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Preface

Lattices are geometric objects that can be pictorially described as the
set of intersection points of an infinite, regular n-dimensional grid. De-
spite their apparent simplicity, lattices hide a rich combinatorial struc-
ture, which has attracted the attention of great mathematicians over the
last two centuries. Not surprisingly, lattices have found numerous ap-
plications in mathematics and computer science, ranging from number
theory and Diophantine approximation, to combinatorial optimization
and cryptography.

The study of lattices, specifically from a computational point of view,
was marked by two major breakthroughs: the development of the LLL
lattice reduction algorithm by Lenstra, Lenstra and Lovész in the early
80’s, and Ajtai’s discovery of a connection between the worst-case and
average-case hardness of certain lattice problems in the late 90’s.

The LLL algorithm, despite the relatively poor quality of the solution
it gives in the worst case, allowed to devise polynomial time solutions
to many classical problems in computer science. These include, solving
integer programs in a fixed number of variables, factoring polynomials
over the rationals, breaking knapsack based cryptosystems, and finding
solutions to many other Diophantine and cryptanalysis problems.

Ajtai’sdiscovery suggested a completely different way to use lattices in
cryptography. Instead of using algorithmic solutions to computationally
tractable lattice approximation problems to break cryptosystems, Ajtai’s
work shows how to use the existence of computationally intractable-to-
approximate lattice problems to build cryptosystems which are impossi-
ble to break. Namely, design cryptographic functions that are provably
as hard to break as it is to solve a computationally hard lattice problem.

Whereas in complexity theory we say that a problem is hard if it is
hard for the worst case instance, in cryptography a problem is deemed
hard only if it is hard in the average case (ie., for all but a negligible

ix



X COMPLEXITY OF LATTICE PROBLEMS

fraction of the instances). The novelty in Ajtai’s result, is that he shows
how to build a cryptographic function which is as hard to break on
the average (e.g., over the random choices of the function instance) as
it is to solve the worst case instance of a certain lattice problem. This
achievement is unique to lattice theory at this time, and points to lattices
as an ideal source of hardness for cryptographic purposes.

These new constructive applications of lattices, are deeply rooted in
complexity theory, and were followed by a sharp increase in the study
of lattices from a computational complexity point of view. This led to
the resolution of several long standing open problems in the area. Most
notably, the NP-hardness of the shortest vector problem in its exact and
approximate versions. We present a self contained exposition of this
latter result as well as other results on the computational complexity of
lattice problems.

We did not attempt to cover everything known about lattices, as this
would have filled several volumes. Rather, we selected a few represen-
tative topics, based on our personal taste and research experience. Re-
grettably, a topic which we neglect is duality and transference theorems.
With this notable exception, we believe that most of the current ideas
relevant to lattice based cryptography appear within in some form or
another.

Many research questions regarding lattices and their cryptographic
usage remain open. We hope that this book will help make lattice based
cryptography more accessible to a wider audience, and ultimately yield
further progress in this exciting research area.

Acknowledgments. Part of the material presented in this book is
based on joint work of the authors with Shai Halevi, Oded Goldreich,
Muli Safra and Jean-Pierre Seifert. Many other people have indirectly
contributed to this book, either through their work, or through many
conversations with the authors. Among them, we would like to men-
tion Miklds Ajtai, Ravi Kannan, Amit Sahai, Claus Schnorr, Madhu
Sudan and Salil Vadhan. We would like to thank all our coauthors and
colleagues that have made this book possible.

The first author would like to thank also the National Science Foun-
dation and Chris and Warren Hellman for partially supporting this work
under NSF Career Award CCR-0093029 and a 2001-02 Hellman Fellow-
ship.

DANIELE MICCIANCIO



Chapter 1

BASICS

This book is about algorithmic problems on point lattices, and their
computational complexity. In this chapter we give some background
about lattices and complexity theory.

1. Lattices

Let R™ be the m-dimensional Euclidean space. A lattice in R™ is the
set

n
L(by,...,by) = {Zmibi:miEZ} (1.1)
i=1
of all integral combinations of n linearly independent vectors by,...,b,

in R™ (m > n). The integers n and m are called the rank and dimension
of the lattice, respectively. The sequence of vectors by, ..., b, is called
a lattice basis and it is conveniently represented as a matrix

B = [by,...,b,] € R™*" (1.2)

having the basis vectors as columns. Using matrix notation, (1.1) can
be rewritten in a more compact form as

L(B) = {Bx:x € Z"} (1.3)

where Bx is the usual matrix-vector multiplication.

Graphically, a lattice can be described as the set of intersection points
of an infinite, regular (but not necessarily orthogonal) n-dimensional
grid. A 2-dimensional example is shown in Figure 1.1. There, the basis

vectors are
1 1
-] e[ 4] L)

D. Micciancio et al., Complexity of Lattice Problems
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Figure 1.1. A lattice in R?

and they generate all the intersection points of the grid when combined
with integer coefficients. The same lattice has many different bases. For
example, vectors

bl1=b1+b2=[%:|, b’2=2b1+b2=[§] (1.5)

!

are also a basis for lattice £(b;,bz). The grid generated by bj,bj is
shown in Figure 1.2. Notice that although the two grids are different, the
set of intersection points is exactly the same, i.e., {b1, b2} and {b}, b5}
are two different bases for the same lattice £(b;,bs) = L(b], b5).
Throughout the book, we use the convention that lattice points are
always represented as column vectors. Wherever vectors are more con-
veniently written as rows, we use transpose notation. For example,
the definition of vector bj, by in (1.4) can equivalently be rewritten as
b; = [1,2]7,by = [1,-1]7, where AT denotes the transpose of matrix

A simple example of n-dimensional lattice is given by the set Z™ of
all vectors with integral coordinates. A possible basis is given by the
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Figure 1.2. A different basis

standard unit vectors

In matrix notation Z" = L(I) where I € Z™*" is the n-dimensional
identity matrix, i.e., the n x n square matrix with 1’s on the diagonal
and 0’s everywhere else.

When n = m, i.e., the number of basis vectors equals the number of
coordinates, we say that £(B) is full rank or full dimensional. Equiv-
alently, lattice £(B) C R™ is full rank if and only if the linear span of
the basis vectors

span(B) = {Bx:x € R"} (1.6)

equals the entire space R™. The difference between (1.3) and (1.6) is
that while in (1.6) one can use arbitrary real coefficients to combine the
basis vectors, in (1.3) only integer coefficients are allowed. It is easy
to see that span(B) does not depend on the particular basis B, i.e.,
if B and B’ generate the same lattice then span(B) = span(B'). So,
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for any lattice A = £(B), we can define the linear span of the lattice
span(A), without reference to any specific basis. Notice that B is a
basis of span(B) as a vector space. In particular, the rank of lattice
L(B) equals the dimension of span(B) as a vector space over R and it
is a lattice invariant, i.e., it does not depend on the choice of the basis.

Clearly, any set of n linearly independent lattice vectors B’ € £L(B) is
a basis for span(B) as a vector space. However, B’ is not necessarily a
lattice basis for £(B). See Figure 1.3 for a 2-dimensional example. The
picture shows the lattice £(bj, bs) generated by basis vectors (1.4) and
the grid associated to lattice vectors

bl1=b1+b2=[f:|, b'2=b1——b2=|:2]. (17)

Vectors b} and b are linearly independent. Therefore, they are a basis
for the plane R? = span(b;,bj) as a vector space. However, they are
not a basis for £(b;, by) because lattice point b; cannot be expressed as
an integer linear combination of b} and bf. There is a simple geometric
characterization for linearly independent lattice vectors that generate
the whole lattice. For any n linearly independent lattice vectors B’ =
[bY,...,b}] (with b} € £(B) C R™ for all i = 1,...,n) define the half
open parallelepiped

P(B') = {B'x:0 < z; < 1}. (1.8)

Then, B’ is a basis for lattice £(B) if and only if P(B’) does not contain
any lattice vector other than the origin. Figures 1.1, 1.2 and 1.3 illustrate
the two cases. The lattice in Figures 1.2 and 1.3 is the same as the
one in Figure 1.1. In Figure 1.2, the (half open) parallelepiped P(B’)
does not contain any lattice point other than the origin, and therefore
L(B') = L(B). In Figure 1.3, parallelepiped P(B’) contains lattice point
b;. Therefore £(B’) # £(B) and B’ is not a basis for £(B).

Notice that since B’ is a set of linearly independent vectors, £(B') is a
lattice and B’ is a basis for £(B'). Clearly, £(B') C £L(B), i.e., any point
from lattice £(B’) belongs also to lattice £(B). When £(B’) C £L(B),
we say that £(B’) is a sublattice of £L(B). If L(B') = L(B) we say that
bases B and B’ are equivalent. If L(B') C L(B), but £(B') # £(B),
then bases B and B’ are not equivalent, and £(B') is a proper sublattice
of L(B).

Equivalent bases (i.e., bases that generate the same lattice) can be
algebraically characterized as follows. Two bases B,B’ € R™*" are
equivalent if and only if there exists a unimodular matrix U € Z™*" (i.e.,
an integral matrix with determinant det(U) = +1) such that B’ = BU.
The simple proof is left to the reader as an exercise.
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Figure 1.3. The sublattice generated by b; + bz and b; — b

When studying lattices from a computational point of view, it is cus-
tomary to assume that the basis vectors (and therefore any lattice vector)
have all rational coordinates. It is easy to see that rational lattices can
be converted to integer lattices (i.e., sublattices of Z™) by multiplying
all coordinates by an appropriate integer scaling factor. So, without loss
of generality, in the rest of this book we concentrate on integer lattices,
and, unless explicitly stated otherwise, we always assume that lattices
are represented by a basis, i.e., a matrix with integer coordinates such
that the columns are linearly independent.

Lattices can also be characterized without reference to any basis. A
lattice can be defined as a discrete nonempty subset A of R™ which is
closed under subtraction, i.e., if x € A and y € A, then also x —y € A.
Here “discrete” means that there exists a positive real A > 0 such that
the distance between any two lattice vectors is at least A. A typical
example is the set A = {x € Z™ Ax = 0} of integer solutions of a
system of homogeneous linear equations. Notice that A always contains
the origin 0 = x — x, it is closed under negation (i.e., if x € A then —x =
0 — x € A), and addition (i.e., if x,y € A thenx+y = x — (-y) € A).
In other words, A is a discrete additive subgroup of R™.
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1.1 Determinant

The determinant of a lattice A = L£(B), denoted det(A), is the n-
dimensional volume of the fundamental parallelepiped P(B) spanned by
the basis vectors. (See shaded areas in Figures 1.1 and 1.2.) The deter-
minant is a lattice invariant, i.e., it does not depend on the particular
basis used to compute it. This immediately follows from the character-
ization of equivalent bases as matrices B’ = BU related by a unimod-
ular transformation U. Geometrically, this corresponds to the intuition
that the (n-dimensional) volume of the fundamental parallelepiped P(B)
equals the inverse of the density of the lattice points in span(B). As an
example consider the bases in Figures 1.1 and 1.2. The areas of the fun-
damental regions (i.e., the shaded parallelepipeds in the pictures) are
exactly the same because the two bases generate the same lattice. How-
ever, the shaded parallelepiped in Figure 1.3 has a different area (namely,
twice as much as the original lattice) because vectors (1.7) only generate
a sublattice.

A possible way to compute the determinant is given by the usual
Gram-Schmidt orthogonalization process. For any sequence of vectors
by,..., by, define the corresponding Gram-Schmidt orthogonalized vec-
tors bj,...,b; by

i—1
b{ = bi— ) i b} (1.92)

=1

(b, b})
i = 1.9b
where (x,y) = Y %, ziy; is the inner product in R™. For every i,
b; is the component of b; orthogonal to by,...,b;_;. In particular,
span(by,...,b;) = span(bj,...,b}) and vectors b} are pairwise orthog-

onal, i.e., (b}, b;) = 0 for all  # j. The determinant of the lattice equals
the product of the lengths of the orthogonalized vectors

det(£(B)) = [T IIb;l (1.10)
=1

where ||x|| = /3, z? is the usual Euclidean length. We remark that the

definition of the orthogonalized vectors b} depends on the order of the
original basis vectors. Given basis matrix B = [by, ..., by,], we denote by
B* the matrix whose columns are the orthogonalized vectors [b], ..., b}].
Clearly, B* is a basis of span(B) as a vector space. However, B* is not
usually a lattice basis for £(B). In particular, not every lattice has a
basis consisting of mutually orthogonal vectors.
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Notice that if the b;’s are rational vectors (i.e., vectors with rational
coordinates), then also the orthogonalized vectors b} are rationals. If
lattice £(B) is full dimensional (i.e. m = n), then B is a nonsingular
square matrix and det(L£(B)) equals the absolute value of the deter-
minant of the basis matrix det(B). For integer lattices, B is a square
integer matrix, and the lattice determinant det(£(B)) = det(B) is an
integer. In general, the reader can easily verify that det(£(B)) equals
the square root of the determinant of the Gram matrix BTB, i.e., the
n x n matrix whose (i, j)th entry is the inner product (b;, b;):

det(L(B)) = 1/det(BTB). (1.11)

This gives an alternative way to compute the determinant of a lattice
(other than computing the Gram-Schmidt orthogonalized vectors), and
shows that if B is an integer matrix, then the determinant of £(B) is
always the square root of a positive integer, even if det(£(B)) is not
necessarily an integer when the lattice is not full rank.

1.2 Successive minima

Let Bn(0,7) = {x € R™ : ||x|| < r} be the m-dimensional open
ball of radius r centered in 0. When the dimension m is clear from the
context, we omit the subscript m and simply write B8(0,7). Fundamental
constants associated to any rank n lattice A are its successive minima
Aly--+sAn. The ith minimum A;(A) is the radius of the smallest sphere
centered in the origin containing 7 linearly independent lattice vectors

Ai(A) = inf {r: dim(span(A N B(0,7))) > i}. (1.12)

Successive minima can be defined with respect to any norm. A norm
is a positive definite, homogeneous function that satisfies the triangle
inequality, i.e., a function || - ||: R® — R such that

s ||x]| > 0 with equality only if x =0
o Jlax|| = |af - |1l
o lx+yll < lIxll + llyll

for all x,y € R"® and a € R. An important family of norm functions is
given by the £, norms. For any p > 1, the £, norm of a vector x € R" is

n 1/p
lIxllp = (Z af ) . (1.13a)
=1
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Important special cases are the {;-norm
n
lIxlly =Y |z, (1.13b)
i=1

the €2 norm (or Euclidean norm)

Ixll2 = V{x,x) = (1.13c)
and the o, norm (or max-norm)
. n
Ielloo = lim llx]lp = max|a;|. (1.13d)

We remark that when p < 1, function (1.13) is not a norm because it
does not satisfy the triangle inequality. Notice that the value of the
successive minima Aj,...,A,, and the lattice vectors achieving them,
depend on the norm being used. Consider for example the lattice

A ={ve€Z%v +vy=0mod 2} (1.14)

generated by basis vectors

2 1
o2 w0
Lattice vector b, is a shortest (nonzero) vector in £(b;, bs) with respect
the ¢; norm and A\, = ||by||; = 2 if the ¢; norm is used. However, b,

is not a shortest vector with respect to the ¢ or £, because in these
norms lattice vector b is strictly shorter than b; giving first minimum
AL = [|bz]l2 = V2 and A\; = ||bz|lee = 1, respectively. In this book we are
primarily concerned with the ¢ norm, which corresponds to the familiar
Euclidean distance

dist(x,y) = [Ix — yll2 = (1.16)

and will consider other norms only when it can be done without sub-
stantially complicating the exposition.

In the previous examples, we have seen that lattice (1.14) contains a
vector b such that ||[b|| = A;. It turns out that this is true for every
lattice. It easily follows from the characterization of lattices as discrete
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subgroups of R" that there always exist vectors achieving the successive
minima, i.e., there are linearly independent vectors x;,...,x, € A such
that ||x;|| = A; for alli = 1,...,n. So, the infimum in (1.12) is actually
a minimum if B(0,r) is replaced with the closed ball B(0,r) = {x €
R™ : ||x|| < r}. In particular, A\ (A) is the length of the shortest nonzero
lattice vector and equals the minimum distance between any two distinct
lattice points

M(A) = min [lx —y[ = omin 1l (1.17)

In the rest of this section we give a proof that any lattice contains
nonzero vectors of minimal length. In doing so, we prove a lower bound
for the first minimum that will be useful later on. The result is easily
generalized to all successive minima to show that there are n linearly
independent vectors vy,..., vy satisfying ||v;|| = A; foralli = 1,...,n.
Fix some lattice £(B), and consider the first minimum

AL = inf{||lv]| : v € L(B)/{0}}.

We want to prove that there exists a lattice vector v € £(B) such that
|lv]l = A1. We first prove that A is strictly positive.

THEOREM 1.1 Let B be a lattice basis, and let B* be the corresponding
Gram-Schmidt orthogonalization. Then, the first minimum of the lattice
(in the €2 norm) satisfies

A1 2 min ||bj]| > 0.
j

Proof: Consider a generic nonzero lattice vector Bx (where x € Z™ and
x # 0) and let ¢ be the biggest index such that z; # 0. We show that
|IBx|| > ||b}|| > min; ||b}|l. It follows that the infimum A; = inf||Bx||
also satisfies A\; > min; |fb‘~ ||. From basic linear algebra we know that
[(x,¥)| < |Ix||-|ly|l for any two vectors x,y. We prove that |(Bx,b})| >
|b}||?, and therefore ||Bx||-||b?|| > ||bZ||?. Since vectors b;’s are linearly
independent, ||b}|| # 0 and ||Bx|| > ||b}|| follows.

So, let us prove that |(Bx,b})| > ||b}||?>. From the definition of i, we
know that Bx = Z;’=1 b;z;. Using the definition of the orthogonalized
vectors (1.9a) we get

i

(Bx,b}) = Y (bj,b)z;
j=1

= (bia b;)m,
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= (b} + ) pi;b},bf)z;

j<i

= (b},b})zi+ Y _ pij(b}, b} )z
J<i

= [b}||?z:.

Since z; is a nonzero integer,

|(Bx, b})| = [Ib}|I* - |l 2 [0} O

In particular, the theorem shows that A\; > 0. We now prove that
there exists a nonzero lattice vector of length A;. By definition of A,
there exists a sequence of lattice vectors v; € £(B) such that

Lim [|vi| = A;.
1—00

Since \; > 0, for all sufficiently large 7 it must be ||v;|| < 2\, i.e., lattice
vector v; belongs to the closed ball

B(0,2);) = {z : ||z|| < 2\1}.

But set B(0, 2)) is compact, so, we can extract a convergent subsequence
Vi with limit

w = lim v;..

j—oo 7

Clearly, ||w|| = limj o0 ||Vi;|| = A1. We want to prove that w is a lattice
vector. By definition of w we have lim;_, ||vi; — || = 0. Therefore for
all sufficiently large j, ||[vi; — w|| < A1/2. By triangle inequality, for a
sufficiently large j and all k& > j,

Vi, = Vil < lvi; — wil + llw — i, || < Ar

But Vi; — Vi, is a lattice vector, and no nonzero lattice vector can have
length strictly less than A;. This proves that vi;—vi, =0, i.e, v; = v
for all kK > j. Therefore, w = limy v;, = vi;, and w is a lattice vector.

The above argument can be easily generalized to prove the following
theorem about all successive minima of a lattice.

THEOREM 1.2 Let A be a lattice of rank n with successive minima Ap,
..+, An. Then there exist linearly independent lattice vectors vy,...,vy €
A such that ||v;|| = A; foralli=1,...,n.

Interestingly, the vectors vy, ..., v, achieving the minima are not nec-
essarily a basis for A. Examples of lattices for which all bases must con-
tain at least one vector strictly longer than A, are given in Chapter 7.
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1.3 Minkowski’s theorems

In this subsection we prove an important upper bound on the product
of successive minima of any lattice. The bound is based on the following
fundamental theorem.

THEOREM 1.3 (BLICHFELDT THEOREM.) For any lattice A and for any
measurable set S C span(A), if S has volume vol(S) > det(A), then there
ezist two distinct points 21,29 € S such that z, — zo € A.

Proof: Let A = £(B) be a lattice and S be any subset of span(A) such
that vol(S) > det(B). Partition S into a collection of disjoint regions as
follows. For any lattice point x € A define

Sx = SN (P(B) +x) (1.18)

where P(B) is the half open parallelepiped (1.8). Here and below, for
any set A C R® and vector x € R”, expression A + x denotes the set
{y + x:y € A}. Notice that sets P(B) + x (with x € A) partition
span(B). Therefore sets Sx (x € A) form a partition of S, i.e., they are
pairwise disjoint and

S=J S

x€EA
In particular, since A is countable,

vol(S) = > vol(Sy)
X€EA

Define also translated sets
S; =S¢ —x= (S -x)NP(B)

Notice that for all x € A, set S} is contained in P(B) and vol(Sx) =
vol(Sy). We claim that sets S} are not pairwise disjoint. Assume, for
contradiction, they are. Then, we have

> vol(Sy) = vol (U s;) < vol(P(B)). (1.19)

x€EA x€A
We also know from the assumption in the theorem that
) vol(Sy) = D vol(Sx) = vol(S) > det(A). (1.20)
x€A x€EA

Combining (1.19) and (1.20) we get det(A) < vol(P(B)), which is a
contradiction because det(A) = vol(P(B)) by the definition of lattice
determinant.
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This proves that set S, are not pairwise disjoint, i.e., there exist two
sets Sy, Sy (for x,y € A) such that S, NS}, # 0. Let z be any vector in
the (nonempty) intersection Sy N Sy, and define

zZ, = z+X
z2o = z+Yy.

FromzeS,’(andze.S'J’,wegetzl € Sx CSandz; € Sy CS.
Moreover, z; # z2 because x # y. Finally, the difference between z,;
and z, satisfies

Z)—2Z2=X—-Yy €A, (1.21)

completing the proof of the theorem. O

As a corollary to Blichfeldt theorem we immediately get the following
theorem of Minkowski.

THEOREM 1.4 (CONVEX BODY THEOREM) For any lattice A of rank n
and any convez set S C span(A) symmetric about the origin, if vol(S) >
2" det(A), then S contains a nonzero lattice point v e SN A\ {0}.

Proof: Consider the set S’ = {x:2x € S}. The volume of S’ satisfies
vol(S§') = 27" vol(S) > det(A). (1.22)

Therefore, by Blichfeldt theorem there exist two distinct points z;,z9 €
S’ such that z; —z; € £(A). From the definition of S', we get 2z,,22z, € S
and since S is symmetric about the origin, we also have —2z; € S.
Finally, by convexity, the midpoint of segment [2z;, —22;] also belongs
to S, i.e.,
2Z1 + (—222)
2

This proves that v = z; — 2z, is a nonzero lattice point in S. O

=z —2€S8. (1.23)

Minkowski’s convex body theorem can be used to bound the length
of the shortest nonzero vector in an rank n lattice as follows. Let S =
B(0, \/ndet(A)/®) Nspan(A) be the open ball of radius \/ndet(A)'/" in
span(A). Notice that S has volume strictly bigger than 2™ det(A) because
it contains an n-dimensional hypercube with edges of length 2 det(A)1/".
By Minkowski’s theorem there exists a nonzero lattice vector v € £(B)\
{0} such that v € S, i.e., ||v|| < v/ det(A)}/™. This proves that for any
rank n lattice A, the length of the shortest nonzero vector (in the £
norm) satisfies

A1 < vndet(A)Y/™, (1.24)
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This result (in a slightly stronger form) is the well known Minkowski’s
first theorem. Minkowski also proved a stronger result involving all suc-
cessive minima, known as the second theorem of Minkowski. Namely,
\/ﬁdet(A)l/" is an upper bound not only to the first minimum A,
but also to the the geometric mean of all successive minima. While
Minkowski’s first theorem is easily generalized to any norm, the proof
of the second theorem for general norms is relatively complex. Here we
prove the theorem only for the simple case of the Euclidean norm.

THEOREM 1.5 (MINKOWSKI’S SECOND THEOREM) For any rank n lat-

tice L(B), the successive minima (in the € norm) A1,..., A\q satisfy
n 1/n
(H Ai> < vndet(B)/". (1.25)
i=1
Proof: Let x;,...,X, be linearly independent lattice vectors achiev-

ing the successive minima ||x;|| = A; and assume for contradiction that
[Ty Ai > (vn)"det(B). Consider the Gram-Schmidt orthogonalized
vectors x; and define the transformation

T (Z cix’{) = Z Aicix; (1.26)

that expands each coordinate x} by a factor A;. Let S '= B(0,1) N
span(B) be the n-dimensional open unit ball in span(B). If we apply T
to S we get a symmetric convex body T'(S) of volume

(H ,\i> vol(S)

(v/n)™ det(B) vol(S)
vol(y/nS) det(B)

where /nS is the ball of radius /n. The volume of \/nS is bigger than
2™ because /nS contains a hypercube with edges of length 2. Therefore,
vol(T'(S)) > 2™ det(B), and by Minkowski’s convex body theorem T'(.S)
contains a lattice point y different from the origin. Since y € T'(S), it
must be y = T'(x) for some x € S. From the definition of S we get
|Ix|]| < 1. Now express x and y in terms of the orthogonalized basis

vol(T(S))

v
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Since y is nonzero, some c; is not zero. Let k be the largest index such
that ¢; # 0, and k' < k the smallest index such that A\ys = A;. No-
tice that y is linearly independent from x,...,xx_; because (x},y) =
Akek||x;]|2 # 0 and x}, is orthogonal to xi, ..., Xx—1. We now show that

Iyl < Ak
2

*
E AiCiX;

i<k
= ) Ax|Ix;]
i<k

< Do NP

i<k

llyll?

2

= /\z Z CiX;]

i<k
= Alxl? < A%

This proves that x;,...,X_1,Y are k' linearly independent lattice vec-
tors of length strictly less than Ay = Ay, contradicting the definition of
the k'th successive minimum Ay, O

2. Computational problems

Minkowski’s first theorem gives a simple way to bound the length \;
of the shortest nonzero vector in a lattice £(B). Although Minkowski’s
bound is asymptotically tight in the worst case (i.e., there exist lattices
such that A\; > cy/ndet(B)/™ for some absolute constant ¢ indepen-
dent of n), in general A, can be much smaller than /n det(B)!/". For
example, consider the two dimensional lattice generated by orthogonal
vectors by = ee; and by = (1/€)e;. The determinant of the lattice is 1,
giving upper bound \; < v/2. However A\; = € can be arbitrarily small.

Moreover, the proof of Minkowski’s theorem is not constructive, in the
sense that we know from the theorem that a short nonzero vector exists,
but the proof does not give any computational method to efficiently find
vectors of length bounded by \/ndet(A)!/?, leave alone vectors of length
A1. The problem of finding a lattice vector of length A is the well known
Shortest Vector Problem.

DEFINITION 1.1 (SHORTEST VECTOR PROBLEM, SVP) Given a basis
B € Z™*", find a nonzero lattice vector Bx (with x € Z™\ {0}) such
that ||Bx|| < ||By|| for any other y € Z™\ {0}.
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The lack of efficient algorithms to solve SVP has led computer sci-
entists to consider approximation versions of the problem. In this book
we study this and other lattice problems from a computational point
of view. Throughout the book, we assume the standard computational
model of deterministic Turing machines. The reader is referred to (van
Emde Boas, 1990; Johnson, 1990) or any undergraduate level textbook
on the subject for an introduction to the basic theory of computability
and computational complexity. In the following subsection we simply
recall some terminology and basic definitions. Then, in Subsection 2.2
we describe SVP and other lattice problems in their exact and approx-
imation versions, and in Subsection 2.3 we give some background about
the computational complexity of approximation problems.

2.1 Complexity Theory

An alphabet is a finite set of symbols . A string (over ) is a finite
sequence of symbols from X. The length of a string y is the number
of symbols in y, and it is denoted |y|. The set of all strings over ¥ is
denoted £*, and the set of all strings of length n is denoted £". A Turing
machine M runs in time ¢(n) if for every input string w of length n (over
some fixed input alphabet ¥), M(n) halts after at most t(n) steps. We
identify the notion of efficient computation with Turing machines that
halt in time polynomial in the size of the input, i.e., Turing machines
that run in time t(n) = a + n® for some constants a, b independent of n.
A decision problem is the problem of deciding whether the input string
satisfies or not some specified property. Formally, a decision problem is
specified by a language, i.e., a set of strings L C ¥* and the problem
is given an input string w € X* decide whether w € L or not. The
class of decision problems that can be solved by a deterministic Turing
machine in polynomial time is called P. The class of decision problem
that can be solved by a nondeterministic Turing machine in polynomial
time is called NP. Equivalently, NP can be characterized as the set of
all languages L for which there exists a relation R C £* x £* such that
(z,y) € R can be checked in time polynomial in |z|, and z € L if and
only if there exists a string y with (z,y) € R. Such string y is called
NP-witness or NP-certificate of membership of z in L. Clearly, P C NP,
but it is widely believed that P # NP, i.e., there are NP problems that
cannot be solved in deterministic polynomial time.

Let A and B be two decision problems. A (Karp) reduction from A
to B is a polynomial time computable function f : ¥* — £* such that
z € A if and only if f(z) € B. Clearly, if A reduces to B and B can
be solved in polynomial time, then also A can be solved in polynomial
time. A (decision) problem A is NP-hard if any other NP problem B
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reduces to A. If A is also in NP, then A is NP-complete. Clearly, if
a problem A is NP-hard, then A cannot be solved in polynomial time
unless P = NP. The standard technique to prove that a problem A is
NP-hard (and therefore no polynomial time solution for A is likely to
exists) is to reduce some other NP-hard problem B to A. Another notion
of reduction which will be used in this book is that of Cook reduction.
A Cook reduction from A to B is a polynomial time Turing machine
M with access to an oracle that takes instances of problem B as input.
M reduces A to B, if, given an oracle that correctly solves problem B,
M correctly solves problem A. A problem A is NP-hard under Cook
reductions if for any NP problem B there is a Cook reduction from B
to A. If A is in NP, then we say that A is NP-complete under Cook
reductions. NP-hardness under Cook reductions also gives evidence of
the intractability of a problem, because if A can be solved in polynomial
time then P = NP. The reader is referred to (Garey and Johnson,
1979) for an introduction to the theory of NP-completeness and various
NP-complete problems that will be used throughout the book.

In the rest of this book algorithms and reductions between lattice
problems are described using some informal high level language, and
decision problems are described as sets of mathematical objects, like
graphs, matrices, etc. In all cases, the translation to strings, languages
and Turing machines is straightforward.

Occasionally, we will make use of other complexity classes and differ-
ent notions of reductions, e.g., randomized complexity classes or nonuni-
form reductions. When needed, these notions will be briefly recalled, or
references will be given.

Throughout the book, we use the standard asymptotic notation to
describe the order of growth of functions: for any positive real valued
functions f(n) and g(n) we write

s f = O(g) if there exists two constants a,b such that f(n) <a- f(n)
for alln > b.

s f=o0(g) if limpoeo f(n)/9(n) =0
= f=Q(9) if g=O(f)
= f=w(g)if g=o(f)

= f=0(g)if f=0(g) and g = O(f)-

A function f is negligible if f = o(1/g) for any polynomial g(n) = n°.
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2.2 Some lattice problems

To date, we do not know any polynomial time algorithm to solve SVP.
In fact, we do not even know how to find nonzero lattice vectors of length
within the Minkowski’s bound ||Bx|| < y/ndet(B)!/". Another related
problem for which no polynomial time solution is known is the Closest
Vector Problem .

DEFINITION 1.2 (CLOSEST VECTOR PROBLEM, CVP) Given a lattice
basis B € Z™*" and a target vector t € Z™, find a lattice vector Bx
closest to the target t, i.e., find an integer vector x € Z™ such that
IBx — t|| < ||By — t|| for any other y € Z"™.

Studying the computational complexity of these problems is the main
subject of this book. Both for CVP and SVP one can consider different
algorithmic tasks. These are (in decreasing order of difficulty):

s The Search Problem: Find a (nonzero) lattice vector x € A such that
|Ix — t|| (respectively, ||x||) is minimized.

s The Optimization Problem: Find the minimum of ||x — t|| (respec-
tively, ||x||) over x € A (respectively, x € A\ {0}).

s The Decision Problem: Given a rational » > 0, decide whether there
is a (nonzero) lattice vector x such that ||x — t|| < r (respectively,.
x|l < ).

We remark that to date virtually all known (exponential time) al-
gorithms for SVP and CVP solve the search problem (and therefore
also the associated optimization and decision problems), while all known
hardness results hold for the decision problem (and therefore imply the
hardness of the optimization and search problems as well). This sug-
gests that the hardness of solving SVP and CVP is already captured
by the decisional task of determining whether or not there exists a so-
lution below some given threshold value. We will see in Chapter 3 that
the decision problem associated to CVP is NP-complete, and therefore
no algorithm can solve CVP in deterministic polynomial time, unless
P = NP. A similar result holds (under randomized reductions) for SVP
(see Chapter 4).

The hardness of solving SVP and CVP has led computer scientists
to consider approximation versions of these problems. Approximation
algorithms return solutions that are only guaranteed to be within some
specified factor 7 from the optimal. Approximation versions for the SVP
and CVP search problems are defined below.
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DEFINITION 1.3 (APPROXIMATE SVP) Given a basis B € Z™*", find
a nonzero lattice vector Bx (x € Z™\ {0}) such that |Bx|| < v ||By]|
for any other y € Z™\ {0}.

In the optimization version of approximate SVP, one only needs to
find ||Bx]||, i.e., a value d such that A\;(B) < d < yA;(B).

DEFINITION 1.4 (APPROXIMATE CVP) Given a basis B € Z™*" and
a target vector t € Z™, find a lattice vector Bx (x € Z™) such that
|Bx — t|| < v||By — t|| for any other y € Z™.

In the optimization version of approximate CVP, one only need to find
|IBx — t||, i.e., a value d such that dist(t, £(B)) < d < vy dist(t, L(B)).
Both in the approximate SVP and CVP, the approximation factor 7y
can be a function of any parameter associated to the lattice, typically
its rank n, to capture the fact that the problem gets harder as this pa-
rameter increases. To date, the best known polynomial time (possibly
randomized) approximation algorithms for SVP and CVP achieve worst
case (over the choice of the input) approximation factors y(n) that are
essentially exponential in the rank n. Finding algorithms that achieve
polynomial approximation factors y(n) = n° (for some constant ¢ inde-
pendent of the rank n) is one of the main open problems in this area.

SVP and CVP are the two main problems studied in this book. Chap-
ter 2 describes efficient algorithms to find approximate solutions to these
problems (for large approximation factors). The computational com-
plexity of CVP is studied in Chapter 3. The strongest known hardness
result for SVP is the subject of Chapters 4, 5 and 6. There are many
other lattice problems which are thought to be computationally hard.
Some of them, which come up in the construction of lattice based cryp-
tographic functions, are discussed in Chapter 7. There are also many
computational problems on lattices that can be efficiently solved (in de-
terministic polynomial time). Here we recall just a few of them. Finding
polynomial time solutions to these problems is left to the reader as an
exercise.

1 Membership: Given a basis B and a vector x, decide whether x be-
longs to the lattice £(B). This problem is essentially equivalent to
solving a system of linear equations over the integers. This can be
done in polynomially many arithmetic operations, but some care is
needed to make sure the numbers involved do not get exponentially
large.

2 Kernel: Given an integral matrix A € Z"*™, compute a basis for the
lattice {x € Z™: Ax = 0}. A similar problem is, given a modulus M
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and a matrix A € Z3™, find a basis for the lattice {x € Z™: Ax =0
(mod M)}. Again, this is equivalent to solving a system of (homoge-
neous) linear equations.

3 Basis: Given a set of possibly dependent integer vectors by,...,b,,
find a basis of the lattice they generate. This can be done in a
variety of ways, for example using the Hermite Normal Form. (See
Chapter 8.)

4 Union: Given two integer lattices £(B;) and £(B3), compute a basis
for the smallest lattice containing both £(B;) and £(B3). This im-
mediately reduces to the problem of computing a basis for the lattice
generated by a sequence of possibly dependent vectors.

5 Dual: Given a lattice £(B), compute a basis for the dual of £(B),
i.e., the set of all vectors y in span(B) such that (x,y) is an integer
for every lattice vector x € £(B). It is easy to see that a basis for
the dual is given by B(BTB)~1.

6 Intersection: Given two integer lattices £(B;) and £(B3), compute
a basis for the intersection £(B;) N £L(B3). It is easy to see that
L(B;)NL(By) is always a lattice. This problem is easily solved using
dual lattices.

7 Equivalence: Given two bases B; and By, check if they generate the
same lattice £(B;) = £(B2). This can be solved by checking if each
basis vector belongs to the lattice generated by the other matrix,
however, more efficient solutions exist.

8 Cyclic: Given a lattice £L(C), check if £L(C) is cyclic, i.e., if for every
lattice vector x € £(C), all the vectors obtained by cyclically rotating
the coordinates of x also belong to the lattice. This problem is easily
solved by rotating the coordinates of basis matrix C by one position,
and checking if the resulting basis is equivalent to the original one.

2.3 Hardness of approximation

In studying the computational complexity of approximating lattice
problems, it is convenient to formulate them as promise problems. These
are a generalization of decision problems well suited to study the hard-
ness of approximation. A promise problem is a pair (IIygs,Ino) of
disjoint languages, i.e., [Iygs, [Ino € Z* and IIygs N IIno = 0. An al-
gorithm solves the promise problem (ITygs, [INo) if on input an instance
I € IlygsUIINo it correctly decides whether I € Ilygs or I € IIno. The
behavior of the algorithm when I ¢ IIygs U IIno (i.e., when I does not
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satisfy the promise) is not specified, i.e., on input an instance outside
the promise, the algorithm is allowed to return any answer.

Decision problems are a special case of promise problems, where the
set IINo = £* \ Ilygg is implicitly specified and the promise I € IIygs U
IINo is vacuously true. We now define the promise problems associated
to the approximate SVP and CVP. These are denoted GAPSVP,, and
GArPCVP,,.

DEFINITION 1.5 The promise problem GAPSVP.,, where v (the gap
function) is a function of the rank, is defined as follows:

® YES instances are pairs (B,r) where B € Z™*™ is a lattice basis and
r € Q a rational number such that ||Bz|| < r for some z € Z™\ {0}.

® NO instances are pairs (B,r) where B € Z™*" is a lattice basis and
r € Q is a rational such that ||Bz|| > yr for all z € Z™\ {0}.

DEFINITION 1.6 The promise problem GAPCVP.,, where v (the gap
function) is a function of the rank, is defined as follows:

® YES instances are triples (B,t,r) where B € Z™*" is a lattice basis,
t € Z™ is a vector and v € Q is a rational number such that |Bz —
t|| < r for some z € Z™.

® NO instances are triples (B, t,r) where B € Z™*" is a lattice, t € Z™
is a vector and v € Q is a rational number such that |Bz — t|| > r
for allz € Z™.

Notice that when the approximation factor equals v = 1, the promise
problems GAPSVP,, and GAP CVP, are equivalent to the decision prob-
lems associated to exact SVP and CVP. Occasionally, with slight abuse
of notation, we consider instances (B, r) (or (B,t,r)) where r is a real
number, e.g., r = V2. This is seldom a problem in practice, because
r can always be replaced by a suitable rational approximation. For
example, in the ¢; norm, if B is an integer lattice then r can be substi-
tuted with any rational in the interval [r, V72 +1). Promise problems
GAPSVP, and GAPCVP, capture the computational task of approxi-
mating SVP and CVP within a factor 7 in the following sense. Assume
algorithm A approximately solves SVP within a factor =, i.e., on input
a lattice A, it finds a vector x € A such that ||x|| < yA1(A). Then A can
be used to solve GAPSVP, as follows. On input (B, r), run algorithm A
on lattice £(B) to obtain an estimate r' = ||x|| € [A1,yA1] of the shortest
vector length. If r' > 7 then A\; > r, i.e., (B,r) is not a YES instance.
Since (B,r) € IIygs U IINo, (B,r) must be a NO instance. Conversely,
if 7' < 4r then A\; < yr and from the promise (B,r) € IIygs U IINo one
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deduces that (B,r) is a YES instance. On the other hand, assume one
has a decision oracle A that solves GAPSVP,,. (By definition, when the
input does not satisfy the promise, the oracle can return any answer.)
Let u € Z be an upper bound to A(B)? (for example, let u be the squared
length of any of the basis vectors). Notice that A(B, y/u) always returns
YES, while A(B,0) always returns NO. Using binary search find an in-
teger r € {0,...,u} such that A(B,/r) = YES and A(B, /r — 1) = NO.
Then, A;(B) must lie in the interval [\/r,7 - /7). A similar argument
holds for the closest vector problem.

The class NP is easily extended to include promise problems. We say
that a promise problem (ITygs, [Ino) is in NP if there exists a relation
R C ¥* x ©* such that (z,y) € R can be decided in time polynomial
in |z|, and for every z € Ilygg there exists a y such that (z,y) € R,
while for every y € IInyo there is no y such that (z,y) € R If the
input z does not satisfies the promise, then R may or may not contain
a pair (z,y). The complement of a promise problem (IIygs,Ino) is the
promise problem (IIno, [Iygs). For decision problems, this is the same
as taking the set complement of a language in £*. The class of decision
problems whose complement is in NP is denoted coNP. Also coNP can
be extended to include the complements of all NP promise problems.

Reductions between promise problems are defined in the obvious way.
A function f:X* — X* is a reduction from (Ilygs, I[Ino) to (ITygg, IIyo)
if it maps YES instances to YES instances and NO instances to NO in-
stances, i.e., f(Ilygs) C IIygg and f(IIno) € M. Clearly any al-
gorithm A to solve (ITygg, IIyg) can be used to solve (Ilygs,INo) as
follows: on input I € IIygs UIINo, run A on f(I) and output the result.
Notice that f(I) always satisfy the promise f(I) € IIygg U Iy, and
f(I) is a YES instance if and only if I is a YES instance. A promise
problem A is NP-hard if any NP language (or, more generally, any NP
promise problem) B can be efficiently reduced to A. As usual, prov-
ing that a promise problem is NP-hard shows that no polynomial time
solution for the problem exists unless P = NP. In the case of Cook
reductions, the oracle Turing machine A to solve problem (IIygs, [INo)
should work given any oracle that solves (ITygg, [Iyg). In particular, A
should work no matter how queries outside the promise are answered by
the oracle.

3. Notes

For a general introduction to computational models and complexity
classes as used in this book, the reader is referred to (van Emde Boas,
1990) and (Johnson, 1990), or any undergraduate level textbook on the
subject. Classical references about lattices are (Cassels, 1971) and (Gru-
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ber and Lekerkerker, 1987). Another very good reference is (Siegel,
1989). The proof of Minkowski’s second theorem presented in Subsec-
tion 1.3 is an adaption to the Euclidean norm of the proof given in
(Siegel, 1989) for arbitrary norms. None of the above references address
algorithmic issues related to lattice problems, and lattices are studied
from a purely mathematical point of view. For a brief introduction to
the applications of lattices in various areas of mathematics and science
the reader is referred to (Lagarias, 1995) and (Gritzmann and Wills,
1993), which also touch some complexity and algorithmic issues. A very
good survey of algorithmic application of lattices is (Kannan, 1987a).



Chapter 2

APPROXIMATION ALGORITHMS

In this chapter we describe efficient algorithms to approximately solve
SVP and CVP. For both problems, we solve the search version: we
give polynomial time algorithms to find approximately shortest nonzero
vectors in a lattice, or lattice vectors approximately closest to a given
target point. The approximation factor achieved is exponential in the
rank of the lattice. In Section 1 we start with an algorithm to solve
SVP in dimension 2. For the special case of 2-dimensional lattices,
we are able to solve SVP exactly and find a lattice vector of length
lla]] = A1. In fact, we can find a lattice basis [a,b] with ||a|| = A\
and ||b|| = A2. So, the algorithm determines all successive minima of
the lattice. The algorithm works for any (efficiently computable) norm
|| - |l, and it is, essentially, the generalization to arbitrary norms of an
algorithm of Gauss. Then, in Section 2, we extend Gauss algorithm
to n-dimensional lattices. This is the famous Lenstra-Lenstra-Lovasz
(LLL) lattice reduction algorithm (Lenstra et al., 1982). The extension
comes at a price: the LLL algorithm does not find a lattice vector of
length A;, but only a y(n) = (2/v/3)" approximation, i.e., a nonzero
lattice vector of length at most (n)-A;. Finally, in Section 3 we use the
LLL algorithm to approximately solve CVP. Also for CVP, the (worst
case) approximation factor achieved is O((2/v/3)") where n is the rank
of the lattice. Section 4 concludes the chapter with an overview of the
latest developments in the design of approximation algorithms for lattice
problems, and (exponential time) algorithms to solve lattice problems
exactly.

D. Micciancio et al., Complexity of Lattice Problems

© Kluwer Academic Publishers 2002
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1. Solving SVP in dimension 2

In this section we describe an algorithm to solve SVP for lattices in
dimension 2. The algorithm is generic with respect to the norm, i.e., it
correctly computes a shortest vector in the lattice with respect to any
norm | - ||, provided | - || can be efficiently evaluated. In the rest of this
section | - || isan arbitrary, but fixed, norm. The input to the algorithm
is a pair of linearly independent (integer) vectors a,b. We want to find
a new basis [a’,b’] for £([a,b]) such that ||a’|| = A; and ||b'|| = Ao,
where N and A2 are the minima of the lattice with respect to || - ||. The
presentation is structured as follows:

» In Subsection 1.1 we introduce a notion of reduced basis (for two
dimensional lattices), and prove that a basis is reduced if and only if
the basis vectors have length A, and A,.

s In Subsection 1.2 we give an algorithm that on input a 2-dimensional
lattice, computes a reduced basis.

s Finally, in Subsection 1.3 we prove that the algorithm terminates in
polynomial time.

1.1 Reduced basis

We define a reduced basis for 2-dimensional lattices as follows.

DEFINITION 2.1 Let [a,b] be a lattice basis. The basis is reduced (with
respect to norm || - ||) if

llall, lIbll < lla + bl [la — bl|.

Geometrically, this definition means that the diagonals of the funda-
mental parallelepiped associated to the basis of the lattice are at least
as long as the edges. (See Figure 2.1.) This definition of reduced basis
is motivated by the fact that a basis is reduced if and only if a and
b have length A; and A;. In order to prove this fact we need the fol-
lowing lemma, which, informally, states that if our distance from some
point increases as we move in a straight line, then the distance will keep
increasing as we keep moving in the same direction.

LEMMA 2.1 Consider three vectors on a line, X, x+Yy, and x+ay, where
€ (1,00). (See Figure 2.2.) For any norm || - ||, if ||x|| < ||x+y|| then
Ix+yll < llx+ayll. Moreover, if||x|| < |lx+yl| then [x+yl| < llx+ay].

Proof: We prove the lemma for the case in which the inequality is strict.
The proof of the other case is easily obtained replacing all “<” signs with
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Figure 2.1. A reduced basis in 2 dimensions

“<”. Let d = 1/a. Then
x+y=(1-90)x+6(x+ay)
By triangle inequality
Ix +yll < (1 =6)lIx|l + dlx + ay]l. (2.1)
Also, from ||x|| < ||x + y|| we get
(1 = 8)lix|l + dllx + eyll < (1 = d)lIx +yll + &llx + ay]l- (2.2)
Combining (2.1) and (2.2) we get
Ix +yll < (1-26)llx +yll + éllx + eyl
which, after rearranging and simplifying the terms, gives
Sllx +yll < 8llx + ayll. (2.3)

Since § > 0, we can divide (2.3) by d and get ||x + y|| < ||x + ay] as
claimed in the lemma. O

We can now establish a relation between reduced bases and the suc-
cessive minima of the lattice.
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X+y
X + ay

Figure 2.2. Three points on a line

THEOREM 2.2 Let [a,b] be a lattice basis, and let A\; and Ao be the
successive minima of the lattice. Then, [a,b] is reduced if and only if a
and b have norm A\; and Xs.

Proof: First assume that the lengths of a and b equal the successive
minima of the lattice, and assume, without loss of generality that ||a|| <
|Ibl|, i.e., ||a]l = A1 and ||b|| = X2. By definition of \; we know that
|la— b|| and ||a + b|| are at least as large as ||al|. Moreover, since [a, b]
is a basis, b is linearly independent from a, and therefore each of a — b
and a + b is linearly independent from a. By definition of the second
minimum Ap we get

Ay < max{]|a], |la - b[|} = ||la - bl

and
A2 < max{||all,]la +b||} = [la+ b]|.

This proves that
lall, Ibll < X2 < [la + b, |la - b]|.

Now assume that ||a||, ||b]| < |la+ b, |la — b||. Also assume, without
loss of generality, that |a]| < [|b||. We want to prove that ||a]| = A; and
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|[b]| = A2. Let r,s € Z, and consider a generic lattice vector ra + sb.
We show that

lal| < ||ra + sb|| for all (r,s) # (0,0) (2.4)

and
Ibl| < ||ra + sb| for all s # 0. (2.5)

Notice that (2.4) says that a is at least as short as any other nonzero
lattice vector, i.e., ||a|| = A;. Similarly, (2.5) says that b is at least as
short as any lattice vector linearly independent from a. Provided a is
a shortest vector in the lattice, this proves that ||b|| = A2. In order to
prove (2.4) and (2.5) we distinguish three cases:

s If s =0thenr #0 and ||a|| < ||ra|l = ||ra + sb||, proving (2.4).

s If r = 0 then s # 0 and ||a|| < ||b|| < [|sb]| = |[ra + sb||, proving
both (2.4) and (2.5).

s Finally, if r,s # 0 are both nonzero, assume r > s > 0 (the other
cases are similar and left to the reader as an exercise). Since s is a
nonzero integer, we have s > 1 and therefore

ra+ sb

lI(r/s)a+b|| = < [lra + sbl|.

Now consider the three points ||b||, |b+a|| and ||b+ (r/s)al|. Notice
that ||b|| < |b + a|| and r/s > 1. Therefore by Lemma 2.1

llall, IIbll < lla+bll < [Ib+ (r/s)all < |lra+ sb|
proving (2.4) and (2.5).

This completes the proof that the vectors of a reduced basis are as short
as possible. O

1.2  Gauss’ algorithm

In this subsection we describe an algorithm to find a reduced basis for
any 2-dimensional lattice. The algorithm, given in Figure 2.3, works by
computing a sequence of bases satisfying the following property.

DEFINITION 2.2 A basis [a,b] is well ordered if ||a|| < ||a— b|| < ||b]|.

Since the input basis [a, b] is not necessarily well ordered, the first
thing to do is to compute a well ordered (or reduced) basis for £([a, b]).
This is easily accomplished by a simple case analysis. (See part of the
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Input: two linearly independent vectors a and b.
Output: a reduced basis for lattice £([a, b]).

(start): if ||a]| > ||b|| then swap(a, b)
if |]a—Dbl|| > ||a+ b|| then let b := —b
if ||b|| < ||a — b|| then return [a, b]
if ||la|| < ||la — b|| then go to (loop)
if ||la|| = ||b|| then return [a,a — b]
let [a,b] := [b — a, a
(loop): Find g € Z such that |b — pa|| is minimal
if |[a — b|| > ||a + b|| then let b := —b
swap(a,b)
if [a, b] is reduced
then return [a, b]
else go to (loop)

Figure 2.3. The generalized Gauss algorithm

code in Figure 2.3 before the (loop) label.) Details follow. Without loss
of generality, assume that ||a|| < ||b|| (which can be achieved by possibly
swapping a and b) and |la — b|| < |la + b|| (which can be achieved by
possibly changing the sign of b). If ||b|| < ||a — b|| then [a, b] is reduced
and the algorithm immediately terminates. So, we can assume |[a—b|| <
|Ib||. If ||a]l < ||]a — b]| then [a,b] is well ordered and we can proceed
to the loop. So, assume |la — b|| < ||a||. If ||al| < ||b||, then [b — a, —a]
is a well ordered basis, and we can proceed to the loop after suitably
modifying the basis. The only other case is ||a — b|| < ||a|| = ||b]|, but
in this case [a,a — b] is reduced because ||a — (a — b)|| = ||b|| = ||a]| and
la+ (a— b)|| = |2a — b]| > 2]al| - [Ib]| = [lall.

At this point, unless a reduced basis has been found, we have a well
ordered basis [a, b] and the algorithm enters a loop which consists of the
following three steps.

1 Find an integer u such that the value of ||b — pa|| is minimal. In
other words, we make b as short as possible by subtracting an integer
multiple of a. (See below for details.)

2 If |la—b|| > |]a+ b||, then let b = —b. Notice that at the end of this
step we always have ||la — b|| < ||a + b||.

3 If [a, b] is not reduced, then swap a and b and go to the first step.
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The problem of finding an integer p such that ||b — pa|| is minimized
needs further explanations. In the following lemma we show how this
can be efficiently done for any efficiently computable norm.

LEMMA 2.3 Let ||-|| an efficiently computable norm, and let a and b be
two vectors such that ||b|| > ||b — al||. Then, one can efficiently find an

integer p such that |b — pa|| ¢s minimal. Moreover, p satisfies p > 1
and p < 2||bl|/||al.

Proof: Let ¢ = [2||b||/||al|]. By triangle inequality,
|Ib — call > cllall — IIb]l > [Ib],

and, using Lemma 2.1, we get |b — cal| < ||b — (c + 1)al|. So, we see
that ||b — kal| < ||b— (k+1)a|| is true for k£ = ¢, but it is false for k = 0.
Using binary search we can efficiently find an integer 1 between 1 and ¢
such that ||b — ka|| < ||b — (k + 1)a|| is true for k = p + 1 and false for
k=up,ie.,

Ib— (4 —1)all > |lb - pal| <[[b - (x+1)al|.

We claim that this value of y minimizes the norm ||b — ka|| (over all
possible integers k). In fact, by Lemma 2.1, for all £ > u + 1, we have
b — pal| < ||b— (¢ + 1)a|| < ||b — ka||. Similarly, for all k < p —1,
Ib— pall < [Ib— (4 — Dall < [Ib - kall. O

In order to use Lemma 2.3, we need to show that at the beginning of
each iteration, [a, b] is well ordered, and therefore ||b|| > ||a — b||. This
is proved in the next lemma.

LEMMA 2.4 In any ezecution of the generalized Gauss algorithm, at the
beginning of each iteration basis [a,b] is well ordered.

Proof: We have already seen that the basis is well ordered the first time
the loop is entered. We need to prove that at the end of each iteration
(a,b] is either reduced (in which case the program terminates) or well
ordered (in which case the loop is repeated). Let [a,b] be the (well
ordered basis) at the beginning of the loop, and let [a’,b’] be the basis
computed by the body of the loop. We have a’ = +(b — pa) and b’ = a.
From the second step of the loop we know that ||a' — b|| < ||a’ + b/||.
Moreover, we know that ||a' —b’|| = || £ (b—pa)—a|| = ||b— (k£ 1)a|,
which, by the choice of p, is at least ||(b — pa)|| = ||a’||. This proves
that ||a’|| < |la’ — b’|| < ||a’ + b’||. Now there are two possible cases. If
|Ib'|| < ||]a’ — b||, then [a’, b’] is reduced. Otherwise, ||b’|| > ||a’ — b’|| >
|a’|| and [a’, b'] is well ordered. O

We are now ready to prove the correctness of the generalized Gauss
algorithm.
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THEOREM 2.5 On input any two linearly independent vectors [a, b], the
generalized Gauss algorithm shown in Figure 2.3 always terminates and
correctly computes a reduced basis for lattice L([a, b]).

Proof: The algorithm performs elementary column operations, there-
fore [a, b] is always a basis of the original lattice. Moreover, if the algo-
rithm terminates then the basis [a, b] is clearly reduced. It only remains
to be proved that the algorithm actually terminates and does not loop
forever. This is easily argued as follows. We know from Lemma 2.4 that
at the beginning of each iteration, [a,b)] is well ordered. In particular
|lb — a|| is strictly less than b. Therefore, b is replaced by a new vector
b — pa strictly shorter than b. This proves that at every iteration one
of the basis vectors gets strictly shorter. In particular, the values taken
by the pairs [a, b] never repeat, and they are all shorter than the input
basis. Since there are only finitely many lattice vectors of length at most
lla]l + |Ib]|, the algorithm must stop after a finite number of iterations.
O

1.3 Running time analysis

In this section we prove that the generalized Gauss algorithm termi-
nates in polynomial time. We have already proved that the algorithm
always terminates and that each iteration can be performed in polyno-
mial time. We still have to show that the number of iterations is also
polynomial in the size of the input.

Let k be the total number of iterations performed on input [a, b].
Let [ak,ak+1] be the (well ordered) basis at the beginning of the first
iteration. Any subsequent iteration is performed on a well ordered basis
[ai, @;+1], until a reduced basis [a;, a3] is found. (Notice: we are using the
indices in reverse order!) Let (a;,ag,...,ax,a,;;) denote the sequence
of values obtained during the execution of the algorithm.

In order to prove that k is polynomial in the size of the input, we show
that the length of a; decreases at every iteration at least by a factor 2.

LEMMA 2.6 For everyi > 3, ||ai|| < 1/2||laj+1]l-

Proof: Consider the subsequence (a;—1,a;,a;+1). In order to keep no-
tation simple, we rename this sequence as (a, b, c). We know that [a, b]
and [b, c] are both well ordered, |a| < ||b| < ||c||, and a = €(c — ub)
for some integer 4 > 1 and € = £1. Multiplying both sides by ¢, we get
c = ea + ub. We prove that ||c|| > 2||b|| by cases:

» Case p = 1. This case is not possible because ||c — b|| = ||a|| < ||b||
would contradict the assumption that [b,c] is well ordered.



Approzimation algorithms 31

= Case € = —1,u = 2. Also not possible because ||c — b|| = || — a + b||
would contradict either |ja — b|| < ||b|| or ||b]| < ||b = c]|.

s Case € = —1,u > 2. In this case,
llell = Il — a+ pbll 2 kbl - ||a|
which, by ||a|| < ||b]|, is strictly bigger than
plol] = Mol = (u — 1){Ibl| = 2]|b]l.
s Case € = 1,4 > 2. We know that ||b — a|| < ||b|| because [a,b]
is well ordered. Therefore, by Lemma 2.1, ||b|]| < ||b + a||. Using

|la]| < ||a—Db]|| we also get ||a]| < ||b+a]||, and by repeated application
of Lemma 2.1

lall < lla+b|l < |la+2b| < |la+ ub].

This proves that ||c|| = ||a+ ub|| > ||2b + a]|. We want to prove that
|I2b + a|| > 2||b||. Consider the point 2b — a. By triangle inequality
and using ||a — b|| < ||b]|, we get

[I2b — a|| < [[bl| + [Ib —al| < |Ib]| + [[b]| = ||2bl.
Applying Lemma 2.1 one last time we get
I2b — a|| < ||2b]| < [I2b + al,
proving that ||c|| > 2||b]|.

This proves that ||c|| > 2||b]|, i.e., ||aj+1]| > 2||a]]. O

By induction, we immediately get that for all i > 1, ||a;| > 2¢~3||as]).
In particular, for any input integer vectors a, b,

2872 < 27?|laa)| < llagsall < fall + bl

This proves that k£ < 2+log,(||al|+||b||), and therefore the running time
of the generalized Gauss algorithm is polynomial in the input size.

THEOREM 2.7 For any efficiently computable norm || - ||, there ezists a
polynomial time algorithm that on input two linearly independent integer
vectors a,b, outputs a basis [a',b’] for L([a,b]) such that ||@'| = N\
and ||b’|| = A2. In particular, SVP in dimension 2 can be solved in
polynomial time.
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2. Approximating SVP in dimension n

In the previous section we described a polynomial time algorithm to
find the shortest vector in 2-dimensional lattices. The algorithm was
developed in three steps.

1 We first defined a notion of reduced basis for 2-dimensional lattices,
and showed that the first vector of a reduced basis is a shortest
nonzero vector in the lattice

2 Then we gave an algorithm to compute a reduced basis.
3 Finally, we proved that the algorithm terminates in polynomial time.

In this section we do the same for n-dimensional lattices, although this
time we can only prove that the first vector in a reduced basis is within
an exponential factor y(n) = (2/v/3)" from the shortest. So, the algo-
rithm does not necessarily finds the shortest vector in the lattices, but
it computes a lattice vector that is guaranteed to be at most y(n)\;
in length. Although the n-dimensional algorithm can also be adapted
to a variety of norms (Lovdsz and Scarf, 1992), for simplicity here we
consider only the Euclidean norm ;.

2.1 Reduced basis

The definition of reduced basis for 2-dimensional lattices in the case
of the ¢2 norm can be reformulated as follows.
DEFINITION 2.3 A basis B = (b1, bs) is reduced if
" 21 <3
= /byl < [lbel
where pa 1 is the Gram-Schmidt coefficient gf:g: .

The reader can easily check that Definition 2.1 and Definition 2.3 are
equivalent when the £ norm is used. We want to generalize this notion to
n-dimensional lattices. Remember the Gram-Schmidt orthogonalization
process:

. (b;, bJ)
bi = bi - Z Ml,]b; where Hij = (b—*,G*—
1<a 7’
XVe define projection operations 7; from R™ onto span(b}, b}, ,...,by)
y
n
(x,b7) |
mi(x) = ij. (2.6)
j=i V177
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For any vector x € span(B), m;(x) is the component of x orthogonal to
by,...,b; — 1. In particular, the Gram-Schmidt orthogonalized vectors
can be expressed as b} = m;(b;).

We can now define reduced bases for n-dimensional lattices. For rea-
sons that will be clarified in the running time analysis of the basis re-
duction algorithm, we introduce a real parameter 1/4 < § < 1 and
parameterize the definition of reduced bases by 4.

DEFINITION 2.4 A basis B = [by...by] € R™*" is LLL-reduced with
parameter § (0 LLL-reduced, for short) if

1 |pij| < 3 for alli > j, where p;; are the Gram-Schmidt coefficients,
2 for any pair of consecutive vectors b;, b;41,

Slimi(03)|1* < llmi(big1) || (2.7)

If § = 1, the above definition says that for any 1 = 1,...,n — 1,
the 2-dimensional basis [m;(b;), m;i(bit+1)] is reduced. In the rest of this
subsection, we prove that the first vector in a dLLL-reduced basis is not
much longer than ;.

LEMMA 2.8 If B = [b;...b,] € R™*" is an §LLL-reduced basis with
6 € (1/4,1), then |by|| < (2/V40 —1)""'\,. In particular, if § =
(1/4) + (3/4)™/™=1) then ||by]| < (2/V3)"\1.

Proof: Notice that if the basis is LLL reduced, then for all ¢
SIBIIZ = dllm(bl < llm:(bisr) 1
= |Ib},; + pis1,ib} |
= |Ibll® + s srlIb] 12

* l *
||bi+1||2 + Z”bi”2

I

IN

and rearranging the terms

1 * *
(5= 5) oie? < ozl (28

So, the orthogonalized vectors ||b}|| can get shorter and shorter as i
increases, but not too fast. For example, if § = 3/4, then each ||b},,|| is

at most v/2 times as short as ||b}||. By induction on i — j, (2.8) implies
that for all ¢ > j

1 = *)12 2
(5-3) w3 <o, (29)
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and, in particular,

n—1

bl > (5- ) R (s-5) " wut

Using the lower bound A; > min; ||b}|| from Theorem 1.1, we get

n—1

1\ =
w2 minbil 2 (5= ) 7 bl

proving that ||b; || is at most (§—1/4)(1=")/2 times longer than A;. Setting
6 = (1/4) + (3/4)~™=1) we get ||byl < (2/V3)"1. O

2.2 The LLL basis reduction algorithm

We know that the first vector of any JLLL-reduced basis (with § =
(1/4) + (3/4)™(=1)) is within a factor (2/v/3)" from the optimal. In
this subsection we describe an algorithm to compute LLL reduced bases.
This is the LLL basis reduction algorithm of Lenstra, Lenstra and Lovisz
(Lenstra et al., 1982). The 2-dimensional lattice reduction algorithm of
Gauss (specialized to the ¢; norm) is essentially the following:

1 Reduction Step : by := by — cb, where ¢ = [(gf’:i J

2 Swap Step : if ||by|| > ||bz|| then swap b; & ba.
3 If (by, b2) is not reduced repeat.

Notice that after the reduction step, we always have |p21| < 1/2. The
LLL algorithm follows the same outline, alternating a reduction step,
after which |u; j| < 1/2 for all ¢ > j, and a swap step, in which pairs of
adjacent vectors are exchanged. The algorithm is shown in Figure 2.4.
In the rest of this subsection we explain the algorithm and argue that if
it ever terminates, the output is correct.

In the reduction step we want to ensure |u; ;| < 1/2 for all ¢ > j.
This can be achieved using a simple modification of the Gram-Schmidt
orthogonalization process. Namely, we iteratively define the sequence
of vectors bi,..., b}, where b} = b; and each b} is obtained subtract-
ing appropriate integer multiples of b} (with j < i) from b;. Since B’
is obtained from B = [by,...,b,] by a sequence of elementary integer
column operations, B and B’ are equivalent bases. The only other oper-
ation performed on B’ (after the reduction step) is rearranging the order
of the columns in the swap step. Therefore at the end of each iteration
B is a basis for the input lattice.
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Input: Lattice basis B = [by,...,b,] € Z™*"
Output: An LLL reduced basis for £(B).

(loop): fori=1,...,n
forj=i—1,...,1
b; :=b; — ci,jb]’ where Cij= l_(bi,bj)/<bj, bj)]
if 8|mi(by)[|* > ||lmi(bit1)||* for some
then swap b; and b;;; and go to (loop)
else output B.

Figure 2.4. The LLL basis reduction algorithm

Notice that the orthogonalized bases B* associated to B before and
after the reduction step are the same, i.e., the transformation B — B’
defined above does not change the orthogonalized vectors bj. However,
one can easily check that after the transformation B — B’ all Gram-
Schmidt coefficients p; ; (with ¢ > j) of the new basis B’ satisfy |p; ;| <
1/2.

After the reduction step has been performed (and condition |p; ;| <
1/2 is satisfied), we check that the second property of LLL reduced bases
(2.7) holds for all pairs of consecutive vectors b;, b;1;. If for some 4

N EACH ] R LA (2.10)

we swap b; and b;;. Several pairs might violate property (2.7). Which
pair is selected to be swapped does not matter. In the original LLL
algorithm ¢ was chosen to be the smallest index such that (2.10), but
any selection is equally good. Actually, one can even swaps several
disjoint pairs at the same time.

If any two vectors are swapped then the basis is not necessarily length
reduced anymore. (Le., the Gram-Schmidt coefficients might be |p; ;| >
1/2.) So, we go back to the reduction step and repeat the whole process.

It is clear that if at some point, after the reduction step, no pair of
consecutive vectors need to be swapped, then B is an LLL reduced basis.
Moreover, the final matrix B is equivalent to the original input matrix
because it has been obtained from it through a sequence of elementary
column operations.

Therefore, if the LLL algorithm ever terminates, the output is an LLL
reduced basis. The termination of the algorithm is proved in the next
section, together with a polynomial bound on the running time.
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2.3 Running time analysis

In order to show that the algorithm runs in polynomial time, we have
to prove that the number of iterations is polynomial in the input size,
and each iteration takes polynomial time. We first bound the number
of iterations.

Bounding number of iterations

The number of iterations performed by the algorithm equals the num-
ber of times that any two adjacent vectors are exchanged during the
swap step. In order to bound this number we associate a positive inte-
ger to the basis B and prove that each time two vectors are swapped
this integer decreases by a factor 4. It follows that the number of iter-
ations is logarithmic in the integer associated to the initial basis. For
any k = 1,...,n, consider the sublattice A, = L([by,...,bx]) generated
by the first k basis vectors. Since Ay is an integer lattice, det(Ax)? is a
positive integer. The integer associated to basis B is

d= ﬁ det(Ag)?. (2.11)

i=1

Notice that the reduction step does not affect the value of d because
the orthogonalized vectors b} are not modified by the reduction step
and each det(Ax) can be expressed as a function of ||bj||,...,||bg|l. We
want to prove that when two vectors b;, b;;; are swapped, d decreases
by a factor 6. Let d and d’ be the value of d before and after the swap.
Similarly, let Ax and A}, be the lattice generated by [by,...,by] before
and after the swap. Recall that vectors b;, b;4+; are selected in the swap
step only if (2.10) holds. We observe that when vectors v; and v;;;
are exchanged, det(Ay) stays the same for all k¥ # i. This is because
for k < i basis [by,...,bg] is not modified, while for k¥ > i we are only
changing the order of two vectors in [by,...,bg]. In either case, the
lattice Ax = A}, is unchanged, and det(Ax) = det(A}) is the same before
and after the swap. Therefore we have

d _ det(A;) _ det([bl,...,bi_l,bi+1])2

d ~ det(A;) det([by, ..., b;))?
(T3 IB3112) - llmi(byga) 112
NHE
|| (biy1)l|?

[|7:(bs)|[?
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which, by (2.10) is less than 4. This proves that d decreases at least by a
factor ¢ at each iteration. Let dy be the integer associated to the input
matrix, and let di be the integer associated to B after k iterations. By
induction on k,

dy. < 8%dp.
Since dy, is a positive integer, 6¥dy > 6 > 1 and for any 6§ < 1 it must
be
Indy
~ In(1/6)"

Since dp is computable in polynomial time from B, Indp is clearly
polynomial in the input size. If § is set to any fixed constant less than
1, then the (In(1/4))~! factor increases the number of iterations only
by a constant factor. The following lemma shows that one can even set
d to some increasing function of n with lim,_,, § = 1 and still have a
polynomial number of iterations.

LEMMA 2.9 If § = (1/4) + (3/4)"(»~1), then for all ¢ > 1 and all
sufficiently large n, (In(1/6))~! < n®.
Proof: Let § = (1/4) + (3/4)™("~1). We want to prove that (In(1/6))"!
is at most n¢, or equivalently 1 — e(=(1/7)°) < 1 — § for all sufficiently
large n. Notice that 1 — 4 = (3/4)(1 — (3/4)/(*~1)). We show that the
limit (for n — o0o) of
1 — e(=(1/n)%)
(3/4)(1 = (3/4)V/(»=1)
is strictly less than 1. It follows that for all sufficiently large n, (2.12)
is less than 1, and 1 — e(=(1/n)%) < (3/4)(1 — (3/4)Y/(*=V). In fact, we
can prove that the limit of (2.12) is 0. Let £ = 1/(n — 1) and substitute
n=1+1/z in (2.12) to get
1 — e—(z/(1+2))°
-
11-(3))
We compute the limit of (2.13) for z — 0. Both the numerator and the
denominator tend to 0, so we can use L’Hopital’s rule and obtain

(2.12)

(2.13)

c—1
_ o= (z/(142))* e~(@/(+z)° ¢ ( =z
lim 13 c sz = lim — 2+zi2 (1+z) _ o
220 3(1-(3)%) =0 1 (2) In(4/3)

This proves that with polynomially many iterations, the LLL al-
gorithm approximates the shortest vector in a lattice within a factor

(2/V3)".
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Bounding the running time of each iteration

The number of arithmetic operations performed at each iteration is
clearly polynomial. So, in order to prove a polynomial bound on the
running time we only need to show that the size of the numbers involved
in the entire computation also is bounded by a polynomial in the input
size. The LLL algorithm uses rational numbers, so we need to bound
both the precision required by these numbers and their magnitude.

From the Gram-Schmidt orthogonalization formulas (1.9a), (1.9b) we
know that b; — b} belongs to span(by,...,b;—_1), ie.,

i —b!= va (2.14)

for some reals numbers v; ;. (Notice that these real numbers are different
from the Gram-Schmidt coefficients y; ;. In particular |v; ;| can be bigger
than 1/2.) Let ¢ < i and take the scalar product of (2.14) with b;. Since
b} is orthogonal to b, we get

(bi,by) = Z vi,j(bj, b). (2.15)

Let B; = [by,...,b;] and v; = [vi1,...,v;i-1]T. Combining equations
(2.15) forallt =1,...,i— 1, we get

T TRT
bi Bi_l =V; Bi—lBi-—l-

So, v; is the solution to a system of linear equations with coefficient
matrix (BY ;B;_;). Let di_; = det(BY B;_;) = det(Ai_1)?, where
Ai_; is the same sublattice defined in the analysis of the number of
iterations. By Cramer’s rule d;_;v; is an integer vector. We use this
property to bound the denominators that can occur in the coefficients
pij and orthogonalized vectors b;. Notice that

i-1
di—1-b] =di_; -b; + Z(di—lvi,j)bj
i=1
is an integer combination of integer vectors. So, all denominators that
occur in vector b} are factors of d;—;. Let us now evaluate the Gram-
Schmidt coefficients:
(bi, b})

SEEN A5
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dj-1(bi, b})
d;—1[|bj1I?
_ (bi,d;j_1b})
d; ’
because d; = i:l Ib;|%. So, the denominator of u; ; divides d;. This
proves that the denominators of all rational numbers that occur during
the computation divide d =[]}, d;. (Notice that this is the same integer

defined in (2.11).) But we know from the analysis of the number of
iterations that log d is initially bounded by a polynomial in the input size,
and it can only decrease during the execution of the algorithm. So, the
denominators of all rational numbers occurring during the computation
have polynomial size.

It remains to show that also the magnitude of the numbers is polyno-
mial. We already know that p; ; are at most 1/2 in absolute value. We
now bound the length of the vectors. Notice that for all ¢ > 1, ||bf|| >
1/d;_, because d;_1b} is a nonzero integer vector, and [|bj|| = [|by|| > 1.
Moreover, d; = [];_, [|bf||*>. Therefore

‘lub*u? - H

b 1% =
Finally,
i—1
Ioill® = 1B} 1> + > ;113112 < d? + (n/4)d? < nd?.

This proves that all quantities that occur during the execution of the
LLL algorithm can be represented with polynomially many bits. This
completes the proof that the LLL algorithm with § = (1/4)+(3/4)™/ (»~1)
runs in polynomial time.

THEOREM 2.10 There exists a polynomial time algorithm that on input
a basis B € Z™*", outputs an LLL reduced basis for £(B) with parameter
5 = (1/4) + (3/4)™/(»-1),

Together with Lemma 2.8 this immediately gives a polynomial time
approximation algorithm for the shortest vector problem.

THEOREM 2.11 There exists a polynomial time algorithm that on input
an 1integer basis B outputs a nonzero lattice vector x € L(B) \ {0} of
length ||x|| < (2/v/3)" )1, where n is the dimension of the lattice.
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Input: An integer basis B € Z™*" and a target vector t € Z™.
Output: A lattice vector x € £(B) such that
It — x|l < 2(2/V3)" dist(t, L(B)).

run the LLL reduction algorithm on B

let b:=t
forj=mn,...,1
¢j = [{b,bj;)/(bj, b;)]
b := b —¢;b;

returnt — b

Figure 2.5. The nearest plane algorithm

3. Approximating CVP in dimension n

In this section we show how to use LLL reduced bases to approxi-
mately solve the closest vector problem within a factor 2(2/v/3)". In
fact, the algorithm to solve CVP is already contained in the LLL reduc-
tion procedure. The idea is the following. Given an LLL reduced basis
B = [b;,...,b,] and a target vector t, run the reduction step of the LLL
algorithm on input [B,t] as if we wanted to add vector t to the lattice
basis. This way we find a lattice vector x € £(B) such that t —x can be
expressed as t* + Y ., c;b} where t* is the component of t orthogonal
to span(by,...,by) and |¢;| < 1/2 for all i = 1,...,n. Interestingly, one
can show that the distance of x from t is within a factor 2(2/v/3)™ from
the optimal.

The algorithm to approximately solve the closest vector problem is
given in Figure 2.5. The running time of the algorithm is clearly poly-
nomial. In the next lemma we prove that the algorithm achieves ap-
proximation factor 2(2/v/3)". For reasons that will be apparent in the
proof of the lemma, this algorithm is called the nearest plane algorithm.

LEMMA 2.12 When § = (1/4) + (3/4)*/("=1) the nearest plane algo-
rithm approzimately solves CVP within a factor y(n) = 2(2/V/3)".

Proof: Assume that basis B is already LLL reduced. Assume also,
without loss of generality, that target point t belongs to span(B). (If
not, project t orthogonally to span(B), and find the lattice point closest
to the projection.) The proof is by induction on the dimension n of
the lattice and it uses the fact that if B = [by,...,b,] is LLL reduced
than also [by,...,bg] is LLL reduced for all K = 1,...,n. Let B* =
[b},...,b}] be the Gram-Schmidt orthogonalization of B.
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Then, the nearest plane algorithm can be equivalently described as
follows. (See Figure 2.6.)

® Find an integer ¢ such that hyperplane cb}, + span(b;,...,b,_1) is
as close as possible to t

s Recursively find a lattice point x' € L(by,...,b,—1) approximately
closest to the projection t’ of t — cb,, on span(by,...,b,_1).

s Output x = x’' + cb,.

Let y € £(B) be the lattice point closest to t. We want to prove that
It — x|| is at most 2(2/v/3)™||t — y||. There are two cases.

Case 1: If ||t — y|| < ||b%||/2, then y necessarily belongs to the hy-
perplane cb}, + span(b;,...,b,_;) because the hyperplanes are ||b;||
apart from each other, and therefore any other hyperplane is more than
Ib || away from t. Therefore y' = y — cb,, is the lattice point in
L([by,...,bp_1]) closest to t' and by induction hypothesis the recur-
sive call ﬁnds a lattice point x' within distance 2(2/v3)"!||t' — y'|| =
2(2/v3)" ||t — y|| from t — cb,. It follows that x' + cb, is within
distance 2(2/v/3)""!||t — y|| from t.

Case 2: This time assume ||t —y|| > ||b}||/2. We use the properties of
LLL reduced basis to show that the lattice vector found by the nearest
plane algorithm satisfies ||t — x|| < (4/3)™||b%||?> and therefore

It — x|l < 2(2/vV3)"lIt - yll.

We know that t — x' = )", p;b} for some real numbers p; satisfying
|#i| < 1/2. Remember that, by (2.9), the orthogonalized vectors in an
LLL reduced basis satisfy ||b*|| < a||bl+1|| where a = 2/v/40 — 1, and,
by induction on n — i, ||b}|| < a™~%||b%||. Therefore,

n
It —x'I> = ZﬂfllbﬂI:’

< —Za " 9)|lb |

la

a?(n-l) 1__02(1—11) 2
= 1 T Teor ) el

From @ = 2/V46—1 and § = (1/4) + (3/4)"(*~1) we get a®~! =
(2/V3)™, a¥1=) = (3/4)" and a? = (4/3)1*Y/(»=1) which, substituted



42 COMPLEXITY OF LATTICE PROBLEMS

b;, + span(by,...,ba~1)
(c —1)b} +span(by,...,bp_1)

by, II/2 >

> ||b ll/2

Hb H

Figure 2.6. The nearest plane algorithm

in the last equation give

1 /4\" 1-(3)" . 4
It —x|* < 4(§> 1+(__)1_+£+41)__1 llbnllzs(§> Bl O

4
3

4. Notes

A polynomial time algorithm to solve SVP (in the Euclidean norm)
for 2-dimensional lattices is already implicit in (Gauss, 1801). A precise
worst-case analysis of the algorithm is given in (Vallée, 1991), and the
generalization to arbitrary norms presented in Section 1 is due to (Kaib
and Schnorr, 1996). Both (Vallée, 1991) and (Kaib and Schnorr, 1996)
give almost optimal bounds on the number of iterations, improving the
bound of Section 1 by a constant factor.

The algorithm presented in Section 2 is the celebrated LLL basis
reduction algorithm (also known as Lovész’ reduction algorithm) of
(Lenstra et al., 1982). In (Lenstra et al., 1982), the algorithm is for-
mulated and analyzed for the special case of § = v/3/2, and it is almost
ubiquitously cited as an algorithm to approximate SVP within a factor
2(=1)/2 However, (Lenstra et al., 1982) already observes that & can be
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replaced by any constant strictly less than 1, resulting in approximation
factors c¢*~! for any ¢ < 2/v/3. Proving that the LLL algorithm termi-
nates in polynomial time when § = 1 is a long standing open problem.
Setting 6 = 1 in the LLL algorithm would result in approximation factor
(2/v3)™ L. In Section 2 we showed that one can set d to an increasing
function of the rank n, keeping the running time of the algorithm poly-
nomial (in the input size and the rank n of the lattice) and resulting in
approximation factor (2/v/3)", i.e., essentially the same as setting § = 1.

Since the invention of the LLL algorithm, the best polynomial time
SVP approximation factor has been improved to slightly subexponen-
tial functions of the rank. (Schnorr, 1987) presents a hierarchy of reduc-
tion algorithms that includes LLL reduction at one end and Korkine-
Zolotarev reduction (see Chapter 7) at the other. The algorithm of
(Schnorr, 1987), called the Block Korkine-Zolotarev (BKZ) reduction
algorithm, combines Korkine-Zolotarev reduction with LLL, reducing
blocks of consecutive vectors in the sense of Korkine and Zolotarev,
and applying an LLL-like algorithm to the blocks. As the size of the
blocks increases, the quality of the basis returned improves, but the al-
gorithm also gets slower, going from polynomial time to exponential.
Unfortunately, this result of Schnorr is often cited in the literature as an
approximation algorithm to within a 2¢" factor for any constant € > 0,
which corresponds to setting the block size to a large, but fixed, con-
stant. In fact, one can set the block size to a slightly increasing function
of the rank, maintaining the running time polynomial, and resulting in a
slightly subexponential approximation factor 20(n(Inlnn)?/Inn) g5 gy p.

The SVP approximation factor achieved by LLL (and BKZ) reduc-
tion is (almost) exponential in the rank of the lattice, still it is quite
an achievement because it is a constant for every fixed dimension, in-
dependently of the input size. In particular, LLL allowed for the first
time to solve SVP exactly in fixed dimension. The dependency of the
running time on the dimension is 20(n*)  Better algorithms to solve SVP
exactly are given in (Kannan, 1987b), achieving 20(*'°6%) running time.
Despite the exponential dependency of the running time on the rank,
algorithms to solve SVP exactly are of practical relevance because they
can be applied to low dimensional sublattices (e.g., the blocks of the
BKZ algorithm) to improve the approximation factor of LLL.

Recently, (Ajtai et al., 2001) found a simple and elegant method to
probabilistically solve SVP exactly in time 20(®). When used in the BKZ
algorithm, (Ajtai et al., 2001) allows to reduce the SVP approximation
factor from 20(n(inlnn)*/lnn) ¢4 9O(nninn/ Inn) " although the output of
the algorithm is only guaranteed to be short with high probability.
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The nearest plane algorithm of Section 3 is one of two CVP approxi-
mation algorithms presented and analyzed in (Babai, 1986). The other
algorithm, called the “rounding off” algorithm, simply expresses the tar-
get vector t = Bx in terms of the LLL reduced lattice basis B, rounds
each coordinate of x to the closest integer y; = [z;], and outputs lattice
vector By. In (Babai, 1986) it is proved that even this simple round-
ing procedure result in ¢ approximation factors for CVP, although the
nearest plane algorithm achieves a better constant c. Using Schnorr’s
BKZ basis reduction algorithm it is possible to improve the approx-
imation factor for CVP to 20(n(Inlnn)?/lnn) (Schnorr, 1987; Kannan,
1987a; Schnorr, 1994). Using the probabilistic algorithm of (Ajtai et al.,
2001) within Schnorr’s BKZ basis reduction, the CVP approximation
factor can be further reduced to 29(Inlnn/Inn)  For any fixed dimen-
sion, CVP can be solved exactly in polynomial time (Kannan, 1987b),
however the dependency of the running time on the rank of the lattice
is again 2"'" ", For recent refinements and variants of Babai’s and Kan-
nan’s CVP algorithms the reader is referred to (Blomer, 2000; Klein,
2000).

The existence of (deterministic or probabilistic) SVP (or CVP) ap-
proximation algorithms that achieve approximation factors polynomial
in the rank n of the lattice is one of the main open problems in the area.
In Chapter 8 we will see that the conjectured difficulty of achieving
polynomial approximation factors can be used to build provably secure
cryptographic functions.



Chapter 3

CLOSEST VECTOR PROBLEM

In Chapter 2 we described algorithms to (approximately) solve SVP
and CVP. These algorithms exhibit relatively good performance as far
as the running time is concerned. In particular, they terminate within a
time bound that is polynomial in the size of the input. However, these
algorithms offer very poor guarantees on the quality of the solution re-
turned: the worst-case approximation factor achieved by the best known
polynomial time algorithm is essentially exponential in the rank of the
lattice. To date no efficient algorithm that provably approximates SVP
or CVP within small factors (e.g., factors that are polynomial in the
rank of the lattice) is known. In this chapter we start studying lattices
from a computational complexity point of view, and, in particular we
investigate the hardness of the closest vector problem. We first consider
the problem of solving CVP exactly, and prove that this problem is hard
for NP. Therefore no efficient algorithm to solve CVP exists, unless P
equals NP.

In Chapter 1 we introduced three different formulations of CVP:

s Decisional version: Given integer lattice B, target vector t and a
rational r, determine whether dist(t,B) < r or dist(t,B) > r.

s Optimization version: Given integer lattice B and target vector t,
compute dist(t,B).

s Search version: Given integer lattice B and target vector t, find a
lattice vector Bx such that ||Bx — t|| is minimum.

Each of these problems is easily reduced to the next one as follows.
Given a search oracle that finds lattice vectors Bx closest to t, one can
compute the distance of t from the lattice simply evaluating ||Bx —

D. Micciancio et al., Complexity of Lattice Problems
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t||. Similarly, given an optimization oracle to compute dist(t,£(B)),
one can immediately solve the decisional problem (B,t,r) comparing
dist(t, £(B)) with r.

Interestingly, the search version of CVP is not substantially harder
than the optimization or decisional versions, i.e., given an oracle to solve
the decision problem associated to CVP, one can solve the search prob-
lem in polynomial time. One can try to derive this fact from general
principles using the NP-completeness of CVP, but it is interesting to
look for a direct reduction. So, before proving the hardness of CVP, in
Section 1 we establish the polynomial equivalence of the three versions
of this problem. Then, in Section 2 we prove the NP-hardness of (exact)
CVP. In Section 3 we study the relationship between SVP and CVP,
and prove that in some strong sense the former is not harder than the
latter. Finally, we consider variants of CVP, and show that the problem
remains NP-hard even if one allows for approximate solutions (in Sec-
tion 4), or the input lattice can be arbitrarily preprocessed before the
target vector is revealed (in Section 5).

1. Decision versus Search

In this section we prove that the search version of CVP can be solved
in polynomial time, making a polynomial number of calls to an oracle
that solves the decisional CVP problem. In other words, we assume that
we have access to a decision oracle A that on input (B, t, r) tells whether
dist(t, £(B)) < r or not, and show how to use this oracle to efficiently
find a lattice point Bx closest to t, for a given input lattice B and target
vector t.

The idea is to recover the coefficients z;,...,z, one bit at a time,
but some care is required because the lattice vector closest to t is not
necessarily unique, i.e., there might exist several integer vectors x such
that ||Bx — t|| = dist(t, £(B)). Therefore, one needs to make sure that
the coefficients z;,...,z, are all consistent with a single CVP solu-
tion Bx. But, let us see first how to recover a single coefficient, say
z;. First we compare the distances of the target t from the original
lattice £(B) and the sublattice generated by B’ = [2by,by,...,by].
Clearly, dist(t,£(B)) < dist(t,£(B’)), because £(B') is a subset of
L(B). We want to determine if equality holds. The comparison can
be easily performed using oracle A as follows. We start with an upper
bound R on the squared distance of t from the lattice (e.g., one can
set¢ R = ), |/b]|? to the sum of the squared lengths of all basis vec-
tors) and perform a binary search in [0, R] until we find an integer r
such that r < dist(t, £(B))? < r + 1. Then, we call oracle A on input
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(B’,t, /7 + 1). If the oracle returns NO, then
dist(t, £(B')) > v + 1 > dist(t, £(B)).
On the other hand, if the oracle returns YES, then we have
Jr < dist(t, £(B)) < dist(t, £(B')) < V7 + 1,

and therefore dist(t, £(B)) = dist(t, £(B')) because both dist(t, £(B))?
and dist(t, £(B’))? are integers. Now notice that if z; is even for some
closest vector Bx, then dist(t, £(B)) = dist(t, £(B’)), while if z; is odd
for all closest vectors Bx, then dist(t, £(B)) < dist(t, £(B')). Therefore,
comparing dist(t, £(B)) and dist(t, £(B')) allows to determine the parity
of z; for some closest vector Bx. After the least significant bit of z; has
been determined, we move to the other bits as follows. We set t' =t if
z; has been determined to be even, and t' = t — b; otherwise. Then,
we repeat the above procedure on lattice B’ and target vector t’ to find
the second bit of ;. Notice that the size of the coefficients z; can be
easily bounded (e.g., using Cramer’s rule) and it is polynomial in the size
of the input (B,t). Therefore, after a polynomial number of iterations
we will have recovered the first coefficient z; entirely. Once we have
found coefficient z;, we move on to the second coefficient, but in order
to ensure consistency, we slightly modify the input instance. Instead of
using the original lattice B and target vector t, we consider the sublattice
[bg,...,bys] and target vector t —z;b,. In general, after determining the
first k coefficients z,,...,zk, we consider the sublattice [bg41,...,by]
and target vector t — Z —1 Z;bj, and proceed to determine zx4;. Notice
that at the end of each iteration, we have a sequence of coefficients
zy,..., Tk such that there exists a solution to the original CVP problem
of the form Z _, Z;b; + t’ for some vector t' € L(bkt1,...,bm). In
particular, after n iterations, lattice vector Bx = ) ., z;b; is a solution
to the CVP problem (B, t).

This shows that the decisional, optimization and search versions of
(exact) CVP are polynomially equivalent, and decisional CVP already
captures the hardness of this problem. In the rest of this chapter we
concentrate on the decisional version of CVP.

Interestingly, the above reduction does not adapt to the approxima-
tion version of CVP, i.e., given an oracle that solves the promise problem
GAPCVP,, it is not clear how to efficiently find y-approximate solutions
to the CVP search problem. In Section 4 we will see that GAPCVP, is
NP-hard for any constant -y (or even for certain monotonically increas-
ing functions of the rank). Since CVP (even in its exact version) can
be solved in NP (see next section for details), the CVP search problem
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can be certainly reduced to GAPCVP, for any constant 4. However,
these reductions do not give any insight into the relation between the
two versions of the problem. Moreover, they do not work when the ap-
proximation factor is sufficiently large (e.g., when 7 is polynomial in the
rank of the lattice). Giving a simple reduction from the y-approximate
CVP search problem to GAPCVP,, of the kind shown in this section is
an interesting open problem.

2. NP-completeness

In this section we show that the decisional version of CVP is NP-
complete. We first show that the problem is in NP, i.e., for every instance
(B, t, r) such that dist(t,£(B)) < r, there exists a short witness proving
that dist(t, £(B)) is at most 7. The witness is a solution to the search
problem, i.e., a lattice point x € £(B) such that ||x—t|| < r. Notice that
the size of x is polynomial because x is an integer vector and all entries
of x are bounded in absolute value by ||t|| + r. Moreover, the witness
can be checked in polynomial time because membership of a vector in
a lattice can be decided in polynomial time. We now prove that CVP
is hard for NP, i.e., any other problem in NP (or, equivalently, some
specific NP-complete problem) can be efficiently reduced to CVP. We
give a reduction from the subset sum problem.

DEFINITION 3.1 The subset sum problem (SS) is the following. Given
n + 1 integers (ay,...,an,s), find a subset of the a;’s (if one exists)
that adds up to s, or equivalently, find coefficients z; € {0,1} such
that ), a;z; = s. In the decision version of the problem one is given
(a1,...,an,8) and must decide if there ezist coefficients z; € {0,1} such
that ), aiz; = s.

For a proof of the NP-hardness of subset sum see (Garey and Johnson,
1979).

THEOREM 3.1 For any p > 1 (including p = 0c0), GAPCVP; (i.e., the
decision problem associated to solving CVP ezactly) in the €, norm is
NP-complete.

Proof: We already seen that GAPCVP is in NP. We prove that
GAPCVP; is NP-hard by reduction from subset sum. Given a subset
sum instance (ay,...,ay,s) we define a lattice basis B with one column
b; for each subset sum coefficient a;. Then we associate a target vector
t to the sum s. Vectors b; and t are defined as follows:

i—1 n—i

e Ny
b; = [a0,...,0,2,0,...,0]" (3.1)
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In matrix notation, the basis B is easily expressed as

a
B= [ o, J (3.3)
where a is the row vector [ay, ..., a,] and I, is the n x n identity matrix.

The output of the reduction is the triple (B, t, ¢/n). (To be precise, the
third element in the output of the reduction should be a rational number.
The reader can easily check that ¢/n can be substituted by any rational
number ¢ in the interval [¢/n, ¢/n + 1), without affecting the correctness
of the reduction. For p = oo, this value should be lim;_, o nl/p = 1.)
We now prove that the reduction is indeed correct, i.e., if (a,s) is a
YES SS instance, then (B, t, {/n) is a YES CVP instance, while if (a, s) is
a NO SS instance, then (B,t, {/n) is a No CVP instance. First assume
that there exists a solution to the subset sum problem, i.e., there are
z; € {0,1} such that 377", zia; = s. Then the distance vector is given

by
Y ;aiTi—s
2.'1)1 -1
Bx-t= : (34)
2zn - 1
and the pth power of the ¢, distance is
n P n
IBx —t|p = > ami—s +Y_ |2z — 1] (3.5)

i=1 i=1

which equals n because Z:?:l a;z;—s = 0and 2z;—1 = *1 for all :. This
proves that the distance of t from £(B) is at most {¢/n, and therefore
(B, t, ¢n) is a YES instance of CVP.

Conversely, assume that (B,y, ¢/n) is a YES instance, i.e., the distance
of y from the lattice is at most ¢/n and let x be an integer vector such
that ||Bx —y|| < {¢/n. Notice that also in this case (3.5) holds true, and
the second summand satisfies Y .-, [2z; — 1|? > n because all 2z; — 1 are
odd integers. Therefore |Bx—y| < ¢/nis possible only if Y, aizi—s =0
and |2z;—1|P = 1 for all i. This proves that } ", a;z; = s and z; € {0, 1}
for all ¢, i.e., x is a solution to the subset sum problem. O

The reduction from SS to CVP (in the £; norm) has obvious connec-

tions with the Lagarias-Odlyzko algorithm to solve subset sum (Lagarias
and Odlyzko, 1985), or more precisely the improved version of (Coster
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et al., 1992). The (improved) Lagarias-Odlyzko algorithm works as fol-
lows: given a subset sum instance (a, s), one builds the lattice basis

L= [ 62'1*’ cis ] (3.6)

where c is a sufficiently large constant and 1 is the all-one column vector.
Notice that if x is a solution to the subset sum problem, then lattice (3.6)
has a vector of length /n obtained multiplying the first n columns by
x and the last column by —1. Then, (Lagarias and Odlyzko, 1985)
suggests to look for a short(est) nonzero vector in the lattice, e.g., using
a lattice basis reduction algorithm. If a short vector Lx is found, such
that z,4+1 = —1 and z; € {0,1} for all otheri = 1,...,n, then z,,...,z,
is a solution to the subset sum problem.
Notice that this algorithm can be succinctly described as follows:

1 Multiply the subset sum problem by some large constant c to obtain
an equivalent subset sum instance (c-aj,...,c- an,c-S)

2 Reduce (c - ay,...,c- ap,c-s) to a CVP instance (B,t) using the
reduction described in the proof of Theorem 3.1.

3 Solve the closest vector problem (B, t,/n) using the following heuris-
tics!: in order to find the lattice vector closest to t, look for a short
vector in the lattice generated by L = [B|t]. If this short vector is of
the form Bx — t, then Bx is a short vector in £(B) close to t.

The reason the first row of the basis matrix is multiplied by a large
constant c is that it is not known how to solve the shortest vector problem
exactly, so in practice an approximation algorithm is used (e.g., the LLL
algorithm, see Chapter 2). If the first row in the matrix is multiplied by
a large constant ¢, then any moderately short lattice vector must be zero
in the first coordinate, and the coefficients x found by the approximation
algorithm must satisfy > a;z; = (—zn41)s. Still, there is no guarantee

that the variable z; are all 0 or 1, and that z,4,; = —1. Therefore
the Lagarias-Odlyzko algorithm does not always find a solution to the
subset sum problem. However, if the coefficients a,,...,a, are chosen

at random among all numbers satisfying certain constraints, proves that
the Lagarias-Odlyzko heuristics succeeds with high probability.

The condition on the coefficients can be expressed in terms of a param-
eter, called density, defined below. Given coefficients a = (ai,...,a,),

In the cryptanalysis literature this heuristics is sometimes referred to as the “embedding
technique”
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the density d(a) of the subset sum problem is defined as the ratio

fa) = ——r (3.7)

- n .
max]_, loga;

Notice that the density is proportional to the size of the subset sum
coefficients a;, and it equals 1 when max;[log a;] equals the number n of
coefficient. The meaning of the density parameter is better illustrated
using the modular subset sum problem: given a modulus M = 2™, n
coefficients ay, ..., a, and a target value b, find a 0-1 combination }_; z;a;
which equals b modulo M. Notice that both the reduction to CVP and
the Lagarias-Odlyzko heuristics can be easily adapted to the modular
subset sum by including one more vector by = [c - M,0, ... ,O]T in the
lattice basis. In the modular case, the density of the subset sum problem
is more conveniently defined as the ratio § = n/m between the size of
the modulus and the number of coefficients. When n = m, the domain
and the co-domain of the modular subset sum function fa(x) = ), zia;
(mod M) have the same size 2" and the density equals § = 1. When
d < 1, then f, is injective with high probability (over the choice of
coefficients a), while when § > 1 function f, is likely to be surjective.
In general, if the density is d, then on the average each point in the
co-domain of f, has 2% preimages under f,.

Using an oracle that solves SVP exactly, (Coster et al., 1992) shows
that it is possible to efficiently solve most subset sum instances with den-
sity 4 < 0.9408. Given the exponential approximation factor achieved
by the LLL algorithm, the Lagarias-Odlyzko algorithm provably solves
(with high probability) only subset sum instances with very small den-
sity < 1/ 0O(n), i.e., subset sum instances whose coefficients are O(n?)
bits each (Frieze, 1986). With the obvious modifications, the analysis in
(Frieze, 1986) also shows that an oracle that approximates SVP within
polynomial factors, would result in an efficient algorithm to solve most
subset sum instances with density 1/ O(logn). Notice that although this
density is much higher than 1/ O(n), it is still an asymptotically van-
ishing function of the dimension n. Interestingly, even an oracle that
solves SVP exactly does not allow to solve most subset sum instances
with density arbitrarily close to 1, and (Coster et al., 1992) points out
that it seems unlikely that their techniques can be extended to densities
higher than 0.9408.

The problem is in the last step of our reformulation of the Lagarias-
Odlyzko reduction: while the first two steps correctly reduce any subset
sum instance (a,s) to a corresponding CVP instance (B,t,r), the last
step transforming the CVP instance into SVP instance ([B]t],7) (in the
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¢, norm) is heuristic, and can only be proved to work in a probabilistic
sense when the density é of the subset sum problem is sufficiently small.

Interestingly, if the max norm ||x||oc = max; |z;| is used, then any
shortest nonzero vector in the lattice (3.6) yields a solution to the original
subset sum problem, for any value of the density 4. In fact, this proves
that SVP in the ¢,, norm is NP-hard.

THEOREM 3.2 GAPSVP) (i.e., the decision problem associated to solv-
ing SVP ezactly) in the £y norm is NP-complete.

Proof: The problem is clearly in NP because given an instance (B,r),
one can easily guess a short integer vector y with entries bounded by r in
absolute value, and efficiently check that y belongs to the lattice £(B).
The hardness of GAPSVP; immediately follows from the reduction from
subset sum to CVP given in Theorem 3.1 and the reduction from CVP
to SVP in the infinity norm outlined in the discussion of the Lagarias-
Odlyzko algorithm. O

As we will see in the following chapters, proving the NP-hardness of
SVP in any other norm (and in the Euclidean norm in particular) is a
much harder task.

3. SVP is not harder than CVP

In the previous section we proved the NP-hardness of CVP by re-
duction from subset sum, and we observed how the Lagarias-Odlyzko
subset sum algorithm can be described as a reduction from subset sum
to CVP followed by a heuristics to solve CVP using an SVP oracle.
Reducing CVP to SVP is an interesting problem on its own, as it is
widely believed that SVP is not harder than CVP, and many even be-
lieve that SVP is strictly easier. Empirical evidence to these beliefs is
provided by the gap between known hardness results for both problems.
Whereas it is easy to establish the NP-hardness of CVP (see Section 2)
and the first proof dates back to (van Emde Boas, 1981), the question
of whether SVP (in the ¢, norm) is NP-hard was open for almost two
decades, originally conjectured in (van Emde Boas, 1981) and resolved
in the affirmative in (Ajtai, 1996), and only for randomized reductions.
Furthermore, approximating CVP in n-dimensional lattices is known to
be NP-hard (under deterministic reductions) for any constant approxi-
mation factor or even some slowly increasing function of the dimension
(see Section 4), whereas SVP is only known to be NP-hard under ran-

domized reductions for constant approximation factors below v/2 (see
Chapter 4).
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Note that for any £, norm (p > 1), SVP can be easily reduced to
CVP using the NP-hardness of the latter. However, this general NP-
completeness argument produces CVP instances of dimension much big-
ger than the original SVP problem. An interesting question is whether
a direct reduction is possible that preserves the dimension. More impor-
tantly, the NP-hardness results do not elucidate on the relation between
approximate SVP and approximate CVP when the approximation fac-
tor is polynomial (or super-polynomial) in the dimension, or the norm
is not an £, one. We recall that only when the approximation factor is
almost exponential (20(n(1glgn)?/lg ")) the two problems are known to be
solvable in polynomial time. (See Chapter 2.)

In this section we formalize the intuition that SVP is not a harder
problem than CVP giving a reduction between the two problems. No-
tice that the direction of this reduction is opposite to the one implicitly
required by the Lagarias-Odlyzko algorithm. Finding an equally sim-
ple and general reduction from CVP to SVP (as implicitly required in
(Lagarias and Odlyzko, 1985)) is an important open problem.

We show how to reduce the task of finding y-approximate solutions
to SVP to the task of finding y-approximate solutions to CVP (in the
same dimension and rank). The results described in this section hold for
any function v (including finding exact solutions v = 1, and polynomial
approximations y(n) = n¢) for any norm (not necessarily an ¢, one),
and for the decision, optimization and search versions.

3.1 Deterministic reduction

There are two differences between SVP and CVP. On one hand, SVP
asks for a lattice point close to the all-zero vector, while CVP asks for a
lattice point close to an arbitrary target vector; on the other hand, SVP
disallows the all-zero solution whereas CVP accepts the target vector as
an admissible solution (provided it belongs to the lattice). Thus, the two
problems are not trivially related. In particular, the obvious “reduction”
from SVP to CVP (i.e., f : B — (B,0)) does not work since the CVP
oracle would always return the all-zero vector. Our aim is to prevent
this possibility. The intuitive idea is the following (see Figure 3.1 for
a 2-dimensional example). First of all, instead of looking for a lattice
point close to the all-zero vector, we look for a lattice point close to
some other lattice vector t € A (e.g. t = b;). Moreover, to avoid t
being returned as a solution, we run the CVP oracle on a sublattice
A’ C A not containing t. The problem is now how to select a sublattice
A’ C A without removing all A-vectors closest to t. We start with the
following observation.
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Figure 3.1. Reducing SVP to CVP

PROPOSITION 3.3 Let v = Y [, c;b; be a shortest nonzero vector in
A = L(B). Then, there exists an i such that ¢; is odd.

Proof: Let v = ZLI ¢ib; be a shortest lattice vector, and assume for
contradiction that all ¢;’s are even. Then % v=30 4b; is also a

nonzero lattice vector and it is strictly shorter than v. O

We now show how to reduce the shortest vector problem to the solu-
tion of n instances of the closest vector problem.

The reduction. Given a basis B = [by,...,by], we construct n in-
stances of CVP as follows. The j*! instance consists of the basis

B(J) déf [bl,__,,bj_l,zbj,bj+1,...,bn] (38)

and the target vector bj. In the search version we use these n instances
of CVP in n corresponding queries to the CVP, oracle, and output

the shortest difference returned in all these calls (i.e. if v; is the vector

returned by the j*% call on input (B(j),bj), we return the shortest of

the vectors v; — by,...,vy, — by). In the decision version, we augment
these queries by the same parameter r given in the GAPSVP,, instance
(B, ), and return YES if and only if one of the oracle calls was answered
by YES.

The validity of the reduction follows from the correspondence between
solutions to the input SVP instance and solutions to the CVP instances
used in the queries. Specifically:
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PROPOSITION 3.4 Let v = ) ", c;b; be a lattice vector in L(B) such
that ¢ is odd. Then u = E-1'2+—1(2bj) + Zi# cibi is a lattice vector in
L(BW) and the distance of u from the target b; equals the length of v.

Proof: Firstly, note that u € £L(BW) since %} is an integer (as ¢; is
odd). Secondly, observe that

cj+1
u-—b;= ]2 2bj+§cibi—bj=cjbj+§jcibi =v

and the proposition follows. O

PROPOSITION 3.5 Let u = c(2b;) + 32, cibi be a vector in L£(BW).
Then v = (2¢; — 1)b; + 2 iz Cibi s a nonzero lattice vector in L(B)
and the length of v equals the distance of u from the target b;.

Proof: Firstly, note that v is nonzero since 2c;- — 1 is an odd integer.
Secondly, observe that

v=( c —-1)b +Zc,b —c 2b +Zc, —bj =u-b;. m]
i#] i£j

Combining Propositions 3.3 and 3.4, we conclude that one of the
CVP-instances has an optimum which is at most the optimum of the
given SVP-instance. On the other hand, by Proposition 3.5, the op-
timum of each of the CVP-instances is bounded from below by the
optimum of the given SVP-instance. Details follow.

THEOREM 3.6 For every function v : N — {r € R:r > 1}, SVP,
(resp., GAPSVP,) is Cook-reducible to CVP, (resp., GAPCVP, ). Fur-
thermore, the reduction is non-adaptive?, and all queries maintain the
rank of the input instance.

Proof: We prove the theorem for the decisional (or, more generally,
promise) version. The search version is analogous. Let (B,r) be a
GAPSVP, instance, and define GAPCVP,, instances (B(j),bj,r) for j =
1,...,n, where B is as in (3.8). We want to prove that if (B,r) is a
YES instance, then (B(j),bj,r) is a YES instance for some j = 1,...,n,

2A Cook reduction is non-adaptive if the queries made to the oracle do not depend on the
answers given by the oracle to previous queries, or, equivalently, all the queries are specified
in advance before receiving any answer from the oracle.
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and if (B,r) is a NO instance, then (B(j),bj, r) is a NO instance for all
ji=1,...,n.

First assume (B,r) is a YES instance and let v = Y1, ¢;b; be the
shortest nonzero lattice vector in £(B). We know that ||v|| < r, and
(by Proposition 3.3) c; is odd for some j. Then, the vector u as defined
in Proposition 3.4 belongs to £(BY) and satisfies ||u — bj|| = ||v|| < 7,
proving that (BU), bj,r) is a YES instance.

Now assume (B(j),bj,T) is not a NO instance for some j, i.e., there
exists a vector u in £(BU) such that ||u — bj|| < y(n) - r. Then, the
vector v defined in Proposition 3.5 is a nonzero lattice vector in £(B)
and satisfies ||v|| = |lu —bj|| < 7(n) - r, proving that (B,r) is not a NO
instance. O

3.2 Randomized Reduction

In the previous section we showed that any GAPSVP, instance can
be deterministically reduced to solving n instances of GAPCVP.,, where
n is the rank of the lattices. A natural question is whether it is pos-
sible to reduce a GAPSVP problem to a single instance of GAPCVP,
i.e., if a Karp reduction exists between the two problems. The proof
of Theorem 3.6 suggests that this is possible for randomized reductions.
Randomized reductions generalize Karp reductions allowing the mapping
function f : GAPSVP, - GAPCVP, to be computable in polynomial
time by a probabilistic algorithm. The output of the reduction is only
required to be correct with sufficiently high probability. Of special in-
terests are probabilistic reductions in which either YES or NO instances
are always mapped correctly. In (Johnson, 1990), these are called

» Unfaithful random reductions (UR-reductions for short). These are
reductions that always map YES instances to YES instances, and map
NO instances to NO instances with probability p. The reduction is
called unfaithful because it can produce a YES instance with proba-
bility 1 — p, even if the answer to the original instance was NO. The
quantity 1 — p (called the soundness error) is required to be at least
an inverse polynomial in the input length, i.e., 1 —p > 1/n¢ where n
is the input size and c is a constant independent of n.

» Reverse unfaithful random reductions (RUR-reductions for short).
These are reductions that map YES instances to YES instances with
probability p, and always map NO instances to NO instances. The
quantity 1 — p (called the completeness error) is required to be at
least an inverse polynomial in the input length, i.e.,, 1 —p > 1/n
where n is the input size and c is a constant independent of n.
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The Cook reduction in the proof of Theorem 3.6 can be transformed
into a RUR-reduction as follows. On input (B, r), choose j € {1,...,n}
at random and output (B(j),bj,r). We notice that YES instances are
mapped to YES instances with probability at least 1/n, and NO instances
are always mapped to NO instances. So, this is a RUR-reduction with
completeness error 1 —1/n. We now show that it is possible to do better
than that, and reduce the completeness error to 1/2.

THEOREM 3.7 For every function v : N+ {r € R:r > 1}, there is a
RUR-reduction SVP,, (resp., GAPSVP,) to CVP,, (resp., GAPCVP,)
that has completeness error bounded above by 1/2. Furthermore, the
CVP instance produced has the same dimension and rank as the original
SVP problem.

Proof: Again, we prove the theorem for the decisional version, as the
search version is analogous. Let (B, r) be an SVP instance, where B =
[b1,...,bn). Output CVP instance (B’,by,r) where B’ = [bj,...,b!]
is defined as follows. Let ¢; = 1 and choose ¢; € {0,1} (i = 2,...,n)
uniformly and independently at random. For all 4, let b = b; + ¢;b;.
We want to prove that if (B, r) is a YES instance then (B’,by,7) is a YES
instance with probability at least 1/2, while if (B,r) is a NO instance
then (B’,by, ) is always a NO instance. Notice that £(B’) is a sublattice
of £(B) and that b, is not in £(B').

Let us start with the NO case. Assume (B’,by,7) is not a NO instance.
By definition, there exists a vector u in £(B’) such that |ju — by|| <
v(n) - r. Since L(B') is a sublattice of £(B) and b; is not in £(B’),
v = u — by is a nonzero vector in £(B) of length at most «y(n) - r,
proving that (B,r) is not a NO instance.

Now assume (B,r) is a YES instance and let v = ) I, z;b; be the
shortest vector in £(B). From Proposition 3.4, z; is odd for some j. Let
a =1z +1-3,5,cz;. Notice that if z; is even for all i > 1, then z,;
must be odd and « is even. On the other hand, if z; is odd for some
i > 1 then a is even with probability 1/2. In both cases, with probability
at least 1/2, o is even and u = §bj + > ., z;b] is a lattice vector in
L(B’). Finally notice that

u—b; = <ab1 +in(bi+cib1)> —b;

i>1
= <:L‘1 - ZC,':Q) b; + Z:L‘ibi + Zmicibl = v
i>1 i>1 i>1

and therefore ||u — by || < r, proving that (B’,by,r) is a YES instance.
O
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4. Inapproximability of CVP

The NP-hardness of CVP shows that efficient algorithms to solve this
problem exactly are unlikely to exist. However, the hardness result pre-
sented in Section 2 does not say much about the existence of efficient
algorithms to find approximate solutions. In this section we show that
even if one allows for solutions which are within a small factor from the
optimal, CVP is still hard for NP. As in section 2, the inapproximability
results presented in this section hold for any £, norm. In Subsection 4.1
we prove that for any fixed p, GAPCVP, is hard for some polyloga-
rithmic function y(n) = O((logn)¢), where c is a constant independent
of n. Then, in Subsection 4.2 we extend the result to any polyloga-
rithmic factor. Under the assumption that NP is not contained in QP
(quasi polynomial time, i.e., the class of decision problems solvable in
time 21°8°") Subsection 4.2 also shows that CVP cannot be approxi-
mated within even higher factors 2/°9' " (for any fixed € > 0). These
factors, although asymptotically smaller than any polynomial n¢ are
bigger than any polylogarithmic function and they are sometime called
“quasi-polynomial” approximation factors.

4.1 Polylogarithmic factor

In this section we prove that for any p > 1, there exists a polyloga-
rithmic function v = O(log!'/? n) such that GAPCVP,, in the £, norm is
NP-hard. The proof is by reduction from the following covering problem.

DEFINITION 3.2 (SET COVER) For any approzimation factor v > 1,
SETCOVER, is the following promise problem. Instances are pairs (S,r)
where § = {S},...,Sn} is a collection of subsets of some set U and
r is an integer. (Without loss of generality one can assume that U =
Uxes X-) Moreover,

s (S,7) is a YES instance if S contains an ezact cover of size r, i.e.,
a sub-collection §' C S of size |S'| = r such that Uxcs X = U and
the elements of S' are pairwise disjoint.

m (S,7) is a NO instance if S does not contain any cover of size bounded
by yr, i.e., for any sub-collection S' C S of size |S'| < yr, set U is
not contained in (Jyco X.

Notice that SETCOVER as defined above is a promise problem, even
for v = 1. In particular, since YES instances are required to contain an
ezact cover, if S contains a cover of size r but no exact covers of that size,
then (S,r) is neither a YES nor a NO instance. SETCOVER, is known
to be NP-hard for any constant approximation factor v (Bellare et al.,
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1993). In fact, results in (Raz and Safra, 1997) imply that SETCOVER is
NP-hard to approximate even within some O(logn) factor.3 We reduce
SETCOVER(1ogn) t0 GAPCVPO(logl/p n) in the £, norm. It is useful to
first reduce SETCOVER, to a binary variant of GAPCVP defined below.

DEFINITION 3.3 The promise problem BINCVP, is defined as follows.
Instances are triples (B, t,r) where B € Z™*™" is a lattice basis, t € Z™
s a vector and r is a positive integer such that

s (B,t,r) is a YES instance if there ezists a vector z € {0,1}" such
that t — Bz is a 0-1 vector containing at most r ones.

s (B, t,r) is a NO instance if for all z € Z" and all w € Z \ {0}, vector
wt — Bz has more than y(m) - r nonzero entries.

There are several differences between BINCVP and the standard closest
vector problem.

1 First of all, for YES instances the lattice vector close to the target must
be one of the vertices of the fundamental parallelepiped associated to
the basis. Moreover, the difference between this vector and the target
must be a binary vector, so that the distance is uniformly distributed
across many different coordinates.

2 For NO instances, we require not only that the target t be far from
the lattice, but also all its nonzero integer multiples wt should be far
away. Moreover, the target (or any of its nonzero multiples) should
differ from any lattice points in many coordinates.

3 Finally, for technical reasons, the approximation factor v is expressed
as a function of the dimension of the lattice, instead of its rank. No-
tice that the lattice in BINCVP is never full rank because otherwise
there are integer multiples of t arbitrarily close to the lattice.

It is clear that BINCVP is just a special case of GAPCV P, and there
is a trivial reduction from BINCVP,, to GAPCVP., in the ¢, norm with
v = @A. So, proving the hardness of BINCVP immediately implies
the hardness of GAPCVP in any ¢, norm. We prove the hardness of
BINCVP.

3Set Cover inapproximability results are usually formulated expressing the approximation
factor v as a function of the size of the underlying set |U|. However, the Set Cover instances
produced by the reductions always have the property that |U| and n = |S| are polynomially
related. Therefore, if Set Cover is NP-hard for some logarithmic function O(log |U]), then it
is also hard for v = O(log m).
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THEOREM 3.8 The promise problem BINCVP. is NP-hard for some
v = O(logm), where m is the dimension of the lattice.

Proof: The proof is by reduction from SETCOVER,. Let (S,r) be an
instance of SETCOVER,, and let n and u be the size of S and U =
Uxes X respectively. Without loss of generality, we assume that U is
the set {1,...,u}. Let Si,...,Sn be the elements of S. Any element
S; € S (i =1,...,n) can be represented as a boolean vector s; € {0,1}*
such that the jth coordinate of s; equals 1 if and only if j € S;. We
use vectors s; to form an u x n boolean matrix S = [sy,...,sp]. Let
k = [yr + 1], and define basis B and target vector t as follows:

1] o] e

where 1; ® S is the ku X n matrix obtained stacking k£ copies of S on
top of each other. The output of the reduction is the triple (B, t,r). We
want to prove that the reduction is correct, i.e., if (S, r) is a YES instance
then (B,t,r) is a YES instance, while if (B,t,r) is not a NO instance,
then (S, r) is not a NO instance.

First assume (S, ) is a YES instance, i.e., there exists an exact cover
C C S of size |C| = r. Let z € {0,1}" the boolean vector associated to
the cover C, i.e., z; = 1 if and only if S; € C. Then, since each element of
U belongs to one and only one set S; € C, we have Sz = 1, and therefore
t — Bz = [0I,,27]7 is a boolean vector containing exactly r ones. This
proves that (B,t,r) is a YES instance.

Now assume that (B,t,r) is not a NO instance, i.e., there exists a
lattice vector Bz and a nonzero multiple wt such that Bz and wt differ
in at most yr coordinates. Let C be the set of all S; such that z; # 0. We
claim that C is a small cover. First assume for contradiction that C does
not cover U, and let j € U be an index such that j & (Jxce X. Then
the tu + j coordinate of wt — Bz equals w for all: = 0,...,k — 1. This
contradicts the assumption that wt — Bz has at most yr < k nonzero
coordinates, and proves that C is a cover. Moreover, C has size less than
~r because the last n coordinates of wt — Bz equal z, and the size of C
is equal to the number of nonzero entries of vector z. So, C is a cover of
size less than +¢, and therefore (S, r) is not a NO instance.

This proves that BINCVP,, is NP-hard for some v = O(logm). Fi-
nally, we observe that the dimension of the lattice is m = ku + n is
polynomially related to m, therefore v = O(logm). O

As a corollary, we immediately get the inapproximability of CVP in
the £, norm within some polylogarithmic factor v = O(log'/? n).
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COROLLARY 3.9 For any p > 1 there exists a constant ¢ such that the
promise problem GAPCVP, is NP-hard for v = clogl/” n, where n is
the rank of the lattice.

Proof: The proof is by reduction from BINCVP,. Given instance
(B, t,r), the reduction outputs (B, t,r’), where ' is a rational between

¢rand ¢r+1. 0O

4.2 Larger factors

For any £, norm, we proved that CVP is NP-hard to approximate
within some polylogarithmic factor O(log'/? n). In fact, it is possible to
prove the hardness of CVP in the £, norm for any polylogarithmic fac-
tor O(log®n), and beyond. In (Dinur et al., 1998; Dinur et al., 1999), it
is proved that CVP is NP-hard to approximate within 20(logn/loglogn),
Notice that these factors are asymptotically larger than any polylog-
arithmic function of n, but at the same time they are smaller than
any polynomial n€. Still, hardness results are often interpreted (Arora
et al., 1996) as inapproximability within some small polynomial factor
n¢. Proofs in (Dinur et al., 1998; Dinur et al., 1999) are rather complex,
and they heavily rely on the machinery of probabilistically checkable
proofs. In this section we present some general amplification techniques
that can be used to achieve almost the same results as in (Dinur et al.,
1998), but in a simpler way. In particular, we show that approximating
CVP within any polylogarithmic function log® n is NP-hard, and approx-
imating CVP within “almost polynomial” functions 90(log! ™ n) g quasi
NP-hard, i.e., no (quasi) polynomial time algorithm exists to approxi-
mate CVP within 20('051_5"), unless NP is contained in QP. Here QP
is the class of promise problems that can be solved in time O(2!°8°™) for
some c independent of n.

The idea is to start from a BINCVP, problem with a certain gap
v between the YES and NO instances, and transform it into another
BINCVP instance with a larger gap. We do not know how to perform
this amplification operation directly on GAPCVP, and this is one of
the reasons we introduced BINCVP as an intermediate problem in the
previous subsection.

The amplification technique uses the tensor product operation. Given
two vectors v € R and w € R™, the tensor product of v and t is the
n - m-dimensional vector v ® w obtained replacing each entry v; of v
with a vector v; - w. More formally, foralli=1,...,nand j =1,...,m,
the (i — 1)m + j coordinate of v ® w is v; - wj. The tensor product

operation is extended to matrices in the obvious way: Given matrix
V = [vi,...,Vm] € R™*™® and W = [wy,..., W] € R™ X" their
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tensor product is the (m - m') x (n - n') matrix obtained replacing each
entry v;; in V with matrix v; ;W. Notice that for any two lattice bases
V and W, the lattice generated by V ® W depends only on £(V) and
L(W), and not on the particular choice of basis for the original lattices.
So, we can talk of the tensor product of two lattices. It is also important
to notice that not every lattice vector in £(V ® W) can be expressed as
vew, forv e L(V) and w € L(W).

The amplification technique for BINCVP is described in the following
lemma.

LEMMA 3.10 Let (B,t,r) be an instance of BINCVP,, and define
B'= [B®t|I® B], t'=t®t, r=r%  (3.10)

Then, function f : (B,t,r) — (B, t',r') is a reduction from BINCVP,
to BINCVP. 2.

Proof: Assume that (B,t,r) is a YES instance, i.e., there exists a 0-1
vector z such that t — Bz is a boolean vector with at most r ones. Let

g = [ (y—Bzz)®z)]'

Clearly, 2z’ is a boolean vector too. Moreover,

t'-B'zZ = t®t-(Bz)®t— (t— Bz) ® (Bz)
= (t-Bz)®t- (t — Bz) ® (Bz)
(t — Bz) ® (t — Bz)

2 ones. This proves that (B/,t/, ') is

is a 0-1 vector with exactly r' =r
a YES instance.

Now assume that (B, t, r) is a NO instance and let wt’ be any nonzero
multiple of t’. We want to prove that wt’ differs from any lattice vector
in £(B') in at least ¥?r? positions. Let m and n be the dimension
and rank of £(B) and consider a generic lattice vector B'x where x =
[xF,xT,...,xZ]T is the concatenation of m + 1 n-dimensional integer

vectors. Then,

m
wt®t—(Bx0)®t—Zei®Bxi (3.11)

i=1

Bx1
= (wt—(Bxg))®t— : (3.12)
Bx,,

wt’ — B'x
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wit — Bxy

: (3.13)
wpt — Bxy,
(3.14)

where w; is the ith coordinate of (wt — (Bxg)). Since w is a nonzero
integer, then (wt — (Bxp)) has more than yr nonzero entries w; # 0.
Similarly, for each w; # 0, vector w;t — Bx; has more than yr nonzero
entries. It follows that the number of nonzero entries in wt’' — B'x bigger
than (yr)2 =%'. O

By repeated application of the lemma we obtain the following corol-
lary.

COROLLARY 3.11 For any constant ¢ > 0 and y(n) = log°n, BINCVP,,
and GAPCVP,, in any {, norm are NP-hard.

Proof: We know from Theorem 3.8 that there exists a cg > 0 such that
BINCVP, (m) is NP-hard for yo(m) = cplog m. Let ¢ be an arbitrary
constant and let ¢/ > ¢. We show that there exists a ¢, > 0 such
that BINCVP () reduces to BINCVP,, () with y1(m') = ¢ logc‘ m.

Since logém' < ¢; log® m’ for all sufficiently large m/, it follows that
BINCVP. () is NP-hard for v/(m') = log®m/. Finally, we notice that
BINCVP, immediately reduces to GAPCVP,yl /» in the £, norm. So, also
GAPCVP, is NP-hard for any polylogarithmic function y(m) = log®m.

Let (B,t,r) be an instance of BINCVP,, (), and let m be the dimen-
sion of £(B). Apply Lemma 3.10 k = log, ¢’ times to (B, t,r) to obtain
a new instance (B',t',r'). The dimension of £(B’) is m' = m?" = m¢,
so, the reduction can be computed in polynomial time. Moreover, the
gap between YES and NO instances is (cg log m)2k = c§ log® m. If we
express this gap as a function of the dimension of the new lattice we get
Y1 (m') = (co/c) log® m! = ¢; log® m, for ¢ = (co/c')¢. O

If the reduction from Lemma 3.10 is applied more than a constant

number of times, then one obtains quasi NP-hardness results for even
larger inapproximability factors, as shown below.

COROLLARY 3.12 For any constant e > 0, and for anyp > 1, BINCVP,,
and GAPCVP,, in the £, norm are quasi NP-hard to approrimate within
y(m) = 2V’

m

Proof: Similar to the previous corollary, with Lemma 3.10 applied &
(1/€) log logm times. The resulting lattice has dimension m' = m?* =



64 COMPLEXITY OF LATTICE PROBLEMS

2(log "‘)(HE)/!, so it can be computed in quasi polynomial time. Moreover
the gap between YES and NO instances is
(co log m)(1oem™)*/*  glogm)™/s

for all sufficiently large m. Substituting m = 2(lg )</ (%)
proximability factor 4'(m') = glogm!)1/(+)

we get inap-

5. CVP with preprocessing

In this section we consider a different variant of CVP. Instead of
allowing for approximate solutions, or considering algorithms that run
in quasi-polynomial time, we give unlimited computational power to the
CVP solving algorithms, but only in an initial stage of the computation,
during which only the lattice is known. In other words, we allow the
lattice £(B) to be arbitrarily preprocessed. Then, we ask for a CVP
algorithm that using the preprocessed lattice description, efficiently finds
the lattice vector closest to any given target t.

This model is motivated by the applications of lattices in coding
theory and cryptography, like vector quantization, communication over
band limited channels and encryption. In these applications, the lattice
A usually represents the code or encryption function, while the target
t is the received message. In this context the closest vector problem
corresponds to the decoding or decryption process. Notice that the lat-
tice A is usually fixed, and it is known long before transmission occurs.
Therefore it makes sense to consider a variant of the closest vector prob-
lem in which the lattice is known in advance, and only the target vector
t is specified as input to the problem. Moreover, essentially all known
techniques to find (possibly approximate) solutions to the closest vector
problem work as follows: (1) first a computationally intensive algorithm
is run on the lattice to obtain some information useful for decoding (usu-
ally a reduced basis or a trellis); (2) then this information is used to solve
CVP using some simple procedure (some form of rounding (Babai, 1986)
for methods based on lattice reduction, or the Viterbi algorithm (Forney
Jr., 1973) for trellis based decoding). Trellis based decoding is very ef-
ficient, provided that a small trellis for the lattice exists. Unfortunately
it has been demonstrated that minimal trellis size can grow exponen-
tially with the dimension of the lattice (Forney Jr., 1994; Tarokh and
Blake, 1996a; Tarokh and Blake, 1996b). Here we concentrate on meth-
ods where the result of preprocessing is always polynomially bounded in
the size of the lattice description. Essentially all the preprocessing meth-
ods whose output is guaranteed to be small perform some sort of basis
reduction, i.e., given any basis for the lattice, they produce a new basis
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consisting of short vectors. In certain cases the short basis can be com-
puted in polynomial time, resulting in a polynomial time approximation
algorithm for the closest vector problem. This is the case for example in
the nearest plane algorithm of Chapter 2, LLL reduced bases are used.
In other cases it is not known how to efficiently compute the good basis,
but once this good basis is found, a much better approximation to the
closest vector can be found in polynomial time. For example (Lagarias
et al., 1990) shows how to achieve a O(n!®) approximation factor using
KZ reduced basis* (see also (Kannan, 1987a)). The fastest currently
known algorithms to solve the closest vector problem (Banihashemi and
Khandani, 1998; Blémer, 2000) also use KZ or dual KZ reduced bases.
However, even if the (dual) KZ reduced basis is given, the running time
of the algorithm remains exponential in the rank of the lattice.

One natural question is whether it is possible to find optimal solutions
to the closest vector problem (with preprocessing) in polynomial time,
possibly using a different notion of reduced basis, or more generally using
some other form of preprocessing with polynomially bounded output.
In other words, we are asking if for every lattice A there exists some
polynomial amount of information that makes the closest vector problem
in A easily solvable. Formally, we define the closest vector problem with
preprocessing as follows.

DEFINITION 3.4 (CVPP) The closest vector problem with preprocess-
ing asks for a function w (the preprocessing function) and an algorithm
D (the decoding algorithm) with the following properties:

» On input a lattice basis B, n(B) returns a new description L of the
lattice L(B) whose size is polynomially related to the size of B, i.e.
there ezists a constant ¢ such that size(L) < size(B)¢ for all bases B
and L = w(B).

s Given L and a target vector t, D(L,t) computes a lattice point Bx
closest to t. In the decisional version of CVPP, D is also given a
distance v, and D(L, t,r) decides whether there ezists a lattice vector
Bx such that |Bx —t|| <.

As for the standard CVP, the search and decision versions of CVPP
are equivalent: any algorithm to solve the search version also solves

4The result in (Lagarias et al., 1990) is usually presented as a coNP O(n!-5) approximation
result for the closest vector problem, meaning that the KZ reduced basis constitutes an
NP-proof that the target vector is not too close to the lattice. The O(n!-5) approximation
factor has been subsequently improved to O(n) in (Banaszczyk, 1993) using techniques from
harmonic analysis.
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the decision version, and the search version can be reduced to the de-
cision version evaluating the preprocessing function 7 on all lattices
(2'bj, bj+1,...,bn) with i bounded by a polynomial in the size of the
input basis, and then using the same reduction as in Section 1.

Notice that no complexity assumption is made on the preprocessing
function m (other than the restriction on the size of the output). One
may think of 7 as a preprocessing algorithm with unlimited computa-
tional resources. However, only the running of D is used to measure the
complexity of the decoding process, i.e., we say that CVPP is solvable
in polynomial time if there exists a function 7 and a polynomial time
algorithm D such that D(w(B), t,r) solves the CVP instance (B, t,r).

In this section we show that CVPP cannot be solved in polynomial
time, under standard complexity assumptions. Namely, we give a reduc-
tion from an NP-hard problem H to CVP with the property that any H
instance M is mapped to a CVP instance (B, t,r) where B is a lattice
basis that depends only on the size of M. It immediately follows that if
CVPP has a polynomial time solution, then the NP-hard problem H is
solvable in P /poly, and consequently NP C P/poly.

THEOREM 3.13 CVPP has no polynomial time solution, unless NP C
P/poly. In particular, there ezists a reduction from an NP-complete
problem H to CVP such that any H instance M is mapped to a CVP
instance (B, t,r) where the lattice B depends only on the size of M.

In fact, Theorem 3.13 immediately follows from the reduction from SS
to CVP given in the proof of Theorem 3.1, and the hardness of subset
sum with preprocessing from (Lobstein, 1990). Specifically, (Lobstein,
1990) proves that there exists a reduction from an NP-complete prob-
lem (3-dimensional matching, 3DM) to subset sum (SS), such that 3DM
instance M is mapped to a SS instance (a, s) where the subset sum co-
efficients a depend only on the size of M. Moreover, the NP-hardness
proof from Theorem 3.1 reduces a subset sum instance (a, s) to a CVP
instance (B,t,r) with the property that the lattice basis B only de-
pends on the subset sum coefficients a. Therefore, combining the two
reductions, we get a reduction from an NP-complete problem to CVP
as claimed in Theorem 3.13.

For completeness we now give a direct reduction from an NP-complete
problem (X3C, see below) to CVP satisfying the conditions of the the-
orem.

DEFINITION 3.5 Exact cover by 3-element sets (X3C) is the following
problem. Given a finite set M and a collection of three element subsets
C, decide if there exists a sub-collection C' C C such that each element
of M is contained in ezactly one element of C'.
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Proof: The reduction essentially combines the ideas from (Lobstein,
1990) and the reduction from subset sum presented in Theorem 3.1,
but without the complications of using subset sum as an intermediate
problem. We give a reduction from X3C to to CVP with the property
that the lattice in the CVP instance depends only on the size of the
original X3C problem. Let (M,C) be an instance of X3C where M
is a set of size m = |M| and C is a collection of subsets of M, each
containing exactly three elements. Assume, without loss of generality,
that M = {1,...,m}. We define a lattice that depends only on m,
and then show how to encode C in the target vector. Let n = (';‘) and
consider the m x n matrix T € {0,1}™*" whose columns are all possible
m-dimensional binary vectors containing exactly three ones. Notice that
the size of T is polynomial in . We identify the columns of T with all
the 3-element subsets of M, and X3C instances C with the corresponding
characteristic vectors ¢ € {0,1}". The output of the reduction is

T 1
B = [ oI, } t= [ c" } r=|c|l. (3.15)
It is easy to see that X3C instance c has a solution if and only if CVP
instance (B,t,r) has a solution. Moreover, the lattice £(B) depends
only on the dimension m of the original 3XC instance. O

6. Notes

The NP-hardness of CVP (in any ¢, norm) and SVP (in the £
norm) was originally proved in (van Emde Boas, 1981). The proof
presented in Section 2 is from (Micciancio, 2001a). The hardness of
approximating CVP within any constant factor, and the amplification
technique described in 4 are due to (Arora et al., 1997). Stronger in-
approximability results for CVP are given in (Dinur et al., 1998; Dinur
et al., 1999), where CVP is proved NP-hard to approximate within v =
20(logn/loglogn) Unfortunately, the proofs in (Dinur et al., 1998; Dinur
et al., 1999) heavily rely on the complex machinery of Probabilistically
Checkable Proofs (PCP) whose treatment is beyond the scope of this
book. Also the results in (Arora et al., 1997) ultimately rely on PCP,
but in (Arora et al.,, 1997) the complexity of PCP techniques is hid-
den in the proof of inapproximability of Set Cover. Notice that the
inapproximability factors (Dinur et al., 1998; Dinur et al., 1999) are
asymptotically bigger than any polylogarithmic function log®n, but at
the same time asymptotically smaller than any inverse polynomial 1/n°.
In (Arora et al., 1996) it is argued that inapproximability within these
factors can be interpreted as inapproximability within some small poly-
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nomial n¢. Still, proving that CVP is NP-hard to approximate within a
factor n® for some € bounded away from 0 is a major open problem.

The problem of reducing SVP to CVP was explicitly posed by (Babali,
1986). The question asked by Babai is whether one can reduce SVP,
to CVP,, for approximation factors such that SVP, is not (known
to be) solvable in polynomial time (e.g., ¥ = 2V"), and CVP., is not
(known to be) NP-hard (e.g., 7/ = n). This is the question answered, in
a very strong sense, in Section 3: there is Cook reduction from SVP to
CVP that preserves the approximation factor and the rank of the lattice.
The reduction presented in Section 3 is from (Goldreich et al., 1999),
which also proves analogous results for coding problems. A problem left
open in (Goldreich et al., 1999) is whether it is possible to give a Karp
reduction from SVP, to CVP,. The problem is of interest because
it would allow to transform hard SVP distributions (as those built in
(Ajtai, 1996) and discussed in Chapter 8) into hard CVP distributions,
with potential applications to cryptography. (An explicit construction
of a hard CVP distribution has recently been given in (Cai, 2001), but
the proof is rather complex. A Karp reduction from SVP to CVP
would give a much simpler answer to the same problem, possibly with a
different distribution.) The problem of reducing CVP to SVP has also
been considered, and it is discussed in Chapter 4.

The hardness proof for the closest vector problem with preprocessing
(CVPP) in Section 5 is from (Micciancio, 2001a). Similar results for
decoding linear codes and the subset sum problems were already proved
in (Bruck and Naor, 1990; Lobstein, 1990). Both CVP and the decod-
ing problem for linear codes are known to be NP-hard not only their
exact version, but also when constant (or even nO(1/1081087)) 355roxi-
mation factors are allowed. A natural question, posed in (Micciancio,
2001a), is if lattice and coding problems with preprocessing are hard to
approximate as well. Recently, (Feige and Micciancio, 2001) gave a first
answer to this question, showing that CVP in the £, norm is NP-hard to
approximate within any factor v < {/5/_3 Extending this result to arbi-
trary constants, and possibly almost polynomial factors, is an interesting
question.



Chapter 4

SHORTEST VECTOR PROBLEM

In this chapter we study the hardness of approximating the shortest
vector problem (SVP). Recall that in SVP one is given a matrix B €
@Q™*™, and the goal is to find the shortest nonzero vector in the lattice
generated by B. In Chapter 3 we have already studied another important
algorithmic problem on lattices: the closest vector problem (CVP). In
CVP, in addition to the lattice basis B € Q%™ one is given a target
vector t € Q™, and the goal is to find the lattice point in £(B) closest
to t. In Chapter 3 we showed that the NP-hardness of CVP can be
easily established by reduction from subset sum (Theorem 3.1), and even
approximating CVP within any constant or “almost polynomial” factors
is hard for NP. We also observed that the reduction from subset sum to
CVP can be easily adapted to prove that SVP in the £, norm is NP-
hard (Theorem 3.2). Unfortunately, that simple reduction does not work
for any other norm. In this chapter, we investigate the computational
complexity of SVP in any £, norm other than ¢, with special attention
to the Euclidean norm ¢2. In the rest of this chapter the ¢; norm is
assumed, unless explicitly stated otherwise.

Despite the similarities between SVP and CVP, proving that SVP
is NP-hard seems a much harder task, and to date SVP (even in its
exact version) is known to be hard for NP only under randomized or
non-uniform reductions. Proving such hardness results for SVP is the
main goal of this chapter. In particular, we show that for any p > 1,
GAPSVP, in the ¢, norm is NP-hard (under randomized reductions, see
Section 3) for any approximation factor v < ¢2. As in Theorem 3.2,
the proof is by reduction from (a variant of) CVP. Therefore, the re-
duction can be considered a “homogenization” process, in which the
inhomogeneous problem (CVP) is reduced to its homogeneous counter-

D. Micciancio et al., Complexity of Lattice Problems
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L (2by 4,205

Figure 4.1. The shortest vector 2by + 2ba — t in the lattice generated by [bi, ba, t]
corresponds to the lattice vector in £(b;,bs) closest to t.

part (SVP). This approach is not new in the study of the computational
complexity of lattice problems. For example (Kannan, 1987b) reduces
approximating CVP within a factor O(y/n) to computing exact solu-
tions to SVP. In fact, it is not necessary to solve SVP exactly in order
to approximate CVP within O(y/n) factors. In Section 1 we extend
Kannan’s homogenization technique to show that approximating CVP
within some O(y/n) factor can be reduced to approzimating SVP within
any constant factor v < 2. Unfortunately, as we will see in Chapter 9,
CVP is not likely to be NP-hard for approximation factors bigger than
O(y/n/logn). Therefore, reductions like the one presented in Section 1,
are unlikely to be useful to prove the NP-hardness of SVP. In Sec-
tion 2 we describe a different homogenization technique due to Ajtai
and Micciancio and prove that SVP is NP-hard to approximate within
any constant factor less than v/2, by reduction from a variant of CVP.

1. Kannan’s homogenization technique

One simple approach to reducing the closest vector problem to the
shortest vector problem is as follows. Assume we want to find the point
in a lattice £(B) (approximately) closest to some target vector t. We can
look instead for the shortest nonzero vector in the lattice generated by
the matrix [B|t]. If the shortest vector in £([B|t]) is of the form Bx —t
then Bx is necessarily the lattice vector in £(B) closest to the target t.
See, for example, Figure 4.1. The lattice generated by vectors b; and
b, is the set of intersection points of the grid displayed in the picture.
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We want to find the intersection point closest to vector t. Consider the
lattice generated by [b1, bg,t]. This is the set of all black dots in the
picture. A shortest nonzero vector in this lattice is given by 2b; +2b, —t.
This vector clearly corresponds to the point 2b; + 2b; in the original
lattice £(B) closest to target t. Unfortunately, if the shortest vector in
L([B]t]) is not of the form Bx + t this simple reduction does not work.
In the rest of this section we denote by A the length of the shortest vector
in the original lattice £(B) and by p the distance of t from £(B). There
are two different ways in which the above reduction can fail.

s First, if A < u (i.e., the lattice £(B) contains vectors as short as the
distance of the target t from the lattice) then the shortest vector in
the lattice generated by [B|t] can be a vector Bx from the original
lattice. For example, in Figure 4.2, basis vectors b; and b, generate
a lattice with shortest vector b; — 2bs. Since the distance of target
t from lattice £(B) is more than ||b; — 2bs||, the shortest vector in
the lattice generated by [by, by, t] is still b; — 2b,.

s Second, even if u < A, it is still possible that the shortest vector in
L([B|t]) is of the form Bx + wt for some nonzero integer w # +1. In
this case, the shortest vector corresponds to a vector in £(B) close
to a (non-unitary) multiple of t. For example, in Figure 4.3 the
lattice point in £(b;, by) closest to t is b;. However, 3t is strictly
closer to the lattice than the original target vector t. So, shortest
nonzero vector 2b; + by — 3t in £([by, by, t]) yields-a lattice point
2b; + by € L(B) closest to 3t.

In both cases a solution vector to the SVP instance [B|t] does not
seem to help to find lattice vectors in £(B) close to the target t. A
possible way to address these problems is to embed the vectors [B|t] in
a higher dimensional space and add to t a component orthogonal to B.
In other words, we consider the lattice generated by the matrix

B'=[13 z] (4.1)

where c is an appropriately chosen rational number. In fact, this method
has been used as a heuristics in many cryptanalysis papers and has been
reported to be particularly effective when the distance p is small com-
pared to the minimum distance A of the lattice. Notice that if B is a
basis for £(B) then the columns of matrix B are linearly independent,
i.e., B is a basis for £(B’). (This might not be true of [B|t], which gen-
erates £([Bly]) but is not usually a basis.) If c is sufficiently large, then
the shortest vector in the new lattice £(B’) cannot use the last column
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Figure 4.2. The shortest vector b; —2bg in the lattice generated by by, bz, t] belongs
to the lattice £(bi,ba).

Figure 4.3. The shortest vector 2b; + bz — 3t in the lattice generated by [by, ba, t]
correspond to the vector in £(by, b;) closest to 3t.

too many times. In particular if ¢ > A/2, then the last column can be
used at most once. This idea is formalized in (Kannan, 1987b) where ¢
is set to the value 0.51\. (Notice that A can be computed applying the
SVP oracle to the original lattice.) Still, if A < y/u2 + c? the shortest
vector in £(B’) will be a vector Bx from the original lattice £(B), giv-
ing no information about the vector in £(B) closest to t. Kannan then
suggests to project B and t to the hyperplane orthogonal to the shortest
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vector of £(B), recursively solve the lower dimensional CVP problem,
and lift the (n — 1)-dimensional solution to a solution for the original
problem. Since A is not much bigger than p, the error introduced by the
project and lift operations can be bounded as a function of g In par-
ticular, Kannan shows that CVP can be approximated within a factor
v/n/2 making O(n) calls to an oracle that solves SVP exactly.

In fact, it is not necessary to have an oracle that solves SV P exactly to
approximate CVP within O(y/n) factors, and Kannan’s homogenization
technique can be extended to approximate CVP within some O(y/n) fac-
tor making O(n logn) calls to an oracle that approximates SVP within
any factor v < 2. In the rest of this section we present this improved
reduction.

The main idea is to try to set c in (4.1) to some value slightly bigger
than pu/\/(2/7)? — 1, instead of A\/2 as in (Kannan, 1987b). This choice
for c is motivated by the following lemma.

LEMMA 4.1 For any p € [1,2), let u > 0 be the distance of point t from
lattice L(B) and let ¢ be a constant strictly bigger than u/\/(2/7)? — 1.

If
| Bt x | _ | Bx+wt
S | b ol e B
is a y-approzimate shortest vector in the lattice generated by (4.1), then

lw| < 1.

Proof: First of all, notice that lattice (4.1) contains a vector of length

V 112 + ¢? obtained multiplying the last column of B’ by —1 and the
other columns by the coefficients of the lattice vector in £(B) closest to
t. Therefore it must be

Ist® < 72w + ¢?). (4.3)

We also have
Is]|? = 1Bx + wt||? + (we)? > (we)?. (4.4)
Combining (4.3) and (4.4) we get (wc)? < v?(u? + ¢?). Solving for w

and using ¢ > p/\/(2/7)* — 1 we get

12
lw| <~ §+1<2. (4.5)

Since w is an integer it must be |w| < 1. O

We use Lemma 4.1 to prove that there is a Cook reduction from
approximating CVP within some O(\/n) factor to approximating SVP
within factors less than 2.
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THEOREM 4.2 For any constant approzimation factors v € [1,2) and
any function
vn

v'(n) > ——\/(—277—)—-——2—_—1,

the CVP y(n) search problem (where n is the rank of the lattice) is Cook
reducible to the SVP, search problem. Moreover, the number of calls to
the SVP., oracle made by the reduction is O(nlogn).

Proof: Let v be any factor in the range [1,2) and let

. n(l+e)
T \/ /-1 (49

for some strictly positive, but arbitrarily small, constant € € (0,1]. We
show that given an oracle that approximates SVP within factor -, one
can efficiently approximate CVP within factor 4. Let B be a lattice
basis of rank n and t a target vector. We want to find a lattice vector in
L(B) approximately closest to t. To this end, we make calls to the SVP
approximation oracle on input basis (4.1), where c is an appropriately
chosen constant. Notice that if ¢ is too small then the shortest vector in
L(B’) might use the last column more than once (i.e., with coefficient
bigger than 1 in absolute value). On the other hand, if c is too large,
then the last column is never used. From Lemma 4.1 we know that it

is enough to set ¢ to any value slightly bigger than u/\/(2/¥)2 -1 in
order to make sure that |w| < 1, e.g.,

1+e¢

csp ME=1 (4.7)

Unfortunately, we don’t know the value of i, so we cannot directly set
¢ = uv/T+€/+/(2/7)? — 1. Instead, we first compute a coarse approx-
imation for . Using the nearest plane CVP approximation algorithm
from Chapter 2, we find in polynomial time an real M such that

p<M<22/V3) < 2%, (4.8)
Then, we consider the monotonically decreasing sequence of constants

M(yT+9)'*

Ck == ———— (4.9)
(2/7)? -1
for k£ > 0. Notice that if k = 0, then ¢, equals
M1
co= te ,___# (4.10)

V2/7)2 -1 J(2/)? -1
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and by Lemma 4.1 the short vector s returned by the SVP, oracle on
input (4.1) when ¢ = ¢j uses the last column |w| < 1 times. The problem
is that co does not necessarily satisfies (4.7). Now consider the value of
cr when k equals

K = [2n/logy(1 +¢€)] (4.11)

Using M < 2"u we get

ox = M(VT+el XK < pv1+e
@/m*-1 ~ VeMmr-1

So, ck satisfies (4.7). The problem this time is that when ¢ = cg in
(4.1) the SVP, oracle might return a short vector (4.2) with |w| > 1.
If this happens, we perform a binary search in {0,...,K}, and with
log K = O(logn) calls to the the SVP,, oracle we find an integer k
such that the short vector returned by SVP, when ¢ = ¢, has |w| < 1,
while the short vector returned by SVP, when ¢ = ¢x41 has |w| > 1.
We claim that c, satisfies (4.7). Assume for contradiction that ¢, >

pv1+€/+/(2/7)2 — 1. Then
ck+1 = Ck/V1+e>p/\/(2/7)2 -1

and, by Lemma 4.1, any y-approximate shortest vector in £(B’) with
¢ = ck4+1 must have |w| < 1. But this is a contradiction because when
¢ = cx4+1 the SVP, oracle returned a short vector with |w| > 1.

This shows that O(logn) calls to the SVP approximation oracle are
sufficient to efficiently find a constant c¢ satisfying (4.7), and a short
vector s € L(B’) with |{w| < 1. We treat the |[w| = 1 and w = 0 cases
separately. First consider the case w = *+1 and assume, without loss of
generality, that n > 3. (This assumption is justified by the fact that
when n < 2, CVP can be solved exactly in polynomial time.) We claim
that —wBx is a 7’-approximate solution to CVP instance (B,t). Using
(4.3) and (4.4) we get

(4.12)

It - (—wBx)|? 1Bx + t||?
lIs||* = (wc)?
Y+ ) -
pi +fyr-1)
1+e¢
W (72 temr 1 o 1))
5 (3+e(v?-1)
# ( /)% -1 )

TIVAN

AN
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3u%(1+¢)
(2/7)? -
= (3/n)(v'w)*.
Therefore, if n > 3 then —wBx is within distance ¥4 from t.
Now consider the case w = 0. Ifw = 0, then s = Bx is a short nonzero
vector in £(B), and it can be used to find a lattice vector approximately

closest to t as follows. First we bound the length of s. Using (4.3), (4.7)
and v < 2 we get

sl < YVu?+c?

< '7\/u + u (2—/1-;#
_ 1+ ey2/4
= M e

1+e€

Then, we project B and t to the orthogonal complement of s to obtain
a matrix B and vector t (see Figure 4.4). Let Bx be a solution to the
original CVP problem (B,t). Notice that the projected vector Bx is
also within distance  from the target t, and £(B) has rank n—1. So, if
we recursively look for an approximate solution to CVP instance (B/, t'),
we can find a vector U = widetildeBz within distance v'(n = 1)u from
t, i.e,

(m=1)(1+¢)
Gy -

Let £ = {u + as:a € R} be the set of all points that project to u’, and
let u be the orthogonal projection of t onto line £. Assume without loss
of generality that Bz is the lattice point on £ closest to the projection u.
(This can be easily achieved adding an appropriate integer multiple of
s to Bz.) We claim that Bz is an approximate solution to the original
CVP problem. We compute the distance of Bz from the target t:

it ~Bzl|* = |t — ul|? + jju - Ba|*. (4.15)

Using (4.14), we can bound the first term on the right hand side of (4.15)
by:

G-t <p (4.14)

#(l+e)(n—1)
(2/7)? -1

It —ul® = [ld —¢® < (4.16)
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Figure 4.4. Kannan homogenization technique.

For the second term, bound (4.13) on the length of s gives

pA(1+¢)
(2/7)? -1

Substituting the two bounds (4.16) and (4.17) in (4.15) we get

2
Ju—Bal? < (3181 < (417)

It = Bal < g = 7 (.

Therefore, Bz is within distance 'y from the target t. O

If v =1 (i.e., assuming we can solve SVP exactly) the above theorem
gives a CVP approximation algorithm with approximation factor arbi-
trarily close to y/n/3 (marginally improving Kannan’s y/n/2 factor),
but the order of growth is still O(\/n).

2. The Ajtai-Micciancio embedding

In the previous section we presented a reduction that allows to find
O(y/n)-approximate solutions to CVP, given an oracle to find almost
exact solutions to SVP. This kind of reductions was considered for a long
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time a viable way to prove the NP-hardness of SVP. (See for example
(Kannan, 1987b) and (Arora et al., 1997).) Unfortunately, as we will
see in Chapter 9, CVP is not likely to be NP-hard for approximation
factors bigger than O(y/n/logn). Therefore, a more efficient reduction
from CVP to SVP is needed in order to obtain NP-hardness results for
SVP.

The problem with the reduction presented in Section 1, is that it
proceeds by induction on the rank of the lattice. Each time the rank of
the lattice is reduced by 1, there is a potential loss in the quality of the
final solution. Even if the error at each level of the induction is only a
constant fraction of the distance of the target from the lattice, adding up
n (orthogonal) errors one can get O(y/n) away from the optimal solution.
In this section we present a more efficient reduction technique that allows
to embed certain CVP instances in a single instance of SVP. The
embedding is more complicated this time, and the dimension of the SVP
instance produced is typically much bigger than (but still polynomially
related to) the dimension of the original CVP problem. However, the
loss in the approximation factor is much smaller. There are a few other
important differences between the reduction from Section 1 and the one
we are going to present in this section:

® In Section 1 we gave a reduction between the search version of CVP
and SVP. In this section we give a reduction between promise prob-
lems.

s In Section 1 we reduced SVP from a general CVP instance. In this
section, we start from a special version of CVP, namely, the BINCVP
problem introduced in Chapter 3.

s The reduction of Section 1 is deterministic. The reduction presented
in this section uses a combinatorial gadget for which no efficient de-
terministic construction is known at the time of this writing. Still, we
can give an efficient probabilistic construction, or even a determinis-
tic one if a certain number theoretic conjecture holds true. Therefore,
the new reduction implies the NP-hardness of SVP under random-
ized reductions, or under Karp reductions if the conjecture is correct.
Still, the problem of finding an unconditional Karp reduction from
an NP-hard problem to SVP remains open.

We now outline the idea underlying the new reduction. Given a lat-
tice basis B € Z™*™ and a target vector t € Z™, we first randomize B
by multiplying it by an integer matrix T € Z™*F to get a set of vectors
BT € Z™ k. The columns of BT are no longer linearly independent,
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and each lattice vector has many possible representations as an inte-
ger linear combination of them. Then we embed BT and t in a higher
dimensional space using a special lattice L, constructed independently
from B. Lattice L has the remarkable property that the distance be-
tween any two lattice points (or, equivalently, the length of the shortest
nonzero vector in £(L)) is large, but at the same time there is an ex-
tremely dense cluster of lattice points all close to a point s in span(L).
In particular, the distance of these lattice points from s is smaller (by a
constant factor approximately equal to v/2) than the minimum distance
between lattice points in £(L). The output of the reduction is obtained
combining (L, s) and (BT, t) in a single matrix

BT at
sz[“bL ‘;s] (4.18)

where a and b are appropriate scaling factors. The idea is that if there
exists a lattice vector v € L£(B) close to t, then we can find a short
vector in the new lattice multiplying the last column of B’ by —1 and
looking for a lattice point Lz close to s such that BTz = v. The lattice
vector obtained multiplying matrix (4.18) by [z7, —1]7 is short because
BTz = v is close to t and Lz is close to s. On the other hand, if there
are no lattice points in £(B) close to (any nonzero multiple of) t, then
the lattice defined by (4.18) has no short vectors because if we use the
last column w # 0 times, then the top part B(Tz) + wt of the lattice
vector is long, while if we multiply the last column of B’ by w = 0, then
the bottom part Lz — 0s = Lz is long.

Notice that the reduction makes crucial use of the special properties
of BINCVP. In particular, we use the fact that if the target vector t is
far from the lattice £(B), then all (nonzero) multiples of t are also far.

As outlined above, the reduction uses three objects L,s and T sat-
isfying some very special properties. Proving the existence of L,s and
T and giving a polynomial time (possibly randomized) construction for
them requires some lattice packing and combinatorial techniques that
are developed in Chapter 5 and Chapter 6. Here, we state the proper-
ties of L,s and T and use them to give a reduction from BINCVP to
SVP. The properties of L,s and T are stated with respect to a generic
¢, norm, so that we can use the lemma to prove the inapproximability
of SVP in the £, norm for any p > 1.

LEMMA 4.3 (SPHERE PACKING LEMMA) For any l, norm (p > 1) and
constant v < 21/P, there ezists a (possibly probabilistic or nonuniform)
polynomial time algorithm that on input n outputs (in time polynomial
in n) a lattice L € Z¥*k, a vector s € Z¥, a matriz T € Z™* and a
rational number r such that



80 COMPLEXITY OF LATTICE PROBLEMS

Figure {.5. The homogenization gadget: lattice L has minimum distance 4 times the
radius of the sphere centered in s and all boolean vectors of length n can be expressed
as Tz for some lattice vector Lz inside the sphere.

s ||Lz|l, > yr for all z € ZF\ {0},

»  (with high probability over the internal randomness of the algorithm)
for every boolean vector x € {0,1}" there ezists an integer vector
z € Z* such that Tz = x and ||Lz —s||, <.

The various kind of algorithms (deterministic, probabilistic or nonuni-
form) for which we know how to prove the lemma are discussed in Sec-
tion 3. The homogenization gadget (L, T,s,r) produced by the these
algorithms is illustrated in Figure 4.5. Lattice L has minimum distance

A1 > r and every boolean vector of dimension n can be expressed as
Tz for some lattice vector Lz within distance r from s. Notice that this
implies that the sphere of radius r around s contains at least 2" lattice
points. In Chapter 5 we will prove that, at least for the Euclidean norm
¢35, Lemma 4.3 is essentially optimal. In particular, if p = 2 and v > V2,
then any sphere of radius r contains at most 2k lattice points. This is
the ultimate reason why the homogenization technique described in this
section does not work for approximation factors beyond /2. We will go
back to the proof of Lemma 4.3 in Section 3. In the rest of this sec-
tion we use Lemma 4.3 to prove the hardness of GAPSVP, for factors

7 < V2.
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THEOREM 4.4 For any p > 1, given an algorithm satisfying the prop-
erties described in Lemma 4.3, one can reduce in polynomial time an
NP-hard problem to GAPSVP, in the £, for any constant approrima-

tion factor v < /2.

Proof: Fix an [, norm and a constant y < ¢/2. Let 4 be any constant
between y and /2, and let

. 2F

EOEION
v ¥
We reduce BINCVP4 to GAPSVP,,. Notice that 4 is a constant inde-
pendent of n, so, by Corollary 3.11, BINCVP; is NP-hard. We remark
that Corollary 3.11 shows that BINCVPj is NP-hard not only for con-
stant approximation factors 4, but also for some monotonically increas-

ing function 4(n) of the rank. Using these stronger inapproximability
results one can show that GAPSVP,, is hard to approximate within some

factor y(n) < ¢/2 such that lim,_,o y(n) = ¢/2. This is only marginally
better than showing hardness for any constant 4 < ¥2. So, in order to
keep the presentation simpler, we consider 4 as fixed.

Let (B, t,d) be an instance of BINCVP; where B € Z™*" and t € Z™.
Run the algorithm from Lemma 4.3 to obtain a lattice L € Z**k, a
vector s € Z"', a matrix T € Z"** and a rational number r such that

s ||Lz||, > 4r for all z € Z*\ {0},

s (with high probability) for all vectors x € {0,1}" there exists a z € Z*
such that Tz = x and ||Lz —s||, <.

Let a and b two integers such that

2{/_ (—) -1l< = <{7/_v (4.19)

and define the lattice

.19) we get

P
) —l>+bpr”
P

B = [ aBT

Notice that from the upper bound in (

aPd + V¥Pr? < bprp<(

o]

7

oo(3f
Y
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so, we can find a rational number d’ in the interval
YaPd + bbr? < d' < br G) . (4.20)

The output of the reduction is (B',d').

We want to prove that if (B, t,d) is a YES instance of BINCVPj then
(B’,d') is a YEs instance of GAPSVP,, and if (B, t,d) is a NO instance
of BINCVPj then (B’,d') is a NO instance of GAPSVP,.

First assume that (B, t,d) is a YES instance, i.e. there exists a vector
x € {0,1}* such that t — Bx is a 0-1 vector with at most d 1’s. In
particular, || Bx—t|| < ¥d. By construction, there exists a vector z € Z*
such that Tz = x and ||Lz — s|| < r. Define

=4

and compute the norm of the corresponding lattice vector
IB'w|} = af|Bx —t|]} + ¥"||Lz — s||;
< (a)Pd+ (br)?,
which, by (4.20), is at most (d')?. This proves that (B’,d') is a YES
instance.
Now assume (B, t,d) is a NO instance and let w = [zT,w]T be a
nonzero integer vector. We want to prove that ||B'w||? > (yd')P. Notice

that
|B'w||? = a?||Bx + wt||P + b*||Lz + ws||”.

We prove that either a||Bx + wt|| > vd’ or b||Lz + ws|| > vyd'. We
distinguish two cases

s If w =0 then z # 0 and, therefore, ||Lz||, > 4r. This proves that
b||Lz + ws|| = b||Lz|| > byr,

which, by (4.20), is at least vd'.

s If w # 0 then Bx+wt has more than 4d nonzero entries. In particular
2¢/d

1/7)? = (1737
Multiplying (4.21) by a, and using the lower bound in (4.19), we get

a||Bx + wt||, > bry

which, by (4.20), is at least vd'.

This proves that in either case |B'w|| > ¢/4¢. O

(4.21)

B+ wtll, > Y3 =
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3. NP-hardness of SVP

In Section 2 we have seen that it is possible to efficiently reduce an
NP-hard problem to GAPSVP, provided we have an algorithm to com-
pute objects (L, T, s, r) as specified in Lemma 4.3. To date we do not
know how to compute (L, T,s,r) in deterministic polynomial time, so
Theorem 4.4 does not prove the NP-hardness of GAPSVP under deter-
ministic (Karp or Cook) reductions. However, we know how to efficiently
find (L, T, s, r) probabilistically. Moreover, if a certain number theoretic
conjecture holds true, then we can give a deterministic algorithm that
runs in polynomial time. Using these algorithms it is possible to prove
that GAPSVP is NP-hard under different types of reductions. In the
following subsections we use lattice packing and combinatorial construc-
tions to be developed in Chapters 5 and 6 to present various solutions
to the problem of Lemma 4.3, and obtain corresponding NP-hardness
results for GAPSVP.

3.1 Hardness under randomized reductions

In this subsection we give a probabilistic construction for objects
(L, T,s,r) satisfying Lemma 4.3. In particular, we give a randomized
algorithm that on input an integer n produces a lattice basis L and a
sphere B(s,r) such that \;(L) is guaranteed to be bigger than r by a
factor v < /2, and with probability arbitrarily close to 1 (over the ran-
dom choices of the algorithm) the sphere B(s, r) contains a lattice point
Lz for every binary string Tz € {0, 1}".

The construction is based on a sphere packing result to be proved in
Chapter 5. (See that chapter for a discussion of the connection between
this problem and general sphere packing questions.) The result is the
following.

THEOREM 4.5 For every p > 1, v € [1,/2) and § > 0 there exists
a probabilistic algorithm that on input an integer h outputs (in time
polynomial in h) integers k and r, a matriz L € Z*k+1)xk ond an integer
vector s € Z*+! such that

» all vectors in L(L) have £, norm bigger than vyr, and

s for all sufficiently large h, with probability at least 1 —2~" the sphere
B(s,r) contains at least h®* lattice points of the form Lz where z is
a 0-1 vector with ezactly h ones.

Proof: See Chapter 5, Section 4. O

We also need the following probabilistic combinatorial result to be
proved in Chapter 6.
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THEOREM 4.6 Let Z C {0,1}* be a set of vectors, each containing ez-
actly h ones. If |Z| > hkAVEn/e and T € {0,1}*k is chosen setting
each entry to 1 independently at random with probability p = 4—,1—;, then
the probability that T(Z) = {Tz : z € Z} contains all binary vectors
{0,1}" is at least 1 — 6e.

Proof: See Chapter 6, Section 3. O

The homogenization gadget of Lemma 4.3 is easily built combining
Theorems 4.5 and 4.6.

Proof [of Lemma 4.3 (probabilistic version)]: Fix an £, norm
(p > 1) and a constant v € [1, ¥/2). Let n be a sufficiently large integer.
We want to build (in time polynomial in n) an integer lattice L € Z* %,
an integer vector s € Z¥, an integer transformation matrix T € Z"*%,

and a rational number r such that
= all nonzero vectors in £(L) have ¢, norm greater than yr;

= with probability at least 1 — 1/ poly(n), for every x € {0,1}" there
exists a z € ZF such that Tz = x and ||Lz —s||, < 7.

Run the algorithm of Theorem 4.5 on input h = n* and § = 2. Let
L € Zk+1)xk s ¢ ZF+1 and r € Z be the output of the algorithm. Notice
that since L and s are computed in polynomial time, k is polynomial in
h, i.e., k < h€ for some constant c independent of h. Let Z be the set of
all vectors z € {0,1}* with exactly h ones, such that Lz € B(s,r). We
know from Theorem 4.5 that all nonzero vectors in £(L) have £, norm
greater than r, and the size of Z is bigger than h2" with probability at
least 1 — 2~%, Now, choose matrix T € {0,1}™** by setting each entry
to 1 independently with probability 1/(4hn). Notice that

12| > B > hikhle = pgE,

where € = 4c/k. So, by Theorem 4.6, the probability that for each x
there exists a vector z such that x = Tz and Lz € B(s,r) is at least
1-1/0(k). O

Using this proof of Lemma 4.3, Theorem 4.4 shows that GAPSVP is
hard to approximate under reverse unfaithful random reductions (RUR-
reductions for short, see (Johnson, 1990)). These are probabilistic re-
ductions that map NO instances to NO instances with probability 1, and
YES instances to YES instances with nonnegligible probability. (In fact
our proof has success probability 1 — 1/p(n) for some polynomial func-
tion p(n).) Although not a proper NP-hardness result (i.e., hardness for
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NP under Karp reductions, which would imply that SVP is not in P
unless P = NP), hardness under RUR-reductions also gives evidence of
the intractability of a problem. In particular, it implies that SVP is not
in RP unless RP = NP. (Here RP is the class of decision problems with
random polynomial time decision algorithms that are always correct on
NO instances and “usually” correct on YES instances, say with probabil-
ity at least 1/2.) So, the NP-hardness result for SVP (under randomized
reductions) also gives theoretical evidence that SVP is intractable.

COROLLARY 4.7 For any fized p > 1 and constant v < ¥/2, the promise
problem GAPSVP, in the £, norm is NP-hard under RUR-reductions.
In particular, GAPSVP., cannot be solved in RP (random polynomial
time), unless NP = RP.

3.2 Hardness under nonuniform reductions

In this subsection we show that GAPSVP is NP-hard under determin-
istic nonuniform polynomial time reductions. A nonuniform algorithm
is an algorithm that, in addition to the problem instance, takes as addi-
tional input a hint string that depends only on the size of the problem
instance. In other words, the hint string is the same for all problems of a
certain size. The complexity class P/poly is defined as the set of decision
(or promise) problems that can be solved by a polynomial time algorithm
with a hint of size polynomial in the length of the input. Equivalently,
P/poly is the set of languages that can be recognized by a (possibly
nonuniform) family of circuits Cy (for £ = 1,2,...), with each circuit
Ck to be used on input strings of length k, and the size of C;, bounded
by a polynomial p(k) = k°. These circuit families are called nonuniform
because the sequence of circuits is not necessarily computable, i.e., there
might be no (efficient) algorithm that on input k outputs the circuit Ck.

It is easy to see that P/poly contains languages that are not in NP.
(In fact, P/poly contains undecidable languages.) However, it is widely
believed that NP is not contained in P/poly. Clearly, if a problem is
NP-hard under nonuniform polynomial time reductions, then the prob-
lem cannot be solved in P (or even in P/poly) unless NP C P/poly.
Therefore, NP-hardness under nonuniform polynomial time reductions
gives evidence that a problem is intractable.

Notice that the randomness in the RUR-reductions of Corollary 4.7
comes exclusively from the algorithm of Lemma 4.3. The algorithm of
Lemma 4.3 takes as input only the size (or, more precisely, the rank)
of the BINCVP instance being reduced. Moreover, whether or not the
algorithm of Lemma 4.3 is successful does not depend on the BINCVP
instance. In other words, if on input n the algorithm outputs objects
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(L, T,s,r) satisfying the properties in Lemma 4.3, then (L, T,s,r) are
good for any BINCVP instance of rank n.

We know that for any rank n there exists a gopod homogenization gad-
get (L, T, s,r) and that the size of (L, T, s,r) is polynomial in n because
the proof of Lemma 4.3 given in the previous subsection shows that there
is a probabilistic polynomial time algorithm to compute (L, T, s, r) with
nonzero (in fact, almost 1) probability. So, for any value of n we can
pick a good (L, T,s,r) and use it as hint string to a nonuniform algo-
rithm that reduces BINCVP to GAPSVP as described in the proof of
Theorem 4.4. Therefore, we have the following result.

COROLLARY 4.8 For any fized p > 1 and constant y < /2, the promise
problem GAPSVP,, is hard for NP under deterministic nonuniform Karp
reductions. In particular, GAPSVP, is not in P/poly unless NP C

P/poly.

Using standard results from nonuniform complexity (Karp and Lipton,
1980), this also implies that for any £, norm (p > 1) andany v € [1, ¢/2),
the promise problem GAPSVP, is not in P unless the polynomial hier-
archy (Meyer and Stockmeyer, 1972; Stockmeyer, 1977) collapses to the
second level.

3.3 Hardness under deterministic reductions

In this subsection we give a deterministic algorithm to build objects
(L, T,s,r) as specified in Lemma 4.3. The algorithm is easily obtained
from a deterministic variant of Theorem 4.5, but its correctness depends
on the validity of a number theoretic conjecture concerning the distri-
bution of square free smooth numbers. For any b > 0, an integer n is
called b-smooth if all prime factors of n are bounded by b. Moreover, we
say that n is square free if all prime factors of n appear with exponent
1. The conjecture is the following.

CONJECTURE 1 For any € > 0 there exists a d such that for all large
enough n, there is an (odd) integer in [n,n + n€] which is square free
and (log?n)-smooth, i.e., all of its prime factors have ezponent 1 and
are less than log%n.

The conjecture is reasonable because a relatively simple number the-
oretic analysis shows that the average number of square free (Inn)9-

smooth numbers in [n,n + n¢| exceeds n¢=1. Therefore, if d = 2/€ one
should expect to find n? square free smooth numbers in [n,n + n€] on
the average. If square free smooth numbers are distributed uniformly
enough then one can reasonably assume that [n,n +n¢] contains at least
one such number for all sufficiently large n.
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We remark that although the above conjecture is quite plausible, prov-
ing it seems currently beyond known mathematical techniques. For fur-
ther discussion about the conjecture the reader is referred to the last
section of Chapter 5. In Chapter 5 we prove the following deterministic
variant of Theorem 4.5, under the assumption that Conjecture 1 is true.

THEOREM 4.9 If Conjecture 1 is true, then the following holds. For
every p > 1 and v < {/2 there ezists a deterministic algorithm that on
input an integer h outputs (in time polynomial in h) integers k and r
(with k > h), a matriz L € Z*+tDXE and an integer vector s € Z*+1
such that

s all vectors in L(L) have €, norm bigger than yr;

s for every vector x € {0,1}" there ezists a vector y € {0,1}¥~" such
that the lattice point L{yT,xT)T belongs to the sphere B(s,r).

Proof: See Chapter 5, Section 3. O
In this case the proof of Lemma 4.3 is immediate.

Proof [of Lemma 4.3 (deterministic version)]: Just run the algo-
rithm of Theorem 4.9 on input h = n to obtain L € Zk+1)xk g ¢ Zk+1
and r € Z. Also define T = [0|I] where I is the n x n identity matrix
and 0 is the n x (k — n) zero matrix. Then, the properties of (L, T,s, )
claimed in Lemma 4.3 immediately follow from Theorem 4.9. O

This shows that if the distribution of square free smooth numbers
is sufficiently uniform, then GAPSVP is NP-hard under (deterministic)
Karp reductions.

COROLLARY 4.10 In Conjecture 1 holds true, then for any fized p > 1
and v < ¥/2, the promise problem GAPSVP., is NP-hard under Karp
reductions. In particular, GAPSVP,, is not in P unless P = NP.

4. Notes

The shortest vector problem is probably the most famous and widely
studied algorithmic problem on point lattices. The NP-hardness of SVP
(in the ¢ norm) was conjectured in (van Emde Boas, 1981), and re-
mained probably the biggest open question in the area for almost two
decades. (See for example (Lovéasz, 1986; Kannan, 1987b; Arora et al.,
1997).) In (Kannan, 1987b) it is shown that approximating CVP within
v/n/2 can be reduced to computing SVP exactly. The reduction pre-
sented in Section 1 is a simple modification of (Kannan, 1987b), and
shows that a relatively good approximation oracle for SVP is already
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enough to approximate CVP within O(y/n) factors. Kannan’s reduction
suggests that a possible way to demonstrate the NP-hardness of SVP
might be to prove NP-hardness of approximating CVP within O(y/n)
factors. Progress in the inapproximability of CVP (Arora et al., 1997)
seemed encouraging in this perspective, but in 1997 Goldreich and Gold-
wasser showed that CVP is not likely to be NP-hard to approximate for
factors v = O(y/n/ log n) (Goldreich and Goldwasser, 2000), eliminating
Kannan'’s reduction as a viable route toward a resolution of van Emde
Boas’ conjecture. The NP-hardness of SVP (in its exact version) was
finally proved (under RUR reductions) by (Ajtai, 1998). Ajtai’s proof
easily extends to some weak inapproximability result: in (Ajtai, 1998) it
is already claimed that SVP is NP-hard to approximate within a factor
1 4+ 1/2°" (for some constant ¢) and (Cai and Nerurkar, 1999) shows
that Ajtai’s proof can actually be extended to inapproximability fac-
tor 1 + 1/n¢ for any fixed € > 0. Still, these inapproximability results
are rather weak because the approximation factor rapidly approaches 1
when the dimension of the lattice increases, leaving the question of the
inapproximability of SVP basically open. The first significant inapprox-
imability result for SVP in which the approximation factor is bounded
away from 1 was proved by Micciancio in 1998, who showed that SVP is
NP-hard under RUR-reductions for any approximation factor less than
v2 (Micciancio, 1998; Micciancio, 2001d). This is the result presented
in Sections 2 and 3, and at the time of this writing it is still the strongest
inapproximability result for SVP known. (Micciancio, 2001d) represents
not only a strengthening, but also a substantial simplification of Ajtai’s
proof, and it allowed to prove analogous results for coding problems
(Dumer et al., 1999). Conjecture 1 about the distribution of square
free smooth numbers was also put forward in (Micciancio, 2001d), for
the purpose of proving the NP-hardness of approximating SVP under
(deterministic) Karp reductions. It should be noted that Conjecture 1,
although reasonable, seems to be beyond current mathematical tech-
niques, and it is not likely to be proved any time soon. Both proving the
NP-hardness of SVP under (deterministic) Karp reduction, and improv-
ing the inapproximability factor from v/2 to any constant (and possibly
some some small polynomial function n¢ of the rank) are major open
problems in the area. These and other open problems related to SVP
are discussed in the rest of this section.

In Section 3 we proved that approximating the shortest vector problem
in any ¢, within factors less than ¢/2 is not in polynomial time under
any of the following assumptions: (1) NP # RP, (2) NP € P/poly,or
(3) Conjecture 1 is true and NP # P. Although all of these results give
theoretical evidence that SVP cannot be approximated in polynomial



Shortest Vector Problem 89

time, the problem whether solving SVP (even exactly) is NP-hard under
deterministic (Karp or Cook) reductions is still open. We noticed that
the only place where randomness is used in our reduction is the proof
of Lemma 4.3. A deterministic polynomial time solution to Lemma 4.3
would immediately give an NP-hardness result for SVP under Karp
reductions.

Our NP-hardness proof is by reduction from a variant of CVP. In par-
ticular we reduce instances of BINCVP of size n to instances of GAPSVP
of size m = n€, where ¢ > 2 is a constant independent of n. Although
this gives a polynomial relation between n and m it should be noted
that m can be much bigger than n. Therefore, in order to assert that
an instance of SVP is hard to solve in practice, the dimension m must
be rather large. Finding a more efficient reduction, where, for example,
m = O(n), is an important open problem. Interestingly, a dimension
and approximation preserving reduction is possible in the other direc-
tion from SVP to CVP. (See Chapter 3.)

The sphere packing lemma used in our reduction is in a certain sense
optimal (at least for the 2 norm): in Chapter 5 we show that any lat-
tice L satisfying the lemma must have vectors of length less than r/v/2.
Proving that SVP is NP-hard to approximate within factors larger than
V2 cannot be done simply improving the construction in Lemma 4.3.
Extending the NP-hardness result for SVP (even under randomized or
nonuniform reductions) to approximation factors beyond v/2 (and pos-
sibly any constant, or polylogarithmic/quasipolynomial functions of the
rank) is certainly the most important open question about the complex-
ity of SVP.

Another open problem, related both to the reduction of Section 1 and
that of Section 2, is the relationship between the search and optimiza-
tion versions of approximate SVP. In Chapter 1 we showed that one
can compute the approximate length of the shortest vector in a lattice
given an oracle to solve the corresponding promise problem, and vice-
versa. Now, we consider computing the length (optimization problem)
and actually finding the approximately shortest vector (search problem).
The homogenization technique presented in Section 1 reduces the search
version of CVP to the search version of SVP. In other words, given
an oracle for finding approximately shortest vectors in a lattice, one can
find lattice points approximately closest to a given target. Notice that
it is not enough to compute the (approximate) length of the shortest
lattice vector: when w = 0 and the SVP oracle is called on lattice B,
one actually needs to find an approximately shortest vector b in order
to perform the projection operation and complete the reduction. Inter-
estingly, (Kannan, 1987b) shows that if the length of the shortest vector
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in a lattice can be computed exactly, then one can also find the shortest
vector. The idea is to introduce small errors in the coordinates of the
basis vectors. If the errors are sufficiently small, then the shortest vec-
tor in the perturbed lattice corresponds to the same linear combination
of the basis vectors of the original lattice, and from the exact length
of the shortest vector in the two cases one can reconstruct the coordi-
nates of the shortest vector. Thus, Kannan actually gives a reduction
from computing O(y/n) approximate solutions of CVP to the decisional
problem GAPSVP;. Clearly, this reduction from search to optimization
versions of SVP is very sensitive to errors, and it does not work if one
can only compute good (but not perfect) approximations of the shortest
vector length. Finding a reduction from the search version of approxi-
mate SVP to the corresponding promise or optimization problem is an
important open question, also because of the relation of SVP to other
lattice problems. (See Chapter 7.)

One last question about the complexity of SVP is related to the spe-
cific way we reduced BINCVP to GAPSVP in Section 2. It is easy to
see that given a short vector in the SVP lattice, one can compute a
close vector BTz for the original problem. However, it is not clear how
to map NP-witnesses in the other direction. Given a solved instance of
BINCVP, (i.e., given (B, t) and a lattice point Bx close to t,) it is not
clear how to find a short vector in the new lattice B’. In the reduction
of Theorem 4.4 we only proved that a short vector exists, but the proof
does not give an efficient way to find it. The problem is that finding a
short nonzero vector in £(B') involves finding a lattice point Lz in the
ball B(s,r). Interestingly, even if Conjecture 1 is true, and we can give
a deterministic reduction from BINCVP to GAPSVP, finding a lattice
point in that ball requires the solution of a number theoretic problem
for which no polynomial time algorithm is known. Finding a reduction
from an NP-hard problem to GAPSVP (possibly different from the one
presented here) for which NP-witnesses can be efficiently mapped from
the source to the target problem (sometime called a Levin reduction)
would be desirable, as such kind of reductions are known for virtually
any other NP-hard problem.



Chapter 5

SPHERE PACKINGS

In this chapter we study the following question. What is the maxi-
mum possible number of lattice points inside an n-dimensional sphere
of radius p, given that the minimum distance between lattice points (or,
equivalently, the length of the shortest non-zero vector in the lattice) is
at least A? Clearly the answer depends on the ratio A/p only, as both
the lattice and the sphere can be scaled up or down preserving A/p. If
we drop the requirement that the points belong to a lattice, and allow
them to be an arbitrary set of points with large minimum distance (say
A = 2), we get the following sphere packing problem (see Figure 5.1):
how many unit balls can be packed inside an n-dimensional sphere of
radius R = 1 + p? Notice that since the unit balls are disjoint, their
centers are at distance at least A\ = 2 from each other. Moreover, since
the unit balls are contained in a sphere of radius 1+ p, the centers of the
balls are inside a sphere of radius p. We want to determine for which
values of A/p we can pack exponentially (in n) many points. (Here, and
in the rest of this chapter, “exponential” means a function of the form
2"° for some fixed constant ¢ independent of n.) Notice the following
(trivial) facts:

s If A\/p is sufficiently large, then only a constant number of points can
be packed, independently of the dimension. For example, if \/p > 2
then only one point can be inside the sphere, while if A\/p = 2 one
can have at most 2 points.

= If \/p is a vanishing function of the dimension n, say A\/p = 2//n,
then one can pack exponentially many spheres. Consider for example
the cubic lattice 2Z™. This lattice has minimum distance A = 2.
Now take the sphere centered in s = [1,...,1]T of radius p = /n.

D. Micciancio et al., Complexity of Lattice Problems

© Kluwer Academic Publishers 2002
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Figure 5.1. Packing unit balls in a bigger sphere

This sphere contains 2" lattice points, namely all the vertices of the
hypercube [2 £ 2,...,2 + 2)T (see Figure 5.2).

For some value of \/p bigger than 1 (i.e., when the distance between
lattice points is larger than the radius of the sphere), one can already
pack arbitrarily many points, as the dimension n of the lattice grows.
For example, consider the set of all integer vectors x € Z" such
that Y-, z; is even. This is a lattice generated by basis vectors
b; = e; +€; (for i = 1,...,n) with minimum distance A = V2.
Consider the sphere centered in e; of radius p = 1. The ratio A/p
equals v/2 for every dimension n. Still, the sphere contains 2n lattice
points e; + e; (for ¢ = 1,...,n). Scaling all coordinates by a factor
V2, this corresponds to packing 2n unit balls in a sphere of radius
1 + /2 as shown in Figure 5.3.

We are interested in lattices such that A/p > 1, i.e., the radius of

the sphere is smaller than the minimum distance between lattice points.
We have just seen that when p = A/v/2, the sphere can contain 2n
lattice points. A few natural questions arise. Can we do any better
when A/p = v/2? What happen when Alp > v2? Can we pack a
superpolynomial (in n) number of points when A/p € (1,v/2)? In the
course of this chapter we answer these questions and prove the following
facts:
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Figure 5.2. The cubic packing

Figure 5.3. The octahedral packing

1 If A\/p > /2, then one can pack only constantly many points (inde-
pendently of the dimension).

2 If A/p = V2, then the maximum number of points is precisely 2n.

3 For any A/p < V/2, one can pack exponentially many points.
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Upper bounds 1 and 2 actually hold even if we drop the requirement
that the points belong to a lattice, and are proved in Section 1. Lower
bound 3 is proved in Section 2. The lattice defined in Section 2 is not
rational, i.e., the basis vectors contain arbitrary real entries. This lattice
plays a fundamental role in the construction of the homogenization gad-
get used in the proof of Theorem 4.4. The proof of Theorem 4.4 requires
not only the existence of a lattice and a small sphere containing many
lattice points, but also an efficient (possibly randomized) algorithm to
find such objects. This issue is addressed in Section 3 where we show
that the real lattice of Section 2 can be efficiently approximated with a
rational one. The construction of Section 2 and 3 is efficient, but prob-
abilistic. In Section 3.3 we use the techniques from Sections 2 and 3 to
give a similar, but deterministic, construction that can be proven correct
assuming a certain number theoretic conjecture holds true.

1. Packing Points in Small Spheres

In this section we study the cases when A/p > v/2 and prove upper
bounds on the number of points that can be packed in a sphere of radius
p while keeping the minimum distance between points at least A\. These
upper bounds are not directly relevant to the proof of Theorem 4.4, but
they explain why the proof of Theorem 4.4 cannot be easily extended to
approximation factors beyond v/2. We consider arbitrary arrangements
of points, not necessarily points of a lattice with large minimum distance.
Since we are proving upper bounds on the number of points in a sphere,
the results apply to lattice packings as well. Without loss of generality
we assume A = 2 and bound the maximum number of points that can be
placed in a sphere of radius p < v/2 while keeping the points at distance
at least 2 from each other. Let us start with the simple case p < v/2.

THEOREM 5.1 For any p < V2, the mazimum number of points at min-
tmum distance 2 from each other that can be packed in a sphere of radius

pis [2/(2 - p?)].

Proof: Let x,,...,xy be a set of vectors such that ||x;|| < p < v/2 and
|lx; — x;|| > 2 for all ¢ # j. Notice that

N
NIN-14 < Y5 fIxi — x4
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Figure 5.4. The tetrahedral packing
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and therefore 2(N — 1) < Np?. Solving the linear inequality for N one
gets N < 2/(2 — p?) and since N is an integer N < [2/(2 - pQ)J. O

Notice that the above bound is sharp: for all p < v/2, one can put n =
[2/ 2 - p2)J unit balls on the vertices of an (n — 1)-dimensional simplex,
and inscribe the simplex inside a sphere of radius v/2n/(n + 1) < p (see
Figure 5.4). This example also shows that, when p = /2, for every
n > 1 one can pack n + 1 balls in the n-dimensional sphere of radius
1 + p. In fact, we have already seen that it is possible to do better
than that: as soon as A/p reaches v/2, one can pack 2n balls centered at
+/2e; for i = 1,...,n inside a sphere of radius 1 + v/2. We now show
that this packing is optimal. Interestingly, this optimal packing is also
a lattice packing: i.e., the distance vectors between the centers of the
balls generate a lattice with minimum distance 2.

THEOREM 5.2 The mazimum number of points at distance at least 2
from each other that can be placed in a sphere of radius /2 is 2n.

Proof: By induction on n. If n = 1, the statement is true. Now assume
that the statement holds for some value n, and let us prove it for n + 1.
Let x1,...,xy vectors in R**! such that ||x;||2 < 2 and ||x; — x;]|2 > 4.
Notice that for all 7 # j one has

1
(xiyx5) = §(||xz'||2 + 151 = llxi = x;11%)
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< %(2 +2-4)=0
i.e., the angles between any pair of vectors are at least m/2. We first
explain the geometric idea behind the proof. Assume without loss of
generality that xy 7# 0. Think of x)y as the north pole. We map all
point to the poles and the equator in such a way that all angles between
any pair of points remain at least 7/2. Then, we apply induction to the
set of points on the equator.
We now give the formal proof. Define the set of vectors

X; .
t X; otherwise

- { (XN, xN)xi — (xi, XN)XNif (XN, XN )Xi # (%0, XN)XN

and let x! = v/2x!/||x!||. Notice that for all i, ||x||*> = 2 (i.e., x!' is on
the surface) and either xi' = +x/y (ie., x} is a “pole”) or (x},x%;) =0
(i.e., x{ is on the “equator”). We now prove that ||x}’ — x;' |2 > 4 for all
i # j. If xi' = £x} or xj = £x}, it is obvious. So, assume x;’ # x/
and xj # £x}. Notice that

i = x5l =l 11+l 11> = 24x7, x5)
= 949X %) (XN, XN )2 — (xi, Xv ) (X5, XN) (XN, XN)
AR
> 4

because (x;,x;), (xi,Xn), (xj,Xny) < 0 and (xy,xn) > 0. Therefore
all points, except at most two of them, belong to the n-dimensional
subspace orthogonal to x. By induction hypothesis there are at most
2n such points and N <2(n+1). O

2. The Exponential Sphere Packing

In this section we study the case A/p < /2 and prove that for any
radius p > 0 and distance A > 0 bounded by A < V2p, there exist a
lattice £(L) (with minimum distance \) with exponentially large clusters
of lattice points. In particular, we show that there exist spheres B(s, p)
containing 2"’ lattice points, where § > 0 is a constant that depends only
on the ratio A\/p. The construction has several additional properties, as
required in the proof of Theorem 4.4. For example, the lattice points
in B(s, p) are vertices of the fundamental parallelepiped defined by the
(given) lattice basis L. Since we want to prove Theorem 4.4 for any
¢, norm, we give a generic construction of lattice L with respect to an
arbitrary, but fixed, norm £,. In the rest of this section an arbitrary £,
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norm is assumed, and B(s,) denotes the ¢, ball {x : ||x —s||, < r} of
radius r centered at s.

2.1 The Schnorr-Adleman prime number lattice

We begin by defining a lattice £(L) and prove a lower bound to the
length of the shortest non-zero vector in £(L). The lattice is a gener-
alization (to a generic £, norm) of a similar lattice used by (Schnorr,
1993) and (Adleman, 1995) in a different context. For notational conve-
nience we define a rank k lattice in R¥t1, i.e., we set Ltoa rectangular
(full-rank) matrix in R(5*D*k_ A full dimensional lattice with the same
properties can be easily found by simple linear algebra. The definition
of L is parametric with respect to a real o > 0, a sequence of positive
integers a = ay,...,ax and an I, norm (p > 1). We use the logarithms
of the integers a; to ax as entries in the basis vectors, and define a basis
vector for each a;.

The idea is to map the multiplicative structure of integers ay, ..., ak
to the additive structure of lattice £(L), defining a basis vector for each
a; and expressing its entries in terms of the logarithm of a;. This way
the problem of finding a sphere containing many lattice points is reduced
to the problem of finding a small interval containing many products of
the a;’s. At the end we will set a to some large number (exponential
in k), and a to a sequence of small primes. The existence of a sphere
containing many lattice points will follow from the density of the primes
and a simple averaging argument.

LEMMA 5.3 Let a = [a1,...,ak] be a sequence of relatively prime odd
positive integers. Then for any €, norm (p > 1), and any real a > 0, all
nonzero vectors in the lattice generated by the (columns of the) matriz

YIna; 0 0
L= o . 0 € Rk+1)xk (5.1)
0 0 <Jlnag
alna; --- alnag

have ¢, norm bigger than ¢2lna.

Proof: We want to prove that for all nonzero integer vectors z € Z¥,
|Lz|2 > 2Ine.

We first introduce some notation. Let R € R be the row vector

R =[lnaj,lnay,...,Inagg] (5.2)
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and D € R¥*k be the diagonal matrix

{’/ln_al 0 0
- P T 6
0 .0 Yha
Notice that D
t-[ &)
and |Lz|5 = ||Dz|/2 + o |Rz|’. We bound the two terms separately.

Define the integers
k
g=I[{a :m>0}, g=[[la;i™:m<0}, g=gg=]a*

i=1

Using this notation, the first term satisfies

IDz[} = ) |z Ina;
H

> Z |Z,’| Ina;
i

= Ing

because p > 1 and the z;’s are integers. Bounding the second term is
slightly more complex:

[Rz| = IZ zilna;
1

= |lng—Ing|

= In (1 + —L.g—:.—gl,—) .
min{g, }
Now notice that since z is nonzero, § and § are distinct odd integers
and therefore |§ — g| > 2. Moreover, min{g,g9} < V33 = \/g. By

monotonicity and concavity of function In(1 + z) over the interval [0, 2],
one gets

1§ — dl ) ( 2) 2 mIn3 1
In|{l+ 22— | >h|{l+—)>— —>—.
( min{g, §} VI Vi 2 g

Combining the two bounds one gets

oP

T, — P
|ILz||5 = || Dz||; + o’ (Rz)” > Ing + T
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which is a continuous function of g with derivative

L(_p o

g 2 gP/2 ’
The function is minimized (over the reals) when g = o? (123)2/ P with
minimum

2
2lna + (g) In (1—)) + (—) >2lna+ (2) Inp > 2Ina.
p 2 p p

Therefore, for all nonzero integer vectors z, ||I~Jz||£ >2lna. O

Notice that a simple (but uninteresting) way to increase the length
of the shortest vector in a lattice is to multiply all the coordinates by
the same scaling factor . In lattice £(L) only the last coordinate is
multiplied by the scaling factor. Still, this is enough to make the length
of the shortest non-zero vector arbitrarily large. However, while multi-
plying all coordinated increases the minimum distance of the lattice by
the same multiplicative factor ¢, the minimum distance of £L(L) is only
logarithmic in a.

2.2 Finding clusters

In this section we prove that for appropriate choice of the parameters,
there exists a sphere (of radius p) containing many lattice points. Obvi-
ously the center of such a sphere cannot be a point in the lattice if one
wants the sphere to contain more than a single lattice point.

We look at spheres with center

0

w!
I

(1) € RFH1, (5.4)
alnb

where b is a positive integer, and show that there is a close relationship
between finding lattice vectors close to s and approximating the integer
b as a product of the a;’s. In particular, we prove that if b can be
approximated by the product of a subset of the a}s, then there are
lattice points close to s. (A converse of this lemma is presented in
Subsection 2.3.)

LEMMA 5.4 Let L and § be defined as in (5.1) and (5.4). For any ¢
norm (p > 1), reals a,b > 1, positive integers ay,...,ax, and boolean
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vector z € {0,1}%, if the integer g = [];a¥ belongs to the interval

[b,b(1 + 1/a)], then
|ILz — 5|, < ¢Inb + 2,
i.e., lattice point Lz is within distance ¢/Inb + 2 from's

Proof: Let D and R be as defined in (5.3) and (5.2). Notice that since
z is a 0-1 vector,
D2l = Rz = Ing,
and therefore
|ILz 3|2 = [Dz|? + o”|Rz — Inb|?
= Ing+af|lng —Inb|?

_ g s
= lnb+lnb+lalnb| .

From the assumption g € [b, b(1 + 1/a)] and using the inequality In(1 +
z) < z (valid for all z # 0) one gets

Oglnggln<1+—l-)<l
b a a

which, substituted in the previous expression, gives

~ L 1
||Lz—s||§<lnb+a+151nb+2. 0

Now let € be a small positive real constant and set o = b(17¢), By
Lemmas 5.3 and 5.4, the minimum distance between lattice points is
bigger than A = {/2(1 — €) Inb, and there are many lattice points within
distance ¥Inb+2 = \/¥/2 from §, provided that the interval [b, b + b¢]
contains many products of the form [],csa; (for S C {1,...,k}). If
ay,...,a are the first k£ odd prime numbers, this is the same as saying
that [b, b+ b¢] contains many square free odd (ax)-smooth numbers. (An
integer z is y-smooth if all prime factors of z are at most y. Moreover,
is square free if all of its prime factors appear with exponent 1.) We now
informally estimate for which values of k and b one should expect [b, b+b¢
to contain a large number of such products. A rigorous probabilistic
analysis will follow right after.

Fix some integer ¢ > 1/¢, and set k = h® for a sufficiently large integer
h to be determined. Let a,,...,ax be the first ¥ odd primes, and consider
the set of products of all subsets of size h:

M= {Ha,-:5c{1,...,k},|5|=h}.

i€S
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Notice that

h-1 . h-1
k k—1 k
_ _ > S (c—l)h‘ .
|M| (h) L ———._Hh h (5.5)
So, all elements of M belong to the interval [1, (ax)?]. If we choose b
uniformly at random in this interval, the expected size of [b,b + b¢] is
Q((ax)") and we can estimate the number of elements of M contained
in [b,b + b] to be

Q(ax)h) - 241 >Q< he )h.

(ax)® =7 \(ak)'~*
By the prime number theorem, ax = O(kInk) = O(h€Inh) and therefore
our estimate is Q(h¢~!/Inh)* > 2" for all sufficiently large h.

Making the above argument more formal, one can prove that there
exists an interval [b, b+b¢] containing exponentially (in h) many products
from M. In fact we can do more than just proving that such a b exists:
below we give a natural probability distribution over the integers such
that if b is chosen according to this distribution than [b, b+ b¢] is likely to
contain many products. Notice that if square free smooth numbers are
distributed uniformly enough, then all (or most) choices of b are good.
Unfortunately, we do not know enough about the distribution of smooth
numbers to prove that most intervals [b, b+ b€] are good. In particular,
choosing b uniformly at random (from all integers smaller than af!) does
not necessarily give a good interval (b, b + b€] with high probability. In
order to overcome this problem, we exploit the smooth number distri-
bution (whatever it is) to bias the choice of the interval toward those
containing many smooth numbers. The idea is to set b to the product of
a random (size h) subset of the a;’s. This way, the interval [b,b + b] is
selected with a probability roughly proportional to the number of square
free (ax)-smooth numbers contained in it. So, for example, intervals con-
taining no smooth numbers are never selected, and intervals containing
few smooth numbers are selected with very small probability. The prob-
ability of choosing an interval containing few products is bounded in the
next lemma. In fact the lemma is quite general and applies to any set
M of real numbers bigger than 1.

LEMMA 5.5 For every positive real numbers € € [0,1), p > 1, integer
H > 1, and any finite subset M C [1,u), if b is chosen uniformly at
random from M, then the probability that [b,b + b¢) contains less than
H elements from M is at most

ul-e - H

€ —_—
blej&{”b’b-"b )NM| < H} < &M
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where k(€) =1 —2¢7! is a constant that depends on e.

Proof: Let B be the set of all b € M such that |[b,b+b)NM| < H. We
show that |B| can be partitioned into at most K = u!~¢/k(e) subsets,
each containing less than H elements. It follows that

_ Bl _K@H=1) _ "~ -H

e € BV S T S s

Divide [1, ) into [log, u] intervals [2™,2™+1) form = 0, ..., [log, u] —1.
Then divide each interval [2™, 2™*1) into 2™ /2¢™ = 2(1-9™ subintervals
of size 2°™. Notice that each subinterval is of the form [z, z +y) for some
y < z¢, therefore it contains at most H — 1 points from B. It remains
to count the total number of subintervals. Adding up the number of
subintervals for each interval [2™,2™*!) we get

[logy u]-1
K = Z 2(1—c)m
m=0
9(1—€)[logy ] _ 1
T T 2lme—]
@p)~ _pl=
= g
S g7 K(€)

Applying this lemma to the set of square free smooth numbers we get
the following corollary.

COROLLARY 5.6 For all reals €,6 > 0, there exists a constant c such that
for any sufficiently large integer h, the following holds. Let ay,...,a%
be the first k = h® odd primes, and M the set of all products [];c ai,
where S is a size h subset of {1,...,k}. If b is chosen uniformly at
random from M then the probability that [b,b + b) contains less than
ho* elements of M is at most 27",

Proof: Fix some ¢, § > 0 and let ¢ be an integer bigger than (1+4)/e. Let
p = al'. Notice that M is contained in [1, 1) and, by (5.5), | M| > h(e=Dh,
Applying Lemma 5.5 to set M with H = h%®, we get
h&h . Ml—e
Pr{|b,b+b)NM| < H} < ——i
hdhag‘f)h

K(€)R(c—DR"
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By the prime number theorem, ay = O(kInk) = O(h®Inh), which sub-
stituted in the above expression gives

h%h O(h In h)(1-9)h
,{(e)h(c—l)h

_ [ O(lnh)1-9) *
- hec—(1+6)

O(lnh) \*
hec—(1+9)

< 27k

Pr{|[b,b + b N M| < H}

for all sufficiently large h because ec — (1 + d) > 0.

Combining Lemma 5.3, Lemma 5.4, and Corollary 5.6, we immedi-
ately get the following theorem.

THEOREM 5.7 For all reals €,6 > 0, there ezists an integer ¢ such that
the following holds. Let h be a sufficiently large positive integer, k = hF,
anday,...,ak be the first k odd primes. Let b be the product of a random
subset of {ay,...,ax} of size h and set « = b'~¢. Define L and § as in
(5.1) and (5.4), and let 7= {/(1 +€)Inb> 1. Then

® all non-zero vectors in L(i) have £, norm greater than

¥2((1-e)/(L+e)F,

s with probability at least 1 —2~" (over the choice ofb), the ball B(S,r)
contains more than ho* lattice points of the form Lz where z is a 0-1
vector with ezactly h ones.

Theorem 5.7 (or more precisely, its adaption to integer lattices to
be described in Section 3) plays a fundamental role in the proof that
approximating SVP in the £, norm is NP-hard (see Theorem 4.4). When
specialized to the ¢ norm, Theorem 5.7 also answers the sphere packing
question posed at the beginning of this chapter.

COROLLARY 5.8 For every ¥ < /2 there erists a constant € > 0 such
that the following holds. For every (sufficiently large) positive integer k,
there is a rank k lattice L with minimum distance ) and a point s such
that the ball B(3,\/7y) contains 2% lattice points.
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2.3 Some additional properties

In this subsection we prove some additional properties about the lat-
tice £(L). The results in this subsection are presented to improve our
understanding of lattice I~4, but they are not used in any proof in the rest
of this book. So, the section can be safely skipped without affecting the
reading of the rest of the book.

We first give a closed expression for the determinant of the lattice.
Then we prove a converse of Lemma 5.4 for the /; norm. Namely, we
show that any lattice point sufficiently close to s corresponds to a good
approximation of the integer b as a product of the a;’s.

PROPOSITION 5.9 For sequence of integers ay,...,ax, the determinant
of lattice L defined in (5.1) is

(1 +a? Z lnai) f[ Ina;.
i=1

Proof: Compute the Gram matrix BT - B and evaluate its determinant.
It can be easily proved by induction on the rank that the value of the
determinant equals the formula in the proposition. O

The determinant can be used to bound the length of the shortest
vector in the lattice using Minkowski’s first theorem. Interestingly,
for appropriate choice of the parameters, the upper bound given by
Minkowski’s theorem is not much bigger than the lower bound proved
in Lemma 5.3, and therefore all the successive minima of lattice £(L)
are relatively close to each other.

Finally, we present a converse of Lemma 5.4 for the special case of
p = 1 (similar results might hold in any /, norm, but assuming p =1
makes the calculations much simpler). In Lemma 5.4 we showed that if b
can be approximated as a product of a subset of the a;’s then there exists
a lattice point close to s. We now show that if there are lattice points
close to s (in the /; norm) then b can be approximated as a product of
the a;’s in the following sense.

DEFINITION 5.1 Let z be an arbitrary (positive) real number and let p/q
be a rational. We say that p/q is a Diophantine é-approzimation of = if
|p — qb| < 4.

We prove that if a lattice point is close to S then the correspond-
ing integer is a good Diophantine approximation of . The following
proposition strengthen a similar result of (Schnorr, 1993).



Sphere Packings 105

PROPOSITION 5.10 Let a,b > 0 be two arbitrary positive constant, and
let L and's be as defined in (5.1) and (5.4). For any integer vector z such

that |Lz — §]l, < Inb, g = [Taf* is a Diophantine (b/c)-approzimation
of b.

Proof: Let g,3,§ be defined as in the lemma. We want to find the
maximum of the function |§ — §b| subject to the constraint |Lz —§||; <
In b. Notice that

ILz 3|l = Ing+Ing + a|Ing — Ingb|

and |§ — gb| are symmetric with respect to § and gb, i.e., if one replaces
g by gb and § by §/b the value of the functions is unchanged. Assume
without loss of generality that § > gb. The problem become to maximize
g — gb subject to the constraint

(1+a)lng+(1—a)lng < (1+a)lnbd.

For every fixed value g, the function § — §b is maximized subject to the

above constraint when § = bgﬁ. So, let’s compute the (unconstrained)
maximum of the function ot
bge+r — gb

This is a continuous function of § with derivative

a-1 2
b g o+l — b,
(a+l>g ¥

)(a+l)/2

a—1

The maximum is achieved when § = (—- and equals

a+1

a-1

2 z 2 b
1- < —
a+1 a+1 a

In particular, if o = b!~¢ then for every lattice vector within distance
Inb from s, the integer g associated to the vector is a Diophantine b®-
approximation of b.

foralla >3 O

3. Integer Lattices

In the previous section we proved that as far as real entries are allowed
one can easily define a basis L and probabilistically find a vector s with
the property that a sphere centered in S of radius slightly bigger than
ML)/ /2 contains many lattice points. We now prove that the same
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result can be achieved using a suitable integer approximation of L and
8. The error incurred by approximating (a multiple of) L and S with
integers is bounded in the following two lemmas.

LEMMA 5.11 For allp > 1 and all integer vectors z € ZF,
ILzll, > (7 — 1)kl|Lz(l,,

where L = [(kn)f;] is the matriz obtained multiplying L by kn and round-
ing each entry to the closest integer.

Proof: By triangular inequality

ILzll, = I(km)Lz + (L — (kn)L)all,
2 lI(kmLally — II(L = (kn)L)zll
= nklLall, — (L — (kn)L)zlp.

It remains to prove that ||(L — (kn)i)zllp < kllizllp. Notice that all
entries in (L — (kn)L) are at most 1/2 in absolute value. Therefore

(el + (3 12)”
1
L4/l + wolal

k|z|lp-

I(L = (kn)L)ll,

INA

IN

IA

Furthermore,

1Lz}

IDz([; + o |Rz|?
> |Dezll

P £ 11}

because D is diagonal with all entries greater than 1. This proves that
(L = (kn)L )z||p < k||Lz||p and therefore ||Lz|, > (n — 1)k||Lz||,. O

LEMMA 5.12 For all n > 0 and all integer vectors z € Z*
Lz — sll, < (7 + 1)kl|Lz - §]l,,

where L = |(kn)L] and s = |(kn)s] are the matrices obtained multiply-
ing L and S by kn and rounding each entry to the closest integer.
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Proof: By triangular inequality
Lz —sll, = [I((kn)Lz — (kn)8) + (L — (kn)L)z — (s — (kn)8)ll,

< N((km Lz = (k)3)llp + (L = (k)L)z = (s = (kn)3)ll
1kl Lz — (kn)Slp + (L = (km)L)z — (s = (kn)3)llp

Notice that all entries in (L — (kn)L) and (s — (k1)3) are at most 1 /2 in
absolute value. Therefore

I enya== g < (3)" (1l + (Tlad +1)7) < w2l

Furthermore, ||Lz — 5|, > ||Dz||, > ||2||, because D is diagonal with all
entries greater than 1. This proves that

(L = (kn)L)z — (s — (kn)3)ll, < kl|Lz —5l,,

and therefore ||Lz —s||, < (n+ 1)||Lz —s||,. O

We can now prove Theorem 4.5. This is essentially a variant of The-
orem 5.7 where all the numbers are integers.

Proof [of Theorem 4.5]: We show that forallp > 1,6 >0 and e > 0
the theorem is satisfied with

- (u_e)wp) .

(1 +€)2t1/p

Let c be as in Theorem 5.7. On input h, algorithm A computes k& = k€,
and the first £ odd primes ay,as,...,a;. Let L, s, and 7 be as defined
in Theorem 5.7, and compute the approximations

L=|(k/oL], s=[(k/e)5], r=[Q1+1/e)kF).

Let z € Z* be a nonzero integer vector. We want to bound ||Lz]|,.
We know from Theorem 5.7 that

~ [ 1—€_

Using Lemma 5.11 (with » = 1/¢) and (5.6) we get

1 ~
Lal, > (3-1) kiEal,

> (Ll;f.)_lilﬁ) k2.7

€(1+¢€)l/p
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Notice that r satisfies the bounds r < (1+1/€)k7 + 1 and 7 > (1 + 1/¢)
because k > 1 and 7 > 1. Thus, we can bound 7 as follows:
r—1

(1+1/ek

1-1/r
aA+1/ok "
1-1/(1+1/e)
C(1+1/0k

€
= ——-"T.

(e +1)2k
Combining (5.7) and (5.8) we get

—€)lt+1/p
|Lz|, > ((1 ) > Y2 — ST = T

T >

€(1+¢€)l/p (e+1)

Now consider the sphere B(s,r). By Theorem 5.7, for all sufficiently
large h, with probability at least 1 —2~*, the ball B(S, ) contains at least
RSk lattice points of the form Lz where z is a 0-1 vector with exactly h
ones. For each such point Lz, we can use Lemma 5.12 (with n = 1/¢) to
bound the distance of Lz from s as follows:

ILz —sll, < (1+1/€k||Lz—3],
< (1+1/ekF <.

Therefore Lz belongs to the sphere B(s,r). This proves that B(s,r) also
contains at least k%" lattice points of the desired form. O

4. Deterministic construction

The probabilistic construction of Theorem 4.5 is used in Chapter 4 to
prove the NP-hardness of SVP under randomized reductions. Finding
a similar deterministic construction would be useful to obtain an NP-
hardness result for SVP under Karp reductions. The randomization
in the proof of Theorem 4.5 comes from the fact that we do not know
which intervals of the form [b,b + 4] (for small € > 0) contain square
free smooth numbers. The problem is solved in Corollary 5.6 choosing b
according to a certain easily samplable distribution. The intuition is that
since there are many square free smooth numbers, then some intervals
must contain many of them. In fact, if square free smooth numbers are
distributed uniformly enough, than any interval [b,b + b] is good. To
date we dot not know how to prove that square free smooth numbers
are distributed uniformly enough (see Section 5 for further discussion of
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this issue), however, it seems reasonable to conjecture that for any € > 0
there exists a d such that for all large enough n, the interval [n,n + nf
contains an (odd) integer which is square free and (log? n)-smooth. This
is Conjecture 1 from Chapter 4. Using the conjecture, we can prove
Theorem 4.9.

Proof [of Theorem 4.9]: For simplicity, we show how to build real L
and s. Integer L and s can be easily obtained using Lemma 5.11 and
Lemma 5.12 as explained in Section 3.

Let € be a positive real between 0 and 1. Let d be an integer (whose
existence is guaranteed by Conjecture 1) such that for all large enough
n there exists a (log? n)-smooth square free (odd) integer in the interval
[n,n + n/?. Let L and § be as defined in (5.1) and (5.4) with k =
h%tl + h, ay,...,a the first k (odd) prime numbers, b = aih/‘ and
a = b€, Notice that since k is polynomial in h, the sequence ay,...,ax
can be generated in deterministic polynomial time.

From Lemma 5.3 we know that for all nonzero vectors z € Z",

ILzll, > £/2(1 - €) Inb.

We now show that for all x € {0,1}" there exists a y € Zh"*" such that

'i[i]—gfm. (5.9)

where z = [y, xT]T. Let gx = H?zl Qs +i+ Notice that

b b 2_1)n
—_> - = 61.(e 1) > 2h.
gx a;

In particular, as h gets arbitrarily large, also (b/gx) gets arbitrarily large.
So, for all sufficiently large h, there exists a log?(b/gx)-smooth square
free odd integer in the interval

[6/9x (b/9x) + (b/9x)/?). (5.10)
Notice that
log?(b/gx) < log?(b) = O(hlog h)? < h+1,

So, (5.10) contains an square free h%*!-smooth odd number, i.e., the
product of a subset of a1, ...,a,qa+1. Let gy = Hf‘:;l a?* be such number,
where y € {0, l}hd“. Multiplying gy and (5.10) by gx we get

9z = gxgy € [bb+ b/%gy]
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where g, = Hf:l"’h = gxgy. Finally, we observe that gx < a;: = be/?

and therefore g; = gxgy belongs to the interval [b, b+b¢]. By Lemma 5.4,
lattice vector Lz satisfies (5.9). The theorem follows setting r to (a
rational approximation of) ¥Inb+ 2, and choosing € small enough so

that {/2(1 —¢€)Inb/r > 4. O

5. Notes

The material presented in this chapter is from (Micciancio, 1998),
and part of it also appeared in (Micciancio, 2001d). The upper bounds
in Section 1 were first proved in (Rankin, 1955) for the special case of
spherical codes (i.e., a sphere packing problem with the additional con-
straint that all points must be at the same distance from the origin). If
we allow arbitrary sets of points with minimum distance A, an exponen-
tial lower bounds for any \/p < V2 is already implicit in Gilbert bound
for binary codes (Gilbert, 1952). Non constructive proofs for spherical
codes were given in (Shannon, 1959) and (Wyner, 1965). However, the
points generated by these constructions do not form a lattice. We re-
mark that the lower bounds in (Shannon, 1959; Wyner, 1965) show that
it is possible to pack 2" points, where « is a constant that depends only
on p > V/2, while our construction succeeds in packing only 2™* points.
An interesting question is whether our construction is asymptotically

optimal for lattice packings, i.e., if 2" s the best we can do, or even
for lattices one can have 2™ points inside a small ball.

Variants of the lattice studied in Section 2 have appeared in the com-
puter science literature in various places. A version of the lattice (with
p = 1) was first used by (Schnorr, 1993) to heuristically factor inte-
gers by reduction to SVP. (Adleman, 1995) used a similar lattice (with
p = 2) to reduce factoring to SVP under some unproven number the-
oretic assumptions. Finally, an extended version of Adleman’s lattice
is used in (Ajtai, 1998) to prove the NP-hardness of SVP. The proof
of (Micciancio, 2001d) (as presented in Chapter 4), although inspired
by (Ajtai, 1996), goes back to the original lattice of Schnorr and Adle-
man, considerably simplifying Ajtai’s proof. The connection between
the Schnorr-Adleman lattice and sphere packing problems is explicitly
established for the first time in (Micciancio, 1998; Micciancio, 2001d).
This more geometric interpretation of the lattice allowed to translate
the techniques of (Micciancio, 1998) to other areas, and prove analogous
results for coding problems (Dumer et al., 1999).



Chapter 6

LOW-DEGREE HYPERGRAPHS

The goal of this chapter is to prove Theorem 4.6. The theorem states
that if Z C {0,1}* is a set of binary vectors, each containing exactly
h ones, and |Z| > RIk4Vhn/e then there exists a matrix T € {0,1}nxk
such that {0,1}* C T(Z), where T(Z) denotes the set {Tz:z € Z}. In
other words, for every x € {0,1}" there exists a z € Z satisfying x = Tz.
Moreover, Theorem 4.6 states that if T € {0, 1}""" is chosen at random
setting each entry to 1 independently with probability p = €/(4hn),
then {0,1}*¥ C T(Z) with high probability (namely, probability at least
1 — 6¢). In Chapter 4, Theorem 4.6 is used to prove the NP-hardness
of approximating the shortest vector problem under RUR-reductions.
However, the theorem has a purely combinatorial interpretation and it
is better understood if reformulated in terms of hypergraphs, without
any reference to integer lattices or matrices. A hypergraph is a pair
(V, Z), where V is a finite set of vertices and Z is a collection of subsets
of V, called hyperedges. If all the elements of Z have the same size, then
we say that (V, Z) is regular, and the common size of all hyperedges is
called the degree of the hypergraph.

Theorem 4.6 can be reformulated in terms of regular hypergraphs as
follows. Let (V, Z) be an h-regular hypergraph, and let 7 = (T, ...,Ty)
be a sequence of subsets of V' chosen at random including each element
of V in T; independently with probability p = €¢/(4hn). For any subset
of vertices U C V, let

TU)=(TWnU|,|TnU|,...,|T.NU])
and define T(Z) = {T(U) : U € Z}. We want to prove that if |Z| >
RV [4VEn/€ then {0,1}" C T(Z) with probability at least 1 — 6e.

D. Micciancio et al., Complexity of Lattice Problems

© Kluwer Academic Publishers 2002



112 COMPLEXITY OF LATTICE PROBLEMS

The correspondence between the matrix and hypergraph formulation
is immediate: identify the hyperedges with the corresponding charac-
teristic vectors in {0,1}/V! and the sequence T = (T,...,T,) with a
matrix T € {0,1}™*IV] whose rows are the characteristic vectors of the
sets T;. Then T(U) = Tu where u is the characteristic vector of set
U. (Notice that for any two vectors x,y € {0,1}!V], the scalar product

Xy = El‘;'l z;y; equals the size of the intersection of the corresponding
sets.) With slight abuse of notation, in the rest of the chapter we will
use T to denote either a boolean matrix or the corresponding sequence
of sets.

It can be proved that for any (not necessarily regular) hypergraph
(V, 2), if |Z] > |V|*, then there exists a solution consisting of singleton
sets |T;] = 1. This is essentially a combinatorial result proved, inde-
pendently, by Sauer, Perles and Shelah, and, in a slightly weaker form,
by Vapnik and Chervonenkis, which is usually referred to as Sauer’s
Lemma. The proof of this result is relatively simple, but not construc-
tive: it only asserts that T exists, without giving any effective (even
probabilistic) way to find it. Theorem 4.6 can be regarded as a effective
probabilistic variant of Sauer’s Lemma.

The proof of Theorem 4.6 is divided in two stages. We first prove a
weaker result: we show that every vector x € {0,1}" belongs to T(2)
with very high probability. Then, we prove a stronger property as stated
in Theorem 4.6. The difference between the weak and strong version of
the theorem is in the order of quantification. While the theorem in its
strong form asserts that with high probability T is good for all target
vectors x, the weak version only says that for any fixed target vector x,
matrix T is good with high probability.

The weak version of the theorem is proved in Section 2 using a rel-
atively simple argument based on Chebychev inequality. Then, in Sec-
tion 3 we show that the strong version of the theorem can be easily
derived from the weak one using ideas similar to those arising in the
proof of (the standard non constructive version of) Sauer’s Lemma. So,
we begin in Section 1 by presenting a simple proof of Sauer’s Lemma.
Even if this result is not used in the rest of the book, the proof in
Section 1 gives a first exposure to the ideas that will later be used in
Section 3 to prove Theorem 4.6.

1. Sauer’s Lemma

In this section we present a proof of Sauer’s Lemma, This combi-
natorial result is usually stated in terms of the Vapnik-Chervonenkis
dimension (VC-dimension) of a range space. In order to avoid the intro-
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duction of new concepts, we reformulate Sauer’s Lemma in terms of the
sets T1,...,Tx and Z. Sauer’s result is essentially a solution to our com-
binatorial problem with the restriction that the T;’s must be singleton
sets, i.e., sets containing exactly one element.

When the T;’s are singleton sets, the linear operation associated to
T is more easily described by the projection onto some set G C V as
follows. For any hypergraph (V, Z) and for any subset of nodes G C V,
define the restriction of Z to G by

Zlg={ANG: A€ Z}.

Notice that for every set G C V, the following two conditions are equiv-
alent:

» Z|g = p(G) is the power set of G,

s {0,1}¢ C T(Z) where T = ({a})qcc is a sequence of |G| sets, each
containing a single element of G.

LEMMA 6.1 (SAUER’Ss LEMMA) Let V be a set of size k and Z be a
collection of subsets of V. Let

[k,n] = ;0 (]:)

be the number of subsets of V of size at most n. For all n, if |Z]| > [k, n]
then there ezists a set G of size n such that Z|g = p(G).

Proof: The proof is by induction on k + n. If K = n = 0 the assertion
is trivially true. Notice that [k,n] = [k —1,n] + [k — 1,n — 1]. Assume
that the lemma holds for k — 1,n and k£ — 1,n — 1, and let’s prove it for
k,n. Let |V| =k and |Z| > [k,n]). Pick an element a from V and define
U =V \ {a} and the following two collections of subsets of U:

Z(]:{AQU:AEZ}

2, ={ACU:AU{a} € Z}.
Notice that [U| = k — 1 and

120U 21| + |20 N 24| | 20| + |24
|Z]
[k, n]

[k—1,n]+[k—1,n—1].

v
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Therefore, either |[ZoU 21| > [k — 1,n]or |[ZoN 2| > [k —1,n —1]. We
deal with the two cases separately:

s if |ZoU 2| > [k — 1,n], then by inductive hypothesis there exist a
set G C U C V of size |G| = n such that (Zp U Z;)|¢ = p(G). Since
a G, Zlg= (20U 21)|c = p(G).

s if |29 N 21| > [k — 1,n — 1], by inductive hypothesis, there exists a
set G' CU C V of size |G'| = n — 1. such that (2o N Z;)|¢ = p(G’).
Let G = G' U {a}. We now show that Z|¢ = p(G). The inclusion
Z|¢ C p(G) is obvious. So, let us prove p(G) C Z|g. Let A € p(G)
be any subset of G. Notice that A\ {a} belongs to both Zj|g and
Zi|cr. Therefore A\ {a} € Z¢ and AU {a} € Z5. Since A equals
either A\ {a} or AU {a}, it follows that A € Z5. O

Since [k,n] < k™, one immediately gets the following corollary. We
remark that the corollary is already enough to prove the NP-hardness
of SVP under nonuniform reductions. (See Corollary 4.8.)

COROLLARY 6.2 Let Z C {0,1}* be a collection of boolean vectors. If
|Z| > k™ then there ezists a matriz T € {0,1}"** such that {0,1}" C
T(Z2).

Observe that the bound in Sauer’s Lemma is tight: if Z is the set of all
subsets of V' of size n or less, then |Z| = [k, n] and any set G satisfying
the assertion in the lemma has size at most n. The proof of the lemma
suggests a possible way to find the set G: select the elements of V one
at a time. For each a € V, if there are a lot of subsets A such that
both A\ {a} and A U {a} belong to Z, then include a in G, otherwise
discard it, project Z onto V' \ {a} and go on to the next element. The
problem is that the step of deciding whether a given a € V is good or
bad may not be effective. Notice that a single element might belong to
all sets in Z (or none of them), and still | Z| be quite large, and selecting
such an element would be disastrous. We show in a later section that
when Z is very large (|Z| ~ 2¥), then G can be chosen at random and a
probabilistic analogue of Sauer’s Lemma holds. But first one has to get
rid of the bad elements. This is accomplished in the proof of the weak
version of the theorem.

2. Weak probabilistic construction

In this section we prove a weaker version of Theorem 4.6: we show
for every vector x € {0,1}", x € T(Z) with high probability. (See
Theorem 6.8 for the exact statement.) Consider the target vector x
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as fixed. We want to bound the probability that T(U) # x for all
U € Z. Since the set Z is very big, the expected number of U € Z such
that T(U) = x is also very high. Unfortunately, this is not sufficient
to conclude that with high probability there exists a U € Z such that
T(U) = x, because the events T(U) = x (indexed by the hyperedges
U € Z) might be strongly correlated. Notice that if U and U’ are disjoint
(i.e., UNU' = 0), then the corresponding events are independent. In fact
the size of the intersection |U NU’| is a good measure of the correlation
between the events T(U) = x and T(U’) = x. Notice that if | Z]| is big,
then many hyperedges in Z intersect because there cannot be more than
n/h mutually disjoint hyperedges. However, one can still hope that for
most of the pairs U,U’ € Z, the intersection U N U’ is very small. This
is not necessarily true for any hypergraph Z, but one can show that if
Z is sufficiently large, then it must “contain” (in some precise sense to
be specified) a large hypergraph with this small intersection property.
The proof of the theorem is divided in three steps:

1 We first show that the probability that x € T(Z) can be bounded by
the expectation
Exp[e’® — 1), (6.1)
R

where 9 is a small positive real, and R = |U N U’| is the random
variable defined as the size of the intersection of two randomly chosen
hyperedges U,U’ € Z.

2 Then, we show that Z “contains” a hypergraph such that the inter-
section of two randomly selected hyperedges is very small with high
probability.

3 Finally, we prove the weak version of the theorem applying the bound
(6.1) to this hypergraph contained in Z.

Each of the above steps is described in the following subsections.

2.1 The exponential bound

We start by computing the probability that T(U) = x for some fixed
set U. In the next lemma we prove a more general statement concerning
the probability that two events T(U) = x and T(U’) = x are simulta-
neously satisfied and relate it to the size of the intersection r = |U NU’|
of the two sets U,U’.

LEMMA 6.3 Letx € {0,1}" be any boolean vector, U,U’' C V be two sets
of size d and let T = (Ty,...,Ty) (where T; CV foralli =1,...,n)
be chosen at random including each element of V in T; independently
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with probability p. Then, the probability (over the choice of T) that both
T(U) and T(U') equal x is

27 Il
3(r) = (1-p)‘2“""‘[l’lrp+(p(1d_—pr))J ,

where r = |UNU'|, and ||x||; is the number of 1’s in vector x.

Proof: Since the sets T1,...,T, are chosen independently,
n
— , — — . ] 3 I i .
Pr{T(U) = T(U) =x} = ggf{ln NU|=|T;NU'| = z;}.

We prove that for alli =1,...,n,

17),_‘{|Ti NU|=|TNU =z} =(1 __p)(2d—r)

2] %
pr_, (pld=r)
1-p 1-p '
First consider the case z; = 0 and compute the probability (over the

choice of T;) that [T; NU| = |T; N U'| = 0. This is true if and only if
none of the elements of U U U’ belongs to T;, so the probability is

Pr{IT:nU| = [LNU'| =0} = (1~ )" = (1 -p)*.

Now consider the case ; = 1 and compute the probability (over the
choice of T;) that [T; NU| = |T; NU’| = 1. This is true if and only if
either (1) T; contains one element of U N U’ and no other element of
UUU’, or (2) T; contains one element of U \ U’, one element of U’ \ U,
and no other element of U UU’. Event (1) has probability

UV pla = p) 1 = 1 - i ()
while event (2) has probability
0T 0\ 021 )02 = (1 gyt (2=
Adding up the two probabilities, we get

2
. T AU = 1) — (1_m@d-r) [ _PT pld—r) O
Pr{lTinU| =|T:nU'| =1} = (1-p) (1_p+(1_p :
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By choosing U = U’ in the previous lemma one gets the following
corollary.

COROLLARY 6.4 Let x € {0,1}" be a boolean vector, U C V a subset of
size d, and choose T = (Ty,...,T,) at random as in Lemma 6.3. Then,

 pd I
BHT() = x} = 0(0) = (L -p (25)

Notice that when UNU’ = 0,

Pr{T(U) =T{U') =x} = &(0) = &(d)?
= Pr{T(U) = x} Pr{T(U’) = x},

i.e., the events T(U) = x and T(U') = x are independent. We can now
prove the following proposition.

PROPOSITION 6.5 Let (V,2) be a d-regular hypergraph and let T be a
sequence of subsets of vertices (Ty,...,T,) chosen at random including
each element of V in T; independently with probability p. Then, for each
x € {0,1}"™ the probability (over the choice of T) that x & T(Z2) is at
most Ezpg(e®®]—1, where 9 = 1—"_2’5-{-11—27 and R = |UNU'| is the random
variable defined as the size of the intersection of two randomly chosen
hyperedges U, U’ € Z.

Proof: Fix some vector x € {0,1}" and choose T at random as specified
in the proposition. For all U € Z, let Xy be the indicator random

variable W)
1 ifT = X,
Xu = { 0 otherwise.
Define the random variable X = } ;> Xy. Notice that X = 0 if and
only if x ¢ T(Z). Moreover, if X = 0 then |X — Exp[X]| > Exp[X].
Using Chebyshev’s inequality we get the following bound:

Pr{x ¢ T(2)} Pr{X =0}
Pr{|X — Exp[X]| > Exp[X]}
Var[X] _ Exp[X?*]

Exp(X]? _ ExplX]?

IN

IN

1.

So, let us compute the moments Exp[X] and Exp[X?]. For the first
moment we have

Exp[X] = ) ExplXu] = D Pr{T(U) = x} = |Z| - &(d),
T vez T Uez
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and for the second one

-

Egp[le = Bxp (Z Xu)

UezZ

-
= Exp Z Xv - Xu
T |vvez

= ¥ Pr{T(U) = T(U') = x}
UU'eZ
= IZI"’~E;p[‘I>(R)],

where R = |U NU’| is the size of two randomly chosen U,U’ € Z.
Therefore,

_ Expg[®(R)]
Pr(x ¢ T(2)} = — ko -

2\ llxllx
oo (G52 (- 8))

nR n
p R
< Eﬁp (1+1—p) (pd2+1):l 1

JR _ 1]’

|
o5
=,
®

where19=1—"f;+;)%7. w
2.2  Well spread hypergraphs

In the previous section we showed that the probability that x ¢ T(Z)
is at most Exp R[e”R] — 1. Obviously, the bound is interesting only when
Expgle?®] < 2. Notice that this can be true only if

_ —Ir
lizr{R =r}<e

for all but a single value of r. Therefore the probability Prg{R = r}
must decrease exponentially fast in 7. This is not necessarily true for
any low degree regular hypergraph Z. In this section we show that if Z
is sufficiently large, then £ must “contain” a hypergraph such that

I;r{R =r} <1l/r.
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More precisely we show that Z contains a hypergraph satisfying the
following property.

DEFINITION 6.1 Let (V, Z) be a d-regular hypergraph. Z is well spread
if for al W C V of size at most d, the fraction of hyperedges containing
W is at most

{Uez:WCUY _ 1 _d-|w))
1Z] Sdd-1)(d—W|+1) _d

well spread hypergraphs have the important property that the size of
the intersection of two randomly selected hyperedges is small with very
high probability, as shown in the next lemma.

LEMMA 6.6 Let (V, Z) a regular well spread hypergraph. Choose U and
U' in Z independently and uniformly at random and let R = [U NU'|.
For all 7 > 0,

1
I;r{R >r}< mE

Proof: Let d be the degree of the hypergraph. We prove that for any
fixed set U of size d, the probablhty that [UNU’| > r when U’ is chosen
at random from Z is at most —;. If [UNU’'| > r then U’ contains a
subset of U of size r. Therefore, by union bound,

N> < cvu'
Lrllunuzr} < > S {wcu}
we(Y)
-y HU'ez: WU
|Z] ’

we(’)

where ( ) denotes the set of all the size r subsets of U. Since Z is well

spread, the fraction |[{U’' € Z : W C U'}|/|Z] is at most d ~~, which
substituted in the previous expression, gives

d\d-r) 1
n">r}< =, 0
Ul'jerz{wn Ulzr}< (r) d!

r!

We now show how to find well spread hypergraphs “inside” any suf-
ficiently big regular hypergraph. For any subset W C V, define the
induced hypergraph
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In other words, Zw is the set of hyperedges containing W, with the
nodes in W removed. Notice the following basic facts:

1 hypergraph Z is well spread if for every set W of size at most d,
|2w| < = 2).

2 Zw is d'-regular with d' =d — |W|.

3 If W =0 then Zy = Z.

4 Zw)y = Zwuv fWNU =0, and (Zw )y = 0 otherwise.

5 If |W| > d then Zy = 0.

In the following lemma we prove that for any regular hypergraph Z,
there exists a set W such that Zy is well spread.

LEMMA 6.7 Let (V, 2) be an h-regular hypergraph. Then there ezists a
set W C V such that (V,Z2w) is well spread and |Zw| > |Z|/h!.

Proof: If (V,Z2) is well spread, let W = ( and the statement is obvi-
ously true. Otherwise, there exists some set W of size at most h such

that |Zw| > gh_—}ﬂvzm - |Z|. Let W be maximal (with respect to the set
inclusion ordering relation) among these sets. Obviously, |[Zw| > |Z]|/h!.
Notice that Zw is d-regular, with d = h — [W|. We prove that (V, Zw)
is well spread. Let U be a subset of V of size at most d. There are three
cases:

1 UNW # 0 then |(Zw)y| =0 < U2 . |2y ).
2 fU =0, then |(Zw)y| = |Z2w| = § - |2Zw.

3 Finally assume U # 0 and U NW = (. By the maximality of W we
have

(Zw)ul = |Z2vuwl
h - |UUW|)!
< bowuw,
d—[U)! (h = W))!
= dl Al lzl
< wlzwl. O

d!
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2.3 Proof of the weak theorem

We now combine the tools developed in the previous sections to prove
the following theorem.

THEOREM 6.8 For every sufficiently small constant € > 0, positive inte-
ger n and h-regular hypergraph (V, Z) of size |Z| > RV [VEn/e the follow-
ing holds. Choose T = (Ty,...,Ty) (where T; CV foralli =1,...,n)
including each element of V in T; independently at random with proba-
bility p = ¢/(hn). Then, for every x € {0,1}",

Pr{x € T(Z2)} > 1 — 5e.

Proof: From Lemma 6.7, there exists a subset W C V such that (V, Zw)

is well spread and |Zw| > |Z|/h! > IVI‘/'_"‘/‘. Choose T at random as
specified in the theorem. Let F' be the event that none of the elements of
W are included in any set T;. Notice that Pr{—~F} < |W|np < hnp =e.
Notice also that

Pr{x ¢ T(2) | F} < Pr{x ¢ T(2w)}

Let d be the degree of Zy. Since |Zy| < ("g') < |V|¢ and |Zw| >
|V|‘/’_‘"/ ¢, hypergraph Zy has degree at least d > vhn/e.

Applying Proposition 6.5 to d-regular hypergraph Zw, the probability
(over the choice of T) that x & T(Zw) is at most Expg[e?®] — 1, where
R is the size of the intersection of two random elements in Zy and

np n

d = —— 4 —

1—p+pd2
€ +hn2
h—e¢/n  ed?

€
<

1_€+e.

But Zw is well spread, so by Lemma 6.6, Prr{R > r} < 1/r! and the
expectation Expg[e?®] can be bounded as follows:

Exple?f] = e"Pr{R=r
xple””] ; r{R =r}

= ge*” (l;r{R >r}-Pr{R>r+ 1})

— Jr _ 9(r-1)
= Ze P}’{r{R >r} Z e P}’zr{R >r}
r>0 r>1
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I
+

(1—e? Ze""Pr{R>r}
r>1

et?r
< 1+’l927

r>1
= 1+9(e —1).
So, the probability that x ¢ T(Z) given F is less than ﬁ(ee" —1) and
Prixg T(2)} < Pr{-F}+Pr{x¢T(2)| F}

< e+ ﬂ(ee" -1).

Using the bound ¥ < €¢(1 +1/(1 —¢€)), we get that for all sufficiently
small €
l?rr{x g T(Z2)} < 5e. O

3. Strong probabilistic construction

In the previous section we proved that for every boolean vector x,
if T is chosen as described in Theorem 6.8, then with high probability
there exists a U € Z such that T(U) = x. It follows by an averaging
argument that with high probability the size of T(Z) N {0,1}" (the set
of all boolean vectors that can be represented as T(U) for some U € Z)
is almost equal to the size of the whole {0,1}". We now show how to
project T(Z) N {0,1}" onto the set of all binary strings of some shorter
length.

Remember the restriction operation Z|g defined in Section 1. Here
we reformulate the same operation using vector notation. For any vec-
tor x € {0,1}" and subset of coordinates G C {1,...,n}, define the
restriction x|g € {0, 1}|C"| as the vector obtained taking the coordinates
of x with index in G. The restriction operation is extended to set of
vectors in the obvious way: W|g = {x|¢ : x € W}. The next lemma
shows that the probability that a random restriction W|g covers the
whole set {0, 1}€ of binary strings is at least equal to the density of |[W|
in {0,1}". Our proof closely resemble the proof of Lemma 6.1 and can
be considered as a probabilistic variant of Sauer’s Lemma.

LEMMA 6.9 Let W be a subset of {0,1}*. If G is chosen uniformly at
random among all subsets of {1,...,n}, then

5 W

Pr{wle = {0,1}} > 7.
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Proof: By induction on n. The base case n = 0 is trivially true. (Notice
that {0,1}¢ = {0,1}" = {e} and W|g = W = {0,1}€ if and only if
[W| = 1.) So, assume the statement holds for all W C {0,1}" and let us
prove it for W C {0,1}"*!. Choose G at random and let G’ = G\ {n+1}.
Notice that G’ is a random subset of {1,...,n}. Define the following

el mefelt)en)

Notice that |W| = |Wp| + [Wi| = [Wo UW,| + |[Wo N Wy |. Moreover, if
s either (n+1) € G and (Wo N W;)|g = {0,1}

s or (n+1) G and WoUW)|gr = {0,1}¢',

then W|g = {0,1}€. Therefore, using the inductive hypothesis, we get

Pr{Wlc = {0,1}°} > Pr{(n+1) € G} Pr{Wo N Wy)|e =27}
+Pr{(n+1) € G} Pr{Wy UW))|e = 2°'}
1 (|W0UW1|> 41 (|W00W1|>

v

2 2n 2 2n
_ Wouwr| + [WonWy|
- gn+l1

W]
= o O

Now, we are ready to prove Theorem 4.6.

Proof [of Theorem 4.6]: Instead of choosing the matrix T € {0,1}"*¥
as specified in Theorem 4.6, we do the following mental experiment. First
choose a bigger matrix T/ € {0,1}*"** at random by setting each entry
to 1 independently with probability p = 4¢/(hn). Then choose a random
subset G C 1,...,4n of its rows. If G has size at least n, set T to the
sub-matrix of T/ with rows corresponding to the first n elements of G.
If G has less than n elements, the experiment fails and T can be set to
any n X k matrix.

Let W = T'(Z) n {0,1}*". Notice that the probability distribution
of matrix T (conditioned on the event |G| > n) is the same as in Theo-
rem 4.6. Moreover, if |G| > n and {0,1}¢ C W|g then {0,1}" C T(Z).
So, we can bound the probability that matrix T does not satisfy Theo-
rem 4.6 as the sum of the probabilities that |G| < n and {0,1}"* € T(Z2).
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Notice that Exp[|G|] = 2n and Var[|G|] = n. So, by Chebychev’s
inequality

Pr{|G| <n} < Pr{||G| - Exp[|G]]| < n}
Var(|G|]
n2

1
= —<e€
n

for all sufficiently large n. Now, let us bound the probability that
{0,1}¢ C W|g when G and T' are chosen at random. Using Lemma 6.9
and the independence of G and T', one gets

Pr (o 1}° CWig} = Exp[Br{{0, 1}¢ Cc Wig}]

W
> E;f,p [W

- E Pr [xeW
™ [xe{oﬁ}“[x ]]

= Exp [Pr[x € T'(Z)]]
x€{0,1}4n T ’

H /
el 6 € T2

> 1-5e

v

Therefore the probability that {0,1}" € T(Z) is at most 5¢. By union
bound, with probability at least 1 — 6¢ matrix T satisfies Theorem 4.6.
O

4. Notes

A probabilistic variant of Sauer’s lemma was first proved by (Ajtai,
1998), and used to establish the first NP-hardness result for SVP. Ajtai’s
construction and proof is rather involved, with sets T; chosen according
to easily samplable, but not independent, probability distributions. In
this chapter we presented an alternative construction from (Micciancio,
1998; Micciancio, 2001d) with a simpler analysis. Moreover, the perfor-
mance of our construction is arguably better than Ajtai’s. Parameters
k, h,n in (Ajtai, 1998) (as well in Theorem 4.6) are polynomially related,
but the technicality of the proof in (Ajtai, 1998), makes it hard to ex-
tract the exact relation, which is currently unknown. So, an accurate
comparison between the two results is not possible.



Chapter 7

BASIS REDUCTION PROBLEMS

In the first chapters of this book we studied the shortest vector prob-
lem and the closest vector problem both from an algorithmic and com-
putational complexity point of view. In fact, the algorithms presented
in Chapter 2 to approximately solve SVP and CVP do somehow more
than just finding an approximately shortest lattice vector, or a lattice
vector approximately closest to a given target. For example, the LLL
algorithm on input a lattice basis B, outputs an equivalent basis B’ such
that not only b} is an approximately shortest lattice vector, but also all
other basis vectors b} are not too long. Moreover, LLL reduced bases
have relatively good geometric properties that make them useful to solve
other lattice problems. In particular, we have seen that if an LLL basis
is used, then the nearest plane algorithm always finds a lattice vector
approximately closest to any input target point. The problem of finding
a “good” basis for a given lattice is generically called the basis reduction
problem. Unfortunately, there is not a unique, clearly defined notion of
what makes a basis good, and several different definitions of reduced ba-
sis have been suggested. In this chapter we consider the most important
notions of basis reduction, define approximation problems naturally as-
sociated to such notions, and study the relation between these and other
lattice problems.

1. Successive minima and Minkowski’s reduction

A possible way to define reduced bases is to identify good bases with
bases all of whose vectors are short. In Chapter 1 we have seen that for
any lattice A of rank n with successive minima Ay, ..., A, there exist lin-
early independent vectors sy, ...,s, of length ||s;|| = Ai. It immediately
follows from the definition of successive minima that these lengths are in-

D. Micciancio et al., Complexity of Lattice Problems

© Kluwer Academic Publishers 2002
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deed optimal, i.e., for any linearly independent lattice vectors sy,...,s,
(in particular, for any lattice basis) if the vectors are sorted in order
of increasing length ||s;|| < ||s2]| < ... < ||sn]| then ||s;|| > A; for all

t = 1,...,n. However, the converse is not necessarily true: there are
lattices for which no basis by,..., b, exists such that ||b;|| < A; for all
t=1,...,n Consider for example the lattice of all integer vectors such

that all coordinates have the same parity, i.e., either all coordinates are
even or they are all odd. (A possible basis for this lattice is given by
vectors b; = 2e; fori =1,...,n—1and b, =Y 1, e;.) For n > 4, the
length of the shortest nonzero lattice vector is clearly A\; = 2. Moreover,
the lattice contains n linearly independent vectors 2e; of length exactly
2. Therefore A\; = 2 for all : = 1,...,n. However, it is easy to see that
any basis B’ generating this lattice must contain a vector of length at
least \/n. This is because if all vectors b} have even coordinates, then B’
does not generate the whole lattice and it is not a basis. On the other
hand, all vectors with odd coordinates have length at least \/n and for
n > 4 this is strictly bigger than A, = 2.

The approximation problem associated to finding linearly independent
lattice vectors of length as short as possible is formalized below.

DEFINITION 7.1 The vy-approzimate Successive Minima Problem (de-
noted SMP,,) is defined as follows. Given a lattice basis B, find linearly
independent vectors S such that ||si| < ¥\ for all i = 1,...,n. The
decision (or promise) version of this problem (GAPSMP,) is, given a
basis B and a sequence of values ry,...,r,, decide if A; < r; for all
t=1,...,n, or there exists an ¢ such that A\; > v -r;. If neither of these
conditions 1is satisfied, then (B,r1,...,rn) violates the promise, and any
answer is allowed.

It is easy to see that GAPSMP, can be efficiently reduced to the
search problem SMP,: on input (B,ry,...,7,), one calls the SMP,
search oracle on input B. Let S be the set of linearly independent
vectors returned by SMP,,. Then, if ||s;|| < v-rforalli =1,...,n
accept, otherwise reject.

Another simple observation is that the shortest vector problem SVP,,
(or its promise version GAPSVP,)) is (Karp) reducible to SMP., (resp.
GAPSMP,). For the search version, on input B, one calls the SMP,

oracle on input B to obtain linearly independent vectors s, ...,s,. Then
s; is a solution to SVP,. For the promise version, on input GAPSVP,
instance (B, r), one outputs GAPSMP,, instance (B,r,¢,...,c), where c

is a sufficiently large constant such that ¢ > A,. (For example one can
set ¢ to the maximum length of the input basis vectors.) It is easy to
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see that if (B, r) is a YES instance, then (B,r,c,...,c) is a YES instance,
while if (B, ) is a NO instance then (B,r,c,...,c) is a NO instance.

Notice that when v = 1, the condition on the lengths of vectors s; in
the definition of SMP., can be inductively reformulated as follows:

s s is a shortest nonzero vector in the lattice,

s ||s;|]| < ||v|| for any lattice vector v linearly independent from previ-
ously determined lattice vectors sy,...,s;_.

However, if an approximation factor «y is allowed, then the inductive def-
inition is somehow misleading: even if sy,...,s, is a solution to SMP,,
then it is not necessarily true that for all ¢ = 1,...,n, vector s; sat-
isfies ||s;|| < v||v| for all lattice vectors v linearly independent from
s1,...,8i—1. For example, assume v = 2 and consider the two dimen-
sional lattice generated by b; = e; and by, = 2e;. Clearly Ay = 1 and
A2 = 2. Therefore vectors s; = by and s, = 3b; + by are a solution to
SMP,, because ||s1|| = 2 < yA; and ||s2|| = V13 < yA2. However, s, and
s do not satisfy the inductive definition because there exists a lattice
vector v = b; linearly independent from s; such that ||s;|| > v||v|| = 2.

A classic notion of reduced basis in which vectors are required to be
as short as possible is that of Minkowski.

DEFINITION 7.2 A basis B is Minkowski reduced if for alli =1,...,n
vector b; satisfies ||b;|| < ||b}|l for any lattice vector b} such that the

sequence by,...,b;_1,b} can be completed to a basis, i.e., there ezist
lattice vectors bl ,,...,b; such that by,...,b;_1,b},... b} is a basis
for L(B).

Generalizing the definition of Minkowski to approximate versions is
not an easy task. The problem is that the definition is intrinsically
sequential, and the choice of the basis vectors at the beginning of the
sequence may affect the possible choices for basis vectors in subsequent
positions. Replacing the condition ||b;|| < ||b}|| in the definition with
|bi]l < ~||b}|| gives problems similar to those pointed out above when
talking about linearly independent sets. Another possibility is to de-
fine y-approximate Minkowski reduced basis as a basis B such that
IIbill < v|bi]l (for ¢ = 1,...,n) for some Minkowski reduced basis
B’. The problem with this definition is that requiring ||b;|| < «|/b}||
for some Minkowski reduced basis B’ does not necessarily implies that
|bill < ~||b}|| for any Minkowski reduced basis. So, there might be
Minkowski reduced bases that are better than B by more than a v mul-
tiplicative factor. An alternative and stronger definition might be to
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require conditions ||b;|| < -y||b}|| to hold for any Minkowski reduced ba-
sis B’ or even requiring ||b;|| < yA;. (Notice that \; < ||s;|| is true for
any sorted set of linearly independent lattice vectors, and, in particular,
for any Minkowski reduced basis S = B’.) The problem with these last
two definitions is that for values of 7 close to 1, there is no guarantee
that a solution to the problem exists, which is undesirable. (Later on,
in this chapter, we will see that, when v > /n, for any lattice A of rank
n there exists a basis B such that ||b;|| < yA;.)

Since Minkowski reduced bases do not play a particularly significant
role in the study of the computational complexity of lattice problems,
we do not define an approximation problem associated to Minkowski’s
reduction theory, and move on to a different and more easily defined
notion of approximately shortest basis. We relax the condition on each
basis vector s; being individually as short as possible, and replace it with
a global condition on all basis vectors b;. Namely, we use the maximum
length

#(B) = max |b,]| (7.1)

as a measure of the length of a basis, and ask for a basis B such that
u(B) is as small as possible.

DEFINITION 7.3 For any lattice A, let u(A) be the minimum value of
u(B) when B ranges over all possible bases of A. The ~y-approzimate
Shortest Basis Problem (SBP,) is, given a basis B of rank n, find an
equivalent basis B’ such that u(B') < - u(L(B)). The corresponding
promise problem GAPSBP, is, given a basis B and a value r, decide if
there ezists a basis B’ equivalent to B such that u(B') < r, or for all
equivalent bases p(B') > - r. If neither of these conditions is satisfied,
then the promise is violated and any answer is allowed.

As usual, the promise problem GAPSBP, immediately reduces to
SBP,. (The details are left to the reader as an exercise.) If we do not
require B to be a basis, and look for a set of linearly independent lattice
vectors S such that p(S) is minimized, then it is clear that there always
exists a set such that u(S) < A, and that this value is optimal. This is
the shortest linearly independent vectors problem defined below.

DEFINITION 7.4 The (approzimate) Shortest Independent Vectors Prob-
lem (denoted SIVP, ) is, given a basis B of rank n, find linearly inde-
pendent lattice vectors sy,...,Sy, such that ||s;|| < v - An(L(B)) for all
i =1,...,n. The corresponding promise problem GAPSIVP, is, given

a basis B of rank n and a rational number r, decide if \n(L(B)) < r or
An(L(B)) >7-r.
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For any approximation factor 7, the promise problem GAPSIVP,
can be efficiently reduced to SIVP,, in the obvious way. The difference
between this problem and the successive minima problem is that this
time each vector s; is not required to have length at most y\;. As long
as ||si|| < yAn for alli =1,...,n, set S is a good solution to SIVP,,.
Clearly, any solution to SMP,, is also a solution to SIVP,, so there
is a trivial reduction from SIVP, to SMP,. Moreover, essentially the
same reduction works for promise problems GAPSIVP,, and GAPSMP,,.
However, the converse is not necessarily true. In particular, while SVP,,
immediately reduces to SMP,,, it is not known how to efficiently reduce
SVP, to SBP, or SIVP, for any value of the approximation factor.
(A reduction is clearly possible for all values of v such that SVP,, can
be solved in polynomial time, or the problems SIVP, and SBP, are
NP-hard. Moreover, we will see, later in this chapter, that a reduction
from SVP to SIVP or SBP is possible at the price of increasing the
approximation factor by /n.)

We already know that for some lattices there is no basis such that
p(B) < An, so the best solution to SBP, is in general longer than the
best solution to SIVP,. A natural question is how long the shortest
basis can be. We will see that although for some lattice A the length
of the shortest basis yu(A) can be as much as /n/2 times bigger than
An(A), this is the worst that can happen, i.e., u(A) < (v/7/2) - An(A) for
any lattice A of rank n. Moreover, given any set of linearly independent
lattice vectors one can easily compute a basis increasing the length of
each vector by at most a factor \/n/2.

LEMMA 7.1 There is a polynomial time algorithm that on input a lattice
basis B and linearly independent lattice vectors S C L(B) such that
Is1]l < lIs2ll < ... < |Isnll, outputs a basis R equivalent to B such that
ekl < max{(vk/2)|Iskll, lIskll} for all k = 1,...,n. Moreover, the new
basis satisfies span(ry,...,rx) = span(sy,...,sk) and ||rg|| < ||sg|| for all
k=1,...,n.

Proof: Since the vectors S belong to the lattice, we can write S = BQ
for some integer square matrix Q. Matrix Q is nonsingular, but not
necessarily unimodular, i.e., det(Q) € Z\ {0}. Transform Q into an up-
per triangular integer matrix performing a sequence of elementary row
operations (An elementary operation is adding an integer multiple of
a row to some other row, multiplying a row by —1, or exchanging the
order of two rows.), and perform the corresponding sequence of column
operations to B. Equivalently, find an unimodular matrix U such that
T = UQ is upper triangular, and compute R = BU~L. Since U is uni-
modular, matrix R is a basis for £(B). Moreover S = BU~'UQ = RT,
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so span(sy,...,Sk) = span(ry,...,rx) because T is upper triangular.
Notice that s} = rt;;. Therefore, ||r}|| = ||s{||/|tii| < |Is}|| because t;;
is a nonzero integer. We still need to check if ||r;|| < max{v/i/2,1}||s;]|
forali=1,...,n.

We modify vectors ry,...,r, sequentially as follows. Assume that
ry,...,rp—1 have already been modified, and consider the last vector
r,. If r} = +£s}, then we can replace r, with s, and still have a ba-
sis. Moreover, the new r, clearly satisfies ||r,| < ||sp||- Conversely, if
r;, # xs;, then s}, = cr;, for some integer |c| > 1. Consider the pro-
jection rp —r}, of r, onto span(ry,...,rp—1), and use the nearest plane
algorithm of Chapter 2 to find a lattice point v € L([ry,...,ry]) within
distance /3", rf]?/2 from r, — r};. We claim that |r, — v|| is at
most (y/7n/2) - ||sp]|- Vector r, — v can be written as the sum of two
orthogonal components, r}, and (r, —r}) — v. The first component has
length at most ||r};|| = ||s}||/c < |Isy|l/2. By the choice of v, the second
component has length at most

Moletz/2< [ IstiR/2 < Y IIsill2/2 < Vi = Tmax [sql /2.
i<n i<n i<n '
It follows that the length of r, — v is bounded by
V((n=1)/9sall? + (1/4)lIsnll? = (V/2)lIsnll-

So, we can replace r, with r, — v, and obtain a basis satisfying all
properties stated in the lemma. O

An immediate consequence of the lemma is that for any lattice A of
rank n, the length of the shortest basis p(A) is at most (v/n/2)\,.

COROLLARY 7.2 For any lattice A of rank n, there ezists a basis B
such that |by|| < max{1,Vk/2}- A for all k = 1,...,n. In particular,

i(A) < max{1, /71/2} - Aa(A) < v An(A).

The lemma can also be used to prove the equivalence (up to polyno-
mial approximation factors) of SIVP, and SBP,.

THEOREM 7.3 For any approzimation factor vy, there exist Cook reduc-
tions from SBP, = to SIVP, and from SIVP, = to SBP,, where n
is the rank of the lattice. Moreover, there ezist Karp reductions from
GAPSBP,, 5 to GAPSIVP, and from GAPSIVP, 5 to GAPSBP,.

Proof: We first reduce SBP, 7 to SIVP,. Oninput SBP, 5 instance
B, call the SIVP,, oracle on input B to get linearly independent set S
such that u(S) < - Ap(£(B)). Then, run the algorithm of Lemma 7.1
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on input B and S to get a basis R of £(B) such that ||r;|| < /n||si|| <
vy - A\p(L£(B)). Since, u(B) > A (L(B)), basis R is a solution to
SBP s,

In the other direction, given SIVP,, 4 instance B, call the SBP,, ora-
cle on input B, to get an equivalent basis R such that u(R) < v-u(£(B)).
Clearly, R is also a set of linearly independent lattice vectors in £(B).
Moreover, from Corollary 7.2 we know that u(L(B)) < /nA,(L(B)).
Therefore, 4(R) < 7v/7 - An(L(B)) and R is a solution to SIVP, /.

Reductions between promise problems are similar and left to the
reader as an exercise. O

2.  Orthogonality defect and KZ reduction

In this section we consider a notion of reduced basis where one tries
to make the basis vectors as orthogonal as possible. A quantity that has
been used to measure how close a basis is to orthogonal is the orthog-
onality defect []; ||bi|l/ det(B). The relation between this quantity and
almost orthogonal bases is easily explained. Let 6; is the angle between
b; and span(by,...,b;i_1). Then |b}|| = |b;| cos6;. Therefore

(L] det B
: ”bl " : cos 91' Hl cos 9; i det( ) (7 2)

So, the orthogonality defect is always at least 1, with equality if and
only if cos6; = 1 for alli = 1,...,n, i.e.,, §; = m/2 and the basis B is
completely orthogonal.

This shows that minimizing the orthogonality defect corresponds to
finding a basis with almost orthogonal vectors. Since the orthogonality
defect is proportional to the product of the lengths of the basis vectors, it
is also clear that there is a close relationship between searching for almost
orthogonal bases and bases consisting of short vectors. The definition
of orthogonality defect can be extended to linearly independent sets of
lattice vectors. Given linearly independent lattice vectors S in £(B), we
define the orthogonality defect of S as []; ||si||/ det(B). It is important
that []; ||s:|| is divided by the determinant of the original lattice, and not
by det(S), because any full-rank integer lattice contains a set of linearly
independent vectors with []; ||sil|/ det(S) = 1. (Consider for example
lattice vectors s; = det(B) - e; € £(B).) It is convenient to normalize
the orthogonality defect, and consider the quantity ([T; ||s;||/ det(B))!/™
instead, so that if vectors S are multiplied by a constant ¢, then the
defect (IT; llcs:||/ det(B))/™ = ¢([T; |Is:|l/ det(B))1/™ scales up linearly
by a factor c.
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DEFINITION 7.5 Let A be a lattice of rank n, and let S be n linearly
independent lattice vectors in A. The normalized orthogonality defect
of S is 0A(S) = ([I; Ilsill/ det(A))/». When L(S) = A, i.e., S is a
basis, we omit the subscript and simply write §(S). The smallest or-
thogonality defect 6(B) for all possible bases B of a lattice A is denoted
0(A). The smallest orthogonality defect 55(S) where S is a mazimal

set of linearly independent vectors in A, is denoted dp(A). Notice that
A) = ([T; A/ det(A)) /™.

The computational problem associated to finding a basis with orthog-
onality defect approximately as small as possible is defined below.

DEFINITION 7.6 The y-approximate Quasi Orthogonal Basis problem
(denoted QOB, ) is, given a basis B, find an equivalent basis B' such
that 6(B') < v-46(L(B)).

The analogous problem for linearly independent vectors is the follow-
ing.
DEFINITION 7.7 The y-approximate Quasi Orthogonal Set problem (de-

noted QOS,) is, given a basis B, find a set of linearly independent lattice
vectors S such that §o(S) < v-8x(A), where A = L(B).

We do not define promise problems associated to QOB,, and QOS,
because, as we will see soon, for any lattice A, §(A) and dp(A) al-
ways belong to the interval [1,/n]. Therefore, for all v > /n, the
optimal value associated to QOS, and QOB, can be trivially approxi-
mated within polynomial factor ﬁ (Still finding a basis or independent
set achieving this value seems a computationally hard problem. Com-
pare with the problem of finding a nonzero lattice vector of length at
most /ndet(L(B))!/": even if such vector is guaranteed to exists by
Minkowski’s theorem, we do not know any efficient algorithm to find
it.) Problems QOB,, and QOS, are equivalent up to v/n factors in the
approximation parameters.

THEOREM 7.4 QOB, 5 can be reduced in polynomial time to QOS,,
and QOS,, ;5 can be reduced in polynomial time to QOB,,.

Proof: The proof is similar to that of Theorem 7.3, and it is left to the
reader as an exercise. O

Minkowski’s second theorem shows that for any lattice A there exists a
set of linearly independent lattice vectors with normalized orthogonality

defect
K/H lIs:]l/ det (A ‘/HA i/ det(A) < /n. (7.3)
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Using Lemma 7.1, we also get that for any lattice there exists a basis
B such that §(B) < n. In fact it is possible to do better than that,
and show that any lattice has a basis with normalized orthogonality
defect bounded by \/n. A notion of reduced basis that gives smaller
orthogonality defect than that guaranteed by Minkowski’s theorem is
the one studied by Korkine and Zolotarev.

DEFINITION 7.8 Let B be a lattice basis of rank n, and let B* the cor-
responding Gram-Schmidt orthogonalized basis. Define the projection
functions mi(x) = Ejzl-((x,b;)/llb;||2)b; that map x orthogonally to
span(b},...,b}). Basis B is Korkine-Zolotarev reduced (KZ reduced,
for short) if and only if for alli=1,...,n,

» b} is a shortest nonzero vector in mi(L(B))

s for all j < i, the Gram-Schmidt coefficients p;; of B satisfy |pu; ;| <
1/2.

It is easy to see that if a linearly independent set of lattice vectors S
is KZ reduced, then S is a basis for the original lattice. So, for this prob-
lem there is no difference between lattice bases and linearly independent
sets of vectors. This definition of Korkine-Zolotarev reduced basis is
intrinsically sequential, i.e., the length of ||b}|| depends on the choice of
the previous basis vectors by,...,b;_;. Below we give a slightly weaker,
but conceptually simpler, definition of reduced basis that naturally gen-
eralizes to approximation versions of the same problem.

DEFINITION 7.9 A basis B is y-approzimate Korkine-Zolotarev reduced
(KZvy reduced, for short) if for all i =1,...,n,

m byl < - A

s for all j < i, the Gram-Schmidt coefficients u;;j of B satisfy |pi ;| <
1/2.

The «y-approzimate Korkine-Zolotarev problem (KZP.) is, given a basis
B, output a basis equivalent to B which is KZvy reduced.

Notice the similarity between this definition and our previous at-
tempts to define approximate Minkowski reduced basis. In Section 1,
we tried to define a y-approximate Minkowski reduced basis as a basis
B such that ||b;|| £ v - ;. Unfortunately, for values of v close to 1
no such basis is guaranteed to exist. Interestingly, if the orthogonalized
vectors are used, thiere is always a basis such that ||b} || < v- A;, even for
v = 1. (See Proposition 7.5 below.) Notice that for y = 1, Definition 7.9
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does not implies that B is reduced in the sense originally defined by Ko-
rkine and Zolotarev. However, the definition is justified by the following
proposition.

PROPOSITION 7.5 If B is a KZ reduced basts, then B is also KZy re-
duced for any v > 1.

In particular, the proposition shows that KZP., has a solution for all
v > 1. (Clearly, no solution exists for v < 1 because ||b}|| = ||b1]| > A1.)
We do not prove the proposition here, as this result will follow from a
more general theorem to be proved below. The theorem states that the
problems KZP, and SVP, are equivalent under Cook reductions. In
particular, for any v > 1, and for any lattice, there exists a basis that
solves KZP,, and this basis can be efficiently found given access to an
SVP, oracle.

THEOREM 7.6 For any approzimation factor v, SVP, and KZP, are

equivalent under Cook reductions, i.e., there exist Cook reductions from
SVP, to KZP,, and from KZP,, to SVP,.

Proof: One direction is obvious: if B is a KZ+ reduced basis, then
b1l = |Ib}l £ 7 A1 and b; is a solution to SVP,. Now, assume
we have access to an SVP, oracle. We use this oracle to compute a
KZ~ reduced basis. Let A be the input lattice. We compute the KZ~y
basis vectors by, ..., b, sequentially, making appropriate calls to SVP,,.
We assume, without loss of generality, that the approximate solutions
v returned by SVP,, are primitive vectors, i.e., v # cw for any integer
¢ # %1 and any lattice vector w. (If this is not the case, w is a better
solution to SVP,, and we can replace v with w.)

First of all we call the SVP., oracle on input A to get a nonzero lattice
vector by such that ||b}|| = ||bi|| < vAi1(A). After vectors by,...,b;_;
have been determined, we compute b; as follows. Let A; = m;(A) be
the projection of A to the orthogonal complement of by,...,b;—;. We
call the SVP, oracle on input A;, and find a lattice vector b; € A
such that b} = m;(b;) is an approximately shortest vector in A;. Notice
that A contains 7 linearly independent vectors of length at most \;(A).
At least one of these vectors has a non zero component orthogonal to
span(by,...,b;_1). Therefore, A; contains a nonzero vector of length
at most A;(A). This proves that Aj(A;) > Ai(A) and therefore ||b}|| =
lm (bl < YA(A).

This gives a sequence of lattice vectors by,...,b, such that ||b}| <
yAi for all i = 1,...,n. Since each b} is a primitive vector in A;, then
B is a basis for the original lattice. Finally, the condition |p;;| < 1/2
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on the Gram-Schmidt coefficients can be easily achieved as follows. For
every b; (starting from by, up to b,), run the nearest plane algorithm
on lattice [by,...,b;—1] and target vector b;. Let v be the lattice point
returned by the nearest plane algorithm, and replace b; with b; — v. It
is easy to see that the Gram-Schmidt coefficients of the new b; satisfy
il £1/2. O

So, an SVP, oracle can be used to efficiently compute KZvy reduced
bases. Moreover, if an exact SVP; oracle is available, then the above
reduction returns a basis which is reduced in the sense originally defined
by Korkine and Zolotarev. The next theorem shows that KZ+y reduced
bases approximately solve the the basis (or independent set) reduction
problems studied in Section 1.

THEOREM 7.7 For any approzimation factor vy, any solution to KZP,,
s also a solution to SIVP,Y\/,—” SMP, s, and SBP,, /. In particular,
SIVP,Y\/;, SMP,Y\/; and SBP,Y\/; are Cook reducible to KZP,.

Proof: We have already observed that any KZ~ reduced set is also a
basis. We prove that if B is KZv reduced, then ||b;|| < /ny\;. It fol-
lows that B is a solution to SIVP, 5, SMP, 5, and SBP, ~. Let p;;
be the Gram-Schmidt coefficients associated to B. We know, from Def-
inition 7.9, that |p; ;| < 1/2. Using the Gram-Schmidt orthogonalized
vectors we get

1—1
* 2
63112 + > u;lIbj |
j=1

s 12

1 i—-1
< X+ 7N
j=1

i+3
< ( I )~72/\?-

This proves that ||b;|| < viyA < /ny)i. O

Now that we have established the equivalence between KZP., and
SVP,, we prove that any solution to KZP, (and therefore SVP,) can
be used to approximately solve QOB,, and QOS,.

THEOREM 7.8 For any approzimation factor v, any solution to SMP,
is also a solution to QOS,. In particular, any KZy reduced basis is also
a solution to QOB, & and QOS, 7.

Proof: Let A = £(B) be a lattice of rank n. The first statement is
obvious: if S is a linearly independent set of lattice vectors such that
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[Is:|l £ ¥Ai, then

6a(S) = %ﬂ;ﬂj‘” < *ﬂ;];i — 46a(A). (7.4

Now assume we have a KZ+v reduced basis B. We know from Theo-
rem 7.7 that B is a solution to SMP,, 4. From the first part, B is also

a solution to QOS, . Finally, we observe that §(B) < yy/n - da(A) <
¥v/n-8(A) and B is a basis. Therefore, B is also a solution to QOB .
a

3. Small rectangles and the covering radius

In the last two sections we considered bases and linearly independent
sets such that the maximum length max; ||s;| or the geometric mean
/11, lIsi]| is minimized. In this section we consider still another quantity
that can be used to measure the quality of an independent set. Two
fundamental constant associated to any lattice are the packing radius
and the covering radius.

DEFINITION 7.10 The packing radius of a lattice A is the largest radius
r such that any two (open) spheres of radius r centered at two distinct
lattice points do not intersect. The covering radius of A, denoted p(A),
is defined as the smallest radius p such that the (closed) spheres of radius
p centered at all lattice points cover the entire space, i.e., any point in
span(B) is within distance p from the lattice.

It is easy to see that for any lattice A, the packing radius equals
exactly A;(A)/2. So, determining the packing radius is equivalent to
solving (the optimization version of) SVP. The covering radius p is also
related to a familiar lattice problem (CVP), but this time the connection
is weaker. The covering radius of £(B) is the smallest p such that CVP
instance (B, t,p) has solution for any t € span(B). So, the covering
radius corresponds to the worst case solution to CVP when the target
point t ranges over span(A). (Notice that if lattice is not full dimensional
and t is allowed to be any point in space, the distance of t from the lattice
can be arbitrarily large.)

We do not introduce a new problem associated to the packing radius,
as the problem is equivalent to SVP. Below we formalize the promise
problem associated to computing the covering radius.

DEFINITION 7.11 For any approzimation factor v > 1, the (approzi-
mate) Covering Radius Problem (denoted GAPCRP,) is the following
promise problem. Instances are pairs (B,r). Moreover,
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s (B,r) is a YES instance if p(L(B)) <r

s (B,r) is a NO instance if p(L(B)) >y -7

It is clear that solving the GAPCRP,, promise problem, is equivalent
to approximately computing the value of the covering radius, i.e., finding,
on input a lattice A, a value r that belongs to the interval [p(A), - p(A)].
We do not define any search problem for the covering radius. The reason
is that there is no known natural search problem associated to computing
the covering radius exactly, whose solution can be checked in polynomial
time. One possibility might be to ask for a point in span(A) at distance
p from the lattice, a so called deep hole. (A deep hole is a point in
span(A) as far as possible from A.) However, given a point t € span(B),
it is not clear how to check in polynomial time that t is indeed a deep
hole. In fact, the covering radius problem is not known to be solvable in
nondeterministic polynomial time. The straightforward solution to the
problem requires first to guess the position of a point t as far as possible
from the lattice (i.e., a deep hole), and then check that there are no
lattice points within distance p from t. This alternation of quantifiers
puts the (exact) covering radius problem in IT; at the second level of the
polynomial hierarchy, a presumably strictly bigger class than NP.

In order to study the covering radius problem, we introduce one last
basis reduction problem. As mention at the beginning of this section, we
introduce one more quantity to measure the quality of a basis, which will
be used in the next chapter to prove the security of lattice based cryp-
tographic functions. Given a basis B with corresponding orthogonalized
vectors B*, we consider the length of the diagonal of the orthogonal
parallelepiped defined by B*:

a(B) = [ b1 (7.5)

We want to find a set of linearly independent vectors S such that o(S)
is as small as possible. Notice that by Lemma 7.1, any set of linearly
independent lattice vectors S can be converted into a basis B preserving
(or even reducing) o(S) > o(B). Therefore, without loss of generality
we can search for a basis B such that ¢(B) is minimized.

DEFINITION 7.12 For any lattice A, let o(A) be the smallest value of
o(B) when B ranges over all possible bases. The y-approximate Shortest
Diagonal Problem (SDP,) is, given a basis B, find an equivalent basis
B' such that o(B') < v-0(L(B)). The promise version of this problem
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(GAPSDP, ) is, given a lattice B and a value r, decide if o(L(B)) < r
or o(L(B)) > «-r. If neither of these conditions is satisfied, then (B,r)
violates the promise and any answer is allowed.

The nearest plane algorithm of Chapter 2, on input linearly indepen-
dent vectors S and a target point t € span(S), always returns a lattice
point v € £(S) within distance o(S)/2 from t. This proves that for any
lattice A, the covering radius is at most p(A) < o(A)/2. We want to
prove that o(A) is not much bigger than the covering radius, in partic-
ular, for any lattice A, o(A)/2 is within a factor /n from p(A). The
following theorem establish relations between p, o and A,,.

THEOREM 7.9 Let A be any lattice of rank n. Then
An(A) < 2p(A) < ) < V- A (7.6)

Proof: We start from the last inequality. Fix a lattice A of rank n, and
let B be a KZ reduced basis for A. We know from Proposition 7.5 that
Ib}|| < Ai(A) for all i =1,...,n. Therefore,

o(A) <a(B) = | Y IIb}[2 < V- Aa(A). (7.7)
i=1

Now, consider the second inequality 20 < 0. Let B be such that
a(B) = a(A). Notice that given a point t in span(B), one can always find
a lattice point within distance §/3,b}||Z from t, for example using
the nearest plane algorithm from Chapter 2. Therefore, p(A) < o(A)/2.

It remains to prove the first inequality A\, < 2p. Assume for contra-
diction A\, > 2p and let € be a real number such that e < A, — 2p. We
iteratively build a set of linearly independent lattice vectors sy, ...,s, as
follows. For any ¢ = 1,...,n, let t; be any vector of length p+ € orthogo-
nal to sp,...,S;—1, and let s; be a lattice point within distance p from t;.
Then s; is linearly independent from sj,...,s;—1, because the distance
of s; from span(sy,...,s;_1) is at least ||t;|| —||s; — t;| > e. Moreover, by
triangle inequality, ||s;|| < ||ti]| + ||si — ti]| < 2p + € < An. By induction
on ¢, we obtain a set sj,...,S, of linearly independent lattice vectors of
length ||si|| < An, contradicting the definition of A\,. O

The relation between p, 0 and A, established in the previous the-
orem immediately gives an approximate reduction between problems
GAPCRP, GAPSDP and GAPSIVP.

THEOREM 7.10 For any approzimation factor vy, there is a Karp reduc-
tion between any of the following pairs of problems:
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= From GAPCRP, 5 to GAPSDP,,

= From GAPCRP, ;5 to GAPSIVP,,

= From GAPSDP, 5 to GAPCRP,,

s From GAPSDP, 5 to GAPSIVP,,

= From GAPSIVP, = to GAPCRP,,

® From GAPSIVP, 5 to GAPSDP,, and
= From GAPSBP, 5 to GAPSDP,,.

In particular, since GAPSDP; is in NP, then also GAPCRP s is in
NP.

Proof: On input GAPCRP, s instance (B,r), output GAPSDP, in-
stance (B, y/nr). It is easy to see that the reduction maps YES instances
to YES instances, and NO instances to NO instances. All other reductions
are similar. O

We remark that for approximation factors v = o(y/n), GAPCRP, is
not known to be in NP. The following theorem gives additional reduc-
tions between the search versions of some of the above problems.

THEOREM 7.11 For any approzimation factor vy, there is a Cook reduc-
tion between any of the following pairs of problems:

s From SDP, 5 to SIVP,,
= From SIVP, 5 to SDP,,
» From SBP, 5 to SDP,, and
® From SDP, 5 to KZP,.

Proof: The simple proofs are left to the reader as an exercise. O

All the relations between lattice approximation problem proved in
this chapter are summarized in Figure 7.1. Each node correspond to a
lattice approximation problem. An arrow from problem A to problem B
indicate that there is a Cook reduction from A to B. In all cases, if both
A and B are decision (or promise) problems, then there is also a Karp
reduction between the two. If the arrow has no label, then the reduc-
tion preserves the approximation factor, i.e., approximating problem A
within a factor -« can be reduced to approximating B within a factor v
for any v > 1. Labeled arrows indicate that the reduction increases the
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QOB vn QOS

v
v GAPCRP n

Figure 7.1. Relations among lattice approximation problems.

approximation factor. For example an arrow from A to B with label \/n
means that approximating problem A within « - /n can be reduced in
polynomial time to approximating problem B within a factor . Reduc-
tions can be combined in the obvious way. For example, since SIVP,
reduces to SMP, and SMP, 5 reduces to KZP,, then SIVP L re-
duces to KZP,,. Notice that a solution to SVP, or KZP,,, would allow
to solve all other lattice reduction problems within a factor yy/n. Dotted
lines from GAPSVP to GAPCRP and GAPSIVP represent reductions
that have not been described yet, and rely on harmonic analysis tech-
niques that are beyond the scope of this book. In (Banaszczyk, 1993)
it is proved that for any lattice A = L£(B) of sufficiently high rank n, if
A’ = £(B(BTB)™!) is the so called dual lattice of A, then the covering
radius and the successive minima of A and A’ are related by the following
bounds:

1< MAIA) <n (7.8)
1< MA)p(A) <n (7.9)
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This kind of bounds are called transference theorems, and allow to infer
information about a lattice, studying the properties of its dual. Notice
that the dual of the dual equals the original lattice.

Using the transference theorems one can give simple reductions be-
tween the corresponding lattice problems. Interestingly, reductions ob-
tained using transference theorems swap YES and NO instances.

THEOREM 7.12 For any approzimation factor v, there are Karp reduc-
tions from the complement of GAPSVP,,, to GAPCRP, or GAPSIVP,,
and from GAPCRP,,, or GAPSIVP,, to the complement of GAPSVP,,.

Proof: We show how to reduce GAPSVP,, to the complement of
GAPCRP,. The other reductions are analogous. Let (B,r) be an in-
stance of GAPSVP,,,. The output of the reduction is GAPCRP,, in-

stance
(B(BTB)-I, —1-) :
yr

We want to prove that if (B, r) is a YES instance then (B(BTB)~!, ,Yl—;

is a NO instance, while if (B, ) is a NO instance then (B(BTB)~1, %

is a YES instance. Let A = £(B) be the lattice generated by the input
basis, and let A’ = £L(B(BTB)™!) be its dual. Assume (B,r) is a YES
instance. Then A;(A) < 7, and using the transference theorems we get
p(A") > 1/A;1(A) > 1/r. This proves that (B(BTB)~1,1/(r7)) is a NO
instance. (To be precise, we should have shown that inequality p(A’) >
1/r is strict. This is just a technicality, and can be easily fixed, either
increasing the inapproximability factor v by an arbitrarily small € > 0,
or using the fact that the second inequality in (7.8) and (7.9) are strict.)
Conversely, assume that (B,r) is a NO instance. Then A;(A) > ynr
and using the transference theorems we get p(A’) < n/A1(A) < 1/(vr),
proving that (B(BTB)~!,1/(r7)) is a YES instance. O

4. Notes

For all computational problems considered in this chapter, no poly-
nomial time algorithm is known. Approximate solutions can be found
in polynomial time using the LLL reduction algorithm, or any of its
improved variants discussed in Chapter 2. The proof of Lemma 2.8
can be easily adapted to show that the length of the kth vector of an
LLL reduced basis are within an exponential factor v = 20 from
the kth successive minimum Ax. Therefore, the LLL algorithm gives a
polynomial time solution to SMP., for exponential approximation factor
v = 20 Similarly, the improved algorithms of (Schnorr, 1987) give
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20(n(loglogn)?/logn) approximation factors, which can be further reduced
to 20(nlognlogn/logn) y5ing randomization (Ajtai et al., 2001). Polyno-
mial time algorithms to approximate all other problems considered in
this chapter within similar approximation factors are readily obtained
using the reductions depicted in Figure 7.1.

From the complexity point of view, we know from Theorem 4.4 that
GAPSVP, and SVP, are NP-hard (under RUR reductions) for all v <
V2. 1t immediately follows that KZP, and GAPSMP.,, and SMP,, are
also NP-hard. In fact, basis reduction problems seem much closer to
CVP than SVP from a computational point of view, and better in-
approximability results can be proven for most of them. For example,
(Blémer and Seifert, 1999) proved that GAPSBP, and GAPSIVP,, (and
therefore also GAPSMP,, SBP,, SIVP,, and SMP,) are NP-hard for
= nl/10glogn by reduction from a variant of CVP.

Problems QOB and QOS have been considered before in the com-
puter science literature (see for example (Kannan, 1987a) or (Goldreich
et al., 1997b)), but they have not received much attention so far specifi-
cally from a computational complexity point of view. The SDP (and its
decisional version GAPSDP) were introduced here just as an intermedi-
ate problem to study the relation between the covering radius problem
and other more standard basis reduction problems. In the rest of this
section we discuss the covering radius problem (GAPCRP).

Computing the covering radius of a lattice is presumably a very hard
problem. This is a classic problem in the geometry of numbers, but
it has received so far almost no attention from an algorithmic point
of view. We do not know any polynomial time algorithm achieving
approximation factors that are substantially less than exponential in
the rank n of the lattice, and (the decisional problem associated to)
computing the covering radius exactly is not even known to be solvable
in NP (nondeterministic polynomial time). The obvious upper bound to
the complexity of the exact covering radius problem (i.e., when v = 1) is
in IT5, at the second level of the polynomial hierarchy. Interestingly, the
analogous problem for linear codes is hard for IT5 (McLoughlin, 1984),
so it is unlikely to be solvable in NP. We believe that GAPCRP is also
hard for IT5, but no proof is known at the time of this writing.

Maybe, the reason GAPCRP,, has attracted so little attention so far,
is its perceived difficulty. In Chapter 8, we will see that the hardness of
GAPCRP, can be used to build provably secure cryptographic functions.
This calls for a deeper investigation of the computational complexity of
GAPCRP,: Is the problem NP-hard when v = 17 Is it hard for 157
What is the highest value of « for which the problem is hard for NP?



Chapter 8

CRYPTOGRAPHIC FUNCTIONS

Generally speaking, the goal of cryptography is the design of systems
that withstand any malicious attempt to subvert them. The archetypical
problem in cryptography is that of secret communication: two parties
want to communicate with each other, and keep the conversation pri-
vate, i.e., no one, other than the two legitimate parties, should be able
to get any information about the messages being exchanged. This se-
crecy goal can be achieved if the two parties share a common random
key that is known only to them. Then, in order to privately send a mes-
sage, one can encode it using the key, and send the enciphered message
to the other party over a public communication network. The receiver
uses the shared key to invert the encoding procedure, and recover the
original message. The original message, the enciphered message and the
encoding and decoding processes are usually called cleartezt, ciphertext,
encryption and decryption. An encryption scheme is secure if recover-
ing (any partial information about) the cleartext from the ciphertext
without knowing the secret key is a computationally infeasible task. So,
an adversary intercepting the ciphertext won’t learn anything about the
message, other than the fact that a message was sent, and possibly the
length of the message. (For technical reasons, it is not possible to hide
the length of the message being sent without making the communica-
tion scheme extremely inefficient, so leaking the message length is usually
considered an acceptable compromise between efficiency and security.)

It has long been realized that the relevant notion of hardness in cryp-
tography is average-case hardness: if the key is chosen at random, then
no probabilistic polynomial time algorithm can break the scheme with
nonnegligible probability. This is different from the more common worst-
case notion of hardness used in computational complexity, e.g., in the

D. Micciancio et al., Complexity of Lattice Problems
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theory of NP-completeness. Proving that a problem is NP-hard shows
that (unless P = NP) there is no polynomial time algorithm that cor-
rectly solves all the instances of that problem. In other words, for any
polynomial time program, (and for infinitely many input sizes,) there
is some instance of the problem for which the program gives the wrong
answer. This is clearly not enough for cryptography. It is not sufficient
to know that there exists some key which is hard to break: the user
wants some reasonable guarantee that, if her key is chosen at random
according to the prescribed key generation procedure, then (with high
probability) her key is hard to break. Typically, even if a small, but
nonnegligible fraction of the keys, can be broken then the scheme is not
considered sufficiently secure for cryptographic purposes. So, the no-
tion of average-case hardness customarily used in cryptography is that
of problems for which any probabilistic polynomial time algorithm has
only a negligible chance of success at solving them. Formally, a function
f(n) is called negligible if it is less than any inverse polynomial 1/n¢
for all sufficiently large n. This definition naturally corresponds to the
identification of efficient computation with (probabilistic) computations
that take time polynomial in the input size. A cryptographic construc-
tion is asymptotically secure if for any inverse polynomial function 1/n¢
and any probabilistic polynomial time adversary, there exists an ng such
that for all n bigger than ny the success probability of the adversary
subverting the construction is less than 1/n¢, where n is the security
parameter of the system.

The ultimate goal of modern cryptography, is the construction of
cryptographic functions that are provably hard to break (on the aver-
age). Unfortunately, based on our current understanding of computa-
tional complexity, no such construction is likely to come any time soon:
if P = NP then most cryptographic problems would be unsolvable be-
cause the adversary can nondeterministically guess the secret key. So,
an unconditionally secure cryptographic function would yield a proof
that P # NP, a major open problem in computational complexity. The
second most desirable goal is the construction of cryptographic functions
that are provably hard to break (on the average), under some standard
(worst-case) computational complexity assumption. For example, as-
suming that there is no polynomial time algorithm that on input an
integer n outputs the prime factorization of n, build a secure encryption
scheme, i.e., an encryption scheme such that any polynomial time adver-
sary has only a negligible chance of breaking it. To date, we do not know
any such construction, and all cryptographic constructions based on the
factoring problem typically require the assumption that factoring is hard
not only in the worst case, but also on the average, for a suitable distri-
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bution of n. The same is true for almost any other hard mathematical
problem that has been used for cryptographic applications. Recently,
lattices have attracted considerable interest for their potential crypto-
graphic applications because of a remarkable connection between their
worst-case and average-case complexity (Ajtai, 1996). In this break-
through paper, Ajtai showed that if there is no algorithm that approx-
imately solves the (decisional) shortest vector approximation problem
for any lattice within some polynomial factor y(n) = n¢, then the short-
est vector (search) problem is hard to solve exactly when the lattice is
chosen at random according to a certain easily samplable distribution.
Building on this result, Ajtai suggested a lattice-based one way func-
tion. One way functions are the simplest primitive in cryptography: a
function f that is easy to compute in the forward direction, but hard
to invert on randomly chosen input. Despite their simplicity, one way
functions are known to be sufficient to solve many important problems in
cryptography, like the construction of digital signatures, pseudo-random
generators, private key encryption schemes and commitment protocols,
among others.

Right after Ajtai’s discovery of the connection between the worst-
case and average-case hardness of lattice problems, many researchers
suggested to use lattices for the solution of other, more complex, cryp-
tographic problems beside one way functions. Most notably collision
resistant hashing and public key encryption schemes. The construc-
tion of collision resistant hash functions closely resemble Ajtai’s one way
function, and it well illustrates how lattices can be used to construct
cryptographic functions that are as hard to break as the worst-case in-
stance of approximating certain lattice problems. It should be remarked
that building cryptographic functions that are as hard to break as the
worst case instance of the underlying mathematical problem is espe-
cially important in the case of lattices because lattice approximation
algorithms (like the LLL algorithm studied in Chapter 2) are believed
to perform much better on the average than the worst-case theoretical
upper bounds. So, while it is reasonable to conjecture that there is no
polynomial time algorithm that approximates lattice problems within
small polynomial factors in the worst case, assuming that no such algo-
rithm exists that succeeds with nonnegligible probability when the input
lattice is chosen at random might not be a reasonable conjecture at all,
depending on the particular input distribution. For example, we do not
know any algorithm to approximate the length of the shortest vector
in a lattice within a factor \/n in the worst case, and, based on our
current knowledge (i.e., no known polynomial time algorithm achieves
approximation factors that are substantially better than exponential in
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n), assuming that no such algorithm exists is a legitimate mathemati-
cal conjecture. However, if we consider the same problem for randomly
chosen lattices, and the input is given by n basis vectors selected inde-
pendently and uniformly at random (from a sufficiently large ball), then
with high probability the basis vectors are within an O(y/n) factor from
the shortest lattice vector, so approximating the length of the shortest
lattice vector on the average can be easily accomplished for this input
distribution. What’s so remarkable about Ajtai’s connection is that it
provides an explicit probability distribution on lattices such that ran-
domly selected lattices from this distribution are provably hard, under
the sole assumption that there is no efficient algorithm that solves some
(other) lattice problem in the worst case.

In the case of public key encryption, several different methods have
been suggested. Some of them have provable security guarantees with
worst-case/average-case connection similar to Ajtai’s one-way functions,
others are heuristics (with no known proof of security) that have been
suggested as practical alternatives to commonly used public key encryp-
tion functions. In this chapter we introduce the ideas behind the de-
sign of lattice based cryptographic function. We start in Section 1 with
some general techniques that are useful in many constructions. Then,
is Section 2 we present a full, self contained description of a new col-
lision resistant hash function with worst-case/average-case connection
that generalizes and improves Ajtai’s construction. Finally, we conclude
with an overview of the principal lattice based public key encryption
schemes in Section 3, presenting all schemes in a unified framework that
illustrates the similarities and differences among all the schemes. Ad-
ditional bibliographical and historical notes, and information about the
latest developments in the area are given in Section 4.

1. General techniques

Most lattice based constructions are better understood and analyzed
if formulated in group theoretic terms. In this section we explore the
relation between lattices and finite commutative groups, we prove some
discrepancy results that play an important role in the probabilistic analy-
sis of lattice constructions with worst-case/average-case connection, and
we briefly recall the definition and basic properties of the statistical
distance, a useful tool for the analysis of randomized algorithms and
reductions.
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1.1  Lattices, sublattices and groups

Let L be a rank n lattice and let M be a full rank sublattice of L.
Equivalently, le¢t M = LA for some nonsingular integer matrix A €
Z™*™.  The sublattice £(M) defines a natural equivalence relation on
L(L) as follows: two lattice points x,y € L(L) are equivalent (written
x = y) if and only if x —y € L(M). (The equivalence relation =
depends on the lattice £L(M), so formally it should be written =,(np) or
=M. To simplify the notation, we omit the subscript and simply write
= whenever the lattice M is obvious from the context.) The reader
can easily check that = is an equivalence relation, i.e., it satisfies the
reflexive, symmetric and transitive properties:

s x = x for all x € L(L).
s x=yifand only if y =x
s if x =y and y = z, then x = z.

DEFINITION 8.1 Let L(L) be a lattice and L(M) a full rank sublattice
of L(L). The L(M)-equivalence class of x € L(L) (denoted [x]m) is the
set of all y € L(L) such that x =\ y. The quotient L(L)/L(M) is the
set of all £L(M)-equivalence classes of L(L).

(Also for equivalence classes [x]m we often omit the subscript M wher-
ever M is clear from the context, and write [x] instead of [x]m.) The
equivalence relation = is a congruence relation with respect to the ad-
dition operation, i.e., if x =x' and y = y’, then (x +y) = (X' +y'). It
follows that for any two equivalence classes [x] and [y], the sum [x + y]
is well defined, i.e., it does not depend on the choice of representatives
X, y, and the quotient £(L)/L£(M) is an additive group with the sum
operation just described.

PROPOSITION 8.1 Let L(L) be a lattice and L(M) a full rank sublattice
of L(L). The quotient G = L(L)/L(M) is an additive group with respect
to operation

(x] +[y] = [x +y].
Moreover, the function ¥(x) = [x] is a group homomorphism from
(L(L),+,0) to (G,+,0) with kernel L(M), i.e., for every x,y € L(L),
function i satisfies

Y(x+y) = P(x)+9(y)
P(=x) = —9(x)
P(x) =0 & xe€L(M).
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Equivalence classes in £(L)/£(M) can be associated with unique rep-
resentative elements from £(L) in various ways. For example, one can
use the set of lattice points £(L) NP(M) in the half open parallelepiped

PM) = {Mz:Vi.0 < z < 1}.

It is easy to see that for every equivalence class [x] there exists a unique
element x' € £L(L) N P(M) such that x = x’, and such representative
can be efficiently computed as follows: write x as Mz, define 2} = | z;]
foralli =1,...,n, and set X’ = Mz'. In particular, this proves that the
group G is finite, and it has cardinality

|[£(L)/L(M)| = det(L£(M))/ det(L(L)) = det(A)

where A is the unique (square) integer matrix such that M = LA.

An alternative way to uniquely represent equivalence classes is to
use integer points inside the orthogonalized parallelepiped P(A*). The
lattice point represented by z € P(A*) N Z" is Lz. The reader can
easily check that for every equivalence class [x] there exists a unique
z € P(A*) N Z" such that Lz = x.

This time computing the representative v € Z"NP(A*) of an equiva-
lence class [x] is more complicated, but, depending on the choice of the
bases M, L, this representation can be much more efficient. A possible
way to compute the representative z' for [Lz] is to use a variant of the
nearest plane algorithm described in Chapter 2. Namely, if we apply
that algorithm to lattice £(A) and target z, we find a vector a € L(A)
such that z — a belongs to the centered orthogonal parallelepiped

! *\ __ * _l * _ *y . ‘_l . 1
P'(A*) = P(A") gZiIaz—{AZ-V’- 2Sz1<+2}-

Clearly, P'(A*) N Z™ could also be used as set of representatives instead
of P(A*)NZ". Alternatively, if the nearest plane algorithm is modified,
replacing the line ¢; = [(b,b;)/(bj,b;)] with ¢; = [(b,b;)/(bj,b;)]
(See Figure 2.5 in Chapter 2.) then the vector a € £(A) returned by
the modified nearest plane algorithm satisfies z — a € P(A*).

The Hermite Normal Form

The set P(M) N L(L) and P(A*) N Z™ can be used to represent the
elements of the quotient group G = L£(L)/L(M) with strings of length
polynomial in the size of the bases L and M. Although polynomial, this
representation is not particularly efficient. In particular, this size can be
much bigger than log|G|, i.e., the minimal size required to represent all
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elements of the group. We show that if the basis M (or L) is appropri-
ately chosen, then elements of P(A*) N Z™ can be stored using log |G|
bits, giving a space optimal representation for the elements of the group.

Let L be a rank n lattice basis and let M = LA be a basis of a full
rank sublattice of £(L). We know that G = £(L)/£(M) is a finite com-
mutative groups of size |G| = det(A). Group G depends only on the
lattices generated by L and M, so we can apply unimodular transforma-
tions to either basis without changing the group G. We consider bases
M such that A has a special form.

DEFINITION 8.2 A square nonsingular integer matriz A € Z™*" is in
Hermite Normal Form (HNF) if

» A is upper triangular,.i.e., a;; =0 for all i > j.

» All diagonal elements of A are strictly positive, i.e., a;; > 0 for all
i=1...,n.

s All non diagonal elements are reduced modulo the corresponding di-
agonal element on the same row, i.e., 0 < a;j < a;; for all i < j.

It is a classical result of Hermite that any matrix A is (column) equiva-
lent to a (unique) matrix H in Hermite normal form. Equivalently, every
lattice £L(A) has a basis H = AU (where U is a unimodular matrix)
such that H is in Hermite normal form. The Hermite normal form of an
integer matrix and the corresponding unimodular transformation can be
computed in polynomial time. (See for example (Cohen, 1996).) In order
to efficiently represent the elements of group G, we compute the Hermite
normal form of A, and apply the corresponding unimodular transforma-
tion to the basis M. Equivalently, we can assume that M = LA is the
(unique) basis of £(M) such that A is in Hermite normal form. Notice
that if A is in Hermite normal form, then the orthogonalized vectors
are simply given by a} = a;;e; and Z" NP(A*) is the set of all vectors
v € Z" such that

0<v<a;

In particular, each coordinate can be represented using log, a; ; bits, and
the size of the group element representation is

n n
Z log a;; = log, H ai; = logy det(A) = log, |G]|.

i=1 =1

When A is in Hermite normal form, the modified nearest plane al-
gorithm to compute the representative for a group element becomes
particularly simple. Using the triangular structure of A, the element of
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Input: An integer basis H € Z™*" in Hermite normal form
and a target vector t € Z™.
Output: The unique integer vector b € P(H*) such that b — t € L(H)

let b:=t

for j =n,...,1
cj = [bj/hj;]
b := b - ¢;b;

return b

Figure 8.1. Reducing a vector modulo an HNF basis

Z™ N P(A*) associated to group element [Lv] can be easily computed
using the algorithm shown in Figure 8.1. This algorithm gives also a way
to efficiently implement the group operation in G. Given group element
representations x,y € Z"NP(A*), the group element associated to their
sum is easily computed adding up the two vectors x + y, and applying
the algorithm of Figure 8.1 to the result.

A special case is when £(L) = Z" is the lattice of all integer vectors,
and A = £(M) is any integer lattice. Then, we use notation v mod A for
the unique representative of [v]po which is reduced modulo the (unique)
HNF basis of A and use this element as the standard representative for

[v]a.

The Smith Normal Form

We have seen that the elements of group G can be efficiently repre-
sented using log, |G| bits, and the group operation computed in poly-
nomial time. We now present still another way to represent group el-
ements that, in addition to providing a space efficient representation,
allows to perform the group operation in linear time. The idea is the
following. We know that G = £(L)/£(M) is a finite commutative group
det(M)/ det(L), and therefore it can be decomposed into the direct sum
of cyclic groups. The cycle structure of G can be recovered computing
another normal form for matrix A.

DEFINITION 8.3 A matriz D € Z™*" is in Smith Normal Form (SNF)
if D is diagonal with nonnegative coefficients such that diy1 41 divides
dij foralli=1,...,n.

It is a well known fact that for every square nonsingular matrix A
there exist unimodular matrices U, V such that UAV is in Smith Nor-
mal Form. Moreover, U,V and D can be computed from A in polyno-
mial time. (See for example (Cohen, 1996).) It should be remarked that
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matrix A and its Smith normal form D do not generate the same lat-
tice. However, the two matrices are equivalent in the sense that groups
Z™/L(A) and Z™/L(D) are isomorphic. So, if D = UAV is the Smith
Normal Form of A, then the group G = £(L)/L(M) is isomorphic to
the (additive) group

S=2Zg,x% 2Zq,,-

As for the HNF representation, elements of this group can be represented
as integer vector s € Z" such that

0<si<di;

for all : = 1,...,n. Therefore this representation has size

n
Zlogz di; = logy det(D) = log, det(A) = log, |G|.
i=1
Moreover, the group operations are modular componentwise addition
and negation, so they can be performed in

0()_ logz di,s) = O(log, |G])
i=1

time. It remains to show how to compute the SNF representation of a
group element [x]. The reader can easily verify that the function

¥: [x] » DM xmod D

is a group isomorphism from G to S. In particular, for any x € L(L),
DM~ !x is an integer vector, and 1([x]) = 0 if and only if x € £(M).

Sampling elements from finite groups

In this section we study two problems related to sampling elements
from a finite group (almost) uniformly at random. In the first problem,
the group is given as a quotient £(B)/L(C) of two lattices £L(C) C L(B)
and we want to select a representative from P(C) N L(B) with perfectly
uniform distribution. In the second problem, we consider a generic group
G and a distribution X on G which is not too far from uniform, and
show how to obtain almost uniform samples adding up a small number
elements drawn according to X.

We consider the problem of selecting a lattice point uniformly at ran-
dom from £(B)NP(C). Since £(B) is an infinite set, we cannot choose
an element of £(B) uniformly at random and reduce it modulo C. How-
ever, a simple procedure to sample £(B) N P(C) uniformly at random
can be devised using the group structure of the quotient £(B)/L(C).
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PROPOSITION 8.2 There is a probabilistic polynomial time algorithm
that on input a lattice basis B and a full rank sublattice L(C), outputs
a lattice point x € L(B) with uniform distribution over L(B) N P(C).

Proof: Although £(B) and £(C) are infinite commutative groups, their
quotient G = L(B)/L(C) is always finite and the order of group G is
easily computed as | = det(C)/det(B). Let x = ), r;b; a random com-
bination of the generators of £(B) with coefficients r; chosen uniformly
and independently at random from {0,...,! — 1}. It is easy to see that
[x]c is distributed uniformly at random in G. In order to compute the
representative of x modulo C, we write x = Cy for some real vector
y. Then for alli = 1,...,n, we set y; = y; — |yi] to the fractional part
of y;. The final output is Cy’. It is immediate to see that Cy = Cy’
(mod C), and Cy' € P(C). O

We now turn to the second problem. Let G be a finite group, and
let A be a random variable over G with distribution not too far from
uniform. Here “not too far” means that for any group element g € G,
the probability that A equals g is at least 0.5/|G| and no more than
1.5/|G|. We show that if we combine (using the group binary opera-
tion) a relatively small number of independent copies of A, the resulting
distribution rapidly approaches the uniform one.

PROPOSITION 8.3 Let (G,+) be a finite group and let Ay,..., A be k
independent random variables over G such that for any g € G

1 1

Pf(Ai=9)"@ S-zl—G-l (8.1)

for all i = 1,...,k. Then, the random wvariable defined by the sum
A=3F | A satisfies

1 1

Proof: By inductionon k. If £ = 1 then the statement in the proposition
is trivially true. So, assume that the proposition holds for some k, and
let us prove it for k + 1. Let A’ = z;‘:l Ay, be the sum of the first k
variables. By induction hypothesis, for all ¢’ € G,

|Pr(4’ = ¢') - 1/IGI| < 1/(2¥IG]).
Consider the sum A = Zf:ll A; = A" + Agyy. Then, we have

Pr{A=g} = Pr{A'+ A1 =9} (8.3)

= > Pr{A' =¢}Pr{Ari=g-¢} (84)
9'eG
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It is easy to verify that the last expression equals

S (Prta =5 - ) (Prtdun =9 -9} - ) + 1 69

9'eG

Therefore |Pr{A = g} — 1/|G|| is at most

2

9'eG

1
Pr{Aes1=9-9}—=|  (86)

1
Pr{A =4} — =|-
{ g} ]

G|

and using the induction hypothesis and the hypothesis on Ax,; we get

1 1 1 1
= - —| < . = . O
Prid=9) |Ga'—g§;2kra| 2G] ~ ZH[G]

1.2  Discrepancy

The determinant of a lattice det(A) can be informally defined as the
inverse of the density of lattice points A in span(A), meaning that if Q
is a sufficiently large and regular region in span(A), then the number of
lattice points in Q is roughly proportional to vol(Q)/ det(A). The exact
number of points in @ depends on the shape and position of Q. Dis-
crepancy theory studies the maximum possible deviations of this number
from vol(Q)/det(A), and it is an interesting area of mathematics with
many applications in discrete geometry and number theory, from volume
estimations to exponential sums. A general treatment of the theory is
beyond the scope of this book. In this section we give elementary proofs
of some simple results that will be used later in this chapter. We prove
upper and lower bounds on the number of lattice points contained inside
a convex body Q. The bound is given in terms of the covering radius p of
the lattice and the radius r of the biggest sphere completely contained in
Q. The body Q is required neither to be centered around the origin, nor
symmetric with respect to its center of gravity. The only assumptions
about Q are convexity and the fact that Q contains a sphere of radius
r. For example, these properties are satisfied by the Voronoi cells of a
lattice.

DEFINITION 8.4 Let A be a lattice and x € A an arbitrary lattice point.
The (open) Voronoi cell of x is the set V(x, A) of all points z € span(A)
that are closer to x than to any other lattice point:

V(x,A) = {z € span(A) | Vy € L(B).|z = x| <llz-¥l}. (87
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The closed cell V(x,A) is the topological closure of V(x, A)
V(x,A) = {z € span(A) | ¥y € L(B).|z - x| < |z -¥l}. ~ (8.8)

We need some simple properties about Voronoi cells, as listed below.
All properties are easily verified and their proofs are left to the reader.

PROPOSITION 8.4 Let A be a lattice with covering radius p and min-
tmum distance \;. Then the Voronoi cells of A satisfy the following
properties:

s All Voronoi cells V(x, A) (with x € A) are shifted copies
V(x,A) = V(0,A) +x
of the fundamental cell associated to the origin.
® V(x,A) is a bounded, open, convez set, symmetric about x.

s FEach cell V(x,A) contains a sphere of radius \;/2, and it is com-
pletely contained in a sphere of radius p:

B(x,\1/2) C V(x,A) C B(x,p).

s The volume of V(x, A) (or, equivalently, V(x,A)) equals
vol(V(x,A)) = vol(V(x,A)) = det(A).

s For any two distinct lattice points x # y € A, the corresponding
Voronoi cells are disjoint, i.e.,

V(x,A)NV(y,A) =0 (8.9)
s The union of all closed Voronoi cells covers the entire space, i.e.,

U V(x,A) = span(A). (8.10)
x€A

The bounds on the number of lattice points inside a convex body are
based on the following two simple lemmas.

LEMMA 8.5 Let A be a lattice with covering radius p and Q an arbitrary
(closed) convez body in span(A) containing a sphere of radius r. If x €
ANQ is a lattice point inside Q, then the entire cell V(x, A) is contained
in the body Q' obtained ezpanding Q by a factor (1 + p/r). (Ezpansion
performed using the center of the sphere as the origin.)
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Proof: Let x be any point of AN Q, and y any point of V(x,A). We
want to prove that y belongs to Q. If y belongs to Q then the statement
is trivially true because Q is contained in Q'. So, assume y ¢ Q and
let x' be a point of (the closure of) Q closest to y. (See Figure 8.2)
Clearly, x’ cannot be an internal point of Q, and it must belong to the
frontier of Q. We also have |ly — x'|| < ||y — x|| < p because x belongs
to Q and y belongs to the Voronoi cell of x. Now consider the segment
connecting y to the center c of a sphere of radius r contained in Q. Since
c is internal to Q and y does not belong to Q, this segment intersect
the boundary 4Q in a unique point y’. Let ¢' be the line connecting x’
and y’, and let ¢ be the unique line parallel to ¢ containing y. Notice
that ¢, £ and ¢ all belong to a common plane. Define the projection
z and z' of center ¢ on lines £ and ¢. Notice that since x’ and y’ are
boundary points of @ and Q is convex, then z’ cannot be an internal
point of Q. Since all points within distance r from c belong to Q, it must
be ||z’ —c|| > r. Also, the distance between ¢ and ¢’ equals ||z — 2'||, and
therefore ||z — 2’| < ||x’ — y|| < p. Then we have
ly —cll _ llz—cll _,  llz—2| p

= =141 <14+E
ly' —cll 2" —cl| llz' — |l r

Since point y' belongs to (the closure of) Q and ||y —c|| < (1+p/7)|ly’ —
c||, point y belongs to (the closure of) Q'. O

LEMMA 8.6 Let A be a lattice with covering radius p and Q an arbitrary
(open) convez body containing a sphere of radius r. If x € A\ Q is a
lattice point outside Q, then the entire cell V(x, A) is disjoint from the
body Q" obtained contracting Q by a factor (1 — p/r). (Contraction
performed using the center of the sphere as the origin.)

Proof: The proof, similar to the one of Lemma 8.5, is left as an exercise
to the reader. O

We use Lemmas 8.5 and 8.6 to bound the number of lattice points in-
side Q. Notice that on average Q contains vol(Q)/ det(A) lattice points.
The following proposition shows that if r is large with respect to p, then
the number of lattice points inside Q is approximately vol(Q)/det(A).

PROPOSITION 8.7 Let A be a lattice and Q an arbitrary open convez
body in span(A). If Q contains an (open) sphere of radius r > p(A)n,
then the number of lattice points inside Q (or its closure Q) satisfies

vol(Q) p(A)n
det(A) (1" , )< ANl
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Figure 8.2. Lattice points inside a convex body

< |[ANnQ| <

vol(Q) 2p(A)n
det(A) (” r )

Proof: We start with the lower bound. Let p = p(A) be the covering
radius of the lattice and c be the center of a sphere of radius r contained
in Q. Let Q" be the convex body obtained contracting Q around ¢ by
a factor (1 — p/r). Clearly the volume of Q" satisfies

vol(Q") = (1 - g)” vol(Q) > (1 - T%) vol(Q) (8.11)

Let X be the set of all lattice points x € A such that V(x,A) intersects
@". By Lemma 8.6, all points in X belong to Q, so it is enough to bound
the size of X (from below). Since sets V(x, A) cover the entire space,
Q" is completely contained in [J,¢x V(x,A), and

vol(Q") < ) vol(V(x,A)) = | X| - det(A) (8.12)
xeX
Combining (8.11) and (8.12) we get
vol(Q) pr
X1> Set) (-5 (8.13)

proving the lower bound on |[A N Q|.
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The proof of the upper bound is similar. Let Q' be the convex body
obtained expanding Q around c by a factor (1 + p/r). The volume of Q'
satisfies

vol(Q') = (1 + g)n vol(Q) < ™™ vol(Q). (8.14)

Using the convexity of the exponential function, and condition (pn/r) <
1 we get

np/r 0 1_,0\(0P np
en?IT < &0 (e e)(r)<1+2(r). (8.15)
Combining (8.14) and (8.15) we get

vol(Q') < (1 + 2—;1’—’) vol(Q). (8.16)

Let X be the set of all lattice points x € A such that V(x,A) is
contained in Q'. By Lemma 8.5, all lattice points in Q belong to set X,
so it is enough to bound the size of X (from above). Since cells V(x,A)
are disjoint

vol(Q') > > vol(V(x,A)) = | X| - det(A) (8.17)
x€X
Combining (8.16) and (8.17) we get
1 2
1X| < Z‘;t((% (1 + {3> , (8.18)

proving the upper bound on [AN Q|. O

1.3  Statistical distance

The statistical distance is a measure of how two probability distribu-
tions are far apart from each other, and it is a convenient tool in the
analysis of randomized algorithms and reductions. In this section we
define the statistical distance and prove some simple facts that will be
used in the analysis of cryptographic functions.

DEFINITION 8.5 Let X and Y be two discrete random variables over
a (countable) set A. The statistical distance between X and Y 1is the
quantity
A(X,Y) z |Pr{X = a} — Pr{Y =a}|.
aGA

We say that two random variables X,Y are identically distributed
(written X = Y) if and only if Pr{X = a} = Pr{Y = a} for every
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a € A. The reader can easily check that the statistical distance satisfies
the usual properties of distance functions, i.e., it is a positive definite
binary symmetric function that satisfies the triangle inequality:

AX,Y) > 0 with equality ifand only if X =Y (8.19)
A(X,Y) = A(Y,X) (8.20)
A(X,Z) < AX,Y)+AY,2). (8.21)

The following property of the statistical distance is useful when an-
alyzing a probabilistic algorithm that is part of a larger randomized
process.

PROPOSITION 8.8 Let X,Y be random variables over a set A, and let
Z be a third random variable over a (possibly different) set B. If Z is
statistically independent from X and Y. Then

a((X,2),(,2)) = AX,Y).

Proof: From the definition of statistical distance and the independence
of Z from X and Y we immediately get

A((X, 2),(Y, 2))

- -;-Z]Pr{X=a,Z=b}—Pr{Y=a,Z=b}|
a,b
- %Z|Pr{x=a}Pr{Z=b} — Pr{Y = a} Pr{Z = b}|

a,b

_ %ZlPr{X=a}—Pr{Y=a}|ZPr{Z=b}
a b

- %Z]Pr{Xza}—Pr{Y=a}|

= A(X,Y). O

Notice that if Z is not independent from X or Y, then the proposi-
tion is not necessarily true. Consider for example two identically dis-
tributed, but independent, random variables X,Y, andlet Z =Y. Then
A((X,2),(Y,2)) = A((X,Y),(Y,Y)) is nonzero (unless X is trivial),
while A(X,Y) = 0 because X and Y are identically distributed. Using
Proposition 8.8 and the triangle inequality we get the following useful
bound.
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PROPOSITION 8.9 Let Xi,...,Xx and Y1,...,Y; be two lists of totally
independent random variables. Then

k
A((le'-an)a(YI’-- ) Y, Z XhY (822)

Proof: We prove the inequality for lists of length 2. The general case
follows by induction on k. By triangle inequality, the statistical distance
A((X1, X2), (Y1,Y2)) is at most

A((X17 X2)1 (Xla },2)) + A((Xh },2)’ (Yl, },2))
By Proposition 8.8, and using the independence of X; and Y3 from the
other variables, these two terms are at most A(X3,Y3) + A(X;,Y;). O

The following proposition shows that applying a (possibly random-
ized) function to two distributions does not increase the statistical dis-
tance.

PROPOSITION 8.10 Let X,Y be two random variables over a common
set A. For any (possibly randomized) function f with domain A, the
statistical distance between f(X) and f(Y) is at most

A(f(X), £(Y)) £ A(X,Y) (8.23)

Proof: We first consider the case of (deterministic) functions. Let f be
a function from set A to some other set B. Then,

AFCOLSY) = 3 Y IPH{f(X) =8}~ Pr{f(¥) = b)|

beB

= %Z Z (Pr{X =a} — Pr{Y =a})

b€B |aef-1(b)

1
EZ Z |Pr{X =a} — Pr{Y = a}|

bEB acf-1(b)

= = Z |Pr{X = a} — Pr{Y = a}|
aGA
= A(X,Y).

IA

So, (8.23) holds true for every function f. Combining Proposition 8.8
with (8.23), we immediately get that (8.23) holds also for randomized
functions. O
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Notice that A(f(X), f(Y)) can be strictly less than A(X,Y). For
example, if f(z) = c is a constant function, then A(f(X), f(Y)) =0
regardless of A(X,Y). However, if f is injective, then equality holds
and A(f(X), f(Y)) = A(X,Y).

PROPOSITION 8.11 If X and Y are random wvariables over set A and
f: A = [a,b] is a real valued function, then

| Eap(f (X)) = Ezplf(Y)]| < [b—a] - A(X,Y) (8.24)

Proof: Define function g(z) = f(z) — 2. Notice that |g(z)| < 252 for
all z, and g(X) — g(Y) = f(X) — f(Y). Therefore

| Exp[f(X)] — Exp[f(Y)]| = | Exp[g(X)] — Exp[g(Y)]|
> 9(a)Pr{X =a} - Y g(a) Pr{Y = a}

Y " lg(a)| - [Pr{X = a} - Pr{Y = a}|
< |b—a|-AX,Y). O

IA

Using the statistical distance, we can reformulate Proposition 8.3 as
follows.

COROLLARY 8.12 Let (G,+) be a finite group and let A,,...,Ax be k
independent (but possibly not identically distributed) random variables
over G such that for any g € G

1 1

Pr{d;=¢g} — —| < — .
for all i = 1,...,k. Then, the statistical distance between their sum
A= Zle A; and the uniform distribution U over G is at most

k

A (Z A,~,U> < gt (8.26)

i=1

Proof: We know from Proposition 8.3 that the sum ), A; satisfies (8.2).
Therefore, the statistical distance from uniform is

A(};Ai,U) =%Z PI{Z:A':Q}_IIEI

gEG
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2. Collision resistant hash functions

Let g be any positive integer, Z, the set of all integers modulo g,
and A be an n x m matrix with entries in Z,. Matrix A is naturally
associated with a linear function

fa:x— Axmod ¢

from Z7' to Z3. Clearly, function fa is easily computable in both di-
rections: computing fa in the forward direction is just a matrix-vector
multiplication, while inverting fa is essentially the problem of solving
a system of linear equations modulo ¢. In (Ajtai, 1996), Ajtai proved
that, when A is chosen uniformly at random, a suitable restriction of
function f A is at least as hard to invert on the average as the worst case
complexity of approximating certain lattice problems within a polyno-
mial factor. Subsequently, Goldreich, Goldwasser and Halevi observed
that under essentially the same complexity assumption as Ajtai’s, it is
possible to prove that a similarly restricted function ha is collision re-
sistant (Goldreich et al., 1997b), i.e., given a uniformly random matrix
A € Zz*™, it is computationally hard to find two distinct input vectors
x,y € {0,1}™ such that Ax = Ay. The Ajtai-GGH hash function

ha(x)= > a; (mod q)

;=1

is defined as the restriction of function fo to the set of binary vectors
x € {0,1}™, and the problem of finding collision Ax = Ay is clearly
equivalent to finding integer vectors z = x — y such that ||z||c =1
and Az = 0 (mod ¢). Notice that if m > nloggq, then function hy
is indeed a hash function, i.e., it compresses the size of the input, and
collisions are guaranteed to exist. The goal is to prove that collisions are
computationally hard to find. In this section we describe a hash function
family that generalizes and improves the Ajtai-GGH hash functions, and
such that finding collisions for randomly chosen functions is at least as
hard as approximating the covering radius of any lattice in the worst
case within some polynomial factor y(n) < O(n%*3logn). Using the
transference theorems from Chapter 7, we get that finding collisions
is at least as hard as approximating the length of the shortest vector
problem in any lattice within factors y(n) < O(n®%logn). Both factors
can be further reduced by up to /n if the closest vector problem for
a certain sequence of “almost perfect” lattices can be efficiently solved.
(See Subsection 2.4.) Notice that collisions corresponds to short vectors
lzll2 £ V7llsllcc = v/ in the lattice Ay = {z : Az = 0 mod ¢}. So,
the security of the hash function can be reformulated as a connection
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between finding short nonzero vectors in a lattice on the average, and
approximating the length of the shortest nonzero vector for any lattice
in the worst case.

2.1 The construction

Let A be a full-rank n-dimensional lattice such that the closest vector
problem in A can be efficiently solved. (Formally, we consider a sequence
of full-rank lattices A,, one for every dimension n, such that there exists
a polynomial time algorithm CVP, that on input n and t € Q*, finds
a lattice vector in A, as close as possible to t.)

For example, if A = Z", then a lattice vector x € A closest to a given
target t € Q" can be easily found rounding each coordinate of t to the
closest integer z; = [t;]. We are interested in lattices A that are “almost
perfect”, as follows. Remember the definition of the packing radius and
the covering radius: the packing radius is the largest radius such that
(open) spheres centered at distinct lattice points do not intersect, and the
covering radius is the smallest radius such that (closed) spheres centered
at lattice points cover the entire space. Clearly, the covering radius is
always at least as big as the packing radius.

DEFINITION 8.6 The packing-covering ratio of a lattice A is the ratio
T between the covering radius and the packing radius of the lattice and
it equals 2p(A)/A1(A). For any T > 1, a lattice A is called T-perfect
if its packing-covering ratio is at most 7. We say that a sequence of
lattices A, is almost prefect if all lattices A, are T-perfect for a constant
T tndependent of the rank n.

This is analogous to the definition of perfect codes. Codes are sets of
strings (called codewords) of some fixed length n over a finite alphabet X,
with the (Hamming) distance between strings measured as the number
of positions in which the two strings differ. Then, the packing radius and
covering radius of a code are defined as the largest and smallest radii such
that the Hamming spheres centered at codewords are disjoint or cover
the entire space L, respectively. A code is called perfect if the packing
radius equals the covering radius. In other words, the code is perfect
if it is possible to partition the entire space £" with equal (Hamming)
spheres centered at the codewords. Interestingly perfect codes do exist,
but the same is not true for lattices: it is not possible to partition the
Euclidean space R"® with spheres of radius bounded away from 0.

We would like the packing-covering ratio 7 of lattice A to be as small
as possible. Remember that the Voronoi cell of a lattice A contains a
sphere of radius A\;(A)/2 and it is contained in a sphere of radius p(A).
When 7 is close to one, then these two radii are almost the same, and
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the Voronoi cells V(x, A) are almost spherical. So, even if R® cannot be
partitioned with equal spheres, T-perfect lattices partition R” into equal
almost spherical regions. The questions is: how close to a sphere can
these regions possibly be? Setting A = Z" to the integer lattice gives
7 = y/n. However, as we will see in Subsection 2.4, it is possible to
do much better than that. For now we assume A is a 7-perfect (easily
decodable) lattice for some 7 between 1 and /n.

We use lattice A and the corresponding decoding algorithm CVP, to
define a hash function as follows. First, we build an almost orthogonal
sublattice £L(M) C A. Let a be a scaling factor to be specified, and
foralli =1,...,n, let m; = CVPj(ap(A)e;) be a lattice point within
distance p(A) from ap(A)e;. In matrix notation,

M=ap(A)I+R (8.27)
where R is a matrix with columns of length bounded by
lIrill < p(A). (8.28)
Lattices A and £(M) define a finite Abelian group
G = A/L(M). (8.29)

The elements of group G can be represented using any of the techniques
described in Subsection 1.1. The only important properties here are
that elements of G can be represented using log |G| bits, and the group
operation can be computed in polynomial time. Moreover, there is an
easily computable homomorphism ¢ : A — G that maps each lattice
vector to the corresponding group element. Notice that ¢(x) = 0 in G
if and only if vector x belongs to sublattice £L(M) C A.

We define a family of G-valued hash functions. Let m be an integer,
and fix a sequence of m group elements a,,...,a,, € G. The vector
a = [ay,...,am|T € G™ defines a function h, : {0,1}™ — G that maps
binary vector x € {0,1}™ to group element

ha(x) = imiai = Z{ai:xi =1}. (8.30)
i=1

If m > logy |G|, then h, is a hash function (i.e., a function that com-
presses the size of its input) and collisions ha(x) = ha(y) (with x # y)
are guaranteed to exist. We want to prove that if vector a € G™ is
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chosen uniformly at random, then collisions are hard to find. As for
the Ajtai-GGH hash function, collisions can be represented as vectors
z € {—1,0,+1}™\{0}™ such that }_, z;a; = 0. In the rest of this chapter
we will refer to such vectors as hg-collisions.

Before proving that hj, is collision resistant, we bound the size of group
G from above, so to get an estimate for the length m of the key a.

LEMMA 8.13 For any constant a > 1 and any lattice A with packing-
covering ratio T < \/n, let M be a set of vectors of A as defined in
(8.27) and (8.28). Then, the elements of group G = A/L(M) can be
represented with binary strings of length

log, |G| < n(logyn + logy @) .
Proof: We need to bound the group size |G| = det(£(M))/ det(A). We
bound the two determinants separately. The columns of M have length
at most
llap(A)ei + rill < llap(A)eifl + lIri]l < (e + 1)p(A).
Therefore, by Hadamard’s inequality
|det(M)| < (a+1)"p(A)" < (20)"p(A)".

To bound the determinant of A, we use Minkowski’s theorem. By
Theorem 1.5, the length of the shortest nonzero vector in A satisfies
A1(A) < /ndet(A)!/™. Therefore, det(A) is greater than (A (A)//n)™.
Combining the two bounds, we get that group G has cardinality

_ det(M) 20p(A)y/n\" n
61 = s <( ot ) — (arvA)".  (831)

Taking the logarithm of both sides, and using 7 < /n, we get the bound
in the lemma. O

In particular, if a is bounded by a polynomial in n, then group ele-
ments can be represented using O(nlogn) bits.

Let F be a hypothetical collision finder algorithm that on input a
randomly chosen vector a € G™, outputs (with nonnegligible probability
d) an ha-collision z. We show that, given oracle access to F, one can
approximate the length of the covering radius of any lattice £(B) of rank
n within some small factor y(n).

2.2  Collision resistance
Let v(n) be any function slightly bigger than 7n? log n:

w(tn?logn) < y(n) < Tn?log?n. (8.32)
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For example one can set y(n) = 7n2log?n, but the smaller the better.
Set the scaling factor « to

a= 8’2(/%)7 (8.33)

Notice that this choice of « satisfies

n'Slogn < a < n'Slog?n.

Let the length of the key a be m = 2log, |G| so that h, is a family of
hash functions that compress the size of their input by a factor 2. By
Lemma 8.13, this value satisfies

m < 6nlog, n. (8.34)

We want to prove that finding ha-collisions when a is chosen uniformly
at random is at least as hard as approximating the covering radius of any
lattice within a factor y(n). Formally, we give a polynomial time proba-
bilistic reduction from the promise problem GAPCRP,, to the problem
of finding ha-collisions when a is chosen at random. More specifically,
given access to a collision finder algorithm F that on input a random
a € G™ outputs (with nonnegligible probability over the choice of a)
an hg-collision F(a), we show how to efficiently solve GAPCRP,, for
any approximation factor y(n) = w(rn?logn), where 7 is the packing-
covering ratio of A. For example, if A = Z", then the corresponding hash
function is as hard to break as approximating the covering radius of any
lattice within any factor y(n) = w(n?%logn). We remark that while the
collision finder algorithm F is required to work only for a nonnegligible
fraction of the keys a, the reduction should correctly solve (with high
probability) any GAPCRP,, instance (B,r). We will give a randomized
reduction that rejects all NO instances (with probability 1), and accepts
all YES instances with probability exponentially close to 1. In particular,
when the reduction accepts an instance (B, r), the randomness used by
the reduction constitutes an NP proof that p(B) < 7r, and therefore
(B,r) is not a NO instance. (From the promise that (B, ) is either a
YES or a NO instance, we can also deduce that (B, r) is a YES instance,
i.e., p(B) < r. However, if (B, ) does not satisfies the promise, then the
covering radius can be as large as yr.) In fact, the reduction produces
more compact and informative NP proofs than the whole sequence of
coin tosses used in the reduction process. The short proof produced by
the reduction consists of a sequence of n linearly independent vectors
S = [s1,...,8,] in £(B) such that the length of the diagonal of the or-
thogonalized parallelepiped o(S) = /3, [|s¥||Z is at most 2+ - 7. Since,
by Theorem 7.9, all linearly independent sets S satisfy o(S) > 2p(B),
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this proves that

p(B) < 3? Sor
and S is an NP-witness for GAPCRP,, instance (B,r). Notice that
vectors S not only prove that for every target point t € span(B) there
exists a lattice vector x € £(B) within distance yr from t, but also
allow to algorithmically find such lattice vector in polynomial time, for
example using the nearest plane algorithm from Chapter 2.

The idea of the reduction is the following. Given a basis B we want
to find linearly independent vectors sy, ...,s, in £(B) such that o(S)
is at most 2y(n) - p. We proceed iteratively as follows. We start from
S = B, and assume for simplicity that vectors are sorted according to
their lengths ||s1|| < ||s2|| £ -+ < ||sx||. These vectors are clearly lin-
early independent, but they are potentially much longer than p(B). We
show that if o(S) > 2yp(B) then we can efficiently find (with nonneg-
ligible probability) a new lattice vector s € £(B) linearly independent
from s;,...,s,—1 such that ||s|| < %Hsnll. So, we can replace s, with s,
possibly sort the vectors again according to their lengths, and proceed
with another iteration. Since lattices are discrete objects, the length
of the vectors s; cannot be reduced indefinitely, and at some point the
iterative step must fail. If the iterative step repeatedly fails to find a
short vector s, then it must be the case (with very high probability) that
the assumption o(S) > 2vp(B) is false, i.e., the set of vectors sy,...,s,
satisfies o(S) < 2vp(B). Details follow.

As outlined above, the main component of the reduction is a solution
to the problem described in the following proposition.

PROPOSITION 8.14 Let A be a full rank n-dimensional T-perfect lattice
such that the closest vector problem in A can be solved in polynomial
time, and let M, G, 7, a and m be as defined in (8.27), (8.29), (8.52),
(8.33) and (8.34). Let F : G™ — {—1,0,+1}™\{0}™ be a function such
that F(u) is an hy-collision for a nonnegligible fraction & of the inputs
u € G™. Let B € Z™™ be a basis and S = [sy,...,S,] a sequence of
linearly independent lattice vectors in L(B) such that ||s,| = max; ||s;|
and o(S) > 2vy(n)p(B). Given B,S and oracle access to F one can
efficiently find (with probability Q(8)) a lattice vector s € L(B) linearly
independent from s,,...,8,—1 such that ||s| < %||sn|| Moreover, the
reduction makes only one call to F.

In the formulation of the problem above, we made the simplifying
assumption that the collision finder F is deterministic. We will see, in
the proof of Theorem 8.15 below, that this assumption is not restrictive.
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We emphasize that while the success probability of collision finder F
is computed with respect to the random choice of vector a € G™, a
solution to Proposition 8.14 is required to work for any lattice B, and
its success probability is computed only with respect to the internal
randomness of the reduction. (Notice that the sequence a passed as
input to oracle F possibly depends on this internal randomness. That
is why the probability of finding s depends on the average-case success
probability é of the collision finder function. However, no randomization
on input lattice B is performed.)

The proof of Proposition 8.14 will be given in Section 2.3. In the
rest of this section we use Proposition 8.14 to prove that function h, is
collision resistant.

THEOREM 8.15 Let A, be a sequence of T-perfect lattices (with T(n)
possibly a function of the rank n) such that the closest vector problem in
A, can be solved in polynomial time. Let also G, ha and vy be as defined in
(8.29), (8.30) and (8.32). If there exists a probabilistic polynomial time
algorithm F that finds collisions ha(z) = 0 with nonnegligible probability
0 when a is chosen uniformly at random, then GAPCRP., can be solved
in RP (random polynomial time). Moreover, on input a YES instance
(B,r), the GAPCRP, algorithm produces an equivalent basis S such that
o(S) < 2yr with probability exponentially close to 1.

Proof: Let é§ be the success probability of F. First of all we need to
transform this randomized collision finder F into a (deterministic) func-
tion that (almost certainly) finds collisions for a nonnegligible fraction of
the inputs. Let 7 be the randomness used by . By Markov inequality,
if F succeed with probability § when u and r are chosen at random, then
there is at least a §/2 fraction of the inputs for which F(u) succeeds with
probability §/2. (Probability computed for a fixed u only with respect
to the choice of the randomness r.) We build a F' as follows: on input
u, run F(u) O(nlog(1/4)) times using independent random strings r
each time. If any of these runs find an hy,-collision, then output it. If
not, return any element of {—1,0,+1}™\ {0}™ . All queries are stored,
so that if a query u is asked twice, then the same F'(u) is returned
both times, and F’ behaves like a function. It is easy to see that with
probability exponentially close to 1, 7' correctly answers at least a §/2
fraction of the queries. The rest of the proof follows the outline given at
the beginning of this subsection and it is left to the reader as an exercise.
m]
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2.3 The iterative step

In this section we show how to use a collision finder function F to
find short vectors in any lattice £(B).

Proof [of Proposition 8.14]: Let A,M, G, 7 and F be as defined in
the proposition. Let G be the set of all g € G™ such that F(g) is an
hg-collision. We know that if u € G™ is chosen uniformly at random,
then

Prilue g} =46

for some nonnegligible function §(n).

Let B be a full-rank n-dimensional lattice basis, and S a set of linearly
independent lattice vectors such that o(S) > 2yp(B). We want to use
F to find a lattice vector s € £(B) such that s & span(sy,...,s,—1) and
|Isl]l < |Isn|l/2 with probability £(d). Define the scaling factor

_ Vna(S)
=" (8.35)

and consider the almost orthogonal matrix SM. We use S to approx-
imate each vector fm; with a lattice point ¢c; € £(B). In particular,

using the nearest plane algorithm of Chapter 2, we find, fori =1,...,n,
a lattice point ¢; € £(S) C £(B) within distance o(S)/2 from fm;. Let
C =[cy,...,Cs). Using matrix notation,

C =M +Q, (8.36)

where Q is a matrix with columns of length at most

laill < o(8)/2. (8.37)

Define the integer
k = 3logy n + log(1/46). (8.38)

Notice that since ¢ is nonnegligible, § > 1/n° for some constant c inde-
pendent of n, and log(1/d) = O(logn). In particular, k is also O(logn).
Sample mk group elements [x;j]c ( < m and j < k) in £(B)/L(C),
and for every x; ;, let x; . = MC~!x; ;. (See Figure 8.3.) Equivalently,
one can choose [x} ]M umformly at random in £(B’)/L(M), where

= MC-!B, and set x;; = CM™x 'j. (We do not specify at this
pomt the choice of representatives x; ; and x ) Then, use the decod-
ing algorithm CVP, to find a lattice point w; ; e A within distance p(A)
from x; ;. Let also a; ; = 1(w; ;) be the group element corresponding to
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Figure 8.3. Connecting lattices

lattice point w} ; and for every i = 1,...,m, define a; = Z;?:l a; ;. Pass
a=[a,...,an)T asinput to the collision finder to get a vector z = F(a).
For every i,j, let w;; = CM~'w! ; and define y; ; = x;; — wi;. The
output of the reduction is the vector

S=E Z;

=1 3

m k
y,-,]-. (839)
=1
Before analyzing the success probability of the reduction, we introduce
some useful conventions about the lattice decoding algorithm CVP, and
the choice of representatives of the sampling procedure. We assume the
following:

» For any vector t € R™ and v € A,
CVPA(X' +v) = CVPA(X) + v. (8.40)

(If CVP, is randomized, then (8.40) should be interpreted as equal-
ity between probability distributions.) This property can be easily
achieved modifying CVP, as follows: on input x’, compute x" =
x’ mod A and output w' = CVP,j(x") — x” + x'. The reader can
easily verify that this modified decoding procedure also solves the
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closest vector problem in A, and it satisfies (8.40). Notice that this
property implies that vector y;; = CM‘I(xQ . — CVP(x] ;)) does
not depend on the representatives used for x; ; € L(B') /[,( ). In
particular, the final output s (8.39) does not depend on the choice of
representatives.

If x' is chosen uniformly at random from £(B')/L(M), then
Exp[x — CVPA(X)] =

In particular, the distribution of the difference vectors y;; = x;; —
w; ; satisfies

Explyi ;] = CcM™! Exp[xﬁ,j - CVPA(x:-,j)] =0. (8.41)

This property is easily achieved modifying CVP, as follows: on in-
put x’, choose b € {0,1} uniformly at random and output vector

(=1)°CVPA((-1)’x').

Let A’ C A be a set of representatives for A/L(M). For example, let
A" = ANP(M). We assume that, foralli =1,...,mand j =1,...,k,
vector waj belongs to A’. This property can be achieved by appropri-
ately choosing the set of representatives used for xg’j and modifying
the sampling procedure accordingly. For example, we first choose an
auxiliary vector xj; uniformly at random from L(B')/L(M). (At
this point, Wthh representative is used does not matter.) Then we
compute w;; = CVPA(x};) and find the unique element w; ; € A

congruent to w! . modulo M. Finally we set x; ; = x;; — w;; + wj

J J i,5°

The conventions just described are not strlctly necessary, but they

help simplifying the reduction. So, we assume that a and s are chosen
according to the procedure described above. We want to prove that
s € L(B), s & span(siy,...,Sn—1) and ||s|| < [|sr]|/2 with probability
2(8). We will prove the following:

1
2

If a € G (i.e., if F(a) is an ha-collision) then s € £(B)

The distribution of vector a = [ay,... ,am]T is statistically close to
uniform over G™, and, in particular, Pr{a € G} =4J- (1 — o(1)).

The conditional probability that s ¢ span(sy,...,sn—1) (or, equiva-
lently, s is not orthogonal to s}, written s £s¥), given that a € G, is
at least 1/6.

The probability that a € G, but ||s|| > ||sn|l/2, is at most § - o(1).
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It follows that the success probability of the reduction is

Pr{s € L(B) As Ls;, Allsl| < [snll/2}

> Pr{a€GAs fs; A2|s|| < [lsall}
> Pr{acGAs[s;} —Pr{ae GA2s|| > [sall}
= Pr{a€ G}Pr{s Ks; |a€ G} —Pr{aec GA2|s| > |sl}
> §(1-0(1) -5 ~d-0(1)
6-(1-0(1))

= R =00).

We first prove that if a € G, then s is a lattice point. Remember
that a € G if and only if z = F(a) is an ha-collision, i.e., Y, zia; = 0.
Consider the vector w' = >, z; Z;?:l w; ;. Since all w;; belong to
A, also w' is a lattice point of A and we can apply the homomorphism

1 : A — G to w'. The group element corresponding to lattice vector w’
is

= Z % Z‘f’(wid) = Z zi ) Gij= Z zia; = 0.  (8.42)

m k
i=1 j=1 i=1 j=1 i=1
Since G is the quotient of A modulo £(M), this proves that w' € £L(M),
ie., w' = Mv for some integer vector v. Now, substituting y;; =

X;j — Wi ; in the definition of s we get
s = Y zilxi;— wij)
IR DA
7 7
= Zz,x, j Z zCM™'wj ;
ij

= Zzlx” M~ iw
= Z%Xu ch,

which is a lattice vector because x;;,¢; € £(B) and vy, z; are integers.
This proves that if a € G then s € £(B).

We now show that the distribution of (ai,...,a;) is very close to
uniform. We first show that the probability distribution of each a; ; is
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not too far from uniform. Then, we use Corollary 8.12 to prove that the
statistical distance of a; = }_; a;,; from uniform is very small. In order
to prove that a; ; is not too far from uniform, we need an upper bound
on the covering radius of L(B’).

LEMMA 8.16 Let a be as defined in (8.83). Then, the covering radius
of B' is at most
p(B') < A1(A)/(8n).

Proof: Let t' be a deep hole in £(B’), i.e., a point in R® such that
I’ — B'v|| > p(B’) for every lattice point B'v. Let Bv be the lattice
point in £(B) closest to t = CM~!t’. Then,

p(B) 2> dist(t,£(B))

= [t - Byv|
= lcM™} (' - B')|
o, ICM” d|
> |t'-B'v —
| I Jg " a
IICdII
BI
2 p(B)-m deRn Md||°
Moreover, for any vector d € R"*, we have
ICd|| _ [I6Md + Qd|| 1Qd||
= >pB - ——. 8.43
Il = Il 2 Tl (849

We compute an upper bound on ||Qd||/|[Md|| that will also be useful
later on.

lQdl 1Qd]
IMdl = Tap(A)dl -~ TR
o Yl
= ap(W)lldl = = 1dil T
z, jdil - (S)/2

S apMdl = 5, 1di] - p(A)

But the sum ), |d;| is at most
n
>_ldil =il < Valdls.
i=1

Substituting this value in the previous expression we get

l|||1(343|||| = 2p(A \ga(S)\/ﬁ) B (g) (a—aﬁ> : gﬂ B
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where in the last inequality we used a > 3y/n. This proves that the
covering radius of £(B) satisfies

o ledl L, 1Qdll .. p(B)S
p(B)zp(B)-m(;n“Md”Zp(B)(ﬂ—mgx”Md”)Z )2,

Finally, solving for p(B’) and using (8.35), o(S) > 2vp(B), (8.33) and
7 = 2p(A)/ A1 (A), we get
4p(B) _ 4p(B)ap(A) _ 2ap(A) _ Mi(4)

PB) S =5 = T e®) S avm T

a

We use the bound on the covering radius to estimate the probability
that a; ; equals any fixed group element a € G. Remember that a; ; is
chosen selecting a lattice point x| ; € £(B')/£(M) uniformly at random,
and setting a; ; = Y(CVPA(x{;)). Let w' be the (unique) lattice point
in A’ C A such that ¥(w') = a, and let Q = V(w',A) and @ = V(w’, A)
be the open and closed Voronoi cells of w', respectively. In particular,
the volumes of Q and Q equal

vol(Q) = vol(Q) = det(A).

The probability that group element a is chosen is roughly proportional
to the number of lattice points of £(B') contained in Q. (The probability
is not exactly proportional to this number because lattice points on the
boundary of Q are not necessarily mapped to w’.) Since the number
of equivalence classes of x; ; € £(B’) modulo £(M) is det(M)/ det(B'),
the probability that a; ; = a satisfies

£(B') N Q) - det(B')
det(M)
Notice that both Q and Q contain an open sphere of radius r = A; (A)/2.

Therefore, by Proposition 8.7 and using the bound p(B') < A\1(A)/(8n)
from Lemma 8.16, the number of lattice points in Q satisfies

, det(A) 2p(B')n
ceina > g (%)

det(A) 1
> i
2 det(B)) (1 4)
and the probability that a; ; = a is

L 3 det(A) det(B") _ 3
Pr{a;; = a} > 4 det(B’) det(M) ~ 4|G|’

L(B')N Q| - det(B')

|
< L= <
< Pr{o; =a} < det(M)
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Similarly, the number of lattice points in Q satisfies

emndl < gy (1+ %)
det(A)
S 3et(B) (1 * )
™ 3 det(A) det(B') _ 3
€ e
Pr{a;; =a} < 2 det(B’) det(M) = 2G|

This proves that, for all a € G,

1
|G|

1

Pl‘{ai,]‘ = a} - S 2|_GT

So, the probability distribution of each a; ; is not too far from uniform.
Adding up a relatively small number of a;; we get a group element
a; = Zj a;; which is almost uniformly distributed. In particular, by
Corollary 8.12, the statistical distance between a; and a uniformly dis-
tributed u; € G is at most

1
Afai, u;) < kil (8.45)

Since random variables a; are independent, by Proposition 8.9 the sta-
tistical distance between vector a = [aj,...,an,]T and a uniformly dis-
tributed u € G™ is at most

Afa,u) <) Aai,u) < 2—,2—1 (8.46)
i=1

and, using (8.38) and (8.34), we get

A(a,u)sr_n?é< d6nlogy n

nd — nd

<§-0(1). (8.47)

We use the bound on the statistical distance between a and a uni-
formly distributed u to compute the probability that a € G. Let ¢ the
characteristic function of set G:

w(g)={ L ifgeg

0 otherwise °

We want to bound the value of Pr{a € G} = Exp[p(a)]. Notice that
function ¢ takes values in [0, 1]. Therefore, by Proposition 8.10,

| Exp[p(a)] — Exp[p(u)]| < A(a,u) < 4-0(1). (8.48)
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This proves that the probability of querying function F on a point of G
is at least

Pr{a € G}

Exp[p(a)
> Exp[p(u)] — | Exp[p(a)] — Exp[p(u)]|
> 6—6-0(1)=6-(1-0(1)).

— —

The same technique used to show that a is almost uniformly dis-
tributed, can be employed to prove that the conditional probability of
(s,sy) # 0 (given a € G) is at least 1/6. In fact, we can prove something
stronger: for any fixed g € G™, the conditional probability, given a = g,
is at least 1/6. Define auxiliary vectors

s = MCls
8§ = M TcTs:.
Notice that (s’,8) = (s,s},). Therefore, s is orthogonal to s}, if and only

if s’ is orthogonal to 8. We want to bound the (conditional) probability
that (s’,8) = 0. We show that for any fixed g € G™

Pr{(s,8) £ 0]a=g) > =

Fix the value of w;,j €N foralli=1,...,mand j =1,...,k Notice
that this uniquely determines also a;; = ¢(w;;), ai = 3_;a;; and z =
F(ai,...,an). For any i,j, let Q;; = V(wj ;,A) be the (open) Voronoi
cell of w} j» and let Q; ; be its closure. It is easy to see that (given a = g)
vectors y;,j are totally independent, although not in general identically
distributed. Moreover, each w; ; is distributed almost uniformly in Qi ;N
L(B'). (As before, the distribution is not perfectly uniform because
points on the boundary of Qi,j are not necessarily mapped to w;,j, so
the points on the boundary might have conditional probability smaller
than those in the interior Q.)

Since z # 0, there exists a coordinate ¢ such that z; = 1. Assume
without loss of generality that 2; = +1. Let Y be the list of all vectors
Yi; except y} . Variable Y takes values in V(0,A)™ . Fix the value
of all vectors in Y and define the constant

a = z(w;;,8) + Z zi(y,8).
yey

The scalar product of s’ and § is

<S’,§> = Zz,-(yﬁ,j,é) = zl(x,l,lvg) +a.
i,j
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So, (s',8) = 0 if and only if x] ; belongs to the hyperplane

Ho = {x:21(x,8) + a = 0}.
We want to compute the probability that x’1,1 € Ho- Let

Hp = {x:21(x,8) + 8 =0}

be the hyperplane parallel to H, that passes though W’1,1- (See Fig-
ure 8.4.) Hyperplane Hg defines two open half spaces

’Hg’ = {x|zuxT§+8>0}
Hy = {x| 21xTs + 8 < 0}

and at least one of them does not intersect H,. Let Q' be the intersection
of the interior of Q,,; with this open half space, e.g.,

o= QNH,; ifa<pB
Tl QunHy ifa>p

The probability that x'l,l & H, is at least as large as the probability that
x’l,I € @Q'. This last probability is not smaller than the ratio between

the number of lattice points in Q' and those in Ql,lz

1£(B') N Q|

I£(B) N Owa| (8.49)

Pr{xi, ¢ Q' |a,Y} >

(The reason equality does not necessarily hold is that points on the
boundary of Q' may have probability smaller than points in the interior.)
Notice that Q' is convex because it is the intersection of two convex sets.
So, we can use Proposition 8.7 to bound the number of lattice points in
Ql,l and Q’.

Since @), is symmetric with respect to wj ;, the volume of Q is
exactly half that of Q;;. Moreover, Q1 contains a sphere of radius
A1(A)/2 centered at wi;, and Q' contains an (open) sphere of radius
A1(A)/4 centered at wy ; + A1(A)/(4]|8])8. (See Figure 8.4.) Therefore,
by Proposition 8.7, the number of lattice points in Q' is at least

/ / VOI(QI,I) p(B’)n
IL(B)OQIZiHWB)-(l—/\l(A)ﬂl)' (8.50)

Also, by Proposition 8.7, the number of lattice points in Ql,l is at most

"~ A vol(Q1,1) 2p(B')n
|IL(B") N Q1] < qei(B) (1 + AI(A)/2> : (8.51)
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Figure 8.4. Lattice points that avoid a hyperplane

Substituting (8.50) and (8.51) in (8.49) we get

, 1 M (A) —4p(B)n
Pr{xl’l ¢ Ha | a,Y} 2> 5/\1 (A) + 4p(B')n

1 1

-l1- —
A(A 1

2 SpilB’in + 2

and using the bound on the covering radius from Lemma 8.16

1 1 1
Pr{x|, ¢ Ho |8, Y} > 5 (1_ 1+%) =z
Averaging over all possible values for a € G and Y € V(0,A)™ "1, we
get

Pr{s Ys; |a€ G} > %

It only remains to be proved that vector s is short (with high proba-
bility). In the next lemma we bound the length of each y; ;.

LEMMA 8.17 For anyi=1,...,m and j = 1,...,k, the length of y; ;

1s at most
lIsn |l

il € ——=nl
”yl,J“ - W(\/'T_Llogn)

Proof: The proof is similar to that of Lemma 8.16. From the definition
of y; j and W;,j = CVPA(XQ,J-) we get

lyiill = lxij; — wijll



178 COMPLEXITY OF LATTICE PROBLEMS

= [[CM™}(x}; — wi,)ll

CM-d||
< Lo whl - L___
- ”xt,j wl,]“ mg'x ”d“
ICd]|
< p(A) - max -——.
() g inda
Then, we notice that for every vector d € R*,
ICd| _ IMd +Qd| _ B+ 1Qd||
IMdl| IMd|| =7 IMd]|

Finally, we use (8.44) to get

| 1Qd||
lyijll < p(A) (ﬁ + max ”Md") < 2Bp(A).

Substituting (8.35) for 3, (8.33) for a, (8.38) for k£ and using o(S) <
V71i||sn ||, we get the bound in the lemma. O

At this point, by triangle inequality we immediately get
Isll < mk max lly;;l| < vnlognlisa.

This bound is not good enough because we want ||s|| to be smaller than
|[sn]l- In the rest of the proof we give a better probabilistic bound on
the length of s. The intuition is that in a random walk the typical
distance from the origin grows with the square root of the number of
steps, instead of being linear. In our case, the steps are given by vectors
2iyij, and the final point is vector s. So, even if ||s|| can be mk times
as long as a single step z;y; j, on the average it is much shorter than
that. The problem is that since coefficients z = F(a) depend on a, and
vectors a; j and y; ; are correlated, the steps z;y; ; are not independent
and general bounds on the average length of random walks cannot be
directly applied. Still we can prove that s is usually not much longer
than vmk times max; ; ||y; ||, even under the assumption that a € G.
Namely, we show that the probability that a € G and ||s|| > ||sn||/2 is at
most ¢ - o(1). Notice that since ||s,|| > 0, events a € G (or, equivalently,
¢(a) = 1) and ||s|| > ||sn||/2 are simultaneously satisfied if and only if
4¢(a)||s||> > ||sa||>. By Markov inequality

Pr{a€ GAlsll > lIsnll/2} = Pr{e(a)ls|® > llsall*/4}

4Exp[p(a)|ls||’]
- lIsnll?
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We want to prove that Exp[p(a)||s||?] is at most éo(1)||sn ||, and there-
fore Pr{a € G A ||s|| > ||sn|l/2} < §-0(1). Fori,5 € {1,...,m} and
g € G™, define the functions

(pi,j(g) = wiwjtp(g) where w = _}'(g) (8.52)
and let
m k
=3 D i Yineii(g)-
1,7=1h,l=1

Functions ¢; ; satisfy ¢; j(a) = zizjp(a), where z = F(a) is the output
of the collision finder algorithm on input a. Therefore

k
Z Y1l,YJh ‘Pt,] )
K]
k
Z h>ztz](p(a
J =
= <221Y1la2z]y]h>§0

= [sl*¢(a

s

['(a) =

-

<.
Il
—_
>

I
Ma
1 M» lL

We want to bound the expectation
Exp(l'(a)] < Exp[['(u)] + | Exp[['(a) — ['(u)]|.

We prove that, if u is chosen uniformly at random, then both Exp[[(u)]
and | Exp[['(a) — I'(u)]| are at most d||s,|? - o(1).

We start with Exp[['(u)]. The key observation is that vector u is
statistically independent from y; j, ys . Therefore,

Exp[C(w)] = > ) Exp{(yis,y;n)ei;(u)]
7 ml

= 3> Expl(yis yin) - Explesj(u)).

1,5 hl

Moreover, unless (7,!) = (j, k), random variables y;; and y; are inde-
pendent and

Exp((yi, ¥;)] = (Explyi,), Exply;]) = 0. (8.53)
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So, by Lemma 8.17, the expectation of I'(u) is

m k
ExpC(w)] = > Expllyiil®]- Explpii(u)]  (8.54)
i=1 =1
2m
% < bllsall? - o(1). (8.55)

Now consider the expectation of the difference Exp[['(a) — I'(u)]. The
statistical distance between (y1,1,...,¥Ymk,a) and (y1,1,---,¥Ymk, 1) is
not necessarily small. So, in order to bound the expectation of I'(a) —
I'(u), we first break this expression into smaller components as follows.
Let f;; : R®* x R® x G™ — R be the functions

fi5(V1,v2,8) = (v1,v2) - i j(g)

Then, we have

|Exp[['(a) — T'(u)]| > Explfii(yit ¥in8) = fij (it ¥in u)]

1,5,k

> |Explfi(¥its ¥in ) — fii (it ¥ino 0|
i’th’l

IA

where, in the summations, 7, j range over {1,...,m}, and [, h range over
{1,...,k}. We bound each term

|Exp[fi ; (¥itr Yih, a) = fii(¥it, ¥ip 0l (8.56)

separately. We first bound the absolute value of f;;(yii, yjr,8), and
then the statistical distance between the two distributions (y;,yjn,a)
and (y;,y;jh,u). By Lemma 8.17, for every g € G™, the absolute value

of fij(¥its¥jhs8) is at most

IEN
Fid Wi Yim @] < Iyl lyial - lous(@l < —22l_— (8.57)
: w(nlog®n)
Now consider the statistical distance
A((YitrYihr8)s (Yids Yihs 1)) (8.58)

By Proposition 8.10, (8.58) is at most

A((Yifr Yih ifr Gjhs ), (Yids Yihs Gil, @j,p, 1)) (8.59)
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We distinguish three cases:

s If (3,1) = (4, h), then by Proposition 8.10, (8.59) is at most
A((yig, aig,a — ai€;), (yig, 6ig, 0 — aie;)). (8.60)

Notice that u’ = u — q; e; is uniformly distributed over G™ inde-
pendently from y;;,a;;. Also a' = a —a;ie; = Z(i,’,,)#i,,) ay pey is
independent from y;,a;;. Therefore, by Proposition 8.8, (8.60) is
equal to A(a’,u’). The components of a’ and u’ are totally indepen-
dent. Therefore,

m
A(a',u') = E A(a}, uy)
t=1

where each u} is distributed uniformly at random over G, while a! =
S aip (resp. ap = Yopa;p for t # i) is the sum of k — 1 (resp.
k) independent random variables, each satisfying the hypothesis of
Corollary 8.12. So, the statistical distance (8.60) is at most

m—1 1 m+1
ok+1 +§7€_ ok+1 °

s Ifi=jand!l # h, then (8.59) is at most

AYis Yihs @igs @ihy @), (Yils Yiho Gl Gijhs 1)) (8.61)

where u’ = u — (a;; + a;x)e; and a' = a — (a;; + aip)e; are both in-
dependent from y;;,yih,ait,ain. So, (8.61) equals A(a’,u’). Again,
the components of a’ and u’ are totally independent, with u} dis-
tributed uniformly at random over G and a} equal to the sum of in-
dependent random variables, each satisfying the hypothesis of Corol-
lary 8.12. This time a} is the sum of k — 2 such variables. So, the
statistical distance (8.61) is at most

m—1 1 m+3
k1 T k=1 = G4

s The last case i # j is also analogous. This time (8.59) is at most
A(a’,u’) where a' = a —a;e; — a;re; and u' = u — a;€; — a;re;.
As usual, u} are distributed independently and uniformly at random
over G, while a; is equal to the sum of k — 1 (if ¢t € {3, 5}) or k (if ¢t &
{i,7}) independent random variables each satisfying the hypothesis
of Corollary 8.12. Therefore, the statistical distance is at most

m—2 2 m+2
ok+1 2k — ok+1 °
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In all three cases, the statistical distance is at most

m+3 dlogn
Ayt Yih02), (¥igs ¥ 0)) < S SO < s ) : (8.62)

So, by (8.57), (8.62) and Proposition 8.10, the expectation (8.56) is at

most
E

ndlogn’

Adding up for all¢,j =1,...,mand h,l = 1,...,k we get

m?k2[lsnll® _ 41og® nllsn||?
ndlogn ~ n

| Exp[[(a) — [(u)]| < = dllsall® - o(1).

(8.63)
This concludes the proof that Exp[['(u)] < 4||s.|? - o(1). O

2.4  Almost perfect lattices

In the previous subsections we showed that any 7-perfect easily de-
codable lattice can be used to construct a collision resistant family of
hash functions which is at least as hard to break (on the average) as
approximating the covering radius of any lattice within a factor y(n) =
w(rn?logn). So, in order to make these hash functions as hard to break
as possible one needs lattices with packing-covering ratio 7 as close as
possible to 1. We observed that 7 = \/n can be easily achieved setting
A to the lattice of all integer points Z". In this subsection we show that
it is possible to do much better than that.

THEOREM 8.18 For every n, there ezist a lattice with packing-covering
ratio T < 4.

Proof: We give an iterative procedure that starting from the lattice
Z™ of all integer points, builds denser and denser lattices such that the
length of the shortest vector in the lattice does not decrease. At every
iteration, either 7 < 4 and we stop, or we find a new point (not already
in the lattice) that can be added to the current lattice without increasing
the length of the shortest nonzero lattice vector. So, all lattices in the
sequence have first minimum A; = 1. Notice that each time a lattice
gets bigger, its determinant decreases (at least) by a factor 2. The
determinant of the first lattice in the sequence is Dy = det(Z™) = 1. So,
after k iteration the determinant is (at most) Dy = 2-%. By Minkowski’s
theorem, the determinant D) of any of these lattices satisfies 1 = A\; <

\/ﬁD’t/", i.e., Dy > 1/n(/2). Using Dy < 27, we get that the number
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of iteration is at most £ < (1/2)nlogn, i.e., after at most O(nlogn)
iteration the packing-covering ratio of the lattice must satisfy 7 < 4.

Now we describe the iterative step. Let B be a lattice with packing-
covering ratio at least 4, i.e., p(B) > 2\;(B). We claim that there exists
a lattice point v € £(B) such that the distance of b = (1/2)v from the
lattice is at least A;(A). Since 2b belongs to the lattice, the length of
the shortest vector in the lattice generated by [B|b] is

A1([BJb]) = min{;(B), dist(b, L(B))} = A1(B).

So, let us prove the existence of such a v. Let v € £(B) be a lattice
point such that b = (1/2)v is as far from £(B) as possible:

dist(b, £L(B)) = vgl&)é) dist(v/2, L(B))

and let d be the distance of b from £(B). It follows that all points in
(1/2)£(B) are within distance d from £(B), i.e.,

%L(B)c U B(v,d) = £(B) + B(0,d).
veL(B)

By induction, it follows that

(1)k+lc(B) c 7 (£®)+B0,21 - 274)a))

2

N = DN =

c =L(B)+B(0,(1-27%)4)
C L(B)+ B(0,2(1 — 2-*k+1)q)

U B(v,2(1-2-*)q).
veL(B)

This proves that for every k, 2-¥£(B) is contained in Uvec(s) B(v, 2d).
Since Ux27%£(B) is dense in span(B), this shows that span(B) is con-
tained in U,¢p(m) B(v,2d), i.e., the covering radius of £(B) is at most
p(B) < 2d, and dist(b, £(B)) =d > p(B)/2 > \(B). O

The proof of the theorem also gives an algorithmic procedure to find
such almost perfect lattices A, with constant 7. However, the simplest
way to build these lattices and solve the corresponding closest vector
problem requires time exponential in the dimension n. Still, these lat-
tices can be used to improve the approximation factor in the construction
of cryptographic hash functions as follows: divide all the coordinates into
n/ log n equal blocks, and set A, to the direct sum of (n/logn) 4-perfect
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(log n)-dimensional lattices. These lattices can be constructed in time
exponential in log n, and therefore polynomial in n. Moreover, the clos-
est vector problem in A, can also be solved in polynomial time, decoding
each block of coordinates independently. This shows that lattices with
packing-covering radius asymptotically less than \/n can be efficiently
constructed and decoded in polynomial time, improving the connection
factor in the construction of lattice based hash functions by a factor
ViIogn. Finding efficient decoding algorithms for almost perfect lattices
would allow to reduce this factor even further, resulting in hash func-
tions that are as hard to break as approximating the covering radius of
any lattice within a factor 7 = w(n?logn). (See Section 4 for further
discussion.)

3. Encryption Functions

In this section we present a brief overview of various public key encryp-
tion schemes based on lattices. Public key encryption is one of the most
important cryptographic primitives. The difference between symmetric
encryption, as described in the introduction of this chapter, and public
key encryption is that in the latter the key used to encrypt and the one
used to decrypt are different. Moreover, the encryption key can be pub-
lished without compromising the security of the scheme. This allows to
securely communicate over public networks without agreeing beforehand
on a common shared key for every pair of communicating parties: each
user can generate a pair of matching encryption and decryption keys.
The decryption key is kept secret and used by the recipient to decode
messages. The encryption key is published on a directory, so that any-
body can access it. When one wants to send a message to some other
party, one retrieves the recipient public key from the directory, and use
it to encrypt the message. The recipient uses the matching secret key to
decrypt the ciphertext. Clearly, recovering the secret key from the corre-
sponding public key must be computationally hard, as well as recovering
(any partial information about) the cleartext given the ciphertext and
the public key without knowing the matching secret key.

Several public key encryption schemes whose security is based on lat-
tices were proposed in the last few years. Some of them are mostly
theoretical, with rigorous proofs of security based on worst case com-
putational assumptions similar to the one used in the construction of
collision resistant hash functions. Others are concrete proposals, with-
out a proof of security, that have been suggested as practical alternatives
to commonly used cryptosystems. The main lattice based public key en-
cryption schemes were all suggested independently and essentially at the
same time. So, there is not a clear chronological order to follow in the
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presentation. Here, we have chosen to present the various schemes in an
order that helps getting a better understanding of the similarities and
differences among them. A concrete analysis of the practical security
offered by these schemes is beyond the scope of this book. Some of the
schemes presented here have been subject to more or less serious crypt-
analytic attacks, but no asymptotic attack that runs in polynomial time
is known for any of them. So, in the following subsections we concentrate
on the ideas underlying the design of the schemes, instead of attempt-
ing a careful analysis of the practical value of any of them, occasionally
giving some pointers to relevant cryptanalytic literature.

The standard notion of security for encryption schemes is that not
only it is hard to recover the plaintext from the ciphertext, but also
gaining partial information about the plaintext is computationally infea-
sible. Such encryption schemes can be constructed using standard tech-
niques starting from schemes meeting a weaker notion of security (Yao,
1982; Goldwasser and Micali, 1984; Goldreich and Levin, 1989; Bellare
and Rogaway, 1993). These weaker schemes are called trapdoor func-
tions: functions that are easy to compute, but hard to invert unless
some trapdoor information is known. For simplicity, in the following
subsections, we concentrate on the trapdoor functions underlying the
schemes, whenever possible.

3.1 The GGH scheme

The GGH cryptosystem (Goldreich et al., 1997b) was proposed by
Goldreich, Goldwasser and Halevi, and it is probably the most intuitive
method of using lattices to devise a public key encryption scheme. The
idea underlying the construction is that, given any basis for a lattice, it is
easy to generate a vector which is close to a lattice point (i.e., by taking
a lattice point and adding a small perturbation vector to it). However,
it seems hard to return from this “close-to-lattice” vector to the original
lattice point (given an arbitrary lattice basis.) Thus, the operation of
adding a small perturbation vector to a lattice point can be thought of
as a one-way computation.

To introduce a trapdoor mechanism into this one-way computation
and allow efficient decryption when the trapdoor is known, (Goldreich
et al., 1997b) uses the fact that different bases of the same lattice seem
to yield a difference in the ability to find close lattice points to arbitrary
vectors in (. Therefore, the trapdoor information may be a basis of a
lattice which allows very good approximation of the closest vector prob-
lem (CVP). Then the public basis is derived from it using a randomized
unimodular transformation. Details follow.
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Private key. Two methods for generating the private key are sug-
gested in (Goldreich et al., 1997b). The first method is to set R to an
n X n matrix with entries chosen independently and uniformly at random
from an interval {—1,...,+[}. The second method is to set R = kI+ R’
to an orthogonal matrix kI (where k is a parameter, e.g., k = y/nl), and
then add a perturbation matrix R’ with entries chosen independently
and uniformly at random in {—I,...,+{}. The second method has the
advantage of giving private bases R that can recover from longer pertur-
bation vectors, but it might also help an adversary to recover the private
basis from the public basis.

Public key. Once the private basis R is chosen, the public basis should
be selected according to some probability distribution over all possible
bases for £(B). Two methods for generating the public basis B from R
are considered. In the first method R is transformed into B applying a
sequence of elementary column operations, i.e., at every step one add to
a column a random integer combination of the other columns. The coef-
ficients in the integer combination are chosen at random in {—1,0,+1}.
In the second method, B is obtained multiplying R by a small number of
random unimodular matrices. The unimodular matrices are generated
multiplying together a lower triangular matrix L and an upper triangu-
lar matrix U, with £1 on the diagonal, and the other elements chosen at
random in {—1,0,+1}. We do not go into more details here as we will
see in Subsection 3.2 that there are provably better ways of generating
B.

Encryption. As outlined before, the trapdoor function takes as input
an integer vector x, and a small perturbation vector r, and outputs
t = Bx + r. Vector r should be short enough to allow the recovery
of Bx from t using the private basis R. The maximum length allowed
for the perturbation vector ¢ is included in the public basis. (See next
paragraph for details about the value of §.) Vector x is chosen in a
sufficiently large region of space so that Bx looks like a “random” lattice
point. As for the public basis, we will see in Subsection 3.2 that there
are provably better ways of choosing x, so we do not elaborate about
this choice any further.

Decryption. Also for the decryption process, two different methods
are considered. Both methods are based on the CVP approximation
algorithms of (Babai, 1986). One method is to use the nearest plane
algorithm (see Chapter 2) with basis R. Using this algorithm one
can efficiently find the (unique) lattice point Bx within distance § =
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(1/2) min; ||r}|| from t, and recover the input (x,t — Bx). The other
method is simply to compute R~'t, round each coordinate of this vec-
tor to the closest integer, and multiply the result by R. Bounds on the
maximum and average length of the errors that can be corrected using
this method are given in (Goldreich et al., 1997b).

Analysis. Notice that in order to avoid attacks based on exhaustive
search, the sequence of operations applied to R to obtain the public ba-
sis, and the region of space from which the lattice vector Bx is chosen
must be sufficiently large. Since the lattice repeats identically if trans-
lated by det(R) along any of the main axes, we can always assume that
the entries of B and x are reduced modulo det(R) without decreasing
the security of the scheme. We can use this observation to estimate
the proper size of the public key B and the ciphertext c = Bx +r as
O(n?-1g(det(R))) and O(n-lg(det(R))). Applying Hadamard’s bound to
the private basis, and assuming ! = poly(n), one can estimate the deter-
minant det(R) = 20("18m)_ This results in public keys and ciphertexts
of size O(n3lgn) and O(n%lgn). Although polynomial in the security
parameters, these sizes grow pretty fast, and in (Nguyen, 1999) it is
shown that in order to provide a reasonable level of security the size of
the keys in the GGH cryptosystem has to be so large that the system
would be impractical. However, it is important to realize that the at-
tacks described in (Nguyen, 1999) are not asymptotic: they only prove
that the system can be efficiently broken for specific values of the secu-
rity parameter and increasing the security parameter avoids the attacks.
The problem pointed out by (Nguyen, 1999) is mainly an efficiency issue:
in order to provide a concrete alternative to commonly used cryptosys-
tems, it is necessary to make the GGH cryptosystem more efficient, so
that larger values of the security parameters can be used.

3.2 The HNF technique

This scheme, proposed in (Micciancio, 2001c), is more a general tech-
nique than a full fledged encryption scheme, and it can be used to im-
prove the efficiency and better understand the security of most lattice
based encryption functions, including the GGH cryptosystem, one of the
cryptosystems proposed by Ajtai and Dwork, and NTRU. The private
key R and the corresponding decryption algorithm are not specified, and
the technique can be applied to all schemes where the public key is a
lattice basis B, the ciphertext is a vector t close to the lattice, and the
decryption process involves finding a lattice vector in £(B) close to t
(or, in some cases, determining if t is close to the lattice or not). The
questions addressed in (Micciancio, 2001c) are the following:
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s What is the best way to select the public basis B?

s Given a lattice basis B and a short perturbation vector r, what is
the best way to generate a hard CVP instance (B, t) whose solution
ist—r?

In both cases, we are interested in schemes that are best from a secu-
rity point of view: solving CVP instance (B,t) should be as hard as
possible, unless some trapdoor information R is known. Interestingly,
(Micciancio, 2001c) shows that there is an optimal way to choose B and
t that also leads to considerable efficiency improvements with respect to
GGH and similar schemes.

The technique is the following. Assume that a private basis R has
been chosen that allows to solve the CVP problem whenever the target t
is within distance § from £L(R). Let r be a perturbation vector of length
at most §. We want to define a basis B for L(R) and a target vector
t = Bx+r such that CVP instance (B, t) is as hard as possible, in some
technical sense. Micciancio proposes to use the Hermite normal form
(HNF) of R as the public basis. This public basis is the worst possible
one from a computational point of view, because it can be efficiently
computed from any other basis. Technically, any attack that works given
a public basis in HNF can be transformed into an equally efficient attacks
that receives as input an arbitrary basis (e.g., a random basis) for the
lattice: given a “random basis” B, one first computes the HNF of B, and
then applies the HNF based attack. Similarly, the encryption function
takes as input an error vector r, and outputs vector r reduced modulo
the public basis, i.e., t = r mod B. Again, this is at least as secure as
adding r to a “random” lattice vector Bx, because given Bx +r one can
efficiently compute t = (Bx + r) mod B = r mod B.

One interesting way to look at HNF cryptosystems is to consider the
encryption function as a function from a set of short vectors to the
group G = Z"/L(R) studied in Subsection 1.1. If perturbation vectors
are short enough, then any two perturbations correspond to different
group elements, and the function can be inverted using the private basis
R. The public key and the encryption procedure correspond to choosing
some standard way to represent group G, and its elements. As described
in Subsection 1.1, using the HNF technique has the advantage that both
the group and the group elements have space efficient representations:
the HNF public basis has size O(n2logn) instead of O(n®logn) as in
the original GGH cryptosystem. Similarly, the size of the ciphertext
is O(nlogn) instead of O(n?logn). For typical values of the security
parameters (e.g., n = 400) this is a huge improvement with respect to
using random public bases and random lattice vectors in the encryption
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function. The resulting cryptosystem can outperform commonly used
encryption functions based on number theory, as far as the encryption
time is concerned. Still, in order to be really competitive in terms of pub-
lic key size, further efficiency improvements are needed. In (Micciancio,
2001c), it is pointed out that the Hermite normal form representation is
essentially optimal: the bit-size of a matrix in HNF is roughly equal to
the logarithm of the number of lattices with the same determinant. So,
in order to reduce the size of the public key below O(n? log n), one has to
restrict the choice of L(R) to special classes of lattices. One such class
that results in public keys of size O(nlogn) is the one used by NTRU.

3.3 The Ajtai-Dwork cryptosystem

In (Ajtai and Dwork, 1997) two related cryptosystems based on lat-
tices are proposed. The first one fits our general framework, and can be
improved using the HNF technique described in Subsection 3.2. The sec-
ond cryptosystem is interesting because it exhibits a worst-case/average-
case connection similar to the one studied for hash function in Section 2.
This is essentially the only known cryptosystem which is as hard to break
as the worst case instance of the underlying mathematical problem. Un-
fortunately, the system (as described in (Ajtai and Dwork, 1997)) does
not seem efficient enough to represent a practical alternative to com-
monly used encryption schemes. (Both the key size and running time
grow as O(n?), where n is the rank of the lattice.) The fact that the
Ajtai-Dwork cryptosystem is not efficient enough to be practical and
secure at the same time was experimentally confirmed by (Nguyen and
Stern, 1998). Still this cryptosystem remains one of the major break-
throughs in theoretical cryptography and is an important step in the
design of provably secure cryptosystems. Below, we describe the ideas
underlying the two cryptosystems.

Private key. The main difference between the Ajtai-Dwork and GGH
cryptosystem is in the choice of the secret key. Instead of choosing a
lattice basis that allows to solve CVP for all target points sufficiently
close to the lattice, (Ajtai and Dwork, 1997) suggests to pick the private
basis as follows. Let M and d be two parameters, with d > n°M for
some sufficiently large polynomial function of the lattice rank. Then,
pick n—1 (linearly independent) random vectors ry,...,rp_1, and let H
be the hyperplane spanned by them. The last basis vector r, is chosen
as a random vector whose distance from H is approximately equal to
d. (Say between d and 2d.) Notice that all lattice points belong to a
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collection of hyperplanes Hy = kr;, + H. Only the orthogonalized vector
r;, needs to be stored as part of the secret key, as the other basis vectors
are not used by the decryption algorithm.

Public key. In (Ajtai and Dwork, 1997) it is suggested to set the
public key to a random basis B of L(R). As discussed in Subsection 3.2,

a better choice (both from the efficiency and security point of view) is
to set B to the HNF of R.

Encryption. The Ajtai-Dwork cryptosystem is not based on a trap-
door function, meaning that even using the decryption key it is not clear
how to fully recover the input to the encryption function. The encryp-
tion algorithm takes as input a single message bit b and a random string
r. Only the bit b is recovered by the decryption algorithm. The idea is
to encode 0 as points that are close to the lattice and 1 as points that are
far from the lattice. So, if b = 0 one selects a random lattice point and
adds a small random perturbation to it. (Alternatively, using the HNF
improvement, one only chooses the small perturbation at random and
reduces it modulo the public basis.) The perturbation vector is chosen
as the sum of O(n) vectors independently and uniformly distributed in
the sphere of radius n3M. If b = 1, one simply selects a random point
in space (possibly reduced modulo the public basis), which will be far
away from the lattice with high probability.

Decryption. Parameters are chosen in such a way that the perturba-
tion vector is always much shorter than the distance d between hyper-
planes Hj. Therefore, given a target vector t, one can simply compute
the distance from the closest hyperplane (e.g., evaluating the (r}, t) and
comparing it to the closest multiple of ||r};||) and use this distance to
decide whether t is close to the lattice or not. (Remember, all lattice
points belong to the hyperplanes.) It should be noted that decryption er-
rors can occur with small, but nonnegligible, probability: when sending
message b = 1, the random point t selected by the encryption algorithm
might be close to one of the hyperplanes just by chance. If this happens,
the ciphertext would be decrypted as 0. A technique to eliminate these
decryption errors is described in (Goldreich et al., 1997a).

Analysis. The Ajtai-Dwork cryptosystem, as described above, has the
property that breaking the scheme is equivalent to recovering the secret
key. The idea is the following. Assume that we can tell the difference
between encryptions of 0 (i.e., points close to the hyperplanes H;) and
encryptions of 1 (i.e., points far from the same hyperplanes). We can
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use this ability to find n — 1 linearly independent long vectors very close
to H = Ho as follows: we start from the origin and we keep moving
at random, using the decryption oracle to check that we are staying
close to the plane. After n — 1 long linearly independent vectors close
to ‘H are found, one can compute (a multiple of) r}, using standard
lattice approximation algorithms. (The actual procedure involves the
dual lattice and it is not described here.) Once we have found a multiple
of ry, we can also find the exact length of r}, by projecting the lattice
orthogonally to the line R - r},, and compute the length of the shortest
nonzero vector in this one-dimensional lattice.

Ajtai and Dwork also propose a variant of this cryptosystem which is
provably as hard to break as the worst case instance of a certain lattice
problem. The problem is the hidden hyperplane problem: given a random
basis B for £L(R), find the hyperplane H = span(ry,...,rs—1), i.e., find
a long orthogonalized vector r},. (This problem can be equivalently
formulated as finding a short vector in the dual lattice, for lattices in
which this short vector is unique in some technical sense. This is the
unique shortest vector problem also studied in (Ajtai, 1996) in connection
with the construction of one-way functions with worst-case/average-case
equivalence.) The idea is that instead of publishing a basis for lattice
L(R), one can simply publish a collection of polynomially many (e.g.,
n3) points close to the lattice. Then, in order to send b = 0, one selects
a random subset of these points and add a small perturbation vector,
while to send b = 1 one sends a random point in space as usual. Here we
are omitting several important technical details, but the basic idea is the
following: since the sublattice generated by r;,...,r,_; is very dense in
‘H, the perturbed lattice points can be selected as random points close
to the collection of hyperplanes H;, independently from the particular
basis rq,...,rp—1. So, a decryption algorithm for this cryptosystem can
be used to find the hidden hyperplane in any underlying lattice R. The
reader is referred to (Ajtai and Dwork, 1997) for further details.

3.4 NTRU

NTRU is a public key encryption scheme based on arithmetic in poly-
nomial rings, but it is closely related to lattice problems for a certain
class of lattices. Let p and ¢ be two small, relatively prime integers, e.g.,
p =3 and q = 128. (In general, we want p very small, and ¢ polynomial
in a security parameter n.) Let R = Z[X]/(X™ — 1) be the ring of all
polynomial with integer coefficients modulo X™ — 1. Polynomials in R
can be naturally represented as integer vectors in Z". The private key of
the system is a pair of polynomials f,g € R with small coefficients (e.g.,
{0,1, -1} coefficients) such that f is invertible modulo p and modulo g.



192 COMPLEXITY OF LATTICE PROBLEMS

The public key is given by the polynomial h = pf~!.g mod q, where the
inverse and the product are computed in Zj{X]/(X™ —1). (In (Hoffstein
et al., 1998), h is defined as f~! - g mod ¢, but the two definitions are
clearly equivalent. Here, we modified the definition slightly, in order
to make the comparison with other lattice based cryptosystems easier.)
The encryption function takes as input two polynomials m and r with
small coefficients (e.g., coefficients in {—1,0, +1}) and outputs the poly-
nomial t = m + hr mod q. The decryption algorithm, takes t as input,
and computes a = ft mod g (where the coefficients of a are chosen in the
interval {—g/2,...,+q/2}) and m’ = f~'amod p. In (Hoffstein et al.,
1998) it is shown that for an appropriate choice of the parameters, the
decryption procedure recovers the original message m' = m with high
probability. The idea is roughly the following. From the definition of t
and h, we get

a = ft mod ¢ = f(m + hr) mod ¢ = fm + pgr mod q.

Since f,m, g, r are all polynomials with small coefficients and p is also
small, the coefficients of fm+pgr belongs to the interval {—q/2,...,q/2}
with high probability. So, vector a equals fm + pgr over the integers,
and m’ = f~!(fm + pgr) = m (mod p). It is clear that once m is
recovered, one can also recover r = (t — m)(ph)~! mod q.

This cryptosystem can be described in terms of lattices as follows.
We consider the class of g-modular, bi-cyclic lattices in dimension 2n.
Here, g-modular means that all lattice vectors ge; belong to the lattice,
so the coordinates of the lattice vectors can be defined modulo q. We
say that a lattice is bi-cyclic if the following holds. For any vector x =

[z1,...,z,)T, define the rotation function rot(x) = [z, z1,...,Zn-1]7.
Define also the circulant matrix of a vector x as the matrix My =
[x,rot(x),...,rot""1(x)] with all possible rotations of x as columns.

The relation between circulant matrices and polynomials is that for any
two polynomials x,y in R, MyMy = Myy, i.e., the product in the
quotient ring R correspond to the standard matrix product. For any
2n-dimensional vector z = [xT,yT]T (with x,y € Z"), define also the
double rotation roty(z) = [rot(x)T,rot(y)T]T. A 2n-dimensional lattice
is bi-cyclic if it is close under double rotations, i.e., if for any vector z
in the lattice, also roty(z) belongs to the lattice. It is easy to see that
the intersection of ¢g-modular bi-cyclic lattices is also g-modular and bi-
cyclic. So, for any set of vectors S, we can define the smallest g-modular
bi-cyclic lattice containing S. We now give a lattice based description
of NTRU.
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Private key. The private key is given by a short vector v. The lat-
tice associated to this vector is the smallest bi-cyclic g-modular lattice
containing v. A generating set for this lattice is easily obtained taking
all double rotations of rot&(v) (for k = 0,...,n — 1), and all vectors of
the form gey (for k =0,...,2n —1).

Public key. The public key is set to the HNF basis of the g-modular
bi-cyclic lattice generated by v. Interestingly, if v = [pg”,f7]7, then
the public basis is given by

_ | d M,
afam]

In other words, the lattice can be described as the smallest g-modular
bi-cyclic lattice containing [hT,el]T.

Encryption. Interestingly, the encryption can also be described as
a special instance of the general HNF framework. Consider the short
perturbation vector [m”, —rT)T. If we reduce this vector modulo the
HNF basis H, we obtain the ciphertext vector [tT,07]T, where t is the
polynomial defined in the NTRU polynomial ring description.

Decryption. The decryption algorithm seems to depend on the spe-
cific polynomial ring trapdoor, and it is not clear how to interpret it
from a geometric point of view.

Analysis. The special structure of g-modular bi-cyclic lattices allows
to represent the secret key, the public key and the ciphertext with only
O(nlogn) bits. The culprit is that only one vector needs to be stored
to implicitly represent the entire secret or public basis. This allows to
reduce the storage required by general HNF cryptosystems by a factor
n, although using a special class of lattices. From the efficiency point of
view, NTRU offers clearly lot of advantages: extremely fast encryption,
decryption and key generation, with public key size comparable to widely
used number theory based cryptosystems. The main questions regarding
NTRU are about security: are lattice problems for the special class of
lattices used by NTRU as hard as the general case? Are these problems
NP-hard to solve exactly? NP-hard to approximate? Is it possible to
prove an worst-case/average-case connection for these lattices similar
to the one proved by Ajtai for general lattices? There is still very little
known about NTRU from a theoretical point of view, but the practicality
of the system definitely makes further investigations worthwhile.
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4, Notes

Most of the techniques described in Section 1 are folklore. Algorithms
to compute the HNF and SNF of integer matrices can be found in (Co-
hen, 1996). A new, space efficient algorithm to compute the HNF has
recently been proposed in (Micciancio and Warinschi, 2001).

One-way functions which are as hard to break as the worst case in-
stance of some lattice approximation problem were first discovered by
(Ajtai, 1996). The approximation factor in (Ajtai, 1996) is a rather large
polynomial: n€ for ¢ > 8. The factor was subsequently improved by (Cai
and Nerurkar, 1997), who showed that inverting the one-way function is
at least as hard as solving GAPSVP within n%*¢, or GAPSIVP within
n3*¢. In Section 2 we presented an improved construction recently dis-
covered by (Micciancio, 2001b). Following (Goldreich et al., 1996), Mic-
ciancio shows that the the function is not simply one-way: it is collision
resistant. Moreover, breaking the hash functions is at least as hard as
approximating GAPSVP within n3-° logn or GAPCRP within n?°logn,
improving (Ajtai, 1996) and (Cai and Nerurkar, 1997). Factors can be
further reduced by /n if CVP can be efficiently solved for certain al-
most perfect lattices. (See (Micciancio, 2001b) for the description of
weaker requirement on the decoding algorithm that still allow to build
improved hash functions.)

The GGH, Ajtai-Dwork and NTRU cryptosystems were all discovered
independently at about the same time around 1996. The cryptosys-
tems are fully described in (Goldreich et al., 1997b; Ajtai and Dwork,
1997; Hoffstein et al., 1998). The HNF technique was suggested later
by (Micciancio, 2001d) as a method to improve or better understand
lattice based cryptosystems. Various other cryptosystems based on lat-
tices have been proposed, usually variants of those described in Sec-
tion 3. For example, (Fischlin and Seifert, 1999) suggests a variant of
the GGH cryptosystem where the trapdoor is based on the tensor prod-
uct of lattices. The HNF technique of (Micciancio, 2001d) applies to
these cryptosystems as well. The construction of cryptosystems based
on lattices is still subject to investigations. (Micciancio, 2001d) points
out that basing cryptosystems on restricted class of lattices seems cru-
cial to obtain encryption functions with public keys of subquadratic size.
The NTRU cryptosystem of (Hoffstein et al., 1998) seems an interesting
proposal from this point of view. Still, very little is known about the
computational complexity of specific classes of lattices, as those used by
NTRU.



Chapter 9

INTERACTIVE PROOF SYSTEMS

A natural question associated with the SVP and the CVP search
problems is whether one can recognize the optimality of solutions once
they are found.

SVP. In the case of SVP, this may correspond in its most ambitious
form, to given a lattice and a length d (presumably the length of the
shortest vector in a lattice) to be able to efficiently verify that (1) there
exists a short vector of length d and (2) no other vector in the lattice is
shorter than d.

A more modest goal, is to ask whether there even exists a “short and
easy to verify” proof of properties (1) and (2). Clearly, a vector v in the
lattice of length d, is in itself a short and easy to verify proof for (1).
Whether there exist short and easy to verify proofs that v is shortest
(namely property (2)) is a more challenging question. In this chapter we
formulate and address it for approximation versions of SVP and CVP.

Recall the promise problem GAPSVP,. YES instances of GAPSVP,,
are pairs (B,d) where B is a basis for a lattice in Q*, and d € Q such
that there exist vectors in the lattice of length d. NO instances are
pairs (B,d) where B and d are as above, but the shortest vector in the
lattice is of size greater than -y(n) - d . Pairs (B,d) where B is a basis
for a lattice whose shortest vector is between d and y(n)d are not in
the promise, and thus are invalid instances. GAPSVP; is the straight
forward decision problem for SVP.

For any y(n) > 1, GAPSVP, ;) is clearly in NP (or, more precisely,
the the extension of NP to promise problems). The NP-witness for (B, d)
being a YES instance is merely a vector v € L(B) of length less than d.
But, what about the complement of GAPSVP,,? For which v is there a

D. Micciancio et al., Complexity of Lattice Problems
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short and easily verifiable proof that all vectors in (B, d) are “long”, and
what would such proof look like? Intuitively, the bigger the gap v is,
the easier this problem becomes (i.e., it should be easier to distinguish
between lattices with “really long” shortest vectors and lattices with
“short” shortest vectors).

Partial answers exist. In a sequence of results, (Lagarias et al., 1990),
(Hastad, 1988) and (Banaszczyk, 1993) showed that the complement of
GAPSVP, is in NP. Namely, there exists an NP witness for those (B, d)
for which the shortest vector is long enough, at least of length nd. (Gol-
dreich and Goldwasser, 2000) improved on this factor, and showed that
the complement of GAPSVP.(,y is in AM for ¥(n) = /n/ O(logn) =
o(y/n). (AM is the class of languages recognized by a constant round
interactive proof system.) For brevity, in the rest of this chapter we
will write o(y/n) to denote approximation factor /n/O(logn). They
do this, by exhibiting a constant-round interactive proof system for the
complement of GAPSVP,( ). Namely, instances (B,d) for which the
shortest vector is “long” (greater than d - o(y/n)) are always accepted,
and the instances for which the shortest vector is of length d (or less)
are rejected with all but negligible probability. This result places a po-
tentially harder problem (referring to smaller gaps) in a larger class (as
coNP C coAM). Unlike the proofs of (Lagarias et al., 1990; Hastad,
1988; Banaszczyk, 1993) which rely on deep duality results regarding
lattices, the interactive proof is elementary and we shall present it fully
in this chapter.

CVP. In the case of CVP, the analogous question is given a lattice, a
length d , and a target vector v, whether there exists a short and easy
to verify proof that (1) there exists a vector u in the lattice at distance
d from v and (2) no other vector in the lattice is closer to v.

In complexity theoretic terms, recall the definition of GAPCVP,,. Let
dist(v,u) denote the Euclidean distance between the vectors v,u € R,
and dist(v, £(B)) denote the distance of v from the lattice, £(B) gen-
erated by the basis B. Then, YES instances of GAPCVP, () are triples
(B, v,d) where B is a basis for a lattice in Q*, v € Q" is a vector, and
d € Q is a length where dist(v, £(B)) < d. NO instances (i.e., instances
that strongly violate the closeness property) are triples (B, v,d) where
B is a basis for a lattice in Q*, v € Q" is a vector, and d € Q a length
where dist(v, £(B) > y(n) - d.

For any v > 1, the promise problem GAPCVP, is in NP. The NP-
witness for (B, v,d) being a YES instance is merely a vector u € £(B)
satisfying dist(v,u) < d. About the complement of GAPCVP, less is
known.
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(Lagarias et al., 1990; Hastad, 1988; Banaszczyk, 1993) showed that
GAPCVPy isin NPNcoNP. (Goldreich and Goldwasser, 2000) improved
on this factor, and showed that GAPSVP, ) is in NP N coAM. They
present a constant-round interactive proof system for the complement of
the above promise problem with y(n) = y/n/O(logn) = o(y/n). That is,
they show a proof system such that very-far instances (NO-instances) are
always accepted, whereas close instances (YES-instances) are accepted
with negligible probability. We shall present this interactive proof fully
in this chapter.

Comment on Zero-Knowledge. The (constant-round) interactive
proofs (for the complement of GAPCVP, 7y and GAPSVP, 7)) are
Perfect Zero-Knowledge with respect to the Honest Verifier (HVPZK).
Thus, the complement of GAPCVP 7y (resp., GAPSVP, 7)) is in the
class HVPZK. The existence of honest verifier statistical zero knowledge
(HVSZK) proofs for the “NP direction” follows by Okamoto’s result by
which the class HVSZK is closed under complementation (Okamoto,
1996). (His result does extend to promise problems; cf., (Sahai and
Vadhan, 1997)). Thus, GAPCVP,( =) (resp., GAPSVP, ) is in the
class HVSZK.

Comment on other norms. The proof systems can be adapted to
any £, norm (and in particular to ¢; and £y). Specifically, we obtain
constant-round (HVPZK) interactive proof systems for gap n/O(logn)
(rather than gap /n/O(logn) as in Iy norm). The result extends to
any computationally tractable norm as defined in Section 3. (Except for
Section 3, the rest of the chapter refers to CVP and SVP in ¢; norm.)

Implication on proving non-approximability of CVP and SVP.
Chapters 3 and 4 contain results on the hardness of approximating CVP
and SVP. In particular we have seen that CVP is NP-hard to approxi-
mate within nl/0(°8l09n) 3nd SVP problem was shown NP-hard, under
RUR-reductions, to approximate that for any constant factor less than
v2 . A natural question is what happens to the difficulty of SVP and
CVP for larger factors of approximation. Can these results be improved
or has the limit of inapproximability been reached? For which factor,
do SVP and CVP become tractable?

Resolving this question is of interest also from a cryptographic stand
point. As we have shown in Chapter 8 the conjectured difficulty of
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versions of both GAPCVP and GAPSVP have been suggested as basis
for cryptographic primitives and schemes (Ajtai, 1996; Goldreich et al.,
1997b; Ajtai and Dwork, 1997). In particular, Ajtai’s one-way function
assumes that GAPSVP,. is hard (in worst case), where ¢ > 8. (The
constant ¢ has been reduced to ¢ > 4 by (Cai and Nerurkar, 1997), and
in Chapter 8 we have seen that it can be further reduced to ¢ > 3.5, or
even ¢ > 3 if certain “almost perfect” lattices can be efficiently decoded.)
The security of the Ajtai-Dwork public-key encryption scheme is reduced
to a special case of (a search version of) GAPSVP,¢ (with some big c).
And the trapdoor permutation suggested in (Goldreich et al., 1997b)
relies on the conjectured difficulty of the CVP problem. A possible end
goal toward which one could hope to carry this direction of research, is
to base the existence of a one-way functions (and other cryptographic
primitives) on the hardness of GAPSVP, ) for 7 such that we can prove
that GAPSVP,, and GAPCVP,, are NP-hard (or quasi-NP hard).

Placing the complement of promise problem GAPSVP, ym) in AM,
and thus GAPSVP, =y € NP N coAM sheds light on this question as
follows ((Goldreich and Goldwasser, 2000; Cai and Nerurkar, 2000)).
Two possibilities exist,

1 Either, GAPSVP, 7, is not NP-hard

2 Or, GAPSVPO( vm) is NP-hard, which implies coNP C AM and the
Polynomial-Time Hierarchy collapses (by a result of (Boppana et al.,
1987)).

Similarly, placing GAPCVP () in NP N coAM, implies that either
1 GAPCVP, ) is not NP-hard, or

2 GAPCVP,( /) is NP-hard, and then the Polynomial-Time Hierarchy
collapses.

Assuming the polynomial-time hierarchy does not collapse, this can
be viewed as establishing limits on the NP-hardness of approximating
CVP and SVP: Approximations to within a factor of o(y/n) are not
NP-hard. In terms of the cryptographic perspective, this seems to mean
that if one attempts to base the security of a cryptosystem on an NP-
hard version of approximate SVP or CVP, one should at minimum aim
for approximation factors of o(y/n/ logn).

1. Closest vector problem

We consider the promise problem GAPCVP., defined in the intro-
duction, and present a constant-round interactive proof system for the

complement of the above problem for gap y(n) = \/n/O(logn). Recall
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that the input is a triple (B, v,d), where B is a basis for a lattice, v
is a vector and d € QQ a length. We give an interactive proof system
such that No-instances (in which v is at distance greater than y(n) - d
from the lattice) are always accepted, whereas YES-instances (in which v
is within distance d from £(B)) are accepted with probability bounded
away from 1.

More precisely, the theorem we prove is,

THEOREM 9.1 GAPCVPW is in coAM.

The proof system. Consider a “huge” sphere, denoted H. Specifi-
cally, we consider a sphere of radius 2" - ||(B, v)|| centered at the origin,
where ||(B, v)|| denotes the length of the largest vector in BU {v}. Let

v = v(n).

1 The verifier uniformly selects o € {0,1}, a random lattice point in H,
denoted r, and an error vector, t, uniformly distributed in a sphere

of radius yd/2. The verifier sends x 4+ v+t to the prover.

2 The prover responses with 7 = 0 if dist(x, £(B)) < dist(x, £(B) + v)
and 7 = 1 otherwise.

3 The verifier accepts if and only if 7 = 0.

Implementation details. Several obvious implementation questions,
arising from the above description, are

s How to uniformly select a lattice point in H? We uniformly select
a point in H, represent this point as a linear combination of the
basis vectors, and obtain a lattice point by rounding. This proce-
dure partitions H into cells, most of them are parallelepipeds which
are isomorphic to the basic cell/parallelepiped defined by the lattice.
The exceptions are the partial parallelepipeds which are divided by
the boundary of the sphere H. All the latter parallelepipeds are
contained between two co-centered spheres, the larger being of ra-
dius (2" + n) - L and the smaller being of radius (2" — n) - L, where
LY (B, v)|| > |IB]| is the radius of H. Thus, the fraction of these
(“partial”) parallelepipeds in the total number of parallelepipeds is
bounded above by the volume encompassed between the above two
spheres divided by the volume of the smaller sphere. This relative
volume is at most

T
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3n?
on
It follows, that the above procedure generates random lattice points

in a distribution which is at most poly(n)-2~" away from the uniform
distribution over £(B) N H.

s How to uniformly select a point in the unit sphere? One may just
invoke the general algorithm of (Dyer et al., 1991). Using this algo-
rithm, it is possible to select almost uniformly a point in any convex
body (given by a membership oracle). Alternatively, one may se-
lect the point by generating n samples from the standard normal
distribution, and normalize the result so that a vector of length r ap-
pears with probability proportional to 7~ (see, e.g., (Knuth, 1981,
Sec. 3.4.1)).

s How to deal with finite precision? In the above description, we as-
sume all operations to be done with infinite precision. This is neither
possible nor needed. We assume, instead, that the input entries (in
the vectors), are given in rational representation and let m denote
the number of bits in the largest of the corresponding integers. Then
making all calculations with n3 . m bits of precision, introduces an
additional stochastic deviation of less than 27" in our bounds.

Analysis of the protocol. By the above, it should be clear that
the verifier’s actions in the protocol can be implemented in probabilistic
polynomial-time. We willshow that, for 7y(n) = y/n/ O(logn), the above
protocol constitutes a (honest verifier perfect zero-knowledge) proof sys-
tem for the promise problem GAPCVP,, with perfect completeness and
soundness error bounded away from 1.

CLAIM 9.2 (COMPLETENESS) If dist(v,£(B)) > v(n) - d then the veri-
fier always accepts (when interacting with the prover specified above).

Proof: Under the above hypothesis, for every point x (and in partic-
ular the messages sent by verifier in step 1), we have dist(x, £(B)) +
dist(x, £(B) + v) > vd (or else dist(v, £(B)) = dist(L(B) + v, £(B)) <
dist(x, £(B) + v) + dist(x,£(B)) < dv). Thus, for every message,
x =r +ov + t, sent by the verifier we have

dist(x,£(B) + ov) = dist(r +t,L(B)) < ||t] < —

dist(x,£(B) + (1 —o)v) > ~d—dist(x,L(B) +ov) >



Interactive Proof Systems 201

Thus, it is always the case that dist(x,£(B) + ov) < dist(x,£(B) +
(1 — o)v) and the prover responses with 7 = ¢. O

CLAIM 9.3 (ZERO-KNOWLEDGE) The above protocol is a honest-verifier
perfect zero-knowledge interactive proof system for triples (B, v,d) sat-

isfying dist(v, L(B)) > v(n) - d.

Proof: The simulator just reads the verifier’s choice and returns it as
the prover’s message. Thus, the simulator’s output will consist of coins
for the verifier and the prover’s response. By the above proof, this
distribution is identical the verifier’s view in the real protocol. O

CLAIM 9.4 (SOUNDNESS) Let ¢ > 0 be a constant independent of n,
and y(n) > /n/(clnn). If dist(v, L(B)) < d then, no matter what the
prover does, the verzﬁer accepts with probability at most 1 —n=2¢,

The above is slightly inaccurate as the statement holds only for suffi-
ciently large n’s (depending on the constant ¢). For smaller (fixed) di-
mension, one may replace the protocol by an immediate computation us-
ing Lenstra’s algorithm (Lenstra, 1983). The same holds for Claim 9.12
below.

1.1 Proof of the soundness claim

Let & (resp., £1) a random variable representing the message sent
by the verifier condition on ¢ = 0 (resp., o = 1). We first bound the
statistical distance between the two random variables by (1 — 2n~2).
Given this bound, we have for any prover strategy P’

Pr(P/(€)=0) = 5 -Pr(P/(&) =0)+ 5 Pr(P/(&x) = 1)
= 5 (Pr(P'(60) = 0) + 1~ Pr(P'(62) = )
_ % + % - (Px(P'(&) = 0) — Px(P'(&,) = 0))
< %+%'(1—2n‘2”)
= 1-n72%

Thus, all that remains is to prove the above bound on the statistical
distance between £p and £;. The statistical distance between the two
random variables is due to two sources:

1 In case 0 = 1 the point r+v may be out of the sphere H (whereas, by
choice, r is alway in H). However, since H is much bigger than v this
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happens rarely (i.e., with probability at most 3n? - 27"; see above).
Furthermore, the statistical difference between uniform distribution
on the lattice point in the sphere H and the same distribution shifted
by adding the vector v is negligible. Specifically, we may bound it by
n=2% > 3n2.2°"

2 Let v’ be v reduced modulo the basis. For each lattice point, p, we
consider the statistical distance between p + t and p + v/ + t, where
t is as above. The main thing is to bound this statistical distance.
The rest of the proof is devoted to this.

Thus, it suffices to consider the statistical distance between t and v’ +t,
where t is as above. In the first case the probability mass is uniformly
distributed in a sphere of radius yd/2 centered at 0 whereas in the second
case the probability mass is uniformly distributed in a sphere of radius
vd/2 centered at v', where ||V/|| < d. Without loss of generality, we
consider v/ = [d,0,....,0]7. Normalizing things (by division with yd/2),
it suffices to consider the statistical distance between the following two
distributions:

(D1) Uniform distribution in a unit sphere centered at the origin.

(D2) Uniform distribution in a unit sphere centered at [e, 0, .., 0]7 where
e =d/(yd/2) = 2/v.

Observe that the statistical distance between the two distributions equals
half the volume of the symmetric difference of the two spheres divided by
the volume of a sphere. Thus, we are interested in the relative symmetric
difference of the two spheres. Recall two basic facts —

FacT 9.5 (e.g., (Apostol, 1969, Vol. 2, Sec. 11.33, Ex. 4)) The volume

. . . . def /2
of an n-dimensional sphere of radius r is v, (r) = 11:"2 |

I(z) = (z—1)-T(z - 1), [(1) = 1, [(0.5) = /7.

-r", where

FAcT 9.6 (e.g., (Knuth, 1973, Sec. 1.2.11.2, Exer. 6)) For every real
z>2 (z+1)=V2rz-(z/e)*. Thus, for every integer m > 2,

['(m+0.5)

N _ [(m+1)
L'(m) Vi I(

m + 0.5)

LEMMA 9.7 (SYMMETRIC DIFFERENCE OF SPHERES) Let Sy (resp. Se)
be a unit sphere at the origin (resp. at distance € from the origin). Then
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relative symmetric difference between the spheres (i.e., the symmetric
difference divided by the volume) is at most

(1 — &2)(n-1)/2

2_
€ 3

n

Our bound is not tight. Still, we note that the bound cannot be de-
creased below 2 — (1 — (¢/2)2)(®~1)/2./n, and that both expressions are
equivalent as far as our application goes.

Figure 9.1. The cylinder encompassed by Sp and S.. The axis is marked in bold and
its radius £ = (1 — €%)®® is computed from the center of the left sphere.

Proof: We bound the volume of the intersection between Sy and S,
from below. Specifically, we look at the (n — 1)-dimensional cylinder of
height ¢, which is centered at the axis connecting the centers of Sy and
Se¢ and is encompassed by So N Se. See Figure 9.1. The radius of this
cylinder is v'1 — €2. Thus its volume is €-v,_1(v'1 — €2). Using Facts 9.5
and 9.6 we have

vol(Sp N Se) s € vn_1(V1 = €2)
vol(So) vn(1)
((1=)m=D2 g, (1)
vn(1)

= ¢- (1 _ e2)(11—1)/2

m

a=D/2/P(((n = 1)/2) +1)
T an2[T((n/2) +1)
= ¢e-(1- €2)(11—1)/2 . I'((n/2) +1)
NZE ['((n/2) +0.5)
n/2
JT

. (1 p— 62)("—1)/2 .

Q2
o™
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The lemma follows.O

Using Lemma 9.7, with ¢ = 2/g(n) < y/4clnn/n, we bound form
above the statistical distance between distributions (D1) and (D2) by

— )i n-1
l-(—-e\/— (1 e)2> _ 1_\/4clnn.<1_4clnn)2

2 6 )
Velnn < 2clnn>"/2
1=
3 n
< 1-3.-n72%

< 1-

2

where the last inequality uses vclnn > 9. Thus, the statistical distance
between & and £, is bounded by n=%¢ + 1 — 3. n=2¢ (where the extra
n~2¢ term comes from Item 1 above). The soundness claim follows. O

1.2 Conclusion

Combining the above protocol with known transformations (Gold-
wasser and Sipser, 1986; Babai, 1985) we get

THEOREM 9.8 For any approzimation factor y(n) = /n/ O(logn), the
promise problem GAPCVP, () is in NPNcoAM. Furthermore, the com-

plement of GAPCVP, () has a HVPZK constant-round proof system.

The interesting part is the membership of GAPCVP 5 in coAM. This
reduces the gap factor for which “efficient proof systems” exists: (La-
garias et al., 1990), (Hastad, 1988) and (Banaszczyk, 1993) have previ-
ously shown that GAPCVP,, is in coNP.

2.  Shortest vector problem

Let us slightly modify the definition of GAPSVP, given in the intro-
duction to the following (equivalent) definition. The YES instances (i.e.,
having short vectors) of GAPSVP,,,) are pairs (B, d) where B is a basis
for a lattice £(B) in Q*, d € Q and dist(v;, ve) < d for some v; # vy
in £(B). The NO instances (i.e., “strongly violating” short vectors) are
pairs (B,d) where B and d are as above but dist(vy,vs) > y(n) - d for
all v; # vo in L(B).

We present a constant-round interactlve proof system for the comple-
ment of the above problem for gap y(n) = y/n/O(logn). Recall that the
input is a pair (B, d), where Bisa ba51s for a lattice and d € Q. That is,
we’ll show that NO-instances (in which the shortest vector in £(B) has
length greater than y(n) - d) are always accepted, whereas YES-instances
(in which £(B) has a nonzero vector of length at most d) are accepted
with probability bounded away from 1.
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The exact theorem to be proven is

THEOREM 9.9 GAPSVP\/W s in coAM.

The proof system. Consider a huge sphere, denoted H (as in Sec-
tion 1). Specifically, we consider a sphere of radius 2" - || B|| centered at
the origin. Let v = 7y(n).

1 The verifier uniformly selects a random lattice point, p, in H, and
an error vector, t, uniformly distributed in a sphere of radius yd/2.

The verifier sends p o p + t to the prover.
2 The prover sends back the closest lattice point to p.

3 The verifier accepts iff the prover has answered with p.

CLAIM 9.10 (COMPLETENESS) If any two distinct lattice points are at
distance greater than -vd, then the verifier always accepts.

Proof: Under the above hypothesis, for every point x (and in particular
the message sent by verifier in step 1), we have at most one lattice p so
that dist(x, p) < vd/2 (or else dist(vy, vy) < dist(x, vy) + dist(x, v2) <
vd). Since we have dist(p, p) < yd/2, the prover always returns v. O

CLAIM 9.11 (ZERO-KNOWLEDGE) The above protocol is honest-verifier
perfect zero-knowledge for pairs (B, d) such that every two distinct points
in L(B) are at distance greater than vyd.

Proof: The simulator just reads the verifier’s choice and returns it as
the prover’s message. Thus, the simulator’s output will consist of coins
for the verifier and the prover’s response. By the above proof, this
distribution is identical to the verifier’s view in the real protocol. O

CLAIM 9.12 (SOUNDNESS) Let ¢ > 0 and y(n) > /n/(clnn), if for
some vy # v in L(B), dist(vy, v2) < d then, no matter what the prover
does, the verifier accepts with probability at most 1 — n=2%,

Proof: Let p’ oef p + (v1 — v2), where p is the lattice point chosen
by the verifier in Step 1. Clearly, dist(p,p’) < d. Let £ be a random
variable representing the message actually sent by the verifier, and let
& = &+ (v1 — va). Using the analysis in the proof of Claim 9.4, we
bound the statistical distance between these two random variables by
(1 — 3n~2"). (Note that ¢ corresponds to &y and ¢’ corresponds to ¢;
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with v = v; — v3.) Given this bound, we have for any prover strategy
Pl
(1-3n72") + Pr(P'(¢) = p)

Pr(P'(§)=p) <
< 2-3n72" - Pr(P'(¢) = p')

However, the event P’'(¢') = p’ is almost as probable as P'(€) = p (with
the only difference in probability due to the case where p’ is outside the
sphere which happens with probability at most n=2"). Thus, we have

2-Pr(P'(§) =p) < Pr(P'(6)=p)+Pr(P'(¢)=p)+n™ "
< 2-op ™

and the claim follows. O

Conclusion. Combining the above protocol with known transforma-
tions (i.e., (Goldwasser and Sipser, 1986) and (Babai, 1985)), we get

THEOREM 9.13 For any approzimation factor y(n) = /n/O(logn),
the promise problem GAPSVP. () is in NP N coAM. Furthermore, the

complement of GAPSVP.,(,) has a HVPZK constant-round proof system.

Again, the interesting part is the membership of GAPSVP, ) in coAM.
This reduces the gap factor for which “efficient proof systems” exists: La-
garias et. al. (Lagarias et al., 1990) had previously shown that GAPSVP,,
is in coNP.

3. Treating other norms

The underlying ideas of Theorems 9.8 and 9.13 can be applied to
provide (HVPZK) constant-round proof systems for corresponding gap
problems regarding any “computationally tractable” norm and in par-
ticular for all £,-norms (e.g., the £; and o, norms). The gap factor is

however larger: n/O(logn) rather than /n/O(logn).
Tractable norms. Recall the norm axioms (for a generic norm ||-||) -

(N1) For every v € R*, ||v|| > 0, with equality holding if and only if v
is the zero vector.

(N2) Forevery v € R* and any a € R, |lav|| = |a| - ||v]|.
(N3) For every v,u € R*, ||v+ul| =||v| + ||u]|. (Triangle Inequality).

To allow the verifier to conduct is actions in polynomial-time, we make
the additional two requirements
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(N4) The norm function is polynomial-time computable. That is, there
exist a polynomial-time algorithm that, given a vector v and an ac-
curacy parameter 4, outputs a number in the interval [||v|| £ 6]. We
stress that the algorithm is uniform over all dimensions.

(N5) The unit sphere defined by the norm contains a ball of radius
27 Poly(n) centered at the origin, and is contained in a ball of radius
2poly(n) centered at the origin. That is, there exists a polynomial p
so that for all n’s

{(veER vz <27P™} C {veR:|v| <1}
C {veR :|v|;<2?™}

where ||v||2 is the Euclidean (¢2) norm of v.

Note that axioms (N4) and (N5) are satisfied by all (the standard) £,-
norms.! On the other hand, by (Dyer et al., 1991), axioms (N4) and (N5)
suffice for constructing a probabilistic algorithm which given n, generates
in time poly(n) a vector which is almost uniformly distributed in the n-
dimensional unit sphere w.r.t the norm. Specifically, by axioms (N2)
and (N3), the unit sphere is a convex body, and axioms (N4) and (N5)
imply the existence of a so-called “well-guaranteed weak membership
oracle” (cf., (Grotschel et al., 1993)) as required by the convex body
algorithm of Dyer et. al. (Dyer et al., 1991) (and its improvements -
e.g., (Kannan et al., 1997)).

Our protocols can be adapted to any norm satisfying the additional
axioms (N4) and (N5). We modify the protocols of the previous sections
so that the error vector, t, is chosen uniformly among the vectors of

norm less than (n)d/2 (rather than being chosen uniformly in a sphere

of radius y(n)d/2). Here we use y(n) def n/O(logn). Clearly the com-

pleteness and zero-knowledge claims continue to hold as they merely
relied on the triangle inequality (i.e., Norm axiom (N3)). In the proof
of the soundness claim, we replace Lemma 9.7 by the following lemma
in which distance refers to the above norm (rather than to Euclidean
norm):

LEMMA 9.14 For everyc > 0, let p be a point at distance € < 1 from the
origin. Then the relative symmetric difference between the set of points

1 Actually, for any €p-norm, there is a simple algorithm for uniformly selecting a point,
(z1,...Zn), in the corresponding unit sphere: Generate n independent samples, z1,...,Zn,
each with density function e~=" and normalize the result so that a vector of norm r appears
with probability proportional to r=".
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of distance 1 from the origin and the set of points of distance 1 from p
is at most 2- (1 — (1 —¢)™).

We comment that the bound is quite tight for both the ¢; and the £
norm. That is, in both cases the relative symmetric difference is at least
2 — (1—(¢/2))".2

Proof: Let B(0,r) (resp., B(p,r)) denote the set of points within
distance r from the origin (resp., from p). The symmetric difference
between B(0,1) and B(p, 1) equals twice the volume of B(p,1) \ B(0,1).
This volume is clearly bounded above by B(p,1) \ B(p,1 —¢). By the
norm axioms (N1) and (N2), we have

vol(B(p,1) \ B(p,1 —¢€)) _ Y.
vol(B(p, 1)) b=

and the lemma follows. O

Using € = 2/v(n) and v(n) = n/O(logn), we conclude that the proof
system has soundness error bounded above by

Of(logn)\" 1
1—(1——n——> ZI_W'

Repeating it polynomially many times in parallel we get

THEOREM 9.15 Both GAPCVP and GAPSVP defined for any norm
and gap factor y(n) = n/O(logn) are in NP N coAM. Furthermore,
the complement promise problems have HVPZK constant-round proof
systems.

4. What does it mean?

Let IT = (IIygs,[INo) be a promise problem for which IIpaygg de-
notes the instances which are neither YES nor NO instances of II. Thus,
the entire set of instances is [IygsUIIno UIImayBE. The complement of
a promise problem IT is simply (IIno, [Iygs). To say that a language L is
reducible to a promise problem II means that:

There exists a polynomial time procedure that on input z € L,

s computes instances zy, ..., zx (possibly adaptively), such that

2To verify the above claim for £y, consider the point p = (¢, ¢, ...,€). Clearly, the intersection
of the unit sphere centered at the origin and the unit sphere centered at p is (2 — €)™, whereas
each sphere has volume 2". For £;, consider the point p = (¢, 0, ...,0). Again, the intersection
is a sphere of radius 1 — (¢/2) (according to the norm in consideration).
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= given b; such that b; = YES for all z; € Il and b; = NO for all
z; € [INo, cann compute whether £ € L or not.

Note that in the above definition, we do not care about the value of
b; when z; does not satisfy the promise. Recall that IT is NP-hard if
for all languages L in NP, L reduces to II. We are now ready to show
the following theorem (which will be used to interpret the significance
of the interactive proofs we showed for CVP and SVP in the previous
sections).

THEOREM 9.16 Let I = (Ilygs, IINo) be a promise problem. Suppose
there exists a polynomial-time recognizable relation R so that

s For every z € Ilygs UIIMAYBE, there ezists a y € {0,1}* such that
(z,y) € R (and |y| = poly(|z|)) and

s For every z € IINo, for all y € {0,1}*, (z,y) is not in R.
s The complement of Il is in AM.
Then: II is NP-hard implies coNP C AM.

Proof: Let L € coNP, and II be NP-hard. By the NP-hardness
of I, and thus corresponding coNP-hardness of II complement, L is
reducible to IT complement (itself a promise problem). We shall use this
latter reduction to construct an AM-proof system for L and conclude
our proof.

Let us denote from here on IT complement as (II,gg, Tyo). On input
z, the prover first sends to the verifier a transcript of the reduction
(from L to IT complement) applied to z. This transcript consists of
instances z1,...,Z, and corresponding by, ..., b, such that b; = YES for
all z; € H’YES and b; = NO for all z; € H’NO. For all those z; which are
outside of the promise, and are in IIpayBg — the prover sends b; = NO.

Next, the prover proves each of the answers it gave as follows: for
z € IIyo = Ilygs, the prover sends the verifier y such that (z,y) in R,
for £ € Iygg = IINo, the prover and verifier run the AM-proof system
for II complement. And, for all those queries z in [IpMayBE, the prover
shows again a y such that (z’,y) € R. The main observation is that a
yes instance can not turn into a no instance and vice versa, which is true
by the soundness of the AM procedure for II complement and condition
(2) in the theorem statement. The fact that prover claimed that maybe
instances are no instances are of no concern by the definition of a re-
duction to a promise problem. All these AM-proofs are run in parallel,
and so the result is an MAM-proof system (which can be converted into
an AM-proof system (Babai, 1985)). In case of a randomized (smart)
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reduction, we let the verifier select the random input (to the reduction)
and continue as above. O

We can finally get our implications.

COROLLARY 9.17 For any y(n) = O(y/n/logn), if either GAPCVP,
or GAPSVP,, is NP-hard then coNP C AM.

An older result of (Boppana et al., 1987) showed that if coNP C AM
then the Polynomial-Time Hierarchy collapses. Thus (if one does not
believe the collapse of the polynomial time hierarchy) we can take the
corollary as evidence of the impossibility of proving NP-Hardness result
for approximation factor below /n for CVP or SVP.

5. Notes

The techniques described in Subsection 1.1 of Chapter 8 can be used
to somehow simplify the proof systems presented in this chapter. (See
(Goldreich and Goldwasser, 2000, Section 8) for details.) The proof sys-
tems presented in this chapter can be easily adapted to other lattice
problems. For example, a proof system for GAPCRP ;7 is the follow-
ing: the prover guesses a deep hole in the lattice, and then uses the proof
system of (Goldreich and Goldwasser, 2000) to prove that this point is
far from the lattice. Together with Theorem 7.10, this puts GAPCRP 5
in NP NcoAM, showing that the covering radius problem is not likely to
be NP-hard to approximate within factors v = \/n. Interestingly, when
the factor 7 is less than \/n, GAPCRP,, is not even known to be in NP.

Proof systems for SIVP, and SBP,, were given in (Blomer and Seifert,
1999), but only for approximation factors y(n) = n/logn. It is not clear
if those results can be improved to y(n) = \/n/logn as for the other
lattice problems.

-4Ckj6UjgE2iN1+kY-
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