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Preface 

Lattices are geometric objects that can be pictorially described as the 
set of intersection points of an infinite, regular n-dimensional grid. De­
spite their apparent simplicity, lattices hide a rich combinatorial struc­
ture, which has attracted the attention of great mathematicians over the 
last two centuries. Not surprisingly, lattices have found numerous ap­
plications in mathematics and computer science, ranging from number 
theory and Diophantine approximation, to combinatorial optimization 
and cryptography. 

The study of lattices, specifically from a computational point of view, 
was marked by two major breakthroughs: the development of the LLL 
lattice reduction algorithm by Lenstra, Lenstra and Lov:isz in the early 
80's, and Ajtai's discovery of a connection between the worst-case and 
average-case hardness of certain lattice problems in the late 90's. 

The LLL algorithm, despite the relatively poor quality of the solution 
it gives in the worst case, allowed to devise polynomial time solutions 
to many classical problems in computer science. These include, solving 
integer programs in a fixed number of variables, factoring polynomials 
over the rationals, breaking knapsack based cryptosystems, and finding 
solutions to many other Diophantine and cryptanalysis problems. 

Ajtai's discovery suggested a completely different way to use lattices in 
cryptography. Instead of using algorithmic solutions to computationally 
tractable lattice approximation problems to break cryptosystems, Ajtai's 
work shows how to use the existence of computationally intractable-to­
approximate lattice problems to build cryptosystems which are impossi­
ble to break. Namely, design cryptographic functions that are provably 
as hard to break as it is to solve a computationally hard lattice problem. 

Whereas in complexity theory we say that a problem is hard if it is 
hard for the worst case instance, in cryptography a problem is deemed 
hard only if it is hard in the average case (i.e., for all but a negligible 

IX 
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fraction of the instances). The novelty in Ajtai's result, is that he shows 
how to build a cryptographic function which is as hard to break on 
the average (e.g., over the random choices of the function instance) as 
it is to solve the worst case instance of a certain lattice problem. This 
achievement is unique to lattice theory at this time, and points to lattices 
as an ideal source of hardness for cryptographic purposes. 

These new constructive applications of lattices, are deeply rooted in 
complexity theory, and were followed by a sharp increase in the study 
of lattices from a computational complexity point of view. This led to 
the resolution of several long standing open problems in the area. Most 
notably, the NP-hardness of the shortest vector problem in its exact and 
approximate versions. We present a self contained exposition of this 
latter result as well as other results on the computational complexity of 
lattice problems. 

We did not attempt to cover everything known about lattices, as this 
would have filled several volumes. Rather, we selected a few represen­
tative topics, based on our personal taste and research experience. Re­
grettably, a topic which we neglect is duality and transference theorems. 
With this notable exception, we believe that most of the current ideas 
relevant to lattice based cryptography appear within in some form or 
another. 

Many research questions regarding lattices and their cryptographic 
usage remain open. We hope that this book will help make lattice based 
cryptography more accessible to a wider audience, and ultimately yield 
further progress in this exciting research area. 

Acknowledgments. Part of the material presented in this book is 
based on joint work of the authors with Shai Halevi, Oded Goldreich, 
Muli Safra and Jean-Pierre Seifert. Many other people have indirectly 
contributed to this book, either through their work, or through many 
conversations with the authors. Among them, we would like to men­
tion Miklos Ajtai, Ravi Kannan, Amit Sahai, Claus Schnorr, Madhu 
Sudan and Salil Vadhan. We would like to thank all our coauthors and 
colleagues that have made this book possible. 

The first author would like to thank also the National Science Foun­
dation and Chris and Warren Hellman for partially supporting this work 
under NSF Career Award CCR-0093029 and a 2001-02 Hellman Fellow­
ship. 

DANIELE MICCIANCIO 
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Chapter 1 

BASICS 

This book is about algorithmic problems on point lattices, and their 
computational complexity. In this chapter we give some background 
about lattices and complexity theory. 

1. Lattices 

Let !Rm be the m-dimensional Euclidean space. A lattice in !Rm is the 
set 

£(b1, ... , bn) = {t Xibi: Xi E z } 
t=l 

(1.1) 

of all integral combinations of n linearly independent vectors b1, ... , bn 
in !Rm (m � n). The integers n and m are called the rank and dimension 
of the lattice, respectively. The sequence of vectors b1, ... , bn is called 
a lattice basis and it is conveniently represented as a matrix 

B = (b1, ... , bn] E JR.mxn (1 . 2) 

having the basis vectors as columns. Using matrix notation, (1.1) can 
be rewritten in a more compact form as 

.C(B) = {Bx: x E zn} (1.3) 

where Bx is the usual matrix-vector multiplication. 
Graphically, a lattice can be described as the set of intersection points 

of an infinite, regular (but not necessarily orthogonal) n-dimensional 
grid. A 2-dimensional example is shown in Figure 1.1. There, the basis 
vectors are 

(1.4) 
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Figure 1.1. A lattice in R2 

and they generate all the intersection points of the grid when combined 
with integer coefficients. The same lattice has many different bases. For 
example, vectors 

{1.5) 

are also a basis for lattice .L:(b�, b2). The grid generated by b�, b� is 
shown in Figure 1.2. Notice that although the two grids are different, the 
set of intersection points is exactly the same, i.e., {b1, b2} and {b�, b�} 
are two different bases for the same lattice .L:{b1, b2) = .L:{b�, b�). 

Throughout the book, we use the convention that lattice points are 
always represented as column vectors. Wherever vectors are more con­
veniently written as rows, we use transpose notation. For example, 
the definition of vector b1, b2 in ( 1.4) can equivalently be rewritten as 
b1 = [1, 2JT, b2 = [1, -l]r, where AT denotes the transpose of matrix 
A. 

A simple example of n-dimensional lattice is given by the set zn of 
all vectors with integral coordinates. A possible basis is given by the 
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In matrix notation zn = .C(I) where I E znxn is the n-dimensional 
identity matrix, i.e., the n x n square matrix with 1 's on the diagonal 
and O's everywhere else. 

When n = m, i.e., the number of basis vectors equals the number of 
coordinates, we say that .C(B) is full rank or full dimensional. Equiv­
alently, lattice .C(B) � !Rm is full rank if and only if the linear span of 
the basis vectors 

span(B) = {Bx: x E !Rn} (1.6) 

equals the entire space !Rm. The difference between (1.3) and (1.6) is 
that while in (1 .6) one can use arbitrary real coefficients to combine the 
basis vectors, in (1.3) only integer coefficients are allowed. It is easy 
to see that span(B) does not depend on the particular basis B, i.e., 
if B and B' generate the same lattice then span(B) = span(B'). So, 
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for any lattice A = C(B), we can define the linear span of the lattice 
span(A), without reference to any specific basis. Notice that B is a 
basis of span(B) as a vector space. In particular, the rank of lattice 
C(B) equals the dimension of span(B) as a vector space over � and it 
is a lattice invariant, i.e., it does not depend on the choice of the basis. 

Clearly, any set of n linearly independent lattice vectors B' E C(B) is 
a basis for span(B) as a vector space. However, B' is not necessarily a 
lattice basis for C(B). See Figure 1.3 for a 2-dimensional example. The 
picture shows the lattice C(bt, b2) generated by basis vectors (1.4) and 
the grid associated to lattice vectors 

(1. 7) 

Vectors b� and b� are linearly independent. Therefore, they are a basis 
for the plane JR2 = span(b1, h2) as a vector space. However, they are 
not a basis for C(b1, b2) because lattice point b1 cannot be expressed as 
an integer linear combination of b� and b�. There is a simple geometric 
characterization for linearly independent lattice vectors that generate 
the whole lattice. For any n linearly independent lattice vectors B' = 
[b�, . . .  , b�] (with b� E C(B) C !Rm for all i = 1, . . .  , n) define the half 
open parallelepiped 

P(B') = {B'x:O::; Xi< 1}. (1.8) 

Then, B' is a basis for lattice C(B) if and only if P(B') does not contain 
any lattice vector other than the origin. Figures 1.1, 1.2 and 1.3 illustrate 
the two cases. The lattice in Figures 1.2 and 1.3 is the same as the 
one in Figure 1.1. In Figure 1.2, the (half open) parallelepiped P(B') 
does not contain any lattice point other than the origin, and therefore 
C(B') = C(B). In Figure 1.3 ,  parallelepiped P(B') contains lattice point 
b1. Therefore C(B') =f. C(B) and B' is not a basis for C(B). 

Notice that since B' is a set of linearly independent vectors, C(B') is a 
lattice and B' is a basis for C(B'). Clearly, C(B') � C(B), i.e., any point 
from lattice C(B') belongs also to lattice C(B). When C(B') � C(B), 
we say that C(B') is a sublattice of C(B). If C(B') = C(B) we say that 
bases B and B' are equivalent. If C(B') � C(B), but C(B') =f. C(B), 
then bases B and B' are not equivalent, and C(B') is a proper sublattice 
of C(B). 

Equivalent bases (i.e. , bases that generate the same lattice) can be 
algebraically characterized as follows. Two bases B, B' E ll�mxn are 
equivalent if and only if there exists a unimodular matrix U E znxn (i.e., 
an integral matrix with determinant det(U) = ±1) such that B' =BU. 
The simple proof is left to the reader as an exercise. 
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When studying lattices from a computational point of view, it is cus­

tomary to assume that the basis vectors (and therefore any lattice vector) 
have all rational coordinates. It is easy to see that rational lattices can 
be converted to integer lattices (i.e., sublattices of zn) by multiplying 
all coordinates by an appropriate integer scaling factor. So, without loss 
of generality, in the rest of this book we concentrate on integer lattices, 
and, unless explicitly stated otherwise, we always assume that lattices 
are represented by a basis, i.e., a matrix with integer coordinates such 
that the columns are linearly independent. 

Lattices can also be characterized without reference to any basis. A 
lattice can be defined as a discrete nonempty subset A of �m which is 
closed under subtraction, i.e., if x E A and y E A, then also x - y E A. 
Here "discrete" means that there exists a positive real >. > 0 such that 
the distance between any two lattice vectors is at least >.. A typical 
example is the set A = {x E zn: Ax = 0} of integer solutions of a 
system of homogeneous linear equations. Notice that A always contains 
the origin 0 = x- x, it is closed under negation (i.e., if x E A then -x = 
0 - x E A), and addition (i.e., if x, yEA then x + y = x- ( -y) E A). 
In other words, A is a discrete additive subgroup of �m. 



6 COMPLEXITY OF LATTICE PROBLEMS 

1.1 Determinant 

The determinant of a lattice A = £(B), denoted det(A), is the n­
dimensional volume of the fundamental parallelepiped P(B) spanned by 
the basis vectors. (See shaded areas in Figures 1.1 and 1.2.) The deter­
minant is a lattice invariant, i.e., it does not depend on the particular 
basis used to compute it. This immediately follows from the character­
ization of equivalent bases as matrices B' = BU related by a unimod­
ular transformation U. Geometrically, this corresponds to the intuition 
that the ( n-dimensional) volume of the fundamental parallelepiped P (B) 
equals the inverse of the density of the lattice points in span(B). As an 
example consider the bases in Figures 1.1 and 1.2. The areas of the fun­
damental regions (i.e., the shaded parallelepipeds in the pictures) are 
exactly the same because the two bases generate the same lattice. How­
ever, the shaded parallelepiped in Figure 1.3 has a different area (namely, 
twice as much as the original lattice) because vectors (1. 7) only generate 
a sublattice. 

A possible way to compute the determinant is given by the usual 
Gram-Schmidt orthogonalization process. For any sequence of vectors 
h1 , . . .  , hn, define the corresponding Gram-Schmidt orthogonalized vec­
tors hi, . . .  , h� by 

i-1 
hi = hi- 2.:: J.Li,jh; 

J.Li,j = 

j=1 
(hi, hj ) 

(hj, hj) 

(1.9a) 

(1.9b) 

where (x, y} = L:;�1 XiYi is the inner product in JRm. For every i, 
hi is the component of hi orthogonal to h1, ... , hi-1· In particular, 
span( h1, . . .  , hi) = span( hi, . . .  , hi) and vectors hi are pairwise orthog­
onal, i.e., (hi, hj } = 0 for all i ¥= j. The determinant of the lattice equals 
the product of the lengths of the orthogonalized vectors 

n 

det(.C(B)) = IT llhill (1.10) 
i=1 

where l lx ll = VLi x� is the usual Euclidean length. We remark that the 
definition of the orthogonalized vectors hi depends on the order of the 
original basis vectors. Given basis matrix B = [h1, ... , hn], we denote by 
B* the matrix whose columns are the orthogonalized vectors [hi, . . .  , h�]. 
Clearly, B* is a basis of span(B) as a vector space. However, B* is not 
usually a lattice basis for .C(B). In particular, not every lattice has a 
basis consisting of mutually orthogonal vectors. 
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Notice that if the hi's are rational vectors (i.e., vectors with rational 
coordinates), then also the orthogonalized vectors hi are rationals. If 
lattice .C(B) is full dimensional (i.e. m = n ) , then B is a nonsingular 
square matrix and det{.C(B)) equals the absolute value of the deter­
minant of the basis matrix det(B). For integer lattices, B is a square 
integer matrix, and the lattice determinant det(.C(B)) = det(B) is an 
integer. In general, the reader can easily verify that det(.C(B)) equals 
the square root of the determinant of the Gram matrix BTB, i.e., the 
n x n matrix whose (i,j)th entry is the inner product (hi, hj): 

det(.C(B)) = Jdet(BTB). (1.1 1) 

This gives an alternative way to compute the determinant of a lattice 
(other than computing the Gram-Schmidt orthogonalized vectors), and 
shows that if B is an integer matrix, then the determinant of .C(B) is 
always the square root of a positive integer, even if det(.C(B)) is not 
necessarily an integer when the lattice is not full rank. 

1. 2 Successive minima 

Let 8m{O,r) = {x E rn;m : llxll < r} be them-dimensional open 
ball of radius r centered in 0. When the dimension m is clear from the 
context, we omit the subscript m and simply write 8(0, r) . Fundamental 
constants associated to any rank n lattice A are its successive minima 
>.1, . . .  , An· The ith minimum >.i ( A) is the radius of the smallest sphere 
centered in the origin containing i linearly independent lattice vectors 

>.i ( A) = inf {r: dim( span( An 8(0, r))) � i}. (1.12) 

Successive minima can be defined with respect to any norm. A norm 
is a positive definite, homogeneous function that satisfies the triangle 
inequality, i.e., a function II · II : rn;n --+ lR such that 

• llxll � 0 with equality only if x = 0 

• llaxll = lal · llxll 

• llx + Yll � llxll + IIYII 

for all x, y E rn;n and a E JR. An important family of norm functions is 
given by the l!p norms. For any p � 1, the fp norm of a vector x E ,rn;n is ( n ) 1/p 

llxiiP = t;xf (1.13a) 
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Important special cases are the l1-norm 

n 

llxl11 = L lxi l , { 1.13b) 
i=1 

the £2 norm {or Euclidean norm) 

{1.13c) 

and the £00 norm (or max-norm) 

{1.13d) 

We remark that when p < 1, function {1.13} is not a norm because it 
does not satisfy the triangle inequality. Notice that the value of the 
successive minima >.1, ... , >.n, and the lattice vectors achieving them, 
depend on the norm being used. Consider for example the lattice 

{1.14) 

generated by basis vectors 

{ 1.15) 

Lattice vector b1 is a shortest {nonzero) vector in .C{b1 , b2) with respect 
the £1 norm and >. 1 = llbdl1 = 2 if the £1 norm is used. However, b1 
is not a shortest vector with respect to the £2 or £00 because in these 
norms lattice vector b2 is strictly shorter than b1 giving first minimum 
>.1 = 1lb21l2 = v'2 and >.1 = llb21loo = I, respectively. In this book we are 
primarily concerned with the £2 norm, which corresponds to the familiar 
Euclidean distance 

n 

dist(x, y) = llx- Yll2 = 2)xi - Yi )2 
i=l 

(1.16) 

and will consider other norms only when it can be done without sub­
stantially complicating the exposition. 

In the previous examples, we have seen that lattice {1.14) contains a 
vector b such that llb ll = >. 1. It turns out that this is true for every 
lattice. It easily follows from the characterization of lattices as discrete 
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subgroups of Rn that there always exist vectors achieving the successive 
minima, i.e., there are linearly independent vectors x1, . . . , Xn E A such 
that II xi II = >. i for all i = 1, ... , n. So, the infimum in ( 1.12) is actually 
a minimum if B(O,r ) is replaced with the closed ball B(O,r ) = {x E 
!Rm: llxll::; r}. In particular, >.1(A) is the length of the shortest nonzero 
lattice vector and equals the minimum distance between any two distinct 
lattice points 

>.1(A) = min llx - Yll = min llxll· xf.yEA xEA\{0} (1.17) 

In the rest of this section we give a proof that any lattice contains 
nonzero vectors of minimal length. In doing so, we prove a lower bound 
for the first minimum that will be useful later on. The result is easily 
generalized to all successive minima to show that there are n linearly 
independent vectors v 1, ... , v n satisfying II vi II = >.i for all i = 1, . . .  , n. 
Fix some lattice .C(B), and consider the first minimum 

>.1 = inf{llvll : v E .C(B)/{0}}. 

We want to prove that there exists a lattice vector v E .C(B) such that 
llvll = >.1. We first prove that >.1 is strictly positive. 

THEOREM 1.1 Let B be a lattice basis, and let B* be the corresponding 
Gram-Schmidt orthogonalization. Then, the first minimum of the lattice 
(in the £2 norm) satisfies 

>.1 2: min llhj II > 0. 
J 

Proof: Consider a generic nonzero lattice vector Bx (where x E zn and 
x =/= 0) and let i be the biggest index such that Xi =/= 0. We show that 
IIBxll 2: llhill 2: mini llhj ll· It follows that the infimum >.1 = infiiBxll 
also satisfies >.1 2: mini ll hjll · From basic linear algebra we know that 
I (x, y) I ::; llxii ·IIYII for any two vectors x, y. We prove that I (Bx, hi) I 2: 
II hi 112, and therefore IIBxll·llhi II 2: II hi 112. Since vectors hi's are linearly 
independent, llhill =/= 0 and IIBxll 2: llhill follows. 

So, let us prove that I(Bx, hi) I 2: llhill2. From the definition of i, we 
know that Bx = E�=l hjXj. Using the definition of the orthogonalized 
vectors (1.9a) we get 

i 
(Bx, hi } = L(hj, hi}xj 

j=l 
= (hi, hi)xi 
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= (bj + LJLijbj, bi)xi 
j<i 

= (bi, bi)xi + L/Lij(bj, bi)xi 
j<i 

Since Xi is a nonzero integer, 

In particular, the theorem shows that A1 > 0. We now prove that 
there exists a nonzero lattice vector of length A1 . By definition of A1, 
there exists a sequence of lattice vectors Vi E .C(B) such that 

lim llvi ll = A1. 
t--+00 

Since A1 > 0, for all sufficiently large i it must be II vi II s 2Al , i.e., lattice 
vector vi belongs to the closed ball 

B(O, 2Al) = {z: llzll S 2Al} . 
But set B(O, 2A) is compact, so, we can extract a convergent subsequence 
Vii with limit 

w= limvi·· j-+oo 1 

Clearly, llwll = limj-+oo llvii II = A1· We want to prove that w is a lattice 
vector. By definition of w we have limj-+ oo II vii - wll = 0. Therefore for 
all sufficiently large j, llvii - wll < >11/2. By triangle inequality, for a 
sufficiently large j and all k > j, 

llvii- Vi�cll S llvii- wll + llw - Vi�cll < .-\1 .  
But Vii - Vi.�: is a lattice vector, and no nonzero lattice vector can have 
length strictly less than .-\1. This proves that Vii -Vi.�: = 0, i.e., Vik = Vii 
for all k > j. Therefore, w == limk vi.�: = Vii, and w is a lattice vector. 

The above argument can be easily generalized to prove the following 
theorem about all successive minima of a lattice. 

THEOREM 1 .  2 Let A be a lattice of rank n with successive minima Al, 
.. . , An· Then there exist linearly independent lattice vectors v1 , . . .  , Vn E 
A such that llvill = Ai for all i = 1, ... , n. 

Interestingly, the vectors v1, . . .  , Vn achieving the minima are not nec­
essarily a basis for A. Examples of lattices for which all bases must con­
tain at least one vector strictly longer than An are given in Chapter 7. 
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1.3 Minkowski's theorems 

In this subsection we prove an important upper bound on the product 
of successive minima of any lattice. The bound is based on the following 
fundamental theorem. 

THEOREM 1 . 3 (BLICHFELDT THEOREM. ) For any lattice A and for any 
measurable setS� span(A), if S has volume vol(S) > det(A), then there 
exist two distinct points z1, z2 E S such that z1 - z2 E A. 
Proof: Let A = .C(B) be a lattice and S be any subset of span( A) such 
that vol(S) > det(B). Partition S into a collection of disjoint regions as 
follows. For any lattice point x E A define 

Sx = Sn (P(B) + x) (1 . 18) 

where P(B) is the half open parallelepiped (1.8). Here and below, for 
any set A C !Rn and vector x E !Rn, expression A + x denotes the set 
{y + x: y E A}. Notice that sets P(B) + x (with x E A) partition 
span(B). Therefore sets Sx (x E A) form a partition of S, i .e. , they are 
pairwise disjoint and 

8= U Sx. 
xEA 

In particular, since A is countable, 

vol(S) = L vol(Sx). 
xEA 

Define also translated sets 

s� = Sx - X =  (S - x) n P(B) 

Notice that for all x E A, set S� is contained in P(B) and vol(Sx) = 
vol(S�). We claim that sets S� are not pairwise disjoint. Assume, for 
contradiction, they are. Then, we have 

L vol(S�) = vol ( U s�) 5 vol(P(B)). (1 . 1 9) 
xEA xEA 

We also know from the assumption in the theorem that 

L vol(S�) = L vol(Sx) = vol(S) > det(A). (1.20) 
xEA xEA 

Combining (1 . 1 9) and (1. 20) we get det(A) < vol(P(B)), which is a 
contradiction because det(A) = vol(P(B)) by the definition of lattice 
determinant. 
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This proves that set S� are not pairwise disjoint, i.e., there exist two 
sets S� , S� (for x, y E A) such that S� n S� =/= 0. Let z be any vector in 
the (nonempty) intersection s� n s� and define 

Z1 = Z +X 
Z2 Z + y. 

From z E s� and z E s� we get Z1 E Sx � s and Z2 E Sy � s. 
Moreover, z1 =I= z2 because x =I= y. Finally, the difference between z1 
and z2 satisfies 

Z1 - Z2 = X - y E A, 

completing the proof of the theorem. 0 

{ 1.21) 

As a corollary to Blichfeldt theorem we immediately get the following 
theorem of Minkowski. 

THEOREM 1 .4 (CONVEX BODY THEOREM) For any lattice A of rank n 
and any convex setS C span( A) symmetric about the origin, if vol(S) > 
2n det{A), then S contains a nonzero lattice point v E S n A\ {0}. 

Proof: Consider the set S' = { x: 2x E S}. The volume of S' satisfies 

vol{S') = Tn vo!(S) > det{A). { 1.22) 

Therefore, by Blichfeldt theorem there exist two distinct points z1, z2 E 
S' such that z 1 -z2 E £ (A). From the definition of S', we get 2z 1, 2z2 E S 
and since S is symmetric about the origin, we also have -2z2 E S. 
Finally, by convexity, the midpoint of segment [2z1, -2z2] also belongs 
to S, i.e., 

2z1 + ( - 2z2) 8 
2 

= Z1 - Z2 E . 

This proves that v = z1 - z2 is a nonzero lattice point in S. 0 

{ 1.23) 

Minkowski's convex body theorem can be used to bound the length 
of the shortest nonzero vector in an rank n lattice as follows. Let S = 
8(0, fo det(A)1fn) nspan(A) be the open ball of radius fo det(A)1/n in 
span{ A). Notice that S has volume strictly bigger than 2n det(A) because 
it contains ann-dimensional hypercube with edges of length 2 det(A)1/n. 
By Minkowski's theorem there exists a nonzero lattice vector v E £ (B)\ 
{0} such that v E S, i.e., llvll < yndet(A)1/n. This proves that for any 
rank n lattice A, the length of the shortest nonzero vector {in the l2 
norm) satisfies 

(1.24) 
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This result (in a slightly stronger form) is the well known Minkowski 's 
first theorem. Minkowski also proved a stronger result involving all suc­
cessive minima, known as the second theorem of Minkowski. Namely, 
y'ndet(A)1/n is an upper bound not only to the first minimum .X1, 
but also to the the geometric mean of all successive minima. While 
Minkowski's first theorem is easily generalized to any norm, the proof 
of the second theorem for general norms is relatively complex. Here we 
prove the theorem only for the simple case of the Euclidean norm. 

THEOREM 1 . 5  (MINKOWSKI'S SECOND THEOREM) For any rank n lat­
tice .c(B), the successive minima (in the £2 norm) .X1, . . . , An satisfy 

(1.25) 

Proof: Let x1, . . .  , Xn be linearly independent lattice vectors achiev­
ing the successive minima II xi II = .Xi and assume for contradiction that 
fl�1 .Xi � ( y'n)n det(B). Consider the Gram-Schmidt orthogonalized 
vectors x; and define the transformation 

(1.26) 

that expands each coordinate x; by a factor .Xi. Let S ·= B(O, 1) n 
span(B) be then-dimensional open unit ball in span(B). If we apply T 
to S we get a symmetric convex body T(S) of volume 

vol(T( S)) = ( IJ �i) vol( S) 
> ( vfn)n det(B) vol(S) 
= val( v/nS) det(B) 

where y'nS is the ball of radius fo. The volume of foS is bigger than 
2n because foS contains a hypercube with edges of length 2. Therefore, 
vol(T(S)) > 2n det(B), and by Minkowski's convex body theorem T(S) 
contains a lattice point y different from the origin. Since y E T(S), it 
must be y = T(x) for some x E S. From the definition of S we get 
llxll < 1. Now express x andy in terms of the orthogonalized basis 

n 
X = :Lcixi 

i=l 
y = L AiCiX;. 
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Since y is nonzero, some Ci is not zero. Let k be the largest index such 
that Ci ::/; 0, and k' ::; k the smallest index such that )..k, = )..k· No-
tice that y is linearly independent from XI, . . . , xk'-I because (xz, y) = 
)..kckllxZII2 ::/; 0 and xZ is orthogonal to XI, . . .  ,xk'-I· We now show that 
IIYII < )..k· 

2 
IIYII2 = L AiCiXi 

i�k 

L)..�c�llxill2 
i<k 

< L)..�c�llxill2 
i�k 

2 
= )..� Lcixi 

i�k 
= >.�1JxiJ2 < >.�. 

This proves that x 1, . . .  , Xk' _1, y are k' linearly independent lattice vec­
tors of length strictly less than Ak = )..k', contradicting the definition of 
the k'th successive minimum )..k'· 0 

2. Computational problems 

Minkowski's first theorem gives a simple way to bound the length >-.1 
of the shortest nonzero vector in a lattice .C(B). Although Minkowski's 
bound is asymptotically tight in the worst case (i.e., there exist lattices 
such that >.1 > cy'ndet(B)1/n for some absolute constant c indepen­
dent of n) , in general )..1 can be much smaller than y'ndet(B)1/n. For 
example, consider the two dimensional lattice generated by orthogonal 
vectors hi = t:e1 and hi = (1/t:)ez. The determinant of the lattice is 1 ,  
giving upper bound >-.1 ::; V2. However )..1 = t: can be arbitrarily small. 

Moreover, the proof of Minkowski's theorem is not constructive, in the 
sense that we know from the theorem that a short nonzero vector exists, 
but the proof does not give any computational method to efficiently find 
vectors of length bounded by y'n det(A)I/n, leave alone vectors of length 
>.1. The problem of finding a lattice vector of length )..I is the well known 

Shortest Vector Problem. 

DEFINITION 1.1 (SHORTEST VECTOR PROBLEM, SVP) Given a basis 
B E zmxn, find a nonzero lattice vector Bx (with x E zn \ {0}} such 
that IIBxll ::; IIBYII for any other y E zn \ {0}. 
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The lack of efficient algorithms to solve SVP has led computer sci­
entists to consider approximation versions of the problem. In this book 
we study this and other lattice problems from a computational point 
of view. Throughout the book, we assume the standard computational 
model of deterministic Turing machines. The reader is referred to (van 
Emde Boas, 1 990; Johnson, 1990) or any undergraduate level textbook 
on the subject for an introduction to the basic theory of computability 
and computational complexity. In the following subsection we simply 
recall some terminology and basic definitions. Then, in Subsection 2.2 
we describe SVP and other lattice problems in their exact and approx­
imation versions, and in Subsection 2 .3 we give some background about 
the computational complexity of approximation problems. 

2.1 Complexity Theory 

An alphabet is a finite set of symbols :E. A string (over :E) is a finite 
sequence of symbols from :E. The length of a string y is the number 
of symbols in y, and it is denoted IYI· The set of all strings over :E is 
denoted :E*, and the set of all strings of length n is denoted r;n. A Turing 
machine M runs in time t( n) if for every input string w of length n (over 
some fixed input alphabet :E), M(n) halts after at most t(n) steps. We 
identify the notion of efficient computation with Turing machines that 
halt in time polynomial in the size of the input, i.e., Turing machines 
that run in time t(n) = a+ nb for some constants a, b independent of n. 
A decision problem is the problem of deciding whether the input string 
satisfies or not some specified property. Formally, a decision problem is 
specified by a language, i.e., a set of strings L � :E*, and the problem 
is given an input string w E :E* decide whether w E L or not. The 
class of decision problems that can be solved by a deterministic Turing 
machine in polynomial time is called P. The class of decision problem 
that can be solved by a nondeterministic Turing machine in polynomial 
time is called NP. Equivalently, NP can be characterized as the set of 
all languages L for which there exists a relation R � :E* x :E* such that 
(x, y) E R can be checked in time polynomial in lxl, and x E L if and 
only if there exists a string y with (x, y) E R. Such string y is called 
NP-witness or NP-certificate of membership of x in L. Clearly, P � NP, 
but it is widely believed that P =/: NP, i.e., there are NP problems that 
cannot be solved in deterministic polynomial time. 

Let A and B be two decision problems. A (Karp} reduction from A 
to B is a polynomial time computable function f : :E* -+ :E* such that 
x E A if and only if f(x) E B. Clearly, if A reduces to B and B can 
be solved in polynomial time, then also A can be solved in polynomial 
time. A (decision) problem A is NP-hard if any other NP problem B 
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reduces to A. If A is also in NP, then A is NP-complete. Clearly, if 
a problem A is NP-hard, then A cannot be solved in polynomial time 
unless P = NP. The standard technique to prove that a problem A is 
NP-hard (and therefore no polynomial time solution for A is likely to 
exists) is to reduce some other NP-hard problem B to A. Another notion 
of reduction which will be used in this book is that of Cook reduction. 
A Cook reduction from A to B is a polynomial time Thring machine 
M with access to an oracle that takes instances of problem B as input. 
M reduces A to B, if, given an oracle that correctly solves problem B, 
M correctly solves problem A. A problem A is NP-hard under Cook 
reductions if for any NP problem B there is a Cook reduction from B 
to A. If A is in NP, then we say that A is NP-complete under Cook 
reductions. NP-hardness under Cook reductions also gives evidence of 
the intractability of a problem, because if A can be solved in polynomial 
time then P = NP. The reader is referred to (Garey and Johnson, 
1979) for an introduction to the theory of NP-completeness and various 
NP-complete problems that will be used throughout the book. 

In the rest of this book algorithms and reductions between lattice 
problems are described using some informal high level language, and 
decision problems are described as sets of mathematical objects, like 
graphs, matrices, etc. In all cases, the translation to strings, languages 
and Thring machines is straightforward. 

Occasionally, we will make use of other complexity classes and differ­
ent notions of reductions, e.g . ,  randomized complexity classes or nonuni­
form reductions. When needed, these notions will be briefly recalled, or 
references will be given. 

Throughout the book, we use the standard asymptotic notation to 
describe the order of growth of functions: for any positive real valued 
functions f(n) and g(n) we write 

• f = O(g) if there exists two constants a, b such that f ( n) � a · f ( n) 
for all n;:::: b. 

• f = o(g) if limn-too f(n)jg(n) = 0 

• J = n(g) if g = o(f) 
• f = w(g) if g = o(f) 

• f = 8(g) iff= O(g) and g = O(f). 
A function f is negligible if f = o(ljg) for any polynomial g(n) = nc. 
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2.2 Some lattice problems 

To date, we do not know any polynomial time algorithm to solve SVP. 
In fact, we do not even know how to find nonzero lattice vectors of length 
within the Minkowski's bound IIBxll < JTidet(B )11n. Another related 
problem for which no polynomial time solution is known is the Closest 
Vector Problem . 

DEFINITION 1 .2 (CLOSEST VECTOR PROBLEM, CVP) Given a lattice 
basis B E zmxn and a target vector t E zm, find a lattice vector Bx 
closest to the target t, i.e., find an integer vector X E zn such that 
IIBx- til :S IIBy- til for any other y E zn. 

Studying the computational complexity of these problems is the main 
subject of this book. Both for CVP and SVP one can consider different 
algorithmic tasks. These are (in decreasing order of difficulty): 

• The Search Problem: Find a (nonzero) lattice vector x E A such that 
llx- til (respectively, llxll) is minimized. 

• The Optimization Problem: Find the minimum of llx- til (respec­
tively, llxll) over x E A (respectively, x E A\ {0} ). 

• The Decision Problem: Given a rational r > 0, decide whether there 
is a (nonzero) lattice vector x such that llx- til :S r (respectively,. 
llxll :S r). 

We remark that to date virtually all known (exponential time) al­
gorithms for SVP and CVP solve the search problem (and therefore 
also the associated optimization and decision problems), while all known 
hardness results hold for the decision problem (and therefore imply the 
hardness of the optimization and search problems as well). This sug­
gests that the hardness of solving SVP and CVP is already captured 
by the decisional task of determining whether or not there exists a so­
lution below some given threshold value. We will see in Chapter 3 that 
the decision problem associated to CVP is NP-complete, and therefore 
no algorithm can solve CVP in deterministic polynomial time, unless 
P = NP. A similar result holds (under randomized reductions) for SVP 
(see Chapter 4). 

The hardness of solving SVP and CVP has led computer scientists 
to consider approximation versions of these problems. Approximation 
algorithms return solutions that are only guaranteed to be within some 
specified factor"( from the optimal. Approximation versions for the SVP 
and CVP search problems are defined below. 
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DEFINITION 1 . 3 (AP P ROXIMATE SVP) Given a basis B E zmxn, find 
a nonzero lattice vector Bx {x E zn \ {0}} such that I IBxll � 'Y · I IByll 
for any other y E zn \ {0}. 

In the optimization version of approximate SVP, one only needs to 
find I IBxll , i.e . ,  a valued such that A1 (B) � d < (AI(B). 

DEFINITION 1.4 (AP P ROXIMATE CVP) Given a basis B E zmxn and 
a target  vector t E zm, find a lattice vector Bx {x E zn} such that 

IIBx- t il � 'Y I IBy- t il for any other y E zn. 

In the optimization version of approximate CVP, one only need to find 
IIBx- til , i .e . , a value d such that dist(t, .C(B)) � d < 'Y dist(t, .C(B)). 
Both in the approximate SVP and CVP, the approximation factor 'Y 
can be a function of any parameter associated to the lattice, typically 
its rank n, to capture the fact that the problem gets harder as this pa­
rameter increases. To date, the best known polynomial time (possibly 
randomized) approximation algorithms for SVP and CVP achieve worst 
case (over the choice of the input) approximation factors ( (n) that are 
essentially exponential in the rank n. Finding algorithms that achieve 
polynomial approximation factors 'Y(n) = nc (for some constant c inde­
pendent of the rank n) is one of the main open problems in this area. 

SVP and CVP are the two main problems studied in this book. Chap­
ter 2 describes efficient algorithms to find approximate solutions to these 
problems (for large approximation factors). The computational com­
plexity of CVP is studied in Chapter 3 .  The strongest known hardness 
result for SVP is the subject of Chapters 4, 5 and 6. There are many 
other lattice problems which are thought to be computationally hard. 
Some of them, which come up in the construction of lattice based cryp­
tographic functions, are discussed in Chapter 7. There are also many 
computational problems on lattices that can be efficiently solved (in de­
terministic polynomial time). Here we recall just a few of them. Finding 
polynomial time solutions to these problems is left to the reader as an 
exercise. 

1 Membership: Given a basis B and a vector x, decide whether x be­
longs to the lattice .C(B). This problem is essentially equivalent to 
solving a system of linear equations over the integers. This can be 
done in polynomially many arithmetic operations, but some care is 
needed to make sure the numbers involved do not get exponentially 
large. 

2 Kernel: Given an integral matrix A E znxm, compute a basis for the 
lattice {x E zm: Ax= 0}. A similar problem is, given a modulus M 
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and a matrix A E Z'f:m, find a basis for the lattice {x E zm: Ax= 0 
(mod M)}. Again, this is equivalent to solving a system of (homoge­
neous) linear equations. 

3 Basis: Given a set of possibly dependent integer vectors b1, . . .  , bn, 
find a basis of the lattice they generate. This can be done in a 
variety of ways, for example using the Hermite Normal Form. (See 
Chapter 8.) 

4 Union: Given two integer lattices C(BI) and C(B2), compute a basis 
for the smallest lattice containing both C(BI) and C(B2). This im­
mediately reduces to the problem of computing a basis for the lattice 
generated by a sequence of possibly dependent vectors. 

5 Dual: Given a lattice C(B), compute a basis for the dual of C(B), 
i.e., the set of all vectors y in span(B) such that (x, y) is an integer 
for every lattice vector x E C(B). It is easy to see that a basis for 
the dual is given by B(BTB)-1. 

6 Intersection: Given two integer lattices C(BI) and C(B2), compute 
a basis for the intersection C(B1) n C(B2). It is easy to see that 
C(B 1) n C(B2) is always a lattice. This problem is easily solved using 
dual lattices. 

7 Equivalence: Given two bases B1 and B2, check if they generate the 
same lattice C(B1) = C(B2). This can be solved by checking if each 
basis vector belongs to the lattice generated by the other matrix, 
however, more efficient solutions exist. 

8 Cyclic: Given a lattice C(C), check if C(C) is cyclic, i.e., if for every 
lattice vector x E C( C), all the vectors obtained by cyclically rotating 
the coordinates of x also belong to the lattice. This problem is easily 
solved by rotating the coordinates of basis matrix C by one position, 
and checking if the resulting basis is equivalent to the original one. 

2.3 Hardness of approximation 

In studying the computational complexity of approximating lattice 
problems, it is convenient to formulate them as promise problems. These 
are a generalization of decision problems well suited to study the hard­
ness of approximation. A promise problem is a pair (livEs, liNo) of 
disjoint languages, i.e., livEs, liNo � L:* and livES n liNo = 0. An al­
gorithm solves the promise problem (livEs, liNo) if on input an instance 
IE livEsUliNo it correctly decides whether IE livEs or IE liNO· The 
behavior of the algorithm when I(/. livEs U liNo (i.e., when I does not 
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satisfy the promise) is not specified, i.e., on input an instance outside 
the promise, the algorithm is allowed to return any answer. 

Decision problems are a special case of promise problems, where the 
set II No = �·\II YES is implicitly specified and the promise I E  IlyEs U 
IlNo is vacuously true. We now define the promise problems associated 
to the approximate SVP and CVP. These are denoted GAPSVP1 and 
GAPCVP1. 

DEFINITION 1 .5 The promise problem GAPSVP1, where 'Y {the gap 
function) is a function of the rank, is defined as follows: 

• YES instances are pairs (B, r) where B E zmxn is a lattice basis and 
r E Q a rational number such that IIBzll � r for some z E zn \ {0}. 

• NO instances are pairs (B, r )  where B E zmxn is a lattice basis and 
r E Q is a rational such that IIBzll > "(r for all z E zn \ {0}. 

DEFINITION 1.6 The promise problem GAPCVP1, where 'Y (the gap 
function) is a function of the rank, is defined as follows: 

• YES instances are triples (B, t, r )  where B E zmxn is a lattice basis, 
t E zm is a vector and r E Q is a rational number such that IIBz -
til � r for some z E zn . 

• NO instances are triples (B, t, r) where B E zmxn is a lattice, t E zm 
is a vector and r E Q is a rational number such that IIBz- t i l > "(T 
for all z E zn . 

Notice that when the approximation factor equals 'Y = 1, the promise 
problems GAP SVP 1 and GAPCVP 1 are equivalent to the decision prob­
lems associated to exact SVP and CVP. Occasionally, with slight abuse 
of notation, we consider instances (B, r) (or (B, t, r ) )  where r is a real 
number, e.g., r = v'2. This is seldom a problem in practice, because 
r can always be replaced by a suitable rational approximation. For 
example, in the l2 norm, if B is an integer lattice then r can be substi­
tuted with any rational in the interval [r, ../r2 + 1). Promise problems 
GAP SVP1 and GAPCVP1 capture the computational task of approxi­
mating SVP and CVP within a factor 'Yin the following sense. Assume 
algorithm A approximately solves SVP within a factor"(, i.e., on input 
a lattice A, it finds a vector x E A such that l lxl l  � "(AI (A). Then A can 
be used to solve GAPSVP 1 as follows. On input (B, r), run algorithm A 
on lattice C(B) to obtain an estimate r' = llxll E [.XI, "(AI] of the shortest 
vector length. If r ' > "(T then AI> r, i.e., (B,r) is not a YES instance. 
Since (B, r) E II YES U IlNo, (B, r) must be a NO instance. Conversely, 
if r' < "(T then AI < "(T and from the promise (B, r )  E IlyEs U IINo one 
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deduces that (B, r ) is a YES instance. On the other hand, assume one 
has a decision oracle A that solves GAPSVP,. . (By definition, when the 
input does not satisfy the promise, the oracle can return any answer.) 
Let u E Z be an upper bound to .X(B)2 (for example, let u be the squared 
length of any of the basis vectors) . Notice that A(B , JU) always returns 
YES, while A(B, 0) always returns NO. Using binary search find an in­
teger r E {0, . . . , u} such that A(B, Jr) = YES and A(B, v'r=!) = NO. 
Then, .X I(B) must lie in the interval [ Jr, 'Y · Jr) . A similar argument 
holds for the closest vector problem. 

The class NP is easily extended to include promise problems. We say 
that a promise problem (livEs, liNo) is in NP if there exists a relation 
R � �· x �· such that (x ,  y) E R can be decided in time polynomial 
in lx l , and for every x E livES there exists a y such that (x ,  y) E R, 
while for every y E liNo there is no y such that (x ,  y) E R. If the 
input x does not satisfies the promise, then R may or may not contain 
a pair (x ,  y) . The complement of a promise problem (livEs, liNo) is the 
promise problem (liNo, livEs) . For decision problems, this is the same 
as taking the set complement of a language in �· . The class of decision 
problems whose complement is in NP is denoted coNP. Also coNP can 
be extended to include the complements of all NP promise problems. 

Reductions between promise problems are defined in the obvious way. 
A function f :  �· --+ �· is a reduction from (livEs, liNo) to (liYES • liN0 ) 
if it maps YES instances to YES instances and NO instances to NO in­
stances, i .e . , f (IIvEs) � liYES and f (liNo) � li�w · Clearly any al­
gorithm A to solve (liYES • IIN0) can be used to solve (II YES , liNo) as 
follows: on input I E  livES UliNo, run A on f (I) and output the result. 
Notice that f (I) always satisfy the promise J(I) E liYES U liNO • and 
f (I) is a YES instance if and only if I is a YES instance. A promise 
problem A is NP-hard if any NP language (or, more generally, any NP 
promise problem) B can be efficiently reduced to A. As usual, prov­
ing that a promise problem is NP-hard shows that no polynomial time 
solution for the problem exists unless P = NP. In the case of Cook 
reductions, the oracle Turing machine A to solve problem (livEs, liNo) 
should work given any oracle that solves (liYES • IIN0 ) . In particular, A 
should work no matter how queries outside the promise are answered by 
the oracle. 

3 .  Notes 

For a general introduction to computational models and complexity 
classes as used in this book, the reader is referred to (van Emde Boas, 
1990) and (Johnson, 1990), or any undergraduate level textbook on the 
subject. Classical references about lattices are (Cassels, 1971) and (Gru-
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ber and Lekerkerker, 1987). Another very good reference is (Siegel, 
1 989). The proof of Minkowski's second theorem presented in Subsec­
tion 1.3 is an adaption to the Euclidean norm of the proof given in 
(Siegel, 1989) for arbitrary norms. None of the above references address 
algorithmic issues related to lattice problems, and lattices are studied 
from a purely mathematical point of view. For a brief introduction to 
the applications of lattices in various areas of mathematics and science 
the reader is referred to (Lagarias, 1995) and (Gritzmann and Wills, 
1 993) , which also touch some complexity and algorithmic issues. A very 
good survey of algorithmic application of lattices is (Kannan, 1 987a). 
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Chapter 2 

APPROXIMATION ALGORITHMS 

In this chapter we describe efficient algorithms to approximately solve 
SVP and CVP. For both problems, we solve the search version: we 
give polynomial time algorithms to find approximately shortest nonzero 
vectors in a lattice, or lattice vectors approximately closest to a given 
target point. The approximation factor achieved is exponential in the 
rank of the lattice. In Section 1 we start with an algorithm to solve 
SVP in dimension 2. For the special case of 2-dimensional lattices, 
we are able to solve SVP exactly and find a lattice vector of length 
llall = Al . In fact, we can find a lattice basis [a, b] with l lall = Al 
and l lb ll = A2 · So, the algorithm determines all successive minima of 
the lattice. The algorithm works for any (efficiently computable) norm 
II · II, and it is, essentially, the generalization to arbitrary norms of an 
algorithm of Gauss. Then, in Section 2, we extend Gauss algorithm 
to n-dimensional lattices. This is the famous Lenstra-Lenstra-Lovasz 
(LLL ) lattice reduction algorithm (Lenstra et al., 1 982). The extension 
comes at a price: the LLL algorithm does not find a lattice vector of 
length Al , but only a 1 (n) = (2/J3)n approximation, i.e. , a nonzero 
lattice vector of length at most 1( n) · A1 . Finally, in Section 3 we use the 
LLL algorithm to approximately solve CVP. Also for CVP, the (worst 
case) approximation factor achieved is 0 ({2/J3)n) where n is the rank 
of the lattice. Section 4 concludes the chapter with an overview of the 
latest developments in the design of approximation algorithms for lattice 
problems, and (exponential time) algorithms to solve lattice problems 
exactly. 
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1 .  Solving SVP in dimension 2 
In this section we describe an algorithm to solve SVP for lattices in 

dimension 2. The algorithm is generic with respect to the norm, i.e., it 
correctly computes a shortest vector in the lattice with respect to any 
norm II · I I , provided II · II can be efficiently evaluated. In the rest of this 
section II · I I  is an arbitrary, but fixed, norm. The input to the algorithm 
is a pair of linearly independent (integer) vectors a, b . We want to find 
a new basis [a' , b'J for £( [a, b] ) such that l l a' l l  = )q  and l i b' II = A2 , 
where At and A2 are the minima of the lattice with respect to II · I I . The 
presentation is structured as follows: 

• In Subsection 1.1 we introduce a notion of reduced basis (for two 
dimensional lattices), and prove that a basis is reduced if and only if 
the basis vectors have length At and A2· 

• In Subsection 1 . 2  we give an algorithm that on input a 2-dimensional 
lattice, computes a reduced basis. 

• Finally, in Subsection 1 .3 we prove that the algorithm terminates in 
polynomial time. 

1 . 1  Reduced basis 

We define a reduced basis for 2-dimensional lattices as follows. 

D EFINITION 2.1 Let [a, b] be a lattice basis. The basis is reduced (with 
respect to norm I I · II) if 

l l a l l , l l b l l  � l l a + b l l , l la - b l l · 
Geometrically, this definition means that the diagonals of the funda­
mental parallelepiped associated to the basis of the lattice are at least 
as long as the edges. (See Figure 2.1.) This definition of reduced basis 
is motivated by the fact that a basis is reduced if and only if a and 
b have length At and A2. In order to prove this fact we need the fol­
lowing lemma, which, informally, states that if our distance from some 
point increases as we move in a straight line, then the distance will keep 
increasing as we keep moving in the same direction. 

LEMMA 2.1 Consider three vectors on a line, x, x+y, and x+ay, where 
a E ( 1 , oo). (See Figure 2. 2.} For any norm 1 1 · 1 1 ,  if l lx l l  � l lx + yl l  then 
l lx+y l l � l lx+ayl l . Moreover, if l lx l l  < l lx+yl l  then l lx+yl l < l lx+ay ll . 

Proof: We prove the lemma for the case in which the inequality is strict. 
The proof of the other case is easily obtained replacing all "< " signs with 
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a 

Figure 2. 1 .  A reduced basis in 2 dimensions 

"�" .  Let J = 1 /a . Then 

x + y = (1 - J)x + J(x + ay) 

By triangle inequality 

l lx + Yll � (1 - J)llxll + Jllx + ayll. 

Also, from llxl l < l lx + Yll we get 

25 

(2 . 1 ) 

(1 - J) llx l l  + Jl lx + ayll < ( 1 - J) llx + Yll + Jl lx + ayll. (2 .2) 

Combining (2 . 1) and (2 .2) we get 

l lx + Yll < (1 - J)llx + Yll + Jllx + ayll 
which, after rearranging and simplifying the terms, gives 

J l lx + Y ll < Jl lx + ayll · (2 .3) 

Since J > 0, we can divide (2. 3) by J and get llx + Yll < l lx + ayll as 
claimed in the lemma. D 

We can now establish a relation between reduced bases and the suc­
cessive minima of the lattice. 
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Figure 2. 2. Three points on a line 

THEOREM 2.2 Let [a, b) be a lattice basis, and let AI and A2 be the 
successive minima of the lattice. Then, [a, b) is reduced if and only if a 
and b have norm A I and A2 . 

Proof: First assume that the lengths of a and b equal the successive 
minima of the lattice, and assume, without loss of generality that ! I a l l  � 
l l b l l ,  i.e. ,  l l a l l  = AI and l l b l l  = A2 .  By definition of AI we know that 
l la - b l l and l la + b l l  are at least as large as ! I a l l · Moreover, since [a, b) 
is a basis, b is linearly independent from a, and therefore each of a - b 
and a + b is linearly independent from a. By definition of the second 
minimum A2 we get 

and 
A2 :S max{l la l l ,  l l a + b l i } = ! I a + b l l · 

This proves that 

l l a l l , l lb l l  � A2 :S l l a  + b l l ,  l l a - b l l . 

Now assume that l l a l l , l l b l l  � ! I a  + b l l ,  ! I a - b l l . Also assume, without 
loss of generality, that l l al l  � l l b l l ·  We want to prove that l l a l l  = AI  and 
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l i b  I I = >.2 . Let r, s E Z, and consider a generic lattice vector ra + sb. 
We show that 

II a l l  < l i ra + sb l l  for all (r, s ) -::/= (0, 0) (2.4) 

and 
l l b l l  ::; l i ra + sb l l  for all s -::/= 0.  (2.5) 

Notice that (2 .4) says that a is at least as short as any other nonzero 
lattice vector, i.e., l l a l l  = >.1. Similarly, (2.5) says that b is at least as 
short as any lattice vector linearly independent from a. Provided a is 
a shortest vector in the lattice, this proves that l l b l l = >.2 . In order to 
prove (2.4) and (2 .5) we distinguish three cases: 

• If s = 0 then r -::/= 0 and l l a l l  ::; l l ra l l  = l i ra + sb l l , proving (2.4). 

• If r = 0 then s -::/= 0 and l l a l l  ::; l l b l l  ::; l l sb l l  = l i ra + sb l l ,  proving 
both (2.4) and (2 .5). 

• Finally, if r, s -::/= 0 are both nonzero, assume r 2: s 2: 0 (the other 
cases are similar and left to the reader as an exercise). Since s is a 
nonzero integer, we have s 2: 1 and therefore 

l l
ra + sb

l l l i (r/s)a + b l l  = 
8 ::; l ira + sb l l . 

Now consider the three points l i b I I , l i b + a l l and l i b + (r / s )a l l . Notice 
that l l b l l ::; l i b + al l  and rfs 2: 1 . Therefore by Lemma 2.1 

l l a l l , l l b l l ::; l l a + b l l ::; l i b + {r/s )a l l ::; l i ra + sb l l 
proving (2.4) and (2.5). 

This completes the proof that the vectors of a reduced basis are as short 
as possible. 0 

1 . 2  Gauss' algorithm 

In this subsection we describe an algorithm to find a reduced basis for 
any 2-dimensional lattice. The algorithm, given in Figure 2.3, works by 
computing a sequence of bases satisfying the following property. 

DEFINITION 2.2 A basis [a, b) is well ordered if l l a l l  ::; l l a - b l l  < l l b l l . 
Since the input basis [a, b) is not necessarily well ordered, the first 

thing to do is to compute a well ordered {or reduced) basis for .C( [a, b] ) . 
This is easily accomplished by a simple case analysis. (See part of the 
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Input: two linearly independent vectors a and b. 
Output: a reduced basis for lattice £( [a, b] ) . 

(start): if l l a l l  > l l b l l  then swap(a, b) 
if ! I a - b l l  > l l a + b l l then let b : = -b 
if l l b l l  ::; l l a - b l l  then return [a, b) 
if Ha l l  ::; l l a - b l l  then go to (loop) 
if I I  a l l  = l i b  I I  then return [a, a - b) 
let [a, b) : = [b - a, a] 

(loop): Find J.L E Z such that l i b - J.Lal l  is minimal 
if l l a - b l l  > l l a + b l l  then let b : = -b 
swap( a, b) 
if [a, b) is reduced 

then return [a, b) 
else go to (loop) 

Figure 2. 3. The generalized Gauss algorithm 

code in Figure 2.3 before the (loop) label.) Details follow. Without loss 
of generality, assume that l l a l l  ::; l i b I I  (which can be achieved by possibly 
swapping a and b) and l l a - b l l ::; ! I a + b l l  (which can be achieved by 
possibly changing the sign of b) .  If l i b  I I  ::; ! I a - b l l  then [a, b) is reduced 
and the algorithm immediately terminates. So, we can assume l l a- b l l  < 
l l b l l . If l l a l l  ::; l l a - b l l then [a, b) is well ordered and we can proceed 
to the loop. So, assume l l a - b l l < l l a l l . If Ha l l < l l b l l , then [b - a, -a] 
is a well ordered basis, and we can proceed to the loop after suitably 
modifying the basis. The only other case is l l a - b l l < l l a l l  = l l b l l , but 
in this case [a, a - b) is reduced because ! I a - (a - b) I I  = l i b I I  = I I  a l l  and 
l l a + (a - b) l l = l l 2a - b l l 2: 2 l l a l l  - l l b l l = l l a l l . 

At this point, unless a reduced basis has been found, we have a well 
ordered basis [a, b] and the algorithm enters a loop which consists of the 
following three steps. 

1 Find an integer J-l such that the value of l i b  - J-lal l  is minimal. In 
other words, we make b as short as possible by subtracting an integer 
multiple of a. (See below for details.) 

2 If l l a - b l l  > l l a + b l l , then let b = -b. Notice that at the end of this 
step we always have l l a - b l l  ::; ! I a + b l l . 

3 If [a, b) is not reduced, then swap a and b and go to the first step. 
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The problem of finding an integer 11- such that l i b  - 11-al l  is minimized 

needs further explanations . In the following lemma we show how this 
can be efficiently done for any efficiently computable norm. 

LEMMA 2 . 3  Let I I  · I I  an efficiently computable norm, and le t  a and b be 
two vectors such that l l b l l > l ib - al l . Then, one can efficiently find an 
integer 11- such that l i b - 11-al l  is minimal. Moreover, 11- satisfies 11- 2:: 1 
and 11- :S 2 l lb l l / l l a l l · 
Proof: Let c = f2 l l b l l / l la l l l · By triangle inequality, 

l i b - cal l 2: cl l a l l  - l l b l l  2: l l b l l , 
and, using Lemma 2. 1 ,  we get l i b - cal l  :S l i b - (c + 1 )a l l . So, we see 
that l i b - kal l ::; l i b - (k + 1 )a l l is true for k =  c, but it is false for k =  0. 
Using binary search we can efficiently find an integer 11- between 1 and c 
such that l i b - kal l ::; l ib - (k + 1 )a l l  is true for k = 11- + 1 and false for 
k = IJ.,  i .e . , 

l i b - (11- - 1 )a l l  > l i b - 11-al l :S l i b - (/1-+ 1 )a l l · 
We claim that this value of 11- minimizes the norm l i b  - kal l  (over all 
possible integers k) . In fact ,  by Lemma 2 . 1 ,  for all k 2: J.L + 1 ,  we have 
l i b - 11-al l :S l ib - (/1- + 1 )a l l ::; l i b - kal l · Similarly, for all k ::; 11- - 1 ,  
l i b - 11-al l < l i b - (11- - 1 )a l l  :S l i b - kal l · 0 

In order to use Lemma 2 .3 ,  we need to show that at the beginning of 
each iteration, [a, b] is well ordered, and therefore l l b l l  > l l a - b l l . This 
is proved in the next lemma. 

LEMMA 2 .4 In any execution of the generalized Gauss algorithm, at the 
beginning of each i teration basis [a, b] is well ordered. 

Proof: We have already seen that the basis is well ordered the first t ime 
the loop is entered. We need to prove that at the end of each iteration 
[a, b] is either reduced (in which case the program terminates) or well 
ordered (in which case the loop is repeated) .  Let [a, b] be the (well 
ordered basis) at the beginning of the loop, and let [a' , b'] be the basis 
computed by the body of the loop. We have a' = ±(b - 11-a) and b' = a. 
From the second step of the loop we know that l l a' - b' l l :S l l a' + b' l l · 
Moreover, we know that l l a' - b' l l  = I I ± (b - 11-a) - a l l  = l i b - (11- ± 1 )a l l , 
which, by the choice of IJ., is at least l l (b - 11-a) l l  = l l a' l l · This proves 
that l l a' l l  ::; l la' - b' l l ::; l l a' + b' l l . Now there are two possible cases. If 
l l b' l l :S l l a' - b' l l , then [a' , b'] is reduced. Otherwise, l l b' l l  > l l a' - b' l l  2: 
I I  a' I I  and [a' , b'] i s  well ordered. 0 

We are now ready to prove the correctness of the generalized Gauss 
algorithm. 
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THEOREM 2.5 On input any two linearly independent vectors [a, b) , the 
generalized Gauss algorithm shown in Figure 2. 3 always terminates and 
correctly computes a reduced basis for lattice .C( [a, b] ) . 

Proof: The algorithm performs elementary column operations , there­
fore [a, b] is always a basis of the original lattice. Moreover, if the algo­
rithm terminates then the basis [a, b] is clearly reduced. It only remains 
to be proved that the algorithm actually terminates and does not loop 
forever. This is easily argued as follows. We know from Lemma 2.4 that 
at the beginning of each iteration, [a, b] is well ordered. In particular 
l i b - al l  is strictly less than b.  Therefore, b is replaced by a new vector 
b - J.La strictly shorter than b. This proves that at every iteration one 
of the basis vectors gets strictly shorter. In particular ,  the values taken 
by the pairs [a, b] never repeat , and they are all shorter than the input 
basis. Since there are only finitely many lattice vectors of length at most 
l l a l l + l l b l l , the algorithm must stop after a finite number of iterations .  
0 

1.3 Running time analysis 

In this section we prove that the generalized Gauss algorithm termi­
nates in polynomial time. We have already proved that the algorithm 
always terminates and that each iteration can be performed in polyno­
mial time. We still have to show that the number of iterations is also 
polynomial in the size of the input . 

Let k be the total number of iterations performed on input [a, b] . 
Let [ak , ak+ l ]  be the (well ordered) basis at the beginning of the first 
iteration. Any subsequent iteration is performed on a well ordered basis 
[ai , ai+d ,  until a reduced basis [a1 , a2] is found. (Notice: we are using the 
indices in reverse order! ) Let (a1 , a2 , . . . , ak , ak+I )  denote the sequence 
of values obtained during the execution of the algorithm. 

In order to prove that k is polynomial in the size of the input, we show 
that the length of ai decreases at every iteration at least by a factor 2. 

LEMMA 2.6 For every i 2: 3 , l l ai l l  < 1 /2 l l ai+ l l l · 

Proof: Consider the subsequence (ai- l ,  ai , ai+d ·  In order to keep no­
tation simple, we rename this sequence as (a, b , c ) .  We know that [a, b] 
and [b, c] are both well ordered, II al l  < l i b II < II e l l , and a = �: (c - J.Lb) 
for some integer J.L 2: 1 and E = ± 1 . Multiplying both sides by E ,  we get 
c = �:a + J.Lb. We prove that l l c l l > 2 l lb l l  by cases : 

• Case J.L = 1. This case is not possible because l i e  - b l l = l l a l l  < l l b l l  
would contradict the assumption that [b , c ]  is well ordered. 



Approximation algorithms 3 1  
• Case f = - 1, J,L = 2 .  Also not possible because l i e - b l l  = I I - a + b l l  

would contradict either l l a - b l l  < l l b l l  or l l b l l  < l i b - e l l . 
• Case f = - 1, J-L > 2. In this case, 

l l e l l  = I I  - a + J-Lb l l  ;:::: J-L I I b l l  - I I  a l l 
which, by l l a l l  < l l b l l , is strictly bigger than 

• Case f = 1, J,L ;:::: 2 . We know that l i b  - al l < l i b  I I  because [a, b] 
is well ordered. Therefore, by Lemma 2 . 1 ,  l l b l l  < l i b + al l . Using 
l l a l l  :::; l l a- b l l  we also get l l a l l  < l l b+ al l , and by repeated application 
of Lemma 2 . 1  

I I  a l l < l l a + b l l  < l l a + 2b l l :::; ! I a + J-Lb l l . 
This proves that l l e l l = l l a + t-Lb l l ;:::: l l 2b + al l . We want to prove that 
l l 2b + al l  > 2 l l b l l . Consider the point 2b - a. By triangle inequality 
and using l l a - b l l  < l l b l l , we get 

l l 2b - al l  :::; l l b l l  + l i b - al l  < l l b l l + l lb l l  = l l 2b l l . 
Applying Lemma 2 . 1  one last time we get 

l l 2b - al l  < l l 2b l l  < l l 2b + al l , 
proving that l l e l l  > 2 l l b l l . 

This proves that l l e l l  > 2 l l b l l , i .e . , l l ai+I I I  > 2 l l ad l · 0 

By induction, we immediately get that for all i > 1, l l ai l l 2: 2i-3 l l as l l ·  
In particular, for any input integer vectors a, b, 

This proves that k :::; 2 + log2 ( I I  a l l + I I  b I I ) ,  and therefore the running time 
of the generalized Gauss algorithm is polynomial in the input size. 

THEOREM 2. 7 For any efficiently computable norm I I · I I , there exists a 
polynomial time algorithm that on input two linearly independent integer 
vectors a, b, outputs a basis [a' , b'J for .C( [a, b] ) such that l l a' l l  = >.1 
and l l b' l l = >.2 . In particular, SVP in dimension 2 can be solved in 
polynomial time. 
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2.  Approximating SVP in dimension n 
In the previous section we described a polynomial time algorithm to 

find the shortest vector in 2-dimensional lattices. The algorithm was 
developed in three steps. 

1 We first defined a notion of reduced basis for 2-dimensional lattices, 
and showed that the first vector of a reduced basis is a shortest 
nonzero vector in the lattice 

2 Then we gave an algorithm to compute a reduced basis. 

3 Finally, we proved that the algorithm terminates in polynomial time. 

In this section we do the same for n-dimensional lattices, although this 
time we can only prove that the first vector in a reduced basis is within 
an exponential factor "Y (n) = (2/v'3)n from the shortest .  So, the algo­
rithm does not necessarily finds the shortest vector in the lattices, but 
it computes a lattice vector that is guaranteed to be at most "Y(n).;\1 
in length. Although the n-dimensional algorithm can also be adapted 
to a variety of norms (Lovasz and Scarf, 1992) , for simplicity here we 
consider only the Euclidean norm £2 . 

2 . 1  Reduced basis 

The definition of reduced basis for 2-dimensional lattices in the case 
of the £2 norm can be reformulated as follows. 

DEFINITION 2 . 3  A basis B = (h 1 ,  h2 )  is reduced if 

• J.L2, 1 � � 
• l l hdl � l lh2 l l  
where J.L2,1 is the Gram-Schmidt coefficient 

The reader can easily check that Definition 2 . 1  and Definition 2.3 are 
equivalent when the £2 norm is used. We want to generalize this notion to 
n-dimensional lattices. Remember the Gram-Schmidt orthogonalization 
process: 

hi = hi - z= J.ti,jh; 
j<i 

where 
(hi , hj) 

J.ti ,j = 
(h� h� ) . 

J '  J 

We define projection operations 7ri from !Rm onto span(hi , bi+ l ,  . . .  , b� ) 
by 

(2 .6) 
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For any vector x E span(B ) , 11"i (x) is the component of x orthogonal to 
b1 , . . .  , bi - 1. In particular, the Gram-Schmidt orthogonalized vectors 
can be expressed as hi = 11"i (bi ) · 

We can now define reduced bases for n-dimensional lattices . For rea­
sons that will be clarified in the running time analysis of the basis re­
duction algorithm, we introduce a real parameter 1 /4 < J < 1 and 
parameterize the definition of reduced bases by J. 
DEFINITION 2 . 4  A basis B = [b 1 . . .  bn) E !Rmxn is LLL-reduced with 
parameter 8 (8LLL-reduced, for short) if 

1 IJ.ti ,j I � ! for all i > j, where J.ti ,j are the Gram-Schmidt coefficients, 

2 for any pair of consecutive vectors bi , bi+ 1 , 
(2. 7) 

If 8 = 1 ,  the above definition says that for any i = 1 ,  . . .  , n - 1 ,  
the 2-dimensional basis [7ri {bi } ,  11"i (bi+ I } ]  is reduced. In the rest of this 
subsection, we prove that the first vector in a 8LLL-reduced basis is not 
much longer than )q . 

LEMMA 2 . 8  If B = [b1 . . .  bn) E ll�mxn is an 8LLL-reduced basis with 
8 E { 1 /4, 1 } , then l l bdl � (2/..)48 - l )n- l ..\1 . In particular, if 8 = 
{ 1/4) + {3/4)n/(n- l ) then l l bdl � {2/J3}n AI · 
Proof: Notice that if the basis is LLL reduced, then for all i 

8 l l bi 1 1 2 = 8 l l1ri {hi } 1 1 2 � l l 11"i {bi+l ) 1 1 2 
= l l bi+ I + J.ti+ l ,ibi 1 1 2  
= l l bi+ I I I 2 + J.t;+l ,i l l bi' l l 2  
< l l bi+ 1 l l 2 + � l l bi l l 2 

and rearranging the terms 

{2 .8} 
So, the orthogonalized vectors l l bi l l  can get shorter and shorter as i 
increases, but not too fast .  For example, if 8 = 3/4, then each l l bi+ l l l  is 
at most v'2 times as short as l l bi l l · By induction on i - j, (2 .8} implies 
that for all i � j 

{2 .9} 
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and, in particular, 

Using the lower bound >.1 2:: mini l l bi l l  from Theorem 1 . 1 ,  we get 

n - 1  

>.1 2:: min l l bi l l  2:: () - �) -2 l l b1 l l , 

proving that I I  b1 l l is at most ( 8- 1/4) ( 1 -n) 12 times longer than >.1 . Setting 
8 = { 1 /4) + {3/4)n/(n- 1 ) , we get l l bdl � {2/J3)n >.1 .  0 

2 .2  The LLL basis reduction algorithm 

We know that the first vector of any 8LLL-reduced basis {with 8 = 
( 1 /4) + (3/4)n/(n- l ) ) is within a factor (2/J3)n from the optimal. In 
this subsection we describe an algorithm to compute LLL reduced bases. 
This is the LLL basis reduction algorithm of Lenstra, Lenstra and Lovasz 
(Lenstra et al. ,  1982) .  The 2-dimensional lattice reduction algorithm of 
Gauss (specialized to the £2 norm) is essentially the following: 

1 Reduction Step : b2 : = b2 - cb1 , where c = r <�::�: J 
2 Swap Step : if l l b 1 l l  > l l b2 l l  then swap b1  ¢:} b2 . 

3 If (b1 , b2 ) is not reduced repeat . 

Notice that after the reduction step, we always have IJ1.2 ,1 I � 1/2 .  The 
LLL algorithm follows the same outline, alternating a reduction step, 
after which 111-i,j l � 1/2 for all i > j, and a swap step , in which pairs of 
adjacent vectors are exchanged. The algorithm is shown in Figure 2.4. 
In the rest of this subsection we explain the algorithm and argue that if 
it ever terminates, the output is correct .  

In the reduction step we want to ensure l/1-i ,j I � 1/2 for all i > j .  
This can be achieved using a simple modification of the Gram-Schmidt 
orthogonalization process . Namely, we iteratively define the sequence 
of vectors b� , . . .  , b� , where b� = b1 and each b� is obtained subtract­
ing appropriate integer multiples of bj (with j < i) from bi . Since B' 
is obtained from B = [b1 , . . . , bn ] by a sequence of elementary integer 
column operations , B and B' are equivalent bases. The only other oper­
ation performed on B' (after the reduction step) is rearranging the order 
of the columns in the swap step. Therefore at the end of each iteration 
B is a basis for the input lattice. 
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Input : Lattice basis B = [b1 , . . .  , bn] E zm xn 
Output : An LLL reduced basis for .C(B) .  

(loop) : for i = 1 ,  . . .  , n 
for j = i - 1 ,  . . .  , 1 

bi : = bi - Ci ,jbj where Ci ,j = l (bi ,  bj ) / (bj ,  bj ) l  
if 8 l l7ri (bi ) l l 2 > l l 7ri (bi+ I ) I I 2  for some i 
then swap bi and bi+1 and go to (loop) 
else output B .  

Figure 2.4 .  The LLL basis reduction algorithm 
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Notice that the orthogonalized bases B*  associated to B before and 
after the reduction step are the same, i .e. , the transformation B -+ B' 
defined above does not change the orthogonalized vectors hi . However, 
one can easily check that after the transformation B -+ B' all Gram­
Schmidt coefficients Jl.i,j (with i > j) of the new basis B' satisfy IJ.i.i ,j l � 
1/2 .  

After the reduction step has been performed (and condition IJ.i.i ,j l � 
1/2 is satisfied ) , we check that the second property of LLL reduced bases 
(2. 7) holds for all pairs of consecutive vectors bi , bi+ l · If for some i 

(2 . 10) 

we swap bi and bi+ l · Several pairs might violate property (2 .7) . Which 
pair is selected to be swapped does not matter. In the original LLL 
algorithm i was chosen to be the smallest index such that (2 . 10) , but 
any selection is equally good. Actually, one can even swaps several 
disjoint pairs at the same time. 

If any two vectors are swapped then the basis is not necessarily length 
reduced anymore. (I .e. ,  the Gram-Schmidt coefficients might be IPi ,j l > 
1/2 . ) So, we go back to the reduction step and repeat the whole process. 

It is clear that if at some point , after the reduction step, no pair of 
consecutive vectors need to be swapped, then B is an LLL reduced basis. 
Moreover, the final matrix B is equivalent to the original input matrix 
because it has been obtained from it through a sequence of elementary 
column operations . 

Therefore, if the LLL algorithm ever terminates , the output is an LLL 
reduced basis . The termination of the algorithm is proved in the next 
section, together with a polynomial bound on the running time. 
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2.3 Running time analysis 

In order to show that the algorithm runs in polynomial time, we have 
to prove that the number of iterations is polynomial in the input size, 
and each iteration takes polynomial time. We first bound the number 
of iterations. 

Bounding number of iterations 
The number of iterations performed by the algorithm equals the num­

ber of times that any two adjacent vectors are exchanged during the 
swap step. In order to bound this number we associate a positive inte­
ger to the basis B and prove that each time two vectors are swapped 
this integer decreases by a factor o. It follows that the number of iter­
ations is logarithmic in the integer associated to the initial basis. For 
any k = 1 ,  . . .  , n, consider the sublattice Ak = .C( [b 1 ,  . . .  , bk))  generated 
by the first k basis vectors . Since Ak is an integer lattice, det (Ak ) 2 is a 
positive integer. The integer associated to basis B is 

n 

d = fi det (Ak )2 • (2 . 1 1 )  
i:::: 1 

Notice that the reduction step does not affect the value of d because 
the orthogonalized vectors bi are not modified by the reduction step 
and each det ( Ak ) can be expressed as a function of I I bj I I , . . .  , I I b k I I · We 
want to prove that when two vectors bi , bi+ 1 are swapped, d decreases 
by a factor o. Let d and d' be the value of d before and after the swap. 
Similarly, let Ak and A� be the lattice generated by [b1, . . .  , bk ] before 
and after the swap. Recall that vectors bi , bi+ l are selected in the swap 
step only if (2 . 10) holds. We observe that when vectors Vi and Vi+l 
are exchanged, det (Ak ) stays the same for all k :f= i .  This is because 
for k < i basis [b1 , . . .  , bk] is not modified, while for k > i we are only 
changing the order of two vectors in [b1 , . . .  , bk] · In either case, the 
lattice Ak = A� is unchanged, and det (Ak ) = det (A� ) is the same before 
and after the swap . Therefore we have 

= 
det (Ai ) - = 

d' 
d det (Ai )  

det ( [b1 ,  . . .  , bi- 1 ,  bi+ tD2 
det ( [b 1 ,  . . .  , bi ] ) 2 

(fl;::� l l bj 1 1 2 ) · l l 1ri ( bi+ l) 1 1 2 
n;=l lib; 1 1 2  

II 7Ti (bi+d l l 2  
I I7Ti (bi ) l l2 
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which, by (2 . 10) is  less than 8. This proves that d decreases at least by a 
factor 8 at each iteration. Let do be the integer associated to the input 
matrix, and let dk be the integer associated to B after k iterations. By 
induction on k, 

dk � 8kdo . 
Since dk is a positive integer, 8kd0 ;:::: 8k ;:::: 1 and for any 8 < 1 it must 
be 

In do 
k � ln( 1/8) " 

Since do is computable in polynomial time from B,  In do is clearly 
polynomial in the input size. If 8 is set to any fixed constant less than 
1 ,  then the (ln ( 11 o) ) - 1 factor increases the number of iterations only 
by a constant factor. The following lemma shows that one can even set 
8 to some increasing function of n with limn�oo 8 = 1 and still have a 
polynomial number of iterations . 

LEMMA 2 . 9  If 8 = ( 1 /4) + (3/4)nf(n- 1 ) ,  then for all c > 1 and all 
sufficiently large n , ( ln ( l /8) ) - 1 � nc. 

Proof: Let 8 = ( 1 /4) + (3/4)nf(n- 1 ) .  We want to prove that (ln( 1 /8) ) - 1 
is at most nc , or equivalently 1 - e( -( 1/n)c ) � 1 - 8 for all sufficiently 
large n. Notice that 1 - 8 = (3/4) ( 1 - (3/4) 1/(n- 1 ) ) .  We show that the 
limit (for n -+ oo ) of 

1 - e(- ( 1/n)C ) (2 . 12) (3/4) ( 1 - (3/4) 1 / (n- 1 ) ) 
is strictly less than 1. It follows that for all sufficiently large n, (2 . 12 )  
i s  less than 1 ,  and 1 - e(- ( 1/n)C ) � (3/4) ( 1  - (3/4) 1 /(n- 1 ) ) . In fact ,  we 
can prove that the limit of (2 . 12 )  is 0. Let x = 1/ (n - 1 )  and substitute 
n = 1 + 1 /x in (2 . 12) to get 

1 _ e- (x/( l+xW 
� ( 1 - ( it) 

(2 . 13 )  

We compute the limit of (2 . 13) for x -+  0. Both the numerator and the 
denominator tend to 0, so we can use L'Hopital's rule and obtain 

1 - -(x/ ( l+x))c e- (x/ ( l+x))C � (__L) c- 1 
r e r \ l+xr l+x 0 0 
X� i ( 1 - ( it) 

=
X� i (� ) X ln(4/3) = • 

This proves that with polynomially many iterations, the LLL al­
gorithm approximates the shortest vector in a lattice within a factor 
(2/VJ)n . 
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Bounding the running time of each iteration 
The number of arithmetic operations performed at each iteration is 

clearly polynomial . So, in order to prove a polynomial bound on the 
running time we only need to show that the size of the numbers involved 
in the entire computation also is bounded by a polynomial in the input 
size. The LLL algorithm uses rational numbers , so we need to bound 
both the precision required by these numbers and their magnitude. 

From the Gram-Schmidt orthogonalization formulas ( 1 . 9a) , ( 1 .9b) we 
know that bi - bi belongs to span (b 1 , . . .  , bi_ I ) , i .e . , 

i- 1 
bi - bi = L Vi,jbj (2 . 14) 

j=l 

for some reals numbers Vi,j ·  (Notice that these real numbers are different 
from the Gram-Schmidt coefficients J.Li,j · In particular lvi ,j l  can be bigger 
than 1/2 . ) Let t < i and take the scalar product of (2. 14) with bt . Since 
bi is orthogonal to b t , we get 

i- 1 
(bi , bt ) = L Vi,j (bj , bt ) . {2 . 15) 

j=l 

Let Bt = [b 1 ,  . . .  , bt] and Vi = [vi , ! ,  . . . , Vi ,i- 1 ]T . Combining equations 
(2 . 15) for all t = 1 ,  . . .  , i - 1 ,  we get 

So, Vi is the solution to a system of linear equations with coefficient 
matrix (Bf_1 Bi-d · Let di- 1  = det(Bf- 1 Bi-d = det (Ai-d 2 , where 
Ai-l is the same sublattice defined in the analysis of the number of 
iterations. By Cramer's rule di- 1 Vi is an integer vector. We use this 
property to bound the denominators that can occur in the coefficients 
J.Li,j and orthogonalized vectors bi . Notice that 

i- 1  
di- 1 . bi = di- 1 . bi + L(di- ! Vi ,j )bj 

j=l 

i s  an integer combination of  integer vectors . So ,  all denominators that 
occur in vector bi are factors of di- I · Let us now evaluate the Gram­
Schmidt coefficients: 

J..li ,j = 
(bi , bj ) 
(bj , bj ) 
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= 

= 

dj-1 (hi , hj ) 
dj- 1 l l bj l l 2 

(hi , dj- 1 hj ) 
dj 
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because dj = fl{=1 l lbk l l 2. So, the denominator of J-Li,j divides dj . This 
proves that the denominators of all rational numbers that occur during 
the computation divide d = fl?=1 di . (Notice that this is the same integer 
defined in {2 . 1 1 ) . )  But we know from the analysis of the number of 
iterations that log d is initially bounded by a polynomial in the input size, 
and it can only decrease during the execution of the algorithm. So, the 
denominators of all rational numbers occurring during the computation 
have polynomial size. 

It remains to show that also the magnitude of the numbers is polyno­
mial. We already know that J-li,j are at most 1/2 in absolute value. We 
now bound the length of the vectors. Notice that for all i > 1 ,  I ! hi I I  2 
1 /di- 1 because di- 1hi' is a nonzero integer vector, and l l bi l l  = l l h 1 1 1 2 1 .  
Moreover, di = [1;=1 l l bi 1 1 2 .  Therefore 

Finally, 

i-2 
l l b* l l 2 -

di < d ·  IT d� < d2 
t - ni.- 1 l i b� 1 1 2  - 1 . 

J - • ]=1 ] ]= 1 

i- 1 
l l bi l l 2 = l l bi l l 2 + I: J-Lr,j l l b; l l 2 � d2 + (nf4)d2 � nd2. j=1 

This proves that all quantities that occur during the execution of the 
LLL algorithm can be represented with polynomially many bits. This 
completes the proof that the LLL algorithm with t5 = ( 1 /4) + {3/4)n/(n- 1) 
runs in polynomial time. 

THEOREM 2 . 1 0 There exists a polynomial time algorithm that on input 
a basis B E zmxn, outputs an LLL reduced basis for .C(B) with parameter 
t5 = { 1 /4) + (3/4)n/ (n- 1 ) . 

Together with Lemma 2 .8 this immediately gives a polynomial time 
approximation algorithm for the shortest vector problem. 

THEOREM 2 . 1 1  There exists a polynomial time algorithm that on input 
an integer basis B outputs a nonzero lattice vector x E .C(B) \ {0} of 
length l lx l l � {2/J3)nA1 , where n is the dimension of the lattice. 
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Input : An integer basis B E zmxn and a target vector t E zm. 
Output : A lattice vector x E .C(B) such that 
l i t - x l l � 2(2/J3)n dist (t , .C(B) ) .  

run the LLL reduction algorithm on  B 
let b : =  t 
for j = n, . . .  , 1 

Cj = l(b, bj } / (bj , bj } l  
b : =  b - Cjbj 

return t - b 

Figure 2. 5. The nearest plane algorithm 

3.  Approximating CVP in dimension n 
In this section we show how to use LLL reduced bases to approxi­

mately solve the closest vector problem within a factor 2 (2/ J3)n . In 
fact ,  the algorithm to solve CVP is already contained in the LLL reduc­
tion procedure. The idea is the following. Given an LLL reduced basis 
B = [b 1 ,  . . .  , bn] and a target vector t, run the reduction step of the LLL 
algorithm on input [B , t] as if we wanted to add vector t to the lattice 
basis. This way we find a lattice vector x E .C(B) such that t - x can be 
expressed as t* + E?=l <;bi where t*  i s  the component of t orthogonal 
to span(b1 , . . .  , bn ) and ICi l � 1/2 for all i = 1 ,  . . .  , n. Interestingly, one 
can show that the distance of x from t is within a factor 2 (2/J3)n from 
the optimal. 

The algorithm to approximately solve the closest vector problem is 
given in Figure 2.5 .  The running time of the algorithm is clearly poly­
nomial. In the next lemma we prove that the algorithm achieves ap­
proximation factor 2 (2/J3)n . For reasons that will be apparent in the 
proof of the lemma, this algorithm is called the nearest plane algorithm. 

LEMMA 2 . 1 2  When 0 = ( 1/4) + (3/4)nf(n- l ) , the nearest plane algo­
rithm approximately solves CVP within a factor 1(n) = 2 (2/J3)n . 

Proof: Assume that basis B is already LLL reduced. Assume also, 
without loss of generality, that target point t belongs to span(B ) .  (If 
not , project t orthogonally to span(B ) ,  and find the lattice point closest 
to the projection. ) The proof is by induction on the dimension n of 
the lattice and it uses the fact that if B = [b1 , . . . , bn] is LLL reduced 
than also [b1 ,  . . .  , bk] is LLL reduced for all k = 1 ,  .. . , n. Let B* = 
[hi , . . .  , b�] be the Gram-Schmidt orthogonalization of B .  
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Then, the nearest plane algorithm can be equivalently described as 

follows. (See Figure 2 .6 . )  
• Find an integer c such that hyperplane cb� + span{b1 , . . .  , bn-d is 

as close as possible to t 
• Recursively find a lattice point x' E .C(b1 , . . .  , bn- 1 ) approximately 

closest to the projection t' of t - cbn on span(b 1 , . . .  , bn- 1 ) . 
• Output x = x' + cbn . 
Let y E .C(B) be the lattice point closest to t .  We want to prove that 
l i t - x l i is at most 2 {2/J3)n l i t - y J J . There are two cases. 

Case 1 :  If l i t - Y l i < l i b� J J /2 ,  then y necessarily belongs to the hy­
perplane cb� + span(b1 , . . .  , bn- 1 ) because the hyperplanes are J J b� l i 
apart from each other, and therefore any other hyperplane is more than 
J Jb� l i away from t .  Therefore y1 = y - cbn is the lattice point in 
.C ( [b 1 , . . . , bn- 1 ] ) closest to t' and by induction hypothesis the recur­
sive call finds a lattice point x' within distance 2 (2/J3)n- 1 J J t' - y' l i = 
2(2/J3)n- 1 J J t - y i J  from t - cbn . It follows that x' + cbn is within 
distance 2 (2/J3)n- 1 1 J t - y J J  from t .  

Case 2 :  This time assume J J t - y i J � J Jb� l i /2. We use the properties of 
LLL reduced basis to show that the lattice vector found by the nearest 
plane algorithm satisfies l i t - x J J  � (4/3)n J Jb� J J 2 and therefore 

l i t - x l i � 2 (2//3)n J J t - y J J .  
We know that t - x' = L:�1 /-Libi for some real numbers /-Li satisfying 
11-Li l � 1/2 .  Remember that , by (2 .9) , the orthogonalized vectors in an 
LLL reduced basis satisfy J J bi J I � aJ J bi+t l l where a =  2//46 - 1 ,  and, 
by induction on n - i ,  J J bi J J  � an- i l ib� J J . Therefore, 

n 
I J t - x' J I 2 = LI-L; I Ibi i J 2 i=1 

From a = 2/v'M - 1 and 8 = ( 1 /4) + (3/4)nf(n- 1 ) we get an-1 = 
(2/vJ)'i , a2C 1 -n) = (3/4)n and a2 = (4/3) 1+ 1/ (n- I ) , which, substituted 
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(c- l)b� + span(b1, ... , bn-1) 

llb�ll/2 � .······ 

.. ·· 

. . . . ·--f
· 

. ····
··· · ··; llb�ll/2 

Figure 2. 6. The nearest plane algorithm 

in the last equation give 

4. Notes 

A polynomial time algorithm to solve SVP (in the Euclidean norm) 
for 2-dimensional lattices is already implicit in (Gauss ,  1801) . A precise 
worst-case analysis of the algorithm is given in (Vallee, 1991) , and the 
generalization to arbitrary norms presented in Section 1 is due to {Kaib 
and Schnorr, 1996 ) .  Both (Vallee, 1991 )  and {Kaib and Schnorr, 1 996) 
give almost optimal bounds on the number of iterations, improving the 
bound of Section 1 by a constant factor. 

The algorithm presented in Section 2 is the celebrated LLL basis 
reduction algorithm (also known as Lovasz' reduction algorithm) of 
(Lenstra et al. ,  1982) . In {Lenstra et al. ,  1 982) , the algorithm is for­
mulated and analyzed for the special case of�= VJ/2, and it is almost 
ubiquitously cited as an algorithm to approximate SVP within a factor 
2(n- l)/2 . However, (Lenstra et al. , 1982) already observes that� can be 
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replaced by any constant strictly less than 1 ,  resulting in approximation 
factors cn-l for any c < 2/VJ. Proving that the LLL algorithm termi­
nates in polynomial time when 8 = 1 is a long standing open problem. 
Setting 8 = 1 in the LLL algorithm would result in approximation factor 
( 2/ VJ) n-l. In Section 2 we showed that one can set 8 to an increasing 
function of the rank n, keeping the running time of the algorithm poly­
nomial (in the input size and the rank n of the lattice) and resulting in 
approximation factor (2/VJ)n, i .e . , essentially the same as setting 8 = 1 .  

Since the invention of the LLL algorithm, the best polynomial time 
SVP approximation factor has been improved to slightly subexponen­
tial functions of the rank. (Schnorr, 1987) presents a hierarchy of reduc­
tion algorithms that includes LLL reduction at one end and Korkine­
Zolotarev reduction (see Chapter 7) at the other. The algorithm of 
(Schnorr, 1987) ,  called the Block Korkine-Zolotarev (BKZ) reduction 
algorithm, combines Korkine-Zolotarev reduction with LLL, reducing 
blocks of consecutive vectors in the sense of Korkine and Zolotarev, 
and applying an LLL-like algorithm to the blocks. As the size of the 
blocks increases, the quality of the basis returned improves, but the al­
gorithm also gets slower, going from polynomial time to exponential. 
Unfortunately, this result of Schnorr is often cited in the literature as an 
approximation algorithm to within a 2m factor for any constant f > 0, 
which corresponds to setting the block size to a large, but fixed, con­
stant . In fact ,  one can set the block size to a slightly increasing function 
of the rank, maintaining the running time polynomial , and resulting in a 
slightly subexponential approximation factor 2°(n(ln In n)2 I Inn) for SVP.  

The SVP approximation factor achieved by LLL (and BKZ) reduc­
tion is (almost) exponential in the rank of the lattice, still it is quite 
an achievement because it is a constant for every fixed dimension, in­
dependently of the input size. In particular, LLL allowed for the first 
time to solve SVP exactly in fixed dimension. The dependency of the 
running time on the dimension is 2o(n2). Better algorithms to solve SVP 
exactly are given in {Kannan, 1987b) , achieving 2o(nlogn) running time. 
Despite the exponential dependency of the running time on the rank, 
algorithms to solve SVP exactly are of practical relevance because they 
can be applied to low dimensional sublattices (e.g. , the blocks of the 
BKZ algorithm) to improve the approximation factor of LLL. 

Recently, {Aj tai et al. ,  2001) found a simple and elegant method to 
probabilistically solve SVP exactly in time 2o(n) . When used in the BKZ 
algorithm, (Aj tai et al . ,  2001) allows to reduce the SVP approximation 
factor from 2°(n(ln In n)2 /Inn) to 2°(n In Inn/ Inn), although the output of 
the algorithm is only guaranteed to be short with high probability. 
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The nearest plane algorithm of Section 3 is one of two CVP approxi­
mation algorithms presented and analyzed in (Babai , 1 986) . The other 
algorithm, called the "rounding off" algorithm, simply expresses the tar­
get vector t = Bx in terms of the LLL reduced lattice basis B, rounds 
each coordinate of X to the closest integer Yi = f xiJ ,  and outputs lattice 
vector By. In (Babai ,  1986} it is proved that even this simple round­
ing procedure result in en approximation factors for CVP,  although the 
nearest plane algorithm achieves a better constant c. Using Schnorr's 
BKZ basis reduction algorithm it is possible to improve the approx­
imation factor for CVP to 2°(n(ln In n)2 I Inn) (Schnorr 1 987· Kannan ' ' ' 1987a; Schnorr, 1994}. Using the probabilistic algorithm of (Ajtai et al. , 
2001} within Schnorr's BKZ basis reduction, the CVP approximation 
factor can be further reduced to 2°(n In Inn/ Inn). For any fixed dimen­
sion, CVP can be solved exactly in polynomial time (Kannan, 1 987b} , 
however the dependency of the running time on the rank of the lattice 
is again 2n Inn. For recent refinements and variants of Babai 's and Kan­
nan's CVP algorithms the reader is referred to (BlC)mer, 2000; Klein, 
2000} . 

The existence of (deterministic or probabilistic) SVP (or CVP) ap­
proximation algorithms that achieve approximation factors polynomial 
in the rank n of the lattice is one of the main open problems in the area. 
In Chapter 8 we will see that the conjectured difficulty of achieving 
polynomial approximation factors can be used to build provably secure 
cryptographic functions. 
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Chapter 3 

CLOSEST VECTOR PROBLEM 

In Chapter 2 we described algorithms to (approximately) solve SVP 
and CVP . These algorithms exhibit relatively good performance as far 
as the running time is concerned. In particular, they terminate within a 
time bound that is polynomial in the size of the input. However, these 
algorithms offer very poor guarantees on the quality of the solution re­
turned: the worst-case approximation factor achieved by the best known 
polynomial time algorithm is essentially exponential in the rank of the 
lattice. To date no efficient algorithm that provably approximates SVP 
or  CVP within small factors (e.g. , factors that are polynomial in the 
rank of the lattice) is known. In this chapter we start studying lattices 
from a computational complexity point of view, and, in particular we 
investigate the hardness of the closest vector problem. We first consider 
the problem of solving CVP exactly, and prove that this problem is hard 
for NP. Therefore no efficient algorithm to solve CVP exists, unless P 
equals NP. 

In Chapter 1 we introduced three different formulations of CVP: 

• Decisional version: Given integer lattice B, target vector t and a 
rational r, determine whether dist (t,  B) � r or dist (t ,  B) > r .  

• Optimization version: Given integer lattice B and target vector t,  
compute dist (t,  B). 

• Search version: Given integer lattice B and target vector t ,  find a 
lattice vector Bx such that IIBx-t il is minimum. 

Each of these problems is easily reduced to the next one as follows . 
Given a search oracle that finds lattice vectors Bx closest to t ,  one can 
compute the distance of t from the lattice simply evaluating IIBx -
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tjj . Similarly, given an optimization oracle to compute dist(t ,  .C(B) ) ,  
one can immediately solve the decisional problem {B ,  t ,  r) comparing 
dist (t ,  .C(B) )  with r.  

Interestingly, the search version of CVP is not substantially harder 
than the optimization or decisional versions, i .e . ,  given an oracle to solve 
the decision problem associated to CVP, one can solve the search prob­
lem in polynomial time. One can try to derive this fact from general 
principles using the NP-completeness of CVP, but it is interesting to 
look for a direct reduction. So, before proving the hardness of CVP, in 
Section 1 we establish the polynomial equivalence of the three versions 
of this problem. Then, in Section 2 we prove the NP-hardness of (exact) 
CVP. In Section 3 we study the relationship between SVP and CVP , 
and prove that in some strong sense the former is not harder than the 
latter. Finally, we consider variants of CVP, and show that the problem 
remains NP-hard even if one allows for approximate solutions {in Sec­
tion 4) ,  or the input lattice can be arbitrarily preprocessed before the 
target vector is revealed (in Section 5). 

1 .  Decision versus Search 

In this section we prove that the search version of CVP can be solved 
in polynomial time, making a polynomial number of calls to an oracle 
that solves the decisional CVP problem. In other words, we assume that 
we have access to a decisi on oracle A that on input (B, t, r ) tells whether 
dist (t ,  .C(B) )  � r or not, and show how to use this oracle to efficiently 
find a lattice point Bx closest to t, for a given input lattice B and target 
vector t .  

The idea i s  to  recover the coefficients XI, ... , Xn one bit at a time, 
but some care is required because the lattice vector closest to t is not 
necessarily unique, i .e . , there might exist several integer vectors x such 
that I IBx - ti l = dist (t , .C (B ) ) . Therefore, one needs to make sure that 
the coefficients XI, ... , Xn are all consistent with a single CVP solu­
tion Bx. But, let us see first how to recover a single coefficient , say 
XI. First we compare the distances of the target t from the original 
lattice .C(B) and the sublattice generated by B' = [2bi, b2, . . .  , bn]· 
Clearly, dist (t ,  .C(B) )  � dist (t ,  .C(B') ) , because .C(B') is a subset of 
.C(B ) .  We want to determine if equality holds . The comparison can 
be easily performed using oracle A as follows. We start with an upper 
bound R on the squared distance of t from the lattice {e.g. , one can 
set R = Li l l bll2 to the sum of the squared lengths of all basis vec­
tors) and perform a binary search in [0, R] until we find an integer r 
such that r < dist (t, .C(B))2 � r + 1. Then, we call oracle A on input 
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(B', t ,  Jr+T). If the oracle returns NO, then 

dist(t ,  .C(B') )  > Jr+1 � dist {t , .C{B ) ) .  

On the other hand, i f  the oracle returns YES, then we have 

vr < dist (t , .C{B) )  ::; dist (t , .C(B') )  ::; Jr+T, 
and therefore dist {t , .C {B) )  = dist (t , .C (B') ) because both dist (t ,  .C (B) )2 
and dist {t ,  .C (B') ) 2 are integers. Now notice that if x 1  is even for some 
closest vector Bx, then dist{t, .C(B))  = dist{t , .C(B') ) ,  while if x 1  is odd 
for all closest vectors Bx, then dist (t , .C(B) )  < dist(t ,  .C(B') ) .  Therefore, 
comparing dist(t, .C(B) )  and dist (t, .C(B') ) allows to determine the parity 
of XI for some closest vector Bx. After the least significant bit of XI has 
been determined, we move to the other bits as follows. We set t' = t if 
XI has been determined to be even, and t' = t - b1 otherwise. Then, 
we repeat the above procedure on lattice B' and target vector t' to find 
the second bit of XI · Notice that the size of the coefficients Xi can be 
easily bounded {e.g. , using Cramer's rule) and it is polynomial in the size 
of the input (B, t) . Therefore, after a polynomial number of iterations 
we will have recovered the first coefficient XI entirely. Once we have 
found coefficient XI , we move on to the second coefficient , but in order 
to ensure consistency, we slightly modify the input instance. Instead of 
using the original lattice B and target vector t ,  we consider the sublattice 
[b2, . . . , bn] and target vector t- x1 b1 . In general, after determining the 
first k coefficients XI, . . .  , xk , we consider the sublattice [bk+I, . . .  , bn] 
and target vector t - L.::=I Xibi, and proceed to determine Xk+I· Notice 
that at the end of each iteration, we have a sequence of coefficients 
x1 , . . •  , Xk such that there exists a solution to the original CVP problem 
of the form 2.::=1 Xibi + t' for some vector t' E .C{bk+l• . . .  , bm) . In 
particular, after n iterations , lattice vector Bx = l.:�I Xibi is a solution 
to the CVP problem {B, t ) .  

This shows that the decisional, optimization and search versions of 
(exact) CVP are polynomially equivalent , and decisional CVP already 
captures the hardness of this problem. In the rest of this chapter we 
concentrate on the decisional version of CVP. 

Interestingly, the above reduction does not adapt to the approxima­
tion version of CVP, i .e . ,  given an oracle that solves the promise problem 
GAPCVP "�' it is not clear how to efficiently find -y-approximate solutions 
to the CVP search problem. In Section 4 we will see that GAPCVP"f is 
NP-hard for any constant 'Y (or even for certain monotonically increas­
ing functions of the rank) . Since CVP (even in its exact version) can 
be solved in NP (see next section for details) , the CVP search problem 
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can be certainly reduced to GAPCVP1 for any constant -y. However, 
these reductions do not give any insight into the relation between the 
two versions of the problem. Moreover, they do not work when the ap­
proximation factor is sufficiently large (e.g. , when -y is polynomial in the 
rank of the lattice) . Giving a simple reduction from the-y-approximate 
CVP search problem to GAPCVP..,. of the kind shown in this section is 
an interesting open problem. 

2.  NP-completeness 

In this section we show that the decisional version of CVP is NP­
complete. We first show that the problem is in NP, i .e . , for every instance 
(B, t, r) such that dist (t ,  C(B) )  � r ,  there exists a short witness proving 
that dist (t , C(B)) is at most r. The witness is a solution to the search 
problem, i .e . , a lattice point x E C(B) such that llx- t ll � r. Notice that 
the size of x is polynomial because x is an integer vector and all entries 
of x are bounded in absolute value by l lt l l  + r. Moreover, the witness 
can be checked in polynomial time because membership of a vector in 
a latt ice can be decided in polynomial t ime. We now prove that CVP 
is hard for NP, i .e . , any other problem in NP (or, equivalently, some 
specific NP-complete problem) can be efficiently reduced to CVP. We 
give a reduction from the subset sum problem. 

DEFINITION 3 . 1  The subset sum problem (SS)  is the following. Given 
n +  1 integers (ai , . . . , an , s), find a subset of the ai 's (if one exists) 
that adds up to s, or equivalently, find coefficients Xi E { 0, 1 }  such 
that I:i aiXi = s. In the decision version of the problem one is given 
( a1 , . . .  , an , s) and must decide if there exist coefficients Xi E { 0, 1 }  such 
that I:i aixi = s. 

For a proof of the NP-hardness of subset sum see (Garey and Johnson, 
1979 ) .  

THEOREM 3 . 1  For any p � 1 (including p = oo}, GAPCVP1 (i. e . ,  the 
decision problem associated to solving CVP exactly} in the ip norm is 
NP -complete. 

Proof: We already seen that GAPCVP is in NP. We prove that 
GAPCVP1 is NP-hard by reduction from subset sum. Given a subset 
sum instance ( a1, . . . , an , s) we define a lattice basis B with one column 
bi for each subset sum coefficient ai . Then we associate a target vector 
t to the sums. Vectors bi and t are defined as follows: 

i-1 n-i 
��T bi = [ai , 0 ,  .. . , 0 ,  2, 0 ,  . . .  , OJ (3 . 1 )  
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t = [ S, ! , . . . .. . . . . . . . , l)T "' 
n 

In matrix notation, the basis B is easily expressed as 
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(3.2) 

(3 .3) 

where a is the row vector (a1 , . . .  , an] and In is the n x n identity matrix. 
The output of the reduction is the triple (B, t, {in). (To be precise, the 
third element in the output of the reduction should be a rational number. 
The reader can easily check that {in can be substituted by any rational 
number tin the interval [{in, rn+!), without affecting the correctness 
of the reduction. For p = oo, this value should be limp-+oo n11P = 1 . )  

We now prove that the reduction i s  indeed correct , i .e . , i f  (a, s ) i s  a 
YES SS  instance, then (B, t, {in) is a YES CVP instance, while if (a, s) is 
a NO SS  instance, then (B, t, {in) is a NO CVP instance. First assume 
that there exists a solution to the subset sum problem, i .e . , there are 
Xi E {0, 1 }  such that L:�=l xiai = s. Then the distance vector is given 
by 

Bx - t = [ L:2:;
x

_: � ' I 
2xn - 1  

and the pth power of the fp distance is 

n P n 

(3.4) 

IIBx- til�= L aiXi- s + L l2xi - l iP (3 .5) 
i= l i=l 

which equals n because L:�=l aiXi-s = 0 and 2xi -1 = ±1 for all i .  This 
proves that the distance of t from .C(B) is at most {in, and therefore 
(B, t, {in) is a YES instance of CVP. 

Conversely, assume that (B, y, {in) is a YES instance, i .e . , the distance 
of y from the lattice is at most {in and let x be an integer vector such 
that IIBx- Yll � {in. Notice that also in this case (3.5) holds true, and 
the second summand satisfies L:�1 l2xi - l iP 2: n because all 2xi -1 are 
odd integers. Therefore IIBx-yll � {in is possible only if L:i aiXi-S = 0 
and l2xi - l iP = 1 for all i .  This proves that L:�=l aiXi = s and Xi E {0 ,  1} 
for all i ,  i .e . ,  x is a solution to the subset sum problem. 0 

The reduction from SS to CVP ( in the £2 norm) has obvious connec­
tions with the Lagarias-Odlyzko algorithm to solve subset sum (Lagarias 
and Odlyzko, 1985 ) ,  or more precisely the improved version of (Coster 
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et al . ,  1992). The (improved) Lagarias-Odlyzko algorithm works as fol­
lows: given a subset sum instance (a, s) , one builds the lattice basis 

(3 .6) 

where cis a sufficiently large constant and 1 is the all-one column vector. 
Notice that ifx is a solution to the subset sum problem, then lattice (3 .6) 
has a vector of length y'n obtained multiplying the first n columns by 
x and the last column by - 1 .  Then, (Lagarias and Odlyzko, 1985) 
suggests to look for a short( est) nonzero vector in the lattice, e.g. , using 
a lattice basis reduction algorithm. If a short vector L x  is found, such 
that Xn+l = - 1 and Xi E {0, 1 }  for all other i = 1 ,  . . .  , n, then x1, . . . , Xn 

is a solution to the subset sum problem. 
Notice that this algorithm can be succinctly described as follows: 

1 Multiply the subset sum problem by some large constant c to obtain 
an equivalent subset sum instance (c · a1, . . . , c · an, c · s ) 

2 Reduce (c · a1, . . .  , c · an, c · s) to a CVP instance (B, t) using the 
reduction described in the proof of Theorem 3. 1 .  

3 Solve the closest vector problem (B, t ,  y'n.) using the following heuris­
tics1 : in order to find the lattice vector closest to t, look for a short 
vector in the lattice generated by L = [Bit). If this short vector is of 
the form Bx- t, then Bx is a short vector in .C(B) close to t. 

The reason the first row of the basis matrix is multiplied by a large 
constant cis that it is not known how to solve the shortest vector problem 
exactly, so in practice an approximation algorithm is used (e.g. , the LLL 
algorithm, see Chapter 2). If the first row in the matrix is multiplied by 
a large constant c, then any moderately short lattice vector must be zero 
in the first coordinate, and the coefficients x found by the approximation 
algorithm must satisfy E aiXi = ( -Xn+I )s. Still, there is no guarantee 
that the variable Xi are all 0 or 1, and that Xn+l = - 1 .  Therefore 
the Lagarias-Odlyzko algorithm does not always find a solution to the 
subset sum problem. However, if the coefficients a1, . . .  , an are chosen 
at random among all numbers satisfying certain constraints, proves that 
the Lagarias-Odlyzko heuristics succeeds with high probability. 

The condition on the coefficients can be expressed in terms of a param­
eter, called density, defined below. Given coefficients a = (a1, . .. , an), 

1 In the cryptanalysis literature this heuristics is sometimes referred to as the "embedding 
technique" 
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the density 8(a) of the subset sum problem is defined as the ratio 

n 8(a) = n . 
maxi==1 log ai 
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(3 .7) 

Notice that the density is proportional to the size of the subset sum 
coefficients ai , and it equals 1 when maxi flog ail equals the number n of 
coefficient . The meaning of the density parameter is better illustrated 
using the modular subset sum problem: given a modulus M = 2m, n 
coefficients a1 , . . .  , an and a target value b, find a 0-1 combination Ei Xiai 
which equals b modulo M. Notice that both the reduction to CVP and 
the Lagarias-Odlyzko heuristics can be easily adapted to the modular 
subset sum by including one more vector bo = [c · M, 0, ... , o]T in the 
latt ice basis. In the modular case, the density of the subset sum problem 
is more conveniently defined as the ratio 8 = n/m between the size of 
the modulus and the number of coefficients. When n = m, the domain 
and the co-domain of the modular subset sum function la(x) = Ei Xiai 
(mod M) have the same size 2n and the density equals 8 = 1 .  When 
8 < 1 , then Ia is injective with high probability (over the choice of 
coefficients a), while when 8 > 1 function Ia is likely to be surjective. 
In general, if the density is 8, then on the average each point in the 
co-domain of Ia has 2" preimages under Ia· 

Using an oracle that solves SVP exactly, (Coster et al. ,  1992) shows 
that it is possible to efficiently solve most subset sum instances with den­
sity 8 < 0 . 9408. Given the exponential approximation factor achieved 
by the LLL algorithm, the Lagarias-Odlyzko algorithm provably solves 
(with high probability) only subset sum instances with very small den­
sity 8 < 1/ O(n) , i .e . , subset sum instances whose coefficients are O(n2 ) 
bits each (Frieze, 1 986) . With the obvious modifications , the analysis in 
(Frieze, 1986) also shows that an oracle that approximates SVP within 
polynomial factors, would result in an efficient algorithm to solve most 
subset sum instances with density 1/ O(log n) . Notice that although this 
density is much higher than 1/ O(n) , it is still an asymptotically van­
ishing function of the dimension n. Interestingly, even an oracle that 
solves SVP exactly does not allow to solve most subset sum instances 
with density arbitrarily close to 1, and (Coster et al. ,  1992) points out 
that it seems unlikely that their techniques can be extended to densities 
higher than 0 .9408. 

The problem is in the last step of our reformulation of the Lagarias­
Odlyzko reduction: while the first two steps correctly reduce any subset 
sum instance (a, s) to a corresponding CVP instance (B, t, r ) ,  the last 
step transforming the CVP instance into SVP instance ([Bit], r) (in the 
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£2 norm) is heuristic, and can only be proved to work in a probabilistic 
sense when the density 8 of the subset sum problem is sufficiently small. 

Interestingly, if the max norm llxlloo = maxi lxil is used, then any 
shortest nonzero vector in the lattice (3 .6) yields a solution to the original 
subset sum problem, for any value of the density 8. In fact ,  this proves 
that SVP in the £00 norm is NP-hard. 

THEOREM 3 . 2 GAPSVP1 (i. e . ,  the decision problem associated to solv­
ing SVP exactly} in the £00 norm is NP-complete. 

Proof: The problem is clearly in NP because given an instance (B, r) , 
one can easily guess a short integer vector y with entries bounded by r in 
absolute value, and efficiently check that y belongs to the lattice .C(B) . 
The hardness of GAPSVP 1 immediately follows from the reduction from 
subset sum to CVP given in Theorem 3 . 1  and the reduction from CVP 
to SVP in the infinity norm outlined in the discussion of the Lagarias­
Odlyzko algorithm. 0 

As we will see in the following chapters, proving the NP-hardness of 
SVP in any other norm (and in the Euclidean norm in particular) is a 
much harder task. 

3. SVP is not harder than CVP 

In the previous section we proved the NP-hardness of CVP by re­
duction from subset sum, and we observed how the Lagarias-Odlyzko 
subset sum algorithm can be described as a reduction from subset sum 
to CVP followed by a heuristics to solve CVP using an SVP oracle. 
Reducing CVP to SVP is an interesting problem on its own, as it is 
widely believed that SVP is not harder than CVP , and many even be­
lieve that SVP is strictly easier. Empirical evidence to these beliefs is 
provided by the gap between known hardness results for both problems. 
Whereas it is easy to establish the NP-hardness of CVP (see Section 2) 
and the first proof dates back to (van Emde Boas, 198 1 ), the question 
of whether SVP (in the £2 norm) is NP-hard was open for almost two 
decades , originally conjectured in (van Emde Boas, 1981)  and resolved 
in the affirmative in (Ajtai , 1996), and only for randomized reductions. 
Furthermore, approximating CVP in n-dimensional lattices is known to 
be NP-hard {under deterministic reductions) for any constant approxi­
mation factor or even some slowly increasing function of the dimension 
{see Section 4) , whereas SVP is only known to be NP-hard under ran­
domized reductions for constant approximation factors below V2 (see 
Chapter 4) . 
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Note that for any fp norm (p ;::::: 1 ) ,  SVP can be easily reduced to 
CVP using the NP-hardness of the latter. However, this general NP­
completeness argument produces CVP instances of dimension much big­
ger than the original SVP problem. An interesting question is whether 
a direct reduction is possible that preserves the dimension. More impor­
tantly, the NP-hardness results do not elucidate on the relation between 
approximate SVP and approximate CVP when the approximation fac­
tor is polynomial (or super-polynomial) in the dimension, or the norm 
is not an fp one. We recall that only when the approximation factor is 
almost exponential (2°(n(lglgn)2/1gn)) the two problems are known to be 
solvable in polynomial time. (See Chapter 2.) 

In this section we formalize the intuition that SVP is not a harder 
problem than CVP giving a reduction between the two problems. No­
tice that the direction of this reduction is opposite to the one implicitly 
required by the Lagarias-Odlyzko algorithm. Finding an equally sim­
ple and general reduction from CVP to SVP (as implicitly required in 
(Lagarias and Odlyzko, 1985) ) is an important open problem. 

We show how to reduce the task of finding 1-approximate solutions 
to SVP to the task of finding �-approximate solutions to CVP (in the 
same dimension and rank) . The results described in this section hold for 
any function 'Y (including finding exact solutions 'Y = 1 ,  and polynomial 
approximations r(n) = nc) for any norm (not necessarily an fp one) , 
and for the decision, optimization and search versions . 

3.1 Deterministic reduction 

There are two differences between SVP and CVP . On one hand, SVP 
asks for a lattice point close to the all-zero vector, while CVP asks for a 
lattice point close to an arbitrary target vector; on the other hand, SVP 
disallows the all-zero solution whereas CVP accepts the target vector as 
an admissible solution (provided it belongs to the lattice) . Thus, the two 
problems are not trivially related. In particular ,  the obvious "reduction" 
from SVP to CVP (i .e . , f :  B t-t (B, 0)) does not work since the CVP 
oracle would always return the all-zero vector. Our aim is to prevent 
this possibility. The intuitive idea is the following (see Figure 3 . 1  for 
a 2-dimensional example) . First of all , instead of looking for a lattice 
point close to the all-zero vector, we look for a lattice point close to 
some other lattice vector t E A (e.g. t = hi). Moreover, to avoid t 
being returned as a solution, we run the CVP oracle on a sublattice 
A' C A not containing t. The problem is now how to select a sublattice 
A' C A without removing all A-vectors closest to t. We start with the 
following observation. 
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Figure 3. 1 .  Reducing SVP to  CVP 

PROPOSITION 3 .3 Let v = L:�=l cihi be a shortest nonzero vector in 
A = .C(B) . Then, there exists an i such that Ci is odd. 

Proof: Let v = 2::�1 Cihi be a shortest lattice vector, and assume for 
contradiction that all Ci 's are even. Then ! · v = 2::?=1 1" hi is also a 
nonzero lattice vector and it is strictly shorter than v. D 

We now show how to reduce the shortest vector problem to the solu­
tion of n instances of the closest vector problem. 

The reduction. Given a basis B = [h11 ... , hn], we construct n in­
stances of CVP as follows. The jth instance consists of the basis 

(3.8) 

and the target vector hj· In the search version we use these n instances 
of CVP in n corresponding queries to the CVP 'Y oracle, and output 
the shortest difference returned in all these calls ( i .e .  if Vj is the vector 
returned by the jth call on input (B(j), hj), we return the shortest of 
the vectors v1 - h11 ... , Vn - hn)· In the decision version, we augment 
these queries by the same parameter r given in the GAPSVP-y instance 
(B, r) , and return YES if and only if one of the oracle calls was answered 
by YES. 

The validity of the reduction follows from the correspondence between 
solutions to the input SVP instance and solutions to the CVP instances 
used in the queries . Specifically: 
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PROPOSITION 3 .4 Let v = 2::::�=1 cibi be a lattice vector in C(B) such 
that Cj is odd. Then u = cii1 (2bj) + Li,ei Cibi is a lattice vector in 

C(B (j)) and the distance of u from the target bj equals the length of v. 

Proof: Firstly, note that u E .C(BW) since cit is an integer (as Cj is 
odd) . Secondly, observe that 

c· + 1 u- bj = T2bj + Lcibi- bj = Cjbj + LCibi = v 

i�j i�j 
and the proposition follows. 0 

PROPOSITION 3 . 5  Let u = cj(2bj) + Li�j cibi be a vector in C(B(j)) .  
Then v = (2cj - 1)bj + Li,ei Cibi is a nonzero lattice vector in C(B) 
and the length of v equals the distance of u from the target bj. 

Proof: Firstly, note that v is nonzero since 2cj - 1 is an odd integer. 
Secondly, observe that 

v = (2cj- 1)bj + L cibi = cj(2bj) + L cibi- bj = u- bj. 0 
i#j i�j 

Combining Propositions 3 .3  and 3.4, we conclude that one of the 
CVP-instances has an optimum which is at most the optimum of the 
given SVP-instance. On the other hand, by Proposition 3.5 ,  the op­
timum of each of the CVP-instances is bounded from below by the 
optimum of the given SVP-instance. Details follow. 

THEOREM 3 .6 For every function"' : N 1--t {r E � : r � 1}, SVP-y 
{resp . ,  GAPSVP-y} is  Cook-reducible to CVP-y {resp . ,  GAPCVP-y) · Fur­
thermore, the reduction is non-adaptive2 , and all queries maintain the 
rank of the input instance. 

Proof: We prove the theorem for the decisional (or, more generally, 
promise) version. The search version is analogous .  Let (B, r) be a 
GAPSVP-y instance, and define GAPCVP-y instances (B(j) , bj , r ) for j = 
1, . . . , n, where B(j) is as in (3 .8) . We want to prove that if (B , r) is a 
YES instance, then (B (j), bj, r) is a YES instance for some j = 1 ,  . . . , n ,  

2 A Cook reduction i s  non-adaptive i f  the queries made t o  the oracle d o  not depend o n  the 
answers given by the oracle to previous queries, or, equivalently, all the queries are specified 
in advance before receiving any answer from the oracle. 
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and if (B , r) is a NO instance, then (B(j), bj, r) is a NO instance for all 
j = 1 ,  . . .  , n. 

First assume (B, r) is a YES instance and let v = Ef=1 t;bi be the 
shortest nonzero lattice vector in .C(B) .  We know that llvll � r, and 
(by Proposition 3 .3)  Cj is odd for some j. Then, the vector u as defined 
in Proposition 3 .4 belongs to C(BW) and satisfies llu - bjll = llvll � r, 
proving that (B (j), bj, r) is a YES instance. 

Now assume (B(j), bj, r) is not a NO instance for some j, i .e . , there 
exists a vector u in .C(B(j)) such that llu - bjll � -y(n) · r. Then, the 
vector v defined in Proposition 3 .5  is a nonzero lattice vector in .C(B) 
and satisfies llvll = llu - bjll � -y(n) · r, proving that (B, r) is not a NO 
instance. 0 

3 . 2  Randomized Reduction 

In the previous section we showed that any GAPSVP'Y instance can 
be deterministically reduced to solving n instances of GAPCVP �'' where 
n is the rank of the lattices. A natural question is whether it is pos­
sible to reduce a GAPSVP problem to a single instance of GAPCVP,  
i.e. , if a Karp reduction exists between the two problems. The proof 
of Theorem 3.6 suggests that this is possible for randomized reductions. 
Randomized reductions generalize Karp reductions allowing the mapping 
function f : GAPSVP 'Y --+ GAPCVP 'Y to be computable in polynomial 
time by a probabilistic algorithm. The output of the reduction is only 
required to be correct with sufficiently high probability. Of special in­
terests are probabilistic reductions in which either YES or NO instances 
are always mapped correctly. In (Johnson, 1990) , these are called 

• Unfaithful random reductions (UR-reductions for short) .  These are 
reductions that always map YES instances to YES instances , and map 
NO instances to NO instances with probability p. The reduction is 
called unfaithful because it can produce a YES instance with proba­
bility 1 - p, even if the answer to the original instance was NO. The 
quantity 1 - p (called the soundness error) is required to be at least 
an inverse polynomial in the input length, i .e. , 1 - p 2: 1/nc where n 
is the input size and c is a constant independent of n. 

• Reverse unfaithful random reductions (RUR-reductions for short) .  
These are reductions that map YES instances to YES instances with 
probability p, and always map NO instances to NO instances. The 
quantity 1 - p (called the completeness error) is required to be at 
least an inverse polynomial in the input length, i .e. , 1 - p ;:::: 1 /nc 
where n is the input size and c is a constant independent of n. 
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The Cook reduction in the proof of  Theorem 3 .6 can be transformed 
into a RUR-reduction as follows. On input (B, r ) , choose j E {1, ... , n} 
at random and output (B(j), hj, r ) . We notice that YES instances are 
mapped to YES instances with probability at least 1/n, and NO instances 
are always mapped to NO instances . So, this is a RUR-reduction with 
completeness error 1-1/n. We now show that it i s  possible to do better 
than that , and reduce the completeness error to 1/2. 
THEOREM 3 .  7 For every function 1 : N � { r E lR : r � 1}, there is a 
R UR-reduction SVP-y {resp . ,  GAPSVP-y) to CVP'Y {resp. , GAPCVP'Y) 
that has completeness error bounded above by 1/2. Furthermore, the 
CVP instance produced has the same dimension and rank as the original 
SVP problem. 

Proof: Again, we prove the theorem for the decisional version, as the 
search version is analogous. Let (B, r ) be an SVP instance, where B = 

[hi. ... , b0]. Output CVP instance (B' , b1. r ) where B' = [hi, ... , b�J 
is defined as follows. Let ci = 1 and choose Ci E { 0, 1 }  ( i = 2, ... , n) 
uniformly and independently at random. For all i ,  let hi = hi+ Cih1. 
We want to prove that if (B, r) is a YES instance then (B' , b1, r) is a YES 
instance with probability at least 1/2, while if (B, r ) is a NO instance 
then (B' ,  b1, r) is always a NO instance. Notice that .C(B') is a sublattice 
of .C(B) and that b1 is not in .C(B' ) .  

Let us  start with the NO case. Assume (B' , b1, r ) i s  not a NO instance. 
By definition, there exists a vector u in .C(B') such that ll u - bill ::; "((n) · r .  Since .C(B') is a sublattice of .C(B) and h1 is not in .C(B' ) ,  
v = u - b1 i s  a nonzero vector in  .C(B) of  length at most 1(n) · r ,  
proving that (B, r)  i s  not a NO instance. 

Now assume (B , r ) is a YES instance and let v = L�=I Xi hi be the 
shortest vector in .C(B). From Proposition 3 .4 ,  Xj is odd for some j. Let 
a = XI + 1 - Li>I CiXi. Notice that if Xi is even for all i > 1, then XI 
must be odd and a is even. On the other hand, if Xi is odd for some 
i > 1 then a is even with probability 1/2. In both cases, with probability 
at least 1/2, a is even and u = �hi+ Li>l Xibi is a lattice vector in 
.C(B') . Finally notice that 

U- b1 = (ab1 + � Xi(bi + Cibl)) - b1 
z>I 

= (xi- L cixi) h1 + Lxibi + LXiCibi = v 
i> I i>l i>l 

and therefore llu- btl! ::; r ,  proving that {B', b1 , r) is a YES instance. 
0 
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4. Inapproximability of CVP 

The NP-hardness of CVP shows that efficient algorithms to solve this 
problem exactly are unlikely to exist . However, the hardness result pre­
sented in Section 2 does not say much about the existence of efficient 
algorithms to find approximate solutions. In this section we show that 
even if one allows for solutions which are within a small factor from the 
optimal, CVP is still hard for NP . As in section 2, the inapproximability 
results presented in this section hold for any ip norm. In Subsection 4. 1 
we prove that for any fixed p, G APCVP 7 is hard for some poly loga­
rithmic function 1(n) = O( (log n) c) , where c is a constant independent 
of n. Then, in Subsection 4.2 we extend the result to any polyloga­
rithmic factor. Under the assumption that NP is not contained in QP 
(quasi polynomial time, i .e. , the class of decision problems solvable in 
time 2Iog c n) , Subsection 4.2 also shows that CVP cannot be approxi­
mated within even higher factors 21091-•n (for any fixed E > 0) . These 
factors, although asymptotically smaller than any polynomial nc, are 
bigger than any polylogarithmic function and they are sometime called 
"quasi-polynomial" approximation factors. 

4.1 Polylogarithmic factor 

In this section we prove that for any p 2: 1, there exists a polyloga­
rithmic function 1 = O(log11P n) such that GAPCVP 7 in the ip norm is 
NP-hard. The proof is by reduction from the following covering problem. 

DEFINITION 3.2 (SET COVER) For any approximation factor 'Y 2: 1 , 
SETCOVER-y is the following promise problem. Instances are pairs (S, r) 
where S = {81 , . . . , Sn} is a collection of subsets o f  some set U and 
r is an integer. (Without loss of generality one can assume that U = 

UxES X.) Moreover, 

• ( S, r) is a YES instance if S contains an exact cover of size r ,  i. e. , 
a sub-collection S' C S of size IS'I = r such that UxES' X = U and 
the elements of S' are pairwise dis joint. 

• ( S, r) is a NO instance if S does not contain any cover of size bounded 
by 1r, i. e . , for any sub -collection S' C S of size IS' I ::; /T, set U is 
not contained in UxES' X. 

Notice that SETCOVER as defined above is a promise problem, even 
for 'Y = 1 .  In particular, since YES instances are required to contain an 
exact cover, if S contains a cover of size r but no exact covers of that size, 
then (S, r) is neither a YES nor a NO instance. SETCOVER-y is known 
to be NP-hard for any constant approximation factor 'Y (Bellare et al. ,  
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1993) . In fact ,  results in (Raz and Safra, 1997) imply that SETCOVER is 
NP-hard to approximate even within some O(log n) factor.3 We reduce 
SETCOVERo( Iogn) to GAPCVP O(IogiiPn) in the fp norm. It is useful to 
first reduce SETCOVER..y to a binary variant of GAPCVP defined below. 

DEFINITION 3.3 The promise problem BINCVP 1 is defined as follows. 
Instances are triples (B , t, r) where B E zmxn is a lattice basis, t E zm 
is a vector and r is a positive integer such that 

• (B, t ,r) is a YES instance if there exists a vector z E {0, 1}n such 
that t - Bz is a 0-1 vector containing at most r ones. 

• (B, t, r) is a NO instance if for all z E zn and all w E Z \ { 0}, vector 
wt- Bz has more than 1(m) · r nonzero entries. 

There are several differences between BINCVP and the standard closest 
vector problem. 

1 First of all , for YES instances the lattice vector close to the target must 
be one of the vertices of the fundamental parallelepiped associated to 
the basis. Moreover, the difference between this vector and the target 
must be a binary vector, so that the distance is uniformly distributed 
across many different coordinates. 

2 For NO instances, we require not only that the target t be far from 
the lattice, but also all its nonzero integer multiples wt should be far 
away. Moreover, the target (or any of its nonzero multiples) should 
differ from any lattice points in many coordinates .  

3 Finally, for technical reasons, the approximation factor 1 is expressed 
as a function of the dimension of the lattice, instead of its rank. No­
tice that the lattice in BINCVP is never full rank because otherwise 
there are integer multiples oft arbitrarily close to the lattice. 

It is clear that BINCVP is just a special case of G APCVP,  and there 
is a trivial reduction from BINCVP 1 to GAPCVP 'Y' in the fp norm with 
1' 

= iff. So, proving the hardness of BINCVP immediately implies 
the hardness of G APCVP in any fp norm. We prove the hardness of 
BINCVP.  

3Set Cover inapproximability results are usually formulated expressing the approximation 
factor 1 as a function of the size of the underlying set lUI· However, the Set Cover instances 
produced by the reductions always have the property that lUI and n = lSI are polynomially 
related. Therefore, if Set Cover is NP-hard for some logarithmic function O(log jUI), then it 
is also hard for 1 = O(log m) . 
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THEOREM 3.8 The promise problem BINCVP 1 is NP-hard for some 
'Y = O(logm) , where m is the dimension of the lattice. 

Proof: The proof is by reduction from SETCOVER-y . Let (S, r ) be an 
instance of SETCOVER-y, and let n and u be the size of S and U = 
UxES X respectively. Without loss of generality, we assume that U is 
the set {1, ... , u}. Let 8 1 , . . .  , Sn be the elements of S. Any element 
Si E S ( i = 1 ,  ... , n) can be represented as a boolean vector Si E { 0, 1}  u 

such that the jth coordinate of Si equals 1 if and only if j E Si. We 
use vectors Si to form an u x n boolean matrix S = [st, ... ,sn ] · Let 
k = r "(r + 11 ' and define basis B and target vector t as follows: 

(3.9) 

where lk ® S is the ku x n matrix obtained stacking k copies of S on 
top of each other. The output of the reduction is the triple (B, t, r). We 
want to prove that the reduction is correct, i .e . ,  if (S, r) is a YES instance 
then (B, t, r) is a YES instance, while if (B , t , r) is not a NO instance, 
then (S, r) is not a NO instance. 

First assume (S, r) is a YES instance, i .e . ,  there exists an exact cover 
C C S of size ICI = r. Let z E {0, 1}n the boolean vector associated to 
the cover C, i .e . , Zi = 1 if and only if Si E C. Then, since each element of 
U belongs to one and only one set Si E C, we have Sz = 1, and therefore 
t- Bz = [O�k' zTjT is a boolean vector containing exactly r ones. This 
proves that (B, t, r) is a YES instance. 

Now assume that (B, t, r) is not a NO instance, i .e. , there exists a 
lattice vector Bz and a nonzero multiple wt such that Bz and wt differ 
in at most "(T coordinates. Let C be the set of all Si such that Zi =f 0. We 
claim that C is a small cover. First assume for contradiction that C does 
not cover U, and let j E U be an index such that j ¢ U x EC X. Then 
the iu + j coordinate of wt - Bz equals w for all i = 0, ... , k - 1. This 
contradicts the assumption that wt - Bz has at most "(r < k nonzero 
coordinates, and proves that C is a cover. Moreover, C has size less than 
"(T because the last n coordinates of wt - Bz equal z, and the size of C 
is equal to the number of nonzero entries of vector z. So, C is a cover of 
size less than "(t, and therefore (S, r) is not a NO instance. 

This proves that BINCVP1 is NP-hard for some 'Y = O(logm) . Fi­
nally, we observe that the dimension of the lattice is m = ku + n is 
polynomially related to m, therefore 'Y = O(logm) . 0 

As a corollary, we immediately get the inapproximability of CVP in 
the fp norm within some poly logarithmic factor 'Y = O(log1 1P n). 
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CoROLLARY 3 . 9  For any p � 1 there exists a constant c such that the 
promise problem G APCVP 1 is NP -hard for 1 = clog1/P n, where n is 
the rank of the lattice. 

Proof: The proof is by reduction from BINCVP 1. Given instance 
(B , t ,  r) , the reduction outputs (B, t, r') , where r' is a rational between 
\fi and {}'r+T. 0 

4.2 Larger factors 

For any fp norm, we proved that CVP is NP-hard to approximate 
within some polylogarithmic factor O(log1/P n) . In fact ,  it is possible to 
prove the hardness of CVP in the fp norm for any polylogarithmic fac­
tor O(logc n) , and beyond. In (Dinur et al. ,  1998; Dinur et al. ,  1999) , it 
is proved that CVP is NP-hard to approximate within 20(Iog n/ log log n) . 
Notice that these factors are asymptotically larger than any polylog­
arithmic function of n, but at the same time they are smaller than 
any polynomial nl . Still, hardness results are often interpreted (Arora 
et al. ,  1996) as inapproximability within some small polynomial factor 
nl. Proofs in (Dinur et al . ,  1998; Dinur et al. ,  1999) are rather complex, 
and they heavily rely on the machinery of probabilistically checkable 
proofs .  In this section we present some general amplification techniques 
that can be used to achieve almost the same results as in (Dinur et al. , 
1998) ,  but in a simpler way. In particular, we show that approximating 
CVP within any poly logarithmic function loge n is NP-hard, and approx­
imating CVP within "almost polynomial" functions 2°(log l-• n) is quasi 
NP-hard, i .e. , no (quasi) polynomial time algorithm exists to approxi­
mate CVP within 2°(Iogt-• n) ,  unless NP is  contained in QP . Here QP 
is the class of promise problems that can be solved in time 0(210g cn ) for 
some c independent of n. 

The idea is to start from a BrNCVP 1 problem with a certain gap 
1 between the YES and NO instances, and transform it into another 
BrNCVP instance with a larger gap. We do not know how to perform 
this amplification operation directly on GAPCVP, and this is one of 
the reasons we introduced BINCVP as an intermediate problem in the 
previous subsection. 

The amplification technique uses the tensor product operation. Given 
two vectors v E !Rn and w E !Rm, the tensor product of v and t is the 
n · m-dimensional vector v ® w obtained replacing each entry Vi of v 

with a vector Vi· w. More formally, for all i = 1, . . .  , n and j = 1 ,  . . .  , m, 
the (i- 1 )m + j coordinate of v ® w is Vi · Wj· The tensor product 
operation is extended to matrices in the obvious way: Given matrix 
V - [ ] E ITDmxn d W - [ ] ITDm' xn' th . 

- v1, ... , vm JN. an - w1, ... , wm' E JN. , e1r 
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tensor product is the (m · m') x (n · n') matrix obtained replacing each 
entry Vi,j in V with matrix Vi,j W. Notice that for any two lattice bases 
V and W, the lattice generated by V ® W depends only on C(V) and 
C(W) , and not on the particular choice of basis for the original lattices. 
So, we can talk of the tensor product of two lattices. It is also important 
to notice that not every lattice vector in C(V ® W) can be expressed as 
v ® w, for v E C(V ) and w E C(W) . 

The amplification technique for B INCVP is described in the following 
lemma. 

LEMMA 3 .10 Let (B, t, r) be an instance of B INCVP1, and define 

B' = [B ® tjl ® B] , t' = t ® t, {3.10) 
Then, function f : (B, t, r) H (B' , t' , r' ) is a reduction from B INCVP 1 
to B INCVP 12 . 

Proof: Assume that (B, t ,  r) is a YES instance, i .e . , there exists a 0-1 
vector z such that t - Bz is a boolean vector with at most r ones. Let 

z' = [ (y - B
z
z) ® z) ] · 

Clearly, z' is a boolean vector too. Moreover, 

t' - B'z' = t ® t - (Bz) ® t - (t- Bz) ® (Bz) 
= (t - Bz) ® t - (t - Bz) ® (Bz) 
= (t - Bz) ® (t- Bz) 

is a 0-1 vector with exactly r' = r2 ones. This proves that (B', t', r') is 
a YES instance. 

Now assume that (B , t, r) is a NO instance and let wt' be any nonzero 
multiple of t' . We want to prove that wt' differs from any lattice vector 
in C(B') in at least "(2r2 positions. Let m and n be the dimension 
and rank of C(B) and consider a generic lattice vector B'x where x = 

[xif, xf, . . .  , x�JT is the concatenation of m + 1 n-dimensional integer 
vectors. Then, 

m 
wt' - B'x = wt ®t - (Bxo ) ®t - I: ei ®Bxi (3 . 1 1 ) 

i=l 

= (wt - (Bxo ) )  ® t -
[ B� 1 ] 

(3 . 12)  
Bxm 
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(3 . 13) 

(3 . 14) 
where Wi is the ith coordinate of (wt - (Bxo ) ) .  Since w is a nonzero 
integer, then (wt - (Bxo ) )  has more than 1r nonzero entries Wi i= 0. 
Similarly, for each Wi i= 0,  vector Wit - Bxi has more than 1r nonzero 
entries. It follows that the number of nonzero entries in wt' - B'x bigger 
than ('Yr ) 2 = 12 r' . 0 

By repeated application of the lemma we obtain the following corol­
lary. 

COROLLARY 3 . 1 1  For any constant c > 0 and '"Y(n) = loge n, BINCVP7 
and GAPCVP7 in any lp norm are NP-hard. 

Proof: We know from Theorem 3 .8  that there exists a co >  0 such that 
BINCVP "Yo (m) is NP-hard for 'Yo (m) = co log m. Let c be an arbitrary 
constant and let c' > c. We show that there exists a c1 > 0 such 
that BINCVP "Yo (m) reduces to BINCVP 71 (m' ) with 'Yl (m') = c1 loge

' 
m. 

Since loge m' < c1 loge' m' for all sufficiently large m' , it follows that 
BINCVP7' (m' ) is NP-hard for 'Y' (m') = loge m' . Finally, we notice that 
BINCVP 7 immediately reduces to GAPCVP 71;p in the lp norm. So, also 
GAPCVP7 is NP-hard for any polylogarithmic function '"'f(m) = logem. 

Let (B,  t ,  r ) be an instance of BINCVP "Yo (m) , and let m be the dimen­
sion of .C(B) .  Apply Lemma 3 . 10  k = log2 c' times to (B , t, r ) to obtain 
a new instance (B' , t' ,  r' ) . The dimension of .C(B') is m' = m2k = me' , 
so, the reduction can be computed in polynomial time. Moreover, the 
gap between YES and NO instances is (co log m)2k = cg' loge' m. If we 
express this gap as a function of the dimension of the new latt ice we get 
'Yl (m' ) = (co/c' )e' loge

' 
m' = c1 logc' m' ,  for c1 = (co /c' ) c' .  0 

If the reduction from Lemma 3 . 10  is applied more than a constant 
number of times , then one obtains quasi NP-hardness results for even 
larger inapproximability factors , as shown below. 

COROLLARY 3 . 1 2 For any constant E > 0, and for any p ?  1, BINCVP7 
and G APCVP "Y in the lp norm are quasi NP-hard to approximate within 
'Y(m) = 2log l- • m . 

Proof: Similar to the previous corollary, with Lemma 3 . 10  applied k = 
( 1 /�:) log log m times. The resulting lattice has dimension m' = m2k = 
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2 (Iogm)< l+• l/• , so it can be computed in quasi polynomial time. Moreover 
the gap between YES and NO instances is 

{co log m) (logm) l /• > 2 (logm) l /• 

for all sufficiently large m. Substituting m = 2(Iogm' )• / ( I+• > we get inap­
proximability factor 1' (m') = 2 (Iogm' ) 1 / ( 1+• > . 0 

5 .  CVP with preprocessing 

In this section we consider a different variant of CVP . Instead of 
allowing for approximate solutions, or considering algorithms that run 
in quasi-polynomial time, we give unlimited computational power to the 
CVP solving algorithms, but only in an initial stage of the computation, 
during which only the lattice is known. In other words, we allow the 
lattice .C(B) to be arbitrarily preprocessed. Then, we ask for a CVP 
algorithm that using the preprocessed lattice description, efficiently finds 
the lattice vector closest to any given target t .  

This model i s  motivated by the applications of  lattices in coding 
theory and cryptography, like vector quantization, communication over 
band limited channels and encryption. In these applications, the lattice 
A usually represents the code or encryption function, while the target 
t is the received message. In this context the closest vector problem 
corresponds to the decoding or decryption process . Notice that the lat­
t ice A is usually fixed, and it is known long before transmission occurs. 
Therefore it makes sense to consider a variant of the closest vector prob­
lem in which the lattice is known in advance, and only the target vector 
t is specified as input to the problem. Moreover, essentially all known 
techniques to find (possibly approximate) solutions to the closest vector 
problem work as follows: { 1 )  first a computationally intensive algorithm 
is run on the lattice to obtain some information useful for decoding ( usu­
ally a reduced basis or a trellis) ; {2 ) then this information is used to solve 
CVP using some simple procedure (some form of rounding (Babai, 1 986) 
for methods based on lattice reduction, or the Viterbi algorithm (Forney 
Jr. ,  1 973) for trellis based decoding) . Trellis based decoding is very ef­
ficient , provided that a small trellis for the lattice exists. Unfortunately 
it has been demonstrated that minimal trellis size can grow exponen­
tially with the dimension of the lattice (Forney Jr. , 1 994; Tarokh and 
Blake, 1 996a; Tarokh and Blake, 1996b) . Here we concentrate on meth­
ods where the result of preprocessing is always polynomially bounded in 
the size of the lattice description. Essentially all the preprocessing meth­
ods whose output is guaranteed to be small perform some sort of basis 
reduction, i .e . , given any basis for the lattice, they produce a new basis 
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consisting of short vectors . In certain cases the short basis can be com­
puted in polynomial time, resulting in a polynomial time approximation 
algorithm for the closest vector problem. This is the case for example in 
the nearest plane algorithm of Chapter 2 , LLL reduced bases are used. 
In other cases it is not known how to efficiently compute the good basis, 
but once this good basis is found, a much better approximation to the 
closest vector can be found in polynomial time. For example {Lagarias 
et al . ,  1 990) shows how to achieve a O(nl .5) approximation factor using 
KZ reduced basis4 (see also (Kannan, 1987a) ) .  The fastest currently 
known algorithms to solve the closest vector problem (Banihashemi and 
Khandani, 1998; Blamer, 2000) also use KZ or dual KZ reduced bases. 
However, even if the (dual) KZ reduced basis is given, the running time 
of the algorithm remains exponential in the rank of the lattice. 

One natural question is whether it is possible to find optimal solutions 
to the closest vector problem (with preprocessing) in polynomial t ime, 
possibly using a different notion of reduced basis, or more generally using 
some other form of preprocessing with polynomially bounded output . 
In other words, we are asking if for every lattice A there exists some 
polynomial amount of information that makes the closest vector problem 
in A easily solvable. Formally, we define the closest vector problem with 
preprocessing as follows. 

DEFINITION 3 . 4  (CVPP) The closest vector problem with preprocess­
ing asks for a function 1r {the preprocessing function) and an algorithm 
1J {the decoding algorithm) with the following properties: 

• On input a lattice basis B, 1r (B ) returns a new description L of the 
lattice .C(B) whose size is polynomially related to the size of B ,  i. e. 
there exists a constant c such that size( L) < size(B )c for all bases B 
and L = 1r(B) . 

• Given L and a target vector t ,  1J(L, t) computes a lattice point Bx 
closest to t. In the decisional version of CVPP ,  1J is also given a 
distance r ,  and 1J(L,  t, r) decides whether there exists a lattice vector 
Bx such that I IBx - til � r .  

As for the standard CVP, the search and decision versions of CVPP 
are equivalent : any algorithm to solve the search version also solves 

4 The result in (Lagarias et a! .,  1990) is usually presented as a coNP O(n L 5 )  approximation 
result for the closest vector problem, meaning that the KZ reduced basis constitutes an 
NP-proof that the target vector is not too close to the lattice. The O(nl . 5 )  approximation 
factor has been subsequently improved to O(n) in (Banaszczyk, 1 993) using techniques from 
harmonic analysis. 
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the decision version, and the search version can be reduced to the de­
cision version evaluating the preprocessing function 1r on all lattices 
{2ibj , bj+1 , • • .  , bn ) with i bounded by a polynomial in the size of the 
input basis, and then using the same reduction as in Section 1 .  

Notice that no complexity assumption i s  made on  the preprocessing 
function 1r (other than the restriction on the size of the output) .  One 
may think of 1r as a preprocessing algorithm with unlimited computa­
tional resources. However, only the running of V is used to measure the 
complexity of the decoding process, i .e. , we say that CVPP is solvable 
in polynomial time if there exists a function 1r and a polynomial time 
algorithm D such that V(1r(B ) ,  t, r) solves the CVP instance {B, t, r) . 

In this section we show that CVPP cannot be solved in polynomial 
time, under standard complexity assumptions. Namely, we give a reduc­
tion from an NP-hard problem H to CVP with the property that any H 
instance M is mapped to a CVP instance (B,  t ,  r) where B is a lattice 
basis that depends only on the size of M. It immediately follows that if 
CVPP has a polynomial time solution, then the NP-hard problem H is 
solvable in P /poly,  and consequently NP � P /poly. 

THEOREM 3 . 1 3  CVPP has no polynomial time solution, unless NP C 
P /poly. In particular, there exists a reduction from an NP-complete 
problem H to CVP such that any H instance M is mapped to a CVP 
instance (B , t , r) where the lattice B depends only on the size of M. 

In fact, Theorem 3 . 13  immediately follows from the reduction from SS 
to CVP given in the proof of  Theorem 3. 1 ,  and the hardness of  subset 
sum with preprocessing from {Lobstein, 1990) . Specifically, (Lobstein, 
1990) proves that there exists a reduction from an NP-complete prob­
lem {3-dimensional matching, 3DM)  to subset sum (SS) , such that 3DM 
instance M i s  mapped t o  a S S  instance (a, s) where the subset sum co­
efficients a depend only on the size of M. Moreover, the NP-hardness 
proof from Theorem 3 . 1  reduces a subset sum instance {a, s) to a CVP 
instance (B,  t , r) with the property that the lattice basis B only de­
pends on the subset sum coefficients a. Therefore, combining the two 
reductions, we get a reduction from an NP-complete problem to CVP 
as claimed in Theorem 3 . 13 .  

For completeness we now give a direct reduction from an NP-complete 
problem (X3C ,  see below) to CVP satisfying the conditions of the the­
orem. 

DEFINITION 3 . 5  Exact cover by 3-element sets (X3C} is the following 
problem. Given a finite set M and a collection of three element subsets 
C, decide if there exists a sub-collection C' � C such that each element 
of M is contained in exactly one element of C' . 
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Proof: The reduction essentially combines the ideas from (Lobstein, 
1990) and the reduction from subset sum presented in Theorem 3 . 1 ,  
but without the complications of using subset sum as an intermediate 
problem. We give a reduction from X3C to to CVP with the property 
that the lattice in the CVP instance depends only on the size of the 
original X3C problem. Let (M, C) be an instance of X3C where M 
is a set of size m = IM I and C is a collection of subsets of M, each 
containing exactly three elements. Assume, without loss of generality, 
that M = { 1 ,  . . .  , m} . We define a lattice that depends only on m, 
and then show how to encode C in the target vector. Let n = (';) and 
consider them x n matrix T E {0, 1 }mxn whose columns are all possible 
m-dimensional binary vectors containing exactly three ones. Notice that 
the size of T is polynomial in m. We identify the columns of T with all 
the 3-element subsets of M, and X3C instances C with the corresponding 
characteristic vectors c E {0 ,  l }n . The output of the reduction is 

r = ll cll . (3 . 15 )  

I t  i s  easy to see that X3C instance c has a solution if  and only if  CVP 
instance (B, t ,  r) has a solution. Moreover, the lattice C(B) depends 
only on the dimension m of the original 3XC instance. 0 

6.  Notes 

The NP-hardness of CVP (in any £p norm) and SVP (in the £00 
norm) was originally proved in (van Emde Boas, 1981 ) .  The proof 
presented in Section 2 is from (Micciancio, 2001a) . The hardness of 
approximating CVP within any constant factor, and the amplification 
technique described in 4 are due to (Arora et al. ,  1997) . Stronger in­
approximability results for CVP are given in (Dinur et al. ,  1 998; Dinur 
et al. ,  1 999) , where CVP is proved NP-hard to approximate within 'Y = 
20(log n/ Iog log n) . Unfortunately, the proofs in (Dinur et al. ,  1 998; Dinur 
et al. ,  1999) heavily rely on the complex machinery of Probabilistically 
Checkable Proofs (PCP) whose treatment is beyond the scope of this 
book. Also the results in (Arora et al . ,  1 997) ultimately rely on PCP, 
but in (Arora et al. ,  1997) the complexity of PCP techniques is hid­
den in the proof of inapproximability of Set Cover. Notice that the 
inapproximability factors (Dinur et al. ,  1998; Dinur et al. ,  1999) are 
asymptotically bigger than any poly logarithmic function loge n, but at 
the same time asymptotically smaller than any inverse polynomial 1/nc. 
In (Arora et al . ,  1996) it is argued that inapproximability within these 
factors can be interpreted as inapproximability within some small poly-
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nomial nt . Still, proving that CVP is NP-hard to approximate within a 
factor nt for some € bounded away from 0 is a major open problem. 

The problem of reducing SVP to CVP was explicitly posed by (Babai, 
1986) . The question asked by Babai is whether one can reduce SVP-y 
to CVP -y' , for approximation factors such that SVP 'Y is not (known 
to be) solvable in polynomial time (e.g. , 'Y = 2Vn) ,  and CVP-y' is not 
(known to be) NP-hard (e.g. , 'Y' 

= n) . This is the question answered, in 
a very strong sense, in Section 3: there is Cook reduction from SVP to 
CVP that preserves the approximation factor and the rank of the lattice. 
The reduction presented in Section 3 is from (Goldreich et al . ,  1 999) , 
which also proves analogous results for coding problems. A problem left 
open in (Goldreich et al. ,  1999) is whether it is possible to give a Karp 
reduction from SVP 'Y to CVP -y · The problem is of interest because 
it would allow to transform hard SVP distributions (as those built in 
(Ajtai , 1996) and discussed in Chapter 8) into hard CVP distributions, 
with potential applications to cryptography. (An explicit construction 
of a hard CVP distribution has recently been given in (Cai, 200 1 ) ,  but 
the proof is rather complex. A Karp reduction from SVP to CVP 
would give a much simpler answer to the same problem, possibly with a 
different distribution. )  The problem of reducing CVP to SVP has also 
been considered, and it is discussed in Chapter 4. 

The hardness proof for the closest vector problem with preprocessing 
(CVPP )  in Section 5 is from (Micciancio, 2001a) . Similar results for 
decoding linear codes and the subset sum problems were already proved 
in (Bruck and Naor, 1990; Lobstein, 1 990) . Both CVP and the decod­
ing problem for linear codes are known to be NP-hard not only their 
exact version, but also when constant (or even nO( l/ Iog log n) ) approxi­
mation factors are allowed. A natural question, posed in (Micciancio, 
2001a) ,  is if lattice and coding problems with preprocessing are hard to 
approximate as well . Recently, (Feige and Micciancio, 2001 )  gave a first 
answer to this question, showing that CVP in the fp norm is NP-hard to 
approximate within any factor 'Y < lf573. Extending this result to arbi­
trary constants, and possibly almost polynomial factors , is an interesting 
question. 
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Chapter 4 

SHORTEST VECTOR PROBLEM 

In this chapter we study the hardness of approximating the shortest 
vector problem (SVP) .  Recall that in SVP one is given a matrix B E qnxn , and the goal is to find the shortest nonzero vector in the lattice 
generated by B. In Chapter 3 we have already studied another important 
algorithmic problem on lattices : the closest vector problem (CVP) .  In 
CVP , in addition to the lattice basis B E qnxn , one is given a target 
vector t E qn ,  and the goal is to find the lattice point in .C(B) closest 
to t. In Chapter 3 we showed that the NP-hardness of CVP can be 
easily established by reduction from subset sum (Theorem 3 . 1 ) ,  and even 
approximating CVP within any constant or "almost polynomial" factors 
is hard for NP. We also observed that the reduction from subset sum to 
CVP can be easily adapted to prove that SVP in the £00 norm is NP­
hard (Theorem 3 .2) . Unfortunately, that simple reduction does not work 
for any other norm. In this chapter, we investigate the computational 
complexity of SVP in any fp norm other than £00, with special attention 
to the Euclidean norm £2 . In the rest of this chapter the £2 norm is 
assumed, unless explicitly stated otherwise. 

Despite the similarities between SVP and CVP , proving that SVP 
is  NP-hard seems a much harder task, and to date SVP (even in its 
exact version) is known to be hard for NP only under randomized or 
non-uniform reductions. Proving such hardness results for SVP is the 
main goal of this chapter. In particular, we show that for any p � 1 ,  
GAPSVP1 in the fp norm is NP-hard (under randomized reductions, see 
Section 3) for any approximation factor 'Y < \i'2. As in Theorem 3 .2 ,  
the proof is by reduction from (a variant of) CVP.  Therefore, the re­
duction can be considered a "homogenization" process, in which the 
inhomogeneous problem (CVP) is reduced to its homogeneous counter-
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Figure 4 . 1 .  The shortest vector 2b1 + 2b:J - t in the lattice generated by [h1 , h:J , t J 
corresponds to the lattice vector in .C(b1 , b2 ) closest to t .  

part (SVP ) . This approach is  not new in the study of the computational 
complexity of lattice problems. For example (Kannan, 1987b) reduces 
approximating CVP within a factor 0( yn) to computing exact solu­
tions to SVP.  In fact ,  it is not necessary to solve SVP exactly in order 
to approximate CVP within 0( yn) factors. In Section 1 we extend 
Kannan's homogenization technique to show that approximating CVP 
within some 0( yn) factor can be reduced to approximating SVP within 
any constant factor 'Y < 2. Unfortunately, as we will see in Chapter 9, 
CVP is not likely to be NP-hard for approximation factors bigger than 
O (yn/ log n) . Therefore, reductions like the one presented in Section 1 ,  
are unlikely t o  be  useful t o  prove the NP-hardness of SVP .  In  Sec­
tion 2 we describe a different homogenization technique due to Ajtai 
and Micciancio and prove that SVP is NP-hard to approximate within 
any constant factor less than \1'2, by reduction from a variant of CVP.  

1 .  Kannan 's homogenization technique 

One simple approach to reducing the closest vector problem to the 
shortest vector problem is as follows. Assume we want to find the point 
in a lattice .C(B) (approximately) closest to some target vector t. We can 
look instead for the shortest nonzero vector in the lattice generated by 
the matrix [B it] . If the shortest vector in .C([B it] ) is of the form Bx - t 
then Bx is necessarily the lattice vector in .C(B) closest to the target t. 
See, for example, Figure 4 . 1 .  The lattice generated by vectors b1 and 
b2 is the set of intersection points of the grid displayed in the picture. 
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We want to  find the intersection point closest to  vector t .  Consider the 
lattice generated by [b1 ,  b2 , t] . This is the set of all black dots in the 
picture. A shortest nonzero vector in this lattice is given by 2bl +2b2 -t .  
This vector clearly corresponds t o  the point 2b1 + 2b2 i n  the original 
lattice .C(B) closest to target t .  Unfortunately, if the shortest vector in 
.C( [B it] ) is not of the form Bx ± t this simple reduction does not work. 
In the rest of this section we denote by A the length of the shortest vector 
in the original lattice .C(B) and by J.L the distance of t from .C(B ) .  There 
are two different ways in which the above reduction can fail . 

• First , if A � J.L ( i .e . , the lattice .C(B) contains vectors as short as the 
distance of the target t from the lattice) then the shortest vector in 
the lattice generated by [B it] can be a vector Bx from the original 
lattice. For example, in Figure 4.2 ,  basis vectors b1 and b2 generate 
a lattice with shortest vector b1 - 2b2 . Since the distance of target 
t from lattice .C(B) is more than l l b1 - 2b2 l l ,  the shortest vector in 
the lattice generated by [b1 , b2 , t] is still b1 - 2b2 . 

• Second, even if J.L < A ,  it is still possible that the shortest vector in 
.C( [B it] ) is of the form Bx + wt for some nonzero integer w "I ±1 .  In 
this case, the shortest vector corresponds to a vector in .C{B) close 
to a (non-unitary) multiple of t. For example, in Figure 4 .3 the 
lattice point in .C(b1 , b2 ) closest to t is b1 . However, 3t is strictly 
closer to the lattice than the original target vector t. So, shortest 
nonzero vector 2bl + b2 - 3t in .C( [b1 ,  b2 , t] ) yields ·a lattice point 
2bl + b2 E .C(B) closest to 3t . 

In both cases a solution vector to the SVP instance [B it] does not 
seem to help to find lattice vectors in .C(B) close to the target t. A 
possible way to address these problems is to embed the vectors [B It] in 
a higher dimensional space and add to t a component orthogonal to B. 
In  other words, we consider the lattice generated by the matrix 

B' = [ � ! ] (4. 1 )  

where c is an appropriately chosen rational number. I n  fact ,  this method 
has been used as a heuristics in many cryptanalysis papers and has been 
reported to be particularly effective when the distance J.L is small com­
pared to the minimum distance A of the lattice. Notice that if B is a 
basis for .C(B) then the columns of matrix B' are linearly independent , 
i .e . , B' is a basis for .C(B') . (This might not be true of [B it ] ,  which gen­
erates .C( [B iy] ) but is not usually a basis . ) If c is sufficiently large, then 
the shortest vector in the new lattice .C(B') cannot use the last column 



72 COMPLEXITY OF LATTICE PROBLEMS 

. . . . . • • . • • .  • • • . • . "•""' ·.·.-:;;;:::: . . . . • . • . . .  ·
.
·
.
·
.
·
.
·
.
·.·.

·.·.·.·.·;;:.-.·.-+ ... ·-·:::::::::::: • • • . . . . •  · •
.

•
. 
·
. ·. ·. ·. ·. ·. ·. : : : : s ••  · · · · · · · · · · · · · · 

• · · · · · 
· · · · · · · · · · · · 

• • 
· · · · · 

· · · · · · - - - · · · 
. .  : : : : : : : : : : : : : :  '". . . ,  :: ·.:: :·::::: . . . . . . . . .  ·::::::::::::.·.·--·--::::::::: _. _.:: . . . . .  : :::: : : : : : : : : : : : :  " .. 

· · · · · · · · · · · 
. · · · · · · · · . · · · · · · · · · · · · · · ·

· · · . · · · · · · · · · · · · · · ·
· 

. . . . . . b 2b · · · · · · · · · · · · · · · · b 

. . . .  · · · : :�::;:::" .:::·.·. :·::.·.·:::.
·
.
· 
. . . . . . . . . . . . .  ·:::::.·-·--·--::::::::: :::::: . . . . . .  · · · · · · · · · · · · · .  1 

• · · · · · · · · · · 

· · · · · · · · · · 
· · · · · · · · · · · · �

· · · · · · · · · · · · · ·
· · :

.
��- - - · · · 

· · · · · · · · · · · · 

· · · · · 
- · · · · · · 

• • · · · · · · · · · · · · · · · · · - · · · · · · · · · · 
· · · · · · · · · · · · 

Figure 4 . 2. The shortest vector b1 - 2b:� in the lattice generated by [h1 , h:� , t] belongs 
to the lattice C(b1 , b:� } .  
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Figure 4 . 3. The shortest vector 2bJ + b2 - 3t in the lattice generated by [b 1 , b2 ,  t] 
correspond to the vector in C(b1 , b2 } closest to 3t .  

too many times. In particular if c > >..j2, then the last column can be 
used at most once. This idea is formalized in (Kannan, 1 987b) where c 
is set to the value 0.51>.. . (Notice that >.. can be computed applying the 
SVP oracle to the original lattice . )  Still, if >.. < J J.L2 + c2 the shortest 
vector in C(B')  will be a vector Bx from the original lattice C(B) ,  giv­
ing no information about the vector in C(B) closest to t .  Kannan then 
suggests to project B and t to the hyperplane orthogonal to the shortest 
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vector of .C(B) ,  recursively solve the lower dimensional CVP problem, 
and lift the (n - I )-dimensional solution to a solution for the original 
problem. Since >. is not much bigger than J-L, the error introduced by the 
project and lift operations can be bounded as a function of J-L· In par­
ticular ,  Kannan shows that CVP can be approximated within a factor 
.;nT2 making O(n) calls to an oracle that solves SVP exactly. 

In fact ,  it is not necessary to haw� an oracle that solves SVP exactly to 
approximate CVP within 0( y'n) factors, and Kannan's homogenization 
technique can be extended to approximate CVP within some 0( y'n) fac­
tor making 0 ( n log n) calls to an oracle that approximates S VP within 
any factor 'Y < 2. In the rest of this section we present this improved 
reduction. 

The main idea is to try to set c in ( 4 . 1 )  to some value slightly bigger 
than J.L/ ..j(2/'Y)2 - 1 ,  instead of >.j2 as in (Kannan, 1987b) . This choice 
for c is motivated by the following lemma. 

LEMMA 4 . 1  For any J-L E [1 , 2 ) ,  let J-L > 0 be the distance of point t from 
lattice .C(B) and let c be a constant strictly bigger than J-L/ ..j(2/-y)2 - 1 .  
If 

is a -y-approximate shortest vector in the lattice generated by (4 . 1}, then 
lw l � 1 .  

Proof: First of all ,  notice that lattice (4. 1 )  contains a vector of length 
J Jl-2 + c2 obtained multiplying the last column of B' by - 1  and the 
other columns by the coefficients of the lattice vector in .C(B) closest to 
t .  Therefore it must be 

(4.3) 

We also have 

(4.4) 

Combining (4.3) and (4.4) we get (wc)2 � -y2 (J-L2 + c2 ) .  Solving for w 
and using c > J-L/ ..j(2/'Y)2 - 1 we get 

lw l � 'YV �: + 1 < 2 .  (4 .5) 

Since w is an integer it must be lw l � 1 .  0 
We use Lemma 4. 1 to prove that there is a Cook reduction from 

approximating CVP within some 0( y'n) factor to approximating SVP 
within factors less than 2. 
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THEOREM 4 . 2  For any constant approximation factors 'Y E [1 , 2) and 
any function 

-v' (n) > .Jii I J(2/'Y)2 - 1 I 

the CVP 'Y' (n) search problem {where n is the rank of the lattice) is Cook 
reducible to the SVP1 search problem. Moreover, the number of calls to 
the SVP1 oracle made by the reduction is O(n log n) . 

Proof: Let 'Y be any factor in the range [1 ,  2) and let 

n { 1  + €) 
(2/'Y)2 - 1 

(4 .6) 

for some strictly positive, but arbitrarily small, constant € E {0, 1 ] .  We 
show that given an oracle that approximates SVP within factor "(, one 
can efficiently approximate CVP within factor 'Y' · Let B be a lattice 
basis of rank n and t a target vector. We want to find a lattice vector in 
.C(B) approximately closest to t .  To this end, we make calls to the SVP 
approximation oracle on input basis (4. 1 ) ,  where c is an appropriately 
chosen constant . Notice that if c is too small then the shortest vector in 
.C(B') might use the last column more than once (i .e . , with coefficient 
bigger than 1 in absolute value) . On the other hand, if c is too large, 
then the last column is never used. From Lemma 4. 1 we know that it 
is enough to set c to any value slightly bigger than J.L/ J(2/'Y)2 - 1 in 
order to make sure that Jw J  :s; 1 ,  e.g. , 

(2h)2 - 1 
(4.7) 

Unfortunately, we don't know the value of J.L, so we cannot directly set 
c = J.L-If+t/ J(2/'Y )2 - 1 .  Instead, we first compute a coarse approx­
imation for J.L· Using the nearest plane CVP approximation algorithm 
from Chapter 2, we find in polynomial time an real M such that 

(4.8) 

Then, we consider the monotonically decreasing sequence of constants 

for k � 0. Notice that if k = 0, then ck equals 

M-/f+t J.L co = > ---r;:::=;:�== J(2h)2 - 1 J(2/'Y)2 - 1 

(4 .9) 

(4. 10) 
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and by Lemma 4. 1 the short vector s returned by the S VP..,. oracle on 
input (4 . 1 )  when c = co  uses the last column lw l � 1 times . The problem 
is that c0 does not necessarily satisfies ( 4. 7) . Now consider the value of 
ck when k equals 

Using M � 2np. we get 

M ( y'I"'+f) 1 -K p.v'f+f CK = < �;=::::::;::;;:== J(2h)2 - 1 - J(2h)2 - 1 

(4 . 1 1 )  

(4 . 12 )  

So, CK satisfies (4. 7) . The problem this time is  that when c = C K  in 
(4. 1 )  the SVP..,. oracle might return a short vector (4 . 2) with lwl > 1 .  
If this happens, we perform a binary search in {0, . . .  , K} , and with 
log K = O (log n) calls to the the SVP..,. oracle we find an integer k 
such that the short vector returned by SVP..,. when c = Ck has lw l  � 1 ,  
while the short vector returned by SVP..,. when c = ck+ l  has lwl > 1 .  
We claim that ck satisfies {4. 7) . Assume for contradiction that ck > 
p.v'I"'+f/ J(2h)2 - 1 .  Then 

Ck+l = CkjJf+f_ > JL/ J(2h)2 - 1 

and, by Lemma 4. 1 ,  any -y-approximate shortest vector in .C(B') with 
c = Ck+l must have lw l  � 1. But this is a contradiction because when 
c = ck+l the SVP..,. oracle returned a short vector with lw l  > 1 .  

This shows that O (log n) calls to  the SVP approximation oracle are 
sufficient to efficiently find a constant c satisfying ( 4. 7) , and a short 
vector s E .C(B') with lw l � 1 .  We treat the lwl = 1 and w = 0 cases 
separately. First consider the case w = ±1  and assume, without loss of 
generality, that n 2 3. {This assumption is justified by the fact that 
when n � 2, CVP can be solved exactly in polynomial time. ) We claim 
that -wBx is a -y'-approximate solution to CVP instance {B, t ) .  Using 
( 4.3) and { 4.4) we get 

l i t - ( -wBx) l l 2 = I IBx + t l l 2 
= l l s l l :t - (wc)2 
< 'Y2 (p.2 + c2) _ c2 
= JL2'Y2 + c2 ('Y2 _ 1 )  

2 ( 2 1 + E ( 2 )) < JL 'Y + (2h)2 - 1 'Y - 1 

= JL 2 ( 3 + E ( 'Y2 - 1 )  ) 
(2h)2 - 1 
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Therefore, if n � 3 then -wBx is within distance 'Y' J-t from t .  
Now consider the case w = 0 .  I f  w = 0 ,  then s = Bx i s  a short nonzero 

vector in .C(B) ,  and it can be used to find a lattice vector approximately 
closest to t as follows. First we bound the length of s. Using {4 .3 ) ,  (4.7) 
and 'Y < 2 we get 

l is  I I  < 

< 

= 

< 

'YJ 1-"2 + c2 

'Y 

2�-t 

2�-t 

2 2 1 + f 
I-t + I-t (2/'Y)2 - 1 

1 + q2j4 
(2h)2 - 1  

1 + f  
(2h)2 - 1 

(4. 13) 

Then, we _project B an� t to the orthogonal complement of s to obtain 
a matrix B and vector t (see Figure 4.4) . Let Bx be a solution to the 
original CVP problem {B , t ) .  Notice that the projected vector Bx is 
also within distance J-t from the target t, and .C(:B) has rank n - 1. So, if 
we recursively look for an approximate solution to CVP instance (B', t') ,  
we can find a vector ii = widetildeBz within distance 'Y' (n - 1)�-t from 
t, i .e . ,  

(n - 1) (1 + E) 
(2h)2 - 1 . 

(4. 14) 

Let £ = {ii + as: a E R} be the set of all points that project to u' , and 
let ii be the orthogonal projection of t onto line £. Assume without loss 
of generality that Bz is the lattice point on £ closest to the projection u. 
(This can be easily achieved adding an appropriate integer multiple of 
s to Bz. )  We claim that Bz is an approximate solution to the original 
CVP problem. We compute the distance of Bz from the target t :  

{4 . 15)  

Using (4. 14) , we can bound the first term on the right hand side of (4. 15)  
by: 

l i t - ull2 = llii-tll2 
::; 1-"2 ( 1  + E) (n - 1 )

. (4. 16) (2/'Y)2 - 1 
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Figure 4 .4 .  Kannan homogenization technique. 

For the second term, bound (4 . 13) on the length of s gives 

Substituting the two bounds (4. 16 )  and (4. 1 7) in (4. 15 )  we get 

l i t - Bz l l  :s; ( 1  + €)n , 

(2h)2 - 1 J.L = 'Y (n)J.L. 

Therefore, Bz is within distance -y' J.L from the target t .  0 
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(4. 17) 

If 'Y = 1 (i .e. , assuming we can solve SVP exactly) the above theorem 
gives a CVP approximation algorithm with approximation factor arbi­
trarily close to V1iJ3 (marginally improving Kannan's Vn/2 factor) , 
but the order of growth is still 0( y'n). 

2 .  The Ajtai-Micciancio embedding 

In the previous section we presented a reduction that allows to find 
0( y'n)-approximate solutions to CVP , given an oracle to find almost 
exact solutions to SVP . This kind of reductions was considered for a long 
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time a viable way to prove the NP-hardness of SVP .  (See for example 
(Kannan, 1987b) and (Arora et al. ,  1997) . ) Unfortunately, as we will 
see in Chapter 9, CVP is not likely to be NP-hard for approximation 
factors bigger than O( v'n/ log n) . Therefore, a more efficient reduction 
from CVP to SVP is needed in order to obtain NP-hardness results for 
SVP.  

The problem with the reduction presented in Section 1 ,  i s  that i t  
proceeds by induction on the rank of the lattice. Each time the rank of 
the lattice is reduced by 1 ,  there is a potential loss in the quality of the 
final solution. Even if the error at each level of the induction is only a 
constant fraction of the distance of the target from the lattice, adding up 
n (orthogonal) errors one can get 0( y'n) away from the optimal solution. 
In this section we present a more efficient reduction technique that allows 
to embed certain CVP instances in a single instance of SVP.  The 
embedding is more complicated this time, and the dimension of the SVP 
instance produced is  typically much bigger than (but still polynomially 
related to) the dimension of the original CVP problem. However, the 
loss in the approximation factor is much smaller . There are a few other 
important differences between the reduction from Section 1 and the one 
we are going to present in this section: 

• In Section 1 we gave a reduction between the search version of CVP 
and SVP.  In  this section we give a reduction between promise prob­
lems. 

• In Section 1 we reduced SVP from a general CVP instance. In this 
section, we start from a special version of CVP , namely, the BINCVP 
problem introduced in Chapter 3 .  

• The reduction of Section 1 i s  deterministic. The reduction presented 
in this section uses a combinatorial gadget for which no efficient de­
terministic construction is known at the time of this writing. Still, we 
can give an efficient probabilistic construction, or even a determinis­
tic one if a certain number theoretic conjecture holds true. Therefore, 
the new reduction implies the NP-hardness of SVP under random­
ized reductions, or under Karp reductions if the conjecture is correct . 
Still, the problem of finding an unconditional Karp reduction from 
an NP-hard problem to SVP remains open. 

We now outline the idea underlying the new reduction. Given a lat­
tice basis B E zmxn and a target vector t E zm, we first randomize B 
by multiplying it by an integer matrix T E znxk to get a set of vectors 
BT E zmxk. The columns of BT are no longer linearly independent , 
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and each lattice vector has many possible representations as an inte­
ger linear combination of them. Then we embed BT and t in a higher 
dimensional space using a special lattice L, constructed independently 
from B.  Lattice L has the remarkable property that the distance be­
tween any two lattice points (or, equivalently, the length of the shortest 
nonzero vector in .C(L) ) is large, but at the same time there is an ex­
tremely dense cluster of lattice points all close to a point s in span(L) . 
In particular, the distance of these lattice points from s is smaller (by a 
constant factor approximately equal to J2) than the minimum distance 
between lattice points in .C(L) . The output of the reduction is obtained 
combining (L, s) and (BT, t) in a single matrix 

B' = [ a�LT �! ] (4 . 1 8) 

where a and b are appropriate scaling factors . The idea is that if there 
exists a lattice vector v E .C(B) close to t ,  then we can find a short 
vector in the new lattice multiplying the last column of B' by - 1  and 
looking for a lattice point Lz close to s such that BTz = v. The lattice 
vector obtained multiplying matrix (4. 18) by [zr , - 1jT is short because 
BTz = v is close to t and Lz is close to s. On the other hand, if there 
are no lattice points in .C(B ) close to (any nonzero multiple of) t ,  then 
the lattice defined by (4. 18) has no short vectors because if we use the 
last column w ::/: 0 times, then the top part B(Tz) + wt of the lattice 
vector is long, while if we multiply the last column of B' by w = 0, then 
the bottom part Lz - Os = Lz is long. 

Notice that the reduction makes crucial use of the special properties 
of BINCVP.  In particular, we use the fact that if the target vector t is 
far from the lattice .C(B) , then all (nonzero) multiples of t are also far. 

As outlined above, the reduction uses three objects L,  s and T sat­
isfying some very special properties . Proving the existence of L, s and 
T and giving a polynomial time (possibly randomized) construction for 
them requires some lattice packing and combinatorial techniques that 
are developed in Chapter 5 and Chapter 6 .  Here, we state the proper­
t ies of L,  s and T and use them to give a reduction from BINCVP to 
SVP.  The properties of L, s and T are stated with respect to a generic 
f11 norm, so that we can use the lemma to prove the inapproximability 
of SVP in the fp norm for any p 2 1 .  

LEMMA 4 . 3  (SPHERE PACKING LEMMA) For any lp norm (p 2 1} and 
constant 'Y < 21/P , there exists a (possibly probabilistic or nonuniform} 
polynomial time algorithm that on input n outputs (in time polynomial 
in n) a lattice L E zk' xk , a vector s E zk' , a matrix T E znxk and a 
rational number r such that 
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· · ·• · · · · · ·  

· · · · · · · · · · · · · · · · · ·•· · ·  

Figure { 5. The homogenization gadget: lattice L has minimum distance -y times the 
radius of the sphere centered in s and all boolean vectors of length n can be expressed 
as Tz for some lattice vector Lz inside the sphere . 

• I ILz l lp > "(r for all z E zk \ {0} ,  

• (with high probability over the internal randomness of the algorithm) 
for every boolean vector x E {0 ,  l }n there exists an integer vector 
z E zk such that Tz = x and I I Lz - s l ip < r .  

The various kind of algorithms (deterministic, probabilistic or  nonuni­
form) for which we know how to prove the lemma are discussed in Sec­
tion 3. The homogenization gadget (L, T, s , r) produced by the these 
algorithms is illustrated in Figure 4.5. Lattice L has minimum distance 
>.1 > "(r and every boolean vector of dimension n can be expressed as 

Tz for some lattice vector Lz within distance r from s . Notice that this 
implies that the sphere of radius r around s contains at least 2n lattice 
points. In Chapter 5 we will prove that , at least for the Euclidean norm 
£2 , Lemma 4.3 is essentially optimal . In particular, if p = 2 and 'Y � v'2, 
then any sphere of radius r contains at most 2k lattice points. This is 
the ultimate reason why the homogenization technique described in this 
section does not work for approximation factors beyond v'2. We will go 
back to the proof of Lemma 4.3 in Section 3. In the rest of this sec­
tion we use Lemma 4.3 to prove the hardness of GAPSVP'Y for factors 
'Y < v'2. 



Shortest Vector Problem 8 1  

THEOREM 4 .4 For any p � 1 ,  given an  algorithm satisfying the prop­
erties described in Lemma 4. 3, one can reduce in polynomial time an 
NP-hard problem to GAPSVP-y in the lp for any constant approxima­
tion factor 'Y < {12. 
Proof: Fix an lp norm and a constant 'Y < {12. Let .:Y be any constant 
between 'Y and {12, and let 

-r 
= 

(tY - (tY . 
We reduce BINCVP.y to GAPSVP-y. Notice that 'Y is a constant inde­
pendent of n, so, by Corollary 3. 1 1 ,  BINCVP i' is NP-hard. We remark 
that Corollary 3 . 1 1  shows that B INCVP.y is NP-hard not only for con­
stant approximation factors -y, but also for some monotonically increas­
ing function 'Y(n) of the rank. Using these stronger inapproximability 
results one can show that GAPSVP 'Y is hard to approximate within some 
factor 'Y (n) < V'2 such that lillln-+oo 'Y(n) = {12. This is only marginally 
better than showing hardness for any constant 'Y < {12. So, in order to 
keep the presentation simpler, we consider 'Y as fixed. 

Let (B , t ,  d) be an instance of BINCVP.y where B E  zmxn and t E zm. 
Run the algorithm from Lemma 4.3 to obtain a latt ice L E zk'xk, a 
vector s E zk' , a matrix T E znxk and a rational number r such that 

• I !Lz l lp > ,:Yr for all z E zk \ {0} ,  

• (with high probability) for all vectors x E {0 ,  l }n there exists a z E zk 
such that Tz = x and I !Lz - s l iP < r .  

Let a and b two integers such that 

and define the lattice 

B' = [ 
a�LT I :! ] . 

Notice that from the upper bound in (4 . 19 )  we get 

aPd + bPrP < bPrP ( ( �) P 
- 1) + bPrP 

= bPrP (�) P , 

(4. 19 )  
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so, we can find a rational number d' in the interval 

{/ aPd + bPrP < d' < br ( �) . 
The output of the reduction is (B', d' ) .  

(4.20) 

We want to prove that if (B, t ,  d) is a YES instance of B INCVP 1 then 
(B', d') is a YES instance of GAPSVP 'Y '  and if (B , t , d) is a NO instance 
of B INCVP1 then (B' , d' ) is a NO instance of GAPSVP-y . 

First assume that (B, t ,  d) is a YES instance, i .e . there exists a vector 
x E { 0, 1 }k such that t - Bx is a 0- 1 vector with at most d 1 's. In 
particular, I IBx- t l l � \!d. By construction, there exists a vector z E zk 
such that Tz = x and I ILz - s l l  < r. Define 

and compute the norm of the corresponding lattice vector 

I IB'w l l� = a11 1 1Bx - t i l� + bP J JLz - s J J� 
� (a )Pd + (br)P , 

which, by (4. 20) , is at most (d' )P .  This proves that (B' , d' ) is a YES 
instance. 

Now assume (B, t , d) is a NO instance and let w = [zT, w]T be a 
nonzero integer vector. We want to prove that I IB'wi i P  > ( "fd' )P .  Notice 
that 

I IB'w i !P = a71 J JBx + wt i iP + bP J JLz + ws ! IP . 
We prove that either a J JBx + wt l l  > "fd' or b J ILz + ws l l  > "fd' . We 
distinguish two cases 

• If w = 0 then z -::/= 0 and, therefore, I ILz l l71 > :Yr . This proves that 

b J JLz + ws i J = b J JLz l l  > b.:yr, 

which, by (4.20) , is at least "fd' . 

• If w -::/= 0 then Bx+wt has more than ,:Yd nonzero entries . In particular 

I IBx + wt l l  > "Ed = 2 {/(i  
p V "fu r/(1/'Y)P - ( 1j.:y)P 

(4. 2 1 )  

Multiplying (4 . 2 1 )  by a, and using the lower bound in  (4. 19) , we get 

a J JBx + wt l l11 > br.:Y 

which, by (4.20) , is at least "fd' . 
This proves that in either case I IB'wl l  > {Fit. D 
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3 .  NP- hardness of SVP 

In Section 2 we have seen that it is possible to efficiently reduce an 
NP-hard problem to GAPSVP, provided we have an algorithm to com­
pute objects (L, T, s, r) as specified in Lemma 4.3 .  To date we do not 
know how to compute {L, T, s, r) in deterministic polynomial time, so 
Theorem 4.4 does not prove the NP-hardness of GAPSVP under deter­
ministic (Karp or Cook) reductions. However, we know how to efficiently 
find (L, T, s, r) probabilistically. Moreover, if a certain number theoretic 
conjecture holds true, then we can give a deterministic algorithm that 
runs in polynomial time. Using these algorithms it is possible to prove 
that GAPSVP is NP-hard under different types of reductions. In the 
following subsections we use lattice packing and combinatorial construc­
tions to be developed in Chapters 5 and 6 to present various solutions 
to the problem of Lemma 4.3 ,  and obtain corresponding NP-hardness 
results for GAPSVP. 

3 . 1  Hardness under randomized reductions 

In this subsection we give a probabilistic construction for objects 
(L, T, s, r) satisfying Lemma 4.3 .  In particular, we give a randomized 
algorithm that on input an integer n produces a lattice basis L and a 
sphere B(s, r) such that A1 (L) is guaranteed to be bigger than r by a 
factor 'Y < {12, and with probability arbitrarily close to 1 (over the ran­
dom choices of the algorithm) the sphere B(s, r) contains a lattice point 
Lz for every binary string Tz E {0 ,  l }n . 

The construction is based on a sphere packing result to be proved in 
Chapter 5 .  (See that chapter for a discussion of the connection between 
this problem and general sphere packing questions . )  The result is the 
following. 

THEOREM 4 . 5  For every p � 1 ,  "( E [ 1 ,  {1'2) and r5 > 0 there exists 
a probabilistic algorithm that on input an integer h outputs (in time 
polynomial in h) integers k and r ,  a matrix L E z(k+l ) xk, and an integer 
vector s E zk+l such that 

• all vectors in .C(L) have lp norm bigger than "(T, and 

• for all sufficiently large h, with probability at least 1 - 2-h the sphere 
B(s, r) contains at least h6h lattice points of the form Lz where z is 
a 0-1 vector with exactly h ones. 

Proof: See Chapter 5, Section 4. D 
We also need the following probabilistic combinatorial result to be 

proved in Chapter 6. 
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THEOREM 4 . 6  Let Z � {0, 1 } k be a set of vectors, each containing ex­

actly h ones. If IZ I � h!k4v'hn/£ , and T E {0, l }nxk is chosen setting 
each entry to 1 independently at random with probability p = 4�n , then 
the probability that T(Z) = {Tz : z E Z} contains all binary vectors 
{0, 1 }n  is at least 1 - 6�:. 

Proof: See Chapter 6, Section 3. 0 
The homogenization gadget of Lemma 4 .3  is easily built combining 

Theorems 4.5 and 4.6 .  

Proof (of Lemma 4.3 (probabilistic version) ) :  Fix an fp norm 
(p � 1) and a constant 'Y E [ 1 ,  {12) . Let n be a sufficiently large inte?.er. 
We want to build (in time polynomial in n) an integer lattice L E 'L} xk ,  
an integer vector s E zk' , an integer transformation matrix T E znxk, 
and a rational number r such that 

• all nonzero vectors in .C(L) have fp norm greater than -yr; 

• with probability at least 1 - 1/  poly{n) , for every x E {0, l }n there 
exists a z E zk such that Tz = x and I ILz - s l ip � r. 

Run the algorithm of Theorem 4.5 on input h = n4 and 8 = 2. Let 
L E z(k+l ) x k ,  s E zk+l and r E Z be the output of the algorithm. Notice 
that since L and s are computed in polynomial time, k is polynomial in 
h, i .e . , k < he for some constant c independent of h. Let Z be the set of 
all vectors z E {0 ,  1 }k with exactly h ones, such that Lz E B (s , r) .  We 
know from Theorem 4.5 that all nonzero vectors in .C(L) have fp norm 
greater than -yr, and the size of Z is bigger than h2h with probability at 
least 1 - 2-h . Now, choose matrix T E {0, l }nxk by setting each entry 
to 1 independently with probability 1/ {4hn) . Notice that 

IZ I � h2h > h!kh/c = h !k 4YJin ' 
where f = 4cj k. So, by Theorem 4 .6 ,  the probability that for each x 
there exists a vector z such that x = Tz and Lz E B(s, r) is at least 
1 - 1/0{k) . 0 

Using this proof of Lemma 4.3 ,  Theorem 4.4 shows that GAPSVP is 
hard to approximate under reverse unfaithful random reductions (RUR­
reductions for short, see (Johnson, 1 990) ) .  These are probabilistic re­
ductions that map NO instances to NO instances with probability 1 , and 
YES instances to YES instances with nonnegligible probability. (In fact 
our proof has success probability 1 - ljp(n) for some polynomial func­
tion p(n) . )  Although not a proper NP-hardness result (i .e . ,  hardness for 
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NP under Karp reductions, which would imply that SVP is not in P 
unless P = NP) ,  hardness under RUR-reductions also gives evidence of 
the intractability of a problem. In particular,  it implies that SVP is not 
in RP unless RP = NP. (Here RP is the class of decision problems with 
random polynomial time decision algorithms that are always correct on 
NO instances and "usually" correct on YES instances , say with probabil­
ity at least 1/2 . )  So, the NP-hardness result for SVP (under randomized 
reductions) also gives theoretical evidence that SVP is intractable. 

COROLLARY 4 .  7 For any fixed p 2: 1 and constant "( < V'2, the promise 
problem G APSVP 1' in the fp norm is NP -hard under R UR-reductions. 
In particular, GAPSVP-y cannot be solved in RP {random polynomial 
time), unless NP = RP. 

3 . 2  Hardness under nonuniform reductions 

In this subsection we show that GAPSVP is NP-hard under determin­
istic nonuniform polynomial time reductions . A nonuniform algorithm 
is an algorithm that , in addition to the problem instance, takes as addi­
tional input a hint string that depends only on the size of the problem 
instance. In other words, the hint string is the same for all problems of a 
certain size. The complexity class P /poly is defined as the set of decision 
(or promise) problems that can be solved by a polynomial time algorithm 
with a hint of size polynomial in the length of the input. Equivalently, 
P /poly is the set of languages that can be recognized by a (possibly 
nonuniform) family of circuits Ck (for k = 1 ,  2, . . .  ) , with each circuit 
ck to be used on input strings of length k, and the size of ck bounded 
by a polynomial p (k) = kc . These circuit families are called nonuniform 
because the sequence of circuits is not necessarily computable, i .e. , there 
might be no (efficient) algorithm that on input k outputs the circuit ck . 

It is easy to see that P /poly contains languages that are not in NP. 
(In fact ,  P /poly contains undecidable languages . )  However, it is widely 
believed that NP is not contained in P /poly. Clearly, if a problem is 
NP-hard under nonuniform polynomial time reductions, then the prob­
lem cannot be solved in P (or even in P /poly) unless NP c P fpoly. 
Therefore, NP-hardness under nonuniform polynomial time reductions 
gives evidence that a problem is intractable. 

Notice that the randomness in the RUR-reductions of Corollary 4.7 
comes exclusively from the algorithm of Lemma 4 .3 .  The algorithm of 
Lemma 4.3 takes as input only the size (or, more precisely, the rank) 
of the B INCVP instance being reduced. Moreover, whether or not the 
algorithm of Lemma 4.3 is successful does not depend on the B rNCVP 
instance. In other words, i f  on input n the algorithm outputs objects 
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(L, T, s, r) satisfying the properties in Lemma 4 .3 ,  then (L, T, s, r) are 
good for any B INCVP instance of rank n . 

We know that for any rank n there exists a good homogenization gad­
get (L, T, s, r) and that the size of (L, T, s, r) is polynomial in n because 
the proof of Lemma 4.3 given in the previous subsection shows that there 
is a probabilistic polynomial time algorithm to compute (L, T, s, r) with 
nonzero (in fact ,  almost 1 )  probability. So, for any value of n we can 
pick a good (L, T, s, r) and use it as hint string to a nonuniform algo­
rithm that reduces BINCVP to GAPSVP as described in the proof of 
Theorem 4.4. Therefore, we have the following result . 

COROLLARY 4 . 8  For any fixed p ;::: 1 and constant 'Y < {12, the promise 
problem GAPSVP 'Y is hard for NP under deterministic nonuniform Karp 
reductions. In particular, GAPSVP 'Y is not in P /poly unless NP C 
P /poly. 

Using standard results from nonuniform complexity (Karp and Lipton, 
1980) , this also implies that for any fp norm (p ;::: 1) and any 'Y E [ 1 , {12), 
the promise problem GAPSVP'Y is not in P unless the polynomial hier­
archy (Meyer and Stockmeyer, 1972; Stockmeyer, 1977) collapses to the 
second level. 

3. 3 Hardness under deterministic reductions 

In this subsection we give a deterministic algorithm to build objects 
(L, T, s, r) as specified in Lemma 4 .3 .  The algorithm is easily obtained 
from a deterministic variant of Theorem 4.5 ,  but its correctness depends 
on the validity of a number theoretic conjecture concerning the distri­
bution of square free smooth numbers . For any b > 0, an integer n is 
called b-smooth if all prime factors of n are bounded by b. Moreover, we 
say that n is square free if all prime factors of n appear with exponent 
1 .  The conjecture is the following. 

CONJECTURE 1 For any f > 0 there exists a d such that for all large 
enough n , there is an (odd} integer in [n , n + n{] which is square free 
and ( logd n) -smooth, i. e . ,  all of its prime factors have exponent 1 and 
are less than logd n .  

The conjecture i s  reasonable because a relatively simple number the­
oretic analysis shows that the average number of square free (In n )d­
smooth numbers in [n ,  n + n{] exceeds n£- � . Therefore, if d = 2/t one 
should expect to find n � square free smooth numbers in [n , n + n{] on 
the average. If square free smooth numbers are distributed uniformly 
enough then one can reasonably assume that [n ,  n + n{] contains at least 
one such number for all sufficiently large n . 
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We remark that although the above conjecture i s  quite plausible, prov­
ing it seems currently beyond known mathematical techniques. For fur­
ther discussion about the conjecture the reader is referred to the last 
section of Chapter 5 . In Chapter 5 we prove the following deterministic 
variant of Theorem 4.5 ,  under the assumption that Conjecture 1 is true. 

THEOREM 4 . 9  If Conjecture 1 is true, then the following holds. For 
every p 2: 1 and 'Y < {12 there exists a deterministic algorithm that on 
input an integer h outputs (in time polynomial in h) integers k and r 
{with k > h), a matrix L E z(k+l ) xk , and an integer vector s E zk+l 
such that 

• all vectors in .c(L) have £p norm bigger than 1r; 

• for every vector x E {0, 1 }h there exists a vector y E {0, 1 }k-h such 
that the lattice point L[yT, xTJT belongs to the sphere B(s, r) . 

Proof: See Chapter 5 ,  Section 3 .  0 
In this case the proof of Lemma 4.3 is immediate. 

Proof [of Lemma 4.3 {deterministic version)] : Just run the algo­
rithm of Theorem 4.9 on input h = n to obtain L E z(k+l) x k, s E zk+l 
and r E Z .  Also define T = [O il] where I is the n x n identity matrix 
and 0 is the n x (k - n) zero matrix. Then, the properties of (L, T, s,  r) 
claimed in Lemma 4.3 immediately follow from Theorem 4.9. 0 

This shows that if the distribution of square free smooth numbers 
is sufficiently uniform, then GAPSVP is NP-hard under (deterministic) 
Karp reductions. 

COROLLARY 4 . 1 0 In Conjecture 1 holds true, then for any fixed p ;::: 1 
and 'Y < {12, the promise problem GAPSVP-y is NP-hard under Karp 
reductions. In particular, G APSVP 'Y is not in P unless P = NP . 

4. Notes 

The shortest vector problem is probably the most famous and widely 
studied algorithmic problem on point lattices. The NP-hardness of SVP 
( in  the £2 norm) was conjectured in (van Emde Boas, 1981 ) ,  and re­
mained probably the biggest open question in the area for almost two 
decades .  (See for example (Lovasz, 1986; Kannan, 1987b; Arora et al. , 
1 997) . )  In (Kannan, 1 987b) it is shown that approximating CVP within 
fo/2 can be reduced to computing SVP exactly. The reduction pre­
sented in Section 1 is a simple modification of (Kannan, 1987b) , and 
shows that a relatively good approximation oracle for SVP is already 
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enough to approximate CVP within 0( y'n) factors . Kannan's reduction 
suggests that a possible way to demonstrate the NP-hardness of SVP 
might be to  prove NP-hardness of  approximating CVP within 0( y'n) 
factors. Progress in the inapproximability of CVP (Arora et al. ,  1 997) 
seemed encouraging in this perspective, but in 1997 Goldreich and Gold­
wasser showed that CVP is not likely to be NP-hard to approximate for 
factors 'Y = 0 ( y'n / log n) ( Goldreich and Gold wasser, 2000) , eliminating 
Kannan's reduction as a viable route toward a resolution of van Emde 
Boas' conjecture. The NP-hardness of SVP (in its exact version) was 
finally proved (under RUR reductions) by (Ajtai, 1 998) . Ajtai 's proof 
easily extends to some weak inapproximability result : in (Ajtai, 1 998) it 
is already claimed that SVP is NP-hard to approximate within a factor 
1 + 1 /2cn (for some constant c) and (Cai and Nerurkar, 1 999) shows 
that Ajtai 's proof can actually be extended to inapproximability fac­
tor 1 + 1/nE for any fixed t: > 0. Still, these inapproximability results 
are rather weak because the approximation factor rapidly approaches 1 
when the dimension of the lattice increases, leaving the question of the 
inapproximability of SVP basically open. The first significant inapprox­
imability result for SVP in which the approximation factor is bounded 
away from 1 was proved by Micciancio in 1998, who showed that SVP is 
NP-hard under RUR-reductions for any approximation factor less than 
../2 (Micciancio, 1 998; Micciancio, 200ld) . This is the result presented 
in Sections 2 and 3, and at the time of this writing it is still the strongest 
inapproximability result for SVP known. (Micciancio, 2001d) represents 
not only a strengthening, but also a substantial simplification of Ajtai's 
proof, and it allowed to prove analogous results for coding problems 
(Dumer et al . ,  1999) . Conjecture 1 about the distribution of square 
free smooth numbers was also put forward in (Micciancio, 2001d) , for 
the purpose of proving the NP-hardness of approximating SVP under 
(deterministic) Karp reductions. It should be noted that Conjecture 1 ,  
although reasonable, seems to b e  beyond current mathematical tech­
niques, and it is not likely to be proved any time soon. Both proving the 
NP-hardness of SVP under (deterministic) Karp reduction, and improv­
ing the inapproximability factor from .;2 to any constant (and possibly 
some some small polynomial function nE of the rank) are major open 
problems in the area. These and other open problems related to SVP 
are discussed in the rest of this section. 

In Section 3 we proved that approximating the shortest vector problem 
in any £p within factors less than \1'2 is not in polynomial t ime under 
any of the following assumptions : ( 1 )  NP =I RP, (2) NP � Pjpoly,or 
(3) Conjecture 1 is true and NP f; P. Although all of these results give 
theoretical evidence that SVP cannot be approximated in polynomial 
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time, the problem whether solving SVP (even exactly) is  NP-hard under 
deterministic (Karp or Cook) reductions is still open. We noticed that 
the only place where randomness is used in our reduction is the proof 
of Lemma 4 .3 .  A deterministic polynomial time solution to Lemma 4 .3 
would immediately give an NP-hardness result for SVP under Karp 
reductions. 

Our NP-hardness proof is by reduction from a variant of CVP.  In par­
ticular we reduce instances of BINCVP of size n to instances of GAPSVP 
of size m = nc, where c > 2 is  a constant independent of n. Although 
this gives a polynomial relation between n and m it should be noted 
that m can be much bigger than n. Therefore, in order to assert that 
an instance of SVP is hard to solve in practice, the dimension m must 
be rather large. Finding a more efficient reduction, where, for example, 
m = O(n) , is an important open problem. Interestingly, a dimension 
and approximation preserving reduction is possible in the other direc­
tion from SVP to CVP.  (See Chapter 3 . )  

The sphere packing lemma used in  our reduction i s  in  a certain sense 
optimal (at least for the £2 norm) : in Chapter 5 we show that any lat­
tice L satisfying the lemma must have vectors of length less than r / J2. 
Proving that SVP is NP-hard to approximate within factors larger than 
J2 cannot be done simply improving the construction in Lemma 4 .3 .  
Extending the NP-hardness result for SVP (even under randomized or 
nonuniform reductions) to approximation factors beyond J2 (and pos­
sibly any constant , or polylogarithmicfquasipolynomial functions of the 
rank) is certainly the most important open question about the complex­
ity of SVP.  

Another open problem, related both to  the reduction of  Section 1 and 
that of Section 2, is the relationship between the search and optimiza­
tion versions of approximate SVP.  In Chapter 1 we showed that one 
can compute the approximate length of the shortest vector in a lattice 
given an oracle to solve the corresponding promise problem, and vice­
versa. Now, we consider computing the length (optimization problem) 
and actually finding the approximately shortest vector (search problem) . 
The homogenization technique presented in Section 1 reduces the search 
version of CVP to the search version of SVP.  In other words, given 
an oracle for finding approximately shortest vectors in a lattice, one can 
find lattice points approximately closest to a given target. Notice that 
it is not enough to compute the (approximate) length of the shortest 
lattice vector: when w = 0 and the SVP oracle is called on lattice B,  
one actually needs t o  find an approximately shortest vector b i n  order 
to perform the projection operation and complete the reduction. Inter­
estingly, (Kannan, 1987b) shows that if the length of the shortest vector 
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in a lattice can be computed exactly, then one can also find the shortest 
vector. The idea is to introduce small errors in the coordinates of the 
basis vectors. If the errors are sufficiently small , then the shortest vec­
tor in the perturbed lattice corresponds to the same linear combination 
of the basis vectors of the original lattice, and from the exact length 
of the shortest vector in the two cases one can reconstruct the coordi­
nates of the shortest vector. Thus, Kannan actually gives a reduction 
from computing 0( .fii) approximate solutions of CVP to the decisional 
problem GAPSVP1 . Clearly, this reduction from search to optimization 
versions of SVP is very sensitive to errors, and it does not work if one 
can only compute good {but not perfect) approximations of the shortest 
vector length. Finding a reduction from the search version of approxi­
mate SVP to the corresponding promise or optimization problem is an 
important open question, also because of the relation of SVP to other 
lattice problems. (See Chapter 7. ) 

One last question about the complexity of SVP is related to the spe­
cific way we reduced B INCVP to GAPSVP in Section 2 .  It is easy to 
see that given a short vector in the SVP lattice, one can compute a 
close vector BTz for the original problem. However, it is not clear how 
to map NP-witnesses in the other direction. Given a solved instance of 
BINCVP , (i .e . , given (B,  t) and a lattice point Bx close to t , )  it is not 
clear how to find a short vector in the new lattice B'. In the reduction 
of Theorem 4.4 we only proved that a short vector exists , but the proof 
does not give an efficient way to find it. The problem is that finding a 
short nonzero vector in .C(B') involves finding a lattice point Lz in the 
ball B(s, r) . Interestingly, even if Conjecture 1 is true, and we can give 
a deterministic reduction from BINCVP to G APSVP,  finding a lattice 
point in that ball requires the solution of a number theoretic problem 
for which no polynomial time algorithm is known. Finding a reduction 
from an NP-hard problem to GAPSVP (possibly different from the one 
presented here) for which NP-witnesses can be efficiently mapped from 
the source to the target problem (sometime called a Levin reduction) 
would be desirable, as such kind of reductions are known for virtually 
any other NP-hard problem. 
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Chapter 5 

SPHERE PACKINGS 

In this chapter we study the following question. What is the maxi­
mum possible number of lattice points inside an n-dimensional sphere 
of radius p, given that the minimum distance between lattice points (or, 
equivalently, the length of the shortest non-zero vector in the lattice) is 
at least ,\? Clearly the answer depends on the ratio -X/ p only, as both 
the lattice and the sphere can be scaled up or down preserving .X/ p. If 
we drop the requirement that the points belong to a lattice, and allow 
them to be an arbitrary set of points with large minimum distance (say 
,\ = 2 ) ,  we get the following sphere packing problem (see Figure 5 . 1 ) :  
how many unit balls can b e  packed inside an n-dimensional sphere of 
radius R = 1 + p? Notice that since the unit balls are disjoint ,  their 
centers are at distance at least ,\ = 2 from each other. Moreover, since 
the unit balls are contained in a sphere of radius 1 + p, the centers of the 
balls are inside a sphere of radius p. We want to determine for which 
values of A/ p we can pack exponentially (in n) many points. (Here, and 
in the rest of this chapter, "exponential" means a function of the form 
2nc for some fixed constant c independent of n.) Notice the following 
(trivial) facts: 

• If -X/ p is sufficiently large, then only a constant number of points can 
be packed, independently of the dimension. For example, if -X/ p > 2 
then only one point can be inside the sphere, while if -X/ p = 2 one 
can have at most 2 points. 

• If -X/ p is a vanishing function of the dimension n, say .\f p = 2/ ..jii, 
then one can pack exponentially many spheres. Consider for example 
the cubic lattice 2zn. This lattice has minimum distance ,\ = 2. 
Now take the sphere centered in s = [ 1 , . . .  , 1 JT of radius p = ..jii. 
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Figure 5. 1 .  Packing unit balls in a bigger sphere 

This sphere contains 2n lattice points, namely all the vertices of the 
hypercube [2 ± 2,  . . .  , 2 ± 2]T (see Figure 5.2) . 

• For some value of >..j p bigger than 1 ( i .e . ,  when the distance between 
lattice points is larger than the radius of the sphere) , one can already 
pack arbitrarily many points, as the dimension n of the lattice grows. 
For example, consider the set of all integer vectors x E zn such 
that E?=l Xi is even. This is a lattice generated by basis vectors 
bi = e1 + ei (for i = 1 ,  . . .  , n) with minimum distance >.. = ../2. 
Consider the sphere centered in e1 of radius p = 1 .  The ratio >../ p 
equals v'2 for every dimension n. Still, the sphere contains 2n lattice 
points e1 ± ei (for i = 1 , . . .  , n ) . Scaling all coordinates by a factor 
../2, this corresponds to packing 2n unit balls in a sphere of radius 
1 + v'2 as shown in Figure 5.3 .  

We are interested in lattices such that >../ p > 1 ,  i .e . ,  the radius of 
the sphere is smaller than the minimum distance between latt ice points. 
We have just seen that when p = >..j ../2, the sphere can contain 2n 
lattice points. A few natural questions arise. Can we do any better 
when >../ p = ../2? What happen when >..f p > ../2? Can we pack a 
superpolynomial (in n) number of points when >..j p E ( 1 ,  ../2)? In the 
course of this chapter we answer these questions and prove the following 
facts: 
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Figure 5. 2. The cubic packing 

Figure 5. 3. The octahedral packing 

93 

1 If >../ p > J2, then one can pack only constantly many points ( inde­
pendently of the dimension) . 

2 If >..j p = J2, then the maximum number of points is precisely 2n. 

3 For any >..j p < J2, one can pack exponentially many points. 
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Upper bounds 1 and 2 actually hold even if we drop the requirement 
that the points belong to a lattice, and are proved in Section 1 .  Lower 
bound 3 is proved in Section 2. The lattice defined in Section 2 is not 
rational, i .e . , the basis vectors contain arbitrary real entries . This lattice 
plays a fundamental role in the construction of the homogenization gad­
get used in the proof of Theorem 4.4 .  The proof of Theorem 4.4 requires 
not only the existence of a lattice and a small sphere containing many 
lattice points, but also an efficient (possibly randomized) algorithm to 
find such objects. This issue is addressed in Section 3 where we show 
that the real lattice of Section 2 can be efficiently approximated with a 
rational one. The construction of Section 2 and 3 is efficient, but prob­
abilistic. In Section 3 .3 we use the techniques from Sections 2 and 3 to 
give a similar, but deterministic, construction that can be proven correct 
assuming a certain number theoretic conjecture holds true. 

1 .  Packing Points in S mall Spheres 

In this section we study the cases when >.j p � J2 and prove upper 
bounds on the number of points that can be packed in a sphere of radius 
p while keeping the minimum distance between points at least >..  These 
upper bounds are not directly relevant to the proof of Theorem 4.4, but 
they explain why the proof of Theorem 4.4 cannot be easily extended to 
approximation factors beyond J2. We consider arbitrary arrangements 
of points, not necessarily points of a lattice with large minimum distance. 
Since we are proving upper bounds on the number of points in a sphere, 
the results apply to lattice packings as well. Without loss of generality 
we assume >. = 2 and bound the maximum number of points that can be 
placed in a sphere of radius p :S J2 while keeping the points at distance 
at least 2 from each other. Let us start with the simple case p < J2. 
THEOREM 5 . 1  For any p < J2, the maximum number of points at min­
imum distance 2 from each other that can be packed in a sphere of radius 
p is l2/ (2 - p2)j .  

Proof: Let XI , . . . , XN be a set of vectors such that I I  xi I I  :S p < J2 and 
I I  xi - Xj I I  � 2 for all i "I j .  Notice that 

N N 
N(N - 1 )4 < L L l lxi - Xj l l 2 

i= l j= l  
N N 

L L) l lxi l l 2 + l l xi l l 2 - 2 (xi , Xj } ) 
i= l  j= l  
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Figure 5.4 .  The tetrahedral packing 

N N 
= 2N L llxi l l 2 - 2 I::: xi 

i= l  i=l 
< 2N2p2 
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and therefore 2(N - 1 )  :::; N p2 • Solving the linear inequality for N one 
gets N :::; 2/(2 - p2 ) and since N is an integer N :::; l2/ (2 - p2 )J . 0 

Notice that the above bound is sharp: for all p < V2, one can put n = 
l2/ (2 - p2 ) J unit balls on the vertices of an ( n - 1 )-dimensional simplex, 
and inscribe the simplex inside a sphere of radius J2n/ (n + 1) :::; p (see 
Figure 5.4) .  This example also shows that , when p = V2, for every 
n 2: 1 one can pack n + 1 balls in the n-dimensional sphere of radius 
1 + p. In fact ,  we have already seen that it is possible to do better 
than that : as soon as >.j p reaches V2, one can pack 2n balls centered at 
±V2ei for i =  1, . . .  , n inside a sphere of radius 1 + V2. We now show 
that this packing is optimal. Interestingly, this optimal packing is also 
a lattice packing: i .e . , the distance vectors between the centers of the 
balls generate a lattice with minimum distance 2 .  

THEOREM 5 . 2  The maximum number of points at distance at least 2 
from each other that can be placed in a sphere of radius V2 is 2n . 

Proof: By induction on n. If n = 1 ,  the statement is true. Now assume 
that the statement holds for some value n, and let us prove it for n + 1 .  
Let x1 , . . .  , XN vectors in JRn+l such that II xi 1 1 2 � 2 and I I  xi - Xj 1 1 2 2: 4. 
Notice that for all i i= j one has 

1 
( 2 2 2 (xi , Xj ) = 2 l l xi l l  + l lxi l l - l lxi - Xj l l  ) 
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1 < 2 (2 + 2 - 4) = 0  

i .e . , the angles between any pair of vectors are at least 1r /2 . We first 
explain the geometric idea behind the proof. Assume without loss of 
generality that XN '=I 0. Think of XN as the north pole. We map all 
point to the poles and the equator in such a way that all angles between 
any pair of points remain at least 1r /2. Then, we apply induction to the 
set of points on the equator. 

We now give the formal proof. Define the set of vectors 

X� = { (xN , XN)Xi - (xi , XN)XN if (xN , XN)Xi 'f; (xi , XN )XN ' Xi otherwise 

and let x�' = v'2xUIIxW . Notice that for all i ,  l l x�' l l 2 = 2 ( i .e . , x�' is on 
the surface) and either xi' = ±x'fv ( i .e . , xi' is a "pole" ) or (xi' , x'Jv) = 0 
( i .e . , x�' is on the "equator" ) .  We now prove that l lxi' - xj l l 2 � 4 for all 
i '=I j. If xi' = ±x'fv or xj = ±x'fv it is obvious. So, assume xi' '=I ±x'fv 
and xj '=I ±x'fv. Notice that 

l lxi' - xj l l  = l lxi' l l 2 + l lxj l l 2 - 2 (xi' , xj') 

= 2 2 _ 2 (xi , Xj ) (xN , XN )2 - (xi , XN ) {Xj , XN) (xN , XN) + l lxi l l · l lxj l l 
> 4 

because (xi , Xj ) , (xi , XN) , (xj ,  XN) ::; 0 and (xN , XN) > 0. Therefore 
all points, except at most two of them, belong to the n-dimensional 
subspace orthogonal to XN . By induction hypothesis there are at most 
2n such points and N ::; 2(n + 1 ) . 0 

2.  The Exponential Sphere Packing 

In this section we study the case >../ p < v'2 and prove that for any 
radius p > 0 and distance >.. > 0 bounded by >.. < \f'2p, there exist a 
lattice .C(L) (with minimum distance >..) with exponentially large clusters 
of lattice points. In particular, we show that there exist spheres B(s, p) 
containing 2n" lattice points, where 8 > 0 is a constant that depends only 
on the ratio >..f p. The construction has several additional properties , as 
required in the proof of Theorem 4.4. For example, the lattice points 
in B(s, p) are vertices of the fundamental parallelepiped defined by the 
(given) lattice basis L. Since we want to prove '!:heorem 4.4 for any 
fp norm, we give a generic construction of lattice L with respect to an 
arbitrary, but fixed, norm fp . In the rest of this section an arbitrary fp 
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norm is assumed, and B(s , r) denotes the fp ball {x : l lx - s l ip :S r} of 
radius r centered at s . 

2 . 1  The Schnorr-Adleman prime number lattice 

We begin by defining a lattice .C(L) and prove a lower bound to the 
length of the shortest non-zero vector in .C(L) . The lattice is a gener­
alization (to a generic fp norm) of a similar lattice used by (Schnorr, 
1993) and {Adleman, 1995) in a different context . For notational conve­
nience we define a rank k lattice in JRk+1 , i .e . , we set L to a rectangular 
(full-rank) matrix in JR(k+ l ) x k . A full dimensional lattice with the same 
pro_perties can be easily found by simple linear algebra. The definition 
of L is parametric with respect to a real a > 0, a sequence of positive 
integers a =  a1 , . . .  , ak and an lp norm (p 2: 1 ) .  We use the logarithms 
of the integers a1 to ak as entries in the basis vectors, and define a basis 
vector for each ai . 

The idea is to map the multiplicative structure of integers a1 , . . .  , ak 
to the additive structure of lattice .C(L) , defining a basis vector for each 
ai and expressing its entries in terms of the logarithm of ai . This way 
the problem of finding a sphere containing many lattice points is reduced 
to the problem of finding a small interval containing many products of 
the ai 's .  At the end we will set a to some large number (exponential 
in k) , and a to a sequence of small primes. The existence of a sphere 
containing many lattice points will follow from the density of the primes 
and a simple averaging argument . 

LEMMA 5 . 3  Let a = [a1 , . . .  , ak] be a sequence of relatively prime odd 
positive integers. Then for any fp norm (p 2: 1} , and any real a >  0, all 
nonzero vectors in the lattice generated by the (columns of the) matrix 

I 
{Yln a1 0 

I: =  o · . .  
0 0 

aln a1 · · · 

have fp norm bigger than \Y2 ln a .  

� ] E ]R(k+l ) xk 
\Yln ak 
aln ak 

{5. 1} 

Proof: We want to prove that for all nonzero integer vectors z E zk, 

I ILz l l� � 2 ln a. 

We first introduce some notation. Let R E JRk be the row vector 

(5 . 2) 
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and D E  JRkxk be the diagonal matrix 

Notice that 
I 

{1In a1 0 
0 {1In a2 

D = . . 
. . 
. . 

0 . .  . 0 

L = [ ! ] 
J.J (5 .3)  

and I ILz l l� = I IDz l l� + aP IRz iP . We bound the two terms separately. 
Define the integers 

k 
g = fJii = IT a!z; l .  

Using this notation, the first term satisfies 

I IDz l l� = L:: lzi iP in ai 

> L:: lzi l ln ai 

= ln g 

i=l 

because p � 1 and the Zi 's are integers. Bounding the second term is 
slightly more complex: 

= l in g - lnii l 

= In (1 + I? {A
ii�

}
) . 

mm g, g 
Now notice that since z is nonzero, {J and ii are distinct odd integers 
and therefore 19 - ii i � 2. Moreover, min{[J, ii} < .../99 = ..;g. By 
monotonicity and concavity of function In( 1 + x) over the interval [0, 2] , 
one gets 

( 1 9 - ii i ) ( 2 ) 2 In 3 1 In 1 + 
min{fJ, ii} 

> In 1 + ..;g > ..;g · 2 > ..;g· 
Combining the two bounds one gets 

- aP I I Lz l l� = I IDz l l� + aP (Rz)P > lng + gP/2 
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which is a continuous function of g with derivative 

! (1 - E . �) .  
g 2 gP/2 
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The function is minimized (over the reals) when g = a2 (� ) 2/P with 
minimum 

2 ln a + (�) ln (�) + (�) > 2 ln a + (�) lnp > 2 ln a. 

Therefore, for all nonzero integer vectors z, I ILz l l� > 2 ln a. 0 
Notice that a simple (but uninteresting) way to increase the length 

of the shortest vector in a lattice is to multiply all the coordinates by 
the same scaling factor a. In lattice .C(L) only the last coordinate is 
multiplied by the scaling factor. Still, this is enough to make the length 
of the shortest non-zero vector arbitrarily large. However, while multi­
plying all coordinated increases the minimum distance of the lattice by 
the same multiplicative factor a, the minimum distance of .C(L) is only 
logarithmic in a. 

2 . 2  Finding clusters 

In this section we prove that for appropriate choice of the parameters, 
there exists a sphere (of radius p) containing many lattice points. Obvi­
ously the center of such a sphere cannot be a point in the lattice if one 
wants the sphere to contain more than a single lattice point .  

We look at spheres with center 

(5 .4) 

where b is a positive integer, and show that there is a close relationship 
between finding lattice vectors close to s and approximating the integer 
b as a product of the ai 's. In particular , we prove that if b can be 
approximated by the product of a subset of the a�s ,  then there are 
lattice points close to s. (A converse of this lemma is presented in 
Subsection 2 .3 . )  

LEMMA 5 .4 Let  L and s be defined as in (5 . 1 )  and (5.4) . For any lp 
norm {p 2: 1}, reals a , b 2: 1 , positive integers a1 , . . .  , ak , and boolean 



100 COMPLEXITY OF LATTICE PROBLEMS 

vector z E {0, 1 }k, if the integer g = fli at; belongs to the interval 
[b, b ( 1  + 1/a)] , then 

I ILz - sl ip � V'In b + 2 ,  

i. e . ,  lattice point Lz is  within distance V'In b + 2 from s 
Proof: Let D and R be as defined in (5 .3) and (5 .2) . Notice that since 
z is a 0- 1 vector, 

and therefore 
I IDz l l� = Rz = In g, 

I I Lz - sl l� = I IDz l l� + aP IRz - In biP 
= In g + aP J ln g  - In b iP 
= In b + In � + I a In � r . 

From the assumption g E [b, b(1 + 1 /a)J and using the inequality In ( I +  
x) < x (valid for all x ¥= 0) one gets 

0 < In !]_ < In (1 + .!.) < .!. - b - a a 

which, substituted in the previous expression, gives 
- 1 

I ILz - sl l� < In b + - + 1 � In b + 2 .  0 
a 

Now let f be a small positive real constant and set a = b( l-£) . By 
Lemmas 5.3 and 5.4, the minimum distance between lattice points is 
bigger than >. = t/2(1  - f) I n  b ,  and there are many lattice points within 
distance V'In b + 2 � >.j V'2 from s, provided that the interval [b, b + b£] 
contains many products of the form niES ai (for S � { 1 ,  . . .  , k }  ) . If 
a1 ,  . . .  , ak are the first k odd prime numbers, this is the same as saying 
that [b, b + bf] contains many square free odd ( ak )-smooth numbers. (An 
integer x is y-smooth if all prime factors of x are at most y . Moreover, x 
is square free if all of its prime factors appear with exponent 1 . )  We now 
informally estimate for which values of k and b one should expect [b, b+b£] 
to contain a large number of such products. A rigorous probabilistic 
analysis will follow right after. 

Fix some integer c > 1/f ,  and set k = he for a sufficiently large integer 
h to be determined . Let a1 ,  . . .  , ak be the first k odd primes, and consider 
the set of products of all subsets of size h: 

M = {rr ai : S c { 1 , . . .  , k} ,  l SI = h} . 
tES 
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Notice that 

IMI  = (k) = IT k - � 2 IT � = h(c- 1)h . (5 .5) 
h i=O h - t i=O h 

So, all elements of M belong to the interval [1 , (ak )h ] .  If we choose b 
uniformly at random in this interval, the expected size of [b, b + b£] is 
n ( (ak ) fh) and we can estimate the number of elements of M contained 
in [b, b + bE] to be 

Eh IM I  ( hc- l ) h 
f2( (ak ) ) • 

(ak )h 2 n (ak ) l-E 
By the prime number theorem, ak = O(k 1n k) = O(hc ln h) and therefore 
our estimate is n(hEC- 1 I ln h)h > 2h for all sufficiently large h. 

Making the above argument more formal, one can prove that there 
exists an interval [b, b+bE] containing exponentially (in h) many products 
from M. In fact we can do more than just proving that such a b exists: 
below we give a natural probability distribution over the integers such 
that if b is chosen according to this distribution than [b, b + bE] is likely to 
contain many products . Notice that if square free smooth numbers are 
distributed uniformly enough, then all (or most) choices of b are good. 
Unfortunately, we do not know enough about the distribution of smooth 
numbers to prove that most intervals [b, b + b£] are good. In particular, 
choosing b uniformly at random (from all integers smaller than a� ) does 
not necessarily give a good interval [b, b + bE] with high probability. In 
order to overcome this problem, we exploit the smooth number distri­
bution (whatever it is) to bias the choice of the interval toward those 
containing many smooth numbers . The idea is to set b to the product of 
a random (size h) subset of the ai 's. This way, the interval [b, b + b£] is 
selected with a probability roughly proportional to the number of square 
free (ak )-smooth numbers contained in it. So, for example, intervals con­
taining no smooth numbers are never selected, and intervals containing 
few smooth numbers are selected with very small probability. The prob­
ability of choosing an interval containing few products is bounded in the 
next lemma. In fact the lemma is quite general and applies to any set 
M of real numbers bigger than 1 .  

LEMMA 5 . 5  For every positive real numbers E E [0 , 1), J1. > 1 ,  integer 
H 2 1, and any finite subset M C [1 , J-L) , if b is chosen uniformly at 
random from M, then the probability that [b, b + bE )  contains less than 
H elements from M is at most 

1-E H J1. • Pr { l [b, b + b£ )  n MI < H} < ( ) IMI ' bE M K E • 



102 COMPLEXITY OF LATTICE PROBLEMS 

where �(€) = 1 - 2£- 1 is a constant that depends on € .  

Proof: Let B be the set of all b E M such that l [b, b + bE )  n M I < H. We 
show that IB I can be partitioned into at most K = J.l.l-£ /�(€) subsets, 
each containing less than H elements. It follows that 

IB I K(H - 1 )  J.l. l-£ . H 
b�ft{b E B} = 

IMI � IM I 
< �(€) · IMI " 

Divide [ 1 ,  J.1.) into flog2 J.J.l intervals [2m , 2m+ 1 ) for m = 0, . . .  , flog2 J.J.l - 1 .  
Then divide each interval [2m , 2m+ 1 ) into 2m /2£m = 2( 1-E)m subintervals 
of size 2Em . Notice that each subinterval is of the form [x , x + y) for some 
y � xt , therefore it contains at most H - 1 points from B. It remains 
to count the total number of subintervals . Adding up the number of 
subintervals for each interval [2m , 2m+1 ) we get 

pog2 tLl - 1 
K = L 2( 1-t)m 

m=O 
2{ 1 -E) flog2 ttl _ 1 

= 21-f - 1 
(2 ) 1 -f 1-f 

< J.1. - � 0 21-f - 1 - �(€) . 

Applying this lemma to the set of square free smooth numbers we get 
the following corollary. 

COROLLARY 5 . 6  For all reals €, 0 > 0, there exists a constant c such that 
for any sufficiently large integer h, the following holds. Let a1 , . . . , ak 
be the first k = he odd primes, and M the set of all products niES ai , 
where S is a size h subset of { 1 ,  . . .  , k} . If b is chosen uniformly at 
random from M then the probability that [b, b + bf ) contains less than 
h6h elements of M is at most 2-h . 

Proof: Fix some f, o > 0 and let c be an integer bigger than ( 1+8)/€. Let 
J.1. = a� . Notice that M is contained in [1 , J.J.) and, by (5 .5) , IM I 2: h(c- 1 )h . 
Applying Lemma 5 .5  to set M with H = h6h , we get 

Pr{ l [b, b + b£ ) n Mj < H} < 
h6h . J.1.1 -f 

�(€) 1MI 
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By the prime number theorem, ak = O(k In k ) = O(hc In h) ,  which sub­
stituted in the above expression gives 

h6h O(hc In h) ( l -t)h 
K ( E )h(c- l )h 

(O(ln h) ( l -t) ) h 

h£c-( 1+6) 

< 
( O(ln h) ) h  

htc- ( 1+6) 
< 2-h 

for all sufficiently large h because EC - ( 1  + 6) > 0 .  

Combining Lemma 5.3 , Lemma 5 .4 ,  and Corollary 5 .6 , we immedi­
ately get the following theorem. 

THEOREM 5 .  7 For all reals E, 6 > 0, there exists an integer c such that 
the following holds. Let h be a sufficiently large positive integer, k = he,  
and a1 , . . .  , ak be the first k odd primes. Let b be the product of a random 
subset of { a1 , . . .  , ak } of size h and set a = b1-£ . Define L and s as in 
(5. 1 )  and (5.4) , and let r = \1'(1  + E) ln b > 1 .  Then 

• all non-zero vectors in .C(L) have fp norm greater than 

\1'2 ( ( 1 - E )/ (1  + E ) )r, 

• with probability at least 1 - 2-h (over the choice of b), the ball B (s, r)  
contains more than h6h lattice points of the form Lz where z is  a 0 - 1  
vector with exactly h ones. 

Theorem 5 .  7 (or more precisely, its adaption to integer lattices to 
be described in Section 3) plays a fundamental role in the proof that 
approximating SVP in the fp norm is NP-hard (see Theorem 4.4) . When 
specialized to the e2 norm, Theorem 5. 7 also answers the sphere packing 
question posed at the beginning of this chapter. 

COROLLARY 5 . 8  For every "Y < v'2 there exists a constant E > 0 such 
that the following holds. For every (sufficiently large) positive integer k, 
there is a rank k lattice L with minimum distance >. and a point s such 
that the ball B(s, >.h) contains 2k' lattice points. 
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2 . 3  Some additional properties 

In this subsection we prove some additional properties about the lat­
tice .C(L) . The results i� this subsection are presented to improve our 
understanding of lattice L, but they are not used in any proof in the rest 
of this book. So, the section can be safely skipped without affecting the 
reading of the rest of the book. 

We first give a closed expression for the determinant of the lattice. 
Then we prove a converse of Lemma 5.4 for the h norm. Namely, we 
show that any lattice point sufficiently close to s corresponds to a good 
approximation of the integer b as a product of the ai 's . 

PROPOSITION 5 . 9  For sequence of integers a1 , . . .  , ak , the determinant 
of lattice L defined in { 5. 1} is 

k ( 1 + a2 L ln ai) IJ ln ai . 

i=l  

Proof: Compute the Gram matrix BT · B and evaluate its determinant . 
It can be easily proved by induction on the rank that the value of the 
determinant equals the formula in the proposition. 0 

The determinant can be used to bound the length of the shortest 
vector in the lattice using Minkowski's first theorem. Interestingly, 
for appropriate choice of the parameters, the upper bound given l,Jy 
Minkowski 's theorem is not much bigger than the lower bound proved 
in Lemma 5 .3 ,  and therefore all the successive minima of lattice .C(L) 
are relatively close to each other. 

Finally, we present a converse of Lemma 5.4 for the special case of 
p = 1 (similar results might hold in any lp norm, but assuming p = 1 
makes the calculations much simpler) . In Lemma 5.4 we showed that if b 
can be approximated as a product of a subset of the ai 's then there exists 
a lattice point close to s. We now show that if there are lattice points 
close to s (in the l1 norm) then b can be approximated as a product of 
the ai 's in the following sense. 

DEFINITION 5 . 1 Let x be an arbitrary (positive} real number and let pfq 
be a rational. We say that pfq is a Diophantine 8-approximation of x if 
IP - qbi < 8 . 

We prove that if a lattice point is close to s then the correspond­
ing integer is a good Diophantine approximation of b. The following 
proposition strengthen a similar result of (Schnorr, 1 993) . 
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PROPOSITION 5 . 1 0  Let a, b > 0 be two arbitrary positive constant, and 
le t L and s be as defined in (5. 1} and (5.4) . For any integer vector z such 
that I I Lz - s lh < ln b, g = TI afi is a Diophantine (bja) -approximation 
of b. 
Proof: Let g ,  fJ, g be defined as in the lemma. We want to find the 
maximum of the function ifl - 9bl subject to the constraint I ILz - sl l 1  < 
In b. Notice that 

I ILz - s lh = ln fJ + ln g + ai ln fJ - ln9bl 

and lfJ - gbl are symmetric with respect to fJ and gb, i .e . , if one replaces 
fJ by gb and g by fJ/b the value of the functions is unchanged. Assume 
without loss of generality that fJ 2: gb. The problem become to maximize 
fJ - gb subject to the constraint 

( 1 + a) ln g + ( 1 - a) ln g < ( 1 + a) ln b. 

For every fixed value g, the function fJ - gb is maximized subject to the 
a- 1 above constraint when fJ = bg a+1 . So, let 's compute the (unconstrained) 

maximum of the function o - 1  
bg a+1  - {Jb 

This is a continuous function of g with derivative 

b -- g- o+ 1 - b. 
(a - 1 )  2 

a + l 

( ) (a+ l)/2 
The maximum is achieved when g = �+� and equals 

for all a 2: 3. 0 

o- 1 ( 2 ) -2 2b b 1 - a + 1  a + l < � 

In particular, if a = b1 -f then for every lattice vector within distance 
ln b from s, the integer g associated to the vector is a Diophantine b£­
approximation of b. 

3 .  Integer Latt ices 

In the previous section we e_roved that as far as real entries are allowed 
one can easily define a basis L and probabilistically find a vector s with 
th� property that a sphere centered in s of radius slightly bigger than 
A (L)/ {12 contains many lattice points. We now prove that the same 
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result can be achieved using a suitable integer approximation of L and 
s. The error incurred by approximating (a multiple of) L and s with 
integers is bounded in the following two lemmas. 

LEMMA 5 . 1 1  For all rJ ;::::: 1 and all integer vectors z E "I}, 

where L = l {kry)Ll is the matrix obtained multiplying L by kry and round­
ing each entry to the closest integer. 

Proof: By triangular inequality 

I ILz l lp = l l (kry)Lz + (L - (kry)L}z l lp 
> l l (kry)Lz l lp - I I (L - (kry)L)z l lp 

- -

= ryk l iLz l lp - I I (L - (kry)L)z l lp · 

It remains to prove that I I (L - (kry}L)z l lp � k i ! Lz l lp · Notice that all 
entries in {L - (kry)L) are at most 1/2 in absolute value. Therefore 

Furthermore, 

I I (L - (kry)L}z l lp < � l l z l l� + (2: l zi iY 
1 < 2 l l z l l� + kP I I z l l� 

< k l l z l lp · 

I ILz l l� = I IDz l l� + aP IRz iP 
> I !Dz l l� 
> l l z l l �  

because D _is diagonal_with all entries greater than 1 .  This 12roves that 
I I (L - (kry)L)z l lp � k i !Lz l lp and therefore I !Lz l lp ;::::: {ry - 1 }k i !Lz l l p ·  0 

LEMMA 5 . 1 2  For all 'fJ > 0 and all integer vectors z E zk 

where L = l {kry)Ll and s = l (kry)sl are the matrices obtained multiply­
ing L and s by kry and rounding each entry to the closest integer. 
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Proof: By triangular inequality 

I ILz - s l iP - l l { {k77)Lz - (k17)s) + (L - {k77)L)z - (s - {k77)s) I IP 
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< 1 l { {k77)Lz - (k17)s) l lp + I I (L - (k77)L)z - (s - (k17)S) I Ip 
= 77k l 1Lz - (k77)sl lp + I I (L - (k77)L)z - (s - (k77)S) I Ip · 

Notice that all entries in (L - (k77}L) and (s - (k77}s) are at most 1 /2 in 
absolute value. Therefore 

I I (L- (k77)L)z- (s- (k77)S) I I �  � ( �) P ( l i z I I � + (L l zi l  + 1 Y) < kP I I z l l � ·  

Furthermore, I ! Lz - sl i p  ;::: I IDz l lp ;::: l l z l l p because D i s  diagonal with all 
entries greater than 1 . This proves that 

I I (L - (k77)L)z - (s - (k77)s) l lp � k i !Lz - sl ip , 

and therefore I ILz - s l iP � (17 + 1 } 1 1Lz - s l ip · D 
We can now prove Theorem 4.5 .  This is essentially a variant of The­

orem 5 .  7 where ·all the numbers are integers. 

Proof [of Theorem 4.5) : We show that for all p ;::: 1 , d > 0 and e > 0 
the theorem is satisfied with 

( ( 1 - e) l+ l/p ) 
1 = ( 1 + e) 2+l/p · {12. 

Let c be as in Theorem 5.7 . On input h, algorithm A computes k = he, 
and the first k odd primes a1 , a2 , . • •  , ak . Let L, s, and r be as defined 
in Theorem 5 .7, and compute the approximations 

s = l (k/e}Sl ,  r = f ( 1  + 1 /e) krj . 

Let z E zk be a nonzero integer vector. We want to bound I !Lz l lp · 
We know from Theorem 5 .  7 that 

I ILz l lp > V2 � � ::r. 
Using Lemma 5 . 1 1  (with 17 = 1 /e) and (5 .6) we get 

I I Lz l l p  > ( � - 1) k i !Lz l l p  

( ( 1 - e) l+ l /p ) _ 

> e ( l  + e) l/P k {i2 · r .  

(5 .6) 

(5 . 7) 
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Notice that r satisfies the bounds r < ( 1  + 1/E) Fr + 1 and r > ( 1  + 1/E) 
because k � 1 and r > 1 . Thus, we can bound r as follows: 

r - 1  
r > ( 1  + 1/E) k 

1 - 1/r �--':--:--:- . r ( 1  + 1 /E) k 
1 - 1/ ( 1  + 1/E) > · r  

{ 1  + 1/E) k  

= 
{5 .8) 

= (E + 1 ) 2k 
. r. 

Combining {5 .7) and {5 .8) we get 

( ( 1 - €) 1+ 1/p) f. 
I ILz i iP > E { 1 + E) 1/p V'2 {f. + 1 ) 2 

r = IT. 

Now consider the sphere B(s, r) . By Theorem 5.7, for all sufficiently 
large h, with probability at least 1 - 2-h ,  the ball B (s, r) contains at least 
h6h lattice points of the form Lz where z is a 0- 1 vector with exactly h 
ones. For each such point Lz, we can use Lemma 5 . 12  (with rJ = 1 /E) to 
bound the distance of Lz from s as follows: 

I ILz - s l ip � ( 1  + 1/E) k i iLz - sl ip 
� ( 1 + 1/E) kr � r. 

Therefore Lz belongs to the sphere B(s , r) . This proves that B(s, r) also 
contains at least h6h lattice points of the desired form. D 

4. Determinist ic construction 

The probabilistic construction of Theorem 4.5 is used in Chapter 4 to 
prove the NP-hardness of SVP under randomized reductions . Finding 
a similar deterministic construction would be useful to obtain an NP­
hardness result for SVP under Karp reductions. The randomization 
in the proof of Theorem 4.5 comes from the fact that we do not know 
which intervals of the form [b, b + bf] (for small f. > 0) contain square 
free smooth numbers. The problem is solved in Corollary 5.6 choosing b 
according to a certain easily samplable distribution. The intuition is that 
since there are many square free smooth numbers, then some intervals 
must contain many of them. In fact ,  if square free smooth numbers are 
distributed uniformly enough, than any interval [b, b + bf] is good. To 
date we dot not know how to prove that square free smooth numbers 
are distributed uniformly enough (see Section 5 for further discussion of 
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this issue) , however, it seems reasonable to conjecture that for any £ > 0 
there exists a d such that for all large enough n, the interval [n, n + nf) 
contains an (odd) integer which is square free and (logd n)-smooth. This 
is Conjecture 1 from Chapter 4. Using the conjecture, we can prove 
Theorem 4.9 . 

Proof [of Theorem 4.9) : For simplicity, we show how to build real L 
and s. Integer L and s can be easily obtained using Lemma 5 . 1 1  and 
Lemma 5 . 12  as explained in Section 3. 

Let £ be a positive real between 0 and 1 . Let d be an integer (whose 
existence is guaranteed by Conjecture 1) such that for all large enough 
n there exists a (logd n )-smooth square free (odd) integer in the interval 
[n, n + nf/2] .  Let L and s be as defined in (5 . 1 }  and (5 .4} with k = 
hd+ l + h, a� , . . .  , ak the first k (odd} prime numbers, b = a%h/f and 
a = b1-f . Notice that since k is polynomial in h, the sequence a1 , . . .  , ak 
can be generated in deterministic polynomial time. 

From Lemma 5 .3 we know that for all nonzero vectors z E zh, 

I I Lz l lp ;::: {/2( 1 - €) In b. 

We now show that for all x E {0, 1 }h there exists a y E zhd+l such that 

where z = [yT , xTjT . Let Yx = fl?=l a��+
l +i " Notice that 

b b (Lt )h h - > h = ak • > 2 .  9x ak 

(5 .9) 

In particular, as h  gets arbitrarily large, also (b/gx ) gets arbitrarily large. 
So, for all sufficiently large h, there exists a logd (b/gx)-smooth square 
free odd integer in the interval 

[b/gx , (b/gx } + {b/gxY/2] . (5 . 10} 

Notice that 
logd (b/gx ) � logd (b) = O(h log h)d < hd+l . 

So, {5 . 10) contains an square free hd+1 -smooth odd number, i .e . ,  the 
d f f rrhd+ l y ·  pro uct o a subset o a1 , . . .  , ahd+ i . Let gy = i= l ai ' be such number, 

where y E {0, 1 } hd+ I . Multiplying gy and (5 . 10) by Yx we get 

9z = 9x9y E [b, b + bf/2 Yx) 
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nhd+ l +h . h t/2 where 9z = i=l  = 9x9y · Fmally, we observe that 9x � ak = b 
and therefore 9z = 9x9y belongs to the interval [b, b+bl ] .  By Lemma 5 .4, 
lattice vector Lz satisfies (5 .9) . The theorem follows setting r to (a 
rational approximation of) V'ln b + 2, and choosing E small enough so 
that t/2 ( 1  - E) l n  b/r > 'Y· D 

5 .  Notes 

The material presented in this chapter is from (Micciancio, 1998) , 
and part of it also appeared in (Micciancio, 2001d) . The upper bounds 
in Section 1 were first proved in (Rankin, 1 955) for the special case of 
spherical codes (i .e. , a sphere packing problem with the additional con­
straint that all points must be at the same distance from the origin) . If 
we allow arbitrary sets of points with minimum distance .X, an exponen­
tial lower bounds for any .X/ p < J2 is already implicit in Gilbert bound 
for binary codes (Gilbert, 1952) . Non constructive proofs for spherical 
codes were given in (Shannon, 1959) and (Wyner, 1965 ) .  However, the 
points generated by these constructions do not form a lattice. We re­
mark that the lower bounds in (Shannon, 1959; Wyner, 1 965) show that 
it is possible to pack 2an points, where a is a constant that depends only 
on p > J2, while our construction succeeds in packing only 2n"' points. 
An interesting question is whether our construction is asymptotically 
optimal for lattice packings, i .e . ,  if 2nn( I ) is the best we can do, or even 
for lattices one can have 2n(n) points inside a small ball. 

Variants of the lattice studied in Section 2 have appeared in the com­
puter science literature in various places . A version of the lattice (with 
p = 1) was first used by (Schnorr, 1 993) to heuristically factor inte­
gers by reduction to SVP. (Adleman, 1995) used a similar lattice (with 
p = 2) to reduce factoring to SVP under some unproven number the­
oretic assumptions. Finally, an extended version of Adleman's lattice 
is used in (Aj tai, 1998) to prove the NP-hardness of SVP. The proof 
of (Micciancio, 2001d) (as presented in Chapter 4) , although inspired 
by (Aj tai, 1996) ,  goes back to the original lattice of Schnorr and Adle­
man, considerably simplifying Ajtai 's proof. The connection between 
the Schnorr-Adleman lattice and sphere packing problems is explicitly 
established for the first time in (Micciancio, 1998 ; Micciancio, 2001d) .  
This more geometric interpretation of the lattice allowed t o  translate 
the techniques of (Micciancio, 1998) to other areas, and prove analogous 
results for coding problems (Dumer et al. , 1999) . 
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Chapter 6 

LOW-DEGREE HYPERGRAPHS 

The goal of this chapter is to prove Theorem 4.6 . The theorem states 
that if Z C {0 , 1 } k is a set of binary vectors , each containing exactly 
h ones , and I Z I ;::: h !k4.Jiin/£ , then there exists a matrix T E {0,  1 }n xk 
such that {0, 1 }k � T(Z) ,  where T(Z) denotes the set {Tz : z E Z} .  In 
other words, for every x E {0, 1 }n there exists a z E Z satisfying x = Tz. 
Moreover, Theorem 4.6 states that if T E {0, 1 }n xk is chosen at random 
setting each entry to 1 independently with probability p = f.j (4hn) , 
then {0, 1 }k � T (Z) with high probability (namely, probability at least 
1 - 6€) . In Chapter 4, Theorem 4.6 is used to prove the NP-hardness 
of approximating the shortest vector problem under RUR-reductions. 
However, the theorem has a purely combinatorial interpretation and it 
is better understood if reformulated in terms of hypergraphs, without 
any reference to integer lattices or matrices. A hypergraph is a pair 
(V, Z) , where V is a finite set of ve1'tices and Z is a collection of subsets 
of V, called hyperedges. If all the elements of Z have the same size, then 
we say that (V, Z) is regular, and the common size of all hyperedges is 
called the degree of the hypergraph. 

Theorem 4.6 can be reformulated in terms of regular hypergraphs as 
follows. Let (V, Z) be an h-regular hypergraph, and let T =  (T1 , • • •  , Tn ) 
be a sequence of subsets of V chosen at random including each element 
of V in Ti independently with probability p = f.j (4hn) . For any subset 
of vertices U � V, let 

T(U) = ( IT1 n U l ,  IT2 n Ul , . . .  , ITn n U l ) 

and define T(Z) = {T(U) : U E Z} . We want to prove that if I Z I  > 
h! I V I 4../iinf£ , then {0 , l }n � T(Z) with probability at least 1 - 6€. 
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The correspondence between the matrix and hypergraph formulation 
is immediate: identify the hyperedges with the corresponding charac­
teristic vectors in {0, 1 } lV I  and the sequence T = (TI , . . .  , Tn ) with a 
matrix T E {0, 1}nx jV I  whose rows are the characteristic vectors of the 
sets Ti . Then T(U) = Tu where u is the characteristic vector of set 
U. (Notice that for any two vectors x, y E {0, 1 } 1V I , the scalar product 
x · y = I:!�� XiYi equals the size of the intersection of the corresponding 
sets . ) With slight abuse of notation, in the rest of the chapter we will 
use T to denote either a boolean matrix or the corresponding sequence 
of sets. 

It can be proved that for any (not necessarily regular) hypergraph 
(V, Z) , if IZ I  > I V  In , then there exists a solution consisting of singleton 
sets l7i I = 1 .  This is essentially a combinatorial result proved, inde­
pendently, by Sauer, Perles and Shelah, and, in a slightly weaker form, 
by Vapnik and Chervonenkis, which is usually referred to as Sauer 's 
Lemma. The proof of this result is relatively simple, but not construc­
tive: it only asserts that T exists, without giving any effective (even 
probabilistic) way to find it. Theorem 4.6 can be regarded as a effective 
probabilistic variant of Sauer's Lemma. 

The proof of Theorem 4 .6 is divided in two stages . We first prove a 
weaker result : we show that every vector x E {0, 1 }n belongs to T(Z) 
with very high probability. Then, we prove a stronger property as stated 
in Theorem 4 .6 .  The difference between the weak and strong version of 
the theorem is in the order of quantification. While the theorem in its 
strong form asserts that with high probability T is good for all target 
vectors x, the weak version only says that for any fixed target vector x, 
matrix T is good with high probability. 

The weak version of the theorem is proved in Section 2 using a rel­
atively simple argument based on Chebychev inequality. Then, in Sec­
tion 3 we show that the strong version of the theorem can be easily 
derived from the weak one using ideas similar to those arising in the 
proof of (the standard non constructive version of) Sauer's Lemma. So, 
we begin in Section 1 by presenting a simple proof of Sauer's Lemma. 
Even if this result is not used in the rest of the book, the proof in 
Section 1 gives a first exposure to the ideas that will later be used in 
Section 3 to prove Theorem 4 .6 .  

1.  S auer's Lemma 

In this section we present a proof of Sauer's Lemma, . This combi­
natorial result is usually stated in terms of the Vapnik-Chervonenkis 
dimension (VC-dimension) of a range space. In order to avoid the intra-
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duction of new concepts, we reformulate Sauer's Lemma in terms of the 
sets T1 , . . .  , Tk and Z. Sauer's result is essentially a solution to our com­
binatorial problem with the restriction that the 1i 's must be singleton 
sets, i .e . , sets containing exactly one element . 

When the Ti 's are singleton sets, the linear operation associated to 
T is more easily described by the projection onto some set G � V as 
follows. For any hypergraph (V, Z} and for any subset of nodes G � V, 
define the restriction of Z to G by 

ZIG = {A n G :  A E Z} .  

Notice that for every set G � V, the following two conditions are equiv­
alent : 

• ZIG = p(G) is the power set of G, 

• {0 , l }G � T(Z) where T = ( {a} )aeG is a sequence of IG I  sets, each 
containing a single element of G.  

LEMMA 6 . 1  ( SAUER'S LEMMA) Let V be  a se t  of size k and Z be  a 
collection of subsets of V.  Let 

[k, n) = t (�) 
i=O � 

be the number of subsets of V of size at most n . For all n , if IZ I  � [k, n] 
then there exists a set G of size n such that ZIG =  p(G) . 

Proof: The proof is by induction on k + n. If k = n = 0 the assertion 
is trivially true. Notice that [k, n) = [k - 1 ,  n) + [k - 1 ,  n - 1) . Assume 
that the lemma holds for k - 1 ,  n and k - 1 ,  n - 1 ,  and let 's prove it for 
k, n. Let l V I = k and IZ I  � [k, n] .  Pick an element a from V and define 
U = V \ {a} and the following two collections of subsets of U: 

Zo = {A �  U :  A E Z} 

Z1 = {A � U :  A U {a} E Z} .  
Notice that l U I  = k - 1 and 

IZo U Zd + IZo n Z1 l = IZo l + I Z1 I 
= IZ I 
� [k , n] 
= [k - 1 ,  n) + [k - 1 ,  n - 1) . 
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Therefore, either IZo U Z1 l � [k - 1 , n] or IZo n Z1 l � [k - 1 , n - 1 ] .  We 
deal with the two cases separately: 
• if IZo U Z1 1 � (k - 1 ,  n] , then by inductive hypothesis there exist a 

set G � U C V of size IG I  = n such that (Zo U ZI ) Ic  = p(G) .  Since 
a �  G, Zlc = (Zo U ZI ) Ic  = p(G) . 

• if I Zo n Z1 l � [k - 1 ,  n - 1] , by inductive hypothesis , there exists a 
set G' � U C V of size I G' I  = n - 1 . such that (Zo n ZI ) I c' = p(G') . 
Let G = G' U {a} .  We now show that Zlc = p(G) .  The inclusion 
Zlc � p(G) is obvious. So, let us prove p(G) � Zlc ·  Let A E p(G) 
be any subset of G. Notice that A \  {a} belongs to both Zo ic' and 
Zdc' · Therefore A \  {a} E Zc and A U  {a} E Zc. Since A equals 
either A \  {a} or A U  {a} ,  it follows that A E Zc. 0 

Since [k ,  n] < kn , one immediately gets the following corollary. We 
remark that the corollary is already enough to prove the NP-hardness 
of SVP under nonuniform reductions . {See Corollary 4 .8 . )  

COROLLARY 6 . 2  Let Z C {0, 1 }k be a collection of boolean vectors. If 
I Z I � kn then there exists a matrix T E {0, l }nxk such that {0, 1 }n � 
T{Z) . 

Observe that the bound in Sauer's Lemma is tight : if Z is the set of all 
subsets of V of size n or less, then IZ I  = (k, n] and any set G satisfying 
the assertion in the lemma has size at most n. The proof of the lemma 
suggests a possible way to find the set G: select the elements of V one 
at a time. For each a E V, if there are a lot of subsets A such that 
both A \ {a} and A U {a} belong to Z, then include a in G, otherwise 
discard it, project Z onto V \ {a} and go on to the next element . The 
problem is that the step of deciding whether a given a E V is good or 
bad may not be effective. Notice that a single element might belong to 
all sets in Z (or none of them) , and still iZ I be quite large, and selecting 
such an element would be disastrous. We show in a later section that 
when Z is very large { IZI � 2k ) , then G can be chosen at random and a 
probabilistic analogue of Sauer's Lemma holds . But first one has to get 
rid of the bad elements. This is accomplished in the proof of the weak 
version of the theorem. 

2. Weak probabilistic construction 

In this section we prove a weaker version of Theorem 4.6: we show 
for every vector x E {0, l }n , x E T{Z) with high probability. (See 
Theorem 6 .8 for the exact statement . )  Consider the target vector x 
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as fixed. We want to bound the probability that T(U) :/= x for all 
U E Z. Since the set Z is very big, the expected number of U E Z such 
that T(U) = x is also very high. Unfortunately, this is not sufficient 
to conclude that with high probability there exists a U E Z such that 
T(U) = x, because the events T(U) = x ( indexed by the hyperedges 
U E Z) might be strongly correlated. Notice that if U and U' are disjoint 
(i .e . , U n U' = 0) , then the corresponding events are independent . In fact 
the size of the intersection I U n U' I is a good measure of the correlation 
between the events T(U) = x and T(U') = x. Notice that if I Z I is big, 
then many hyperedges in Z intersect because there cannot be more than 
n/h mutually disjoint hyperedges . However, one can still hope that for 
most of the pairs U, U' E Z, the intersection U n U' is very small. This 
is not necessarily true for any hypergraph Z, but one can show that if 
Z is sufficiently large, then it must "contain" (in some precise sense to 
be specified) a large hypergraph with this small intersection property. 

The proof of the theorem is divided in three steps : 
1 We first show that the probability that x fl. T(Z) can be bounded by 

the expectation 
Exp [e11R - 1] , 

R 
{6 . 1 )  

where {) i s  a small positive real , and R = I U n U' l i s  the random 
variable defined as the size of the intersection of two randomly chosen 
hyperedges U, U' E Z. 

2 Then, we show that Z "contains" a hypergraph such that the inter­
section of two randomly selected hyperedges is very small with high 
probability. 

3 Finally, we prove the weak version of the theorem applying the bound 
(6 . 1 )  to this hypergraph contained in Z. 

Each of the above steps is described in the following subsections . 

2.1 The exponential bound 

We start by computing the probability that T(U) = x for some fixed 
set U. In the next lemma we prove a more general statement concerning 
the probability that two events T(U) = x and T(U') = x are simulta­
neously satisfied and relate it to the size of the intersection r = I U n U' l 
of the two sets U, U' . 

LEMMA 6 . 3  Let x E {0, 1 }n be any boolean vector, U, U' C V be two sets 
of size d and let T = (T1 , . . .  , Tn ) {where Ti � V for all i = 1 ,  . . .  , n) 
be chosen at random including each element of V in Ti independently 
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with probability p. Then, the probability (over the choice of T) that both 
T (U) and T (U') equal x is 

[ 2l l lx lh 
«P (r) = ( 1 - p) (2d-r)n ___!!!:..__ + (p(d - r) ) ' 1 - p 1 - p 

where r = I U n U' l ,  and 1 lx l l 1 is the number of 1 's in vector x.  

Proof: Since the sets T1 , . . .  , Tn are chosen independently, 
n 

Pr{T (U) = T (U' ) = x} = II :pr{ l7i n Ul = 11i n U' l = xi } · T . 1 T; & =  

We prove that for all i = 1, . . . , n , 

First consider the case Xi = 0 and compute the probability (over the 
choice of 7i) that l7i n Ul  = 11i n U' l  = 0. This is true if and only if 
none of the elements of U U U' belongs to Ti , so the probability is 

Now consider the case Xi = 1 and compute the probability (over the 
choice of 7i) that ITi n Ul = 11i n U' l = 1 .  This is true if and only if 
either ( 1 )  1i contains one element of U n U' and no other element of 
U U U' , or (2) Ti contains one element of U \ U', one element of U' \ U, 
and no other element of U U U'. Event (1) has probability 

I U n U' l . p(1 - p) IUUU' I - 1 = ( 1 - p)2d-r (___!!!:..__ ) 
1 - p 

while event (2) has probability 

I U \ U' l · IU' \ Ul . p2 ( 1  - p) IUuU' I-2 = ( 1  - p)2d-r (p(d - r) ) 2 
1 - p 

Adding up the two probabilities, we get 

Pr { ITi n UI = ITi n U' I  = 1 } = ( 1 -p) (2d-r) (� + (p(d - r) ) 2) . o 
T; 1 - p  1 - p 
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By choosing U = U' in the previous lemma one gets the following 
corollary. 

COROLLARY 6 . 4  Let x E {0 , 1 }n be a boolean vector, U � V a subset of 
size d, and choose T = (T1 , . . .  , Tn) at random as in Lemma 6.3. Then, 

( d ) l lx lh 
�{T(U) = x} = <P(d) = ( 1 - p)dn 

1 
TJ_ 

p 

Notice that when U n U' = 0, 

Pr{T(U) = T(U') = x} = .P(O) = .P (d)2 

Pr{T(U) = x} Pr{T(U') = x} , 

i .e. , the events T(U) = x and T(U') = x are independent . We can now 
prove the following proposition. 

PROPOSITION 6 . 5  Let (V, Z) be a d-regular hypergraph and let T be a 
sequence of subsets of vertices (T1 , . . . , Tn ) chosen at random including 
each element of V in Ti independently with probability p. Then, for each 
x E {0, l }n the probability {over the choice of T} that x (/. T(Z) is at 
most ExpR [e17R] - 1 , where {) = 0 + � and R = IU n U' I is the random 
variable defined as the size of the intersection of two randomly chosen 
hyperedges U, U' E Z. 

Proof: Fix some vector x E {0 ,  l }n and choose T at random as specified 
in the proposition. For all U E Z, let Xu be the indicator random 
variable 

X _ { 1 if T(U) = x, u - 0 otherwise. 

Define the random variable X = l:uEZ Xu. Notice that X = 0 if and 
only if x (/. T(Z) . Moreover, if X = 0 then IX - Exp[X] I � Exp[X] . 
Using Chebyshev's inequality we get the following bound: 

Pr{x (/. T(Z) }  = Pr{X = 0 }  

< Pr{ IX - Exp[X] I � Exp[X] } 

< Var[X] 
= 

Exp[X2] _ 
1 . 

Exp[X]2 Exp[X]2 

So, let us compute the moments Exp[X] and Exp[X2] .  For the first 
moment we have 

Exp[X] = L Exp[Xu] = L Pr{T(U) = x} = IZ I · <P(d) , 
T UEZ T Uf Z T 
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and for the second one 

E�p[X2] = E;p [ (�Xu) '] 

= Exp [ L Xu · Xu'] 
T U,U'E Z 

= L �{T(U) = T(U') = X} 
U,U'EZ 

= IZ I 2 · Exp[<I>(R)] , 
R 

where R = I U  n U' l is the size of two randomly chosen U, U' E Z. 
Therefore, 

�r{x ¢ T{Z) } = Ex�(���R)] - 1 

= �p [( 1 - p) -nR cl ;:)R 
+ (I - �rrll• ] - I 

< E;p [ (I +  I � JR (;:, + I rJ - I 

< E�p [e� e� ] - 1  
= Exp[e17R - 1] , 

R 
where -a = G + �. 0 

2 . 2  Well spread hypergraphs 

In the previous section we showed that the probability that x ¢ T(Z) 
is at most ExpR [e17RJ - 1 . Obviously, the bound is interesting only when 
ExpR [e11R] < 2. Notice that this can be true only if 

Pr{ R = r} < e -Dr 
R 

for all but a single value of r. Therefore the probability Pr R { R = r} 
must decrease exponentially fast in r.  This is not necessarily true for 
any low degree regular hypergraph Z. In this section we show that if Z 
is sufficiently large, then Z must "contain" a hypergraph such that 

f>J{R = r} $ 1/r ! .  
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More precisely we show that Z contains a hypergraph satisfying the 
following property. 

DEFINITION 6 . 1  Let (V, Z) be a d-regular hypergraph. Z is well spread 
if for all W � V of size at most d, the fraction of hyperedges containing 
W is at most 

I {U E z : w � U} l < 1 = (d - IW I ) ! 
IZ I - d(d - 1 )  . . . (d - IW I  + 1 )  d! 

well spread hypergraphs have the important property that the size of 
the intersection of two randomly selected hyperedges is small with very 
high probability, as shown in the next lemma. 

LEMMA 6 . 6  Let (V, Z) a regular well spread hypergraph. Choose U and 
U' in Z independently and uniformly at random and let R = I U n U' l ·  
For all r > 0, 

1 
Pr{R ;::: r} < 1 .  R r .  

Proof: Let d be the degree of the hypergraph. We prove that for any 
fixed set U of size d, the probability that I U n U' l � r when U' is chosen 
at random from Z is at most � .  If IU n U' I ;::: r then U' contains a 
subset of U of size r. Therefore, by union bound, 

uflz { IU n U' l � r} S L ufl}W � U'} 
WE(�)  

= L I {U' E z :  w � U'} l 

WE(�) 
IZ I  ' 

where {�) denotes the set of all the size r subsets of U. Since Z is well 
spread, the fraction I {U' E Z : W � U'} I / IZ I is at most (d�? ,  which 
substituted in the previous expression, gives 

Pr { I  U n U' I � r}  s (d) ( d - r ) !  = _!_. o 
U' EZ r d! r !  

We now show how to  find well spread hypergraphs "inside" any suf­
ficiently big regular hypergraph. For any subset W � V, define the 
induced hypergraph 

Zw = { U � V \ W : U U W E Z} . 
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In other words, Zw is the set of hyperedges containing W, with the 
nodes in W removed. Notice the following basic facts: 

1 hypergraph Z is well spread if for every set W of size at most d, 
IZw l � (d-1�1) ! IZ I . 

2 Zw is d'-regular with d' = d - I WI . 

3 If W = 0 then Zw = Z. 

4 (Zw )u = Zwuu if W n U = 0, and (Zw )u = 0 otherwise. 

5 If IW I > d then Zw = 0. 

In the following lemma we prove that for any regular hypergraph Z, 
there exists a set W such that Zw is well spread. 

LEMMA 6 .  7 Let (V, Z) be an h-regular hypergraph. Then there exists a 
set W C V such that (V, Zw) is well spread and IZw l  > IZ I/h! .  

Proof: If (V, Z )  is well spread, let W = 0 and the statement is obvi­
ously true. Otherwise, there exists some set W of size at most h such 
that I Zw l > (h-lfD' · IZI . Let W be maximal {with respect to the set 
inclusion ordering relation) among these sets . Obviously, IZw l > IZ I /h! .  
Notice that Zw i s  d-regular, with d = h - I W I .  We prove that (V, Zw) 
is well spread. Let U be a subset of V of size at most d. There are three 
cases: 

1 If u n w =I= 0 then I (Zw )u l  = 0 � (d-JfD' · IZw l · 

2 If U = 0, then I (Zw)u l = IZw l = � · IZw l · 

3 Finally assume U =j:. 0 and U n W = 0. By the maximality of W we 
have 

I (Zw)u l  = 

< 

= 

< 

IZuuw l 
(h - l�

!
u WI ) ! 

IZ I 

(d - l UI ) ! (h - IW I ) ! 
IZ I d! h ! 

(d - l U I ) ! 
IZ I d! 

w . 0 
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2 . 3  Proof o f  the weak theorem 

We now combine the tools developed in the previous sections to prove 
the following theorem. 

THEOREM 6 . 8  For every sufficiently small constant E > 0, positive inte­
ger n and h-regular hypergraph (V, Z) of size IZ I  > h! IV IVhn/E the follow­
ing holds. Choose T = (T1 , . . .  , Tn ) (where Ti � V for all i = 1 ,  . . .  , n) 
including each element of V in Ti independently at random with proba­
bility p = t:/ (hn) . Then, for every x E {0, l }n , 

Pr{x E T(Z) }  > 1 - 5t:. 

Proof: From Lemma 6.  7, there exists a subset W C V such that (V, Zw) 
is well spread and IZw l 2: IZ I /h !  > I V IYhn/E .  Choose T at random as 
specified in the theorem. Let F be the event that none of the elements of 
W are included in any set Ti . Notice that Pr{ --,F} ::; IW inp ::; hnp = E. 
Notice also that 

Pr{x 't T(Z) I F} < Pr{x 't T(Zw ) }  T - T 

Let d be the degree of Zw . Since IZw l � ( 1� 1 ) < I V Id and IZw l > 
I V IYhn/E ,  hypergraph Zw has degree at least d > ..fhn/t:. 

Applying Proposition 6 .5 to d-regular hypergraph Zw, the probability 
(over the choice of T) that x 't T(Zw)  is at most Expn[e11R] - 1, where 
R is the size of the intersection of two random elements in Zw and 

{) = np n 
-1 ---p + p-d,2-

= € hn2 --- + -
h - Ejn Ed2 

E 
< -- + € . 1 - € 

But Zw is well spread, so by Lemma 6 .6 ,  Prn{R 2: r} < 1/r ! and the 
expectation Expn [e19R] can be bounded as follows: 

= L e11r ld{ R = r }  

r20 

= L e11r ( ld{ R 2: r} - �r { R 2: r + 1 }) 
r20 

= L e11r ld{R 2: r } - L e19(r- 1 )  ld{R 2: r } 
r20 r2 1 
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= 1 + { 1 - e-11 )  L: e11r !i{R 2:: r} 
r�l 

e!?r 
< 1 + 1? 2:: -, 

1 r .  T� 
iJ = 1 + 1? ( ee - 1 )  . 

So, the probability that x ¢ T{Z) given F is less than l?(eeil - 1 )  and 

�r{x ¢ T{Z) }  < Pr{-,F} + Pr{x ¢ T(Z) I F} 
iJ < € + l? (ee - 1 ) .  

Using the bound 1? < € { 1  + 1/ { 1  - €) ) , we get that for all sufficiently 
small € 

�{x ¢ T(Z) } � 5€. o 

3. Strong probabilistic construction 

In the previous section we proved that for every boolean vector x, 
if T is chosen as described in Theorem 6.8 ,  then with high probability 
there exists a U E Z such that T{U) = x. It follows by an averaging 
argument that with high probability the size of T(Z) n {0, 1 }n {the set 
of all boolean vectors that can be represented as T{U) for some U E Z) 
is almost equal to the size of the whole {0, 1 }n . We now show how to 
project T(Z) n {0, l }n onto the set of all binary strings of some shorter 
length. 

Remember the restriction operation Z la defined in Section 1 .  Here 
we reformulate the same operation using vector notation. For any vec­
tor x E {0, 1 }n and subset of coordinates G � { 1 , ... , n } ,  define the 
restriction xla E {0,  1 } IGI as the vector obtained taking the coordinates 
of x with index in G. The restriction operation is extended to set of 
vectors in the obvious way: Wla = {x la : x E W}.  The next lemma 
shows that the probability that a random restriction Wla covers the 
whole set { 0, 1 } G of binary strings is at least equal to the density of IWI 
in { 0, 1 }  n . Our proof closely resemble the proof of Lemma 6 . 1  and can 
be considered as a probabilistic variant of Sauer's Lemma. 

LEMMA 6 . 9  Let W be a subset of {0, 1 }n . If G is chosen uniformly at 
random among all subsets of { 1 ,  . . .  , n} ,  then 
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Proof: By induction on n.  The base case n = 0 is trivially true. (Notice 
that {0 ,  1 }0  = {0, 1 }n = {c} and WJc = W = {0 ,  1 }0  if and only if 
JWJ = 1 . )  So, assume the statement holds for all W � {0, l } n  and let us 
prove it for W � {0 ,  l }n+l . Choose G at random and let G' = G\ { n+ 1 } .  
Notice that G' is a random subset of { 1 ,  . . . , n } .  Define the following 
sets :  

Notice that JW I  = JWo l + JWI I = IWo u Wd + IWo n WI I ·  Moreover, if 

• either (n + 1 )  E G and (Wo n WI ) Jc' = {0, 1 }0' 

• or (n + 1 )  ¢ G and (Wo U WI ) IG' = {0,  1 }0' ,  

then WJa = {0 ,  1 }0 .  Therefore, using the inductive hypothesis , we get 

Pr{WJc = {0 ,  1 }0 } 2: Pr{ (n + 1) E G} Pr{ (Wo n WI ) Jc' = 2°' } 
+ Pr{ (n + 1 )  ¢ G} Pr{ (Wo U WI ) Ia' = 2°' } 

> � ( IWo u Wd ) � ( IWo n Wd ) 
2 2n + 2 2n 

= IWo U W1 l + IWo n Wd 

= 2n+l · 
IWI 0 

Now, we are ready to prove Theorem 4.6 .  

Proof [of Theorem 4.6] :  Instead of choosing the matrix T E {0 ,  1 }n xk  
as specified in  Theorem 4 . 6 ,  we do  the following mental experiment . First 
choose a bigger matrix T' E {0,  1 } 4nxk at random by setting each entry 
to 1 independently with probability p = 4E/ (hn) . Then choose a random 
subset G � 1 ,  . . .  , 4n of its rows. If G has size at least n, set T to the 
sub-matrix of T' with rows corresponding to the first n elements of G. 
If G has less than n elements, the experiment fails and T can be set to 
any n x k matrix. 

Let W = T' (Z) n {0, 1 }4n . Notice that the probability distribution 
of matrix T (conditioned on the event JG J  2: n) is the same as in Theo­
rem 4 .6 .  Moreover, if JG J  2: n and {0, 1 }0 � Wlc then {0 ,  1 }n � T(Z) . 
So, we can bound the probability that matrix T does not satisfy Theo­
rem 4 .6  as the sum of the probabilities that JG J  < n and {0 ,  1 }n � T(Z) . 
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Notice that Exp[ IG I J = 2n and Var[ IG IJ = n. So, by Chebychev's 
inequality 

Pr{ IG I < n} < Pr{ I IG I - Exp[IG I J I < n} 
< Var[ IGIJ 

n2 
1 = - < € n 

for all sufficiently large n. Now, let us bound the probability that 
{0, 1 }G � Wla when G and T' are chosen at random. Using Lemma 6.9 
and the independence of G and T', one gets 

J}, { {O, l }G � W la} = Exp[Pr{ {0, 1 } a � WI a}] 
T' G 

> Exp ( IWI ] 
T' 24n 

= Exp [ Pr [x E W]] 
T' xE {O, l } 4n 

= 

> 

Exp [Pf[x E T' (Z)J] xE {0 , 1 } 4n T 
min Pr{x E T' (Z) } xE {0, 1 } 4n T' 

> 1 - 5€. 

Therefore the probability that {0, 1 }n CJ: T(Z) is at most 5€. By union 
bound, with probability at least 1 - 6€ matrix T satisfies Theorem 4.6 .  
0 

4 .  Notes 

A probabilistic variant of Sauer 's lemma was first proved by (Ajtai, 
1998) , and used to establish the first NP-hardness result for SVP. Ajtai's 
construction and proof is rather involved, with sets Ti chosen according 
to easily samplable, but not independent , probability distributions. In 
this chapter we presented an alternative construction from (Micciancio, 
1998; Micciancio, 2001d) with a simpler analysis . Moreover, the perfor­
mance of our construction is arguably better than Ajtai 's . Parameters 
k, h, n in (Ajtai, 1998) (as well in Theorem 4.6) are polynomially related, 
but the technicality of the proof in (Ajtai , 1 998) , makes it hard to ex­
tract the exact relation, which is currently unknown. So, an accurate 
comparison between the two results is not possible. 
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Chapter 7 

BASIS REDUCTION PROBLEMS 

In the first chapters of this book we studied the shortest vector prob­
lem and the closest vector problem both from an algorithmic and com­
putational complexity point of view. In fact , the algorithms presented 
in Chapter 2 to approximately solve SVP and CVP do somehow more 
than just finding an approximately shortest lattice vector, or a latt ice 
vector approximately closest to a given target. For example, the LLL 
algorithm on input a lattice basis B, outputs an equivalent basis B' such 
that not only b� is an approximately shortest lattice vector, but also all 
other basis vectors b� are not too long. Moreover, LLL reduced bases 
have relatively good geometric properties that make them useful to solve 
other lattice problems. In particular, we have seen that if an LLL basis 
is used, then the nearest plane algorithm always finds a lattice vector 
approximately closest to any input target point . The problem of finding 
a "good" basis for a given lattice is generically called the basis reduction 
problem. Unfortunately, there is not a unique, clearly defined notion of 
what makes a basis good, and several different definitions of reduced ba­
sis have been suggested. In this chapter we consider the most important 
notions of basis reduction, define approximation problems naturally as­
sociated to such notions , and study the relation between these and other 
lattice problems. 

1 .  S uccessive minima and Minkowski's reduction 

A possible way to define reduced bases is to identify good bases with 
bases all of whose vectors are short . In Chapter 1 we have seen that for 
any lattice A of rank n with successive minima ) q , . . . , An , there exist lin­
early independent vectors s 1 , . . .  , Sn of length l l si l l  = ..\i. It immediately 
follows from the definition of successive minima that these lengths are in-
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deed optimal, i .e . , for any linearly independent lattice vectors s1 ,  . . .  , Sn 
(in particular, for any lattice basis) if the vectors are sorted in order 
of increasing length ! l s i II � 1 l s2 1 l � . . . � l l sn l l  then l l si l l  ? Ai for all 
i = 1, . . .  , n .  However, the converse is not necessarily true: there are 
lattices for which no basis b 1 , . . .  , bn exists such that l l bi l l � Ai for all 
i = 1 ,  . . . , n. Consider for example the lattice of all integer vectors such 
that all coordinates have the same parity, i .e . , either all coordinates are 
even or they are all odd. (A possible basis for this lattice is given by 
vectors bi = 2ei for i = 1 ,  . . .  , n - 1 and bn = I:�= I ei - )  For n ?  4, the 
length of the shortest nonzero lattice vector is clearly A1 = 2. Moreover, 
the lattice contains n linearly independent vectors 2ei of length exactly 
2. Therefore Ai = 2 for all i = 1 ,  . . .  , n. However, it is easy to see that 
any basis B' generating this lattice must contain a vector of length at 
least .,fii. This is because if all vectors b� have even coordinates, then B' 
does not generate the whole lattice and it is not a basis. On the other 
hand, all vectors with odd coordinates have length at least .,fii and for 
n > 4 this is strictly bigger than An = 2. 

The approximation problem associated to finding linearly independent 
latt ice vectors of length as short as possible is formalized below. 

DEFINITION 7 . 1 The "(-approximate Successive Minima Problem (de­
noted SMP1} is defined as follows. Given a lattice basis B,  find linearly 
independent vectors S such that l l si l l  � "fAi for all i = 1 ,  . . .  , n. The 
decision (or promise) version of this problem (GAPSM P1) is, given a 
basis B and a sequence of values r1 , . . •  , rn , decide if ..\i � ri for all 
i = 1 , . . . , n, or there exists an i such that Ai > 'Y · ri . If neither of these 
conditions is satisfied, then (B, r1 , . . .  , rn ) violates the promise, and any 
answer is allowed. 

It is easy to see that GAPSMP1 can be efficiently reduced to the 
search problem SMP1 : on input (B, rJ , . . .  , rn) ,  one calls the S M P1 
search oracle on input B .  Let S be the set of linearly independent 
vectors returned by SMP1 . Then, if l l si l l  � 'Y · ri for all i = 1 ,  . . .  , n  
accept , otherwise reject. 

Another simple observation is that the shortest vector problem SVP 1 
(or its promise version GAPSVP1) is (Karp) reducible to SMP1 {resp. 
GAPSMP1) .  For the search version, on input B ,  one calls the SMP1 
oracle on input B to obtain linearly independent vectors s1 ,  . . .  , Sn . Then 
s1 is a solution to SVP1. For the promise version, on input GAPSVP1 
instance {B , r) , one outputs GAPSMP 1 instance {B, r, c, . . .  , c) , where c 
is a sufficiently large constant such that c ? An · {For example one can 
set c to the maximum length of the input basis vectors. )  It is easy to 
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see that if (B, r) i s a YES instance, then (B, r ,  c ,  . . .  , c )  i s a YES instance, 
while if (B ,  r) is a NO instance then (B, r, c, . . .  , c) is a NO instance. 

Notice that when 'Y = 1 ,  the condition on the lengths of vectors Si in 
the definition of SMP 1 can be inductively reformulated as follows: 

• s 1 is a shortest nonzero vector in the lattice, 

• l l si l l  � l l v l l  for any lattice vector v linearly independent from previ­
ously determined lattice vectors s1 , . . .  , Si- 1 · 

However, if an approximation factor 'Y is allowed, then the inductive def­
inition is somehow misleading: even if s1 , . . .  , sn is a solution to SMP 'Y 
then it is not necessarily true that for all i = 1 , . . . , n , vector Si sat­
isfies l l si l l � 'YI Iv l l for all lattice vectors v linearly independent from 
s1 ,  . . .  , Si- 1 · For example, assume 'Y = 2 and consider the two dimen­
sional lattice generated by b1  = e1 and b2 = 2e2 . Clearly >.1 = 1 and 
>.2 = 2. Therefore vectors s1 = b2 and s2 = 3b1 + b2 are a solution to 
SMP1 because l l sd l = 2 � 'YAl and l l s2 l l = v'f3 < 'YA2 · However, s1 and 
s2 do not satisfy the inductive definition because there exists a lattice 
vector v = b1 linearly independent from s1 such that l l s2 1 i > 'YI Iv l l  = 2. 

A classic notion of reduced basis in which vectors are required to be 
as short as possible is that of Minkowski. 

DEFINITION 7 . 2  A basis B is Minkowski reduced if for all i = 1, . . . , n 
vector bi satisfies l l bi l l  � l l b� l l for any lattice vector b� such that the 
sequence b1 , . . .  , bi- 1 , b� can be completed to a basis, i. e . ,  there exist 
lattice vectors b�+ 1 , . . .  , b� such that b1 , . . .  , bi_ 1 , b� , . . .  , b� is a basis 
for .C(B ) .  

Generalizing the definition of Minkowski t o  approximate versions is 
not an easy task. The problem is that the definition is intrinsically 
sequential, and the choice of the basis vectors at the beginning of the 
sequence may affect the possible choices for basis vectors in subsequent 
positions. Replacing the condition l l bi l l � l l b� l l  in the definition with 
l l bi l l � 'Y I Ib� l l  gives problems similar to those pointed out above when 
talking about linearly independent sets. Another possibility is to de­
fine 'Y-approximate Minkowski reduced basis as a basis B such that 
l l bi l l � 'YI Ib� l l  (for i = l ,  . . . , n) for some Minkowski reduced basis 
B' . The problem with this definition is that requiring l lbi l l  � 'Y I Ib� l l  
for some Minkowski reduced basis B' does not necessarily implies that 
l l bi l l  � 'Y I Ib� l l  for any Minkowski reduced basis. So, there might be 
Minkowski reduced bases that are better than B by more than a 'Y mul­
tiplicative factor. An alternative and stronger definition might be to 
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require conditions l l bi l l  � 1i lhi l l  to hold for any Minkowski reduced ba­
sis B' or even requiring l l bi l l � !Ai · (Notice that >.i � l l si l l  is true for 
any sorted set of linearly independent lattice vectors, and, in particular, 
for any Minkowski reduced basis S = B' . )  The problem with these last 
two definitions is that for values of 1 close to 1, there is no guarantee 
that a solution to the problem exists, which is undesirable. (Later on, 
in this chapter, we will see that , when 1 2: ..[ii, for any latt ice A of rank 
n there exists a basis B such that l l bi l l � !Ai . )  

Since Minkowski reduced bases do not play a particularly significant 
role in the study of the computational complexity of lattice problems, 
we do not define an approximation problem associated to Minkowski's 
reduction theory, and move on to a different and more easily defined 
notion of approximately shortest basis. We relax the condition on each 
basis vector Si being individually as short as possible, and replace it with 
a global condition on all basis vectors bi . Namely, we use the maximum 
length 

JL(B) = max l l bi l l  
t 

{7. 1 ) 

as a measure of the length of a basis, and ask for a basis B such that 
JL(B) is as small as possible. 

DEFINITION 7 . 3  For any lattice A, let JL (A) be the minimum value of 
JL(B) when B ranges over all possible bases of A .  The !-approximate 
Shortest Basis Problem (SB P-y} is, given a basis B of rank n ,  find an 
equivalent basis B' such that JL (B') � 1 · JL (.C(B) ) . The corresponding 
promise problem G APSBP 'Y is, given a basis B and a value r, decide if 
there exists a basis B' equivalent to B such that JL (B') � r ,  or for all 
equivalent bases J-L(B') > 1 · r. If neither of these conditions is satisfied, 
then the promise is violated and any answer is allowed. 

As usual, the promise problem GAPSB P  'Y immediately reduces to 
S B P 'Y. (The details are left to the reader as an exercise. )  If we do not 
require B to be a basis, and look for a set of linearly independent lattice 
vectors S such that J-L (S) is minimized, then it is clear that there always 
exists a set such that J-L(S) � >.n and that this value is optimal. This is 
the shortest linearly independent vectors problem defined below. 

DEFINITION 7 . 4  The (approximate) Shortest Independent Vectors Prob­
lem (denoted S IVP-y) is, given a basis B of rank n ,  find linearly inde­
pendent lattice vectors s1 , . . . , Sn such that l l si l l  � 1 · >.n (.C(B) )  for all 
i = 1, . . .  , n. The corresponding promise problem GAPSIVP 'Y is, given 
a basis B of rank n and a rational number r, decide if >.n (.C(B) )  � r or 
>.n (.C(B) )  > 1 · r .  
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For any approximation factor /, the promise problem GAPSIVP "f 
can be efficiently reduced to SIVP "f in the obvious way. The difference 
between this problem and the successive minima problem is that this 
time each vector Si is not required to have length at most /Ai · As long 
as l l si l l  � rAn for all i = 1 ,  . . .  , n, set S is a good solution to S IVP'Y . 
Clearly, any solution to SMP "f is also a solution to SIVP 'Y •  so there 
is a trivial reduction from S IVP "f to SMP 'Y" Moreover, essentially the 
same reduction works for promise problems GAPSIVP'Y and GAPSMP'Y. 
However, the converse i s not necessarily true. In particular, while SVP'Y 
immediately reduces to SMP 'Y •  it is not known how to efficiently reduce 
SVP "f to SBP "f or SIVP "f for any value of the approximation factor. 
(A reduction is clearly possible for all values of 1 such that SVP "f can 
be solved in polynomial time, or the problems SIVP "f and SBP "f are 
NP-hard. Moreover, we will see, later in this chapter, that a reduction 
from SVP to S IVP or SBP is possible at the price of increasing the 
approximation factor by fo.) 

We already know that for some lattices there i s  no basis such that 
J.L(B) � An , so the best solution to SBP'Y is in general longer than the 
best solution to S IVP "f ·  A natural question is how long the shortest 
basis can be. We will see that although for some lattice A the length 
of the shortest basis J.L(A) can be as much as .fii/2 times bigger than 
An (A) ,  this is the worst that can happen, i .e . , J.L(A) � ( fo/2) · An (A) for 
any lattice A of rank n .  Moreover, given any set of linearly independent 
lattice vectors one can easily compute a basis increasing the length of 
each vector by at most a factor .fii/2. 

LEMMA 7 . 1 There is a polynomial time algorithm that on input a lattice 
basis B and linearly independent lattice vectors S C .C(B) such that 
l l s 1 l l  � l l s2 l l  � . . .  � l l sn l l , outputs a basis R equivalent to B such that 
l l rk l l  � max{ ( Vk/2) i l sk l l , l l sk i l } for all k = 1, . . .  , n. Moreover, the new 
basis satisfies span(r1 , . . .  , rk ) = span(s1 , . . .  , sk ) and l l rk l l  � l l sk l l  for all 
k = 1 ,  . . .  , n . 

Proof: Since the vectors S belong to the lattice, we can write S = BQ 
for some integer square matrix Q. Matrix Q i s  nonsingular, but not 
necessarily unimodular, i .e. ,  det (Q) E Z \ {0} .  Transform Q into an up­
per triangular integer matrix performing a sequence of elementary row 
operations (An elementary operation is adding an integer multiple of 
a row to some other row, multiplying a row by - 1 ,  or exchanging the 
order of two rows. ) , and perform the corresponding sequence of column 
operations to B. Equivalently, find an unimodular matrix U such that 
T = UQ is upper triangular, and compute R = BU-1 . Since U is uni­
modular, matrix R is a basis for .C(B). Moreover S = BU- 1 UQ = RT, 
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so span(s1 , . . . , sk) = span(r1 , . . . , rk) because T is upper triangular. 
Notice that s; = r; ti,i · Therefore, l l ri l l = l l si l l / l ti ,i l :S l l st l l because ti ,i 
is a nonzero integer. We still need to check if l l ri l l  :S max{v'i/2, 1} l l si l l 
for all i = 1 ,  . . .  , n. 

We modify vectors r1 , . . .  , rn sequentially as follows. Assume that 
r1 , . . . , rn- 1  have already been modified, and consider the last vector 
rn . If r� = ±s� , then we can replace rn with sn and still have a ba­
sis. Moreover, the new rn clearly satisfies l l rn l l :S l l sn l l · Conversely, if 
r� :f: ±s� ,  then s� = cr� for some integer l ei > 1 .  Consider the pro­
jection rn - r� of rn onto span(r1 , . . .  , rn_ I ) ,  and use the nearest plane 
algorithm of Chapter 2 to find a lattice point v E .C( [rt , . . .  , rn] )  within 
distance vEi<n l l rt l l2/2 from rn - r� . We claim that l l rn - vi i  is at 
most ( ..fii/2) · l l sn I I · Vector rn - v can be written as the sum of two 
orthogonal components, r� and (rn - r� ) - v. The first component has 
length at most l l r� l l  = l l s� l l /c :S l l s� l l /2 . By the choice of v, the second 
component has length at most 

L l l ri 1 1 2/2 :S L l l si 1 1 2 /2 :S 
i<n i<n 

It follows that the length of rn - v is bounded by 
V((n - 1 ) /4) l l sn l l 2  + ( 1 /4) l lsn l l 2  = (vn/2) l l sn l l · 

So, we can replace rn with rn - v, and obtain a basis satisfying all 
properties stated in the lemma. 0 

An immediate consequence of the lemma is that for any lattice A of 
rank n , the length of the shortest basis 11-(A) is at most ( ..,fii/2) >..n .  

CoROLLARY 7 . 2  For any lattice A of rank n ,  there exists a basis B 
such that l l bk l l  :S max{ l ,  Vk/2} · >..k for all k = 1, . . . , n .  In particular, 
11-(A) :S max{l , ..fii/2} · >..n (A) :S .,fii · >..n (A) . 

The lemma can also be used to prove the equivalence (up to polyno­
mial approximation factors) of SIVP 'Y and SBP  -y · 

THEOREM 7 . 3  For any approximation factor '"'(, there exist Cook reduc­
tions from SBP 'Yvfn to SIVP 'Y and from S IVP 'Yvfn to S B P  'Y , where n 
is the rank of the lattice. Moreover, there exist Karp reductions from 
GAPSB P'Yvfn to GAPSIVP-y and from GAPSIVP'Yvfn to GAPSB P-y .  

Proof: We first reduce S B P  'Yvfn to SIVP -y · On  input S B P  'YVn instance 
B, call the SIVP 'Y oracle on input B to get linearly independent set S 
such that 11-(S) :S '"'( · >..n (.C(B) ) .  Then, run the algorithm of Lemma 7. 1 
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on input B and S t o  get a basis R of L:(B) such that l l ri l l  � vnllsi l l  � 
vfnl · An (.C(B ) ) .  Since, J.L(B) � An (.C(B) ) ,  basis R is a solution to 
SBP vn-r· 

In the other direction, given SIVP 'YVn instance B ,  call the SBP 'Y ora­
cle on input B ,  to get an equivalent basis R such that J.L (R) � r·J.L(.C(B) ) .  
Clearly, R i s  also a set of linearly independent lattice vectors in  L: (B ) .  
Moreover, from Corollary 7 . 2  we know that J.L(L:(B) )  � vfnAn (.C(B ) ) .  
Therefore, J.L(R) � /Vn · An (L:(B) )  and R i s  a solution to  SIVP -rvn· 

Reductions between promise problems are similar and left to the 
reader as an exercise. 0 

2 .  Orthogonality defect and K Z  reduction 

In this section we consider a notion of reduced basis where one tries 
to make the basis vectors as orthogonal as possible. A quantity that has 
been used to measure how close a basis is to orthogonal is the orthog­
onality defect Tii l lbi l l /  det (B) .  The relation between this quantity and 
almost orthogonal bases is easily explained. Let (}i is the angle between 
hi and span(b1 , . . .  , bi- 1 ) · Then II bi l l  = II bi l l  cos (}i · Therefore 

II l l bi II = II l l bi I I
. 

= det B 
. � det(B) .  (7 .2) . . cos el ni cos el l l 

So, the orthogonality defect is always at least 1 ,  with equality if and 
only if cos (}i = 1 for all i = 1 ,  . . .  , n,  i .e . , (}i = 1r /2 and the basis B is 
completely orthogonal . 

This shows that minimizing the orthogonality defect corresponds to 
finding a basis with almost orthogonal vectors . Since the orthogonality 
defect is proportional to the product of the lengths of the basis vectors, it 
is also clear that there is a close relationship between searching for almost 
orthogonal bases and bases consisting of short vectors. The definition 
of orthogonality defect can be extended to linearly independent sets of 
lattice vectors. Given linearly independent lattice vectors S in L:(B) , we 
define the orthogonality defect of S as Tii l l si l l /  det (B) .  It is important 
that ni l l si l l  is divided by the determinant of the original lattice, and not 
by det (S ) , because any full-rank integer lattice contains a set of linearly 
independent vectors with Tii l l si l l /  det (S) = 1 .  (Consider for example 
lattice vectors Si = det (B) · ei E L:(B) . )  It is convenient to normalize 
the orthogonality defect , and consider the quantity (Tii l l si I I / det (B) ) 1/n 
instead, so that if vectors S are multiplied by a constant c, then the 
defect (Tii i i csi l l /  det (B) ) 1 /n = c(fl l l si l l /  det (B) ) 1 fn scales up linearly 
by a factor c. 



1 32 COMPLEXITY OF LATTICE PROBLEMS 

DEFINITION 7 . 5  Let A be a lattice of rank n , and let S be n linearly 
independent lattice vectors in A. The normalized orthogonality defect 
of S is OA (S) = (Ili l l sdl / det (A) ) l/n . When .C(S) = A, i. e . ,  S is a 
basis, we omit the subscript and simply write 8(S) . The smallest or­
thogonality defect o(B) for all possible bases B of a lattice A is denoted 
8(A) . The smallest orthogonality defect 8A (S) where S is a maximal 
set of linearly independent vectors in A, is denoted 8A (A) . Notice that 
8A (A) = (Ili >..if det (A) ) 11n . 

The computational problem associated to finding a basis with orthog­
onality defect approximately as small as possible is defined below. 
DEFINITION 7 .6  The ')'-approximate Quasi Orthogonal Basis problem 
{denoted QOB.y) is, given a basis B, find an equivalent basis B' such 
that 8(B') :::; 'Y · 8(.C(B ) ) .  

The analogous problem for linearly independent vectors i s  the follow­
ing. 
DEFINITION 7 . 7 The ')'-approximate Quasi Orthogonal Set problem (de­
noted QOS'Y) is, given a basis B, find a set of linearly independent lattice 
vectors S such that 8A (S) :::; ')' · 8A (A) , where A =  .C(B ) .  

We do  not define promise problems associated t o  QOB'Y and QOS'Y 
because, as we will see soon, for any lattice A, 8(A) and 8A (A) al­
ways belong to the interval [ 1 , VnJ.  Therefore, for all ')' ;::: ..;n, the 
optimal value associated to QOS and QOB'Y can be trivially approxi­
mated within polynomial factor Jk. (Still finding a basis or independent 
set achieving this value seems a computationally hard problem. Com­
pare with the problem of finding a nonzero lattice vector of length at 
most ..;ridet (.C(B) ) 1 1n : even if such vector is guaranteed to exists by 
Minkowski 's theorem, we do not know any efficient algorithm to find 
it . )  Problems QOB'Y and QOS'Y are equivalent up to .Jii factors in the 
approximation parameters. 
THEOREM 7 .4 QOB'YVn can be reduced in polynomial time to QOS'Y, 
and QOS'YVn can be reduced in polynomial time to QOBT 
Proof: The proof is similar to that of Theorem 7.3, and it is left to the 
reader as an exercise. 0 

Minkowski 's second theorem shows that for any lattice A there exists a 
set of linearly independent lattice vectors with normalized orthogonality 
defect 

8A (S) = II l l si l l /  det (A) = II >..if det (A) :::; fo,. (7 .3) 
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Using Lemma 7. 1 ,  we also get that for any lattice there exists a basis 
B such that t5(B) :S: n. In fact it is possible to do better than that , 
and show that any lattice has a basis with normalized orthogonality 
defect bounded by .jii. A notion of reduced basis that gives smaller 
orthogonality defect than that guaranteed by Minkowski's theorem is 
the one studied by Korkine and Zolotarev. 
DEFINITION 7 . 8  Let B be a lattice basis of rank n , and let B* the cor­
responding Gram-Schmidt orthogonalized basis. Define the projection 
functions 7ri (x) = Lj�i ( (x, bj ) / l l bj l l 2 )bj that map x orthogonally to 
span(bi , . . .  , b� ) .  Basis B is K orkine-Zolotarev reduced {KZ reduced, 
for short) if and only if for all i = 1 ,  . . .  , n, 

• hi is a shortest nonzero vector in 7ri (.C(B ) )  

• for all j < i ,  the Gram-Schmidt coefficients /1-i,j of B satisfy l/1-i ,j l :S: 
1/2 .  

It i s  easy to see that if a linearly independent set of lattice vectors S 
is KZ reduced, then S is a basis for the original lattice. So, for this prob­
lem there is no difference between lattice bases and linearly independent 
sets of vectors . This definition of Korkine-Zolotarev reduced basis is 
intrinsically sequential, i .e . , the length of l l bi l l depends on the choice of 
the previous basis vectors b 1 , . . .  , bi-1 · Below we give a slightly weaker, 
but conceptually simpler, definition of reduced basis that naturally gen­
eralizes to approximation versions of the same problem. 
DEFINITION 7 . 9  A basis B is -y-approximate Korkine-Zolotarev reduced 
(KZ-y reduced, for short) if for all i = 1 ,  . . .  , n , 

• for all j < i ,  the Gram-Schmidt coefficients /1-i,j of B satisfy l/1-i ,j l � 
1/2 .  

The -y-approximate K orkine-Zolotarev problem (KZP 'Y) is, given a basis 
B ,  output a basis equivalent to B which is KZ-y reduced. 

Notice the similarity between this definition and our previous at­
tempts to define approximate Minkowski reduced basis. In Section 1 ,  
we tried t o  define a -y-approximate Minkowski reduced basis as a basis 
B such that l l bi l l  � -y · >.i . Unfortunately, for values of -y close to 1 
no such basis is guaranteed to exist. Interestingly, if the orthogonalized 
vectors are used, there is always a basis such that l l bi II � -y · >.i , even for 
-y = 1 .  (See Proposition 7.5 below. ) Notice that for -y = 1 ,  Definition 7.9 
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does not implies that B is reduced in the sense originally defined by Ko­
rkine and Zolotarev. However, the definition is justified by the following 
proposition. 

PROPOSITION 7 .5  If B is a KZ reduced basis, then B is also KZ, re­
duced for any 'Y :2: 1 .  

In  particular ,  the proposition shows that KZP 'Y has a solution for all 
'Y :2: 1 .  (Clearly, no solution exists for 'Y < 1 because l l bi l l  = l l bdl :2: >.I - ) 
We do not prove the proposition here, as this result will follow from a 
more general theorem to be proved below. The theorem states that the 
problems KZP  'Y and SVP 'Y are equivalent under Cook reductions . In 
particular, for any 'Y :2: 1, and for any lattice, there exists a basis that 
solves KZP  'Y • and this basis can be efficiently found given access to an 
SVP'Y oracle. 

THEOREM 7 . 6  For any approximation factor "{, SVP'Y and KZP'Y are 
equivalent under Cook reductions, i. e. , there exist Cook reductions from 
SVP'Y to KZP'Y,  and from KZP'Y to SVP'Y . 

Proof: One direction is obvious : if B is a KZ'Y reduced basis, then 
l l hdl = l l hi l l  � 'Y · >.1 and h1 is a solution to SVPT Now, assume 
we have access to an SVP 'Y oracle. We use this oracle to compute a 
KZ'Y reduced basis. Let A be the input lattice. We compute the KZ'Y 
basis vectors b1 , . . .  , hn sequentially, making appropriate calls to SVP'Y . 
We assume, without loss of generality, that the approximate solutions 
v returned by SVP 'Y are primitive vectors, i .e . , v =f. cw for any integer 
c -::f ± 1 and any lattice vector w. (If this is not the case, w is a better 
solution to SVP'Y , and we can replace v with w. ) 

First of all we call the SVP'Y oracle on input A to get a nonzero lattice 
vector h1 such that l l hi l l = l l hd l � "fA1 (A) . After vectors h1 , . . . , bi-1 
have been determined, we compute hi  as follows. Let Ai = 1fi (A) be 
the projection of A to the orthogonal complement of h1 , . . .  , hi- 1 · We 
call the SVP 'Y oracle on input Ai , and find a lattice vector hi E A 
such that hi = 1fi (bi )  is an approximately shortest vector in Ai ·  Notice 
that A contains i linearly independent vectors of length at most Ai (A) . 
At least one of these vectors has a non zero component orthogonal to 
span(h1 , . . .  , hi- 1 ) . Therefore, Ai contains a nonzero vector of length 
at most Ai (A) . This proves that >.1 (Ai ) :2: Ai (A) and therefore l lhi l l  = 
i l 7ri {bi ) i l � "fAi (A) . 

This gives a sequence of lattice vectors h1 , . . .  , hn such that l l bi I I  � 
"fAi for all i = 1 ,  . . .  , n. Since each hi is a primitive vector in Ai ,  then 
B is a basis for the original lattice. Finally, the condition IJLi,j l � 1/2 
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on the Gram-Schmidt coefficients can be easily achieved as follows. For 
every bi (starting from b2 , up to bn) , run the nearest plane algorithm 
on lattice [b1 , . . .  , bi-d and target vector bi . Let v be the lattice point 
returned by the nearest plane algorithm, and replace bi with bi - v. It 
is easy to see that the Gram-Schmidt coefficients of the new bi satisfy 
IPi ,j l � 1/2. 0 

So, an SVP 'Y oracle can be used to efficiently compute KZ1 reduced 
bases. Moreover, if an exact SVP 1 oracle is available, then the above 
reduction returns a basis which is reduced in the sense originally defined 
by Korkine and Zolotarev. The next theorem shows that KZ1 reduced 
bases approximately solve the the basis (or independent set) reduction 
problems studied in Section 1 . 

THEOREM 7 . 7  For any approximation factor '' any solution to KZP1 
is also a solution to S IVP 'YVn' SMP 'YVn' and SBP  -rv'n· In particular, 
SIVP -rv'n• SMP -rv'n and S B P  -rv'n are Cook reducible to KZP 1 . 

Proof: We have already observed that any KZ1 reduced set is also a 
basis. We prove that if B is KZ1 reduced, then l l bi l l � .fiir>..i . It fol­
lows that B is a solution to S IVP -rv'n• SMP 'YVn' and SBP  -rv'n· Let /li,j 
be the Gram-Schmidt coefficients associated to B. We know, from Def­
inition 7.9 , that IPi ,j l � 1/2.  Using the Gram-Schmidt orthogonalized 
vectors we get 

i- 1 

l l bi l l 2 = l l bi l l 2 + L P�)Ibj l l 2 
j= 1  

1 i- 1 
< >.. 2 + - � 'V2 >.. 2 ' 4 L.J ' J j= l 

< c : 3 )  . ,2 >..T .  

This proves that l l bi l l � Vlr>..i � .fiir>.i . D 
Now that we have established the equivalence between KZP  'Y and 

SVP'Y , we prove that any solution to KZP1 (and therefore SVP1) can 
be used to approximately solve QOB1 and QOST 
THEOREM 7 . 8  For any approximation factor '' any solution to SMP1 
is also a solution to QOS1 . In particular, any KZr reduced basis is also 
a solution to QOB1..;n and QOS1..;n. 

Proof: Let A = C(B) be a lattice of rank n .  The first statement is 
obvious: if S is a linearly independent set of lattice vectors such that 
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l l si l l  $ /Ai , then 

r (S ) = v'Tii l l si l l  v'Tii /Ai _ 
UA det (A) 

< 
det (A) - 'YdA (A) . (7.4) 

Now assume we have a KZ'Y reduced basis B. We know from Theo­
rem 7.7 that B is a solution to SMP 1'Vn" From the first part, B is also 
a solution to QOS7vn. Finally, we observe that b"(B ) ::; 'YVn · 6A (A) ::; 
'YVn · b"(A) and B is a basis. Therefore, B is also a solution to QOB7vn. 
0 

3 .  S mall rectangles and the covering radius 

In the last two sections we considered bases and linearly independent 
sets such that the maximum length maxi l l si II or the geometric mean 

y'IJi l lsi l l  is minimized. In this section we consider still another quantity 
that can be used to measure the quality of an independent set . Two 
fundamental constant associated to any lattice are the packing radius 
and the covering radius. 

DEFINITION 7 . 1 0  The packing radius of a lattice A is the largest radius 
r such that any two (open) spheres of radius r centered at two distinct 
lattice points do not intersect. The covering radius of A, denoted p(A) , 
is defined as the smallest radius p such that the {closed) spheres of radius 
p centered at all lattice points cover the entire space, i. e . ,  any point in 
span(B) is within distance p from the lattice. 

It is easy to see that for any lattice A, the packing radius equals 
exactly .X1 (A)/2. So, determining the packing radius is equivalent to 
solving (the optimization version of) SVP . The covering radius p is also 
related to a familiar lattice problem (CVP) ,  but this time the connection 
is weaker. The covering radius of .C(B) is the smallest p such that CVP 
instance (B, t ,  p) has solution for any t E span(B ) .  So, the covering 
radius corresponds to the worst case solution to CVP when the target 
point t ranges over span(A) . (Notice that if lattice is not full dimensional 
and t is allowed to be any point in space, the distance of t from the lattice 
can be arbitrarily large. )  

We do not introduce a new problem associated to the packing radius, 
as the problem is equivalent to SVP . Below we formalize the promise 
problem associated to computing the covering radius. 

DEFINITION 7 . 1 1  For any approximation factor 'Y 2: 1 , the {approxi­
mate) Covering Radius Problem {denoted GAPCRP7) is the following 
promise problem. Instances are pairs (B, r ) .  Moreover, 
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• (B , r) is a YES instance if p(.C(B) )  � r 

• (B , r) is a NO instance if p(.C(B) )  > 'Y · r 

It is clear that solving the G APCRP 'Y promise problem, is equivalent 
to approximately computing the value of the covering radius, i .e. , finding, 
on input a lattice A, a value r that belongs to the interval [p(A) , r · p(A)] . 
We do not define any search problem for the covering radius. The reason 
is that there is no known natural search problem associated to computing 
the covering radius exactly, whose solution can be checked in polynomial 
time. One possibility might be to ask for a point in span(A) at distance 
p from the lattice, a so called deep hole. (A deep hole is a point in 
span(A) as far as possible from A. )  However, given a point t E span(B ) ,  
i t  i s  not clear how to  check i n  polynomial time that t i s  indeed a deep 
hole. In fact ,  the covering radius problem is not known to be solvable in 
nondeterministic polynomial time. The straightforward solution to the 
problem requires first to guess the position of a point t as far as possible 
from the lattice ( i .e . ,  a deep hole) , and then check that there are no 
lattice points within distance p from t . This alternation of quantifiers 
puts the (exact) covering radius problem in Ih at the second level of the 
polynomial hierarchy, a presumably strictly bigger class than NP. 

In order to study the covering radius problem, we introduce one last 
basis reduction problem. As mention at the beginning of this section, we 
introduce one more quantity to measure the quality of a basis, which will 
be used in the next chapter to prove the security of lattice based cryp­
tographic functions. Given a basis B with corresponding orthogonalized 
vectors B * , we consider the length of the diagonal of the orthogonal 
parallelepiped defined by B * :  

(7 .5) 

We want to find a set of linearly independent vectors S such that a(S)  
i s  as small as possible. Notice that by Lemma 7. 1 , any set of linearly 
independent lattice vectors S can be converted into a basis B preserving 
(or even reducing) a(S)  2: a(B ) .  Therefore, without loss of generality 
we can search for a basis B such that a(B) is minimized. 

DEFINITION 7. 1 2  For any lattice A, let a(A) be the smallest value of 
a (B) when B ranges over all possible bases. The 1-approximate Shortest 
Diagonal Problem (SDP 'Y) is, given a basis B, find an equivalent basis 
B' such that a(B') � 'Y · a(.C(B) ) .  The promise version of this problem 
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(GAPSD P7) is, given a lattice B and a value r ,  decide if a (C(B) )  � r 
or a(C(B ) ) > 'Y · r .  If neither of these conditions is satisfied, then (B,  r) 
violates the promise and any answer is allowed. 

The nearest plane algorithm of Chapter 2, on input linearly indepen­
dent 'vectors S and a target point t E span(S ) ,  always returns a lattice 
point v E C{S) within distance a(S)/2 from t. This proves that for any 
lattice A, the covering radius is at most p(A) � a(A)/2. We want to 
prove that a(A) is not much bigger than the covering radius, in partic­
ular, for any lattice A, a(A)/2 is within a factor y'n from p(A) . The 
following theorem establish relations between p, a and An . 

THEOREM 7 . 9  Let A be any lattice of rank n . Then 

An (A) � 2p(A) � a(A) � ..jii · An (A) .  {7. 6) 

Proof: We start from the last inequality. Fix a lattice A of rank n, and 
let B be a KZ reduced basis for A. We know from Proposition 7.5 that 
l l bi l l  � Ai (A) for all i = 1 ,  . . . , n. Therefore, 

n 
a(A) � a(B) = L l l bi l l 2 � Vn · An (A) . (7.7) 

i= 1 

Now, consider the second inequality 2p � a. Let B be such that 
a(B) = a( A) . Notice that given a point t in span(B ) ,  one can always find 
a lattice point within distance h/L:i llbi l l 2 from t , for example using 
the nearest plane algorithm from Chapter 2. Therefore, p{A) � a (A)/2 .  

It remains to prove the first inequality An � 2p. Assume for contra­
diction An > 2p and let f be a real number such that f < An - 2p. We 
iteratively build a set of linearly independent lattice vectors 81 ,  . . .  , 8n as 
follows. For any i = 1 ,  . . .  , n, let ti be any vector of length p + f orthogo­
nal to 81 , . . .  , 8i- l , and let 8i be a lattice point within distance p from ti . 
Then Si is linearly independent from S t ,  . . . , 8i- 1 , because the distance 
of Si from span (s1 ,  . . .  , 8i- 1 )  is at least l l ti 1 1 - l l si - ti II ;:::: f. Moreover, by 
triangle inequality, l l si l l � l l ti l l  + l l 8i - ti l l � 2p + f < An · By induction 
on i, we obtain a set s1 ,  . . .  , 8n of linearly independent lattice vectors of 
length I l si I I < An , contradicting the definition of An · D 

The relation between p, a and An established in the previous the­
orem immediately gives an approximate reduction between problems 
GAPCRP, GAPSDP and GAPSIVP . 

THEOREM 7 . 1 0  For any approximation factor (, there is a Karp reduc­
tion between any of the following pairs of problems: 
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• From GAPCRP 'YVn to GAPSDP1 ,  

• From GAPCRP1fo t o  GAPSIVP1 , 

• From GAPSDP1fo to GAPCRP1 , 

• From GAPSDP 'YVn to GAPSIVP1 , 

• From GAPSIVP1fo to GAPCRP1, 

• From GAPSIVP1fo to GAPSDP1 ,  and 

• From GAPSBP 'YVn to GAPSDP1 .  
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In particular, since GAPSDP 1 is in NP, then also GAPCRP fo is in 
NP . 

Proof: On input GAPCRP1fo instance (B , r) ,  output GAPSD P1 in­
stance {B,  y'nr) .  It is easy to see that the reduction maps YES instances 
to YES instances, and NO instances t.o NO instances. All other reductions 
are similar. 0 

We remark that for approximation factors 1 = o( y'n) , G APCRP 1 is 
not known to be in NP. The following theorem gives additional reduc­
tions between the search versions of some of the above problems. 

THEOREM 7 . 1 1  For any approximation factor 1, there is a Cook reduc­
tion between any of the following pairs of problems: 

• From SDP 'YVn to SIVP 1 ,  

• From SIVP1fo t o  SDP1 , 

• From SBP1fo to SDP-y,  and 

• From SDP1fo to KZP1 . 

Proof: The simple proofs are left to the reader as an exercise. 0 
All the relations between lattice approximation problem proved in 

this chapter are summarized in Figure 7. 1 .  Each node correspond to a 
lattice approximation problem. An arrow from problem A to problem B 
indicate that there is a Cook reduction from A to B.  In all cases, if both 
A and B are decision (or promise) problems, then there is also a Karp 
reduction between the two. If the arrow has no label, then the reduc­
tion preserves the approximation factor, i .e . , approximating problem A 
within a factor 1 can be reduced to approximating B within a factor 1 
for any 1 � 1 . Labeled arrows indicate that the reduction increases the 
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Figure 7. 1 .  Relations among lattice approximation problems. 

approximation factor. For example an arrow from A to B with label ,fii 
means that approximating problem A within 1 · fo can be reduced in 
polynomial time to approximating problem B within a factor I· Reduc­
tions can be combined in the obvious way. For example, since SIVP 7 
reduces to SMP 1 and SMP -rv'n reduces to KZP 7 ,  then SIVP Vn'Y re­
duces to KZP 7 .  Notice that a solution to SVP 1 or KZP  7 ,  would allow 
to solve all other lattice reduction problems within a factor IVn· Dotted 
lines from GAPSVP to GAPCRP and GAPSIVP represent reductions 
that have not been described yet ,  and rely on harmonic analysis tech­
niques that are beyond the scope of this book. In (Banaszczyk, 1993) 
it is proved that for any lattice A = .C(B) of sufficiently high rank n, if 
A' = .C{B {BTB)- 1 ) is the so called dual lattice of A, then the covering 
radius and the successive minima of A and A' are related by the following 
bounds: 

1 � AI (A),\n (A') < n 
1 � -\1 (A)p(A') < n.  

(7.8) 
(7 .9) 
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This kind of  bounds are called transference theorems, and allow to  infer 
information about a lattice, studying the properties of its dual. Notice 
that the dual of the dual equals the original lattice. 

Using the transference theorems one can give simple reductions be­
tween the corresponding lattice problems. Interest ingly, reductions ob­
tained using transference theorems swap YES and NO instances. 

THEOREM 7 . 1 2  For any approximation factor 'Y, there are Karp reduc­
tions from the complement of GAPSVPn-.,. to GAPCRP1 or GAPSIVP1 , 
and from GAPCRP-.,.n or GAPSIVP-.,.n to the complement of GAPSVP1 . 

Proof: We show how to reduce GAPSVPn-.,. to the complement of 
GAPCRP1 . The other reductions are analogous. Let (B ,  r ) be an in­
stance of GAPSVPn-.,. · The output of the reduction is GAPCRP1 in­
stance ( B (BTB)- 1 ' �

r
) . 

We want to prove that if (B, r) is a YES instance then (B (BTB)- 1 ,  -ir ) 
is a NO instance, while if (B ,  r) is a NO instance then (B (BTB)- 1 ,  r� ) 
is a YES instance. Let A = .C(B) be the lattice generated by the input 
basis, and let A' = .C(B{BTB)- 1 ) be its dual. Assume (B ,  r) is a YES 
instance. Then A 1 (A) S r, and using the transference theorems we get 
p(A') � 1/A1 (A) � 1 /r.  This proves that (B (BTB) - 1 , 1 / (r'Y) )  is a NO 
instance. (To be precise, we should have shown that inequality p(A' )  > 
1/r is strict . This is just a technicality, and can be easily fixed, either 
increasing the inapproximability factor 'Y by an arbitrarily small t: > 0, 
or using the fact that the second inequality in (7.8) and (7.9) are strict . ) 
Conversely, assume that (B , r) is a NO instance. Then At (A) > "(nr 
and using the transference theorems we get p(A') � n/ A 1 (A) < 1 /('Yr) , 
proving that (B (BTB) -1 , 1/ (r'Y) ) is a YES instance. D 

4 .  Notes 

For all computational problems considered in this chapter, no poly­
nomial time algorithm is known. Approximate solutions can be found 
in polynomial time using the LLL reduction algorithm, or any of its 
improved variants discussed in Chapter 2 .  The proof of Lemma 2 .8 
can be easily adapted to show that the length of the kth vector of an 
LLL reduced basis are within an exponential factor 'Y = 2o(n) from 
the kth successive minimum Ak · Therefore, the LLL algorithm gives a 
polynomial time solution to SMP 1 for exponential approximation factor 
'Y = 2o(n) .  Similarly, the improved algorithms of (Schnorr, 1987) give 
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20(n(log log n)2 / 1og n) approximation factors, which can be further reduced 
to 2o(n log n log nj log n) using randomization (Aj tai et al. ,  2001 ) .  Polyno­
mial t ime algorithms to approximate all other problems considered in 
this chapter within similar approximation factors are readily obtained 
using the reductions depicted in Figure 7. 1 .  

From the complexity point of view, we know from Theorem 4 .4 that 
GAPSVP-y and SVP-y are NP-hard (under RUR reductions) for all 'Y < 
J2. It immediately follows that KZP-y and GAPSM P-y and SMP-y are 
also NP-hard. In fact, basis reduction problems seem much closer to 
CVP than SVP from a computational point of view, and better in­
approximability results can be proven for most of them. For example, 
(Blomer and Seifert ,  1 999) proved that GAPSBP-y and GAPSIVP-y (and 
therefore also GAPSMP-y,  SBP-y ,  SIVP-y and SMP-y)  are NP-hard for 
'Y = nl/ log log n by reduction from a variant of CVP . 

Problems QOB and QOS have been considered before in the com­
puter science literature (see for example (Kannan, 1 987a) or (Goldreich 
et al . ,  1 997b) ) ,  but they have not received much attention so far specifi­
cally from a computational complexity point of view. The SDP (and its 
decisional version GAPSDP)  were introduced here just as an intermedi­
ate problem to study the relation between the covering radius problem 
and other more standard basis reduction problems. In the rest of this 
section we discuss the covering radius problem (GAPCRP) .  

Computing the covering radius of a lattice is presumably a very hard 
problem. This is a classic problem in the geometry of numbers, but 
it has received so far almost no attention from an algorithmic point 
of view. We do not know any polynomial time algorithm achieving 
approximation factors that are substantially less than exponential in 
the rank n of the lattice, and (the decisional problem associated to) 
computing the covering radius exactly is not even known to be solvable 
in NP (nondeterministic polynomial time) . The obvious upper bound to 
the complexity of the exact covering radius problem (i .e . , when 'Y = 1 )  is 
in II�, at the second level of the polynomial hierarchy. Interestingly, the 
analogous problem for linear codes is hard for II� (McLoughlin, 1 984) , 
so it is unlikely to be solvable in NP . We believe that GAPCRP is also 
hard for II�, but no proof is known at the time of this writing. 

Maybe, the reason G APCRP 'Y has attracted so little attention so far, 
is its perceived difficulty. In Chapter 8, we will see that the hardness of 
GAPCRP-y can be used to build provably secure cryptographic functions .  
This calls for a deeper investigation of the computational complexity of 
GAPCRP-y : Is the problem NP-hard when 'Y = 1 ?  Is it hard for II�? 
What is the highest value of 'Y for which the problem is hard for NP? 
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Chapter 8 

CRYPTOGRAPHIC FUNCTIONS 

Generally speaking, the goal of cryptography is the design of systems 
that withstand any malicious attempt to subvert them. The archetypical 
problem in cryptography is that of secret communication: two parties 
want to communicate with each other, and keep the conversation pri­
vate, i .e . , no one, other than the two legitimate parties, should be able 
to get any information about the messages being exchanged. This se­
crecy goal can be achieved if the two parties share a common random 
key that is known only to them. Then, in order to privately send a mes­
sage, one can encode it using the key, and send the enciphered message 
to the other party over a public communication network. The receiver 
uses the shared key to invert the encoding procedure, and recover the 
original message. The original message, the enciphered message and the 
encoding and decoding processes are usually called cleartext, ciphertext, 
encryption and decryption. An encryption scheme is secure if recover­
ing (any partial information about) the cleartext from the ciphertext 
without knowing the secret key is a computationally infeasible task. So, 
an adversary intercepting the ciphertext won't learn anything about the 
message, other than the fact that a message was sent , and possibly the 
length of the message. (For technical reasons, it is not possible to hide 
the length of the message being sent without making the communica­
tion scheme extremely inefficient , so leaking the message length is usually 
considered an acceptable compromise between efficiency and security. ) 

It has long been realized that the relevant notion of hardness in cryp­
tography is average-case hardness: if the key is chosen at random, then 
no probabilistic polynomial t ime algorithm can break the scheme with 
nonnegligible probability. This is different from the more common worst­
case notion of hardness used in computational complexity, e.g. , in the 
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theory of NP-completeness. Proving that a problem is NP-hard shows 
that (unless P = NP) there is no polynomial time algorithm that cor­
rectly solves all the instances of that problem. In other words, for any 
polynomial time program, (and for infinitely many input sizes, )  there 
is some instance of the problem for which the program gives the wrong 
answer. This is clearly not enough for cryptography. It is not sufficient 
to know that there exists some key which is hard to break: the user 
wants some reasonable guarantee that , if her key is chosen at random 
according to the prescribed key generation procedure, then (with high 
probability) her key is hard to break. Typically, even if a small, but 
nonnegligible fraction of the keys, can be broken then the scheme is not 
considered sufficiently secure for cryptographic purposes. So, the no­
tion of average-case hardness customarily used in cryptography is that 
of problems for which any probabilistic polynomial time algorithm has 
only a negligible chance of success at solving them. Formally, a function 
f (n) is called negligible if it is less than any inverse polynomial 1/nc 
for all sufficiently large n. This definition naturally corresponds to the 
identification of efficient computation with (probabilistic) computations 
that take time polynomial in the input size. A cryptographic construc­
tion is asymptotically secure if for any inverse polynomial function 1 /nc 
and any probabilistic polynomial time adversary, there exists an no such 
that for all n bigger than no the success probability of the adversary 
subverting the construction is less than 1/nc ,  where n is the security 
parameter of the system. 

The ultimate goal of modern cryptography, is the construction of 
cryptographic functions that are provably hard to break (on the aver­
age) . Unfortunately, based on our current understanding of computa­
tional complexity, no such construction is likely to come any time soon: 
if P = NP then most cryptographic problems would be unsolvable be­
cause the adversary can nondeterministically guess the secret key. So, 
an unconditionally secure cryptographic function would yield a proof 
that P ":/; NP, a major open problem in computational complexity. The 
second most desirable goal is the construction of cryptographic functions 
that are provably hard to break (on the average) ,  under some standard 
(worst-case) computational complexity assumption. For example, as­
suming that there is no polynomial time algorithm that on input an 
integer n outputs the prime factorization of n ,  build a secure encryption 
scheme, i .e . , an encryption scheme such that any polynomial time adver­
sary has only a negligible chance of breaking it .  To date, we do not know 
any such construction, and all cryptographic constructions based on the 
factoring problem typically require the assumption that factoring is hard 
not only in the worst case, but also on the average, for a suitable distri-
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bution of n. The same is true for almost any other hard mathematical 
problem that has been used for cryptographic applications. Recently, 
lattices have attracted considerable interest for their potential crypto­
graphic applications because of a remarkable connection between their 
worst-case and average-case complexity (Ajtai, 1 996) . In this break­
through paper, Ajtai showed that if there is no algorithm that approx­
imately solves the (decisional) shortest vector approximation problem 
for any lattice within some polynomial factor -y(n) = nc, then the short­
est vector (search) problem is hard to solve exactly when the lattice is 
chosen at random according to a certain easily samplable distribution. 
Building on this result , Ajtai suggested a lattice-based one way func­
tion. One way functions are the simplest primitive in cryptography: a 
function f that is easy to compute in the forward direction, but hard 
to invert on randomly chosen input. Despite their simplicity, one way 
functions are known to be sufficient to solve many important problems in 
cryptography, like the construction of digital signatures, pseudo-random 
generators, private key encryption schemes and commitment protocols, 
among others. 

Right after Ajtai 's discovery of the connection between the worst­
case and average-case hardness of lattice problems, many researchers 
suggested to use lattices for the solution of other, more complex, cryp­
tographic problems beside one way functions. Most notably collision 
resistant hashing and public key encryption schemes. The construc­
tion of collision resistant hash functions closely resemble Ajtai 's one way 
function, and it well illustrates how lattices can be used to construct 
cryptographic functions that are as hard to break as the worst-case in­
stance of approximating certain lattice problems. It should be remarked 
that building cryptographic functions that are as hard to break as the 
worst case instance of the underlying mathematical problem is espe­
cially important in the case of lattices because lattice approximation 
algorithms (like the LLL algorithm studied in Chapter 2) are believed 
to perform much better on the average than the worst-case theoretical 
upper bounds. So, while it is reasonable to conjecture that there is no 
polynomial time algorithm that approximates lattice problems within 
small polynomial factors in the worst case, assuming that no such algo­
rithm exists that succeeds with nonnegligible probability when the input 
lattice is chosen at random might not be a reasonable conjecture at all, 
depending on the particular input distribution. For example, we do not 
know any algorithm to approximate the length of the shortest vector 
in a latt ice within a factor Vii in the worst case, and, based on our 
current knowledge (i .e. , no known polynomial time algorithm achieves 
approximation factors that are substantially better than exponential in 
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n ) , assuming that no such algorithm exists is a legitimate mathemati­
cal conjecture. However, if we consider the same problem for randomly 
chosen lattices, and the input is given by n basis vectors selected inde­
pendently and uniformly at random (from a sufficiently large ball) , then 
with high probability the basis vectors are within an 0( yn) factor from 
the shortest lattice vector, so approximating the length of the shortest 
lattice vector on the average can be easily accomplished for this input 
distribution. What 's so remarkable about Ajtai 's connection is that it 
provides an explicit probability distribution on lattices such that ran­
domly selected lattices from this distribution are provably hard, under 
the sole assumption that there is no efficient algorithm that solves some 
(other) lattice problem in the worst case. 

In the case of public key encryption, several different methods have 
been suggested. Some of them have provable security guarantees with 
worst-case/average-case connection similar to Ajtai 's one-way functions, 
others are heuristics (with no known proof of security) that have been 
suggested as practical alternatives to commonly used public key encryp­
tion functions. In this chapter we introduce the ideas behind the de­
sign of lattice based cryptographic function. We start in Section 1 with 
some general techniques that are useful in many constructions. Then, 
is Section 2 we present a full, self contained description of a new col­
lision resistant hash function with worst-case/average-case connection 
that generalizes and improves Ajtai 's construction. Finally, we conclude 
with an overview of the principal lattice based public key encryption 
schemes in Section 3 ,  presenting all schemes in a unified framework that 
illustrates the similarities and differences among all the schemes. Ad­
ditional bibliographical and historical notes, and information about the 
latest developments in the area are given in Section 4. 

1 .  General techniques 

Most lattice based constructions are better understood and analyzed 
if formulated in group theoretic terms. In this section we explore the 
relation between lattices and finite commutative groups, we prove some 
discrepancy results that play an important role in the probabilistic analy­
sis of lattice constructions with worst-case/average-case connection, and 
we briefly recall the definition and basic properties of the statistical 
distance, a useful tool for the analysis of randomized algorithms and 
reductions. 
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1 . 1  Lattices , sublattices and groups 

Let L be a rank n lattice and let M be a full rank sublattice of L. 
Equivalently, let M = LA for some nonsingular integer matrix A E 
znxn. The sublattice L(M) defines a natural equivalence relation on 
L{L) as follows: two lattice points x, y E L{L) are equivalent {written 
x = y) if and only if x - y E L(M) . (The equivalence relation = 
depends on the lattice L(M) , so formally it should be written =.c(M) or 
=M · To simplify the notation, we omit the subscript and simply write 
= whenever the lattice M is obvious from the context . )  The reader 
can easily check that = is an equivalence relation, i .e. , it satisfies the 
reflexive, symmetric and transitive properties : 

• x = x for all x E L(L) . 

• x = y if and only if y = x 

• if x = y and y =  z ,  then x = z .  

DEFINITION 8 . 1  Let  L(L)  be  a lattice and L(M) a full rank sublattice 
of L(L) . The L (M) -equivalence class of x E L(L) (denoted [x]M) is the 
set of all y E L(L) such that x =M y.  The quotient L(L) / L(M) is the 
set of all L(M) -equivalence classes of L(L) . 

{Also for equivalence classes (x]M we often omit the subscript M wher­
ever M is clear from the context, and write [x] instead of (x]M. )  The 
equivalence relation = is a congruence relation with respect to the ad­
dition operation, i .e . , if x = x' and y =  y' , then (x + y) = (x' + y' ) . It 
follows that for any two equivalence classes [x] and [y] , the sum [x + y] 
is well defined, i .e. ,  it does not depend on the choice of representatives 
x, y, and the quotient L(L)/ L(M) is an additive group with the sum 
operation just described. 

PROPOSITION 8 . 1  Let L(L) be a lattice and L(M) a full rank sublattice 
of L (L) . The quotient G = L(L)/ L(M) is an additive group with respect 
to operation 

(x] + [y] = [x + y] . 
Moreover, the function '1/J(x) = [x] is a group homomorphism from 
(L(L) , + , O) to (G, + , O) with kernel L(M) , i . e . ,  for every x , y E L(L) , 
Junction '1/J satisfies 

1/J(x + y) = 1/J(x) + 1/J (y) 

'1/J(  -x) = -1/J(x) 
1/J (x) = 0 ¢:> x E L(M) .  
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Equivalence classes in .C(L)/ .C(M) can be associated with unique rep­
resentative elements from .C(L) in various ways. For example, one can 
use the set of lattice points .C(L) n P(M) in the half open parallelepiped 

P(M) = {Mz : Vi .O � Zi < 1 } . 
I t  i s  easy t o  see that for every equivalence class (x] there exists a unique 
element x' E .C(L) n P(M) such that x = x' , and such representative 
can be efficiently computed as follows: write x as Mz, define zi = l zd 
for all i = 1 ,  . . . , n , and set x' = Mz' . In particular, this proves that the 
group G is finite, and it has cardinality 

I.C (L)/ .C(M) I = det (.C(M))/ det (.C(L) ) = det (A) 
where A is the unique (square) integer matrix such that M = LA. 

An alternative way to uniquely represent equivalence classes is to 
use integer points inside the orthogonalized parallelepiped P (A* ) .  The 
lattice point represented by z E P(A * ) n zn is Lz. The reader can 
easily check that for every equivalence class (x] there exists a unique 
z E P(A * )  n zn such that Lz = X. 

This t ime computing the representative v E zn n P(A * )  of an equiva­
lence class (x] is more complicated, but, depending on the choice of the 
bases M, L, this representation can be much more efficient . A possible 
way to compute the representative z' for (Lz] is to use a variant of the 
nearest plane algorithm described in Chapter 2. Namely, if we apply 
that algorithm to lattice .C(A) and target z, we find a vector a E .C(A) 
such that z - a belongs to the centered orthogonal parallelepiped 

1 { 1 1 }  P' (A* ) = P(A* ) - 2 �ai = A*z :  Vi . - 2 � Zi < +2 . 
' 

Clearly, 'P' (A * )  n zn could also be used as set of representatives instead 
of 'P(A * )  n zn. Alternatively, if the nearest plane algorithm is modified, 
replacing the line Cj = l(b, bj ) / (bj ,  bj) l  with Cj = l(b, bj )/ (bj , bj )J 
(See Figure 2 .5 in Chapter 2.) then the vector a E .C(A) returned by 
the modified nearest plane algorithm satisfies z - a E P(A * ) .  

The Hermite Nor mal Form 
The set 'P(M) n .C(L) and 'P(A *) n zn can be used to represent the 

elements of the quotient group G = .C(L) / .C(M) with strings of length 
polynomial in the size of the bases L and M. Although polynomial, this 
representation is not particularly efficient . In particular, this size can be 
much bigger than log IG I , i .e . , the minimal size required to represent all 
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elements of the group. We show that if the basis M (or L) is appropri­
ately chosen, then elements of P(A * )  n zn can be stored using log I G I 
bits, giving a space optimal representation for the elements of the group. 

Let L be a rank n lattice basis and let M = LA be a basis of a full 
rank sublattice of .C(L) . We know that G = .C(L)/ .C(M) is a finite com­
mutative groups of size IG I = det (A) . Group G depends only on the 
lattices generated by L and M, so we can apply unimodular transforma­
tions to either basis without changing the group G. We consider bases 
M such that A has a special form. 

DEFINITION 8 . 2  A square nonsingular integer matrix A E znxn is in 
Hermite Normal Form (HNF) if 

• A is upper triangular, . i . e. , ai ,j = 0 for all i > j .  

• All diagonal elements of A are strictly positive, i. e. , ai,i > 0 for all 
i = 1, . . .  , n. 

• All non diagonal elements are reduced modulo the corresponding di­
agonal element on the same row, i. e. , 0 � a i ,j < ai ,i for all i < j .  

I t  i s  a classical result of Hermite that any matrix A i s  (column) equiva­
lent to a (unique) matrix H in Hermite normal form. Equivalently, every 
lattice .C(A) has a basis H = AU (where U is a unimodular matrix) 
such that H is in Hermite normal form. The Hermite normal form of an 
integer matrix and the corresponding unimodular transformation can be 
computed in polynomial t ime. (See for example (Cohen, 1996) . ) In order 
to efficiently represent the elements of group G, we compute the Hermite 
normal form of A, and apply the corresponding unimodular transforma­
tion to the basis M. Equivalently, we can assume that M = LA is the 
(unique) basis of .C(M) such that A is in Hermite normal form. Notice 
that if A is in Hermite normal form, then the orthogonalized vectors 
are simply given by a; = ai ,iei and zn n P(A* ) is the set of all vectors 
v E zn such that 

0 � Vi < ai,i 
In particular, each coordinate can be represented using log2 ai,i bits, and 
the size of the group element representation is 

n n 
L log ai ,i = log2 IJ ai ,i = log2 det (A) = log2 IG I .  
i=l i= l  

When A i s  in  Hermite normal form, the modified nearest plane al­
gorithm to compute the representative for a group element becomes 
particularly simple. Using the triangular structure of A, the element of 
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Input : An integer basis H E  znxn in Hermite normal form 
and a target vector t E zn. 
Output : The unique integer vector b E  P(H* ) such that b - t E .C{H) 
let b := t 
for j = n, . . .  , 1 

Cj = lbj/hj,jj 
b : = b - Cjbj 

return b 

Figure 8. 1 .  Reducing a vector modulo an HNF basis 

zn n P(A *) associated to group element [Lv] can be easily computed 
using the algorithm shown in Figure 8 . 1 .  This algorithm gives also a way 
to efficiently implement the group operation in G. Given group element 
representations x, y E zn nP{A * ) ,  the group element associated to their 
sum is easily computed adding up the two vectors x + y, and applying 
the algorithm of Figure 8 . 1  to the result . 

A special case is when .C(L) = zn is the lattice of all integer vectors, 
and A = .C (M) is any integer lattice. Then, we use notation v mod A for 
the unique representative of [v]A which is reduced modulo the {unique) 
HNF basis of A and use this element as the standard representative for 
[v]A · 

The Smith Normal Form 
We have seen that the elements of group G can be efficiently repre­

sented using log2 I G I bits, and the group operation computed in poly­
nomial time. We now present still another way to represent group el­
ements that , in addition to providing a space efficient representation, 
allows to perform the group operation in linear time. The idea is the 
following. We know that G = .C(L) / .C(M) is a finite commutative group 
det (M) / det {L ) , and therefore it can be decomposed into the direct sum 
of cyclic groups. The cycle structure of G can be recovered computing 
another normal form for matrix A. 
DEFINITION 8 . 3  A matrix D E znxn is in Smith Normal Form (SNF) 
if D is diagonal with nonnegative coefficients such that di+l ,i+l divides 
di,i for all i = 1 ,  . . .  , n . 

It is a well known fact that for every square nonsingular matrix A 
there exist unimodular matrices U, V such that UAV is in Smith Nor­
mal Form. Moreover, U, V and D can be computed from A in polyno­
mial time. (See for example (Cohen, 1996) . )  It should be remarked that 



Cryptographic Functions 1 5 1  

matrix A and its Smith normal form D do not generate the same lat­
tice. However, the two matrices are equivalent in the sense that groups 
znj£(A) and znj£(D) are isomorphic. So, if D = UAV is the Smith 
Normal Form of A, then the group G = £(L) / £(M ) is isomorphic to 
the (additive} group 

s = zd x · · . zd . 1 , 1  n ,n. 
As for the HNF representation, elements of this group can be represented 
as integer vector s E zn such that 

0 � Si < di,i 

for all i = 1 ,  . . . , n. Therefore this representation has size 

n 
L log2 di,i = log2 det (D) = log2 det (A) = log2 IG I .  
i= l 

Moreover, the group operations are modular componentwise addition 
and negation, so they can be performed in 

n 
O(L log2 di,i) = O(log2 IGI ) 

i= l 
time. It remains to show how to compute the SNF representation of a 
group element [x] . The reader can easily verify that the function 

t/J : [x] �-t DM-1x mod D 

is a group isomorphism from G to S. In particular, for any x E £(L) , 
DM-1x is an integer vector, and t/J( [x] ) = 0 if and only if x E £(M) . 

Sampling elements from finite groups 
In this section we study two problems related to sampling elements 

from a finite group (almost) uniformly at random. In the first problem, 
the group is given as a quotient £(B}/£(C) of two lattices £(C) c £(B) 
and we want to select a representative from 'P(C) n £(B) with perfectly 
uniform distribution. In the second problem, we consider a generic group 
G and a distribution X on G which is not too far from uniform, and 
show how to obtain almost uniform samples adding up a small number 
elements drawn according to X .  

We consider the problem of  selecting a lattice point uniformly at ran­
dom from £ (B ) n 'P(C) . Since £(B) is an infinite set , we cannot choose 
an element of £(B) uniformly at random and reduce it modulo C. How­
ever, a simple procedure to sample £(B) n 'P(C) uniformly at random 
can be devised using the group structure of the quotient £ (B )/  £(C) . 
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PROPOSITION 8 . 2 There is a probabilistic polynomial time algorithm 
that on input a lattice basis B and a full rank sublattice .C(C ) , outputs 
a lattice point x E .C(B) with uniform distribution over .C(B) n 'P{ C) . 

Proof: Although .C(B) and .C(C) are infinite commutative groups, their 
quotient G = .C(B)/.C{C) is always finite and the order of group G is 
easily computed as l = det (C)/  det (B) .  Let x = Li ribi a random com­
bination of the generators of .C(B) with coefficients ri chosen uniformly 
and independently at random from {0, . . . , l - 1 } . It is easy to see that 
[x]c is distributed uniformly at random in G. In order to compute the 
representative of x modulo C, we write x = Cy for some real vector 
y. Then for all i = 1, . . .  , n , we set y� = Yi - lYd to the fractional part 
of Yi · The final output is Cy' . It is immediate to see that Cy = Cy' 
(mod C) ,  and Cy' E 'P(C) . 0 

We now turn to the second problem. Let G be a finite group, and 
let A be a random variable over G with distribution not too far from 
uniform. Here "not too far" means that for any group element g E G, 
the probability that A equals g is at least 0.5/ IG I and no more than 
1 .5/ IG I . We show that if we combine (using the group binary opera­
tion) a relatively small number of independent copies of A, the resulting 
distribution rapidly approaches the uniform one. 

PROPOSITION 8 . 3  Let (G, +) be a finite group and let A1 , . . .  , Ak be k 
independent random variables over G such that for any g E G 

IPr
(Ai = g) - 1� 1 � ::; 2 1� 1 (B. J) 

for all i = 1 , . . .  , k . Then, the random variable defined by the sum 
A = E:==l Ai satisfies 

IPr (A = g) - ��� � ::; 2k�G I '  (8. 2) 

Proof: By induction on k. If k = 1 then the statement in the proposition 
is trivially true. So, assume that the proposition holds for some k, and 
let us prove it for k + 1 . Let A' = L�=l Ak be the sum of the first k 
variables. By induction hypothesis , for all g' E G, 

I Pr(A' = g' ) - 1 / IG I I  ::; 1/ (2k iG I ) .  
Consider the sum A = E:�l Ai = A' + Ak+ l · Then, we have 

Pr{A = g} = Pr{A' + Ak+ 1 = g} (8 .3)  

= L Pr{A' = g' } Pr{Ak+l = g - g'} (8 .4) 
g' EG 
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It  i s  easy to verify that the last expression equals 

L (Pr{A' = g' } - l� l ) (Pr{Ak+l = g - g' } - l� l ) + l� l 
(8 .5) 

g' EG 

Therefore IPr{A = g} - 1/ IG I I is at most 

L IPr{A' = g' } - � I · IPr{Ak+l = g - g'} - � I (8 .6) 
g' EG I I I I 

and using the induction hypothesis and the hypothesis on Ak+l we get 

1 . 2  Discrepancy 

The determinant of a lattice det (A) can be informally defined as the 
inverse of the density of lattice points A in span(A) , meaning that if Q 
is a sufficiently large and regular region in span(A) , then the number of 
lattice points in Q is roughly proportional to vol (Q)/  det (A) . The exact 
number of points in Q depends on the shape and position of Q. Dis­
crepancy theory studies the maximum possible deviations of this number 
from vol (Q)/  det (A) , and it is an interesting area of mathematics with 
many applications in discrete geometry and number theory, from volume 
estimations to exponential sums. A general treatment of the theory is 
beyond the scope of this book. In this section we give elementary proofs 
of some simple results that will be used later in this chapter. We prove 
upper and lower bounds on the number of lattice points contained inside 
a convex body Q. The bound is given in terms of the covering radius p of 
the lattice and the radius r of the biggest sphere completely contained in 
Q. The body Q is required neither to be centered around the origin, nor 
symmetric with respect to its center of gravity. The only assumptions 
about Q are convexity and the fact that Q contains a sphere of radius 
r. For example, these properties are satisfied by the Voronoi cells of a 
lattice. 

DEFINITION 8 . 4  Let A be a lattice and x E A an arbitrary lattice point. 
The (open} Voronoi cell of x is the set V(x, A) of all points z E span( A) 
that are closer to x than to any other lattice point: 

V(x, A) = {z E span (A) I Vy E .C(B) . I I z - x l l  < l iz - Y l l } . {8. 7) 
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The closed cell V(x, A) is the topological closure of V(x, A) 

V(x, A) = {z E span( A) I Vy E .C(B) . I I z - x l l  � l i z - Yl l } . {8. 8) 
We need some simple properties about Voronoi cells, as listed below. 

All properties are easily verified and their proofs are left to the reader. 

PROPOSITION 8 . 4  Let A be a lattice with covering radius p and min­
imum distance .X1 .  Then the Voronoi cells of A satisfy the following 
properties: 

• All Voronoi cells V(x, A) {with x E A) are shifted copies 

V(x, A) = V(O, A) + x 

of the fundamental cell associated to the origin. 

• V(x, A) is a bounded, open, convex set, symmetric about x. 

• Each cell V(x, A) contains a sphere of radius .XI /2, and it is com­
pletely contained in a sphere of radius p: 

B(x, .Xt /2) c V(x, A) c B(x, p) . 

• The volume of V(x, A) ( or, equivalently, V(x, A) )  equals 

vol(V(x, A) )  = vol (V (x, A) )  = det (A) . 

• For any two distinct lattice points x =f y E A, the corresponding 
Voronoi cells are disjoint, i. e. , 

V(x, A) n V(y, A) = 0 (8. 9) 
• The union of all closed Voronoi cells covers the entire space, i. e . ,  

U V(x, A) = span(  A) . (8. 10) 
xEA 

The bounds on the number of lattice points inside a convex body are 
based on the following two simple lemmas. 

LEMMA 8 . 5  Let A be a lattice with covering radius p and Q an arbitrary 
(closed) convex body in span(A) containing a sphere of radius r .  lf x E 
A n  Q is a lattice point inside Q, then the entire cell V(x, A) is contained 
in the body Q' obtained expanding Q by a factor ( 1 + pjr) . (Expansion 
performed using the center of the sphere as the origin.) 
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Proof: Let x be any point of A n  Q, and y any point of V(x, A) . We 
want to prove that y belongs to Q' . If y belongs to Q then the statement 
is trivially true because Q is contained in Q' . So, assume y ¢ Q and 
let x' be a point of (the closure of) Q closest to y. (See Figure 8.2) 
Clearly, x' cannot be an internal point of Q, and it must belong to the 
frontier of Q. We also have I IY - x' l l  $ I IY - xl l  $ p because x belongs 
to Q and y belongs to the Voronoi cell of x. Now consider the segment 
connecting y to the center e of a sphere of radius r contained in Q. Since 
e is internal to Q and y does not belong to Q, this segment intersect 
the boundary 8Q in a unique point y' . Let £' be the line connecting x' 
and y' , and let £ be the unique line parallel to £' containing y. Notice 
that e ,  £ and £' all belong to a common plane. Define the projection 
z and z' of center e on lines £ and £' . Notice that since x' and y' are 
boundary points of Q and Q is convex, then z' cannot be an internal 
point of Q. Since all points within distance r from e belong to Q, it must 
be l i z' - e l l 2: r. Also, the distance between £ and £' equals l i z - z' l l , and 
therefore l i z - z' l l  $ l lx' - Y l l  $ p. Then we have 

I IY - e l l  = l i z - e l l  = 1 + l
i z - z' l l < 1 + e . 

I IY' - e l l l i z' - e l l  l i z' - e l l  - r 

Since point y' belongs to (the closure of) Q and I IY - e I I  $ ( 1 + pj r) I IY' ­
e l l , point y belongs to (the closure of) Q' . 0 

LEMMA 8 . 6  Let A be a lattice with covering radius p and Q an arbitrary 
(open) convex body containing a sphere of radius r .  If x E A \ Q is a 
lattice point outside Q, then the entire cell V(x, A) is disjoint from the 
body Q" obtained contracting Q by a factor {1 - pjr) . (Contraction 
performed using the center of the sphere as the origin.) 

Proof: The proof, similar to the one of Lemma 8.5 , is left as an exercise 
to the reader. 0 

We use Lemmas 8 .5 and 8.6 to bound the number of lattice points in­
side Q. Notice that on average Q contains vol (Q) /  det (A) lattice points. 
The following proposition shows that if r is large with respect to p, then 
the number of lattice points inside Q is approximately vol ( Q) /  det (A) . 

PROPOSITION 8 . 7  Let A be a lattice and Q an arbitrary open convex 
body in span(A) . If Q contains an (open) sphere of radius r 2: p(A)n, 
then the number of lattice points inside Q (or its closure Q) satisfies 

vol (Q) (1 - p(A)n) < lA  n Ql  
det (A) r 
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Figure 8. 2. Lattice points inside a convex body 

'A  Q
-

l 
vol {Q) (

1 
2p{A)n) 

:::; n < det (A) + r 
. 

Proof: We start with the lower bound. Let p = p(A) be the covering 
radius of the lattice and c be the center of a sphere of radius r contained 
in Q. Let Q" be the convex body obtained contracting Q around c by 
a factor { 1 - pjr) . Clearly the volume of Q" satisfies 

vol (Q" ) = ( 1 - �r vol( Q) > (1 - n:) vol( Q) {8. 1 1 )  

Let X b e  the set of all lattice points x E A such that V(x, A )  intersects 
Q" . By Lemma 8 .6 ,  all points in X belong to Q, so it is enough to bound 
the size of X (from below) . Since sets V{x, A) cover the entire space, 
Q" is completely contained in UxEX V(x, A ) ,  and 

vol (Q") :::; L vol(V(x, A) ) = lX I · det (A) (8 . 12)  
xEX 

Combining (8 . 1 1 )  and (8 .12)  we get 

lX I > vol (  Q) ( 1 - pn) 
det (A) r ' 

proving the lower bound on jA n  Q j . 

(8 . 13)  
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The proof of the upper bound is  similar. Let Q' be the convex body 
obtained expanding Q around c by a factor (1 + pfr) . The volume of Q' 
satisfies 

val (  Q') = ( 1 + �r val (  Q) � enpfr val (  Q) . (8 . 14) 

Using the convexity of the exponential function, and condition (pnfr) � 
1 we get 

enpfr � eo + (el - eo ) ( n:) < 1 + 2 ( n:) . (8 . 15)  

Combining (8 . 14) and {8. 15)  we get 

vol( Q') < ( 1 + 
2;p) vol (Q) .  (8 . 16)  

Let X be the set of all lattice points x E A such that V(x, A) is 
contained in Q' . By Lemma 8 .5 ,  all lattice points in Q belong to set X ,  
so i t  i s  enough to  bound the size of X (from above) . Since cells V(x, A)  
are disjoint 

val(  Q' ) � L vol(V(x, A) ) = lX I · det (A) (8 . 1 7) 
xEX 

Combining (8 . 16) and (8 . 1 7) we get 

'X I 
vol( Q) ( 1 

2pn) < det(A) + r ' 

proving the upper bound on lA n Ql . 0 

1 . 3  Statistical distance 

(8 . 18)  

The statistical distance is a measure of how two probability distribu­
tions are far apart from each other, and it is a convenient tool in the 
analysis of randomized algorithms and reductions. In this section we 
define the statistical distance and prove some simple facts that will be 
used in the analysis of cryptographic functions . 

DEFINITION 8 . 5 Let X and Y be two discrete random variables over 
a (countable) set A. The statistical distance between X and Y is the 
quantity 

1 
�(X, Y) = 2 L I Pr{X = a} - Pr{Y = a} j . 

aEA 
We say that two random variables X, Y are identically distributed 

(written X = Y) if and only if Pr{X = a} = Pr{Y = a} for every 
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a E A. The reader can easily check that the statistical distance satisfies 
the usual properties of distance functions, i .e . ,  it is a positive definite 
binary symmetric function that satisfies the triangle inequality: 

�(X, Y) > 0 with equality i f  and only i f  X = Y (8 . 19 )  
�(X, Y) = �(Y, X) (8 .20) 
�(X, Z) < �(X, Y) + �(Y, Z) . (8 .2 1 )  

The following property of  the statistical distance i s  useful when an­
alyzing a probabilistic algorithm that is part of a larger randomized 
process. 

PROPOSITION 8 . 8  Let X, Y be random variables over a set A, and let 
Z be a third random variable over a (possibly different} set B. If Z is 
statistically independent from X and Y. Then 

�((X, Z) , (Y, Z) )  = �(X, Y ) .  
Proof: From the definition o f  statistical distance and the independence 
of Z from X and Y we immediately get 

�( (X, Z) , (Y, Z) ) 
1 = 2 L I Pr{X = a, Z = b} - Pr{Y = a, Z = b} l 

a,b 
1 = 2 L I Pr{X = a} Pr{ Z  = b} - Pr{Y = a} Pr{Z = b} l  

a,b 
1 = 2 L I Pr{X = a} - Pr{Y = a} I L Pr{Z = b} 

a b 
1 = 2 L I Pr{X = a} - Pr{Y = a} l  

a 
= �(X, Y ) .  o 

Notice that if Z is not independent from X or Y, then the proposi­
tion is not necessarily true. Consider for example two identically dis­
tributed, but independent , random variables X, Y, and let Z = Y. Then 
�( (X, Z) ,  (Y, Z) ) = �( (X, Y ) ,  (Y, Y ) )  is nonzero (unless X is trivial) , 
while �(X, Y) = 0 because X and Y are identically distributed. Using 
Proposition 8.8 and the triangle inequality we get the following useful 
bound. 
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PROPOSITION 8 . 9  Let X1 ,  . . .  , Xk and Y1 , . . .  , Yk be two lists of totally 
independent random variables. Then 

k 
� ( (Xl , · · · , Xk ) , (Yl , · · · , Yk ) )  � L �(Xi , Yi) . 

i= l 
(8. 22} 

Proof: We prove the inequality for lists of length 2.  The general case 
follows by induction on k . By triangle inequality, the statistical distance 
�( (X1 , X2 ) ,  (Y1 , Y2 ) )  is at most 

�((X1 , X2 ) ,  (X1 , Y2 ) )  + �( (X1 , Y2) ,  (Y1 , Y2 ) ) . 

By Proposition 8 .8 ,  and using the independence of X1 and Y2 from the 
other variables, these two terms are at most �(X2 , Y2 ) + �(X1 , YI ) . D 

The following proposition shows that applying a (possibly random­
ized) function to two distributions does not increase the statistical dis­
tance. 

PROPOSITION 8 . 1 0  Let X, Y be two random variables over a common 
set A.  For any (possibly randomized} function f with domain A, the 
statistical distance between f(X) and f(Y) is at most 

�(! (X) ,  f (Y) ) � �(X, Y) (8. 23} 

Proof: We first consider the case of (deterministic) functions . Let f be 
a function from set A to some other set B. Then, 

�(! (X) ,  f (Y) )  = � L I Pr{f {X) = b} - Pr{f (Y) = b} l 
bEB 

1 = 2 L L (Pr{ X = a} - Pr{Y = a} ) 
bEB aEJ - i (b) 

1 
< 2 L L I Pr{ X = a} - Pr{Y = a} I 

bEB aEJ - i  (b) 
1 2 L I Pr{X = a} - Pr{Y = a} l 

aEA 
= � (X, Y) .  

So, (8 .23) holds true for every function f .  Combining Proposition 8 .8 
with (8.23) , we immediately get that (8.23) holds also for randomized 
functions. D 
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Notice that fl(j (X) , f (Y ) )  can be strictly less than D.( X, Y) .  For 
example, if f (x) = c is a constant function, then fl(j(X) , f (Y) )  = 0 
regardless of fl(X, Y) .  However, if f is injective, then equality holds 
and fl(j (X) , f (Y) ) = fl(X, Y) .  

PROPOSITION 8 . 1 1  If X and Y are random variables over se t  A and 
f: A ---t [a , b] is a real valued function, then 

I Exp[f (X)] - Exp[f (Y)] I � l b - a l · fl(X, Y) {8. 24} 
Proof: Define function g(x) = f (x) - � · Notice that lg (x) l � b2a for 
all x, and g(X) - g(Y) = f (X) - f (Y) .  Therefore 

I Exp [f (X ) ] - Exp[f (Y)J I  = I Exp [g (X ) ] - Exp[g (Y)J I 

= L g (a) Pr{X = a} - L g(a) Pr{Y = a} 
a a 

< L jg(a) I · I Pr{X = a} - Pr{Y = a} l 
a 

< l b - a ! · fl(X, Y) . o 

Using the statistical distance, we can reformulate Proposition 8 .3 as 
follows. 

COROLLARY 8 . 1 2  Let (G, +)  be a finite group and let A1 ,  . . . , Ak be k 
independent {but possibly not identically distributed} random variables 
over G such that for any g E G 

{8. 25} 
for all i = 1 ,  . . . , k .  Then, the statistical distance between their sum 
A = :E�==l Ai and the uniform distribution U over G is at most 

A (t A; ,  U) ,:; 2-(k+IJ {8.26} 

Proof: We know from Proposition 8 .3 that the sum :Ei Ai satisfies (8 .2) . 
Therefore, the statistical distance from uniform is 
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2 .  Collision resistant hash functions 

Let q be any positive integer, Zq the set of all integers modulo q, 
and A be an n x m matrix with entries in Zq. Matrix A is naturally 
associated with a linear function 

fA : x 1-t Ax mod q 

from Z:F to Z�. Clearly, function fA is easily computable in both di­
rect�ons: computing fA in the forward direction is just a matrix-vector 
multiplication, while inverting fA is essentially the problem of solving 
a system of linear equations modulo q. In (Ajtai , 1996) , Ajtai proved 
that , when A is chosen uniformly at random, a suitable restriction of 
function fA is at least as hard to invert on the average as the worst case 
complexity of approximating certain lattice problems within a polyno­
mial factor. Subsequently, Goldreich, Goldwasser and Halevi observed 
that under essentially the same complexity assumption as Ajtai's , it is 
possible to prove that a similarly restricted function hA is collision re­
sistant (Goldreich et al. ,  1 997b) , i .e. , given a uniformly random matrix 
A E z�xm, it is computationally hard to find two distinct input vectors 
x, y E {0, 1 }m such that Ax = Ay. The Ajtai-GGH hash function 

hA (x) = L ai {mod q) 
i :x; = l  

is  defined as the restriction of function fA to the set of binary vectors 
x E {0 ,  1 }m , and the problem of finding collision Ax = Ay is clearly 
equivalent to finding integer vectors z = x - y such that l l z l loo = 1 
and Az = 0 {mod q) . Notice that if m > n log q, then function h A 
is indeed a hash function, i .e. , it compresses the size of the input , and 
collisions are guaranteed to exist. The goal is to prove that collisions are 
computationally hard to find. In this section we describe a hash function 
family that generalizes and improves the Ajtai-GGH hash functions , and 
such that finding collisions for randomly chosen functions is at least as 
hard as approximating the covering radius of any lattice in the worst 
case within some polynomial factor ')'(n) < O{n2·5 log n) . Using the 
transference theorems from Chapter 7, we get that finding collisions 
is at least as hard as approximating the length of the shortest vector 
problem in any lattice within factors !' (n) < O(n3·5 log n) . Both factors 
can be further reduced by up to vn if the closest vector problem for 
a certain sequence of "almost perfect" lattices can be efficiently solved. 
(See Subsection 2 .4 . )  Notice that collisions corresponds to short vectors 
l l z l l 2 � vnlls l loo = Vn in the lattice AA = {z : Az = 0 mod q} . So, 
the security of the hash function can be reformulated as a connection 
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between finding short nonzero vectors in a lattice on the average, and 
approximating the length of the shortest nonzero vector for any lattice 
in the worst case. 

2 . 1  The construction 

Let A be a full-rank n-dimensional lattice such that the closest vector 
problem in A can be efficiently solved. (Formally, we consider a sequence 
of full-rank lattices An , one for every dimension n , such that there exists 
a polynomial time algorithm CVP A that on input n and t E Ql ,  finds 
a lattice vector in An as close as possible to t . ) 

For example, if A =  zn, then a lattice vector x E A closest to a given 
target t E Ql can be easily found rounding each coordinate of t to the 
closest integer Xi = r td . We are interested in lattices A that are "almost 
perfect" , as follows. Remember the definition of the packing radius and 
the covering radius : the packing radius is the largest radius such that 
(open) spheres centered at distinct lattice points do not intersect , and the 
covering radius is the smallest radius such that (closed) spheres centered 
at lattice points cover the entire space. Clearly, the covering radius is 
always at least as big as the packing radius. 

DEFINITION 8 . 6  The packing-covering ratio of a lattice A is the ratio 
T between the covering radius and the packing radius of the lattice and 
it equals 2p(A)/>.. I (A) . For any T > 1, a lattice A is called r-perfect 
if its packing-coveTing ratio is at most T . We say that a sequence of 
lattices An is almost prefect if all lattices An are T-perfect for a constant 
T independent of the rank n . 

This is analogous to the definition of perfect codes. Codes are sets of 
strings (called code words) of some fixed length n over a finite alphabet 'E, 
with the (Hamming) distance between strings measured as the number 
of positions in which the two strings differ. Then, the packing radius and 
covering radius of a code are defined as the largest and smallest radii such 
that the Hamming spheres centered at codewords are disjoint or cover 
the entire space 'En , respectively. A code is called perfect if the packing 
radius equals the covering radius. In other words, the code is perfect 
if it is possible to partition the entire space 'En with equal (Hamming) 
spheres centered at the codewords. Interestingly perfect codes do exist ,  
but the same is  not true for lattices : i t  i s  not possible to partition the 
Euclidean space !Rn with spheres of radius bounded away from 0. 

We would like the packing-covering ratio r of lattice A to be as small 
as possible. Remember that the Vownoi cell of a lattice A contains a 
sphere of radius ) q  (A)/2 and it is contained in a sphere of radius p(A) . 
When T is close to one, then these two radii are almost the same, and 
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the Voronoi cells V(x, A} are almost spherical. So, even if  llln cannot be 
partitioned with equal spheres , r-perfect lattices partition llln into equal 
almost spherical regions. The questions is : how close to a sphere can 
these regions possibly be? Setting A = zn to the integer lattice gives 
r = .Jii. However, as we will see in Subsection 2 .4, it is possible to 
do much better than that . For now we assume A is a r-perfect (easily 
decodable) lattice for some r between 1 and .Jii,. 

We use lattice A and the corresponding decoding algorithm CVP A to 
define a hash function as follows . First, we build an almost orthogonal 
sublattice .C(M) C A. Let a be a scaling factor to be specified, and 
for all i = 1 ,  . . .  , n, let mi = CVP A ( ap( A )ei )  be a lattice point within 
distance p(A) from ap(A)ei .  In matrix notation, 

M = ap(A)I + R  (8 .27) 

where R is a matrix with columns of length bounded by 

(8 .28) 

Lattices A and .C(M) define a finite Abelian group 

a = A/.C(M) . {8 .29) 

The elements of group a can be represented using any of the techniques 
described in Subsection 1 . 1 .  The only important properties here are 
that elements of a can be represented using log 1a 1  bits, and the group 
operation can be computed in polynomial time. Moreover, there is an 
easily computable homomorphism '1/J : A -+ a that maps each lattice 
vector to the corresponding group element . Notice that '1/J (x) = 0 in a 
if and only if vector x belongs to sublattice .C(M) C A. 

We define a family of a-valued hash functions . Let m be an integer, 
and fix a sequence of m group elements a1 ,  . . .  , am E G. The vector 
a = [a1 ,  . . .  , amf E am defines a function ha : {0, l }m -+ a that maps 
binary vector x E {0, l }m to group element 

m 
ha (x) = L Xiai = L{ai : Xi = 1 } . (8 .30) 

i= l  

I f  m > log2 la l , then ha i s  a hash function (i .e. , a function that com­
presses the size of its input) and collisions ha {x) = ha {Y) (with x =/= y) 
are guaranteed to exist. We want to prove that if vector a E am is 
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chosen uniformly at random, then collisions are hard to find. As for 
the Ajtai-GGH hash function, collisions can be represented as vectors 
z E { - 1 , 0 ,  + 1 }m\  {O}m such that L:i Ziai = 0. In the rest of this chapter 
we will refer to such vectors as h8-collisions. 

Before proving that ha is collision resistant , we bound the size of group 
G from above, so to get an estimate for the length m of the key a. 

LEMMA 8 . 1 3  For any constant a 2: 1 and any lattice A with packing­
covering ratio T ::::; ..fii, let M be a set of vectors of A as defined in 
(8. 27) and (8. 28) . Then, the elements of group G = A/ C(M) can be 
represented with binary strings of length 

log2 IG I < n ( log2 n + log2 a) . 
Proof: We need to bound the group size IG I  = det (C(M)) /  det (A) . We 
bound the two determinants separately. The columns of M have length 
at most 

Therefore, by Hadamard's inequality 

To bound the determinant of A, we use Minkowski's theorem. By 
Theorem 1 . 5 ,  the length of the shortest nonzero vector in A satisfies 
)q (A) < ..fiidet (A) 1fn . Therefore, det (A) is greater than (>.l (A)/..fii)n . 
Combining the two bounds, we get that group G has cardinality 

IG I = 
det (M) (2ap(A)..fii) n 

= ( r.::) n  
det (A) < >.1 (A) 

arv n · (8 .31) 

Taking the logarithm of both sides, and using r ::::; vfn, we get the bound 
in the lemma. 0 

In particular, if a is bounded by a polynomial in n ,  then group ele­
ments can be represented using O (n log n) bits. 

Let F be a hypothetical collision finder algorithm that on input a 
randomly chosen vector a E am, outputs (with nonnegligible probability 
8) an h8-collision z .  We show that , given oracle access to F, one can 
approximate the length of the covering radius of any lattice C(B) of rank 
n within some small factor 1(n) . 

2 . 2  Collision resistance 

Let 1(n) be any function slightly bigger than rn2 log n : 
w(rn2 log n) ::::; 1(n) ::::; rn2 log2 n .  (8 .32) 
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For example one can set 1(n) = rn2 log2 n ,  but the smaller the better. 
Set the scaling factor a to 

/(n) (l' = -- .  
8ylnr 

(8.33) 

Notice that this choice of a satisfies 

n 1 .5 log n :S: a :S: n 1 .s log2 n. 

Let the length of the key a be m = 2 log2 IG I so that ha is a family of 
hash functions that compress the size of their input by a factor 2. By 
Lemma 8 . 13 ,  this value satisfies 

m :::; 6n log2 n .  (8 .34) 

We want to prove that finding ha-collisions when a is chosen uniformly 
at random is at least as hard as approximating the covering radius of any 
lattice within a factor 1(n) . Formally, we give a polynomial time proba­
bilistic reduction from the promise problem GAPCRP-y to the problem 
of finding ha-collisions when a is chosen at random. More specifically, 
given access to a collision finder algorithm F that on input a random 
a E am outputs (with nonnegligible probability over the choice of a) 
an ha-collision F(a) , we show how to efficiently solve GAPCRP-y for 
any approximation factor 1(n) = w(rn2 log n) , where r is the packing­
covering ratio of A. For example, if A =  zn, then the corresponding hash 
function is as hard to break as approximating the covering radius of any 
lattice within any factor /(n) = w(n2·5 log n) . We remark that while the 
collision finder algorithm F is required to work only for a nonnegligible 
fraction of the keys a, the reduction should correctly solve (with high 
probability) any G APCRP-y instance (B, r) . We will give a randomized 
reduction that rejects all NO instances (with probability 1 ) ,  and accepts 
all YES instances with probability exponentially close to 1. In particular, 
when the reduction accepts an instance (B,  r) , the randomness used by 
the reduction constitutes an NP proof that p(B) :S: 1r, and therefore 
(B, r) is not a NO instance. (From the promise that (B,  r) is either a 
YES or a NO instance, we can also deduce that (B , r) is a YES instance, 
i .e. , p(B) :S: r. However, if (B,  r) does not satisfies the promise, then the 
covering radius can be as large as 1r. )  In fact ,  the reduction produces 
more compact and informative NP proofs than the whole sequence of 
coin tosses used in the reduction process. The short proof produced by 
the reduction consists of a sequence of n linearly independent vectors 
S = [s 1 , . . .  , sn] in .C(B) such that the length of the diagonal of the or­
thogonalized parallelepiped a(S) = Jl:i l l si 1 1 2  i s  at most 21 · r. Since, 
by Theorem 7.9 ,  all linearly independent sets S satisfy a(S) � 2p(B ) ,  
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this proves that 

p(B ) � a�S) � "(r 

and S is an NP-witness for GAPCRP1 instance (B, r) . Notice that 
vectors S not only prove that for every target point t E span (B ) there 
exists a lattice vector x E .C (B ) within distance "(r from t ,  but also 
allow to algorithmically find such lattice vector in polynomial time, for 
example using the nearest plane algorithm from Chapter 2. 

The idea of the reduction is the following. Given a basis B we want 
to find linearly independent vectors s1 ,  . • .  , Sn in .C (B ) such that a(S) 
i s  at  most 2"((n) · p. We proceed iteratively as follows. We start from 
S = B, and assume for simplicity that vectors are sorted according to 
their lengths l l s1 l l  � l l s2 l l  � · · · � l l sn l l ·  These vectors are clearly lin­
early independent , but they are potentially much longer than p(B ) . We 
show that if a{S) 2 2"(p(B) then we can efficiently find (with nonneg­
ligible probability) a new lattice vector s E .C (B ) linearly independent 
from s1 ,  . . .  , Sn- 1 such that l l s l l  � � l l sn l l · So, we can replace Sn with s, 
possibly sort the vectors again according to their lengths, and proceed 
with another iteration. Since lattices are discrete objects, the length 
of the vectors Si cannot be reduced indefinitely, and at some point the 
iterative step must fail. If the iterative step repeatedly fails to find a 
short vector s, then it must be the case (with very high probability) that 
the assumption a(S) 2 2"(p(B ) is false, i .e. , the set of vectors s1 , . . .  , Sn 
satisfies a(S) < 2"fp(B) .  Details follow. 

As outlined above, the main component of the reduction is a solution 
to the problem described in the following proposition. 

PROPOSITION 8 . 1 4  Let A be a full rank n-dimensional T-perfect lattice 
such that the closest vector problem in A can be solved in polynomial 
time, and let M, a, "(, a and m be as defined in (8. 27}, (8.29}, (8. 32}, 
(8. 33} and (8. 34} . Let :F :  am -7 {- 1 , 0, + 1 }m \ {O}m be a function such 
that :F( u) is an hu -collision for a non negligible fraction 8 of the inputs 
u E am . Let B E znxn  be a basis and S = [s 1 , . . . , sn] a sequence of 
linearly independent lattice vectors in C (B ) such that l l sn l l  = maxi l l si l l  
and a(S)  2 2"((n)p(B ) .  Given B , S and oracle access to :F one can 
efficiently find (with probability 0 (8)) a lattice vector s E .C (B ) linearly 
independent from s 1 ,  . . . , Sn-1 such that I I  s I I  � � I I  Sn I I . Moreover, the 
reduction makes only one call to :F. 

In the formulation of the problem above, we made the simplifying 
assumption that the collision finder :F is deterministic. We will see, in 
the proof of Theorem 8 . 15  below, that this assumption is not restrictive. 
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We emphasize that while the success probability of  collision finder F 
is computed with respect to the random choice of vector a E am, a 
solution to Proposition 8. 14 is required to work for any lattice B,  and 
its success probability is computed only with respect to the internal 
randomness of the reduction. (Notice that the sequence a passed as 
input to oracle F possibly depends on this internal randomness. That 
is why the probability of finding s depends on the average-case success 
probability o of the collision finder function. However, no randomization 
on input lattice B is performed. )  

The proof of Proposition 8 . 14 will be given in Section 2 .3 .  In the 
rest of this section we use Proposition 8 . 14  to prove that function ha is 
collision resistant . 

THEOREM 8 . 1 5  Let An be a sequence of T-perfect lattices (with T (n) 
possibly a function of the rank n} such that the closest vector problem in 
An can be solved in polynomial time. Let also G, ha and 'Y be as defined in 
{8. 29}, (8. 30} and (8. 32} . If there exists a probabilistic polynomial time 
algorithm F that finds collisions ha (z) = 0 with nonnegligible probability 
o when a is chosen uniformly at random, then G APCRP 1 can be solved 
in RP (random polynomial time) . Moreover, on input a YES instance 
(B, r ) , the GAPCRP 1 algorithm produces an equivalent basis S such that 
a(S) � 2"{r with probability exponentially close to 1 .  

Proof: Let o be the success probability of F First of all we need to 
transform this randomized collision finder F into a (deterministic) func­
tion that (almost certainly) finds collisions for a nonnegligible fraction of 
the inputs. Let r be the randomness used by F By Markov inequality, 
if F succeed with probability o when u and r are chosen at random, then 
there is at least a 8/2 fraction of the inputs for which F(u) succeeds with 
probability 0/2. (Probability computed for a fixed u only with respect 
to the choice of the randomness r . ) We build a F' as follows: on input 
u, run F(u) O(n log ( 1/0) ) times using independent random strings r 
each time. If any of these runs find an hu-collision, then output it . If 
not , return any element of { -1 ,  0, + 1  }m \ {O}m . All queries are stored, 
so that if a query u is asked twice, then the same P(u) is returned 
both times, and F' behaves like a function. It is easy to see that with 
probability exponentially close to 1, F' correctly answers at least a o /2 
fraction of the queries. The rest of the proof follows the outline given at 
the beginning of this subsection and it is left to the reader as an exercise. 
0 
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2 . 3  The iterative step 

In this section we show how to use a collision finder function :F to 
find short vectors in any lattice C(B) . 

Proof [of Proposition 8 . 14] :  Let A ,  M, a, T and :F be as defined in 
the proposition. Let g be the set of all g E am such that :F(g) is an 
kg-collision. We know that if u E am is chosen uniformly at random, 
then 

Pr{u E 9} = o 
for some nonnegligible function o(n) . 

Let B be a full-rank n-dimensional lattice basis , and S a set of linearly 
independent lattice vectors such that e1(S) 2 2')'p(B) .  We want to use 
:F to find a lattice vector s E C(B) such that s ¢ span(s1 ,  . . .  , sn-d and 
l l s l l  $ l l sn l l /2 with probability fl(o) . Define the scaling factor 

{3 = y'ne1(S) 
ap(A) 

(8 .35) 

and consider the almost orthogonal matrix {:JM. We use S to approx­
imate each vector f:Jmi with a lattice point Ci E C(B) . In particular, 
using the nearest plane algorithm of Chapter 2, we find, for i = 1 ,  . . .  , n ,  
a lattice point Ci E C(S) � C(B) within distance CT(S)/2 from f:Jmi . Let 
C = [c1 , . . .  , en] · Using matrix notation, 

C = {3M +  Q,  (8 .36) 

where Q is a matrix with columns of length at most 

(8 .37) 

Define the integer 

k = 3 log2 n + log(1/o) . (8 .38) 

Notice that since o is nonnegligible, o 2: 1/nc for some constant c inde­
pendent of n, and log ( 1/o) = O(log n) . In particular, k is also O( log n) . 
Sample mk group elements [xi ,j]C (i $ m and j $ k) in C(B)/ C(C) , 
and for every Xi,j ,  let xi,j = MC-1xi,j · (See Figure 8 .3 . )  Equivalently, 
one can choose [xi ,j]M uniformly at random in C(B')/ C(M) , where 
B' = MC-1B,  and set Xi,j = cM-1xi,j · (We do not specify at this 
point the choice of representatives Xi,j and xi,j . )  Then, use the decod­
ing algorithm CVP A to find a lattice point wi,j E A within distance p(A) 
from xi,j · Let also ai,j = 7/J(wi,j ) be the group element corresponding to 
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lattice point wLj and for every i = 1 ,  . . . , m,  define ai = L:J=l ai,j · Pass 
a = [a1 , . . .  , amf' as input to the collision finder to get a vector z = F(a) .  
For every i , j ,  let Wi,j = cM-1w�,j and define Yi,j = Xi,j - Wi,j · The 
output of the reduction is the vector 

m k 
s = L Zi L Yi,j · 

i= l  j= l 
(8 .39) 

Before analyzing the success probability of the reduction, we introduce 
some useful conventions about the lattice decoding algorithm CVP A and 
the choice of representatives of the sampling procedure. We assume the 
following: 

• For any vector t E �m and v E A, 

CVPA (x' + v) = CVP A (x') + v .  (8 .40) 

(If CVP A is randomized, then (8 .40) should be interpreted as equal­
ity between probability distributions. ) This property can be easily 
achieved modifying CVP A as follows: on input x' , compute x" = 
x' mod A and output w' = CVP A (x" )  - x" + x' .  The reader can 
easily verify that this modified decoding procedure also solves the 
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closest vector problem in A,  and it satisfies (8 .40) . Notice that this 
property implies that vector Yi ,j = CM- 1 (x� ,j - CVPA (x�,j ) )  does 
not depend on the representatives used for xi,j E .C(B' ) / .C(M) . In 
particular, the final output s {8 .39) does not depend on the choice of 
representatives. 

• If x' is chosen uniformly at random from .C(B') /  .C (M) , then 

Exp(x' - CVP A (x') ] = 0 .  
x' 

In particular, the distribution of the difference vectors Yi,j = Xi,j -
WiJ satisfies 

Exp(Yi,j ] = CM-1 Exp (xi ,j - CVP A (xi,j ) ]  = 0.  {8 .41 ) 

This property is easily achieved modifying CVP A as follows: on in­
put x' , choose b E {0, 1 }  uniformly at random and output vector 
{ - 1 )bCVP A ( (  - 1)bx' ) .  

• Let A' C A be a set of representatives for A/ .C{M) . For example, let 
A' = An'P (M) . We assume that , for all i = 1, . . .  , m and j = 1 ,  . . .  , k ,  
vector wiJ belongs t o  A' . This property can be  achieved by appropri­
ately choosing the set of representatives used for xi,j and modifying 
the sampling procedure accordingly. For example, we first choose an 
auxiliary vector x��j uniformly at random from .C{B') /  .C(M) .  {At 
this point , which representative is used does not matter. )  Then we 
compute w��j = CVP A (xi'J ) and find the unique element wiJ E A' 
congruent to wi�j modulo M. Finally we set xi,j = xi'J - wi:j + wiJ · 
The conventions just described are not strictly necessary, but they 

help simplifying the reduction. So, we assume that a and s are chosen 
according to the procedure described above. We want to prove that 
s E .C(B) ,  s fl. span {s t , . . .  , sn-d and l l s l l  � l l sn l l /2 with probability 
0(&) . We will prove the following: 

1 If a E g (i .e. , if F{a) is an h8-collision) then s E .C(B) 

2 The distribution of vector a =  [a1 , . . .  , amJT is  statistically close to 
uniform over am, and, in particular, Pr {a E Q} = & · { 1 - o{ 1 ) ) .  

3 The conditional probability that s fl. span(s1 , . . .  , Sn- d (or, equiva­
lently, s is not orthogonal to s� , written s .ts� ) , given that a E Q,  is 
at least 1/6 .  

4 The probability that a E Q,  but l l s l l  > l l sn l l /2 , is at most & · o{ 1 ) .  
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It follows that the success probability of the reduction is 

Pr{s E .C(B) 1\ s .ts� 1\ l l s l l  � l l sn l l /2} 
2: Pr{a E 9 1\ s .ts� 1\ 2 l l s l l � l l sn l l }  
> Pr{a E 9 1\ s .ts� } - Pr{a E 9 1\  2 l l s l l > l l sn l l } 
= Pr{a E 9} Pr{s .ts� I a E 9} - Pr{a E 9 1\ 2 l l s l l  > l l sn l l } 

1 > 8( 1 - o( 1 ) ) · 6 - 0 · o( 1 ) 
o · ( 1 - o( 1 ) )  = O (o) . 

6 

17 1  

We first prove that i f  a E 9, then s i s  a lattice point . Remember 
that a E g if and only if z = F(a) is an ha-collision, i .e . , L:i Ziai = 0. 
Consider the vector w' = L:�1 Zi L:J=1 w�,j · Since all w�J belong to 
A, also w' is a lattice point of A and we can apply the homomorphism 
1/J : A -t G to w'. The group element corresponding to lattice vector w' 
is 

m k m k m 

1/J(w' ) = L Zi L 'I/J(wi,j ) = Z: zi L ai,j = Z: ziai = 0. (8 .42) 
i= l  j=l i=l j= l  i=l 

Since G i s  the quotient of A modulo .C(M) ,  this proves that w' E .C(M) , 
i .e . , w' = Mv for some integer vector v. Now, substituting Yi,j = 

Xi,j - Wi,j in the definition of s we get 

s = "'"' z· (x ·  · - w ·  · ) L..J ' Z ,J , ,} i ,j 

i ,j i ,j 

i ,j i ,j 

i ,j 
= L ZiXi,j - I: Vj Cl 

i ,j l 

which is a lattice vector because Xi,j , c1 E .C(B) and Vt ,  Zi are integers. 
This proves that if a E g then s E .C(B) . 

We now show that the distribution of (a1 , . . .  , am) is very close to 
uniform. We first show that the probability distribution of each ai,j is 
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not too far from uniform. Then, we use Corollary 8 . 12 to prove that the 
statistical distance of ai = L:i ai ,j from uniform is very small. In order 
to prove that ai ,j is not too far from uniform, we need an upper bound 
on the covering radius of £(B' ) .  

LEMMA 8 . 1 6  Let a b e  as defined in  (8. 33) . Then, the covering radius 
of B' is at most 

p(B' ) � .A1 (A) / (8n) . 

Proof: Let t' be a deep hole in £(B') , i .e . , a point in IRn such that 
l i t' - B'v l l  ;:::: p(B') for every lattice point B'v. Let Bv be the lattice 
point in £(B) closest to t = cM-1 t' .  Then, 

p(B) > dist (t ,  £(B) ) 
= l l t - Bvl l  
= I I CM-1 (t' - B'v) l l 

> l i t' - B'v l l . min I ICM-ld l l 
dEJRn l l d l l  

> ( ' ) . I I Cd l l  
P 

B . ��� I IMd l l
. 

Moreover, for any vector d E Rn , we have 

I I Cd l l  = I I /3Md + Qdl l > t3 - I I Qd l l (8 .43) 
I IMd l l I IMd l l - I IMd l l " 

We compute an upper bound on I I Qd i i / I IMd l l  that will also be useful 
later on. 

I I Qd l l  
I IMdl l  

< I I Qd l l 
l lap(A)d l l  - I IRd l l  

< L:i ldi l · l l qi l l 
ap(A) l ld l l - L:i l di l · l l ri l l  

< L:i l di l  · a(S) /2 
ap(A) I Id l l - L:i l di l · p(A)

. 

But the sum L:i ldi I is at most 
n 

L l di l = l l d l l 1 � vnlld l l 2 · 
i=l 

Substituting this value in the previous expression we get 

I I Qd l l  < y'na(S) = ([!_) ( a ) < �/3 
I IMd l l  - 2p(A) (a - y'n) 2 a - y'n - 4 ' (8 .44) 
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where in the last inequality we used a � 3y'n. This proves that the 
covering radius of .C(B) satisfies 

p(B) > p(B') · min I I Cd l l  > p(B') ({3 - max I IQd l l ) > p(B')f3 . - d I IMd l l - d I IMd l l - 4 
Finally, solving for p(B') and using (8.35) , u {S ) � 21p(B) ,  {8 .33) and 
r = 2p(A)/>.l (A) , we get 

(B' ) < 4p(B) = 4p(B)ap{A) < 2ap(A) = >.1 (A)
. 0 

P - {3 y'nu(S) - IVn 8n 

We use the bound on the covering radius to estimate the probability 
that ai ,j equals any fixed group element a E G. Remember that ai ,j is 
chosen selecting a lattice point xi ,j E .C(B' ) / .C{M) uniformly at random, 
and setting ai ,j = .,P{CVP A (xi) ) .  Let w' be the {unique) lattice point 
in A' C A such that .,P(w' ) = a, and let Q = V(w' , A) and Q = V(w' , A) 
be the ·open and closed Voronoi cells of w' , respectively. In particular, 
the volumes of Q and Q equal 

vol (Q) = vol( Q) = det (A) . 

The probability that group element a is chosen is roughly proportional 
to the number of lattice points of .C(B' ) contained in Q. (The probability 
is not exactly proportional to this number because lattice points on the 
boundary of Q are not necessarily mapped to w' . )  Since the number 
of equivalence classes of x� .j E .C(B') modulo .C(M) is det (M)/ det (B' ) ,  
the probability that ai,j = a satisfies 

I.C(B' ) n Ql · det (B' ) < Pr{ a · . = a} < I .C(B' ) n Ql · det (B' )
. 

det (M) - t ,J - det (M) 

Notice that both Q and Q contain an open sphere of radius r = >.l {A)/2. 
Therefore, by Proposition 8 .7 and using the bound p(B' ) � >.1 (A)/ (8n) 
from Lemma 8 . 16 ,  the number of lattice points in Q satisfies 

I.C(B' ) n Ql 
� det (A) (1 _ 2p(B' )n) 

det (B' ) ) q  (A) 

> det (A) (1 _ !) 
det (B' ) 4 

and the probability that aiJ = a is 
3 det (A) det (B') 3 

Pr{ ai,j = a} � 
4 det (B') det (M) = 4 IG I ' 
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Similarly, the number of lattice points in Q satisfies 

and 

I£(B') n Ql < det (A) (1 + 2p(B' )n) 
det (B') >. 1  (A) 

< det (A) (1 
!) 

det (B') 
+ 

2 

3 det (A) det (B' ) 3 Pr{ ai,i = a} � 2 det (B' ) det (M) = 2 IGI . 

This proves that, for all a E G, 

So, the probability distribution of each ai,j is not too far from uniform. 
Adding up a relatively small number of ai,j we get a group element 
ai = :Ei ai,j which is almost uniformly distributed. In particular, by 
Corollary 8. 12, the statistical distance between ai and a uniformly dis­
tributed ui E G is at most 

(8 .45) 

Since random variables ai are independent , by Proposition 8.9 the sta­
tistical distance between vector a = [a1 , . . .  , amJT and a uniformly dis­
tributed u E Gm is at most 

m 
�(a, u) < L �(ai , ui )  � 2

:
1 

i=l 

and, using (8 .38) and (8 .34) , we get 

�(a, u) � m: � 6
6n l�g2 n � 6 . o( 1 ) .  n n 

(8 .46) 

(8 .47) 

We use the bound on the statistical distance between a and a uni­
formly distributed u to compute the probability that a E g. Let cp the 
characteristic function of set g:  { 1 if g E g cp(g) = 0 otherwise · 

We want to bound the value of Pr{ a E Q} = Exp(cp(a)J . Notice that 
function cp takes values in [0, 1] . Therefore, by Proposition 8. 10, 

I Exp[cp(a)] - Exp[cp(u) J I  � � (a, u) � 6 · o( 1 ) . (8 .48) 
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This proves that the probability of querying function :F on a point of 9 
is at least 

Pr{ a E 9 } = Exp[<p(a)] 
> Exp[<p(u)] - I Exp[<p(a)] - Exp[<p(u)J I 
> 8 - 8 · o( 1 )  = 8 · ( 1 - o( 1 ) ) .  

The same technique used t o  show that a is almost uniformly dis­
tributed, can be employed to prove that the conditional probability of 
(s, s� ) =f= 0 (given a E 9) is at least 1/6.  In fact ,  we can prove something 
stronger: for any fixed g E em, the conditional probability, given a = g, 
is at least 1/6 .  Define auxiliary vectors 

s' = MC-1s 
A _ M-rcr . S - Sn · 

Notice that (s' , s) = (s , s� ) .  Therefore, s is orthogonal to s� if and only 
if s' is orthogonal to s . We want to bound the (conditional) probability 
that (s' , s) = 0. We show that for any fixed g E em 

Pr{ (s' , s) =I= 0 I a = g} � � ·  
Fix the value of wLi E A' for all i = 1 ,  . . .  , m and j = 1 ,  . . . , k . Notice 

that this uniquely determines also ai,j = ?JI(w�) , ai = L:j ai,j and z = 
:F(a1 ,  . . .  , an ) · For any i , j ,  let Qi,j = V(wLi • A) be the (open) Voronoi 
cell of wLj , and let Qi,j be its closure. It is easy to see that (given a = g) 
vectors Y�,j are totally independent , although not in general ident ically 
distributed. Moreover, each w�,j is distributed almost uniformly in Qi,j n 
.C(B') .  (As before, the distribution is not perfectly uniform because 
points on the boundary of Qi,j are not necessarily mapped to w�.i ' so 
the points on the boundary might have conditional probability smaller 
than those in the interior Q. ) 

Since z =f= 0, there exists a coordinate i such that Zi = ±1 .  Assume 
without loss of generality that z1 = ±1 .  Let Y be the list of all vectors 
Y� ,j except YL1 . Variable Y takes values in V(O, A)mk-l . Fix the value 
of all vectors in Y and define the constant 

a = Zl (w� ,j ' s) + 2: Zi (y, s) . 
yEY 

The scalar product of s' and s is 

(s' , s) = L Zi (Y� .j •  s) = Zl (x� , l ' s) + a. 
i ,j 



1 76 COMPLEXITY OF LATTICE PROBLEMS 

So, (s1 ,  s} = 0 if and only if x� . 1 belongs to the hyperplane 
1ia = {x : z1 (x, s} + a = 0} . 

We want to compute the probability that x� 1 ¢ 1ia . Let 
' 

1ip = {x : z1 (x, s} + (3 = 0} 

be the hyperplane parallel to 1ia that passes though w� . 1 . (See Fig­
ure 8.4. ) Hyperplane 1ip defines two open half spaces 

1it = {x I z1xTs + (3 > 0}  

1if3 = {x I z1xTs + (3 < 0} 

and at least one of them does not intersect 1ia. Let Q1 be the intersection 
of the interior of Q1 , 1 with this open half space, e.g. , 

Ql = { Ql ,l n 11.{3 if a � (3 
Ql , l  n 1it if a > (3. 

The probability that x� 1 ¢ 1ia is at least as large as the probability that 
xL1 E Q1• This last p�obability is not smaller than the ratio between 
the number of lattice points in Q1 and those in Ql , l : 

1 1 I.C(B1) n Q1 1 Pr{xl , l  ¢ Q I a, Y} � I.C (BI ) n QI , I I
. (8 .49) 

(The reason equality does not necessarily hold is that points on the 
boundary of Q1 may have probability smaller than points in the interior. ) 
Notice that Q1 is convex because it is the intersection of two convex sets. 
So, we can use Proposition 8 . 7 to bound the number of lattice points in 
Ql , l  and Q1 • 

Since Q1 , 1 is symmetric with respect to wL1 , the volume of Q1 is 
exactly half that of Q1 , I · Moreover, Q1 , 1 contains a sphere of radius 
>.. I (A) /2 centered at w� 1 , and Q1 contains an (open) sphere of radius 
>.. I (A) /4 centered at w� ; ± >.. I (A) / (4 l l s l l ) s .  (See Figure 8.4. ) Therefore, 
by Proposition 8.7, the 'number of lattice points in Q1 is at least 

I.C(BI ) n Ql l > vol (  Q1 , I )  (1 - p(BI)n ) . (8 .50) - 2 det (B) >.. 1 (A)/4 

Also, by Proposition 8 .7, the number of lattice points in Q1 ,1 is at most 

I .C(BI ) n Q I < vol (Q I ,I ) (1 + 2p(BI )n) (8 .51 )  1 ' 1 - det (B1) >.. l (A) /2 . 
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Figure 8.4 .  Lattice points that avoid a hyperplane 

Substituting (8 .50) and (8 .51 )  in (8.49) we get 
1 )q (A) - 4p(B')n Pr{ x� , l ¢ 1-la I a, Y} � 
2 Al (A) + 4p(B')n 

� � (1 - �+ �
) 

and using the bound on the covering radius from Lemma 8. 16 

Pr{x; , , '/. 1£. I a, Y} ::>: � ( 1 -
1 � � ) � � -
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Averaging over all possible values for a E g and Y E V(O ,  A)mk- l ,  we 
get 

1 Pr{s js� I a E Q} � 6 '  
It only remains t o  b e  proved that vector s is short (with high proba­

bility) . In the next lemma we bound the length of each Yi,j · 
LEMMA 8 . 1 7  For any i = 1 ,  . . .  , m and j = 1 ,  . . .  , k, the length of Yi,j 
is at most 

I I  I I < 
l l sn l l  

Yi,j - w(ylnlog n) 
Proof: The proof is similar to that of Lemma 8 . 16 .  From the definition 
of Yi,j and w� ,j = CVPA (x�) we get 

I IYi ,j I I = l l xi ,j - Wi,j I I 



1 78 COMPLEXITY OF LATTICE PROBLEMS 

= I I CM-1 (x�,j - w�,j ) l l  
I I I ICM-1d l l  < l l xi ,j - wi,j l l · m;x 

l l d l l  
I I Cd l l < p(A) . m;x 
I IMd l l . 

Then, we notice that for every vector d E Rn , 

I I Cd l l = I I/3Md + Qdl l < f3 I I Qd l l  
I IMd l l  I IMd l l  - + I IMd l l " 

Finally, we use (8 .44) to get 

( I I Qd l l ) I IYi,j l l  :::; p(A) f3 + m;x 
I IMd l l  < 2f3p(A) .  

Substituting (8 .35) for /3 ,  (8.33) for a , (8 .38) for k and using a(S) :::; 
v'nl lsn l l ,  we get the bound in the lemma. 0 

At this point , by triangle inequality we immediately get 

This bound is not good enough because we want l l s l l  to be smaller than 
l l sn l l · In the rest of the proof we give a better probabilistic bound on 
the length of s . The intuition is that in a random walk the typical 
distance from the origin grows with the square root of the number of 
steps, instead of being linear. In our case, the steps are given by vectors 
ZiYi ,j ,  and the final point is vector s. So, even if l l s l l  can be mk times 
as long as a single step ZiYi ,j , on the average it is much shorter than 
that . The problem is that since coefficients z = F(a) depend on a, and 
vectors ai,j and Yi,j are correlated, the steps ZiYi,j are not independent 
and general bounds on the average length of random walks cannot be 
directly applied. Still we can prove that s is usually not much longer 
than Vmk times maxi ,j I IYi,j l l ,  even under the assumption that a E Q.  
Namely, we show that the probability that a E g and l l s l l  > l l sn l l /2 i s at 
most d · o( 1 ) . Notice that since l l sn l l > 0, events a E g (or, equivalently, 
cp(a) = 1 )  and l l s l l  > l l sn l l /2 are simultaneously satisfied if and only if 
4cp( a) l l s l l 2 > l l sn 1 1 2 . By Markov inequality 

Pr{a E g 1\ l l s l l > l l sn l l /2} = Pr{cp(a) l l s l l 2 > l l sn l l 2 /4} 
< 4 Exp [cp(a) l l s l l 2 ] 

l l sn l l 2 
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We want to prove that Exp[cp(a) I J s i J 2] is at most 8o( l ) I J sn i J 2 , and there­
fore Pr{a E Q 1\ l l s l l > I J sn i J /2} � 8 · o( l ) .  For i , j E { l , . . .  , m} and 
g E Gm, define the functions 

and let 
m k 

where w = F(g) 

r(g) = :L :L (Yi,l l Yj,h)cpi ,j (g) .  
i ,j= l  h,l=l 

(8 .52) 

Functions cpi,j satisfy cpi,j (a) = ZiZjcp(a) , where z = F(a) is the output 
of the collision finder algorithm on input a. Therefore 

m k 
r(a) = L L (Yi,l , Yj,h)cpi ,j (a) 

i ,j= l  h,l= l  

= _f I t Yi,l , t Yi,h) ZiZjcp(a) 
t ,J= l  \ l= l  h=l 

= I L ZiYi,l , L ZjYj,h) cp(a) 
\ i ,l j,h 

= I J s i J 2cp(a) . 

We want to bound the expectation 

Exp[f(a)] � Exp[f(u)] + I Exp [r(a) - r(u)J I . 

We prove that , if u is chosen uniformly at random, then both Exp [f (u) ] 
and I Exp [f (a) - r(u)J I  are at most 8 1 J sn l l 2 · o( l ) . 

We start with Exp[f(u)] . The key observation is that vector u is 
statistically independent from Yi,j , Yh,l · Therefore, 

Exp [r (u) ] = L L Exp [ (Yi,l , Yj,h)CfJi,j (u)J 
i ,j h,l 

= L L Exp[(Yi,l , Yj,h) ] · Exp[cpi ,j (u)] . 
i ,j h,l 

Moreover, unless ( i ,  l )  = (j, h) ,  random variables Yi,l and Yj,h are inde­
pendent and 

Exp[ (Yi ,L , Yj,h )] = (Exp[Yi,l] , Exp[yj,h] ) = 0. (8 .53) 
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So, by Lemma 8 . 1 7, the expectation of r(u) is 
m k 

Exp[r (u) ] = L L Exp[ I !Yi,d l 2] · Exp[cpi,i (u)J (8 .54) 
i=l l= l 

< l l sn l l 2mk8 � t5 l l sn l l 2 . o( 1 ) . (8 .55) w (n log2 n) 
Now consider the expectation of the difference Exp[r(a) - r(u)] . The 

statistical distance between (YI ,l ,  . . .  , Ym,k • a) and (YI , l , . . .  , Ym,k 1 u) is 
not necessarily small. So, in order to bound the expectation of r(a) -
r(u) , we first break this expression into smaller components as follows. 
Let /i,j : ]Rn X !Rn X am --+ IR be the functions 

Then, we have 

IExp[r(a) - r(u)] l = :2:: Exp [fi.i (Yi,l , Yi,h • a) - li.i (Yi ,l , Yi,h • u)] 
i ,j,h,l 

< L jExp(fi ,j (Yi,l •  Yi,h • a) - fi.j (Yi ,l , Yi,h •  u)J I 
i ,j,h,l 

where, in the summations , i ,  j range over { 1 ,  . . .  , m} , and l, h range over 
{ 1 ,  . . .  , k } . We bound each term 

separately. We first bound the absolute value of fi,j (Yi ,l •  Yi,h •  g) , and 
then the statistical distance between the two distributions (Yi,l •  Yi,h •  a) 
and (Yi,l . Yi,h • u) .  By Lemma 8. 1 7, for every g E am, the absolute value 
of fi.j (Yi,l • Yj,h 1 g) is at most 

Now consider the statistical distance 

A((Yi ,I . Yj,h , a) , (Yi,l . Yj,h • u) ) . (8 .58) 

By Proposition 8. 10, (8.58) is at most 

A( (Yi ,l • Yi,h • ai ,l •  ai,h • a) , (Yi,l • Yj,h , ai ,l •  aj,h , u) ) . {8 .59) 
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We distinguish three cases : 

• If ( i ,  l )  = (j, h) , then by Proposition 8 . 10, (8 .59) is at most 

(8 .60) 

Notice that u' = u- ai ,lei is uniformly distributed over am inde­
pendently from Yi,l , ai,l · Also a' = a - ai,lei = E(i' ,l' )=F(i , l) ai' ,l' ei' is 
independent from Yi,l , ai,l · Therefore, by Proposition 8.8 ,  (8 .60) is 
equal to .D.(a' , u' ) . The components of a' and u' are totally indepen­
dent . Therefore, 

m 
D.( a' , u' ) = L � (a� , uD 

t=l 
where each Ut is distributed uniformly at random over G, while a� = 
Et'=Fl ai,l' (resp. a� = E1, ai,l' for t =I= i) is the sum of k - 1 (resp. 
k) independent random variables, each satisfying the hypothesis of 
Corollary 8 . 12 . So, the statistical distance (8 .60) is at most 

m - 1 1 m + 1 
2k+l + 2k = 2k+l  . 

• If i = j and l =I= h, then (8 .59) is at most 

(8 . 6 1 ) 

where u' = u- (ai,l + ai,h )ei and a' = a - (ai,l + ai,h )ei are both in­
dependent from Yi,l , Yi,h , ai,l , ai,h · So, (8 . 6 1 )  equals �(a' , u' ) . Again, 
the components of a' and u' are totally independent , with u� dis­
tributed uniformly at random over G and a� equal to the sum of in­
dependent random variables, each satisfying the hypothesis of Corol­
lary 8 . 1 2 . This time a� is the sum of k - 2 such variables . So, the 
statistical distance (8 .61 ) is at most 

m - 1 1 m + 3  
2k+l + 2k- 1 = 2k+l . 

• The last case i =I= j is also analogous. This time (8 .59) is at most 
� (a' u' ) where a' = a - a · 1e · - a · ke ·  and u' = u - a · 1e · - a · ke · . , '· ' J , J '· ' J, J 
As usual , u� are distributed independently and uniformly at random 
over G, while a� is equal to the sum of k - 1 (if t E { i, j} )  or k (if t ¢ 
{ i ,  j } )  independent random variables each satisfying the hypothesis 
of Corollary 8 . 1 2 . Therefore, the statistical distance is at most 

m - 2 2 m + 2 
2k+ l  + 2k = 2k+ l . 
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In all three cases, the statistical distance is at most 

(8 .62) 

So, by {8 .57) ,  (8 .62) and Proposition 8 .10 ,  the expectation (8 .56) is at 
most 

t5 l l sn l l 2 
n3 1og n '  

Adding up for all i ,  j = 1 ,  . . .  , m and h ,  l = 1 ,  . . . , k we get 

This concludes the proof that Exp[r(u)] � t5 l l sn l l 2 · o{ 1 ) .  D 

2 . 4  Almost perfect lattices 

In the previous subsections we showed that any r-perfect easily de­
codable lattice can be used to construct a collision resistant family of 
hash functions which is at least as hard to break (on the average) as 
approximating the covering radius of any lattice within a factor 1(n) = 
w (rn2 1og n) . So, in order to make these hash functions as hard to break 
as possible one needs lattices with packing-covering ratio r as close as 
possible to 1 .  We observed that r = Vii can be easily achieved setting 
A to the lattice of all integer points zn. In this subsection we show that 
it is possible to do much better than that . 

THEOREM 8 . 1 8  For every n, there exist a lattice with packing-covering 
ratio r < 4 .  

Proof: We give an iterative procedure that starting from the lattice 
zn of all integer points, builds denser and denser lattices such that the 
length of the shortest vector in the lattice does not decrease. At every 
iteration, either T < 4 and we stop, or we find a new point (not already 
in the lattice) that can be added to the current lattice without increasing 
the length of the shortest nonzero lattice vector. So, all lattices in the 
sequence have first minimum >.1 = 1 . Notice that each time a lattice 
gets bigger, its determinant decreases (at least) by a factor 2. The 
determinant of the first lattice in the sequence is Do = det (zn) = 1 .  So, 
after k iteration the determinant is (at most) Dk = 2-k . By Minkowski's 
theorem, the determinant Dk of any of these lattices satisfies 1 = >.1 � 
vnD!In , i .e . , Dk 2 1/n(n/2) .  Using Dk � 2-k , we get that the number 
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of iteration is at most k S { 1 /2)n log n, i .e . , after at most O {n log n) 
iteration the packing-covering ratio of the lattice must satisfy r < 4. 

Now we describe the iterative step. Let B be a lattice with packing­
covering ratio at least 4, i .e . , p(B) � 2>-t (B) .  We claim that there exists 
a lattice point v E .C{B) such that the distance of b = { 1 /2)v from the 
lattice is at least >.1 (A) .  Since 2b belongs to the lattice, the length of 
the shortest vector in the lattice generated by [B ib] is 

>.t ( [B jb] )  = min{>.t (B) , dist (b, .C{B)) }  = .At (B) .  

So, let us prove the existence of such a v .  Let v E .C(B) b e  a lattice 
point such that b = ( 1 /2)v is as far from .C(B) as possible: 

dist (b, .C{B) )  = max dist ( v /2 , .C(B ) )  vE.C(B) 
and let d be the distance of b from .C(B) . It follows that all points in 
( 1 /2).C(B) are within distance d from .C(B) , i .e . , 

1 
2.C(B) c U B(v, d) = .C(B) + B(O , d) . 

vEC(B) 
By induction, it follows that ( �) k+ l 

.C(B) c � ( .C(B) + B(O, 2 ( 1  - 2-k )d)) 
C �.C(B) + B(O, { 1 - Tk )d) 

C .C(B) + B(O, 2 ( 1 - 2- (k+l ) )d) 

U B(v, 2 ( 1  - 2-(k+l ) )d) . 
vE.c(B) 

This proves that for every k,  2-k .C(B) is contained in UvE.C(B) B(v, 2d) . 
Since Uk2-k .C(B) is dense in span(B) , this shows that span(B) is con­
tained in Uva(B) B(v, 2d) , i .e . , the covering radius of .C(B) is at most 
p(B) S 2d, and dist (b, .C(B ) )  = d � p(B)/2 � >.t (B) . D 

The proof of the theorem also gives an algorithmic procedure to find 
such almost perfect lattices An with constant r. However, the simplest 
way to build these lattices and solve the corresponding closest vector 
problem requires time exponential in the dimension n. Still, these lat­
tices can be used to improve the approximation factor in the construction 
of cryptographic hash functions as follows: divide all the coordinates into 
n/ log n equal blocks, and set An to the direct sum of (n/ log n) 4-perfect 
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{ log n )-dimensional lattices. These lattices can be constructed in time 
exponential in log n, and therefore polynomial in n. Moreover, the clos­
est vector problem in An can also be solved in polynomial time, decoding 
each block of coordinates independently. This shows that lattices with 
packing-covering radius asymptotically less than yn can be efficiently 
constructed and decoded in polynomial time, improving the connection 
factor in the construction of lattice based hash functions by a factor 
v'log n. Finding efficient decoding algorithms for almost perfect lattices 
would allow to reduce this factor even further, resulting in hash func­
tions that are as hard to break as approximating the covering radius of 
any lattice within a factor 'Y = w(n2 log n) . {See Section 4 for further 
discussion. )  

3 .  Encryption Functions 

In this section we present a brief overview of various public key encryp­
tion schemes based on lattices. Public key encryption is one of the most 
important cryptographic primitives . The difference between symmetric 
encryption, as described in the introduction of this chapter , and public 
key encryption is that in the latter the key used to encrypt and the one 
used to decrypt are different . Moreover, the encryption key can be pub­
lished without compromising the security of the scheme. This allows to 
securely communicate over public networks without agreeing beforehand 
on a common shared key for every pair of communicating parties: each 
user can generate a pair of matching encryption and decryption keys. 
The decryption key is kept secret and used by the recipient to decode 
messages . The encryption key is published on a directory, so that any­
body can access it . When one wants to send a message to some other 
party, one retrieves the recipient public key from the directory, and use 
it to encrypt the message. The recipient uses the matching secret key to 
decrypt the ciphertext . Clearly, recovering the secret key from the corre­
sponding public key must be computationally hard, as well as recovering 
(any partial information about) the cleartext given the ciphertext and 
the public key without knowing the matching secret key. 

Several public key encryption schemes whose security is based on lat­
tices were proposed in the last few years . Some of them are mostly 
theoretical, with rigorous proofs of security based on worst case com­
putational assumptions similar to the one used in the construction of 
collision resistant hash functions. Others are concrete proposals, with­
out a proof of security, that have been suggested as practical alternatives 
to commonly used cryptosystems. The main lattice based public key en­
cryption schemes were all suggested independently and essentially at the 
same time. So, there is not a clear chronological order to follow in the 
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presentation. Here, we have chosen to present the various schemes in an 
order that helps getting a better understanding of the similarities and 
differences among them. A concrete analysis of the practical security 
offered by these schemes is beyond the scope of this book. Some of the 
schemes presented here have been subject to more or less serious crypt­
analytic attacks, but no asymptotic attack that runs in polynomial t ime 
is known for any of them. So, in the following subsections we concentrate 
on the ideas underlying the design of the schemes, instead of attempt­
ing a careful analysis of the practical value of any of them, occasionally 
giving some pointers to relevant cryptanalytic literature. 

The standard notion of security for encryption schemes is that not 
only it is hard to recover the plaintext from the ciphertext, but also 
gaining partial information about the plaintext is computationally infea­
sible. Such encryption schemes can be constructed using standard tech­
niques starting from schemes meeting a weaker notion of security (Yao, 
1982; Goldwasser and Micali , 1984; Goldreich and Levin ,  1 989; Bellare 
and Rogaway, 1993) . These weaker schemes are called trapdoor func­
tions: functions that are easy to compute, but hard to invert unless 
some trapdoor information is known. For simplicity, in the following 
subsections, we concentrate on the trapdoor functions underlying the 
schemes, whenever possible. 

3. 1 The GGH scheme 

The GGH cryptosystem (Goldreich et al. ,  1997b) was proposed by 
Goldreich, Goldwasser and Halevi , and it is probably the most intuitive 
method of using lattices to devise a public key encryption scheme. The 
idea underlying the construction is t.hat ,  given any basis for a lattice, it is 
easy to generate a vector which is close to a lattice point (i .e . , by taking 
a lattice point and adding a small perturbation vector to it) . However, 
it seems hard to return from this "close-to-lattice" vector to the original 
lattice point (given an arbitrary lattice basis . )  Thus, the operation of 
adding a small perturbation vector to a lattice point can be thought of 
as a one-way computation. 

To introduce a trapdoor mechanism into this one-way computation 
and allow efficient decryption when the trapdoor is known, (Goldreich 
et al . ,  1997b) uses the fact that different bases of the same lattice seem 
to yield a difference in the ability to find close lattice points to arbitrary 
vectors in Ql .  Therefore, the trapdoor information may be a basis of a 
lattice which allows very good approximation of the closest vector prob­
lem (CVP) .  Then the public basis is derived from it using a randomized 
unimodular transformation. Details follow. 
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Private key. Two methods for generating the private key are sug­
gested in (Goldreich et al. ,  1997b) . The first method is to set R to an 
n x n matrix with entries chosen independently and uniformly at random 
from an interval { -l ,  . . .  , +l} .  The second method is to set R = kl + R' 
to an orthogonal matrix kl (where k is a parameter, e.g. , k = y'iil) , and 
then add a perturbation matrix R' with entries chosen independently 
and uniformly at random in { -l , . . .  , +l} .  The second method has the 
advantage of giving private bases R that can recover from longer pertur­
bation vectors, but it might also help an adversary to recover the private 
basis from the public basis . 

Public key. Once the private basis R is chosen, the public basis should 
be selected according to some probability distribution over all possible 
bases for .C(B) .  Two methods for generating the public basis B from R 
are considered. In the first method R is transformed into B applying a 
sequence of elementary column operations, i .e . , at every step one add to 
a column a random integer combination of the other columns. The coef­
ficients in the integer combination are chosen at random in {- 1 , 0 , + 1 } .  
In the second method, B is obtained multiplying R by a small number of 
random unimodular matrices . The unimodular matrices are generated 
multiplying together a lower triangular matrix L and an upper triangu­
lar matrix U, with ±1 on the diagonal, and the other elements chosen at 
random in { - 1 , 0, + 1 } .  We do not go into more details here as we will 
see in Subsection 3 .2  that there are provably better ways of generating 
B. 

Encryption. As outlined before, the trapdoor function takes as input 
an integer vector x, and a small perturbation vector r, and outputs 
t = Bx + r. Vector r should be short enough to allow the recovery 
of Bx from t using the private basis R. The maximum length allowed 
for the perturbation vector 6 is included in the public basis. (See next 
paragraph for details about the value of 6. )  Vector x is chosen in a 
sufficiently large region of space so that Bx looks like a "random" lattice 
point . As for the public basis, we will see in Subsection 3.2 that there 
are provably better ways of choosing x, so we do not elaborate about 
this choice any further. 

Decryption. Also for the decryption process , two different methods 
are considered. Both methods are based on the CVP approximation 
algorithms of (Babai, 1986) . One method is to use the nearest plane 
algorithm (see Chapter 2) with basis R. Using this algorithm one 
can efficiently find the (unique) lattice point Bx within distance 6 = 
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( 1 /2) mini l l ri' I I from t ,  and recover the input (x, t - Bx) . The other 
method is simply to compute R- 1 t ,  round each coordinate of this vec­
tor to the closest integer, and multiply the result by R. Bounds on the 
maximum and average length of the errors that can be corrected using 
this method are given in (Goldreich et al . ,  1 997b) . 

Analysis . Notice that in order to avoid attacks based on exhaustive 
search, the sequence of operations applied to R to obtain the public ba­
sis, and the region of space from which the lattice vector Bx is chosen 
must be sufficiently large. Since the lattice repeats identically if trans­
lated by det (R) along any of the main axes, we can always assume that 
the entries of B and x are reduced modulo det (R) without decreasing 
the security of the scheme. We can use this observation to estimate 
the proper size of the public key B and the ciphertext c = Bx + r as 
O(n2 · lg(det (R) ) )  and O(n · lg(det (R) ) ) .  Applying Hadamard's bound to 
the private basis , and assuming l = poly(n) , one can estimate the deter­
minant det (R) � 2°(n lgn) .  This results in public keys and ciphertexts 
of size O(n3 lg n) and O(n2 lg n) . Although polynomial in the security 
parameters, these sizes grow pretty fast ,  and in (Nguyen, 1999) it is 
shown that in order to provide a reasonable level of security the size of 
the keys in the GGH cryptosystem has to be so large that the system 
would be impractical . However, it is important to realize that the at­
tacks described in (Nguyen, 1 999) are not asymptotic: they only prove 
that the system can be efficiently broken for specific values of the secu­
rity parameter and increasing the security parameter avoids the attacks . 
The problem pointed out by (Nguyen, 1999) is mainly an efficiency issue: 
in order to provide a concrete alternative to commonly used cryptosys­
tems, it is necessary to make the GGH cryptosystem more efficient , so 
that larger values of the security parameters can be used. 

3 . 2  The HNF technique 

This scheme, proposed in (Micciancio, 2001c) ,  is more a general tech­
nique than a full fledged encryption scheme, and it can be used to im­
prove the efficiency and better understand the security of most lattice 
based encryption functions , including the GGH cryptosystem, one of the 
cryptosystems proposed by Ajtai and Dwork, and NTRU. The private 
key R and the corresponding decryption algorithm are not specified, and 
the technique can be applied to all schemes where the public key is a 
lattice basis B ,  the ciphertext is a vector t close to the lattice, and the 
decryption process involves finding a lattice vector in .C(B) close to t 
(or, in some cases, determining if t is close to the lattice or not) . The 
questions addressed in (Micciancio, 2001c) are the following: 
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• What is the best way to select the public basis B? 

• Given a lattice basis B and a short perturbation vector r, what is 
the best way to generate a hard CVP instance {B , t)  whose solution 
is t - r? 

In both cases, we are interested in schemes that are best from a secu­
rity point of view: solving CVP instance (B , t )  should be as hard as 
possible, unless some trapdoor information R is known. Interestingly, 
(Micciancio, 2001c) shows that there is an optimal way to choose B and 
t that also leads to considerable efficiency improvements with respect to 
GGH and similar schemes. 

The technique is the following. Assume that a private basis R has 
been chosen that allows to solve the CVP problem whenever the target t 
is within distance 6 from .C(R) . Let r be a perturbation vector of length 
at most 6. We want to define a basis B for .C(R) and a target vector 
t = Bx + r  such that CVP instance (B, t) is as hard as possible, in some 
technical sense. Micciancio proposes to use the Hermite normal form 
(HNF) of R as the public basis. This public basis is the worst possible 
one from a computational point of view, because it can be efficiently 
computed from any other basis. Technically, any attack that works given 
a public basis in HNF can be transformed into an equally efficient attacks 
that receives as input an arbitrary basis (e.g. , a random basis) for the 
lattice: given a "random basis" B ,  one first computes the HNF of B,  and 
then applies the HNF based attack. Similarly, the encryption function 
takes as input an error vector r, and outputs vector r reduced modulo 
the public basis, i .e. , t = r mod B. Again, this is at least as secure as 
adding r to a "random" lattice vector Bx, because given Bx + r one can 
efficiently compute t = (Bx + r) mod B = r mod B.  

One interesting way to  look at HNF cryptosystems i s  to  consider the 
encryption function as a function from a set of short vectors to the 
group G = zn I .C(R) studied in Subsection 1 . 1 .  If perturbation vectors 
are short enough, then any two perturbations correspond to different 
group elements, and the function can be inverted using the private basis 
R. The public key and the encryption procedure correspond to choosing 
some standard way to represent group G, and its elements. As described 
in Subsection 1 . 1 ,  using the HNF technique has the advantage that both 
the group and the group elements have space efficient representations: 
the HNF public basis has size O(n2 log n) instead of O (n3 log n) as in 
the original GGH cryptosystem. Similarly, the size of the ciphertext 
is O (n log n) instead of O(n2 log n) . For typical values of the security 
parameters (e.g. , n = 400) this is a huge improvement with respect to 
using random public bases and random lattice vectors in the encryption 
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function. The resulting cryptosystem can outperform commonly used 
encryption functions based on number theory, as far as the encryption 
time is concerned. Still, in order to be really competitive in terms of pub­
lic key size, further efficiency improvements are needed. In (Micciancio, 
2001c) , it is pointed out that the Hermite normal form representation is 
essentially optimal: the bit-size of a matrix in HNF is roughly equal to 
the logarithm of the number of lattices with the same determinant . So, 
in order to reduce the size of the public key below O(n2 log n) , one has to 
restrict the choice of .C(R) to special classes of lattices. One such class 
that results in public keys of size O(n log n) is the one used by NTRU. 

3.3 The Ajtai-Dwork cryptosystem 

In (Ajtai and Dwork, 1997) two related cryptosystems based on lat­
t ices are proposed. The first one fits our general framework, and can be 
improved using the HNF technique described in Subsection 3 .2 .  The sec­
ond cryptosystem is interesting because it exhibits a worst-case/average­
case connection similar to the one studied for hash function in Section 2. 
This is essentially the only known cryptosystem which is as hard to break 
as the worst case instance of the underlying mathematical problem. Un­
fortunately, the system (as described in (Ajtai and Dwork, 1997) ) does 
not seem efficient enough to represent a practical alternative to com­
monly used encryption schemes. (Both the key size and running t ime 
grow as O(n4 ) ,  where n is the rank of the lattice . )  The fact that the 
Aj tai-Dwork cryptosystem is not efficient enough to be practical and 
secure at the same time was experimentally confirmed by (Nguyen and 
Stern, 1998) . Still this cryptosystem remains one of the major break­
throughs in theoretical cryptography and is an important step in the 
design of provably secure cryptosystems. Below, we describe the ideas 
underlying the two cryptosystems. 

Private key. The main difference between the Ajtai-Dwork and GGH 
cryptosystem is in the choice of the secret key. Instead of choosing a 
lattice basis that allows to solve CVP for all target points sufficiently 
close to the lattice, (Ajtai and Dwork, 1997) suggests to pick the private 
basis as follows. Let M and d be two parameters , with d � nc M for 
some sufficiently large polynomial function of the lattice rank . Then, 
pick n - 1  (linearly independent) random vectors r1 , . . .  , rn-1 , and let 1l 
be the hyperplane spanned by them. The last basis vector rn is chosen 
as a random vector whose distance from 1l is approximately equal to 
d. (Say between d and 2d. ) Notice that all lattice points belong to a 
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collection of hyperplanes 1-lk = kr� + 1-l. Only the orthogonalized vector 
r� needs to be stored as part of the secret key, as the other basis vectors 
are not used by the decryption algorithm. 

Public key. In (Ajtai and Dwork, 1997) it is suggested to set the 
public key to a random basis B of C(R) . As discussed in Subsection 3.2 ,  
a better choice (both from the efficiency and security point of view) is 
to set B to the HNF of R. 

Encryption. The Ajtai-Dwork cryptosystem is not based on a trap­
door function, meaning that even using the decryption key it is not clear 
how to fully recover the input to the encryption function. The encryp­
tion algorithm takes as input a single message bit b and a random string 
r .  Only the bit b is recovered by the decryption algorithm. The idea is 
to encode 0 as points that are close to the lattice and 1 as points that are 
far from the lattice. So, if b = 0 one selects a random lattice point and 
adds a small random perturbation to it . (Alternatively, using the HNF 
improvement, one only chooses the small perturbation at random and 
reduces it modulo the public basis . )  The perturbation vector is chosen 
as the sum of O(n) vectors independently and uniformly distributed in 
the sphere of radius n3 M. If b = 1, one simply selects a random point 
in space (possibly reduced modulo the public basis) , which will be far 
away from the lattice with high probability. 

Decryption. Parameters are chosen in such a way that the perturba­
tion vector is always much shorter than the distance d between hyper­
planes 1-lk . Therefore, given a target vector t, one can simply compute 
the distance from the closest hyperplane (e.g. , evaluating the (r� , t) and 
comparing it to the closest multiple of l l r� l l ) and use this distance to 
decide whether t is close to the lattice or not . (Remember, all lattice 
points belong to the hyperplanes. )  It should be noted that decryption er­
rors can occur with small, but nonnegligible, probability: when sending 
message b = 1 ,  the random point t selected by the encryption algorithm 
might be close to one of the hyperplanes just by chance. If this happens, 
the ciphertext would be decrypted as 0. A technique to eliminate these 
decryption errors is described in (Goldreich et al . ,  1997a) . 

Analysis. The Ajtai-Dwork cryptosystem, as described above, has the 
property that breaking the scheme is equivalent to recovering the secret 
key. The idea is the following. Assume that we can tell the difference 
between encryptions of 0 ( i .e . , points close to the hyperplanes 1-lk) and 
encryptions of 1 (i .e . , points far from the same hyperplanes) .  We can 
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use this ability t o  find n - 1 linearly independent long vectors very close 
to 1l = 1lo as follows: we start from the origin and we keep moving 
at random, using the decryption oracle to check that we are staying 
close to the plane. After n - 1 long linearly independent vectors close 
to 1l are found, one can compute (a multiple of) r� using standard 
lattice approximation algorithms. {The actual procedure involves the 
dual lattice and it is not described here.) Once we have found a multiple 
of r� , we can also find the exact length of r� by projecting the lattice 
orthogonally to the line IR · r� , and compute the length of the shortest 
nonzero vector in this one-dimensional lattice. 

Ajtai and Dwork also propose a variant of this cryptosystem which is 
provably as hard to break as the worst case instance of a certain lattice 
problem. The problem is the hidden hyperplane problem: given a random 
basis B for .C(R) ,  find the hyperplane 1l = span{r1 , . . .  , rn_ l ) ,  i .e . , find 
a long orthogonalized vector r� . (This problem can be equivalently 
formulated as finding a short vector in the dual lattice, for lattices in 
which this short vector is unique in some technical sense. This is the 
unique shortest vector problem also studied in (Ajtai , 1 996) in connection 
with the construction of one-way functions with worst-case/average-case 
equivalence. )  The idea is that instead of publishing a basis for lattice 
.C(R) , one can simply publish a collection of polynomially many (e.g. , 
n3 ) points close to the lattice. Then, in order to send b = 0, one selects 
a random subset of these points and add a small perturbation vector, 
while to send b = 1 one sends a random point in space as usual. Here we 
are omitting several important technical details , but the basic idea is the 
following: since the sublattice generated by r1 , . . .  , rn- 1 is very dense in 
1£, the perturbed lattice points can be selected as random points close 
to the collection of hyperplanes 1lk , independently from the particular 
basis r1 , . . .  , rn- 1 · So, a decryption algorithm for this cryptosystem can 
be used to find the hidden hyperplane in any underlying lattice R. The 
reader is referred to (Ajtai and Dwork, 1997) for further details. 

3 . 4  NTRU 

NTRU is a public key encryption scheme based on arithmetic in poly­
nomial rings ,  but it is closely related to lattice problems for a certain 
class of lattices. Let p and q be two small, relatively prime integers, e.g. , 
p = 3 and q = 128. (In general, we want p very small, and q polynomial 
in a security parameter n. ) Let R = Z[X]/ (Xn - 1) be the ring of all 
polynomial with integer coefficients modulo xn - 1 .  Polynomials in R 
can be naturally represented as integer vectors in zn. The private key of 
the system is a pair of polynomials f, g E R with small coefficients (e.g. , 
{0 ,  1 ,  - 1 }  coefficients) such that f is invertible modulo p and modulo q.  
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The public key is given by the polynomial h = pf- 1 · g mod q, where the 
inverse and the product are computed in Z� [X]/(Xn - 1 ) .  (In (Hoffstein 
et al. ,  1 998) , h is defined as r- 1 · g mod q, but the two definitions are 
clearly equivalent . Here, we modified the definition slightly, in order 
to make the comparison with other lattice based cryptosystems easier . )  
The encryption function takes as input two polynomials m and r with 
small coefficients (e.g. , coefficients in { -1 ,  0, + 1 } ) and outputs the poly­
nomial t = m + hr mod q. The decryption algorithm, takes t as input , 
and computes a =  ft mod q (where the coefficients of a are chosen in the 
interval { -q/2, . . .  , +q/2} ) and m' = r- 1 a mod p. In (Hoffstein et al. ,  
1 998) i t  is shown that for an appropriate choice o f  the parameters, the 
decryption procedure recovers the original message m' = m with high 
probability. The idea is roughly the following. From the definition of t 
and h, we get 

a = ft mod q = f( m + hr) mod q = fm + pgr mod q. 

Since f, m, g, r are all polynomials with small coefficients and p is also 
small, the coefficients of fm+pgr belongs to the interval { -q/2, . . .  , q/2} 
with high probability. So, vector a equals fm + pgr over the integers, 
and m' = r- 1 (fm + pgr) = m (mod p) . It is clear that once m is 
recovered, one can also recover r = (t - m) (ph) - 1 mod q. 

This cryptosystem can be described in terms of lattices as follows. 
We consider the class of q-modular, hi-cyclic lattices in dimension 2n. 
Here, q-modular means that all lattice vectors qei belong to the latt ice, 
so the coordinates of the lattice vectors can be defined modulo q.  We 
say that a latt ice is hi-cyclic if the following holds. For any vector x = 

[xl , . . .  , xnJT, define the rotation function rot (x) = [xn , Xl , . . .  , xn_ I ]T .  
Define also the circulant matrix of a vector x as the matrix Mx = 
[x, rot (x) , . . .  , rotn- l (x)] with all possible rotations of x as columns. 
The relation between circulant matrices and polynomials is that for any 
two polynomials x, y in R, MxMy = Mxy , i .e . ,  the product in the 
quotient ring R correspond to the standard matrix product . For any 
2n-dimensional vector z = [xT, yTJT (with x, y E zn) ,  define also the 
double rotation rot2 (z) = [rot (x)T,  rot (y?JT.  A 2n-dimensional lattice 
is hi-cyclic if it is close under double rotations, i .e . , if for any vector z 
in the lattice, also rot2 (z) belongs to the lattice. It is easy to see that 
the intersection of q-modular hi-cyclic lattices is also q-modular and hi­
cyclic. So, for any set of vectors S, we can define the smallest q-modular 
hi-cyclic lattice containing S. We now give a lattice based description 
of NTRU. 
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Private key. The private key is given by a short vector v. The lat­
tice associated to this vector is the smallest hi-cyclic q-modular lattice 
containing v. A generating set for this lattice is easily obtained taking 
all double rotations of rot� (v) (for k = 0, . . .  , n - 1 } ,  and all vectors of 
the form qek {for k = 0, . . .  , 2n - 1 ) .  

Public key. The public key is set t o  the HNF basis of the q-modular 
hi-cyclic lattice generated by v. Interestingly, if v = [pgT, rT]T, then 
the public basis is given by 

In other words, the lattice can be described as the smallest q-modular 
hi-cyclic lattice containing [hT, efJT .  

Encryption. Interestingly, the encryption can also be described as 
a special instance of the general HNF framework. Consider the short 
perturbation vector [mT , -rT]T.  If we reduce this vector modulo the 
HNF basis H, we obtain the ciphertext vector [tT , oT]T,  where t is the 
polynomial defined in the NTRU polynomial ring description. 

Decryption. The decryption algorithm seems to depend on the spe­
cific polynomial ring trapdoor, and it is not clear how to interpret it 
from a geometric point of view. 

Analysis. The special structure of q-modular hi-cyclic lattices allows 
to represent the secret key, the public key and the ciphertext with only 
O (n log n } bits. The culprit is that only one vector needs to be stored 
to implicitly represent the entire secret or public basis. This allows to 
reduce the storage required by general HNF cryptosystems by a factor 
n, although using a special class of lattices . .  From the efficiency point of 
view, NTRU offers clearly lot of advantages: extremely fast encryption, 
decryption and key generation, with public key size comparable to widely 
used number theory based cryptosystems. The main questions regarding 
NTRU are about security: are lattice problems for the special class of 
lattices used by NTRU as hard as the general case? Are these problems 
NP-hard to solve exactly? NP-hard to approximate? Is it possible to 
prove an worst-case/average-case connection for these lattices similar 
to the one proved by Ajtai for general lattices? There is still very little 
known about NTRU from a theoretical point of view, but the practicality 
of the system definitely makes further investigations worthwhile. 
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4. Notes 

Most of the techniques described in Section 1 are folklore. Algorithms 
to compute the HNF and SNF of integer matrices can be found in (Co­
hen, 1 996) . A new, space efficient algorithm to compute the HNF has 
recently been proposed in (Micciancio and Warinschi, 2001 ) .  

One-way functions which are as hard to  break as the worst case in­
stance of some lattice approximation problem were first discovered by 
(Ajtai , 1996) .  The approximation factor in (Ajtai , 1 996) is a rather large 
polynomial: nc for c > 8. The factor was subsequently improved by (Cai 
and Nerurkar, 1 997) , who showed that inverting the one-way function is 
at least as hard as solving GAPSVP within n4+t , or GAPSIVP within 
n3+t .  In Section 2 we presented an improved construction recently dis­
covered by (Micciancio, 2001b) . Following (Goldreich et al. ,  1 996) , Mic­
ciancio shows that the the function is not simply one-way: it is collision 
resistant . Moreover, breaking the hash functions is at least as hard as 
approximating GAPSVP within n3·5 1og n or GAPCRP within n2·5 log n,  
improving (Ajtai ,  1 996) and (Cai and Nerurkar, 1 997) . Factors can be 
further reduced by ...jii i f  CVP can be efficiently solved for certain al­
most perfect lattices. (See (Micciancio, 2001b) for the description of 
weaker requirement on the decoding algorithm that still allow to build 
improved hash functions . )  

The GGH, Ajtai-Dwork and NTRU cryptosystems were all discovered 
independently at about the same time around 1 996. The cryptosys­
tems are fully described in (Goldreich et al. ,  1997b; Ajtai and Dwork, 
1997; Hoffstein et al. , 1998) . The HNF technique was suggested later 
by (Micciancio, 2001d) as a method to improve or better understand 
lattice based cryptosystems. Various other cryptosystems based on lat­
tices have been proposed, usually variants of those described in Sec­
tion 3. For example, (Fischlin and Seifert ,  1999) suggests a variant of 
the GGH cryptosystem where the trapdoor is based on the tensor prod­
uct of lattices. The HNF technique of (Micciancio, 2001d) applies to 
these cryptosystems as well. The construction of cryptosystems based 
on lattices is still subject to investigations. (Micciancio, 2001d) points 
out that basing cryptosystems on restricted class of lattices seems cru­
cial to obtain encryption functions with public keys of subquadratic size. 
The NTRU cryptosystem of (Hoffstein et al. ,  1 998) seems an interesting 
proposal from this point of view. Still, very little is known about the 
computational complexity of specific classes of lattices, as those used by 
NTRU. 
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Chapter 9 

INTERACTIVE PROOF SYSTEMS 

A natural question associated with the SVP and the CVP search 
problems is whether one can recognize the optimality of solutions once 
they are found. 

SVP. In the case of SVP , this may correspond in its most ambitious 
form, to given a lattice and a length d (presumably the length of the 
shortest vector in a lattice) to be able to efficiently verify that ( 1 )  there 
exists a short vector of length d and (2) no other vector in the lattice is 
shorter than d. 

A more modest goal, is to ask whether there even exists a "short and 
easy to verify" proof of properties ( 1 )  and (2) . Clearly, a vector v in the 
lattice of length d, is in itself a short and easy to verify proof for ( 1 ) .  
Whether there exist short and easy t o  verify proofs that v i s  shortest 
(namely property (2) )  is a more challenging question. In this chapter we 
formulate and address it for approximation versions of SVP and CVP.  

Recall the promise problem GAPSVP1. YES instances of  GAPSVP1 
are pairs (B, d) where B is a basis for a lattice in Ql ,  and d E Q such 
that there exist vectors in the lattice of length d. No instances are 
pairs (B, d) where B and d are as above, but the shortest vector in the 
lattice is of size greater than -y(n) · d . Pairs (B, d) where B is a basis 
for a lattice whose shortest vector is between d and -y(n)d are not in 
the promise, and thus are invalid instances. GAPSVP1 is the straight 
forward decision problem for SVP. 

For any -y(n)  2: 1 ,  GAPSVP -y(n) i s  clearly in NP (or, more precisely, 
the the extension of NP to promise problems) .  The NP-witness for (B ,  d) 
being a YES instance is merely a vector v E .C(B) of length less than d. 
But, what about the complement of GAPSVP1? For which 'Y is there a 
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short and easily verifiable proof that all vectors in {B , d) are "long" , and 
what would such proof look like? Intuitively, the bigger the gap r is, 
the easier this problem becomes (i .e. , it should be easier to distinguish 
between lattices with "really long" shortest vectors and lattices with 
"short" shortest vectors) .  

Partial answers exist . I n  a sequence of results, (Lagarias e t  al . ,  1990) , 
{Hastad, 1 988) and (Banaszczyk, 1993) showed that the complement of 
GAPSVPn is in NP. Namely, there exists an NP witness for those (B, d) 
for which the shortest vector is long enough, at least of length nd. (Gol­
dreich and Goldwasser, 2000) improved on this factor, and showed that 
the complement of GAPSVP-y(n) is in AM for 'Y(n) = v'n/ O(log n) = 
o ( fo) . (AM is the class of languages recognized by a constant round 
interactive proof system. )  For brevity, in the rest of this chapter we 
will write o ( y'n) to denote approximation factor v'n/ O( log n) . They 
do this, by exhibiting a constant-round interactive proof system for the 
complement of GAPSVP o(y'n) · Namely, instances {B , d) for which the 
shortest vector is "long" (greater than d · o ( y'n)) are always accepted, 
and the instances for which the shortest vector is of length d {or less) 
are rejected with all but negligible probability. This result places a po­
tentially harder problem (referring to smaller gaps) in a larger class (as 
coNP c coAM) .  Unlike the proofs of (Lagarias et al. ,  1990; Hastad,  
1988; Banaszczyk, 1993) which rely on deep duality results regarding 
lattices, the interactive proof is elementary and we shall present it fully 
in this chapter. 

CVP. In the case of CVP, the analogous question is given a lattice, a 
length d , and a target vector v, whether there exists a short and easy 
to verify proof that { 1 )  there exists a vector u in the lattice at distance 
d from v and (2) no other vector in the lattice is closer to v. 

In complexity theoretic terms, recall the definition of GAPCVP 1 .  Let 
dist (v, u) denote the Euclidean distance between the vectors v, u E !Rn , 
and dist(v, .C(B)) denote the distance of v from the lattice, .C(B) gen­
erated by the basis B. Then, YES instances of GAPCVP -y(n) are triples 
(B, v, d) where B is a basis for a lattice in ((11 , v E ((11 is a vector, and 
d E  Q is a length where dist {v, .C(B) )  < d. No instances { i .e . , instances 
that strongly violate the closeness property) are triples (B,  v, d) where 
B is a basis for a lattice in ((11 , v E ((11 is a vector, and d E  Q a length 
where dist (v, .C(B) > {(n) · d. 

For any r 2: 1 ,  the promise problem GAPCVP1 is in NP. The NP­
witness for {B , v, d) being a YES instance is merely a vector u E .C(B) 
satisfying dist (v, u) � d. About the complement of GAPCVP1 less is 
known. 
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(Lagarias et  al . ,  1990; Hastad, 1988; Banaszczyk, 1993) showed that 
GAPCVPn is in NPncoNP. (Goldreich and Goldwasser, 2000) improved 
on this factor, and showed that GAPSVP o(y'n) is in NP n coAM. They 
present a constant-round interactive proof system for the complement of 
the above promise problem with "Y(n) = .fii/O(log n) = o ( .fii) .  That is, 
they show a proof system such that very-far instances (No-instances) are 
always accepted, whereas close instances (YES-instances) are accepted 
with negligible probability. We shall present this interactive proof fully 
in this chapter. 

Comment on Zero-Knowledge. The (constant-round) interactive 
proofs (for the complement of GAPCVP o(v'n) and GAPSVP o(yn) ) are 
Perfect Zero-Knowledge with respect to the Honest Verifier (HVPZK) . 
Thus, the complement of GAPCVP o(y'n) (resp. ,  GAPSVP o(yn) ) is in the 
class HVPZK. The existence of honest verifier statistical zero knowledge 
(HVSZK) proofs for the "NP direction" follows by Okamoto's result by 
which the class HVSZK is closed under complementation (Okamoto, 
1996) . (His result does extend to promise problems; cf. , (Sahai and 
Vadhan, 1997) ) . Thus, GAPCVP o(y'n) (resp. ,  GAPSVP o(yn) ) is in the 
class HVSZK. 

Comment on other norms. The proof systems can be adapted to 
any fp norm (and in particular to e1 and £00) . Specifically, we obtain 
constant-round (HVPZK interactive proof systems for gap n/O(log n) 
(rather than gap n/O(log n) as in /2 norm) . The result extends to 
any computationally tractable norm as defined in Section 3 .  (Except for 
Section 3, the rest of the chapter refers to CVP and SVP in £2 norm. )  

Implication on proving non-approximability of CVP and SVP. 
Chapters 3 and 4 contain results on the hardness of approximating CVP 
and SVP.  In particular we have seen that CVP is  NP-hard to approxi­
mate within n11 O(log logn) and SVP problem was shown NP-hard, under 
RUR-reductions, to approximate that for any constant factor less than 
v'2 . A natural question is what happens to the difficulty of SVP and 
CVP for larger factors of approximation. Can these results be improved 
or has the limit of inapproximability been reached? For which factor, 
do SVP and CVP become tractable? 

Resolving this question is of interest also from a cryptographic stand 
point . As we have shown in Chapter 8 the conjectured difficulty of 
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versions of both GAPCVP and GAPSVP have been suggested as basis 
for cryptographic primitives and schemes (Ajtai , 1 996; Goldreich et al. ,  
1 997b; Ajtai and Dwork, 1997) .  In  particular, Ajtai 's one-way function 
assumes that GAPSVPnc is hard (in worst case) , where c > 8.  (The 
constant c has been reduced to c > 4 by (Cai and Nerurkar, 1 997) , and 
in Chapter 8 we have seen that it can be further reduced to c > 3 .5 ,  or 
even c > 3 if certain "almost perfect" lattices can be efficiently decoded. )  
The security of  the Ajtai-Dwork public-key encryption scheme i s  reduced 
to a special case of (a search version of) GAPSVPnc (with some big c) . 
And the trapdoor permutation suggested in (Goldreich et al. , 1 997b) 
relies on the conjectured difficulty of the CVP problem. A possible end 
goal toward which one could hope to carry this direction of research, is 
to base the existence of a one-way functions (and other cryptographic 
primitives) on the hardness of GAPSVP -y(n) for 'Y such that we can prove 
that GAPSVP1 and GAPCVP1 are NP-hard (or quasi-NP hard) . 

Placing the complement of promise problem GAPSVP o(vn) in AM, 
and thus GAPSVP o(vn) E NP n coAM sheds light on this question as 
follows ( (Goldreich and Goldwasser, 2000; Cai and Nerurkar, 2000) ) .  
Two possibilities exist ,  

1 Either, GAPSVP o(vn) is  not NP-hard 

2 Or, GAPSVP o(vn) is NP-hard, which implies coNP C AM and the 
Polynomial-Time Hierarchy collapses (by a result of (Boppana et al. ,  
1 987) ) .  

Similarly, placing GAPCVP o(vn) in  NP n coAM, implies that either 

1 GAPCVP o(vn) is not NP-hard, or 

2 GAPCVP o(vn) is NP-hard, and then the Polynomial-Time Hierarchy 
collapses. 

Assuming the polynomial-time hierarchy does not collapse, this can 
be viewed as establishing limits on the NP-hardness of approximating 
CVP and SVP: Approximations to within a factor of o ( yin) are not 
NP-hard. In terms of the cryptographic perspective, this seems to mean 
that if one attempts to base the security of a cryptosystem on an NP­
hard version of approximate SVP or CVP ,  one should at minimum aim 
for approximation factors of o ( vfn / log n) . 

1 . Closest vector problem 

We consider the promise problem GAPCVP 1 defined in the intro­
duction, and present a constant-round interactive proof system for the 
complement of the above problem for gap -y (n) = Jn/O(log n) . Recall 
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that the input is a triple (B, v, d) , where B is a basis for a lattice, v 

is a vector and d E Q a length. We give an interactive proof system 
such that NO-instances (in which v is at distance greater than 1(n) · d 
from the lattice) are always accepted, whereas YES-instances (in which v 

is within distance d from .C(B) )  are accepted with probability bounded 
away from 1 . 

More precisely, the theorem we prove is, 

THEOREM 9 . 1 GAPCVP Jn/O(Iog n) is in coAM. 

The proof system. Consider a "huge" sphere, denoted H. Specifi­
cally, we consider a sphere of radius 2n · I I (B , v) l l  centered at the origin, 
where I I  (B , v) I I  denotes the length of the largest vector in B U { v} . Let 
'Y = 'Y(n) . 

1 The verifier uniformly selects a E {0 ,  1 } ,  a random lattice point in H, 
denoted r, and an error vector, t ,  uniformly distributed in a sphere 
of radius 'Yd/2 .  The verifier sends x � r + av + t to the prover. 

2 The prover responses with r = 0 if dist (x, .C(B) )  < dist(x, .C(B) + v) 
and r = 1 otherwise. 

3 The verifier accepts if and only if r = a. 

Implementation details. Several obvious implementation questions, 
arising from the above description, are 

• How to uniformly select a lattice point in H ?  We uniformly select 
a point in H, represent this point as a linear combination of the 
basis vectors, and obtain a lattice point by rounding. This proce­
dure partitions H into cells , most of them are parallelepipeds which 
are isomorphic to the basic cell/parallelepiped defined by the lattice. 
The exceptions are the partial parallelepipeds which are divided by 
the boundary of the sphere H. All the latter parallelepipeds are 
contained between two co-centered spheres, the larger being of ra­
dius (2n + n) · L and the smaller being of radius {2n - n) · L, where 
L � I I (B ,  v ) l l  :::: I IB I I is the radius of H. Thus, the fraction of these 
( "partial" ) parallelepipeds in the total number of parallelepipeds is 
bounded above by the volume encompassed between the above two 
spheres divided by the volume of the smaller sphere. This relative 
volume is at most 

(2n + n)n - {2n - n)n 
(2n - n)n = ( 2n ) n 1 + 2n - n - l  
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< 

It follows, that the above procedure generates random latt ice points 
in a distribution which is at most poly{n) · 2-n away from the uniform 
distribution over .C(B) n H. 

• How to uniformly select a point in the unit sphere ? One may just 
invoke the general algorithm of (Dyer et al . ,  1991 ) .  Using this algo­
rithm, it is possible to select almost uniformly a point in any convex 
body (given by a membership oracle) .  Alternatively, one may se­
lect the point by generating n samples from the standard normal 
distribution, and normalize the result so that a vector of length r ap­
pears with probability proportional to r-n (see, e.g. , (Knuth, 1981 ,  
Sec.  3.4. 1 ) ) .  

• How to deal with finite precision ? In the above description, we as­
sume all operations to be done with infinite precision. This is neither 
possible nor needed. We assume, instead, that the input entries ( in 
the vectors) ,  are given in rational representation and let m denote 
the number of bits in the largest of the corresponding integers. Then 
making all calculations with n3 • m bits of precision, introduces an 
additional stochastic deviation of less than 2-n in our bounds. 

Analysis of the protocol. By the above, it should be clear that 
the verifier's actions in the protocol can be implemented in probabilistic 
polynomial-time. We will show that , for 1(n) = Jn/ O(Iog n) , the above 
protocol constitutes a {honest verifier perfect zero-knowledge) proof sys­
tem for the promise problem GAPCVP-y , with perfect completeness and 
soundness error bounded away from 1 .  

CLAIM 9 .  2 (COMPLETENESS) If dist( v ,  .C(B) )  > 1( n )  · d then the veri­
fier always accepts (when interacting with the prover specified above) . 

Proof: Under the above hypothesis, for every point x (and in partic­
ular the messages sent by verifier in step 1 ) ,  we have dist(x, .C (B) )  + 
dist (x, .C(B) + v) > 1d (or else dist(v, .C(B) )  = dist (.C(B) + v, .C(B) ) � 
dist (x, .C (B)  + v) + dist(x, .C(B) )  � d1) . Thus, for every message, 
x = r + av + t ,  sent by the verifier we have 

dist(x, .C(B) + av) = dist(r + t , .C(B) )  � l l t l l  < 

dist (x, .C(B) + ( 1 - a)v) > 1d - dist (x, .C(B) + av) > 

dl 
2 

dl 
2 
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Thus, it is always the case that dist(x, .C(B) + av) < dist(x, .C(B) + 
( 1  - a)v) and the prover responses with r = a. 0 

CLAIM 9 . 3  (ZERO-KNOWLEDGE) The above protocol is a honest-verifier 
perfect zero-knowledge interactive proof system for triples (B, v, d) sat­
isfying dist (v, .C(B) )  > -y(n) · d . 

Proof: The simulator just reads the verifier's choice and returns it as 
the prover's message. Thus, the simulator's output will consist of coins 
for the verifier and the prover's response. By the above proof, this 
distribution is identical the verifier's view in the real protocol. 0 

CLAIM 9 . 4  ( SOUNDNESS) Let c > 0 be a constant independent of n, 
and -y(n} 2: Jn/ (c ln n) . Jf dist (v , .C (B ) )  � d then, no matter what the 
prover does, the verifier accepts with probability at most 1 - n -2c . 

The above is slightly inaccurate as the statement holds only for suffi­
ciently large n's (depending on the constant c) . For smaller (fixed) di­
mension, one may replace the protocol by an immediate computation us­
ing Lenstra's algorithm (Lenstra, 1983) . The same holds for Claim 9 . 12  
below. 

1 . 1  P roof of the soundness claim 

Let �o (resp. ,  6 )  a random variable representing the message sent 
by the verifier condition on a = 0 (resp. ,  a = 1 ) .  We first bound the 
statistical distance between the two random variables by ( 1  - 2n-2c) . 
Given this bound, we have for any prover strategy P' 

Pr(P' (�u )  = a} = � · Pr(P' (�o ) = 0} + � · Pr(P' (6 )  = 1 )  

1 
= 2 · (Pr(P' (�o ) = 0) + 1 - Pr(P' (6 )  = 0) ) 

= � + � · (Pr(P' (�o )  = 0) - Pr(P' (6) = 0) ) 
1 1 

( 2c} < 2 + 2 · 1 - 2n-

= 1 - n-2c 

Thus, all that remains is to prove the above bound on the statistical 
distance between �o and 6 .  The statistical distance between the two 
random variables is due to two sources: 

1 In case a = 1 the point r+v  may be out of the sphere H (whereas, by 
choice, r is alway in H) . However, since H is much bigger than v this 
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happens rarely ( i .e . ,  with probability at most 3n2 
· 2-n ;  see above) . 

FUrthermore, the statistical difference between uniform distribution 
on the lattice point in the sphere H and the same distribution shifted 
by adding the vector v is negligible. Specifically, we may bound it by 
n-2c > 3n2 . 2-n . 

2 Let v' be v reduced modulo the basis. For each lattice point , p, we 
consider the statistical distance between p + t and p + v' + t ,  where 
t is as above. The main thing is to bound this statistical distance. 
The rest of the proof is devoted to this. 

Thus, it suffices to consider the statistical distance between t and v' + t ,  
where t i s  as above. In  the first case the probability mass i s  uniformly 
distributed in a sphere of radius 'Yd/2 centered at 0 whereas in the second 
case the probability mass is uniformly distributed in a sphere of radius 
'Yd/2 centered at v' , where l lv' l l  :S d. Without loss of generality, we 
consider v' = [d, 0,  . . . .  , OJT . Normalizing things (by division with 'Yd/2} , 
it suffices to consider the statistical distance between the following two 
distributions: 

(Dl)  Uniform distribution in a unit sphere centered at the origin. 

(D2) Uniform distribution in a unit sphere centered at [€ , 0, . . , OJT where 
E = d/{'yd/2} = 2h. 

Observe that the statistical distance between the two distributions equals 
half the volume of the symmetric difference of the two spheres divided by 
the volume of a sphere. Thus, we are interested in the relative symmetric 
difference of the two spheres . Recall two basic facts -

FACT 9 . 5  (e.g. , (Apostol , 1969, Vol. 2, Sec. 1 1 . 33 , Ex. 4) ) The volume 

of an n-dimensional sphere of radius r is vn (r) �f r((�j�)+l) · rn , where 

r(x) = (x - 1 ) . r(x - 1 ) ,  r ( 1 ) = 1 ,  r(0.5) = .;:rr. 
FACT 9 . 6  (e.g. , (Knuth, 1973, Sec. 1 . 2 . 1 1 .2 ,  Exer . 6) )  For every real 
x � 2, r (x + 1 )  

� .j2irX · (xje)x .  Thus, for every integer m � 2, 

r(m + 0.5) � rm � r(m + 1 ) 
r(m} r(m + 0.5) 

LEMMA 9 . 7  (SYMMETRIC DIFFERENCE OF SPHERES) Let So (resp. Sf) 
be a unit sphere at the origin ( resp. at distance E from the origin) . Then 
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relative symmetric difference between the spheres ( i. e. , the symmetric 
difference divided by the volume) is at most 

(1 _ t;2 ) (n- 1 )/2 
2 - E · · Vn 3 

Our bound is not tight . Still, we note that the bound cannot be de­
creased below 2 - ( 1 - (E/2) 2 ) (n- l )/2 · vn,, and that both expressions are 
equivalent as far as our application goes. 

Figure 9. 1 .  The cylinder encompassed by So and S, . The axis is marked in bold and 
its radius x = (1 - f2 )0 ·5 is computed from the center of the left sphere. 

Proof: We bound the volume of the intersection between S0 and S€ 
from below. Specifically, we look at the (n - ! )-dimensional cylinder of 
height E , which is centered at the axis connecting the centers of So and 
S€ and is encompassed by So n  S€ . See Figure 9 . 1 .  The radius of this 
cylinder is v'f=€2. Thus its volume is E • Vn- 1 ( v'f=€2). Using Facts 9 .5  
and 9 .6 we have 

vol (So n S€ ) 
vol(So ) 

E • Vn- 1  ( v'f=€2) > 
Vn { l )  

= 
E . ( 1 - E2 ) (n- 1 )/2 • Vn- 1 ( 1 )  

Vn { 1 )  

= E . ( 1 - E2 ) {n- 1)/2 .  7r(n- 1 )/2jr ( ( (n - 1 ) /2) + 1 ) 
7rn/2jf( (n/2) + 1 )  

= E . ( 1 - E2 ) (n- 1 )/2 .  f ( (n/2) + 1 )  
..Iff . r( ( n/2) + 0.5) 

;:::; E .  ( 1  _ E2 ) (n-1 )/2 . Vnfi 
..Iff 
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The lemma follows.D 

Using Lemma 9 .7, with t: = 2/g(n) < J4c ln njn, we bound form 
above the statistical distance between distributions (Dl )  and (D2) by 

= l - � · (1 _ 4c�n nf ' 

< 1 - 7 . ( 1 - 2c �n n) n/2 

< 1 - 3 · n-2c 

where the last inequality uses v' c ln n > 9 .  Thus, the statistical distance 
between �o and 6 is bounded by n-2c + 1 - 3 · n-2c (where the extra 
n-2c term comes from Item 1 above) . The soundness claim follows. 0 

1 . 2  Conclusion 

Combining the above protocol with known transformations (Gold­
wasser and Sipser, 1986; Babai, 1 985) we get 

THEOREM 9 . 8  For any approximation factor r(n) = Jn/ O{log n) , the 
promise problem GAPCVP f'(n) is in NP n coAM. Furthermore, the com­
plement of GAPCVP -y(n) has a HVPZK constant-round proof system. 

The interesting part is the membership of GAPCVP ..;n in coAM. This 
reduces the gap factor for which "efficient proof systems" exists: (La­
garias et al . ,  1 990) , (Hiistad, 1 988) and (Banaszczyk, 1 993) have previ­
ously shown that G APCVP n is in coNP. 

2.  Shortest vector problem 

Let us slightly modify the definition of GAPS VP..,. given in the intro­
duction to the following (equivalent) definition. The YES instances ( i .e. , 
having short vectors) of GAPSVP -y(n) are pairs (B ,  d) where B is a basis 
for a lattice .C(B ) in ((]l ,  d E Q and dist (v1 , v2 ) � d for some v1 =/= v2 
in .C(B) . The NO instances (i .e . , "strongly violating" short vectors) are 
pairs (B , d) where B and d are as above but dist (v1 , v2 ) > r(n) · d for 
all VI =/= V2 in .C(B ) .  

We present a constant-round interactive proof system for the comple­
ment of the above problem for gap r(n) = Jn/O(log n) . Recall that the 
input is a pair (B ,  d) , where B is a basis for a lattice and d E  Q. That is, 
we'll show that NO-instances (in which the shortest vector in .C(B ) has 
length greater than 1(n) · d) are always accepted, whereas YES-instances 
(in which .C(B ) has a nonzero vector of length at most d) are accepted 
with probability bounded away from 1 .  
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The exact theorem to be proven is 

THEOREM 9 . 9  GAPSVP Jn/O(!og n) is in coAM. 

The proof system. Consider a huge sphere, denoted H (as in Sec­
tion 1 ) .  Specifically, we consider a sphere of radius 2n · I IB I I  centered at 
the origin. Let 'Y = "((n) . 

1 The verifier uniformly selects a random lattice point , p, in H, and 
an error vector, t ,  uniformly distributed in a sphere of radius rd/2. 
The verifier sends p � p + t to the prover. 

2 The prover sends back the closest lattice point to p. 
3 The verifier accepts iff the prover has answered with p. 

CLAIM 9 . 1 0  (COMPLETENESS) /f any two distinct lattice points are at 
distance greater than "(d, then the verifier always accepts. 

Proof: Under the above hypothesis, for every point x (and in particular 
the message sent by verifier in step 1 ) ,  we have at most one lattice p so 
that dist(x, p) � rd/2 (or else dist (v1 , v2 ) � dist (x, vi ) + dist(x, v2 ) � 
rd) . Since we have dist (p, p) � rd/2, the prover always returns v. 0 

CLAIM 9 . 1 1  ( ZERO-KNOWLEDGE) The above protocol is honest-verifier 
perfect zero-knowledge for pairs (B, d) such that every two distinct points 
in .C(B) are at distance greater than "(d. 

Proof: The simulator just reads the verifier's choice and returns it as 
the prover's message. Thus, the simulator's output will consist of coins 
for the verifier and the prover's response. By the above proof, this 
distribution is identical to the verifier's view in the real protocol. 0 

CLAIM 9 . 1 2  ( SOUNDNESS) Let c > 0 and "((n) � Jnf (c ln n) , if for 
some v1 � v2 in .C(B) ,  dist (v1 , v2 ) � d then, no matter what the prover 
does, the verifier accepts with probability at most 1 - n-2c . 

Proof: Let p' � p + (v1 - v2 ) ,  where p is the lattice point chosen 
by the verifier in Step 1 .  Clearly, dist (p, p' ) ::; d. Let � be a random 
variable representing the message actually sent by the verifier, and let 
e = � + (v1 - v2 ) .  Using the analysis in the proof of Claim 9.4, we 
bound the statistical distance between these two random variables by 
(1 - 3n-2n ) . (Note that � corresponds to �o and e corresponds to 6 
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with v = v1 - v2 . )  Given this bound, we have for any prover strategy 
P' 

Pr(P' (�) = p) < ( 1 - 3n-2n ) + Pr(P' (() = p) 
< 2 - 3n-2n - Pr(P' (�' ) = p') 

However, the event P' (() = p' is almost as probable as P' (�) = p {with 
the only difference in probability due to the case where p' is outside the 
sphere which happens with probability at most n-2n ) . Thus, we have 

2 · Pr(P' (�) = p) < Pr(P' (�) = p) + Pr(P' (() = p') + n-2n 
< 2 - 2n-2n 

and the claim follows. 0 

Conclusion. Combining the above protocol with known transforma­
tions (i .e . , (Goldwasser and Sipser, 1986) and {Babai, 1985) ) ,  we get 

THEOREM 9 . 1 3  For any approximation factor -y(n) = Jn/ O( log n) , 
the promise problem GAPSVP -y(n) is in NP n coAM. Furthermore, the 
complement of GAPSVP -y(n) has a HVPZK constant-round proof system. 

Again, the interesting part is the membership of GAPS VP o( v'n) in coAM. 
This reduces the gap factor for which "efficient proof systems" exists: La­
garias et. al. (Lagarias et al . ,  1990) had previously shown that GAPSVPn 
is in coNP. 

3.  Treating other norms 

The underlying ideas of Theorems 9.8 and 9 . 13  can be applied to 
provide (HVPZK) constant-round proof systems for corresponding gap 
problems regarding any "computationally tractable" norm and in par­
ticular for all fp-norms (e.g. , the £1 and £00 norms) . The gap factor is 
however larger: n/O(log n) rather than Jn/O(log n) . 

Tractable norms. Recall the norm axioms {for a generic norm 1 1 · 1 1 ) ­
(Nl) For every v E IR.n , l l v l l � 0, with equality holding if and only if v 

is the zero vector. 

(N2) For every v E !Rn and any a E lR, l lav l l  = la l · l lv l l . 

(N3) For every v, u E !Rn , l lv + u l l  = l l v l l  + ! l u l l . (Tria ngle I nequa l ity) . 
To allow the verifier to conduct is actions in polynomial-time, we make 
the additional two requirements 
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(N4) The norm function is polynomial-time computable. That is, there 
exist a polynomial-time algorithm that , given a vector v and an ac­
curacy parameter c5, outputs a number in the interval [ l lv l l  ± c5] . We 
stress that the algorithm is uniform over all dimensions. 

(N5) The unit sphere defined by the norm contains a ball of radius 
2- poly (n) centered at the origin, and is contained in a ball of radius 
2poly (n) centered at the origin. That is, there exists a polynomial p 
so that for all n's 

{v E IRn : l lv l l 2 � 2-p(n) }  C { v  E IR
n : l lv l l  � 1 } 

� {v E IRn : l lv l l 2 � 2p(n) } 

where l lv l l 2 is the Euclidean (£2 ) norm of v. 

Note that axioms (N4) and (N5) are satisfied by all (the standard) £p­
norms. 1 On the other hand, by (Dyer et al. ,  199 1 ) ,  axioms (N4) and (N5) 
suffice for constructing a probabilistic algorithm which given n,  generates 
in time poly(n) a vector which is almost uniformly distributed in the n­
dimensional unit sphere w.r .t the norm. Specifically, by axioms (N2) 
and (N3) , the unit sphere is a convex body, and axioms (N4) and (N5) 
imply the existence of a so-called "well-guaranteed weak membership 
oracle" (cf. , (Grotschel et al. ,  1993)) as required by the convex body 
algorithm of Dyer et. al. (Dyer et al. , 1991 )  (and its improvements -
e.g. , (Kannan et al . ,  1997) ) .  

Our protocols can b e  adapted to any norm satisfying the additional 
axioms (N4) and (N5 ) .  We modify the protocols of the previous sections 
so that the error vector, t, is chosen uniformly among the vectors of 
norm less than 'Y(n)d/2 (rather than being chosen uniformly in a sphere 
of radius 'Y(n)d/2) .  Here we use 'Y(n) � n/O(log n) . Clearly the com­
pleteness and zero-knowledge claims continue to hold as they merely 
relied on the triangle inequality ( i .e . ,  Norm axiom (N3) ) .  In the proof 
of the soundness claim, we replace Lemma 9 .7  by the following lemma 
in which distance refers to the above norm (rather than to Euclidean 
norm) : 

LEMMA 9 . 1 4  For every c > 0, let p be a point at distance f < 1 from the 
origin. Then the relative symmetric difference between the set of points 

1 Actually, for any e,-norm, there is a simple algorithm for uniformly selecting a point, 
(x1 , . . .  , Xn ) , in the corresponding unit sphere: Generate n independent samples, XJ , . . .  , xn , 
each with density function e _ "' P , and normalize the result so that a vector of norm r appears 
with probability proportional to r-n . 
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of distance 1 from the origin and the set of points of distance 1 from p 
is at most 2 · ( 1  - ( 1  - €)n ) .  

We comment that the bound is quite tight for both the £1 and the £00 
norm. That is, in both cases the relative symmetric difference is at least 
2 - ( 1 - (€/2) )n .2 

Proof: Let 8(0, r) (resp. ,  8(p, r) )  denote the set of points within 
distance r from the origin (resp . ,  from p) .  The symmetric difference 
between 8(0, 1 )  and 8(p, 1 )  equals twice the volume of 8(p, 1 )  \ 8(0,  1 ) .  
This volume is clearly bounded above by 8(p, 1 )  \ 8(p, 1 - € ) .  By  the 
norm axioms (Nl )  and (N2) , we have 

vol(8(p, I ) \ 8(p, 1 - €) ) 
== 1 _ ( l _ €)n , 

vol(8(p, 1 ) )  

and the lemma follows. 0 
Using € = 2/'Y(n) and 1(n) == n/O(log n) ,  we conclude that the proof 

system has soundness error bounded above by 

1 -
(

1 -
0(log n) ) n

= l -
1

. 
n poly (n) 

Repeating it polynomially many times in parallel we get 

THEOREM 9 . 1 5  Both GAPCVP and GAPSVP defined for any norm 
and gap factor 1(n) = n/O(log n) are in NP n coAM. Furthermore, 
the complement promise problems have HVPZK constant-round proof 
systems. 

4. What does it mean? 

Let 11 = (11YES , 11No )  be a promise problem for which 11MAYBE de­
notes the instances which are neither YES nor NO instances of 11. Thus, 
the entire set of instances is 11yEs U 11No U 11MAYBE · The complement of 
a promise problem 11 is simply (IINo ,  II YEs ) .  To say that a language L is 
reducible to a promise problem II means that : 
There exists a polynomial time procedure that on input x E L, 

• computes instances x1 , . . .  , Xk (possibly adaptively) ,  such that 

2 To verify the above claim for /.00 , consider the point p = ( £, £, . . .  , £ ). Clearly, the intersection 
of the unit sphere centered at the origin and the unit sphere centered at p is (2 - l)n ,  whereas 
each sphere has volume 2n .  For /.1 , consider the point p = (£ ,  0, . . .  , 0 ) .  Again, the intersection 
is a sphere of radius 1 - (£/2) (according to the norm in consideration) . 
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• given bi such that bi = YES for all Xi E IIyes and bi = NO for all 
Xi E IINo ,  cann compute whether x E L or not . 

Note that in the above definition, we do not care about the value of 
bi when Xi does not satisfy the promise. Recall that II is NP-hard if 
for all languages L in NP, L reduces to II. We are now ready to show 
the following theorem (which will be used to interpret the significance 
of the interactive proofs we showed for CVP and SVP in the previous 
sections) .  

THEOREM 9 . 1 6  Let II = (II YES , II No )  be a promise problem. Suppose 
there exists a polynomial- time recognizable relation R so that 

• For every x E IIYES U IIMAYBE, there exists a y E  {0,  1 } *  such that 
(x, y) E R (and I Y I = poly( lx i ) J  and 

• For every x E IINo ,  for all y E {0, 1 } * ,  (x, y) is not in R. 

• The complement of II is in A M. 
Then: II is NP-hard implies coNP � AM. 

Proof: Let L E coNP, and II be NP-hard. By the NP-hardness 
of II, and thus corresponding coNP-hardness of II complement , L is 
reducible to II complement (itself a promise problem) .  We shall use this 
latter reduction to construct an AM-proof system for L and conclude 
our proof. 

Let us denote from here on II complement as {IIYES • IIN-0) .  On input 
x, the prover first sends to the verifier a transcript of the reduction 
{from L to II complement) applied to x. This transcript consists of 
instances x1 , . . .  , xk , and corresponding b1 , . . .  , bk such that bi = YES for 
all Xi E IIYES and bi = NO for all Xi E IIN-o · For all those Xi which are 
outside of the promise, and are in IIMAYBE - the prover sends bi = NO. 

Next, the prover proves each of the answers it gave as follows: for 
x E IIN-0 = IIyEs ,  the prover sends the verifier y such that (x, y) in R, 
for x E IIYES = IINo ,  the prover and verifier run the AM-proof system 
for II complement . And, for all those queries x in IIMAYBE , the prover 
shows again a y such that ( x' , y) E R. The main observation is that a 
yes instance can not turn into a no instance and vice versa, which is true 
by the soundness of the AM procedure for II complement and condition 
{2) in the theorem statement . The fact that prover claimed that maybe 
instances are no instances are of no concern by the definition of a re­
duction to a promise problem. All these AM-proofs are run in parallel, 
and so the result is an MAM-proof system {which can be converted into 
an AM-proof system (Babai, 1 985 ) ) .  In case of a randomized (smart) 
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reduction, we let the verifier select the random input (to the reduction) 
and continue as above. 0 

We can finally get our implications. 

COROLLARY 9 . 1 7  For any 'Y(n) = 0( y'nf log n) , if either GAPCVP-y 
or GAPSVP-y is NP-hard then coNP � AM. 

An older result of (Boppana et al. ,  1987) showed that if coNP c AM 
then the Polynomial-Time Hierarchy collapses. Thus (if one does not 
believe the collapse of the polynomial time hierarchy) we can take the 
corollary as evidence of the impossibility of proving NP-Hardness result 
for approximation factor below y'n for CVP or SVP.  

5 .  Notes 

The techniques described in Subsection 1 . 1  of Chapter 8 can be used 
to somehow simplify the proof systems presented in this chapter. (See 
(Goldreich and Goldwasser, 2000, Section 8) for details . )  The proof sys­
tems presented in this chapter can be easily adapted to other lattice 
problems. For example, a proof system for GAPCRP o(y'n) is the follow­
ing: the prover guesses a deep hole in the lattice, and then uses the proof 
system of (Goldreich and Goldwasser, 2000) to prove that this point is 
far from the lattice. Together with Theorem 7. 10, this puts GAPCRP v'n 
in NP n coAM, showing that the covering radius problem is not likely to 
be NP-hard to approximate within factors 'Y = y'n. Interestingly, when 
the factor 'Y is less than y'n, GAPCRP-y is not even known to be in NP. 

Proof systems for SIVP "Y and SBP 'Y were given in (Blamer and Seifert , 
1 999) , but only for approximation factors 'Y(n) = n/ log n. It is not clear 
if those results can be improved to 'Y(n) = vnl log n as for the other 
lattice problems. 

-4Ckj6UjgE2iN1 +kY-
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