be assigned, closed under complex conjugation.]
Output. K—The feedback matrix such that the numbers in the set I belong
to the spectrum of A — BK.

Assumption. (A, B) is controllable.
Step 1. Transform A to the ordered RSF:

_ T _|At A3
A= QAQ -[0 AJ’

where Ay isr xr, Ayis (n—r) x (n—r); A\ contains the “good” eigenvalues
and A, contains the “bad” eigenvalues.

Update B = QB and set Q = Q.

Step 2. Set K = 0 (zero matrix), andi =r + 1.

Step 3. Ifi > n, stop.

Step 4. Set M equal to the last block in A of order p (p = 1 or2) and set G
equal to the last p rows of B.

432 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step 5. Compute F), using Algorithm 11.3.2 to shift p eigenvalues from the
set S.

Step 6. Update K and A: K = K — (0, F,)Q, A= A — B(0, F}).

Step 7. Move the last block of A in position (i,i) accumulating the
transformations in Q, and update B = OB, and Q = QQ.

Step 8. Seti =i 4 p and go to Step 3.

Remarks

e The ordering of the RSF in Step 1 has to be done according to the procedure
described in Chapter 4.

e It has been tacitly assumed that “the complex numbers in S are chosen and
ordered so that the ordering agrees with the diagonal structure of the matrix
A>” If this requirement is not satisfied, some interchange of the blocks
of A; need to be done so that the required condition is satisfied, using an
appropriate orthogonal similarity (Exercise 11.9).

e The final matrix K at the end of this algorithm is the sum of the component
feedback matrices, each of them assigning 1 or 2 eigenvalues.

o The algorithm has the additional flexibility to solve a “PEVA,” which con-
cerns reassigning only the “bad” eigenvalues, leaving the “good” ones
unchanged.

Example 11.3.3. Let’s apply Algorithm 11.3.3 with data from Example 11.3.1.
Step 1.

—0.4543 1.0893 —0.2555 —0.7487 —0.5053

—-0.7717 —1.6068 0.3332 —1.2007 2.6840

A=QAQT =] —0.0000 —0.0000 0.2805 —0.2065 0.2397
—0.0000 —0.0000 —0.0000 1.8369 —3.1302

0.0000 0.0000 0.0000 —0.0000 4.9437

’

—0.2128 0.0287 0.6509 —0.6606 0.3064
0.8231 -0.1628 —-0.2533 —0.3926 0.2786

Q=] 01612 —0.8203 0.4288 0.2094 —0.2708
-0.4129 —-0.4850 -0.3749 0.0539 0.6714
0.2841 0.2539 0.4332 0.6023 0.5517

Let the desired closed-loop eigenvalues be the same as in Example 11.3.1: § =
{54321}

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM

Update B = OB:

—0.2128 —0.1841 1.7974
0.8231 0.6603 —0.2625
B=] 0.1612 —0.6591 -0.1929
—0.4129 —-0.8979 -2.5077

0.2841 0.5380 2.0916

Step 2.
K =0, i=1
Step3.i =1 < n = 5. Continue
Step 4.
p=1
M = (4.9437),

G = (0.2841, 0.5380, 2.0916), I') =5, the eigenvalue to be shifted.

Step 5.

—0.0034
F,={ —0.0064 |.
—0.0248

Step 6. Updated K and A are:

—0.0010 —-0.0009 -0.0015 -0.0020 -0.0019
K =1-0.0018 -0.0016 -0.0028 —0.0038 —0.0035
—0.0071 —0.0063 —-0.0108 —-0.0150 -0.0137

—0.4543 1.0893 —0.2555 -0.7487 —0.4626
—0.7717 —1.6068 0.3332 —1.2007 2.6845
A =1-0.0000 -0.0000 0.2805 —0.2065 0.2313
—0.0000 —0.0000 —0.0000 1.8369 —3.1996
0.0000 0.0000 0.0000 —0.0000 5.0000

Step 7. Reorder A and update O and B:

5.0000 3.2232 -0.3674 —1.1307 —2.484]
0 1.8369 0.1125 —1.2452 —-0.4711

A= 0 0 0.2805 —0.0392 -0.4337],
0 0 0 —-0.5524 —1.2822
0 0 0 0.5749 —1.5087

0.7474 0.3745 0.5264 0.1504 0.0376
0.0568 —0.0551 —-0.2840 0.6816 0.6696
0.2416 —-0.8972 0.2528 0.1953 —-0.1859 |,
0.3829 0.1005 —0.6528 0.2773 —0.5833
0.4828 —0.2040 —-0.3902 —0.6307 0.4187

>
Il

433

434 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

0.7474 1.1219 3.0756
0.0568 0.0017 —0.9056
B =102416 -0.6556 —0.7945
0.3829 0.4834 —1.3744
0.4828 0.2789 —1.0956

Step 8. i = 2 and return to Step 3.

p=2
Step 3.i =2 < n = 5. Continue.
Step 4.
M= 0.5524 —1.2822 G~ 0.3829 0.4834 —1.3744
—\ 05749 -—-1.5087 J° T\ 04828 0.2789 —1.0956 }°
r',=1(21}
Step 5.
7.0705 —6.3576
F,=| —5.1373 3.4356
1.7303 0.7260
Step 6.

K =1]-03103 -1.2184 2.0102 —3.5949 4.4318
1.0061 0.0194 —1.4235 0.0069 —0.7191

5.0000 3.2232 —-0.3674 —5.9733 —-3.8198
0 1.8369 0.1125 -0.0712 0.5417

—0.3630 2.0061 —2.1362 5.9678 —6.7883)

A= 0 0 02805 —3.7408 3.9316
0 0 0 1.6016 0.4896
0 0 0 0.4896 1.3984

Step 7. Reorder A and update Q and B (Recorded A and updated B are shown below):

5.0000 3.2232 -—-0.3674 -—-5.9733 —3.8198
0 1.0000 0.3087 0.1527 —5.2208
0 0 2.0000 0.2457 1.2394 |,
0 0.0000 0.0000 1.8369 —0.8889
0 0 0 0 0.2805

0.7474 1.1219 3.0756
—-0.2402 0.6483 0.5859
B = 0.4240 0.1944 —1.8404
0.4443 0.5319 —-0.8823
0.0804 —0.0193 0.1787

Step 8. = 4 and return to Step 3.
Step 3.i =4 < n = 5. Continue.

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 435

Step 4.
p=1, M = 0.2805, G = (0.0804 - 0.01930.1787), r,=4
Step 5.
—7.7091
F,= 1.8532
—17.1422
Step 6.

—0.9827 27748 29014 11.1937 —12.3165
K =1-0.1613 —1.4032 2.1942 —4.8511 5.7607 |,
—-03719 1.7286 —3.1250 11.6272 —-13.0117

5.0000 3.2232 -0.3674 59733 52.5851
0 1.0000 0.3087 0.1527 1.7698
0 0 2.0000 0.2457 —27.4012
0 0.00600 0.0000 1.8369 —13.5735
0 0 0 0 4.0000

Step 7. Reorder A and update O and B (Recorded A and updated B are shown below):

5.0000 3.2232 -0.3674 —-59733 52.5851
0 1.0000 0.3087 0.1527 1.7698

A= 0 0 2.0000 0.2457 —27.4012
0 0.0000 0.0000 4.0000 —13.5735
0 0 0 0 1.8369

0.7474 1.1219 3.0756
—0.2402 0.6483 0.5859
B = 0.4240 0.1944 -1.8404
04261 05283 -0.89%4
0.1493 0.0646 0.0377

Step 8.7 = 5. Return to Step 3.
Step 3.i = n = 5. Continue
Step 4.

p=1, M = 1.8369, G = (0.1493 0.0646 0.0377), ', =3.

Step 5.
—6.2271
F, =1 —2.6950
-1.5710

Step 6.

—1.9124 33022 —-3.0213 159029 —16.2462
K =1-05637 —1.1750 2.1423 —2.8130 4.0599 |,
—0.6064 1.8617 —3.1553 12.8153 —14.0031

436 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

5.0000 3.2232 —-0.3674 —-5.9733 65.0948
0 1.0000 0.3087 0.1527 2.9415
0 0 2.0000 0.2457 —27.1285
0 0.0000 0.0000 4.0000 —10.9093
0 0 0 0 3.0000

A=

All the eigenvalues are assigned, and the iteration terminates.

Verification: The eigenvalues of A — BK are: {5.00000000000024,
3.99999999999960, 1.00000000000000, 3.00000000000018, 1.99999999999999}.

Flop-count and stabiliry. The algorithm requires about 30n3 flops, most of which
is consumed in the reduction of A to the RSF and ordering of this RSF.

The algorithm is believed to be numerically stable (note that it is based on all
numerically stable operations). However, no formal round-off error analysis of the
algorithm has been performed yet.

MATCONTROL function: Algorithm 11.3.3 has been implemented in MATCON-
TROL function polesch.

11.3.4 Partial Eigenvalue Assignment Problem

The PEVA problem is the one of reassigning by feedback only a few eigenvalues,
say A1,...,Ap(p < n), of an n x n matrix A leaving the other eigenvalues
Apt1, ..., Ay unchanged.

Formally, PEVA is defined as follows:

Given A € R"*", B € R"*", a part of the spectrum {1, ..., A,} of A,and a
set of self-conjugate numbers {u1, ..., t,}, find a feedback matrix F' such that
the spectrum of A — BF isthe set {41, ..., thp; Apyl, ..., Anh

A projection algorithm for this problem was proposed by Saad (1988). Here we
describe a simple parametric algorithm via Sylvester equation. Note that Varga’s
algorithm described in the last section can be used for solving PEVA; however,
that will require full knowledge of the eigenvalues of A and is thus not suitable
for large problems. The algorithm described below requires the knowledge of
only those small number of eigenvalues (and the corresponding eigenvectors) that
are required to be reassigned. Furthermore, the algorithm is parametric in nature
which can be exploited to devise a robust EVA algorithm (see Section 11.6). The
discussion here has been taken from Datta and Sarkissian (2002). This paper also
contains a result on the existence and uniqueness of the solution for PEVA in the
multi-input case.

Theorem 11.3.2. (Parametric Solution to PEVA Problem). Assume that (i) B
has full rank, (ii) the sets {1, ..., Xy} and {uy, ..., up} are closed under
complex conjunction and disjoint, and (iii) let the pair (A, B) be partially
controllable with respect to {\i, ..., p}). Assume further that the closed-
loop matrix has a complete set of eigenvectors. Let T = (y1,...,¥p)

Section 11.3: NUMERICAL METHODS FOR THE MULTI-INPUT EVA PROBLEM 437

be a matrix such that
Yj = Yk, whenever p; = iy,

Let Y1 be the matrix of left eigenvectors associated with {Ay, ..., Ap}. Set
Ay =diag(hy, ..., Ap) and Aq = diag(uy, ..., up). Let Zy be a unique
nonsingular solution of the Sylvester equation

MZ—Zi\Aa = Y] BT
Let @ be defined by ®Z| = I', then
F=aov/,

solves the partial eigenvalue assignment problem for the pair (4, B).

Conversely, if there exists a real feedback matrix F of the form that solves the
PEVA problem for the pair (A, B), then the matrix ® can be constructed satisfying
Steps 24 of Algorithm 11.3.4.

Proof. see Datta and Sarkissian (2002). H

Algorithm 11.3.4. Parametric Algorithm for PEVA Problem
Inputs.

(i) A—The n x n state matrix.
(ii) B—The n x m control matrix.

(iii) The set {1, ..., pp), closed under complex conjugation.
(iv) The self-conjugate subset {1\, ..., \p} of the spectrum {1, ..., A}
of the matrix A and the associated right eigenvector set {y1, ..., yp}.

Outputs. The real feedback matrix F such that the spectrum of the closed-loop
matrix A — BF is{py, ..., tps Apg1, ..., Anh
Assumptions.

(i) The matrix pair (A, B) is partially controllable with respect to the

eigenvalues A1, ..., Ap.
(ii) The sets {Ay,..., p}, {Aps1, .. An), and {py, ..., up) are dis-
Jjoint.

Step 1. Form
Ay=diag(hy, ..., Ap), Yi=(1,...,¥p), and Ay =diag(py, ..., 1p).

Step 2. Choose arbitrarym x 1 vectors y1, ..., ypinsuchawaythat t; = pii
implies V; = yy and form T = (y1, ..., yp).

438 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step 3. Find the unique solution Z| of the Sylvester equation:
AZy — Z A = Y{BT.
If Zy is ill-conditioned, then return to Step 2 and select different yy, . . ., Vp-
Step 4. Solve ®Z| =T for ®.
Step 5. Form F = &Y.

A Numerical Example

In this section, we report results of our numerical experiments with
Algorithm 11.3.4 on a 400 x 400 matrix obtained by discretization of the partial
differential equation

ou Pu 9%u ou 2

— = —— 4+ —— + 20— + 180u(x, vy, ¢ Fi(x, (¢

97 = a2 T ayr T 205, T 1800y)+; i (x, Mg ()

on the unit square 2 = (0, 1) x (0, 1) with the Dirichlet boundary conditions:
u(x,y,t) =0, for (x,y) € 9Qandr > 0

and some initial condition which is of no importance for the PEVA problem. This
problem was earlier considered by Saad (1988). Using finite difference scheme
of order O(J|Ax||?, || Ay)|?), we discretize the equation in the region © with 20
interior points in both the x and y directions, thus obtaining a 400 x 400 matrix
A. The 400 x 2 matrix B, whose ith column discretizes the function F;(x, y) is
filled with random numbers between —1 and 1.

Using sparse MATLAB command eigs, the following 10 eigenvalues with the
largest real parts are computed

A1 = 55.0660, Ay = 29.2717, Az = 25.7324, As = —0.0618,
As = —13.0780, Xg = —22.4283, xr;=—424115,
Ag = —48.2225, Ao = —71.0371, Aijp = —88.3402.

The residual of each eigenpair ||y*(A — AI)|| < 4 -107!2 and each left eigen-
vector is normalized. Algorithm 11.3.4 was used to reassign Aq, A2, A3, and Ay
to —7, —8, —9, and —10, respectively, obtaining the 2 x 400 feedback matrix F
with [|[F|, < 127. Note that the [|A[l, = 3.3 - 10°. The 10 eigenvalues of the
closed-loop matrix A — B F with the largest real parts obtained by the algorithm
are the following:

u1 = —7.00000, Hy = —=8.0000, w3 =-9.0000, w4 = —10.0000,
As = —13.0780, Ao = —22.4283, A7 = —42.4115,
Ag = —48.2225, A9 = —71.0371, A10 = —88.3402.

Section 11.4: CONDITIONING OF THE FEEDBACK PROBLEM 439

11.4 CONDITIONING OF THE FEEDBACK PROBLEM

In this section, we will discuss the sensitivity of the feedback problem, that is,
we are interested in determining a measure that describes how small pertur-
bations in the data affect the computed feedback. We discuss the single-input
case first.

11.4.1 The Single-Input Case

Arnold (1993) first discussed the perturbation analysis of the single-input
Hessenberg feedback problem in his Ph.D. dissertation. Based on his analysis,
he derived two condition numbers for the problem and identified several condition
number estimators. For details, we refer the readers to the above dissertation. We
simply state here one of the condition number estimators which has worked well in
several meaningful numerical experiments. Recall that the single-input Hessenberg
feedback problem is defined by the data (H, B, S), where H is an unreduced upper
Hessenberg matrix, 8 = (2,0, ..., 07, @ £ 0and S = {A1, ..., Ay).

Estimating the Condition Numbers of the Feedback Problem

Theorem 11.4.1. If v(H, B) is the condition number of the single-input
Hessenberg feedback problem, then an estimator of this number is given by

_ [Blllell + 1171 legd’ (H)II
lexe (FDII

(1 1 1)T
o=(=-,—,....——),
B ha Rpon—1

and p(H)y = (H — M I)...(H — A 1).

(11.4.1)

where

Defining the quantity digits off (as in Rice (1966)) by

log | [<—-’L V;‘;"‘a‘e)] , (11.4.2)

where p is the machine precision (1 =~ 2 x 10~16) and err stands for the error
tolerance, it has be shown that the maximum digits off in estimating conditioning
for 100 ill-conditioned problems are only 1.86, and minimum digits off are 0.51.
Thus, it never underestimated the error and overestimated the error by less
than two digits.

The computation of this condition estimator requires only 2rn3/3 flops once
the system is in controller-Hessenberg form. For details of these experiments, see
Arnold (1993). Note these bounds work only for the single-input Hessenberg
feedback problem.

440 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

11.4.2 The Multi-Input Case

Arnold (1993) considered a perturbation analysis of the single-input Hessenberg
feedback problem by considering only the perturbation of the matrix H and the
vector b.

Sun (1996) has studied perturbation analysis of both single-input and the multi-
input problems by allowing perturbations of all the data, namely A, B, and § =
{A1, ..., An}. Below, we state his result for the multi-input problem, without proof.
For more general results on perturbation analyses of feedback matrices as well as
those of conditioning of the closed-loop eigenvalues, see the recent papers of
Mehrmann and Xu (1996, 1997).

Let A € R"" and B € R™"™

LetA; # A;, foralli # j.Let K = ki ... k)T and X = (x1,...,x,) be
such that

A+ BK =XAX"!, (11.4.3)

where A = diag(A(, ..., Ap).

Also, let y1, ..., y, be the normalized left eigenvectors of A + BK, that is,
Y=XT=(@,..., Vn), which implies y,-ij = §;; foralli and j.

Suppose that the data matrices A, B, and A and the feedback matrix K are so
perturbed that the resulting closed-loop matrix has also the distinct eigenvalues.

Let B = (b1, ... b,,). Define now

Wi = (51XT, X7, L S X D scmn, (11.4.4)
where S; = diag(y{ bj,...,y1bj), j=12,...,m.
Also define

W, = (01X, DaX)X7 L, . Dy(X)X 7Y, 2 (11.4.5)
Wy = diag(Ti XL, X7 o Tn X Dosonms (11.4.6)

and W, = —1I,,, where
Di(X) = diag(xi1, ..., Xin), i=1,...,n (11.4.7)
Tj = diagk}x1, ... kjx,), j=1,...m, (11.4.8)

and x; = (x;1, ..., Xip).
Also,letZ=W,, ®=-ZW,, and W=—-ZW,. (11.4.9)

Here W,j denotes the generalized inverse of Wy.

Section 11.4: CONDITIONING OF THE FEEDBACK PROBLEM 441

Theorem 11.4.2. Perturbation Bound for a Multi-Input Feedback Matrix

Suppose that the controllable pair (A, B) is slightly perturbed to another control-
lable pair(g, E),and that the self-conjugate set S = {A1, ..., Ay}, A #Aj, i #
is slightly perturbed to the set S = (Moo hn) i #):j, i #j.

Let K be the feedback matrix of the EVA problem with the data A, B, S. Then
there is a solution K to the problem with data A, B, and S such that for any
consistent norm [|||, we have

2

>0 S

I K-K||<8k+0 “

2
) (11.4.10)

a
b
A

a

-1 b

§

>0 S

<Ag+0 ”

where

a = vec(A), a = vec(A),

b = vec(B), b = vec(B),

A=) A= Gy has e AT, (11.4.11)
Sk = 0@ —a) + V(b —b)+ Z(G — M.
Ag = 1@l —all + 116~ bl + I ZIIA — All,

Z, W, and ® are defined by (11.4.9).

11.4.3 Absolute and Relative Condition Numbers

The three groups of absolute condition numbers that reflect the three different
types of sensitivities of K with respect to the data A, B, and S, respectively, have
been obtained by Sun (1996). These are:

ka(K) =[P, kp(K) = [[W], and k3 (K) = || Z]]. (11.4.12)

Furthermore, the scalar « (K) defined by

K(K)=\/K§(K)+K§(K)+K§(K) (11.4.13)

can be regarded as an absolute condition number of K.

442 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

(11.4.14)
(11.4.15)

(11.4.16)

(11.4.17)

(11.4.18)

(11.4.19)

If || - ||, is used, and if the matrix X = (x1,x2, ..., x,) is such that |lx;{2 = 1
for all j, then
ka(K) =@l < [1Zl1X 1o,
kp(K) =11V, < max [Ikj 11 Z1I1X " iy,
1<j=<n
K (K)=|Zl,.
Thus, using the Frobenius norm, the respective relative condition numbers are
given by
) IAlE
K4 (K) =xa(K) ,
4 1K |l
) | Blig
kg (K) =xp(K))
5 IK g
and I
(K = k(K)o A= G)T
1K E

Furthermore, the relative condition number of X is given by

kDK = /(D EN? + (e (KN + e (K))2,

)

where k4 " (K), Kg)(K), and K}Er)(K) are evaluated using 2-norm.

Remark

(11.4.20)

e A variation of the above results appears in Mehrmann and Xu (1996, 1997),
where it has been shown that the ill-conditioning of the feedback problem is
also related to the ill-conditioning of the open-loop eigenvector matrix and
the distance to uncontrollability (see next section for more on this).

Example 11.4.1. (Laub and Linnemann 1986; Sun 1996).

Consider the following single-input problem:

-4 0 0 0 O 1

a -3 0 0 O 0

A= 0 « -2 0 0}, B=120
6 0 o -1 0 0

0 0 0 o O 0

and
S = {—2.9992, —(.8808, —2, —1, 7.0032 x 10714}.

Choose o = 0.0010.
Then, K = (3.12, —1.67, 7.45, —2.98, 0.37).

Section 11.5: CONDITIONING OF THE CLOSED-LOOP EIGENVALUES 443

The feedback problem with the above data is expected to be ill-conditioned, as

KD (K) =3.2969 x 1012, k) (K) = 1.01117x 10'2, «(K) = 2.3134x 1012,
and k) (K) = 4.1527 x 10'2,

Indeed, if only the 1st entry of S is changed to —3 and all other data remain

unchanged, then the feedback vector for this perturbed problem becomes K =
(3.1192, 0.0078, 7.8345, 0.0004, 0.3701).

11.5 CONDITIONING OF THE CLOSED-LOOP EIGENVALUES

Suppose that the feedback matrix K has been computed using a stable algorithm,
that is, the computed feedback matrix K is the exact feedback matrix for a nearby
EVA problem. The question now is: How far are the eigenvalues of the computed
closed-loop matrix Mc = A — BK from the desired eigenvalues {A{, ..., A,}?
Unfortunately, the answer to this question is: Even though a feedback matrix has
been computed using a numerically stable algorithm, there is no guarantee that the
eigenvalues of the closed-loop matrix will be near those which are to be assigned.

The following interrelated factors, either individually, or in combination, can
contribute to the conditioning of the closed-loop eigenvalues:

e The conditioning of the problem of determining the feedback matrix K from
the given data.

e The condition number (with respect to a p-norm) of the eigenvector matrix
of the closed-loop system.

e The distance to uncontrollability, and the distance between the open-loop
and closed-loop eigenvalues.

e The norm of the feedback matrix.

Regarding the first factor, we note that if the problem of computing the feedback
matrix is ill-conditioned, then even with the use of a stable numerical algorithm,
the computed feedback matrix cannot be guaranteed to be accurate, and, as a result,
the computed closed-loop eigenvalues might differ significantly from those to be
assigned. (Note that the eigenvalue problem of a nonsymmetric matrix can be very
ill-conditioned.)

The relation of the other two factors to the conditioning of the closed-loop
eigenvalues can be explained by the following analysis using the Bauer-Fike
Theorem (Chapter 3).

Let M, = A — BK andlet E = M. — M, where M. = A — BK, K being the
computed value of K.

Let X be the transforming matrix that diagonalizes the matrix M., that is,
X 'M.x = diag(A1, ..., An). Let u be an eigenvalue of Mc. Then, by the

444 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Bauer—Fike Theorem (Theorem 3.3.3), we have

nii_n |A; — p| < Conda(X) | E|f;.

Again, E = A — BK — (A~ BK) = B(K — K) = BAK.

Thus, we see that the product of the spectral condition number of X and the
IBAK ||, influences the distance between the desired poles and those obtained
with a computed K.

This again is related to the factors: norm of the computed feedback matrix K,
distance to the uncontrollability of the pair (A, B), and the distance between
closed-loop poles and the eigenvalues of A, etc. (See Mehrmann and Xu 1997.)
Note that some of these observations also follow from the explicit formula of the
feedback vector (11.2.9) in the single-input case, and the one in the multi-input
case derived in Arnold (1993).

Example 11.5.1. Consider EVA with the following data:

—4 0 0 0 0 1

0.001 -3 0 0 0 0

A= 0 0.001 -2 0 01, B=] 0
0 0 0001 -1 O 0

0 0 0 0.001 © 0

S ={A1, A, A3, Aa, As) = {10, 12, 24, 29, 30}.
Then K = (=115, 4.887 x 10%, —9.4578 x 1019, 8.1915 x 1014, —2.5056 x 10!%)

The eigenvalue assignment problem with the above data is very ill-
conditioned as the following computation shows.

Change the entry as; of A to 107 and keep all other data unchanged. The
eigenvalues of the closed-loop matrix then become: {1.5830 x 10°, —1.5829 x
10%, =3, =2, —1).

The explanation of this drastic change in the closed-loop eigenvalues can be
given in the light of the discussions we just had in the last section.

o Ill-conditioning of the feedback vector: Let K be obtained by changing the
first entry of K to —114.999 and leaving the remaining entries unchanged.
The eigenvalues of (A — Blf') are {29.5386 £ 0.4856;, 23.9189, 12.0045,
9.9984}.

So, the problem of computing the feedback vector X is ill-conditioned.

o All the subdiagonal entries of A are small, indicating that the system is
near an uncontrollable system.

o Distance between the open-loop and closed-loop eigenvalues: The open-
loop eigenvalues are {0, —1, =2, —3, —4}.

Thus, the open-loop eigenvalues are well-separated from those of the
closed-loop eigenvalues.

Section 11.6: ROBUST EIGENVALUE ASSIGNMENT 445

e Ill-conditioning of the closed-loop eigenvector matrix: Cond;(X) =
1.3511 x 10%
Thus, the spectral condition number of the closed-loop matrix is large.
The condition numbers of the individual eigenvalues are also large.
Note: In Example 11.5.1, the feedback vector K was computed using
Algorithm 11.2.3. The MATLAB function place cannot place the eigen-
values.

Concluding Remarks

We have identified several factors that contribute to the ill-conditioning of the
closed-loop eigenvalues. In general, the problem of assigning eigenvalues is an
intrinsically ili-conditioned problem. Indeed, in Mehrmann and Xu (1996), it has
been shown that in the single-input case, the feedback vector K (which is unique)
depends upon the solution of a linear system whose matrix is a Cauchy matrix
(Exercise 11.13), and a Cauchy matrix is well-known to be ill-conditioned for
large order matrices. Thus, the distribution of eigenvalues is also an important
factor for conditioning of the EVA problem, and the condition number of the
problem can be reduced by choosing the eigenvalues judiciously in a prescribed
compact set in the complex plane. For details, see (Mehrmann and Xu (1998)).
See also Calvetti et al. (1999).

11.6 ROBUST EIGENVALUE ASSIGNMENT

In the last section we have discussed the aspect of the closed-loop eigenvalue
sensitivity due to perturbations in the data A, B, and K.

The problem of finding a feedback matrix K such that the closed-loop eigen-
values are as insensitive as possible is called the robust eigenvalue assignment
(REVA) problem.

Several factors affecting the closed-loop eigenvalue sensitivity were identified
in the last section, the principal of those factors being the conditioning of the
closed-loop eigenvector matrix.

In this section, we consider REVA with respect to minimizing the condition
number of the eigenvector matrix of the closed-loop matrix. In the multi-input
case, one can think of solving the problem by making use of the available freedom.
One such method was proposed by Kautsky et al. (1985). For an excellent account
of the REVA problem and discussion on this and other methods, see the paper by
Byers and Nash (1989). See also Tits and Yang (1996).

11.6.1 Measures of Sensitivity

Let the matrix M = A — BK be diagonalizable, that is, assume that there exists a
nonsingular matrix X such that

XA - BK)X = A =diag(Ay, ..., An).

446 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Recall from Chapter 3 (see also Wilkinson (1965), Datta (1995), etc.) that a measure
of sensitivity ¢; of an individual eigenvalue A ; due to perturbations in the data
A, B, and K is given by

L yill2lixjliz
Cj=—=—"5 "
5 |,ijjl

where x; and y; are, respectively, the right and left eigenvectors of M correspond-

ing to A ;. Furthermore, the overall sensitivity of all the eigenvalues of the matrix

M is given by Cond>(X) = || X||2 | X ~1i|>. Note also that max; ¢; < Condy(X).
Thus, two natural measures of sensitivity are:

V1 = ||Cllee, and vy = Condy(X),

where C = (¢, ¢, ..., c,,)T.
One could also take (see Kautsky et al. 1985)
172
vy = X" pn'2 = [Clln'? and vy = sin’6; /n1/2
J

as other measures. Here 6; are the angles between the eigenvectors x; and certain
corresponding orthonormal vectors x J=5L2...,n

11.6.2 Statement and Existence of Solution of the Robust EigenValue
Assignment Problem

In view of the above, the REVA problem with respect to minimizing the
conditioning of the eigenvalue matrix X can be formulated as follows:

Given A € R™" B € R"™™(m < n), having full rank, and
A =diag(A1, ..., Ay), find a real matrix K and a nonsingular matrix X
satisfying

(A-BK)X =XA (11.6.1)

such that some measures v of the sensitivity of the closed-loop eigenprob-
lem is optimized.

The following result, due to Kautsky et al. (1985), gives conditions under which a
given nonsingular X can be assigned to (11.6.1).

Section 11.6: ROBUST EIGENVALUE ASSIGNMENT 447

Theorem 11.6.1. Givenanonsingular X, and A as above, there exists a matrix
K satisfying (11.6.1) if and only if

UN(XA - AX) =0, (11.6.2)
where U\ is defined by
B = Uy, Uy] [ﬁ] (1163)

with U = [Uy, U] orthogonal and Z nonsingular.
The matrix K is explicitly given by

K=z'ufa-xax". (11.6.4)

Proof. Since B has full rank, the factorization of B given by (11.6.3) exists
with Z nonsingular. Again, from (11.6.1), we have

BK =A— XAX~\. (11.6.5)
Multiplying (11.6.5) by U™, we obtain
ZK =Uj(A—XAX,

. 1 (11.6.6)
0=UlA-xAXD.

Since X and Z are invertible, we immediately have (11.6.2) and (11.6.4). H

11.6.3 A Solution Technique for the Robust Eigenvalue Assignment Problem

Theorem 11.6.1 suggests the following algorithm for a solution of the REVA
problem.

Algorithm 11.6.1. An REVA Algorithm (The KNV Algorithm)

Input.

A—The n X n state matrix.

B-The n x m input matrix with full rank.

A—The diagonal matrix containing the eigenvalues Ly, ..., An.

Assumptions. (A, B) is controllable and 11, .. ., Ay is a self-conjugate set.

Output. K—The feedback matrix such that the spectrum of A — BK s the
set{X1, ..., An}, and the condition number of the eigenvector matrix is as small
as possible.

Step 1. Decompose the matrix B to determine Uy, Uy, and Z as in (11.6.3).

Construct orthonormal bases, comprised of the columns of matrices S; and
S'jforthe spaces; = N{UIT(A —X;D)}Yand its complement 5, for A; € 5, j =
1,2,...,n.

448 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Step 2. Select a set of n normalized vectors xy, . . ., x from the space s ; such
that X = (x1, ..., xn) is well-conditioned.

Step 3. Compute M = A — BK by solving the linear systems: MX = XA.

Step 4. Compute K : K = Z7'UJ(A — M).

Example 11.6.1. Consider the REVA with the following data:

I 23 6 3
A=1[4 5 6]}, B={1 2], A = diag(9,5,1).
7 8 9 8 9
Step 1.
—0.5970 0.7720 —0.2181
Up=1-0.095 -0.3410], Uy =|-0.9348
—0.7960 —0.5364 0.2804
7 - —10.0499 —9.1543
- 0 —3.1934)

—0.0590 0.9859 —0.0111
Step2. X = —-0.7475 0.0215 —0.8993 |.
—0.6617 —0.1657 0.4371

5.0427 0.0786 0.2640
0.1399 2.0051 6.1575 .

Step 3. M = (0.9987 3.7999 5.7856

Step 4.K:< —1.8988 0.0269 0.5365 >

24501 0.5866 —0.1611

Verify: The eigenvalues of (A — BK) are 5,9, 1.
Cond,(K) = 6.3206.

Some Implementational Details

Implementation of Step 1: Decomposition of B in Step 1 of the algorithm amounts
to the QR factorization of B. Once this decomposition is performed, constructions
of the bases can be done either by QR factorization of (UIT(A — A5l NT or by
computing its SVD.

If QR factorization is used, then

WUTA -2 10T =S5, 8)) (If)f')

Thus, S; and S ; are the matrices whose columns form the required orthonormal
bases.

Section 11.6: ROBUST EIGENVALUE ASSIGNMENT 449

If SVD is used, then from
T Y — T (T, <. ¢n\T
U (A=, =T;(T;,00(5;, 5,

we see that the columns of S; and S ; form the required orthonormal bases. Here
I"; is the diagonal matrix containing the singular values.

Note: The QR decomposition, as we have seen, is more efficient than the SVD
approach.

Implementation of Step 2: Step 2 is the key step in the solution process.
Kautsky et al. (1985) have proposed four methods to implement Step 2. Each of
these four methods aims at minimizing a different measure v of the sensitivity.

We present here only one (Method O in their paper), which is the simplest
and most natural one. This method is designed to minimize the measure v, =
Cond>(X).

First, we note that Cond(X) will be minimized if each vector x; € 55, j =
1,2,..., nischosen such that the angle between x; and the space

i =<xi, i #J>

is maximized for all j. The symbol < x; > denotes the space spanned by the
vectors X.

This can be done in an iterative fashion. Starting with an arbitrary set of n
independent vectors X = (x1,...,x,), X; € 5, j = 1,...,n, we replace each
vector x; by a new vector such that the angle to the current space ¢; is maximized
for each j. The QR method is again used to compute the new vectors as follows:

Find y; by computing the QR decomposition of

Xj= (X1, X2, oo s Xj 1, Xjgls oo Xn)s
- _ (R
—(0: %, iy
0,57 (o)
and then compute the new vector
T
S;§ Vi
.X'j = P
1ST3; 2
Note that with this choice of x, the condition ¢; = 1/] ijx ;| is minimized. The n
steps of the process required to replace successively n vectors xj through x, will
constitute a sweep.
At the end of each sweep, Cond;(X) is measured to see if it is acceptable; if
not, a new iteration is started with the current X as the starting set. The iteration

is continued until Cond;(X), after a full sweep of the powers (j = 1,2, ...n)is
less than some positive tolerance.

450 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Implementations of Step 3 and Step 4: Implementations of Step 3 and Step 4
are straightforward. M in Step 3 is computed by solving linear systems: X TMT =
ATXT using Gaussian elimination with partial pivoting.

K in Step 4 is computed by solving upper triangular systems:

ZK = UJ (A — M).

Flop-count: Step 1: O(n’m) flops, Step 2: O (n3)+ O (n®m) flops per sweep, Step
3: O(n?) flops, and Step 4: O (mn?) flops.

MATCONTROL note: Algorithm 11.6.1 has been implemented in MATCON-
TROL function polerob. It computes both the feedback matrix K and the
transforming matrix X.

Remarks on convergence of Algorithm 11.6.3 and the Tits—Yang Algorithm

e Each step of the above iteration amounts to rank-one updating of the matrix
X such that the sensitivity of the eigenvalue A; is minimized. However,
this does not necessarily mean that the overall conditioning is improved
at each step. This is because the conditioning of the other eigenvalues
(Ai, i # J) will be disturbed when the old vector x; is replaced by the new
vector.

e It was, thus, stated by Kautsky et al. (1985) that “the process does not
necessarily converge to a fixed point.” It, however, turned out to be the
case of “slow convergence” only. Indeed, Tits and Yang (1996) later gave a
proof of the convergence of the algorithm. Tits and Yang (1996) observed
that this algorithm amounts to maximize, at each iteration, the determi-
nant of the candidate eigenvector matrix X with respect to one of its
column (subject to the constraints that it is still an eigenvector matrix of
the closed-loop system). Based on this observation, Tits and Yang devel-
oped a more efficient algorithm by maximizing det(X) with respect to two
columns concurrently. The Tits—Yang algorithm can easily be extended
to assign the eigenvalues with complex conjugate pairs. For details of
these algorithms, we refer the readers to the paper by Tits and Yang
(1996). There also exists software called robpole based on the Tits—Yang
algorithm.

MATLAB note: The MATLAB function place has implemented Algorithm 11.6.1.

Given a controllable pair (A, B) and a vector p containing the eigenvalues to
be assigned, K = place(A, B, p) computes the feedback matrix K such that (A —
BK) has the desired eigenvalues. The software robpole, based on the Tits—Yang
algorithm, is available in SLICOT (see Section 11.10).

Section 11.6: ROBUST EIGENVALUE ASSIGNMENT 451

Some Properties of the Closed-Loop System

The minimization of the condition number of the eigenvector matrix leads to some
desirable robust properties of the closed-loop system. We state some of these
properties below. The proofs can be found in Kautsky et al. (1985) or the readers
can work out the proofs themselves.

Theorem 11.6.2.
(i) The gain matrix K obtained by Algorithm 11.6.1 satisfies the inequality

1Kl < (HAll2 + max |%1Cond2(X))/(0min(B)) =K',

where onin(B) denotes the smallest singular value of B.
(ii) The transient response x(t) satisfies

lx(2)]l, < Conda(X) m;xue*f’n.uxonz,

where x(0) = xg or in the discrete case

lx(®)llz = Condz(X) - mj?lx{l)\jlk “llxoll2}-

Example 11.6.2. For Example 11.6.1, we easily see that
K|, = 3.2867, k' = 12.8829.
Thus, the result of part (i) of Theorem 11.6.2 is verified.

Theorem 11.6.3. If the feedback matrix K assigns a set of stable eigenvalues
Aj, then the perturbed closed-loop matrix A — BK + A remains stable for all
perturbations A that satisfy

I All> < min omin(s] — A + BK) = 8(K).
s=jw

Furthermore, ||6(K)|| < minRe(—A;)/Cond;(X).
J

In the discrete-case, the closed-loop system remains stable for perturbations
A such that
A, < min {s] —A+ BK} = A(F)
L)

s=exp(io

and A(F) > min(l — |A;])/Cond (X).
J

Minimum-norm robust pole assignment: We stated in the previous section that
the norm of the feedback matrix is another important factor that influences the
sensitivity of closed-loop poles. Thus, it is important to consider this aspect of
REVA as well.

452 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

The REVA with respect to minimizing the norm of the feedback matrix has been
considered by Keel ez al. (1985) and more recently by Varga (2000).

Both algorithms are Sylvester equation based (see Exercise 11.11 for the state-
ment of a Sylvester equation based EVA algorithm). The paper by Keel ez al.
(1985) addresses minimization of the performance index

I— Trace(KTK),

whereas Varga (2000) considers the minimization of the performance index

o _]l -«
J= 5(||X||% + X) + TnKu%

Note that minimizing J as above for 0 < « < 1 amounts to simultaneous mini-
mization of the norm of the feedback matrix K and of the condition number of the
eigenvector matrix X (with respect to the Frobenius norm).

For space limitations, we are not able to describe these algorithms here. The
readers are referred to the papers by Keel er al. (1985) and Varga (2000). There
also exists a software, based on the Varga algorithm, called “sylvplace” (available
from Dr. Varga (E-mail: andras.varga@dlr.de).

11.7 COMPARISON OF EFFICIENCY AND STABILITY:
THE SINGLE-INPUT EVA PROBLEM

Table 11.1: Comparison of efficiency and stability of a single-input EVA
problem

Efficiency: Flop-count (Approx-
imate) This count includes Numerical stability
transformation of (A, b) to the (backward stability

Method controller-Hessenberg form and other features)

The Recursive Algorithm %ln3 Stability is not guaranteed,

(Algorithm 11.2.1) but the algorithm allows the
users to monitor the stability.
Reliable

The RQ implementations of 5n3 Stable

the recursive algorithm
(Algorithms 11.2.2 and

11.2.3)

The explicit QR method 5n3 Stable
(Miminis and Paige (1982))

The implicit QR method 5n3 Stable
(Patel and Misra (1984))

The eigenvector method %rﬁ Stable

(Petkov et al. 1984;
Exercise 11.8).

Section 11.9: DISCUSSION OF VARIOUS METHODS AND RECOMMENDATION 453

11.8 COMPARISON OF EFFICIENCY AND STABILITY:
THE MULTI-INPUT EVA PROBLEM

Table 11.2: Comparison of efficiency and stability: the multi-input EVA problem

Method

Efficiency: Flop-count
(approximate). These
counts include transfor-
mation of (A, B) to the
controller-Hessenberg
form

Numerical stability
(backward stability) and
other features

The recursive algorithm
(Algorithm 11.3.1)

The explicit QR algorithm
(Section 11.3.2).

The implicit QR algorithm
(the multi-input version of
the implicit single-input
QR algorithm of Patel and
Misra (1984))

The Schur method
(Algorithm 11.3.3)

The eigenvector method
(Petkov et al. 1986; not
described in the book)

9n3

9n3

3013

No formal round-off error
analysis available. The
algorithm is believed to be
reliable

Stable

Stability not formally proven,
but is believed to be stable

Stability not formally proven,
but is believed to be stable.
The algorithm has an
attractive feature that it can
also be used for partial pole
placement in the sense that it
allows one to reassign only
the “bad” eigenvalues,
leaving the “good” ones
unchanged

Stable

11.9 COMPARATIVE DISCUSSION OF VARIOUS METHODS
AND RECOMMENDATION

For the single-input problem: The recursive algorithm (Algorithm 11.2.1) is the
fastest one proposed so far. It is also extremely simple to implement. Unfortunately,

454 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

the numerical stability of the algorithm cannot be guaranteed in all cases. The
algorithm, however, allows the users to monitor the stability. Algorithm 11.2.1 is
thus reliable. In a variety of test examples, this algorithm has done remarkably
well, even for some ill-conditioned problems (e.g., see Example 11.2.3). The RQ
implementation of the recursive algorithm (Algorithm 11.2.3), the explicit and
implicit QR algorithms all have the same efficiency, and are numerically stable.
The eigenvector algorithm (Exercise 11.8) if properly implemented, is also stable,
but it is the most expensive one of all the single-input algorithms.

One important thing to note here is that there exist RQ implementations of all the
single-input algorithms mentioned in Table 11.1 (Arnold and Datta 1998). These
RQ implementations are much easier to understand and implement on computers.
We strongly recommend the use of RQ implementations of these algorithms.

For the multi-input problem: The recursive algorithm (Algorithm 11.3.1)
is again the fastest algorithm; however, no round-off stability analysis of this
algorithm has been done yet. The explicit QR algorithm described in Section
11.3.2 is stable. The properly implemented eigenvector algorithm due to Petkov
et al. (1986), is also stable but is more expensive than the explicit QR algorithm.
The Schur algorithm (Algorithm 11.3.3) is the most expensive one. It is
believed to be numerically stable. An important feature of this algorithm is
that it can be used for partial pole assignment in the sense that it offers a
choice to the user to place only the “bad” eigenvalues, leaving the “good” ones
unchanged.

The REVA algorithm (Algorithm 11.6.1) exploits the freedom offered by
the problem to minimize the conditioning of the eigenvector matrix which is a
major factor for the sensitivity of the closed-loop poles. However, when a well-
conditioned eigenvector matrix does not exist, the algorithm may give inaccurate
results. When the eigenvector matrix is ill-conditioned, it may be possible to obtain
more accurate results using other methods.

Based on the above observations, it is recommended that for the single-input
problem, the recursive algorithm (Algorithm 11.2.1) be tried first. In case of
possible ill-conditioning of the matrix L, its RQ formulation (Algorithm 11.2.2)
should be used.

For the multi-input problem, the multi-input version of the recursive algorithm
(Algorithm 11.3.1) should be tried first. If the algorithm appears to be unstable
(as indicated by the condition number of the matrix L), the explicit QR algorithm
(Section 11.3.1) is to be used.

It should, however, be noted that Algorithm 11.3.1 and the explicit QR algorithm,
as stated here, might give complex feedback matrix. There now exists a modified
version of Algorithm 11.3.1 (Carvalho and Datta 2001) that avoids complex arith-
metic and this modified version has been implemented in MATCONTROL function
polercm.

Section 11.10: SOME SELECTED SOFTWARE 455

For REVA, the choices are either Algorithm 11.6.1 or the Tits—Yang Algorithm.
For PEVA, the choices are either the Schur algorithm (Algorithm 11.3.3), or the
Sylvester equation algorithm (Algorithm 11.3.4). Algorithm 11.6.1 does not handle
complex EVA as such, but its implementation in MATLAB function ‘place’ does in
an ad hoc fashion. Numerical experimental results suggest the Tits—Yang algorithm
“typically produce more robust design” than that constructed by Algorithm 11.6.1.
For partial pole placement, Algorithm 11.3.4 seems to be very efficient and not
computationally intensive.

11.10 SOME SELECTED SOFTWARE
11.10.1 MATLAB Control System Toolbox

Classical design tools
acker SISO pole placement
place MIMO pole placement.

11.10.2 MATCONTROL

POLERCS Single-input pole placement using the recursive algorithm

POLEQRS Single-input pole placement using the QR version of the recursive
algorithm

POLERQS Single-input pole placement using RQ version of the recursive
algorithm

POLERCM Multi-input pole placement using the recursive algorithm

POLERCX Multi-input pole placement using the modified recursive
algorithm that avoids complex arithmetic and complex feedback

POLEQRM Multi-input pole placement using the explicit QR algorithm

POLESCH Multi-input pole placement using the Schur decomposition

POLEROB Robust pole placement.

11.10.3 CSP-ANM

Pole assignment

e The recursive algorithm is implemented as StateFeedbackGains
[system, poles, Method — Recursivel].

e The explicit QR algorithm is implemented as StateFeedbackGains
[system, poles, Method — QRDecomposition].

e The Schur method is implemented as StateFeedbackGains [system,
poles, M\ethod — SchurDecomposition].

456 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

e The RQ implementation of the recursive single-input algorithm is
implemented as StateFeedbackGains [system, poles, Method —
RecursiveRQDecomposition].

o The implicit single-input RQ algorithm is implemented as StateFeed-
backGains [system, poles, Method —
ImplicitRQDecomposition].

11.104 SLICOT

Eigenvalue/eigenvector assignment

SBOIBD Pole assignment for a given matrix pair (A, B)

SBO1DD Eigenstructure assignment for a controllable matrix pair (A, B) in
orthogonal canonical form

SBOIMD State feedback matrix of a time-invariant single-input system

ROBPOLE Robust Pole Assignment (Additional function added in 2003).

11.10.5 MATRIX y

Purpose: Calculate state feedback gains via pole placement for single-input

continuous-time or discrete-time systems.
Syntax: KC =POLEPLACE (A, B, POLES) ...controller design
KE =POLEPLACE (A’, B/, POLES) ...estimator design

11.10.6 POLEPACK

A collection of MATLAB programs for EVA, developed by G.S. Miminis (1991).
Available on NETLIB.

11.11 SUMMARY AND REVIEW
Statement of the EVA Problem

Given a pair of matrices (A, B), and the set S = {A,..., A,}, closed under
complex conjugation, find a matrix K such that (A — BK) = §S.

Here €2 (M) denotes the spectrum of M.

In the single-input case, the problem reduces to that of finding a row vector fT
such that

QA -bfT)=S5.

Section 11.11: SUMMARY AND REVIEW 457

Existence and Uniqueness

The EVA problem has a solution if and only if (A, B) is controllable. In the
single-input case, the feedback vector, when it exists, is unique. In the multi-input
case, when there exists a feedback matrix, there are many. Therefore, the existing
freedom can be exploited to improve the conditioning of the solution and of the
closed-loop eigenvectors.

Numerical Methods

There are many methods for the EVA problem. Only a few have been described
here. These include:

e Recursive algorithms (Algorithm 11.2.1 for the single-input problem and
Algorithm 11.3.1 for the multi-input problem).

e QR-type algorithms (Algorithms 11.2.2, 11.2.3, and those described in
Miminis and Paige (1982), and Patel and Misra (1984). For the single-
input problem and the explicit QR method described in Section 11.3.2 for
the multi-input problem).

e The Schur algorithm (Algorithm 11.3.3) for the multi-input problem.
PEVA (Algorithm 11.3.4).

Efficiency and Numerical Stability

The recursive algorithms are the most efficient algorithms. The computer imple-
mentations of these algorithms are extremely simple. The algorithms, however, do
not have guaranteed numerical stability, except for the RQ version of the single-
input recursive algorithm, which has been proved to be numerically stable (Arnold
and Datta 1998).

In the single-input case, it has been proved (see Arnold and Datta (1998)),
by forward round-off error analysis, that the stability of the recursive algorithm
(Algorithm 11.2.1) can be monitored and it is possible for the user to know exactly
when the algorithm starts becoming problematic. It is thus reliable. Similar results
are believed to hold for the multi-input recursive algorithm as well. But no formal
analysis in the multi-input case has yet been done.

The QR-type algorithms for single-input problems all have the same efficiency
and are numerically stable.

For the multi-input problem, the Schur Algorithm (Algorithm 11.3.3) is the
most expensive one. However, it has an important feature, namely, it allows one
to place only the “bad” eigenvalues, leaving the “good” ones unchanged.

The explicit QR algorithm (Section 11.3.2) and the multi-input version of the
single-input implicit QR algorithm (not described in this book) have the same
efficiency. The explicit QR algorithm has been proven to be stable and the implicit
QR algorithm is believed to be stable as well.

458 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Explicit Solutions

An explicit expression for the unique feedback vector for the single-input EVA
problem has been given using the recursive algorithm (Algorithm 11.2.1). This
formula is

f= l(HT —MDHT =20 (H' = hpDen,
o

where H = (h;;) is the Hessenberg matrix of the controller-Hessenberg form of
the pair (A, b) and ¢ =]—[;';ll hit1,i. In the multi-input case, the expression is
rather complicated (see Arnold (1993)).

Conditioning of the Feedback Problem: From the explicit expression of the
feedback vector f of the single-input EVA problem, it is clear that the Hessenberg
single-input feedback problem is essentially a polynomial evaluation ¢ (H) at an
unreduced Hessenberg matrix, where ¢(x) = (A —A1)(A —A3) --- (A — Ap) is the
characteristic polynomial of the closed-loop matrix.

A result on the Frechet derivative D¢ (H) is first given in Ph.D. dissertation of
Arnold (1993) and the condition numbers for the feedback problem are then defined
using this derivative. Next, a condition number estimator for the problem is stated.
It worked well on test examples. This estimator never underestimated the error
and overestimated the error by less than 2 digits, in all 100 test examples of sizes
varying from 10 to 50, both for ill-conditioned and well-conditioned problems.

In the multi-output case, Theorem 11.4.2 gives the perturbation bound for
the feedback matrix from which the absolute and relative condition numbers are
defined (Section 11.4.3).

Conditioning of the Closed-Loop Eigenvalues

The major factors responsible for the sensitivity of the closed-loop eigenvalues have
been identified in Section 11.5. These factors are: the condition number of the
eigenvector matrix of the closed-loop system, the distance to uncontrollability
and the distance between the open-loop and the closed-loop eigenvalues, the
conditioning of the feedback problem, and the norm of the feedback matrix.
The most important of them is the condition number of the eigenvector matrix.

Robust Eigenvalue Assignment

Given the pair (A, B) and the matrix A = diag(}y, ..., A,), the problem is to find
a nonsingular matrix X, and a matrix K satisfying

(A—BK)X = XA

such that Cond;(X) is minimum. In view of the last sentence of the preceding
paragraph, the REVA problem with respect to minimizing the condition number

Section 11.12: CHAPTER NOTES AND FURTHER READING 459

of the eigenvector matrix is a very important practical problem. An algorithm
(Algorithm 11.6.1) due to Kautsky er al. (1985) is given in Section 11.6. The
algorithm requires constructions of orthonormal bases for a certain space and for
its complement. The QR factorization or the SVD can be used for this purpose.
An analysis of convergence and a more improved version of this algorithm can be
found in Tits and Yang (1996).

Algorithm for Minimizing Feedback Norm

Our discussions on the conditioning of the closed-loop eigenvalues (Section 11.5)
show that it is also important to have algorithms that minimize the norm of the
feedback matrix.

For such algorithms, see Keel ez al. (1985) and Varga (2000).

11.12 CHAPTER NOTES AND FURTHER READING

Many algorithms have been developed for solving the EVA by state feedback. A
good account of these algorithms can be found in the recent book by Xu (1998).

The earlier algorithms, based on reduction to controller-canonical forms, turn
out to be numerically unstable. For a reference of some of these earlier algorithms,
see Miminis and Paige (1982, 1988).

For a comprehensive reference of the Hessenberg or controller-Hessenberg
based algorithms, which are more numerically reliable, see the recent paper of
Arnold and Datta (1998). For a matrix equation based algorithm for EVA, see
Bhattacharyya and DeSouza (1982). For robust eigenvalue and eigenstructure
assignment algorithms, see Cavin and Bhattacharyya (1983), Kautsky ez al. (1985),
Byers and Nash (1989), and Tits and Yang (1996). For REVA by output feedback,
see Chu, er al. (1984) and references therein. The other algorithms include there
is Tsui (1986), Valasek and Olgac (1995a, 1995b).

For algorithms that minimize the norm of the feedback matrix, see Keel et al.
(1985) and Varga (2000). The EVA problem by output feedback is a difficult prob-
lem and only a few algorithms are available. See Misra and Patel (1989) for output
feedback algorithms. For the EVA and eigenstructure algorithms for descriptor
systems (not discussed in this chapter), see Fletcher et al. (1986), Chu (1988), and
Kautsky et al. (1989), Varga (2000). For partial pole-assignment algorithms, see
Varga (1981), Saad (1988), and Datta and Saad (1991), Datta and Sarkissian (2000).

For round-off error analysis of various algorithms for EVA, see Cox and Moss
(1989, 1992), Arnold and Datta (1998), and Miminis and Paige (1988).

The perturbation analysis for the single-input feedback problem was considered
by Arnold (1993) and our discussion in the multi-input feedback problem has been
taken from Sun (1996).

460 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

For discussions on conditioning of the EVA problem, see He et al. (1995),
Mehrmann and Xu (1996, 1997, 1998), Konstantinov and Petkov (1993), Calvetti
et al. (1999).

For an extension of the single-input recursive algorithm to assigning Jordan
canonical form (JCF), companion and Hessenberg forms, etc., see Datta and Datta
(1990). For parallel algorithms for the EVA problem, see Bru e al. (1994c),
Coutinho et al. (1995), Datta and Datta (1986), Datta (1991), Baksi ef al. (1994).

Now, there also exists a block algorithm (Carvalho and Datta 2001) for the multi-
input EVA. This block algorithm, besides being suitable for high-performance
computing, is guaranteed to give a real feedback matrix.

Exercises

11.1 Modify both the single-input (Algorithm 11.2.1) so that the use of complex
arithmetic can be avoided (consult Carvalho and Datta (2001)).

11.2 Single-input pole placement via linear systems. Consider the following algorithm
(Datta and Datta (1986)) for the single-input Hessenberg problem (H, l;), where
H is an unreduced upper Hessenberg matrix and b= (0,07 « # 0. Let
{u; }?:1 be the eigenvalues to be assigned.
Step 1. Solve the n x n Hessenberg systems:

(H—w;Iytj =b, i=1,2n

Step 2. Solve for d:
Tld =r,

whereT:(11,12,...,zn)andr:(a,a,...,a)T.

1
Step 3. Compute fT =—dT.
o

(a) Giveaproof of this algorithm, that is, prove thatQ(H——l;fT) ={u1,..., nh
making necessary assumptions. Do an illustrative example.
(Hint: Take A = diag(u1, 12, ..., 1) in the proof of Algorithm 11.2.1 and
follow the lines of the proof there.)

(b) Prove that T in Step 2 is nonsingular if the entries in the set {x, 3, ..., in}
are pairwise distinct and none of them is an eigenvalue of H.

11.3 Consider the following modification of Algorithm in Exercise 11.2, proposed by
Bru et al. (1994a):
Stepl.Fori =1,2,...,ndo
If p; is not in the spectrum of H, then solve the system

(H — pi Dty = b.

Else solve the system (H — u;)t; = 0.

Step 2. Define the vector u = (uq, ..., un)T as follows:
u; = 1, if w; is an eigenvalue of H,
u; = 0, otherwise.

114

11.5

11.6

11.7

118

11.9

Section 11.12: CHAPTER NOTES AND FURTHER READING 461

Step 3. Solve for f:
7 =T,

where T = (#1. 12, ..., tn).

(a) Give a proof of this algorithm assuming that the pair (H, 13) is controllable
and that the numbers in the set {1, 13, ..., un} are closed under complex
conjugation and pairwise distinct. Do an illustrative example.

(b) Give anexample to show that the assumptionthat ;, i = 1, ..., n are pairwise
distinct, cannot be relaxed.

Note: Bru et al. (1994a) have given a more general algorithm which can assign

multiple eigenvalues (algorithm III in that paper.

Assigning canonical forms (Datta and Datta 1990). Extend Algorithm 11.2.1 to the

problems of assigning the following canonical forms: a companion matrix, an unre-

duced upper Hessenberg matrix, a Jordan matrix with no two Jordan blocks having

the same eigenvalue. (Hint: Follow the line of the development of Algorithm 11.2.1

replacing A by the appropriate canonical form to be assigned). Do illustrative

examples.

Multi-input pole-placement via Linear systems (Datta 1989). Develop a multi-input

version of the Algorithm in Exercise 11.2, making necessary assumptions. (See Tsui

(1986) and Bru ez al. (1994b).)

Give a proof of Algorithm 11.2.3 (the RQ formulation of Algorithm 11.2.1). Consult

Arnold and Datta (1998), if necessary.

Show that the explicit formula for the single-input pole assignment problem

(Formula 11.2.9) is a Hessenberg-form of the Ackermann’s formula.

Eigenvector method for the pole-placement (Petkov et al. 1984)

(a) Given the single-input controller-Hessenberg pair (H, b), show that it is possi-
ble to find an eigenvector v, corresponding to an eigenvalue p to be assigned,
for the closed-loop matrix H — bf T without knowing the feedback vector f.

(b) LetA =diag(uq, 42, ..., 4n)bethe matrix of the eigenvalues to be assigned,
and V be the eigenvector matrix and v be the first row of V. Assume that
wi,i = 1,...,n are all distinct. Prove that the feedback vector f can be

computed from

1
f=—th—vDAavh,
o

where h1 is the first row of H, and « is the st entry of b.

(c) Whatare the possible numerical difficulties of the above method for computing
7 Give an example to illustrate these difficulties.

(d) Following the same procedure as in the RQ formulation of Algorithm 11.2.1,
work out an RQ version of the above eigenvector method. (Consult Amold
and Datta (1998), if necessary.) Compare this RQ version with the above
formulation with respect to flop-count and numerical effectiveness.

Modify the Schur algorithm (Algorithm 11.3.3) for the multi-input problem to

handle the case when the complex numbers in the matrix I" are not so ordered that

the ordering agrees with the diagonal structure of the matrix A,. Work out a simple
example with this modified Schur method.

462

Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

11.10 Write MATLAB codes to implement the Algorithms 11.2.1 and 11.2.3 and those in

11.11

11.12

11.13

11.14

Exercises 11.2, 11.3 and 11.8, and then using these programs, make a comparative
study with respect to CPU time, flop-count, the norm of the feedback vector and
the largest error-norm between the closed-loop and open-loop eigenvalues. Use
randomly generated matrices.

EVA via Sylvester matrix equation. The following algorithm by Bhattacharyya and
DeSouza (1982) solves the multi-input EVA problem:

Step 1. Pick a matrix G arbitrarily.

Step 2. Solve the Sylvester equation AX — XA = —BG, where A is a matrix
having the spectrum {Ay, ..., An} to be assigned, for a full-rank solution X.

If the solution matrix X does not have full rank, return to Step 1 and pick another G.

Step 3. Compute the feedback matrix F by solving FX = G.

Give a proof of the algorithm and construct an example to illustrate the algorithm.
(For the conditions on the existence of full-rank solution of the Sylvester equation,
see Chapter 12 and the paper by DeSouza and Bhattacharyya (1981)).

Construct an example to demonstrate that even if the feedback (vector) for the single-

input problem is computed reasonably accurately, the closed-loop eigenvalues may

still differ from those to be assigned.

Sensitivity analysis of the single-input pole-placement problem via Cauchy matrix

(Mehmann and Xu 1998; Calvetti et al. 1999). Let A = diag(r1, A2, ..., Ap) with

A # djfori # j Definee = (1,1,...,DT. Let S = {u, 4o, ..., pn}, the

eigenvalue set to be assigned; u;’s are distinct and none of them is in the spectrum

of A.

(a) Provethatthe vector f, defined by f, = Ch_Te is such that Q (A —ef(;r) =S,
where Cj, = (c;;) is the Cauchy matrix: ¢;; = 1/(A; —).

(b) Show that Cond;(Cy,) is the spectral condition number of the closed-loop
matrix A —e feT .

(c) Using the result in (a) find an expression for the feedback vector f such that
Q(A —bfT) = S, assuming that A is diagonalizable.

(d) Give a bound of the condition number of the eigenvector matrix of the closed-
loop matrix A — bf T in terms of the condition number of C », the condition
number of the eigenvector matrix X of A, and the minimum and maximum
entries of the vector X ~15.

(e) Give a bound of the feedback vector f in terms of the norm of f, and the
norm of the inverse of the matrix X R, where R = diag(l;1 , l;z, ey l;,,)T, and
XY =(by,by.... 00T

(f) From the bounds obtained in (d) and (), verify the validity of some of the
factors responsible for the ill-conditioning of the single-input EVA problem,
established in Section 11.5.

(g) Work out an example to illustrate (a)—(f).

From the expression (11.6.4) of the feedback matrix K, prove that if the condition

of the eigenvector matrix is minimized, then a bound of the norm of the feedback

matrix K is also minimized.

11.15

11.16

Section 11.12: CHAPTER NOTES AND FURTHER READING 463

Give an example to show that this does not necessarily mean that the resulting

feedback matrix will have the minimal norm.

(a) Perform a numerical experiment to demonstrate the slow convergence of
Algorithm 11.6.1.

(b) Using MATCONTROL function polerob and robpole (from SLICOT), make
a comparative study between Algorithms 11.6.1, and the Tits—Yang algorithm
with respect to number of iterations, Cond;(X), and [[K|;. Use data of
Example 11.6.1 and randomly generated matrices.

Deadbeat control. Given the discrete-system:

Xiy1 = Ax; + Bu;,

the problem of “deadbeat” control is the problem of finding a state feedback u; =
—Kx; + v; such that the resulting system:

Xip1 =(A— BK)x; +v;

has the property that (A — BK)? = 0 for some p < » and rank(B) > 1.

The solution of the homogeneous part of the closed-loop system then “dies out”
after p steps; and that is why the name deadbeat control.

A numerically reliable algorithm for the deadbeat control has been provided by
Van Dooren (1984). The basic idea of the algorithm is as follows:
If

is the controller-Hessenberg pair of (A, B), then the solution of the problem is
equivalent to finding a feedback matrix K such that

0 Hyp -+ o0 e Hyp

0 Hy3 - - Hy,
vi(g - BK)V = ,

. Hpﬁlyp

0 0

for some orthogonal matrix V. The form on the right-hand side is called the
‘““‘deadbeat” form.

464 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Note that in this case (H — BK)P = 0. Van Dooren’s algorithm finds K recursively
in p steps. At the end of the /th step, one obtains the matrices Vl.T and K; such that

T ~ Hi *
Vi (H— BKpV; = (Od H},})

where the matrix H c[i is in “deadbeat” form again, and the pair (H}i, éll;); ViTé =

l}i
(éf) , 1s still in block-Hessenberg form.

h
Develop a scheme for obtaining V; and hence complete the algorithm for

“deadbeat” control problem. (Consult Van Dooren’s paper as necessary).
Work out an illustrative example.

11.17 Using random matrices A of order n = 5,10, 15, 20, and 30, and appropriate
input matrices B, make a comparative study between Algorithm 11.3.1, one in
Section 11.3.2, and those in Exercises 11.5 and 11.10 withrespect to CPU time, flop-
count, accuracy of the closed-loop eigenvalues, and norms of feedback matrices.

Research problems

11.1 Carry out a round-off error analysis of the implicit QR algorithm of Patel and
Misra (1984) to establish the numerical stability of the algorithm.

11.2 Carry out a round-off error analysis of the recursive multi-input algorithm of
Arnold and Datta (1990) (Algorithm 11.3.1). The algorithm is believed to be
reliable in practice. Prove or disprove this using the results of your analysis.

11.3 An explicit expression for the family of feedback matrices for the multi-input
EVA problem has been given in Arnold (1993). Use this expression to establish
the fact that the sensitivities of the closed-loop eigenvalues depend upon the
nearness of the system to an uncontrollable system, the separation of the open-
loop and the closed-loop eigenvalues, and the ill-conditioning of the closed-
loop eigenvector matrix.

11.4 Work out an RQ version of the recursive algorithm for the multi-input EVA
problem by Arnold and Datta (1990) (Algorithm 11.3.1).

11.5 Carry out a round-off error analysis of the Schur algorithm of Varga
(Algorithm 11.3.3) to establish the numerical stability of the algorithm.

11.6 In the QR algorithm of Miminis and Paige (1988) for the multi-input EVA
problem, explicit shifting is used for the allocation of each eigenvalue. Work
out an implicit version of this algorithm.

References

Ackermann J. “Der entwurf linear regelungssysteme im zustandsraum. Regelungstechnik
und prozessedatenverarbeitung,” Vol. 7, pp. 297-300, 1972.

Armold M. Algorithms and Conditioning for Eigenvalue Assignment, Ph.D. dissertation,
Northern Illinois University, DeKalb, May 1993.

Section 11.12: CHAPTER NOTES AND FURTHER READING 465

Armold M. and Datta B.N. “An algorithm for the multi input eigenvalue assignment
problem,” IEEE Trans. Autom. Control, Vol. 35(10), pp. 1149-1152, 1990.

Arold M. and Datta B.N. “The single-input eigenvalue assignment algorithms: A close-
look,” SIAM J. Matrix Anal. Appl., Vol. 19(2), pp. 444-467, 1998.

Baksi D., Datta K.B. and Roy G.D. “Parallel algorithms for pole assignment of multi-input
systems,” IEEE Proc. Control Theory Appl., Vol. 141(6), pp. 367-372, 1994,

Bhattacharyya S.P. and DeSouza E. “Pole assignment via Sylvester’s equation,” Syst.
Control Letter., Vol. 1, pp. 261-283, 1982.

BruR.,MasJ. and Urbano A. “An Algorithm for the single input pole assignment problem,”
SIAM J. Matrix Anal. Appl., Vol. 15, pp. 393-407, 1994a.

BruR., Cerdan J. and Urbano A. “An algorithm for the multi-input pole assignment problem,
Lin. Alg. Appl.)” Vol. 199, pp. 427-444, 1994b.

Bru R,, Cerdan J., Fernandez de Cordoba P. and Urbano A. “A parallel algorithm for the
partial single-input pole assignment problem,” Appl. Math. Lert., Vol. 7, pp. 7-11,
1994c.

Byers R. and Nash S.G. “Approaches to robust pole assignment,” Int. J. Control, Vol. 49(1)
pp. 97-117, 1989.

Calvetti D., Lewis B. and Reichel L. “On the selection of poles in the single-input pole
placement problem,” Lin. Alg. Appl., Vols. 302-303, pp. 331-345, 1999.

Carvalho J. and Datta B.N. “A block algorithm for the multi-input eigenvalue assignment
problem,” Proc. IFAC/IEEE Sym. Syst., Struct. and Control, Prague, 2001.

CavinR.K. and Bhattacharyya S. P. “Robust and well conditioned eigenstructure assignment
via Sylvester’s equation,” Optim. Control Appl. Meth., Vol. 4, pp. 205-212, 1983.

Chu E.K., Nichols N.K. and Kautsky J. “Robust pole assignment for output feedback,”
Proceedings of the fourth IMA Conference on Control Theory, 1984.

Chu K.-W.E. “A controllability condensed form and a state feedback pole assignment
algorithm for descriptor systems,” IEEE Trans. Autom., Control, Vol. 33, pp. 366-370,
1988.

CoutinhoM. G.,Bhaya A. and Datta B. N. “Parallel algorithms for the eigenvalue assignment
problem in linear systems,” Proc Int. Conf. Control and Inform. Hong Kong, pp. 163—
168, 1995.

Cox C.L. and Moss W.F. “Backward error analysis for a pole assignment algorithm,” STAM
J. Matrix Anal. Appl., Vol. 10(4), pp. 446456, 1989.

Cox C.L. and Moss W.F. “Backward error analysis of a pole assignment algorithm II: The
Complex Case,” SIAM J. Matrix Anal. Appl., Vol. 13, pp. 1159-1171, 1992.

Datta B.N. “Parallel and large-scale matrix computations in control: Some ideas,” Lin. Alg.
Appl., Vol. 121, pp. 243-264, 1989.

Datta B.N. and Datta K. Efficient parallel algorithms for controllability and eigenvalue
assignment problems, Proc. IEEE Conf. Dec. Control, Athens, Greece, pp. 1611-1616,
1986.

Datta B.N. “An algorithm to assign eigenvalues in a Hessenberg matrix: single input case,”
IEEE Trans. Autom. Contr., Vol. AC-32(5), pp. 414417, 1987.

Datta B.N. and Datta K. “On eigenvalue and canonical form assignments.” Lin. Alg. Appl.,
Vol. 131, pp. 161-182, 1990.

466 Chapter 11: NUMERICAL METHODS AND CONDITIONING OF EVA PROBLEMS

Datta B.N. Parallel algorithms in control theory, Proc. IEEE Conf. on Dec. Control,
pp. 1700-1704, 1991.

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA, 1995.

Datta B.N. and Saad Y. “Arnoldi methods for large Sylvester-like matrix equations and an
associated algorithm for partial spectrum assignment,” Lin. Alg. Appl., Vol. 154-156,
pp. 225-244, 1991.

Datta B.N. and Sarkissian D.R. “Partial eigenvalue assignment in linear systems: Exis-
tence, uniqueness and numerical solution,” Proc. Math. Theory of Networks and Sys.,
(MTNS’02), Notre Dame, August, 2002.

Datta K. “The matrix equation X A— BX = Rand its applications,” Lin. Alg. Appl., Vol. 109,
pp. 91-105, 1988.

DeSouza E. and Bhattacharyya S.P. “Controllability, observability and the solution of AX —
XB = C, Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981.

Fletcher L.R., Kautsky J., and Nichols N.K. “Eigenstructure assignment in descriptor
systems,” IEEE Trans. Autom. Control, Vol. AC-31, pp. 1138-1141, 1986.

He C., Laub A.J. and Mehrmann V. Placing plenty of poles is pretty preposterous, DFG-
Forschergruppe Scientific Parallel Computing, Preprint 95-17, Fak. f. Mathematik,
TU Chemnitz-Zwickau, D-09107, Chemnitz, FRG, 1995.

Higham N.J. Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

Kautsky J., Nichols N.K. and Chu K.-W.E. “Robust pole assignment in singular control
systems,” Lin. Alg. Appl., Vol. 121, pp. 9-37, 1989.

Kautsky J., Nichols N.K. and Van Dooren P. “Robust pole assignment in linear state
feedback,” Int. J. Control, Vol. 41(5), pp. 1129-1155, 1985.

Keel L.H., Fleming J.A. and Bhattacharyya S.P. Pole assignment via Sylvester’s equation, in
Contemporary Mathematics, (Brualdi R., et al., eds.), Vol. 47, pp. 265, 1985, American
Mathematical Society, Providence, RI.

Konstantinov M.M. and Petkov P. “Conditioning of linear state feedback,” Technical Report:
93-61, Dept. of Engineering, Leicester University, 1993.

Laub A.J. and Linnemann A. “Hessenberg forms in linear systems theory,” in Computational
and Combinatorial Methods in Systems Theory, (Byrnes C.1. and Lindquist A., eds.),
pp. 229-244, Elsevier Science publishers, North-Holland, 1986.

MathWorks, Inc., The MATLAB User’s Guide, The MathWorks, Inc., Natick, MA,
1992.

Mehrmann V. and Xu H. “An analysis of the pole placement problem I: The single-input
case,” Electron. Trans. Numer. Anal., Vol. 4, pp. 89-105, 1996.

Mehrmann V. and Xu H. “An analysis of the pole placement problem II: The multi-input
Case,” Electron. Trams. Numer. Anal., Vol. 5, pp. 77-97, 1997.

Mehrmann V. and Xu H. “Choosing the poles so that the single-input pole placement
problem is well-conditioned,” SIAM J. Matrix Anal. Appl., 1998.

Miminis G.S. and Paige C.C. “An algorithm for pole assignment of time-invariant linear
systems.” Int. J. Control, Vol. 35(2), pp. 341-354, 1982.

Miminis G.S. and Paige C.C. “A direct algorithm for pole assignment of time-invariant
multi-input linear systems using state feedback,” Automatica, Vol. 24(3), pp. 343-356,
1988.

Section 11.12: CHAPTER NOTES AND FURTHER READING 467

Miminis G.S. Polepack, A collection of MATLAB programs for eigenvalue assignment,
available on NETLIB (www.netlib.org), 1991.

Misra P. and Patel R.V. “Numerical algorithms for eigenvalue assignment by constant and
dynamic output feedback,” IEEE Trans. Autom. Control, Vol. 34(6), pp. 579-580,
1989.

Patel R.V. and Misra P. “Numerical algorithms for eigenvalue assignment by state feedback,”
Proc. IEEE, Vol. 72(12), pp. 1755-1764, 1984.

Petkov P., Christov N.D. and Konstantinov M.M. “A computational algorithm for pole
assignment of linear multi input systems,” [EEE Trans. Autom. Control, Vol. AC-
31(11), pp. 1044-1047, 1986.

Petkov P., Christov N.D. and Konstantinov M.M. “A computational algorithm for pole
assignment of linear single-input systems,” IEEE Trans. Autom. Contr., Vol. AC-
29(11), pp. 1045-1048, 1984.

Rice J. “Theory of Conditioning,” SIAM J. Numer. Anal., Vol. 3(2), pp. 287-311, 1966.

Saad Y. “Projection and deflation methods for partial pole assignment in linear state
feedback,” IEEE Trans. Autom. Control, Vol. 33, pp. 290-297, 1988.

Shafai B. and Bhattacharyya S.P. “An algorithm for pole placement in high-order
multivariable systems,” IEEE Trans. Autom. Control, Vol. 33, 9, pp. 870-876, 1988.

Stewart G.W. Introduction to Matrix Computations, Academic Press, New York, 1973.

J.-G. Sun “Perturbation analysis of the pole assignment problem,” SIAM J. Matrix Anal.
Appl., Vol. 17, pp. 313-331, 1996.

Szidarovszky F. and Bahill A.T. Linear Systems Theory, CRC Press, Boca Raton, 1991.

Tits A.L. and Yang Y. Globally convergent algorithms for robust pole assignment by state
feedback, IEEE Trans. Autom. Control, Vol. AC-41, pp. 1432-1452, 1996.

Tsui C.C. An algorithm for computing state feedback in multi input linear systems, /EEE
Trans. Autom. Control, Vol. AC-31(3), pp. 243-246, 1986.

Valasek M. and Olgac N. “Efficient eigenvalue assignments for general linear MIMO
systems,” Automatica, Vol. 31, pp. 1605-1617, 1995a.

Valasek M. and Olgac N. “Efficient pole placement technique for linear time-variant SISO
systems,” Proc. IEEE Control Theory Appl., Vol. 142, 451458, 1995b.

Van Dooren P. “Deadbeat Control: A special inverse eigenvalue problem,” BIT, Vol. 24,
pp- 681-699, 1984.

Van Dooren P.M. and Verhaegen M. “On the use of unitary state-space transformations,”
Contemporary Mathematics, (Brualdi R. et al. eds.) Vol. 47, pp. 447463, 1985.
American Mathematical Society, Providence, RI.

Varga A. “A multishift Hessenberg method for pole assignment of single-input systems,”
IEEE Trans. Autom. Control., Vol. 41, pp. 1795-1799, 1996.

Varga A. “Robust pole assignment for descriptor systems,” Proc. Math. Theory of Networks
and Sys. (MTNS ’2000), 2000.

Varga A. “A Schur method for pole assignment,” IEEE Trans. Autom. Control, Vol. AC-
26(2), pp. 517-519, 1981.

Xu S.-F. An Introduction to Inverse Algebraic Eigenvalue Problems, Peking University
Press, Peking, China, 1998.

Wilkinson J.H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England,
1965.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 12

STATE ESTIMATION: OBSERVER
AND THE KALMAN FILTER

Topics covered

State Estimation via Eigenvalue Assignment (EVA)
State Estimation via Sylvester-Observer Equation
e Characterization of the Unique Nonsingular Solution to the Sylvester |
| Equation :
e Numerical Methods for the Sylvester-Observer Equation
e A Numerical Method for the Constrained Sylvester-Observer Equation
e Kalman Filter
e Linear Quadratic Gaussian (LQG) Design

12.1 INTRODUCTION

We have seen in Chapter 10 that all the state-feedback problems, such as feedback
stabilization, eigenvalue and eigenstructure assignment, the LQR and the state-
feedback H,-control problems, etc., require that the state vector x(¢) should be
explicitly available. However, in most practical situations, the states are not fully
accessible and but, however, the designer knows the output y(¢) and the input
u(t). The unavailable states, somehow, need to be estimated accurately from the
knowledge of the matrices A, B, and C, the output vector y(z), and the input
vector u(r).

In this chapter, we discuss how the states of a continuous-time system can be
estimated. The discussions here apply equally to the discrete-time systems,
possibly with some minor changes. So we concentrate on the continuous-time
case only.

We describe two common procedures for state estimation: one, via eigen-
value assignment (EVA) and the other, via solution of the Sylvester-observer
equation.

469

470 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

The Hessenberg—Schur method for the Sylvester equation, described in
Chapter 8, can be used for numerical solution of the Sylvester-observer equation.
We, however, describe two other numerical methods (Algorithms 12.7.1 and
12.7.2), especially designed for this equation. Both are based on the reduction of
the observable pair (A, C) to the observer-Hessenberg pair, described in Chapter 6
and are recursive in nature. Algorithm 12.77.2 is a block-generalization of Algorithm
12.7.1 and seems to be a little more efficient than the later. Algorithm 12.7.2 is
also suitable for high performance computing. Both seem to have good numerical
properties.

The chapter concludes with a well-known procedure developed by Kalman
(Kalman filtering) for optimal estimation of the states of a stochastic system,
followed by a brief discussion on the Linear Quadratic Gaussian (LQG) problem
that deals with optimization of a performance measure for a stochastic system.

12.2 STATE ESTIMATION VIA EIGENVALUE ASSIGNMENT

Consider the linear time-invariant continuous-time system:

x(t) = Ax(t) + Bu(t),
y(©) = Cx (),

where A € R"™" B € R"*" and C € R™*",

Let X(¢) be an estimate of the state vector x(t). Obviously, we would like to
construct the vector x(¢) in such a way that the error e(t) = x(t) — £ (¢) approaches
zero as fast as possible, for all initial states x (0) and for every input u(¢)). Suppose,
we design a dynamical system using our available resources: the output variable
y(t), input variable u(r), and the matrices A, B, C, satisfying

(12.2.1)

,é(t) =(A—KO)X()+ Ky() + Bu(®), (12.2.2)
where the matrix K is to be constructed. Then,

é(r) = 5(f) — X(t) = Ax(t) + Bu(t) — A%(t) + KC(t) — Ky(t) — Bu(?),
=(A—KC)x(t) — (A — KO)Z(t) = (A — KC)e(t).

The solution of this system of differential equations is e(r) = e4=XC)¢(0),
which shows that the rate at which the entries of the error vector e(7) approach
zero can be controlled by the eigenvalues of the matrix A — K C. For example, if
all the eigenvalues of A — K C have negative real parts less than —a, then the error
e(t) will approach zero faster than e~*"¢(0).

The above discussion shows that the problem of state estimation can be
solved by finding a matrix K such that the matrix A — KC has a suitable
desired spectrum.

Section 12.3: STATE ESTIMATION VIA SYLVESTER EQUATION 471

Note thatif (A, C) is observable, then such K always exists because, the observ-
ability of (A, C) implies the controllability of (AT, CT). Also, if (AT, CT) is
controllable, then by the EVA Theorem (Theorem 10.4.1), there always exists a
matrix L such that (AT+CTL) has an arbitrary spectrum. We can therefore choose
K = —LT so that the eigenvalues of AT — CTKT (which are the same as those of
A — K C) will be arbitrarily assigned.

Theorem 12.2.1. If (A, C) is observable, then the states x(t) of the system
(12.2.1) can be estimated by

)é(t) = (A — KO)x(r) + Ky(1) + Bu(z), (12.2.3)

where K is constructed such that A — K C is a stable matrix. The error e(t) =
x(t) — x(t) is governed by

e(t) = (A — KQOe(r)

ande(t) = 0ast — oc.

12.3 STATE ESTIMATION VIA SYLVESTER EQUATION

We now present another approach for state estimation. Knowing A, B, C, u(¢) and
¥(t), let’s construct the system

z2(t) = Fz(t) + Gy(t) + Pu(r), (12.3.1)

where Fisn xn, Gisn xr,and P isn x m, in such a way that for some constant
n X n nonsingular matrix X, the error vector e(t) = z(t) — Xx(¢t) — 0 for all
x(0), z(0), and for every input u(z). The vector z(t) will then be an estimate of
Xx(t). The system (12.3.1) is then said to be the state observer for the system
(12.2.1). The idea originated with D. Luenberger (1964) and is hence referred to
in control theory as the Luenberger observer.

We now show that the system (12.3.1) will be a state observer if the matrices
X, F, G, and P satisfy certain requirements.

Theorem 12.3.1. Observer Theorem. The system (12.3.1) is a state-observer
of the system (12.2.1), that is, z(t) is an estimate of Xx(t) in the sense that the
errore(t) = z(t) — Xx(t) — Oast — oo for any initial conditions x(0), z(0),
and u(t) if

1 XA-FX=GC,
(il) P=XB,
(iii) F is stable.

Proof. We need to show that if the conditions (i)—(iii) are satisfied, then
e(t) > 0ast — 0.

472 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

From e(t) = z(t) — Xx(¢), we have

e(t) = z(t) — Xx(1),
= Fz(t) + Gy(t) + Pu(t) — X (Ax(t) + Bu(t)). (12.3.2)

Substituting y(¢#) = Cx(¢) while adding and subtracting F Xx(t) in Eq. (12.3.2),
we get

e(ty=Fe(t)+ (FX - XA+ GCO)x(t)+ (P — XB)u(t).
If the conditions (1) and (ii) are satisfied, then we obtain
é(t) = Fe(r).

If, in addition, the condition (iii) is satisfied, then clearly e(z) — O ast — oo, for
any x(0), z(0), and u(z).
Hence z(¢) is an estimate of Xx(r). W

The Sylvester-Observer Equation
Definition 12.3.1. The matrix equation
XA -FX =GC, (12.3.3)

where A and C are given and X, F, and G are to be found will be called the
Sylvester-observer equation.

The name “Sylvester-observer equation” is justified, because the equation
arises in construction of an observer and it is a variation of the classical Sylvester
equation (discussed in Chapter 8):

XA+TX =R,

where A, T, and R are given and X is the only unknown matrix.
Theorem 12.3.1 suggests the following method for the observer design.

Algorithm 12.3.1. Full-Order Observer Design via Sylvester-Observer
Equation

Inputs. The system matrices A, B, and C of ordern x n,n x m, and r x n,
respectively.

Output. An estimate X (t) of the state vector x(t).

Assumptions. (A, C) is observable.

Step 1. Find a nonsingular solution X of the Sylvester-observer equation
(12.3.3) by choosing F as a stable matrix and choosing G in such a way that
the resulting solution X is nonsingular.

Step 2. Compute P = X B.

Section 12.3: STATE ESTIMATION VIA SYLVESTER EQUATION 473

Step 3. Construct the observer z(t) by solving the system of differential
equations:

2(t) = Fz(t) + Gy(t) + Pu(t), z(0) = zp.

Step 4. Find an estimate (1) of x(t): £(t) = X~ 'z2(t).

Example 12.3.1.

(A, C) is observable.
Step 1. Choose G = (31’) , F =diag(—1, -3).
Then a solution X of XA — FX = GC is

¥ — 0.6667 —0.3333
~10.8000 —0.2000

(computed by MATLAB function lyap). The matrix X is nonsingular.
Step 2.

0.6667
P=XB= (0.8000)'

Step 3. An estimate x(¢) of x(r) is

oo o (=15 25Y (zi()\ _ [—1.521 +2.52;
x()y=X""z(t) = (_6 5) <22([)) - (—621 + 5z2)’
_(u®
w = (zz(t)>
is given by

21) = (‘é _g) 20) + (;) y0) + (82888) u@)., z(0) = z.

Comparison of the state and estimate for Example 12.3.1: In Figure 12.1, we
compare the estimate x(¢), obtained by Algorithm 12.3.1, with the state x(¢),
found by directly solving Eq. (12.2.1) with u(¢) as the unit step function, and
x(0) = (6,0)T. The differential equation in Step 3 was solved with z(0) = 0.
The MATLAB function ode23 was used to solve both the equations. The solid line
corresponds to the exact states and the dotted line corresponds to the estimated state.

where

474 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

(a) 10 T T T T T T T
—— State

- 8 H— — Estimate
I 6 1
G
©
E 4 J
<
5 2 |
1)
I R 14 |

-2 I i i 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4
Time ¢

(b) 10 T T T T T T T

8 ——— State
. | — — Estimate
36 :
5 4 1
£
s 2]
=
g0 |

2 |

4 i i 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 35 4

Time ¢

FIGURE 12.1: The (a) first and (b) second variables of the state x(¢) and
estimate x(¢) for Example 12.3.1.

12.4 REDUCED-ORDER STATE ESTIMATION

In this section, we show that if the r x n output matrix C has full rank r, then the
problem of finding a full nth order state estimator for the system (12.2.1) can be
reduced to the problem of finding an (n — r)th order estimator.

Such an estimator is known as a reduced-order estimator. Once a reduced-
order estimator of order n — r rather than n is constructed, the full states of
the original system can be obtained from the (n — r) state variable of this
observer together with the r variables available from measurements. As in the
full-dimensional case, we will describe two approaches for finding a reduced-order
estimator. We start with the EVA approach.

For the sake of convenience, in the next two sections, we will denote the vector
x(t) and its derivative x(¢) just by x and x. Similarly, for the other vectors.

12.4.1 Reduced-Order State Estimation via Eigenvalue Assignment

Assume as usual that A is an # X n matrix, B is an n X m matrix (m < n), C is an
r x n matrix with full rank (» < n), and (A, C) is observable.

Section 12.4: REDUCED-ORDER STATE ESTIMATION 475

Since C has full rank, we can choose an (n — r) x n matrix R such that the

. C\. .
matrix § = is nonsingular.

R
Introducing the new variable X = Sx, we can then transform the system
(12.2.1) to
X =SAS™'% + SBu,
- _ (12.4.1)
y=CS 'x =(,,0)x.

Let’s now partition
A=SAS! = (ﬁ; Z‘Z) B=SB= (31), (12.4.2)

~ X ~ - .
and ¥ = <£1) , where A} and x| are, respectively, r x r and r x 1. Then we have
2

()= &)+ ()
X2 Ay An) \x2 By)

That is,
)‘):)Lcl = A% + A% + B, (12.4.3)
;2 = 1‘{21)21 + Azzfz + Bzu, (12.4.4)
y = X]. (124.5)

Since y = x;, we only need to find an estimator for the vector x; of this
transformed system.

The transformed system is not in standard state-space form. However, the system
can be easily put in standard form by introducing the new variables

u= A21f1 + Bzu = A21y + Bzu (12.4.6)

and
vzy—A“y—l_?lu. (12.4.7)

From (12.4.4)-(12.4.7), we then have
;2 = Azzfcz + u, v = A]zfz, (12.4.8)

which is in standard form.

476 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Since (A, C) is observable, it can be shown (Exercise 12.3) that (A2, A12) is
also observable. Since x; has (n — r) elements, we have thus reduced the full n-
dimensional estimation problem to an (n — r)-dimensional problem. We, therefore,
now concentrate on finding an estimate of X,.

By (12.2.2) an (n — r) dimensional estimate)%2 of x, defined by (12.4.8) is of
the form:

)%2 = (Ap — LAk + Lv +14,

for any matrix L chosen such that A2 — LAy is stable.

Substituting the expressions for # and v from (12.4.6) and (12.4.7) into the last
equation, we have

%2 = (Ap — LAp)%y + LG — Auy — Buu) + (Auy + Baw).
Defining another new variable
z=x—Ly,

we can then write

2= (An — LAp)(z+ Ly)+ (Ay1 — LA1)y + (B, — LB))u

= (An — LA)z + [(Ap — LA)L + (A — LA1)]y + (B, — LBu
(12.4.9)

Comparing Eq. (12.4.9) with (12.2.2) and noting that Ay — LA is a stable
matrix, we see that z + Ly is also an estimate of x;.

Once an estimate of X, is found, an estimate of the original n-dimensional state
vector x from the estimate of X, can be easily constructed, as shown below.

Since y = x| and ,%2 = z + Ly, we immediately have

1%1 y
=|%']) = 12.4.10
()?2) (Ly + Z) (:
as an estimate of x.

Finally, since X = Sx, an estimate x of x can be constructed from an estimate

of X as: 1
A o—13% C\ y
i) ()

The above discussion can be summarized in the following algorithm:

=

Algorithm 12.4.1. Reduced-Order Observer Design via EVA

Inputs. The system matrices A, B, C, respectively, of order n x n,n x m,
andr X n.

Output. An estimate x of the state vector x.

Section 12.4: REDUCED-ORDER STATE ESTIMATION 477

Assumptions. (i) (A, C) is observable. (ii) C is of full rank.

R IA) nonslngula’.

- (An An = _ (B
A=|{"- - R B={-], 12.4.11
(AZI A22> (132) ()

where Ay, Alz, Azl, Azz are, respectively, r X r,r x (n —r),(n—r) xr, and
(n —r) x (n —r) matrices.

Step 3. Find a matrix L such that Ay — LAy; is stable.

Step 4. Construct a reduced-order observer by solving the systems of
differential equations:

Step 1. Find an (n — r) X n matrix R such that § =

t=(An — LAz +[(Az — LAp)L + (Ay1 — LAy
+ (B, — LBDu, 2(0) = zo. (12.4.12)

Step 5. Find X, an estimate of x:

i=(¢ oy (12.4.13)
H Lysz) 4.

Example 12.4.1. Consider the design of a reduced-order observer for the linearal-
ized model of the Helicopter problem discussed in Doyle and Stein (1981), and also
considered in Dorato et al. (1995), with the following data:

-0.02 0.005 24 -32 0.14 —-0.12
A= -0.14 044 —-13 -30 B 036 -8.6
- 0 0.018 —-16 12)" —10.35 0.009

0 0 1 0 0 0

and

Since rank(C) = 2,r = 2.

Step 1. Choose R = (1 bl 1). The matrix $ = (C

01 1 1 R) is nonsingular.

478 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

1.7400 —0.5009 —0.1400 —1.1600
—57.3006 -1 0 57.3000
—0.0370 —-1.0698 -0.1600 0.6600 |}’

23580 —0.4695 —-0.1400 —1.7600

Step2. A = SAS™! =

0.3600 —8.6000
0 0
0.8500 —8.7191
0.7100 —8.5991

~ 1.7400 —0.5009 - —0.14 -1.16
Ay = () Ap = ()

B=SB=

—57.3006 -1 0 513

A, - (~0-0370 —1.0698 i, — (~0-1600 0.6600
21 =1 23580 —0.4695)° 2271 -0.1400 -1.7600)°
5, — (03600 —8.6000 5, (085 —87191
=1 o0 0 ’ 2710.7100 —8.5991)"
Step 3. The matrix

I = -6 —0.1099
A1 0.0244
is such that the eigenvalues of Ay — LA, (the observer eigenvalues) are {—1, —2}

(L is obtained using MATLAB function place).
Step 4. The reduced-order 2-dimensional observer is given by:

i =(An~LA)z+[(An—LAR)L+ (A2 —LA11)]y+ (B2 — LB)u, Z(0) = Z,.

with Aq, /ilz, Asi, Ag, By, and Bj as computed above.
An estimate x of the state vector x is then

1 0 0 1 -1
s [CY y 11 0 0 0 y
*=\R Ly+z) = |-1 —00175 0 1 J\Ly+2)
0 00175 0 0
where z is determined from (12.4.12).
Remark
e The explicit inversion of the matrix § = <g>, which could be a source of

large round-off errors in case this matrix is ill-conditioned, can be avoided by
taking the QR decomposition of the matrix C: C = R Q) and then choosing
Q1
Q2

The matrix Q can then be used in place of S. We leave the details for the
readers as an exercise (Exercise 12.18).

an orthogonal matrix Q> such that the matrix Q = is orthogonal.

Section 12.4: REDUCED-ORDER STATE ESTIMATION 479

State
— — Estimate

oL State
— " Estimate
25 L 1 L 1 1 1 1 1 L
0 0.5 1 1.5 2 25 3 35 4 45 5

Time ¢

FIGURE 12.2: The (a) first and (b) third variables of the state x(¢) and estimate
x(t), for Example 12.4.1.

Comparison of the state and estimate for example 12.4.1: In Figure 12.2,
we compare the estimate x (), obtained by Algorithm 12.4.1 with the state x(¢),
found by directly solving Eq. (12.2.1) with u(¢) = H(s)[1 117, H(t) is the unit step
function and x(0) = (6, 0, 0, 0)T. To solve Egs. (12.2.1)yand (12.4.12), MATLAB
function ode23 was used. For Eq. (12.4.12), the initial condition was z(0) = 0.
The first and the third components of the solutions are compared. The solid line
corresponds to the exact state and the dotted line corresponds to the estimated
state.

12.4.2 Reduced-Order State Estimation via Sylvester-Observer Equation

As in the case of a full-dimensional observer, a reduced-order observer can also
be constructed via solution of a Sylvester-observer equation. The procedure is as
follows:

Algorithm 12.4.2. Reduced-order Observer Design via Sylvester-Observer
Equation
Inputs. The matrices A, B, and C of ordernxn, nxm, andr xn, respectively.
Output. An estimate X of the state vector x.

480 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Assumptions. (i) (A, C) is observable. (ii) C is of full rank.

Step 1. Choose an (n — r) x (n — r) stable matrix F.

Step 2. Solve the reduced-order Sylvester-observer equation for a full rank
(n — r) x n solution matrix X :

XA - FX =GC,

choosing the (n — r) x r matrix G appropriately. (Numerical methods for
solving the Sylvester-observer equation will be described in Section 12.7).
Step 3. Compute P = X B.
Step 4. Find the (n —r) dimensional reduced-order observer z by solving the
system of differential equations:

:=Fz4+Gy+Pu, z(0) = zo. (12.4.14)

Step 5. Find an estimate x of x:
-1
o C y
=) ()

-1
Note: If we write ()C;) = (5‘1, S‘z) then X can be written in the compact

form:

£ =8y+ Sz (12.4.15)

Example 12.4.2. Consider Example 12.4.1 again.

-1 0
Step 1. Choose F = (0 _2>.

3 4
The solution X of the Sylvester-observer equation XA — FX = GC is

Step 2. Choose G = (1 2).

X = -0.117 —0.0822 62.1322 37.2007
T \—0.1364 —1.9296 428.2711 —173.4895/"

149.1811 20.4653

Step 4. The two-dimensional reduced-order observer is givenby z = Fz+Gy+ Pu,
where F, G, and P are the matrices found in Step 1, Step 2, and Step 3, respectively.

Step3. P = XB = (21.7151 1.2672).

Section 12.4: REDUCED-ORDER STATE ESTIMATION 481

An estimate x of x is
| —24.5513 —135.1240 124.1400 —18.0098
s _{CY [(¥_ 1 0 0 0 v
*=\x z) | —-0.0033 —0.0360 0.0395 —0.0034 /]
0 0.0175 0 0
(Note that if

=
I

X1

)fz and y= (y1> s
X3 y2
R4

then X2 = y1, x4 = 0.0175y,, same as was obtained in Example 12.4.1 using the EVA
method).

Comparison of the states and estimates for Example 12.4.2: In Figure 12.3,
we compare the actual state vector with the estimated one obtained by
Algorithm 12.4.2 on the data of Example 12.4.1. The solid line corresponds to

(a) 30 T T T T T T T T T

20 /1
. 10
"0

-10 | State

— — Estimate
20 1 I 1 1 1 1 1 1 L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

9 L|— State
— — Estimate
;25 1 1 1 1 1 1 1 L i
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5

Time ¢

FIGURE 12.3: The (a) first and (b) third variables of the state x(¢) and the
estimate X (¢), for Example 12.4.2.

482 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

the actual state and the dotted line corresponds to the estimated state. MATLAB
function ode23 was used to solve the underlying differential equations with
the same initial conditions as in Example 12.4.1. The third components are
indistinguishable.

12.5 COMBINED STATE FEEDBACK AND OBSERVER DESIGN

When an estimate x of x is used in the feedback control law

u=s—Kx (12.5.1)
in place of x, one naturally wonders: what effect will there be on the EVA? We
consider only the reduced-order case, here. The same conclusion, of course, is true

for a full-order observer.
Using (12.5.1) in (12.2.1), we obtain

X = Ax + B(s — KX),
= Ax + B(s — K81y — K8>z), (using (12.4.15))
= Ax + B(s — K5,Cx — K §32),
= (A — BKS,C)x — BK Sz + Bs.

Also, Eq. (12.4.14), can be written as

:=Fz+Gy+Pu=Fz+GCx+ P(s — K81y — K$2),
= (GC — PKS§|C)x + (F — PK8)z + Ps

(using (12.5.1) and (12.4.15)).
Thus, the combined (feedback and observer) system (Figure 12.4) is given by

X\ _(A-BKSiIC —BKS) \ (x +(B
i)~ \GCc - PKS,C F—PKS)\z pl*

(12.5.2)
y = (C, 0) C) .

Applying to this system the equivalence transformation, given by the nonsingular

matrix
I 0
X I

Section 12.6: NONSINGULAR SOLUTIONS OF THE SYLVESTER EQUATION 483

X =Ax+Bu
y=Cx

I B Observer

FIGURE 12.4: Observer-based state feedback.

and noting that e = 7z — Xx, XA — FX = GC, and P = X B, we have, after
some algebraic manipulations,

{c _(A-BK —BKSZ) <x>+<B)s
(6) (0 F e 0 (12.5.3)

X
y=(C,0)(e>-

Thus, the eigenvalues of the combined system are the union of the eigenvalues of
the closed-loop matrix A — BK and of the observer matrix F.

Therefore, the observer design and feedback design can be carried out indepen-
dently, and the calculation of the feedback gain is not affected whether the true
state x or the estimated state X is used.

This property is known as the separation property.

12.6 CHARACTERIZATION OF NONSINGULAR SOLUTIONS OF
THE SYLVESTER EQUATION

We have just seen that the design of an observer via the Sylvester-observer equation
requires a nonsingular solution X for the full-order design (Algorithm 12.3.1) or a
full rank solution X for the reduced-order design (Algorithm 12.4.2). In this sec-
tion, we describe some necessary conditions for a unique solution of the Sylvester
equation to have such properties. For the sake of convenience, we consider the
full-order case (i.e., A and F are n x n) only. The results, however, hold for the
reduced-order case also and the proofs given here can be easily modified to deal
with the latter and are left as an exercise (Exercise 12.7).
The following theorem was proved by Bhattacharyya and DeSouza (1981). T:

proof here has been taken from Chen (1984).

484 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Theorem 12.6.1. Necessary Conditions for Nonsingularity of the Sylvester
Equation Solution. Let A, F, G, and C, respectively, be of ordern x n,n x n,
n xr,andr X n. Let X be a unique solution of the Sylvester-observer equation

XA—-FX =GC. (12.6.1)

Then, necessary conditions for X to be nonsingular are that (A, C) is
observable and (F, G) is controllable.

Proof. From the given Eq. (12.6.1), we have

XA®—FOX =0, (Notingthat A® = I, and FO = I,,,.)
XA —FX =GC,
XA?—F?X=GCA+ FGC,

XA" — F'X =GCA" '+ FGCA" %2+ ...+ F'-IGC .

Let a(A) = A" + a1A"~! + ..+ + a, be the characteristic polynomial of A,
and let’s denote the controllability matrix of the pair (F, G) by Cgg, and the
observability matrix of the pair (A, C) by Oxc.

First of all, we note that the uniqueness of X implies that the matrix a(F)
is nonsingular and vice versa. This is seen as follows: By Theorem 8.2.1, X is
a unique solution of (12.6.1) if and only if A and F do not have a common
eigenvalue. Again, A and F do not have a common eigenvalue if and only if the
matrix a(F’) is non-singular because the eigenvalues of a(F') are the n numbers
]—[;le (i —Aj), i =1,...,n; where, A;s are the eigenvalues of A and ;s are the
eigenvalues of F. Thus, a(F) is nonsingular if and only if X is a unique solution
of (12.6.1).

Now, multiplying the above equations, respectively, by a,,a,-1,...,1,
and using the Cayley—Hamilton theorem, we obtain after some algebraic
manipulations:

X = —[a(F)1"'Crg ROac, (12.6.2)
where
an—11 ayn_oIl - al 1
ay2l a,3I --- I 0
R= : : : :
arl 1 -~ 0 0
1 0 -0 0

From (12.6.2), it then immediately follows that for X to be nonsingular, the rect-
angular matrices Crg and Oac must have full rank; or, in other words, the pair
{F, G) must be controllable and the pair (A, C) must be observable. W

Section 12.7: SYLVESTER-OBSERVER EQUATION 485

Corollary 12.6.1. IfG isn x 1 and C is 1 x n, then necessary and sufficient
conditions for the unique solution X of (12.6.1) to be nonsingular are that
(F, G) is controllable and (A, C) is observable.

Proof. In this case, both the matrices Cgg and Oac are square matrices. Thus,
from (12.6.2), it immediately follows that X is nonsingular if and only if (F, G)
is controllable and (A, C) is observable. B

Theorem 12.6.1 has recently been generalized by Datta et al. (1997) giving
a necessary and sufficient condition for nonsingularity of X. We state the result
below and refer the readers to the paper for the proof.

Theorem 12.6.2. Characterization of the Nonsingularity of the Sylvester
Equation Solution. Let A, F, and R be n x n matrices. Let a(h) = A" +
aiA""V ... + a, be the characteristic polynomial of A.

Define

S=F" '+ F" %2+ 4a DR+ (F" 2+ a F" 3+ 4+ a,_0D)
X RA+---+(F+aDRA"? + RA"".
Then a unique solution X of the Sylvester equation
FX—-XA=R

is nonsingular if and only if § is nonsingular. Furthermore, the unique solution
X is given by
X = (a(F)~'s.

(Note again that the uniqueness of X implies that a(F) is nonsingular).

Remark

e The results of Theorems 12.6.1 and 12.6.2 also hold in case the matrix X
is not necessarily a square matrix. In fact, this general case has been dealt
with in the papers by Bhattacharyya and DeSouza (1981), and Datta et al.
(1997), and conditions for the unique solution to have full rank have been
derived there.

12.7 NUMERICAL SOLUTIONS OF THE SYLVESTER-OBSERVER
EQUATION

In this section, we discuss numerical methods for solving the Sylvester-observer
equation. These methods are based on the reduction of the observable pair (A, C)
to the observer-Hessenberg form (H, C), described in Chapter 6.

The methods use the following template.

486 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Step 1. Reduction of the problem. The pair (A, C) is transformed to observer-
Hessenberg form by orthogonal similarity, that is, an orthogonal matrix O is
constructed such that

OAOT = H, an unreduced block upper-Hessenberg matrix,
CoT=C=(0,C).

The equation X A — FX = GC is then transformed to XOTOAOT —FX 0T =
Gcot
or

YH — FY = GC, (12.7.1)

where Y = XOT.

Step 2. Solution of the reduced problem. The reduced Hessenberg Sylvester-
observer equation (12.7.1) is solved.

Step 3. Recovery of the Solution X of the Original Problem. The solution X of
the original problem is recovered from the solution of the reduced problem:

X=YO0. (12.7.2)

We now discuss the implementation of Step 2. Step 3 is straightforward.
Implementation of Step 1 has been described in Chapter 6.

The simplest way to solve Eq. (12.7.1) is to choose the matrices F and G
completely satisfying the controllability requirement of the pair (F, G). In that
case, the Sylvester-observer equation reduces to an ordinary Sylvester equation,
and, therefore, can be solved using the Hessenberg—Schur method, described in
Chapter 8.

Indeed, F can be chosen in the lower real Schur form (RSF), as required by the
method. Therefore, computations will be greatly reduced. We will not repeat the
procedure here. Instead, we will present below two simple recursive procedures,
designed specifically for solution of the reduced-order Sylvester-observer equation
(12.7.1).

12.7.1 A Recursive Method for the Hessenberg Sylvester-Observer Equation

In the following, we describe a recursive procedure for solving the reduced multi-
output Sylvester-observer equation

YH — FY =GC. (12.7.3)

The procedure is due to Van Dooren (1984). The procedure computes simulta-
neously the matrices F, Y, and G, assuming that (H, C) is observable.

Section 12.7: SYLVESTER-OBSERVER EQUATION 487

Set ¢ = n — r and assume that ¥ has the form:

1 y12 yl’n
Y = : (12.7.4)

0 1yq,q+1 0 Ygan

and choose F in lower triangular form (for simplicity):

fi 0 - o0 ng
fi fo 0 .- 0 el
=1 . . . G=\|°?2], (12.7.5)
: . : =
fa o fa gy
where the diagonal entries f;;,i = 1, ..., g are known and the remaining entries

of F are to be found. It has been shown in (Van Dooren 1984) that a solution Y in
the above form always exists. The reduced Sylvester-observer equation can now
be solved recursively for ¥, F, and G, as follows.

Let giT denote the ith row of G. Comparing the first row of Eq. (12.7.3), we
obtain

(1, ynH — fu(l,y) =g/ C. (12.7.6)

Similarly, comparing the ith row of that equation, we have
0,0,...,0, 1,y,<)H—(ﬁ,ﬁi,O,...,O)Y=g,~TC_‘, i=2,3,...,q9 (12.7.7)

In the above, yi = (i i41, ..., Yin) and f; = (fir, fizo .-+ fiie1)-
The Egs. (12.7.6) and (12.7.7) can be, respectively, written as

1. 81) [(H - “?gmm—”] = —[lstrow of (H — ful)l, (12.7.8)
and
~Yiopii-1)
(fi.yi 8! | (H = fii Dvotom@m—i) | = — [ith row of (H — f;)], (12.7.9)
-C

where Yiopi—1) and (H — fi; Dbvotom(n—i) denote, respectively, the top i — 1 rows of
Y and the bottom n — i rows of H — f;; [. Because of the structure of the observer-
Hessenberg form (H, C‘), the above systems are consistent and these systems can
be solved recursively to compute the unknown entries of the matrices Y, F,and G.

488 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

We illustrate how to solve these equations in the special case withn = 3,r = 1.
The reduced equation to be solved in this case is:

(1 yi2 y13> Z; ZZ Z; _(fn 0><1 yi2)’13>
0 1 ¥y3/1, hy s Sa f2)\0 1 a3

:<gll> (0 0 Cl).
N e’

G C
Comparing the first row of the last equation, we have

yizha1 = fi1 — hu,
yi2(h2 — fi1) + yizha = —hya, (12.7.10)
y13(h33 — f11) + yizhaz — giier = —has.

Similarly, comparing the second row, we have

—fa1 = —ha,
y23haz — faiyiz — foo = —hoa, (12.7.1D
y23h33 — fa1y13 — fooy23 — 82161 = —has.

The system (12.7.10) can be written as

ha hn — fu h23 Sii—hn
12, yi3, 810 0 h32 h3z— fu | = —h12
0 0 —C1 —h13
Similarly, the system (12.7.11) can be written as
T
-1 ~yp2 -¥13 —hy1
(f21,9y3.8201 0 hny ha—fo|=|f2—hxn
0 0 —c1 —h3

Note that since the pair (A, C) is observable, h21, k32, and ¢ are different from
zero and, therefore, the matrices of the above two systems are nonsingular.

Algorithm 12.7.1. A Recursive Algorithm for the Multi-Output Sylvester-
Observer Equation
Inputs. The matrices Apxn, and Cyxp.
Output. A full-rank solution X of the reduced-order Sylvester-observer
equation:
XA—-FX=GC.

Assumption. (A, C) is observable.
Step 0. Setn —r =gq.

Section 12.7: SYLVESTER-OBSERVER EQUATION 489

Step 1. Transform the pair (A, C) to the observer-Hessenberg pair (H, C):
0AO0" =H, cOT=C.

Step 2. Choose F = (fi;) as a q x q lower triangular matrix, where the
diagonal entries fi;, i = 1,..., q are arbitrarily given numbers, and the off-
diagonal entries are to be computed.

Step 3. Solve for Y satisfying

YH - FY =GC,

where Y has the form (12.7.4), as follows:

Compute the first row of Y and the first row of G by solving the system (12.7.8).
Compute the second through gth rows of Y, the second through gth rows of F,
and the second through qth rows of G simultaneously, by solving the system
(12.7.9).

Step 4. Recover X from Y :

X=Y0.
Example 12.7.1. Consider Example 12.4.1 again.

Heren =4,r = 2.
Step 1. The observer-Hessenberg pair of (A, C) is given by:

—0.0200 2.4000 0.0050 —32.0000

H = 0 —1.6000 0.0180 1.2000
| —0.1400 —1.3000 0.4400 —30.0000)"
0 1.000 0 0

- (001 0
C:(o 0 0 57.3)'

The transforming matrix

SO O =
o~ o O
(=N e
k==

Step 2. Let’s choose fi1 = —1, foo = -2
Step 3. The solution of the system (12.7.8) is (0, 7, 6.7, 10.085, —4.1065).
Thus, y; = (0,7, 6.7), g1 = (10.085, —4.1065). The firstrowof Y = (1,0, 7, 6.7).

The solution of the system (12.7.9) is (0.0007, —0.0053, —0.4068, 0, 0.0094).
Thus, f2; = 0.0007 and y» = (—0.0053, —0.4068), g» = (0, 0.0094). So,

P -1 0 G = 10.085 —4.1065
T \0.0007 =2/ 0 0.0094 /-

The second row of Y = (0, 1, —0.0053, —0.4068).

490 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Therefore,

(1 0 7 6.7
“\o 1 —0.0053 -0.4068)"

Step 4. Recover X from Y:

1 7 0 6.7)

X=10= (0 ~0.0053 1 —0.4068

Flop-count: Solving for F, G, and Y (using the special structures of these
matrices): 2(n — r)rn® flops.

Obtaining the observer-Hessenberg form: 2(3n 4 r)n? flops (including the
construction of O).

Recovering X from Y:2(r — r)n

Total: (About) (6 + 2r)n.

MATCONTROL note: Algorithm 12.7.1 has been implemented in MATCONTROL
function sylvobsm.

12.7.2 A Recursive Block-Triangular Algorithm for the Hessenberg
Sylvester-Observer Equation

A block version of Algorithm 12.7.1 has recently been obtained by Carvalho and
Datta (2001). This block algorithm seems to be computationally slightly more
efficient than Algorithm 12.7.1 and is suitable for high-performance computing.
We describe this new block algorithm below.

As in Algorithm 12.7.1, assume that the observable pair (A, C) has been trans-
formed to an observer-Hessenberg pair (H, C), that is, an orthogonal matrix O
has been computed such that

0A0T=H and C=CcO0T=[0 ... 0,],

where H = (H;;) is block upper Hessenberg with diagonal blocks H;; € R™ >,
i=12,...,pandn +---+n, =n.

Given the Observer-Hessenberg pair (H, C), we now show how to compute the
matrices Y, F, and G in blocks such that

YH — FY = GC. (12.7.12)

Section 12.7: SYLVESTER-OBSERVER EQUATION 491

Partitioning the matrices F, Y, and G conformably with H allows us to write
the above equation as

H H H
Yiu Yo ... Y H“ le Hlp
21 22 2p
Yoo ... Yy H H
Yoq Ygp 32 >
Hy 1,p Hpp
Fi Ynu Yo ... Yip
— | Fa1 F2 Y ... Yy
a1 Fyq Yoq Yep
Gy
=[...{[0 0 ... 0 C].
Gy
Weset Y = I «r,i = 1,2,..., g for simplicity. Since matrix F is required to

have a preassigned spectrum S, we distribute the elements of S among the diagonal
blocks of F in such a way that Q(F) = S, where (M) denotes the spectrum of
M. A complex conjugate pair is distributed as a 2 x 2 matrix and a real one as
a 1 x 1 scalar on the diagonal of F. Note that, some compatibility between the

structure of & and the parameters n;, i = 1, ..., p is required to exist for this to
be possible.
Equating now the corresponding blocks on left- and right-hand sides, we obtain:
J+1 min(i, j)
Y YaHg— Y FuYy=0, j=12...p-L (12.7.13)
k=i k=1
14 i
> YuHy =Y FuYip = GiCl. (12.7.14)
k=i k=1

From (12.7.13) and (12.7.14), we conclude F;; =Ofor j =1,2,...,i — 2, and
F,'j:HiijI‘j:i—l.
Thus, Egs. (12.7.13) and (12.7.14) are reduced to

Jj+1 i
Y YuHy— Y FaYiy=0, j=ii+l...p-1 (12715
k=i k=max(i—1,1)
14 i
Y YuHipy— Y. FaYyp=GiC1, fori=12,...,q. (127.16)
k=i k=max(i—1,1)

492 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

For a computational purpose we rewrite Eq. (12.7.15) as
j i
ZYikaj+Yi,j+1Hj+1,j_ Z Fi Y =0, J=ii+l, ..., p—1,
k=i k=max(i—1,1)
thatis, for j=i,i+1,...,p— 1,
J i
VijsiHipj=—Y YuHy+ Y Fuly. (12.7.17)
k=i k=max(i—1,1)

Equations (12.7.16) and (12.7.17) allow us to compute the off-diagonal blocks
Y;; of Y and the blocks G; of G recursively.

This is illustrated in the following, in the special case when p =4, g = 3:
Firstrow:i =1

Hi| + Y12Hy — F11 = 0 (solve for Y17)

Hiz + Y2 Hy + Yi3H3p — F11 Y12 = 0 (solve for Y13)

Hyz + Y12 Ho3 + Y13 Haz + Y14 Haz — Fy Y13 = 0 (solve for Y14)

Hyg + Y1oHys + Y13H3a + Y14 Hyg — Fi1Y14 = G(Cq (solve for Gy).

Second row: i =2

Hyy + Yo3Hzp — F21 Y12 — Fop = 0 (solve for Y,3)
Ha3 + Y3 H3z + Yas Hyz — F21Y13 — F22Y23 = 0 (solve for Y24)
Hogq + Y23 H3a + Yoa Hag — F21Y14 — F2Y24 = G2C (solve for G7)

Third row: i = 3

H33 + Y34Hys — F3Y23 — F33 = 0 (solve for Y34)
Hiy + Y3gHys — F30Yy4 — F33Y34 = G3C (solve for G3)

The above discussion leads to the following algorithm:

Algorithm 12.7.2. A Recursive Block Triangular Algorithm for the Multi-
Output Sylvester Observer Equation

Input. Matrices A € R"*", C € R™*" of full-rank and the self-conjugate set
SeC"".

Output. Block matrices X, F, and G, such that Q(F) = Sand XA— FX =
GC.

Step 1. Reduce (A, C) to observer-Hessenberg form (H, C). Let n;,i =
1, ..., p be the dimension of the diagonal blocks H;; of the matrix H.

Step 2. Partition matrices Y, F, and G in blocks according to the block
structure of H. Letg = p — 1.

Step 3. Distribute the elements of S along the diagonal blocks Fj;,i =
1,2,..., g such that Q(F) = §; the complex conjugate pairs as 2 x 2 blocks
and the real ones as 1 x 1 scalars along the diagonal of the matrix F.

Section 12.7: SYLVESTER-OBSERVER EQUATION 493

Step 4. Set Y11 = I, xn,-
Step5.Fori =2,3,...,q,set

Fii-1=H;i-1, Yii = In;xn;-

Step6.Fori =1,2,...,gdo
6.1. For j = i,i +1,..., p — 1, solve the upper triangular system for
Yij+1:
J i
Yijv1Hjq1 =_ZYikaj+ Z Fir Yy;.
k=i k=max(i—1,1)

6.2. Solve the triangular system for G;:

i

P
GiCi=) YuHyp— Y. FuYip.
k=i k=max(i—1,1)

Step 7. Form the matrices Y, F, and G from their computed blocks.
Step 8. Recover X =Y O.

Return

Remark

e Recall that once the matrix X is obtained, the estimated state-vector x(¢)

can be computed from
Clay = |Y®
[Jr0=[20)

It is interesting to note that the matrix X does not need to be computed
explicitly for this purpose because the above system is equivalent to:

Cla _[y®] o1
[Y]x(t)_ [z(t)]o '

The matrix (g) is a nonsingular block upper Hessenberg by the construc-

tion of Y. This structure is very important from the computational point of
view since it can possibly be exploited in high-performance computations.

Flop-count and comparison of efficiency
Flop-count of Algorithm 12.7.2
1. Reduction to observer-Hessenberg form using the staircase algorithm:

6n°> + 2rn? flops

494 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

2. Computation of Y using Steps 4-8 of the algorithm:

p—1 p
MU =i+ ned+2e+ 0]
i=1 j=i
p—1 p p-1
Yleu-n+ns e~ Yo -2+ ¢ -i]r
i=1 j=i i=1
[-DpRp=1) (p—p] s _n® rm?
N[c + 5]r~3+2ﬂops.

3. Computation of X from Y: n? flops (note that the matrix ¥ is a unit block
triangular matrix).

Thus, total count is (19n3/3) + (5r/2)n? flops.

Comparison of Efficiency. Algorithm 12.7.1 requires about (6 + 2r)n> flops.
[Note: the flop count given in Van Dooren (1984) is nearly one half of that given
here; this is because a “flop” is counted there as a multiplication/division coupled
with an addition/subtraction.]

Also, it can be shown that a recent block algorithm of Datta and Sarkissian
(2000) requires about 523 /3 flops.

Thus Algorithm 12.7.2 is much faster than both Van Dooren’s (Algorithm
12.7.1) and the Datta~Sarkissian algorithms.

Besides, this algorithm is suitable for implementations using the recently devel-
oped and widely used scientific computing software package LAPACK (Anderson
etal. (1999)), since it is composed of BLAS-3 (Basic Linear Algebra Subroutines
Level 3) operations such as matrix—matrix multiplications, QR factorizations, and
solutions of triangular systems with multiple right hand sides.

Example 12.7.2, We consider Example 12.7.1 again,
Step 1. The matrices H, C, and O are given by:

—0.0200 2.4000 0.0050 -—32.0000

g _| 0 —L6000 00180 1.2000
= | -0.1400 -13000 0.4400 —30.0000 |°
0 10000 0 0
1000
10000 0 0010 -
Cl:[0 57.3000]* O=10 1 0 of d C=0Cn
000 1

Step2. ¢ =1.

Section 12.7: SYLVESTER-OBSERVER EQUATION 495

Steps 3 and 4.

—100 0 10
F:F“:[0 —2.00]’ Y“z[o 1]'

Step 5. Skipped (g = 1).
Step6.i = 1.
6.1. j = 1. Solve the triangular system Y2 Hy) = —Y11 Hyy + Fi1 Y1) for Yyo:

y1, — | 70000 6.7000
2=1 90 —0.4000 | -

6.2: Solve triangular system G |Cy = Y11 Hi2 + Y12Hy»y — F11 Y12 for G1:

G — [10:0850 —4.1065
U=10.0180 0.0070 |-

Step 7. Form matrices Y, F, and G from the computed blocks:

Y = 1 0 7.0000 6.7000
10 1 0 —0.4000 |’

F= —1.000 0 G = 10.0850 —4.1065
- 0 —2.000 (" ~10.0180 0.0070

Step 8. Recover X =Y O:

X — I 7.0000 0 6.7000
10 0 1 —0.4000]|"

Verify: |1 XA — FX — GCll = 0(1071) and Q(F) = {—2.0000, —1.0000}.
Thus, the residue is small and the spectrum of F has been assigned accurately.

MATCONTROL note: Algorithm 12.7.2 has been implemented in MATCON-
TROL function sylvobsmb.

Comparison of the state and estimate for Example 12.7.2: Figure 12.5 shows
the relative error between the exact state x(¢) and the estimate x (¢) satisfying

Cl.., _[y®]r
[Y } *o = [zm ¢
with the data above and u(r) as the unit step function. The underlying systems of
ordinary differential equations were solved by using MATLAB procedure ode45
with zero initial conditions. The relative error is defined by
[x@) — X(D)2
llx ()1l

496 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

x 1073
7 T T T T T T T T T
6t i
5F]
<]
5at 1
L)
2
=
Q
~ 3| i
2t .
1t i
O 1 1 1 1 1 1 i 1
0 0.5 1 15 2 25 3 35 4 45 5

Time ¢

FIGURE 12.5: Relative error between the state and estimate.

12.8 NUMERICAL SOLUTION OF A CONSTRAINED
SYLVESTER-OBSERVER EQUATION

In this section, we consider the problem of solving a constrained reduced-order
Sylvester-observer equation. Specifically, the following problem is considered:
Solve the reduced-order Sylvester-observer equation

XA-FX=GC (12.8.1)
such that
XB=0 (12.8.2)
and
[g] (12.8.3)
has full rank.

The importance of solving the constrained Sylvester equation lies in the
fact that if the constraint (12.8.2) is satisfied, then the feedback system with
the reduced-order observer has the same robustness properties as that of the
direct feedback system (see Tsui (1988)).

Section 12.8: CONSTRAINED SYLVESTER-OBSERVER EQUATION 497

We state a recent method of Barlow et al. (1992) to solve the above problem.

A basic idea behind the method is to transform the given equation to a reduced-
order unconstrained equation and then recover the solution of the constrained
equation from that of the reduced unconstrained equation. We skip the details and
present below just the algorithm. For details of the development of the algorithm,
see the above paper by Barlow et al. (1992).

Algorithm 12.8.1. An Algorithm for Constrained Sylvester-observer
Equation
Inputs.

(1) The system matrices A, B, and C of order n x n,n x m, and r x n,
respectively.

(i1) A matrix F of order (n — r).

Output. An (n — r) x n matrix X and an (n — r) x r matrix G satisfying

(12.8.1) such that (g) is nonsingular and XB = 0.

Assumptions. (A, C) is observable, n > r > m, and rank(C B) =rank(B) =
m.
Step 1. Find the QR factorization of B:

s=w(S)

where S is m x m, upper triangular and has full rank, and W is n x n and

orthogonal.
Partition W = (W, Wa), where Wy isn x m and Wy is n x (n — m).
Step 2. Set
Al =W AW, Ay =WIAW,, C =CW,, C=CW,

Step 3. Find a QR factorization of C,:
R
Ci =21, 02) <0> ;
where Q1 isr x m, Qz isr x (r —m), and R is an m x m upper triangular
matrix with full rank.
_(EW _ o7

Step 4. Define E by
where E1ism x (n —m), E> is (r —m) x (n —m), and Q = (Q1, @2).

498 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Step 5. Form A=Ay — A{R E;. Solve the Sylvester equation:
ZA - FZ = GyE3,

choosing G randomly. (Use Algorithm 8.5.1.)
Step 6. Set Gy = ZA\R™' = ZJ, G =(G1,G2)QT, and X = ZWJ.
(Note that Z is of order (n —r) x (n —m) and J = AR~ is computed by
solving the upper triangular system JR = Ay).

MATHCONTROL note: Algorithm 12.8.1 has been implemented in MATCON-
TROL functions sylvobsc.

Example 12.8.1. Consider solving the Eq. (12.8.1) using Algorithm 12.8.1 with

-0.02 0.005 24 32 1

—0.14 044 —13 -3 1
A=1 0 0018 —16 12| B=1,]

0 0 1 0 1

010 0 ~1 0
C:(o 0 0 57.3)’ and F=< I —2>'

Then,n =4, r=2, m=1.
Step 1. W = (—0.5, —0.5, —0.5, —0.5)T .

—0.5 —0.5 -0.5
0.8333 -0.1667 —0.1667
—0.1667 0.8333 —-0.1667 }°
-0.1667 —0.1667 0.8333

W, =

1.5144
Step 2. A = W] AW, = (—0.2946) ,
—0.9856
0.9015 —1.6430 0.5596
Ay =WJAW, =1 0.1701 -2.5976 2.9907 |,
—0.4185 —0.2230 1.5604

0.5
Cr=CWi={_265)

0.8333 —0.1667 —0.1667

C2‘CW2—<—9.55 —9.55 47.75)

Step3. 0 = (—0.0174 —0.9998

—0.9998 0.0174) . R=28654.

Section 12.9: OPTIMAL STATE ESTIMATION: THE KALMAN FILTER 499

Stepd. E = 0TC, = (9.5340 9.5515 —47.7398>’

—0.9998 0 0.9998

Ey = (—0.9998 0 0.9998)

A 0.3976 —2.1478 1.96
Step5.A = Ay — A|\R'E; = | —0.0721 -2.4944 2.4999
—0.0905 0.1056 —0.0817

6= (!)

The solution Z of the Sylvester equation: Z A—FZ=GyE,
7 (—0.6715 0.9589 —0.0860>

Choose

—0.2603 -0.5957 0.9979

Step 6. G; = ZA R~ = (—0.0424).

—0.0420

_ T [—0.9991 0.0598
G=(61,G)Q0 = (0.0007 0.0419)’

X = —0.1007 —-0.7050 0.9254 —0.1196
T \-0.0709 -0.2839 -0.6199 09743 /-

Verify:

(i) |IXA—-FX—GC|l=0010"3,

3
(ll) XB =10 (0. 1000)) and

(iii) rank (é‘() = 4.
Note: If G, were chosen as Gy = (}) , then the solution X would be rank-deficient
and consequently (g) would be also rank-deficient. Indeed, in this case,

¥ = —-0.1006 —0.7044 0.9246 —0.1195
T \-0.1006 —-0.7044 0.9246 -0.1195)°

which has rank 1.

12.9 OPTIMAL STATE ESTIMATION: THE KALMAN FILTER

So far we have discussed the design of an observer ignoring the “noise” in the
system, that is, we assumed that all the inputs were given exactly and all the out-
puts were measured exactly without any errors. But in a practical situation, the

500 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

measurements are always corrupted with noise. Therefore, it is more practical to
consider a system with noise. In this section, we consider the problem of finding the
optimal steady-state estimation of the states of a stochastic system. Specifically,
the following problem is addressed.

Consider the stochastic system:
x(t) = Ax(@®)+ Bu(@®)+ Fw(@)
y(t) = Cx(t) + v(1),

where w(?) and v(¢) represent “noise” in the input and the output, respectively.
The problem is to find the linear estimate x(¢) of x (¢) from all past and current
output {y(s), s < t} that minimizes the mean square error:

E[|x() = 211, ast — o0, (12.9.2)

(12.9.1)

where E[z] is the expected value of a vector z.

The following assumptions are made:

1. The system is controllable and observable. (12.9.3)
Note that the controllability assumption implies that the noise w(r) excites
all modes of the system and the observability implies that the noiseless output
y(t) = Cx(t) contains information about all states.
2. Both w and v are white noise, zero-mean stochastic processes.
That is, for all t and s,

E[w()] =0, Elv()] =0, (12.9.4)
Elw®wl(s)] = W@ —), (12.9.5)
Elvit)v (s)] = V@ — 5), (12.9.6)

where W and V are symmetric and positive semidefinite and positive
definite covariance matrices, respectively, and § (¢ —) is the Dirac delta
function.

3. The noise processes w and v are uncorrelated with one another, that is,

E[w(t)v (s)] = 0. (12.9.7)

4. The initial state xg is a Gaussian zero-mean random variable with known
covariance matrix, and uncorrelated with w and v. That is,
Elxgl =0,

ElxoxTl =S, Elow™(0]=0, Elxu ()] =0, (12.9.8)

where § is the positive semidefinite covariance matrix.

Section 12.9: OPTIMAL STATE ESTIMATION: THE KALMAN FILTER 501

The following is a well-known (almost classical) result on the solution of the
above problem using an algebraic Riccati equation (ARE). For a proof, see Kalman
and Bucy (1961). For more details on this topic, see Kailath et al. (2000).

Theorem 12.9.1. Under the assumptions (12.9.3)—(12.9.8), the best estimate
X(t) (in the linear least-mean-square sense) can be generated by the Kalman
filter (also known as the Kalman-Bucy filter).

)é(t) = (A — K¢O)x(t) + Bu(t) + Key(0), (12.9.9)

where Ky = X;CTV =1 and Xy is the symmetric positive definite solution of
the ARE:

AX + XAT - xcTvlex + FWFT =o. (12.9.10)
Definition 12.9.1. Thematrix Ky = X;CTV =\ is called the filter gain matrix.

Note: The output estimate y(¢) is given by y(¢) = Cx(¢).
The error between the measured output y(¢) and the predicted output Cx(z) is
given by the residual r(t):

r(t) =y@) — Cx().
where X is generated by (12.9.9).

Algorithm 12.9.1. The State Estimation of the Stochastic System Using

Kalman Filter
Inputs.

1. The matrices A, B, C, and F defining the system (12.9.1)
2. The covariance matrices V and W (both symmetric and positive
definite).
Output. An estimate % (t) of x(t) such that E[||x(t) — £(¢)||*] is minimized,
ast — oo.
Assumptions. (12.9.3)-(12.9.8).
Step 1. Obtain the unique symmetric positive definite solution Xt of the ARE:

AXs + Xe AT = X:CTVv7ICXs + FWFT = 0.

Step 2. Form the filter gain matrix Ky = X;CTv—1,
Step 3. Obtain the estimate x(t) by solving (12.9.9).

Duality Between Kalman Filter and the LQR Problems

The ARE (12.9.10) in Theorem 12.9.1 is dual to the Continuous-time Algebraic
Riccati Equation (CARE) that arises in the solution of the LQR problem. To

502 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

distinguish it from the CARE, it will be referred to as the Continuous-time Filter
Algebraic Riccati Equation (CFARE).

Using this duality, the following important properties of the Kalman filter,
dual to those of the LQR problem described in Chapter 10, can be established
(Exercise 12.15).

1. Guaranteed stability. The filter matrix A — K¢ C is stable, that is, ReA; (A —
KeC) < 0; i =1,2,...,n, where A;,i = 1, ..., n, are the eigenvalues
of A — K;C.

2. Guaranteed robustness. Let V be a diagonal matrix and let W = [. Let
Gxr(s) and GroL (s) denote, respectively, the Kalman-filter loop-transfer
matrix and the filter open-loop transfer matrix (from w(t) to y(z)), that is,

Gke(s) = C(sI — A) 7 K¢ (12.9.11)

and
GroL(s) = C(sI — A)'F. (12.9.12)

Then the following equality holds:
(I + Gke&HVUT + Gke(5)* = V + GrorL(5)GEoL(s). (12.9.13)
Using the above equality, one obtains
(I + Gxr(s)U + Gxr(s))* > L (12.9.14)
In terms of singular values, one can then deduce that
Omin({ + Gkr(s)) > 1 (12.9.15)

or
omax(I + Gxr(s) ™! < 1

and
omin(! + Gg(s)) > 1. (12.9.16)

See the article by Athans on “Kalman filtering” in the Control Handbook
(1996, pp. 589-594), edited by W.S. Levine, IEEE Press/CRC Press.
Example 12.9.1. Consider the stochastic system:

x(2) = Ax(t) + Bu(t) + w(t),
y() = Cx(t) +v(t)

with A, B, and C as in Example 12.4.1.

Section 12.9: OPTIMAL STATE ESTIMATION: THE KALMAN FILTER 503

Take

W = BB", v:((l) ?) F = Iiya.

Step 1. The symmetric positive definite solution X ¢ of the CFARE
AX+XAT - XxC"VICX + FWFT =0
8.3615 0.0158 0.0187 —-0.0042
0.0158 9.0660 0.0091 —0.0031

0.0187 0.0091 0.0250 0.0040
—0.0042 —-0.0031 0.0040 0.0016

Xf =

Step 2. The filter gain matrix Ky = XeCTyv1is

0.0158 —0.2405
9.0660 —0.1761
0.0091 0.2289
—0.0031 0.0893

K¢ =

The optimal state estimator of x(¢) is given by
() = (A — KsO)R(t) + Bu(t) + Key(@).

The filter eigenvalues, that is, the eigenvalues of A — KfC, are {-0.0196,
—8.6168, —3.3643 £ j2.9742}.

MATLAB note: The MATLAB function kalman designs a Kalman state estima-
tor given the state-space model and the process and noise covariance data. kalman
is available in MATLAB Control Systemn Toolbox.

Comparison of the state and the estimate for Example 12.9.1: In Figure 12.6
we compare the actual state with the estimated state obtained in Example 12.9.1
withx(0) =20) = (-6 —1 1 2Tandu(r)=H@®HA 1 1 1)T, where
H (t) is the unit step function. Only the first and second variables are compared.
The solid line corresponds to the exact state and the dotted line corresponds to the
estimated state. The graphs of the second variables are indistinguishable.

The Kalman Filter for the Discrete-Time System

Consider now the discrete stochastic system:

X = Ax; + Buy + Fwy,
kel kT Pk k (12.9.17)
vk = Cxp + vy,

where w and v are the process and measurement noise. Then, under the same
assumptions as was made in the continuous-time case, it can be shown that the

504 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

x1(H)

(b) 0
-500
€ 1000}
=
—1500
— State
— Estimate
_2000] 1 1 1
0 1 2 3 4 5 6
Time ¢

FIGURE 12.6: The (a) first and (b) second variables of the state x(z) and
estimate X (), obtained by Kalman filter.

state error covariance is minimized in steady-state when the filter gain is given by
Kq = AX4CT(CXyCT + V)7, (12.9.18)

where X4 is the symmetric positive semidefinite solution of the Riccati equation:
X=AX-xctcxc"+vytex)At + FWFT, (12.9.19)

and V and W are the symmetric positive definite and positive semidefinite
covariance matrices, that is,

Eluv]]=Véy, E[ww]]=Wéy; (12.9.20)
and
o ifk#
8j = {1 . (12.9.21)

For details, see Glad and Ljung (2000, pp. 137-138).

Definition 12.9.2. In analogy with the continuous-time case, the discrete-time
algebraic Riccati equation (DARE) (12.9.19), arising in discrete Kalman filter
will be called the discrete filter algebraic Riccati equation or DFARE, for short.

Section 12.10: THE LINEAR QUADRATIC GAUSSIAN PROBLEM 505

12.10 THE LINEAR QUADRATIC GAUSSIAN PROBLEM

The linear quadratic regulator (LQR) problems deal with optimization of a per-
formance measure for a deterministic system. The Linear Quadratic Gaussian
(LQG) problems deal with optimization of a performance measure for a stochastic
system.

Specifically, the continuous-time LQG problem is defined as follows:

Consider the controllable and observable stochastic system (12.9.1) and the
quadratic objective function

1 T
= lim —E T TR
JQG Tgnoo 2T [,/;T(x Qx tu u)dt:l ’

where the weighting matrices Q and R are, respectively, symmetric posi-
tive semidefinite and positive definite. Suppose that the noise w(t) and v(z)
are both Gaussian, white, zero-mean, and stationary processes with positive
semidefinite and positive definite covariance matrices W and V. The problem
is to find the optimal control u(¢) that minimizes the average cost.

Solution of the LQG Problem via Kalman Filter

The solution of the LQG problem is obtained by combining the solutions of the
deterministic LQR problem and the optimal state estimation problem using the
Kalman filter (see the next subsection on the separation property of the LQG
design).

The control vector u(t) for the LQG problem is given by

u(t) = —Kcx(1), (12.10.1)
where

(i) the matrix K is the feedback matrix of the associated LQR problem, that is,

K.=R'BTx, (12.10.2)
X satisfying the CARE: XcA + ATX.+ O — Xc.BR™'BTX. =0.
(12.10.3)

(ii) the vector x(¢) is generated by the Kalman filter:
(1) = (A — KfO)R(t) + Bu(t) + Kyy(@). (12.10.4)
The filter gain matrix Ky = X;CTV ™! and X satisfies the CFARE
AXs+ X AT — X;,CTVICXs + FWFT = 0. (12.10.5)

506 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

u X =Ax+Bu+Fw y
- y=Cx+v
. Kalman
x filter

FIGURE 12.7: The LQG design via Kalman filter.

For a proof of the above, see Dorato et al. (1995).
The LQG design via Kalman filter is illustrated in Figure 12.7.

The LQG Separation Property

In this section, we establish the L.QG separation property. For the sake of conve-
nience, we assume that F = /. By substituting (12.10.1) into (12.10.3), we obtain
the compensator:

$(1) = (A — BK. — KtO)i (1) + Key (1),

x(1) =(BRe— Ky)x(1) + Key(t) (12.10.6)

u(t) = —K&(1).

The transfer function M (s) of this compensator (from y(#) to u(t)) can be easily
written down:

M(s) = —K.(sI — A+ BK. + K;C)" K. (12.10.7)

From (12.10.6) and (12.9.1), it is easy to see that the closed-loop matrix satisfies
the differential equation

O\ _ [A _BK. () I 0\ (w()
i) T\kec a-Bk.—kic)\zy) T\o k) \vy)
(12.10.8)

Define the error vector
e(t) = x(t) — x(t). (12.10.9)

Then from (12.10.8) and (12.10.9), we obtain
X)) _ [A- BK. BK. x(t) I 0 w(?)
)=\ 0o a-kc)\er) T\ -k \vy)

Thus, the 2n closed-loop eigenvalues are the union of the n eigenvalues of A— BK
and the n eigenvalues of A — K¢ C.

Section 12.10: THE LINEAR QUADRATIC GAUSSIAN PROBLEM 507

Furthermore, if (A, B) is controllable and (A, C) is observable, then both the
matrices A — BK. and A — K+C are stable. However, the matrix A — BK. — K;C
is not necessarily stable.

Algorithm 12.10.1. The Continuous-time LQG Design Method
Inputs.

(1) The matrices A, B, C, and F defining the system (12.9.1).
(i) The covariance matrices V and W.

Output. The control vector u(t) generated by the LOG regulator.

Assumptions. (12.9.3)-(12.9.8).

Step 1. Obtain the symmetric positive definite stabilizing solution X of the
CARE:

XA+ATX - XBR'BTX+ 0 =0. (12.10.10)
Step 2. Compute K. = R 1BTX,
Step 3.
3.1. Solve the CFARE:

AX + XAT - xcTv-lcx + FWFT =0 (12.10.11)

to obtain the symmetric positive definite stabilizing solution X.
3.2. Compute filter gain matrix

Ki = X;CTyv 1L, (12.10.12)
Step 4. Solve for x(t):
() = (A — BK. — K;O)R(t) + Key(1), #(0) = . (12.10.13)
Step 5. Determine the control law:

u(t) = —K.x(1). (12.10.14)

Remarks

e Though the optimal closed-loop system will be asymptotically stable, the
LQG design method described above does not have the same properties as
the LQR design method; in fact, most of the nice properties of the LQR
design are lost by the introduction of the Kalman filter. See Doyle (1978)
and Zhou et al. (1996, pp. 398-399).

508 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

e Overall, the LQG design has lower stability margins than the LQR
design and its sensitivity properties are not as good as those of the LQR
design.

e It might be possible to recover some of the desirable properties of the LQR
design by choosing the weights appropriately. This is known as the Loop
Transfer Recovery (LTR). The details are beyond the scope of this book.
See Doyle and Stein (1979, 1981) and the book by Anderson and Moore
(1990).

Example 12.10.1. We consider the LQG design for the helicopter problem of
Example 12.9.1, with

0 =CTC and R = by,

and the same W and V.
Step 1. The stabilizing solution X of the CARE (computed by MATLAB function
care) is
0.0071 —-0.0021 -0.0102 -0.0788
—0.0021 0.1223 0.0099 —0.1941
—0.0102 0.0099 41.8284 174.2
—0.0788 —0.1941 1742 1120.9

X =

Step 2. The control gain matrix K is

1T, _ (—00033 00472 14.6421 60.8894
Ke=R BXC—<0.0171 ~1.0515 02927 32460)

Step 3. The filter gain matrix K¢ computed in Example 12.9.1 is

0.0158 —0.2405
9.0660 —0.1761
0.0091 0.2289
—0.0031 0.0893

Kf =

The closed-loop eigenvalues: The closed-loop eigenvalues are the union of the
eigenvalues of A — BK_ (the controller eigenvalues) and those of A — K¢C (the
filter eigenvalues):

{—3.3643 £2.9742, —0.0196, —8.6168}
U {-0.0196, —8.6168, —3.3643 +2.9742}.

MATLAB note: The MATLAB function (from the control system toolbox)
lggreg forms the LQG regulator by combining the Kalman estimator designed
with Kalman and the optimal state feedback gain designed with Igr. In case of a
discrete-time system, the command dlqgr is used in place of Iqr.

Section 12.11: SOME SELECTED SOFTWARE 509

12.11 SOME SELECTED SOFTWARE
12.11.1 MATLAB Control System Toolbox
LQG design tools

kalman Kalman estimator
kalmd Discrete Kalman estimator for continuous plant
lggreg Form LQG regulator given L Q gain and Kalman estimator.

12.11.2 MATCONTROL
SYLVOBSC Solving the constrained multi-output Sylvester-observer

equation

SYLVOBSM Solving the multi-output Sylvester-observer equation
SYLVOBSMB Block triangular algorithm for the multi-output Sylvester-

observer equation

12.11.3 CSP-ANM

Design of reduced-order state estimator (observer)

The reduced-order state estimator using pole assignment approach is
computed by ReducedOrderEstimator [system, poles].

The reduced-order state estimator via solution of the Sylvester-
observer equation using recursive bidiagonal scheme (a variation
of the triangular scheme of van Dooren (1984)) is computed by
ReducedOrderEstimator [system, poles, Method —
RecursiveBidiagonal] and ReducedOrderEstimator [system,
poles, Method — RecursiveBlockBidiagonal] (block version of
the recursive bidiagonal scheme).

The reduced-order state estimator via solution of the Sylvester-
observer equation using recursive triangular scheme is computed by
ReducedOrderEstimator [system, poles, Method —
RecursiveTriangular] and ReducedOrderEstimator [system,
poles, Method — RecursiveBlockTriangular] (block version
of the recursive triangular scheme).

12.11.4 SLICOT

FBOIRD Time-invariant square root covariance filter (Hessenberg form)
FBOITD Time-invariant square root information filter (Hessenberg form)
FBO1VD One recursion of the conventional Kalman filter

FDO1AD Fast recursive least-squares filter.

510 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

12.11.5 MATRIXy

Purpose: Calculate optimal state estimator gain matrix for a discrete time system.

Syntax: [EVAL, KE]=DESTIMATOR (A, C, QXX, QYY, QXY) OR
[EVAL, KE, PI=DESTIMATOR (A, C, QXX, QYY, QXY)

Purpose: Calculate optimal state estimator gain matrix for a continuous time
system.

Syntax: [EVAL, KE]=ESTIMATOR (A, C, QXX, QYY, QXY)
[EVAL, KE, P}J=ESTIMATOR (A, C, QXX, QYY, QXY)

Purpose: Given a plant and optimal regulator, this function designs an estimator
which recovers loop transfer robustness via the design parameter RHO. Plots of
singular value loop transfer response are made for the (regulator) and (estimator
+ regulator) systems.

Syntax:

[SC, NSC, EVE, KE, SLTF, NSLTF]=LQELTR (S, NS, QXX, QYY, KR, RHO,
WMIN, WMAX,

{NPTS}, {OPTION}); OR

[SC, NSC, EVE, KR, SLTF, NSLTF]=LQRLTR (S, NS, RXX, RUU, KE, RHO,
OMEGA,

{OPTION});

Purpose: Given a plant and optimal estimator, this function designs a regulator
which recovers loop transfer robustness via the design parameter RHO. Plots of
singular value loop transfer response are made for the (estimator) and (regulator +
estimator) systems.

Syntax:

[SC, NSC, EVR, KR, SLTF, NSLTF]=LQRLTR (S, NS, RXX, RUU, KE, RHO,
WMIN, WMAX,

{NPTS}, {OPTION}); OR

[SC, NSC, EVR, KR, SLTF, NSLTF]=LQRLIR (S, NS, RXX, RUU, KE, RHO,
OMEGA,

{OPTION});

12.12 SUMMARY AND REVIEW

In Chapters 10 and 11 we have discussed feedback stabilization, EVA and related
problems. Solutions of these problems require that the states are available for
measurements. Unfortunately, in many practical situations, all the states are not

Section 12.12: SUMMARY AND REVIEW 511

accessible. One therefore needs to estimate the states by knowing only input and
output. This gives rise to state estimation problem, which is the subject matter of
this chapter.

Full State Estimation

The states can be estimated using

e EVA approach (Theorem 12.2.1)
o Solving the associated Sylvester-like matrix equation, called the Sylvester-
observer equation (Algorithm 12.3.1).

In “the eigenvalue assignment approach,” the states x can be estimated by
constructing the observer

() = (A — KCO)i@) + Ky(t) + Bu(t),

where the matrix K is constructed such that A — K C is a stable matrix, so that the
errore(t) = x(t) — x(t) > 0ast — o0.

Using “the Sylvester equation approach,” the states are estimated by solving
the Sylvester-observer equation

XA—-FX =GC,

where the matrix F is chosen to be a stable matrix and G is chosen such that the
solution X is nonsingular. The estimate x(¢) is given by x(¢) = X ~l7(1), where
z(¢) satisfies z(¢) = Fz(t) + Gy(¢) + X Bu(t).

Reduced-Order State Estimation

If the matrix C has full rank r, then the full state estimation problem can be reduced
to the problem of estimating only the n — r states.

Again, two approaches: the EVA approach and the Sylvester-observer matrix
equation can be used for reduced-order state estimation.

Reduced-order state estimation via EVA (Algorithm 12.4.1) is discussed in
Section 12.4.1. Here the EVA problem to be solved is of order n — r.

In the Sylvester equation approach for reduced-order state estimation, one solves
a reduced-order equation

XA -FX =GC

by choosing F as an (n —r) x (n —r) stable matrix and choosing G asan (n—r) xr
matrix such that the solution matrix X has full rank. The procedure is described
in Algorithm 12.4.2.

512 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Two numerical methods for the multi-output equation, both based on reduction
of the pair (A, C) to the observer-Hessenberg pair (H, C),are proposed to solve the
above reduced-order Sylvester-observer equation. These methods are described in
Section 12.7 (Algorithms 12.7.1 and 12.7.2).

Optimal State Estimation: The Kalman Filter

If there is “noise” in the system, then one has to consider the state estimation prob-
lem for a stochastic system. The optimal steady-state estimation of a stochastic
system is traditionally done by constructing the Kalman filter.

For the continuous-time stochastic system (12.9.1), the Kalman filter is given by

£(0) = (A — KeC)E(t) + Bu(t) + Key (1),

where Ky = X;CTV~L and X¢ the symmetric positive definite solution of the
CFARE: AX + XAT - XCTv-ICX + FWFT = 0.
The matrices V and W are the covariance matrices associated with “noise” in
the output and input, respectively. The matrix Ky is called the Kalman filter gain.
It can be shown that under the assumptions (12.9.3)-(12.9.8), the above Riccati
equation has a symmetric positive definite solution and the estimate X(z) is such
that

Elllx(2) — (01111

is minimized as t — 00.
Like the LQR design, the Kalman filter also possesses guaranteed stability and
robustness properties:

e The matrix A — K¢C is stable.
o Omin(l +Gkr(s)) =1
o omin(l + Gggp(s)) > 3,

where Ggr(s) = C(sI — A)7'K.
For the discrete-time system, the DFARE to be solved is

X=AX-XCTCcxXcT"+Vv) 'lcx) AT+ FWFT
and the discrete Kalman filter gain is given by
Kq = XsCT(CXaCT + V)7,

where Xq4 is the stabilizing solution of the above discrete Riccati equation
(DFARE).

Section 12.13: CHAPTER NOTES AND FURTHER READING 513

The Linear Quadratic Gaussian (LQG) Problem

The LQG problem is the problem of finding an optimal control that minimizes a
performance measure given a stochastic system. Thus, it is the counterpart of
the deterministic LQR problem for a stochastic system.

Given the stochastic system (12.9.1) and the performance measure Jog defined
in Section 12.10, the optimal control #(¢) for the LQG problem can be computed as

u(t) = —Kcx(),

where K. = R™'BTX,, X, being the solution of the CARE arising in the solution
of the deterministic LQR problem. The estimate x(¢) is determined by using the
Kalman filter. Specifically, x(¢) satisfies

£(1) = (A = K:C)&(1) + Bu(t) + Key (1),

where K is the Kalman filter gain computed using the stabilizing solution of the
CFARE.

Thus, the LQG problem is solved by first solving the LQR problems followed
by constructing a Kalman filter.

Unfortunately, the LQG design described as above does not have some of the
nice properties of the LQR problem that we have seen before in Chapter 10. They
are lost by the introduction of the Kalman filter.

12.13 CHAPTER NOTES AND FURTHER READING

State estimation is one of the central topics in control systems design and has been
discussed in many books (Kailath 1980; Chen 1984; Anderson and Moore 1990;
etc.). The idea of reduced-order observers is well-known (Luenberger (1964, 1966,
1971, 1979)). The treatment of Section 12.4 on the reduced-order estimation has
been taken from Chen (1984).

The term “Sylvester-observer equation” was first introduced by the author
(Datta 1994). Algorithm 12.7.1 was developed by Van Dooren (1984), while
Algorithm 12.7.2 was by Carvalho and Datta (2001). For large-scale solution of
this equation, see Datta and Saad (1991); for computing an orthogonal solution
to the Sylvester-observer equation, see Datta and Hetti (1997). For a discussion
of the numerical properties of the method in Datta and Saad (1991), see Calvetti
etal. (2001). A parallel algorithm for the multi-output Sylvester-observer equation
appears in Bischof ef al. (1996). For numerical solution of the Sylvester-observer
equation with F as the JCF see Tsui (1993) and the references therein. For other
algorithms for this problem see Datta (1989) and Datta and Sarkissian (2000). The
last paper contains an algorithm for designing a “functional observer,” which
can be used to compute the feedback control law y = Kx(¢) without any matrix
inversion.

514 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

The method for the constrained Sylvester-observer equation presented in
Section 12.8 was developed by Barlow et al. (1992). For numerical methods deal-
ing with nearly singular constrained Sylvester-observer equation, see Ghavimi and
Laub (1996).

The topic of Kalman filter is now a classical topic. Since the appearance of
the pioneering papers by Kalman (1960), Kalman and Bucy (1961), and Kalman
(1964), many books and papers have been written on the subject (see, e.g.,
Kwakernaak and Sivan 1972; Anderson and Moore 1979; Maybeck 1979; Lewis
1986, 1992; etc.).

A special issue of IEEE Transactions on Automatic Control, edited by Athans
(1971b) was published on the topic of LQG design, which contains many important
earlier papers in this area and an extensive bibliography on this subject until 1971.
See Dorato et al. (1995) for up-to-date references. For aerospace applications of
LQG design see McLean (1990). Gangsaas (1986), Bernstein and Haddad (1989)
have discussed LQG control with Hs, performance bound.

We have not discussed in detail the stability and robustness properties of the
LQG design. See the papers of Safonov and Athans (1977) and Doyle (1978) in
this context.

For discussions on the LQG loop transfer recovery, see the original paper of
Doyle and Stein (1979) and the survey of Stein and Athans (1987), and Section 7.2
of the recent book by Dorato et al. (1995).

Exercises

12.1 Consider Example 5.2.5 with the following data: M = 2,m = 1, g = 0.18, and
I=1.Take C = (1,1,1,1).
(i) Find a feedback matrix K such that the closed-loop matrix A — BK has the
eigenvalues —1, —2, -3, —4.

(ii) Assuming now that the state x is not available for feedback, construct a full-
dimensional observer using (a) the eigenvalue assignment method and (b) the
Sylvester-observer equation. Compare the results by plotting the error between
the true and observed states.

(iii) Construct a three-dimensional reduced-order observer using (a) the eigen-
value assignment method and (b) the Sylvester-observer equation. Compare
the results by plotting the error between the true and observed states.

In each case (ii) and (iii}, choose the observer eigenvalues to be three times as those
of the matrix A — BK.

12.2 Arethe conditions of Theorem 12.3.1 also necessary? Give reasons for your answer.

12.3 Prove that the pair (A, C) is observable if and only if the pair (A3, Ajp) is
observable, where A1y and A, are given by (12.4.2).

124 Establish the “separation property” stated in Section 12.5 for a full-dimensional
observer.

12.5 Prove that the transfer function matrix of the combined system (12.5.2) of the state
feedback and observer can be computed from

x = (A - BK)x + Br, y=Cx

12.6

12.7

12.8
12.9
12.10

12.11

12.12

12.13

Section 12.13: CHAPTER NOTES AND FURTHER READING 515

and the transfer function matrix is
G(s) =C(sI — A+ BK)™'B.

How do you interpret this result?

Construct an example to show that the necessary conditions for the unique solution
X of the Sylvester equation stated in Theorem 12.6.1 are not sufficient, unless
r=1

Using the ideas from the proof of Theorem 12.6.1 prove that necessary conditions
for the existence of a unique full rank solution X in XA — FX = GC such that

T = (;) is nonsingular are that (A, C) is observable and (F, G) is controllable.

Prove further that for the single-output case (r = 1), the conditions are sufficient
as well.

Deduce Theorem 12.6.1 from Theorem 12.6.2.

Workout a proof of Algorithm 12.8.1 (consult Barlow et al. (1992)).

Prove that the EVA approach and the Sylvester-observer equation approach,
both for full-dimensional and reduced-order state-estimation, are mathematically
equivalent.

Compare flop-count of Algorithm 12.4.1 with that of Algorithm 12.4.2. (To imple-
ment Step 3 of Algorithm 12.4.1, assume that Algorithm 11.3.1 has been used, and
to implement Step 2 of Algorithm 12.4.2, assume that Algorithm 12.7.2 has been
used).

Functional estimator (Chen (1984, p. 369)). Consider the problem of finding an
estimator of the form:

z(t) = Fz(t) + Gy(t) + Hu(1),
w(t) = Mz(t) + Ny(),

where M and N are row vectors, so that w(t) will approach kx(r) for a constant
row vector k, as t — 0.
(a) Show thatif M and N are chosen so as to satisfy the equation:

MT + NC =k,
with T given by
TA—-FT =GC,
H=TB,

where A and B are the same as in (12.4.2), and € = cS™!, k=kS"1 and
F is a stable matrix, then w(z) will approach kx(t) as t — .

(b) Based on the result in (a), formulate an algorithm for designing such an
estimator and apply your algorithm to Example 12.4.1.

Prove thatif (A, C) is observable, then a state-estimator for the discrete-time system

Xg4+1 = Axg + Buy,
ik = Cxg

516 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

may be constructed as
Xk41 = A% + Bugp + L(yi — Cip),

where L is such that the eigenvalues of A — LC have moduli less than 1.

12.14 Show that for a “deadbeat” observer, that is, for an observer with the “observer
eigenvalues” equal to zero, the observer state equals the original state.

12.15 Establish the “Guaranteed stability” and “Guaranteed robustness” properties
of the Kalman Filter, stated in Section 12.9.

12.16 Design an experiment for the Kalman filter estimation of the linearized state-space
model of the motion of a satelite in Example 5.2.6, choosing the initial values of
the variables and the covariance matrices appropriately. Show the error behavior
by means of a graph.

12.17 Design an experiment to show that the LQG design has lower stability margins than
the LQR design.

12.18 Rework Algorithm 12.4.1 using the QR decomposition of the matrix C, so that the
explicit inversion of the matrix § can be avoided.

References

Alfriend K.T. “Special section on robust control design for a benchmark problem,” AIAA J.
Guidance, Control and Dynam., Vol. 15, pp. 1060~1149, 1992.

Anderson B.D.O. and Moore I.B. Optimal Control: Linear Quadratic Methods, Prentice
Hall, Englewood Cliffs, NJ, 1990.

Anderson B.D.O. and Moore J.B. Optimal Filtering, Prentice Hall, Englewood Cliffs, NJ,
1979.

Anderson E., Bai Z., Bischof C., Blackford S.., Demmel J., Dongarra J., Du Croz J.,
Greenbaum, A. Hammarling S., McKenney A., and Sorensen D. LAPACK Users’
Guide, 3rd edn, SIAM, Philadelphia, 1999.

Athans M. “The role and use of the stochastic linear quadratic Gaussian problem in control
system design,” IEEE Trans. Autom. Control, Vol. AC-16, pp. 529-552, 1971a.

Athans M. (ed.), “Special issue on linear-quadratic-Gaussian problem,” IEEE Trans. Autom.
Control, Vol. AC-16, 1971b.

Barlow J.B., Monahemi M.M., and O’Leary D.P. “Constrained matrix Sylvester equations,”
SIAM J. Matrix Anal. Appl., Vol. 13, pp. 1-9, 1992.

Bernstein D.S. and Haddad WM. “LQG Control with H* performances bound: A Riccati
equation approach,” IEEE Trans. Autom. Control, Vol. AC-34, pp. 293-305, 1989.

Bhattacharyya S.P. and DeSouza E. “Controllability, observability and the solution of AX —
XB = C,” Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981.

Birdwell J.P. and Laub A.J. “Balanced singular values for LQG/LTR design,” Int. J. Control,
Vol. 45, pp. 939-950, 1986.

Bischof C., Datta B.N., and Purkayastha A. “A parallel algorithm for the Sylvester-observer
equation,” SIAM J. Sci. Comput., Vol. 17, no. 3, pp. 686-698, 1996.

Calvetti D., Lewis B., and Reichel L. “On the solution of large Sylvester-observer equation,”
Num. Lin. Alg. Appl., Vol. §, pp. 435451, 2001.

Carvalho J. and Datta B.N. “A block algorithm for the Sylvester-Observer equation arising
in state-estimation,” Proc. IEEE Conf. Dec. Control, Orlando, Florida, 2001.

Section 12.13: CHAPTER NOTES AND FURTHER READING 517

Chen C.-T. Linear System Theory and Design, CBS College Publishing, New York,
1984.

The Control Handbook, edited by William S. Levine, CRC Press and IEEE Press, Boca
Raton, Florida, 1995.

Chiang R.Y. and Safonov M.G. Robust-Control Toolbox for Use with MATLAB, Math
Works, Natick, MA, 1988.

Datta B.N. “Parallel and large-scale matrix computations in control; some ideas,” Lin. Alg.
Appl., Vol. 12, pp. 243-264, 1989.

Datta B.N. “Linear and numerical linear algebra in control theory: some research problems,”
Lin. Alg. Appl., Vol. 197/198, pp. 755-790, 1994.

Datta B.N. and Saad Y. “Arnoldi methods for large Sylvester-like matrix equations and
an associated algorithm for partial spectrum assignment,” Lin. Alg. Appl., Vol. 156,
pp. 225-244, 1991.

Datta B.N. and Sarkissian D. Block algorithms for state estimation and functional observers,
Proc. IEEE Joint Conf. Control Appl. Comput. aided Control Syst. Des., pp. 19-23,
2000.

Datta K., Hong Y.P, and Lee R.B. “Applications of linear transformations to matrix
equations,” Lin. Alg. Appl., Vol. 267, pp. 221-240, 1997.

Datta B.N. and Hetti C. “Generalized Arnoldi methods for the Sylvester-observer equa-
tion and the multi-input pole placement problem,” Proc. IEEE Conf. Dec. Control,
pp. 43794383, 1997.

Dorato P., Abdallah C., and Cerone V. Linear Quadratic Control: An Introduction, Prentice
Hall, Englewood Cliffs, NJ, 1995.

Doyle J.C. and Stein G. “Multivariable feedback design: Concepts for a classical/modern
synthesis,” IEEE Trans. Autom. Control, Vol. AC-26, pp. 4-16, 1981.

Doyle J.C. “Guaranteed margins for LQG regulators,” IEEE Trans. Autom. Control,
Vol. AC-23, pp. 756757, 1978.

Doyle J.C. and Stein G. “Robustness with observers,” IEEE Trans. Autom. Control,
Vol. AC-24, pp. 607-611, 1979.

Friedland B. Control System Design, McGraw-Hill, New York, 1986.

Gangsaas D. “Application of modern synthesis to aircraft control: three case studies,” IEEE
Trans. Autom. Control, Vol. AC-31, pp. 995-1104, 1986.

Ghavimi A. and Laub A.J. “Numerical methods for nearly constrained matrix Sylvester
equations,” SIAM J. Matrix Anal. Appl., Vol. 17, no. 1, pp. 212-221, 1996.

Glad T. and Ljung L. Control Theory: Multivariable and Nonlinear Methods, Taylor and
Francis, London, 2000.

Kailath T., Sayed A .H., and Hassibi B. Linear Estimation, Prentice Hall, Englewood Cliffs,
N1J, 2000.

Kailath T. Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

Kalman R.E. “Contribution to the theory of optimal control,” Bol. Soc. Matem. Mex.,
Vol. 5, pp. 102-119, 1960.

Kalman R.E. and Bucy R.S. “New results in linear filtering and prediction theory,” ASME
Trans. Ser. D: J. Basic Engr., Vol. 83, pp. 95-107, 1961.

Kalman R.E. “When is a linear control system optimal?” ASME Trans. Ser. D: J. Basic
Engr., Vol. 86, pp. 51-60, 1964.

Kucera V. Discrete Linear Control, John Wiley & Sons, New York, 1979.

518 Chapter 12: STATE ESTIMATION: OBSERVER AND THE KALMAN FILTER

Kushner H.J. Introduction to Stochastic Control, Holt, Rinehart, and Winston, New York,
1971.

Kwakernaak H. and Sivan R. Linear Optimal Control Systems, Wiley-Interscience,
New York, 1972.

Lewis F.L. Optimal Control, John Wiley & Sons, New York, 1986.

Lewis FL. Applied Optimal Control and Estimation, Prentice Hall, Englewood Cliffs,
NJ, 1992.

Levine W.S. (ed.) The Control Handbook, CRC Press and IEEE Press, Boca Raton, Florida,
1996.

Luenberger D.G. “Observing the state of a linear system,” IEEE Trans. Mil. Electr., Vol. 8,
74-80, 1964.

Luenberger, D.G. “Observers for multivariable systems,” IEEE Trans. Autom. Control,
Vol. 11, pp. 190-197, 1966.

Luenberger D.G. “An introduction to observers,” IEEE Trans. Autom. Control, Vol. AC-16,
pp- 596602, 1971.

Luenberger D.G. Introduction to Dynamic Systems; Theory, Models, and Applications,
John Wiley & Sons, New York, 1979.

Mahmoud M.S. “Structural properties of discrete systems with slow and fast modes,” Large
Scale Systems, Vol. 3, pp. 227-336, 1982.

MATLAB User’s Guide, The Math Works, Inc., Natick, MA, 1992,

Maybeck P.S. Stochastic Models, Estimation, and Control, Vols. 1-3, Academic Press,
New York, 1979.

McLean D. Automatic Flight Control Systems, International Series in Systems and Control
Engineering, Prentice Hall, London, 1990.

Safonov M.G. and Athans M. “Gain and phase margins of multiloop LQG regulators,” IEEE
Trans. Autom. Control, Vol. AC-22, pp. 173-179, 1977.

DeSouza C.E. and Fragoso M.D. “On the existence of maximal solution for generalized
algebraic Riccati equations arising in stochastic control,” Syst. Contr. Lett. Vol. 14,
pp. 233-239, (1990).

Stein G. and Athans M. “The LQG/LTR procedure for multi-variable feedback control
design,” IEEE Trans. Autom. Control, Vol. AC-32, pp. 105-114, 1987.

Tsui C.-C. “An algorithm for the design of multi-functional observers,” IEEE Trans. Autom.
Control, Vol. AC-30, pp. 89-93, 1985.

Tsui C.-C. “A new approach to robust observer design,” Int. J. Control, Vol. 47, pp. 745-751,
1988.

Tsui C.-C. “On the solution to matrix equation TA — FT = LC,” SIAM J. Matrix Anal.
Appl., Vol. 14, pp. 3344, 1993.

Van Dooren P. “Reduced order observers: a new algorithm and proof,” Syst. Contr. Lett.,
Vol. 4, pp. 243-251, 1984.

Zhou K., Doyle J.C. and Glover K. Robust and Optimal Control, Prentice Hall, Upper
Saddle River, NJ, 1996.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 13

NUMERICAL SOLUTIONS AND
CONDITIONING OF ALGEBRAIC
RICCATI EQUATIONS

Topics covered ‘

e Results on Existence and Uniqueness of Solutions of the CARE and DARI ‘
e Perturbation Analyses and Condition Numbers
I'he Schur Methods, Newton's Methods, and the Matrix Sign Function |
Methods i

Convergence Results for Newton’s Methods

'he Generalized Eigenvector and the Generalized Schur Methods

Inverse-Free Generalized Schur Methods

The Schur and Inverse-Free Schur Methods for the Descriptor Riccati

Equations

e Comparative Study and Recommendations

13.1 INTRODUCTION

This chapter is devoted to the study of numerical solutions of the continuous-time
algebraic Riccati equation (CARE):

XA+A"X+0-XBR'BTX =0 (13.1.1)
and of its discrete counterpart (DARE)
ATXA—X+ Q- ATXB(R + BTXB) " 'BTxA = 0. (13.1.2)
Equation (13.1.1) is very often written in the following compact form:
XA+ ATX + Q- XSX =0, (13.1.3)

519

520 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

where
S =BR'BT. (13.1.4)

Equation (13.1.2) can also be written in the compact form:
ATX(I+SX)'A-X+0=0, (13.1.5)

where S is again as given by (13.1.4).

These equations have long been subject of research in mathematics, physics, and
engineering. They play major roles in many design problems in control and filter
theory. As we have seen in Chapter 10, historically, AREs started as an important
tool in the solution of Linear Quadratic Optimization problems. In recent years,
they became a subject of intensive study, both from theoretical and computational
viewpoints, because of their important roles in state-space solutions of H,, and
robust control problems. For a brief history of the importance, applications, and
historical developments of the AREs, see Bittanti et al. (1991).

The following computational methods for the CARE and DARE are widely
known in the literature and most of them are discussed in Section 13.5 of this
chapter.

1. The Eigenvector Methods (McFarlane 1963; Potter 1966).

2. The Schur Methods and the Structure-Preserving Schur Methods
(Laub 1979; Byers 1983, 1986a, 1990; Bunse-Gerstner and Mehrmann
1986; Mehrmann 1988; Benner et al. 1997c¢).

3. The Generalized Eigenvector, the Generalized Schur, and Inverse-Free
Generalized Methods (Pappas et al. 1980; Van Dooren 1981; Arnold and
Laub 1984; Mehrmann 1991).

4. The Matrix Sign Function Methods (Roberts 1980 [1971]; Denman
and Beavers 1976; Bierman 1984; Gardiner and Laub 1986; Byers 1987;
Kenney and Laub 1995).

5. Newton’s Methods (Kleinman 1968; Hewer 1971; Benner and Byers 1998;
Guo and Lancaster 1998; Guo 1998).

The eigenvector methods are well known to have numerical difficulties in
case the Hamiltonian matrix associated with the CARE or the symplectic matrix
associated with the DARE has some multiple or near-multiple eigenvalues (the
corresponding eigenvectors will be ill-conditioned).

In these cases, the Schur methods, based on the real Schur decompositions of
the Hamiltonian matrix for the CARE and of the symplectic matrix for the DARE,
should be preferred over the eigenvector methods. The Schur method is widely used
in practice for the CARE. Unfortunately, it cannot be applied to the DARE when
A is singular. Indeed, even if A is theoretically nonsingular, but is computationally
close to a singular matrix, the Schur method for the DARE should be avoided. An
alternative for the DARE then is to use the generalized Schur method which is based

Section 13.2: EXISTENCE AND UNIQUENESS OF SOLUTION OF CARE 521

on the Schur decomposition of a matrix pencil and does not involve computation
of the inverse of A. Having said this, it should be noted that the Schur methods
and the generalized Schur methods require explicit computation of the inverse of
the matrix R both for the CARE and the DARE. So, when R is close to a singular
matrix, the methods of choice are the inverse-free generalized Schur methods.

Newton’s methods are iterative in nature and are usually used as iterative refine-
ment techniques for solutions obtained by the Schur methods or the matrix sign
function methods. Table 13.1 presents a comparison of the different methods
and recommendation based on this comparison.

Sections 13.2 and 13.3 deal, respectively, with the results on the existence
and uniqueness of the stabilizing solutions of the CARE and the DARE. The
condition numbers and bounds of the condition numbers of the CARE and
DARE are identified in Section 13.4.

13.2 THE EXISTENCE AND UNIQUENESS OF THE STABILIZING
SOLUTION OF THE CARE

The goal of this section is to derive conditions under which the CARE admits a
unique symmetric positive semidefinite stabilizing solution.
For this we first need to develop an important relationship between the CARE
and the associated Hamiltonian matrix and some spectral properties of this matrix.
Recall from Chapter 10 that associated with the CARE is the 2n x 2rn Hamiltonian
matrix:

A -8
H= (—Q —AT)' (13.2.1)
The Hamiltonian matrix H has the following interesting spectral property.
Theorem 13.2.1. For each eigenvalue % of H, —A is also an eigenvalue of H

(with the same geometric and algebraic multiplicity as A).

Proof. Define the 2n x 2n matrix:

0 I
J=(_I o)’ (13.2.2)

where [is the n x n identity matrix. Then it is easy to see that J "' HJ = ~JHJ =
—HT, which shows that H and —HT are similar. Hence, A is also an eigenvalue
of —HT. Since the eigenvalues of —HT are the negatives of the eigenvalues of H,
and the complex eigenvalues occur in conjugate pairs, the theorem is proved. W

The following theorems show that a solution X of the CARE is determined by
the associated Hamiltonian matrix.

522 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Theorem 13.2.2. A matrix X is a solution of the CARE if and only if the
columns of (}I() span an n-dimensional invariant subspace of the Hamiltonian

matrix H defined by (13.2.1).

I
X

invariant subspace of H, then X is a solution of the CARE.
So, assume there exists an n x n matrix L such that:

1 I
H (X) = (X) L. (13.2.3)

Multiplying both sides of (13.2.3) by J~!, where J is defined by (13.2.2),

we have
1 Iy (1
J'H (X) =J (X) L. (13.2.4)

(I) -E)I), we obtain from (13.2.4)

ENE-(e s

Premultiplying both sides of (13.2.5) by (/, X), we get

Proof. We first prove that if the columns of () span an n-dimensional

Noting that J~! = (

XA+ ATX + Q0 - XSX =0,

showing that X satisfies the CARE.
To prove the converse, we note that if X is a solution of the CARE, then

I A-SX A-SX I
" (X) B (—Q - ATX) - (X(A - sx)> = (X) (A-SX), (13.26)

that is, the columns of (;) span an invariant subspace of H. W

Corollary 13.2.1. If the columns of (i;) span an n-dimensional invariant

subspace of the Hamiltonian matrix H associated with the CARE and X is
invertible, then X = X7 X 1_1 is a solution of the CARE.

Section 13.2: EXISTENCE AND UNIQUENESS OF SOLUTION OF CARE 523

Proof.

The span of the columns of (;;)
_ X1\ -1
= the span of the columns of X
X)) 1

= the span of the columns of (Xz;l_l) .
Therefore, by Theorem 13.2.2, we see that X = X2X1_1 is a solution of
the CARE. H

The next theorem shows how the eigenvalues of the Hamiltonian matrix H are
related to those of the optimal closed-loop matrix.

Theorem 13.2.3. Let X be a symmetric solution of the CARE. Then the eigen-
values of the Hamiltonian matrix H are the eigenvalues of A — BK together
with those of —(A — BK)T, where K = R™'BTX.

X 1

g (I ON(A =S\(I ©
= (L3 (%) (D)

_ A—SX -S
T\-ATX+XA+0-XS5X) —(a-sx)T)°

A—SX —S
= (0 A SX)T>' (13.2.7)

Thus, the eigenvalues of H are the eigenvalues of A — SX together with those of
—(A-8SX)T.
The result now follows by noting that:

Proof. Define T = (1 0), where I and X are n x n. Then,

A—SX=A-BR'B'™X = A-BK.
(Recall that S = BR™'BT) ®H

Symmetric Positive Semidefinite Stabilizing Solutions of the CARE

As we have seen in Chapter 10, several applications require a symmetric positive
semidefinite stabilizing solution of the associated Riccati equation. We derive in
this subsection a necessary and sufficient condition for the existence of such a
solution.

524 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Recall that a symmetric solution X of (13.1.1) is a stabilizing solution if A —
BK =A— BR'BTX = A — SX is stable.
Proof of Theorem 13.2.4 below has been taken from Kimura (1997).

Theorem 13.2.4. Existence and Uniqueness of the Stabilizing Solution.
Assume that R > 0and Q > 0, Q #0.
Then the following conditions are equivalent:

1. The CARE:

XA+ A" - XBR™'BTX + 0 =0 (13.2.8)

has a unique symmetric positive semidefinite stabilizing solution X.
2. (A, B) is stabilizable and the associated Hamiltonian matrix H has no
pure imaginary eigenvalues.

Proof of necessity. First suppose that X is a stabilizing solution of the CARE.
We then show that H does not have an imaginary eigenvalue.

Since X is a stabilizing solution, A — SX is stable, thatis A — BK is stable. From
Theorem 13.2.3, we then have that n eigenvalues of H are stable and the other n
have positive real parts. Thus, H does not have a purely imaginary eigenvalue.

Proof of sufficiency. Next assume that H given in (13.2.1), with
S = BR7'BT, has no eigenvalues on the imaginary axis. We shall then show
that under the assumption of the stabilizability of (A, B), there exists a unique
stabilizing solution of the CARE.

The proof will be divided in several parts.

First of all we note that the stabilizability of (A, B) implies the stabilizability
of (A, §).

Since H has no pure imaginary eigenvalues, there are n stable eigenvalues of
H (by Theorem 13.2.1).

Then,

X1y _ (X1
H <X2> = (X2> E, (13.2.9)

X1

where E is a stable matrix and the columns of (X
2

) form the eigenspace of H

corresponding to these stable eigenvalues.

Section 13.2: EXISTENCE AND UNIQUENESS OF SOLUTION OF CARE 525

X 2T X} is symmetric.
The relation (13.2.9) can be expressed as

AX1 - SXo =X E (13.2.10)

and

—0X; - ATX, = X»E. (13.2.11)
Multiplying (13.2.10) by X g on the left, we have
XJAX| — XJ5X2 = X X|E. (13.2.12)
Now taking the transpose of (13.2.11), we have
X;A=-X{0—-E"X].
Multiplying the last equation by X to the right, we get
ETX]X, = —xTAx, - xTox,. (13.2.13)
Using (13.2.12) in (13.2.13), we then have
E'XJX, + X; X\E = —X15X2 — XL QX|. (13.2.14)

Since S and Q are symmetric, the right-hand side matrix is symmetric,
and therefore the left-hand side matrix is also symmetric. This means that

E'X)X1+ X3 X\E = X{ X2E + ETX] X,

or
ETXTx, — XTX2) + (XTX| — XTX2)E = 0.
Since E is stable, this Lyapunov equation has a unique solution which

implies that XgXl — X?Xz = 0. That is, X;er = XlTXg, proving that
X gX 1 is symmetric.

526 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

B. Xj isinvertible.
Suppose that X is not invertible. Then there exists a vector d # 0
such that

X1d =0. (13.2.15)

Now multiplying the transpose of (13.2.10) by d" to the left and by
X,d to the right, we have

d*XTSX2d = —d"TETXTXod +d"XT A" X2d,
= —d"E"X]X1d +d"XTATX,d = 0
(because XTXZ = X;er and Xd = 0).

Again, since S > 0, we must have

SXod =0.
The Eq. (13.2.10) therefore yields

X(Ed =0.

As this holds for all d € K¢ (X1), this means that K.;(X) is E-invariant,
that is, there exists an eigenvalue u of E such that

Ed =pd, Xid =0, d #0. (13.2.16)

Again, multiplying (13.2.11) by d’ and using the relation (13.2.16), we
obtain

(ul + AN Xod' = 0. (13.2.17)
Also, from (13.2.10) and (13.2.16), we have
$X,d = 0. (13.2.18)

Since Re(u) <0 and (A, S) is stabilizable, we conclude from
(13.2.18) that

X,d' = 0. (13.2.19)

Finally, Xod' = 0 and X;d’ = 0 imply that (;;) does not have the full
rank which contradicts (13.2.9).

Thus, X is nonsingular.

Section 13.2: EXISTENCE AND UNIQUENESS OF SOLUTION OF CARE 527

X is symmetric.

Since X is nonsingular, we have from Corollary 13.2.1 that X = X, X 1_1
is a solution of the CARE and, since X g X is symmetric, so is X. This is
seen as follows:

XT— X =X;TX] - Xox;!
=X T XX - X7 T x T x) x; !
=X T (XTX1 - XTX) X7 = 0.
X is a stabilizing solution.
Multiplying (13.2.10) by X[to the right, we obtain
A-SXX ' =X ExL.

Since E is stable, sois A — SXzXl_1 = A — SX. Thus, X is a stabilizing
solution.

X is unique.

Let X and X be two stabilizing solutions. Then,

ATX +X1A—XSX1+0=0
ATXo + X0A ~ X28X+ 0 =0

Subtracting these two equations, we have
AT(X1 — X2) + (X1 = X2)A + X28X2 — X15X1 =0
or

(A —SXDT(Xy — X2) + (X1 — X2)(A — §X3) = 0.

Since the last equation is a homogeneous Sylvester equation and the
coefficient matrices A — SX; and A — S X, are both stable, it follows that
X1 — X7 =0, thatis, X = X».

X is positive semidefinite.

Since X is symmetric and satisfies (13.2.8), Eq. (13.2.8) can be written
in the form of the following Lyapunov equation:

(A—BK)"X + X(A—BK)=—-0Q — XSX,

where K = R™!BTX. Furthermore, A — BK = A — BR™!BTX =
A — SX is stable. Thus, X can be expressed in the form (see Chapter 7):
X=[" eA=BK1 () + XSX)e4—BK) 4;_ Since Q and S are positive
semidefinite, it follows that X is positive semidefinite. M

528 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Theorem 13.2.5. Let (A, B) be stabilizable and (A, Q) be
detectable. Assume that Q > 0, S > 0. Then the Hamiltonian matrix:

A =S
n=(o %)
associated with the CARE does not have a purely imaginary eigenvalue.

Proof. The proof is by contradiction.

Suppose that H has a purely imaginary eigenvalue jo, where o is a
nonnegative real number, and let (;) be the corresponding eigenvector.

Then,
H(Z) = ja<;>, (;) £ (8). (13.2.20)

Multiplying both sides of (13.2.20) by (s*, r*) to the left, we obtain
S*Ar —r*Qr — s*Ss — r*ATs = ja(s*r +r*s)

or
(s*Ar — P ATs) — r*Qr — s*Ss = ja(s*r +r*s).

Considering the real part of this equation, we get
—r*Qr —s*Ss = 0.

Since S > 0 and Q > 0, we conclude that

Ss=0 (13.2.21)
and
Qr =0. (13.2.22)
So, from (13.2.20), we have
Ar = jar (13.2.23)
and
—ATs = jas. (13.2.24)

Thus, combining (13.2.23) and (13.2.22), we have (A ‘Qf"") » = 0. Since
(A, Q) is detectable, we have r = 0. Similarly, using (13.2.24) and
(13.2.21), one can show that s = 0. This gives us a contradiction that <;)

is an eigenvector. Thus, H cannot have a purly imaginary eigenvalue. W

Section 13.3: EXISTENCE AND UNIQUENESS OF THE STABILIZING SOLUTION 529

An Expression for the Stabilizing Solution

Combining Theorem 13.2.4, Corollary 13.2.1, and Theorem 13.2.5, we arrive at
the following result:

Theorem 13.2.6. An Expression for the Unique Stabilizing Solution of the
CARE. Suppose that (A, B) is stabilizable and (A, Q) is detectable. Assume that
O > 0 and R > 0. Then there exists a unique positive semidefinite stabilizing
solution X of the CARE: XA + ATX — XBR™'BTX + Q = 0. This solution

is given by X = XX 1_1, where the columns of the matrix (i’) span the
2

invariant subspace of the Hamiltonian matrix (13.2.1) associated with its stable
eigenvalues.

Remark

e The following simple example shows that the detectability of (A, Q) is not
necessary for the existence of a symmetric positive semidefinite stabilizing
solution of the CARE.

-1 0 1 0 0
@Y) Gl e

Then (A, B) is stabilizable, but (A, Q) is not detectable. The matrix x =

(8 2) is the stabilizing solution of the CARE and is positive semidefinite.

13.3 THE EXISTENCE AND UNIQUENESS OF THE STABILIZING
SOLUTION OF THE DARE

The existence and uniqueness of the stabilizing solution of the DARE can be
studied via a symplectic matrix which takes the role of the Hamiltonian matrix of
the CARE.

Definition 13.3.1. A matrix M is symplectic if
JIMYT ="M =M,
where J is defined by (13.2.2).

Assume A is invertible and consider the matrix:

A+S(AHTo —s@Aa T
m= ("1). (133D

where § = BR™!BT, Q0= QT, and § = ST.

530 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Then, it can be shown (Exercise 13.3) that

1. M is symplectic. ~
2. If A is a nonzero eigenvalue of M, sois 1/A.

We now state the discrete counterparts of Theorems 13.2.5 and 13.2.6. The proofs
can be found in Lancaster and Rodman (1995).

Theorem 13.3.1. Let (A, B) be discrete-stabilizable and let (A, Q) be
discrete-detectable. Assume that Q > 0 and S > (. Then the symplectic matrix
(13.3.1) has no eigenvalues on the unit circle.

Suppose that the symplectic matrix M has no eigenvalues on the unit circle. Then it
must have n eigenvalues inside the unit circle and » outside it. As in the continuous-

time case, it can then be shown that if the columns of the matrix (i‘) form a basis
2

for the invariant subspace associated with the eigenvalues inside the unit circle, then
X1 is nonsingular and X = XX 1_1 is a unique symmetric positive semidefinite
stabilizing solution of the DARE.

Thus, we have the following theorem as the discrete counterpart of Theo-
rem 13.2.6.

Theorem 13.3.2. An Expression for the Unique Stabilizing Solution of the
DARE. Suppose that (A, B) is discrete-stabilizable and (A, Q) is discrete-
detectable. Assume that Q > 0, R > 0. Then the DARE:

AT™XA - X+ 0 - ATXB(R+ B"XB)"'BTXA =0

has a unique symmetric positive semidefinite discrete-stabilizing solution X.
Furthermore, X is given by X = XzXl_l, where the columns of (il) span
2

the n-dimensional invariant subspace of the symplectic matrix M associated
with the eigenvalues inside the unit circle.

13.4 CONDITIONING OF THE RICCATI EQUATIONS

Before we describe the solution methods for Riccati equations, we state some
results on the perturbation theory of such equations that will help us identify the
condition numbers of the equations. These condition numbers, as usual, will help
us understand the sensitivity of the solutions of the Riccati equations when the
entries of the data matrices are slightly perturbed.

Section 13.4: CONDITIONING OF THE RICCATI EQUATIONS 531

13.4.1 Conditioning of the CARE
Consider first the CARE:

ATX + XA+ Q0 — XSX =0, (13.4.1)

where

S =BR'BT. (13.4.2)

Let AA, AX, AQ, and AS be small perturbations in A, X, Q, and §, respectively.
Suppose that X is the unique stabilizing sotution of the CARE and that X + AX
is the unique stabilizing solution of the perturbed Riccati equation:

(A+AADTX + AX) + (X + AX)(A + AA)
+(Q+A0) — (X +AX)(S+ AS)(X + AX) = 0. (13.4.3)

We are interested in finding an upper bound for the relative error [|AX||/|| X||.

Several results exist in literature. Byers (1985) and Kenney and Hewer (1990)
obtained the first-order perturbation bounds and Chen (1988), Konstantinov et al.
(1990) gave global perturbation bound. Xu (1996) has improved Chen’s result and
Konstantinov et al. (1995) have sharpened the results of Konstantinov et al. (1990).
The most recent result in this area is due to Sun (1998), who has improved Xu’s
result. We present below Sun’s result and the condition numbers derived on the
basis of this result.

Following the notations in Byers (1985), we define three operators:

QZ)=(A-SX)TZ +Z(A - SX), (13.4.4)
02y =0 (Z"X +X2) (13.4.5)
z)=Q (XZX). (13.4.6)

Note: Since the closed-loop matrix Ac == A — SX is stable, Q! exists. In fact,
if Q(Z) = W, then

o0
Z=Q'w) = —/ At WeAc! dy,
0

and |Q |l =1/sep(Al, —Ac).
Define I = |Q7!7!, p = ||®|, and ¢ = ||T1||, where || - || is any unitarily
invariant norm.

532 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Then the following perturbation result due to Sun (1998) holds:
Theorem 13.4.1. A Perturbation Bound for the CARE. Let X and X + AX
be, respectively, the symmetric positive semidefinite stabilizing solutions of the
CARE (13.4.1) and the perturbed CARE (13.4.3).
Then, for sufficiently small [AQ, AA, AS],

Iaxy el 1aeil pIIAII_IIAAII qllst 1AS]
X1 lIIX|| e 1xn Al X usi

(13.4.7)

Using the results of Theorem 13.4.1, Sun has defined a set of condition numbers
of the CARE.
The numbers:

KCARE(Q) KCARE(A) and KéERE(S) =4q

are the absolute condition numbers of X with respectto Q, A, S, respectively.
The numbers:

REL el rlAl REL AN
Q)= (A) = and (S =
ceare(Q) = g ReARE() = feARE 11
are then the relative condition numbers.
Moreover, the scalar:
REL 1//1eny? 5 5
Kcarg(X) = TAGE + (pllAID= + (qliSID (13.4.8)

can be regarded as the relative condition number of X.
Using a local linear estimate, Byers (1985) has obtained an approximate
condition number given by

B 1 (“Q“F

- A ,
KCARE XIr] + pllAle + Q||S||F>

in which the operator norm || - || for defining /, p, and g is induced by the Frobenius
norm || -|[g.

Section 13.4: CONDITIONING OF THE RICCATI EQUATIONS 533

The above is known as Byers’ approximate condition number. Indeed, taking
the Frobenius norm in (13.4.8), and comparing (13.4.8) with Byers’ condition
number, one obtains:

Theorem 13.4.2.
1

B REL B
ﬁKCARE < kCARe(X) = KCaRg

Expressions for /, p, and ¢: If the operator norm || - || for defining I, p, and g
is induced by the Frobenius norm || - ||r, then it can be shown (Sun 1998) that

=175 p=IT (@ X + (X ® LB
and
g=IT"'"XT @ X,
where
T=1n®(A—SX)T+(A—SX)T®I,,, and A — SX is stable.

E is the vec-permutation matrix:

n
E = Z (e,-ejT-) ® (ejel-T).
ij=1

Remark

e A recent paper of Petkov et al. (1998) contains results on estimating the
quantities /, p, and g.

Estimating Conditioning of the CARE using Lyapunov Equations

Computing the quantities /, p, and g using the Kronecker products is compu-
tationally intensive. On the other hand (using the 2-norm in the definition of
Byers’ condition number) Kenney and Hewer (1990) have obtained an upper and
a lower bound of KgARE by means of solutions of certain Lyapunov equations,
which are certainly computationally much less demanding than computing Kro-
necker products. Using these results, ill-conditioning of kcarg can be more easily
detected.

Assume that A — SX is stable and let Hy be the solution to the Lyapunov
equation:

(A-SX)"Hy+ Hi(A—SX)=-X*, k=0,1,2. (13.4.9)

534 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Furthermore, let’s define H 1(1) as follows:
Set O = 2X and solve the successive Lyapunov equations for H and H,

respectively:
(A-SX)TH+HA-5X)=0Q (13.4.10)
and
(A—SX)H+H(A-SX)T =H. (13.4.11)
Let
w
W =2XH and H{”:@(—-).
W]
Define
H 21 Holl'/?| Ha||' /%) A H IS
U= I Holll @Il + 21 HollV/“I1H2 I ATl + 11 H2 ISl (13.4.12)
X1
and
H, HOYIIAN + 1 H201S
[- IHO I QI+ L H; AN+ 1 H IIy (13.4.13)
X1
Then it has been shown that:
L<kBrg <U (13.4.14)

From the relations (13.4.12)-(13.4.14), we see that KgARE will be large (and
consequently the CARE will be ill-conditioned) if Hy, Hl(l), and H, have

large norms (relative to that of X). Conversely, if the norms of Hy, H 1(1), and
H, are not large, then the CARE will be well-conditioned.

If the norms vary widely in the sense that there is a mixture of large and
small norms, then there will be selective sensitivity. More specifically, the
ratios:

_ I HollIQ) _1EDA) . L [

’ ’ a r3 -
X1 X0 11X

measure, respectively, the sensitivity of X with respect to perturbations in the
matrix @, the matrix A, and the matrix S.

Section 13.4: CONDITIONING OF THE RICCATI EQUATIONS 535

Example 13.4.1. An Ill-Conditioned CARE.

1 2 3 1
A=10.0010 4 5], B=1|0], R=1
0 7 8 0
1 1 1
0= 53
3 5

0 0.0003 0.0004
X =10° [0.0003 4.5689 5.3815 | .
0.0004 5.3815 6.3387

The residual norm of the solution X: || XA + ATX — X$SX + Q| = 0(107d).
| Holl = 5.6491 x 10®, ||H{|| = 1.8085 x 10°, and | Ha|| = 4.8581 x 108,

U and L are both of order 108.

Thus, the Riccati equation is expected to be ill-conditioned with the
given data.

Indeed, this is an example of mixed sensitivity. Note that the ratios r, and r3
are large, but ry is quite small. Thus, X should be sensitive with respect to
perturbation in A and S. This is verified as follows.

Let Mpew stand for a perturbed version of the matrix M and X stands for the
new solution of the ARE with the perturbed data.

Case 1. Perturbation in A. Let A be perturbed to A + AA, where

3.169 2.668 3.044
AA=10"8]-1259 —0.5211 -2.364
2798 3791 —3.179

The matrices B, Q, and R remain unperturbed.
Then,

X - X
Relative error in X: K—TTN =4.1063 x 1073,

Apew — A
Relative perturbation in A: % =4.9198 x 1077,

536 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Case 2. Perturbation in B. Let B be perturbed to B + A B, where

—4.939
AB =10"%] 0.7715
—0.9411

A, O, R remain unperturbed.

X — X
Relative error inX: HTTln =17.5943 x 1073,

Brew — B
Relative perturbation inB: l—ni’lw—B”—” =5.086 x 1078,
Case 3. Perturbation in Q. The matrix Q is perturbed such that the relative
perturbation in @

1Cnew = QU _ 4 048 % 109,
ol
The matrices A, B, and R remain unperturbed.
Xipew — X
Then the relative error in X : thle”—” =4.048 x 1077,

Note: All the solutions to the CARE in this example were computed using
the Schur method (Algorithm 13.5.1) followed by Newton’s iterative refinement
procedure (Algorithm 13.5.8). The residual norms of the solutions obtained by
the Schur method alone were of order 10°. On the other hand, the residual norm
of the solution with the Schur method foliowed by Newton’s iterative procedure
was, in each case, of order 107>,

Example 13.4.2. A Well-Conditioned CARE.

1 00
0=]|0 1 0}, and R=1
0 0 1

In this case || Hp|| = 0.3247, {|H,| = 0.1251, ||Hz|| = 0.0510, and U = 3.1095.

The CARE is, therefore, expected to be well-conditioned.

Indeed, if (1, 1) entry of A is perturbed to —0.9999999, and the other data remain
unchanged, then we find

Relative error in X: || Xpew — X||/]|X|| = 5.6482 x 1078,

Relative perturbation in A: | Apew — A||/||A|| = 3.1097 x 1078, where Apew and
Xnew, respectively, denote the perturbed A and the solution of the CARE with the
perturbed data.

Section 13.4: CONDITIONING OF THE RICCATI EQUATIONS 537

Conditioning and Accuracy
Suppose that X is an approximate stabilizing solution of the CARE:
XA+ ATX —XSX+Q =0,

where S = BR™!'BT and let Res(X) = XA + ATX — XSX + Q.

Then the question arises: If Res(f() is small, does it guarantee that the error in
the solution is also small (Exercise 13.8). In the case of linear system problem, it
is well-known that the smallness of the residual does not guarantee that the error in
the solution is small, if the linear system problem is ill-conditioned. Similar result
can be proved in the case of the Riccati equations (see Kenney ez al. 1990). The
result basically says that even if the residual is small, the computed solution
may be inaccurate, if the CARE is ill-conditioned. On the other hand, if Res()A()
is small and the CARE is well-conditioned, then the solution is guaranteed to be
accurate. Below, we quote a recent result of Sun (1997a) which is an improvement
of the result of Kenney et al. (1990).

Theorem 13.4.3. Residual Bound of an Approximate Stabilizing Solution. Let
X > Oapproximate the positive semidefinite stabilizing solution X to the CARE.
Define the linear operator T : R*" — R"™*" py

T(Z)=(A—-SX)TZ + Z(A - $X), Z=2" e R,

Assuming that 4|]T_1l|||T_1(Res()A())||||SH < 1 for any unitarily invariant
norm || - ||, then

X - X1 _ 2 I7~'Res(X)|

X1 s r-Resco sy 1K

13.4.2 Conditioning of the DARE
Consider now the DARE:
ATXA — X+ Q- ATXB(R+ BTXB)"'B"XA = 0.

The condition number of the DARE, denoted by kparE, may be obtained by means
of the Frechet derivative of the DARE (Gudmundsson ef al. 1992).

Define A = A — B(R+ B"XB)"'BTxA, S=BR'BT. (134.15)

Assume that X is the stabilizing solution of the DARE. Then the condition
number of the DARE is given by:
_lZv, Z2, Z3]11I2

_ M2y, 22, 23112 13.4.16
KDARE X[()

538 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

where

Zy = |AlgP "I ® ATX + (AJX ®)E), (13.4.17)
Zy = —|ISIeP7HATX (I +5X) 7P @ ATX (1 + 5X)7h, (13.4.18)
and
Z3=|QlrP". (13.4.19)
In the above, E is the vec-permutation matrix:

n
E=) ee Qeje], (13.4.20)
ij=1

and P is a matrix representation of the Stein operator:
Q(Z)=Z - Al ZAq. (13.4.21)

Note that, since A4 is discrete-stable, P! exists.

The condition number (13.4.16) measures the sensitivity of the stabilizing
solution X of the DARE with respect to first-order perturbations.

Assume that the bounds for AA, AS, and A Q are sufficiently small. Then, using
first-order perturbation only, it can be shown (Exercise 13.7) that the following
quantity is an approximate condition number of the DARE:

20| AN QIE/IX e + IAIZISTENX 16

(13.4.22)
sepg (AT, Ag)
where
. AT X Ag — XIIp
sepg(Ay, Ag) = min —ATX—”F——— (13.4.23)

Note: The quantity sep(AE, Ag) can be computed as the minimum singular value
of the matrix:

AT ® AT - 1.

Remark

e A perturbation theorem for the DARE, analogous to Theorem 13.4.1 (for the
CARE), and the absolute and relative condition numbers using the results
of that theorem can be obtained. For details see Sun (1998).

Also, arecent paper of Sima et al. (2000) contains efficient and reliable condition
number estimators both for the CARE and DARE.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 539

Example 13.4.3. (An III-Conditioned DARE.) Let’s take A, B, O, and R the same
as in Example 13.4.1.
0.9980 2 3
Let Apew = | 0.0010 4 5] .Let B, Q, and R remain unchanged.
10°% 7 8
The solution X of the DARE (computed by MATLAB function dare) is

0.0000 0.0005 0.0005
X =10'2]0.0005 5.4866 6.4624 .
0.0005 6.4624 7.6118
The solution Xpew of the perturbed version of the DARE is

0.0000 0.0005 0.0005
Xpew = 10101 0.0005 5.4806 6.4554
0.0005 6.4554 7.6036

Relative error in X: || X — Xnew|]/||X|| = 0.0010, while the perturbations in A were
of order 0(10™%).

Example 13.4.4. (A Well-Conditioned DARE.) Let

1 2 3
A=\ 2 3 4}.

399 6 7
Take B, Q, and R the same as in Example 13.4.1.
Let
09990 2 3
Apew = 2 3 4], Bpew=25B, OQunw=20, and Rpew = R.
4 6 7

Then both the relative error in X and the relative perturbation in A are of O(10™%). In
this case, sep(AT, Aq) = 0.0011.

13.5 COMPUTATIONAL METHODS FOR RICCATI EQUATIONS

The computational methods (listed in the Introduction) for the AREs can be
broadly classified into three classes:

e The Invariant Subspace Methods
e The Deflating Subspace Methods
o Newton’s Methods.

The eigenvector, Schur vector, and matrix sign function methods are examples
of the invariant subspace methods. The generalized eigenvector and generalized
Schur vector methods are examples of the deflating subspace methods.

540 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

The following methods have been included in our discussions here. For the
CARE:

The eigenvector method (Section 13.5.1)

The Schur method (Algorithm 13.5.1)

The Hamiltonian Schur method (Section 13.5.1)

The inverse-free generalized Schur method (Algorithm 13.5.3)
The matrix sign function method (Algorithm 13.5.6)
Newton’s method (Algorithm 13.5.8)

Newton’s method with line search (Algorithm 13.5.9).

For the DARE:

The Schur method (Section 13.5.1)

The generalized Schur method (Algorithm 13.5.2)

The inverse-free generalized Schur method (Algorithm 13.5.4).
The matrix sign function method (Algorithm 13.5.7)

Newton’s method (Algorithm 13.5.10)

Newton’s method with line search (Algorithm 13.5.11).

13.5.1 The Eigenvector and Schur Vector Methods

An invariant subspace methods for solving the CARE (DARE) is based on comput-
ing a stable invariant subspace of the associated Hamiltonian (symplectic) matrix;
that is the subspace corresponding to the eigenvalues with the negative real parts
(inside the unit circle). If this subspace is spanned by (ﬁ;) and X| is invertible,
then X = XzXfl is a stabilizing solution.

To guarantee the existence of such a solution, it will be assumed throughout
this section that (A, B) is stabilizable (discrete-stabilizable) and the Hamilto-
nian matrix H (symplectic matrix M) does not have an imaginary eigenvalue (an
eigenvalue on the unit circle). Note that a sufficient condition for the existence of
a unique positive semidefinite stabilizing solution of the CARE(DARE) was given
Theorem 13.2.6 (Theorem 13.3.2).

The Eigenvector Method for the CARE

Let H be diagonalizble and have the eigendecomposition:

1 _(-A O
VT'HV = < YL
where A = diag(A(, ..., A,) and Ay, ..., A, are the n eigenvalues of H with
positive real parts.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 541
Let V be partitioned conformably:
V= (Vll V12)
Var Vo
such that (“21) is the matrix of eigenvectors corresponding to the stable

eigenvalues. Then it is easy to see that

A (v = (1) 4.

Thus, X = Vy; Vl_l1 is the unique stabilizing solution.

Remark

¢ The eigenvector method, in general, cannot be recommended for prac-
tical use. The method becomes highly unstable if the Hamiltonian matrix
H is defective or nearly defective, that is, if there are some multiple or near
multiple eigenvalues of H. In these cases, the matrix Vi will be poorly
conditioned, making X = V3 Vf]l inaccurate; and this might happen even
if the CARE itself is not ill-conditioned.

The eigenvector method, in principle, is applicable even when H is not diago-
nalizable by computing the principal vectors, but again is not recommended in
practice.

MATCONTROL note: The eigenvector method for the CARE has been imple-
mented in MATCONTROL function riceige.

The Eigenvector Method for the DARE

An analogous method for the DARE can be developed by taking the eigendecom-
position of the associated symplectic matrix M. However, since forming the matrix
M requires computation of A~!, the eigenvector method for the DARE works
only when A is nonsingular. But even in this case, the results will be inaccurate
if A is ill-conditioned. Moreover, the method will have the same sort of difficul-
ties as those mentioned above for the CARE. We, thus, skip the description of the
eigenvector method for the DARE.

The Schur Vector Method for the CARE

The numerical difficulties of the eigenvector method for the CARE may somehow
be reduced or eliminated if the Hamiltonian matrix H is transformed to an ordered
Real Schur form (RSF) by using the QR iteration algorithm, rather than using its
eigendecomposition.

542 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Let UTHU be an ordered Real Schur matrix:

Ty (T Ti2
= (T T%)

where the eigenvalues of H with negative real parts have been stacked in 77; and
those with positive real parts are stacked in 7»;.

Let
Un Un
U=
<U21 U22>

be a conformable partitioning of U. Then,

Un) _ {Un
() = () 7
Thus, the matrix X = Uy U 1_11 is then the unique stabilizing solution of the CARE.

The above discussion leads to the following algorithm, called the Schur
algorithm, due to Laub (1979).

Algorithm 13.5.1. The Schur Algorithm for the CARE
Inputs.

A—An n X n matrix

B—Ann x m (m < n) matrix

O—An n X n symmetric matrix

R—An m x m symmetric matrix.
Output.

X—The unique stabilizing solution of the CARE.
Step 1. Form the Hamiltonian matrix

_pp-1pT
H - A BR TB .
-0 —A

Step 2. Transform H to the ordered RSF:

T (T Ti2
U HU = (0 T22> s

where the n eigenvalues of H with negative real parts are contained in Ty;.
Step 3. Partition U conformably:

Un Un
U= .
<U21 U22>

Step 4. Compute the solution X by solving the linear systems:

XUy = Uyt

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 543

Software for the ordered RSF

The ordered RSF of H can be obtained by transforming H first to the RSF by
orthogonal similarity, followed by another orthogonal similarity applied to the
RSF to achieve the desired ordering of the eigenvalues (See Chapter 4).

There exists an efficient algorithm and an associated software developed by
Stewart (1976) for this purpose: Algorithm 506 of the Association for Computing
Machinery Trans. Math Software (1976), pp. 275-280. See also the LAPACK
routine STRSEN.

The MATLAB program ordersch from MATCONTROL can also be used for
this purpose.

Flop-count: The Schur method is based on reduction to RSF, which is done
by QR iterations algorithm; so, an exact flop-count cannot be given. However,
assuming that the average number of iterations per eigenvalue is 2, about 200n°
flops will be necessary to execute the algorithm. (This count also takes into account
of the ordering of RSF).

Example 13.5.1. Consider solving the CARE with:

A=]0 -2 01, 0 = L33, S=11 1 1

-1 1 1}(-1 -1 -1
0 -2 0]|-1 -1 -1

H_(A —S)_ 0 0 —3|-1 -1 -1
“\—Q -AT) " |-1 0 o0 1 0 0
0 -1 0| -1 2 0

0 0 —-1| -1 0 3

Step 2. Transform the Hamiltonian matrix to the ordered RSF:

UTHU - (Tn le)

0 Ty
—2.9940 -0.0216 1.3275
0 ~2.1867 0.7312 *
_ 0 —0.2573 —1.9055
- 2.9940 1.3285 0.2134
0 0 1.9623 0.2434

0 —0.7207 2.1298

544 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

The eigenvalues of 77 are: —2.9940, —2.0461+0.4104 7, —2.0461 —0.4104 . Thus,
all the stable eigenvalues are contained in 77;.
Step 3. Extract U} and Uz from U:

0.4417 03716 0.7350 0.1106 0.0895 0.3260
Uy =| 00053 —08829 03951|, Uy =] 00232 —0.1992 0.1552].
—0.8807 0.1802 0.3986 —0.1285 0.0466 0.1199

Step 4. Compute the stabilizing solution:

0.3732 0.0683 0.0620
X = U21U1”]1 = | 0.0683 0.2563 0.0095
0.0620 0.0095 0.1770

The eigenvalues of A — SX are: —2.0461 + 0.4104j, —2.0461 — 0.4104 j, —2.9940.
Thus, A — SX is stable, that is, X is a unique stabilizing solution.

MATCONTROL note: The Schur method for the CARE (using ordered RSF)
has been implemented in MATCONTROL function ricsche.

Stability Analysis of the Schur Method and Scaling

The round-off properties of the Schur method are quite involved. It can be shown
(Petkov et al. 1991) that the relative error in the computed solution is proportional
to [UL' I /sep(T11, T2).

This means that the Schur method can be numerically unstable even if the
CARE is not ill-conditioned. For example, the Schur method can be unstable if
the Hamiltonian matrix H is nearly defective.

However, the difficulty can be overcome by proper scaling (Kenney et al. 1989).
Thus, for all practical purposes, the Schur method, when combined with an
appropriate scaling, is numerically stable. For a discussion on scaling procedure,
see Kenney et al. (1989), and Benner (1997). See also Pandey (1993).

Benner (1997) has given an extensive discussion on scaling. Based on sev-
eral existing scaling strategies and considering the practical difficulties with these
strategies, he has proposed a mixture of these procedures for scaling the CARE.
Benner’s strategy is as follows:

Write the CARE:

XA+ ATX —XSX+0=0
in the form:

T
XpAp+ ALKy — XpSpX,+Q =0,

where A, = ,oA,A; = (,oA)T,X,O = X/p,and S, = p2S, p being a positive
scalar.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 545

Choose p as
1512 .
——=, it |Qll2 > ISz
122
p=q 1Al .
m, if (@2 < IS]l2 and ”Q||2I|S||2<||A||%
L, otherwise.

For a rationale of choosing p this way, see Benner (1997).

Note: Note that the relative condition number of the CARE remains invariant
under the above scaling.

The Schur Method for the DARE
The Schur method for the DARE:
ATXA— X -~ ATXB(R+B"XB) " 'BTXA+0 =0
is analogous. Form the symplectic matrix:
A+SA N0 -5 DT
M= ZINT NS
(A7)0 (A7)

where S = BR~!BT.
Let M be transformed to an ordered RSF such that the eigenvalues with mod-
uli less than 1 appear in the first block, that is, an orthogonal matrix U can be

constructed such that
T _ (S Si2
U MU = < 0 522>,

where each eigenvalue of S7; is inside the unit circle. Partition U conformably:
Un Un
U= .
<U21 Uzz)
Then X = Uy U 1_11 is the unique stabilizing solution of the DARE.

Remarks

e Since one needs to form A~! explicitly to compute M, the Schur method
for the DARE is not applicable if A is singular. Even if A is theoretically
nonsingular, the method is expected to give an inaccurate answer in case
A is ill-conditioned with respect to inversion.

e A slightly faster method (Sima (1996, p. 244)) forms the matrix M~! and
orders the RSF so that the eigenvalues with moduli less than 1 appear in the
first block.

546 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

MATCONTROL note: The Schur method for the DARE has been implemented
in MATCONTROL function ricschd.

The Hamiltonian—-Schur Methods for the CARE

The Schur methods for the AREs are based on orthogonal similarity transfor-
mations of the associated Hamiltonian and symplectic matrices to RSFs. The
rich structures of these matrices are, however, not exploited in these methods.
The Hamiltonian and the symplectic matrices are treated just as 2n x 2n general
matrices in these methods. It would be useful if methods could be developed
that could take advantage of Hamiltonian and Symplectic structures. Such
structure-preserving methods, besides reflecting physical structures, are often
faster.

Theorem 13.5.1 below shows that developments of such structure-preserving
methods are possible.

Definition 13.5.1. If a matrix U is both symplectic and unitary, it is called a
symplectic—unitary matrix. A symplectic—orthogonal matrix can be similarly
defined.

From the above definition, it follows that a 2n x 2n symplectic—unitary matrix

U can be written as:
Un Un
U= R
(“UIZ U11>

where U1y and Uy are n X n. If0 is n X n unitary, then
o~)
Oan U

Theorem 13.5.1. The Hamiltonian-Schur Decomposition (HSD) Theorem.
(Paige and Van Loan 1981). If the real parts of all the eigenvalues of a Hamil-
tonian matrix H are nonzero, then there exists a symplectic—orthogonal matrix
U and a Hamiltonian matrix T such that

T T,
UTHU =T = ,
<O”X" _T1T>

is symplectic—unitary.

where T\ is an n x n upper triangular, and T, is an n X n symmetric matrix.
Furthermore, U and T can be chosen so that the eigenvalues of T| have negative
real parts.

Definition 13.5.2. The Hamiltonian matrix T in Theorem 13.5.1 is called a
Hamiltonian—Schur matrix and the decomposition itself is called the HSD.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 547

Note: The first n columns of U in the above HSD span the invariant subspace
corresponding to the stabilizing solution of the CARE.

Symplectic-Schur Decomposition (SSD)

For a symplectic matrix, we have the following theorem.

Theorem 13.5.2. The SSD Theorem. If M is symplectic and has no eigenvalues
on the unit circle, then there exists a symplectic—orthogonal matrix U such that

R R

I 1 2

M =R = T
v u (Onxn Rl— >’

where Ry is n X n upper triangular. Moreover, Ry Ry is symmetric.
Definition 13.5.3. The above decomposition is called an SSD.

The existence of the HSD and the SSD naturally lead to the following prob-
lem: How to obtain these decompositions in a numerically effective way by
exploiting the structures of the Hamiltonian and the symplectic matrices?

Byers (1983, 1986a) first developed such a structure-preserving method for the
HSD in the case the matrix § in the Hamiltonian matrix:

A —-S
H=<_Q _AT)a

has rank 1. (For example, a single-input problem).

Definition 13.5.4. A Hamiltonian matrix H has Hamiltonian-Hessenberg
Sform, if it has the zero structure of a 2n x 2n upper Hessenberg matrix with the
order of the last n rows and columns reversed.

As in the standard QR iteration algorithm for the RSF of a matrix A, Byers’
method also comes in two stages:

Stage 1. The matrix H is reduced to a Hamiltonian-Hessenberg matrix Hy
by an orthogonal-symplectic transformation.

Stage II. The Hamiltonian-Hessenberg matrix Hy is further reduced to
Hamiltonian—Schur form using Hamiltonian QR iterations.

Of course, once such a reduction is done, this can immediately be used to solve
the CARE.

For a complete description of the method and details of numerical implementa-
tions, see Byers (1986a).

Unfortunately, in spite of several attempts, such a reduction in the general case
of a Hamiltonian matrix remained a difficult problem, until the recent paper of
Benner ef al. (1997c).

548 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

A Hamiltonian—-Schur Method for the CARE (rank S > 1)

We next outline briefly the Hamiltonian—Schur method of Benner et al. (1997¢)
for solving the CARE in the multi-input case. The method also uses symplectic—
orthogonal transformations in the reduction to the Hamiltonian—Schur form of the
matrix Hg defined below.

The method is based on an interesting relationship between the invariant
subspaces of the Hamiltonian matrix H and the extended matrix

(s 0)

It makes use of the symplectic URV-like decomposition that was also introduced
by the authors (Benner et al. 1999c¢).
Theorem 13.5.3. Symplectic-URV Decomposition. Given a 2n x 2n Hamil-
tonian matrix H, there exist symplectic—orthogonal matrices Uy and U,

such that
_ H, H, T
a=o(l Jg)or

where H, is an n x n matrix, Hy is an n x n upper triangular matrix and Hy, is
an n x n real Schur matrix.

Furthermore, the positive and negative square roots of the eigenvalues of
H; Hy, are the eigenvalues of H.

The basis of the Hamiltonian—-Schur method is the following result.

Theorem 13.5.4. Extended HSD Theorem. Suppose that the Hamiltonian

matrix
A -8
= (—Q —AT)

has no purely imaginary eigenvalues. Define

0 H
HE:(H 0).

Then there exists an orthogonal matrix U of order 4n such that

T L~ (T I

is in Hamiltonian—Schur form and no eigenvalues of Ty have negative real parts.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 549

Remark

e Note that the transforming matrix U in Theorem 13.5.4 is not symplectic—
orthogonal. But this non-symplectic transformation can be computed
without rounding errors!

Solution of the CARE using the Extended HSD

Let H have no eigenvalue on the imaginary axis. Let the matrix U in Theorem

13.5.4 be partitioned as
Un Un
U= ,
(U2l U22>

where each Uj; is of order 2n x 2n. Define the matrix Y as

. V2
Y = — (U — Ua).

2
Let Y be an orthogonal basis of Range(f/). Then it has been shown (Benner et al.
1997¢) that

Range(Y) = Inv(H),

where Inv(H) is the invariant subspace associated with the eigenvalues of H with
negative real parts.
- (Yl) ,
Y>

Furthermore, if
where Y 1 and ?2 are of order n x 2n, then the stabilizing solution X of the CARE
is given by
XY =Y.

Note that the above equations represent an overdetermined consistent
set of linear equations.

The symplectic-URV decomposition is used to compute the matrix U to achieve
the Hamiltonian—Schur matrix 7. Note also that it is not necessary to explicitly
compute Y, if only the stabilizing solution of the CARE is sought.

The details are rather involved and we refer the readers to the paper of Benner
et al. 1997¢).

Efficiency and stabiliry: The method based on the above discussion is more
efficient than the Schur method. It has also been shown that the method computes
the Hamiltonian—Schur form of a Hamiltonian matrix close to Hg, where Hg is
permutationally similar to Hg, that is, there exists a permutation matrix P such
that PHg PT = Hg.

550 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

13.5.2 The Generalized Eigenvector and Schur Vector Methods

The deflating subspace methods are generalizations of the invariant subspace meth-
ods in the sense that the solutions of the Riccati equations are now computed
by finding the bases for the stable deflating subspaces of certain matrix pencils
rather than finding those of the Hamiltonian and the symplectic matrices. As of
the invariant subspace methods, it will be assumed that for solving the CARE
(DARE) with deflating subspace methods, the pair (A, B) is stabilizable (discrete
stabilizable) and the associated Hamiltonian (symplectic) matrix pencil does not
have an imaginary eigenvalue (an eigenvalue on the unit circle).
For the CARE, the pencil is PcARE — A NCARrg, Where

A =S I 0
Pcarg = (—Q —AT> , Ncare = (0 1) . (13.5.1)
For the DARE, the pencil is PpaArRg — ANpARE. Where
A 0 I S
PpARE = (—‘Q 1) , NDARE = (0 AT> . (13.5.2)

Since no inversion of A is required to form the above pencils, this generalization
is significant for the DARE, because, as we have seen, the eigenvector and the
Schur methods cannot be applied to the DARE when A is singular.

As in the case of an invariant subspace method, a basis for a deflating subspace
of a pencil can be constructed either by using the generalized eigendecomposition
or the generalized Schur decomposition of the pencil. As before, an eigenvec-
tor method will have numerical difficulties in case the pencil has a multiple or
near-multiple eigenvalue. We will thus skip the descriptions of the generalized
eigenvector methods and describe here only the generalized Schur method
for the DARE. We leave the description of the generalized Schur method for the
CARE as an exercise (Exercise 13.18).

The following results form a mathematical foundation for a deflating subspace
method for the DARE. The results are due to Pappas et al. (1980).

Theorem 13.5.5. Suppose that (A, B) is discrete-stabilizable and (A, Q) is
discrete-detectable. Then the symplectic pencil PpaRe — ANpaRrEg does not have
any eigenvalue A with |A] = 1.

Proof. The proof is by contradiction.
Let |A| = 1 be an eigenvalue of the pencil Pparg — ANpare with the eigenvector

[«
z= <22> # 0.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 551

(% DE) =6 &)

Azy = Xz1 + ASzo; (13.5.3)

Then we can write:

This means that

—Qz1+ 20 = ArAT20. (13.5.4)

Premultiplying the first equation by 5»23 and postmultiplying the conjugate
transpose of the second by z;, we have

iz3Az1 = M2 + P23 Sz (13.5.5)

and
Bz = zf Q1 + A5 Az, (13.5.6)

Substituting (13.5.5) into (13.5.6), we obtain
Bz = 25071 + M5z + 1AP2) Sz (13.5.7)

or
23822 + 27 Qz1 = 0 (since [A]> = 1). (13.5.8)

Since § = BR™!'BT, Eq. (13.5.8) can be written as:
@B R (BT2) + 21 Q21 = 0. (13.5.9)
Since R is positive definite, this implies that
BTz, =0 and Qz; =0. (13.5.10)

Therefore, from (13.5.3) and (13.5.4), we have Az; = Az and ATz = (1/X)z3.
(Note that since |A| = 1, A # 0).

Thus, from (13.5.10) and from the last equation, we have z3B = 0 and z5A =
(1/)z3. _ _

This means that for any F, z3(A—BF) = (1/3)z3, thatis, (1/1) is an eigenvalue
of A—BF forevery F.Since (A, B) is discrete-stabilizable, this means thatz; = 0.
Similarly, since (A, Q) is detectable, it can be shown (Exercise 13.17) thatz; = 0.

Therefore,
<z 1)
=
22

is a zero vector, which is a contradiction. 1

552 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Theorem 13.5.5, together with the fact that if A # 0 is an eigenvalue with
multiplicity r of the pencil Ppare — ANDARE. 80 is 1/A with the same multiplicity,
allows us to state the following theorem:

Theorem 13.5.6. Suppose that (A, B) is discrete-stabilizable and (A, Q) is
discrete-detectable. Let). = 0 be an eigenvalue of multiplicity r. Then the
eigenvalues of the pencil PpaRe — A NDARE can be arranged as follows (adopting
the convention that the reciprocal of a zero is infinity):

1 1

0,...,0; Argtyeoishpy —o s, 7 00,00,...,00.
S——— N e’)\.n)\.r+1 S———
r n—r n—r r

withO < Al < l,i=r+1,...,n

MATCONTROL note: The generalized eigenvector method for the DARE has
been implemented in MATCONTROL function ricgeigd.

The Generalized Schur-Vector Method for the DARE

Assume that the generalized Schur form of the pencil Pparg — ANpare has been
ordered such that the generalized eigenvalues of the pencil with moduli less than
1 can be obtained from the first quarters of the matrices, that is, the orthogonal
matrices Q' and Z have been computed such that:

P P
Q' (PpaRe — ANpage)Z = Py = 1 712
0 Py
and
N N
Q' (Ppare — ANpARE)Z = N1 = < 0” le)
2

and the generalized eigenvalues of the pencil P;; — ANy have modulii less than 1
(see below for details of how to do this).

Let
Zi1 Zn
Z = .
(ZZI Zzz)

Zn
Z
form a basis for the discrete stable (deflating) subspace and the matrix X = Z5,Z 1_11

is a unique symmetric positive semidefinite stabilizing solution of the DARE. We
leave the details as an exercise (Exercise 13.18).

Then the columns of

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 553

Algorithm 13.5.2. The Generalized Schur Algorithm for the DARE
Inputs.

A—An n X n matrix

B—An n x m matrix

Q—An n x n symmetric matrix

R—An m x m symmetric matrix

Output. X—The unique stabilizing solution of the DARE: ATXA +
Q — X — ATXB(R + BT™XB)"'BTXA = 0. Step 1. Form Pparg =

A 0 N (I S
(—Q ;) NDaRe = (0 AT

Step 2. Transform the pencil PpARE — A NDARE fo the generalized RSF using
the QZ algorithm, that is, find orthogonal matrices Q| and Z such that:

5 (P P
Q1PpaReZ) = Py = (0 P22>

and

. _ (N Np
QINDAREZI—N1—<O N22>’

where P\ is quasi-upper triangular and N1 is upper triangular.

Step 3. Reorder the above generalized RSF by using an orthogonal transfor-
mation, so that the pencil Py — ANy has all its eigenvalues with moduli less
than 1. That is, find orthogonal matrices Qo and Z» such that Q2 Q| PpAREZ1Z>
is quasi-upper triangular and Q2 Q1 NparRg Z1Z; is upper triangular, and more-
over, the diagonal blocks corresponding to the eigenvalues with moduli less
than 1 are in the upper left quarter of these matrices.

Step 4. Form
Zi Zn)
7 =217 = :
1oz <Z21 V4%)

Step 5. Compute X = ZZIZI_II, that is, solve for X: XZ1| = Z;.

Example 13.5.2. Consider solving the DARE with
1 2 1 1 0
N RS

Step 1. PpARg =

=

=]

>

=

o]

I
(NNl
SO —= O
N o— O -
MWW OO

554 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Step 2. The generalized RSF of the pencil Pparg —ANpARE is givenby: Q1 (PDARE —

ANDARE)Z1 = P; — ANy, where

~55038 03093 0.7060 0.0488
s 0 14308 01222 00903
b= 0 0 0.2665 0.2493 |’
0 0 0 09530
—09912 —03540 02965 —0.8012
| o —o02842 08565 -—0.5442
M=l 0 —13416 0.9885
0 0 0 5.2920

Step 3. The eigenvalues with moduli less than 1 are:

p Pi(4,4
PO _ 51986 ana DG
N1(3,3) Ni(4,4)

Step 4. The matrix
Zn
Zn

0.5518
—0.3942
0.6400
—0.3614

= 0.1801.

is given by

—0.1074
0.0847
0.4499
0.8825

Zu) _
Z7
Step 5.

54.9092

-1
X=InZy = (75.2247

is the stabilizing solution.

75.2247
106.1970

Implementational Details

The reduction to the generalized RSF can be achieved using the QZ algorithm, as
described in Chapter 4.

Unfortunately, however, the eigenvalues might appear in any arbitrary order.
Some reordering needs to be done. A systematic way to do this is as follows:

First, check if the last eigenvalue in the upper left quarter has modulus less
than 1, if not, move it to the last position in the lower right quarter. Check the next
eigenvalue now in the upper left quarter, if it does not have modulus less than 1,
move it to the next position in the lower right quarter.

Note that each move is equivalent to finding a pair of orthogonal matrices such
that pre- and postmultiplications by these matrices perform the necessary change.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 555

The process can be continued until all the n eigenvalues with moduli greater
than 1 have been moved to the lower right quarter and the upper left quarter contains
only the eigenvalues with moduli less than 1.

There is also a slightly more efficient algorithm (Sima 1996, pp. 262-264) for
ordering the eigenvalues of the pencil PpaARg — A NDARE.

There exists FORTRAN routines, developed by Van Dooren (1982) to com-
pute deflating subspaces with specified spectrum. These subroutines are avail-
able as Algorithm 590-DSUBSP and EXCHQZ in ACM software library.
Also, the LAPACK package (Anderson et al. 1999) includes the routine
STGSEN, which performs a specified reordering of the eigenvalues of the
generalized RSF.

Numerical stability and scaling: It can be shown (see Petkov et al. 1989) that
the generalized Schur method may yield inaccurate results if the DARE is not
properly scaled. For a scaling strategy that can be used to overcome this problem,
see Gudmundsson et al. (1992) and Benner (1997).

The Generalized Schur Methods Without Explicit Computation of
the Inverse of the Control Weighting Matrix R

All the methods we have considered so far require the explicit computation of
the inverse of the control weighting matrix R. These methods, therefore, may
not yield accurate solutions when R is severely ill-conditioned.

For example, consider the following example from Arnold and Laub (1984):

01 0 01 0

A= (0 —0.02> - B= (0.001 0.01>’
100 1000 (14e 1

Q= (1000 10,000)’ k= (1 1)'

The pair (A, B) is controllable. The matrix R becomes progressively ill-
conditioned as € — 0. The CARE with the above data was solved by Arnold
and Laub, using RICPACK, a software package especially designed for solving
Riccati equations. It was shown that the accuracy of the solution deteriorated as
R became more and more ill-conditioned. For € = 10716, the relative accuracy
was of order 10~! only.

In this case, an inverse-free generalized Schur method, that avoids computa-
tions of R™! is useful.

The Continuous-Time Case

First, we observe that the Hamiltonian eigenvalue problem Hx = Ax associ-
ated with the CARE, can be replaced by the eigenvalue problem for the extended

556 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

(2n + m) x (2n + m) pencil:

E E
PCARE - }‘NCARE’

A 0 B I 00
where PE =1 ~-0 —AT 0], andNEgp=[0 1 0
0 BT R 000

(Note that this pencil does not involve R -1 .) The solution of the CARE can now
be obtained by constructing a basis of the stable deflating subspace of this pencil.
It was further observed by Van Dooren (1981) that this (2rn +m) x (2n +m) pencil
can be compressed, using an orthogonal factorization of the matrix

(5)

into a 2n x 2n pencil, without affecting the deflating subspaces. Thus, if

Wi Wi\ (R _ (R
Wi Wn/) \B) \0/)’
then instead of considering the (2n 4+ m) x (2n + m) pencil PgARE - ANgARE,

we consider the 2n x 2n compressed pencil ngRE -)\NEXRE, where

EC Wy A "VZIBT EC Wy O
PCAREZ(_Q AT and NEipg = o 1)

This leads to the following algorithm:

Algorithm 13.5.3. Inverse-Free Generalized Schur Algorithm for the CARE.
Inputs.

A—An n x n matrix

B—Ann x m matrix (m < n)

Q—An n X n symmetric matrix

R—An m x m symmetric matrix
Output.

X—The unique stabilizing solution of the CARE
Step 1. Find the QR factorization of the matrix

(5)(3)-()

Wi Wi
W= ,
(W21 W2
where Why is an n X n matrix.
Step 2. Form P(EERE and Ngz(«\:RE as shown above.

Step 3. Find the ordered generalized Schur form of the pencil ngRE —
)“NE/ERE using the Q7 algorithm, that is, find orthogonal matrices Q| and Z

Partition

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 557

suchthat Q (P(I:':[(fRE —ANgf\:RE)Z = M—\N; where M and N are, respectively,
quasi-upper and upper triangular matrices, and the n eigenvalues with negative
real parts appear first.

Step 4. Compute X = Zy) Zl”ll, where

Zin Zn
Z = .
(Zzl Zxn

e In his paper, Van Dooren (1981) described the compression technique by
using an orthogonal factorization of the matrix

Remark

B
0
R

Instead, here we have used (an equivalent) factorization of (g) in the form

R

(0), so that a standard QR factorization algorithm can be used to achieve

this factorization.

Example 13.5.3.
(2 -1 {1 (1 0 T
S A N S (e
Step 1.
—0.0000 | —1.0000 0
W = [=1.0000 | 0.0000 0 =<:¥“ w“).
0 0 1.0000 22
Step 2.
0 0 -1 0 00 0 0
pic _| 1 0 0 0 yEc [0 1 00
CARE= | _1 o0 -2 —-1]° CARE= |0 0 1 0
0 -1 1 0 0 0 0 1
Step 3.

—1.0000 — 0.0028; 0.0000 + 0.0000{ —0.0000 + 0.0000i —0.0000 + 0.0000i
0.0000 + 0.0000 0.7071 4+ 0.0025{ —0.7071 + 0.0044i 0.0000 — 0.0000i
—0.0000 — 0.0000i 0.0000 + 0.0000¢ 0.0000 — 0.0000i 1.0000 — 0.0000i
0.0000 + 0.0000i 0.7071 + 0.0025{ 0.7071 — 0.0044i —0.0000 + 0.0000:

Z =

558 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Step 4.

0.00001000030018 0.00000999990018)

X (in Long Format) = <0.00000999990018 1.00001000029721

Verify: The residual norm= 7.357 x 1078,

The Discrete-Time Case

The discrete problem is analogous. Here we consider the (2n + m) x (2n + m)
pencil PSARE — ANSARE, where

A 0 -—B I 0 O
Phae=|-0 -1 0[], and NEge={0 AT 0
0 0 R 0 BT o

This pencil is then compressed into the 2n x 2n pencil PEXRE —)\NS,ERE, where

WnA 0 Wy Wo BT
EC 22 EC 22 21
PDARE=<_Q _1>, and NDARE=(0 AT)

by taking the QR factorization of the matrix (_g):

RY _(R _ (W Wn
w (—B) = (0> , where W = <W21 W22> .
This leads to the following algorithm:

Algorithm 13.54. Inverse-free Generalized Schur Method for the DARE.
Inputs.

A—An n x n matrix

B—An n x m matrix (im < n)

Q—An n X n symmetric matrix

R—An m x m symmetric matrix.
Output.

X—The unique stabilizing solution of the DARE.

Step 1. Find the OR factorization of <—RB)’ that is, find an orthogonal matrix

W such that .
R R
v (%)= ()
Wit Wi
W= .
(WZI sz)

WanA 0 Woy Woq BT
EC _ 22 EC _ 22 21
Step 2. Form Py pp = (~0 _1>, Npare = (0 AT) .

Partition

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 559

Step 3. Compute the ordered generalized Schur form of the pencil PD ARE
)»NDXRE using the QZ algorithm followed by some ordering procedure so that
the eigenvalues of moduli less than 1 appear zn the first quarter, that is, find
orthogonal matrices Q1 and Z such that Q1(P DARE ANSERE)Z P — AN
and the n eigenvalues with moduli less than [appear first.

Step 4. Form X = Z»; Zl_ll, where

Zn Zn
Z = .
<Z21 Zzz)

Example 13.5.4. Consider solving the DARE with a singular matrix A:

0 1 0 1 2
@) () o) e

Step 1.
-0.7071| 0 0.7071
W = 0 1.0000 0 —(V“;“ w”)
0.7071 0 0.7071 20} W
Step 2.
0 1 0 0
EC 0 0 0 0
Poare=|_1 2 _1 o)
-2 -4 0 -1
1 0 0 0
EC 0 07071 0 0.7071
NDARE= 0 0 0 0
0 0 1 0
Step 3.
0.8615 —0.2781 0.3731 —0.2034
7 |—03200 03256 0.8231 —0.3290
=1 02034 03731 02781 0.8615
0.3290 0.8231 —0.3256 0.9329
Step 4.

X = 1.0000 2.0000
~\2.0000 4.5000

Verify: The residual norm= 7.772 x 10716,

MATLAB note: MATLAB functions care and dare solve the CARE and DARE,
respectively, using generalized Schur methods, when R is well-conditioned and
inverse free methods when R is ill-conditioned or singular.

560 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

13.5.3 The Matrix Sign Function Methods

Let A be an n x n matrix with no zero or purely imaginary eigenvalues. Let
J=XT1AX=D+N,

be the Jordan canonical form (JCF) of A, where D = diag(dy,...,d,) and N is
nilpotent and commutes with D. Then the matrix sign function of A is defined as:
Sign(A) = X diag (sign(dy), sign(dz), ..., sign(dy)) X!, where

1 ifRe(d) > 0,

sign(d;) =
gn(di) —~1 ifRe(d;) < 0.

Some important properties of Sign(A) are (Exercise 13.16):

1. Sign(A) has the same stable invariant subspace as A.

2. 'The eigenvalues of Sign(A) are £1, depending upon the sign of the
corresponding eigenvalues of A.

3. The range of Sign{A) — I is the stable invariant subspace of A.

4. Theeigenvectors of Sign(A) are the eigenvectors and principal vectors of A.

5. Sign(TAT™')y = TSign(A)T L.

We will now show how sign function can be used to solve the CARE and DARE.
Before doing so, let’s first describe an algorithm for computing Sign(A).
The basic sign function algorithm is:

Zo= A,
Zk+1=%<Zk+Z,:1>, k=0,1,...

It can be shown that the sequence {Z;} converges to Sign(A) quadratically.

The initial convergence can, however, be very slow. Byers (1987) has shown
that the convergence can be accelerated if Z is scaled by ldet(Zk)|l/ ", For a
discussion of scaling, see Kenney and Laub (1992).

Thus, a practical algerithm for computing Sign(A) is:

Algorithm 13.5.5. Computing Sign(A)
Input. An n x n matrix A.
Output. Sign(A), the matrix sign function of A.
Step 1. Set Zy = A.
Step 2. Fork =0, 1,2, ..., do until convergence
Compute ¢ = | det Zy|'/".
Compute Zy4y = (1/2c¢) (Zk + csz_1>.
End

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 561

Stopping criteria: The algorithm can be terminated if

e the norm of the difference between two successive iterates is small enough or
o the number of iterations exceeds the maximum number prescribed.

The Matrix Sign Function Method for the CARE
The mathematical basis for the matrix sign function method for the CARE is the

following theorem.

Theorem 13.5.7. Roberts (1971). Let H be the Hamiltonian matrix (13.2.1)
associated with the CARE: XA + ATX + 0 — XSX = 0.

Let (A, B) be stabilizable and let (A, Q) be detectable.

Let

sientr) = (1 7).

where W;; are n x n real matrices.
Then a stabilizing solution X of the CARE is a solution of the following
overdetermined consistent linear systems:

Wiz \y (Wl
W +1 Wa)7
Proof. Define

T — IY I 0y _(I-YX Y
“\0 1)\-X 1] -X 1)’
where Y satisfies
(A=SX)Y +Y(A-SX)T =-5.
An easy computation then shows that

S (A — SX 0)

0 —A=8XT7

I ~Y
_] _
Note that 7~ ' = (X I—XY)'

562 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Then, using Property 5 of the sign function matrix, we obtain

Sign(H) = T~ 'Sign (A - 5X 0) T,

0 —(A—-Sx)T

— 7! (—0 7 (I)) T (since A — SX is asymptotically stable),

_(2x—-1 -2y
“\2xyx -2x 1-2Xv)

2YX =2Y
2XYX -2X 21 -2XY

or Wi +1 Wi _ 2Y X _ 2Y
Wai Wu+I) \\2(XY-nJ)™ 2XYy-0J))-
Now comparing both sides of the equation, we see that X must satisfy:

W12 Wi+ 1
X =- . i
<W22+1> (Wy)

Thus, Sign(H) + b, = (

Symmetric Version of the Matrix Sign Function Algorithm

Theorem 13.5.7 yields a computational method to solve the CARE. However, the
convergence can be painfully slow. The method can be made more efficient by
using the following trick (Bierman 1984; Byers 1987) in which one works only
with symmetric matrices.

Define
oy (0 IN(A =S\ _ (-0 -AT
W(’"H‘(—I 0)(—9 —AT)‘(—A))

The matrix Wy is symmetric.
Now compute Sign(H) by performing the following iterations:

1
Wit = 5 (We+Gawily), k=0,1,2,..

Then each Wy is symmetric and limy_, oo Wy = Jsign(H).
The parameter ¢y is chosen to enhance the rate of convergence, as before.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 563

Let

. Ynu Yo
JSign(H)y=Y = .
ign(H) (YZI Yzz)

Then

. Wiy W
Sign(H) = (W; WZ) = JTy,

Wiz Yy _(Wn+l!
W + 1 Way

Y2 X = I —Yy .
Yo +1 -

This leads to the following symmetric version of the matrix sign function
algorithm for the CARE:

The equation:

then becomes

Algorithm 13.5.6. The Matrix Sign Function Algorithm for the CARE.
Inputs.

A—An n x n matrix

B—An n x m matrix

Q—An n x n symmetric matrix

R—An m x m symmetric matrix

€—Error tolerance.
Output.

X—The unique stabilizing solution of the CARE:

ATX +XA—XBR'BTX+0=0

Step 1.
1.1 Form S = BR™!BT

(0 I o (-0 -—AT
1.2Deﬁne1—<_1 0).FormW_JH—<_A s)
Step 2. Fork = 1,2, ... do until convergence with the given tolerance €

¢ = |det Wi/

_ 1 2 -1
W=—W3+cJW)),
2¢

.. _(Wn Wi -
Step 3. Partition W = <W21 sz), where each W;; is of order n.
_ W2 (1T =Wy
Step 4. Form M = (le +1n)’ N = (—wy)

Step 5. Solve for X : MX = N.

564 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Example 13.5.5. Consider solving the CARE using Algorithm 13.5.6 with

0 1 0 1 0
4 =) 06 Y -

0o 1 0 0
00 0 0 0 -l
Stepl.S:(O 1>, H = 1 o0 0 o |
0 -1 -1 0
1 0 0 0
0 -1 -1 0
WOIH:(O -1 0 0
0 0 0 1

0 -1 =05 0
0 -05 05 (U
-0.5 0 0 0.5

Step 2. W) = 1 (WO + JWO—U) -

¢ = |det(W))|/* = 0.8660.

—1.1547 0 0 —0.5774
i S 0 ~1.1548 —05774 0
W = (Wi + 7 JW) = 0 —0.5774 05774 0
~05774 0 0 0.5774

(Note that each W;, i = 0, 1, 2 is symmetric.)
Step 3. JSign(H) = Wo = W = <W11 W12>.

Wa Wa
17321 1
Step 5. X = (1 1.7321)'

Verify: The residual norm = 9.9301 x 10~19,

Example 13.5.6. Now consider solving the CARE using Algorithm 13.5.6 with the
following data:

111 1 10 0
A= 0o =2 of, B={1}, o=]0o 1 o], rR=1
0 0 -3 1 00 1

Step 1.
1 0 0 100
0 -1 0 -1 2 0
0 -1 -1 0 3
Wo=1 1 1 1 111
0 2 0 111
0 0 3 11 1

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 565

Step 2. After five iterations, | Ws — W4 ||/ || W4 = 6.4200 x 10~ '3 (The readers are
asked to verify this by carrying out 5 iterations).
Step 3.

W= Ws.

Step 5.

0.3732 0.0683 0.0620
X = {0.0683 0.2563 0.0095
0.0620 0.0095 0.1770

Verify: The residual norm =3.1602 x 10716,

Flop-count and stability: It can be shown that Algorithm 13.5.6 requires about
4n> flops per iteration. The algorithm is not stable in general (Byers 1986b),
unless used with an iterative refinement technique such as Newton’s method (see
Section 13.5.4).

MATCONTROL note: Algorithm 13.5.6 has been implemented in MATCON-
TROL function ricsgnc.

The Matrix Sign Function Method for the DARE

The matrix sign function method for the CARE described in the previous section
can now be applied to solve the DARE by converting the symplectic matrix M to
the Hamiltonian matrix H using the bilinear transformation:

H=M+D'M-1).

Because A needs to be nonsingular, the method is not applicable if A is singular,
and is not numerically effective when A is ill-conditioned.

Avoiding Explicit Inversion of A

The explicit inversion of A, however, may be avoided, by using the following
simple trick (Gardiner and Laub 1986).

Write
M=N"'P,
where
I S A 0
N=<0 AT> and P_<_Q 1).

Then it can be shown that even if A is singular, the matrix (P + N) is invertible
and the matrix H can be expressed as H = (P + N)"I(P — N).

566 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Algorithm 13.5.7. The Matrix Sign Function Algorithm for the DARE.

Inputs.
A—An n x n matrix
B—An n x m matrix
Q—An n X n symmetric matrix
R—An m x m symmetric matrix
Output.
X—The unique stabilizing solution X of the DARE:
ATXA—X+0-ATXB(R+ BTXB)"'BTXA =0.
Step 1. Form S = BR™'BT,

I S A O
(2 (4

Step 2. Form H = (P + N)"1(P — N).
Step 3. Apply the matrix sign function algorithm for the CARE (Algo-
rithm 13.5.6) with H in Step 2.

Example 13.5.7. Consider solving the DARE using Algorithm 13.5.7 with

0 1 0 1 0
G)) e

1 0 0 0 0 1 0 0

00 001 0 1 0 0 0 0
Stepl‘sz<0 1)’ N=1o 0 0o o] P=|=1 0o 1 o
00 1 0 0 -1 0 1

—0.3333 0.6667 —0.6667 0.6667
—0.6667 0.3333 0.6667 —-0.6667
—1.3333 0.6667 0.3333 0.6667
0.6667 —1.3333 —-0.6667 —0.3333

10
Step3.X~_—<O 2).

Verify: The residual norm = 6.7195 x 106,

Step2. H =

MATCONTROL note: Algorithm 13.5.7 has been implemented in MATCON-
TROL function ricsgnd.
13.54 Newton’s Methods

Recall that the classical Newton’s method for finding a root x of f(x) = 0 can be
stated as follows:

e Choose xp, an initial approximation to x.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 567

e Generate a sequence of approximations {x;} defined by

)
fea’
Then, whenever xg is chosen close enough to x, the sequence {x; } converges to the

root x and the convergence is quadratic if f'(x) # 0. Newton’s methods for the
CARE and DARE can similarly be developed.

Xigl = X; i=0,1,2,... (13.5.11)

Newton’s Method for the CARE

Consider first the CARE: XA + ATX — XBR™'BTX + 0 =0.

Starting from an initial approximate solution Xg, the computed solutions are
iteratively refined until convergence occurs; this is done by solving a Lyapunov
equation at each iteration. The way how the Lyapunov equations arise can be
explained as follows. Write X = X+ (X — Xj). Substituting this into the CARE,
we have

(A—BR'BTX0)"X + X(A— BR7'BTXy)
=—XoBR'BTXg— 0 + (X — X0)BR'BT (X — Xy).

Assuming that X — X is small (i.e., the initial approximate solution is good), we
can neglect the last term on the right-hand side of the above equation. Thus we
obtain the following Lyapunov equation for the next approximation X:

(A—=BR'B"X0)" X1+ X1(A— BR™'BTX¢y) = —XoBR™'BTXo — 0.

Assuming that X is a better approximation than Xg (i.e., || X — X |<|| X — Xo |)),
the process can be continued until the convergence occurs, if there is convergence.

The above discussion immediately suggests the following Newton method for
the CARE: (Kleinman 1968):

Step 1. Choose an initial approximation Xg.

Step 2. Compute { X} iteratively by solving the Lyapunov equation:

(A—=SX) " Xir1 + Xe1 (A= SXp) = —XiSX — @, k=0,1,2,...,

where S = BR™!'BT.

Step 3. Continue until and if convergence occurs.

Newton’s method, as stated above, is not in the familiar form. However, the
above steps can be easily reorganized to obtain Newton’s method in the familiar
form (see Benner (1997), Hammarling (1982) and Lancaster and Rodman (1995)
for details).

To do this, let’s define

Re(X)=XA+ ATX —XSX + O,
where S = BR™1BT.

568 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Now, the Fréchet derivative of Rc(X) is given by
RY(Z) = (A-SX)TZ + Z(A - SX).
Thus, Newton’s method for Rc(X) =0 1is

R’Xi(A,-) +Re(X;) =0, i=0,1,2,...

Xiv1 = Xi + A
The above observation leads to the following Newton algorithm for the CARE.

Algorithm 13.5.8. Newton’s Method for the CARE
Inputs.
A—An n X n matrix
B—Ann x m matrix
Q—An n x n symmetric matrix
R—An m x m symmetric matrix
Output. The set {Xy} converging to an approximate stabilizing solution
matrix X of the CARE.
Assumptions. (A, B) is stabilizable, R > 0 and the CARE has a stabilizing
solution X, and is unique.
Step 1. Set S = BR™'BT.
Step 2. Choose an initial approximate solution Xo = Xg such that A — SXy
is stable.
Step 3. Construct the sequence of solutions {X;} as follows:
Fori =0,1,2,...dountil convergence occurs
3.1. Compute A; = A — SX;
3.2. Compute Ro(X;) = ATX; + X, A+ Q — X;5X;
3.3. Solve the Lyapunov equation for A;: AiTA,- + AjA; + Re(X;) =0.
3.4. Compute X;11 = X; + A;.
End

Remark

o The above form of Newton’s method is usually known as Newton’s Method
in incremental form. This form has some computational advantages over
that presented in the beginning of this section in the sense that, in general,
more accurate answers can be expected. This is because, in the incremental
form algorithm, we solve the Lyapunov equation for the increment A; and
not for the solution directly and therefore, the solution X; will have more
correct digits.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 569

The proof of the following theorem can be found in Lancaster and Rodman
(1995, pp. 232-233). It gives conditions under which the above iterates
converge.

Theorem 13.5.8. Convergence of Newton’s Method for the CARE. Let the
assumptions for Algorithm 13.5.8 hold. Let Xy be an approximate stabilizing
solution and let X be a unique stabilizing solution X of the CARE. Then the
matrices Aj and X;,i =0, 1, ..., constructed by the above algorithm are such
that

(i) All A; are stable; that is, all iterates X; are stabilizing.
(i) X< <=Xip=Xi < =Xy
(i) Lim;_ o X; = X, where X is the unique symmetric positive-semidefinite
stabilizing solution of the CARE.
(iv) There exists a constant ¢ > 0 such that | X; 41 — X|| < c||X; — X |2, for
i > 1; that is, the sequence {X;} converges quadratically.

Stopping criterion: The following can be used as a stopping criterion.
Stop the iteration if

I. for a certain value of k and the prescribed tolerance €

X - X

| Xk klIF <
1 Xk llF

or

II. the number of iterations k exceeds a prescribed number N.

If a condition-number estimator for the CARE is available, then Criterion I can
be replaced by the following more appropriate stopping criterion: Stop the iteration
if

I Xke1 — Xillr
I Xk llg

where Kg ArE denotes an estimate of the kcare and p is the machine precision.

E
= MKCAREs

Example 13.5.8. Consider solving the CARE using Newton’s method (Algorithm
13.5.8) with

570 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

04 0.1 0.1
Step2. Xo=101 03 0.0
0.1 0 02
Step 3.
i=0
—0.0248 —0.0302 —0.0369
Ag=]-0.0302 -0.0426 0.0103)’
—0.0369 0.0103 —0.0224
0.3752 0.0698 0.0631
X1 = Xo+ Ag=[0.0698 0.2574 0.0103
0.0631 0.0103 0.1776
X1 —-X
Relative Change: X1 = Xol = 0.1465.
I Xoll
i=1.
—0.0020 —-0.0015 -—-0.0010
Ay =1{-0.0015 -0.0011 -—0.0008],
—0.0010 —-0.0008 —0.0005
0.3732 0.0683 0.0620
X, =X+ A =]0.0683 0.2563 0.0095
0.0620 0.0095 0.1770
Xo-X
Relative Change: ”—lzTX—”—ﬂ = 0.0086.
1

i=2

—-0.4561 —0.3864 —0.2402
Ay =107 | —0.3864 —0.3311 —0.2034],
—0.2402 —-0.2034 —0.1265

0.3732 0.0683 0.0620
X3=X,+ Ay =1]0.0683 0.2563 0.0095
0.0620 0.0095 0.1770

X3 — Xal
X2l

MATHCONTROL note: Algorithm 13.5.8 has been implemented in MATCON-
TROL function ricnwtnc.

Convergence: We know that there exist infinitely many X¢ for which A — §Xo
is stable. The choice of proper Xg is crucial. If the initial solution matrix Xg is
not close enough to the exact solution X, then, as in the case of scalar Newton’s
method, the convergence can be painfully slow. The method might even converge

Relative Change: =2.1709 x 107°.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 571

to a nonstabilizing solution in the presence of round-off errors. Things might go
wrong even at the first step. To see this, let’s consider the following example from
Kenney et al. (1990):

A=0, B=Q=1I R=1I

The exact solutionis X = I.Let Xo = €], where € > 0 is a small positive number.
Then,
A-BB Xy = —eI

is stable for all € > 0 and the initial error is || X — Xg|l = 1 — € = 1 for small €.
However,
1+¢€? 1
+ I and ||X — X4 =~ —,
2¢
which is quite large. Thus, even though the errors at subsequent steps decrease, a
large number of steps will be needed for the error made at the first step to damp out.
Some conditions guaranteeing convergence from the first step on have been
given by Kenney er al. (1990). This is stated in the following Theorem (assuming
that R = Iy xm).

X =

Theorem 13.5.9. Let X be an initial approximation such that A — BBT X,
is stable and assume that |X — Xo| < 1/G|B|2I27 L), where Q(Z) =
(A—BB™X)TZ + Z(A— BB"X), then | X — X1|| < ||X — Xol|, with equality
only when Xo = X.

Flop-count: Newton’s method is iterative; therefore, an exact flop count cannot
be given. However, if the Schur method is used to solve the Lyapunov equations
at each iteration, then about 40n3 flops are needed per iteration.

Stability: Since the principal computational task in Newton’s method is the
solution of a Lyapunov matrix equation at each iteration, the method can be
shown to be stable if a numerically stable method such as the Schur method is
used to solve the Lyapunov equation. Specifically, if X is the computed solution
obtained by Newton’s method, then it can be shown (Petkov et al. 1991) that

—”)A(— Xl < UKCARE
IXle — '

where kcgre is the condition number of the CARE. That is, the method does not
introduce more errors than what is already inherent in the problem.

Modified Newton’s Methods

Several modifications of Newton’s methods for the AREs have been obtained in
recent years (Benner 1990; Benner and Byers 1998; Guo 1998; Guo and Lancaster

572 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

1998; Guo and Laub 2000; etc.). We just state in the following the line search
modification of Newton’s method by Benner and Byers (1998).

Newton’s Method with Line Search

The performance of Newton’s method can be improved by using an optimization
technique called line search.

The idea is to take a Newton step at each iteration in the direction so that
|Rc(Xi+1) ||12: is minimized. Thus the iteration:

Xip1 = Xi + A
in Step 3 of Newton’s method will be replaced by
Xiv1 = Xi + 14,

where #; is a real scalar to be chosen so that || Re(X; + £ A;) H% will be minimized.
This is equivalent to minimizing

fi(t) = Trace(Rc(X; +1A)TRe(X; + 1 A;)) = Trace(Re(X; + 1A;)?),
=a;(1 —1)> = 2B8;(1 — D)* + v,

where
a; = Trace(Rc(X;)?), i = Trace(Rc(X)Vi),

v; = Trace(V?), Vi = AiSA;.

It can be shown (see Benner 1997; Benner and Byers 1998) that the function
fi(¢) has a local minimum at some value #; € [0, 2].
We thus have the following modified Newton’s algorithm.

Algorithm 13.5.9. Newton’s Method with Line Search for the CARE
Inputs. Same as in Algorithm 13.5.8.
Output. Same as in Algorithm 13.5.8.
Assumptions. Same as in Algorithm 13.5.8.
Step 1. Same as in Algorithm 13.5.8.
Step 2. Same as in Algorithm 13.5.8.
Step 3. Fori =0, 1,2,...dountil convergence occurs
3.1 Same as in Algorithm 13.5.8.
3.2 Same as in Algorithm 13.5.8.
3.3 Same as in Algorithm 13.5.8.
3.4 Compute Vi = A;SA;
3.5 Compute «;, B, and v; of f; as given above.
Step 3.6 Compute t; € [0, 2] such that f;(t;) = minse[o2 fi (t).
Step 3.7 Compute X;+y = X; + t; A;.
End.

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 573

Example 13.5.9. The input matrices A, B, @, and R are the same as in Example
13.5.8.

1 1 1
Stepl.S=1|1 1 1].
1 1 1

04 0.1 0.1
Step2. Xo=]0.1 0.3 0].
0.1 0 02
—0.0248 -0.0302 —0.0369
Step3.i =0: Ag = | —0.0302 —0.0426 0.0103

—0.0369 0.0103 —0.0224
ag=0.1761, Bo=—0.0049, y,=2.1827x 1074, 1 = 1.0286.

0.3745 0.0690 0.0620
X1 = Xo+ 1000 = | 0.0690 0.2562 0.0105
0.0620 0.0105 0.1770

Relative change: | X1 — Xoll/|| Xoll = 0.1507.

i =1 A; =] —0.0006 0.0001 —0.0011

—0.0012 —0.0006 0.0000
0.0000 —0.0011 0.0001

o) = 8.9482 x 1075, B = —4.2495 x 1078,y = 4.9519 x 107!,
11 = 1.0005.

0.3732 0.0683 0.0620
X, =X1+1A1=10.0683 0.2563 0.0095|.
0.0620 0.0095 0.1770

Relative change: || X2 — X ||/]1 X 1]l = 0.0038587.

~0.1677 —0.4428 —0.4062
i=2 Ay=10"6{-04428 —0.7620 0.1277
—0.4062 0.1277 —0.2505

ay = —2.9393 x 10710, B8y = —1.0425 x 10717, 3, = 6.1179 x 1072,
1 = 1.0000.

0.3732 0.0683 0.0620
X3 =X+ nAy=10.0683 0.2563 0.0095
0.0620 0.0095 0.1770

574 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Relative change: | X3 — Xoll/11 X2]| = 2.4025 x 109,

~0.1593 —0.0972 0.0319
i=3 Ay=10"12]|-0.0972 —0.0286 —0.1791
0.00319 —0.1791 0.0308

a3 = 24210 x 10724, B3 = —1.4550 x 10737, 3 = 2.4612 x 1070,
13 = 1.0000.

0.3732 0.0683 0.0620
X4 =X3+13A3=10.0683 0.2563 0.0095
0.0620 0.0095 0.1770

Relative change: || X4 — X3||/I1 X3l = 5.5392 x 1013,

Theorem 13.5.10. Convergence of Newton’s Method with Line Search for the
CARE. If (A, B) is a controllable pair, and if the step sizes t; are bounded
away from zero, then Newton's method with the line search (Algorithm 13.5.9)
converges to the stabilizing solution.

Proof. See Benner and Byers (1998), Guo and Laub (2000). W

Flop-count: Algorithm 13.5.9 is slightly more expensive (about 8% to the cost of
one Newton step) than Algorithm 13.5.8. However, one saves about one iteration
step out of 15; often much more, but seldom less.

MATCONTROL note: Algorithm 13.5.9 has been implemented in MATCON-
TROL function ricnwlsc.

Newton’s method for the DARE
Newton’s method for the DARE:

ATXA—-X+0—-A"XB(R+B"XB)"'BTXA =0

is analogous. It is based on successive solutions of Stein equations (discrete-
time Lyapunov equations) associated with the discrete-time system. We state
the algorithm below without detailed discussions. The algorithm was originally
developed by Hewer (1971). See also Kleinman (1974).

Algorithm 13.5.10. Newton’s Method for the DARE
Inputs. A—An n x n matrix
B—An n x m matrix
Q—An n x n symmetric matrix
R—An m X m symmetric matrix

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 575

Output. The set { X} converging to the unique stabilizing solution X of the
DARE:

Rp(X)=ATXA—-X+Q—A"XB(R+ B"XB)"'BTXA = 0.

Assumptions. (i) (A, B) is discrete-stabilizable (ii) R > 0, (iii) A stabilizing
solution X exists and is unique, and (iv) R + BTXB > 0.
Step 1. Choose Xo = X[such that A — B(R + B"XoB)"'BTXoA is a
discrete-stable matrix, that is, it has all its eigenvalues inside the unit circle.
Step 2. Fori =0, 1,2, ... do until convergence.
2.1 Compute K; = (R + BTX;B)"'BTX; A
2.2 Compute A; = A — BK;
2.3 Compute Rp(X;)) = ATX;A — X; + Q0 — AYX;B(R +
BTX;B)"'BTX;A
2.4 Solve the discrete-time Lyapunov equation (Stein equation) for A;:
ATAA; — Ai + Rp(Xi) =0
2.5 Compute X;11 = X; + A,
End

The following theorem gives conditions under which the sequence {X;} con-
verges. The proof of this theorem can be found in Lancaster and Rodman (1995,
pp. 308-310), in case R is nonsingular. See also Benner (1997), Mehrmann (1991).

Theorem 13.5.11. Convergence of Newton’s Method for the DARE. Let the
assumptions of Algorithm 13.5.10 hold. Let Xo be a stabilizing approximate
solution of the DARE. Then the matrices A; and X;, constructed by the above
algorithm, are such that

(i) All A; are discrete-stable,
(i) lim;_, o X; = X, where X is the unique symmetric positive semidefinite
discrete-stabilizing solution of the DARE.
(i) X< <X <X, <02 Xy
(iv) There exists a constant ¢ > 0 such that | X;y; — X|| < c||X; — X|?,
i > 1, that is, the sequence {X;} converges quadratically.

Stopping criterion: The same stopping criteria as in the case of Newton’s method
for the CARE can be used.

Example 13.5.10. Consider solving the DARE using Algorithm 13.5.10 with

-1 1 1 1 0 0
A= 0 -2 0}, B={1l], R=1, @¢={(0 1 O
0 0 -3 0 0 1
1 =5 10
Stepl. Xo=1-5 1600 —2000

10 —-2000 2700

576 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Step2.i =0
The eigenvalues of A— B(R+BTXoB)" ! BT XA are —0.883140.2910, —0.0222.
Then X is a discrete-stabilizing approximate solution of the DARE.

Ko = (—0.0192 2.6154 —6.8077),
—0.9808 —1.6154 7.8077

Ag = 0.0192 —-4.6154 6.8077},
0.0192 —-2.6154 3.8077

0.0008 —0.0137 0.0167

X, =10*{ —0.0137 0.6808 —0.9486

0.0165 —0.9486 1.3364
X1—X

Relative change: M = 3.7654.

I Xoll

i=1
K; = (—0.0301 4.4699 —9.5368),

—0.9699 —-3.4699 10.5368
Al = 0.0301 —6.4699 9.5368 1},
0.0301 —-4.4699 6.5368

0.0067 —0.0893 0.1029
X, =10 | —0.0893 2.0297 -2.5658 |.
0.1029 —2.5658 3.3125
X — X
Relative change: ”—ZJ = 0.7364.
X1
i=2.
K> = (—0.0826 5.1737 —10.2938),
—09174 —4.1737 11.2938
0.0826 —7.1737 10.2938 |,
0.0826 —5.1737 7.2938

Ay =

0.0054 —0.0670 0.0767
X3 =103 | -0.0670 1.6234 —2.0796

0.0767 —2.0796 2.7283
X3 — Xal|

Relative change: ——— = (.1862.
1 X2l

The relative changes continue to decrease from this step onwards.

0.0053 —0.0658 0.0751
X7 =100 | —0.0658 1.5943 —2.0428
0.0751 —2.0428 2.6817

For i = 6, relative change: || X7 — X¢|l/l| X6l is 2.3723 x 10-15,

Section 13.5: COMPUTATIONAL METHODS FOR RICCATI EQUATIONS 577

MATCONTROL note: Algorithm 13.5.10 has been implemented in MATCON-
TROL function ricnwtnd.

Newton’s Method with Line Search for the DARE

Algorithm 13.5.10 can be modified in a similar way as in case of the CARE to
include the line search.
The function f;(¢) to be minimized in this case is given by:

fit) = a;i(1 =) = 28;(1 — He* + yit?,

where o; = Trace(Rd(X;)z), Bi = Trace(Rq(X)Vy), yi = Trace(Viz), and
V; = ATA;B(R + BTX;B)"'BTA A
For details, see Benner (1997).

Algorithm 13.5.11. Newton’s Method with Line Search for the DARE

Inputs. Same as in Algorithm 13.5.10.

Output. Same as in Algorithm 13.5.10.

Assumptions. Same as in Algorithm 13.5.10.

Step 1. Same as in Algorithm 13.5.10.

Step 2. Fork =0, 1,2, ... do until convergence
2.1 Same as in Algorithm 13.5.10
2.2 Same as in Algorithm 13.5.10
2.3 Same as in Algorithm 13.5.10
2.4 Same as in Algorithm 13.5.10
2.5 Compute S; = B(R + BTXx;B)"'BT
2.6 Compute V; = AT NS A A
2.7 Compute the coefficients «;, Bi, and y; of fi(t) as above
2.8 Compute t; € [0, 2] such that f;(t;) = minse0.2) fi (t)
29 X =X + 44

End

Flop-count: The algorithm is again just slightly more expensive than
Algorithm 13.5.10. The additional cost of forming V;, the coefficients of f;, a
local minimizer #; of f; and scaling A; by #; is cheap as compared to O (n?) flops
required for other computations.

Convergence: The line search procedure can sometimes significantly improve
the convergence behavior of Newton’s method. For details, see Benner (1997).

Example 13.5.11. Consider solving the DARE using Algorithm 13.5.11 with
1 00
A=| 0 =2 0], B=1}{1}, o={0 1 0],
0 0 -3 0 0 1
R=1.

578 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

1 -5 10
Stepl. Xo=1{ -5 1600 —2000 |.
10 —-2000 2700

Step2.i =0, Ap=10* | —0.0132 0.5208 —0.7486

0.0007 -0.0132 0.0157
0.0157 -0.7486 1.0664

ap = 9.7240 x 107, By = 5.5267 x 108, yp = 3.1518 x 10°,
to = 0.3402.

Xy = Xo + 19Dy = 10* | —0.0500 3.3718 —4.5471

0.0034 —0.0500 0.0635
0.0635 —4.5471 6.3283 .

Relative change: || X — X0||/||Xo|| = 1.2812.
0.0029 —0.0405 0.0431
Step3.i =1 A;=10°|-0.0405 —1.1655 1.7233],
0.0431 1.7233 —2.6498

o) = 1.1123 x 107, B1 = 1.7963 x 10°, y1 = 3.0428 x 10°,
1 = 0.8750.

0.0059 —0.0854 0.1012
0.1012 —3.0392 4.0097)

X) =X +1A =10° (—0.0854 23520 —-3.0392

Relative change: || X, — X I|/||X1 Il = 0.3438.

—~0.0006 0.0196 —0.0261
—0.0261 0.9955 —13267)

i=2, Ay =103 (0.0196 —0.7570 0.9955

a = 19251 x 103, B = —157.2798, y» = 0.1551,
r, = 1.0008.

0.0053 —0.0658 0.0751
X3 = X2+ 1Ay =103 | —0.0658 1.5944 —-2.0429 }.
0.0751 —-2.0429 2.6819

Section 13.6: SCHUR AND INVERSE-FREE GENERALIZED SCHUR METHODS 579

Relative change: || X3 — X2l /11 X2l = 0.3283.

—0.0003 0.0024 -0.0011
i=3, Aj = 0.0024 —0.0481 0.1094 },
—0.0011 0.1094 —-0.2202

a3 =0.0912, B3 =—2.8785x 1075, 33 =1.6525x 10"%, 13 = 1.0003.

0.0053 —0.0658 0.0751
X4 = X3 +13A3 = 10% | —-0.0658 1.5943 —2.0428 |.
0.0751 —2.0428 2.6817

Relative change: || X4 — X3||/||X3|| = 6.4273 x 107°.

The relative changes continue to decrease after each iteration. For example, fori = 5,
we have

Relative change: | X¢ — X5l|/||X5|| = 1.0906 x 10~!3, and Relative Residual =
3.2312 x 10711,

MATCONTROL note: Algorithm 13.5.11 has been implemented in MATCON-
TROL function ricnwlsd.

Newton’s Method as an Iterative Refinement Technique

Newton’s method is often used as an iterative refinement technique. First, a
direct robust method such as the Schur method or the matrix sign function method
is applied to obtain an approximate solution and this approximate solution is
then refined by using a few iterative steps of Newton’s method. For higher effi-
ciency, Newton’s method with the line search (Algorithm 13.5.9 for the CARE
and Algorithm 13.5.11 for the DARE) should be preferred over Newton’s
method.

13.6 THE SCHUR AND INVERSE-FREE GENERALIZED SCHUR
METHODS FOR THE DESCRIPTOR RICCATI EQUATIONS

We have seen in Chapter S that several practical applications give rise to the
descriptor systems:

Ex(t) = Ax(t) + Bu(t) (Continuous-time), (13.6.1)

Exyy1 = Axx + Buy (Discrete-time). (13.6.2)

580 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS
The AREs associated with the above systems, respectively, are:

A"XE+ E'XA - E'XBR 'B'XE+ Q0 =0, (13.6.3)
and
ETXE=ATXA - A"XBBTXB+R)'BTXA+ Q. (13.6.4)

The Riccati equations (13.6.3) and (13.6.4) will be, respectively, called as
the descriptor continuous-time algebraic Riccati equation (DCARE) and the
descriptor discrete-time algebraic Riccati equation (DDARE).

Most of the methods, such as the Schur method, the matrix sign function method,
and Newton’s method, can be easily extended to solve DCARE and DDARE.

Below we state how the generalized Schur methods and the inverse-free gener-
alized Schur methods can be extended to solve these equations. The derivations
of the others are left as Exercises. See Bender and Laub (1985, 1987), Benner
(1997), Laub (1991), Mehrmann (1988), Benner ef al. (1999a) etc. in this con-
text. For descriptor discrete-time Lyapunov and Riccati equations, see Zhang et al.
(1999).

13.6.1 The Generalized Schur Method for the DCARE
The matrix pencil associated with the DCARE is

A =S E 0
PpCARE — ANDCARE = (_Q _AT) A (0 ET) ’

where S = BR™!BT.

The Schur method for the DCARE, then, can be easily developed by trans-
forming the above pencil to the Ordered RSF using the QZ iteration algorithm
(Chapter 4). Thus, if Q| and Z; are orthogonal matrices such that

_(Lu L2 __(Nu Np2
01 PpcareZ) = (0 Lzz)’ Q1 NpcaReZ) = (0 sz),

where Q1 PpcaREZ) 1s upper quasi-triangular, Q1 NpcarRg Z1 1S upper triangular,
and L1; — ANy, is stable, then the columns of (21), where

Zy ZIn
Z) = ,
! <Z2l Zn
span the stable deflating subspace. So, the matrix X = Z1Z 1"11 is a solution of the
DCARE.

Section 13.7: CONCLUSIONS AND TABLE OF COMPARISONS 581

MATLAB note: MATLAB function care in the form:
[X,L,G,rr] =care(A, B, Q, R, E)

solves the DCARE.
Here G = R™Y(BTXE); the gain matrix, L = eig(A — BG, E), and rr = the
Frobenius norm of the relative residual matrix.

13.6.2 The Inverse-Free Generalized Schur Method for the DCARE

In case R is singular or nearly singular, one needs to use the inverse-free generalized
Schur method. The extended pencil to be considered in this case is

A 0 B E 00
-0 —-AT o]-x]l0 ET 0
0 BT R 0 00

This extended pencil is then compressed into a 2n x 2n pencil in the same way
as in Algorithm 13.5.3 and the rest of the procedure is the same as that algorithm.

13.6.3 The Inverse-Free Generalized Schur Method for the DDARE

The matrix pencil associated with the DDARE is

(_2 E(T)) —A (g iT) , where S = BR™!BT.

The extended pencil for the Inverse-free generalized Schur method for the
DDARE is

A 0 -B E 0 0
-0 ET o]-x|0 AT o
0 0 R 0 BT 0

The pencil is now compressed into a 2n x 2n pencil as in Algorithm 13.5.4 and
the rest of the steps of Algorithm 13.5.4 is then followed.

MATLAB note: The MATLAB function dare in the form [X, L, G,rr] =
dare(A, B, Q, R, E) solves the DDARE. Here G = (BTXB + R)"!BTXA,
L = eig(A — BG, E), and rr = the Frobenius norm of the relative residual
matrix.

13.7 CONCLUSIONS AND TABLE OF COMPARISONS

In this section, we present Table 13.1 which compares the different methods dis-
cussed in this chapter and gives a guideline for practical uses of these methods,
based on this comparative study. We only present data for the CARE. A similar
table can be set up for the DARE as well. However, the comments made about the
Schur method for the CARE are not valid for the DARE, because the Schur method

Table 13.1: A table of comparisons of different methods for the CARE

Method

Efficiency, stability, and
convergence properties

Remarks

The Eigenvector
and the
Generalized
Eigenvector
Methods

The Schur Method
The Symplectic
Hamiltonian—
Schur
Method

The Extended
Hamiltonian—
Schur
Method

Newton’s Method

The Matrix Sign
Function
Method

The Generalized
Schur Method

The Inverse-Free
Generalized
Schur Method

The methods are in general
not numerically stable
(they become unstable
when the Hamiltonian
matrix has nearly multiple
eigenvalues).

Stable in practice.

Stable and
structure-preserving.
Requires less computations
and storage for problems of
size greater than 20.

Stable and
structure-preserving.
More-efficient than the
Schur-method.

Convergence is ultimately
quadratic if the initial
approximation is close to
the solution slow initial
convergence can be
improved by using
Newton’s methods with
line search.

Not stable in general.
Though iterative in nature;
unlike Newton’s method, it
does not require the
knowledge of a stabilizing
initial guess.

Stable in practice.

Stable in practice

Not recommended to be
used in practice.

Widely used.
Works in the single-input.

Works in the multi-input
case.

Usually used as an iterative
refinement procedure.

Simple to use and is structure
preserving.
Recommended to be used
in conjunction with
Newton’s method, with
line search.

Does not work if the control
weighting matrix R is
singular. Even if R is
theoretically nonsingular,
the method should not be
used if it is ill-conditioned.

The best way to solve the
CARE is when R is
nearly singular.

Section 13.8: SOME SELECTED SOFTWARE 583

Jfor the DARE does not work when A is singular and is expected to give inaccu-
rate results when A is theoretically nonsingular, but is computationally nearly
singular.

Conclusions and Recommendations

In conclusion, the following recommendations are made: For the CARE: The
Schur method (Algorithm 13.5.1), the extended Hamiltonian—Schur method or
the matrix sign function (Algorithm 13.5.6) method followed by Newton’s iter-
ation with line search (Algorithm 13.5.9) is recommended. If R is singular
or nearly singular, then the inverse-free generalized Schur method (Algorithm
13.5.3) should be used in place of the Schur method or the matrix sign function
method.

For the DARE: The inverse-free generalized Schur method (Algorithm 13.5.4)
or the matrix sign function method (Algorithm 13.5.7) followed by Newton’s
method with line search (Algorithm 13.5.11) is recommended. However, the matrix
sign function method should be avoided if R is nearly singular.

13.8 SOME SELECTED SOFTWARE
13.8.1 MATLAB Control System Toolbox
Matrix equation solvers.

care Solve continuous algebraic Riccati equations
dare Solve discrete algebraic Riccati equations.

13.8.2 MATCONTROL

RICEIGC The eigenvector method for the continuous-time Riccati
equation
RICSCHC The Schur method for the continuous-time Riccati equation

RICSCHD The Schur method for the discrete-time Riccati equation

RICGEIGD The generalized eigenvector method for the discrete-time
Riccati equation

RICNWTNC Newton’s method for the continuous-time Riccati equation

RICNWTND Newton’s method for the discrete-time Riccati equation

RICSGNC The matrix sign function method for the continuous-time
Riccati equation

RICSGND The matrix sign function method for the discrete-time Riccati
equation

RICNWLSC Newton’s method with line search for the continuous-time
Riccati equation

RICNWLSD Newton’s method with line search for the discrete-time
Riccati equation.

584 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

13.8.3 CSP-ANM
Solutions of the AREs:

The Schur method is implemented as RiccatiSolve [a,b,q,r,
SolveMethod — SchurDecomposition] (continuous-time case)
and DiscreteRiccatiSolve [a,b,q,r, SolveMethod —
SchurDecomposition] (discrete-time case).

Newton’s method is implemented as RiccatiSolve [a,b,q,r,
SolveMethod — Newton, InitialGuess — wp] (discrete-time
case).

The matrix sign function method is implemented as RiccatiSolve
la,b,q,r, SolveMethod — MatrixSign] (continuous-time case)
and DiscreteRiccatiSolve [la,b,q,r, SolveMethod —
MatrixSign] (discrete-time case).

The inverse-free method based on generalized eigenvectors is
implemented as RiccatiSolve |a,b,q,r, SolveMethod —
Generalized Eigendecomposition] (continuous-time case) and
DiscreteRiccatiSolve {a,b,q,r, SolveMethod —
GeneralizedEigendecomposition] (discrete-time case).

The inverse-free method based on generalized Schur decomposition
is implemented as RiccatiSolve [a,b,q,r, SolveMethod —
GeneralizedSchurDecomposition] (continuous-time case) and
DiscreteRiccatiSolve la,b,q,r, Solvemethod —
GeneralizedSchurDecomposition] (discrete-time case).

13.84 SLICOT

Riccati equations

SB0O2MD Solution of AREs (Schur vectors method)
SBO2ZMT Conversion of problems with coupling terms to standard

problems

SBO2ND Optimal state feedback matrix for an optimal control problem
SB020OD Solution of AREs (generalized Schur method)
SBO2PD Solution of continuous algebraic Riccati equations (matrix

sign function method) with condition and forward error
bound estimates

SB02QD Condition and forward error for continuous Riccati equation

solution

SBO2RD Solution of AREs (refined Schur vectors method) with

condition and forward error bound estimates

SB02SD Condition and forward error for discrete Riccati equation

solution

Section 13.9: SUMMARY AND REVIEW 585

13.8.5 MATRIXy

Purpose: Solve Riccati equation. Using the option “DISC” solves the discrete
Riccati equation.

Syntax: [EV, KC] = RICCATI (S, Q, NS, ‘DISC’)
[EV, KC, P] = RICCATI (S, Q, NS, ‘DISC’)

Purpose: Solves the indefinite ARE: A’P + PA— PRP+ Q=0
Syntax: [P, SOLSTAT] = SINGRICCATI (A, Q,R { ,TYPE})

13.9 SUMMARY AND REVIEW

As we have seen in Chapters 10 and 12 that the AREs (13.1.1) and (13.1.2.)
and their variations arise in many areas of control systems design and analysis,
such as:

The LQR and LQG designs

Optimal state estimation (Kalman filter)

Ho-control

Spectral factorizations (not described in this book, see Van Dooren 1981).

Existence and Uniqueness of Stabilizing Solution

Let Q > 0 and R > 0. If (A, B) is stabilizable and (A, Q) is detectable, then
the CARE admits a unique symmetric positive semidefinite stabilizing solution
(Theorem 13.2.6).

Conditioning of the Riccati Equations

The absolute and the relative condition numbers of the CARE have been identified
using a perturbation result (Theorem 13.4.1).

An approximate condition number of the CARE, using a first-order estimate is
Byers’ condition number (in Frobenius norm):

g IQTUIQI+ IOIIAL+ ITS]

where X is the stabilizing solution of the CARE and 2, [1, and © are defined
by (13.4.4)~(13.4.6), and |~ !|[r = 1/sep(AL, —Ac), where Ac = A — SX,
S=BR 'BT.

586 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

The quantities || Q71, 1©], and ||T1| are computationally intensive. Upper
bounds of K(B: ARE €an be obtained by solving the following Lyapunov equations:

(A—SX)THe+ Hi(A—SX)=-X*, k=0,1,2.

The large norms of these matrices (relative to the stabilizing solution X), in
general, indicate that the CARE is ill-conditioned.

The condition number of the DARE is given by (13.4.16).

A first-order estimator for the condition number of the DARE is

E 21 ANZIQIE/IX NIE + IAIZISIFIX I
KDARE =
sep(AT, Ag)

]

where Ay = A — B(R + BTXB)"!BTXA, S = BR!BT. The quantity
sep(Ag, Ag) can be determined as the minimum singular value of the matrix
AT® AT —12.

Numerical Methods for the Riccati Equations

The numerical methods for the Riccati equations discussed here can be broadly
classified into the following three classes:

e Invariant subspace methods
e Deflating subspace methods
e Newton’s methods.

A basic idea of finding a stabilizing solution of the CARE (DARE), using eigen-
vector and Schur methods is to construct a basis for the stable invariant subspace of
the Hamiltonian matrix H (symplectic matrix M). Such a basis can be constructed
using the eigenvectors or the Schur vectors of the Hamiltonian matrix H (the sym-
plectic matrix M). The eigenvector matrix can be ill-conditioned if the matrix H
(the matrix M) is nearly defective and, therefore, the eigenvector approach is
not recommended to be used in practice. The Schur method is preferable to the
eigenvector method. If
T Tnw T
U HU = (0 T22)

is the ordered RSF of H, and the eigenvalues with negative real parts are contained
in Ty1, then X = Uy U 1_11 is the unique stabilizing solution of the CARE, where

Un Unr
U= .
<U21 Uzz)
The Schur method for the DARE can be similarly developed by finding an ordered
RSF of the symplectic matrix M. However, since computation of the matrix M

Section 13.9: SUMMARY AND REVIEW 587

requires the explicit inversion of A, the Schur method for the DARE does not
work if A is singular or can be problematic if A is theoretically nonsingular, but
is computationally singular. In such cases, a deflating subspace method should
be used.

The idea behind the generalized eigenvector and Schur vector methods is basi-
cally the same as that of an invariant subspace method except that the solution of
the Riccati equation is now found by computing a basis for the deflating subspace
of a matrix pencil. For the CARE, the pencil is PcARg — ANcARE, Where

A =S I 0
Pcare = (—Q AT) ; NCcARE = <0) .

For the DARE, the matrices of the pencil are

PpARE = (_AQ (1)) , NDARE = ((I) iT) .

Again, for reasons stated above, the generalized Schur decomposition using the
QZ algorithm should be used to compute such a basis. See Section 13.5.2 for
details. The eigenvector approach should be avoided.

Both the Schur methods and the generalized Schur methods require an explicit
inversion of the matrix R. In case R is ill-conditioned with respect to matrix
inversion, these methods may not give accurate solutions. The difficulties can be
overcome by using an extended (2n + m) x (2n + m) pencil.

For the CARE, the extended pencil is PgARE - ANg ArE» Where

A 0 B 1 00
Phre=1-0 —-AT 0|, NEage=|0 T 0O
o BT R 0 00

This extended (2n 4+ m) x (2n 4 m) pencil can then be compressed into a 2n x 2n
pencil by finding the QR factorization of (g), without affecting the deflating

subspace. The solution of the CARE can then be obtained by finding the ordered
generalized Schur form of the compressed pencil.
For the DARE, the extended pencil is PSARE — ANS Arp» Where

A 0 -B I 0 0O
PSARE = —Q -1 0 B NSARE = 0 AT 0
0 0 R 0 BT 0

This (2n + m) x (2n 4+ m) can be compressed into a 2rn x 2n pencil by using the
QR factorization of (_RB). For details, see Section 13.5.2.

Again, the required basis should be constructed by finding the generalized RSF
of the pencil using the QZ algorithm.

588 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

13.10 CHAPTER NOTES AND FURTHER READING

The AREs have been very well studied in the literatures of mathematics and control
and filter theory.

For an excellent account of up-to-date theoretical developments, see the recent
book of Lancaster and Rodman (1995). Some of the earlier theoretical devel-
opments are contained in Kucera (1972, 1979), Coppel (1974), and Singer and
Hammarling (1983), Willems (1971), Wimmer (1984, 1994), Lancaster and
Rodman (1980). The books by Anderson and Moore (1990), Ando (1988), Kwak-
ernaak and Sivan (1972), Kimura (1997), Zhou et al. (1996) also contain a fair
amount of theory of AREs. The existence of maximal solutions for generalized
AREs arising in stochastic control has been discussed in DeSouza and Fragoso
(1990). The paper by DeSouza et al. (1986) deals with Riccati equations arising in
optimal filtering of nonstabilizable systems having singular state transition matri-
ces. For some application of Riccati equations in general forms to dynamic games,
see Basar (1991).

Important numerical methods have been dealt with in details in the books by
Sima (1996) and Mehrmann (1991). Benner (1999) has given an up-to-date review
with special attention to structure-preserving methods. An extensive bibliography
on numerical methods appear in Laub (1991) and Benner (1997). See Jamshidi
(1980) for an earlier review.

For a review of periodic Riccati equations see the article of Bittanti ef al. and
the references therein in the book “The Riccati Equation” edited by Bittanti e al.
(1991). The latter contains several important papers on Riccati equations and the
paper by Bittanti gives a brief life history of Count Jacopo Riccati (1676-1754),
which is certainly worth reading.

The sensitivity of the continuous-time Riccati equations has been studied
by several people: Byers (1985), Kenney and Hewer (1990), Chen (1988),
Konstantinov et al. (1990), Xu (1996), Sun (1998), and Ghavimi and Laub
(1995), etc. Theorem 13.4.1 is due to Sun (1998). The bound (13.4.14) is due
to Kenney and Hewer (1990). The residual of an approximate stabilizing solution
(Theorem 13.4.3) is due to Sun (1997a). The sensitivity of the DARE has been
studied in Gudmundsson et al. (1992), Konstantinov et al. (1993), Sun (1998),
and Gahinet ez al. (1990). The paper by Ghavimi and Laub (1995) relates back-
ward error and sensitivity to accuracy and discusses techniques for refinement of
computed solutions of the AREs. For recent results, see Petkov et al. (2000). For
results on the upper and lower bounds of the solutions of CARE and DARE, see
Lee (1997a, 1997b).

The eigenvector methods for the Riccati equations were proposed by McFarlane
(1963) and Potter (1966). The Schur method for the Riccati equations originally
appeared in the celebrated paper by Laub (1979). Petkov et al. (1987) studied the
numerical properties of the Schur method and concluded that the Schur method

Section 13.10: CHAPTER NOTES AND FURTHER READING 589

can be unstable in some cases and the solutions may be inaccurate. A further
analysis by Kenney et al. (1989) attributed such inaccuracy to poor scaling. For
an excellent account of scaling of the Schur methods, see Benner (1997). The
structure-preserving Hamiltonian—Schur method was first proposed by Byers in
his Householder-prize winning Ph.D. thesis (1983) in the case of a single-input
system (rank(B) = 1). See Byers (1986a) for details of the method. The theoreti-
cal foundation of this method is contained in the well-known paper by Paige and
Van Loan (1981). Their result was later extended to the case when the Hamiltonian
matrix has eigenvalues on the imaginary axis by Lin and Ho (1990). Patel et al.
(1994) have discussed computation of stable invariant subspaces of Hamiltonian
matrices. Another method, called the multishift method to compute the invariant
subspace of the Hamiltonian matrix corresponding to the stable eigenvalues was
developed by Ammar and Mehrmann (1993). The algorithm is called the multishift
algorithm because n stable eigenvalues of the Hamiltonian matrix are used as shifts
to isolate the desired invariant subspace. The multishift method sometimes has
convergence problems, particularly for large #. The Hamiltonian—Schur algorithm
in the multi-input case is due to Benner et al. (1997¢). For structure-preserving
eigenvalue methods see Benner er al. (1999¢) and Bunse-Gerstner et al. (1992).
Mehrmann (1988) has given a structure-preserving method for the discrete-time
Riccati equation with single-input and single-output. The non-orthogonal sym-
plectic methods have been discussed by Bunse-Gerstner and Mehrmann (1986)
and Bunse-Gerstner et al. (1989) for the CARE, and by Benner et al. (1999b),
Fassbender and Benner (2001) for the DARE. The details of these methods and
other references can be found in the recent book by Fassbender (2000). Interesting
connection between structure-preserving HR and SR algorithms appears in Benner
et al. (1997a).

The generalized eigenvalue problem approach leading to deflating subspace
method for the discrete-time Riccati equation was proposed by Pappas et al. (1980).
See also Arnold and Laub (1984), Emami-Naeini and Franklin (1979, 1982).
The inverse-free methods (the extended pencil approach (Algorithm 13.5.3 and
Algorithm 13.5.4)) and the associated compressed techniques were proposed by
Van Dooren (1981).

The idea of using matrix sign function to solve the CARE was first introduced by
Roberts (1980, [1971]). Byers (1986b, 1987) discussed numerical stability of the
method and studied the computational aspects in details. See also Bierman (1984)
and Bai and Demmel (1998). A generalization of the matrix sign function method
to a matrix pencil and its application to the solutions of DCARE and DDARE was
proposed by Gardiner and Laub (1986). For an account of the matrix sign function,
see the recent paper of Kenney and Laub (1995). For a perturbation analysis of
the matrix sign function, see Sun (1997¢). Howland (1983) relates matrix sign
function to separation of matrix eigenvalues.

590 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

For details of Newton’s algorithm for the CARE (Algorithm 13.5.8) and that of
the DARE (Algorithm 13.5.10), as presented here, see Benner (1997), Lancaster
and Rodman (1995). The correct proof of convergence of Newton’s method
(Theorem 13.5.8) seemed to appear for the first time in Lancaster and Rodman
(1995).

Kenney et al. (1990) gave results on error bounds for Newton’s method, where it
was first pointed out that if the initial solution Xg is not chosen carefully, the error on
the first step can be disastrous. They also gave conditions which guarantee mono-
tone convergence from the first step on (Theorem 13.5.9). Several modifications
of Newton’s methods have appeared in recent years (Guo 1998; Guo and Lancaster
1998; Guo and Laub 2000; etc.). The line search modification proposed by Benner
and Byers (1998) is extremely useful in practice. In general, it improves the con-
vergence behavior of Newton’s method and avoids the problem of a disastrously
large first step. For acceleration techniques of the DARE, see Benner (1998).

Ghavimi et al. (1992) have discussed the local convergence analysis of conjugate
gradient methods for solving the AREs.

For an account of parallel algorithms for AREs, see Bai and Qian (1994),
Gardiner and Laub (1991), and Laub (1991) and references therein, Quintana
and Hernandez (1996a, 1996b, 1996c¢), etc.

For large-scale solutions of the AREs see Ferng et al. (1997), Lu and Lin (1993),
Jaimoukha and Kasenally (1994) and Benner and Fassbender (1997). The recent
book by Ionescu et al. (1999) gives a nice treatment of AREs for the indefinite
sign and singular cases. See also Campbell (1980). For least-squares solutions of
stationary optimal control using the AREs, see Willems (1971).

Some discussions on finding the Cholesky factor of the solution to an ARE with-
out first computing the solution itself appears in Singer and Hammarling (1983).
Lin (1987) has given a numerical method for computing the closed-loop eigen-
values of a discrete-time Riccati equation. Patel (1993) has given a numerical
method for computing the eigenvalues of a simplectic matrix. For numerical algo-
rithms for descriptor Riccati equations, see Benner (1999), Mehrmann (1991),
Bender and Laub (1985, 1987), Benner er al. (1999a), etc. A description of
discrete-time descriptor Riccati equations also appears in Zhang et al. (1999). A
comparative study with respect to efficiency and accuracy of most of the methods
described in this chapter for the CARE (the eigenvector, Schur, inverse-free gen-
eralized Schur, Hamiltonian—-Schur and Newton’s Methods) has been made
in the recent M.Sc. Thesis of Ho (2000), using MATLAB and FORTRAN-77
codes. (In particular, this thesis contains MATLAB codes for ordered Real Schur
and Generalized Real Schur decompositions). Numerical experiments were per-
formed on 12 benchmark examples taken from the collection of Benner ef al.
(1995a, 1997b). The conclusions drawn in this thesis are almost identical to those
mentioned in Section 13.7. For a recent collection of benchmark examples for
Riccati equations, see Abels and Benner (1999a, 1999b).

Section 13.10: CHAPTER NOTES AND FURTHER READING 591

Exercises

13.1 Derive necessary and sufficient conditions for the CARE (13.1.1) to have a unique
symmetric positive definite stabilizing solution X.

13.2 Construct an example to show that the observability of (A, Q) is not necessary for
the solution X of the CARE (13.1.1) to be positive definite.

13.3 Prove that the matrix defined in (13.3.1) is symplectic, and that if X is a nonzero
eigenvalue of M, so is 1/A.

13.4 Establish the relation (13.2.16).

135 (a) Prove the discrete counterpart of Theorem 13.2.4, that is, prove an analogous

theorem for the DARE.
(b) Using the results of Problem 13.3, and those of 13.5(a), prove Theorem 13.3.2.

13.6 Prove that the homogeneous CARE: XA + ATX + XSX = 0 has a stabilizing
solution if A has no eigenvalues on the imaginary axis. Prove or disprove a discrete-
counterpart of this result.

13.7 Prove that the quantity (13.4.22) serves as an approximate condition number of
the DARE (13.1.2). Construct an example of an ill-conditioned DARE using this
quantity.

13.8 Find an example to illustrate that a small relative residual in a computed solution
of the CARE does not guarantee a small error in the solution.

13.9 Prove that if 2 is singular, then sep((A — SX), —(A — SX)T) is zero.

13.10 Give a proof of Algorithm 13.5.1, making necessary assumptions.

13.11 Construct an example to show that the solution of the CARE, obtained by
Algorithm 13.5.1, might be inaccurate, even though the problem is not ill-
conditioned. (Hint: Construct an example for which Uy is ill-conditioned, but
the CARE is well-conditioned.)

13.12 Give an example to demonstrate the superiority of the Schur algorithm for the
CARE over the eigenvector algorithm, in case the associated Hamiltonian matrix
is nearly defective.

13.13 Using Theorem 13.5.1 and the transformation

H =M+ by)(M - Iy~
prove Theorem 13.5.2.

13.14 Construct an example to demonstrate the numerical difficulties of the Schur
algorithm for the DARE in case the matrix A is nearly singular.

13.15 Write down an algorithm for solving the discrete algebraic Riccati equation, using
the eigenvectors of the symplectic matrix. Discuss the computational drawbacks of
the algorithm. Construct an example to illustrate the computational drawbacks.

13.16 Prove the properties 1 through 5 of the matrix sign function Sign(A) stated in
Section 13.5.3.

13.17 Prove that if [A| = 1 is an eigenvalue of the pencil PpoARg — ANpARE With the
eigenvector z = (2) where PpaRg and NpaRE are the same as given in Theorem
13.5.5, then the detectability of (A, Q) implies that z; = 0.

13.18 Formulate the generalized Schur method for the CARE and develop that for the

DARE in details.

592 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

13.19

13.20

13.21

13.22

13.23

13.24

13.25

13.26

13.27

13.28

13.29

Why is the generalized Schur method not preferable over the Schur method for the
CARE if R is not nearly singular?
Construct an example to demonstrate the poor accuracy of the generalized eigen-
vector method for the DARE in case the pencil PpaoRg —ANDARE has near multiple
eigenvalues.

Apply the generalized Schur algorithm (Algorithm 13.5.2) to the same example
and verify the improvement in the accuracy of the solution.
Work out the details of how the pencil P(}:EARE — ANg ARE Can be transformed to

the compressed pencil P(IISSRE - }‘N(IS:/(-\:RE using the O R factorization of the matrix
R

(5)

Repeat the previous exercise for the DARE, that is, work out the details of the

transformation to the pencil PSIERE — ANS[ERE using the Q R factorization of the

matrix R
- B)

Prove that the pencil PgARE -)‘N(I%ARE and the pencil P(ISE/(\:RE - XN(}%XRE as
defined in Section 13.5.2 for the CARE have the same deflating subspaces, and
similarly for the DARE.

Develop the following algorithms in detail for both the DCARE and DDARE
(consult Laub (1991) and Benner (1997)):

The Schur algorithms, the generalized Schur algorithms, the inverse-free gen-
eralized Schur algorithms, the matrix sign function algorithms, and Newton's
algorithms.

Construct a simple example to illustrate each of the above algorithms.

Perform numerical experiments to compare Newton’s methods with Newton’s meth-
ods with line search, both for the CARE and DARE, by using several examples from
the Benchmark collections in Benner et al. (1995a, 1995b, 1997b). Display your
results on number of iterations and norms of the residual matrices using tables and
graphs.

Construct an example to demonstrate the superiority of the inverse-free general-
ized Schur algorithm over the Schur algorithm for the CARE, in case the control
weighting matrix R is positive definite but nearly singular.

Carry out a numerical experiment with a 150 x 150 randomly generated problem
to make a comparative study with respect to computer-time and accuracy of the
solution to the CARE with the following methods: the eigenvector method, the
Schur method, inverse-free generalized Schur method, the matrix sign function
method, and the Hamiltonian structure-preserving Schur method. Write down your
observations and conclusions with tables and graph.

Repeat the previous exercise with the DARE using the following methods: The
eigenvector method, the generalized eigenvector method, the Schur method, the
generalized Schur method, inverse-free generalized Schur method, and the matrix
sign function method.

(Kenney and Hewer 1990). Study the sensitivity of the solution of the CARE with
the following data, for € = 10%, 10~1, 1072, 1073. Present your results with tables

Section 13.10: CHAPTER NOTES AND FURTHER READING 593

and graphs.
—€ 1 0 0 1
-1 —e 0 0 |1 _ . T
A= 0 0 c 1l B = nE R=1, Q=BB".
0 0 -1 € 1

Research Problems

13.1 Develop a structure-preserving method to compute the symplectic Schur decom-
position and apply the method to solve the DARE, thus obtaining a symplectic
structure-preserving method for the DARE.

References

Abels J. and Benner P. “CAREX - a collection of benchmark examples for
continuous-time algebraic Riccati equations (version 2.0)”. SLICOT Work-
ing Note 1999-14, November 1999a. (Available at the NICONET Website:
http://www.win.tue.ne/niconet/niconet.html).

Abels J. and Benner P. “DAREX-a collection of benchmark examples for
discrete-time algebraic Riccati equations (version 2.0)". SLICOT Work-
ing Note 1999-15, November 1999b. (Available at the NICONET Website:
http://www.win.tue.ne/niconet/niconet.html).

Ammar G. and Mehrmann V. “A multishift algorithm for the numerical solution of algebraic
Riccati equations,” Electr. Trans. Num. Anal., Vol. 1, pp. 33-48, 1993.

Anderson B.D.O. and Moore J.B. Optimal Control: Linear Quadratic Methods, Prentice
Hall, Englewood Cliffs, NJ, 1990.

Anderson E., Bai Z., Bischof C., Blockford S., Demmel J., Dongarra J., DuCroz J.,
Greenbaum A., Hammarling S., McKenney A., and Sorensen D. LAPACK Users’
Guide, 3rd edn, SIAM, Philadelphia, 1999.

Ando T. Matrix Quadratic Equations, Hokkaido University, Research Institute of Applied
Electricity, Division of Applied Mathematics, Sapporo, Japan, 1988.

Arnold W. Il and Laub A. “Generalized eigenproblem algorithms and software for algebraic
Riccati equations,” Proc. IEEE, Vol. 72, pp. 1746-1754, 1984.

Bai Z. and Demmel J. “Using the matrix sign function to compute invariant subspaces,”’
SIAM J. Matrix Anal. Appl., Vol. 19, pp. 205-225, 1998.

Bai Z. and Qian Q. “Inverse free parallel method for the numerical solution of algebraic
Riccati equations,” in Proc. Fifth SIAM Conf. Appl. Lin. Alg. (Lewis J. ed.) June,
pp. 167-171, Snowbird, UT, 1994.

Basar T. “Generalized Riccati equations in dynamic game,” in The Riccati Equation,
(Bittanti S., Alan Laub and Williams J.C. eds.), Springer-Verlag, Berlin, 1991.

Bender D. and Laub A. “The linear-quadratic optimal regulator problem for descriptor
systems,” Proc. 24th IEEE Conf. Dec. Control, Ft. Lauderdale, Florida, December,
pp- 957-962, 1985.

594 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Bender D. and Laub A. “The linear-quadratic optimal regular for descriptor systems:
discrete-time case,” Automatica, Vol. 23, pp. 71-85, 1987.

Benner P. Contributions to the Numerical Solution of Algebraic Riccati Equations and
Related Eigenvalue Problems, Dissertation for Dipl.-Math., Technischen Universitit
Chemnitz-Zwickau, Germany 1997.

Benner P. “Acclerating Newton’s method for discrete-time Riccati equations,” in Proc.
MTNS’98, (Beghi A., Finesso L., and Picci G. eds.) pp. 569-572, Padova, Italy, 1998.

Benner P. “Computational methods for linear-quadratic optimization,” Rendiconti del
Circulo Matematico di Palermo, Supplemento, Serie II, no. 58, pp. 21-56, 1999.

Benner P. and Byers R. “An exact line search method for solving generalized continuous-
time algebraic Riccati equations,” IEEE Trans. Autom. Control, Vol. 43, pp. 101-107,
1998.

Benner P, Byers R., Mehrmann V., and Xu H. “Numerical solution of linear—quadratic
control problems for descriptor systems,” in Proc. 1999 IEEE Intl. Symp. CACSD,
(Gonzalez O. ed.) Kohala Coast-Island of Hawaii, Hawaii, USA, pp. 46-51, August
22-27, 1999a.

Benner P. and Fassbender H. “An implicitly restarted symplectic Lanczos method for the
Hamiltonian eigenvalue problem,” Lin. Alg. Appl., Vol. 263, pp. 75-111, 1997.

Benner P., Fassbender H., and Watkins D., “Two connections between the SR and HR
eigenvalue algorithms,” Lin. Alg. Appl., Vol. 272, pp. 17-32, 1997a.

Benner P.,, Fassbender H. and Watkins D. “SR and SZ algorithms for the symplectic
(butterfly) eigenproblem,” Lin. Alg. Appl., Vol. 287, pp. 41-76, 1999b.

Benner P, Laub A., and Mehrmann V. “A collection of benchmark examples for the numer-
ical solution of algebraic Riccati equations I: continuous-time case,” Tech. Report SPC
95-22, Fak. f. Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1995a.

Benner P, Laub A., and Mehrmann V. “A collection of benchmark examples for the numer-
ical solution of algebraic Riccati equations II: discrete-time case,” Tech. Report SPC
95-23, Fak. f. Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1995b.

Benner P, Laub A., and Mehrmann V. “Benchmarks for the numerical solution of algebraic
Riccati equations,” IEEE Control Syst. Mag., Vol. 7(5), pp. 18-28, 1997b.

Benner P., Mehrmann V., and Xu H. “A new method for computing the stable invariant
subspace of a real Hamiltonian matrix,” J. Comput. Appl. Math., Vol. 86, pp. 1743,
1997c.

Benner P, Mehrmann V., and Xu H. “A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic pencils,” Numer. Math.,
Vol. 78, pp. 329-358, 1999c.

Bierman G.J. “Computational aspects of the matrix sign function solution to the ARE,”
Proc. 23rd IEEE Conf. Dec. Contr., Las Vegas, Nevada, pp. 514-519, 1984.

Bittanti S., Laub A., and Willems J.C. (eds.), The Riccati Equation, Springer-Verlag,
Berlin, 1991.

Bunse-Gerstner A., Mehrmann V., and Watkins D. “An SR algorithm for Hamiltonian
matrices based on Gaussian elimination,” Meth. Oper. Res., Vol. 58, pp. 339-358, 1989.

Bunse-Gerstner A., Byers R., and Mehrmann V. “A chart of numerical methods for structured
eigenvalue problems,” SIAM J. Matrix Anal. Appl., Vol. 13(2), pp. 419453, 1992.

Section 13.10: CHAPTER NOTES AND FURTHER READING 595

Bunse-Gerstner A. and Mehrmann V. “A symplectic QR-like algorithm for the solution
of the real algebraic Riccati equation,” IEEE Trans. Autom. Control, Vol. AC-31,
pp. 1104-1113, 1986.

Byers R. Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation,
Ph.D. thesis, Cornell University, Department of Computer Science, Ithaca, NY, 1983.

Byers R. “Numerical condition of the algebraic Riccati equation,” in Contemporary
Mathematics, (Brualdi R. et al., ed.) Vol. 47, pp. 3549, American Mathematical
Society, Providence, RI, 1985.

Byers R. “A Hamiltonian QR-algorithm,” SIAM J. Sci. Statist. Comput., Vol. 7, pp. 212-229,
1986a.

Byers R. “Numerical stability and instability in matrix sign function based algorithms,”
in Computational and Combinatorial Methods in Systems Theory (Byrnes C.1. and
Lindquist A. eds.) pp. 185-200, North Holland, New York, 1986b.

Byers R. “Solving the algebraic Riccati equation with the matrix sign function,” Lin. Alg.
Appl., Vol. 85, pp. 267-279, 1987.

Byers R. “A Hamiltonian Jacobi Algorithm,” IEEE Trans. Autom. Control, Vol. 35(5),
pp- 566-570, 1990.

Campbell S.L. Singular Systems of Differential Equations, Pitman, Marshfield, MA, 1980.

Chen C.-H. “Perturbation analysis for solutions of algebraic Riccati equations,” J. Comput.
Math., Vol. 6, pp. 336-347, 1988.

Coppel W.A. “Matrix quadratic equations,” Bull. Australian Math. Soc., Vol. 10,
pp. 327-401, 1974.

Denman E.D. and Beavers A.N. “The matrix sign function and computations in systems,”
Appl. Math. Comput., Vol. 2, pp. 63-94, 1976.

DeSouza C.E. and Fragoso M.D. “On the existence of maximal solution for generalized
algebraic Riccati equations arising in stochastic control,” Syst. Control Lett., Vol. 14,
pp. 223-239, 1990.

DeSouza C.E., Gevers M.R., and Goodwin G.C. “Riccati equations in optimal filtering
of nonstabilizable systems having singular state transition matrices,” IEEE Trans.
Autom. Control, Vol. AC-31, pp. 831-838, 1986.

Emami-Naeini A. and Franklin G.F. “Design of steady-state quadratic-loss optimal digital
controls for systems with a singular system matrix, Proc. 13th Astimor Conf. Circuits,
Systems and Computers, pp. 370-374, 1979.

Emami-Naeini A. and Franklin G.F. “Deadbeat control and tracking of discrete-time
systems,” IEEE Trans. Autom. Control, Vol. AC-27, pp. 176-181, 1982.

Fassbender H. and Benner P. “A hybrid method for the numerical solution of discrete-time
algebraic Riccati equations,” in Contemporary Mathematics on Structured Matrices
in Mathematics, Computer Science, and Engineering (Olshevsky V. ed.) Vol. 280,
pp- 255-269, American Mathematical Society, Providence, RI, 2001.

Fassbender H. Symplectic Method for the Symplectic Eigenproblem, Kluwer
Academic/Plenum Publishers, New York, 2000.

Ferng WR., Lin W.-W., and Wang C.-S. “The shift-inverted J-Lanczos algorithm for
the numerical solutions of large sparse algebraic Riccati equations,” Comput. Math.
Appl., Vol. 33(10), pp. 23-40, 1997.

Gahinet PM., Laub A.J., Kenney C.S., and Hewer G.A. “Sensitivity of the stable discrete-
time Lyapunov equation,” IEEE Trans. Autom. Control, Vol. 35, pp. 1209-1217, 1990.

596 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Gardiner J.D. and Laub A.J. “A generalization of the matrix-sign-function solution for
algebraic Riccati equations,” Int. J. Control, Vol. 44, pp. 823-832, 1986.

Gardiner J.D. and Laub A.J. “Parallel algorithms for algebraic Riccati equations,” Int. J.
Control, Vol. 54, pp. 1317-1333, 1991.

Ghavimi A., Kenney C., and Laub A.J. “Local convergence analysis of conjugate gradient
methods for solving algebraic Riccati equations,” IEEE Trans. Autom. Control,
Vol. AC-37, pp. 1062-1067, 1992.

Ghavimi A.R. and Laub A.J. “Backward error, sensitivity, and refinement of
computed solutions of algebraic Riccati equations,” Nwm. Lin. Alg. Appl,
Vol. 2, pp. 2949, 1995.

Gudmundsson T., Kenney C., and Laub A J. “Scaling of the discrete-time algebraic Riccati
equation to enhance stability of the Schur method,” IEEE Trans. Autom. Control,
Vol. AC-37, pp. 513-518, 1992.

Guo C.-H. “Newton’s method for discrete algebraic Riccati equations when the closed-loop
matrix has eigenvalues on the unit circle.” SIAM J. Matrix Anal. Appl., Vol. 20,
pp. 279-294, 1998.

Guo C.-H. and Lancaster P. “Analysis and modification of Newton’s method for algebraic
Riccati equations,” Math. Comp., Vol. 67, pp. 1089-1105, 1998.

Guo C.-H. and Laub A.J. “On a Newton-like method for solving algebraic Riccati
equations,” SIAM J. Matrix Anal. Appl., Vol. 21, pp. 694-698, 2000.

Hammarling S.J. Newton’s Method for Solving the Algebraic Riccati Equation, NPL
Report DITC 12/82, National Physical Laboratory, Teddington, Middlesex TW11
OLW, UK, 1982.

Hewer G.A. “An iterative technique for the computation of steady state gains for the discrete
optimal controller,” IEEE Trans. Autom. Control, Vol. AC-16, pp. 382-384, 1971.

Ho T. A Study of Computational Methods for the Continuous-time Algebraic Riccati
Equation, M.Sc. Thesis, Northern Illinois University, DeKalb, Illinois, 2000.

Howland J.L.. “The sign matrix and the separation of matrix eigenvalues,” Lin. Alg. Appl.,
Vol. 49, pp. 221-232, 1983.

Ionescu V., Oara C., and Weiss M. Generalized Riccati Theory and Robust Control, John
Wiley, New York, 1999.

Jaimoukha .M. and Kasenally E.M. “Krylov subspace methods for solving large Lyapunov
equations,” SIAM J. Numer. Anal. Vol. 31, 227-251, 1994.

Jamshidi M. “An overview on the solutions of the algebraic Riccati equation and related
problems,” Large-Scale Syst., Vol. 1, pp. 167-192, 1980.

Kenney C.S. and Hewer G. “The sensitivity of the algebraic and differential Riccati
equations,” SIAM J. Control Optimiz., Vol. 28, pp. 50-69, 1990.

Kenney C.S. and Laub A.J. “On scaling Newton’s method for polar decomposition and the
matrix sign function,” SIAM J. Matrix Anal. Appl., Vol. 13, pp. 688-706, 1992,
Kenney C.S. and Laub A.J. “The matrix sign function,” IEEE Trans. Autom. Control,

Vol. 40, pp. 13301348, 1995.

Kenney C.S., Laub AJ., and Wette M. “A stability-enhancing scaling procedure for
Schur-Riccati solvers,” Syst. Control Lett., Vol. 12, pp. 241-250, 1989.

Kenney C.S., Laub A.J., and Wette M. “Error bounds for Newton refinement of solutions to
algebraic Riccati equations,” Math. Control, Signals, Syst., Vol. 3, pp. 211-224, 1990.

Section 13.10: CHAPTER NOTES AND FURTHER READING 597

Kimura, H. Chain-Scattering Approach to Hoo-Control, Birkhduser, Boston, 1997.

Kleinman D.L. “On an iterative technique for Riccati equation computations,” IEEE Trans.
Autom. Control, Vol. AC-13, pp. 114-115, 1968.

Kleinman D.L. “Stabilizing a discrete, constant linear system with application to iterative
methods for solving the Riccati equation, IEEE Trans. Autom. Control, Vol. AC-19,
pp. 252~254, 1974.

Konstantinov M.M., Petkov P.,, and Christov N.D. “Perturbation analysis of matrix
quadratic equations,” SIAM J. Sci. Stat. Comput., Vol. 11, pp. 1159-1163, 1990.
Konstantinov M.M., Petkov P., and Christov N.D. “Perturbation analysis of the discrete

Riccati equation,” Kybernetika, Vol. 29, pp. 18-29, 1993.

Konstantinov M.M., Petkov P., Gu D.W., and Postlethwaite 1. Perturbation Techniques
for Linear Control Problems, Report 95-7, Control Systems Research, Department of
Engineering, Leicester University, UK, 1995.

Kucera V. “A contribution to matrix quadratic equations,” IEEE Trans. Autom. Control,
Vol. 17, pp. 344-347, 1972.

Kucera, V. Discrete Linear Control, John Wiley & Sons, New York, 1979.

Kwakernaak H. and Sivan R. Linear Optimal Control Systems, Wiley-Interscience,
New York, 1972.

Lancaster P. and Rodman L. “Existence and uniqueness theorems for algebraic Riccati
equations,” Int. J. Control, Vol. 32, pp. 285-309, 1980.

Lancaster P. and Rodman L. Algebraic Riccati Equations, Oxford University Press,
Oxford, 1995.

Lee C.-H. “On the upper and lower bounds of the solution of the continuous algebraic
Riccati matrix equation,” Int. J. Control, Vol. 66, pp. 105-118, 1997a.

Lee C.-H. “Upper and lower bounds of the solutions of the discrete algebraic Riccati and
Lyupunov matrix equations,” Int. J. Control, Vol. 68, pp. 579-598, 1997b.

Laub A.J. “A Schur method for solving algebraic Riccati equations,” IEEE Trans. Autom.
Control, Vol. AC-24, pp. 913-921, 1979.

Laub, A.J. “Invariant subspace methods for the numerical solution of Riccati equations,”
in The Riccati Equation (Bittanti S. et al., eds.) pp. 163-196, Springer-Verlag, Berlin
1991.

Lin W.-W. “A new method for computing the closed-loop eigenvalues of a discrete-time
algebraic Riccati equation,” Lin. Alg. Appl., Vol. 6, pp. 157-180, 1987.

Lin W.-W. and Ho T.-C. On Schur type decompositions of Hamiltonian and Symplectic
Pencils, Tech. Report, Institute of Applied Mathematics, National Tsing Hua
University Taiwan, 1990.

Lu L. and Lin W.-W. “An iterative algorithm for the solution of the discrete-time algebraic
Riccati equation,” Lin. Alg. Appl., Vol. 188/189, pp. 465488, 1993.

McFarlane A. “An eigenvector solution of the optimal linear regulator problem,”
J. Electron. Control, Vol. 14, pp. 643-654, 1963.

Mehrmann V. The Autonomous Linear Quadratic Control Problem. Lecture Notes in
Control and Information Sciences, Vol. 163, Springer-Verlag, Berlin, 1991.

Mehrmann V. “A symplectic orthogonal method for single-input single-output discrete-
time optimal linear quadratic control problems,” SIAM J. Matrix Anal. Appl., Vol. 9,
pp- 221-247, 1988.

598 Chapter 13: NUMERICAL SOLUTIONS AND ALGEBRAIC RICCATI EQUATIONS

Paige C. and Van Loan C. “A Schur decomposition for Hamiltonian matrices,” Lin. Alg.
Appl., pp. 11-32, 1981.

Pandey P. “On scaling an algebraic Riccati equation,” Proc. Amer. Control Conf., Vol. 9,
pp. 1583-1587, June, 1993.

Pappas T., Laub A.J., and Sandell N. “On the numerical solution of the discrete-time alge-
braic Riccati equation,” IEEE Trans. Autom. Control, Vol. AC-25, pp. 631-641, 1980.

Patel R.V. “On computing the eigenvalues of a symplectic pencil,” Lin. Alg. Appl.,
Vol. 188/189, pp. 591-611, 1993.

Patel R.V., Lin Z., and Misra P. “Computation of stable invariant subspaces of Hamiltonian
matrices,” SIAM J. Matrix Anal. Appl., Vol. 15, pp. 284-298, 1994.

Petkov P., Christov N.D., and Konstantinov M.M. “Numerical properties of the generalized
Schur approach for solving the discrete matrix Riccati equation,” Proc. 18th Spring
Conference of the Union of Bulgarian Mathematicians, Albena, pp. 452-457, 1989.

Petkov P., Christov N.D., and Konstantinov M.M. “On the numerical properties of the
Schur approach for solving the matrix Riccati equation,” Syst. Control Lett., Vol. 9,
pp. 197-201, 1987.

Petkov P., Christov N.D., and Konstantinov M.M. Computational Methods for Linear
Control Systems, Prentice Hall, London, 1991.

Petkov P, Konstantinov M.M., and Mehrmann V. DGRSVX and DMSRIC: Fortran
77 Subroutines for Solving Continuous-time Matrix Algebraic Riccati Equations
with Condition and Accuracy Estimates. Tech. Report SFB393/98-116, Fakultt fiir
Mathematik, TU Chemnitz, 09107 Chemnitz, FRG, 1998.

Petkov P., Gu D., Konstantinou M.M., and Mehrmann V. “Condition and Error Estimates
in the Solution of Lyapunov and Riccati equations, SLICOT Working Note, 2000-1.

Potter J.E. “Matrix quadratic solutions,” SIAM J. Appl. Math., Vol. 14, pp. 496-501,
1966.

Quintana E. and Herndndez V. Algoritmos por bloques y paralelos para resolver ecuaciones
matriciales de Riccati mediante el método de Newton, Tech. Report DSIC-11/6/96,
Dpto. de Sistemas Informaticos y Computacién, Universidad Politécnica de Valencia,
Valencia, Spain, 1996a.

Quintana E. and Heméndez V. Algoritmos por bloques y paralelos para resolver ecuaciones
matriciales de Riccati mediante el método de Schur, Tech. Report DSIC-11/7/96,
Dpto. de Sistemas Informdticos y Computacién, Universidad Politécnica de Valencia,
Valencia, Spain, 1996b.

Quintana E. and Hernandez V. Algoritmos por bloques y paralelos para resolver ecuaciones
matriciales de Riccati mediante la division espectral, Tech. Report DSIC-11/6/96,
Dpto de Sistemas Informaticos y Computacién, Universidad Politécnica de Valencia,
Valencia, Spain, 1996c.

Roberts J. “Linear model reduction and solution of the algebraic Riccati equation by use of
the sign function,” Int. J. Control, Vol. 32, pp. 677-687, 1980 (reprint of a technical
report form Cambridge University in 1971).

Sima V. Algorithms for Linear-Quadratic Optimization, Marcel Dekker, New York, 1996.

Sima V., Petkov P. and VanHuffel S. “Efficient and reliable algorithms for condition
estimation of Lyapunov and Riccati equations,” Proc. Mathematical Theory of
Networks and Systems (MTNS - 2000), 2000.

Section 13.10: CHAPTER NOTES AND FURTHER READING 599

Singer M.A. and Hammarling S.J. The Algebraic Riccati Equation, National Physical
Laboratory Report, DITC 23/83, January, 1983.

Stewart G.W. “Algorithm 506-HQR3 and EXCHNG: Fortran subroutines for calculating
and ordering the eigenvalues of a real upper Hessenberg matrix,” ACM Trans. Math.
Soft., Vol. 2, pp. 275-280, 1976.

Sun J.-G. “Residual bounds of approximate solutions of the algebraic Riccati equations,”
Numer. Math., Vol. 76, pp. 249-263, 1997a.

Sun J.-G. “Backward error for the discrete-time algebraic Riccati equation,” Lin. Alg.
Appl., Vol. 25, pp. 183-208, 1997b.

Sun J.-G. “Perturbation analysis of the matrix sign function,” Lin. Alg. Appl., Vol. 250,
pp. 177-206, 1997c.

Sun J.-G. “Perturbation theory for algebraic Riccati equation,” SIAM J. Matrix Anal. Appl.,
Vol. 19(1), pp. 39-65, 1998.

Van Dooren P. “A generalized eigenvalue approach for solving Riccati equations,” SIAM
J. Sci. Stat. Comput., Vol. 2, pp. 121-135, 1981.

Van Dooren P. “Algorithm 590-DSUBSP and EXCHQZ: Fortran subroutines for comput-
ing deflating subspaces with specified spectrum,” ACM Trans. Math. Soft., Vol. §,
pp. 376-382, 1982.

Van Loan C.F. “A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix,” Lin. Alg. Appl., Vol. 16, pp. 233-251, 1984.

Willems J.C. “Least squares stationary optimal control and the algebraic Riccati equation,”
IEEE Trans. Autom. Control, Vol. AC-16, pp. 621-634, 1971.

Wimmer H.K. “The algebraic Riccati equation: Conditions for the existence and uniqueness
of solutions,” Lin. Alg. Appl., Vol. 58, pp. 441452, 1984.

Wimmer H.K. “Existence of positive-definite and semidefinite solutions of discrete-time
algebraic Riccati equations,” Int. J. Control, Vol. 59, pp. 463471, 1994.

Xu S.-F. “Sensitivity analysis of the algebraic Riccati equations,” Numer. Math., Vol. 75,
pp. 121134, 1996.

Zhang L.Q., Lam J., and Zhang Q.L. “Lyapunov and Riccati equations of discrete-time
descriptor systems,” IEEE Trans. Autom. Control, Vol. 44(1), pp. 2134-2139, 1999.

Zhou K. (with Doyle J.C. and Glover K.), Robust and Optimal Control, Prentice Hall,
Upper Saddle River, NJ, 1996.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

CHAPTER 14

INTERNAL BALANCING AND
MODEL REDUCTION

‘ l'opics covered

e Internal Balancing

e Model Reduction via Internal Balancing

e Model Reduction via Schur Decomposition
e Hankel Norm Approximation

14.1 INTRODUCTION

Several practical situations such as the design of large space structures (LSS),
control of power systems, and others, give rise to very large-scale control problems.
Typically, these come from the discretization of distributed parameter problems
and have thousands of states in practice. Enormous computational complexities
hinder the computationally feasible solutions of these problems.

As a result, control theorists have always sought ways to construct reduced-
order models of appropriate dimensions (depending upon the problem to be solved)
which can then be used in practice in the design of control systems. This process is
known as model reduction. The idea of model reduction is to construct a reduced-
order model from the original full-order model such that the reduced-order model
is close, in some sense, to the full-order model. The closeness is normally measured
by the smallness of ||G(s) — Gr(s)||, where G(s) and GR(s) are, respectively, the
transfer function matrices of the original and the reduced-order model. Two norms,
| - loc norm and the Hankel-norm are considered here. The problem of construct-
ing a reduced-order model such that the Hankel-norm error is minimized is called
an Optimal Hankel-norm approximation problem. A widely used practice of
model reduction is to first find a balanced realization (i.e., a realization with con-
trollability and observability Grammians equal to a diagonal matrix) and then to

601

602 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

truncate the balanced realization in an appropriate manner to obtain a reduced-
order model. The process is known as balanced truncation method. Balanced
truncation does not minimize the Hy, model reduction error, it only gives an upper
bound. Balancing of a continuous-time system is discussed in Section 14.2, where
two algorithms are described. Algorithm 14.2.1 (Laub 1980; Glover 1984) con-
structs internal balancing of a stable, controllable and observable system, whereas
Algorithm 14.2.2 (Tombs and Postlethwaite 1987) is designed to extract a bal-
anced realization, if the original system is not minimal. Internal balancing of a
discrete-time system is described in Section 14.3.

In Section 14.4, it is shown (Theorem 14.4.1) that a reduced-order model con-
structed by truncating a balanced realization (Algorithm 14.4.1) remains stable
and the H,o-norm error is bounded.

A Schur method (Algorithm 14.4.2) for model reduction is then described.
The Schur method due to Safonov and Chiang (1989) is designed to overcome
the numerical difficulties in Algorithm 14.4.1 due to the possible ill-conditioning
of the balancing transforming matrices. In Theorem 14.4.2, it is shown that the
transfer function matrix of the reduced-order model obtained by the Schur method
is the same as that of the model reduction procedure via internal balancing using
Algorithm 14.2.1. The Schur method, however, has its own computational prob-
lem. It requires computation of the product of the controllability and observability
Grammians, which might be a source of round-off errors. The method, can be
modified by using Cholesky factors of the Grammians which then leads to the
square-root algorithm (Algorithm 14.2.2).

The advantages of the Schur and the square-root methods can be combined into
a balancing-free square-root algorithm (Varga 1991). This algorithm is briefly
sketched in Section 14.4.3.

Section 14.5 deals with Hankel-norm approximation. A state-space charac-
terization of all solutions to optimal Hankel-norm approximation due to Glover
(1984) is stated (Theorem 14.5.2) and then an algorithm to compute an optimal
Hankel-norm approximation (Algorithm 14.5.1) is described.

Section 14.6 shows how to obtain a reduced-order model of an unstable
system.

The frequency-weighted model reduction problem due to Enns(1984) is con-
sidered in Section 14.7. The errors at the high frequencies can sometimes possibly
be reduced by using suitable weights on the frequencies.

Finally, in Section 14.8, a numerical comparison of different model reduction
procedures is given.

14.2 INTERNAL BALANCING OF CONTINUOUS-TIME SYSTEMS

Let (A, B, C, D) be an n-th order stable system that is both controllable and
observable. Then it is known (Glover 1984) that there exists a transformation

Section 14.2: INTERNAL BALANCING OF CONTINUOUS-TIME SYSTEMS 603

such that the transformed controllability and observability Grammians are equal
to a diagonal matrix X. Such a realization is called a balanced realization (or
internally balanced realization).

Internal balancing of a given realization is a preliminary step to a class of meth-
ods for model reduction, called Balance Truncation Methods. In this section, we
describe two algorithms for internal balancing of a continuous-time system. The
matrix D of the system (A, B, C, D) remains unchanged during the transforma-
tion of the system to a balanced system. We, therefore, drop the matrix D from
our discussions in this chapter.

14.2.1 Internal Balancing of a Minimal Realization (MR)

Suppose that the r-th order system (A, B, C) is stable and minimal. Thus, it is both
controllable and observable. Therefore, the controllability Grammian Cg and the
observability Grammian Og are symmetric and positive definite (see Chapter 7)
and hence admit the Cholesky factorizations.
Let Cg = LCLCT and Og = LOLI be the respective Cholesky factorizations.
Let

L. =uzv? (14.2.1)

be the singular value decomposition (SVD) of LELC.
Define now

T=LVE /2 (14.2.2)

where 172 denotes the square root of T.
Then T is nonsingular, and furthermore using the expressions for Cg and
Eq. (14.2.2), we see that the transformed controllability Grammian Cg is

Co=T"'CeT T=2V2vT L L LT TV s = 3.

Similarly, using the expression for Og and the Eqgs. (14.2.1) and (14.2.2), we see
that the transformed observability Grammian Og is

O =TT0cT = '2VILT L, LTL.vE~1/?
=z 2yTysuTusvlv e 12 =xl2. g2 = 5.

Thus, the particular choice of
T=LVE/? (14.2.3)

reduces both the controllability and observability Grammians to the same
diagonal matrix X. The system (A, B, C), where the system matrices are

604 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

defined by
A=T7'AT, B=T"'B, C=CT (14.2.4)

is then a balanced realization of the system (A, B, C). The decreasing positive
numbers g1 > 07 > --- > 0, in ¥ = diag(o], 02, ..., 0p), are the Hankel
singular values.

The above discussion leads to the following algorithm for internal balancing.

Algorithm 14.2.1. AnAlgorithm for Internal Balancing of a Continuous-Time
MR
Inputs.
A—The n x n state matrix.
B—The n X m input matrix.
C—The r x n output matrix.
Outputs.
T—An n x n nonsingular balancing transforming matrix.
/i, f}, C—The matrices of internally balanced realization:

A=T71AT, B=T"'B, C=CT.

Assumptions. (A, B) is controllable, (A, C) is observable, and A is stable.
Result. T-'CgT™ T = TTOGT = X, a diagonal matrix with positive
diagonal entries.

Step 1. Compute the controllability and observability Grammians, Cg and Og,
by solving, respectively, the Lyapunov equations:

ACg + CgAT + BBT =0, (14.2.5)
ATog + 0gA+CTC = 0. (14.2.6)

(Note that since A is a stable matrix, the matrices Cg and Og can be obtained by
solving the respective Lyapunov equations above (see Chapter 7).)
Step 2. Find the Cholesky factors L. and L, of Cg and Og:

Cg=LcL, and Og=LoL} (14.2.7)

Step 3. Find the SVD of the matrix LTL.: LT L, = USVT.
1 1 1
, e , where
Vo o2 ~/On)
¥ = diag(oy, 02, ...,0,). (Note that o;, i = 1,2, ..., n are positive).
Step5.Form T = L.V ©~1/?
Step 6. Compute the matrices of the balanced realization:

Step 4. Compute £~'/2 = diag <

A=T'AT, B=T7"'B, and C=CT.

Section 14.2: INTERNAL BALANCING OF CONTINUOUS-TIME SYSTEMS 605

Remark

e The original method of Laub (1980) consisted in finding the transforming
matrix T by diagonalizing the product LZ OGL.or LICGL,, which is sym-
metric and positive definite. The method described here is mathematically
equivalent to Laub’s method and is numerically more effective.

Example 14.2.1. Consider finding the balanced realization using Algorithm 14.2.1
of the system (A, B, C) given by:

-1 2 3
A=[l0o —2 1], B=(,,nT, Cc=q,1,0.
0 0 -3

Step 1. By solving the Lyapunov equation (14.2.5), we obtain
3.9250 0.9750 0.4917
Cc = {09750 0.3667 0.2333].
0.4917 0.2333 0.1667

Similarly, by solving the Lyapunov equation (14.2.6), we obtain

0.5000 0.6667 0.7917
Og = 1 0.6667 09167 1.1000
0.7917 1.1000 1.3250

Step 2. The Cholesky factors of Cg and Og are:
1.9812 0 0 0.7071 0 0
L.=104912 0.3528 0 , Lo =10.9428 0.1667 0 .
0.2482 0.3152 0.0757 1.1196 0.2667 0.0204
Step 3. From the SVD of LELC (using MATLAB function svd):
(U, %, V]=svd(L] L),

we have
¥ = diag (2.2589 0.0917 0.0006) ,
—-0.9507 0.3099 0.0085
V=1-03076 —-0.9398 —0.1488
—0.0381 —0.1441 0.9888
Step 4.

/2 = diag(1.5030, 0.3028, 0.0248).
Step 5. The transforming matrix T is:

—1.2532 2.0277 0.6775
T=LVEV?2=[-0385 —0.5914 —1.9487
—0.2234 —0.7604 1.2131

606 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Step 6. The balanced matrices are:

i —0.7659 0.5801 —0.0478
A=T7'AT = | -0.5801 —-2.4919 04253
0.0478 0.4253 —2.7422

_ ~1.8602 i
B=T"'B=|-06759|, €=CT=(-18602 06759 —0.0581).
0.0581

Verify:
TCgT T=TT0gT = £ = diag(2.2589, 0.0917, 0.0006).
Computational Remarks

e The explicit computation of the product LELC can be a source of round-
off errors. The small singular values might be almost wiped out by the
rounding errors in forming the explicit product LELC. It is suggested that
the algorithm of Heath ez al. (1986), which computes the singular values of
a product of two matrices without explicitly forming the product, be used
in practical implementation of this algorithm.

MATLAB notes: The MATLAB function in the form:
SYSB = balreal (sys)

returns a balanced realization of the system (A, B, C). The use of the function
balreal in the following format:

[SYSB, G, T, TI] = balreal (sys)

returns, in addition to A, B, C of the balanced system, a vector G containing the
diagonal of the Grammian of the balanced realization. The matrix T is the matrix
of the similarity transformation that transforms (A, B, C) to (/i, l§, C) and TI is
its inverse.

MATCONTROL notes: Algorithm 14.2.1 has been implemented in MATCON-
TROL function balsvd.

14.2.2 Internal Balancing of a Nonminimal Realization

In the previous section we showed how to compute the balanced realization of
a stable minimal realization. Now we show how to obtain a balanced realization
given a stable nonminimal continuous-time realization. The method is due to
Tombs and Postlethwaite (1987) and is known as the square-root method. The
algorithm is based on a partitioning of the SVD of the product LELC and the

Section 14.2: INTERNAL BALANCING OF CONTINUOUS-TIME SYSTEMS 607

balanced matrices A, B, C are found by applying two transforming matrices L
and Z to the matrices A, B, and C. The matrices L, and L. are, respectively,
the Cholesky factors of the positive semidefinite observability and controllability
matrices Og and Cg.

The balanced realization in this case is of order k(k < n) in contrast with the
previous one where the balanced matrices are of the same orders as of the original
model.

Let the SVD of LI L. be represented as

LIL. = (U), Uy) diag(Zy, Z)(Vy, V)T

where | = diag(oq,...,0¢) > 0, 2 = O0y—psn—k.
The matrices Uy, VlT ,and X are of order n x k, k x n, and k x k, respectively.
Define now
L=LUuis % z=Lwvz["?

Tl~1en~ it ~has been shown in Tombs and Postlethwaite (1987) that the r~ealization
(A, q, C), where the matrices A, B, and C are definedby A = LTAZ, B=L"B,
and C = CZ is balanced, truncated to £ states, of the system (A, B, C).

Remark

e Note that no assumption on the controllability of (A, B) or the observability
of (A, C) is made.

Algorithm 14.2.2. The Square-Root Algorithm for Balanced Realization of a
Continuous-Time Nonminimal Realization

Inputs. The system matrices A, B, and C of a nonminimal realization.

Outputs. The transforming matrices L, Z, and the balanced matrices A, B,
and C.

Assumption. A is stable.

Step 1. Compute L, and L, using the LDLT decomposition of Og and
Cg, respectively. (Note that L, and L. may be symmetric positive semidefinite,
rather than positive definite.)

Step 2. Compute the SVD of LgﬂLC and partition it in the form:

LyLe = (U1, Up) diag(S1, £2)(V1, Vo)
where X1 = diag(oy, 02,...0¢) > 0.
Step 3. Define
L=LU2"? and Z=LVix]'"
Step 4. Compute the balanced matrices A, B, and C as:
A=L"AZ, B=L"B, and C=CZ.

608 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Example 14.2.2. Let A, C be the same as in Example 14.2.1, and let B = (1, 0, 0T.
Thus, (A, B) is not controllable.

Step 1.
07071 0 0
Lo=|09428 01667 0 |, L.=diag(0.7071,0,0).
1.1196 0.2667 0.0204
1 1
Step2.U1 =10}, vi=[0], = =05000 « k=1
0 0
Step 3.
1
L=Louz?=13333), z=Lwz,"?=]o0
1.5833 0

Stepd. A=—1,B=1,C=1.

Thus, (/i, 1§, (:’) is a balanced realization of order 1, since the realized system
is both controllable and observable. Indeed both the controllability and observability
Grammians for this realization are equal to 0.5.

MATCONTROL note: Algorithm 14.2.2 has been implemented in MATCON-
TROL function balsqt.

Numerical difficulties of Algorithm 14.2.1 and 14.2.2: Algorithm 14.2.1 of the
last section can be numerically unstable in the case when the matrix T is ill-
conditioned.

To see this, we borrow the following simple example from Safonov and Chiang
(1989):

The transforming matrix 7' of Algorithm 14.2.1 in this case is given by

T=<% 0)
0 e

Thus, as € becomes smaller and smaller, T becomes more and more ill-conditioned.
Indeed, when ¢ — 0, Cond(T) becomes infinite.

In such cases, the model reduction procedure via internal balancing
becomes unstable.

Similarly, the square-root algorithm (Algorithm 14.2.2) can be unstable if
the matrices L and T are ill-conditioned.

Section 14.3: INTERNAL BALANCING OF DISCRETE-TIME SYSTEMS 609

14.3 INTERNAL BALANCING OF DISCRETE-TIME SYSTEMS
In this section, we consider internal balancing of the stable discrete-time system:

Xp+1 = Axg + Buy,

14.3.1
= ka. ()

We assume that the system is controllable and observable, and give here a discrete
analog of Algorithm 14.2.1.
The discrete analog of Algorithm 14.2.2 can be similarly developed and is left
as an (Exercise 14.11(b)).
The controllability Grammian Cg and the observability Grammian OZ, defined
by (Chapter 7):
s . .
g =) A'BBT(A"Y
i=0
and
s . .
0g => (AhicTcA
i=0
satisfy, in this case, respectively, the discrete Lyapunov equations:
ACEAT -2+ BBT =0 (14.3.2)
and
AToRA - 08 +CTc =o. (14.3.3)
It can then be shown that the transforming matrix 7" defined by

T =LVE 2, (14.3.4)

where L., V, and ¥ are defined in the same way as in the continuous-time case,
will transform the system (14.3.1) to the internally balanced system:
Fep1 = ARy + Buy,
e (14.3.5)
= Cxp.

The Grammians again are transformed to the same diagonal matrix X, the matrices
A, B, and C are defined in the same way as in the continuous-time case.

Example 14.3.1.
0.0010 1 1 1
A= 0 0.1200 1 , B=| 11}, C=(,1,1).
0 0 —0.1000 1

(Note that the eigenvalues of A have moduli less than 1, so it is discrete-stable.)

610 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Step 1. The discrete controllability and observability Grammians obtained,
respectively, by solving (14.3.2) and (14.3.3) are:

6.0507 3.2769 0.8101
Cg =| 3.2769 2.2558 0.8883
0.8101 0.8883 1.0101

and

1 1.0011 1.0019
OGD =| 1.0011 22730 3.2548
1.0019 3.2548 5.4787

Step 2. The Cholesky factors of C g and OGD are:

LP =1 13322 06936 0
0.3293 0.6482 0.6939

and

1 0 0
P =1 10011 11273 0
1.0019 19975 0.6963

Step 3. The SVD of (L2)TLD:

)
)
)

U, T, V]=svd(LD)"LD

gives
T = diag(53574, 1.4007, 0.1238).
0.8598 —0.5055 0.0725
V=] 04368 0.6545 -0.6171].
0.2645 0.5623 0.7835
Step 4.

/2 = diag(2.3146, 1.1835, 0.3519).
Step 5. The transforming matrix T is:
T=LPvz'/2

0.9137 —1.0506 0.5068
= | 0.6257 -0.1854 —-0.9419
0.3240 05475 0.4759

Step 6. The balanced matrices are:
y 0.5549 0.4098 0.0257

A=T7'AT = | -04098 —0.1140 0.2629
0.0257 —0.2629 —-0.4199

Section 14.4: MODEL REDUCTION 611

i 1.8634
B=T"'B=1| 06885 |,
0.0408

C = CT = (1.8634, —0.6885, 0.0408).
Verify:

T'CT T = TTORT = £ = diag(5.3574, 1.4007, 0.1238).

144 MODEL REDUCTION

Given an nth order realization (A, B, C) with the transfer function matrix G(1) =
C(AM — A)"'B, where “A” is complex variable “s” for the continuous-time case
and is the complex variable z = (1 + 5)/(1 — s) in the discrete time, the ideal
model reduction problem aims at finding a state-space system of order ¢ < n
such that the H, error-norm

E=|GR) — Gr(M o

is minimized over all state-space systems of order g, where Gr(}) is the transfer
function of the reduced-order model.

The exact minimization is a difficult computational task, and, in practice, a less
strict requirement, such a guaranteed upper bound on E is sought to be achieved.
We will discuss two such methods in this chapter:

¢ Balanced Truncation Method
e The Schur Method

We shall also describe briefly an optimal Hankel-Norm Approximation
(HNA) method in Section 14.5. This optimal HNA method minimizes the
error in Hankel norm (defined in Section 14.5). Furthermore, we will state
another model reduction approach, called Singular Perturbation (SP) Method
in Exercise 14.23. For properties of SP method, see Anderson and Liu (1989).
Finally, an idea of Frequency-Weighted Model Reduction due to Enns (1984)
will be discussed in Section 14.7.

14.4.1 Model Reduction via Balanced Truncation

As the title suggests, the idea behind model reduction via balanced truncation is
to obtain a reduced-order model by deleting those states that are least control-
lable and observable (as measured by the size of HankKel singular values). Thus,
if ¥r = diag(o11y,, ..., on1s,), is the matrix of Hankel singular values (which
are arranged in decreasing order), obtained by a balanced realization, where s;
is the multiplicity of o;, and o4 3> 6441, then the balanced realization implies

612 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

that the states corresponding to the Hankel singular values 441 ..., oy are less
controllable and less observable than those corresponding to o1, ..., o4. Thus,
the reduced-order model obtained by eliminating these less controllable and less
observable states are likely to retain some desirable information about the original
system. Indeed, to this end, the following result (Theorem 14.4.1) holds. The idea
of obtaining such a reduced-order model is due to Moore (1981). Part (a) of the
theorem is due to Pernebo and Silverman (1982), and Part (b) was proved by
Enns (1984) and independently by Glover (1984). We shall discuss here only the
continuous-time case; the discrete-time case in analogous.

Theorem 14.4.1. Stability and Error Bound of the Truncated Subsystem. Let

AR A | Br
Gs)=| Ay An | By (14.4.1)
Ck C, |0

be the transfer function matrix of an nth order internally balanced stable system
with the Grammian ¥ = diag(ZR, 1), where

Yr =diag(oi Lg,, ..., 041,), d <N
R .g(115, als,) (14.42)
Yy =diag(og+1ls,ys - onIsy)
and
gl >0 > - >0d > 0441 > 0442 >+ > ON.

The multiplicity of o; is s;,i = 1,2, ..., Nand s; +sp +---+ sy = n.

(a) Then the truncated system (AR, Br, Cr) with the transfer function:

AR | Br
G = 14.4.3
R(S) [Ce | 0 } ()
is balanced and stable.
(b) Furthermore, the error:
1G(s) — Gr($) oo <2(0a41 + -+ + ON). (14.4.4)

In particular, ifd = N — 1, then |G(s) — GN—-1(5)]lco = 20N.

Proof. We leave the proof part (a) as an exercise (Exercise 14.1). We assume
that the singular values o; are distinct and prove part (b) only in the case n = N.
The proof in the general case can be easily done using the proof of this special
case and is also left as an exercise (Exercise 14.1). The proof has been taken from
Zhou et al. (1996, pp. 158-160).

Section 14.4: MODEL REDUCTION 613

Let
B(s) = (sI — AR) ", (14.4.5)
Y(s) =5l —Ap — An9(s)Ar, (14.4.6)
B(s) = A21¢(s)Br + By, (14.4.7)
C(s) = Cré(s)A12 + Ca. (14.4.8)
Then,

G(s) — Gr(s) = C(sI — A)"'B — Cre(s) B,

-1
_ sl — AR —A12 BR
= (Cr, () (Ay sl Azz) (B2> — Cro(s)BR,

= C(s)¥ ' (s)B(s). (14.4.9)
For s = jw, we have
max |G (@)~ GR(j@)] = At [¥ () B(j0) B* jeo) ¥ ™ (ja)C* () C(jw)],

(14.4.10)
where Amax (M) denotes the largest eigenvalue of the matrix M.
Since the singular values are distinct, we have £, = diag(c,41, ..., 0y,), and
since ¥, satisfies
An¥) + THAL + ByB] =0,

we obtain

B(jw)B*(jow) = ¥ (jo) T2 + Loy * (o).
Similarly, since %, also satisfies

$2An + AT+ CICy =0,

we obtain

C*(jo)C(jw) = Tay (jo) + ¥* (jw) X,.
Substituting these expressions of B(jw)B* (jw) and C_'*(ja))C—‘(ja)) into (14.4.10),
we obtain after some algebraic manipulations

Omax[G(j®) = GRU®)] = dafax[Z2 + ¥ 71 (jo) D29 (j)]
X [Z2 + ¥ (jo) Do (jw)]).

Ifd =n — 1, then ¥; = g, and we immediately have

Imax[G (@) — GRr(j0)] = ouhad[1 + O Ga)][l + O(jw)1}

where ® = v *(jw)¥ (jw).

614 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Note that ®™* = @ is a scalar function. So, |@(jw)| = 1.
Using the triangle inequality, we then have

Omax[G(jw) — Gr{jw)] < o,[1 + [O©(jw)|] = 20,

Thus, we have proved the result for one-step, that is, we have proved the result
assuming that the order of the truncated model is just one less than the original
model. Using this “one-step” result, Theorem 14.4.1 can be proved for any order
of the truncated model (Exercise 14.1). W

The above theorem shows that once a system is internally balanced, the balanced
system can be truncated by eliminating the states corresponding to the less con-
trollable and observable modes (as measured by the sizes of the Hankel singular
values) to obtain a reduced-order model that still preserves certain desirable prop-
erties of the original model (see Zhou et al. 1996). However, the reduced-order
model obtained this way does not minimize the Hy, error.

Choosing the order of the Reduced Model

If the reduced-order model is obtained by truncating the states corresponding to the
smaller Hankel singular values 441, . . ., oy, then the order ¢ of the reduced-order

model is
d
q= Z Sis
i=1

where s; is the multiplicity of o;.

Computationally, the decision on choosing which Heinkel singular values are to
be ignored, has to be made in a judicious way so that the matrix Y which needs to
be inverted to compute the balanced matrices does not become too ill-conditioned.
Thus, the ratios of the largest Hankel singular value to the consecutive ones need
to be monitored. See discussion in Tombs and Postlethwaite (1987).

Algorithm 14.4.1. Model Reduction via Balanced Truncation
Inputs. The system matrices A, B, and C.
Outputs. The reduced-order model with the matrices AR, Br, and Cg.
Assumption. A is stable.
Step 1. Find a balanced realization.
Step 2. Choose q, the order of model reduction.
Step 3. Partition the balanced realization in the form

AR An Br
A= , B = , C = (CRr, C32),
(Azl Azz) <32> (Cr. C2)

where AR is of order q, and Br and CR are similarly defined.

Section 14.4: MODEL REDUCTION 615

The MATLAB function medred in the form
RSYS = modred(SYS, ELIM)

reduces the order of the model sys, by eliminating the states specified in the vector
ELIM.

Example 14.4.1. Consider Example 14.2.1 once more. Choose ¢ = 2. Then Ag =
The 2 x 2 leading principal submatrix of A is

—0.7659 0.5801
—0.5801 —-2.4919 /-

The eigenvalues of AR are: —0.9900 and — 2.2678.
Therefore, Ag is stable.
The matrices Br and Cg are:

—1.8602
Br = (_0_6759> , Cr = (—1.8602,0.6759).

Let Gr(s) = Cr(s/ — AR) "' Bg.

Verification of the Error Bound: ||G(s) — Gr(s)|lcc = 0.0012. Since 203 =
0.0012, the error bound given by (14.4.4) is satisfied.

14.4.2 The Schur Method for Model Reduction

The numerical difficulties of model reduction via balanced truncation using
Algorithm 14.2.1 or Algorithm 14.2.2 (because of possible ill-conditioning of
the transforming matrices) can be overcome if orthogonal matrices are used to
transform the system to another equivalent system from which the reduced-order
model is extracted. Safonov and Chiang (1989) have proposed a Schur method for
this purpose.

A key observation here is that in Algorithm 14.2.1, the rows {1, . .., d} and rows
{d +1,...,n) of T~ form bases for the left eigenspaces of the matrix CgOg
associated with the eigenvalues {012, R 03} and {(75+1, R a,%}, respectively
(Exercise 14.7).

Thus the idea will be to replace the matrices T and 7! (which can be very ill-
conditioned) by the orthogonal matrices (which are perfectly conditioned) sharing
the same properties.

The Schur method, described below, constructs such matrices, using the RSF of
the matrix Cg Og.

Specifically, the orthonormal bases for the right and left invariant subspaces
corresponding to the “large” eigenvalues of the matrix Cg Og will be computed
by finding the ordered real Schur form of Cg Og.

616 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Once the “large” eigenvalues are isolated from the “small” ones, the reduced
order model preserving the desired properties, can be easily extracted.
We will now state the algorithm.

Algorithm 14.4.2, The Schur Method for Model Reduction (Continuous-time
System).
Inputs.
A—The n x n state matrix.
B—The n x m control matrix.
C—The r x n output matrix.
q—The dimension of the desired reduced-order model.
Outputs.
Ar—The q X q reduced state matrix
Br—The q X m reduced control matrix
Cr—The r x q reduced output matrix.
S1 and S$,—Orthogonal transforming matrices such that Ar = S?ASz,
Br =STB, and Cr = C$;

Assumption. A is stable.

Step 1. Compute the controllability Grammian Cg and the observabil-
ity Grammian Og by solving, respectively, the Lyapunov equations (14.2.5)
and (14.2.6).

Step 2. Transform the matrix Cg Og to the RSF Y, that is, find an orthogonal
matrix X such that X'CqOgX =Y.

Note: The matrix CgOg does not have any complex eigenvalues. Thus, Y
is actually an upper triangular matrix. Furthermore, the real eigenvalues are
nonnegative.

Step 3. Reorder the eigenvalues of Y in ascending and descending order, that
is, find orthogonal matrices U and V such that

Al *

UTYU = UTXTCG06XU = U C06Us = , (14.4.11)
0 An
An *

VIvv = vIXTC06XV = VI Cq0GVs = ., (14.4.12)
0 Al

where \f < Ay < --- < Ay
(Note that \, = 012, Al = 022, ..., and so on; where oy > o9 > -+ > 0y,
are the Hankel singular values.)

Section 14.4: MODEL REDUCTION 617

Step 4. Partition the matrices Us, Vs as follows:
Us = (Uis, Uas), Vs = (Vis, Vas).

Here Uys contains the first n — g columns of Us and Uss contains the remaining
q columns. On the other hand, Vis contains the first q columns of Vs and Vas
contains the remaining n — g columns.

Note: Note that the columns of the Vis and those of the matrix Uig form,
respectively, orthonormal bases for the right invariant subspace of CgOg
associated with the large eigenvalues {012, cee, aqz} and the small eigenval-
ues {aqu, ey an}. The columns of Uag and Vag, similarly, form orthonormal
bases for the left invariant subspace of CgOg, with the large and the small
eigenvalues, respectively.

Step 5. Find the SVD of U Vis : QS RT = Ui Vis.

Step 6. Compute the transforming matrices: S| =Uas ox-1/2,
Sy =VisRE~?

Step 7. Form the reduced-order matrices:

AR = STAS;, Br =SB, andCr =CS,. (14.4.13)

Flop-count: Since the reduction to the Schur form using the QR iteration is an
iterative process, an exact count cannot be given. The method just outlined requires
approximately 100n> flops.

Properties of the Reduced-Order Model by the Schur Method

The Schur method for model reduction does not give balanced realization. But
the essential properties of the original model are preserved in the reduced-
order model, as shown in the following theorem.

Theorem 14.4.2. The transfer function matrix éR(s) = éR (sI — AR)*1 1§R
obtained by the Schur method (Algorithm 14.4.2) is exactly the same as that of
the one obtained via balanced truncation (Algorithm 14.4.1). Furthermore, the
controllability and observability Grammians of the reduced-order model are,
respectively, given by:

CR=sTces, O = $,065,.

Proof. We prove the first part and leave the second part as an exercise
(Exercise 14.9).

618 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Let the transforming matrix 7" of the internal balancing algorithm and its inverse
be partitioned as:

T=(,Th), (14.4.14)
and
77! = (7;’) , (14.4.15)

where T1 is n x q and Ty is of order g X n.
Then the transfer function Gr(s) of the reduced-order model obtained by
Algorithm 14.2.1 is given by

GRr(s) = Cr(sI — AR)'Br = CT\(s] — T;AT))"' T} B. (14.4.16)

Again, the transfer function GR(s) of the reduced-order model obtained by the
Schur algorithm (Algorithm 14.4.2) is given by:

Gr(s) = Cr(sI — AR) " 'Br = CSy(s1 — STASy)"'STB. (14.4.17)
The proof now amounts to establishing a relationship between Si, S, and Tj
and T;.
Let’s define
UT
Ve =VisUis), and W= < 2T3> . (14.4.18)
Vas
Then, since the first ¢ and the last (n — g) columns of T, VR, and VL_1 span,
respectively, the right eigenspaces associated with 012, cees crq2 and qu IR a,%,
it follows that there exist nonsingular matrices X, and X», such that
_ X1 0 _ . (E1 O
VR_T<O X2>_VL (0 E) (14.4.19)
From (14.4.18) and (14.4.19) we have
Vis=T1 X;. (14.4.20)
Thus,
Sy = VisRE™V2 = Ty X{RE ™2 (using (14.4.20)).
Similarly,

St =£7120"ujs = 2V2RT(RET' QYUT,
= El/zRT(U;FSVIS)—IUgS
= S2RTULT1 X)) ™" Ufs (using (14.420)) = £'2RTXT' 7.

Section 14.4: MODEL REDUCTION 619

Thus,
Gr(s) = CSa(s1 — STAS)'sTB
=CTiX,Rx™"? (sl — EI/ZRTX;IT,ATllez—l/Z)'1
x (212RTX; T B)

= CTi(s] — T;AT)) " 'T;B = Gr(s). N

Note: Since Ggr(s) of Theorem 14.4.1 and GR(S) of Theorem 14.4.2 are the
same, from Theorem 14.4.1, we conclude that AR is stable and ||G(s) —
(A}R(s)||OO <2 Z?=q+1 oi, where o, through o, are the (g + 1)th through nth
entries of the diagonal matrix ¥ of the balancing algorithm, that is, o's are the
Hankel singular values.

Relation to the square-root method: There could be large round-off errors in
explicit computation of the matrix product Cg Og. The formation of the explicit
product, however, can be avoided by computing the Cholesky factors L. and L,
of the matrices Cg and Og, using Algorithm 8.6.1 described in Chapter 8. This
then leads to a square-root method for model reduction. We leave the derivation
of the modified algorithm to the readers (Exercise 14.10). For details, see Safonov
and Chiang (1989).

Example 14.4.2.

-1 2 3 1
A= o -2 1 , b=| 1}, C=(,1,1), q=2.
0 0 -3 1

The system (A, B, C) is stable, controllable, and observable.

Step 1. Solving the Lyapunov equations (14.2.5) and (14.2.6) we obtain
3.9250 0.9750 0.4917
Cg=| 09750 0.3667 0.2333 |,
0.4917 0.2333 0.1667

and

0.5000 0.6667 0.7917
Og = | 0.6667 09167 1.1000
0.7917 1.1000 1.3250

Step 2. The Schur decomposition Y and the transforming matrix X obtained using
the MATLAB function schur:

[X, Y] = schur(CgOg)

620 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

are

—0.2885 0.6768 —0.6773
—0.1680 0.6606 0.7317

5.1028 —5.2629 —-1.0848
Y = 0 0.0084 0.0027
0 0 0

(—0.9426 —0.3249 0.0768)
X = ,

Step 3. Since the eigenvalues of Y are in decreasing order of magnitude, we take
Vs = X.

Next, we compute Us such that the eigenvalues of UST Cg OgUs appear in increasing
order of magnitude:

-0.8142 0.0214 0.5802 |,
0.5069 0.5134 0.6924

0 —0.0026 0.8663
UsCqOgUs = [0 0.0084 —53035
0o 0 5.1030

0.2831 —-0.8579 0.4289
Us =

Step 4. Partitioning Us and Vs = X, we obtain

0.2831 —0.8579 0.4289
Uis=| —-0.8142 |, Uys=| 0.0214 0.5802 }.

0.5069 0.5134 0.6924

—0.9426 —0.3249 0.0768
Vis= [—0.2885 0.6768], Vos = | —0.6773
—0.1680 0.6606 0.7317

Step 5. The SVD of the product U2TS Vig is given by:

[Q, Z, R] =svd(UkVis)

0.8955 0.4451 0.3550 0.9349
¥ = diag(l, 0.9441).

0= (——0.4451 O.8955> ’ R— (—0.9348 0.3550)

Step 6. The transforming matrices are:

0.7659 —0.5942 0.7659 —0.6570
Sy =1 05100 0.2855 and S, = | 0.5099 0.5458
0.3915 0.7903 0.3916 0.5742

Section 14.4: MODEL REDUCTION 621

Step 7. The matrices of the reduced order model are:

A 03139 17204 . 1.6674
Ar = ST AS: = (—1.9567 —3.5717)’ Br=S{B = (.) and

Cr = CS$ = (1.6674,0.4631) .

Verification of the properties of the reduced-order model: We next verify that
the reduced-order model has desirable properties such as stability and the error
bound (14.4.4) is satisfied.

1. The eigenvalues of Ag are: {—0.9900, —2.2678)}. Thus, AR is stable.
(Note that these eigenvalues are the same as those of Ar of order 2
obtained by Algorithm 14.4.1).

2. The controllability Grammian C g of the reduced order model is given by:

—1.4601 0.8324

éé _ STCoS) = (3.5732 —1.4601).

The eigenvalues of ¢ g are 4.2053, and 0.2003. Thus, ¢ }é is positive definite.

It is easily verified by solving the Lyapunov equation ARCA'é +C é/ig =
— Br BT, that the é‘g given above is indeed the controllability Grammian
of the reduced order model.

Similar results hold for the observability Grammian Ocr.

Verification of the error bound: ||G(s) — GR(S)HOO = (0.0012.
Since 203 = 0.0012, the error bound (14.4.4) is verified.

Comparison of the reduced order models obtained by balanced truncation and
the schur method with the original Model: Figure 14.1 compares the errors of the
reduced-order models with the theoretical error bound given by (14.4.4), Figure
14.2 compares the step response of the original model with the step responses of
the reduced-order models obtained by balanced truncation and the Schur method.

MATCONTROL note: The MATCONTROL function modreds implements the
Schur Algorithm (Algorithm 14.4.2) in the following format:

[AR, Br, Cr, S, T] = modreds(A, B, C,d).

The matrices Ar, Br, Cr are the matrices of the reduced-order model of dimension
d. The matrices S and T are the transforming matrices.

14.4.3 A Balancing-Free Square-Root Method for Model Reduction

By computing the matrices L and T a little differently than in the square-root
method (Algorithm 14.2.2), the main advantages of the Schur method and the
square-root method can be combined. The idea is due to Varga (1991).

622 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Singular values (dB)

— Error bound
~ Balanced trunc
—— Schur
-90 L L
107! 10° 10! 107

Frequency (rad/sec)

FIGURE 14.1: Theoretical error bound and errors of the reduced-order models.

Consider the economy Q R factorizations of the matrices L. V] and LE Uy :

L.V =XW, LTu, =vz,

(o]

where W and Z are nonsingular upper triangular and X and Y are orthonormal
matrices.

Then L and T defined by
L="x)"yT, Z=X

are such that the system (A, B, C’) with A = LAZ, B = LB, and C = CZ form
a minimal realization and therefore can be used to obtain a reduced-order model.

Example 14.4.3. Let’s consider Example 14.2.2 once more.
Then,

, W = -0.7071, Z =-0.7071.

Section 14.5: HANKEL-NORM APPROXIMATIONS 623

Step response

4.5 T T T T T
~— Original model //, it
4] -]SBa}llanced trunc e i
- — Schur —~
uj -
337 v .
/
at / |
/
25F / 4

Amplitude
\\

15 / b

05F/ .

1 1 1
00 1 2 3 4 5 6

Time (sec)

FIGURE 14.2: Step responses of the original and the reduced-order models.

The matrices L and Z in this case are

—1
L=(-100, 2zZ=[0].
0

The matrices A, Band Care: A= —1,B=—-1, C = —1.

14.5 HANKEL-NORM APPROXIMATIONS

Let (A, B, C) be a stable realization of G(s) = C(sI — A)~!B. Then the Hankel-
norm of G(s) is defined as

1G@) g = A (CG 06), (14.5.1)

where Cg and Og are the controllability and observability Grammians, respec-
tively, and Amax (M) stands for the largest eigenvalue of M.

The optimal Hankel-norm approximation problem is the problem of finding
an approximation G(s) of McMillan degree k < n such that the norm of the error
G (s) — G(s)||u is minimized.

624 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

The following theorem gives an achievable lower bound of the error of an approx-
imation in Hankel-norm. Proof can be found in Glover (1984) or in Zhou et al.
(1996, pp. 189-190).

Theorem 14.5.1. Let G(s) be a stable rational transfer function with Hankel
sAingular values oy > 02 > -+ > 0 > Opy1 -+ > 0, > 0. Then for all stable
G (s) of McMillan degree < k

I G(s) — GGs) || 3= Oyt

We now give a result on characterization of all solutions to optimal Hankel-
norm approximations and then state an algorithm to find an optimal Hankel-norm
approximation.

The presentation here is based on Glover (1984). For proofs and other details,
the readers are referred to the paper of Glover or the book by Zhou et al. (1996).

14.5.1 A Characterization of All Solutions to the optional Hankel-Norm
Approximation

The following theorem gives necessary and sufficient conditions for G(s) to be
an optimal Hankel-norm approximation to G(s). (For proof, see Glover (1984,
lemma 8.1).)

Theorem 14.5.2. Let G(s) = C(s] — A)~'B be a stable, rational, m x m
transfer function with singular values

o1 2022

>a, > 0.

03 2 -+ 2 Ok > O] = Ok42 =+ = Oktp > Ckgptl = ***

Let G(s) be of McMillan degree k < n — p. Then é(s) is an optimal Hankel-
norm approximation to G(s) if and only if there exists (A, B, C), Pe, Q. such
that

(a) é(s) is the stable part of
C(sI — A)~'B. (14.5.2)
(b) The matrices P, and Q. satisfy

(i) AcP. + P.Al + BB =0, (14.5.3)
(ii) Al Qe+ QeAe +CICe =0 (14.5.4)
(iii) PeQe =01, (14.5.5)

Section 14.5: HANKEL-NORM APPROXIMATIONS 625

where Ae, Be and Ce are defined by

A= (40 B.=(2 Ce = (C, —C). (14.5.6)
e — O AA 3 e — é 3 e —] '(ests

and
(¢) If P. and Q. are partitioned conformally with A in (14.5.6) as:

p :(Pn P12) 0 =<Q11 le)
¢ P, Pp)’ ¢ ol, o»n/)’

In(Py) = In(Q2) = (k,1,0). (14.5.7)

then

Further, dim(/i) =k + [can be chosen < n + 2k — 1.

We now give a construction of A, B, C that satisfy the Egs. (14.5.3)—-(14.5.7) for
a balanced realization (A, B, C) of G (s), which will be the basis of an algorithm
for Hankel-norm approximation. The construction, however, remains valid for a
more general class of realization, and the details can be found in Glover (1984).

Theorem 14.5.3. Let (A, B, C) be a balanced realization of G(s) with the
matrix of the singular values

X = diag(oy, 02, ..., 0y),

01 202> 4+ 20 > O] =0k42 =+ = Oktp > Ogptl = - >0, > 0.

Fartition X = (21, 0k411p), 0001 #0, and then partition A, B,C
conformally:

A= (A” A”), B = (g;) C = (Cy, Cy). (14.5.8)

Ay Ax
Define now
A=T"Y02 AT, + S1ALWZ| — ok CTUBY), (14.5.9)
B=T""(Z1B) +ar11CTU), (14.5.10)
C=C1%1+011UBJ, (14.5.11)
where
=% -ol,1 (14.5.12)

and U is such that
T i
U=-C (Bz) , (14.5.13)

where ‘}’ denotes generalized inverse.

626 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Then A, Be, and C. defined by (14.5.6) satisfy (14.5.3)—(14.5.5), with

R 0 I
P.=| 0 oruil 0 , (14.5.14)
I 0 >l

5 0 -T
Qe={ 0 orsil 0 |. (14.5.15)
-r 0 XU

Based on Theorems 14.5.2 and 14.5.3, the following algorithm can be written
down for finding a Hankel-norm approximation of a balanced realization (A, B, C)
of G(s).

Algorithm 14.5.1. An Algorithm for optimal Hankel-Norm Approximation of
a Continuous-Time System
Inputs.

1. The matrices A, B, and C of a stable realization G(s).

2. k—McMillan degree of Hankel-norm approximation

Outputs. The matrices A11, By, and C, of a Hankel-norm approximation
G(s) of McMillan degree k.

Assumptions.
1. A is stable.
2. The Hankel singular values oi are such that 61 > oy > -+ > o} >

Ok41 > 042 = -+ =0y > 0.

Step 1. Find a balanced realization (A, B, C) of G (s) using Algorithm 14.2.1
or Algorithm 14.2.2, whichever is appropriate.

Step 2. Partition ¥ = diag(Z1, oy) and then order the balanced realization
(A, B,0) conformally so that

5 Al Anp > B ~
A= , B = , C = (Cy, Cy).
(A21 Azz) (Bz> (1. €2)

(Note that Ay is (n — 1) x (n — 1)).

Step 3. Compute the matrix U satisfying (14.5.13) and form the matrices
I, A, B, and C using Egs. (14.5.9)-(14.5.12).

Step 4. Block diagonalize A to obtain A“:

(a) Transform A to an upper real Schur form and then order the real Schur
Sform so that the eigenvalues with negative real parts appear first; that
is, find an orthogonal matrix Vy such that VTA V1 is in upper real Schur

Section 14.5: HANKEL-NORM APPROXIMATIONS 627

form and then find another orthogonal matrix Vy such that

VIvIiAviv, = (A“ 412> , (14.5.16)
0 Ax
where the eigenvalues of A1 have negative real parts and those of A
have positive real parts. (Note that Ay is k x k).
(b) Solve the Sylvester equation for X € R>*0=k=D (ysing Algo-
rithm 8.5.1);

AX —XAp+Ap=0 (14.5.17)
(c) Let
I X
T =WV, (0 1) = (T1, T»), (14.5.18)
(I —-X TLT _ (1

S = <o ;) vivl = <52>. (14.5.19)

Step S. Form
By = S8, (14.5.20)
C, =CT. (14.5.21)

Example 14.5.1. Consider Example 14.2.1 once more. Then
Step 1. The balanced matrices A, B, and C are the same as of Example 14.2.1.
Step 2.

¥ = diag(2.2589, 0.0917, 0.0006), ¥ = diag(2.2589, 0.0917).
k =2 and o3 = 0.0006.

—0.7659 0.5801 ~1.8602
An = (—0.5801 —2.4919) - h= (—0.6759)’ By = (0.0581)
C1 = (—1.8602,0.6759), Cp = (~0.0581).

Step 3.
Uu=1, ' = diag(5.1026, 0.0084),

—0.8235

A —0.7659 0.0235 - 2
A= () , B= (_7'3735> , C =(—4.2020, -0.0620).

—14.2961 —2.4919
Step 4.

(a) Ais already in upper Schur form. Thus, V; = I.
The eigenvalues of A are —0.9900, —2.2678. Since both have negative real
parts, no reordering is needed.
Thus, Vo =1, A]] = A, Alg =0, AQQ =0.

628 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

by X=0.
(©)

I 0
T=(0 I), T =1, =1

I 0
S=<0 1>, S1=1, Sy =1.

Bi=8B (=C.

Step 5.

Obtaining an error bound: Next, we show how to construct a matrix ﬁl such
that with

G(s) =Dy + Ci(sI — An) LBy,

an error bound for the approximation ||G(s) — G(s) |loo can be obtained.
Define

~

By=$B, Cr=CT, D = -0y U. (14.5.22)

Step 6. Update now D as follows:

6.1. Find a balanced realization of the system (—Azz, l?z, C‘z, 131), say
(As, Bz, C3, D3). Compute the Hankel singular values of this balanced system
and call them w1, 2, ..., Up—k—1.

6.2. Let g be an integer greater than or equal to r 4 m, where r and m are the
number of outputs and inputs, respectively. Define Z, ¥ € RI*("=k=1) py

(). ()

Denote the ith columns of Z and Y by z; and yj, respectively.
63.Fori=1,2,...,n—k—1do

(i) Find Householder matrices H; and H; such that

Hlyi=~(ot 0o - O)T
and
Hz=-B 0 - 0).
(ii) Define
—a/f 0 0 0
=il o |

0 0 0 Iq—r—m-H

Section 14.5: HANKEL-NORM APPROXIMATIONS 629

(i) Ifi <n—k+1,thenforj=i+1to(n—-%k+1)do
y=—(jnj + Uz i — phH™'"2,
2= @ipg + U yju) () — M?)‘l/z,
Yi=YJ

(iv) Compute D; = Dy + (—1)i 5 (I O)U <16">

Theorem 14.5.4. (An Error Bound). |G (s) — (c}(s)||oo < Ops1 + m1 + u2+
coo ot p—k—1-

Example 14.5.2. Consider k = 2 and

-1 2 -1 3 12
0 -2 2 0 20 10 2 -3

A=lo o -3 2) B=l s | C=<1 1 -2 1)
0 0 0 —4 2 3

Step 1. The Hankel singular values:
{47619 1.3650 0.3614 0.0575}

Step 2.
—1.1663 1.7891 —0.2132 0.3266
i —-0.0919 —-2.5711 0.7863 —1.0326
| 03114 26349 —3.7984 1.5960 |’
—0.3641 0.5281 —0.2582 —2.4642
3.3091 —0.3963
B —0.2903 2.6334
—] -0.6094 —1.5409
0.4947 —0.1967
¢ —2.4630 13077 09011 0.1600
T\ 22452 23041 1.3905 —-0.5078

The permutation matrix that does the reordering is:

[ellall
oSO = O
-_-o o O
o - OO

630 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

The reordered balanced realization gives

47619 0 0
Y= 0 1.3650 0 , ¥y =0.3614 = o3.
0 0 0.0575
—1.1663 1.7891 0.3266 —-0.2132
A =1-0.0919 -2.5711 -1.03261, Ap =] 07863 |,
—0.3641 0.5281 —2.4642 —0.2582

As = (03114 2.6349 1.5960), Az = —3.7984.

(3.3091 —0.3963

—0.2903 2.6334 |, Bg—_—(—O.6094 —1.5409),
0.4947 —0.1967

B =

Ci = —2.4630 13077 0.1600 Ch = 0.9011
P~ 22452 —2.3041 —0.5078)° 2713905)

Step 3.

U= 0.2000 0.5057
103086 0.7804)

205447 00000 00000\ [—1I872 04948 —0.0019
r—| 00000 17326 00000 |, A=[00063 -23615 0.0072

0.0000 0.0000 —0.1273 03687 15211 2.5932
s o 20 é_(11.5617 22454 0.0090)

0T Z10.9487 24347 —0.0295
Step 4.

—-0.3754 -0.9222 —-0.0930
Vi=1] 0.8936 —0.3335 —0.3006
—0.2462 0.1960 —0.9492

2 —2.3661 0.4343 N 1.3682)
An = (0 —1.1847> ’ Ap = <_0.7792> ’ App = 2.5953.

, Vo =

S O =
o = O
- o O

Solution of (14.5.17) gives

0.2577
X= (—0.2061)

Section 14.5: HANKEL-NORM APPROXIMATIONS 631

and then
—0.3754 —-0.9222 0.0003
i =1 08936 —0.3335}, T, = | —-0.0015],
—0.2462 0.1960 —1.0530

o _ (—03515 09710 —0.0015
I=\-09413 -0.3954 0.0003 /°

Sy = (—0.0930 —0.3006 —0.9492) .
Step 5. Using (14.5.20)-(14.5.22), we obtain

5o (05597 —1.8124 oo (63494 —9.9113
"7 \0.5335 0.6558)° T\ 62034 92788)
By = (-0.1556 —0.3889), C;=10" (_Ooégé?),

b (00723 —0.1828
=\ -0.1115 -0.2820/"

Step 6.
6.1. The matrices of the balanced realization of the system (— Azz, 1§2, ¢ 2, bl)
are:

Az = (—2.5953), By =10"1(-0.3720 —0.9298),

a1 {—0.0991 _ [—0.0723 —0.1828
C3=10 <0.9966 o D3={ o115 —0.2820)

The system (A3, B3, C3, D3) has only one Hankel Singular value p; = 0.0019.
6.2. Taking g = r + m = 4, we obtain

—0.3720 —0.0991
1| 09208 1| 0.9066
Z=10""1 50000 |© Y=10"1 6.0000
0.0000 0.0000

63.i=1,a=p=0.1001
—0.0989 0.9951 0.0000 0.0000

Hy = 0.9951 0.0989 0.0000 0.0000
0.0000 0.0000 L. 0.0000 |~
0.0000 0.0000 0.0000 1.0000
0.3714 09285 0.0000 0.0000

Hy = 0.9285 —-0.3714 0.0000 0.0000
0.0000 0.0000 —1.0000 0.0000

0.0000 0.0000 0.0000 —1.0000

632 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

0.0368 0.0919 —-0.9951 0.0000
U = —0.3696 —0.9239 —0.0989 0.0000
P71 09285 —0.3714 0.0000 0.0000 |°

0.0000 0.0000 0.0000 —1.0000

A= —0.0723 —0.1829
'=1-0.1108 —0.2803)"
Verification: Let é(s) = él(sl — An)_] 31 + ﬁl. Then,
0.3627 = ||G(s) — CA;(s)||oo < o3+ up = 0.3633.

Also, |G(s) — G(s)|lx = 0.3614 = 03.
Figure 14.3 compares the step response of the original model with that of the

Hankel-norm approximation model.
MATCONTROL note: Algorithm 14.5.1 has been implemented in Matcontrol

function hnaprx.

From: U(1) Step response From: U(2)

0t |[— Original Model
-— Hankel Approx

To: Y(1)

Amplitude
o0

To: Y(2)

_20 1 2 3 4 5 6 0 1 2 3 4 5 6

Time (sec)

FIGURE 14.3: Step responses of the original and Hankel-norm approximation
models.

Section 14.7: FREQUENCY-WEIGHTED MODEL REDUCTION 633

14.6 MODEL REDUCTION OF AN UNSTABLE SYSTEM

We have so far considered model reduction of a stable system.

However, model reduction of an unstable system can also be performed. Varga
(2001) has proposed two approaches. The first approach consists of finding only
the reduced-order model of the stable part and then including the unstable part in
the resulting reduced model. The second approach is based on computing a stable
rational coprime factorization of the transfer function matrix and then reducing the
stable system. We describe just the first approach here. For details of the second
approach, see Varga (2001).

Step 1. Decompose the transfer function matrix G (1) additively as:

G(A) = Gs(A) + Gy(h)

such that Gg(1) is the stable part and Gy(}) is the unstable part.
Step 2. Find a reduced-order model Grs(A) of the stable part Gg(A).
Step 3. The reduced-order model Gr(X) of G(}) is then given by

Gr(A) = Grs(M) + Gu(A).

Computational remarks. The decomposition in Step 1 can be performed
by block-diagonalizing the matrix A using the procedure of Step 4 of Algo-
rithm 14.5.1.

14.7 FREQUENCY-WEIGHTED MODEL REDUCTION

In this section, we consider the frequency-weighted model reduction, proposed by
Enns (1984). Specifically, the following problem is considered.

Given a stable transfer function matrix G(s) = C(sI — A)~!'B and the two
input and output weighting transfer function matrices Wi = Ci(s/ — A ,~)_1 B;,and
Wy = Co(sI — Ao)~! By, find a reduced-order model (Ag, Br, Cr) with

Gr(s) = Cr(s] — AR) " 'Br

such that || Wo(G — GR) W, ||o0 is minimized and G (s) and G g (s) have the same
number of unstable poles.

The effect of weighting on the model reduction is the possible reduction of
the errors at the high frequencies.

The weighting model reduction problem can be solved in a similar way as the
model reduction procedure by balanced truncation described in Section 14.4.

634 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

First, we note that the state space realization for the weighted transfer matrix is
given by
WoGW; = C(s — A)™'B,

where
) A 0 BG;) 0)
A=|B,C A, 0], B=J0], C=(0,Co,0). (147.1)
0 0 Aj B;

Let Cg and Og be the solutions to the Lyapunov equations:
ACg + Co(A)T + BB =0,
O6A + (AT 06 +(C)'C =0.

Then the input weighted Grammian Cg and the output weighted Grammian Og
are defined by

Cs = (I, 0)Cg (16’) and Og = (I, 0)Og (16’) .
It can be shown (Exercise 14.21) that Cg and Og satisfy:
A BG\(Cc @m) n Co §012> (AT 0
0 4 J\C5, Con CY . Cop)\CTBT AT

+(p) @8N =(0 o)

(& S D+) &
05, 06y) \B.C Ao 0 AT J\O{, O,

0 0 0
)=o)

Consider now two special cases.
Case 1. W; = I. Then Cg can be obtained from

(14.7.2)

(14.7.3)

CgAT+ ACG + BBT =0.
Case 2. W, = I. Then Og can be obtained from

OcgA+ ATOg +CTC =0.

Section 14.8: COMPARISONS OF MODEL REDUCTION PROCEDURES 635

Now, let T be a nonsingular matrix such that

TCoTT = (T HT 0T ™! = diag(E1, Ta); (14.7.4)
that is, the matrix 7 makes the realization balanced.

Let £, = diag(o11y,, ..., 0. L) and £ = diag(oy 4175, +1 - - only,).
Partition the system (T AT !, T B, CT~!) accordingly; that is

_ AR A]2> ER
TAT V= = 12 TB=|(XR),
(A21 A2 B

CT~ ' = (Cr, Cy).

and

Then (AR, Br, Cr) is a weighted reduced-order model.

If the full-order original model is minimal, then ¥ > 0.

Unfortunately, the stability of the reduced-order model here cannot, in general,
be guaranteed.

However, there are some special cases of weightings for which the reduced-
order models are stable (Exercise 14.22). Also, no a priori error found for the
approximate is known.

14.8 SUMMARY AND COMPARISONS OF MODEL REDUCTION
PROCEDURES

We have described the following techniques for model reduction of a stable system:

(i) The balanced truncation procedure (Algorithm 14.4.1)

(ii) The Schur method (Algorithm 14.4.2)
(iii) The Hankel-norm approximation algorithm (Algorithm 14.5.1)
(iv) Frequency-weighted model reduction (Section 14.7).

For the first two methods (i)-(i1), the error satisfies
IG(s) —~ GrR() oo < 20441 + 0442 + -+ ON),

In the method (i), Gr(s) is obtained by truncating the balanced realization of G (s)
to the first (s; + s2... + s4) states, where s; is the multiplicity of o;. For the
method (ii), G g (s) is obtained by Algorithm 14.4.2. For a similar error bound for
the method (iii), see Theorem 14.5.4. Furthermore, for this method, the reduced-
order model Gg(s) has the property: inf || G — Gr(s) ||r= 0x+1, where Gr(s)
is of McMillan degree k.

636 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

The weighted model reduction procedure in Section 14.7 does not enjoy any
of the above properties. Even the stability in general cannot be guaranteed. Sta-
bility, however, in some special cases can be proved. See Enns (1984) for details.
Discussion of this section has been taken from Zhou et al. (1996).

If the system is not stable, model reduction is still possible using the three simple
steps of Section 14.6.

The balanced truncation procedure for model reduction (Algorithm 14.4.1)
and Algorithm 14.5.1 need computation of a balanced realization. Two algo-
rithms (Algorithms 14.2.1 and 14.2.2) have been described for this purpose.
Both these algorithms suffer from the danger of possible ill-conditioning of the
transforming matrices. However, the methods usually work well in practice for
well-equilibrated systems.

The Schur method has been designed to avoid such possible ill-conditioning.

Unfortunately, because of the requirement of explicitly computing the product of
the controllability and observability Grammians, the Schur method is usually less
accurate for moderately ill-conditioned systems than the square-root method (see
Varga 2001). The main advantages of the balanced truncation procedure and the
Schur method have been combined in the balanced-free square-root method by
Varga (1991). Numerical experiments performed by Varga (2001) show that the
accuracy of this method is usually better than either of the Schur methods or the
balanced truncation method using the square-root algorithm for balancing.

Finally, we remark that it is very important that the system be scaled properly
for the application of the balanced-truncation or the Hankel-norm approx-
imation method. One way to do this is to attempt to reduce the 1-norm of the
scaled system matrix

-1 -1
S=<Z AZ Z'B

Cc7 0) , where Z is a positive definite matrix.

Note that the Hankel singular values are not affected by such a coordinate
transformation; in particular, by coordinate scaling of diagonal matrices.

For a comparative study of different model reduction algorithms and detailed
description of available software, see Varga (2001). See also Varga (1994).

149 SOME SELECTED SOFTWARE
14.9.1 MATLAB Control System Toolbox

State-space models
balreal =~ Grammian-based Balancing of state-space realization.
modred Model state reduction.
ssbal Balancing of state-space model using diagonal similarity.

Section 14.9: SOME SELECTED SOFTWARE 637

14.9.2 MATCONTROL

BALSVD Internal balancing using the SVD

BALSQT Internal balancing using the square-root algorithm
MODREDS Model reduction using the Schur method
HNAPRX Hankel-norm approximation.

14.9.3 CSP-ANM

Model reduction

e The Schur method for model reduction is implemented as Dominant Sub-
system [system, Method— SchurDecomposition].

e The square-root method for model reduction is implemented as
DominantSubsystem [system, Method— SquareRoot].

1494 SLICOT
Model reduction

ABO9AD Balance and truncate model reduction

ABO9BD Singular perturbation approximation based model reduction

ABQO9CD Hankel-norm approximation based model reduction

ABQO9DD Singular perturbation approximation formulas

ABO9ED Hankel-norm approximation based model reduction of unsta-
ble systems

ABO9FD Balance and truncate model reduction of coprime factors

AB09GD Singular perturbation approximation of coprime factors

ABO9ID Frequency-weighted model reduction based on balanced
truncations

ABO9KD Frequency-weighted Hankel-norm approximation

ABOIMD Balance and truncate model reduction for the stable part

ABOIND Singular perturbation approximation based model reduction
for the stable part.

State-space transformations

TBO1ID Balancing a system matrix for a given triplet.

14.9.5 MATRIXy

Purpose: Convert a discrete dynamic system into an internally balanced dynamic
form.

638 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Syntax: [SB, SIGMASQ, T]=DBALANCE (SD, NS)

Purpose: Compute a reduced order form of a discrete-time system.
Syntax: [SR, NSR} =D DMREDUCE (SD, NS, KEEP)

Purpose: Compute a reduced-order form of a continuous system.
Syntax: [SR, NSR] = MREDUCE (S, NS, KEEP)

Purpose: Perform model structure determination.

Syntax: [THETA, COR, COV]=MSD (X, Y)

The other software packages dealing with model reduction include:

e MATRIXy Model Reduction Module (1998) by B.D.O. Anderson and
B. James.

e pu-Analysis and Synthesis Toolbox 1.0 by G. Balas, J. Doyle, K. Glover,
A. Packard and R. Smith (1998).

e Robust Control Toolbox 2.0 by R.Y. Chiang and M.G. Safonov.

14.10 SUMMARY AND REVIEW
The chapter covers the topics:

e Internal balancing
e Model reduction
e Hankel-norm approximation.

Internal Balancing

Given an n X n stable minimal realization (A, B, C), there always exists a
transformation T that simultaneously diagonalizes both the controllability and

observability Grammians to the same diagonal matrix ¥ = diag(oy, ..., os),
where 0y > 03 > -+ > 0y > Op4| > Opyp > --+ > 0p. The numbers
oi,i = 1, ..., n are the Hankel singular values.

In this case, the transformed system (A, B, €), is called internally balanced.
Algorithms 14.2.1 and 14.2.2 compute balanced realization of a continuous-
time system. The internal balancing of a discrete-time system is discussed in
Section 14.3.

Model Reduction

The problem of model reduction is the problem of constructing a gth order model
from a given nth order model (n > ¢) in such a way that the reduced gth order
model is close to the original system in some sense. The precise mathematical
definition of model reduction appears in Section 14.4.

Section 14.10: SUMMARY AND REVIEW 639

Model reduction via internal balancing: Once a system is internally bal-
anced, a desired reduced-order model can be obtained by eliminating the states
corresponding to the less controllable and observable modes (Algorithm 14.4.1).

Theorem 14.4.1 shows that a truncated model is also balanced and stable, and
furthermore, if G (s) and GR (s) are the respective transfer functions of the original
and the truncated model, then

[G(s) — Gr() oo < 2(0a+1, -, ON),

where the states corresponding to 0441, .. ., o) are eliminated.

The Schur method for model reduction: There are some numerical difficul-
ties associated with the procedure of finding a reduced order model via internal
balancing using Algorithms 14.2.1 and 14.2.2. The transforming matrix T in Algo-
rithm 14.2.1 and the matrices L and Z in Algorithm 14.2.2 can be, in some cases,
highly ill-conditioned. An alternative method (Algorithm 14.4.2) for model reduc-
tion based on the real Schur decomposition of the product of the controllability
and observability Grammians, is described in Section 14.4. The transforming
matrix 7 in this case is orthogonal, and, therefore, well-conditioned. The Schur
method does not give an internally balanced system; however, the essential prop-
erties of the original system are preserved. In fact, Theorem 14.4.2 shows that the
transfer function matrix obtained by the Schur method is exactly the same as that
of the one obtained via Algorithm 14.4.1.

A possible numerically difficulty with Algorithm 14.4.2 is the explicit compu-
tation of the product of the controllability and observability Grammians. In this
case, instead of explicitly computing the controllability and observability Gram-
mians, their Cholesky factors can be computed using the Hammarling algorithm
(Algorithm 8.6.1) in Chapter 8.

Combining the advantages of the Schur method and the square-root algorithm,
a balancing-free square root method has been developed. This is described in
Section 14.4.3.

Hankel-norm approximation: Given a stable G (s), the problem of finding a G (s)
of McMillan degree k such that ||G(s) — é(s) |l is minimized is called an optimal
Hankel-norm approximation.

A characterization of all solutions to Hankel-norm approximation is given in
Section 14.5.1 (Theorem 14.5.2). An algorithm (Algorithm 14.5.1) for computing
an optimal Hankel-norm approximation is then presented.

Model Reduction of an Unstable System

The model reduction of an unstable system can be achieved by decomposing the
model into its stable and unstable part, followed by finding a model reduction of
the stable part and finally adding the reduced-order model of the stable part with

640 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

the unstable part. This is descried in Section 14.6. For this and another approach,
based on stable rational coprime factorization, see Varga (2001).

Weighted Model Reduction

Sometimes the errors at high frequencies in a reduced-order model can be reduced
using weights on the model. This is discussed in Section 14.7.

Comparison of the Model Reduction Procedures

The model reduction procedures are summarized and a brief comparative discus-
sion of different procedures is presented in Section 14.8.

14.11 CHAPTER NOTES AND FURTHER READING

The internal balancing algorithms, Algorithms 14.2.1 and 14.2.2 are due to Laub
(1980) and Tombs and Postlethwaite (1987), respectively. The idea of model
reduction via balanced truncation was first introduced by Moore (1981).

The stability property of the truncated subsystem (part (a) of Theorem 14.4.1)
was obtained by Pernebo and Silverman (1982) and the error bound (part (b) of
Theorem 14.4.1) is due to Glover (1984) and Enns (1984).

The Schur algorithm for model reduction and Theorem 14.4.2 is due to Safonov
and Chiang (1989). The balancing-free square-root method for model reduction is
due to Varga (1991).

The Hanke!l-norm approximation problem was introduced and solved by Glover
in a celebrated paper (Glover 1984). Besides the topic of Hankel-norm approxi-
mation of a transfer function, the paper contains many other beautiful results on
systems theory and linear algebra. A good discussion of this topic can also be
found in the book by Zhou et al. (1996). See also Glover (1989).

For results on discrete-time balanced model reduction, see Al-Saggaf and
Franklin (1987), and Hinrichsen and Pritchard (1990).

The idea of frequency weighted model reduction is due to Enns (1984). Other
subsequent results on this and related topics can be found in Al-Saggaf and Franklin
(1988), Glover (1986, 1989), Glover et al. (1992), Hung and Glover (1986), Liu
and Anderson (1990), Zhou (1993), etc.

For a discussion on Balanced Stochastic Truncation (BST) method, see Zhou
et al. (1996).

The idea of singular perturbation approximation is due to Liu and Anderson
(1989).

For an optimal Hankel norm approximation procedure with stable weighting
functions, see Hung and Glover (1986).

Section 14.11: CHAPTER NOTES AND FURTHER READING 641

The other papers on Hankel norm approximation include Kung and Lin (1981)
and Latham and Anderson (1986).

A recent book by Obinata and Anderson (2000) deals exclusively with the topic
of model reduction.

The paper by Green (1988) deals with stochastic balanced realization. For more
on this topic, see Zhou et al. (1996).

Exercises
14.1 Prove part (a) of Theorem 14.4.1 and fill in the missing details of part (b), whenever
indicated in the book.
142 Let
A| B
co-[443]
Suppose that there exists a symmetric matrix P = diag(Py, 0), with P; nonsingular,
such that
AP+ PAT + BBT =0.
Partition G(s) conformably with P as
AR A;p B
4 Bl _| 4y am B
C D
Cr Cy D
AR . i a
Then prove that C is also a realization of G(s). Moreover, if AR is
R
stable, then (AR, éR) is controllable.
14.3 Based on the result of Exercise 14.2 develop a method for extracting a controllable
subsystem from a stable noncontrollable system.
14.4 (Zhou et al. (1996)) Let G(s) be the same as in Exercise 14.2. Suppose that there
exists a symmetric matrix Q = diag(Q1,0), with Q1 is nonsingular, such that
QA+ ATQ + CTC = 0. Partition the realization (A, B, C, D) conformably with
Q as in Exercise 14.2. Then prove that
AR Br
CR D
is also a realization of G(s). Prove further that (AR, C‘R) is observable if AR is
stable.
14.5 Based on Exercise 14.4, develop a method for extracting an observable subsystem
from a stable nonobservable system.
14.6 Construct your own example to illustrate the numerical difficulties of

Algorithm 14.2.1.

642

14.7

14.8

14.9

14.10

14.11

14.12

14.13

14.14

14.15

14.16

Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Prove that the rows (1,...,d)} and the rows {d + 1,...,n} of T~! in

Algorithm 14.2.1, form bases for the left eigenspaces of the matrix CgOg

associated with the eigenvalues {012, el 03}, and {03 IRTREES 02}, respectively.

Prove that the columns of the matrix Vg and those of the matrix U,g in the Schur

algorithm (Algorithm 14.4.2) for model reduction, form orthonormal bases for the

right and left invariant subspace of CgOg associated with the large eigenvalues

oh....00

Prove that the controllability and observability Grammians of the reduced-order

model obtained by the Schur algorithm (Algorithm 14.4.2) are, respectively, given

by ég = SingSl and (55 = $,0gS,, where Cg and Og are the controllability

and observability Grammians of the original model.

(a) Modify the Schur algorithm for model reduction by making use of Hammar-
ling’s algorithm (Algerithm 8.6.1) so that the explicit formation of the product
Cg Og is avoided, and only the Cholesky factors L¢ and Lo are computed.
(Consult Safonov and Chiang (1989)).

(b) Work out an example to demonstrate the superiority of this modified Schur
algorithm over the Schur algorithm.

(a) Prove that the matrix 7 defined by (14.3.4) transforms the discrete-time
system (14.3.1) to the balanced system (14.3.5).
(b) Work out a discrete analog of Algorithm 14.2.2.

(Zhou et al. (1996)). Let
G| A LB
) _[clo]

be the transfer function of a balanced realization. Then prove that

00 N
o1 <Gl < [ICN Blar <2
0

i=1

Construct an example to show that if the diagonal entries of the matrix £ of the
balanced Grammian are all distinct, then every subsystem of the balanced system
is asymptotically stable. Construct another example to show that this condition is
only sufficient.
Construct an example to show that the bound of Theorem 14.4.1 can be loose if the
quantities oy, i = 1, ..., n are close to each other.
(Hint: Construct a stable realization G(s) such that GT(—s)G(s) = [and then
construct a balanced realization of G(s). Now make a small perturbation to this
balanced realization and work with this perturbed system.)
(a) Develop a Schur method for model reduction of the discrete-time system.
(b) Give a simple example to illustrate the method.
(c) Give a flop-count of the method.
Minimal realization using block diagonalization (Varga 1991). Consider the
following algorithm:

Step 1. Reduce A to block diagonal form and update B and C, that is,
find a nonsingular matrix 7 such that T-1AT = diag(Aq, Ay, ..., Ap), Tt
B= (Bl, Bz, ..., B, CT = (C‘l, C‘z, ..., Cr). (see Exercise 8.10).

Section 14.11: CHAPTER NOTES AND FURTHER READING 643

Assume that the diagonal blocks in A have disjoint spectra.
Step 2. Find an MR of each of the system (A;, B;, C;),i = 1,...,r using
Algorithm 14.2.1 or 14.2.2, as appropriate.
Let (Ai, l§i, C‘i), i =1,...,r be the computed MR of (4;, B;, C;) in Step 2.
Then show that the system (A, B, C) defined by:

B
By .. ,
, C=(C,C,....Cy),

o>
I

A= diag(Al, /iz, e Ar),

B,

is an MR of (A, B, C).
14.17 Using the matrix version of bilinear transformation:

z—1
§=—,
z+1

prove that the Hankel singular values of the discrete and continuous systems are
identical.

(Hint; Obtain the system matrices (A, B, C) for the continuous-time system from
the system matrices (A, B, C) of the discrete-time system and then show that the
controllability Grammian (observability Grammian) of (A, B, C) is the same as
the controllability Grammian (observability Grammian) of (A, B,C).)

14.18 Using the bilinear transformation of Exercise 14.17 and Algorithm 14.5.1, find an
optimal Hankel-norm approximation for the discrete-time system defined by the
matrices in Example 14.3.1.

14.19 Write down a discrete analog of Algorithm 14.2.2 and apply the algorithm to the
system (A, B, C) defined by

0.0001 1 0
A= 0 0.1200 1}, B=(1,1,007, c=@,1,0.
0 0 0

14.20 (Safonov and Chiang 1989). Consider the system (A, B, C) given by

-6 -1 0 0 0 0 0 0 0 0

1 -8 0 0 0 0 0 0 0 0

0 0 —-10 3 0 0 0 0 0 0

o 0 1 -8 0 0 0 0 0 0
4|0 0o 0o o -13 -3 9 0 0 0

o 0 0 o0 1 -8 0 0 0 0f

o 0 0 o0 0 1 -8 0 0 0

0o 0 0 0 0 0 0 —14 -9 0

0o 0 0 0 0 0 0 1 -8 0

0o 0 0 0 0 O0 0 0 0 -2

644

14.21

14.22

14.23

Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

s (1 000 10000 107
"0 01 0000 1 0 103"

C_0101000005><105
B 00000 —6 1 -2 5%x10°/)°

Find a reduced-order model of order 4 using

(a) Balanced truncation via Algorithms 14.2.1 and 14.2.2.

(b) The Schur method (Algorithm 14.4.2).

Compare the results with respect to the condition numbers of the transforming
matrices and the || - ||oc norm errors.

Prove that the weighting Grammians Cg and Og are given by the equations (14.7.2)
and (14.7.3).

Consider the two special cases of the frequency-weighted model reduction:

Case 1. Wi(s) = I and Wy(s) # 1,

Case 2. Wi(s) # I and Wy(s) = 1.

Prove that the reduced-order model (AR, Br, Cr) is stable provided that it is
controllable in Case 1 and is observable in Case 2.

(Hint: Write the balanced Grammian ¥ = diag(X, £,). Then show that

ART| + T|AL + BrBE =0, and ALE, + T AR + CRCr = 0).

Work out an example to illustrate the result. .
Singular perturbation approximations. Let (A, B, C) be a balanced realization of
(A, B, C). Partition the matrices A, B, C as:

(Al Au) = (Bl) 5 A A
A=~ u R B=\|-"], C = (Cy, Cy).
(A21 An By I-~2
Then the system (A, B, C) defined by
A=An+ApGI - Ap) 4y, B=B+Apyl-An !B,
€ =C1+Calyl — Ay Ay

is called the balanced singular perturbation approximation of (A, B, C) (Liu

and Anderson 1989). (y = 0 for a continuous-time system and y = 1 for a

discrete-time system).

(a) Compute singular perturbation approximations of the system in Exam-
ple 14.2.1

using Algorithms 14.2.1 and 14.2.2.

(b) Show how the balancing-free square root method in Section 14.4.3 can be
modified to compute singular perturbation approximation (Hint. Find the SVD
of YT X and then compute L and Z from the matrices of the SVD). See Varga
(1991).

(¢) Apply the modified balancing-free square-root method in (b) to the system in
Example 14.2.1 and compare the results.

Section 14.11: CHAPTER NOTES AND FURTHER READING 645

References

Al-Saggaf U.M. and Franklin G.F., “An error bound for a discrete reduced order model of
a linear multivariable sytem”, IEEE Trans. Autom. Control, Vol. AC-32, pp. 815-819,
1987.

Al-Saggaf U.M. and Franklin G.F. “Model reduction via balanced realizations: an extension
and frequency weighting techniques,” IEEE Trans. Autom. Control, Vol. AC-33(7),
pp. 687-692, 1988.

Balas G., Doyle J., Glover K., Packard A. and Smith R. u-Analysis and Synthesis Toolbox
3.0.4, The MathWorks Inc., Natick, MA, 1998.

Chiang R.Y. and Safonov M.G. Robust Control Toolbox 2.0.6., The MathWorks Inc., Natick,
MA, 1997.

Enns D.F. “Model reduction with balanced realizations: An error bound and a frequency
weighted generalization”, Proc. 23rd IEEE Conf. Dec. Control, pp. 127-132, 1984,

Glover K. “Robust stabilization of linear multivariable systems: relations to approximation”,
Int. J. Control, vol. 43(3), pp. 741-766, 1986.

Glover K. A Tutorial on Hankel-norm Approximation, Data to Model, Springer-Verlag,
New York, 1989. (Willems J.C. ed.)

Glover K., Limebeer D.J.N., and Hung Y.S. “A structured approximation problem with
applications to frequency weighted model reduction,” IEEE Trans. Autom. Control,
Vol. AC-37(4), pp. 447465, 1992.

Glover K. “All optimal Hankel-norm approximations of linear multivariable systems and
their L% -error bounds,” Int. J. Cont., 39, pp. 1115-1193, 1984,

Green M. “Balanced stochastic realizations,” Lin. Alg. Appl., Vol. 98, pp. 211-247, 1988.

Heath M.T., Laub AJ., Paige C.C., and Ward R.C. “Computing the singular value
decomposition of the product of two matrices,” SIAM J. Sci. Star. Comput., Vol. 7,
pp. 1147-1159, 1986.

Hinrichsen D. and Pritchard A.J. “An improved error estimate for reduced-order models of
discrete time system,” IEEE Trans. Autom. Control, Vol. AC-35, pp. 317-320, 1990.

Hung Y.S. and Glover K. “Optimal Hankel-norm approximation of stable systems with first
order stable weighting functions,” Syst. Control Lett., Vol. 7, pp. 165-172, 1986.

Kung S.K. and Lin D.W. “Optimal Hankel norm model reduction: multivariable systems,”
IEEE Trans. Autom. Control, Vol. AC-26, pp. 832-852, 1981.

Latham G.A. and Anderson B.D.O. “Frequency weighted optimal Hankel-norm approx-
imation of stable transfer function,” Syst. Control Lett., Vol. 5, pp. 229-236,
1986.

Laub A.J. “Computation of ‘balancing’ transformations,” Proc. 1980 JACC, Session FA8-E,
1980.

Liu Y. and Anderson B.D.O. “Singular perturbation approximation of balanced systems,”
Int. J. Control, Vol. 50, pp. 1379-1405, 1989.

Liu Y. and Anderson B.D.O. “Frequency weighted controller reduction methods and loop
transfer recovery,” Automatica, Vol. 26(3), pp. 487-497, 1990.

MATLAB, Control System Toolbox 4.2, The MathWorks Inc., Natick, MA, 1998.

MATRIX x, Xmath Model Reduction module, IS1, Santa Clara, CA, January 1998.

Moore B.C. “Principal component analysis in linear systems: controllability, observability
and model reduction,” IEEE Trans. Autom. Control, Vol. AC-26, pp. 17-31, 1981.

646 Chapter 14: INTERNAL BALANCING AND MODEL REDUCTION

Obinata G. and Anderson B.D.O. Model Reduction for Control System Design, Springer-
Verlag, New York, 2000.

Pernebo L. and Silverman L.M. “Model reduction via balanced state space representation,”
IEEE Trans. Autom. Control, Vol. AC-27(2), pp. 382387, 1982.

Safonov M.G. and Chiang R.Y. “A Schur method for balanced-truncation model reduction,”
IEEE Trans. Autom. Control, Vol. 34, pp. 729-733, 1989.

Tombs M.S. and Postlethwaite I. “Truncated balanced realization of a stable non-minimal
state-space system,” Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

Varga A. “Balancing-free square-root algorithm for computing singular perturbation
approximations,” Proc. 30th IEEE Conf. Dec. Control, pp. 1062-1065, 1991.

Varga A. “Numerical methods and software tools for model reduction,” Proc. Ist MATH-
MOD Conf.,, Vienna, Troch 1. and Breitenecker F., eds. Vol. 2, pp. 226-230,
1994.

Varga A. “Model reduction software in the SLICOT library,” Applied and Computational
Control, Signals and Circuits: Recent Developments, Datta B.N. et al., eds. pp. 239-
282, Kluwer Academic Publisher, Boston, 2001.

Zhou X (with Doyle J.C. and Glover K.), Robust and Optimal Control, Prentice Hall, Upper
Saddle River, NJ, 1996.

Zhou K. “Frequency weighted model reduction with L« error bounds,” Syst. Control Lett.,
Vol. 21, pp. 115-125, 1993.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

PART IV_

SPECIAL TOPICS

Chapter 15 Large-Scale Matrix Computations in Control: Krylov Subspace
Methods

CHAPTER 15

LARGE-SCALE MATRIX
COMPUTATIONS IN CONTROL:
KRYLOV SUBSPACE METHODS

15.1 INTRODUCTION

Numerically effective computational methods for various control problems
discussed in preceding chapters are viable only for dense computations. Unfortu-
nately, these methods are not suitable for solutions of many large practical problems
such as those arising in the design of large sparse structures, power systems, etc.
There are two main reasons for this. First, they destroy the sparsity, inherited in
most large practical problems and second, they are O(n>) methods and thus, are
computationally prohibitive for large problems. The sparsity is lost by the use of
canonical forms such as, triangular Hessenberg and real-Schur, which are obtained
by using Gaussian eliminations, Householder and Givens transformations, and
those techniques are well-known to destroy the sparsity.

On the other hand, there have been some fine recent developments in the area
of large-scale matrix computations. A class of classical methods known as the
Krylov subspace methods (Lanczos 1950; Arnoldi 1951) have been found to be
suitable for sparse matrix computations. The reason is that these methods can be
implemented using matrix-vector multiplications only; therefore, the sparsity in
the original problem can be preserved. The examples are the Generalized Minimal
Residual (GMRES) and the Quasi-Minimal Residual (QMR) methods for linear
systems problem; the Arnoldi, Lanczos, and the Jacobi-Davidson methods, and
several variants of them such as the restarted and block Arnoldi methods and
band Lanczos method for eigenvalue problems.

It is only natural to develop algorithms for large-scale control problems using
these effective large-scale techniques of matrix computations. Some work to this
effect has been done in the last few years.

In this chapter, we will briefly review some of these methods. In Section 15.2,
we give a brief description of the basic Arnoldi and Lanczos methods to facilitate

649

650 Chapter 15: KRYLOV SUBSPACE METHODS

the understanding of how these methods are applied to solve large-scale control
problems. We stress that the descriptions of our Krylov subspace methods are basic.
For practically implementable versions of these methods and associated software,
we refer the readers to the books by Bai ef al. (2000), and Saad (1992a, 1996).
In particular, the homepage, ETHOME of the book by Bai et al. (2000) contains
valuable information of available software. Our only goal of this chapter is to
show the readers how these modern iterative numerical methods can be gainfully
employed to solve some of the large and sparse matrix problems arising in control.

15.2 THE ARNOLDI AND BLOCK ARNOLDI METHODS

In this section, we summarize the essentials of the scalar Arnoldi and block Arnoldi
methods.

15.2.1 The Scalar Arnoldi Method

Given an n X n matrix A, a vector v, and an integer m < n, the scalar Arnoldi
method computes simultaneously a set of orthonormal vectors {vy, ..., vy+1}, an
(m + 1) x m matrix H,, such that

AVy = m+]ﬁmv (15.2.1)

where V,,, = (v, ..., vp) and V41 =V, vm+1). The vectors {vy, ..., vy}
Jform an orthonormal basis of the Krylov subspace K, (A, v1) = span{vy, Avy, ...,
A"™~1y1}). Furthermore, it is easy to establish that

viavl = H,, (15.2.2)

where H,, is an m x m upper Hessenberg matrix obtained from H,, by deleting its
last row. The algorithm breaks down at step j, i.e., vj; | = 0, if and only if the
degree of the minimal polynomial of v; is exactly j, that is, it is a combination
of j eigenvectors.

15.2.2 The Block Arnoldi Method

The block Arnoldi method is a generalization of the scalar Arnoldi method. Starting
with a block vector V) of order n x p and norm unity, the block Arnoldi method con-
structs a set of block vectors { Vy, ..., Viq1} suchthatif U, = (Vy, ..., V), then
U,E Un = Impxmp,and U,EAU,,, is an upper block Hessenberg matrix Hy, = (H;;).
Furthermore, AU,, — U, H,, = Vm+1Hm+1‘mE,]:,, where E,, is the last p columns
of the mp x mp identity matrix. The block Arnoldi algorithm is particularly
suitable for handling multivariable control problems.

Section 15.2: THE ARNOLDI AND BLOCK ARNOLDI METHODS 651

Algorithm 15.2.1. The Block Arnoldi Algorithm (Modified Gram—Schmidt
Version).

Let V be an n x p matrix.

Step 0. Compute the n x p orthogonal matrix V| by finding the QR factor-
ization of V: V = V| R (Note that R is here p x p). (Use column pivoting if V
does not have full rank).

Stepl. Fork=1,2,...,mdo

Compute V= AVg.
Forj=1,2,...,kdo

Hjx= V]V
V=V-VH
End

Compute Hyy1 x by finding the QR factorization 0f‘7: V= Vi+1 Hig1 .k
End

The block Arnoldi algorithm clearly breaks down if Hy41 x becomes zero for
some k. Such a breakdown has positive consequences in some applications.
(See Section 4.1.1.)

Remarks
e Define the block mp x mp upper Hessenberg matrix Hy, = (H;;),
Um = (V17 V27 e Vm)

and
Un+1 = (Un, Vint1).
Then relations analogous to (15.2.1) and (15.2.2) hold:

AUy = Um—f—lﬁm,

- H,
H"=<0 oél) ’
o m+1,m (m+1) pxmp

UYAU,, = H.

where

and

15.2.3 The Lanczos and Block Lanczos Methods

For a nonsymmetric matrix A, the Lanczos algorithm constructs, starting with two
vectors vy, and wy, a pair of biorthogonal bases {vy, ..., vy} and {wy, ..., wn)
for the two Krylov subspaces: K,,(A, vi) =span{v, Avy, ..., A" 1y} and
K (AT, wy) = span{w, ATwy, ..., (AT Lw,).

652 Chapter 15: KRYLOV SUBSPACE METHODS

Algorithm 15.2.2. The Nonsymmetric Lanczos Algorithm

Step 0. Scale the vectors v and w to get the vectors v| and w1 such that
wlvy = 1. Set B1 =0, 8; =0, wp = vo = 0.

Stepl. For j =1,2,...,mdo

R
aj—ijvj
Uj+1 = Avj —ajv; = Bjvj—

2 T
Wiyl = A W; —o;jw; —8jwj_1

AT ~
j41 =10 1041l
AT A
Bj+ =wj+1vj+1/5j+l
Wit = Wyl /Bj+1

Vil = Dj41/841
End.

If the algorithm does not break down before completion of m steps, then,
defining V,, = (v, ..., vy) and W, = (wy, ..., wy,), we obtain (i) W,EAV,,, =T,,
(i) AV = Vi Ty + Smi1Vmrrer, and ATW,, = W T + By wmire), where
T,, is tridiagonal (), ..., am; B2, .-, Bm: 82, - -, 8m)-

Breakdown of the Lanczos method. If neither v; nor w; is zero, but wJT. v; =0,
then we have a breakdown (see Wilkinson (1965, p. 389)). In that case, the look-
ahead Lanczos idea has to be applied (see Bai et al. 2000), Parlett et al. (1985),
and Freund et al. (1993).

The Block Lanczos Method

Starting with n x p block vectors P; and Q; such that PlT Q1=1, the block
Lanczos method generates right and left Lanczos block vectors {Q;} and {P;} of
dimension n x p, and a block tridiagonal matrix Tg = Tridiagonal (T4, ..., T,;
La, ..., Lpn; M>,..., M,) such that defining

P[m]:(PbPZ’--me) and Q[m]z(leQza-'-st)v

we have () Qf AQum =Tp, (i) AQum=QumTs + Om1Mni1Ey), and
(iii) ATP[,,,] = P[m]Tg + P,,,+1LrTn+1 E;l where E,, is an mp x m matrix of which
bottom square is an identity matrix and zeros elsewhere.

For details of the algorithm, see Bai et al. (2000) and Golub and Van Loan
(1996). The block Lanczos method breaks down if P].T+1 Qj+1 is singular. In such

a situation, an adaptively blocked Lanczos method (Bai et al. 1999) can be used

Section 15.4: ARNOLDI METHODS 653

to deal with the situation of breakdown. ABLE adaptively changes the block size
and maintains the full or semi biorthogonality of the block Lanczos vectors.

15.3 SCOPES OF USING THE KRYLOV SUBSPACE METHODS IN
CONTROL

Since the Krylov subspace methods (such as, the Amnoldi and Lanczos methods)
are the projection methods onto K,,, it is only natural to use these methods as the
projection techniques to solve large-scale control problems, as has been done in
numerical linear algebra for matrix problems.

A template is then as follows: First, the original large control problem is pro-
jected onto an m-dimensional Krylov subspace by constructing a basis of the
subspace. The projected smaller problem is then solved using a standard well-
established technique. Finally, an approximate solution of the original problem is
obtained form the solution of the projected problem. The solution of the projected
problem is constructed such that either a Galerkin property is satisfied, that is,
the residual is orthogonal to the associated Krylov subspace, or the norm of the
residual error is minimized (GMRES type). These projected methods usually give
cheaply computed residual error norms, which, in turn can be used as a stopping
criteria in case the methods need to be restarted. For a description of the GMRES
method, see Saad and Schultz (1986).

154 ARNOLDI METHODS FOR LYAPUNOY, SYLVESTER, AND
ALGEBRAIC RICCATI EQUATIONS

Numerical methods for solving the Lyapunov equations AX + XAT + BBT =0
(Continuous-time), and AX AT — X + BBT =0 (Discrete-time) have been dis-
cussed in Chapter 8. The standard Schur-method (Section 8.5.2, Section 8.5.4),
and Algorithms 8.6.1 and 8.6.2, based on the Schur decomposition of A, is not suit-
able for sparse problems. In the following subsections, we show the use of scalar
Arnoldi to solve the single-input continuous-time and that of the block Arnoldi to
solve the multi-input discrete-time problem.

The matrix A is assumed to be stable in each case; that is, in the continuous-time
case, A is assumed to have all eigenvalue negative real parts and in the discrete
case, A is assumed to have all its eigenvalues within the unit circle.

Algorithm 15.4.1. An Arnoldi Method for the Single-Input Stable Lyapunov
Equation

Step 1. Run m steps of the Arnoldi algorithm with vy = b/||b||, = b/ B. Obtain
Vin and Hy,.

Step 2. Solve the projected m x m Lyapunov matrix equation: H, G, +
Gm H,}; + ﬂzele]T = 0, using the Schur-method (see Section 8.5.2) .

Step 3. Compute X,,, an approximationto X: X, = V,,G, VJ .

654 Chapter 15: KRYLOV SUBSPACE METHODS

Galerkin condition, residual error and re-start: (i) It is shown (Saad 1990;
Jaimoukha and Kasenally 1994) that the residual Res(X,,) = AX,, + X, AT +
bbT satisfies: V,I Res(X,,)Vix = 0 and (ii) the residual error-norm for the
projected solution: |[Res(Gp)llF = ﬁ||hm+1,me,Tn G ||p. Using this cheaply com-
puted residual error-norm as a stopping criterion, Algorithm 15.4.1 can be restarted
at every fixed number (say m) of iterations, wherever needed.

Algorithm 15.4.2. A Block Arnoldi Algorithm for Stable Discrete-Time
Lyapunov Equation
Step 1. Find the QR factorization of B to compute V| of order n x p:

B =VIR.

Step 2. Run m steps of the block Arnoldi algorithm to obtain H,,, U,,, and
Hm+1,m with Vi as obtained in Step 1.

Step 3. Obtain an mp x mp matrix G, by solving the projected discrete
Lyapunov equation using the Schur-method (Section 8.5.4):

R
HnGnH} + <0> (R 0) = Gp.

Step 4. Compute the approximate solution X,y = Up G UL

Galerkin condition, residual error norm, and Restart

1. The residual Res(X,,) = AXn,AT — X,, + BBT satisfies the Galerkin
property: U Res(X,,)Uy, =0.
Furthermore, the residual error norm for the solution of the projected
problem is given by (Jaimoukha and Kasenally 1994):

IRes(Gm)llF = H Hm+1,mE;£Gm (‘/EH,I EerI+l,m> H :
F
2. If H,, is also discrete-stable, then the error bound || X — X,,||2 converges
to zero as m increases (Boley 1994).
3. Asin the continuous-time case, the cheaply computed residual can be used
to restart the process if necessary.

Arnoldi Methods for Sylvester Equation

Let A, B, and C be the matrices of order n. (Note that the matrix B here is not the
usual control matrix.) We have seen in Section 8.2.1 that the Sylvester equation:
AX — X B =C can be written as the linear systems of equations: (/ ® A — BT ®
I)x =c, where ® denotes the Kronecker product, and x and ¢ are vectors with

Section 15.4: ARNOLDI METHODS 655

n? components. Solving the Sylvester equation this way will require a formidable

amount of storage and time for large and sparse problems. Hu and Reichel (1992)
have proposed a method to solve this system requiring a considerable reduced
amount of storage space. Their idea is to replace the Krylov subspace K,,(I ®
A — BT ® I, ry) with a subspace of the form Kn(BT, g) ® K (A, f) for certain
vectors f and g. The vectors f and g are chosen so that the initial residual vector
ro=>b — Axp, where xg is the initial approximate solution, lies in the Krylov
subspace K, (BT, g) ® Kn (A, f).

Algorithm 15.4.3. A Restarted Arnoldi Algorithm for the Sylvester Equation
AX — X B = C (Galerkin type)

Step 1. Choose xo and computero =c — (I @ A — BT ® Ixo.

Step 2. If ||roll2 < €, then compute the approximate solution matrix X of the
equation AX — X B = C from the entries of xg.

Step 3. Choose f and g using the following scheme:

Let Ry be defined by: e]T.Roek =e}+n(k“1)ro, 1 < j, k < n. Then, if |Roll1 >
| Rolloo, determine g = Rgf/||f||2, taking f as a column of Ry of the largest
norm. Else, determine f = Rog/|g|?, taking g as a row of Ry of the largest
norm.

Using the Arnoldi algorithm, compute the orthonormal bases of K, +1(A, f)
and K41 (BY, g); that is, obtain Ha, Hg, Ha, Hg, Ve, Via1, W Wing1.

Step 4. Compute ro = (W,,, ® Vi) Tro.

Step 5. Determine Q 4 and R4 from Hy, and Q g and Rg from Hp by Schur
factorizations. That is, find Qa, Ra; Qp, Rp such that Hy = QsR4 Q% and
Hp = QpRpQ%. Compute rj=(Qp ® Q)*ro.

Step 6. Solve the triangular or the quasi-triangular system: (I @ Ry — Rp ®
1)y, =ry and compute yo=(Q5 ® Q4)j,

Step 7. Compute the correction vector: zo =Wy, & Vin)yo and update the
solution: xo = xo + 20.

Step 8. Compute the updated residual vector: ro = ro— (W, ® Vi1 Hy) yo+
(Wm+11:13 ® Vim)yo and go to Step 2.

A breakdown of the algorithm occurs when the matrix of the linear system
in Step 6 becomes singular. In this case, one can either reduce m or restart the
algorithm with different f and g, for example, random vectors. The same action
should be taken when dim K,, (A, f) < m or dim K (BT, g) < m.

Block Arnoldi Methods for Sylvester Equation

While the Hu—Reichel algorithm is a projection algorithm on the linear algebraic
system associated with the Sylvester equation, projection algorithms on the actual

656 Chapter 15: KRYLOV SUBSPACE METHODS

Sylvester equation have recently been developed (El Guennouni et al. 2003; Robbé
and Sadkane 2002). Furthermore, the Hu—Reichel algorithm has been extended to
the block form by Simoncini (1996). Let A € R**", B € RP*P,

Algorithm 15.4.4. Block Arnoldi Methods for the Sylvester Equation AX +
XB=C.

Step 1. Choose X and compute the residual matrix Ry = C —(AXo— XoB).
Assume that rank(Rg) = q.

Step 2. Obtain an upper triangular matrix A1 by computing the full rank QR
factorization of Ry: Rg = V| A1 and run m steps of the block Arnoldi algorithm
with Vi to obtain Uy, Hy, and Hy, (Algorithm 15.2.1).

Step 3. (Galerkin-type): Compute the approximate solution: X = Xo +
UnZ,,, obtaining Z,, by solving the Sylvester equation using the Hessenberg—
Schur method (Algorithm 8.5.1):

A

Hu,Zy — Zn,B = A, where A = <0

) errer.
(GMRES-type): Compute the approximate solution: X,Cn;M = X0+ UnZpn,
obtaining Z, by solving the minimization problem:

: S - (A
Mingegmexp |A — Su(Z)||p, where A = (01) € Rm+Daxp
and

- - z
Sp(Z) = HuZ — <0> B,

Residuals and restart: It can be shown (Robbé and Sadkane (2002)) that the
residuals RSM = §(XSM) — C and RS = S(X$) — C satisfy, respectively:

IRSM|Ig = |A = Su(Zw)lr and |RS e = | Hmt1.m ZE |IF,

where ZL is the last ¢ x p block of Z,,. Using these easily computed residu-
als, the method should be periodically restarted with Xo = XS or Xo = XSM,
where X ,(,31 | X SM is the last computed approximate solution with Galerkin/GMRES
method.

Convergence analysis (Robbé and Sadkane 2002)

1. The GMRES algorithm converges if the field of values of A and B are
disjoint. If the Galerkin algorithm converges, then the GMRES algorithm
also converges. However, if GMRES stagnates (i.c., ||R,(3M)||F = || Rollp),
then the Galerkin algorithm fails.

Note: It is assumed that Ry and the parameter m are the same in both these
algorithms.

Section 15.4: ARNOLDI METHODS 657

2. (Breakdown). If the block Arnoldi algorithm breaks down at iteration m;
that is, if Hy4+1.m = O, then the approximate solutions computed by
GMRES and the Galerkin algorithm are exact; that is, XS = XS:M = X.

Arnoldi Method for Sylvester-Observer Equation (Single-Output Case)

The Sylvester-observer equation ATX — X H = CTG arises in the construction of
Luenberger observer (see Chapter 12; Datta 1994). For a full-rank solution X, it is
necessary that (A, C) is observable and (H T G) is controllable. If H is an upper
Hessenberg matrix (as in the case of the scalar Arnoldi), then in the single-output
case g can be chosentobe e, = (0,0, ..., 0, 1) and the Sylvester-observer equa-
tion in this case reduces to ATX — XH = (0,0, ...,0, cT). An Arnoldi method
was developed by Datta and Saad (1991) to solve this equation by observing the
striking resemblance of this equation with the Arnoldi equation: AV, — Vi Hyy =
0,0,...,0, Ay 1.mVUm+1)- Naturally, the Arnoldi vector v should be chosen so
that the last vector v, becomes the vector c, given a priori. This is done by
observing that, apart from a multiplicative scalar, the polynomial p,, (x) such that
Vm+1 = Pm(A)vy, is the characteristic polynomial of H,, (see Saad 1992a). The
matrix H,, is constructed to have a pre-assigned spectrum {1, .. ., i, } for which
an eigenvalue assignment algorithm (e.g., Datta 1987) is invoked at the end of
(m — 1) steps of the Armoldi algorithm with the chosen vector v;.

Algorithm 15.4.5. An Arnoldi Algorithm for Single-output Sylvester-
Observer Equation

Step 1. Solve the linear system: q(AV)x =c¥, and compute vy =x/]|x|;
where q(t) = (t — pu1)(t — p2) -+ (t —).

Step 2. Run m — | steps of the Arnoldi method on AT with vy as the initial
vector to generate V,, and the first m — 1 columns of Hy,. Let I:Im_l denote the
matrix of the first m — | columns of Hy,.

Step 3. Find a column vector y such that Q([Hp-1, yD=Q(H;) =
{1, ..., Um}, where Q(K) denotes the spectrum of the matrix K.

Step 4. Compute o = (c')'c'/||c||>, where ¢ is the last column of ATV, —
Vi Hy,.

Step 5. Set X, = (1/a) V.

Solving the equation (AT)x = ¢T using the partial fraction approach: A partial
fraction approach suggested in Datta and Saad (1991) to solve the above polyno-
mial system of equations consists in decomposing the system into r linearly inde-
pendent systems: (AT —p;Dxi=c",i=1, ..., m and then obtaining the solution

1
x as the linear combination: x = Y 7 _ ﬁxi’ where ' (1)) =Tl =1, m.i%j-
q [
Each of these systems can be solved by applying k steps of the Arnoldi method,

658 Chapter 15: KRYLOV SUBSPACE METHODS

constructing an orthonomial basis Vj of the span {c, A, c, ..., A*=1¢} and then
solving k independent small m x m Hessenberg linear systems. The bulk of the
work is in constructing V, and this is done only once. A detailed stability (numeri-
cal) property of the approach studied in Calvetti ef al. (1995), Calvetti and Reichel
(1997), and Calvetti et al. (2001) shows that the performance of the scheme can
be improved by choosing pi;s as the equidistant points on a circle or on the zeros
of a certain Chebyshev polynomial.

Remarks

e Observe that the solution obtained by this algorithm has the nice additional
property of being orthonormal.

o Afull Arnoldi-type of method (m = n) for the construction of an orthogonal
solution to the multi-output Sylvester-observer equation has been developed
by Datta and Hetti (1997). Also, there now exists a singular value decom-
position (SVD)-based algorithm (Datta and Sarkissian 2000) for solving
the multi-output Sylvester-observer equation, which might be suitable for
large-scale computing.

Arnoldi Method for Continuous-Time Algebraic Riccati Equation (CARE)

In Chapter 13, we have described numerical solutions of the algebraic Riccati
equations. The Schur method, the generalized Schur method, or similar methods
based on matrix decompositions are not practical for large problems. An idea
to solve the CARE using the block Aroldi method developed by Jaimoukha and
Kasenally (1994) is as follows. For simplicity, we write the CARE as: XA+ATX —
XBBTX + LLT =0 (ie, R = I and Q = LLT). Assume that the associated
Hamiltonian matrix does not have a purely imaginary eigenvalue.

Algorithm 15.4.6. An Arnoldi Algorithm for CARE (Galerkin-type)

Step 1. Compute Uy, Hpy, Hpy+1.m by running m steps of the block Arnoldi
method starting with V| given by: L = V| R (QR factorization of L). Define
By by UYB = B, and Ly, by ULy = L.

Step 2. Solve the projected equation for G,,:

GmHm +HYGpy — GuBuBLGp + Ly LY =0
Step 3. Compute approximation Xy, of X: Xpy = Up Gy U,E
Galerkin condition and restart

1. The residual norm satisfies Res(X,,) the Galerkin property: V,;,f
Res(X;,) Vi, = 0.

Section 15.6: LANCZOS AND ARNOLDI METHODS FOR MODEL REDUCTION 659

2. Algorithm 15.4.6 can be restarted by using the cheaply computed
residual error norm: ||Res(G,,)|lr = ﬁlleH,m E,E Gn I, as a stopping
criterion.

15,5 ARNOLDI METHOD FOR PARTIAL EIGENVALUE
ASSIGNMENT

Let the spectrum of an n x n matrix A be denoted by Q(A)={(A;,..., Ap,
Xp+1, ..., Ag}. Recall from Chapter 11 that the Partial Eigenvalue Assignment
(PEVA) is defined as follows: Given an n x n large and sparse matrix A, with par-
tial spectrum {A1, ..., Ap}, an n x m control matrix B, and a set of self-conjugate
scalars {1, ..., fip}, the problem is the one of finding a feedback matrix K such
that Q(A — BK)={u1, ..., tp; Apt1s..-,An). The problem naturally arises
in feedback stabilization of large systems such as large space structures, power
plants.

We have described a Sylvester equation approach due to Datta and Sarkissian
(2002) in Chapter 11. Here we describe a projection method due to Saad (1988),
which can be implemented using the Arnoldi method. It is based on computing an
orthonormal basis for the left invariant subspace associated with the p eigenvalues
that are to be reassigned.

Algorithm 15.5.1. A Projection Algorithm for Partial Pole-Placement

Step 1. Compute the partial Schur decomposition: ATQ = QR associated
with the eigenvalues A1, Ay, ..., Ap.

Step 2. Compute So=Q'B and solve the projected p x p eigen-
value assignment problem. That is, find a matrix G such that Q(RT —
SoGTY = {1, 2, ..., tp), using a standard multi-input EVA method
(Algorithm 11.3.1).

Step 3. Form the feedback matrix: K = (QG)T.

15.6 LANCZOS AND ARNOLDI METHODS FOR MODEL
REDUCTION

In Chapter 14, we have described several techniques for model reduction. These
include model reduction via balancing and the Schur method. Since these meth-
ods require reduction of the state-matrix A to real-Schur form, they are not suitable
for large and sparse computations. Here we describe some Krylov-subspace ideas.
These Krylov methods are designed to construct a reduced-order model (ROM)
such that the first few Markov parameters (see Chapter 9) of this model match
with those of the original model.

660 Chapter 15: KRYLOV SUBSPACE METHODS

Several Krylov subspace methods for model reduction have been developed in
recent years. These include the Padé via Lanczos (PVL) approach, the interpola-
tion approach, based on the rational Krylov method of Ruhe, implicitly restarted
Lanczos method, and Arnoldi and implicitly restarted dual Arnoldi methods. The
PVL technique has been proven to be effective in circuit simulation and the mul-
tipoint rational interpolation approach has been successful in moment matching
of the transfer function at selected frequencies. The machinery needed to describe
these techniques has not been developed here and, therefore, we have to skip
the descriptions of these techniques. For state-of-the-art survey on this topic, see
Antoulas (2003) and Van Dooren (2000), and Datta (2003).

We will describe here only a basic Lanczos and an Arnoldi method for model
reduction in the single-input, single-output (SISO) case and just mention the
existence of the block Lanczos and band Lanczos methods in the multi-input,
multi-output (MIMO) case.

15.6.1 Lanczos Methods for Model Reduction

Algorithm 15.6.1. A Lanczos Algorithm for SISO Model Reduction

Step 0. Scale the vectors b and c to obtain the vectors vy and w such that
wlTvl =1.

Step 1. Run k steps of the Lanczos algorithm (Algorithm 15.2.2) ro generate
the matrices Wy, and Vi and then compute Ay = WkT AVy, by = WkT b, cr =cVy.

Step 2. Form the reduced-order model (Ay, by, ci).

It can be shown that the reduced-order model defined by (Ag, bk, ck) preserves
the first 2k Markov parameters of the original system. (See Gragg 1974; Gragg
and Lindquist 1983). That is, cA"lp = ckA;(_lbk, i=1,2,...,2k.

Numerical Disadvantages and Possible Cures

There are several numerical difficulties with the above algorithm: first, there can
be serious “breakdowns” in the Lanczos process due to the ill-conditioning of the
submatrices in the system’s Hankel matrix; second, the steady-state error can be
large; third, the stability of the ROM is not guaranteed even though the original
model is stable. An implicit restated Lanczos scheme due to Grimme et al.
(1996), to stabilize the ROM is as follows: Suppose that the matrix Ay is not
stable and assume that there are ¢ unstable modes: w1, ..., ttq- Then the idea is to
restart Algorithm 15.6.1 with the new starting vectors vy = py(A—pgl)--- (A—
piDvi,and w1 = py(AT—pgI) -+ - (AT — py Dwy, where py and p,, are certain
scalars. The scheme is implemented implicitly using a technique similar to the one
proposed in Sorensen (1992). There also exist relations between the modified

Section 15.6: LANCZOS AND ARNOLDI METHODS FOR MODEL REDUCTION 661

Markov parameters of the original system and the above restarted Lanczos model
(see Grimme et al. 1996).

15.6.2 Block Lanczos and Band Lanczos Methods for MIMO Model Reduction

In the MIMO case, when m =r, the block Lanczos method can be used.
Specifically, the following result (see Boley 1994) can be proved.

Theorem 15.6.1. Let j steps of the block Lanczos method be applied to the
MIMO system (A, B, C), starting with block vectors generated from the OR
decompositions of B and C, obtaining the matrices Pjy and Q). Define A =

Ol AP, B = Q[,B.C = CP. Thenthe ROM (A, B, C) has the following

properties: CA'B = CA'B fori =0,1,...,2(j — 1).

The band Lanczos method is an extension of the standard nonsymmetric Lanczos
method for single vectors to blocks of starting vectors of different sizes. This
method is thus ideal for the MIMO case when m # r. For space limitations, the
detailed description of the algorithm cannot be given here. For description of the
algorithm, we refer the readers to the paper by Aliga et al. (2000). For application
of the band Lanczos algorithm to the MIMO model reduction, see Freund (1999)
and the paper by Freund in Bai et al. (2000, pp. 205-216). See also, Bai et al.
(1997), Bai and Freund (1999), and Freund (1997).

15.6.3 An Arnoldi Method for SISO Model Reduction

The idea is to use the Arnoldi method simultaneously on (A, b) and (AT, ¢T) and
then combine the results to obtain ROMs. The ROMs have been shown to satisfy
the Galerkin conditions (Jaimoukha and Kasenally 1997).

Algorithm 15.6.2. An Arnoldi Algorithm for SISO Model Reduction

Step 1. Perform m steps of the Arnoldi method with (A, b) to obtam H,,
Hma Vins Vin and Iy, with vy = b/||bf2. (Vm = Um+l, Hm = hm+1 me and
Im = Ilbllzel)

Step 2. Perform m steps of the Arnoldi method with (AT, D) 10 produce
G, Gm7 Wi, Wm and km, with wi = CT/”CHZ: ((Gm)T = 8m, m+le;l,;v Wm =
W1 and ky = | cll2e]).

Step 3. Form Ty, = WXV, Hy = T;'WYAV,, = Hy + T, WV, Ay,
and G = WYAV, T = Gy + G WV, T,

Step 4. Form the ROM (Hy, by, ki Ti) 01 (G, Tonlin k).

662 Chapter 15: KRYLOV SUBSPACE METHODS

Galerkin conditjons and residual errors: Let hy(s)=(sI - ﬁm)_llm and
gm(8) =km(sI — Gp)~'. Then the Galerkin conditions WL ((s] — A)Viuhp(s) —
b)=0, and (gm(s)W;nr(sI — A) —)V, =0, Vs are satisfied.

Remarks

o Jaimoukha and Kasenally (1997) have described a restarted Arnoldi frame-
work which may be employed to make the ROMs stable and to remove
redundant modes in the models. For space limitation, we skip the description
of this implicit method here.

e Antoulas et al. (2001) have recently proposed a restarted Arnoldi method,
closely related to the one described above, based on the concept of the Cross
Grammian. For space limitation, we skip the description here and refer the
readers to the above paper.

15.7 CHAPTER NOTES AND FURTHER READING

In this chapter, we have provided a very brief review of some of the existing
Krylov subspace methods for a few large problems arising in design and analysis
of control problems. These include Arnoldi methods for Lyapunov and Sylvester
equations by Saad (1990), Hu and Reichel (1992), Jaimoukha and Kasenally
(1994); Arnoldi method for the single-output Sylvester-observer equation by Datta
and Saad (1991); a projection algorithm (which can be implemented using Arnoldi
method) for PEVA problem by Saad (1988); and Lanczos and Arnoldi methods
for model reduction by Boley (1994), Grimme e? al. (1996), and Jaimoukha and
Kasenally (1995, 1997). See Boley and Golub (1984, 1991) for Krylov subspace
methods for determining controllability.

The Hu—Reichel algorithm was extended by Simoncini (1996) to block form.
There have also been some recent developments on the Krylov subspace methods
for Sylvester equation. El Guennouni et al. (2001) have developed block Arnoldi
and nonsymmetric block Lanczos algorithms for Sylvester equation. Robbé and
Sadkane (2002) have proposed new block Arnoldi and block GMRES methods for
Sylvester equation and analyzed their convergence properties in details.

In the context of model reduction, it is noted that there are other important meth-
ods, such as the PVL, the interpolation methods, etc., which have not been included
here. For details of these methods, the readers are referred to the associated papers
cited in the reference section of this Chapter. In particular, for Lanczos methods
of model reduction see, Feldman and Freund (1995a, 1995b, 1995¢), Jaimoukha
and Kasenally (1997), Grimme et al. (1996), Papakos and Jaimoukha (2001),
Papakos (2001), Papakos and Jaimoukha (2002), Gallivan et al. (1996), etc. The
paper by Papakos and Jaimoukha (2002) contains a procedure for model reduction

Section 15.7: CHAPTER NOTES AND FURTHER READING 663

combining nonsymmetric Lanczos algorithm and Linear Fractional Transforma-
tions (LFT). The delightful recent surveys by Freund (1999), the recent research
monograph by Antoulas (2003), Ph.D. thesis by Grimme (1994), and short course
lecture notes by Van Dooren (1995, 2000) and Feldman and Freund (1995b) are
good sources of knowledge for model reduction. The paper by Freund (1999)
includes 123 references on large-scale matrix computations using Krylov methods
and their applications to model reduction. The earlier general surveys on Krylov
subspace methods in control include the papers by Boley (1994), Datta (1997),
Boley and Datta (1996), Van Dooren (1992), Bultheel and Van Barel (1986), and
Fortuna et al. (1992). Some other papers of interest on Krylov subspace methods
for model reduction include the papers by Villemagne and Skelton (1987), and Su
and Craig, Jr. (1991).

For recent algorithms on partial eigenvalue and eigenstructure assignments
which are not Krylov subspace methods, but suitable for large-scale computa-
tions, see Sarkissian (2001) and Datta and Sarkissian (2002). See also Calvetti
et al. (2001).

Research Problems

1. Develop ablock Arnoldi type algorithm to solve the multi-output Sylvester-
observer equation AX — X B + GC, analogous to single-output algorithm
(Algorithm 15.4.5).

2. Develop a block Arnoldi algorithm for the discrete-time Algebraic Riccati
equation (DARE): ATXA — X+ Q0 — ATXB(R+BTXB)"'BTxA =0,
analogous to Algorithm 15.4.6 in the continuous-time case.

3. Develop a block Arnoldi algorithm for the generalized Sylvester equation:
AXB-X=C.

4. Develop a block Arnoldi algorithm for MIMO model reduction that
preserves stability of the original system.

References

Aliaga J.1., Boley D.L., Freund R.W,, and Hernandez V. “A Lanczos-type method for
multiple starting vectors,” Math. Comp., Vol. 69, pp. 1577-1601, 2000.

Antoulas A.C., Sorensen D.C., and Gugercin S. “A survey of model reduction meth-
ods for large-scale systems,” in Contemporary Math. (Olshevsky V., ed.), American
Mathematical Society, Providence, Vol. 280, pp. 193-219, 2001.

Antoulas A.C. Lectures on Approximations of Large-Scale Dynamical Systems, SIAM,
Philadelphia, 2003 (To appear).

Arnoldi W.E. “The principle of minimized iterations in the solution of the matrix eigenvalue
problem,” Quart. Appl. Math., Vol. 9, pp. 17-29, 1951.

664 Chapter 15: KRYLOV SUBSPACE METHODS

Bai Z., Feldmann P, and Freund R.W. “Stable and passive reduced-order models based on
partial Padé approximation via the Lanczos process,” Numerical Analysis Manuscript,
No. 97-3-10, Bell Laboratories, Murray Hill, NJ, 1997.

Bai Z., Day D., and Ye Q. “ABLE.: an adaptive block Lanczos method for nonhermitian
eigenvalue problem,” SIAM J. Matrix Anal. Appl., pp. 1060-1082, 1999.

Bai Z. and Freund R. “A band symmetric Lanczos process based on coupled recurrences
with applications in model-order reduction,” Numerical Analysis Manuscript, Bell
Laboratories, Murray Hill, NJ, 1999.

Bai Z., Demmel J., Dongarra J., Ruhe A., and Van der Vorst H. Templates for the Solution
of Algebraic Eigenvalue Problems, A Practical Guide, SIAM, Philadelphia, 2000.

Boley D.L. “Krylov space methods on state-space control models,” Proc. Circuit Syst.
Signal, Vol. 13, pp. 733-758, 1994.

Boley D. and Datta B.N. “Numerical methods for linear control systems,” in Systems and
Control in the Twenty-First Century (Byres C., Datta B., Gilliam D., and Martin C.,
eds.), pp. 51-74, Birkhauser, Boston, 1996.

Boley D. and Golub G. “The Lanczos—Arnoldi algorithm and controllability,” Sysz. Control
Lert., Vol. 4, pp. 317-327, 1984.

Boley D. and Golub G. “The nonsymmetric Lanczos algorithm and controllability,” Syst.
Control Lett., Vol. 16, pp. 97-105, 1991.

Brezinski C., Redivo Zaglia M., and Sadok H. “Avoiding breakdown and near-breakdown
in Lanczos type algorithms,” Numer. Algorithms, Vol. 1, pp. 26-284, 1991.

Bultheel A. and Van Barel M. “Padé techniques for model reduction in linear systems
theory: a survey,” J. Comput. Appl. Math., Vol. 14, pp. 401438, 1986.

Calvetti D. and Reichel L. “Numerical aspects of solution methods for large Sylvester-like
observer-equations,” Proc. IEEE Conf. Decision Control, pp. 43894397, 1997.
Calvetti D., Gallopoulas E., and Reichel L. “Incomplete partial fractions for parallel eval-
uations of rational matrix functions,” J. Comp. Appl. Math., Vol. 59, pp. 349-380,

1995.

Calvetti D., Lewis B., and Reichel L. “On the solution of large Sylvester-observer equation,”
Num. Lin. Alg. Appl., Vol. 8, pp. 435451, 2001.

Calvetti D., Lewis B., and Reichel L. “Partial eigenvalue assignment for large linear control
systems,” in Contemporary Mathematics (Olshevsky V. ed.), American Mathematical
Society, Providence, RI, Vol. 28, pp. 24-254, 2001.

Datta B.N. “An algorithm to assign eigenvalues in a Hessenberg matrix: single-input case,”
IEEE Trans. Autom. Control, AC-32, pp. 414417, 1987.

Datta B.N. “Linear and numerical linear algebra in control theory: some research problems,”
Lin. Alg. Appl., Vol. 197/198, pp. 755-790, 1994.

Datta B.N. Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
Pacific Grove, CA, 1995.

Datta B.N. “Krylov-subspace methods for control: an overview,” Proc. IEEE Conf. Decision
Control, 1997.

Datta B.N. “Krylov-subspace methods for large-scale matrix problems in control,” Future
Generation of Computer Systems, Vol. 19, pp. 125-126, 2003.

Datta B.N. and Hetti C. “Generalized Arnoldi methods for the Sylvester-observer matrix
equation and the multi-input eigenvalue assignment problems,” Proc. IEEE Conf.
Decision Control, pp. 4379-4383, 1997.

Section 15.7: CHAPTER NOTES AND FURTHER READING 665

Datta B.N. and Saad Y. “Arnoldi methods for large Sylvester-like observer matrix equa-
tions, and an associated algorithm for partial spectrum assignment,” Lin. Alg. Appl.,
Vol. 154156, pp. 225-244, 1991.

Datta B.N. and Sarkissian D. “Block algorithms for state estimation, and functional
observers,” Proc. IEEE Joint Conf. on Control Appl., pp. 19-23, 2000.

Datta B.N. and Sarkissian D. Partial eigenvalue assignment: Existence, uniqueness, and
numerical solutions, Proc. Mathematical Theory of Networks and Systems, Notre
Dame, August, 2002.

El Guennouni A., Jbilou K., and Riquet J. “Block Krylov subspace methods for solving large
Sylvester equations,” preprint, LMPA, No. 132, Université du Littoral, 2001 (To appear
in Numer. Algorithms), 2003.

Feldmann P. and Freund R.W. “Efficient linear circuit analysis by Padé approximation
via the Lanczos process,” IEEE Trans. Comput.-Aided Design, Vol. 14, pp. 639-649,
1995a.

Feldman P. and Freund R.W. Numerical Simulation of Electronic Circuits: State-of-
the-Art Techniques and Challenges, Course Notes, 1995b (Available on-line from
http:/cm.bell-labs.com/who/Freund).

Feldman P. and Freund R.W. “Reduced-order modeling of large linear subcircuits via a
block Lanczos algorithm,” Proc. 32nd Design Autom. Conf., Assoc. Comp. Mach.,
pp. 474479, 1995c¢.

Fortuna L., Nunnari G., and Gallo A. Model Order Reduction Techniques with Applications
in Electric Engineering, Springer-Verlag, London, UK, 1992,

Freund R.W. “Computing minimal partial realization via a Lanczos-type algorithm for
multiple starting vectors,” Proc. IEEE Conf. Decision Control, pp. 43944399, 1997.

Freund R.W. “Reduced-order modeling techniques based on Krylov subspace methods and
their uses in circuit simulation,” in Applied and Computational Control, Signals, and
Circuits (Datta B.N. et al., eds.), Vol. 1, pp. 435-498, Birkhauser, Boston, 1999.

Freund R.W., Gutknecht M.H., and Nachtigal N.M. “An implementation of the look-ahead
Lanczos algorithm for non-hermitian matrices,” SIAM J. Sci. Comput., Vol. 14, pp. 137~
158, 1993.

Gallivan K., Grimme E.J., and Van Dooren P. “A rational Lanczos algorithm for model
reduction,” Numer. Algorithms, Vol. 12, pp. 33-63, 1996.

Golub G.H. and Van Loan C.F. Matrix Computations, 3rd edn, Johns Hopkins University,
Baltimore, MD, 1996.

Gragg W.B. “Matrix interpolations and applications of the continued fraction algorithm,”
Rocky Mountain J. Math., Vol. 4, pp. 213-225, 1974.

Gragg W.B. and Lindquist A. “On the partial realization problem,” Lin. Alg. Appl., Vol. 50,
pp- 277-319, 1983.

Grimme E.J., Sorensen D.C., and Van Dooren P. “Model reduction of state space systems via
an implicitly restarted Lanczos method,” Numer. Algorithms, Vol. 1, pp. 1-32, 1996.

Grimme E.J. Krylov Projection Methods for Model Reduction, Ph.D. Thesis, University of
Mlinois at Urbana-Champaign, Urbana, Illinois, 1994.

Hu D.Y. and Reichel L. “Krylov subspace methods for the Sylvester equation,” Lin. Alg.
Appl. Appl., Vol. 172, pp. 283-313, 1992.

666 Chapter 15: KRYLOV SUBSPACE METHODS

Jaimoukha I.M. “A general minimal residual Krylov subspace method for large-scale model
reduction,” IEEE Trans. Autom. Control, Vol. 42, pp. 1422-1427, 1997.

Jaimoukha .M. and Kasenally E.M. “Krylov subspace methods for solving large Lyapunov
equations,” SIAM J. Numer. Anal., Vol. 31, pp. 227-251, 1994.

Jaimoukha .M. and Kasenally E.M. “Oblique projection methods for large scale model
reduction,” SIAM J. Matrix Anal. Appl., Vol. 16, pp. 602-627, 1995.

Jaimoukha .M. and Kasenally E.M. “Implicitly restarted Krylov Subspace methods for
stable partial realizations,” STAM J. Matrix Anal. Appl., Vol. 18(3), pp. 633-652, 1997.

Lanczos C. “An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators,” J. Res. Nat. Bur. Standards, Vol. 45, pp. 255-282, 1950.

Papakos V. and Jaimoukha I.M. “Implicitly restarted Lanczos algorithm for model
reduction,” Proc. 40th IEEE Conf. Decision Control, pp. 3671-3672, 2001.

Papakos V. An Implicitly Restarted Nonsymmetric Lanczos Algorithm for Model Reduction,
M.Phil. to Ph.D. Transfer Report, Imperial College, London, UK, 2001.

Papakos V. and Jaimoukha 1.M. “Model reduction via an LFT-based explicitly restarted
Lanczos algorithm (preprint),” Proc. Math Theory Networks Syst. (MTNS’ 2002),
Notre Dame, 2002.

Parlett B.N., Taylor D.R., and Liu Z.A. “A look-ahead Lanczos algorithm for unsymmetric
matrices,” Math. Comp., Vol. 44, pp. 105-124, 1985.

M. Robbé and Sadkane M. “A convergence analysis of GMRES and FOM methods for
Sylvester equations,” Numer. Algorithms, Vol. 30, pp. 71-84, 2002.

Saad Y. “Projection and deflation methods for partial pole assignment in linear state
feedback,” IEEE Trans. Autom. Control, Vol. 33, pp. 290-297, 1988.

Saad Y. “Numerical solutions of large Lyapunov equations,” in Signal Processing, Scatter-
ing, Operator Theory, and Numerical Methods (Kaashoek M.A., Van Schuppen J.H.,
and Ran A.C. eds.), pp. 503-511, Birkhauser, 1990.

Saad Y. Numerical Methods for Large Eigenvalue Problems, John Wiley, New York, 1992a.

Saad Y. Iterative Methods for Sparse Linear Systems, PWS, Boston, MA, 1996.

Saad Y. and Schultz M.H. “GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., Vol. 7, pp. 856-869,
1986.

Sarkissian D. Theory and Computations of Partial Eigenvalue and Eigenstructure Assign-
ment Problems in Matrix Second-order and Distributed Parameter Systems, Ph.D.
Dissertation. Northern Illinois University, DeKalb, Illinois, 2001.

Simoncini V. “On the numerical solution of AX — XB = C, BIT, Vol. 36,
pp. 814-830, 1996.

Sorensen D.C. “Implicit application of polynomial filters in a k-step Arnoldi method,” SIAM
J. Matrix Anal. Appl., Vol. 13, pp. 357-385, 1992.

Sorensen D.C. and Antoulas A.C. Projection Methods for Balanced Model Reduc-
tion, Unpublished manuscript, 2001 (available from the webpage: htp://www.ece.
rice.edu/ aca).

Su T.-J. and Craig R.R., Jr. “Model reduction and control of flexible structures using Krylov
vectors,” J. Guidance Control Dynam., Vol. 14, pp. 260-267, 1991.

Van Dooren P. The Lanczos Algorithm and Padé Approximations, Short Course, Benelux
Meeting on Systems and Control, 1995.

Section 15.7: CHAPTER NOTES AND FURTHER READING 667

Van Dooren P. Gramian-Based Model Reduction of Large-scale Dynamical Systems, Short
Course SIAM Annual Meeting, San Juan, Puerto Rico, July 2000.

Van Dooren P. “Numerical linear algebra techniques for large-scale matrix problems in
systems and control,” Proc. IEEE Conf. Decision Control, 1992.

de Villemagne C. and Skelton R.E. “Model reductions using a projection formulation,” Int.
J. Control, Vol. 46, pp. 2141-2169, 1987.

Wilkinson J.H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

APPENDIX A

SOME EXISTING SOFTWARE
FOR CONTROL SYSTEMS
DESIGN AND ANALYSIS

In this appendix, we will give a brief description of some of the existing software
for control systems design and analysis.

A.1 MATLAB CONTROL SYSTEM TOOLBOX

As the title suggests, MATLAB Control System Toolbox is based on the well-
known matrix computations software “MATLAB.” It is a collection of M-files
which implement some of the numerically viable algorithms for control system
design, analysis, and modeling.

The control systems can be modeled either as transfer functions or in state-space
form. Both continuous-time and discrete-time systems can be handled. The toolbox
has excellent graphic capabilities and various time and frequency responses can
be viewed on the screen and analyzed.

The software can be obtained from The MathWorks, Inc., 24 Prime Park Way,

Natick, MA 01760-1500

Tel: (508) 647-7000, Fax: (508) 647-7001, URL: http://www.mathworks.com
Newsgroup: Comp. soft. sys. matlab.

See MATLAB Control System Toolbox: Users Guide (1996) for details.

A2 MATCONTROL

MATCONTROL is also a collection of M-files implementing major algorithms
of this book. MATCONTROL is primarily designed for classroom use—by using
this toolbox, the students (and the instructors) will be able to compare different
algorithms for the same problem with respect to efficiency, stability, accuracy,
easiness-to-use, and specific design and analysis requirements.

669

670 Appendix A: SOFTWARE FOR CONTROL SYSTEMS DESIGN AND ANALYSIS

A.3 CONTROL SYSTEM PROFESSIONAL—ADVANCED
NUMERICAL METHODS (CSP-ANM)

Control System Professional (CSP) based on “Mathematica” is a collection of
Mathematica programs (1996) to solve control systems problems. CSP-ANM
extends the scope of CSP by adding new numerical methods for a wide class
of control problems as well as for a number of matrix computations problems that
have extensive uses in control systems design and analysis.

ANM is compatible with, and requires, Control System Professional 2.0 or later.
The software has been developed by Biswa Nath Datta and Daniil Sarkissian (with
the help of Igor Bakshee from Wolfram Research Incorporation).

“Typically, Advanced Numerical Methods provides several numerical methods
to solve each problem enabling the user to choose from most appropriate tool for a
particular task based on computational efficiency and accuracy.” Users can select
the most appropriate tool for a given task or have the package choose a suitable
method automatically based on the size of data and the required accuracy. Thus,
the package, though oriented mostly for professional users, is also an important
tool for students, researchers, and educators alike.

The algorithms implemented in the package have been taken mostly
form the current book by the author. More details can be found from
hetp://www.wolfram.com/products/applications/ann

Software and manual: There is a User’s Manual written by Biswa Nath Datta and
Daniil Sarkissian (2003) with help from Igor Bakshee and published by Wolfram
Research, Inc.. Both the software and the manual can be obtained from:

Wolfram Research, Inc., 100 Trade Center Drive, Champaign, Illinois 61820-7237,
USA

Tel.: (217) 398-0700, Fax: (217) 398-0747

E-mail: Info@wolfram.com, URL: www.wolfram.com

A4 SLICOT

SLICOT is a Fortran 77 Subroutine Library in Control Theory. It is built on the
well-established matrix software packages, the Basic Linear Algebra Subroutines
(BLAS) and the Linear Algebra Package (LAPACK). The library also contains
other mathematical tools such as discrete sine/cosine and Fourier transforma-
tions. The routines can be embedded in MATLAB by an appropriate interface
thus enhancing the applicability of the library.

For a brief description of the library, see the paper “SLICOT—A Subroutine
Library in Systems and Control Theory” by Peter Benner, Volker Mehrmann,
Vasile Sima, Sabine Van Huffel, and Andras Varga in Applied and Computational
Control, Signals, and Circuits (Biswa Nath Datta, Editor), Birkhauser, 2001. The
official website for SLICOT is: http://www.win.tuc.nc/niconet

Section A.5: MATRIX 671

A.5 MATRIXy

MATRIX x, as the title suggests, is built on functions that are most commonly used
for matrix computations. It is broken into several modules. The principal ones are
MATRIX x Core, Control, and System Build, Optimization, and Robust Control.
The core module contains the core MATLAB commands with some modifications
and extensions. The control module contains both classical and modern control
commands.

The MATRIX x core and control modules are command driven, while the system
build module is menu driven. This module allows the users to simulate the systems
by building the block diagrams of the systems on the screen. MATRIX y is a product
of Integrated Systems, Inc. There exista MATRIX x User’s Guide (1991) and a book
by Shahian and Hassul (1992) describing the functional details of the software.

A.6 SYSTEM IDENTIFICATION SOFTWARE

Each of the software packages MATLAB Control System Toolbox, Control
System Professional, Control System Professions—Advanced Numerical
Methods, SLICOT, MATRIX, etc., has its own software module for system
identification. See Chapter 9 of this book for details.

There now also exist a few software packages, especially designed for system
identification. We describe three of them in the following.

A.6.1 MATLAB System Identification Toolbox

This toolbox has been developed by Prof. Lennart Ljung of Linkdping University,
Sweden. The toolbox can be used either in command mode or via a Graphical User
Interface (GUI). The details can be found in the Users’ manual (Ljung 1991) and
MathWorks website: http://www.mathworks.com

A.6.2 Xmath Interactive System Identification Module, Part-2

This is a product of Integrated System Inc., Santa Clara, USA, 1994. It is a GUI-

based software for multivariable system identification. The details can be found in

User’s Manual (VanOverschee et al. 1994).

Website: http://www.isi.com/products/MATRIX x/Techspec/MATRIX x - X math/
xm36.html.

A.63 ADAPTy

This software package has been developed by W.E. Larimore. For details, see the
Users Manual (Larimore 1997). Website: http://adaptics.com

672 Appendix A: SOFTWARE FOR CONTROL SYSTEMS DESIGN AND ANALYSIS

Some further details on these softwares and subspace state-space system
identification software can be found in the recent paper by DeMoor et al. (1999).

References

MATLAB Control System Toolbox: User’s Guide, The MathWorks, Inc. Natick, MA, 1996.

MATRIXx User’s Guide, Integrated Systems, Inc., Santa Clara, CA, 1991.

MATHEMATICA Control System Professional, Wolfram Research Inc., Champaign,
Illinois, 1996.

Datta B.N. and Sarkissian D. (with Bakshee 1.) Advanced Numerical Methods. Control
system professional suite component, Software and Manual, Wolfram Research Inc.,
Champaign, Il., 2003.

DeMoor B., VanOverschee P., and Favoreel W. “Subspace state-space system identification,”
in Applied and Computational Control, Signals, and Circuits, (Datta B.N. et al., eds.),
pp. 247-311, Birkhauser, Boston, 1999.

Larimore W.E. ADAPTy Automatic System Identification Software, Users Manual, Adaptics
Inc., Reading, MA 01867, USA, 1997.

Ljung L. System Identification Toolbox for Use with MATLAB, The MathWorks Inc., MA,
USA, 1991.

Shahian B. and Hassul M. Control System Design Using MATRIXy, Prentice Hall,
Englewood Cliffs, NJ, 1992.

VanOverschee P., DeMoor B., Aling H., Kosut R., and Boyd S. Xmath Interactive System
Identification Module, Part 2, Integrated Systems, Inc., Santa Clara, CA, 1994.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

INDEX

Index Terms Links

A

Ackermann’s formula
Algorithm(s) for
controllability

&

constrained Sylvester equation

|

distance to uncontrollability
distance to continuous-time unstable system
distance to discrete-time unstable system

eigenvalue assignment

EE
EH

eigenvalue computations
eigenvector computations
frequency response matrix
generalized eigenvalues
generalized eigenvectors
Hankel-norm approximation
H,-norm

H,, norm

3

integral involving matrix exponential
inertia and stability

Bo

internal balancing

EEEEERERmmE =mEE RR EE E

Kalman filter

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Algorithm(s) for controllability (Cont.)

large-scale computations in control 555
p5g 59

linear algebraic systems E

linear least-squares solution Iﬁ

LQG design

LQR design

Lyapunov equations

matrix exponential

model reduction

observer design 479

realization

Riccati equations

= R E BRI EE E R
& E

singular value decomposition
stability radius
Sylvester equations

Sylvester-observer equation

BEEE =B EREREEEE m=EE E

2] [
EIE

subspace identification

B

Back substitution 3
Backward error in

numerical linear algebra

2 (2]

Schur and Hessenberg-Schur methods D76

This page has been reformatted by Knovel to provide easier
navigation.

&

Index Terms

Backward stability
and accuracy
Balancing
using controllability and observability
Grammians
Balancing a stick: example
Bass-Gura formula
Bauer-Fike theorem
Bidiagonalization
using Householder method
Bilinear transformation
Bisection method for
distance to instability
distance to uncontrollability
H-infinity norm
stability radius
Block Hessenberg form
Block diagonal matrix

Block matrix

FmbERER e =mBEE ma= E

Bode diagram

C

CARE

Cancellation

Cart with inverted pendulum: example
CASE STUDY: Ammonia Reactor

= B El = El

Cauchy-Schwartz inequality

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

Characteristic polynomial
Cholesky factorization
Closed-loop
matrix
system
Companion form
lower
upper
Conditioning and sensitivity of
eigenvalue assignment
eigenvalue problem
feedback problem
linear system
Lyapunov equation
matrix exponential
Riccati equations
stable Lyapunov equation
Sylvester equation
Continuous-time
controllability
detectability
distance to instability
distance to uncontrollability
Kalman filter
LQG design
LQR design
model reduction

stability

This page has been reformatted by Knovel

navigation.

—+

FEEEEEEE ERENEaEaE momBE oo ‘g-

&l

0 provide easier

Index Terms Links

Continuous-time (Cont.)
stabilizability

stabilization

constrained Sylvester-observer equation

Continuous-time Lyapunov equations

&l
2|

solution of

Continuous-time Riccati equations

&

solution of

RE

Continuous-time Sylvester equations

&

solution of

Continuous-time Sylvester-observer equations

|

solution of
Controllability
criteria of
Grammian
index using controller-Hessenberg form
Popov-Belevich-Hautus test of
test using controller-Hessenberg form
test using controllability Grammian

Controller-canonical form

S EIEIE B EE E

Controller-Hessenberg form
Control Systems Professional-Advanced

Numerical Methods

ElE

Covariance matrix

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

D

DARE
Deadbeat control
Damping ratio
Deflating subspace
methods for CARE
methods for DARE
of a matrix pencil
Defective matrix
Detectability
Diagonal matrix
Discrete-time
balancing
controllability
detectability

distance to instability

distance to uncontrollability

LQG design
LQR design
stability
stabilizability

Discrete-time Lyapunov equations

solution of

Discrete-time Riccati equations

solution of

This page has been reformatted by Knovel to provide easier

navigation.

Links

& &l]

EREREEREERERE mEmEIEIE

D
D

b74

P8C

55

T

Index Terms Links

Distance to
uncontrollability
instability
rank-deficient matrices

unstable system

MI=ERE
= (R3] 5]

Dynamical systems

E

&l

Efficiency of an algorithm
Eigenvalues
QR iteration method for finding
QZ iteration for generalized

Eigenvectors

B XX

inverse iteration for

Eigenvalue assignment
comparison of different methods for
conditioning of

existence and uniqueness theorem for

explicit QR algorithms for 12
implicit QR algorithm for

partial

robust

RQ algorithm for

ﬁ

recursive algorithms for
Schur method for

via controller-companion form

Eigenstructure assignment

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

F

Feedback
conditioning of
explicit formula for
stabilization using Lyapunov equations
stabilization using Riccati equations

Floating-point number

== 2] [E E] &

Flop
Frequency response matrix
Hessenberg algorithm for

Misra-Patel method for

&1 &]

Functional observer(estimator) 515
G
Gain margins 370

Gaussian elimination
for LU factorization
Gaussian zero-mean

Generalized eigenvalues

=@ Bl m

Generalized eigenvectors

Generalized eigenvector method for Riccati

equations 55()
Generalized Schur decomposition @
Generalized Schur methods for Riccati

equations 550

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Givens
matrix
QR factorization
Grammian
Balancing and
Controllability
H, norm using
Observability

Lyapunov equations and

=EIEEEE mm

Growth factor in Gaussian elimination

H

Hamiltonian matrix

Hamiltonian Schur form

Hankel matrix of Markov parameters
system identification using

Hankel norm approximation

EIRIEEEE

Hankel singular values

H, norm

E

using Lyapunov equation
H-infinity control

state feedback

output feedback
H-infinity norm

bounds for

FIEE B E]

bisection method for

two-step method for

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Hessenberg matrix

LU factorization of

reduction to
Hessenberg-triangular form

reduction to

QZ algorithm and
Householder

matrix

QR factorization

reduction to Hessenberg form

bidiognalization

BRERER RE R

[[l

Identification
frequency domain
subspace stochastic
I1l-conditioned problem
IEEE standard for
floating point arithmetic
Implicit QR algorithm for
eigenvalue computation
Implicit QR theorem
Impulse response matrix
Inertia computation
Inertia theorems

Integrals involving matrix exponentials

BEIEERREEm m =RE

Internal balancing

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

L.
>
Py
n

Invariant subspace

and real-Schur form

B ==

methods for Riccati equations

Inverse

Rl

of a matrix
Inverse-free
generalized Schur methods for Riccati

equations

Inverse iteration

Internal balancing of

&

minimal realization using SVD

nonminimal realization using square-root

algorithm
Iterative refinement

for linear system solution

|

Jordan canonical form

(=]

K

Kalman decomposition
Kalman filter

gain

guaranteed stability of

guaranteed robustness of

= B EE &

Kronecker product

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Krylov subspace methods for
Lyapunov equations
model reduction
partial eigenvalue assignment
Riccati equation
Sylvester equations

Sylvester-observer equation

L

Large-scale computations, see Krylov subspace
methods
Least-squares solution
minimum-norm
using normal equations

using QR factorization

=1 & [&] &

using singular value decomposition(SVD)

List of

algorithms XXXiil

MATCONTROL functions 674
LQG design

separation property of 506
LQOR design

guaranteed stability and robustness of

= [

LU factorization
Luenberger

canonical form

HE

Observer

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Lyapunov equation

&l

analytical methods
Arnoldi methods
for

Cholesky factor solutions of

& &l [E]
]

conditioning of
integral representation of solution
of

Schur method for

O
D

uniqueness of solution for

BEEE

Lyapunov stability theorem

M

Machine epsilon,(precision)
MATCOM
MATCONTROL
MATLAB

Control system toolbox
MATRIXx

Matrix exponential

&

BE Bm=

comparison of different methods for
computing

computing integrals involving

conditioning of

eigenvalue-eigenvector method for

ordinary differential equation methods for

=]] [B] Bl] (=]

Pade’ approximation method for

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Matrix exponential (Cont.)
Schur method for

& 5]

series method
Matrix Sign-Function
computation of

solving CARE using

& ElEl

solving DARE using
Minimal realization

SVD algorithm for

modified SVD algorithm for 322
Model reduction

balanced-truncation method for 514

comparison of different methods
for

frequency weighted

H-infinity error bound for

Hankel-norm approximation for

=1 R B[Bl

Schur method for

singular perturbation approximation

for
square-root method for
Motion of a satellite: example 116
N
Natural frequency 355

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Newton’s method
for CARE
for DARE
for distance to uncontrollability
with line search for CARE
with line search for DARE
Nonderogatory matrix
Norms
equivalence property of matrix
equivalence property of vector
Normal equations
for least-squares solution
Nullspace
Numerical rank

Numerical stability

rxn s REERE

@)

Observability
and observer-Hessenberg form
of continuous-time system

of discrete-time system

El &l & E

Observability Grammian
Observability test using block
Hessenberg form

Sl [E]

Observer-canonical form

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

Observer design via
eigenvalue assignment

Sylvester-observer equation

= =
) D

Observer theorem

g ﬁ S
D I-I

Optimal control of
continuous-time systems
discrete-time systems

Ordered real-Schur decomposition

Orthogonal matrix

Orthogonal projections
using QR decomposition
using SVD

Orthogonal transformation: importance and

significance

Orthonormal bases
QR factorization and
SVD and

Output feedback

Overflow

i mmomEREl

P

Padé approximation

p-norm

Partial eigenvalue assignment
using Sylvester equation

using projection technique

BEE mE

using Schur method

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

L.
>
Py
n

Permutation matrix
Phase margins
Pivoting in Gaussian elimination

Poles

=B

Pole placement, see eigenvalue assignment

Positive definite matrix

]

Q

QR factorization
complex
using Householder matrices
using Givens matrices
and Least-squares solution
and orthogonal projections
with column pivoting

QR iteration

QZ iteration

] X R & & R E &

R

Range of a matrix

Rank

Rank-deficient matrix

Reachability

Realization
controllable

minimal

EEE o

observable

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

Realization (Cont.)
SVD method for
modified SVD method for
Real-Schur form
Recursive algorithm for
single-input eigenvalue assignment
multi-input eigenvalue assignment
Sylvester-observer equation
Reduced-order
observer design via eigenvalue assignment
observer design via Sylvester-observer
equation
Relative errors in matrix computations
Riccati equations
comparison of different methods for solving
complex stability radius and
conditioning of
descriptor
eigenvector methods for
generalized eigenvector methods for
generalized Schur methods for
H-infinity Control and
inverse-free methods for
Kalman filter and
LQG design and
LQR design and
matrix sign-function methods for

Newton methods for

This page has been reformatted by Knovel

navigation.

Links

= =l 5

I" ﬁ E
@)

=
D

= 2]

=& &l 2] & E (2= EE G E E E

—+

0 provide easier

Index Terms Links

Riccati equations (Cont.)
Schur methods for
stabilizing solution of

RLC circuit: example

EEE E

Robust eigenvalue assignment
Robust stability

Lyapunov equation methods for
Relative errors

Rounding errors

= = 18

S

£

Scaling of Riccati equations

Schur decomposition, ordered

software for

Schur method for
eigenvalue assignment
Lyapunov equations
matrix exponential
model reduction

Riccati equations

El Bl B] Bl El

Separation of matrices
Separation property of
feedback design with observer
LQG design
sep estimation
Shifts in QR iteration

= B E &

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms

Singular values
and rank of a matrix
computation of
and distance to instability
and distance to uncontrollability
least-squares solution using
insensitivity of
Singular value plot
SLICOT
Software for control problems
Software(selected) for
controllability and Observability
distance to instability
distance to uncontrollability
eigenvalue assignment
feedback stabilization
LQG design
LQR design
Lyapunov equations
model reduction
Riccati equations
state estimation
Sylvester equations
system identification
Spring-mass system: example
Square-root method for
internal balancing

model reduction
This page has been reformatted by Knovel
navigation.

EE EHEREEEEREEREREEEE BEEmmEEm = ‘g-

—+

0 provide easier

Index Terms Links

Stability
asymptotic
bounded-input bounded-output
bounded-input bounded-state
computation of
implicit matrix equation method for
Lyapunov
marginal
numerical

Stabilizability of

continuous-time system

BE wmEREERREIE

discrete-time system
Stabilization via
Lyapunov equations
Riccati equations
Stable eigenvalues
Stable matrix
Stability radius
bisection method for
complex
computation of

real

NEEEE RERIEE

Staircase algorithm
State estimation via

eigenvalue assignment

EE

Sylvester-observer equation

State-space representation of

H

nonlinear systems
This page has been reformatted by Knovel
navigation.

—+

0 provide easier

Index Terms Links

State-space representation of (Cont.)

spring-mass system

systems modeled by partial differential

i1

equations
State-space solutions of,
continuous-time system
discrete-time system
State-space model

State-transition matrix

Step response of a system

Stochastic System

state estimation of @
Structured stability radius D32
Subspace system identification 324
Sylvester equation

characterization of nonsingularity of

conditioning of DAY

Hessenberg method for D78

Hessenberg-Schur methods for @

uniqueness of solution of
Sylvester-observer equation

constrained 4196

recursive block triangular algorithm for @

recursive methods for
Sylvester law of inertia
Symplectic matrix 524

This page has been reformatted by Knovel to provide easier
navigation.

Index Terms Links

System identification
in frequency domain

in time domain

B &

System responses

T

Time response

Transfer functions

=1 [&] B
N

Triangular matrix

U

Uncontrollable

&]

modes
Uncontrollability
distance to

Underflow

B = &l

Unit step response

Unreduced

IN|

Hessenberg matrix

\%

=

vec operation

W
White-noise
Wilkinson matrix @

This page has been reformatted by Knovel to provide easier
navigation.

Copyrighted Materials

Copyright © 2004 Elsevier Retrieved from www.knovel.com

Limited Warranty

The Publisher warrants the media on which the software is furnished to be
free from defects in materials and workmanship under normal use for 30
days from the date that you obtain the Product. The warranty set forth
above is the exclusive warranty pertaining to the Product, and the Publisher
disclaims all other warranties, express or implied, including, but not
limited to, implied warranties of merchantability and fitness for a particu-
lar purpose, even if the Publisher has been advised of the possibility of such
purpose. Some jurisdictions do not allow limitations on an implied war-
ranty’s duration; therefore the above limitations may not apply to you.

Limitation of Liability

Your exclusive remedy for breach of this warranty will be the repair or
replacement of the Product at no charge to you or the refund of the appli-
cable purchase price paid upon the return of the Product, as determined
by the Publisher in its discretion. In no event will the Publisher, and its
directors, officers, employees, and agents, or anyone else who has been
involved in the creation, production, or delivery of this software be liable
for indirect, special, consequential, or exemplary damages, including,
without limitation, for lost profits, business interruption, lost or damaged
data, or loss of goodwill, even if the Publisher or an authorized dealer or
distributor or supplier has been advised of the possibility of such damages.
Some jurisdictions do not allow the exclusion or limitation of indirect,
special, consequential, or exemplary damages or the limitation of liability
to specified amounts; therefore the above limitations or exclusions may not

apply to you.

	Front Matter
	Preface
	List of Algorithms
	Notations and Symbols
	Table of Contents
	1. Introduction and Overview
	1.1 Linear and Numerical Linear Algebra Chapter 2 and Chapters 3 and 4
	1.2 System Responses Chapter 5
	1.3 Controllability and Observability Problems Chapter 6
	1.4 Stability and Inertia Chapter 7
	1.5 Lyapunov, Sylvester, and Algebraic Riccati Equations Chapters 8 and 13
	1.6 Realization and Identification Chapter 9
	1.7 Feedback Stabilization and Eigenvalue Assignment Chapters 10 and 11
	1.8 State Estimation Chapter 12
	1.9 Internal Balancing and Model Reduction Chapter 14
	1.10 Nearness to Uncontrollability and Instability Chapters 6 and 7 and Robust Stability and Stability Radius Chapters 7 and 10
	1.10.1 Nearness to Uncontrollability and Instability
	1.10.2 Robust Stability and Stability Radius Chapters 7 and 10

	1.11 Sensitivity and Condition Numbers of Control Problems
	1.12 H_infinity-Control Chapter 10
	1.13 Software for Control Problems
	References

	Part I. Review of Linear and Numerical Linear Algebra
	2. A Review of Some Basic Concepts and Results from Theoretical Linear Algebra
	2.1 Introduction
	2.2 Orthogonality of Vectors and Subspaces
	2.3 Matrices
	2.3.1 The Characteristic Polynomial, the Eigenvalues, and the Eigenvectors of a Matrix
	2.3.2 Range and Nullspaces
	2.3.3 Rank of a Matrix
	2.3.4 The Inverse of a Matrix
	2.3.5 The Generalized Inverse of a Matrix
	2.3.6 Similar Matrices
	2.3.7 Orthogonal Projection

	2.4 Some Special Matrices
	2.4.1 Diagonal and Triangular Matrices
	2.4.2 Unitary Orthogonal Matrix
	2.4.3 Permutation Matrix
	2.4.4 Hessenberg Almost Triangular Matrix
	2.4.5 Companion Matrix
	2.4.6 Nonderogatory Matrix
	2.4.7 The Jordan Canonical Form of a Matrix
	2.4.8 Positive Definite Matrix
	2.4.9 Block Matrices

	2.5 Vector and Matrix Norms
	2.5.1 Vector Norms
	2.5.2 Matrix Norms

	2.6 Norm Invariant Properties under Unitary Matrix Multiplication
	2.7 Kronecker Product, Kronecker Sum, and Vec Operation
	2.8 Chapter Notes and Further Reading
	References

	3. Some Fundamental Tools and Concepts from Numerical Linear Algebra
	3.1 Introduction
	3.2 Floating Point Numbers and Errors in Computations
	3.2.1 Floating Point Numbers
	3.2.2 Rounding Errors
	3.2.3 Laws of Floating Point Arithmetic
	3.2.4 Catastrophic Cancellation

	3.3 Conditioning, Efficiency, Stability, and Accuracy
	3.3.1 Algorithms and Pseudocodes
	3.3.2 Solving an Upper Triangular System
	3.3.3 Solving a Lower Triangular System
	3.3.4 Efficiency of an Algorithm
	3.3.5 The Concept of Numerical Stability
	3.3.6 Conditioning of the Problem and Perturbation Analysis
	3.3.7 Conditioning of the Problem, Stability of the Algorithm, and Accuracy of the Solution
	3.3.8 Conditioning of the Linear System and Eigenvalue Problems

	3.4 LU Factorization
	3.4.1 LU Factorization Using Gaussian Elimination
	3.4.2 The Cholesky Factorization
	3.4.3 LU Factorization of an Upper Hessenberg Matrix

	3.5 Numerical Solution of the Linear System Ax = b
	3.5.1 Solving Ax = b Using the Inverse of A
	3.5.2 Solving Ax = b Using Gaussian Elimination with Partial Pivoting
	3.5.3 Solving a Hessenberg Linear System
	3.5.4 Solving AX = B
	3.5.5 Finding the Inverse of A
	3.5.6 Computing the Determinant of A
	3.5.7 Iterative Refinement

	3.6 The QR Factorization
	3.6.1 Householder Matrices
	3.6.2 The Householder QR Factorization
	3.6.3 Givens Matrices
	3.6.4 The QR Factorization Using Givens Rotations
	3.6.5 The QR Factorization of a Hessenberg Matrix Using Givens Matrices

	3.7 Orthonormal Bases and Orthogonal Projections Using QR Factorization
	3.8 The Least-Squares Problem
	3.8.1 Solving the Least-Squares Problem Using Normal Equations
	3.8.2 Solving the Least-Squares Problem Using QR Factorization

	3.9 The Singular Value Decomposition SVD
	3.9.1 The Singular Value Decomposition and the Structure of a Matrix
	3.9.2 Orthonormal Bases and Orthogonal Projections
	3.9.3 The Rank and the Rank-Deficiency of a Matrix
	3.9.4 Numerical Rank
	3.9.5 Solving the Least-Squares Problem Using the Singular Value Decomposition

	3.10 Summary and Review
	3.11 Chapter Notes and Further Reading
	References

	4. Canonical Forms Obtained via Orthogonal Transformations
	4.1 Importance and Significance of Using Orthogonal Transformations
	4.2 Hessenberg Reduction of a Matrix
	4.2.1 Uniqueness in Hessenberg Reduction: The Implicit Q Theorem

	4.3 The Real Schur Form of A: The QR Iteration Method
	4.3.1 The Basic QR Iteration
	4.3.2 The Hessenberg QR Iteration and Shift of Origin
	4.3.3 The Double Shift QR Iteration
	4.3.4 Obtaining the Real Schur Form A
	4.3.5 The Real Schur Form and Invariant Subspaces
	4.3.6 Inverse Iteration

	4.4 Computing the Singular Value Decomposition SVD
	4.5 The Generalized Real Schur Form: The QZ Algorithm
	4.5.1 Reduction to Hessenberg-Triangular Form
	4.5.2 Reduction to the Generalized Real Schur Form

	4.6 Computing of the Eigenvectors of the Pencil A - lambdaB
	4.7 Summary and Review
	4.8 Chapter Notes and Further Reading
	References

	Part II. Control Systems Analysis
	5. Linear State-Space Models and Solutions of the State Equations
	5.1 Introduction
	5.2 State-Space Representations of Control Systems
	5.2.1 Continuous-Time Systems
	5.2.2 Discrete-Time Systems
	5.2.3 Descriptor Systems

	5.3 Solutions of a Continuous-Time System: System Responses
	5.3.1 Some Important Properties of the Matrix e^At
	5.3.2 Sensitivity of e^At
	5.3.3 Computational Methods for e^At
	5.3.4 Comparison of Different Methods for Computing the Exponential Matrix
	5.3.5 Evaluating an Integral with the Matrix Exponential

	5.4 State-Space Solution of the Discrete-Time System
	5.5 Transfer Function and Frequency Response
	5.5.1 Transfer Function
	5.5.2 The Frequency Response Matrix and its Computation

	5.6 Some Selected Software
	5.6.1 Matlab Control System Toolbox
	5.6.2 MATCONTROL
	5.6.3 SLICOT
	5.6.4 MATRIX_X

	5.7 Summary and Review
	5.8 Chapter Notes and Further Reading
	Exercises
	References

	6. Controllability, Observability, and Distance to Uncontrollability
	6.1 Introduction
	6.2 Controllability: Definitions and Basic Results
	6.2.1 Controllability of a Continuous-Time System
	6.2.2 Controllability of a Discrete-Time System

	6.3 Observability: Definitions and Basic Results
	6.3.1 Observability of a Continuous-Time System
	6.3.2 Observability of a Discrete-Time System

	6.4 Decompositions of Uncontrollable and Unobservable Systems
	6.5 Controller- and Observer-Canonical Forms
	6.6 Numerical Difficulties with Theoretical Criteria of Controllability and Observability
	6.7 A Numerically Effective Test of Controllability
	6.8 A Numerically Effective Test of Observability
	6.9 Distance to an Uncontrollable System
	6.9.1 Newton's and the Bisection Methods for Computing the Distance to Uncontrollability
	6.9.2 The Wicks-DeCarlo Method for Distance to Uncontrollability
	6.9.3 A Global Minimum Search Algorithm

	6.10 Distance to Uncontrollability and the Singular Values of the Controllability Matrix
	6.11 Some Selected Software
	6.11.1 MATLAB Control System Toolbox
	6.11.2 MATCONTROL
	6.11.3 CSP-ANM
	6.11.4 SLICOT
	6.11.5 MATRIX_X

	6.12 Summary and Review
	6.13 Chapter Notes and Further Reading
	Exercises
	References

	7. Stability, Inertia, and Robust Stability
	7.1 Introduction
	7.2 Stability of a Continuous-Time System
	7.2.1 Eigenvalue Criterion of Continuous-Time Stability
	7.2.2 Continuous-Time Lyapunov Stability Theory
	7.2.3 Lyapunov Equations and Controllability and Observability Grammians
	7.2.4 Lyapunov Equations and the H_2-Norm

	7.3 Stability of a Discrete-Time System
	7.3.1 Stability of a Homogeneous Discrete-Time System

	7.4 Some Inertia Theorems
	7.4.1 The Sylvester Law of Inertia
	7.4.2 The Lyapunov Inertia Theorems

	7.5 Determining the Stability and Inertia of a Nonsymmetric Matrix
	7.6 Distance to an Unstable System
	7.7 Robust Stability
	7.8 The Structured Stability Radius
	7.9 Some Selected Software
	7.9.1 MATLAB Control System Toolbox
	7.9.2 MATCONTROL
	7.9.3 SLICOT

	7.10 Summary and Review
	7.11 Chapter Notes and Further Reading
	Exercises
	References

	8. Numerical Solutions and Conditioning of Lyapunov and Sylvester Equations
	8.1 Introduction
	8.2 The Existence and Uniqueness of Solutions
	8.2.1 The Sylvester Equation: XA + BX = C
	8.2.2 The Lyapunov Equation: XA + A^TX = C
	8.2.3 The Discrete Lyapunov Equation: A^TXA - X = C

	8.3 Perturbation Analysis and the Condition Numbers
	8.3.1 Perturbation Analysis for the Sylvester Equation
	8.3.2 The Condition Number of the Sylvester Equation
	8.3.3 Perturbation Analysis for the Lyapunov Equation
	8.3.4 The Condition Number of the Lyapunov Equation
	8.3.5 Sensitivity of the Stable Lyapunov Equation
	8.3.6 Sensitivity of the Discrete Lyapunov Equation
	8.3.7 Sensitivity of the Stable Discrete Lyapunov Equation
	8.3.8 Determining Ill-Conditioning from the Eigenvalues
	8.3.9 A Condition Number Estimator for the Sylvester Equation: A^TX - XB = C

	8.4 Analytical Methods for the Lyapunov Equations: Explicit Expressions for Solutions
	8.5 Numerical Methods for the Lyapunov and Sylvester Equations
	8.5.1 Numerical Instability of Diagonalization, Jordan Canonical Form, and Companion Form Techniques
	8.5.2 The Schur Method for the Lyapunov Equation: XA + A^TX = C
	8.5.3 The Hessenberg-Schur Method for the Sylvester Equation
	8.5.4 The Schur Method for the Discrete Lyapunov Equation
	8.5.5 Residual and Backward Error in the Schur and Hessenberg-Schur Algorithms
	8.5.6 A Hessenberg Method for the Sylvester Equation: AX + XB = C
	8.5.7 The Hessenberg-Schur Method for the Discrete Sylvester Equation

	8.6 Direct Computations of the Cholesky Factors of Symmetric Positive Definite Solutions of Lyapunov Equations
	8.6.1 Computing the Cholesky Factor of the Positive Definite Solution of the Lyapunov Equation
	8.6.2 Computing the Cholesky Factor of the Positive Definite Solution of the Discrete Lyapunov Equation

	8.7 Comparisons of Different Methods and Conclusions
	8.8 Some Selected Software
	8.8.1 MATLAB Control System Toolbox
	8.8.2 MATCONTROL
	8.8.3 CSP-ANM
	8.8.4 SLICOT
	8.8.5 MATRIX_X
	8.8.6 LAPACK

	8.9 Summary and Review
	8.10 Chapter Notes and Further Reading
	Exercises
	References

	Part III. Control Systems Design
	9. Realization and Subspace Identification
	9.1 Introduction
	9.2 State-Space Realizations of a Transfer Function
	9.2.1 Controllable and Observable Realizations
	9.2.2 Minimal Realization

	9.3 Computing Minimal Realizations from Markov Parameters
	9.3.1 Some Basic Properties of the Hankel Matrix of Markov Parameters
	9.3.2 An SVD Method for Minimal Realization
	9.3.3 A Modified SVD Method for Minimal Realization

	9.4 Subspace Identification Algorithms
	9.4.1 A Subspace Deterministic Model Identification Algorithm
	9.4.2 A Stochastic Subspace Model Identification Algorithm
	9.4.3 Continuous-Time System Identification
	9.4.4 Frequency-Domain Identification

	9.5 Some Selected Software
	9.5.1 MATLAB Control System Toolbox
	9.5.2 MATCONTROL
	9.5.3 CSP-ANM
	9.5.4 SLICOT
	9.5.5 MATRIX_X

	9.6 Summary and Review
	9.7 Chapter Notes and Further Reading
	Exercises
	References

	10. Feedback Stabilization, Eigenvalue Assignment, and Optimal Control
	10.1 Introduction
	10.2 State-Feedback Stabilization
	10.2.1 Stabilizability and Controllability
	10.2.2 Stabilization via Lyapunov Equations

	10.3 Detectability
	10.4 The Eigenvalue and Eigenstructure Assignment Problems
	10.4.1 Eigenvalue Assignment by State Feedback
	10.4.2 Eigenvalue Assignment by Output Feedback
	10.4.3 Eigenstructure Assignment

	10.5 The Quadratic Optimization Problems
	10.5.1 The Continuous-Time Linear Quadratic Regulator LQR Problem
	10.5.2 The Discrete-Time Linear Quadratic Regulator Problem

	10.6 H_infinity-Control Problems
	10.6.1 Computing the H_infinity-Norm
	10.6.2 H_infinity-Control Problem: A State-Feedback Case
	10.6.3 The H_infinity-Control Problem: Output Feedback Case

	10.7 The Complex Stability Radius and Riccati Equation
	10.8 Some Selected Software
	10.8.1 MATLAB Control System Toolbox
	10.8.2 MATCONTROL
	10.8.3 CSP-ANM
	10.8.4 SLICOT
	10.8.5 MATRIX_X

	10.9 Summary and Review
	10.10 Chapter Notes and Further Reading
	Exercises
	References

	11. Numerical Methods and Conditioning of the Eigenvalue Assignment Problems
	11.1 Introduction
	11.2 Numerical Methods for the Single-Input Eigenvalue Assignment Problem
	11.2.1 A Recursive Algorithm for the Single-Input Eva Problem
	11.2.2 An Error Analysis of the Recursive Single-Input Method
	11.2.3 The QR and RQ Implementations of Algorithm 11.2.1
	11.2.4 Explicit and Implicit RQ Algorithms

	11.3 Numerical Methods for the Multi-Input Eigenvalue Assignment Problem
	11.3.1 A Recursive Multi-Input Eigenvalue Assignment Algorithm
	11.3.2 The Explicit QR Algorithm for the Multi-Input EVA Problem
	11.3.3 The Schur Method for the Multi-Input Eigenvalue Assignment Problem
	11.3.4 Partial Eigenvalue Assignment Problem

	11.4 Conditioning of the Feedback Problem
	11.4.1 The Single-Input Case
	11.4.2 The Multi-Input Case
	11.4.3 Absolute and Relative Condition Numbers

	11.5 Conditioning of the Closed-Loop Eigenvalues
	11.6 Robust Eigenvalue Assignment
	11.6.1 Measures of Sensitivity
	11.6.2 Statement and Existence of Solution of the Robust EigenValue Assignment Problem
	11.6.3 A Solution Technique for the Robust Eigenvalue Assignment Problem

	11.7 Comparison of Efficiency and Stability: The Single-Input EVA Problem
	11.8 Comparison of Efficiency and Stability: The Multi-Input EVA Problem
	11.9 Comparative Discussion of Various Methods and Recommendation
	11.10 Some Selected Software
	11.10.1 MATLAB Control System Toolbox
	11.10.2 MATCONTROL
	11.10.3 CSP-ANM
	11.10.4 SLICOT
	11.10.5 MATRIX_X
	11.10.6 POLEPACK

	11.11 Summary and Review
	11.12 Chapter Notes and Further Reading
	Exercises
	References

	12. State Estimation: Observer and the Kalman Filter
	12.1 Introduction
	12.2 State Estimation via Eigenvalue Assignment
	12.3 State Estimation via Sylvester Equation
	12.4 Reduced-Order State Estimation
	12.4.1 Reduced-Order State Estimation via Eigenvalue Assignment
	12.4.2 Reduced-Order State Estimation via Sylvester-Observer Equation

	12.5 Combined State Feedback and Observer Design
	12.6 Characterization of Nonsingular Solutions of the Sylvester Equation
	12.7 Numerical Solutions of the Sylvester-Observer Equation
	12.7.1 A Recursive Method for the Hessenberg Sylvester-Observer Equation
	12.7.2 A Recursive Block-Triangular Algorithm for the Hessenberg Sylvester-Observer Equation

	12.8 Numerical Solution of a Constrained Sylvester-Observer Equation
	12.9 Optimal State Estimation: The Kalman Filter
	12.10 The Linear Quadratic Gaussian Problem
	12.11 Some Selected Software
	12.11.1 MATLAB Control System Toolbox
	12.11.2 MATCONTROL
	12.11.3 CSP-ANM
	12.11.4 SLICOT
	12.11.5 MATRIX_X

	12.12 Summary and Review
	12.13 Chapter Notes and Further Reading
	Exercises
	References

	13. Numerical Solutions and Conditioning of Algebraic Riccati Equations
	13.1 Introduction
	13.2 The Existence and Uniqueness of the Stabilizing Solution of the CARE
	13.3 The Existence and Uniqueness of the Stabilizing Solution of the DARE
	13.4 Conditioning of the Riccati Equations
	13.4.1 Conditioning of the CARE
	13.4.2 Conditioning of the DARE

	13.5 Computational Methods for Riccati Equations
	13.5.1 The Eigenvector and Schur Vector Methods
	13.5.2 The Generalized Eigenvector and Schur Vector Methods
	13.5.3 The Matrix Sign Function Methods
	13.5.4 Newton's Methods

	13.6 The Schur and Inverse-Free Generalized Schur Methods for the Descriptor Riccati Equations
	13.6.1 The Generalized Schur Method for the DCARE
	13.6.2 The Inverse-Free Generalized Schur Method for the DCARE
	13.6.3 The Inverse-Free Generalized Schur Method for the DDARE

	13.7 Conclusions and Table of Comparisons
	13.8 Some Selected Software
	13.8.1 MATLAB Control System Toolbox
	13.8.2 MATCONTROL
	13.8.3 CSP-ANM
	13.8.4 SLICOT
	13.8.5 MATRIX_X

	13.9 Summary and Review
	13.10 Chapter Notes and Further Reading
	Exercises
	References

	14. Internal Balancing and Model Reduction
	14.1 Introduction
	14.2 Internal Balancing of Continuous-Time Systems
	14.2.1 Internal Balancing of a Minimal Realization MR
	14.2.2 Internal Balancing of a Nonminimal Realization

	14.3 Internal Balancing of Discrete-Time Systems
	14.4 Model Reduction
	14.4.1 Model Reduction via Balanced Truncation
	14.4.2 The Schur Method for Model Reduction
	14.4.3 A Balancing-Free Square-Root Method for Model Reduction

	14.5 Hankel-Norm Approximations
	14.5.1 A Characterization of All Solutions to the Optional Hankel-Norm Approximation

	14.6 Model Reduction of an Unstable System
	14.7 Frequency-Weighted Model Reduction
	14.8 Summary and Comparisons of Model Reduction Procedures
	14.9 Some Selected Software
	14.9.1 MATLAB Control System Toolbox
	14.9.2 MATCONTROL
	14.9.3 CSP-ANM
	14.9.4 SLICOT
	14.9.5 MATRIX_X

	14.10 Summary and Review
	14.11 Chapter Notes and Further Reading
	Exercises
	References

	Part IV. Special Topics
	15. Large-Scale Matrix Computations in Control: Krylov Subspace Methods
	15.1 Introduction
	15.2 The Arnoldi and Block Arnoldi Methods
	15.2.1 The Scalar Arnoldi Method
	15.2.2 The Block Arnoldi Method
	15.2.3 The Lanczos and Block Lanczos Methods

	15.3 Scopes of Using the Krylov Subspace Methods in Control
	15.4 Arnoldi Methods for Lyapunov, Sylvester, and Algebraic Riccati Equations
	15.5 Arnoldi Method for Partial Eigenvalue Assignment
	15.6 Lanczos and Arnoldi Methods for Model Reduction
	15.6.1 Lanczos Methods for Model Reduction
	15.6.2 Block Lanczos and Band Lanczos Methods for MIMO Model Reduction
	15.6.3 An Arnoldi Method for SISO Model Reduction

	15.7 Chapter Notes and Further Reading
	Research Problems
	References

	Appendices
	Appendix A: Some Existing Software for Control Systems Design and Analysis
	A.1 MATLAB Control System Toolbox
	A.2 MATCONTROL
	A.3 Control System Professional - Advanced Numerical Methods CSP-ANM
	A.4 SLICOT
	A.5 MATRIX_X
	A.6 System Identification Software
	A.6.1 MATLAB System Identification Toolbox
	A.6.2 XMath Interactive System Identification Module, Part-2
	A.6.3 ADAPT_X

	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back Matter
	Limited Warranty
	Limitation of Liability

